/ id NH0920010001 auc 林彥亨 tic 客家意象之形塑:台灣客家廣播的文化再現 adc 莊英章 adc 胡台麗 ty 碩士 sc 國立清華大學 dp 人類學研究所 yr 92 lg 中文 pg 119 kwc 客家 kwc 廣播 kwc 意象形塑 kwc 文化再現 kwc 認同 abc 台灣的客家族群因為憂慮文化傳承出現斷層危機,正在客家運動的號召下藉由各式媒體持續發聲,這本論文企圖處理的是,台灣的客家廣播形塑了什麼客家意象?形塑客家意象的背景和脈絡是什麼?廣播的客家意象又是如何再現客家文化與凝聚客家認同?筆者試著透過客家廣播的場域,瞭解散佈在不同環境、空間中的客家社區,是如何詮釋彼此差異的「客家意象」,進而創造對話的平台;而分析「客家意象」形成的脈絡,則可以認識客家族群的社會處境、及與他者的互動關係;至於檢視客家廣播的文化再現,更能夠發現客家認同持續轉變的方向。 tc 第一章 形塑的前奏 第一節 當我踏進客家廣播 第二節 客家研究理論回顧 一、 全貌觀的客家研究 二、 客家的社區研究 第三節 媒體人類學回顧 一、 媒體人類學的研究取向 二、 族群媒體的屬性 三、 文化再現與認同變遷 第四節 研究說明 一、 研究對象 二、 研究方法 第二章 台灣客家廣播簡介 第一節 台灣客家廣播的回顧 第二節 寶島客家電台FM93.7 第三節 中廣客家頻道AM747 第四節 中央廣播電台客語節目 第三章 廣播形塑的客家意象 第一節 形塑客家意象的後生人 一、 樣板後生人 二、 自我的發聲 第二節 客家意象的聚合離散 一、 祖源移墾 二、 南腔北調 三、 地域差異 第三節 客家意象的集體記憶 一、 族群特質 二、 風俗藝術 三、 產業經濟 第四節 客家意象的人我分類 一、 描述他者 二、 客家名人 第五節 客家意象與Call-in互動 第四章 形塑客家意象的脈洛 第一節 客家族群的社會脈絡 一、 也是台灣人的論述 二、 對母語流失的焦慮 第二節 文化核心與邊界的距離 一、 都會客家與聚落客家 二、 台灣客家與境外客家 第三節 電台權力結構的差異 一、 財團法人與廣播公司 二、 成立背景與政黨認同 第四節 廣播節目文本的不同 一、 節目類型的設定 二、 象徵資本的聽眾群 第五章 文化再現與客家認同 第一節 作為文化產業的客家廣播 一、 客家廣播產銷的文化內容 二、 客家廣播人的工作範疇 第二節 參與客家運動的客家廣播 一、 客家廣播成為公共論壇 二、 客家廣播結合客家活動 第三節 客家文化再現的族群政治 一、 客家廣播中的族群論述 二、 客家廣播主體性的擺盪 第四節 建構客家認同的多元性 一、 團結與尊重的迷思 二、 重新劃定的族群界線 第六章 結論 第一節 研究所得 一、 廣播的客家意象呈現出濃厚的鄉愁與鄉民生活 二、 廣播的客家意象再現出客家菁英與庶民的落差 三、 廣播的客家意象常源自行動者主觀經驗的投射 四、 廣播客家意象的形塑是透過議題動態參與的過程 五、 廣播客家意象的差異已獲形式上尊重多元的共識 六、 廣播的客家意象正在勾勒「台灣客家」的共同範疇 第二節 綜合討論 一、 回應與檢討 二、 結語 參考書目 附錄一 客家廣播收聽紀錄表 附錄二 2003年2月 寶島客家電台節目 附錄三 1998年11月 中廣客家頻道節目表 附錄四 2003年4月前 中廣客家頻道節目表 附錄五 2003年4月後 中廣客家頻道節目表 附錄六 2003年6月 中廣苗栗台節目表 附錄七 2003年1月 中央廣播電台客語節目時間表rf 王明珂 1997 《華夏邊緣:歷史記憶與族群認同》,台北:允晨出版社。 中廣客家頻道節目部 2000 〈中廣客家頻道AM747-客家鄉親的好朋友〉,刊於《客家雜 誌》第120期,頁40-43,台北:客家雜誌社。 江平成 1998 《無盡的感恩》(非賣品),台北:曾雲珍出版。 杜維明 1990 〈「文化中國」初探〉,刊於《九十年代月刊》6月號,頁60- 61。 吳一民 1997 〈溫馨送「客」情〉,刊於《廣播月刊》6月號,頁23-25。 吳秀媛 2000 〈高雄廣播電台客語廣播研習班研習側記〉,刊於《客家雜 誌》第122期,頁48,台北:客家雜誌社。 吳奕蓉 2000 〈體會客語傳承的生生不息-「中廣客家頻道第四屆客語說故 事比賽」〉,刊於《客家雜誌》第126期,頁27,台北:客家 雜誌社。 2001 〈中廣客家頻道AM747前進關西〉,刊於《客家雜誌》2001年 春節特刊,頁44。 李祖源 1996 《廣播電視年鑑》,台北:中華民國廣播電視事業協會。 林正修 1999 〈都會客語存滅的關鍵年代〉,刊於《台北畫刊》377期,頁 41-42,台北:台北市政府新聞處。 林彥亨 2002 〈客家二次移民:以彰化縣「源成七界」為例〉,刊於《八十 八學年度暑期田野實習報告》,新竹:國立清華大學人類學研 究所。 林彥亨、陳怡如、劉楚慧、陳志儀 1996 〈地下電台〉,刊於《大眾傳播史》,台北:國立政治大學廣 播電視學系。 林慧閔 2001 〈第二屆客家歌謠大賽側記〉,刊於《客家雜誌》第134期, 頁36-37,台北:客家雜誌社。 邱彥貴 1998 〈從祭典儀式看北台灣義民信仰:以枋寮褒忠亭丁丑年湖口聯 庄值年中元為例〉,刊於《第四屆國際客家學研討會:客家與 當代世界論文集》,頁525-563,台北:中央研究院民族學研 究所。 邱彥貴、吳中杰 2001 《台灣客家地圖》,台北:貓頭鷹出版社。 邱琡雯 1998 〈外勞族群媒體研究初探:以台灣泰語廣播節目為例〉,刊於 《台灣社會研究季刊》第三十一期,頁169-193。 故鄉市場調查股份有限公司 2002 《全國客家認同與客家人口之抽樣調查研究》,台北:行政院 客家委員會。 客家雜誌社論 1999 〈鑑往知來、更上層樓-祝賀寶島客家電台五週年慶〉,刊於 《客家雜誌》第111期,頁1-3,台北:客家雜誌社。 2000 〈歡喜迎接「全國客語廣播網」的誕生〉,刊於《客家雜誌》 第119期,頁1,台北:客家雜誌社。 施正鋒 2002 〈客家族群與國家-多元文化主義的觀點〉,客家公共政策研 討會,行政院客家委員會主辦。 范振乾 1999 〈重建聽眾的信心與熱情—對寶島客家電台第二屆董監事會的 期許〉,刊於《客家雜誌》第105期,頁40-43,台北:客家雜 誌社。 2002 〈台灣客家社會運動初探〉,刊於《台灣客家族群史》(社會 篇),頁185-270,南投市:台灣省文獻委員會。 高怡萍 2002 〈迴轉於他鄉與故鄉之境:多重發聲的客家原鄉論述〉,刊於 《第二屆「客家研究」研究生論文研討會-族群建構與論述論 文集》,頁143-160,桃園:國立中央大學客家研究中心。 徐正光、鄭力軒 2002 〈當代台灣客家社會生活〉,刊於《台灣客家族群史》(社會 篇),頁271-406,南投市:台灣省文獻委員會。 徐正光 1994 〈台灣的族群關係:以客家人為主體的探討〉,刊於《客家研 討會論文集》,頁381-399,台北:行政院文化建設委員會。 徐貴榮 1996 〈我參加了客語廣播人才培訓班第二期〉,刊於《客家雜誌》 第72期,頁50,台北:客家雜誌社。 徐煥堂 1994 〈廣播客語節目的現況與發展〉,刊於《客家研討會論文 集》,頁173-183,台北:行政院文化建設委員會。 涂政強 2000 〈運用現代化發展模式與依附理論的基本觀點-檢視台灣廣電 媒體結構中的客語頻道〉,刊於《客家》雜誌第116期,頁49- 50,台北:客家雜誌社。 席瑞英 2001 〈為客語電台開闢聲路〉刊於《國際廣播雜誌》2001年7月 號,頁20-23。 許文宜 1994 《我國廣播電台「電話交談」(call-in) 節目之研究--打電話 者(caller)的使用動機與媒介使用行為之關聯性分析》,私立 中國文化大學新聞學系碩士論文。 許薌君 2003 《劃時代的聲音-鮮為人知的中央廣播電台》,台北:財團法 人中央廣播電台。 陳支平 1997 《客家源流新論》,南寧:廣西教育出版社。 陳文馨 1998 《想像社會空間的形成與轉化:以一個社區廣播電台內的青少 年節目為例》,國立台灣大學人類學研究所碩士論文。 陳玉苹 2000 〈客家族群與台灣現代文化產業〉,刊於《台灣客家族群史- 產經篇》,頁277-304,南投市:台灣省文獻委員會。 陳板 1998 〈族群與地域:台灣客家在地化的文化觀察〉,刊於《第四屆 國際客家學研討會:客家與當代世界論文集》,(論文另 印),台北:中央研究院民族學研究所。 2002 〈化邊緣為資源:台灣客家文化產業化的策略〉,客家公共政 策研討會,行政院客家委員會主辦。 陳佳誼 2000 《「大隘」的前世今生:比較賽夏與客家的歷史記憶與遺 忘》,國立清華大學社會學研究所碩士論文。 陳昭如 1994 《Call in!!地下電台:台灣新傳播文化的震撼與迷思》, 台北:日臻出版。 陳茂泰 1995 〈敘述異族意象:阿美式與泰雅式的個人經驗呈現〉,刊於 《語言使用與族群認同小型研討會論文集》,頁1-12,台北: 中央研究院民族學研究所。 陳康宏 1997 〈客家廣播人才培訓班〉,刊於《客家雜誌》第81期,頁40- 41,台北:客家雜誌社。 陳逸君 1998 〈眾裡尋「客」千百度:一個需要重新書寫台灣族群史的時 代〉,刊於《第四屆國際客家學研討會:客家與當代世界論文 集》,頁1333-1376,台北:中央研究院民族學研究所。 張立本 2002 〈異客:論台灣客家族群建構過程中的吸納與排斥〉,刊於 《第二屆「客家研究」研究生論文研討會-族群建構與論述論 文集》,頁119-142,桃園:國立中央大學客家研究中心。 張錦華 1995 〈從地下電臺的挑戰看廣播生態的多元化與地方化〉,刊於 《理論與政策》民國八十四年秋季號,頁84-103。 1996 〈媒體與社會:廣播的社會功能-新新人類與新廣播電臺〉, 刊於《廣電人》13期,頁50-52。 1997 〈多元文化主義與我國廣播政策--以臺灣原住民與客家族群為 例〉,刊於《廣播與電視》第3卷第1期,頁1-23,台北:政治 大學廣播電視學系。 張瓊方 1998 〈大家來答嘴鼓:寶島客家電台發聲〉,刊於《光華畫刊》第 23卷、第12期,頁94-105,台北:光華畫刊。 張鎮堃 1998a 〈客話的廣播天空〉,刊於《客家雜誌》第94期,頁25-26, 台北:客家雜誌社。 1998b 〈另類的聲音-台灣客語廣播〉,刊於《國際廣播雜誌》第4 期,頁55-57。 莊英章 1989 〈新竹枋寮義民廟的建立及其社會文化意義〉,刊於《第二屆 國際漢學會議論文集》,民俗與文化組,頁223-240,台北: 中央研究院。 1994 《家族與婚姻:台灣北部閩客村落之研究》,台北:中央研究 院民族學研究所。 1998 〈客家研究的人類學回顧〉,刊於《客家文化研究》通訊創刊 號,頁22-29,桃園:國立中央大學客家研究中心。 2001 〈客家族群歷史與社會變遷的區域性比較研究-族群互動、認 同與文化實作〉,刊於《客家文化研究》通訊第四期,頁17- 22,桃園:國立中央大學客家研究中心。 莊英章、周靈芝 1984 〈唐山到台灣:一個客家宗族移民的研究〉,刊於《中國海洋 發展史論文集》,頁297-333,台北:中央研究院三民主義研 究所。 莊英章、陳運棟 1984 〈清末台灣北部中港溪流域的糖經營與社會發展:頭份陳家的 個案研究〉,刊於《中央研究院民族學研究所集刊》56期,頁 59-110,台北:中央研究院民族學研究所。 國際廣播雜誌編輯部 1998 〈黑盒子的春天-中央電台對大陸廣播簡述〉刊於《國際廣播 雜誌》1998年1月,創刊號,頁48-50。 黃永達 1998 〈廣播電視媒體的-客語節目、客家節目與客家人的節目〉, 刊於《客家雜誌》第94期,頁21-24,台北:客家雜誌社。 黃坤盛 2000 〈客語魔法師-第一期客語媒體人才培訓班結業〉,刊於《客 家雜誌》第126期,頁34-35,台北:客家雜誌社。 黃宣範 1993 《語言、社會與族群意識》,台北:文鶴出版社。 黃雅琴 1998 〈廣播電台定位與類型電台的發展〉,刊於《廣電人》46期, 頁37-40。 1999 〈台灣類型電台的現況〉,刊於《廣電人》49期,頁47-50。 彭欽清 2002 〈台灣客家社團之發展〉,刊於《台灣客家族群史》(社會 篇),徐正光等作,頁117-184,南投市:台灣省文獻委員 會。 曾金玉 2000 《台灣客家運動之研究:1987-2000》,國立臺灣師範大學公 民訓育研究所博士論文。 楊少騏 2003 〈蔣經國的子弟兵,帶著國民黨證扛扁旗〉刊於《新新聞》週 報855期,頁43-49。 楊長鎮 1996 〈民族工程學中的客家論述〉刊於《族群關係研討會論文 集》,台北:台灣教授學會。 溫仲良 2000 〈客家義民祭〉刊於《台北畫刊》391期,頁4-8,台北:台北 市政府新聞處。 董育群 1998 〈跨國越界聲波傳-國際廣播的回顧〉刊於《國際廣播雜誌》 1998年1月,創刊號,頁46-48。 劉幼琍 1997 《客家族群對廣電媒體之使用與滿足調查與評估》,《行政院 文化建設委員會專題研究報告》,台北:國立政治大學。 劉惠珍 2001a 〈中廣客家頻道母親節聯歡活動-峨眉行〉,刊於《客家雜 誌》第132期,頁32,台北:客家雜誌社。 2001b 〈客家文化在歡樂學習中傳承-中廣青少年客語廣播研習營紀 實〉,刊於《客家雜誌》第137期,頁34-35,台北:客家雜誌 社。 2002 〈中廣客家頻道活動傳真〉,刊於《客家雜誌》第139期,頁 69,台北:客家雜誌社。 蔣孝武 1979 《中華民國廣播年鑑》,台北:廣播與電視雜誌社。 蔣炳釗 1995 〈試論客家的形成與 族的關係〉刊於莊英章、潘英海編《台 灣與福建社會文化研究論文集》,頁271-301,南港:中研院 民族所。 潘英海 1994 〈文化合成與合成文化—頭社村太祖年度祭儀的文化意涵〉, 刊於莊英章、潘英海合編《台灣與福建社會文化研究論文集》 頁235-256,台北:中央研究研院民族學研究所。 2001 〈地域文化?族群文化?閩西客家與畬族之研究〉,刊於《客 家社會與文化:台灣、大陸、東南亞地區的區域比較研究》研 究計畫,新竹:國立清華大學人類學研究所(未發表)。 蔡秀玲 1999a 〈客家廣播應走向媒體專業經營時代〉,刊於《客家雜誌》第 103期,頁48-49,台北:客家雜誌社。 1999b 〈客語廣播人任重道遠〉,刊於《客家雜誌》第104期,頁49- 50,台北:客家雜誌社。 黎玟 1997 〈「客家廣播人才培訓班」與我〉,刊於《客家雜誌》第82 期,頁75,台北:客家雜誌社。 賴英豪 2001 〈廣播電台、目標聽眾群和節目策略〉,刊於《廣電人》84 期,頁18-19。 蕭新煌、黃世明 2001a 〈戰後至今台灣客家族群政治力的發展變遷〉,刊於《台灣客 家族群史》(政治篇),頁219-413,南投市:台灣省文獻委 員會。 謝劍、房學嘉 1999 《圍不住的圍龍屋:記一個客家宗族的復甦》,嘉義:南華大 學。 關尚仁 2002 〈多元文化環境下的客家廣電傳播政策〉,客家公共政策研討 會,行政院客家委員會主辦。 羅香林 1975(1933) 《客家研究導論》,台北:古亭書屋。 1989(1959) 《客家源流考》,北京:中國華僑出版社。 羅烈師 1999 〈台灣地區客家博碩士論文評述(1966-1998)〉,刊於《客 家文化研究》通訊第二期,頁117-137,桃園:國立中央大學 客家研究中心。 羅肇錦 2000 《台灣客家族群史》(語言篇),南投市:台灣省文獻委員 會。 蘇裕玲 1995 《族群社區與族群書寫-當代台灣客家意識展現的兩個面 向》,台灣大學人類學研究所碩士論文。 Allen, Susan L. 1994 ‘A Brief History of Media Anthropology’ in Allen, Susan L. ed. “Media Anthropology: informing global citizens”, pp.1-14, London: BERGIN & GARVEY 1994 ‘The Anthropologist as Media Anthropologist’ in Allen, Susan L. ed. “Media Anthropology: informing global citizens”, pp.145-159, London: BERGIN & GARVEY Cohen, Myron 1976 “House United, House Divided”, New York: Columbia U. Press. Constable, Nicolas 1996 ‘Hakka Christian Expressions of Hakka Identity’in Constable, Nicolas ed. “Guest People: Hakka Identity in China and Abroad”, Seattle: Univ. of Washington Cottle, Simon 2000 ‘Introduction Media Research and Ethnic Minorities: Mapping the Field’ in Cottle, Simon ed. “Ethnic minorities and the Media: Changing Cultural Boundaries”, pp.1-30, Buckingham. Philadelphia: Open University Press Erickson, Ken C. 1994 ‘The Anthropologist as Radio Producer’ in Allen, Susan L. ed. “Media Anthropology: informing global citizens”, pp.131-144, London: BERGIN & GARVEY Gillespie, Marie 1995 “Television, Ethnicity, and Cultural Change”, London and New York: Routledge Ginsburg, Faye 1994 ‘Culture/Media: A (Mild) Polemic’, in “Anthropology Today”, Vol. 10, No. 2, pp. 5-15. Mahon, Maureen 2000 ‘The Visible Evidence of Cultural Producers’ in “Annual Review of Anthropology”, Vol. 29, pp. 467- 492 Martin, Howard J. 1996 “The Hakka Ethnic Movement in Taiwan, 1986-1991”, in Guest People: Hakka Identity in China and Abroad, Constable, Nicolas ed., Seattle: Univ. of Washington. Natoli, Joseph 1997 “A Primer to Postmodernity”, Malden. Massachusetts: Blackwell. Pasternak, Burton 1972 “Kinship and Community in Two Chinese Villages”, Stanford: Stanford U. Spitulnik, Debra 1993 ‘Anthropology and Mass Media’, in “Annual Review of Anthropology”, Vol. 22, pp. 293-315 Weiner, James F. 1997 ‘Televisualist Anthropology: representation, aesthetics, politics’ in “Current Anthropology”, Vol.38, pp.197-211id NH0920010001 sid 886009 cfn 0 / id NH0920010002 auc 周美淑 tic 人、家戶與爐主(lotsu)─邵族的人觀研究 adc 潘英海 ty 碩士 sc 國立清華大學 dp 人類學研究所 yr 92 lg 中文 pg 104 kwc 人觀 kwc 邵族 kwc 祖靈 kwc 公媽籃 kwc 爐主 kwc 先生媽 abc 本論文主要探討邵族人在其文化中,身份的取得與流動的機制。筆者認為邵族特殊的「爐主(lotsu)制度」不僅揭示了人與靈之間的概念,並且與個人在家戶以及社會中的身份取得、轉變有密切的關係。個人的身份藉由不同階段的生命儀式進行轉化,其結果則透過部落中各種傳統儀式的過程,不斷的展演與再現個人在社會中的身份定位。以爐主(lotsu)制度為核心所展演的邵族人觀,不僅影響邵族人的社會實踐與自我的認定,在文化接觸的時刻,更成為操作外來文化符號以符合本土當前文化需求的重要機制。 tc 第一章 導論 …………………………………………………………………01 第一節 研究緣起 ……………………………………………………………… 01 第二節 人觀研究回顧………………………………………………………… 04 一、從生命禮儀看個人身份的轉變……………………………………………04 二、由個人與文化的關係探究人觀……………………………………………07 第三節 邵族研究回顧………………………………………………………… 10 第四節 關於德化社…………………………………………………………… 11 一、地理位置與歷史沿革………………………………………………………11 二、聚落、日常生活與人………………………………………………………15 三、傳統信仰與祭儀,「邵」族人的展演………………………………………20 第五節 研究方法與架構……………………………………………… ………27 一、研究方法……………………………………………………………………27 二、論文架構……………………………………………………………………30 第二章 祖靈信仰 ………………………………………………………… 33 第一節 關於邵族人的祖靈信仰…………………………………………… 35 一、傳統的信仰世界……………………………………………………………35 二、祖靈信仰─氏族祖靈、pathara、apu……………………………………36 第二節 公媽籃--祖靈的居所…………………………………………………38 一、祖靈與公媽籃………………………………………………………………38 二、家戶與公媽籃………………………………………………………………40 三、公媽籃的象徵意義…………………………………………………………41 第三節 成為祖靈─喪葬儀式的過渡……………………………………… 43 一、傳統喪葬儀式………………………………………………………………43 二、酒所標示的過渡……………………………………………………………45 三、無法過渡的特殊狀態………………………………………………………46 小結:祖靈與我們同在…………………………………………………………46 第三章 人、家戶與爐主(lotsu)………………………………………50 第一節 人之初………………………………………………………………… 51 第二節 身分的取得--成年禮…………………………………………………53 一、打角齒………………………………………………………………………54 二、打角齒後之祭祀……………………………………………………………55 三、成年禮小孩與過年歌舞的解禁……………………………………………55 第三節 身分的移動---婚姻與爐主(lotsu)…………………………… 57 一、婚禮與傳統儀式……………………………………………………………57 二、婚入者與家戶………………………………………………………………58 第四節 爐主(lotsu)與Lusan祭典…………………………………………60 一、Titisan:爐主(lotsu)產生的場合………………………………………61 二、爐主(lotsu)的確認--八月初二拜酒糟…………………………………63 三、爐主(lotsu)與大過年……………………………………………………65 四、爐主(lotsu)的再詮釋……………………………………………………67 小結:人與家戶的再定義………………………………………………………69 第四章 先生媽、儀式與社群……………………………………………72 第一節 先生媽的職責與地位……………………………………………… 73 一、主持祭儀……………………………………………………………………73 二、治病與招魂…………………………………………………………………75 第二節 先生媽的成立儀式………………………………………………… 76 一、成立儀式……………………………………………………………………77 二、儀式與祭詞的學習…………………………………………………………79 第三節 社群的回饋:toktok儀式的贈禮…………………………………80 第四節 一個退出事件……………………………………………………… 82 一、事情的起因與退出的抉擇…………………………………………………82 二、族人的反應與最後的結果…………………………………………………85 第五節 儀式場域中的先生媽、家戶與個人………………………………86 一、先生媽與轄戶………………………………………………………………86 二、人、家戶與儀式的點唸……………………………………………………87 結論:人觀的再現與複刻…………………………………………………89 第一節 邵族的人觀…………………………………………………………… 90 第二節 儀式─人觀的再現與複刻………………………………………… 93 第三節 邵族人觀的現代意義…………………………………………………97 第四節 研究的限制與未來可能的發展……………………………………98 參考書目…………………………………………………………………100 圖 表 圖1:邵族聚落與鄰近關係圖………………………………………………………12 圖2:清朝中晚期水沙連地區族群分布圖…………………………………………14 圖3:日月村德化社之街道圖………………………………………………………16 圖4:邵族組合屋配置圖……………………………………………………………17 圖5:先生媽舉行部落性儀式示意圖………………………………………………74 表1:邵族年度祭儀表………………………………………………………………23 表2: Lusan(大過年)儀式表……………………………………………………… 24 表3:Lusan anto pashaula(小過年)儀式表……………………………………… …25 表4:邵族氏族表……………………………………………………………………26 表5:十年來邵族爐主(lotsu)表…………………………………………………… 96rf 參考書目 山路勝彥 1996 台湾サオ族の儀礼的世界と認同の求心性,關西大學社會學部 紀要75:83-108。 2002 以人類學的觀點看2001年的邵族。刊於日月潭世紀顯影,鄧相揚著,序三。南投:南投縣政府文化局。 毛隆昌、簡史朗、白宏如編 1999 大家來寫村史:民眾參與式社區史種子村建立計劃日月村期末報告書。(未出版) 伊能嘉矩 1957 台灣番政誌,溫吉譯。台北:台灣省文獻委員會。 何翠萍 1992 比較象徵學大師─特納,刊於見證與詮釋,黃應貴編,頁282-377。台北:正中書局。 1997 雲南景頗、載瓦喪葬儀禮與竹家屋人觀的形成。發表於「生命儀禮與人觀-中國西南族群區域研究之一小型學術研討會」,中央研究院民族學研究所區域組主辦,5月2日,台灣台北。 李壬癸 1999 台灣原住民史─語言篇。南投:台灣省文獻委員會。 李亦園 1996[1958 ] 邵族的經濟生活。刊於日月潭邵族調查報告,陳奇祿編,第二版,頁51-98。台北:南天書局。 李宜蓁 2000 日月神教重出江湖--邵族災後重建與族群認同的相互辯證。台北:台大新聞研究所。 呂明坤 2001 集集地震六個月後邵族人精神疾病的流行病學調查。台北:陽明大學公共衛生研究所。 郁永河 1959 稗海紀遊。台北:臺灣銀行經濟研究室。 高拱乾 1978 臺灣府志。臺北:文海出版社。 唐美君 1996[1958 ] 日月潭邵族的宗教。刊於日月潭邵族調查報告,陳奇祿編,第二版,頁99-124。台北:南天書局。 陳文德 1993 南王卑南族「人的觀念」:從生命過程的觀點分析,刊於人觀、意義與社會,黃應貴編,頁477-502。台北:中央研究院民族學研究所。 陳奇祿 1996a[1958 ] 日月潭的邵族社會。刊於日月潭邵族調查報告,陳奇祿編,第二版,頁1-51。台北:南天書局。 1996b[1958 ] 日月潭邵族調查報告再版後記。刊於日月潭邵族調查報告,陳奇祿編,第二版,頁167-169。台北:南天書局。 陳計堯 2000 試論日月潭地區原住民的歷史遷移(1815-1934)。台灣史研究7(1):81-134。 黃玉振 1953 化番六社志。南投文獻叢輯2:131-139。 黃美金 2000 邵語參考語法。台北:遠流出版公司。 黃應貴 1998 人的觀念與儀式:東埔社布農人的例子,刊於人觀、意義與社會,黃應貴編,頁530-556。台北:中央研究院民族學研究所。 鄧相揚 1999a 邵族華采。南投:南投縣政府。 1999b 水沙連地區的拓墾與邵族的處境,發表於「契約文書與社會生活─台灣與華南社會(1600-1900)研討會」,中央研究院台灣史研究所籌備處主辦,3月19-20日,台灣台北。 2000 a 邵族風采。南投:交通部觀光局日月潭國家風景管理處。 2000b 日月潭史話。南投:交通部觀光局日月潭國家風景管理處。 2003 邵族ulalaluwan正名之芻議,發表於「族群意識與文化認同─平埔族群與台灣社會大型研討會」,中央研究院民族學研究所主辦,9月30日-10月2日,台灣台北。 簡史朗、曾品滄編 2002 水沙連埔社古文書選輯。台北:國史館。 簡史朗、石阿松編 2001 邵語讀本。台北:行政院文化建設委員會。 魏心怡 2001 邵族儀式音樂體系之研究。台北:國立藝術學院音樂學系音樂碩士班。 謝世忠 1999 身份與認同:日月潭邵族的族群構成。發表於「台灣原住民國際研 討會」,中央研究院民族學研究所、順益台灣原住民博物館主辦,5 月1-3日,台灣台北。 潘英海 1998 面相與一個中國「人」的觀念,刊於人觀、意義與社會,黃應貴編,頁163-206。台北:中央研究院民族學研究所。 Barnard, Henry G. 1985 Victor Witter Turner: A Bibliography (1952-1975). Athropologica. n. s. 27(1-2):207-234. Dumont, Louis 1992[1970 ] 階序人,王志明譯。台北:遠流出版社。 2003[1983 ] 論個體主義─對現代意識型態的人類學觀點,谷方譯。上海:人民出版社。 Fortes, Meyer 1987 The Concept of the Person. In Religion, Morality and the Person. M. Fortes. Pp.246-86. Cambridge: Cambridge University Press. Geertz, Clifford 1973 The Interpretation of Cultures. New York: Basic Books. Gennep, Arnold van. 1960 The Rites of Passage. Monica B. Vizedom and Gabrielle L. Caffee, trans. Chicago: The University of Chicago Press. George E. Marcus and Michael M. J. Fischer 1997[1982 ] 作為文化批評的人類學,王銘銘、藍達居譯。北京:三聯書店。 Harris, Grace 1989 Concepts of Individual, Self and Person in Description and Analysis. American Anthropologist 91(3):599-612. Malinowski, Bronislaw 1996[1948 ] 巫術、科學與宗教,朱岑樓譯。台北:協志工業叢書出版股份有限公司。 1991[1922 ] 南海舡人 : 美拉尼西亞新幾內亞土著之事業及冒險活動報告,于嘉雲譯。台北:遠流出版社。 Mauss, Marcel 1985 A Category of the Human Mind: the Notion of Person; the Notion of Self. In The Category of Person: Anthropology, Philosophy, History. M. Carrithers, S. Collins and S. Lukes, eds. Pp.1-25. Cambridge: Cambridge University Press. Nandy, Ashis 1988 The intimate enemy : loss and recovery of self under colonialism. Delhi : Oxford University Press. Turner, Victor 1967 The Forest of Symbols: Aspects of Ndembu Ritual. Ithaca, New York: Cornell University. 1969 The Ritual Process: Structure and Anti-Structure. Chicago, Illinois: Aldine. 1974 Dramas, Field and Metaphors: Symbolic Action in Human Society. Ithaca, New York: Cornell University.id NH0920010002 sid 896009 cfn 0 / id NH0920031002 auc 王文志 tic 實驗設計為基礎架構之資料挖礦方法及其實證研究 adc 簡禎富 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 英文 pg 84 kwc 資料挖礦 kwc 實驗設計 kwc 半導體電性功能針測 kwc 事故診斷 kwc 工程資料分析 kwc 半導體製造模式與分析 abc 在企業電子化之環境下,對於半導體等高度科技產業,在製造或測量過程中,都會自動蒐集產品經過製程加工所產生的資料,或是以人工輸入方式紀錄的資料來進行製程監控、故障分析與製造管理。然而半導體製造程序複雜、影響變數眾多,工程師或領域專家往往無法從收集的龐大資料中,迅速有效地察覺可能導致其中製程異常的原因或是歸納造成產品品質不良的因素,更遑論從資料中發現先前隱藏不知的重要訊息。另一方面,透過實驗計劃法,雖然可從其中找出製程的關鍵因素,並進行最佳化等動作,但是由於半導體製程複雜度高,需要考量的因素相當多,因此設計且執行一個完整的實驗相當不易,而且半導體晶圓成本昂貴,工程師往往難以在給定的資源下完成實驗。本研究針對半導體製造工程資料,提出一個創新的資料分析方法,以實驗設計為基礎架構之資料挖礦方法,從半導體晶圓資料中萃取有價值的資訊或知識,作為工程師解決問題的參考依據,進行提昇產品之良率。本研究並以某半導體廠之案例為實證,以檢驗本研究架構之效度。 tc Table of Contents 中文摘要 i Abstract ii List of Figures v List of Tables vi List of Tables vi Chapter 1 Introduction 1 1.1 Background, significance, and motivation 1 1.2 Research aims 2 1.3 Overview of this thesis 3 Chapter 2 Literature Review 4 2.1 Semiconductor manufacturing data 4 2.2 KDD and Data Mining 9 2.3 Statistical Test and Multiple Comparisons 18 2.4 DOE and Regression 21 2.4.1 DOE 21 2.4.2 Regression 28 2.5 The Comparison of Data Mining and DOE 31 Chapter 3 Research framework 34 3.1 Problem Definition and Problem Structuring 38 3.2 Data Preparation 40 3.3 Key Stage Screening 42 3.3.1 Kruskal-Wallis Test 42 3.3.2 Dunn Multiple Comparisons 44 3.4 Experimental Design 45 3.5 Basic Experiment Searching 47 3.6 Analysis Experiment 53 3.6.1 ANOVA Test 54 3.6.2 Empirical Modeling and Model Adequacy Checking 55 3.7 Evaluation and Feedback 56 Chapter 4 An Empirical Study 59 4.1 Problem Definition and Problem Structuring 60 4.2 Data Preparation 61 4.3 Key Stages Screening 63 4.3.1 Kruskal-Wallis Test 63 4.3.2 Dunn Multiple Comparisons 64 4.4 Experimental Design 66 4.5 Basic Experiment Searching 67 4.6 Analysis Experiment 70 4.6.1 ANOVA Test 70 4.6.2 Empirical Modeling and Model Adequacy Checking 71 4.7 Evaluation and Feedback 73 Chapter 5 Conclusion and Further Research 75 References 77 Appendix 83rf References Alex, A. F., and Simon, H. L. (1998), Mining Very Large Databases With Parallel Processing, Kluwer Academic, Bosten. Berry, M., and Linoff, G. (1997), Data Mining Techniques for Marketing, Sales and Customer Support, John Wiley and Sons, New York. Bose, I., and Mahapatra, R. K. (2001), “Business data mining─a machine learning perspective”, Information & Management, 39, pp. 211-225. Box, G.E.P., and Hunter, J.S. (1961), “The 2k-p Fractional Factorial Designs”, Technometrics, 3, pp 311-351, 449-458. Box, G. E. P., Hunter, W. G., and Hunter, J. S. (1978), Statistics for Experiments: An Introduction to Design, Data Analysis, and Model Building. New York: Wiley. Box, G.E.P., and Meyer, R.D. (1986),”An Analysis for Unreplicated Fractional Factorials”, Technometrics, 28, pp. 11-18. Brachman, R. J., Khabaza, T., Kloesgen, W., Piatetsky-Shapiro, G., and Simoudis, E. (1996), “Mining Business Database”, Communication of ACM, Vol. 39, No. 11, pp.42-48. Braha, D., and Shmilovici, A. (2002), “Data Mining for Improving a Cleaning Process in the Semiconductor Industry”, IEEE Transactions on Semiconductor Manufacturing. Vol. 15. No. 1. February. Braha, D. Ed. (2001), Data Mining for design and Manufacturing: Method and Applications. Boston, MA: Kluwer Academic. Chen, A., Guo R. S., and Lin, P. (2000), “Statistical Analysis and Design of Semiconductor Manufacturing Systems”, The Ninth International Symposium on Semiconductor Manufacturing, pp 335-338. Chien, C. F., Lin, T. H., Peng, C. Y., and Hsu, S. C. (2001), “Developing Data Mining Framework and Methods for Diagnosing Semiconductor Manufacturing Defects and An Empirical Study of Wafer Acceptance Test Data in A Wafer Fab”, Journal of the Chinese Institute of Industrial Engineers, 18(4), pp 37-48.24. Coleman, D.E., and Montgomery, D.C. (1993), “A Systematic Approach to Planning for a Designed Industrial Experiment”, (with discussion), Technometrics, 35, 1-27. Cunningham, S. P., Spanos, C. J., and Voros, K. (1995), “Semiconductor Yield Improvement: Results and Best Practices,”IEEE Transactions on Semiconductor Manufacturing, vol. 8, no. 2, pp.103-109. Daniel, W. W. (1990), Applied Nonparametric Statistics 2nd, PWS-KENT Publishing Company, Boston. Deboeck, G., and Kohonen, T. Eds (1998), Visual Exploration in Finance with Self-Organizing Maps, Springer-Verlag, London. Draper, N. R., and Smith, H. (1981), Applied regression analysis, Wiley, New York. Evans, S., Leman, S., Deters, C., Fusaro R., and Lynch, H. (1997) “Automated detection of hereditary syndromes using data mining”, Computer and Biomedical Research, 30, 337-348. Fan, C. M., Guo, R. S., Chen, A., Hsu, K. C., and Wei, C. S. (2001), “Data Mining and Fault Diagnosis based on Wafer Acceptance Test Data and In-line Manufacturing Data”, IEEE, pp 171-174. Fayyad, U. (1997), “Data Mining and Knowledge Discovery in Database: Implication for Scientific Databases,” Scientific and Statistical Database Management, pp.2-11. Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996), “From data mining to knowledge discovery: An overview”, in Advances in Knowledge Discovery and Data Mining, U.Fayyad, G. Piatetsky-Shapiro, S. P. Amith, and R> Uthurusamy, Eds. Cambridge, MA:MIT Press, pp. 1-36. Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996), “The KDD Process for Extracting Useful Knowledge from Volumes of Data”, Communication of ACM, vol. 39, no.11, pp.27-34. Gardner, M. and Bieker, J. (2000),”Data Mining Solves Tough Semiconductor Manufacturing Problems.” ASMC 2000 proceedings. Gardner, R. M., Bieker, J., and Elwell, S. (2000), “Solving tough semiconductor manufacturing problems using data mining”, IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 46-55. Haaland, P. D. (1989), Experimental Design In Biotechnology, Marcel Dekker Inc., New York. Haaland, P. D., and O’Connell, M. A. (1992),” Strategic Experimentation”, notes for an in-house short course on experimental design, Becton Dickinson Research Center, Research Triangle Park, NC. Hamada, M., and Wu, C.F.J. (1992), “Analysis of Designed Experiments with Complex Aliasing”, Journal Quality Technology, 24(3), pp 130-137. Ivanova, T., and Malone, L. (1999), “Comparison Of A Two-Stage Group-Screening Design to a Standard 2k-p Design For a Whole-Line Semiconductor Manufacturing Simulation Model”, Proceedings of the 1999 Winter Simulation Conference, pp 640-646. John, G. H., Miller, P., and Kerber, R. (1996), “Stock selection using rule induction”, IEEE Expert, 11(5), 52-58. John, L. (2002),”Regression analysis of experiments with complex confounding patterns guided by the alias matrix”, Computational Statistics & Data analysis, 39,227-241. Kittler, R., and Wang, K. (1999), ”The emerging role of data mining”, Solid State Technology, p45-58, vol. 42(11). Kleissner, C. (1998), “Data Mining for the Enterprise”, IEEE Proc. 31st Annual Hawaii International Conference on System Sciences, vol. 7, pp.295-304. Kruskal, W. H., and Wallis, W. A. (1952), “Use of Ranks on One Criterion Variance Analysis”, Annals of Mathematical Statistics, Vol. 30, pp.271-294. Kusiak, A., and Kurasek, C. (2001), “Data Mining of Printed-Circuit Board Defects”, IEEE Transactions on Robotics and Automation, Vol. 17, No. 2, April. May, G. S., Huang, J., and Spanos, C. J. (1991), “Statistical Experiment Design in Plasma Etch Modeling”, IEEE Transactions on Semiconductor Manufacturing, Vol. 4m No. 2, May. Mieno, F. T. Sat, Shibuya, Y., Odagiri, K., Tsuda, H., and Take, R. (1997), ”Yield Improvement Using Data Mining System”, IEEE, pp. 391-393. Mitchell, T. M. (1997), Machine Learning. New York: McGraw- Hill. Montgomery, D. C. (2001), Design and Analysis of Experiments, 5th edition. John Wiley & Sons. Montull, J. I., Ortega, A. C., and Sobrino, E. (1999),”Using Neural Networks and 3D Polynomial Interpolation for the Study of Probe Yield vs. E-Test Correlation. Application to Sub-Micronics Mixed-Signaltechnology”, IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 197-201. Plackett, R.L., and Burman, J.P. (1946), ”The Design of Optimum Multifactorial Experiments”, Biometrika, 33,305-325. Scheffe, H. (1953), “A Method for Judging All Contrasts in the Analysis of Variance.” Biometrika, Vol.40, pp.87-104. Silva, J. C. G. E. D., Dias, J. R. M., and Magalhaes, J. M. C. S. (2001), ”Factorial analysis of a chemiluminescence system for bromate detection in water”, Analytiea Chimica Acta, pp. 175-184. Tsuda, H., Shiri, H., Takagi, O., and Take, R. (2000), ”Yield analysis and improvement by reducing manufacturing fluctuation noise”, ISSM 2000 proceeding. Wu, C. F. J., and Hamada, M. (2000), Experiments Planning, Analysis, and Parameter Design Optimization, John Wiley & Sons, Inc., New York. Zant, P. V. (1997), Microchip Fabrication. McGraw-Hill 1997id NH0920031002 sid 903826 cfn 0 / id NH0920031003 auc 黃國泰 tic 以最小擴張表格法探討能力集合擴展的多重解求法及應用 adc 王小璠 adc 游伯龍 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 51 kwc 能力集合擴展 kwc 多重解 kwc 最小擴張表格 kwc 多目標的最小擴張表格 abc 基於習慣領域,游伯龍教授在1990年時提出了能力集合分析,藉由能力集合分析可以讓決策者瞭解自己面對問題時所缺乏的能力,再經由最佳能力集合擴展,使決策者能夠有效率的獲得成功解決問題所需的能力集合。然而,以前最佳能力集合擴展的問題都是使用數學規劃的方法解決之,但由於大量的變數和限制式時常造成求解上的困難。由於最小擴張表格法可以藉由在擴展表格上的直接操作得到最佳能力集合擴展,因此得以解決上述的問題。 tc 摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 緒論 1 第二章 文獻回顧 4 2.1 習慣領域和能力集合 4 2.1.1 習慣領域 4 2.1.2 能力集合 6 2.1.3 能力集合擴展 8 2.2 最小擴張表格 11 2.2.1 擴張樹和循環 11 2.2.2 最小擴張表格法 15 2.2.3 能力集合的最佳擴展 19 2.3 修正之最小擴張表格法 20 2.4 小結 21 第三章 最小擴張表格法的多重解與延伸應用 23 3.1 最小擴張樹的多重解 23 3.1.1 上限值 23 3.1.2 多重解的展開 25 3.1.3 求解步驟 27 3.2 最小擴張表格法的應用研究 31 3.2.1 多目標的最小擴張表格法 32 3.2.2 擴展表格上的不確定性擴展成本 32 3.3 小結 36 第四章 案例說明 37 4.1 問題描述 37 4.2 數學規劃求解法 38 4.3 擴展表格求解法 42 4.4 方法評估與討論 45 4.5 小結 47 第五章 結論與建議 48 參考文獻 50rf [1 ] 游伯龍,習慣領域-IQ和EQ沒談的人性軟體,時報出版,台北,1998。 [2 ] Bazaraa M. S., Jarvis J. J., and Sherali H. D., Linear Programming and Network Flows, 2nd ed., Wiley, New York, 1990. [3 ] Chen T. Y., “Using competence sets to analyze the consumer decision problem,” European Journal of Operational Research, 128(1), 2001, 98-118. [4 ] Chiang C. I., Li J. M., Tzeng G. H. & Yu P. L., “A revised minimum spanning table method for optimal expansion of competence sets”, In Yacoc Y. Haimes and Ralph E. Steuer (Eds.), Multiple Criteria Decision Making, Springer, 2000, 238-247. [5 ] Feng J. W. and Yu P. L., “Minimum spanning table and optimal expansion of competence set,” Journal of Optimization Theory and Applications, 99(3), 1998, 655-679. [6 ] Hillier, F. S. and Lieberman G. J., Introduction to Operations Research, 7th ed., McGraw-Hill, New York, 2001. [7 ] Li H. L. and Yu P. L., “Optimal competence set expansion using deduction graphs,” Journal of Optimization Theory and Applications, 80(1), 1994, 75-91. [8 ] Li H. L., “Incorporating competence sets of decision makers by deduction graph”, Operations Research, 47(2), 1999, 209-220. [9 ] Li J. M., Chiang C. I., and Yu P. L., “Optimal multiple stage expansion of competence set,” European Journal of Operational Research, 120(3), 2000, 511-524. [10 ] Shi D. S. and Yu P. L., “Optimal expansion and design of competence sets with asymmetric acquiring costs,” Journal of Optimization Theory and Applications, 88(3), 1996, 642-657. [11 ] Wang H. F. and Wang C. H., “Modeling of optimal expansion of a fuzzy competence set,” International Transition in Operational Research, 5(5), 1998, 413-424. [12 ] Wang H. F. and Wang C. H., “A fixed-charge model with fuzzy inequality constraints composed by max-product operator”, Computers and Mathematics with Applications, 36(7), 1998, 23-29. [13 ] Yu P. L., Forming Winning Strategies: An Integrated Theory of Habitual Domain, Springer, New York, 1990. [14 ] Yu P. L. and Zhang D., “Optimal expansion of competence sets and decision support,” Information Systems and Operational Research, 30(2), 1992, 68-85. [15 ] Yu P. L. and Zhang D., “Marginal analysis for competence set expansion,” Journal of Optimization Theory and Applications, 76(1), 1993, 87-109. [16 ] Zimmermann H. J., Fuzzy set Theory and Its Applications, Kluwer-Nijhoff, Boston, 1985.id NH0920031003 sid 903827 cfn 0 / id NH0920031004 auc 辛瑋雄 tic CPFR協同商務平台之分析與設計 adc 林則孟 博士 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 92 kwc 協同規劃 kwc 預測及補貨 kwc 供應鏈管理 kwc 協同商務 abc 在本論文中先以一個實際案例來介紹CPFR (Collaborative Planning , Forecasting and Replenishment),對此案例公司導入CPFR後之每一流程步驟作說明,希望借此讓未來要進行相關研究的人能夠對CPFR的進行流程有更深一層的了解。接著本研究透過對VICS所提出的CPFR 九大步驟流程及其委託EAN.UCC所制訂之BMS(Business Message Standards)的探討,提出了結合產業情境之CPFR系統開發程序。透過此開發程序,產業界可以經由對其產業背景的分析,然後參考本研究的設計方法,開發適合自己產業特性的CPFR協同商務平台。 tc 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 1 1.3 研究目的 2 1.4 研究範圍與限制 3 第二章 文獻回顧 4 2.1 協同商務(Collaborative Commerce) 4 2.1.1 協同商務的定義 4 2.1.2 協同商務的分類 2.2 協同規劃、預測與補貨(CPFR) 6 2.2.1 CPFR的精神 6 2.2.2 CPFR九大步驟 6 2.2.3 協同規劃、預測與補貨(CPFR)之相關文獻 8 2.2.4 導入CPFR的效益 10 2.2.5 CPFR之各KPI意義探討 11 2.3 BMS 12 2.3.1 BMS基本類別 13 2.3.2 Item Information Request 15 2.3.3 Item Location Profile 16 2.3.4 Forecast 16 2.3.5 Exception Criteria 17 2.3.6 Product Activity 19 2.3.7 Performance History 20 2.3.8 Exception Notification 21 2.3.9 Forecast Revisions 22 2.3.10 Event 23 第三章 CPFR案例說明 24 3.1 案例背景 24 3.2 發展協同商務協議(Develop Collaboration Arrange-ment)28 3.3 建立聯合商業計劃(Joint Business Plan) 31 3.4 協同預測 33 3.5 績效分析 35 第四章 系統分析與設計 40 4.1 使用者及基本資料設定 41 4.1.1 系統管理員 41 4.1.2 買(賣)方管理員 43 4.1.3 買(賣)方操作人員 43 4.2 協同商務協議(Collaboration Arrangement) 43 4.3 聯合商業計劃(Joint Business Plan) 46 4.4 協同預測 53 4.5 異常狀況處理 57 4.6 KPI報表 59 第五章 系統建置 62 5.1 系統架構 62 5.2 系統實作 62 5.2.1 使用者及基本資料設定 63 5.2.2 協同商務協議 69 5.2.3 聯合商業計劃 75 5.2.4 協同預測 81 5.2.5 異常狀況處理 84 5.2.6 KPI報表 87 第六章 結論與建議 89 6.1 結論 89 6.2 建議 90 文獻回顧 92rf [1 ] 中環股份有限公司,“中環股份有限公司九十一年度年報”,http://www.cmcnet.com.tw,2003。 [2 ] 吳志忠,“建構一個具有CPFR流程特性之企業間商務電子交易市集平台的模式”,國立政治大學資訊管理學系碩士論文,2000。 [3 ] 吳慧玲,“台灣零售業應用協同規劃預測補貨模式之可行性研究─以烘焙業與百貨量販業為例”,淡江大學資訊管理學系碩士論文,2002。 [4 ] 林則孟等,“製造業導入CPFR之效益指標及其資料流分析-以中環公司為例”,2003年產學合作產業電子化研討會,2003。 [5 ] 林則孟、辛瑋雄,“CPFR協同商務平台之分析與設計”,第九屆資訊管理暨實務研討會,2003。 [6 ] 林則孟、邱柏仁,“以Web Services為基之CPFR®協同商務系統架構”,第九屆資訊管理暨實務研討會,2003。 [7 ] 林宣佐,“協運用企業流程語言描述關鍵企業流程之研究—以BPEL4WS應用於CPFR為例”,國立中正大學資訊管理學系碩士論文,2002。 [8 ] 陳世運,“淺談電子市集發展主流---協同商務”,資策會 FIND網站,http://www.find.org.tw/ trend_disp.asp?trend_id=1183。 [9 ] 黃貝玲,“協同商務價值鏈管理”,電子化企業經理人報告,遠擎,Number 20,2001年4月,pp.12-23。 [10 ] 盧舜年,鄒坤霖,“供應鍊管理的第一本書”,商周出版,2002。 [11 ] 魏志強,“合作式商務的經典CPFR -- Wal-Mart和Sara Lee示範案例”,資策會電子商務應用推廣中心,http://www.ec.org.tw/organize/qrecr/ resource/case/90/合作式商務的經典CPFR.doc,2001。 [12 ] Barratt, M. and Oliveira, A., “Experiences of collaborative planning initiatives,” International Journal of Physical Distribution & Logistics Management, 266-289 (2001). [13 ] Burdick, D., Bond, B., Miklovic, D., Pond, K. and Eschinger, C., “C-Commerce:The New Arena for Business Applications,” Research Note, Gartner Group, (1999). [14 ] Dirk Seifert,“A Guide to CPFR Implementation”,Galileo Business,(2001). [15 ] Dorman, A.,“The Essential Guide to Wireless Communications Applications”, Prentice Hall PTR, (2001). [16 ] EAN.UCC,“EAN.UCC CPFR® Business Message Standards version 1.0”,(2001). [17 ] ECR Europe,“European CPFR Insights”, Galileo Business (2002). [18 ] Industry Directions Inc. and Syncra Systems Inc., “The Next Wave of Supply Chain Advantage:Collaborative Planning, Forecasting and Replenishment” , http://www.industrydirections.com/(2000). [19 ] Holmstrom, J., Framling, K., Kaipia, R. and Saranen, J., “Collaborative planning forecasting and replenishment: new solutions needed for mass collaboration,” Supply Chain Management: An International Journal, 136-145 (2002). [20 ] Joseph, P.P.“The American Heritage® Dictionary of the English Language(4th ed)”.Boston:Houghton Mifflin(2000). [21 ] Noekkentved, C.,“Collaborative Processes in E-supply Networks”, European SAP Centre of Expertise, PricewaterhouseCoopers (2000). [22 ] VICS,“Roadmap to CPFR”,Voluntary Interindustry Commerce Standards Association (2002). [23 ] Sliwa, C., “CPFR clamor persists, but adoption remains slow”, Computerworld, 1 July, p. 10 (2002). [24 ] Stank, T.P., Daugherty, P.J. and Autry, C.W., “Collaborative planning: supporting automatic replenishment programs”, Supply Chain Management, Vol. 4 No. 2, pp. 75-85(1999). [25 ] VICS, “Collaborative Planning, Forecasting, and Replenishment Voluntary Guidelines2.0”,http://www.cpfr.org/documents/pdf/CPFR_Tab_1.pdf~ CPFR_Tab_10.pdf (2002) .id NH0920031004 sid 893806 cfn 0 / id NH0920031005 auc 劉淑範 tic 以工程資料為基礎之晶圓良率特徵值模式架構與 adc 陳飛龍 ty 博士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 79 kwc 良率提升 kwc 工程資料分析 kwc 良率特徵值 kwc 分群品質指標值 kwc 修正後模糊分群 kwc 倒傳遞類神經網路 abc 良率提升(Yield Enhancement)是現今各半導體廠之最終目的,由於任何良率的損失都會造成成本的提升,因此各半導體廠都會針對生產過程進行嚴格之監控,並藉由各種分析手法來達到此目的,但是目前所使用的良率提升技術都缺乏整合性與效率性,一般而言,當晶圓良率損失時,良率工程師會利用所收集之大量工程資料(Engineering Data)來進行分析,這些工程資料包括缺陷資料、晶圓圖樣資料、製程機台參數、WAT參數等,然而目前工程資料分析方式必須仰賴有經驗之良率工程師,使得尋找製程問題之效率有限,且花費太多的時間。因此,本研究提出以工程資料為基礎之晶圓良率模式分析架構,首先,以晶圓製程與測試之相關工程資料作為分析並萃取其良率特徵值,再運用本研究所提之修正式模糊分群演算法(Modified-Fuzzy C Means, M-FCM)所建立的分群品質指標值(CQI),將所有晶圓良率之特徵向量中求得最佳分群品質解,最後,利用倒傳遞類神經網路(BP)將晶圓良率分群結果進行網路診斷學習,往後良率工程師只需透過網路診斷學習結果,將該晶圓之良率特徵值進行診斷分析,且本研究以某半導體廠實際有限之資料進行驗證後發現,將晶圓良率特徵值萃取經過量化與正規化後,使得良率工程師當有晶圓良率問題發生時,能利用萃取出的良率特徵值,直接利用晶圓良率診斷分析的學習結果,判別晶圓良率的問題,以縮短所花費的時間並降低人為經驗判斷的錯誤,提升其分析時間的效率。 tc 中文摘要 I 英文摘要 II 致謝辭 III 目錄 IV 圖表目錄 VII 第一章 緒 論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 3 1.4 論文架構與研究方法 4 1.5 章節架構 8 第二章 文獻探討 9 2.1 IC製程簡介 9 2.1.1 半導體前段製程 10 2.1.2半導體後段製程 14 2.1.3 最終測試 15 2.2 良率預測模式之建構 16 2.3 工程資料分析 18 2.3.1 製程參數與機台 18 2.3.2 缺陷資料 19 2.3.3 晶圓允收測試資料 21 2.3.4 晶圓針測資料 23 2.4 分群演算法技術 25 2.4.1 統計方法之分群技術 25 2.4.2 柔性計算之分群技術 27 2.5 文獻總結 34 第三章 晶圓良率特徵值模式建構與分析 35 3.1 晶圓良率特徵值模式分析之架構 35 3.2 晶圓良率特徵值萃取分析 36 3.2.1晶圓圖樣辨識分析步驟與方法 41 3.3 晶圓良率特徵值分群分析 46 3.4 晶圓良率特徵值診斷分析 52 第四章 晶圓良率特徵值分析模式驗證 56 4.1 驗證晶圓圖樣萃取分析 56 4.2 晶圓良率特徵值分群分析之驗證 64 4.3 晶圓良率特徵值診斷分析之驗證 68 4.4 驗證晶圓良率分析模式總結 71 第五章 結 論 72 5.1 研究結果 72 5.2 未來發展方向 74 參考文獻 75 附錄一(第三章相關符號表) 78rf 李偉傑,「半導體之工程資料分析與診斷系統」,碩士論文,國立清華大學工業工程與工程管理學系研究所(1995)。 林寅智,「以工程資料為基礎之半導體故障分析系統」,碩士論文,國立清華大學工業工程與工程管理學系研究所(1997)。 林景堂,「晶圓圖像辨識」,碩士論文,國立台灣大學資訊工程學系研究所(1998)。 周臣忠,「半導體製程良率提升專家系統之量化模式評估與分析」,碩士論文,國立清華大學工程與系統科學研究所(2000)。 莊達人,VLSI製造技術,高立圖書有限公司,1997年。 黃大倫,「半導體製程良率提升專家系統之失效模式與效應&晶圓允收測試異常分析」,碩士論文,國立清華大學工程與系統科學研究所(2000)。 蔡明正,「半導體良率提升專家系統之故障樹建構與分析及專家系統之驗証」,碩士論文,國立清華大學工程與系統科學研究所(2000)。 劉淑範,「以工程資料為基礎之半導體良率提升分析系統」,碩士論文,國立清華大學工業工程與工程管理學系研究所(1997)。 Badih, E. K., SEMI Your Industry Resource, Semiconductor Conference TAIWAN, 77-97(1997). Bezdek, J., Pattern recognition with fuzzy objective function algorithm, Plenum, New York (1998). Chen, F. L. and S. F. Liu, “A neural-network approach to recognize defect spatial pattern in semiconductor manufacturing,” IEEE Transactions on Semiconductor Manufacturing, 13 (3), 366-373(2000). Cox, I. and Reynolds, A., “Manufacturing Digital’s alpha AXP: Rapid Applications Development to Assure Critical Success Through Quality,” SAS Software Solutions for The Semiconductor Industry, 32-37(1996). Cunningham, S. P., and MacKinnon, S., “Statistical methods for visual defect metrology”, IEEE Transactions on Semiconductor Manufacturing, 11 (1), .48-53(1995). Friedman, D. J., M. H. Hansen, V. N. Nair, and D. A. James, “Model-free estimation of defect clustering in integrated circuit fabrication,” IEEE Transactions on Semiconductor Manufacturing, 10, 344-359(1997) Kaempf, U., “The Binomial Test: A Simple Tool To Identify Process Problems”, IEEE Transactions On Semiconductor Manufacturing, 8(2), 160-165(1995). Ken, R., Brain, S., and Neil, H., ”Using Full Wafer Defect Maps As Process Signatures To Monitor And Control Yield”, IEEE/SEMI Semiconductor manufacturing Science Symposium, 1991, pp.129-135. Liu, S. F., F. L. Chen, and W. B. Lu, “Wafer bin map recognition using a neural network approach” International Journal of Production and Research, 40(10), 2207-2223(2002). Mieno, F.; T. Sato, Y. Shibuya, K. Odagiri, H. Tsuda, and R. Take, “Yield improvement using data mining system Semiconductor Manufacturing “IEEE International Symposium on Conference Proceedings, 1999, pp. 391 —394. Mirza, A. I., Donoghue, G. O’, Drake, A. W., and Graves, S. C., “ Spatial Yield Modeling for Semiconductor Wafers”, IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 276-281, 1995. Pandya, A.S., and Macy, R.B., Pattern Recognition With Neural Networks in C++, IEEE Press, 1994. Ross, T. J., Fuzzy Logic With Engineering Applications, McGraw-Hill, New York, 1995, pp. 136-146. Sato, H., M. Ikota, A. Sugimoto and H. Masuda, “A new defect distribution metrology with a consistent discrete exponential formula and its applications” IEEE Transactions on Semiconductor Manufacturing, 12 (4) , 409 —418(1999). Stapper, C.H., “On yield, fault distributions, and clustering of particles”, IBM Journal Of Research Develop., 31, 326-338(1986). Taam, W., and Hamada, M., ”Detecting Spatial Effects from Factorial Experiments: An Application from Integrated-circuit Manufacturing”, Technometrics, 35 (2), (1993) Weber, C., Moslehi, B., and Dutta, M., “An Integrated Framework For Yield Management and Defect / Fault Reduction”, IEEE Transactions On Semiconductor Manufacturing, 8(2), 110-120(1995). Wong, A. Y., “A statistical parametric and probe yield analysis methodology,” Proceedings of the IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 131-139(1996). Yu, J. and F.J. Ferguson, “Maximum likelihood estimation for failure analysis [IC yield ]” IEEE Transactions on Semiconductor Manufacturing, 11 (4) , 681 —691(1998)id NH0920031005 sid 877804 cfn 0 / id NH0920031006 auc 羅良斌 tic 品管圈活動診斷與改善方向之研究─以製造業推行品管圈活動為例 adc 陳光辰 博士 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 108 kwc 品管圈 kwc 團結圈 kwc 工作圈 kwc 小團隊活動 kwc 達成目標的兩個要件 kwc 結果現象影響鏈 abc 品管圈活動在國內推行已經有三十多年了,先鋒企業舉辦金獎品管圈選拔,中華民國品質學會舉辦觀摩會,中衛發展中心舉辦全國團結圈競賽,有許許多多的優良案例,有相當的實質貢獻。從推行的角度來說,卻有不同的看法,有人說,品管圈活動對企業之貢獻良多;但也有人說,推行已經形式化,這就是我們該省思的地方。 tc 第一章 緒論 1 1.1研究動機 1 1.2研究目的 2 1.3研究方法與架構 3 1.4研究範圍 5 1.5研究限制 5 第二章 文獻探討 6 2.1品管圈活動之緣起與定義 6 2.2品管圈活動之目的與作法 12 2.3品管圈活動之類型與步驟 16 2.4品管圈活動之成效 24 2.5品管圈活動之成功因素 28 2.6品管圈活動之問題探討 32 2.7品管圈活動之再造 38 第三章 品管圈活動之評價 43 3.1品管圈活動之探討 43 3.2品管圈活動之診斷 47 3.3品管圈活動之改善 54 第四章 實證研究與資料分析 62 4.1問卷調查分析 62 4.2推行機構訪談分析 70 4.3案例公司實證分析 78 第五章 結論與建議 92 5.1結論 92 5.2建議 95 5.3後續研究之建議 96 參考文獻 99 中文資料 99 英文資料 101 附錄 102 品管圈活動研究問卷 102 推行機構訪談問卷 105 案例公司訪談問卷 106 圖 目 錄 圖1-1管理者對品管圈之評價 2 圖1-2研究架構圖 4 圖2-1品管圈活動之目的 12 圖2-2品管圈活動概念圖 14 圖2-3品管圈活動營運體系 15 圖2-4問題解決型QC STORY與PDCA循環之關係 16 圖2-5課題達成型QC STORY的適用領域(概念圖) 17 圖2-6課題達成型QC STORY與PDCA循環之關係 18 圖2-7 QC STORY適用判定圖(一) 22 圖2-8 QC STORY適用判定圖(二) 22 圖2-9課題達成型與問題解決型改善步驟 23 圖2-10品管圈活動績效指標層級結構 26 圖2-11品管圈活動的推行成效 27 圖2-12達成目標的兩個要件 28 圖2-13品管圈活動熱潮與時間關係圖 38 圖2-14品管圈活動活潑化和持久的機能系統圖……………………39 圖3-1結果、現象的影響鏈示圖……………………………………..43 圖3-2為什麼品管圈活動推行不易…………………………………..46 圖3-3品管圈活動自我診斷的PDCA 47 圖3-4品管圈活動診斷步驟 50 圖3-5品管圈活動評鑑雷達圖 53 圖3-6品管圈活動改善之方向 54 圖3-7品管圈活動主題需與公司目標相連接 55 圖4-1全國品管圈總部組織圖 70 圖4-2全國團結圈推行總會組織圖 72 圖4-3案例公司品管圈活動評鑑雷達圖 (全部) 88 圖4-4案例公司品管圈活動評鑑雷達圖 (各別) 89 表 目 錄 表2-1臺灣品管圈活動史 8 表2-2推行公司機構對品管圈的定義 10 表2-3學者專家對品管圈的定義 11 表2-4課題達成型與問題解決型QC STORY實施內容 19 表2-5問題解決型、課題達成型、對策實施型之比較 20 表2-6 QC STORY適用判定表 21 表2-7品管圈活動的效果 25 表2-8品管圈活動環境塑造之具體作法 29 表2-9阻礙品管圈活動之原因 37 表3-1「品管圈的成長階段」與「品管圈的水準」間的關係 48 表3-2品管圈活動自我評鑑表 51 表3-3品管圈活動診斷表 52 表3-4品管圈改善之目的分析 57 表3-5 QCC與QIT差異比較表 59 表3-6品管圈活動之改善作法 60 表4-1研究問卷回收統計表 62 表4-2有效問卷之基本資料統計分析 63 表4-3品管圈活動推行不易之原因 67 表4-4品管圈活動之成效統計 68 表4-5全國金獎品管圈與全國團結圈活動競賽表 73 表4-6案例公司基本資料表 79 表4-7案例公司品管圈活動狀況表 82 表4-8案例公司品管圈活動之關鍵成功因素 83 表4-9案例公司品管圈活動所遭遇之問題 84 表4-10案例公司品管圈活動之成效 85 表4-11案例C公司品管圈活動診斷表 87 表4-12案例公司品管圈活動評鑑總表 88 表4-13案例公司品管圈活動之改善方向 90 表4-14案例公司特性因素分析比較表 91 表4-15案例公司品管圈活動診斷排序表 91rf 一、中文部份 1.毛綺如,「品管圈活動關鍵成功因素之實證分析」,國立中興大學企業管理學系碩士論文,1999。 2.今井正明著,許文治譯,「現場改善-日本競爭力的成功之論」,美商麥格羅? 希爾國際股份有限公司台灣公司,1998。 3.市川享司,「品管圈活動活性化的自我診斷」,先鋒企業管理發展中心,1998。 4.古垣春、林清風、林傳成、廖方靚「基層改善向下紮根-團結圈活動基礎篇」,財團法人中衛發展中心,1999。 5.李瓊瑤,「團結圈活動邁向新里程碑」,綜效,第150期,2001。 6.杜武志,「QCC活動推行實務」,清華管理科學圖書中心,1988。 7.林正修,「現代化品管圈」,世界商業文庫,1996。 8.林清風,「活化團結圈推動指引」,財團法人中衛發展中心,2000。 9.紅塵客,「團結圈的活性化」,品質管制月刊,第35卷第8期,1999。 10.杉浦忠、山田佳明,「QC-STORY的活用手法」,財團法人中衛發展中心,2003。 11.狩野紀昭著,簡茂椿譯,「課題達成型QC STORY」,財團法人中衛發展中心,1997。 12.狩野紀昭,「品管圈活動的課題達成型QC改善歷程」,先鋒企業管理發展中心,1999。 13.狩野紀昭,「經營管理的課題達成型QC改善歷程」,先鋒企業管理發展中心,2000。 14.莊榮三,「對團結圈活動之省思與蠡見」,中衛簡訊,第132期,1998 15.曾振明,「目標管理與品管圈關連及應用之研究」,義守大學管理研究所碩士論文,2002。 16.曾振盛,「推動品管圈活動績效之探討」,國立中山大學人力資源管理研究所碩士論文,2000。 17.鄧小雅(1999),「地區教學以上醫院推行品管圈活動之主觀成效及影響因素之探討」,國立台灣大學公共衛生學院醫療機構管理研究所碩士論文。 18.鄭清和,「品管圈活動之管理績效實證研究」,長榮管理學院經營管理研究所碩士論文,2001。 19.曹銳勤,「品管圈營運績效綜合評價模式之研究-以台灣地區中衛體系之廠商為例」,國立清華大學工業工程研究所碩士論文,1995。 20.陳光辰,「工廠診斷與改善方法」,國立清華大學工業工程與工程管理學系, 2000。 21.陳寬仁,「團結圈的缺點」,中衛簡訊,第70期,1991。 22.陳耀茂,「談日本品管圈活動的重建」,品質管制月刊,第37卷第2期,2001。 23.黃南斗譯,「品管圈成功的條件」,臺華工商圖書出版公司,1988。 24.黃明哲,「團結圈活動大邁步」,中衛簡訊,第130期,1997。 25.楊平吉,「問題解決型QC STORY」,財團法人中衛發展中心,2000。 26.廖本盛,「全國團結圈活動之變革」,全國團結圈會訊,2000。 27.蔡耀宗,「省思日本QCC的活動與再出發」,中衛簡訊,第130期,1998。 28.蔡耀宗,「團結圈的回顧與展望」,中衛簡訊,第144期,2000。 29.蔡耀宗,「課題達成型QC story的發展與展望」,品質管制月刊,第36卷第6期,2000。 30.鍾朝嵩,「如何推行品管圈活動」,先鋒企業管理發展中心,1999。 31.鍾朝嵩,「品管圈活動手冊」,先鋒企業管理發展中心,1988。 32.鍾朝嵩,「品管圈實際演練法」,先鋒企業管理發展中心,1998。 33.廖方靚,「品管圈活動之促進方法」,品質管制學會,1884。 34.謝文霖,「QCC活動的省思與展望」,現場與管理,第29卷,2001。 35.戴久永,「日本品管圈活動的再造」,管理雜誌,第279期,1997。 36.羅志明,「為何要推行品管圈來持續改善品保系統」,品管管制月刊,第34卷第7期,1998。 37.蘇錦夥,「團結圈推行中心的第二個十年」,中衛簡訊,第131期,1997。 二、英文部份 1.Alie, R. E. (1986), “The Middle Management Factor in Quality Cricles Program,” Advanced Management Journal, 51(3), pp.9-15. 2.Griffin, R. W. (1988), “Consequence of Quality Circles in an Industrial Setting: A Longitudinal Assessment,” Academy of Management Journal, 31(52), pp. 338-358. 3.Lillrank, P. & Kano, N. (1989). Continuous improvement: Quality Control Circles in Japanese Industrial. Ann Arbor, University of Michigan: Center for Japanese Studies. 4.Khairual Bashar, A. M. M. (1988), “Promotion of Quality Control Circle in Development Counties.” ICQCC''98, pp.C1/1-1/6. 5.Kwong, P. W. (2000), “Coaching Staff with Quality Circle & in F.A.D.E. Approach.” ICQCC''2000. 6.Pickler, L. (1983), “Quality Circle in the Systems Environment,” Journal of Systems Management, November, pp. 14-16. 7.Van Fleet, D. D. & Griffin, R. W. (1989), “Quality Circles: A Review and Suggested Future Direction,” International Review of Industrial and Organizational Psychology, pp.213-233.id NH0920031006 sid 893892 cfn 0 / id NH0920031007 auc 林木榕 tic 台灣製造業執行管理活動之研究 adc 陳光辰 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 110 kwc 企業管理 kwc 管理活動 kwc 關鍵因素 kwc 管理名詞 abc 摘要 tc 目 錄 中文摘要 …………………………………………………………i 目錄 ………………………………………………………………iii 第一章 緒論………………………………………………………1 1.1 研究動機 ……………………………………………………1 1.2 研究目的 ……………………………………………………2 1.3 研究方法與架構 ……………………………………………3 1.4 研究範圍 ……………………………………………………5 1.5 研究限制 ……………………………………………………5 第二章 文獻探討…………………………………………………6 2.1 管理活動使用狀況之統計分析文獻 ………………………6 2.2 企業常用的管理活動 ………………………………………14 2.3 管理活動執行步驟文獻整理 ………………………………16 2.4 管理活動執行失敗與成功因素文獻探討 …………………20 第三章 現況分析…………………………………………………31 3.1 管理活動之執行狀況調查 …………………………………31 3.2 管理活動之關鍵因素建立 …………………………………33 3.3 問卷設計 ……………………………………………………41 3.3.1 公司基本資料 …………………………………………42 3.3.2 填表人基本資料 ………………………………………42 3.3.3 問卷調查表內容 ………………………………………43 3.4 實施問卷調查 ………………………………………………47 3.5 問卷資料整理 ………………………………………………47 3.5.1 公司基本資料分析 ……………………………………47 3.5.2 填表人資料分析 ………………………………………49 3.5.3 管理活動之資料統計與關鍵因素之整理 ……………50 3.6 問卷資料分析 ………………………………………………52 3.6.1 管理活動之使用狀況分析 ……………………………53 3.6.2 管理活動之滿意程度分析 ……………………………59 3.6.3 管理活動之成功與失敗因素分析 ……………………65 3.6.4 各管理活動在製造業使用之適宜性分析 ……………78 第四章 案例研究 ………………………………………………81 4.1 訪談資料設計 ………………………………………………81 4.2 案例公司與公司簡介 ………………………………………82 4.3 案例公司訪談紀要 …………………………………………85 4.3.1 A科技股份有限公司……………………………………85 4.3.2 B電腦股份有限公司……………………………………85 4.3.3 C塑膠工業股份有限公司………………………………87 4.3.4 D電腦股份有限公司……………………………………88 4.3.5 E科技股份有限公司……………………………………89 第五章 結論與建議 ……………………………………………93 5.1 研究結論 ……………………………………………………93 5.1.1 製造業執行各項管理活動之使用狀況 ………………93 5.1.2 成功與失敗關鍵因素分析 ……………………………95 5.1.3 各種管理活動在製造業中的使用適宜性 ……………95 5.2 後續研究之建議 ……………………………………………96 參考文獻 …………………………………………………………97 附錄一 ……………………………………………………………102 附錄二 ……………………………………………………………105 圖 目 錄 圖1-1 研究架構 ……………………………………………………4 表 目 錄 表2-1 企業所使用的管理名詞 1/2 ………………………………8 表2-1 企業所使用的管理名詞 2/2 ………………………………9 表2-2 較常使用之管理活動 ………………………………………10 表2-3 2000 年管理工具使用狀況統 ……………………………11 表2-4 管理工具使用率比較 ………………………………………12 表2-5 滿意度 vs.使用率之調查報告分析 ………………………13 表2-6 企業常用的管理活動 ………………………………………15 表2-7 管理活動執行步驟/原則彙整表(1/4) …………………17 表2-7 管理活動執行步驟/原則彙整表(2/4) …………………18 表2-7 管理活動執行步驟/原則彙整表(3/4) …………………19 表2-7 管理活動執行步驟/原則彙整表(4/4) …………………20 表3-1 企業採用管理活動之前後結果組合表 ……………………31 表3-2 管理活動使用狀況調查表 …………………………………32 表3-3 管理活動成功與失敗的因素彙整(1/4) ………………34 表3-3 管理活動成功與失敗的因素彙整(2/4) ………………35 表3-3 管理活動成功與失敗的因素彙整(3/4) ………………36 表3-3 管理活動成功與失敗的因素彙整(4/4) ………………37 表3-4 管理活動成功因素彙整表 ………………………………38 表3-5 管理活動成功 vs.失敗的因素彙整 ……………………41 表3-6 管理活動使用狀況問卷表 ………………………………44 表3-7 影響管理活動之成功因素問卷表 ………………………45 表3-8 影響管理活動之失敗因素問卷表 ………………………46 表3-9 產業類別分析 ………………………………………………48 表3-10 員工人數分析 ……………………………………………48 表3-11 實收資本額分析 …………………………………………48 表3-12 公司成立年數分析 ………………………………………48 表3-13 任職年資分析 ……………………………………………49 表3-14 職稱分類分析 ……………………………………………49 表3-15 負責工作(部門)類別分析 ………………………………50 表3-16 單位規模分析 ……………………………………………50 表3-17 各管理活動之使用情形分析 ……………………………56 表3-18 各管理活動在過去與現在使用情形分析 ………………57 表3-19 各管理活動在現在使用滿意度與未來的使用分析 ……58 表3-20 職稱類別 vs.各管理活動滿意度分析 …………………62 表3-21 工作(部門)類別vs.各管理活動滿意度分析(1/2)…63 表3-21 工作(部門)類別vs.各管理活動滿意度分析(2/2)…64 表3-22 成功因素的前5項分析 …………………………………68 表3-23 失敗因素的前5項分析 …………………………………69 表3-24 成功因素與失敗因素之前五項對應分析 ………………70 表3-25 影響管理活動之成功因素分析 …………………………71 表3-26 影響管理活動之失敗因素分析 …………………………72 表3-27 成功因素 vs.失敗因素對應分析 ………………………73 表3-28 職務類別 vs.成功因素分析 ……………………………76 表3-29 職務類別 vs.失敗因素分析 ……………………………77 表3-30 產業類別 vs.各管理活動使用情形分析 ………………79 表3-31 產業類別 vs.各管理活動滿意度分析 …………………80 表4-1 案例公司之基本資料 ………………………………………84 表4-2 案例公司使用管理活動之狀況 ……………………………91 表4-3 案例公司管理活動執行狀況分析 …………………………92rf 參考文獻 中文部分 1.CRM執行手冊(2001),日本HR Institute人力資源學院著,野口吉昭編,遠擎,台北 2.中國生產力中心(2000),(新生產方式系列-及時生產革命JIT:JIT 生產總論(一),錄影帶) 中國生產力中心,台北。 3.日本設備維護協會,「新TPM加工組立篇」,中衛,(1996) 4.呂錦珍(1996)譯,Michael J.Spendolini著,「標竿學習」台北,天下文化,p1-p23。 5.永譽企業管理顧問有限公司的研究報告(2003) http://www.ever-trust.com.tw/knowledge.php 6.周芸薇(2000),「『學習型組織』評鑑量表之建立」,國立中央大學人力資源管理研究所未出版碩士論文。 7.孫本初 (1995),學習型組織的內涵與運用,空大行政學報,第三卷,頁l-l7。 8.袁世珮 譯 (1993)勞勃?史雷特著,奇異傑克?威爾許領導智典,麥格羅、希爾國際,台北 9.許長田(2002),「企業重整-經營新局活化策略」,書泉,台北。 10.陳佐銘(1990),「企業實行標竿管理以提升營運績效之研究─以長谷建設公司為例」論文,國立中山大學,企業管理學系未出版碩士論文。 11.陳弘、張齊、張成、陳中興(1997)合著,「企業管理100重要觀念」,台北,鼎茂,p21-1-p21-7。 12.陳依蘋(2000),"專訪台灣大學管理學院院長柯承恩博士談平衡計分卡".會計研究月刊,第179期,頁26-28。 13.陳延越(2002),「國內企業推行六標準差品質管理系統」論文,元智大學,工業工程與管理研究所未出版碩士論文。 14.陳玫伶/整理撰稿,孫旭群/主述(2003),「藉由六標準差以提升台灣傳統中小企業競爭力之研究」 http://www.aheadmaster.com/knowledge/200301-2.htm http://www.google.com.tw/search?q=cache:tBAwfYuWrhYJ:www.aheadleader.com/goahead/kledge_content.asp?intID=82+%b3%af%aa%b4%a7D%2b%ae%5d%a6%b0%b8s&hl=zh-TW&lr=lang_zh-TW&ie=big5&inlang=zh-TW 15.楊幼蘭 譯 (1994) Michael Hammer、James Champy合著;改造企業:在生策略的藍本(Reenineering the Corporation : A Manifesto for Business Revolution)。臺北市:牛頓,民83年。 16.楊錦榮(2002),「基地廠庫導入六標準差關鍵因素之研究」, 國防大學,未出版碩士論文。  17.廖本盛 (2000),「全國團結圈活動之變革(一)」,全國團結圈會訊,第一期,p4-p9。 18.劉玉萍(2000),「運用一對一行銷執行顧客關係管理以提昇企業利潤」,電子化企業,11期,P.7-15 19.劉家寧(2003),正確運用目標管理, http://www.google.com.tw/search?q=cache:CkyRbFv8SGcJ:yam.udn.com/yamnews/daily/1522357.shtml+%c3%e4%b0%b5%c3%e4%bb%b0%c0H%ae%c9%a7%ef&hl=zh-TW&lr=lang_zh-TW&ie=big5&inlang=zh-TW 20.劉清彥(2002)譯, Joseph H. Boyett & Jimmie T. Boyett著,「管理大師聖經」台北,商周,p70-p72 21.蔡翠旭(1998)譯,Charles C.Poirier & Stephen E. Reiter著,「強勢供應鏈」,書華,台北 22.鄭明仁 (2002),「台灣企業推行學習型組織之個案研究─阻力與助力因素之探討」,國立中正大學企業管理研究所未出版碩士論文。 23.鄭清合(2001),「品管圈活動之管理績效實証研究-以統一企業公司為例」,長榮管理學院,經營管理研究所未出版碩士論文。 24.鄧小雅(1999),「地區教學以上醫院推行品管圈活動之主觀成效及其影響因素之探討」國立政治大學,經營管理研究所未出版碩士論文 25.鮑勃.費利薩克(Bob Fllipczak)(1994),〈盲目的改變該停止了〉,〈〈訓練雜誌〉,1994/9,p23。 26.戴久永(1996),品質管理,台北市:中華民國品質管制學會。 27.戴久永(1998)「推行TQM的失敗陷阱」, http://www.cc.nctu.edu.tw/~t6504/management.htm 英文部分 1.Andersen, T.W., (1984)An Introduction to Multivariate Statistical Analysis, John Wiley & Sons, Canada. 2.Bain & Company, Inc.(2001) “Management tools 2001 global results” http://www.bain.com/ 3.Beckman, T., "A Methodology for Knowledge Management." Proceeding of the LISTED International Conference on Aland Soft Computing, 1997. 4.Davenport, T. and Pursak, L.,"Working Knowledge: How Organizations Manage What they Know." Harvard Business School Press, 1998. 5.Fisher,J.G. (1996) ,“How to Improve Performance Through Benchmarking,”London :Clays Ltd 6.Holsapple, C. and Joshi, K., "Knowledge Management: A Three-Fold Framework." Kentucky Initiative for Knowledge Management Paper, No. 140, July, 1997. 7.Holsapple, C. and Joshi, K., "In Search of a Descriptive Framework of Knowledge Management: Preliminary Delphi Results." Kentucky Initiative for Knowledge Management Paper, No. 118, March, 1998. 8.Kalrlof, B. & Ostblom, S.(1993),“Benchmarking: A Signpost to Excellence inQuality and Productivity,”Chichester: John Willey & Sons. 9.Michael Hammer and James Champy, (1994)Reengineering Corporation — A Manifesto For Business Revolution, HarperBusiness, (A hardcover edition of the same was published in 1993 by HarperBusiness, a division of HarperCollins Publishers). 10.Wiig, Karl M, "Knowledge Management Foundations." Arlington: Schema Press, 1993.id NH0920031007 sid 893894 cfn 0 / id NH0920031009 auc 李輝隆 tic 以資源基礎與動態能力觀點探討半導體企業技術策略發展之個案研究 adc 朱詣尹博士 adc 林則孟博士 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 77 kwc 資源基礎觀點 kwc 動態能力 kwc 技術策略 kwc 資源生命週期 abc 由於技術的迅速發展,外在環境不斷變化,市場的不確定性增高。企業需要整合資源、事業、或組織的洞察力,以藉由多角化活動的配置與協調整合,進一步創造價值。因此本研究依據資源基礎(Resource-Based View)與動態能力(Dynamic Capability)觀點,探討聯華電子如何適應環境,以及如何發展技術策略,獲致結論作為後續技術策略發展之參考。 tc 摘 要 I ABSTRACT II 誌 謝 III 目 錄 IV 圖目錄 VI 表目錄 VII 第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究範圍 1 第三節 研究目的 2 第四節 內容架構 2 第貳章 文獻探討 3 第一節 策略理論 3 第二節 資源基礎觀點 4 第三節 動態能力 7 第四節 技術策略探討 第參章 研究方法 12 第一節 理論發展 12 第二節 研究方法 14 第三節 研究架構 15 第四節 程序設計 16 第肆章 個案分析 20 第一節 個案企業描述 20 第二節 前段製造階段分析 23 第三節 整合元件製造階段分析30 第四節 集團化階段分析 38 第五節 晶圓代工階段分析 46 第伍章 技術策略發展模式 61 第一節 聯電的核心資源與動態能力發展 61 第二節 聨電的資源生命週期 62 第三節 聯電的技術策略發展 63 第四節 新階段的技術策略分析 65 第陸章 結論與建議 70 第一節 結論 70 第二節 研究建議 71 參考文獻 73rf 1.黃營杉譯,”策略管理”,華泰出版社,1999年 2.許士軍,”管理學”,東華出版社,1979年 3.司徒達賢,”策略管理”,遠流出版社,1995年 4.吳思華,”策略九說”,臉譜出版社,2000年 5.賴士葆等,”科技管理”,國立空中大學,1997年 6.王興毅等,”台灣半導體廠商經營研究”,經濟部技術處,2000年 7.李柏毅等,”半導體趨勢圖示”,大椽出版社,2000年 8.劉尚志,”聯華電子股份有限公司專利管理之策略”,交大思源基金會,1997年 9.謝宏媛,”沒有績效就沒有人際關係”,天下雜誌,10月號,1997年 10.中華徵信所,”台灣地區集團企業研究”,中華徵信所,2001年 11.王興毅,”IC製造業營運發展專題研究”,經濟部技術處,1996年 12.陳幸雄等,”我國IC產業國際競爭力研究”,經濟部技術處,1997年 13.頼彥儒,”最靈活的半導體策略聯盟-聯電”,新電子科技雜誌,191期,2002年 14.王志仁,”曹興誠力拚半導體霸主”,天下雜誌,10月號,1997年 15.林宏文,”深入剖析曹興誠的五大謀略”,今周刊,323期,2003年 16.周秀娟編,”亞太半導體製造中心策略藍圖-矽金之島2010”,1999年 17.齊若蘭,”聯華的崛起”,天下雜誌,1月號,1984年 18.吳迎春,”開闢一條新絲路”,天下雜誌,9月號,1982年 19.李明軒,”聯華電子要闖關”,天下雜誌,9月號,1989年 20.陳修賢,”積體電路邁新步”,天下雜誌,9月號,1987年 21.黃顯雄,”聯華電子公司推行CWQC的體驗談”,品質月刊,12月號,1987年 22.王正勤,”槓桿稱霸擴張雄心”,天下雜誌,3月號,1999年 23.游李興,”全球IC晶圓代工營運發展回顧”,經濟部技術處,2000年 24.李柏毅等,”矽導新勢力-半導體與零組件產業趨勢”,大椽出版社,2002年 25.林銘貴等,”邁向21世紀我國IC工業發展”,經濟部技術處,1998年 26.徐富桂,”展望2001年我國IC產業發展趨勢”,經濟部技術處,2000年 27.蔡明介,”競爭力的探求:IC設計、高科技產業實戰策略與觀察”,財訊出版社,2001年 28.鄧遠南,”台積電絆在十二吋廠 聯電苦思布局”,商業周刊,9月30日,2002年 29.王碩仁等,”矽晶大勢”,大椽出版社,2000年 30.楊艾俐,”台積電以專注領先”,天下雜誌,12月號,1997年 31.工業技術研究院電子工業研究所編,”半導體工業年鑑”,1991-2001年 32.聯華電子公司簡介 1985-1993 33.聯華電子年報 1998-2002 34.台積電網站 http://www.tsmc.com/ 35.聯華電子網站 http://www.umc.com/ 36.ITIS產業技術資訊服務網 http://www.itis.org.tw/ 37.經濟部工業局網站 http://www.moeaidb.gov.tw/ 38.中華經濟研究院 http://www.cier.edu.tw/ 39.資策會市場情報中心 http://mic.iii.org.tw/ 40.電子時報 http://www.digitimes.com.tw 41.Aaker, D.A., “Managing Assets and Skills: The Key to Sustainable Competitive Advantage”, California Management Review, 18(1), 91-106, 1989 42.Afuah, A., “Innovation Management”, Oxford University Press, 1998 43.Ali, A., “Pioneering versus Incremental Innovation: Review and Research Propositions”, Journal of Product Innovation Management, 11, 146-161, 1994 44.Amit, R. and P.J. Schoemaker, “Strategic Assets and Organizational Rent”, Strategic Management Journal, 14(1), 33-46, 1993 45.Andrews, K.R., “The Concept of Corporate Strategy”, Irwin, 1971 46.Ansoff, H.I., “Corporate Strategy”, McGraw-Hill, 1965 47.Ansoff, H.I., “The New Corporate Strategy”, McGraw-Hill, 1988 48.Barney, J. B., “Organizational Culture: Can It Be A Source of Sustained Competitive Advantage”, Academy of Management Review, 11, 656-665, 1986 49.Barney, J.B., “Firm Resources and Sustained Competitive Advantage”, Journal of Management, 17, 99-120, 1991 50.Barney, J.B., “Gaining and Sustaining Competitive Advantage”, Wesley, 1997 51.Bierly, P. E., & A.K. Chakrabarti, “Technological Learning, Strategic Flexibility, and New Product Development in The Pharmaceutical Industry”, IEEE Transactions on Engineering Management, 43: 368-380, 1996 52.Bone, S., & T. Saxon, "Developing Effective Technology Strategies", Research Technology Management, July/August, 2000 53.Burgelman, R.A., “A Process Model of Internal Corporate Venturing in The Diversified Major Firm”, Administrative Science Quarterly, 28:223-244, 1983 54.Burgelman, R. A. and R.S. Rosenbloom, “Technology Strategy: An Evolutionary Process Perspective”, Research on Technological Innovation, Management and Policy, 4, 1-23, 1989 55.Chiesa, V. and R. Manzini, “Towards A Framework for Dynamic Technology Strategy”, Technology Analysis & Strategic Management, 10(1), 111-129, 1998 56.Christensen, C.M., “The Innovator’s Delimma-When New Technologies Cause Great Firms to Fail”, Harvard Business Press, 1997 57.Collis, D.J. and C.A. Montgomery, “Competing on Resources: Strategy in The 1990s’”, Harvard Business Review, 73(4), 110-135, 1995 58.Collis, D.J. and C.A. Montgomery, “Corporate Strategy: Resources and The Scope of The Firm”, Irwin, 1997 59.Collis, D.J. and C.A. Montgomery, “Creating Corporate Advantage”, Harvard Business Review, May-June, 71-83, 1998 60.Danila, N. , “Strategic Evolution and Selection of R&D Projects”, R&D Management,. 19, Jan., 47-62, 1989 61.D''Aveni, R.A., “Hypercompetition: Managing The Dynamics of Strategic Maneuvering”, The Free Press, 1994 62.Devlin, G. and M. Bleackley, “Strategic Alliance Guidelines for Success”, Long Range Planning, 21(5), 18-23, 1988 63.Dierickx, I. and K. Cool, “Asset Stock Accumulation and Sustainability of Competitive Advantage”, Management Science, 35(12), 1504-1511, 1989 64.Elsenhardt, K.M. and J.A. Martin, “Dynamic Capabilities: What Are They? ”, Strategic Management Journal, 21(10-11), 1105-1121, 2000 65.Ford, D., “Develop Your Technology Strategy”, Long Range Planning, 21(5), 91, 1988 66.Foster, R.N., “Innovation: The Attacker’s Advantage”, Summit, 1986 67.Fruhan, W.E.,” Financial Strategy: Studies in The Creation, Transfer and Destruction of Shareholder Value”, Irwin, 1979 68.Grant, R.M., “The Resource-Based Theory of Competitive Advantage Implications for Strategy Formulation”, California Management Review, 12(1), 114-135, 1991 69.Grant, R.M., “Contemporary Strategy Analysis”, Blackwell, 2002 70.Grove, A.S., “Only the Paranoid Survive: The Threat and Promise of Strategic Inflection Points”, Locus, 1996 71.Hall, R., “The Strategic Analysis of Intangible Resources”, Strategic Management Journal, 13, 135-144, 1992 72.Harvey, M. G., “Application of Technology Life Cycles to Technology Transfer”, The Journal of Business Strategy, 5(2), 51-58, 1984 73.Helfat, C.E. and R.S. Raubitschek, “Product Sequencing: Co-evolution of Knowledge, Capabilities, and Products”, Strategic Management Journal, 21(10-11), 961-979, 2000 74.Hill, W.L. and G.R. Jones, “Strategy Management Theory”, Houghton Mifflin, 1998 75.Hitt, M.A., D. Lei, & R. Bettis, “Dynamic Core Competence through Meta-learning and Strategic Context”, Journal of Management, 22(4), 549-569, 1996 76.Iansiti, M. and K. Clark, “Integration and Dynamic Capability: Evidence from Product Development in Automobiles and Mainframe Computers”, Industrial and Corporate Change, 3, 557-605, 1994 77.Madique, M.A. and P. Patch, “Corporate Strategy and Technology Policy”, in Tushman, M.L. and W.L. Moor (eds), Readings in The Management of Innovation, Pitman, 273-285, 1988 78.Makadok, R., “Toward A Synthesis of The Resource-Based and Dynamic-Capability Views of Rent Creation”, Strategic Management Journal, 22(5), 387-401, 2001 79.Mitchell, G. R., “Options for Strategic Management of Technology”, GTE, 1988 80.Nelson, R. & Winter, S., “An Evolutionary Theory of Economic Change”, Belknap Press, 1982 81.Penrose, E.T. , “The Theory of The Growth of The Firm”, John Wiley, 1959 82.Perlmutter, H.V. and A.H. David, “Cooperate to Compete Globally”, Harvard Business Review, Mar.-Apr., 136-152, 1986 83.Peteraf, M. A., “The Cornerstones of Competitive Advantage: A Resource-Based View”, Strategic Management Journal, 14(3), 179-191, 1993 84.Pfeffer, J. and G.R. Salancik, “The External Control of Organization: A Resource Dependence Perspective”, Harper & Row, 1978 85.Porter, M.E., “Competitive Strategy: Technique for Analyzing. Industrials and Competitors”, The Free Press, 1980 86.Porter, M.E., “Competitive Advantage: Creating and Sustaining Superior Performance”, The Free Press, 1985 87.Porter, M.E., and M.B. Fuller, “Competition in Global Industries”, Harvard Business Press, 1986 88.Porter, M.E., “Towards A Dynamic Theory of Strategy”, Strategic Management Journal, 12(6), 95-117, 1991 89.Prahalad, C.K. and G. Hamel, “The Core Competence of The Corporation”, Harvard Business Review, 68(3), 79-91, 1990 90.Prahalad, C.K. and G. Hamel, “Competing for The Future”, Harvard Business Press, 1994 91.Schumpeter, J., “Capitalism, Socialism, and Democracy”, Harper, 1950 92.Spital, F.C. and D.J. Bickford, “Successful Competitive and Technology Strategies in Dynamic and Stable Product Technology Environments”, Journal of Engineering and Technology Management, 9, 29-60, 1992 93.Stalk, G., P. Evans, & L.E. Shulman, “Competing on Capabilities”, Harvard Business Review, 70(2), 57-69, 1992 94.Steiner, G.A., “Top Management Planning”, Macmillian Press, 1969 95.Teece, D.J., G. Pisano, & A. Shuen, “Dynamic Capabilities and Strategic Management”, Strategic Management Journal, 18(7), 509-533, 1997 96.Utterback, J., “Mastering The Dynamics of Innovation”, Harvard Business Press, 1994 97.Wernerfelt, B., “A Resource Based View of The Firm”, Strategic Management Journal, 5(2), 171-180, 1984 98.Yin, R.K., “Case Study Research: Design and Methods”, Sage, 1994 99.Zahra, S.A., “Technology Strategy and Financial Performance: Examining The Moderating Role of The Firm’s Competitive Environment”, Journal of Business Venturing, 11(3), 189-219, 1996 100.Zollo, M. and S. Winter, “Deliberate Learning and The Evolution of Dynamic Capabilities”, Organization Science, 13, 339-351, 2002 101.Zott, C., “Dynamic Capabilities and The Emergence of Intraindustry Differential Firm Performance: Insights from A Simulation Study”, Strategic Management Journal, 24, 97-125, 2003id NH0920031009 sid 893870 cfn 0 / id NH0920045001 auc 趙殷尚 tic 唐代古文運動先驅者及其散文研究:以蕭穎士、李華、賈至、元結為主 adc 呂正惠 ty 博士 sc 國立清華大學 dp 中國文學系 yr 92 lg 中文 pg 266 kwc 唐代 kwc 古文運動 kwc 散文 kwc 蕭穎士 kwc 李華 kwc 賈至 kwc 元結 abc 到目前為止,學者有關唐代古文運動的研究,通常致力於兩個方面:第一,以韓愈、柳宗元為主線探討唐代古文運動的時代背景、理論基礎,以及成功因素等等;第二,研究唐代文人與作品時順便對他們的古文創作及其與古文運動的關係進行「兼論式」的討論。這種「韓柳中心的研究」及「兼論式的研究」,當然已經贏得了不少學者的肯定及其預期成果,但因其對瞭解整個古文運動的發展過程,似乎不夠充足。因此,我個人認為,以韓柳以外的唐代古文家為主探討唐代古文運動的發展過程及其性質,是個值得研究的課題。 tc 唐代古文運動先驅者及其散文研究 :以蕭穎士、李華、賈至、元結為主 目錄 第一章:導論…………………………………………………………… 1 第一節:研究動機及其目的………………………………… 1 第二節:文體改革的訴求…………………………………… 4 第三節:安史之亂前後的唐代政局………………………… 12 第四節:古文運動的展開…………………………………… 20 第二章:古文集團的形成背景及四家的互動………………………… 27 第一節:家學………………………………………………… 27 (一)望族出身……………………………………… 27 (二)北方中心的生活環境………………………… 33 (三)家傳儒學……………………………………… 39 第二節:交遊………………………………………………… 46 (一)廣泛的交遊關係……………………………… 46 (二)二位長輩:元德秀與孫逖…………………… 60 第三節:四家的互動………………………………………… 66 (一)求學期間……………………………………… 66 (二)當官初期……………………………………… 72 (三)安史之亂期間………………………………… 77 (四)安史之亂後…………………………………… 82 第三章:作品考證……………………………………………………… 88 第一節:版本與著述………………………………………… 88 (一)蕭穎士………………………………………… 88 (二)李華…………………………………………… 90 (三)賈至…………………………………………… 92 (四)元結…………………………………………… 94 第一節:散文作品繫年重定………………………………… 97 (一)蕭穎士………………………………………… 97 (二)李華…………………………………………… 99 (三)賈至……………………………………………104 第四章:政治活動與古文創作…………………………………………107 第一節:政治活動與抱負……………………………………107 (一)蕭穎士…………………………………………107 (二)李華、賈至……………………………………112 (三)元結……………………………………………116 第二節:有關前朝的政治評論………………………………121 (一)國家興亡在於質而不在於文…………………121 (二)地與德左右國之興亡…………………………125 第三節:唐朝的問題…………………………………………129 (一)安史之亂論述…………………………………129 (二)政治評論………………………………………134 (三)經濟問題………………………………………140 第五章:安史之亂與古文創作…………………………………………146 第一節:安史之亂與散體文…………………………………146 第二節:安史之亂與內容上的變化…………………………155 第六章:文學批評與主張………………………………………………164 第一節:論歷代文學…………………………………………164 (一)對唐前文學的論述……………………………164 (二)對陸機的批判…………………………………166 (三)對裴子野的讚賞………………………………171 第二節:文學主張……………………………………………176 (一)理論基礎………………………………………176 (二)創作態度………………………………………185 第七章:文體改革………………………………………………………191 第一節:改良文體……………………………………………191 (一)山水遊記………………………………………191 (二)山水銘文………………………………………196 (三)表文……………………………………………202 (三)廳壁記…………………………………………208 (四)其他……………………………………………214 第二節:寫作技巧上的改革…………………………………220 (一)句式……………………………………………220 (二)對偶……………………………………………223 (三)聲韻……………………………………………227 (四)用典……………………………………………230 第八章:結論……………………………………………………………233 附錄一:四家活動簡表…………………………………………………236 附錄二:四家散文繫年簡表……………………………………………244 參考文獻…………………………………………………………………254rf 參考文獻 說明: (一) 本書目中文著作依書目或作者姓名之筆畫順序排列;日文著作則依作者姓氏之筆畫順序排入。 (二) 中文著作中,清代(含)以前著作因一向多以書名為人所熟知,今均以書名為排列依據。民國以來的著作則主要以作者姓名為排列依據;僅有少數以書名為人所熟知者準清以前著作之例,依書名排列。 一、古籍部分 《二十二史劄記》,清?趙翼,北京︰中華書局,1963年版。 《二十四史》,北京:中華書局,1997年版。 《十三經注疏》,台北:藝文出版社,民國68年版。 《子略》,宋?高似孫,《四部備要》,上海︰中華書局,1936年。 《中華古今注》,五代?馬縞,《古今注等六部合訂本》,瀋陽:遼寧教育出版社,1998年版。 《中說》,隋?王通,台北:廣文書局,民國64年版。 《元次山集》,唐?元結、孫望編,台北:世界書局,1964年再版。 《元和郡縣圖志》,唐?李吉甫,北京:中華書局,1983年版。 《太平御覽》,宋?李昉等撰,北京:中華書局,1995年版。 《太平廣記》,宋?李昉編,台北:文史哲出版社,民國70年版。 《太平寰宇記》,宋?樂史,北京:中華書局,2000年版。 《少室山房筆叢》,明?胡應麟,台北:世界書局,民國52年4月版。 《文史通義》,清?章學誠,台北:里仁書局,民國73年9月版。 《文苑英華》,宋?李昉等奉敕編 ,北京:中華書局,1995年版。 《文章辨體序說、文體明辨序說》,明?吳納、徐師曾,北京:人民文學出版社,1998年版。 《文選》,梁?蕭統編、唐?李善注,台北:藝文出版社,民國52年版。 《文獻通考》,元?馬端臨,北京:中華書局,1986年版。 《王右丞集箋注》,唐?王維、清?趙殿成箋注,上海:上海古籍出版社,1998年版。 《冊府元龜》,宋?王欽若等編,台北:中華書局,民國56年5月臺一版。 《古今圖書集成》,清?蔣廷錫等奉敕纂,台北:文星出版社,民國53年版。 《史記三家注》,宋?裴駰集解、唐?司馬貞索隱、唐?張守節正義,台北:鼎文書局,民國69年版。 《史通》,唐?劉知幾撰、趙呂甫校注,重慶:重慶出版社,1990年版。 《四庫全書總目提要》,清?永瑢等撰 ,海口:海南出版社,1999年5月版。 《全上古三代秦漢三國六朝文》,清?嚴可均校輯,北京:中華書局,1999年版。 《全唐書》,清?董誥,北京:中華書局,1996年7月北京第3次印刷版。 《全唐詩(增訂本)》,清?彭定求等輯,北京:中華書局,1999年版。 《李太白全集》,清?王琦注,北京:中華書局,1995年10月版。 《杜詩鏡銓》,唐?杜甫、清?楊倫箋注,台北:華正書局,1976年版。 《直齋書錄解題》,宋?陳振孫,台北:世界書局,民國75年版。 《金石萃編》,清?王昶,《石刻史料叢書甲編之六》,台北:藝文出版社,民國55年版。 《封氏聞見記》,唐?封演,《古今注等六部合訂本》,瀋陽:遼寧教育出版社,1998年版。 《柳河東全集》,唐?柳宗元,台北:世界書局,民國77年版。 《貞觀政要》,唐?吳兢,上海:上海古籍出版社,1978年版。 《唐大詔令集》,宋?宋敏求,上海:學林出版社,1992年版。 《唐文粹》,宋?姚鉉,台北:世界書局,民國61年版。 《唐兩京城坊考》,清?徐松,北京:中華書局,1985年8月版。 《唐尚書省郎官石柱題名考》,清?勞格、趙鉞著,北京:中華書局,1992年版。 《唐御史臺精舍題名考》,清?勞格、趙鉞,北京:中華書局,1997年版。 《唐會要》,宋?王溥,北京:中華書局,1998年11月版。 《唐詩紀事》,宋?計有功,上海:中華書局,1965年版。 《容齋隨筆》,宋?洪邁,上海:上海古籍出版社,1998年版。 《海日樓札叢》,清?沈曾植,台北:河洛圖書公司,民國64年版。 《郡齋讀書志》,宋?晁公武,台北:台灣商務印書館,民國67年版。 《國語集解》,清?徐元誥撰,北京:中華書局,2002年6月版。 《崇文總目》,宋 ?王堯臣等編,台北:商務印書館,民國56年版。 《通志》,宋?鄭樵,北京:中華書局,1995年11月版。 《野鴻詩的》,清?黃子雲,《叢書集成續編》,上海:上海書店,1994年版。 《陳子昂集》,唐?陳子昂,北京:中華書局,1960年版。 《陸士衡文集》,晉?陸機,《四部叢刊初編集部》,台北:台灣商務印書館,1965年版。 《登科記考》,清?徐松,北京:中華書局,1984年版。 《詩源辯體》,明?許學夷,北京:人民文學出版社,1987年版。 《資治通鑑》,宋?司馬光撰,北京:中華書局,1995年版。 《漢魏六朝百三名家集》,明?張溥編,江蘇:廣陵古籍出版社,1990年版。 《說文解字》,漢?許慎撰,江蘇:廣陵古籍刻印社,1996年版。 《說文解字注》,清?段玉裁,杭州:浙江古籍出版社,2002年版。 《廣川書跋》,宋?董逌撰,台北:藝文印書館,1970年版。 《廣韻(宋本)》,宋?陳彭年等重修,台北:黎明文化事業公司,民國75年7月版。 《歐陽修全集》,宋?歐陽修,台北:世界書局,民國60年4月版。 《諸子集成》,香港:中華書局,1978年8月港一版。 《蕭穎士集》,唐?蕭穎士,《四部分類叢書集成?常州先哲遺書》,台北:藝文印書館,1971年版。 《藝文類聚》,唐?歐陽詢,上海:上海古籍出版社,1999年版。 《釋名》,漢?劉熙,台北:育民出版社,民國59年版。 二、近人著作 (專著) 丁如明等校點,《唐五代筆記小說大觀》,上海:上海古籍出版社,2000年版。 于景祥,《中國駢文通史》,吉林:吉林人民出版社,2002年。 中國古籍善本書目編輯委員會編,《中國古籍善本書目?集部》,上海:上海古籍出版社,1998年3月。 王元化,《文學沈思錄》,上海:文藝出版社,1983年。 王仲犖,《隋唐五代史》,上海:人民出版社,1992年3月。 王秋傑,《陸機及其詩賦研究》,國立台灣大學中文研究所碩士論文,民國82年5月。 王根林等校點,《漢魏六朝筆記小說大觀》,上海:上海古籍出版社,1999年版。 王運熙、楊明,《中國文學批評通史(貳):魏晉南北朝卷》,上海:上海古籍出版社,1996年12月。 王夢鷗等,《中國文學的發展概述》,台北,中央文物供應社,民71。 包弼德著、劉寧譯,《斯文:唐宋思想的轉型》,江蘇:江蘇人民出版社,2001年。 史墨卿,《岑參研究》,台北:台灣商務印書館,民國74年2月二版。 安旗注,《李白全集編年注釋》,成都:巴蜀書社,1990年版。 朱世英等著,《中國散文學通論》,合肥:安徽教育出版社,1995年。 朱洪國,《中國駢文學》,成都:四川文藝出版社,1996年。 何寄澎,《北宋的古文運動》,台北:幼獅文化,民國81年8月。 何寄澎,《唐宋古文新探》,台北:大安出版社,1990年。 吳廷燮,《唐方鎮年表》,北京:中華書局,1980年版。 吳樹平、吳寧歐等編,《隋唐五代墓誌匯編?洛陽卷第十一冊》,天津:古籍出版社,1993年。 吳興人,《中國雜文史》,上海:上海人民出版社,2002年。 呂思勉,《隋唐五代史》,台北:九思出版社,1977年12月版。 岑仲勉,《金石論叢》,上海:上海古籍出版社,1981年。 岑仲勉,《郎官石柱題名新考訂(外三種)》,上海:上海古籍出版社,1984年。 岑仲勉,《唐人行第錄(外三種)》,台北:九思出版社,1978年。 岑仲勉,《唐史餘瀋》,台北:弘文館出版社,1985年。 岑仲勉,《唐集質疑》,上海:上海古籍出版社,1984年。 岑仲勉,《隋唐史》,石家莊:河北教育出版社,2001年5月。 岑仲勉校記,《元和姓纂(附四校記)》,北京:中華書局,1994年5月版。 李曰剛,《文心雕龍斟詮》,台北:國立編譯館,1982年。 李建崑,《元次山之生平及其文學》,台北:台灣商務印書館,民國75年5月。 李炳海,《民族融合與中國古代文學》,長春:東北師範大學,1997年。 李珠海,《唐代古文家的文體革新研究》,台灣大學中國文學研究所博士論文,2001年。 李浩,《唐代關中士族與文學》,台北:文津出版社,1999年6月。 李道英,《唐宋古文研究》,北京:北京師範大學出版社,1992年。 杜曉勤,《隋唐五代文學研究》,北京:北京出版社,2001年12月。 谷霽光,《府兵制度考釋》,台北:弘文館出版社,民國74年9月。 佟培基箋注,《孟浩然詩集箋注》,上海:上海古籍出版社,2000年版。 周明,《中國古代散文藝術》,南京:江蘇教育出版社,1994年。 周紹良主編,《唐代墓誌銘彙編》,上海:上海古籍出版社,1992年。 周紹良總主編,《全唐文新編》,長春:吉林文史出版社,2000年版。 周勛初,《高適年譜》,上海:上海古籍出版社,1980年。 周勛初校證,《唐語林校證》,北京:中華書局,1987年版。 屈守元主編,《韓愈全集校注》,成都:四川大學出版社,1996年版。 邵傳烈,《中國雜文史》,上海:上海文藝,1991年。 邱燮友,《古文運動史略》,國立台灣師範大學國文所碩士論文,民國48年6月。 姚薇元,《北朝胡姓考》,台北:華世出版社,民國66年6月。 胡雲翼,《中國文學史》,上海:北新書局,一九三一年(第五版)。 范文蘭注,《文心雕龍注》,北京:人民文學出版社,2000年版。 郁沅、張明高編選,《魏晉南北朝文論選》,北京:人民文學出版社,1996年。 郁賢皓,《天上謫仙人的秘密:李白考論集》,台北:商務印書館,1997年6月。 郁賢皓,《唐刺史考全編》,合肥:安徽大學出版社,2000年,1月。 郁賢皓、陶敏,《唐代文史考論》,台北:洪葉文化學出版社,1996年6月。 孫昌武,《唐代古文運動通論》,天津:百花文藝出版社,1984年。 孫望,《元次山年譜》,台北:古典文學出版社,1957年。 孫望,《蝸叟雜稿》,上海:上海古籍出版社,1982年。 孫望、郁賢皓主編,《唐代文選》,南京:江蘇古籍出版社,1994年。 祝尚書箋注,《盧照鄰集箋注》,上海:上海古籍出版社,1994年版。 馬儀芸,《唐代古文運動背景探討》,香港:能仁書院中國文史研究所碩士論文,民國79年六月。 馬積高,《賦史》,上海:上海古籍出版社,1987年。 高步瀛,《唐宋文舉要》,台北:宏業出版社,民國62年。 崔瑞德編,《劍橋中國隋唐史》,北京:中國社會科學出版社,1996年6月。 張仁青,《中國駢文發展史》,台灣:中華書局,民國59年。 張啟成、徐達等譯注,《文選全譯》,貴陽:貴州人民出版社,1994年。 張澤咸,《唐代工商業》,北京:中國社會科學出版社,1996年9月。 張躍,《唐代後期儒學》,上海:上海人民出版社,1994年12月,頁7。 曹道衡,《中古文學史論文集》,台北:洪葉文化事業,1996年10月。 梁啟超,《圖書大辭典》,台北:中華書局,1958年版。 莫道才,《駢文通論》,南寧:廣西教育出版社,1994年。 莫道才,《駢文觀止》,北京:文化藝術出版社,1997年。 郭中翰,《中唐梁肅(七五三∼七九三):大曆、貞元間的文章中興和性命之學》,國立清華大學歷史研究所碩士論文,1998年7月30日第三版。 郭預衡,《中國散文史?中冊》,上海:上海古籍出版社,1993年10月。 郭預衡主編,《中國古代文學史長編》,北京:首都師範大學出版社,1995年。 陳幼石,《韓柳歐蘇古文論》,上海:上海文藝出版社,1983年5月。 陳必祥,《古代散文文體概論》,台北:文史哲出版社,1995年再版。 陳尚君,《唐代文學叢考》,北京:中國社會科學院出版社,1997年。 陳尚君輯校,《全唐詩補編》,北京:中華書局,1992年10月。 陳國燦、劉健明主編,《全唐文職官叢考》,武漢:武漢大學出版社,1997年。 陳寅恪,《元白詩箋證稿》,台北:里仁書局,民國71年9月。 陳寅恪,《金明館叢稿二編》,北京:三聯書局,2001年。 陳寅恪,《唐代政治史述論稿》,台北:里仁書局,民國83年版。 陳登原,《國史舊聞?第二冊》,瀋陽:遼寧教育出版社,2000年1月版。 陳雄根校點,《廣雅疏證》,香港:中文大學,1977年版。 陳蘭村等著,《中國古典傳記論稿》,西安:陝西人民教育出版社,1991年10月。 傅璇琮,《唐代科舉與文學》,西安:陝西人民出版社,1995年版。 傅璇琮,《唐代詩人叢考》,北京:中華書局,1980年。 傅璇琮主編,《唐才子傳校箋》,北京:中華書局,2000年2月。 傅璇琮主編,《唐五代文學編年史》,瀋陽:遼海出版社,1998年12月。 喬象鍾、陳鐵民主編,《唐代文學史》,北京:人民文學出版社,1995年12月。 馮書耕、金仞千合著,《古文通論》,台北:國立編譯館,1979年。 黃春貴,《唐代古文運動探究》,台北:八德文化教育,1992年6月2版。 黃麗容,《元結散文研究》,中國文化大學中國文學研究所碩士論文,1998年。 楊文雄,《詩佛王維研究》,台北:文史哲出版社,民國77年2月。 楊承祖,《元結研究》,台北:國立編譯館,2002年10月。 楊承祖,《張九齡年譜(附論五種)》,台北:台大文學院,1964年。 萬曼,《唐集敘錄》,台北:明文書局,頁1988年6月版。 葉瑛校注,《文史通義校注》,台北:里仁書局,民國73年版。 葉慶炳,《中國文學史》,台北:學生書局,民國79年9月二刷。 葛曉音,《詩國高潮與盛唐文化》,北京:北京大學出版社,1998年。 葛曉音,《漢唐文學的嬗變》,北京:北京大學出版社,1990年11月。 詹鍈編著,《李白詩文繫年》,北京:人民文學出版社,1984年。 漢語大辭典編輯委員會,《漢語大字典(縮印本)》,四川:四川辭書出版社,1996年版。 褚斌杰,《古代中國文體概論》,北京:北京大學出版社,1992年版。 劉師培,《中國中古文學史》,香港:商務印書館,1958年11月。 劉師培,《論文雜記》,北京:人民文學出版社,1998年版。 劉國盈,《唐代古文運動論稿》,西安:陝西人民出版社,1984年。 劉開揚箋注,《高適詩集編年箋注(附高適年譜)》,北京:中華書局,1981年版。 劉操南、平慧善選注,《古代游記選注》,上海:上海古籍出版社,1982年。 歐文著、賈晉華譯,《盛唐詩》,哈爾濱:黑龍江人民出版社,1994年。 潘呂棋昌,《唐代古文家家學傳承探究》,自印本(將由交通大學出版社出版)。 潘呂棋昌,《蕭穎士研究》,台北:文史哲出版社,1983年10月。 編纂委員會編,《中國歷史大辭典?歷史地理卷》,上海:上海辭書出版社,1997年7月2次印刷。 蔣寅,《大曆詩人研究》,北京:中華書局,1995年8月。 鄭在瀛,《六朝文論講疏》,台北:萬卷樓圖書,民國84年5月。 魯迅,《魯迅文集全編》,北京:國際文化出版社,1995年。 蕭淑貞,《李遐叔及其作品研究》,國立台灣師範大學國文系碩士論文,民國77年。 錢冬父,《唐宋古文運動》,台北:萬卷樓圖書,1991年。 錢鍾書,《管錐編》,北京:中華書局,2000年。 霍松林主編,《全國唐詩討論會論文選》,西安:陝西人民出版社,1984年。 韓理洲,《新增千家唐文作者考》,西安:三秦出版社,1995年10月。 魏嵩山主編,《中國歷史地名大辭典》,廣東:廣東教育出版社,1995年。 羅宗強,《中國文學史》,北京:高等教育出版社出版,1990年。 羅宗強,《隋唐五代文學思想史》,北京:中華書局,1999年8月版。 羅根澤,《中國文學批評史》,台北:學海出版社,民國79年2月。 羅庸,《唐陳子昂先生伯玉年譜》,台北:商務印書館,1986年版。 羅聯添,《唐代文學論著集目》,台北,學生,民國68年。 羅聯添,《唐代文學論集》,台北:學生書局,1989年。 羅聯添,《唐代四家詩文論集》,台北:學海出版社,1996年。 羅聯添,《唐代詩文六家年譜》,台北:學海出版社,1986年。 譚其驤主編,《中國歷史地圖集》,北京:中國地圖出版社,1996年。 譚優學,《唐詩人行年考(緒編)》,成都:巴蜀書社,1987年。 嚴耕望,《唐僕尚丞郎表》(歷史語言研究所專刊36),台北:中央研究院,1956年。 嚴耕望,《唐代交通圖考》(歷史語言研究所專刊83),台北:中央研究院,1985年。 (單篇及期刊論文) 尹仲文,〈李華卒年考辨〉,《河北大學學報(哲學社會科學版)》,1979年2期。 卞孝萱,〈關於劉禹錫的氏族籍貫問題〉,《南開大學學報》,1977年第3期。 戶崎哲彥,〈略論唐代古文運動的第二階段〉,《唐代文學研究》,第五輯。 方介,〈元結的聖人觀〉,《故宮學術季刊》,16卷3期,民國88年春。 方介,〈李華的聖人觀〉,《中正大學中文學術年刊》,第二期(民國88年3月)。 方介,〈韓、柳交誼與相互影響〉,《國立編譯館館刊》,第23卷第1期(民國83年6月)。 毛漢光,〈隋唐政權中的蘭陵蕭氏〉,《中國中古社會史論》,台北::聯經出版社,1988年。 王更生,〈唐宋散文作家與古文運動〉,中華文化復興月刊,第二十二卷第三期。 王恆餘,〈論語雍也第六「子曰:質勝文則野,文勝質則史, 文質彬彬,然後君子」淺釋〉,《孔孟月刊》,第31卷第2期(總號362期),1992年10月。 王基倫,〈孫逖研究〉、《國立編譯館館刊》,第15卷第1期,1986年6月。 王啟興,〈評元結的復古主義詩論〉,《武漢大學學報》,1986年3期(總73號),1986年5月。 王祥,〈初、盛唐文的演變與古文運動〉,《文學遺產》,1987年,第1期。 王運熙,〈元結《篋中集》和唐代中期詩歌的復古潮流〉,《復旦學報》,1978年2期。 王運熙,〈試論唐傳奇與古文運動的關係〉,《文學遺產選集》,三輯。 伍錦仁,〈隋唐之文學復古運動〉,《香港大學中文學會》,1957、58年會刊,1958年。 朱迎平,〈唐代古文家開拓散文體裁的貢獻〉,《文學遺產》,1990年第一號。 池田溫,〈蕭穎士招聘は新羅か日本か〉,《榎博士松壽紀念東洋史論叢》,日本:汲古書院,1988年11月11日。 何寄澎,〈簡論唐代古文運動中的文學集團〉,《古典文學》,第六集,台北:學生書局,民國73年12月。 吳企明,〈賈至當字幼幾〉,《唐音質疑錄》,上海︰上海出版社,1985年。 吳相洲,〈文以明道和中唐文的新變〉,《文學評論》,1996年,第一期。 岑仲勉,〈續勞格〈讀全唐文札記〉〉,附於《全唐文》,台北:大化書局,1987年版。 李少雍,〈劉知幾與古文運動〉,《文學評論》,1990年第一期。 李少儒,〈壯懷筆墨:唐代李華〈弔古戰場文〉與現代羅門《麥堅利堡》聯展〉,《亞洲華文作家雜誌》,39期,民國82年12月。 李建崑,〈元結詩試論〉,《文史學報 (中興大學)》,第16期,民國75年3月。 李炳南,〈元結與柳宗元山水文學的比較〉,《國立屏東商專學報》,第1期,民國82年1月。 李哲夫、李廣福,〈略論李林甫〉,《人文雜誌》,1982年4期(總18期)。 李嘉言,〈韓愈復古運動的新探究〉,《李嘉言古典文學論文集》,上海古籍出版社,1987年。 李慕如,〈學仕官名類釋:王之渙、李白、杜甫、岑參、元結、韋應物、韓愈、白居易、柳宗元、賈島、杜牧、李商隱、溫庭筠〉,《今日中國》,113期,民國69年9月。 李學乾,〈元結墓聯試析〉,《中州今古》,199?年4期(總76期) 汪晚香,〈李華卒年考〉,《湖北師院學報》,1989年第2期。 宗夏,〈唐代古文運動及韓柳的散文〉,《語文戰線》,1979年3期,杭州。 尚逵齋,〈古文運動的源委〉,台北《建設》,8卷12期,民國49年5月。 屈光,〈盛唐李蕭古文集團及其與中唐韓柳集團的關係〉,《文學遺產》,1987年,第4期。 林文月,〈陸機的擬古詩〉,《幼獅學誌》,第20卷第3期。 林田慎之助,〈唐代古文運動的形成過程〉,《中國中世文學評論史》,日本東京:創文社,昭和五十四年。 金中樞,〈宋代古文運動之發展研究〉,《新亞學報》,第五卷第二期,香港新亞書院新亞研究所,1963年8月1日。 金濤聲,〈李翱集版本源流考辨〉,《唐代文學研究》,四輯。 俞紀東,〈李華和他的〈弔古戰場文〉〉,《唐代文學論叢》,5期,1984年4月。 俞紀東,〈蕭穎士事蹟考〉,《中華文史論叢》,26輯,1983年2期。 姜光斗,〈李華卒年補正〉,《文學遺產》,1991年1期。 姜光斗,〈李華蕭穎士生卒年新考〉,《文學遺產》,1990年3期。 姚奠中,〈柳宗元的文論〉,《古代文學理論研究叢刊》,第一期,1979年12月。 施逢雨,〈李白生平考索(下)〉,《清華學報》,新二十四卷第一期,1994年3月。 柯慶明,〈從韓柳文論唐代古文運動的美學意義〉,《第一屆國際唐代學術會議論文集》,1989年 胡如雷,〈門閥士族興衰的根本原因及士族在唐代的地位和作用〉,《歷史論叢》,西安︰陝西人民出版社,1987年1月。 凍國棟,〈讀李華〈與外孫崔氏二孩書〉論唐前期風俗〉,《武漢大學學報(哲學社會科學版)》,1995年3期(總218期)。 孫昌武,〈唐代「古文運動」淺議〉,《唐代文學論叢》,總第三集。 孫昌武,〈唐代古文運動與佛教〉,《文學遺產》,1982年3期,1982年9月。 孫昌武,〈盛唐散文及其歷史地位〉,《社會科學戰線》,1982年,第4期。 孫昌武,〈讀元結文札記〉,《社會科學戰線》,1985年3期。 孫風熊,〈試論唐代古文運動與文學語言的創新〉,《北方論叢》,1986年1期(總75號),1986年1月。 殷士友,〈論唐代古文運動中的兩軍對壘〉,《天津師範學報》,1975年2期。 馬積高,〈論柳宗元對唐代古文運動的貢獻:兼論唐代古文運動〉,《古典文學論文選》,湖南古典文學研究會編,長沙︰湖南人民出版社,1984年5月。 高明士,〈唐代私學的發展〉,《台大文史哲學報》,第二十期。 高林廣、李錦超,〈元結與「新樂府」運動〉,《語文學刊》,第3期總第113期。 梅新林,〈元結與皎然:中唐詩歌夏興的南北先導〉,《浙江學刊》,1995年第2期(總第091期)。 笠征、張少康,〈唐代古文理論和韓愈柳宗元的文學思想〉,《福岡大學人文論叢》,25卷4期(總99號),1994年3月。 許總,〈論元結及《篋中集》詩人的人生態度、文學思想與創作傾向〉,《徐州師範學院學報(哲學社會科學版)》,第1期(總第085期),1996年。 郭紹虞,〈試論「古文運動」──兼談從文筆之分到詩文之分的關鍵〉,《照隅室古典文學論集?下編》,上海︰上海古籍出版社,1983年。 郭預衡,〈簡說唐代文章之變遷〉,《文學遺產》,1988年4期。 郭廣偉,〈劉禹錫氏族考辨〉,《鄭州大學學報》,1983年第2期。 郭蘭成,〈批判文學史上的尊儒反法思潮,試論唐代古文運動〉,《學習與批判》,1975年,第8期。 陳平原,〈唐宋古文家的文體實踐〉,《傳統文化與現代化》,1995年第六期。 陳志信,〈從文以載道到文道合一〉,《鵝湖月刊》,總號第二八一。 陳長義,〈在復古文學觀影響下的唐代小說理論〉,《唐代文學研究》,四輯,1983年11月。 陳弱水,〈柳宗元與中唐儒家復興〉,《新史學》,五卷一期,1994年3月。 陳寅恪,〈論韓愈〉,《中國古典散文研究論文集》,北京:人民文學出版社,1957年。 陳啟佑,〈元結山水小品文探討〉,《古典文學》,第八集,1986年4月。 陳啟佑,〈元結與柳宗元〉,《古典文學》,14期,民國86年5月。 陳紹唐,〈唐代古文運動和集部之學的確立〉,《唐代文學研討會論文集》,香港浸會學院中國語文學系,台北:文史哲出版社,1987年4月。 陳鐵民,〈李華事蹟考〉,《文獻》,46期,1990年10月。 陳鐵民,〈蕭穎士繫年考證〉,《文史》,第37輯,1993年2月1日。 陸聯星,〈淺論唐代的散文革新運動〉,《淮北煤師院學報》,1979年創刊號。 陶敏,〈《唐人行第錄》正補〉,《文史》,第31輯(1988年11月)。 勞格,〈讀《全唐文》札記〉,附於《全唐文》,台北:大化書局,1987年版。 喬長阜,〈蕭穎士事跡繫年考辨〉,《江南學院學報》,第15卷第3期(2000年9月)。 程千帆,〈韓愈以文為詩說〉,《古代文學理論研究叢刊》,第一期,1979年12月。 黃敏枝,〈從開元天寶社會的積富看長安生活的奢華〉,《成大歷史學報》,二期,民國64年7月。 黃錦堂,〈唐代的文學革新〉,台北《建設》,10卷8期,民國51年1月。 楊承祖,〈元結交遊考〉,《書目季刊》,13卷1期,民國68年6月。 楊承祖,〈元結年譜〉,《淡江學報》,2期,民52年2月。 楊承祖,〈由〈質文論〉與〈先賢論〉論李華〉,《唐代文化研討會論文集》,台北︰學生書局,1989年2月。 楊承祖,〈李華江南服官考〉,《王叔岷先生八十壽慶論文集》,台北:大安出版社,1993年。 楊承祖,〈李華繫年考證〉,《東海學報》,33期,1992年6月。 楊承祖,〈論唐代文學復古的詩文異趨〉,《第二屆唐代文化研討會論文集》,台北:中國唐代學會,1995年。 楊勇,〈再論韓愈文之體要〉,《唐代文學研討會論文集》,香港浸會學院中國語文學系,台北:文史哲出版社,1987年4月。 葛曉音,〈古文成於韓柳的標誌〉,《學術月刊》,1987年,第1期。 趙殷尚,〈唐代古文運動先驅者的江左文學論〉,《中國語文學誌》,第13期,2003年6月。 趙殷尚,〈論韓柳傳記文的產生因素:兼論唐代古文與唐傳奇的關係〉,《國立編譯館館刊》,第28卷第1期(1999年6月)。將載於由傅璇琮、羅聯添共同主編,台灣中央研究院文學哲學研究所、中國安徽省社會科學院文學研究所共同發行的《當代(近五十年來)中國唐代文學研究論文選》。 劉三富,〈李華の思想と文學〉,《中國文學論集》,第四號,日本九州大學中國文學會。 劉大杰,〈柳宗元及其散文〉,《文學遺產選集》,三輯。 劉大杰,〈韓愈與古文運動〉,《學習與批判》,1976年,第4期。 劉揚忠,〈劉蛻、孫樵與唐代古文運動〉,《唐代文學論叢》,9期,1987年3月。 潘呂棋昌,〈苻載事蹟考述〉,《空大人文學報》,第二輯,1993年2月。 潘呂棋昌,〈蕭存事蹟與交遊考述〉,《唐代文化研討會論文集》,台北:學生書局,1989年2月。 蔣凡,〈韓愈柳宗元與唐代古文運動的再評價〉《古代文學理論研究叢刊》,第一期,1979年12月。 蔣寅,〈戴叔倫年表〉,《古典文獻研究》,88期。 蔡茂松,〈孔子的文質論〉,《歷史學報(成大)》,第17期,1991年6月。 錢穆,〈雜論唐代古文運動〉,《中國學術思想史論叢?四》,台北:東大圖書,民國67年1月。原載《新亞學報》,3卷1期。 錢穆,〈讀姚鉉《唐文粹》〉,《新亞學報》,3卷2期。 謝力,〈李華生平考略〉,《唐代文學研究》,第二輯,1990年10月。 謝幼偉,〈文學與價值:論文以載道〉,《鵝湖月刊》,總號第20期,1977年2月。 韓理洲,〈試論中唐兩個文學運動文壇地位不同之原因〉,《古典文學論叢》,第一輯,社會科學戰線編輯部,濟南︰齊魯書社,1980年8月。 顏瑞芳,〈元結寓言析論〉,《教學與研究》,16期,民國83年6月。 鄺健行,〈杜甫府試下第試說〉,《人文中國學報》,第一期(1995年4月)。 羅宗強,〈古文運動何以要到韓、柳出來才開了新局面〉,《唐代文學論叢》,第七輯,1986年1月。 羅宗強,〈唐代古文運動的得與失〉,《道家、道教、古文論談片》,台北:文津出版社,1994年8月。 羅聯添,〈獨孤及考證〉,《大陸雜誌》,第48卷第3期(民國63年3月)。 顧學頡,〈白居易世系、家族考〉,《文學評論叢刊》,第13輯,1982年。id NH0920045001 sid 889108 cfn 0 / id NH0920045002 auc 蘇敏逸 tic 「社會整體性」觀念與中國現代長篇小說的發生和形成 adc 呂正惠教授 ty 博士 sc 國立清華大學 dp 中國文學系 yr 92 lg 中文 pg - kwc 中國現代長篇小說 kwc 社會整體性 kwc 葉聖陶 茅盾 kwc 老舍 kwc 巴金 端木蕻良 路翎 abc 摘 要 tc 目 錄 第一章 緒論 第二章 從晚清到五四:中國現代長篇小說的先聲 第一節 晚清民初「新小說」對新文學的影響 第二節 五四「個人主義」的特質 第三節 郁達夫的「個人」小說與中國現代長篇小說的先驅 第三章 建立「社會整體性」:中國現代長篇小說的形成 第一節 五四時期至北伐革命失敗的社會形勢 第二節 紀錄北伐革命的《蝕》三部曲 第三節 五四知識分子的心靈史:葉聖陶的《倪煥之》 第四節 「個人」作為「革命歷史」的象徵:茅盾的《虹》 第五節 政治理念與小說形式的結合:論《子夜》模式 第四章 老舍長篇小說的社會關懷與文化批判 第一節 發言位置的差異:英國時期的小說 第二節 文化差異的對照與文化批判的形成:《二馬》與《離婚》 第三節 巔峰之作:《駱駝祥子》 第五章 個人、家庭與社會的糾纏和角力:「家族史」長篇小說 第一節 封建家庭的崩毀:巴金的《激流》三部曲 第二節 東北的家族史:端木蕻良的《科爾沁旗草原》 第三節 靈魂的戰鬥與漂泊:路翎的《財主底兒女們》 第六章 結語 參考書目rf 參考書目 說明:本書目依編著者姓氏筆畫排列,同一著者超過二筆資料者,依出版 時間編列。 壹、 作家作品集 王統照,《中國現代文學百家--王統照代表作》,北京:華夏出版社,1997年1月 ………,《王統照代表作》,河南文藝出版社,1998年5月 巴金,《巴金全集》(全二十六卷),北京:人民文學出版社,1986年11月至1994年2月 老舍,《老舍全集》(全十九卷),北京:人民文學出版社,1999年1月 茅盾,《茅盾全集》(全四十一卷),北京:人民文學出版社,1984年至2001 年 張資平,《張資平小說精品》,北京:中國文聯出版社,2000年5月 葉聖陶,《葉聖陶集》(全二十五卷),南京:江蘇教育出版社,1987年6月至1994年9月 路翎,《中國現代作家選集--路翎》,香港:三聯書店,1994年10月 ……,《路翎文集》(全四卷),合肥:安徽文藝出版社,1995年8月 ……,《路翎批評文集》,上海:珠海出版社,1998年10月 端木蕻良,《端木蕻良文集》(第一卷),北京:北京出版社,1998年6月 …………,《大時代--端木蕻良四0年代作品選》,台北:立緒文化公司,1996年11月 …………,《中國現代文學百家--端木蕻良代表作》,北京:華夏出版社,1998年1月 貳、作家評論專著 (一) 王統照 劉增人,《王統照論》,濟南:山東教育出版社,2001年7月 (二) 葉聖陶 商金林,《葉聖陶傳論》,合肥:安徽教育出版社,1995年10月 張香還,《葉聖陶和他的世界》,上海:上海教育出版社,1995年12月 劉增人,《葉聖陶傳》,南京:江蘇文藝出版社,1995年6月 劉增人、馮光廉主編,《葉聖陶研究資料》,北京:十月文藝出版社,1998年 (三)茅盾 丁爾綱,《茅盾的藝術世界》,青島:青島出版社,1993年12月 中國茅盾研究會編,《茅盾與二十世紀》,北京:華夏出版社,1997年6月 伏至英,《茅盾評傳》,出版資料不詳 朱德發、阿岩、翟德耀,《茅盾前期文學思想散論》,濟南:山東人民出版社 1983年8月 沈衛威,《艱辛的人生--茅盾傳》,台北:業強出版社,1991年10月 李岫主編,《茅盾研究在國外》,長沙:湖南人民出版社,1984年8月 李標晶,《茅盾文體論初探》,廈門:廈門大學出版社,1991年5月 邵伯周,《茅盾評傳》,成都:四川文藝出版社,1987年1月 孫中田、查國華主編,《茅盾研究資料》(上)(中)(下),北京:中國社會科學 出版社,1983年5月 孫中田,《《子夜》的藝術世界》,上海:上海文藝出版社,1990年12月 唐金海、劉長鼎主編,《茅盾年譜》(上)(下),太原:山西高校聯合出版社, 1996年6月 莊鐘慶,《茅盾的創作歷程》,北京:人民文學出版社,1982年7月 ………,《茅盾史實發微》,長沙:湖南人民出版社,1985年2月 ………,《茅盾的文論歷程》,上海:上海文藝出版社,1996年7月 陳幼石,《茅盾《蝕》三部曲的歷史分析》,北京:社會科學文獻出版社, 1993年3月 葉子銘,《論茅盾四十年的文學道路》,上海:上海文藝出版社,1978年10月 (四)老舍 王建華,《老舍的藝術世界》,北京:語言文化大學出版社,1996年11月 王惠云、蘇慶昌,《老舍評傳》,石家莊:花山文藝出版社,1985年10月 王潤華,《老舍小說新論》,上海:學林出版社,1995年12月 甘海嵐,《老舍年譜》,北京:書目文獻出版社,1989年7月 甘海嵐,《老舍與北京文化》,北京:中國婦女出版社,1993年9月 甘海嵐、張麗妔,《京味文學散論》,北京:燕山出版社,1997年12月 宋永毅,《老舍與中國文化觀念》,台北:博遠出版公司,1993年3月 吳懷斌、曾廣燦主編,《老舍研究資料》(上)(下),北京:十月文藝出版社, 1985年7月 孫鈞政,《老舍的藝術世界》,北京:北京十月文藝出版社,1992年5月 張桂興編著,《老舍資料考釋》(上)(下),北京:中國國際廣播出版社, 1998年7月 張桂興編撰,《老舍年譜》(上)(下),上海:上海文藝出版社 張慧珠,《老舍創作論》,上海:三聯書店,1994年1月 曾廣燦,《老舍研究縱覽1929-86》,天津:天津教育出版社,1989年7月 謝昭新,《老舍小說藝術心理研究》,北京:十月文藝出版社,1994年3月 關紀新,《老舍評傳》,台北:商務印書館,1999年4月 (五)巴金 巴金研究叢書編委會編,《巴金研究論集》,重慶:重慶出版社,1988年1月 汪應果,《巴金論》,上海:上海文藝出版社,1985年10月 李存光編,《巴金研究資料》(上)(中)(下),福州:海峽文藝出版社,1985年9月 李存光,《巴金傳》,北京:北京十月文藝出版社,1994年12月 花建,《巴金小說藝術論》,上海:上海社會科學院出版社,1987年7月 陳思和,《巴金研究的回顧與瞻望》,天津:天津教育出版社,1991年10月 陳思和、李輝:《巴金論稿》,北京:人民文學出版社,1986年4月 譚興國,《巴金的生平和創作》,成都:四川文藝出版社,1983年3月 (六)端木蕻良 孔海立,《憂鬱的東北人--端木蕻良傳》,台北:業強出版社,1998年3月 劉以鬯,《端木蕻良論》,香港:世界出版社,1977年 (七)路翎 劉挺生,《一個神秘的文學天才--路翎》,上海:華東師範大學出版社,1997年1月 曉風編,《胡風路翎文學書簡》,合肥:安徽文藝出版社,1994年5月 參、一般論著 上海社會科學院歷史研究所編,《五卅運動史料》(第一卷),上海:上海人民出版社,1981年11月 中共中央黨史研究室,《中國共產黨歷史大事記》,上海:人民出版社, 1991年9月 中國史學會主編,《中日戰爭(七)》,上海:上海人民出版社,2000年6月 巴赫金著,白春仁、曉河譯,《巴赫金全集》第三卷,石家莊:河北教育出版社, 1998年 王德威,《眾聲喧嘩--三0與八0年代的中國小說》,台北:遠流出版公司, 1988年9月 江長仁編,《三一八慘案資料匯編》,北京:北京出版社,1985年5月 安敏成,《現實主義的限制-革命時代的中國小說》,南京:江蘇人民出版社,2001年8月 朱自清,《朱自清全集》(第四、五卷),南京:江蘇教育出版社,1996年8月 朱雯等編選,《文學中的自然主義》,上海:上海文藝出版社,1992年6月 伊恩?P?瓦特著,高原、董紅鈞譯,《小說的興起》,北京:三聯書店, 1992年6月 伊藤虎丸,《魯迅、創造社與日本文學》,北京:北京大學出版社,1995年2月 …………,《魯迅與日本人--亞洲的近代與「個」的思想》,石家莊:河北教育 出版社,2001年5月 沈衛威,《東北流亡文學史論》,鄭州:河南人民出版社,1992年8月 呂正惠,《小說與社會》,台北:聯經出版公司,1988年5月 李怡,《七月派作家評傳》,重慶:重慶出版社,2000年1月 ……,《近代中國無政府主義思潮與中國傳統文化》,武昌:華中師範大學出版社,2001年4月 李歐梵,《現代性的追求》,台北:麥田出版社,1996年9月 李澤厚,《中國現代思想史論》,北京:東方出版社,1987年6月 林明德編,《晚清小說研究》,台北:聯經出版公司,1988年3月 周作人,《關於魯迅》,烏魯木齊:新疆人民出版社,1997年3月 ………,《周作人自編文集:藝術與生活》,石家莊:河北教育出版社,2002年1月 ………,《周作人自編文集:瓜豆集》,石家莊:河北教育出版社,2002年1月 ………,《周作人自編文集:談虎集》,石家莊:河北教育出版社,2002年1月 ………,《周作人自編文集:澤瀉集》,石家莊:河北教育出版社,2002年1月 周昌龍,《新思潮與傳統--五四思想史論集》,台北:時報文化公司,1995年2月 施淑,《理想主義者的剪影》,台北:新地文學出版社,1990年4月 郁達夫,《郁達夫文集》(第三卷),香港:三聯書店、廣州:花城出版社聯合 出版,1982年3月 ………,《郁達夫文集》(第七卷),香港:三聯書店、廣州:花城出版社聯合 出版,1983年9月 胡風,《胡風全集》(第三卷),武漢:湖北人民出版社,1999年1月 胡適,《胡適文集》(第二、四卷),北京:人民文學出版社,1998年12月 ……,《胡適文集》(第二卷),北京:北京大學出版社,1998年11月 孫郁,《魯迅與周作人》,石家莊:河北教育出版社,1997年7月 夏志清,《中國現代小說史》,台北:傳記文學出版社,1985年11月新版 ………,《夏志清文學評論集》,台北:聯合文學出版社,1987年8月 ………,《中國古典小說導論》,合肥:安徽文藝出版社,1988年9月 高軍編,《中國社會性質問題論戰(資料選輯)》(上)(下),上海:人民出版社 1984年 殷克琪著,洪天富譯,《尼采與中國現代文學》,南京:南京大學出版社, 2000年3月 梁啟超,《梁啟超全集》(第二、十卷),北京:北京出版社,1999年7月 許壽裳,《亡友魯迅印象記》,峨嵋出版社,1947年10月 郭廷以,《近代中國史綱》,香港:中文大學出版社,1986年 曹書文,《家族文化與中國現代文學》,北京:中國社會科學院出版社,2002年12月 張允侯、殷敘?、洪清祥、王雲開編,《五四時期的社團(二)》,香港:三聯書店,1979年4月 張菊香、張鐵榮編著,《周作人年譜》,天津:天津人民出版社,2000年4月 陳子善、王自立編,《郁達夫研究資料》,香港:三聯書店、廣州:花城出版社聯合出版,1986年11月 陳平原,《二十世紀中國小說史》(第一卷1897-1916),北京:北京大學出版社, 1989年12月 ………,《中國小說敘事模式的轉變》,台北:久大文化公司,1990年5月 陳平原、夏曉虹編,《二十世紀中國小說理論資料》(第一卷1897-1916),北京: 北京大學出版社,1997年2月 陳建華,《「革命」的現代性--中國革命話語考論》,上海:上海古籍出版社,2000年12月 陳漱渝主編,《魯迅論爭集(上)》,北京:中國社會科學出版社,1998年9月 陳獨秀,《陳獨秀著作選》(第一卷),上海:上海人民出版社,1993年4月 普實克,《普實克中國現代文學論文集》,長沙:湖南文藝出版社,1987年8月 費正清主編,章建剛等譯,《劍橋中華民國史》,上海:人民出版社, 第一部1991年11月出版,第二部1992年9月出版 費正清,《美國與中國》,北京:世界知識出版社,2002年1月 舒衡哲,《中國啟蒙運動--知識分子與五四遺產》,台北:桂冠圖書公司,2000年7月 傅斯年,《傅斯年全集》(第七冊),台北:聯經出版公司,1980年9月 楊義,《中國現代小說史》,北京:人民文學出版社,第一冊1986年9月, 第二冊1988年10月,第三冊1991年5月 ……,《二十世紀中國小說與文化》,台北:業強出版社,1993年1月 葉渭渠,《日本文學思潮史》,北京:經濟日報出版社,1997年3月 葉渭渠、唐月梅,《日本文學史》(近代卷),北京:經濟日報出版社,2000年 1月 趙園,《趙園自選集》,桂林:廣西師範大學出版社,1999年3月 ……,《艱難的選擇》,上海:上海文藝出版社,2001年1月 ……,《北京:城與人》,北京:北京大學出版社,2002年1月 趙毅衡,《當說者被說的時候--比較敘述學導論》,北京:中國人民大學出版社,1998年10月 蔡元培等著,《中國新文學大系導論集》,上海:良友復興圖書公司, 1940年10月 鄭振鐸,《鄭振鐸文集》(第三卷),北京:人民文學出版社,1983年9月 ………,《鄭振鐸文集》(第四卷),北京:人民文學出版社,1985年6月 鄧中夏,《中國職工運動簡史》(民國叢書第二編第十七冊),上海:上海書店,1990年12月 劉禾,《跨語際實踐--文學,民族文化與被譯介的現代性(中國,1900-1937)》, 北京:三聯書店,2002年6月 魯迅,《魯迅全集》(全十六卷),北京:人民文學出版社,1981年 盧卡契,《盧卡契文學論文集》(一)(二),北京:中國社會科學出版社, 1980年7月至1981年11月 錢理群,《周作人論》,上海:上海人民出版社,1991年8月 ………,《二十世紀中國小說理論資料(第四卷)1937-1949》,北京:北京大學出版社,1997年2月 蕭紅,《蕭紅文集》(第三卷),合肥:安徽文藝出版社,1997年7月 顏廷亮,《晚清小說理論》,北京:中華書局,1996年8月 藍棣之,《現代文學經典:症候式分析》,北京:清華大學出版社,1998年8月 瞿秋白,《瞿秋白文集》(第二卷),北京:人民文學出版社,1998年12月 羅素,《西方哲學史》(下),台北:五南圖書出版公司,1985年6月 嚴家炎,《中國現代小說流派史》,北京:人民文學出版社,1989年8月 ………,《五四的誤讀》,福州:福建教育出版社,2000年4月 ………,《嚴家炎論小說》,南昌:江西高校出版社,2002年4月 肆、期刊論文 王中忱,〈論茅盾的現實主義文學觀〉,《文學評論》1984年第1期 王建,〈論老舍小說中車夫形象的塑造〉,《中國現代、當代文學研究》 1984年年第4期 朱珩青,〈路翎小說的精神世界和「七月派」現實主義〉,《學術月刊》1994年 第9期 朱珩青,〈路翎早期的文學活動〉,《新文學史料》1995年第1期 沈渝麗,〈試論老舍早期的文化意識-兼析老舍早期三部長篇小說〉, 《中國現代著名作家研究》1988年刊 宋劍華,〈二十世紀中國現實主義文學運動之反省〉,《文學評論》 1999年第5期 汪暉,〈預言與危機--中國現代歷史中的『五四』啟蒙運動〉(上、下), 《文學評論》1989年第三、四期 呂正惠,〈《現實主義論》導言〉,盧卡奇著《現實主義論》,台北:雅典出版社, 1988年10月 李萬鈞,〈論自然主義感傷主義對茅盾巴金長篇小說的影響〉, 《中國現代著名作家研究》1993年第2期 吳小美,〈市民社會灰色人物的灰色悲劇--評老舍的長篇小說《離婚》〉, 《中國現代、當代文學研究》1984年第4期 南帆,〈歷史敘述:長篇小說的座標〉,《文學評論》1999年第3期 袁雪洪,〈論《離婚》及其在老舍創作道路上的地位〉, 《中國現代、當代文學研究》1987年第7期 徐沖,〈活畫出北京市民的靈魂(評老舍的長篇小說《離婚》)〉, 《中國現代、當代文學研究》1996年第11期 徐循華,〈對中國現當代長篇小說的一個形式考察--關於《子夜》模式〉, 《上海文論》1989年第三期 陳俊啟,〈重估梁啟超小說觀及其在小說史上的意義〉,《漢學研究》第20卷第2期,2002年6月 陳涌,〈「財主底兒女們」的思想傾向--兼評胡風的若干觀點〉,《人民文學》第66號,1955年4月 張耀杰,〈批評家筆下的路翎--路翎研究綜述〉,《新文學史料》1997年第4期 曾廣燦、劉秉仁,〈論三十年代老舍的文學反思〉, 《中國現代著名作家研究》1992第2期半月刊 曾廣燦,〈現實主義:老舍文學思想的內核〉,《中國現代、當代文學研究》 1994年第11期 溫儒敏,〈論老舍的文學世界〉,《中國現代文學理論》第7卷(期) 1997年第9期 楊早,〈五四時期的北大學生刊物比較〉,《中國現代文學研究叢刊》2002年第1 期 趙園,〈來自大野的雄風--端木蕻良小說小說讀後〉,《十月》1982年第5期 ……,〈知識者『對人民的態度的歷史』--由一個特殊方面看三、四年代中國現 代小說〉,《中國現代文學研究叢刊》1985年第2期 潘先軍、趙國宏,〈柔弱:老舍筆下市民性格的核心〉, 《中國現代著名作家研究》1990第2期半月刊 樊駿,〈論《駱駝祥子》的悲劇性〉,《中國現代、當代文學研究》 1986年第12期 錢誠一,〈茅盾中長篇小說的史詩特徵〉,《中國現代著名作家研究》 1988年刊 ………,〈茅盾中長篇小說的情節建構及其審美規範〉, 《中國現代著名作家研究》1990第1期半月刊 曠新年,〈現代文學觀的發生與形成〉,《文學評論》2000年第4期 譚桂林,〈現代都市文學的發展與《子夜》的貢獻〉, 《中國現代著名作家研究》1991年第2期id NH0920045002 sid 889106 cfn 0 / id NH0920063001 auc 駱呈欣 tic 內循環氣舉式生物反應器中之局部氣相流力性質與應用於生物降解有機廢氣之行為模式 adc 黃世傑 ty 博士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 193 kwc 氣舉式生物反應器 kwc 數學模式 kwc 局部水力性質 kwc 反應行為 kwc 動態行為 kwc 有機廢氣 kwc 局部氣相性質量測 abc 摘要 tc 目錄 指導教授推薦書………………………………………………………… 考試委員審定書………………………………………………………… 摘要……………………………………………………………………… I Abstract…………………………………………………………………IV 誌謝…………………………………………………………………… VI 目錄……………………………………………………………………VII 圖目錄………………………………………………………………… XII 表目錄………………………………………………………………..XVII 第一章 緒論…………………………………………………………… 1 1-1 氣舉式反應器簡介……………………………………… 1 1-2 論文架構………………………………………………… 3 1-2-1 氣舉式反應器內之局部氣相水力行為研究…… 3 1-2-2 有機廢氣在內循環氣舉式生物反應器內行生物降解反應之穩態行為模式……………………………3 1-2-3 有機氣體在氣舉式反應器內之非穩態生物降解反應行為模式……………………………………… 4 第二章 文獻回顧……………………………………………………… 5 2-1 氣舉式生物反應器之流力行為………………………… 5 2-1-1 氣舉式反應器內之局部氣相流力行為…………… 5 2-1-1-1 有關氣舉式反應器之局部氣相與液相之水水力性質……………………………………5 2-1-1-2 固體顆粒對局部氣相水力性質的影響…… 8 2-1-1-3 有關氣泡弦長分佈轉換成氣泡大小分佈之文獻…………………………………………9 2-2 氣舉式反應器內之上升區與下降區之水力參數預測… 12 2-2-1 氣體速度及滯留量……………………………… 12 2-2-2 驅動力及摩擦損耗……………………………… 15 2-3 反應器內之液體流動模式……………………………… 19 2-4 反應器內之氣泡流動型態…………………………… 20 2-5 反應器內之質傳行為…………………………………… 22 2-6 微生物反應動力………………………………………… 23 2-6-1 微生物降解反應……………………………… 23 2-6-2 微生物反應動力式……………………………… 24 2-6-2-1 單一基質限制生長…………………… 24 2-6-2-2 基質抑制生長…………………… 24 2-7 氣舉式生物反應器在生物降解上之應用………………25 2-8 氣舉式生物反應器之生化反應之非穩態行為模式……26 第三章 氣舉式反應器內之局部氣相行為研究…………………… 28 3-1 概論……………………………………………………… 28 3-2 實驗部分………………………………………………… 28 3-2-1 反應器本體 ………………………………………… 28 3-2-2 探針與資料擷取…………………………………… 29 3-2-3 訊號資料之處理…………………………………… 29 3-2-4 將氣泡弦長機率分佈轉換成氣泡大小機率分佈之方法……………………………………………………31 3-2-5 代表某高度之截面平均氣相水力性質…………… 32 3-3 結果與討論……………………………………………… 41 3-3-1 氣泡性質之機率分佈……………………………… 41 3-3-2 平均氣泡大小……………………………………… 44 3-3-3 平均氣泡速度……………………………………… 50 3-3-4 氣體滯留量………………………………………… 55 3-4 結論……………………………………………………… 61 第四章 有機氣體在氣舉式反應器內行生物降解反應之穩態行為模式…………………………………………………………… 61 4-1 概論 ……………………………………………………… 61 4-2 實驗部分………………………………………………… 62 4-2-1 實驗方法…………………………………………… 62 4-2-2 實驗設計…………………………………………… 64 4-3 理論……………………………………………………… 66 4-3-1 氣舉式生物反應器之水力性質…………………… 66 4-3-2 反應器之氣-液質傳特性…………………………… 67 4-3-3 微生物動力學……………………………………… 68 4-3-4 微生物生長之計量式……………………………… 73 4-3-5 反應器數學模式之質量平衡……………………… 73 4-3-5-1 模式假設…………………………………… 73 4-3-5-2 不同區間之質量平衡……………………… 74 4-3-5-2-1 上升區…………………………… 74 4-3-5-2-2 氣液分離區……………………… 76 4-3-5-2-3 下降區…………………………… 77 4-3-5-2-3-1 流動型態III………… 77 4-3-5-2-3-2 流動型態I …………… 79 4-3-5-2-3-3 流動型態II……………80 4-3-5-2-4 底部……………………………… 80 4-3-5-2-4-1 流動型態III………… 80 4-3-5-2-4-1 流動型態I 或II…… 82 4-3-6 邊界條件…………………………………………… 83 4-3-7 數值方法…………………………………………… 85 4-4 結果與討論……………………………………………… 87 4-4-1 流動型態I(regime I) …………………………… 87 4-4-1 流動型態II(regime II) ……………………………94 4-4-3 流動型態III(regime III) ………………………… 96 4-4-4 反應器之表現…………………………………… 100 4-5 結論…………………………………………………… 105 第五章 有機氣體在氣舉式反應器內行生物降解反應之非穩態行為模式………………………………………………………… 107 5-1 概論 …………………………………………………… 107 5-2 實驗部分……………………………………………… 107 5-3 理論…………………………………………………… 108 5-3-1 氣舉式生物反應器之水力性質………………… 108 5-3-2 反應器之氣-液質傳特性…………………………108 5-3-3 微生物動力學…………………………………… 108 5-3-4 微生物生長之計量式…………………………… 110 5-3-5 反應器數學模式之質量平衡…………………… 110 5-3-5-1 模式假設………………………………… 110 5-3-5-2 不同區間之質量平衡…………………… 111 5-3-5-2-1 上升區………………………… 111 5-3-5-2-2 氣-液分離區…………………… 112 5-3-5-2-3 下降區………………………… 112 5-3-5-2-4 底部區………………………… 113 5-3-6 初始條件………………………………………… 114 5-3-7 邊界條件………………………………………… 115 5-3-7-1 上升區之邊界條件 ……………………… 115 5-3-7-2 下降區之邊界條件……………………… 115 5-3-8 數值方法………………………………………… 118 5-4 結果與討論…………………………………………… 121 5-4-1 整體變化………………………………………… 121 5-4-1-2 上升區之整體變化 ……………………… 121 5-4-1-3 下降區之整體變化……………………… 127 5-4-2 在上升區中點位置與反應器出口之動態行為… 134 5-4-2-1 在上升區中點位置之甲苯液相濃度之動態行 為……………………………………………134 5-4-2-2 在上升區中點位置之溶氧濃度之動態行為137 5-4-2-3 在上升區中點位置之甲苯與氧之氣相濃度之 動態行為………………………………… 142 5-4-2-4 在反應器出口之甲苯與氧之氣相濃度之動態 行為……………………………………… 146 5-4-3 反應器的去除能力 (EC)與去除效率 (RE) …… 149 5-5 結論 …………………………………………………… 152 第六章 總結與未來展望……………………………………………153 符號說明…………………………………………………………… 155 參考文獻…………………………………………………………… 162 附錄A……………………………………………………………… 171 附錄B……………………………………………………………… 179rf 參考文獻 1. Andrews, G. F. (1968) Inhibitory growth of bacterial cultures. Biotechnol. Bioeng. 44, 707-719. 2. Ayazi Shamlou, P., Pollard, D. J. and Ison, A. P. (1995) Volumetric mass transfer coefficient in concentric-tube airlift Bioreactor. Chem. Eng. Sci. 50, 1579-1590. 3. Bailey J. E. and Ollis, D. F. (1986) Biochemical engineering fundamentals, 2nd edition. McGraw-Hill, New York. 4. Bentifraouine, C., Xuereb, C. and Riba, J. P. (1999) Local gas hydrodynamics in an external-loop airlift reactor: newtonian and non-newtonian fluids. Bioprocess Eng. 20, 303-307. 5. Bello, R. A., Robinson, C.W. and Moo-Young, M. (1985) Gas holdup and overall volumetric oxygen transfer coefficient in airlift contactors. Biotechnol. Bioeng. 27, 369-381. 6. Buchholz, R., Zakrzewski, W. and Schugerl, K. (1981) Techniques for determining the properties of bubbles in columns. International Chemical Eng. 21, 180-187. 7. Chisti, M. Y. (1989) Airlift bioreactors. Elsevier, New York. 8. Clark, N. N., Liu, W. and Turton, R. (1996) Data interpretation techniques for inferring bubble size distribution from probe signal in fluidized systems. Powder Technol. 88, 179-188. 9. Clark, N. N. and Turton, R. (1988) Chord length distributions related to bubble size distributions in multiphase flows. Int. J. Multiphase Flow. 14, 413-424. 10. Edwards, V. H. (1970) The Influence of High Substrate Concentrations on Microbial Kinetics. Biotechnol. Bioeng. 27, 679-685. 11. El-Temtamy, S. A. and Epstein, N. (1980) Rise velocities of large single two-dimensional and three-dimensional gas bubbles in liquids and in liquid fluidized beds. Chem. Eng. J. 19, 153-156. 12. Ensley, B. D. and Kurisko, P. R. (1994) A gas lift bioreactor for removal of contaminants from the vapor phase. Appl. Environ. Microbiol. 60, 285-290. 13. Fan, L. S. (1989) Gas-Liquid-Solid Fluidization Engineering. Butterworth Publishers, Boston. 14. Fan, L. S., Kitano, K. and Kreischer, B. E. (1987) Hydrodynamics of gas-liquid-solid annular fluidization. AIChE J. 33, 225-231. 15. Freitas, C., Fialova, M., Zahradnik, J. and Teixeira, J. A. (1999) Hydrodynamic model for three-phase internal- and external-loop airlift reactors. Chem. Eng. Sci. 54, 5253-5258. 16. Freitas dos Santos, L. M. and Livingston, A. G. (1993) A novel bioreactor system for the destruction of volatile organic compounds. Appl. Microbiol. Biotechnol. 40, 151-157. 17. Gmehling, J. and Onken, U. (1997) Vapor-liquid equilibrium data collection: aqueous-organic systems. Chemistry Data Series. Dechema, Frankfurt, Germany. 18. Guardia Alba, M. J. and García Clavo E. (2000) Characterization of bioreaction processes: aerobic Escherichia coli cultures. J. Biotechnol. 84, 107-118. 19. Gunn, D. J. and Al-doori, H. H. (1985) The measurement of bubble flows in fluidized beds by electrical probe. Int. J. Multiphase Flow. 11, 535-551. 20. Hayduk, W., and Laudie, H. (1974) Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. AIChE J. 20, 3, 611-615. 21. Harmathy, T. Z. (1960) Velocity of large drops and bubbles in media of ininite or restricted extent. AIChE J. 6, 281-288. 22. Hecht, V., Brebbermann, D., Bremer, P. and Deckwer, W. D. (1995) Cometabolic degradation of trichloroethylene in a bubble column bioscrubber. Biotechnol. Bioeng. 47, 461-469. 23. Heijnen, J. J., Hols, J., van der Lans, R. G. J. M., van Leeuwen, H. L. J. M., Mulder, A. and Weltevrede, R. (1997) A simple hydrodynamic model for the liquid circulation velocity in a full-scale two- and three-phase internal airlift reactor operating in the gas recirculation regime. Chem. Eng. Sci. 52, 2527-2540. 24. Heijnen, J. J., Mulder, A., Weltevrede, R., Hols, J. and van Leeuwen, H. L. J. M. (1991) Large scale anaerobic-aerobic treatment of complex industrial waste water using biofilm reactor. Wat. Sci. Tech., 23, 1427-1436. 25. Heijnen, J. J., van Loosdrecht, M. C. M., Mulder, A. and Tijhuis, L. (1992) Formation of biofilm in a biofilm air-lift suspension reactor. Wat. Sci. Tech., 26, 647-654. 26. Henriksen, H. K. and Ostergard, K. (1974) Characteristics of large two-dimensional air bubbles in liquid and in three-phase fluidished beds. Chem. Eng. J. 7, 141-146. 27. Higbie, R. (1935) Rate of absorption of a pure gas into a still liquid during short period of exposure. Trans. AIChE J. 31, 365-389. 28. Hwang, S. J. and Cheng, Y. L. (1997) Gas holdup amd liquid velocity in three-phase internal-loop airlift reactors. Chem. Eng. Sci., 52, 3949-3960. 29. Karamanev, D. G., Nagamune, T. and Endo, I. (1992) Hydrodynamics and mass transfer study of gas-liquid-solid draft tube spouted bed bioreactor. Chem. Eng. Sci. 47, 3581-3588. 30. Kennard, M. and Janekeh, M. (1991) Two and three-phase mixing in a concentric draft tube gas-lift fermentor, Biotechnol. Bioeng. 38, 261-270. 31. Kikuchi K. I., Takahashi H., Koike, T. and Chiba, S. (1999) Effect of clearance between two sensor-probes on measured values of bubble properties in a bubble column. J. Chem. Eng. of Jpn. 32, 162-165. 32. Kikuchi K.I., Takahashi H., Sugawara, F. and Chiba, S. (2000) Bubble properties in draft tubes of a concentric-tube airlift reactor. The Seventh Asian Conference on Fluidized-Bed and Three-Phase Reactors, S. Uchida and S. Morooka ed., Shizuoka University, Japan, 551-556. 33. Liu, W., Clark, N. N., and Karamavruc A. I. (1998) Relationship between bubble size distributions and chord-length distribution in heterogeously bubbling systems, Chem. Eng. Sci. 53, 1267-1276. 34. Liu, W., Clark, N. N., and Karamavruc, A. I. (1996) General method for the transformation of chord-length data to a local bubble-size distribution. AIChE J. 42, 2713-2720. 35. Liu, W. and Clark, N. N. (1995) Relationshops between distributions of chord lengths and distributions bubble sizes including their statistical parameters. Int. J. Multiphase Flow. 21, 1073-1089. 36. Livingston, A.G. (1991) Biodegradation of 3,4-dichloroaniline in a fluidized bed bioreactor and a steady-state biofilm kinetic model. Biotechnol. Bioeng. 38, 260-272. 37. Lo, C. S. and Hwang, S. J. (2003) Local hydrodynamic properties of gas phase in an internal-loop airlift reactor. Chem. Eng. J. 91(1), 3-22. 38. Lu, W. J. and Hwang, S. J. (1995) Liquid velocity and gas holdup in three-phase internal loop airlift reactors with low-density particle. Chem. Eng. Sci. 47, 1301-1310. 39. Lu, W. J., Hwang, S. J. and Chang, C. M. (1994) Liquid mixing in two- and three-phase airlift reactors. Chem. Eng. Sci. 49, 1465-1468. 40. Lu, W. J. Ph.D. Dissertation. Department of Chemical Engineering, National Tsing Hua University, Taiwan, R.O.C. 1994, 126. 41. Luong, J. H. T. (1987) Generalization of Monod kinetics for analysis of growth data with substrate inhibition. Biotechnol. Bioeng., 29, 242-248. 42. Matsuura, A. and Fan, L. S. (1984) Distribution of bubble properties in a gas-liquid-solid fluidization. AIChE J. 30, 894-903. 43. Miyahara, T., Hamaguchi, M., Sukeda, Y. and Takahashi, T. (1986) Size of bubbles and liquid circulation in a bubble column with a draught tube and sieve plate. Can. J. Chem. Eng. 64, 718-725. 44. Miyahara, T. and Kawate, O. (1993) Hydrodynamics of a solid-suspended bubble column with a draught tube containing low-density particles. Chem. Eng. Sci. 48, 117-133. 45. Monod, J. (1949) The growth of bacterial cultures. Ann. Rev. Microbiol. 3, 371-375. 46. Moujaes, S. F. (1990) Testing of a spherical dual-tipper optical fiber probe for local measurements of void fraction and gas velocity in two-phase flows. Can. J. Chem. Eng. 68, 504-510. 47. Okada, K., Nagata, Y. and Akagi, Y. (1996) Effect of packed bed on mass transfer in external-loop airlift bubble column. J. Chem. Eng. Jpn. 29, 582-587. 48. Oliver, D. R. (1961) The sedimentation of suspensions of closely-sized spherical particles. Chem. Eng. Sci. 15, 230-235. 49. Ostergaard, K. (1966) On the growth of air bubbles formed at a single orifice in a water fluidized bed. Chem. Enng. Sci. 21, 470-476. 50. Ottengraf, S. P. P. (1986) "Exhaust Gas Purification," in Biotechnology. VCH Verlagsgesellschaft, Weinheim, Germany. 51. Pavlica, R. T. and Olson, J. H. (1970) Unified design method for continuous-contact mass transfer operations. Ind. Eng. Chem. Res. 62, 45-48. 52. Popovic, M. and Robinson, C.W. (1987) The specific interfacial area in external circulation-loop aiirlifts and a bubble column-I. Aqueous sodium suphite solution. Chem. Eng. Sci. 42, 2811-2842. 53. Rigby, G. R., Van Blockland, G. P., Park, W. H., and Capes, C. E. (1970) Properties of bubbles in three-phase fluidized as measured by an electroresistivity probe. Chem. Eng. Sci. 25, 1729-1740. 54. Rubio, F. C., Garcia, J. L., Molina, E. and Chisti, Y. (1999) Steady-state axial profiles of dissolved oxygen in tall bubble column bioreactors. Chem. Eng. Sci. 54, 1711-1723. 55. Rubio, F. C., Garcia, J. L., Molina, E. and Chisti, Y. (2001) Axial inhomogeneities in steady-state dissolved oxygen in airlift bioreactors: predictive models. Chem. Eng. J. 84, 43-55. 56. Santana, D. and Macias-Machin, A. (2000) Local bubble size distribution in fluidized bed. AIChE J. 46, 1340-1347. 57. Siegle, M. H., Merchuk, J. C. and Schugerl K. (1986) Airlift reactor analysis: interrelationships between riser, downcomer and gas-liquid separator behavior, including gas circulation effects. AIChE J. 32, 1585-1596. 58. Smith, B. C. and Skidmore, D. R. (1990) Mass transfer phenomena in an airlift reactor: effects of solids loading and temperature. Biotechnol. Bioeng. 35, 483-491. 59. Stewart, C.W., Crowe, C.T. and Saunders, S.C. (1993) A model for simultaneous coalescence of bubble culture. Chem. Eng. Sci. 48, 3347-3354. 60. Tan, W. S., Dai, G. C., Ye, W. and Shen, J. P. (1995) Local flow behavior of the liquid phase in an airlift bioreactor for potential use in animal cell suspension cultures. Chem. Eng. J. 57, B31-B36. 61. Tang, H. M. (1995) Application of biofilters to treat waste gases containing VOCs. Ph.D. Dissertation, Department of Chemical Engineering, National Tsing Hua University, Taiwan, R.O.C. 62. Tsutsui, T. and Miyauchi, T. (1980) Fluidity of a fluidized catalyst bed and its effect on the behavior of bubbles. Int. Chem. Eng. 20, 386-393. 63. Ueyama, K., Morooka, S., Koide, K., Kaji, H. and Miyauchi, T. (1980) Behavior of gas bubbles in bubble columns. IEC Process Design Development. 19, 592-590. 64. Utiger, M., Stuber, F., Duquenne, A. M., Delmas, H. and Guy, C. (1999) Local measurements for the study of external loop airlift hydrodynamics. Can. J. Chem. Eng. 77, 375-382. 65. van Benthum, W. A. J., van der Lans, R. G. J. M., van Loosdrecht, M. C. M. and Heijnen, J. J. (1999) Bubble recirculation regimes in an internal-loop airlift reactor. Chem. Eng. Sci. 54, 3995-4006. 66. van Benthum, W. A. J., van den Hoogen, J. H. A., van der Lans, R. G. J. M., van Loosdrecht, M. C. M., Heijnen, J. J. (1999) The biofilm airlift suspension extension reactor. Part I: Design and two-phase hydrodynamics. Chem. Eng. Sci., 54, 1909-1924. 67. Wolff, C., Briegleb, F. U., Bader, J., Hector, K. and Hammer, H. (1990) Measurements with multipoint microprobes. Chem. Eng. Technol. 13, 172-184. 68. Xuereb, C. and Riba J. P. (1995) A double optical-fiber probe to characterize gas-phase properties in gas-liquid contactors. Sensors and Actuators A. A46-47, 349-352. 69. Yasunishi, A., Fukuma, M. and Muroyama, K. (1986) Measurement of behavior of gas bubbles and gas holdup in a slurry bubble column by a dual electroresistivity probe method. J. Chem. Eng. Jpn. 19, 444-449. 70. Zuber, N. and Findlay, J. A. (1965) Average volumetric concentration in two-phase flow system. J. Heat Transfer 87, 453-468.id NH0920063001 sid 877611 cfn 0 / id NH0920063002 auc 劉榮昌 tic 機能性染料之微波合成與應用研究 adc 胡 德 ty 博士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 183 kwc 染料 kwc 微波 kwc 光電池 kwc 光能限制 kwc 光開關 kwc 非線性光學 kwc 電變色 kwc 光動力治療 abc 本研究成功以微波法合成可溶性phthalocyanine ( M(TBPc) , M = H2,Cu,Mg ,Zn , Ni, Co ; M(TBPc)2 , M = Lu, Dy , Tb, La; MPc( SO3Na)4, M = Cu, Mg ,Zn , H2,Co ; MPc2( SO3Na)8 , M = La, Tb, Lu, Dy, Ce)、perylene、phthlocyanine - perylene complex、porphyrin及porphyrin - perylene complex。並已將其應用於光電池、光能限制、光開關、電變色、光動力治療及非線性光學等領域。 tc 目錄…………………………………………………III 第一章 緒論…………………………………………1 第二章文獻回顧………………………………………2 第三章 研究目的與內容……………………………37 第四章 研究方法……………………………………38 第五章 初步成果……………………………………73 第六章 結論與展望…………………………………170 參考文獻………………………………………………172 作者簡介………………………………………………180 著作目錄………………………………………………181rf 1.王明星, 國立清華大學化學工程研究所博士論文 “光變色機能性色素之合成及其在高分子材料中性質之研究” 1995年六月。 2.胡定毅, 國立清華大學化學工程研究所碩士論文 “電變色(鎦酞菁)染料之合成與應用研究” 2000年七月。 3. S. Caddick, Tetrahedron 51 (1995) 10403. 4. Andre Loupy et al. Synthesis 1998, 1213 . 5.A.Braun and J.Tcherniac, Ann.Ber. 40 (1907) 2709 . 6.H.de Diesbach and E. Von der Weid, Helv.Chim.Acta 10 (1927) 886 . 7. C.W.Tang , S.A.Vanslyke and C.H.Chen , Journal of Applied Physics 65 (1989) 3610 . 8. C.W. Tang and S.A.Vanslyke, Applied Physics Letters 51 (1987) 913 . 9. M.Kimura,T.Nishigaki,T.Koyama,K.Hanabusa and H.Shirai, Reactive Polymers 23 (1994) 195. 10. A.Zsigmond , F.Notheisz , M.Bartok and J.E.Backvall, Studies in Surface Science and Catalysis 78 (1993) 417. 11. B.Z.Zmudzka , A.G.Strickland, J.Z.Beer and E.Benhur , Photochemistry and Photobiology 65 (1997) 461 . 12. E.Benhur,M.M.Zuk,S.Chin,D.Banerjee,M.E.Kenney and B.Horowitz, Photochemistry and Photobiology 62 (1995) 575. 13. C.J.Liu , J.C.Hsieh, and Y.H.Ju, Journal of Vacuum Science & Technology A-Vacuum Surface and Films 14 (1996) 753. 14. A.V.Nabok,Z.I.Kazantseva,N.V.Lavrik and B.A.Nesterenko, International Journal of Electronics 78 (1995) 129. 15. J.C.Hsieh,C.J.Liu, and Y.H.Ju, Thin Solid Films 322 (1998) 98 . 16.Xerox, G.B.Patent 2059,618B (1979),U.S.Patent 4395,471A (1982);Cannon, Japanese Patent 83,043,736(1973) and 58,187,949A (1982) . 17.Canon, Japanese Patent 61 (1984) 704A. 18. T. Yagishita ,H. Okuyama, K. Ikegami and T.Narusawa , IEEE Transations on Industry Application, 20 (1984) 1624. 19. R.O. Loutfy , A.M.Hor , C.K.Hsiao , G. Baranyi , and P.Kazmaizar , Pure Appl.Chem. 60 (1988) 1047 . 20. 陳勝昌,”可錄式光碟碟片材料簡介” 工業材料 99 (1995) 75 . 21. Q.Y.Chen , D.H.Gu , J. P. Shu , X.D.Tang and F.X.Gan , Materials Science and Engineering 25 (1994) 174. 22. IBM,European Patent 54,587(1980). 23.N.Toshima , T.Tominaga and S.Kawamura, Bull.Chem. Soc.Jpn. 69 (1996) 245. 24.ICI, U.S.Patent 4,705,528 (1984) . 25. J.Griffiths , Janet Cruse-Sawyer, Simon R. Wood , Jack Schofield , Stanley B. Brown and Bryan Dixon , J. Photochem. Photobiol. B: Biol. 24 (1994) 195 26. J. Griffiths , J. Schofield , M. Wainwright and S.B. Brown, Dyes and Pigments 33 (1997) 65 . 27. Adriana Visona , Journal of Photochemistry and Photobiology B: Biology 57 (2000) 94 . 28. Toshimitsu Tsuzuki , Nobuaki Hirota , Naoki Noma , Yasuhiro Shirota , Thin solid films 273 (1996) 177. 29.Rudiono,Shuichi Okazaki, Manabu Takeuchi , Thin solid films 334 (1998) 187. 30.Jonathan B.Whitlock , Paul Panayotatos , Ganesh D.Sharma, Mary D.Cox, Roland R.Sauers , George R.Bird , Optical Engineering 32 (1993) 1921 . 31. Okano et.al. U.S. Patent 5,474,825 (1995). 32. Yamada et al. U.S. Patent 5,521,038 (1996). 33. Q.Y.Chen,D.H.Gu and F.X.Gan, Solid-State Electronics 37(1994) 1768. 34. Yamada et al. U.S. Patent 5,292,615 (1994). 35. Yanagisawa et al. U.S. Patent 5,424,171 (1995). 36.A.Rademacher,S.Markle,H.Langhals, Chem.Ber. 115 (1982) 2927. 37.H.Langhals,Heterocyclic 40(1995) 1. 38.R.Stolarski,Dyes Pigm. 24 (1994)295. 39.S.Heinz,M.Jin,S.Beat,W.Annemarie,G.Gerald,PCT Int.Appl. WO,9849164A15, Nov,1998, 42. 40.M.Esteghamatiam,D.K.Murti,C.G.Allen,A.M.Hor,U.S. Patent,5756245,1998. 41.M.P.O’Neil,M.P.Niemczyk,W.A.Svec,D.Gosztola,G.L. Gaines III,M.R.Wasielewski,Science 257(1993) 63. 42.R.Gvishi,R.Reisfeld,Z.Burshtein,Chem.Phys.Lett. 213 (1993) 3 43.N.Tsuyoshi,D.Shuji,N.Takanobu,U.S.Patent,5726457,1998. 44.S.Hayashida,M.Morita,Y.Nagao,Y.Abe,T.Misono,U.S.Patent,5733481,1998. 45.黃德音,段學輝,藍閩波,感光材料, 5 (1996) 3. 46. 陳錦地, 化學 58 (2000) 517. 47. S.V. Rao, N.K.M.N. Srinivas, D.N. Rao, L. Giribabu, B. G. Maiya, R. Philip, G.R. Kumar, Optics Communications 182 (2000) 255. 48. S.C. Chang, G. He, F. C. Chen, T.F. Guo, Y.Yang, Applied Physics Letters 79 (2001) 2088. 49. S. Lamansky, R.C. Kwong, M. Nugent, Peter I. Djurovich, Mark E. Thompson, Organic Electronics 2 (2001) 53. 50. J. M. Lupton, Applied Physics Letters 81(2002) 2478. 51. D. K. Rittenberg, K. I. Sugiura, Y. Sakata, S. Mikami, A. J. Epstein, J. S. Miller, Adv. Mater. 12 (2000) 126. 52. K. Takahashi, N. Kuraya, T. Yamaguchi, T. Komura, K. Murata, Solar Energy Materials & Solar cells 61 (2000) 403. 53. J. Wienke, T. J. Schaafsma, A. Goossens, J. Phys. Chem. B. 103 (1999) 2702. 54. F.Z. Henai, W.J. Blau, L.R. Milgrom, G. Yahioglu, D. Phillips, J.A. Lacey, Chemical Physics Letters 267 (1997) 229. 55. J.D. Spikes, Photochemistry and Photobiology 43 (1986) 691. 56. S.Caddick,Tetrahedron 51 (1995) 10403 . 57. Andre Loupy et al. Synthesis (1998) 1213 . 58. 胡希明, 梅治乾, 黃仲濤, 賴聲禮, 華南理工大學學報 (自然科學版) 25 (1997) 34. 59.楊末雄等,化學, 56 (1998) 269. 60. Richard J.Komp, Photovoltaics Practical (1981) 90. 61. M.N.Rudden and J.Wilson , Elements of solid state physics second edition (1993)228. 62. H.S.Nalwa and S.Miyata, Handbook of Organic Conductive Molecules and Polymers,ed. CRC Press, Boca Raton, Vol.4, Ch.6:Nonlinear Optical Properties of π-Conjugated Materials (1997) 262. 63. L.W. Tutt and A.Kost, Nature 356 (1992) 225. 64. J.W.Perry, K.Mansour, I.-Y.S.Lee, X.-L.Wu, P.V.bedworth, C.-T.Chen, D.Ng, S.R.Marder, P.Miles, T.Wada, M.Tian, H.Sasabe, Science 273 (1996) 1533. 65. 陳銘, 光訊, 第八十二期 11-15 頁。 66. J.S.Shirk, S.R.Flow, J.R.Lindle, F.J.Bartoli, A.W.Anow and M.E.Boyle, Mater.Res.Soc.Symp.Proc.328 (1994) 661. 67. F. Pockel. Ann. D. Physik. (1889) 37. 68. Y.Wu, H.Tial, K.Chen, Y.Lin and D. Zhu, Dyes and Pigments 37 (1998) 317. 69. J.S.Shirk , R.G.S.Pong,S.R.Flom,F.J.Bartoli, M.E.Boyle and A.W.Snow , Pure Appl.Opt. 5 (1996) 701. 70. J.W.Perry, K.Mansour, I.-Y.S.Lee, X.-L.Wu, P.V.bedworth, C.-T.Chen, D.Ng, S.R.Marder, P.Miles, T.Wada, M.Tian, H.Sasabe, Science 273 (1996) 1533. 71. M.Hanack and H.Heckmann, Eur.J.Inorg,Chem. (1998) 367. 72. L.W. Tutt, T.F. Boggess. Quantum Electron 17 (1995) 299. 73. 揚明長, 化工, 第40卷 第2期 (1993) 64-68. 74. 葉時傑, 國立清華大學化工研究所碩士論文 (1998) 75. F.Castaneda , C.Piechocki , V.Plichon , J.Simon , and J.Vaxiviere, Electrochimica Acta. 31(1986)131-133. 76. C.C.Leznoff and A.B.P.Lever, phthalocyanine properties and applications (1993) 3. 77. Ethelberta N. Rask, W.H.Howell, Am. J. Physiol. 84 (1928) 363. 78. Meffert Hans, El Bashir M. H., Dermatol. Monatsschr., 165 (1979) 499. 79. Chan W. S., Svennsen, R., Phillips D., Br. J. Cancer 53 (1986) 255. 80. Adriana Visona, Annalisa Angelini, J. Photochem. Photobio. B, 57 (2000) 94. 81. Hong-Ying Yang, Zhi-yi Zhang, Dyes and Pigments 46 (2000) 139. 82. 李文國, 國立清華大學化學工程研究所碩士論文 “含Perylen亞醯胺之合成及應用研究” 1999年七月。 83. J.Kerr, Phil. Mag. 50 4 (1975) 337. 84. F. Pockels, Ann. d. Physik. (1889) 37. 85. B.C. Davydov, L.D. Dekacheva, V.U. Dunina, M.E. Zhabotinskii, V. Zolin, Opt. Spectroscopic, 30 (1970) 274. 86. Henari F.Z., Callaghan J., Blau W.J., Haisch P., Hanack M., Pure Appl. Opt. 6 (1997) 741. 87. 中華民國八十九年四月二十九日(89) 環保署檢字第22785號公告。 88. Dean Wekdon and Peter R. Ogilby , J.Am.Chem.Soc. 120 (1998) 12978. 89. Duarte V, Gasparutto D, Yamaguchi LF, Ravanat JL, Martinez GR, Medeiros MHG, Mascio PD, Cadet J. J.Am.Chem.Soc. 122(2000) 12622. 90. A. Loupy, A. Petit, J. Hamelin, F. Texier-Boullet, P. Jacquault, D. Mathe, Synthesis (1998) 1213. 91. Neil B. McKeown, Phthalocyanine Materials Synthesis, Structure, and Function (1998) 92. 92. D.A. Skoog, F.J. Holler, T.A. Nieman, Principles of Instrumental Analysis, 5th Ed.; Harcourt Brace & Company: Philadelphia (1998) 333. 93. N.B. McKeown, Phthalocyanine Materials Synthesis, Structure and Function; Cambridge University Press: Cambridge (1998) 112. 94. C.C. Leznoff, A.B.P. Lever, Phthalocyanines Properties and Applications; VCH Publishers, Inc.: New York (1989) 147. 95. Tokushige Shichiri, Minoru Suezaki, and Takeshi Inoue, Chemistry Letters (1992) 1717 96. Masahiro Hiramoto, Hiroshi Fujiwara, and Masaaki Yokoyama, J.Appl.Phys. 72 (1992) 3781. 97. S.C. Chang, G. He, F.C. Chen, T.F. Guo, Y, Yang, Appl. Phys. Lett. 79 (2001) 2088. 98. F.Bentivegna, M. Canva, P. Georges, A. Brun, F. Chaput, L. Malier, J.-P. Boilot, Appl. Phys. Lett. 62 (1993)1271. 99. X. Wang, C. Liu, Q. Gong, Y. Huang, C. Huang, Optics Communications 197 (2001) 83. 100. D. Weldon, P.R. Ogilby, J. Am.Chem. Soc. 120 (1998) 12978. 101. L. Packer, H. Sies, Singlet Oxygen, UV-A, and Ozone, Methods in Enzymology, volume 319, Academic Press, New York, (2000).id NH0920063002 sid 883642 cfn 0 / id NH0920063003 auc 李重君 tic 有機光電元件及其材料之應用研究 adc 胡德 ty 博士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg - kwc DVD-R kwc 微波合成 kwc 光變色染料 kwc 上發光有機電激發光二極體 abc 本論文述及三大應用研究範圍,分別是:(1)新型DVD-R記錄材料之開發;(2)染料之微波合成;(3)OLED元件研究,而研究的項目則包括:Styryl染料之開發、光變色Spirooxazine染料之微波合成以及上發光(top-emitting)OLED元件之研究。 tc 摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 IX 第一章 緒論 1 第二章 新型DVD-R記錄材料--Styryl染料之開發 2-1 前言及文獻回顧 5 2-2 研究動機 9 2-3 實驗藥品及所使用儀器 11 2-4 實驗方法 13 2-5 結果與討論 19 2-6 結論 24 2-7 參考文獻 25 第三章 染料之微波合成--以光變色Spirooxazine為例 3-1 微波簡介 48 3-2 微波化學及其發展 50 3-3 微波有機合成化學 52 3-4 光變色染料之介紹 54 3-5 研究動機 67 3-6 實驗藥品及所使用儀器 68 3-7 實驗方法 69 3-8 結果與討論 74 3-9 結論 81 3-10 參考文獻 82 第四章 上發光(Top-emitting)有機發光二極體之元件研究 4-1 有機電激發光二極體(OLED)之發展 102 4-2 上發光(Top-emitting)OLED之介紹及文獻回顧 116 4-3 研究動機 132 4-4 實驗方法 133 4-5 實驗藥品及所使用儀器 144 4-6 結果與討論 145 4-7 結論 161 4-8 參考文獻 162 第五章 總結 167 附錄 個人著作表 169rf 第二章 參考文獻 1. K. Compaan, Y. Havan, Proc. Intern. Symposium Transport Processes Statist. Mech., (1958) 414. 2. T. Yoshikatsu, Japanese Patent (1982) JP57198554. 3. K. Osamu, O. Minemasa, American Patent (1985) US4732844. 4. H. Emiko, Japanese Patent (1988) JP63179792. 5. Q. Li, G. L. Lin, B. X. Peng, Z. X. Li, Dyes and Pigments, 38, 4 (1998) 211. 6. M. A. Haidekker, T. Ling, M. Anglo, H. Y. Stevens, J. A. Frangos, E. A. Theodorakis, Chemistry and Biology, 8 (2001) 123. 7. K. H. Park, C. J. Lee, D. H. Song, J. Kim, Y. J. Huh, K. S. Min, Molecular Crystals and Liquid Crystals, 370 (2001) 165. 8. C. Kasada, Y. Koyama, T. Kawata, S. Yasui, European Patent, EP 1170339 (2002). 9. S. Pommeret, T. Gustavsson, R. Naskrecki, G. Baldacchino, J. C. Mialocq, Journal of Molecular Liquids, 64, 1-2 (1995) 101. 10. F. Lehmann, G. J. Mohr, P. Czerney, U. W. Grummt, Dyes and Pigments, 29, 1 (1995) 85. 11. E. Horiguchi, K. Shirai, M. Matsuoka, M. Matsui, Dyes and Pigments, 53, 1 (2002) 45. 12. R. Gawinecki, K. Trzebiatowska, Dyes and Pigments, 45, 2 (2000) 103. 13. J. Herbich, A. Kapturkiewicz, Chemical Physics Letters, 273, 1-2 (1997) 8. 14. E. Hendrickx, D. V. Steenwinckei, A. Persoons, C. Samyn, D. Beljonne, J. L. Bredas, Journal of Chemical Physics, 113, 13 (2000) 5439. 15. H. Mitekura, T. No, K. Suzuki, K. Satake, M. Kimura, Dyes and Pigments, 54, 2 (2002) 113. 16. J. M. Kauffman, S. J. Imbesi, Organic Preparations and Procedures Int., 33, 6 (2001) 603. 17. M. B. Smith, J. March, March’s Advanced Organic Chemistry. John Wiley and Sons, Inc,(2001) 1225. 18. T. Yoshiteru, H. Sumio, Y. Masatoshi, U. Hideki, Japanese Patent, (1996) JP 08339573. 第三章 參考文獻 1. 嘉茂睦和等,Japanese patent, JP 58-110494. 2. 徐文國、金欽漢,真空雜誌,6, (1989), 54. 3. 余爰民、李全忠、金欽漢,高等學校化學學報,14, 7, (1993), 935. 4. 余爰民、徐文國、楊文華、金欽漢,吉林大學自然科學學報,1, (1993), 113. 5. A. Abu-Samra, J. S. Morris and S. R. Koirtyohann, Anal. Chem., 47, 8, (1975), 1475. 6. R. J. Giguere, T. L. Bray, S. M. Duncan and G. Majetich, Tetrahedron Lett., 27, (1986), 4945. 7. R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Leberge and J. Rousell, Tetrahedron Lett., 27, (1986), 279. 8. P. Lidstrom, J. Tierney, B. Wathey and J. Westman, Tetrahedron, 57, (2001), 9225. 9. J. W. Vanderhoff, Chem. Abstr., 70, (1969), 97422V. 10. 大河原信等,機能性色素化學,CMC,昭和56年。 11. 施純榮、胡德,機能性色素之市場/技術現況調查,工研院化工所,中華民國79年。 12. 劉佳明,材料與社會,第65期,第98頁,中華民國81年5月。 13. E. ter Meer, Annalen, 181, (1876) 1. 14. W. Marckwald, Z. Phys. Chem. (Leizig), Vol. 30, (1899) 140. 15. Y. Hirshberg, Compt. Rend., 231, (1950) 903. 16. H. G. Heller, Chemistry and Industry, 18, (1978) 193. 17. H. Durr, Angew. Chem. Int. Ed. Engl., 28, (1989) 413. 18. Y. Hirshberg, J. Amer. Chem. Soc., 68, (1956) 2304. 19. G. H. Brown Ed., Photochromism, Wiley-Interscience, New York (1971). 20. E. Fischer and Y. Hirshberg, J. Chem. Soc., (1952) 4522. 21. N. P. Ernsting, B. Dick and Th. Arthen-Engeland, Pure and Appl. Chem., 62, 8, (1990) 1483. 22. K. Kano et al., Chem Lett., (1980) 421. 23. A. Yabe et al., Thin Solid Films, 160, (1988) 33. 24. Z. F. Liu, K. Hashimoto and A. Fujishima, Nature, 347, (1990) 658. 25. K. S. Sharma and K. Bhushan, J. Photochem. and Photobio. A: Chemistry, 40, (1987) 371. 26. W. F. Rickey and R. S. Becker, J. Chem. Phys., 49, (1968) 2092. 27. M. D. Cohen, Y. Hirshberg and G. M. J. Schimidt, J. Chem. Soc., (1964) 2051. 28. H. Stobbe, Chem. Ber., 37, (1904) 2232; 38, (1905) 3673. 29. H. G. Heller, IEE Proc., part I, 130, (1983) 209. 30. 郭松永(指導教授:邱顯堂),國立台灣工業技術學院碩士論文,第106頁,中華民國77年。 31. Yasushi Yokoyama et al., Bull. Chem. Soc. Jpn., 63, (1990) 1607. 第四章 參考文獻 1. M. Pope, H. P. Kallmann, and P. Magnante, J. Chem. Phys. 38, (1963) 2024. 2. W. Helfrich and W. G. Schneider, Phys. Rev. Letters. 14, (1965) 229. 3. J. Dresner, RCA Rev. 30, (1969) 322. 4. C. W. Tang, S. A. Van Slyke, C. H. Chen, Appl. Phys. Lett. 51, (1987) 913. 5. C. W. Tang, C. H. Chen, R. Goswami, U.S. Patent 4 769 292, (1988). 6. C. W. Tang, S. A. Van Slyke and C. H. Chen, J. Appl. Phys. 65, (1989) 3610. 7. Y. Sato, S. Lchinosawa and H. Kanai, IEEE J. Select. Top. Quantum Electron 4, 40 (1998).C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, (1987) 913. 8. G. Gu, V. Bulovic, P. E. Burrows, S. R. Forrest, and M. E. Thompson, Appl. Phys. Lett. 68, (1996) 2006. 9. V. Bulovic´, P. Tian, P. E. Burrows, M. R. Gokhale, S. R. Forrest and M. E. Thompson, Appl. Phys. Lett. 70, (1997) 2954. 10. D. R. Baigent, R. N. Marks, N. C. Greenham, R. H. Friend, S. C. Moratti and A. B. Holmes,,Appl. Phys. Lett. 65, (1994) 2636. 11. G. Parthasarathy, P. E. Burrows, V. Khalfin, V. G. Kozlov, and S. R. Forrest, Appl. Phys. Lett. 72, (1998) 2138. 12. L. S. Hung and C. W. Tang, Appl. Phys. Lett. 74, (1999) 3209. 13. G. Parthasarathy, C. Adachi, P. E. Burrows, and S. R. Forrest, Appl. Phys. Lett. 76, (2000) 2128. 14. P. E. Burrows, G. Gu, S. R. Forrest, E. P. Vicenzi and T. X. Zhou, J. Appl. Phys. 87, (2000) 3080. 15. L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil,, Appl. Phys. Lett. 78, (2001) 544. 16. M. H. Lu, M. S. Weaver, T. X. Zhou, M. Rothman, R. C. Kwong, M. Hack, and J. J. Brown, Appl. Phys. Lett. 81, (2002) 3921. 17. T. Dobbertin, M. Kroeger, D. Heithecker, D. Schneider, D. Metzdorf, H. Neuner, E. Becker, H. H. Johannes, and W. Kowalsky, Appl. Phys. Lett. 82, (2003) 284. 18. T. Dobbertin, O. Werner, J. Meyer, A. Kammoun, D. Schneider, T. Riedl, E. Becker, H. H. Johannes, and W. Kowalsky, Appl. Phys. Lett. 83, (2003) 5071. 19. S. Han, X. Feng, Z. H. Lu, D. Johnson and R. Wood, Appl. Phys. Lett. 82, (2003) 2715. 20. H. Riel, S. Karg, T. Beierlein, B. Ruhstaller, and W. Rieß, Appl. Phys. Lett. 82, (2003) 466. 21. H. Riel, S. Karg, T. Beierlein, W. Rieß and K. Neyts, J. Appl. Phys. 94, (2003) 5290. 22. K. Neyts, J. Opt. Soc. Am. A 15, (1998) 962. 23. A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and Julia M. Phillips, J. Appl. Phys. 80, (1996) 6954. 24. A. Dodabalapur, L. J. Rothberg, T. M. Miller and E.W. Kwock, Appl. Phys. Lett. 64, (1994) 2486. 25. X. Zhou, M. Pfeiffer, J. S. Huang, J. Blochwitz-Nimoth, D. S. Qin, A. Werner, J. Drechsel, B. Maennig, and K. Leo, Appl. Phys. Lett. 81, (2002) 922. 26. M. Pfeiffer, S. R. Forrest, X. Zhou, K. Leo, Organic Electronics 4, (2003) 21. 27. Z. Xie, L. S. Hung, F. R. Zhu, Chemical Physics Letters 381, (2003) 691. 28. I. M. Chan, T. Y. Hsu, and F. C. Hong, Appl. Phys. Lett. 81, (2002) 1899. 29. P. Karl, Worldwide patent, WO01/15244 (2001). 30. C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu, and C. C. Wu, Appl. Phys. Lett. 83, (2002) 5127. 31. G. Gu, V. Bulović, P. E. Burrows, S. R. Forrest, and M. E. Thompson, Appl. Phys. Lett., 68, (1996) 2606. 32. G. Parthasarathy, P. E. Burrows, V. Khalfin, V. G. Kozlov, and S. R. Forrest, Appl. Phys. Lett., 72, (1998) 2138. 33. G. Parthasarathy, C. Adachi, P. E. Burrows, and S. R. Forrest, Appl. Phys. Lett., 76, (2000) 2128. 34. A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, J. Appl. Phys. 80, (1996) 6954. 35. A. Dodabalapur, L. J. Rothberg, T. M. Miller, and E. W. Kwock, Appl. Phys. Lett. 64, (1994) 2486; A. Dodabalapur, L. J. Rothberg, and T. M. Miller, Electron. Lett. 30, (1994) 1000. 36. A. Dodabalapur, L. J. Rothberg, and T. M. Miller, Appl. Phys. Lett. 65, (1994) 2308. 37. N. Takada, T. Tsutsui, and S. Saito, Appl. Phys. Lett. 63, (1993) 2032. 38. S. Tokito, K. Noda, and Y. Taga, Appl. Phys. Lett. 68, (1996) 2633. 39. P. E. Burrows, V. Khalfin, G. Gu, and S. R. Forrest, Appl. Phys. Lett. 73, (1998) 435. 40. R. B. Fletcher, D. G. Lidzey, D. D. C. Bradley, M. Bernius, and S. Walker, Appl. Phys. Lett. 77, (2000) 1262. 41. F. Jean, J. Y. Mulot, B. Geffroy, C. Denis, and P. Cambon, Appl. Phys. Lett. 81, (2002) 1717. 42. M. H. Lu, M. S. Weaver, T. X. Zhou, M. Rothman, R. C. Kwong, M. Hack, and J. J. Brown, Appl. Phys. Lett. 81, (2002) 3921.id NH0920063003 sid 893650 cfn 0 / id NH0920063005 auc 黃永寬 tic 碳酸鈣造粒之程序及性質分析研究 adc 周更生 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 62 kwc 碳酸鈣 kwc 造粒 abc 本研究之重點在於製造出可應用於移動式顆粒床中之顆粒,利用碳酸鈣做為核心,瓷土做為外殼的核殼結構經由燒結程序,作為最終的產品。由於氧化鈣易和空氣中的水分與二氧化碳反應而造成體積膨脹。為了克服此膨脹效應所造成之顆粒崩解,研究採用核殼結構來製造顆粒。由於碳酸鈣粉體本身並不具有黏性,形成其造粒上的困難。而為了考量高溫應用,也不適合以高分子作為黏著劑,故利用多次的潤濕、烘乾過程使粉體藉由水分蒸乾時的內聚力而緊緊結合,使核心具有一定強度以進入第二階段之滾動增厚,再將含有瓷土的殼層能夠順利覆上。此法的好處在於不添加其他物質,所以內核可以為高純度碳酸鈣,且利用二次造核可使核的結構中,增加其孔隙度,以避免吸收氣體後的體積膨脹將殼撐破。 tc 摘要 Ⅰ Abstract Ⅱ 一. 前言 1 二. 文獻回顧 5 2.1造粒之機制 6 2.2添加高分子之造粒變因 8 2.3 添加非高分子之造粒變因 12 2.4碳酸鈣在脫硫上的應用 12 2.5移動式顆粒床 13 2.6氧化鈣反應動力學 14 2.7目標顆粒要求 16 三. 實驗方法 21 3-1 試料與材料 21 3-2儀器與設備 21 3-3實驗方法與流程 21 四. 結果與討論 26 4.1原物料分析 26 4.2造粒機制探討 31 4.3瓷土配方測試 32 4.4 滾動造粒之碳酸鈣顆粒 35 4.5 核殼結構顆粒之性質 36 4.6 Core-shell顆粒在吸附行為上之探討 43 4.6.1二氧化碳吸附實驗 44 4.6.2已部分反應的灰殼擴散模型 47 4.6.3 TGA氧化動力學計算 52 五. 結論 58 六. 參考文獻 60rf Akiti Jr, T. T., K. P. Constant, L. K. Doraiswamy and T. D. Wheelock, “Development of an advanced calcium-based sorbent for desulfurizing hot coal gas”, Advances in Environmental Research, v5, p31-38, 2001 Akiti Jr, T. T., K. P. Constant, L. K. Doraiswamy and T. D. Wheelock, “A regenerable calcium-based core-in-shell sorbent for desulfurizing hot coal gas”, Ind. Eng. Chem. Res., v41, p587-597, 2002 Agnihotri, R., S.S. Chauk, S.K. Mahuli, L. S. Fan, “Mechanism of CaO reaction with H2S: Diffusion through CaSproduct layer.” Chem. Eng. Sci., p3443, v54, 1999 Baykal, G. and A. G. Doven , ” Utilization of fly ash by pelletization process; theory, application areas and research results”, Resources, Conservation and Recycling, v30, p59—77,2000 Borgwardt, R. H. ,”Surface Area of Calcium Oxide and Kinetics of Calcium Sulfide Formation.” Environ. Prog.,p129, v3, 1984 Carter, R. E., ”Kinetics Model of Solid-State Reactions” , Journal of Chemical Physics, vol. 34, p2010-2015, 1961 Deng, S. G. and Y. S. Lin, “Granulation of sol-gel-derived nanostructured alumina” AICHE. Journal, v43, n2, p505-514, 1997. Hasler, D. J., L. K. Doraiswamy and T. D. Wheelock, “A plausible model for the sulfidation of calcium-based core-in-shell sorbent” , Industrial & Engineering Chemistry Research, v42, p2644-2653, 2003 Henriquez, V., and A. Macias-Machin, “Hot gas filtration using a moving bed heat exchanger-filter (MHEF)” Chemical Engineering and Processing, v36, p353-361, 1997 Hsiau, S. S., J. Smid, C. Y. Wang, J. T. Kuo, and C. S. Chou, “Velocity profiles of granules in Moving bed filters” Chemical Engineering Science, v54, p293-301, 1999 Hsiau, S. S., J. Smid, H. H. Tsai, J. T. Kuo, and C. S. Chou, “Flow patterns and velocity fields of granules in Dorfan Impingo filters for gas cleanup” Chemical Engineering Science, v55, p4481-4494, 2000 Iveson, S. M., J. D. Litster , K. Hapgood, and B. J. Ennis “Nucleation, growth and breakage phenomena in agitated wet granulation process: a review”, Powder Technology, v117, p3-39, 2001 Jagtap, S. B. and T. D. Wheelock, “Coal desulfurization by ferric chloride” Fuel Process Technology, v43, p227-242, 1995 Keningley, S. T., P. C. Knight, and A. D. Marson, “An investigation into the effects of binder viscosity on agglomeration”, Powder Technology, v91, p95-103, 1997 Knight, P. C., T. Instone, J. M. K. Pearson, and M. J. Hounslow, ”An investigation into the kinetics of liquid distribution and growth in high shear mixer agglomeration” Powder Technology, v97, p246-257,1998 Knight, P. C., A. Johansen, H. G. Kristensen, T. Schæfer, and J. P. K. Seville,”An investigation of the effects on agglomeration of a mechanical mixer” Powder Technology, v110, p204-209,2000 Levenspiel O., “Chemical Reaction Engineering”, 3rd ed., 1999 Nautilus Institute, “IGCC in China”, http://www.nautilus.org/papers/ energy/NIIGCCESENAY3.html, 1999 Scott, A. C., M. J. Hounslow, and T. Instone , “Direct evidence of heterogeneity during high-shear granulation” Powder Technology, v113, p205-213, 2000 Schaefer, T., ”Growth mechanisms in melt agglomeration in high shear mixers”, Powder Technology, v117, p68-82, 2001 Schaefer, T., and A. Seo, “Melt agglomeration with polyethylene glycol beads at a low impeller speed in high shear mixer”, European Journal of Pharmaceutics and Biopharmaceutics, v52, p315-325, 2001 Schaefer, T., and A. Johansen, “Effects of interactions between powder particle size and binder viscosity on agglomerate growth mechanisms in a high shear mixer”, Pharmaceutical Science, v12, p297-309, 2001(a) Schaefer, T., and A. Johansen, “Effects of physical properties of powder particles on binder liquid requirement and agglomerate growth mechanisms in a high shear mixer”, Pharmaceutical Science, v14, p135-147, 2001(b) Schaefer, T., A. Seo, and P. Holm, “Effects of droplet size and type of binder on agglomerate growth mechanisms by melt agglomeration in fluidized bed”, Pharmaceutical Science, v16, p95-105, 2002 Slimane, R. B. and J. Abbasian, “Utilization of metal oxide-containing waste materials for hot coal gas desulfurization”, Fuel Processing Technology, v70, p97—113,2001 Society for the Protection of Ancient Buildings (SPAB)" The Importance of Complex aggregates in Historic Renders and Repair mixes" SPAB news ,Vol 21, 2000 van der Ham, A. G. J., A. B. M. Heesink, W. Prins, W. P. M. van Swaaij, “Proposal for the regenerative high-temperature process for coal gas cleanup with calcined limestone”. Ind. Eng. Chem. Res. ,v35, p1487-1495, 1996. Voinovich, D., M. Moneghini, B. Perissutti, and E. Franceschinis, “Melt pelletization in high shear mixer using hydrophobic melt binder: influence of some apparatus and process variables”, European Journal of Pharmaceutics and Biopharmaceutics, v52, p305—313, 2001 彭鏡禹,《顆粒床高溫氣體淨化技術研發成果與應用》,2003廢棄物能源利用暨高溫氣體淨化技術研討會,2003id NH0920063005 sid 873637 cfn 0 / id NH0920065001 auc 莊士億 tic 八面體金屬錯合物在有機電致發光材料上的應用:鋁、鎵、銦及銥混配位基金屬錯合物的合成及光電性質之研究 adc 鄭建鴻 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 316 kwc 有機電致發光 kwc 磷光 abc 摘要 tc 目錄 摘要 -----------------------------------------------------------------------------I 表目錄 ----------------------------------------------------------------------------II 圖目錄 ---------------------------------------------------------------------------III 第一章 緒論 ------------------------------------------------------------------1 第二章 有機鋁、鎵、銦金屬螯合物的合成與在電激發光元件的應用 前言---------------------------------------------------------------------18 結果與討論------------------------------------------------------------22 第一節 鋁、鎵、銦螯合物的合成-----------------------------------22 第二節 鋁、鎵、銦金屬螯合物的物理性質----------------------24 第三節 元件製作與性質探討--------------------------------------41 結論---------------------------------------------------------------------59 第三章 有機銥金屬磷光材料的合成與在電激發光元件的應用 前言----------------------------------------------------------------------61 結果與討論-------------------------------------------------------------65 第一節 銥金屬磷光材料及其衍生物的合成--------------------65 第二節 元件製作與性質探討--------------------------------------72 結論----------------------------------------------------------------------90 實驗部分--------------------------------------------------------------------------91 參考文獻--------------------------------------------------------------------------98 光譜資料------------------------------------------------------------------------103rf 參考文獻: 1. Burrows, P. E.; Gu, G.; Bulovic V.; Shen, Z.; Forrest, S. R.; Thompson, M. E. IEEE Trans. Electron Device 1997, 44, 11888. 2. Pope, P.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042. 3. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913. 4. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay K. D.; Friend R.H.; Burn P. L.; Holmes A. B. Nature 1990, 347, 539. 5. 審譯:林敬二, 林宗義,儀器分析第四版, 1994, 上冊, 174 — 193. 6. Ishida, T.; Kobayashi, H.; Nakato, Y. J. Appl. Phys. 1993, 73, 4344. 7. Van Slyke, S. A.; Tang, C. W.; Roberts, L. C. US 4, 720, 1988, 432. 8. Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Japan J. Appl. Phys. 1988, 27, L713. 9. Era, M.; Adachi, C.; Tsutsui, T.; Saito, S. Chem. Phys. Lett. 1991, 178, 488. 10. VanSlyke, S. A.; Tang, C. W. US 4,539,507, 1985. 11. (a) Hamada, Y.; Sano, T.; Fujita, M.; Fujii, T.; Nishio, Y.; Chem. Lett. 1993, 905. (b) Hamada, Y.; Shibata, K.; Shibata, K.; Kuroki, K. Japan J. Appl. Phys. 1995, Part 2, 34, L824-L826. 12. Kido, J. J. Appl. Phys. 1993, Part 2, 32 (7A), L917. 13. (a) Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1989, 55, 1489. (b) Ohta, M.; Sakon, Y.; Takahashi, T.; Adachi, C.; Nagai, K. US 5,420,288, 1995. (c) Saito, S.; Tsutsui, T.; Adachi, C.; Hamada, Y. US 5,382,744, 1995. (d) Hironaka, Y.; Tokailia, H.; Hosokawa, C.; Kusumoto, T, US. 5,336,546, 1994. 14. (a) Klupfel, K. —W.; Sus, O.; Behmenburg, H.; Neugebauer, W. US 3,180,730, 1965. (b) Chen, C. H.; Hung, Y. US 4,992,349, 1991. 15. (a) Scozzafava, M.; Chen, C. H.; Reynolds, G. A.; Perlstein, J. H. US 4,514,481, 1985 (b) Kung, T. M.; Chen, C. H. US 5,236,797, 1993. 16. Shi, J.; Tang, C. W.; Chen, C. H. US 5,646,948, 1997. 17. Hosokawa, C.; Tokailin, H.; Higashi, H.; Kusumoto, T. Appl. Phys. Lett. 1992, 60, 1220. 18. An single crystal X-ray crystallography of Alq was performed by Analitical Technology Division, Eastman Kodak Company. 19. Bryan, P. S.; Lovecchio, F. V.; Van Slyke, S. A. US 5, 141, 671, 1992. 20. Sano, T.; Fujita, M.; Fujita, T.; Nishio, Y.; Hamada, Y.; Shibata, K.; Kurpki, K. US 5, 432, 014, 1995. 21. Sato, Y.; Otsuka, S. EP 510, 541 1992. 22. Hamada, Y.; Sano, T.; Fujita, M.; Fujii, T.; Nishio, Y.; Shibata, K. Japan J. Appl. Phys. 1993, part 2, 32, L514—L515. 23. Brantly, T. B.; Contois, L. E.; Fox, C. J. US 3, 567,450, 1971. 24. Brantly, T. B.; Contois, L. E.; Fox, C. J. US 3, 658, 520, 1972. 25. Borsenberger, P. M.; Mey, W.; Chowdry, A. Appl. Phys. 1978, 49, 273. 26. Iwaski, K.; Adachi, C.; Tsutsui, T.; Saitp, S. Abstract of the 51st Autumn Meeting of Japan Society of Applied Physics, Iwate, 1933, Sept., 28a-PB-3. 27. Shirota, Y.; Kuwabara, Y.; Inada, H. Appl. Phys. Lett. 1994, 65, 807. 28. Imai, K.; Shinkai, M.; Wakimoto, T.; Shirota, Y. US 5,256,945, 1993. 29. Wu, I. Y.; Lin, J. T.; Tao, Y. T.; Balasubramaniam, E.; Su, Y. Z.; Ko, C. W. Chem. Mater. 2001, 13, 2626. 30. (a) Justin Thomas, K. R.; Lin, J. T.; Tao, Y. T.; Ko, C. W. Adv. Mater. 2000, 12, 1949. (b) Justin Thomas, K. R.; Lin, J. T.; Tao, Y. T.; Ko, C. W. J. Am. Chem. Soc. 2001, 123, 9404. 31. Tao, Y. T.; Ko, C. W. Synth. Met. 2002, 126, 37. 32. J. L. Fox and C. H. Chen, US 4,736,032, 1998; T. Inoe and K. Nakatani, JP 6,009,952, 1994; J. Ito, JP 7,166,160, 1995. 33. Chen, C. H.; Tang, C. W.; Shi, J. Klubek, K. P. Macromol. Symp. 1997, 125, 49. 34. J. Shi, C. W. Tang, C. H. Chen, US 5,935,721, 1999. 35. B. X. Mi, Z. Q. Gao, C. S. Lee, S. T. Lee, H. L. Kwong, N. B. Wong, Appl. Phys. Lett. 1999, 75, 4055. 36. S. Yin, Y. Hua, S. Chen, X. Yang, Y. Hou, X. Xu, Syn. Met. 2000, 111, 109. 37. L. M. Leung, W. Y. Lo, S. K. So, K. M. Lee, W. K. Choi, J. Am. Chem. Soc. 2000, 122, 5640. 38. H. Jang, L. —M. Do, Y. Kim, J. G. Kim, T. Zyung, Y. Do, Syn. Met. 2001, 121, 1669. 39. Y. Shao, Y. Qiu, X. Hu, X. Hong, Chem. Lett. 2000, 1068. 40. Dongge Ma, Guang Wang, Yufeng Hu, Yanguang Zhang, Lixiang Wang, Xiabin Jing, Fosong Wang, C. S. Lee and S. T. Lee, Appl. Phys. Lett. 2003, 82, 1296. 41. Yuji Hamada, Hiroshi Kanno, Takeshi Sano, Hiroyuki Fujii, Yoshitaka Nishio, Hisakazu Takahashi, Tatsuro Usuki, and Kenichi Shibata, Appl. Phys. Lett. 1998, 72, 1939. 42. Juan Qiao, Yong Qiu, Liduo Wang, Lian Duan, Yang Li, and Deqiang Zhang, Appl. Phys. Lett. 2002, 81, 4913. 43. Janietz, S.; Bradley, D. D. C.; Grell, M.; Giebeler, C.; Inbasekaran, M.; Woo, E. P. Appl. Phys. Lett. 1998, 73, 2453. 44. Burrows, P. E.; Shen, Z.; Bulovic, V.; McCarty, D.M.; Forrest, S. R. J. Appl. Phys. 1996, 79, 7991. 45. Junji Kido and Yashhiro lizumi, J. Appl. Phys. 1998, 73, 2721. 46. M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature(London), 1998, 395,151. 47. M. A. Baldo, S. Lamansk, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 1994, 75, 4. 48. C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, R. C. Kwong, J. Am. Chem. Soc. 2001, 78, 1622. 49. S. Lamansky, R. C. Kwong, M. Nugent, P. I. Djurovich, M. E. Thompson, Org. Electronics, 2001, 2, 53. 50. P. I. Djurovich, A. Tamayo, M. E. Thompson, Abs. 3nd Internat. Conf. EL Mol. Mater. Relat. Phenom. (ICEL-3), p.45, Sept. 5-8, 2001, Los Angelos, CA, USA. 51. Hong Zhi Xie, Man Wah Liu, Oi Yan Wang, Xiao Hong Zhang, Chun Sing Lee, Liang Sun Hung, Shuit Tong Lee, Pang Fei Teng, Hoi Lun Kwong, Hui Zheng, Chi Min Che, Adv. Mater. 2001, 13, 1245. 52. Vladimir V. Grushin, Norman Herron, Daniel D. LeCloux, William J. Marshall, Viacheslav A. Petrov, Ying Wang, Chem. Commun, 2001, 1494. 53. Sergey Lamansky, Peter Djurovich, Drew Murphy, Hae-Eun Lee, Feras Abdel-Razzaq, Chihaya Adachi, Paul E. Burrows, Stephen R. Forrest, Mark E. Thompson, J. Am. Chem. Soc. 2001, 123, 4304. 54. 國立清華大學化學系施槐庭博士論文, 2001. 55. 陳金鑫, 鄭榮安, 化學, 2002, 60, 135. 56. Jerchel et al.; Justus Liebigs Ann. Chem.; 1952; 162, 167.id NH0920065001 sid 887423 cfn 0 / id NH0920065002 auc 唐國鈞 tic Sultine系列分子螢光生命期之測定與有機發光銥錯合物飛秒瞬態吸收研究 adc 陳益佳 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 177 kwc 螢光 kwc 時間相關光子計數 kwc 銥 kwc 有機發光材料 kwc 瞬態吸收 kwc 飛秒 abc 吾人裝設了飛秒雷射系統,可產生中心波長800 nm、脈衝時寬約100 fs、1 kHz重複率之飛秒雷射脈衝。並藉由倍、混頻技術以及光學參數放大器的輔助搭配之下,能產生波長涵蓋紫外光至近紅外光區域之飛秒雷射脈衝。我們以波長266 nm之飛秒雷射脈衝激發benzosultine與naphthosultine乙腈溶液,搭配時間相關光子計數技術,偵測其螢光衰退訊號。實驗所得到之螢光衰退曲線均呈現雙自然指數衰退。實驗數據經去卷積(IRF = 120 ps)處理進行擬合。我們指派benzosultine分子S2與S1之生命期分別為90±10 ps與7.5±0.2 ns;naphthosultine分子S2/S3與S1之生命期分別為350±30 ps與9.0±0.6 ns。Benzosultine激態的能量弛緩機制主要為系統內轉換機制,naphthosultine激態的能量弛緩機制則為系統內轉換與系統間穿越機制。另外,我們建立了飛秒時域瞬態吸收技術,並分別研究Ir(ppy)3、(DBQ)2Ir(acac)與(MDQ)2Ir(acac)等三種有機發光銥金屬錯合物溶液。激發脈衝波長為400 nm與266 nm,分別激發錯合物分子至1MLCT與1Ligand激態;搭配之偵測脈衝波長為520 nm、550 nm與580 nm,並成功偵測到3MLCT激發態的生成速率。此三個有機發光銥錯合物分子,其1MLCT → 3MLCT系統間穿越過程均呈現十分快速,系統間穿越機制之時間常數分別為70 fs、45 fs與65 fs。 id NH0920065002 sid 863465 cfn 0 / id NH0920065003 auc 戴麟靄 tic 受質調控酵素活性之研究 adc 黃國柱 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 英文 pg 151 kwc 酵素 kwc 動力學 kwc 活性調控 kwc 黃漂呤氧化酵素 kwc 協同作用 kwc 交互作用 abc 正常的功能扮演著非常重要的角色。已知自然界用來調控酵素活性的方法有對酵素分子進行磷酸化或烷基化,利用調控分子(如抑制劑,活化記及反應產物或蛋白質與調控位置的作用,使用水解蛋白活化原蛋白等等。在本研究中發現黃漂呤氧化酵素(xanthine oxidase)與受質的結合能力(binding affinity)及酵素本身的催化能力(catalysis)都會受到受質本身的調控。我們將這樣的現象稱為“受質調控酵素活性”(substrate-regulated enzyme activity)。這樣的調控方式有一些特點,例如:活性位置本身扮演著調控位置的角色,受質本身可以扮演抑制劑或活化劑的角色。我們相信受質調控酵素活性用在自然界中是一種多單體蛋白(oligomeric protein)活性的方法之一。在本研究中我們也提出一個動力學模型可以有效用來解釋正向及反向的協同交互作用(cooperative interaction),也可將文獻上已有的相關模型包含在內。 tc Outline I. Introduction ..….….….…………………………...………..... 1 1-1 Allosteric cooperativity ??????????…?????? 1 A. Michaelis-Menten equation …………………………………… 2 B. Hill equation …………………………………………………… 6 C. Mechanism of allosteric interactions and cooperativity ……… 8 D. Negative cooperativity and “half-of-the-sites” reactivity …… 16 1-2 Introduction of XOD ……………………………………………… 18 A. XOD-structure, catalysis and metabolism ……………………... 18 B. XOD related diseases …………………………………………. 28 C. Substrate-inhibition in XOD and substrate-activation in XDH .. 33 D. Inhibitors of xanthine oxidase …………………………………. 35 II. Materials and Methods ……………………………………… 40 2-1 Compounds and Instruments ..…………………………………….. 40 2-2 XOD purification and active concentration determination ……..… 42 A. Purification of XOD ………………………………………… 42 B. Active concentration determination of XOD ………………… 44 2-3 XOD activity measurements ……………………………………… 46 A. The UV-visible spectra of substrates ………………………… 47 B. The UV-visible spectra of substrates in the presence of XOD … 48 2-4 Determination of the Km value of 6-formylpterin ………………… 52 A. Measurement of k1 value …………………………………….. 52 B. Measurement of (k2 + k3) value………………………………… 53 C. Measurement of k3 value …………………………………….. 54 2-5 Extended Michaelis-Menten cooperative interaction model --- determination of Km, Km’, k3 and k3’ of substrates …………….. 55 III. Results and Discussions .……………………………...…… 57 3-1 Cooperative interactions of 6-formylpterin in XOD action ……... 57 A. Determination of Ki value of 6FP ……………………………… 57 B. Formation of the 6FP-XOD complex and the loss of XOD activity ……………………………………………………………………... 63 C. Reaction of XOD with 1, 2, 3 and 4 equivalent 6FP …………... 66 D. Effects of xanthine and xanthopterin on the dissociation rate of the XOD-6FP complex …………………………………………….. 72 3-2 Homo-substrates cooperative interactions ………………….…….. 74 3-3 Hetero-substrates cooperative interactions between 6FP and substrates ….……………………………………………………... 88 A. The dissociation of 6FP-XOD complex is influenced by the presence of other substrates …………………………………… 88 B. 6FP effects on the catalysis of substrates .………..…………… 98 3-4 Hetero-substrates cooperative interactions between alloxanthine and substrates ……………………………………………………….. 109 3-5 Expansion of the extended Michaelis-Menten cooperative interaction model …………………………………………………………… 114 A. Application of the cooperative interaction model to multiple sites enzymes ……………………………………………….…… 114 B. The extended Michaelis-Menten cooperative model for binding proteins ……………………………………………...……….. 117 3-6 Dicussion of the extended Michaelis-Menten cooprative interaction model ……………………………………….……………………. 123 A. Limiting of the Extended Michaelis-Meten cooperative interaction model ……...…………………………………………………. 123 B. The relationship between intrinsic kinetic constant and total kinetic constant ……………………………………………………. 124 C. Positive-, negative-, and non- interaction of multiple sites enzymes ………………………………………………………………… 126 D. Comparison and diagnosis of positive-, non-interaction and negative-binding ……………………………………………... 134 E. Comparison and diagnosis of positive-, non-interaction and negative-catalysis …………………………………………….. 138 3-7 Biological significance of substrate-regulated enzyme activity …. 142 IV. Conclusion …………………………………………….…… 145 V. Reference …………………………………………………… 148 VI. Appendix …………………………………………………… 151 A-1 Publications List A-2 Reprints of publications (i) “C60 and Water Soluble fullerene Derivatives as Antioxidants against Radical Initiated Lipid Peroxidation” (ii) “Control of Xanthine Oxidase Activity by Ligh” (iii) “Photo Reactivation of Alloxanthine Inhibited Xanthine Oxidase” (iv) “Effects of malonate C60 derivatives on activated microglia” A-3 Manuscripts (i) “Cooperativity Catalysis in the Homodimer Subunits of Xanthine Oxidase”rf V Reference 1. Monod, J., Wyman, J., and Changeux, J. P. (1965) J. Mol. Biol. 12, 88 2. Koshland, D. E., Jr., Nemethy, G., and Filmer, D. (1966) Biochemistry 5, 365 3. Bohr, C., Hasselbach, K. A., and Krogh, A. (1904) Skand. Arch. Physiol. 16, 401 4. Adair, A. (1925) J. Biol. Chem. 63, 529 5. Conway, A., and Koshland, D. E., Jr. (1968) Biochemistry 7, 4011 6. Levitzki, A., and Koshland, D. E., Jr. (1969) Proc. Natl. Acad. Sci. USA 62, 1121 7. Hill, R. (1925) Proc. R. Soc. B100, 419 8. Perutz, M. F. (1979) Annu. Rev. Biochem. 48, 327 9. Eigen, M. (1967) Nobel Symp. 5, 333 10. Kirchner, K., Gallego, E., Schuster, I., and Goodall, D. (1971) J. Mol. Biol. 58, 29 11. Levitzki, A., Stallcup, W. P., and Koshland, D. E. Jr. (1971) Biochemistry 10, 3371 12. MacQuarrie, R. A., and Bernhard, S. A. (1971) Biochemistry 10, 2456 13. Irwin, M. J., Nyborg, J., Reid, B. R., and Blow, D. M. (1976) J. Mol. Biol. 105, 577 14. Biesecker, G., Harris, J. I., Thiery, J. C., Walker, J. E., and Wonacott, A.J. (1977) Nature, Lond. 266, 328 15. Fresht, A. R., Mulvey, R. S., and Koch, G. L. E. (1975) Biochemistry 14, 13 16. Bosshard, H. R., Koch, G. L. E., and Hartley, B. S. (1975) Eur. J. Biochem. 53, 493 17. Schleeinger, J., and Levititzki, A. (1974) J. Mol. Biol. 82, 547 18. Schardinger, F. Z. Z. (1902) Unters. Tahr. Genussm. 5, 1131 19. Morgan, E. J., Stewart, C. P., and Hopkins, F. G. (1922) Proc. R. Soc. London Ser. B. 94, 109 20. Hille, R., and Nishino, T. (1995) FASEB. J. 9, 995 21. Hille, R. (1996) Chem. Rev. 96, 2757 22. Olson, J. S., Balluo, D. P., Palmer, G., and Massey, V. (1974) J. Biol. Chem. 249, 4363 23. Ichida, K. Amaya, Y., Noda, K. Minoshima, S., Hosoya, T., Sakai, O., Shimizu, N., and Nishino, T. (1993) Gene 133, 279 24. Amaya, Y., Yamazaki, K., Sato, M., noda, K., Nishino, T., and Nishino, T. (1990) J. Biol. Chem. 65, 14170 25. Terao, M., Cazzaniga, G., Ghezzi, P., Bianchi, M., Falciani, F., Perani, P., and Garattini, E. (1992) Biochem. J. 283, 863 26. Berglund, L., Rasmussen, J. T., Anderson, M.D., Rasumussen. M. S., and Petersen, T. E. (1996) J. Dairy Sci. 79, 198 27. Sato, A., nishino, T., Nada, K., Amaya, Y., and Nishino, T. J. Biol. Chem. 270, 2818 28. Lee, C. S., Curtis, D., McCarron, M. Love, C., Gray, M., Bender, W., and Chnovnick, A. (1987) Genetics 116, 55 29. Keith, R. P., Riley, M. J., Kreitman, M., Lewontin, R. C., Curtis, D., and Chambers, G. (1987) Genetics 116, 67 30. Rocher-Chambonnet, C., Berreur, P., Houde, M, Tverson, M. C., Lepesant, J. A., and Bregegere, F. (1987) Gene 59, 201 31. Hound, M., Tiveron, M. C., and Bregegere, F. (1989) Gene 85, 391 32. Della Corte, E., and Stripe, F. (1968) Biochem. J. 108, 349 33. Della Corte, E., and Stripe, F. (1972) Biochem. J. 126, 739 34. Stripe, F., and Della Corte, E. (1969) J. Biol. Chem. 244,3855 35. Nakamura, M., and Yamazaki, I. (1982) J. Biochem. Tokyo 92, 1279 36. Woud, W. R., and Rajagopalan, K. V. (1976) Arch. Biochem. Biophys. 172, 354 37. Woud, W. R., and Rajagopalan, K. V. (1976) Arch. Biochem. Biophys. 172, 365 38. Saito, T., Nishino, T., and Massey, V. (1989) J. Biol. Chem. 264, 15930 39. Hunt, J., and Massey, V. (1992) J. Biol. Chem. 267, 21479 40. Nishino, T., and Nishino, T. (1997) J. Biol. Chem. 272, 29859 41. McCord, J. M. (1985) N. Engl. J. Med. 312, 159 42. Nishino, T. (1994) J. Biochem. 116, 1 43. Enroth, C., Eger, B. T., Okamoto, K., Nishino, T., Nishino, T., and Pai, E. F. (2000) Proc. Natl. Acad. Sci. USA 97, 10723 44. Leimkühler, S. Kern, M., Solomon, P. S., McEwan, A. G. Schwarz, G. Mendel, R. R., and Klipp, W. (1998) Mol. Microbiol. 27, 853 45. Truglio, J. J., Theis, K., Leimkühler, S., Rappa, R. Rajagopalan, K. V., and Kisker, C. (2002) Structure 10, 115 46. Massey, V., and Harries, C. M. (1997) Biochem. Soc. Trans. 25, 750 47. Komai, H., Massey, V., and Palmer, G. (1969) J. Biol. Chem. 244, 1692 48. Stiefel, E. I. (1993) Annu. Chem. Soc. Symp. 535,1 49. Romao, M. J., Archer, M., Moura, I., Moura, J. J. G., LeGall, J., Engh, R., Schneider, M., Hof, P., and Huber, R. (1995) Science, 270, 1170 50. Lynch, M. J., Grum, C. M., Gallagher, K. P., Bolling, S. F., Deeb, M., and Morganroth, M. L. (1988) J. Surg. Res. 44, 538 51. Manning, A. S., Coltart, D. J., and Hearse, D. J. (1984) Circ. Res. 55, 545 52. Nielsen, V. G., Tan, S., Kirk, K. A., Baird, M. S., McCammon, A. T., Samuelson, P. N., and Parks, D. A. (1997) Anesthesiology 87, 908 53. Biemond, P., Swaak, A. J., Beindorff, C. M., and Koster, J. F. (1986) Biochem. J. 239, 169 54. Elion, G. B. (1989) Science 244, 41 55. Hofstee, B. H. J. (1955) J. Biol. Chem. 216, 235 56. Massey, V., Brumby, P. E., Komai, H., and Palmer, G. (1969) J. Biol. Chem. 244, 1682 57. Morpeth, F. F. (1983) Biochim. Biophys. Acta 744, 328 58. Rubbo, H., Radi, R., and Prodano, E. (1991) Biochim. Biophys. Acta 1074, 386 59. Cleere, W. F., and Coughlan, M. P. (1975) Comp. Biochem. Physiol. 50B, 311 60. Feigelson, P., Davidson, J. D., and Robins, R. K. (1957) J. Biol. Chem. 266, 993 61. Elion, G. B. (1966) Annu. Rheum. Dis. 25, 608 62. Elion, G. B., Callahan, S., Nathan, H., Bieber, S., Rundles, R. W., and Hitchings, G. H. (1963) Biochem. Pharmacol. 12, 85 63. Rundles, R. W., Wyngaarden, J. B., Hitchings, G. H., Elion, G. B., and Silberman, H. R. (1963) Trans. Assoc. Am. Physicians 76, 126 64. Massey, V., Komai, H., Palmer, G., and Elion, G. B. (1970) J. Biol. Chem. 245, 2837 65. Massey, V., Komai, H., Palmer, G., and Elion, G. B. (1970) Vitam. Horm. (N. Y.) 28, 505 66. Edmondson, D., Massey, V., Palmer, G., Beacham, L. M. III, and Elion, G. B. (1972) J. Biol. Chem. 247, 1597 67. Kalckar, H., and Klenow, H. (1948) J. Biol. Chem. 172, 349 68. Kalckar, H., and Klenow, H. (1948) J. Biol. Chem. 172, 351 69. Kalckar, H., Kieldgaard, N. O., and Klenow, H. (1948) J. Biol. Chem. 174, 771 70. Lowry, O. H., Bessey, O. A., and Crawford, E. J. (1949) J. Biol. Chem. 180, 399 71. Oster, K.A. (1976) Annu. Intern. Med. 86, 367 72. Kaplan, H. G. (1980) Biochem. Pharmacol. 29, 2135 73. Hille, R., and Massey, V. (1981) Pharmacol. Ther. 14, 249 74. Massey, V., and Edmondson, D. (1970) J. Biol. Chem. 245, 6595 75. Hart, L. I., McGartoll, M. A., Chapman, H. R., and Bray, R. C. (1970) Biochem. J. 116, 851 76. Nishino, T., Nishino, T., and Tsushima, K. (1981) FEBS Lett. 131, 369 77. Avis, P. G., Bergal, P., and Bray, B. C. (1955) J. Chem. Soc. 1100 78. Morell, D. B. (1952) Biochem. J. 51, 657 79. Woodle, M., Zhang, J. W., and Mauzerall, D. (1987) Biophys. J. 52, 577 80. Sazanovich, I. V., Galievsky, V. A., van Hoek, A., Schaafsma, T. J., Malinovskii, V. L., Holten, D., Chirvony, V. S. (2001) J. Phys. Chem. B. 105, 7818 81. Watanabe, K., Arai, T., Mori, H., Nakao, S., Suzuki, T., Tajima, K., Makino, K., and Mori, K. (1997) Biochem. Biophys. Res. Commun. 233, 447 82. Hofstee, B. H. J. (1955) J. Biol. Chem. 216, 235 83. Bray, R. C. (1975) In The Enzymes (Boyer, E. P., Ed.), Vol. XII, part B, Academic Press, New York, pp. 300—419 84. Rubbo, H., Radi, R., and Prodianov, E. (1991) Biochim. Biophys. Acta 1074, 386 85. Bohr, C., (1903) Zentr. Physiol. 17, 682 86. Revington, M., Dunn, S. D., and Shaw, G. S. (2002) Protein Sci. 11, 1227 87. Pingoud, V., Kubareva, E., Stengel, G., Friedhoff, P., Bujnicki, J. M., Urbanke, C., Sudina, A., and Pingoud, A. (2002) J. Biol. Chem. 277, 14306 88. Chen, Y. S., Panda, K., and Stuehr, D. J. (2002) Biochemistry 41, 4618 89. Nakajima, Y., Miyahara, I., Hirotsu, K., Nishina, Y., Shiga, K., Setoyama, C., Tamaoki, H., and Miura, R. J. (2002) Biochemistry 131, 365 90. Reynafarje, B. D., and Pedersen, P. L. (1996) J. Biol. Chem. 271, 32546 91. Possmayer, F. E., Hartog, A. F., Berden, J. A., and Graber, P. (2000) Biochim. Biophys. Acta 1459, 202 92. Scrutton, N. S., Deonarain, M. P., Berry, A., and Perham, R. N. (1992) Science 258, 1140 93. Berger, S. A., and Evans, P. R. (1990) Nature 343, 575 94. Stebbins, J. W., and Kantrowitz, E. R. (1992) Biochemistry 31, 2328 95. Kuo, L. C., Zambidis, I., and Caron, C. (1989) Science 245, 522 96. Wente, S. R., and Schachman, H. K. (1991) J. Biol. Chem. 266, 20833 97. Vliet, F. V., Xi, X. G., Staercke, C. D., Wannemaeker, B. E., Jacobs, A., Cherfils, J., Ladjimi, M. M., Herve, G., and Cunin, R. (1991) Proc. Natl. Acad. Sci. USA 88, 9180 98. Metodiev, M. V., Matheos, D., Rose, M. D., and Stone, D. E. (2002) Science 296, 1483 99. Stanley, P., Packman, L. C., Koronakis, and V., Hughes, C. (1994) Science 266, 1992 100. Valbuzzi, A., and Yanofsky, C. (2001) Science 293, 2057 101. Madison, E. L., Kobe, A., Gething, M. J., Sambrook, J. F., and Goldsmith, E. J. (1993) Science 262, 419id NH0920065003 sid 887416 cfn 0 / id NH0920065004 auc 張嘉隆 tic 釕金屬應用於碳-碳參鍵斷裂及α,β-環氧酮類化合物的異構化反應 adc 劉瑞雄博士 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg - kwc 碳-碳參鍵斷裂 kwc α kwc β-環氧酮類化合物的異構化反應 abc 本論文分成兩個部分:第一部份主要利用釕金屬錯合物催化碳-碳參鍵的斷裂反應;第二部分則是研究相同釕金屬錯合物可催化α,β-環氧酮類化合物重排至1,2-二酮類化合物。 tc 摘 要 I 謝 誌 II 目 錄 III 圖 目 錄 VII 附表目錄 X 附錄目錄 XI 縮寫對照表 XVIIrf 1.(a) Yeh, K.-L.; Lo, C.-Y.; Huang, H.-L.; Liu, R.-S. J. Am. Chem.Soc 2002, 124, 6510.(b) 國立清華大學化學系蘇浩立碩士論文2002年。 2. (a) Seddon, E. A.; Seddon K. R. The Chemistry of Ruthenium; Elsevier: Amsterdam, 1984. (b) Griffith, W. P. The Chemistry of the Rarer Platinum Metals; Os, Ru, Ir and Rh; Wiley-Interscience: New York, 1967. (c) Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 4th ed.; John Wiley & Sons: New York, 1980. 3. (a) Noyori, R. Asymmetric Catalysis in Organic Synthesis; John Wiley & Sons: New York, 1994; Chapter 2. (b) Takaya, H.; Ohta, T.; Noyori, R. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH: Weinheim, 1993; Chapter 1. (c) Brunner, H.; Zettlmeier, W. Handbook of Enantioselective Catalysis; VCH: Weinheim, 1993. (d) Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345. (e) Noyori, R. Chem. Soc. Rev. 1989, 18, 187. (f) Noyori, R.; Kitamura, M. In Modern Synthetic Methods; Scheffold, R., Ed.; Springer-Verlag: Berlin, 1989; Vol. 5, pp 115-198. (g) Kitamura, M. Kikan Kagaku Sosetsu 1993, 19, 77. 4. (a) Murakami, M.; Ito, Y. In Activation of Unreactive Bonds and Organic Synthesis; Murai, S., Ed.; Springer: Berlin, 1999; p 97. (b) Rybchinski, B.; Milstein, D. Angew. Chem., Int. Ed. 1999, 38, 870. 5. Francis A. Carey; Richard J. Sundberg . Advanced Organic Chemistry, 3th ed.;Part B: Reactions and Synthesis; Plenum Press New York and London 1990; p 199. 6. Transition Metals in the Synthesis of Complex Organic Molecules; Hegedus, L. S., Ed.; University Science Books: Mill Valley, CA, 1994; p 237. 7. Hegedus, L. S. In Comprehensive Organometallic Chemistry II: Transition Metal Organometallics in Organic Synthesi; Abel, E. W., Stone, F. G., Wilkenson, G., Eds.; Pergamon: London, 1995; Vol. 12. 8. (a) Moriarty, R. M.; Penmasta, R.; Awasthi, A. K.; Prakash, I. J. Org. Chem. 1988, 53, 6124. (b) Sawaki, Y.; Inoue, H.; Ogata, Y. Bull. Chem.Soc. Jpn. 1983, 56, 1133. (c) Chamberlin, R. L. M.; Rosenfeld, D. C.; Wolczanski, P. T.; Lobkovsky, E. B. Organometallics 2002, 21, 2724. 9. (a) O’Connor, J. M.; Pu, L. J. Am. Chem. Soc. 1990, 112, 9013. (b) Bianchini, C.; Casares, J. A.; Peruzzini, M.; Romerosa, A.; Zanobini, F. J. Am. Chem. Soc. 1996, 118, 4585. (c) Knaup, W.; Werner, H. J. Organomet. Chem. 1991, 411, 471. (d) Chin, C. S.; Chong, D.; Maeng, B.; Ryu, J.; Kim, H.; Kim, M.; Lee, H. Organometallics 2002, 21, 1739. (e) Davies, S.; McNally, J. P.; Smallridge, A. J. Adv. Organomet. Chem.1990, 30, 30. (f) Werner, H.; Lass, R. W.; Gevert, O.; Wolf, J. Organometallics 1997, 16, 6, 4077. (g) O’Connor, J. M.; Hiibner, K. J. Chem. Soc., Chem. Commun. 1995, 1209. 10. Bruneau, C.; Dixneuf, P. Acc. Chem. Res. 1999, 32, 311. 11. (a) Cairns, G. A.; Carr, N.; Green, M.; Mahan, M. F. Chem. Commun. 1996, 2431. (b) Hayashi, N.; Ho, D. M.; Pascal, R. A., Jr. Tetrahedron Lett. 2000, 41, 4261. 12. Jun, C.-H.; Lee, H.; Moon, C. W.; Hong, H.-S. J. Am. Chem. Soc. 2001, 123, 8600. 13. Lee, D.-Y.; Hong, B.-S.; Choi, E.-G.; Lee, H.; Jun, C.-H. J. Am. Chem. Soc. 2003, 125, 6372. 14. Shimada, T.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 6646. 15. (a) Dedichen, G. Ber. 1906, 39, 1831. (b) Grandberg, I. I.; Kost, A. N. Dokl. Akad. Nauk SSSR 1961, 141, 1087.; Proc. Acad. Sci. USSR 1961, 141, 1251. (c) Grandberg, I. I.; Kost; A. N. Zh. Obshch. Khim. 1962, 32, 1556.; J. Gen. Chem. USSR 1962, 32, 1542. (d) Grandberg, I. I.; Kost; A. N. Zh. Obshch. Khim. 1962, 32, 3025.; J. Gen. Chem. USSR 1962, 32, 2974. (e) Grandberg, I. I. Zh. Obshch. Khim. 1962, 32, 3029.; J. Gen. Chem. USSR 1962, 32, 3029. 16. Trofimenko, S. J . Am. Chem. Soc. 1966, 88, 1842 17. Trofimenko, S. Chem Rev. 1972, 72, 749 18. Trofimenko, S. Chem Rev. 1993, 93, 943. 19. (a) Alcock, N. W.; Burns, I. D.; Claire, K. S.; Hill, A. F. Inorg. Chem. 1992, 31, 2906. (b) Gemel, C.; Trimmel, G.; Slugovc, C.; Kremel, S.; Mereiter, K.; Schmid, R.; Kirchner, K. Organometallics 1996, 15, 3998. 20. Onishi, M.; Ikemoto, K.; Hiraki, K. Inorg. Chim. Acta 1991, 190, 157 21. (a) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2039. (b) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100. (c) Alcock, N. W.; Burns, I. D.; Claire, K. S.; Hill, A. F. Inorg. Chem. 1992, 31, 2906. 22. Chan, W.-C.; Lau, C.-P.; Chen, Y.-Z.; Fang, Y.-Q.; Ng, S.-M.; Jia, G. Organometallics 1997, 16, 34. 23. 國立清華大學化學系胡聚成碩士論文2001年。 24. E.; Carbo, J. J.; Lledos, A.; Mereiter, K.; Puerta, M. C.; Valerga, P. J. Am. Chem. Soc. 2003, 125, 3311. 25. (a) Trost, B. M.; Flygare, J. A. J. Am. Chem. Soc. 1992, 114, 5476. (b)Trost, B. M.; Flygare, J. A. Tetrahedron Lett. 1994, 35, 4059. (c) Nishibayashi, Y.; Wakiji, I.; Hidai, M. J. Am. Chem. Soc. 2000, 122, 11019. (d) Madhushaw, R. J.; Li, C.-L.; Shen, K.-H.; Hu, C.-C.; Liu, R.-S. J. Am. Chem. Soc. 2001, 123, 7427. 26. (a) Quinolizinium cation: Ezquerra, J.; Alvarez-Builla, J. J. Heterocycl. Chem. 1986, 23, 1151. (b) Isoquinolones: Kiselyov, A. S. Tetrahedron Lett. 1995, 36, 493. (c) Enediol iminocarbonates: Guirado , A.; Zapata, A.; Galvez, J. Tetrahedron Lett. 1994, 35, 2365. 27. For some recent examples, see the following. (a) Taylor, E. C.; Macor, J. E.; French, L. G. J. Org. Chem. 1991, 56, 1807. (b) Christl, M.; Kraft, A. Angew. Chem., Int. Ed. Engl. 1988, 27, 1369. (c) Nantz, M. H.; Lee, D. A.; Bender, D. M.; Roohi, A. H. J. Org. Chem. 1992, 57, 6653. (d) Khalaj, A.; Ghafari, M. Tetrahedron Lett. 1986, 27, 5019. 28. (a) Z. X. Si, X. Y. Jiao and B. F. Hu, Synthesis, 1990, 509; (b) D. Seyferth, R. M. Weinstein, R. C. Hui, W. L. Wang and C. M. Archer, J. Org. Chem., 1991, 56, 5768; (c) F. Babudri, V. Fiandanese, G. Marchese and A. Punzi, Tetrahedron Lett, 1995, 36, 7305; (d) A. R. Katritzky, Z. Wang, H. Lang and D. Feng, J. Org. Chem., 1997, 62, 4125 and references therein . 29. Nudelman, N. S.; Outumura, P. J. Org. Chem. 1982, 47, 4347. 30. Olah, G. A.; Wu, A.-h. J.Org. Chem. 1991, 56, 902. 31. (a) Ballistreri, F. P.; Failla, S.; Tomaselli, G. A.; Curci, R. Tetrahedron. Lett. 1986, 27, 5139. (b) Zibuck, R.; Seebach, D. Helv. Chim. Acta 1988, 71, 237 and references therein . 32 Godoy, J.; Muller, P. Helv. Chim. Acta 1981, 64, 251. 33. H.Sakurai, K. Tanabe and K. Narasaka, Chem. Lett, 2000, 168. 34. S. Antoniotti and E. Duñach, Chem. Commun., 2001, 2566. 35. For a recent review, see: C. Lauret, Tetrahedron: Asymmetry, 2001, 12, 2359. 36. H. O. House, J. Am. Chem. Soc. 1954, 76, 1235; H. O. House and G. D. Ryerson, J. Am. Chem. Soc. 1961, 83, 979 and references cited therein. 37. (a) R. D. Bach and J. M. Domagala, J. Org. Chem. 1984, 49, 4181; (b) R. D. Bach and R. C. Klix, J. Org. Chem. 1985, 50, 5440; (c) F. Kunisch, K. Horbert and P. Welzel, Tetrahedron Lett. 1985, 26, 6039; (d) R. D. Bach and R. C. Klix, Tetrahedron Lett. 1985, 26, 985; (e) R. C. Klix and R. D. Bach, J. Org. Chem. 1987, 52, 580; (f) K. Okada, T. Katsura, H. Tanino, H. Kakoi and S. Inoue, Chem. Lett. 1994, 157; (g) S. Sankararaman and J. E. Nesakumar, J. Chem. Soc., Perkin Trans. 1, 1999, 3173; (f) J. A. Elings, H. E. B. Lempers and R. A. Sheldon, Eur. J. Org. Chem. 2000, 1950. 38. M.Suzuki, A. Watanabe and R. Noyori, J. Am. Chem. Soc. 1980, 102, 2095. 39. T. B. Rao and J. M. Rao, Synth. Commun. 1993, 23, 1527. 40. K. Suda,* K. Baba, S. I. Nakajima and T. Takanami, Chem. Commun., 2002, 2570. 41. W. P. Griffith, S. V. Ley, G. P. Whitcombe, and A. D. White, Chem. Commun, 1987, 1625.id NH0920065004 sid 883436 cfn 0 / id NH0920065005 auc 古立安費 tic 奈米碳管和奈米金屬氧化物的合成、鑑定與應用 adc 凌永健 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 英文 pg 204 kwc 奈米碳管 kwc 奈米金屬氧化物 abc 蛋白質的聚集和形成沉澱在人類健康及生化工業引起很大的注意,每一年在成本上的花費達數兆圓,此科技成長因而受到限制。在因細菌表現而造成蛋白質重組及許多哺乳動物病理狀態,例如老人癡呆症及其他因蛋白質沈澱引起病症的期間,由於非水溶性蛋白質的聚集而造成了共聚體(Inclusion Bodies)的形成。藉由MCA(Molecular Chaperones assist)可回收自然蛋白質,然而MCP(Molecular Chaperone Protein)在不同溶劑環境下的穩定性及真正可應用的蛋白質種類範圍仍為未知數。奈米碳管及GroEL CP(GroEL Chaperonin Protein)的型態特徵可幫助它們可承受類似的外來撞擊,因此奈米碳管可視為AMP(Artificial Molecular Chaperones)。 tc Table of Contents ABSTRACT: List of Publication CHAPTER 1: Introduction and background CHAPTER 2: Experimental Section CHAPTER 3: Synthesis, characterization and application of carbon nanotubes as aids in preventing TFE induced protein aggregation and misfolding: A step towards artificial molecular chaperones CHAPTER 4: Synthesis, monitoring and characterization of ZnO nanoparticle formation for technological applications CHAPTER 5: Synthesis, monitoring and characterization of a-Bi2Mo3O12 nanoparticles and nanorods for technological applications CHAPTER 6: Synthesis, monitoring and characterization of NiAl2O4 catalytic nanoparticles of technological applications CHAPTER 7: Conclusionsrf References (1) Fink, A. L. Fold. Des. 1998, 3, R9-23. (2) Maclean, D. S.; Qian, Q.; Middaugh, C. R. J. Pharm. Sci. 2002, 91, 2220-2229. (3) Anfinsen, C. B. Science 1973, 181, 223-230. (4) Hoffner, G.; Djian, P. Biochimie 2002, 84, 273-278. (5) Bukao, B.; Horwich, A. L. Cell 1998, 92, 351-366. (6) Ellis, R. J. Trends Biochem. Sci. 1998, 23, 43-45. (7) Ellis, R. J.; Hartl, F. U. Curr. Opin. Struct. Biol. 1999, 9, 102-110. (8) Braig, K.; Otwinouiski, Z.; Hegde, R.; Boisvert, D. C.; Joachimiak, A.; Horwich, A. L.; Sigler, P. B. Nature 1994, 371, 578-586. (9) Hayer-Hartl, M. K.; Weber, F.; Hartl, F. U. EMBO J. 1996, 15, 6111-6121. (10) Shtilerman, M.; Lorimer, G. H.; Englander, S. W. Science 1999, 284, 822-825. (11) Chen, L.; Sigler P. B. Cell 1999, 99, 757-768. (12) Fenton, W. A.; Kashi, Y.; Furtak, K.; Horwich, A. L. Nature 1994, 371, 614-619. (13) Sigler P. B.; Xu, Z.; Rye, H. S.; Burston, S. G.; Fenton, W. A.; Horwich, A. L. Annu. Rev. Biochem. 1998, 67, 581-608. (14) Hunt, J. F.; Weaver, A. J.; Landry, S. J.; Gierasch, L.; Deisenhofer, J. Nature (London) 1996, 379, 37-45. (15) Iijima, S. Nature 1991, 354, 56-58. (16) Ajayan, P. M. Chem. Rev. 1999, 99, 1787-1799. (17) Tsang, S. C.; Chen, Y. K.; Harris, P. J. F.; Green, M. L. H. Nature 1994, 372, 159. (18) Hiura, H.; Ebbesen, T. W.; Tanigaki, K. Adv. Mater. 1995, 7, 275. (19) Xue, H.; Sun, W.; He, B.; Shen, Z. Synth. Met. 2003, 135-136, 831-832. (20) Chen, Y. K.; Green, M. L. H.; Griffin, J. L.; Hammer, J.; Lago, R. M.; Tsang, S. C. Adv. Mater. 1996, 12, 1012. (21) Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. Science 1998, 282, 95. (22) Hamon, M. A.; Hu, H.; Bhowmik, P.; Niyogi, S.; Zhao, B.; Itkis, M. E.; Haddon, R. C. Chem. Phys. Lett. 2001, 347, 8. (23) Harris, P. J. F. Carbon Nanotubes and related structures; Cambridge Univ. Press.: New York, 1999. (24) Bahr, J. L.; Tour, J. M. Chem. Mater. 2001, 13, 3823-3824. (25) Bahr, J. L.; Tour, J. M. J. Mater. Chem. 2002, 12, 1952-1958. (26) Chiu, P. W.; Duesberg, G. S.; Dettlaff-Weglikowska, U.; Roth, S. Appl. Phys. Lett. 2002, 80, 3811-3813. (27) Wong, S. S.; Joselevich, E.; Woolley, A. T.; Cheung, C. L.; Lieber, C. M. Nature 1998, 394, 52-55. (28) Sun, Y.; Wilson, S. R.; Schuster, D. I. J. Am. Chem. Soc. 2001, 123, 5348-5349. (29) Chen, J.; Liu, H.; Weimer, W. A.; Halls, M. D.; Waldeck, D. H.; Walker, G. C. J. Am. Chem. Soc. 2002, 124, 9034-9035. (30) Sun, Y. P.; Fu, K.; Lin, Y.; Huang, W. Acc. Chem. Res. 2002, 35, 1096-1104. (31) Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science 2000, 287, 1801-1804. (32) Chen, R. J.; Zhan, Y. G.; Wang, D. W.; Dai, H. J. J. Am. Chem. Soc. 2001, 123, 3838-3839. (33) Erlanger, B. F.; Chen, B. X.; Zhu, M.; Brus, L. Nano Lett. 2001, 1, 465-467. (34) Tsang, S. C.; Guo, Z. J.; Chen, Y. K.; Green, M. L. H.; Hill, H. A.; Hambley, T. W.; Sadler, P. J. Angew. Chem. Int. Ed. Engl. 1997, 36, 2198-2200. (35) Tsang, S. C.; Davis, J. J.; Green, M. L. H.; Allen, H.; Hill, O.; Leung, Y. C.; Sadler, P. J. J. Chem. Soc.-Chem. Commun. 1995, 1803-1804. (36) Guo, Z. J.; Sadler, P. J.; Tsang, S. C. Adv. Mater. 1998, 10, 701-703. (37) Balavoine, F.; Schultz, P.; Richard, C.; Mallouh, V.; Ebbesen, T. W.; Mioskowski, C. Angew. Chem. Int. Ed. Engl. 1999, 38, 1912-1915. (38) Shim, M.; Javey, A.; Shi Kam, N. W.; Dai, H. J. Am. Chem. Soc. 2001, 123, 11512-11513. (39) O'Connell, M. J.; Boul, P.; Ericson, L. M.; Huffman, C.; Wang, Y. H.; Haroz, E.; Kuper, C.; Tour, J.; Ausman, K. D.; Smalley, R. E. Chem. Phys. Lett. 2001, 342, 265-271. (40) Star, A.; Stoddart, J. F.; Steuerman, D.; Diehl, M.; Boukai, A.; EWong, E. W.; Yang, X.; Chung, S. W.; Choi, H.; Heath, J. R. Angew. Chem. Int. Ed. Engl. 2001, 40, 1721-1725. (41) Cai, Y.; Jiang, G.; Zhou, Q. Anal. Chem. 2003, 75, 2517-2521. (42) Davis, J. J.; Coles, R. J.; Hill, H. A. O. J. Electroanal. Chem. 1997, 440, 279-282. (43) De Heer, W. A.; Bacsa, W. S.; Chatelian, A.; Gerfin, T.; Humphrey-Baker, R.; Forro, L.; Ugarte, D. Science 1995, 268, 845. (44) Ajayan, P. M.; Stephan, O.; Colliex, C.; Trauth, D. Science 1994, 265, 1212. (45) Li, W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou, W. Y.; Zhao, R. A.; Wang, G. Science 1996, 274, 1701. (46) Tsang, S. C.; Davis, J. J.; Green, M. L. H.; Hill, H. A.; Leung, Y. C.; Sadler, P. J. J. Chem. Soc.-Chem. Commun. 1995, 1803. (47) Tsang, S. C.; Davis, J. J.; Green, M. L. H.; Hill, H. A.; Leung, Y. C.; Sadler, P. J. J. Chem. Soc.-Chem. Commun. 1995, 2579. (48) Davis, J. J.; Green, M. L. H.; Hill, O. A. H.; Leung, Y. C.; Sadler, P. J.; Sloan, J.; Xavier, A. V.; Tsang, S. C. Inorg. Chim. Acta 1998, 272, 261-266. (49) Kong, J.; Franklin, N. R.; Zhou, C. W.; Chapline, M. G.; Peng, S.; Cho, K. J.; Dai, H. J. Science 2000, 287, 622-625. (50) Kong, J.; Chapline, M. G.; Dai, H. Adv. Mater. 2001, 13, 1384-1386. (51) Kong, J.; Dai, H. J. Phys. Chem. B 2001, 105, 2890-2893. (52) Mattson, M. P.; Haddon, R. C.; Rao, A. M. J. Mol. Neurosci. 2000, 14, 175. (53) Harris, J. M.; Zalipsky, S. Poly(ethylene glycol): Chemistry and Biological Applications; American Chemical Society: Washington, DC, 1997. (54) Biocompatible polymers, metals and composites; Technomic: Lancaster, PA, 1983. (55) Ostuni, E.; Chapman, R. G.; Holmlin, R. E.; Takayama, S.; Whitesides, G. M. Langmuir 2001, 17, 5605-5620, and references therein. (56) Riggs, J. E.; Guo, Z.; Carroll, D. L.; Sun, Y. P. J. Am. Chem. Soc. 2000, 122, 5879. (57) Riggs, J. E.; Walker, D. B.; Carroll, D. L.; Sun, Y. P. J. Phys. Chem. B 2000, 104, 7071. (58) Sun, Y. P.; Huang, W.; Lin, Y.; Fu, K.; Kitaygorodskiy, A.; Riddle, L. A.; Yu, Y. J.; Carroll, D. L. Chem. Mater. 2001, 13, 2864-2869. (59) Fu, K.; Huang, W.; Lin, Y.; Riddle, L. A.; Carroll, D. L.; Sun, Y. P. Nano Lett. 2001, 1, 439. (60) Czerw, R.; Guo, Z.; Ajayan, P. M.; Carroll, D. L.; Sun, Y. P. Nano Lett. 2001, 1, 423. (61) Lin, Y.; Rao, A. M.; Sadanadan, B.; Kenik, E. A.; Sun, Y. P. J. Phys. Chem. B 2002, 106, 1294. (62) Huang, W.; Taylor, S.; Fu, K.; Lin, Y.; Zhang, D.; Hanks, T. W.; Rao, A. M.; Sun, Y. P. Nano Lett. 2002, 2, 311-314. (63) Kurzer, F.; Douraghi-Zadeh, K. Chem. Rev. 1967, 67, 107. (64) Williams, A.; Ibrahim, I. T. Chem. Rev. 1981, 81, 589. (65) Shim, M.; Shi Kam, N. W.; Chen, R. J.; Li, Y.; Dai, H. Nano Lett. 2002, 2, 285-288. (66) Harris, L. J.; Larson, S. B.; Hasel, K. W.; McPherson, A. Biochemistry 1997, 36, 1581-1597. (67) Azamian, B. R.; Davis, J. J.; Coleman, K. S.; Bagshaw, C. B.; Green, M. L. H. J. Am. Chem. Soc. 2002, 124, 12664-12665. (68) Guiseppi-Elie, A.; Lei, C.; Baughman, R. H. Nanotechnol. 2002, 13, 559-564. (69) Azamian, B. R.; Coleman, K. S.; Davis, J. J.; Hanson, N.; Green, M. L. H. J. Chem. Soc.-Chem. Commun. 2002, 366-367. (70) Nie, S.; Emroy, S. R. Science 1997, 275, 1102-1105. (71) Lu, H. P.; Xun, L. Y.; Xie, X. S. Science 1998, 282, 1877-1882. (72) Fan, F.-R. F.; Bard, A. J. Science 1995, 267, 871-874. (73) Fan, F.-R. F.; Kwak, J.; Bard, A. J. J. Am. Chem. Soc. 1996, 118, 9669-9675. (74) Boussaad, S.; Tao, N. J.; Zhang, R.; Hopson, T.; Nagahara, L. A. Chem. Commun. 2003, 1502-1503. (75) Cass, A. E. G.; Davis, G.; Francis, G. D.; Hill, H. A. O.; Aston, W. J.; Higgins, I. J.; Plotkin, E. V.; Scott, D. L.; Turner, A. P. F. Anal. Chem. 1984, 56, 667-671. (76) Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013-2016. (77) Chan, W.; Nie, S. Science 1998, 281, 2016-2018. (78) Taton, T.; Mirkin, C.; Letsinger, R. Science 2000, 289, 1757-1760. (79) Cui, Y.; Wei, Q.; Park, H.; Lieber, C. Science 2001, 293, 1289-1292. (80) Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes and Carbon Nanotubes; Academic Press: New York, 1996. (81) Srisailam, S.; Kumar, T. K. S.; Srimathi, T.; Yu, C. J. Am. Chem. Soc. 2002, 124, 1884-1888. (82) Moreno, C. J. M.; Yoshimura, M. J. Am. Chem. Soc. 2001, 123, 741. References (1) Emanetoglu, N. W.; Gorla, C.; Liu, Y.; Liang, S.; Lu, Y. Mater. Sci. Semicond. Process 1999, 2, 247. (2) Chen, Y.; Bagnall, D.; Yao, T. Mater. Sci. Eng. B. 2000, 75, 190-198. (3) Saito, N.; Haneda, H.; Sekiguchi, N.; Ohashi, N.; Sakaguchi, I.; Koumoto, K. Adv. Mater. 2002, 14, 418. (4) Liang, S.; Sheng, H.; Liu, Y.; Hio, Z.; Lu, Y.; Shen, H. J. Cryst. Growth 2001, 225, 110. (5) Koch, M. H.; Timbrell, P. Y.; Lamb, R. N. Semicond. Sci. Technol. 1995, 10, 1523. (6) Lin, Y.; Zhang. Z.; Tang, Z.; Yuan, F.; Li, J. Adv. Mater. Opt. Electron. 1999, 9, 205. (7) Golego, N.; Studenikin, S. A.; Cocivera, M. J. Electrochem. Soc. 2000, 147, 1592. (8) Vayssieres, L. Adv. Mater. 2003, 15, 464. (9) Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353-389. (10) Brown, H. E. Zinc Oxide Properties and Applications, Int. Lead zinc Res. Org. Inc., Zinc Institute Inc., New York, 1983, p. 20. (11) Keis, K.; Magnusson, E.; Lindstrom, H.; Lindquist, S. E.; Hagfeldt, A. Sol. Energy 2002, 73, 51. (12) Gordillo, G.; Calderon, C. Sol. Energy Mater. Sol. Cells 2001, 69, 251. (13) Wen, J. G.; Lao, J. Y.; Wang, D. Z.; Kyaw, T. M.; Foo, Y. L.; Ren, Z. F. Chem. Phys. Lett. 2003, 372, 717. (14) Li, D.; Haneda, H. Chemosphere 2003, 51, 129-137. (15) Yang, Y.; Li, X.; Chen, J.; Bao, X. Chem. Phys. Lett. 2003, 373, 22-27. (16) Arii, T.; Kishi, A. Thermochim. Acta 2003, 400, 175-185. (17) Jiang, S. S.; Stangle, G. C.; Amarakon, V. R. W.; Schulze, W. A. J. Mater. Res. 1996, 11, 2318. (18) Koga, N.; Tanaka, H. Thermochim. Acta 1997, 303, 69-76. (19) Quranta, F.; Valentini, A.; Rizzi, F. R.; Casamassima, G. J. Appl. Phys. 1993, 74, 244. (20) Zhao, X.; Zheng, B.; Li, C.; Gu, H. Powder Technol. 1998, 100, 20-23. (21) Kobayashi, K.; Matsubara, T.; Matsushima, S.; Shirakata, S.; Isomura, S.; Okada, G. Thin Solid Films 1995, 266, 106-109. (22) Liu, R.; Vertegel, A. A.; Bohannan, E. W.; Sorenson, T. A.; Switzer, J. A. Chem. Mater. 2001, 13, 508. (23) Cozzoli, P. D.; Curri, M. L.; Agostiano, A.; Leo, G.; Lomascolo, M. J. Phys. Chem. B 2003, 107, 4756-4762. (24) Tokumoto, M. S.; Pulcinelli, S. H.; Santilli, C. S.; Briois, V. J. Phys. Chem. B 2003, 107, 568-574. (25) Gardner, T. J.; Messing, G. J. Thermochim. Acta 1984, 78, 17. (26) Van Dijken, A.; Meulenkamp, E. A.; Vanmaekelbergh, D.; Meijerink, A. J. Phys. Chem. B 2000, 104, 1715. (27) Sakohara, S.; Ishida, M.; Anderson, M. A. J. Phys. Chem. B 1998, 102, 10169. (28) Che, M.; Naccache, C.; Imelik, B. J. Catal. 1972, 24, 328. (29) Werde, K. V.; Mondelaers, D.; Vanhoyland, G.; Nelis, D.; Van Bael, M. K.; Mullens, J.; Van Poucke, L. C.; Van der Veken, B.; Desseyn, H. O. J. Mater. Sci. 2002, 37, 81-88. (30) Chang, H.; Murugan, R.; Ghule, A. Thermochim. Acta 2001, 374, 45. (31) Lyon, A. L.; Keating, C. D.; Fox, A. P.; Baker, B. E.; He, L.; Nicewarner, S. R.; Mulvaney, S. P.; Natan, M. J. Anal. Chem. 1998, 44, 341R. (32) Frost, R. L.; Kloprogge, J. T. J. Mol. Struct. 2000, 526, 131-141. (33) Ishioka, T.; Shibata, Y.; Takahashi, M.; Kanesaka, I.; Kitagawa, Y.; Nakamura, K. T. Spectrochim. Acta A 1998, 54, 1827-1836. (34) Ishioka, T.; Shibata, Y.; Takahashi, M.; Kanesaka, I. Spectrochim. Acta A 1998, 54, 1811-1818. (35) Koleva, V.; Stoilova, D. J. Mol. Struct. 2002, 611, 1-8. (36) Decremps, F.; Pellicer-Porres, J.; Saitta, A. M.; Chervin, J. C.; Polian, A. Phys. Rev. B 2002, 65, 92101(92101-92104). (37) Benninghoven, A. Angew. Chem. Int. Ed. Engl. 1994, 33, 1023. (38) A., B. Proceedings of the Thirteenth International Conference on Secondary Ion Mass Spectrometry and Related Topics, Nara-Ken New Public Hall, Nara, Japan, Nov. 11-16, 2001. Appl. Sur. Sci. 2003, 203, 1. (39) Paryjczak, T.; Szynkowska, M. I. Przemysl Chem. 2003, 82, 199. (40) Murase, A.; Ishii, M.; Tokito, S.; Taga, Y. Anal. Chem. 2001, 73, 2245. (41) Lo, Y. S.; Huefner, N. D.; Chan, W. S.; Dryden, P.; Hagenhoff, B.; Beebe Jr., T. P. Langmuir 1999, 15, 6522-6526. (42) Zhenguo, J.; Kun, L.; Chengxing, Y.; Ruixin, F.; Zhizhen, Y. J. Cryst. Growth 2003, 253, 246-251. (43) Ghule, A.; Lo, B.; Tzing, S. H.; Ghule, K.; Chang, H.; Ling, Y. C. Chem. Phys. Lett. 2003, 381, 262-270. (44) Bickley, R. I.; Edwards, H. G. M.; Rose, S. J.; Gustar, R. J. Mol. Struct. 1990, 238, 13. (45) Johnson, M. K.; Powell, D. B.; Cannon, R. D. Spectrochim. Acta 1981, 37A, 899. (46) Koyano, M.; Quocbao, P.; Thanhbinh, L. T.; Hongha, L.; Ngoclong, N.; Katayama, S. Phys. Stat. Sol. 2002, 193, 125-131. (47) Frost, R. L.; Martens, W.; Ding, Z.; Kloprogge, J. T.; Johnson, T. E. Spectrochimi. Acta A 2003, 59, 291. (48) Wang, Y. G.; Lau, S. P.; Zhang, X. H.; Lee, H. W.; Yu, S. F.; Tae, B. K.; Hng, H. H. Chem. Phys. Lett. 2003, 375, 113. (49) Briggs, D.; Munro, H. S. Polym. Commun. 1987, 28, 307. (50) Lefevre, M.; Dodelet, J. P.; Bertrand, P. J. Phys. Chem. B 2000, 104, 11238-11247. (51) Gerhard, W.; Plog, C. Z. Phys. B 1989, 54, 59. (52) Vickerman, J. C.; Swift, A. J. Secondary ion mass spectrometry-the surface mass spectrometry, in: J.C. Vickerman (Ed.), Surface Analysis-The Principle Techniques, Wiley, Chichester, UK, 1997, 135. 1997. (53) Van Vaeck, L.; Adriens, A.; Gijbels, R. Mass Spectrom. Rev. 1999, 18, 1. (54) Aubriet, F.; Poleunis, C.; Bertrand, P. Appl. Sur. Sci. 2003, 203-204, 114-117. (55) Aubriet, F.; Poleunis, C.; Bertrand, P. J. Mass Spectrom. 2001, 36, 641. (56) Coullerez, G.; Baborowski, J.; Viornery, C.; Chevolot, Y.; Xanthopoulos, N.; Ledermann, N.; Muralt, P.; Setter, N.; Mathieu, H. J. Appl. Sur. Sci. 2003, 203-204, 527. (57) Riedel, M.; Dusterhoft, H.; Kuska, J. P. Rapid Commun. Mass Spectrom. 1997, 11, 667. (58) Szymczak, W.; Wittmaack, K. Appl. Sur. Sci. 2003, 203-204, 170-174. (59) Sundqvist, B. U. R.; in: Behrisch, R.; Wittmaack, K. E. Sputtering by Particle Bombardment III, Springer, Berlin, 1991, p. 257. 1991. (60) Laskin, J.; Lifshitz, C. J. J. Mass Spectrom. 2001, 36, 459. (61) Gilmore, I. S.; Seah, M. P. Appl. Sur. Sci. 1999, 144-145, 26. (62) Zhang, H.; Gilbert, B.; Huang, F.; Banfield, J. F. Nature 2003, 424, 1025. (63) Rosman, K. J. R. Geochim. Cosmochim. Acta 1972, 36, 801. (64) Hansen, P. L.; Wagner, J. B.; Helveg, S.; Rostrup-Nielsen, J. R.; Clausen, B. S.; Topsøe, H. Science 2002, 295, 2053. (65) Nyquist, R. A.; Kagel, R. O. Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts, Vol. 4, Academic Press, San Diego, 1997, p. 221. 1997. (66) Inubushi, Y.; Takami, R.; Iwasaki, M.; Tada, H.; Ito, S. J. Colloid Interface Sci. 1998, 200, 220-227. References (1) Patzke, G. R.; Krumeich, F.; Nesper, R. Angew. Chem. Int. Ed. Engl. 2002, 41, 2446. (2) Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353-389. (3) Lee, S. M.; Cho, S. N.; Cheon, J. Adv. Mater. 2003, 15, 441. (4) Murphy, C. J.; Jana, N. R. Adv. Mater. 2002, 14, 80. (5) Grasselli, R. K. Handbook of Heterogeneous Catalysis; Wiley/VCH: Weinheim, 1997. (6) Snyder, T. D.; Hill Jr., G. C. Catal. Rev. Sci. Eng. 1989, 31, 43-95. (7) Grasselli, R. K.; Burrington, J. D.; Brazdil, J. F. Faraday Discuss. Chem. Soc. 1982, 72, 203-223. (8) Callahan, J. L.; Grasselli, R. K.; Milberger, E. C.; Strecker, H. A. Ind. Eng. Chem. Prod. Res. Develop. 1970, 9, 134-142. (9) Skarchenko, V. K. Int. Chem. Eng. 1969, 9, 1. (10) Satterfield, C. N. Heterogenous Catalysis in Industrial Practice; McGraw Hill: New York, 1991. (11) Millet, J. M. M.; Ponceblanc, H.; Coudurier, G.; Herrmann, J. M.; Vedrine, J. C. J. Catal. 1993, 142, 381-391. (12) Boutry, P.; Montarnal, R.; Wrzyszcz, J. J. Catal. 1969, 13, 75-82. (13) Gates, B. C.; Katzer, J. R.; Schuit, G. C. A. Chemistry of Catalytic Processes: United States, 1979. (14) Keulks, G. W.; Krenzke, L. D.; Notermann, T. M. Adv. Catal. 1978, 27, 183-225. (15) Grasselli, R. K.; Burrington, J. D.; Brazdil, J. F. Adv. Catal. 1981, 30, 133-163. (16) Moro-Oka, Y.; Ueda, W. Adv. Catal. 1994, 40, 233-273. (17) Bettahar, M. M.; Costentin, G.; Savary, L.; Lavalley, J. C. Appl. Catal. A. 1996, 145, 1-48. (18) Buttery, D. J.; Vogt, T.; Wildgruber, U.; Robinson, W. R. J. Solid State Chem. 1994, 111, 118. (19) Godard, E.; Gaigneaux, E. M.; Ruiz, P.; Delmon, B. Catal. Today 2000, 61, 279-285. (20) Arora, N.; Deo, G.; Wachs, I. E.; Hirt, A. M. J. Catal. 1996, 159, 1-13. (21) Han, Y. H.; Ueda, W.; Moro-Oka, Y. Appl. Catal. A. 1999, 176, 11-16. (22) Burrington, J. D.; Kartisek, C. T.; Grasselli, R. K. J. Catal. 1980, 63, 235. (23) Li, K. T.; Cheng, W. D. Appl. Catal. A. 1996, 142, 315-326. (24) Vannier, R. N.; Abraham, F.; Nowogrocki, G.; Mairesse, G. J. Solid State Chem. 1999, 142, 294-304. (25) Nazri, G. A.; Julien, C. Solid State Ionics 1992, 376, 53-56. (26) Marinova, V.; Veleva, M. Optical Mater. 2002, 19, 329-333. (27) Biegelsen, D. K.; Chen, T.; Zesch, J. C. J. Appl. Phys. 1975, 46, 941-942. (28) Kang, K. Y.; Her, P. H.; Jang, M. S.; Kim, H. K.; Park, H. L.; Finotello, D.; Chan, M. H. W. Solid State Commun. 1988, 67, 723-724. (29) Sekiya, T.; Tsuzuki, A.; Torii, Y. Mater. Res. Bull. 1985, 21, 601-608. (30) Hykaway, N.; Sears, W. M.; Frindt, R. F.; Morrison, S. R. Sens. Actuators 1988, 15, 105-118. (31) Hardcastle, F. D.; Wachs, I. E. J. Phys. Chem. 1991, 95, 10763-10772. (32) Antonio, M. R.; Teller, R. G.; Sandstrom, D. R.; Mehicic, M.; Brazdil, J. F. J. Phys. Chem. 1988, 92, 2939-2944. (33) Van den Elzen, A. F.; Rieck, G. D. Mater. Res. Bull. 1975, 10, 1163-1168. (34) Wuzong, Z.; Jefferson, D. A.; Alario-Franco, M.; Thomas, J. M. J. Phys. Chem. 1987, 91, 512-514. (35) Theobald, F.; Laarif, A.; Hewat, A. W. Mater. Res. Bull. 1985, 20, 653-665. (36) Weng, L. T.; Bertrand, P.; Tirions, O.; Devillers, M. Appl. Sur. Sci. 1996, 99, 185-196. (37) Buttrey, D. J.; Jefferson, D. A.; Thomas, J. M. Philos.Mag. A 1986, 53, 897-906. (38) Matsuura, I.; Schut, R.; Hirakawa, K. J. Catal. 1980, 63, 152-166. (39) Stencel, J. M. Raman Spectroscopy for Catalysis; Van Nostrand Reinhold: New York, 1990. (40) Ono, T.; Ogata, N.; Kuczkowski, R. L. J. Catal. 1998, 175, 185-193. (41) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Co-ordination Compounds, 3rd ed.; Wiley: New York, 1978. (42) Dixit, L.; Gerrard, D. L.; Bowley, H. J. Appl. Spectrosc. Rev. 1986, 22, 189-249. (43) Murakami, Y.; Imai, H. J. Mater. Sci. Lett. 1990, 10, 107-108. (44) Yinjie, S.; Aimin, Z. J. Radioanal. Nucl. Chem. 1998, 231, 17-20. (45) Batist, P. A.; Bouwens, J. F. H.; Schuits, G. C. A. J. Catal. 1972, 25, 1-11. (46) Grzybowska, B.; Haber, J.; Komorek, J. J. Catal. 1972, 25, 25-32. (47) Grunwaldt, J. D.; Wildberger, M. D.; Mallat, T.; Baiker, A. J. Catal. 1998, 177, 53-59. (48) VanDriessche, I.; Mouton, R.; Hoste, S. Mater. Res. Bull. 1996, 31, 979-992. (49) Trifiro, F.; Hoser, H.; Scarle, R. D. J. Catal. 1972, 25, 12-24. (50) Beale, A. M.; Sankar, G. Chem. Mater. 2003, 15, 146. (51) Buttrey, D. J.; Vogt, T.; White, B. D. J. Solid State Chem. 2000, 155, 206-215. (52) Wendlandt, W. W. Thermal Analysis, 3rd ed.; Wiley: New York, 1986. (53) Chang, H.; Huang, P. J. Anal. Chem. 1997, 69, 1485-1491. (54) Ghule, A.; Murugan, R.; Chang, H. Inorg. Chem. 2001, 40, 5917-5923. (55) Ghule, A.; Murugan, R.; Chang, H. Thermochim. Acta 2001, 371, 127-135. (56) Choy, J. H.; Kwon, S. J.; Park, G. S. Science 1998, 280, 1589. (57) Alexandre, M.; Dubois, P. Mater. Sci. Eng. 2000, 28, 1. (58) Choy, J. H.; Park, N. G.; Hwang, S. J.; Kim, D. H.; Hur, N. H. J. Am. Chem. Soc. 1994, 116, 11564-11565. (59) Choy, J. H.; Kwak, S. Y.; Park, J. S.; Jeong, Y. J.; Portier, J. J. Am. Chem. Soc. 1999, 121, 1399-1400. (60) Choy, J. H.; Paek, S. M.; Oh, J. M.; Jang, E. S. Curr. Appl. Phys. 2002, 2, 489. (61) Sasaki, T.; Izumi, F.; Watanabe, M. Chem. Mater. 1996, 8, 777-782. (62) Tagaya, H.; Takeshi, K.; Ara, K.; Kadokawa, J.; Karasu, M.; Chiba, K. Mater. Res. Bull. 1995, 30, 1161-1171. (63) Izawa, H.; Kikkawa, S.; Koizumi, M. J. Solid State Chem. 1985, 60, 264. (64) Izawa, H.; Kikkawa, S.; Koizumi, M. J. Solid State Chem. 1987, 69, 336. (65) Sasaki, T.; Komatsu, Y.; Fujiki, Y. Inorg. Chem. 1989, 28, 2776. (66) England, W. A.; Birkett, J. E.; Goodenough, J. B.; Wiseman, P. J. J. Solid State Chem. 1983, 49, 300. (67) Burch, R. Catalysis Today 1998, 2, 185. (68) Takagi, K.; Usami, H.; Fukaya, H.; Sawaki, Y. J. Chem. Soc., Chem. Commun. 1989, 1174. (69) Mann, S.; Archibald, D. D.; Didymus, J. M.; GDouglas, T.; Heywood, B. R.; Meldrum, F. C.; Reeves, M. J. Science 1993, 261, 1. (70) Kumar, R. V.; Koltypin, Y.; Xu, X. N.; Yeshurun, Y.; Gedanken, A.; Felner, I. J. Appl. Phys. 2001, 89, 6324. (71) Jeevanandam, P.; Koltypin, Y.; Palchik, O.; Gedanken, A. J. Mater. Chem. 2001, 11, 869. (72) Avivi, S.; Mastai, Y.; Gedanken, A. Chem. Mater. 2000, 12, 1229. (73) Jeevanandam, P.; Koltypin, Y.; Mastai, Y.; Gedanken, A. J. Mater. Chem. 2000, 10, 2143. (74) Intercalation Chemistry; Academic Press: New York, 1982. (75) Odink, D. A.; Song, K.; Kauzlarich, S. M. Chem. Mater. 1992, 4, 906. (76) Song, K.; Kauzlarich, S. M. Chem. Mater. 1994, 6, 386. (77) Kinomura, N.; Kumada, N. Solid State Ionics 1992, 51, 1. (78) Joy, P. A.; Vasudevan, S. J. Am. Chem. Soc. 1992, 114, 7792. (79) Chen, W.; Cai, W. P.; Liang, C. H.; Zhang, L. D. Mater. Res. Bull. 2001, 136, 335-342. (80) Lianos, P.; Thomas, J. K. J. Colloid Interface Sci. 1987, 117, 505-510. (81) Zhang, Z. B.; Cheng, H. M.; Ma, J. M. J. Mater. Sci. Lett. 2001, 20, 439-440. (82) Kobayashi, Y.; Salgueirino-Maceiraa, V.; Liz-Marzan, L. M. Chem. Mater. 2001, 13, 1630-1633. (83) Shibata, S.; Aoki, K.; Yano, T.; Yamane, M. J. Sol.-Gel Sci. Technol. 1998, 11, 279-287. (84) Khaorapapong, N.; Kuroda, K.; Hashizume, H.; Ogawa, M. Appl. Clay Sci. 2001, 19, 69-76. (85) Liu, H.; Kim, D. W.; Blumstein, A.; Kumar, J.; Tripathy, S. K. Chem. Mater. 2001, 13, 2756-2758. (86) Choy, J. H.; Hwang, S. J.; Kim, Y. I.; Kwon, S. J. Solid State Ionics 1998, 108, 17-22. (87) Tanski, J. M.; Vaid, T. P.; Lobkovsky, E. B.; Wolczanski, P. T. Inorg. Chem. 2000, 39, 4756-4765. (88) Barnes, N.; Kitchin, S. J.; Hriljac, J. A. Inorg. Chem. 1999, 38, 6317. (89) Riekel, C.; Fischer, C. O. J. Solid State Chem. 1979, 29, 181. (90) McDaniel, P. L.; Barbara, T. M.; Jonas, J. J. Phys. Chem. 1988, 92, 626. (91) Benninghoven, A. Angew. Chem. Int. Ed. Engl. 1994, 33, 1023. (92) Serna, C. J.; Ocana, M.; Iglesias, J. E. J. Chem. Phys. 1987, C20, 473-484. (93) Van den Elzen, A. F.; Rieck, G. D. Acta Crystallogr. B 1973, 29, 2433-2436. (94) Miyazawa, S.; Kawana, A.; Koizumi, H.; Iwasaki, H. Mater. Res. Bull. 1974, 9, 41-52. (95) Cesari, M.; Perego, G.; Zazzetta, A.; Manara, G.; Notari, B. J. Inorg. Nucl. Chem. 1971, 33, 3595-3597. (96) Yanina, S. V.; Smith, R. L. J. Catal. 2003, 213, 151-162. (97) Song, Y.; Zhao, A. J. RadioAnal. Nucl. Chem 1998, 231, 17. (98) Slothers, J. B. Carbon-13 NMR Spectroscopy; Academic Press: New York, 1972. (99) Pol, V. G.; Palchik, O.; Gedanken, A.; Felner, I. J. Phys. Chem. B. 2002, 106, 9737. (100) Lewis, L. N. Chem. Rev. 1993, 93, 2693-2730. (101) Rao, C. N. R.; Cheetham, A. K. J. Mater. Chem. 2001, 11, 2887. (102) Fendler, J. H. Nanoparticles and Nanostructured Films: Preparation, Characterization and Applications; John Wiley & Son Ltd.: New York, 1998. (103) Honma, I.; Sano, T.; Komiyama, H. J. Phys. Chem. 1993, 97, 6692-6695. (104) Kortan, A. R.; Hull, R.; Opila, R. L. J. Am. Chem. Soc. 1990, 112, 1327-1332. (105) Neuendort, R.; Quentin, M.; Keiling, U. J. Chem. Phys. 1996, 104, 6348. (106) Chen, C. W.; Serizawa, T.; Akashi, M. Chem. Mater. 1999, 11, 1381. (107) Ianos, P.; Thomas, J. K. J. Colloid Interface Sci. 1987, 117, 505. (108) Ultrasound: Its Chemical, Physical and Biological Effects; VCH: Germany, 1988. (109) Kwok, H. N.; Liu, H.; Penner, R. M. Langmuir 2000, 16, 4016-4023. (110) Stiger, R. M.; Gorer, S.; Craft, B.; Renner, R. M. Langmuir 1999, 15, 790-798.id NH0920065005 sid 897409 cfn 0 / id NH0920065006 auc 鄭靜琪 tic 1,8- tic & tic #33816;二甲酸酐衍生物光物理性質之探討 adc 陳益佳 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 84 kwc 1 kwc 8- kwc & kwc #33816 kwc 二甲酸酐衍生物 kwc 聚集 kwc 電荷轉移 abc 1,8-萘二甲酸酐衍生物為具潛力之有機發光二極體紅光基材,吾人探討其在溶液態及薄膜態之光物理性質,以利於有機發光二極體紅光基材之發展。 比較衍生物在薄膜態、粉末態及溶液態發光特性之不同,溶劑態又分正己烷、苯和THF等不同極性之溶劑。 該分子因電荷轉移使吸收波長及放射波長紅位移,紅位移波長受能階穩定度影響,當溶劑極性越大能階越穩定,則紅位移越多;放射波長以正己烷當標準作比較,則在THF中紅位移86-101 nm,苯中46-69 nm,薄膜態紅位移88-97 nm,粉末態紅位移81-104 nm,因此薄膜態、粉末態及THF中紅位移多寡相當。 在溶液態以正己烷中放光生命期最長,ANA-1、ANA-2和ANA-3分別為4.47、5.62和9.03 ns,其測量之螢光量子效益分別為13.1、16.0和33.5%;在苯中,生命期分別為1.31、2.24和8.72 ns,測量之螢光量子效益分別為3.1、6.6和16%;在THF中生命期最短,生命期ANA-2和ANA-3分別為0.69、1.18 ns,螢光量子效益ANA-1、ANA-2和ANA-3分別為0.29、0.85和0.66%,電荷轉移能階易被極性溶劑淬息,使螢光量子效益減少,生命期減短。 薄膜態之放光生命期ANA-1、ANA-2和ANA-3分別為1.79、1.80和10.1 ns,粉末態之放光生命期分別為1.87、3.46和10.2 ns。 由x-ray單晶繞射結構圖知分子會產生聚集,並且生命期隨所測波長增加而增加7-13%,因此聚集使生命期增長,聚集趨勢受分子極性及分子間的堆疊方式影響,若分子極性越大及分子間的排列不規則越不易生成聚集,若產生聚集可增加生命期且聚集分子之極性也比原分子之極性小,也可減少分子間的淬息現象。 因此1,8-萘二甲酸酐衍生物在製作成薄膜發光二極體,應形成聚集使其放射波長變紅,並且增加螢光量子效益及生命期。 tc 目錄 第一章 序論…………………………………………………………………………..1 第二章 實驗部分……………………………………………………………………..7 2-1 概論…………………………………………………………………………….7 2-2 樣品配置系統………………………………………………………………….7 2-3 雷射系統……………………………………………………………………….8 2-3-1 Mai Tai 雷射………………………………………………………………8 2-3-2 脈衝二極體雷射………………………………………………………….8 2-4 實驗步驟……………………………………………………………………….9 2-4-1 UV-VIS吸收光譜………………………………………………………….9 2-4-2 螢光放光光譜及激發光譜……………………………………………….9 2-4-3 分子螢光量子效益的測量……………………………………………….9 2-4-4 時間解析單一光子計數………………………………………………...10 第三章 原理…………………………………………………………………………18 3-1 準分子(excimer、exclipex)的定義…………………………………………..18 3-2 聚集…………………………………………………………………………...19 3-3 影響聚集形成之因素………………………………………………………...19 3-4 去活化路徑的競爭反應……………………………………………………...20 第四章 結果與討論…………………………………………………………………24 4-1 UV-VIS吸收光譜……………………………………………………………..24 4-2 螢光放光光譜………………………………………………………………...25 4-3 激發光譜……………………………………………………………………...26 4-3-1 溶液態的激發光譜……………………………………………………...26 4-3-2 薄膜態的激發光譜……………………………………………………...27 4-4 螢光量子效益計算…………………………………………………………..28 4-5 時間解析單一光子計數……………………………………………………..28 4-6 放光速率常數和非放光速率常數…………………………………………..31 4-7 討論…………………………………………………………………………...31 4-7-1 溶液態…………………………………………………………………...32 4-7-2 1,8-萘二甲酸酐衍生物在甲醇中……………………………………...38 4-7-3 薄膜態及粉末態………………………………………………………...38 第五章 結論………………………………………………………………………..77 參考文獻…………………………………………………………………………….78 附錄一……………………………………………………………………………….81 表目錄 表1-1. ANA衍生物電子放光裝置之性質………………………………………. ..4 表 4-1. 1,8-萘二甲酸酐之衍生物在不同狀態下1,8-萘二甲酸酐官能基之 lmaxAbs、lmaxPL和lmaxEL…………………………………………………...40 表4-2. 1,8-萘二甲酸酐之衍生物在溶劑中,不同濃度下吸收光譜在450 nm的莫耳吸收強度係數………………………………………………………..40 表4-3. 不同溶劑在25℃的折射率………………………………………………..40 表4-4. ANA-1和ANA-3在苯及THF中的螢光量子效益………………………41 表4-5. ANA-1、ANA-2和ANA-3在正己烷中的螢光量子效益……………….41 表4-6. 溶劑之ET(30)………………………………………………………………41 表4-7. ANA-1,ANA-2和ANA-3最低濃度時,在相同溶劑中之螢光量子效益.42 表4-8. ANA-1在溶劑中不同放射波長之螢光生命期…………………………..42 表4-9. ANA-2在溶劑中不同放射波長之螢光生命期…………………………..42 表4-10. ANA-3在溶劑中不同放射波長之螢光生命期…………………………43 表4-11. ANA-1、ANA-2和ANA-3在正己烷中不同放射波長之螢光生命期…43 表4-12. 此三個衍生物,在薄膜態及粉末態不同波長之螢光放光生命期……..44 表4-13. ANA-1正己烷溶液,不同螢光波長之生命期………………………….44 表4-14. ANA-2正己烷溶液,不同螢光波長之生命期…………………………44 表4-15. ANA-3正己烷溶液,不同螢光波長之生命期………………………….45 表4-16. 此三個衍生物濃度為6.5´10-6 M時,1,8-萘二甲酸酐色團之放光速率常數和非放光速率常數……………………………………………………..45 表4-16. 此三個衍生物濃度為2.0´10-4 M時,1,8-萘二甲酸酐色團之放光速率常數和非放光速率常數……………………………………………………..46 圖目錄 圖1-1:化合物ANA-1,ANA-2和ANA-3的結構式…………………………………5 圖1-2:三層電子放光裝置…………………………………………………………..6 圖2-1:1,8-萘二甲酸酐衍生物的合成方法…………………………………………15 圖2-2:時間解析單一光子計數電子系統………………………………………….15 圖2-3:TCSPC裝置圖Ⅰ……………………………………………………………16 圖2-4:TCSPC裝置圖Ⅱ……………………………………………………………16 圖2-5:TCSPC裝置圖Ⅲ……………………………………………………………17 圖2-6:逆褶積操作示範;F(t)表示實驗所得的螢光衰減訊號;i(t)為分子螢光放光,假設其為單一自然指數衰減;P(t¢)為儀器反應時間函數…………17 圖3-1:蒽在溶劑中,可能產生二種聚集型態……………………………………22 圖3-2:準分子和雙體的競爭機制………………………………………………….22 圖3-3:聚集分子的能階分佈………………………………………………………23 圖4-1-1:ANA-1 在不同溶劑中的UV-VIS吸收光譜,溶液濃度為3.8´10-6M..47 圖4-1-2:ANA-1 在不同溶劑中的UV-VIS吸收光譜,溶液濃度為2.0´10-4M..47 圖4-2-1:ANA-2 在不同溶劑中的UV-VIS吸收光譜,溶液濃度為3.8´10-6M..48 圖4-2-2:ANA-2 在不同溶劑中的UV-VIS吸收光譜,溶液濃度為2.0´10-4M..48 圖4-3-1:ANA-3在不同溶劑中的UV-VIS吸收光譜,溶液濃度為3.8´10-6M…49 圖4-3-2:ANA-3 在不同溶劑中的UV-VIS吸收光譜,溶液濃度為2.0´10-4M…49 圖4-4:ANA-3在苯中UV-VIS吸收光譜………………………………………….50 圖4-5:ANA-2在甲醇中的UV-VIS吸收光譜……………………………………50 圖4-6:ANA-1在不同溶劑中其螢光放光光譜……………………………………51 圖4-7:ANA-2在不同溶劑中其螢光放光光譜……………………………………51 圖4-8:ANA-3在不同溶劑中其螢光放光光譜……………………………………52 圖4-9:ANA-1在不同溶劑中之螢光放光光譜……………………………………52 圖4-10:ANA-2在不同溶劑中之螢光放光光譜………………………………….53 圖4-11:ANA-3在不同溶劑中之螢光放光光譜…………………………………..53 圖4-12: ANA-1-ANA-3薄膜的螢光放射光譜…………………………………...54 圖4-13:ANA-1在苯中之激發光譜………………………………………………..54 圖4-14:ANA-1在正己烷中之激發光譜…………………………………………..55 圖4-15:ANA-1在甲醇中之激發光譜……………………………………………..55 圖4-16:ANA-1在四氫呋喃中之激發光譜……………………………………….56 圖4-17:ANA-2在苯中之激發光譜………………………………………………..56 圖4-18:ANA-2在正己烷中之激發光譜…………………………………………..57 圖4-19:ANA-2在甲醇中之激發光譜……………………………………………..57 圖4-20:ANA-2在四氫呋喃中之激發光譜………………………………………..58 圖4-21:ANA-3在苯中之激發光譜………………………………………………..58 圖4-22:ANA-3在正己烷中之激發光譜…………………………………………..59 圖4-23:ANA-3在甲醇中之激發光譜……………………………………………..59 圖4-24:ANA-3在四氫呋喃中之激發光譜…………………………………………60 圖4-25:ANA-1在苯中的UV-VIS 吸收光譜和激發光譜………………………..60 圖4-26:ANA-1在不同溶劑中之激發光譜…………………………………………61 圖4-27:ANA-3在甲醇中之吸收光譜和激發光譜………………………………..61 圖4-28:ANA-1-ANA-3薄膜的激發光譜…………………………………………62 圖4-29:ANA-1苯溶液和薄膜的激發光譜………………………………………..62 圖4-30:ANA-1在苯中濃度為2.0´10-4 M,λem= 600 nm之螢光衰減曲線及單一自然指數函數擬合圖…………………………………………………..63 圖4-31:ANA-1在正己烷中濃度為2.0´10-4 M,λem= 600 nm之螢光衰減曲線及單一自然指數函數擬合圖……………………………………………..63 圖4-32:ANA-2在正己烷中濃度為2.0´10-4 M,λem= 530 nm之螢光衰減曲線及雙自然指數函數擬合圖………………………………………………..64 圖4-33:ANA-2在THF中濃度為2.0´10-4 M,λem= 530 nm之螢光衰減曲線及雙自然指數函數擬合圖…………………………………………………..64 圖4-34:ANA-3在苯中濃度為2.0´10-4 M,λem= 530 nm之螢光衰減曲線及單一自然指數函數擬合圖…………………………………………………..65 圖4-35:ANA-3在正己烷中濃度為2.0´10-4 M,λem= 530 nm之螢光衰減曲線及單一自然指數函數擬合圖……………………………………………..65 圖4-36:ANA-1 粉末,λem= 700 nm之螢光衰減曲線及單一自然指數函數擬合圖………………………………………………………………………..66 圖4-37:ANA-1在苯中之吸收光譜和激發光譜………………………………….66 圖4-38:ANA-2在苯中之吸收光譜和激發光譜………………………………….67 圖4-39:ANA-3在苯中之吸收光譜和激發光譜………………………………….67 圖4-40:ANA-2在正己烷中之吸收光譜和激發光譜…………………………….68 圖4-41:ANA-3在正己烷中之吸收光譜和激發光譜…………………………….68 圖4-42:ANA-2在四氫呋喃中之吸收光譜和激發光譜………………………….69 圖4-43:ANA-3在四氫呋喃中之吸收光譜和激發光譜………………………….69 圖4-44:此三個衍生物之能階分佈圖……………………………………………..70 圖4-45:固態ANA-3單晶X-ray繞射…………………………………………….70 圖4-46:ANA-1在THF中之螢光放光光譜…………………………………….…71 圖4-47:ANA-1在正己烷中之吸收光譜和激發光譜…………………………….71 圖4-48:在正己烷中之能階分佈圖………………………………………………..72 圖4-49:在苯中之能階分佈圖……………………………………………………..72 圖4-50:ANA-2和ANA-3放射光譜紅位移之波數隨溶劑極性變數之變化……73 圖4-51:相同化合物生命期隨ET(30)之變化圖…………………………………..73 圖4-52:相同化合物生命期隨polarity變化圖…………………………………….74 圖4-53:化合物在苯中速率常數隨濃度之變化圖…………………………………74 圖4-54:化合物在正己烷中速率常數隨濃度之變化圖……………………………75 圖4-55:化合物在THF中速率常數隨濃度之變化圖……………………………..75 圖4-56:三衍生物在不同溶劑中之速率常數隨濃度之變化圖……………………76rf 1. Pope, M.;Kallmann, H. P.;Magnante, P. J. Chem. Phys. 1963, 38, 2042. 2. a) Tang, C. W.;Van Slyke, S.A. Appl. Phys. Lett. 1987, 51, 913. b) Hung, L. S.;Chen, C. H. Materials Science and Engineering R, 2002, 39, 143 and references therein. 3. Baldo, M. A.;Lamansky, S.;Burrows, P. E.;Thomson, M. E.;Forest, S. R. Appl. Phys. Lett. 1999, 75, 4. 4. a) Alachi, C.;Tsutsui, T.;Saito, S. Appl. Phys. Lett. 1990, 57, 531. b) Kido, J.;Iizumi, Y. Chem. Lett. 1997, 693. 5. a) Hosokawa, C.;Tokailin, H.;Higashi, H.;Kusumoto, T. J. Appl. Phys. 1995, 78, 5831. b) Yang, Y.;Pei, Q.;Hegger, A. J. J. Appl. Phys. 1996, 79, 934. 6. Chen, C. H.;Tang, C. W. Appl. Phys. Lett. 2001, 79, 3711. 7. a) Shih, H. T.;Lin, C. H.;Shih, H. S.;Cheng, H. C. Adv. Mater. 2002, 14, 1409. b) Kim, Y. H.;Shin, D. C.;Kim, S. H.;Ko, C. H.;Yu, H. S.;Chae, Y. S.; Kwon, S. K. Adv. Mater. 2001, 13, 1690. c) Shi, J.;Tang, C. W. Appl. Phys. Lett. 2002, 80, 3201. 8. a) Tang, C.W.;Van Slyke, S.A.;Chen, C. H. J. Appl. Phys. 1989, 65, 3610. b) Zhang, X. H.;Chen, B. J.;Lin, X. Q.;Wong, O. Y.;Lee, C. S.;Kwong, H. L.;Lee, S. T.;Wu, S. K. Chem. Mater. 2001, 13, 1565. 9. Chen, C. H.;Tang, C. W.;Shi, J. Klubek, K. P. Thin Solid Films . 2000, 363, 327. 10. Tang, C. W.;VanSlyke, S. A.;Chen, C. H. J. Appl. Phys. 1989, 65, 3610. 11. Ko, C. W.;Tao, Y. T.;Danel, A.;Krzeminska, L.;Tomasik, P. Chem. Mater. 2001, 13, 241. 12. Mitschke, U.;Bäuerle, P. J.Mater.Chem. 2000, 10, 1471. 13. Yamamoto, T.;Nishiyama, M.;Koie, Y. Tetrahedron Lett. 1988, 39, 2367. 14. Aminul Islam, San-Hui Chi, Ching-Chi Cheng, I-Chia Chen and Chien- Hong Cheng. 15. Chen, C. H.;Tang, C. W.;Shi, J.;Klubek, K. P. Macromol. Symp. 1997, 125, 1. 16. Qian, X.;Zhu, K.;Chen, K. Dye and Pigments, 1994, 25, 109. 17. Wolarz, E.;Moryson, H.;Bauman, D. Displays, 1992, 13, 171. 18. Mai Tai Laser Manual. 19. PDL-800-B Laser Manual. 20. Gilmore, E. H.;Gibson, G. E.;Mcclure, D. S. J.Chem.Phys. 1952, 20, 829. 21. Forster, L. S.;Livingston, R. J .Chem. Phys. 1952, 20, 1315. 22. TimeHarp 200 Manual. 23. Birks, J. B. Rep.Prog.Phys. 1975, 38, 903. 24. Birks, J. B.;Lumb, M. D.;Munro, I. H. Proc. R. Soc. London. 1964, A280 , 289. 25. Chandross, E. A.;Ferguson, J.;McRae, E. G. J.Chem.Phys. 1966, 45, 3546. 26. Ko, C. W.;Tao, Y. T.;Danel, A.;Krzeminska, L.;Tomasik, P. Chem. Mater. 2001, 13, 241. 27. Hayashi, T.;Mataga, N.;Sakata, Y.;Misumi, S.;Morita, J.;Tanaka, J. Am. Chem. Soc. 1976, 98, 5910. 28. Lin, Z.;Priyadarshy, S.;Bartko, A.;Waldeck, D.H. Journal of Photochemistry and Photobiology A, 1997, 110, 131. 29. Guilford Jones,Ⅱ*,Valentine Ι, Vullev, J.Phys.Chem. A. 2001, 105, 6402 30. Mitschke, U.;Bäuerle, P. J.Mater.Chem. 2000, 10, 1471. 31. Maria, L.;Ferrer, F.;Levy D. Langmuir. 2003, 19, 2782. 32. Rousseau, E.;Van, M.;De Schryver, F. C. Langumuir, 2000, 16, 8865. 33. Bangal, P. R.;Raheem, I.;Peteanu, L. A. J.Phys.Chem. B. 2001 , 105, 12196. 34. Khairutdinov, R. F.;Serpone, N. J.Phys.Chem. B. 1999 , 103, 761. 35. Hughes, R. E.;Hart, S. P.;Smith, D. A. J.Phys.Chem. B. 2002 , 106, 6638. 36. Peng, K. Y. Chen, S. A.;Fann, W.S. J. Am. Chem. Soc. 2001, 123, 11388. 37. Matthew, M. J.;Farinha, P. S.;Winnik, M. A. Macromolecules, 1999, 32, 4895. 38. “Handbook of Fluorescence spectra of aromatic molecules” 2nd edition, I. B. Berlman Academic Press. 39. Becker, Ralph S.;Singh, Indra Sen;Jackson, Elizabeth A. The Journal of Chemical Physics, 1963, 38, 2144. 40. Edwin, P.;Crown;Charles, J. Varsel, Analytical Chemistry, 1963, 35, 189. 41. Hiroaki Baba and Satoshi Suzuki, Analytical Chemistry, 1961, 34, 82. 42. Guilford Jones, Ⅱ*,Valentine Ι, Vullev, J.Phys.Chem. A 2001, 105, 6402. 43. Betain dye was numbered 30 in the first publication by Dimoroth, Reichard et al.40 44. “Solvents and Solvent Effects in Organic Chemistry” 2nd edition, Christian Reichardt. 45. ET / (kcal.mol-1) = h.c.ν.NA ,h為浦郎克常數、c為光速、ν波數、NA為亞佛甲厥常數,ET(30)為溶劑極性的實驗變數。 46. Dimroth, K.;Reichard, C.;Siepmann, T.;Bohlmann, F. Liebigs Ann. Chem. 1963. 661, 1. 47. Pi-Tai, C.;Wei-Shan, Yu. J. Am. Chem. Soc. 2001, 123, 12119.id NH0920065006 sid 903470 cfn 0 / id NH0920065007 auc 廖志雄 tic (±)-Solidago Alcohol以及(±)-(13E)-2-Oxo-5a-cis-17a,20b-cleroda-3,13-diene-15-oic Acid之全合成 adc 劉行讓 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 234 kwc 有機合成 kwc 全合成 kwc 四加二環化反應 abc 本論文主要分為二部份:第一部份將報導我們在合成天然物solidago alcohol上之研究成果。首先利用市售之烯酮化合物46製備親二烯基化合物48,然後再令化合物48與反式-1,3-戊二烯進行具有高面向以及位置選擇性之Diels-Alder反應而取得環化產物49。化合物49經過一系列轉換反應之後可形成關鍵中間物62,而於酸性催化下,其可再經雙鍵轉移反應而形成酮類化合物74以及隨後的Wolff-Kishner反應進一步被還原成醚化合物75。最後再令化合物75依次進行醚之開環反應(75→76)、氧化反應(76→77)、而後3-呋喃基的引進(77→78)、以及最後的Birch還原反應(78→57),我們成功地完成(±)-solidago alcohol的首次全合成,並證明了此天然物之結構。 tc 目錄 中文摘要 i 英文摘要 iii 謝誌vii 縮寫對照表 vii 目錄 x 流程之目錄 xvi 圖之目錄 xviii 式之目錄 xix 表之目錄 xx 1 第一節 clerodane類天然物的生物及結構特性 1 第二節 cis-clerodane類天然物的合成文獻回顧 4 1.2.1 天然物15,16-epoxy-cis-cleroda-3,13(16),14- triene (8) 的全合成 4 1.2.2 天然物linaridial(21)的全合成 8rf 參考文獻 1. (a) Merritt, A. T.; Ley, S. V. Natural Product Reports 1992, 9, 243. (b) Tokoroyama, T. J. J. Synth. Org. Chem. Jpn. 1993, 51, 1164. 2. 李宗和,博士論文,國立清華大學,1996年。 3. Wilson, S. R.; Neubert, L. A.; Hoffman, J. C. J. Am. Chem. Soc. 1976, 98, 3669. 4. Sato, A.; Kurabayashi, M.; Nagahori, H.; Ogisa, A.; Mishima, H. Tetrahedron Lett. 1970, 11, 1095. 5. Pascual-Teresa, J. D.; Urones, J. G.; Marcos, I. S.; Bermejo, F.; Basabe, P. Phytochemistry 1983, 22, 2783. 6. McCrindle, R.; Nakamura, E.; Anderson, A. B. J. Chem. Soc., perkin Trans. 1 1976, 1590. 7. Tokoroyama, T.; Fujimori, K.; Shimizu, T.; Yamagiwa, Y.; Monden, M.; Iio, H. J. Chem. Soc., Chem. Commun. 1983, 1516. 8. Iio, H.; Monden, M.; Tokoroyama, T.; Okada, K. J. Chem. Soc., Chem. Commun. 1987, 358. 9. Tokoroyama, T.; Kanazawa, R.; Yamamoto, S.; Kamikawa, T.; Suenaga, H.; Miyabe, M. Bull. Chem. Soc. Jpn. 1990, 63, 1720. 10. Tokoroyama, T.; Tsukamoto, M.; Iio, H. Tetrahedron Lett. 1987, 28, 6645. 11. Piers, E.; Breau, M. L.; Han, Y.; Plourde, G. L.; Yeh, W. L. J. Chem. Soc., Perkin Trans. 1 1995, 963. 12. Nakamura, H. Wu, H.; Ohizumi, Y.; Hirata, Y. Tetrahedron Lett. 1984, 25, 2989. 13. Fang, N.; Yu, S.; Mabry, T. J.; Abboud, K. A.; Simonsen, S. H. Phytochemistry 1988, 27, 3187. 14. Avila, D.; Medina, J. D. Phytochemistry 1991, 30, 3474. 15. Lee, T. H.; Liao, C. C. Tetrahedron Lett. 1996, 37, 6869. 16. Liu, H. J.; Shia, K. S.; Han, Y.; Sun, D.; Wang, Y. Can. J. Chem. 1997, 75, 646. 17. Liu, H. J.; Shia, K. S. Tetrahedron 1998, 54, 13449. 18. (a) Anthonsen, T.; Henderson, M. S.; Martin, A.; McCrindle, R.; Murray, R. D. H. Acta. Chem. Scand. 1968, 22, 351. (b) Henderson, M. S.; McCrindle, R.; McMaster, D. Can. J. Chem. 1973, 51, 1346. 19. Liu, H. J.; Shia, K. S.; Han, Y.; Sun, D.; Wang, Y. Can. J. Chem. 1997, 75, 646. 20. (a) Bhatt, M. V.; Kulkarni, S. U. Synthesis 1983, 249. (b) Schmidt, A. H. Aldrichimica Acta 1981, 14, 31. (c) Olah, G. A.; Narang, S. C.; Gupta, B. G. B.; Malhotra, R. J. Org. Chem. 1979, 44, 1247. (d) Jung, M. E.; Lyster, M. A. J. Org. Chem. 1977, 42, 3761. (e) Niwa, H.; Hida, T; Yamada, K Tetrahedron Lett. 1981, 42, 4239. (f) Kulkarni, S. U.; Patil, V. D. Heterocycles 1982, 18, 163. (g) Bhatt, M. V. J. Organometal. Chem. 1978, 156, 221. (h) Boekman Jr., R. K.; Potenza, J. C. Tetrahedron Lett. 1985, 26, 1411. (i) King, P. F.; Stroud, S. G. Tetrahedron Lett. 1985, 26, 1415. 21. (a) Kornblum, N.; Jones, W. J.; Anderson, G. J. J. Am. Chem. Soc. 1959, 81, 4113. (b) Johnson, A. P.; Pelter, A. J. Chem. Soc. 1964, 520. (c) Ganem, B.; Boeckman Jr., R. K. Tetrahedron Lett. 1974, 11, 917. 22. Shia, K. S. Ph.D. Thesis, Department of Chemistry, University of Alberta, Canada, 1996. 23. Mihelich, D. E.; Eickhoff, D. J. J. Org. Chem. 1983, 48, 4135. 24. Tokoroyama, T.; Tsukamoto, M.; Asada, T.; Iio, H. Tetrahedron Lett. 1987, 28, 6645. 25. Ohba, M.; Kawase, N.; Fujii, T.; Aoe, K.; Okamura, K.; Fathi-Afshar, R.; Allen, T. M. Tetrahedron Lett. 1995, 36, 6101. 26. Kato, M.; Kosugi, H.; Ichiyanagi T.; Hagiwara, H.; Kodaira, A.; Kusakari, T.; Suzuki, T.; Ando, M.; Lee, J.; Drechsel, P.; Vogler B. Tetrahedron 2001, 57, 8243. 27. (a) Tsuji, J.; Nagashima, H.; Nemoto, H. Org. Synth. 1984, 62, 9. (b) Henry, P. M. J. Org. Chem. 1973, 38, 2415. (c) For general discussion and references, see: Henry, P. M. Palladium Catalyzed Oxidation of Hydrocarbons; D. Reidel: Dordrecht, Holland, 1980; pp 41-84. 28. (a) Horner, L.; Hoffman, H.; Wippel, H. G.; Klahre, G. Chem. Ber. 1959, 92, 2499. (b) Wadsworth, W. S., Jr.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733. 29. Liu, H. J.; Shia, K. S.; Zhu, J. L. Tetrahedron Lett. 1998, 39, 4183. 30. Judy, Y. Ph.D. Thesis, Department of Chemistry, University of Alberta, Canada, 1998. 31. (a) Grundon, M. F.; Henbest, H. B.; Scott, M. D. J. Chem. Soc. 1963, 1855. (b) Harwood, L. M.; Julia, M. Tetrahedron Lett. 1980, 21, 1743. 32. 許岱欣,博士論文,國立清華大學,2003年。 33. Schmidt, C.; Chishti, N. H.; Breining, T. Synthesis 1982, 391. 34. (a) Hagiwara, H.; Uda, H. J. Chem. Soc., Chem. Commun. 1988, 815. (b) Hagiwara, H.; Uda, H. J. Chem. Soc., Perkin Trans. 1 1991, 1803.id NH0920065007 sid 877417 cfn 0 / id NH0920065008 auc 許筑婷 tic 掌性過氧化釩錯合物催化不對稱亞 tic  tic 化反應的研究 adc 汪炳鈞 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 98 kwc 不對稱亞 kwc  kwc 化反應 abc 中文摘要 tc 目 錄 中文摘要………………………………………………………………….I Abstract………………………………………….……………………….II 謝誌……………………………………………………………………..III 目錄……………………………………………………………………..IV 第一章 緒論…………………………………………………………..…1 第二章 掌性過氧化釩錯合物催化不對稱亞?化反應的研究……..…5 2.1前言…………..……………………..……………………………5 2.2具掌性的亞?化合物的合成..…….………...………………....11 2.3研究動機…..……………………………………………………23 2.4三牙配位基的合成……………………..………………………23 2.5結果與討論……………………………………………………..28 2.6結論………..……………………………………………………40 第三章 實驗部份………………………………………………………41 3.1 一般敘述………………………………………………………41 3.2 利用(1R,2S)-indanol合成水楊酸衍生物之三牙配位基……..43 3.3 利用(S)-leucinol合成水楊酸衍生物之三牙配位基…………53 3.4 釩錯合物催化不對稱亞?化反應的標準實驗步驟…………56 參考文獻………………………………………………………………..57 附錄一 化合物之核磁共振光譜圖…………………………………..61 附錄二 HPLC分析之原始圖譜………………………………………88rf 參考文獻 1. (a) Knowles, W. S.; Sabacky, M. J. J. Chem. Soc., Chem. Commun. 1968, 1445. (b) Noyori, R. Science 1990, 248, 1194. (c) Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765. 2. (a) Kustin, K.; Macara, I. G. Comments Inorg. Chem. 1982, 2, 1. (b) Nechay, B. R. Annu. Rev. Pharmacol. Toxicol. 1984, 24, 501. (c) Stoecker, B. J.; Hopkins, L. L. Biochemistry of the Essential Ultratrace Elements; Plenum Press: New York, 1984; p 239. (d) Nielsen, F. H. Trace Minerals in Foods; Marcel Dekker: New York, 1988; p398. (e) McLaughlin, M. L.; Cronan, J. M., Jr; Schaller, T. R.; Snelling, R. D. J. Am. Chem. Soc. 1990, 112, 8949. (f) Rehder, D. Angew. Chem., Int. Ed. 1991, 30, 148. 3. Hirao, T. Chem. Rev. 1997, 97, 2707. 4. Evans, D. A.; Dinsmore, C. J.; Evrard, D. A.; DeVries, K. M. J. Am. Chem. Soc. 1993, 115, 6426. 5. (a) Hirao, T.; Takeuchi, H.; Ogawa, A.; Sakurai, H. Synlett 2000, 1658. (b) Hirao, T.; Hatano, B.; Imamoto, Y.; Ogawa, A. J. Org. Chem. 1999, 64, 7665. (c) Hirao, T.; Asahara, M.; Muguruma, Y.; Ogawa, A. J. Org. Chem. 1998, 63, 2812. (d) Hatano, B.; Ogawa, A.; Hirao, T. J. Org. Chem. 1998, 63, 9421. 6. Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974. 7. Togni, A. Organometallics 1990, 9, 3106 8. (a) Belokon, Y. N.; North, M.; Parsons, T. Org. Lett. 2000, 2, 1617. (b) Belokon, Y. N.; Green, B.; Ikonnikov, N. S.; North, M,; Parsons, T.; Tararon, V. I. Tetrahedron 2001, 57, 771. 9. Mioskowski, C.; Solladie, G. Tetrahedron 1980, 36, 227. 10. Lavielle, S.; Bory, S.; Moreau, B.; Luche, M.; Marquet, A. J. Am. Chem. Soc. 1978, 100, 1558. 11. (a) Marino, J. P.; Kim, M.-W.; Lawrence, R. J. Org. Chem. 1989, 54, 1784. (b) Marino, J. P.; Bogdan, S.; Kimura, K. J. Am. Chem. Soc. 1992, 114, 5566. (c) Arai, Y.; Yamamoto, M.; Koizumi, T. Chem. Lett. 1986, 1225. 12. Alonso, I.;Carretero, J. C.; Garcia Ruano, J. L.; Martin Cabrejas, L. M.; Lopez-Solera, I.; Raithby, P. R. Tetrahedron Lett. 1994, 35, 9461. 13. Posner, G. H.; Haces, A.; Harrison, W.; Kinter, C. M. J. Org. Chem. 1987, 52, 4836. 14. (a) Hirao, K.; Suzuki, Y.; Abe, I. Tetrahedron: Asymmetry 1999, 10, 1173. (b) Hirao, K.; Suzuki, Y.; Abe, I.; Kawagishi, R. Tetrahedron 2000, 56, 4701. 15. Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35, 984. 16. Cotton, H.; Elebring, T.; Larsson, M.; Li, L. Tetrahedron: Asymmetry 2000, 11, 3819. 17. Matsugi, M.; Fukuda, N.; Minamikava, J.-i.; Otsuka, S. Tetrahedron Lett. 1998, 35, 5591. 18. Andersson, M.; Willetts, A.; Allenmark, A. J. Org. Chem. 1997, 62, 8455. 19. Ruano, J. G.; Alemparte, C.; Aranda, M. T.; Zarzuelo, M. M. Org. Lett. 2003, 5, 75. 20. Pitchen, P.; Duñach, E.; Deshmukh, M. N.; Kagan, H. B. J. Am. Chem. Soc. 1984, 106, 8188. 21. Donnoli, M. I.; Superchi, S.; Rosini, C. J. Org. Chem. 1998, 63, 9392. 22. Yamanoi, Y.; Imamoto, T. J. Org. Chem. 1997, 62, 8560. 23. Katsuki, T.; Saito, B. Tetrahedron Lett. 2001, 42, 3873. 24. Palucki, M.; Handson, P.; Jacobsen, E. N. Tetrahedron Lett. 1992, 33, 7111. 25. Noda, K.; Hosoya, N.; Irie, R.; Yamashita, Y.; Katsuki, T. Tetrahedron 1994, 50, 9609. 26. Nagata, T.; Imagawy, K.; Yamada, T.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1995, 68, 3241. 27. Nakajima, K.; Kojima, M.; Fujita, J. Chem. Lett. 1986, 1483. 28. (a) Bolm, C.; Bienewald, F.; Harms, K. Synlett 1996, 775. (b) Bolm, C.; Luong, T. K. K.; Harms, K. Chem. Ber./Recueil 1997, 130, 887. 29. Bolm, C.; Bienewald, F. Angew. Chem. 1995, 107, 2883.; Angew. Chem., Int. Ed. 1995, 34, 2640. 30. Berrisford, D. J.; Bolm, C.; Sharpless, K. B. Angew. Chem. 1995, 107, 1159.; Angew. Chem., Int. Ed. 1995, 34, 1059. 31. Vetter, A. H.; Berkessel, A. Tetrahedron Lett. 1998, 39, 1741. 32. 黃德仁,博士論文,國立清華大學,1999年。 33. 陳培儂,專題報告,國立清華大學,2003年。 34. Ohta, C.; Shimizu, H.; Kondo, A.; Katsuki, T. Synlett 2002, 161. 35. Pelotier, B.; Anson, M. S.; Campbell, I. B.; Macdonald, S. J. F.; Priem, G.; Jackson, R. F. W. Synlett 2002, 1055. 36. Casiraghi, G.; Casnati, G.; Puglia, G.; Sartori, G.; Terenghi, G. J. Chem. Soc., Perkin 1 1987, 1862. 37. Ellan, J. A,; Bergman, R. G ;Blum, S. A. J. Org. Chem. 2002, 67, 150.id NH0920065008 sid 903478 cfn 0 / id NH0920065009 auc 李國興 tic 一些氮氧化物水解反應之研究 adc 儲三陽 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 104 kwc 氮氧化物 kwc 水解反應 abc 本論文探討含雙氮氧化物分子系統N2Ox(x =2~5)的水解反應,因此系統包含 : N2O4(和其異構物ONONO2)、N2O3(和其異構物ONONO)、N2O5、N2O2等分子的氣相水解反應,因為這些分子內包含有NO、NO2和NO3等部分所組合而成,因此,我們想要討論的重點是這些含雙氮氧化物分子的過渡態中,兩個解離部分的離子對構造的貢獻,我們的計算結果顯示親電子性NO > NO2 > NO3,這也可作為加入第二個水分子的催化反應效應之指標。 tc 目錄 第一章 緒論…………………………………1 第二章 計算方法…..………………………...7 第三章 文獻回顧與結果討論…………….…9 3.1 N2O4分子系統………………………………...9 3.1.1 N2O4催化異構化反應………………….10 3.1.2 O2N-NO2氣相水解反應……………......19 3.1.3 ONONO2 氣相水解反應…………….…21 3.2 、N2O3分子系統………………………………40 3.2.1 N2O3催化異構化反應…………….…….41 3.2.2 ON-NO2氣相水解反應…………...…….49 3.2.3 ONONO 氣相水解反應………………..58 3.3 、N2O5分子系統………………………………71 3.3.1 N2O5氣相水解反應……………………..72 3.4 、N2O2分子系統……………………………….78 3.4.1 N2O2氣相水解反應……………………..78 第四章 綜合討論…………………………...…88 參考資料………………………………………...103 圖目錄 Fig 3.1 Geometries of R, P, and TS for the isomerization reaction of N2O4 to ONONO2 …………………………………....12 Fig 3.2 Geometries of R, RC, TS, PC and P for the isomerization reaction of N2O4 to ONONO2 catalyzed by H2O………..14 Fig 3.3 Geometries of R, RC, TS, PC and P for the isomerization reaction of N2O4 to ONONO2 catalyzed by NO+………..15 Fig 3.4 Geometries of R, RC, Tmin, PC and P for the isomerization reaction of N2O4 to ONONO2 catalyzed by NO2+……….17 Fig 3.5 Geometries of R, RC, TS(5-ring), PC and P for the hydrolysis reaction of N2O4…………………………………………20 Fig 3.6 Geometries of R, RC, TS(4-ring), PC and P for the hydrolysis reaction of ON-ONO2……………………………………23 Fig 3.7 Geometries of R, RC, TS(6-ring), PC and P for the hydrolysis reaction of ON-ONO2……………………………………25 Fig 3.8 Geometries of R, RC, TS(4-ring), PC and P for the hydrolysis reaction of ONO-NO2……………………………………27 Fig 3.9 Geometries of R, RC, TS(6-ring), PC and P for the hydrolysis reaction of ONO-NO2……………………………………29 Fig 3.10 Geometries of R, RC, TS(5-ring), PC and P for the hydrolysis reaction of ONO-NO2…………………………………….32 Fig 3.11 Geometries of R, RC, TS(6-ring), PC and P for the hydrolysis reaction of ONO-NO2……………………………………..34 Fig 3.12 Geometries of R, RC, TS, PC and P for the water-assisted hydrolysis reaction of ON-ONO2………………………….37 Fig 3.13 Geometries of R, TS and P for the isomerization reaction of N2O3 to ONONO…………………………………………..42 Fig 3.14 Geometries of R, RC, TS, PC and P for the isomerization reaction of N2O3 to ONONO catalyzed by H2O…………...44 Fig 3.15 Geometries of R, Tmin, PC and P for the isomerization reaction of N2O3 to ONONO catalysis by NO+…………………….45 Fig 3.16 Geometries of R, RC, TS, PC and P for the isomerization reaction of N2O3 to ONONO catalyzed by NO2+………….47 Fig 3.17 Geometries of R, RC, TS(5-ring), PC and P for the hydrolysis reaction of N2O3……………………………………………50 Fig 3.18 Geometries of R, RC, TS(4-ring), PC and P for the hydrolysis reaction of N2O3……………………………………………51 Fig 3.19 Geometries of R, RC, TS(5-ring), PC and P for the hydrolysis reaction of N2O3……………………………………………53 Fig 3.20 Geometries of R, RC, TS(7-ring), PC and P for the water-assisted hydrolysis reaction of N2O3……………..…55 Fig 3.21 Geometries of R, RC, TS(4-ring), PC and P for the hydrolysis reaction of ONONO……………………………………….59 Fig 3.22 Geometries of R, RC, TS(5-ring), PC and P for the hydrolysis reaction of ONONO……………………………………….61 Fig 3.23 Geometries of R, RC, TS(6-ring), PC and P for the hydrolysis reaction of ONONO……………………………………….62 Fig 3.24 Geometries of R, RC, TS, PC and P for the water-assisted hydrolysis reaction of ONONO……………………………65 Fig 3.25 Geometries of R, RC, TS(4-ring), PC and P for the hydrolysis reaction of N2O5……………………………………………74 Fig 3.26 Geometries of R, RC, TS(6-ring), PC and P for the hydrolysis reaction of N2O5…………………………………………....75 Fig 3.27 Geometries of R, RC, TS(4-ring,cis), PC and P for the hydrolysis reaction of N2O2………………………………..80 Fig 3.28 Geometries of R, RC, TS(4-ring,trans), PC and P for the hydrolysis reaction of N2O2………………………………..81 Fig 3.29 Geometries of R, RC, TS(6-ring,cis), PC and P for the water-assisted hydrolysis reaction of N2O2……………..…84 Fig 3.30 Geometries of R, RC, TS(4-ring,trans), PC and P for the water-assisted hydrolysis reaction of N2O2………………..86 表目錄 Table 3.1 Relative energies (kcal/mol) of Reactant (R), Reactant Complex(RC), Transition State(TS), Product Complex(PC), and Product for the isomerization reaction of N2O4 to ONONO2 molecule catalyzed by either H2O, NO+ or NO2+……………………………………………………….18 Table 3.2 Relative energies (kcal/mol) of Reactant (R), Reactant Complex(RC), Transition State(TS), Product Complex(PC), and Product for the hydrolysis reaction of N2O4 ………….22 Table 3.3 Relative energies (kcal/mol) of Reactant (R), Reactant Complex(RC), Transition State(TS), Product Complex(PC), and Product for the hydrolysis reaction of ON-ONO2 …....26 Table 3.4 Relative energies (kcal/mol) of Reactant (R), Reactant Complex(RC), Transition State(TS), Product Complex(PC), and Product for the hydrolysis reaction of ONO-NO2 ….30 Table 3.5 Relative energies (kcal/mol) of Reactant (R), Reactant Complex(RC), Transition State(TS), Product Complex(PC), and Product for the hydrolysis reaction of ONONO2 and N2O4 ………………………………………………………35 Table 3.6 Relative energies (kcal/mol) of Reactant (R), Reactant Complex(RC), Transition state(TS), Product Complex(PC), and Product for the water-assisted hydrolysis reaction of ON-ONO2………………………………………….……..39 Table 3.7 Relative energies (kcal/mol) of Reactant (R), Reactant Complex(RC), Transition State(TS), Product Complex(PC), and Product for the isomerization reaction of N2O3 to ONONO molecule catalyzed by either H2O, NO+ or NO2+……………………………………………………...48 Table 3.8 Relative energies (kcal/mol) of Reactant (R), Reactant Complex(RC), Transition State(TS), Product Complex(PC), and Product for the hydrolysis reaction of N2O3 …..…….54 Table 3.9 Relative energies (kcal/mol) of Reactant (R), Reactant Complex(RC), Transition State(TS), Product Complex(PC), and Product for the hydrolysis reaction of N2O3 with one and two H2O molecules……………………………………….57 Table 3.10 Relative energies (kcal/mol) of Reactant (R), Reactant Complex(RC), Transition State(TS), Product Complex(PC), and Product for the hydrolysis reaction of ONONO molecule (TS- 4ring~6ring)…………………………………………64 Table 3.11 Relative energies (kcal/mol) of Reactant (R), Reactant Complex(RC), Transition State(TS), Product Complex(PC), and Product for the hydrolysis reaction of ONONO with one and two H2O molecules……………………………………67 Table 3.12 Relative energies (kcal/mol) of Reactant (R), Reactant Complex(RC), Transition State(TS), Product Complex(PC), and Product for the hydrolysis reaction of N2O3 and ONONO ……………………………………………….…68 Table 3.13 Relative energies (kcal/mol) of Reactant (R), Reactant Complex(RC), Transition State(TS), Product Complex(PC), and Product for the hydrolysis reaction of ONONO and ONONO2 ……………………………………………….…70 Table 3.14 Relative energies (kcal/mol) of Reactant (R), Reactant Complex(RC), Transition State(TS), Product Complex(PC), and Product for the hydrolysis reaction of N2O5 ………….77 Table 3.15 Relative energies (kcal/mol) of Reactant (R), Reactant Complex(RC), Transition State(TS), Product Complex(PC), and Product for the hydrolysis reaction of N2O2…………..82 Table 3.16 Relative energies (kcal/mol) of Reactant (R), Reactant Complex(RC), Transition State(TS), Product Complex(PC), and Product for the water-assisted hydrolysis reaction of N2O2………………………………………………………..87rf 參考資料 1. S. E. Schwartz, W. H. White, Adv. Environ. Sci. Technol., 1983, 12, 1-116. 2. A. M. Winer, H. W. Biermann, Res. Chem. Intermed., 1994, 20, 423. 3. J. Stutz, B. Alicke, J. Geophys. Res. Atoms., 2002, 107, 8192. 4. M. E. Jenkin, R. A. Cox, D. J. Williams, Atoms. Environ., 1998, 22, 487. 5. T. W. Kirchstetter, R. A. Harley, D. Littlejohn, Environ. Sci. Technol., 1996, 30, 2843 6. G. Lammel, J. N. Cape, Chem. Soc. Rev., 1996, 25, 361. 7. F. Sakamaki, S. Hatakeyama, H. Akimoto, Int. J. Chem. Kinet., 1983, 15, 1013. 8. J. N. Pitts, E. Sanhueza, Int. J. Chem. Kinet., 1984, 19, 919. 9. W. E. Kaiser, C. H. Wu, J. Phys. Chem., 1977, 81, 1701. 10. J. Notholt, J. Hjorth, F. Raes, Atoms. Environ., 1992, 26A, 211. 11. M. D. Andres-Hernandez, J. Notholt, J. Hjorth, O. Schrems, Atmos. Environ.,1996, 30, 175. 12. A. Chou, Z. Li, and F.-M. Tao, J. Phys. Chem. A., 1999, 103, 7848. 13. J. A. Snyder, D. Hanway, J. Mendez, J. Phys. Chem. A., 1999, 103, 9355. 14. B. J. Finlayson-Pitts, L. M. Wingen, A. L. Sumner, D. Syomin, and K. A. Ramazan, Phys. Chem. Chem. Phys., 2003, 5, 223. 15. J. G.. Calvert, G. Yarwood, Res. Chem. Intermed. 1994, 20, 463. 16. B. W. McClelland, G. Gundersen, and K. Hedberg, J. Chem. Phys., 1972, 56, 4541. 17. F. C. Fehsenfeld, E. E. Ferguson, Chem. Phys. Lett., 1969, 4, 73. 18. J.-H. Choi, K. T. Kuwata, J. Chem. Phys., 1994, 100, 7153. 19. E. Hamman, E. P. F. Lee, J. Phys. Chem. A., 2000, 104, 4571. 20. M. Mochida, B. J. Finlayson-Pitts, J. Phys. Chem. A., 2000, 104, 8038. 21. R. Atkinson, Atmos. Environ., 1986, 20, 408. 22. R. F. Holland, W. B. Ⅱ. Maier, J. Chem. Phys., 1983, 78, 2928. 23. T. H. F. Mentel. D. Bleilebens, A. Wahner, Atmos. Environ., 1996, 30, 4007. 24. A. G. Russell, G. J. McRae, G. R. Cass, Atmos. Environ., 1985, 19, 893. 25. T. G. Koch, J. Geophys. Res., 1997, 102, 1513. 26. M. A. Quinlan, J. Phys. Chem., 1990, 94, 3255. 27. D. R. Hanson, Res. Lett., 1997, 24, 1087. 28. H. Wincel, J. Phys. Chem., 1994, 98, 8606. 29. C. E. Dinerman, J. Chem. Phys.,1970, 53, 626. 30. B. G. Johnson, P. M. Gill, J. Phys. Chem., 1993, 98, 5612. 31. J. K. Park, H. Sun, Chemical. Physics., 2001, 263, 61.id NH0920065009 sid 873481 cfn 0 / id NH0920094005 auc 涂惠芳 tic 「活動引發之專注量」對非刻意單字學習成效之探討 adc 蘇怡如博士 ty 碩士 sc 國立清華大學 dp 外國語文學系 yr 92 lg 英文 pg 86 kwc 活動引發之專注量 kwc 非刻意單字學習 kwc 進行活動的時間 abc 對於許多學習外語的人而言,最感棘手的莫過於龐大的字彙量。一般認為大部分的單字是透過非刻意的方式從閱讀中習得,然而不同的學習活動對非刻意單字學習 (incidental vocabulary learning) 有何影響,仍有待研究證實。因此,本研究旨在檢驗由B. Laufer及J. H. Hulstijn兩位學者所提出的「專注量假說」(Involvement Load Hypothesis) 在非刻意單字學習上的成效。此假說的基本主張為:「活動引發之專注量」愈高,該活動對非刻意單字學習之成效愈好。同時,根據此假說,「進行活動的時間」(time-on-task) 是學習活動本身的特質,完成不同的活動所需的時間原本便各不相同,因此在評量不同活動對單字學習之成效時,並未將其列入考量因素之一。然而,先前的研究 (Hulstijn & Laufer, 2001) 發現對非刻意單字學習較有效的活動卻也是較費時的活動。換言之,在上述的研究中,受試者較佳的單字學習成效可能是因為進行活動的時間較長,而非活動引發較高的專注量。因此,為了探討「進行活動的時間」對非刻意單字學習有何影響,本研究亦將此因素列為檢驗的重點之一。簡言之,研究問題共有兩點: tc ABSTRACT (Chinese)…………………………………………………………i ABSTRACT (English)………………………………………………………iii ACKNOWLEDGEMENTS……………………………………………………………v TABLE OF CONTENTS…………………………………………………………vi LIST OF TABLES…………………………………………………………viii LIST OF FIGURES……………………………………………………………ix CHAPTER ONE INTRODUCTION……………………………………………1 1.1 The Involvement Load Hypothesis…………………………………3 1.2 The Goals of the Present Study……………………………………3 1.3 Organization of the Thesis…………………………………………4 CHAPTER TWO REVIEW OF THE LITERATURE……………………………5 2.1 Theoretical Concepts Associated with Incidental Learning…5 2.1.1 Implicit/Explicit Learning, Knowledge, and Instruction…5 2.1.2 Incidental/Intentional Learning………………………………14 2.1.3 Depth-of-Processing………………………………………………19 2.2 Empirical Research on Incidental Vocabulary Acquisition…23 2.3 The Involvement Load Hypothesis…………………………………28 CHAPTER THREE METHODOLOGY…………………………………………36 3.1 The Goals of the Present Study…………………………………36 3.2 Method…………………………………………………………………37 3.2.1 Participants………………………………………………………37 3.2.2 Instruments…………………………………………………………37 3.2.2.1 The Target Words………………………………………………37 3.2.2.2 The Reading Text………………………………………………38 3.2.2.3 The Posttests…………………………………………………39 3.2.3 The Tasks……………………………………………………………40 3.2.4 Procedures…………………………………………………………43 3.2.5 Data Analysis………………………………………………………44 3.3 The Predictions………………………………………………………45 CHAPTER FOUR RESULTS AND DISCUSSION……………………………47 4.1 Results and Discussion of Research Question 1………………47 4.1.1 Results………………………………………………………………47 4.1.2 Discussion…………………………………………………………50 4.2 Results and Discussion of Research Question 2………………52 4.2.1 Results………………………………………………………………52 4.2.2 Discussion…………………………………………………………56 CHAPTER FIVE CONCLUSION……………………………………………60 5.1 Summary of the Findings……………………………………………60 5.2 Implications…………………………………………………………61 5.3 Limitations of the Study and Suggestions for Future Research……………………………………………………………………64 REFERENCES…………………………………………………………………67 APPENDIX A Reading text…………………………………………………77 APPENDIX B Immediate posttest…………………………………………79 APPENDIX C Delayed posttest……………………………………………80 APPENDIX D Work sheet for Task 1……………………………………81 APPENDIX E Work sheet for Task 2……………………………………83 APPENDIX F Work sheet for Task 3……………………………………85rf Baddeley, A. D. (1978). The trouble with levels: A reexamination of Craik and Lockhart's framework for memory research. Psychological Review, 85, 139-152. Baddeley, A. (1998). Human memory: Theory and practice. Boston: Allyn and Bacon. Berry, D. C. (1994). Implicit and explicit learning of complex tasks. In N. Ellis (Ed.), Implicit and explicit learning of languages (pp. 147-164). London: Academic Press. Bialystok, E. (1979). Explicit and implicit judgments of L2 grammaticality. Language Learning, 29, 81-103. Chaffin, R., & Herrmann, D. J. (1983). A classroom demonstration of depth of processing. Teaching of Psychology, 10, 105-107. Cho, K., & Krashen, S. D. (1994). Acquisition of vocabulary from the Sweet Valley Kids Series: Adult ESL acquisition. Journal of Reading, 37, 662-667. Chomsky, N. (1986). Knowledge of language: Its nature, origin and use. New York: Praeger. Coady, J. (1997a). L2 vocabulary acquisition: A synthesis of the research. In J. Coady & T. Huckin (Eds.), Second language vocabulary acquisition (pp. 273-290). New York: Cambridge University Press. Coady, J. (1997b). L2 vocabulary acquisition through extensive reading. In J. Coady & T. Huckin (Eds.), Second language vocabulary acquisition (pp. 225-237). New York: Cambridge University Press. Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11, 671-684. Craik, F. I. M., & Tulving, E. (1975). Depth of processing and the retention of words in episodic memory. Journal of Experimental Psychology: General, 104, 268-294. Dickinson, J. (1978). Retention of intentional and incidental motor learning. Research Quarterly, 49, 437-441. Diekhoff, G. M., Brown, P. J., & Dansereau, D. F. (1982). A prose learning strategy training program based on network and depth-of-processing models. Journal of Experimental Education, 50, 180-184. Doughty, C., & Williams, J. (1998). Pedagogical choices in focus on form. In C. Doughty & J. Williams (Eds.), Focus on form in classroom second language acquisition (pp. 197-262). New York: Cambridge University Press. Elley, W. B. (1989). Vocabulary acquisition from listening to stories. Reading Research Quarterly, 24, 174-187. Ellis, N. (1994a). Implicit and explicit language learning: An overview. In N. Ellis (Ed.), Implicit and explicit learning of languages (pp. 1-43). London: Academic Press. Ellis, N. (1994b). Vocabulary acquisition: The implicit ins and outs of explicit cognitive mediation. In N. Ellis (Ed.), Implicit and explicit learning of languages (pp. 211-282). London: Academic Press. Ellis, N. (2002). Frequency effects in language processing. Studies in Second Language Acquisition, 24, 143-188. Ellis, R. (1993). The structural syllabus and second language acquisition. TESOL Quarterly, 27, 91-113. Ellis, R. (1994). Implicit/explicit knowledge and language pedagogy. TESOL Quarterly, 28, 166-172. Ellis, R. (1995). Modified oral input and the acquisition of word meanings. Applied Linguistics, 16, 409-441. Ellis, R., & He, X. (1999). The roles of modified input and output in the incidental acquisition of word meanings. Studies in Second Language Acquisition, 21, 285-301. Ellis, R., Tanaka, Y., & Yamazaki, A. (1994). Classroom interaction, comprehension, and the acquisition of L2 word meanings. Language Learning, 44, 449-491. Eysenck, M. W. (1982). Incidental learning and orienting tasks. In C. R. Puff (Ed.), Handbook of research methods in human memory and cognition (pp. 197-228). New York: Academic Press. Eysenck, M. W. (1993). Principles of cognitive psychology. Hove, UK: Lawrence Erlbaum Associates. Eysenck, M. W., & Eysenck, M. C. (1979). Processing depth, elaboration of encoding, memory stores, and expended processing capacity. Journal of Experimental Psychology: Human Learning and Memory, 5, 472-484. Fukkink, R. G., Blok, H., & de Glopper, K. (2001). Deriving word meaning from written context: A multicomponential skill. Language Learning, 51, 477-496. Gass, S. (1999). Incidental vocabulary learning. Studies in Second Language Acquisition, 22, 319-333. Glover, J. A., Rankin, J., Langner, N., Todero, C., & Dinnel, D. (1985). Memory for sentences and prose: Levels-of-processing or transfer-appropriate-processing? Journal of Reading Behavior, 17, 215-234. Henriksen, B. (1998). Three dimensions of vocabulary development. Studies in Second Language Acquisition, 21, 303-317. Herman, P. A., Anderson, R. C., Pearson, P. D., & Nagy, W. E. (1987). Incidental acquisition of word meaning from expositions with varied text features. Reading Research Quarterly, 22, 263-284. Huckin, T., & Coady, J. (1999). Incidental vocabulary acquisition in a second language. Studies in Second Language Acquisition, 21, 181-193. Hulstijn, J. H. (1992). Retention of inferred and given word meanings: Experiments in incidental vocabulary learning. In P. J. L. Arnaud & H. Béjoint (Eds.), Vocabulary and applied linguistics (pp. 113-125). London: Macmillan. Hulstijn, J. H. (1997). Mnemonic methods in foreign language vocabulary learning: Theoretical considerations and pedagogical implications. In J. Coady & T. Huckin (Eds.), Second language vocabulary acquisition (pp. 203-224). Cambridge: Cambridge University Press. Hulstijn, J. H. (2001). Intentional and incidental second language vocabulary learning: A reappraisal of elaboration, rehearsal and automaticity. In P. Robinson (Ed.), Cognition and second language instruction (pp. 258-286). Cambridge: Cambridge University Press. Hulstijn, J. H., Hollander, M., & Greidanus, T. (1996). Incidental vocabulary learning by advanced foreign language students: The influence of marginal glosses, dictionary use, and reoccurrence of unknown words. The Modern Language Journal, 80, 327-339. Hulstijn, J. H., & Laufer, B. (2001). Some empirical evidence for the involvement load hypothesis in vocabulary acquisition. Language Learning, 51, 539-558. Hulstijn, J. H., & Trompetter, P. (1998). Incidental learning of second language vocabulary in computer-assisted reading and writing tasks. In D. Albrechtsen, B. Henriksen, I. M. Mees & E. Poulsen (Eds.), Perspectives on foreign and second language pedagogy (pp. 191-200). Odense, Denmark: Odense University Press. Joe, A. (1995). Text-based tasks and incidental vocabulary learning. Second Language Research, 11, 149-158. Joe, A. (1998). What effects do text-based tasks promoting generation have on incidental vocabulary acquisition? Applied Linguistics, 19, 357-377. Johnstone, T., & Shanks, D. R. (2001). Abstractionist and processing accounts of implicit learning. Cognitive Psychology, 42, 61-112. Knight, S. (1994). Dictionary use while reading: The effects on comprehension and vocabulary acquisition for students of different verbal abilities. The Modern Language Journal, 78, 285-299. Konopak, B., Sheard, C., Longman, D., Lyman, B., Slaton, E., Atkinson, R. et al. (1987). Incidental versus intentional word learning from context. Reading Psychology, 8, 7-21. Krashen, S. D. (1982). Principles and practice in second language acquisition. New York: Pergamon. Krashen, S. D. (1985). The Input Hypothesis: Issues and implications. London: Longman. Krashen, S. D. (1989). We acquire vocabulary and spelling by reading: Additional evidence for the input hypothesis. The Modern Language Journal, 73, 440-464. Krashen, S. D. (2002). Explorations in language acquisition and use: The Taipei lectures. Taipei, Taiwan: Crane. Laufer, B. (1992). How much lexis is necessary for reading comprehension? In P. J. L. Arnaud & H. Béjoint (Eds.), Vocabulary and applied linguistics (pp. 126-132). London: Macmillan. Laufer, B. (2001). Reading, word-focused activities and incidental vocabulary acquisition in a second language. Prospect, 16, 44-55. Laufer, B., & Hulstijn, J. H. (2001). Incidental vocabulary acquisition in a second language: The construct of task-induced involvement. Applied Linguistics, 22, 1-26. Laufer, B., & Nation, P. (1999). A vocabulary-size test of controlled productive ability. Language Testing, 16, 33-51. Lee, C. (2003). The effect of involvement load on English vocabulary acquisition in an incidental learning situation. Unpublished master’s thesis, National Tsinghua University, Hsinchu, Taiwan. Liu, W., Yun, J., Chen, N., Tsao, S., McCormack, S., & Wheeler, N. (Eds.). (2002). Reading master. Taipei: AMC Publishers. Long, M. H. (1981). Input, interaction and second language acquisition. In H. Winitz (Ed.), Native language and foreign language acquisition (pp. 259-278). New York: New York Academy of Sciences. Long, M. H. (1988). Instructed interlanguage development. In L. Beebe (Ed.), Issues in second language acquisition: Multiple perspectives (pp. 115-141). New York: Newbury House. Loschky, L. (1994). Comprehensible input and second language acquisition: What is the relationship? Studies in Second Language Acquisition, 16, 303-323. Luppescu, S., & Day, R. R. (1993). Reading, dictionaries, and vocabulary learning. Language Learning, 43, 263-287. MacWhinney, B. (1997). Implicit and explicit processes. Studies in Second Language Acquisition, 19, 277-281. McLaughlin, B. (1965). “Intentional” and “incidental” learning in human subjects: The role of instructions to learn and motivation. Psychological Bulletin, 63, 359-376. Nagy, W. E., Herman, P. A., & Anderson, R. C. (1985). Learning words from context. Reading Research Quarterly, 20, 233-253. Nation, I. S. P. (1990). Teaching and learning vocabulary. Boston: Heinle & Heinle Publishers. Nation, I. S. P. (2001). Learning vocabulary in another language. Cambridge: Cambridge University Press. Nation, P., & Coady, J. (1988). Vocabulary and reading. In R. Carter & M. McCarthy (Eds.), Vocabulary and language teaching. Harlow: Longman. Nation, P., & Newton, J. (1997). Teaching vocabulary. In J. Coady & T. Huckin (Eds.), Second language vocabulary acquisition (pp. 238-254). Cambridge: Cambridge University Press. Nation, P., & Wang Ming-tzu, K. (1999). Graded readers and vocabulary. Reading in a Foreign Language, 12, 355-379. Nelson, D. L., Walling, J. R., & McEvoy, C. L. (1979). Doubts about depth. Journal of Experimental Psychology: Human Learning and Memory, 5, 24-44. Nelson, T. O. (1977). Repetition and depth of processing. Journal of Verbal Learning and Verbal Behavior, 16, 151-171. Newton, J. (1995). Task-based interaction and incidental vocabulary learning: A case study. Second Language Research, 11, 159-177. Paribakht, T. S., & Wesche, M. (1997). Vocabulary enhancement activities and reading for meaning in second language vocabulary development. In J. Coady & T. Huckin (Eds.), Second language vocabulary acquisition (pp. 174-200). New York: Cambridge University Press. Postman, L. (1964). Short-term memory and incidental learning. In A. W. Melton (Ed.), Categories of human learning (pp. 145-201). New York: Academic Press. Prince, P. (1996). Second language vocabulary learning: The role of context versus translations as a function of proficiency. The Modern Language Journal, 80, 478-493. Qian, D. D. (1999). Assessing the roles of depth and breadth of vocabulary knowledge in reading comprehension. The Canadian Modern Language Review, 56, 282-307. Read, J., & Chapelle, C. A. (2001). A framework for second language vocabulary assessment. Language Testing, 18, 1-32. Robinson, P. (1996). Learning simple and complex second language rules under implicit, incidental, rule-search, and instructed conditions. Studies in Second Language Acquisition, 18, 27-67. Robinson, P. (1997). Individual differences and the fundamental similarity of implicit and explicit adult second language learning. Language Learning, 47, 45-99. Roediger, H. L. (1990). Implicit memory. American Psychologist, 45, 1043-1056. Schmidt, N. (2000). Vocabulary in language teaching. Cambridge: Cambridge University Press. Schmidt, R. (1990). The role of consciousness in second language learning. Applied Linguistics, 11, 129-158. Schmidt, R. (1993). Awareness and second language acquisition. Annual Review of Applied Linguistics, 13, 206-226. Schmidt, R. (1994). Implicit learning and the cognitive unconscious: Of artificial grammars and SLA. In N. Ellis (Ed.), Implicit and explicit learning of languages (pp. 165-209). London: Academic Press. Schmidt, R. (2001). Attention. In P. Robinson (Ed.), Cognition and second language instruction (pp. 3-32). Cambridge: Cambridge University Press. Shelton, D., & Newhouse, R. (1981). Incidental learning in a paired-associate task. Journal of Experimental Education, 50, 36-38. Singleton, D. (1999). Exploring the second language mental lexicon. Cambridge: Cambridge University Press. Stern, H. H. (1992). Issues and options in language teaching. Oxford: Oxford University Press. Swain, M. (1985). Communicative competence: Some roles of comprehensible input and comprehensible output in its development. In S. M. Gass & C. G. Madden (Eds.), Input in second language acquisition (pp. 235-253). Rowley, MA: Newbury. Swain, M. (1995). Three functions of output in second language learning. In G. Cook & B. Seidlhover (Eds.), Principles and practice in the study of language (pp. 125-144). Oxford: Oxford University Press. Swanborn, M. S. L., & de Glopper, K. (2002). Impact of reading purpose on incidental word learning from context. Language Learning, 52, 95-117. Van Daalen-Kapteijns, M., Elshout-Mohr, M., & de Glopper, K. (2001). Deriving the meaning of unknown words from multiple contexts. Language Learning, 51, 145-181. Watanabe, Y. (1997). Input, intake, and retention: Effects of increased processing on incidental learning of foreign language vocabulary. Studies in Second Language Acquisition, 19, 287-307. Wesche, M. B., & Paribakht, T. S. (2000). Reading-based exercises in second language vocabulary learning: An introspective study. The Modern Language Journal, 84, 196-213. Williams, J. N. (1999). Memory, attention, and inductive learning. Studies in Second Language Acquisition, 21, 1-48. Winitz, H. (1996). Grammaticality judgment as a function of explicit and implicit instruction in Spanish. The Modern Language Journal, 80, 32-46. Winter, B., & Reber, A. S. (1994). Implicit learning and the acquisition of natural languages. In N. Ellis (Ed.), Implicit and explicit learning of languages (pp. 115-145). London: Academic Press.id NH0920094005 sid 905258 cfn 0 / id NH0920105001 auc 黃文智 tic 具蛋白 tic & tic #37238;激活接受器1細胞膜內羧基端尾部的蛋白 tic & tic #37238;激活接受器4之特性分析 adc 傅化文 ty 碩士 sc 國立清華大學 dp 生命科學系 yr 92 lg 英文 pg - kwc 凝血蛋白 kwc & kwc #37238 kwc 蛋白 kwc & kwc #37238 kwc 激活接受器 kwc 細胞膜內羧基端尾部 kwc 鑲嵌接受器 kwc 信號傳遞 abc 凝血蛋白酶 (thrombin) 是以絲氨酸 (serine) 為活化基,在血管受傷時所產生的多功能性蛋白酶。在凝血功能、炎症及增生反應中可能皆扮演重要角色。細胞對於凝血蛋白酶的反應有部分經由被蛋白酶激活的G蛋白連結接受器(G protein-coupled protease-activated receptors (PARs))調控。PAR1、PAR3 和PAR4是三個受凝血蛋白酶不可逆活化的接受器,其中的PAR1 和PAR4負責調控人類血小板中凝血蛋白酶的信號傳遞。活化的PAR4引起較PAR1為強且持續的胞內信號且其進入細胞內的速度也較PAR1為慢。再者,PAR1的細胞膜內羧基端尾部(cytoplasmic carboxyl-terminal tail)也被發現會參與信號的去敏感化並負責PAR1進入細胞內後運送至溶酶體(lysosome)的過程。因此,具有PAR1細胞膜內羧基端尾部的PAR4鑲嵌接受器(PAR4/PAR1 chimera),在被活化後可能進行類似PAR1的信號傳遞並類似PAR1快速進入細胞內。欲探討此可能性,我測試PAR4/PAR1鑲嵌接受器活化後的信號傳遞與進入細胞內的情形。我發現活化後的PAR4/PAR1鑲嵌接受器其信號傳遞與進入細胞的情形不同於PAR1。而出乎意料的是,PAR4/PAR1鑲嵌接受器呈囊泡狀遍佈在細胞質內而不在細胞膜上。這些結果指出將PAR4膜內羧基端尾部取代為PAR1膜內羧基端尾部會導致PAR4/PAR1鑲嵌接受器滯留在細胞質內。 tc Abstract in English………………………………………………………………………………..1 Abstract in Chinese……………………………………………………………………………….3 Introduction……………………………………………………………………………………….4 Materials and Methods…………………………………………………………………………..13 Results…………………………………………………………………………………………...20 Discussion……………………………………………………………………………………….25 References……………………………………………………………………………………….29 Figure 1. Activation-dependent internalization of PAR1, PAR4 and PAR4/PAR1 chimera in HeLa cells…………………………………………………………………………..34 Figure 2. Diagram illustration of the chimeric receptor, PAR4 bearing cytoplasmic carboxyl-terminal tail of PAR1………………………………………………………35 Figure 3. Activation-dependent phosphoinositide hydrolysis of HeLa cells stably expressing PAR1 and PAR4……………………………………………………………………...36 Figure 4. Activation-dependent phosphoinositide hydrolysis of PAR1, PAR4, and PAR4/PAR1 chimera in HeLa cells………………………………………………………………..37 Figure 5. The protein expression of PAR1, PAR4, and PAR4/PAR1 chimera in HeLa cells….38 Figure 6. The cellular distribution of PAR1, PAR4, and PAR4/PAR1 chimera in HeLa cells...40 Figure 7. Activation-dependent internalization of HeLa cells stably expressing PAR1 and PAR4……………………………………………………………………….………41rf Andersen, H., Greenberg, D. L., Fujikawa, K., Xu, W., Chung, D. W. and Davie, E. W. (1999). Protease-activated receptor 1 is the primary mediator of thrombin-stimulated platelet procoagulant activity. Proc Natl Acad Sci U S A 96, 11189-93. Barr, A. J., Brass, L. F. & Manning, D. R. (1997). Reconstitution of receptors and GTP-binding regulatory proteins (G proteins) in Sf9 cells. A direct evaluation of selectivity in receptor—G protein coupling. J Biol Chem. 272, 2223—2229. Brass, L. F., Pizarro, S., Ahuja, M., Belmonte, E., Blanchard, N., Stadel, J. M. and Hoxie, J. A. (1994). Changes in the structure and function of the human thrombin receptor during receptor activation, internalization, and recycling. J Biol Chem 269, 2943-52. Brass, S. (2001). Cardiovascular biology. Platelets and proteases. Nature 413, 26-7. Chen, J., Ishii, M., Wang, L., Ishii, K. and Coughlin, S. R. (1994). Thrombin receptor activation. Confirmation of the intramolecular tethered liganding hypothesis and discovery of an alternative intermolecular liganding mode. J Biol Chem 269, 16041-5. Coughlin, S.R., Vu, T-K. H., Hung, D. T., Wheaton, V. I. (1992). Characterization of a functional thrombin receptor. J Clin Invest 89, 351-355. Coughlin, S. R. (1998). Sol Sherry lecture in thrombosis: how thrombin 'talks' to cells: molecular mechanisms and roles in vivo. Arterioscler Thromb Vasc Biol 18, 514-8. Coughlin, S. R. (1999). How the protease thrombin talks to cells. Proc Natl Acad Sci U S A 96, 11023-7. Coughlin, S. R. (2000). Thrombin signalling and protease-activated receptors. Nature 407, 258-64. Covic, L., Gresser, A. L., Kuliopulos, A. (2000) Biphasic kinetics of activation and signaling for PAR1 and PAR4 thrombin receptors in platelets. Biochemistry 39, 5458-67. Castro-Fernandez, C., Conn, P. M. (2002). Regulation of the gonadotropin-releasing hormone receptor (GnRHR) by RGS proteins: role of the GnRHR carboxyl-terminus. Mol Cell Endocrinol. 191, 149-56. Faruqi, T. R., Weiss, E. J., Shapiro, M. J., Huang, W. and Coughlin S. R. (2000) Structure- function analysis of protease-activated receptor 4 tethered ligand peptides─determinants of specificity and utility in assays of receptor function. J Biol Chem 275, 19728—19734. Grand, R. J., Turnell, A. S., Grabham, P. W. (1996) Cellular consequences of thrombin-receptor activation. Biochem J 313, 353-68. Hein, L., Ishii, K., Coughlin, S. R. and Kobilka, B. K. (1994). Intracellular targeting and trafficking of thrombin receptors. A novel mechanism for resensitization of a G protein-coupled receptor. J Biol Chem 269, 27719-26. Heding, A., Vrecl, M., Bogerd, J., McGregor, A., Sellar, R., Taylor, P. L. Eidne, K. A. (1998). Gonadotropin-releasing hormone receptors with intracellular carboxyl-terminal tails undergo acute desensitization of total inositol phosphate production and exhibit accelerated internalization kinetics. J Biol Chem 273, 11472-7. Hoxie, J. A., Ahuja, M., Belmonte, E., Pizarro, S., Parton, R. and Brass, L. F. (1993). Internalization and recycling of activated thrombin receptors. J Biol Chem 268, 13756-63. Hung, D. T., Wong, Y. H., Vu, T. K. and Coughlin, S. R. (1992). The cloned platelet thrombin receptor couples to at least two distinct effectors to stimulate phosphoinositide hydrolysis and inhibit adenylyl cyclase. J Biol Chem 267, 20831-4. Ishii, K., Hein, L., Kobilka, B., Coughlin, S. R. (1993). Kinetics of thrombin receptor cleavage on intact cells. Relation to signaling. J Biol Chem 268, 9780-6. Ishii, K., Chen, J., Ishii, M., Koch, W. J., Freedman, N. J., Lefkowitz, R. J., Coughlin, S. R. (1994) Inhibition of thrombin receptor signaling by a G-protein coupled receptor kinase. Functional specificity among G-protein coupled receptor kinases. J Biol Chem 269, 1125-30. Ishihara, H., Connolly, A. J., Zeng, D., Kahn, M. L., Zheng, Y. W., Timmons, C., Tram, T. and Coughlin, S. R. (1997). Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386, 502-6. Kahn, M. L., Zheng, Y. W., Huang, W., Bigornia, V., Zeng, D., Moff, S., Farese, R. V., Jr., Tam, C. and Coughlin, S. R. (1998). A dual thrombin receptor system for platelet activation. Nature 394, 690-4. Kahn, M. L., Nakanishi-Matsui, M., Shapiro, M. J., Ishihara, H. and Coughlin, S. R. (1999). Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest 103, 879-87. Klages, B., Brandt, U., Simon, M. I., Schultz, G., Offermanns, S. (1999). Activation of G12/G13 results in shape change and Rho/Rho-kinase-mediated myosin light chain phosphorylation in mouse platelets. J Cell Biol 144, 745-54. Nakanishi-Matsui, M., Zheng, Y. W., Sulciner, D. J., Weiss, E. J., Ludeman, M. J. and Coughlin, S. R. (2000). PAR3 is a cofactor for PAR4 activation by thrombin. Nature 404, 609-13. Nielsen, S. M., Nielsen, L. Z., Hjorth, S. A., Perrin, M. H., Vale, W. W. (2000) Constitutive activation of tethered-peptide/corticotropin-releasing factor receptor chimeras. Proc Natl Acad Sci U S A. 97, 10277-81. Nystedt, S., Emilsson, K., Wahlestedt, C., and Sundelin, J. (1994) Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci USA 91, 9208—9212. Offermanns, S., Laugwitz, K. L., Spicher, K. and Schultz, G. (1994) G proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets. Proc Natl Acad Sci USA 91, 504—508. Rasmussen, U. B., Vouret-Craviari, V., Jallat, S., Schlesinger, Y., Pages, G., Pavirani, A., Lecocq, J. P., Pouyssegur, J. and Van Obberghen-Schilling, E. (1991). cDNA cloning and expression of a hamster alpha-thrombin receptor coupled to Ca2+ mobilization. FEBS Lett 288, 123-8. Sabri, A., Guo, J., Elouardighi, H., Darrow, A. L., Andrade-Gordon, P., Steinberg, S. F. (2003). Mechanisms of protease-activated receptor-4 actions in cardiomyocytes. Role of Src tyrosine kinase. J Biol Chem 278, 11714-20. Shapiro, M. J., Weiss, E. J., Faruqi, T. R. and Coughlin, S. R. (2000). Protease-activated receptors 1 and 4 are shut off with distinct kinetics after activation by thrombin. J Biol Chem 275, 25216-21. Solum, N. O. (1999). Procoagulant expression in platelets and defects leading to clinical disorders. Arterioscler Thromb Vasc Biol 19, 2841-6. Tesfamariam, B. (1994). Distinct receptors and signaling pathways in alphathrombin-receptor and thrombin-receptor peptide-induced vascular contractions. Circ Res 74, 930—936. Trejo, J., Hammes, S. R. and Coughlin, S. R. (1998). Termination of signaling by protease-activated receptor-1 is linked to lysosomal sorting. Proc Natl Acad Sci U S A 95, 13698-702. Trejo, J. and Coughlin, S. R. (1999). The cytoplasmic tails of protease-activated receptor-1 and substance P receptor specify sorting to lysosomes versus recycling. J Biol Chem 274, 2216-24. Trejo, J., Altschuler, Y., Fu, H-W., Mostov, K. E. and Coughlin, S. R. (2000). Protease-activated receptor-1 down-regulation: a mutant HeLa cell line suggests novel requirements for PAR1 phosphorylation and recruitment to clathrin-coated pits. J Biol Chem 275, 31255-65. von Zastrow, M. and Kobilka, B. K. (1992). Ligand-regulated internalization and recycling of human beta 2-adrenergic receptors between the plasma membrane and endosomes containing transferrin receptors. J Biol Chem 267, 3530-8. Vouret-Craviari, V., Boquet, P., Pouyssegur, J., Van Obberghen-Schilling, E. (1998) Regulation of the actin cytoskeleton by thrombin in human endothelial cells: role of Rho proteins in endothelial barrier function. Mol Biol Cell 9, 2639-53. Vu, T. K., Hung, D. T., Wheaton, V. I. and Coughlin, S. R. (1991). Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64, 1057-68. Woolkalis, M. J., DeMelfi, T. M., Jr., Blanchard, N., Hoxie, J. A. and Brass, L. F. (1995). Regulation of thrombin receptors on human umbilical vein endothelial cells. J Biol Chem 270, 9868-75. Xu, W. F., Andersen, H., Whitmore, T. E., Presnell, S. R., Yee, D. P., Ching, A., Gilbert, T., Davie, E. W. and Foster, D. C. (1998). Cloning and characterization of human protease-activated receptor 4. Proc Natl Acad Sci U S A 95, 6642-6. Zhang, J., Barak, L. S., Anborgh, P. H., Laporte, S. A., Caron, M. G., Ferguson, S. S. (1999) Cellular trafficking of G protein-coupled receptor/beta-arrestin endocytic complexes. J Biol Chem 274, 10999-1006.id NH0920105001 sid 904243 cfn 0 / id NH0920105002 auc 曾建璋 tic 第一部份 具細胞毒性之核醣核酸水解 tic & tic #37238;與肝素複合物晶體結構之研究 第二部份 台灣雨傘節之類毒蕈鹼毒素BM14及BM8X光繞射分析 adc 孫玉珠 ty 碩士 sc 國立清華大學 dp 生命科學系 yr 92 lg 英文 pg 62 kwc 核醣核酸水解 kwc & kwc #37238 kwc 肝素 kwc 類毒蕈鹼毒素 abc 具細胞毒性之核醣核酸水解酶與肝素 tc Contents Part I Chapter 1 Introduction 1.1 Preface 1 1.2 RNase A 2 1.3 Ribonuclease Inhibitor 3 1.4 Onconase 4 1.5 Rana catesbeiana Ribonucleases 5 1.6 Base Specificity 6 1.7 Structural Stability 7 1.8 Cytotoxicity, Antitumor Activity, and Lectin Activity 8 1.9 Glycosaminoglycans 9 Chapter 2 Materials and Methods 2.1 Purification and Crystallization 10 2.1 Data Collection and Process 10 2.3 Data Evaluation 11 2.4 Molecular Replacement by AmoRe 12 2.5 Model Building and Refinement 13 Chapter 3 Results 3.1 Data Statistics and Space Group Determination 14 3.2 Self Rotation 15 3.3 Structure Determination 15 3.4 Model building and Refinement 15 3.5 Crystal Structure of RC-RNase3-heparin complex 16 Chapter 4 Discussion 4.1 Different Binding Mode of RC-Rnases 17 4.2 Superimposition Different RC-RNase complexes 17 4.3 Superimposition of Lgands from Different RC-RNase Complexe 18 Figures and Legends 19 Tables 33 Reference 37 Part II Chapter 1 Introduction 1.1 Preface 40 1.2 BM14 and BM8 42 Chapter 2 Materials and Methods 2.1 Sample preparation 43 2.2 Crystallization 43 2.3 Data Collection and Data Process 43 Chapter 3 Results 3.1 Space group determination of BM14 45 3.2 Space group determination of BM8 46 Chapter 4 Discussion 4.1 The extra long loop II 47 4.2 Future Works 47 Figures and Legends 48 Tables 57 Reference 61rf Aguilar, C. F., Thomas, P., Moss, D., Mills, A., Palmer, R. A. (1991). "Novel nonproductively bound ribonuclease inhibitor complexes -- high resolution X-ray refinement studies on the binding of RNase A to cytidylyl-2',5'guanosine (2',5'CpG) and deoxycytidylyl- 3',5'-guanosine (3',5'CpdG)." Biochem. Biophys. Acta 1118: 6-20. Ardelt, W., Mikulski, S. M., Shogen, K. (1991). "Amino acid sequence of an anti-tumor protein from Ranapipiens oocytes and early embryos." J. Biol. Chem. 266: 245-251. Boix, E., Wu, Y., Vasandani, V. M., Saxena, S. K., Ardelt, W., Ladner, J., Youle, R. J. (1996). "Role of the N terminus in RNase A homologues: differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity." J. Mol. Biol. 257: 992-1007. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, N., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., Warren, G. L. (1998). "Crystallography & NMR System: A New Software Suite for Macromolecular Structure Determination." Acta Cryst. D54: 905-921. Cafaro V., Bracale A., Di Maro A., Sorrentino S., D'Alessio G., Di Donato A. (1998). "New muteins of RNase A with enhanced antitumor action." FEBS Letters, 437: 149-152. D'Alessio, G. R., J. F. (1997). Ribonuclease: Structures and Functions. San Diego, Academic Press. Fedorov A. A., J.-M. D., Fedorov E., Sirakova D., Graf I., Almo S. C. (1996). "Ionic interactions in crystalline bovine pancreatic ribonuclease A." Biochemistry 35: 15962-15979. Irie, M., Nitta, K., Nonaka, T. (1998). "Biochemistry of frog ribonucleases." Cell. Mol. Life Sci. 54: 775-784. Laskowski, R. A., MacArthur, M. W., Moss, D., Thornton, J. M. (1993). "PROCHECK: a program to check the stereochemical quality of protein structures." J. Appl. Crystallog. 26: 283-291. Lee F. S., Vallee, B. L. (1993). "Structure and action of mammalian ribonuclease (angiogenin) inhibitor." Prog. Nuvleic Acid Res. Mol. Biol. 44: 1-30. Leland P. A., Staniszewski, K. E., Kim B.-M., Raines R. T. (2000). "A synapomorphic disulfide bond is critical for the conformational stability and cytotoxicity of an amphibian ribonuclease." FEBS Lett. 477: 203-207. Leland, P. A., Schultz, L., Kim, B. M., Raines, R. T. (1998). "Ribonuclease A variants with potent cytotoxic activity." Proc. Natl Acad. Sci. USA, 95: 10407-10412. Leland, P. A. Raines, R. T. (2001). "Cancer chemotherapy-ribonucleases to the rescue." Chem. Biol. 8: 405-413. Leu, Y. J., Chern,S. S., Wang, S. C., Hsiao, Y. Y., Amiraslanov, I., Liaw, Y. C., Liao, Y. D. (2003). "Residues Involved in the Catalysis, Base Specificity, and Cytotoxicity of Ribonuclease from Rana catesbeiana Based upon Mutagenesis and X-ray Crystallography." J. Biol. Chem. 278(9): 7300-7309. Liao, Y. D., Huang, H. C., Leu, Y. J., Wei, C. W., Tang, P. C., Wang, S. C. (2000). "Purification and cloning of cytotoxic ribonucleases from Rana catesbeiana (bullfrog)." Nucleic Acids Res. 28: 4097-4104. Liu, J. H., Liao, Y. D., Sun, Y. J. (2001). "Crystallization and preliminary X-ray diffraction analysis of cytotoxic ribonucleases from bullfrog Rana catesbeiana." Acta Cryst. D57: 1697-1699. Lubert Stryer (1994) "Chapter18: Carbohydrates" Stryer's Biochemistry Matthews, B. W. (1968). "Solvent content of protein crystals." J. Mol. Biol. 33: 491-497. McRee, D. E. (1999). "XtalView/Xfit-A Versatile Program for Manipulating Atomic Coordinates and Electron Density." J. Struct. Biol. 125: 156-165. Navaza, J. (1994). "AMoRe: an Automated Package for Molecular Replacement." Acta Cryst. A50: 157-163. Nitta, K., Ozaki, K., Ishikawa, M., Furusawa, S., Hosono, M., Kawauchi, H., Sasaki, K., Takayanagi, Y., Tsuiki, S., Hakomori, S. (1994). "Inhibition of cell proliferation by Rana catesbeiana and R. japonica lectins belonging to the ribonuclease superfamily." Cancer Res. 54: 920-927. Okabe, Y., Katayama, N., Iwama, M., Watanabe, H., Ohgi, K., Irie, M., Nitta, K., Kawauchi, H., Takayanagi, Y., Oyama, F. (1991). "Comparative base specificity, stability, and lectin activity of two lectins from eggs of Rana catesbeiana and R. japonica and liver ribonuclease from R. catesbeiana." J. Biochem. 109: 786-790. Otwinowski, Z., Minor, W. (1997). "Processing of X-ray Diffraction Data Collected in Oscillation Mode." Methods Enzymol. 276: 307-326. Vitagliano, L., Merlino, A., Zagari, A., Mazzarella, L. (2000). "Productive and nonproductive binding to ribonuclease A: X-ray structure of two complexes with uridylyl(2',5')guanosine." Protein Sci. 9: 1217-1225. Aird, S. D., Womble, G. C., Yates III, J. R., Griffin, P. R. (1999). "Primary structure of gamma-bungarotoxin, a new postsynaptic neurotoxin from the venom of Bungarus multicinctus." Toxicon 37: 609-625. Chang, L. S., Lin, S. R., Wang, J. J., Hu, W. P., Wu, B. N., Huang, H. B. (2000). "Structure-function studies on Taiwan cobra long neurotoxin homolog." Biochim. Biophys. Acta. 1480: 293-301. Chiappinelli, V. A. (1991). "κ-Neurotoxins and α-neurotoxins: effects on neuronal nicotinic acetylcholine receptors. In: Snake Toxins, Harvey, A.L. ed." New York, USA: Pergamon Press 223-258. Chung, C., Wu, B. N., Yang, C. C., Chang, L. S. (2002). "Muscarinic Toxin-like Proteins from Taiwan Banded Krait (Bungarus multicinctus) Venom: purification, Characterization and Gene Organization." Biol. Chem. 383: 1397-1406. Dewan, J. C., Grant, G. A., Sacchettini, J. C. (1994). "Crystal structure of κ-bungarotoxin at 2.3 resolution." Biochemistry 33: 13147-13154. Endo, T., Tamiya, N. (1991). "Structure-function relationship of postsynaptic neurotoxins from snake venoms. In: Snake Toxins, (Harvey, A. L., ed." New York, USA: Pergamon Press: 165-222. Harel, M., Kleywegy, G. J., Ravelli, R. B., Silman, I., Sussman, J. L. (1995). "Crystal structure of an acethylcholinesterase-fasciculin complex: interaction of a three-finger toxin from snake venom with its target." Structure 3: 1355-1366. Love, R. V., Stroud, R. M. (1986). "The crystal structure of alpha-bungarotoxin at 2.5 resolution: relation to solution structure and binding to acetylcholine receptor." Protein Eng. 1: 37-46. Menez, A. (1998). "Functional architectures of animal toxins: a clue to drug design?" Toxicon 36: 1557-1572. Ohno, M., Menez, R., Ogawa, T., Danse, J. M., Shimohigashi, Y., Fromen, C., Ducancel, F., Zinn-Justin, S., Le Du, M. H., Boulain, J. C., Tamiya, T., Menez, A. (1998). "Molecular evolution of snake toxins: is the functional diversity of snake toxins associated with a mechanism of accelerated evolution?" Prog. Nucleic Acid Res. Mol. Biol. 59: 307-364. Qian, Y. C., Fan, C. Y., Gong, Y., Yang, S. L. (1999). "cDNA sequence analysis of a novel member of the three loop protein family from the Chinese continental banded krait." Biosci. Biotechnol. Biochem. 63: 940-942. Tsetlin, V. I. (1999). "Snake venom alpha-heurotoxins and other "three-finger" proteins." Eur. J. Biochem. 264(281-286). Yu, C., Bhaskaran, R., Chung, L. C., Yang, C. C. (1993). "Solution conformation of cobrotoxin: a nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing study." Biochemistry 32(2123-2136).id NH0920105002 sid 904274 cfn 0 / id NH0920105003 auc 詹鎮熊 tic 蛋白質區域結構側寫與結構熵值:利用區域結構側寫進行蛋白質比對以及其他應用 adc 呂平江 adc 黃鎮剛 ty 博士 sc 國立清華大學 dp 生命科學系 yr 92 lg 英文 pg 187 kwc 結構熵值 kwc 解構溫度 kwc 溫度係數 kwc 氫氘代換 abc 蛋白質區域序列結構關聯在結構與計算生物學上是一個很有趣的主題。蛋白質區域結構預測是從無到有 (ab initio) 結構預測中必要的一部份。大部分區域結構預測方法都預設蛋白質區域序列與結構之間是一個 N 對1 的對應關聯。然而,對資料庫的觀察以及某些實驗的結果暗示了蛋白質的區域序列有可能在不同的蛋白質環境中形成不同的構形 (conformations)。一段區域序列的結構有可能是與所處環境相關的;因此有可能用一個結構機率分佈來描述區域結構。蛋白質序列的區域結構側寫 (profile) 可以作為一個描述蛋白質區域序列結構關聯的新方法。一段區域序列並不是只有對應到一個單一結構,而是對應到一個(結構的)機率分佈。區域結構側寫的構形變異程度可以用資訊理論 (information theory) 來衡量。結構熵值 (structure entropy) 可以作為一段區域序列的結構保守程度的指標。結構熵值和蛋白質的熱穩定性有對應的關聯。結構熵值和蛋白質的溫度係數與氫原子代換速率的比較顯示結構熵值對蛋白質熱穩定性的貢獻可能來自於機動性 (flexibility) 的變化。區域結構側寫更進一步被應用到蛋白質的比較上。由於這樣的比較是基於結構資訊,因此相較於傳統序列比對方法而言,預期能看出更多結構上的關聯。 tc Chapter 1 Backgrounds and Motivations 1 1.1 Protein sequence-structure relationships 1 1.2 Representative set of protein chains 2 1.3 Building blocks of protein structures 4 1.4 Local sequence-structure relationships and ab initio structure predictions 5 1.5 Local structure profiles, structure entropies, and their applications 6 References 9 Chapter 2 Local Structure Profiles and Structure Entropy 16 2.1 Backgrounds 16 2.2 Material and Methods 18 2.3 Local structure profiles and structure entropies of selected datasets 26 Reference 42 Chapter 3 Structure Entropy and Protein Thermal Stability 45 3.1 Thermal stabilizing factors 46 3.2 Material and Methods 50 3.3 Correlation between structure entropy and thermal stabilization 55 3.4 Implications of structure entropy for protein thermal stabilization 62 Reference 68 Chapter 4 Structure Entropy and Protein Flexibility 73 4.1 Structure entropy and temperature factor (B-values) of proteins 74 4.2 Thermal stabilization and protein flexibility probed by NMR 86 4.3 Structure entropy and amide proton exchange rate of proteins 89 4.4 Flexibility and structure entropy of proteins 103 References 109 Chapter 5 Protein Comparisons with Local Structure Profiles 115 5.1 Background 115 5.2 Methods 116 5.3 Results of parameter optimization and performances of these parameters 124 5.4 Further improvements for protein comparisons 134 5.5 Local structure profiles: strength and weakness 139 References 142 Appendix A Selection of pseudocounts 146 Appendix B Constructs of thermal stable mutants 150 Appendix C Proteins used in the analysis of structure entropy/temperature factor correlations 165 Appendix D Proteins used in the evaluation of profiled protein comparisons 179rf 1. Anfinsen, C. B. (1973). Principles that govern the folding of protein chains. Science 181, 223-230. 2. Vitkup, D., Melamud, E., Moult, J. & Sander, C. (2001). Completeness in structural genomics. Nat. Struct. Biol. 8, 559-566. 3. Kabsch, W. & Sander, C. (1984). On the use of sequence homologies to predict protein structure: Identical pentapeptides can have completely different conformations. Proc. Natl. Acad. Sci. U. S. A. 81, 1075-1078. 4. Cohen, B. I., Presbell, S. R. & Cohen, F. E. (1993). Origins of structural diversity within sequentially identical hexapeptides. Protein Sci. 2, 2134-2145. 5. Mezei, M. (1998). Chameleon sequences in the PDB. Protein Eng. 11, 411-414. 6. Sudarsanam, S. (1998). Structural diversity of sequentially identical subsequences of proteins: Identical octapeptides can have different conformations. Proteins 30, 228-231. 7. Minor, D. L. J. & Kim, P. S. (1996). Context-dependent secondary structure formation of a designed protein sequence. Nature 380, 730-734. 8. Levitt, M. (1992). Accurate modeling of protein conformation by automatic segment matching. J. Mol. Biol. 226, 507-533. 9. Micheletti, C., Seno, F. & Maritan, A. (2000). Recurrent oligomers in proteins: An optimal scheme reconciling accurate and concise backbone representations in automated folding and design studies. Proteins 40, 662-674. 10. de Brevern, A. G., Etchebest, C. & Hazout, S. (2000). Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks. Proteins 41, 271-287. 11. Fechteler, T., Dengler, U. & Schomburg, D. (1995). Prediction of protein three-dimensional structures in insertion and deletion regions: A procedure for searching data bases of representative protein fragments using geometric scoring criteria. J. Mol. Biol. 253, 114-131. 12. Bystroff, C. & Baker, D. (1998). Prediction of local structure in proteins using a library of sequence-structure motifs. J. Mol. Biol. 281, 565-577. 13. Hunter, C. G. & Subramaniam, S. (2003). Protein local structure prediction from sequence. Proteins 50, 572-579. 14. Yang, A.-S. & Wang, L.-y. (2003). Local structure prediction with local structure-based sequence profiles. Bioinformatics 19, 1267. 15. Han, K. F. & Baker, D. (1996). Global properties of the mapping between local amino acid sequence and local structure in proteins. Proc. Natl. Acad. Sci. U. S. A. 93, 5814-5818. 16. Argos, P. (1987). Analysis of sequence-similar pentapeptides in unrelated protein tertiary structures. Strategies for protein folding and a guide for site-directed mutagenesis. J. Mol. Biol. 197, 331-348. 17. Kabsch, W. & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577-2673. 18. Frishman, D. & Argos, P. (1995). Knowledge-based protein secondary structure assignment. Proteins 23, 566-579. 19. Hubbard, T. J. P., Ailey, B., Brenner, S. E., Murzin, A. G. & Chothia, C. (1999). SCOP: A structural classification of proteins database. Nucleic Acids Res. 27, 254-256. 20. Karchin, R., Cline, M., Mandel-Gutfreund, Y. & Karplus, K. (2003). Hidden markov models that use predicted local structure for fold recognition: Alphabets of backbone geometry. Proteins 51, 504-514. 21. Kang, H. S., Kurochkina, N. A. & Lee, B. (1993). Estimation and use of protein backbone angle probabilities. J. Mol. Biol. 229, 448-460. 22. Han, K. F. & Baker, D. (1995). Recurring local sequence motifs in proteins. J. Mol. Biol. 251, 176-187. 23. Oliva, B., Bates, P. A., Querol, E., Aviles, F. X. & Sternberg, M. J. E. (1997). An automated classification of the structure of protein loops. J. Mol. Biol. 266, 814-830. 24. Fetrow, J. S., Palumbo, M. J. & Berg, G. (1997). Patterns, structures, and amino acid frequencies in structural building blocks, a protein secondary structure classification scheme. Proteins 27, 249-271. 25. Barlow, T. W. & Richards, W. G. (1996). A one-dimensional representation of protein structure. J Mol Graph 14, 232-234. 26. Brenner, S. E., Koehl, P. & Levitt, M. (2000). The ASTRAL compendium for protein structure and sequence analysis. Nucleic Acids Res. 28, 254-256. 27. Tatusov, R. L., Altschul, S. F. & Koonin, E. V. (1994). Detection of conserved segments in proteins. Iterative scanning of sequence databases with alignment blocks. Proc. Natl. Acad. Sci. U. S. A. 91, 12091-12095. 28. Sadreyev, R. & Grishin, N. (2003). COMPASS: A tool for comparison of multiple protein alignments with assessment of statistical significance. J. Mol. Biol. 326, 317-336. 29. Ramachandran, G. N. & Sasisekharan, V. (1968). Conformation of polypeptides and proteins. Adv. Protein Chem. 23, 283-438. 30. Rackovsky, S. (1990). Quantitative organization of the known protein x-ray structures. I. Methods and short-length-scale results. Proteins 7, 378-402. 31. Solis, A. D. & Rackovsky, S. (2000). Optimized representation and maximal information in proteins. Proteins 38, 149-164. 1. Cambillau, C. & Claverie, J. M. (2000). Structural and genomic correlates of hyperthermostability. J. Biol. Chem. 275, 32383-32386. 2. Nakashima, H., Fukuchi, S. & K., N. (2003). Compositional changes in RNA, DNA and proteins for bacterial adaptation to higher and lower temperatures. J. Biochem. 133, 507-513. 3. Vieille, C. & Zeikus, G. J. (2001). Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65, 1-43. 4. Zhou, H.-X. & Dong, F. (2003). Electrostatic contributions to the stability of a thermophilic cold shock protein. Biophysical Journal 84, 2216-2222. 5. Mozo-Villarias, A., Cedano, J. & Querol, E. (2003). A simple electrostatic criterion for predicting the thermal stability of proteins. Protein Eng. 16, 279-286. 6. Vogt, G. & Argos, P. (1997). Protein thermal stability: Hydrogen bonds or internal packing? Fold. Design 2, S40-S46. 7. Szilagyi, A. & Zavodszky, P. (2000). Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: Results of a comprehensive survey. Structure 8, 493-504. 8. Strop, P. & Mayo, S. L. (2000). Contribution of surface salt bridges to protein stability. Biochemistry 39, 1251-1255. 9. Lazaridis, T., Lee, I. & Karplus, M. (1997). Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin. Protein Sci. 6, 2589-2605. 10. Georlette, D., Damien, B., Blaise, V., Depiereux, E., Uversky, V. N., Gerday, C. & Feller, G. (2003). Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases. J. Biol. Chem. 278, 37015-37023. 11. Fitter, J. & Heberle, J. (2000). Structural equilibrium fluctuations in mesophilic and thermophilic a-amylase. Biophysical Journal 79, 1629-1636. 12. Jaenicke, R. (2000). Do ultrastable proteins from hyperthermophiles have high or low conformational rigidity? Proc. Natl. Acad. Sci. U. S. A. 97, 2962-2964. 13. Das, R. & Gerstein, M. (2000). The stability of thermophilic proteins: A study based on comprehensive genome comparison. Funct Integr Genomics 1, 76-88. 14. Gromiha, M. M., Oobatake, M. & Sarai, A. (1999). Important amino acid properties for enhanced thermostability from mesophilic to thermophilic proteins. Biophys. Chem. 82, 51-67. 15. Haney, P. J., Badger, J. H., Buldak, G. L., Reich, C. I., Woese, C. R. & Olsen, G. J. (1999). Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proc. Natl. Acad. Sci. U. S. A. 96, 3578-3583. 16. Fukuchi, S. & Nishikawa, K. (2001). Protein surface amino acid compositions distinctively differ between thermophilic and mesophilic bacteria. J. Mol. Biol. 309, 835-843. 17. Chen, J., Lu, Z., Sakon, J. & Stites, W. E. (2000). Increasing the thermostability of staphylococcal nuclease: Implication for the origin of protein thermostability. J. Mol. Biol. 303, 125-130. 18. Haney, P. J., Stees, M. & Konisky, J. (1999). Analysis of thermal stabilizing interactions in mesophilic and thermophilic adenylate kinases from the genus Methanococcus. J. Biol. Chem. 274, 28453-28458. 19. Kannan, N. & Vishveshwara, S. (2000). Aromatic clusters: A determinant of thermal stability of thermophilic proteins. Protein Eng. 13, 753-761. 20. Burley, S. K. & Petsko, G. A. (1985). Aromatic-aromatic interaction: A mechanism of protein structure stabilization. Science 229, 23-28. 21. Dougherty, D. A. (1996). Cation-p interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp. Science 271, 163-168. 22. Shirley, B. A., Stanssens, P., Hahn, U. & Pace, C. N. (1992). Contribution of hydrogen bonding to the conformational stability of ribonuclease T1. Biochemistry 31, 725-732. 23. Perl, D., Mueller, U., Heinemann, U. & Schmid, F. X. (2000). Two exposed amino acid residues confer thermostability on a cold shock protein. Nat. Struct. Biol. 7, 380-3. 24. Martin, A., Kather, I. & Schmid, F. X. (2002). Origins of the high stability of an in vitro-selected cold-shock protein. J. Mol. Biol. 318, 1341-1349. 25. Kumar, S. & Nussinov, R. (1999). Salt bridge stability in monomeric proteins. J. Mol. Biol. 293, 1241-1255. 26. Bogin, O., Peretz, M., Hacham, Y., Korkhin, Y., Frolow, F., Kalb(GILBOA), A. J. & Burstein, Y. (1998). Enhanced thermal stability of Clostridium beijerinckii alcohal dehydrogenase after strategic substitution from amino acid residues with prolines from the homologous thermophilic Thermoanaerobacter brockii alcohol dehydragenase. Protein Sci. 7, 1156-1163. 27. Vieille, C., Epting, K. L., Kelly, R. M. & Zeikus, J. G. (2001). Bivalent cations and amino-acid composition contribute to the thermostability of Bacillus licheniformis xylose isomerase. Eur. J. Biochem. 268, 6291-6301. 28. Kimura, S., Nakamura, H., Hashimoto, T., Oobatake, M. & Kanaya, S. (1992). Stabilization of Escherichia coli ribonuclease HI by strategic replacement of amino acid residues with those from the thermophilic counterpart. J. Biol. Chem. 267, 21535-21542. 29. Brown, B. M. & Sauer, R. T. (1999). Tolerance of Arc repressor to multiple-alanine substitutions. Proc. Natl. Acad. Sci. U. S. A. 96, 1983-1988. 30. Hasegawa, J., Shimahara, H., Mizutani, M., Uchiyama, S., Arai, H., Ishii, M., Kobayashi, Y., Ferguson, S. J., Sambongi, Y. & Igarashi, Y. (1999). Stabilization of Pseudomonas aeruginosa cytochrome c551 by systematic amino acid substitutions based on the structure of thermophilic Hydrogenbacter thermophilus cytochrome c552. J. Biol. Chem. 274, 37533-37537. 31. Culajay, J. F., Blaber, S. I., Khurana, A. & Blaber, M. (2000). Thermodynamic characterization of mutants of human fibroblast growth factor 1 with an increased physiological half-life. Biochemistry 39, 7153-7158. 32. Shortle, D. (1986). Guanidine hydrochloride denaturation studies of mutant forms of staphylococcal nuclease. J. Cell Biochem. 30, 281-289. 33. Tanaka, A., Flanagan, J. & Sturtevant, J. M. (1993). Thermal unfolding of staphylococcal nuclease and several mutant forms thereof studied by differential scanning calorimetry. Protein Sci. 2, 567-576. 34. Criswell, A. R., Bae, E., Stec, B., Konisky, J. & Phillips Jr., G. N. (2003). Structures of thermophilic and mesophilic adenylate kinases from the genus Methanococcus. J. Mol. Biol. 330, 1087-1099. 35. Kuroda, Y. & Kim, P. S. (2000). Folding of bovine pancreatic trypsin inhibitor (BPTI) variants in which almost half the residues are alanine. J. Mol. Biol. 298, 493-501. 36. Numata, K., Muro, M., Akutsu, N., Hosoh, Y., Tamagishi, A. & Oshima, T. (1995). Thermal stability of chimeric isopropylmalate dehydrogenase genes constructed from a thermophile and a mesophile. Protein Eng. 8, 39-43. 37. Conrad, B., Hoang, V., Polley, A. & Hofemeister, J. (1995). Hybrid Bacillus amyloliquefaciens x Bacillus licheniformis a-amylases. Construction, properties and sequence determinants. Eur. J. Biochem. 230, 481-490. 1. Bogin, O., Peretz, M., Hacham, Y., Korkhin, Y., Frolow, F., Kalb(GILBOA), A. J. & Burstein, Y. (1998). Enhanced thermal stability of Clostridium beijerinckii alcohal dehydrogenase after strategic substitution from amino acid residues with prolines from the homologous thermophilic Thermoanaerobacter brockii alcohol dehydragenase. Protein Sci. 7, 1156-1163. 2. Brown, B. M. & Sauer, R. T. (1999). Tolerance of Arc repressor to multiple-alanine substitutions. Proc. Natl. Acad. Sci. U. S. A. 96, 1983-1988. 3. Vieille, C. & Zeikus, G. J. (2001). Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65, 1-43. 4. Georlette, D., Damien, B., Blaise, V., Depiereux, E., Uversky, V. N., Gerday, C. & Feller, G. (2003). Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases. J. Biol. Chem. 278, 37015-37023. 5. Strop, P. & Mayo, S. L. (2000). Contribution of surface salt bridges to protein stability. Biochemistry 39, 1251-1255. 6. Zavodszky, P., Kardos, J., Svingor, A. & Petsko, G. (1998). Adjustment of conformational flexibility is a key event in thermal adaptation of proteins. Proc. Natl. Acad. Sci. U. S. A. 95, 7406-7411. 7. Lazaridis, T., Lee, I. & Karplus, M. (1997). Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin. Protein Sci. 6, 2589-2605. 8. Lonhienne, T., Gerday, C. & Feller, G. (2000). Psychrophilic enzymes: Revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim. Biophys. Acta 1543, 1-10. 9. Collins, T., Meuwis, M.-A., Gerday, C. & Feller, G. (2003). Activity, stability and flexibility in glycosidases adapted to extreme thermal environments. J. Mol. Biol. 328, 419-428. 10. D'Amico, S., Marx, J.-C., Gerday, C. & Feller, G. (2003). Activity-stability relationships in extremophilic enzymes. J. Biol. Chem. 278, 7891-7896. 11. Englander, S. W., Mayne, L., Bai, Y. & Sosnick, T. R. (1997). Hydrogen exchange: The modern legacy of Linderstrøm-Lang. Protein Sci. 6, 1101-1109. 12. Rhodes, G. (2000). Crystallography made crystal clear. 2nd Edition edit, Academic Press. 13. Rhodes, G. (2003). Judging the quality of macromolecular models, http://www.usm.maine.edu/~rhodes/ModQual/. 14. Vihinen, M. (1987). Relationship of protein flexibility to thermostability. Protein Eng. 1, 477-480. 15. Parthasarathy, S. & Murthy, M. R. N. (2000). Protein thermal stability: Insight from atomic displacement parameters (B values). Protein Eng. 13, 9-13. 16. Wang, G. & Dunbrack, R. L., Jr. (2003). PISCES: A protein sequence culling server. Bioinformatics 19, 1589-1591. 17. Bonisch, H., Backmann, J., Kath, T., Naumann, D. & Schafer, G. (1996). Adenylate kinase from Sulfolobus acidocaldarius: Expression in Escherichia coli and characterization by Fourier transform infared spectroscopy. Arch. Biochem. Biophys. 333, 75-84. 18. Hollien, J. & Marqusee, S. (1999). Structural distribution of stability in a thermophilic enzyme. Proc. Natl. Acad. Sci. U. S. A. 96, 13674-13678. 19. Hernandez, G. & LeMaster, D. M. (2001). Reduced temperature dependence of collective conformational opening in a hyperthermophile rubredoxin. Biochemistry 40, 14383-14391. 20. Fitter, J. & Heberle, J. (2000). Structural equilibrium fluctuations in mesophilic and thermophilic a-amylase. Biophysical Journal 79, 1629-1636. 21. Jaenicke, R. & Bohm, G. (1998). The stability of proteins in extreme environments. Curr Opin Struct Biol 8, 738-48. 22. Hollien, J. & Marqusee, S. (2002). Comparison of the folding processes of T. Thermophilus and E. Coli ribonucleases H. J. Mol. Biol. 316, 327-340. 23. Raschke, T. M. & Marqusee, S. (1998). Hydrogen exchange studies of protein structure. Curr. Opin. Biotech. 9, 80-86. 24. Maity, H., Lim, W. K., Rumbley, J. N. & Englander, S. W. (2003). Protein hydrogen exchange mechanism: Local fluctuations. Protein Sci. 12, 153-160. 25. Englander, S. W. (1998). Native-state HX. Trends Biochem. Sci. 23, 378. 26. Bai, Y., Milne, J. S., Mayne, L. & Englander, S. W. (1993). Primary structure effects on peptide group hydrogen exchange. Proteins 17, 75-86. 27. Neira, J. L., Itzhaki, L. S., Otzen, D. E., Davis, B. & Fersht, A. R. (1997). Hydrogen exchange in chymotrypsin inhibitor 2 probed by mutagenesis. J. Mol. Biol. 270, 99-100. 28. Jeng, M.-F., Englander, S. W., Elove, G. A., Wand, A. J. & Roder, H. (1990). Structural description of acid-denatured cytochrome c by hydrogen exchange. Biochemistry 29, 10433-10437. 29. Orban, J., Alexander, P., Bryan, P. & Khare, D. (1995). Assessment of stability differences in the protein G B1 and B2 domains from hydrogen-deuterium exchange: Comparison with calorimeteric data. Biochemistry 34, 15291-15300. 30. Sivaraman, T., Kumar, T. K. S., Chang, D. K., Lin, W. Y. & Yu, C. (1998). Events in the kinetic folding pathway of a small, all b-sheet protein. J. Biol. Chem. 273, 10181-10189. 31. Schulman, B. A., Redfield, C., Peng, Z.-y., Dobson, C. M. & Kim, P. S. (1995). Different subdomains are most protected from hydrogen exchange in the molten globule and native states of human a-lactalbumin. J. Mol. Biol. 253, 651-657. 32. Chyan, C.-L., Wormald, C., Dobson, C. M., Evans, P. A. & Baum, J. (1993). Structure and stability of the molten globule state of guinea-pig a-lactalbumin: A hydrogen exchange study. Biochemistry 32, 5681-5691. 33. Hughson, F. M., Wright, P. E. & Baldwin, R. L. (1990). Structural characterization of a partly folded apomyoglobin intermediate. Science 249, 1544-1548. 34. Perrett, S., Clarke, J., Hounslow, A. M. & Fersht, A. R. (1995). Relationship between equilibrium amide proton exchange behavior and the folding pathway of barnase. Biochemistry 34, 9288-9298. 35. Hilton, B. D. & Woodward, C. K. (1978). Nuclear magnetic resonance measurement of hydrogen exchange kinetics of single protons in basic pancreatic trypsin inhibitor. Biochemistry 17, 3325-3332. 36. Radford, S. E., Buck, M., Topping, K. D., Dobson, C. M. & Evans, P. A. (1992). Hydrogen exchange in native and denatured states of hen egg-white lysozyme. Proteins 14, 237-248. 37. Driscoll, P. C., Gronenborn, A. M., Wingfield, P. T. & Clore, G. M. (1990). Determination of the secondary structure and molecular topology of interleukin-1b by use of two- and three-dimensional heteronuclear 15N-1H NMR spectroscopy. Biochemistry 29, 4668-4682. 38. Yi, Q. & Baker, D. (1996). Direct evidence for a two-state protein unfolding transition from hydrogen-deuterium exchange, mass spectrometry, and NMR. Protein Sci. 5, 1060-1066. 39. Morozova-Roche, L. A., Arico-Muendel, C. C., Haynie, D. T., Emelyanenko, V. I., Van Dael, H. & Dobson, C. M. (1997). Structural characterisation and comparison of the native and A-states of equine lysozyme. J. Mol. Biol. 268, 903-921. 40. Bai, Y., Karimi, A., Dyson, H. J. & Wright, P. E. (1997). Absense of a stable intermediate on the folding pathway of protein A. Protein Sci. 6, 1449-1457. 41. Wang, A., Robertson, A. D. & Bolen, D. W. (1995). Effects of a naturally occurring compatible osmolyte on the internal dynamics of ribonuclease A. Biochemistry 34, 15096-15104. 42. Chamberlain, A. K., Handel, T. M. & Marqusee, S. (1996). Detection of rare partially folded molecules in equilibrium with the native conformation of RNaseH. Nat. Struct. Biol. 3, 782-787. 43. Mullins, L. S., Pace, C. N. & Raushel, F. M. (1997). Conformational stability of ribonuclease T1 determined by hydrogen-deuterium exchange. Protein Sci. 6, 1387-1395. 44. Freund, C., Honegger, A., Hunziker, P., Holak, T. A. & Pluckthun, A. (1996). Folding nuclei of the scFv fragment of an antibody. Biochemistry 35, 8457-8464. 45. Loh, S. H., Prehoda, K. E., Wang, J. & Markley, J. L. (1993). Hydrogen exchange in unligated and ligated staphylococcal nuclease. Biochemistry 32, 11022-11028. 46. Anderson, E. D., Lu, J., McIntosh, L. & Dahlquist, F. W. (1993). The folding, stability and dynamics of t4 lysozyme: A perspective using nuclear magnetic resonance. In NMR of proteins (Clore, G. M. & Gronenborn, A. M., eds.), pp. 258-304. CRC Press. 47. Wang, Q., Kline, A. D. & Wuthrich, K. (1987). Amide proton exchange in the a-amylase polypeptide inhibitor tendamistat studied by two-dimensional 1H nulcear magnetic resonance. Biochemistry 26, 6488-6493. 48. Pan, Y. & Briggs, M. S. (1992). Hydrogen exchange in native and alcohol forms of ubiquitin. Biochemistry 31, 11405-11412. 49. Murzin, A. G., Brenner, S. E., Hubbard, T. & Chothia, C. (1995). SCOP: A structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536-540. 50. Woodward, C. K. & Hilton, B. D. (1980). Hydrogen isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor. Biophys. J. 32, 561-575.id NH0920105003 sid 864219 cfn 0 / id NH0920105004 auc 蘇稚仁 tic 蝴蝶蘭花色相關基因與光合作用活性之研究 adc 徐邦達 ty 博士 sc 國立清華大學 dp 生命科學系 yr 92 lg 中文 pg 124 kwc 蝴蝶蘭 kwc 花色基因 kwc 光合作用 abc 在眾多的類二苯丙烯代謝 (phenylpropanoid metabolism) 途徑中,啟動二苯丙烯代謝途徑的首要關鍵酵素是PAL,但負責形成花色之花青素生合成途徑裡的首要關鍵酵素即是苯基苯乙烯酮合成酶 (chalcone synthase,CHS),因此如改變CHS基因的表現量,將有機會藉由改變花青素的生合成,進而改變花色。 tc 蝴蝶蘭花色相關基因與光合作用活性之研究 Studies on Anthocyanin Synthetic Genes and Photosynthetic Activities from Phalaenopsis 第一章 蝴蝶蘭花色相關基因之研究 Cloning and characterization of Phalaenopsis genes related to anthocyanin………………1 中文摘要………………………………………………………………… 1 英文摘要………………………………………………………………… 3 前言……………………………………………………………………… 4 材料與方法……………………………………………………………… 7 結果………………………………………………………………………15 討論………………………………………………………………………20 參考文獻…………………………………………………………………22 圖表………………………………………………………………………25 第二章 蝴蝶蘭苯丙胺酸氨解酵素基因之選殖與分析 Isolation and sequencing a genomic DNA encoding for Phenylalanine Ammonia-Lyase from Phalaenopsis……………….…...…..50 中文摘要…………………………………………………………………50 英文摘要…………………………………………………………………51 前言………………………………………………………………………52 材料與方法………………………………………………………………54 結果………………………………………………………………………58 討論………………………………………………………………………61 參考文獻…………………………………………………………………63 圖表………………………………………………………………………65 第三章 應用PCR反應所建立之一簡捷並具有高效率將基因與質體 接合之方法A simple and highly efficient cloning method that employs PCR to directly create a fusion between insert and vector………………………………………..……74 中文摘要…………………………………………………………………74 英文摘要…………………………………………………………………75 前言………………………………………………………………………76 材料與方法………………………………………………………………78 結果………………………………………………………………………82 討論………………………………………………………………………84 參考文獻…………………………………………………………………86 圖表………………………………………………………………………87 第四章 裸根蝴蝶蘭在儲運過程中其光合作用活性之研究The photosynthetic activities of bare rooted Phalaenopsis during storage………………………………………………94 中文摘要……………………………………………………………….94 英文摘要……………………………………………………………….96 前言…………………………………………………………………….97 材料與方法…………………………………………………………….104 結果…………………………………………………………………….106 討論…………………………………………………………………….108 參考文獻……………………………………………………………….111 圖表…………………………………………………………………….113 附圖 ………………………………………………………………122rf de Vetten N, ter Horst J, van Schaik HP, de Boer A, Mol J, Koes R (1999) A cytochrome b5 is required for full activity of flavonoid 3',5'-hydroxylase, a cytochrome P450 involved in the formation of blue flower colours. Proc. Natl. Acad. Sci. USA 96: 778-783. Forkmann G, Martens S (2001) Metabolic engineering and applications of flavonoids. Curr. Opin. Biotech. 12: 155-160. Fukui Y, Tanaka Y, Kusumi T, Iwashita T, Nomoto K (2003) A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3',5'-hydroxylase gene. Phytochemistry 63: 15-23. Goodwin TW, Mercer EI (1983) Introduction to Plant Biochemistry, 2nd edn. Pergamon Press, Oxford, UK. Griesbach RJ (1990) Flavonoid copigments and anthocyanin of Phalaenopsis Schilleriana. Lindleyana 3: 231-234. Halkier BA (1996) Catalytic reactivities and structure/function relationships of cytochrome P450 enzymes. Phytochemistry 43: 1-21. Hasemann CA, Kurumbail RG, Boddupalli SS, Peterson JA, Deisenhofer J (1995) Structure and function of cytochrome P450: a comparative analysis of three crystal structures. Structure 3: 41-62. Holton TA, Brugliera F, Lester DR, Tanaka Y, Hyland CD, Menting JGT, Lu CY, Farcy E, Stevenson TW, Cornish EC (1993) Cloning and expression of cytochrome P450 genes controlling flower colour. Nature 366: 276-279. Holton TA, Cornish EC (1995) Genetics and Biochemistry of anthocyanin biosynthesis. Plant Cell 7: 1071-1083. Holton TA, Tanaka Y (1999) Transgenic plants having altered anthocyanin level. United State Patent No. US 5,948,955. Kitada C, Gong Z, Tanaka Y, Yamazaki M, Saito K (2001) Differential expression of two cytochrome P450s involved in the biosynthesis of flavones and anthocyanins in chemo-varietal forms of Perilla frutescens. Plant Cell Physiol. 42: 1338-1344. Klein TM, Roth BA, Fromm ME (1989) Regulation of anthocyanin biosynthetic genes introduced into intact maize tissues by microprojectiles. Proc. Natl. Acad. Sci. USA 86: 6681-6685. Kose R, de Vetten N, Mol J (2000) Cytochrome b5 from petunia. PCT-International Patent Application No. WO 00/09720. Mancinelli, A.L. (1989) Interaction between cryptochrome and phytochrome in higher plant photomorphogenesis. American Journal of Botany 76:143-154. Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new Petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330: 667-678. Nadeau JA, Zhang XS, Li J, O`Neill SD (1996) Ovule development: identification of stage-specific and tissue-specific cDNAs. Plant Cell 8: 213-239. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279-289. Schulze-Lefert P., Becker-Andre M., Schulz W., Hahlbrock K., and Dangl J.L. (1989) Functional architecture of the light-responsible chalcone synthase promoter from parsley. Plant Cell 1: 707-714. Su V, Hsu BD (2003) Nucleotide sequence and amino acid sequence of a like flavonoid 3’,5’-hydroxylase from Phalaenopsis. Taiwan Patent Application No. 092114283. van der Krol AR, Lenting PE, Veenstra J, van der Meer IM, Koes RE, Gerats AGM, Mol JNM, Stuitje AR (1988) An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333:866-869. Weiss D, van Blokland R, Kooter JM, Mol JNM, van Tunen AJ (1992) Gibberellic acid regulates chalcone synthase gene transcription in the corolla of Petunia hybrida. Plant Physiol 98: 191-197 Weisshaar B, Jenkins GI (1998) Phenylpropanoid biosynthesis and its regulation. Curr. Opin. Plant Biol. 1: 251-257. Winkel-Shirley B (2001) Flavonoid biosynthesis: a colourful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol. 126: 485-493.id NH0920105004 sid 878224 cfn 0 / id NH0920105005 auc 林佩怡 tic 番茄Lehsc70-3基因啟動子活性之定量分析 adc 林彩雲 ty 碩士 sc 國立清華大學 dp 生命科學系 yr 92 lg 中文 pg 82 kwc 番茄Lehsc70-3基因 kwc 番茄Lehsc70-3基因啟動子分析 abc 植物經常遭受到各式各樣不同的環境逆境,而他們通常藉由生理、生化與發育上的改變來應對與適應。其中研究最廣的特性之一即是當細胞或生物體暴露在高溫或其他形式的逆境時會誘導熱休克蛋白質的產生。分子量70 kDa的熱休克蛋白(HSP70)以及同源的HSC70在各種生物之間的相似度很高。除了逆境調控,HSP/HSC70也可以在沒有逆境的狀態之下表現於特定的發育時期。 tc 摘要?????????????????????????????i Abstract ??????????????????????????ii Table of Contents ??????????????????????????iv List of Tables???????????????????????????vi List of Figures???????????????? ?????????vii Abbreviations????????????????????????x Introduction ????????????????????????1 Materials and Methods ???????????????????????????6 1. Plasmid Constructions????????????????????????6 2. Ligation ??????????????????????????10 3. Competent Cell Preparation ????????????????????????10 4. Bacterial Transformation???????????????????????11 5. Colony PCR ????????????????????????????11 6. Mini-preparation of plasmid DNA ????????????????????????????12 7. Double-stranded DNA sequencing?????????????????????????12 8. Large-scale plasmid DNA preparation?????????????????????????13 9. Plant material and growth ?conditions?????????????????????????14 10.Transformation of DNA into protoplasts with PEG?????????????????????????????14 11. Stress treatments?????????????????????????16 12. Dual-Luciferase® reporter assay system ?????????????????????????? 16 Results ??????????????????????????18 Discussion ?????????????????????????25 References?????????????????????????30 Tables???????????????????????????44 Figures????????????? ?????????????49rf Allen, G.C., Hall, G.E. Jr., Childs, L.C., Weissinger, A.K., Spiker, S. and Thompson, W.F. 1993. Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. Plant Cell 5: 603-613. Amin, J., Ananthan, J., Voellmy, R. 1988. Key features of heat-shock regulatory elements. Mol.Cell Biol. 8: 3761-3769. Aoki,K., Kragler, F., Xoconostle-Cazares, B. and Luca, W.J. 2002. A subclass of plant heat shock cognate 70 chaperones carries a motif that facilitates trafficking through plasmodesmata. PNAS.99: 16342-16347. Aranda, M.A., Escaler, M., Thomas, C.L. and Maule, A.J. 1999. A heat shock transcription factor in pea is differentially controlled by heat and virus replication. Plant J. 20: 153-161. Arguello-Astorga, G.R. and Herrera-Estrella, L.R. 1996. Ancestral multipartite units in light-responsive plant promoters have structural features correlating with specific phototransduction pathways. Plant Physiol. 112: 1151-1166. Arndt, K and Fink, G.R. 1986. GCN4 protein, a positive transcription factor in yeast, binds general control promoters at all 5' TGACTC 3' sequences. Proc Natl Acad Sci U S A. 83: 8516-8520. Baker, S.S., Wilhelm, K.S. and Thomashow, M.F. 1994. The 5?-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol. Biol. 24: 701-713. Barros, M.D., Czarnecka, E., Gurley, W.B. 1992. Mutational analysis of a plant heat-shock element. Plant Mol Biol. 19: 665-675. Blaszczak, A., Zylicz, M., Georgopoulos, C. and Liberek, K. 1995. Both ambient temperature and the DnaK chaperone machine modulate the heat shock response in Escherichia coli by regulating the switch between σ70 and σ32 factors assembled with RNA polymerase. EMBO J. 14: 5085—5093. Boston, R.S., Viitanen, P.V., and Vierling, E. 1996. Molecular chaperones and protein folding in plants. Plant Mol Biol. 32: 191-222. Boyle, B. and Brisson, N. 2001. Repression of the defense gene PR-10a by the single-stranded DNA binding protein SEBF. Plant Cell 13: 2525-2537. Brodsky, J.L. 1996. Post-translational protein translocation: not all hsc70s are created equal. Trends Biochem. Sci. 21: 122-126. Bukau, B. and Horwich, A, L. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92: 351-366 Bush, G.L.and Meyer, D.I. 1996. The refolding activity of the yeast heat shock proteins Ssa1 and Ssa2 defines their roles in protein translocation. J. Cell Biol.135: 1229-1237. Cabane, M., Calvet, P., Vincens, P. and Boudet, A.M. 1993. Characterization of chilling-acclimation-related proteins in soybean and identification of one as a member of the heat shock protein (HSP 70) family. Planta. 190: 346-353. Chaboute, M.E., Clement, B., Sekine,M., Philipps, G. and Chaubet-Gigot, N. 2000. Cell cycle regulation of the tobacco ribonucleotide reductase small subunit gene is mediated by E2F-like elements. Plant Cell 12: 1987-2000. Cercos, M, Gomez-Cadenas, A. and Ho, T.H.1999. Hormonal regulation of a cysteine proteinase gene, EPB-1, in barley aleurone layers: cis- and trans-acting elements involved in the co-ordinated gene expression regulated by gibberellins and abscisic acid. Plant J. 19: 107-118. Cummings, B. 1987. In molecular biology of the gene. Menlo Park. Craig, E.A. 1985. The heat shock response. CRC Crit. Rev. Biochem. 18: 239-280. Czar, M.J., Galigniana, M.D., Silverstein, A.M., Pratt, W.B. 1997. Geldanamycin, a heat shock protein 90-binding steroid-dependent translocation of the glucocorticoid receptor from the cytoplasm to the nucleus. Biochemistry 36: 7776-7785. Czarnecka, E., Ingersoll,J.C. and Gurley, W.B. 1992. AT-rich promoter element of soybean heat shock gene Gmhsp 17.5E bind two distinct sets of nuclear protein in vitro. Plant Mol. Biol. 19: 985-1000. DeRocher, A.and Vierling, E. 1995. Cytoplasmic HSP70 homologues of pea: differential expression in vegetative and embryonic organs. Plant Mol. Biol. 27: 441-456. Diefenbach, J. and Kindl, H. 2000. The membrane-bound DnaJ protein located at the cytosolic site of glyoxysomes specifically binds the cytosolic isoform 1 of Hsp70 but not other Hsp70 species. Eur. J. Biochem. 267: 746-754. Eulgem,T., Rushton, P.J., Schmelzer, E., Hahlbrock, K. and Somssich, I.E. 1999. Early nuclear events in plant defense signaling: rapid gene activation by WRKY transcription factors. EMBO J. 18: 4689-4699. Fernandes, M., O'Brien, T and Lis, J.T. 1994. Structure and regulation of heat shock gene promoters. In The biology of Heat Shock Proteins and Molecular Chaperones, pp 375-394. Fernandes, M., Xiao, H and Lis, J.T. 1994. Fine structure analyses of the Drosophila and Saccharomyces heat shock factor-heat shock element interactions. Nucleic Acids Res. 22: 167-173. Fiszer-Kierzkowska, A., Wysocka, A., Jarzab, M., Lisowska, K. and Krawczyk, Z. 2003. Structure of gene flanking regions and functional analysis of sequences upstream of the rat hsp70.1 stress gene. Acta. Biochim. 1625: 77-87. Flick, K.E., Gonzalez, L., Jr., Harrison, C.J. and Nelson, H.C. 1994. Yeast heat shock transcription factor contains a flexible linker between the DNA-binding and trimerization domains. Implications for DNA binding by trimeric proteins. J.Biol.Chem. 269: 12475- 12481. Gallie, D.R. 1996. Translational control of cellular and viral mRNA. Plant Mol. Biol. 32: 145-158. Garreton, V., Carpinelli, J., Jordana, X and Holuigue, L. 2002. The as-1 promoter element is an oxidative stress-responsive element and salicylic acid activates it via oxidative species. Plant Physiol. 130: 1516-1526. Gamer, J., Multhaup, G. and Tomoyasu, T. 1996. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor σ32. EMBO J. 15: 607—617. Glover, J.R. and Lindquist, S. 1998. Hsp104, hsp70 and hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94: 73-82. Goloubinoff, P., Mogk, A., Zvi, A.P., Tomoyasu, T. and Bukau, B. 1999. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 96: 13732-13737. Grotewold, E., Drummond, B., Bowen, J. and Peterson, T. 1994. The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell 76: 543-553. Gubler, F., Kalla, R., Roberts, J.K and Jacobsen, J.V. 1995. Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. Plant Cell 7: 1879-1891. Guy, C. 1999. Molecular responses of plants to cold shock and cold acclimation. J. Mol. Microbiol. Biotechnol. 1: 231-242. Hamilton, D.A., Schwarz, Y.H. and Mascarenhas, J.P. 1998. A monocot pollen-specific promoter contains separable pollen-specific and quantitative elements. Plant Mol Biol. 38: 663-669. Haralamidis, K., Milioni, D., Riagas, S. and Hatzopoulos, P. 2002. Combinatorial interaction of cis elements specifies the expression of the Arabidopsis AtHsp90-1 gene. Plant Physiol. 129: 1138-1149. Hendrick, J.P., Langer, T., Davis, T.A., Hartl, F.U and Wiedmann, M. 1993. Control of folding and membrane translocation by binding of the chaperone DnaJ to nascent polypeptides. Proc. Natl. Acad. Sci. 90: 10216-10220. Hohfeld, J., Minami, Y. and Hartl, F.U. 1995. Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell 83: 589-598. Howard, K.J., Holley, S.J., Yamamoto, K.R., and Distelhorst, C.W. 1990. Mapping the HSP90 binding region of the glucocorticoid receptor. J. Biol. Chem. 265: 11928-11935. Hwang, Y.S., Karrer, E.E., Thomas, B.R., Chen, L. and Rodriguez, R.L. 1998. Three cis-elements required for rice alpha-amylase Amy3D expression during sugar starvation. Plant Mol. Biol. 36: 331-341. Itzhaki, H., Maxson, J.M.and Woodson, W.R. 1994. An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene. Proc. Natl. Acad. Sci. U S A. 91: 8925-8929. Ito, M., Iwase, M., Kodama, H., Lavisse, P., Komamine, A., Nishihama, R., Machida, Y. and Watanabe, A. 1998. A novel cis-acting element in promoters of plant B-type cyclin genes activates M phase-specific transcription. Plant Cell 10: 331-341. Kageyama, R.and Pastan, I. 1989. Molecular cloning and characterization of a human DNA binding factor that represses transcription. Cell 59: 815-825. Katiyar-Agarwal, S., Agarwal, M. and Grover, A. 2003. Heat-tolerant basmatri rice engineered by over-expression of hsp101. Plant Mol. Biol. 51: 667-686. Kim, J.K., Cao, J.and Wu, R. 1996. Regulation and interaction of multiple protein factors with the proximal promoter regions of a rice high pI alpha-amylase gene. Mol. Gen. Genet. 232: 383-393. Klotz, K.L. and Lagrimini, L.M. 1992. Phytohormone control of the tobacco anionic peroxidase promoter. Plant Mol. Biol. 31: 565-573. Lee, W., Mitchell, P. and Tjian, R. 1987. Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements. Cell 49: 741-752. Levinson, W.,H. and Jackson, J. 1980. Transition series metals and sulfhyl reagents induce the synthesis of four proteins in eukaryotic cells. Biochem. Biophys. Acta. 606: 170-180. Lessard, P.A., Allen, R.D., Bernier, F., Crispino, J.D., Fujiwara, T. and Beachy, R.N. 1991. Multiple nuclear factors interact with upstream sequences of differentially regulated beta-conglycinin genes. Plant Mol. Biol.16(3): 397-413. Lindquist, S. and Craig, E.A. 1988. The heat-shock proteins. Annu. Rev. Genet. 22: 631-677. Liu, Z.B., Ulmasov, T., Shi, X., Hagen, G. and Guilfoyle, T.J. 1994. Soybean GH3 promoter contains multiple auxin-inducible elements. Plant Cell 6: 645-657. Manjunath, S. and Sachs, M.M. 1997. Molecular characterization and promoter analysis of the maize cytosolic glyceraldehyde 3-phosphate dehydrogenase gene family and its expression during anoxia. Plant Mol. Biol. 33: 97-112. Miernyk, J.A. 1999. Protein folding in the plant cell. Plant Physiol. 121: 695-703. Morimoto, R.I. and Santoro, M.G. 1998. Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat. Biotechnol.16: 833-838. Morishima, Y., Murphy, P.J., Li, D.P., Sanchez, E.R. and Pratt, W.B. 2000. Stepwise assembly of a glucocorticoid receptor.hsp90 heterocomplex resolves two sequential ATP dependent events involving first hsp70 and then hsp90 in opening of the steroid binding pocket. J. Biol. Chem. 275: 18054-18060. Nakamura, M., Tsunoda, T. and Obokata, J. 2002. Photosynthesis nuclear genes generally lack TATA-boxes: a tobacco photosystem I gene responds to light through an initiator. Plant J. 29:1-10. Nelson, R.J., Ziegelhoffer, T., Nicolet, C., Werner-Washburne, M. and Craig, E.A. 1992. The translation machinery and 70kDa heat shock protein cooperate in protein synthesis. Cell 71: 97-105. Netzer, W.J. and Hartl, F.U. 1998. Protein folding in the cytosol: chaperonin-dependent and -independent mechanisms. Trends. Biochem. Sci. 23: 68-73. Oono, Y., Seki1, M., Nanjo ,T. and Narusaka, M. 2003. Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant J. 34: 868-887. O'Brien, T., Wilkins, R.C, Giardina, C. and Lis, J.T. 1995. Distribution of GAGA protein on Drosophila genes in vivo. Genes Dev. 9: 1098-1110. Park, S.C., Kwon, H.B. and Shih, M.C. 1996. Cis-acting elements essential for light regulation of the nuclear gene encoding the A subunit of chloroplast glyceraldehyde 3-phosphate dehydrogenase in Arabidopsis thaliana. Plant Physiol. 112: 1563-1571. Pastuglia, M., Roby, D., Dumas, C. and Cock, J. M. 1997. Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea. Plant Cell 9: 49-60. Pratt, W.B., Krishna, P. and Olsen, L.J. 2001. Hsp90-binding immunophilins in plants: the protein movers. Trends Plant Sci. 6: 54-58. Preisig-Muller, R., Muster, G. and Kindl, H. 1994. Heat shock enhances the amount of prenylated Dnaj protein at membranes of glyoxysomes. Eur. J. Biochem. 219: 57-63. Queitsch, C., Hong, S.W., Vierling, E. and Lindquist, S. 2000. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell.12: 479-492. Reisdorf-Cren, M., Carrayol, E., Terce-Laforgue, T. and Hirel, B. 2002. A novel HMG A-like protein binds differentially to the AT-rich regions located in the far distal and proximal parts of a soybean glutamine synthetase gene (GS15) promoter. Plant Cell Physiol. 43: 1006-1016. Rieping, M. and Schöffl, F. 1992. Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimaeric heat shock genes in transgenic tobacco. Mol. Gen. Genet. 231: 226-232. Rouster, J., Leah, R., Mundy, J. and Cameron-Mills, V. 1997. Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J. 11: 513-523. Rushton, P.J, Torres, J.T., Parniske, M., Wernert, P., Hahlbrock, K and Somssich, I.E. 1996. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J. 15: 5690-700. Schlessinger, J., Ashburner, N., Tissieres, A., 1982. Heat-Shock: from Bacteria to Man. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY Schöffl, F., Schröde, G., Kliem, M. and Rieping, M. 993. A SAR sequence containing 395 bp fragment mediates enhanced, gene-dosage-correlated expression of a chimeric heat shock gene in transgenic tobacco plants. Transgenic Res. 2: 93-100. Scho¨ffl, F.,Prandl, R. and Reindl, A. 1998. Regulation of the heat-shock response. Plant Physiol. 117: 1135-1141. Schlicher, T. and Soll, J. 1996. Molecular chaperones are present in the thylakoid lumen of pea chloroplasts. FEBS Lett. 379: 302-304. Sessa, G., Morelli, G and Ruberti, I. 1993. The Athb-1 and -2 HD-Zip domains homodimerize forming complexes of different DNA binding specificities. EMBO J. 12: 3507-3517. Shi, Y., Mosser, D.D., Morimoto, R.I. 1998. Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev. 12: 654-666. Sheffield, W.P., Shore, G.C. and Randall, S.K. 1990. Mitochondrial precursor protein: effects of 70-kilodalton heat shock protein on polypeptide folding, aggregation, and import competence. J. Biol. Chem. 265: 11069-11076. Solano, R., Nieto, C., Avila J., Canas, L., Diaz, I. and Paz-Ares, J. 1995. Dual DNA binding specificity of a petal epidermis-specific MYB transcription factor (MYB.Ph3) from Petunia hybrida. EMBO J. 14: 1773-1784. Sun, S.W., Chung, M.C and Lin T.Y. 1996. The structure and expression of an hsc70-3 gene from Lycopersicon esculentum. Gene 170: 237-241. Sung, D.U., Vierling, E. and Guy, C.L. 2001. Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol. 126: 789-800. Tamagnone, L., Merida, A., Parr,A., Mackay, S., Culianez-Macia, F.A., Roberts, K. and Martin C. 1998. The AmMYB308 and AmMYB330 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell 10: 135-154. Tatsuta, T., Tomoyasu, T. and Bukau, B. 1998. Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of σ32 in vivo. Mol. Microbiol. 30: 583—593. Taylor, I.C., Workman, J.L., Schuetz, T.J and Kingston, R.E. 1991. Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: differential function of DNA-binding domains. Genes Dev. 5: 1285-1298. Ulmasov, T., Liu, Z.B., Hagen, G. and Guilfoyle, T.J. 1995. Composite structure of auxin response elements. Plant Cell 7: 1611-1623. Urao, T., Yamaguchi-Shinozaki, K., Urao, S and Shinozaki, K. 1993. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5: 1529-1539. Vierling, E. 1991. The roles of heat-shock proteins in plants. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 42: 579-620. Wang, Z.Y., Kenigsbuch, D., Sun, L., Harel, E., Ong, M.S, and Tobin, E.M. 1997. A myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant cell 9: 491-507. Washida, H., Wu, C. Y., Suzuki, A., Yamanouchi, U., Akihama, T., Harada, K. and Takaiwa, F. 1999. Identification of cis-regulatory elements required for endosperm expression of the rice storage protein glutelin gene GluB-1. Plant Mol. Biol. 40: 1-12. Wehmeyer, N. and Vierling, E. 2000. The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol. 122: 1099-1108. Willliam, G.T and Morimoto, R.I. 1990. Maximal stress-induced transcription from the human hsp70 promoter requires interactions with the basal promoter elements independent of rotational alignment. Mol. Cell Biol. 10: 3125-3136. Wissenbach, M., Uberlacker, B., Vogt, F., Becker, D., Salamini, F. and Rohde, W. 1993. Myb genes from Hordeum vulgare: tissue-specific expression of chimeric Myb promoter/ Gus genes in transgenic tobacco. Plant J. 4: 411-422. Wollegiehn, R. and Neumann. 1995. Stress response of tomato cell cultures to toxic metals and heat shock: differences and similarities. Plant Physiol. 146: 736-742. Xiao, H. and Lis, J.T. 1988. Germline transformation used to define key features of heat-shock response elements. Science 239: 1139—1142. Xu, N., Hagen, G and Guilfoyle, T. 1997. Multiple auxin response modules in the soybean SAUR 15A promoter. Plant Sci. 126: 193-201. Yamauchi, D. 2001. A TGACGT Motif in the 5'-Upstream Region of alpha-Amylase Gene from Vigna mungo is a cis-Element for Expression in Cotyledons of Germinated Seeds. Plant Cell Physiol. 42: 635-641. Yamaguchi-Shinozaki K. and Shinozaki K. 1994. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251-264. Yanagisawa, S. and Schmidt, R.J. 1999. Diversity and similarity among recognition sequences of Dof transcription factors. Plant J. 17: 209-214. Yoshida, H., Haze, K. Yanagi, H and Mori, K. 1998. Indentification of the cis-acting endoplasmic reticulum stress response element responsible for transcription induction of mammalian glucose-regulated proteins. J. Biol. Chem. 273: 33741-33749. Young, J. C., Moarefi, I. and Hartl, F. U. 2001. Hsp90: a specialized but essential protein-folding tool. J. Cell Biol. 154: 267-273. Yu, D., Chen, C. and Chen, Z. 2001. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell.13: 1527-1540. Zou, J., Guo, Y., Guettouche, T., Smith, D.F. and Voellmy, R. 1998. Repression of heat shock transcription factor HSF1 activation by Hsp90 (Hsp90 complex) that forms a stress sensitive complex with HSF1. Cell 94: 471-480.id NH0920105005 sid 904202 cfn 0 / id NH0920105006 auc 石智遠 tic 轉錄因子FOXP2與去氧核醣核酸結合位之研究 adc 劉銀樟 博士 adc 林陽生 博士 ty 碩士 sc 國立清華大學 dp 生命科學系 yr 92 lg 中文 pg 51 kwc 去氧核醣核酸結合位 kwc 說話及語言功能 kwc 一致性結合位 abc FOXP2 蛋白具有蝶狀的去氧核醣核酸結合區,為FOX轉錄因子家族成員之ㄧ。 最近研究指出FOXP2基因可能決定人類的說話及語言功能。在KE家族及CS病人的基因體中,發現FOXP2基因的突變或轉位與語言功能的不健全有很大的關聯性。 然而,目前對於FOXP2基因所扮演的角色,或者FOXP2蛋白可能調控的下游基因所知有限。為了瞭解FOXP2蛋白所調控的啟動子及其下游基因,我們利用Whole-genome PCR的策略,在人類基因組中尋找到了一些會與FOXP2蛋白結合的去氧核醣核酸序列。 藉由Band Shift及DNae I Footprint的研究, 我們證明了這些序列對於FOXP2的專一性結合。並發現FOXP2在細胞內可以調控具有這些結合位的發光酶基因之轉錄活性。藉由序列比對,我們找到與FOX家族高度一致性的FOXP2結合位5’-TGTTTGT-3’。將這些結合位應用於人類啟動子資料庫之搜尋,或許可以鑑定出FOXP2的下游基因,並幫助我們找到治療人類語言疾病的方式。 tc 中文摘要…………………………………………………………… ...................1 Abstract ...………………………………………………………………………....2 Introduction Enigma of speech and language………………………………………….…...3 Speech and language disorder of the KE family and CS patient…………...4 Disruption of FOXP2 Leads to Speech and Language Deficits………….…5 FOXP2 expression during brain development………………………….…….7 FOX (forkhead box) family…………………………………………….………..8 Forkhead domain………………………………………………………………..9 FOXP2…………………………………………………………………………..10 Identification of binding sites for transcription factor FOXP2……………...11 Materials and methods Large Scale Preparation of Plasmid………………………………………….13 Small Scale DNA Preparation…………………………………………………14 Purification of GST-FOXP2 Fusion Protein………………………………….14 Isolation of Genomic DNA from 293T Cells………………………………….15 Whole-Genome PCR…………………………………………………………..16 Preparation of Ultra-Competent Cells………………………………………..17 Bacteria Transformation……………………………………………………….17 Purification of Histidine-tagged FOXP2 Protein…………………………….18 Western Immunoblotting………………………………………………………18 Electrophoretic Mobility Shift Assay………………………………………….19 DNase I Footprinting analysis………………………………………………...20 DNA Sequencing……………………………………………………………...21 Cell Culture and Calcium-phosphate Mediated Transfection…………….22 Luciferase Assay……………………………………………………………...22 β-galactosidase Assay………………………………………………………23 Results Isolation of Genomic Clones Bound by FOXP2…………………………..24 Characterization of FOXP2 Binding Genomic Fragments………………..25 DNase I footprinting analysis of the FOXP2 binding sequence………….26 Definition of FOXP2 Binding Consensus Sequence………………………27 Mapping of FOXP2 Binding Sites…………………………………………...27 Binding of FOXP2 to the Candidate FOXP2 Binding Sites in Transient Transfection Assays…………………………………………………………..28 Discussion………………………………………………………………………30 Figure Legends………………………………………………………………..35 Figures Fig. 1. Selection and amplification of FOXP2 binding sites by Whole-Genome PCR procedure.……………......……………….40 Fig. 2. Enrichment of high-affinity binding sites following sequential selection and amplification……………………..…………………41 Fig. 3. Band-shift analysis of selected FOXP2 binding sites……………42 Fig. 4. Sequence-specific binding of FOXP2 protein to DNA clones…..43 Fig. 5. DNase I footprint analysis of the FOXP2 binding fragments…...44 Fig. 6. Footprinting and sequencing analysis of the regions protected by FOXP2…………………………………………………………...45 Fig. 7. FOXP2 consensus DNA binding sequence………………………46 Fig. 8. Alignment of FOXP2 core sequence with the forkhead /HNF-3 consensus…………………………………………………………..47 Fig. 9. Response of FOXP2 binding sequence to FOXP2 and FOXP2-VP16 in transient transfection assays………………….48 Fig.10. FOXP2-VP16 could bind to the FOXP2 binding sites in vivo and transactivate the reporter genes through the FOXP2 binding sites………………………………………………………………….49 Table 1. Putative FOXP2 target genes………………………………………50 References………………………………………………………………………51rf Alcock, K.J., Passingham, R.E., Watkins, K.E., Vargha-Khadem, F. (2000). Oral dyspraxia in inherited speech and language impairment and acquired dysphasia. Brain Lang. 75:17—33. Banham, A. H., Beasley, N., Campo, E., Fernandez, P. L., Fidler, C., Gatter, K., Jones, M., Mason, D. Y., Prime, J. E., Trougouboff, P., Wood, K., Cordell, J.L. (2001). The FOXP1 Winged Helix Transcription Factor Is a Novel Candidate Tumor Suppressor Gene on Chromosome 3p. Cancer Res. 61: 8820-8829. Bennett, C.L., Christie, J., Ramsdell, F., Brunkow, M.E., Ferguson, P.J., et al. (2001). The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nature Genet. 27:20—21. Bohinski, R. J., Lauro, R. D., Whitsett, J. A. (1994). The lung-specific surfactant protein B gene promoter is a target for thyroid transcription factor 1 and heaptocyte nuclear factor 3, indicating common factors for organ-specific gene expression along the foregut axis. Mol. Cell. Biol. 14:5671-5681. Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., Anderson, M. J., Arden, K. C., Blenis, J., and Greenberg, M. E. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857—868. Brunkow, M. E., Jeffery, E. W., Hjerrild, K. A., Paeper, B., Clark, L. B., Yasayko, S. A., Wilkinson, J. E., Galas, D., Ziegler, S. F., Ramsdell, F. (2001). Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nature Genet. 27: 68-73. Carlsson, P., Mahlapuu, M. (2002). Forkhead transcription factors: key players in development and metabolism. Dev. Biol. 250: 1-23. Chatila, T. A., Blaeser, F., Ho, N., Lederman, H. M., Voulgaropoulos, C., Helms, C., Bowcock, A. M. (2000). JM2, encoding a fork head—related protein, is mutated in X-linked autoimmunity—allergic disregulation syndrome. J. Clin. Invest. 106: 75-81. Clark, K. L., Halay, E. D., Lai, E., Burley, S. K. (1993). Co-crystal structure of the HNF-3/ fork head DNA recognition motif resembles histone H5. Nature 364: 412-420. Clifton-Bligh, R.J., Wentworth, J.M., Heinz, P., Crisp, M.S., John, R., et al. (1998). Mutation of the gene encoding human TTF-2 associated with thyroid agenesis, cleft palate and choanal atresia. Nature Genet. 19:399—401. Costa, R. H., Grayson, D. R., Darnell, J. E. (1989). Multiple heaptocyte-enriched nuclear factors function in the regulation of transthyretin and α1-antitrypsin. Mol. Cell. Biol. 9:1415-1425. Crisponi, L., Deiana, M., Loi, A., Chiappe, F., Uda, M., Amati, P., et al. (2001). The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/ epicanthus inversus syndrome. Nature Genet. 27: 159-166. Cummings, C.J., Zoghbi, H.Y. (2000). Fourteen and counting: unraveling trinucleotide repeat diseases. Hum. Mol. Genet. 9:909—916. Fickenscher, H. R., Chalepakis, G., Gruss, P. (1993). Murine Pax-2 protein is a sequence-specific trans-activator with expression in the genital system. DNA Cell Biol. 12: 381-391. Finegold, D.N., Kimak, M.A., Lawrence, E.C., Levinson, K.L., Cherniske, E.M., et al. (2001). Truncating mutations in FOXC2 cause multiple lymphedema syndromes. Hum. Mol. Genet. 10:1185—1189. Fisher, S.E., Vargha-Khadem, F., Watkins, K.E., Monaco, A.P., Pembrey, M.E. (1998). Localisation of a gene implicated in a severe speech and language disorder. Nature Genet. 18:168—170. Furuyama, T., Nakazawa, T., Nakano, I., Mori, N. (2000). Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem J. 349:629-634. Gopnik, M., Crago, M.B. (1991). Familial aggregation of a developmental language disorder. Cognition 39: 1—50. Hampe, W., Rezgaoui, M., Hermans-Borgmeyer, I., Schaller, H. C. (2001). The genes for the human VPS10 domain-containing receptors are large and contain many small exons. Hum. Genet. 108: 529-536. Hurst, J.A., Baraitse, M., Auger, E., Graham, F., Norell, S. (1990). An extended family with a dominantly inherited speech disorder. Dev. Med. Child Neurol. 32: 347—355. Ikeda, K., Shaw-White, J. R., Wert, S.E., Whitsett, J.A. (1996) Hepatocyte nuclear factor 3 activates transcription of thyroid transcription factor 1 in respiratory epithelial cells. Mol. Cell. Biol. 16:3626-3636. Kaestner, K.H., Kn¨ochel, W., Martinez, D.E. (2000). Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 14:142—146. Kaufmann, E., Kn¨ochel, W. (1996). Five years on the wings of fork head. Mech. Dev. 57:3—20. Kaufmann, E., Muller, D., and Knochel, W. (1995). DNA recognition site analysis of Xenopus winged helix proteins. J. Mol. Biol. 248: 239—254. Kinzler, K.W., Vogelstein, B. (1989). Whole genome PCR: application to the identification of sequences bound by gene regulatory proteins. Nucleic Acids Res. 17:3645-3653. Kowalska,A. (2003) Amyloid precursor protein gene mutations responsible for early-onset autosomal dominant Alzheimer''s disease. Folia Neuropathol. 41:35-40. Lai, C. S. L. et al. (2000). The SPCH1 region on human 7q31: genomic characterization of the critical interval and localization of translocations associated with speech and language disorder. Am. J. Hum. Genet. 67: 357-368. Lai, C.S.L., Fisher, S.E., Hurst, J.A., et al. (2001). A forkhead gene is mutated in a severe speech and language disorder. Nature 413:519—523. Lai, C.S.L., Gerrelli, D., Monaco, A.P., Fisher, S.E., Copp, A.J. (2003). FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain 126:2455-2462. Lai, E., Prezioso, V. R., Tao, W.F., Chen, W.S., Darnell,J.Jr (1991). Hepatocyte nuclear factor 3 alpha belongs to a gene family in mammals that is homologous to the Drosophila homeotic gene fork head. Genes Dev. 5: 416-427. Li, C., and Tucker, P. W. (1993). DNA-Binding Properties and Secondary Structural Model of the Hepatocyte Nuclear Factor 3/Fork Head Domain. Proc. Natl. Acad. Sci. U S A 90: 11583-11587. Liegois, F.J., Baldeweg, T., Connelly, A., Gardian, D.G., Mishkin, M., Vargha-Khadem, F. (2003). Language fMRI abnormalities associated with FOXP2 gene mutation. Nature Neurosci. 6: 1230-1237. Margolis, R. L. et al. (1997). cDNAs with long CAG trinucleotide repeats from human brain. Hum. Genet. 100: 114-122. Miyata, A., Yokoyama, C., Ihara, H., Bandoh, S., Takeda, O., Takahashi, E., Tanabe, T. (1994). Characterization of the human gene (TBXAS1) encoding thromboxane synthase. Europ. J. Biochem. 224: 273-279. Nishimura, D.Y., Swiderski, R.E., Alward, W.L., Searby, C.C., Patil, S.R., Bennet, S.R., et al. (1998). The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25. Nature Genet. 19: 140-147. Nishimura, D.Y. et al. (2001). A spectrum of FOXC1 mutations suggests gene dosage as a mechanism for developmental defects of the anterior chamber of the eye. Am. J. Hum. Genet. 68: 364—372. Overdier, D. G., Porcella, A., Costa, R. H. (1994). The DNA-binding specificity of the hepatocyte nuclear factor 3/forkhead domain is influenced by amino acid residues adjacent to the recognition helix. Mol. Cell. Biol. 14: 2755-2766. Overdier, D. G., Ye, H., Peterson, R. S., Clevidence, D.E., Costa, R. H. (1997). The winged helix transcriptional activator HFH-3 is expressed in the distal tubules of embryonic and adult kidney. J. Biol. Chem. 272: 13725-13730. Perier, R.C., Praz, V., Junier, T., Bonnard, C., Bucher, P. (2000). The Eukaryotic Promoter Database (EPD). Nucleic Acids Res. 28: 302-303. Peterson, R.S., Linn, L., Ye H., Zhou, H., Overdier, D.G., Costa, R.H. (1997). The winged helix transcriptional activator HFH-8 is expressed in the mesoderm of the primitive streak stage of mouse embryos and its cellular derivatives Mech. Dev. 69: 53-69. Pierrou, S., Hellqvist, M., Samuelsson, L., Enerbaeck, S., Carlsson, P. (1994). Cloning and characterization of seven human forkhead proteins: binding site specificity and DNA bending. EMBO J. 13: 5002-5012. Roux, J., Pictet, R., and Grange, T. (1995). Hepatocyte nuclear factor 3 determines the amplitude of the glucocorticoid response of the rat tyrosine aminotransferase gene. DNA Cell Biol. 14: 385—396. Scherer et al. (1997). The human metabotropic glutamate receptor 8 (GRM8) gene: a disproportionately large gene located at 7q31.3-q32.1. Genomics 44: 232-236. Schlake, T., Schorpp, M., Maul-Pavicic, A., Malashenko, A.M., Boehm, T. (2000). Forkhead/ winged-helix transcription factor Whn regulates hair keratin gene expression: molecular analysis of the nude skin phenotype. Dev. Dyn. 217: 368—376. Semina, E.V. et al. (2001). Mutations in the forkhead transcription factor FOXE3 associated with anterior segment ocular dysgenesis and cataracts. Hum. Mol. Genet. 10: 231-236. Shu, W., Yang, H., Zhang, L., Lu, M. M., Morrisey, E. E. (2001). Characterization of a new subfamily of winged-helix/forkhead (fox) genes that are expressed in the lung and act as transcriptional repressors. J. Biol. Chem. 276: 27488-27497. Smith, D., Johnson, K. S. (1988). Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene (Amst.) 67: 31-40. Spranger, J. W., Gehler, J., Cantz, M. (1977).Mucolipidosis I--a sialidosis. Am. J. Med. Genet. 1: 21-29. Tada, Y., Horio, Y., Takumi, T., Terayama, M., Tsuji, L., Copeland, N. G.., Jenkins, N. A., Kurachi, Y. (1997). Assignment of the glial inwardly rectifying potassium channel K(AB)-2/Kir4.1 (Kcnj10) gene to the distal region of mouse chromosome 1. Genomics 45: 629-630. Vargha-Khadem, F., Watkins, K.E., Alcock, K.J., Fletcher, P., Passingham, R.E. (1995). Praxic and nonverbal cognitive deficits in a large family with a genetically transmitted speech and language disorder. Proc. Natl. Acad. Sci. USA 92: 930—933. Vargha-Khadem, F., Watkins, K.E., Price, C.J., Ashburner, J., Alcock,. KJ., et al. (1998). Neural basis of an inherited speech and language disorder. Proc. Natl. Acad. Sci. USA 95: 12,695—700. Wang, B., Lin, D., Li, C., Tucker, P. (2003). Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors. J. Biol. Chem. In press. PMID: 12692134. Watkins, K.E., Dronkers, N.F., Vargha-Khadem, F. (2002). Behavioural analysis of an inherited speech and language disorder: comparison with acquired aphasia. Brain 125:452—464. Weigel, D., Jurgen, G., Kuttner, F., Seifert, E., Jackle, H. (1989). The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57: 645—658. Wildin, R.S., Ramsdell, F., Peake, J., Faravelli, F., Casanova, J.L., Buist, N., et al. (2001). X-linked neonatal diabetes mellitus, enteropathy andendocrinopathy syndrome is the human equivalent of mouse scurfy. Nature Genet. 27: 18-20. Winter, R. M., Swallow, D. M., Baraitser, M., Purkiss, P. (1980). Sialidosis type 2 (acid neuraminidase deficiency): clinical and biochemical features of a further case. Clin. Genet. 18: 203-210.id NH0920105006 sid 904253 cfn 0 / id NH0920105007 auc 陳亮延 tic 第一部分:大鼠熱休克蛋白86/84 ATPase 區段晶體結構研究 ; 第二部分:利用電腦模擬研究人類核醣核酸水解 tic & tic #37238;2與蛋白質水解 tic & tic #37238; E的結合 adc 孫玉珠 博士 ty 碩士 sc 國立清華大學 dp 生命科學系 yr 92 lg 中文 pg 100 kwc 熱休克蛋白九十 kwc 核醣核酸水解 kwc & kwc #37238 kwc 蛋白質水解 kwc & kwc #37238 abc 第一部分:大鼠熱休克蛋白86/84 ATPase 區段晶體結構研究 tc 第一部分 第一章 簡介 1.1 HSP90---------------------------------------------------------------------------1-1 1.2 HSP86 ATPase domain------------------------------------------------------1-2 1.3 HSP84 ATPase domain------------------------------------------------------1-3 1.4以HSP90為目標的抗癌藥物:17-AAG及GA -------------------------1-3 第二章 材料與實驗方法 2.1蛋白質及受質製備------------------------------------------------------------1-4 2.1.1 HSP86的製備 2.1.2 HSP86/84 ATPase domains的製備 2.1.3受質:17-AAG 與ADP的製備 2.2晶體培養------------------------------------------------------------------------1-5 2.3數據的收集及處理------------------------------------------------------------1-5 2.4 Matthews coefficient (Vm) 及溶劑比例計算---------------------------1-6 2.5相位角之決定------------------------------------------------------------------ 1-6 2.6 分子模型的建立與修正-----------------------------------------------------1-7 2.7 ADP,17-AAG複合物分子結構的電腦模擬----------------------------1-7 第第三章 實驗數據與結果 3.1 晶體培養-----------------------------------------------------------------------1-9 3.1.1 HSP86結晶 3.1.2 HSP86 ATPase domain結晶 3.1.3 HSP86 ATPase domain與17-AAG複合物結晶 3.1.4 HSP86 ATPase domain與ADP複合物結晶 3.1.5 HSP84 ATPase domain結晶 3.2 數據的收集及處理-----------------------------------------------------------1-10 3.2.1 HSP86 ATPase domain晶體 3.2.2 HSP86 ATPase domain 與 ADP複合物晶體 3.3 空間群的確認----------------------------------------------------------------- 1-11 3.4 相位角的決定----------------------------------------------------------------- 1-12 3.4.1 HSP86 ATPase domain晶體 3.4.2 HSP86 ATPase domain與 ADP複合物晶體 3.5 蛋白質模型的建立與精算--------------------------------------------------1-13 3.5.1 HSP86 ATPase domain蛋白質分子模型建立與精算 3.5.2 ADP及鎂離子的討論 第四章 討論與分析 4.1鎂離子對 HSP86 ATPase domain 結構的影響------------------------1-15 4.2 HSP 86/84 ATPase domain 分子結構的差異---------------------------1-16 4.3 開放與閉鎖結構對受質的影響--------------------------------------------1-16 第五章 結論 圖表 參考資料 第二部分 第一章 簡介----------------------------------------------------------------------------2-1 第二章 實驗使用工具 2.1 網站工具-----------------------------------------------------------------------2-5 2.1.1 蛋白質結構資料庫 2.1.2 一級相似序列尋找與比對 2.1.3 二級結構預測 2.1.4 三級結構模型建構 2.1.5分子模型的正確性評估 2.2工具程式------------------------------------------------------------------------2-7 2.2.1 Swiss Pdb Viewer(SPDBV) 2.2.2 DS modeling 2.2.3 Global Range Molecular Matching(GRAMM) 2.2.4 Crystallography & NMR System (CNS) 第三章 實驗步驟 3.1 hCPE分子模型建構----------------------------------------------------------2-10 3.1.1利用SWISS-MODEL建構 hCPE的分子模型 3.1.2利用 DS modeling建構 hCPE的分子模型 3.1.3 hCPE 分子模型正確性判斷 3.2分子結合計算步驟------------------------------------------------------------2-12 3.3結果檢視與分析步驟---------------------------------------------------------2-12 第四章 實驗結果與討論 4.1 hCPE分子模型建構結果----------------------------------------------------2-14 4.1.1 hCPE分子模型建立 4.1.2 hCPE分子模型的結構正確性判斷 4.2分子結合計算結果------------------------------------------------------------2-15 4.3結果檢視與分析結果---------------------------------------------------------2-16 4.3.1 由程式所預測的第一組解: hCPE活性抑制的可能性 4.3.2 hCPE結合區段分析 4.3.3 hRNase 2結合區段分析 第五章 結論 圖表 附錄 參考資料rf Part I: Aligue, R., Akhavan-Niak, H. and Russell, P. (1994). "A role for HSP90 in cell cycle control: Wee1 tyrosine kinase activity requires interaction with HSP90." EMBO J. 13(24): 6099-6106. Argon, Y. and Simen, B. B. (1999). "GRP94, an ER chaperone with protein and peptide binding properties." Seminars in Cell and Developmental Biology 10(5): 495-505. Blagosklonny, M. V., Toretsky, J. and Neckers, L. (1995). "Geldanamycin selectively destabilizes and conformationally alters mutated p53." Oncogene. 11(5): 933-9. Brugge, J. S. (1986). "Interaction of the Rous sarcoma virus protein pp60src with the cellular proteins pp50 and pp90." Curr Top Microbiol Immunol. 123: 1-22. Chavany, C., Mimnaugh, E., Miller, P., Bitton, R., Nguyen, P., Trepel, J., Whitesell, L., Schnur, R., Moyer, J. D. and Neckers, L. (1996). "p185erbB2 Binds to GRP94 in Vivo." J. Biol. Chem. 271(9): 4974-4977. Chiosis, G., Huezo, H., Rosen, N., Mimnaugh, E., Whitesell, L. and Neckers, L. (2003). "17AAG: Low Target Binding Affinity and Potent Cell Activity--Finding an Explanation." Mol. Cancer Ther. 2(2): 123-129. Felts, S. J., Owen, B. A. L., Nguyen, P., Trepel, J., Donner, D. B. and Toft, D. O. (2000). "The HSP90-related Protein TRAP1 Is a Mitochondrial Protein with Distinct Functional Properties." J. Biol. Chem. 275(5): 3305-3312. Guex, N. and Peitsch, M. C. (1997). "SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling." Electrophoresis 18(15): 2714-23. Hartson, S. D. and Matts, R. L. (1994). "Association of HSP90 with cellular Src-family kinases in a cell-free system correlates with altered kinase structure and function." Biochemistry 33(30): 8912-20. Holley, S. and Yamamoto, K. (1995). "A role for HSP90 in retinoid receptor signal transduction." Mol. Biol. Cell 6(12): 1833-1842. Hu, J. and Seeger, C. (1996). "HSP90 is required for the activity of a hepatitis B virus reverse transcriptase." PNAS 93(3): 1060-1064. Jaiswal, R. K., Weissinger, E., Kolch, W. and Landreth, G. E. (1996). "Nerve Growth Factor-mediated Activation of the Mitogen-activated Protein (MAP) Kinase Cascade Involves a Signaling Complex Containing B-Raf and HSP90." J. Biol. Chem. 271(39): 23626-23629. Jez, J. M., Chen, J. C.-H., Rastelli, G., Stroud, R. M. and Santi, D. V. (2003). "Crystal Structure and Molecular Modeling of 17-DMAG in Complex with Human HSP90." Chemistry & Biology 10(4): 361-368. Kleywegt, G. J., Henrick, K., Dodson, E. J. and van Aalten, D. M. F. (2003). "Pound-wise but penny-foolish - How well do micromolecules fare in macromolecular refinement ?" Structure 11: 1051-1059. Kleywegt, G. J. and Jones, T. A. (1998). "Databases in protein crystallography." Acta Cryst. D54: 1119-1131. Lovric, J., Bischof, O. and Moelling, K. (1994). "Cell cycle-dependent association of Gag-Mil and HSP90." FEBS Lett. 343(1): 15-21. Maruya, M., Sameshima, M., Nemoto, T. and Yahara, I. (1999). "Monomer Arrangement in HSP90 Dimer as Determined by Decoration with N and C-Terminal Region Specific Antibodies,." J. Mol. Biol. 285(3): 903-907. Matthews, B. W. (1968). "Solvent content of protein crystals." J. Mol. Biol. 33: 491-497. McPherson, A. (1982). "Preparation and Analysis of Protein Crystals." New York, USA: John Wiley and Sons. McRee, D. E. (1992). "XtalView: A Visual Protein Crystallographic Software System for XII/XView." J. Mol. Graphics 10: 44-47. McRee, D. E. (1999). "XtalView/Xfit - A Versatile Program for Manipulating Atomic Coordinates and Electron Density." J. Structural Biology 125: 156-165. Nair, S. C., Toran, E. J., Rimerman, R. A., Hjermstad, S., Smithgall, T. E. and Smith, D. F. (1996). "A pathway of multi-chaperone interactions common to diverse regulatory proteins: estrogen receptor, Fes tyrosine kinase, heat shock transcription factor Hsf1, and the aryl hydrocarbon receptor." Cell Stress Chaperones. 1(4): 237-50. Navaza, J. (1994). "AMoRe: an automated package for molecular replacement." Acta Cryst. A50: 157-163. Nemoto, T., Ohara-Nemoto, Y., Ota, M., Takagi, T. and Yokoyama, K. (1995). "Mechanism of dimer formation of the 90-kDa heat-shock protein." Eur. J. Biochem 233(1): 1-8. Obermann, W. M. J., Sondermann, H., Russo, A. A., Pavletich, N. P. and Hartl, F. U. (1998). "In Vivo Function of HSP90 Is Dependent on ATP Binding and ATP Hydrolysis." J. Cell Biol. 143(4): 901-910. Otwinowski, Z. and Minor, W. (1997). "Processing of X-ray Diffraction Data Collected in Oscillation Mode." Methods in Enzymology 276: 307-326. Peitsch, M. C. (1996). "ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling." Biochem. Soc. Trans. 24: 274-279. Pratt, W. B. and Toft, D. O. (1997). "Steroid Receptor Interactions with Heat Shock Protein and Immunophilin Chaperones." Endocr Rev 18(3): 306-360. Prodromou, C., Roe, S. M., O''Brien, R., Ladbury, J. E., Piper, P. W. and Pearl, L. H. (1997). "Identification and structural characterization of the ATP/ADP-binding site in the HSP90 molecular chaperone." Cell 90: 65-75. Roe, S. M., C, P., O''Brien, R., Ladbury, J. E., PW, P. and Pearl, L. H. (1999). "Structural Basis for Inhibition of the HSP90 Molecular Chaperone by the Antitumor Antibiotics Radicicol and Geldanamycin." J. Med. Chem. 42(2): 266. Scheibel, T., Siegmund, H. I., Jaenicke, R., Ganz, P., Lilie, H. and Buchner, J. (1999). "The charged region of HSP90 modulates the function of the N-terminal domain." PNAS 96(4): 1297-1302. Scheibel, T., Weikl, T. and Buchner, J. (1998). "Two chaperone sites in HSP90 differing in substrate specificity and ATP dependence." PNAS 95(4): 1495-1499. Schneider, C., Sepp-Lorenzino, L., Nimmesgern, E., Ouerfelli, O., Danishefsky, S., Rosen, N. and Hartl, F. U. (1996). "Pharmacologic shifting of a balance between protein refolding and degradation mediated by HSP90." PNAS 93(25): 14536-14541. Schulte, T. W., Blagosklonny, M. V., Ingui, C. and Neckers, L. (1995). "Disruption of the Raf-1-HSP90 Molecular Complex Results in Destabilization of Raf-1 and Loss of Raf-1-Ras Association." J. Biol. Chem. 270(41): 24585-24588. Schulte, T. W. and Neckers, L. M. (1998). "The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin." Cancer Chemother Pharmacol. 42(4): 273-279. Schumacher, R. J., Hansen, W. J., Freeman, B. C., Alnemri, E., Litwack, G. and Toft, D. O. (1996). "Cooperative Action of HSP70, HSP90, and DnaJ Proteins in Protein Renaturation." Biochemistry 35(47): pp 14889 - 14898. Schwede, T., Kopp, J., Guex, N. and Peitsch, M. C. (2003). "SWISS-MODEL: an automated protein homology-modeling server." Nucleic Acids Res. 31: 3381-3385. Stancato, L., Chow, Y., Hutchison, K., Perdew, G., Jove, R. and Pratt, W. (1993). "Raf exists in a native heterocomplex with HSP90 and p50 that can be reconstituted in a cell-free system." J. Biol. Chem. 268(29): 21711-21716. Stancato, L. F., Silverstein, A. M., Owens-Grillo, J. K., Chow, Y.-H., Jove, R. and Pratt, W. B. (1997). "The HSP90-binding Antibiotic Geldanamycin Decreases Raf Levels and Epidermal Growth Factor Signaling without Disrupting Formation of Signaling Complexes or Reducing the Specific Enzymatic Activity of Raf Kinase." J. Biol. Chem. 272(7): 4013-4020. Stebbins, C. E., Russo, A. A., Schneider, C., Rosen, N., Hartl, F. U. and Pavletich, N. P. (1997). "Crystal structure of an HSP90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent." Cell 89: 239-259. Stepanova, L., Leng, X., Parker, S. and Harper, J. (1996). "Mammalian p50Cdc37 is a protein kinase-targeting subunit of HSP90 that binds and stabilizes Cdk4." Genes Dev. 10(12): 1491-1502. Thomas, J. G. and Baneyx, F. (2000). "ClpB and HtpG facilitate de novoEscherichia coli." Mol. Microbiol. 36(6): 1360-1370. Thulasiraman, V. and Robert, L. M. (1996). "Effect of Geldanamycin on the Kinetics of Chaperone-Mediated Renaturation of Firefly Luciferase in Rabbit Reticulocyte Lysate." Biochemistry 35(41): 13443-50. Wartmann, M. and Davis, R. (1994). "The native structure of the activated Raf protein kinase is a membrane- bound multi-subunit complex." J. Biol. Chem. 269(9): 6695-6701. Whitesell, L., Mimnaugh, E., Costa, B., Myers, C. and Neckers, L. (1994). "Inhibition of Heat Shock Protein HSP90-pp60v-src Heteroprotein Complex Formation by Benzoquinone Ansamycins: Essential Role for Stress Proteins in Oncogenic Transformation." PNAS 91(18): 8324-8328. Young, J. C., Moarefi, I. and Hartl, F. U. (2001). "HSP90: a specialized but essential protein-folding tool." J. Cell Biol. 154(2): 267-274. Young, J. C., Schneider, C. and Hartl, F. U. (1997). "In vitro evidence that HSP90 contains two independent chaperone sites." FEBS Lett. 418(1-2): 139-43. Yun-Ru Lai (2002). "Molecular Cloning and Functional Analysis of Rat 86-kDa Heat Shock Protein." National Tsing-Hua University Master Thesis. Part II: Acharya, K. R., R. Shapiro, S. C. Allen, J. F. Riordan and B. L. Vallee (1994). "Crystal Structure of Human Angiogenin Reveals the Structural Basis for Its Functional Divergence from Ribonuclease." PNAS 91(8): 2915-2919. Aloy, P., V. Companys, J. Vendrell, F. X. Aviles, L. D. Fricker, M. Coll and F. X. Gomis-Ruth (2001). "The Crystal Structure of the Inhibitor-complexed Carboxypeptidase D Domain II and the Modeling of Regulatory Carboxypeptidases." J. Biol. Chem. 276(19): 16177-16184. Altschul, S. F., Thomas L. Madden, Alejandro A. Schaffer, Z. Z. Jinghui Zhang, Webb Miller and D. J. Lipman (1997). "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs." Nucleic Acids Res. 25: 3389-3402. Bowie, J. U., R. Luthy and D. Eisenberg (1991). "A method to identify protein sequences that fold into a known three-dimensional structure." Science 253(5016): 164-70. Brunger, A. T., P. D. Adams, G. M. Clore, W. L. DeLano, P. Gros, R. W. Grosse-Kunstleve, J.-S. Jiang, J. Kuszewski, N. Nilges, N. S. Pannu, R. J. Read, L. M. Rice, T. Simonson and G. L. Warren (1998). "Crystallography and NMR system (CNS): A new software system for macromolecular structure determination." Acta Cryst. D54: 905-921. Colovos, C. and T. O. Yeates (1993). "Verification of protein structures: patterns of nonbonded atomic interactions." Protein Sci. 2(9): 1511-1519. Fletcher, R. and C. M. Reeves (1964). "Function Minimization by Conjugate Gradients." J. Comp. Chem. 7: 149-154. Folkman, J. (1992). "Angiogenesis." J. Biol. Chem. 267(16): 10931-10934. Fricker, L. D. (1988). "Carboxypeptidase E." Annual Review of Physiology 50(1): 309-321. Fricker, L. D. (1991). "In Peptide Biosynthesis and Processing (Fricker, L. D., ed) ,pp. 199-230." CRC Press, Inc., Boca Raton, FL. Fulong, T., R. Michael, W. K. Stefan and A. S. Randal (1997). "Sequence of human carboxypeptidase D reveals it to be a member of the regulatory carboxypeptidase family with three tandem active site domains." Biochem. J. 327: 81-87. Giuseppe (1999). "Evolution of oligomeric proteins: The unusual case of a dimeric ribonuclease." Eur J Biochem 266(3): 699-708. Gleich, G. J. and C. R. Adolphson (1986). "The eosinophilic leukocyte: structure and function." Adv. Immunol 39: 177-253. Gomis-Ruth, F. X., V. Companys, Y. Qian, L. D. Fricker, J. Vendrell, F. X. Aviles and M. Coll (1999). "Crystal structure of avian carboxypeptidase D domain II: a prototype for the regulatory metallocarboxypeptidase subfamily." EMBO J. 18(21): 5817-5826. Greene, D., B. Das and L. D. Fricker (1992). "Regulation of carboxypeptidase E. Effect of pH, temperature and Co2+ on kinetic parameters of substrate hydrolysis." Biochem. J. 285(Pt 2): 613-618. Guex, N., A. Diemand and M. C. Peitsch (1999). "Protein modelling for all." Science 24(9): 364-7. Guex, N. and M. C. Peitsch (1997). "SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling." Electrophoresis 18(15): 2714-2723. Hooft, R. W. W., G. Vriend, C. Sander and E. E. Abola (1996). "Errors in protein structures." Nature: 272-272. Jones, D. T. (1999). "Protein secondary structure prediction based on position-specific scoring matrices." J. Mol. Biol. 292: 195-202. Katchalski-Katzir, E., I. Shariv, M. Eisenstein, A. A. Friesem, C. Aflalo and I. A. Vakser (1992). "Molecular surface recognition: Determination of geometric fit between proteins and their ligands by correlation techniques." Proc. Natl. Acad. Sci. USA 89: 2195-2199. Laskowski, R. A., M. W. MacArthur, D. S. Moss and J. M. Thornton (1993). "PROCHECK: a program to check the stereochemical quality of protein structures." J. Appl. Cryst. 26: 283-291. Lee, B. and F. M. Richards (1971). "The Interpretation of Protein Structures: Estimation of Static Accessibility." J. Mol. Biol. 55: 379-400. Luthy, R., J. U. Bowie and D. Eisenberg (1992). "Assessment of protein models with three-dimensional profiles." Nature 356(6364): 83-85. Mallorqui-Fernandez, G., J. Pous, R. Peracaula, J. Aymami, T. Maeda, H. Tada, H. Yamada, M. Seno, R. de Llorens, F. X. Gomis-Ruth and M. Coll (2000). "Three-dimensional crystal structure of human eosinophil cationic protein (RNase 3) at 1.75 A resolution1." J. Mol. Biol. 300(5): 1297-1307. McGuffin, L. J., K. Bryson and D. T. Jones (2000). "The PSIPRED protein structure prediction server." Bioinformatics 16: 404-405. Mosimann, S. C., D. L. Newton, R. J. Youle and M. N. G. James (1996). "X-ray Crystallographic Structure of Recombinant Eosinophil-derived Neurotoxin at 1.83 A Resolution." J. Mol. Biol. 260(4): 540-552. Novikova, E. G., F. J. Eng, L. Yan, Y. Qian and L. D. Fricker (1999). "Characterization of the Enzymatic Properties of the First and Second Domains of Metallocarboxypeptidase D." J. Biol. Chem. 274(41): 28887-28892. Parkinson, D. (1990). "Two soluble forms of bovine carboxypeptidase H have different NH2- terminal sequences." J. Biol. Chem. 265(28): 17101-17105. Peitsch, M. C. (1996). "ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling." Biochem. Soc. Trans. 24: 274-279. Pontius, J., J. Richelle and S. J. Wodak (1996). "Deviations from Standard Atomic Volumes as a Quality Measure for Protein Crystal Structures." J. Mol. Biol. 264(1): 121-136. Pous, J., A. Canals, S. S. Terzyan, A. Guasch, A. Benito, M. Ribo, M. Vilanova and M. Coll (2000). "Three-dimensional structure of a human pancreatic ribonuclease variant, a step forward in the design of cytotoxic ribonucleases1." Journal of Molecular Biology 303(1): 49-59. Press, W. H., B. P. Flannery, S. A. Teukolshy and W. T. Vetrrling (1987). Numerical Recipes: The Art of Scientific Computing. Cambridge, University Press. Rangwala, S. M. and M. A. Lazar (2000). "Transcriptional Control of Adipogenesis." Annual Review of Nutrition 20(1): 535-559. Rawlings, N. D. and A. J. Barret (1995). "Evolutionary families of metallopeptidases." Methods Enzymol. 248: 183-228. Reznik, S. E., C. M. Salafia, J. M. Lage and L. D. Fricker (1998). "Immunohistochemical Localization of Carboxypeptidases E and D in the Human Placenta and Umbilical Cord." J. Histochem. Cytochem. 46(12): 1359-1368. Rosenberg, H. F. and K. D. Dyer (1997). "Diversity among the primate eosinophil-derived neurotoxin genes: a specific C-terminal sequence is necessary for enhanced ribonuclease activity." Nucl. Acids. Res. 25(17): 3532-3536. Schafer, M. K., R. Day, W. E. Cullinan, M. Chretien, N. G. Seidah and S. J. Watson (1993). "Gene expression of prohormone and proprotein convertases in the rat CNS: a comparative in situ hybridization analysis." J. Neurosci. 13(3): 1258-1279. Schwede, T., A. Diemand, N. Guex and M. C. Peitsch (2000). "Protein structure computing in the genomic era." Research in Microbiology 151(2): 107-112. Skidgel, R. A. (1988). "Basic carboxypeptidases: regulators of peptide hormone activity." Trends Pharmacol Sci. 9(8): 299-304. Skidgel, R. A. (1996). "In Zinc Metalloproteases in Health and Disease (Hooper, N. M., ed)." Taylor and Francis, London: 241-283. Sorrentino, S., D. G. Glitz, K. J. Hamann, D. A. Loegering, J. L. Checkel and G. J. Gleich (1992). "Eosinophil-derived neurotoxin and human liver ribonuclease. Identity of structure and linkage of neurotoxicity to nuclease activity." J. Biol. Chem. 267(21): 14859-14865. Sorrentino, S. and M. Libonati (1997). "Structure-function relationships in human ribonucleases: main distinctive features of the major RNase types." FEBS Letters 404(1): 1-5. Thompson, J. D., D. G. Higgins and T. J. Gibson (1994). "CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice." Nucleic Acids Res. 22: 4673-4680. Vakser, I. A. and C. Aflalo (1994). "Hydrophobic docking: A proposed enhancement to molecular recognition techniques." Proteins 20: 320-329. Vendrell, J., E. Querol and F. X. Aviles (2000). "Metallocarboxypeptidases and their protein inhibitors: Structure, function and biomedical properties." Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1477(1-2): 284-298. Young, J. D. E., C. G. B. Peterson, P. Venge and Z. A. Cohn (1986). "Mechanisms of membrane damage mediated by human eosinophil cationic protein." Nature 321(6070): 613-616.id NH0920105007 sid 894250 cfn 0 / id NH0920105008 auc 蘇倩儀 tic 應用定向分子演化法增進動物細胞表面異質受體蛋白之表現 adc 羅傅倫 博士 adc 呂平江 博士 ty 碩士 sc 國立清華大學 dp 生命科學系 yr 92 lg 英文 pg 100 kwc 定向分子演化法 kwc 間隔區域 kwc 穿膜區域 kwc 細胞質區域 kwc 蛋白質表現 kwc 動物細胞表面 abc 表現異體蛋白於動物細胞表面有助於某些疾病的治療。被表現的蛋白有幾個區域 (domain) 被認為與細胞表現此蛋白在表面上的效率有關,包括: (1)膜外區域 (extracellular domain) (2) 間隔區域 (spacer) (3) 穿膜區域 (transmembrane domain) (4) 細胞質區域 (cytoplasmic domain)。前人的研究指出,利用人類膽醣蛋白 (human biliary glycoprotein) 的N端做為間隔區域來表現抗CD3單鏈抗體時,可提高此重組抗體在細胞膜上的表現量,若當此間隔區域上的N-醣基化位 (N-linked glycosylation sites) 被突變後則會降低其表現量。本論文的實驗目的有二: (1) 尋找可增加膜上蛋白表現的基因突變位; (2)利用構築完整的細胞質尾端片段 (cytoplasmic tail) 之嵌合蛋白 (chimeric protein) 來探討此對蛋白在膜上表現的影響。為了探究可增加蛋白在膜上表現效率的基因突變位,本實驗構築了一包含N-醣基化位突變的膽醣蛋白N端作為蛋白間隔區域、囓齒類B7分子之穿膜部位及細胞內區域蛋白片段之嵌合蛋白進行定向分子演化 (directed molecular evolution)。定向分子演化是蛋白質改造工程中的重要工具。實驗設計將包含此三部份的嵌合蛋白cDNA先以error-prone PCR進行不同程度的隨機突變,將總突變率為0.30%及0.47%的突變基因庫分別以反轉錄病毒感染的方式送進標的細胞,利用流式細胞儀來偵測細胞膜上嵌合蛋白的表現,表現量高的細胞族群以此方式篩選出來,增殖其突變基因作為DNA shuffling的材料進行突變重組;重組後的突變基因庫同樣以反轉錄病毒感染的方式送進標的細胞內再進行三次篩選(sorting)。經篩選過細胞株族群之基因定序結果發現某些個別基因突變會增加嵌合蛋白在膜上的表現。並發現嵌合蛋白間隔區域有六個突變位,且此六個突變位將原本構築突變之N-醣基化位回復為原始的N-醣基化位;此結果顯示本實驗所使用的分子演化法及篩選方式可達到與自然選汰類似的結果。 tc Contents Chinese Abstract English Abstract 1. Introduction 1.1 Protein expression in therapy 1.2 Types of integral membrane proteins 1.3 General pathway of membrane protein synthesis 1.4 Elements in vascular transport 1.5 Quality control element in protein sorting 1.6 The Factors affecting protein expression on the cell surface 1.7 Directed evolution 1.8 High throughput screening methods 1.9 Strategy 2. Material and methods 2.1 Plasmid construction 2.2 Transfection of transgenes 2.3 Immunoblotting of chimeric proteins 2.4 Flow cytometer analysis 2.5 Preparation of target vector 2.6 Error-prone PCR 2.7 Cloning of PCR products 2.8 Ligation reaction 2.9 Bacterial transformation 2.10 DNA Sequencing 2.11 Amplification and extraction of library DNA 2.12 Retrovirus-mediated expression 2.12.1 Transfection 2.12.2 Viral infection 2.13 Cell Sorting 2.14 Amplification of cDNA 2.14.1 Isolation of total RNA by TRIZOL® Reagent 2.14.2 cDNA synthesis 2.14.3 Amplification of cDNA 2.15 DNA shuffling 2.15.1 Substrate preparation 2.15.2 DNase I digestion 2.15.3 Primerless PCR assemble 2.15.4 Amplify the full-length of DNA 2.16 Plasmid construction for protein sorting rate analysis 2.17 Generation of stable expression cells 2.18 Transient transfection 2.19 Protein sorting rate analysis 2.20 Pilot experiments to optimize measurement of protein transport rate 2.21 Endoglycosidase H and PNGaseF digestion 3. Result 3.1 Generation of plasmids for surface expression of chimeric proteins 3.2 Chimeric proteins are expressed on the cell surface 3.3 Analysis of the mutation rate in error-prone PCR 3.4 Sorting of the mutant libraries increases transgene expression 3.5 DNA shuffling 3.6 Sequence analysis of the shuffled library 3.7 Addition of glycosylation site rescues surface expression 3.8 Surface expression level of the sorted-shuffled library 3.9 Sequence analysis of the sort-3 shuffled library 3.10 The cytoplasmic tail increases surface expression 3.11 Optimization of pulse-chase and immunoprecipitation conditions 3.12 An intact cytoplasmic tail can increase protein transport to the cell surface 3.13 Deletion of the cytoplasmic tail decreases the protein sorting rate 3.14 Slower transport of AFP-B7(5) is due to the ER-retention 4. Discussion 4.1 The mutation rates of error-prone PCR 4.2 Transition bias was observed and methods to increase the transversion rate 4.3 Adding oligosaccharides increases surface expression 4.4 Possible mutations that increase surface expression 4.5 The selective pressures might mimic those encountered during natural evolution 4.6 Strategic advantages and feasible modifications in this study 4.7 An intact cytoplasmic tail increases protein escape from the ER 4.8 A model to explain different surface expression patterns of 2C11 scFv and AFP 4.9 Possible mechanism of the cytoplasmic tail in improving protein transport 4.10 Pulse-chase experiment is promising in monitoring protein transport 4.11 Workable applications of this study 5. Figures and tables 6.Referencesrf Arnold, F. H. and Volkov, A. A. (1999). "Directed evolution of biocatalysts." Curr Opin Chem Biol 3(1): 54-59. Beckman, R. A., Mildvan, A. S. and Loeb, L. A. (1985). "On the fidelity of DNA replication: manganese mutagenesis in vitro." Biochemistry 24(21): 5810-5817. Blomenrohr, M., Heding, A., Sellar, R., Leurs, R., Bogerd, J., Eidne, K. A. and Willars, G. B. (1999). "Pivotal role for the cytoplasmic carboxyl-terminal tail of a nonmammalian gonadotropin-releasing hormone receptor in cell surface expression, ligand binding, and receptor phosphorylation and internalization." Mol Pharmacol 56(6): 1229-1237. Boder, E. T., Midelfort, K. S. and Wittrup, K. D. (2000). "Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity." Proc Natl Acad Sci U S A 97(20): 10701-10705. Boder, E. T. and Wittrup, K. D. (1998). "Optimal screening of surface-displayed polypeptide libraries." Biotechnol Prog 14(1): 55-62. Borel, A. C. and Simon, S. M. (1996). "Biogenesis of polytopic membrane proteins: membrane segments assemble within translocation channels prior to membrane integration." Cell 85(3): 379-389. Cadwell, R. C. and Joyce, G. F. (1992). "Randomization of genes by PCR mutagenesis." PCR Methods Appl 2(1): 28-33. Cadwell, R. C. and Joyce, G. F. (1994). "Mutagenic PCR." PCR Methods Appl 3(6): S136-140. Chang, C. C., Chen, T. T., Cox, B. W., Dawes, G. N., Stemmer, W. P., Punnonen, J. and Patten, P. A. (1999). "Evolution of a cytokine using DNA family shuffling." Nat Biotechnol 17(8): 793-797. Chesnut, J. D., Baytan, A. R., Russell, M., Chang, M. P., Bernard, A., Maxwell, I. H. and Hoeffler, J. P. (1996). "Selective isolation of transiently transfected cells from a mammalian cell population with vectors expressing a membrane anchored single-chain antibody." J Immunol Methods 193(1): 17-27. Chou, K. C. and Elrod, D. W. (1999). "Prediction of membrane protein types and subcellular locations." Proteins 34(1): 137-153. Chou, W. C., Liao, K. W., Lo, Y. C., Jiang, S. Y., Yeh, M. Y. and Roffler, S. R. (1999). "Expression of chimeric monomer and dimer proteins on the plasma membrane of mammalian cells." Biotechnol Bioeng 65(2): 160-169. Coco, W. M., Levinson, W. E., Crist, M. J., Hektor, H. J., Darzins, A., Pienkos, P. T., Squires, C. H. and Monticello, D. J. (2001). "DNA shuffling method for generating highly recombined genes and evolved enzymes." Nat Biotechnol 19(4): 354-359. Daugherty, P. S., Iverson, B. L. and Georgiou, G. (2000). "Flow cytometric screening of cell-based libraries." J Immunol Methods 243(1-2): 211-227. de Ines, C., Cochlovius, B., Schmidt, S., Kipriyanov, S., Rode, H. J. and Little, M. (1999). "Apoptosis of a human melanoma cell line specifically induced by membrane-bound single-chain antibodies." J Immunol 163(7): 3948-3956. Ellgaard, L. and Helenius, A. (2003). "Quality control in the endoplasmic reticulum." Nat Rev Mol Cell Biol 4(3): 181-191. Georgiou, G. (2000). "Analysis of large libraries of protein mutants using flow cytometry." Adv Protein Chem 55: 293-315. Griffin, M. D., Hong, D. K., Holman, P. O., Lee, K. M., Whitters, M. J., O'Herrin, S. M., Fallarino, F., Collins, M., Segal, D. M., Gajewski, T. F., Kranz, D. M. and Bluestone, J. A. (2000). "Blockade of T cell activation using a surface-linked single-chain antibody to CTLA-4 (CD152)." J Immunol 164(9): 4433-4442. Halin, C., Gafner, V., Villani, M. E., Borsi, L., Berndt, A., Kosmehl, H., Zardi, L. and Neri, D. (2003). "Synergistic therapeutic effects of a tumor targeting antibody fragment, fused to interleukin 12 and to tumor necrosis factor alpha." Cancer Res 63(12): 3202-3210. Hampton, R. Y. (2002). "ER-associated degradation in protein quality control and cellular regulation." Curr Opin Cell Biol 14(4): 476-482. Helenius, A. and Aebi, M. (2001). "Intracellular functions of N-linked glycans." Science 291(5512): 2364-2369. Hwang, K. W., Sweatt, W. B., Brown, I. E., Blank, C., Gajewski, T. F., Bluestone, J. A. and Alegre, M. L. (2002). "Cutting edge: targeted ligation of CTLA-4 in vivo by membrane-bound anti-CTLA-4 antibody prevents rejection of allogeneic cells." J Immunol 169(2): 633-637. Imperiali, B. and O'Connor, S. E. (1999). "Effect of N-linked glycosylation on glycopeptide and glycoprotein structure." Curr Opin Chem Biol 3(6): 643-649. Jorgensen, M. M., Bross, P. and Gregersen, N. (2003). "Protein quality control in the endoplasmic reticulum." APMIS Suppl(109): 86-91. Kitamura, T. (1998). "New experimental approaches in retrovirus-mediated expression screening." Int J Hematol 67(4): 351-359. Kurtzman, A. L., Govindarajan, S., Vahle, K., Jones, J. T., Heinrichs, V. and Patten, P. A. (2001). "Advances in directed protein evolution by recursive genetic recombination: applications to therapeutic proteins." Curr Opin Biotechnol 12(4): 361-370. Leong, S. R., Chang, J. C., Ong, R., Dawes, G., Stemmer, W. P. and Punnonen, J. (2003). "Optimized expression and specific activity of IL-12 by directed molecular evolution." Proc Natl Acad Sci U S A 100(3): 1163-1168. Liao, K. W., Chen, B. M., Liu, T. B., Tzou, S. C., Lin, Y. M., Lin, K. F., Su, C. I. and Roffler, S. R. (2003). "Stable expression of chimeric anti-CD3 receptors on mammalian cells for stimulation of antitumor immunity." Cancer Gene Ther 10(10): 779-790. Liao, K. W., Chou, W. C., Lo, Y. C. and Roffler, S. R. (2001). "Design of transgenes for efficient expression of active chimeric proteins on mammalian cells." Biotechnol Bioeng 73(4): 313-323. Liao, S., Lin, J., Do, H. and Johnson, A. E. (1997). "Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration." Cell 90(1): 31-41. Lingen, B., Kolter-Jung, D., Dunkelmann, P., Feldmann, R., Grotzinger, J., Pohl, M. and Muller, M. (2003). "Alteration of the Substrate Specificity of Benzoylformate Decarboxylase from Pseudomonas putida by Directed Evolution." Chembiochem 4(8): 721-726. Ma, D., Zerangue, N., Lin, Y. F., Collins, A., Yu, M., Jan, Y. N. and Jan, L. Y. (2001). "Role of ER export signals in controlling surface potassium channel numbers." Science 291(5502): 316-319. Makeyev, E. V., Kolb, V. A. and Spirin, A. S. (1996). "Enzymatic activity of the ribosome-bound nascent polypeptide." FEBS Lett 378(2): 166-170. Matsumura, I. and Ellington, A. D. (2002). "Mutagenic polymerase chain reaction of protein-coding genes for in vitro evolution." Methods Mol Biol 182: 259-267. Moore, J. C., Jin, H. M., Kuchner, O. and Arnold, F. H. (1997). "Strategies for the in vitro evolution of protein function: enzyme evolution by random recombination of improved sequences." J Mol Biol 272(3): 336-347. Nagarajan, S. and Selvaraj, P. (2002). "Glycolipid-anchored IL-12 expressed on tumor cell surface induces antitumor immune response." Cancer Res 62(10): 2869-2874. Petrounia, I. P. and Arnold, F. H. (2000). "Designed evolution of enzymatic properties." Curr Opin Biotechnol 11(4): 325-330. Proba, K., Worn, A., Honegger, A. and Pluckthun, A. (1998). "Antibody scFv fragments without disulfide bonds made by molecular evolution." J Mol Biol 275(2): 245-253. Puddington, L., Machamer, C. E. and Rose, J. K. (1986). "Cytoplasmic domains of cellular and viral integral membrane proteins substitute for the cytoplasmic domain of the vesicular stomatitis virus glycoprotein in transport to the plasma membrane." J Cell Biol 102(6): 2147-2157. Rothman, J. E. and Wieland, F. T. (1996). "Protein sorting by transport vesicles." Science 272(5259): 227-234. Scales, S. J., Gomez, M. and Kreis, T. E. (2000). "Coat proteins regulating membrane traffic." Int Rev Cytol 195: 67-144. Seeger, M. and Payne, G. S. (1992). "A role for clathrin in the sorting of vacuolar proteins in the Golgi complex of yeast." Embo J 11(8): 2811-2818. Sevier, C. S., Weisz, O. A., Davis, M. and Machamer, C. E. (2000). "Efficient export of the vesicular stomatitis virus G protein from the endoplasmic reticulum requires a signal in the cytoplasmic tail that includes both tyrosine-based and di-acidic motifs." Mol Biol Cell 11(1): 13-22. Shibata, H., Kato, H. and Oda, J. (1998). "Random mutagenesis on the Pseudomonas lipase activator protein, LipB: exploring amino acid residues required for its function." Protein Eng 11(6): 467-472. Shikano, S. and Li, M. (2003). "Membrane receptor trafficking: evidence of proximal and distal zones conferred by two independent endoplasmic reticulum localization signals." Proc Natl Acad Sci U S A 100(10): 5783-5788. Shtil, A. A., Turner, J. G., Durfee, J., Dalton, W. S. and Yu, H. (1999). "Cytokine-based tumor cell vaccine is equally effective against parental and isogenic multidrug-resistant myeloma cells: the role of cytotoxic T lymphocytes." Blood 93(6): 1831-1837. Stemmer, W. P. (1994). "DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution." Proc Natl Acad Sci U S A 91(22): 10747-10751. Tajiri, T., Maki, H. and Sekiguchi, M. (1995). "Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli." Mutat Res 336(3): 257-267. Trinh, R., Gurbaxani, B., Morrison, S. L. and Seyfzadeh, M. (2004). "Optimization of codon pair use within the (GGGGS)(3) linker sequence results in enhanced protein expression." Mol Immunol 40(10): 717-722. van Vliet, C., Thomas, E. C., Merino-Trigo, A., Teasdale, R. D. and Gleeson, P. A. (2003). "Intracellular sorting and transport of proteins." Prog Biophys Mol Biol 83(1): 1-45. Winberg, G., Grosmaire, L. S., Klussman, K., Hayden, M. S., Fell, H. P., Ledbetter, J. A. and Mittler, R. S. (1996). "Surface expression of CD28 single chain Fv for costimulation by tumor cells." Immunol Rev 153: 209-223. Wong, B. Y., Chen, H., Chung, S. W. and Wong, P. M. (1994). "High-efficiency identification of genes by functional analysis from a retroviral cDNA expression library." J Virol 68(9): 5523-5531. Xu, H., Petersen, E. I., Petersen, S. B. and el-Gewely, M. R. (1999). "Random mutagenesis libraries: optimization and simplification by PCR." Biotechniques 27(6): 1102-1104, 1106, 1108. Yamamoto, K., Fujii, R., Toyofuku, Y., Saito, T., Koseki, H., Hsu, V. W. and Aoe, T. (2001). "The KDEL receptor mediates a retrieval mechanism that contributes to quality control at the endoplasmic reticulum." Embo J 20(12): 3082-3091. You, L. and Arnold, F. H. (1996). "Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide." Protein Eng 9(1): 77-83. Zaccolo, M. and Gherardi, E. (1999). "The effect of high-frequency random mutagenesis on in vitro protein evolution: a study on TEM-1 beta-lactamase." J Mol Biol 285(2): 775-783. Zaccolo, M., Williams, D. M., Brown, D. M. and Gherardi, E. (1996). "An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues." J Mol Biol 255(4): 589-603. Zhao, H. and Arnold, F. H. (1997). "Optimization of DNA shuffling for high fidelity recombination." Nucleic Acids Res 25(6): 1307-1308. Zola, H. (2000). "Immunological applications of flow cytometry." J Immunol Methods 243(1-2): 1-2. Zola, H., Neoh, S. H., Mantzioris, B. X., Webster, J. and Loughnan, M. S. (1990). "Detection by immunofluorescence of surface molecules present in low copy numbers. High sensitivity staining and calibration of flow cytometer." J Immunol Methods 135(1-2): 247-255.id NH0920105008 sid 874210 cfn 0 / id NH0920105009 auc 林姿瑩 tic 探討ubiquitin proteasome路徑對survivin蛋白降解的調控 adc 呂平江 博士 adc 黃奇英 博士 ty 碩士 sc 國立清華大學 dp 生命科學系 yr 92 lg 英文 pg 51 kwc survivin蛋白降解 abc 中文摘要 tc CONTENTS ABBREVIATIONS…...………………………………………………………………I 中文摘要 II ABSTRACT III SPECIFIC AIMS IV INTRODUCTION 1 MATERIALS AND METHODS 14 RESULTS 20 DISCUSSION 28 REFERENCES 32 FIGURE LEGENDS 38 APPENDIX 49rf Reference 1. Ambrosini, G., C. Adida, and D.C. Altieri, A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med, 1997. 3(8): p. 917-21. 2. Li, F., et al., Control of apoptosis and mitotic spindle checkpoint by survivin. Nature, 1998. 396(6711): p. 580-4. 3. Li, F., et al., Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat Cell Biol, 1999. 1(8): p. 461-6. 4. Verdecia, M.A., et al., Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nat Struct Biol, 2000. 7(7): p. 602-8. 5. Yamamoto, T. and N. Tanigawa, The role of survivin as a new target of diagnosis and treatment in human cancer. Med Electron Microsc, 2001. 34(4): p. 207-12. 6. Yu, J., et al., Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis. BMC Cancer, 2002. 2(1): p. 29. 7. Li, F. and D.C. Altieri, Transcriptional analysis of human survivin gene expression. Biochem J, 1999. 344 Pt 2: p. 305-11. 8. Altieri, D.C., P.C. Marchisio, and C. Marchisio, Survivin apoptosis: an interloper between cell death and cell proliferation in cancer. Lab Invest, 1999. 79(11): p. 1327-33. 9. Speliotes, E.K., et al., The survivin-like C. elegans BIR-1 protein acts with the Aurora-like kinase AIR-2 to affect chromosomes and the spindle midzone. Mol Cell, 2000. 6(2): p. 211-23. 10. Jones, G., et al., Deterin, a new inhibitor of apoptosis from Drosophila melanogaster. J Biol Chem, 2000. 275(29): p. 22157-65. 11. Mesri, M., et al., Suppression of vascular endothelial growth factor-mediated endothelial cell protection by survivin targeting. Am J Pathol, 2001. 158(5): p. 1757-65. 12. Grossman, D., et al., Expression and targeting of the apoptosis inhibitor, survivin, in human melanoma. J Invest Dermatol, 1999. 113(6): p. 1076-81. 13. O''Connor, D.S., et al., Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc Natl Acad Sci U S A, 2000. 97(24): p. 13103-7. 14. Wright, M.E., D.K. Han, and D.M. Hockenbery, Caspase-3 and inhibitor of apoptosis protein(s) interactions in Saccharomyces cerevisiae and mammalian cells. FEBS Lett, 2000. 481(1): p. 13-8. 15. Shankar, S.L., et al., Survivin inhibition induces human neural tumor cell death through caspase-independent and -dependent pathways. J Neurochem, 2001. 79(2): p. 426-36. 16. Chen, J., et al., Down-regulation of survivin by antisense oligonucleotides increases apoptosis, inhibits cytokinesis and anchorage-independent growth. Neoplasia, 2000. 2(3): p. 235-41. 17. Li, F. and D.C. Altieri, The cancer antiapoptosis mouse survivin gene: characterization of locus and transcriptional requirements of basal and cell cycle-dependent expression. Cancer Res, 1999. 59(13): p. 3143-51. 18. Suzuki, A., et al., Survivin initiates cell cycle entry by the competitive interaction with Cdk4/p16(INK4a) and Cdk2/cyclin E complex activation. Oncogene, 2000. 19(29): p. 3225-34. 19. O''Connor, D.S., et al., A p34(cdc2) survival checkpoint in cancer. Cancer Cell, 2002. 2(1): p. 43-54. 20. Gray, N.S., et al., Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science, 1998. 281(5376): p. 533-8. 21. Giodini, A., et al., Regulation of microtubule stability and mitotic progression by survivin. Cancer Res, 2002. 62(9): p. 2462-7. 22. Kostrouchova, M., et al., BIR-1, a Caenorhabditis elegans homologue of Survivin, regulates transcription and development. Proc Natl Acad Sci U S A, 2003. 100(9): p. 5240-5. 23. Uren, A.G., et al., Role for yeast inhibitor of apoptosis (IAP)-like proteins in cell division. Proc Natl Acad Sci U S A, 1999. 96(18): p. 10170-5. 24. Wheatley, S.P., et al., INCENP is required for proper targeting of Survivin to the centromeres and the anaphase spindle during mitosis. Curr Biol, 2001. 11(11): p. 886-90. 25. Zhao, J., et al., The ubiquitin-proteasome pathway regulates survivin degradation in a cell cycle-dependent manner. J Cell Sci, 2000. 113 Pt 23: p. 4363-71. 26. Hershko, A., et al., Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem, 1983. 258(13): p. 8206-14. 27. Littlepage, L.E. and J.V. Ruderman, Identification of a new APC/C recognition domain, the A box, which is required for the Cdh1-dependent destruction of the kinase Aurora-A during mitotic exit. Genes Dev, 2002. 16(17): p. 2274-85. 28. Pfleger, C.M. and M.W. Kirschner, The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev, 2000. 14(6): p. 655-65. 29. Zur, A. and M. Brandeis, Securin degradation is mediated by fzy and fzr, and is required for complete chromatid separation but not for cytokinesis. Embo J, 2001. 20(4): p. 792-801. 30. Willems, A.R., et al., SCF ubiquitin protein ligases and phosphorylation-dependent proteolysis. Philos Trans R Soc Lond B Biol Sci, 1999. 354(1389): p. 1533-50. 31. Kipreos, E.T. and M. Pagano, The F-box protein family. Genome Biol, 2000. 1(5): p. REVIEWS3002. 32. Leverson, J.D., et al., The Schizosaccharomyces pombe aurora-related kinase Ark1 interacts with the inner centromere protein Pic1 and mediates chromosome segregation and cytokinesis. Mol Biol Cell, 2002. 13(4): p. 1132-43. 33. Chen, X., et al., [Up-expression of IL-6 and down-expression of TNFalpha may be involved in the regulation of apoptosis induced by antisense bcl-2 oligodeoxynucleotides ]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2002. 19(6): p. 495-8. 34. Wheatley, S.P., et al., Aurora-B Phosphorylation in Vitro Identifies a Residue of Survivin That Is Essential for Its Localization and Binding to Inner Centromere Protein (INCENP) in Vivo. J Biol Chem, 2004. 279(7): p. 5655-60. 35. Lu, C.D., D.C. Altieri, and N. Tanigawa, Expression of a novel antiapoptosis gene, survivin, correlated with tumor cell apoptosis and p53 accumulation in gastric carcinomas. Cancer Res, 1998. 58(9): p. 1808-12. 36. Adida, C., et al., Anti-apoptosis gene, survivin, and prognosis of neuroblastoma. Lancet, 1998. 351(9106): p. 882-3. 37. Ito, T., et al., Survivin promotes cell proliferation in human hepatocellular carcinoma. Hepatology, 2000. 31(5): p. 1080-5. 38. Skoufias, D.A., et al., Human survivin is a kinetochore-associated passenger protein. J Cell Biol, 2000. 151(7): p. 1575-82.id NH0920105009 sid 904236 cfn 0 / id NH0920159001 auc 許薰丰 tic 鈦在矽(111)表面上的初始反應之研究 adc 陳力俊 ty 博士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 114 kwc 掃描式電子顯微鏡 kwc 穿透式電子顯微鏡 kwc 同步輻射 kwc 矽(111)-7x7 kwc 矽化物 kwc 鈦 kwc 初始反應 kwc 半導體 abc 隨著電子元件縮小至奈米尺寸,金屬與矽基材的初始反應對其界面性質的影響扮演相當重要的角色。本研究利用掃描穿隧式電子顯微鏡(scanning tunneling microscopy, STM)、低能量電子繞射(low energy electron diffraction, LEED)、同步輻射紫外光光電子能譜(synchrotron radiation ultraviolet photoemission spectroscopy, SR-UPS)及穿透式電子顯微鏡(transmission electron microscopy, TEM)研究鈦在矽(111)-7×7表面上的初始反應。 tc Contents Chinese abstract……………………………………………………. I English abstract……………………………………………………. III Acknowledgement………………………………………………… V Contents…………………………………………………………… VII Chapter 1. Introduction 1.1 Overview……………………………………………….. 1 1.2 Fundamentals…………………………………………… 2 1.2.1 Review of Si(111)-7×7 surface…………………………. 2 1.2.2 Silicide formation for Ti thin film/Si system………….... 4 1.2.3 Nanoscale titanium silicide islands formation………….. 5 1.3 The organization of the thesis…………………………... 6 Chapter 2. Experimental Procedures and Apparatus 2.1 Introduction……………………………………………... 8 2.2 Scanning tunneling microscope (STM)………...……..... 10 2.2.1 STM system…………………………………...………... 10 2.2.2 Tip preparation………………………………………….. 11 2.2.3 Evaporator system…………………………………….... 12 2.2.4 Low energy electron diffraction (LEED)……………..... 12 2.3 Synchrotron radiation ultraviolet photoemission spectroscopy (SR-UPS)……………………………………………….. 12 2.3.1 Beam-line specifications………………………………... 12 2.3.2 Experimental station and hemispherical energy analyzer 13 2.3.3 Evaporator system…………………………………….... 13 2.4 Sample preperation……………………………………... 14 2.4.1 Clean Si(111)-7×7…………………………………….... 14 2.4.2 Deposition and annealing…………………………...….. 14 2.5 Transmission electron microscope (TEM)…………….... 15 Chapter 3. Adsorption and Switching Behaviors of Individual Ti Atoms on Si(111)-7×7 Surface 3.1 Introduction1………………………………………….... 16 3.2 Sample preparation……………………………………….. 17 3.3 Results and discussion………………………………….. 18 3.3.1 STM observation……………………………………….. 18 3.3.2 SR-UPS analysis……………………………………….. 21 3.3.3 Energy barrier between the adsorption sites………...….. 22 3.3.4 Discussion……………………………………………..... 24 Chapter 4. Initial Stages of Ultra Thin Ti Film Growth on Si(111)-7×7 at Room Temperature 4.1 Introduction…………………………………………….. 27 4.2 Sample preparation.………………………………...….. 28 4.3 Results and discussion………………………………..... 29 Chapter 5. Identification of the First Nucleated Phase in Submonolayer Ti Deposited on Si(111)-7×7 by Atomic Resolution Techniques 5.1 Introduction…………………………………………….. 32 5.2 Sample preparation….………………………………..... 33 5.3 Results and discussion………………………………..... 34 Chapter 6. Shape Transition in the Initial Growth of Titanium Silicide Clusters on Si(111) 6.1 Introduction……………………………………………... 38 6.2 Sample preparation.…………………………………….. 39 6.3 Results and discussion………………………………….. 39 6.3.1 STM observation……………………………………….. 39 6.3.2 TEM analysis……………………….…………………... 40 6.3.3 Discussion………………………….………………..….. 42 Chapter 7. Conclusions 7.1 Adsorption and switching behaviors of individual Ti atoms on Si(111)-7×7 surface…………………………………….. 45 7.2 Initial stages of ultra thin ti film growth on Si(111)-7×7 at room temperature………………………………………….….. 45 7.3 Identification of the first nucleated phase in submonolayer Ti deposited on Si(111)-7×7 by atomic resolution techniques 46 7.4 Shape transition in the initial growth of titanium silicide clusters on Si(111)……………………………………..... 46 Chapter 8. Future prospects 8.1 Theoretical calculation of adsorption on Ti atom on Si(111)-7×7……………………………………………… 47 8.2 Dynamic behavior of Ti atom on Si(111)-7×7………….. 47 8.3 Mechanism of the growth of Ti silicide clusters………... 47 8.4 The mechanism of elongated shape of Ti silicide cluster formation………………………………………………... 48 References…………………………………………………………. 49 Tables……………………………………………………………..... 62 Figure captions…………………………………………………...... 65 Figures …………………………………………………………….. 72 Publications………………………………………………………... 112rf Chapter 1 1.1 S. P. Murarka, “Self-aligned silicides for VLSI applications-Are they alternates for metals?”, Semiconductor Silicon 1986, 297-315 (1986). 1.2 M. E. Alperin, T. C. Holloway, R. A. Haken, C. D. Gosmeyer, R. V. Karnaugh and W. D. Parmantie, “Development of the self-aligned silicide process for VLSI application”, IEEE Trans. Electron Devices ED-32, 141-149 (1985). 1.3 S. P. Murarka, “Self-aligned silicides for VLSI applications-Are they alternates for metals?”, Semiconductor Silicon 1986, 297-315 (1986). 1.4 M. H. Wang and L. J. Chen, “Identification of the first nucleated phase in the interfacial reactions of ultra high vacuum deposited titanium thin film on silicon”, Appl. Phys. Lett. 58, 463-465 (1991). 1.5 M. H. Wang and L. J. Chen, “Phase formation in the interfacial reactions of ultrahigh vacuum deposited titanium thin films on (111)Si”, J. Appl. Phys. 71, 5918-5925 (1992). 1.6 M. D. Giudice, J. J. Joyce, M. W. Ruckman and J. H. Weaver, “Silicide formation at the Ti/Si(111) interface: Room-temperature reaction and Schottky-barrier formation”, Phys. Rev. B 35, 6213-6221 (1987). 1.7 S. A. Chambers, D. M. Hill, F. Xu and J. H. Weaver, “Silicide formation at the Ti/Si(111) interface: Diffusion parameters and behavior at elevated temperature”, Phys. Rev. B 35, 634-640 (1987). 1.8 X. Wallart, J. P. Nys, H. S. Zeng, G. Dalmai, I. Lefebvre and M. Lannoo, “Auger and electron-energy-loss spectroscopy stude of interface formation in the Ti-Si system”, Phys. Rev. B 41 3087-3096 (1990). 1.9 M. Schulz, “The end of the road for silicon”, Nature 399, 729-730 (1999). 1.10 R. F. Service, “World’s smallest transistor?”, Science 293, 786 (2001). 1.11 G. A. D. Briggs, D. P. Basile, G. Medeiros-Ribeiro, T. I. Kamins, D. A. A. Ohlberg and R. Stanley Williams, “The incommensurate nature of epitaxial titanium disilicide islands on Si(001)”, Surf. Sci. 457, 147-156 (2000). 1.12 K. Ishiyama and Y. Taga, “Reactive adsorption and diffusion of Ti on Si(001) by scanning tunneling microscopy”, Phys. Rev. B 51, 2380-2386 (1995). 1.13 K. Ishiyama, Y. Taga and A. Ichimiya, “Adsorption reactions of Ti/Si(001) by variable-temperature STM”, Surf. Sci. 357-358, 28-31 (1996). 1.14 S. Shingubara, S. Takata, E. Takahashi, S. Konagata, H. Sakaue and T. Takahagi, “Initial stage of titanium silicide formation on Si(111) substrate”, Mat. Res. Soc. Symp. Proc. 402, 137-142 (1996). 1.15 K. Ezoe, H. Kuriyama, T. Yamamoto, S. Ohara and S. Matsumoto, “Scanning tunneling microscopy study of initial growth of titanium silicide on Si(111)”, Appl. Surf. Sci. 130-132, 13-17 (1998). 1.16 K. Ishiyama, Y. Taga and A. Ichimiya, “Site conversion path and the kinetics of Ti on Si(001)-2×1 observed by scanning tunneling microscopy”, Surf. Sci. 349, 267-274 (1996). 1.17 T. H. McDaniels, J. A. Venables and P. A. Bennett, “Island nucleation in a reactive two-component system”, Phys. Rev. Lett. 87, 1761051-1761054 (2001). 1.18 J. Oh, V. Meunier, H. Ham and R. J. Nemanich, “Single electron tunneling of nanoscale TiSi2 islands on Si”, J. Appl. Phys. 92, 3332-3337 (2002). 1.19 G. Medeiros-Ribeiro, D. A. A. Ohlberg, D. R. Bowler, R. E. Tanner, G. A. D. Briggs and R. Stanley Williams, “Titanium disilicide nanostructures: two phase and their surfaces”, Surf. Sci. 431, 116-127 (1999). 1.20 W. Yang, F. J. Jedema, H. Ade and R. J. Nemanich, “Correlation of morphology and electrical properties of nanoscale TiSi2 epitaxial islands on Si(001)”, Thin Solid Films 308-309, 627-633 (1997). 1.21 K. Ezoe, T. Yamamoto, K. Ishii and S. Matsumoto, “The effect of elevated silicon substrate temperature on TiSi2 formation from a Ti film”, Thin Solid Films 369, 244-247 (2000). 1.22 J. Oh and R. J. Nemanich, “Current-voltage and imaging of TiSi2 islands on Si(001) surfaces using conductive-tip atomic force microscopy”, J. Appl. Phys. 92, 3326-3331 (2002). 1.23 K. Sekar, G. Kuri, P. V. Satyam, B. Sundaravel, D. P. Mahapatra and B. N. Dev, “Shape transition in the epitaxial growth of gold silicide in Au thin films on Si(111)”, Phys. Rev. B 51, 14330-14336 (1995). 1.24 S. H. Brongersma, M. R. Castell, D. D. Perovic and M. Z. Allmang, “Stress-induced shape transition of CoSi2 clusters on Si(100)”, Phys. Rev. Lett. 80, 3795-3798 (1998). 1.25 R. D. Meade and D. Vanderilt, “Adatom on Si(111) and Ge(111) surface”, Phys. Rev. B 40, 3905-3913 (1989). 1.26 P. A. Bennet and M. W. Webb, “The Si(111)7×7 to “1×1” transition”, Surf. Sci. 104, 74-104 (1980). 1.27 P. P. Auer and W. Mönch, “Cleaved Si(111) surface : geometrical and annealing behavior”, Surf. Sci. 80, 45-55 (1979). 1.28 K. Takayanagi, Y. Tanishiro, M. Takahashi and S. Takahashi, “Structural analysis of Si(111)-7×7 by UHV-transmission electron diffraction and microscopy“, J. Vac. Sci. Technol. A 3, 1502-1506 (1985). 1.29 K. Takayanagi, Y. Tanishiro, S. Takahashi and M. Takahashi, “Structure analysis of Si(111)-7×7 reconstructed surface by transmission electron diffraction” Surf. Sci. 164, 367-392 (1985). 1.30 A. A. Saleh and L. D. Peterson, “Growth of thin Ti film on Si(111)-7×7 surface”, J. Vac. Sci. Technol. A 14, 30-33 (1996) . 1.31 W. Lur and L. J. Chen, “ Growth kinetics of amorphous interlayer formed by interdiffusion of polycrystalline Ti thin-film and single-crystal silicon”, Appl. Phys. Lett. 54, 1217-1219 (1989). Chapter 2 2.1 G. Binnig and H. Rohrer, “Scanning tunneling microscopy”, Helv. Phys. Acta. 55, 726-735 (1982). 2.2 P. C. Tseng, H. J. Lin, S. C. Chung, C. I. Chen, H. F. Lin, T. E. Dann, Y. F. Song, T. F. Hsieh, K. L. Tsang and C. N. Chang, “Current status of the 6 m low-energy spherical grating monochromator beamline at SRRC”, Rev. Sei. Instrum. 68, 1658-1660 (1995). Chapter 3 3.1 I. S. Hwang and J. Golovchenko, “Observation of metastable structural excitations and concerted atomic motions and a crystal surface”, Science 258, 1119-1122 (1992). 3.2 H. Hibino and T. Ogino, “Substitution of In for Si adatoms and exchanges between In and Si adatoms on a Si(111)-7 x 7 surface”, Phys. Rev. B 55, 7018-7022 (1997). 3.3 J. M. Gómez-Rodríguez, J. J. Sáenz, A. M. Baró, J. Y. Veuillen, and R. C. Cinti, “Real-time observation of the dynamics of single Pb atoms on Si(111)-(7 x 7) by scanning tunneling microscopy”, Phys. Rev. Lett. 76, 799-802 (1996). 3.4 J. M. Gómez-Rodríguezm, J. Y. Veuillen and R. C. Cinti, “Pb/Si(111) investigation at the ultralow-coverage range”, J. Vac. Sci. Technol. B 14(2), 1005-1009 (1996). 3.5 J. Slezak, V. Chab, Z. Chvoj and P. Mutombo, “Study of Pb diffusion on Si(111)—(7×7) with scanning tunneling microscopy: Low coverage”, J. Vac. Sci. Technol. B 18(3), 1151-1155 (2000). 3.6 Y. W. Mo, “Direct determination of surface diffusion by displacement distribution measurement with scanning tunneling microscopy”, Phys. Rev. Lett. 71, 2923-2926 (1993). 3.7 R. L. Lo, I. S. Hwang, M. S. Ho, and T. T. Tsong, “Diffusion of single hydrogen atoms on Si(111)-( 7 × 7) surfaces”, Phys. Rev. Lett. 80, 5584-5587 (1998). 3.8 R. L. Lo, M. S. Ho, I. S. Hwang, and T. T. Tsong, Diffusion by bond hopping of hydrogen atoms on the Si(111)-7 × 7 surface”, Phys. Rev. B 58, 9867-9875 (1998). 3.9 I. S. Hwang, R. L. Lo, and T. T. Tsong, “Mechanisms and energetics of site hopping and chemical reactions of O2 molecules at Si(111)-7 × 7 surfaces”, Surf. Sci. 399, 173-189 (1998). 3.10 K. Ishiyama, Y. Taga, and A. Ichimiya, “Reactive adsorption and diffusion of Ti on Si(001) by scanning tunneling microscopy”, Phys. Rev. B 51, 2380-2386 (1995). 3.11 M. delGiudice, J. J. Joyce, M. W Ruckman, and J. H. Weaver, “Silicide formation at the Ti/Si(111) interface: Room-temperature reaction and Schottky-barrier formation”, Phys. Rev. B 35, 6213-6221 (1987). 3.12 X. Wallart, J. P. Nys, H. S. Zeng, G. Dalmai, I. Lefebvre, and M. Lannoo, “Auger and electron-energy-loss spectroscopy study of interface formation in the Ti-Si system”, Phys. Rev. B 41, 3087-3096 (1990). 3.13 M. H. Wang and L. J. Chen, “Simultaneous occurrence of multiphases in interfacial reactions of ultrahigh vacuum deposited Ti thin films on (111)Si”, Appl. Phys. Lett. 59, 2460-2462 (1991). 3.14 A. A. Saleh and L. D. Peterson, “Growth of thin Ti films on Si(111)-(7 × 7) surfaces”, J. Vac. Sci. Technol. A 14, 30-33 (1996). 3.15 L. J. Chen, Mater. “Solid state amorphization in metal/Si systems”, Sci. Engineering R29, 115-152 (2000). 3.16 S. Shingubara, S. Takata, E. T. Kahashi, S. Konagata, H. Sakaue, and T. Takahagi, “Initial stage of titanium silicide formation on Si(111) substrate”, Mater. Res. Soc. Symp. Proc. 402, 137-142 (1996). 3.17 K. Ezoe, H. Kuriyama, T. Yamamoto, S. Ohara, and S. Matsumoto, “Scanning tunneling microscopy study of initial growth of titanium silicide on Si(111)”, Appl. Surf. Sci. 130-132, 133-137 (1998). 3.18 I. Chizhov, G. Lee, and R. F.Willis, “Initial stages of Au adsorption on the Si(111)-(7 x 7) surface studied by scanning tunneling microscopy”, Phys. Rev. B 56, 12316-12320 (1997). 3.19 H. Uchida, S. Watanabe, M. Mase, H. Kuramochi, and M. Aono, “Analysis of single Si atoms deposited on the Si(111)7×7 surface”, Thin Solid Films 369, 73-78 (2000). 3.20 H.F. Hsu, M.C. Lu, C.K. Fang, L.J. Chen, H.L. Hsiao and T.W. Pi, “Initial stages of ultra thin Ti film growth on Si(111)-7×7 surface”, Thin Solid Films 428 (2003) 133. 3.21 R. Losio, K. N. Altmann, and F. J. Himpsel, “Fermi surface of Si(111)7×7”, Phys. Rev. B 61, 10845 (2000). 3.22 A. L. Wachs, T. Miller, A. P. Shapiro, and T. C. Chiang, “Photoemission studies of the initial adsorption and growth of Ag and Au on Ge and Si”, Phys. Rev. B 35, 5514-5523 (1987). 3.23 K. D. Beommer, M. Galván, A. D. Pino, Jr. , and J. D.Joannopoulos, “Theory of adsorption of atoms and molecules on Si(111)-(7×7)”, Surf. Sci. 314, 57-70 (1994). 3.24 P. A. Bennett, D. G. Cahill, and M. Copel, “Interstitial precursor to silicide formation on Si(111)-(7 x 7)”, Phys. Rev. Lett. 73, 452-455 (1994). 3.25 H. F. Hsu, T. F. Chiang, H. C. Hsu and L. J. Chen, “Identification of the first nucleated phase in submonolayer Ti deposited on Si(111)-7×7 by atomic resolution tec hniques”, [unpublished work ]. Chapter 4 4.1 M. H. Wang and L. J. Chen, “Identification of the first nucleated phase in the interfacial reactions of ultrahigh vacuum deposited titanium thin films on silicon”, Appl. Phys. Lett. 58, 463-465 (1991). 4.2 M. H. Wang and L. J. Chen, “Phase formation in the interfacial reactions of ultrahigh vacuum deposited titanium thin films on (111)Si”, J. Appl. Phys. 71, 5918-5925 (1992). 4.3 M. delGiudice, J. J. Joyce, M. W Ruckman, and J. H. Weaver, “Silicide formation at the Ti/Si(111) interface: Room-temperature reaction and Schottky-barrier formation”, Phys. Rev. B 35, 6213-6221 (1987). 4.4 A. A. Saleh and L. D. Peterson, “Growth of thin Ti film on Si(111)-7×7 surface”, J. Vac. Sci. Technol. A 14, 30-33 (1996). 4.5 X. Wallart, J. P. Nys, H. S. Zeng, G. Dalmai, I. Lefebvre, and M. Lannoo, “Auger and electron-energy-loss spectroscopy study of interface formation in the Ti-Si system”, Phys. Rev. B 41, 3087-3096 (1990). 4.6 K. Ezoe, H. Kuriyama, T. Yamamoto, S. Ohara, and S. Matsumoto, “Scanning tunneling microscopy study of initial growth of titanium silicide on Si(111)”, Appl. Surf. Sci. 130-132, 133-137 (1998). 4.7 S. Shingubara, S. Takata, E. T. Kahashi, S. Konagata, H. Sakaue, and T. Takahagi, “Initial stage of titanium silicide formation on Si(111) substrate”, Mater. Res. Soc. Symp. Proc. 402, 137-142 (1996). 4.8 R. M. Tromp, R. J. Hamers and J. E. Demuth, “Quantum states and atomic structure of silicon surfaces”, Science 234, 304-309 (1986). Chapter 5 5.1 K. Ishiyama, Y. Taga, and A. Ichimiya, “Reactive adsorption and diffusion of Ti on Si(001) by scanning tunneling microscopy”, Phys. Rev. B 51, 2380-2386 (1995). 5.2 T. H. McDaniels, J. A. Venables and P. A. Bennett, “Island nucleation in a reactive two-component system”, Phys. Rev. Lett. 87, 1761051-1761054 (2001). 5.3 K. Ezoe, H. Kuriyama, T. Yamamoto, S. Ohara, and S. Matsumoto, “Scanning tunneling microscopy study of initial growth of titanium silicide on Si(111)”, Appl. Surf. Sci. 130-132, 133-137 (1998). 5.4 K. Ezoe, T. Yamamoto, K. Ishii and S. Matsumoto, “The effect of elevated silicon substrate temperature on TiSi2 formation from a Ti film”, Thin Solid Films 369, 244-247 (2000). 5.5 W. Yang, F. J. Jedema, H. Ade and R. J. Nemanich, “Correlation of morphology and electrical properties of nanoscale TiSi2 epitaxial islands on Si(001)”, Thin Solid Films 308-309, 627-633 (1997). 5.6 S. Shingubara, S. Takata, E. T. Kahashi, S. Konagata, H. Sakaue, and T. Takahagi, “Initial stage of titanium silicide formation on Si(111) substrate”, Mater. Res. Soc. Symp. Proc. 402, 137-142 (1996). 5.7 M. H. Wang and L. J. Chen, “Identification of the first nucleated phase in the interfacial reactions of ultra high vacuum deposited titanium thin film on silicon”, Appl. Phys. Lett. 58, 463-465 (1991). 5.8 M. H. Wang and L. J. Chen, “Phase formation in the interfacial reactions of ultrahigh vacuum deposited titanium thin films on (111)Si”, J. Appl. Phys. 71, 5918-5925 (1992). 5.9 H.F. Hsu, M.C. Lu, C.K. Fang, L.J. Chen, H.L. Hsiao and T.W. Pi, “Initial stages of ultra thin Ti film growth on Si(111)-7×7 surface”, Thin Solid Films 428 (2003) 133. 5.10 M. delGiudice, J. J. Joyce, M. W Ruckman, and J. H. Weaver, “Silicide formation at the Ti/Si(111) interface: Room-temperature reaction and Schottky-barrier formation”, Phys. Rev. B 35, 6213-6221 (1987). 5.11 A. A. Saleh and L. D. Peterson, “Growth of thin Ti film on Si(111)-7×7 surface”, J. Vac. Sci. Technol. A 14, 30-33 (1996). 5.12 X. Wallart, J. P. Nys, H. S. Zeng, G. Dalmai, I. Lefebvre, and M. Lannoo, “Auger and electron-energy-loss spectroscopy study of interface formation in the Ti-Si system”, Phys. Rev. B 41, 3087-3096 (1990). 5.13 F. L. Via, V. Raineri, M. G. Grimaldi, L. Miglio, M. Iannuzzi, F. Marabelli, S. Bocelli, S. Santucci and A.R. Phani, “Role of the substrate in the C49—C54 transformation of TiSi2”, J. Vac. Sci. Technol. B 18, 721-728 (2000). 5.14 S. Yoshida, M. Itoh, N. Yamamoto, T. Nagamura, M. Oyama, and S. Okazaki, “Dynamic observation of reaction processes of Pd with Si on a Si(111)7x7 surface after thermal treatment using UHV-STM”, Langmuir 15, 6813-6820 (1999). 5.15 W. K. Chu, H. Kraütle, J. W. Mayer, H. Müller, M. A. Nicolet and K. N. Tu, “Identification of the dominant diffusing species in silicide formation”, Appl. Phys. Lett. 25, 454-457 (1974). 5.16 W.K. Chu, S.S. Lau, J.W. Mayer, H. Müller and K.N. Tu, “Implanted noble gas atoms as diffusion markers in silicide formation”, Thin Solid Film 25, 393-402 (1975). 5.17 K. Takayanagi, Y. Tanishiro, S. Takahashi and M. Takahashi, “Structure analysis of Si(111)-7×7 reconstructed surface by transmission electron diffraction”, Surf. Sci. 164, 367-392 (1985). 5.18 G. Medeiros-Ribeiro, D. A. A. Ohlberg, D. R. Bowler, R. E. Tanner, G. A. D. Briggs and R. Stanley Williams, “Titanium disilicide nanostructures: two phase and their surfaces”, Surf. Sci. 431, 116-127 (1999). Chapter 6 6.1 J. Tersoff and R. M. Tromp, “Shape transition in growth of strained islands: Spontaneous formation of quantum wires”, Phys. Rev. Lett. 70, 2782-2785 (1993). 6.2 K. Sekar, G. Kuri, P. V. Satyam, B. Sundaravel, D. P. Mahapatra and B. N. Dev, “Shape transition in the epitaxial growth of gold silicide in Au thin films on Si(111)”, Phys. Rev. B 51, 14330-14336 (1995). 6.3 S. H. Brongersma, M. R. Castell, D. D. Perovic and M. Z. Allmang, “Stress-Induced Shape Transition of CoSi2 Clusters on Si(100)”, Phys. Rev. Lett. 80, 3795-3798 (1998). 6.4 M. H. Wang and L. J. Chen, “Phase formation in the interfacial reactions of ultrahigh vacuum deposited titanium thin films on (111)Si”, J. Appl. Phys. 71, 5918-5925 (1992). 6.5 K. Ezoe, H. Kuriyama, T. Yamamoto, S. Ohara, and S. Matsumoto, “Scanning tunneling microscopy study of initial growth of titanium silicide on Si(111)”, Appl. Surf. Sci. 130-132, 133-137 (1998). 6.6 K. Ezoe, T. Yamamoto, K. Ishii and S. Matsumoto, “The effect of elevated silicon substrate temperature on TiSi2 formation from a Ti film”, Thin Solid Films 369, 244-247 (2000). 6.7 H. Jeon, C. A. Sukow, J. W. Honeycutt, G. A. Rozgonyi and R. J. Nemanich, “Morphology and phase stability of TiSi2 on Si”, J. Appl. Phys. 71, 4269-4276 (1992). 6.8 J. Nogami, B.Z. Liu, M.V. Katkov, C. Ohbuchi, and N.O. Birge, “Self-assembled rare-earth silicide nanowires on Si(001)”, Phys. Rev. B 63, 2333051-2333054 (2001). 6.9 Z. He, M. Stevens, D. J. Smith and P. A. Bennett, “Epitaxial titanium silicide islands and nanowires”, Surf. Sci. 524, 148-156 (2003). 6.10 M. Stevens, Z. He, D. J. Smith and P. A. Bennett, Structure and orientation of epitaxial titanium silicide nanowires determined by electron microdiffraction”, J. Appl. Phys. 93, 5670-5674 (2003). Chapter 8 8.1 S. Shingubara, S. Takata, E. T. Kahashi, S. Konagata, H. Sakaue, and T. Takahagi, “Initial stage of titanium silicide formation on Si(111) substrate”, Mater. Res. Soc. Symp. Proc. 402, 137-142 (1996). 8.2 W. Yang, F. J. Jedema, H. Ade and R. J. Nemanich, “Correlation of morphology and electrical properties of nanoscale TiSi2 epitaxial islands on Si(001)”, Thin Solid Films 308-309, 627-633 (1997) 8.3 J. Tersoff and R. M. Tromp, “Shape transition in growth of strained islands: Spontaneous formation of quantum wires”, Phys. Rev. Lett. 70, 2782-2785 (1993).id NH0920159001 sid 887506 cfn 0 / id NH0920159002 auc 林熙乾 tic 玻態/膠態高分子界面間之分子鏈運動行為研究 adc 楊長謀 ty 博士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 英文 pg 136 kwc 高分子交互擴散 kwc 玻態/膠態界面 kwc Case II 擴散 kwc 分子鏈運動 kwc 互溶性 kwc 內界面 kwc 交纏網路 kwc 分子鏈組型 kwc 混合高分子 kwc 相分離 kwc 表貌變化 kwc 二次離子質譜術 kwc 原子力顯微鏡 kwc 化學分析電子能譜儀 abc 本論文主要探討在高分子鏈在玻態與膠態環境下,分子鏈的運動行為以及因此分子鏈運動所引起的擴散模式並探討因擴散所引起的微觀界面以及表面結構變化. 實驗中將兩互溶性極佳高分子PS與PPO製備成擴散偶形式,並利用二次離子質譜儀(SIMS)量測界面上的濃度分佈曲線. 藉由改變膠態PS的分子量,玻態PPO的分子鏈組型以及擴散偶內界面的形成來探討在玻態/膠態界面上的交互擴散行為. 此外實驗中將兩不互溶的高分子PPO與PMMA製備成一混合薄膜,輔以原子力顯微鏡(AFM)以及化學分析電子儀(XPS),反向觀察在玻態/膠態環境下,分子鏈如何從彼此混合的情況下發生相分離的機制以及對薄膜表面形貌的變化. 研究中發現當兩高分子鏈分別處於玻態與膠態環境下,由於運動度的差異,分子鏈運動行為與傳統在探討分子鏈在單一橡膠態下之運動完全不同的行為模式. 兩互溶性高分子擴散偶所形成的玻態與膠態界面上,界面上的濃度分佈曲線呈現陡峭的分佈,且隨加熱時間增加,界面會往玻態區域移動. 整體擴散行為類似於玻態高分子被一溶劑所逐一溶解,玻態的PPO如同被膠態的PS層層剝解. 藉由微觀分析界面結構發現在玻態/膠態界面上的擴散行為同時具有Case I 與Case II兩種擴散行為模式. 藉由改變膠態高分子量可以發現,界面移動速度根據交纏分子量可以分為兩個區域,同時計算交互擴散係數證實擴散運動符合”slow theory”之預測,亦即擴散行為由具有低運動性的玻態高分子所主導. 玻態高分子層的旋塗速度以及內界面的效應證實當玻態高分子鏈被壓縮在狹窄的範圍時,可以有效的縮短膠態高分子鏈塑化玻態高分子的的時間也同時會增加整體的擴散速度. 整體擴散速度可由玻態高分子的被塑化的速度以及兩高分子間的交換速率所決定. 整體行為符合”fast-slow theory”的推測. 此外,在反向觀察兩不互溶高分子由於溶劑效應所形成的高分子混合薄膜的分子鏈運動上,由於分子鏈運動度的不對稱性,使得傳統大範圍的相分離運動無法發生. 然而由於降低表面以及界面自由能的驅動下,可以觀察到局部微觀的相分離發生. 為了降低表面自由能,推測膠態的PMMA會析出包含的PPO到表面上,同時為了降低系統自由能,表面上的PMMA會以橢圓形狀存在而在薄膜內部的PMMA會傾向以圓球形存在於PPO環境中以降低兩高分子的接觸面積. 整體研究證實,高分子鏈的運動行為會受到其所處在的環境所影響,在玻態/膠態的環境下,整體擴散行為不同於以往傳統上對Case I與Case II的認知. 亦即Case II 模式可適用於大分子間的擴散行為. tc I. Introduction II. Results A. Chain Diffusion and Microstructure at a Glassy-Rubbery Polymer Interface by SIMS B. Inter-diffusion across a Glassy-Rubbery Interface between Spin Cast Polymer Thin Films by SIMS C. Surface motion of rubbery polymer on glassy matrix III. Conclusionsrf 1. de Gennes, P. -G. J. Chem. Phys. 1971, 55, 572. 2. Doi, M.; Edwards, S. F. J. Chem. Soc, Faraday Trans. 1978, 2, 1789. 3. Klein, J. Nature 1978, 271,143. 4. Klein, J. Nature 1978, 9, 217. 5. Tirrell, M. Rubber Chem. Tech. 1984, 57, 523. 6. Crank, J.; Park, G. S. Diffusion in Polymers, Academic Press, London, 1968. 7. de Gennes, P. —G. Scaling Concept of Polymer Physics, Cornell Univ. Press, Ithaca, 1979. 8. Thomas, N. L.; Windle, A. H. Polymer 1982, 23, 529. 9. Thomas, N. L.; Windle, A. H. Polymer 1980, 21, 613. 10. Thomas, N. L.; Windle, A. H. Polymer 1981, 22, 627. 11. Brochard, F.; Jouffroy, J.; Levinson, P. Macromolecules 1983, 16, 1638. 12. Binder, K. J. chem. phys. 1983, 79, 6387. 13. Sillescu, H Makromol. Chem., Rapid Commun. 1984, 5, 519. 14. Sillescu, H Makromol. Chem., Rapid Commun. 1987, 8, 393. 15. Green, P. F.; Kramer, E.J. Polymer 1984, 25, 473. 16. Green, P. F.; Kramer, E. J. Phys.Rev.Lett. 1984, 53, 2145. 17. Green, P. F.; Kramer, E. J. Macromolecules 1985, 18, 501. 18. Lasky, R. C.; Kramer, E. J. J. Appl. Phys. 1987, 61, 5137. 19. Kramer, E.J. Nature 1987, 328, 234. 20. Composto, R. J.; Kramer, E. J. Macromolecules 1988, 21, 2580. 21. Wool, R. P. Macromolecules 1989, 22, 2648. 22. Wool, R. P.; Whitlow, S. J. Macromolecules 1991, 24, 5926. 23. Kramer, E. J. Macromolecules 1992, 25, 4167. 24. Narasimhan, B.; Peppas, N.A. J. Polymer Sci. part B. 1996, 34, 947. 25. Composto, R. J.; Kramer, E. J. J. Material Sci. 1991, 26, 2815. 26. Sauer, B. B.; Walsh, D. J. Macromolecules 1991, 24, 5948. 27. Tomba, J. P.; Paston J. M. Macromolecules 2001, 34, 2277. 28. Lin, H. C. ; Yang C. M. Macromolecules 2003, 36, 2464. 29. Jabbari, E., Peppas N.A. Polymer 1995, 36, 575. 30. Ho, D. L.; Briber, R. M.; R. L. Jones; Kumar, S. K.; Russell, T. P. Macromolecules 1998, 31, 9247. 31. de Gennes, P.-G. Europhysics letter 1986, 1, 221. 32. Shearmur, T. E.; Clough, A. S.; Drew, D. W.; van der Grinten, M. G. D.; Jones, R. A. L. Macromolecules 1996, 29, 7269. 33. Russell, T. P. J. Polymer Sci. part B. 1996, 34, 2919. 34. Klein, J. Macromolecules 1993, 26, 3858. 35. Green, P. F. Macromolecules 1991, 24, 3377. 36. Kramer, E. J.; Russell, T.P. Macromolecules 1996, 29, 2580. 37. Edwards, D. A. J. Polymer Sci. part B. 1996, 34, 981. 38. Jones, R. A.; Klein, J.; Donald, A.M. Nature 1986, 321, 161. 39. Pu, Y.; Rafailovich, M. H. Macromolecules 2001, 34, 4972. 40. Pu, Y.; Rafailovich, M. H. Macromolecules 2001, 34, 8518. 41. Yokoyama, H.; Rafailovich, M. H. Macromolecules 1998, 31, 8826. 42. Vickerman, J. C.; Brown, A.; Reed N. M. “Secondary Ion Mass Spectrometry principle & application”, Clarendon Press (Oxford) 1989. 43. Wilson, R. G.; Stevie, F. A.; Magee, C. W. “Secondary Ion Mass Spectroscopy-A practical handbook for depth profiling” A Wiley-Interscience Publication 1988. 44. Barrer, R. M. Trans. Faraday Soc. 1939, 35, 628. 45. Moore, L. Brit. J. Appl. Phys. 1968, 1, 237. 46. Werner, H. W. Surface and interface analysis 1982, 4, 1. 47. Werner, H. W. Vacuum 1974, 24, 493. 48. Cowie, J. M.; Harris, G.; S. Macromolecules 1999, 32, 4430. 49. Brandrup, J.; Immergut, E. H. Polymer Handbook 3rd edition, Wiley-Interscience Publication 1989. 50. Reed-Hill, R. E. Physical Metallurgy Principles, 3rd edition, PWS-KENT Publish Company, 1986. 51. Crank, J. The Mathematics of Diffusion, Oxford Univ. Press London, 1975. 52. Kramer, E. J. Advances in Polymer Science 1983, 52/53, 1, Springer-Verlag Berlin Heidelberg. 53. Cahn, J.W.; Hilliard, J.E. J. Chem. Phys. 1958, 28, 258. 54. Hui, C. Y.; Lasky, R. C.; Kramer, E. J. J. Appl. Phys. 1987, 61, 5129. 55. Hui, C. Y.; Lasky, R. C.; Kramer, E. J. J. Appl. Phys. 1987, 61, 5137. 56. Wu, J. C.; Peppas, N. A. J. Appl. Polym. Sci. 1993, 49, 1845. 57. Lasky, R. C.; Kramer, E. J. Polymer 1988, 29, 673 58. Wool, R. P. J. App. Phys., 1981, 52, 5953 59. de Gennes, P.-G. Hebd. Séance Acad. Sci., Ser. B, 1980, 291, 60. Paul D. R., Newman S., Polymer Blends, Academic Press, 1978. 61. Carbassi F., Morra M., Occhiellp E., Polymer Surfaces: from Physics to Technology, John Wiley and Sons: Chichester, 1994. 62. Rataner B. D., Castner, D. G., Surface Modification of Polymeric Biomaterials; Plenum Press: New York, 1996. 63. Feast W. J., Munro, H. S., Polymer Surfaces and Interfaces; John Wiley and Sons: New York, 1987. 64. Feast W. J., Munro, H. S., Richards, R. W., Polymer Surfaces and Interfaces II; John Wiley and Sons: New York, 1992. 65. Park J. B., Lakes, R. S., Biomaterials: an Introduction; Plenum Press: New York, 1992. 66. Han C. D., Polymer Blends and Composites in Multiphase Systems; Ed.; Advances in Chemistry Series 106; American Chemical Society: Washington, DC, 1984. 67. Jones R. A. L., Richard R. W., Polymer at Surface and Interface III, Cambridge Uni. Press, Cambridge, 1999. 68. Mayas A. M., Macromolecules, 1994, 27, 3114. 69. Genzer J., Faldia A., Composto R. J., Phys. Rev. E 1994, 50, 2373-2376. 70. Wu D. T., Fredrickson G. H., Carton J. P., J. Chem. Phys. 1996, 104, 6387-6397. 71. Wattenbarger M. R., J. Chem. Phys.1990, 93, 8343. 72. Affrossman S., Henn G., O’Neil S. A., Pethrick R. A., Stamm M., Macromolecules, 1996, 29, 5010. 73. Rafailovish M. H., Sokolov J., Sauer B. S., Langmuir, 1998, 14, 4860. 74. Davies, M. C., Willams P. M., Macromolecules, 1996, 29, 2205. 75. Tanaka K., Kajiyama T., Macromolecules, 1995, 28, 934. 76. Affrossman S., Kiff T., O’Neil S. A., Pethrick R. A.; Richards R. W., Macromolecules, 1999, 32, 2721. 77. Ton-That C., Bradley R. H., Macromolecules, 2000, 33, 8453. 78. Ton-That C., Bradley R. H., Polymer, 2001, 42, 1121. 79. Tanaka K., Kajiyama T., Macromolecules, 1996, 29, 3232. 80. Lhoest J. B., Bertrand P., Dewez J. L., Macromolecules, 1995, 28, 4631. 81. Affrossman S., O’Neil S. A., Stamm M., Macromolecules, 1998, 31, 6280. 82. Bar G., Cantow H. J., Whangbo M. H., Langmuir, 1997, 13, 3807. 83. Composto R. J., Wang H., Macromolecules, 2002, 35, 2799. 84. Tanaka K., Kajiyama T., Macromolecules, 1998, 31, 863. 85. Tanaka K., Kajiyama T., Macromolecules, 1997, 30, 280. 86. Yuan C., Ouyang M., Koberstein J. T., Macromolecules, 1999, 32, 2329. 87. Stefan W., Ullrich S., Georg K., Macromolecules, 1997, 30, 4995. 88. Sauer B. B.; Dee, G. T., Macromolecules, 2002, 35, 702id NH0920159002 sid 887511 cfn 0 / id NH0920159003 auc 詹立雄 tic 奈米碳管的模板應用與摻雜元素對結構與場發射性質之研究 adc 施漢章 ty 博士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 英文 pg 123 kwc 奈米碳管 kwc 電漿製程 kwc 電子場發射 kwc 原子摻雜 abc 本工作主要是使用微波輔助化學氣相沉積法來加以製備奈米碳管,並以其主軸來進行延伸研究,內容共包含了「利用碳管的模板功能來合成奈米線」與「摻雜氮原子對碳管所造成的效應」這兩大類。 tc Abstract (in Chinese)……………………………………………………i Abstract (in English)……………………………………………………ii Acknowledgements (in Chinese)…………………………………………iv Contents………………………………………………………………………v Table Lists………………………………………………………………viii Figure Captions……………………………………………………………ix Chapter 1 Background Review 1.1 Overview of the carbon nanotubes…………………………………1 1.2 Synthesis process for the carbon nanotubes……………………5 1.3 Application for the carbon nanotubes……………………………9 Chapter 2 Literature Review 2.1 Synthesis of nanowires……………………………………………16 2.2 Nitrogenated carbon-based materials……………………………17 Chapter 3 Instrumentation and Characterization 3.1 Overview of the experimental procedure………………………20 3.2 Instrumentation………………………………………………………22 3.2.1 Preparation for the catalyst…………………………………22 3.2.2 Microwave Plasma enhanced chemical vapor deposition system (MPECVD)……………………………………………………………22 3.3 Characterization……………………………………………………24 3.3.1 Optical Emission Spectroscopy (OES)…………………………24 3.3.2 Scanning Electron Microscopy (SEM) …………………………24 3.3.3 Transmission Electron Microscopy (TEM) ……………………24 3.3.4 Electron Energy Loss Spectroscopy (EELS)…………………25 3.3.5 X-ray photoelectron spectroscopy (XPS)……………………25 3.3.6 Fourier Transform Infrared Spectroscopy (FTIR)…………26 3.3.7 Ramam Spectroscopy………………………………………………26 3.3.8 Field Emission Measurement…………………………………26 Chapter 4 Results and Discussion 4.1 Synthesis of Pd Nanowires inside Carbon Nanotubes…………28 4.2 Long Period Structures of Multiple Twins in Pd Nanowires……………………………………………………………………42 4.3 Pd-Si Alloy Nanowires inside Carbon Nanotubes………………49 4.4 Nanostructures for the Nitrogen-doped Carbon Nanotubes…62 4.5 Binding Configurations for the Nitrogen-doped Carbon Nanotubes……………………………………………………………………84 4.6 Extrinsic Atomic Doping Effects on the Field Emission Behaviors of Carbon Nanotubes…………………………………………98 Chapter 5 Summaries of this work……………………………………108 References…………………………………………………………………110 Publication List…………………………………………………………119 Vita (in chinese)………………………………………………………123rf [1 ] S. Iijima, Nature 354, 56 (1991). [2 ] S. Iijima, T. Ichihashi, Nature 363, 603 (1993). [3 ] D. S. Bethane, C. H. King, M. S. Driess, G Gorman, R. Savoy, J. Vazquez, R. Boyers, Nature 363, 605 (1993). [4 ] P. Nikolaev, L. Lou, S. G. Kim, D. Tománek, P. Nordlander, D. T. Colbert, R. E. Smalley, Science 269, 1550 (1995). [5 ] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, P. N. Provencio, Science, 282, 1105 (1998). [6 ] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, Ph. Avouris, Appl. Phys. Lett. 73, 2447 (1998). [7 ] H. Dai, N. Franklin, J. Han, Appl. Phys. Lett. 73, 1508 (1998). [8 ] W. A. de Heer, A. Chatelaine, D. Ugarte, Science 270, 1179 (1995). [9 ] K. A. Dean, B. R. Chalamala, Appl. Phys. Lett. 75, 3017 (1999). [10 ] D. Qian, E. C. Dickey, Appl. Phys. Lett. 76, 2868 (2000). [11 ] Y. Cui, Q. Wei, H. Park, C. M. Lieber, Science, 293, 1289 (2001). [12 ] M. M. Treachy, T. W. Ebbesen, J. M. Gibson, Nature, 381, 678 (1996). [13 ] R. S. Ruoff, D. C. Lorents, Carbon, 33, 925 (1995). [14 ] C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, M. S. Dresselhaus, Science, 286, 1127 (1999). [15 ] C. Bower, O. Zhou, W. Zhu, D. J. Werder, S. Jin, Appl. Phys. Lett. 77, 2767 (2000). [16 ] L. C. Qin, D. Zhou, A. R. Krauss, D. M. Gruen, Appl. Phys. Lett. 72, 3437 (1998). [17 ] Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita, T. Hayashi, Chem. Phys. Lett. 204, 277 (1993). [18 ] T.W. Ebbesen, Carbon Nanotubes: Preparation and Properties, CRC Press, Inc., New York, 1st edn. 1997. [19 ] T. W. Ebbesen, P. M. Ajayan, Nature, 358, 200 (1996). [20 ] S. Seraphin, D. Zhou, Appl. Phys. Lett. 64, 2087, (1994). [21 ] A. Thess, R. Lee, P. Nikoleav, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Science, 273, 433 (1998). [22 ] T. Guo, P. Nikoleav, A. Thess, D. T. Colbert, R.E. Smalley, Chem. Phys. Lett. 243, 49, (1995). [23 ] Y. C. Choi, Y. M. Shin, Y. H. Lee, B. S. Lee, Appl. Phys. Lett., 76, 2367 (2000). [24 ] Y. C. Choi, D. J. Bae, Y. H. Lee, B. S. Lee, J. Vac. Sci. Technol. A. 18, 1864 (2000). [25 ] T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, Nature, 391, 62 (1998). [26 ] J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature, 391, 59 (1998). [27 ] E. Bekyarova, K. Kaneko, M. Yudasaka, K. Murata , D. Kasuya, S. Iijima, Adv. Mater. 14, 973 (2002). [28 ] R. Saito, Physical Properties of Carbon Nanotubes, Imperial College Press, Singapore, 1998, pp. 36. [29 ] R. Saito, M. Fujita, G, Dresselhaus, M. S. Dresselhaus, Appl. Phys. Lett. 60, 2201 (1992). [30 ] T.W. Ebbesen, Carbon Nanotubes: Preparation and Properties, CRC Press, Inc., New York, 1st edn. 1997, pp. 143. [31 ] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett. 243, 49 (1995). [32 ] B. I. Yakobson, R. E. Smalley, American Scientist 85, 324 (1997). [33 ] K. A. Dean, B. R. Chalamala, Appl. Phys. Lett. 75, 3017 (1999). [34 ] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, Appl. Phys. Lett. 75, 3129 (1999). [35 ] M. Bockrath, D. H. Cobden, P. L. Mceuen, N. G. Chopra, A. Zettle, Science, 275, 1992 (1997) [36 ] S. J. Trans, A. R. M. Verschueuren, C. Dekker, Nature, 393, 49 (1998). [37 ] X. Y. Zhu, S. M. Lee, Y. H. Lee, T. Frauenheim, Phys. Rev. Lett. 85, 2757 (2000). [38 ] H. Chang, J. D. Lee, S. M. Lee, Y. Lee, Appl. Phys. Lett. 79, 3863 (2001). [39 ] H. Lee, Y. S. Kang, S. H. Kim, J. Y. Lee, Appl. Phys. Lett. 80, 577 (2002). [40 ] J. Kong, N R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, Science, 287, 622 (2000). [41 ] C. Z. Li, H. X. He, A. Bogozi, J. S. Bunch, N. J. Tao, Appl. Phys. Lett. 76, 1333 (2000). [42 ] O. Zhou, R. M. Fleming, D. W. Murphy, C. T. Chen, R. C. Haddon, A. P. Ramirez, S. H. Glarum, Science, 263, 1744 (1994). [43 ] S. Suzuki, M. Tomita, J. Appl. Phys. 79, 3739 (1996). [44 ] W. Rüdorff, E. Shultze, Z. Anorg. Allg. Chem. 277, 156 (1954). [45 ] B. Gao, A. Kleinhammes, X. P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou, Chem. Phys. Lett. 307, 153 (1999). [46 ] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben, Nature, 386, 377 (1997). [47 ] S. M. Lee, Y. H. Lee, Appl. Phys. Lett. 76, 2877 (2000). [48 ] Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Science 291, 630 (2001). [49 ] Y. Cui, C.M. Lieber, Science 291, 851 (2001). [50 ] Y. Huang, X. Duan, Y. Cui , L.J. Lauhon, K.-H. Kim, C.M. Lieber, Science 294, 1313 (2001). [51 ] J.R. Wood, H.D. Wagner, Appl. Phys. Lett. 76, 2883 (2000). [52 ] Y. Cui, Q. Wei, H. Park, C.M. Lieber, Science 293, 1289 (2001). [53 ] X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Nature 409, 66 (2001). [54 ] T.W. Ebbesen, P.M. Ajayan, Nature 358, 220 (1992). [55 ] Y. Saito, M. Okuda, M. Tomita, T. Hayashi, Chem. Phys. Lett. 236, 419 (1995). [56 ] S.L. Sung, S.H. Tsai, C.H. Tseng, F.K. Chiang, X.W. Liu, H.C. Shih, Appl. Phys. Lett. 74, 197 (1999). [57 ] S.H. Tsai, C.W. Chao, C.L. Lee, H.C. Shih, Appl. Phys. Lett. 74, 3462 (1999). [58 ] S.H. Tsai, C.W. Chao, C.L. Lee, X.W. Liu, I.N. Lin, H.C. Shih, Elctrochem. Electrochem. Solid-State Lett. 2, 247 (1999). [59 ] S.H. Tsai, F.K. Chiang, T.G. Tsai, F.S. Shieu, H.C. Shih, Thin Solid Films 366, 11 (2000). [60 ] U. Ramsperger, T. Uchihashi, H. Nejoh, Appl. Phys. Lett. 78, 85 (2001). [61 ] M. Calleja, M. Tello, J. Anguita, F. Garcia, R. Garcia, Appl. Phys. Lett. 79, 2471 (2001). [62 ] P.M. Ajayan, S. Iijima, Nature 361, 333 (1993). [63 ] S.C. Tsang, Y.K. Chen, P.J.F. Harris, M.L. H. Green, Nature 372, 159 (1994). [64 ] J. Sloan, J. Cook, M.L.H. Green, J.L. Hutchison, R. Tenne, J. Mater. Chem. 7, 1089 (1997). [65 ] K. Tanaka, T. Yamabe, K. Fukui, The Science and Technology of Carbon Nanotubes, Elsevier science LTD., New Yorks, 1st edn. 1999. [66 ] A.Y. Liu and M.L. Cohen, Science 245, 841 (1989). [67 ] A.Y. Liu and M.L. Cohen, Phys. Rev. B 41, 10727 (1990). [68 ] S.L. Sung, S.H. Tsai, C.H. Tseng, F.K. Chiang, X.W. Liu and H.C. Shih, Appl. Phys. Lett. 74, 197 (1999). [69 ] X.W. Liu, C.H. Tseng, J.H. Lin, L.T. Chao, and H.C. Shih, Surf. Coat. Technol., 135, 184 (2001). [70 ] S.L. Sung, T.G. Tsai, K.P. Huang, J.H. Huang and H.C. Shih, J. J. Appl. Phys., 37, 148 (1998). [71 ] D. Marton, K.J. Boyd, A.H. Al-Bayati, S.S. Todorov and J.W. Rabalais, Phys. Rev. Lett. 73, 118 (1994). [72 ] A.K. Sharma, P. Ayyub, M.S. Multani, K.P. Adhi, S.B. Ogale, M. Sunderaraman, D.D. Upadhyay and S. Banerjee, Appl. Phys. Lett. 69, 3489 (1996). [73 ] M. Tabbal, P. Merel, S. Moisa, M. Chaker, A. Ricard and M. Moisan, Appl. Phys. Lett. 69, 1698 (1996). [74 ] A. Bousetta, M. Lu and A. Bensaoula, J. Vac. Sci. Technol. A 13, 1639 (1995). [75 ] F. Fujimoto and K. Ogata, Jpn. J. Appl. Phys., Part 2 32, L420 (1993). [76 ] L. Galan, I. Montero and F. Rueda, Surf. Coat. Technol. 83, 103 (1996). [77 ] P.V. Kela, D.C. Cameron, B.J. Meenan, K.A. Pischow, C.A. Anderson, N.M.D. Brown and M.S.J. Hashmi, Surf. Coat. Technol. 74-75, 696 (1995). [78 ] S. Kobayashi, S. Nozaki, H. Morisaki, S. Fukui and S. Masaki, Thin Solid Films 281-282, 289 (1996). [79 ] P. Hammer, M.A. Baker, C. Lenardi and W. Gissler, J. Vac. Sci. Technol. A 15, 107 (1997). [80 ] H. Xin, C. Lin, S. Zhu, S. Zou, X. Shi, H. Zhu, and P.L.F. Hemment, Nucl. Instrum. Methods Phys. Rev. B 103, 309 (1995). [81 ] C. Ronning, H. Feldermann, R. Merk and H. Hofsäss, Phys. Rev. B 58, 2207 (1998). [82 ] D. L. Caroll, Ph. Redlish, X. Blasé, J. -C. Charlier, S. Curran, P. M. Ajayan, S. Roth, M. Ruhle, Phys. Rev. Lett. 81, 2332 (1998). [83 ] M. Torrones, W. K. Hsn, A. Schilder, H. Terrones, N. Crobert, J. P. Hare, Y. Q. Zhu, M. Schwoerer, K. Prassides, H. W. Kroto, D. R. M. Walton, Appl. Phys. A 66, 307 (1998). [84 ] O. Stephan, P.M. Ajayan, C. Colliex, P. Redlich, J.M. Lambert, P. Bernier and P. Lefin, Science 266, 1683 (1994). [85 ] M. Terrones, P. Redlich, N. Grobert, S. Trasobares, W.-K. Hsu, H. Terrones, Y.-Q. Zhu, J.P. Hare, C.L. Reeves, A.K. Cheetham, M. Rühle, H.W. Kroto and D.R.M. Walton, Adv. Mater. 8, 655 (1999). [86 ] T. Laude, Y. Matsui, A. Marraud and B. Jouffrey, Appl. Phys. Lett. 76, 3239 (2000). [87 ] L.H. Chan, K.H. Hong, D.Q. Xiao, T.C. Lin, W.J. Hsieh, S.H. Lai, F.S. Shieu and H.C. Shih, Appl. Phys. Lett. 82, 4334 (2003). [88 ] W. Han, Y. Bando, K. Kurashima and T. Sato, Appl. Phys. Lett. 73, 3085 (1998). [89 ] D. Golberg, Y. Bando, W. Han, K. Kurashima and T. Sato, Chem. Phys. Lett. 308, 337 (1999). [90 ] P.C. Eklund, J.M. Holden, R.A. Jishi, Carbon 33, 959 (1995). [91 ] M. Sveningsson, R.-E. Morjan, O.A. Nerushev, Y. Sato, J. Bäckström, E.E.B. Campbell, F. Rohmund, Appl. Phys. A 73, 409 (2001). [92 ] E. Dujardin, T.W. Ebbesen, H. Hiura, K. Tanigaki, Science 265, 1850 (1994). [93 ] J.F. Shackelford, W. Alexander, J.S. Park, CRC Materials Science and Engineering Handbook, CRC Press, Inc., London, 1994, p. 369. [94 ] H. Kuzmany, J. Fink, M. Mehring, S. Roth, Physics and Chemistry of Fullerenes and Derivatives, World Science Publishing Co. Pte. Ltd., Singapore, 1st end. 1995, p. 516. [95 ] W.J. Jong, S.H. Lai, K.H. Hong, H.N. Lin, H.C. Shih, Diamond and Related Materials 11, 1019 (2002). [96 ] F. Meissner, Z. anorg. allgem. Chem. 110, 169 (1920). [97 ] S.H. Tsai, C.T. Shiu, W.J. Jong, H.C. Shih, Carbon 38, 1899 (2000). [98 ] T.W. Ebbesen, Carbon Nanotubes: Preparation and Properties, CRC Press, Inc., New York, 1st edn. 1997, p. 120. [99 ] R.C. Weast, D.R. Lide, M.J. Astle and W.H. Beyer, CRC Handbook of Chemistry and Physics, CRC Press, Inc., 70th edn. 1989-1990. [100 ] R. Defay, I. Prigogine, A. Bellemans, and D.H. Everett, Surface Tension and Adsorption, John Wiley and Sons. Inc., New York, 1966. [101 ] R.S. Wagner and W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964). [102 ] Y.C. Lincoln, J. Lauhon, M.S. Gudiksen, and J. Wang, Appl. Phys. Lett. 78, 2214 (2001). [103 ] J. Westwater, D.P. Gosain, S. Tomiya, J. Vac. Sci. Technol. B 15, 554 (1997). [104 ] M.S. Chandrasekharaiah, J. Alloy Phase Diagrams, 5, 105 (1989). [105 ] B. Aronsson and A. Nylund, Acta Chem. Scand. 14, 1011 (1960). [106 ] A. Nylund, Acta Chem. Scand. 20, 2381 (1966). [107 ] H. Langer and E. Wachtel, Z. Metallkde. 72, 769 (1981). [108 ] S.L. Sung, C.H. Tseng, F.K. Chiang, X.J. Guo, X.W. Liu and H.C. Shih, Thin Solid Films 340, 169 (1999). [109 ] M. J. S. Dewar, E. G. Zoebisch, E. F. Mealy, and J. J. P. Stewart, J. Am. Chem. Soc. 107, 3902 (1985). [110 ] H. Sjöström, S. Stafström, M. Boman, and J. —E. Sunogren, Phys. Rev. Lett. 75, 1336 (1995). [111 ] K. Suenaga, M. P. Johansson, N. Hellgren, E. Broitman, L. R. Wallenberg, C. Colliex, J. —E. Sundgren, and L. Hultman, Chem. Phys. Lett. 300, 695 (1999). [112 ] M.C.D. Santos and F. Alvarez, Phys. Rev. B 58, 13918 (1998). [113 ] D. B. Williams and C. B. Carter, Tramission Electron Microscopy: Basics, Diffraction, Imaging and Spectrometry, Plenum Press, New York and London, 1996. [114 ] F.L. Normand, J. Hommet, T. Szörényi, C. Fuchs and E. Fogarassy, Phys. Rev. B 64, 235416 (2001). [115 ] J. Hu, P. Yang, and C.M. Lieber, Phys. Rev. B 57, 3185 (1998). [116 ] D. Briggs and M.P. Seah, Practical Surface Analysis Volume 1: Auger and X-ray Photoelectron Spectroscopy, John Wiley & Sons LTD, New York, U.S.A. 2nd edn, 1990. [117 ] G. Beamson and D. Briggs, High Resolution XPS on Organic Compounds, Willy LTD, Chichester, U.K. (1992). [118 ] J. Schafer, J. Ristein, R. Graupner, L. Ley, U. Stephan, T. Frauenheim, V.S. Veerasamy, G.A.J. Amaratunga, M. Weiler and H. Ehrhardt, Phys. Rev. B 53, 7762 (1996). [119 ] C. Quirós, J.G. Garcia, F.J. Palomares, L. Soriano, E. Elizalde and J.M. Sanz, Appl. Phys. Lett. 77, 803 (2000). [120 ] X.W. Liu, S.H. Tsai, L.H. Lee, M.X. Yang, A.C.M. Yang, I.N. Lin, and H.C. Shih, J. Vac. Sci. Technol. B, 14, 1840 (2000). [121 ] A. Snis and S.F. Matar, Phys. Rev. B 60, 10855 (1999). [122 ] M. Cardona and L. Ley, Photoemission in Solids I, Springer-Verlag LTD. Berlin, Germany (1978). [123 ] W.F. Egelhoff Jr., Surf. Sci. Rep. 6, 323 (1986). [124 ] R. Haerle, E. Riedo, A. Pasquarello and A. Baldereschi, Phys. Rev. B 65, 045101 (2001). [125 ] W. E. Billups and M. A. Ciufolini, Buckminsterfullerenes, (VCH Publishers, Inc., New York, 1993) [126 ] P. G. Collins and A. Zettl, Phys. Rev. B 55, 9391 (1997). [127 ] J.-M. Bonard, J.-P. Salvetat, T. Stockli, W. A. de Heer, L. Forro, A. Chatelain, Appl. Phys. Lett. 73, 918 (1998). [128 ] X. Xu and G. R. Brandes, Appl. Phys. Lett. 74, 2549 (1999). [129 ] Y. C. Choi, Y. M. Shin, D. J. Bae, S. C. Lim, Y. H. Lee and B. S. Lee, Diamond and related materials, 10, 1457 (2001). [130 ] D. Temple, Mater. Sci. & Eng. R 24, 185 (1999). [131 ] J. -M. Bonard, J. -P. Salvetat, T. Stöckli, L. Forró, and A. Châtelain, Appl. Phys. A 69, 245 (1999). [132 ] M. Chhowalla, C. Ducati, N. L. Rupesinghe, and K. B. K. Teo, Appl. Phys. Lett. 79, 2079 (2001). [133 ] S. Han and J. Ihm, Phys. Rev. B 61, 9986 (2000). [134 ] W. P. Kang, A. Wisitsora-at, J. L. Davidson, and D. V. Kerns, J. Vac. Sci. Technol. B 16(2), 684 (1998).id NH0920159003 sid 897511 cfn 0 / id NH0920159004 auc 陳威全 tic (鐵/矽)及(鋱鐵/鉻/釓鐵)多層膜交互作用力之研究 adc 賴志煌 ty 博士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 142 kwc 鐵/矽 kwc 矽化物 kwc 磁性多層膜 kwc 交互耦合作用力 kwc 垂直式磁性多層膜 kwc 鋱鐵 kwc 釓鐵 kwc 長距離作用力 abc 本論文著重於研究(鐵/矽)及(鋱鐵/鉻/釓鐵)系統中鐵磁層間之長距離交互作用力,尤其是探討交互作用力與(鐵/矽)多層膜結構之關係,以及(鋱鐵/鉻/釓鐵)系統中稀土元素及過渡元素間RKKY交互作用。所以本論文中主要包括兩主題:第一個主題為探討結構對鐵/矽多層膜磁性質之影響。藉由選擇適當的基板以及鉻的緩衝層之引入,可利用磁控濺鍍系統成功的在氧化鎂(001)基板上長出(001)磊晶(鐵/矽)多層膜,並且在氧化鋁(0001)基板上長出(110)磊晶(鐵/矽)多層膜。在(鐵/矽)多層膜間的交互耦合作用力主要是和中間層的矽化物種類有關,而此矽化物的生成又會受到晶體結構的影響。在(001)磊晶(鐵/矽)多層膜表現出很強的反鐵磁交互耦合,可由殘餘磁化量(Mr/Ms)與溫度之關係中發現中間層的矽化物為B20-FeSi。藉由電性及磁性質的分析發現(110)磊晶(鐵/矽)多層膜的中間層可能為一混和多種矽化物的中間層。此外,織構結構的(001)(鐵/矽)多層膜也表現出很強的反鐵磁交互耦合,但其飽和場(Hs)卻表現出隨溫度下降而增加,因此此中間層應該是形成金屬性質的B2-FeSi矽化物。另外,在織構結構的(001)(鐵/矽)及(鐵/矽/鋁)多層膜發現了垂直式交互耦合的現象。由垂直式交互耦合參數(J2)跟溫度的關係可知,(001)(鐵/矽)多層膜的垂直式交互耦合現象可由Fluctuation機制來解釋,而loose spin機制可用來解釋(鐵/矽/鋁)多層膜。在磁阻的研究方面發現到磊晶(001)(鐵/矽)、磊晶(110)(鐵/矽)、織構結構的(001)(鐵/矽)及多晶(鐵/矽)多層膜的主要磁阻來源並不相同。磊晶(001)(鐵/矽)的磁阻來自介面的差異性自旋散射,其表現出來的磁阻很小主要是來自低散射率B2-FeSi矽化物。相對於磊晶(001)(鐵/矽),織構結構的(001)(鐵/矽)多層膜有較大的磁阻,主要的貢獻可能來自於鐵磁層的晶界及差排對電子的散射。另外,在磊晶(110)(鐵/矽)多層膜也表現出較磊晶(001)(鐵/矽)多層膜來的大的磁阻,可能來自於介面高自旋散射率的?-FeSi矽化物。 tc CONTENTS Chapter 1 Introduction 1 1.1 Motivation 2 1.2 Outline of the Dissertation 6 Chapter 2 Background 7 2.1 Interlayer Exchange Coupling 7 2.1.1 Discoveries and Previous Studies 8 2.1.2 GMR Effect 10 2.2 Theoretical Models 14 2.2.1 Bilinear Coupling (RKKY Model) 14 2.2.2 Biquadratic Coupling 17 2.3 Magnetostatic Coupling 25 Chapter 3 Fe/Si Film Deposition and Structural Characterization 29 3.1 Introduction 29 3.1.1 Iron Silicides .29 3.1.2 Cr buffer layers 36 3.2 Experimental 38 3.3 Results and Discussions 41 3.3.1 Growth of (001) Crystallographic Orientation of Fe/Si MLs on MgO(001) 41 3.3.2 The Growth of (110) Crystallographic Orientation of Fe/Si MLs on Al2O3(001) 50 3.4 Summary 56 Chapter 4 Structural effects on Magnetic properties and interlayer coupling of Fe/Si multilayer 58 4.1 Introduction 58 4.2 Experimental 61 4.3 Results and Discussions 63 4.4 Summary 71 Chapter 5 Interlayer Exchange Coupling of (001) Texture Fe/Si Multilayers 72 5.1 Introduction 72 5.2 Experimental 75 5.3 Results and Discussion 76 5.4 Summary 90 Chapter 6 Effects of Bulk and Interface Scattering on Magnetoresistance of Fe/Si Multilayer 91 6.1 Introduction 91 6.2 Experimental 94 6.3 Results and Discussion 95 6.3.1 MR of epitaxial-(001) and textured-(001) Fe/Si MLs ……………………………………………………….……….95 6.3.2 MR of epitaxial-(001) and epitaxial-(110) Fe/Si MLs ………………………………………………..………………99 6.3.3 MR of polycrystalline Fe/Si MLs 102 6.4 Summary 103 Chapter 7 Interlayer Exchange Coupling of TbFe/Cr/GdFe Magnetic Perpendicular System 104 7.1 Introduction 104 7.2 Experimental 108 7.3 Results and Discussion 110 7.3.1 Oscillation of coercivety (Hc) in TbFe/Cr/GdFe system..........................110 7.3.2 Origin of exchange bias (He) in TbFe/Cr/GdFe system ……..121 7.4 Summary 126 Chapter 8 Conclusions 127 Reference 131 Appendixrf Chapter 1 [1 ] P. Grünberg, R. Schreiber, Y. Pang, M.B. Brodsky, H. Sowers, Phys. Rev. Lett. 57, 2442 (1986) [2 ] C.F.Majkrzak, J.W. Cable, J. Kw, M. Hong, D.B. Mcwhan, Y. Yafet, J.V. Waszcak, C. Vettier, Phys. Rev. Lett. 56, 2700 (1986) [3 ] M.B. Salamon, S. Sinha, J.J. Rhyne, J.E. Cunningham, R.W. Erwin, J. Borchers, C.P. Flynn, Phys. Rev. Lett. 56, 259 (1986) [4 ] M.N. Baibich, J.M. Broto, A Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988) [5 ] S.S.P. Parkin, N. More, K.P. Roche, Phys. Rev. Lett. 64, 2304 (1990) [6 ] M.A. Ruderman, C. Kittel, Phys. Rev. 96, 99 (1954) [7 ] T. Kasuya, Prog. Theor. Phys. 16, 4558 (1956) [8 ] K. Yosida, Phys. Rev. 106, 893 (1957) [9 ] M. T. Johnson, S. T. Purcell, N. W. E. McGee, R. Coehoorn, J. aan de Stegge, and W. Hoving, Phys. Rev. Lett. 68, 2688 (1992) [10 ] C.F. Majkrzak et al., Adv. in Phys. 40, 99 (1991) Chapter 2 [1 ] C.F.Majkrzak, J.W. Cable, J. Kw, M. Hong, D.B. Mcwhan, Y. Yafet, J.V. Waszcak, C. Vettier, Phys. Rev. Lett. 56, 2700 (1986) [2 ] M.B. Salamon, S. Sinha, J.J. Rhyne, J.E. Cunningham, R.W. Erwin, J. Borchers, C.P. Flynn, Phys. Rev. Lett. 56, 259 (1986) [3 ] P. Grünberg, R. Schreiber, Y. Pang, M.B. Brodsky, H. Sowers, Phys. Rev. Lett. 57, 2442 (1986) [4 ] M.N. Baibich, J.M. Broto, A Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988) [5 ] G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Phys. Rev. B 39, 4828 (1989) [6 ] S.S.P. Parkin, N. More, K.P. Roche, Phys. Rev. Lett. 64, 2304 (1990) [7 ] D. M. Edwards, J. Mathon, R. B. Muniz, and M. S. Phan, Phys. Rev. Lett. 67, 493 (1991) [8 ] P. Lang, L. Nordström, R. Zeller, and P. H. Dederichs, Phys. Rev. Lett. 71, 1927 (1993) [9 ] L. Nordström, P. Lang, R. Zeller, and P. H. Dederichs, Phys. Rev. B 50, 13058 (1994) [10 ] R. Coehoorn, Phys. Rev. B 44, 9331 (1991) [11 ] P. Bruno and C. Chappert, Phys. Rev. Lett. 67, 1602 (1991) [12 ] P. Bruno and C. Chappert, Phys. Rev. B 46, 261 (1992) [13 ] M. T. Johnson, S. T. Purcell, N. W. E. McGee, R. Coehoorn, J. aan de Stegge, and W. Hoving, Phys. Rev. Lett. 68, 2688 (1992) [14 ] S. S. P. Parkin, Phys. Rev. Lett. 67, 3598 (1991) [15 ] F. Petro, A. Barthelemy, D. H. Mosca, D. K. Lottis, A. Fert, P. A. Schroeder, W. P. Pratt, R. Loloee, and S. Lequien, Phys. Rev. B 44, 5355 (1991) [16 ] J. Fassbender, F. Nörteman, R. L. Stamps, R. E. Camley, B. Hillebrands, and G. Güntherodt, Phys. Rev. B 46, 5810 (1992) [17 ] K. Ounadjela, D. Miller, A. Dinia, A. Arbaoui, P. Panissod, and G. Suran, Phys. Rev. B 45, 7768 (1992) [18 ] Y. Huai and R. W. Cochrane, J. Appl. Phys. 72, 2523 (1992) [19 ] P. J. H. Bloeman, W. J. M. de Jonge, and R. Coehoorn, J. Magn. Magn. Mater. 121, 306 (1993) [20 ] Z. Q. Qiu, J. Pearson, and S. D. Bader, Phys. Rev. B 46, 8659 (1992) [21 ] M. T. Johnson, S. T. Purcell, N. W. E. McGee, R. Coehoorn, J. aan de Stegge, and W. Hoving, Phys. Rev. Lett. 68, 2688 (1992) [22 ] P. J. H. Bloemen, R. van Dalen, W. J. M. de Jonge, M. T. Johnson, and J. aan de Stegge, J. Appl. Phys. 73, 5972 (1993) [23 ] J. Unguris, R. J. Celotta, and D. T. Pierce, Phys. Rev. Lett. 67,140 (1991) [24 ] S. Demokritov, J. A. Wolf, and P. Grünberg, Europhysics Letters 15, 881 (1991) [25 ] S. T. Purcell, W. Folkerts, M. T. Johnson, N. W. E. Mc Gee, K. Jager, J. aan de Stegge, W. B. Zeper, and W. Hoving, Phys. Rev. Lett. 67, 903 (1991) [26 ] Z. Celinski and B. Heinrich, J. Magn. Magn. Mater. 99, L25 (1991) [27 ] A. Fus, S. Demokritov, P. Grünberg, and W. Zinn, J. Magn. Magn. Mater. 103, L221 (1992) [28 ] P. Bruno, Phys. Rev. B 52, 411 (1995) [29 ] B. C. Lee, Y. C. Chang, Phys. Rev. B 62, 3888 (2000) [30 ] M. D. Stiles, J. Appl. Phys. 79, 5805 (1996) [31 ] K. Wildberger, R. Zeller, P. H. Dederisch, J. Kudrnovský, and P. Weinberger, Phys. Rev. B 58, 13721 (1998) [32 ] N. N. Lathiotakis, B. L. Gyorffy, B. Ujfalussy, Phys. Rev. B 61, 6854 (2000) [33 ] J. Opitz, P. Zahn, J. Binder, I. Mertig, Phys. Rev. B 63, 4418 (2001) [34 ] L. Szunyogh, B. Ujfalussy, P. Weinberger, C. Sommers, Phys. Rev. B 54, 6430 (1996) [35 ] A. T. Costa, J. d’Albuquerque e Castro, and R. B. Muniz, Phys. Rev. B 56, 13697 (1997) [36 ] M. D. Stiles, J. Magn. Magn. Mater. 200, 322 (1999) [37 ] D. T. Pierce, J. Unguris, R. J. Celotta, M. D. Stiles, J. Magn. Magn. Mater. 200, 290 (1999) [38 ] H. Zabel, J. Phys. - Condens. Matter. 11, 9303 (1999) [39 ] R. S. Fishman, J. Phys. - Condens. Matter 13, R235 (2001) [40 ] A. Fert, P. Grünberg, A. Barthelemy, F. Petroff, W. Zinn, J. Magn. Magn. Mater. 140, 1 (1995) [41 ] B. A. Jones, IBM J. Res. Dev. 42, 25 (1998) [42 ] Z. P. Shi, P. M. Levy, Phys. Rev. B 49, 15159 (1994) [43 ] J. C. Slonczewski, J. Magn. Magn. Mater. 150, 13 (1995) [44 ] F. J. Himpsel, T. A. Jung, P. F. Seidler, IBM J. Res. Dev. 42, 33 (1998) [45 ] T. R. McGuire, R. I. Potter, IEEE Trans. Magn. 11, 1018 (1975) [46 ] 翟宏如,物理學進展季刊,十七卷二期,159 (中國物理學會 1997) [47 ] J. M. George, L. G. Pereira, A. Barthélémy, F. Petroff, L. Steren, J. L. Duvail, A. Fert, R. Loloee, P. Holody, P. A. Schroeder, Phys. Rev. Lett. 72, 408 (1994) [48 ] J. —P. Renard, P. Bruno, R. Mégy, B. Bartenlian, P. Beauvillain, C. Chappert, C. Dupas, E. Kolb, M. Mulloy, J. Prieur, P. Veillet, E. Vélu, J. Appl. Phys. 79, 5270 (1996) [49 ] T. Oguchi, J. Magn. Magn. Mater. 126, 519 (1993) [50 ] K. M. Schep, M. J. Kelly, G. E. W. Bauer, Phys. Rev. Lett. 74, 586 (1995) [51 ] P. Zahn, I. Mertig, M. Richter, H. Eschrig, Phys. Rev. Lett. 75, 2996 (1995) [52 ] R. E. Camley, J. Barnas, Phys. Rev. Lett. 63, 664 (1989) [53 ] P. M. Levy, S. Zhang, A. Fert, Phys. Rev. Lett. 65, 1643 (1990) [54 ] L. M. Roth, H. J. Zeiger, T. A. Kaplan, Phys. Rev. 149, 519 (1966) [55 ] Y. Yafet, J. Appl. Phys. 61, 4058 (1987) [56 ] S. H. Liu, R. P. Gupta, S. K. Sinha, Phys. Rev. B 4, 1100 (1971) [57 ] P. Bruno, C. Chappert, Phys. Rev. Lett. 67, 1602 (1991); 67, 2592(E) (1991); Phys. Rev. B 46, 261 (1992) [58 ] B. Heinrich, J. F. Cochran, Adv. in Phys. 42, 523 (1993) [59 ] J. C. Slonczewski, Phys. Rev. Lett. 67, 3172 (1991) [60 ] M. D. Stiles, Unpublished [61 ] D. T. Pierce, J. Unguris, R. J. Celotta, M. D. Stiles, J. Magn. Magn. Mater. 200, 290 (1999) [62 ] J. C. Slonczewski, J. Appl. Phys. 73, 5957 (1993) [63 ] B. Heinrich, Z. Celinski, L. X. Liao, M. From, J. F. Cochran, J. Appl. Phys. 75, 6187 (1994) [64 ] J. J. de Vries, G. J. Strikers, M. T. Johnson, A. Reinders, W. J. M. de Jonge, J. Magn. Magn. Mater. 148, 187 (1995) [65 ] P. Bruno, J. Appl. Phys. 76, 6972, (1994) [66 ] J. F. Bobo, H. Kikuchi, O. Redon, E. Snoeck, M. Piecuch, R. L. White, Phys. Rev. B 60, 4131 (1999) [67 ] L. Néel, C. R. Hebd. Seances Acad. Sci. 255, 1545 (1962) [68 ] J. C. S. Kools, W. Kula, D. Mauri, T. Lin, J. Appl. Phys. 85, 4466 (1999) [69 ] H. D. Chopra, D. X. Yang, P. J. Chen, D. C. Parks, W. F. Egelho., Phys. Rev. B 61, 9642 (2000) [70 ] S. Demokritov, E. Tsymbal, P. Gr‥unberg, W. Zinn, I. K. Schuller, Phys. Rev B 49, 720 (1994) [71 ] U. Rücker, S. O. Demokritov, E. Tsymbal, P. Gr‥unberg, W. Zinn, J. Appl. Phys. 78, 387 (1995) Chapter 3 [1 ] G. W. Rubloff, Surf. Sci. 132, 268 (1983) [2 ] H. Busse, J. Kandler, B. Eltester, K. Wandelt, G. R. Castro, J. J. Hinarejos, P. Segovia, J. Chrost, E. G. Michel, R. Miranda, Surf. Sci. 381, 133 (1997) [3 ] E. G. Moroni, W. Wolf, J. Hafner, R. Podloucky, Phys. Rev. B 59, 12860 (1999) [4 ] L. Pauling, A. M. Soldate, Acta Crystallogr. 1, 212 (1948) [5 ] L. F. Mattheiss, D. R. Hamann, Phys. Rev. B 47, 13114 (1993) [6 ] N. Cherief, C. D. Anterroches, R. C. Cinti, T. A. Nguyen Tan, J. Derrien, Appl. Phys. Lett. 55, 1671 (1989) [7 ] H. von Känel, K. A. Mäder, E. Müller, N. Onda, H. Sirringhaus, Phys. Rev. B 45, 13807 (1992) [8 ] J. Alvarez, J. J. Hinarejos, E. G. Michel, R. Miranda, Surf. Sci. 287/288, 490 (1993) [9 ] J. Alvarez, A. L. Vázquez de parga, J. J. Hinarejos, J. de la Figuera, E. G. Michel, C. Ocal, R. Miranda, J. Vac. Sci. Technol. 11, 929 (1993) [10 ] J. E. Mattson, S. Kumar, E. E. Fullerton, S. R. Lee, C. H. Sowers, M. Grimsdisch, S. D. Bader, Phys. Rev. Lett. 71, 185 (1993) [11 ] N. E. Christensen, Phys. Rev. B 42, 7148 (1990) [12 ] R. Eppenga, J. Appl. Phys. 68, 3027 (1990) [13 ] S. Eisebitt, J. —E. Rubensson, M. Nicodemus, T. Böske, S. Blügel, W. Eberhardt, K. Radermacher, S. Mantl, G. Bihlmayer, Phys. Rev. B 50, 18330 (1994) [14 ] K. A. Mäder, H. Von Känel, A. Baldereschi. Phys. Rev. B 48, 4364 (1993) [15 ] Y. Dusausoy, J. Protas, R. Wendji, B. Roques, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. B27, 1209 (1971) [16 ] M. C. Bost and J. E. Mahan, J. Appl. Phys. 58, 2696 (1985) [17 ] U. Birkholz, J. Schelm, Phys. Status Solidi 27, 413 (1968) [18 ] J. Derrien, J. Chevrier, V. Le Thanh, J. E. Mahan, Surf. Sci. 56/58, 382 (1992) [19 ] J. Derrien, J. Chevrier, V. Le Thanh, T. E. Crumbaker, J. Y. Natoli, I. Berbezier, Appl. Surf. Sci. 70/71, 546 (1993) [20 ] J. Derrien, I Berbezier, A. Ronda, J. Y. Natoli, Appl. Surf. Sci. 92, 311 (1996) [21 ] J. Chevrier, P. Stocker, Le Thanh Vinh, J. M. Gay, J. Derrien, Europhys. Lett. 22, 449 (1993) [22 ] K. Kyllesbech Larsen, M. Van Hove, A. Lauwers, K. Maex, M. Van Rossum, Mat. Res. Soc. Symp. Proc. 320, 121 (1994) [23 ] H. von Känel, K. A. Mäder, E. Müller, N. Onda, H. Sirringhaus, Phys. Rev. B 45, 13807 (1992) [24 ] N. Onda, J. Henz, E. Müller, K. A. Mäder, H. von Känel, Appl. Surf. Sci. 56-58, 421 (1992) [25 ] Y. C. Feng, D. E. Laughlin, D. N. Lambeth, J. Appl. Phys. 76, 7311 (1994) [26 ] S. L. Duan, J. O. Artman, B. Wong, D. E. Laughlin, J. Appl. Phys. 67, 4913 (1990) [27 ] H. J. Lee, J. Appl. Phys. 57, 4037 (1985) [28 ] A. Chaiken, R. P. Michel, M. A. Wall, Phys. Rev. B 53, 5518 (1996) [29 ] A. Chaiken, R. P. Michel, C. T. Wang, J. Appl. Phys. 79, 4772 (1996) [30 ] R. R. Gareev, D. E. Bürgler, M. Buchmeier, D. Olligs, R. Schreiber, P. Grünberg, Phys. Rev. Lett. 87, 157202-1 (2001) [31 ] E. E. Fullerton, J. E. Mattson, S. R. Lee, C. H. Sowers, Y. Y. Huang, G. Felcher and S. D. Bader, J. Magn. Magn. Mater. 117 (1992) L301. [32 ] K. Inomata, K. Yusu and Y. Saito, Phys. Rev. Lett. 74 (1995) 1863. [33 ] R.J. Highmore, K. Yusu, S.N. Okuno, Y. Saito and K. Inomata, J. Magn. Magn. Mater. 151 (1995) 95. Chapter 4 [1 ] S. Toscano, B. Briner, H. Hopster and M. Landolt, J. Magn. Magn. Mater. 114 (1992) L6. [2 ] E. E. Fullerton, J. E. Mattson, S. R. Lee, C. H. Sowers, Y. Y. Huang, G. Felcher and S. D. Bader, J. Magn. Magn. Mater. 117 (1992) L301. [3 ] Y. Endo, O. Kitakami and Y. Shimada, J. Appl. Phys. 85 (1999) 5741. [4 ] E. G. Moroni, W. Wolf, J. Hafner and R. Podloucky, Phys. Rev. B 59 (1999) 12860. [5 ] A. Chaiken, R. P. Michel and M. A. Wall, Phys. Rev. B 53 (1996) 5518. [6 ] K. Inomata, K. Yusu and Y. Saito, Phys. Rev. Lett. 74 (1995) 1863. [7 ] R.J. Highmore, K. Yusu, S.N. Okuno, Y. Saito and K. Inomata, J. Magn. Magn. Mater. 151 (1995) 95. [8 ] L. F. Mattheiss and D. R. Hamann, Phys. Rev. B 47 (1993) 13114. [9 ] J. Kohlhepp and F. J. A. den Broeder, J. Magn. Magn. Mater. 156 (1996) 261. [10 ] J. E. Mattson, Sudha Kumar, Eric E. Fullerton, S. R. Lee, C. H. Sowers, M. Grimsditch, S. D. Bader and F. T. Parker, Phys. Rev. Lett. 71 (1993) 185. [11 ] W. C. Chen, C. H. Lai, S. F. Lee, Y. Liou and Y. D. Yao, Jpn. J. Appl. Phys. 39 (2000) Suppl. 39-1, 494. [12 ] C. Kittel, Introduction to Solid state Physics (John Wiley ? Sons, New York, 1956), p.347 [13 ] K. Kyllesbech Larsen, M. Van Hove, A. Lauwers, K. Maex and M. Van Rossum, Mat. Res. Soc. Symp. Proc. 320 (1994) 121. Chapter 5 [1 ] J. J. de Vries, J. Kohlhepp, F. J. A. den Broeder, R. Coehoorn, R. Jungblut, A. Reinders, W. J. M. de Jonge, Phys. Rev. Lett. 78, 3023 (1997) [2 ] Y. Endo, O. Kitakami, Y. Shimada, Phys. Rev. B 59, 4279 (1999) [3 ] J. Kohlepp, F. J. A. den Broeder, M. Valkier, J. Magn. Magn. Mater. 165, 431 (1997) [4 ] E. E. Fullerton, S. D. Bader, Phys. Rev. B 53, 5112 (1996) [5 ] G. J. Strijkers, J. T. Kohlhepp, H. J. M. Swagten, W. J. M. de Jonge, Phys. Rev. Lett. 84, 1812 (2000) [6 ] J. C. Slonczewski, J. Appl. Phys. 73, 5957 (1993) [7 ] C. J. Gutierrez, J. J. Krebs, M. E. Filipkowski, G. A. Prinz, J. Magn. Magn. Mater. 116, L305 (1992). [8 ] M. Schäfer, S. Demokritov, S. Műller-Pfeiffer, R. Schäfer, M. Schneider, P. Grűnberg, W. Zinn, J. Appl. Phys. 77, 6432 (1995). [9 ] P. Bruno, J. Appl. Phys. 76, 6972 (1994) [10 ] J. C. Slonczewski, Phys. Rev. Lett. 67, 3172 (1991) [11 ] C. H. Marrows, B. J. Hickey, Phys. Rev. B 59, 463 (1999) [12 ] C. C. Kuo, M. —T. Lin, H. L. Huang, J. Appl. Phys. 85, 4430 (1999) [13 ] E. L. Albuquerque, C. G. Bezerra, C. Chesman, Surf. Sci. 532-535, 47 (2003) [14 ] K. Pettit, S. Gider, S. S. P. Parkin, M. B. Salamon, Phys. Rev. B 56, 7819 (1997) [15 ] A. Hütten, S. Mrozek, S. Heitmann, T. Hempel, H. Brückl, G. Reiss, Acta mater. 47, 4245 (1999) [16 ] K. Inomata, K. Yusu and Y. Saito, Phys. Rev. Lett. 74 (1995) 1863. [17 ] S. Demokritov, E. Tsymbal, P. Grünberg, W. Zinn, I. K. Schuller, Phys. Rev. B 49, 720 (1994) [18 ] J. N. Chapman, J. Rose, P. R. Aitchison, H. Holloway, D. J. Kubinski, J. Appl. Phys. 86, 1611 (1999) [19 ] C. H. Marrows, B. J. Hickey, M. Herrmann, S. McVitie, J. N. Chapman, M. Ormston, A. K. Petford-Long, T. P. A. Hase, B. K. Tanner, Phys. Rev. B 61, 4131 (2000) [20 ] E. G. Moroni, W. Wolf, J. Hafner, R. Podloucky, Phys. Rev. B 59, 12860 (1999) Chapter 6 [1 ] M.N. Baibich, J.M. Broto, A Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988) [2 ] R. Q. Hood, L. M. Falicov, D. R. Penn, Phys. Rev. B 49, 368 (1994) [3 ] R. E. Camley, J. Barnas, Phys. Rev. Lett. 63, 664 (1989) [4 ] P. M. Levy, S. Zhang, A. Fert, Phys. Rev. Lett. 65, 1643 (1990) [5 ] H. Itoh, J. Inoue, S. Maekawa, Phys. Rev. B 51, 342 (1995) [6 ] J. Barnas, Y. Bruynseraede, Phys. Rev. B 53, 5449 (1996) [7 ] P. Zahn, I. Mertig, M. Richter, H. Eschrig, Phys. Rev. Lett. 75, 2996 (1995) [8 ] T. Oguchi, J. Magn. Magn. Mater. 126, 519 (1993) [9 ] K. M. Schep, M. J. Kelly, G. E. W. Bauer, Phys. Rev. Lett. 74, 586 (1995) [10 ] I. A. Campbell, A Fert, in Ferromagnetic Materials, edited by E. P. Wohlfarth (North-Holland, Amsterdam, 1982) [11 ] J. Inoue, A. Oguri, S. Maekawa, J. Magn. Magn. Mater. 104-107, 1883 (1992) [12 ] J. Q. Xiao, J. S. Jiang, C. L. Chien, Phys. Rev. Lett. 68, 3749 (1992) [13 ] B. Dieny, Europhys Lett. 17, 261 (1992) [14 ] J. M. Colino, I. K. Schuller, Phys. Rev. B 53, 766 (1996) [15 ] J. Inoue, J. Magn. Magn. Mater. 164, 273 (1996) [16 ] R. Schad, P. Beliën, G. Verbanck, C. D. Potter, H. Fischer, S. Lefebvre, M. Bessiere, V. V. Moshchalkov, Y. Bruynseraede, Phys. Rev. B 57, 13692 (1998) [17 ] A. Perlov, V. Popescu, H. Ebert, J. Appl. Phys. 91, 8798 (2002) [18 ] K. Inomata, K. Yusu, Y. Saito, Phys. Rev. Lett. 74, 1863 (1995) [19 ] Y. Endo, O. Kitakami, Y. Shimada, Appl. Phys. Lett. 72, 495 (1998) [20 ] R. J. Highmore, K. Yusu, S. N. Okuno, Y. Saito, K. Inomata, J. Magn. Magn. Mater. 151, 95 (1995) [21 ] D. M. Kelly et al., Phys. Rev. B 50, 3481 (1994) Chapter 7 [1 ] C. F. Majkrzak, J. Kwo, M. Hong, Y. Yafet, Doon Gibbs, C. L. Chien, J. Bohr, Advances in physics 40, 99 (1991) [2 ] C. F. Majkrzak, J. W. Cable, J. Kwo, M. Hong, D. B. McWhan, Y. Yafet, V. Waszczak, C. Vettier, Phys. Rev. Lett. 56, 2700 (1986) [3 ] M.B. Salamon, S. Sinha, J.J. Rhyne, J.E. Cunningham, R.W. Erwin, J. Borchers, C.P. Flynn, Phys. Rev. Lett. 56, 259 (1986) [4 ] Y. Yafet, J. Appl. Phys. 61, 4058 (1987) [5 ] Y. Yafet, J. Kwo, M. Hong, C. F. Majkrzak, T. O’Brien, J. Appl. Phys. 63, 3453 (1988) [6 ] K. Takanashi, H. Fujimori, H. Kurokawa, J. Magn. Magn. Mater. 126, 242 (1993) [7 ] V. O. Vas’kovskiy, A. V. Svalov, M. Vázquez, A. Hernando, G. V. Kurlyandskaya, D. García, A. V. Gorbunov, J. Magn. Magn. Mater. 203, 295 (1999) [8 ] G. Suciu, J. C. Toussaint, J. Voiron, J. Magn. Magn. Mater. 240, 229 (2002) [9 ] K. Takanashi, H. Fujimori, H. Kurokawa, Appl. Phys. Lett. 63, 1585 (1993) [10 ] R. J. Gambino, T. Suzuki, “Magneto-optical recording materials” [11 ] A. J. Freeman, “Magnetic Properties of the RareEarth Metals”, edited by R. J. Elliott (Plenum, London, 1972), p. 245 [12 ] K. Fukui, H. Ogasawara, A. Kotani, I. Harada, H. Maruyama, N. Kawamura, K. Kobayashi, J. Chaboy, A. Marcelli, Phys. Rev. B, 64, 104405 (2001) [13 ] J. A. Duffy, S. B. Dugdale, J. E. McCarthy, M. A. Alam, M. J. Cooper, S. B. Palmer, T. Jarlborg, Phys. Rev. B 61, 14331 (2000) [14 ] R. Meservey, D. Paraskevopoulos, P. M. Tedrow, Phys. Rev. B 22, 1331 (1980)id NH0920159004 sid 863528 cfn 0 / id NH0920159005 auc 陸曉慈 tic 鐵薄膜與離子佈植矽界面反應之研究 adc 陳力俊 ty 博士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 英文 pg - kwc 鐵薄膜 kwc 離子佈植 kwc 電子顯微鏡 kwc X光繞射 kwc 能量散佈光譜儀 abc 本論文為鐵薄膜與離子佈植矽界面反應之研究,利用片電組的量測、X光繞射、電子顯微鏡、能量散佈光譜儀以及二次離子質譜儀分析鐵薄膜與離子佈植矽之界面反應。研究發現離子佈植可以促進b-FeSi2生成。在(111)Si系統,FeSi至b-FeSi2之相轉換溫度為600 oC並且在700 oC會完全轉換成b-FeSi2,此外磷離子佈植可以將轉換完成溫度從700 oC降低為600 oC。在砷離子佈植系統,鐵矽化物薄膜結構中出現很寬且含砷原子的晶界,當退火溫度升高至800 oC,此種晶界消失並且薄膜之電組率下降。在(001)Si系統,離子佈植也可以促進b-FeSi2生成。FeSi至b-FeSi2之相轉換溫度從700 oC降低為600 oC並且在700 oC轉換完全。此外,FeSi至b-FeSi2之相轉換是以群聚型態產生,在砷離子佈植系統中也發現含砷原子的晶界,此種晶界在退火溫度升高至900 oC後消失。鐵矽化物超薄膜之結構與發光特性是另一項研究重點。離子佈植可以促進b-FeSi2生成,在BF2+與P+佈植之(111)Si基材上可生成磊晶成長的b-FeSi2,然而在As+佈植之(111)Si基材與所有種類佈植之(001)Si基材上生成之b-FeSi2皆為多晶超薄膜。PL特性會受到b-FeSi2薄膜型態與薄膜中存在的缺陷影響,最強PL訊號會出現在磊晶成長的b-FeSi2超薄膜中,多晶薄膜所產生之PL訊號較弱,此外Stacking Faults會降低PL訊號。 tc Acknowledgments…………………..…………………………I Abstract……………………………………….………………II Chapter 1. An overview of Si-based light emitting materials and technology…………………….……..…………….1 Chapter 2. Light-Emitting FeSi2………………...………...………5 2-1 Iron Disilicide Crystallography……......…...……….……......5 2-2 b-FeSi2 as an Energy-Device Material……………….………6 2-3 b-FeSi2 Application in Light-emitting Diode I……...….……7 Chapter 3. Iron Silicide Nanostructures for Indegrated Optoelectronics………………….……………….…11 Chapter 4. Ion Implantation……………...….......………………15 4-1 Overview……………….………...…………………………...15 4-2 Advantages of Ion Implantation…………..……...…………15 4-3 The various applications of ion implantation………………18 Chapter 5. Experimental Procedures…………..……………….21 5-1 Sample Preparation………………………………………….21 5-2 Wafer Cleaning………………………….……………....……22 5-3 Thin Iron Film Deposition………………...………….…...…22 5-4 In-situ Ultimate High Vacuum Thermal Annealing…...…...24 5-5 Sheet Resistance Measurement…………………...……...….24 5-6 Phase Identification by Grazing Incidence X-ray Diffraction (GIXRD)……..…………………………...……………….…..25 5-7 Transmission Electron Microscope (TEM) Observation......26 5-8 Energy Dispersive Analysis of X-ray (EDAX)…………..….29 5-9 Secondary Ion Mass Spectroscopy (SIMS) Analysis…..…...29 Chapter 6. Formation of light-emitting FeSi2 in Fe thin films on ion-implanted (111)Si……………..………….….31 6-1 Motivation…………………….………...…………….………31 6-2 Experimental Procedures……………….…..………………..32 6-3 Results and Discussion………………….………….…………33 Chapter 7. Effects of ion-implantation on the formation of light-emitting FeSi2 in Fe thin films on (001)Si……………………………………..……………41 7-1 Motivation……………….…………………………………….41 7-2 Experimental Procedures……………….……………………41 7-3 Results and Discussion……………….……………………….43 Chapter 8. Effects of ion-implantation on the formation of light-emitting FeSi2 in Fe ultra-thin films on (111)Si and (001)Si…………...………….….…..……50 8-1 Motivation…………….…...........….………..…….…….…….50 8-2 Experimental Procedures………………….……..…….…….52 8-3 Results and Discussion……………………..……….…...……53 Chapter 9. Summary and Conclusions…………....……………61 Chapter 10 Future Prospects……………..………….…………...64 References…………………………….………………………………66rf Chapter 1 1.1 M. Forster, U. Mantz, S. Ramminger, K. Thonke, R. Sauer, H. Kibbel, F. Schoffler and H. J. Herzog, “Electroluminescence, photoluminescence, and photocurrent studies of Si/SiGe p-i-n heterostructures”, J. Appl. Phys. 80 (1996) pp. 3017-3023. 1.2 A Richiter, P. Steiner, F. Kozlowski and W. Lang, “Current-induced light emission from a porous silicon device”, IEEE Electron Device Lett. 12 (1991) pp. 691-692. 1.3 H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki and T. Nakagiri, “Quantum size effects on photoluminescence in ultrafine Si particles”, Appl. Phys. Lett. 56 (1990) pp. 2379-2380. 1.4 H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “1.54-µm luminescence of erbium-implanted III-V semiconductors and silicon”, Appl. Phys. Lett. 43 (1983) pp. 943-945. 1.5 J. Michel, J. L. Benton, R. F. Ferrante, D. C. Jacobson, D. J. Eaglesham, E. A. Fitzgerald, Y.-H. Xie, J. M. Poate, and L. C. Kimerling, “Impurity enhancement of the 1.54-µm Er3 + luminescence in silicon”, J. Appl. Phys. 70 (1991) pp. 2672-2678. 1.6 H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-µm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy”, Appl. Phys. Lett. 46 (1985) pp. 381-383. 1.7 B. Zheng, J. Michel, F. Y. G.. Ren, L. C. Kimerling, D. C. Jacobson and J. M. Poate, “Room-temperature sharp line electroluminescence at =1.54 µm from an erbium-doped, silicon light-emitting diode”, Appl. Phys. Lett. 64 (1994) pp. 2842-2844. 1.8 D. J. Lockwood, Z. H. Lu and J.M. Baribeau, “Quantum Confined Luminescence in Si/SiO2 Superlattices”, Phys. Rev. Lett. 76 (1996) pp. 539-541. Chapter 2 2.1 H. Von Kanel, N. Onda, H. Sirringhaus, E. Mullergubler, S. Goncalvesconto and C. Schwarz, “Epitaxial Phase Transitions in the Iron Silicon System”, Appl. Surf. Sci. 70/71 (1993) pp. 559-563. 2.2 J. Desimoni, H. Bernas, M. Behar, X. W. Lin, S. Washburn and Z. Lilientalweber, “Ion-Beam Synthesis of Cubic FeSi2”, Appl. Phys. Lett. 62 (1993) pp. 306-308. 2.3 J. Alvarez, J. J. Hinarejos, E. G. Michel and R. Miranda, “Determination of the Fe/Si(111) Phase Diagram by Means of Photoelectron Spectroscopies”, Surf. Sci. 287/288 (1993) pp. 490-494. 2.4 N. E. Christensen, “Electronic-Structure of Beta-FeSi2”, Phys. Rev. B 42 (1990) pp. 7148-7153. 2.5 Powalla, M. and Herz, K., Appl. Surf. Sci. 65/66, 482-488 (1993) ; Libezny, M., Poortmans, J., Vermeulen, T., Nijs, J., Amesz, P. H., Herz, K., and Powalla, M., Book of Abstracts of 13th European Photovoltaic Solar Energy Conference and Exhibition, PO8B., 49 (1995). 2.6 Katsumata, H., Makita, Y., Kobayashi, N., Shibata, H., Hasegawa, M., and Uekusa, S., Aksenov, I., Kimura, S., Obara, A., and Uekusa, S., “Optical Absorption and Photoluminescence Studies of Beta-FeSi2 Prepared by Heavy Implantation of Fe+ Ions into Si”, J. Appl. Phys. 80 (1996) pp. 5955-5962. 2.7 Katsumata, H., Makita, Y., Kobayashi, N., Shibata, H., Hasegawa, M., and Uekusa, S., “Effect of Multiple Step Annealing on the Formation of Semiconducting Beta-FeSi2 and Metallic Alpha-Fe2Si5 on Si(100) by Ion-Beam Synthesis”, Jpn. J. Appl. Phys. 36, No.5 (1997) pp. 2802-2812. 2.8 Libezny, M., Poortmans, J., Vermeulen, T., Nijs, J., Amesz, P. H., Herz, K., and Powalla, M., Proc. Of 13th European Photovoltaic Solar Energy Conf. p.1326 (1995). 2.9 Riffel M., Gross E., and Stohrer U., “Electrical Contacts for FeSi2 and Higher Manganese Silicide Thermoelectric Elements”, J. Mater. Sci.-Mater. Electron 6 (1995) pp. 182-185. 2.10 R. Eppenga, “Ab initio band-structure calculation of the semiconductor b-FeSi2”, J. Appl. Phys. 68 (1990) pp. 3027-3029. 2.11 Z. Yang, K. P. Homewood, M. S. Finney, M. A. Harry, and K. J. Resson, “Optical absorption study of ion beam synthesized polycrystalline semiconducting FeSi2”, J. Appl. Phys. 78 (1995) pp. 1958-1963. 2.12 C. A. Dimitriadis, J. H. Werner, S. Logothtidis, M. Stutzmann, J. Weber, and R. Nesper, “Electronic properties of semiconducting FeSi2 films”, J. Appl. Phys. 68 (1990) pp. 1726-1734. 2.13 M. C. Bost and J. E. Mahan, “A clarification of the index of refraction of beta-iron disilicide”, J. Appl. Phys. 64 (1988) pp. 2034-2037. 2.14 E. Arushanov, E. Bucher, Ch. Kloc, O. Kulikova, L. Kulyuk, and A. Siminel, “Photoconductivity in n-type beta -FeSi2 single crystals”, Phys. Rev. B 52 (1995) pp. 20-23. 2.15 T. Miya, Y. Terunuma, T. Hosaka and T. Miyashita, Electron. Lett. 15 (1979) p.106. 2.16 J. Derrien, J. Chevrier, V. Le Thanh, and J. E. Mahan, “Semiconducting Silicide Silicon Heterostructures - Growth, Properties and Applications”, Appl. Surf. Sci. 56-58 (1992) pp. 382-393. 2.17 H. Lange, “Electronic Properties of Semiconducting Silicides”, Phys. Stat. Sol. (b) 201 (1997) pp. 3-66. 2.18 E. Grob., M. Riffel, and U. Stohrer, “Thermoelectric Generators Made of FeSi2 and HMS - Fabrication and Measurement”, J. Mater. Res. 10 (1995) pp. 34-40. 2.19 H. Katsumata, H. L. Shen, N. Kobayashi, Y. Makita, M. Hasegawa, H. Shibata, S. Kimura, A. Obara, and S. Uekusa, Proc. 9th International Conference on Ion Beam Modification of Materials, Elserier Science, New York, 1996, p.943. 2.20 M. Libezny, J. Poortmans, T. Vermeulen, J. Nijs, P. H. Amesz, K. Herz, and M. Powalla, Proceedings of 13th European Photovoltaic Solar Energy Conference, 1995, p. 1326. 2.21 D. Leong, M. Harry, K. J. Reeson, and K. P. Homewood, “A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 mm”, Nature 387 (1997) pp. 686-688. 2.22 T. Suemasu, Y. Negishi, K. Takakura and F. Hasegawa, “Room Temperature 1.6 mm Electroluminescence from a Si-based Light Emitting Diode with beta-FeSi2 Active Region”, Jpn. J. Appl. Phys. 39 (2000) pp. 1013-1015. Chapter 3 3.1 D. Bimberg, M. Grundman, and N. Ledentsov, Quantum Dot Heterostructures, John Wiley & Son, London, 1999. 3.2 M. Sugawara, and J. C. Bean, “Self-Assembled InGaAs/GaAs Quantum Dots”, Vol. 60 of Semiconductors and Semimetals, Academic Press, New York, 1999. 3.3 Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current”, Appl. Phys. Lett. 40 (1982) pp. 939-941. 3.4 M. Asada, Y. Mayamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers”, IEEE J. Quant. Elec. QE 22 (1986) pp. 1915-1921. 3.5 E. R. Glaser, B. R. Bennett, B. V. Shanabrook, and R. Mango, “Photoluminescence studies of self-assembled InSb, GaSb, and AlSb quantum dot heterostructures”, Appl. Phys. Lett. 68 (1996) pp. 3614-3616. 3.6 Y.W. Mho, D. E. Savage, B. S. Swarzentruber, and M. G. Lagally, “Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001)”, Phys. Rev. Lett. 65 (1990) pp. 1020-1023. 3.7 H. Sunamura, N. Usami, Y. Shiraki, and S. Fukatsu, “Island formation during growth of Ge on Si(100): A study using photoluminescence spectroscopy”, Appl. Phys. Lett. 66 (1995) pp. 3024-3026. 3.8 O. Schmidt, C. Lange, K. Eberl, O. Kienzle, and F. Ernst, “Noncontact semiconductor wafer characterization with the terahertz Hall effect”, Appl. Phys. Lett. 71 (1997) pp. 16-18. Chapter 4 4.1 A. Jain, “Ion Implantation for Semiconductor Processing”, Rad. Eff. 63 (1982) pp. 39-43. 4.2 T. Tokuyama, “Ion Implantation”, in Semiconductors, Plenum Press, New York (1997) p. 519. 4.3 P. J. Coppen, K. A. Aubuchon, L. O. Bauer, and N. E. Moyer, “A Complementary MOS 1.2 Volt Waltch Circuit Using Ion Implantation”, Solid State Electron. 15 (1972) pp. 155-158. 4.4 S. K. Ghandhi, VLSI Fabrication Principles, Wiley and Sons, New York (1982). 4.5 T. E. Seidel, “Ion Implantation”, in S. M. Sze, Ed. VLSI Technology, McGraw-Hill, New York (1983). 4.6 A. Axmann, “Ionizable Materials to Produce Ions for Implantation”, Solid State Technol. 36 (1974) pp. 231-235. 4.7 R. A. Moline, J. Appl. Phys. 42 (1971) pp. 2471-24715. 4.8 G. Fladda, K. Bjorkqvist, L. Eriksson, and D. Sigurd, “The Lattice Location of Boron Ions Implated into Silicon”, Appl. Phys. Lett. 16 (1970) pp. 313-315. 4.9 D. Lecrosnier, J. Paugam, and Gallou, “Channeling of boron ions into silicon”, Appl. Phys. Lett. 30 (1997) pp. 323-325. 4.10 F. Cembali, R. Galloni, and F. Zignani, “Electrical Activation Processes of P+ Ions Channeled Along the [110 ] Axis of Silicon : Effect of Annealing on Carriers Profiles Shape”, Rad. Eff. 26 (1975) pp.161-165. 4.11 F. Cembali, L. Dori, R. Galloni, M. Servidori, and F. Zignani, “Radiation Damage in Silicon Produced by Phosphorus Implantation : Randm and Aligned Implants”, Rad. Eff. 36 (1978) pp. 111-115. Chapter 5 5.1 J.F. Ziegler, “Ion Implantation Science and Technology”, 2nd Edition, edited by J.F. Ziegler (Academic Press, Boston, 1988) p.3. Chapter 6 6.1 M. C. Bost and J. E. Mahan, “Optical properties of semiconducting iron disilicide thin films”, J. Appl. Phys. 58 (1985) pp. 2696-2703. 6.2 C. A. Dimitriadis, J. H. Werner, S. Logothtidis, M. Stutzmann, J. Weber, and R. Nesper, “Electronic properties of semiconducting FeSi2 films”, J. Appl. Phys. 68 (1990) pp. 1726-1734. 6.3 K. Lefki, P. Muret, N. Cherief, and R. C. Cinti, “Optical and electrical characterization of β-FeSi2 epitaxial thin films on silicon substrates”, J. Appl. Phys. 69 (1991) pp. 352-357. 6.4 D. Leong, M. Harry, K. J. Reeson, and K. P. Homewood, “A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 mm”, Nature 387 (1997) pp. 686-688. 6.5 H. C. Cheng, T. R. Yew, and L. J. Chen, “Interfacial reactions of iron thin films on silicon”, J. Appl. Phys. 57 (1985) pp. 5246-5250. 6.6 J. H. Westbrook and R. L. Fleischer, Intermetallic Compounds : Principles and Practice (Chichester, New York:Wiley, 1995). Chater 7 7.1 T. Suemasu, Y. Negishi, K. Takakura and F. Hasegawa, “Room Temperature 1.6 mm Electroluminescence from a Si-based Light Emitting Diode with beta-FeSi2 Active Region”, Jpn. J. Appl. Phys. 39 (2000) pp. 1013-1015. Chapter 8 8.1 M. Forster, U. Mantz, S. Ramminger, K. Thonke, R. Sauer, H. Kibbel, F. Schoffler and H. J. Herzog, “Electroluminescence, photoluminescence, and photocurrent studies of Si/SiGe p-i-n heterostructures”, J. Appl. Phys. 80 (1996) pp. 3017-3023. 8.2 A Richiter, P. Steiner, F. Kozlowski and W. Lang, “Current-induced light emission from a porous silicon device”, IEEE Electron Device Lett. 12 (1991) pp. 691-692. 8.3 H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki and T. Nakagiri, “Quantum size effects on photoluminescence in ultrafine Si particles”, Appl. Phys. Lett. 56 (1990) pp. 2379-2380. 8.4 D. J. Lockwood, Z. H. Lu and J.M. Baribeau, “Quantum Confined Luminescence in Si/SiO2 Superlattices”, Phys. Rev. Lett. 76 (1996) pp. 539-541. 8.5 N. E. Christensen, “Electronic-Structure of Beta-FeSi2”, Phys. Rev. B 42 (1990) pp. 7148-7153. 8.6 R. Eppenga, “Ab initio band-structure calculation of the semiconductor b-FeSi2”, J. Appl. Phys. 68 (1990) pp. 3027-3029. 8.7 Z. Yang, K. P. Homewood, M. S. Finney, M. A. Harry, and K. J. Resson, “Optical absorption study of ion beam synthesized polycrystalline semiconducting FeSi2”, J. Appl. Phys. 78 (1995) pp. 1958-1963. 8.8 C. A. Dimitriadis, J. H. Werner, S. Logothtidis, M. Stutzmann, J. Weber, and R. Nesper, “Electronic properties of semiconducting FeSi2 films”, J. Appl. Phys. 68 (1990) pp. 1726-1734. 8.9 M. C. Bost and J. E. Mahan, “A clarification of the index of refraction of beta-iron disilicide”, J. Appl. Phys. 64 (1988) pp. 2034-2037. 8.10 E. Arushanov, E. Bucher, Ch. Kloc, O. Kulikova, L. Kulyuk, and A. Siminel, “Photoconductivity in n-type beta -FeSi2 single crystals”, Phys. Rev. B 52 (1995) pp. 20-23. 8.11 D. Bimberg, M. Grundman, and N. Ledentsov, Quantum Dot Heterostructures, John Wiley & Son, London, 1999. 8.12 M. Sugawara, and J. C. Bean, “Self-Assembled InGaAs/GaAs Quantum Dots”, Vol. 60 of Semiconductors and Semimetals, Academic Press, New York, 1999. 8.13 L. Martinelli, E. Grilli, D. B. Migas, and Leo Miglio, “Luminescence from b-FeSi2 precipitates in Si. II: Origin and nature of the photo;uminenscence”, Physical Review B 66 (2002) 853201-853209. 8.14 M. Ohring, The Materials Science of Thin Films, 1992. 8.15 T. Suemasu, T. Fujii, Y. Iikura, K. Takakura, and F. Hasegawa, “Photoluminescence from reactive deposition epitaxy (RDE) grownβ-FeSi2 balls embedded in Si crystals”, Jpn. J. Appl. Phys. 37 (1998) pp. L1513-L1516.id NH0920159005 sid 887507 cfn 0 / id NH0920159006 auc 林朝成 tic (鋱鐵鈷)及(鋱鐵/鈷)雙層薄膜系統磁交互耦合作用及其應用之研究 adc 賴志煌 adc 謝漢萍 ty 博士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 162 kwc 磁交互耦合作用 kwc 界面交互耦合能量 kwc 垂直磁異向性 kwc 偏移場 kwc 磁單方向異向性 kwc 自旋閥 kwc 巨磁阻 abc 本篇論文著重於研究含有稀有及過渡金屬合金薄膜之磁性雙層膜中磁交互耦合作用現象,並進一步探討此類薄膜可能之實際運用。首先,我們鍍製具有垂直磁異向性之鋱鐵鈷(TbFeCo)磁性雙層膜,研究其薄膜間之磁交互作用力,從研究中我們發現: 在此鋱鐵鈷(TbFeCo)磁性雙層膜中,其室溫之界面交互耦合能量(interfacial exchange energy)可大於5 erg/cm2,此數值相較於傳統之鐵磁/反鐵磁雙層膜系統大了一至兩個數量級,因此我們提出「高度未抵銷自旋電子界面(highly-uncompensated-spin interface)」模型,來解釋存在於鋱鐵鈷薄膜中如此強之磁交互耦合作用力之來源;由於此種界面之存在,造成鋱鐵鈷雙層膜之偏移場(biasing field)並不隨著界面粗糙度的改變而有太大之變化;此外,我們藉由調變鋱鐵鈷薄膜組成之實驗,進一步釐清薄膜磁異向性對磁交互耦合作用力之影響。而另一方面,我們研發具高磁化量及矯頑場之鋱鐵鈷雙層膜,以運用於超高儲存密度之熱輔助磁記錄;藉由鋱鐵鈷薄膜間異常強的磁交互耦合作用,我們能有效地提高了高磁化量鋱鐵鈷薄膜之矯頑場,這將大大地提高記錄磁區之穩定性。而在鋱鐵鈷碟片的動態測試中我們發現:碟片的讀回雜訊和製程的背景壓力有很大之關連,碟片必須在高真空環境製程下(背景壓力< 1.5 x 10-7 torr),其碟片雜訊才能有效地降低;在較差的真空環境之下,存在於薄膜中之雜質會使碟片之磁性質分佈不均勻,造成雜訊之增加。而藉由模擬熱磁寫入之實驗,我們進一步驗證此高磁化量及矯頑場之鋱鐵鈷雙層薄膜碟片極具潛力能應用於超高密度資訊儲存之熱輔助磁記錄。 tc Chapter 1 Introduction ……………………………………………1 1.1 Motivation…………………………………………………………2 1.2 Outline of the Dissertation………………………………………6 Chapter 2 Background I--Exchange coupling in the FM/AFM bilayers……….……………………………………………7 2.1 Exchange Anisotropy ………………………………………………7 2.2 Models for Exchange Anisotropy …………………………….…...10 2.2.a Ideal Interface Model…………………………….…................10 2.2.b Random Field Model…………………………….…................13 2.2.c AFM Domain Wall Model .……......…………….…................15 2.2.d “Spin-Flop” Perpendicular Interfacial Coupling.......................17 2.2.e Uncompensated Interface for Exchange Anisotropy………….19 2.3 Positive and Negative Exchange Bias……………………………. 22 2.4 Application of FM/AFM Bilayers in Spin Valves…………………25 2.4.a Giant Magnetoresistance (GMR) Effect...……….…................25 2.4.b Spin-valve Sensor with FM-AFM Bilayers.....….…................28 2.4.c GMR Effect in the Thin Films Containing Rare-earth Layer....31 Chapter 3 Background II--Amorphous Rare-earth- transition-metal-alloy Film……………………………………...35 3.1 Magnetic Properties of RE-TM Films……………….....................36 3.1.a Ferrimagnetic RE-TM Materials….........................................36 3.1.b Magnetization and Coercivity Dependence on Composition.....38 3.1.c Thermomagnetic Properties of RE-TM Films............................40 3.1.d Perpendicular Anisotropy of RE-TM Films...........................41 3.1.e Strong Kerr Effect…………………………...............................45 3.2 Magnetic Behaviors in ECDL RE-TM Films…………..................47 3.2.a Interfacial Wall in ECDL RE-TM Films…….............................47 3.2.b Magnetization-switching Mechanism in ECDL RE-TM Films..48 3.3 Applications of RE-TM Films…......................................................56 3.3.a Magneto-optical Recording........................................................56 3.3.a.1 Writing Mechanism.............................................................56 3.3.a.2 Reading Mechanism..........................................................60 3.3.a.3 Magnetically Induced Super-resolution (MSR).................61 3.3.b Thermomagnetic-Writing/Magnetic-Flux-Reading Recording..63 Chapter 4 Film Deposition and Measurement………………..65 4.1 Sputtering System………………………………………………...65 4.2 Deposition of RE-TM Films……………………………................67 4.3 Fabrication of Si/SiO2 Substrates with Various Roughnesses……..68 4.4 Vibrating Sample Magnetometer (VSM) ……….…………….......69 4.5 Kerr-loop Tracer……………………………………………......70 4.6 Measurement of Perpendicular Anisotropy Constant Ku..............72 4.7 Observation of Surface Morphology and Magnetic Domains…….76 4.8 X-Ray Magnetic Circular Dichroism (XMCD) Spectroscopy......79 Chapter 5 High Interfacial Energy in TbFeCo Exchange- bias Films with Perpendicular Anisotropy.................................83 5.1 Introduction………………………………………………..............83 5.2 Experimental Procedures……………………………….................85 5.3 Results……………………………………………….................86 5.3.a Strong Exchange Coupling in TbFeCo Bilayers.........................86 5.3.b Negative and Positive Exchange Bias in TbFeCo Bilayers.....88 5.3.c Highly-uncompensated-spin Interface in TbFeCo Bilayers....91 5.3.d Dependence of Surface Morphology on Exchange Bias............94 5.3.e Dependence of Magnetic Anisotropy on Exchange Bias............95 5.4 Conclusion………………………………………………...............98 Chapter 6 High Magnetization Exchange-Couple Double- layer TbFeCo for Magnetic-Flux-Reading Optical Recording…….....99 6.1 Introduction………………………………………………..............99 6.2 Experimental Procedures………………………………..............101 6.3 Results………………………………………………...............103 6.3.a Coercivity Enhancement in ECDL TbFeCo Films……...........103 6.3.b Dependence of TFC-layer Composition on Enhanced Coercivity…………………………………………………..108 6.3.c Thickness Dependence on Enhanced Coercivity......................111 6.3.d Thermomagnetic Properties of A-type ECDL Media…….......114 6.3.e Simulating Thermomagnetic-Writing Process………….........116 6.3.e Low Media-noise TbFeCo Disks…………….………….........118 6.4 Conclusion……………………………………………….............124 Chapter 7 Investigation of exchange coupling in TbFe/Co exchange-coupled bilayers……….……………………...............125 7.1 Introduction………………………………………………............125 7.2 Experimental Procedures………………………………..............127 7.3 Results………………………………………………...............128 7.3.a Magnetic Properties of TbFe/Co Bilayers with Various Co Thickness…………………………………………………….128 7.3.b Co and Fe Orientations in TbFe/Co Bilayers with Various Co Thicknesses…………………………………………………..131 7.3.c Magnetic Behaviors of TbxFe(100-x)/Co Bilayers....................137 7.4 Conclusion……………………………………………….............140 Chapter 8 Giant Magnetoresistance Phenomenon in Ferrimagnetic/Cu/Ferrimagnetic-based Films…………….. 141 8.1 Introduction………………………………………………............141 8.2 Experimental Procedures………………………………...............143 8.3 Results……………………………………………….................144 8.3.a Giant Magnetoresistance in TbFeCo/Cu/GdFeCo Films.........144 8.3.b Positive GMR in TbFeCo/Cu/GdFeCo Films………………..147 8.3.c Indirect Exchange Coupling in TbFeCo/Cu/GdFeCo Films.....151 8.3.d GMR in TbCo/Co/Cu/Co/TbFeCo Films……………..….......154 8.4 Conclusion……………………………………………….............158 Chapter 9 Conclusions…………………...………………………159rf Chapter 1 [1 ] J. Nogués and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999). [2 ] R.L. Stamps, J. Phys. D: Appl. Phys. 33, R247 (2000). [3 ] M. Kiwi, J. Magn. Magn. Mater. 234, 584 (1999). [4 ] W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956). [5 ] P.J. van der Zaag, R.M. Wolf, A.R. Ball, C. Bordel, L.F. Feiner, and R. Jungblug, J. Magn. Magn. Mater. 148, 346 (1995). [6 ] W.C. Cain, and M.H. Kryder, J. Appl. Phys. 67, 5722 (1990). [7 ] B. Dieny, J. Magn. Magn. Mater. 136, 335 (1994). [8 ] R. Jansen, J. Phys. D: Appl. Phys. 36, R289 (2003). [9 ] D. Mauri, H.C. Siegmann, P.S. Bagus, and E. Kay, J. Appl. Phys. 62, 3047 (1987). [10 ] T. Tokunaga, M. Taguchi, T. Fukami, Y. Nakaki, and K. Tsutsumi, J. Appl. Phys. 67, 4417 (1990). [11 ] G.L. Bona, F. Meier, H.C. Siegmann, and R.J. Gambino, Appl. Phys. Lett. 52, 166 (1988). [12 ] M. Mieda, H. Takemori, Y. Murakani, and A. Takahashi, Jpn. J. Appl. Phys., Part 1 35, 429 (1996). [13 ] Y. Murakami, A. Takahashi, and S. Terashima, IEEE Trans. Magm., 31, 3215 (1995). [14 ] T. Tokunaga, M. Takuchi, T. Fukami, Y. Nakaki, and K. Tsutsumi, J. Appl. Phys., 67, 4417 (1990). [15 ] H. Awano, S. Imai, M. Sekine, M. Tani, N. Ohta, K. Mitani, N. Takagi, H. Noguchi, and M. Kume, IEEE Trans. Magm., 36, 2261 (2000). [16 ] K. Kaneko, K. Aratani, Y. Mutoh, A. Nakaoki, K. Watanabe, and H. Makino, Japan. J. Appl. Phys. 28, supplement 28-3, 27 (1989). [17 ] F. Hellman, R.B. van Dover, and E. M. Gyorgy, Appl. Phys. Lett., 50, 296 (1987). [18 ] J. N. Chapman, M. F. Gillies, and P. P. Freitas, J. Appl. Phys. 79, 6452 (1996). [19 ] O. Redon, and P. P. Freitas, J. Appl. Phys. 83, 2851 (1998). [20 ] C. Cain, and Mark H. Kryder, J. Appl. Phys. 67, 5722 (1990). [21 ] N. Smith, and William C. Cain, J. Appl. Phys. 69, 2471 (1991). [22 ] J. Stöhr, J. Magn. Magn. Mater., 200, 470 (1999). [23 ] B. T. Thole, P. Carra, F. Sette, and G. van der Laan, Phys. Rev. Lett., 68, 1943 (1992). [24 ] P. Carra, B. T. Thole, M. Altarelli, and X. Wang, Phys. Rev. Lett., 70, 694 (1993). [25 ] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff, Phys. Rev. Lett. 61 2472 (1988). [26 ] B. Dieny, J. Magn. Magn. Mater. 136, 335 (1994). Chapter 2 [1 ] W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956). [2 ] W. H. Meiklejohn and C. P. Bean, Phys. Rev. 105, 904 (1957). [3 ] R. D. Hempstead, S. Krongelb, and D. A. Thompson, IEEE Trans. Magn. 14, 521 (1978). [4 ] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, and A. Friederich, Phys. Rev. Lett. 61, 2472 (1988). [5 ] B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhoit, and D. Mauri, Phys. Rev. B 43, 1297 (1991). [6 ] J. C. S. Kools, IEEE Trans. Magn. 32, 3165 (1996). [7 ] Ph. Lambin, and F. Herman, Phys. Rev. B 30, 6903 (1984). [8 ] R.D. Hempstead, S. Krongelb, and D.A. Thompson, IEEE Trans. Magn. 14, 521 (1978). [9 ] J. Nogués and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999). [10 ] A. P. Malozemoff, Phys. Rev. B 35, 3679 (1987). [11 ] D. Mauri, H.C. Siegmann, P.S. Bagus, and E. Kay, J. Appl. Phys. 62, 3047 (1987). [12 ] N. C. Koon, Phys. Rev. Lett. 78, 4865 (1997). [13 ] T. C. Schulthess and W. H. Butler, Phys. Rev. Lett. 81, 4516 (1998). [14 ] T. C. Schulthess and W. H. Butler, J. Appl. Phys. 85, 5510 (1999). [l5 ] K. Takano, R.H. Kodama, and A.E. Berkowitz, Phys. Rev. Lett., 79, 1130 (1997). [16 ] J. Nogués, D. Lederman, T. J. Moran, and I.K. Schuller, Phys. Rev. Lett., 76, 4624 (1996). [17 ] M. Ohkoshi, K. Tamari, M. Harada, S. Honda, and T. Kusuda, IEEE Trans. J. Magn. Japan 1, 37 (1985). [18 ] N. Salansky, V. Seredkin, V. Burmakin, and A. Nabatov, Sov. Phys. JETP. Lett., 15, 1011 (1974). [19 ] D. D. Tang, P. K. Wang, V. S. Sperious, S. Le, and K. K. Kung, IEEE Trans. Magn. 33, 3283 (1997) [20 ] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff, Phys. Rev. Lett. 61 2472 (1988) [21 ] R. Coehoorn, Phys. Rev. B 44, 9331 (1991) [22 ] P. Bruno and C. Chappert, Phys. Rev. Lett. 67, 1602 (1991) [23 ] S. S. P. Parkin, N. More, and K. P. Roche, Phys. Rev. Lett. 64, 2304 (1990) [24 ] M.N. Baibich, J.M. Broto, A Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988) [25 ] G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Phys. Rev. B 39, 4828 (1989) [26 ] I. A. Campbell, A Fert, in Ferromagnetic Materials, edited by E. P. Wohlfarth (North-Holland, Amsterdam, 1982) [27 ] R. E. Camley, J. Barnas, Phys. Rev. Lett. 63, 664 (1989) [28 ] P. M. Levy, S. Zhang, A. Fert, Phys. Rev. Lett. 65, 1643 (1990) [29 ] S. S. P. Parkin, G. Li, and D. J. Smith, Appl. Phys. Lett. 58, 2710 (1991) [30 ] S. S. P. Parkin, A. Mansour, and G.P. Felcher, Appl. Phys. Lett. 58, 1473 (1991) [31 ] B. Dieny, J. Magn. Magn. Mater. 136, 335 (1994) [32 ] A.J. Devasahayam, K.R. Mountfield, M.H. Kryder, IEEE Trans. Magn. 33, 2881 (1997) [33 ] T. Lin, G.L. Gorman, C. Tsang, IEEE Trans. Magn. 32, 3443 (1996) [34 ] J.S. Moodera, L.R. Kinder, T.M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995) [35 ] J.S. Moodera, and G. Mathon, J. Magn. Magn. Mater. 200, 248 (1999) [36 ] J. Shi, S. S. P. Parkin, L. Xing and M. B. Salamon, J. Magn. Magn. Mater. 125, L251 (1993) [37 ] L. Xing, Y. C. Chang, M. B. Salamon, D. M. Frenkel, and J. Shi, Phys. Rev. B 48, 6728 (1993) [38 ] F. E. Stanley, M. Perez, C. H. Marrows, S. Langridge, and B. J. Hickey, Europhys. Lett. 49, 528 (2000). [39 ] C. Bellouard, H. D. Rapp, B. George, S. Mangin, and G. Marchal, Phys. Rev. B 53, 5082 (1996). Chapter 3 [1 ] E. P. Wohlfarth, J. Phys. F, 9, L123 (1979) [2 ] M. Mansuripur, “Magneto-optical Disk Data Storage,” R.C. Dorf (ed.), Boca Raton, FL: CRC Press, 1993, Sec. VIII, pp. 1675-1694. [3 ] R. L. Comstock, “Introduction to magnetism and magnetic recording” Wiley-Interscience, John Wiley & Sons Inc., 1999, pp 75-76. (ISBN 0-471-31714-4) [4 ] M.S.S. Brooks, L. Nordstroem, and B. Johansson, Physica B: Condensed Matter. 172, p. 95 (1991). [5 ] R. J. Gambino, and T. Suzuki, “Magneto-optical recording materials” IEEE Press, New York, 2000. (ISBN 0-780-31009-8) [6 ] G. S. Cargill , and T. Mizogouchi, J. Appl. Phys. 49, 1753 (1978). [7 ] T. Egami, C. D. Graham, Jr., W. Dmowski, P. Zhou, and P. J. Flanders. IEEE . Trans. Magn. MAG-23, 2269 (1987) [8 ] Hong Fu, Masud Mansuripur, and Pierre Meystre, Phys. Rev. Lett., 66, 1086, (1991) [9 ] M. Chikazumi, “Physics of magnetism”, New York: John Wiley, 1964 [10 ] P. Chaudhari, J. J. Cuomo, R. J. Gambino, and E. A. Giess, “Magnetic Bubble Films,” New York: Academic Press, 1977. [11 ] W. H. Meiklejohn, Proc. of IEEE, 74, 1570 (1997) [12 ] S. Tsunashima, H. Takagi, K. Kamegki, T. Fujii, and S. Uchiyama, IEEE Trans. Magn. MAG-14, 844 (1987) [13 ] Y. Suzuki, J. Haimovich, and T. Egami, Phys. Rev. B 35, 2162 (1987) [14 ] L. Néel, J. Phys. Radium, 15, 225 (1954) [15 ] Y. Suzuki, S. Takayama, F. Kirino, and N. Ohta, IEEE Trans. Magn. MAG-23, 2275 (1987) [16 ] M. Mansuripur, J. Appl. Phys. 61, 1580 (1986) [17 ] K. Kaneko, K. Aratani, Y. Mutoh, A. Nakaoki, K. Watanabe, and H. Makino, Japan J. Appl. Phys., 28, supplement 28-3, 27 (1989) [18 ] T. Kobayashi, H. Tsuij, S. Tsunashima, and S. Uchiyama, Jpn. J. Appl. Phys. 20, 2089 (1981) [19 ] M. Mansuripur, The Physical Principles of Magneto-Optical Recording, Cambridge University Press, New York (1995). [20 ] T. W. McDaniel and R. H. Victora eds., Handbook of Magneto-Optical Recording: Materials, Subsystems, Techniques, Noyes Publications, New Jersey (1997) [21 ] A. B. Marchant, Optical Recording, Addison-Wesley, Reading, MA (1990) [22 ] W. K. Hwang, Ph. D. Dissertation, “ Magnetic Properties and Recording Characteristics of (Gd, Tb, Dy)FeCo Magneto-Optical Films,” Electro-Optical Engineering, Nat. Chiao-Tung Uni. Hsinchu, Taiwan, R. O. C. (1997) [23 ] K. H. J. Buschow, et al., High Density Digital Recording, Kluwer Academic Publisher, the Netherlands, 539 (1993). [24 ] T. Mcdaniel, Comm. of the ACM, 43(11), 57 (2000) [25 ] E. Ikeda, T. Tanaka, T. Chiba, and H. Yoshimura, J. Magn. Soc. Jpn. 17, Suppl. S1, 335 (1993) [26 ] F. Tanaka, S. Tanaka, and S. Suzuki, IEEE Trans. Magn. MAG-23, 2695 (1987) [27 ] H. Miyamoto, T. Niihara, H. Sukeda, M. Takahashi, T. Nakao, M. Ojima, and N. Ohta, J. Appl. Phys. 66, 6138 (1989) [28 ] B. M. Chen, Ph. D. Dissertation, “Reading in achieving high density in magneto-optical disks,” Electro-Optical Engineering, Nat. Chiao-Tung Uni. Hsinchu, Taiwan, R. O. C. (2001) [29 ] M. H. Kryder, J. Appl. Phys. 57(1), 3913 (1985). [30 ] M. Kaneko, J. Magn. Magn. Mater. 148, 351 (1995). [31 ] M. Kaneko, K. Aratani, A. Fukumoto, and S. Miyaoka, Proc. IEEE 82, 544 (1994). [32 ] A. Fukumoto and S. Kubota, Jpn. J. Appl. Phys. 31, 568 (1992) [33 ] H. Awano, S. Ohnuki, H. Shirai, N. Ohta, A. Yamaguchi, S. Sumi, and K. Torazawa, Appl. Phys. Lett. 69, 4257 (1996) [34 ] “The potential of DVD”, Money Information, Apr., 355 (1997) [35 ] A. Moser, K. Takano, D. T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. Sun, and E. E. Fullerton, J. Phys. D: Appl. Phys. 35, R157 (2002) [36 ] H. Nemoto, H. Saga, H. Sukeda, and M. Takhashi, Jpn. J. Appl. Phys. 38, 1841 (1998). [37 ] H. Saga, H. Nemoto, H. Sukeda, and M. Takahashi, Jpn. J. Appl. Phys. 38, 1839 (1999). Chapter 4 [1 ] J. L. Vossen and W. Kern, Thin Film Processes, Academic Press, New York (1978). [2 ] S. Foner, Rev. Sci. Instru. 30, 548 (1959). [3 ] S. Nagata, E. Fujita, and S. Ebisu, Jpn. J. Appl. Phys. 26, 92 (1987). [4 ] Y. Minura, N. Imamura, and T. Kobayashi, Jap. J. Appl. Phys. 17, 1365 (1978). [5 ] N. Imamura, and T. Kobayashi, Jap. J. Appl. Phys. 39, L829 (1975) [6 ] J. Smit, Physica 24, 39 (1958). [7 ] L. Berger, Phys. Rev. B 2, 4559 (1970). [8 ] R. Malmhäll, J. Appl. Phys. 54, 5128 (1983). [9 ] P. Wolniansky, S. Chase, R. Rosenvold, M. Ruane, and M. Mansuripur, J. Appl. Phys. 60, 346 (1986). [10 ] T. H. Wu, H. Fu, R. A. Hajjar, T. Suzuki, and M. Mansuripur, J. Appl. Phys. 73, 1368 (1993). [11 ] E. C. Stoner, and E. P. Wolfarth, Philos. Trans. R. Soc. A 240, 599 (1948). [12 ] DI model 3100 SPM Operating Manual, Digital Insruments, INC. (2000). [13 ] K. Babcock, V. B. Elings, J. Shi, D. D. Awschalom, and M. Dugas, Appl. Phys. Lett. 69, 705 (1996). [14 ] J.L.Erskine et E.A.Stern, Phys.Rev.B 12, 5016 (1975). [15 ] G.Schütz, W.Wagner, W.Wilhelm, P.Kienle, R.Zeller, R.Frahm, et G.Materlik, Phys.Rev.Lett. 58, 737 (1987). [16 ] J. Stöhr, J. Magn. Magn. Mater., 200, 470 (1999). [17 ] F. Sette, C. T. Chen, Y. Ma, S. Modesti, and N. V. Smith, in X-ray Absorption Fine Structure, S. S. Hasnain Ed., Ellis Horwood Limited, Chichester, England, p. 96 (1991). [18 ] J. Stöhr, Y. Wu, B. D. Hermsmeier, M. G. Samant, G. R. Harp, S. Koranda, D. Dunham, and B. P. Tonner, Science 259, 658 (1993). [19 ] L. H. Tjeng, Y. U. Idzerda, P. Rudolf, F. Sette, and C. T. Chen, J. Magn. Magn. Mater., 109, 288 (1992). [20 ] J. Stöhr, Y. Wu, in New Directions in Research with Third-Generation Soft X-ray Synchrotron Radiation Source, A. S. Schlachter and F. J. Wuilleumier Eds., Kluwer Academic Publishers, Netherlands, p. 221 (1994). [21 ] J. Stöhr, J. Electron Spectrosc. Rel. Phenom. 75, 253 (1995). [22 ] B. T. Thole, P. Carra, F. Sette, and G. van der Laan, Phys. Rev. Lett., 68, 1943 (1992). [23 ] P. Carra, B. T. Thole, M. Altarelli, and X. Wang, Phys. Rev. Lett., 70, 694 (1993). Chapter 5 [1 ] W.P. Meiklejohn, and C.P. Bean, Phys. Rev., 102, 1413 (1956); 105, 904 (1957). [2 ] L. Neel, Ann. Phys. (Paris), 2, 61 (1967). [3 ] D. Mauri, H.C. Siegmann, P.S. Bagus, and E. Kay, J. Appl. Phys. 62, 3047 (1987). [4 ] A.P. Malozemoff, Phys. Rev. B, 35, 3679 (1987); 37, 7673 (1988). [5 ] K. Takano, R.H. Kodama, and A.E. Berkowitz, Phys. Rev. Lett., 79, 1130 (1997). [6 ] Y. Suzuki, R.B. van Dover, E.M. Gyorgy, J.M. Phillips, and R.J. Felder, Phys. Rev. B, 53, 14016 (1996). [7 ] T. Tokunaga, M. Takuchi, T. Fukami, Y. Nakaki, and K. Tsutsumi, J. Appl. Phys. 67, 4417 (1990). [8 ] K. Kaneko, K. Aratani, Y. Mutoh, A. Nakaoki, K. Watanabe, and H. Makino, Japan. J. Appl. Phys. 28, supplement 28-3, 27 (1989). [9 ] P. Wolniansky, S. Chase, R. Rosenvold, M. Ruane, and M. Mansuripur, J. Appl. Phys. 60, 346 (1986). [10 ] Y. Yuan, F. Cheevrier, H.G. Le, M. Rommeluere, and Y. Dumond, IEEE trans. Magn., 29, 3778 (1993). [11 ] J. Nogués and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999). [12 ] T. Kobayashi, H. Tsuij, S. Tsunashima, and S. Uchiyama, Jpn. J. Appl. Phys. 20, 2089 (1983). [13 ] M. Mansuripur, J. Appl. Phys. 66, 6175 (1989). Chapter 6 [1 ] M. Mansuripur, The Physical Principles of Magneto-Optical Recording, Cambridge University Press, New York (1995). [2 ] T. W. McDaniel and R. H. Victora eds., Handbook of Magneto-Optical Recording: Materials, Subsystems, Techniques, Noyes Publications, New Jersey (1997). [3 ] A. B. Marchant, Optical Recording, Addison-Wesley, Reading, MA (1990). [4 ] “The potential of DVD”, Money Information, Apr., 355 (1997). [5 ] H. Saga, H. Nemoto, H. Sukeda, M. Takahashi, Jpn. J. Appl. Phys. 38, 1839 (1999). [6 ] H. Nemoto, H. Saga, H. Sukeda, M. Takahashi, Jpn. J. Appl. Phys. 38, 1841 (1999). [7 ] Wein-Kuen Hwang, Jia-Reuy Liu, and Han-Ping D. Shieh, Jpn. J. Appl. Phys. 36, 2715 (1997). [8 ] H. Sugahara, K. Tsutsumi, K. Hashima, T. Tokunaga, and Y. Fujii, IEEE Trans. Magn., 24, 2455 (1988). [9 ] P. Wolniansky, S. Chase, R. Rosenvold, M. Ruane, and M. Mansuripur, J. Appl. Phys. 60, 346 (1986). [10 ] T. H. Wu, H. Fu, R. A. Hajjar, T. Suzuki, and M. Mansuripur, J. Appl. Phys. 73, 1368 (1993). [11 ] T. Kobayashi, H. Tsuij, S. Tsunashima, S. Uchiyama, Jpn. J. Appl. Phys. 20, 2089 (1981). [12 ] M. Mansuripur, J. Appl. Phys. 61, 1580 (1986). [13 ] F.J.A.M. Greidinus, B.A.J. Javobs, J.H.M. Spruit, and S. Klahn, IEEE Trans. Magn. MAG-25, 3524 (1989). [14 ] Han-Ping D. Shieh, and M.H. Kryder, J. Appl. Phys. 61, 1108 (1989). [15 ] K. Matsumoto, K. Ozaki, A. Chekanov, I. Tagawa, and K. Shono, Japn. J. Appl. Phys. Part 2: Letters 39, p L1161 (2000). [16 ] Y. Ohtani, IEEE Trans. Magn. MAG-26, 2292 (1990). Chapter 7 [1 ] J. Nogues, and I. K. Schuller, J. Magn. Magn. Mater., 192, 203 (1999). [2 ] F. Hellman, R.B. van Dover, and E. M. Gyorgy, Appl. Phys. Lett., 50, 296 (1987). [3 ] C. Cain, and Mark H. Kryder, J. Appl. Phys. 67, 5722 (1990). [4 ] N. Smith, and William C. Cain, J. Appl. Phys. 69, 2471 (1991). [5 ] J. N. Chapman, M. F. Gillies, and P. P. Freitas, J. Appl. Phys. 79, 6452 (1996). [6 ] O. Redon, and P. P. Freitas, J. Appl. Phys. 83, 2851 (1998). [7 ] J. Stöhr, J. Magn. Magn. Mater., 200, 470 (1999). [8 ] B. T. Thole, P. Carra, F. Sette, and G. van der Laan, Phys. Rev. Lett., 68, 1943 (1992). [9 ] P. Carra, B. T. Thole, M. Altarelli, and X. Wang, Phys. Rev. Lett., 70, 694 (1993). [10 ] G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, and G. Materlik, Phys. Rev. Lett. , 58, 737 (1987) [11 ] P. Wolniansky, S. Chase, R. Rosenvold, M. Ruane, and M. Mansuripur, J. Appl. Phys. 60, 346 (1986). [12 ] T. H. Wu, H. Fu, R. A. Hajjar, T. Suzuki, and M. Mansuripur, J. Appl. Phys. 73, 1368 (1993). [13 ] B. Heinrich, J. A. C. Bland (Eds.), Ultrathin Magnetic Structures, Vol. 1, Springer, Berlin, 1994. [14 ] E. P. Wohlfarth, J. Phys. F, 9, L123 (1979). Chapter 8 [1 ] S. S. P. Parkin, Phys. Rev. Lett. 71, 1641 (1993). [2 ] B. Dieny, J. Magn. Magn. Mater. 136, 335 (1994). [3 ] F. E. Stanley, M. Perez, C. H. Marrows, S. Langridge, and B. J. Hickey, Europhys. Lett. 49, 528 (2000). [4 ] C. Bellouard, H. D. Rapp, B. George, S. Mangin, and G. Marchal, Phys. Rev. B 53, 5082 (1996). [5 ] B. Dieny, V. S. Speriosu, S. Metin, S. S. P. Parkin, B. A. Gurney, P. Baumgart, and D. R. Wilhoit, J. Appl. Phys. 69, 4774 (1991). [6 ] S. Demokritov, J. A. Wolf, and Grünberg, Europhys. Lett. 15, 881 (1991). [7 ] P. Bruno, Phys. Rev. B 52, 411 (1995). [8 ] Z. S. Shan, D. J. Sellmyer, S. S. Jasward, Y. J. Wang, and J. X. Shen, Phys. Rev. Lett. 63, 449 (1989). [9 ] K. Takanashi, H. Fujimori, and H. Kurokawa, J. Magn. Magn. Mater. 126, 242 (1993). [10 ] M.S.S. Brooks, L. Nordstroem, and B. Johansson, Physica B: Condensed Matter. 172, 95 (1991). [11 ] H.S. Li, Y.P. Li, and J.M.D. Coey, J. Magn. Magn. Mater. 104-07, 1444 (1992). [12 ] F.R. de Boer, and Z.G. Zhao, Physica B: Condensed Matter. 211, 81 (1995). [13 ] B. Dieny, J. Magn. Magn. Mater. 136, 335 (1994) [14 ] R. Jansen, J. Phys. D: Appl. Phys. 36, R289 (2003). [15 ] Abraham et al., US patent, No. US 6,385,082 B1 (2002).id NH0920159006 sid 873592 cfn 0 / id NH0920159007 auc 王郁仁 tic 應用在巨磁阻與穿遂磁阻中之奈米氧化層對膜層間耦合作用力暨磁電阻之影響研究 adc 賴志煌 ty 博士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 英文 pg 176 kwc 巨磁阻 kwc 穿遂磁阻 abc 巨磁阻與穿遂磁阻薄膜由於其在磁性記憶體與硬碟讀寫頭上的應用,近來已被廣泛的研究。本篇論文著重於研究當奈米氧化層導入於巨磁阻與穿遂磁阻薄膜結構時,其對膜層間耦合作用力與自旋傳輸現象之影響。因此本論文之研究主題可分為兩個部分:第一個主題將著重於研究在(鐵磁層/奈米氧化層/鐵磁層)系統中的交互耦合作用力。當插入奈米氧化層於自旋閥結構中的被固定層時,可發現其鐵磁層間之交互作用力會因奈米氧化層之氧化製程或材料種類的不同而有所改變。當使用自然氧化法所製備的奈米氧化層插入於被固定層中間時,緊鄰於奈米氧化層上下之兩鐵磁層間會產生一鐵磁交互作用力,進而使得兩層鐵磁層的磁化方向都被反鐵磁層所固定。其產生的機制主要是因為在自然氧化的奈米氧化層中存在著許多的磁性通道進而傳達鐵磁交互作用於上下兩鐵磁薄膜間。當使用電漿氧化法製備奈米氧化層時,會因奈米氧化層的材質不同而產生兩種截然不同的膜層間交互作用力。當使用電漿氧化法製備之奈米氧化鈷或氧化鐵鈷層時,我們發現這一致密的氧化層將隔絕兩層鐵磁層間的任何交互作用力。另一方面,當我們改用電漿氧化法製備的奈米鎳鐵氧化層插入於被固定層中間時,緊鄰於奈米鎳鐵氧化層的上下兩鐵磁層間將產生一特殊垂直式交互耦合現象。此垂直式交互耦合現象產生的理由主要是因為鎳鐵氧化層是以一『類自旋玻璃』的型態存在。此類自旋玻璃的奈米鎳鐵氧化層將與反鐵磁層與鐵磁固定層組合成一(反鐵磁層/鐵磁固定層/類自旋玻璃)之人工反鐵磁層。此人工反鐵磁層上之自旋電子將會沿著鐵磁固定層之磁化方向做一連續的翻轉,進而形成一『完全抵銷自旋電子界面』。根據理論計算,當一鐵磁層與一具有完全抵銷自旋電子界面之反鐵磁層耦合時,會使得鐵磁層之磁化方向沿著反鐵磁層的自旋電子方向呈現九十度的排列。因此我們的實驗結果與此理論計算可說是完全吻合。更進一步的,我們可以利用溫度與磁性層厚度的控制來調節此人工反鐵磁層上的自旋電子的排列狀態。藉由溫度與冷卻場的控制,我們可調變此人工反鐵層從一『完全抵銷自旋電子界面』轉換成一『未抵銷自旋電子界面』的狀態。此一可轉換自旋電子介面的人工反鐵磁層將有助於我們對於交換異向性之物理有更一進步的瞭解與探討。此外我們也發現,藉由控制結構中反鐵磁層厚度可以使我們進一步增強人工反鐵磁層對於鐵磁層的垂直交互耦合之強度。此一現象主要歸因於當我們改變反鐵磁層厚度時,會進一步影響反鐵磁層介面上交換路徑的分佈,進而改變此垂直交互耦合之強度。 tc Abstract I List of Figures X List of Tables XVI Chapter 1 Introduction 1 1.1 Motivation 2 1.2 Outline of the Dissertation 5 Chapter 2 Background 6 2.1 Magnetoresistance 6 2.1.a Giant Magnetoresistance (GMR) 6 2.1.a.1 Semiclassical Models 11 2.1.a.2 Quantum Models 15 2.1.a.3 Spin valves 17 2.1.a.4 Specular Reflection Effect 19 2.1.b Tunnel Magnetoresistance (TMR) 22 2.1.b.1 Experiments on Spin-Dependent Tunneling 24 2.1.b.2 Tunnel Magnetoresistance Models 27 2.1.c Relation between GMR and TMR 32 2.2 Magnetic Coupling 35 2.2.a Exchange Anisotropy 35 2.2.a.1 Ideal Interface Model 38 2.2.a.2 Random Field Model 41 2.2.a.3 AFM Domain Wall Model 43 2.2.a.4 “Spin-Flop” Perpendicular Interfacial Coupling 45 2.2.b RKKY Coupling 47 Chapter 3 Experimental Principles and Procedures 50 3.1 Analysis Techniques 50 3.1.a Magnetic Measurements 50 3.1.b Transport Measurements 57 3.1.c Material and Structural Characterizations 60 3.2 Preparation and Optimization of GMR Spin Valve 61 3.2.a The Growth of GMR Spin Valve Multilayers 61 3.2.a.1 Underlayer Effects on Spin Valve Multilayers 62 3.2.a.2 Spin Valves with NOLs Inserted in the Free Layer 65 3.3 Irradiation System 70 Chapter 4 Interlayer Coupling through NOLs in Pinned Layers of Spin Valves 73 4.1 Introduction 73 4.2 Experimental Procedures 75 4.3 Results 77 4.4 Discussion 85 4.4.a The Reversal Process of the Biquadratic-coupled Spin Valve 85 4.4.b The Mechanism of the Biquadratic Coupling 88 4.5 Application for the Biquadratic Coupling 95 4.6 Conclusion 99 Chapter 5 Controlling Exchange Bias and Biquadratic Coupling by Manipulating Artificial Antiferromagnetic Spins 100 5.1 Introduction 100 5.2 Experimental Procedures 102 5.3 Results and Discussion 104 5.3.a Spin Manipulation by Temperature 104 5.3.b Spin Manipulation by Layer Thickness 109 5.3.b.1 Top-pinned Co90Fe10 Thickness Dependence 109 5.3.b.2 Spin-glass-like NiFeOx Thickness Dependence 113 5.3.b.3 Bottom-pinned Co90Fe10 Thickness Dependence 116 5.3.b.4 Spin Manipulation by AFM (IrMn) thickness 119 5.4 Conclusion 125 Chapter 6 Long-Range Biquadratic Coupling across a Spacer Layer 126 6.1 Introduction 126 6.2 Experimental Procedures 129 6.3 Results 130 6.4 Discussion 138 6.5 Conclusion 143 Chapter 7 Enhancement of Tunneling Magnetoresistance by Ion Irradiation 144 7.1 Introduction 144 7.2 Experimental Procedures 146 7.3 Results 148 7.4 Discussion 153 7.5 Conclusion 161 Chapter 8 Conclusions 162 References 165rf Chapter 1 [1 ] Gary A. Prinz, Science 282, 1660 (1998). [2 ] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff, Phys. Rev. Lett. 61, 2472 (1988). [3 ] J. S. Moodera, Lisa R. Kinder, Terrilyn M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995). [4 ] D. D. Tang, P. K. Wang, V. S. Sperious, S. Le, and K. K. Kung, IEEE Trans. Magn. 33, 3283 (1997). [5 ] H. Sakakima, M. Satomi, Y. Sugita, Y. Kawawake, J. Magn. Magn. Mater. 210, L20 (2000). [6 ] Y. Huai, Z. T. Diao, and J. Zhang, IEEE Trans. Magn. 38, 20 (2002). [7 ] H. Fukuzawa, K. Koi, H. Tomita, J. Appl. Phys. 91, 6684 (2002). [8 ] B. Dieny, V. S. Sperious, B. A. Gurney, S. S. P. Parkin, D. R. Whilhoit. K. P. Roche, S. Metin, D. T. Peterson and S. Nadimi, J. Magn. Magn. Mater. 93, 101 (1991). [9 ] W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956). [10 ] M. Kiwi, J. Magn. Magn. Mater. 234, 584 (2001). [11 ] J. Wang, P. P. Freitas, and E. Snoeck , Appl. Phys. Lett. 79, 4553 (2001). [12 ] M. Tsunoda, K. Nishikawa, S. Ogata, and M. Takahashi, Appl. Phys. Lett. 80, 3135 (2002). Chapter 2 [1 ] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988). [2 ] N. F. Mott, Proc. Royal Soc. 156, 368 (1936); N. F. Mott, Adv. Phys. 13, 325 (1964). [3 ] R. E. Camley and J. Barnas, Phys. Rev. Lett. 63, 664 (1989). [4 ] J. Barnas, A. Fuss, R. E. Camley, P. Grunberg, and W. Zinn, Phys. Rev. B 42, 8110 (1990). [5 ] B. L. Johnson and R. E. Camley, Phys. Rev. B 44, 9997 (1991). [6 ] B. Dieny, Europhysics Lett. 17, 261 (1992); L. Phys. C 4, 8009 (1992). [7 ] M. B. Stearns, J. Magn. Magn. Mat. 104-107, 1745 (1992). [8 ] R. Q. Hood and L. M. Falicov, Phys. Rev. B 46, 8283 (1992). [9 ] A. C. Erlich and D. J. Gillespie, J. Appl. Phys. 73, 5536 (1993). [10 ] Z. Tesanovic, M. V. Jaric, and S. Maekawa, Phys. Rev. Lett. 57, 2760 (1986). [11 ] G. Fishman and D. Calecki, Phys. Rev. Lett. 62, 1302 (1989) [12 ] P. M. Levy, S. Zhang, and A. Fert, Phys. Rev. Lett. 65, 1643 (1992); S. Zhang, P. M. Levy and A. Fert, Phys. Rev. B 45 (1992). [13 ] S. Zhang and P. M. Levy, Mat. Res. Soc. Symp. Proc. Vol. 231, 255 (1992). [14 ] A. Vedyayev, B. Dieny, and N. Ryshanova, Europhys. Lett. 19, 329 (1992). [15 ] I. A. Campbell and A. Fert, in Ferromagnetic Materials, ed. by E. P. Wohlfarth (North Holland, Amsterdam, 1982) p. 769. [16 ] S. Zhang, P. M. Levy, Mat. Res. Symp. Proc. Vol. 313, 53 (1993). [17 ] B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhoit, and D. Mauri, Phys. Rev. B 43, 1297 (1991). [18 ] W. F. Egelhoff, Jr., J. T. Ha, R. D. K. Misra, Y. Kadmon, J. Nir, C. J. Powell, M. D. Stiles, R. D. McMichael, C. —L. Lin, J. M. Siverstsen, J. H. Judy, T. Takano, A. E. Berkowitz, T. C. Anthomy, and J. A. Brug, J. Appl. Phys. 78, 273 (1995). [19 ] Y. Sugita, Y. Kawawake, M. Satomi, and H. Sakakima, Jpn. J. Appl. Phys. 37, 5984 (1998). [20 ] Y. Kamiguchi et al., Digest of INTERMAG’99, DB-01 (1999). [21 ] M. Mao, C. Cerjan, and J. Kools, J. Appl. Phys. 91, 8560 (2002). [22 ] P. M. Tedrow, R. Meservey, and P. Fulde, Phys. Rev. Lett. 25, 1270 (1970); P. M. Tedrow, and R. Meservey, Phys. Rev. Lett. 26, 192 (1971); P. M. Tedrow and R. Meservey, Phys. Rev. B 7, 318 (1973) [23 ] M. Julliere, Phys. Lett. A 54, 225 (1975). [24 ] T. Miyazaki and N. J. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995). [25 ] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74 3273 (1995). [26 ] D. Wang, C. Nordman, J. Daughton, Z. Qian, and J. FinkJoint, Digest of 9th-Joint MMM, BD-02 (2004). [27 ] K. Tsunekawa, Y. Nagamine, H. Maehara, D. D. Djayaprawira, M. Nagai and N. Watanabe, Digest of 9th-Joint MMM, BD-03 (2004). [28 ] R. Meservey and P. M. Tedrow, Phys. Rep. 238, 173, (1994). [29 ] J. S. Moodera, J. Nassar, and G. Mathon, Annu. Rev. Matter. Sci. 29 381 (1999). [30 ] D. J. Monsma and S. S. P. Parkin, Appl. Phys. Lett. 77, 720 (2000). [31 ] J. C. Slonczewski, Phys. Rev. B 39, 6995 (1989). [32 ] K. Wang, S. Zhang, P. M. Levy, L. Szunyogh and P. Weinberger, J. Mag. Mag. Mater. 189, L131 (1998). [33 ] S. Zhang and P. M. Levy, Phys. Rev. Lett. 81, 5660 (1998). [34 ] S. Zhang, P. M. Levy, A. C. Marley and S. S. P. parkin, Phys. Rev. Lett. 79, 3744 (1997). [35 ] W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956). [36 ] W. H. Meiklejohn and C. P. Bean, Phys. Rev. 105, 904 (1957). [37 ] J. Nogués and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999). [38 ] R. D. Hempstead, S. Krongelb, and D. A. Thompson, IEEE Trans. Magn. 14, 521 (1978). [39 ] B. Dieny, V. S. Sperious, B. A. Gurney, S. S. P. Parkin, D. R. Whilhoit. K. P. Roche, S. Metin, D. T. Peterson and S. Nadimi, J. Magn. Magn. Mater. 93, 101 (1991). [40 ] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, and A. Friederich, Phys. Rev. Lett. 61, 2472 (1988). [41 ] J. C. S. Kools, IEEE Trans. Magn. 32, 3165 (1996). [42 ] E. Fulcomer and S. H. Charp, J. Appl. Phys. 53, 184 (1972). [43 ] T. Ambrose, R. L. Sommer, and C. L. Chien, Phys. Rev. B 56, 83 (1997). [44 ] J. Nogués, D. Lederman, T. J. Moran, and I. K. Schuller, Phys. Rev. Lett. 76, 4624 (1996). [45 ] A. P. Malozemoff, Phys. Rev. B 35, 3679 (1987). [46 ] D. Mauri, H. C. Siegmann, P. S. Bagus, and E. Kay, J. Appl. Phys. 62, 3047 (1987). [47 ] N. C. Koon, Phys. Rev. Lett. 78, 4865 (1997). [48 ] T. C. Schulthess and W. H. Butler, Phys. Rev. Lett. 81, 4516 (1998). [49 ] T. C. Schulthess and W. H. Butler, J. Appl. Phys. 85, 5510 (1999). [50 ] S.S.P. Parkin, N. More, K.P. Roche, Phys. Rev. Lett. 64, 2304 (1990). [51 ] D. M. Edwards, J. Mathon, R. B. Muniz, and M. S. Phan, Phys. Rev. Lett. 67, 493 (1991). [52 ] P. Lang, L. Nordström, R. Zeller, and P. H. Dederichs, Phys. Rev. Lett. 71, 1927 (1993). [53 ] L. M. Roth, H. J. Zeiger, T. A. Kaplan, Phys. Rev. 149, 519 (1966). [54 ] Y. Yafet, J. Appl. Phys. 61, 4058 (1987). [55 ] S. H. Liu, R. P. Gupta, S. K. Sinha, Phys. Rev. B 4, 1100 (1971). [56 ] P. Bruno, C. Chappert, Phys. Rev. Lett. 67, 1602 (1991); 67, 2592(E) (1991); Phys. Rev. B 46, 261 (1992). Chapter 3 [1 ] J. L. Erskine and E. A. Stern, Phys. Rev. B 12, 5016 (1975). [2 ] G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, and G. Materlik, Phys. Rev. Lett. 58, 737 (1987). [3 ] J. Stöhr, J. Magn. Magn. Mater. 200, 470 (1999). [4 ] F. Sette, C. T. Chen, Y. Ma, S. Modesti, and N. V. Smith, in X-ray Absorption Fine Structure, S. S. Hasnain Ed., Ellis Horwood Limited, Chichester, England, p. 96 (1991). [5 ] J. Stöhr, Y. Wu, B. D. Hermsmeier, M. G. Samant, G. R. Harp, S. Koranda, D. Dunham, and B. P. Tonner, Science 259, 658 (1993). [6 ] L. H. Tjeng, Y. U. Idzerda, P. Rudolf, F. Sette, and C. T. Chen, J. Magn. Magn. Mater. 109, 288 (1992). [7 ] J. Stöhr, Y. Wu, in New Directions in Research with Third-Generation Soft X-ray Synchrotron Radiation Source, A. S. Schlachter and F. J. Wuilleumier Eds., Kluwer Academic Publishers, Netherlands, p. 221 (1994). [8 ] J. Stöhr, J. Electron Spectrosc. Rel. Phenom. 75, 253 (1995). [9 ] B. T. Thole, P. Carra, F. Sette, and G. van der Laan, Phys. Rev. Lett. 68, 1943 (1992). [10 ] P. Carra, B. T. Thole, M. Altarelli, and X. Wang, Phys. Rev. Lett. 70, 694 (1993). [11 ] M. Mao, S. Funada, C.-Y. Hung, T. Schneider, M. Miller, H.-C. Tong, C. Qian, and L. Miloslavsky, IEEE Trans. Magn. 35, 3913 (1999). [12 ] M. Pakala, Y. Huai, G. Anderson, and L. Miloslavsky, J. Appl. Phys. 87, 6653 (2000). [13 ] William E. Bailey, Phys. Rev. B. 61, 1330 (2000). [14 ] H. J. M. Swagten, G. J. Strikers, P. J. H. N Bitter, and W. J. M. de Jonge, and J. C. S. Kools, IEEE Trans. Magn. 34, 948 (1998). [15 ] M. F. Gillies and A. E. T. Kuiper, J. Appl. Phys. 88, 5894 (2000). [16 ] S. Tegen, I Monch, J. Schumann, H. Vinzelberg, and C. M. Schneider, J. Appl. Phys. 89, 8169 (2001). [17 ] J. Hong, K. Asohima, J. Kane, K. Noma, and H. Kanai, IEEE Trans. Magn. 36, 2629 (2000). Chapter 4 [1 ] M. F. Gillies, A. E. T. Kuiper, and G. W. R. Leibbrandt, J. Appl. Phys. 89, 6922 (2001). [2 ] M. F. Gillies, A. E. T. Kuiper, J. Appl. Phys. 88, 5894 (2000). [3 ] H. Fukuzawa, K. Koi, H. Tomita, J. Appl. Phys. 91, 6684 (2002). [4 ] R. H. Kodama, A. E. Berkowitz, E. J. McNiff, Jr. and S. Foner, Phys. Rev. Lett. 77, 394 (1996). [5 ] T. C. Schulthess and W. H. Butler, Phys. Rev. Lett. 81, 4516 (1998). [6 ] W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956); 105, 904 (1957). [7 ] A. P. Malozemoff, Phys. Rev. B 35, 3679 (1987). [8 ] M. Kiwi, J. Magn. Magn. Mater. 234, 584 (2001). [9 ] A. E. Berkowitz and K. Takano, J. Magn. Magn. Mater. 200, 552 (1999). [10 ] N. J. Gokemeijer, R. L. Penn, D. R. Veblen and C. L. Chien, Phys. Rev. B 63, 174422 (2001). [11 ] C. H. Lai, Hideo Matsuyama, Robert L. White , and Thomas C. Anthony, IEEE Trans. Magn. 31, 2609 (1995). [12 ] J. Nogues, D. Lederman, T. J. Moran, and Ivan K. Schuller, Phys. Rev. Lett. 76 , 4624 (1996). [13 ] N. C. Koon, Phys. Rev. Lett. 78, 4865 (1997). [14 ] T. J. Moran, J. Nogue´ s, D. Lederman, and Ivan K. Schuller, Appl. Phys. Lett. 72, 617 (1998). [15 ] Y. Ijiri, J. A. Borchers, R. W. Erwin, S.-H. Lee, P. J. van der Zaag, and R. M. Wolf, Phys. Rev. Lett. 80, 608 (1998). [16 ] B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhoit, and D. Mauri, Phys. Rev. B 43, 1297 (1991). [17 ] C. Tsang, R. E. Fontana, T. Linn, D. E. Heim, V. S. Speriosu, B. A. Gurney, and M. L. Williams, IEEE Trans. Magn. 30, 3801 (1994). [18 ] F. H. Dill, R. E. Fontana, T. Lin, S. S. P. Parkin, and C. Tsang, U.S. Patent No. 6 023 395, 8 Feb. 2000. [19 ] S. Mao, Z. Gao, H. Xi, P. Kolbo, M. Plumer, L. Wang, A. Goyal, I. Jin, J. Chen, C. Hou, R. M. White, and E. Murdock, IEEE Trans. Magn. 38, 26 (2002). [20 ] J. R. Childress, M. K. Ho, R. E. Fontana, M. J. Carey, P. M. Rice, B. A. Gurney, and C. H. Tsang, IEEE Trans. Magn. 38, 2286 (2002). Chapter 5 [1 ] M. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988). [2 ] J. S. Moodera, Lisa R. Kinder, Terrilyn M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995). [3 ] R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, Nature 402, 787 (1999). [4 ] D. D. Tang, P. K. Wang, V. S. Sperious, S. Le, and K. K. Kung, IEEE Trans. Magn. 33, 3283 (1997). [5 ] J-G Zhu, Y. Zheng, and X. Lin, J Appl. Phys. 81, 4336 (1997). [6 ] J. Nogue´s and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999). [7 ] A. E. Berkowitz and K. Takano, J. Magn. Magn. Mater. 200, 552 (1999). [8 ] T. C. Schulthess and W. H. Butler, Phys. Rev. Lett. 81, 4516 (1998). [8 ] T. C. Schulthess and W. H. Butler, Phys. Rev. Lett. 81, 4516 (1998). [9 ] B. Dieny, V. S. Speriosu, S. Metin, S. S. P. Parkin, B. A. Gurney, P. Baumgart, and D. FL Wilhoit, J. Appl. Phys. 69, 4774 (1991). [10 ] R. H. Kodama, A. E. Berkowitz, E. J. McNiff, Jr., and S. Foner, Phys. Rev. Lett. 77, 394 (1996). [11 ] J. Camarero,Y. Pennec, J. Vogel, M. Bonfim, S. Pizzini, M. Cartier, F. Ernult, F. Fettar, and B. Dieny, Phys. Rev. B 64, 172402 (2001). [12 ] J. Camarero, Y. Pennec, J. Vogel, M. Bonfim, S. PizziniF. Ernult, F. Fettar, F. Garcia, F. Lancon, L. Billard, B. Dieny, A. Tagliaferri, and N. B. Brookes, Phys. Rev. Lett. 91, 27201 (2003). [13 ] H. Fukuzawa, K. Koi, and H. Tomita, J. Appl. Phys. 91, 6684 (2002). [14 ] S. Matt and B. A. Gurney, J. Appl. Phys. 93, 7229 (2003). [15 ] S. Soeya, T. Imagawa, K. Mitsuoka, and S. Narishige, J. Appl. Phys. 76, 5356 (1994). [16 ] C. T. Chen , Y. U. Idzerda, C. -C. Kao, L. H. Tjeng, H.-J. Lin, and G. Meigs, Material Science and Engineering B31, 49 (1995). [17 ] B. T. Thole, P. Carra, F. Sette, and G. van der Lann, Phys. Rev. Lett. 68, 1943 (1992) Chapter 6 [1 ] P. Grunberg, R. Schreiber, Y. Pang, M. B. Brodsky, and H. Sowers, Phys. Rev. Lett. 57, 2442 (1986). [2 ] S. S. P. Parkin, N. More, and K. P. Roche, Phys. Rev. Lett. 64, 2304 (1990). [3 ] B. Heinrich, Z. Celinski, J. F. Cochran, W. B. Muir, J. Rudd, Q. M. Zhong, A. S. Arrott, K. Myrtle, and J. Kirschner, Phys. Rev. Lett. 64, 673 (1990). [4 ] S. S. P. Parkin, R. Bhadra, and K. P. Roche, Phys. Rev. Lett. 66, 2152 (1991). [5 ] C. A. dos Santos, B. Rodmacq, M. Vaezzadeh, and B. George, Appl. Phys. Lett. 59, 126 (1991). [6 ] J. Unguris, R. J. Celotta, and D. T. Pierce, Phys. Rev. Lett. 67, 140 (1991). [7 ] W. Baltensperger and J. S. Helman, Appl. Phys. Lett. 57, 2954 (1990). [8 ] B. Bruno and C. Chappert, Phys. Rev. Lett. 67, 1602 (1991). [9 ] W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956). [10 ] A. P. Malozemoff, Phys. Rev. B 35, 3697 (1987). [11 ] D. Mauri, H. C. Siegmann, P. S. Bagus, and E. Kay, J. Appl. Phys. 62, 3047 (1987). [12 ] N. J. Gokemeijer, T. Ambrose, and C. L. Chien, Phys. Rev. Lett. 79, 4270 (1997). [13 ] T. Mewes, B. F. P. Roos, S. O. Demokritov, and B. Hillebrands, J. Appl. Phys. 87, 5064 (2000). [14 ] M.-T. Lin, C. H. Ho, C.-R. Chang, and Y. D. Yao, Phys. Rev. B 63, 100404 (2001). [15 ] Y.-J. Lee, C.-R. Chang, T.-M. Hong, C. H. Ho, and M.-T. Lin, J. Magn. Magn. Mater. 239, 57 (2002). [16 ] L. Néel and C. R. Hebd, Seances Acad. Sci. 255, 1545 (1962). [17 ] J. C. S. Kools, W. Kula, D. Mauri, and T. Lin, J. Appl. Phys. 85, 4466 (1999). [18 ] H. D. Chopra, D. X. Yang, P. J. Chen, D. C. Parks, and W. F. Egelho., Phys. Rev. B 61, 9642 (2000). [19 ] S. Demokritov, E. Tsymbal, P. Grunberg, W. Zinn, and I. K. Schuller, Phys. Rev. B 49, 720 (1994). [20 ] P. Bruno, J. Magn. Magn. Mat. 116, L13 (1992). [21 ] S. S. P. Parkin, Appl. Phys. Lett. 60, 512 (1992). Chapter 7 [1 ] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995). [2 ] T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995). [3 ] M. Julliere, Phys. Lett. 54A, 225 (1975). [4 ] R. Jansen and J. C. Lodder, Phys. Rev. B 61, 5860 (2000). [5 ] A. Vedyayev, D. Bargets, A. Bagrets, and B. Dieny, Phys. Rev. B 63, 4429 (2001). [6 ] K. Inomata and Y. Sato, Appl. Phys. Lett. 73, 1143 (1998). [7 ] Y. Fukumoto, H. Kubota, Y. Ando, and T. Miyazaki, Jpn. J. Appl. Phys. 38, L932 (1999). [8 ] R. Jansen and J. S. Moodera, Appl. Phys. Lett. 75, 400 (1999). [9 ] R. Jansen and J. S. Moodera, J. Appl. Phys. 83, 6682 (1998). [10 ] R. Jansen and J. S. Moodera, Phys. Rev. B 61, 9047 (2000). [11 ] C. H. de Groot, Y. Ouyang, Sang-Mo Koo, E. Kendall, Q. Q. Shu, and J. S. Moodera, J. Phys: Condens. Matter 14 5153 (2002). [12 ] J. F. Ziegler and J. P. Biersak, http://www.srim.org/. [13 ] K-S Moon, Y. Chen, and Y. Huai, J. Appl. Phys. 91, 7965 (2002). [14 ] D. Song, J. Nowak, R. Larson, P. Kolbo, and R. Chellew, IEEE Trans. Magn. 36, 2545 (2000). [15 ] H. Kikuchi, M. Sato, and K. Kobayyashi, Fujitsu Sci. Tech. J. 37, 183 (2001). [16 ] W. Oepts, H. J. Verhagen, W. J. M. de jonge, and R. Coehoorn, Appl. Phys. Lett. 73, 2363 (1998). [17 ] F. Seitz and J. S. Keohler, Solid State Phys. 2, 305 (1956). [18 ] R. C. Sousa, J. J. Sun, V. Soares, P. P. Freitas, A. Kling, M. F. da Silva, and J. C. Soares, Appl. Phys. Lett. 73, 3288 (1998). [19 ] J. Zhang and R. H. White, J. Appl. Phys. 83, 6512 (1998). [20 ] N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, Monographs in Physics (Claredon, Oxford, 1971). [21 ] B. Abeles, P. Shen, M. D. Coutts, and Y. Arie, Adv. Phys. 24, 407 (1975). [22 ] L. I. Glazman and K. A. Matveev, Sov. Phys. JETP 67, 1276 (1988). [23 ] J. Appelbaum, Phys. Rev. 154, 633 (1967). [24 ] F. Fettar, S.-F. Lee, F. Petroff, A. Vaures, P. Holody, l. F. Schelp, and A. Fert, Phys. Rev. B, 65, 174415 (2002).id NH0920159007 sid 873581 cfn 0 / id NH0920198001 auc 謝長村 tic 磁性尖晶亞鐵礦奈米顆粒及鎳薄膜之磁壁與自旋共振研究 adc 呂助增 ty 博士 sc 國立清華大學 dp 物理學系 yr 92 lg 英文 pg 136 kwc 電子自旋共振 kwc 磁性奈米顆粒 kwc 磁壁 kwc 量子相變 kwc 巨觀量子穿隧 kwc 鎳薄膜 abc 本篇論文目的是針對磁性薄膜磁區與奈米磁顆粒的物理性質做研究。主要分成兩部分來做探討:(一) 以電子自旋共振研究奈米磁顆粒之量子相變 (二) 在鎳薄膜上以磁力顯微儀觀察磁區之變化。 tc Abstract (Chinese) i Abstract (English) iii Acknowledgement Contents Chapter 1 Introduction 1.0 Overview of magnetism 1 1.1 Overview of magnetic nanoparticles 1 1.2 Progresses and challenges 3 1.3 Overview of magnetic thin films 4 1.4 Organization of dissertation 4 References 6 Chapter 2 Theoretical Fundamentals of Magnetic Nanoparticles 2.1 single domain particles and superparamagnetism 9 2.2 Tunneling of the magnetic moment in monodomain ferromagnetic particles 10 2.3 Anisotropy of magnetic nanoparticles 12 2.4 Quantum phase transition 2.4.1 What is a quantum phase transition? 13 2.4.2 Quantum versus classical phase transitions 14 2.4.3 Ising model in the transverse field 15 2.4.4 Heisenberg model with strong easy-plane anisotropy 17 2.4.5 Experimental family of quantum phase transitions 19 References 21 Chapter 3 Experimental Techniques 3.1 Magnetic force microscopy 26 3.2 Fabrication of magnetic nanoparticles (ferrofluids) 27 3.3 Electron paramagnetic resonance 28 3.4 Superconducting quantum interference devices 29 References 30 Chapter 4 Electron Paramagnetic Resonance to Ferromagnetic Resonance in Iron-oxide Nanoparticles 4.1 Introduction 34 4.2 Sample preparation 35 4.3 Electron paramagnetic resonance 36 4.4 Ferromagnetic resonance 39 4.5 Conclusions 42 References 45 Chapter 5 Electron Spin Resonance Studies of Quantum Critical Behavior in Spinel Ferrite Nanoparticles 5.1 Introduction 54 5.1.1 Historical review of SPR spectra in magnetic nanoparticles 56 5.1.2 Imperative for electron paramagnetic resonance 57 5.1.3 Urgent for quantum phase transitions 58 5.1.4 Chapter outline 58 5.2 Conventional superparamagnetic resonance to ferromagnetic resonance in spinel ferrites nanoparticles 59 5.3 Quantum paramagnetic resonance of magnetite nanoparticles at low temperatures 60 5.4 Particle size dependence in magnetite nanoparticles 62 5.5 Quantum paramagnetic resonance of spinel ferrites nanoparticles 63 5.6 Anomalous hyperfine structures in magnetite nanoparticles 64 5.7 Other effects---- 5.7.1 Transverse microwave magnetic field 65 5.7.2 Dipolar interactions 66 5.7.3 Quantum paramagnet at ferrite-organic interface 68 5.8 Summary 69 References 70 Chapter 6 Quantum superparamagnet in CoFe2O4 Nanoparticles 6.1 Introduction 88 6.2 Magnetization measurements 89 6.3 ESR spectra of Co-ferrite nanoparticles 91 6.4 Particle size dependence on QSP 93 6.5 Discussion 95 6.6 Summary 96 References 96 Chapter 7 A High-resolution Magnetic Force Microscopic Study of Domain Walls on Thin Nickel Films 7.1 Introduction 110 7.2 Experimental procedures 111 7.3 Theory 112 7.4 Results and discussion 113 7.5. Conclusion 117 References 118 Chapter 8 Conclusions and Open Questions 8.1 Conclusions of present studies 126 8.2 Suggestions for future work 127 References 128 Autobiographyrf References 1. L. D. Landau and E. M. Lifshitz, Sov. Phys. JETP 8, 153 (1935). 2. J. Frankel, and J. Dorfman Nature 126, 274 (1930). 3. L. Neel, Ann Geophys. 5, 99 (1949). 4. C. P. Bean and J. D. Livingston, J. Appl. Phys. 30, 120S (1959). 5. T. Egami, Phys. Status. Solidi A 20, 157 (1973); B. Barbara, G. Fillion, D. Gignoux, and R. Lemaire, Solid State Commun. 10, 1149 (1973); O. Bostanjoglo and H. P. Gemund, Phys. Status Solidi A 17, 115 (1973); 48, 41 (1978); J. A. Baldwin, Jr., F. Milstein, R. C. Wong, and J. L. West, J. Appl. Phys. 48, 2612 (1977); W. Riehenmann and E. Nembach, J. Appl. Phys. 55, 1081 (1984); 57, 476 (1986). 6. A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981); Ann. Phys. (N. Y.) 149, 374 (1983). 7. E. M. Chudnovsky, and L. Gunther, Phys. Rev. Lett. 60. 661 (1988); Phys. Rev. B 37, 9455 (1988). 8. M. Enz and R. Schilling, J. Phys. C 19, 1765 (1986). 9. J. L. van Hemmen and A. Suto, Europhys. Lett. 1, 481 (1986); Physica B 141, 37 (1986). 10. J. Tejada and X. X. Zhang, J. Appl. Phys. 73, 6709 (1995); J. Tejada and X. X. Zhang, J. Magn. Magn. 140-144, 1815 (1995). J. Tejada, X. X. Zhang, and E. M. Chudnovsky, Phys. Rev. B 47, 14977 (1993). 11. B. Barbara, W. Wernsdorfer, L. C. Sampaio, J. G. Park, C. Paulsen, M. A. Novak, R. Ferre, D. Mailly, R. Sessoli, A. Caneschi, K. Hasselbach, A. Benoit, and L. Thomas, J. Magn. Magn. Mater. 140-144,1825 (1995). 12. J. I. Arnaudas, A. del Moral, D. de la Fuente, and P. A. J. de Groot, Phys. Rev. B 47, 11924 (1993); M. M. Ibrahim, S. Darwish, and M. S. Seehra, ibid. 51, 2955 (1995). 13.D. D. Awschalom, D. P. DiVincenzo, and J. F. Smyth, Science 258, 414 (1992); S. Gider, D. D. Awschalom, T. Douglas, S. Mann, and M. Chaprala, Science 268, 77 (1995). 14. J. Tejada, Science 272, 424 (1996); A. Garg, ibid. 272,424 (1996); S. Gider, D. D. Awschalom, D. P. DiVincenzo, and D. Loss, ibid. 272, 425 (1996). 15. R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, Nature 365, 141 (1993). 16. J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, Phys. Rev. Lett. 76, 3830 (1996). 17. L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, Nature 383,145 (1996). 18. J. M. Hernandez, X. X. Zhang, F. Luis, J. Tejada, J. R. Friedman, M. P. Sarachik, and R. Ziolo, Phys. Rev. B 55, 5858 (1997). 19. C. Paulsen, L. C. Sampaio, R. Tachoueres, B. Barbara, D. Fruchart, A. Marchand, J. L. Tholence, and M. Uehara, J. Magn. Magn. Mater. 116, 67 (1992). 20. X. X. Zhang, J. M. Hernandez, J. Tejada, and R. F. Ziolo, Phys. Rev. B 54, 4101 (1996). 21. J. Tejada, L. Balcells, S. Linderoth, R. Perzynski, B. Barbara, and J. C. Bacri, J. Appl. Phys. 73, 6952 (1993). 22. R. H. Kodama, C. L. Seaman, A. E. Berkowitz, and M. B. Maple, J. Appl. Phys. 75, 5639 (1994). 23. H. J. Mamin, D. Ruger, J. E. Stern, R. E. Fontana, Jr., and P. Kasiraj, Appl. Phys. Lett. 55, 318 (1989). 24. I. L. Prejbeanu, L. D. Buda, U. Ebels, and K. Ounadjela, Appl. Phys. Lett. 77, 3066 (2000). 25. H. N. Lin, Y. H. Chiou, B.M. Chen, H. P. D. Shieh, and Ching-Ray Chang, J. Appl. Phys. 83, 4997 (1998). 26. M. Lohndorf, A. Wadas, H. A. M. van den Berg, and W. Wiesendanger, Appl. Phys. Lett. 68, 3635 (1996). 27. H. S. Cho, C. Hou, M. Sun, and H. Fujiwara, J. Appl. Phys. 85, 5160 (1999) 28. L. J. Heyderman, H. Niedoba, H. O. Gupta and I. B. Puchalska, J. Magn. Magn. Mater. 96, 125 (1991).id NH0920198001 sid 887307 cfn 0 / id NH0920198002 auc 吳忠霖 tic Ⅲ族氮化物薄膜與奈米晶體於矽基板上之模版輔助式異質磊晶成長 adc 果尚志 ty 博士 sc 國立清華大學 dp 物理學系 yr 92 lg 英文 pg - kwc Ⅲ族氮化物 kwc 奈米晶體 kwc 異質磊晶成長 kwc 薄膜 abc 異質磊晶成長,其提供了製作各種不同功能薄膜材料的可行性。本論文探討如何藉由模版的輔助,高品質的磊晶薄膜與奈米晶體可成功的成長於適當的基板上。從異質磊晶成長來看,模版的輔助可視為一緩衝層的作用,即削減因為基板與薄膜間晶格不匹配所造成的影響。此外,模版亦可視為一形成三維奈米物質系統的承載表面。此論文揭露了如何利用單晶氮化矽模版與氮化鋁薄的”coincident match”特性所組成的雙緩衝層以成長高品質的氮化鎵薄膜於矽基板上,且在高溫成長時,此模版亦可抑制鎵/矽與鋁/矽的相互擴散,以避免自動摻雜的情況且提高薄膜品質。另外,利用氮電漿(N2 Plasma)來氮化在單晶氮化矽模版上形成的鎵液滴(droplet),亦可成長尺寸與形狀受控的氮化鎵奈米晶體。 tc 摘要 …………………………………………………………………………….. І Abstract ………………………………………………………………………… Ⅱ Chapter 1 Introduction: Heteroepitaxy with Template .……………………… 1 1.1 Heteroepitaxy with Large Lattice Mismatch ………………………….. 2 1.2 Template Assisted Nanocrystal Epitaxial Growth …………………….. 7 1.3 Outline ……………………………………………………………….. 11 Chapter 2 Epitaxial Growth and Characterization in Ultra-High Vacuum (UHV): MBE and STM …………………………………………………… 12 2.1 Introduction ………………………………………………………….. 12 2.2 Growth of Molecular Beam Epitaxy (MBE) ………………………… 13 2.2.1 Instruments …………………………………………………... 13 2.2.2 in situ Measurement: RHEED ……………………………….. 17 2.3 Atomic-scale Characterization of Surfaces ………………………… . 22 2.3.1 Instrument and Theory of Scanning Tunneling Microscopy (STM) ………………………………………………………………………….. 22 2.3.2 Theory of Scanning Tunneling Spectroscopy (STS) ………… 28 2.4 Summary …………………………………………………………… . 35 Reference ………………………………………………………………….. 36 Chapter 3 Single Crystal β-Si3N4(0001) Template with (4?4) Reconstruction Surface …………………………………………………………… 37 3.1 Introduction ………………………………………………………….. 37 3.2 Si (111)-(7?7) Reconstruction Surface ……………………………… 41 3.3 Nitridation of Si (111)-7?7 Reconstruction Surface ………………… 46 3.3.1 Thermal Nitridation with Cracked NH3 Gas ………………… 47 3.3.2 Nitrogen Plasma Nitridation …………………………………. 52 3.4 Atomic Structure of Si3N4 (0001) Surface …………………………... 57 3.4.1 (4?4) Reconstruction Surface ……………………………….. 57 3.4.2 Partial Nitridation (7?7)-Surface ……………………………. 62 3.5 Summary …………………………………………………………….. 67 References ………………………………………………………………… 68 Chapter 4 Group-Ⅲ Nitride Semiconductor Growth ……………………. 70 4.1 Introduction …………………………………………………………. 70 4.2 GaN Growth on Si (111) Substrate …………………………………. 74 4.2.1 Impurity Distribution in Epitaxial Films …………………….. 79 4.2.2 Optical Properties of GaN Grown on Si (111) ………………. 81 4.3 InGaN Growth on Si(111) Substrate ………………………………... 86 4.4 Summary ……………………………………………………………. 92 Reference ………………………………………………………………….. 93 Chapter 5 Template-assisted GaN Nanocrystals Grown by Reactive Epitaxy …………………………………………………………………………………….. 95 5.1 Introduction …………………………………………………………. 95 5.2 Growth of GaN Nanocrystals ……………………………………….. 99 5.3 Size and Shape of GaN Nanocrystals ……………………………… 103 5.4 Energetic View of GaN Nanocrystals ……………………………… 110 5.5 Summary …………………………………………………………… 116 Reference ………………………………………………………………… 117 Chapter 6 Conclusion ……………………………...……………………… 119 Publication List ………………………………………………………………. 122rf 1. R. Wolkow et al., Phys. Rev. Lett. 60, 1049 (1988) 2. E. Bauer et al., Phys. Rev. B 51, 17891 (1995) 3. B. Röttger et al., J. Vac. Sci. Technol. B 14, 1051 (1996). 4. E. Bauer et al., Phys. Rev. B 51, 17891 (1995). 5. D. V. Tsu et al., Phys. Rev. B 33, 7096 (1986) 6. D. Bolmont et al., Appl. Phys. Lett. 59, 2742 (1991) 7. A. G. Schrott and J. S. C. Fain, Surf. Sci. 111, 39 (1981) 8. A. G. Schrott and J. S. C. Fain, Surf. Sci. 123, 204 (1981) 9. J. S. Ha et al., Surf. Sci. 426, 373 (1999) 10. Y. Morita et al., Surf. Sci. 443, L1037 (1999) 11. Ph. Avouris et al., Phys. Rev. B 39, 5091 (1989) 12. T. Michely et al., Phys. Rev. Lett. 70, 3943 (1993) 13. G. Dufour et al., Surf. Sci. 304, 33 (1993) 14. H. Ahn et al., Phys. Rev. Lett. 86, 2818 (2001); C.-L. Wu et al., Phys. Rev. B 65, 045309 (2002). 15. R. M. Feenstra et al., Surf. Sci. 191, L756 (1987) 16. F. Bozso and Ph. Avouris, Phys. Rev. B 38, 3937 (1988) 17. T. Isu et al., Solid State Commun. 42, 477 (1982) 18. G. Dufour et al., Surf. Sci. 304, 33 (1994) 19. S.-Y. Ren and W. Y. Ching, Phys. Rev. B 23, 5454 (1981) 20. Y. -N. Xu and W. Y. Ching, Phys. Rev. B 51, 17379 (1995) 21. K. Takayanagi, J. Vac. Sci. Technol. A 3, 1502 (1985) 22. R. Losio et al., Phys. Rev. B 61, 10845 (2000) 23. R.J. Hamers et al., Phys. Rev. Lett. 56, 1972 (1986) 24. R.M.C. de Almeida et al., Phys. Rev. B 62, R16255 (2000)id NH0920198002 sid 887311 cfn 0 / id NH0920198003 auc 張志振 tic 多重微波源電漿源之研究 adc 寇崇善 ty 博士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 89 kwc 表面波電漿 abc 這篇論文的主旨在於研究一種新型的多微波源電漿反應器。 電漿是由六個脈衝型微波源在不同的位置以間隔1/360秒的時間發射2.45GHz脈衝微波(pulsed microwave)所激發產生的。微波的脈衝寬度約為1/300秒。每個微波源以WR284波導管將微波垂直送入電漿反應器的不同區域,每個不同的區域構成獨立的表面波結構,藉由高頻電磁波結構模擬器(HFSS)的輔助設計,可以優化每個獨立表面波結構中的TM21模態,再藉由傳輸線理論,並以電漿的等效阻抗來代表電漿的行為,於是可以計算TM21模態所激發的電漿密度,此計算結果將與實驗量測值比較。在實驗量測方面,這篇論文提出一種時間定序方法量測電漿密度,此方法是以磁控管陽極電流作為外部觸發信號,從而作時間定序,也就是藉由具有週期性的磁控管陽極電流,標定出每個週期(1/60秒)的時間參考座標,然後針對每個週期之內的各個時間點,以藍姆(Langmuir)探針量取電漿的電流-電壓特性曲線,從而得出隨著時間變化的電漿特性參數,其中包括電漿密度、電漿溫度、電漿均勻度以及電子能量分布函數(EEDF)。將電漿密度的量測值取其時間平均值並與理論值作比較,發現之間具有相當程度的近似。在研究中也發現電漿溫度與脈衝型微波源的脈衝振幅有關,並且高能量分布的電子數目較多,此現象與單一微波源連續波(CW)電漿不盡相同。 tc 第一章 簡介 1-1 研究目的 1-2 研究背景 1-3 研究創新性 第二章 多微波源電漿之設計 2-1多微波源電源供應器設計 2-2多微波源表面波結構之初步設計 2-3 初步實驗測試 2-4多微波源表面波結構之最終設計 2-5 以傳輸線理論之估計電漿密度  第三章 電漿特性量測 3-1電漿特性量測方法 3-2電漿密度,均勻度,電子溫度及EEDF量測結果 3-3量測結果與討論 3-4 反射功率量測 第四章 總結rf [1 ] Se-Geun Park, Beom-hoan O,Minyyoung Sohn, Jinwoo Kim,”Large area high density plasma source by helical resonator arrays”,Source and Coating Technology 133-134(2000)598-601 [2 ] 世大積體電路林振賢副處長, 蝕刻系統 [3 ] K. Komachi, J. Vac. Sci. Technol. A 11(1), Jan/Feb 1993 [4 ] 吳倉聚, 博士論文(寇崇善教授指導), “Study of a large area high density surface wave plasma source excited by microwave” [5 ] F. Werner, D. Korzec and J. Engemann, 1994 Plasma Sources Sci. Technol. 3 473 [6 ] 張志振, 中華民國專利新型第176739號 [7 ] N. Suzuki, H. Kitagawa and S. Uchiyama, Jpn. J. Appl. Phys. Vol. 41 (2002) pp.3930-3935, Part 1, No. 6A, June 2002 [8 ] Y. Yasaka et al,1999 Plasma Sources Sci. Technol. 8 530-533 [9 ] Robert S. Elliot, An introduction to guided waves and microwave circuits [10 ] 工研院學界分包計畫 [11 ]W. M. Flanagan, Handbook of transformer applications [12 ] 郭敦仁,物理數學 [13 ] D.M. Pozar, Microwave Engineering [14 ] O. Auciello, Plasma Diagnostics [15 ] M.Dreyvesteyn and F.M.Penning, Rev. Mod. Phys. 12,87(1940)id NH0920198003 sid 857304 cfn 0 / id NH0920208001 auc  徐崇嵐 tic 「鄉土」如何論戰?一個場域與權力的分析 adc 張茂桂 ty 碩士 sc 國立清華大學 dp 社會學研究所 yr 92 lg 中文 pg 100 kwc 鄉土 kwc 鄉土文學論戰 kwc 鄉土教育 kwc 場域 kwc 權力 kwc 言說 abc 本文是一個關於「鄉土」及其相關言說衝突的分析。觀察戰後臺灣所出現的「鄉土」論述,可發現在不同的場域中,其語意指涉也隨著不同的言說者而改變。因此本文主要探究的問題是,戰後臺灣「鄉土」是如何被論述的?不同時間、不同場域、不同位置的言說者,又賦予了「鄉土」怎樣的意義?「鄉土」有時與「本土」一起被使用,某些時候卻又被刻意區隔,「鄉土」與「本土」兩者之間微妙的差異是什麼?為何會發生? tc 目 錄 第一章 導 論 …………………………1 第一節 問題意識 …………………………1 第二節 研究的理論意義………………… 6 第三節 既有關於「鄉土」的研究……… 9 第四節 論文章節大綱 …………………14 第二章 文學場域中的「鄉土」論戰……17 第一節 文學場域第一場「鄉土」論戰…18 第二節 文學場域第二場「鄉土」論戰…21 第三節 小結 …………………………… 37 第三章 政治、文學場域的交集……………40 第一節 「本土」與「鄉土」的關係………41 第二節 「臺灣意識」與「中國意識」的鬥爭51 第三節 政治場域中的「本土」建構 …55 第四節 小結………………………………62 第四章 政治、教育場域的資本爭奪……… 64 第一節 戰後國民黨執政時期教育:排除「鄉土」65 第二節 政治競逐的結果---「鄉土教育」出現69 第三節 從「鄉土」教育到「本土」教育…80 第四節 小結…………………………………83 第五章 結 論………………………………87 表1-1、「鄉土」、「本土」言說使用的主要場域……………8 表1-2、教育師範界「鄉土」研究的分類………………………10 表2-1、文學場域中的「鄉土」言說 …………………………35 表2-2、反對「鄉土」的主要言說者……………………………35 表4-1、課程標準目標列入與「鄉土」的內容…………………66 表4-2、國民中學教科書「本國歷史」裡有關臺灣的內容摘要67 表4-3、1980-90年代的各項語言改革運動…………………… 70 表4-4、1993-1994年間民進黨推動教育法案的修改………… 74 表4-5、 1995年4月教育部依課程標準規定所頒佈「教學實施要點」77 表5-1、「鄉土」、「本土」言說與衝突和支配的分析………88 附錄一、「本土教育委員會」委員組成與背景……………… 16 附錄二、師範教育成立「鄉土」相關教學研究單位………… 85 附錄三、臺灣語文、文學與原住民相關系所………………… 86rf 參考文獻 Bourdieu, P. and J.C. Passeron 1977 Reproduction: In Education, Society and Culture. London: Sage; in French. Bourdieu, P. and Wacquant, Loïc J.D. 1992 An Invitation to Reflexive Sociology. Chicago : University of Chicago Press. Gellner, Ernest 1983 Nation and Nationalism. Oxford:Blackwell. Harker, R. Mahar, C. Wilkes, C. (ed.) 1990 An introduction to the Work of Pierre Bourdieu─the practice of theory. Macmillan press. Swartz, David 1997 Culture and Power. Chicago: University of Chicago Press. 大學雜誌社 1971 〈「臺灣社會力的分析」座談會記錄〉,《大學》雜誌48:26-41(1971/12)。 中央社 2002/12/30 〈黃榮村說本土教育委員會依均衡原則遴聘委員〉。 中國時報 2002/06/10 〈教育部將全面審視九年一貫本土教育〉。 王杏慶等 1971 〈這是覺醒的時候了〉,《大學》雜誌47:23(1971/11)。 王甫昌 1996 〈台灣反對運動的共識動員:一九七九∼一九八九年兩次挑戰高峰的比較〉,《台灣政治學刊》1:129-210。 2001 〈民族想像、族群意識與歷史----認識臺灣教科書爭議風波的內容與脈絡性分析〉,《臺灣史研究》8 卷2期,頁145-208。 王拓 1977 〈是「現實主義」文學,不是「鄉土文學」〉,《仙人掌》第2期,收於尉天聰主編(1978)《鄉土文學討論集》,頁100-119。尉天聰編著及出版。 王復蘇 1972 〈台大社會服務團成立始末〉,《大學》雜誌49:62-63;55:25。 包青天等 1971 〈臺灣社會力的分析〉,《大學》雜誌43:32-35; 44: 14-25; 45:20-26(1971/07-09)。 卯靜儒 2002 〈個人的/政治的:艾波的權力、知識與教育〉,收於蘇峰山等著《意識、權力與教育:教育社會學理論文集》,頁77-116。嘉義:南華大學教社所。 古淑芳 1999 《台灣黨外運動(1977-1986)----以黨外言論為中心之研究。》台灣師範大學歷史研究所碩士論文。 古繼堂 1992 《臺灣小說發展史》。台北:文史哲。 正中書局編 1993 《存在?希望?發展:李登輝先生生命共同體治國理念》。台北:正中。 民生報 2003/09/24 〈國語要成唯一官方語言 林佳龍:須修憲或立法〉。 石之渝 1998 〈台灣沒有四大族群〉,《中國時報》時論廣場1998/10/27。 向陽 1994 〈打開意識型態地圖--回看戰後台灣文學傳播的媒介運用〉,收於鄭明娳主編,《當代台灣政治文學論》,頁73-105。台北:時報。 朱西甯 1977 〈回歸何處?如何回歸?〉,《仙人掌》雜誌,1977年4月號。收於尉天聰主編(1978)《鄉土文學討論集》,204-226。尉天聰編著及出版。 江文渝、吳密察 1994 《體檢國小教科書》,台北:前衛。 江宜樺 2000 〈新國家運動下的台灣認同〉,收於林佳龍、鄭永年主編,《民族主義與兩岸關係》,頁181-216。台北:新自然主義。 余光中 1977 〈狼來了〉,聯合副刊(1977/08/20)。 吳介民 2002 〈鄉土文學論戰中的社會想像:文化界公共領域的集體認同形塑〉,「公共領域在台灣」workshop,殷海光基金會,四月二十八日,台北。 呂正惠 1995 〈日據時代「台灣話文」運動評議〉。收於鞏鵬程編《臺灣的社會與文學》,頁111-26。台北:三民。 呂興昌 1996 〈頭戴台灣天、腳踏台灣地:論黃石輝台語文學兮觀念佮實踐〉。 http://ws.twl.ncku.edu.tw/hak-chia/l/lu-heng-chhiong/thau-ti.htm(2003/4/7)。 宋冬陽(陳芳明) 1984[1988 ] 〈現階段臺灣文學本土化的問題〉,《台灣文藝》86期。收於施敏輝編(1988)《台灣意識論戰選集─台灣結與中國結的總決算》,頁207-249。台北:前衛。 李筱峰 1987 《台灣民主運動40年》,台北:自立晚報。 1999 《台灣史一百件大事(下):戰後篇》。台北:玉山社。 杜勉著、馬康華譯 1986 〈台灣的政治分化:一九七九至一九八○年執政黨和反對勢力中的 團體形成〉,收於丁庭宇等編,《台灣社會變遷的經驗:一個新興的工業社會》,頁148-151。台北:巨流。 沈建德 1997 〈台灣人血源論之剖析〉,收於施政鋒編,《族群政治與政策》,頁241-264。台北:前衛。 周玉蔻 1993 《李登輝的一千天:1988-1992》。台北:麥田。 林崇熙 2001 〈誰是客家人─作為一種意識型態的族群認同〉,發表於雲林:雲林科技大學「文化山海觀─文化資產維護研討會」,2001年3月10-11日。 http://www.yuntech.edu.tw/~gha/publish/teachers/lin/2000/20.htm (2003/05/19) 林載爵 1998 〈本土之前的鄉土〉,收於曾健民主編,《台灣鄉土文學、皇民文學的清理與批判》,頁77-89。台北:人間。 南方朔 1978 〈中國自由主義的最後堡壘--大學雜誌量底分析〉,《夏潮》4(2):48-51;4(4)50-54; 4(5)59-62; 4(6)44-47; 5(1)72-76。 姚誠 2000 〈從「意識」到「認同」--論台灣鄉土教育的建構〉,《課程與教學》3卷3期,頁1-16。 施敏輝(陳芳明) 1984[1988 ] 〈注視島內一場「台灣意識」的論戰〉。收於施敏輝編(1988)《台灣意識論戰選集─台灣結與中國結的總決算》,頁1-18。台北:前衛。 韋本、陳世宏主編 1999 《沒有黨名的黨:美麗島政團的發展》。台北:時報文化。 夏黎明 1988 〈鄉土定義之分析〉,《台東師院學報》1:281-300。 1989 〈鄉土的空間特性〉,《台東師院學報》2:61-77。 1990 〈鄉土的範圍、內容與教育意涵〉,載於黃政傑、李隆盛(主編),《鄉土教育》頁3-9。台北:漢文。 1991 〈鄉土的結構─方法論的探討〉,《台東師院學報》,3,頁171-188。 徐秀琴 2001 《中國本位與臺灣本位意識型態的制度衝突與調和:以「認識臺灣」課程為例》。東海大學社會研究所碩士論文。 高伊哥 1984[1988 ] 〈台灣歷史意識問題〉,原載於《台灣年代》雜誌1984/03。收於施敏輝編(1988)《台灣意識論戰選集─台灣結與中國結的總決算》,頁163-171。台北:前衛。 康寧祥 1975 〈如何促進臺灣的進步與和諧〉,《臺灣政論》創刊號(1975/08),頁5-7。 張建成 1997 〈政治與教育之間:論臺灣地區的鄉土教育〉,收錄於《鄉土史教育學術研討會論文集》,台北:國家圖書館臺灣分館。 張茂桂 1986 〈「省籍」類屬的社會意義〉,《中國論壇》266:35-39。 1997a 〈談「身份認同政治」的幾個問題〉,收於游盈隆主編《民主鞏固或崩潰》,頁91-116。台北:月旦。 1997b 〈台灣的政治轉型與政治的「族群化」過程〉,收於施政鋒編《族群政治與政策》,頁37-71。台北:前衛。 2002 〈多元主義、多元文化論述在台灣的形成與難題〉,發表於2002年3月2日「台灣的未來學術研討會」,國立成功大學社會科學研究院。 張茂桂、吳忻怡 2001 〈關於民族主義論述中的認同與情緒─尊重與承認的問題〉,收錄於林佳龍、鄭永年(主編)《民族主義與兩岸關係》,頁147-180。台北:新自然主義出版社。 張景涵(張俊宏) 1975a 〈變局裡該怎麼辦?〉,《臺灣政論》創刊號(1975/08),頁8-13。 1975b 〈我們的方向與現代化〉,《臺灣政論》第4期(1975/11),頁9-12。 教育部 1995 《我國各級學校課程改革發展狀況》,教育部:第七次全國教育會議參考資料叢書。 許南村(陳映真) 1975 〈試論陳映真〉,收錄於尉天聰編(1978)《鄉土文學討論集》,頁164-175。 尉天聰編著及出版。 1977 〈「鄉土文學」的盲點〉,《臺灣文藝》革新第二期。收於尉天聰主編(1978)《鄉土文學討論集》,93-99。尉天聰編著及出版。 郭紀舟 1996 〈文化啟蒙的實踐場域--夏潮雜誌研究〉,《海峽評論》61:63-64; 62:61-65; 63:62-65; 64:61-64; 65:64-65。 陳正醍 [1981 ]1998,〈台灣的鄉土文學論戰(1977-1978)〉,收於曾健民編,《台灣鄉土文學、皇民文學的清理與批判》,頁129-181。台北:人間。 陳芳明 1998 《左翼台灣:殖民地文學運動史論》。台北:麥田。 陳建忠 2002 〈從鄉土到本土--《臺灣文藝》、《文學界》、《文學臺灣》中的臺灣/本土文學論述〉,《文訊》213期,頁53-60。 陳映真 1977 〈試評「亞細亞的孤兒」〉,收於吳濁流著、張良澤編(1978)《亞細亞的孤兒》。台北:遠行。 1984[1988 ] 〈向更寬廣的歷史視野…〉,《前進》週刊第12期(1984/06)。收於施敏輝編(1988)《台灣意識論戰選集─台灣結與中國結的總決算》,頁31-37。台北:前衛。 彭歌 1977a 〈不談人性,何有文學〉,聯合報副刊(1977/08/17-19)。 1977b 〈三三草〉,聯合報副刊(1977/07/27、1977/08/05)。 曾健民 1998a 〈民眾的與民族的〉,收於其主編《台灣鄉土文學、皇民文學的清理與批判》,頁107-122。台北:人間。 1998b 〈反鄉土派的嫡傳--七批陳芳明的「歷史的歧見與回歸的岐路」一文〉,收於其主編《台灣鄉土文學、皇民文學的清理與批判》,頁234-254。台北:人間。 1998 〈「臺灣意識辨析〉,收於夏潮基金會編,《中國意識與臺灣意識─1999澳門學術研討會論文集》,頁646-667。台北:海峽學術。 曾健民編 1998 《台灣鄉土文學、皇民文學的清理與批判》。台北:人間。 游勝冠 1996 《台灣文學本土論的興起與發展》。台北:前衛。 黃宣範 1993 《語言、社會與族群意識--臺灣語言社會學的研究》。台北:文鶴。 葉石濤 1977 〈臺灣鄉土文學史導論〉,《夏潮》雜誌14期,頁68-75。(1977/05)。 1987 《臺灣文學史綱》。高雄:春暉。 葉欣怡 2001 《台獨論述與民進黨轉型》,台灣大學社會學研究所碩士論文。 董芳苑 1997 〈論長老教會與臺灣的現代化〉,收於張炎憲、陳美蓉、黎中光編《台灣近百年史論文集》,頁183-211。台北:吳三連基金會。 董思齊 2001 《不確定的想像共同體:1949年以來臺灣國家認同的困境》。台灣 大學政治研究所碩士論文。 詹茜如 1993 《日據時期台灣的鄉土教育運動》,台灣師範大學歷史研究所碩士論文。 劉振倫 1993 《台灣母語與鄉土教學的文化意識分析─以宜蘭縣為例》,東吳大學社會學系碩士論文。 歐陽聖恩 1986 《無黨籍人士所辦政論雜誌在我國政治環境中角色功能之研究》,中國文化大學政治學研究所碩士論文。 鄧天德 1998 〈心繫三鄉情:家鄉、故鄉、原鄉淺說〉,《人文及社會學科教學通訊》9卷4期,頁139-146。 鄧建邦 1995 《歷史、身份建構、與台灣民族主義─以宜蘭縣及高雄鄉土歷史教材為主的分析》,台灣大學三民主義研究所碩士論文。 蕭阿勤 1999 〈1980年代以來臺灣文化民族主義的發展:以「台灣(民族)文學」為主的分析〉,《台灣社會學研究》3:1-15。 2000 〈民族主義與台灣1970年代的「鄉土文學」:一個文化(集體)記憶變 遷的探討〉,《臺灣史研究》6:2,頁77-138。 2002 〈抗日集體記憶的民族化:臺灣一九七○年代的戰後世代與日據時期臺灣新文學〉,《臺灣史研究》9:1,頁181-239。 聯合報 2002/12/25 〈九年一貫 鄉土文學改台灣文學〉。 2002/12/26 〈政治帶入教育 會搞垮改革〉。 謝長廷 1989 〈台灣命運共同體的終極關懷〉,《新文化》雜誌1:4-7。 1995 《謝長廷新文化教室》,台北:月旦。id NH0920208001 sid 894801 cfn 0 / id NH0920208002 auc 彭桂枝 tic 女人與工作:一群客家農村中年女工的工作經驗 adc 周碧娥 ty 碩士 sc 國立清華大學 dp 社會學研究所 yr 92 lg 中文 pg 115 kwc 客家女工 kwc 女工的工作史與生命歷程 kwc 剝削或賦權 kwc 計件制 kwc 父權體制 kwc 資本主義 kwc 家庭生命週期 kwc 女性的工作經驗 abc 父權體制和資本主義的交相作用使得女性在職場上處於不平等的地位,然而兩者之間運作的機制,需要更多的經驗研究來分析。1970年代末期,政府推行鄉村工業化,在各地方生活圈設置工業區,一方面解決農村人口外移的問題,另一方面解決廠商日益上漲的生產成本(工資較低廉、土地取得較容易),這批進入鄉村工廠的女工的工作經驗以往鮮被探究。另外,客家族群的女性的社會地位充滿爭議,一派認為客家女性貢獻家庭經濟,社會與家庭權力地位相較閩南女性高;另一派則認為客家女性對家庭經濟的貢獻是其家庭角色的延伸,女性的社會及家庭權力地位無提昇,遭受父權體制的剝削更重。處在族群、性別體制及資本主義交錯的環境中的客家農村女工的經驗,正可作為探究中下階層女性工作經驗的案例。 tc 目 錄 摘要                          iv 誌謝 v 第一章 緒論 1 第一節 研究緣起與問題意識 1 第二節 文獻回顧 3 一、 經濟發展與女性地位 3 二、 女性、工作與家庭 11 三、 女性工作經驗的意義 15 四、 研究架構 17 第二章 研究方法及田野介紹 19 第一節 研究方法 19 一、 田野介紹 19 二、 研究樣本的選取 23 第二節 深度訪談及資料分析 24 一、 深度訪談 24 二、 研究倫理 25 三、 資料分析 27 第三章 中年女工的工作史 28 第一節 中年女工的生命歷程的分析 28 一、 第一代女工的生命歷程 29 二、 第二代女工的生命歷程 34 三、 世代的比較 40 第二節 中年女工的工作史的分析 42 一、第一代女工的工作史的分析 42 二、第二代女工的工作史的分析 50 三、世代比較 61 第四章 女工的工作經驗的意義 63 第一節 負面的工作經驗 63 一、資本主義的生產方式─計件制 65 二、父權家庭體制--女工的家庭權力地位 73三、小結:資本主義和父權的結合 84 第二節 正面的工作經驗 85 一、 工作經驗對女工個人的賦權 85 二、 集體層次的賦權:撼動既有結構的賦權 89 三、 小結:賦權如何可能? 100 第五章 綜論與討論 102 一、 綜 論 102 二、 討論與研究限制 104 附錄 附錄一 製造業、紡織業、成衣服飾品及其他紡織製品製造業受雇人數及性別比例 107 附錄二 訪談大綱 109 附錄三 新埔遠東製衣廠產業工會大事紀 110 參考書目 111 圖表目錄 圖1-1 男.女勞動參與率之變化趨勢:1951~2002年 4 圖1-2 紡織業.成衣服飾品及其他紡織品製造業人數:1973~2003年 6 圖1-3 紡織業.成衣服飾品及其他紡織品製造業性別比例:1973~2002年 6 圖1-4 製造業.紡織業.成衣服飾品及其他紡織製品製造業:1973~2002年 7 圖1-5 男性勞動參與率:1980~2003年 12 圖1-6 女性勞動參與率:1980~2003年 12 圖1-7 男性勞動參與率:按年齡組 13 圖1-8 女性勞動參與率:按年齡組 13 圖1-9 研究架構圖 18 表1-1 年台灣地區女性就業者之從業身份:1951-2001 5 表3-1 第一代女工的社經背景與婚姻家庭狀況 29 表3-2 第一代女工婚後居住情形和家庭型態 33 表3-3 第二代女工的社經背景與婚姻家庭狀況 34 表3-4 第二代女工婚後居住情形和家庭型態 39 表3-5 第一代女工的工作史 42 表3-6 第二代女工的工作史 50 表4-1 十一位女工在遠製的工作經歷 63 表4-2 受訪女工家庭權力地位的變化 74rf 一、英文資料: Allatt, Patricia (eds.) 1987, Women and the life cycle: transitions and turning- points, New York: ST. Martin’s Press. Boserup, Ester, 1970, Woman''s role in economic development, New York: ST. Martin’s Press. Chou, Bih-er, 1989, “Industrialization and change in women’s status: a reevaluation of some data from Taiwan”, in Hsin-Huang Michael, Hsiao (eds.), Taiwan: a newly industrialized state, P.p.423-461, Taiwan: National Taiwan U. Press. Diamond, Norma, 1979, “Women and industry in Taiwan”, in Modern China, Vol. 5, NO.3, July 1979, P p. 317-340, London: Sage. Dinnerstein, Myra, 1992, Women between two worlds: midlife reflections on work and family, Philadelphia: Temple U. Press. Ferree, Mayra Marx, 1987, “Family and job for working-class systems seen from below”, in Naomi Gerstel and Harriet Engel Gross (eds.) Families and work, P.p.28-301, Philadelphia: Temple U. Press. Gerson, Kathleen, 1987, “How women choose between employment and family: a developmental perspective”, in Naomi Gerstel and Harriet Engel Gross (eds.), Families and work, P.p.270-288, Philadelphia: Temple U. Press. Hartmann, Heidi I., 1990, “Capitalism, patriarchy, and job segregation by sex”, in Ilene J. Philipson and Karen V. Hansen (eds.), Women, class, and the feminist imagination, P.p.146-181, Philadelphia: Temple U. Press. Kung, Lydia, 1983, Factory women in Taiwan, Ann Arbor, Mich.: UMI Research Press. Lu, Yu-Hsia, 2002, “Attitudes toward gender role: changes in Taiwan, 1991-2001”, P.p.1-15, The Policy and Intergenerational Relationship in Families with Extraordinary Care Obligations---The Case of Families with Disabled Children in Norway. Reskin, Barbara F. & Patricia A. Roos, 1990, Job queues, gender queues: explaining women''s inroads into male occupations, Philadelphia: Temple U. Press. Rosen, Ellen Israel, 1987, Bitter choices: blue-collar women in and out of work, Chicago: U. of Chicago Press. Smith, E., Dorothy, 1987, “Women’s inequality and the family”, in Naomi Gerstel and Harriet Engel Gross (eds.), Families and work, Pp. 23-54, Philadelphia: Temple U. Press. Scott, Joan W. & Tilly, Louise A., 1989, Women, work and family, New York: Routledge. Walby, Sylvia, 1986, Patriarchy at work: patriarchal and capitalist relations in employment, Cambridge, UK: Polity Press. Wolf, Diane L., 1992, Factory daughters: gender, household, dynamics, and rural industrialization in Java, Berkeley: U. of California Press. Wolf, Margery, 1987, Women and the family in rural Taiwan,台北:敦煌書局。 二、中文資料: (一) 期刊論文 古學斌,丘延亮,1997,〈香港中年女工生命史與僱傭策略初探:回顧和啟示〉,《台灣社會研究季刊》,26期:167-207。 成露茜、熊秉純,1993,〈婦女、外銷導向成長和國家:台灣個案〉,《台灣社會研究季刊》,14期:39-75。 呂玉瑕,1983,〈婦女就業與家庭角色、權力結構之關係〉,《中央研究院民族學研究所集刊》,56期:111-143。 2003,〈經濟發展、家庭變遷與婦女地位:一個客家社區的研究〉,未出版,發表於中研院社會所週五論壇。 李美玲、楊亞潔、伊慶春,2000,〈家務分工:就業現實還是平等理念?〉,《台灣社會學刊》,24期:59-88。 林鶴玲、李香潔,1999,〈台灣閩、客、外省族群家庭中之性別資源配置〉,《中央研究院人文及社會科學集刊》,中研院中山人文社會科學研究所,第11卷第4期:475-528。 林津如,2000,〈「外傭政策」與女人之戰:女性主義策略再思考〉,《台灣社會研究季刊》,39期:93-151。 夏樂祥,1996,〈台灣製造業女性作業員生命經驗與勞動過程分析〉,《近代中國》,116期,頁200-223。 夏林清、王芳萍、冷尚書,1995,〈石化業勞工生涯策略探討:策略行動者的案例研究〉,《台灣社會研究》,民84.02,18期:71-124。 張晉芬,1996,〈女性員工在出口產業待遇的探討─以台灣1980年代為例〉,《台灣社會研究季刊》,22期,頁59-81。 陳玉華、伊慶春、呂玉瑕,2000,〈婦女家庭地位之研究:以家庭決策模式為例〉,《台灣社會學刊》,第24期:1-58。 蔡宏進,1985,〈台灣區域計劃與農村工業發展〉,《臺灣銀行季刊》,第36卷第1期:297-315。 1989,〈鄉村工業化〉,《農業金融論叢》,21期:153-168。 嚴祥鸞,1996,〈台灣勞動市場性別化分工的解析1951~1994〉,《勞工行政》,94期,頁35-52。 (二) 專書 上野千鶴子著,劉靜貞、洪金珠譯,1997,《父權體制與資本主義--馬克思主義之女性主義》,台北:時報文化。 王麗美執筆,徐有庠口述,1994,《走過八十歲月:徐有庠回憶錄》,台北:徐旭東發行,台北:聯經總經銷。 王實之,1997,《資本主義父權下的的紡織女工:台灣工業化的案例研究》,中正大學勞研所碩士論文。 布雷弗曼著,1988,《勞動與壟斷資本》,台北:谷風。 谷浦孝雄編,雷慧英譯,1995,〈台灣紡織業的發展〉,《台灣的工業化:國際加工基地的形成》,頁147-188,台北:人間。 邱花妹,1996,《「自主」工會運作的性別政治:台南紡織廠工會的個案研究》,新竹巿:國立清華大學社人所碩士論文。 李竹君,2002,《客家農村女性的勞動經驗與美德》,國立花蓮師範學院,多元文化研究所碩士論文。 林美瑢,1995,《基層婦女:女工百態、健康問題、外籍勞工、抗爭經驗》,台北:台灣基層婦女勞工中心。 林柏燕,1998,《新埔鎮誌》,頁231-548,新竹縣:新埔鎮公所。 林立珩,1999,《由勞工意識看女工從就業至關廠的歷程經驗》,國立陽明大學衛生福利研究所碩士論文。 柏蘭芝,1992,《經濟再結構中的婦女就業變遷與地域空間轉化--台北縣成衣業關廠女工再就業的個案研究》,國立台灣大學建築與城鄉研究所碩士論文。 馮淑真,1995,《無路可逃─家和工作之間:以河下里已婚紡織業女工的生活為分析》,東海大學社會學研究所碩士論文。 胡幼慧編,1996,《質性研究:理論、方法及本土女性研究實例》,台北:巨流。 胡台麗,1982,《媳婦入門》,台北:時報。1988年,初版四刷。 夏林清,1993,《由實務取向到社會實踐:有關台灣勞工生活的調查報告(1987-1992)》,台北。 莊英章,1994,《家族與婚姻:台灣北部兩個閩客村落之研究》,台北:中央研究院民族研究所。 陳玉璽著,1992初版,段承璞譯,《台灣的依附型發展─依附型發展及其社會政治後果:台灣個案研究》,台北:人間出版。 黃富三,1977,《女工與台灣工業化》,台北:牧童。 葉孟峰,2002,《加工出口區女性工作者的就業困境》,中正大學勞工研究所碩士論文。 新竹縣政府,1999,《新竹縣綜合發展計畫》。 劉進慶著,王宏仁、林繼文、李明俊譯,林書楊校訂,1992,《台灣戰後經濟分析》,台北:人間。 劉梅君,1999,,〈性別與勞動〉,《性屬關係(上):性別與社會、建構》,頁253-303,台北:心理。 謝國雄,1999,〈做件意識〉、〈田野的洗禮、學術的勞動〉,《純勞動:台灣勞動體制緒論》,頁105-145、302-347,台北:中研院社會所。 (三) 報紙期刊資料 民生報,1989-11-21,〈媽媽工作去 孩子沒人教 社會治安壞 二者間關聯 次長籲省思 女人 治安惡化之''母''﹖〉 民生報,1993-08-15,〈《民生論壇》女性勞動力偏低的現象〉。 經濟日報,郭婉容,1994-01,〈專家論壇:我國婦女對社會經濟的貢獻〉。 勞動人權協會,《勞動前線月刊》,台北:勞動人權協會出版。 新竹縣產業總工會會訊,2002,一至六期。 三、統計資料: 行政院主計處,1987、2001,人力資源統計調查年報。 行政院勞委會,1980、1991,婦女勞工統計。 2001,失業勞工之就業追蹤調查實施計劃。 行政院勞委會網站http://www.cla.gov.tw/ 行政院主計處網站 http://www.dgbas.gov.tw 四、錄音帶: 1987,遠製勞資調解會談判錄音帶。id NH0920208002 sid 884808 cfn 0 / id NH0920208003 auc 劉詩彥 tic 台灣近代身體史觀的轉變初探(1949 tic & tic #8213;2003) tic & tic #8213;以浴室的誕生與轉折談公私領域的分化 adc 李丁讚 教授 ty 碩士 sc 國立清華大學 dp 社會學研究所 yr 92 lg 中文 pg 150 kwc 浴室 kwc 身體觀 kwc 私人領域 kwc 公私領域 abc 這篇論文在策略上,我以浴室的誕生與轉折做為一個指標(index),來觀視身體和自我的變化,從這個線索來看整個社會文化觀的轉變。浴室作為一個私密空間在七0年代的誕生,是讓人真正可以面對自己的身體的空間設計,這是其他空間所沒有的屬性。把這個研究放在公私領域的脈絡上來看,定位成是一篇文化史的考察,主軸放在台灣社會三種身體觀的形成與轉變,也就是我在論文中會仔細鋪陳的(1)hidden body(2)private body(3)performative body。沐浴的歷史也就是這三種身體觀的反映。論文的重點將會擺在七0年代個人性的誕生。台灣在1970年代是浴室普及化的年代,外在因素如都市化、工業化扮演重要的角色。國家對於住宅政策的介入,使「私」經由「公」的中介和保障成為可能。內在來說,「個人的身體」從七0年代開始,逐漸變成神聖不可侵犯,例如從長髮到奇裝異服的展現,我們看到身體如何宣告獨立,反對任何來自家庭、學校、國家(警察)的干預,身體權的概念逐漸形成。總之,七0年代起,是身體宣告獨立的年代,也是現代化中,人的「私密空間」形成的年代,在論文中我會深入去探討這個年代以及這個年代的身體,探索浴室誕生的文化根源。另外,從九0年代開始,泡湯、三溫暖、SPA也蔚為風潮。泡湯與現代生活中的居家沐浴行為相較,兩者皆具有身心轉換的作用,然而,泡湯卻是一種集體化的享受,一種將歸屬於家庭即私領域的沐浴行為轉進「公共領域」的休閒活動,且是一種將現代人認為是最隱私的身體舒坦於公眾之下的特殊體驗。因此,首先該被處理的問題是:泡湯既然是一種在公眾之下暴露隱私的行為,在越來越追求個體性、要求維護隱私的現代社會中,究竟如何吸引各種人一泡再泡?放在公私領域的脈絡下來看就會發現,這其實是一種私密的公開化,一種嘗試把親密性帶進公領域的後現代浪潮。 tc 第一章:緒論——————————————————————1~24 第一節 研究緣起與現象建構 第二節 文獻回顧 第三節 西方現代性發展的軌跡 第四節 研究方法 第二章:hidden body——————————————————25~56 第一節 社會背景 第二節 無浴室的時代 第三節 對照於禮教嚴明的上層階級 第四節 家庭特徵 第五節 五0年代醜怪的生活及六0年代情感結構的轉變 第三章:private body——————————————————57~100 第一節 社會背景 第二節 「公私分離型」的集合式住宅:個人與身體隱私的興起 第三節 邁向文明化的身體 第四節 私密空間的誕生 第五節 Body right:用身體宣稱自我獨立的權利 第六節 權利與利益主體的誕生 第四章:performative body———————————————101~129 第一節 社經環境背景 第二節 時興的沐浴方式─泡湯、三溫暖、SPA 第三節 美容美體的熱潮 第四節 身體展演場 第五章:結論——————————————————————130~143 第一節 研究成果 第二節 倫理主體(subject)還是權力宰制的客體(object)? 第三節 研究限制 參考書目——————————————————————144~150rf Althusser, Louis, “Ideology and the Ideological State Apparatuses (Notes towards an Investigation) “ in Lenin and Philosophy and Other Essays, trans. Ben Brewster (New York: Monthly Review Press,1971), pp.158-186 Aries, Philippe 1989 Introduction, in A History of Private Life, vol.Ⅲ: Passions of the Renaissance, Roger Chartier, ed. London: Harvard University Press Baudrillard, Jean 1981, For A Critique of the Political Economy of the Sign, trans.and intro. By Charles Levin, Telos Press. Berger, Peter L., Brigitte Berger, and Hansfreid Kellner 1974 The Homeless Mind: Modernization and Consciousness. New York: Vintage Books. Berlin, Isaiah 1986, 陳曉林 譯《自由四論》,台北:聯經 Bourdieu, Pierre 1984, Distinction: A Social Critique of the Judgement of Taste, trans.by Richard Nice, Cambridge, Mass: Harvard University Press. Braunstein, Philippe 1988, The Emergence of the Individual: Toward Intimacy: The Fourteenth and Fifteenth Centuries, in A History of Private Life, vol.Ⅱ: Revelations of the Medieval World, Georges Duby, ed. London: Harvard University Press Certeau, Michel de 1984, The Practice of Everyday Life, Berkeley: University of California Press. Classen, C. Howes, D.&Synnott, A(eds) 1994, Aroma: The Cultural History of Smell, London: Routledge Corbin, Alain 1990 Backstage: The Secret of the Individual, in A History of Private Life, vol.Ⅳ: From the Fires of Revolution to the Great War, Michelle Perrot, ed. London: Harvard University Press Davis, Kathy著,張君玫譯,1997,《重塑女體:美容手術的兩難》,台北:巨流 Elias, Norbert 1978, The History of Manners, Oxford: B. Blackwell Elias, Norbert 1982, State Formation and Civilization, Oxford: B. Blackwell Elias, Norbert 1991, The Society of Individuals, Oxford: B. Blackwell Falk, Pasi., 1994, The Consuming Body, London :/Sage Featherstone, Mike 1991, ‘The Body in Consumer Culture”, in M. Featherstone, M. Hepworth and B.S.Turner(eds.), The Body, London: Sage Foucault, Michel 1978, The History of Sexuality, New York: / Panthe on Books Foucault, Michel 1988, Technologies of the Self: A Seminar with Michel Foucault, Amherst, MA: University of Massachusetts Press. Gelis, Jacques 1989 Forms of Privatization: The Child: From Anonymity to Individuality, in A History of Private Life, vol.Ⅲ: Passions of the Renaissance, Roger Chartier, ed. London: Harvard University Press Giddens, Anthony 1991, Modernity and Self-Identity, Cambridge: Polity Press Goffman, Erving 1959, The Presentation of Self in Everyday Life, Harmondsworth: Penguin Guerrand, Roger-Henri 1990 Scenes and Places: Private Spaces, in A History of Private Life, vol.Ⅳ: From the Fires of Revolution to the Great War, Michelle Perrot, ed. London: Harvard University Press Hunt, Lynn 1990 The Curtain Rise: The Sweet Delights of Home, in A History of Private Life, vol.Ⅳ: From the Fires of Revolution to the Great War, Michelle Perrot,ed. London: Harvard University Press Lofland, Lyn H. 1990 For the Love of Urban Public Space. Section of Community and Urban Sociology Newsletter, American Sociological Association. 19(4):5-7 Perrot, Michelle 1990 Scenes and Places: At Home, in A History of Private Life, vol.Ⅳ: From the Fires of Revolution to the Great War, Michelle Perrot, ed. London: Harvard University Press Prost, Antoine 1991 Public and Private Spheres: The Transition from Neighborhood to Metropolis, in A History of Private Life, vol.Ⅴ: Riddles of Identity in Modern Times, Prost, Antoine and Gerard Vincent, ends. London: Harvard University Press Scott, James C. 1992 Domination and the Arts of Resistance: Hidden Transcripts. Yale University Press Sennett, Richard 1978, The Fall of Public Man, New York: Vintage Books Shilling, Chris 1993, The Body and Social Theory, London: Sage Publications Stone, Lawrence著,刁筱華譯,2000,《英國十六至十八世紀的家庭、性、與婚姻》,台北,麥田 Synnott, Anthony 1993, The Body Social: Symbolism, Self and Society, London: Routledge Turner, Bryan S. 1996(1984) The Body and Society, London: Sage Yegul, Fikret 1995, Baths and Bathing Antiquity. New York: The Architectural History Foundation Press. 山根勇藏,1989,台灣民俗風物雜記,台北:武陵出版社。 中國時報編輯部編著,1995,《台灣╱戰後五十年:土地、人民、歲月》,台北市:時報文化 內政部編印,1970,《國民禮儀範例》,財團法人養樂多文教基金會印贈(1991) 片岡嚴,陳金田譯,1990(1921),台灣風俗誌,台北:眾文圖書。 王佩芬,2001,重新說故事―子宮頸抹片檢查,清華大學社會學研究所碩士論文 王崇名,1995,〈歐洲福利國家的整體史理解〉,《民族學研究所集刊》,第80期,1995年秋,頁115-153 王雅慧,1995,解讀伊里亞斯的自我克制,東海大學社會學研究所碩士論文 卡維波、何春蕤,1994,《為什麼他們不告訴你―性政治入門》,台北:方智 刑義田,1998,〈古代羅馬的公共澡堂〉,《西洋史集刊》,第八期 米復國,1988,《台灣的住宅政策:「國民住宅計畫」之社會學分析》,台灣大學土木工程研究所碩士論文 庄司總一,黃玉燕譯,2002(1940),嫁台灣郎的日本女子,台北:九歌 何友鋒,1993,《國民住宅空間標準之建立》,中華民國建築學會。 何春蕤,1994,《豪爽女人:女性主義與性解放》,台北:皇冠 何春蕤,1998,《好色女人》,台北:元尊文化 何聯奎,1983,《中國禮俗研究》,中華書局 吳介民,2002,〈鄉土文學論戰中的社會想像:文化界公共領域的集體認同形塑〉,未出版手稿。 吳明修,1994,〈台灣住宅居住行為之調查分析〉,《邁向二十一世紀之都市住宅規劃、設計及技術研討會》,1994年11月4日 吳曉琪,2002,〈Spa熱潮與個人化:新世紀的休閒經驗與身體政治〉,《戶外遊憩研究》,15(1): 43-61 吳曉琪,2003,〈從性慾物體到性感主體:Spa熱潮與逾越╱愉悅的身體型塑政治〉,《意識、認同、實踐―2003年女性主義學術研討會論文集》,2003/09/27-2003/09/28,台灣女性學學會 李丁讚,2000,〈社會力的文化根源:論環境權感受在台灣的歷史形成;1970-86〉,《台灣社會研究季刊》,第38期,頁133-206 李丁讚,2004,《台灣的公共領域:困境與契機》,即將出版 李海,1998,〈女人脫了,男人傻了〉,1998.12.15,第33版,中國時報 李健鴻,1992,身體與消費社會,東吳大學社會學研究所碩士論文 李騰嶽,1972(1953),台灣省通志?卷三政事志衛生篇,台中:台灣省文獻會。 杜正勝,1995,〈內外與八方―中國傳統居室空間的倫理觀和宇宙觀〉,收錄於黃應貴主編《空間、力與社會》,台北:中研院民族所 周怡君,1994,《化妝實踐中女性認同的構成》,清華大學社會人類學研究所碩士論文 周君佩,1998,逾越╱愉悅的身體政治―女子三溫暖的女性休閒經驗與空間意義,台灣大學建築與城鄉研究所碩士論文 東方孝義,1997(1942),台灣習俗,台北:南天書局。 林芳玫,1999,〈身體與性的媒體政治〉,1999.03.02,第15版,自由時報 林淑蓉,1999,〈性別、身體與慾望:從瘦身美容談當代台灣女性形象的轉換〉,1999/06/11-1999/06/12《健與美的歷史研討會論文集》,中研院歷史語言所。 林樹、潘國正等著,1997,新竹市眷村田野調查報告書―竹籬笆內的春天,新竹:新竹市立文化中心。 林鐘雄,1988,台灣經濟發展四十年,台北:自立晚報 邱建章,2003,來去加州:休閒健身運動與生活風格之文化研究,國立台灣師範大學體育學系碩士論文 唐岱蘭,1989,〈1949年前後的台灣社會風貌〉,《歷史月刊》,第23期,1989年12月,頁21-40 祝平一,2001,〈塑身美容、廣告與台灣九0年代的身體文化〉,收錄於盧建榮主編《文化與權力:台灣新文化史》,台北:麥田 張小虹,1993,《後現代╱女人╱權力、慾望與性別表演》,台北:時報文化 張文信,2000,《西洋繪畫藝術中『沐浴』的身心靈與空間研究》,中原大學室內設計學系碩士論文。 張珩,1987,《台灣地區居住品質訴求重點變遷及其趨勢之研究》,成功大學建築研究所碩士論文 張淑麗,1994,〈解構與建構之後―女性雜誌、女性主義與大眾文化研究〉,《中外文學》,266期,頁110-125 張錦華,2002,《女為悅己者「瘦」?/媒介效果與主體研究》,臺北縣:正中 莊伯和,2002〈台灣人愛洗澡?〉,《誠品好讀》,2002年7月,第23期 許蒼澤,1989,《街坊市井:鹿港景深四十年》,彰化縣鹿港鎮:左羊 陳其澎,2001,〈透視浴室―沐浴空間與沐浴文化中差異情境的研究〉,第二屆中華民國室內設計學術研討會論文集 陳阿昭、陳靜芳編述,2002,《老台灣人文風情》,台北:原民文化。 陳映真,1990,《我的弟弟康雄,1959-1964》,台北:人間 陳柏舟,1986,《海外旅遊禮儀手冊》,星光出版社 陳修兀,1989,台灣地區住宅的浴廁空間、設備、使用行為沿革及使用現況調查研究,國立成功大學建築(工程)研究所碩士論文。 陳素秋,1999,變奏的自我顯影―論消費社會中自由之證成,台灣大學社會學研究所碩士論文 陳歆怡,2002,〈包裹在公共中的隱私,開展於休閒的實踐―洗溫泉的文化社會學分析〉,清大社會所文化社會學專題期末報告,未出版。 陳儒修、高玉芳,1994,〈我美故我在:論美體工程、女性身體、與女性主義〉,《傳播文化》第三期,頁193-208 陳鍬鈴,2001,《美體攝影下的女性身體論述》,東海大學社會學研究所碩士論文 章英華,1991,〈台灣家戶型態的變遷:從日據到光復後〉,《思與言》,第29卷第4期 傅仰止,1983,〈都市社會學的兩大傳統:淺析Simmel與Wirth〉,《思與言》,第二十一卷第二期。 傅仰止,1997,〈都市生活壓力的公私特質〉,《台灣社會學研究》,第一期,p.1-41 喻肇青,1992,《國民住宅建築計畫準則研究》,內政部建築研究所籌備處。 曾淑美,2001,〈自己的房間〉,《廣告雜誌》,2001年7月,第122期 游美惠,1991,《文化、性別、與性:從色情海報看文化的建構與解構》,清華大學社會人類學研究所碩士論文 黃春明,1985,《黃春明小說集:1962-1968青番公的故事》,台北:皇冠出版社 黃順華,1978,《現代中國人的禮儀》,婦女雜誌社出版 甯應斌,1999,〈威而鋼論述的分析―現代用藥與身體管理〉,《台灣社會研究》,33期,頁225-252 甯應斌,2000,〈跨性別美學初探―新性感男人與青少年〉,《女「性」主體的另類提問Ⅱ論文集》,中央大學性/別研究室編 楊國樞,1988,《中國人的蛻變》,台北:桂冠 楊澤主編,1999,《狂飆八0―記錄一個集體發聲的年代》,台北:時報文化 葉石濤,1990,《台灣男子簡阿濤:五0年代白色恐怖自傳小說》,台北:前衛 椲原通好著,李文祺譯,1989,《台灣農民的生活節俗》,台北:台原。 廖有燦,1976,〈住宅色彩調節的藝術―浴室〉,《房屋市場》,第34期,1976年5月 遠流視覺書編輯室編著,2001,《台灣世紀回味系列》,台北市:遠流 劉華亭,1991,《國際禮儀手冊》,星光出版社 劉增貴,1999,〈中國古代的沐浴禮俗〉,《大陸雜誌》,98(4):9-30 歐陽璜,1984,《國際禮節》,幼獅文化事業公司 簡榮聰,1992,《台灣傳統農村生活與文物》,南投:省文獻會。 謝強、馬月 譯,2001,《女人的身體 男人的目光》,北京:社會科學文獻出版社。 羅融,2001,寫真集影像及其身體政治―媒體文本與閱聽人的性別建構與實踐,國立政治大學社會學研究所碩士論文。id NH0920208003 sid 894804 cfn 0 / id NH0920208004 auc 翁英欽 tic 清水溝重建工作的自身俗民誌--一場觀照中的主體化歷程 adc 宋文里 ty 碩士 sc 國立清華大學 dp 社會學研究所 yr 92 lg 中文 pg 90 kwc 行動 kwc 觀照 kwc 主體化歷程 kwc 社區工作 kwc 行動主體 kwc 主體 kwc 社區組織 abc 九二一集集大地震的災情觸動了許多人心,也促使我到災區從事救災、重建、社區工作,以及後來的社區產業推動。在四年的重建過程中,我有個深刻的感受:重建的主要工作是重建自己。從開始的賑災激情、社會運動情懷、行動科學研究、社區運動扎根、社區組織建立,到後來的「社區自力型照顧系統」 的形成。在這同時,我也從這些社區實務工作開始轉向我自身的身體、情緒、思維的反思。 tc 論文摘要 ………………………………………………………………03 寫在前面 ………………………………………………………………04 第一章 研究方法 第一節 自身俗民誌…………………………………………………08 第二節 科學敘事法…………………………………………………10 第二章 觀照中的主體化歷程 第一節 主體…………………………………………………………13 第二節 行動…………………………………………………………14 第三節 行動主體……………………………………………………19 第四節 觀照…………………………………………………………22 第五節 一個觀照的練習……………………………………………27 第六節 觀照中的主體化歷程………………………………………31 第三章 進來社區 第一節 社區工作在劇場……………………………………………33 第二節 第一幕.進入921災區蹲點…………………………………39 第三節 第二幕.災區的失序和我的失序……………………………42 第四節 第三幕.Empower的背後……………………………………44 第五節 第四幕.第一次遇到觀照……………………………………48 第六節 第五幕.開始搞社區產業……………………………………51 第七節 第六幕.私利和公利、控制和慾望…………………………55 第四章 出去社區 第一節 第七幕.情感的活力與衝突…………………………………62 第二節 第八幕.衝突的徵兆…………………………………………65 第三節 第九幕.與地方政治正式決裂………………………………67 第四節 第十幕.法院…………………………………………………74 第五節 第十一幕.沒有結局的故事…………………………………77 第五章 結語 第一節 看完來去文本之後 …………………………………………79 第二節 理論效應 ……………………………………………………82 寫在後面…………………………………………………………………84 參考文獻…………………………………………………………………86rf CBETA電子佛典系列(1999),《大正藏》,<中論>,龍樹菩薩造梵志,青目釋,姚秦三藏鳩摩羅什譯。臺北市:中華電子佛典協會。No. 1564 [cf. Nos. 1565-1567 ] 。 CBETA電子佛典系列(1999),《大正藏》,<般若波羅蜜多心經>,唐三藏法師玄奘譯。臺北市:中華電子佛典協會。No. 251 [Nos. 250, 252-255, 257 ]。 CBETA電子佛典系列(1999),《大正藏》,<金剛般若波羅蜜經>,姚秦天竺三藏鳩摩羅什譯譯。臺北市:中華電子佛典協會。No. 235 [Nos. 220(9), 236-239 ]。 方昱(2002),<重建區社區型自力照顧系統--在南投縣鹿谷鄉秀峰村的實驗>,,2002年全國研究生社會學學術研討會「轉移中的思考軸線─社會學的越界想像」發表。 老子,<道德經>。陸國強等編(1996),《道藏》,上海:上海書店;北京市:文物出版社;天津:古籍出版社。 李丁讚(1998),<從社區總體營造到社區學院>,南方電子報,第五期,http://www.esouth.org/sccid/south/south980904.htm 冷尚書(2003),<社區:作為追求解放人們的共在──一種存在主義馬克思主義的自我瞭解>,2003年台灣的社區與組織學術研討會發表。 南懷璟(1993),《道家密宗與東方神秘學》,臺北市: 老古文化。 翁英欽(2001),《災後社區經濟組織的萌芽--以南投縣清峰合作社的成立過程為例》,<實踐與開創--新生代觀點災後重建實務研討會論文集。 陸錦川(2001),《無中生有--太極文化:生命自然的大道》,台北市:新自然主義。 (2001)《靜極生動的能量--太極無為氣之道》,台北市:新自然主義。 翁英欽(2002),《跳脫行動研究的困局--以九二一重建區工作團隊為例》,2002年全國研究生社會學學術研討會「轉移中的思考軸線─社會學的越界想像」發表。 劉貴杰(1987)<僧肇思想之背景及其淵源>,載於《中華佛學學報》第一期,中華佛學研究所。 楊弘任(2003),<社區如何動起來?─黑珍珠之鄉的派系、在地師傅與社區總體營造>,2003年台灣的社區與組織學術研討會發表。 鈴木大拙(1944),<禪體驗的解釋>,《Philosophy - East and West》,University Press of Hawaii。 趙善如(1999)。《「增強力量」觀點之社會工作實務要素與處遇策略》,台大社會工作學刊,1,231-262。 趙剛(1998),〈跳出妒恨的認同,進入解放的培力政治--串聯尼采和工運(或社運)的嚐試思考〉,《台灣社會研究季刊》第十三期,頁117-161。 釋順印(1983),《初期大乘佛教之起源與開展》,台北市:正聞。 (1987),《空之探究 : 「阿含」.部派.「般若經」.龍樹》,台北市:正聞。 Barthes, R.著,劉森堯譯(2002),《羅蘭巴特論羅蘭巴特》,台北:桂冠。 Bourdieu, P. translated by Nice, R.(1990), The logic of practice, Stanford, Calif. :Stanford University Press Bourdieu, P. and Wacquant, L. J.D.(1992), An invitation to reflexive sociology, Chicago: University of Chicago Press. 林志明譯(1997),《物體系》,台北市:時報文化。 林志明譯(2002),《布赫迪厄論電視》,台北市:麥田出版:城邦文化發行。 Brown D.,“Caught Slowing: Subject/Object Go For A Ride”, in http://www.uta.edu/english/cgb/baud/fatal/sol.html Bruner, J.著,宋文里譯(2001),《教育的文化》,台北:遠流。 Thrangu K.(創古仁波切)著,帕滇卓瑪譯(1997),《止觀禪修》,台北:眾生文化。 Collins, J.著,齊若蘭譯,《從A到A+:向上提升,或向下沈淪?企業從優秀到卓越的奧秘》,台北市:遠流。 Coser L. A.著,孫立平等譯(2002),《社會衝突的功能》,台北市:桂冠。 Dalai Lama(達賴喇嘛)著,項慧齡、廖本聖譯(2003),《禪修地圖》,台北市:橡樹林文化出版,城邦文化發行。 Deleuze, G. , translated and edited by Hand S.(1988)Foucault. University of Minnesota Press. 楊凱麟譯(2000),《德勒茲論傅科》,台北:麥田。 周穎、劉玉宇譯(2001),《尼采與哲學》,北京:社會科學文獻。 Foucault , M.(1981)The History of Sexuality, Volume One, An Introduction. Harmondsworth: Pelican. 劉北成等譯(1992),《規訓與懲罰/監獄的誕生》,台北巿:桂冠。 尚衡譯(1990),《性意識史--第一卷:導論》,台北市:九大文化、桂冠圖書。 Freud S.,牟文博主編(1998),《佛洛依德文集》第四卷,北京市:長春出版社。 Husserl, E.,蔡錚雲譯述(1976),《鵝湖月刊》,第一卷第十期,台北:鵝湖月刊社。 Kirk, G.S., Raven, J.E., Schofield , M..(1995), The Presocratic Philosophers'', A Critical History with a selection of texts, Second Edition, Cambridge University Press Lacan, J. M.著,褚孝泉譯(2001),《拉岡選集》,上海:上海三聯書店。 Laërtius, D., The Lives and Opinions of Eminent Philosophers, Socrates 22, trans. C.D. Yonge (London: George Bell & Sons, 1895) Public Domain, http://www.google.com.tw/search?q=cache:ed73tfl1GF0J:www.usewisdom.com/sayings/self2.html+Diogenis+Laertius++Heraclitus&hl=zh-TW&ie=UTF-8 Lukace G.著,黃丘隆譯(1989),《社會存在本體論導論》,臺北巿:結構群。 Lyotard, J. F.(1984), The Postmodern Condition-A Report on Knowledge, Manchester University Press. Marx, K.H.著,伊海宇譯(1990),《1844年經濟學哲學手稿》,台北:時報文化。 Merleau-Ponty, M.著,姜志輝譯(2001),《知覺現象學》,北京市:商務。 Nietzsche, F.著,張念東,凌素心譯(1993),《權力意志/重估一切價值的嘗試》,北京巿:商務。 林建國譯(1989),《查拉圖斯特拉如是說》,台北巿:遠流。 Ratner, C.(2002), Interdisciplinary Journal on Human Development, Culture and Education . VOLUME 1 ,” What Is Psychology of Liberation? It is Cultural Psychology “, http://www.google.com.tw/search?q=cache:eBbM6kC5FmsJ:cepaosreview.tripod.com/ratner2.html+What+Is+Psychology+of+Liberation%3F+It+is+Cultural+Psychology+&hl=zh-TW&ie=UTF-8 Srgyris, C.,Putnam, R.,& Smith, D.M.L.,夏林清譯(2000)<行動科學>;台北市:遠流。 Trungpa, C.(邱陽.創巴仁波切)著,靳文穎譯(1999),《動中修行》,台北市:眾生文化。 楊書婷譯(2002),《東方大日》,台北市:橡樹林。 Vygotsky , L.S.(1934) , Thought and Language, Edited and translated by Eugenia Hanfmann and Gertrude Vakar(1962), The M.I.T. Press. http://www.marxists.org/archive/vygotsky/works/words/vygotsky.htm 蔡敏玲、陳正乾譯(1997),《社會中的心智--高層次心理過程的發展》,台北:心理出版社。 Webber, A.等作;Rugggles, R., Holtshouse, D. 編著;林宜瑄等譯(2003),《知識優勢》,台北:遠流。id NH0920208004 sid 884806 cfn 0 / id NH0920230001 auc 林于婷 tic 台灣薄膜電晶體液晶顯示器工業:技術、專利、制度與組織 adc 洪世章 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 中文 pg 55 kwc 技術 kwc 專利 kwc 制度 kwc 組織 kwc 創新系統 kwc 薄膜電晶體液晶顯示器 abc 創新系統概念,近年來除受到經濟與管理學者的注意,也吸引了許多政策制定者的眼光。在此,本文援引此文獻基礎,解釋台灣TFT-LCD產業之興起。本文之研究目的可陳述為兩個部分:首先,本文以專利資料衡量並表現台灣TFT-LCD工業發展之成果。此成果之表現並會援引日、韓之發展以為比較,並且以比較技術優勢指標分析之。其次,本文根據文獻回顧與實地資料,在紮根於分析台灣TFT-LCD發展成果之研究設計下,提出解釋台灣TFT-LCD工業發展至今成果之原因。在此,本文並迴異於以往研究偏重於結構面之分析,而從社會結構與組織行動之二元觀點切入分析此原因。本文最後討論理論與實務意涵。 tc 摘要 I ABSTRACT II 誌謝詞 III 目錄 IV 表目錄 V 圖目錄 VI 第一章 導論 1 第二章 文獻回顧 4 第一節 何謂創新系統? 4 第二節 創新系統之因 8 第三節 創新系統之果 9 第四節 小結 12 第三章 研究方法 13 第四章 TFT-LCD技術 17 第五章 分析與討論 23 第一節 專利資料分析 23 第二節 制度結構面的影響 26 第三節 組織行動面的影響 34 第六章 結論與意涵 46 參考文獻 49 附錄一 蒐集TFT-LCD專利資料之搜尋技巧 53 附錄二 專利收集之原始數據 54 附錄三 技術生命週期圖 55rf 王淑珍,2003,台灣邁向液晶王國之路,台北縣汐止市:中國生產力中心。 王敏政,2002,國際技術移轉關鍵問題之研究-以台灣TFT-LCD產業為例,元智大學管理學研究所未出版之碩士論文。 石岱勳、李自惠(翻譯),2001,平面顯示器技術及未來趨勢2001,台北縣新店市:成璟文化。(原著:日經BP社FPD平面顯示器未來發展趨勢與技術) 林正田,2003,一個新創企業之發展,國立清華大學高階經營管理碩士專班未出版之碩士論文。 洪世章,2002,「結構衝突與產業劣勢:台灣硬碟機工業之發展」,管理學報,19(2):273-302。 洪世章,呂巧玲,2001,「台灣液晶顯示器產業之發展」,科技發展政策報導,SR9003: 173-183。 洪世章、林于婷,2003,「國家創新系統:概念、成因與效果」,研考雙月刊,27(4):24-33。 洪世章、黃怡華,2003,「研究機構利用資源加速產業發展」,收錄於 史欽泰 編,產業科技與工研院-看得見的腦(pp. 105-135),新竹縣竹東鎮:工業技術研究院。 洪世章、黃欣怡,2002,「產業、環境與競爭力─台灣薄膜電晶體液晶顯示器工業的分析」,科技管理學刊,8(1):1-31。 洪世章、馬玫生,2002,「創新與環境:我國TFT-LCD產業之技術優勢分析」,2002經濟部技術處學界科專非技術領域學術研討會論文集(pp. 34-57),台北市:經濟部技術處。 紀國鐘、鄭晃忠(主編),2002,液晶顯示器技術手冊,台北市:經濟部技術處。 葉啟政,1998,「行動與結構的拿捏」,台大社會學刊,26期:53-97。 Badosevic S. 1998. “Defining systems of innovation: a methodological discussion”, Technology in Society, 20: 75-86. Buchanan D, Boddy D, McCalman, J. 1988. “Getting In, Getting On, Getting Out, Getting Back”, in Bryman, A. (ed) Doing Research in Organizations. London: Routledge. Carlsson B, Stankiewics R. 1991. “Of the nature, function, and composition of technological systems”, Journal of Evolutionary Economics, 1: 93-118. Choung JY, Hwang HR. 2000. “National systems of innovation: institutional linkages and performances in the case of Korea and Taiwan”, Scientometrics, 48(3): 413-426. Dahlman C. 1994. “Technology strategy in the east Asian developing economies”, Journal of Asian Economics, 5(4): 541-572. Dohse D. 2000. “Technology policy and the regions - the case of the Bioregio contest”, Research Policy, 29(9): 1111-1133. Dunning JH. 1993. The Globalization of Business, New York: Routledge. Dunning JH, Narula R. 1995. “The R&D activities of foreign firms in the united states”, International Studies of Management and Organization, 25(1-2): 39-73. Edquist, C. (ed) 1997. Systems of Innovation: Technologies, Institutions and Organizations. London: Pinter. Edquist C, 2004. “Systems of Innovation”, in J. Fagerberg, D. Mowery and R. Nelson (eds) Handbook of Innovation, Oxford, England: Oxford University Press (in press). Edquist C, Hommen L. 2003. Comparative framework for and proposed structure of studies of national innovation systems in nine small countries, a paper presented at the third workshop with the ESF comparative national system of innovation project in Taipei on Nov. 26-28, 2003. Eisenhardt KM. 1989. “Building theories from case study research”, Academy of Management Review, 14(4): 532-550. Freeman C. 1987. “Japan: a new national system of innovation?”, in G. Dosi, C. Freeman, R. Nelson, G. Silverberg, and L. Soete (eds) Technical Change and Economic Theory, London: Pinter Publishers. Freeman C, Perez C. 1988. “Structural crises of adjustment: business cycles and investment behavior”, in C. Freeman (ed.) Technical Change and Economic Theory, London: Pinter. Giddens A. 1984. The Constitution of Society. Cambridge: Polity Press. Goodwin M, Johnston R. 1999. “The place of absorptive capacity in national innovation systems: the case of Australia”, Science and Public Policy, 26(2): 83-90. Grupp H. 1994. “The measurement of technical performance of innovations by technometrics and its impact on established technology indicators”, Research Policy, 23(2): 175-193. Guerrieri P, Tylecote A. 1997. “Interindustry differences in technical changes and national patterns of technological accumulation”, in C. Edquist (ed) Systems of Innovation (pp. 107-129). London: Pinter. Hung SC. 2002. “On the co-evolution of technologies and institutions”, R&D Management, 32(3): 179-190. Hung SC. 2003. Innovation as an Ongoing Process of Structuration, a paper presented at Academy of Management 2003 annual meeting, Seattle, USA. Kumaresan K, Miyazaki K. 1999. “An integrated network approach to systems of innovation - the case of robotics in Japan”, Research Policy, 28: 563-585. Liu X. 2001. “An exploration into regional variation in innovative activity in China”, International Journal of Technology Management, 21(1-2): 114-129. Liu X, Song H. 1997. “China and the multinationals - a winning combination”, Long Range Planning, 30(1): 74 — 83. Liu X, White S. 2001. “Comparing innovation systems: a framework and application to China''s transitional context”, Research Policy, 30(7): 1091-1114. Lundvall BÅ. 1992. National Systems of Innovation: An Analytical Framework, London: Pinter. Mathews JA. 1997. “A silicon valley of the east: Creating Taiwan''s semiconductor industry”, California Management Review, 39 (4): 26-54. Mowery DC. 2001. “Technological Innovation in a multipolar system: analysis and implications for U.S. Policy”, Technological Forecasting and Social Change, 67: 143-157. Nelson R. (ed) 1993. National Systems of Innovation: A Comparative Study, Oxford: Oxford University Press. Nelson R, Nelson K. 2002. Technology, institutions and innovation systems. Research Policy, 31: 265-272. Paci R, Usai S. 1998. “Technological enclaves and industrial districts: an analysis of the regional distribution of innovative activity in Europe”, Regional studies, 34: 97-114. Pakes A, Griliches Z. 1984. “Patents and R&D at the firm level: a first look”, in Z. Griliches (ed.) R&D, Patents and Productivity, Chicago: University Press. Patel P, Pavitt K. 1994. “National innovation systems: why they are important, and how they might be measured and compared”, Economic Innovation New Technology, 3:77-95. Persson O. 2000. “Studying national innovation systems using papers and patents-methods and examples”, http://www.cordis.lu/sweden/inno_pub.htm. Porter ME. 1990. The Competitive Advantage of Nation, New York: Free Press. Senker J. 1996. “National systems of innovation, organizational learning and industrial biotechnology”, Technovation, 16: 219-229. Shyu JZ, Chiu YC, Yuo CC. 2001. “A cross-national comparative analysis of innovation policy in the integrated circuit industry”, Technology in Society, 23: 227-240. Silverstein L. 1997. “Colour matrix displays: a paradigm shift for the future of electronic colour imaging”, In: LW MacDonald and AC Lowe. (ed) Display Systems: Design and Applications (pp.117-132). England: John Wiley & Sons. Soete LG, Wyatt SME. 1983. “The use of foreign patenting as an internationally comparable science and technology output indicator”, Scientometrics, 5(1): 31-54. Stolpe M. 2002. “Determinants of knowledge diffusion as evidenced in patent data: the case of liquid crystal display technology”, Research Policy, 31(7): 1181-1198. Strauss AL. 1987. Qualitative Analysis for Social Scientists. New York: Cambridge University Press. Vertova G. 1998. “Technological similarity in national styles of innovation in a historical perspective”, Technology Analysis & Strategic Management, 10(4): 437-449. Whitley R. 2002. “Developing innovative competences: the role of institutional frameworks”, Industrial and Corporate Change, 11(3): 497-528. Yin RK. 1984. Case Study Research: Design and Methods. London: Sage.id NH0920230001 sid 906491 cfn 0 / id NH0920257001 auc 許朝昇 tic 水相中銅與胺基酸錯合物之一價銅量子產率研究 adc 吳劍侯老師 adc 羅俊光老師 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 86 kwc 量子產率 kwc Bathocuproine kwc 銅錯合物 kwc 胺基酸 abc 本論文已量測諸多銅胺基酸錯合物之一價銅量子產率。利用丙胺酸(NH2CHCH3COOH)為模型,在不同條件(pH、銅與配位基濃度、離子強度等)下,討論對一價銅量子產率之影響。實驗同時測量銅與丙胺酸錯合物CuL與CuL2之一價銅量子產率;另外,也一併討論其他八種不帶極性旁鏈之胺基酸,其光反應性趨勢為何。實驗利用Bathocuproine方法量測一價銅產率。對於銅錯合物1:1配位而言,於313 nm下之一價銅量子產率(ΦCu(I),CuL)大小順序如下:β-alanine> α-alanine> leucine, isoleucine, phenylalanine, valine> glycine> methionine> proline。其中1:1配位物種(CuL)一價銅量子產率變化約6倍而1:2配位物種(CuL2)約10倍左右。不同胺基酸錯合之下的量子產率,其1:1配位皆較1:2配位為大。實驗數據顯示改變pH、配位基濃度或銅濃度條件下,銅胺基酸錯合物之光反應性,均可以簡單之物種分佈模式預測。 tc 第一章 引言-------------------------------------------------- 1 1-1 簡介----------------------------------------------------- 1 1-2 研究動機------------------------------------------------- 3 1-3 研究目的------------------------------------------------- 3 1-4 流程規劃------------------------------------------------- 4 第二章 文獻回顧---------------------------------------------- 5 2-1 環境水體中銅錯合物的反應--------------------------------- 5 2-2 不同配位基之銅錯合物的光化學反應------------------------- 8 2-2-1 銅與各種配位基之光化學反應----------------------------- 9 2-2-2 銅與胺基酸光化學反應---------------------------------- 10 2-3 一價銅的測量-------------------------------------------- 12 2-4 光強度量測-利用化學光度計(Actinometer)-----------------14 2-5 不同銅錯合物之量子產率的比較---------------------------- 15 2-6 反應模式的假設------------------------------------------ 17 第三章 研究方法--------------------------------------------- 21 3-1 銅胺基酸光反應系統---------------------------------------21 3-1-1 實驗儀器---------------------------------------------- 21 A.單光系統-------------------------------------------------- 21 B.紫外可見光譜儀-------------------------------------------- 22 C.高效能液相層析儀------------------------------------------ 23 D.除氧系統-------------------------------------------------- 24 3-1-2 實驗藥品---------------------------------------------- 25 3-1-3 分析流程---------------------------------------------- 26 3-1-4 一價銅的測量------------------------------------------ 27 3-1-5 光強度測量-------------------------------------------- 27 3-2 銅-胺基酸系統中各物種所佔比例之計算--------------------- 29 3-2-1 MINTEQ------------------------------------------------ 30 3-2-2 NIST46.4 熱力學資料庫--------------------------------- 32 3-2-3 離子強度之修正---------------------------------------- 33 3-3 數據處理方法-------------------------------------------- 35 3-3-1 光強度方法與數據處理---------------------------------- 35 3-3-2 量測一價銅之數據處理---------------------------------- 37 3-3-3 量子產率之計算方程式---------------------------------- 38 第四章 結果與討論------------------------------------------ 41 4-1 光照系統最佳化------------------------------------------ 41 4-1-1 除氧時間選取實驗-------------------------------------- 41 4-1-2 平衡時間選取實驗-------------------------------------- 42 4-2 品保品管(QA/QC)--------------------------------------- 44 4-2-1 實驗再現性 ------------------------------------------- 44 4-2-2 光源穩定性 ------------------------------------------- 45 4-2-3 方法適用性 ------------------------------------------- 46 4-3 銅胺基酸錯合物光反應結果討論---------------------------- 48 4-3-1 銅與不同胺基酸之一價銅量子產率------------------------ 48 4-3-2 利用銅-丙胺酸錯合物於改變條件下探討光反應性----------- 51 4-3-2-1 改變pH值-------------------------------------------- 52 4-3-2-2 改變配位基濃度-------------------------------------- 53 4-3-2-3 改變銅濃度------------------------------------------ 54 4-3-2-4 改變離子強度---------------------------------------- 56 第五章 結論------------------------------------------------- 58 第六章 未來計畫--------------------------------------------- 59 參考文獻---------------------------------------------------- 60 附錄一 胺基酸性質------------------------------------------- 66 附錄二 生成物種之熱力學常數表------------------------------- 67 附錄三 銅與胺基酸照光反應之原始數據------------------------- 68 附錄四 VMINTEQ使用說明 ------------------------------------- 80rf 參考文獻 Ahner, B. A.; Lee, J. G.; Price, N. M.; Morel, F. M. M. "Phytochelatin concentration in the equatorial Pacific." Deep-Sea Res. I, 45, 1779-1796 (1998). Ali, I.; Mansour, K. M. Gatasheh; Naseem, I. "Hemolysis of human red blood cells by riboflavin-Cu(II) system." Biochim. Biophys. Acta , 1523, 225-229 (2000). Allison Geoscience Consultants, Inc.;HydroGeoLogic, Inc. "MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems: Version 4.0 (EPA/600/3- 91/021); U. S. Environmental Protect Agency, Athens, GA(2000) Anastasio, C.; Faust, B.C.; Allen, J.M., J. Geophys. Res., 99, 8231-8248 (1994). Andrianirinaharivelo, S. L.; Mailhot, G.; Bolte, M., "Photogradation of organic pollutants induced by complexation with transition metals (Fe3+ and Cu2+) present in natural waters." Sol. Energy Mater. 38, 459-474 (1995). Andrianirinaharivelo, S. L.; Bolte, M. "Photochemical behaviour of copper(II) nitrilotriacetate in aqueous solution." J. Photochem. Photobiol. A: chem, 1993, 213-216 (1993). Azenha, M.; Vasconcelos, M. T.; Cabral, J. P. S. "Organic ligands reduce copper toxicity in Pseudomonas syringae" Environ. Toxic. Chem. 14, 369-373(1995). Bjorklund, L. B.; Morrison, G. M. "Determination of copper speciation in fresh samples through SPE-spectrophotometry." Anal. Chim. Acta 343, 259-266 (1997) Brand, J. Exp. Mar. Biol. Ecol. 96, 225-250 (1986). Cabelli, D. E.; Bielski, B.H.J.; Hoffman, J., "Interaction between copper(II)-arginine complex and HO2/O2- radicals, a pulse radiolysis study" J. Am. Chem. Soc. 109, 3665-3669 (1987). Calvertt, J. G.; Pitts, J. N. "Photochemistry", Wiley, New York (1966). Chow, S. T.; McAuliffe, C.A. Prog. Inorg. Chem. 19, 51-103 (1975). Das, S.; Alastair, J. G. R.; Nazhat, N. B.; Nazhat, R. S. "Ligand decomposition in the photolysis of copper(II)-amino acid complexes in aqueous solution." J. Chem. Soc., Faraday Trans. 1, 80, 2759-2766 (1984). Das, S.; Ferraudi, G. "Photochemistry of Copper(II)-Poly(acrylic acid) Complexes: Photogeneration and Photolysis of an Alkyl-Copper Intermediate." Inorg. Chem. 25, 1066-1068 (1986). Dulin, D.; Mill, T. "Development and evaluation of sunlight actinometers." Environ. Sci. Technol. 16, 815-820 (1982). Ervin, A. M.; Ewing, K. J.; Nau, G.; Rowley, D. A.; Lamontagne, R. A.; Aggarwal, I. D. "Investigation of a robust flow-through Cu(I) optical sensor using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline immobilized into a Nafion film." Sensor and Actuators B 53, 104-110 (1998). Evans, C. A.; Cuevremont, R., Metal Ions Biol. Syst. 9, 41-75 (1979). Faust, B. C.; Zepp, R. G. "Photochemistry of aqueous iron(III)-polycarboxylate complexes: Roles in the chemistry of atmospheric and surface waters." Environ. Sci. Technol. 27, 2517-2522 (1993). Faust, B. C., "Experimental determination of molar absorptivities and quantum yields for individual complexes of a labile metal in dilute solution." Environ. Sci. Technol. 30, 1919-1922 (1996). Felmy, A. R. ;Girvin, D. C.; Jenne, E. A. "A computer program for calculating aqueous geochemical equilibria." (EPA-600/3-84-032); U.S. Environmental Protect Agency, Athens, GA (1984). Ferraudi, G. ;Endicott, J. F. "Photostimulated solvolytic reactions of a macrocyclic copper complex." Inorg. Chem. 16, 2762-2766 (1977). Ferraudi, G. ;Muralidharan, S. "Photochemical properties of copper complexes." Coordination Chemistry Reviews, 36, 45-88 (1981). Ferraudi, G.; Srisankar, E. V. "Photochemical redox reactivity of dimeric and monomeric copper(II) and cobalt(II) sulfophthalocyanines." Inorg. Chem. 17, 3164-3168 (1978). Fjallborg, B.; Dave, G. "Toxicity of Copper in sewage sludge." Environ. Inter. 28: 761-769 (2003). Forbes, G. S.; Heidt, L. J., "Optimum composition of uranyl oxalate solution for actinometry" J. Am. Chem. Soc., 56, 2363 (1934). Fung, K.; Grosjean, D. "Determination of nanogram amounts of carbonyls as 2,4-dinitrophenylhydrazones by High-Performance Liquid Chromatography." Anal. Chem. 53, 168-171 (1981). Glazewski, R.; Morrison, G.M. "Copper(I)/Copper(II) reactions in an urban river." Sci. Tot. Environ., 189-190, 327-333 (1996). Glebov, E. M.; Plyusnin, V. F.; Grivin, V. P.; Krupoder, S. A.; Liskovskaya, T. I.; Danilovich ,V.S. "Photochemistry of copper(II) polyfluorocarboxylates and copper(II) acetate as theri hydrocarbon analogues." J. Photochem. Photobiol. A: chem 133, 177-183 (2000). Gonzaleg-Davila, M.; Santana-Casiano, J. M.; Perez-Pena, J.; Millero, F. J. "Binding of Cu(II) to the surface and exudates of the Alga Dunaliella Tettiolecta in seawater." Environ. Sci. Technol. 29, 289-301 (1995). Han, Bor-Cheng; Jeng, Woei-Lih; Hung, Tsu-Chang; Wen, Ming-Yi "Relationship between copper speciation in sediments and bioaccumulation by marine bivalves of Taiwan." Environ. Pollut. 91, 35-39 (1996). Hayase, K.; Zepp, R. G. "Photolysis of Copper(II)-Amino Acid Complexes In Water." Environ. Sci. Technol., 25, 1273-1279 (1991). Heidt, L. J.; Daniels, F. "Photochemical technique II, Construction and tests of a quartz monochromator" J. Am. Chem. Soc., 54, 2384-2391 (1932). Hiraku, Y.; Sugimoto, J.; Yamaguchi, T.; Kawanishi S. "Oxidative DNA damage induced by aminoacetone, an aminoacid metabolite." Arch. Biochem. Biophys. 365, 62-70 (1999). Holm, T. R.; George, G. K.; Barcelona, M. J. "Fluorometric determination of hydrogen peroxide in ground water." Anal. Chem. 59, 582-586 (1987). Horvath, O.; Papp, S. J., J. Chem. Educ, 65, 1102-1105 (1988). Horvath, O.; Stevenson, K. L. "Charge Transfer Photochemistry of Coordination Compound"; VCH, New York: Chap 4 (1993). Jankowski, J. J.; Kieber, D. J.; Mopper, K. "Nitrate and nitrite ultraviolet actinometers." Photochem. Photobiol. 70, 319-328 (1999). Jeliazkova, B. G., Doicheva, M. A. "Charge-transfer photochemistry of copper(II) dithiocarbamate mixed-ligand complexes" Polyhedron, 15, 1277-1282(1996). Karlen, C.; Wallinder, I. O., Heijerick, D.; Leygraf, C. "Runoff rates, chemical speciation and bioavailability of copper released from naturally patinated copper." Environ. Pollut., 120, 691-700 (2002). Keith, L. H.; Telliard, W. A. "Priority pollutant I-a perspective view." Environ. Sci. Technol., 13, 416-423 (1979). Kiefer, E.; Sigg, L.; Schosseler, P. "Chemical and Spectroscopic Characterization Of Algae Surfaces." Environ. Sci. Technol. 31, 759-764 (1997). Kochi, J. K. "Photolyses of Metal Compounds: Cupric chloride in organic media." J. Am. Chem. Soc. 84, 2121-2127 (1962). Kok, G. L.; Thompson, K.; Lazrus, A. L. "Derivation Technique for the determination of peroxides in precipitation." Anal. Chem. 58, 1192-1194 (1986) Langford, C. H.; Wingham, M.; Sastri, V. S. "Ligand photooxidation in copper(II) complexes of nitrilotriacetic acid. Implications for natural waters." Environ. Sci. Technol. 7, 820-822 (1973) Leighton, W. G.; Forbes, G. S., "Precision actinometry with uranyl oxalate" J. Am. Chem. Soc. 52, 3139 (1930) Lever, A. B. P. "Charge transfer spectra of transition metal complexes" J. Chem. Educ. 51, 612-616 (1974) Lu, Q.; Wei, J. F.; Collins, G. E.; Morris, R. E.; Serino, P. M.; Guo, Y. "Rapid determination of dissolved copper in jet fuels using bathocuproine." Energy Fuels, 17, 699-704 (2003) Mailhot, G.; Andrianirinaharivelo, S. L.; Bolte, M. "Photochemical transformation of iminodiacetic acid induced by complexation with copper(II) in aqueous solution." J. Photochem. Photobiol. A: chem, 87, 31-36 (1995). Moffett, J. W.; Zika, R. G. Mar. Chem. 13, 239-251 (1983). Moffett, J. W.; Zika., R. G,; Petasne, R.G. "Evaluation of bathocuproine for the spectrophotometric determination of copper(I) in copper redox studies with applications in studies of natural waters." Anal. Chim. Acta, 175, 171-179 (1985). Moffett, J. W.; Zika, R. G., "Photochemistry of copper complexes in seawater." Photochem. Environ. Aqua. Sys. Chap 9 (1987). Morimoto, J. Y.; DeGraff, B. A. "Photochemistry of the Copper(II)-Malonate system. A "Sensitized" Reaction." J. Phys. Chem., 76, 1387-1388 (1972). Morimoto, J. Y.; DeGraff, B.A. "Photochemistry of copper complexes. The copper(II) malonate system.", J. Phys. Chem., 79, 326-331 (1975). Morton, J. D.; Hayas, K. F.; Semrau, J. D. "Bioavailability of Chelated and Soil-Absorbed copper to Methylosinus trichosporium OB3b." Environ. Sci. Technol. 34, 4917-4922 (2000) Moss, M. L.; Mellon, M. G. "Colormetric determination of copper with 1,10-phenanthroline." Ind. Engin. Chem. 15, 116-118 (1943) Muralidharan, S.; Ferraudi, G. "Photochemistry of Copper(II) complexes with macrocyclic amine ligands." Inorg. Chem. 20, 2306-2311 (1981). Natarajan, P.; Endicott, J. F. "Photoredox behavior of transition metal-ethylenediaminetetraacetate complex. A comparison of some group Vlll metals." J. Phys. Chem. 77, 2049 (1973). Natarajan, P.; Ferraudi, G. "Photochemical Properties of Copper(II)-Amino Acid Complexes." Inorg. Chem. 20, 3708-3712 (1981). Oden, W. I.; Amy, G. L.; Conklin, M. "Subsurface interactions of humic substances with Cu(II) in saturated media." Environ. Sci. Technol. 27, 1045-1051 (1993). Ohkuma, Y.; Kawanishi, S. "Oxidative DNA damage induced by a metabolite of carcinogenic o-anisidine: Enhancement of DNA damage and alteration in its sequence specificity by superoxide dismutase." Arch. Biochim et Biophys. Acta 389, 49-56 (2001). Perugini, C.; Seccia, M.; Albano, E.; Bellomo, G. "The dynamic reduction of Cu(II) to Cu(I) and not Cu(I) availability is a sufficient trigger for low density lipoprotein oxidation." Biochimica et Biophysica Acta, 1347, 191-198 (1997). Pitts, J. N.; Marghrum, D.; Tailor, R.P.; Brim, W. "Determination of light intensities with a highly sensitive uranyl oxalate actinometer." J. Am. Chem. Soc. 77, 5499-5501 (1955) Sharma, V. K.; Millero, F. J. "Oxidation of Copper(I) in seawater." Environ. Sci. Technol. 22, 768-771 (1988). Smith, G. F.; McCurdy, W. H. Jr. "2,9-Dimethyl-1,10-phenanthroline. New specific in spectrophotometric determination of copper." Anal. Chem. 24, 371-373 (1952) Smith, G. F.; Wilkins, D. H. "New colorimetric reagent specific for copper- Determination of copper in iron." Anal. Chem. 25, 510-511 (1953). Smith, A. E.; Martell, R. M. "Critical Stability Constants Vols: 2", plenum, New York (1975) Smith, A. E.; Martell, R. M., Motekaitis, R. J."NIST Critically Selected Stability Constants of Metal Complexes Database, Ver. 4.0, NIST Standard Reference Database 46 (1995) Stiff, Water Res. 5, 585-599 (1971). Sun, L.; Wu, C. H.; Faust, B. C. "Photochemical Redox Reactions of Inner-Sphere Copper(II)-Dicarboxylate Complexes: Effects of the Dicarboxylate Ligand Structure on Copper(I) Quantum Yields." J. Phys. Chem.A 102, 8664-8672 (1998). Sunda, W. G.; Guillard, R. R. L."The relation between copper activity and the toxicity of copper to phytoplankton." J. Mar. Res. 34, 511-529 (1976) Sykora, J. "Photochemistry of copper complexes and their environmental aspects." Coor. Chem. Rev. 159, 95-108 (1997). Tao, S.; Long, A.; Liu, C.; Dawson, R. "The influence of Mucus on Copper speciation in the Gill Microenvironment of Carp (Cyprinus carpio)." Ecotoxic. Environ. Safety 47, 59-64 (2000). Taube, H., "Catalysis of the reaction of chlorin and oxalic acid. Complexes of trivalent manganese in solution containing oxalic acid." 69, 1418. (1947). Traodec, D.; Veriot G.; Moliton, A., "Blue light emitting diodes with bathocuproine layer." Synth. Met. 127, 165-168 (2002). Willett, K. L.; Hites, R. A.,"Chemical actinometry: using o-nitrobenzaldehyde to measure light intensity in photochemical experiments." J. Chem. Educ. 77, 900-902 (2000) Wu, C. H.; Sun, L.; Faust, B. C. "Photochemical Formation of Copper(I) from Copper(II)-Dicarboxylate Complexes: Effects of Outer-Sphere versus Inner-Sphere Coordination and of Quenching by Malonate." J. Phys. Chem.A 104, 4989-4996 (2000). Xue, H.; Goncalves, M. L. S.; Reutlinger, M.; Stumm, W. "Copper(I) in fogwater: Determination and interactions with sulfite." Environ. Sci. Technol. 25, 1716-1722 (1991). Yamashita, N.; Tanemura, H.; Kawanishi, S. "Mechanism of oxidative DNA damage induced by quercetin in the presence of Cu(II)." Mutat. Res. 425, 107-115 (1999). Yang, Z. S.; Yu, J. S. "Photovoltalic properties of multilayer heterojunction organic cells." Mol. Cryst. Liq. Cryst. 377, 301-304 (2002). Yokoi, H. a. Isobe, T.,"ESR and optical absorption studies of the copper(II) complexes of ethylenediamine and its alkyl derivatives." Bull. Chem. Soc. Jpn., 42, 2187-2193 (1969). Zak, B. "Determination of serum copper and iron." Clin. Chim. Acta, 3, 328. (1958) Zak, B.; Landers, J. W.; Williams L. A. "Determination of copper and iron." Am. J. Med. Technol. 26, 51 (1960). Zepp, R. G.; Gumz, M. M.; Miller, W. L.; Gao, H. "Photoreaction of valerophenone in aqueous solution." J. Phys. Chem. A 102, 5716-5723 (1998).id NH0920257001 sid 904531 cfn 0 / id NH0920257002 auc 蔡曉忠 tic 溶膠-凝膠型陣列生物感測器之研發 adc 董瑞安 ty 博士 sc 國立清華大學 dp 原子科學系 yr 92 lg 英文 pg 305 kwc 溶膠凝膠固化 kwc 陣列生物感測器 kwc 微針點印 kwc 螢光偵測 kwc 數值模擬 abc 生物感測器是近年發展相當快速的一項分析技術並已成功被應用在許多分析物的快速測定上,雖然早期生物感測器大多只針對單一分析物進行偵測,但隨著快速且可同時進行多目標物分析的需求日益升高,目前也有越來越多的陣列型生物感測器被發展出來以達到這個目標。溶膠-凝膠固化法是一個快速、簡便且非常適用於酵素的的固定技術,因此若可利用溶膠-凝膠技術製作酵素陣列感測器將成為相當具有應用價值的一項分析利器。然而在陣列點印的過程中,溶膠-凝膠的凝固過快以及乾燥後龜裂甚或脫離基材表面等缺點,使得此固化技術一直無法被應用在酵素陣列感測器的製備上。 tc 謝誌…………………………………………………………………………..………….. i 中文摘要……………………………………………………..…………….….……….. ii Abstract……………………………………………….……………..………….…….. iv Content index……………………………...…………………………….….…...….. vii Figure index……………………………………..………………………..……...…. xiv Table index……..………………….……………………….…….…………….…… xiii Chapter 1 General introduction………………………...………..……………. 1 1.1 Introduction…………………………………………………………….… 2 1.2 Objectives and research plan…………………………………………...... 3 1.3 Backgrounds……………………………………………………..……..... 7 1.3.1 Biosensors………………………………………………...…….... 7 1.3.2 Sol-gel techniques…………………………………….….…..…. 10 1.3.3 Sol-gel based biosensors………………………………….…….. 18 1.3.4 Array-based biosensors………………………………….….…... 20 1.4 References…………………………………………………….……....… 24 Chapter 2 Urease-based optical biosensor for the rapid determination of heavy metals…………….……...…………..…….………….. 32 2.1 Introduction………………………………………………………..….… 34 2.2 Experimental details………………………………………………...…... 36 2.2.1 Reagents and materials………………………………….…...…. 36 2.2.2 Apparatus…………………………………...……………….….. 36 2.2.3 Enzyme and indicator immobilization………………...…….….. 37 2.2.4 Analytical procedures………………………………..……..…... 38 2.3 Results and discussion…………………………………….…….………. 39 2.3.1 System fabrication…...………………………………………..… 39 2.3.2 Optical properties of FITC-dextran……………………….……. 42 2.3.3 Sol-gel optimization………………………………...…….….…. 43 2.3.4 Response of the biosensor to urea……………………….….….. 45 2.3.5 Inhibition of heavy metals………………………….………...… 47 2.3.6 Determination of heavy metals…………….….…….……..…… 50 2.3.7 Real sample analysis………………………………..…..….…… 52 2.4 Conclusions….…………………….…………………………….……… 54 2.5 References……………………………………………………….……… 55 Chapter 3 The optimization and characterization of a sol-gel technique suitable for the array fabrication………..………………..……... 58 3.1 Introduction………………………………………….…….…...…….…. 60 3.2 Experimental details………………………………………….…..…..… 61 3.2.1 Reagents and materials…………………………….……..….…. 61 3.2.2 Sol-gel preparation.……………………………….…….….…… 63 3.2.3 Atomic force microscopy………………….….…………..……. 63 3.2.4 X-ray photoelectron spectroscopy………………….…….….…. 63 3.2.5 BET analysis………………………………..…..….……..…….. 64 3.2.6 Fluorescence spectra of dye molecules…………….…..….……. 64 3.3 Optimization of the sol-gel technique..…………………..…....….….…. 65 3.3.1 Optimization of sol percentage………………………..……..….. 65 3.3.2 Optimization of addition sequence………………..……….…… 67 3.3.3 Optimization of PVA and glycerol in sol-gel……..…..….….….. 67 3.3.4 Optimization of urease and dye probes in sol-gel………..…...… 69 3.3.5 The surface modification………………………..…...…..……… 73 3.3.6 Summary of sol-gel optimization………….……..…………..….. 75 3.4 Characterizations of sol-gel…..…………………………....….…..…….. 78 3.4.1 Elemental ratio in sol-gel composition……………….…………. 79 3.4.2 Surface morphology of the sol-gel thin film……………....……. 80 3.4.3 Specific surface area and pore size of the sol-gel…………….…. 91 3.4.4 Fluorescence spectra of sol-gel-encapsulated dye molecules…... 94 3.4.5 Summary of sol-gel characterizations……..…….………….…. 100 3.5 Conclusions…………………………………………………...…..…… 101 3.6 References………………………………………………..…….……… 101 Chapter 4 The fabrication and evaluation of a sol-gel based array biosensor…………………………………………………….…………………..….. 103 4.1 Introduction……………………………………………….……….…... 105 4.2 Experimental details………………………………………..…..……… 107 4.2.1 Reagents and materials…………………………………..…..… 107 4.2.2 Apparatus………………………………………………..…..…. 107 4.2.3 Sol-gel preparation…………………………………..…………. 108 4.2.4 Preparation of biosensor array………………..……...………… 109 4.2.5 Analytical procedures……………………………..……....…… 111 4.3 Results and discussion…………………………………….…………… 112 4.3.1 Pin-printing system….………………………………………… 112 4.3.2 Fluorescence detection system……………..……...……….….. 116 4.3.3 Total immersion system……………………...…………….…... 121 4.3.4 Cross-interference.……………………………..……………… 123 4.3.5 Optimization of the buffer solution……………….…………… 126 4.3.6 Sensor response to pH value………………….…………….…. 128 4.3.7 Urea determination………………………….….……………… 130 4.3.8 ACh determination……………….…………………….….…… 132 4.3.9 Simultaneous multi-analyte detection………………………..… 134 4.4 Conclusions………………………………….……………..…...……… 136 4.5 References……………………………………………………....……… 136 Chapter 5 Applications of the array biosensor (1) Urease-based array biosensor for heavy metals determinations (2) Multi-enzymes array biosensor for determinations of clinically important substrates in kidney function……………………….…….……. 140 5.1 Introduction…………………………………………….………..…….. 142 5.2 Experimental details…………………………………………....……… 146 5.2.1 Reagents and materials……………………………..……..…… 146 5.2.2 Preparation of array biosensor…………………….…..………. 147 5.2.3 Fluorescence detection………………………………………… 148 5.2.4 Principles………………………………………………………. 149 5.3 Array biosensor for heavy metals determinations………………...…… 152 5.3.1 Optimization for heavy metals detections…………..…………. 152 5.3.2 Heavy metals determination…………………………………… 157 5.3.3 Mixed effects of heavy metals…………………..…………….. 162 5.3.4 Real samples analyses……………………………….………… 164 5.3.5 Standard addition of a river sample…………………...……….. 166 5.3.6 Summary of heavy metals determinations…………………….. 168 5.4 Array biosensor for metabolite determination………………………… 169 5.4.1 Urea determination……………………………………….……. 169 5.4.2 Creatinine determination………………………………………. 171 5.4.3 Glucose determination…………………………………….…… 172 5.4.4 Uric acid determination………………………………….…….. 174 5.4.5 Simultaneous determination of multi-analytes………………… 179 5.4.6 Mixed effect of multi-analyte…………………………………. 184 5.4.7 Reusability of the array biosensor……………………...……… 186 5.4.8 Standard addition of a serum sample………………….………. 187 5.4.9 Mathematical fitting using Hill equation………………………. 191 5.4.10 Enzyme kinetics in sol-gel…………………………………….. 199 5.4.11 Long-term stability………………………………….…………. 200 5.4.12 Summary of metabolites determination……………………….. 203 5.5 Conclusions……………………………………………………………. 204 5.6 References…………………………………………………..…………. 204 Chapter 6 Mathematical model simulation of pH-sensitive biosensors…………………………………………………………………………… 209 6.1 Introduction……………………………………………………………. 211 6.2 Theory for model fitting………………………………………....…….. 212 6.2.1 The linear buffer capacity model……………………….……… 212 6.2.2 Buffer capacity in the developed biosensor……………………. 214 6.2.3 Emitted fluorescence of FITC-dextran………………………… 219 6.3 Experimental details.…………………………………………..…….… 224 6.3.1 GC/MS analysis………………………………………..……… 224 6.3.2 LC/MS analysis and NMR Spectroscopy………………...…… 224 6.4 Results and discussion………………………………………...………. 225 6.4.1 pH determination……………………………………...……….. 225 6.4.2 Sensitivity analysis…………………………………………….. 227 6.4.3 Urea determination……………………………..……………… 234 6.4.4 Creatinine determination……………………….……………… 235 6.4.5 ACh determination……………………………….……………. 241 6.4.6 Mechanisms of auto-decomposition of AChCl……………….. 246 6.4.6.1 GC/MS analyses……………………………..………….. 248 6.4.6.2 LC/MS analyses…………………………………………. 249 6.4.6.3 NMR analyses…………………………………………… 255 6.5 Conclusions………………………….…………………..….…………. 259 6.6 References……………….……………………………..….….……….. 259 Chapter 7 Conclusions………………………………………………………..... 261 6.1 Conclusions……………………………………………………………. 262 6.2 Suggestions and future perspectives………………………….……..… 265 Appendix…………………………………………..……………………..………..... 269 Appendix A Lineweaver-Burk plots in enzyme kinetics……………………………. 269 Appendix B MATLAB programs in the model simulation of pH-based biosensors……………………………………………..……….……… 273 Appendix C LC/MS spectra in ACh decomposition experiments…………….…….. 285 Appendix D Standard NMR spectra of ACh, vinyl acetate, and trimethylamine…… 293 The Author …………………………………………..……………..……..……..…. 300rf Chapter 1. Introduction 1. Eggins, B.R. Chemical Sensors and Biosensors, John Wiley & Sons: England, 2002; Chapter 1. 2. Rogers, E.K. Handbook of Biosensors and Electronic noses: Medicine, Food, and the Environment, CRC Press, Inc.: Florida, 1997; Chapter 1. 3. Cho, E.J.; Tao, Z.; Tehan, E.C.; Bright, F.V. Anal. Chem. 2002, 74, 6177-6184. 4. Arkhypova, V.N.; Dzyadevych, S.V.; Soldakin, A.P.; El’skaya, A.V.; Jaffrezic-Renault, N.; Jaffrezic, H.; Martelet, C. Talanta 2001, 55, 919-927. 5. Taylor, R.F. Protein Immobilization: Fundamentals and Applications, Marcel Dekker, Inc.: New York, 1991; Chapter 1. 6. Bickerstaff, G.F. Immobilization of enzymes and cells, Humans Press, Totowa, New Jersey, 1997. 7. Wong, S.S. Chemistry of Protein Conjugation and Cross-linking, CRC Press, Inc.: Florida, 1993; Chapter 1. 8. Scouten, W.H.; Luong, J.H.; Brown, R.S. Trends Biotechnol. 1995, 13, 178-185. 9. Hench, L.L. Sol-gel Silica: Properties, Processing and Technology transfer, Noyes publications: New Jersey, 1998; Chapter 1. 10. Lillis, B.; Grogan, C.; Berney, H.; Lane, W.A. Sensor Actuat. B-Chem. 2000, 68, 109-114. 11. Jin, W.; Brennan, J.D. Anal. Chim. Acta 2002, 461, 1-36. 12. Gill, I.; Ballesteros, A. Trends Biotechnol. 2000, 18, 282-296. 13. Park, C.B.; Clark, D.S. Biotechnol. Bioeng. 2002, 78, 229-235. 14. Clark, L.C.; Lyons, C. Ann. Acad. Sci. 1962, 102, 29-33. 15. Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Pure Appl. Chem. 1999, 71, 2333-2348. 16. Scheller, F.W.; Wollenbeger, U.; Warsinke, A.; Lisdat, F. Curr. Opin. Biotech. 2001, 12, 35-40. 17. Arnold, M.A.; Meyerhoff, M.E. Crit. Rev. Anal. Chem. 1988, 20, 149-196. 18. Byfield, M.P.; Abuknesha, R.A. Biosens. Bioelectron. 1994, 9, 373-400. 19. Sethi, R.S. Biosens. Bioelectron. 1994, 243-264. 20. Liang, J.F.; Li, Y.T.; Yang, V.C. J. Pharm. Sci. 2000, 89, 979-990. 21. Karube, I.; Nomura, Y. J. Mol. Catal. B-Enzym. 2000, 10, 177-181. 22. D’Souza, S.F. Biosens. Bioelectron. 2001, 16, 337-353. 23. O’Sullivan, C.K. Anal. Bioanal. Chem. 2002, 372, 44-48. 24. O’Sullivan, C.K.; Vaughan, R.; Guilbault, G.G. Anal. Lett. 1999, 32, 2353-2377. 25. Rogers, K.R. Mol. Biotechnol. 2000, 14, 109-129. 26. Iqbal, S.S.; Mayo, M.W.; Bruno, J.G.; Bronk, B.V.; Batt, C.A., Chambers, J.P. Biosens. Bioelectron. 2000, 15, 549-578. 27. Shah, J.; Wilkins, E. Electroanal. 2003, 15, 157-167. 28. Zhang, S.; Wright, G.; Yang, Y. Biosens. Bioelectron. 2000, 15, 273-282. 29. O’Sullivan, C.K.; Guilbault, G.G. Biosens. Bioelectron. 1999, 14, 663-670. 30. Rich, R.L.; Myszka, D.G. J. Mol. Recognit. 2000, 13, 388-407. 31. Mehrvar, M.; Bis, C.; Scharer, J.M.; Moo-Young, M.; Luong, J.H. Anal. Sci. 2000, 16, 677-692. 32. Marazuela, M.D.; Moreno-Bondi, M.C. Anal. Bioanal. Chem. 2002, 372, 664-682. 33. Myszka, D.G. J. Mol. Recognit. 1999, 12, 390-408. 34. Baird, C.L.; Myszka, D.G. J. Mol. Recognit. 2001, 14, 261-268. 35. Vo-Dinh, T.; Cullum, B. Fresen. J. Anal. Chem. 2000, 366, 540-551. 36. Rogers, K.R.; Gerlach, C.L. Environ. Sci. Technol. 1996, 30, 486A-491A. 37. Luong, J.H.; Bouvrette, P; Male, K.B. Trends Biotechnol. 1997, 15, 369-377. 38. Patel, P.D. TRAC-Trend Anal. Chem. 2002, 21, 96-115. 39. Mello, L.D.; Kubota, L.T. Food Chem. 2002, 77, 237-256. 40. Velasco-Garcia, M.N.; Mottram, T. Biosys. Eng. 2003, 84, 1-12. 41. Wilkins, E.; Atanasov, P. Med. Eng. Phys. 1996, 18, 273-288. 42. Wang, J. Electroanal. 2001, 13, 983-988. 43. O’Connell, P.J.; Guilbault, G.G. Anal. Lett. 2001, 34, 1063-1078. 44. Alocilja, E.C.; Radke, S.M. Biosens. Bioelectron. 2003, 18, 841-846. 45. Dong, S.; Chen, X. Reviews in Molecular Biotechnolgy 2002, 82, 303-323. 46. Dave, B.C.; Dunn, B.; Valentine, J.S.; Zink, J.J. Anal. Chem. 1994, 66, 1120A-1126A. 47. Arenkov, P.; Kukhtin, A.; Gemmell, A.; Voloshchuk, S.; Chupeeva, V.; Mirzabekov, A. Anal. Biochem. 2000, 278, 123-131. 48. Lev, O.; Tsionsky, M.; Rabinovich, L.; Glezer, V.; Sampath, S.; Pankratov, I.; Gun, J. Anal. Chem. 1995, 67, 22A-30A. 49. Brinker, C.J.; Scherer, G.W. Sol-gel Science: The Physics and Chemistry of Sol-gel Processing, Academic Press, Inc.: California, 1990; Chapter 1. 50. Brinker, C.J.; Keefer, K.D.; Schaefer, D.W.; Ashley, C.S. J. Non-Cryst. Solids 1982, 48, 47-64. 51. Brinker, C.J.; Scherer, G.W. J. Non-Cryst. Solids 1985, 70, 301-322. 52. Pope, E.J.A.; Mackenzie, J.D. J. Non-Cryst. Solids 1986, 87, 185-198. 53. Scherer, G.W. J. Non-Cryst. Solids 1988, 100, 77-92. 54. Braun, S.; Rappoport, S.; Zusman, R.; Avnir, D.; Ottolenghi, M. Mater. Lett. 1990, 10, 1-5. 55. Braun, S.; Shtelzer, S.; Rappoport, S.; Avnir, D.; Ottolenghi, M. J. Non-Cryst. Solids 1992, 147, 739-743. 56. Avnir, D.; Braun, S.; Lev, O.; Ottlengi, M. Chem. Mater. 1994, 6, 1605-1614. 57. Turniansky, A.; Avnir, D.; Bronshtein, A.; Aharonson, N.; Altstein, M. J. Sol-Gel Sci. Techn. 1996, 7, 135-143. 58. Gill, I. Chem. Mater. 2001, 13, 3404-3421. 59. Roux, C.; Livage, J.; Farhati, K.; Monjour, L. J. Sol-Gel Sci. Techn. 1997, 8, 663-666. 60. Yano, S.; Iwata, K.; Kurita, K. Mat. Sci. Eng. C-Bios. 1998, 6, 75-90. 61. Schedl, M.; Wilharm, G.; Achatz, S.; Kettrup, A.; Niessner, R.; Knopp, D. Anal. Chem. 2001, 73, 5669-5676. 62. Arthur, C.L.; Pawliszyn, J. Anal. Chem. 1990, 62, 2145-2148. 63. Sieminska, L.; Ferguson, M.; Zerda, T.W.; Couch, E.; J. Sol-Gel Sci. Technol. 1997, 8, 1105-1109. 64. Kortesuo, P.; Ahola, M.; Kangus, M.; Yli-Urpo, A.; Kiesvaara, J; Marvola, M. Int. J. Pharm. 2001, 221, 107-114. 65. Shibayama, N.; Saigo, S. J. Mol. Biol. 1995, 251, 203-209. 66. Ji, Q.; Lloyd, C.R.; Ellis Jr., W.R.; Eyring, E.M. J. Am. Chem. Soc. 1998, 120, 221-222. 67. Ellerby, L.M.; Nishida, C.R.; Nishida, F.; Yamanaka, S.A.; Dunn, B.; Valentine, J.S.; Zink, J.J. Science 1992, 255, 1113-1115. 68. MacCraith, B.D.; McDonagh, C.M.; O’Keeffe, G.; McEvoy, A.K.; Butler, T.; Sheridan, F.R. Sensor Actuat. B-Chem. 1995, 29, 51-57. 69. Lin, J.; Brown, C.W. TRAC-Trend Anal. Chem. 1997, 16, 200-211. 70. Yang, H.H.; Zhu, Q.Z.; Qu, H.Y.; Chen, X.L.; Ding, M.T.; Xu, J.G. Anal. Biochem. 2002, 308, 71-76. 71. Liu, G.D.; Zhong, T.S.; Huang, S.S.; Shen, G.L.; Yu, R.Q. Fresen. J. Anal. Chem. 2001, 370, 1029-1034. 72. Narang, U.; Prasad, P.N.; Bright, F.V.; Ramanathan, K.; Kumar, N.D.; Malhotra, B.D.; Kamalasanan, M.N.; Chandra, S. Anal. Chem. 1994, 66, 3139-3144. 73. Audebert, P.; Demaille, C. Chem. Mater. 1993, 5, 911-913. 74. Wang, B.; Li, B.; Deng, Q.; Dong, S. Anal. Chem. 1998, 70, 3170-3174. 75. Yang, S.; Lu, Y.; Atanossov, P.; Wilkins, E.; Long, X. Talanta 1998, 47, 735-743. 76. Yao, T.; Takashima, K. Biosens. Bioelectron. 1998, 1, 67-73. 77. Pandey, P.C.; Upadhyay, S. Sensor Actuat. B-Chem. 2001, 76, 193-198. 78. Künzelmann, U.; Böttcher, H. Sensor Actuat. B-Chem. 1997, 39, 222-228. 79. Pandey, P.C.; Upadhyay, S.; Pathak, H.C. Sensor Actuat. B-Chem. 1999, 60, 83-89. 80. Li, J.; Chia, L.S.; Goh, N.K.; Tan, S.N. J. Electroanal. Chem. 1999, 460, 234-241. 81. Pankratov, I.; Lev, O. J. Electroanal. Chem. 1995, 393, 35-41. 82. Sampath, S.; Lev, O. Anal. Chem. 1996, 68, 2015-2021. 83. Liu, Z.; Liu, B.; Zhang, M.; Kong, J.; Deng, J. Anal. Chim. Acta 1999, 392, 135-141. 84. Ramanathan, K.; Jönsson, B.R.; Danielon, B. Anal. Chim. Acta 2001, 427, 1-10. 85. Wolfbeis, O.S.; Oehme, I.; Papkovskaya, N.; Klimant, I. Biosens. Bioelectron. 2000, 15, 69-76. 86. Marcos, S. de; Galindo, J.; Sierra, J.F.; Galbán, J.; Castillo, J.R. Sensor Actuat. B-Chem. 1999, 57, 227-232. 87. Lee, W.Y.; Kim, S.R.; Kim, T.H.; Lee, K.S.; Shin, M.C.; Park, J.K. Anal. Chim. Acta 2000, 404, 195-203. 88. Ogura, K.; Nakaoka, K.; Nakayama, M.; Kobayashi, M. Fujii, A. Anal. Chim. Acta 1999, 384, 219-225. 89. Pandey, P.C.; Singh, G. Talanta 2001, 55, 773-782. 90. Narang, U.; Prasad, P.N.; Bright, F.V. Chem. Mater. 1994, 6, 1596-1598. 91. Tsai, H.C.; Doong, R.A.; Chiang, H.C.; Chen, K.T. Anal. Chim. Acta 2003, 481, 75-84. 92. Pandey, P.C.; Upadhyay, S.; Pathak, H.C.; Pandey, C.M.D.; Tiwari, Ida Sensor Actuat. B-Chem. 2000, 62, 109-116. 93. Doong, R.A.; Tsai, H.C. Anal. Chim. Acta 2001, 434, 239-246. 94. Andreou, V.G.; Clonis, Y.D. Biosens. Bioelectron. 2002, 17, 61-69. 95. Aylott, J.W.; Richardson, D.J.; Russell, D.A. Analyst 1997, 122, 77-80. 96. Li, C.I.; Lin, Y.H.; Shih, C.L.; Tsaur, J.P.; Chau, L.K. Biosens. Bioelectron. 2002, 17, 323-330. 97. Ramanathan, K.; Kamalasanan, M.N.; Malhotra, B.D.; Pradhan, D.R. J. Sol-Gel Sci. Technol. 1997, 10, 309-316. 98. Navas Díaz, A.; Ramos Peinado, M.C.; Torijas Minguez, M.C. Anal. Chim. Acta 1998, 363, 221-227. 99. Li, J.; Tan, S.N.; Ge, H. Anal. Chim. Acta 1996, 335, 137-145. 100. Jia, J.; Wang, B.; Wu, A.; Cheng, G.; Li, Z.; Dong, S. Anal. Chem. 2002, 74, 2217-2223. 101. Gauglitz, G. Mikrochim. Acta 1999, 131, 9-17. 102. Rowe, C.A.; Scruggs, S.B.; Feldstein, M.J.; Golden, J.P.; Ligler, F.S. Anal. Chem. 1999, 71, 433-439. 103. Rowe, C.A.; Tender, L.M.; Feldstein, M.J.; Golden, J.P.; Scruggs, S.B.; MacCraith, B.D.; Cras, J.J.; Ligler, F.S. Anal. Chem. 1999, 71, 3846-3852. 104. Rowe-Taitt, C.A.; Golden, J.P.; Feldstein, M.J.; Cras, J.J.; Hoffman, K.E.; Ligler, F.S. Biosens. Bioelectron. 2000, 14, 785-794. 105. Rowe-Taitt, C.A.; Hazzard, J.W.; Hoffman, K.E.; Cras, J.J.; Golden, J.P.; Ligler, F.S. Biosens. Bioelectron. 2000, 15, 579-589. 106. Rowe-Taitt, C.A.; Anderson, G.P.; Lingerfelt, B.M.; Feldstein, M.J.; Ligler, F.S. Anal. Chem. 2002, 74, 6114-6120. 107. Barzen, C.; Brecht, A.; Gauglitz, G. Biosens. Bioelectron. 2002, 17, 289-295. 108. Brecht, A.; Klotz, A.; Barzen, C.; Gaugltiz, G.; Harriz, R.D.; Quigley, G.R.; Wilkinson, J.S.; Sztajnbok, P.; Abuknesha, R.; Gascón, J.; Oubiña, A.; Barceló, D. Anal. Chim. Acta 1998, 362, 69-79. 109. Weller, M.G.; Schuetz, A.J.; Winklmair, M.; Niessner, R. Anal. Chim. Acta 1999, 393, 29-41. 110. Anderson, G.P.; King, K.D.; Gaffney, K.L.; Johnson, L.H. Biosens. Bioelectron. 2000, 14, 771-777. 111. Petrou, P.S.; Kakabakos, S.E.; Christofidis, I.; Argitis, P.; Misiakos, K. Biosens. Bioelectron. 2002, 17, 261-268. 112. Howell, S.W.; Inerowicz, H.D.; Regnier, F.E.; Reifenberger, R. Langmuir 2003, 19, 436-439. 113. Palmer, T. Understanding Enzymes, Prentice Hall/Ellis Horwood, Hemel Hempstead, Hertfordshire: 1995, edition4th, Chapter 20. 114. Kim, Y.D.; Park, C.B.; Clark, D.S. Biotechnol. Bioeng. 2001, 73, 331-337. 115. Cho, E.J.; Bright, F.V. Anal. Chim. Acta 2002, 470, 101-110. 116. Cho, E.J.; Bright, F.V. Anal. Chem. 2002, 74, 1462-1466. 117. Cho, E.J.; Tao, Z.; Tang, Y.; Tehan, E.C.; Bright, F.V.; Hicks, W.L.J.; Gardella, J.A.J.; Hard, R. Appl. Spectrosc. 2002, 56, 1385-1389.id NH0920257002 sid 888504 cfn 0 / id NH0920257003 auc 許博銘 tic 科學園區周界之植物葉面落塵中陰陽離子分析研究 adc 洪益夫 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 125 kwc 乾沉降 kwc 落塵採樣 kwc 陰.陽離子 kwc 等濃度圖 abc 摘要 tc 目錄 摘要 I 誌謝 II 目錄 III 圖目錄 VI 表目錄 IX 第一章 緒論 1 1-1. 研究緣起 1 1-2. 研究目的 2 第二章 文獻回顧 4 2-1. 懸浮微粒及粒狀酸鹼化物的性質及來源探討 4 2-2. 乾沉降採樣方式文獻 6 2-3. 空氣中粒狀物採樣方式與分析方法文獻 7 2-4. 落塵之來源與地域性差異 12 2-5. 微粒物質之健康效應 13 第三章 儀器設備及實驗方法 15 3-1. 實驗儀器設備與藥品 15 3-1-1. 實驗儀器設備 15 3-1-2. 實驗用藥品 15 3-1-3. 儀器分析條件 16 3-1-4. 落塵採樣之目的 16 3-1-5. 採樣材質的選擇 17 3-1-6. 葉面採樣之植物種類選擇 17 3-1-7. 榕樹葉片之選擇 18 3-2. 實驗欲分析目標物種類 18 3-2-1. 檢量線範圍 19 3-2-2. 4-7月份檢量線比較方面 20 3-2-3. 採樣地點的介紹 20 3-2-4. 樹葉面積量測 20 3-3. 樣品的前處理工作 21 3-4. GIS與Surfer等濃度圖之繪製 21 第四章 結果與討論 24 4-1. 分析條件 24 4-1-1. 儀器偵測極限 24 4-1-2. 各月份所使用之離子檢量線 25 4-2. 採樣葉數的決定 26 4-2-1. 方格子檢量線 26 4-3. 新竹地區之落塵量比較 27 4-4. 周界採樣結果 28 4-4-1. 葉表落塵質量分佈比較 32 4-5. 目標污染物成因評估 35 4-6. 五月份之等濃度圖比較 36 4-7. 與周界計劃之等濃度圖比較 38 4-8. 葉面之乾沉降與高流量濾紙之離子比較 41 4-9. 新竹地區落塵與其它地區之比較 45 4-10. 周界13點之陽離子質量分佈情況 45 4-11. 周界13點採樣陰陽離子莫耳比 46 第五章 結論 48 參考文獻 50 附錄一.92年4-7月份降雨資料 124 附錄二.民國89-92年採樣當月之氣象資料 125rf 參考文獻 1.陳律言、吳昭美、林文印、陳志傑、鄭福田,“南高屏地區大氣氣膠受空品區內輸送及當地因子貢獻量之模擬探討”,氣膠研討會論文集,C009A pp.1-2,1999。 2.李崇德、許文昌,“台灣地區懸浮微粒特性監測及其區域性污染來源推估”,第二期學刊-7,pp.1-9。 3.陳佩伶、徐慈鴻、李貽華,“粒狀污染物與農作物“,專題報導第62期,pp.1-3。 4.林耀埼、蔡春進、石東生,“不同酸性氣膠採樣器的現場測試研究”,勞工安全衛生研究季刊,Vol.10,NO.1,pp.1-11,2002。 5.經濟部工業局,半導體製造污染防治技術,pp.23-36。 6.作業環境空氣中有害物質安全資料,行政院勞工委員會勞工安全衛生研究所網站 http://www.iosh.cla.gov.tw/。 7.行政院勞委會,半導體製造業潛在危害暴露之初步探討,勞工安全衛生簡訊第,24期,1998。 8.行政院勞工委員會,作業環境空氣中有害物標準分析參考方法(一),1994。 9.D. Fowler, C.E.R. Pitcairn, M.A. Sutton, C. Flechard, B. Loubet, M. Coyle, R.C. Munro, “ The mass budget of atmospheric ammonia in woodland within 1 km of livestock buildings “, Environmental Pollution, Vol.102, pp.343-348, 1998. 10.Helle Vibeke Andersen, Mads F. Hovmand, “ Review of dry deposition measurements of ammonia and nitric acid to forest “, Forest Ecology and Management, Vol.114, pp.5-18, 1999. 11.Raffaella Balestrini, Laura Galli, Gianni Tartari, “ Wet and dry atmospheric deposition at prealpine and alpine sites in northern Italy “, Atmospheric Environment, Vol.34, pp.1455-1470, 2000. 12.M.J. Sanz, A. Carratalá, C. Gimeno, M.M. Millán, ” Atmospheric nitrogen deposition on the east coast of Spain: relevance of dry deposition in semi-arid Mediterranean regions “, Environmental Pollution, Vol.118, pp.259-272, 2002. 13.Mustafa Odabasi, H. Ozgur Bagiroz, “ Sulfate dry deposition fluxes and overall deposition velocities measured with a surrogate surface “, The Science of Total Environment, Vol.297, pp.193-201, 2002. 14.Anita Saxena, U.C. Kulshrestha, N. Kumar, K.M. Kumari, Satya Prakash and S.S. Srivastava, “ Dry deposition of sulphate and nitrate to polypropylene surfaces in a semi-arid area of India “, Atmospheric Environment, Vol.31, NO.15, pp.2361-2366, 1997. 15.Gur Sumiran Satsangi, A. Lakhani, P. Khare, S.P. Singh, K.M. Kumari, S.S. Srivastava, “ Measurements of major ion concentration in settled coarse particles and aerosols at a semiarid rural site in India “, Environment International, Vol.28, pp.1-7, 2002. 16.Idrees F. Al-Momani, Semra Tuncel, Ünal Eler, Erdal Örtel, Gürol Sirin, Gürdal Tuncel, “ Major ion composition of wet and dry deposition in the eastern Mediterranean basin “, The Science of the Total Environment, Vol.164, pp.75-85, 1995. 17.陳武揚、孫岩章,“植物葉表沉降性微粒之鑑定”,氣膠研討會論文集, pp.490-499,1998。 18.蔡德明、吳義林,“高屏地區大寮測站PM10與PM2.5之組成份特徵研究”,氣膠研討會論文集,pp.339-346,1998。 19.Abdul Bari, Vincent Ferraro, Lloyd R. Wilson, Dan Luttinger, Liaquat Husain, “Measurements of gaseous HONO, HNO3, SO2, HCl, NH3, particulate sulfate and PM2.5 in New York, NY”, Atmospheric Environment Vol.37, pp.2825-2835, 2003. 20.王怡芳、黃慕欣、王秋森,“台灣林園、三重與麥寮三地區大氣懸浮微粒來源之探討”,氣膠研討會論文集,pp.650-657,1996。 21.李崇德、吳啟文,“台灣中部都會區氣懸微粒粒徑分佈之污染物特性分析”,1996。 22.袁中新、洪崇軒、王宏恩、劉山豪,“南台灣地區懸浮微粒物化特徵及生成機制探討”,氣膠研討會論文集,P002,pp.1-9,1999。 23.袁中新、張章堂、袁景嵩、黃明和,“高屏地區懸浮微粒物化特徵探討”,氣膠研討會論文集,pp.256-265,1998。 24.蔡德明、吳義林、陳冠志,“南高屏地區懸浮微粒分佈特徵與來源之研究”,氣膠研討會論文集,pp.311-317,1998。 25.林紫嵐、周崇光、鄭明威、李崇德,“半導體製程廢氣成份分析及煙道不透光率之研究”,氣膠研討會論文集,pp.450-457,1998。 26.陳穩至、吳義林,“雲林地區懸浮微粒PM10之組成來源”,氣膠研討會論文集,pp.35-40,2000。 27.袁中新、李崇垓、劉山豪、袁菁,“南台灣都會區大氣氣膠中細微粒污染源貢獻量解析”,氣膠研討會論文集,pp.41-46,2000。 28.蘇建中、王竹方,“半導體工業區空氣污染物之懸浮微粒的調查分析”,氣膠研討會論文集,pp.135-140,2000。 29.蔡祈政、陳瑞仁、林傑、許美芳、蔡俊鴻、謝祝欽、陳飛良、高茂仁、鍾進中,“污染事件日PM10微粒中水溶性離子及衍生性氣膠之探討”,氣膠研討會論文集,pp.215-221,2000。 30.郭本正、吳義林,“沉降表面對乾沉降速率之影響”,氣膠研討會論文集,pp.305-310,2000。 31.Man-Ting Cheng, Chyan-Jong Sheu, Ying-I Tsai, Reng-Fong Chern, “Characterization of Atmospheric Particulates in Taichung Near-Shore Area”, International Conference on Aerosol Science and Technology, pp.631-638, 1996. 32.Der-Min Tsai, Yee-Lin Wu, “The Indoor/Outdoor Relationships for Acid Aerosol in Meteropolitan Tainan”, International Conference on Aerosol Science and Technology, pp.487-492, 1996. 33.Y. Qin, K. Oduyemi, “Atmospheric aerosol source identification and estimates of source contributions to air pollution in Dundee, UK”, Atmospheric Environment, Vol.37, pp.1799-1809, 2003. 34.Guor-Cheng Fang, Cheng-Nan Chang, Shin-Chung Lu, Yuh-Shen Wu, Shun-Chin Chen and Chii-Don Chen, “The using of ADS and universal sampler to measure ambient air pollutants in the traffic site of centratl Taiwan, Sha-Lu”, International Conference on Aerosol Science and Technology, pp.141-145, 2000. 35.Guor-Cheng Fang, Cheng-Nan Chang, Yuh-Shen Wu, Peter Pi-Cheng Fu, Chi-Dong Chen and Shyh-Chyi Chang, “Study of Water-Soluble Ions in Ambient Air Suspended Particles in Taichung, Taiwan”, Aerosol and Air Quality Research, Vol.2, No.1, pp.41-52, 2002. 36.Chuen-Jinn Tsai, Shie-Bong Perng, Tsai-Yin Lin, “A Study of The Performance of Different Acidic Aerosol Samplers And The Characteristics of Acidic Aerosols in Shinchu”, International Conference on Aerosol Science and Technology, pp.10-16, 1998. 37.Tuomo A. Pakkanen, Veli-Matti Kerminen, Kati Loukkola, Risto E. Hillamo, P.aivi Aarnio, Tarja Koskentalo, Willy Maenhaut, “Size distributions of mass and chemical components in street-level and rooftop PM1 particles in Helsinki”, Atmospheric Environment, Vol.37, pp.1673-1690, 2003. 38.K. Oravisjarvi, K.L.Timonen, T.Wiikinkoski, A.R. Ruuskanen, K. Heinanen, J. Ruuskanen, “Source contributions to PM2.5 particles in the urban air of a town situated close to a steel works”, Atmospheric Environment, Vol.37, pp.1013-1022, 2003. 39.Horacio Bogo, Marcelo Otero, Pablo Castro, M.J. Ozafran, Andres Kreiner, Ernesto J. Calvo, R. Martin Negri, “Study of atmospheric particulate matter in Buenos Aires city”, Atmospheric Environment, Vol.37, pp.1135-1147, 2003. 40.Y. Qin, K. Oduyemi, “Chemical composition of atmospheric aerosol in Dundee, UK”, Atmospheric Environment, Vol.37, pp.93-104, 2003. 41.Min Hu, Ling-Yan He, Yuan-Hang Zhang, Min Wang, Yong Pyo Kim, K.C. Moon, “Seasonal variation of ionic species in fine particles at Qingdao, China”, Atmospheric Environment, Vol.36, pp.5853-5859, 2002. 42.Robert Gehrig, Brigitte Buchmann, “Characterising seasonal variations and spatial distribution of ambient PM10 and PM2.5 concentrations based on long-term Swiss monitoring data”, Atmospheric Environment, Vol.37, pp.2571-2580, 2003. 43.Lun Xiaoxiu, Zhang Xiaoshan, Mu Yujing, Nang Anpu, Jiang Guibin, “Size fractionated speciation of sulfate and nitrate in airborne particulates in Beijing, China”, Atmospheric Environment, Vol.37, pp.2581-2588, 2003. 44.Abdus Salam, Heidi Bauer, Karin Kassin, Shah Mohammad Ullah, Hans Puxbaum, “ Aerosol chemical characteristics of a mega-city in Southeast Asia (Dhaka-Bangladesh) ”, Atmospheric Environment, Vol.37, pp.2517-2528, 2003. 45.Mukesh Sharma, Y.N.V.M. Kiran, Kaushik K. Shandilya, “Investigations into formation of atmospheric sulfate under high PM10 concentration”, Atmospheric Environment, Vol.37, pp.2005-2013, 2003. 46.A.W. Knight, G.H. McTainsh, R.W. Simpson, ” Sediment loads in an Australian dust storm : implications for present and past dust processes ”, Catena, Vol.24, pp.195-213, 1995. 47.A. Bucher, “ Saharian dust from ancient times until the present. A note on methods of study”, Journal of Arid Environments, Vol.25, pp.125-130, 1993. 48.Monika J. Kulshrestha, Umesh C. Kulshrestha, D.C. Parashar, M. Vairamani, “Estimation of SO4 contribution by dry deposition of SO2 onto the dust particles in India”, Atmospheric Environment, Vol.37, pp.3057-3063, 2003. 49.國內外PM2.5懸浮微粒研究現況研討會,pp.1-1~3-8,September 30,1999。 50.國際癌症研究署網頁,http://www.iarc.fr/。 51. 李孟燦,空氣中氯化氫及硝酸氣體之採樣分析研究,國立清華大學原子科學細系碩士論文,新竹,2001。 52. Dionex Manuals and Literature CD, Dionex Corp., 1999-2001. 53. H.W. Vallack, D.E. Shillito, “ Suggested Guidelines for Deposited Ambient Dust “, Atmospheric Environment, Vol.32, pp.2737-2744, 1998. 54. Y.W. Feng, N. Ogura, Z.W. Feng, F.Z. Zhang and H. Shimizu, “ The concentrations and souces of fluoride in atmospheric depositions in Beijing, China “, Water, Air and Soil Pollution, Vol.145, pp.95-107, 2003. 55. L. Granat, S.N. Das, R.S. Tharkur and H. Rodhe, ” Atmospheric deposition in a rural area in India-Net and potential acidity ”, Water, Air, and Soil Pollution, Vol.130, pp.469-474, 2001. 56. A.G. Pillai, Medha S. Naik, G.A. Momin, P.S.P. Rao, P.D. Safai, K.Ali, Henning rodhe and Lennart Granat, “ Studies of wet deposition and dustfall at pune, India “, Water, Air, and Soil Pollution, Vol.130, pp.475-480, 2001. 57. Karl Zeller, Debra Harrington, Al Riebau, Evgeny Donev, “ Annual wet and dry deposition of sulfur and nitrogen in the snowy range, Wyoming “, atmospheric Environment, Vol.34, pp.1703-1711, 2000. 58. Soon-Ung Park, Eun-Hee Lee, “ Long-range transport contribution to dry deposition of acid pollutants in south Korea “, Atmospheric Environment, Vol.37, pp.3967-3980, 2003. 59. Yuzhou Luo, Xiusheng Yang, Robert J. Carley, Christopher Perkins, “ Atmospheric deposition of nitrogen along the Connecticut coastline of Long Island Sound: a decade of measurements “, Atmospheric Environment, Vol.36, pp.4517-4528, 2002. 60. Soon-Ung Park, Hee-Jin In, Si-Wan Kim, Young-Hee Lee, “ Estimation of sulfur deposition in South Korea “, Atmospheric Environment, Vol.34, pp.3259-3269, 2000. 61. Abdus Salam, Heidi Bauer, Karin Kassin, Shah Mohammad Ullah, Hans Puxbaum, “ Aerosol chemical characteristics of a mega-city in Southeast Asia ( Dhaka-Bangladesh ) “, Atmospheric Environment, Vol.37, pp.2517-2528, 2003. 62. 園區空氣品質監測小組工作計劃期末報告,國立清華大學原子科學係,pp.102-115,2000。 63. 園區周界空氣品質監測計劃期末報告,國立交通大學環境工程研究所,pp.244-263,2001。id NH0920257003 sid 904533 cfn 0 / id NH0920257004 auc 許耀仁 tic 全三維幾何系統模型在PET統計影像重建之研究 adc 許靖涵 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg - kwc 正子斷層掃瞄儀 kwc 全三維統計式影像重建法 kwc 幾何系統矩陣 kwc 環差異 abc 摘要 tc 目錄 中文摘要 Ⅰ 英文摘要 Ⅱ 目錄 Ⅲ 圖目錄 Ⅴ 表目錄 Ⅶ 第一章、 前言…………………………………………………………1 第二章、 PET造影原理………………………………………………2 第一節、 基本物理架構…………………………………………2 第二節、 PET解析度上的限制………………………………… 6 第三節、 PET資料型態…………………………………………7 第四節、 PET三維資料的收集…………………………………8 第三章、 PET影像重建原理的回顧……………………………….10 第一節、 PET的資料分佈型態………………………………..10 第二節、 MLEM演算法…………………………………………12 第四章、 全三維PET系統模型…………………………………..16 第一節、 二維PET投影法……………………………………17 第二節、 二維機率矩陣的排列和儲存………………………19 第三節、 二維環式PET的系統對稱性………………………21 3-1、鏡射對稱……………………………………………..22 3-2、旋轉對稱………………………………………………25 3-3、八倍對稱………………………………………………26 第四節、三維PET掃描儀系統偵收模式……………………….29 4-1、三維投影方式…………………………………………30 4-2、三維PET機率矩陣的的儲存和其對稱性……………32 第五節、系統幾何模型……………………………………….. 34 5-1、二維幾何模型…………………………………………34 5-2、三維幾何模型…………………………………………35 第六節、結語……………………………………………………36 第五章、 實驗結果與討論……………………………………… 37 第一節、 二維機率矩陣的驗證……………………………… 37 第二節、 二維機率矩陣的儲存空間………………………… 41 第三節、 二維重建影像的執行時間……………………….. 42 第四節、 三維機率矩陣的驗證……………………………… 43 第五節、 三維機率矩陣的儲存空間和執行時間…………….53 第六章、 結論與未來方向…………………………………………57 參考文獻………………………………………………………………59rf 參考文獻 1. John M. Ollinger and Jeffrey A. Fessler, “Positron-emission tomography,” IEEE Signal Processing Magazine, Vol. 41, No.1,pp.43-55,January 1997 2. Thomas F. Budinger, “ Advances in positron tomography for oncology, ” Nuclear Medicine and Biology, vol. 23, pp.659-667, 1996 3. L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography, ”IEEE Transactions on Medical Imaging, Vol.MI-1, No. 2, pp. 113-122, October 1982. 4. Linda Kaufman,” Implementing and accelerating the EM algorithm for positron emission tomography, ” IEEE Transactions on Medical Imaging,Vol.MI-6, No.1,pp.37-51,March 1987. 5. H. Malcolm Hudson and Richard S. Larkin, ”Accelerated image reconstruction using ordered subsets of projection data,” IEEE Transactions on Medical Imaging,Vol.13 ,No.4,pp.601-609, December 1994. 6. Jia-Lien Wang, Ching-Han Hsu, “A Study of Forward and Backward Projectors in Iterative Reconstructions,’ Annual Meeting of Society of Nuclear Medicine, Taiwan,2001. 7. Jinyi Qi, Student Member, IEEE, Richard M. Leahy, Member, IEEE, Chinghan Hsu, Student Member, IEEE, Thomas H. Farquhar3, Student Member, IEEE, and Simon R. Cherry3, Senior Member, IEEE ” Fully 3D Bayesian Image Reconstruction for the ECAT EXACT HR+,” IEEE Transactions On Nuclear Science, Vol. 45, No. 3, June 1998 8. Johnson C, Yan Y, Carson R, Martino R, and Daube-Witherspoon M,” A system for the 3D reconstruction of retracted-septa PET data using the EM algorithm,” IEEE Transactions on Nuclear Science, vol.42,No.4, pp.1223-1227 , 1995 9. Kinahan P and Rogers J, “ Analytic 3D image reconstruction using all dectected events” IEEE Transactions on Nuclear Science, vol.36 pp.964-968 1989 10. Adam L E, Zaers J, Ostertag H, Trojan H, Bellemann M E, Brix G and Lorenz W J “Performance evaluation of the whole-body PET scanner ECAT EXACT HR+” IEEE Nuclear Science Symposium and Medical Imaging Conf. Record (Anaheim, CA) vol. 2 (Piscataway, NJ: IEEE) pp. 1270—4 1996 11. Bailey D L, Miller M P, Spinks T J, Bloomfield P M, Livieratos L, Young H E and Jones T 1998 “Experience with fully 3D PET and implications for future high resolution 3D tomographs,” Phys. Med. Biol. 43 777—86 12. T J Spinks, M P Miller, D L Bailey, P M Bloomfield, L Livieratos and T Jones “The effect of activity outside the direct field of view in a 3D-only whole-body positron tomography,” Phys. Med. Biol. Vol.43 pp.895—904. 1998 13. Margaret E Daube-Witherspoon and Richard E Carson,” Axial slice width in 3D PET: characterization and potential improvement with axial interleaving,” Phys. Med. Biol. Vol.43 pp.921—928. 1998 14. Whei-Han Lin, Jia-Lien Wang, Ching-Han Hsu,”Efficient/Parallel Projection Operators in Iterative PET Reconstructions,” Annual Meeting of the Society of Nuclear Medicine, Taiwan,2002. 15. Erkan Numcuoglu, Richard Leahy, and Simon Cherry, “Bayesian reconstruction of PET images: methodology and performance analysis, “ Physics in Medicine and Biology, Vol. 41, pp. 1777-1807,1996 16. Townsend DW, Geissbuhler A, Defrise M, et al, Fully three-dimensional reconstruction for a PET camera with retractable septa. IEEE Trans Med Image, vol. pp. 505-512, 1991. 17. Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF, "Exact and approximate rebinning algorithms for 3-D PET data", IEEE Trans Med Imag., vol.16 pp.145-158 1997. 18. Erlandsson K, Strand S-E, "Improved axial resolution in 2D PET with 3D reconstruction", Proc. 1995 IEEE NSS/Medical Imaging Conference, Oct. 21-28, San Francisco, USA, pp. 1267-71, 1995. 19. Colsher JG, “Fully three-dimensional positron emission tomography,” Phys. Med. Biol., vol25 pp.103-115, 1980. 20. Cherry SR, Dahlbom M, Hoffman EJ, "Three-dimensional PET using a conventional multislice tomograph without septa", J Comput Assist Tomogr, vol.15 pp. 655-668, 1991.id NH0920257004 sid 904507 cfn 0 / id NH0920257006 auc 吳定疆 tic 科學園區周界落塵中多環芳香烴化合物之研究 adc 洪益夫 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 70 kwc 多環芳香烴 kwc 科學園區 kwc 新竹 kwc 落塵 kwc 乾沉降 kwc 榕樹葉 kwc 咸豐草 abc 多環芳香烴(polycyclic aromatic hydrocarbons)化合物生成途徑為含碳的有機物質在不完全燃燒中所生成,在環境中主要的來源為汽機車引擎產生的廢氣與工廠鍋爐燃燒排放之氣體。多環芳香烴化合物對人體所造成的影響主要是部分的多環芳香烴化合物會干擾人類DNA、RNA與蛋白質的複製與合成造成人體的腫瘤病變。 tc 摘要 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1-1 研究緣起 1-2 研究目的 第二章 文獻探討 2-1 多環芳香烴(PAHs)簡介 2-2 PAHs對人體的影響 2-3 PAHs分析方法探討 2-4 植物葉面中有機物質研究回顧 第三章 實驗方法 3-1 實驗藥品與儀器設備 3-1-1 實驗藥品 3-1-2 實驗儀器設備 3-2 實驗流程與方法 3-2-1 標準溶液的製備 3-2-2 採樣地點規劃 3-2-3 樹葉物種描述 3-2-4 採樣方法 3-2-5 萃取方法 3-2-6 濃縮方法 3-2-7 分析方法 3-2-8 空白測試 3-2-9 標準品檢量線 3-2-10 儀器偵測極限 3-2-11 樹葉面積計算 第四章 結果與討論 4-1 樹葉面積計算探討 4-2 高效能液相層析儀分析條件最佳化探討 4-3 實驗之品質管制 4-4 樣品濃縮前後比較 4-5 樹葉採樣葉數之比較 4-6 園區周界十三點採樣結果 4-6-1 不同採樣地點之比較 4-6-2 葉面落塵中各種PAHs含量之比較 4-6-3 植物葉面PAHs來源探討 第五章 結論 第六章 參考文獻rf 1. S. K. Samanta, OmV. Singh, R.K. Jane, "polycyclic aromatic hydrocarbons: environmental pollution and bioremediation," trends in Biotechnology 20(6), 243-248 (2002) 2. H. M. Hwang, T. L. Wade, J. L. Sericano, “Concentration and source characterization of polycyclic aromatic hydrocarbons in pine needles from Korea, Mexico, and United States,” atmospheric environment 37, 2259-2267(2003) 3. J. S. Latimer, J.G. Quinn, “Historical trends and current inputs of hydrophobic organic compounds in an urban estuary: the sedimentary record,” Environmental Science and thchnology 30, 623-633(1996) 4. US EPA, National air pollution emission trends, EPA-454-R-00-002, 1900-1998, Wasingdon DC. (2000) 5. 中華民國行政院交通部全球資訊網, http://www.motc.gov.tw 6. A. M. Mastral, M. S. Callen, “A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation,” Environmental Science and thchnology 34, 3051-3057(2000) 7. P. T. Williams, D. T. Talor, Fuel 72(11), 1469- (1993) 8. L. Testaferri, M. Tiecco, M. Fiorentino, L. troisi, J. Chem. Soc., Chem. Commun, 93- (1978) 9. S. Acevedo, M. A. Ranaudo, L. B. Gutierrez, G. Escobar, Fuel 75(9), 1139- (1996) 10. H. L. Sheu, W.J.L., S.J. Lin, G. C. Fang, H. C. Chang, W.C. You, "Particle-bound PAH content in ambient air," Environmental Pollution 96, 369-382 (1997) 11. G. Witt, "Polycylic aromatic hydrocarbon in water and sediment in the Baltic sea," Marine Pollution Bulletin 31, 237-248 (1995) 12. Q. Shihua, Y.J., Z. Gan, F. Jiamo, S. Guoing, W. Zhishi, S.M. Tong, U. W. Tang, M. Yunshun, "Distribution of polycyclic aromatic hydrocarbons in aerosols and dustfall in Macao," Environmental Monitoring and Assessment 72, 115-127 (2001). 13. C. A. Menzie, B. B. Potocki, “Exposure to carcinogenic PAHs in the environment.” Environmental Science and thchnology, 26(7), 1278-1284 (1992) 14. T. M. McCollom, B. R. T. Simoneit, E. L. Shock, “Hydrous Pyrolysis of Polycyclic Aromatic Hydrocarbons and Implications for the Origin of PAH in Hydrothermal Petroleum.” Energy & Fuels 13(2), 401-410 (1999) 15. C. E. Bostrom, P. Gerde, A. Hanberg, B. Jernstrom, C. Johansson, T. Kyrklund, A. Rannug, M. Tornqvist, K. Victorin, R. Westerholm, "Cancer Risk Assessment, Indicators, and Guidelines for Polycyclic Aromatic Hydrocarbons in the Ambient Air," Environmental Health Perspectives Supplements 110(3) (2002). 16. IARC. Polynuclear Aromatic Compounds. Part 1. Chemicals, Environmental and Experimental Data. 1983. 17. A. Dipple, “Polycyclic aromatic hydrocarbon carcinogenesis. An introduction. In: Polycyclic Hydrocarbons and Carcinogenesis (Harvey RG, ed).” Washington, DC:American Chemical Society, 1—17 (1985). 18. G. Grimmer, H. Brune, R. P. Deutsch-Wenzel, G. Dettbarn, J. Misfeld 1984. “Contribution of polycyclic aromatic hydrocarbons to the carcinogenic impact of gasoline engine exhaust condensate evaluated by implantation into the lungs of rats,” J. Natl. Cancer Inst., 72(3), 733—739 (1984) 19. IARC. Overall Evaluations of Carcinogenicity: An Updating of IARC Monographs, Vols 1 to 42. 20. L. M. Weiss, A. M. Rummel, S. J. Masten, J. E. Trosko, B. L. Upham, “Bay or baylike regions of polycyclic aromatic hydrocarbons were potent inhibitors of gap junctional intercellular communication.” Environ Health Perspect, 106, 17—22 (1998) 21. S. S. Hecht, S. Amin, A. A. Melikien, E. J. LaVoie, D. Hoffmann, "Effects of methyl and fluorine substitution on the metabolic activation and tumorigenicity of polycyclic aromatic hydrocarbons, " In: Polycyclic Hydrocarbons and Carcinogenesis (Harvey RG, ed). Washington, DC:American Chemical Society, 85—105. (1985) 22. M. Zheng, M. Fang, F. Wang, K. L. To, “Characterization of the solvent extractable organic compounds in PM2.5 aerosols in Hong Kong.” atmospheric environment, 34, 2691-2702 (2000) 23. H. H. Yang. C. F. Chiang, W. J. Lee, K. P. Hwang, E. M. Y. Wu, “Size distribution and dry deposition of road dust PAHs.” environmental international, 25(5), 585-597 (1999) 24. B. S. Hawthorne, C. B. Grabanski, “Correlating Selective Supercritical Fluid Extraction with Bioremediation Behavior of PAHs in a Field Treatment Plot” Environmental Science and thchnology, 34(19), 4103-4110 (2000) 25. P. Tremolada, V. Burnett, D. Calamari, K. C. Jones, “Spatial distribution of PAHs in the U.K. atmosphere using pine needles.” Environmental Science and thchnology, 30, 3570-3577 (1996) 26. M. Bakker, J. Tolls, C. Kollfel, “Persistent, bioaccumulative and toxic chemicals I: fate and exposure.” American Chemical Society Symposium Series, 16, 218-236 (2000) 27. E. H. Buckley, "Accumulation of airborne polychlorinated biphenyls in foliage," Science 216, 520-522. (1982) 28. M. Bakker, M. Vorenhout, C. Kolloffel, "Dry deposition of atmospheric polycyclic aromatic hydrocarbons in three Plantago species," Environmental Toxicology and Chemistry 18, 2289-2294 (1999) 29. M. Howsam, P. Ineson, "PAHs associated with the leaves of three deciduous tree species.I-Concentrations and proRles," Environmental Pollution 108, 413-424 (2000) 30. M. B. Yunker, R. W. Macdonald, R. Vingarzan, R. H. Mitchell, D. Goyette, S. Sylvestre, “PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition.” Organic Geochemistry, 33, 489-515 (2002) 31. P. Masclet, G. Mouvier, K. Nikolaou, “Relative decay index and sources of polycyclic aromatic hydrocarbons.” atmospheric environment, 20, 439-445 (1986)id NH0920257006 sid 904522 cfn 0 / id NH0920257007 auc 王雅玲 tic 硼中子捕獲治療計畫NCTPlan應用於清華大學水池式反應器之研究 adc 董傳中 adc 張似瑮 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 87 kwc 硼中子捕獲治療 kwc 治療計畫 kwc NCTPlan kwc 清華大學水池式反應器 abc 本論文乃將硼中子捕獲治療法(boron neutron capture therapy, 簡稱BNCT)之治療計畫:NCTPlan,應用於清華大學水池式反應器(Tsing Hua Open-pool Reactor, THOR),並以射束在假體中之治療效益觀察指標,及以在美國曾治療過的病患為例,比較THOR tCoL50c與MITR-Ⅱ M67兩射束之品質研究。 tc 一、前言 1.1 硼中子捕獲治療簡介 1.1.1 原理 1.1.2 歷史回顧 1.2 BNCT之中子射束品質 1.2.1 中子射束在空氣中之參數指標 1.2.2 中子射束在假體內之治療效益觀察指標 1.3 硼中子捕獲治療計畫 二、劑量評估方法與NCTPlan 2.1 BNCT劑量評估方法 2.1.1 相對生物效應(RBE)、化合物生物效應(CBE)、劑量減少因子 (DRF) 2.1.2 劑量比例因子(DSF) 2.1.3 克馬係數(KERMA coefficient, kΦ) 2.2 NCTPlan簡介 2.2.1 NCTPlan partⅠ 2.2.2 MPREP 2.2.3 MCNP模擬計算 2.2.4 NCTPlan partⅡ 三、BNCT治療流程與NCTPlan應用於THOR tCoL50c 3.1 BNCT在Harvard-MIT的臨床應用 3.1.1 電腦斷層掃瞄 3.1.2 治療計畫最佳化 3.1.3 計算監控單位(MU) 3.1.4 病患定位與固定 3.1.5 治療進行中 3.1.6 治療結束後,病患生物劑量之計算 3.1.7 Harvard-MIT BNCT團隊的臨床建議 3.2 NCTPlan應用於THOR tCoL50c射束 3.2.1 MPREP能譜格式 四、比較THOR與MITR-Ⅱ M67射束 4.1 射束品質指標 4.1.1 照射管方向 4.1.2 射束在空氣中之參數指標 4.1.3 射束在假體中之治療效益指標 4.2 病患之治療計畫 4.2.1 治療計畫概述 4.2.2 正常組織之等劑量曲線 4.2.3 腫瘤組織之等劑量曲線 4.2.4 腫瘤組織之DVH 4.2.5 正常組織之DVH 4.2.6 各輻射的劑量貢獻 4.2.7 治療時間 五、結論 六、參考文獻 七、附錄 7.1 MCNP程式簡介 7.1.1 輸入檔架構 7.1.2 如何執行MCNP程式 7.2 材質編碼(material code) 7.3 NCTPlan:元素組成(重量百分比,%) 7.4 NCTPlan:中子與1 ppm硼-10之克馬係數 7.5 NCTPlan:光子克馬係數 7.6 圖2-2中之光子總克馬係數 7.7 圖2-3中之中子總克馬係數 7.8 圖2-4 1 ppm硼-10之總克馬係數rf 1.Rolf F. Barth, Albert H. Soloway and Ralph G. Fairchild. Boron neutron capture therapy for cancer. Scientific American 1990; pp100-107. 2.ENDF/B-Ⅵ neutron data form T-2 Nuclear Information Service 3.Jeffery A. Coderre and Gerard M. Morris. The radiation biology of boron neutron capture therapy. Review. Radiation Research 1999; 151:1-18. 4.International Commission on Radiation Units and Measurements. Tissue substitutes in radiation dosimetry and measurement. Report 44. Bethesda, Maryland, USA. 1989. 5.International Atomic Energy Agency. Current status of neutron capture therapy. IAEA-TECODOC-1223. Vienna Austria. 2001. 6.黃泰庭。清華水池式反應器改建為硼中子捕獲治療專用核反應爐之超熱中子束最終設計分析。國立清華大學碩士論文 2003。 7.Harling, O., Riley, K., Newton, T., Wilson, B., et al. The fission converter-based epithermal neutron irradiation facility at the Massachusetts Institute of Technology Reactor. Nuclear Science and Engineering 2002; 140:223-240. 8.許芳裕。硼中子捕獲治療的微劑量學應用與治療計畫驗證之研究。國立清華大學博士論文 2003。 9.Briesmeister JF. MCNP — A General Monte Carlo N-Particle Transport Code. LA-13709-M. Version 4C. Los Alamos National Laboratory. 2000. 10.黃嘉薇。硼中子捕獲治療的生物劑量與生物效應的研究。國立清華大學碩士論文 2001。 11.Rogus, R., Harling, O., Yanch, J. Mixed field dosimetry of epithermal neutron beams for boron neutron capture therapy at the MITR-II research reactor. Med. Phys. 1994; 21(5):1611-1625. 12.International Commission on Radiation Units and Measurements. Nuclear data for neutron and proton radiotherapy and for radiation protection. Report 63 Bethesda, Maryland, USA. 2000. 13.International Commission on Radiation Units and Measurements. Neutron dosimetry for biology and medicine. Report 26. Washington, D.C., USA. 1977. 14.X-ray mass attenuation databases form NIST 15.J.T. Goorley, W.S. Kiger,Ⅲ., R.G. Zamenhof, Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models. Medical Physics 2002; 29(2):145-156. 16.C-S. Yam, W.S. Kiger, Ⅲ. MacNCTPlan Version 1.1 user’s manual. 1997. 17.Mathew R. Palmer, J. Timothy Goorley, W. S. Kiger, Ⅲ, et al. Treatment planning and dosimetry for the Harvard-MIT phase Ⅰ clinical trial of cranial neuron capture therapy. Int. J. Radiat. Oncol. Biol. Phys. 2002; 53(5):1361-1379. 18.R. Zamenhof, E. Redmond, Ⅱ, G. Solares, et al. Monte Carlo-Based treatment planning for boron neutron capture therapy using custom designed models automatically generated from CT data. Int. J. Radiat. Oncol. Biol. Phys. 1996; 35(2):383-397. 19.International Commission on Radiation Units and Measurements. Photon, electron, proton and neutron interaction data for body tissues. Report 46. Bethesda, Maryland, USA. 1992.id NH0920257007 sid 904591 cfn 0 / id NH0920257008 auc 秦清哲 tic 以ICP技術探討懸浮微粒之無機元素分析 adc 王竹方 ty 博士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 146 kwc 懸浮微粒 kwc ICP kwc 無機元素 abc 有害懸浮微粒對環境品質與人體健康有相當不良的影響,因此亟需未雨綢繆,及早進行分析調查。本研究建立以ICP分析懸浮微粒之技術與應用,實驗過程中分別使用ICP-MS、LA-ICP-MS、HR-ICP-MS與XRF等不同儀器,分別探討各儀器之最佳操作參數,並藉由儀器間相互之比對,驗證其元素分析之可行性,並將此技術廣泛應用分析實際樣品。 tc 第一章 前言 1 1.1 研究緣起 1 1.2 研究目的 9 1.3 研究內容 9 第二章 文獻回顧 13 2.1 懸浮微粒相關研究 13 2.2 分析技術 20 2.2.1 ICP-MS相關研究 20 2.2.2 HR-ICP-MS之相關研究 22 2.2.3 LA-ICP-MS之相關研究 24 2.2.4 XRF之相關研究 46 第三章 研究方法與步驟 49 3.1 實驗儀器設備 49 3.1.1 儀器設備 49 3.1.2 試藥與器材 50 3.2 樣品製備與前處理 51 3.2.1 製備濾紙標準品 51 3.2.2 採集實際樣品 52 3.2.3 樣品消化 56 3.3 實驗流程與設計 58 3.3.1 以LA-ICP-MS分析鐵氟龍薄膜濾紙上懸浮微粒之研究 58 3.3.2 懸浮微粒中Si元素濃度的定量分析 60 3.3.3 懸浮微粒中Cr元素濃度的定量分析 61 3.3.4 標準參考品中As元素和V元素的ICP-MS分析 63 3.3.5 標準添加法 67 3.3.6 品管品保之建立 68 3.4 儀器原理及操作參數 70 3.4.1 感應耦合電漿質譜分析法(ICP-MS) 70 3.4.2 雷射剝蝕感應耦合電漿質譜分析法(LA-ICP-MS) 74 3.4.3 雙聚焦感應耦合電漿質譜分析法(HR-ICP-MS) 76 3.4.4 X光螢光分析法(XRF) 78 第四章 結果與討論 81 4.1 以LA-ICP-MS分析鐵氟龍薄膜濾紙上懸浮微粒之研究 81 4.1.1 LA-ICP-MS定性分析 81 4.1.2 選擇雷射操作模式 86 4.1.3 最佳雷射離焦距離 89 4.1.4 載送氣體流速的影響 93 4.1.5 薄膜濾紙樣品均勻度的探討 98 4.1.6 LA-ICP-MS系統的校正 100 4.2 懸浮微粒中Si元素濃度的定量分析 103 4.2.1 以LA-ICP-MS定量懸浮微粒Si元素 103 4.2.2 以XRF和LA-ICP-MS在實際樣品的比較分析實驗 108 4.3 懸浮微粒中Cr元素濃度的定量分析 115 4.3.1 LA-ICP-MS分析 115 4.3.2 HR-ICP-MS分析 121 4.3.3 比較LA-ICP-MS和HPBD/HR-ICP-MS方法 126 4.3.4 以ICP-MS 分析實際樣品的靈敏度評估 128 4.4 標準參考品中As元素和V元素的ICP-MS分析 131 4.4.1 確認最佳化的消化條件 131 4.4.2 標準添加法探討基質干擾 134 4.4.3 高解析度雙聚焦耦合電漿質譜分析V元素 137 第五章 結論與建議 141 參考文獻 附錄一 濾紙秤重之品管流程 附錄二 實驗室之品保作業rf [1 ] 經濟部工業局,1994年. [2 ] 陳友剛,氣膠肺部沈積模式之探討,勞工安全衛生研究所,1994. [3 ] 李崇德,許文昌;台灣地區懸浮微粒特性監測及其區域性污染來源推估;第九屆空氣污染控制技術研討會,台南, 1995. [4 ] C. F. Wang, E. E. Chang, P. C. Chiang and N. K. Aras, Analyst, 1995, 120, 2521. [5 ] C. F. Wang, M. F. Huang, E. E. Chang and P. C. Chiang, Anal. Sci., 1996, 12, 201. [6 ] C. F. WANG, W. H. CHEN, M. H. YANG, P. C. CHIANG, Analyst, 120(1995)1681. [7 ] C. F. WANG, J. Y. YANG, C. H. KE, Anal. Chim. Acta, 320, (1996), 207. [8 ] C. F. WANG, M. F. HUANG, E. E. CHANG, P. C. CHIANG, Anal. Sci., 12, (1996), 201. [9 ] D. E. Nixon and T. P. Moyer, Spectrochim. Acta, Part B, 1996, 51, 13. [10 ] N. Imai, Anal. Chim. Acta, 1989, 235, 381. [11 ] S. F. Durrant and N. I. Ward, Food Chem., 1994, 49, 317. [12 ] S. F. DURRANT, N. I. WARD, Food Chem., 49(1994)317. [13 ] Kawaguchi, H.; Tanaka, T.; Nakamuram T.; Morishita, M.; Mizuike, A. Anal. Sci. 1987, 3, 205. [14 ] Olivares, J. A.; Houk, R. S. Anal. Chem. 1986, 58, 20. [15 ] R BOCK, Handbook of Decomposition Methods in Analytical Chemistry, International Textbook, London, 1979. [16 ] Chiang, P.C., Wang, C.F., Chang, S.C., ROCEPA Report 1994, EPA-85-1402-09-04, Tapei, Taiwan. [17 ] P.D. Malhotra, G.H.S.V. Prasada Rao, Rec. Geol. Surv. India 93 (1966) 215. [18 ] Roehl,R; Gomez, J.; Woodhouse, L. R. J. Anal. At. Spectrometrom. 1995, 10, 15. [19 ] A.M. Bond, T.A. O''Donnell, A.B. Waugh, R.J.W. McLaughlin, Anal. Chem. 42 (1970) 1168. [20 ] Martuzevicius D., Grinshpun S. A., Reponen T., Gorny R. L., Shukla R., Lockey J., Hu S., McDonald R., Biswas P., Kliucinikas L., Le Masters G., Atomspheric Environment, 38 (2004) 1091 [21 ] E. Yakovleva, P. K. Hopke, “Receptor Modeling Assessment of Particle Total Exposure Assessment Methodology Data,” Environ. Sci. Technol. 1999, 33, 3645-3652. [22 ] F. Wei, E. Teng, G. Wu, W. Hu, W. E. Wilson, R. S. Chapman, J. C. Pau, J. Zhang, “Ambient Concentration and Elemental Compositions of PM10 and PM2.5 in Four Chinese Cities,” Environ. Sci. Technol. 1999, 33, 4188-4193. [23 ] 王怡方,「台灣林園、三重與麥寮三地區大氣懸浮微粒特性及來源探討」,國立台灣大學公共衛生研究所碩士論文(1996)。 [24 ] 楊忠盛,「台北都會區懸浮微粒特性及來源之探討」,國立台灣大學環境工程學研究所碩士論文(1998)。 [25 ] 楊定國,「台中地區都會區、近郊區、郊區日夜間懸浮微粒、金屬離子及酸性陰離子之研究」,私立東海大學環境科學研究所碩士論文(1999)。 [26 ] J. P. Pinto, R. K. Stevens, R. D. Willis, R. Kellogg, Y. Mamane, J. Novak, J. Santroch, I. Benes, J. Lenicek, V. Bures, “Czech Air Quality Monitoring and Receptor Modeling Study,” Environ. Sci. Technol. 1998, 32, 843-854. [27 ] R. S. Houk, Anal. Chem., 1986, 58, 97A. [28 ] A.R. Date, Y.Y. Cheung, Analyst 112 (1987) 1531. [29 ] T.A. Hinners, E.M. Heithmar, T.M. Spittler, J.M. Henshaw, Anal. Chem. 59 (1987) 2658. [30 ] H.P. Longerich, B.J. Fryer, D.F. Strong, Spectrochim. Acta 42B (1987) 39. [31 ] Vanhaecke, F.; Moens, L.; Dams, R.; Papadakis, I; Taylor, P. Anal. Chem.. 1997, 69, 268. [32 ] Hill, S. J.; Ford, M. J.; Ebdon, L. J. Anal. At. Spectrom. 1992, 7, 719. [33 ] Branch, S.; Ebdon, L.; Ford, M.; Foulkes, M.; O’Neill, P. J. Anal. At. Spectrom. 1991, 6, 151. [34 ] Lyon, T. D. B.; Fell, G. S.; Hutton, R. C.; Eaton, A. N. J. Anal. At. Spectrom. 1988, 3, 601. [35 ] D. Figg, M.S. Kahr, Appl. Spectrosc. 51 (1997) 1185. [36 ] H.C. Liu, O.V. Borisov, X.L. Mao, R.E. Russo, S. Shuttleworth, Appl. Spectrosc. 54 (2000) 1435. [37 ] S. S. Mao, X.L. Mao, R. Greif, R.E. Russo, Appl. Phys. Lett. 76 (2000) 3370. [38 ] X. L. Mao, R.E. Russo, Appl. Phys. A 64 (1997) 1. [39 ] X. L. Mao, A.C. Ciocan, R.E. Russo, Appl. Spectrosc. 52 (1998) 913. [40 ] X. L. Mao, O.V. Borisov, R.E. Russo, Spectrochim. Acta B 53 (1998) 731. [41 ] O.V. Borisov, X.L. Mao, R.E. Russo, Spectrochim. Acta B 55 (2000) 1693. [42 ] D. Bleiner, A. Plomikov, C. Vogt, K. Wetzig, D. Gu¨nther, Fres. J. Anal. Chem. 368 (2000) 221. [43 ] L. Moenke-Blankenburg, M. Gackle, D. Gu¨ nther, J. Kammel, R. Soc. Chem., Cambridge, Special Publ. 85 (1990) 1. [44 ] J.W. Carr, G. Horlick, Spectrochim. Acta B 37 (1982) 1. [45 ] P. Arrowsmith, S.K. Hughes, Appl. Spectrosc. 42 (1988) 1231. [46 ] S. Shuttleworth, D.T. Kremser, J. Anal. At. Spectrom. 13 (1998) 697. [47 ] A.J. Walder, I.D. Abell, I. Platzner, P.A. Freedman, Spectrochim. Acta B 48 (1993) 397. [48 ] R.E. Russo, G.L. Klunder, P. Grant, B.D. Andresen, Appl. Phys. A 69 (1999) S895. S.F. Durrant, Analyst 117 (1992) 1585. [49 ] S.F. Durrant, Analyst 117 (1992) 1585. [50 ] M. Broadhead, R. Broadhead, J.W. Hager, Atomic Spectro. 11 (1990) 205. [51 ] V. Kanicky, J.M. Mermet, Fres. J. Anal. Chem. 363 (1999) 294. [52 ] V.R. Bellotto, N. Miekeley, Fres. J. Anal. Chem. 367 (2000) 635. [53 ] C. Craig, K.E. Jarvis, L. Clarke, J. Anal. At. Spectrom. 15 (2000) 1001. [54 ] O.V. Borisov, X.L. Mao, A. Fernandez, M. Caetano, R.E. Russo, Spectrochim. Acta B 54 (1999) 1351. [55 ] S.A. Watmough, T.C. Hutchinson, R.D. Evans, Environ. Sci. Tech. 32 (1998) 2185. [56 ] M. Gagean, J.M. Mermet, Spectrochim. Acta B 53 (1998) 581. [57 ] A.M. Leach, G.M. Hieftje, J. Anal. At. Spectrom. 15 (2000) 1121. [58 ] C.A. Morrison, D.D. Lambert, R.J.S. Morrison, W.W. Ahlers, I.A. Nicholls, Chem. Geol. 119 (1995) 13. [59 ] W.T. Chan, X.L. Mao, R.E. Russo, Appl. Spectrosc. 46 (1992) 1025. [60 ] P.M. Outridge, W. Doherty, D.C. Gregoire, Spectrochim. Acta B 51 (1996) 1451. [61 ] H.P. Longerich, D. Gunther, S.E. Jackson, Fres. J. Anal. Chem. 355 (1996) 538. [62 ] A.M. Prokhorov, V.I. Konov, I. Ursu, I.N. Miha¢ilescu, Laser Heating of Metals, Adam Hilger, New York, 1990. [63 ] J.W. Hager, Anal. Chem. 61 (1989) 1243. [64 ] R.E. Russo, X.L. Mao, O.V. Borisov, H.C. Liu, J. Anal. At. Spectrom. 15 (2000) 1115. [65 ] A.J.G. Mank, P.D. Mason, J. Anal. At. Spectrom. 14 (1999) 1143. [66 ] D.P. Baldwin, R.S. Houk, 2001, private communication. [67 ] I. Horn, R.L. Rudnick, W.F. McDonough, Chem. Geol. 167 (2000) 405. [68 ] P. Goodall, S.G. Johnson, E. Wood, Spectrochim. Acta B 50 (1995) 1823. [69 ] D.J. Figg, J.B. Cross, C. Brink, Appl. Surf. Sci. 127 (1998) 287. [70 ] E.F. Cromwell, P. Arrowsmith, Appl. Spectrosc. 49 (1995) 1652. [71 ] J.H. Yoo, O.V. Borisov, X.L. Mao, R.E. Russo, Anal. Chem., (2001) accepted. [72 ] J.W. Olesik, S.E. Hobbs, Anal. Chem. 66 (1994) 3371. [73 ] K. Knight, S. Chenery, S.W. Zoochowski, M. Thompson, C.D. Flint, J. Anal. At. Spectrom. 11 (1996) 53. [74 ] G.C.Y. Chan, W.T. Chan, X.L. Mao, R.E. Russo, Spectrochim Acta B 55 (2000) 221. [75 ] D. Gunther, C.A. Heinrich, J. Anal. At. Spectrom. 14 (1999) 1363. [76 ] X.L. Mao, W.T. Chan, M.A. Shannon, R.E. Russo, J. Appl. Phys. 74 (1993) 4915. [77 ] Y. Iida, Spectrochim. Acta B, 45 (1990) 1353. [78 ] M. von Allmen, Laser-Beam Interactions with Materials: Physical Principles and Applications, Springer, NewYork, 1986. [79 ] S.F. Duirant, Fres. J. Anal. Chem, 349 (1994) 768. [80 ] Rauch S., Morrison G. M., Moldovan M., Science of the Total Environment, 286 (2002) 243 [81 ] Ward N. I., Savage J. M., Science of the Total Environmental, 147 (1994) 309 [82 ] A. Raith, W.T. Perkins, N.J.G. Pearce, T.E. Jeffries, Fres. J. Anal. Chem. 355 (1996) 789. [83 ] R. Feng, N. Machado, J.N. Ludden, Geochim. Cosmochim. Acta 57 (1993) 3479. [84 ] W. Devos, C. Moor, P. Lienemann, J. Anal. At. Spectrom. 14 (1999) 621. [85 ] J.J. Giglio, P.S. Goodall, S.G. Johnson, Spectroscopy 12 (1997) 26. [86 ] R.J. Walling, B.F. Lynch, D. Herring, J. Anal. At. Spectrom. 12 (1997) 195. [87 ] F.H. Li, M.K. Balazs, R. Pong, J. Anal. At. Spectrom. 15 (2000) 1139. [88 ] N. Imai, Anal. Chim. Acta 235 (1989) 381. [89 ] C. F. Wang, S. L. Jeng, C. C. Lin and P. C. Chiang, Anal. Chim. Acta, 1998, 368, 11. [90 ] L. SHAPR0, W. W. BRANNOCK, US Geol. Surv. Bull., 114-A (1962) A24. [91 ] J. D. H. STRICKLAND, J. Am. Chem. Soc., 74 (1952) 862. [92 ] S. ABBEY, N. J. LEE, J. L. BOUVIER, Geol. Surv. Can. Pap., 74 (1974) 19. [93 ] F. J. LANGMYHR, P. R. GRAFF, Anal. Chm. Acta., 21 (1959) 334. [94 ] Martuzevicius D., Grinshpun S. A., Reponen T., Gorny R. L., Shukla R., Lockey J., Hu S., McDonald R., Biswas P., Kliucinikas L., Le Masters G., Atomspheric Environment, 38 (2004) 1091 [95 ] Kyotani T., Iwatsuki M., Atomspheric Environment, 36 (2002) 4, 639 [96 ] Moloi K., Viksna A., Lindgren E. S., Standzenieks P., X-ray Spectrometry, 31 (2002) 1, 27 [97 ] Dost., A. A., Annals of Occupational Hygiene, 40 (1996) 5, 589 [98 ] T. G. DZBAY, X-ray Fluorescence Analysis of Environmental Samples, Ann Arbor Science, Inc., 1978. [99 ] C. F. WANG, S. L JENG, C. C. LIN, P. C. CHIANG, Anal. Chim. Aata, 368(1998)1 1. [100 ] P.D. Malhotra, G.H.S.V. Prasada Rao, Rec. Geol. Surv. India 93 (1966) 215 [101 ] 紀柏享、楊末雄、孫毓璋, 化學, 56 (1998) 4, 269. [102 ] L. Moenke-Blankenburg, M. Ga¨ckle, D. Gu¨nther and J. Kammel, in Plasma Source Mass Spectrometry, ed. K. E. Jarvis, A. L. Gray, I. Jarvis and J. G. Williams, Royal Society of Chemistry, Cambridge, 1990, p. 1. [103 ] D. Pottor and I. Abell, Anal. Sci., 1991, 7, 1239. [104 ] R. L. Armstrong and A. Zardecki, Appl. Opt., 1990, 29, 1786. [105 ] I. D. Abell, in Applications of Plasma Source Mass Spectrometry, ed. Holland, G., and Eaton, A. N., Royal Society of Chemistry, Cambridge, 1991, p. 209. [106 ] P. Arrowsmith and S. K. Hughes, Appl. Spectrosc., 1988, 42, 1231. [107 ] T. Mochizuki, A. Sakashita, H. Iwata, T. Kagaya, T. Shimamura and P. Blair, Anal. Sci., 1988, 4, 403. [108 ] C. Luedke, E. HoVmann and J. Skole, Fresenius’ J. Anal. Chem., 1994, 350, 272. [109 ] S. T. Durrant and N. I. Ward, Food Chem., 1994, 49, 317. [110 ] L. A. Currie, Anal. Chem., 1968, 40, 586. [111 ] C. J. Chin, C. F Wang, S. L. Jeng, J. Anal. At. Spectrom., 1999, 14, 663 [112 ] Gwendy, E. M. H., Gilles, G., Jean, C. P., Pierre, P., and Judy, V., Journal of Analytical Atomic Spectroscopy, 1996, 11, 787-796. [113 ] A.M. Ure, C.M. Davidson (Eds.), Chemical Speciation in the Environment, Blackie, Glasgow, 1995, p. 258.id NH0920257008 sid 854540 cfn 0 / id NH0920259001 auc 李可嘉 tic 論行動理由成立的必要條件--內在論與外在論之爭 adc 吳瑞媛 ty 碩士 sc 國立清華大學 dp 哲學研究所 yr 92 lg 中文 pg 60 kwc 威廉斯 kwc 理由 kwc 內在理由與外在理由 kwc 內在論與外在論 kwc 規範面向與解釋面向 abc 摘要 tc 目 次 緒論 1 第一章 柏納•威廉斯的行動理由理論 3 第一節 內在理由模型 3 1. 何謂主觀動機系統 4 2. 何謂健全思慮 5 (1) 理性的思慮範圍為何 5 (2) 健全思慮的過程可能更動主觀動機系統中的元素 7 (3) 怎樣的思慮是健全的 8 3. 內在理由模型與理由判斷的不確定性 9 第二節 行動理由只會是內在理由 10 1. 何謂外在理由 10 2. 外在理由與理由的解釋面向 11 3. 相信外在理由成立是否能夠提供行動動機 12 4. 「相信外在理由成立」蘊含著「對事況做正確地考量」 12 5. 外在理由無法有效地解釋行動 13 第三節 內在理由論的兩大動機 14 第四節 指責的模糊性 15 1. 有焦點的指責 15 2. 指責的適當性與行動理由的關連 16 3. 有焦點的指責如何運作 16 4. 指責的模糊性 18 第五節 論點分析與討論 19 1. 論點重整 19 2. 分析與討論 21 第二章 約翰•邁克道威爾 23 第一節 威廉斯的論證排除了哪些立場 23 第二節 邁克道威爾對動機轉變的說明 24 第三節 不理性的指責與內在理由的合理性 27 第四節 內在理由論背後的預設 29 第五節 威廉斯對邁克道威爾的回應 30 第六節 論點分析與討論 31 1. 論點重整 31 2. 分析與討論 32 第三章 克莉斯汀•柯思嘉 34 第一節 內容懷疑論與動機懷疑論 34 第二節 動機懷疑論無法獨自成立 37 1. 行動理由的要求 37 2. 關於動機懷疑論獨自成立的論證 38 3. 實在的不理性 39 4. 動機懷疑論無法獨自成立 41 第三節 柯思嘉對威廉斯論證的討論 42 第四節 論點分析與討論 44 1. 論點重整 44 2. 分析與討論 45 第四章 湯瑪斯?史侃冷 46 第一節 理由判斷的普遍性 46 第二節 S內容與內在理由論間的緊張 46 第三節 健全思慮概念與內在理由論間的緊張 50 第四節 史侃冷對於內外在理由之爭的分析 52 第五節 論點分析與討論 54 1. 論點重整 54 2. 分析與討論 55 結語 58 參考文獻 60rf Jonathan Dancy, “Appendix Ⅰ” In Moral Reasons,(Oxford: Blackwell press,1993.) Stephen Darwall, “Reasons, Motives, and the Demands of Morality: An Introduction” In Moral Discourse and Practice, ed. by Stephen Darwall, Allen Gibbard and Peter Railton,(Oxford: Oxford University press, 1997.) Christine Korsgaard, “Skepticism about Practical Reason” In Moral Discourse and Practice, ed. by Stephen Darwall, Allen Gibbard and Peter Railton, (Oxford: Oxford University press, 1997.) John McDowell, “Might there be External Reasons”, In World, Mind, and Ethics , ed. by J.E.J Altham and Ross Harrison,(Cambridge: Cambridge University press, 1995.) Thomas Nagel, “The Possibility of Altruism” In Moral Discourse and Practice, edited by Stephen Darwall, Allen Gibbard and Peter Railton,(Oxford: Oxford University press, 1997.) T. M. Scanlon, “Appendix”, In What We Owe to Each Other,(Cambridge: Harvard University press, 1998.) Bernard Williams, “Internal and External Reason” In Moral Discourse and Practice, ed. by Stephen Darwall , Allen Gibbard and Peter Railton, (Oxford: Oxford University press, 1997.) ─. “Internal Reasons and Obscurity of Blame” In Making Sense of Humanity, (Cambridge [England ] :Cambridge University Press, 1995.) ─. “Reply” In “Might there be External Reasons”, In World, Mind, and Ethics , ed. by J.E.J Altham and Ross Harrison,(Cambridge: Cambridge University press, 1995.)id NH0920259001 sid 885302 cfn 0 / id NH0920311001 auc 徐炯勛 tic 黏接結構介面應力、翹曲變形及振動行為之探討 adc 王偉中 ty 博士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 英文 pg 205 kwc 數位光彈法 kwc 有限單元法 kwc 介面應力 kwc 雲紋干涉術 kwc 翹曲 kwc 振幅變動電子光斑影像干涉術 kwc 模態測試法 abc 本文首先結合數位光彈法(Digital Photoelasticity)及有限單元法(Finite Element Method)指出Timoshenko和Suhir於1986年及1989年所提理論對於介面應力估算之缺點。為了補救這些理論的缺失和易於在工程實務上的運用,本文推導了可準確預測承受熱負載黏接結構之改良理論,該理論亦加以延伸至承受機械負載黏接結構介面應力之估算。本文也針對材料內部之空孔(Void)及異質體(Inclusion)對於介面應力影響之探討。此外,本文亦結合雲紋干涉術(Moiré Interferometry)及有限單元法驗證各理論解對於翹曲(Warpage)估算之合理性。最後,本文以振幅變動電子光斑影像干涉術(Amplitude Fluctuation Electronic Speckle Pattern Interferometry, AF-ESPI)及模態測試法(Modal Testing Technique)探討黏接結構之振動行為。 tc LIST OF TABLES IV LIST OF FIGURES V CHAPTER 1. INTRODUCTION 1 CHAPTER 2. LITERATURE REVIEW 5 2.1 Analytical and numerical investigations of bonded structures 5 2.2 Experimental investigation of multi-layered structures 11 2.3 Vibration study of bonded structure 14 2.4 Photoelastic method 16 2.5 Moiré Interferometry 16 2.6 Electronic speckle pattern interferometry (ESPI) 18 CHAPTER 3. THEORETICAL BACKGROUND 19 3.1 Timoshenko’s theory 19 3.2 Suhir’s 1986 theory 20 3.3 Suhir’s 1989 theory 21 3.4 Proposed theory 22 3.5 Mechanical loading 25 3.6 Theory of photoelasticity 27 3.6 Theory of moiré interferometry 28 3.7 Theory of AF-ESPI 31 CHAPTER 4. EXPERIMENTAL TECHNIQUES 35 4.1 Specimen preparation and experimental procedure for photoelasticity 35 4.1.1 True bi-material bonded structure 35 4.1.2 Determination of the Coefficient of Thermal Expansion 36 4.1.3 Experimental procedure for photoelasiticity 37 4.1.4 Inclusion and void include bonded structure 37 4.2 Specimen preparation and experimental procedure for moiré interferometry 39 4.2.1 Specimen preparation 39 4.2.2 Experimental procedure for moiré interferometry 40 4.3 Specimen preparation and experimental procedure of modal testing and AF-ESPI 42 4.3.1 Specimen preparation for vibration analysis 42 4.3.2 Experimental procedure for modal testing 42 4.3.3 Experimental procedure for modal testing 43 CHAPTER 5. NUMERICAL SIMULATION 44 CHAPTER 6. RESULTS AND DISCUSSIONS 46 6.1 Evaluation of Timoshenko and Suhirs’ theories 46 6.1.1 The comparison between experimental and FEM results 46 6.1.2 Interfacial stresses 47 6.1.3 Stress distribution in adherends 49 6.2 Proposed theory 50 6.2.1 Estimation of interfacial stresses 50 6.2.2 Estimation of stress distribution in adherend 53 6.3 Mechanism of producing thermal interfacial stress 53 6.3.1 Interfacial shearing stress 53 6.3.2 Interfacial peeling stress 54 6.4 Parametric study on thermal interfacial stresses 54 6.4.1 The effects of Young’s modulus 55 6.4.2 The effects of CTE 56 6.4.3 The effects of height 57 6.5 Mechanical loading 57 6.5.1 The mechanism of producing interfacial stresses-axial force 57 6.5.2 Parametric study on interfacial stresses produced by an axial force 58 6.5.2.1 The effects of Young’s modulus 58 6.5.2.2 The effects of height 59 6.5.3 The mechanism of producing interfacial stresses-bending moment 59 6.5.4 Parametric study on interfacial stresses caused by bending moment 60 6.5.4.1 The effects of Young’s modulus 60 6.5.4.2 The effects of height 61 6.5.5 Comparisons of influence of different parameters on interfacial stresses 62 6.6 The influence of void and embedded inclusion on the distributions of interfacial peeling and shearing stresses 63 6.6.1 The near end cases 63 6.6.2 The halfway case 65 6.6.3 Specimens with central inclusion or void 67 6.6.4 The influence when temperature difference is +400C 68 6.7 The warpage behavior of bonded structures 69 6.7.1 The comparison of displacement fields obtained from moiré interferometry and FEM 69 6.7.2 The comparison of warpage calculated from the FEM and aforementioned theories 69 6.8 The vibration behavior of bonded structures 71 CHAPTER 7. CONCLUSIONS 75 BIBLIOGRAPHY 79 APPENDIX 192 LIST OF TABLES Table 3.1 Some examples for the angle of intersection with respect to the frequency [6 ] 94 Table 3.2 Value of [116 ] 94 Table 4.1 Mechanical properties of Epon828 [82, 122 ] 95 Table 4.2 Mechanical properties of aluminum alloy [125 ] 95 Table 4.3 Mechanical properties of brass [125 ] 95 Table 4.4 Mechanical properties of EME-6300 [126 ] 95 Table 6.1 The influence of different parameters on interfacial stresses for bonded structures subjected to thermal loading 95 Table 6.2 The influence of different parameters on interfacial stresses for bonded structures subjected to an axial force 96 Table 6.3 The influence of different parameters on interfacial stresses for bonded structures subjected to a bending moment 96 Table 6.4 Resonant frequencies of bonded structures (unit: Hz) 96 LIST OF FIGURES Fig. 3.1 Geometrical configuration of Timoshenko’s theory 97 (a) An infinite length bi-material structure (b) The free body diagram of region between sections m1-n1 and m2-n2 Fig. 3.2 Geometrical configuration of Suhir’s theories 98 (a) A finite length bi-material structure (b) The free body diagram of the finite bi-material structure Fig. 3.3 Geometrical configuration of the proposed theory 99 Fig. 3.4 Free body diagram of the adherends for the proposed theory 99 Fig. 3.5 Geometrical configuration of the bonded structure subjected to mechanical loading 100 Fig. 3.6 Free body diagram of the bonded structure subjected to mechanical loading 100 Fig. 3.7 The digital photoelastic system 101 Fig. 3.8 Two coherently plane waves intersect each other at the common region [6 ] 101 Fig. 3.9 A family of regular fringe generated from constructive and destructive interferences [6 ] 102 Fig. 3.10 The optical scheme of four-beam system for moiré interferometry [6 ] 102 Fig. 3.11 Diffraction diagram in moiré interferometry [6 ] 103 Fig. 3.12 The optical arrangement of the out-of plane ESPI 103 Fig. 3.13 The comparison between traditional ESPI and AF-ESPI fringe patterns [116 ] 104 Fig. 4.1 The geometry of the true bi-material bonded structure 104 Fig. 4.2 Photograph of an oven 105 Fig. 4.3 Photograph of Epon828, Dibutyphthalate (DBP) and D-230 105 Fig. 4.4 Photograph of M-555 R.T.V. 106 Fig. 4.5 The silicon mould 106 Fig. 4.6 The specially designed aluminum plate 107 Fig. 4.7 Photograph of F-206 107 Fig. 4.8 Photograph of the consolidated bi-material bonded structure 108 Fig. 4.9 Photograph of thermal-mechanical analyzer DMA7e 108 Fig. 4.10 Deformation-temperature curve of Epon 828 109 Fig. 4.11 The photograph of the polariscope 109 Fig. 4.12 Geometrical configuration of specimen containing two near end inclusions or voids 110 Fig. 4.13 Geometrical configuration of specimen containing two near center inclusions or voids 110 Fig. 4.14 Geometry configuration of specimen containing one inclusion or void at the center 111 Fig. 4.15 The geometry of one of the two half hollow cylinders 111 Fig. 4.16 Dimensions of specimens for moiré interferometry 112 (a) Specimen I (b) Specimen II Fig. 4.17 The optical arrangement for the self-designed moiré interferometry system 113 Fig. 4.18 The ultra-low expansion (ULE) grating 113 Fig. 4.19 Null U and V fields 114 (a) U field (b) V field Fig. 4.20 The procedure for producing specimen grating by replicating technique [6 ] 115 (a) Dropping the adhesive on the surface of ULE grating (b) Clearing the poured adhesive by cotton swab (c) Separating the specimen and grating Fig. 4.21 Geometry of specimen Vib-1 116 (a) Vib-11 (b) Vib-12 Fig. 4.22 Geometry of specimen Vib-2 116 (a) Vib-21 (b) Vib-22 Fig. 4.23 Geometry of specimen Vib-3 117 (a) Vib-31 (b) Vib-32 Fig. 4.24 Locations of sampling points of specimen Vib-1 117 (a) Vib-11 (b) Vib-12 Fig. 4.25 Locations of sampling points of specimen Vib-2 118 (a) Vib-21 (b) Vib-22 Fig. 4.26 Locations of sampling points of specimen Vib-3 118 (a) Vib-31 (b) Vib-32 Fig. 4.27 The modal testing system 119 Fig. 4.28 The optical fiber ESPI system 119 Fig. 5.1 The mesh diagram of FEM 120 Fig. 5.2 The mesh diagram of bonded structure with embedded inclusions 120 Fig. 5.3 The mesh diagram specimen type I 121 Fig. 5.4 The mesh diagram of specimen type II 121 Fig. 6.1 The illustrated photoelastic fringes obtained from the experiment and FEM 122 (a) Experiment (b) FEM Fig. 6.2 The distributions of the interfacial peeling stress for FEM and Suhir’s theories 123 Fig. 6.3 The distributions of the interfacial shearing stress for FEM and Suhir’s theories 123 Fig. 6.4 The illustrated photoelastic fringe patterns of Timoshenko’s and Suhir’s 1986 theories 124 (a) Timoshenko’s theory (b) Suir’s 1986 theory Fig. 6.5 The comparison of interfacial peeling stresses for different theories and FEM 124 Fig. 6.6 The comparison of interfacial shearing stresses for the different theories and FEM 125 Fig. 6.7 The illustrated photoelastic fringe pattern of the proposed theory 125 Fig. 6.8 The mechanism of producing interfacial stresses of bonded structure subjected to thermal loading 126 (a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4 Fig. 6.9 Distributions of interfacial shearing and peeling stresses for different Young’s muduli of adherend 1 127 (a) Shearing stress (b) Peeling stress Fig. 6.10 Distributions of interfacial shearing and peeling stresses for different Young’s muduli of adherend 2 128 (a) Shearing stress (b) Peeling stress Fig. 6.11 Distributions of interfacial shearing and peeling stresses for different CTE’s of adherend 1 129 (a) Shearing stress (b) Peeling stress Fig. 6.12 Distributions of interfacial shearing and peeling stresses for different CTE’s of adherend 2 130 (a) Shearing stress (b) Peeling stress Fig. 6.13 Distributions of interfacial shearing and peeling stresses for different heights of adherend 1 131 (a) Shearing stress (b) Peeling stress Fig. 6.14 Distributions of interfacial shearing and peeling stresses for different heights of adherend 2 132 (a) Shearing stress (b) Peeling stress Fig. 6.15 The mechanism of producing interfacial stresses of the bonded structure subjected to an axial force 133 (a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4 Fig. 6.16 Distributions of interfacial shearing and peeling stresses for different Young’s moduli of adherend 1 subjected to an axial force 134 (a) Shearing stress (b) Peeling stress Fig. 6.17 Distributions of interfacial shearing and peeling stresses for different Young’s moduli of adherend 2 under an axial force 135 (a) hearing stress (b) Peeling stress Fig. 6.18 Distributions of interfacial shearing and peeling stresses for different heights of adherend 1 under an axial force 136 (a) Shearing stress (b) Peeling stress Fig. 6.19 Distributions of interfacial shearing and peeling stresses for different heights of adherend 2 under an axial force 137 (a) Shearing stress (b) Peeling stress Fig. 6.20 The mechanism of producing interfacial stresses of the bonded structure subjected to a bending moment 138 (a) Step 1 (b) Step 2 (c) Step 3 Fig. 6.21 Distributions of interfacial shearing and peeling stresses for different Young’s moduli of adherend 1 under bending 139 (a) Shearing stress (b) Peeling stress Fig. 6.22 Distributions of interfacial shearing and peeling stresses for different Young’s moduli of adherend 2 under bending 140 (a) Shearing stress (b) Peeling stress Fig. 6.23 Distributions of interfacial shearing and peeling stresses for different heights of adherend 1 under bending 141 (a) Shearing stress (b) Peeling stress Fig. 6.24 Distributions of interfacial shearing and peeling stresses for different heights of adherend 2 under bending 142 (a) Shearing stress (b) Peeling stress Fig. 6.25 The fringe patterns obtained from experiment and FEM for two near end inclusions (6mm) 143 (a) Experiment (b) FEM Fig. 6.26 The fringe patterns obtained from experiment and FEM for two near end inclusions (3mm) 143 (a) Experiment (b) FEM Fig. 6.27 The fringe patterns obtained from experiment and FEM for two near end voids (6mm) 144 (a) Experiment (b) FEM Fig. 6.28 The fringe patterns obtained from experiment and FEM for two near end voids (3mm) 144 (a) Experiment (b) FEM Fig. 6.29 The fringe patterns obtained from experiment and FEM for two halfway inclusions (6mm) 145 (a) Experiment (b) FEM Fig. 6.30 The fringe patterns obtained from experiment and FEM for two halfway inclusions (3mm) 145 (a) Experiment (b) FEM Fig. 6.31 The fringe patterns obtained from experiment and FEM for two halfway voids (6mm) 146 (a) Experiment (b) FEM Fig. 6.32 The fringe patterns obtained from experiment and FEM for two halfway voids (3mm) 146 (a) Experiment (b) FEM Fig. 6.33 The fringe patterns obtained from experiment and FEM for the central inclusion (6mm) 147 (a) Experiment (b) FEM Fig. 6.34 The fringe patterns obtained from experiment and FEM for the central inclusion (3mm) 147 (a) Experiment (b) FEM Fig. 6.35 The fringe patterns obtained from experiment and FEM for the central void (6mm) 148 (a) Experiment (b) FEM Fig. 6.36 The fringe patterns obtained from experiment and FEM for the central void (3mm) 148 (a) Experiment (b) FEM Fig. 6.37 The comparison of shearing and peeling stresses (near end inclusions) 149 (a) Shearing stress (b) Peeling stress Fig. 6.38 The comparison of shearing and peeling stresses (near end voids) 150 (a) Shearing stress (b) Peeling stress Fig. 6.39 The comparison of shearing and peeling stresses (halfway inclusions) 151 (a) Shearing stress (b) Peeling stress Fig. 6.40 The comparison of shearing and peeling stresses (halfway voids) 152 (a) Shearing stress (b) Peeling stress Fig. 6.41 The comparison of shearing and peeling stresses (central inclusion) 153 (a) Shearing stress (b) Peeling stress Fig. 6.42 The comparison of shearing and peeling stresses (central void) 154 (a) Shearing stress (b) Peeling stress Fig. 6.43 The comparison of shearing and peeling stresses (two halfway cases) 155 (a) Shearing stress (b) Peeling stress Fig. 6.44 The moiré fringe pattern of specimen I-Al (DT=-650C) 156 (a) U-field (b) V-field Fig. 6.45 The moiré fringe patterns of specimen I-Cu (DT=-650C) 156 (a) U-field (b) V-field Fig. 6.46 The illustrated moiré fringe pattern of FEM result of specimen I-Al (DT=-650C) 157 (a) U-field (b) V-field Fig. 6.47 The illustrated moiré fringe patterns of FEM result of specimen I-Cu (DT=-650C) 157 (a) U-field (b) V-field Fig. 6.48 The observed surface of moiré interferometry 158 Fig. 6.49 The illustration of the connected lines of centroid of cross section of top and bottom adherends 158 Fig. 6.50 Warpage of specimen I-Al of different approaches (DT= -650C) 159 (a) Top adherend (b) Bottom adherend Fig. 6.51 Warpage of specimen I-Al of different approaches (DT= -450C) 160 (a) Top adherend (b) Bottom adherend Fig. 6.52 Warpage of specimen I-Al of different approaches (DT= -250C) 161 (a) Top adherend (b) Bottom adherend Fig. 6.53 Warpage of specimen I-Al of different approaches (DT= -50C) 162 (a) Top adherend (b) Bottom adherend Fig. 6.54 Warpage of specimen I-Cu of different approaches (DT= -650C) 163 (a) Top adherend (b) Bottom adherend Fig. 6.55 Warpage of specimen I-Cu of different approaches (DT= -450C) 164 (a) Top adherend (b) Bottom adherend Fig. 6.56 Warpage of specimen I-Cu of different approaches (DT= -250C) 165 (a) Top adherend (b) Bottom adherend Fig. 6.57 Warpage of specimen I-Cu of different approaches (DT= -50C) 166 (a) Top adherend (b) Bottom adherend Fig. 6.58 Warpage of specimen II-Al of different approaches (DT= -650C) 167 (a) Top adherend (b) Bottom adherend Fig. 6.59 Warpage of specimen II-Al of different approaches (DT= -450C) 168 (a) Top adherend (b) Bottom adherend Fig. 6.60 Warpage of specimen II-Al of different approaches (DT= -250C) 169 (a) Top adherend (b) Bottom adherend Fig. 6.61 Warpage of specimen II-Al of different approaches (DT= -50C) 170 (a) Top adherend (b) Bottom adherend Fig. 6.62 Warpage of specimen II-Cu of different approaches (DT= -650C) 171 (a) Top adherend (b) Bottom adherend Fig. 6.63 Warpage of specimen II-Cu of different approaches (DT= -450C) 172 (a) Top adherend (b) Bottom adherend Fig. 6.64 Warpage of specimen II-Cu of different approaches (DT= -250C) 173 (a) Top adherend (b) Bottom adherend Fig. 6.65 Warpage of specimen II-Cu of different approaches (DT= -50C) 174 (a) Top adherend (b) Bottom adherend Fig. 6.66 Warpage of specimen I-Al (h1=1mm) of proposed theory and FEM (DT= -650C) 175 (a) Top adherend (b) Bottom adherend Fig. 6.67 Warpage of specimen I-Al (h1=3mm) of proposed theory and FEM (DT= -650C) 176 (a) Top adherend (b) Bottom adherend Fig. 6.68 Warpage of specimen II-Al (h1=1mm) of proposed theory and FEM (DT= -650C) 177 (a) Top adherend (b) Bottom adherend Fig. 6.69 Warpage of specimen II-Al (h1=3mm) of proposed theory and FEM (DT= -650C) 178 (a) Top adherend (b) Bottom adherend Fig. 6.70 The AF-ESPI fringe patterns of Vib-11 specimen 179 (a) First mode (b) Second mode (c) Third mode (d) Fourth mode (e) Fifth mode Fig. 6.71 The AF-ESPI fringe patterns of Vib-12 specimen 180 (a) First mode (b) Second mode (c) Third mode (d) Fourth mode (e) Fifth mode Fig. 6.72 The AF-ESPI fringe patterns of Vib-21 specimen 181 (a) First mode (b) Second mode (c) Third mode (d) Fourth mode (e) Fifth mode Fig. 6.73 The AF-ESPI fringe patterns of Vib-22 specimen 182 (a) First mode (b) Second mode (c) Third mode (d) Fourth mode (e) Fifth mode Fig. 6.74 The AF-ESPI fringe patterns of Vib-31 specimen 183 (a) First mode (b) Second mode (c) Third mode (d) Fourth mode (e) Fifth mode Fig. 6.75 The AF-ESPI fringe patterns of Vib-31 specimen 184 (a) First mode (b) Second mode (c) Third mode (d) Fourth mode (e) Fifth mode Fig. 6.76 The mode shapes of Vib-11 specimen 185 (a) First mode (b) Second mode (c) Third mode (d) Fourth mode (e) Fifth mode Fig. 6.77 The mode shapes of Vib-12 specimen 186 (a) First mode (b) Second mode (c) Third mode (d) Fourth mode (e) Fifth mode Fig. 6.78 The mode shapes of Vib-21 specimen 187 (a) First mode (b) Second mode (c) Third mode (d) Fourth mode (e) Fifth mode Fig. 6.79 The mode shapes of Vib-22 specimen 188 (a) First mode (b) Second mode (c) Third mode (d) Fourth mode (e) Fifth mode Fig. 6.80 The mode shapes of Vib-31 specimen 189 (a) First mode (b) Second mode (c) Third mode (d) Fourth mode (e) Fifth mode Fig. 6.81 The mode shapes of Vib-32 specimen 190 (a) First mode (b) Second mode (c) Third mode (d) Fourth mode (e) Fifth mode Fig. 6.82 The resonant frequencies for bonded structures without an edge crack 191 Fig. 6.83 The resonant frequencies for bonded structures with an edge crack 191 Fig. A1 Series and parallel connections of a two spring system 203 (a) Series connection (b) Parallel connection Fig. A2 The configuration of a bonded structure described by the series connection of a two spring system 204 Fig. A3 Configuration of the two spring system after applying a force 205 (a) Displacement (b) Free body diagramrf [1 ] D. Post and J. D. Wood, "Determination of Thermal Strains by Moiré Interferometry", Experimental Mechanics, Vol. 29, pp. 318-322, 1989. [2 ] D. Post, J. D. Wood, B. Han, V. J. Parks and F. P. Gerstle, "Thermal Stresses in a Bimaterial Joint: An Experimental Analysis", Applied Mechanics, Vol. 61, pp. 192-198, 1994. [3 ] M. Y. Tsai and J. Morton, "The Stresses in a Thermally Loaded Bimaterial Interface", Int. J. of Solids and Structures, Vol. 28, No. 8, pp. 1053-1075, 1991. [4 ] M. Y. Tsai and J. Mortan, "New Developments in the Localized Hybrid of Stress Analysis", Experimental Mechanics, Vol. 12, No. 31, No.4, pp. 298-305, 1991. [5 ] Y. Kang, K. H. Laermann and Y. Jia, "Experimental Analysis for Bonded Bimaterial Beam under Bending Load", Measurement, Vol. 15, pp. 85-90, 1995. [6 ] D. Post, B. Han and P. Ifju, High Sensitivity Moiré, Springer-Verlag, New York, 1994. [7 ] E. Suhir, "Stresses in Bi-metal Thermostats", J. of Applied Mechanics, Vol. 53, pp.657-661, 1986. [8 ] E. Suhir, "Interfacial Stresses in Bimetal Thermostats", Applied Mechanics, Vol. 56, pp.595-600, 1989. [9 ] G. G. Stoney, "The Tension of Metallic Films Deposited by Electrolysis", Royal Society Proceedings, A82, London, pp. 3224-3229, 1909. [10 ] M. Bicker, U. von Hulsen, U. Laudahn, A. Pundt and U. Geyer, "Optical Deflection Setup for Stress Measurements in Thin Films", Review of Scientific Instruments, Vol. 69, pp. 460-462, 1998. [11 ] D. Sander, S. Ouazi, A. Enders, T Gutjahe-Loser, V. S. Stepanyuk, D. I. Bazhanov and J. Kirschner, "Stress, Strain and Magnetostriction in Epitaxial Films", Physics: Condensed Matter, Vol. 14, pp. 4165-4176, 2002. [12 ] H. S. Kim, E. C. Zouzounis and Y. H. Xie, "Effective Method for Stress Reduction in Thick Porous Silicon Films", Applied Physics Letters, Vol. 80, pp. 2287-2289, 2002. [13 ] Y. D. Jeon and K. W. Paik, "Stresses in Electroless Ni-P Films for Electronic Packaging Applications", IEEE Trans. on Components and Packaging Technologies, Vol. 25, No. 1, pp. 169-173, 2002. [14 ] S. P. Timoshenko, "Analysis of Bi-metal Thermostats", J. of the Optical Society of America, Vol. 11, pp.233-255, 1925. [15 ] W. T. Chen and C. W. Nelson, "Thermal Stresses in Bonded Joints", IBM J. Res. Develop., Vol.23, No. 2, pp. 179-188, 1979. [16 ] O. Volkersen, Luftfahrtforschung, Vol. 15, No. 41, 1938. [17 ] M. Hess, "The End Problem for a Laminated Elastic Strip-I The General Solution", Composite Materials, Vol. 3, pp. 262-280, 1969. [18 ] M. Hess, "The End Problem for a Laminated Elastic Strip-II Differential Expansion Stresses", Composite Materials, Vol. 3, pp. 630-641, 1969. [19 ] F. Delale, F. Erdogan and M. N. Aydinoglu, "Stress in Adhesively Bonded Joints: A Closed-Form Solution", Composite Materials, Vol. 15, pp.249-271, 1981. [20 ] D. Chen, S. Cheng and T. D. Gerhardt, "Thermal Stresses in Laminated Beams", Thermal Stresses, Vol. 5, pp.67-84, 1982. [21 ] K. Suganuma, T. Okamoto and M. Koizumi, "Effect of Interlayers in Ceramic-Metal Joints with Thermal Expansion Mismatches", Communication of the American Ceramic Society, Vol. 67, No. 12, pp. 256-257, 1984. [22 ] E. Suhir, "An Approximate Analysis of Stresses in Multilayered Elastic Thin Films", Applied Mechanics, Vol. 55, pp. 143-148, 1988. [23 ] E. Suhir, "Calculated Interfacial Stresses in Elongated Bimaterial Plates Subjected to Bending", Electronic Packaging, Vol. 111, pp. 277-281, 1989. [24 ] E. Suhir, "Analytical Modeling in Electronic Packaging Structures: Its Merits, Shortcomings and Interaction with Experimental and Numerical Techniques ", Electronic Packaging, Vol. 111, pp. 157-161, 1989. [25 ] A. G. Razaqpur, "Discussion on Stresses in Bi-Metal Thermostats", Applied Mechanics, Vol. 54, pp. 479-479, 1987. [26 ] A. Y. Kuo, "Thermal Stresses at the Edge of a Bimetallic Thermostat", Applied Mechanics, Vol. 56, pp. 585-589, 1989. [27 ] D. B. Bogy, "Edge-Bonded Dissimilar Orthogonal Elastic Wedges under Normal and Shear Loading", Applied Mechanics, Vol. 35, pp.460-466, 1968. [28 ] J. Dundurs, "Discussion on Bogy (1968)", Applied Mechanics, Vol. 36, pp.650-652, 1969. [29 ] D. B. Bogy, "On the Problem of Edge-Bonded Elastic Quarter-Planes Loaded at the Boundary", Int. J. of. Solids and Structures, Vol. 6, pp. 1287-1313, 1970. [30 ] V. L. Hein and F. Erdogan, "Stress Singularities in a Two-Material Wedge", Int. J. of Solids and Structures, Vol. 7, pp. 317-330, 1971. [31 ] A. Y. Kuo and K. L. Chen, "Effects of Thickness on Thermal Stresses in a Thin Solder or Adhesive Layer", Electronic Packaging, Vol. 114, pp.199-202, 1992. [32 ] J. G. Glaser, "Thermal Stresses in Compliantly Jointed Materials", Electronic Packaging, Vol. 112, pp. 25-29, 1990. [33 ] W. Eischen, C. Chung and J. H. Kim, "Realistic Modeling of Edge Effect Stresses in Bimaterial Elements", Electronic Packaging, Vol. 112, pp. 16-23, 1990. [34 ] C. D. Pimoke and G. Wempner, "The Various Approximations of the Bimetallic Thermostatic Strip", Electronic Packaging, Vol. 58, pp. 1015-1020, 1991. [35 ] A. O. Cifuentes, "A Note on the Determination of the Thermal Stresses in Multi-Metal Beams Subjected to Temperature Variations", Electronic Packaging, Vol. 113, pp. 425-427, 1991. [36 ] A. O. Cifuentes, "Elastoplastic Analysis of Bimaterial Beams Subjected to Thermal Loads", Electronic Packaging, Vol. 113, pp. 355-358, 1991. [37 ] Y. H. Pao and E. Eisele, "Interfacial Shear and Peel Stresses in Multilayered Thin Stacks Subjected to Uniform Thermal Loading", Electronic Packaging, Vol. 113, pp. 164-172, 1991. [38 ] W. L. Yin, "Thermal Stresses and Free-Edge Effects in Laminated Beams: A Variational Approach Using Stress Functions", Electronic Packaging, Vol. 113, pp. 68-75, 1991. [39 ] W. L. Yin, "Refined Variational Solutions of the Interfacial Thermal Stresses in a Laminated Beam", Electronic Packaging, Vol. 114, pp. 193-198, 1992. [40 ] B. Mirman, "Microelectronics and the Built-Up-Bar Theory", J. of Electronic Packaging, Vol. 114, pp. 384-388, 1991. [41 ] B. Mirman, "Interlaminar Stresses in Layered Beams", Electronic Packaging, Vol. 114, pp. 389-396, 1992. [42 ] E. Suhir and L. T. Manzione, "Predicted Bow of Plastic Packages Due to the Nonuniform Through-thickness Distribution of Temperature", Electronic Packaging, Vol. 1992, pp. 329-335, 1992. [43 ] E. Suhir, "Predicted Bow of Plastic Packages of Integrated Circuit (IC) Devices", Reinforced Plastics and Composites, Vol. 12, pp. 951-972, 1993. [44 ] C. C. Chiu and Y. Liou, "Residual Stresses and Stress-induced Cracks in Coated Components", Thin Solid Films, Vol. 268, pp. 91-97, 1995. [45 ] L. Matthys and G. D. Mey, "An Analysis of an Engineering Model for the Thermal Mismatch Stresses at the Interface of a Uniform Heated Two Layer Structure", Int. J. of Microcircuits and Electronic Packaging, Vol. 19, pp. 323-329, 1996. [46 ] H. L. Liew, A. Q. Yasir, A. Y. Hassan and K. N. Seetharamu, "Engineering Model for Thermal Mismatch Stresses at the Interface of a Nom-uniformly Heated Two Layer Structure", Int. J. of Microcircuits and Electronic Packaging, Vol. 21, pp. 186-190, 1998. [47 ] Z. Q. Jiang, Y. Huang and A. Chandra, "Thermal Stresses in Layered Electronic Assemblies", Electronic Packaging, Vol. 119, pp. 127-132, 1997. [48 ] S. N. G. Chu, "Elastic Bending of Semiconductor Wafer Revisited and Comments on Stoney’s Equation", Electrochemical Society, Vol. 145, No. 10, pp. 3621-3627, 1998. [49 ] K. Suganuma, T. Okamoto and M. Koizumi, "Influence of Shape and Size on Residual Stress in Ceramic/Metal Joining", Materials Science, Vol. 22, pp. 3561-3565, 1987. [50 ] H. Awano, Y. Suzuki, T. Yamazaki, T. Katayama and A. Itoh, "Magnetostriction and In-situ Measurement of Stress of Co/Pa Compositionally Modulated Multilayered Films During Fabrication", IEEE Trans. on Magnetics, Vol. 26, No. 5, 1990. [51 ] K. Kubota and M. Naoe, "In Situ Measurement of Internal Stress Distribution in Fe/Al Multi-layered Films During Formation", IEEE Trans. on Magnetics, Vol. 27, No. 6, pp. 4867-4869, 1991. [52 ] B. Mirman, "Effects of Peeling Stresses in Bimaterial Assembly", Electronic Packaging, Vol. 113, pp. 431-433, 1991. [53 ] Q. Xu, S. Yu and Y. Kang, "Residual Stress Analysis of Functionally Gradient Materials", Mechanics Research Communications, Vol. 26, No. 1, pp. 55-60, 1999. [54 ] Y. Kang, D. Fu, G. Wang, S. Yu and X. Pan, "Analysis of Displacement and Strain Field around a Bimaterial Interfacial Region by Stress Couple Theory and Experiment", Strain Analysis, Vol. 37, No. 4, pp.281-287, 2002. [55 ] H. Krishnamoorthy and H. V. Tippur, "Evaluation of Elasto-Plastic Interfacial Solder-Copper Bimaterial using Moiré Interferometry", Electronic Packaging, Vol. 120, pp. 267-274, 1998. [56 ] J. Wang, D. Zou, M. Lu, W. Ren and S. Liu, "Evaluation of Interfacial Fracture Toughness of a Flip-Chip Package and a Bimaterial System by a Combined Experimental and Numerical Method", Engineering Fracture Mechanics, Vol. 64, pp. 781-797, 1999. [57 ] J. Joo, K. Oh, S. Cho and B. Hand, "Thermo-mechanical and Flexural Behavior of WB-PBGA Package using Moiré Interferometry", Proceedings of 2001 Int. Symposium on Electronic Materials and Packaging, pp. 421-427. [58 ] Y. Guo and J. H. Zhao, "A Practical Die Stress Model and its Applications in Flip-Chip Packages", Proceedings of Int. Society Conference on Thermal Phenomena, pp. 393-399, 2000. [59 ] C. T. Peng and K. N. Chiang, "Overview of Multilayered Thin Film Theories for MEMS and Electronic Packaging", Proceedings of Int. Society Conference on Thermal Phenomena, pp. 1058-1065, 2002. [60 ] C. T. Peng, "Analysis and Validation of Multilayered Structure for Electronic Packaging and MEMS Applications", Master Dissertation, National Tsing Hua University, R.O.C., 2001. [61 ] K. S. Chen, K. S. Qu, J. H. Cheng, R. F. Hsu, Y. M. Yeh and T. Y. Chen, "An Improved Wafer Curvature to Film Stress Conversion for Residual Stress Measurement", 6 pages, Int. Symposium on Experimental Mechanics, Taipei, Taiwan, R.O.C., December 28-30. [62 ] A. K. Behera and B. K. Nanda, "Dynamic Characteristics of Structures Bonded with Viscoelasic Unconstrained Layers", Trans. of the Canadian Society for Mechanical Engineer, Vol. 10, No. 3, pp. 175-182, 1986. [63 ] M. D. Rao and M. J. Crocker, "Analytical and Experimental Study of the Vibration of Bonded Beams with a Lap Joint", Vibration, Acoustics, Stress, and Reliability in Design, Vol. 112, No. 4, pp. 444-451, 1990. [64 ] D. Shu and H. Fan, "Free Vibration of Bimaterial Split Beam", Composites: Part B, Vol. 28, pp. 79-84, 1995. [65 ] T. C. Ko, "Analysis of Adhesively Jointed, and Patched Laminated Plates for Stresses, Vibration, and Fracture", Ph. D. Dissertation, Department of Applied Mathematics, National Chung Hsing University, R.O.C., 1994. [66 ] C. C. Lin and T. C. Ko, "Free Vibration of Bonded Plates", Computers & Structures, Vol. 64, No. 1, pp. 441-452, 1997. [67 ] W. C. Wang and G. H. Lin, "Investigation of Vibration Characteristics of Patched Composite Plates", Proceedings of the International Conference on Advanced Technology in Experimental Mechanics, pp.209-214, Wakayama, Japan, July 25-26, 1997. [68 ] W. C. Wang and J. S. Hsu, "Investigation of the Dynamic Characteristics of Defected Components Repaired by Composite Patchings", Proceedings of the International Conference on Advanced Technology in Experimental Mechanics, pp.63~68, Ube, Japan, July 21-24, 1999. [69 ] W. C. Wang and C. H. Chen, "Experimental Investigation of Vibration Behavior of Patched Composite Plates", Proceedings of the 12th International Conference on Composite Materials, paper No.930, 9 pages, Paris, France, July 5-9, 1999. [70 ] W. C. Wang and J. S. Hsu, "Investigation of the Size Effect of Composite Patching Repaired on Edge-Cracked Plates", Composite Structures, Vol. 49, pp. 415-423, 2000. [71 ] W. C. Wang and C. H. Chen, "Investigation of Vibration Behavior of Patched Edge-Cracked Composite Plates", Reinforced Plastics and Composites, Vol. 21, No. 6, pp. 533-557, 2002. [72 ] P. G. Young and S. M. Dickinson, "Natural Frequencies of Vibration of a Class of Solids Composed of Layers of Isotropic Materials", Mech. Sci., Vol. 39, No. 1, pp. 97-104, 1997. [73 ] C. C. Lin and H. N. Huang, "Vibration Control of Beam-Plates with Bonded Piezoelectric Sensors and Actuators", Computers & Structures, Vol. 73, pp. 239-248, 1999. [74 ] D. Sun, L. Tong and S. N. Atluri, "Effects of Piezoelectric Sensor/Actuator Debonding on Vibration Beams", Int. J. of Solids and Structures, Vol. 38, pp. 9033-9051, 2001. [75 ] J. W. Dally and W. F. Riley, Experimental Stress Analysis, Mc.Graw-Hill, New York, U.S.A., 1991. [76 ] D. Post, "Photoelastic Stress Analysis for an Edge Crack in Tensile Field", Proceedings of SESA, Vol. 12, No. 1, pp. 99-116, 1954. [77 ] A. Shukla and H. Nigam, "A Numerical-Experimental Analysis of the Contact Stress Problem", Strain Analysis, Vol. 20, No. 4, pp. 241-245, 11985. [78 ] J. O. Smith and C. K. Liu, "Stresses due to Tangential and Normal Loads on an Elastic Solid with Application to Some Contact Stress Problems", Applied Mechanics, Vol. 20, pp. 157-166, 1953. [79 ] J. W. Dally and Y. M. Chen, "A Photoelastic Study of Friction at Multipoint Contacts", Experimental Mechanics, Vol. 31, pp. 144-149, 1991. [80 ] W. C. Wang, H. L. Chao, R. Z. Shen, Y. M. Chen and M. S Lin, "Investigation of Modified Hertz Contact Theory", International Conference on Advanced Technology in Experimental Mechanics, Nagoya, Japan, September 10-12, 2003. [81 ] H. Hertz, "Uberdie Beruhrung fester elastischer korper (On the contact of elastic solids)", J. reine und angewandte Mathematik, 92, pp. 156-171. (For English translation see Miscellaneous papers by H. Hertz, Eds. Jones and Schott, London: Macmillan, 1896.) [82 ] J. T. Chen and W. C. Wang, "Experimental Analysis of an Arbitrarily Inclined Semi-Infinite Crack Terminated at the Bimaterial Interface", Experimental Mechanics, Vol. 36, No. 1, pp. 7-17, 1996. [83 ] S. A. Meguid and M. A. Tan, "Photoelastic Analysis of the Singular Stress Field in a Bimaterial Wedge", Experimental Mechanics, Vol. 40, No. 1, pp. 68-74, 2000. [84 ] P. K. Rastogi ed., Photomechanics, Springer-Verlag, New York, U.S.A., 1999. [85 ] G. L. Cloud, Optical Methods of Engineering Analysis, Cambridge University Press, New York, U.S.A., 1995. [86 ] K. J. Gasvik, Optical Metrology, John Wiley & Sons, New York, U.S.A., 1995. [87 ] A. D. Durelli and V. J. Parks, Moiré Analysis of Strain, Prentice-Hall Inc., Englewood Cliffs, New Jersey, U.S.A., 1970. [88 ] J. Guild, The Interference Systems of Crossed Diffraction Gratings, Oxford University Press, London, U.K., 1956. [89 ] E. Hecht, Optics, Addison Wesley, New York, U.S.A., 2002. [90 ] I. Amidror, The Theory of the Moiré Phenomenon, Kluwer Academic Publishers, Dordrecht, Netherlands, 2000. [91 ] H. M. Ho, K. M. Oh, E. H. Wong and T. B. Lim, "Application of Moiré Interferometry in Electronic Packagings", Proceedings of IEEE/CMPT Electronic Packaging technology Conference, pp. 277-282, 1997. [92 ] J. Zhu, D. Zou and S. Liu, "Real-Time Monitoring and Simulation of Thermal Deformation in Plastic Package", Electronic Packaging, Vol. 120, pp. 160-165, 1998. [93 ] J. Wang, Z. Qian, D. Zou and S. Liu, "Creep Behavior of a Flip-Chip Package by both FEM Modeling and Real Time Moiré Interferometry", Electronic Packaging, Vol. 120, pp. 179-185, 1998. [94 ] E. A. Stout, N. R. Sottos and A. F. Skipor, "Mechanical Characterization of Plastic Ball Grid Array Packages Flexure Using Moiré Interferometry", IEEE Trans. on Advanced Packaging, Vol. 23, No. 4, pp. 637-645, 2000. [95 ] V. T. Kowalski and A. S. Voloshin, "Moiré Interferometry Analysis of Laser Weld Induced Thermal Strain", Electronic Packaging, Vol. 116, pp. 177-183, 1994. [96 ] D. E. Bowles, D. Post, C. T. Herakovich and D. R. Tenney, "Moiré Interferometry for Thermal Expansion of Composites", Experimental Mechanics, Vol. 21, No. 12, pp. 441-447, 1981. [97 ] J. D. Wood, "Detection of Delamination Onset in a Composite Laminate Using Moiré Interferometry", Composite Technology Review, Vol. 7, No. 4, pp. 121-128, 1985. [98 ] F. Wang, H, Xie, F. Dai and W. Qu, "Measurement of Strain Concentration Factor of Composites Plate Using Moiré Interferometry", Strain, Vol. 35, No.1, pp. 11-14, 1999. [99 ] A. Livnat and D. Post, "The Governing Equations for Moiré Interferometry and Their Identity to Equation of Geometrical Moiré", Experimental Mechanics, Vol. 25, No. 4, pp. 360-366, 1985. [100 ] D. Post, R. Czarnek and D. Joh, "Shear-Strain Contours from Moiré Interferometry", Experimental Mechanics, Vol. 25, No.3, pp. 282-287, 1985. [101 ] A. Asundi and M. T. Cheung, "Moiré Interferometry for Out-of-Plane Displacement Measurement", Strain Analysis, Vol. 21, No. 1, pp. 51-54, 1986. [102 ] A. Asundi, M. T. Cheung and C. S. Lee, "Moiré Interferometry for Simultaneous Measurement of U, V W", Experimental Mechanics, Vol. 29, No. 3, pp. 258-260, 1989. [103 ] A. Asundi and M. T. Cheung, "Moiré Interferometry for Vibration Analysis of Plates", Experimental Mechanics, Vol. 27. No. 4, pp. 338-341, 1987. [104 ] D. H. Mollenhauer, P. G. Ifju and B. Han, "A Compact, Robust and Versatile Moiré Interferometer", Optics and Lasers in Engineering, Vol. 23, pp. 29-40, 1995. [105 ] Y. Guo, D. Post and R. Czarnek, "The Magic of Carrier Fringes in Moiré Interferometry", Experimental Mechanics, Vol. 29, No.2, pp. 169-173, 1989. [106 ] S. Cho, S. Cho and B. Han, "Observing Real-Time Thermal Deformation in Electronic Packaging", Experimental Techniques, Vol. 26, No. 3, pp. 25-29, 2002. [107 ] "Portable Engineering Moiré Interferometry (PEMI)", Photomechanics Inc., U.S.A. [108 ] Y. Yamamoto, Y. Morimoto and T. Nomura, "Fringe Analysis of Four-Beam Moiré Interferometry by Fourier Transform Phase-Shifting Method", 5 pages, International Symposium on Experimental Mechanics, Taipei, Taiwan, R.O.C., December 28-30. [109 ] N. Butters and J. A. Leendertz, "Holographic and Video Techniques Applied to Engineering Measurement", Trans. of the Institute of Measurement and Control, Vol. 4, pp. 349-354, 1971. [110 ] A. K. Maji, J. L. Wang and J. Lovato, "Electronic Speckle Pattern Interferometry for Fracture Mechanics Testing", Experimental Techniques, Vol. 15, No. 3, pp. 19-23, 1991. [111 ] J. Moore and J. R. Tyrer, "Electronic Speckle Pattern Interferometry for Complete In-Plane Displacement Measurement", Measurement Science and Technology, Vol. 1, No. 10, pp. 1024-1030, 1990. [112 ] K. Creath, "Phase-Shifting Speckle Interferometry", Applied Optics, Vol. 24, pp. 3053-3058, 1985. [113 ] J. T. Malmo and E. Vikhagen, "Vibration Analysis of a Car Body by Means of TV-Holography", Experimental Techniques, Vol. 12, pp. 28-30, 1988. [114 ] B. Lu, Z. Hu, H. Abendorth, H. Eaggers and E. Ziolkowski, "Improvement of Time-Average Subtraction Technique Applied to Vibration Analysis with TV-Holography", Optics Communications, Vol. 78, pp. 217-221, 1990. [115 ] B. Lu, X. Yang, Abendroth and H. Eggers, "Time-Average Subtraction Method in Electronic Speckle Pattern Interferometry", Optics Communications, Vol. 70, pp. 177-180, 1989. [116 ] W. C. Wang, C. H. Hwang and S. Y. Lin, "Vibration Measurement Time-Averaged Electronic Speckle Pattern Interferometry Method", Applied Optics, Vol. 35, No. 22, pp. 4502-4508, 1996. [117 ] W. C. Wang and Y. H. Tsai, "Experimental Vibration Analysis of the Shadow Mask", Optics and Lasers in Engineering, Vol. 30, No. 6, pp. 539-550, 1998. [118 ] W. C. Wang and C. H. Hwang, "Experimental Analysis of Vibration Characteristics of an Edge-Cracked Composite Plate by ESPI Method", Int. J. of Fracture, Vol. 91, No.4, pp. 311-321. 1998. [119 ] W. C. Wang and K. H. Lai, "Experimental Investigation of Vibration of the Shadow Mask with Different Assembly Conditions", IEEE Trans. On Consumer Electronics, Vol. 45, No. 4, pp. 1046-1056, 1999. [120 ] J. S. Hsu and W. C. Wang, "Photoelastic Investigation on Thermal Stresses in Bonded Structures", Proceedings of the 3rd International Conference on Experimental Mechanics, pp. 170-173, Beijing, China, October 15-17, 2001. [121 ] W. C. Wang and J. S. Hsu, "Theoretical, Experimental and Numerical Investigations on the Interfacial Stresses of Bonded Structures", paper no. 274, 6 pages, International Symposium on Experimental Mechanics, Taipei, Taiwan, R.O.C., December 28-30, 2002. [122 ] W. C. Wang and J. S. Hsu, "Re-examination on Thermal Stresses of Bonded Structures", Strain Analysis for Engineering Design. (Submitted) [123 ] W. C. Wang and J. S. Hsu, "Reduction of Interfacial Stresses of the Bonded Structures by Embedded Inclusion and Void", SEM Annual Conference and Exposition, Milwaukee, Wisconsin, U.S A., June 10-12. [124 ] W. C Wang and J. S. Hsu, "The Influence on the Distribution of Interfacial Stresses of Embedded Inclusions and Voids in the Adherends of Bimaterial Structures", Measurement. (Submitted) [125 ] B. B. William, Mechanics of Solids, Irwin, Boston, U.S.A., 1993. [126 ] Sridhar Canumalla et al., "Nondestructive elastic property characterization of IC Encapsulants", Application of Fracture Mechanics in Electronic Packaging, AMD-vol.222/EEP-vol.20, 1997, pp.25. [127 ] The STAR System, Structural Measurement System (SYS), A GenRed Product Line, Canada, 1990. [128 ] SURFER, Version 5.01, Surface Mapping System, Golden Software, Inc., Golden, Colorado, U.S.A., 1993. [129 ] ANSYS, Revision 5.3, Swanson Analysis Systems, Inc., Houston, PA, U. S .A., 1996. [130 ] MATLAB, Version 5.3.0, MathWorks, Inc., Natick, MA, U.S.A., 1999. [131 ] D. R. Schmit and R. W. Hunt, "Inversion of Speckle Interferometry Fringes for Hole-Drilling Residual Stress Determinations", Experimental Mechanics, Vol. 40, No.2, pp. 129-137, 2000. [132 ] R. Tummala and E. Rymaszewski, Microelectronic Packaging Handbook, Van Nostrand, 1988.id NH0920311001 sid 877708 cfn 0 / id NH0920311002 auc 高平生 tic 電化學鑽孔成型隨時間與間隙變動之預測 adc 賀 陳 弘 ty 博士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 英文 pg 84 kwc 電化學加工 kwc 電化學鑽孔 kwc 數學模型 abc 電化學加工 (Electrochemical machining, ECM) 當前已被應用在許多零件的微加工。本研究乃分析金屬片上利用電化學鑽孔產生一數百微米的穿孔。為了增加製程的穩定及可控制性,需要發展一描述加工參數與所生成孔輪廓的數學模型。本研究的目的即在預測電化學加工後產生的孔徑尺寸,研究中以電解定理為基礎,所建立的數學模型使用有限寬的電極,俾模擬孔洞形成的過程。此外,並引入電荷移轉的概念,用來描述當工件被穿透時的孔徑輪廓變化。 tc Chapter 1: Introduction 1 1.1 Characteristics of Electrochemical Machining 1 1.2 Operation of Electrochemical Machining 3 1.2.1 Electrode for ECM 4 1.2.2 Electrolytes for ECM 4 1.2.3 Common Workpiece Materials 6 1.3 Electrochemical Micro-machining 6 1.4 Background and Scope of Study 8 Chapter 2: Literature Survey 10 2.1 Industrial applications of ECM 10 2.2 Processing of ECM 13 2.3 Model for the Machined Dimension and Shape 16 Chapter 3: Model of Electrochemical Machining of Through Hole 20 3.1 Fundamental of ECM 20 3.1.1 Faraday’s Law 21 3.1.2 Machining Speed 22 3.1.3 Current Efficiency 24 3.2 Prediction of Machined Profile of Hole — Three Dimensional Model 24 3.3 Prediction of Machined Profile of Hole — Simplified Two Dimensional Model 24 Chapter 4: Experimental Design and Setup 40 4.1 ECM experimental materials 40 4.2 Experimental Setup 41 4.3 Experimental Parameters and Scheme 43 4.4 Measurements 46 Chapter 5: Results and Discussions 55 5.1 Stationary Electrode -- Before Boring Through 55 5.2 Stationary Electrode -- Boring Through 57 5.3 Moving Electrode -- Boring Through 59 Chapter 6: Conclusions 78 Reference 80 Appendix 84rf Bannard J., “Effect of Flow on the Dissolution Efficiency of Mild Steel during ECM”, Journal of Applied Electrochemistry, Vol. 7, pp. 167~270, 1977. Bejar M.A. and Gutierrez F., “On the Determination of Current Efficiency in Electrochemical Machining with a Variable Gap”, J. Mat. Proc. Tech., Vol. 37, pp. 691~699, 1993. Bhattacharyya B., Doloi B. and Sridhar P. S., “Electrochemical Micro-machining: New Possibilities for Micro-manufacturing”, J. Maters. Proc. Tech., Vol. 113, pp. 301~305, 2001. Bhattacharyya B. and Sorkhel S.K., “Investigation for Controlled Electrochemical Machining Through Response Surface Methodology-based Approach”, J. Maters. Proc. Tech., Vol. 86, pp. 200~207, 1999. Clifton D., Mount A.R., Jardine D.J. and Roth R., “Electrochemical Machining of Gamma Titanium Aluminide Intermetallics”, J. Maters. Proc. Tech., Vol. 108, pp. 338~348, 2001. Collete D.E., Hewson-Browne R.C. and Windle D.W., “A Complex Variable Approach to Electrochemical Machining Problems”, Journal of Engineer Mach., Vol. 4, pp. 29~37, 1970. Datta M. and Landolt D., “Electrochemical Machining Under Pulsed Current Conditions”, Elector. Acta, Vol. 26, No. 7, pp. 899~907, 1981. Datta M. and Landolt D., “Electrochemical saw using Pulsating Voltage”, Journal of Applied Electrochemistry, Vol. 13, pp. 795~802, 1983. Datta M., Shenoy R.V., and Romankiw L.T., “Recent Advances in the Study of Electrochemical Micromachining”, ASME, PED-Vol. 64, pp. 675~692, 1993. De Silva A.K.M., Altena H.S.J. and McGeough J.A., “Precision ECM by Process Characteristic Modeling”, Annals of the CIRP, Vol. 49/1, pp. 151~155, 2000. Domanowski P. and Kozak J., “Inverse Problems of Shaping by Electrochemical Generating Machining”, J. Maters. Proc. Tech., Vol. 109, pp. 347~353, 2001. Fontana M.B., “Corrosion Engineering”, McGraw-Hill, 1986. Gurklis J.A., “Material Removal by Electrochemical Methods and Its Effect on Mechanical Properties of Metals”, Battelle Memorial Institute, Defence Metals Information Center, DMIC Report 213, Jan. 7, 1965. Hardisty H., Mileham A.R. and Shirvani H., “Analysis and Computer Simulation of the Electrochemical Machining Process: a Stepped Moving Tool Eroding a Plane Surface”, Proc Instn Mech Engrs, Vol. 210, pp. 109~118, 1995. Hourng L.W. and Chang C.S., “Numerical Calculation of Electrochemical Drilling”, J. of Applied Electrochemistry, Vol. 23, pp. 316~321, 1993. Jain V.K. and Pandey P.C., “Tool Design for Electrochemical Machining”, Precision Engineering, Vol. 2, pp. 195~206, 1980. König W. and Humbs H.H., “Mathematical Model for the Calculation of the Contour of the Anode in Electrochemical Machining”, Annals of the CIRP, Vol. 26/1, pp. 83~86, 1977. Kozak J., “Mathematical Models for Computer Simulation of Electrochemical Machining Process”, J. Maters. Proc. Tech., Vol. 76, pp. 170~175, 1998. Kunieda M., Yoshida M. and Yoshida H., “Influence of Microindents Formed by Electrochemical Jet Machining on Rolling Bearing Fatigue Life”, Manufacturing Science and Engineering, ASME, PED-Vol. 64, pp. 693~699, 1993. Kuznetsov A.M. and Medvedev I.G., “A Model of the Surface Molecule for Adiabatic Electrochemical Electron Transfer Including Electron Correlation Effects: the Exact Solution”, J. Electroanalytical Chem., Vol. 502, pp. 15~35, 2001. Kwok Y.K. and Wu C.C.K., “Numerical Simulation of Electrochemical Diffusion- migration Model With Reaction at Electrodes”, Comput. Methods Appl. Mech. Engrg., Vol. 132, pp. 305~317, 1996. Masuzawa T. and Tonshoff H.K., “Three-dimensional Micromachining by Machine Tools”, Annals of the CIRP, 46/2 pp. 621~628, 1997. McGeough J.A., “Principles of Electrochemical Machining”, Chapman & Hall, London, 1974. Narayanan O.H., Hinduja S. and Noble C.F., “The Prediction of Workpiece Shape During Electrochemical Machining by the Boundary Element Method”, Int. J. Mach. Tool, Des. Res. Vol. 26, No. 3, pp. 323~338, 1980. Rajurkr K.P. et al., “Electrochemical Polishing of Biomedical Titanium Orifice Rings”, J. Maters. Proc. Tech., Vol. 35, pp. 83~91, 1992. Riggo O.L. and Locke C.E., “Anodic Protection”, Plenum Prese, 1981. Ruszaj A. and Zybura-Skrabalak M., “The Mathematical Modeling of Electrochemical Machining with Flat Ended Universal Electrodes”, J. Maters. Proc. Tech., Vol. 109, pp. 333~338, 2001. Schultze J.W. and Bressel A., “Principles of electrochemical micro- and nano-system technologies”, Electrochimica Acta, Vol. 47, pp. 3~21, 2001. Suter T. and Böhni H., “Microelectrodes for Corrosion Studies in Microsystems”, Electrochimica Acta, Vol. 47, pp. 191~199, 2001. Wilson J., “Practice and Theory of Electrochemical Machining”, Wiley- Interscience, 1971. Zeng C.L., Wang W. and Wu W.T., “Electrochemical Impedance Models for Molten Salt Corrosion”, Corrosion Science, Vol. 43, pp. 787~801, 2001.id NH0920311002 sid 863775 cfn 0 / id NH0920311003 auc 王毓弘 tic 往復運動下平滑面反重力式熱虹吸管熱傳與流場之實驗研究 adc 劉通敏 adc 張始偉 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 100 kwc 往復運動 kwc 反重力式 kwc 熱虹吸管 abc 現今世界各國船舶上所使用的引擎大都為重型柴油引擎。為了提昇此重型柴油引擎之效率,各個引擎製造廠均已朝向提高單缸馬力輸出、超長衝程及低轉速這幾方面來發展。然而,引擎在高溫高壓之熱力循環下,因熱構件過熱而造成故障損壞,其中以活塞構件之熱損害最為嚴重。因此,熱疲勞及過高之熱應力對船舶重型柴油引擎的影響為急需解決的問題之一。目前多孔道活塞冷卻方法已於船舶柴油引擎活塞冷卻上廣泛應用。因此,本實驗研究此方法應用於船舶引擎活塞冷卻之熱流現象。本文以空氣流經凸字型半封閉渠槽模擬實際船舶引擎活塞內之散熱盲管與氣室內流場,探討靜止與往復運動時,流體於半封閉渠槽內之熱傳情況與熱流場之流動情形。分別以熱電偶與雷射都卜勒測速儀(LDV)兩種實驗方法量測半封閉渠槽內之壁面溫度分佈與熱流場之流場速度、紊流強度及紊流動能。以熱流場之實驗結果解釋熱傳之實驗結果,並比較冷流場與熱流場之不同;於流場量測方面,並輔以視流法(Flow Visualization)與LDV量測之流場相互印證。 tc 摘要 I 誌謝 III 目錄 Ⅳ 圖表目錄 VII 符號說明 IV 第一章 前言 1 1-1 研究背景 1 1-2 文獻回顧 2 1-2-1 熱傳實驗文獻 2 1-2-2 流場實驗文獻 4 1-3 研究動機 5 1-4 研究目的 6 第二章 無因次參數之推導 7 第三章 實驗系統及方法 12 3-1 熱傳實驗設備與方法 12 3-1-1 氣源供應器 12 3-1-2 往復機組 12 3-1-3 測試模型 13 3-1-4 直流電源供應器 14 3-1-5 溫度檢測器 14 3-1-6 數據處理器 15 3-1-7 氣體混合槽 15 3-1-8 壓力傳感器 15 3-1-9 浮子式流量計 15 3-2 流場實驗設備與方法 16 3-2-1 雷射督卜勒測速儀之簡介 16 3-2-2 雷射督卜勒測速儀之作用原理 16 3-2-3 實驗儀器及週遭相關設備 18 3-2-4 實驗方法 21 3-3 實驗參數範圍 22 3-3-1 熱傳實驗參數範圍 22 3-3-2 流場實驗參數範圍 23 3-4 實驗誤差 26 3-4-1 熱傳實驗誤差 26 3-4-2 流場實驗誤差 26 第四章 結果與討論 28 4-1 熱傳實驗之結果與討論 28 4-1-1 靜止狀態之熱傳 29 4-1-2 往復狀態之熱傳 32 4-2 流場實驗之結果與討論 32 4-2-1 靜止狀態之流場 33 4-2-2 往復狀態之流場 40 第五章 結論 45 5-1 結論 45 5-1-1 熱傳實驗結論 45 5-1-2 流場實驗結論 45 5-2 建議 47 參考文獻 49rf 1. Lock, G.H.S., 1992. “The turbular thermosyphon,” Oxford Science Publications, Oxford University Press, ISBN 0-19-856247, pp.286-296. 2. Chang, S.W., Su, L. M. and Yang, T. L., 1999,”Heat transfer of impinging jet and ribbed duct flows with system reciprocation,” Journal of Ship Research, Vol.43, No.2, pp.107-120. 3. Chang, S. W., Su, L. M., Yang, T. L., and Hwang, C.C., 1999, ”An experimental study of heat transfer in reciprocating square duct fitted with ribs skewed to the flow,” ASME Journal of Heat Transfer, Vol.121, pp.232-236. 4. Chang, S.W., Su, L.M., Hwang, C.C., And Yang, T.L., 1998, “Heat transfer in a reciprocating duct fitted with transverse ribs,” Journal of Experimental Heat Transfer, Vol.12, pp.95-115. 5. Chang, S.W. and Su, L.M., 1997,”Reciprocating motion affected heat transfer inside a ribbed duct with piston cooling application for marine diesel engine,” Journal of Ship Research, Vol.41, No.4, pp.332-339. 6. 蘇樂梅,楊春陵,張始偉,黃正清, 1998, ”往復運動對內設突起物管流熱傳現象影響之實驗研究,”中國造船暨輪機工程學刊, Vol.17, No.4, pp.45-57. 7. Fu, W.S., and Shieh, W.J, 1992, “A study of thermal convection in an enclosure induced simultaneously by gravity and vibration,” Int. J. Heat Mass Transfer, Vol. 35, No. 7, pp. 1695-1710. 8. Chang, S.W., Su, L.M., Morris, W.D., and Liou, T.M., 2002, “Heat transfer in a smooth-walled reciprocating anti-gravity open thermosyphon,” In press, J. Thermal Sciences. 9. 林清貴, 2002, “往復運動對半封閉渠槽的流場與熱傳影響之數值模擬,” 國力清華大學碩士論文 10. Occhialini, J.M., Higdon, J.J.L., 1992, “Convective mass transport from rectangular cavities in viscous flow,” J. Electrochemical Soc., Vol. 139, pp. 2845-2855. 11. Fang, L.C., Nicolaou, D., and Cleaver, J.W., 1999, “Transient removal of a contaminated fluid from a cavity, Int. J. Heat and Fluid Flow, Vol. 20, pp. 605-613. 12. 王裕銘, 2002, “往復半封閉渠槽流場實驗研究,” 國力清華大學碩士論文 13. Editorial Board of ASME Journal of Heat Transfer, 1993, Journal of Heat Transfer Policy on reporting uncertainties in experimental measurements and results, ASME J. Heat Transfer, Vol. 115, pp. 5-6 14. 古孟岳, 1998, “脈動力與浮力對往復粗糙面之熱傳特性研究,” 國立成功大學碩士論文 15. 黃玉如, 2000, “船舶柴油引擎活塞冷卻系統往復運動正交通道具凸起物之流體熱傳性能研究”, 國立成功大學碩士論文 16. 黃睿哲, 2001, ”往復通道加裝突起物紊流場觀察與數值分析模擬,” 國立成功大學碩士論文 17. 劉謹德, 2001,”通道內設突起物往復運動時混合對流之熱傳研究,”國立成功大學碩士論文 18. Bejan, Adrian, 1995,”Convection heat transfer”. ISBN 0-471-57972-6, John Wiley & sons, Inc., New York.id NH0920311003 sid 903721 cfn 0 / id NH0920311004 auc 陳昱年 tic 小型無感測器直流無刷馬達之設計與驅動分析 adc 王培仁 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 96 kwc 無刷直流馬達 kwc 無感測器驅動 kwc 無槽式 abc 無刷直流馬達使用磁感應式的霍爾元件檢測轉子位置以觸發換向,達到以電力電子元件替代傳統有刷直流馬達換向機構之目的,可解決傳統馬達運轉時的機械噪音與定期碳刷維修成本等問題。在無刷直流馬達的設計過程中,工作效率的提昇是一項重要的設計指標。也因為工作效率的提高與馬達的磁路設計息息相關,所以在無刷直流馬達的最佳化設計過程中,磁路設計是一重要的關鍵;此外,在某些高溫或是空間受限的應用場合中,使用霍爾感應器易造成系統故障或無法安裝等問題,故吾人選擇以無感測器驅動方式取代使用霍爾感應器的換向機構,以完成驅動馬達的目標。 tc 中文摘要 1 英文摘要 2 誌謝 3 目錄 4 圖目錄 6 表目錄 8 符號文字說明 9 第一章 簡 介 11 1.1研究背景 11 1.2 文獻回顧 12 1.3 研究目的 16 第二章 理論分析與建模 21 2.1 馬達數學模式 22 2.2 無感測驅動原理 24 第三章 一維磁路設計分析 32 3-1 磁路分析目的 32 3-2 一維磁路計算 34 第四章 磁場數值分析與結果 47 4.1 有限元素分析 47 4.1.1 工具軟體簡介 47 4.1.2基礎理論介紹 48 4.1.3 模擬分析流程 51 4.2 模擬結果與討論 51 4.2.1 尺寸變數分析 51 4.2.2 二維設計結果與分析 53 4.2.3 材料變數分析 59 第五章 驅動電路建模與分析 75 5.1 分析工具介紹 75 5.2 電路建模 75 5.2.1無刷馬達建模 76 5.2.2變頻調制電路 79 5.2.3無感測器換向邏輯 80 5.3 分析結果與討論 84 第六章 結論與討論 92 6.1結論與討論 92 6.2未來工作 94 參考文獻 95rf [1 ]Y. Chen, J. Shen and Z. Fang, “Topology and Preliminary Design of Slotless Brushless DC Motor,” in Conf. Rec. IEEE- International on Electric Machines and Drives, pp.WB2/7.1-WB2/7.3, 1997. [2 ]S. M. Jang, S. S. Jeong, D. W. Ryu and S. K. Choi, “Comparison of Three Types of PM Brushless Machines for an Electro-mechanical Battery,” IEEE Trans. on Magnetics, vol. 36, no. 5, pp. 3540-3543, 2000. [3 ]A. A. Arkadan and R. Vyas, “Effects of Toothless Stator Design on Dynamic Model Parameters of Permanent Magnet Generators,” IEEE Trans. on Energy Conversion, vol. 8, no. 2 , pp. 243-250, 1993. [4 ]Y. S. Chen, Z. Q. Zhu and D. Howe, “Slotless Brushless Permanent Magnet Machines: Influence of Design Parameters,” IEEE Trans. on Energy Conversion, vol. 14, no. 3 , pp. 686-691, 1999. [5 ]K. Iizuka, H. Uzuhashi, M. Kano, T. Endo and K. Mohri, “Microcomputer Control for Sensorless Brushless Motor,” IEEE Trans. on Industry Applications, vol. IA-21, no. 4, pp. 595-601, 1985. [6 ]R. Lin, M. T. Hu, C. Y. Lee and S. C. Chen, “Using Phase Current Sensing Circuit as the Positing Sensor for Brushless DC Motors Without Shaft position Sensors,” IEEE IECON Proceedings, pp. 215-218, 1989. [7 ]R. C. Becerra, T. M. Jahns and M. Ehsani, “Four-Quadrant Sensorless Brushless ECM Drive,” IEEE Trans. on Magnetics, vol. 32, no. 5 , pp. 819-828, 1991. [8 ]S. Ogasawara and H. Akagi, “An Approach to Position Sensorless Drive for Brushless DC Motors,” IEEE Trans. on Industry Applications, vol. 27, no. 5 , pp. 928-933, 1991. [9 ]J. C. Moreira, “Indirect Sensing for Rotor Flux Position of Permanent magnet AC Motors Operating in a Wide Speed Range,” IEEE Trans. on Industry Applications, vol. 32, no. 6 , pp. 1394-1401, 1996. [10 ]P. C. Krause and C. H. Thomas, “Simulation of Symmetrical Induction Machinery,” IEEE Trans. on Power Apparatus and Systems, vol. PAS-84, no. 12 , pp. 1038-1053, 1965. [11 ]P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machinery and Drive Systems, New York: Wiley-Interscience, 2002. [12 ]孫清華, 最新無刷直流馬達,全華科技圖書股份有限公司, 2001. [13 ]T. J. E. Miller and J. R. Hendershot, Design of Brushless Permanent-magnet Motors, Magna Physics Publishing and Clarendon Press, 1994. [14 ]M. Juhring, Model Helicopter World , pp. 50-53, 2003. [15 ]R. E. Devor, T. H. Chang and J. W. Sutherland, Statisical Quality Design and Control Contemporary Concepts and Methods, Prentice-Hall, 1992. [16 ]呂理雄, 電機設計, 全華科技圖書股份有限公司, 1978. [17 ]何清佳, 電機設計, 全華科技圖書股份有限公司, 1995. [18 ]胡阿火, 電動機械(上)(下), 全華科技圖書股份有限公司, 1992 . [19 ]何世江, 黃世民, “應用數值電磁場分析於交流同步伺服馬達設計”, 機械工業雜誌第205期, 1990. [20 ]何世江, “交流同步伺服馬達繞線設計及分析”, 機械工業雜誌, 1995.id NH0920311004 sid 903754 cfn 0 / id NH0920311005 auc 劉張源 tic 應用於電子構裝冷卻之高性能冷板熱流特性研究 adc 洪英輝 ty 博士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 500 kwc 高性能冷板 kwc 電子構裝冷卻 abc 摘要 tc 目 錄 頁次 摘要 i 目錄 v 第一章 緒論 1 第二章 熱傳分析軟體之發展 3 第三章 實驗量測 5 第四章 高性能冷板單邊單一離散晶片加熱之熱傳與流阻特性研究 7 第五章 高性能冷板單邊多個離散晶片加熱之熱傳與流阻特性研究 11 第六章 高性能冷板雙邊單一或多重離散晶片加熱之熱傳特性與流阻特性研 15 第七章 結論與建議 17 參考文獻 21 附錄(英文版) 27rf REFERENCES Antonetti, V. W., Whittle, T. D., and Simons, R. E., 1991, “An Approximate Thermal Contact Conductance Correlation,” In Experimental/ Numerical Heat Transfer in Combustion and Phase Change, HTD-Vol.170, ASME, New York, pp.131-134. Antonetti, V. W., Whittle, T. D., and Simons, R. E., 1993, “An Approximate Thermal Contact Conductance Correlation,” ASME Journal of Electronic Packaging, Vol.115, pp.131-134. Antonetti, V. W., and Yovanovich, M. M., 1984, “Thermal Contact Resistance in Microelectronic Equipment,” In Thermal Management Concepts in Microelectronic Packaging from Component to System, ISHM Technical Monograph Series 6984-003, pp.135-151. Barkakati, N, 1990, X Windows System Programming, Howard W. Sams, USA. Chen, Y. Y., 1996, "Thermal CAD Development for Multilayer PCB Structures with A Multi-Stack Cold Plate," Master's Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan. Chiou, Y. M., 1994, "Pre-Processor and Post-Processor Development for Multi-Layer Cold Plates with Arbitrary Heating Loads," Master's Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan. Chun, Y. H., 1993, "A Theoretical Study on Cold-Plate Performance with Arbitrary Heating Loads," Master's Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan. Ellison, G. N., 1973, "The Effect of Some Composite Structures on the Thermal Resistance of Substrates and Integrated Circuit Chips," IEEE Transactions on Parts, Hybrids, and Packaging, Vol.ED-20, No.3, pp.233-238. Ellison, G. N., 1976, "The Thermal Design of an LSI Single-Chip Package," IEEE Transactions on Parts, Hybrids, and Packaging, Vol.PHP-12. No.4, pp.371-378. Ellison, G. N., 1984, Thermal Computations for Electronic Equipment, van Nostrand Reinhold Co., New York. Foley, J. D., van Dam, A., Feiner, S. K. and Hughes, J. F., 1990, Computer Graphics: Principles and Practice, 2nd ed., Addison-Wesley Publishing Company, Inc., New York. Hung, Y. H., and Chun, Y. H., 1994, "Thermal Performance Analysis of Cold Plates for Multilayer Structures with Arbitrary Heating Loads," In Heat Transfer in Electronic System, HTD-Vol.292, ASME, New York, pp.137-144. Hung, Y. H., and Perng, S. W., 1988, "An Experimental Technique for Measuring Transient Natural-/Forced- Convective Heat Fluxes in a Vertical Channel," Experimental Thermal and Fluid Science, Vol.1, No.4, pp.305-314. Kays, W. M., 1960, “Basic Heat Transfer and Flow Friction Characteristics of Six High Performance Heat Transfer Surfaces,” J. Eng. Power, Vol.82, pp.27-32. Kays, W. M., and London, A. L., 1964/1984, Compact Heat Exchangers, 2nd/3rd ed., McGraw-Hill, New York. Kern, D. Q., and Kraus, A. D., 1972, Extended Surface Heat Transfer, McGraw-Hill Book Company, New York. Kraus, A. D., 1961, “Efficiency of the Cold Plate Heat Exchanger,” Proc. Natl. Aeronaut. Electron. Conf., Dayton, Ohio, p.381. Kraus, A. D., 1962, “Optimization of the Cold Plate Heat Exchanger,” Proc. Natl. Aeronaut. Electron. Conf., Dayton, Ohio, p.78. Kraus, A. D., 1982, Analysis and Evaluation of Extended Surface Thermal Systems, Hemisphere Publishing Corporation, Washington. Kraus, A. D., and Bar-Cohen, A., 1983, Thermal Analysis and Control of Electronic Equipment, Hemisphere Publishing Corporation, Washington. Kraus, A. D., Chu, R. C., and Bar-Cohen, A., 1982, “Thermal Management of Microelectronics: Past, Present, and Future,” Computers. Mech. Eng., October, pp.69-79. Kraus, A. D., Snider, A. D., and Doty, L. F., 1978, "An Efficient Algorithm for Evaluating Arrays of Extended Surface," ASME J. Heat Transfer, Vol.100, pp.288-293. Kuo, C. Y., 2003,” Real-Time Interactive Thermal CAD System for 3-D Multilayer Structures with Compact Cold Plates,” Master's Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan. LaHaye, P. G., Neugebauer, F. J., and Sakhuja, R. K., 1974, "A Generalized Prediction of Heat Transfer Surfaces," ASME J. Heat Transfer, Vol.96, pp.511-517. Lee, C. C., Min, Y. J., and Palisoc A. L., 1989, "A Generation Algorithm for the Inverse Fourier Transform of Four-Layer Infinite Plate Structures," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol.12, No.4, pp.710-716. Lee, C. C., and Palisoc A. L., 1988, "Real-Time Thermal Design of Integrated Circuit Devices," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol.11, No.4, pp.485-492. Lee, D. H. and Pearce, J. A., 1989, "Drawing an Isothermal Contour Map Using a Tree Search Strategy," the 11th Annual International Conference, IEEE Engineering in Medicine & Biology Society, Albany, New York, pp.559-560. Lin, H. H., and Hung, Y. H., 1993, "Transient Forced Convection Heat Transfer in a Vertical Rib-Heated Channel Using a Turbulence Promoter," International Journal of Heat and Mass Transfer, Vol.36, No.6, pp.1553-1571. Lindsted, D. R., and Sturty, R., 1972, "Steady-State Junction Temperatures of Semiconductor Chips," IEEE Trans. Electron Device, Vol.ED-19, No.1, pp.41-44. Ling, F. F., 1958, “On Asperity Distributions of Metallic Surfaces,” Journal of Applied Physics, Vol.29, No.8, August. Mikic, B. B., and Rohsenow, W. M., 1966, “The Effect of Surface Roughness and Waviness upon the Overall Thermal Contact Resistance,” EPL Rept. No. 79361-43, Massachusetts Institute of Technology, Cambridge, Mass.. Palisoc, A. L., and Lee, C. C., 1988a, "Thermal Properties of the Multilayer Infinite Plate Structure," J. Appl. Phys., Vol.64, pp.410-415. Palisoc, A. L., and Lee, C. C., 1988b, "Exact Thermal Representation of Multilayer Rectangular Structure by Infinite Plate Structures Using the Method of Image," J. Appl. Phys., Vol.64, pp.6851-6857. Pieper, R. J., and Kraus, A. D., 1995a, "Cold Plate with Asymmetric Heat Loading Part I - The Single Stack," In Advances in Electronic Packaging, EEP-Vol.10-2, ASME, New York, pp.865-870. Pieper, R. J., and Kraus, A. D., 1995b, "Cold Plate with Asymmetric Heat Loading Part I - The Double Stack," In Advances in Electronic Packaging, EEP-Vol. 10-2, ASME, New York, pp.871-876. Wright, S., and Sweet, M., 1999, OpenGL SuperBible 2nd Edition, Waite Group Press, Florida. Song, S., and Yovanovich, M. M., 1987, “Correlation of Thermal Accommodation Coefficient for Engineering Surfaces”, In Fundamentals of Conduction and Recent Developments in Contact Resistance, ed. by Imber, M. and Peterson, G. P. and Yovanovich, M. M., HTD-Vol.69, ASME, New York, pp.107-116. Wang, L. S., 1995, "Computer-Aided Design for Multi-Layer Cold Plates," Master's Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan. Ye, Q. L., 2001, “Multimedia Thermal CAD Package for Multilayer Structures with Compact Cold Plates,” Master's Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan. Yovanovich, M. M., 1981, “New Contact and Gap Correlations for Conforming Rough Surfaces,” AlAA-81-1164, AlAA 16th Thermophysics Conference, Palo Alto, CA.. Yovanovich, M. M., 1991, “Theory and Applications of Constriction and Spreading Resistance Concepts for Microelectronic Thermal Management,” In Cooling Techniques for Computers, ed. by Aung, W., Hemisphere Publishing Corporation, Washington, pp.277-332. Yovanovich, M. M., Culham, J. R., and Teertstra, P., 1997, “Calculating Interface Resistance,” Electronics Cooling Magazine, Vol.3, No.2, pp.24-29.id NH0920311005 sid 857705 cfn 0 / id NH0920311006 auc 邱永川 tic 平均應變對316及304不 tic 銹 tic 鋼週次及疲勞行為影響之研究 adc 葉銘泉 博士 ty 博士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 英文 pg 200 kwc 316與304不 kwc 銹 kwc 鋼 kwc 平均應變 kwc 塑性應變能 kwc 疲勞壽命 abc 本論文針對AISI 316及AISI 304不鏽鋼材料進行具平均應變疲勞實驗(fatigue test with superimposed mean strain),同時對實驗進行觀察與分析。 tc 目 錄 第一章 前 言……………………………………………………………………….1 第二章 文獻回顧…………………………………………………………………..4 第三章 在週次負載作用下的穩態應力應變關係式的建立…….……..8 第四章 具平均應變的週次應力應變曲線之描述及其穩態平均應力之評估……………………………………………………..…………………12 第五章 實驗流程………………………………………………………..…………16 第六章 具平均應變情況下其週次應力應變行為及疲勞壽命…..……19 第七章 建立以張力狀態下的塑性應變能為損傷參數對具平均應變(應力)作用下疲勞壽命預估……………………………………….22 第八章 結 論……………………………………………………………………….26 附錄 [英文本 ]………………………………………...………………29rf 1 T. Itoh, X. Chen, T. Nakagawa and M. Sakance, ” A simple model for stable cyclic stress-strain relationship of type 304 stainless steel under nonproportional loading,” Journal of Engineering Materials and Technology, 122, pp. 1-9 (2000) 2 S. Won, K. Katsumata, S. Kumai and A. Sato, “Effects of solidification structure and aging condition on cyclic stress-strain response in Al-7%Si-0.4%Mg cast alloys,” Materials science and Engineering A, 337, PP. 170-178 (2002) 3 Y. Shen, F. Golnaraghi and A. Plumtree, “Model compression cyclic stress-strain behavior of structure foam,” International Journal of Fatigue, 23, pp. 491-497 (2001) 4 A. Plumtree and H. A. Abdel-Raouf, “Cyclic stress-strain response and substructure,” International Journal of Fatigue, 23, pp. 799-805 (2001) 5 H.D. Chandler, “Cyclic hardening in copper described in terms of combined monotonic and cyclic stress-strain curves,” Acta Metall. Mater. , 43, pp. 65-68 (1995) 6 D. G. Shang, D.J. Wang and W.X. Yao, “A new muitiaxial fatigue damage model based on the critical plane approach,” International Journal of Fatigue, 22, pp. 251-256 (2000) 7 V. Kliman and M. Bi’ly’, “The influence of mode, mean value and frequency of loading on the cyclic stress-strain curve,” Materials science and Engineering, 44, PP. 73-79 (1980) 8 J. Pola’k and M. Ha’j’ek, “Cyclic stress-strain curve evaluation using incremental step test produre,” International Journal of Fatigue, 13, pp. 216-222 (1991) 9 P. Horansky and M. Bily, “Cyclic stress-strain curve under random loading,” Metallic Materials, 36, pp. 187-192 (1998) 10 J. Pola’k, M. Klesnil and P. Luka’s’, “On the cyclic stress-strain curve evaluation in low cyclic fatigue,” Materials science and Engineering, 28, PP. 109-117 (1977) 11 A. Jonse and R.C. Hudd, “Cyclic stress-strain curves generated from random cyclic strain amplitude tests,” International Journal of Fatigue, 21, pp. 521-530 (1991) 12 T.S. Cook, “Stress-strain behavior of inconel 718 during low cycle fatigue,” Journal of Engineering Materials and Technology, 104, pp. 186-191 (1982) 14 T. Wehener and A. Fatemi, “Effects of mean stress on fatigue behavior of a hardened carbon steel,” International Journal of Fatigue, 13, pp. 241-248 (1991) 15 P. Luka’s’ and L. Kunz, “Effect of mean stress on the cyclic stress-strain response and high cycle fatigue life,” International Journal of Fatigue, 11, pp. 55-58 (1989) 16 F. Lorenzo and C. Laird, “A new approach to prediction fatigue life behavior under the action of mean stress,” Materials science and Engineering, 62, PP. 205-210 (1980) 17 F. Ellyin, “Effect of tension-mean-stress on plastic strain energy and cyclic response,” Journal of Engineering Materials and Technology, 122, pp. 119-125 (1985) 18 Y.C. Chiou and M.C. Yip, “Effect of mean strain on the cyclic stress-strain behavior of AISI 316 stainless steel,” Materials science and Engineering A, 354, pp. 270-278 (2003) 19 K.N. Smith, P. Watson and T.H. Topper, “A stress-strain function for the fatigue of material,” Journal of Mater., 5, pp.767-778 (1970) 20 Y. Jiang and H. Sehitoglu, “Comments on the mroz multiple surface type plastic models,” International Journal of Solid Structure, 33, pp. 1053-1086 (1996) 21 C.C. Chu, “The analysis of multiaxial cyclic problems with an anisotropic hardening model,” International Journal of Solid Structure, 23, pp. 569-579 (1987) 22 N. Ohno, “A constitutive model of cyclic plasticity with a nonhardening strain region,” Journal of Applied Mechanics, 49, pp. 721-727 (1982) 23 D. L. McDowell, “A two surface model for transient nonproportional cyclic plasticity cyclic plasticity,” Journal of Applied Mechanics, 52, pp. 298-302(1985) 24 H. Schlums and E. A. Steck, “Descriptive of cyclic deformation processes with a stochastic model for inelastic behavior of meters,” Internal Journal of plasticity, 8, pp. 147-159 (1992) 25 J. L. Chaboche, “On some modifications of kinematic hardening to improve the description of ratcheting effects,” Internal Journal of plasticity, 7, pp. 661-678 (1991) 26 D. Y. Chiang and J. L. Beck, “A new class of distributed-element models for cyclic plasticity,” International Journal of Solid Structure, 31, pp. 469-484 (1994) 27 N. Ohno and J. D. Wang, “Transformation of a nonlinear kinematic hardening rule to a multisurface form under isothermal and nonisothermal conditions,” Internal Journal of plasticity, 7, pp. 879-891 (1991) 28 C. S. White, “A two surface plasticity model with bounding surface softening,” Journal of Engineering Materials and Technology, 118, pp. 37-42 (1996) 29 D. Lefebvre and F. Ellyin, “Cyclic response and inelastic strain energy in the low cycle fatigue,” International Journal of Fatigue, 6, pp. 9-15 (1984) 31 T. Lagoda, “Energy model for fatigue under uniaxial random loading,” PartⅠ: the model elaboration, Part Ⅱ: verification the model, International Journal of Fatigue, 23, pp. 467-489 (2001) 32 K. Golos and F. Ellyin, “A total strain energy density theory for cumulative fatigue damage,” Journal of Pressure Vessel Technology, 110, pp. 36-41(1988) 33 F. Ellyin and D. Kujawski, “Plastic strain energy in fatigue failure,” Journal of Pressure Vessel Technology, 106, pp. 342-3471(1984) 34 F. Ellyin, “Effect of tensile-mean-strain on plastic strain energy and cyclic response Journal of Engineering Materials and Technology,” Journal of Engineering Materials and Technology, 107, pp. 119-125(1985) 35 X. Lin and G. Haicheng, “Plastic energy dissipation model for lifetime prediction of zirconium and zircaloy-4 fatigue at RT and 400OC,” Journal of Engineering Materials and Technology, 120, pp. 114-118(1998) 36 J. Park and D. Nelson, “Evaluation of an energy-based approach and a critical plane approach for prediction constant amplitude multiaxial fatigue life,” International Journal of Fatigue, 22, pp. 467-489 (2000) 37 T. Lagoda, E. Macha and W. Bedkowski, “A critical plane approach based on energy concepts: application to biaxial random tension-compression high-cycle fatigue regime,” International Journal of Fatigue, 21, pp. 431-443 (1999) 38 D. Ye and Z. Wang, “A new approach to low-cycle fatigue damage based on exhaustion of static toughness and dissipation of cyclic plastic strain energy,” International Journal of Fatigue, 23, pp. 679-687 (2001) 39 Y. S. Garud, “A new approach to the evaluation of fatigue under multiaxial loading,” Journal of Engineering Materials and Technology, 103, pp. 118-125 (1998) 40 R. P. Skelton, “Energy criterion for high temperature low cycle fatigue Materials science and Engineering,” Materials science and Engineering, 7, pp. 427-439(1991) 41 X.Chen, Q. Gao, A. Abel and S. Wu, “Evaluation of low cycle fatigue under non-proportion loading,” Fatigue Fract. Engng Mater. Struct., 19, pp. 1161-1168 (1996) 42 M. Giglio and L. Vergani, “Life prediction of notched component,” Journal of Engineering Materials and Technology, 117, pp. 50-55 (1995) 43 F. Ellyin and Z. Xia, “A general fatigue theory and its application to out-of-phase cyclic loading,” Journal of Engineering Materials and Technology, 115, pp. 411-416 (1995) 44 G. Gasiak and R. Pawliczek, “Application of an energy model for fatigue life prediction of construction steel under bending, torsion and synchronous bending and torsion,” International Journal of Fatigue, 25, pp. 1139-1346 (2003) 45 Y.Y. Wang and W.X. Yao, “Evaluation of comparison of several multiaxial fatigue criteria,” International Journal of Fatigue, 26, pp. 17-25 (2004) 46 D.G. Shang and W.X. Yao, “A nonlinear damage cumulative model for uniaxial fatigue,” International Journal of Fatigue, 21, pp. 187-194 (1999) 47 A. Varvani-Farahani, “A new energy-critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-phase multiaxial fatigue loading conditions,” International Journal of Fatigue, 22, pp. 295-305 (2000) 48 F. Ellyin, K. Golos and Z. Xia, “In-phase and out-of-phase multiaxial fatigue,” Journal of Engineering Materials and Technology, 113, pp. 112-118 (1991) 49 Z. Abdelkrim, B.Q. Thang and B. Marie, “Fatigue life parameter for type 304 stainless steel under biaxial-tensile loadinf at elevated temperature,” Journal of Engineering Materials and Technology, 121, pp. 305-312 (1999) 50 D. Lefebvre, K.W. Neals and F. Ellyin, “A criterion forlow-cycle fatigue failure under biaxial states of stress,” Journal of Engineering Materials and Technology, 103, pp. 1-6 (1981) 51 G. Glinka, G. Shen and A. Plumtree,“ A multiaxial fatigue strain energy density parameter related to the critical fracture plane,” Fatigue Fract. Engng Mater. Struct., 18, pp. 37-46 (1995) 52 N.W. Klingbeil “A total dissipated energy theory of fatigue crack growth in ductile solid,” International Journal of Fatigue, 25, pp. 117-128 (2003) 53 K.T. Rie and H. Wittke,“ New approach for estimation of and measurement of crack growth at elevated temperature,” Fatigue Fract. Engng Mater. Struct., 19, pp. 975-983 (1996) 54 H.R. Jhansale and T.H. Topper, “Engineering analysis of the enelastic stress response of a structural metal under variable cyclic strain,” ASTM STP-5129, PP. 246-270 (1973) 55 H. Witte, J. Olfe and K.-T Rie, “Description of stress-strain hysteresis loop with a simple approach,” International Journal of Fatigue, 19, pp. 141-149 (1997) 56 D.J. Morrison, Y. Jia and J.C. Moosbrugger, “Cyclic plasticity of nickel at low plastic strain amplitude: hysteresis loop shape analysis,” Materials science and Engineering A, 314, pp. 24-30 (2001) 57 J. Pola’k, F. Fardoum and S. Degallaix, “Analysis of the hysteresis loop in stainless steel Ι. Austenitic and ferritic steels,” Materials science and Engineering A, 297, pp. 144-153 (2001) 58 F. Lorenzo and C. Laird, “A new approach to predicting fatigue life behavior under the acting of mean stress,” Materials science and Engineering, 62, pp. 205-210 (2001) 59 D.L. DuQuesnay, T.H. Topper, M.T. Yu and M.A. Pompetzki, “The effective stress range as a mean stress parameter,” International Journal of Fatigue, 14, pp. 45-50 (1992) 60 M.C. Yip and Y.M. Jen, “Mean strain effect on crack initiation lives for notched specimen under biaxial nonproportional loading paths,” Journal of Engineering Materials and Technology, 119, pp. 104-112 (1997) 61 C.H. Wang and K.L. Miller,“ The effect of mean shear stress on torsional fatigue behavior,” Fatigue Fract. Engng Mater. Struct., 14, pp. 293-307 (1991) 62 D. F. Socie and T. W. Shield, “Mean stress effects in biaxial fatigue of inconel718,” Journal of Engineering Materials and Technology, 106, pp. 227-232 (1997) 63 C.H. Wang and K.L. Miller, “Short fatigue crack growth under mean stress,unaxial loading,” Fatigue Fract. Engng Mater. Struct., 16, pp.181-197 (1993) 64 W. Zhang and R. Akid, “Effect of biaxial mean stress on cyclic stress-strain response and behavior of short fatigue crack in a high strength spring ,” Fatigue Fract. Engng Mater. Struct., 20, pp.167-177 (1997) 65 Z. Xia , D. Kujawski and F. Ellyin, “Effect of mean stress and ratcheting strain on fatigue life of steel,” International Journal of Fatigue, 18, pp. 335-341 (1996) 66 T. Lagoda, E. Macha and R. Pawliczek, “The influence of the mean stress on fatigue life of 10HNAP steel under random loading,” International Journal of Fatigue, 23, pp. 283-291 (2001) 67 S. Kwofie and H.D. Chandler, “Low cycle fatigue under tension mean stress where cyclic life extension occurs,” International Journal of Fatigue, 23, pp. 341-345 (2001) 68 A. Berkovits and D. Fang, “An analytical master curve for Goodman diagram data,” International Journal of Fatigue, 15, pp. 171-180 (1993) 69 B. Skoczen, “Generalization of the coffin equation with respect to the effect of large mean plastic strain,” Journal of Engineering Materials and Technology, 118, pp. 387-391 (1996) 70 J.W. Morries, S.J. Hardy, A.W. Lees and J.T. Thomas, “Cyclic behavior concerning the response of material subjected to tension leveling,” International Journal of Fatigue, 22, pp. 93-100 (2000) 71 C. H. Wang and K.J. Miller,“ The effect of mean and alternation shear stress on short fatigue crack growth rates,” Fatigue Fract. Engng Mater. Struct., 15, pp.1223-1236 (1992) 72 O.S. Hopperstad, M. Langseth and S. Remseth, “Cyclic stress-strain behavior of alloy aa6060, part 1: uniaxial experiment and modeling,” Internal Journal of Plastic, 11, pp. 725-739 (1995) 73 K.C. Valanis,” A theory of viscoplasticity without a yield surface-part Ι: general theory,” Archices Mechanics, 23, pp. 517-534 (1971) 74 K.C. Valanis,” A theory of viscoplasticity without a yield surface-part Π: application to the mechanical behavior of metals,” Archices Mechanics, 23, pp. 535-551 (1971) 75 K.C. Valanis,” Fundamental consequence of a new intrinsic time measure-plasticity as a limit of the endochronic,” Archices Mechanics, 32, pp. 171-191 (1980) 76 H. C. Wu and M. C. Yip,” Endochronic description of cyclic hardening behavior for metallic materials,” ASME Journal of Engineering Materials and Technology, 103, pp. 212-217 (1981) 77 K.C. Valanis, and C. F. Lee,” Endochronic theory of cyclic plastic with application,” ASME Journal of Applied Mechanics, 51, pp. 367-374 (1984) 78 H. C. Wu and C. C. Yang, ”Investigation of one-dimensional endochronic constitutive equation for metal by Rivlin test,” ASME Journal of Engineering Materials and Technology, 106, pp. 264-270 (1984) 79 H. C. Wu, M.R. Aboutorabi and P.C. Chen,” Cyclic torsion of a circular cylinder and its residual stress distribution,” ASME Journal of Engineering Materials and Technology, 107, pp. 48-52 (1985) 80 H. C. Wu and R.J. Yang,” Application of the improved endochronic theory of plasticity to loading with multiaxial strain-path,” International Journal of nonlinear mechanics, 18, pp. 395-408 (1983) 81 H. C. Wu and J.C. Yao, “Analysis of stress response to various strain-paths in axial-torsional deformation of metals,” ASME Journal of Engineering Materials and Technology, 106, pp. 361-366 (1984) 82 H. C. Wu, C.C. Yang and S.C. Chu,” Further application of endochronic constitutive equation to loading with non-proportional axial-torsional strain-path,” International Journal of nonlinear mechanics, 20, pp. 41-45 (1985) 83 H. C. Wu, J.C. Yao and S.C. Chu,” Investigation of endochronic constitutive equation subject to plastic strain-controlled axial-torsional deformation,” ASME Journal of Engineering Materials and Technology, 108, pp. 262-269 (1986) 84 S. Y. Hsu, S.K. Jain and O. Hayden Griffin Jr.,” Verification of endochronic theory for nonprotional loading paths,” Journal of Engineering Mechanics, 117, pp.110-131 (1991) 85 W. F. Pan, and C.H. Chern,” Endochronic description for viscoplastic behavior of materials under multiaxial loading,” International Journal of Solids Structure, 34,pp. 2131-2160 (1997) 86 N.K. Kucher and M.V. Borodn,” A version of Endochronic theory of plasticity for describing non-proportion cyclic deformation,” International Journal of nonlinear mechanics, 28, pp. 267-278 (1993) 87 M.V. Borodn, N. K. Kucher and V. A. Strizhalo,” Development of a constitutive model for biaxial low-cycle fatigue,” Fatigue Fract. Engng. Mater. Struct.,19, pp.1169-1179 (1996) 88 H. C. Wu and T.P. Wang,” Endochronic theory for mechanical behavior of cohesionless solid under static loading,” ASCE Journal of engineering mechanic, 109, pp. 970-989 (1983) 89 H. C. Wu and J.C. Sheu,” Endochronic theory for hysteretic shear response of sand,” ASCE Journal of geotechnical engineering, 109, pp. 1539-1550 (1983) 90 H. C. Wu, Z.K. Wang and M.R. Aboutorabi,” Endochronic modeling of sand in triaxial test,” ASCE Journal of engineering mechanic, 111, pp. 1257-1276 (1985) 91 H. C. Wu and M.R. Aboutorabi,” Endochronic model of sand with circular stress path,” ASCE Journal of geotechnical engineering, 114, pp. 95-105 (1988) 92 G. Imai, and C. Xie,” An endochronic constitutive law for static shear behavior of overconsolidated clays,” Soils and Foundations, Japanese Society Soil Mechanics and Foundation Engineering, 30, pp.65-75 (1990) 93 K.C. Valanis and H.E. Read,” An endochronic plasticity theory for concrete,” Mechanics of Materials, 5, pp. 177-295 (1986) 94 H. C. Wu, T.P. Wang, W.F. Pan and Z.Y. Xi,” Cyclic stress-strain response of porous aluminum,” International Journal of Plasticity, 6, pp. 207-230 (1990) 95 S.R. Mathison, M.J. Pindera and C.T. Herakovich,” Nonlinear response of resin matrix laminates using endochronic theory,” ASME Journal of Materials and Technology, 113, pp. 449-455 (1984) 96 R. J. Gu and Y.L. Lee,” A new method for estimating non-proportional notch-root stresses and strains,” ASME Journal of Engineering Materials and Technology, 119, pp. 40-45 (1997) 97 K.C. Valanis,” Proper tensorial formulation of the internal variable theory-the endochronic plasticity equations,” Computers and Structure, 31,pp. 173-185 (1977) 98 K.C. Valanis and J. Fan,” Endochronic analysis of cyclic elasto-plastic strain fields in a notched plate,” ASME Journal of Applied Mechanics, 50, pp. 789-794 (1984) 99 O. Watanabe and S.N. Atluri,” A new Endochronic approach to computation elastoplasticity: example of a cyclically loaded cracked plate,” ASME Journal of Applied Mechanics, 50, pp. 857-864 (1985) 100 C.F. Lee,” Recent finite element applications of the incremental endochronic plasticity,” International Journal of Plasticity, 11, pp. 843-865 (1995) 101 H. C. Wu and M. C. Yip,” Strain rate and strain rate history effect on the dynamic behavior of metallic material,” International Journal of Solids and Structure, 16, pp. 515-536 (1980) 102 H.C. Lin and H. C. Wu,” On the rate-dependent endochronic theory of viscoplasticity and its application to plastic-wave,” International Journal of Solids and Structure, 19, pp. 587-599 (1983) 103 W.F. Pan and C.H. Chern,” Endochronic description for viscoplastic behavior of materials under multiaxial loading,” International Journal of Solids and Structure, 34, pp. 2131-2160 (1997) 104 H.C. Wu, H.K. Hong and J.K. Lu,” An Endochronic theory accounted for deformation induced anisotropy,” International Journal of Plasticity, 11, pp. 145-162 (1995) 105 W.f. Pan, T.H. Lee and W.C. Yeh,” Endochronic analysis for finite elasto-plastic deformation and application to metal tube under torsion and metal rectangular block under biaxial compression,” International Journal of Plasticity, 12, pp. 1287-1316 (1996) 106 H.C. Wu, and H.K. Hong,” Endochronic description of plastic anisotropy in sheet metal,” International Journal of Solids and Structure, 36, pp. 2735-2756 (1999) 107 J.K. Lu,” The endochronic model for temperature sensitive materials,” International Journal of Plasticity, 14, pp. 997-1012 (1998) 108 M.C. Yip and C. Yu, “Axial cyclic hardening behavior of metallic materials under a constant shear stress,” Computational Mechanics’86: Proceedings of International Conference on Computational Mechanics, Tokyo, Japan, 1986, PP. 125-130.id NH0920311006 sid 877713 cfn 0 / id NH0920311007 auc 曹中丞 tic 特用鑽刃鑽削複合材料之脫層分析 adc 賀陳弘 ty 博士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 英文 pg 89 kwc 鑽削 kwc 纖維強化複材層板 kwc 脫層 kwc 電腦斷層掃描 kwc 超音波掃描 kwc 線彈性破裂力學 kwc 特用鑽刃 abc 鑽孔加工是纖維強化複材層板二次加工中最常使用之製程,而脫層則是加工過程中最常發現的破壞模式。因鑽削所引起之脫層,會威脅複材結構的長期可靠度。對碳纖維複材而言,其脫層損壞的評估難以用傳統視覺檢測出來。在本研究中,嘗試利用電腦斷層掃描技術來檢測碳纖維複材脫層,並與超音波掃描技術作一比較。結果證實電腦斷層掃描,在鑽削所引起之脫層損壞評估是可行與有效的。 tc Contents I List of Figures III List of Tables VI Nomenclatures VII Chapter 1 Introduction 1 1.1 Drilling of Composite Materials 1 1.2 Literature of Drilling-Induced Delamination 2 1.3 Non-Destructive Examination (NDE) 5 1.3.1 Ultrasonic C-Scan 6 1.3.2 Computerized Tomography (CT) 8 Chapter 2 Delamination Analysis 14 2.1 Physical Model 14 2.2 Mathematical Analysis 17 2.2.1 Conventional Concentrated Central Load for Twist Drill 17 2.2.2 Distributed Circular Load for Saw Drill 19 2.2.3 Concentrated Centered Load Associated with Distributed Circular Load for Candle Stick Drill 20 2.2.4 Annular Load for Core Drill 22 2.2.5 Stepwise Distributed Circular Load for Step Drill 24 2.3 Reducible Relationships among Special Drill Bits 27 Chapter 3 Experimental Set-up 39 3.1 Specimen Preparation 39 3.2 Characterization of Mechanical Property 41 3.2.1 Modulus of Elasticity 41 3.2.2 Double Cantilever Beam (DCB) Testing and Strain Energy Release Rate 42 3.3 Drilling Tests 43 3.4 Measurement of Delamination 44 3.5 Experimental Determination of Critical Thrust Force 46 Chapter 4 Experimental Results and Discussions 56 4.1 Predicted Critical Thrust Force 56 4.1.1 Saw Drill 56 4.1.2 Candle Stick Drill 57 4.1.3 Core Drill 58 4.1.4 Step Drill 59 4.2 Correlation between Delamination and Thrust Force 59 4.3 Concluding Remarks 64 4.3.1 Analytical Models of Delamination for Various Drills 64 4.3.2 Assessment of Delamination by X-ray Computerized Tomography 65 Chapter 5 Conclusions 82 References 83 Appendix A CNC Drilling Program 88 Appendix B CNC Video Acquisition Program 89rf Cairns, D. S., 1992, “Static and Dynamic Mode II Strain Energy Release Rate in Toughened Thermosetting Composite Laminates”, Journal of Composites, Technology and Research, Vol. 14, pp. 37-42. Caprino, G., and Tagliaferri, V., 1995, “Damage Development in Drilling Glass Fiber Reinforced Plastics”, International Journal of Machine Tools & Manufacture, Vol. 35, No. 6, pp. 817-829. Caprino, G., and Taglia ferri, V., 1988, “Maximum Cutting Speed in Laser Cutting of Fiber Reinforced Plastics“, International Journal of Machine Tools & Manufacture, Vol. 28, No. 4, pp. 389-398. Dharan, C. K. H., 1978, “Fracture Mechanics of Composite materials”, ASME Journal of Engineering Materials and Technology, Vol. 100, pp. 233-247. Di Ilio, A. and Tagliaferri, V., 1989, “Thermal Damage in Laser Cutting of (0/90)2s Aramid/Epoxy Laminates”, Composites, Vol. 20, No. 2, pp. 115-119. DiPaolo, G., Kapoor, S. G. and DeVor, R. E., 1996, “An Experimental Investigation of the Crack Growth Phenomenon for Drilling of Fiber-Reinforced Composite Materials”, ASME Journal of Engineering for Industry, Vol. 118, pp. 104-110. Doerr, R., Greene, E., Lyon, B. and Taha, S., 1982, “Development of Effective Machining and Tooling Techniques for Kevlar Composites”, Technical Report, No. AD-A117853. Doran, J. H., and Maikish, C. R., 1973, "Machining Boron Composite", Composite Materials in Engineering Design, B. R. Noton, Ed., ASM, pp.242-250. Friedrich, M. O., Burant, R. O. and McGinty, M. J., 1979, “Cutting Tools/Drills: Part 5 — Point Styles and Applications”, Manufacturing Engineering, Vol. 83, pp. 29-31. Friend, C. A., Clyne, R. W., and Valentine, G. G., 1973, “Machining Graphite Composite Materials”, Composite Materials in Engineering Design, B. R. Noton, Ed., ASM, pp. 217-224. Galloway, D. F., 1957, “Some Experiments on the Influence of Various Factors on Drill Performance”, Transaction of ASME, Vol.79, pp. 191-237. Haggerty, W. A. and Ernst, H., 1958, “The Spiral Point Drill — Self-Centering Drill Point Geometry”, ASTE Paper No. 101, pp. 58. Hashish, M., 1989, “Machining of Advanced Composites with Abrasive- Water Jets“, Manufacturing Review, Vol. 2, No. 2, June, pp. 142-160. Hocheng, H., 1990, “A Failure Analysis of Water jet Drilling in Composite Laminates”, International Journal of Machine Tools & Manufacture, Vol. 30, No. 3, pp. 423-429. Hocheng, H., and Dharan, C. K. H., 1990, “Delamination During Drilling in Composite laminates”, ASME Journal of Engineering for Industry, Vol. 112, pp. 236-239. Hocheng, H., and Puw, H. Y., 1993, “Machinability of Fiber-Reinforced Thermoplastics in Drilling” ASME Journal of Engineering Material Technology, Vol. 115, pp. 146-149. Hocheng, H., and Tsao, C. C., 2003, “Comprehensive Analysis of Delamination in Drilling of Composite Materials with Various Drill Bits”, Journal of Materials Processes Technology, Vol. 140, Nos. 1-3, pp. 335-339. Hocheng, H., and Tsao, C. C., 2003, “Analysis of Delamination in Drilling Composite Materials Using Core Drill”, Australian Journal of Mechanical Engineering, Vol. 1, No. 1, pp. 49-53. Hounsfield, G. N., 1973, “Computerized Trans-Axial Scanning (Tomography) I: Description of System”, British J. of Radiology, Vol. 46, pp. 1016~1022. Hwang, W. and Han, K. S., 1989, “Interlaminar Fracture Behavior and Fiber Bridging of Glass-Epoxy Composite under Mode I Static and Cyclic Loadings”, Journal of Composite Materials, Vol. 23, pp. 396-430. Jain, S., and Yang, D. C. H., 1993, “Effects of Feedrate and Chisel Edge on Delamination in Composite Drilling”, ASME Journal of Engineering for Industry, Vol. 115, pp. 398-405. Jain, S., and Yang, D. C. H., 1994, “Delamination-Free Drilling of Composite Laminates”, ASME Journal of Engineering for Industry, Vol. 116, pp. 475-481. Kobayashi. A., 1967, Machining of plastics, McGraw-Hill, New York. König, W., Grass, P., Heintze, A., Okcu, F., and Schmitz-Justin, C., 1984, “Developments in Drilling, Contouring Composities Containing Kevlar”, Production Engineer, Vol. 63, No. 8, pp. 56-61. König, W., Wulf, C., Grass, P., and Willerscheid, H., 1985, “Machining of Fiber Reinforced Plastics”, Annals of the CIRP, Vol. 34, No. 2, pp. 536-548. Komanduri, R., 1993, “Machining Fiber-Reinforced Plastics”, ASME Mechanical Engineering, Vol. 115, No. 4, pp. 58-64. Komanduri, R., Zhang, B. and Vissa, C. M., 1991, “Machining of Fiber Reinforced Composites”, Proceedings Manufacture Composite Materials, Vol.49, No. 27, pp. 1-36. Koplev, A., Lystrup, A., and Vorm, P., 1983, “The Cutting Process, Chips and Cutting Forces in Machining CFRP”, Composites, Vol. 14, No. 4, pp. 371-376. Lau, W. S., Wang, M., and Lee, W. B., 1990, “Electrical Discharge Machining of Carbon Fiber Composite Materials”, International Journal of Machine Tools & Manufacture, Vol. 30, No. 2, pp. 297-308. Long, B. J. and Swanson, S. R., 1994, “Ranking of Laminates for Edge Delamination Resistance”, Composites, Vol. 25, Vol. 3, pp. 183-188. Miller, G.. E., 1957, “Special Theory of Ultrasonic Machining”, Journal of Applied Physics, Vol. 28, No. 2, pp. 149-156. Miller, J. A., 1987, “Drilling Graphite/Epoxy at Lockheed”, American Machine Automatic Manufacture, Vol. 131, No. 10, pp. 70-71. O’Brien, T. K., et al., 1982, “A Simple Test for the Interlaminar Fracture Toughness of Composites”, SAMPE Journal, Vol. 18, pp. 8-15. Pagano, N. J. and Hahn, H. T., 1977, “Evaluation of Composite Curing Stresses”, Composite Materials: testing and design (4th conference), ASTM STP617 (Philadelphia: American Society for Testing and Materials), pp. 317-329. Sadat, A. B., Chan, W. S., and Wang, B. P., 1992, “Delamination of Graphite/Epoxy Laminate During Drilling Operation”, ASME Journal of Energy Resources Technology, Vol. 114, pp. 139-141. Saghizadeh, H., and Dharan, C. K. H., 1986, “Delamination Fracture Toughness of Graphite and Aramid Epoxy Composites”, ASME Journal of Engineering Materials and Technology, Vol. 108, pp. 290-295. Sakuma, K., Yokoo, Y., and Seto, M., 1984, “Study on Drilling of Reinforced Plastics- Relation Between Tool Material and Wear Behavior“, Bulletin of JSME, Vol. 27, No. 228, pp. 1237-1244. Shaw, M. C., and Oxford Jr, C. J., 1957, “On the Drilling of Metals, Part II: The Torque and Thrust in Drilling”, Transaction of ASME, Vol. 79, pp. 139-148. Shaw, M. C., 1984, Metal Cutting Principles, Oxford, New York, chap. 16. Soundararajan, V. and Radhakrishnan, V., 1986, “An Experimental Investigation on the Basic Mechanisms Involved in Ultrasonic Machining”, International Journal of Machine Tools & Manufacture, Vol. 26, No. 3, pp. 307-321. Swanson, S. R. and Christoforou, A. P., 1986, “Response of Quasi-Isotropic Carbon/Epoxy Laminates to Biaxial Stress”, Journal of Composite Materials, Vol. 20, pp.457-471. Tagliaferri, V., Di Ilio, A. and Crivelli Visconti, I., 1985, “Laser Cutting of Fiber-Reinforced Polyesters”, Composites, Vol. 16, No. 4, pp. 317-325. Timoshenko, S., and Woinowsky-Keiger, S., 1959, Theory of Plates and Shells, 2nd ed., McGraw Hill, pp. 51-59, 376-377. Tsai, S. W., 1986, Composites Design, Dayton, OH: Think Composites. Upadhyay, P. C., and Lyons, J. S., 1999, “On the Evaluation of Critical Thrust for Delamination-Free Drilling of Composite Laminates“, Journal of Reinforced Plastics and Composites, Vol. 18, No. 14, pp. 1287-1303. Veniali, F., Llio, A. Di, and Tagliaferri, V., 1995, “An Experimental Study of the Drilling of Aramid Composites”, ASME Journal of Energy Resources Technology, Vol. 117, pp. 271-278. Wu, S. M., Shen, J. M., and Chen, L. H., 1982, “Multifacet Drills”, Proceedings 14th National SAMPE Technology Conference, pp. 456-463. Zackrisson, L., Eriksson, I., and Bäcklund, J., 1994, Method and Tool for Machining a Hole in a Fiber-Reinforced Composite Material, Swedish Patent No. 500933, October.id NH0920311007 sid 887703 cfn 0 / id NH0920311008 auc 陳政宏 tic 應用強化無單元Galerkin法於三維破裂問題之分析 adc 陳文華 博士 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg - kwc 無單元Galerkin法 kwc 無網格法 kwc 破裂力學分析 kwc 應力強度因子 abc 本論文旨在發展一強化無單元Galerkin法,以分析三維破裂問題。本論文將可描述裂縫前緣附近應力奇異特性及裂縫前緣與結構自由表面交界處邊界層效應之位移場納入嘗試函數中,並將三維應力強度因子設為待求之參數,使可與節點位移直接計算出來。為了評估所發展方法的準確性,本論文分析了數個具代表性的三維破裂問題實例,如邊緣貫穿裂縫、傾斜邊緣貫穿裂縫、埋置橢圓裂縫、半橢圓表面裂縫和四分之一橢圓角裂縫等,並進而探討裂縫尺寸對於三維應力強度因子之影響。計算所得結果與文獻相較,極為脗合,顯示本論文建立之強化無單元Galerkin法對於三維破裂問題分析確具有高度之準確性與應用價值。 tc 摘要 …………………………………………………………………… I 目錄 …………………………………………………………………… III 圖目錄 ………………………………………………………………… IV 符號說明 ……………………………………………………………… V 第一章、導論 ………………………………………………………… 1 第二章、強化無單元Galerkin法推導 ……………………………… 5 第三章、嘗試及強化函數推導 ……………………………………… 11 3.1 一般區域 ……………………………………………… 11 3.2 強化區域 ……………………………………………… 15 3.3 選取加權函數 ……………………………………………… 18 3.4 計算步驟 …………………………………………………… 18 第四章、結果與討論 ………………………………………………… 21 4.1 邊緣貫穿裂縫 ……………………………………………… 21 4.2 傾斜邊緣貫穿裂縫 ………………………………………… 22 4.3 埋置橢圓裂縫 ……………………………………………… 24 4.4 半橢圓表面裂縫 …………………………………………… 25 4.5 四分之一橢圓角裂縫 ……………………………………… 27 第五章、結論與展望 ………………………………………………… 29 附錄A、裂縫前緣鄰近之位移場公式 ……………………………… 30 參考文獻 ……………………………………………………………… 32rf Atluri, S. N., Kobayashi, A. S. and Nakagaki, M. (1975) : An assumed displacement hybrid finite element model for linear fracture mechanics, International Journal of Fracture, Vol. 11, pp. 257-271. Atluri, S. N. and Kathiresan, K. (1979) : 3-D analysis of surface flaws in thick-walled reactor pressure vessels using a displacement hybrid finite element method, Nuclear Engineering and Design, Vol. 51, pp. 163-176. Atluri, S. N., Kim, H. G. and Cho, J. Y. (1999) : A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) methods, Computational Mechanics, Vol. 24, pp. 348-372. Atluri, S. N. and Shen, S. (2002) : The meshless local Petrov-Galerkin (MLPG) method, Tech Science Press. Atluri, S. N., Han, Z. D. and Shen, S. (2003) : Meshless local Petrov-Galerkin (MLPG) approaches for solving the weakly-singular traction & displacement boundary integral equations, Computer Modeling in Engineering & Sciences, Vol. 4, pp. 507-518. Barsoum, R. S. (1976) : On the use of isoparametric finite elements in linear fracture mechanics, International Journal of Numerical Methods in Engineering, Vol. 10, pp. 25-37. Belytschko, T., Lu, Y. Y. and Gu, L. (1994) : Element-free Galerkin method, International Journal for Numerical Methods in Engineering, Vol. 37, pp. 229-256. Belytschko, T. and Krongauz, Y. (1996) : Enforcement of essential boundary conditions in meshless approximations using finite element, Computer Methods in Applied Mechanics & Engineering, Vol. 131, pp. 133-145. Belytschko, T. and Fleming, M. (1999) : Smoothing, enrichment and contact in the element-free Galerkin method, Computers & Structures, Vol. 71, pp. 173-195. Benthem, J. P. (1977) : State of stress at the vertex of a quarter-infinite crack in a half-space, International Journal of Solids and Structures, Vol. 13, pp. 479-492. Bowie, O. L. (1973) : Solutions of plane crack problems by mapping technique, Mechanics of Fracture, (Ed. by Sih, G. C.), Vol. 1, pp. 1-55, Noordhoff International Publ., Leyden. Chen , W. H. and Chen, P. Y. (1984) : Hybrid-displacement finite element model for the bending analysis of thin cracked plate, International Journal of Fracture, Vol. 24, pp. 83-106. Chen, W. H. and Lin, H. C. (1985) : Flutter analysis of thin cracked panels using finite element method, AIAA Journal, Vol. 21, pp. 795-801. Chen, W. H. and Guo, X. M. (2001) : Element-free Galerkin method for three- dimensional structural analysis, Computer Modeling in Engineering & Sciences, Vol. 2, pp. 497-508. Ching, H. K. and Batra, R. C. (2001) : Determination of crack tip fields in linear elastostatics by the meshless local Petrov-Galerkin (MLPG) method, Computer Modeling in Engineering & Sciences, Vol. 2, pp. 273-289. Fleming, M., Chu, Y. A. and Belytschko, T. (1997) : Enriched element-free Galerkin methods for crack tip fields, International Journal for Numerical Methods in Engineering, Vol. 40, pp. 1483-1504. Folias, E. S. (1975) : On the three-dimensional theory of cracked plates, Transactions of the ASME, Series E : Journal of Applied Mechanics, Vol. 42, pp. 663-674. Fung, Y. C. (1965) : Foundations of solid mechanics, Prentice-Hall. Hartranft, R. J. and Sih, G. C. (1970) : An approximate three-dimensional theory of plates with application to crack problems, International Journal of Engineering Science, Vol. 8, pp. 711-729. Hartranft, R. J. and Sih, G. C. (1977) : Stress singularity for a crack with an arbitrarily curved front, Engineering Fracture Mechanics, Vol. 9, pp. 705-718. Irwin, G. R. (1962) : Crack-extension force for a part-through crack in a plate, Transactions of the ASME, Series E : Journal of Applied Mechanics, Vol. 29, pp. 651-654. Kaljević, I. and Saigal, S. (1997) : An improved element free Galerkin method, International Journal for Numerical Methods in Engineering, Vol. 40, pp. 2953-2974. Kassir, M. K. (1975) : Three-dimensional crack problems, Mechanics of Fracture, (Ed. by Kassir, M. K. and Sih, G. C.), Vol. 2, Noordhoff International Publ., Leyden. Kathiresan, K. (1976) : Three-Dimensional Linear Elastic Fracture Mechanics Analysis by a Displacement Hybrid Finite Element Model, Ph. D. Thesis, Georgia Inst. of Technology. Kim, H. G. and Atluri, S. N. (2000) : Arbitrary placement of secondary nodes, and error control in the meshless local Petrov-Galerkin (MLPG) method, Computer Modeling in Engineering & Sciences, Vol. 1, pp.11-32. Lancaster, P. and Salkauskas, K. (1981) : Surfaces generated by moving least squares methods, Mathematics of Computation, Vol. 37, pp. 141-158. Li, Q., Shen, S., Han, Z. D. and Atluri, S. N. (2003) : Application of meshless Petrov-Galerkin (MLPG) to problems with singularities, and material discontinuities, in 3-D elasticity, Computer Modeling in Engineering & Sciences, vol. 4, pp. 571-586. Lin, H and Atluri, S. N. (2000) : Meshless local Petrov-Galerkin (MLPG) method for convection-diffusion problems, Computing Modeling in Engineering & Sciences, Vol. 1, pp.45-60. Liu, Y. Y., Belyschko, T. and Gu, L. (1994): A new implementation of the element free Galerkin method, Computer Methods in Applied Mechanics & Engineering, Vol. 113, pp. 397-414. Murakami, T. (1987) : Stress intensity factors handbook, Pergamon, New York. Newman, J. C., Jr. and Raju, I. S. (1981) : An empirical stress-intensity factor equation for the surface crack, Engineering Fracture Mechanics, Vol. 15, pp. 185-192. Newman, J. C., Jr. and Raju, I. S. (1983) : Stress-intensity factor equations for cracks in three-dimensional finite bodies, Fracture Mechanics, Vol. I : Theory and Analysis, ASTM STP-791, Ed. by Lewis, J. C. and Sines, G., pp. I238-I265. Organ, D., Fleming, M., Terry, T. and Belytschko, T. (1996) : Continuous meshless approximations for nonconvex bodies by diffraction and transparency, Computational Mechanics, Vol. 18, pp. 225-235. Raju, I. S. and Newman, J. C., Jr. (1977) : Three dimensional finite-element analysis of finite-thickness fracture specimens, NASA-TN-D-8414. Raju, I. S. and Newman, J. C., Jr. (1979) : Stress-intensity factors for a wide range of semi-elliptical surface cracks in finite thickness plates, Engineering Fracture Mechanics, Vol. 11, pp. 817-829. Rice, J. R. (1968) : A path independent integral and the approximate analysis of strain concentration by notches and cracks, Transactions of the ASME, Series E : Journal of Applied Mechanics, Vol. 35, pp. 379-386. Sih, G. C. (1973a) : Handbook of stress-intensity factors, Lehigh University, Bethlehem, PA. Sih, G. C. (1973b) : Methods of analysis and solutions of crack problems, Mechanics of Fracture, (Ed. by Sih, G. C.), Vol. 1, Noordhoff International Publ., Leyden. Sneddon, I. N. (1946) : The distribution of stress in the neighborhood of a crack in an elastic solid, Proceedings of the Royal Society A, Vol. 187, pp. 229-260. Stroud, A. H. and Secrest, D. (1966) : Gaussian quadrature formulas, Englewood Cliffs, N. J., Prentice-Hall. Sukumar, N., Moran, B. and Belytschko, T. (1997) : An element-free Galerkin method for three-dimensional fracture mechanics, Computational Mechanics, Vol. 20, pp. 170-175. Tada, H., Paris, P. C. and Irwin, G. R. (2000) : The stress analysis of cracks handbook, 3rd ed., American Society of Mechanical Engineers, New York. Williams, M. L. (1957) : On the stress distribution at the base of a stationary crack, Transactions of the ASME, Series E : Journal of Applied Mechanics, Vol. 24, pp. 109-114. Zhu, T. and Atluri, S. N. (1998) : A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method, Computational Mechanics, Vol. 21, pp. 211-222.id NH0920311008 sid 903764 cfn 0 / id NH0920311009 auc 林慧誠 tic COF Unloader回收薄膜時的受力分析及改良 adc 蕭德瑛 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 64 kwc 自動收料機 abc 本文對晶片薄膜接合(Chip On Film or Flex 簡稱 COF)機器設備的自動收料機(Unloader)之機構設計部分探討應力分佈情形和應力分佈對薄膜和薄膜上元件的影響。因為在自動收料時保護膜的張力會對元件或IC造成斜向拉力,如果張力太大會對元件或IC造成損害而使元件的接點斷裂,太小則會在運輸途中因張力造成的夾持力不足使得COF會因振動而造成元件和薄膜相對運動使得被動元件接點斷裂,所以保護膜的張力對每一個元件與IC的影響必須非常清楚才能瞭解到在何種情形下不會損毀IC與元件。因此本文研究方向共分兩大部分,一為利用靜力學和幾何數學解出自動收料機薄膜和元件的受力分佈情形,並利用程式解出數值以利用軟體(ANSYS)作薄膜受力分析。另一部份則是探討捲筒在運輸期間受到振動的疲勞分析。 tc 目錄----------------------------------------------------------1 圖目錄--------------------------------------------------------3 表目錄--------------------------------------------------------5 一,緒論------------------------------------------------------6 1.1研究動機-------------------------------------------------6 1.2文獻回顧-------------------------------------------------8 1.3分析流程圖----------------------------------------------11 二,COF收進自動收料機捲筒之運動分析--------------------------12 2.1基本假設------------------------------------------------12 2.1.1薄膜上只有一元件之受力分析----------------------------13 2.1.2外層元件的受力分析------------------------------------17 2.1.3多層元件的受力分析------------------------------------19 2.1.4內層曲率較小時一元件的受力分析------------------------25 2.1.5單層與多層元件的受力分析------------------------------26 2.1.6元件的位置關係推導------------------------------------28 2.2利用程式語言解出最大允許張力----------------------------31 三,捲筒在運輸期間受振之振動分析-----------------------------36 3.1統御方程式----------------------------------------------36 3.2解振動分析問題------------------------------------------36 3.3ANSYS分析-----------------------------------------------44 四,結果與討論-----------------------------------------------48 4.1回收捲筒張力計算----------------------------------------48 4.2元件分析------------------------------------------------49 4.3自然振動頻率評估----------------------------------------54 五,總結 ----------------------------------------------------60 5.1一些簡化假設造成的誤差影響------------------------------60 5.2尚未解決的問題以及未來的方向----------------------------61 六,參考資料-------------------------------------------------62 七,附錄:計算數值-------------------------------------------63rf [1 ]、F.P. Beer,E.R. Johnston Jr., “Vector Mechanics for Engineers”, McGraw-Hill Co, Singapore, 1990 [2 ]、A.C. Ugural, “Stresses in Plates and Shells”, McGraw-Hill Co, Singapore, 1999 [3 ]、W.T. Thomson, ”Theory of Vibration with Applications”, Prentice Hall Englewood Cliffs, New Jersey, 1988 [4 ]、E.H. Mansfield,“The Bending and Strectching of Plates”, The Macmillan Company, New York, 1989 [5 ]、J.M.Gere & S.P.Timoshenko, “Mechanics of Materials”, PWS Publishing Company, Boston, 1997 [6 ]、R.L.Burden & J.D.Faires, ”Numerical Analysis”, Brooks/Cole Publishing Company, Canada, 1997 [7 ]、L.L.Faulkner & S.B.Menkes, ”Vibrations of Shells and Plates”, Marcel Dekker INC, New York, 1981 [8 ]、陳世憲,”在三維多晶片模組預燒承座之設計、製造及可靠性研究”,清大碩士論文,2002 [9 ]、J.E. Shigley.C.R. Mischke,“Mechanical Engineering Design”,McGraw-Hill Inc Co,Singapore,1989 [10 ]、ANSYS HandBook, Structural Analysis Guide, Ver 5.4 [11 ]、陳徹工作室,”VisualBasic6程式設計實務入門”,文魁資訊,台北,2000 [12 ]、垮克工作室,”有限元素分析基礎篇”,知城數位,台北, 2001id NH0920311009 sid 905791 cfn 0 / id NH0920311010 auc 郭家泰 tic 晶圓級封裝材料溫度-時間相關機械性質之研究 adc 葉銘泉 adc 江國寧 ty 博士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 236 kwc 晶圓級封裝 kwc 潛變 kwc 熱-機械性測試 kwc 銲錫 kwc 溫度-時間相關 abc 本研究針對廣泛使用於電子元件中如印刷電路板之阻絕層(PCB stencil)、導線架薄板(lead frame tape)等之Polyimide材料與FP4549底膠填充(underfill)材料以薄膜片狀試片進行不同應變率與溫度條件下之軸向拉伸靜態、疲勞與潛變試驗。有別於以往之塊狀(bulk)試片,本研究製作和實際使用使尺寸接近的底膠填充試片並採用由杜邦公司取得之Polyimide材料進行一系列之熱-機械(thermo-mechanical)力學性質測試,並對破壞機制與機械性強度進行分析以求取晶圓級封裝材料之溫度-時間相關之特性曲線。Polyimide與底膠填充材料之試驗結果顯示應力-應變曲線與楊式模數呈現高度之黏塑性與溫度及應變率相關性。而穩態潛應變率與溫度及應力之相關性無法以power law之關係式進行描述,引入楊式模數和溫度間的相關性將施加應力正規化即可成功地描述潛變力學行為與power law失效特性。本研究利用一或多個彈簧與緩衝筒串聯或並聯的組合(三、四參數固體模型)之黏彈性模型針對材料之應力-應變曲線與潛變曲線進行模擬得到有系統的時間相關性質之量化分析與極佳之近似。卸載試驗中所得到之卸載模數與軸向拉伸試驗所得之楊式模數相比發現此兩種方法所得之結果差異性小於1%(2.39與2.40GPa),因此使本研究所得到之楊式模數結果得到一精確性上的驗證。在底膠填充材料之接著測試方面,經過所有環境前處理(environmental preconditioning)條件下試片之破壞斷面均發生在綠漆與基板間,亦即底膠填充材料/綠漆間之接著強度大於綠漆/基板間之接著強度,而所得到之接著強度為綠漆/基板間之接著強度。實驗試片斷裂後,觀察其破壞斷面,發現底膠填充與防焊漆黏著者,不論經歷何種環境歷程與實驗條件,試片破壞面皆發生於防焊漆與FR4間,因此實驗所得之最大負載即為防焊漆與FR4間之最大黏著強度。 tc 目錄 頁碼 第一章、前 言 8 第二章、研究動機 15 第三章、文獻回顧 18 第四章、研究方法 32 第五章、理論分析 50 第六章、結果與討論 75 第七章、結論與建議 116 參考文獻 120 表 130 圖 141rf 1 Katsurayama S. and Wada M., “Development of Underfill Material with High Value Performance,” InterPACK ’99- Advances in Electronic Packaging, EEP-Vol. 26-1, pp. 391-396, 1999. 2 Gamota D. and Melton C., “Advanced Encapsulant Systems for Flip Chip,” International Symposium on Advanced Packaging Materials, pp. 46-49, 1997. 3 Chambers R. S. and Adolf D. B., “Nonlinear Viscoelastic Analysis of Engineering Polymers,” InterPACK ’99- Advances in Electronic packaging, EEP-Vol. 26-1, pp. 609-610, 1999. 4 John H. Lau, Ricky Lee S. —W., “Effects of Build-Up Printed Circuit Board Thickness on the Solder Joint Reliability of a Wafer Level Chip Scale Package(WLCSP),”IEEE TRANSACTION ON COMPONTENTS AND PACKAGING TECHNOLOGIES, Vol. 25, NO. 1, pp. 3-13, 2002. 5 Gonzalez G. L., Liu Y. and Maganti S. S., “Physical Properties of Low Temperature Solders and die Attach Materials,” International Symposium on Advanced Packaging Materials, pp. 340-344, 1999. 6 Ren W., Wang J., Qian Z., Zou D. and Liu S.,” Investigation of Nonlinear Behaviors of Packaging Materials and Its Application to a Flip-Chip Package,” International Symposium on Advanced Packaging Materials, pp. 31-40, 1999. 7 Master R. N., Khan M., Guardado M. and Starr O., “Advances in Materials and Processes for Flip-Chip Packaging,” InterPACK ’99- Advances in Electronic packaging, EEP-Vol. 26-2, pp. 1527-1532, 1999. 8 Tummala R. and Wong C. P., “Materials in Next Generation of Packaging,” International Symposium on Advanced Packaging Materials, pp. 1-3, 1997. 9 Sugizaki Y., Hosomi E., Takano E., Chida D. and Ohshima Y., “Optimized Structure for Organic Flip Chip Package,” InterPACK ’99- Advances in Electronic Packaging, EEP-Vol. 26-1, pp. 379-385, 1999. 10 Groothuis S., Hassanzadeh N. and Stark L., “Stress Simulation in Area Array Packaging,” Materials Research Society Symposium Proceedings, Vol. 445, pp. 283-289, 1997. 11 Tzan S. R. and Chen L. S., “Study of Epoxy Material Properties for Solving Thermal Mismatch Problem on electronic Packaging,” InterPACK ’99- Advances in Electronic Packaging, EEP-Vol. 26-1, pp. 373-378, 1999. 12 Suwito W., Dunn M. L. and Cunningham S. J., “Mechanical Behavior of Structures for Microelectromechanical Systems,” International Conference on Solid-State Sensors and Actuators, pp. 611-614, 1997. 13 Schweitz J. A., “Mechanical characterization of Thin Films by Microelectromechanical Techniques,” MRS Bulletin, Vol. 17, pp. 34-35, 1992. 14 Read D. T. and Dally J. W., “A New Method for Measuring the Strength and Ductility of Thin Films,” Journal of Materials Research, Vol. 8, No. 7, pp. 1542-1549, 1993. 15 Read D. T. and Dally J. W., “Mechanical Behavior of Aluminum and Copper Thin Films,” Mechanics and Materials for Electronic Packaging: Volume 2- Thermal and Mechanical Behavior and Modeling, ASME, Vol. 187, pp. 41-49, 1994. 16 Sharpe W. N., Yuan B., Vaidyanathan R. and Edwards R. L., “New Test Structures and Techniques for Measurement of Mechanical Properties of MEMS Materials,” Proc. of the 1996 SPIE Symposium on Micromachining and Microfabrication, pp. 78-91, Austin, 1996. 17 Canumalla S. and Oravecz M. G., “In situ Elastic Property Characterization of Flip-Chip Underfills,” International Symposium on Advanced Packaging Materials, pp. 106-110, 1998. 18 Mayer M., Schwizer J., Paul O., bolliger D. and Baltes H., “In-situ Ultrasonic Stress Measurement During ball Bonding Using Integrated Piezorsistive Microsensors,” InterPACK ’99- Advances in Electronic Packaging, EEP-Vol. 26-1, pp. 973-978, 1999. 19 Low S. R. and Fields R. J., “Multiaxial Mechanical Behavior of 63Sn-37Pb Solder,” IEEE/CPMT Electronic Packaging Technology Conference, pp. 292-298, 1991. 20 Pang H. L. J., Wang Y. P., Shi X. Q. and Wang Z. P., “Sensitivity Study of Temperature and Strain Rate Depandent Properties on Solder Joint Fatigue Life,” IEEE/CPMT Electronic Packaging Technology Conference, pp. 184-189, 1998. 21 Frost H. J., Howard R. T., Lavery P. R. and Lutender S. D., “Creep and Tenslie Behavior of Lead-Rich, Lead-Tin Solder Alloys,” IEEE/CPMT Electronic Packaging Technology Conference, pp. 13-21, 1988. 22 Hellgren E. and Gustafsson G.., “A Study on Solder Joint Reliability Including FEM Simulations on Silicon Substrate MCM-D,” International Conference on Multichip Modules and High Density Packaging, pp. 429-434, 1998. 23 Sato K., Shikida M., Yamasaki M. and Yoshioka T., “Micro Tensile-Test System Fabricated on a Single Crystal Silicon Chip,” IEEE/CPMT Electronic Packaging Technology Conference, pp. 360-364, 1996. 24 Posse K., “Multichip Module Testing Methodologies: What’s In; What’s Not,” IEEE International Test Conference, p. 366, 1994. 25 Eastman J., “MCM Test Trade-off,” IEEE/CPMT Electronic Packaging Technology Conference, p. 367, 1994. 26 Omer A. and Flint A.,” Testability and Signal Integrity in a Low Cost Multichip Module,” IEEE/CPMT Electronic Packaging Technology Conference, pp. 189-197, 1996. 27 Cunningham S.J., Suwito W., Read D.T., “Tensile Testing Of Epitaxial Silicon Films,” Solid-State Sensors and Actuators, 1995 and Eurosensors IX.. Transducers ''95. Vo2. pp.96 -99 28 Said F., Abbott D. and Franzon P. D., “A Review of 3-D Packaging Technology,” IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part B, Vol. 21, No, 1, pp. 2-14, 1998. 29 Li C. Y., Yost B., Korhonen M. A. and Dion J., “Micromechanical Testing of Electronic Packaging Components and Materials,” Materials Research Society Symposium Proceedings, Vol. 323, pp. 385-394, 1994. 30 Shi X.Q., Wang Z.P., Pang H.L.J., and Zhang X.R., “Investigation of effect of temperature and strain rate on mechanical properties of underfill material by use of microtensile specimens,” Polymer Testing, pp. 725-733, 2002. 31 Peter O. and Micheal A.P., “No flow underfill: additional reliability and failure mode analysis,” Microelectronics International, pp. 32-37, 2002. 32 Harper B. D., Lu L. and Kenner V. H., “Effect of Temperature and Moisture upon the Mechanical Behavior of an Epoxy Molding Compound,” Advances in Electronic Packaging 1997, EEP-Vol. 19-1, pp. 1207-1212, 1997. 33 Haper B. D., Rao J. M., Kenner V. H. and Popear C. H.,“Effects of Temperature and Moisture upon Stress Relaxtion in Polyimide Film,”Mechanics and Materials for Electronic Packaging:Vol 2 — Thermal and Mechanical Behavior and Modeling,pp.17-27,1994. 34 胡德,“ 高分子物理與機械性質,”渤海堂文化公司. 35 Qian Z., Lu M. and Liu S., “Constitutive Modeling of Polymer Films From Viscoelasticity to Viscoplasticity,” ASME Journal of Electronic Packaging, Vol. 120, pp. 145-149, 1998. 36 Qian Z., Lu M. and Liu S., “Visco-Elastic-Plastic Behaviors of Polymer-Based Packaging Materials,” International Conference on Adhesive Joining and Coating Technology in Electronics Manufacturing, Binghamton, NY USA, September 28-30, pp. 62-67, 1998. 37 Shrotriya P., Sottos N. R., “Creep and Relaxation Behavior of Woven Glass/Epoxy Substrates for Multiplayer Circuit Board Applications,” POLYMER Composites Vol. 19 , No5. pp. 567-578 , 1998. 38 Hsu D.T., Kim H.K., Shi F.G., Tong T.Y. and Davidson C., Adame J.M. and Chung S., “Cure behavior of a no flow underfill encapsulant,” Microelectronics International, pp. 22-26, 2000. 39 Z. Zhang, J. Lu and C.P Wong , “A Novel Approach for incorporating Silica Filler into No-Flow Underfill,” Electronic Components and Technology Conference, 2001. 40 Wu T. Y., Tsukad Y., and Chen W. T., “Material and Mechanics Issue in Flip-Chip Organic Packaging,” IEEE Electronic Components and Technology Conference, pp.524-534, (1996). 41 Fan Liankua, Moon Kyoung-Sih, Wong C. P., “Adhesion Study on Underfill Encapsulant Affected by Flip Chip Assembly Variables,” International Symposium on Advanced Packaging Material, pp.213-217, (2001). 42 Shi S. H., Yao Q., Qu J., and Wong C.P., “Study on the Correlation of Flip-Chip Reliability with Mechanical Property of No-Flow Underfill Material,” International Symposium on Advanced Packaging Material, pp.271-277, (2000). 43 Ishiguro Fukuzawa S. and Nambu S., “Moisture resistance degradation of plastic LSIs by reflow soldering,” Proc. 23th Rel. Phy. Sym., pp. 192-197, 1985. 44 Kuo A. Y., Nguyen L. T. and Chen K. L., “Effects of moving evaporation fronts in package popcorning,” ASME Winter Annual Meeting, pp. 6-11, 1994. 45 Rao Y., Shi S. H., and Wong C. P., “A Simple Evaluation Methodology of Young’s Modulus-Temperature Relationship for the Underfill Encapsulants,” Electronic Components and Technology Conference, pp.784-789, (1999). 46 Timothy P. Ferguson and Jianmin Qu, “Moisture Absorption in No-Flow Underfill material and its Effects on interfacial Adhesion to Solder Mask Coated FR4 Printed Wiring Board,” International Symposium on Advanced Packaging Material, pp.327-332, (2001). 47 Zhengfang Qian, Jian Yang, and Sheng Liu, “Visco-Elastic-Plastic Properties and Constitutive Modeling of Underfills,” Electronic Components and Technology Conference, pp.969-974, (1998). 48 Robert Darveaux, Laura Norton, and Frank Carney, “Temperature Dependent Mechanical Behavior of Plastic Packaging Materials,” Electronic Components and Technology Conference, pp.1054 —1058, (1995). 49 Wei Ren, Zhengfang Qian, and Sheng Liu, “Scale Effect on Packaging Materials,” Electronic Components and Technology Conference, pp.1229-1234, (1999). 50 Wong E. H., K. Chan C., Lim T. B. and Lam T. F., “Non-Fickian Moisture Properties Characterisation and Diffusion Modeling for Electronic Packages,” Electronic Components and Technology Conference, 99. 302-306, 1999. 51 Wong E. H., Koh S. Rajoo W., R. and Lim T. B., ”Underfill Swelling and Temperature-Humidity Performance of Flip Chip PBGA Package,” Electronic Pcakaging Technology Conference, pp. 258-262, 2000. 52 Abtew M. and Selvaduray G., “Lead-free Solders in Microelectronics,” Materials Science and Engineering Reports: A Review Journal, 27, pp. 95-141, 2000. 53 Miric A. Z. and Grusd A., “Lead-free alloys,” Soldering & Surface Mount Technology, pp. 19-25, 1998. 54 Lee N. C., “Getting Ready for Lead-free Solders,” Soldering & Surface Mount Technology, Vol. 9, No. 2, pp. 65-69, 1997. 55 Ming Li, K.Y Lee, D.R. Olsen and William T. Chen, Ben Tin Chong Tan, and Subodh Mhaisalkar, ”Microstructure, Joint Strength and Failure Mechanism of SnPb, and Pb-Free solders in BGA Packages”, IEEE Transactions on Electronics Packaging, Vol.25, No.3, July 2002 56 Hirokazu Ezawa, Masahiro Miyata, Soichi Honma, Hiroaki Inoue, Tsuyoshi Tokuoka, Junichiro Yoshioka, and Manabu Tsujimura, “Eutectic Sn—Ag Solder Bump Process for ULSI Flip Chip Technology”, IEEE Transactions on Electronics Package Manufactoring, Vol. 24, No. 4, October 2001 57 Jae-Woong Nah and Kyung-Wook Paik, “Investigation of Flip Chip Under Bump Metallization Systems of Cu Pads”, IEEE Transactions on Components and Packaging Technologies, Vol. 25, No. 1, March 2002 58 Lin J.K., Silva A.D, Frear D., Guo Y.F, Jang J.W, D L. Li, Mitchell B. Yeung and Zhang C., “Characterization of Lead-Free Solders and Under Bump Metallurgies for Flip-Chip Package”, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 25, No. 3, pp. 300-307, July 2002 59 Lin K.L. and Hsu K.T., “Manufacturing and Materials Properties of Ti/Cu/Electroless Ni/Solder Bump on Si”, IEEE Transactions on Components and Packaging Technologies, Vol. 23, No. 4, pp. 657-660, December 2000 60 Wei Y.Y. and Duh J.G., “Effect of Thermal Ageing on (Sn-Ag, Sn-Ag-Zn)/PtAg, Cu/Al2O3 Solder Joints”, Journal of Materials Science: Materials in Electronics, 9, pp. 373-381, 1998 61 Zeng K., Vuorinen V. and Kivilahti J. K., “Intermetallic Reactions between Lead-Free Sn-Ag-Cu Solder and Ni(P)/Au Surface Finish on PWBs”, Electronic Components and Technology Conference, 2001 62 Guo-Wei Xiao, Philip C. H. Chan, Annette Teng, Jian Cai, and Matthew M. F. Yuen, “Effect of Cu Stud Microstructure and Electroplating Process on Intermetallic Compounds Growth and Reliability of Flip-Chip Solder Bump”, IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 4, December 2001 63 Salam B., Ekere N.N. and Rajkumar D., “Study of the Interface Microstructure of Sn-Ag-Cu Lead-Free Solders and the effect of solder Volume on Intermetallic Layer Formation”, Electronic Components and Technology Conference, 2001 64 Zhenwei Hou, Guoyun Tian, Casey Hatcher, R. Wayne Johnson, Erin K. Yaeger, Mark M. Konarsai, and Lawrence Crane, “Lead-Free Solder Flip Chip-On-Laminate Assembly and Reliability”, IEEE Transactions on Electronics Packaging Manufacturing, Vol.24, No.4, pp. 282-292, October, 2001 65 Charles Zhang, Jong-Kai Lin, and Li Li, “Thermal Fatigue Properties of Lead-Free Solders on Cu and NiP Under Bump Metallurgies”, Electronic Components and Technology Conference, 2001 66 D.T. Scott Neu, Woodmansee M.W., “Thermomechanical Behavior of 96Sn-4Ag and Castin Alloy,” Journal of Electronic Packaging Vol.123, Sempeter (2001), pp. 238-246. 67 Guo F., Lucas J. P., Subramanian K. N., “Creep behavior in Cu and Ag particle-reinforced composite and eutectic Sn-3.5Ag and Sn-4.0Ag-0.5Cu non-composite solder joints,” Journal of Materials Science: Materials in Electronics, Vol. 12, pp. 27-35, (2001). 68 Guo F., Choi S., Subramanian K. N., T. R. Bieler, J. P. Lucas, A. Achari, M. Paruchuri “Evaluation of creep behavior of near-eutectic Sn-Ag solders containing small amount of alloy addditions,” Material Science and Engineering, Vol. A351, pp. 190-199, (2003). 69 Huang M. L., Wang L. and Wu C. M. L., “Creep behavior of eutectic Sn-Ag lead-free solder alloy,” Journal of Materials Research, Vol. 17, No.11 pp. 2897-2903, Nov (2002) 70 Pang John H. L., Kwang Hong Tan, Xunqing Shi, and Wang Z. P., “Thermal Cycling Aging Effects on Microstructural and Mechanical Properties of a Single PBGA Solder Joint Specimen,” IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 24, NO. 1, MARCH (2001) 71 Schubert A., Walter H., Dudek R., Michel B., Lefranc G., Otto J. and G. Mitic, “Thermo-Mechanical Properties and Creep Deformation of Lead-Containing and Lead-Free Solders,” International Symposium on Advanced Packaging Materials, pp. 129-134, 2001. 72 X. Q. Shi, Z. P. Wang, W. Zhou, H. L. J. Pang and Q. J. Yang, “A New Creep Constitutive Model for Eutectic Solder Alloy,” Journal of Electronic Packaging, Vol. 124, pp.85-90, 2002 73 Shi X. Q., Zhou W., Pang H. L. J. and Wang Z. P., “Effect of Temperature and Strain Rate on Mechanical Properties of 63Sn/37Pb Solder Alloy,” Journal of Electronic Packaging, Vol. 121, pp. 179-185, 1999. 74 Plumbridge W. J. and Gagg C. R., ” Effects of strain rate and temperature on the Stress-strain response of solder alloys,” Journal of Materials Science: Materials in Electronics, 10, pp. 461-468, 1999. 75 ?nal ?. and Foley J. C., “Effects of temperature and loading rate on the shear strength and shear yield stress of lead-free 97Cu-3Sn and 95.5Cu-4Sn-0.5Ag solder alloys,” Journal of Materials Science Letters, 20, pp. 1585 — 1587, 2001 76 Chen J. K., Beraun J. E. and Tzou D. Y., “A Dual-Phase-Lag Diffusion Model for Predicting Intermetallic Compound Layer Growth in Solder Joints,” Journal of Electronic Packaging, Vol. 123, pp. 52-57, 2001. 77 Ho C. E., Tsai S. Y. and Kao C. R., ”Reaction of Solder With Ni/Au Metallization for Electronic Packages During Reflow Soldering,” IEEE Transactions on Advanced Packaging, Vol. 24, No. 4, pp. 493-498, 2001. 78 Lee K. Y., Li M., Olsen D. R., Chen W. T., Tan B. T. C. and Mhaisalkar S., “Microstructure, Joint Strength and Failure Mechanism of Sn-Ag, Sn-Ag-Cu versus Sn-Pb-Ag Solders in BGA Packages,” IEEE Electronics Components and Technology Conference, 2001. 79 Hung S. C., Zheng P. J., Lee S. C. and Lee J. J., “The Effect of Au Plating Thickness of BGA Substrates on Ball Shear Strength Under Reliability Tests,” IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium, pp. 7-15, 1999. 80 ASTM Standard, ASTM designation: D638-97, 1996, pp. 46-58 81 ASTM Standard, ASTM designation:D882-97, 1996, pp. 159-167 82 JEDEC Standard No. 22-A113C, “Preconditioning of Nonhermetic Surface Mount Device Prior to Reliability Testing”, JEDEC SOLID STATE TECHNOLOGY ASSOCIATION, February 2003. 83 JEDEC Standard No. 22-A120, ”Test Method for Measurement of Moisture Diffusivity and Water Solubility in Orangic Materials Used in Integrated Circuits,” JEDEC SOLID STATE TECHNOLOGY ASSOCIATION, June 2001. 84 ASTM Standard, ASTM designation: D570-98, “Standard Test Method for Water Absorption of Plastics,” 1998. 85 JEDEC STANDARD JESD22-B117, “BGA Ball Shear,” 2000 . 86 W. Ren, Z. Qian, M. Lu and S. Liu, “Investigation of a New Lead Free Solder Alloy Using Thin Strip Specimens,” Journal of Electronic Packaging, Vol. 121, pp. 271-274, 1999. 87 Zhong C. H. and Yi S., “Solder Joint Reliability of Plastic Ball Grid Array Packages,” Soldering & Surface Mount Technology, pp. 44-48, 1999. 88 Lin J. K., Silva A. D., Frear D., Guo Y., Jang J. W., Li L., Mitchell D., Yeung B. and Zhang C., “Characterization of Lead-Free Solders and Under Bump Metallurgies for Flip-Chip Package,” 2001 Electronic Components and Technology Conference. 89 Syed A., “Reliability and Au Embrittlement of Lead Free Solders for BGA Applications,” International Symposium on Advanced Packaging Materials, pp. 143-147, 2001. 90 Lee S. W. R. and Huang X., “Analysis on Solder Ball Shear Testing Conditions with a Simple Computational Model,” Soldering & Surface Mount Technology, pp. 45-48, 2002. 91 Kiyoshi M., Tsukasa Y., Hyung G. B., Sang W. P., “Viscoelastic Warpage Analysis of Surface Mount Package,” Advances in Electronic Packaging, Vol. 1, pp.1041-1046, ASME1999. 92 Ren, W., Wang, J., Qian, Z., Zou, D. and Liu, S.,” Investigation of Nonlinear Behaviors of Packaging Materials and Its Application to a Flip-Chip Package,” International Symposium on Advanced Packaging Materials, pp. 31-40, 1999. 93 John H. Lau, S. —W. Ricky Lee, “Effects of Build-Up Printed Circuit Board Thickness on the Solder Joint Reliability of a Wafer Level Chip Scale Package(WLCSP),”IEEE TRANSACTION ON COMPONTENTS AND PACKAGING TECHNOLOGIES. 94 Yang H., Deane P., Magill P. and Murty K. L., “Creep Deformation of 96.5Sn-3.5Ag Solder Joints in a Flip Chip Package,” Electronic Components and Technology Conference, pp. 1136-1142, 1996. 95 Wiese S., Feustel F. and Meusel E., “Characterisation of Constitutive Behaviour of SnAg, SnAgCu and SnPb Solder in Flip Chip Joints,” Sensors and Actuators: A, pp. 188-193, 2002. 96 Darveaux R. and Banerji K., “Constitutive Relations for Tin-Based Soldr Joints,” IEEE Transactions on Componets, Hybrids, and Manufacturing Technology, Vol. 15, No. 6, 1992. 97 Jong D. Ferry ,” Viscoelastic Properties Of Polymers,” Third Edition, 1980. 98 John H. L., Pang and Tze-Ing Tan., “Thermo-Mechanical Analysis of Solder Joint Fatigue and Creep in a Flip Chip On Board Package Subject to Temperature Cycling Loading,” Electronic Components and Technology Conference, pp.878-883, 1998. 99 Crank J. and Park G. S., “The mathematics of diffusion”, Oxford University Press,2nd 1975. 100 VanLandingham M. R., Eduljee R. F. and Gillespie J. W., “Moisture Diffusion in Epoxy System,” Center for Composite Materials and Materials Science Program. 101 J Kinloch, “Adhesion and Adhesives,” Chapman and Hall, New York, 1987. 102 Chen K.M and Chiang K.N., “Impact of Probing Procedure on Flip Chip Reliability”, Journal of Microelectronics Reliability, Vol. 43, pp. 123-130, January, 2003 103 Ming Li, Lee K.Y, Olsen D.R. and Chen William T., Ben Tin Chong Tan, and Subodh Mhaisalkar, ”Microstructure, Joint Strength and Failure Mechanism of SnPb, and Pb-Free solders in BGA Packages”, IEEE Transactions on Electronics Packaging, Vol.25, No.3, July 2002 104 Wang G. Z., Cheng Z., Becker N. K. and Wilde J., “Applying Anand Model to Represent the Viscoplastic Deformation Behavior of Solder Alloys”, Journal of Electronic Packaging Vol.123, Sempeter (2001), pp. 247-253. 105 Schubert R., Dudek H., Walter E. Jung, Gollhardt A., Michael B., Reichl H., “Reliability Assessment of Flip-Chip Assemblies with Lead-Free Solder Joints,” Electronic Components and Technology Conference, pp. 1246-1255, (2002). 106 Mavoori H., Chin J., Vaynman S., Moran B., Keer L. and Fine M., “Creep, Stress, and Deformation in Sn-Ag and Sn-Zn Eutectic Solders,” Journal of Electronic Materials , VOL. 26, NO. 7, (1997).id NH0920311010 sid 887708 cfn 0 / id NH0920311011 auc 劉立崗 tic 限制平面噴流衝擊於散熱座之熱流研究 adc 洪英輝 ty 博士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 580 kwc 限制平面噴流 kwc 散熱座 abc 在本論文研究中,建立了一系列的實驗系統及實驗方法,來分別探討無限制/限制光滑表面或散熱座應用不同冷卻方法之熱流特性。冷卻方法分為(一)自然對流與(二)平面噴流衝擊和自然對流產生之混合對流兩種。在研究中探討影響自然對流及平面噴流的熱流性能之相關參數分別列之如下:(一)自然對流-穩態格拉雪夫數(Grs)、噴流間距與噴嘴寬度比(H/W)與散熱座高度與噴嘴寬度比(Hes/W)。這些參數的探討範圍是Grs=3.37x105-1.26x106,H/W=1-10與Hes/W=0.74-3.40。(二)含平面噴流衝擊與自然對流之混合對流-穩態格拉雪夫數(Grs)、噴流間距與噴嘴寬度比(H/W) 、散熱座高度與噴嘴寬度比(Hes/W)與噴流雷諾數(ReD)。這些參數的探討範圍是Grs=3.52x105-5.63x105,H/W=1-10,Hes/W=0.74-3.40與ReD=57-1411。 tc 頁次 摘要 i 目錄 iv 第一章 緒論 1 第二章 實驗設備與方法 2 第三章 限制平面噴流之流力特性 4 第四章 無限制光滑表面之自然對流熱傳特性 5 第五章 限制光滑表面之自然對流熱傳特性 6 第六章 無限制散熱座之自然對流熱傳特性 7 第七章 限制散熱座之自然對流熱傳特性 8 第八章 限制平面噴流衝擊於光滑表面之對流熱傳特性 9 第九章 限制平面噴流衝擊於散熱座之對流熱傳特性 10 第十章 結論與建議 11 參考文獻 12 附錄(英文版) 20rf Al-Arabi, M., and El-Riedy, M. K., 1976, "Natural Convection Heat Transfer from Isothermal Horizontal Plates of Differnet Shapes," Int. J. Heat Mass Transfer, Vol.19, pp.1399-1404. Bar-Cohen, A., and Kraus, A. D., 1990, Advance in Thermal Modeling of Electronic Components and Systems, Vol.2, ASME Press., New York. Bar-Cohen, A., Mudawar, I., and Whalen, B., 1986, Future Challenge for Electronic Cooling, ed. by Incropera, F. P., Published by the National Science Fundation and Purdue University, pp. 70-77. Bergles, A. E., 1986, "The Evolution of Cooling Technology for Electrical, Electronic, and Microelectronic Equipment," Heat Transfer in Electronic Equipment 1986, ASME HTD-Vol.57, pp.1-9. Bejan, A., 1995, Convection Heat Transfer, 2nd ed., John Wiley & Sons, Inc., New York. Burmeister, L. C., 1983, Convective Heat Transfer, John Wiley & Sons, New York, pp.312-319 and 384-393. Chang, K. P., and Hung, Y. H., 1997, “Transient Natural Convection Between Vertical Finite Length Heated Plates,” J. Thermophysics and Heat Transfer, Vol.11, pp.203-211. Chen, W. H., Cheng, H. C., and Shen, H. A., 2001, "On Effective Thermal Characterization of Electronic Packaging," IPACK2001-15836, Proceedings of InterPACK’01, InterPACK 2001, Kauai, Hawaii, USA, July 8-13. Chou, Y. J., and Hung, Y. H., 1994, "Impingement Cooling of an Isothermally Heated Surface with a Confined Slot Jet," ASME Journal of Heat Transfer, Vol.116, No.2, pp.479-482. Chu, R. C., and Simons, R. E., 1984, "Thermal Management of Large Scale Digital Computers," The International Society for Hybrid Microelectronics, Vol.7, No.3, pp.35-43. Deshpande, N. D., and Vaishnav, R. N., 1982, "Submerged Laminar Jet Impingement on a Plane," J. Fluid Mech., Vol.114, pp.213-236. Ellison, G. N., 1984, Thermal Computations for Electronic Equipment, Van Nostrand Reinhold Co., New York. Ellison, G. N., 1984/1989, Thermal Computations for Electronic Equipment, 1st/2nd Edition, Van Nostrand Reinhold Corporation, New York. Gardon, R., and Akfirat, J. C., 1965, "The Role of Turbulence in Determining the Heat Transfer Characteristics of Impinging Jets," Int. J. Heat Mass Transfer, Vol.8, pp.1261-1272. Gardon, R., and Conbonpue, J., 1962, "Heat Transfer Between a Flat Plate and Jets of Air Impingement on it," Internal Development in Heat Transfer ASME, pp.454-460. Garimella, S. V., and Rice, R. A., 1994, "Heat Transfer in Submerged and Confined Jet Impingement," ASME, Heat Transfer in High Heat Flux Systems, HTD-Vol.301, pp.59-68. Goldberg, N., 1984, "Narrow Channel Forced Air Heat Sink," IEEE Transactions on Components, Hybrids, and Manufaturing Technology, CHMT-7, pp.154-159. Goldstein, R. J., and Franchett, M. E., 1988, "Heat Transfer from a Flat Surface to an Oblique Imingement Jet," ASME J. Heat Transfer, Vol.110, pp.84-90. Goldstein, R. J., and Lau, K. S., 1983, "Laminar Natural Convection from a Horizotal Plate and the Influence of Plate-edge Extensions," J. Fluid Mech., Vol.129, pp.55-75. Goldstein, R. J., Sparrow, E. M. and Jones, D. C., 1973, "Natural Convection Mass Transfer Adjacent to Horizontal Plates," Int. J. Heat Mass Transfer, Vol.16, pp.1025-1035. Guo, Y. W., 1998, "Heat Transfer Behavior of a Round Water Jet Impinging onto a Heated Disk of Multichip Module," Master’s Thesis, Dept. of Power Mechanical Engineering, National Tsing Hua University, Taiwan, R. O. C.. Hiemenz, K., 1911, "Die Grenzschichten Einem in den Gleichformigen Flü-ssigkeitsstrom Eingetauchten Geraden Kreiszylinder," Diss. Göttingen, Dingl. Polytechn. J., pp.321-410. Hollworth, B. R., and Durbin, M., 1989, "Impingement Cooling of Electronics," 1989 ASME National Heat Transfer Conference HTD-Vol.111, pp.89-96. Hoyt, J. W., and Taylor, J. J., 1985, "Effect of Nozzle Boundary Layer on Water Jets Discharging in Air," In Jets and Cavities ─ International Symposium, ASME, New York, pp.93-100. Hrycak, P., 1983, "Heat Transfer from Impinging Jets to a Flat Plate," Int. J. Heat Mass Transfer, Vol.26, pp.1857-1865. Hung, Y. H., and Perng, S. W., 1988, “An Experimental Technique for Measuring Transient Natural/Forced-Convective Heat Fluxes in a Vertical Channel,” Exp. Therm. Fluid Sci., Vol.1, pp.305-313. Hung, Y. H., and Shiau, W. M., 1989, “An Effective Model for Measuring Transient Natural Convection Heat Flux in Vertical Parallel Plates with a Rectangular Rib,” Int. J. Heat Mass Transfer, Vol.32, pp.863-871. Ishizuka, M., Yokono, Y., and Hisano, K., 1999, "Experimental Study on the Performance of Compact Heat Sink for LSI Packages," ASME Advances in Electronic Packaging, EEP-Vol.26-1, pp.713-718. Kays, W. M., and Crawford, M.E., 1993, Convective Heat and Mass Transfer, 3rd ed., McGraw-Hill, New York. Kiper, A. M., 1984, "Impinging Water Jet Cooling of VLSI Circuits," International Communications in Heat and Mass Transfer, Vol.11, pp.517-526. Kishimoto, T., and Ohsaki, T., 1986, "VLSI Packaging Technology Using Liquid-Cooled Channels," Proc. 1986 IEEE Electronic Component Conf., pp.595-601. Kishimoto, T., Sasaki, E., and Moriya, K., 1984, "Gas Cooling Enhancement Technology for Integrated Circuit Chips," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol.CHMT-7, pp.286-293. Knight, R. W., and Gooding, J. S., 1991, "Optimal Thermal Design of Forced Convection Heat Sinks-Analytical," ASME Journal of Electronic Packaging, Vol.113, pp.313-321. Kraus, A. D., and Bar-Cohen, A., 1995, Design and Analysis of Heat Sinks, John Wiley & Sons, Inc., New York. Kreith, F., 1968, “Convection Heat Transfer in Rotating Systems,” Advances in Heat Transfer, Vol.5, pp.129-251. Kottke, V., Blenke, H., and Schmidt, K. G., 1977, "Messung und Berechung des Ortlichen und Mittleren Stoffübergangs an Stumpf Angestromten Kreisscheiben bei Unterschiedlicher Turbulenz," Wärme und Stoffübertragung, Vol. 10, pp.89-105. Law, H. S., and Masliyah, J. H., 1984, "Mass Transfer due to Confined Laminar Impinging Axisymmetric Jet," Ind. Eng. Chem. Fundam., Vol.23, pp.446-454. Li, C. J., 1997, "An Experimental Study for Heat Transfer Characteristics on a Rotating Heated Disk," Master’s Thesis, Dept. of Power Mechanical Engineering, National Tsing Hua University, Taiwan, R. O. C.. Lin, H. H., and Hung, Y. H., 1993, “Transient Forced Convection Heat Transfer in a Vertical Rib-Heated Channel Using a Turbulence Promoter,” Int. J. Heat Mass Transfer, Vol.36, pp.1553-1571. Lin, Z. H., 1996, "Experimental Studies of Jets on Fluid Flow and Heat Transfer Characteristics," Ph.D. Thesis, Dept. of Power Mechanical Engineering, National Tsing Hua University, Taiwan, R. O. C.. Mahalingam, M., 1985, “Thermal Management in Semiconductor Device Packaging,” IEEE Proc., 73, pp.1396-1404. Mahalingam, M. and Andrews, J., 1987, “High Performance Air Cooling for Microelectronics,” Proc. Intl. Symp. Cooling Technology for Electronic Equipment, Honolulu, HI, pp.608-625. Mark, L. S., 1981, Mechanical Engineer's Handbooks, McGraw-Hill, New York, p.368. Martin, H., 1977, "Heat and Mass Transfer between Impinging Gas Jet and Solid Surface," In Advances in Heat Transfer, Vol.13, ed. by Hartnett, J. P., and Irvine, Jr., T. F., Academic Press Inc., New York, pp.1-60. Masliyah, J. H., and Nguyen, T. T., 1979, "Mass Transfer Due to an Impinging Slot Jet," Int. J. Heat Mass Transfer, Vol.22, pp.237-244. Minges, M. L., 1989, Electronic Materials Handbook Volume 1: Packaging, pp.46-49, ASM International, Materials Park, Ohio. Moffat, R. J., 1988, "Describing the Uncertainties in Experimental Results," Expl. Thermal Fluid Sci., Vol.1, pp.3-17. National Science Council, 1991, "Technique Development for VLSI Packaging," NSC Report of Engineering Division, National Science Council, Taiwan, R. O. C., December. Narayanan, V., Seyed-Yagoobi, J. and Page, R. H., 2004, "An Experimental Study of Fluid Mechanics Heat Transfer in An Impingement Slot Jet Flow," Int. J. Heat Mass Transfer, Vol.47, pp.1827-1845. Nayak, D., Hwang, L. T., Turlik, I. and Reisman, A., 1987, "A High-Performance Thermal Module for Computer Packaging," J. Electronic Materails, Vol.16, pp.357-364. Newman, L. B., Sparrow, E. M., and Eckert, E.R.G., 1972, "Free-Stream Turbulence Effects on Local Heat Transfer from a Sphere," ASME J. Heat Transfer, Vol.94, No.1, pp.7-16. Oehlbeck, D. L., and Erian, F. F., 1979, “Heat Transfer from Axisymmetric Sources at the Surface of a Rotating Disk,” Int. J. Heat Mass Transfer, Vol.22, pp.601-610. Saad, N. R., Mujumdar, A. S., and Douglas, W. J. M, 1977, "Prediction of Heat Transfer under an Axisymmetric Laminar Impinging Jet," Ind. Eng. Chem. Fund., Vol.16, pp.148-154. Sarvar, F., Whalley, D. C., and Low, M. K., 2001, "IGBT Package Design for High Power Aircraft Electronic Systems," ASME Journal of Electronic Packaging, Vol.123, pp.338-343. Schlunder, E. U., and Gnielinskei, V., 1967, "Wärme- und Stoffübertragung zwischen Gut und Aufprallendem Duesenstrahl," (Translation:"Heat and Mass Transfer between a Surface and Impinging Jet) Chemie Ingenieur Technik, Vol.39, p.578. Scholtz, M. T., and Trass, O., 1970, "Mass Transfer in Nonuniform impinging Jet," American Institute Chemical Engineering Journal, Vol.16, pp.82-96. Shieh, Y. R., 1998, "Heat Transfer from a Horizontal Ceramic-Based Disk of Multi-chip Modules," Ph.D. Thesis, Dept. of Power Mechanical Engineering, National Tsing Hua University, Taiwan, R. O. C.. Shieh, Y. R., Li, C. J., and Hung, Y. H., 1999, "Heat Transfer from a Horizontal Wafer-Based Disk of Multi-chip Modules," Int. J. Heat Mass Transfer, Vol.42, pp.1007-1022. Sibulkin, M., 1952, "Heat Transfer Near the Forward Stagnation Point of a Body of Revolution," J. Aeron. Sci., Vol.19, pp.570-571. Sparrow, E. M., and Lee, L., 1975, "Analysis of Flow Field and Impingement Heat and Mass Transfer due to a Nonuniform Slot Jet," ASME J. Heat Transfer, Vol.97, pp.191-197. Sparrow, E. M., and Wong, T. C., 1975, "Impingement Transfer Coefficients due to Initially Laminar Slot Jets," Int. J. Heat Mass Transfer, Vol.18, pp.597-605. Strand, T., 1964, "On the Theory of Normal Ground Impingement of Axi-Symmetric Jets in Inviscid Incompressible Flow," AIAA paper No. 64-424, 1st AIAA Annual Meeting, Washington, D. C., June 29-July 2. Su, W. M, 2000, “Transient Convective Heat Transfer from a Stationary or Rotating Ceramic-Based MCM Disk,” Master’s Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan, R.O.C.. Su, W. S., 2000, “Transient Convective Heat Transfer of Air Jet Impinging onto a Stationary or Rotating Ceramic-Based MCM Disk,” Master’s Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan, R.O.C.. Tsai, J. C., 1999, "Heat Transfer of Round Water Jet Impinging onto a Rotating Ceramic-Based MCM Disk," Master’s Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan, R. O. C.. Tuckerman, D.B., 1984, “Heat Transfer Microstructures for Integrated Circuits,” Ph.D.’s Thesis, Stanford University, Standford, C.A.. Van Heiningen, A. R. P., Mujumdar, A. S., and Douglus, W. J. M., 1976, "Numerical Prediction of the Flow Field and Impingement Heat Transfer Caused by a Laminar Slot Jet," ASME J. Heat Transfer, Vol.98, pp.654-658. Wadsworth, D. C. and Mudawar, I., 1990, "Cooling of a Multichip Electronic Module by Means of Confined Two-Dimensional Jets of Dielectric Liquid," ASME J. Heat Transfer, Vol.112, pp.891-898. Wu, C. F. and Hamada, M., 2000, Equipments Planning, Analysis, and Parameter Design Opimization, John Wiley & Sons, Inc., New York.id NH0920311011 sid 873701 cfn 0 / id NH0920392001 auc 黃博學 tic 一些圓心問題之研究 adc 唐傳義 adc 蔡英德 ty 博士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 123 kwc 演算法 kwc 計算幾何 kwc 雙圓心問題 kwc 阿爾法連接雙圓心問題 kwc 中心殼 abc 隨著近年來無線通訊(wireless communication)架構的興盛,專攻計算幾何(computational geometry)的讀者相信必已注意到一個與日俱增的趨勢:有愈來愈多的學者正積極投入解決設施配置問題(facilities location problems);此一趨勢亦可明顯地從許多發表於組合幾何(combinatorial geometry)及其他自然科學期刊中的論文觀察而得,這些論文雖然因其專屬的領域而各自以不同的名稱為這些問題命名,然對其重要性的描述卻有著異曲同工之妙。 tc Abstract iii 1 Introduction 1 1.1 A Survey of Prior Related Work 2 1.1.1 Smallest Enclosing Circle Problem 2 1.1.2 Two-Center Decision Problem 5 1.1.3 Two-Center Problem 7 1.1.4 Connected Two-Center Problem 9 1.1.5 P-Center Problem 14 1.2 Chapters Overview and Problems 15 1.2.1 Alpha-Connected Two-Center Decision Problem 17 1.2.2 Alpha-Connected Two-Center Problem 20 2 Geometric Preliminaries 24 2.1 General Definitions and Notations 25 2.2 Voronoi Diagram 28 2.3 Center Hull 37 3 Alpha-Connected Two-Center Decision Problem 51 3.1 Introduction 52 3.2 A Straightforward Algorithm 57 3.3 A Near-Quadratic Algorithm 63 3.3.1 Constrained Alpha-Connected Two-Center Decision Problem 63 3.3.2 Solving the Alpha-Connected Two-Center Decision Problem 68 3.4 Concluding Remarks 75 4 Alpha-Connected Two-Center Problem 77 4.1 Introduction 78 4.2 A Straightforward Algorithm 86 4.3 A Cubic Algorithm 93 4.3.1 Constrained Alpha-Connected Two-Center Problem 93 4.3.2 Solving the Alpha-Connected Two-Center Problem 96 4.4 Concluding Remarks 109 5 Conclusions 111 5.1 Concluding Remarks 112 5.2 Further Studies 114 Bibliography 118rf [1 ] P. Agarwal and M. Sharir, Planar Geometric Location Problems and Maintaining the Width of a Planar Set, Proc. Second Ann. ACM-SIAM Symp. On Discrete Algorithms, 1991, pp.449-458. [2 ] P. Agarwal and M. Sharir, Planar geometric location problems, Algorithmica, 11(1994), pp.185-195. [3 ] Pankaj K. Agarwal and Micha Sharir, Efficient Algorithms for Geometric Optimization, ACM Computing Surveys, Vol. 30, No. 4, 1998, pp.412-458. [4 ] P. Agarwal, M. Sharir and E. Welzl, The discrete 2-center problem, Proceedings of the 13th ACM Symposium on Computational Geometry, 1997, pp. 147-155. [5 ] S. Arora, P. Raghavan and S. Rao, Approximation Schemes for Euclidean k-median and related problems, Proceedings of the 30th Annual ACM Symposium on the Theory of Computation, 1998, pp.106-113. [6 ] Franz Aurenhammer, Voronoi Diagrams - A Survey of a Fundamental Geometric Data Structure, ACM Computing Surveys, Vol. 23, No. 3, 1991, pp.345-405. [7 ] Mark de Berg, Prosenjit Bose, David Bremner, Suneeta Ramaswami and Gordon Wilfong, Computing Constrained Minimum-Width Annuli of Point Sets, Computer-Aided Design, 30(4), 1998, pp.267-275. [8 ] V. Capoyleas, G. Rote and G. Woeginger, Geometric Clusterings, J. Algorithms 12, 1991, pp.341-356. [9 ] Timothy M. Chan, More planar two-center algorithms, Computational Geometry: Theory and Applications, 13(1999), pp.189-198. [10 ] B. Chazelle and D. P. Dobkin, Intersection of Convex Objects in Two and Three Dimensions, Journal of the Association for Computing Machinery, Vol. 34, No. 1, 1987, pp. 1-27. [11 ] F. Chin and C.A. Wang, Optimal algorithms for intersection and minimum distance problems between planar polygons, IEEE Trans. Comput., vol. C-32, Dec. 1983, pp.1203-1207. [12 ] Z. Drezner, Facility Location: A Survey of Applications and Methods, Springer Verlag, New York, 1995. [13 ] Z. Drezner, The planer two-center and two-median problems, Transportation Science, 18(1984), pp.351-361. [14 ] Z. Drezner, The p-Center Problem - Heuristics and Optimal Algorithms, J. Oper. Res. Soc. , Vol. 35, No. 8, 1984, pp.741-748. [15 ] Z. Drezner, On the Rectangular p-Center Problem, Naval Res. Logist. Quart., Vol. 34, 1987, pp.229-234. [16 ] H. Edelsbrunner, D.G. Kirkpatrick and R. Seidel, On the shape of a set of points in the plane, IEEE Trans. Inform. Theory, IT-29(1983), pp.551-559. [17 ] H. Edelsbrunner, Algorithms in Combinatorial Geometry, EATCS Monographs on Theoretical Computer Science, V.10, Springer Verlag, New York, 1987. [18 ] J. Elzinga and D. E. Hearn, Geometrical Solutions for some Minimax Location Problems, Transportation Sci. 6, 1972, pp.379-394. [19 ] D. Eppstein, Dynamic three-dimensional linear programming, ORSA J. Computing, 4(1992), pp.360-368. [20 ] D. Eppstein, Faster construction of planar two-centers, 8th ACM-SIAM Symp. Discrete Algorithms, 1997, pp.131-138. [21 ] R. R. L. Francis, Some Aspects of a Minimax Location Problem, Operations Research 15, 1967, pp.1163-1168. [22 ] R. L. Francis and J. A. White, Facility Layout and Location, Prentice-Hall, Englewood Cliffs, NJ, 1974. [23 ] L.J. Guibas, D.E. Knuth and M. Sharir, Randomized Incremental Construction of Delaunay and Voronoi Diagrams, Algorithmica, 7(1992), pp.381-413. [24 ] J. Hershberger, A faster algorithm for the two-center decision problem, Inform. Process. Lett., 47(1993), pp.23- 29. [25 ] J. Hershberger and S. Suri, Finding tailored partitions, J. Algorithms, 12(1991), pp.431-463. [26 ] C.H. Huang, Some problems on radius-weighted model of packet radio network, Ph. D. Dissertation, Dept. of Comput. Sci., Tsing Hua Univ., Hsinchu, Taiwan, 1992. [27 ] N. F. Huang, On the Complexity of Connected P-Center Problems, Technical Report, Institute of Computer Science, Tsing Hua University, 1989. [28 ] N.F. Huang, C.H. Huang and Y.L. Wang, A sweepline algorithm to solve the two-center problem, Inform. Process. Lett., 49(1994), pp.171-177. [29 ] R.Z. Hwang, R.C.T. Lee and R.C. Chang, The slab dividing approach to solve the euclidean P-center problem, Algorithmica, 9(1993), pp.1-22. [30 ] J. Jaromczyk and M. Kowaluk, An efficient algorithm for the Euclidean two-center problem, 10th ACM Symp. Computational Geometry, 1994, pp.303-311. [31 ] J.W. Jaromczyk and M. Kowaluk, Orientation independent covering of point sets in R2 with pairs of rectangles or optimal squares, Peoceedings of European Workshop on Computational Geometry, Lecture Notes in Computer Science, Vol. 871, 1996, pp. 71-78. [32 ] Matthew J. Katz, Klara Kedem and Michael Segal, Discrete rectilinear 2-center problems, Computational Geometry: Theory and Applications, 15(2000), pp. 203-214. [33 ] M. Katz and M. Sharir, An expander-based approach to geometric optimization, 9th ACM Symp. Computational Geometry, 1993, pp.198-207. [34 ] D. T. Lee, Farthest Neighbor Voronoi Diagrams and Applications, Tech. Rep. No. 80-11-FC-04, Dpt. EE/CS, Northwestern Univ., 1980. [35 ] D.T. Lee and F. P. Preparata, Computational Geometry-A Survey, IEEE Trans. Comput., C-33, 12, 1984, pp.1072-1101. [36 ] N. Meggido, Applying parallel computation algorithms in the design of serial algorithms, J. Assoc. Comput. Mach., 30(1983), pp.852-865. [37 ] N. Megiddo, Linear-time algorithms for linear programming in R3 and related problems, SIAM J. Comput., 12(1983), pp.759-776. [38 ] N. Megiddo and K. Supowit, On the complexity of some common geometric location problems, SIAM J. Comput., 13 (1984), pp.1182-1196. [39 ] K. P. K. Nair and R. Chandrasekaran, Optimal Location of a Single Service Center of Certain Types, Nav. Res. Log. Quart 18, 1971, pp.503-510. [40 ] M.H. Overmars and J. Van Leeuwen, Maintenance of configurations in the plane, J. Comput. and Syst. Sci., 23 (1981), pp.166-204. [41 ] F.P. Preparata and M.I. Shamos, Computational Geometry: An Introduction, Springer Verlag, New York, 1985. [42 ] M.I. Shamos, Computational Geometry, Ph. D. Dissertation, Depr. of Comput. Sci., Yale Univ., New Haven, 1978. [43 ] M. I. Shamos and D. Hoey, Closest-Point Problems, Proc. 16th Annual IEEE Symposium on Foundations of Computer Science, 1975, pp.151-162. [44 ] M. Sharir, A near-linear algorithm for the planar 2-center problem, 12th ACM Symp. Computational Geometry, 1996, pp.106-112. [45 ] R. D. Smallwood, Minimax Detection Station Placement, Operations Research 13, 1965, pp.636-646. [46 ] J. J. Sylvester, A Question in the Geometry of Situation, Quart. J. Math. 1, 1857, pp.79. [47 ] C. Toregas, R. Swain, C. Revelle and L. Bergman, The Location of Emergency Service Facilities, Operations Research 19, 1971, pp.1363-1373.id NH0920392001 sid 848306 cfn 0 / id NH0920392002 auc 吳力文 tic 在藍芽散網內的微網間的資料傳輸排程演算法 adc 林華君 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 54 kwc 藍芽 kwc 微網 kwc 散網 kwc 跨微網資料傳輸 abc 藍芽(Bluetooth)是一個新興起的無線通訊技術,主要使用在短距離內,各裝置的連接與資料傳送。藍芽的資料傳送方式是建立一個個的piconet,piconet彼此再透過bridge node互相連接成scatternet。因為bridge node必須藉由在不同piconet間切換來傳送跨piconet的資料,所以如何讓各個piconet都能公平分配到bridge node的時間,就是一個重要的課題。另外,因為跨piconet的資料傳輸,需要從一個piconet傳給bridge node,再由bridge node傳給另 一個piconet,相當於一次佔去兩個piconet的頻寬,對於整個scatternet的throughput會有很大的影響,為了解決這些問題,本篇論文提出一個bridge node在piconet間切換的策略,以求在各個piconet公平分配bridge node時間的條件下,盡量減少因bridge node傳送跨piconet的資料時,所造成的浪費。 tc 一、概述…………………………………………………………………… 4 二、Bridge Node 簡介…………………………………………………… 12 三、Bridge Node 使用時間分配問題…………………………………… 21 四、解決Bridge Node時間分配的演算法…………………………………30 五、模擬結果……………………………………………………………… 39 六、結論…………………………………………………………………… 51 參考文獻…………………………………………………………………… 52rf [1 ] Bluetooth Special Interest Group, Specification of the Bluetooth system — version 1.1, Feb. 2001. [2 ] L. Har-Shai, R. Kofman, G. Zussman and A. Segall, “Inter-Piconet Scheduling in Bluetooth Scatternets,” OPNETWORK 2002,Aug 2002. [3 ] B. Simon, F. Matthias, K. Carmen , M. Peter , S. Christoph, “Adaptive Scatternet Support for Bluetooth using Sniff Mode,” Proceeding of the IEEE Conference on Local Computer Networks, LCN 2001, Tampa, Florida, November 2001. [4 ] B. Simon, F. Matthias, Carmen Kuhl, M. Peter, S. Christoph, “Bluetooth Scatternets:An Enhanced Adaptive Scheduling Scheme ,”Proc. IEEE INFOCOM’02,June 2002. [5 ] P. Johansson, R. Kapoor, M. Kazantzidis and M. Gerla, “Rendezvous Scheduling in Bluetooth Scatternets,”Proc. IEEE ICC 2002, Apr. 2002. [6 ] Z. Wensheng and C.Guohong, “A Flexible Scatternet-wide Scheduling Algorithm for Bluetooth Networks ,” Proc. IEEE IPCCC 2002, Apr. 2002. [7 ] A. Racz, G. Miklos, F. Kubinszky and A. Valko, “A Pseudo Random Coordinated Scheduling Algorithm for Bluetooth Scatternets,” Proc. ACM MOBIHOC’2001, Oct. 2001. [8 ] N. Johansson, F. Alriksson, U. Jonsson, “JUMP MODE- A Dynamic Window-based Scheduling Framework for Bluetooth Scatternets,” ACM MOBIHOC 2001, Oct. 2001. [9 ] M.Shreedhar and G.Varghese, “Efficient Fair Queueing Using Deficit Round Robin,” in Proceedings of ACM SIGCOM, Boston, August 1995.id NH0920392002 sid 904367 cfn 0 / id NH0920392003 auc 王郁惠 tic 自我穩定之無環路圖形塗色演算法 adc 黃興燦 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 33 kwc 自我穩定 kwc 分散式演算法 kwc 無環路圖形塗色 abc 本論文提出兩個自我穩定(Self-stabilizing)的圖形之無環路塗色(Acyclic Colorings of Graph)演算法,解決分散式系統中的無環路塗色問題。第一個演算法用在有向無環路圖形(Directed Acyclic Graph)上,第二個演算法則用在無K4子圖的圖形(K4-free Graph)上。 tc Chapter 1 Introduction Chapter 2 Acyclic coloration in DAG structured graph Chapter 3 Acyclic coloration in K4-free graph Chapter 4 Conclusionsrf [A85 ] T. Asano, An approach to the subgraph homoeomorphism problem, Theoret. Comput. Sci 38 (1985) 249-267. [C00 ] Z.-Z. Chen, Efficient algorithms for acyclic colorings of graphs, Theoret. Comput. Sci. 230 (2000) 75-95. [CH96 ] Z.-Z. Chen, X. He, Parallel complexity of partitioning a planar graph into vertex-induced forests, Discrete Appl. Math. 69 (1996) 183-198. [CK69 ] G. Chartrand and H. V. Kronk, The point-arboricity of a planar graph, J. London Math. Soc. 44 (1969) 612-616. [CKW68 ] G. Chartrand, H. V. Kronk and C.E. Wall, The point-arboricity of a graph, Israel J. Math. 6 (1968) 169-175. [CL86 ] G. Chartrand and L. Lesniak, Graphs and digraphs (Wadsworth, Belmont, 2nd ed., 1986) [D74 ] E.W. Dijkstra, Self-stabilizing systems in the spite of distributed control, Comm. ACM 17 (1974) 643-644. [DDT99 ] S.K. Das, A.K. Datta and S. Tixeuil, Self-stabilizing algorithms in DAG structured networks, Parallel Processing Letters. Vol. 9, No. 4 (1999) 563-574. [DIM95 ] S. Dolev, A. Israeli, and S. Moran. Uniform dynamic self-stabilizing leader election, IEEE Trans. On Parallel and Distributed Systems. Vol. 8, No. 4, April 1995. [KM92 ] A Kézdy, P. McGuinness, Sequential and parallel algorithms to find a K5 minor, in: Proc. 3rd ACM-SIAM Symp. on Discrete Algorithms, SIAM, (1992) 345-356. [GJ01 ] M. Gradinariu and C. Johnen, Self-stabilizing neighborhood unique naming under unfair scheduler, in: Proc. of the 7th International Euro-Par Conference on Parallel processing (Euro-Par 2001). Manchester, August, 2001. also in LNCS 2150, pages 458-465. [HWT94 ] S. T. Huang and L. C. Wuu, and M. S. Tsai, Distributed execution model for self-stabilizing systems, Proceedings of the 14th International Conference on Distributed Computing System, 1994. [GK93 ] S. Ghosh and M. H. Karaata. A self-stabilizing algorithm for coloring planar graphs, Distributed Computing, 7:55-59, 1993. [L77 ] Liu, Chung Laung. Elements of discrete mathematics (McGraw-Hill, Inc 1977) [Rnt algorithms for vertex arboricity of planar graphs, in: Proc. 15th Internat. Conf. On Foundations of Software Technology and Theoretical Computer Science, Lecture Notes in Computer Science, Vol. 1026, Springer, Berlin, (1995) 37-51. [TS92 ] K. Thulasiraman and M.N.S. Swamy, Graphs: theory and algorithms (A Wiley-Interscience publication, 1992)id NH0920392003 sid 894350 cfn 0 / id NH0920392004 auc 謝沐芬 tic 大規模地理事件資訊之追蹤、聚集與散播 adc 金仲達 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg - kwc 感應器 kwc 分散式演算法 abc 這篇論文介紹如何用感應器網路追蹤大規模地理事件,不斷地蒐集統計各事件的資訊並散播至各個發出詢問的感應器.此篇論文著重探討地理事件的其中一項資訊─範圍,並且提出以‘骨架’(skeleton)表示事件範圍以增進效率.我們描述兩種在感應器網路內計算和追蹤事件範圍的方法以及三種可用以搭配的散播資訊的方法.其中一個散播資訊的方法也使用了‘骨架’,其根據事件的地理分布建造路由層架構,使得計算得以在事件附近完成,此方法利用一條共享的傳播路徑,讓許多發出詢問的感應器同時收到資訊.實驗結果顯示此種傳播方法搭配‘骨架’事件範圍表示法,在多個事件、多個感應器的情況下比較省能源,而且能夠傳達大規模地理事件的瞬間狀態. tc 第一章 簡介 第二章 事件資訊之計算 第三章 事件資訊之傳播方法 第四章 模擬 第五章 相關研究 第六章 結論 參考文獻 Chapter 1 Introduction Chapter 2 Event-Centric Aggregates Chapter 3 Event Information Dissemination Schemes Chapter 4 Simulation Chapter 5 Related Works Chapter 6 Conclusions Bibliographyrf [1 ] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A Survey on Sensor Networks," IEEE Communications Magazine, pp. 102-114, August 2002. [2 ] C. Arcelli and G. S. di Baja, “A One-Pass Two-Operation Process to Detect the Skeletal Pixels on the 4-Distance Transform,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 2, No. 4, April 1989. [3 ] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani, “Estimating Aggregates on a Peer-to-Peer Network,” Technical Report, Computer Science Dept., Stanford University, 2003. [4 ] G. Borgefors, “Distance Transformations in Digital Images,” Computer Vision, Graphics, and Image Processing, 34, pp. 344-371, 1986. [5 ] Q. Fang, F. Zhao, and L. Guibas, "Lightweight Sensing and Communication Protocols for Target Enumeration and Aggregation," ACM Symp. on Mobile Ad Hoc Networking and Computing (MobiHoc), 2003. [6 ] E. Gafni and D. Bertsekas, “Distributed Algorithms for Generating Loop-Free Routes in Networks with Frequently Changing Topology,” IEEE Trans. On Comm., Vol. C-29, No. 1, pp. 11-18, 1981. [7 ] W. Rabiner Heinzelman, A. Chandrakasan, and H. Balakrishnan, "Energy-efficient Communication Protocols for Wireless Microsensor Networks," in Proc. of HICSS, Maui, Hawai, January 2000. [8 ] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor Networks,” MOBICOM, Boston, MA, August 2000. [9 ] J. Liu, J. Liu, J. Reich, P. Cheung, and F. Zhao, “Distributed Group Management for Track Initiation and Maintenance in Target Localization Applications,” in Proceedings of 2nd International Workshop on Information Processing in Sensor Networks (IPSN''03), April 2003. [10 ] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “Tag: A Tiny Aggregation Service for Ad-hoc Sensor Networks,” OSDI 2002, Boston, MA, 2002. [11 ] P. Ramanathan, "Location-Centric Approach for Collaborative Target Detection, Classification, and Tracking," in Proceedings of IEEE CAS Workshop on Wireless Communication and Networking (Invited), September 2002. [12 ] R. W. Smith, “Computer Processing of Line Images: A Survey,” Pattern Recognition, Vol. 20, No. 1, pp. 7-15, 1987. [13 ] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang, “A Two-Tier Data Dissemination Model for Large-Scale Wireless Sensor Networks,” in Proceedings of the Eighth International ACM Conference on Mobile Computing and Networking (MOBICOM), Atlanta, GA, 2002. [14 ] Y. J. Zhao, R. Govindan, and D. Estrin, “Residual Energy Scan for Monitoring Sensor Networks,” IEEE Wireless Communications and Networking Conference (WCNC''02), March 2002.id NH0920392004 sid 904318 cfn 0 / id NH0920392005 auc 周智杰 tic 網路處理器上快速字串比對方法之研究 adc 黃能富 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 38 kwc 網路處理器 kwc 字串比對 abc   隨著網路速度不斷地增快,單一處理器已無法滿足高速網路設備的需求,網路處理器的出現解決了此一問題。然而,對於大部份需要檢視封包內容的網路設備來說-如入侵偵測系統,如何對封包做更有效率的比對,將成為影響網路設備效能的重要因素。 tc Abstract.......................................................................................................I Contents………………………………………..………………………..IV Figures………………………………………….………………………..V 1. Introduction…………………………………………………………..1 1.1 The Use of Multi-Pattern Searching……………………………...1 1.2 Effect of Pattern Matching Algorithm……………………………2 1.3 Additional Applications…………………………………………..2 2. Previous Work…………………………………………………………4 3. The Algorithm…………………………………………………………6 3.1 Background……………………………………………………...6 3.1.1 Network Processor………………………………………..6 3.1.2 Wu Manber Algorithm……………………………………7 3.1.2.1 The Preprocessing Stage…………………………...8 3.1.2.2 The Scanning Stage………………………………..11 3.2 FWM Algorithm………………………………………………..12 3.2.1 The Principle……………………………………………..12 3.2.2 Design……………………………………………………16 3.2.2.1 Shift Table…...…………………………………….16 3.2.2.2 Prefix Table………………………………………..18 3.2.2.3 Pattern Table……………………………………….19 3.2.3 Implementation…………………………………………..20 4. Experiments…………………………………………………………..22 4.1 Environment……………………………………………………22 4.2 Performance Evaluation………………………………………..24 4.2.1 Network Processor Simulation…………………………..24 4.2.2 CPU-Based Simulation…………………………………..28 4.2.2 Comparison…………………………………………………...32 5. Conclusion....…………………………………………………………35 6. Reference……………………………………………………………..37rf [1 ] Boyer R. S., and J. S. Moore, “A Fast String Searching Algorithm” Communications of the ACM20 (October 977), pp. 762-772 [2 ] Aho, A. V., and M. J. Corasick, “Efficient String Matching: an aid to bibliographic search” Communications of the ACM 18 (June 1975), pp. 333-340 [3 ] Commentz-Walter, B, “A String Matching Algorithm Fast on The Average” Proc. 6th International Colloquium on Automata, Languages, and Programming (1979), pp. 118-132. [4 ] U. Manber and S. Wu, “GLIMPSE: A Tool to Search Through Entire File System” Usenix Winter 1994 Technical Conference (January 1994), pp. 23-32. [5 ] U. Manber, “Finding Similar Files in a Large File System” Usenix Winter 1994 Technical Conference, pp. 1-10. [6 ] Sun Wu and Udi Manber, “A Fast Algorithm for Multi-Pattern Searching” (May 1994), Tech. Rep. TR94-17 Department of Computer Science, University of Arizona, May 1994. [7 ] Wu S., and U. Manber, “Fast Test Searching Allowing Errors” Communications of the ACM 35 (October 1992), pp. 83-91 [8 ] Wu S., and U. Manber, “Agrep — A Fast Approximate Pattern-Matching Tool,” Usenix Winter 1992 Technical Conference, (January 1992), pp. 153-162. [9 ] K. G. Anagnostakis, E. P. Markatos, S. Antonatos, and M. Polychronakis. “E2xB: A domainspecific string matching algorithm for intrusion detection” Proceedings of the 18th IFIP International Information Security Conference, (May 2003). [10 ] E. P. Markatos, S. Antonatos, M. Polychronakis and K. G Anagnostakis. “ExB: Exclusion-based signature matching for intrusion detection” Proceedings of the IASTED International Conference on Communications and Computer Networks, Cambridge, USA, (November 2002), pp. 146-152. [11 ] S. Antonatos, K. G. Anagnostakisy, E. P. Markatos, and M. Polychronakis, “Performance Analysis of Content Matching Intrusion Detection Systems”, Proceedings of the International Symposium on Applications and the Internet (SAINT), 2004. [12 ] C. Jason Coit, Stuart Staniford, and Joseph McAlerney, “Towards faster pattern matching for intrusion detection or exceeding the speed of snort”, Proceedings of the 2nd DARPA Information Survivability Conference and Exposition, (June 2001). [13 ] Sun Kim and Yanggon Km, “A fast multiple string-pattern matching algorithm”, Proceedings of the 17th AoM/IAoM International Conference on Computer Science, (May 1999). [14 ] P. Paulin, F. Karim, P. Bromley, “Network Processors: A perspective on Market Requirements, Processor Architectures and Embedded S/W Tools”, Proceedings of the DATE 2001 on Design, automation and test in Europe, IEEE Press, 2001, pp. 420-429. [15 ] Mike Fisk and George Varghese, “Fast Content-Based Packet Handling for Intrusion Detection”, UCSD Technical Report CS200-067D, (May 2001). [16 ] Nen-Fu Huang and Rong-Tai Liu “A Fast String Matching Algorithm for Network Processor-Based Intrusion Detection System”, ACM TECS special issue on Embedded Systems and Security, (Febrary 2003). [17 ] DEFCON, http://www.shmoo.com/cctf/ [18 ] Snort.org, http://www.snort.org/ [19 ] Vitesse.com, http://www.vitesse.comid NH0920392005 sid 904397 cfn 0 / id NH0920392006 auc 黃培浩 tic 自動指紋辨識系統的實作 adc 陳朝欽教授 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 28 kwc 指紋 kwc 自動指紋辨識系統 kwc 指紋分類 kwc 指紋比對 kwc 指紋特徵點 kwc 奇異點 kwc 指紋驗證會議2000 abc 指紋是個人獨一無二的特徵,而且已經被用來做個人辨識許多年了,然而一個理想的自動指紋辨識系統始終不存在。這一篇指紋利用兩大類來進行自動指紋辯識:指紋分類與特徵比對,指紋分類可以減少特徵比對的時間。指紋主要分為五大類:”Arch”、”Left Loop”、”Right Loop”、”Whorl”和”Others”,然後有兩個特徵”Endings”和”Bifurcations”必須被偵測出來,來進行比對。 tc Chapter 1 Introduction ....................................... 1 Chapter 2 Fingerprint Classification ......................... 3 2.1 Image Enhancement .............................. 3 2.2 Block Orientation Computing .................... 4 2.3 Block Image Segmentation ....................... 7 2.4 Singular Point Extraction ...................... 8 2.5 Type Classification ............................ 9 2.5.1 Discussion ......................... 10 Chapter 3 Fingerprint Matching .............................. 12 3.1 Image Binarization ............................ 12 3.2 Smoothing & Thinning .......................... 14 3.3 Minutiae Extraction ........................... 15 3.4 Registration Point ............................ 16 3.5 Fingerprint Template Data ..................... 17 3.6 Minutiae Matching ............................. 18 Chapter 4 Experimental Results .............................. 20 4.1 Experiments on Right28 ........................ 20 4.2 Experiments on Lindex101 ...................... 21 4.3 Experiments on FVC2000 ........................ 23 4.4 Summary ....................................... 25 Chapter 5 Conclusion and Future Works ....................... 26 References .................................................. 27rf [Baz00 ] A.M. Bazen, and S.H. Gerez, “Directional Field Computation for Fingerprints Based on the Principal Component Analysis of Local Gradients”, In Proc. ProRISC2000 Workshop on Circuits, Systems and Signal Processing, Veldhoven, The Netherlands, November 2000. [Baz01 ] A.M. Bazen and S.H. Gerez, “Segmentation of Fingerprint Images”, In Proc. ProRISC2001 Workshop on Circuits, Systems and Signal Processing, Veldhoven, The Netherlands, November 2001. [Cha03 ] C.Y. Chang, “Automatic Fingerprint Verification System”, M.S. Thesis, National Tsing Hua University, June 2003. [Che02 ] Y.Y. Chen, “Fingerprint Image Classification Based on Singular Points”, M.S. Thesis, National Tsing Hua University, June 2002. [Con02 ] V. Conti, G. Pilato, S. Vitabile, F. Sorbello, “Verification of Ink-on-paper Fingerprints by Using Image Processing Techniques and a New Matching Operator”, VIII Convegno AI*IA, Siena 10-13, 594-601, Sept. 2002. [Esp02 ] V. Espinosa-Duro, “Minutiae detection algorithm for fingerprint recognition”, IEEE Aerospace and Electronics Systems Magazine, Vol. 17, No. 3, 7-10, 2002. [Gon92 ] R.C. Gonzalez and R.E. Woods, “Digital Image Processing”, Reading, MA: Addison-Wesley Publishing Company, 3rd Edition, 1992. [Hon98 ] L. Hong, Y. Wan, and A. Jain, “Fingerprint Image Enhancement: Algorithm and Performance Evaluation”, IEEE Transactions on Pattern Analysis Machine Intelligence, Vol. 20, No. 8, 777-789, 1998. [Kar96 ] K. Karu, and A.K. Jain, “Fingerprint Classification”, Pattern Recognition, Vol. 29, No. 3, 284-404, 1996. [Ko02 ] T. Ko, “Fingerprint enhancement by spectral analysis techniques”, The Proceedings of Applies Imagery Pattern Recognition Workshop, 133-139, 2002. [Luo00 ] X. Luo, J. Tian and Y. Wu, “A Minutia Matching algorithm in Fingerprint Verification”, 15th ICPR, Vol.4, 833-836, 2000 [Mai02 ] D. Maio, D. maltoni, R. Cappelli, J.L. Wayman, and A.K. Jain, “FVC2000: Fingerprint Verification Competition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 3, 2002. [Nac84 ] N.J. Naccache and P. Shinghal, “An Investigation into the Skeletonization Approach of Hilditch”, Pattern Recognition, Vol. 17, No. 3, 279-284, 1984. [Rat96 ] N. K. Ratha, K. Karu, S. Chen, and A. K. Jain, “A Real-Time Matching System for Large Fingerprint Databases”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, No. 8, 1996. [Sen01 ] A.Senior, “A Combination Fingerprint Classifier”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, No. 10, 2001 [Wan01 ] Y. I. Wang, “An AFIS Using Fingerprint Classification”, M.S. Thesis, National Tsing Hua University, June 2001. [Zor01 ] D. S. Zorita, J.O. Garcia, S. C. Lianas, and J. G. Rodriguez, “Minutiae extraction scheme for fingerprint recognition systems”, International Conference on Image Processing, Vol. 2, 254-257, 2001.id NH0920392006 sid 914331 cfn 0 / id NH0920428001 auc 陳聖元 tic 碳基材料成長及其場發射特性之研究 adc 呂助增 ty 博士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 113 kwc 奈米碳管 kwc 鑽石薄膜 kwc 類鑽石薄膜 kwc 場發射 abc 由於微電子技術的成功發展,使得真空微電子元件在這幾年再度的受到矚目。因電子在真空下可傳輸的更快、更遠,而有較快的反應速度及較高的電子能量,所以真空微電子可操作在更高的頻率、功率及更廣的溫度範圍,其有潛力的應用如:平面場發射顯示器、微型化的微波管、可攜式的x光產生器及電子微影等等,其中又以場發射顯示器最受青睞。而發展場發射平面顯示器的關鍵技術在於製造有效率的冷陰極,其可在室溫下操作,以較小的工作電壓達到較高的電流。碳基材料如:鑽石、類鑽石因其獨特的負電子親合力(negative electron affinity, NEA)特性,及近幾年發現的奈米碳管,其近似一維結構的高長寬比(aspect ratio),皆被視為絕佳的冷陰極材料。在此篇論文中,以這些碳基材料作為研究對象,探討其薄膜物理特性及以實驗為基礎配合半導體場發射理論,對場發射機制作一詳盡討論。 tc Abstract (in Chinese) i Abstract (in English) iii Acknowledgment vi Table of Contents vii List of Figures x List of Tables xii Chapter 1 Introduction 1-1 Overview of Vacuum Microelectronics…….…………...1 1-1.1 History……………………………………………………..2 1-1.2 Application………………………………………………...4 1-2 New Cathode Materials………………….………………5 1.2.1 Diamond and diamond-like (DLC) films………………….6 1.2.2 Carbon nanotube…………………………………...………7 1-3 Motivations…………………………………………………9 Reference………………….……………………………....10 Chapter 2 Theory Background 2-1 Field emission theory………………………………….17 2-1.1 Field emission from metallic or metal-coated emitter……17 2-1.2 Field emission from semiconductor materials……………18 2-2 Carbon nanotube growth mechanism……...…………...20 Reference………………...………………………………....22 Chapter 3 Experimental Details and Sample Characteristics 3-1 Sample preparation…………………………………….27 3-1.1 Diamond, diamond-like and carbon nitride films………..27 3-1.2 Carbon nanotubes………………………………………...28 3-2 Description of measurement system……….…………..28 3-3 Experimental results and discussions of CNTs……...…29 3-3.1 The SEM morphology of CNTs…………………..……...29 3-3.2 Sample characteristics probed by Raman spectroscopy….30 3-3.3 Carbon nanotube growth mechanisms…………..……….31 3-4 Experimental results and discussions of carbon nitride films…...........................................................................33 Reference…………...………………………………………36 Chapter 4 Field emission properties of diamond and diamond-like films 4-1 Global field emission properties of diamond and diamond-like films……….…………………...……….58 4-1.1 Field emission characteristic studies of diamond and diamond-like films by thermal treatment……………..…...59 4-1.2 Studying the temperature dependency of field emission characteristic of diamond and diamond-like films…….…..62 4-2 Local field emission properties of diamond films….….64 Reference……………………..……………………………68 Chapter 5 Field emission properties of carbon nanotubes 5-1 Field emission properties of well-aligned carbon nanotube films..……………………………………….89 5-2 Field emission properties of random-orientation carbon nanotube films………………...………………………91 Reference……..……………………………………………95 Chapter 6 Conclusions Biographical notesrf ch 1 1. J. Bardeen and W.H. Brattain, Phys. Rev., 74 (1948)230 2. R.N. Noyce, US patent 2,981,877 (1959) 3. J.S. Kilby, IEEE Trans. Electron Devices ED-23, (1976)648 4. R.H. Fowler and L.W. Nordheim, Proc. Roy. Soc. (London), A119, (1928)173 5. L.W. Nordheim, Proc. Roy. Soc. (London), A121, (1928)626 6. K.R. Shoulders, Adv. Comp., 2, (1961)135 7. C.A. Spindt, J. Appl. Phys., 39, (1968)3504 8. R. Meyer, A. Ghis, P. Ramband, and F. Muller, “Development of matrix array of cathode emitters on a glass substrate for flat display application”, in Proc. 1st IVMC, Williamsburg, VA. P10, 1988 9. I. Brodie, and C.A. Spindt, Appl. Surf. Sci., 2, (1979)149 10. J.A. Morton, Bell Labs. Res., 27, (1949)166 11. Z.W. Chen, “Nanometric-scale electrn beam lithography, in Advances in Electronics and Electron Physics Vol. 83” (P.W. Hawkes, Ed.), Academic Press: New York, p.108, 1992 12. F.J. Himpsel, J.A. Knap, J.A. Van Vechten, and D.E. Eastman, Phys. Rev. B 20, (1979)624 13. J. van der Weide, Z. Zhang, P.K. Baumann, M.G. Wensell, J. Bernholc, and R.J. Nemanish, Phys. Rev. B 50, (1994)5803 14. M.W. Geis, N.N. Efremow, J.D. Woodhouse, M.D. McAleese, M. Marchywka, D.G. Socker, and J.F. Hochedez, IEEE Electron Device Lett., 12, (1991)456 15. N. Kumar, H. Schmidt, and C. Xie, Solid State Tech., (1995)71 16. S. Iijima, Nature (London), 354, (1991)56 17. A. Oberlin, M. Endo, T. Koyama, Carbon, 14, (1976)133 18. S. Iijima, J. Cryst. Growth, 55, (1980)675 19. http://cnst.rice.edu 20. P.M. Ajayan, J.-C. Charlier, and A.G. Rinzler, PNAS, 96, (1999)14199 21. T.W. Ebbesen (Ed.), “Carbon nanotubes : Preparation and Porperties”, CRC: Cleveland, OH, 1997 22. R. Saito, G. Dresselhaus, and M.S. Dresselhaus, “Physical Properties of Carbon nanotubes”, Imperial College Press: London, 1998 23. C. Dekker, Physics Today, May 1999 24. B.I. Yakobson, and R.E. Smalley, Am. Sci., 85, (1997)324 25. J.W.G. Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley, and C. Dekker, Nature, 391, (1998)59 26. T.W. Odum, J.L. Huang, P.Kim, and C.M. Lieber, Nature, 391, (1998)62 27. S. Frank, P. Poncharal, Z.L. Wang, and W.A. de Heer, Science, 280, (1998) 1744 28. M.S. Dresselhaus, G. Dresselhaus, and P.C. Ekiubd, Science of Fullerenes and Carbon Nanotubes, Academic: New York, 1996 29. C. Chinnock, Laser Focus World, Feb., 1996 30. Y. Saito, S. Uemura, and K. Hamaguchi, Jpn. J. Appl. Phys., 37, (1998)L346 31. W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin, I.T. Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, and J.M. Kim, Appl. Phys. Lett., 75, (1999)3129 32. G.Z. Yue, Q. Qiu, Bo, Gao, Y. Cheng, J. Zhang, H. Shimoda, S. Chang, J.P. Lu, and O. Zhou, Appl. Phys. Lett., 81, (2002)355 33. C.L. Cheung, J.H. Hafner, and C.M. Lieber, PNAS, 97, (2000)3809 34. R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N.W. Shi Kam, M. Shim, Y. Li, W. Kim, P.J. Utz, and H. Dai, PNAS, 100, (2003)4984 35. W. Liang, “Design, fabrication and modeling of vacuum microelectronics devices”, UMI, 1991 ch 2 1. R.H. Fowler and L.W. Nordheim, Proc. Roy. Soc. (London), A119, (1928)173 2. E.L. Murphy and R.H. Good, Phys. Rev., 102, (1956)1464 3. R. Gomer, “Field emission and Field Ionization”, American Institute of Physics, New York, 1993 4. A. Modinos, “Field, Thermionic, and Secondary Electron Emission Spectroscopy”, Plenum, New York, 1984 5. J.T. Lue, Solid-State Electron, 23, (1980)263. 6. R. Stratton, Phys. Rev. 125, (1962)67. 7. R. Stratton, Proc. Phys. Soc. London, B 68, (1955)746. 8. D.K. Ferry, “Semiconductor”, Macmillan Publishing Company, 1991 9. C.L. Chen, C.S. Chen, J.T. Lue, Solid-State Electron, 44, (2000)1733. 10. C. Bandis and B.B. Pate, Phys. Rev. B, 52, (1995)12056 11. M.S. Dresselhaus, G. Dresselhaus, and P.C. Eklund, “Science of Fullerenes and Carbon Nanotubes”, Academic Press, San Diego, 1996 12. Z.W. Pan, S.S. Xie, B.H. Chang, L.F. Sun, W.Y. Zhou, and G. Wang, Chem. Phys. Lett., 299, (1999)97 13. S. Iijima, Nature (London), 354, (1991)56 14. S. Iijima and T. Ichihashi, Nature (London), 363, (1993)603 15. H. Dai, J.H. Hafner, A.G. Reizler, D.T. Colbert and R.E. Smalley, Nature (London), 384, (1996)147 16. B.I. Yakabson, and R.E. Smally, Am. Sci., 85, (1997)324 17. S. Sawada and H. Hamada, Solid State Commun., 83, (1992)917 18. S. Fan, M.G. Chaplin, N.R. Franklin, T.W. Tombler, A.M. Cassell and H. Dau, Science, 283, (1999)512 19. C.H. Kiang, W.A. Goddard, R. Beyers, and D.S. Bethune, Carbon, 33, (1995)903 20. T. Guo, P. Nikolaev, A. Thess, D.T. Colbert and R.E. Smalley, Chem. Phys. Lett., 243, (1995)49 21. H. Dai, A.G. Rinzler, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Chem. Phys. Lett., 260, (1996)471 22. J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, and H. Dai, Nature, 395, (1998)878 23. A.M. Cassell, S. Verma, J. Han and M. Meyyappan, Langmuir, 17, (2001)260 24. H. Kind, J.M. Bonard, L. Forro, K. Kern, K. Hernadi, L. Nilsson, L. Schlapbach, Langmuir, 16, (2000)6877 25. M. Su, B. Zheng, J. Liu, Chem. Phys. Lett., 322, (2000)321 26. L. Delzeit, B. Chen, A. Cassell, R. Stevens, C. Nguyen, and M. Meyyappan, Chem. Phys. Lett. 348, (2001)368 27. F.J. Dent, J. Chem. Soc., 2, (1929)1903 28. R.T.K. Baker, M.A. Barber, P.S. Harris, F.S. Feates, and R.J. Waite, J. Catal., 26, (1972)51 29. Y.J. Yoon, H.K. Baik, Diamond Relat. Mater., 5, (1996) 797 30. J. Han, J-B. Yoo, C.Y. Park, H-J. Kim, G.S. Park, M.Y., I.T Han, N. Lee, W. Yi, S.G. Yu, and J.M. Kim, J. Phys. Phys., 91, (2002)483 31. Y. Saito, Carbon, 33, (1995)979 32. J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, and J.-C. Charlier, Phy. Rev. Lett., 87, (2001)275504-1 33. C. Bower, O. Zhou, W. Zhu, D.J. Werder, and S. Jin, 77, (2000)2767 ch 3 1. C.L. Chen, C.S. Chen, and J.T. Lue, Solid State Electron., 44, (2000)1733 2. J.L. Vossen, J. Electron Chem. Soc., 126 (1979) 319. 3. G. Vitali, M. Rossi, M.L. Terranova, and V. Sessa, J. Appl. Phys., 77, (1995)4307 4. D.G. McCulloch, S. Prawer, and A. Hoffman, Phys. Rev. B., 50, (1994)5905 5. V. Barbarossa, F. Galluzzi, R. Tomaciello, and A. Zanobi, Chem. Phys. Lett. 185, (1991)53 6. P.C. Eklund, J.M. Holden, and R.A. Jishi, Carbon, 33, (1995)959 7. W. Li, H. Zhang, C. Wang, Y. Zhang, X.K. Zhu, and S. Xie, Appl. Phys. Lett., 70, (1997)2684 8. C.J. Lee, D.W. Kim, T.J. Lee, Y.C. Choi, Y.S. Park, W.S. Kim, et.al., 75, (1999)1721 9. R.T.K. Baker, M.A. Barber, P.S. Harris, F.S. Feates, and R.J. Waite, J. Cata., 26, (1972)51 10. Y.J. Yoon, and H.K. Baik, Dia. Relat. Mater.. 10, (2001)1214 11. J. Han, J.B. Yoo, C.Y. Park, H.J. Kim, G.S. Park, M. Yang, I.T. Han, N. Lee, W. Yi, S.F. Yu, J.M. Kim, J. Appl. Phys., 91, (2002)483 12. A. Gorbunov, O. Jost, W. Pompe, A. Graff, Carbon, 40, (2002)113 13. Y. Saito, Carbon, 33, (1995)979 14. J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, and J.-C. Charlier, Phys. Rev. Lett., 87, (2001)275504 15. L. Alvarez, T. Guillard, J.L. Sauvajol, G. Flamant, D. Laplaze, Chem. Phys. Lett., 342, (2001)7 16. C. Bower, W.Zhu, S. Jin, O. Zhou, Appl. Phys. Lett., 77, (2000)830 17. P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer, Science, 283, (1999)1513 18. Z.L. Wang, R.P. Gao, W.A. de Heer, P. Poncharal, Appl. Phys. Lett., 80, (2002)856 19. A. Fonseca, K. Hernadi, J.B. Nagy, D. Bernaerts, and A.A. Lucas, J. Mol. Catal. A: Chem., 107, (1996)159 20. R.T.K. Baker, J.R. Alonzo, J.A. Dumesic, and D.J.C. Yates, J. Catal., 77, (1982)74 21. F. G. Celii and J. E. Butler, Appl. Phys. Lett., 54 (1989) 1031. 22. S. J. Harris, Appl. Phys. Lett., 56 (1990) 2298. 23. G. Dinescu, E. Aldea, G. Musa, M.C.M. van de Sanden, A.de Graaf, C. Ghica, M. Gartner, and A. Andrei, Thin Solid Films, 325(1998) 123. 24. K. J. Boyd, D. Marton, S. S. Todorov, A. H. Al-Bayati, J. Kulik, R. A. Zuhr, and J. W. Rabalais, J. Vac. Sci. Technol. A13(1995) 2110. 25. D. Marton, K. J. Boyd, A. H. Al-bayati, S. S. Todorov, and J. W. Rabalais, Phys. Rev. Lett. 73(1994) 118. 26. A. Man sour and S. Ugolini, Phy. Rev. B47 (1993) 10201. 27. J. H. Kaufman and S. Metin, Phy. Rev. B39 (1989) 13053. 28. W. C. Chan, et.al., J. Non-Cryst. Solids 254 (1999) 180. 29. S. Bhattacharyya, J. Hong and G. Turban, J. App. Phys., 83 (1998) 3917. 30. S. Jönsson and S. Hogmark, Thin Solid Films, 114 (1984) 257. 31. A. K. Bhattacharya and W. D. Nix, Int. J. Solids Struct., 24 (1988) 1287. 32. P. M. Sargen Ph. D. Thesis, University of Cambridge, 1979. 33. B. B. Burnett and S. Rickerby, Thin Solid Films, 148 (1987) 51. 34. A. M. Cock, N. M. Evritt, et. al. Diamond Relat. Mater. 3 (1994) 783. ch 4 1. F.J. Himpsel, J. A. Knap, J.A.van vechten, D.E. Eastman, Phys. Rev. B20, 624(1979). 2. J.van der weide, R.J. Nemanich, Phys. Rev. B49, 13629(1994). 3. J. Robertson, Diamond Relat. Mater., 5, 797(1996). 4. N.S. Xu, R. V. Lathem, and Y. Tzeng, Electron lett., 29, 1595(1993). 5. K. Okano, T. Yamada, H. Ishihara, S. Koizumi, and J. Itoh, Appl. Phys. Lett., 70, 2201(1997). 6. R.F. Bunshah, S. Jou , H.J. Doerr, Thin Solid Films, 280, 256(1996). 7. J. Robertson, Diamond Relat. Mater., 5 (1996)797 8. C. Bandis, and B.B. Pate, Phys. Rev. B52 (1995)12056 9. F.J. Himpsel, J.A. Knapp, J.A. Vanvechten, D.E. Eastman, Phys. Rev. B20 (1979)624 10. S. Jou, H.J. Doerr, R.F. Bunshah, Thin Solid Films, 280 (1996)256 11. D. Hong, M. Aslam, J. Vac. Sci. Technol. B, 13 (1995)427 12. A.V. Karabutov, V.D. Frolov, S.M. Pimenov, V.I. Konov, Diamond Relat. Mater., 8 (1999)763 13. V.V. Zhirnov, E.T. Givargizov, P.S. Plekhanov, J. Vac. Sci. Technol. B 13 (1995)418 14. A. Watanabe, M. Deguchi, and M. Kitabatake, Diamond Relat. Mater., 10 (2001)818 15. N.S. Xu, Y. Tzeng, and R.V. Latham, J. Phys. D: Appl. Phys., 26 (1993)1776 16. O. GrÖning, O.M. Kuttel, P. GrÖning, and L. Schlapbach, J. Vac. Sci. Technol. B, 17 (1999)1064 17. J.T. Lue, S.Y. Chen, C.L. Chen, M.C. Lin, J. Non-Cryst. Solids, 265, 230(2000). 18. J.W. Glesener, A.A. Morrish, Thin Solid Films, 290-291, 153(1996). 19. J.W. Glesener, A.A. Morrish, Appl. Phys. Lett., 69, 785(1996). 20. T. Sugino, K. Kuriyama, C. Kimura, Y. Yokota, S. Kawasaki, J. Shirafuji, J. Appl. Phys., 86, 4635(1999). 21. T. Sugino, K. Kuriyama, C. Kimura, S. Kawasaki, Appl. Phys. Lett., 73, 268(1998). 22. T. Ristein, Diamond Relat. Mater., 9, 1129(2000). 23. M. J. Rutter, J. Robertson, Phys. Rev. B57, 9241(1998). 24. W. Kaiser, L. Bell, M. Hecht, and F. Grunthaner, J. Vac. Sci. Technol. A, 6 (1988)519 25. M. Ito, K. Murata, K. Aiso, M. Hori, T. Goto, and M. Hiramatsu, Appl. Phys. Lett., 70 (1997)2141 26. A.N. Obraztsov, A.P. Volkov, and I.Yu. Pavlovskii, JETP Lett., 68, (1998)59 27. A.V. Karabutov, V.D. Frolov, V.I. Konov, Diamond Relat. Mater., 10 (2001)840 28. S.P. Bozeman, P.K. Baumann, B.L. Ward, M.J. Powers, J.J. Cuomo, R.J. Nemanich,, D.L. Dreifus, Diamond Relat. Mater., 5, 802(1996). 29. K. Okano, K.K. Glwason, Electron lett., 35, 74(1995). 30. R.H. Fowler, L.W. Nordheim, Proc. Roy. Lond. A, 119, 173(1928). 31. R. Gomer, “Field Emission and Field Ionization”, P19 (Harvard Univeersity Press. 1961). 32. Z.H. Huang, P.H. Cutler, N.M. Miskovsky, T.E. Sullivan, Appl. Phys. Lett. 65, 2562(1994). 33. K.L. Jensen, J. Vac. Sci. Technol. B13, 516(1995). 34. R.G. Forbes, J. Vac. Sci. Technol. B17, 526(1999). 35. C. Kimura, K. Kuriyama, S. Koizumi, M. Kamo, T. Sugino, Appl. Surf. Sci., 146, 295(1999). 36. T. Sugino, K. Kuriyama, C. Kimura, Y. Yokota, S. Kawasaki, J. Shirafuji, J. Appl. Phys., 86, 4635(1999). 37. T. Sugino, K. Kuriyama, C. Kimura, S. Kawasaki, Appl. Phys. Lett., 73, 268(1998). 38. S.Y. Chen, J.T. Lue, N. J. Phys, 4, (2002)79.1 39. R.E. Thomas, R.A. Rudder, and R.J. Markunas, J. Vac. Sci. Technol. A 10, 2451 (1992). 40. J.T. Lue, O. Meyer, and J.H. Wang, Solid State electronics, 25, 1011 (1982). 41. Y.L. Yang, L.M. Struck, L.F. Sutcu, and M.P. D’Evelyn, Thin Solid Films 225, 203 (1993). 42. J. Robertson and M.J. Rutter, Diamond and Related Mater. 7, 620 (1998). 43. M.J. Rutter and J. Robertson, Phys. Rew. B 57, 9241 (1998). ch 5 1. S. Iijima, T. Ichihashi, Nature, 363 (1993) 603. 2. W.A. de Heer, A. Châtelain, and D. Ugarte, Science, 270 (1995)1179. 3. P.G. Collins, A. Zettl, Appl. Phys. Lett., 69 (1996)1170. 4. A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tománek, P. Nordlander, D.T. Colbert, R.E. Smalley, Science, 269 (1995)1550. 5. W.A. de Heer, J.M. Bonard, T. Stöckli, A. Châtelain, L. Forró, D. Ugarte, Z. Phys. D 40 (1997) 418. 6. P.G. Collins, A. Zettl, Phy. Rev. B55 (1997) 9391. 7. N.I. Sinitsyn, Y.V. Gulyaev, G.V. Torgashov, L.A. Chernozatonskii, Z.Y. Kosakovskaya, Y.F. Zakharchenko, N.A. Kiselev, A.L. Musatov, A.I. Zhbanov, S.T. Mevlyut, O.E. Glukhova, Appl. Surf. Sci. 111 (1997)145. 8. A.N. Obraztsov, A.P. Volkov, I.Y. Pavlovski, A.L. Chuvilin, N.A. Rudina, V.L. Kuznetsov, JETP Lett., 69 (1999) 411. 9. Q.H. Wang, T.D. Corrigan, J.Y. Dai, R.P.H. Chang, A.R. Krauss, Appl. Phys. Lett., 70 (1997) 3308. 10. Y. Saito, K. Hamaguchi, K. Hata, K. Tohji, A. Kasuya, Y. Nishina, K. Uchida, Y. Tasaka, F. Ikazaki, M. Yumura, Ultramicroscopy, 73 (1998) 1. 11. O.M. Kuttel, O. Groning, C. Emmenegger, L. Nilsson, E. Maillard, L. Diederich, L. Schlapbach, Carbon, 37 (1999) 745. 12. A.N. Obraztsov, I. Pavlovsky, A.P. Volkov, E.D. Obraztsova, A.L. Chuvilin, V.L. Kuznetsov, J. Vac. Sci. Technol. B18 (2000)1059. 13. E.D. Obraztsova, J.M. Bonard, V.L. Kuznetsov, V.I. Zaikovskii, S.M. Pimenov, A.S. Pozarov, S.V. Terekhov, V.I. Konov, A.N. Obraztsov, A.P. Volkov, Nanostructured Mater., 12 (1999) 567. 14. J.M. Bonard, J.P. Salvetat, T. Stockli, W.A. de Heer, L. Forro, A. Chatelain, Appl. Phys. Lett., 73 (1998) 918. 15. S. Dimitrijevic, J.C. Withers, V.P. Mammana, O.R. Monteiro, J.W. Ager, I.G. Brown, Appl. Phys. Lett., 75 (1999) 2680. 16. D.L. Carroll, P. Redlich, P.M. Ajayan, J.C. Charlier, X. Blase, A. DeVita, R. Car, Phys. Rev. Lett., 78 (1997) 2811. 17. K.A. Dean, B.R. Chalamala, J. Appl. Phys., 85 (1999)3832. 18. M.J. Fransen, T.L. van Rooy, P. Kruit, Appl. Surf. Sci. 146 (1999)312. 19. R. Stratton, Phys. Rev. 125 (1962) 67. 20. J.T. Lue, Solid State Electrons, 23 (1980) 263. 21. S.Y. Chen and J.T. Lue, New J. Phys., 4 (2002). 22. J.T. Lue, S.Y. Chen, C.L. Chen, M.C. Lin, J. Non-Cryst. Solids, 265 (2000) 230. 23. L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.M. Bonard, and K. Kern, Appl. Phys. Lett., 76 (2000)2071. 24. V.I. Merkulov, D.H. Lowndes, L.R. Baylor, J. Appl. Phys., 89 (2001)1933. 25. L. Langer, V. Bayot, E. Grivei, J.P. Issi, J.P. Heremans, C.H. Olk, L. Stockman, C. VanHaesendonck, Y .Bruynseraede, Phys. Rev. Lett., 76 (1996) 479. 26. A. De Vita, J.C. Charlier, X . Blase, R. Car, Appl. Phy. A, 68 (1999) 283. 27. J. Robertson, Mater. Sci. Eng. R37 (2002)129. 28. S.M. Sze, “Physics of Semiconductor Devices”, John Wiley and Sons, New York 1969. 29. J.S. Blakemore, “Solid State Physics”, (Cambridge University Press, London 1985). 30. S.Y. Chen, J.T. Lue, Phys. Lett. A, 309, (2003)114 31. G. Zhou, W. Duan, B. Gu, and Y. Kawazoe, Appl. Phys. Lett., 80, (2002)1999 32. O.M. Kuttel, O. Groning, C. Emmenegger, L. Schlapbach, Appl. Phys. Lett., 73, (1998)2113 33. J-M. Bonard, J-P. Salvetat, T. Stockli, W.A. de Heer, L. Forro, and A. Chatelain, Appl. Phys. Lett., 73, (1998)918 34. Y.H. Wang, J. Lin, C.H.A. Huan, Thin Solid Films, 405, (2002)243 35. Y. Chen, D.T. Shaw, and L. Guo, Appl. Phys. Lett., 76, (2000)2469 36. J. Robertson, Thin Solid Films, 296, (1997)61 37. J. Yu, E.G. Wang, and X.D. Bai, Appl. Phys. Lett., 78, (2001)2226id NH0920428001 sid 889004 cfn 0 / id NH0920428002 auc 王鴻凱 tic 矽奈米線選擇性成長和控制 adc 黃惠良 adc 蕭錫鍊 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 72 kwc 矽奈米線 kwc 電場 kwc 方向 abc 本論文研究目的在發展矽奈米線合成之技術及利用電場輔助控制矽奈米線成長方向,並提出一套藉由電場輔助成長定向機制的合理解釋。 tc Contents Chinese Abstract ............................................................................................... i English Abstract ................................................................................................ ii 誌謝辭 …...….……........................................................................................... iv Contents ............................................................................................................ v List of Figures ..................................................................................................... vii List of Tables …………………………………………………………………… xii Chap.1 Introduction 1-1 Introduction to nanotechnology…………………………………… 1 1-2 One dimensional (1-D) nanomaterials ……………………………. 1 1-3 Synthesis of one dimensional (1-D) nanomaterials……………….. 3 1-3-1 Synthesis of carbon nanotubes ……………………………… 4 1-3-1-1 Arc-discharge method .……………………………… 4 1-3-1-2 Laser vaporization ………………………………… 5 1-3-1-3 Chemical vapor deposition (CVD) ………………. 6 1-3-2 Synthesis of nanowires…………………………………….. 7 1-3-2-1 Laser vaporization ………………………………. 7 1-3-2-2 Chemical vapor deposition ………………………. 8 1-3-2-3 Lithography and etching …………………………. 9 1-4 Growth mechanism of nanowires ……………………………….. 9 1-5 Applications of one dimensional nanomaterials …………………. 11 1-6 Positioning and orientation control of one dimensional (1-D) nanomaterials………………………………………………………. 12 1-7 Motivation ………………………………………………………. 13 References …………………………………………………………… 27 Chap.2 Experimental method and characterization 2-1 Fabrication of metal electrode ………………………………......... 31 2-2 Growth of Si nanowires ………………………………………… 32 2-3 Characterization ………………………………………………….. 33 2-4 Equipments used in our experiment ……………………………… 33 2-4-1 DC sputter system ………………………………………… 34 2-4-2 LPCVD system ……………………………………………. 35 References……………………………………………………………. 46 Chap.3 Results and Discussion 3-1 Synthesis of Si nanowires and SEM images………………………. 47 3-2 Synthesis of Si nanowires assisted by electric field and SEM……….. 48 3-3 Effect of thickness and material of the electrodes…………………. 50 3-4 Growth mechanism of Si nanowires assisted by electric field ………..52 References …………………………………………………………… 69 Chap.4 Conclusion Chap.5 Future work List of Figures Fig. 1-1. Various forms of carbon: diamond, graphite, nanotube, and fullerene Fig. 1-2. HRTEM image of nanotubes Fig. 1-3.Classification of SWCNT: (a) armchair tubule, (b) zigzag tubule, (c) chiral tubule Fig. 1-4. (a) Geometry and alignment of 4nm graphite rods showing the appearance of the rods after the arcing experiment (b) Photograph of the anode(left) and graphite rods showing the appearance of the rods after the arcing experiment Fig. 1-5. Oven laser-vaporization apparatus Fig. 1-6. (a) Schematic of fabrication process, (b) SEM image of the resulting hexagonally ordered array of carbon nanotubes fabricated using the method in (a) Fig. 1-7. (a) Oven laser-vaporization apparatus, (b) Si nanowires consist of a very uniform diameter crystalline core surrounded by amorphous SiOX coating and HRTEM image Fig. 1-8. (a)SEM image of Si NWs grown from the 10 nanoclusters and scale bar is 20nm, (b) HRTEM image of 10.7nm-diam Si NWs, (c) HRTEM image of 20.6 nm-diam NWs Fig. 1-9. (a) Si nanowires began to emerge from the nanopores, (b) Gold balls present at the tips of the Si nanowires, (c) TEM image of nanowire Fig 1-10. Schematic illustration of vapor-liquid-solid nanowire growth mechanism ncluding four stages: (a) alloying, (b) supersaturation, (c) nucleation and (d) axial growth. Fig.1-11. The phase diagram of silicon-gold alloy Fig.1-12. In situ TEM images recorded during the process of nanowire growth. (a) Au nanoclusters in solid state at 500℃, (b) Alloying is initiated at 800℃, at this stage Au exists mostly in solid state, (c) Liquid Au/Ge alloy, (d) The nucleation of a Ge nanocrystal on the alloy surface, (e)Ge nanocrystal elongates with further Ge condensation, and (f) eventually forms a wire (g) The phase diagram of Ge-Au allay. Fig. 1-13. Emitting image of fully sealed SWNT-FED at a color mode with red, green, and blue color phosphor by Samsung-Electronics Fig. 1-14. A single MWNT probe microscopy tip Fig. 1-15. Single- and multi-wall carbon nanotube field-effect transistors Fig.1-16. silicon nanowire transistor Fig. 1-17. (a) Si NW nanosensor for pH detection (b) real-time detection of protein binding Fig. 1-18. (a) Crossed SiNW junctions. (b) n+-p-n SiNW bipolar transistors. (c) SiNWcomplementary inverters Fig1-19. Flow chart of AFM manipulation Fig1-20. Schematic of fluidic channel structure Fig1-21. Parallel and orthogonal assembly of nanowires with electric field Fig1-22. (a) (b) Structure of sample (c) aligned nanotubes after electric field directed growth Fig. 2-1. Flow diagram for the synthesis and characterization of Si nanowires Fig 2-2. (a) Design diagram of mask pattern, (b) SEM image of electrodes for Cr/Au/Cr sample, (c) OM image of electrodes for Cr/Au/Cr sample, (d) The cross-section of (b) and (c), (e) SEM image of electrodes for TEOS /Cr/Au/Cr sample, (f) OM image of electrodes for TEOS /Cr/Au/Cr sample, (g) he cross-section of (e)and (f). Fig. 2-3. The flow chart of fabricated electrodes Fig. 2-4. (a) Real diagram of sample holder, (b) sketch map of sample holder Fig. 2-5. Growth diagram of silicon nanowires Fig. 2-6. A ray of electron impinging on a sample producing electrons, X-ray and Photons Fig. 2-7. Schematic description of the operation of an SEM Fig. 2-8. Schematic of Hitachi Model S-4000 FMSEM Fig. 2-9. (a) DC sputter system, (b) schematic diagram of DC-power sputter deposition Fig. 2-10. Important processes in sputter deposition Fig. 2-11. (a) LPCVD system, (b) schematic diagram of LPCVD equipment Fig. 3-1. Low-magnification images of silicon nanowires in sample 1 at (a) 400℃ (b) 450℃ (c) 460℃ (d) 470℃ (e) 500℃ (f) A magnified view of (e) Fig.3-2. Low-magnification images of silicon nanowires in sample 8 at (a) 460℃ (b) 470℃ (c) 500℃. (d), (e)and (f) A magnified view of (a) , (b)and (c) respectively Fig.3-3. (a)High-magnification SEM images of silicon nanowires at 500℃ in sample 1 (b) and (c) EDS analysis for different position of Si nanowire Fig.3-4. (a)High-magnification SEM images of silicon nanowires at 500℃ in sample 8 (b) and (c) EDS analysis for different position of Si nanowire Fig.3-5. SEM images of silicon nanowires in sample 2 at (a) 470℃ (b) 490℃ (c) 500℃. Fig.3-6. SEM images of silicon nanowires grown in various electric field in sample at 460℃. The spacing between the tip of the two electrodes is 6 m (a) 0V (b) 100 V Fig.3-7. Low-magnification images of silicon nanowires in sample 2 at 460℃ with 100V (a), (b), (c) and (e) at different pads, (d) high-magnification image of the square in the (c) Fig.3-8. (a)Low-magnification images of silicon nanowires in sample 2 at 460℃ with 100V (b) and (c) high-magnification image of the square in the (a). Fig.3-9. (a) and (b) Low-magnification images of the sample 2 without the growth of silicon nanowires at 460℃ with 100V (c) and (d) high-magnification image of the arrow 1 and 2 in the (b). Fig.3-10. (a) Low-magnification image of the sample 2 at 460℃ with 100V(b) High-magnification image of (a). Fig.3-11. (a) Low-magnification image of the sample 1 annealed at 470℃ (b) High-magnification image of (a) Fig.3-12. (a) SEM image of the sample 2 annealed at 470℃ (b) SEM image of the sample 2 annealed with about 15V/ m at 470℃ Fig.3-13. (a) SEM image of the sample 3 without any treatment (b) SEM images of the sample 3 annealed at 470℃ Fig.3-14. (a) SEM image of the sample 4 annealed at 470℃ (b) SEM image of the sample 4 annealed with about 15V/ m at 470℃ Fig.3-15. (a) SEM image of the sample 5 annealed at 470℃ (b) SEM image of the sample 5 annealed with about 15V/ m at 470℃ Fig.3-16. (a) SEM image of the sample 6 annealed at 470℃ (b) SEM image of the sample 6 annealed with about 15V/ m at 470℃ Fig.3-17. (a) SEM image of the sample 7 annealed at 470℃ (b) SEM image of the sample 7 annealed with about15V/ m at 470℃ (c) and (d) High-magnification image of (a) and (b). Fig.3-18. (a) Low-magnification image of silicon nanowires in sample 7 at 460℃ with 20V (b), (c) and (d)the images obtained with different electric pads Fig.3-19. (a) Low-magnification image of silicon nanowires in sample 7 at 460℃ with 20V (b)and (c) High-magnification images of (a) Fig.3-20. (a) Low-magnification images of silicon nanowires in sample 7 at 460℃ with 20V (b), (c) and (d) High-magnification images of (a) Fig.3-21. Diagram of rough sketch of the electric field Fig.3-22. Flow chart of the growth mechanism of Si nanowires assisted by electric field Fig.5-1. The schematic diagram of TFT fabricated by Si Nanowire Fig.5-2. The schematic diagram of the MOS device fabricated by crossing two Si Nanowires. List of Tables Table 2-1 Operating parameters for the thickness of make films for different shapes Table 2-2 Operating parameters of DC sputter for the deposition of metal films Table 2-3 Operating parameters of TEOS oxide deposition by PECVD Table 3-1. The parameters for experiment 1.rf 1. http://www.zyvex.com/nanotech/feynman.html 2. H. W. Krote, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature , 318, 162,(1985) 3. R. W. G. Wyckoff, in Crystal Structure, Vol. 1,Interscience,New York, (1964) 4. M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of Carbon Nanotubes”, Carbon, 33, 883(1995). 5. S. Iijima, “Helical micro-tubules of graphitic carbon”, Nature, 354, 56-58 (1991). 6. S. Iijima and T. Ichihashi, Nature(London) 363, 603, (1993). 7. D. S. Bethune, C. H. King, M. S. de Vriess, G. Gorman, R. Savoy, J.Vazquez, and R. Beyers, Nature (London) 363, 605, (1993). 8. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964). 9. William E. Buhro, Timothy J. Trentler, Kathleen M. Hickman, Science,270,1791 (1995) 10. Alfredo M. Morales and Charles M. Lieber, Science, 279, 208 (1998) 11. S. T. Lee. Y. F. Zhang, N. Wang, J. Mater. Res., 14, 4503 (1999) 12. Mark S. Gudiksen, Lincoln J. Lauhon, Jianfang Wang, David C. Smith, Charles M. Lieber Nature 415, 617 (2002) 13. Wu, Y., R. Fan., and P. Yang. Nano Letters 2(February):83-86. (2002) 14. H. Morkoc, S. N. Mohammad, Science 267, 51(1995). 15. W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee and S. T. Lee, J. Vac. Sci. Technol. B 19,1115(2001). 16. Eric J. Lerner, Ind. Phys. 7, 10 (2001). 17. A. P. Alivisatos, Science, 271, 933 (1996). 18. L. H.arris, D. Jeffries, and B. M. Siegel, J Appl. Phys., 19,791 (1948). 19. S. Kasukabe, S. Yatsuya, and R. Uyeda, Jpn. J. Appl. Phys., 13, 1714 (1974.). 20. A. R. Tholen, Acta Metal, 79, 1765 (1979). 21. C. Y. Huang, H. J. Chiang, J. C. Huang, and S. R. Sheen, Nanostruct. Mater., 10,1393 (1998). 22. T. Baron, F. Martin, P. Mur, C. Wyon, M. Dupuy, C. Busseret, A. Souifi, and G. Guililot, Appl. Surf. Sci., 164, 29 (2000). 23. Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, and S. T. Lee, Appl. Phys, Lett., 72, 1835 (1998). 24. E. Winfree, F. Liu., L. A. Wenzler, and N. C. Seeman, Nature, 394,539(1998) 25. M Ishigami, John Cuming, A. Zettle, S. Chen, A simple method for the continuous production of carbon nanotubes, Chem. Phys. Lett. 319, p457 (2000) 26. E. F. Kukovitsky, S. G. L’vov, N. A. Sainov, VLS- growth of carbon nanotubes from the vapor, Chem. Phys. Lett. 317, p65 (2000) 27. J. M. Jones, R. P. Malcolm, K. M. Thomas and S. H. Bottrell, The anode deposit formed during the carbon-arc evaporation of graphite for the synthesis of fullerences and carbon nanotubes, Carbon 34, p231 (1996). 28. T. W. Ebbesen, P. M. Ajayan, H. Hiura and K. Tanigaki, Purification of nanotubes, Nature 367, p519 (1994). 29. X. Zhao, M. Ohkohchi, M. Wang, S. Iuma, T. Ichihashi and Y. Ando, Preparation of high-grade carbon nanotubes by hydrogen arc discharge, Carbon 35, p775 (1997). 30. T. Guo, P. Nikolaev, A. Thess, D. T. Collbert and R. E. Smally, Catalytic growth of single-walled nanotubes by laser vaporization, Chem. Phys. Lett. 243, p49 (1995). 31. B. I. Yakobson and R. E. Smally, American Scientist 85, 324(1997) 32. S. H. Tsai, C. W. Chao, C. L. Lee, X. W. Liu, I. N. Lin, and H. C. Shih, Formation and Field-Emission of Carbon nanofiber Films on Metallic Nanowire Arrays, Electrochem. Solid-State Lett. 2, p247(1999) 33. Jung Sang Suh and Jin Seung Lee, Highly ordered two-dimensional carbon nanotube arrays, Appl. Phys. Lett. 75, p2047 (1999) 34. J. Li, C. Papadopoulos, J. M. Xu, and M. Moskovist, Highly-ordered carbon nanotube arrays for electronics applications, Appl. Phys.Lett.75, p367 (1999) 35. Tatsuya lwasaki, Taiko Motoi, and Tohru Den, Multiwalled carbon nanotubes growth in anodic alumina nanoholes, Appl. Phys. Lett. 75, p2044 (1999) 36. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass, Science 282, p1105 (1998) 37. Z. W. Pan, S. S. Xie, B. H. Chang, C. Y. Wang, L. Lu, W. Lin, W. Y. Zhou, W. Z. Li, L. X. Qian,. Very long carbon nanotubes, Science 394, p634 (1998) 38. W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, L. Lu, B. S. Zou, W. Y. Zhou, R. A. Zhao, G. Wang. Large-Scale Synthesis of Aligned Carbon Nanotubes, Science 274, pl701 (1996) 39. Masako Yudasaka , Rie Kikuchi , Takeo Matsui , Yoshimasa Ohki , and Susumu Yoshimura, Specific conditions for Ni catalyzed carbon nanotube growth by chemical vapor deposition , Appl. Phys. Lett. 67, p2477 (1995) 40. Masako Yudasaka , Rie Kikuchi , Yoshimasa Ohki , Etsuro Ota , and Slisumu Yoshimura, Behavior of Ni in carbon nanotube nucleation, Appl. Phys. Lett. 70, 1817 (1997) 41. Cheol Jin Lee , Dae Woon Kim , and Tae Jae Lee, Synthesis of uniformly distributed carbon nanotubes on a large area of Si substrates by thermal chemical vapor deposition, Appl. Phys. Lett. 75,1721 (1999) 42. Takahito Ono, Hiroaki Saitoh, and Masayoshi Esashi ,Appl. Phys. Lett. 70, 1852 (1997) 43. R. Hasunuma, T. Komeda, H. Mukaida, and H. Tokumoto, J. Vac. Sci. Technol. B,15,1437,(1997) 44. H. Z. Zhang, D. P. Yu, Y. Ding, Z. G. Bai, Q. L. Hang, and S. Q. Feng, Appl. Phys. Lett. 73, 3396 (1998) 45. Y. F. Zhang, Y. H. Tang, H. Y. Peng, N. Wang, C. S. Lee, I. Bello, and S. T. Lee, Appl. Phys. Lett. 75, 1842 (1999) 46. Yi Cui, Lincoln J. Lauhon, Mark S. Gudiksen, Jianfang Wang, and Charles M. Lieber, Appl. Phys. Lett. 78, 2214 (2001) 47. Kok-Keong Lew, Cordula Reuther, Altaf H. Carim, Joan M. Redwing, and Benjamin R. Martin45 J. Vac. Sci. Technol.B. Vol. 20,389(2002) 48. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964). 49. Yiying Wu, Haoquan Yan, Michael Huang, Benjamin Messer, Jae Hee Song, and Peidong Yang, Chem. Eur. J. Vol. 6, 1260 (2002) 50. W. Gerlach and B. Goel, Solid-State Electron.10,589 (1967). 51. Y. Wu, P. Yang. J. Am. Chem. Soc. 123. 3165 (2001). 52. Y. Wu, P. Yang. Chem. Mater.,12, 605 (2000). 53. M. H. Huang, Y. Wu. H. Feick, E. Webber, P. Yang, Adv. Muter.,12,113(2000). 54. A. M. Morales, C. M. Lieber. Science, 279, 208 (1998). 55. C. R. Martin, Science, 266. 1961 (1994). 56. W. Han. S. Fan. W. Li, Y. Hu, Science, 277. 1287 (1997). 57. T. J. Trentler. K. M. Hickman. S. C. Geol, A. M. Viano, P. C. Gibbons, W. E. Buhro. Science, 370, 1791 (1995). 58. Y. Li, Y. Ding, Z. Wang. Adv. Mater., 11, 847 (1999). 59. X. Duan, C. M. Lieber, Adv. Mater., 73, 298 (2000). 60. Peidong Yang and Charles M. Lieber, Science, 273, 1836 (1996) 61. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim Appl. Phys. Lett. 75, 3129 (1999) 62. R. Stevens, C. Nguyen, A. Cassell, L. Delzeit, M. Meyyappan, and Jie Han Appl. Phys. Lett. 77, 3453 (2000) 63. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ Nature 386 ,377 (1997) 64. R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris Appl. Phys. Lett. 73, 2447 (1998) 65. Cui, Y.; Zhong, Z.; Wang, D.; Wang, W. U.; Lieber, C. M , Nano Lett., 3(2), 149 (2003) 66. Yi Cui, Qingqiao Wei, Hongkun Park, and Charles M. Lieber Science 293, 1289 (2001) 67. Yi Cui and Charles M. Lieber Science ,291, 8510(2001). 68. Hertel T., Martel R., Schmidt T., Shea H. R., Walkup R.E. APPL SURF SCI 141 (3-4): 201 (1999) 69. Yu Huang, Xiangfeng Duan, Qingqiao Wei, and Charles M. Lieber, Science, 291, 630 (2001). 70. Xiangfeng Duan, Yu Huang, Yi Cui, Jianfang Wang, Charles M. Lieber Nature 409, 66 ( 2001) 71. Ant Ural, Yiming Li, and Hongjie Dai Appl. Phys. Lett. 81, 3464 (2002) 72. Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, Ph. Nano Lett. 2001, 1, 453. 73. Lieber, C. M. Sci. Am., 285, 50 (2001) 74. Yi Cui, Xiangfeng Duan, Jiangtao Hu, and Charles M. Lieber, J. Phys. Chem. B, 104(22), pp 5213 (2000) 1. Lee E. Fitz partrick, C.Richard Brundle, Charels A. Evans. Jr. and Shaun Wilson, “Encyclopedia of materials characterization: surfaces, thin films”, Butterworth-Hei Newann. M.E. Cower. And T.O. Sedgwick, J. Electrochem. Soc., 119, 1565, 1972 2. D.K. Schroder, “Semiconductor Material and Device Characterization”, John Wiley & Sons, Ch.9, Ch.l0, (1990) 3. “Silicon VLSI Technology Fundamentals, Practice and Modeling”, James D. Plummer, Michael D. Deal, Peter B. Griffin 1. K. M. Mackay, Hydrogen compounds of the metallic elements (Spon, London, 1996).id NH0920428002 sid 905046 cfn 0 / id NH0920428003 auc 吳信彥 tic 薄膜太陽能電池吸收層CuInS2之預沉積層CuIn的相形成及快速熱升溫退火處理過程 adc 黃惠良 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 64 kwc 熱快速升溫處理過程 kwc 銅銦硫 kwc 太陽能電池 kwc 硫化 abc 因為地球上石油的逐漸耗盡,伴隨而來的是能源取得的危機,因此取得一個可以永久使用的能量來源是必須的,所以我們想到利用太陽電池來儲存太陽能是最合適的,而太陽能電池材料中,一三六族與二六族半導體材料為最具未來發展潛力者,雖然目前市面上已有以其他材料所生產的太陽能電池,但是普遍製程繁瑣且價格昂貴,若是達到人人皆有能力購買且符合經濟效益還有一段距離,因此成長低成本高吸收效率的異質p-n接面太陽能電池為目前的首務之急。 tc Chapter 1 Introduction …………………………1 1-1 Introduction……….................................................................1 1-2 Basic principle of solar cell………………………………….1 1-2-1 Photovoltaics working process…………………………..2 1-2-2 p-n junction………………………………………………5 1-3 Chalcopyrite semiconductor based solar cell………………..7 1-3-1 Typical fabrication procedure and full in-line concept……7 1-3-2 Chalcopyrite material absorber layer………………………9 1-3-3 Buffer layer………………………………………………...10 1-3-4 Window layer……………………………………………….11 Chapter 2 Experiments………………………….13 2-1 Sputter deposition theory……………………………………13 2-1-1 Physics of RF sputter…………………………………...14 2-2 Rapid Thermal Process (RTP) Deposition Theory ………...15 2-3 Experimental procedures…………………………………...16 Chapter 3 Results and discussion.……………..19 3-1 CuIn film prepared by low power RF magnetron sputtering…..19 3-2 CuIn film prepared by higher power RF magnetron sputtering…21 3-3 CuIn film prepared by higher substrate temperature during RF magnetron sputtering……………………………………………22 Chapter 4 Conclusion.…………………………..25 Tables…………………………………………………………………...27 Figures…………………………………………………………………32 References……………………………………………………………..63rf 1. N. Orbey, H. Hichri, R. W. Birkmire and T. W. F. Russell, “Effect of Temperature on Copper Indium Selenization”, Prog. Photovolt. Res. Appl., 5, pp237-247 (1997) 2. D.Braunger, Th. Durr, D. Hariskos, and H.W. Schock, “Improved open circuit voltage in CuInS2-based solar cells”, 25th PVSC, Washington, D.C. 1996, pp1001-1004 3. T.Nakabyashi, T.Miyazawa, Y.Hashimoto and K.Ito, “Over 10% efficient CuInS2 solar cell by sulfurization”, Solar Energy Materials & Solar Cells 49 (1997) pp375-381 4.Kai Siemer, Jo Klaer, Liika Luck, Jurgen Bruns, Reiner Klenk, and Dieter Braunig, “Efficient CuInS2 solar cells from a rapid thermal process (RTP), Solar Energy Materials & Solar Cells 67 (2001) pp159-166 5. N. Orbey, G. Norsworthy, R. W. Birkmire, and T. W. F. Russell, “Reaction Analysis of the Formation of CuInSe2 Films in a Physical Vapor Deposition Reactor”, Prog. Photovolt. Res. Appl. 6, pp79-86 (1998) 6. Frederick O. ADURODIJA, JINSOO SONG, Sang D.KIM, Seok K. KIM and Kyung H. YOON. “Characterization of CuInS2 Thin Films Grown by Close-spaced Vapor Sulfurization of Co-sputtered Cu-In Alloy Precursors”, Jpn. J. Appl. Phys. 37 (1998) pp4248-4253 7. Takayuki WATANABE, Hidenobu NAKAWA and Masahiro MATSUI, “Sulfurization in Gas Mixture of H2S and O2 for Growth of CuInS2 Thin Films”, Jpn. J. Appl. Phys. 38 (1999) pp. L430-L432 8. M. Abaab, M. Kanzari, B. Rezig, M. Brunel, “Structural and optical properties of sulfur-annealed CuInS2 thin films”, Solar Energy Materials & Solar Cells 59 (1999) pp299-307 9. Hiroaki Matsushita, Tomohiro Mihira, Takeo Takizawa, “Chemical reaction process and the single crystal growth of CuInS2 compound”, Journal of Crystal Growth 197 (1999) pp169-176 10. R. Scheer, T. Walter, H.W. Schock, M. L. Fearheiley and H. J. Lewerenz, “CuInS2 based thin film solar cell with 10.2% efficiency”, Appl. Phys. Lett. 63 (1993) pp3294-3296 11. Takayuki WATANABE, Hidenobu NAKAWA and Masahiro MATSUI, “Improved Efficiency of CuInS2 -Based Solar Cells without Potassium Cyanide Process”, Jpn. J. Appl. Phys. 38 (1999) pp. L1379-1381 12. M. Gossla, H. Metzner, and H.-E. Mahnke, “Coevaporated Cu—In films as precursors for solar cells”, J. Appl. Phys., 86 (1999) pp3624-3632 13. Yoshio Onuma, Kenji Takeuchi, Sumihiro Ichikawa, Mina Harada, Hiroko Tanaka, Ayumi Koizumi, Yumi Miyajima, “Preparation and characterization of CuInS_ thin films solar cells with large grain”, Solar Energy Materials & Solar Cells 69 (2001) pp261-269 14. C.Dzionk, H. Metzner, H. J. Lewerenz, and H.-E. Mahanke, “Perturbed angular correlations study of thin Cu-In films”, J. Appl. Phys., 78 (1995) pp2392-2396 15. 張昆輝,國立清華大學電子工程研究所碩士論文 90年 16. 鍾堂軒,國立清華大學電子工程研究所碩士論文 89年 17. 余濟時,國立清華大學電機工程研究所碩士論文 85年id NH0920428003 sid 905051 cfn 0 / id NH0920442001 auc 蔣彥儒 tic 溫度無感之布拉格式光纖光柵應變感測系統之研究 adc 王立康 ty 博士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 110 kwc 光纖光柵 kwc 溫度無感 kwc 光纖放大器 abc 布拉格式光纖光柵為一具有靈敏的溫度以及應變響應的光纖元件。傳統上布拉格式光纖光柵是用來當做光通訊系統的主要濾波元件。在感測領域上,利用布拉格式光纖光柵所製作的感測器可以用來量測的物理量包括應變、溫度、磁場等等。 tc 第一章 簡介…………………………………………………………………1 1.1布拉格式光纖光柵的應用回顧…………………………………………1 1.2研究動機與問題敘述……………………………………………………4 1.3本論文的架構……………………………………………………………6 第二章 布拉格光柵的特性與理論…………………………………………8 2.1簡介………………………………………………………………………8 2.2布拉格光柵的定性描述…………………………………………………8 2.3布拉格式光纖光柵………………………………………………………10 2.4布拉格光柵理論…………………………………………………………13 2.4.1 coupled mode theory ……………………………………………13 2.4.2 coupled mode equation解的討論…………………………………19 2.5布拉格式光纖光柵的應力及溫度特性…………………………………22 2.5.1光纖的elastic-optic效應…………………………………………22 2.5.2布拉格式光纖光柵的應變靈敏度……………………………………26 2.5.3布拉格式光纖光柵的溫度靈敏度……………………………………29 2.6總結………………………………………………………………………31 第三章 利用光功率感測機制之布拉格式 光纖光柵溫度無感應變感測系統─串接架構………………32 3.1簡介………………………………………………………………………32 3.2感測原理…………………………………………………………………32 3.3實驗結果…………………………………………………………………34 3.4總結………………………………………………………………………38 第四章 利用光功率感測機制之布拉格式 光纖光柵溫度無感多工應變感測系統─並接架構 …………42 4.1簡介………………………………………………………………………42 4.2感測原理…………………………………………………………………43 4.3實驗結果與討論…………………………………………………………45 4.4總結………………………………………………………………………50 第五章 利用光功率感測機制的多工溫度無感 布拉格式光纖光柵應變感測系統─新架構…………………65 5.1簡介………………………………………………………………………65 5.2感測原理…………………………………………………………………66 5.3設計考慮…………………………………………………………………71 5.4實驗結果與討論…………………………………………………………72 5.5總結………………………………………………………………………77 第六章 結論………………………………………………………………102 參考文獻 …………………………………………………………………105rf [1 ] Archambault, J.-L., et al. “Grating-frustrated coupler: A novel channel-dropping filter in single mode optical fiber,”Opt. Lett. 19, 180-182 (1994). [2 ] Giles, C. R., “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15, 1391-1404 (1997). [3 ] Kim Yoon Se, et al. “Highly stable optical add/drop multiplexer using polarization beam splitters and fiber Bragg grating,”IEEE Photon. Technol. 9, 1119-1121 (1997). [4 ] Kewitsch, A. S., et al. “All-fiber zero-insertion-loss add-drop filter for wavelength-division multiplexing,” Opt. Lett. 23, 106-108 (1998) [5 ] Ouellette, F., “All-fiber filter for efficient dispersion conpensation,” Opt. Lett. 16, 303-305 (1991). [6 ] Williams, J. A. R., I. Bennion, K. Sugden, and N. J. Doran, “Fiber dispersion compensation using a chirped in fiber Bragg grating,” Electron. Lett. 30, 985-987 (1994). [7 ] Kashyap, R., et al. “30ps chromatic dispersion compensation of 400fs pulses at 100Gbit/s in optical fibers using an all fiber photon induced chirped reflection grating,” Electron. Lett. 30, 1078-1080 (1994). [8 ] Delevaque, E., et al. “Gain control in erbium-doped fiber amplifiers by lasing at 1480 nm with photon induced Bragg gratings written on fiber ends,” Electron. Lett. 29, 1112-1114 (1993). [9 ] Massicott, J. F., et al. “1480 nm pumped erbium doped fiber amplifier with all optical automatic gain control,” Electron. Lett. 30, 962-963 (1994). [10 ] Ko Seong Yun, et al, “Gain control in erbium-doped fiber amplifiers by tuning center wavelengths of fiber Bragg grating constituting resonant cavity,” Electron. Lett. 34, 990-991 (1998). [11 ] Kashyap, R, R. Wyatt, and P.F. Mckee, “Wavelength flattened saturated erbium amplifier using multiple side-tap Bragg gratings,” Electron. Lett. 29, 1025-1026 (1993). [12 ] Kashyap, R., R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fiber amplifier using a photosensitive fiber blazed grating,” Electron. Lett. 29, 154-156 (1993). [13 ] Zyskind, J. L., et al. “Short single frequency erbium-doped fiber laser,” Electron. Lett. 28,1385-1386 (1992). [14 ] Ball, G. A., and W. W. Morey, “Continuously tunable single-mode erbium fiber laser,”Opt. Lett. 17, 420-422 (1992). [15 ] Ball, G. A. et al. “Low noise single frequency linear fiber laser,” Electron. Lett. 29,1623-1625 (1993). [16 ] Ball, G. A., et al “60 mW 1.5 im single-frequency low-noise fiber laser MOPA,”IEEE Photon. Technol. 6,192-194 (1994). [17 ] Ball, G. A., C. G. Hull-Allen, and J. Livas, “Frequency noise of a Bragg grating fiber laser,” Electron. Lett. 30,1229-1230 (1994). [18 ] Ball, G. A. and W. W. Morey, “Compression-tuned single frequency Bragg grating fiber laser,” Opt. Lett. 19,1979-1981 (1994). [19 ] Kringlebotn, J. T., et al. “Efficient diode-pumped single-frequency erbium:ytterbium fiber laser,”IEEE Photon. Lett. 5,1162-1164 (1993). [20 ] A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensor,” J. Lightwave Technol. 15, 1442—1463 (1997). [21 ] J. Mora, A. Diez, J. L. Cruz, and M. V. Andres, “A magnetostrictive sensor interrogated by fiber gratings for dc current and temperature discrimination,” IEEE Photon. Technol. 12, 1680—1682 (2000). [22 ] G. A. Johnson, M. D. Todd, B. L. Althouse, and C. C. Chang, “Fiber Bragg grating interrogation and multiplexing with a 3 3 coupler and a scanning filter,” J. Lightwave Technol. 18, 1101—1105 (2000). [23 ] A. D. Kersey, T. A. Berkoff, and W. W. Morey, “High-resolution fiber-grating-based strain sensor with interferometric wavelength shift detection,” Electron. Lett. 28, 236—238 (1992). [24 ] A. Ezbiri, A. Munoz, S. E. Kanellopoulos, and V. A. Handerek, “High resolution fiber Bragg grating sensor demodulation using a diffraction grating spectrometer and CCD detection,” in IEE Colloquium on Optical Techniques for Smart Structure sand Structural Monitoring, Digest 1997_033 _Institute of Electrical Engineers, London, U.K., (1997). [25 ] A. Arie, B. Lissak, and M. Tur, “Static fiber-Bragg grating strain sensing using frequency-locked lasers,” J. Lightwave Technol. 17, 1849—1854 (1999). [26 ] L. A. Ferreira, E. V. Diatzikis, J. L. Santos, and F. Farahi, “Frequency-modulated multimode laser diode for fiber Bragg grating sensors,” J. Lightwave Technol. 16, 1620—1630 (1998). [27 ] D. A. Jackson, A. B. Lobo Ribeiro, L. Reekie, and J. L. Archambault, “Simple multiplexing scheme for a fiber-optic grating sensor network,” Opt. Lett. 18, 1192—1194 (1993). [28 ] K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol. 13, 1243—1249 (1995). [29 ] M. A. Davis, D. G. Bellemore, M. A. Putnam, and A. D. Kersey, “Interrogation of 60 fiber Bragg grating sensors with microstrain resolution capability,” Electron. Lett. 32, 1393—1394 (1996). [30 ] R. W. Fallon, L. Zhang, A. Gloag, and I. Bennion, “Multiplexed identical broadband chirped grating interrogation system for large strain sensing application,” IEEE Photon. Technol. Lett. 9, 1616—1618 (1997). [31 ] G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Discrimination between strain and temperature effects using dual wavelength fiber grating sensors,” Electron. Lett. 30, 1085—1087 (1994). [32 ] B. O. Guan, H. Y. Tam, X. M. Tao, and X. Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 675—677 (2000). [33 ] W. C. Du, X. M. Tao, and H. Y. Tam, “Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature ,” IEEE Photon. Technol. Lett. 11, 105—107 (1999). [34 ] S. Kim, J. Kwon, S. Kim, and B. Lee, “Temperature independent strain sensor using chirped grating partially embedded in a glass tube,” IEEE Photon. Technol. Lett. 12, 678—680 (2000). [35 ] Hill, K. O., et al. “Photosensitivity in Eu2+ : Al2O3 doped core fiber: preliminary results and applications to mode converters,” Conference on Optical Fiber Communication, Technical Digest Series (Optical Society of America, Washington, DC), 14,14-17 (1991) [36 ] Broer, M. M., R. L. Cone, and J. R. Simpson, “Ultraviolet-induced distributed feedback gratings in Ce3+-doped silica optical fibers,” Opt. Lett. 16,1391-1393 (1991). [37 ] Bilodeau, F., et al. “Ultraviolet-light photosensitivity in Er3+-Ge-doped optical fiber,” Opt. Lett. 15, 1138-1140 (1990). [38 ] Williams, D. L., et al. “Enhanced UV photosensitivity in boron codoped germano -silicate fibres,” Electron. Lett. 29,45-47 (1993). [39 ] Lemaire, P. J., et al. “High-pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity in GeO2 doped optical fibres,” Electron. Lett. 29,1191-1193 (1993). [40 ] Bilodeau, F., et al. “Photosensitization of optical fiber and silica-on-silicon/silica waveguides,” Opt. Lett. 18,953-955 (1993). [41 ] Hill, K. O., et al. “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Applied Physics Letters, 62,1035-1037 (1993). [42 ] Anderson, D. Z., et al. “Production of in-fiber gratings using a diffractive optical element,” Electron. Lett. 29,566-568 (1993). [43 ] Meltz, G., W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14,823-825 (1989). [44 ] Malo, B., et al. “Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques,” Electron. Lett. 29,1668-1669 (1993). [45 ] Mihailov, S. and M. Gower, “Recording of efficient high order Bragg reflectors in optical fibers by mask image projection and single pulse exposure with an excimer laser,” Electron. Lett. 30,707-708 (1994). [46 ] S. C. Kang, S. Y. Kim, et al. “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10,1461-1463 (1998) [47 ] Y. J. Chiang, L. K. Wang, et al. “Temperature-insensitive linear strain measurement using two fiber Bragg gratings in a power detection scheme,” Optics Communications 197, 327-330 (2001) [48 ] Y. J. Chiang, L. K. Wang, et al. “Multipoint temperature-independent fiber Bragg grating strain sensing system employing an optical power detection scheme,” Applied Optics 41, 1661-1667 (2002)id NH0920442001 sid 887915 cfn 0 / id NH0920442002 auc 吳泰霖 tic 針對電力電子實務應用上之嵌入式數位訊號處理系統的設計與實現 adc 鄭博泰 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 110 kwc 數位訊號處理器 kwc 類比/數位轉換器 kwc 複式可規劃邏輯裝置 kwc 三相鎖相迴路系統 kwc 脈寬調變 abc 隨著人類對於電力品質及能源轉換的要求日益升高,滿足各種需求的電力電子轉換器也不斷地被提出。但是由於控制架構日趨複雜,訊號處理的速度要求增高。若僅以類比電路元件及TTL邏輯族來進行硬體製作,礙於處理速度的關係,往往不能達成原先預期的效能,無法把理論做最佳的實現。 tc 目錄 誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iii 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iv 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii 第一章 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 內容大綱. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 第二章 輔以CPLD之嵌入式數位訊號處理系統. . . . . . . . . . . . . . . . . 6 2.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 系統元件架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 類比/數位轉換器與數位/類比轉換器 . . . . . . . . . . . . . . . . 10 2.3.1 ADS7835簡介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.2 DAC8043簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 2.4 CPLD硬體架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 2.4.1 CPLD簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 2.4.2 ispLSI2192VE系列簡介. . . . . . . . . . . . . . . . . . . . . . . .19 2.5 數位訊號處理器硬體架構簡介. . . . . . . . . . . . . . . . . . . . . . . 24 2.5.1 TMS320C6711B之硬體架構簡介. . . . . . . . . . . . . . . . 25 2.5.2 TMS320C6711B內部CPU結構. . . . . . . . . . . . . . . . . . .26 2.5.3 TMS320C6711B記憶體分配. . . . . . . . . . . . . . . . . . . . .29 2.5.4 TMS320C6711B 主電腦介面與直接記憶體存取控器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 第三章 嵌入式數位訊號處理系統工作原理 . . . . . . . . . . . . . . . . . . . 33 3.1 訊號處理流程.. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 硬體描述語言VHDL簡介. . . . .. . . . . . . . . . . . . . . . . . . . . .42 3.3 CPLD設計介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.1 CPLD發展軟體簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.2 A/D與D/A訊號處理部分. . . . . . . . . . . . . . . . . . . . . . 48 3.3.3 PWM部分. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.4 數位訊號處理器程式設計. . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.4.1 DSP整合式發展介面─Code Composer. . . . . . . . . . . .60 3.4.2 內部程式簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 第四章 三相市電鎖相迴路實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.1 三相市電鎖相迴路. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.1.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.1.2 控制原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2 模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2.1 三相平衡電壓源. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2.2 三相平衡諧波電壓源. . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.2.3 三相電壓驟降. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.4 單相電壓驟降. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.3 模擬結果討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.4 實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.4.1 三相平衡電壓源. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4.2 三相平衡諧波電壓源. . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.3 三相電壓驟降. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.4.4 單相電壓驟降. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.5 實驗結果討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 第五章 結論與未來研究方向. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.2 未來研究方向. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 附錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 A. 市電線電壓偵測電路. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 B. IGBT閘極驅動電路. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 C. 實體照片. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116rf [1 ] M. Barr, Programming Embedded System in C and C++. O’Reilly and Associates, Inc. 1999. [2 ] 李清、林育賢、連怡仲、侯志忠、蘇泰光, 內嵌式C32xDSP實務應用。 全華科技圖書股份有限公司。 中華民國91年5月。 [3 ] Texas Instruments Incorporated, “TMS320C711,TMS320C6711B Floating-Point Digital Signal Processors,” in Texas Instruments Incorporated, product datasheet. February, 1999. [4 ] Burr-Brown Corporation, “12-Bit, High-Speed, Low Power Sampling Analog-to-Digital Converter,” in Burr-Brown Corporation, product datasheet. May, 2000. [5 ] Burr-Brown Corporation, “CMOS 12-Bit Serial Input Multiplying Digital-to-Analog Converter,” in Burr-Brown Corporation, product datasheet. March, 1998. [6 ] 林傳生, 使用VHDL電路設計語言之數位電路設計。 儒林圖書有限公司。 中華民國87年1月。 [7 ] 林容益, CPLD數位電路設計發展應用。 全華科技圖書股份有限公司。 中華民國88年2月。 [8 ] 盧毅, VHDL與數位電路設計。 文魁資訊股份有限公司。 中華民國89年8月。 [9 ] 蕭如宣, 電腦輔助數位電路設計。 儒林圖書有限公司。 中華民國89年。 [10 ] Lattice Semiconductor Corporation, “ispLSI 2192VE,” in Lattice Semiconductor Corporation, product datasheet. January, 2002. [11 ] Lattice Semiconductor Corporation, ISP Data Book. in Lattice Semiconductor Corporation. July, 2000. [12 ] Texas Instruments Incorporated, TMS320C6000 CPU and Instruction Set Reference Guide. in Texas Instruments Incorporated. October, 2000. [13 ] Integrated Circuit Solution Inc, “64Kx16 High-Speed CMOS Static RAM with 3.3V Supply,” in Integrated Circuit Solution Inc, product datasheet. March, 2000. [14 ] Texas Instruments Incorporated, Code Composer Studio Tutorial. In Texas Instruments Incorporated. March, 2000. [15 ] Texas Instruments Incorporated, TMS320C6x C Source Debugger. In Texas Instruments Incorporated. March, 1998. [16 ] R. Chassaing, DSP Application Using C and the TMS320C6x DSK. John Wiley & Sons, Inc. 2002. [17 ] Texas Instruments Incorporated, TMS320C6x Peripheral Support Library Programmer’s Reference. In Texas Instruments Incorporated. July, 1998. [18 ] F. M. Gardner, Phaselock Techniques. New York: Wiley. 1979. [19 ] L. N. Arruda, S. M. Silva, and B. J. Cardoso Filho, “PLL Structures for Utility Connected Systems,” in 36th IAS Annual Meeting, Conference Record , vol. 4, pp. 2655-2660, 2001. [20 ] B. C. Kuo, Automatic Control Systems. Prentice-Hall International, Inc. 1995. [21 ] V. Kaura, and V. Blasko, “Operation of a Phase Locked Loop System Under Distorted Utility Conditions,” IEEE Transactions on Industry Applications, vol. 33, no. 1, pp. 58-63, January, 1997. [22 ] 蘿珊智慧型科技工作室, MATLAB入門及應用。 松崗電腦圖書資料股份有限公司。 中華民國88年2月。 [23 ] S. K. Chung, “A Phase Tracking System for Three Phase Utility Interface Inverters,” IEEE Transactions on Power Electronics, vol. 15, no. 3, pp. 431-438, May, 2000.id NH0920442002 sid 903909 cfn 0 / id NH0920442003 auc 黃騰毅 tic 以適應性濾波器為基礎之串聯式電壓驟降補償控制器 adc 鄭博泰 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg - kwc 電壓驟降 kwc 數位訊號處理器 kwc 旁路開關 kwc 脈寬調變法 abc 隨著電力電子技術的進步,工業上應用的敏感性負載如可調速驅動器(adjustable speed drive, ASD)以及電腦作業系統等,對於電力品質的要求也越來越高,而根據統計資料顯示,最嚴重的電力品質問題就是單線接地故障(single-line-to-ground fault, SLGF)[1 tc 誌謝 ………………………………………………………… I 中文摘要 …………………………………………………… II 英文摘要 …………………………………………………… III 目錄 ………………………………………………………… IV 圖形明細表 ………………………………………………… VIII 表格明細 …………………………………………………… XX 一、緒論 1.1、研究動機 ………………………………………… 1 1.2、研究背景 ………………………………………… 1 1.3、論文內容 ………………………………………… 2 1.4、論文結構簡介 …………………………………… 3 二、文獻回顧 2-1 簡介 ……………………………………………… 5 2-2 動態電壓回復器之相關研究 …………………… 6 2-2.1 三相參考電壓之控制法 ………………… 6 2-2.2振幅及不平衡因數控制法 ………………… 9 2-2.3同步框參考電壓之控制法 ………………… 13 2-2.4反流器之待機短路模式控制法 …………… 15 2-3 電壓變動相關規範 ……………………………… 18 2-4 總結 ……………………………………………… 19 三、控制方法 3-1 簡介 ……………………………………………… 21 3-2 控制流程設計 …………………………………… 22 3-3 適應性雜訊去除法 ……………………………… 24 3-4 反流器啟動決策 ………………………………… 33 3-5 旁路開關控制設計 ……………………………… 34 3-5.1 閘流體截止之控制 ……………………… 34 3-5.2 旁路開關電流極性偵測 ………………… 36 3-6 結論 ……………………………………………… 39 四、模擬結果與分析 4-1 簡介 ……………………………………………… 40 4-2 線性負載測試 …………………………………… 41 4-2.1 單相接地故障 …………………………… 42 4-2.2 三相接地故障 …………………………… 45 4-3 非線性負載測試 ………………………………… 49 4-3.1 單相接地故障 …………………………… 49 4-3.2 三相接地故障 …………………………… 54 4-4 高頻脈波之極性測試 …………………………… 58 4-5 帶斥濾波器響應速度比較 ……………………… 64 4-6 結論 ……………………………………………… 70 五、實驗結果與分析 5-1 簡介 ……………………………………………… 75 5-2 線性負載測試 …………………………………… 77 5-2.1 單相接地故障 …………………………… 77 5-2.2 三相接地故障 …………………………… 82 5-2.3 電容器組切入之開關暫態 ……………… 87 5-3 馬達驅動器負載測試 …………………………… 88 5-3.1 單相接地故障 …………………………… 88 5-3.2 三相接地故障 …………………………… 95 5-4 旁路開關截止之研究 …………………………… 101 5-5電驛(Relay)之測試 ……………………………… 108 5-6 帶斥濾波器響應速度比較 ……………………… 111 5-7 總結 ……………………………………………… 118 六、設計實例 6-1 簡介 ……………………………………………… 123 6-2系統電路 …………………………………………… 123 6-3設計之系統參數與相關元件之規格 ……………… 125 6-4相關參數之設計與模擬驗證 ……………………… 127 6-5 結論 ……………………………………………… 134 七、結論 …………………………………………………… 135 參考文獻 …………………………………………………… 137 附錄 A 硬體電路實作 …………………………………… 140 A-1三相電壓擷取至DSP電路 ………………… 140 A-2 鎖相迴路(phase locked loop) ………… 141 A-3閘極絕緣雙極性電晶體(IGBT)之閘極驅動電路 141 A-4 DSP之PWM訊號輸出控制電路 …………… 142 A-5 反流器直流電壓電路 …………………… 143 A-6電流極性檢測電路 ……………………… 144 A-7閘流體(thyristor)之閘極驅動電路 ……… 145 A-8 實體照片 ………………………………… 146rf [1 ] IEEE Std. 1250 — 1995 ─(ANSI) “IEEE Guide FOR service to Equipment sensitive to Momentary Voltage Disturbances”. [2 ] IEEE Std. 1346 — 1998 ─ “IEEE recommended practice for evaluation electric power system compatibility with electronic process equipment”. [3 ] T. Ise, Y. Hayashi, K. Tsuji, “Definitions of power quality levels and the simplest approach for unbundled power quality services”, Ninth International Conference on Harmonics and Quality of Power, vol. 2, 2000, pp.385-390. [4 ] J. Stones, A. Collinson, “Power quality”, Power Engineering Journal, vol. 15, Apr. 2001, pp.58-64. [5 ] M. H. J. Bollen, “Voltage sags in three-phase systems”, IEEE Power Engineering Review, vol. 22, Sep. 2001, pp.8-15. [6 ]C. J. Melhorn, T. D. Davis, G.E. Beam, “Voltage sags: their impact on the utility and industrial customers”, IEEE Trans. Ind. Appl., vol. 34, May/Jun. 1998, pp.549-558. [7 ] IEEE Std. 1159 — 1995 ─ “IEEE Recommended Practice for Monitoring Electric Power Quality”. [8 ] D. O. Koval, R. A. Bocancea, K. Yao, M. B. Hughes, “Frequency and duration of voltage sags and surges at industrial sites — Canadian National Power Quality Survey”, IEEE Industry Applications Conference, vol. 3, Oct. 1997, pp.2189-2196. [9 ] J. G. Dougherty, W. L. Stebbins, “Power quality: a utility and industry perspective”, IEEE Textile, Fiber, and Film Industry Technical Conference, May 1997, pp. 5-10. [10 ] M. F. McGranaghan, D. R. Mueller, M. J. Samotyj, “Voltage sags in industrial systems”, IEEE Trans. Ind. Appl., vol. 29, no. 2, March/April 1993, pp. 397-403. [11 ] P. K. Lim, D. S. Dorr, “Understanding and resolving voltage sag related problems for sensitive industrial customers”, IEEE Power Engineering Society Winter Meeting, vol. 4, 2000, pp. 2886-2890. [12 ] J. G. Nielsen, F. Blaabjerg, “Comparison of system topologies for dynamic voltage restorers”, IEEE Industry Applications Conference, vol.4, Sept/Oct. 2001, pp. 2397-2403. [13 ] K. Haddad, G. Joos, S. Chen, “Control algorithms for series static voltage regulators in faulted distribution systems”, Power Electronics Specialists Conference, vol. 1, 27 June-1 July, 1999, pp. 418-423. [14 ] S. Lee, J. Kim, J. Choi, “A new control algorithm for instantaneous voltage sag corrector using series compensator”, IEEE International Conference, vol. 2, 22-25 Oct. 2001, pp.789-795. [15 ] C. C. Huang, “A new control algorithm of voltage sag compensator for sensitive industrial loads”, Master thesis, National Tsing Hua University Dept. of Electrical Engineering, July 2002. [16 ] P. Daehler, R. Affolter, “Requirements and solutions for dynamic voltage restorer, a case study”, Power Engineering Society Winter Meeting, vol. 4, 23-27 Jan. 2000, pp.2281-2285. [17 ] M. F. Alves, T. N. Ribeiro, “Voltage sag : an overview of IEC and IEEE standards and application criteria”, IEEE Transmission and Distribution Conference, vol. 2, 1999, pp.585-589. [18 ] R. S. Thallam, G. T. Heydt, “Power acceptability and voltage sag indices in the three phase sense”, IEEE Power Engineering Society Summer Meeting, vol. 2, 2000, pp.905-910. [19 ] “SEMI F47-2000 Specification for semiconductor processing equipment voltage sags immunity”, Semiconductor Equipment and Materials Council, Washington, DC, 2000. [20 ] ITI (CBEMA) Curve Application Note, Information Technology Industry Council, 2000. [21 ] B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise canceling: Principles and applications”, Proc. IEEE, vol. 63, 1975 pp.1692-1716. [22 ] A. S. Abutaleb, “An adaptive filter for noise canceling”, Circuits and Systems, IEEE Trans., vol. 35, Oct. 1988, pp.1201-1209.id NH0920442003 sid 903913 cfn 0 / id NH0920442004 auc 陳忠賢 tic 銅/鉭基擴散障礙層與低介電係數材料之製程整合 adc 葉鳳生 ty 博士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 117 kwc 低介電係數材料 kwc 銅 kwc 擴散障礙層 kwc 漏電流機制 abc 在ITRS對未來0.1微米導線連接製程技術要求下(2.2???-cm的有效導線電阻率,小於12 nm厚的擴散障礙層和介電係數<2.7的介電層),對於新材料的選擇及製程之開發是必須的。本論文發展新的擴散障礙層材料nano-cluster Ta-Six並配合銅製程技術也進一步以物性證明其可行性。在本篇論文包含了銅、鉭基擴散障礙層及低介電係數材料的鍍製,並配合新研究之化學機械研磨及後研磨清洗,整合銅/多孔二氧化矽的嵌刻結構及其漏電流機制的研究。 tc CONTENTS ABSTRACT ACKNOWLEDGMENT FIGURE CAPTIONS TABLE LIST CHAPTER 1. Introduction 1.1 Background of Interconnect Technology 1.2 The Electroless and Electroplating Cu Film 1.2.1 Electroless Plating Cu Film 1.2.2 Electroplating Cu Film 1.3 Organization of Dissertation References of Chapter 1 2. Surface Modification on Low-k Materials: Methylsilsesquioxane (MSQ) and Porous Silica 2.1 Introduction 2.2 Surface Modification on MSQ 2.2.1 Experiment 2.2.1.1 Film preparation and metal-insulator-semiconductor capacitor fabrication 2.2.1.2 Physical measurement 2.2.2 Results and Discussions 2.2.2.1 The Effects of Various Post-treatments on MSQ films 2.2.2.2 C-V Characteristics of Cu/TaN/Surface Modified MSQ/Si Capacitance 2.2.2.3 Leakage Current Study of Cu/TaN/Surface Modified MSQ/Si Capacitance 2.2.2.4 Leakage Current Study of Cu/TaN/PECVD oxide/Porous MSQ/Si 2.2.2.5 Degradation Study of MSQ Films 2.2.3 Summary 2.3 Surface Modified Porous Silica 2.3.1 Experiment 2.3.1.1 Porous Silica Film Preparation 2.3.1.2 Porous Silica Film Characterization 2.3.2 Results and Discussion 2.3.2.1 Influences of Surface-modifications on Porous Silica Film (FTIR) 2.3.2.2 Residual Stress and Stress Hysteresis Measurements (Stress) 2.3.2.3 C-V Characteristics of Cu/CVD TaN/Surface Modified Porous Silica/Si Capacitance 2.3.3 Summary 2.4 Conclusions References of Chapter 2 3. Tantalum-based Diffusion Barriers 3.1 Introduction 3.2 Experimental Procedures 3.3.1 Samples Preparation 3.3.2 Measurements 3.3 Results and Discussions 3.3.1 Chemical Compositions 3.3.2 Crystal Structure 3.3.3 Surface Roughness 3.3.4 Residual Stress and Stress Hysteresis 3.3.5 Resistivity and Thermal Stability 3.4 Conclusions References of Chapter 3 4. Metal-CMP and Post-CMP Cleaning 4.1 Introduction 4.2 Experimental Procedures 4.2.1 Samples Preparation 4.2.2 Measurements 4.3 Results and Discussions 4.3.1 Chemical Mechanical Polishing Rate 4.3.2 Surface Morphology 4.3.3 AES Maps 4.4 Conclusions References of Chapter 4 5. The Leakage Current Study on Cu/Barriers/Porous Silica Damascene Structures 5.1 Introduction 5.2 Experimental Procedures 5.3 Results and Discussion 5.3.1 The Line-to-Line Leakage Current Conduction Mechanisms of Cu/Porous silica Damascene 5.3.2 Reliability Test (Bias-Temperature Stress) 5.4 Conclusions References of Chapter 5 6. Conclusions and Future Work 6.1 Conclusions 6.2 Future Workrf 1) G.. E. Moore, “Cramming more components onto integrated circuits,” Electron., 19 (1965) 114. 2) S. P. Jeng, M. C. Chang, and R. H. Havemann, “Process integration and manufacturing issues for high performance interconnect,” MRS Symp. Proc. Adv. Metallization for Devices and Circuits, (1994) 25. 3) K. Rahmat, O. S. Nalagawa, S. Y. Oh, J. Moll, and W. T. Lynch, “A scaling scheme for interconnect in deep-submicron processes,” IEEE International Electron Devices Meeting Tech. Dig. (1995) 245. 4) S. Crowder, S. Greco, H. Ng, E. Barth, K. Beyer, G. Biery, J. Connolly, C. DeWan, R. Ferguson, X. Chen, M. Hargrove, E. Nowak, P. McLaughlin, R. Purtell, R. Logan, J. Oberschmidt, A. Ray, D. Ryan, K. Tallman, T. Wagner, V. McGhay, E. Crabbe, P. Agnello, R. Goldblatt, L. Su, and B. Davari, “A 0.18?m high-performance logic technology,” Symp. VLSI Tech. Dig. Tech. (1999) 105. 5) T. Sato, T. Kanamoto, A. Kurokawa, Y. Kawakami, H. Oka, T. Kitaura, H. Kobayashi, M. Hashimoto, “Accurate prediction of the impact of on-chip inductance on interconnect delay using electrical and physical parameter-based RSF,” Proceedings of the ASP-DAC 2003, Design Automation Conference, Asia and South Pacific , 21-24 Jan. (2003) 149. 6) R. Hossain, F. Viglione, M. Cavalli, “Designing fast on-chip interconnects for deep submicrometer technologies,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, April 2003, 11 (2003) 276. 7) The International Technology Roadmap for Semiconductors, interconnect, (2002). 8) R. Ho and M. Horowitz, International Technology Roadmap for Semiconductors, interconnect, (1997) 165. 9) T. Y. Chiang and K. C. Saraswat, “Impact of vias on the thermal effect of deep sub-micron Cu/low-k interconnects,” 2001 Symposium on VLSI Technology, Digest of Technical Papers, 12-14 June (2001) 141. 10) T. Y. Chiang, K. Banerjee, and K.C. Saraswat, “Analytical thermal model for multilevel VLSI interconnects incorporating via effect,” Electron Device Letters, IEEE, 23 (2002) 31. 11) E. Zielinski, S. Russell, R. List, A. Wilson, C. Jin, K. Newton, J. Lu, M. Gopikanth, V. Korthuis, N. Russell, P. Smith, S. O’Brien, and R. Havemann, “Damascene integration of copper and ultra-low-k xerogel for high performance interconnects,” IEEE International Electron Devices Meeting Tech. Papers. (1997) 936. 12) K. Maex and G. Groeseneken, “Why we need to rethink copper low-k reliability issues,” Solid State Technology, Jan. (2003) 30. 13) P. Kapur, J. P. McVittie, and K. C. Sarawat, “Technology and reliability constrained future copper interconnects-part I: resistance modeling,” IEEE Trans. Electron Devices, 49 (2002) 590. 14) P. Kapur, J. P. McVittie, and K. C. Sarawat, “Technology and reliability constrained future copper interconnects-part II: performance implications,” IEEE Trans. Electron Devices, 49 (2002) 598. 15) R. H. Havemann and J. A. Hutchby, “High-performance interconnects: an integration overview,” Proceedings of the IEEE, 89 (2001) 586. 16) A. Jain, K. M. Chi, T. T. Kodas, and M. J. Hampden-Smith, J. Electrochem. Soc. 140 (1993) 1434. 17) T. Nguyen, L. J. Charneski, and S. T. Hsu, J. Electrochem. Soc., 144 (1997) 2829. 18) Y. Shacham-Diamand, V. Dubin, and M. Angyal, “Electroless copper deposition for ULSI,” Thin Solid Films, 262 (1995) 93. 19) C. J. Weber. H. W. Pickering, and K. G. Weil, J. Electrochem. Soc., 144 (1997) 2364. 20) V. M. Dubin, Y. Shacham-Diamand, B. Zhao, P. K. Vasudev, and C. H. Ting, “Selective and blanket electroless copper deposition for ultralarge scale integration,” J. Electrochem. Soc., 144 (1997) 898. 21) P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, “Damascene copper electroplating for chip interconnections,” IBM J.Res. Develop., Sep. 42 (1998) 567. 22) N. T. Nguyen, E. Boellaard, N. P. Pham, V. G. Kutchoukov, G. Craciun, and P. M. Sarro, “Through-wafer copper electroplating for three-dimensional interconnects,” J. Micromech. Microeng., 12 (2002) 395. 23) M. Paunovic, Plating. 55 (1968) 1161. 24) K. B. Oldham, and J. C. Myland, Fundamentals of Electrochemical Science, Academic Press, New York, 1994. 25) J. C. Pan and F. S. Huang, “Electroless copper deposition on Ta, TaN, and TiN bases for ULSI,” Master Thesis, National Tsing-Hua Univ., Taiwan, 1999. 26) J. H. Zen and F. S. Huang, “Integration of Cu seed layer and electroplating deposition for ULSI,” Master Thesis, National Tsing-Hua Univ., Taiwan, 2000. 1) C. Case, “The challenges in the ITRS interconnect roadmap,” Solid State Technology, January (2002) 40. 2) The International Technology Roadmap for Semiconductors, interconnect (2002) 74. 3) N. Hendricks, “Finally! Implementation of low-k (<3) intermetal dielectrics,” Solid State Technology, March (2003) 31. 4) W. D. Gray and M. J. Loboda, “New barrier layers can help Cu/low-k integration,” Solid State Technology, March (2002) 37. 5) Allied Signal Advanced Materials, Accuspin 418 Flowable Spin-on Polymer, Product bulletin, Sunnyvale, CA (1996). 6) C. T. Chua, G. Sarkar, S. Y. M. Chooi, L. Chan, “Lower Temperature and Shorter Curing Time of Methylsilsesquioxane for Intermetal Dielectric Application,” Journal of Material Science Letters, 18 (1999) 33. 7) H. D. Jeong, H. S. Park, H. J. Shin, B. J. Kim, H. K. Kang, M. Y. Lee, “Integration of low k methyl silsesquioxane in a non-etchback/CMP process for 0.25 μm LSI device,” Proceeding of the IEEE 1999 International Interconnect Technology Conference, San Francisco, CA, May 24-26, 1999, IEEE, (1999) 190. 8) T. C. Chang, Y. J. Mei, Y. S. Mor, T. H. Perng, Y. L. Yang, S.M. Sze, “Effects of H2 plasma treatment on low dielectric constant methylsilsesquioxane,” J. Vac. Sci. Technol. B., 17 (1999) 2325. 9) C. F. Lin, I. C. Tung, M. S. Feng, Jpn. J. Appl. Phys., 38 (1999) 6253. 10) J. C. M. Hui, Y. Xu, C. Y. Foong, L. Marvin, L. Charles, L. Y. Shung, A. Inamdar, J. Yang, J. Kennedy, M. Ross, S. Q. Wang, “Integration of low k spin-on polymer (SOP) using electron beam cure for non-etch-back application,” Proceeding of the IEEE 1998 International Interconnect Technology Conference, San Francisco, CA, June 1-3, 1998, IEEE, (1998) 217. 11) Y. Shacham-Diamand, V. Dubin, M. Angyal, “Electroless copper deposition for ULSI,” Thin Solid Films, 262 (1995) 93. 12) N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to infrared and Raman Spectroscopy, Chap. 12, Academic Press, (1990). 13) S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York. (1981) 395. 14) S. U. Kim, T. Cho, and P. S. Ho, “Leakage current degradation and carrier conduction mechanisms for Cu/BCB damascene process under bias-temperature stress,” 1999 IEEE International Reliability Physics Symposium Proceedings 37th Annual, San Diego, CA, March 23-25, 1999, IEEE, (1999) 277. 15) A. Rose, Physical Review, 97 (1955) 1538. 16) S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York. (1981) 403. 17) C. C. Cho, D. M. Smith, and J. Anderson, Materials Chemistry and Physics, 42 (1995) 91. 18) J. K. Hong, H. S. Yang, M. H. Jo, H. H. Park, and S. Y. Choi, “Preparation and characterization of porous silica xerogel film for low dielectric application,” Thin Solid Films, 308-309 (1997) 495. 19) J. K. Hong, H. R. Kim, and H. H. Park, “The effect of sol viscosity on the sol—gel derived low density SiO2 xerogel film for intermetal dielectric application,” Thin Solid Films, 332 (1998) 449. 20) Y. Xi, Z. Liangying, W. Sasa, Sensors and Actuators B, 24-25 (1995) 264. 21) S. Rogojevic, A. Jain, W. N. Gill, and J. Plawsky, “Moisture adsorption in nanoporous silica xerogels,” Electrochemical and Solid-State Letters, 5 (2002) F22. 22) E. A. Manjari, A. Subrahmanyam, N. DasGupta, and A. DasGupta, “Electrical characterization of metal-insulator-semiconductor capacitors with xerogel as dielectric,” Applied Physics Letters, 80 (2002) 1800. 23) S. Yu, T. K. S. Wong, K. Pita, X. Hu, and V. Ligatchev, “Surface modified silica mesoporous films as a low dielectric constant intermetal dielectric,” J. Appl. Phys., 92 (2002) 3338. 24) C. H Wang and F. S. Huang, ”Porous SiO2,” Master Thesis, National Tsing-Hua Univ., Taiwan, 1999. 25) T. S. Lin and F. S. Huang, “Electrical measurements on porous SiO2/Cu system,” Master Thesis, National Tsing-Hua Univ., Taiwan, 2002. 26) A. M. Padovani, L. Riester, L. Rhodes, S. A. B. Allen, and P. A. Kohl, “Chemically Bonded Porogens in Methylsilsesquioxane,” J. Electrochem. Soc. 149 (2002) F161. 27) C. J. Brinker and G. W. Scherer, Sol-Gel Science, Academic Press, San Diego, Ch. 9 (1990) 581. 28) L. A. Chow, B. Dunn, K. N. Tu, and C. Chiang, “Mechanical properties of xerogel silica films derived from stress versus temperature and cracking experiments,” J. Appl. Phys., 87 (2000) 7788. 29) E. L. Huang and F. S. Huang, “Study of the low temperature LPCVD diffusion barrier TaN film,” Master Thesis, National Tsing-Hua Univ., Taiwan, 2003. 1) Y. Xia, H. Qian, G. H. Zhang, W. Q. Wang, D. X. Wu, “Study on key technologies of copper metallization in ULSI,” Proceeding of the IEEE Solid-State and Integrated-Circuit Technology, Shanghai, China, October 23-25, IEEE, (2001)372. 2) J. Pettinato, “Key challenges and directions in the 2001 factory integration roadmap,” Solid State Technology, January (2002) 44. 3) T. B. Massalski, (Ed.), Binary Phase Diagrams, The Materials Information Society, Materials Park, 1991. 4) A. A. Istratov, and E. R. Weber, “Physics of Copper in Silicon,” J. Electrochem. Soc. 149 (2002) G21. 5) J. S. Reid, X. Sun, E. Kolawa, and M. A. Nicolet, “Ti-Si-N diffusion barriers between silicon and copper,” IEEE Electron Device Lett. 15 (1994) 298. 6) J. S. Reid, E. Kolawa, R. P. Ruiz, and M. A. Nicolet, Thin Solid Films, 236 (1993) 319. 7) E. Kolawa, P. J. Pokela, J. S. Reid, J. S. Chen, R. P. Ruiz, and M. A. Nicolet, “Sputtered Ta-Si-N diffusion barriers in Cu metallizations for Si,” IEEE Electron Device Lett. 12 (1991) 321. 8) E. Kolawa, P. J. Pokela, J. S. Reid, J. S. Chen and M. A. Nicilet, Appl. Surf. Sci. 53 (1991) 373. 9) E. Kolawa, J. S. Chen, J. S. Reid, P. J. Pokela, and M. A. Nicolet, “Tantalum-based diffusion barriers in Si/Cu VLSI metallizations,” J. Appl. Phys. 70 (1991) 1369. 10) M. Stavrev, D. Fischer, F. Praessler, C. Wenzel, and K. Drescher, “Behavior of thin Ta-based films in the Cu/barrier/Si system,” J. Vac. Sci. Technol. A, 17 (1999) 993. 11) K. Musaka, B. Zheng, H. Wang, K. Wijkekoon, L. Chen, J. Lin, K. Watanabe, K. Ohira, T. Hosoda, K. Miyata, T. Hasegawa, G. Dixit, R. Chueng, M. Yamada, and S. Kadomura, “Thermal stress and reliability characterization of barriers for Cu interconnects,” 2001 Proceedings of the International Interconnect Technology Conference, IEEE, (2001) 83. 12) G. B. Alers, D. Dornisch, J. Siri, K. Kattige, L. Tam, E. Broadbent, and G. W. Ray, “Trade-off between reliability and post-CMP defects during recrystallization anneal for copper damascene interconnects,” 2001. 39th Proceedings of International Reliability Physics Symposium, IEEE, (2001) 350. 13) T. Hara, K. Sakata, A. Kawaguchi, and S. Kamijima, “Control of Agglomeration on Copper Seed Layer Employed in the Copper Interconnection,” Electrochemical and Solid-State Letters, 4 (2001) C81. 14) T. Hara, Y. Yoshida, and H. Toida, “Improved Barrier and Adhesion Properties in Sputtered TaSiN Layer for Copper Interconnects,” Electrochemical and Solid-State Letters, 5 (2002) G36. 15) D.W Lin and F.S. Huang, “TaSix nano-cluster diffusion barrier in Cu metalization,” Master Thesis, National Tsing-Hua Univ., Taiwan, (2002). 16) D. W. Lin, S. C. Huang, Y. J. Chen, X. J. Guo, and F. S. Huang, “Ta-rich tantalum silicide nano-cluster diffusion barrier in ULSI metallization,” Proc. ICSICT, 1 (2001) 496. 17) K. Maex and G. Groeseneken, “Why we need to rethink copper low-k reliability issues,” Solid State Technology, January (2003) 30. 18) L.S Ke and F.S. Huang, “The process integration study of Cu/porous SiOxNy,” Master Thesis, National Tsing-Hua Univ., Taiwan, (2003). 1) K. Maex, G. Groeseneken, “Why we need to rethink copper low-k reliability issues,” Solid State Technology, January (2003) 30. 2) The International Technology Roadmap for Semiconductors, interconnect (2001) 5. 3) N. Ohashi, Y. Yamada, N. Konishi, H. Maruyama, T. Oshima, H. Yamaguchi and A. Satoh, “Improved Cu CMP process for 0.13 μm node multilevel metallization,” Proceedings of the IEEE 2001 International Interconnect Technology Conference, Jun. 4-6, Burlingame, CA , USA, IEEE, (2001) 140. 4) K. Jow, G. B. Alers, M. Sanganeria, G. Harm, H. Fu, X. Tang, G. Kooi, G. W. Ray, M. Danek, “TDDB and voltage-ramp reliability of sigbase dielectric diffusion barriers in Cu/low-k interconnects,” 41st annual international reliability physics symposium, Dallas, Texas, (2003) 598. 5) Z. Stavreva, D. Zeidler, M. Plotner, G. Grasshoff, and K. Drescher, “Chemical-mechanical polishing of copper for interconnect formation,” Microelectronic Engineering. 33 (1997) 249. 6) J. Y. Lai, N. Saka, and J. H. Chun, “Evolution of Copper-Oxide Damascene Structures in Chemical Mechanical Polishing,” J. Electrochem. Soc. 149 (2002) G31. 7) J. Y. Lai, N. Saka, and J. H. Chun, “Evolution of Copper-Oxide Damascene Structures in Chemical Mechanical Polishing,” J. Electrochem. Soc. 149 (2002) G41. 8) Y. Ein-Eil, E. Abelev, E. Rabkin, and D. Starosvetsky, “The Compatibility of Copper CMP Slurries with CMP Requirements,” J. Electrochem. Soc. 150 (2003) C646. 9) T. C. Hu, S. Y. Chiu, B. T. Dai, M. S. Tsai, I.-C. Tung, M. S. Feng, “Nitric acid-based slurry with citric acid as an inhibitor for copper chemical mechanical polishing,” Materials Chemistry and Physics 61 (1999) 169. 10) M. Hariharaputhiran, Y. Li, S. Ramarajan, and S. V. Bahu, “Chemical Mechanical Polishing of Ta,” Electrochemical and Solid-State Letters, 3 (2000) 95. 11) B. Fraser, S. Rafie, M. Eissa, and S. Joshi, “Noncontact megasonics for post-Cu CMP cleaning,” Solid State Technology, July, (2000) 105. 12) W. Fyen, R. Vos, I. Teerlinck, S. Lagrange, J. Lauerhass, M. Meuris, P. Mertens, and M. Heyns, “Critical issues in post Cu CMP cleaning,” The 9th International Symposium on Semiconductor Manufacturing, (2000) 415. 13) J. Noguchi, N. Ohashi, T. Jimbo, H. Yamaguchi, K. Takeda, and K. Hinode, “Effect of NH3-plasma treatment and CMP modification on TDDB improvement in Cu metallization,” IEEE Trans. Electron Devices, 48 (2001) 1340. 14) J. J. Chen, F. S. Huang, “The integration of Cu/porous SiO2 with CMP technology,” Master Thesis, National Tsing-Hua Univ., Taiwan, 2000. 15) J. Hernandez, P. Wrschka, and G. S. Oehrlein, “Surface Chemistry Studies of Copper Chemical Mechanical Planarization,” J. Electrochem. Soc., 148 (2001) G389. 16) R. Carpio, J. Farkas, and R. Jairath, “Initial study on copper CMP slurry chemistries,” Thin Solid Films, 266 (1995) 238. 17) P. Wrschka, “Development of a Slurry Employing a Unique Silica Abrasive for the CMP of Cu Damascene Structures,” Ph.D. Thesis, University at Albany, State University of New York (1999). 18) Q. Luo, D. R. Campbell, and S. V. Bahu, “Copper Dissolution in Aqueous Ammonia-Containing Media during Chemical Mechanical Polishing,” Chem. Mater. 9 (1997) 2101. 19) J. M. Strigerwald, S. P. Murarka, R. J. Gutmann, and D. J. Duguette, “Chemical processes in the chemical mechanical polishing of copper,” Mater. Chem. Phys. 41 (1995) 217. 1) R. Tiwari, J. Strupp, P. Terala, and D. Shoham, “Automated residual metal inspection,” Advanced Semiconductor Manufacturing Conference, IEEE/SEMI, (2002) 402. 2) Zs. Tokei, F. Lanckmans, G. Van den bosch, M. Van Hove, K. Maex, H. Bender, S. Hens, J. Van Landuyt, “Reliability of copper dual damascene influenced by pre-clean,” Proceeding of 9th IPFA, Singapore, (2002) 118. 3) K. Mosig, T. Jacobs, P. Kofron, M. Daniels, K. Brennan, A. Gonzales, R. Augur, J. Wetzel, R. Havemann, A. Shiota, “Single and dual damascene integration of a spin-on porous ultra low-k material,” 2001, Proceedings of the International Interconnect Technology Conference, IEEE, (2001) 292. 4) K. Higashi, N. Nakamura, H. Miyajima, S. Satoh, A. Kojima, J. Abe, K. Nagahata, T. Tatsumi, K. Tabuchi, T. Hasegawa, H. Kawashima, S. Arakawa, N. Matsunaga, and H. Shibata, “A manufacturable copper/low-k SiOC/SiCN process technology for 90 nm-node high performance eDRAM,” IEEE (2002)15. 5) W. Fyen, R. Vos, I. Teerlinck ,S. Lagrange, J. Lauerhaas, M. Mertens, M. Heyns, The 9th International Symposium on Semiconductor Manufacturing, ISSM, (2000) 415. 6) J.Y. Lai, N. Saka, and J.H. Chun, “Evolution of Copper-Oxide Damascene Structures in Chemical Mechanical Polishing,” J. Electrochem. Soc. 149 (2002) G31. 7) J. Y. Lai, N. Saka, and J. H. Chun, “Evolution of Copper-Oxide Damascene Structures in Chemical Mechanical Polishing,” J. Electrochem. Soc. 149 (2002) G41. 8) S. U. Kim, T. Cho, and P. S. Ho, “Leakage current degradation and carrier conduction mechanisms for Cu/BCB damascene process under bias-temperature stress,” 37th Annual International Reliability Physics Symposium. San Diego. California. (1999) 277. 9) Z. C. Wu, C. C. Chiang, W. H. Wu, M. C. Chen, S. M. Jeng, L. J. Li, S. M. Jang, C. H. Yu, and M. S. Liang, “Leakage current mechanisms for damascene process of Cu/methylsilane-doped low-k chemical vapor deposited oxides,” Proceedings of the IEEE 2001 International Interconnect Technology Conference, Jun. 4-6, 2001, Burlingame, CA , USA, IEEE, (2001) 42. 10) D.W. Lin, S. C. Huang, Y. J. Chen, X. J. Guo, and F. S. Huang, “Ta-rich tantalum silicide nano-cluster diffusion barrier in ULSI metallization,” ICSICT, Proc. 1(2001) 496. 11) C. H. Chen, C. P. Chang, M. S. Tasi, and F. S. Huang, “The leakage current conduction mechanism of Cu/xerogel damascene scheme with nano-cluster TaSix,” 2002 19th proceedings of VLSI multilevel interconnection conference, VMIC, Singapore, Nov. 19-20, (2002) 289. 12) S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981). 13) J. G. Simmons, J. Appl. Phys. 34, (1963) 1793. 14) G. Rahavan, C. Chiang, P. B. Anders, S. M. Tzeng R. Villasol, G. Bai, M. Bohr, and D. B. Fraser, “Diffusion of copper through dielectric films under bias temperature,” Thin Solid Films 262, (1995) 168.id NH0920442004 sid 867910 cfn 0 / id NH0920442005 auc 鄭明正 tic 助聽器用矽微揚聲器 adc 黃瑞星 ty 博士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 96 kwc 微揚聲器 kwc 電磁驅動 kwc 微致動器 kwc 聚亞醯鞍薄膜 kwc 低應力氮化矽 kwc 微機電系統 abc 在本論文中,我們設計、製作及量測矽微加工揚聲器。輕、薄 、便宜的微小揚聲器在助聽器及手機的應用上有許多需求,本論文的目的是利用微機電系統的技術來開發積體化電磁式矽微揚聲器。利用半導體的製程優點包括可批次量產,使元件成本得以降低、並避免傳統加工組裝的困難,此外於製作時,控制電路可以整合在同一晶圓上。 tc 1. Introduction 1 1-1 Ear 1 1-2 Hearing loss and hearing aids 2 1-3 Trends in hearing aids 4 1-4 Thesis objectives and outline 6 2. MEMS mcrospeaker 8 2-1 MEMS 8 2-2 Requirements of microspeakers for hearing aids 9 2-3 A review of MEMS microspeakers 11 2-4 Proposal of a silicon microspeaker 16 3. Theory 17 3-1 The vibrational model 17 3-2 Load deflection model 20 3-3 Frequency response 24 3-4 The effect of residue stress 26 3-5 Thermal effect 27 3-6 Magnetic field of a permanent magnet 29 3-7 Magnetic circuit of the microspeaker 32 3-8 The analogous electrical circuit for the microspeaker 33 3-9 Back chamber design 38 4. Low stress nitride deposition 41 4-1 Thin film stress 41 4-2 Stress measurement 42 4-3 LPCVD systems setup 44 4-4 Nitride stress 45 4-5 Experiment 46 4-6 Results and discussion 47 4.6.1 Film stress and refractive index 47 4.6.2 Material characterization 49 4.6.3 Post-deposition annealing 50 4.6.4 Model for high temperature deposited films 51 4.6.5 Etching of deposited films 52 4-7 The corrugation membrane 53 5. Microfabrication technologies for the microspeaker 58 5-1 Silicon micromachining 58 5-2 Polyimide membrane 61 5-3 Electroplating 65 6. Fabrication and measurement of the microspeaker 68 6-1 Process flow 68 6-2 Static and dynamic measurement 71 6-3 Sound output measurement 74 6-4 Discussion 75 6.4.1 The package issue 75 6.4.2 The efficiency issue 80 6.4.3 Comparison of miniature loudspeakers 82 7.Conclusion and suggestions for further research 84 References 86 Appendix-1 The material properties 91 Appendix-2 The process flow for the microspeaker 92 Appendix-3 The ear model 94rf [1 ] http://www.press.hear-it.org/ [2 ] E. L. Lenzini, T. K. Wickstrom “ Electret microphone assembly, and method of manufacturer” US pattern 5408534, 1995 [3 ] G. C. Tibbets, ”Balanced armature transducers with transverse gap” US pattern 5299176, 1994 [4 ] http://www.symphonix.com/ [5 ] http://www.cochlear.com/ [6 ] http://www.widex.com/ [7 ] J. G. Aceti, M. A. Leedom, and W. P.Sjursen “Disposable hearing aid” US pattern 5881159, 1998; http://www.songbirdhearing.com/ [8 ] D. Schafer, S. Shoaf, and P. Loeppert “Micromachined condenser microphone for hearing aid use” IEEE Solid-State Sensor and Actuator Workshop (Hilton Head), Hilton Head, SC, p27-30, 1998 [9 ] P. R. Scheeper, A. G. H. Donk, W. Olthuis, and P. Bergveld “ A review of silicon microphones” Sensors and Actuators A, vol.44 no.1 p1-11, 1994 [10 ] http://www.memsnet.org/ [11 ] J. W. Judy “Microelectromechanical systems: fabrication, design and applications” Smart Materials and Structures, vol.10 p1115-1134, 2001 [12 ] S. Middelhoek, “Celebration of the tenth transducers conference: the past, present and future of transducer research and development” Sensors and Actuators A82 p2-23, 2000 [13 ] Nexus MST market analysis; http://www.nexus-mems.com/ [14 ] L.E. Kinsler, A.R. Frey, A.B. Coppens, and J. V. Sanders, Fundamentals of acoustics, 4th edition, John Wiley & Sons Inc, 2000 [15 ] L.H. Andersen, Soft magnetic actuator membranes, Master dissertation, Technical University of Denmark, 2002 [16 ] M. Nakao, T.Okusa, and Y. Hatamura “ Measurement of mechanical properties of eardrum, middle ear exudates and inner ear membrane” Sensors and Actuators A, vol. 83 p76-79, 2000 [17 ] T.G. Dietz, G. R. Ball, and B. H. Katz “Partially implantable vibrating ossicular prosthesis” 9th International Conference on Solid-State Sensors and Actuators (Transducers97), Chicago, IL, vol.1 p433-436, 1997 [18 ] J. Borwick, et.al, Loudspeaker and earphone handbook, Reed Ltd, 2th edition, 1994 [19 ] P. Rangsten, L. Smith, L. Rosengren, and B. Hok “ Electrostatically excited diaphragm driven as a loudspeaker” 8th International Conference on Solid-State Sensors and Actuators (Transducers95/Eurosensors IX), Stockholm, Sweden, vol.1 p430-433, 1995 [20 ] J. J. Neumann, and K. J. Gabriel “CMOS-MEMS membrane for audio-frequency acoustic actuation” Sensors and Actuators A, vol. 95 no.2 p.175-182, 2002 [21 ] S.S. Lee, R.P. Ried, and R.M. White “Piezoelectric cantilever microphone and microspeaker” Journal of Micro Electromechanical Systems, vol.5 no.4 p 238-242, 1996 [22 ] C.H. Han, and E.S. Kim “ Parylene-diaphragm piezoelectric acoustic transducers” 13th IEEE Micro Electro mechanical Systems Workshop (MEMS00), Miyazaki, Japan, pp148-152, 2000 [23 ] C.H. Han, and E.S. Kim “packaged parylene diaphragm piezoelectric microspeaker” Proceeding ASME MEMS00, Orlando, FL, vol.2, p111-115, 2000 [24 ] O. Brand, M. Hornung, H. Baltes, and C. Hafner “ Ultrasound barrier microsystem for object detection based on micromachined transducer elements” Journal of Micro Electromechanical Systems, vol.6 no.2 p151-160, 1997 [25 ] W.S.N. Trimmer ”Microrobots and micromechanical systems” Sensors and Actuators, vol.19 p267-287, 1989 [26 ] B. Wagner, and W. Benecke “Microfabricated actuator with moving permanent magnet” 4th IEEE Micro Electro mechanical Systems Workshop (MEMS91), Nara, Japan, p27-32, 1991 [27 ] I. J. Busch-Vishniac “ The case for magnetically driven microactuators” Sensors and Actuators A, vol.33 p207-230, 1992 [28 ] M.A. Harradine, T.S. Birch, J.C. Stevens, and C. Shearwood “A micromachined loudspeaker for the hearing impaired” 9th International Conference on Solid-State Sensors and Actuators (Transducers97), Chicago, IL, vol.1 p429-432, 1997 [29 ] W. Affane, and T.S. Birch “ A microminiature electromagnetic middle-ear implant hearing device” Sensors and Actuators A, vol.46-47 p 584-587,1995 [30 ] J. Rehder, P. Rombach, and O. Hansen” Balanced membrane micromachined loudspeaker for hearing instrument application” Journal of Microemechanics and Microengineering, vol.11 p334-338, 2001 [31 ] J. Rehder, L. H. Andersen, P. Rombach, and O. Hansen “ Magnetic reluctance change actuator for loudspeaker application” Proceeding Eurosensors, Prague, Czech Republic, 2002 [32 ] M. C. Cheng, W.S. Huang, C.T. Chin, and R.S. Huang “ A novel micromachined electromagnetic loudspeaker for hearing aids” 11th International Conference on Solid-State Sensors and Actuators (Transducers01/ Eurosensors IXV), Munich, Germany, vol.1 p.694-697, 2001 [33 ] S.P. Timoshenko and S. Woinowsky-Krieger, Theory of plates and shells, McGraw-Hill Inc, 1959 [34 ] S.D. Senturia, Microsystems design, Kluwer Academic Publishers, 2001 [35 ] ANSYS user manual 5.7 [36 ] M. Valente et.al, Hearing aids: standards, options, and limitations, Thieme medical publish Inc, 1996 [37 ] Y. Zhang, and K.D. Wise “ Performance of non-planar silicon diaphragms under large deflections” IEEE Journal of Micro Electromechanical Systems, vol.3 no.2 p59-68, 1994 [38 ] P. M. Morse, and K. U. Ingard, Theoretical acoustics, McGraw-Hill Book Com, 1968 [39 ] W.D. Pilkey, Formulas for stress ,strain, and structural matrices, John Wiley &Sons Inc, 1994 [40 ] S.H. Yi, and E.S. Kim “ Piezoelectric microspeaker with compressive nitride diaphragm” 15th IEEE Micro Electro mechanical Systems Workshop (MEMS02), Las Vegas, NV, p260-263, 2002 [41 ] C. Liu, T. Tsao, Y.C. Tai, and C.M. Ho “Surface micromachined magnetic actuators” 7th IEEE Micro Electro mechanical Systems Workshop (MEMS94), Oiso Japan, p57-62, 1994 [42 ] Q.A. Huang, and K.S. Lee “Analysis and design of polysilicon thermal flexure actuator” Journal of Micromechanics and Microengineering, p64-70 vol9, 1999 [43 ] L. Lin, and M. Chiao ”Electrothermal responses of lineshape microstructures” Sensors and Actuators A, vol.55 p35-41, 1996 [44 ] D. Craik, Magnetism- principles and applications, John Wiley & Sons Inc 1995 [45 ] ANSOFT user manual 3.0 [46 ] R.L. Smith, R.W. Bower, and S.D. Collins “ The design of a magnetically actuated micromachined flow valve” Sensors and Actuators A, vol.24, p47-53, 1990 [47 ] D.J. Sadler, T. M. Liakopoulos, and C. H. Ahn “A universal electromagnetic microactuator using magnetic interconnection concepts” Journal of Micro Electromechanical Systems, vol9 no.4, p460-468, 2000 [48 ] M. Rossi, Acoustics and electroacoustics, Artech House Inc 1988 [49 ] S. Konishi, M. Yoda “ Tunable acoustic absorbing system using a deep hole array” 11th IEEE Micro Electro mechanical Systems Workshop (MEMS98), Heideburg, Germany, p.655-660, 1998 [50 ] W.M. Leach, Introduction to electroacoutics and amplifier design, Kendall/Hunt Publishing Co, 1999 [51 ] A. Stoffel, A. Kovacs, W. Kronast, and B. Muller “LPCAD against PECVD for micromechanical applications” Journal of Micromechanics and Microengineering, vol6 p1-13 1996 [52 ] W.C. Tang, H. Nguyen, M. Judy, and R. T. Howe “ Electrostatic comb drive of lateral polysilicon resonators” Sensors and Actuators A 21, p328-331, 1990 [53 ] W.G. Ho, Low stress PECVD film, Master thesis, Electrical Engineering, National Tsing-Hua University, 1998 [54 ] J. R. Lai, Heavily Boron Doped Silicon Layer Etching and Stress for MEMS Application, Master thesis, Electrical Engineering, National Tsing-Hua University, 1999 [55 ] K.H. Lu, Design and Fabrication of microlamp, Master thesis, Electrical Engineering, National Tsing-Hua University, 2001 [56 ] W. Fang and J. A. Wickert “Determining mean and gradient residual stresses in thin films using micromachined cantilever” Journal of Micromechanics and Microengeering vol 6 p301-309 (1996) [57 ] M. Sekimoto, H. Yoshihara and T. Ohkubo ”Silicon nitride single-layer x-ray mask” Journal of Vacuum Science and Technology, vol.21(4) 1017-1021, 1982 [58 ] J. G. E. Gardeniers, H. A. C. Timans and C. C. G Visser:” LPCVD silicon-rich silicon nitride films for applications in micromechanics studied with statistical experimental design” Journal of Vacuum Science and Technology A 5 p 2879-2892, 1996 [59 ] M.C. Cheng, C.P. Chang, W. S. Huang, and R. S. Huang " Ultra low stress silicon-rich nitride films for micro structure fabrication " Sensors and Materials vol 11, p349-358, 1999 [60 ] B. C. S. Chou, J. S. Shie and C. N. Chen “ Fabrication of dielectric thin-film for microsensor applications “IEEE Electron Device Letters 12, p599-601, 1997 [61 ] A. G. Noskov, E. B. Gorokhov, G. A. Sokolova, E. M. Trukhanov and S. I. Stenin, Thin Solid Films 62 p800, 1988 [62 ] P.R. Scheeper, W. Olthuis, and P. Bergveld “ The design, fabrication, and testing of corrugated silicon nitride diaphragm” IEEE Journal of Micro Electromechanical Systems, p36-42, vol.3 no.1, 1994 [63 ] M. D. Giovanni, Flat and corrugated diaphragm design handbook, New York Marcel Dekker, 1982 [64 ] G.T.A. Kovacs, N.I. Maluf, and K. E. Petersen “ Bulk micromachining of silicon” Proceeding of IEEE, vol.86, 8 p1536-1551, 1998 [65 ] H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel “ Anisotropic etching of crystalline silicon in alkaline solutions I: Orientation dependence and behavior of passivation layers” Journal of Electrochemical Society, vol.137 (11) p3612-3626, 1990 [66 ] X. P. Wu and W. H. Ko “Compensating corner undercutting in anisotropic etching in (100) silicon, Sensors and Actuators A, vol.23 p1036-1041, 1990 [67 ] M. Pedersen, A polymer condenser microphone realized on silicon containing preprocessed integrated circuit, Ph.D. dissertation, University of Twente, 1997 [68 ] M. G. Allen, M. Mehregany, R.T. Howe, and S.D. Senturia “Microfabricatd structures for the in-situ measurement of residue stress, Young’s modulus, and ultimate strain of the films, Applied Physics Letters, vol.51 p241-243, 1987 [69 ] G.Y. Shiue, A study of polyimide membrane for micro actuator applications, M.S. dissertation, Electronics Engineering, National Tsing-Hua University, 1999 [70 ] J.W. Judy, Batch-fabricated ferromagnetic microactuators with silicon flexures, Ph.D dissertation, UC Berkeley, 1996 [71 ] W.S. Huang, private communications [72 ] C.R. Neagu, A medical microactuator based on an electrochemical principle, Ph.D. dissertation, University of Twente, 1998 [73 ] R. Tummala, Fundamentalsof microsystems packaging, McGRAW Hill Com 2001 [74 ] http://www.bkhome.com/ [75 ] J. Katz, et.al, Handbook of Clinical Audiology, Williams and Wilkins Com [76 ] J. Rehder, Micromachined Loudspeaker for hearing instrument application, Ph.D dissertation, Technical University of Denmark, 2002 [77 ] G. Y. Hwang, H.G. Kim, S. M. Hwang, and B. S. Kang “Analysis of harmonic distortion due to uneven magnetic field in a microspeaker used for mobile phones” IEEE Trans on Magnetics, vol38 no5 p2376-2378 2002 [78 ] CSC parylene deposition system; http://www.scscookson.com/ Table Captions Table 2-1 The requirements of the microspeaker for hearing aids Table 2-2 The scaling of electrostatic vs. electromagnetic actuators Table 4-1 The stress of selected MEMS materials Table 4-2 The process parameters for Si3N4 and silicon-rich nitride Table 4-3 Levels for deposition parameters. Table 4-4 (a) Details of deposition conditions designed by the Taguchi method. (b) Influence of process parameters on the residual stress. Table 4-5 RTA and furnace annealing of silicon rich nitride (initial stress 2.2 MPa). Table 5-1 Comparison of bulk silicon etchants Table 5-2 The candidate membrane materials for the microspeaker Table 5-3 A typical NiFe plating bath recipe Table 6-1 The solution composition for copper electroplating Table 6-2 The gas leakage rate of some types of glue Table 6-3 The battery voltages and capacities Table 6-4 The comparison of miniature loudspeakers Table A1-1 The mechanical properties of selected materials Figure Captions Fig. 1-1 The human ear Fig. 1-2 (a) The electret microphone (b) The balanced-armature magnetic receiver Fig. 1-3 Hearing aids Fig. 1-4 A disposable digital hearing aid Fig. 1-5 A silicon microphone from Knowles Inc Fig. 2-1 The complete system-on-chip Fig. 2-2 The model for pressure generation in the ear Fig. 2-3 The simulated pressure generation in a 2c.c. volume for 3.5*3.5mm2 and 4*4mm2 diaphragms Fig. 2-4 A micromachined moving magnet loudspeaker Fig. 2-5 A balanced membrane microspeaker Fig. 2-6 The proposed micromachined electromagnetic loudspeaker Fig. 3-1 The vibrational model of microspeaker Fig. 3-2 The time history of homogeneous solution (a) under damped (b) critical damped Fig. 3-3 The frequency response of the membrane Fig. 3-4 The load deflection model for the microspeaker Fig. 3-5 The analytic model for the load-deflection Fig. 3-6 The simulation for the microspeaker deformation when subjected to (a) 1μN (b) 80 μN Fig. 3-7 The simulated load-deflection using ANSYS Fig. 3-8 Shapes of the normal modes of vibration of a circular microspeaker in the audio frequency Fig. 3-9 The load-deflection for the microspeaker with different stress values Fig. 3-10 The electrothermal model for the microspeaker Fig. 3-11 The magnetization M and its related current density Fig. 3-12 Bz and Br magnetic fields along the line above the cylindrical magnet Fig. 3-13 The simulated magnetic induction along the line, 50μm above the top of a 2.6mm*2.6mm*3mm NdFeB permanent magnet with 0.6T Fig. 3-14 The magnetic circuit for the microspeaker Fig. 3-15 The magnetic induction distribution Fig. 3-16 the magnetic induction along the membrane in magnetic circuit Fig. 3-17 The analogous circuit for electrical, mechanical and acoustic domain Fig. 3-18 The SPICE model for the microspeaker Fig. 3-19 The simulation result of the membrane vibration Fig. 3-20 The theoretical operation of speakers in the air Fig. 3-21 The simulation of the microspeaker (a) in a 2 c.c. volume (b) in the air Fig. 3-22 The frequency responses of the microspeaker of different back chambers (a) 20mm3 (b) 40mm3. Fig. 3-23 The acoustic holes Fig. 3-24 The resonance frequency of acoustic holes Fig. 4-1 The stress of a thin film Fig. 4-2 (1) The compressive stress (2) The tensile stress Fig. 4-3 The possible profiles of micromachined cantilever Fig. 4-4 The homemade LPCVD system Fig. 4-5 (a) Film stress as a function of gas-flow ratio for various deposition temperatures at deposition pressure 140 mTorr (b) Film refractive index as a function of gas flow ratio for various deposition temperatures at deposition pressure 140 mTorr Fig. 4-6 Characterization of silicon-rich nitride film deposited at 900℃ and gas flow ratio (SiH2Cl2/NH3) of 2 (a) XRD measurement,(b) XPS measurement, (c) FTIR measurement, (d) Si/N ratio as a function of gas ratio deposited at 900℃ and 140 mTorr Fig. 4-7 (a) Micromachined cantileverbeams (b) Micromachined microbridges (c) Micromachined spiral coils (d) Micromachined floating plates (e) Micromachined torsional mirror (f) Micromachined circular membrane of 6cm diameter Fig. 4-8 A pressure-deflection curve of a circular flat and corrugated membrane Fig. 4-9 The cross-sectional view of a circular corrugated membrane and its parameters Fig. 4-10 The ANSYS simulation result of pressure-deflection for different corrugation membranes Fig. 4-11 The process flow for non-planar membranes for microspeakers Fig. 4-12 The isotropic etched corrugation Fig. 4-13 The fabricated non-planar microspeaker membrane Fig. 5-1 (a) Bulk micromachining (b) Surface micromachining Fig. 5-2 Bulk micromachining Fig. 5-3 The microstructures fabricated by (a) KOH etching and (b) DRIE Fig. 5-4 The polyimide repeat unit Fig. 5-5 The process flow for micromachined polyimide membrane Fig. 5-6 The released polyimide membrane Fig. 5-7 The bulge test for polyimide membrane (3.6mm*3.6mm*5μm) Fig. 5-8 A schematic electroplating cell for NiFe alloy Fig. 5-9 The process flow for electroplating microstructures Fig. 5-10 Typical B-H curve of electroplating NiFe used in this work Fig. 6-1 The process flow for microspeaker fabrication Fig. 6-2 Top views of the batch-fabricated microspeaker Fig. 6-3 The complete microspeaker for testing Fig. 6-4 The static response of the microspeaker Fig. 6-5 Dynamic frequency response under sinusoidal voltage driving Fig. 6-6 The vibration displacement of the microspeaker (a) 200Hz (b) 1kHz (c) 12kHz (d) 18kHz Fig. 6-7 The measurement setup for sound testing (a) 2 c.c. coupler (b) in the air Fig. 6-8 The measured frequency response of the 3.5mm microspeaker Fig. 6-9 The leakage from the packaging Fig. 6-10 The effect of leakage in a 2 c.c. coupler testing Fig. 6-11 The Helmoholtz frequency of the vent vs its diameter Fig 6-12 The simulated frequency response of the system (leakage path included) Fig.6-13 The size comparison of the packaging technologies Fig.6-14 The proposed sealing for the microspeaker packaging Fig. A3-1 Modeling the ear canal as electrical analog transmission lines Fig. A3-2 The ear canal to the eardrum transfer function Fig. A3-3 The Zwislocki’s model for the normal middle-ear Fig. A3-4 The normal middle ear impedanceid NH0920442005 sid 843967 cfn 0 / id NH0920442006 auc 施君興 tic 奈米級金氧半電晶體的元件設計與短通道效應模型 adc 連振炘 ty 博士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 221 kwc 奈米級金氧半電晶體 kwc 元件設計 kwc 短通道效應 abc 本論文在深入探討奈米級金氧半電晶體繼續微縮的可行性,提出創新的短通道效應解析模型及完整的元件設計之解決方案。在這論文中完整的推導出奈米級金氧半電晶體的短通道效應解析模型,涵蓋各式各樣的通道摻雜和接面結構,能夠清楚正確而完全解析的來分析奈米級金氧半電晶體的短通道行為。並提出一個新穎的元件設計方案,包括元件結構與通道摻雜的設計以及製作的方法,具有極佳的短通道表現及極小的汲極漏電流與適當低的臨界電壓,能將金氧半電晶體元件成功微縮到五十奈米以下。 tc Abstract i Acknowledgements iii Contents v List of Symbols viii List of Tables xiii List of Figures xiv Chapter 1 Introduction 1 1-1 Scaling of MOSFET device 1 1-2 Objective and organization 4 Chapter 2 Short-Channel Effect Model for Nanoscale MOSFET 9 2-1 Introduction 9 2-2 Effective-doping model 11 2-3 2D scale-length solution 13 2-4 Threshold-voltage and roll-off equation 15 2-5 Results and discussions 17 2-6 Summary 20 Chapter 3 Ultra-Shallow Junction and Retrograde Channel 39 3-1 Introduction 39 3-2 Potential solution for ultra-shallow junction device 41 3-3 Threshold-voltage and roll-off equation with ultra-shallow junction 44 3-4 Potential solution for retrograde channel device 46 3-5 Threshold-voltage and roll-off equation with retrograde channel 47 3-6 Results and discussions 49 3-7 Summary 53 Chapter 4 Grade Junction and Halo Doped Channel 67 4-1 Introduction 67 4-2 Laterally nonuniform channel 69 4-3 Potential solution for laterally nonuniform channel device 70 4-4 Threshold-voltage and roll-off equation 72 4-5 Results and discussions 76 4-6 Summary 80 Chapter 5 Design Strategy of Channel Profile by Localized Halo 91 5-1 Introduction 91 5-2 Optimization of localized heavy doped halo profile 92 5-3 Localized halo for bulk MOSFET 95 5-4 Summary 96 Chapter 6 Insulated Shallow Extension for Sub-50 nm Bulk MOSFET 106 6-1 Introduction 106 6-2 Insulated Shallow Extension (ISE) structure 107 6-3 Localized-halo ISE for sub-50 nm bulk MOSFET 109 6-4 Summary 110 Chapter 7 Short-Channel Effect of Insulated Shallow Extension 118 7-1 Introduction 118 7-2 Potential solution for ISE MOSFET 119 7-3 Threshold-voltage and roll-off equation for ISE MOSFET 121 7-4 Results and discussions 123 7-5 Summary 124 Chapter 8 Conclusions 132 8-1 Short-channel effect model for nanoscale MOSFET 132 8-2 Localized-halo ISE for achieving sub-50 nm bulk MOSFET 135 Appendix Derivations of 2D Potential Solutions in Subthreshold 138 A Uniform channel with deep junctions 140 B Uniform channel with ultra-shallow junctions 149 C Retrograde channel 157 D Graded junction and halo doped channel 169 E Uniform channel with Insulated Shallow Extension 178 Reference 196rf [1 ] G. E. Moore,“Cramming more components onto integrated circuits,”Electronics, Vol. 38, pp. 114-117, Apr. 1965. [2 ] P. K. Bondy,“Moore’s law governs the silicon revolution,”Proc. IEEE, Vol. 86, pp. 78-81, Jan. 1998. [3 ] ITRS, International Technology Roadmap for Semiconductors, 2001 edition. [4 ] S. I. Takagi, A. Toriumi, M. Iwase, and H. Tango,“On the universality of inversion layer mobility in Si MOSFET's: Part I- effects of substrate impurity concentration,”IEEE Trans. Electron Devices, Vol. 41, pp. 2357-2362, Dec. 1994. [5 ] R. H. Yan, A. Ourmazd, and K. F. Lee,“Scaling the Si MOSFET: From bulk to SOI to bulk,”IEEE Trans. Electron Devices, Vol. 39, pp. 1704-1710, July 1992. [6 ] M. Aoki, T. Ishii, T. Yoshimura, Y. Kiyota, S. Iijima, T. Yamanaka, T. Kure, K. Ohyu, T. Nishida, S. Okazaki, K. Seki, and K. Shimohigashi,“Design and performance of 0.1 m CMOS devices using low impurity channel transistors (LICT’s),”IEEE Electron Device Letters, Vol. 13, pp. 50-52, Jan. 1992. [7 ] G. G. Shahidi, B. Davari, T. J. Bucelot, P. A. Ronsheim, P.J. Coane, S. Pollack, C. R. Blair, B. Clark, and H. H. Hansen,“Indium channel implant for improved short-channel behavior of submicrometer NMOSFET’s,”IEEE Electron Device Letters, Vol. 14, pp. 409-411, Aug. 1993. [8 ] T. Hori,“A 0.1 μm CMOS technology with tilt-implanted punchthrough stopper (TIPS),”in IEDM Tech. Dig., 1994, pp. 75-78. [9 ] C. H. Wann, K. Noda, T. Tanaka, M. Yoshida, and C. Hu,“A comparative study of advanced MOSFET concepts,”IEEE Trans. Electron Devices, Vol. 43, pp. 1742-1753, Oct. 1996. [10 ] Y. Taur, C. H. Wann, and D. J. Frank,“25 nm CMOS design considerations,”in IEDM Tech. Dig., 1998, pp. 789-792. [11 ] B. Yu, H. Wang, O. Milic, Q. Xiang, W. Wang, J. X. An, and M.-R. Lin,“50nm gate-length CMOS transistor with super-halo: design, process, and reliability,”in IEDM Tech. Dig., 1999, pp. 653-656. [12 ] T. N. Nguyen,“Small-geometry MOS transistors: physics and modeling of surface- and buried-channel MOSFETs,”Ph.D. dissertation, Stanford University, CA, 1984. [13 ] Y. Taur and T. H. Ning, Fundamentals of modern VLSI devices. Cambridge, U.K.: Cambridge University Press, 1998. [14 ] D. J. Frank, Y. Taur, and H.-S. P. Wong,“Generalized scale length for two-dimensional effects in MOSFET’s,”IEEE Electron Device Letters, Vol. 19, pp. 385-387, Oct. 1998. [15 ] K. N. Ratnakumar and J. D. Meindl,“Short-channel MOST threshold voltage model,”IEEE J. Solid-State Circuits, Vol. 17, pp. 937-948, Oct. 1982. [16 ] P.-S. Lin and C.-Y. Wu,“A new approach to analytically solving the two-dimensional Poisson’s equation and its application in short-channel MOSFET modeling,”IEEE Trans. Electron Devices, Vol. 34, pp. 1947-1956, Sep. 1987. [17 ] T. Skotnicki, G. Merckel and T. Pedron,“The voltage-doping transformation: a new approach to the modeling of MOSFET short-channel effects,”IEEE Electron Device Lett., Vol. 9, pp. 109-112, Mar. 1988. [18 ] Y. Taur,“CMOS design near the limit of scaling,”IBM J. Res. & Dev., Vol. 46, pp. 213-222, 2002. [19 ] “MEDICI: Two-Dimensional Device Simulation Program,” Avanti Corp., Fremont, CA, 2000. [20 ] J. R. Brews, W. Fichtner, E. H. Nicollian and S. M. Sze,“Generalized guide for MOSFET miniaturization,”IEEE Electron Device Lett., Vol. 1, pp. 2-4, 1980. [21 ] Z.-H. Liu, C. Hu, J.-H. Huang, T.-Y. Chan, M.-C. Jeng, P. K. Ko and Y. C. Cheng,“Threshold voltage model for deep-submicrometer MOSFET’s,”IEEE Trans. Electron Devices, Vol. 40, pp. 86-95, Jan. 1993. [22 ] D. J. Frank, R. H. Dennard, E. Nowak, P.M. Solomon, Y. Taur, and H.-S. P. Wong,“Device scaling limits of Si MOSFETs and their application dependencies,”Proc. IEEE, Vol. 89, pp. 259-288, Mar. 2001. [23 ] D. J. Frank and Y. Taur,“Design considerations for CMOS near the limits of scaling,”Solid-State Electronics, Vol. 46, pp. 315-320, 2002. [24 ] L. D. Yau,“A simple theory to predict the threshold voltage of short-channel IGFET’s,”Solid-State Electronics, Vol. 17, pp. 1059-1063, 1974. [25 ] G. W. Taylor,“The effects of two-dimensional charge sharing on the above-threshold characteristics of short-channel IGFETs,”Solid-State Electronics, Vol. 22, pp. 701-717, 1979﹒ [26 ] R. R. Troutman,“VLSI limitations from drain-induced barrier lowering,”IEEE Trans. Electron Devices, Vol. 26, pp. 461-466, Apr. 1979. [27 ] D. J. Frank and H.-S. P. Wong,“Analysis of the design space available for high-k gate dielectrics in nanoscale MOSFETs,”Superlattices and Microstructures, Vol. 28, pp. 485-491, 2000. [28 ] N. D. Arora,“Semi-empirical model for the threshold voltage of a double implanted MOSFET and its temperature dependence,”Solid-State Electronics, Vol. 30, pp. 559-569, 1987﹒ [29 ] N. D. Arora, and M. S. Sharma,“Modeling the anomalous threshold voltage behavior of submicrometer MOSFET’s,”IEEE Electron Device Lett., Vol. 13, pp. 92-94, Feb. 1992. [30 ] R. Gwoziecki, T. Skotnicki, P. Bouillon and P. Gentil,“Optimization of Vth roll-off in MOSFET’s with advanced channel architecture- retrograde doping and pockets,”IEEE Trans. Electron Devices, Vol. 46, pp. 1551-1561, July 1999. [31 ] T. N. Nguyen and J. D. Plummer,“Physical mechanisms responsible for short-channel effects in MOS devices,”in IEDM Tech. Dig., 1981, pp. 596-599. [32 ] Y. H. Song, K. Y. Kim, J. C. Bae, K. Kato, E. Arakawa, K. S. Kim, K. T. Park, H. Kurino, and M. Koyanagi,“A novel atomic layer doping technology for ultra-shallow junction in sub-0.1 um MOSFETs,”in IEDM Tech. Dig., 1999, pp. 505-508. [33 ] B. Yu, Y. Wang, H. Wang, Q. Xiang, and C. Riccobene,“70 nm MOSFET with ultra-shallow, abrupt, and super-doped S/D extension implemented by laser thermal process (LTP),”in IEDM Tech. Dig., 1999, pp. 509-512. [34 ] A. Hokazono, K. Ohuchi, K. Miyano, I. Mizushima, Y. Tsunashima, and Y. Toyoshima,“Source/drain engineering for sub-100 nm CMOS using selective epitaxial growth technique,”in IEDM Tech. Dig., 2000, pp. 243-246. [35 ] R. Kasnavi, P. B. Griggin, and J. D. Plummer,“Ultra low energy Arsenic implant limits on sheet resistance and junction depth,”in VLSI Tech. Dig., 2000, pp. 112-113. [36 ] K. Lee, J.-H. Sim, Y. Li, W.-T. Kang, R. Malik, and R. Rengarajan,“Shallow n+/p+ junction formation using plasma immersion ion implantation for CMOS technology,”in VLSI Tech. Dig., 2001, pp. 21-22. [37 ] T. Ito, K. Suguro, T. Itani, K. Nishinohara, K. Matsuo, and T. Saito,“Improvement of threshold voltage roll-off by ultra-shallow junction formed by flash lamp annealing,”in VLSI Tech. Dig., 2003, pp. 53-54. [38 ] H. Wakabayashi, M. Ueki, M. Narihiro, T. Fukai, N. Ikezawa, T. Matsuda, K. Yoshida, K. Takeuchi, Y. Ochiai, T. Mogami, and T. Kunio,“45-nm gate-length CMOS technology and beyond using steep halo,”in IEDM Tech. Dig., 2000, pp. 49-53. [39 ] S. Pidin, H. Shido, T. Yamamoto, N. Horiguchi, H. Kurata, and T. Sugii,“Experimental and simulation study on sub-50 nm CMOS design,”in VLSI Symp. Dig., 2001, pp. 35-36. [40 ] M. Y. Kwong, R. Kasnavi, P. Griffin, J. D. Plummer, and R. W. Dutton,“Impact of lateral source/drain abruptness on device performance,”IEEE Trans. Electron Devices, Vol. 49, pp. 1882-1890, Nov. 2002. [41 ] Y. Taur,“MOSFET channel length: Extraction and Interpretation,”IEEE Trans. Electron Devices, Vol. 47, pp. 160-170, Jan. 2000. [42 ] K. K. Ng and W. T. Lynch,“Analysis of the gate-voltage-dependent series resistance of MOSFET,”IEEE Trans. Electron Devices, Vol. 33, pp. 965-972, July 1986. [43 ] T. Ghani, K. Mistry, P. Packan, S. Thompson, M. Stettler, S. Tyagi, and M. Bohr,“Scaling challenges and device design requirements for high performance sub-50 nm gate length planar CMOS transistors,”in VLSI Symp. Dig., 2000, pp. 174-175. [44 ] B. Yu, C. H. J. Wann, E. D. Nowak, K. Noda, and C. Hu,“Short-channel effect improved by lateral channel-engineering in deep-submicronmeter MOSFET’s,”IEEE Trans. Electron Devices, Vol. 44, pp. 627-634, Apr. 1997. [45 ] Y.-S. Pang and J. R. Brews,“Analytical subthreshold surface potential model for pocket n-MOSFETs,”IEEE Trans. Electron Devices, Vol. 44, pp. 2209-2216, Dec. 2002. [46 ] R. Rios, W.-K. Shih, A. Shah, S. Mudanai, P. Packan, T, Sandford, and K. Mistry,“A three-transistor threshold voltage model for halo processes,”in IEDM Tech. Dig., 2002, pp. 113-116. [47 ] S.-D. Kim, C.-M. Park, and J. C. S. Woo,“Advanced model and analysis of series resistance for CMOS scaling into nanometer regime-part I: theoretical derivation,”IEEE Trans. Electron Devices, Vol. 49, pp. 457-466, Mar. 2002. [48 ] S.-D. Kim, C.-M. Park, and J. C. S. Woo,“Advanced model and analysis of series resistance for CMOS scaling into nanometer regime-part II: quantitative analysis,”IEEE Trans. Electron Devices, Vol. 49, pp. 467-472, Mar. 2002. [49 ] M. Y. Kwong, C.-H. Choi, R. Kasnavi, P. Griffin, and R. W. Dutton,“Series resistance calculation for source/drain extension regions using 2-D device simulation,”IEEE Trans. Electron Devices, Vol. 49, pp. 1219-1225, July 2002. [50 ] J. A. Hutchby, G. I. Bourianoff, V. V. Zhirnov, and J. E. Brewer,“Extending the road beyond CMOS,”IEEE Circuits Devices Mag., vol. 18, pp. 28-41, Mar. 2002. [51 ] L. T. Su, J. B. Jacobs, J. E. Chung, and D. A. Antoniadis,“Deep-submicrometer channel design in silicon-on-insulator (SOI) MOSFET’s,”IEEE Electron Device Lett., Vol. 15, pp. 366-369, Sep. 1994. [52 ] E. Suzuki, K. Ishii, S. Kanemaru, T. Maeda, T. Tsutsumi, T. Sekigawa, K. Nagai, and H. Hiroshima,“Highly suppressed short-channel effects in ultrathin SOI n-MOSFET’s,”IEEE Trans. Electron Devices, Vol. 47, pp.354-359, Feb. 2000. [53 ] A. Wei, M. J. Sherony, and D. A. Antoniadis,“Effect of floating-body charge on SOI MOSFET design,”IEEE Trans. Electron Devices, Vol. 45, pp.430-438, Feb. 1998. [54 ] D. A. Dallmann and K. Shenai,“Scaling constraints imposed by self-heating in submicron SOI MOSFETs,”IEEE Trans. Electron Devices, Vol. 42, pp.489-496, Mar. 1995. [55 ] M. Jurczak, T. Skotnicki, M. Paoli, B. Tormen, J. Martins, J. L. Regolini, D. Dutartre, P. Ribot, D. Lenoble, R. Pantel, and S. Monfray,“Silicon-on-nothing (SON)-an innovative process for advanced CMOS,”IEEE Trans. Electron Devices, Vol. 47, pp. 2179-2187, Nov. 2000. [56 ] S. Monfray, T. Skotnicki, Y. Morand, S. Descombes, M. Paoli, P. Ribot, A. Talbot, D. Dutartre, F. Leverd Y. Lefriec, R. Pantel, M. Haond, D. Renaud, M.-E. Nier, C. Vizioz, D. Louis, and N. Buffet,“First 80nm SON (Silicon-On-Nothing) MOSFETs with perfect morphology and high electrical performance,”in IEDM Tech. Dig., 2001, pp. 645-648. [57 ] T. Skotnicki, M. Jurczak, R. Gwoziecki, D. Lenoble, P. Ribot, M. Paoli, J. Martins, B. Tormen, A. Grouiller, R. Pantel, and J. Galvier,“Heavily doped and extremely shallow junctions on insulator- by SONCTION (SilicON Cut-off juncTION) process,”in IEDM Tech. Dig., 1999, pp. 513-516. [58 ] M. Jurczak, T. Skotnicki, R. Gwoziecki, M. Paoli, B. Tormen, P. Ribot, D. Dutartre, S. Monfray, and J. Galvier,“Dielectric pockets- a new concept of the junctions for deca-nanometric CMOS devices,”IEEE Trans. Electron Devices, Vol. 48, pp. 1770-1774, Aug. 2001. [59 ] H. van Meer and K. D. Meyer,“The spacer/replacer concept: a viable route for sub-100 nm ultrathin-film fully-depleted SOI CMOS,”IEEE Electron Device Lett., Vol. 23, pp. 46-48, Jan. 2002. [60 ] H. van Meer and K. D. Meyer,“70 nm fully-depleted SOI CMOS using a new fabrication scheme: the spacer/replacer scheme,”in VLSI Symp. Dig., 2002, pp. 170-171.id NH0920442006 sid 847913 cfn 0 / id NH0920442007 auc 李聖華 tic 切換式整流器之開發:模式化、控制及多模組操控 adc 廖聰明 ty 博士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 159 kwc 切換式整流器 kwc 切換式整流器 kwc 功率因數校正 kwc 零電壓切 kwc 磁滯電流控制 kwc 定頻 kwc 分流 kwc 多模組 abc 本論文旨在從事切換式整流器之電路設計、建模、控制及多模組操作。首先,分析與量化設計單相硬切與軟切切換式整流器。建立以數位訊號處理器為主之控制環境,並量化設計強健電壓數位控制器,使切換式整流器在良好之輸出電壓調節特性下,具有高電力品質之線電流。 tc LIST OF CONTENTS ABSTRACT ............................................................................................................ I ACKNOWLEDGE .................................................................................................. II LIST OF CONTENTS ............................................................................................. III LIST OF FIGURES ................................................................................................. VII LIST OF TABLES .................................................................................................. XIV CHAPTER 1 INTRODUCTION ....................................................................... 1 1.1 Motivation ................................................................................... 1 1.2 Literature Survey ........................................................................ 4 1.2.1 Single-Phase SMR ............................................................. 4 1.2.2 Parallel Operation of Single-Phase SMRs ......................... 8 1.2.3 Three-Phase SMR .............................................................. 10 1.2.4 Current and Voltage Controls ............................................ 14 1.3 Contributions of this Dissertation ............................................... 16 1.4 Organization of this Dissertation ................................................ 17 CHAPTER 2 DSP-BASED SINGLE-PHASE SMR AND SSMR ................... 18 2.1 Introduction ................................................................................. 18 2.2 DSP-Based Single-Phase SMR ................................................... 18 2.2.1 Design of Circuit Components ........................................... 20 2.2.2 DSP-Based Digital Control Environment .......................... 23 2.3 DSP-Based Single-Phase SSMR ................................................. 24 2.3.1 Circuit Operation and Governing Equations ..................... 24 2.3.2 Design of Constituted Components ................................... 33 2.4 Performance Evaluation of SMR and SSMR .............................. 38 CHAPTER 3 DYNAMIC MODELING AND CONTROL FOR SINGLE- PHASE SMR .............................................................................. 44 3.1 Introduction ................................................................................. 44 3.2 Current Loop ............................................................................... 44 3.2.1 Dynamic Modeling ............................................................ 44 3.2.2 Current Controller Design .................................................. 45 3.3 Voltage Loop .............................................................................. 47 3.3.1 Dynamic Modeling ............................................................ 47 3.3.2 Voltage Controller Design ................................................. 53 3.4 Simulation and Experimental Results ......................................... 58 CHAPTER 4 PARALLEL OPERATION AND CONTROL OF SINGLE- PHASE SMRS ............................................................................ 63 4.1 Introduction ................................................................................. 63 4.2 System Configuration of DSP-Based Paralleled SMRs .............. 64 4.2.1 Master Controller ............................................................... 64 4.2.2 Slave Controller ................................................................. 66 4.3 Dynamic Modeling and Controller Design for Voltage Loop .... 66 4.3.1 Dynamic Modeling ............................................................ 66 4.3.2 Design of Feedback Controller .......................................... 68 4.4 Robust Control ............................................................................ 70 4.5 Simulation and Experimental Results ......................................... 74 4.5.1 Voltage Responses ............................................................. 74 4.5.2 Current Sharing and Line Current Responses .................... 78 CHAPTER 5 THREE-PHASE SMR CONSTRUCTED USING SINGLE- PHASE MODULES .................................................................... 82 5.1 Introduction ................................................................................. 82 5.2 Problems Statement and The Proposed Three-Phase SMR ........ 82 5.2.1 Problems Statement ........................................................... 82 5.2.2 The Proposed Three-Phase SMR ....................................... 85 5.3 System Rating ............................................................................. 89 5.3.1 -Connected Three-Phase SMR .................................... 94 5.3.2 Modified T-Connected Three-Phase SMR ........................... 94 5.3.3 Single-Phase SMR ............................................................. 94 5.4 Design of Power Circuit Components ........................................ 95 5.5 Voltage and Current Controllers ................................................. 97 5.6 Simulation and Experimental Results ......................................... 98 5.6.1 Simulation Results ............................................................. 98 5.6.2 Experimental Results ......................................................... 98 CHAPTER 6 SINGLE-PHASE SMR WITH VARYING-BAND HYSTERESIS PWM SCHEME ................................................. 107 6.1 Introduction ................................................................................. 107 6.2 Traditional HCC PWM Scheme ................................................. 107 6.3 The Proposed Robust Constant-Frequency HCC PWM Scheme .. 110 6.3.1 Intuitive Harmonic Spectral Analysis ................................ 110 6.3.2 The Proposed Control Approach ....................................... 112 6.3.3 The Proposed Robust Constant-Frequency HCC PWM Scheme .............................................................................. 112 6.4 Simulation and Measured Results of SMR with Constant Switching Frequency CCPWM Scheme ................................... 117 6.4.1 The Designed Components ................................................ 117 6.4.2 Simulation and Measured Results ...................................... 119 6.5 HCC PWM Schemes with Deterministic and Random Varying Switching Frequencies ................................................................ 129 6.5.1 Deterministic Varying Switching Frequency ..................... 129 6.5.2 Random Switching Frequency ........................................... 133 6.6 Effect of Varying Band on EMI Characteristics of a HCC PWM Scheme ........................................................................................ 141 CHAPTER 7 CONCLUSIONS ........................................................................ 150 REFERENCES ........................................................................... 152 BIOGRAPHICAL NOTE ........................................................... 158 LIST OF FIGURES Fig. 1.1. Traditional rectifier and its drawn line current ..................................... 2 Fig. 1.2. Low-frequency boost-type SMR and its key waveforms ..................... 5 Fig. 1.3. Boost-type SMR and its control scheme ............................................... 7 Fig. 1.4. Power circuit of boost-type soft switching mode rectifier .................... 9 Fig. 1.5. (a) The equivalent circuit of parallel converters; (b) individual conver- ter voltage drooping characteristic control via current feedback ........ 11 Fig. 1.6. Master/slave current sharing scheme with dedicated/rotating master module ................................................................................................... 12 Fig. 1.7. Configuration of master/slave current sharing control scheme with current sharing bus and automatic decided master module .................. 13 Fig. 1.8. System configuration of the SMR constructed using three SMRs ..................................................................................................... 15 Fig. 2.1. System configuration of the developed DSP-based SMR .................... 19 Fig. 2.2. Measured waveforms of and .................................................... 22 Fig. 2.3. Over-current protection circuit ............................................................. 25 Fig. 2.4. (a) A/D interfacing circuit; (b) D/A interfacing circuit ........................ 25 Fig. 2.5. The control routine flowcharts .............................................................. 26 Fig. 2.6. (a) System configuration of the developed DSP-based SSMR; (b) the generation of switching signals for main and auxiliary switches ......... 27 Fig. 2.7. Some key switching waveforms of the ZVT SSMR within one switching period .................................................................................... 29 Fig. 2.8. (a) to (g): circuit configurations and current paths of mode 0 to mode 6 ............................................................................................................. 30 Fig. 2.9. Simulated voltage and current waveforms of the ZVT SSMR within one switching period ( , , ) .......... 36 Fig. 2.10. Measured voltage and current waveforms of the designed ZVT SSMR ( , , ) ............................................ 37 Fig. 2.11. Simulated input voltage and current waveforms of SSMR: (a) ; (b) .......................................................... 39 Fig. 2.12. Measured input voltage and current waveforms of SSMR: (a) ; (b) .......................................................... 40 Fig. 2.13. Output voltage response of SSMR due to step load power change of ( ): (a) simulation; (b) measurement .. 41 Fig. 3.1. (a) Current loop control system block diagram of the SMR; (b) simplified discrete block diagram ......................................................... 46 Fig. 3.2. Current loop Bode plots ........................................................................ 48 Fig. 3.3. (a) Voltage loop control system block diagram of the SMR; (b) discrete block diagram ........................................................................................ 49 Fig. 3.4. Measured output voltages of the SMR with at the operation point ( , ): (a) due to step command change ( ); (b) due to step load power change( ) 52 Fig. 3.5 (a) and (b): simulated output voltages at the same conditions of Figs. 3.3(a) and 3.3(b) .................................................................................... 54 Fig. 3.6. Sketched output voltage responses due to step load power change for a fixed and different values of ................................................. 57 Fig. 3.7. Simulated due to step load change of ................... 60 Fig. 3.8. (a) Measured and due to step load change of ( ); (b) measured line input voltage and current at .................................................................................... 61 Fig. 3.9. (a) Measured and due to step load change of ( ); (b) measured line input voltage and current at .................................................................................... 62 Fig. 4.1. System configuration of the proposed DSP-based paralleled SMRs … 65 Fig. 4.2. Control system block diagram of voltage control loop ......................... 67 Fig. 4.3. The measured for making model estimation: (a) step tracking response; (b) step load regulation response .......................................... 69 Fig. 4.4. Output voltage responses due to the step change of ( , ): (a) simulation; (b) measured .............. 71 Fig. 4.5. (a) The proposed robust control scheme; (b) an equivalent block diagram of (a) ........................................................................................ 72 Fig. 4.6. Simulated and with different values of due to the step change of ( , ): (a) ; (b) ......................................................................................................... 75 Fig. 4.7. Measured and of the two-modules SMR system with different values of due to the step change of ( , ): (a) ; (b) ............................... 76 Fig. 4.8. Measured and of the single-modules SMR system with different values of due to the step change of ( , ): (a) ; (b) ............................... 77 Fig. 4.9. Measured module inductor currents: (a) one module is restarted its parallel operation ( ); (b) one module is terminated its parallel operation ( ); (c) two modules due to the step load change ( ) ............................................................ 79 Fig. 4.10. Measured line input voltage and current of two paralleled modules ( ) ......................................................................................... 81 Fig. 5.1. SMR constructed via -connection of three SMRs ............. 83 Fig. 5.2. Voltage and current phasors of various SMRs: (a) -connected; (b) unbalanced V-connected SMR; (c) balanced V-connected ............ 84 Fig. 5.3. Measured line currents and source phase voltages of unbalanced V- connected SMR at ( , ): (a) and ; (b) and ; (c) and ........................................................ 86 Fig. 5.4. Measured line currents and source phase voltages of balanced V- connected SMR at ( , ): (a) and ; (b) and ; (c) and ........................................................ 87 Fig. 5.5. The proposed SMR: (a) system configuration; (b) control scheme.. 88 Fig. 5.6. The modified T-connected SMRs system configurations and phasor diagrams: (a) Case A (module-1 fault); (b) Case B (module-2 fault); (c) Case C (module-3 fault) ........................................................................ 90 Fig. 5.7. The power circuit of SMR ............................................................. 96 Fig. 5.8. Simulated voltage and current responses due to the step load power change of by various control schemes: (a) without robust control ( ); (b) with robust control ( ); (c) with robust control ( ) ....................................................................... 99 Fig. 5.9. Measured voltage responses of SMRs due to step load power changes without ( ) and with ( ) robust control: (a) -connected ( ); (b) modified T-connected ( ) ..................... 100 Fig. 5.10. Measured line currents and output voltages as the SMR is changed from -connected to modified T-connected at 1250W: (a) without robust control ( ); (b) without robust control ( ) .............................................................................................. 101 Fig. 5.11. Measured line currents and source phase voltages of -connected SMR at : (a) , and ; (b) , and ................................................................................................... 102 Fig. 5.12. (a) Measured line currents and source phase voltages of unbalanced V- connected SMR at , ; (b) measured line currents and module input currents of modified T-connected at , ..................................................................... 104 Fig. 5.13. The measured line currents when V-connected SMRs sudden change to modified T-connected SMRs ......................................................... 105 Fig. 6.1. (a) The SMR using HCC PWM switching scheme; (b) typical inductor current waveform in (a) ........................................................................ 108 Fig. 6.2. HCC PWM scheme with varying band: (a) sketched current waveforms; (b) current harmonic spectra ............................................. 111 Fig. 6.3. The proposed constant frequency HCC PWM scheme ......................... 113 Fig. 6.4. The proposed robust constant-frequency HCC PWM scheme ............. 114 Fig. 6.5 The proposed robust constant frequency HCC scheme: (a) the desired harmonic spectra relationship; (b) robust constant frequency controller; (c) simplified block diagram of (b) ....................................................... 115 Fig. 6.6. Simulated results by ramp-comparison CCPWM scheme: (a) and ; (b) and its spectrum ................................................................. 120 Fig. 6.7. Measured waveform and spectrum of ( ) by ramp-comparison PWM scheme ........................................................... 121 Fig. 6.8. Simulated results by fixed-band HCC PWM scheme ( ): (a) and ; (b) and its spectrum ......................................................... 122 Fig. 6.9. Simulated results by fixed-band HCC PWM scheme ( ): (a) and ; (b) and its spectrum ......................................................... 123 Fig. 6.10. Measured waveform and spectrum of ( ) by fixed-band HCC PWM scheme ( ) ............................................. 124 Fig. 6.11. Measured waveform and spectrum of ( ) by fixed-band HCC PWM scheme ( ) ............................................. 125 Fig. 6.12. Simulated results by the proposed constant-frequency HCC PWM scheme without robust control: (a) and ; (b) and its spectrum ................................................................................................ 127 Fig. 6.13. Measured waveform and spectrum of ( ) by the proposed constant-frequency HCC PWM scheme without robust control ................................................................................................... 128 Fig. 6.14. Simulated results by the proposed constant-frequency HCC PWM scheme with robust control ( ): (a) and ; (b) and its spectrum ................................................................................................ 130 Fig. 6.15. Measured waveform and spectrum of ( ) by the proposed constant-frequency HCC PWM scheme with robust control ( ) .............................................................................................. 131 Fig. 6.16. Ramp frequency commands: (a) sawtooth (period = ); (b) sawtooth (period = ); (c) triangular (period = ) ............... 132 Fig. 6.17. Simulated results using the ramp frequency command shown in Fig. 6.16(a): (a) without robust control ( ); (b) with robust control ( ) .............................................................................................. 134 Fig. 6.18 Simulated results using the ramp frequency command shown in Fig. 6.16(b): (a) without robust control ( ); (b) with robust control ( ) .............................................................................................. 135 Fig. 6.19 Simulated results using the ramp frequency command shown in Fig. 6.16(c): (a) without robust control ( ); (b) with robust control ( ) .............................................................................................. 136 Fig. 6.20. Measured waveform and spectrum of of SMR using the proposed robust varying frequency HCC PWM scheme ( ) with the ramp frequency command shown in Fig. 6.16(c) .......................................... 137 Fig. 6.21. The proposed random HCC PWM scheme ........................................... 138 Fig. 6.22. (a) Sketched hysteresis band variations due to randomization; (b) sketched harmonic spectra with respect to (a); (c) sketched equivalent instantaneous harmonic distributed characteristics of the RHPWM .... 139 Fig. 6.23. The measured results of white noise signal and its spectrum ............... 140 Fig. 6.24. The measured waveform and spectrum of of SMR using the proposed robust random frequency HCC PWM scheme ( ) ..... 142 Fig. 6.25. Measured results of ramp-comparison PWM scheme (hard-switching, ): (a) and its spectrum; (b) and its spectrum; (c) CM and DM noise spectra ............................................................... 143 Fig. 6.26. Measured results of ramp-comparison PWM scheme (soft-switching, ): (a) and its spectrum; (b) and its spectrum; (c) CM and DM noise spectra ............................................................... 144 Fig. 6.27. Measured results of fixed-band HCC PWM scheme ( ): (a) and its spectrum; (b) and its spectrum; (c) CM and DM noise spectra ................................................................................................... 145 Fig. 6.28. Measured results of ramp frequency PWM scheme without spectrum shaping ( ): (a) and its spectrum; (b) and its spectrum; (c) CM and DM noise spectra ............................................................... 146 Fig. 6.29. Measured results of ramp frequency PWM scheme with spectrum shaping ( ): (a) and its spectrum; (b) and its spectrum; (c) CM and DM noise spectra ............................................................... 147 Fig. 6.30. Measured results of random PWM scheme without spectrum shaping ( ): (a) and its spectrum; (b) and its spectrum; (c) CM and DM noise spectra ............................................................................ 148 Fig. 6.31. Measured results of random PWM scheme with spectrum shaping ( ): (a) and its spectrum; (b) and its spectrum; (c) CM and DM noise spectra ............................................................................ 149 LIST OF TABLES Table 2.1. Switching characteristics of the main and auxiliary devices ............... 34 Table 2.2. Performance comparisons of SMR and SSMR ................................... 42 Table 5.1. The positions of switches , and ........................... 93 Table 5.2. The current distribution factor of each SMR module ................. 93 Table 5.3. Power quality comparison of -connected, V-connected and modified T-connected SMRs ...................................................... 106rf A. Single-Phase SMR [1 ] IEC 1000-3-2, International Standard, Part 3: Limits-Section 2: Limit for harmonic current emission (equipment input current 16A per phase), 1995. [2 ] S. B. Dewan, “Optimum input and output filters for a single-phase rectifier power supply,” IEEE Trans. Ind. Applicat., vol. IA-17, no. 3, pp. 282-288, 1981. [3 ] A. R. Prasad, P. D. Ziogas and S. Manias, “A novel passive waveshaping method for single-phase diode rectifier,” IEEE Trans. Ind. Electron., vol. 37, no. 3, pp. 521-530, 1990. [4 ] I. Suga, M. Kimata, Y. Ohnishi and R. Uchida, “New switching method for single-phase AC to DC converter,” in Proc. IEEE PCC’93, 1993, pp. 93-98. [5 ] J. A. Pomilio and G. Spiazzi, “A double-line-frequency commutated rectifier complying with IEC 1000-3-2 standards,” in Proc. IEEE APEC’99, 1999, pp. 349-355. [6 ] J. A. Pomilio, G. Spiazzi and S. Buso, “Comparison among high-frequency and line-frequency commutated rectifiers complying with IEC 61000-3-2 standards,” in Conf. Rec. IEEE IAC’00, 2000, vol. 4, pp. 2218-2223. [7 ] J. A. Pomilio and G. Spiazzi, “A low-inductance line-frequency commutated rectifier complying with EN 61000-3-2 standards,” IEEE Trans. Power Electron., vol. 17, no. 6, pp. 963-970, 2002. [8 ] L. Rossetto, G. Spiazzi and P. Tenti, “Boost PFC with 100Hz switching frequency providing output voltage stabilization and compliance with EMC standards,” IEEE Trans. Ind. Applicat., vol. 36, no. 1, pp. 188-193, 2000. [9 ] E. S. Martins, G. Spiazzi and J. A. Pomilio, “Single-phase rectifier with high power factor and low-frequency switching,” [Online ]. Available: www.dei.unipd.it/~pel/Articoli/2001/Cobep/Cobep01_2.pdf [10 ] J. Sebastian, M. Jaureguizar and J. Uceda, “An overview of power factor correction in single-phase off-line power supply systems,” in Proc. IEEE IECON’94, 1994, pp. 1688-1693. [11 ] B. Choi, S. S. Hong and H. Park, “Modeling and small-signal analysis of controlled on-time boost power-factor-correction circuit.” IEEE Trans. Ind. Electron., vol. 48, no. 1, pp. 136-142, 2001. [12 ] D. S. L. Simonetti, J. Sebastian, F. S. Dos Reis and J. Uceda, “Design criteria for Sepic and Cuk converters as power factor preregulators in discontinuous conduction mode,” in Proc. IEEE IECOM’92, 1992, pp. 283-288. [13 ] M. O. Eissa, S. B. Leeb, G. C. Verghese and A. M. Stankovic, “Fast controller for an unity-power-factor PWM rectifier,” IEEE Trans. Power Electron., vol. 11, no. 1, pp. 1-6, 1996. [14 ] G. Spiazzi, P. Mattavelli and L. Rossetto, “Power factor preregulator with improved dynamic response,” IEEE Trans. Power Electron., vol. 12, no. 2, pp. 343-349, 1997. [15 ] J. C. LeBunetel and M. Machmoum, “Control of boost unity power factor correction systems,” in Proc. IEEE IECON’99, 1999, pp. 266-271. [16 ] C. M. Liaw, T. H. Chen and W. L. Lin, “Dynamic modeling and control of a step up/down switching-mode rectifier,” IEE Proc.-Electr. Power Appl., vol. 146, no. 3, pp. 377-324, 1999. [17 ] R. W. Erickson and D. Maksimovic, “Fundamentals of Power Electronics,” Kluwer Academic Publishers, Norwell Massachusetts, 2001. [18 ] H. Wei and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” in Proc. IEEE Southeastcon’98, 1998, pp. 348-353. B. Soft-Switching Converters [19 ] W. Dong, B. Lu, Q. Zhao and F. C. Lee, “Performance evaluation of CoolMOSTM and SiC diode for single-phase power factor correction applications,” in Proc. IEEE APEC’03, 2003, vol. 2, pp. 651-657. [20 ] K. Wang, F. C. Lee, G. Hua and D. Borojevic, “A comparative study of switching losses of IGBTs under hard-switching, zero-voltage switching and zero-current-switching,” in Proc. IEEE PESC’94, 1994, vol. 2, pp. 1196-1204. [21 ] G. Hua, C. S. Leu, Y. Jiang and F. C. Lee, “Novel zero-voltage-transition PWM converters,” IEEE Trans. Power Electron., vol. 9, no. 2, pp. 213-219, 1994. [22 ] P. N. Enjeti and R. Martinez, “A high performance single-phase ac to dc rectifier with input power factor correction,” in Conf. Rec. IEEE APEC’93, 1993, pp. 190-196. [23 ] C. M. Liaw and T. H. Chen, “A soft-switching mode rectifier with power factor correction and high frequency transformer link,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 644-654, 2000. [24 ] S. Y. R. Hui, K. W. E. Cheng and S. R. N. Prakash, “A fully soft-switched extended-period quasi-resonant power-factor-correction circuit,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 922-930, 1997. [25 ] A. F. DE Souza and I. Barbi, “A new ZVS-PWM unity power factor rectifier with reduced conduction losses,” IEEE Trans. Power Electron., vol. 10, no. 6, pp. 746-752, 1995. [26 ] I. D. Kim and B. K. Bose, “New ZCS turn-on and ZVS turn-off unity power factor PWM rectifier with reduced conduction loss and no auxiliary switches,” IEE Proc.-Electr. Power Appl., vol. 147, no. 2, pp. 146-152, 2000. C. Digital Control in Power Converters [27 ] P. Vallittu, T. Suntio and S. J. Ovaska, “Digital control of power supplies-opportunities and constraints,” in Proc. IEEE IECON’98, 1998, vol. 1, pp. 562-567. [28 ] Y. Duan and H. Jin, “Digital controller design for switch mode power converters,” in Proc. IEEE APEC’99, 1999, vol. 2, pp. 967-973. [29 ] M. Sedighy, S. B. Dewan and F. P. Dawson, “A robust digital current control method for active power filters,” IEEE Trans. Ind. Applicat., vol. 36, no. 4, pp. 1158-1164, 2000. [30 ] A. H. Mitwalli, S. B. Leeb, G. C. Verghese and V. J. Thottuvelil, “An adaptive digital controller for a unity power factor controller,” IEEE Trans. Power Electron., vol. 11, no. 2, pp. 374-382, 1996. [31 ] S. Buso, P. Mattavelli, L. Rossetto and G. Spiazzi, “Simple digital control improving dynamic performance of power factor preregulators,” IEEE Trans. Power Electron., vol. 13, no. 5, pp. 814-823, 1998. [32 ] H. C. Choi and C. J. Seo, “Deadbeat controller design for a soft-switched high-frequency resonant rectifier,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1069-1078, 1998. [33 ] “Single-chip, DSP-Based high performance motor control ADMC 401,” Analog Devices, 2000. D. Paralleled Operation and Current Sharing Control [34 ] C. M. Liaw and S. J. Chiang, “Robust control of multi-module current-mode controlled converters,” IEEE Trans., Power Electron., vol. 8, no. 4, pp. 455-465, 1994. [35 ] C. M. Liaw, L. C. Jan, W. C. Wu and S. J. Chiang, “Operation control of paralleled three-phase battery energy storage system,” IEE Proc.-Electr. Power Appl., vol. 143, no. 4, pp.317-322, 1996. [36 ] S. Huth, “DC/DC-converters in parallel operation with digital load distribution control,” in Proc. IEEE ISIE’96, 1996, vol. 2, pp. 808-813. [37 ] G. Zhu, H. Wei, C. Iannello and I. Batarseh, “Closed-loop design for two parallel connected converters with power factor correction,” in Proc. IEEE PESC’99, 1999, vol. 2, pp. 698-703. [38 ] M. Jordan, “UC3907 load share IC simplifies parallel power supply design,” Untriode Corp., Merrimack, NH, Unitrode Application Note U-129, 1993-1994. [39 ] T. Kohama, T. Ninomiya, M. Wakamatsu and M. Shoyama, “Static and dynamic response of a parallel-module high power-factor converter system with current-balancing controllers,” in Proc. IEEE PESC '96, 1996, vol. 2, pp. 1198-1203. [40 ] B. Tomescu and H. F. Vanlandingham, “Improved large-signal performance of paralleled DC-DC converters current sharing,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 573-577, 1999. [41 ] S. Luo, Z. Ye, R. L. Lin and F. C. Lee, “A Classification and evaluation of paralleling methods for power supply modules,” in Proc. IEEE PESC '99, 1999, vol. 2, pp. 901-908. E. Three-Phase SMR [42 ] A. R. Prasad, P. D. Ziogas and S. Manias, “An active power factor correction technique for three-phase diode rectifiers,” IEEE Trans. Power Electron., vol. 6, no. 1, pp. 83-92, 1991. [43 ] M. S. Dawande and G. K. Dubey, “Programmable input power factor correction method for switch-mode rectifiers,” IEEE Trans. Power Electron., vol. 11, no. 4, pp. 585-591, 1996. [44 ] Y. Jang and M. M. Jovanovic, “A comparative study of single-switch three-phase high-power-factor rectifiers,” IEEE Trans. Ind. Applicat., vol. 34, pp. 1327-1334, 1998. [45 ] P. Pejovic and Z. Janda, “Optimal current programming in three-phase high-power-factor rectifier based on two boost converters,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1152-1163, 1998. [46 ] C. Qiao and K. M. Smedley, “A general three-phase PFC controller for rectifiers with a series connected dual-boost topology,” IEEE Trans. Ind. Applicat., vol. 38, no. 1, pp. 137-148, 2002. [47 ] G. Spiazzi and F. C. Lee, “Implementation of single-phase boost power-factor correction circuits in three-phase applications,” IEEE Trans. Ind. Electron., vol. 44, no. 3, pp. 365-371, 1997. [48 ] J. Hahn, P. N. Enjeti and I. J. Pitel, “A new three-phase power factor correction (PFC) scheme using two single-phase PFC modules,” IEEE Trans. Ind. Applicat., vol. 38, no. 1, pp. 123-130, 2002. [49 ] M. Hengchun, F. C. Lee, D. Boroyevich and S. Hiti, “Review of high- performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, pp. 437-446, 1997. [50 ] B. N. Singh, P. Jain and G. Joos, “Three-phase AC/DC regulated power supplies: a comparative evaluation of different topologies,” in Proc. IEEE APEC’00, 2000, vol. 1, pp. 513-528. F. Current and Voltage Controls [51 ] J. Holtz, “Pulse modulation: a survey,” IEEE Trans. Ind. Electron., vol. 39, pp. 410-420, 1992. [52 ] B. K. Bose, “Power electronics and variable frequency drives,” New York: IEEE Press, 1997. [53 ] N. Mohan, T. M. Undeland and W. P. Robins, “Power electronics: converters, applications and design,” John Wiley & Sons, 1995. [54 ] B. Raymond and J. Sepe, “A unified approach to hysteretic and ramp-comparison current controllers,” in Conf. Rec. IEEE-IAS Annu. Meeting, 1993, pp. 724-731. [55 ] C. A. Canesin and I. Barbi, “Analysis and design of constant-frequency peak-current-controlled high-power-factor boost rectifier with slope compensation,” in Proc. IEEE APEC’96, 1996, pp. 807-813. [56 ] M. Dawande and G. K. Dubey, “Switching techniques for switch mode rectifier,” in Proc. IEEE PEDS'99, 1999, vol. 1, pp. 167-173. [57 ] C. Zhou, R. B. Ridley and F. C. Lee, “Design and analysis of a hysteretic boost power factor correction circuit,” in Conf. Rec. IEEE PESC’90, 1990, pp. 800-807. [58 ] M. Dawande and G. K. Dubey, “Bang-band current control with predecided switching frequency for switch-mode rectifiers,” IEEE Trans. Ind. Electron., vol. 46, no. 1, pp. 61-66, 1999. [59 ] D. A. G. Pedder and A. D. Brown, “Theoretical study of the limitation of frequency excursion in hysteresis-mode boost-converter input stages in high power-factor AC-fed power supplies,” IEE Proc.-Circuits, Devices Syst., vol. 148, no. 4, pp. 205-210, 2001. [60 ] A. Hirota, S. Nagai, M. A. Al, M. Rukonuzzaman and M. Nakaoka, “A novel hysteresis current control scheme for single switch type single phase PFC converter,” in Proc. IEEE PCC’02, 2002, pp. 1223-1225. [61 ] F. Mihalic and M. Milanovic, “Wide-band frequency analysis of the randomized boost rectifier,” in Proc. IEEE PESC’00, 2000, pp. 946-951. [62 ] C. M. Liaw, Y. M. Lin, C. H. Wu and K. I. Hwu, “Analysis, design and implementation of a random frequency PWM inverter,” IEEE Trans. Power Electron., vol. 15, no. 5, pp. 843-854, 2000. [63 ] B. J. Kang and C. M. Liaw, “Random hysteresis PWM inverter with robust spectrum shaping,” IEEE Trans. Aerosp. Electron. Syst., vol. 37, no. 2, pp. 619-629, 2001. [64 ] T. Iida, G. Majumdar, H. Mori and H. Iwamoto, “Constant output voltage control method for buck-boost type switched mode rectifier with fixed switching pulse pattern,” in Proc. IEEE ICIT’96, 1996, pp. 266-268. [65 ] E. Rodriguez, O. Garcia, J. A. Cobos, J. Arau and J. Uceda, “A single-stage rectifier with PFC and fast regulation of output voltage,” in Proc. IEEE CIEP’98, 1998, pp. 30-36. [66 ] T. Takeshita, Y. Toyoda and N. Matsui, “Harmonic suppression and DC voltage control of single-phase PFC converter,” in Proc. IEEE PESC’00, 2000, vol. 2, pp. 571-576. [67 ] N. Bhiwapurkar, M. Rathi and N. Mohan, “Power factor correction circuit for faster dynamics and zero steady state error using dual voltage controllers,” in Proc. IEEE IECON’02, 2002, vol. 1, pp. 204-208. [68 ] A. Pandey, B. Singh and D. P. Kothari, “A novel DC bus voltage sensorless PFC rectifier with improved voltage dynamics,” in Proc. IEEE IECON’02, 2002, vol. 1, pp. 226-228. [69 ] H. C. Chen, S. H. Li and C. M. Liaw, “Switch-mode rectifier with digital robust ripple compensation and current waveform controls,” IEEE Trans. Power Electron., to be published.id NH0920442007 sid 873907 cfn 0 / id NH0920442008 auc 林明邑 tic 光子晶體光纖與光子晶體光纖偶合器之數值模擬 adc 王 立 康 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 59 kwc 光子晶體光纖 abc 目前文獻上已經發展出好幾種數值方法,用來研究光子晶體光纖中光波的傳播現象以及不同模態其場型分佈情形,這些方法包括平面波展開法(plane-wave expansion method)、局部化基底函數法(localized basis function method)、有限元素法(finite-element method)、光束傳播法(beam propagation method)…等。而本論文所探討的數值方法為軛冪-高斯函數展開法(Hermite-Gaussian function expansion):將電場分佈 以有限項軛冪-高斯函數展開,介電常數分佈 則以有限項傅立葉級數(Fourier series)展開, 代入原來基於馬克士威爾波動方程式(Maxwell’s wave equation)所描述的電場偏微分方程式。接著便可將原來偏微分方程式的問題轉換成一矩陣形式的特徵值問題(eigenvalue problem),並以線性代數的方法解得其解。 tc 目 錄 第一章 緒論-------------------------------------------------1 1.1 簡介------------------------------------------------1 1.2 論文架構--------------------------------------------3 第二章 理論背景---------------------------------------------4 2.1偶合波動方程式---------------------------------------4 2.2模態電場分佈 展開表示式------------------------------6 2.3折射率分佈 展開表式----------------------------------7 2.4 特徵值方程式----------------------------------------9 2.5 偶合器(coupler)理論分析----------------------------12 2.5.1 偶合模態方程式-----------------------------------------12 2.5.2如何設定輸入模態 ---------------------------------------13 2.5.3偶合功率(coupling power)--------------------------------14 2.6 收斂性探討-----------------------------------------15 第三章 理論模擬結果與討論------------------------------------24 3.1單一缺陷光子晶體光纖模態特性分析--------------------------24 3.2兩個缺陷光子晶體光纖結構模態特性分析----------------------32 3.3兩個缺陷的光子晶體光纖在分波長多工/解多工器(Mux/DeMux)上的應用------------39 3.4 分光(splitter)器----------------------------------------40 第四章 結論與展望--------------------------------------------51 附錄---------------------------------------------------------52 參考文獻-----------------------------------------------------57rf 參考文獻 [1 ] Sajeev John “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486—2489 (1987) [2 ] Eli Yablonovitch “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,”Phys. Rev. Lett. 58, 2059—2062 (1987) [3 ] L. P. Biro et al “Butterflies and Photonic Crystals,” Physical Review E, February 2003 [4 ] E. Yablonovitch and T. J. Gmitter “Photonic band structure: The face-centered-cubic case,” Phys. Rev. Lett. 63, 1950—1953 (1989) [5 ] E. Yablonovitch and T. J. Gmitter “Photonic band structure: The face-centered-cubic case employing nonspherical atoms”Phys. Rev. Lett. 67, 2295—2298 (1991) [6 ]M. Plihal and A. A. Maradudin “Photonic band structure of two-dimensional systems:The triangular lattice,”Phys. Rev. B 40, 8565(1991). [7 ]J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fiber:A new class of optical waveguides,” Opt. Fiber Technol. 5, 305-330(1999) [8 ]T. A. Birks, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Photonic crystal fibers:An endless variety,” IEICE Trans. Electron. E84-C, 585-592(2001) [9 ]Philip Russell, ”Photonic Crystal Fibers,” Science 299, 358-362(2003) [10 ] T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,”Opt. Lett. 22, pp. 961-963(1997) [11 ]J. C. Knight, J. Broeng, T.A. Birks, and P. St. J. Russell, “Photonic bandgap guidance in optical fiber,”Science 282, 1476-1478(1998) [12 ]R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537-1539(1999) [13 ]J. C. Knight, T. A. Birks, R. F. Cregan, P. St .J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fiber,”Electron. Lett. 34, 1347-1348(1998) [14 ]N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. R. Richardson, “Nonlinearlity in holey optical fibers:Measurement and furture opportunities,”Opt. Lett. 24, 1395-1397(1999) [15 ]M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevstev, T. A. Birks, J. C. Knight, and P. St. J. Russell,”Experimental measurement of group velocity dispersion in photonic crystal fibre,”Electron. Lett. 35, 63-64(1999) [16 ]B. J. Mangan, J. C. Knight, T.A. Birks, P. St. J. Russell, and A. H. Greenaway,”Experimental study of dual core photonic crystal fibre,”Electron. Lett. 36, 1358-1359(2000) [17 ]F. Fogli, L. Saccomandi, P. Bassi, G. Bellanca, and S. Trillo,”Full vectorial BPM modeling of index-guiding photonic crystal fibers and couplers,” Opt. Express 10, 54-59(2002) [18 ]B. H. Lee, J. B. Eom, J. Kim, D. S. Moon,U.-C. Paek,a nd G.-H. Yang,”Photonic crystal fiber coupler,”Opt. Lett. 27. 812-814(2002) [19 ]S. Guo and S. Albin,”Simple plane wave implementation for photonic crystal calculations,”Opt. Express 11, 167-175(2003) [20 ] T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett,”Modeling Large Air Fraction Holey Optical Fibers”, J. Lightwave Technol. ,vol8, pp.50-56(2000) [21 ]M. Koshiba,”Full vector analysis of photonic crystal fibers using the finite element method,” IEIEC Electron. E85-C, 4, 881-888(2002) [22 ] A. W. Snyder and J. D. Love, Optical Waveguide Theory. London, U.K.:Chapman and Hall, 1938, pp. 595~606. [23 ] M. J. Adams, “An Introduction to Optical Waveguides.” New York:Wiley, 1981, p. 100 [24 ]Kazuaki Sakoda,”Optical properties of photonic Crystals” [25 ] I. S. Gradshtein and I. M. Ryzhik, Tables of Integral, Series and Products. New York Academic, 1994 [26 ] E. Feldheim, “Quelques nouvelles relations pour les polynomes d’Hermite,” J. London Math. Soc. ,vol. 13 , pp.22-29(1938) [27 ] T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett,”Holey Optical Fibers:An Efficient Modal Model” , J. Lightwave Technol. ,vol7, pp. 1093-1102(1999) [28 ]Kunimasa Saitoh, Yuichiro Sato, and Masanori Koshiba,”Coupling characteristics of dual-core photonic crystal fiber couplers”, Opt. Express 11, 3188-3195(2003)id NH0920442008 sid 903981 cfn 0 / id NH0920442012 auc 邱明祥 tic 一種新的用於半導體元件之寬頻模型建立方法 adc 徐永珍 ty 博士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 111 kwc 寬頻 kwc 模型 kwc 時域 kwc 脈衝 abc 本論文提出一種新的用於半導體元件之寬頻模型建立方法。此方法使用一超短脈衝信號來量測待測元件之反射與透射時域響應,此超短脈衝輸入信號包含各種不同頻率所組成之寬頻輸入頻譜,量測系統經校正移除誤差後,可獲得待測元件之真實反射與透射時域響應,校正後之反射與透射時域響應包含了元件之寬頻、非線性、高頻等特性,這些量測到的特性將同時被含括在元件的模型參數中,稱之為Single and Unified Model。當元件所處理之信號為高速、寬頻、大信號、切換式操作時,此模型較傳統之模型更適用且更準確。 tc Contents Abstract 1 Acknowledgments 3 Contents 4 Table Captions 6 Figure Captions 7 Chapter 1 Introduction 11 1.1 The Importance of Device Modeling 13 1.2 Today’s Challenges in Device Modeling 14 1.3 Current Status of Device Modeling 20 1.4 Concept of the Wideband Modeling Technology 21 Chapter 2 The Time-Domain Measurement Method 24 2.1 Introduction 24 2.2 Description of the Measurement System 24 2.3 Calibration Technique 27 2.4 Calibration Procedure and Results 33 2.5 Summary 37 Chapter 3 A New Wideband Modeling Technique for Spiral Inductor 3.1 Introduction 42 3.2 Modeling Technique 44 3.3 Modeling Procedure 48 3.4 Experimental Results 49 3.5 Summary 58 Chapter 4 A New Wideband Modeling Technique for Deep Sub-micron MOSFET 59 4.1 Introduction 59 4.2 The Wideband Equivalent Circuit Model 61 4.3 Modeling Procedure 62 4.4 Experimental Results 64 4.5 Summary 75 Chapter 5 Application I - 1.25Gb/s Limiting Amplifier 76 5.1 Introduction 76 5.2 Circuit Design 76 5.3 Discussion 84 5.4 Summary 89 Chapter 6 Application II - RF Voltage-Controlled Oscillator 90 6.1 Introduction 90 6.2 Circuit Design 90 6.3 Discussion 98 6.4 Summary 103 Chapter 7 Conclusion 104 References 105rf References [1 ] C. Schuster, W. Fichtner, “Signal Integrity Analysis of Interconnects Using the FDTD Method and a Layer Peeling Technique”, IEEE Transactions on Electromagnetic Compatibility, VOL. 42, NO. 2, pp.229-223, May 2000. [2 ] J.M. Jong, V.K. Tripathi, “Time-Domain Characterization of Interconnect Discontinuities in High-Speed Circuits”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, VOL. 15, NO. 4, pp.497-504, August 1992. [3 ] J.M. Jong, B. Janko, V. Tripathi, “Equivalent Circuit Modeling of Interconnects from Time-Domain Measurements”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, VOL. 16, NO. 1, pp.119-126, February 1993. [4 ] M. Park, S. Lee, C.S. Kim, H.K. Yu, K.S. Nam, “The Detailed Analysis of High Q CMOS-Compatible Microwave Spiral Inductors in Silicon Technology”, IEEE Transaction On Electron Devices, VOL. 45, NO. 9, pp.1953-1959, September 1998. [5 ] J.N. Burghartz, A.E. Ruehli, K.A. Jenkins, M. Soyuer, D. Nguyen-Ngoc, “Novel Substrate Contact Structure for High-Q Silicon-Integrated Spiral Inductors”, IEDM 1997, pp.55-58. [6 ] F. Mernyei, F. Darrer, M. Pardoen, A. Sibrai, “Reducing the Substrate Losses of RF Integrated Inductors”, IEEE Microwave and Guided Wave Letters, VOL. 8, NO. 9, pp.300-301, September 1998. [7 ] H.S. Tsai, J. Lin, R.C. Frye, K.L. Tai, M.Y. Lau, D. Kossives, F. Hrycenko, Y.K. Chen, “Investigation of Current Crowding Effect on Spiral Inductors”, 1997 IEEE, pp.139-142. [8 ] N. Bushyager, M. Davis, E. Dalton, J. Laskar, M. Tentzeris, “Q-Factor and Optimization of Multilayer Inductors for RF Packaging Microsystems Using Time Domain Techniques”, 2002 Electronic Components and Technology Conference, 2002, pp.1718-1721. [9 ] W.B. Kuhn, A. Elshabini-Riad, F.W. Stephenson, “Centre-tapped Spiral Inductors for Monolithic Bandpass Filters”, Electronics Letters, VOL. 31, NO. 8, pp.625-626, April 1995. [10 ] K.B. Ashby, I.A. Koullias, W.C. Finley, J.J. Bastek, S. Moinian, “High Q Inductors for Wireless Applications in a Complementary Silicon Bipolar Process”, IEEE Journal of Solid-State Circuits, VOL. 31, NO. 1, pp.4-9, January 1996. [11 ] J. Sieiro, J.M. Lopez-Villegas, J. Cabanillas, J.A. Osorio, J. Samitier, “A Physical Frequency-Dependent Compact Model for RF Integrated Inductors”, IEEE Transaction On Microwave Theory and Technique, VOL. 50, NO. 1, pp.384-392, January 2002. [12 ] J.R. Long, M.A. Copeland, “The Modeling, Characterization, and Design of Monolithic Inductors for Silicon RF IC’s”, IEEE Journal of Solid-State Circuits, VOL. 32, NO. 3, pp.357-369, March 1997. [13 ] A.M. Niknejad, R.G. Meyer, “Analysis, Design, and Optimization of Spiral Inductors and Transformers for Si RF IC’s”, IEEE Journal of Solid-State Circuits, VOL. 33, NO. 10, pp.1470-1481, October 1998. [14 ] Y. Chen, M. C. Jeng, Z. Liu, J. Huang, M. Chan, P. K. Ko, C. Hu, “A physical and scalable I-V model in BSIM3v3 for analog/digital circuit simulation”, IEEE Transactions Electron Devices, VOL. 44, pp.277-285, 1997. [15 ] S.F. Tin, A.A. Osman, K. Mayaram, C. Hu, “A Simple Subcircuit Extension of the BSIM3v3 Model for CMOS RF Design”, IEEE Journal of Solid-State Circuits, VOL. 35, NO. 4, pp.612-624, April 2000. [16 ] S. Lee, H.K. Yu, C.S. Kim, J.G. Koo, K.S. Nam, “A Novel Approach to Extracting Small-Signal Model Parameters of Silicon MOSFET’s”, IEEE Microwave and Guided Wave Letters, VOL. 7, NO. 3, pp.75-77, March 1997. [17 ] M.C. Ho, K. Green, R. Culbertson, J.Y. Yang, D. Ladwig, P. Ehnis, “A Physical Large Signal Si MOSFET Model for RF Circuit Design”, 1997 IEEE MTT-S Digest, pp.391-394. [18 ] Y.J. Chan, C.H. Huang, C.C. Weng, B.K. Liew, “Characteristics of Deep Submicrometer MOSFET and Its Emperical Nonlinear RF Model”, IEEE Transactions on Microwave Theory and Techniques, VOL. 46, NO. 5, pp.611-615, May 1998. [19 ] R. Waymond, S. Glenn, “Error corrections for an automated time-domain network analyzer”, IEEE Trans. on Instrumentation and Measurement, VOL. IM-35, NO. 3, pp.300-303, September 1986. [20 ] P. Ferrari, G. Angenieux, B. Flechet, “A Complete Calibration Procedure for Time Domain Network Analyzers”, IEEE MTT-S Digest, 1992, pp.1451-1454. [21 ] E. O. Brigham, The Fast Fourier Transform. New York: Prentice-Hall, 1974. [22 ] J. K. Winn, D. R. Crow, “Harmonic measurements using a digital storage oscilloscope”, IEEE Transaction on Industry Applications, VOL. 25, NO. 4, pp.783-788, July/August 1989. [23 ] H. W. Loeb, P. J. Ward, “The use of time-domain techniques for microwave transistor s-parameter measurements”, IEEE Transaction on Instrumentation and Measurement, VOL. IM-26, NO. 4, pp.383-388, December 1977. [24 ] L. A. Hayden, V. K. Tripathi, “Calibration Methods for Time Domain Network Analysis”, IEEE Transactions on Microwave Theory and Techniques, VOL. 41, NO. 3, pp.415-420, March 1993. [25 ] P. J. Van Wijnen, “A new straight forward calibration and correction procedure for “on-wafer” high frequency S-parameter measurements (45MHz—18GHz)”, BCTM Proc., 1987, pp.70-73. [26 ] W. L. Gans, N. S. Nahman, “Continuous and Discrete Fourier Transform of Step-Like Waveforms”, IEEE Transactions on Instrumentation and Measurement, VOL. IM-31, pp.97-101, June 1982. [27 ] S.C. Burkhart, R.B. Wilcox, “Arbitrary Pulse Shape Synthesis via Nonuniform Transmission Lines”, IEEE Transactions on Microwave Theory and Techniques, VOL. 38, NO. 10, pp.1514-1518, October 1990. [28 ] Y. K. Chen, “The Study of High-speed CMOS Preamplifier and Post-amplifier for Optical Fiber Communication”, master thesis, National Tsing Hua University Taiwan R.O.C., June 1999. [29 ] C. H. Lu, “2.5Gbps Optical Transceiver Design”, master thesis, National Central University Taiwan R.O.C, June 2001. [30 ] C. M. Tang, “Optimal Design of 1.25Gbps Post-amplifier for Optical Communication in 0.35μm CMOS Technology”, master thesis, National Tsing Hua University Taiwan R.O.C., July 2002. [31 ] E. M. Klumperink, C. T. Klein, B. Ruggeberg, E. J. Tuijl, “AM Suppression with Low AM-PM Conversion with Aid of a Variable Gain Amplifier”, IEEE Journal of Solid-State Circuits, VOL. 33, pp.625-633, May 1996. [32 ] A. S. Sedra, K. C. Smith, “Microelectronic Circuits”, Harcourt Brace College Publishers, 3 ed, 1989. [33 ] W. Sansen, J. Huijsing, R. Plassche, ed., Analog Circuit Design, Kluwer Academic Publisher, Boston/ Dordrecht/ London, 1999. [34 ] A. Hajimiri, T. H. Lee, “Design Issues in CMOS Differential LC Oscillators”, IEEE Journal of Solid-State Circuits, VOL. 34, NO. 5, pp.717-724, May 1999. [35 ] D. Ham, A. Hajimiri, “Design and Optimization of a Low Noise 2.4GHz CMOS VCO with Integrated LC Tank and MOSCAP Tuning”, ISCAS 2000, pp.331-334.id NH0920442012 sid 853956 cfn 0 / id NH0920462001 auc 中村麻里 tic 新聞中的意識形態:台灣報紙新聞報導之批判論述分析 adc 郭賽華 ty 碩士 sc 國立清華大學 dp 語言學研究所 yr 92 lg 中文 pg 94 kwc 批判論述分析 kwc 意識形態 kwc 新聞標題 kwc 引述 abc 本論文採取批判論述分析 (Critical Discourse Analysis) 來探討台灣報紙新聞報導中意識形態與語言之關係。研究焦點在於聯合報與自由時報對於2002年九月總統夫人吳淑珍訪問美國一事之相關報導。研究結果發現,兩家報紙的新聞報導各自反映了他們的政治立場與意識形態。 tc CHAPTER ONE INTRODUCTION 1 1.1 PROBLEM 1 1.2 BACKGROUND AND DATABASE 4 1.3 STRUCTURE OF THE STUDY 8 CHAPTER TWO LITERATURE REVIEW 9 2.1 THEORETICAL BASES 9 2.1.1 The earlier CDA approaches 9 2.1.2 Socio-cognitive studies 11 2.1.3 Intertextual analysis 12 2.2 LANGUAGE AND IDEOLOGY IN THE MASS MEDIA 13 2.3 CONCLUSION 19 CHAPTER THREE HEADLINE 20 3.1 INTRODUCTION 20 3.2 LITERATURE REVIEW 22 3.2.1 Headline and lead in news discourse 22 3.2.2 Headline and ideology in news discourse 24 3.3 ANALYSIS OF HEADLINES 26 3.3.1 Analysis of front-page headlines 26 3.3.2 The headlines with different focuses 33 3.4 SUMMARY 38 CHAPTER FOUR QUOTATION 40 4.1 INTRODUCTION 40 4.2 LITERATURE REVIEW 42 4.2.1 Quotation in news discourse 42 4.2.2 Quotation and ideology in news discourse 42 4.3 QUANTITATIVE ANALYSIS 45 4.3.1 Types of reported speech in Chinese news paper 45 4.3.2 Some quantitative results 47 4.4 QUALITATIVE ANALYSIS 53 4.5 SUMMARY 60 CHAPTER FIVE A COMPARATIVE ANALYSIS OF THREE SAMPLE TEXTS 61 5.1 INTRODUCTION 61 5.2 THE DATA 62 5.3 ANALYSIS 62 5.3.1 Headline 63 5.3.2 News texts 64 5.3.2.1 Deletion 68 5.3.2.2 Addition 69 5.3.2.3 Other changes 70 5.4 SUMMARY 77 CHAPTER SIX CONCLUSION 78 6.1 SUMMARY OF MAJOR FINDINGS 78 6.2 CONTRIBUTIONS OF THIS STUDY 81 6.3 SUGGESTION FOR FUTURE RESEARCH 83 APPENDIX 85 REFERENCE 88rf Bell, Allan. 1991. The Language of News Media. Oxford: Blackwell. Caldas-Coulthard, Carmen Rosa. 1993. From discourse analysis to critical discourse analysis: The differential re-presentation of women and men speaking in written news. In John M. Sinclair, Michael Hoey, and Gwyneth Fox (eds.) Technique of description: Spoken and written Discourse, pp.196-208. London: Routledge. Caldas-Coulthard, Carmen Rosa. 1994. On reporting reporting: The re-presentation of speech in factual and factional narratives. In Malcolm Coulthard (ed.) Advance in written text analysis, pp.295-308. London: Routledge. Chibnall, S. 1977. Law-and-order news. An analysis of crime reporting in the British Press. London: Tavistock. Cohen, S. 1980. Folk devils and moral panics (2nd ed.). Oxford: Robertson. Cohen, S., and Young, J. (eds.). 1981. The manufacture of news. Deviance, social problems and the mass media (2nd rev. ed.). London: Constable/Sage. Fairclough, Norman. 1989. Language and power. London: Longman. Fairclough, Norman. 1992. Discourse and Social Change. Cambridge: Polity Press. Fairclough, Norman. 1995. Media Discourse. London: Edward Arnold. Fang, Yew-Jin. 1994. ‘Riots’ and Demonstrations in the Chinese Press: A case study of language and ideology. Discourse & Society. 5(4): 463-481. Fang. Y. 2001. Reporting the same events? : A critical analysis of Chinese print news media texts. Discourse & Society. 12(5): 585-613. Flowerdew, John, Li, David C.S. and Tran, Sarah. 2002. Discriminatory news discourse: Some Hong Kong data. Discourse & Society. 13(3): 319-345. Fowler, Roger. 1987. Notes on critical linguistics. In Threadgold, T. and Steele, R. (eds.). Language topics: essays in honour of Michael Halliday. John Benjamins. Fowler, Roger. 1991. Language in the News: Discourse and Ideology in the Press. London: Routledge. Fowler, Roger., Hodge, Bob., Kress, Gunther. & Trew, Tony. (eds.). 1979. Language and control. London: Routledge & Kegan Paul. Glasgow University Media Group. 1976. Bad news. London: Routledge & Kegan Paul. Glasgow University Media Group. 1980. More bad news. London: Routledge & Kegan Paul. Glasgow University Media Group. 1982. Really bad news. London: Writers and Readers. Glasgow University Media Group. 1985. War and peace news. Milton Keynes and Philadelphia: Open University Press. Glasgow University Media Group. 1993. Getting the message. News truth and power. London: Routledge & Kegan Paul. Halliday, M. A. K. 1978. Language as social semiotic. London: Edward Arnold. Halliday, M. A. K. 1985. Introduction to Functional Grammar. London: Edward Arnold. Halloran, J.D., Elliott, P., & Murdock, G. 1970. Demonstrations and communication. A case study. Harmondsworth: Penguin Books. Herman, E. & Chomsky, N. 1988. Manufacturing Consent. New York: Pantheon. Hughes, Christopher. 1997. Taiwan and Chinese Nationalism: National Identity and Status in International Society. London: Routledge. Jiang, Yi-hua (江宜樺). 1998. Ziyouzhuyi, Minuzhuyi yu Guojia rentong (Liberalism, Nationalism and National Identity). Taipei: Yang-Chih Book Co., Ltd. (《自由主義、民族主義與國家認同》台北: 揚智文化。) Jucker, Andreas H. 1996. News actor labeling in British newspapers. Text 16(3): 373-390. Kress, Gunther. 1989. History and language: toward a social account of language change. Journal of Pragmatics. 13(3): 445-66. Labov, William & Waletzky, Joshua. 1967. Narrative analysis: oral versions of personal experience. In June Helm (ed.). Essays on the Verbal and Visual Arts (Proceedings of the 1966 Annual Spring Meeting of the American Ethnological Society), pp.12-44. Seattle: University of Washington Press. Labov, William. 1972. The transformation of experience in narrative syntax. In William Labov, Language in the inner city, pp.354-96. Philadelphia: University of Pennsylvania Press. Lee, Junghi. & Craig, Robert L. 1992. News as an ideological framework: Comparing US newspapers’ coverage of labor strikes in South Korea and Poland. Discourse & Society. 3(3): 341-363. Min, Su Jung. 1997. Constructing ideology: A critical linguistic analysis. Studies in the Linguistic Sciences 27(2): 147-165. Nir, Raphael. & Roeh, Itzhak. 1992. Intifada coverage in the Israeli press: Popular and quality papers assume rhetoric of conformity. Discourse & Society. 3(1): 47-60. Satoh, Akira. 2001. Constructing imperial identity: how to quote the Imperial Family and those who address them in the Japanese press. Discourse & Society. 12(2): 169-194. Scollon, Ron. & Scollon, Suzie. 1997. Point of view and citation: Fourteen Chinese and English versions of the ‘same’ news story. Text. 17(1): 83-125. Scollon, Ron. 1998. Mediated discourse as social interaction: An Ethnographic study of news discourse. London: Longman. Shih, Yu-hwei. & Soong, Mei-hui. 1993. Code-mixing of Taiwanese in Mandarin Newspaper headlines: A socio-pragmatic perspective. Proceeding of the 2nd International Taiwanese Language Symposium, pp.505-527. Teo, Peter. 2000. Racism in the news: a Critical discourse analysis of news reporting in two Australian newspapers. Discourse & Society. 11(1): 7-49. Tien, Hung-mao & Chu, Yun-han. 1998. Building Democracy in Taiwan. In David Shambaugh (ed.). Contemporary Taiwan, pp. 97-126. Oxford: Clarendon Press. van Dijk, Teun A. (ed.). 1985. Discourse and communication: New approaches to the analysis of mass media discourse and communication. Berlin: Walter de Druyter. van Dijk, Teun A. 1988a. News as Discourse. Hillsdale, NJ: Lawrence Erlbaum. van Dijk, Teun A. 1988b. News analysis. Case studies of international and national news in the Press. Hillsdale, NJ: Lawrence Erlbaum. van Dijk, Teun A. 1991. Racism and the Press. London: Routledge. van Dijk, Teun A. 1993. Elite Discourse and Racism. Newbury Park. CA: Sage van Dijk, Teun A. 1995. Discourse Semantic and Ideology. Discourse & Society. 6(2): 243-89. van Dijk, Teun A. 1998. Ideology: A multidisciplinary approach. London: Sage. Wang, Shujen. 1993. The New York Times’ and Renmin Ribao’s news coverage of the 1991 Soviet coup: A case study of international news discourse. Text 13(4): 559-598. Wang, Tian-bin (王天濱). 2003. Taiwan Baoyeshi (The History of Newspaper in Taiwan). Taipei: Asia Pacific Press. (《台灣報業史》台北: 亞太圖書。) Waugh, Linda. R. 1995. Reported speech in journalistic discourse: The relation of function and text. Text 15(1): 129-173. Wu, Rui-Ren (吳叡人). 2001. Taiwan feishi Taiwanren de Taiwan buke? (Must Taiwan be Taiwan of the Taiwese?) In Lin, Jia-long & Zheng, Yong-nian (eds.). Minzuzhuyi yu Liangan Guanxi (Nationalism and Cross Strait Relation), pp.43-110. Taipei: Thirdnature Co., Ltd. (台灣非是台灣人的台灣不可? 林佳龍和鄭永年(編) 《民族主義與兩岸關係》台北: 新自然主義。) Yahuda, M. 1998. The International Standing of the Republic of China on Taiwan. In David Shambaugh (ed.). Contemporary Taiwan, pp275-295. Oxford: Clarendon Press. Yu, Hsueh-ying. 1995. Ideological practice in news production: Comparing Taiwan newspapers’ reports on the provincial governor’s inauguration. Paper presented at conference on Political Linguistics, Antwerp, Belgium, December 7-9, 1995. Zheng, Duan-yao (鄭端耀). 1998. Wushi waijiao de fazhan yu jueze (The development and decision of pragmatic diplomacy). Issues and Studies (Chinese Edition). 37(4):1-20. (務實外交的發展與抉擇 《問題與研究》37(4):1-20。)id NH0920462001 sid 894719 cfn 0 / id NH0920462002 auc 張雅音 tic 鄒語語法結構與主語問題探究 adc 梅廣 adc 蔡維天 ty 博士 sc 國立清華大學 dp 語言學研究所 yr 92 lg 英文 pg 307 kwc 主語 kwc 鄒語 kwc 南島語 kwc CP kwc 語序 kwc 論元結構 kwc 邊緣結構 kwc 語用句法 abc 本論文探究一個核心問題:為什麼鄒語和其他世界上的語言如此的不同?本論文寫作的宗旨即是從理論句法的角度來回答這個問題,並嘗試找出鄒語語法的運作機制與其核心句法,來解釋鄒語中成系列的特殊語法現象。 tc TABLE OF CONTENTS Chinese Abstract .......................................................................................................... i English Abstract ........................................................................................................... ii Acknowledgement ....................................................................................................... iii Chapter 1: Introduction 1 1.1 Why is Tsou so "Exotic"? 1 1.2 The Geographical and Genetic Background of Tsou 2 1.2.1 The Genetic Classification of Tsou 2 1.2.2 The Language Geography of Tsou 4 1.3 Tsou Essentials 6 1.3.1 The Phonemes and Orthography 6 1.3.2 Voice and the "Subject" 8 1.3.3 Temporal Expressions in Modal System 9 1.3.3.1 Modality 12 1.3.3.2 Aspect 15 1.3.3.3 Voice 17 1.3.4 Speaker-Orientation and Syntactic Representation 17 1.3.4.1 EGOP and e-feature 18 1.4.4.2 Locational Stance/Perspective and LP 18 1.4 Theoretical Orientation 23 1.4.1 Theory Basics: Features, Merge, Agree and Attract/Move 23 1.4.2 Arguments and Pure Merge 24 1.4.3 Weakly Tensed Language and EPP-feature Checking 25 1.4.4 Derivation by PHASE 26 1.4.4.1 PHASES: Chomsky (2001) 26 1.4.4.2 VOICEP and EGOP as PHASES 27 1.4.5 How does it Work? 27 1.4.5.1 Pure Merge 27 1.4.5.2 Agree and Move/Attract at VOICEP PHASE 28 1.4.5.2.1 Agree with [AV/NAV ] 28 1.4.5.2.2 Attraction by EPP-feature 29 1.4.5.3 Agree and Move/Attract at EGOP PHASE 31 1.4.5.3.1 Attraction by EPP-feature 31 1.4.5.3.2 Agree with the e-feature 31 1.5 Organization of the Dissertation 32 Chapter 2: An Overview of Some Formal Issues in Austronesian Syntax 34 2.1 Introduction 34 2.2 Some "Exotic" Austronesian Properties 35 2.2.1 "Subject" at the Right Periphery 35 2.2.2 Split Subjecthood 36 2.2.3 Many Possible "Passive Subjects" 40 2.2.4 Topic-like "subject" 42 2.2.5 "Subject-sensitive" A'-extraction 44 2.3 Some Formal Austronesian Issues and the Literature 45 2.3.1 What is the Grammatical Relation between the Verbal Morphology and the Pivot ? 46 2.3.1.1 A-feature-driven Movement 46 2.3.1.2 A'- features-driven movement 52 2.3.2 What is the Role of the "Subject"? 52 2.3.2.1 The "subject" as an A-element: a Nominative Subject or an Absolutive Object 53 2.3.2.2 The "subject" as an A'-element: as an Adjunct-like Element or a Topic-like Element 53 2.3.3 How to Account for the Right Peripheral "Subject" and Word Order Issue? 53 2.3.3.1 Base-generated Word order: Subject-lowering Approach 54 2.3.3.2 Derived Word Order: Verb-raising Approach 54 2.3.3.3 Derived Word order: VP Raising Approach 55 2.3.4 How to Account for the "subject"-sensitive A'-extraction? 57 2.3.4.1 Wh-/OP-movement-based Approach 57 2.3.4.2 Phase-based approach 58 2.4 Revisiting the Austronesian Properties and Issues in Tsou 59 2.4.1 AV-NAV Alternation ¹ ACTIVE-PASSIVE Alternation: Non-demoted ACTOR in NAV Construction 61 2.4.1.1 NAV ACTOR as Reflexive Binder 63 2.4.1.2 NAV ACTOR as Controller 64 2.4.1.3 NAV ACTOR as the Addressee in Imperatives 65 2.4.2 "Subject" Makers ¹ Nominative Case Markers 67 2.4.3.1 Abandoning "nominative case markers" 68 2.4.3.1.1 Nominative case does not mark topic 68 2.4.3.1.2 Nominative case should not be assigned twice 69 2.4.3.1.3 Nominative case does not affect pragmatic information 70 2.4.3.2 As a Locational Determiner 70 2.4.3.3 Locational Determiners and Syntax-Semantic Mapping 71 2.5 The Proposal 72 Chapter 3: Architecture of the Argument Structure in Tsou 76 3.1 Introduction 76 3.1.1 Paradoxes 76 3.1.1.1 Indistinctness between External Arguments and Internal Arguments 76 3.1.1.2 Indistinctness between Arguments and Adjuncts 79 3.1.1.3 Non-demoted agent/actor in "passives" 80 3.1.2 Toward a Syntactic Approach to Tsou Verbal Morphology 83 3.1.3 An Overview 88 3.2 AV and NAV Symmetries and Asymmetries 89 3.2.1 AV-NAV Symmetries 89 3.2.2 AV-NAV Asymmetries 90 3.3 Syntactic Representations of the Argument Structures 94 3.3.1 Categories and Projections 95 3.3.2 Adjectives or Quantity Predicates 99 3.3.3 Intransitive Clauses 104 3.3.4 Transitive Clauses 107 3.3.5 Applicatives 111 3.3.5.1 High applicatives in Tsou: applied benefactives or instrumentals 116 3.3.5.2 Low applicatives in Tsou: applied recipients, goals or locatives 120 3.3.6 Causative Constructions 125 3.3.6.1 Bieventive Analysis 129 3.4 Pivotal VOICE and "Subject"-Shift 133 3.4.1 "Subject" and "Object" Reconsidered 133 3.4.2 Pivotal VOICE and "Subject"-shift 137 3.4.3 Agree and Attract/Move 138 3.5 Tsou as a "Neo-Davidsonian" Language 142 3.5.1 "Classical" vs. "Neo-" Davidsonianism 143 3.5.1.1 Classical Davidsonian semantics 143 3.5.1.2 Neo-Davidsonian semantics 145 3.5.2 Mapping event structure to syntax 146 3.5.3 Introducing Arguments 150 3.5.4 Association of Adverbial Event Predicates 154 3.5.5 Grammaticalization of Conjunctive ho 157 CHAPTER 6: ARCHITECTURE OF THE PERIPHERAL STRUCTURES IN TSOU 163 4.1 Introduction 163 4.1.1 Puzzles of Split Peripheral Extractions in Tsou 163 4.1.1.1 "Subject" at the Right Periphery 163 4.1.1.2 Wh-extractions at the Left Periphery 169 4.1.2 An Overview 174 4.2 Toward a Leftward Movement Analysis 175 4.2.1 Theoretical Background 175 4.2.1.1 Linear Correspondence Axiom (LCA) 175 4.2.1.2 Correlation between Argument Shift and XP Remnant Movement 176 4.2.1.2.1 Leftward movement of objects: OS and Scrambling 176 4.2.1.2.2 Interplay with leftward remnant movement 179 4.2.2 The Proposal 181 4.2.3 "Subject" Movement in Tsou » Germanic OS or Scrambling 183 4.2.3.1 The Nature of Tsou "Subject" Movement 183 4.2.3.1.1 As an A'-movement 184 4.2.3.1.2 Icelandic = Tagalog 185 4.2.3.1.3 "subject" movement in Tsou » Icelandic OS 189 4.2.3.2 "subject" Movement as an Overt A'-movement 192 4.2.3.2.1 Constituency Test: apparent movement of "subject"/pivot 192 4.2.3.2.2 Morphological evidence of "subject" movement 194 4.2.3.3 Derivational "subject" Movement 198 4.2.3.3.1 Derivation by PHASE 198 4.2.3.3.2 Extended projections in Tsou 201 4.2.3.3.3 Move for EPP-feature and peripheral feature [e ] 203 4.2.4 Predicate Fronting as MOD-ASPP Remnant Movement 205 4.2.4.1 Mod-AspP Remnant as a Constituent for Movement 205 4.2.4.1.1 Neither Verb raising nor VP raising 205 4.2.4.1.2 MOD-ASPP remnant as a constituent 207 4.2.4.2 MOD-ASPP Remnant Fronting 208 4.2.4.2.1 "subject" shift and M-AP remnant movement 208 4.2.4.2.2 Pied-piping of M-AP remnant 209 4.2.4.3 An Alternative Analysis of MOD-ASPP REMINANT MOVEMENT 210 4.2.4.4 Typological Implications 215 4.3 Left Peripheral Wh-dependencies 216 4.3.1 No Extraction of Wh-Questions 217 4.3.1.1 Wh-fronting Interrogatives = Cleft Equationals 217 4.3.1.2 Wh-in-situ 221 4.3.1.3 Problems of Previous Analyses 224 4.3.1.3.1 Unselective binding approach: Chang (1998) 224 4.3.1.3.2 Unsolved problems: why are not all wh-phrases in-situ in Tsou? 226 4.3.2 Spell-Out Focus-in-situ 228 4.3.2.1 Theories of Prosodic Stress 228 4.3.2.2 Focus Stress in Tsou 231 4.3.2.3 Licensing wh-in-situ in Tsou 234 4.3.2.4 Typological Summary 237 4.3.3 Peripheral Topic and Focus 238 4.3.3.1 No Extraction 239 4.3.3.2 Generalized Control 241 4.3.3.3 Resumptive Pronoun 244 4.3.3.4 Topic-/Focus-in-situ 245 4.3.3.5 pro-drop 246 4.3.4 Typological Implications 247 4.4 Peripheral Structure of Nominals 249 4.4.1 Locational Stance/Perspective 250 4.4.1.1 Locational Determiners 250 4.4.1.2 Locational Personal Pronouns 252 4.4.1.3 Demonstratives 252 4.4.2 Extended Nominal Projection 253 4.4.2.1 DP Hypothesis 253 4.4.2.2 Locational Projection (LP) 254 4.5 Mapping between Syntax and Semantics 257 4.5.1 Theories of Mapping between Syntax and Semantics 258 4.5.1.1 Mapping Hypotheses 258 4.5.1.2 Extended Mapping Hypotheses 259 4.5.2 Interpretation of Nominals with Locational Determiners 261 4.5.2.1 Interpretation of Nominals inside of Mapping Domain 261 4.5.2.2 Interpretation of Nominals outside of Mapping Domain 264 4.5.2.2.1 Interpretation of nominals with strong locational determiners 264 4.5.2.2.2 Interpretation of nominals with weak locational determiners 266 Chapter 5: Concluding Remarks 268 5.1 Tsou is no longer "Exotic" 268 5.2 CP Prominent Syntax 269 5.2.1 SPLIT CP 269 5.2.2 EPP-in-CP 271 5.2.3 Syntactic Operations Driven by Pragmatic/Peripheral Features 271 5.2.4 Sentential Operator 272 5.2.5 Symmetrical Extended Nominal Projection 273 5.3 Parametric Variations 273 5.3.1 Parametric EPP-feature 273 5.3.2 Parametric projections of EGOP and LP 274 5.4 Typological Implications 275 List of the Literature on Tsou 277 References 287rf LIST OF THE LITERATURE ON TSOU (based on Li's 1991 bibliographical list) [IN JAPANESE ] 小島由道 1915.《番族慣習調查報告書》,第四卷曹族,臨時台灣舊慣調查會,台北。 Sayama, Y. 佐山融吉 1915.《番族調查報告書?曹族》,臨時台灣舊慣調查會,台北。 Asai, Erin. 淺井惠倫 1931. "Survey report on Bunun and Tsou," The Japanese Journal of Ethnology Vol. 1, Osaka. Ogawa, Naoyoshi and Asai, Erin 小川尚義和淺井惠倫 1935.《原語台灣高砂族傳說集》[The Myths and Traditions of the Formosan Native Tribes. ] Taipei: Institute of Linguistics, Taihoku Imperial University. Asai, Erin. 淺井惠倫 1954. "Survey report on Bunun and Tsou," The Japanese Journal of Ethnology Vol. 18:1.2, Osaka. [IN RUSSIAN ] Nevskij, N. A. 聶甫斯基 1935. Materialy po Govoram Jazyka Cou [Dialect material of the Tsou language ]. Moskva: Trudy Instituta Vostokovedenija 11, pp. 136. Nevskij, N. A. 聶甫斯基 1981. Materialy po Govoram Jazyka Cou. Slovar' Dialekta Severnych Cou [Dictionary of northern Tsou dialect ]. Moskva: Izdatel'stvo. [IN GERMANY ] Szakos, József (1994) Die Sprache der Cou: Untersuchungen zur Synchronie einer austronesischen Sprache auf Taiwan. Doctoral Dissertation. Bonn: universität Bonn. [IN FRENCH ] Zeitoun, Elizabeth (1996) oblemes de linguistique dans les langues aborigenes de Taiwan [Issues on Formosan linguistics ]. Ph. D. dissertation, Universite Paris 7 Denis Diderot, Paris. [IN CHINESE ] 何大安 (Ho, Dah-an) 1976.〈鄒語音韻〉《中研院史語所集刊》147.2: 245-174. 李壬癸 (Li, Paul Jen-kuei) 1992.《台灣南島語言的語音符號系統》[The phonological system of the Formosan languages ],教育部。 土田茲 (Tsuchida, Shigeru) 1993.〈鄒語動詞的詞頭分類〉《台灣南島語言研究論文日文中譯彙編》。黃秀敏譯,李壬癸編審,國立台灣史前博物館籌備處,一九九三年六月。pp. 452-487。 張雅音 (Chang, Ya-Yin Melody) 1997.〈鄒語主題句初探〉《台灣語言發展學術研討會論文集初編》,新竹:國立新竹師院,pp. 321-34。 張雅音 (Chang, Ya-Yin Melody) (1998)〈鄒語的疑問詞移位現象〉,台灣語言及其教學國際研討會,新竹:國立新竹師範學院。 張雅音 (Chang, Ya-Yin Melody) (2001)〈鄒語重疊形式研究〉,全國語言學論文研討會,新竹:國立清華大學。 蔡維天 (Tsai, Wei-tien Dylan) 1998.〈台灣南島語疑問詞的無定用法-噶瑪蘭語、鄒語及賽德克的比較研究〉,《清華學報》新二十七卷第四期,新竹,pp. 381-422。 翁翠霞 (Wong, Cui-xia) 2000.《鄒語和邵語的時、態、貌系統之比較與研究》,嘉義:國立中正大學。 -TRANSLATIONS 白嗣宏、李福清、浦忠成(譯) 1993.《台灣鄒族語典》,聶甫斯基 (Nevskij, N. A.) (原著),台原出版社,台北。 中央研究院民族所 (譯) 2001.《番族慣習調查報告書》,第四卷曹族,小島由道 (原著),中研院民族所,台北。 -TEXTBOOKS/ LEFERENCE GRAMMARS 達邦國小 1996.《嘉義縣阿里山鄉鄒族母語教材》,嘉義縣政府教育局。 達邦國小 1996.《嘉義縣阿里山鄉鄒語簡易字典》,嘉義縣政府教育局。 鄒語工作室 1998.《鄒語初級教材》,文鶴出版社,台北。 齊莉莎 2000.《鄒語參考語法》,台北:遠流出版社。 [IN ENGLISH ] Chen, You-mehim (2000) Negation in Thao and Tsou, M.A. thesis, Chiayi: National Chung Cheng University. Chang, Henry Yung-li (1999) Quantification in Tsou and its implications, Paper presented at National Taiwan University and the Eighth International Conference on Chinese Linguistics (ICCL-8) at the University of Melbourne. Chang, Henry Yung-li (2001a) "Quantification and distributivity in Tsou," in Proceedings of the Symposium on Selected NSC Projects in General Linguistics from 1998-2000, Taipei: National Taiwan University. Chang, Henry Yung-li (2001b) "On the referential properties of noun phrases in Tsou," paper presented in International Symposium on Austronesian Cultures, Academia Sinica, Taipei. Chang, Melody Ya-yin (1997) "Preliminary study of wh-questions in Tsou," Proceedings of NcEALL 1997, Taipei: National Taiwan Normal University, pp. 101-112. Chang, Melody Ya-yin (1998a) "Clefts or Pseudo-clefts: A case study of Tsou," Proceedings of NcEALL 1998, Taipei: National Taiwan Normal University, pp. 65-78. Chang, Melody Ya-yin (1998b) "Topic constructions in Tsou," paper presented at the 7th Annual Meeting of the International Association of Chinese Linguistics/ 10th North American Conference on Chinese Linguistics, (IACL-7/ NACCL-10), CA: Stanford University, June 26-29, 1998. Chang, Melody Ya-yin (1998c) Wh-Constructions and the Problem of Wh-Movement in Tsou, MA thesis, National Tsing-hua University, Hsin-chu. Chang, Melody Ya-yin (2000) "On Wh-questions in Tsou: fronted or remain in-situ," Language & Linguistics, 1.2, Academia Sinica, Taipei. Chang, Melody Yayin (2002) "Nominalization in Tsou," Language and Linguistics 3.2, Academia Sinica, Taipei. Chuo, Fred P.-L. (1998) "A comparative study of interrogatives in Tsou and Yami," Fu-Jen Studies, 31: 1-18, Fu-Jen Catholic University, Taipei. Dyen, Isidore (1963) "The position of the Malayo-Polynesian languages of Formosa," Asian Perspectives, Vol. 7.1-2: 261-271, University press of Hawai'i, Honolulu. Dyen, Isidore (1971) "The Austronesian languages of Formosa," in Thomas Sebeok, ed. Current Trends in Linguistics 8: 168-199. The Hague: Mouton. Ferrell, Raleigh (1972) "Verb systems in Formosan Languages," in Jacqueline M. D. Thomas and Lucien Bernot, eds. Languages et Techniques, Nature et Societe, Tome I: Approche Linguistique, Klincksiek, Paris. Hsin, Tien-hsin (2000) "Consonant clusters in Tsou and their theoretical implications," Proceedings of the 18th west conference on formal linguistics, Cascadilla Press. Huang, Huei-ju (2003) Tense, aspect, and reality in Tsou and Saisiyat, MA thesis, National Taiwan University, Taipei. Hunag Lillian et al. (1998) "A typological overview of nominal case marking systems of some Formosan languages," in Selected Papers from the Second International Symposium on Languages in Taiwan. Huang Lillian M., E. Zeitoun, M. Yeh, J. Wu, A. Chang (1999) "Interrogative constructions in some Formosan languages," Chinese language and linguistics V: Interactions in language, Vol. 2, Academia Sinica, Taipei. Huang, Shuan-fan (2002) "The pragmatics of focus in Tsou and Seediq," Language and Linguistics, 3-4: 665-94. Academia Sinica, Taipei. Huang, Shuan-fan, Lily I.-W. Su, L.-M. Sung (2003) A functional reference grammar of Tsou, National Taiwan University, Taipei. Ko, Fa-chuan (2001) Negation in Tsou, MA thesis, National Tsing-hua University, Hsinchu. Ladefoged, Peter, and E. Zeitoun (1993) "Plumonic ingressive phones do not occur in Tsou," Journal of International Phonetic Association, Vol. 23.1: 13-15, London. Li, Paul Jen-kuei (1972) "On Comparative Tsou," Bulletin of the Institute of History and Philology 44: 311-318, Academia Sinica, Taipei. Li, Paul Jen-kuei (1974) "Alternations between semi-consonants and fricatives or liquids," Oceanic Linguistics 13: 164-186, University of Hawai'i Press, Honolulu. Li, Paul Jen-kuei (1976) "Research Materials and Problems of Formosan Languages," Bulletin of the Institute of History and Philology 47: 51-84, Academia Sinica, Taipei. Li, Paul Jen-kuei (1977) "Morphophonemic Alternations in Formosan Languages," Bulletin of the Institute of History and Philology 48: 375-413, Academia Sinica, Taipei. Li, Paul Jen-kuei (1979) "Variations in the Tsou dialects," Bulletin of the Institute of History and Philology 50.2: 273-300, Academia Sinica, Taipei. Li, Paul Jen-kuei (1986) "Linguistic variations of different age groups in some Formosan languages," FOCAL II: papers from the 4th international conference on Austronesian linguistics, C 94, Australian National University, Canberra. Li, Paul Jen-kuei (1990) "Classification of Formosan languages: lexical evidence," Bulletin of Institute of History and Philology 61.2, 811-37, Academia Sinica, Taipei. Li, Paul Jen-kuei (1997) "A syntactic typology of Formosan languages-case markers on nouns and pronouns," Chinese languages and linguistics: typological studies of languages in China, Academia Sinica, Taipei. Lin, Gu-jing (2002) "The complementation of Tsou: toward a cognitive account of syntactic structure," MA thesis, National Taiwan University, Taipei. Patricia, Stanley (1974) "Syntax of Tsou Verbs: Implications for Comparative Studies," paper presented at 1st International Conference on Comparative Austronesian Linguistics, Honolulu, January 2-7, 1974. Patricia, Stanley (1976) "Object Incorporation in Tsou," paper presented at 2nd Eastern Conference on Austronesian Languages, Ann Arbor, May 4-5 1976. Patricia, Stanley (1979) "Morphophonemics of Verb Suffixes in Tsou," in Nguyen Dang Liem ed. South-East Asian Linguistic Studies. Canberra, S. 187-196. Starosta, Stanley (1969) "Review of "A Descriptive Study of Tsou Language, Formosa" by Tung T'unh-ho," Language 45.2: 439-444. Starosta, Stanley (1974) "Causative verbs in Formosan languages," Oceanic Linguistics 13: 279-369. Starosta, Stanley, Andrew K. Pawley & Laurence A Reid (1982) "The evolution of focus in Austronesian," in Amran Halim, Lois Carrington and S. A. Wurm, eds. Papers from the Third International Conference on Austronesian Linguistics, vol. 2, Tracking the Travellers, 145-170. Pacific Linguistics C-75. Starosta, Stanley (1985) "Verbal inflection versus deverbal nominalization in PAN: the evidence from Tsou," in Andrew Pawley and Lois Carrington, eds. Austronesian Linguistics at the 15th Pacific Science Congress, 281-312. Pacific Linguistics C-88, Australia National University, Canberra. Starosta, Stanley (1988) "A grammatical typology of Formosan languages," Bulletin of the Institute of History and Philology 59.2: 541-576, Academia Sinica, Taipei. Starosta, Stanley (1991) "Ergativity, transitivity, and clitic conference in four Western Austronesian languages," paper presented at Sixth International Conference on Austronesian Linguistics, Honolulu, May 20-24, 1991. Starosta, Stanley (2002) "Verbal inflection versus deverbal nominalization in PAn: the evidence from Tsou," Austronesian Linguistics at the 15th Pacific Science Congress, 282-312, Pacific Linguistics, Canberra. Szakos, József (1997) "Tsou semantics: A synchronic analysis of composite verbs exemplified on some perception / sensation verbs," paper presented at the 8th International Conference on Austronesian Linguistics, Taipei, Dec. 28-31. Szakos, József (1998) "A case for semantics: What governs noun-incorporation in Tosu and Saaru'a," paper presented at 5th Annual Meeting of the Austronesian Formal Linguistics Association, Honolulu, Mar. 27-29. Szakos, József (1998) "Self-repair and agreement in the discourse construction of Tsouic languages," paper to presented in Proceedings of IsCLL6, the 6th International Symposium of Chinese Languages and Linguistics, Academia Sinica, Taipei. Sung, Li-Mei (2001) Existential construction in Tsou, Paper presented at AFLA-8, MIT. Tung, T'ung-ho (1964) A Descriptive Study of the Tsou Language, Formosa, Academia Sinica, Taipei. Tsai, Wei-tien Dylan (1997) "Indefinite Wh's in Formosan Languages and Typology of Wh-Dependencies: Evidence from Seediq and Tsou," paper presented at the 8th International Conference on Austronesian Linguistics, Taipei, Dec. 28-31. Tsai, Wei-Tien Dylan (1999c) “The Hows of Why and The Whys of How,” in Francesca Del Gobbo and Hidehito Hoshi (eds.),UCI Working Papers in Linguistics 5, 155-184. Tsai, Wei-tien Dylan (2000) “Lexical Courtesy Revisited: Evidence from Tsou and Seediq Wh-Constructions,” in Proceedings of the Nanzan GLOW, 407-424. Tsai, Wei-tien Dylan and Melody Ya-yin Chang (forthcoming) "Two types of wh-adverbials: a typological study of how and why in Tsou," The Linguistic Variations Yearbook. Tsuchida, Shigeru (1972) "The origins of the Tsou phonemes /b/ and /d/," Gengo Kenkyu 62:24-35. Tsuchida, Shigeru (1976) Reconstruction of Proto-Tsouic Phonology. Ph. D. dissertation at Yale University, New Haven. 1975. Tokyo: Study of Languages & Cultures of Asia & Africa, Monograph Series No. 5. Tsuchida, Shigeru (1990) "Classificatory Prefixes of Tsou-Verbs," Tokyo University Linguistics Papers 89: 17-52, Tokyo University, Tokyo. Tsuchida, Shigeru (1995) "Tsou: Introduction and wordlist," Comparative Austronesian Dictionary: An Introduction to Austronesian Studies, Mouton de Gruyter, Berlin. Wolff, John (1973) "Verbal inflection on proto-Austronesian," in Gonzales ed. Parangal Kay Cecilio Lopez, 71-79. Linguistic Society of the Philippines. Manila. Wright, Richard and Peter Ladefoged, (1994) "A Phonetic Study of Tsou," UCLA working Papers In Phonetics 87, UCLA, p.67-92. Wright, Richard (1997) Consonant Clusters and Cue Preservation in Tsou. Ph. D. dissertation at University of California, Los Angeles. Wright, Richard (1999) "Consonant Clusters and Cue Preservation in Tsou," in Zeitoun, Elizabeth and P. J.-K. Li eds., Selected papers from the 8th international conference on Austronesian linguistics 1, Academia Sinica, Taipei. Zeitoun, Elizabeth (1992) A Syntactic and Semantic Study of Tsou Focus System. MA thesis, National Tsing Hua University, Hsinchu. Zeitoun, Elizabeth (1993) A syntactic study of case markers. Bulletin of the Institute of History and Philology, 64.4, 969-989, Academia Sinica, Taipei. Zeitoun, Elizabeth (1996) "The Tsou Temporal, Aspectual and Modal System Revisited," Bulletin of the Institute of History and Philology, 67.3: 503-532, Academia Sinica, Taipei. Zeitoun, Elizabeth, L. Huang, M. Yeh, A. Chang, J. Wu (1996) "The Temporal/Aspectual and Modal System pf the Formosan Languages: a Typological perspective," Oceanic Linguistics 35.1: 21-56, University of Hawai'i Press, Honolulu. Zeitoun, Elizabeth, and L. Huang (1997) "Toward a typology of tense, aspect and modality in the Formosan languages: a preliminary study," Chinese Languages and Linguistics: Typological studies of languages in China, Academia Sinica, Taipei. Zeitoun, Elizabeth et al. (1999) "Existential, possessive, and locative constructions in Formosan languages," Oceanic Linguistics 38.1: 1-42, University of Hawai'i Press, Honolulu. Zeitoun, Elizabeth (2000) "Notes on a possessive construction in the Formosan languages," Grammatical Analysis: Morphology, Syntax and Semantics, 29, University of Hawai'i Press, Honolulu. REFERENCES Abney, S. (1987) The English Noun Phrase in its Sentential Aspects, Ph.D. dissertation, MIT, Cambridge, MA. Alexiadou, A. (1997) Adverb placement: a case study in antisymmetric syntax, Benjamins, Amsterdam. Aldridge, E. (1998) "Reconsidering Tagalog phrase structure with reference to Indonesian." Ms., Cornell University. Aldridge, E. (2003) "Phase theory account of absolutive extraction in Tagalog," presented in IAP Workshop on EPP and Phases, MIT, January 16-17. Arregi, K. (2002) Focus and Basque Movement, Ph.D. dissertation, MIT, Cambridge, MA. Baker, M. (1988a) "Theta Theory and the Syntax of Applicatives in Chichewa," Natural Language and Linguistic Theory 6: 353-89. Baker, M. (1988b) Incorporation: A Theory of Grammatical Function Changing, University of Chicago Press, Chicago. Barss, A. and H. Lasnik (1986) "A note of anaphor and double objects," Linguistic Inquiry 17: 347-54. Blust, Robert (1976) "Austronesian culture history: some linguistic inferences and their relations to the archaeological record," World Archaeology 8.1: 19-43. Blust, Robert (1985) "The Austronesian homeland: A Linguistic Perspective," Asian Perspective 26.1: 45-67. Bobalijk, J. D. (1995) Morphosyntax: the syntax of verbal inflection, Ph.D. dissertation, MIT, Cambridge, MA. Boer, H. (1994) "The projection of arguments," in E. Benedicto and J. Runner eds. University of Massachusetts Occasional Papers in Linguistics 17, GLSA, UMass, Amherst. Boer, H. (1998) "Passive without theta grids," in S. Lapointe, P. Farrell and D. Brentari eds., Morphology and its Relations to Phonology and syntax, CSLI, Stanford. Branigan, P. (1992) Subjects and Complementizers, Ph.D. dissertation, MIT, Cambridge, MA. Bresnan, J. and L. Moshi (1993) "Object Asymmetries in Comparative Bantu Syntax," in Sam A. Mchombo, ed., Theoretical Aspects of Bantu Grammar 1. CSLI Publications, Stanford, CA, 50-93. Bruening, B. (2001) "QR Obeys Superiority: Frozen Scope and ACD," Linguistic Inquiry 32: 233-73. Burzio, L. (1986) Italian Syntax, Reidel, Dordrecht. Carrier-Duncan, J. (1985) "Linking of thematic roles in derivational word formation," Linguistic Inquiry 16: 1-34. Carnie, A. (1995) Non-verbal Predication and Head Movement, Ph.D. dissertation, MIT, Cambridge, MA. Castañeda, H.-N. (1967) "Comments on D. Davidson's 'the logical form of action sentences,'" in R. Nicholas (ed), The Logic of Decision and Action, University of Pittsburgh Press. Chafe, Wallace (1986) "Evidentiality in English Conversation and Academic Writing," Evidentiality: the Linguistic Encoding of Epistemology, in W.L. Cafe and J. Nichols, eds., N. J., Ablex Publishing Corp. Chafe, Wallace L. and Johanna Nichols (1986) Evidentiality: the linguistic coding of epistemology, Norwood, N. J., Ablex Publishing Corp. Chang, Henry Yung-li (1997) Voice, Case and Agreement in Seediq and Kavalan, Ph.D. Dissertation, National Tsing-hua University, Hsinchu. Chang, Henry Yung-li (1999) "Quantification in Tsou and its implications," Paper presented at National Taiwan University and the Eighth International Conference on Chinese Linguistics (ICCL-8) at the University of Melbourne. Chang, Yung-li and Wei-Tien Dylan Tsai (2001) "Actor-sensitivity and obligatory control in Kavalan and some other Formosan languages," Language and Linguistics 2.1: 1-20. Chang, Henry Yung-li (2001a) "Quantification and distributivity in Tsou," in Proceedings of the Symposium on Selected NSC Projects in General Linguistics from 1998-2000, Taipei: National Taiwan University. Chang, Henry Yung-li (2001b) "On the referential properties of noun phrases in Tsou," paper presented in International Symposium on Austronesian Cultures, Academia Sinica, Taipei. Chang, Melody Ya-yin (1998) Wh-Constructions and the Problem of Wh-Movement in Tsou, MA thesis, National Tsing-hua University, Hsin-chu. Chang, Melody Ya-yin (2000) "On Wh-questions in Tsou: fronted or remain in-situ," Language & Linguistics, 1.2, Academia Sinica, Taipei. Chang, Melody Yayin (2002) "Nominalization in Tsou," Language and Linguistics 3.2, Academia Sinica, Taipei. Cheng, Lisa L.-S. (1991) On the typology of wh-questions, Ph.D. dissertation, MIT, Cambridge, MA. Cheng, Lisa L.-S. (1997) On the typology of wh-questions, Garland Publishing, New York. Cheng, Lisa L.-S. and J. Rooryck (2000) "Licensing wh-in-situ, Syntax 3:1, 1-19. Chierchia, Gennaro (1998) "Plurality of Mass Nouns and the Notion of Semantic Parameter," in Susan Rothstein (eds.) Event and Grammar, Kluwer Academic Publishers. Cinque, G. (1993) "A null theory of phrase and compound stress," Linguistic Inquiry 24: 239-97. Cinque, G. (1999) Adverbs and functional heads, Oxford University Press, New York. Chomsky, N. (1973) "Conditions on transformation," in Jacobs and Tosenbaum (eds), English Transformational Grammar, 184-221. Chomsky, N. (1977) "On wh-movement," in P. Culicover, T. Wasow, and A. Akmajian (eds), Formal Syntax, Academic Press, New York. Chomsky, N. (1981) Lectures on Government and Binding, Dordrecht: Foris. Chomsky, N. (1995) The Minimalist Program, MIT Press, Cambridge. Chomsky, N. (1998) "Minimalist inquiries: the framework," ms. MIT, Cambridge. Chomsky, N. (2000) "Minimalist inquiries: the framework," in M. Roger, M. David and J. Uriagereka (eds), Step by Step: Essays on Minimalist Syntax in Honor of Howard Lasnik, MIT Press, Cambridge. Chomsky, N. (2001) "Derivation by phase," in M. Kenstowicz, (ed), Ken Hale: a life in Language, MIT Press, Cambridge, MA, 1-52. Chung, S. and Timberlake, A. (1985) "Tense, aspect, and mood," in S. Shopen, (ed) Language Typology and Syntactic Description, Vol. III: Grammatical Categories and the Lexicon, 202-58. Chung, S. and J. McCloskey (1987) "Government, barriers and small-clauses in Modern Irish, Linguistic Inquiry 18: 173-237. Chung, S. (1989) " On the notion 'null anaphor' in Chamarro," in The null subject parameter, P. Jaeggli and K. J. Safir (eds), 143-84. Dordrecht: Reidel. Chung, S. (1990) "VP's and verb movement in Chamarro," Natural Language and Linguistic Theory 8: 559-619. Chung, S. (1991a) "Functional heads and proper government in Chamorro," Lingua 85: 85-134. Chung, S. (1991b) "Sentential subjects and proper government in Chamorro," in Interdisciplinary approaches to language: Essays in honor of S.-Y. Kuroda, ed. Roberta Ishihara and Carol Georgopulous, 75-99. Dordrecht: Reidel. Chung, S. (1993) " On proper head government in Chamorro," in CLS 27-I: Papers from the twenty-Seventh Regional Meeting, ed. Lise Dobrenin, Lynn Nichols, and Rosa M. Rodriguez, 60-84. Chicago Linguistic Society, University of Chicago, Chicago, Ill. Chung, S. (1994) "Wh-agreement and 'referentiality' in Chamorro," Linguistcs Inquiry 25: 1-44. Chung, S. (1998) The Design of Agreement: Evidence from Chamarro, University of Chicago Press. Chung, S. (to appear) "VOS clauses," in Syncon. Cinque, G. (1990) Types of A' Dependencies, MIT Press, Cambridge, MA. Cinque, G. (1999) Adverbs and Functional Heads: A Cross-linguistic Perspective, Oxford University Press, Oxford. Clack, S. (1994) "A consideration of V2 in relation to middle Welsh," in I. Roberts (ed), Research Papers in Welsh Syntax, Bangor Research Papers in Linguistics 5: 38-77. Clements, G. N. (1984) "Binding domains in Kikuyu," Studies in the Linguistic Sciences 14: 37-56. Culy, Christopher (1994) "Aspects of Logophoric Marking," Linguistics 32: 1055-94. 167-179. Dahl, Otto Christian (1973) Proto-Austronesian. Sweden: Scandinavian Institute of Asian Studies, Monograph Series 15. Dahl, Otto Christian (1996) "Predicate, subject, and topic in Malagasy," Oceanic Linguistics 35: Davidson, D. (1967) "The logical form of action sentences, in N. Reschler ed., The Logic of Decision and Action, University of Pittsburgh Press, Pittsburgh, 81-95. De Guzman, Videa (1988) "Ergative Analysis for Philippine languages: An analysis," in Studies in Austronesian Linguistics, ed. R. McGinn. Monographs in International Studies, Southeast Asia Series 76. Athens, Ohio: Ohio University. Déprez, V. and K. Hale (1986) "Resumptive Pronouns in Irish," Proceedings of the Harvard Celtic Colloquium 5: 38-48. Diesing, M. (1992) Indefinites, MIT Press, Cambridge, MA. Diesing, M. (1997) "Yiddish VP order and the typology of object movement in Germanic," Natural Language and Linguistic Theory 15: 369-427. Diesing, M. and E. Jelinek (1995) "Distributing arguments," Natural Language Semantics 3.2: 123-76. Doron, E. (1999) "Semitic Templates as Representations of Argument Structure, in TLF 1999: Proceedings of the TLS 1999 Conference on Perspectives on Argument Structure," University of Texas at Austin. Duffield, N. (1991) Particles and Projections, Ph.D. dissertation, University of Southern California, LA. Duffield, N. (1995) Particles and Projections in Irish Syntax, Kluwer, Dordrecht. Emonds, J. (1980) "Word order and generative grammar," Journal of Linguistic Research 1: 33-54. Egerod, Søren (1965) "Verb Inflection in Atayal," Lingua 15: 251-82. Fassi Fehri, A. (1993) Issues in the Structure of Arabic Clauses and Words, Kluwer, Dordrecht. Ferrell, R. (1969) Taiwan Aboriginal Groups: Problems in Cultural and Linguistic Classification. Institute of Ethnology, Academic Sinica Monograph: 17, Academia Sinica, Taipei. Freeze, R. and C. Georogopoulos (2000) Locus Operandi, in The syntax of verb initial languages, A. Carnie and E. Guilfoyle (eds), Oxford University Press. Fukui, N. and M. Speas (1986) "Specifiers and projection," in N. Fukui, T. Rappoport, and E. Sagey (eds) MITWPL 8, 128-72. Georgopoulos, Carol (1991a) "Canonical government and the specifier parameter: An ECP account of weak crossover," Natural Language and Linguistic Theory 9: 1-46. Georgopoulos, Carol (1991b) Syntactic Variables: Resumptive Pronouns and A'-Binding in Palauan, Kluwer, Dordrecht. Guilfoyle, E., H. Huang, and L. Travis (1992) "Spec of IP and Spec of VP: two subjects in Austronesian languages," Natural Language and Linguistic Theory 10: 375-414. Guilfoyle, E. (1993) "Non-finite clauses in Modern Irish and old English," Proceedings of NELS 18: 193-207, GLSA, University of Massachusetts, Amherst, MA. Giorgi, A. and Pianesai, F. (1997) Tense and Aspect: From Semantics to Morphosyntax. Oxford University Press, London. Grimshaw, J. (1990) Argument Structure, MIT Press, Cambridge, MA. Halle, M. and J.-R. Vergnaud (1987) An Essay on Stress, MIT Press, Cambridge, MA. Hale, K. (1989) Incorporation and the Synthetic Verb Forms in Irish, Ph.D. dissertation, MIT, Cambridge, MA. Hale, K. and J. Keyser (1991) "On the syntax of argument structure," Lexicon Project Working Papers, Center for Cognitive Science, MIT, Cambridge, MA. Hale, K. and J. Keyser (1993) "On argument structure and the lexical expression of syntactic relations," in K. Hale and S. J. Keyser eds., The View from Building 20: Essays in Linguistics in Honor of Sylvain Bromberger, 111-76, MIT Press, Cambridge, MA. Hale, K. and J. Keyser (1997) "On the complex nature of simple predicators," in A. Alsina, J. Bresnan, and P. Sells (eds) Complex Predicates, CSLI, Stanford University, 29-66. Harley, H. (1995) Subjects, Events and Licensing, Ph.D. dissertation, MIT, Cambridge, MA. Haudricourt, André G. (1965) "Problems of Austronesian Comparative Philology," Lingua 14: 315-329. Heim, I. (1982) The Semantics of Definite and Indefinite Noun Phrases, Ph.D. dissertation, University of Massachusetts, Amherst. Higginbotham, J. (1985) "On semantics," Linguistic Inquiry 16. 547-93. Holmberg, A. and C. Platzack (1995) The Role of Inflection in Scandinavian Syntax, Oxford University Press, New York. Holmberg, A. (1999) "Remarks on Holmberg's Generalization," Studia Linguistica 53: 1-39. Holmer, A. J. (1996) A Parametric Grammar of Seediq, Lund University Press, Sweden. Hornstein, N. (1990) As Time Goes By: Tense and Universal Grammar. MIT Press, Cambridge, Mass. Huang, C.-T. James (1982) Logical Relations in Chinese and the Theory of Grammar, Ph.D. dissertation, MIT, Cambridge, MA. Huang, C.-T. James (1984) "On the distribution and reference of empty pronouns," Linguistic Inquiry 15, 531-574. Huang, C.-T. James (1989) "Pro-drop in Chinese: a generalized control theory," in O. Jaeggli and K. Safir (eds.) The Null Subject Parameter, pp. 185-214. Huang, C.-T. James (1992) "Complex predicates in control," in J. Higginbotham and R. Larson (eds), Control and Grammar, Kluwer, Dordrecht, 119-47. Huang, C.-T. James (1993) "Reconstruction and structure of VP: some theoretical consequences," Linguistic Inquiry 24.1: 103-38. Huang, C.-T. James (1997) "On lexical structure and syntactic projection," Chinese Languages and Linguistics 3: 45-89, Academic Sinica, Taipei. Huang, C.-T. James and C.-S. Luther Liu (2001) "Logophoricity, Attitudes and ziji at the Interface," Syntax and Semantics 33: 141-98. Huang, Lillian M.-J. (1995) A Study of Mayrinax Syntax. The Crane Publishing Co., Taipei. Hunag, Lillian M., E. Zeitoun, M. Yeh, J. Wu, A. Chang. (1998) "A typological overview of nominal case marking systems of some Formosan languages," in Selected Papers from the Second International Symposium on Languages in Taiwan. Huang, Lillian M., E. Zeitoun, M. Yeh, J. Wu, A. Chang (1999) "Interrogative constructions in some Formosan languages," Chinese language and linguistics V: Interactions in language, Vol. 2, Academia Sinica, Taipei. Huang, Shuan-fan (2002) "The pragmatics of focus in Tsou and Seediq," Language and Linguistics, 3-4: 665-94. Academia Sinica, Taipei. Ishihara, S. (2001) "Stress, focus, and scrambling in Japanese, in E. Guerzoni and O. Matushansky (eds), A Few from Building E39: Papers in Syntax, Semantics and their Interface, MIT Working Papers in Linguistics 39: 142-75, Cambridge, MA. Jackendoff, Ray S. (1972) Semantic interpretation in generative Grammar, MIT Press, Cambridge, MA. Jelinek, E. (2000) "Predicate raising in Lummi, Straits Salish," in A. Carnie and E. Guilfoyle (eds), The Syntax of Verb Initial Languages, 235-51, Oxford University Press, New York. Jonas, Dianne (1992) "Checking theory and nominative case in Icelandic," in H. Thráinsson and S. Kuno (eds), Harvard Working Papers in Linguistics 1, 175-95. Kamp, J. A. W. (1981) "A Theory of Truth and Semantic Representation," in J. Groenendijk, T. Janssen, and M. Stokhof (eds), Formal Methods in the Study of Language, 277-321, Mathematical Centre, Amsterdam. Kaplan, T. (1991) "A classification of VSO languages," Proceedings of ESCOL 91: 198-209. Kayne, S. Richards (1994) The Antisymmetry of Syntax, MIT Press, Cambridge. Kayne, S. Richards (2000) Parameters and University, Oxford University Press, New York. Kayne, S. Richards (1998) "Overt and covert movement," Syntax 1.2: 128-91. Keenan, Edward L. 1976. "Remarkable subjects in Malagasy," in Subject and Topic, ed. C. Li. New York: Academic Press. Keenan, Edward L. 1979. "On surface form and logical form," Studies in the Linguistics Sciences 8.2. Kiss, Katalin E. (1998) "Identificational vs. information focus," Language 74: 245-73. Kitagawa, Y. (1986) Subject in Japanese and English, Ph.D. dissertation, University of Massachusetts, Amherst. Koopman, H. and D. Sportiche (1991) "The Position of Subjects," Lingua 85, 211-58. Kratzer, Angelika. 1996. "Severing the external argument from its verb", in Phrase Structure and the Lexicon, ed. J. Rooryck and L. Zaring. Dordrecht: Kluwer. Kratzer, A. (1998) "Stage-level and individual-level predicates," in M. Krifka (ed) Genericity in Natural Language, 247-84, SNS-Bericht 88-42, Unoversity of Tűbingen. Kroeger, Paul. 1993. Phrase structure and grammatical relations in Tagalog. Stanford: CSLI Press. Kuroda, S. Y. (1988) "Whether we agree or not: a comparative syntax of English and Japanese," Linguistic Investigations 12: 1-47. Lasnik, H. and M. Saito (1992) Move a : Conditions on its Application and Output, MIT Press, Cambridge, MA. Larson, R., K. (1988) "On the double object construction," Linguistic Inquiry 21: 589-632. Lee, Frlicia (2000) "VP Remnant Movement and VSO in Quiaviní Zapotec," in The syntax of verb initial languages, ed. Andrew Carnie and Eithne Guilfoyle. Oxford University Press. Levin, B. and M. Rappaport (1995) Unaccusativity, MIT Press, Cambridge, MA. Li, Charles N. and Sandra A. Thompson (1967) "Subject and Topic: a new typology of language, in Charles N. (ed.) Subject and Topic, Academic Press, New York. Li, Paul Jen-kuei (1985) "The Position of Atayal in the Austronesian family," in A. Pawley and L. Carrington (eds), Austronesian Linguistics at the 15th pacific Science Congress, 257-80. Pacific Linguistics, C-88. Li, Paul Jen-kuei (1986) "Linguistic variations of different age groups in some Formosan languages," FOCAL II: papers from the 4th international conference on Austronesian linguistics, C 94, Australian National University, Canberra. Li, Paul Jen-kuei (1990) "Classification of Formosan languages: lexical evidence," Bulletin of Institute of History and Philology 61.2, 811-37, Academia Sinica. Li, Paul Jen-kuei (1997) "A syntactic typology of Formosan languages-case markers on nouns and pronouns," Chinese languages and linguistics: typological studies of languages in China, Academia Sinica, Taipei. Lin, T.-H. Joanna (2001) Light Verb Syntax and the Theory of Phrase Structure, Ph.D. dissertation, University of California, Irvine, CA. Maclachlan, Anna E. 1996. Aspects of Ergativity in Tagalog, PhD Dissertation, McGill University, Montreal, Canada. Marantz, A. (1984) On the Nature of Grammatical Relations, MIT Press, Cambridge, MA. Marantz, A. (1997) "No escape from Syntax: Don't Try Morphological analysis in the Privacy of Your Own Lexicon," in A. Dimitriadis, L. Siegel, et. al., eds. University of Pennsylvania Working Papers in Linguistics, Vol. 4.2, Proceedings of the 21st Annual Penn Linguistics Colloquium, 1997, 201-25. Massam, Diane (1996) "Predicate Fronting in Niuean, in Proceedings of the 1996 Canadian Linguistics Association Annual Meeting, Calgary Working Papers in Linguistics, 247-56. Massam, Diane and Caroline Smallwood (1997) "Essential Features of Predication in English and Niuean," in Proceedings of NELS 27: 236-72, GLSA, University of Massachusetts, Amherst. Massam, Diane (2000) "VSO and VOS: Aspects of Niuean Word Order," in A. Carnie and E. Guilfoyle (eds), The syntax of verb initial languages, Oxford University Press. McCloskey, J. (1991) "Clause Structure, Ellipsis and Proper Government in Irish, in The Syntax of Verb Initial Languages: Lingua Special Edition 85: 259-302. McCloskey, J. (1996a) "Subjects and subject positions," in R. Borsely and I. Roberts (eds), The Syntax of the Celtic Languages, 241-83, Cambridge University Press, Cambridge. McCloskey, J. (1996b) "On the Scope of Verb Movement in Irish," Natural Language and Linguistic Theory 14: 47-104. Mei, K. (1982) "Pronouns and verb inflection in Kanakanavu," Tsing Hua Journal of Chinese Studies, New Series 14: 207-32. Mei, K. (1994) "Word order, case, and theta-agreement in Mayrinax Atayal," Proceeding of the 1st Symposium on Austronesian Languages of Taiwan, Academia Sinica, Taipei. [In Chinese ] Mei, K. (2002) "The Expression of Time in Tibeto-Burman," paper presented in GLOW in Asia, January 4-6, Tsing Hua University, Taiwan. Milsak, G. (1974) Existential Sentences in English, Ph.D. dissertation, MIT, Cambridge, MA. Miyagawa, S. (1998) "(s)ase as an Elsewhere Causative and the Syntactic Nature of Words," Journal of Japanese Linguistics, Vol. 16. Mohammed, M. (1988) "On the parallelism between IP and DP," Proceedings of WCCFL 7: 241-54, CDLI, Stanford University, CA. Neeleman (1994) Neeleman, A. and T. Reinhart (1998) "Scrambling and the PF interface," in M. Butt and W. Geuder (eds), The Projection of Arguments: Lexical and Compositional factors, 309-53, CSLI, Stanford, CA. Noonan, M. (1994) "VP-internal and VP-external AgrO Phrase: evidence from Irish," Proceedings of WCCFL 13: 318-34, CSLI, Stanford University, CA. Nilsen, Æ. (1997) "Adverbs and A-shift," working papers in Scandinavian Syntax 59: 1-32. Nishigauchi, Tasuke (1999) "'Point of View' and Phrase Structure," Theoretical and Applied Linguistics at Kobe Shoin 2: 49-60. Ouhalla, J. (1991) Functional Categories and Parametric Variation. Routledge, London and New York. Paul, Ileana (1998) "Focus movement and wh-questions in Malagasy," in Proceedings of the Western Conference on Linguistics (WECOL). Paul, Ileana (1999) Malagasy clause structure. PhD. Dissertation, McGill University. Paul, Ileana (2003) "On extraction asymmetries," in Proceedings of AFLA 8, ed. A. Rackowski and N. Richards, MIT Working Papers in Linguistics. Payne, Thomas (1982) Role and reference related subject properties and ergativitiy in Yup'ik Eskimo and Tagalog. Studies in Language 6: 75-106. Parsons, Terence (1990) Events in the Semantics of English: a Study in Subatomic Semantics, MIT Press, Cambridge, MA. Pearson, M. (2001) The clause structure of Malagasy: A minimalist approach, Ph.D. dissertation, UCLA. Pearson, M. (2003) The Malagasy Subject/Topic as an A'-Element. ms. UCLA. Pesetsky, D. (1987) "Wh in situ: Movement and Unselective Binding," in E. Reuland and A. Ter Meulen (eds.) Representation of (In)definiteness, MIT Press, Cambridge, MA. Pesetsky, D. (2000) Phrasal Movement and its Kin, MIT Press, Cambridge, MA. Pesetsky, D. and E. Torrego (2001) "T-to-C Movement: Causes and Consequences," in Michael Kenstowicz (ed.), Ken Hale: a life in language. MIT Press, Cambridge, 355-426. Pollock, J.-Y. (1989) "Verb Movement, Universal Grammar, and the Structure of IP," Linguistic Inquiry 20: 365-424. Pustejovsky, J. (1995) The Generative Lexicon, MIT Press, Cambridge, MA. Pylkkänen, L. (2002) Introducing Arguments, MIT Press, Cambridge, MA. Rackowski, A. and L. Travis (2000) "V-initial languages: X or XP movement and adverbial placement," in A. Carnie and E. Guilfoyle (eds), The syntax of verb initial languages, Oxford University Press. Rackowski, A. (2002) The structure of Tagalog: specificity, voice, and the distribution of arguments, PhD Dissertation, MIT. Rackowski, A. and N. Richards (2003) "Phase edge and extraction: a Tagalog case study," presented in IAP Workshop on EPP and Phases, MIT, January 16-17. Reichenbach, H. (1947) Elements of Logic. Macmillan. Reinhart, T. (1998) "Wh-in-situ in the Framework of the Minimalist Program," Natural Language Semantics 6, 29-56. Reuland E. (1988) "Indefinite subjects," in Proceedings of NELS 18, 375-94, GLSA, University of Massachusetts, Amherst. Richards, N. (1997) What Moves Where When in Which Language, Ph.D. dissertation, MIT, Cambridge, MA. Richards, N. (2000) "Another look at Tagalog subjects," in Formal Issues in Austronesian Linguistics, I. Paul, V. Phillips, and L. Travis (eds), Dordrecht: Kluwer. Rizzi, Luigi (1997) "The Fine Structure of the Left Periphery," in Liliane Haegeman ed., Elements of Grammar: 281-338, Kluwer Academic Publishers, Dordrecht. Ross, Malcolm (1995) "Reconstruction Proto Austronesian verbal morphology: evidence from Taiwan," in Paul Jen-Kuei Li, et al., (eds) Austronesian studies relating to Taiwan, 729-91, Symposium Series of the Institute of History and Philology, Academia Sinica, No. 3, Academia Sinica. Ross, Malcolm (2002) "The history and transitivity of western Austronesian voice and voice-marking, in Wouk, Fay and Malcolm Ross (eds.) The History and Typology of Western Austronesian Voice Systems, 17-63. Ross, J. R. (1967) "Constraints on variable in syntax," Ph.D. dissertation, MIT, Cambridge, MA. Ross, J. R. (1982) "Pronoun deleting processes in German," paper presented at the Annual Meeting of the LSA, San Diego. Rögnvaldsson, E. and H. Thráinsson (1990) "On Icelandic word order once more," in J. Maling and A. Zaenen (eds) Modern Icelandic Syntax. Syntax and Semantics 24), San Diego etc.: Academic Press. Sadler, L. (1988) Welsh Syntax: A Government-Binding Approach, Croom Helm, London. Saito, M. (1985) Some Asymmetries in Japanese and their Theoretical Implications, Ph.D. dissertation, MIT, Cambridge, MA. Saito, M. (1994) Sáinz, Kaldo (1994) "Projections and particles: V1, V2 and agreement," ms. University of the Basque Country, Spain. Schwartz, B. and S. Vikner (1989) "All verb second clauses are CPs," Working Papers in Scandinavian Syntax 29: 439-74. Sells, P. (1987) "Aspects of Logophoricity," Linguistic Inquiry 18.3: 445-79. Sells, P. (2000) "Raising and the order of Clausal constituents in the Philippine Languages," in Formal Issues in Austronesian Linguistics, ed. Ileana Paul, Vivianne Phillips, and Lisa Travis. Dordrecht: Kluwer. Selkirk, E. (1995) "Sentence prosody: intonation, stress and phrasing," in John A. Goldsmith (ed) The Handbook of Phonological Theory, 550-69, Blackwell, Cambridge, MA. Schachter, P. (1976) "The subject in Philippine Languages: topic, actor, Actor-Topic, or none of the above?" In C. Li (ed) Subject and Topic, 491-518. New York: Academic Press. Shutler, Richard Jr. and Jeffrey C. Marck (1975) "On the dispersal of the Austronesian horticulturalists," Archaeology and Physical Anthropology in Oceania 10.2: 81-113. Stowell, T. (1989) "Raising in Irish and the projection principle," Natural Language and Linguistic Theory 7: 317-59. Speas, Margaret (2000) "Person and Point of View in Navajo," Eloise Jelinek ed., WCCFL Papers in Honor of Ken Hale, MIT Press, Cambeidge. Speas, Margaret (to appear) "Evidentiality, Logophoricity, and the Syntactic Representation of Pragmatic Features," Lingua. Sproat, R. (1983) "VSO languages and Welsh configurationality," MIT Working Papers in Linguistics 5: 243-76. Sproat, R. (1985) "Welsh syntax and VSO structure," Natural Language and Linguistic Theory 3: 173-216. Tang, C.-C. Jane (1990) Chinese Phrase Structure and the Extended X-bar Theory, Ph.D. dissertation, Cornell University. Tang, C.-C. J. (1999) "On clausal complements in Paiwan," Selected Papers from the ICAL 8. 529-578. Taipei: Institute of Linguistics, Preparatory Office, Academia Sinica. Tang, C.-C. J. (1999) "On the projection of mood and the grammatical features of functional categories in Formosan languages," paper presented in Taiwan Linguistic Workshop, Taipei: Institute of Linguistics, Preparatory Office, Academia Sinica. Tang, C.-C. J. (to appear) "Functional projections and adverbial expressions in Chinese," Language and Linguistics. Taipei: Institute of Linguistics, Preparatory Office, Academia Sinica. Tenny, C. (2000) "Core Events and Adverbial Modification," Carol Tenny and James Putejovsky (eds), Event as Grammatical Objects: The Converging Perspectives of Lexical Semantics and Syntax, CSLI, Stanford, CA. Travis, Lisa (1997) "Theta-positions and binding in Balinese and Malagasy," paper presented at the 4th Annual Austronesian Formal Linguistics Association Conference (AFLA IV), Los Angeles, CA. Travis, Lisa (2000) "Event structure in syntax," in Carol Tenny and James Putejovsky eds., Event as Grammatical Objects: The Converging Perspectives of Lexical Semantics and Syntax, 145-85, CSLI, Stanford, CA. Travis, Lisa (2002) "Derived objects in Malagasy," in Objects and Other Subjects, ed. W. Davies and S. Dubinsky. Sordrecht, Kluwer Academic Publishiers. Travis, Lisa (2003) "Agents and causes in Malagasy and Tagalog," in Proceedings of AFLA 8, ed. A. Rackowski and N. Richards, MIT Working Papers in Linguistics. Thráinsson, H. (2000) "Object shift and scrambling," in M. Baltin and C. Collins (eds), A Handbook of Contemporary Syntactic Theory, Blackwell. Trithart 1997 Tsai, Wei-Tien Dylan (1994) "On Nominal Islands and LF Extraction in Chinese," Natural Language & Linguistic Theory 12, 121-175. Tsai, Wei-Tien Dylan (1995) "Visibility, Complement Selection and the Case Requirement of CP," Journal of East Asian Linguistics 4, 281-312. Tsai, Wei-Tien Dylan (1997) "On the Absence of Island Effects," Tsing Hua Journal of Chinese Studies, New Series 27, 125-149. Tsai, Wei-Tien Dylan (1999a) On Economizing the Theory of A-Bar Dependencies, Garland Publishing, New York. Tsai, Wei-Tien Dylan (1999b) "On Lexical Courtesy," Journal of East Asian Linguistics 8, 39-73. Tsai, Wei-Tien Dylan (1999c) "The Hows of Why and The Whys of How," in Francesca Del Gobbo and Hidehito Hoshi (eds.),UCI Working Papers in Linguistics 5, 155-184. Tsai, Wei-Tien Dylan (2000) " Lexical Courtesy Revisited: Evidence from Tsou and Seediq Wh-Constructions," in Proceedings of the Nanzan GLOW, 407-424. Tsai, Wei-Tien Dylan (2001a) "On Object Specificity," in Jäger, Gerhard, Anatoli Strigin, Chris Wilder, Niina Zhang (eds.), Papers on Predicative Constructions, ZAS Papers in Linguistics 22, 173-190, ZAS, Berlin. Tsai, Wei-Tien Dylan (2001b) "On Subject Specificity and Theory of Syntax-Semantics Interface," Journal of East Asian Linguistics 10, 129-168. Tsai, Wei-Tien Dylan (2003) "Lexical Courtesy Revisited: Evidence from Tsou and Seediq Wh-Constructions," Gengo Kenkyu 123, 331-361. Tsai, Wei-tien Dylan and Melody Ya-yin Chang (in press) "Two types of wh-adverbials: a typological study of how and why in Tsou," The Linguistic Variations Yearbook. Tsao, F.-F. (1979) A Functional Study of Topic in Chinese: the first step towards Discourse Analysis, Student Books, Taipei. Tsimpli (1994) Tsuchida, Shigeru (1972) "The origins of the Tsou phonemes /b/ and /d/," Gengo Kenkyu 62:24-35. Vendler, Zeno (1967) Linguistics in Philosophy, Cornell University Press, Ithaca. Vilkuna (1994) Vikner, S. (1994) "Scandinavian object shift and west Germanic scrambling," in N. Cover and H. van Riemsdijk (eds), Studies on Scrambling, Foris/Mouton de Gruyter, Berlin. Watanabe, A. (1992) "Subjacency and S-structure movement of wh-in-situ, Journal of East Asian Linguistics 1: 255-91. Williams, E. (1981) "Argument Structure and Morphology," The Linguistic Review 1.1, 81-114. Woolford, Ellen (1991) "VP-internal Subjects in VSO and Nonconfigurational Languages," Linguistic Inquiry 22: 503-40. Zeitoun, Elizabeth (1992) A Syntactic and Semantic Study of Tsou Focus System. MA thesis, Hsinchu: National Tsing Hua University. Zeitoun, Elizabeth (1993) A syntactic study of case markers. Bulletin of the Institute of History and Philology, 64.4, 969-989, Academia Sinica, Taipei. Zeitoun, Elizabeth (1996a) "The Tsou Temporal, Aspectual and Modal System Revisited," Bulletin of the Institute of History and Philology, 67.3: 503-532, Academia Sinica, Taipei. Zeitoun, Elizabeth, L. Huang, M. Yeh, A. Chang, J. Wu (1996b) "The Temporal/Aspectual and Modal System pf the Formosan Languages: a Typological perspective," Oceanic Linguistics 35.1: 21-56, University of Hawai'i Press, Honolulu. Zeitoun, Elizabeth, and L. Huang (1997) "Toward a typology of tense, aspect and modality in the Formosan languages: a preliminary study," Chinese Languages and Linguistics: Typological studies of languages in China, Academia Sinica, Taipei. Zeitoun, Elizabeth et al. (1999) "Existential, possessive, and locative constructions in Formosan languages," Oceanic Linguistics 38.1: 1-42, University of Hawai'i Press, Honolulu. Zeitoun, Elizabeth (2000a) "Notes on a possessive construction in the Formosan languages," Grammatical Analysis: Morphology, Syntax and Semantics, 29, University of Hawai'i Press, Honolulu. Zeitoun, Elizabeth (2000b) Reference Grammar in Tsou, Yuan-Liu Publisher, Taipei. (In Chinese) Zwart, J.-W. (1994) "On Holmberg's Generalization," in A. de Boer, H. de Hoop and H. de Swart (eds), Language and Cognition 4, 229-42, University of Groningen.id NH0920462002 sid 878702 cfn 0 / id NH0920462003 auc 劉秀雪 tic 語言演變與歷史地理因素--莆仙方言:閩東與閩南的匯集 adc 曹逢甫 ty 博士 sc 國立清華大學 dp 語言學研究所 yr 92 lg 中文 pg 247 kwc 語言接觸 kwc 語言演變 kwc 優選理論 kwc 閩方言 kwc 莆仙方言 kwc 閩南語 kwc 閩東話 kwc 音韻學 abc 本論文研究焦點在於將莆仙方言的聲、韻、調、及文白異讀等各方面的音韻現象,與閩東、閩南的音韻現貌做比較;並採取優選論(Optimality Theory)進行語言接觸演變的理論分析。分析重點在於找出三區閩語音韻表現的異同之處,再經由相互比較找出閩語方言接觸演變的特色。 tc 前言 1 第一章 、緣起與相關基本概念 3 1.1 本文研究焦點 3 1.2 語言演變與其動因 7 1.3 語言演變類型 8 1.4 語言接觸 9 1.5 優選理論 10 第二章 、莆仙方言介紹 14 2.1. 地理歷史背景 14 2.2. 莆仙方言特點簡介 16 2.3. 莆仙音韻系統簡介 19 2.3.1. 聲母 19 2.3.1.1 聲母類化音變 21 2.3.1.2 輔音韻尾與聲母的互動 23 2.3.2. 韻母 25 2.3.3. 聲調 27 第三章 、閩東音韻系統 29 3.1 聲母 29 3.2 韻母 31 3.3 聲調 34 3.4 音節結構 36 3.4.1 閩東音節結構 37 3.4.2 音節全表 40 3.5 聲韻調特殊現象探討 45 3.5.1 聲母類化音變 45 3.5.2 本、變韻 49 3.5.3 本、變調 53 3.6 音韻限制綜合分析 61 3.6.1 聲母與輔音變化 61 3.6.2 元音、韻母變化 66 3.6.3 閩東音韻小結 76 第四章 、閩南音韻系統 77 4.1 聲母 77 4.1.1 古鼻音聲母的演變 79 4.1.2 聲母與韻尾的互動 87 4.2 韻母 90 4.2.1 閩南的單元音 91 4.2.2 閩南陰聲韻 95 4.2.3 閩南語的陽聲韻與入聲韻 102 4.3 聲調 107 4.4 音節結構 111 4.4.1 閩南音節結構 112 4.4.2 閩南音節表 114 4.5 音韻限制綜合分析 119 4.5.1文白異讀 119 4.5.2 聲韻結構限制 123 4.5.3 音節結構限制 130 4.5.4 閩南音韻小結 132 第五章 、莆田方言-與閩東、閩南比較 134 5.1 聲母 134 5.1.1 古鼻音聲母的演變 135 5.1.1.1 古鼻音聲母在閩東、閩南方言的演變 136 5.1.1.2 古鼻音聲母在莆田方言的演變 138 5.1.1.3 古陰聲韻及其他 149 5.1.1.4 小結 153 5.1.2 聲母類化音變 154 5.1.3 鼻音與阻塞音的互動 163 5.2. 韻母 167 5.2.1 莆田的單元音 168 5.2.2 陰聲韻、入聲韻與陽聲韻比較 171 5.2.3 古陽聲韻的演變 172 5.2.4 元音共諧變化 176 5.3. 聲調 180 5.4. 音節結構 182 5.4.1 莆田音節結構 182 5.4.2 莆田音節表 184 5.5. 莆田音韻小結 188 第六章 、莆仙方言-內部次方言比較 189 6.1 聲母 191 6.2 韻母 193 6.2.1 鼻化韻比較 194 6.2.2 撮口韻比較 201 6.2.3 韻母綜合比較 210 6.3 聲調 215 6.4 音節結構 223 6.5 莆仙內部方言比較小結 225 第七章 、語言接觸演變之理論分析 227 7.1 語言演變的OT詮釋 228 7.1.1 文白異讀與強勢詞彙優化論 229 7.1.2 信實限制與音韻限制 231 7.1.3 語音的可聽辨度,聲學特徵,與發音便利性 232 7.2 莆仙的共時音韻 234 7.3 語言接觸的音韻特色 235 7.3.1 閩語方言(語言)接觸特色 235 7.3.2 莆仙方言接觸的音韻特色 237 7.4 語言接觸演變與優選論 239 第八章 、結論 243 8.1 莆仙方言的代表意義 243 8.2 語言演變與優選論 244 8.3 餘論與未來研究方向: 245 參考書目: i References: virf 參考書目: 北京大學中國語言文學系語言學教言室(編),1989,《漢語方音字彙》,文字改革出版社,北京 蔡俊明,1976,《潮語詞典》,東亞製本所,台北 曹逢甫、劉秀雪,2001a,〈閩南語小稱詞的由來:兼談歷史演變與地理分布的關係〉,《聲韻論叢第十一輯》頁295-310,學生書局,台北 ───、───,2001b,〈音韻規則的轉換:以莆仙方言為例談語言接觸〉,第七屆閩方言研討會論文 陳保亞,1996,《語言接觸與語言聯盟-漢越(侗台)語源關係的解釋》,語文出版社,北京 陳澤平,1998,《福州方言研究》,福建人民出版社,福州 陳章太、李如龍,1991,《閩語研究》,語文出版社,北京 程俊源,1998,〈台灣閩南語聲母去鼻化之詞彙擴散現象〉,《漢語方言研究著作得獎作品論文集》,教育部國語推行委員會 丁邦新,1970,《台灣語言源流》,民族文化叢書第八種,台灣省政府新聞處 ───,1984,〈吳語聲調之研究〉,《中研院史語所集刊》第55本,605-638 丁聲樹,1981,〈漢語音韻講義〉,《方言》241-274 董同龢,1959,〈四個閩南方言〉,《中研院史語所集刊》第三十本,729-1024 ───,1974,〈廈門方言的音韻〉,丁邦新編《董同龢先生語言學論文選集》,p. 275-297 何大安,1996,《聲韻學中的觀念和方法》第二版,台北市:大安出版社 馮愛珍,1993,《福清方言研究》,社會科學文獻出版社,北京 福清市志編纂委員會編,1994,《福清市志?方言卷》廈門大學出版社,廈門 洪惟仁,1985,《台灣河佬語聲調研究》,自立晚報社出版,台北 ───,1996,〈從閩南語輔音的鼻化、去鼻化看漢語音節類型〉,《第五屆國際暨第十四屆全國聲韻學學術研討會論文集》,p. 53-76 ───,1996,《台灣話音韻入門》,國立復興劇藝實驗學校出版,台北 ───,1997,《《彙音妙悟》與古代泉州音》,台北:國立中央圖書館台灣分館 黃典誠(主編),1998,《福建省志?方言志》,方志出版社,北京 黃金洪,2002,《仙游話和廈門話、福州話詞語比較》,廈門大學碩士論文 李仁癸,1992,〈閩南語的鼻音問題〉,《中國境內語言暨語言學-第一輯:漢語方言》,1:423-235 李方桂,1980,《上古音研究》,北京:商務印書館 李 榮,1982,《音韻存稿》,北京:商務印書館 ───,1985,《語文論衡》,北京:商務印書館 ───,1989,〈漢語方言的分區〉,《方言》241-259 李如龍,1997,《福建方言》,福州:福建人民出版社 ───,2001a,〈福州話聲母類化的制約條件〉,《漢語方言的比較研究》,商務印書館,北京 ───,2001b,〈仙游縣方言志〉,《福建縣市方言志12種》,福建教育出版社,福州 ───、梁玉璋、鄒光樁、陳澤平,1994,《福建方言詞典》,福建人民出版社,福州 ───、萬波,1992,〈福建境內的兩種雙方言現象〉,《雙語雙方言》,彩虹出版社,香港 ───、莊初生、嚴修鴻等著,1995,《福建雙方言研究》,漢學出版社,香港 連金發,1995,〈台灣閩南語疑問詞的歷史發展和方言變異〉,《第一屆台灣語言國際研討會論文選集》,文鶴出版有限公司,台北 ───,1998,〈台灣閩南話詞綴“仔”的研究〉,《第二屆台灣國際語言研討會論文選集》,黃宣範編 ───,2000,Denasalization, Vocalic Nasalization and Related Issues in Southern Min: A Dialectal and Comparative Perspective,In Memory of Professor Li Fang-Kuei: Essays of Linguistic Change and the Chinese Dialects (《語言變化與漢語方言:李方桂先生紀念論文集》),丁邦新、余藹芹編 林寶卿,1992,〈漳州方言詞彙(一~三)〉,《方言》151-160, 230-240, 310-312 林連通,1993,《泉州市方言志》,社會科學文獻出版社,北京 林倫倫,1991,〈汕頭方言詞彙(一~三)〉,《方言》153-160, 232-240, 310-314 ───,1992,〈汕頭方言詞彙(四)〉,《方言》78-80 ───,1994,〈廣東省澄海方言同音字彙〉,《方言》128-142 劉福鑄,1994,《莆田縣志?方言卷》,中華書局,北京 ───,2001,《莆仙方言熟語歌謠》,福建人民出版社,福州 劉秀雪,1998,《金門瓊林方言探析》,清華大學碩士論文 ───,2002a,〈古鼻音聲母在莆仙方言的演變─與閩東、閩南之比較〉,NCL 2002, 靜宜大學,台中 ───,2002b,〈古鼻音聲母在莆仙方言的演變〉,IACL-11, 愛知縣立大學,名古屋 ───,2004,〈閩語莆仙方言的韻母演變〉,IACL-12(青年學者獎競賽論文), 南開大學,天津 馬重奇,1993,〈漳州方言同音字彙〉,《方言》199-217 梅祖麟、楊秀芳,1995,〈幾個閩語語法成份的時間層次〉《中央研究院歷史語言研究所集刊》第六十六本,第一份,1-19 閩清縣志編纂委員會編,1993,《閩清縣志?方言卷》,福建人民出版社,福州 宁德市地方志編纂委員會編,1995,《宁德市志?方言卷》,中華書局,福州 莆田市政協文教衛體文史資料委員會編,2001,《莆仙話》,莆田市文史資料第十六輯 橋本萬太郎,1985(余志鴻譯),《語言地理類型學》,北京大學出版社 邵慧君、甘于恩,1999,〈閩語小稱類型比較〉,《第六屆國際閩方言研討會論文集》 石曉娉,1997,《從自主音段音韻學觀點看金城方言聲調學》,國立清華大學碩士論文 壽宁縣地方志編纂委員會編,1992,《壽宁縣志?方言卷》,鷺江出版社,廈門市 陶燠民,1956,《閩音研究》,科學出版社,北京 王本瑛,1995,〈漢語方言中小愛稱的地理類型與演變〉,《清華學報》,新二十五卷第四期371-398頁 廈門市地方志編纂委員會辦公室編,1996,《廈門方言志》,北京:北京語言學院出版社 廈門大學中國語言文學研究所漢語方言研究室編,1993,《普通話閩南語詞典》台灣版,台北:台笠出版社 徐通鏘,1996,《歷史語言學》,北京:商務印書館 袁家驊等著,1989,《漢語方言概要》(第二版),文字改革出版社,北京 楊秀芳,1982,《閩南語文白系統的研究》,國立台灣大學博士論文 ───,1991,《台灣閩南語語法稿》,大安出版社,台北 岩田禮,(1992),〈漢語方言入聲音節的生理特徵〉,《中國境內語言暨語言學》1:523-537 葉寶奎,1999,〈莆仙方言邊擦音初探〉,《第六屆閩方言國際研討會論文集》,香港科技大學 張光宇,1989,〈閩南方言的特殊韻母ing〉,《大陸雜誌》79卷2期,16-22 ───,1990,《切韻與方言》,台灣商務印書館,台北 ───,1991,〈漢語方言發展的不平衡性〉,《中國語文》431-438 ───,1996,《閩客方言史稿》,南天書局,台北 ───,1997,〈東南方言關係試論〉(初稿),北京:第三十屆國際漢藏語暨語言學研討會 張 琨,1993,〈漢語方言中鼻音韻尾的消失〉,《漢語方音》,23-64頁,學生書局,台北 張文漢,1990,Phonological Process in Min Dialects: An Autosegmental Approach,(以自主音段探討閩方言音變),政治大學碩士論文 張振興,1985,〈閩語的分區(稿)〉,《方言》,第三期171-180頁 ───,1992,《漳平方言研究》,北京:中國社會科學出版社 ───,1993,《台灣閩南方言記略》,文史哲出版社,台北 ───,1997,〈重讀《中國語言地圖集》〉(初稿),北京:第三十屆國際漢藏語暨語言學研討會 ───,1999,〈閩語及其周邊方言〉,《第六屆閩方言國際研討會論文集》 張盛裕,1979,〈潮陽方言的文白異讀〉,《方言》241-267 柘榮縣地方編纂委員會編,1995,《柘榮縣志?方言卷》,中華書局,北京 中國社會科學院語言研究所編,1983,《方言調查字表》,商務印書館,北京 中國社會科學院、澳大利亞人文科學院編,1987,《中國語言地圖集》,朗文有限公司,香港 周長楫,1983,〈廈門方言文白異讀的類型(上、下)〉,《中國語文》330-336,430-438 ───,1986,〈福建境內閩南方言的分類〉,《語言研究》2:69-80 ───,1991a,〈廈門方言同音字彙〉,《方言》99-118 ───,1991b 《普通話與閩南語》,語文出版社,北京 ───編,1993,《廈門方言詞典》,江蘇教育出版社,南京 周寧縣地方志編纂委員會編,《周寧縣志?方言卷》,中國科學技術出版社,北京 周振鶴、游汝傑 1986 《方言與中國文化》,台北:南天書局 References: Aitchison, Jean. 2001. Language Change: progress or decay?. Cambridge University Press. New York. Appel, Rene; Muysken, Pieter.1987. Language contact and bilingualism. Edward Arnold. London. Archangeli, Diana and Langendoen, D. Terence. 1997. Optimality Theory: an Overview. Blackwell Publishers. Chappell, Hilary. (ms). Dialect Grammar in Two Early Modern Southern Min Texts Cheng, Chin-chuan. 1973. A Synchronic Phonology of Mandarin. The Hague: Moutan. Cho, Young-mee Yu (1995). ‘Language change as reranking of constraints’. Paper presented at the 12thInternational Conference on Historical Linguistics, University of Manchester. Chung, Raung-fu. 1989. Aspects of Kejia Phonology. Ph.D dissertation. Cornell University. Chung, Raung-fu. 1996. The Segmental Phonology of Southern Min in Taiwan. The Crane Publishing Co. Ltd. Taipei. Clements, George N. and Wlizabeth V. Hume. 1995. The Internal Organization of Speech Sounds. The Handbook of Phonological Theory. ed. by John A. Goldsmith. 245-306. Blackwell. Oxford. Coetsem, Frans van. 1988. Loan Phonology and the Two Transfer Types in Language Contact. Foris Publications. Dordrecht. Duanmu, Mu. 1990. A Formal Study of Syllable, Tone, Stress and Domain in Chinese Languages. Dissertation of Massachusetts Institute of Technology. Fromkin (ed.), Victoria A. 1978. Tone A LINGUISTIC SURVEY. Acdamic Press Goldsmith, John. 1990. Autosegmental and Metrical Phonology. Cambridge, Basil Blackwell Hashimoto, Mantaro 1982. The So-called “Original” and “Changed” Tones in Fukienese: a Case Study of Chinese tone Morphophonemics. Bulletin of the Institute of History and Philology 53: 645-659. Hayes, Bruce. 1986. Inalterability in CV Phonology. Language 62:318-351. ───, Bruce. 1989. Compensatory Lengthening in Moraic Phonology. Linguistic Inquiry 20:253-306 Ito, Junko, and Armin Mester. 1995. The Core-peripgery Structure of the Lecicon and Constraints on Reranking. Papers in Optimality Theory, edited by J. Beckman, S. Urbanczyk and L. Walsh. Amherst: GLSA. 181-210 ───, Junko, and Armin Mester. to appear. The Phonological Lexicon. A Handbook of Japanese Linguistics, edited by N. Tsujimura. Oxford: Blackwell. Jiang-King, Ping. 1999, Tone-Vowel Interaction in Optimality Theory, Lincom Europa Kager, Rene. 1999. Optimality Theory, Cambridge, UK. Lin, Jo-wang. 1995. Lexical Government and Tone Group Formation in Xiamen Chinese. Phonology 11:237-275 McCarthy, John. 2002, A Thematic Guide to Optimality Theory, Cambridge University Press. McCarthy, John, and Alan Prince. 1993a, Prosodic Morphology I: Constraint Interaction and Satisfaction. MS. University of Massachusetts and Brandeis. McCarthy, John, and Alan Prince. 1993b, Generalized Alignment, Year Book of Morphology 1993. 79-154. McCarthy, John, and Alan Prince. 1994. The Emergence of The Unmarked: Optimality in Prosodic Morphology. . NELS 24: 333-379. McCarthy, John, and Alan Prince. 1995. Faithfulness and Reduplicative Identity. Papers in Optimality Theory. (Beckma et al) Amherst: GLSA. McMahon, April. 2000, Change, Chance, and Optimality, Oxford University Press, New York. Miglio, Viola (1998). ‘The Great Vowel Shift: An OT model fro Unconditioned language change’. Paper presented at the 10th International Conference on English Historical Linguistics, University of Manchester. Padgett, Jaye. 2003, Contrast and Post-velar fronting in Russian, Natural Language and Linguistic Theory 21.1:39-87 ───, Jaye. to appear, The Emergence of Contrastive Palatalization in Russian. In Optimality Theory and language change, edited by E. Holt: Kluwer Academic Press. Putz, Martin. 1994. Language Contact and Language Conflict. John Benjamins Publishing Co..Amsterdam. Sander, Nathaniel. 2003. Opacity and Sound Change in Polish Lexicon. dissertation of University California Santa Cruz. Snider, Keith. 1999. The Geometry and Features of Tone. the Summer Institute of Linguistics. Steriade, Donca. 2001a. The Phonology of Perceptibility effects: the P-Map and its Consequences for Constraint Organization,UCLA (ms) ───, Donca. 2001b. Directional Assymetries in Place Assimilation: a perceptual account. The Role of Speech Perception in Phonology. Edited by Elizabeth Hume and Keith Johnson, 219-250. Academic Press. San Diego. Zhang, Jie. 2000. Non contrastive Features and Categorical Patterning in Chinese Diminutive Suffixation — Max [F ] or Ident [F ]. Phonology 17: 427-478.id NH0920462003 sid 878704 cfn 0 / id NH0920479001 auc 張書銘 tic 多種玻色愛因斯坦凝聚現象之數值研究 adc 林文偉 ty 博士 sc 國立清華大學 dp 數學系 yr 92 lg 英文 pg 106 kwc 多種玻色愛因斯坦凝聚 kwc 固定點迭代 kwc 多重輪生 kwc Gross-Pitaevskii方程 kwc 渦流 kwc 拓樸同步 abc 第一部分提出固定點迭代法計算描述多種玻色-愛因斯坦凝聚現象的時間變元無關之向量Gross-Pitaevskii方程式的能量態數值解。證明固定點迭代法是局部且線性收斂若且為若對應的最小能量函數問題有嚴格局部極小值。這個迭代方法搭配能量函數亦可計算出基態與有界態之分歧行為。數值實驗佐證這種迭代法的收斂行為是廣域性的,並且是具有10步到20步間的線性收斂。再者,觀察到一個新的現象,多重輪生。這指得是一種隨著超精細個數增加而會一直輪狀衍生的現象。 tc Chapter 1 Multi-Component Bose-Einstein Condensates 1 1 Introduction 1 2 VGPEs and Nonlinear Eigenvalue Problems (NEPs) 3 3 Nonlinear Algebraic Eigenvalue Problems (NAEPs) 6 3.1 Two-Dimensional Domain . . . . . . 7 3.2 Three-Dimensional Domain . . . .. . . 11 4 Fixed Point Iteration for NAEPs 15 5 Numerical Algorithms and Results 25 5.1 Two-Dimensional Domain for m = 2, 3 . . . 26 5.2 Verticillate Structures . . . . . . . . . 34 5.3 Three-Dimensional Domain . . . . . . . 50 6 Conclusion 52 Chapter 2 Vortices Dynamics in Bose-Einstein Condensates 53 1 Introduction 53 2 Asymptotic Motion Equations of Vortices 56 3 Numerical Study of Three Vortices 66 3.1 Topological Synchronization . .. . . . . 68 3.2 Case (n1, n2, n3) = (1,.1,.1) . . . . 71 3.3 Case (n1, n2, n3) = (1, 1, 1) . . .. . 73 4 Conclusions 75 References 100rf References [1 ] V. S. Afraimovich, N. N. Verichev, and M. I. Rabinovich, Radiophys. Quantum Electron., 29, 747 (1986). [2 ] V. S. Afraimovich, Poincar’e recurrences of coupled subsystems in synchronized regimes, Taiwanese Journal of Mathematics, 3(2), 139—161 (1999). [3 ] V. S. Afraimovich, W. W. Lin, and N. F. Rulkov, Fractral dimension for Poincare recurrence as an indicator of synchronized chaotic regimes, Int. J. Bifurcation and Chaos, 10(10), 2323—2337 (2000). [4 ] A. Aftalion and Q. Du, Vortices in a rotating Bose-Einstein condensate: Critical angular velocities and energy diagrams in the Thomas-Fermi regime, Phys. Rev. A, 64, 063603 (2001). [5 ] P. Ao and S. T. Chui, Binary Bose-Einstein condensate mixtures in weakly and strongly segregated phases, Phys. Rev. A, 58, 4836—4840 (1998). [6 ] H. Aref, Motion of three vortices, Phys. Fluids, 22(3), 393—400 (1979). [7 ] H. Aref, Integrable, chaotic, and turbulent vortex motion in two-dimensional flows, Ann. Rev. Fluid Mech., 15, 345—389 (1983). [8 ] W. Z. Bao, Ground states and dynamics of multi-component Bose-Einstein condensates, preprint. [9 ] W. Z. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, preprint. [10 ] W. Z. Bao, S. Jin, and P. A. Markowich, On time-splitting spectral approximations for the Schr‥odinger equation in the semiclassical regime, J. Comput. Phys., 175, 487—524 (2002). [11 ] W. Z. Bao, D. Jaksch, and P. A. Markowich, Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation, J. Comput. Phys., 187, 318—342 (2003). [12 ] W. Z. Bao, S. Jin, and P. A. Markowich, Numerical study of time-splitting spectral discretizations of nonlinear Schr‥odinger equations in the semi-classical regimes, SIAM J. Sci. Comp., to appear. [13 ] W. Z. Bao and D. Jaksch, An explicit unconditionally stable numerical methods for solving damped nonlinear Schrodinger equations with a focusing nonlinearity, SIAM J. Numer. Anal, to appear. [14 ] A. Berman and R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Academic Press, New York, 1979. [15 ] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear programming: theory and algorithms, Wiley, New York, 2 edition, 1993. [16 ] W. Z. Bao and W. J. Tang, Ground state solution of trapped interacting Bose-Einstein condensate by directly minimizing the energy functional, J. Comput. Phys., 187, 230—254 (2003). [17 ] N. N. Bogoliubov, J. Phys. (Moscow), 11, 23 (1947). [18 ] R. Brown and L. Kocarev, A unifying definition of synchronization for dynamical systems, Chaos, 10, 344—349 (2000). [19 ] S. M. Chang, C. S. Lin, T. C. Lin, and W. W. Lin, Segregated Nodal domains of multispecies Bose-Einstein Condensates, preprint. [20 ] Shu-Ming Chang, Wen-Wei Lin, and Shih-Feng Shieh, Fixed point methods for energy states of multi-component Bose-Einstein condensates, submitted. [21 ] X. Chen, C. M. Elliott, and T. Qi, Shooting method for vortex solutions of a complex-valued Ginzburg-Landau equation, Proc. Roy. Soci. Edinburgh, 124 A, 1075—1088 (1994). [22 ] M. L. Chiofalo, S. Succi, and M. P. Tosi, Ground state of trapped interacting Bose-Einstein condensates by an explicit imaginary-time algorithm, Phys. Rev. E, 62, 7438—7444 (2000). [23 ] G. H. Chen and Y. S. Wu, Quantum phase transition in a multi-component Bose-Einstein condensate in optical lattices, cond-mat/0205440 (2002). [24 ] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., 71, 463—531 (1999). [25 ] R. J. Donnelly, Quantized Vortices in Helium II, Cambridge Univ. Press, Cambridge, 1991. [26 ] W. E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity, Physica D., 77, 383—404 (1994). [27 ] B. D. Esry and C. H. Greene, Spontaneous spatial symmetry breaking in twocomponent Bose-Einstein condensates, Phys. Rev. A, 59, 1457—1460 (1999). [28 ] B. D. Esry, C. H. Greene, J. P. Burke Jr, and J. L. Bohn, Hartree-Fock theory for double condensates, Phys. Rev. Lett., 78, 3594—3597 (1997). [29 ] D. L. Feder, C. W. Clark, and B. I. Schneider, Vortex stability of interacting Bose-Einstein condensates confined in an isotropic harmonic traps, Phys. Rev. Lett., 82, 4956—4959 (1999). [30 ] D. L. Feder, A. A. Svidzinsky, A. L. Fetter, and C. W. Clark, Anomalous modes drive vortex dynamics in confined Bose-Einstein condensates, cond-mat/0009086 (2000). [31 ] T. Frisch, Y. Pomeau, and S. Rica, Transition to dissipation in a model of superflow, Phys. Rev. Lett., 69, 1644—1647 (1992). [32 ] P. Ghosh, Exact results on the dynamics of multi-component Bose-Einstein condensate, cond-mat/0111523 (2002). [33 ] V. L. Ginzburg and L. P. Pitaevskii, On the theory of superfluidity, Sov. Phys. JETP, 7, 585 (1958). [34 ] S. Gutpa, Z. Hadzibabic, M. W. Zwierlein, C. A. Stan, K. Dieckmann, C. H. Schunck, E. G. M. van Kempen, B. J. Verhaar, and W. Ketterle, Radio-frequency spectroscopy of Ultracold Fermions, Science, 300, 1723—1726 (2003). [35 ] E. P. Gross, Nuovo. Cimento., 20, 454 (1961). [36 ] P. Hagan, Spiral Waves in Reaction Diffusion Equations, SIAM J. Appl. Math., 42(4), 762—786 (1982). [37 ] D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell, Dynamics of component separation in a binary mixture of Bose-Einstein condensates, Phys. Rev. Lett., 81, 1539—1542 (1998). [38 ] A. Haraux, Nonlinear evolution equations: global behavior of solutions, Lecture Notes in Math., 841, Springer-Verlag, New York, 1981. [39 ] R. M. Herve and M. Herve, Etude qualitative des solutions reelles dune equation differentielle lieeal equation de Ginzburg-Landau, Ann. Inst. Henri Poincare, 4(11), 427—440 (1994). [40 ] D. Jacksch, S. A. Gardiner, K. Schulze, J. I. Cirac, and P. Zoller, Uniting Bose-Einstein condensates in optical resonators, Phys. Rev. Lett., 86, 4733—4736 (2001). [41 ] C. Josserand and Y. Pomeau, Generation of vortices in a model superfluid He4 by the KP instability, Europhysics Letters, 30, 43—48 (1995). [42 ] G. Kirchhoff, Vorlesungen ‥uber mathematische Physik, Leipzig: Teubner, vol. 1 Chap. 20, 257, 1883. [43 ] M.-C. Lai, A note on finite difference discretizations for poisson equation on a disk, Numerical Methods for Partial Differential Equations, 17(3), 199—203 (2001). [44 ] L. D. Landau and E. M. Lifschitz, Fluid Mechanics, Course of theoretical physics, 6, 2nd edition, Pergamon press, 1989. [45 ] M.-C. Lai, W.-W. Lin, and W. Wang, A fast spectral/difference method without pole conditions for poisson-type equations in cylindrical and spherical geometries, IMA J. of Numerical Analysis, 22(4), 537—548 (2002). [46 ] E. H. Lieb, R. Seiringer, and J. Yngvason, Bosons in a trap: a rigorous derivation of Gross-Pitaevskii energy functional, Phys. Rev. A, 61, 043602 (2000). [47 ] F. H. Lin and J. X. Xin, On the incompressible fluid limit and the vortex motion law of the nonlinear Schr‥odinger equation, Comm. Math. Phys., 200(2), 249—274 (1999). [48 ] T. C. Lin, The stability of the radial solution to the Ginzburg-Landau equation, Comm. in PDE, 22, 619—632 (1997). [49 ] T. C. Lin, Spectrum of the linearized operator for the Ginzburg-Landau equation, Electron. J. Differential Equations, 2000(42), 1—25 (2000). [50 ] E. Lundh and P. Ao, Hydrodynamic approach to vortex lifetimes in trapped Bose condensates, Phys. Rev. A, 61, 063612(1—7) (2000). [51 ] K. W. Madison, F. Chevy, Wohlleben, W. and Dalibard, J. Vortex formation in a stirred Bose-Einstein condensate, Phys. Rev. Lett., 84, 806—809 (2000). [52 ] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, Vortices in a Bose-Einstein condensate, Phys. Rev. Lett., 83, 2498—2501 (1999). [53 ] C. J. Myatt, E. A. Burt, R.W. Ghrist, E. A. Cornell, and C. E.Wieman, Production of two overlapping Bose-Einstein condensates by sympathetic cooling, Phys. Rev. Lett., 78, 586—589 (1997). [54 ] J. C. Neu, Vortices in complex scalar fields, Physica D., 43, 385—406 (1990). [55 ] P. Nozieres and D. Pines, The theory of quantum liquids, Vol. II: superfluid bose liquids, Addison-Wesley Publishing Co., Inc., 1990. [56 ] T. S. Parker and L. O. Chua, Practical Numerical Algorithms for Chaotic Systems, Springer-Verlag, 1989. [57 ] L. M. Percora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64, 821—824 (1990). [58 ] L. P. Pitaevskii, Zh. Eksp. Teor. Fiz., 40, 646 (1961), Sov. Phys. JETP, 13, 451 (1961). [59 ] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phase synchronization of chaotic oscillators, Phys. Rev. Lett., 76, 1804—1807 (1996). [60 ] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, From phase to lag synchronization in coupled chaotic oscillators, Phys. Rev. Lett., 78, 4193—4196 (1997). [61 ] A. Ruhe, Rational Krylov: A practical algorithm for large sparse nonsymmetric matrix pencils, SIAM J. Sci. Comput., 19(5), 1535—1551 (1998). [62 ] D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J. Matrix Anal. Appl., 13, 357—385 (1992). [63 ] G. L. G. Sleijpen and H. A. van der Vorst, A Jacobi-Davidson iteration method for linear eigenvalue problems, SIAM J. Matrix Anal. Appl., 17, 401—425 (1996). [64 ] A. A. Svidzinsky and A. L. Fetter, Dynamics of a vortex in a trapped Bose-Einstein condensate, cond-mat/0007139 (2000). [65 ] E. Timmermans, Phase separation of Bose-Einstein condensates, Phys. Rev. Lett., 81, 5718—5721 (1998). [66 ] L. Ting and R. Klein, Viscous vortical flows, Lecture Notes in Physics, 374, Springer, 1991. [67 ] http://www.netlib.org/slatec.id NH0920479001 sid 887201 cfn 0 / id NH0920479002 auc 李吉敏 tic 弱摩擦系統與保守系統之關係 adc 陳樹杰 ty 碩士 sc 國立清華大學 dp 數學系 yr 92 lg 中文 pg 25 kwc 弱摩擦 kwc 阻力與助力 kwc 穩定態 abc 從地震波動模型中我們觀察出弱摩擦力對整個系統的影響,如果摩擦係數的積分趨近無限大,則系統的總能量將逼近至零;如果摩擦係數的積分是有界的數值,則系統的總能量將趨近到某一個系統只受保守力時的穩定狀態。 tc 1. Introduction .................1 2. Review of known results .................3 3. A brief theoretical results .................5 3.1 Weakly damped equation .................5 3.2 Weakly damped-excited equation .................7 4. Numerical results .................13 5. A concluding remark .................25rf R. J. Ballieu and K. Peiffer. Attractivity of the origin for the equation .x"+f(t,x,x'')|x''|αx+g(x)=0. Journal of Math. Analysis and Appl. 65}, pp. 321-332, 1978. R. Bellman. Stability theory of differential equations. , McGraw Hill, 1953. J. Hale. Ordinary Differential Equations, Huntington, N.Y./R. E. Krieger Pub. Co., 1980. P. Pucci, J. Serrin Asymtotic Stability for nonautonomous dissipation wave systems, Comm. Pure and Appl. Math., Vol.XLIX, pp.177-216, 1996. J. Santos, J. A. S. de Lima. The q-oscillator: a Lagrangian description for variable damping, Physics Letters A, 267, pp. 213-218, 2000. R. A. Smith. Asymptotic stability of x"+a(t)x''+x=0, Quart. J. Math. Oxford(2), 12, pp. 123-126, 1961.id NH0920479002 sid 893261 cfn 0 / id NH0920479003 auc 胡政成 tic 從不合作的角度談合作賽局論 adc 張企 ty 博士 sc 國立清華大學 dp 數學系 yr 92 lg 英文 pg - kwc 合作賽局 kwc 不合作賽局 kwc 核 kwc 破產 kwc 議價 kwc 納許程序 kwc 佈局 abc Kernel 是TU game中一個重要的解,它有很好的數學性質,這些性質可以反映出一個賽局的結構。但是檢視一合作賽局的解好或不好,不只看它有沒有好的性質,還可從下列三種途徑來檢驗它: tc CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . 1 1.1 The axiomatic and noncooperative approaches for cooperative game theory . . . . . . . . . . . . . . . . . 1 1.2 Conventions and definitions . . . . .. . . . . . . . . 2 1.3 A survey of the implementations for cooperative solution concepts . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . 15 CHAPTER 2. A NONCOOPERATIVE INTERPRETATION OF THE KERNEL . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . 17 2.2 Theme . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Theorems . . . . . . . . . . . . . . . . . . . . . . . 26 2.4 Variation . . . . . . . . . . . . . . . . . . . . . . 41 2.5 Hyperplane games . . . . . . . . . . . . . . . . . . . 47 CHAPTER 3. CHARACTERIZATIONS OF F-JUST RULES OF BANKRUPTCY PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . 52 3.2 Definitions and notations . . . . . . . . . . . . . . 54 3.3 A characterization of the f-just rules . . . . . . . . 56 3.4 A noncooperative game model. . . . . . . . . . . . . . 57 3.5 Implementation . . . . . . . . . . . . . . . . . . . . 59 3.6 A noncooperative characterization of the f-just rules . . . . . . . . . . . . . . . . . . . . . . . . . . 66 REFERENCES CITED . . . . . . . . . . . . . . . . . . . . . 72rf 1. R. Aumann and M. Maschler, Game theoretic analysis of a bankruptcy problem from the Talmud, J. Econ. Theory 36 (1985), 195-213. 2. N. Dagan and R. Serrano and O. Volij, A noncooperative view of consistent bankruptcy rules, Games Econ. Behav. 18 (1997), 55-72. 3. N. Dagan and O. Volij, Bilateral comparisons and consistent fair division rules in the context of bankruptcy problems, Int. J. Game Theory 26 (1997), 11-25. 4. M. Davis and M. Maschler, The kernel of a cooperative game, Nav. Res. Logist. Quart. 12 (1965), 223-259. 5. E. Einy and D.Wettstein, A noncooperative interpretation of bargaining sets, Rev. Econ.Design 4 (1999), 219-230. 6. F. Gul, Bargaining foundations of Shapley value, Econometrica 57 (1989), 81-95. 7. F. Gul, Efficiency and immediate agreement: A reply to Hart and Levy, Econometrica 67 (1999), 913-917. 8. J. Harsanyi, A simplified bargaining model for the n-person cooperative games, Int. Econ. Rev. 4 (1963), 194-220. 9. S. Hart and Z. Levy, Efficiency does not imply immediate agreement, Econometrica 67 (1999), 909-912. 10. S. Hart and A. Mas-Colell, Potential, value and consistency, Econometrica 57 (1989), 589-614. 11. S. Hart and A. Mas-Colell, Bargaining and value, Econometrica 64 (1996), 357-380. 12. Y.-A. Hwang and P. Sudhölter, Axiomatizations of the core on the universal domain and other natural domains, Int. J. Game Theory 29 (2001), 597-623. 13. V. Krishna and R. Serrano, Multilateral bargaining, Rev. Econ. Stud. 63 (1996), 61-80. 14. M. Maschler, The bargaining set, kernel and nucleolus, in “Handbook of Game Theory with Economic Applications (Vol. 1)” (R. J. Aumann and S. Hart, Eds.), pp. 591-667, North-Holland, Amsterdam, 1992. 15. M. Maschler, B. Peleg, and L. S. Shapley, The kernel and bargaining set for convex games, Int. J. Game Theory 1 (1972), 73-93. 16. M. Maschler, B. Peleg, and L. S. Shapley, Geometric properties of the kernel, nucleolus and related solution concepts, Math. Oper. Res. 4 (1979), 303-338. 17. B. Moldovanu and E. Winter, Core implementation and increasing returns to scale for cooperation, J. Math. Econ. 23 (1994), 533-548. 18. J. F. Nash, The bargaining problem, Econometrica 18 (1950), 155-162. 19. J. F. Nash, Two person cooperative games, Econometrica 21 (1953), 128-140. 20. B. O'Neill, A problem of rights arbitration from the Talmud, Math. Soc. Sci. 2 (1982), 345-371. 21. B. Peleg, On the reduced game propoerty and its converse, Int. J. Game Theory 15 (1986), 187-200. 22. D. Pérez-Castrillo and D, Wettstein, Implementation of bargaining sets via simple mechanisms, Games Econ. Behav. 31 (2000), 106-120. 23. M. Perry and P. Reny, A noncooperative view of coalition formation and the core, Econometrica 62 (1994), 795-817. 24. R. Serrano, Non-cooperative implementation of the nucleolus: The 3-player case, Int. J. Game Theory 22 (1993), 345-357. 25. R. Serrano, Strategic bargaining, surplus sharing problems and the nucleolus, J. Math. Econ. 24 (1995), 319-329. 26. R. Serrano, Reinterpreting the kernel, J. Econ. Theory 77 (1997), 58-80. 27. R. Serrano and R. Vohra, Non-cooperative implementation of the core, Soc. Choice Welfare 14 (1997), 513-525. 28. R. Serrano and R. Vohra, Bargaining and bargaining sets, Games Econ. Behav. 39 (2002), 292-308. 29. L. S. Shapley, A value for n-person games, in “Contributions to the Theory of Games II” (A. W. Tucker and R. D. Luce, Eds.), pp. 307-317, Princeton Univ. Press, Princeton, 1953. 30. A. I. Sobolev, The characterization of optimality principles in cooperative games by functional equations, Mathematical Methods in the Social Sciences 6 (1975), 150-165(in Russian) 31. R. E. Stearns, Convergent transfer schemes for n-person games. Trans. Amer. Math. Soc. 134 (1968), 449-459. 32. W. Thomson, Divide and permute, University of Rochester, preprint, 1999. 33. W. Thomson, Axiomatic and game-theorectic analysis of bankruptcy and taxation problems: a survey, Math. Soc. Sci. 45 (2003), 249-297. 34. E. Winter, The Shapley value, in “Handbook of Game Theory with Economic Applications (Vol. 3)” (R. J. Aumann and S. Hart, Eds.), pp. 2025-2054, North-Holland, Amsterdam, 2002. 35. L. Zhou, A new bargaining set of an n-person game and endogenous coalition formation, Games Econ. Behav. 6 (1994), 512-526.id NH0920479003 sid 887203 cfn 0 / id NH0920479004 auc 郭孟光 tic 具弱性近乎收斂性質的二重數列及其相關性質的探討 adc 陳璋泡 ty 博士 sc 國立清華大學 dp 數學系 yr 92 lg 中文 pg 76 kwc w-almost convergent double sequences kwc Cauchy criterion kwc Tauberian theorems abc 這篇論文的主要工作在於更一般化近乎收斂(almost convergence)的觀念以及其相關性質的建立。 tc 1 Introduction 1 2 Uniform convergence of the de la Vall\'ee-Poussin means and its related properties 8 2.1 Equivalence condition for almost convergence 8 2.2 Cauchy criterions for almost convergence and strong almost convergence 10 2.3 Characterization of almost convergent sequences and strongly almost convergent sequences in a Hilbert space or in $L^p(T)$ 14 2.4 Tauberian theorem for almost convergence 17 2.5 Tauberian condition from $(C,1)$ convergence to almost convergence 20 2.6 Application to uniformly pointwise convergent sequences 25 3 W-almost convergent double sequences and their related properties 29 3.1 Equivalence between almost convergence and w-almost convergence 29 3.2 Cauchy criterions for w-almost convergence and strong w-almost convergence 31 3.3 Characterization of w-almost convergent sequences and strongly w-almost convergent sequences in $L^p(T^2)$ 35 3.4 Tauberian theorems for w-almost convergence 39 3.5 Investigation of conditions $(3.4.1a)$ and $(3.4.1b)$ for the rectangular partial sums of the Fourier series of $f\in L^p(T^2)$ or $f\in C(T^2)$ 42 3.6 Tauberian conditions from $(C,1,1)$ convergence to w-almost convergence 51 4 W-almost convergence with weights and related Tauberian results 60 4.1 An equivalent condition between almost convergence and w-almost convergence for the case with weights 60 4.2 Implication from w-almost convergence with weights $p$ and $q$ to \break$(\bar{N}, p , q; 1, 1)$ convergence 64 4.3 Chen-Hsu type of Tauberian results from $(\bar{N}, p , q; 1, 1)$ convergence to w-almost convergence with weights $p$ and $q$ 65 4.4 Chen-Kuo type of Tauberian results from $(\bar{N}, p , q; 1, 1)$ convergence to w-almost convergence with weights $p$ and $q$ 67 4.5 A Tauberian result from w-almost convergence with weights to norm convergence 71 References 75rf [A ] G. Alexits, Convergence Problems of Orthogonal Series, Pergamon Press, New York-Oxford-Paris, 1961. [Ba ] N. K. Bary, A Treatise on Trigonometric Series, Vols. I \& II. Pergamon Press, New York,1964. [BN1 ] P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, Vol. 1: one-dimensional theory. Academic Press, New York-London,1971. [BN2 ] ---------, Aspects of de La Vall\'ee-Poussin's work in approximation and its influence, Arch. Hist. Exact Sci. 46 (1993), no. 1, 67-95 [Bu ] R. C. Buck, A note on subsequences, Bull. Amer. Math. Soc. 49 (1943), 898-899. [CH1 ] C.-P. Chen and P.-H. Hsieh, Pointwise convergence of double trigonometric series, J. Math. Anal. Appl. 172 (1993), no. 2, 582-599. [CH2 ] C.-P. Chen and J.-M. Hsu, Tauberian theorems for weighted means of double sequences, Anal. Math. 26(2000), no. 4, 243-262. [D ] J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, New York, 1984. [Ha ] G. H. Hardy, Divergent Series, Oxford University Press, New York, 1949. [Hi ] J. D. Hill, Almost-convergent double sequences, T\^ohoku Math. J. (2), 17 (1965), 105-116. [K ] J. C. Kurtz, Almost convergent vector sequences, T\^ohoku Math. J. (2), 22 (1970), 493-498. [L ] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80(1948), 167-190. [Ma1 ] I. J. Maddox, Some general Tauberian theorems, J. London Math. Soc. (2) 7 (1974), 645-650. [Ma2 ] ---------, A new type of convergence, Math. Proc. Cambridge-Philos. Soc. 83 (1978), no. 1, 61-64. [Me ] S. Mercourakis, On Ces\`aro summable sequences of continuous functions, Mathematika 42(1995), no. 1, 87-104. [Mo ] F. M\'oricz, Tauberian theorems for Ces\`aro summable double sequences, Studia Math. 110(1994), no.1, 83-96. [MR ] F. M\'oricz and B. E. Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Cambridge Philos. Soc. 104 (1988), no. 2, 283-294. [S ] W. Szlenk, Sur les suites faiblement convergentes dans l'espace L, Studia Math. 25 (1965), 337-341. [SS ] K. Sok\'ol-Sokolowski, On trigonometric series conjugate to Fourier series of two variables, Fund. Math. 34 (1947), 166-182. [T ] E. C. Titchmarsh, The Theory of Functions, 2d ed. Oxford University Press, 1952. [Z ] A. Zygmund, Trigonometric Series, Vols. I \& II, 2nd ed., Cambridge University Press, New York, 1959.id NH0920479004 sid 887205 cfn 0 / id NH0920493001 auc 陳千惠 tic 公益網站之建構與傳播策略─以「烏托幫」網站為例 adc 黃一農博士 ty 碩士 sc 國立清華大學 dp 歷史研究所 yr 92 lg 中文 pg 118 kwc 公益網站 kwc 公益組織 kwc 網際網路 kwc 太歲 kwc 傳播策略 abc 網際網路科技的問世,就像水一樣可以載舟也能覆舟,媒體所呈現於世人的網路世界,從網路援交到網路詐欺等時有所聞,負面消息不少,但網路可以用於正途,也可以用在旁門左道,值得強調的是,網路以非對稱的方式將權力賦予弱勢者。亦即,網路會削弱中央權威的權力,不管他們是好是壞;網路也會結合分散的勢力,不管他們是好是壞。換言之,網路對政治宣傳的助益不大,卻是適於大家共謀的完美場所。 tc 第一章、緒論 2 1.1 研究背景 2 1.2 研究目的 5 1.3 文獻回顧 7 1.3.1 公益組織與網際網路 7 1.3.2 網路傳播與現代社會 10 1.4 研究方法與章節安排 14 第二章、建構公益網站「烏托幫」 16 2.1 網站設立建構 16 2.2 網站設計過程 18 2.3 網頁內容設計 19 2.4 網站組織運作 32 第三章 太歲與烏托幫內容特色 37 3.1 太歲的原貌 38 3.2 太歲的忌諱 40 3.3 神話與文學 46 3.4 祭祀與崇拜 49 3.5 結語 53 第四章、公益網站之傳播策略 60 4.1 結合媒體與網路推廣 60 4.1.1 結合媒體推廣 62 4.1.2 其它類型推廣 65 4.2 結合智邦公益館推廣 67 4.2.1 網站合作緣起 67 4.2.2 合作推廣策略 71 4.2.3 活動檢討建議 75 4.2.4 網頁成果 79 第五章、結論與建議 84 5.1 研究問題討論 84 5.1.1 公益網站的建構情形 84 5.1.2 公益網站的推廣策略 86 5.2 研究檢討與建議 91 參考資料 93 英文部份 93 中文部份 94 參考網站 99 附件資料 101rf 英文部份 1. Abbate, Janet. Inventing the Internet (Cambridge, MA: MIT Press, 1999). 2. Burt, Ronald S. Structural holes: the social structure of competition, (Cambridge, Massachusetts: Harvard University Press, 1992). 3. Dembo, Myron H. Applying educational Psychology (London: Longman Publishing Group,1994),fifth edition. 4. Esrock, S.L., & Leichty, G.B. Corporate World WideWeb Pages: Serving the news media and other publics. Journalism and Mass Communication Quarterly, (73:3,1999), pp456-467. 5. Esrock,S.L. & Leichty, B.B. Organization of corporate Web pages: Publics and functions. Public Relations Review, 26:3,2000, pp327-334. 6. Gallivan, M. J. Organizational adoption and assimilation of complex technological innovations: Development and application of a new framework. The Data Base for Advances in Information Systems, (32:3,2001), pp51-85. 7. Harvey, David. Spaces of capital : towards a critical geography (New York: Routledge, 2001), pp135-167. 8. Leonard Broom, Philip Selznick, Sociology( New York: Harper & Row,1968). 9. Latour, Bruno. Science in Action: How to Follow Scientist and Engineers through Society, (Cambridge, MA: Harvard Univ. Press, 1987). 10. Latour, Bruno. Pandora's Hope: Essays on the Reality of Science Studies (Cambridge, MA: Harvard Univ. Press, 1999) 11. Latour, Bruno. The Pasteurization of France (Cambridge, MA: Harvard Univ. Press, 1988). 12. McQuail, D. Mass communication theory: An introduction(Thousand Oaks,CA:Sage,1994). 13. Needham, Joseph. Science and Civilization in China (Cambridge: Cambridge University Press, 1971), Vol.5. 14. Smith, P. R., & Chaffey, D. eMarketing excellence: The Heart of eBusiness. ( Oxford: Butterworth-Heinemann, 2002). 15. White, C., & Raman. N. The World Wide Web as a public relations medium: The use of research, planning, and evaluation in Web site development. Public Relations Review, (25:4,2000), pp 405-419. 16. Zuboff, Shoshana, In the Age of the Smart Machine. (New York: Basic Books, 1988), pp123-134. 中文部份 1. 王同,〈武林風俗記〉,《武林掌故集刊》,杭州:杭州圖書館,1983,卷2。 2. 褚人穫,〈太歲〉,《堅瓠補集》,杭州:浙江人民出版社,1986,卷1。 3. 姚福均,《鑄鼎餘聞》,臺北:臺灣學生書局,1989。 4. 司馬遷) ,史記( 新校本)/裴駰(宋)集解,司馬貞(唐)索隱,張守節(唐)正義,臺北:鼎文書局,1979。 5. 郭璞注,山海經,臺北:台灣商務,1965。 6. 王引之,《經義述聞》,台北:鼎文書局,1973。 7. 邵博著,周光培編,《聞見後錄》,石家莊:河北教育出版社,1995。 8. 宋濂等撰,《元史》,臺北:鼎文書局,1980。 9. 張廷玉等撰,《明史》,臺北:鼎文書局,1979。 10. 《二十五史》,藝文印書館編影印本,臺北:藝文印書館,1972。 11. 王充撰,劉盼遂解,《論衡集解》,臺北:世界書局,1956。 12. 吳曉鈴等編校,《關漢卿戲曲集》,出版地不詳:中國戲劇出版社,出版年不詳。 13. 曹雪芹著,《紅樓夢》,臺北:里仁出版社,1995。 14. 劉安原著,吳汝霖、高時顯輯校,《淮南子》(臺北:中華書局,1974),卷3。 15. 沈約撰,楊家駱主編,《新校本宋書》(臺北:鼎文書局,1981),收入《廿五史.中國學術類編》。 16. 李延壽撰,楊家駱主編,《新校本南史》(臺北:鼎文書局,1981),收入《廿五史.中國學術類編》。 17. 李時等編,《太平廣記》(臺北:文史哲出版社,1987),卷三百六十二。 18. 岳珂撰,吳企明校點,《桯史》(北京:中華書局,1981)。 19. 戴孚撰, 《廣異記》(板橋:藝文出版社,1966)。 17. Peter. F.Drucker 著,余佩珊 譯,《非營利機構的經營之道》,(臺北:遠流出版公司,2002)。 18. 蒲魯姆(Broom, Leonard)、塞茨尼克 (Selznick, Philip) 著,朱岑樓譯,《社會學》,台北:三民書局,1982。 19. Thomas F. Baldwin、D. Stevens McVoy、Charles Steinfield著,謝奇任、唐維敏、甘尚平譯,《大匯流》,臺北:亞太圖書出版社,1997。 20. 王秋桂、李豐楙主編,《三教源流聖帝佛祖搜神大全》(中國民間信仰資料彙編第一輯),臺北:臺灣學生書局,1989,頁230-232。 21. 王秋桂、李豐楙主編,《集說詮真》,收入《中國民間信仰資料彙編》,臺北:臺灣學生書局,1989,頁307-318。 22. 王秋桂、李豐楙主編,《破除迷信全書》,收入《中國民間信仰資料彙編》,臺北:臺灣學生書局,1989。 23. 王秋桂、李豐楙主編,《神考》,收入《中國民間信仰資料彙編》,臺北:臺灣學生書局,1989。 24. 姚福均編輯,《鑄鼎餘聞》,收入王秋桂、李豐楙主編,《中國民間信仰資料彙編》,臺北:臺灣學生書局,1989。 25. 崔朝慶,《中國人之宇宙觀》,臺北:台灣商務印書館,1965。 26. 顧俊,《中國古代天文學簡史》,臺北:木鐸出版社,1982 27. 陳遵媯《中國天文學史第二冊》,臺北:明文書局,1987。 28. Leonard Broom、Charles M. Bonjean、Dorothy H. Broom合著,張承漢譯,《社會學》,臺北:巨流出版社,1993。 29. 尼葛洛龐帝(Nicholas Negroponte)著,齊若蘭 譯,《數位革命》,臺北:天下遠見出版公司,1995。 30. 吳思華、陳俊良、龔俊霖、詹宏志、王文燦、杜紫宸、陳宏守、詹文男等著,曾郁惠整理,《e-Marketing的經營策略》,臺北:聯經出版社,2001。 31. 李英明,《虛擬的極限》,臺北:臺灣書店,2001。 32. 李零,《中國方術考》,北京:東方出版社,2000。 33. 宗力、劉群著,《中國民間諸神》,河北:河北人民出版社,1987,頁130-133。 34. 法蘭克.柯奇(Frank Koelsch)著,譚天 譯,《資訊媒體狂潮》,臺北:遠流出版社,1996。 35. 潘國正,《中文報業電腦化使用者之研究─以中國時報地方新聞中心記者採用電腦打稿為例》(新竹:交通大學傳播科技研究所碩士論文,1993)。 36. 侯吉諒,《數位文化》,臺北:未來書城公司,2002。 37. 哈洛克.克里斯多夫(Horrocks Christopher)著,楊久穎 譯,《麥克魯漢與虛擬世界》,臺北:貓頭鷹出版社,2002。 38. 唐.泰普史考特(Don Tapscott)著,卓秀娟、陳佳令 譯,《數位化經濟時代》,臺北:美商麥格羅.希爾國際公司台灣分公司,1997。 39. Chuck Martin著,陳曉開 譯,《數位化階級時代/網際網路世界中,競爭及生存的策略》,臺北:美商麥格羅希爾公司台灣分公司,1998。 40. Paul and Sarah Edwards, Linda Rohrbough著,楊祖輝 譯,《撒「網」捕大魚/網際網路創業致富術》,臺北:商智文化事業,1999。 41. 曼威.柯司特(Manuel Castells)著,夏鑄九、王志弘等譯,《網絡社會之崛起》,臺北:唐山出版社,2000。 42. Denis McQuail著,陳芸芸、劉慧雯 譯,《最新大眾傳播理論》,臺北:韋伯文化出版公司,2001。 43. 理查.塞尼特(Richard Sennett)著,黃維玲 譯,《職場啟示錄》,臺北:時報文化出版公司,1999。 44. 郭泰,《怎樣看懂黃曆》,臺北:遠流出版社,2000。 45. 華萊斯(Patricia Wallace)著,陳美靜 譯,《網路心理講義》,臺北:天下出版社,2001。 46. 戴森(Esther Dyson)著,李令儀、羅慧雯、許家馨 合譯,《版本2.0》,臺北:大塊文化出版社,1998。 47. 邁可.德托羅斯(Michael Dertouzos)著,羅耀宗 譯,《資訊新未來》,臺北:時報文化出版公司,1997。 48. 梁瑞祥著,《網際網路與傳播理論》,臺北:揚智文化事業公司,2001。 49. 趙伯陶,《十二生肖面面觀》,濟南:齊魯書社,2000。 50. 劉還月,《台灣黃曆完全解秘》,臺北:常民文化事業公司,2000。 51. 杜佑(唐),《通典》校點本,北京:中華書局,1988。 52. 顧俊,《中國古代天文學簡史》,臺北:木鐸出版社,1982。 53. 崔朝慶,《中國人之宇宙觀》,臺北:台灣商務印書館,1965。 54. 司徒達賢,《非營利組織的經營管理》,臺北:天下文化出版社,1999。 55. Philip Kotler, Alan R. Andreasen著,張在山 譯,國立編譯館主編,《非營利事業的策略性行銷》,臺北:授學出版社,1991。 56. 世新大學新聞學系編著,《傳播與社會》,台北:揚智文化公司,1999。 57. 陳德懷、林玉珮 編,《啟動學習革命:全球第一個網路教育城市亞卓市》,台北:遠流出版社,2002。 58. 程予誠,《網際傳播:對網路、人、組織未來的影響》,台北:五南圖書出版公司,2003。 59. 丁崑健,〈電腦.網路與歷史學研究〉,《歷史月刊》,1993:4,頁68-73。 60. 呂應鐘,〈由風水源流發展批判後世風水迷信〉,《第五屆科學史研討會論文集》,臺北:中央研究院科學史委員會,2000,頁3-16。 61. 李建民,〈馬王堆漢墓帛書「禹藏埋胞圖」箋証〉,《中央研究院歷史語言研究所集刊》,第65卷第4期(1994),頁725-791。 62. 周作明,〈中國傳統住宅文化的總體審視〉,《廣西民族學院學報(哲科版)》,第20卷第2期(1998),頁65-70。 63. 易行,〈聯合新聞網易總經理行工作報告〉,《聯合報系月刊》,第209期,2000年,頁77-78。 64. 郭書蘭,〈司馬遷的古代曆制研究〉,《鄭州大學學報(哲科版)》,1998年第11期,頁106-108。 65. 陳久金,〈從馬王堆帛書《五星占》的出土試探我國古代的歲星紀年問題〉,《中國天文學史文集》(北京:科學出版社,1978),頁48-65。 66. 黃一農,〈擇日之爭與「康熙曆獄」〉,《清華學報》,新21卷第2期(1991),頁247-280。 67. 李松齡,〈清宮《春牛芒神圖》〉,《文史知識》,1991.4 (1991),頁53-56。 68. 莊吉發,〈歲次乙丑話春牛〉,《故宮文物月刊》,2.11 (1985),頁49-55。 69. 王道瑞,〈“春牛芒神圖”及古代的迎春活動〉,《歷史檔案》,1986.2 (1986),頁135-136。 70. 張振國,〈辛丑太歲楊信大將軍〉,《中國道教》,2000.6 (2000),頁45。 71. 黃嘉琳,《網際網路於科技史應用-以中國時間制度為例》,國立清華大學歷史研究所科技史組碩士論文,2000。 72. 韓意勤,《資訊時代之非營利組織》,國立政治大學社會學系碩士論文,2001。 73. 吳紀勳,《非營利組織運用網路行銷之研究:以台灣基金會網站為例》,逢甲大學企業管理研究所碩士論文,2001。 74. 林宜欣,《台灣企業公益行為之研究:以電子類企業組織為例》,南華大學非營利事業管理研究所碩士論文,2001。 75. 羅秋川,《 非營利事業網路行銷之研究-以仁壽宮網站為例》,長榮管理學院經營管理研究所碩士論文,2001。 76. 洪麗晴,《台灣非營利社會福利機構網路募款的分析》,國立中正大學社會福利系碩士論文,2001。 77. 梅政清,《中國上古天文學之文化意涵》,國立成功大學歷史研究所碩士論文,2003。 78. 陶蓓麗、廖則竣,〈台灣企業全球資訊網建置情況之研究〉,《淡江人文社會學刊》,2001:7,頁109-129。 79. 楊叔卿、黃一農,〈網際網路虛擬科學館之設計與運作〉,《遠距教育季刊》,1998:12,頁20-23。 80. 潘錫清,〈網際網路傳播新風貌〉,《動腦》,第243輯(1996),頁60-62。 81. 簡妤儒,〈非營利組織e起來〉,《張老師月刊》,第299期(2002)。 82. 羅鳳珠,〈近年來網際網路上文史哲研究資源之現況與展望〉,《中國書目季刊》,第30卷第4期(1997),頁51-61。 83. 周倩、楊臺恩,〈電腦網路的特質及相關問題初探〉,《社教雙月刊》,1998年第37期,頁17-20。 84. 張維安,〈資訊科技對於社會非預期之影響〉,《資訊與人文關懷》,12(2002),頁7-18。 85. 黃一農,〈本土化網路資源建置經驗談:清蔚園〉,《清華圖書館館訊》,4(1999),頁12-15。 86. 黃一農,〈通書─中國傳統天文與社會的交融〉,《漢學研究》,第14卷第2期(1996),頁159-186。 87. 黃一農,〈黃曆長銷兩千年〉,《科學人》,3(2003),頁30。 88. 曾志朗,〈沖太歲、安太歲?〉,《科學人》,1(2003),頁10。 89. 俞偉超、李家浩,〈論〞兵避太歲〞戈〉,《出土文獻研究》(北京:文物出版社,1985),頁138-145。 90. 林宏達,〈點擊捐贈、網路動員〉,《e天下》,2003年第30期,頁167-169。 參考網站 1. 紅樓夢網路教學研究資料中心:http://cls.admin.yzu.edu.tw。 2. Teens清蔚園網址:http://vm.nthu.edu.tw。 3. 線上網路社會研究中心:http://teens.nthu.edu.tw/iscenter/。 4. 台灣公益資訊中心:http://www.npo.org.tw/index.asp。 5. CompassPoint Nonprofit Services: http://www.compasspoint.org/. 6. 南華非營利事業管理研究所:http://mail.nhu.edu.tw/~nonprofit/。 7. 基金會與非營利機構信息網:http://www.npo.org.cn/。 8. 人人公益網:http://www.give.org.tw/。 9. 喜瑪拉雅研究發展基金會:http://www.himalaya.org.tw。 10. 台灣300家主要基金會:http://www.foundations.org.tw/。 11. 非營利組織經營論壇:http://www.npocenter.org.tw/。 12. 仁壽宮網路祈福:http://www.renshow.org.tw/beatitude/index.htm。 13. 智邦公益館:http://www.e-charity.com.tw/。 14. 資策會FIND:http://www.find.org.tw/。 15. 楊舜仁PKM資訊網:http://www.asia-learning.com/sooner/。 16. 愛心義賣館網址為http://shopping.pchome.com.tw/charity.php。id NH0920493001 sid 884492 cfn 0 / id NH0920493002 auc 陳嘉新 tic 歇斯底里烙印的歷史:從Charcot到Freud adc 雷祥麟 adc 王文基 adc 劉絮愷 ty 碩士 sc 國立清華大學 dp 歷史研究所 yr 92 lg 中文 pg 137 kwc 歇斯底里 kwc 烙印 kwc 網絡 kwc 精神醫學史 kwc 神經疾病 kwc 疆界 kwc 醫病關係 abc 烙印(stigmata)原本是中世紀用以描述某些人身上出現類似耶穌受難時的標記,然而在十九世紀末卻成為Jean-Martin Charcot建構歇斯底里病因理論的重要依據。這篇論文處理的就是烙印這個科學對象,如何在Charcot的理論中出現,又如何在Freud以降的心理學趨勢中消失的過程。 tc 目錄 章節名稱 頁數 序章 沉默標記會說話 1 第一節 謎樣的烙印 1 第二節 回顧與前瞻 4 (一) 新歇斯底里研究 4 (二) 精神醫學的專業化 6 (三) 精神症狀的歷史 7 (四) 身體史的考慮 9 第三節 研究方法 10 (一) 實在或建構? 10 (二) 科學對象的歷史 11 (三) 精神╱身體症狀的歷史 12 (四) 研究進行方式與研究目標 13 第四節 科學理解的開始? 16 第一章 試寫烙印的生命史 17 第一節 歇斯底里烙印的歷史模式 17 第二節 被遺忘的烙印 23 第三節 烙印史的三股線頭 29 第四節 小結 34 第二章 網絡中的烙印 35 第一節 當醫師開始驅魔 35 第二節 定義歇斯底里的身體 43 (一) 醫學目視與解剖刀: Charcot的臨床解剖法 43 (二) 看不到的歇斯底里 48 (三) 由烙印定義歇斯底里 50 第三節 意外的訪客:催眠術與歇斯底里54 (一) 催眠術之前:金屬治療與烙印 56 (二) 人體機器實驗室 58 (三) 烙印的再定義 60 第四節 小結 61 第三章 疆界上的烙印 63 第一節 心理學化的挑戰 63 (一) 由病灶到功能 63 (二) 拆解心理學 66 第二節 Charcot後悔了嗎? 68 (一) 網絡之間的衝突 69 (二) 搖晃不穩的網絡? 71 (三) Janet對於這場挫敗的解釋 73 (四) 翻轉網絡的機制之一 75 第三節 從審問者到煙囪工 77 第四節 另一種心理學化 80 第五節 精神研究 87 第六節 小結 91 第四章 從展現到再現 93 第一節 展現沉默的客觀性 94 第二節 逛醫生的文化 102 第三節 當醫生閉上嘴巴 106 (一) 科學的催眠術? 106 (二) 翻轉網絡的機制之二 108 第四節 小結 112 第五章 結語 115 第一節 繩索╱網絡模式再思考 115 (一) 現有架構的反省 115 (二) 如何建立新網絡 119 (三) 從理由到機制 122 第二節 給臨床家的反思 123 (一) 症狀會說話? 124 (二) 生物醫學化潮流下的精神科醫師125 (三) 總結 127 參考書目 128rf 外文部分 Ackerknecht, E.H. (1967) Medicine at the Paris Hospital, 1794-1848. Baltimore: The Johns Hokpins Press Albright, M. (2002) ‘The Stigmata: The Psychological and Ethical Message of the Posttraumatic Sufferer’, Psychoanalysis and Contemporary Thoughts, 25: 329-358 American Psychiatric Association (1994) Diagnostic and Statistical Manual of Mental Disorders. 4th ed, Washington D.C.: APA Press Armstrong, E.A. (1973) Saint Francis: Nature Mystic. Berkeley: University of California Press Barstow, A.L. (1996) Witchcraze: A New History of the European Witch Hunt. San Francisco: Harper Collins Publishers Bernheim, H. (1980[1891 ]) New Studies in Hypnotism. New York: International Universities Press Bernheim, H. (1995[1903 ]) Hypnotisme, Suggestion, Psychothérapie, avec considération nouvelle sur l’hysterie. Paris: Librairie Arthème Fayard Bernheim, H. (1998[1889 ]) Suggestive Therapeutics. London and Tokyo: Thoemmes and Maruzen Co. Berrios, G.E. (1984) ‘Descriptive Psychopathology: Conceptual and Historical Aspects’, Psychological Medicine, 14: 303-313 Berrios, G.E. (1992) ‘Research into the History of Psychiatry’, in C. Freeman and P. Tyrer (ed.) Research Methods in Psychiatry: A Beginner’s Guide (pp.296-303). London: Gaskell Berrios, G.E. (1996) The History of Mental Symptoms: Descriptive Psychopathology since the Nineteenth Century. Cambridge: Cambridge University Press Binet, A. and Charles Féré, (2003[1887 ]) Animal Magnetism. New York: Elibron Press Bleuler, E. (1951) Textbook of Psychiatry. New York: Dover Press Bloor, D. (1999) ‘Anti-Latour’, Studies for History and Philosophy of Science 30: 81-112 Bloor, D. (1999) ‘Discussion: Reply to Bruno Latour’, Studies for History and Philosophy of Science 30: 131-36 Borch-Jacobsen, M. (1989) ‘Hypnosis in Psychoanalysis’, Representations 27: 92-110 Borch-Jacobsen, M. (2001) ‘Making Psychiatric History: Madness as Folie a Plusieurs’, History of the Human Sciences 14: 19-38 Borck, C. (1998) ‘Visualizing Nerve Cells and Psychical Mechanisms: The Rhetoric of Freud’s Illustration’, in G. Guttman and I. Scholz-Strasser (eds.) Freud and the Neurosciences (pp.57-86), Vienna: Österreichischen Akademie der Wissenschaften Bowker, G.C. and Susan Leigh Star, S.L. (1999) Sorting Things Out : Classification and Its Consequences. Cambridge: MIT Press Butterfield, H. (1965) The Whig Interpretation of History. New York: Norton Bynum, W.F. (1985) ‘The Nervous Patient in Eighteenth- and Nineteenth-century Britain: the Psychiatric Origins of British Neurology’, in W.F. Bynum, R. Porter, and M. Shepherd (ed.) The Anatomy of Madness, Vol.I: People and Ideas (pp.89-102 ) London: Tavistock Publications Carroy, J.and Regina Plas, (2000) ‘How Pierre Janet Used Pathological Psychology to Save the Philosophical Self’, Journal of the History of the Behavioral Sciences 36: 231-240 Castel, R. (1983) ‘Moral Treatment: Mental Therapy and Social Control in the Nineteenth Century’, in A. Scull (ed.), Social Control and the State (pp.248-266), New York: St. Martin’s Press Charcot, J-M. (1893) ‘The Faith-cure’, The New Review 8: 18-31 Charcot, J-M. (1987) Charcot, the Clinician: the Tuesday Lessons, trans. C.G. Goetz, New York: Raven Press Charcot, J-M. (1991) ‘Concerning Six Cases of Hysteria in the Male’, in R. Harris (ed.), T. Savill (trans.), Clinical Lectures on Diseases of the Nervous System. New York: Routledge Charcot, J-M. (1998[1892 ]) Preface, in Pierre Janet, The Mental State of Hystericals. Bristol and Tokyo: Thoemmes Press Charcot, J-M. (2000[1883 ]) Lectures on the Localization of Cerebral and Spinal Diseases. London: Routledge/Thoemmes Charcot, J-M. (2003[1880 ]) Leçons sur les Maladies du Système Nerveux Faites à la Salpêtrière, Tome I. New York: Elibron Charcot, J-M. and Paul Richer, (1972[1887 ]) Les Demoniaques dans l‘Art. Amsterdam: B.M. Isreal Chertok, L. and Isabelle Stengers, (1992) A Critique of Psychoanalytic Reason: Hypnosis as a Scientific Problem from Lavoisier to Lacan. Stanford: Stanford University press Clarke, A.E. et al (2003) ‘Biomedicalization: Technoscientific Transformation of Health, Illness, and U.S. Biomedicine’, American Sociological Review 68: 161-94 Crary, J. (1998) ’Attention and Modernity in the Nineteenth Century’, in C. A. Jones and P. Galison (eds.) Picturing Science, Producing Art (pp.475-500). New York and London: Routledge, Crary, J. (2000) Suspensions of Perception: Attention, Spectacle, and Modern Culture. Cambridge: MIT Press Danziger, K. (1990) Constructing the Subject: Historical Origins of Psychological Research. Cambridge: Cambridge University Press Daston, L. (1992) ‘Objectivity and the Escape from Perspective’, Social Studies of Science 22: 597-618 Daston, L. and Peter Galison (1992) ’The Image of Objectivity’, Representations 40: 61-128 Daston, L. (2000) ‘Preternatural Philosophy’, in Biographies of Scientific Objects (pp.15-41) Chicago: University of Chicago Press Daston, L. (2000) ‘The Coming into Being of Scientific Objects’, in Biographies of Scientific Objects. (pp.1-15) Chicago: University of Chicago Press, 2000 Daudet, A. (2002) In the Land of Pain. London: Jonathan Cape Davidson, A. (1999) ‘Miracles of Bodily Transformation, or How St. Francis Received the Stigmata’ in C.A. Jones and P. Galison (eds.) Picturing Science, Producing Art. (pp.101-124) London and New York: Routledge de Marneffe, D. (1991) ‘Looking and Listening: the Construction of Clinical Knowledge in Charcot and Freud’, Signs 17: 71-111 Decker, H. (1977) Freud in Germany: Revolution and Reaction in Science, 1893-1907. New York: International Universities Press Didi-Huberman,G. (2003) Invention of Hysteria: Charcot and the Photography of the Salpêtrière. Elizsa Harz (trans.) Cambridge: MIT Press Dowbiggin, I.R. (1991) Inheriting Madness: Professionalization and Psychiatric Knowledge in Nineteenth-Century France. Berkeley: University of California Press Dubois, P. (1908) The Psychic Treatment of Nervous Disorders. New York and London: Funk and Wagnall Company Duden, B. (1991) The Woman Beneath the Skin, trans. Thomas Dunlap. Cambridge and London: Harvard University Press Ellenberger, H. (1970) The Discovery of the Unconscious. New York: Basic Book Ellenberger, H. (1993[1968 ]) ’Freud’s Lecture on Masculine Hysteria (October 15, 1886): A Critical Study’, in Mark S. Micale (ed.) Beyond the Unconscious. ( pp. 119-136). Princeton: Princeton University Press Ellenberger, H.(1993[1977 ]) “The Story of ‘Emmy von N.’: A Critical Study with New Documents”, in M. S. Micale (ed.), Beyond the Unconscious: Essays of Henri F. Ellenberger in the History of Psychiatry. (pp.273-290). Princeton: Princeton University Press Epstein, S. (1996) Impure Science. Berkeley, Los Angeles ad London: University of California Press Farr, R.M. and Serge Moscovici, (eds.) (1984) Social Representation. Cambridge: Cambridge University Press Fenichel, O. (1995) The Psychoanalytic Theory of Neurosis. New York: Norton Ferber, S. (1997) ‘Charcot’s Demons: Retrospective Medicine and Historical Diagnosis in the Writings of the Salpêtriére School’, in M. Gijswijt-Hofstra, H. Marland and H. de Waardt (eds.) Illness and Healing Alternatives in Western Europe (pp.120-140). London: Routledge Ferenczi, S. (1999[1899 ]) ‘Spiritism’, in Selected Writings (pp.3-8) London: Penguin Forel, A. (1949) Hypnotism on Suggestion and Psychotherapy. New York: Allied Publications Foucault, M. (1965) Madness and Civilization: A History of Insanity in the Age of Reason. NewYork: Vintage Foucault, M. (1973) The Birth of the Clinic: An Archeology of Medical Perception. London: Tavistock Publications Foucault, M. (1977) Discipline and Punish: The Birth of the Prison. New York: Vintage Foucault, M. (1978) The History of Sexuality, Volume I: An Introduction. New York: Vintage Foucault, M. (ed.), (1975) I, Pierre Riviére, Having Slaughtered My Mother, My Sister, and My Brother…. Lincoln and London: University of Nebraska Press Freud, S. (1966) The Standard Edition of the Complete Psychological Works of Sigmund Freud. (abbreviated as SE thereafter), London: Hogarth Press. Freud, S. (1886) ‘Observation of a Severe Case of Hemianesthesia in a Hysterical Male’, SE, Vol. I, p. 23-35 Freud, S. (1888) ‘Hysteria’, SE, Vol. I, pp.39-57 Freud, S. (1891) ‘Hypnosis’, SE, Vol. I, pp.105-114 Freud, S. (1893[1888-1893 ]) ‘Some Points for a Comparative Study of Organic and Hysterical Motor Paralysis’, SE vol. I, pp.160-172 Freud, S. (1894) ‘The Neuropsychoses of Defense’, SE, Vol. III, pp.45-61。 Freud, S. (1905) ‘Psychical (or Mental) Treatment’, SE, Vol.VII,pp.283-302 Freud, S. (1905[1904 ]) ‘On Psychotherapy’, SE, Vol. VII, pp.257-270 Freud, S. (1910[1909 ]) ‘Five Lectures on Psyhcoanalysis: The Second Lecture’, SE, Vol. XI, pp.21-28 Freud, S. (1912) ‘The Dynamics of Transference’, SE, Vol. XII, 97-108 Freud, S. (1914) ‘On the History of the Psychoanalytic Movement’, SE. Vol. XIV, pp.7-67 Freud, S. (1914) ‘Remembering, Repeating and Working-through’, SE, Vol. XII, pp.145-56 Freud, S. (1915[1891 ]) ‘Appendix B &C’, SE Vol. XIV, pp.206-215 Freud, S. (1922) ’Dreams and Telepathy’, SE Vol. XVIII, pp.195-220 Freud, S. (1925[1924 ]) ‘An Autobiographical Study’, SE, Vol. XX, pp. 3-76 Freud, S. (1941[1921 ]) ’Psychoanalysis and Telepathy’, SE Vol. XVIII, pp.175-194 Freud, S. (1956[1886 ]) ‘Report on My Studies in Paris and Berlin’, SE, Vol. I, pp.3-18 Freud, S. and Josef Breuer (1893)‘Studies on Hysteria’ , SE, Vol.II Gauld, A. (1992) A History of Hypnotism. Cambridge: Cambridge University Press Gay, P. (1998) Freud: A Life for Our Time. New York: Norton Gelfand , T. (1988) ‘”Mon Cher Docteur Freud”: Charcot’s Unpublished Correspondence to Freud, 1888-1893’, Bulletin of History of Medicine 62: 563-588 Gelfand, T. (1989) ‘Charcot’s Response to Freud’, Journal of the History of Ideas 50: 293-307 Gelfand, T. (2000) ‘Neurologist or Psychiatrist? The Public and Private Domains of Jean-Martin Charcot’, Journal of the History of the Behavioral Sciences 36: 215-229 Gieryn, T.F. (1999) Cultural Boundaries of Sciences. Chicago: University of Chicago Press Gilman, S.L. (1993) ‘The Image of the Hysterics’, in S. L. Gilman et al (co-authored) Hysteria Beyond Freud. Berkeley and Los Angeles: University of California Press Gilman, S.L. (1993) The Case of Sigmund Freud: Medicine and Identity at the Fin de Siècle. Baltimore and London: The Johns Hopkins University Press Goetz, C.G. (1991) ‘Visual Art in the Neurologic Career of Jean-Martin Charcot’, Archive of Neurology 48:421-425 Goetz, C.G. (2000) ‘Battle of the Titans: Charcot and Brown-Séquard on Cerebral Localization’, Neurology 54: 1840-1847 Goetz, C.G. (2001) ‘Poor Beard: Charcot’s Internationalization of Neurasthenia, the American Disease’, Neurology 57: 570-574。 Goetz, C.G., Bonduelle, M., and Gelfand, T. (1995) Charcot: Constructing Neurology. Oxford: Oxford University Press Goldstein, J. (1983) ‘The Wandering Jews and the Problem of Psychiatric Anti-Semitism in Fin-de-siècle France’, Journal of Contemporary History 20: 521-552 Goldstein, J. (1987) Console and Classify: The French Psychiatric Profession in the Nineteenth Century. Cambridge: Cambridge University Press Goldstein, J. (1993) ‘Psychiatry’, in W.F. Bynum and Roy Porter (eds.) Companion Encyclopedia of the History of Medicine. (pp.1350-1372) London: Routledge Golinski, J. (1998) Making Natural Knowledge. Cambridge: Cambridge University Press Gölz, S.I. and Olga V. Timofeyev (trans.), (1986) ‘Hypnotism and Medicine in 1888 Paris: Contemporary Observations by Sofia Kovalevskaya’, SubStance 79: 3-21 Greenberg, V.D. (1997) Freud and His Aphasia Book. Ithaca: Cornell University Press Guillain, G. (1959) J-M Charcot: 1825-1893, His Life-His Work. New York: Paul B. Hoeber Hacking, I. (1983) Representing and Intervening. Cambridge: Cambridge University Press Hacking, I. (1988) ‘Telepathy: Origins of Randomization in Experimental Design’, Isis 79: 427-451 Hacking, I. (1998) The Mad Travelers: Reflections on the Reality of Transient Mental Illnesses. Charcottesville and London: University Press of Virginia Hacking, I. (1999) Social Construction of What? Cambridge: Cambridge University Press Hale, A.S. and N.R.Pinninti (1994) ‘Exorcism-resistant ghost possession treated with clopenthixol.’, British Journal of Psychiatry 165:386-388 Harrington, A. (1989) Medicine, Mind, and the Double Brain: a Study in Nineteenth-Century Thought. Princeton: Princeton University Press Harris, R. (1985) ‘Murder under Hypnosis’, Psychological Medicine 15: 477-505 Harris, R. (1989) Murder and Madness: Medicine, Law, and Society in the Fin de Siècle. Oxford: Clarendon Press Harris, R. (1999) Lourdes: Body and Spirit in the Secular Age. New York: Viking, 1999 Henderson, D.K. and R.D.Gillespie,R.D, (1946) A Textbook of Psychiatry for Students and Practitioners. London: Oxford University Press Irwin, A. and Brian Wynne (1996) Misunderstanding Science?: The Public Reconstruction of Science and Technology. Cambridge: Cambridge University Press Janet, P. (1914-15) ‘Psychoanalysis’, The Journal of Abnormal Psychology 9: 1-35, 153-187 Janet, P. (1920) The Major Symptoms of Hysteria. New York: MacMillan Janet, P. (1930) ‘Autobiography’ in C. Murchison (ed.) A History of Psychology in Autobiography (pp.123-133) Worcester: Clark University Press Janet, P. (1976[1925 ]) Psychological Healing: A Historical and Clinical Study. New York: Arno Press Janet, P. (1998[1894 ]) The Mental State of Hystericals. London and Tokyo: Thoemmes and Maruzen Janet, P. (1998[1901 ]) The Mental State of Hystericals, Bristol: Thoemmes Jones, E. (1957) The Life and Work of Sigmund Freud. New York: Basic Books Jung, C.G. (1983[1902 ]) ‘On the Psychology and Pathology of So-called Occult Phenomena’, in Psychiatric Studies (pp. 3-88) Princeton: Princeton University Press Kaplan, H. and Benjamin Sadock, (1998) Synopsis of Psychiatry. Baltimore: Williams and Wilkins Kiell, N. (ed), (1988) Freud Without Hindsight: Review of His Work. Madison: International Universities Press King, H. (1993) ‘Once upon a Time: Hysteria from Hippocrates’, in S. L. Gilman et al (co-authored) Hysteria Beyond Freud (pp. 3-90) Berkeley and Los Angeles: University of California Press King, H. (1998) Hippocrates’ Women: Reading the Female Body in Ancient Greece. London: Routledge Krohn, A. (1978) Hysteria: the Elusive Neurosis, New York: International University Press. Kuriyama, S. (1997) ’The Historical Origin of Katakori’, Japan Review 9: 127-49。 Kuriyama, S. (1999) The Expressiveness of the Body and the Divergence of Greek and Chinese Medicine. New York: Zone Books Kusch, M. (2002) ’Metaphysical déjà vu: Hacking and Latour on Science Studies and Metaphysics’, Studies in History and Philosophy of Science 33: 639-647 Lanczik, M. and G.Keil (1991) ‘Carl Wernicke’s Localization Theory and Its Significance for the Development of Scientific Psychaitry’, History of Psychiatry 2: 171-180 Laplanche, J. (1989) The New Foundation of Psychoanalysis. Oxford: Basil Blackwell Latour, B. (1988) The Pasteurization of France. Cambridge: Harvard University Press Latour, B. (1999) ‘For David Bloor…and Beyond’, Studies for History and Philosophy of Science 30: 113-129 Latour, B. (1999) Pandora’s Hope. Cambridge: Harvard University Press Latour, B. (2000) ‘On the Partial Existence of Existing and Nonexisting Objects’, in L. Daston (ed.), Biographies of Scientific Objects (pp.247-269), Chicago: University of Chicago Press Latour, B. and Steven Woolgar, (1986) Laboratory Life: The Construction of Scientific Facts. Princeton: Princeton University Press Lei, S. H-L. (1999) ‘FromChangshan to a New Anti-Malarial Drug: Re-Networking Chinese Drugs and Excluding Chinese Doctors’, Social Studies of Science 29: 323-58 Lerner, P. (2003) Hysterical Men: War, Psychiatry, and the Politics of Trauma in Germany, 1890-1930. Ithaca and London: Cornell University Press Libbrecht, K. (1995) Hysterical Psychosis: A Historical Survey. New Brunswick and London: Transaction Publishers Libbrecht, K. and Quackelbeen, J. (1995) ‘On the Early History of Male Hysteria and Psychic Trauma: Charcot’s Influence on Freudian Thought’, Journal of the History of the Behavioral Sciences 31: 370-384 Lock, M. (1993) Encounters with Aging: Mythologies of Menopause in Japan and North America. Berkeley: University of California Press Lodge, O.J. (1911) The Survival of Man: A Study in Unrecognized Human Faculty. London: Methuen & Co. Loudon, I. (ed.), (1997) Western Medicine: An Illustrated History. Oxford: Oxford University Press Luhrmann, T.M. (2001) Of Two Minds: The Growing Disorder in American Psychiatry. New York: Alfred A. Knopf MacDonald, M. (ed.), (1991) Witchcraft and hysteria in Elizabethan London: Edward Jordan and the Mary Glover case. London: Routledge Mark, O.M. (1990) ‘German Romantic Psychiatry, Part 1’, History of Psychiatry 1: 351-381 Mark, O.M. (1991) ‘German Romantic Psychiatry, Part 2’, History of Psychiatry 2: 1-25 Marshall, J.C. et al, (2001) ‘A Calming Introduction to Hysteria’, in Peter W. Halligan et al (ed.) Contemporary Approaches to the Study of Hysteria. (pp. xi-xiv) London: Oxford University Press Masson, J.M. (trans. and ed.), (1985) The Complete Letters of Sigmund Freud to Wilheim Fliess: 1887-1904. Cambridge and London: Belknap Press Maulitz, R.C. (1987) Morbid Appearance: The Anatomy of Pathology in the Early Nineteenth Century. Cambridge: Cambridge University Press McGuire, W. (ed.), Manheim R. and Hull, R.F.C. (trans.), (1988) The Freud/Jung Letters. Cambridge: Harvard University Press Megill, A. (1994) ‘Four Senses of Objectivity’, in Rethinking Objectivity (pp.1-20), Durham: Duke University Press Micale, M.S. (1985) ‘The Salpêtrière in the Age of Charcot: An Institutional Perspective on Medical History in the Late Nineteenth Century’, Journal of Contemporary History 20: 703-31 Micale, M.S. (1987) Diagnostic Discriminations: Jean-Martin Charcot and the Nineteenth-century Idea of Masculine Hysterical Neurosis, PhD Dissertation, Yale University (UMI Order No. 8729120) Micale, M.S. (1990) ‘ Charcot and the Idea of Hysteria in the Male: Gender, Mental Science, and Medical Diagnosis in the Late Nineteenth-Century France’, Medical History 34: 363-411 Micale, M.S. (1993) ‘On the “ Disappearance” of Hysteria: A Study in the Clinical Deconstruction of a Diagnosis’, Isis 84: 496-526 Micale, M.S. (1995) Approaching Hysteria: Disease and Its Interpretations. Princeton: Princeton University Press Micale, M.S. (1995) Approaching Hysteria: Disease and Its Interpretations. Princeton: Princeton University Press Minois, G. (1999) History of Suicide: Voluntary Death in Western Culture. Baltimore: The Johns Hopkins University Press Morris, D.B. (1991) The Culture of Pain. Berkeley, Los Angeles, and Oxford: University of California Press Moscovici, S. (1976) La psychanalyse: son image et son public. Paris: Presses Universitaires de France Noakes, R. (2000) “’Instrument to Lay Hold of Spirits’; Technologizing the Bodies of Victorian Spiritualism”, in I. R. Morus (ed.) Body/Machine (pp. 125-163). Oxford and New York: Berg Press Noonan, M.H. (1977) Science and the Psychical Research Movement , PhD Dissertation, University of Pennsylvania Nye, R. (2003) ‘The Evolution of the Concept of Medicalization in the Late Twentieth Century’, Journal of History of the Behavioral Sciences, 39(2): 115-129 Oppenheim, J. (1985) The Other World: Spiritualism and Psychical Research in England, 1850-1914. Cambridge: Cambridge University Press Owen, A.R.G. (1971) Hysteria, Hypnosis, and Healing: The Work of J.M. Charcot. London: Dennis Dobson Paskauskas, A. (ed.) (1995) The Complete Correspondence of Sigmund Freud and Ernest Jones, 1908-1939. Cambridge: Belknap Press of Harvard University Press Pauly, P.J. (1983) ‘The Political Structure of the Brain: Cerebral Localization in Bismarckian Germany’, International Journal of Neuroscience 21: 145-150 Perceval , J. (1961) Perceval’s Narrative: A Patient’s Account of His Psychosis, 1830-1832. Gregory Bateson (ed.), Stanford: Stanford University Press Pickering, A. (1994) ‘Objectivity and the Mangle of Practice’, in A. Megill (ed.), Rethinking Objectivity (pp.109-126). Durham: Duke University Press Pickering, A. (ed.), (1992) Science as Practice and Culture. Chicago: University of Chicago Press Pinero, L. (1983) Historical Origins of the Concept of Neurosis, German Berrios (trans.), Cambridge: Cambridge University Press Plas, R. (1998) ‘Hysteria, Hypnosis, and Moral Sense in French 19th-Century Forensic Psychiatry: The Eyruad-Bompard Case’, International Journal of Law and Psychiatry 21: 397-407 Plato (2000) Timaeus, 91C, in Francis Cornfold(ed. and trans.) Plato’s Cosmology: the Timaeus of Plato. London: Routledge Podmore, F. (2000[1902 ]) Modern Spiritualism: A History and a Criticism. London: Routledge Porter, R. (1985) ’The Patient’s View: Doing Medical History from Below’, Theory and Society 14: 167-174 Porter, R. (1989) A Social History of Madness. New York: E.P.Putton Porter, R. (1993) ‘The Body and the Mind, the Doctor and the Patient: Negotiating Hysteria’, in S.L. Gilman et al (co-authored) Hysteria Beyond Freud (pp.225-285). Berkeley and Los Angeles: University of California Press Porter, R. (2003) Madness: A Brief History. Oxford: Oxford University Press Prévost, C.M. (1973) La Psycho-philosophie de Pierre Janet. Paris: Payot Richardson, R. (1987) Death, Dissection and the Destitute. Chicago and London: University of Chicago Press Richet, C. (1975) Thirty Years of Psychical Research. New York: Arno Press Rose,N. (1985) The Psychological Complex: Psychology, Politics and Society in England, 1869-1939. London: Routledge & Kegan Paul Rosenbaum, M. and Melvin Muroff (eds.) (1984) Anna O.: Fourteen Contemporary Reinterpretations. New York: The Free Press Roth, M. (1996) ‘Hysterical Remembering‘, Modernism/Modernity 3: 1-30。 Sadoff, D.F. (1998) Sciences of the Flesh: Representing Body and Subject in Psychoanalysis. Stanford: Stanford University Press Schreber, D.P. (1988) Memoirs of My Nervous Illness.Ida Macalpine and Richard A Hunter (eds. and trans.) Cambridge: Harvard University Press Schwarz, V.R. (1998) Spectacular Realities: Early Mass Culture in Fin-de-siècle Paris. Berkeley and Los Angeles: University of California Press Scull, A. (1996) Masters of Bedlem: the Transformation of the Mad-doctoring Trade. Princeton: Princeton University Press, 1996 Seymonds, C. (1979) ‘Hysteria’, in H. Mersky, The Analysis of Hysteria, Appendix C (pp. 258-265). Toronto: Baillière Tindall Shamdasani, Sonu (1994) ‘Encountering Hélène: Théodore Flournoy and the Genesis of Subliminal Psychology’, in T. Flournoy, From India to the Planet Mars. (pp. xi-li). Princeton: Princeton University Press Shamdasani, Sonu (2000) ’Psychoanalytic Body’, in R. Cooter and J. Pickstone (eds.), Medicine in the Twentieth Century. (pp. 307-322) Amsterdam: Harwood Academic Publishers Shamdasani, Sonu (2001) ‘Claire, Lise, Jean, Nadia, and Gisèle: Preliminary Notes towards a Characterization of Pierre Janet’s Psychasthenia’, in M. Gijswijt-Hofstra and R. Porter (ed.) Cultures of Neurasthenia: From Beard to the First World War (pp.363-386) Amsterdam and New York: Rodopi Shamdasani, Sonu (2003) Jung and the Making of Modern Psychology: The Dream of a Science. Cambridge: Cambridge University Press Sierra, M. and German E. Berrios (1999) ‘Towards a Neuropsychiatry of Conversion Hysteria’, Cognitive Neuropsychiatry 4: 267-287 Slater, E.T.O. (1965) ‘A Follow-up of Patients Diagnosed as Suffering from “Hysteria”’, Journal of Psychosomatic Research 9: 9-14 Slavney, P.R. (1990) Perspectives on “Hysteria”, Baltimore: The Johns Hopkins University Press. Star, S.L. and Griesemer, J.R. (1989) ‘Institutional Ecology, “Translations” and Boundary Objects: Amateurs and Professionals in Berkeley’s Museum of Vertebrate Zoology, 1907-39’, Social Studies of Science 19:387-420 Stephenson, B. (2001) ‘Charcot’s theater of hysteria’, Journal of Ritual Studies 15: 27-37 Strauss, A. (1991) ’A Social World Perspective’, in Creating Sociological Awareness: Collective Images and Symbolic Representations (pp.233-243), New Brunswick and London: Transaction Publishers Swales, P.J. (1986) ‘Freud, His Teacher, and the Birth of Psychoanalysis’, in P.E. Stepansky (ed.), Freud, Appraisals and Reappraisals (pp.3-82), Hillsdale: The Analytic Press Szasz, T. (1974) The Myth of Mental Illness. New York: Harper Colophon Books Temkin, O. (1971) The Falling Sickness: A History of Epilepsy from the Greeks to the Beginnings of Modern Neurology. Baltimore: The Johns Hopkins University Press Thurschwell, P. (2001) Literature, Technology and Magical Thinking, 1880-1920. Cambridge: Cambridge University Press Trimble, M.R. (1981) Post-traumatic Neurosis: From Railway Spine to the Whiplash. Chichester, New York, Toronto: John Wiley & Sons Tuke, D.H. (ed.), (1976[1892 ]) A Dictionary of Psychological Medicine. York: Arno Press Vandermeersch, P. (1991) ‘The Victory of Psychiatry over Demonology: the Origin of the Nineteenth-century Myth’, History of Psychiatry 2: 351-363 Veith, I. (1965) Hysteria: The History of a Disease. Chicago and London: University of Chicago Press Wang, W-J. (2001) A Genealogy for the Psychoanalyst: Bildung, Experiment, and the Training of the Psychoanalyst, PhD Dissertation, University of Cambridge World Health Organization (1992) The ICD-10 Classification of Mental and Behavioral Disorders: Clinical Descriptions and Diagnostic Guidelines. Geneva: WHO 中文部分 Furth, C.(費俠莉)<再現與感知--身體史研究的兩種取向>,<<中國科學史通訊>>18/19 (1999):9-24。 王文基,<發現無意識導讀>,<<發現無意識,第一冊>>(台北:遠流出版有限公司,2004):1-16。 中央研究院社會學研究所, <<論命、靈、科學:宗教、靈異、科學與社會研討會>>論文集(台北市:中央研究院,1997) 劉絮愷譯,Michel Foucault著 <<臨床醫學的誕生>>,(台北市:時報文化,1994) 嚴韻譯,Anne Llewellyn Barstow著,<<獵•殺•女巫--以女性觀點重現的歐洲女巫史>>(台北市:女書文化出版,1999)id NH0920493002 sid 904411 cfn 0 / id NH0920593001 auc 陳榮祥 tic 利用電廠嚴重事故分析軟體MAAP4.0.4.對PCTran ABWR程式的驗證 adc 李敏 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 209 kwc 電廠嚴重事故 kwc MAAP4.0.4 kwc PCTran ABWR kwc 電廠全黑事故 kwc 冷卻水流失事故 kwc 預見暫態未急停 abc 摘 要 tc 目錄 摘要 目錄 表目錄 圖目錄 第一章 前言 1.1 前言 1.2 龍門電廠簡介 1.3 MAAP程式介紹 1.4 PCTran ABWR程式介紹 1.5 核電廠嚴重事故現象 1.5.1 電廠全黑事故SBO(Station Blackout) 1.5.2. 冷卻水流失事故LOCA(Lose of Coolant System) 1.5.3 預見暫態未急停事故ATWS(Anticipated Transient Without Scram) 第二章 電廠全黑事故模擬 2.1 前言 2.2 SBRC事故序列模擬 2.2.1 背景 2.2.2 龍門電廠SBRC事故MAAP4.04模擬結果 2.2.3 龍門電廠SBRC事故PCTran ABWR模擬結果 2.2.4 MAAP4.04與PCTran ABWR結果分析比較 2.3 LCHP事故序列模擬 2.3.1 背景 2.3.2 龍門電廠LCHP事故MAAP4.04模擬結果 2.3.3 龍門電廠LCHP事故PCTran ABWR模擬結果 2.3.4 MAAP4.04與PCTran ABWR結果分析比較 2.4 LCLP事故序列模擬 2.4.1 背景 2.4.2 龍門電廠LCLP事故MAAP4.04模擬結果 2.4.3 龍門電廠LCLP事故PCTran ABWR模擬結果 2.4.4 MAAP4.04與PCTran ABWR結果分析比較 2.5 MAAP4.0.4與PCTran ABWR模擬結果在電廠全黑事故中之分析比較 第三章 冷卻水流失事故模擬 3.1 前言 3.2 大破口冷卻水流失事故序列模擬 3.2.1 背景 3.2.2 龍門電廠大破口冷卻水流失事故MAAP4.04模擬結果 3.2.3 龍門電廠大破口冷卻水流失事故PCTran ABWR模擬結果 3.2.4 MAAP4.04與PCTran ABWR大破口冷卻水流失事故結果分析比較 3.3 中破口冷卻水流失事故序列模擬 3.3.1 背景 3.3.2 龍門電廠中破口冷卻水流失事故MAAP4.04模擬結果 3.3.3 龍門電廠中破口冷卻水流失事故PCTran ABWR模擬結果 3.3.4 MAAP4.04與PCTran ABWR中破口冷卻水流失事故結果分析比較 3.3 小破口冷卻水流失事故序列模擬 3.3.1 背景 3.3.2 龍門電廠小破口冷卻水流失事故MAAP4.04模擬結果 3.3.3 龍門電廠小破口冷卻水流失事故PCTran ABWR模擬結果 3.3.4 MAAP4.04與PCTran小破口冷卻水流失事故結果分析比較 3.5 MAAP4.0.4與PCTran ABWR模擬結果在冷卻水流失事故中之分析比較 第四章 電廠預見暫態未急停事故模擬 4.1 前言 4.2 預見暫態未急停事故(ATWS) 4.3 龍門電廠ATWS事故MAAP4.0.4模擬 4.3.1 案例分析一 4.3.2 MAAP4.04案例分析與比較 4.4 PCTran ABWR模擬ATWS事故 4.4.1 案例分析一 4.4.2 PCTran ABWR案例分析與比較 4.5 MAAP4.0.4與PCTran ABWR模擬結果在預見暫態未急停事故中之比較 第五章 結論 參考文獻 附錄 原始程式修正rf 參考文獻 1.陳建智、李敏,”利用MAAP4.04程式評估龍門電廠嚴重事故下圍組體現象及抑緩措施功能”,國立清華大學工程與系統科學研究所,1999。 2.陳玉柱、施純寬,”核電廠事故分析程式PCTran之引進與應用”,國立清華大學工程與系統科學研究所,1999。 3.李敏,”核電廠安全度評估方法之理論應用”,台灣電力公司核能安全處,1996 4. PCTRAN ABWR Manual Personal Computer Transient Analyzer,Micro-Simulation Technology,2001 5.范治九,”進步型沸水式反應器核電廠簡介”,美國奇異公司核能部,1996 6. R. E. Henry、C. Y. Paik、M. G. Plys,”MAAP4.0.4-Modular Accident Analysis Program for LWR Power Plant”,1994 7.”Preliminacy Safety Analysis Report of Lungman Nuclear Power Plant”,Taiwan Power Company,1999id NH0920593001 sid 903159 cfn 0 / id NH0920593002 auc 范光運 tic 利用電廠嚴重事故分析軟體MAAP4.0.4對PCTran KuoSheng程式的驗證 adc 李敏 教授 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg - kwc 國聖電廠 kwc 核二廠 abc 本論文的工作內容為利用MAAP4.0.4 程式針對國聖電廠的沸水式反應器及圍阻體驗證PCTran KuoSheng程式模擬電廠事故的能力。研究中將分析三種類型的嚴重事故,包括電廠全黑事故(Station Blackout)、冷卻水流失事故(Loss of Coolant Accident,LOCA),以及預見暫態未急停(Anticipated Transient Without Scram,ATWS)。驗證的重點為比對兩個程式所預測之系統熱水流反應上的差異,再依據MAAP4.0.4的結果,修正PCTran KuoSheng輸入數據或程式邏輯與控制邏輯,以增加PCTran KuoSheng程式的正確性。 tc 目錄 摘要--------------------------------------------------------Ⅰ 目錄--------------------------------------------------------Ⅱ 圖目錄------------------------------------------------------Ⅴ 表目錄------------------------------------------------------Ⅹ 第一章 序論-------------------------------------------------1-1 1.1 研究動機------------------------------------------------1-1 1.2 國聖電廠簡介--------------------------------------------1-2 1.3 PCTran程式介紹----------------------------------------- 1-3 1.4 MAAP 4.0.4程式介紹--------------------------------------1-4 第二章 核電廠嚴重事故現象介紹-------------------------------2-1 2.1 反應器壓力槽內的現象-------------------------------------2-1 2.1.1 冷卻水系統及圍阻體的反應---------------------------2-1 2.1.2 壓力槽內分裂產物的釋放-----------------------------2-2 2.2 壓力槽破裂後圍阻體內的現象-------------------------------2-3 2.2.1 熔融爐心與混凝土間的作用---------------------------2-3 2.2.2 壓力槽外放射性物質的釋放---------------------------2-4 第三章 電廠全黑事故模擬-------------------------------------3-1 3.1 前言-----------------------------------------------------3-1 3.2 國聖電廠電廠全黑事故模擬 (案例一)------------------------3-1 3.2.1 背景------------------------------------------------3-1 3.2.2 國聖電廠電廠全黑事故MAPP4.0.4模擬結果 (案例一)------3-2 3.2.3 國聖電廠全黑事故PCTran KuoSheng模擬結果 (案例一)----3-3 3.2.4 MAAP 4.0.4與PCTran KuoSheng 結果比較分析 (案例一)---3-4 3.3 國聖電廠電廠全黑事故模擬 (案例二)-----------------------3-20 3.3.1 背景-----------------------------------------------3-20 3.3.2 國聖電廠電廠全黑事故MAAP 4.0.4g模擬結果 (案例二)---3-20 3.3.3 國聖電廠電廠全黑事故PCTran KuoSheng模擬結果 (案例二)---------------------------------------------------------------3-22 3.3.4 MAAP 4.0.4與PCTran KuoSheng 結果比較分析 (案例二)--3-23 3.4 國聖電廠電廠全黑事故模擬結論----------------------------3-39 第四章 電廠冷卻水流失事故模擬-------------------------------4-1 4.1 前言-----------------------------------------------------4-1 4.2 大破口冷卻水流失事故模擬 (案例一)------------------------4-1 4.2.1 背景------------------------------------------------4-1 4.2.2 國聖電廠大破口冷卻水流失事故MAAP 4.0.4模擬結果 (案例 一)-------------------------------------------------4-2 4.2.3 國聖電廠大破口冷卻水流失事故PCTran KuoSheng模擬結果 (案例一)---------------------------------------------4-3 4.2.4 MAAP 4.0.4與PCTran KuoSheng 結果比較分析 (案例一)---4-4 4.3 大破口冷卻水流失事故模擬 (案例二)-----------------------4-19 4.3.1 背景-----------------------------------------------4-19 4.3.2 國聖電廠大破口冷卻水流失事故MAAP 4.0.4模擬結果 (案例 二)------------------------------------------------4-19 4.3.3 國聖電廠大破口冷卻水流失事故PCTran KuoSheng模擬結果 (案例二)-------------------------------------------4-20 4.3.4 MAAP 4.0.4與PCTran KuoSheng 結果比較分析 (案例二)--4-21 4.4 中破口冷卻水流失事故模擬 (案例一)-----------------------4-36 4.4.1 背景-----------------------------------------------4-36 4.4.2 國聖電廠中破口冷卻水流失事故MAAP 4.0.4模擬結果 (案例 一)------------------------------------------------4-36 4.4.3 國聖電廠中破口冷卻水流失事故PCTran KuoSheng模擬結果 (案例一)------------------------------------------4-38 4.4.4 MAAP 4.0.4與PCTran KuoSheng 結果比較分析 (案例一)--4-38 4.5 中破口冷卻水流失事故模擬 (案例二)-----------------------4-54 4.5.1 背景-----------------------------------------------4-54 4.5.2 國聖電廠中破口冷卻水流失事故MAAP 4.0.4模擬結果(案例 二)------------------------------------------------4-54 4.5.3 國聖電廠中破口冷卻水流失事故PCTran KuoSheng模擬結果 (案例二)-------------------------------------------4-56 4.5.4 MAAP 4.0.4與PCTran KuoSheng 結果比較分析 (案例二)--4-57 4.6 再循環管中破口冷卻水流失事故模擬------------------------4-74 4.6.1 背景-----------------------------------------------4-74 4.6.2 國聖電廠再循環管中破口冷卻水流失事故MAAP 4.0.4模擬結 果-------------------------------------------------4-74 4.6.3 國聖電廠再循環管中破口冷卻水流失事故PCTran KuoSheng 模擬結---------------------------------------------4-76 4.6.4 MAAP 4.0.4與PCTran KuoSheng 結果比較分析-----------4-76 4.7 小破口冷卻水流失事故模擬--------------------------------4-91 4.7.1 背景-----------------------------------------------4-91 4.7.2 國聖電廠小破口冷卻水流失事故MAAP 4.0.4模擬結果-----4-91 4.7.3 國聖電廠小破口冷卻水流失事故PCTran KuoSheng模擬結果4-93 4.7.4 MAAP 4.0.4與PCTran KuoSheng 結果比較分析-----------4-94 4.8 國聖電廠電廠冷卻水流失事故模擬結論---------------------4-110 第五章 電廠預見暫態未急停事故模擬---------------------------5-1 5.1 前言-----------------------------------------------------5-1 5.2 國聖電廠 ATWS事故MAAP4.0.4模擬---------------------------5-2 5.2.1國聖電廠 ATWS事故MAAP4.0.4模擬結果-------------------5-2 5.2.2國聖電廠 ATWS事故MAAP4.0.4結果比較分析---------------5-5 5.3國聖電廠 ATWS事故PCTran KuoSheng模擬---------------------5-24 5.3.1國聖電廠 ATWS事故PCTran KuoSheng模擬結果------------5-24 5.3.2國聖電廠 ATWS事故PCTran KuoSheng結果比較分析--------5-26 5.4 國聖電廠 ATWS事故PCTran KuoSheng 與MAAP4.0.4模擬結果比較5-42 5.5 國聖電廠電廠預見暫態未急停事故模擬結論------------------5-54 第六章 結論與未來展望---------------------------------------6-1 參考文獻 附錄 附錄一 PCTran KuoSheng程式邏輯修正      附錄二 PCTran KuoSheng程式參數修正rf 參考文獻 (1) 李敏,“核二廠MAAP4.0輸入模式參數計畫書”,國立清華大學工程與系統科學系,2000 (2) 陳玉柱,“核電廠事故分析程式PCTran KuoSheng之引進與應用”, 國立清華大學工程與系統科學系,1999 (3) “沸水式核能電廠訓練教材”,台灣電力公司,第二核能發電廠,1997 (4) 歐陽敏盛,“核能發電工程學”,國立清華大學工程與系統科學系,1997 (5) 陳健智,“利用MAAP4.0.4程式評估龍門電廠嚴重事故下圍阻體物理現象及抑緩措施功能”,國立清華大學工程與系統科學系,2001 (6) 李敏等,“核電廠安全度評估方法之理論與應用”,國立清華大學工程與系統科學系,1996 (7) 李敏等,“核二廠MAAP4.0程式嚴重事故案例分析”,國立清華大學工程與系統科學系,2000id NH0920593002 sid 903192 cfn 0 / id NH0920593003 auc 金尚志 tic 動態臨界電壓金氧半電晶體在不同矽基材上的電特性研究 adc 趙天生 adc 張廖貴術 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 82 kwc 動態臨界電壓金氧半電晶體 kwc (111)晶格方向 kwc 次臨界擺幅 abc 本論文中分別使用了三種不同基底組成的矽晶圓 : 包含(100)-矽晶圓、(111)-矽晶圓以及氫氣回火處理之矽晶圓,並用其來製做完成NMOSFET元件,另一部份則是針對可改變臨界電壓大小的動態操作方式來研究。 tc 摘要…………………………………………………………....I 誌謝……………………………………………….…………..Ⅱ 目錄……………………………………………………...……III 第一章 簡介…………………………………………………...1 1.1 前言……………………………………………………………….1 1.2 研究動機.…………………………………………………………2 1.3 DT-MOS(DynamicThreshold voltage MOSFET)的擇擇…............3 1.3.1 DT-MOS的介紹…………………………………….…………..4 1.3.2 DT-MOS的原理………………………………………………...6 1.4不同晶格方向(orientation)的選擇………………………………...8 1.5論文概要…….…………………………………………………....10 第二章 元件的製程與量測………………………………….17 2.1 N-MOSFET元件製程…………………………………………..17 2.1.1晶片刻號、第零層(Zero Mark)曝光顯影與Well的形成…18 2.1.2主動區(Active Region)的定義與場氧化層(LOCOS)的形成… …………………………………......................................................18 2.1.3介電層(Gate Dielectric)沈積與匣極的定義…………...……19 2.1.4閘、源、汲與基級的摻雜………….…………………………20 2.1.5接出金屬導線、開PAD與金屬燒結…………….………...22 2.2電性量測原理與方法….…………………………………......…..21 2.2.1電流電壓特性量測…………………………………………..21 2.2線性的互導Gm與臨界電壓Vt……………………………….21 第三章 不同晶格方向MOSFET在Normal和DT 操下 其的物理特性與電特性研究………………………….......29 3.1引言…………….……………………………………...................29 3.2製程相關物理性質的討論……………………………................30 3.2.1 HF Vapor的前處理(Pre-treatment)……..………………..30 3.2.2使用N2O氣體沈積氮化矽氧化層(Oxynitride)……..……...31 3.2.3不同Si晶格方向的物理特性研究……….............................34 3.2.4 Si基材使用Hydrogen annealing處理後的物理特性...….37 3.2.5不同的離子柨植源在不同晶格方向上的差異……….....….38 3.3量測結果與討論…………………….………………...…………38 3.3.1 DT對於Vt的調變能力……………………….….…………39 3.3.2 Id vs. Vd的特性……………………………….….…………40 3.3.3 Linear Gm的電特性………………..………………………………42 3.4 結論……………………………………………...........................46 第四章 尺寸、變溫效應對於Normal以DT-MOSFET 元件操作的電特性研究……………...…………………...55 4.1引言……………….………………………………………...........55 4.2量測結果與討論….……………………………………...............56 4.2.1尺寸效應與電性的關係……………………………..............56 4.2.2溫度效應與電性的關係……………………………..............58 4.2.3不同晶格方向的Junction電流差異……………..................59 4.3結論……………....………………………………………….........61 第五章 總結…………...…………………..............................78 參考文獻……………………………………………………...81rf [1 ] Yuan Taur, Tak H. Ning, Fundamentals of Modern VLSI Devices. Cambridge University, 1998. [2 ] Dieter, k. Schroder., Semiconductor Material And Device Characterization. Wiley-Interscience, 1998. [3 ] S. M. Sze, Physics of Semiconductor Devices. Central Book Company, 2nd, 1985. [4 ] Takasho Hori, Gate Dielectrics and Modern VLSIs. Springer Press, 1997. [5 ] BEN G. Streentman, Sanjay Banerjee, Solid State Electronic Devices. Prentice Hall15nd, 2000. [6 ] C. Y. Chang, S. M. Sze, VLSI Technology. McGraw-Hill, 1996. [7 ] S. O. Kasap, Principles of Electrical Engineering Materials and Devices. McGraw-Hill , 2000. [8 ] Jasprit Singh, Semiconductor Devices an Introduction. Mc Graw-Hill, 1994. [9 ] F. Assaderaghi, S. Parke, D. Sinitsky, J. Bokor, P. K. Ko, and Chenming Hu, ”A dynamic threshold voltage MOSFET (DTMOS) for very low voltage operation,” IEEE Electron Device Lett., vol.13, p.510, Dec. 1994. [10 ] Joong S. Jeon, Qi Xiang, Hyeon S. Kim, ”High Performance Ultra-Thin Silicon Nitride Gate Dielectrics Prepared by In-Situ RTCVD Techniques,” Conference on Advanced Thermal Processing of Semiconductors-RTP, pp.300~305, 2001. [11 ] M .Yoshimaru, N. Inoue, M. Itoh, H. Kurogi, H. Tamura, N. HirSITA, F. Ichikawa, M. Ino, ”High Quality Ultra-Thin Si3N4,” Film Selectively Deposited on Poly-Si Electrode By Lpcvd With In Situ HF Vapor Cleaning,” pp.271~274, IEEE, 1992. [12 ] Fariborz Assaderaghi, “DTMOS : Its Derivatives and Variations, and Their Potential Applications ,” The 12th International Conference on Microelectronics, Oct. 31 — NOV. 2, pp.9~10, 2000. [13 ] A. Szekers,E. Halova, S. Alexandrova, M. Modreanu, ”Investigation of Charged Deffects in LPCVD-SiOxNy Thin Films Deposited On (111) Si,” IEEE, pp.519~522, 2001. [14 ] M. Verbeck, C. Zimmermann, and H-L. Fiedler, “ A MOS Switched-Capacitor Ladder Filter in SIMOX Technology for High Temperature Applications up to 300C, ” IEEE J. Sol. St. Ckt, Vol.31, NO.7, pp.908~914, July 1996. [15 ] Hisayo Sasaki Momose, Senior Member, IEEE, Tatsuya. Ohguro, Shin-ichi Nakamura, Yoshiaki Toyoshima, Member, IEEE, Hidemi Ishiuchi, Member, IEEE, and Hiroshi Iwai, Fellow, IEEE ”Ultra Thin Gate Oxide CMOS on (111) Surface-Oriented Si Substrate,” Transactions on Electron Devices, VOL. 49, NO. 9, pp.1597~1605, SEPTEMBER 2002. [16 ] Koli Izunome, Hiroshi Shiral, Kazuhiko Kashima, Jun Yoshikawa, Akimichi Hojo, ”Oxygen Precipitation in Czoxhrlski-grown silicon wafers during hydrogen annealing,” Appl. Phys. Lett. 68 (1), pp.49~52, 1 January 1996. [17 ] T. Iwamatsu, Y. Yamaguchi, Y. Inoue, T. Nishimura, N. Tsubouchi, “CAD-compatible high-speed CMOS/SIMOX gate array using field-shield isolation,” IEEE Trans. Elec., Vol.42, No.11, pp.1934~1939, Nov. 1995. [18 ] H. S. Momose, T. Ohguro, ”Study of Wafer Orientation Dependence on Performance and Reliability of CMOS with direct-tunneling gate oxide,” IEEE, Symposium on VLSI Technology Digest of Technical Papers, pp.77~78, 2001. [19 ] Tokeo Hattori, Hiroshi Nohira, Kensuke Takahashi ”The initial growth steps of ultrathin gate oxides,” Elsevier Science, pp.17~24, 1999. [20 ] FM Schuurmans, A. Schonecker, J. A. Eikelboom and W.C. Sinke ,Netherlands Energy Research Foundation ECN, P. O. Box 1, 1755 ZG Petten, ”Crystal-Orientation dependence of surface recombination velocity for silicon nitride passivated silicon wafers,” IEEE, pp.485~488, 1996. [21 ] Makoto Takamiya, Toshiro Hiramoto, “High Drive-Current Electrically Induced Body Dynamic Threshold SOI MOSFET(EIB-DTMOS) with Large Body Effect and Low Threshold Voltage,” IEEE Transactions on Electron Devices Vol 48, No. 8 , pp.1633~1640, Aug. 2001. [22 ] Wen-Cheng Lo, Sun-Jay Chang, Chun-Yen Chang, Fellow, IEEE, Tien-Sheng Chao, Senior Member, ”Imapacts of Gate Structure on Dynamic Threshold SOI nMOSFETs,” IEEE, Electron Device letters VOL. 23, NO. 8, pp.497~499, Aug. 2002. [23 ] Vladimir F.Drobny, Jade Rubalcava, “Doping Characteristics of BF+2 Implants in (100) and (111) Silicon,” IEEE Transactions on Electron Devices Vol 48, No. 8, pp.1661~1666, Aug. 2001.id NH0920593003 sid 893158 cfn 0 / id NH0920593004 auc 余文皓 tic 基於快速峰度最大化演算法於多載波-分碼多重擷取系統之盲蔽多用戶偵測 adc 董傳義 adc 祁忠勇 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 39 kwc 多用戶偵測 kwc 多載波-分碼多重擷取系統 kwc 盲蔽 kwc 快速峰度最大化演算法 abc  廣為人知的分碼多重擷取系統能有效率地使用頻寬、正交分頻多工系統能避免符際干擾。而多載波-分碼多重擷取系統由於兼具分碼多重擷取系統以及正交分頻多工系統之優點,因此能提供較高的傳輸速率以滿足未來之通訊需求而成為第四代行動通訊系統熱門的選擇之一。為了解決系統中的多重擷取干擾以及各子通道中不同程度的平坦衰減而且不需訓練程序,本論文利用祁忠勇博士等人所提出的快速峰度最大化演算法對多載波-分碼多重擷取系統提出一種盲蔽多用戶偵測演算法。經由連續地多級分離程序,在每級的萃取過程中使用快速峰度最大化演算法抽取一位用戶的訊號,所有用戶的訊號可有效率地被抽取出來。接著展示在“不同程度的近遠效應”、“不同長度的量測訊號”、“不同的子載波數”以及“不同的用戶數”等條件下以本論文提出之盲蔽多用戶偵測演算法的模擬結果,以驗證其效能。最後,對本論文之研究做些結論。 tc 中文摘要 I 英文摘要 II 誌謝 III 中英詞彙對照表 IV 目錄 IX 第一章 簡介 1 第二章 多載波-分碼多重擷取系統架構 4 2-1 傳送端架構 5 2-2 通道模型 7 2-3 接收端架構 8 第三章 基於快速峰度最大化演算法於多載波-分碼 多重擷取系統之盲蔽多用戶偵測 12 3-1 快速峰度最大化演算法 12 3-2 基於快速峰度演算法於多載波-分碼 多重擷取系統之盲蔽多用戶偵測 15 第四章 模擬結果 21 第五章 結論 29 附錄一 Li 和 Roy對多載波-分碼多重擷取系統 提出的子空間盲蔽多用戶偵測技術 31 附錄二 訊號干擾雜訊比的推導 36 參考文獻 38rf [1 ] V. M. Dasilva and E. S. Sousa, “Performance of orthogonal CDMA code for quasi-synchronous communication systems,” Proc. of IEEE ICUPC’93, Ottawa, Canada, Oct. 1993, pp.995-999. [2 ] L. Vandendorpe, “Multitone direct sequence CDMA system in an Indoor wireless environment,” Proc. of IEEE First Symposium of Communications and Vehicular Technology in the Benelux, Delft, The Netherlands, Oct. 1993, pp. 411-418. [3 ] N. Yee, J-P. Linnartz and G. Fettweis, “Multicarrier CDMA in indoor wireless radio network, ”Proc. of IEEE PIMRC ’93, , Japan, Set. 1993, pp. 109-113, Yokohama. [4 ] K. Fazel and L. Papke, “On the performance of convolutionally coded CDMA/OFDM for mobile communication system,” Proc. of IEEE PIMRC ’93, Yokohama, Japan, Set. 1993, pp. 468-472. [5 ] S. Hara and S. Tsumura, “Design and performance of quasi-synchronous multi-carrier CDMA system,” Veh. Tech. Conf. vol. 2, Fall 2001, pp. 843-847. [6 ] S. Hara and R. Prasad, “Overview of multi-carrier CDMA,” IEEE Commun. Mag.,Vol. 35, No. 12, pp. 126-133, Dec. 1997. [7 ] J. Miguez and L. Castedo, “Blind multiuser interference cancellation in multi carrier CDMA: a linearly constrained constant modulus approach,” IEEE Personal, Indoor and Mobile Radio Communications, vol. 2, Sept. 1998, pp. 523-527. [8 ] D. Darsena, G. Gelli, L. Paura and F. Verde, “Blind multiuser detection for MC-CDMA systems,” IEEE Signals, Systems and Computers Conference, Vol. 2, Nov.2002, pp. 1419-1423. [9 ] J. Namgoong, T.F. Wong and J.S. Lehnert, “Subspace MMSE receiver for multi-carrier CDMA,” IEEE WCNC-1999, vol. 1, Sept. 1999, pp. 90-94. [10 ] C. Li and S. Roy, “Subspace based detection in MC-CDMA over dispersive channel,” Proc. ICPWC ‘2000, Hyderabad, India, Dec. 2000, pp. 98-102. [11 ] W. Xiaojun, Y. Qinye and Z. Jianguo, ” Subspace-based estimation method of uplink FIR channel in MC-CDMA system without cyclic prefix over frequency- selective fading channel,” IEEE ISCAS-2002, vol. 1, May 2002, pp.213-216. [12 ] Z. Ding and T. Nguyen, “Stationary points of a kurtosis maximization algorithm for blind signal separation and antenna beamforming,” IEEE Trans Signal Processing, vol. 48, no. 6, pp. 1587-1596, June 2000. [13 ] C. -Y. Chi and C.-Y. Chen, “Blind beamforming and maximum ratio combining by kurtosis maximization for source separation in multipath,” Proc. Thrid IEEE Workshop on Signal Processing Advances in Wireless Communication, Taoyuan, Taiwan, pp. 243-246, 2001. [14 ] T.S. Rappaport, Wireless Communications: Principles and Practice, New Jersey: Prentice Hall, 1996. [15 ] C.-Y. Chi, C.-H. Chen, and C.-Y. Chen, ``Blind MAI and ISI suppression for DS/CDMA systems using HOS based inverse filter criteria,'' IEEE Trans. Signal Processing, vol. 50, no. 6, pp.1368-1381, June 2002. [16 ] K. L. Yeung and S. F. Yau, “A cumulant-based super-exponential algorithm for blind deconvolution of multi-input multi-output systems,” Signal Process., vol. 67, no. 2, pp. 141-162, 1998. [17 ] Y. Inouye and K. Tanebe, “Super-exponential algorithms for multi-channel blind deconvolution,” IEEE Trans. Signal Processing, vol. 48, pp.881-888, Mar. 2000. [18 ] C.-Y. Chi and C. -H. Chen, “Cumulant-Based Inverse Filter Criteria for MIMO Blind Deconvolution: Properties, Algorithms, and Application to DS/CDMA Systems in Multipath,” IEEE Trans. Signal Processing, vol. 49, no. 7, pp. 1282-1299, July 2001.id NH0920593004 sid 903182 cfn 0 / id NH0920593005 auc 李志宏 tic 磊晶用藍寶石晶圓表面超拋光製程之研究 adc 李志浩 教授 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 81 kwc 化學機械拋光 kwc 表面微粗糙度 kwc 藍寶石晶圓 kwc 原子力顯微鏡 kwc X光反射率 abc 本實驗主要是研究藍寶石晶圓表面超拋光(superpolish)之製程與表面微粗糙度的變化。主要目的在於發展一個可供磊晶用之藍寶石晶圓基板,其表面之微粗糙度必須在0.2 nm以內,且表面原子亦需要是周期性的規則排列(即表面必須是單晶)。我們利用化學機械研磨(Chemical Mechanical Polishing, CMP)的技術,使用二氧化矽的奈米顆粒之懸浮液作為拋光液,並嘗試使用不同材質的拋光墊,藉由改變製程參數,以歸納出最佳化的製程條件,並且研究文獻中刻意提到的以錫盤當作拋光盤,是否具有特殊的拋光效果;以及二氧化矽拋光液對藍寶石表面原子的拋光機制。檢驗方面我們以輪廓儀(α-step)、原子力顯微鏡(AFM)、X光反射儀(X-ray reflectivity)等測定表面的微粗糙度,並且利用輪廓儀測量不同拋光材料對藍寶石表面原子的移除率,之後使用光學顯微鏡(OM)與能量散佈光譜儀(EDS)以觀察試片整體的品質與表面污染的情形,並於超高真空中(10-8 torr)加熱清除藍寶石表面污染物,以低能電子繞射儀(LEED)觀察到藍寶石晶圓表面原子為周期性的規則排列,再由AFM、X-ray reflectivity與LEED的結果以證實此基板適合當作磊晶基板。 tc 目 錄 誌謝...........................Ⅰ 中文摘要.........................Ⅱ 英文摘要.........................Ⅲ 第一章 緒論 .......................1 1.1 目的.........................1 1.2 背景.........................1 第二章 材料介紹與文獻回顧 ................8 2.1 材料介紹......................8 2.1.1 材料特性 ....................8 2.1.2 藍寶石單晶的製造方式 ..............9 2.2 文獻回顧......................12 2.3 超光滑表面加工方法簡介...............15 2.3.1 浴法拋光....................15 2.3.2 Teflon法拋光..................16 2.3.3 浮法拋光....................17 2.3.4 中性離子束拋光.................17 第三章 實驗原理與儀器介紹................18 3.1 化學機械拋光法...................18 3.2 儀器介紹......................21 3.2.1 低能電子繞射儀.................21 3.2.2 原子力顯微鏡..................23 3.2.3 表面形狀測量儀.................29 3.2.4 X光反射率...................31 3.2.5 研磨拋光機.....................32 第四章 實驗步驟與實驗量測................33 4.1 實驗材料......................33 4.1.1 實驗樣品....................33 4.1.2 研磨拋光材料..................34 4.2 實驗步驟......................35 4.2.1 實驗流程圖...................35 4.2.2 實驗參數....................35 4.3 拋光液介紹.....................36 4.4 粗糙度之定義....................38 4.5 移除率的量測....................40 4.6 電子轟擊加熱法...................41 第五章 結果與討論....................43 5.1 單晶檢測......................43 5.2 研磨過程......................45 5.3 Al2O3與SiO2膠液的拋光過程.............51 5.4 移除率的測量....................61 5.5 表面分析......................64 5.5.1 原子力顯微鏡..................64 5.5.2 X光反射率...................68 5.5.3 光學顯微鏡...................69 5.5.4 能量散佈光譜儀.................70 5.5.5 低能電子繞射儀.................72 5.6 結果討論......................75 5.7 結論........................79 參考文獻.........................80rf 參考文獻 1. Strategies, 工研院經資中心, 2001/3. 2. C.H.Lee, G.C.Chi, C.F.Lin, M.S.Feng, and J.D.Guo, Appl. Phys. Lett., 68(1996)3440. 3. C.Y.Yang, M.C.Wu, C.H.Lee, and G.C.Chi, J.Appl.Phys., 87 (2000)4240. 4. J.B.Bennet et al, Appl. Opt. 26(1987)696. 5. B.Hader and O.Weis, Surf. Sci. 220(1989)118. 6. O.Weis, Appl. Opt. 31(1992)4355. 7. J.Walsh and A.H.Herzog, US patent 3170273 (1965). 8. H.W.Gutsche and J.W.Moody, J. Electrochem. Soc.,125 (1978) 136. 9. E.Prochnow and D.F.Edwards, Appl. Opt., 25(1986)2639. 10. Namba and H. Tsuwa, in: Proc. 4th Intern. Conf. Production Eng.,Tokyo, 1980, p. 1017 11. J. V. Vingerden et al, Optical Engineering, 31 (5), 1086 (1992). 12. A. J. Leistner, J. M. Bennett, Applied Optics, 31(10),1472 (1992). 13. J. M. Bennett, Applied Optics, 26 (4), 696 (1987). 14. 高宏剛等,浮法拋光原理裝置及初步實驗, 光學機密工程, 3(1),57 (1995). 15. S. R. Wilson et al., Proc. SPIE, 966, 74 (1988). 16. L. N. Allen et al., Proc. SPIE, 1333, 22 (1990). 17. 黃啟祥,林江財,”氧化鋁”,陶瓷技術手冊(下),中華民國產業科技 發展協進會(1994) 18. 土肥俊郎等著, 王建榮, 林必窈, 林慶福等編譯, “半導體平坦化 CMP技術”, 全華(89) 19. 汪建民, 材料分析, 中國材料科學學會, p84 (2001) 20. Berkenblit, Melvin,Reisman and Arnold, US Patent 3964942 (1976) 21. J.Werner, O.Weis, Wear 176(1994)239 22. 高道鋼編譯, “超精密加工技術” , 全華(90) 23. I. D. Marinescu, H. K. Tonshoff, I. Inasaki, Handbook of Ceramic Grinding and Polishing, Noyes(1998) 24. R. O. Miller, S. H. Li, “Chemical Mechanical Polishing in Silicon Processing”, Academic Press(2000) 25. J. M. Steigerwald, S.P. Murarka, R. J. Gutmann,”Chemical Mechanical Planarization of Microelectronic Materials”, John Wiley & Sons(2002) 26. C. L.Borst, W. N. Gill, R. J. Gutmann,”Chemical- Mechanical Polishing of Low Dielectric Constant Polymers and Organosilicate Glasses”. Kluwer Academic Publishers (2002) 27. J. C. Vickerman,”Surface Analysis”,John Wiley(1997)id NH0920593005 sid 903140 cfn 0 / id NH0920593006 auc 高建綱 tic 光通訊平面光波導元件之設計與製程研究 adc 蔡春鴻 adc 林諭男 ty 博士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 290 kwc 平面光波導 kwc 二氧化矽 kwc 鋯鈦酸鉛 kwc 光傳導損失 kwc 稜鏡耦合 kwc 電光效應 kwc Y型分光器 kwc 光切換開關 abc 本論文研究主要重點為三個方向:第一是設計與製作以二氧化矽材料為主的光波導被動元件,藉此吸取積體光通訊元件之基本理論、量測、設計及製程經驗;第二是光波導主動元件之材料研究,由於主動元件大多以單晶材料作為基板本研究希望能經由適當緩衝層材料(鈦酸鍶)的成長,使具有鈣鈦礦結晶相的鋯鈦酸鉛,成長於非晶系材料(二氧化矽)基板上,並有良好的結晶及光學性質;第三是以結晶之鋯鈦酸鉛及鈦酸鍶材料系統,在非晶系材料基板上製作光波導主動元件,以了解主被動元件設計及製程之差異性,並向主被動元件整合的目標邁進一步。 tc 第一章、前言 1-1. 光纖通訊與積體光學…………………………………001 1-2. 光纖通訊之發展近況…………………………………005 1-3. 研究動機及目的…………………………………………008 第二章、理論基礎及文獻回顧 2-1. 平面光波導之理論基礎………………………………017 2-1.1 特徵值方程式………………………………………017 2-1.2 分散關係曲線及截止頻率…………………………023 2-1.3 數值解二維波導的等效折射率……………………025 2-1.4 三維波導結構的近似分析法………………………026 2-1.4.1 馬卡第里法………………………………026 2-1.4.2 等效折射率法……………………………031 2-2. 稜鏡耦合技術…………………………………………037 2-2.1 稜鏡耦合原理………………………………………037 2-2.2 相位匹配原理……………………………………039 2-2.3 稜鏡耦合技術在積體光學之應用…………………041 2-2.3.1 光的激發…………………………………041 2-2.3.2 薄膜折射率及其厚度量測………………043 2-3. 光波導元件之損失來源及其量測………………………052 2-3.1 損失的來源…………………………………………052 2-3.1.1 吸收………………………………………052 2-3.1.2 散射………………………………………053 2-3.1.3 消散………………………………………053 2-3.2 損失之量測方法……………………………………054 2-3.2.1 吸收量測…………………………………054 2-3.2.2 散射損失…………………………………055 2-3.2.2.1 平面外偵測法…………………………055 2-3.2.2.2 平面內偵測法…………………………056 2-3.2.3 傳導損失…………………………………056 2-3.2.3.1 裁減量測法……………………………056 2-3.2.3.2 稜鏡滑移法……………………………057 2-3.2.3.3 散射偵測法……………………………057 2-4. 應用於平面光波導元件之材料及特性…………………062 2-4.1 高分子聚合物……………………………………063 2-4.2 矽基材材料…………………………………………064 2-4.3 鐵電材料……………………………………………065 2-4.4 半導體材料…………………………………………066 2-5. 二氧化矽材料……………………………………………068 2-5.1 薄膜備製……………………………………………068 2-5.2 折射率之調變………………………………………070 2-5.3 薄膜之光學特性……………………………………071 2-5.4 應用在積體光學上的元件…………………………073 2-6. 鋯鈦酸鉛材料…………………………………………084 2-6.1 晶體結構……………………………………………084 2-6.2 薄膜備製……………………………………………085 2-6.3 薄膜之光學特性…………………………………088 2-6.4 電光效應……………………………………………089 2-6.4.1 折射率橢圓球與光軸……………………089 2-6.4.2 電光效應及折射率變化…………………092 2-6.4.3 電光係數量測方法………………………094 2-6.4.3.1 稜鏡耦合技術…………………………094 2-6.4.3.2 光線偏折法…………………………096 2-6.4.3.3 差分式橢圓偏光儀………………097 2-6.4.3.4 電光調變器……………………………099 2-6.5 電光效應在光通訊元件之應用……………………100 2-6.5.1 相位控制…………………………………100 2-6.5.2 耦合分布控制……………………………101 2-6.5.3 折射率分布控制…………………………101 2-6.5.4 電光光柵控制……………………………102 第三章、實驗方法 3-1. 二氧化矽材料……………………………………………122 3-1.1 薄膜製程及折射率調變……………………………122 3-1.2 薄膜特性量測………………………………………123 3-1.3 理論計算及軟體模擬元件…………………………123 3-1.4 平面波導元件製程及元件功能測試………………124 3-2. 鋯鈦酸鉛材料…………………………………………125 3-2.1 薄膜製程……………………………………………125 3-2.2 薄膜特性量測………………………………………126 3-2.3 理論計算及軟體模擬元件…………………………126 3-2.4 平面波導元件製程及元件功能測試………………127 第四章、結果與討論 4-1. 二氧化矽材料……………………………………………136 4-1.1 薄膜製程及特性量測………………………………136 4-1.2 理論計算與軟體模擬設計…………………………139 4-1.3 光波導被動元件製程及功能測試…………………141 4-2. 鐵電材料…………………………………………………171 4-2.1 薄膜製程及特性量測………………………………171 4-2.1.1 鋯鈦酸鉛薄膜……………………………171 4-2.1.1.1 單晶氧化鋁基板………………………171 4-2.1.1.2 二氧化矽基板…………………………172 4-2.1.2 鈦酸鍶薄膜………………………………173 4-2.1.2.1 單晶氧化鋁基板………………………174 4-2.1.2.2 二氧化矽基板…………………………176 4-2.1.3 鋯鈦酸鉛/鈦酸鍶/基材……………………179 4-2.1.3.1 單晶氧化鋁基板………………………179 4-2.1.3.2 二氧化矽基板…………………………180 4-2.2 薄膜特性量測………………………………………182 4-2.2.1 穿透光譜分析……………………………182 4-2.2.2 稜鏡耦合量測……………………………184 4-2.2.3 電光係數量測……………………………186 4-2.3 理論計算與軟體模擬設計…………………………187 4-2.4 光波導主動元件製程及功能測試…………………191 第五章、結論………………………………………………………259 參考文獻……………………………………………………………261rf 1. H. Nishihara, M. Haruna, and T. Suhara, “Optical integrated circuits”, McGraw-Hill Book Company, (1989). 2. R. Syms and J. Cozens, “Optical guides waves and devices”, McGraw-Hill Book Company, (1992). 3. R. G. Hunsperger, “Integrated optics: Theory and technology”, Springer, (1995). 4. F. Agullo-Lopez, J. M. Cabrera, and F. Agullo-Rueda, “Electrooptics: Phenomena, materials and applications”, Academic Press, (1994). 5. C. G. Someda and G. Stegeman, “Anisotropic and nonlinear optical waveguides”, Elsevier, (1992). 6. K. Uchino, “Ferroelectric devices”, Marcel Dekker, (2000). 7. A. Kumar, D. F. Clark, and B. Culshaw, “Explanation of erros inherent in the effective-index method for analyzing rectangular-core waveguides”, Opt. Lett., Vol. 13, No. 12, 1129, (1988). 8. S. P. Pogossian, H. L. Gall, J. Gieraltowski, and J. Loaec, “Determination of the parameters of retangular dielectric waveguides by effective index methods”, J. of Modern Optics, Vol. 42, No. 2, 403, (1995). 9. G. R. Hadley and R. E. Smith, “Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions”, J. Lightwave Technol., Vol. 13, No. 3, 465, (1995). 10. G. H. Jin, J. Harari, L. Joannes, J. P. Vilot, and D. Decoster, “Numerical analysis of the radiation losses due to surface roughness in integrated optics devices”, IEEE Photonics Technol. Lett., Vol 8, No. 9, 1202, (1996). 11. T. Goh, S. Suzuki, and A. Sugita, “Estimation of waveguide phase error in silica-based waveguides”, J. Lightwave Technol., Vol. 15, No. 11, 2107, (1997). 12. H. Deng, G. H. Jin, J. Harari, J. P. Vilcot, and D. Decoster, “Investigation of 3-D semicectorial finite-difference beam propagation method for bent waveguides”, J. Lightwave Technol., Vol. 16, No. 5, 915, (1998). 13. A. Driessen, H. J. W. M. Hoekstra, F. Horst, G. J. M. Krijnen, B. J. Offrein, J. B. P. V. Schoot, P. V. Lambeck, and Th. J. A. Popma, “All-optical integrated optics devices: A hybrid approach”, IEE Proc.-Optoelectron., Vol. 145, No. 4, 227, (1998). 14. P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films”, Appl. Phys. Lett., Vol 14, No. 9, 291, (1969). 15. P. K. Tien, “Light waves in thin films and integrated optics”, Appl. Opt., Vol 10, No. 11, 2395, (1971). 16. R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler”, Appl. Opt., Vol 12, No. 12, 2901, (1973). 17. D. J. Walter, “The syncang method for simultaneous measurement of film refractive index and thickness”, Thin Solid films, Vol 23, 153, (1974). 18. R. Th. Kersten, “A new method for measuring refractive index and thickness of liquid and deposited solid thin films”, Opt. Commun., Vol 13, No. 3, 327, (1975). 19. J. S. Wei and W. D. Westwood, “A new method for determining thin-film refractive index and thickness using guided optical waves”, Appl. Phys. Lett., Vol 32, No. 12, 819, (1978). 20. N. A. Paraire, N. Moresmau, S. Chen, P. Dansas, and F. Bertrand, “Direct measurement of substrate refractive indices and determination of layer indices in slab-guiding structures”, Appl. Opt., Vol 36, No. 12, 2545, (1997). 21. H. J. Lee, C. H. Henry, K. J. Orlowsky, R. F. Kazarinov, and T. Y. Kometani, "Refractive Index Dispersion of Phosphosilicate Glass, Thermal Oxide, and Silicon Nitride Films on Silicon", Appl. Opt., 27, 4104 (1988). 22. J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film”, J. Phys. E: Sci. Instrum., Vol. 90, 1002, (1976). 23. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon”, J. Phys. E: Sci. Instrum., Vol. 16, 1214, (1983). 24. H. P. Weber, F. A. Dunn, and W. N. Leibolt, “Loss measurements in thin-film optical waveguides”, Appl. Opt., Vol. 12, No. 4, 755, (1973). 25. Y. Okamura, S. Yoshinaka, and S. Yamamoto, “Measuring mode propagation losses of integrated optical waveguide: a simple method”, Appl. Opt., Vol. 22, No. 23, 3892, (1983). 26. A. F. Evans and D. G. Hall, “Propagation loss measurements in silicon-on insulator optical waveguides formed by bond-and —etchback process”, Appl. Phys. Lett., Vol 59, No. 14, 1667, (1991). 27. R. Adar, M. R. Serbin, and V. Mizrahi, “Less than 1dB per meter propagation loss of silica waveguides measured using a ring resonator”, J. Lightwave Technol., Vol 12, No. 8, 1369, (1994). 28. T. Feuchter and C. Thirstrup, “High precision planar waveguide propagation loss measurement technique using a Fabry-Perot cavity”, IEEE Photonics Technol. Lett., Vol 6, No. 10, 1244, (1994). 29. J. W. Lee, C. S. Wang, S. Caracci, and D. M. Husband, “Optical loss in rod-like polymer thin films”, Polymer, Vol. 39, No. 13, 2765, (1998). 30. C.-T. Lee, “Nondestructive measurement of aeparated propagation loss for multimode waveguide”, Appl. Phys. Lett., Vol 73, No. 2, 133, (1998). 31. G. H. V. Rhodes, B. B. Goldberg, and M. S. Unlu, “Measurement of internal spatial modes and local propagation properties in optical waveguides”, Appl. Phys. Lett., Vol. 75, No. 16, 2368, (1999). 32. M. K. Pandit, H. P. Chan, C. K. Chow, K. S. Chiang, S. Ghosh, and A. K. Das, “A wide-angle X-junction in polymer using truncated-structural branches (TSB)”, J. Lightwave Technol., Vol. 20, No. 1, 86, (2002). 33. M.-H. Lee, Y. H. Min, J. J. Ju, J. Y. Do, and S. K. Park, “Polymeric electrooptic 2´2 switch consisting of bifurcation optical active waveguides and a Mach-Zehnder interferometer”, IEEE J. Selected Topics. In Quantum Electron., Vol. 7, No. 5, 812, (2001). 34. J. H. Kim, E. J. Kim, H. C. Choi, C. W. Kim, J. H. Cho, Y. W. Lee, B. G. You, S. Y. Yi, H. J. Lee, K. Han, W. H. Jang, T. H. Rhee, J. W. Lee, and S. J. Pearton, “Evaluation of fluorinated polyimide etching processes for optical waveguide fabrication”, Thin Solid Films, Vol. 341, 192, (1999). 35. M. B. J. Diemeer, “Polymeric thermal-optics space switches for optical communications”, Opt. Mater., Vol. 9, 192, (1998). 36. M. Ree, K. Kim, S. H. Woo, and H. Chang, “Structure, chain orientation, and properties in thin films of aromatic polyimides with various chain rigidities”, J. Appl. Phys., Vol. 81, Vol. 2, 698, (1997). 37. E. Aperathitis, D. Cengher, M. Kayambaki, M. Androulidaki, G. Deligeorgis, K. Tsagaraki, Z. Hatzopoulos, and A. Georgakilas, “Evaluation of reactive ion etching processes for fabrication of integrated GaAs/AlGaAs optoelectronic devices”, Mater. Sci. and Engineer., Vol. B80, 77, (2001). 38. C. Rigo, L. Gastaldi, D. Campi, L. Faustini, C. Coriasso, C. Cacciatore, and D. Soldani, “Multiple quantum well compressive strained heterostructures for low driving power all-optical waveguide switches”, J. of Crystal Growth, Vol. 188, 317, (1998). 39. F. C. Pieris, S. Lee, U. Bindley, and J. K. Furdyna, “A prism coupling technique for characterizing thin film II-VI semiconductor systems”, J. Appl. Phys., Vol. 84, Vol. 9, 5194, (1998). 40. D. M. Gualtieri and R. C. Morris, “Epitaxial waveguides of aluminum garnet”, J. Appl. Phys., Vol. 74, Vol. 1, 20, (1993). 41. R. Krahenbuhl, M. M. Howerton, J. Dubinger, and A. S. Greenblatt, “Performance and modeling of advanced Ti:LiNbO3 digital optical switches”, J. Lightwave Technol., Vol. 20, No. 1, 92, (2002). 42. S. S. Sarkisov, E. K. Williams, D. Ila, P. Venkateswarlu, and D. B. Poker, “Vanishing optical isolation barrier in double implanted lithium niobate waveguide”, Appl. Phys. Lett., Vol. 68, No. 17, 2329, (1996). 43. M. Kawachi, M. Yasu, and M. Kobayashi, “Flame hydrolysis deposition of SiO2-TiO2 glass planar optical waveguides on silicon”, Jpn. J. Appl. Phys., Vol. 22, No. 12, 1932, (1983). 44. N. Takato, M. Yasu, and M. Kawachi, “Low-loss high-silica single-mode channel waveguides”, Electron. Lett., Vol. 22, No. 6, 321, (1986). 45. N. Takato, K. Jinguji, M. Yasu, H. Toba, and M. Kawachi, “Silica-based single-mode waveguides on silicon and their application to guided-wave optical interferometers”, J. Lightwave Technol., Vol. 6, No. 6, 1003, (1988). 46. S. Sekine, K. Shuto, and S. Suzuki “Low-loss, high-D, single-mode channel waveguides for high-density integrated optical devices”, Electron. Lett., Vol. 25, No. 23, 1573, (1989). 47. T. Kominato, Y. Ohmori, H. Okazaki, and M. Yasu, ”Very low-loss GeO2-doped silica waveguides fabricated by flame hydrolysis deposition method”, Electron. Lett., Vol. 26, No. 5, 327, (1990). 48. M. Kawachi, “Silica waveguide on silicon and their application to integrated optic components,” Opt. Quant. Electron., Vol. 22, No. 5, 391, (1990). 49. S. Suzuki, K. Shuto, H. Takahashi, and Y. Hibino, “Large-scale and high-density planar lightwave circuits with high-D GeO2-doped silica waveguides”, Electron. Lett., Vol. 28, No. 20, 1863, (1992). 50. T. Kominato, Y. Ohmori, N. Takato, H. Okazaki, and M. Yasu, ”Ring resonators composed of GeO2-doped silica waveguides”, J. Lightwave Technol., Vol. 12, No. 12, 1781, (1992). 51. Y. Hibino, H. Okazaki, Y. Hida, and Y. Ohmori, “Propagation loss characteristics of long silica-based optical waveguides on 5 inch Si wafers”, Electron. Lett., Vol. 29, No. 21, 1847, (1993). 52. J. A. Bebbington, G. Barbarossa, J. R. Bonar, and J. S. Aitchison, “Rare earth doped silica waveguides on Si fabricated by flame hydrolysis deposition and aerosol doping”, Appl. Phys. Lett., Vol. 62, No. 4, 337. (1993). 53. S. Suzuki, M. Yanagisawa, Y. Hibino, and K. Oda, “High-density integrated planar lightwave circuits using SiO2-GeO2 waveguides with high refractive index difference”, J. Lightwave Technol., Vol. 12, No. 5, 790, (1994). 54. J. R. Bonar and J. S. Aitchison, “Co-doping effects in rare earth doped planar waveguides”, IEE Proc.-Optoelectron., Vol. 143, No. 5, 293. (1996). 55. A. C. Adams, F. B. Alexander, C. D. Capio, and T. E. Smith, “Characterization of plasma-deposited silicon dioxide”, J. Electrchem. Soc., Vol. 128, No. 7, 1545, (1981). 56. P. Pan, L. A. Nesbit, R. W. Douse, and R. T. Gleason, “The composition and properties of PECVD silicon oxide films”, J. Electrchem. Soc., Vol. 132, No. 8, 2012, (1985). 57. S. Valette, J. P. Jadot, P. Gidon, S. Renard, A. Fouriner, A. M. Grouillet, H. Denis, P. Philippe, and E. Desgranges, “Si-based integrated optics technologies”, Solid State Technol., 69, (1989). 58. I. T. Emesh, G. Dasti, J. S. Mercier, and P. Leung, “Plasma-enhanced chemical vapor deposition of silicon dioxide using tetraethylorthosilicate (TEOS)”, J. Electrchem. Soc., Vol. 136, No. 11, 3404, (1989). 59. G. Grand, J. P. Jadot, H. Denis, S. Valette, A. Fournier, and A. M. Grouillet, “Low-loss PECVD silica channel waveguides for optical communication”, Electron. Lett., Vol. 26, No. 25, 2135, (1990). 60. Y. Nishi, T. Funai, H. Izawa, T. Fujimoto, H. Morimoto, and M. Ishii, “Characteristics of plasma-enhanced-chemical-vapor-deposition tetraethylorthosilicate oxide and thin-film-transistor application”, Jpn. J. Appl. Phys., Vol. 31, 4570, (1992). 61. N. Hirashita, S. Tokitoh, H. Uchida, “Thermal desorption and infrared studies of plasma-enhanced chemical vapor deposited SiO films with tetraethylorthosilicate”, Jpn. J. Appl. Phys., Vol. 32, 1787, (1993). 62. M. S. Haque, H. A. Naseem, and W. D. Brown, “Characterization of high rate deposited PECVD silicon dioxide films for MCM applications”, J. Electrchem. Soc., Vol. 142, No. 11, 3864, (1995). 63. M. V. Bazylenko, M. Gross, P. M. Allen, and P. L. Chu, “Fabrication of low-temperature PECVD channel waveguides with significantly improved loss in the 1.50-1.55 mm wavelength range,” IEEE Photonics Technol. lett., Vol. 7, No. 7, 774, (1995). 64. R. H. Horng, F. Chem, D. S. Wuu, and T. Y. Lin, “Refractive index behavior of boron-doped silica films by plasma-enhanced chemical vapor deposition”, Applied Surface Science, Vol. 92, 387, (1996). 65. S. C. Deshmukh and E. S. Aydil, “Investigation of low temperature SiO2 plasma enhanced chemical vapor deposition”, J. Vac. Sci. Technol. B, Vol. 14, No. 2, 738, (1996). 66. M. Yoshimaru, S. Koizumi, and K. Shimokawa, “Structure of fluorine-doped silicon oxide films deposited by plasma-enhanced chemical vapor deposition”, J. Vac. Sci. Technol. A, Vol. 15, No. 6, 2908, (1997). 67. M. Yoshimaru, S. Koizumi, and K. Shimokawa, “Interaction between wafer and fluorine-doped silicon oxide films deposited by plasma-enhanced chemical vapor deposition”, J. Vac. Sci. Technol. A, Vol. 15, No. 6, 2915, (1997). 68. M. Hoffmann, P. Kopka, and E. Voges, “Low-loss fiber-matched low-temperature PECVD waveguides with small-core dimensions for optical communication systems”, IEEE Photonics Technol. Lett., Vol. 9, No. 9, 1238, (1997). 69. M. I. Alayo, I. Pereyra, and M. N. P. Carreno, “Thick SiOxNy and SiO2 films obtained by PECVD technique at low temperature”, Thin Solid Films, Vol. 332, (1998). 70. M. Yoshimaru, S. Koizumi, and K. Shimokawa, “Effect of helium dilution of TEOS-O2-C2F6 gas mixture on plasma-enhanced chemical vapor deposition of fluorine-doped silicon oxide film”, J. Vac. Sci. Technol. A, Vol. 17, No. 2, 425, (1999). 71. T. M. Parrill, “Transmission infrared study of acid-catalyzed sol-gel silica coatings during room ambient drying”, J. Mater. Res., Vol. 7, No. 8, 2230, (1992). 72. K. D. Simmons, G. Stegeman, B. G. Potter, and J. H. Simmons, “Photosensitivity of solgel-derived germanosilicate planar waveguides”, Opt. Lett., Vol. 18, No. 1, 25, 1993. 73. D.-G. Chen, B. G. Potter, and J. H. Simmons, “GeO2-SiO2 thin films for planar waveguide applications”, J. Non-Crys. Solids, Vol. 178, 135, (1994). 74. G. C. Righini and S. Pelli, “Sol-gel glass waveguides”, J. Sol-gel Sci. and Technol., Vol. 8, 991, (1997). 75. M. A. Fardad, T. Touam, P. Meshkinfam, R. Sara, X. M. Du, M. P. Andrews, and S. I. Najafi, “UV-light imprinted Bragg grating in sol-gel ridge glass waveguide with almost 100﹪ reflectivity”, Electron. Lett., Vol. 33, No. 12, 1069, (1997). 76. S. I. Najafi et al., “Sol-gel glass waveguide and grating on silicon”, J. Lightwave Technol., Vol. 16, No. 9, 1640, (1998). 77. D. E. Zelmon, H. E. Jackson, J. T. Boyd, A. Naumaan, and D. B. Anderson, “A low-scattering graded-index SiO2 planar optical waveguide thermally growth on silicon”, Appl. Phys, Lett., Vol. 42, No. 7, 565, (1983). 78. B. H. Verbeek, C. H. Henry, N. A. Olsson, K. J. Orlowsky, R. F. Kazarinov, and B. H. Johnson, “Integrated four-channel Mach-Zehnder multi/demultiplexer fabricated with phosphorous doped SiO2 waveguide on Si”, J. lightwave technol., Vol. 6, No. 6, 1011, (1988). 79. G. Tochitani, M. Shimozuma, and H. Tagashira, “Deposition of silicon oxide films from TEOS by low frequency plasma chemical vapor deposition”, J. Vac. Sci. Technol. A, Vol. 11, No. 2, 400, (1993). 80. H. kato, H. Sakai, and K. Sugawara, “Microdefects in oxide films deposited on featured surfaces of VLSI substrates by thermal CVD of TEOS and O2”, J. Electrchem. Soc., Vol. 141, No. 11, 3154, (1994). 81. P. B. Comita, J. Farkas, B. Yang, Y. H. Chuang, J. O’Connor, K. C. Liu, and M. G. Cohen, “Pulsed ultraviolet laser deposition of SiO2 films at 248 nm”, Appl. Phys. Lett., Vol. 66, No. 12, 1463, (1995). 82. M. Virmani, D. A. Levedakis, G. B. Raupp, and T. S. Cale, “Feature scale simulation studies of TEOS-source remote microwave plasma-enhanced chemical vapor deposition of silicon dioxide: role of oxygen atom recombination”, J. Vac. Sci. Technol. A, Vol. 14, No. 3, 977, (1996). 83. S. Kashimura, M. R. Islam, M. Takeuchi, A. Hongo, K. Ohira, K. Imoto, “Refractive-index-adjustment of SiO2-GeO2 films deposited by radio frequency magnetron sputtering”, Appl. Sur. Sci., Vol. 142, 58, (1999). 84. X. Meng, A. Bhat, and T. V. Dozer, “Very small critical current spreads in Nb/Al-AlOx/Nb integrated circuits using low-temperature and low-stress ECR PECVD silicon Oxide films”, IEEE Transactions on Applied Superconductivity, Vol. 9, No. 2, 3208, (1999). 85. C. H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, and L. E. Katz, “Low loss Si3N4-SiO2 optical waveguides on Si”, Appl. Opt., Vol. 26, No. 13, 2621, (1987). 86. F. Bruno, M. D. Guidice, R. Recca, and F. Testa, “Plasma-enhanced vapor deposition of low-loss SiON optical waveguides at 1.5-mm wavelength”, Appl. Opt., Vol. 30, No. 31, 4560, (1991). 87. K. Imoto and A. Hori, “High refractive index difference and low loss optical waveguide fabricated by low temperature process”, Electron. Lett., Vol. 29, No. 12, 1123, (1993). 88. K. Worhoff, P. V. Lambeck, and A. Driessen, “Design, tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication devices”, J. Light. Technol., Vol. 17, No. 8, p1401, (1999). 89. R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications”, J. Electrochem. Soc., Vol. 147, No. 6, 2237, (2000). 90. D. A. P. Bulla, B. H. V. Borges, M. A. Romero, N I. Morimoto, and L. G. Neto, “Design and fabrication of SiO2/Si3N4 integrated-optics waveguides on silicon substrates”, IEEE Transactions Microwave and Techniques, Vol. 50, No. 1, 9, (2002). 91. K. Worhoff, L. T. H. Hilderink, A. Driessen, and P. V. Lambeck, “Silicon oxynitride: A versatile material for integrated optics applications”, J. Electrochem. Soc., Vol. 149, No. 8, F85, (2002). 92. L. S. Yu, Z. F. Guan, Q. Z. Liu, and S. S. Lau, “Silicon on insulator photoelastic optical waveguide and polarizer”, Appl. Phys. Lett., Vol. 66, No. 17, 2016, (1995). 93. C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 mm”, Appl. Phys. Lett., Vol. 67, No. 17, 2448, (1995). 94. J. S. Foresi, M. R. Black, A, M. Agarwal, and L. C. Kimerling, “Losses in plycrystallone silicon waveguides”, Appl. Phys. Lett., Vol. 68, No. 15, 2052, (1996). 95. A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics”, Appl. Phys. Lett., Vol. 80, No. 11, 6120, (1996). 96. C. Z. Zhao, A. H. Chen, E. K. Liu, and G. Z. Li, “Silicon —on insulator asymmetric optical switch based on total internal refraction”, IEEE Photonics Technol. Lett., Vol. 9, No. 8, 1113, (1997). 97. K. K. Lee, D. R. Lim, H.-C. Luan A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model”, Appl. Phys. Lett., Vol. 77, No. 11, 1617, (2000). 98. K. K. Lee, D. R. Lim, L. C. Kimerling , J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction”, Opt. Lett., Vol. 26, No. 23, 1888, (2001). 99. M. Robillard, P. E. Jessop, D. M. Bruce, S. Janz, R. L. Williams, S. Maihot, H. Lafontaine, S. J. Kovacic, and J. J. Ojha, “Strain-induced birefringence in Si1-xGex optical waveguides”, J. Vac. Sci. Technol. B, Vol. 16, No. 4, 1773, (1998). 100. B. Li, G. Li, E. Liu, Z. Jiang, C. Pei, and X. Wang, “1.55mm reflection-type optical waveguide switch based on SiGe/Si plasma dispersion effect”, Appl. Phys. Lett., Vol. 75, No. 1, 1,(1999). 101. B. Li and S.-J. Chua, “2´2 optical waveguide switch with bow-tie electrode based on carrier-infection total internal reflection in SiGe alloy”, IEEE Photonics Technol., Lett., Vol. 13, No. 3, 206,(2001). 102. M. R. T. Pearson, P. E. Jessop, D. M. Bruces, S. Wallace, P. Mascher, and J. Ojha, “Fabrication of SiGe optical waveguides using VLSI processing techniques”, J. Lightwave Technol., Vol. 19, No. 3, 363, (2001). 103. B. Li and S.-J. Chua, “Reflection-type optical waveguide switch with bow-tie electrode”, J. Lightwave Technol., Vol. 20, No. 1, 65, (2002). 104. B. Li and S.-J. Chua, “High carrier injection optical switch based on two-mode interference in SiGe alloy”, Appl. Phys. Lett., Vol. 80, No. 2, 180, (2002). 105. D. Barbier, X. Orignac, X. M. Du, and R. M. Almeida, “Improved composition for sol-gel rare-earth doped planar waveguides”, J. Sol. Sci. Technol., Vol. 8, 1013, (1997). 106. M. Benatsou and M. Bouazaoui, “Fluorescence properties of sol-gel derived Er3+: SiO2-GeO2 planar waveguides”, Opt. Commun., Vol. 137, 143, (1997). 107. C. Strohhofer, S. Capecchi, J. Fick, A. Martucci, G. Brusatin, and M. Guglielmi, “Active optical properties of erbium-doped GeO2-based sol-gel planar waveguides”, Thin Solid Films, Vol. 326, 99, (1998). 108. K. Hattori, T. Kitagawa, K. Shuto, M. Oguma, and Y. Ohmori, “Optical and structural properties of Er3+-doped P2O5-SiO2 and Al2O3-SiO2 planar waveguides”, Materials Science and Engineering B, Vol. 54, 15, (1998). 109. S. Juodkazis, E. Bernstein, J. C. Plenet, C. Bovier, J. Dumas, J. Mugnier, and J. V. Vaitkus, “Waveguiding properties of CdS-doped SiO2-TiO2 films prepared by sol-gel method”, Thin Solid Films, Vol. 322, 238, (1998). 110. X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. McCarthy, and E. Yeatman, “Sol-gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 mm”, Opt. Mater., Vol. 12, 18, (1999). 111. H.-S. Han, S.-Y. Seo, J. H. Shin, and D.-S. Kim, “1.54 mm Er3+ photoluminescent and erbium-doped silicon-rich silicon oxide”, J. Appl. Phys., Vol 88, No. 4, 2160, (2000). 112. Y. Hibino, M. Abe, T. Kominato, and Y. Ohmori, “Photoinduced refractive index change in TiO2-doped silica optical waveguides on silicon substrate”, Electron. Lett., Vol. 27, No. 24, 2294, (1991). 113. R. M. Atkins and V. Mizrahi, “Observations of changes in UV absorption bands of singlemode germanosilicate core optical fibers on writing and thermally crasing refractive index gratings”, Electron. Lett., Vol. 28, No 18, 1743, (1992). 114. G. D. Maxwell, R. Kashyap, B. J. Ainslie, D. L. Williams, and J. R. Armitage, “UV written 1.5 um reflection filters in single mode planar silica guides”, Electron. Lett., Vol. 28, No. 22, 2106, (1992). 115. Y. Hibino, M. Abe, H. Yamada, Y. Ohmori, F. Bilodeau, B. Malo, and K. O. Hill, “Increase in photosensitivity in silica-based optical waveguides on silicon”, Electron. Lett., Vol. 29, No. 7, 621, (1993). 116. J. Nishii, K. Fukumi, H. Yamanaka, K.-I. Kawamura, H. Hosono, and H. Kawazoe, “Photochemical reactions in GeO2-SiO2 glasses induced by ultraviolet irradiation: Comparison between Hg lamp and excimer laser”, Phys. Rev. B, Vol. 52, No. 3, 1661, (1995). 117. J. Nishii, N. Kitamura, H. Yamanaka , H. Hosono, and H. Kawazoe, “Ultraviolet-radiation-induced chemical reaction through one- and two-photon absorption process in GeO2-SiO2 glasses”, Opt. Lett., Vol. 20, No. 10, 1184, (1995). 118. B. Poumellec, P. Guenot, I. Riant, P. Sansonetti, P. niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge: SiO2 preforms”, Opt. Mater., Vol. 4, 441, (1995). 119. C. Y. Li, J. Chisham, M. Andrews, S. I. Najafi, J. D. Mackenzie, and N. Peyghambarian, “Sol-gel integrated optical coupler by ultraviolet light imprinting”, Electron. Lett., Vol. 31, No. 4, 271, (1995). 120. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser”, Opt. Lett., Vol. 21, No. 21, 1729, (1996). 121. K. Miura, J. Qiu, H. Inouye,and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser”, Appl. Phys. Lett., Vol. 71, No. 23, 3329, (1997). 122. H. Renner, “Modes of UV-written planar waveguides”, Opt. Lett., Vol. 23, No. 2, 111, (1998). 123. G. Kakarantzas, P. D. Townsend, and J. Wang, “Very low loss ion implanted planar waveguide in lead germanate glass”, Electron. Lett., Vol. 29, No. 5, 489, (1993). 124. P. W. Leech, P. C. Kemeny, and M. C. Ridgway, “Low loss channel waveguides fabricated in fused silica by germanium ion implantation”, Electron. Lett., Vol. 31, No. 15, 1238, (1995). 125. P. W. Leech, M. F. Faith, C. M. Johnson, M. C. Ridgway, and M. Bazylenko, “Channel waveguides formed by ion implantation of PECVD grown silica”, IEE Proc.-Optoelectron., Vol. 144, No. 2, 97, (1997). 126. P. J. Hughes, A. P. Knights, and B. L. Weissa, “High temperature proton implantation induced photosensitivity of Ge-doped SiO2 planar waveguides”, Appl. Phys. Lett., Vol. 74, No. 22, 3311, (1999). 127. P. J. Hughes, A. P. Knights, B. L. Weiss, and S. Ojha, “Optical characteristics of photosensitivity Ge-doped SiO2 planar waveguides implanted with protons at 800℃”, Electron. Lett., Vol. 36, No. 5, 427, (2000). 128. F. Ren, S. J. Pearton, J. R. Lothian, C. R. Abernathy, and W. S. Hobson, “Reduction of sidewall roughness during dry etching of SiO2”, J. Vac. Sci. Technol. B, Vol. 10, No. 6, 2407, (1992). 129. C. Dominguez, J. Munoz, R. Gonzalez, and M. Tudanca, “CHF3-reactive ion etching for waveguides”, Sensors and Actuators A, Vol. 37-38, 779, (1993). 130. J. J. Liang and J. M. Ballantyne, “Self-aligned dry-etching process for waveguide diode ring lasers”, J. Vac. Sci. Technol. B, Vol. 12, No. 5, 2929, (1994). 131. A. K. Dutta, “Side wall roughness reduction in deep silicon oxide etching using C2F6 based ECR-RIBE”, Jpn. J. Appl. Phys., Vol. 31, 365, (1995). 132. M. V. Bazylenko and M. Gross, “Reactive ion etching of silica structure for integrated optics applications”, J. Vac. Sci. Technol. A, Vol. 14, No. 6, 2994, (1996). 133. J. Buhler, F-P Steiner, and H. Baltes, “Silicon dioxide sacrificial layer etching in surface micromachining”, J. Micromech. Microeng., Vol. 7, R1, (1997). 134. K. J. An, D. H. Lee, J. B. Yoo, J. Lee, and G. Y. Yeom, “Etch characteristics of optical waveguides using inductively coupled plasmas with multidipole magnets”, J. Vac. Sci. Technol. A, Vol. 17, No. 4, 1483, (1999). 135. J.-H. Ting, J.-C- Su, and S. Su, “RIE lag in diffractive optical element etching”, Microelectronic Engineering, Vol. 54, 315, (2000). 136. S. Dutta, H. E. Jackson, and J. T. Boyd, ”Reduction of scattering from a glass thin-film optical waveguide by CO2 laser annealing”, Appl. Phys. Lett., Vol. 37, No. 6, 512, (1980). 137. R. R. A. Syms, T. J. Tate, and M. F. Grant, “Reduction of propagation loss in silica-on-silicon channel waveguides formed by electron beam irradiation”, Electron. Lett., Vol. 30, No. 18, 1480, (1994). 138. A. Takagi, K. Jinguji, M. Kawachi, “Broadband silica based optical waveguide coupler with asymmetric structure”, Electron. Lett., Vol. 26, No. 2, 132, (1990). 139. S. J. Mihailov, F. Bilodeau, K. O. Hill, D. C. Johnson, J. Albert, D. Stryckman, and C. Shu, “Comparison of fiber Bragg grating dispersion-compensators made with holographic and E-beam written phase masks”, IEEE Photonics Technol. Lett., Vol. 11, No. 5, 572, (1999). 140. T. Komukai and M. Nakazawa, “Fabrication of high-quality long-fiber Bragg grating by monitoring 3.1-eV radiation (400 nm) from GeO defects”, IEEE Photonics Technol. Lett., Vol. 8, No. 11, 1495, (1996). 141. J. Nishii, H. Yamanaka, H. Hosono, and H. Kawazoe, “Preparation of Bragg gratings in sputter-deposited GeO2-SiO2 glasses by excimer-laser irradiation”, Opt. Lett., Vol. 21, No. 17, 1360, (1996). 142. C. V. Poulsen, J. Hubner, T. Rasmussen, L. Andersen, and M. Kristensen, “Characterization of dispersion properties in planar waveguides using UV-induced Bragg grating”, Electron. Lett., Vol. 31, No. 17, 1437, (1995). 143. T. A. Strasser, T. Erdogan, A. E. White, V. Mizrahi, and P. J. Lemaire, “Ultraviolet laser fabrication of strong, nearly polarization-independent Bragg reflectors in germanium-doped silica waveguides on silica substrates”, Appl. Phys. Lett., Vol. 65,No. 26, 3308, (1994). 144. E. Pawlowski, M. Feratl, H. Hellmich, B. Kuhiow, C. Warmuth, and J. R. Salgueiro, “Fabrication of a multichannel wavelength-division multiplexing-passive optical net demultiplexer with arrayed-waveguide grating and diffractive optical elements”, Appl. Opt., Vol 38, No. 14, 3039, (1999). 145. Y. Hibino, “An array of photonic filtering advantages”, Circuits & Devices, 21, (2000). 146. R. Kasahara, M. Yanagisawa, A. Sugita, I. Ogawa, T. Hashimoto, Y. Suzaki, and K. Magari, “A compact optical wavelength selector composed of arrayed-waveguide grating and an optical gate array integrated on a single PLC platform”, IEEE Photonics Technol. Lett., Vol 12, No. 1, 34, (2000). 147. T. Saito, T. Ota, T. Toratani, and Y. Ono, “16-ch arrayed waveguide grating module with 100-GHz spacing”, Furukawa Review, No. 19, 47, (2000). 148. P. Munoz, D. Pastor, and J. Capmany, “Modeling and design of arrayed waveguide gratings”, J. Lightwave Technol., Vol 20, No. 4, 661, (2002). 149. K. W. Gaff, F. Ladouceur, and J. D. Love, “Two-wavelength planar add/drop WDM filter employing a three-mode coupling Bragg grating”, Electron. Lett., Vol. 36, No. 13, 1142, (2000). 150. Y.-K. Chen, C.-H. Chang, Y.-L. Yang, I.-Y. Kuo, and T.-C. Liang, “Mach-Zehnder fiber-grating-based fixed and reconfigurable multichannel optical add-drop multiplexers for DWDM networks”, Optics Communications, Vol. 169, Vol. 1-6, 245, (1999). 151. L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, “Thermo-optic planar polymer Bragg grating OADM’s with broad tuning range”, IEEE Photonics Technol. Lett., Vol. 11, No. 4, 448, (1999). 152. J. Albert, F. Bilodeau, D. C. Johnson, K. O. Hill, K. Hattori, T. Kitagawa, Y. Hibino, and M. Abe, “Low-loss planar lightwave circuits OADM with high isolation and no polarization dependence”, IEEE Photonics Technol. Lett., Vol. 11, No. 3, 346, (1999). 153. F. Bakhti, P. Sansonetti, C. Sinet, L. Gasca, L. Martineau, S. Lacroix, X. Daxhelet, and F. Gonthier, “Optical sdd/drop multiplexer based on UV-written Bragg grating in a fused 100 % coupler”, Electron. Lett., Vol. 33, No. 9, 803, (1997). 154. G. E. Kohnke, C. H. Henry, E. J. Laskowski, M. A. Cappuzzo, T. A. Strasser, and A. E. White, “Silica based Mach-Zehnder add-drop filter fabricated with UV induced grating”, Electron. Lett., Vol. 32, No. 17, 1579, (1996). 155. V. E. Wood, J. R. Busch, S. D. Ramamurthi, and S. L. Swartz, “Guided-wave optical properties of sol-gel ferroelectric films”, J. Appl. Phys., Vol. 71, No. 9, 4557, (1992). 156. C. M. Foster, G.-R. Bai, R. Csencsits, J. Vetrone, R. Jammy, L. A. Wills, E. Carr, and Jun Amano, “Single-crystal Pb(ZrxTi1-x)O3 thin films prepared by metal-organic chemical vapor deposition: Systemtic compositional variation of electronic and optical properties”, J. Appl. Phys., Vol. 81 No. 5, 2349, (1997). 157. L. H. Hamedi, M. Guilloux-Viry, A. Perrin, and M. H. Cherkani, “On the epitaxial growth of PZT films by pulsed laser deposition”, Ann. Chim. Sci. Mat., Vol. 23, 377, (1998). 158. D. Czekaj, M. J. M. Gomes, M. Vasilevskiy, M. Pereira, and M. P. Dos Santos, “Deposition of PZT thin film and determination of their optical properties”, J. European Ceramic Soc., Vol. 19, 1489, (1999). 159. E. Dogheche, D. Remiens, and G. Velu, “Electrical and optical characterizations by prism-coupling method of PZT deposited in-situ by sputtering”, Vacuum, Vol. 66,1, (2002). 160. M. P. Moret, M. A. C. Devillers, K. Worhoff, and P. K. Larsen, “Optical properties of PbTiO3, PbZrxTi1-xO3, and Pb ZrO3 films deposited by metal-organic chemical vapor deposition on SrTiO3”, J. Appl. Phys., Vol. 92, No. 1, 468, (2002). 161. J. Tsaur, Z. J. Wang, L. Zhang, M. Ichiki, J. W. Wan, and R. Maeda, “Preparation and application of lead zirconate titanate (PZT) films deposited by hybrid process: Sol-gel method and laser ablation”, J. Appl. Phys., Vol. 41 ,6664, (2002). 162. Y. C. Ling, J. P. Wang, M. H. Yeh, K. S. Liu, and I. N. Lin, “Secondary ion mass spectrometric studies of SrTiO3 buffering effect on (Pb1-xLax) (Zr1-yTiy)1-x/4O3 thin films prepared by pulsed laser deposition”, Appl. Phys. Lett., Vol. 66, No. 2, 156, (1995). 163. J. P. Wang, Y. C. Ling, M. H. Yeh, K. S. Liu, and I. N. Lin, “SrTiO3 buffering effect on Pb1-xLaxTiO3 thin films prepared by pulsed laser deposition”, Appl. Phys. Lett., Vol. 68, No. 24, 3401, (1996). 164. B. T. Liu, K. Maki, S. Aggarwal, B. Nagaraj, V. Nagarajan, L. Salamanca-Riba, R. Ramesh, A. M. Dhote, and O. Auciello, “Low-temperature integration of lead-based ferroelectric capacitors on Si with diffusion barrier layer”, Appl. Phys. Lett., Vol. 80, No. 19, 3599, (2002). 165. P. Graupner, J. C. Pommier, A. Cachard, and J. L. Coutaz, “Electro-optical effect in aluminum nitride waveguides”, J. Appl. Phys., Vol. 71, No. 9, 4136, (1992). 166. B. G. Potter, M. B. Sinclair, and D. Dimos, “Electro-optical characterization of Pb(Zr,Ti)O3 thin films by waveguide refractometry”, Appl. Phys. Lett., Vol. 63, No. 16, 2180, (1993). 167. B. G. Potter, M. B. Sinclair, D. Dimos, B. A. Tuttle, and R. W. Schwartz, “Electro-optical and optical evaluation of Pb(Zr,Ti)O3 thin films using waveguide refractometry”, J. of Non-Crystalline Solids, Vol. 178, 69, (1994). 168. Y.-L. Lu, B. Gaynor, C. Hsu, G. Jin, M. Cronin-Golomb, F. Wang, J. Zhao, S.-Q. Wang, P. Yip, and A. J. Dehman, “Structural and electro-optical properties in lead magnesium niobate titanate thin films”, Appl. Phys. Lett., Vol. 74, No. 20, 3038, (1999). 169. Y. Lu, G.-H. Jin, M. Cronin-Golomb, S.-W. Liu, H. Jiang, F.-L. Wang, J. Zhao, S.-Q. Wang, and A. J. Drehman, “Fabrication and optical characterization of Pb(Mg1/3Nb2/3)O3-PbTiO3 planar thin film optical waveguides”, Appl. Phys. Lett., Vol. 72, No. 23, 2927, (1998). 170. L. D. Zhu, J. Zhai, F. Wang, P. E. Norris, G. D. Fogarty, B. Steiner, P. Lu, B. Kear, S. B. Kang, B. Gallois, M. Sinclair, D. Dimos, and M. Cronin-Golomb, “Epitaxial electro-optical SrxBa1-xNb2O6 films by single-source plasma-enhanced metalorganic chemical vapor deposition”, Appl. Phys. Lett., Vol. 67, No. 13, 25 1836, (1995). 171. O. Pons-Y-Moll, J. Perriere, E. millon, R. M. Defourneau, B. Vincent, A. Essahlaoui, A. Boudrioua, and W. Seiler, “Structural and optical properties of rare-earth-doped Y2O3 waveguides grown by pulsed-laser deposition”, J. Appl. Phys., Vol. 92, No. 9, 4885, (2002). 172. F. Natali, F. Semond, L. Massies, D. Byrne, S. Laugt, O. Tottereau, and P. Vennegues, E. Dogheche, and E. Dumont, “Correlation between threading dislocation density and refractive index of AlN grown by molecular-beam epitaxy on Si”, Appl. Phys. Lett., Vol. 82, No. 9, 1386, (2003). 173. E. Dogheche, X. Lansiaux, and D. Remiens, “m-line spectroscopy for optical analysis of thick LiNbO3 layers grown on sapphire substrates by radio-frequency multistep sputtering”, Appl. Phys. Lett., Vol. 93, No. 2, 1165, (2003). 174. P. Bindner, A. Boudrioua, J. C. Loulergue, and P. Moretti, “Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons”, Appl. Phys. Lett., Vol. 79, No. 16, 2558, (2001). 175. A. Boudrioua, C. Bakhouya, J. C. Loulergue, P. Moretti, and K. Polgar, “Low-loss optical planar waveguides in Li2B4O7 crystal formed by He+ implantation”, J. Appl. Phys., Vol. 89, No. 12, 7716, (2001). 176. E. Dogheche, P. Ruterana, and F. Omnes, “Influence of low-temperature buffer layers on the optical waveguiding properties of AlxGa1-xN alloys”, Appl. Phys. Lett., Vol. 90, No. 9, 4411, (2001). 177. A. Boudrioua, J. C. Loulergue, E. dogheche, and D. Remiens, “Electro-optical characterization of (Pb,La)TiO3 thin films using prism-coupling technique”, J. Appl. Phys., Vol. 85, No. 3, 1780 (1999). 178. E. Dogheche, D. Remiens, and F. Omnes, “Optical properties of low-pressure metalorganic vapor phase epitaxy AlxGa1-xN thin film waveguides by prism coupling technique”, Appl. Phys. Lett., Vol. 74, No. 26, 3960, (1999). 179. E. Dogheche, B. Belgacem, D. Remiens, P. Ruterana, and F. Omnes, “Interface properties of AlxGa1-xN/AlN heterostructures from optical waveguide information”, Appl. Phys. Lett., Vol. 75, No. 21, 3324, (1999). 180. E. Dogheche, D. Remiens, A. Boudrioua, and J. C. Loulergue, “Growth and optical characterization of aluminum nitride thin films deposited on silicon by radio-frequency sputtering”, Appl. Phys. Lett., Vol. 74, No. 9, 1209, (1999). 181. K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes”, J. Appl. Phys., Vol. LT-3, No. 2, 385, (1985). 182. K. Nashimoto, “PLZT thin film optical waveguide devices”, Applications of Ferroelectrics, 2002, ISAF 2002. Proceedings of the 13th IEEE International Symposium, 123, (2002). 183. K. Nashimoto, H. Moriyama, S. Nakamura, M. Watanabe, T. Morikawa, E. Osakabe, and K. Haga, “PLZT Electro-Optical Waveguides and Switches”, Optical Fiber Communication Conference and Exhibit, 2001. OFC 2001, Vol. 4, PD10-1, (2001). 184. K. Nashimoto, S. Nakamura, T. morikawa, H. Moriyama, M. Watanabe, and E. Osakabe, “Electrooptical properties of heterostructre (Pb,La)(Zr,Ti)O3 waveguides on Nb-SrTiO3”, J. Appl. Phys., Vol. 38, 5641, (1999). 185. K. Nashimoto, K. Haga, M. Watanabe, S. Nakamura, and E. Osakabe, “Patterning of (Pb,La)(Zr,Ti)O3 waveguides for fabricating micro-optics using wet etching and solid-phase epitaxy”, Appl. Phys. Lett., Vol. 75, No. 8, 1054, (1999). 186. K. Nashimoto, S. Nakamura, T. Morikawa, H. Moriyama, M. Watanabe, and E. Osakabe, “Fabrication of electro-optical Pb(Zr,Ti)O3 heterostructure waveguides on Nb-doped SrTiO3 by solid-phase epitaxy”, Appl. Phys. Lett., Vol. 74, No. 19, 2761, (1999). 187. K. Nashimoto, S. Nakamura, H. Moriyama, M. Watanabe, and E. Osakabe, “Electro-optical beam deflector using epitaxial Pb(Zr,Ti)O3 waveguides in Nb-doped SrTiO3”, Appl. Phys. Lett., Vol. 73, No. 3, 303, (1998). 188. K. Nashimoto, H. Moriyama, and E. Osakabe, “Control of crystallinity in sol-gel derived epitaxial LiNbO3 thin films on Sapphire”, Jpn. J. Appl. Phys., Vol. 35,4936, (1996). 189. K. Nashimoto, S. Nakamura, and H. Moriyama, “Metal alkoxide epitaxial lead titanate-based thin-film optical waveguides”, Jpn. J. Appl. Phys., Vol. 34, 5091, (1995). 190. K. Nashimoto, D. K. fork, and G. B. Anderson, “Solid phase epitaxial grown of sol-gel derived Pb(Zr,Ti)O3 thin films on SrTiO3 and MgO”, Appl. Phys. Lett., Vol. 66, No. 7, 822, (1995). 191. K. Nashimoto, and S. Nakamura, “Preparation and characterization of sol-gel derived epitaxial and oriented Pb(Zr0.52Ti0.48)O3 thin films”, Jpn. J. Appl. Phys., Vol. 33, 5147, (1994). 192. Qibiao Chen, Yi Chiu, and David N. Lambeth, “Guided-wave electro-optical beam deflector using domain reversal in LiTaO3”, J. Lightwave Technol., Vol. 12, No. 8, 1401, (1994). 193. Y. Chiu, R. S. Burton, D. D. Stancil, and T. E. Schlesinger, “Design and simulation of waveguide electrooptical beam deflector”, J. Lightwave Technol., Vol. 13, No. 10, 2049, (1995). 194. Jun Li, Hsing C. Cheng, Matthew J. Kawas, David N. Lambeth, T. E. Schlesinger, and Daniel D. Stancil, “Electrooptical wafer beam deflector in LiTaO3”, IEEE Photonics Technol. Lett., Vol. 8, No. 11, 1486, (1996). 195. J. R. Busch, S. D. Ramamurthi, S. L. Swartz, and V. E. Wood, “Linear electro-optical response in sol-gel PZT planar waveguides”, Electron. Lett., Vol. 28, No. 17, 1591, (1992). 196. M. haruna, T. Hibi, and J. Koyama, “Electro-optical branching-waveguide switch with low drive voltage”, Opt. Lett., Vol. 8, No. 10, 534, 1983. 197. H Adachi, T Kawaguchi, K Setsune, K Ohji, and K Wasa, “Electro-optic effects of (Pb,La)(Zr,Ti)O3 thin films prepared by rf planar magnetron sputtering”, Appl. Phys. Lett., Vol. 42, No. 10, 867, (1983). 198. K Wasa, O Yamazaki, H Adachi, T Kawaguchi, and K Setsune, “Optical TIR switches using PLZT thin-film waveguides on Sapphire”, J. Lightwave Technol., Vol. LT-2, No. 5, 710, (1984). 199. H Higashino, T Kawaguchi, H Adachi, T Makino, and O yamazaki, “High speed optical TIR switches using PLZT thin-film waveguides on Sapphire”, Jap. J. Appl. Phys., Vol. 24, supplement 24-2, 284, (1985). 200. H Adachi, T Mitsuyu, O Yamazaki, and K Wasa, “Ferroelectric (Pb,La)(Zr,Ti)O3 epitaxial thin film on sapphire grown by rf-planar magnetron sputtering”, J. Appl. Phys., Vol. 60, No. 2, 736, (1986). 201. H Adachi and K Wasa, “Sputtering Preparation of Ferroelectric PLZT Thin films and Optical Applications”, IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 38, No. 6, 645, (1991). 202. I Kanno, H Kotera, K Wasa, T Matsunaga, T Kamada, and R Takayama, “Crystallographic characterization of epitaxial Pb(Zr,Ti)O3 films with different Zr/Ti ratio grown by radio-frequency-magnetron sputtering”, J. Appl. Phys., Vol. 93, No. 7, 4091, (2003). 203. H Adachi, M Kitabatake, H Higashino, k Setsune, and K Wasa, “Basic thin film processing for perovskite materials”, Applications of Ferroelectrics, IEEE 7th International Symposium, 273, (1990). 204. G Yi, Z Wu, and M. Sayer, “Preparation of Pb(Zr,Ti)O3 thin films by sol gel processing: Electrical, optical, and electro-optical properties”, J. Appl. Phys., Vil. 64, No. 5, 2717, (1988). 205. B Tunaboylu, P. Harvey, and S. C. Esener, “Characterization of dielectric and electro-optical properties of PLZT 9/65/35 films on Sapphire for electro-optical applications”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 45, No. 4, 1105, (1998). 206. B Tunaboylu, P. C. Harvey, F. Deng, C. Fan, and S. Esener “Ferroelectric PLZT thin films deposited by RF triode magnetron sputtering for spatial light modulators”, Ferroelectrics, 1996. ISAF ''96., Proceedings of the Tenth IEEE International Symposium, Vol. 2, 675, (1996). 207. J. Li, F. Duewer, C. Gao, H. Chang, X.-d. Xiang, and Y. Lu, “Electro-optical measurements of the ferroelectric-paraelectric boundary in Ba1-xSrxTiO3 materials chips”, Appl. Phys. Lett., Vol. 76, No. 6, 769, (2000). 208. D. H. Kim and H. S. Kwok, “Pulsed laser deposition of BaTiO3 thin films and their optical properties”, Appl. Phys. Lett., Vol. 67, No. 13, 1803 (1995). 209. J. R. Hill, P. Pantelis, F. Abbasi, and P. Hodge, “Demonstration of the linear electro-optical effect in a thermopoled polymer film”, J. Appl. Phys., Vol. 64, No. 5, 2749, (1988). 210. D. E. Dausch and G. H. Haertling, “Bulk vs. thin film PLZT ferroelectrics”, Applications of Ferroelectrics, 1992. ISAF ''92., Proceedings of the Eighth IEEE International Symposium, 297, (1992). 211. F. Wang and G. H. Haertling, “ A PLZT optical phase modulator and its applications”, Applications of Ferroelectrics, 1992. ISAF ''92., Proceedings of the Eighth IEEE International Symposium, 596, (1992). 212. G. Li and G. H. Haertling, “The piezoelectric, pyroelectric and photoelectronic properties of PLZT rainbow ceramics”, Ferroelectrics, 1996. ISAF ''96., Proceedings of the Tenth IEEE International Symposium, Vol. 2, 907, (1996). 213. F. Wang and G. H. Haertling, “Large electrooptical modulation using ferroelectric thin films in a Fabry-Perot cavity”, Applications of Ferroelectrics, 1994.ISAF ''94., Proceedings of the Ninth IEEE International Symposium, 683, (1994). 214. K. D. Preston and G. H. Haertling, “Comparison of electro-optical lead-lanthanum zirconate titanate films on crystalline and glass substrates”, Appl. Phys. Lett., Vol. 60, No. 23, 2831, (1992). 215. F. Wang and G. H. Haertling, “Birefringent bistability in (Pb,La)(Zr,Ti)O3 thin films with a ferroelectric-semiconductor interface”, Appl. Phys. Lett., Vol. 63, No. 13, 1730, (1993). 216. F. Wang, K. K. Li, and G. H. Haertling, “Photoactivated birefringence in antiferroelectric thin films via a structural transition”, Appl. Phys. Lett., Vol. 65, No. 20, 2507, (1994). 217. F. Wang, E. Furman, and G. H. Haertling, “Electro-optical measurements of thin-film materials by means of reflection differential ellipsometry”, J. Appl. Phys., Vol. 78, No. 1, 9, (1995). 218. C. Lee, V. Spirin, H. Song, and K. No, “Drying temperature effects on microstructure, electrical properties and electro-optical coefficients of sol-gel derived PZT thin films”, Thin Solid Films, Vol. 340, 242, (1999). 219. D. M. Gill, C. W. Conrad, G. Ford, B. W, Wessels, and S. T. Ho, “Thin-film channel waveguide electro-optical modulator in epitaxial BaTiO3”, Appl. Phys. Lett., Vol. 71, No. 13, 1783, (1997). 220. G. H. Jin, Y. K. Zou, V. Fuflyigin, S. W. Liu, Y. L. Lu, J. Zhao, and M. Cronin-Golomb, “PLZT film waveguide Mach-Zehnder electrooptic modulator”, J. Lightwave Technol., Vol. 18, No. 6, 807, (2000). 221. G. H. Jin, Y. K. Zou, V. Fuflyigin, S. W. liu, Y. L. Lu, J. Zhao, and M. Cronin-Golomb, “Reverse ridge, large profile of single mode PLZT film waveguide and its Mach-Zehnder E-O modulator”, Lasers and Electro-Optics Society Annual Meeting, 1998. LEOS ''98. IEEE , Vol. 2 , 79, (1998). 222. Y. Ren, C. J. Marckmann, J. Arentoft, and M. Kristensen, “Thermally poled channel waveguides with polarization-independent electrooptic effect”, IEEE Photonics Technol. Lett., Vol. 14, No. 5, 639, (2002). 223. M.-G. Kang, K.-T. Kim, and C.-I. Kim, “Recovery of plasma-induced damage in PZT thin film with O2 gas annealing”, Thin Solid Films, Vol. 398-399, 448, (2001). 224. S. M. Cho and D. Y. Jeon, “Effect of annealing conditions on the leakage current characteristics of ferroelectric PZT thin films grown by sol-gel process”, Thin Solid Films, Vol. 338, 149, (1999). 225. S. Shin, U. H. Pi, D.J. Kim,B. S. Kang, T. W. Noh, and Z. G. Khim, “Investigation on hydrogen annealing for various ferroelectric films by electrostatic force microscope”, Applied Surface Science, Vol. 188, 411, (2002). 226. E. K. Kang, H. K. Jang, S. K. Lee, E. R. Park, C. E. Lee, K. M. Kim, S. J. Noh, and S.-J. Yeom, “Low-temperature processing of sol-gel-derived lead-zirconate-titanate thin films by oxygen-plasma treatment”, Current Appl. Phys., Vol. 2, 407, (2002). 227. J. Akedo and M. Lebedev, “Effects of annealing and poling conditions on piezoelectric properties of Pb(Zr0.52,Ti0.48)O3 thick films formed by aerosol deposition method”, J. Crystal Growth, Vol. 235, 415, (2002). 228. K. Tokita, M. Aratani, and H. Funaubo, “Effect of atmosphere during heating of substrate on the low temperature deposition of metalorganic chemical vapor deposited Pb(Zrx,Ti1-x)O3 thin films”, Appl. Phys. Lett., Vol. 81, No. 5, 898, (2002). 229. Y. Miyamoto, T. Tsuchiya, I. Yamaguchi, T. Manabe, H. Niino, A. Yabe, T. Kumagai, T. Tsuchiya, and S. Mizuta, “Preparation of epitaxial Pb(Zr,Ti)O3 thin films using coating photolysis process”, Applied Surface Science, Vol. 197-198, 398, (2002). 230. E. Tokumitsu, R.-I. Nakamura, and H. Ishiwara, “Nonvolatile memory operations of metal-ferroelectric insulator-semiconductor (MFIS) FET’s using PLZT/STO/Si(100) structure”, IEEE Electron Devices Lett., Vol. 18, No. 4, 160, (1997). 231. D. S. Shin, S. T. Park, H. S. Choi, I. H. Choi, and J. Y. Lee, “Characteristics of Pt/SrTiO3/Pb(Zr0.52,Ti0.48)O3/SrTiO3/Si ferroelectric gate oxide structure”, Vol. 354, 251, (1999). 232. E. Tokumitsu, R.-I. Nakamura, and H. Ishiwara, “Fabrication of MFIS-FETs using PLZT/STO/Si(100) structures”, Ferroelectrics, 1996. ISAF ''96., Proceedings of the Tenth IEEE International Symposium, Vol. 1, 107, (1996). 233. A. A. Talin, S. M. Smith, S. Voight, J. Finder, K. Eisenbeiser, D. Penunuri, Z. Yu, P. Fejes, T. Eschrich, J. Curless, D. Convey, and A. Hooper, “Epitaxial PbZr.52Ti.48O3 films on SrTiO3/(001)Si substrates deposited by sol-gel method”, Appl. Phys. Lett., Vol. 81, No. 6, 1062, (2002). 234. Y. Wang, C. Ganpule, B. T. Liu, H. Li, K. Mori, B. Hill, M. Wuttig, and R. Ramesh, “Epitaxial ferroelectric Pb(Zr,Ti)O3 thin films on Si using SrTiO3 template layers”, Appl. Phys. Lett., Vol. 80, No. 1, 97, (2002). 235. H. Fujisawa, H. Nonomura, M. Shimizu, and H. Niu, “Observations of initial growth stage of epitaxial Pb(Zr,Ti)O3 thin films on SrTiO3(100) substrate by MOCVD”, J. Crystall Growth, Vol. 237-239, 459, (2002). 236. K. Saito, T. Oikawa, I. Yamaji, T. Akai, and H. Funakubo, “Domine structures in epitaxial PbZr0.68Ti0.32O3 thin films”, J. Crystall Growth, Vol. 237-239, 464, (2002). 237. W. C. Goh, S. Y. Xu, S. J. Wang, and C. K. Ong, “Microstructure and growth mode at early growth stage of laser-ablated epitaxial PbZr0.52Ti.048O3 films on a SrTiO3 substrate”, J. Appl. Phys., Vol. 89, No. 8, 4497, (2001). 238. P. Ahmet, T. Koida, M. Takakura, K. Nakajima, M. Yoshimoto, H. Koinuma, M. Tanaka, M. Takeguchi, and T. Chikyow, “Diffusion induced amorphization in the crystalline SrTiO3 thin films grown on Si(100) investigated by combinatorial method”, Appl. Sur. Sci., Vol. 189, 307, (2002). 239. G. Y. Yang, J. M. Finder, J. Wang, Z. L. Wang, Z. Yu, J. Ramdani, R. Droopad, K. W. Eisenbeiser, R. Ramesh, “Study of microstructure in SrTiO3/Si by high-resolution transmission electron microscopy”, J. Mater. Res., Vol. 17, No. 1, 204, (2002). 240. T. Nishimura, A. Ikeda, H. Namba, T. morishita, Y. Kido, “Structure change of TiO2-terminated SrTiO3(001) surfaces by annealing in O2 atmosphere and ultrahigh vacuum”, Sur. Sci., Vol. 421, 273, (1999). 241. S. Sathyamurthy and K. Salama, “Processing aspects of MOD strontium titanate buffer layers for coated conductor application”, Phy. C, Vol. 377, 208, (2002). 242. B. T. Liu, K. Maki, Y. So, V. Nagarajan, R. Ramesh, J. Lettieri, J. H. Haeni, D. G. Schlom, W. Tian, X. Q. Pan, F. J. Walker, and R. A. Mckee, “Epitaxial La-doped SrTiO3 on silicon: A conductive template for epitaxial ferroelectrics on silicon”, Appl. Phys. Lett., Vol. 80, No. 25, 4801, (2002). 243. B. Y. Lee, C. I. Cheon, J. S. Kim, K. S. Bank, J. C. Kim, and H. G. Lee, “Low temperature firing of PZT thick films prepared by screen printing method”, Mater. Lett., Vol. 56, 518, (2002). 244. W. Zhu, Z. Wang, C. Zhao, O. K. Tan, and H. H. Hng, “Low temperature processing of nanocrystalline lead zirconate titanate (PZT) thick films and ceramics by modified sol-gel route”, Jpn. J. Appl. Phys., Vol. 41, Part 1, No. 11B, 6969, (2002). 245. S. Takenaka and H. Kozuka, “Sol-gel preparation of single-layer, 0.75 mm thick lead zirconate titanate films from lead nitrate-titanium and zirconium alkoxide solution”, Appl. Phys. Lett., Vol. 79, No. 21, 3485, (2001). 246. J. Cheng, W. Zhu, N. Li, and L. E. Cross, “Dielectric properties of (100) textured thick Pb(ZrxTi1-x)O3 films with different Zr/Ti atom ratios”, J. Appl. Phys., Vol. 91, No. 9, 5997, (2002). 247. D. Xia, M. Liu, Y. Zeng, and C. Li, “Fabrication and electric properties of lead zirconate titanate thick films by the new sol-gel method”, Mater. Sci. and Engineer., Vol. B87, 160, (2001). 248. Y. Takahashi, “Synthetic process of sol-gel derived Pb(Zr0.53Ti0.47)O3 films using poly vinyl butyral binder”, Thin Solid Films, Vol. 370, 5, (2000). 249. S. P. Beeby, A. Blackburn, and N. M. White, “Silicon micromachining process combined with thick-film printed lead zirconate titanate actuators for microelectromechanical systems”, Mater. Lett., Vol. 40, 187, (1999). 250. H. Funakubo, K. Tokita, T. Oikawa, and M. Aratani, “Comparison of crystal structure and electrical properties of tetragonal and rhombohedral Pb(Zr,Ti)O3 films prepared at low temperature by pulsed-metalorganic chemical vapor deposition”, J. Appl. Phys. Vol. 92, No. 9, 5448, (2002). 251. F. Yan, P. Bao, H. L. W. Chan, C.-L. choy, and Y. Wang, “The grain size effect of Pb(Zr0.3Ti0.7)O3 thin films”, Thin Solid Films, Vol. 406, 282, (2002). 252. S.-H. Lee, H. M. Jang, H. H. Sung, and H. Yi, “Polarized Raman scattering Pb(Zr,Ti)O3 thin films in the tetragonal-phase field”, Appl. Phys. Lett., Vol. 81, No. 13, 2439, (2002). 253. Q. Chen, W. B. Wu, C. L. Mak, and K. H. Wong, “Growth of highly oriented of Pb(Zrx,Ti1-x)O3 thin film on porous silicon”, Thin Solid Films, Vol. 397, 1, (2001). 254. K. S. Lee, J. H. Choi, J. Y. Lee, and S. Baik, “Domain formation in epitaxial Pb(Zr,Ti)O3 thin films”, J. Appl. Phys., Vol. 90, No. 8, 4095, (2001). 255. C. R. Cho, L. F. Francis, and D. L. Polla, “Ferroelectric properties of sol-gel deposited Pb(Zr,Ti)O3/LaNiO3 thin films on single crystal and platinized-Si substrates”, Mater. Lett., Vol. 38, 125, (1999). 256. J. Zeng, M. Zhang, Z. Song, L. Wang, J. Li, K. Li, and C. Lin, “Lead-zirconate-titanate thin films deposited on silicon using a novel technique at low temperature”, Appl. Sur. Sci., Vol. 148, 137, (1999). 257. H. Kidoh, T. Ogawa, A. Morimoto, and T. Shimizu, “Ferroelectric properties of lead-zirconate-titanate films prepared by laser ablation”, Appl. Phys. Lett., Vol. 58, No. 25, 2910, (1991). 258. S. Horita, T. Naruse, M. Watanabe, A. Masuda, T. Kawada and Y. Abe, “Interface control of Pb(Zrx,Ti1-x)O3 thin film on silicon substrate with heteroepitaxial YSZ buffer layer”, Appl. Sur. Sci., Vol. 117/118, 429, (1997). 259. B.-E. Park, I. Sakai, E. Tokumitsu and H. Ishiwara, “Hysteresis characteristics of vacuum-evaporated ferroelectric PbZr0.4Ti0.6O3 films on Si(111) substrates using CeO2 buffer layers”, Appl. Sur. Sci., Vol. 117/118, 423, (1997). 260. E. Cattan, G. Velu, B. Jaber, D. Remiens, and B. Thierry, “Structure control of Pb(Zr,Ti)O3 films using PbTiO3 buffer layers produced by magnetron sputtering”, Appl. Phys. Lett., Vol. 70, No. 13, 1718, (1997). 261. C. Guerrero, C. Ferrater, J. Roldan, V. Trtik, F. Benitez, F. Sanchez, and M. Varela, “Pulsed laser deposition of epitaxial ferroelectric PbZrxTi1-xO3/SrTiO3 and PbZrxTi1-xO3/SrRuO3 bilayers”, Appl. Sur. Sci., Vol. 154-155, 500, (2000). 262. Y. K. Wang, T. Y. Tseng, and P. Lin, “Enhanced ferroelectric properties of Pb(Zr0.53Ti0.47)O3 thin films on SrRuO3/Ru/SiO2/Si substrates”, Appl. Phys. Lett., Vol. 80, No. 20, 3790, (2002). 263. H.-S. Kang and W.-J. Lee, “Effect of deposited temperature and seed layer on the optical properties of lead zirconate titanate films”, J. Vac. Sci. Technol. A, Vol. 20, No. 4, 1498, (2002). 264. Q.-Y. Shao, A.-D. Li, Y.-F. Tang, H.-Q. Ling, and N.-B. Ming, “Influence of doped and buffer layers on Pb(Zr,Ti)O3 thin films derived from inorganic zirconium precursor”, Mater. Chem. And Phys., Vol. 75, 207, (2002). 265. Q. Wan, N. Zhang, L. Wang, Q. Shen, and C. Lin, “Preparation of PZT on diamond by pulsed laser deposition with Al2O3 buffer layer”, Thin Solid Films, Vol. 415, 64, (2002). 266. S. M. Mukhopadhyay and T. C. S. Chen, “Surface properties of perovskite and their response to ion bombardment”, J. Appl. Phys., Vol. 74, No. 2, 872, (1993). 267. W. M. Lau, I. Bello, M. Sayer, and L. Zou, “Fluorine ion etching of lead zirconate-titanate thin films”, Appl. Phys. Lett., Vol. 64, No. 3, 300, (1994). 268. S. Yokoyama, Y. Ito, K. Ishihara, K. Hamada, S. Ohnishi, J. Kudo, and K. Sakiyama, “High-temperature etching of PZT/Pt/TiN structure by high-density ECR plasma”, Jpn. J. Appl. Phys., Vol. 34, 767, (1995). 269. N. Ikegami, T. Matsui, and J. Kanamori, “Dry-etching mechanism of sputtered Pb(Zr1-xTix)O3 film”, Jpn. J. Appl. Phys., Vol. 35, 2505, (1996). 270. C. W. Chung, “Reactive ion etching of Pb(ZrxTi1-x)O3 thin films in an inductively coupled plasma”, J. Vac. Sci. Technol. B, Vol. 16, No. 4, 1894, (1998). 271. M. Bale and R. E. Palmer, “Reactive ion etching of piezoelectric Pb(ZrxTi1-x)O3 in a SF6 plasma”, J. Vac. Sci. Technol. A, Vol. 17, No. 5, 2467, (1999). 272. Y.-Y. Lin, Q. Liu, T.-A. Tang, X. Yao, and W.-N. Huang, “Magnetically enhanced reactive ion etching of lead ziconate titanate thin film by CHF3 plasma”, Jpn. J. Appl. Phys., Vol. 39, 320, (2000). 273. M. Bale and R. E. Palmer, “Deep plasma etching of piezoelectric PZT with SF6”, J. Vac. Sci. Technol. B, Vol. 19, No. 6, 2020, (2001). 274. C. Soyer, E. Cattan, D. Remiiens, and M. Guilloux-Viry, “Ion beam etching of lead-zirconate-titanate thin films: Correlation between etching parameters and electrical properties evolution”, J. Appl. Phys., Vol. 92, No. 2, 1048, (2002).id NH0920593006 sid 877107 cfn 0 / id NH0920593007 auc 洪明崎 tic 現場環境加馬輻射測量研究 adc 江祥輝 ty 博士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 106 kwc 環境輻射 kwc 輻射度量 kwc 現場量測 kwc 地表輻射 kwc 宇宙射線 kwc 氡濃度 kwc 雨水中天然放射線量測 kwc 空氣吸收劑量率 abc 準確測量環境加馬射線空氣吸收劑量率,需要考量地表輻射、長半化期人造放射性核種和宇宙射線。為了快速評估輻射劑量率和辨別存在的放射性核種,現場環境加馬輻射測量技術發展是值得肯定的。傳統現場加馬射線測譜,由脈高譜的全能峰計數率可決定土壤?存在的放射性核種活度。為了從全能峰計數率估計放射性核種活度,首先要決定測量位置的通量率和角度修正因數。然而,角度修正因數主要視偵檢器的特性和射源分佈而定,其估計過程相當複雜。角度修正因數的決定相當困難,一般必須執行複雜的偵檢器角度響應校正,並配合由理論計算推導出來之角通量率。 tc 第一章 緒論 引言 1.1 文獻回顧 1.2 研究方向 1.2.1 現場環境加馬輻射劑量測量研究 1.2.2 雨水中氡子核和雲氣中氡濃度探討 第二章 加馬射線監測系統 2.1 高壓游離腔監測系統 2.1.1 結構 2.1.2 能量與角度響應函數 2.1.3 宇宙射線對高壓游離腔測量結果之貢獻 2.2 加馬射線測譜系統 2.2.1 高純鍺偵檢器偵測系統 2.2.2 高純鍺偵檢器的絕對尖峰效率 2.2.3 加馬射線劑量率常數 2.2.3.1 無限體積射源 2.2.3.2 無限平面射源 第三章 現場定點環境輻射實測 3.1 環境空間加馬輻射劑量測定 3.1.1 地表加馬射線劑量測定 3.1.2 宇宙射線游離成份劑量率推估 3.1.3 大氣中放射性核種加馬射線劑量測定 3.2 評估雨水中氡子核與高空雲氣中氡濃度 3.2.1 大氣中和雨水中氡子核生成 3.2.2 HPGe測定法 3.2.3 HPIC量測法 第四章 結果與討論 4.1 地表加馬輻射 4.2 來自宇宙射線游離成份貢獻劑量 4.3 雨水中氡子核和高空雲中氡濃度 4.3.1 HPGe測定法 4.3.2 HPIC量測法 4.4 大氣中氡子核濃度 第五章 結論與建議 5.1 結論 5.1.1 環境加馬輻射劑量率測量 5.1.2 雨水中氡子核和雲氣中濃度測量 5.2 未來研究方向建議 第六章 其他應用:特定場所現場測量 6.1 核一廠廠界內外現場定點測定 6.2 核二廠廠界內外現場定點測定 參考文獻 附錄:相關論文發表rf 1. NCRP Report No. 50, 1976. Environmental Radiation Measurements, National Council on Radiation Protection and Measurements, Bethesda, MD. 2. H. L. Beck, W. M. Lowder, B. G. Bennett, and W. J. Condon, 1966. Further Studies of External Evironmental Radiation, Report HASL-170. 3. D. T. Oakley, 1972. Natural Radiation Exposure in the United States, EPA, Report ORP/SID 72-1, Washington, USA. 4. J. A. S. Adams and P. Gasparini, 1970. Gamma-ray spectrometry of rocks, Elsevier Publishing Co., Amsterdam. 5. S. Minato and M. Kawano, 1970. On the constitution of terrestrial gamma radiation. J. Geophys. Rev. 75, pp. 5825. 6. H. L. Beck, J. De Campo and C.V. Gogolak, 1972. In situ Ge(Li) and NaI(Tl) gamma-ray spectrometry, Report HASL-258. 7. J. E. Hewitt, L. Hughes, and J. B. McCaslin, 1980. Exposure to cosmic-ray neutrons at commercial jet aircraft altitudes, in: Natural Radiation Environment III, CONF-780422, pp. 855-881. 8. H. L. Beck, 1982. The physics of environmental gamma radiation fields, in: Natural Radiation Environment Ⅱ, Conf-720805-p2, pp. 101-134. 9. C. V. Gogolak, and K. M. Miller, 1974. Method for obtaining radiation exposure due to a boiling water reactor plume from continuously monitoring ionization chambers, Health Physics 27, pp. 132-134. 10. R. R. Finck, K. Lidén and B. R. R. Persson, 1976. In situ measurements of environmental gamma radiation by the use of a Ge(Li)-spectrometer, Nucl. Instr. and Meth. 135, pp. 559-567. 11. C. T. R. Wilson, 1902. On radioactivity rain, Proc. Camb. Phil. Soc., 11, pp. 428. 12. A. Gockel, and T. Wulf, 1908. Beobachtungenüber die radio aktivität der atmosphäre in Hochgebirge, Phys. Zs., 9, pp. 907-911. 13. P. E. Damon, and P. K. Kuroda, 1954. On the natural radioactivity of rainfall, Transactions American Geophysical Union, 35, pp. 208-216. 14. S. Minato, 1980. Analysis of time variations in natural background gamma radiation flux density, J. Nucl. Sci. Technol. 17, pp. 461-469. 15. R. R. Finck, and B. R. R. Persson, 1980. In situ Ge(Li)-spectrometric measurements of gamma radiation from radon daughters under different weather conditions, Proc. Natural Radiation Environment III, CONF-780422, pp. 357-369. 16. A. Katase, Y. Narahara, Y. Ishihara, K. Tanaka, and H. Matsuyama, 1982. Variation of intensity of environmental gamma rays measured with Ge(Li) spectrometer, J. Nucl. Sci. Technol. 19, pp. 918-927. 17. N. Fujinami, 1996. Observational study of the scavenging of radon daughters by precipitation from the atmosphere, Environment International, 22, Suppl. 1, S181-S185. 18. N. Fujinami, S. Esaka, and S. Minato, 1993. Estimation of cloud parameters from short-lived Rn daughter activities of rainwater, Nucl. Geophys. 7, pp. 359-366. 19. W. Jacobi, 1961. Die anlagerung von naturlichen radionukliden an aerosolpartikel und niederschlagselemente in der atmosphare, Geofisica Pura Applicata 50, pp. 260. 20. S. Minato, 1983. Estimate of radon-222 concentrations in rainclouds from radioactivity of rainwater observed at ground level, J. Radioanal. Chem. 78, pp. 199-207. 21. Y. Ikebe, K. Saijo, T. Iida, H. Nagai and T. Takeda, 1985. A Model for precipitation sacavenging of short-lived Rn-222 daughters, Res. Lett, Atmos. Electric. 5, pp. 17. 22. S. H. Jiang, J. H. Liang, J. T. Chou, U. T. Lin, and W. W. Yeh, 1998. Nucl. Instr. and Meth. in Phys. Res., A413, pp. 281. 23. Reuter Stokes, 1991. RSS-120/121 gamma radiation sensors operational manual, ver.1.4, Twinsburg, Ohio. 24. W. M. Lowder, and H. L. Berck, 1966. Cosmic-ray ionization in the lower atmosphere, J. Geophys. Res. 71, pp. 4661. 25. R. L. Kathren, 1984. Radioactivity in the environment: sources, distribution, and surveillance, Harwood Academic Publishers, New York. 26. L. Moens, J. De Donder, Lin Xi-lei, F. De Corte, A. De Wispelaere, A. Simonits, and J. Hoste, 1981. Nucl. Instr. and Meth. 187, pp. 451. 27. American Nuclear Society, 1979. Calculation and measurement of direct and scattered gamma radiation from LWR nuclear power plants, ANSI/ANS-6.6.1, Illinois, USA. 28. RSIC code CCC-493, 1989. QAD point kernel general purpose shielding codes, QAD P5A, Oak Ridge National Laboratory, DOE, USA. 29. ICRP Publication 38, 1983. Radionuclide transformations: energy and intensity of emissions, Pergamon Press, New York, USA. 30. K. Saito and P. Jacob, 1995. Gamma ray fields in the air due to sources in the ground, Radiat. Protect. Dosim. Vol. 58, No. 1, pp. 29-45. 31. A. Clouvas, S. Xanthos, M. Antonopoulos-Domis, and J. Silva, 2000. Monte carlo calculation of dose rate conversion factors for external exposure to photon emitters in soil, Health Phys., Vol. 78, No. 3, pp. 295-302. 32. P. D. Raft, W. M. Lowder, and H. L. beck, 1968-70. Measurements of cosmic-ray ionization in the atmosphere, Health and Safety Laboratory, AEC, HASL-234, New York, USA. 33. P. S. Weng and C. F. Chen, 1987. Cosmic-ray ionization in the lower atmosphere, Health Phys., 52, pp. 347-352. 34. J. A. B. Gibson, J. E. Richards, and J. Dogherty, 1969. Nuclear radiation in the environment-beta and gamma-ray dose rates and air ionization from 1951 to 1968, J. Atoms. Terr. Phys., 31, pp. 1183. 35. C. V. Gogolak, 1984. Rapid determinations of noble gas radionuclide concentrations in power reactor plumes, Health Phys. 46, pp. 783-792. 36. R. J. Engelmann, 1968. The calculation of precipitation scavenging in meteorology and atomic energy, D. H. Slade, Ed. USAEC Report TID-24190, pp. 208. 37. B. J. Mason, 1962. Clouds, rain and rain-making, Cambridge University Press, London. 38. J. R. Lamarsh, 1996. Introduction to nuclear engineering, 3nd Edition, Addision Wesley Press, Inc., pp. 660-662. 39. L. Svensson, 1978. Dose conversion factors for external irradiation of man, National Defence Research Institute, FOA Report C 40060-A3, Stockholm, Sweden. 40. United National Scientific Committee on the Effects of Atomic Radiation, 1988. Sources, effects, and risks of ionizing radiation, United Nations, New York. 41. T. Nishikawa, M. Aoki, and S. Okabe, 1985. Time variation of 222Rn progeny concentration in rainwater, Health Phys. 49(6), pp. 1284-1289. 42. H. Hayakawa, 1985. Radon-concentration-in-cloud and rainfall-rate dependency of short-lived radon daughters in rainwater, J. Nucl. Sci. Tech. 22, pp. 292-300. 43. N. Fujinami, S. Esaka, and S. Minato, 1985. Influence of the precipitation rate on the seasonal variation in the specific radioactivity of short-lived 222Rn daughters in precipitation. J. Radioanal. Nucl. Chem., Letters 95, pp. 111-118. 44. K. Yoshioka, 1989. Soil moisture gauge using terrestrial gamma-rays, Nucl. Geophys. 3, pp. 397. 45. H. Matsuda, 1992. A spectrometric method of evaluating soil moisture using terrestrial gamma rays, Trans. Am. Nucl. Soc. 65, Suppl. 1, pp. 66. 46. American National Standard Radioactive Source Term Normal Operation of Light Water Reactors, ANSI/ANS-18.1. 47. W. R. Nelson, H. Hirayama, and D.W.O. Rogers, 1985. SLAC-265, Standford Linear Accelerator Center, Standford, California, December. 48. H. L. Beck, 1966. Environmental gamma radiation from deposited fission products, 1960 — 1964, Health Physics, 12, pp. 313-322. 49. ICRU Report 53, 1994. Gamma-ray spectrometry in the environment, International Commission on Radiation Units and Measurements, Bethesda, MD. 50. I. K. Helfer and K. M. Miller, 1988. Calibration factors for Ge detectors used for field spectrometry, Health Phys. 55, pp. 15-29. 51. H. Israel and G. W. Israel, 1965. Measurements of thoron content of the atmosphere and their application in meteorology, Final. Tech. Report, U.S. Army Contract DA-91-591-EUC-3488, NTIS, Springfield, Virginia. 52. D. G. Andrews, 2000. An introduction to atmospheric physics, Cambridge University Press, New York, USA. 53. W. P. Kirk, 1972. Krypton-85, A review of the literature and an analysis of radiation hazards, Report PB-207079, U. S. EPA, Montgomery, Alabama. 54. 鄭子政,1981. 大氣科學概論,國立編譯館出版,台北市。 55. 王寶貫,1997. 雲物理學,國立編譯館出版,台北市。id NH0920593007 sid 847111 cfn 0 / id NH0920593008 auc 萬文武 tic 掃描電容顯微鏡量測分析技術於探討退火製程對半導體超淺接面特性之影響研究 adc 梁正宏 博士 adc 張茂男 博士 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 67 kwc 掃描電容顯微鏡 kwc 超淺接面 abc 本論文研究係採用20 keV、5×1014 cm-2分子離子劑量的BF2+分子離子作為佈植條件。退火方式包括急遽熱退火(spike annealing,簡稱SA)與爐退火(furnace annealing,簡稱FA)兩種,而退火製程則分別使用單一階段(SA)與二階段(SA+FA與FA+SA)。至於特性量測實驗上,則利用掃描電容顯微鏡來量測二維自由載子微分電容影像及訊號,配合二次離子質譜儀來量測摻雜元素縱深分布、四點探針來量測表面片電阻值、展阻分析儀來量測一維自由載子縱深分佈、以及I-V半導體元件參數分析儀來量測P+-N接面漏電流,並進行相互驗證與比較分析工作。研究結果顯示:含有氟離子的BF2+分子離子佈植對硼離子的擴散速率會有明顯的抑制作用。而在單一階段 1050℃ SA系列的試片之中, 其TED的擴散速率較1100℃者為小,顯示TED效應對熱退火溫度的影響甚為敏感。由掃描式電容顯微鏡所獲得的二維自由載子微分電容影像與訊號以及P+-N接面空乏區的結果得知:急遽熱退火的溫度對於摻雜元素的活化程度與自由載子的濃度分佈有決定性的影響,雖然1100℃急遽熱退火系列的試片有較佳的活化程度,但因硼離子在高溫時的擴散活化速率非常快,會導致較大的電性接面深度以及自由載子的濃度分佈不集中。反之,二階段的1050℃ SA+550℃ 3小時FA的熱退火製程,則為形成一深度淺且陡峭的P+-N超淺接面的最佳熱退火參數。經單一階段550℃ 3小時FA熱退火後的試片,其表面片電阻值仍高達1544 Ω/sq.,顯示在較低的熱退火溫度時,其所供給的熱能只足夠讓受損晶格緩慢回復,而摻雜元素的活化程度並不高。而在二階段熱退火製程之中, SA+FA的表面片電阻值會比FA+SA者來得低,從展阻分析儀的自由載子濃度量測結果得知:SA+FA試片其摻雜元素的活化程度較FA +SA者時為高。由穿透式電子顯微鏡的結構影像觀測結果得知:1050℃ SA+550℃ 3小時FA與1100℃ SA+550℃ 3小時FA的試片,其熱退火後在佈植區域中並無明顯的殘餘缺陷(residual defects)存在,而在a/c 界面亦無觀測到EOR缺陷的出現。在P+-N接面漏電流的可靠性量測結果顯示:1050℃ SA+550℃ 3小時FA熱退火製程的漏電流為本實驗所有熱退火製程中的最小值,得知此一條件為本論文研究中,形成P+-N超淺接面的最佳熱退火製程。 tc 第一章 前言 ……………………………………………………………1 第二章 文獻回顧 ………………………………………………………4 2.1 超淺接面製程與快速熱退火技術的演進 ...…..…………4 2.2 掃描電容顯微鏡 …………………………….…………6 第三章 實驗方法 …………….………………………………………...8 3.1 試片製作 ……………………………………….…………8 3.2 熱退火製程 ……………………………………………...10 3.3特性量測 ……………..…………………………………...11 3.3.1 掃描電容顯微鏡 ……………………………....11 3.3.2 二次離子直譜儀 …………………………………17 3.3.3穿透式電子顯微鏡 ….……………………………19 3.3.4四點探針電阻分析儀 …….………………………22 3.3.5展阻分析儀 ………..…………...…………………22 3.3.6 I-V半導體元件參數分析儀 …..….………… ……25 第四章 結果與討論 …………………………………………….…….38 4.1摻雜元素的縱深分佈 ………...…………..………….…..38 4.2二維自由載子濃度分佈的量測與摻雜元素活化情形的觀 察…………..…………………………………...…...........40 4.2.1 SCM橫截面微分電容影像及其訊號 ……………..40 4.2.2表面片電阻與一維自由載子濃度分佈量測….…….43 4.3退火處理後其缺陷微結構的變化情形 …....…..….…..45 4.4 P+-N接面漏電流的量測分析………...…...….…….…..46 第五章 結論與建議 ………………………………………… ………..62 第六章 參考文獻 …………………………… ………………………..64rf 六、參考文獻 1. 吳孟奇、洪勝富、連振祈、龔正譯,半導體元件,東華書局,(2001) 1. 2. A.F. Tasch, and S.K. Banerjee, Nucl. Instr. and Meth. in Phys. Res., B112 (1996) 177. 3. M.C. Ozturk, J.J. Wortman, C.M. Osburn, A. Ajmera, G.A. Rozgonyi, E. Frey, W.K. Chu, and C. Lee, IEEE Tran. Electron Devices, 35 (1988) 659. 4. H. Tsukamoto, Electronics Letters, 34 (1998) 401. 5. J. Xu, E.G. Roth, O.W. Holland, A.P. Mills, and R. Suzuki, Appl. Phys. Lett., 74 (1999) 997. 6. 張文亮,奈米通訊,第八卷第二期,(2001) 9. 7. The National Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose, (2000) 46. 8. T.K. Kwok, P.K. Chu, and C. Chan, Appl. Phys. Lett., 88 (2000) 3198. 9. K.J. Kramer, S. Talwar, I.T. Lewis, J.E. Davison, K.A. Williams, K.A. Benton, and K.H. Weiner, Appl. Phys. Lett., 68 (1996) 2320. 10. M. Nakano, H. Kotaki, K. Sugimoto, T. Okumine, F. Yoshioka, S. Kakimoto, K. Ohta, and N. Hashizume, Jpn. J. Appl. Phys, 39 (2000) 2155. 11. K.K. Seon, S.Y. Heub, P.K. Tae, K. Hiroyuki, M. Takashi, H. Kazuhiro, Thin Solid Films, (2000) 207. 12. H. Wakabayashi, M. Ueki, M. Narihiro, T. Fukai, N. Ikezawa, T. Matsuda, K. Yoshida, K. Takeuchi, Y. Ochiai, T. Mogami, and T. Kunio, IEEE Tran. Electron Devices, 49 (2002) 89. 13. J.H. Lee, J.Y. Lee, D.H. Weon, S.H. Hahn, and S.K. Lee, J. Vac. Sci. Technol., B21 (2003) 936. 14. Y. Takamura, P.B. Griffin, and J.D. Plummer, J. Appl. Phys., 92 (2002) 235. 15. D.F. Downey, J.W. Chow, E. Ishida, and K.S. Jones, Appl. Phys. Lett., 73 (1998) 1263. 16. C.C. Williams, W. P. Hough, and S. A. Rishton, Appl. Phys. Lett., 55 (1989) 203. 17. J. Isenbart, A. Born, and R. Wiesendanger, Appl. phys., A72 (2001) S243. 18. Y. Takasaki, T. Yamamoto, Microelectronics Reliability, 39 (1999) 987. 19. E.D. Wolf, and T.E. Everhart, Appl. Phys. Lett., 14 (1969) 299. 20. M. Natarajan, T.T. Sheng, K.L. Pey, Y.P. Lee, and M.K. Radhakrishnan, Proceedings of 6th IPFA ‘1997’, Singapore, (1997) 86. 21. SCM Support Note No.224, Rev. C, Digital Instruments, Santa Barbara CA, (1996) 224. 22. M. Leicht, G. Fritzer, B. Basnar, S. Golka, and J. Smoliner, Microelectronics Reliability, 41 (2001) 1535. 23. P. Malberti, L. Ciampolini, M. Ciappa and W. Fichtner, Microelectronics Reliability, 40 (2000) 1395. 24. M.N. Chang, C.Y. Chen, F.M. Pan, J.H. Lai, W.W. Wan, and J.H. Liang, Appl. Phys. Lett., 82 (2003) 3955. 25. 汪建民主編,材料分析,中國材料學會,(1998) 383. 26. M.V. Cread, P.V. Espen, and F. Adams, Rev. Sci. Instrum., 53 (1982) 1007. 27. L.B. Valdes, Proc. IRE, 42 (1954) 420. 28. D.K. Schroder, Semiconductor Matereial and Device Characterization, Wiley-Interscience, New York, (1998) 31. 29. R.G. Mazur, J. Vac. Sci. Technol., B10 (1992) 397. 30. Y. Murakami and T. Shingyouji, J. Appl. Phys., 75 (1994) 3548. 31. K.D. Yoo, C.D. Marsh, and G.R. Booker, Appl. Phys. Lett., 80 (2002) 2687. 32. A. Sultan, S. Banerjee, S. List, and M. Rodder, Appl. Phys. Lett., 69 (1996) 2228. 33. T.H. Huang, H. Kinoshita, and D.L. Kwong, Appl. Phys. Lett., 65 (1994) 1829. 34. 曾堅信、蔣曉白,奈米通訊,第五卷第二期,(1998) 23. 35. V.V. Zavyalov, J.S. McMurray, and C.C. Williams, J. Appl. Phys., 85 (1999) 7774. 36. K.S. Jones, D.K. Sadana, S. Prussin, J. Washburn, E.R. Weber, and W.J. Hamilton, J. Appl. Phys., 63 (1988) 1414. 37. M. Craig, A. Sultan, K. Reddy, B. Banerjee, E. Ishida, and L. Larson, J. Vac. Sci. Technol., B14 (1996) 255. 38. S. Libertino, J.L. Benton, D.C. Jacobson, D.J. Eaglesham, J.M. Poate, S. Coffa, P. Kringhoj, P.G. Fuochi, and M. Lavalle, Appl. Phys. Lett., 71 (1997) 389. 39. L.S. Robertson, K.S. Jones, L.M. Rubin, and J. Jackson, J. Appl. Phys., 87 (2000) 2910. 40. S. Solmi, L. Mancini, S. Milita, M. Servidori, G. Mannino, and M. Bersani, Appl. Phys. Lett., 79 (2001) 1103. 41. S.M. Sze, SEMICONDUCTOR DEVIVES Physics and Technology ,John Wiley & Sons, New York, (1985) 111.id NH0920593008 sid 903194 cfn 0 / id NH0920593009 auc 魏銘德 tic 研究基板上電場強度與其對成長奈米碳管的影響 adc 蔡春鴻 adc 柳克強 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg - kwc 奈米碳管 abc 本論文研究內容,在於成長奈米碳管時所施加的偏壓,計算在基板表面所產生的電場強度,並且了解施加電場強度在成長奈米碳管的影響。施加偏壓的方式一般分為直流偏壓(DC Bias)與射頻偏壓(RF Bias),直流偏壓可以直接量測其偏壓,進而計算基板上的電場強度;然而施加射頻偏壓無法在成長奈米碳管時及時量測基板表面偏壓,所以必須藉由自製的阻抗量測器(Impedance meter)做為輔助。 tc 第一章 奈米碳管的簡介 1 第二章 文獻回顧 5 2.1 奈米碳管的歷史與及應用 5 2.2 成長奈米碳管的方式 6 2.3 成長奈米碳管的機制 6 2.4 電場對成長奈米碳管的影響 8 第三章 基本原理 15 3.1 電感式耦合電漿源(Inductivity couple plasma)基本原理 15 3.1.1 電漿加熱機制 16 3.1.2 ICP操作模式 17 3.1.3 阻抗匹配原理 19 3.1.4 ICP電漿源系統之等效電路 20 3.2 電漿鞘層的形成 22 3.2.1 自我偏壓(Self-bias)的形成 22 3.2.2 電極板非對稱性系統 24 3.3 電漿鞘層內電場的計算 26 3.3.1 Matrix sheath 26 3.3.2 Child’s law sheath 27 3.4 蘭牟爾探針(Langmuir probe) 29 3.4.1 蘭牟爾探針理論分析 29 3.4.2 蘭牟爾探針收集電流的原理 30 3.4.3 I-V 曲線的基本特性 36 3.4.4 蘭牟爾探針補償原理 38 第四章 實驗設備與量測系統 40 4.1 實驗機台 40 4.1.1 真空系統 41 4.1.2 壓力量測與控制 41 4.1.3 流量控制 42 4.1.4 溫度控制 42 4.1.5 溫度量測 42 4.1.6 射頻功率產生器 43 4.1.7 射頻匹配網路箱 43 4.1.8 電腦控制面板 43 4.2 阻抗量測儀器基本原理 44 4.2.1 射頻電壓量測 46 4.2.2 射頻電流量測 48 4.2.3 相位量測 50 4.2.4 衰減器(Attenuator) 53 4.3 自製阻抗量測器元件 54 第五章 實驗結果與討論 55 5.1 氬氣電漿量測 55 5.2 製程氣體電漿量測 62 5.3 溫度校正 68 5.4 成長奈米碳管 69 5.5 穿透式電子顯微鏡分析 70 5.6 不同偏壓成長奈米碳管 71 5.7 成長奈米碳管均勻性 79 5.8 不同氣體比率成長奈米碳管 84 5.9 不同壓力成長奈米碳管 86 5.10 不同成長奈米碳管時間 93 第六章 結論與建議 98 6.1 結論 98 6.2 建議 99 參考文獻 101 附錄 104 I.電漿鞘層阻抗量測 (Sheath resistance measurement) 104 II. 蘭牟爾探針原始數據 113 第一部份 : 113 第二部份 : 117 第三部份 : 122 第四部份 : 不同ICP功率 126rf [1 ]S. Iijima, Nature, 56, 354, (1991) [2 ] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett 49, 243(1995) [3 ] C. Bower, and W. Zhu, S. Jin, and O. Zhou, Appl. Phys. Lett. ,77, 830,(2000) [4 ] Yuegang Zhang, Aileen Chang, and Hongjie Dai, "Electric Field Directed Growth of Single-Walled Carbon Nanotubes", Appl. Phys. Lett., 79, 3155 (2001) [5 ] Lance Delzeit, lan McAninch, Brett A. Cruden, David Hash, Bin Chen, Jie Han, M.Meyyappan, J. Appl. Phys., 91, 6027, (2002) [6 ] M Meyyappan, Lance Delzeit, Alan Cassell1 and David Hash, Plasma Sources Sci. Technol. 12 (2003) 205—216 [7 ] Shin-ichi HONDA, Mitsuhiro KATAYAMA, Kuei-Yi LEE, Takashi IKUNO, Shigeharu OHKURA,Kenjiro OURA, Hiroshi FURUTA1 and Takashi HIRAO1, Jpn. J. Appl. Phys. Vol. 42 (2003) pp. L 441—L 443 [8 ] V. I. Merkulov,D. H. Lowndes, Y. Y. Wei, and G. Eres Appl. Phys. Lett., 76, 3555 (2000) [9 ] M. Tuszewski, Appl. Phys, V79. N12. PP.8967-8975(1996) [10 ]Tomohior Okumura and Ichiro Nakayama, Rev. Sci Instrum. 66(11),(1995) [11 ]S. Iijima and T.Ichihashi, Nature 363, 603, (1993) [12 ]R. S. Wagner and W. C. Ellis, Appl. Phys. Lett, (1964) [13 ]Vladimir I. Merkulov, A. V. Melechko, M. A. Guillorn and M. L. Simpsonc, Appl. Phys. Lett, V80, N25, (2002) [14 ]R. Patrick, S. Baldwin, N. Williams, J. Vac. Sci. Technol. A 18(2), Mar/Apr (2000) [15 ]R. A. hass, Phys, Rev. A8. PP. 1017(1973) [16 ]Lieberman, V. A. Godyak, Plasma Science , IEEE Transaction on, V.26, N3, PP. 955-986, (1998) [17 ]Vahedi, M. A. Lieberman, G. DiPeso, T. D. Rognlien and D. Hewett, J. Appl. Phys. 78(3), 1A, PP. 1466-1458, (1955) [18 ]W. Hittorf, Widemanns, Ann. Phys. 21, P. 90 (1884) [19 ]Oleg A.Popov, High Density Plasma Source, PP. 83(1995) [20 ]簡鈺庭, 1999年7月, ” 脈衝調變式電感式電漿源之製作與特性量測 ” , 國立清華大學工程與系統科學系碩士班碩士論文 [21 ]Principle of plasma discharge and materials processing, M. A. Lieberman and A. J. Lichtenberg, chapter 6 [22 ]Langmir, I. and H. M. Mott-smith, Gen. Elec. Rev. 26(1923) 731;27(1924) 449, 583, 616, 726, 810;Phys. Rev. 28(1926)727 [23 ]潘興強, 1998年7月, ”蘭牟爾探針量測系統發展 ”, 國立清華大學工程與系統科學系碩士班碩士論文 [24 ]張慶彥, 1998年7月,“具射頻補償之蘭牟爾探針電漿量測系統之研製與量測分析 ” , 國立清華大學工程與系統科學系碩士班碩士論文 [25 ]張家豪, 2000年7月, ” 300mm晶圓電感式電漿蝕刻機台之研製與電漿特性量測分析“ , 國立清華大學工程與系統科學系碩士班碩士論文 [26 ]陳金雄, 2000年7月,“ 電感耦合式電漿源不穩定性現象之量測與分析 ” , 國立清華大學工程與系統科學系碩士班碩士論文 [27 ]http://www.ni.com [28 ]http://www.minicircuits.com [29 ] Jennifer L Kleber and Lawrence J Overzet , Plasma Sources Sci. Technol. 8(1999)534-543 [30 ]Hopkins M B 1995 J. Res. Natl Inst. Stand. Technol. 100 415 [31 ]Nachiket R. Raravikar et al., Phys. Rev. B 66, 235424, 2002. [32 ]F. Tuinstra, J. L. Koenig, J. Chem. Phys. 53, 3, 1970. [33 ]Yun Tack Lee et al., J. Phys. Chem. B 106, 2002.id NH0920593009 sid 903190 cfn 0 / id NH0920593010 auc 韓昊名 tic 硼核團離子佈植技術應用於淺接面製作及相關特性之研究 adc 梁正宏 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 93 kwc 離子佈植 kwc 硼 kwc 核團離子 abc 本論文研究係以等核團能量以及低劑量、高劑量等原子能量Bn核團的離子佈植技術,探討其離子佈植的特性以及形成淺接面的應用性。在等核團能量離子佈植的研究中,將利用能量皆為77 keV的Bn核團離子(包括有B1、B2、B3、與B4)以等原子劑量5×1013/cm2佈植於n-type(100)矽晶圓(4~7 Ω-cm),並將佈植後的靶材予以1050℃ 25 sec快速熱退火處理,以探討隨著核團離子尺寸改變,硼原子在靶材內部的縱深分佈情形,以及退火後輻射增強擴散效應(radiation-enhanced diffusion,簡稱 RED)對硼原子縱深分佈的影響。所有試片均以二次離子質譜儀量測其內的硼原子縱深分佈,並利用皮爾森分佈配合最小平方法,來擬合硼原子縱深分佈的四個射程參數值。結果顯示:不論是退火前或經退火後,所有的硼原子縱深分佈均可利用皮爾森分佈法予以適當描述,且當Bn核團離子越大時,則佈植後的硼原子縱深分佈越淺。在等原子能量離子佈植的研究中,係使用核團能量分別為20 keV、40 keV、60 keV、與80 keV 的B1、B2、B3、與B4 核團離子進行佈植,並分為低劑量(等硼原子劑量為5×1013/cm2)以及高劑量(等硼原子劑量為1016/cm2)兩部分予以探討。在低劑量Bn核團離子佈植的試片之中,分別進行單一階段RTA 1050℃ 10秒以及二階段FA 550℃ 1小時 + RTA 1050℃ 10秒退火處理,藉以探討不同退火條件下,硼原子的縱深分佈以及表面片電阻值隨核團離子尺寸的變化情形。研究結果顯示:佈植後所造成的硼原子縱深分佈會隨著核團離子越大而越深;在經過二階段退火處理後,輻射增強擴散效應會隨著核團離子越大而越小。比較單一階段RTA與二階段FA + RTA退火兩製程,發現經二階段退火處理,其硼原子的輻射增強擴散現象明顯較單一階段退火者為小。由表面片電阻值的量測結果中,發現當以B1、B2核團離子佈植時,經單一階段退火後會有較小的表面片電阻值,且其值隨著核團離子越大而越小;當以B3、B4核團離子佈植時,則發現經二階段退火後會有較小的表面片電阻值,且其值隨著核團離子越大而越大。在高劑量Bn核團離子佈植的試片之中,則皆以二階段退火處理,並利用二次離子質譜儀量測其內的硼原子縱深分佈、溝道式拉塞福背向散射儀量測靶材內部缺陷的縱深分佈、以及穿透式電子顯微鏡觀察靶材內部與表面的微觀結構影像。研究結果顯示:Bn核團離子佈植的輻射損傷量,會隨著核團離子越大而越大,且呈非線性關係;在經二階段退火後,靶材內部仍有殘餘缺陷存在。但在B4核團離子佈植的條件之中,因佈植時已使靶材達到非晶化程度,致使在進行FA退火時發生固相磊晶成長,有助於缺陷大量的消除。 tc 第一章 前言 ……………………………………………………………1 第二章 文獻回顧 ………………………………………………………5 第三章 實驗方法 …………………………………………..…………..9 3-1 離子佈植 ………………………………………………….9 3-1-1 加速器設備 ……………………….………………..9 3-1-2 離子佈植實驗方法 ……………….………………11 3-2 退火製程 …………………………………...……………13 3-3 理論模擬 …………………………………….…………..15 3-4 特性量測 …………………………………..…………….16 3-4-1 二次離子質譜儀 …………….……………………17 3-4-2 曲線擬合 …………………………...……………..20 3-4-3 溝道式拉塞福背向散射儀 ……………………….22 3-4-3-1 拉塞福背向散射分析技術 ……….………..23 3-4-3-2 溝道效應分析技術 ………….……………..27 3-4-3-3 溝道式拉塞福背向散射分析實驗步驟 …...29 3-4-3-4 損傷定量分析 ……………………………...31 3-4-4 四點探針片電阻值量測儀 ……………………….31 3-4-5 穿透式電子顯微鏡 ……………………………….33 第四章 結果與討論 ……………………………………………….….45 4-1 陰離子射束的質譜分析 ……………………………..….45 4-2 等核團能量硼核團離子佈植 ……………………....….45 4-2-1 SRIM電腦程式的理論模擬 …………………….46 4-2-2 等核團能量佈植的硼原子縱深分佈 ………....….47 4-2-3 等核團能量佈植的表面片電阻値 …………….....50 4-3 等原子能量硼核團離子佈植 …………………………..50 4-3-1 低劑量等原子能量硼原子縱深分佈 …………….51 4-3-2 低劑量等原子能量佈植的表面片電阻値量測 ….53 4-3-3 高劑量等原子能量佈植的硼原子縱深分佈 …….54 4-3-4 高劑量等原子能量佈植的缺陷縱深分佈 ……….55 4-3-5 高劑量等原子能量佈植的表面片電阻値 ……….58 4-3-6 高劑量等原子能量佈植的TEM微觀結構分析 ...59 第五章 結論與建議 …………………………………………………..88 參考文獻 ………………..………………………………………….….91rf 參考文獻 [1 ] S. Moffatt, Nucl. Instr. and Meth. B96 (1995) 1. [2 ] G. Ghibaudo, Semiconductors and Semimetals, vol. 45 (1997) xiii [3 ] W.K. Chu, J. Liu, J. Jin, X. Liu, L. Shao, Q. Li, and P. Ling, in: 16th International Conference on Application of Accelerators in Research and Industry, Denton, TX, USA, 1-4 November, 2000, p891. [4 ] J.H. Liang, S.L. Chiang, C.T. Chen, H. Niu, and M.S. Tseng, Nucl. Instr. and Meth. B190 (2002) 767. [5 ] D. Takeuchi, N. Shimada, J. Matsuo, and I. Ymada, Nucl. Instr. and Meth. B121 (1997) 345. [6 ] J. Liu, X. Wang, L. Shao, X. Lu, and W.K. Chu, Nucl. Instr. and Meth. B 190 (2002) 787. [7 ] X. M. Wang, H. Chen, L. Shao, J.R. Liu, and W.K. Chu, Nucl. Instr. and Meth. B196 (2002) 100. [8 ] J.R. Liu, X.M. Wang, L. Shao, H. Chen, and W.K. Chu, Nucl. Instr. and Meth. B197 (2002) 101. [9 ] The National Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose (2000) 46. [10 ] T.E. Seidel, Nucl. Instr. and Meth. B7/8 (1985) 251. [11 ] T.E. Seidel, IEEE Electron Device Letters, EDL-4 (1983) 353. [12 ] M.C. Ozturk, J.J. Wortman, C.M. Osburn, Atul Ajmera, G.A. Rozgonyi, E. Frey, W.-K. Chu, and C. Lee, IEEE Tran. Electron Devices 35 (1988) 659. [13 ] S.N. Hong, G.A. Ruggles, J.J. Wortman, and M.C. Ozturk, IEEE Tran. Electron Devices 38 (1991) 477. [14 ] K. Goto. J. Matsuo, Y. Tada, T. Sugii, and I. Yamada, IEEE Tran. Electron Devices 46 (1999) 683. [15 ] X.M. Wang, X.M. Lu, L. Shao, J.R. Liu, and W.K. Chu, Nucl. Instr. and Meth. B196 (2002) 198. [16 ] N. Toyoda, H. Kitani, N. Hagiwara, J. Matsuo, and I. Yamada, Mater. Chem. and Phys. 54 (1998) 106. [17 ] H.R. Siekmann, Ch. Luder, J. Faehrmann, H.O. Lutz, and K.H. Meiwes-Broer, Z. Phy. D. 20 (1991) 417. [18 ] P. Sigmund, I.S. Bitensky, and J. Jensen, Nucl. Instr. and Meth. B112 (1996) 1. [19 ] E. Ray, R. Kirsch, H.H. Mikkelsen, J.C. Poizat, and J. Remillieux, Nucl. Instr. and Meth. B69 (1992) 133. [20 ] I. Yamada, Nucl. Instr. and Meth. B112 (1996) 242. [21 ] Z.X. Xie, X.M. Wang, X.M. Lu, J.R. Liu, W.K. Chu, in: 16th International Conference on Application of Accelerators in Research and Industry, Denton, TX, USA, 1-4 November, 2000, p987. [22 ] 張文亮,奈米通訊,第八卷第二期 (2001) 9. [23 ] Y.F. Chong, K.L Pey, A.T.S. Wee, A. See, L. Chan, Y.F. Lu, W.D. Song, and L.H. Chua, Appl. Phys. Lett. 76 (2000) 22. [24 ] A. Agarwal, A.T. Fiory, H.J. Gossmann, C. Rafferty, P. Frisella, J. Hebb, J. Jackson, in: 12th International Conference on Ion Implantation Technology, Kyoto, 22-26 June 1998, vol. 1, p22. [25 ] A Agarwal, in: 13th International Conference on Ion Implantation Technology, Alpbach, Austria, 17-22 September 2000, p293. [26 ] S.N. Hong, IEEE Electron Device Lett. 20 (1999) 83. [27 ] J.F. Ziegler, J.P. Biersack, and U. Littmark, Stopping and Range of Ions in Solids, Vol. 1 (Pergamon Press, New York,1985). [28 ] 陳季南,儀科新知,第十七卷第三期 (1995) 68. [29 ] M.G. Kendall and A. Stuart, The Advanced Theory of Statistics, 1 (Charles Griffin, London, 1958) 148. [30 ] W.P. Elderton, Frequency Curves and Correlation, 4th edition (Cambridge University, New York, 1953). [31 ] S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer-Verlag, Wien, 1984). [32 ] W.K. Chu, J.W. Mayer and M.A. Nicolet, Backscattering Spectrometry (Aacdemic Press, New York, 1978). [33 ] J.B. Marion and S.T. Thorton, Classical Dynamics, 4th ed. (Saunders College Pub., San Diego, 1995). [34 ] J. Lindhard and K. Dan, Vidensk Selsk Mat-Fys Medd. No.14, (1965) 34. [35 ] H. Niu, L.G. Yuan, W.T. Chou, J.H. Liang, S.C. Wu, Appl. Radiat. and Isot. 56 (2002) 627. [36 ] L.C. Feldman, J.W. Mayer, and S.T. Picraux, Materials Analysis by Ion Channeling, Ch5 (Academic Press, New York, 1982). [37 ] D.K. Schroder, Semiconductor Material and Device Characterization, Ch1 (John Wiley & Sons, New York, 1998). [38 ] L.B. Valdes, Proc. IRE, 42 (1954) 420. [39 ] L. Shao, X. Lu, X. Wang, I. Rusakova, J. Liu, and W.K. Chu, Appl. Phys. Lett. 78 (2001) 2321. [40 ] K. Kimura, Y. Oota, K. Nakajima, M. Suzuki, T. Aoki, J. Matsuo, A. Agarwal, B. Freer, A. Stevenson, and M. Ameen, Nucl. Instr. and Meth. B211 (2003) 206. [41 ] J.Y. Jin, J. Liu, P.A.W van der Heide, and W.K. Chu, Appl. Phys. Lett. 76 (2000) 574.id NH0920593010 sid 903154 cfn 0 / id NH0920593011 auc 陳志宏 tic 氧化鋯被覆處理304不 tic 銹 tic 鋼在高溫水溶液之應力腐蝕裂縫成長速率研究 adc 蔡春鴻 adc 葉宗洸 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg - kwc 氧化鋯 kwc 抑制性被覆 kwc 裂縫成長速率 abc 近十多年來,核電廠中的沸水式反應器(Boiling Water Reactor, BWR)組件材料一直存在著沿晶應力腐蝕龜裂(Intergranular Stress Corrosion Cracking, IGSCC)與輻射促進應力腐蝕龜裂(Irradiation-Assisted Stress Corrosion Cracking, IASCC)的問題,因此,目前已有許多BWR電廠是採用於飼水中添加氫氣的加氫水化學(Hydrogen Water Chemistry, HWC)技術,來防制IGSCC與IASCC的發生。然而,HWC技術有其缺點存在,在較高的注氫量下(通常在0.6ppm以上),會帶來提升管路輻射劑量的副作用;且對於壓力槽內部接近爐心出口的組件,如爐心上方空間和爐心側版上部等過氧化氫濃度偏高的區域,HWC不能有效抑制IGSCC的發生。因此,為了達到在無注氫或低注氫環境下,有效全面防制IGSCC的目標,我們選擇抑制性被覆的方式,來進行關於BWR組件之防蝕效益研究。 tc 1 第一章 前言 1 2 第二章 原理 3 2.1 應力腐蝕龜裂 3 2.1.1 形成原因 3 2.1.2 防治方法 5 2.2 抑制性被覆的理論基礎 6 3 第三章 文獻回顧 12 3.1 裂縫成長-水環境理論 12 3.1.1 Coupled Environment Fracture Model: 12 3.1.2 PLEDGE Model 17 3.1.3 Environment Assisted Cracking Model 21 3.2 加氫水化學環境下裂縫成長速率 24 3.3 溫度對裂縫成長影響 25 3.4 流速對裂縫成長的影響 27 3.5 貴重金屬被覆 28 3.6 抑制性覆膜 32 3.7 採用貴重金屬化學添加抑制SCC成效之討論 37 4 第四章 實驗 39 4.1 實驗方法 39 4.2 實驗內容 39 4.2.1 試片製備 39 4.2.2 試片熱敏化處理 42 4.2.3 試片預裂處理 42 4.2.4 預長氧化膜 43 4.2.5 進行熱水沈積抑制性被覆前準備 43 4.2.6 抑制性被覆處理 44 4.2.7 往復式直流電位降裝置與試片串連 44 4.2.8 水循環迴路 46 4.2.9 數據擷取及記錄 47 4.3 裂縫成長實驗 48 4.4 表面分析 48 5 第五章 結果與討論 49 5.1 表面分析結果 49 5.1.1 CT試片斷裂面之成份分析 49 5.1.2 CT試片預裂段表面之SEM及EDX分析 51 5.2 裂縫成長速率實驗 53 5.2.1 水中溶氧300 ppb條件 53 5.2.2 水中溶氧300 ppb 溶氫10 ppb條件-第一次實驗 60 5.2.3 水中溶氧300 ppb 溶氫10 ppb條件-第二次實驗 65 6 第六章 結論與未來接續工作 70 7 參考文獻 72rf (1) M. Shindo et al., Journal of Nuclear Materials, Vol. 233, p. 1393-1396 (1996). (2) M. A. Al-Anezi, G. S. Frankel and A. K. Agrawal, Corrosion, Vol, 55. No. 11, p. 1101-1109. (3) R. L. Cowan, Nuclear Engineering International, January 1986, p. 26. (4) M. E. Indig, Proc. 4th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, NACE, Jekyll Island, GA., Aug.6-10, 1989, p. 4-411. (5) Nuclear Regulatory Commission, Cracking of Vertical Welds in the Core Shroud and Degraded Repair, NRC Information Notice 97 – 17, April 4, 1997. (6) L. W. Niedrach, Corrosion, Vol. 47, p. 162 (1991). (7) Y. J. Kim, L. W. Niedrach, M. E. Indig, and P. L. Andresen, Journal of Metals, Vol. 44, No. 2, p. 14 (1992). (8) T. K. Yeh and D. D. Macdonald, Proc. 7th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, NACE, Breckenridge, Colorado, Aug. 6-10, 1995, p. 909. (9) Y. J. Kim and P. L. Andresen, CORROSION/96, NACE , Denver, Colorado, Mar. 24-29,1996, Paper Number 105. (10) X. Zhou, I. Balachov, I. Balachov, and D. D. Macdonald, Corrosion Science, Vol. 40, p. 1349 (1998). (11) B. Stellwag and R. Kilian, Proceedings of the Conference on Water Chemistry of Nuclear Reactor Systems 8, BNES, Bournemouth, p. 127 (2000). (12) K.T.Lee, T.K. Yeh and C.H. Tsai, (2001), “The Influence of Hydrogen Water Chemistry and Platinum-coating on Stress Corrosion Cracking of Sensitized Type 304 Stainless Steels,” Journal of Chinese Corrosion Engineering, Vol. 15, No. 3, pp. 141-150. (2001 Best Paper Award) (13) T.K. Yeh, Y.C. Lin and C.H. Tsai, Aug. (1999), “Intergranular Stress Corrosion Cracking of Platinum Coated Type 304 Stainless Steels in High Temperature Water,” Ninth International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors,Aug. 1-5, 1999,Newport Beach, CA. (14) T.K Yeh, K.T. Lee and C.H. Tsai, Oct. (2000), “The Effect of Platinum Coating on Intergranular Stress Corrosion Cracking of Type 304 Stainless Steels in High Temperature Water,” VIIIth International Conference of Water Chemistry of Nuclear Reactor Systems, Oct. 22-26, 2000, Bournemouth, UK. (15) Tsung-Kuang Yeh, K.T. Lee and C.H. Tsai, Aug. (2001), “Intergranular Stress Corrosion Cracking of Platinum Treated Type 304 Stainless Steels in High Temperature Water,” 10th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, Aug. 5-9, 2001, Lake Tahoe, Nevada. (16) D. D. Macdonald, Corrosion, Vol. 48, No. 3, p. 195 (1992). (17) D. D. Macdonald et al ,” Determination of The Fate of The Current in The Stress Corrosion Cracking of Sensitized Type 304 SS in High Temperature Aqueous System”,Corrosion Science , Vol. 37, No. 1, p.189~208, (1995). (18) P. L. Andresen et al, “Characterization of the Roles of Electrochemistry, Convection and Crack Chemistry in Stress Corrosion Cracking”, GE Corporate Research & Development. (19) F. P. Ford, D. F. Taylor, P. L. Andresen, “Corrosion-Assisted Cracking of Stainless and Low-Alloy Steels in LWR Environments”, NP-5064M, Research Project 2006-6, Final Report, February 1987. (20) Thomas M. Angeliu, P. L. Andresen et al, “Applying Slip-Oxidation to the SCC of Austenitic Materials in BWR/PWR Environments”, CORROSION/98, paper No. 262, Houston, TX, NACE International, (1998). (21) A. Turnbull, “Modeling of the Chemistry and electrochemistry in Cracks-A Review”, Corrosion, Vol. 57, No.2, NACE International, (2001). (22) E. Kikuchi, M. Itow et al, “Intergranular Stress Corrosion Crack Growth of Sensitized Boiling-Water Reactor Environment”, Corrosion, Vol. 53, No. 4, NACE International, (1997). (23) P. L. Andresen, “Mitigation of Stress Corrosion Cracking by Underwater Thermal Spray Coating of Noble Metals”, CORROSION/95, paper no. 412, Houston, TX, NACE International, (1995). (24) W.E. Ruther, W. K. Soppet, T. F. Kassner, Corrosion 44, p. 791, (1988). (25) F. P. Ford, M. J. Povich, Corrosion 35, p. 569, (1979). (26) Marc Vankeerberghen, Digby D. Macdonald, “Predicting crack growth rate vs. temperature behaviour of Type 304 stainless steel in dilute sulphuric acid solutions”,Corrosion Science 44 (2002) 1425-1441. (27) H.S. Kwon, A. Wuensche, and D.D. Macdonald, “Effects of Flow Rate on Crack Growth in Sensitized Type 304 Stainless Steel in High –Temperature Aqueous Solutions”, Corrosion, Vol. 56, No. 5, May 2000. (28) S. Hettiarachchi et al, “A Novel Approach for Noble Metal Deposition on Surface for IGSCC Mitigation of Boiling Water Reactor Internals”, CORROSION/95, paper no. 413, Houston, TX, NACE International, 1995. (29) S. Hettiarachchi et al, “The Concept of Noble Metal Chemical Addition Technology for IGSCC Mitigation of Structural Materials”, Proc. of 7th Intl. Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactor, NACE International, p.735, 1995 (30) S. Hettiarachchi, R.J. Law, W.D. Miller, T.P. Diaz, R.L. Cowan, “First Application of NobleChemTM to an Operating BWR”, Proceedings of the 1998 JAIF Water Chemistry Conference p. 155, October 1998. (31) S. Hettiarachchi et al, “The First In-Plant Demonstration of Noble Metal Chemical Addition Technology for IGSCC Mitigation of BWR Internals”, Proc. of 8th Intl. Symposium on Environment Degradation of Materials in Nuclear Power Systems-Water Reactor, p.535, 1997. (32) X. ZHOU, I. BALACHOV and D.D. MACDONALD,“The Effect of Dielectric Coatings on IGSCC in Sensitized Type 304 SS in High Temperature Dilute Sodium Sulfate Solution”,Corrosion Science,Vol.40,No.8,pp.1349-1362,1998. (33) 李明墉, 應用抑制性被覆之敏化304不?鋼於高溫純水環境中之腐蝕行為研究,國立清華大學碩士論文,2001年七月。 (34) 鄭宇翔, 高溫注氫純水環境下採行抑制性被覆304不?鋼之腐蝕行為研究,國立清華大學碩士論文,2002年七月 (35) S. Hettiarachchi,“BWR SCC Mitigation Strategies and Their Effectiveness”,11th Int. Conf. Environmental Degradation of Materials in Nuclear Systems,Stevenson, WA, Aug. 10-14, 2003 (36) Anders Jenssen, Martin Kőnig,“Influence of Environmental and Mechanical Factors on the Crack Growth Rate of Austenitic Materials under Simulated BWR Conditions”,Symposium on Water Chemistry and Corrosion in Nuclear Power Plants in ASIA 2003id NH0920593011 sid 903153 cfn 0 / id NH0920593012 auc 廖廷修 tic 探討奈米碳管在多孔矽基板上的成長 adc 蔡春鴻博士 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 72 kwc 奈米碳管 kwc 多孔矽基板 abc 本實驗的目的是探討多孔矽基板多碳管成長的影響,利用多孔矽基板的結構來幫助碳管在多碳源環境與成長溫度較低的環境成長相對於平面矽基板,並討論奈米碳管在多孔矽基板上的可能的成長機制與不同催化金屬厚度對多孔矽基板的影響。由實驗中的SEM的照片中可以明顯的觀察到,在平面的矽基板跟多孔矽基板上經由改變碳源氣體/氨氣的混合比例與成長溫度時都有明顯的差異,進而探討多孔矽基板對於奈米碳管的影響。 tc 目錄 摘要.....................................................i 第一章 序言.......................................................1 第二章 文獻回顧..........................................4 2.1 奈米碳管簡介.........................................5 2.2 催化金屬顆粒成核...................................18 2.3 奈米碳管的成長機制.................................19 2.4 利用template(模板)方式成長奈米碳管.................25 2.4 氨氣對奈米碳管成長的影響...........................27 第三章 實驗設備與方法..................................31 3.1 實驗設備............................................31 3.2 實驗步驟............................................35 3.3實驗分析與注意事項...................................39 第四章 實驗結果與討論..................................43 4.1溫度對催化金屬顆粒成核影響...........................44 4.2奈米碳管成長(慢速加溫) ..............................51 4.2.1改變不同CH4/NH3比例對多孔矽基板與平面矽基板的影響..51 4.2.2改變不同成長溫度對多孔矽基板與平面矽基板的影響.....58 4.3探討半球狀碳管叢.....................................64 第五章 結論............................................71 參考文獻................................................72rf 參考文獻 [1 ]S. Iijima, Nature 354, 56 (1991). [2 ]A.G. Rinzer, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley, Science 269, 1550 (1995). [3 ]W. A. de Heer, A. Chatelain, and D. Ugarte, Science 270, 1179 (1995). [4 ]P. M. Ajayan, O. Stephen, C. Colliex, D. Trauth, Science 265, 1212 (1994). [5 ]J. Li, C. Papadopoulos, J. M. Xu, and M. Moskovits, Appl. Phys. Lett. 75, 367 (1999). [6 ]H. Masuda and M. Satoh, Jpn. J. Appl. Phys. 35, L126 (1996). [7 ]W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G. Wang, Science 274, 1701 (1996). [8 ]S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, Science 283, 512 (1999). [9 ]Thess, A., Lee, R., Nikolaev, P. et al., Science, 1996, 273: 483. [10 ]Collins, P. G., Zettl, A., Bando, H. et al., Science, 1997, 278: 100. [11 ]Liu Jie, Rinzler, A. G., Dai Hongjie et al.,Science, 1998, 280: 1253. [12 ]Kong Jing, Soh, H. T., Cassell, A. M. et al., Nature, 1998, 395: 878. [13 ]Z. P. Huang, J. W. Xu, Z. F. Ren, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, Appl. Phys. Lett. 73,3845(1998) [14 ]M. Katsura, K. Nishimaki, T. Nakagawa, T. A . Yamamoto, M. Hirota and M. Miyake. J. Nucl. Mater. 258-263, 839(1998) [15 ]K. S. Choi, Y. S. Cho, Y. S. Cho, J. B. Park and D. J. Kim. J. Euro. Crea. Soc. 21, 2095(2001) [16 ]G. S. Choi, Y. S. Cho, Y. S. Cho, J. B. Park, K. H. Son, and D. J. Kim. J. Appl. Phys. 91, 3847(2002) [17 ]M. Jung, K. Y. Eun, Y. J. Baik, K. R. Lee, J. K. Shin, and S. T. Kim. Thin Solid Films 398-399, 150(2001) [18 ]M. Jung, K. Y. Eun, J. K. Lee, Y. J. Baik, K. R. Lee, and J. W. Park. Diam. Relat. Mater. 10, 1235(2001) [19 ]J. H. Han, C. H. Lee, D. Y. Jung, C. W. Yang, J. B. Yoo, C. Y. Park, H. J. Kim, S.G. Yu, G. S. Park, I. T. Han, H.S. Lee, and J. M. Kim. Thin Solid Films 409, 120(2002) [20 ]M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne, J. Appl. Phys. 90, 5308(2001) [21 ]Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, Science 282, 1105(1998). [22 ]Shoushan Fan, Michael G. Chapline, Nathan R. Franklin, Thomas W. Tombler, Alan M. Cassell, Hongjie Dai, Science, 283, 512 (1999). [23 ] H. W. Kroto, J. R. Heath, S. C. O’Brian, R. F. Curl and R. E. Smalley, Nature, 318, 162 (1985). [24 ]W. Kratschmer, L. D. Lamb, K. Fostiropoulos and D. R. Huffman, Nature, 347, 354 (1990). [25 ]A. Maiti, C. J. Brabec, C. Roland, and J. Bernholc, Phys. Rev. B, 52, 14850 (1995). [26 ] T. W. Ebbesen, CRC press, Inc., 1997). [27 ]Harris, Carbon Nanotubes and Related Structure, Cambridge Press, (Cambridge, London, 1999) [28 ] M. S. Dresselhaus, G. Dresselhaus, and P. C. Ecklund, Science of Fullerenes and Carbon nanotubes, AP, (New York, 1996). [29 ]J. C. Charlier and J. P. Issi, Applied Physics A:Materials Science & Processing, 67, 79 (1998). [30 ]M. D. Haus, G. Dresselhaus, P. Eklund, and R. Saito, Physics World, January, 33 (1998). [31 ]J. W. Mintmire and C. T. White, Applied Physics A: Materials Science & Processing, 67, 65 (1998). [32 ]T. W. Ebbesen, P. M. Ajayan, H. Hiura, and K. Tanigaki, Nature, 367, 519 (1994). [33 ]T. W. Ebbesen and P. M. Ajayan, Nature, 358, 220 (1992). [34 ]J. M. Lambert, P. M. Ajayan, P. Bernier, J. M. Planeix, V. Brotons, B. Coq, and J. Castaing, Chem. Phys. Lett., 226, 364 (1994) [35 ]A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science, 273, 483 (1996). [36 ]A. C. Dillon, K. M. Jones, T. A. Bekkeclahl, C. K. Kiang, D. S. Bethune, and M. J. Heben, Nature, 386, 377 (1997). [37 ]J. Bonard, J. Salvetat, T. Stockli, W. A. De Heer, L. Forro, and A. Chatelain, Appl. Phys. Lett., 73 (7), 918 (1998). [38 ]Q. H. Wang, T. D. Corrigan, J. Y. Dai, and R. P. H. Chang, Appl. Phys. Lett., 70 (24), 3308 (1997). [39 ]S. L. Sung, S. H. Tsai, C. H. Tseng, F. K. Chiang, X. W. Liu, and H. C. Shih, Appl. Phys. Lett., 74 (2), 197 (1999). [40 ]H. Dai, A. G. Rinzer, P. Nikolaev, A Thess, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett. ,260, 471 (1996). [41 ]Y. H. Lee, S. G. Kim, and D. Tománek, Phys. Rev. Lett., 78, 2393 (1997). [42 ]N. M. Rodriguez, J. Mater. Res., 8, No. 12, 3233 (1993). [43 ]R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., 4, No. 5, 89 (1964). [44 ]Shoushan Fan, Michael G. Chapline, Nathan R. Franklin, Thomas W. Tombler, Alan M. Cassell, Hongjie Dai, Science, 283, 512 (1999). [45 ] Hisashi Araki, Tetsutaroh Katayama and Katsumi Yoshino, Appl. Phys. 35 (2002) 1076—1079 [46 ] William S MCBride, Synthesis of Carbon Nanotubes by Chemical VaporDeposition (CVD)., Williamsburg, Virginia, April 2001 [47 ] Li, W. Z., Xie, S. S., Qian, L. X. et al., Large-scale synthesis of aligned carbon nanotubes, Science, 1996, 274: 1701. [48 ]H. Kanzow, A. Ding, Phys. Rev. B, 60, 180 (1999) [49 ] W.Y. Lee*, T.X. Liao, Z.Y. Juang , C.H. Tsai, “Patterned aligned growth of carbon nanotubes on porous structure templates using chemical vapor deposition methods” [50 ]國立清華大學 蘇心芳 “以電化學製備多孔矽基板程序之研究”, 中華民國九十一年七月 [51 ]黃定加 等著 “物理化學 第十章 界面化學” p.409 高立圖書有限公司出版id NH0920593012 sid 903148 cfn 0 / id NH0920593013 auc 龔茂林 tic 利用蘭牟爾探針量測混和氯氣及氬氣之電感式電漿 adc 林滄浪  adc 柳克強 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 153 kwc 蘭牟爾探針 kwc 氯氣 kwc 氬氣 abc Cl2/Ar不同混和比例的電漿,在蝕刻應用上,多數用來蝕刻Ⅲ-Ⅴ族的光電材料,如GaN、GaAs…等等,以及其他金屬材料,如Al、Pt、W…等等。在氯氣電漿中有時候會加入少量的Ar氣體,加入Ar在蝕刻的情況下可以增加物理轟擊幫助非等向性蝕刻,目前有關Cl2/Ar混和氣體電漿的文獻並不是很多,蝕刻製程中Ar與Cl2混合氣體當Ar的混和比例濃度超過70∼80%的時候會有最大的蝕刻率,Donnelly使用光譜量測Cl2/Ar不同混和比例電漿的電子溫度發現Ar濃度超過50%時電子溫度有明顯的升高,但是在他的光譜量測上誤差值比較大,所以吾人使用Langmuir probe探針量測系統,對Cl2/Ar混和電漿做量測,分析電漿參數,證實電子溫度在Ar濃度超過50%時確實有升高的現象但是幅度並不是很大,或許是腔體比較所造成的結果,在電漿密度方面,total離子密度與total電子密度皆是隨著Ar濃度的增加而升高,跟文獻的結果有些許的不相同,文獻的total正離子與total電子隨著濃度升高而下降,total密度下降並無法確切的解釋為何當Ar混和濃度增高的時候蝕刻率會上升。 tc 第一章 簡介……………………………………………………………1 第二章 文獻回顧………………………………………………………4 2.1 蘭牟爾探針分子氣體電子能量機率分佈函數分佈(EEPF)…...4 2.2 蘭牟爾探針-混合氣體與單一氣體電漿參數量測……………11 2.3 補償式探針的相關文獻……………………………………….13 第三章 蘭牟爾探針理論……………………………………………..23 3.1 蘭牟爾探針理論……………………………………………….23 3.2 圓柱型蘭牟爾探針理論……………………………………….26 3.3 電子能量分佈函數理論(EEDF)……………...……………….27 3.4 電漿的倍頻現象..................................................................29 3.5 RF干擾的來源…………………………………………………32 第四章 實驗裝置與研究方法……………………………………..…..35 4.1 電感式耦合電漿源蝕刻機台………………………………….35 4.2 研究方法…………………………………………………….....36 4.2.1 改善現有的探針…………………………………………...36 4.2.2 陷頻器的製作……………………………………………...39 4.3 CW mode量測方法……………………………………………43 4.4 Pulsed mode量測方法…………………………………………44 4.5 電子溫的量測與修正………………………………………….48 4.6.1比較Origin與Labview微分方式的差別及smooth次數的影響………………………………………………………………54 4.6.2比較不同DAQ卡的影響………………………………………...56 4.6.3 Pulsed mode EEDF程式分析測試…………………………….…58 第五章 結果與討論…………………………………………………..64 5.1 比較不同RF compensation結構對I-V曲線及電子能量機率分 佈函數的影響…………………………………………………64 5.2 Cl2-Ar不同混合比例下對電子溫度(Te)的影響……………...68 5.3 Cl2-Ar不同混合比例下對電漿密度的影響…………………..76 5.4 Cl2-Ar不同混合比例、功率、氣壓浮動電位與電漿電位的變化……………………………………………………………….87 5.5 Cl2-Ar不同混合比例下電子能量分佈函數(EEDF)與電子能量 機率分佈函數(EEPF)的響…...……………………………….93 5.6 改變徑向位置對電漿參數的影響………………………..….102 5.7 Cl2 —Ar不同混合比例TM mode電漿參數測……...………..109 第六章 結論…………………………………………………………126 附錄……………………………………………………………………130rf [1 ] M. V. Malyshev, V. M. Donnelly and J. I. Colonell, J. Appl. Phys. 86, 4813 (1999) [2 ] S. Samukawa and Tetsu Mieno, Plasma Source Sci. Technol .5, 132 (1996) [3 ] Ajit P. Paranjpe, James P. Mcvittie and Sidney A. Self, J. Appl . Phys. 67, 6718 (1990) [4 ] M. V. Malyshev, V. M. Donnelly, J. Appl. Phys. 90, 1130 (2001) [5 ] M. V. Malyshev, V. M. Donnelly, J. Appl. Phys. 87, 1642 (2000) [6 ] M. V. Malyshev, V. M. Donnelly, Plasma Source Sci. Technol. 9, 353 (2000) [7 ] H. Singh and D. B. Graves, J. Appl. Phys. 87, 4098 (2000) [8 ] P. Subramonium and M. J. Kushner, Appl. Phys. Lett. 79, 2145 (2001) [9 ] M. V. Malyshev, N. C. M. Fuller, K. H. A. Bogart and V. M. Donnelly, J. Appl. Phys. 88, 2248 (2000) [10 ] I. D. Sudit and F. F. Chen, Plasma Source Sci. Technol. 3, 162 (1994) [11 ] W. Z. Collison, Tom Q. Ni and M. S. Barnes, J. Vac. Sci. Technol. A 16, 100 (1998) [12 ] Noah Hershkowitz and Robert A. Breun, Rev. Sci. Instrum. 68, 880 (1997) [13 ] A. E. Wendt, Review of Scientific Instruments 72, 2926 (2001) [14 ] V A Godyak, R B Piejak and B M Alexandrovich, Plasma Source Sci. Technol. 1, 36 (1992) [15 ] N. C. M. Fuller and Vincent M. Donnelly, et al. J. Vac. Sci. Technol. A 20,2001, 170 [16 ] G. A. Hebner and C.B Fleddermann ,J. Appl.phys.82,1997,2814 [17 ]A. E. Wendt, et al. ,Rev. Sci. Instrum.72,2001,2926 [18 ] Ajit p.Paranjpe, J. Appl.phys.67,1990,6718 [19 ] Isaac D Sudit and Francis F Chen, Plasma Sources Sci. Technol. 9,2000,353 [20 ] Badri Ramamurthi and Demetre J.Economou, J. Vac. Sci. Technol. A 16, pp. 564, 1998 [21 ] Badri Ramamurthi and Demetre J.Economou, J. Vac. Sci. Technol. A 20, pp. 467, 2002 [22 ] Prmod Subramonium and Mark J. Kushner, J. Appl.phys.79,2001,2145 [23 ] Sumio Ashida, M. R. Shimand M. A. Lieberman, J. Vac. Sci.Technol. A14 ,1996,391 [24 ] G.A. Hebner and C. B. Fleddermann, J. Appl.phys.82,1997,2814 [25 ] T H Ahn, K NaKamura and H Sugai, Plasma Sources Sci. Technol. 9,2000,353 [26 ] N. C. M. Fuller and Vincent M. Donnelly Irving P. Herman, J. Vac. Sci.Technol. A 20 ,2002,170 [27 ]M. V. Malyshev, N. C. M. Fuller and V. M. Donnelly, J. Appl.phys.88,2000,2246 [28 ] M. V. Malyshev and V. M. Donnelly, J. Appl.phys.90,2001,1130 [29 ] 潘興強,蘭牟爾探針量測系統發展,國立清華大學工程與系統科學研究所碩士論文, (1998) [30 ]簡鈺庭,脈衝調變式電感式電漿源之製作與特性量測,國立清華大學工程與系統科學研究所碩士論文, (1999) [31 ] 張慶彥,具射頻補償之蘭牟爾探針電漿量測系統之研製與量測分析,國立清華大學工程與系統科學研究所碩士論文, (1998) [32 ] 顏進偉,波形調變脈衝式電感式電漿源特性量測,國立清華大學工程與系統科學研究所碩士論文, (2001)id NH0920593013 sid 903185 cfn 0 / id NH0920593014 auc 溫富亮 tic 壓電致動器之機電行為模擬分析與應用 adc 歐陽敏盛 ty 博士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 英文 pg 177 kwc 壓電 kwc 致動器 kwc 機電耦合 kwc 超音波 kwc 順滑模態控制 kwc 藍杰文振動子 abc 以往超音波馬達或致動器的製作均是以壓電塊材或圓盤壓電材料堆疊而成,因而使得生產成本極高以致於商業化的超音波馬達相當昂貴。在本研究中,所有超音波致動器均從一般五金材料行購得或從已商業化之市場產品取得,例如價廉的壓電蜂鳴片或藍杰文振動子改製而成。其中,蜂鳴片是由鋯鈦酸鉛(PZT 或簡稱 piezoceramic)為主要成分之壓電陶瓷與金屬薄盤黏接,再加上特定的束縛條件所構成之薄盤振動子(thin-disc vibrator);而藍杰文振動子(Langevin vibrator)是由兩個圓形壓電陶瓷塊材以兩個環形銅質電極彼此鄰接,振動子兩端再以鋁金屬柱塊與不?鋼金屬柱塊夾緊圓形陶瓷塊材與銅質電極佐以螺接所構成。當超音波頻率之交流電源作用於壓電陶瓷時,壓電陶瓷與黏接或螺緊之金屬材料將會被強迫地產生機械式伸縮震盪現象,此時機電能量將以類似波的形式傳遞與轉換。壓電陶瓷能在超音波頻率下經由輸入電壓的控制進行數微米振幅等級的精度工作,因而其可作為需要驅動能力之精密結構或系統的致動器。 tc Contents Abstract (in English) I Abstract (in Chinese) II Acknowledgment III Contents V Figure Captions VII Table Captions XII Chapter 1 INTRODUCTION 1 1.1 Motivations and objectives…………………………………………...……………….………….1 1.2 Literature review……………………………………………..………………………………….2 1.3 Historical review of the development of piezoceramic actuators ………………………………4 1.4 Contribution of this dissertation…….……………………………...…………………………….5 1.5 Organization of this dissertation………….……………………………...……………………….8 Chapter 2 MODES OF ULTRASONIC VIBRATION AND SIMULATION 11 2.1 Structure and property of piezoelectric vibrators…………………………….……….………..11 2.2 Vibration mode observation and FEM simulation…………..………………….………………12 2.3 Wave equation analysis on thin-disc metal sheet………………………………….………….17 2.4 Matlab code simulation…………………………………………...…………………….…….22 2.5 Experimental results and discussion…………………………………….….………………….23 2.6 Appendix……………………………………………………………….….………………….30 Chapter 3 SYSTEM DESIGN AND PERFORMANCE EVALUATION FOR EDGE-DRIVING ULTRASONIC MOTOR 59 3.1 Introduction…………………………………………………………………………………...59 3.2 Components and design for thin-disc ultrasonic motor………………………….……………61 3.3 The description of wave behavior on metal sheet as an actuator……………………………….63 3.4 Performance evaluation……………………………………………………………………….69 3.5 System identification………..………………………………………………………………...72 3.6 Controller design……………………………………………………..………………………...72 3.7 Simulation and experimental results……………………..…………….………………………77 3.8 Discussion……………………………………………………………………..………………...78 3.9 Summary………………………………………………………………………………………..79 Chapter 4 DESIGN AND CONSTRUCTION FOR SHAFT-DRIVING PIEZOCERAMIC ULTRASONIC MOTOR 109 4.1 Introduction…………………………………………………………………………………...109 4.2 Ultrasonic components and vibration modes…………………………………………………109 4.3 Driving mechanism and design for a piezoceramic ultrasonic motor……..………………….116 4.4 Dynamic characteristics of a piezoceramic USM….………..………………………………..120 4.5 Summary……………………………………………………..……………………………….124 Chapter 5 DYNAMIC CHARACTERISTICS OF ELECTROMECHANICAL COUPLING FOR A LANGEVIN VIBRATOR 138 5.1 Introduction…………………………………………………..……………………………….138 5.2 Experiment for electromechanical coupling characteristics..………….………………………138 5.3 Experimental principle of dynamic configuration…………………………………………….140 5.4 Results and verification………………………………….…………………………………..146 5.5 Summary…………………………………….……………………………………………….150 Chapter 6 CONCLUSIONS AND SUGGESTIONS 165 6.1 Conclusions………………………………………..…………………………………………..165 6.2 Suggestions on Future work………………………………..……………………………..…168 References 171rf REFERENCES [1 ] S. Ueha, Y. Tomikawa, M, Kurosawa, N. Nakamura, Ultrasonic Motors Theory and Applications, Clarendon Press, Oxford, 1993. [2 ] K. Uchino, Piezoelectric Actuators and Ultrasonic Motors, Kluwer Academic Publishers, 1997. [3 ] T. Sashida, T. Kenjo, An Introduction to Ultrasonic Motors, Clarendon Press Oxford, 1993. [4 ] V. Snitka, V. Mizariene, D. Zukauskas, The Status of Ultrasonic Motors in the former Soviet Union, Ultrasonics, 34(1996)247-250. [5 ] O.Y..Zharii, Modeling of a model conversion ultrasonic motor in the regime of slip, IEEE Trans. Ultrasion. Ferroelec. Freq. Contr. 40 (4) (1993) 414-417. [6 ] N. W.Hagood IV, A.J. Mcfarland, Modeling of a piezoelectric rotary ultrasonic motor, IEEE Trans. Ultrason. Ferroelec. Ferq. Contr. 42 (2) (1995) 210-224. [7 ] B. Piranda, W. Steichen, S. Ballandras, Model updating applied ultrasound piezoelectric, IEEE Ultrasonic Symposium (1998) 1057-1059. [8 ] H. Hirata, S.Ueha, Design of a traveling wave type ultrasonic motor , IEEE Trans. Ultrason. Ferroelec. Ferq. Contr. 42 (2) (1995) 225-231. [9 ] K. Ohnishi, A novel linear ultrasonic actuator, IEEE Trans. Ultrasonic Symposium (1991) 206-212. [10 ] R. Carotenuto, N. Lamberti, A. Iula, M. Pappalardo, A new low voltage piezoelectric micromotor based on stator precessional motion, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 45 (5) (1998) 1427-1434. [11 ] N. Lamberti, A. Iula, M. Pappalardo, A piezoelectric motor using flexural vibration of a thin piezoelectric membrane, IEEE Trans. Ultrason. Ferroelec. Freq.Contr.45 (1) (1998) 23-29. [12 ] N. Guo, P. Cawley, D. Hitchings, The finite element analysis of vibration characteristic of piezoelectric discs, Journal of sound and vibration 159 (1) (1992) 115-138. [13 ] A. Daugela, M. Kuwahara, H. Fujii, FEM modeling of piezoactive structures, ANSYS 1994 Conference in Japan. [14 ] S.H. Jeong, H.K. Lee, H.H. Kim, K.J. Lim, Vibration analysis of the stator in ultrasonic by FEM, Proc. of Properties and Applications of Dielectric Materials (Seoul, Korea, 1997) 1091-1094. [15 ] J.W. Krome, J. Wallaschek, Novel disk type ultrasonic traveling wave motor for high torque, IEEE Ultrasonic Symposium (1997) 385-390. [16 ] T. Yamazaki, J. Hu, N. Nakamura, S. Ueha, Trial construction of a noncontact ultrasonic motor with an ultrasonically levitated rotor, Japan Journal of Apply Physics, 35 (1996) 3286-3288. [17 ] K.D. Young, A variable structure model following control design for robotics applications, in Proc. IEEE Int. Conf. On Robotics and Automation (San Francisco, CA., 1986) 540-543. [18 ] J.E. Slotine, S.S. Sastry, Tracking control of nonlinear system using sliding surface with application to robot manipulator, Int. J. Contr. 38 (2) (1986) 465-492. [19 ] V.1. Utkin, Sliding mode control design principles and applications to electric drives, IEEE Trans. on Ind. Electron. 40 (1) (1993) 23-36. [20 ] G.S. Buja, R. Menis, I. Valla, Variable structure control of an SRM drive, IEEE Trans. Ind. Electron. 40 (1) (1993) 56-63. [21 ] H. Hashimoto, H. Yamamoto, S. Yanagisava, H. Harashima, Brushless servomotor control using variable structure approach, Conf Rec. 1986 IEEE Industrial Application Society Annu. Meet. Pt. 1 (1986) 72-79. [22 ] D. Cho, Y. Kato, D. Spilman, Sliding mode and classical controllers in magnetic levitation systems, IEEE Contr Sys. Magazine, 13 (1993) 42-48. [23 ] Y.S. Lu, J.S. Chen, A self-organizing fuzzy sliding mode controller design for a class of nonlinear servo system, IEEE Trans. on Ind. Electron. 41 (5) (1994) 492-502. [24 ] S.J. Chiang, T.L. Tai, T.S. Lee, Variable structure control of UPS inverters, lEE Proc. Of Electronic Power Application, 145 (6) (1998) 559-567. [25 ] T.L. Chen, J. Chang, C.H. Chen, H.T. Su, Microprocessor-based modified discrete integral variable-structure control for UPS, IEEE Trans. on Ind. Electron. 46 (2) (1999) 340-348. [26 ] M.S. Ouyang, F.L. Wen, C.Y. Yen, Design and construction of ultrasonic motor for precision positioning, Report for National Science Council, NSC 89-2213-E-007-077, October 2000. [27 ] C.Y. Yen, F.L. Wen, M.S. Ouyang, Thin-disc piezoceramic ultrasonic motor. part II: System construction and control, Ultrasonics, 41 (6) (2003) 451-463. [28 ] E. Matsuo, K. Nakamura, S. Ueha, Y. Hashimoto, Holding characteristics of planar objects suspended by near-field acoustic levitation, Ultrasonics 38 (2000) 60-63. [29 ] S. Ueha, Y. Hashimoto, Y. Koike, Non-contact transportation using near-field acoustic levitation, Ultrasonics, 38 (2000) 26-32. [30 ] P.I. Ro, B.G. Loh, J. Santiago, Holding characteristics of planar objects suspended by near-field acoustic levitation, Ultrasonic 38 (2000) 60-63. [31 ] S. Ueha, Y. Hashimoto, Y. Koike, Ultrasonic actuators using near field acoustic levitation, IEEE Ultrasonics Symposium, 661-666. [32 ] KJ. Hu, K. Nakamura, S. Ueha, An analysis of a non-contact ultrasonic motor with an ultrasonically levitated rotor, Ultrasonics 35 (1997) 459-467. [33 ] J.R. Gao, C.D. Cao, B. Wei, Containerless processing of materials by acoustic levitation, Adv. Space Res. 24 (10) (1999) 1293-1297. [34 ] J. Jin, T. Higuchi, Direct electrostatic levitation and propulsion, IEEE Transactions on Industrial Electronics 44 (2) (1997) 234-239. [35 ] J. Jin, T. Higuchi, M. Kanemoto, Electrostatic levitator for hard disk media, IEEE Transactions on Industrial Electronics 42 (5) (1995) 467-473. [36 ] O.V. Tozoni, New stable magnetodynamic suspension system, IEEE Transactions on Magnetics 35 (2) (1999) 1047-1054. [37 ] K. Sawada, Development of magnetically levitated high speed transport system in Japan, IEEE Transactions on Magnetics 32 (4) (1996) 2230-2235. [38 ] N.A. Shirazee, A. Basak, Electropermanent suspension system for acquiring large air-gap to suspend loads, IEEE Transactions on Magnetics 31 (6) (1995) 4193-4195. [39 ] D. Vischer, H. Bleuler, Self-sensing active magnetic levitation, IEEE Transactions on Magnetics 29 (2) (1993) 1276-1281. [40 ] T. Otsuka, K. Higuchi, K. Seya, Consideration of sample dimension for ultrasonic levitation, IEEE Ultrasonic Symposium (1990)1271-1274. [41 ] 桂豫晟,超音波致動器之設計分析與量測,,國立清華大學動力機械研究所碩士論文,指導教授 歐陽敏盛,新竹,1998。 [42 ] 楊明昌,超音波馬達之設計與分析-軸推式,國立清華大學工程與系統科學研究所碩士論文,指導教授 歐陽敏盛,新竹,1999。 [43 ] 葉俊余,新型超音波馬達之設計分析與量測– 側推式和軸推式,國立清華大學動力機械研究所碩士論文,指導教授 歐陽敏盛,新竹,2000。 [44 ] 郭榮芳,側推式超音波馬達設計與測試,國立清華大學工程與系統科學研究所碩士論文,指導教授 歐陽敏盛,新竹,2000。 [45 ] 李政漢,側推式超音波馬達特性量測與應用,國立清華大學工程與系統科學研究所碩士論文,指導教授 歐陽敏盛,新竹,2001。 [46 ] Fuh-Liang Wen, Chi-Yung Yen, and Minsun Ouyang, “Nonlinear Positioning Compensation of thin-disc ultrasonic motor using fuzzy sliding-mode control”, 2004 ASME International Mechanical Engineering Congress, November 13-19, 2004, Anaheim, California, Anaheim Hilton, Abstract Accepted & Content Submitted [47 ] Chi-Yung Yen, Fuh-Liang Wen, and Minsun Ouyang, “Fuzzy sliding mode control for thin-disc ultrasonic motor”, 2004 IEEE CCA/ISIC/CACSD Joint Conference, September 2-4, 2004, Grand Hotel, Taipei, Taiwan, Accepted on April 20, 2004 [48 ] 溫富亮、歐陽敏盛,2003,”藍杰文振動子機電動態耦合特性之研究”,中華民國機構與機器原理學會第六屆全國機構與機器設計學術研討會論文集,pp.531~538,12/12~12/13,國立虎尾技術學院,雲林虎尾,台灣,中華民國。(最佳論文獎) [49 ] 牟善琦、溫富亮、歐陽敏盛,2003,”超音波馬達等效電路之特性探討與驗證”,中國機械工程學會第二十屆全國學術研討會論文集,B06-8,pp.935~941,12/5~12/6,國立台灣大學,台北,台灣,中華民國。 [50 ] 溫富亮、顏吉永、歐陽敏盛,2003,”模糊順滑模態應用於薄盤壓電式超音波馬達之追蹤控制”,中國機械工程學會第二十屆全國學術研討會論文集,B01-1,pp.1~8,12/5~12/6,國立台灣大學,台北,台灣,中華民國。 [51 ] 牟善琦、溫富亮、林志和、歐陽敏盛,2003,“應用模糊類神經控制於超音波壓電致動平台之定位”,2003中華民國自動控制研討會暨生物機電系統控制與應用研討會,C4-4(10698),pp. 348-353,3/13~3/14,清雲技術學院,桃園中壢,台灣,中華民國。 [52 ] 牟善琦、溫富亮、陳英豪、歐陽敏盛,2003,” ANSYS於新型壓電致動平台之模擬與設計”,2003 Taiwan ANSYS Conference,ANSYS應用論文集,pp.1-7,劍湖山王子飯店會議室,11/17~11/18,雲林,台灣,中華民國。 [53 ] 溫富亮、莊晉東、羅玉林、歐陽敏盛,2002,”含油軸承動態試驗機之研製與特徵訊號量測”,中華民國機構與機器原理學會第五屆全國機構與機器設計學術研討會論文集,2-4,pp.68-75,11/22,國立高雄應用科技大學,高雄市,台灣,中華民國 (NSC-88-2213-E-007-074)。 [54 ] 歐陽敏盛、顏吉永、溫富亮、賴明宏,2001 ,“順滑模態應用於超音波馬達之追蹤控制”,2001中華民國自動控制研討會論文集, 桃園, pp. 172-181,3/24,國防大學中正理工學院,桃園大溪,台灣,中華民國 (NSC-89-2213-E-007-077) [55 ] 歐陽敏盛、溫富亮、葉俊余,2000,“薄盤式壓電致動器之超音波振動模態觀測與有限元素分析”,超音波馬達研討會論文集,pp. 73-92,8/24,核能研究所,桃園龍潭,台灣,中華民國。 [56 ] 歐陽敏盛、溫富亮、楊明昌、郭榮芳,2000,“薄盤式超音波壓電致動器等效電路分析之研究”,超音波馬達研討會論文集,pp. 93-123,8/24,核能研究所,桃園龍潭,台灣,中華民國。 [57 ] F.J. Lin, L.C. Kuo, Driving circuit for ultrasonic motor servo drive with variable-structure adaptive model-following control, IEE Proc. Electr. Power Appl. 144 (3) (1997) 199-206. [58 ] F.J. Lin, S.L. Chiu, and K.K. Shyu, Novel sliding mode controller for synchronous motor drive, IEEE Trans. on Aerospace and Electronic Systems 34 (2) (1998) 532-541. [59 ] T. Senjyu, T. Kashiwagi, K. Uezato, Position control of ultrasonic motors using MRAC and dead-zone compensation with fuzzy inference, IEEE Trans. on Power Electron. 17 (2) (2002) 265-272. [60 ] T. Senjyu, H. Miyazato, S. Yokoda, K. Uezato, Speed control of ultrasonic motors using neural network, IEEE Trans. Power Electron. 13 (3) (1998) 381–387. [61 ] F.J. Lin, R.J. Wai, R.Y. Duan, Neural-network controller for parallel-resonant ultrasonic motor drive, IEEE Trans. on Controls Technology 7 (4) (1999) 494-501. [62 ] F. J. Lin, R.J. Wai, K. K. Shyu, T.M. Liu, Recurrent fuzzy neural network control for piezoelectric ceramic linear ultrasonic motor drive, IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, 48 (4) (200) 900-913. [63 ] W.C. Elmore, M.A. Heald, Physics of Waves, Dover Publication, Inc., New York, 1969, pp. 59-64. [64 ] C.H. Huang, C.C. Ma, Vibration characteristics of composite piezoceramic plates at resonant frequency: experiments and numerical calculations, IEEE Trans. Ultrason. Ferroelec. Freq.Contr. 48 (4) (2001) 1147-1156. [65 ] T.L. Brown, H.E. LeMay Jr., Chemistry, The Central Science, 1969. [66 ] Dynamics User’s Guide for revision 5.1, ANSYS, Inc. 1995. [67 ] Introduction to ANSYS for Revision 5.1, ANSYS, Inc., PA: Canonsburg, 1993. [68 ] A. Bedford, D.S. Drumheller, Introduction to Elastic Wave Propagation, John Wiley & Sons, Chichester, 1994. [69 ] 何海編著,工程數學(上),蔡坤龍圖書公司,1992。 [70 ] M.S. Ouyang, F.L. Wen, Thin-disc Piezoelectric Actuating Ultrasonic Motor, Unite States Patent, Patent No.: US 6,489,705 B1, Date of Patent: Dec. 3, 2002. [71 ] 吳朗編著,電子陶瓷-壓電,全欣科技圖書,1994。 [72 ] S.I. Furuya, T. Maruhashi, Y. Izuno, M. Nakaoka, Load-adaptive frequency tracking control implementation of two-phase resonant inverter for ultrasonic motor, IEEE Trans. on Power Electronic 7 (3) (1992) 542-550. [73 ] T. Senjyu, S. Yokoda, K. Uezato, Position control of ultrasonic motors using sliding mode control with multiple control inputs, IEEE Ultrasonics Symposium (1998) 597-602. [74 ] U. Itkis, Control Systems of Variable Structure, Wiley, New York, 1976. [75 ] Z. Kaiyu, S. Hongye, C. Jian, Z. Keqin, Globally stable robust tracking of uncertain systems via fuzzy integral sliding mode control, IEEE proceeding of the 3rd World Congress on Intelligent Control and Automation, P.R. China (2000) 1827-1831. [76 ] F.L. Wen, C.Y. Yen, M.S. Ouyang, Thin-disk piezoceramic ultrasonic motor. Part I: design and performance evaluation, Ultrasonics 41 (2003) 437-450. [77 ] 王木琴、洪敏雄編著,機械工程實驗(一)-材料試驗,pp. 85-89復文書局,民國83年。 [78 ] R.C. Hibbeler原著,應用力學-動力學(第五版),pp. 175-246, 文京圖書有限公司,民國81年。 [79 ] S.B. Choi, H.K. Kim, S.C. Lim, and Y.P. Park, Position Tracking Control of an Optical Pick-Up Device using Piezoceramic Actuator, Mechatronics 11 (2001) 691-705.id NH0920593014 sid 877114 cfn 0 / id NH0921457001 auc 廖忠照 tic 績效獎金制度認知對於員工滿意與工作態度的影響(以汽車售后服務保修人員為例) adc 陳鴻基 博士 ty 碩士 sc 國立清華大學 dp 高階經營管理碩士班 yr 92 lg 中文 pg 106 kwc 績效獎金制度 kwc 員工工作滿意 kwc 員工工作態度 abc 績效獎金制度認知對於員工滿意與工作態度的影響 tc 目 錄 中文摘要…………………………………………………Ⅱ 英文摘要……………………………………...………….Ⅲ 誌謝辭………………………………………………….. Ⅴ 目 錄………………………………………………….. Ⅵ 圖目錄……………………………………………………Ⅸ 表目錄……………………………………………………Ⅹ 第一章 緒論 ……………………………………… 1 第一節 研究動機……………………………………… 1 第二節 研究目的……………………………...………. 3 第三節 研究流程……………………………………… 4 第四節 論文架構……………………………………… 5 第二章 文獻探討…………………………………… 6 第一節 績效管理、績效評估與薪資制度的定義………. 6 一、 績效管理………………………………………. 6 二、 績效評估……………………………………… 6 三、 薪獎制度 …………………………………….. 16 第二節 績效獎金制度…………………………………. 18 一、 績效獎金制度的分類…………………………… 18 二、 績效獎金的來源與分配…………………………. 20 三、 績效獎金制度應用原則…………………………. 21 第三節 影響績效獎金制度滿意度之因素……………… 22 第四節 績效獎金制度對於員工滿意與工作態度可能的影響 ………………………………………….…… 25 一、 工作滿意度………………………………….…. 26 二、 薪資滿意度………………………………….… 32 三、 績效獎金制度與員工工作滿意度及薪資滿意度的關聯性 ……………………………………..…..……. 35 四、 組織承諾………………………………….…. 37 五、 離職意願……………………………………… 45 第三章 研究方法………………………………….…52 第一節 研究架構………………………………….…..52 第二節 操作定義……………………………….……..53 第三節 研究假說……………………………….……..54 第四節 研究對象……………………………….……..55 第五節 研究工具……………………………….……..56 第六節 分析方法……………………………….……..61 第四章 研究結果分析………………………….……62 第一節 問卷發出與回收情形…………………….……62 第二節 信度分析……………………………….……. 64 第三節 因素分析……………………………………. 65 一、 員工績效獎金制度的認知度的因素分析……………66 二、 績效獎金制度的滿意度的因素分析………………. 69 三、 員工滿意度的因素分析………………………… 70 四、 員工工作態度的因素分析………………………. 73 第四節 假設檢定………………………………….….. 77 一、 員工對績效獎金制度的認知度與員工對績效獎金制度的滿意度………………………….………….……77 二、 員工對績效獎金制度的滿意度與員工滿意度….……. 78 三、 員工對績效獎金制度的滿意度與工作態度…….…… 79 第五節 資料分析結論…………………………….…… 79 第五章 結論與建議…………………………….……81 第一節 研究結論……………………………….……. 81 第二節 管理實務意涵………………………….…….. 84 第三節 研究限制……………………………….……. 87 第四節 研究建議……………………………….……..89 參考文獻………………………………………….…….. 91 《註釋》………………………………………….……. 97 《附錄》………………………………………….……. 101 圖目錄 圖1-1 本研究的研究流程………………………………….. 4 圖2-1 汽車售后保修人員之薪資體系圖…………………….. 17 圖2-2 績效獎金制度可能影響員工的因素…………………... 26 圖2-3 Lawler (1971)差距模式……………………………. 33 圖2-4 Steers組織承諾之前因與後果變項圖……………….. 42 圖2-5 Mowday的組織承諾之前因與後果……………………. 43 圖2-6 Szilagyi離職過程模式…………………………….. 47 圖2-7 Brigitte離職意願相關模式………………………… 48 圖2-8 Igharia & Greenhaus離職意願模式…………………..49 圖3-1 本研究的研究架構…………………………………..52 表目錄 表2-1國內外學者對於績效評估的定義…………………………7 表2-2三種測量績效評估標準的優、缺點比較表………………. 11 表2-3員工績效評估表………………………………………12 表2-4汽車銷售行業服務廠修護人員績效評估表………………. 13 表2-5評估方式與資訊相對重要分析表………………………. 14 表2-6工作滿意定義………………………………………... 27 表2-7激勵理論…………………………………………….30 表2-8影響工作滿意之因素…………………………………. 36 表2-9組織承諾定義之彙整…………………………………. 39 表2-10組織承諾的分類…………………………………….. 40 表3-1新竹地區汽車銷售行業經銷公司簡介…………………… 55 表3-2員工績效獎金制度認知情形調查構面與問卷題序對照表…… 57 表3-3組織承諾量2項量測構面與問卷題序對照表……………... 59 表4-1研究問卷回收情形……………………………………. 62 表4-2研究問卷回收統計表……………………………….…..62 表4-3問卷樣本個人基本資料分析………………………….… 63 表4-4問卷中各構面信度分析……………………….………...65 表4-5員工對績效獎金制度的認知度之因素分析…….………….. 66 表4-6員工對績效獎金制度認知度構面之因素分析……….……...67 表4-7員工對績效獎金制度(公平性)認知情形(內部一致性分 析)………………………………………………… 68 表4-8員工對績效獎金制度,(績效與報酬連結性)的認知(內部一致性分 析) ………………………………………………… 68 表4-9員工對績效獎金制度(重要性)的認知(內部一致性分析)…… 69 表4-10員工對績效獎金制度滿意度之因素分析………………… 69 表4-11員工對績效獎金制度滿意度(內部一致性分析)…………... 70 表4-12員工工作滿意度的因素分析…………………………... 71 表4-13員工工作滿意度(內部一致性分析)…………………….. 71 表4-14員工薪資滿意度的因素分析………………………….... 72 表4-15員工薪資滿意度(內部一致性分析)…………………….. 73 表4-16組織承諾因素分析…………………………………… 74 表4-17組織承諾構面之因素分析……………………………... 74 表4-18組織承諾(價值承諾)(內部一致性分析)………………… 75 表4-19組織承諾(留職承諾)(內部一致產分析)………………… 75 表4-20離職意願之因素分析…………………………………. 76 表4-21離職意願(內部一致性分析)…………………………… 76 表4-22以員工對績效獎金制度的認知度為依變項之迴歸分析結果…78 表4-23以「工作滿意度」與「薪資滿意度」為依變項之迴歸分析結果 …………………………………………………… 78 表4-24以組織承諾三項構面為依變項之迴歸分析結果……….…...79 表4-25影響性假設之驗証結果………………………………. 80rf 參考文獻 一、中文部份 1.李元松,1977,「績效獎勵制度的相關影響因素及效果研究-以資訊公 司為實證對象」,中原大學企業管理研究所未出版之碩士論文。 2.佐滕知恭,2002,顧客忠誠經營:超越顧客滿意的服務行銷管理,永 續圖書公司。 3.林威宇,2000,「醫院醫療事務部實實施獎金制度前後對其員工認知、 態度及工作滿意度改變之相關研究」,國立台灣大學醫療機構管理研究所未出版之碩士論文。 4. 林建忠,2002,「組織承諾與工作滿意之調查研究」,中正大學政治研 究所,碩士論文。 5.吳秉恩,1992,「策略性人力資源管理」,台北中國經濟企業研究所。 6.施國正,2002,「衛生署署立醫院實施新制將勵制度對所屬醫院與醫 師影響之探討」,台灣大學公共衛生學院醫療機構管理研究所。 7.袁芳煌,2002,「工作評價,績效管理與薪資管理之關係應用於實務 之研究」,元智大學管理研究所,碩士論文。 8.張智寧,1999,「不同策略群組特性下員工績效評估與組識績效之關 聯性研究,靜宜大學企業管理學系」,碩士論文。 9.張靜琪,2000,「員工薪資福利對組織績效影響之探討」,中山大學人 力資源管理研究所,碩士論文。 10.張峰銘,2002,「薪資制度、組織承諾與工作績效關係之研究」,國 立中山大學人力資源管理研究所碩士在職專班,碩士論文。 11.張熒書,2002,「我國公立國民小學學校績效獎金之研究」,台北市 之師範學院,國民教育研究所,碩士論文。 12.張凱鈞,2000,「台灣壽險公司業務人員對現行績效考核與酬賞制度 的激勵效果認知之研究」,逢甲大學保險系,碩士論文。 13.張火燦,2001,策略性人力資源管,楊智出版社。 14.張火燦,1994,績效評估的模式及相關理論,人事行政。 15.陳照明,1984,行為科學與管理,大洋出版社。 16.陳海鳴、陳家慧,2001,組織內薪酬給付之整合性架構,台大管理 論叢,第11卷第2期,155~173頁。 17.施國正,2002,「衛生署署立醫院實施新制獎勵制度對所屬醫院與醫 師影響之探討」,台灣大學公共衛生學院醫療機構管理研究所。 18.游宏智,1998,「利潤分享制度對員工工作態度影響之研究」,中原 大學企業管理研究所未出版之碩士論文。 19.黃英忠,1994,現代人力資源管理,台北,華泰書局。 20.楊力彥,2001,「團隊績效獎勵制度知覺對於員工薪資滿意度與工作 態度之影響」,國立中央大學企業管理研究所,碩士論文。 21.蔡昆源,2000,「華進集團員工滿意度、工作投入、組織承諾與離職 意願之研究」,中山大學人力資源管理研究所,碩士論文。 22.蔡玲玉,2000,「薪酬管理制度與勞資關係氣氛之研究」,政治大學 企業管理研究所碩士論文。 23.蔡淑敏,2000,「企業溝通媒介、員工溝通滿足及組織承諾關係之研 究─以台灣電子資訊產業為例」,長榮管理學院經營管理研究所碩士論文。 24.劉建良,2002,「公車駕駛員之薪資滿足感與工作壓力、工作滿足、 服務品質之關係探討」,淡江大學運輸管理學系運輸科學碩士班,碩士論文。 25.鄧教純,2002,「壽險業的績效評估與獎金制度之研究」,國立台灣 科技大學管理研究所,碩士論文。 26.歐進士、李佳玲,2001,「薪資報酬策略與員工績效關聯性之研究」, 國立中正大學學術性研究。 27.盧榮俊,2003,「公務機關員工之薪資制度、福利制度及升遷制度之 知覺與其工作態度關聯性之研究」,中原大學企業管理學院,碩士論文。 28.諸承明,2001,「薪酬設計理論與實務之整合性模式-台灣大型企業 實証分析,人力資源管理學報」。 29.羅業勤,1992,薪資管理(初版),合勤企業管理顧問公司。 30.羅業勤,1996,獎工計畫理論與實務(初版),合勤企業管理顧問公 司。 英文部份 1. Adams,J.S.,1965.Inequity in social exchange. In L. Berkowitz (Ed.), Advances In Experimental Social Psychology,2:267-299.Sand Diego, CA:Academic Press. 2. Buchanan, B.,1974.Building Organizational Commitment: The Socialization of Manager in Work Organization. Administrative Science Quarterly 19:533-546 3.Cummings, L. L.& D.P.Schwab,1978. Designing Appraisal Systems for Information Yield. California Management Review,20(4):18-25 4.Ferracone, R. & L.Siegel ,1991.Focus Pay Incentive on Long-term Results.Modern Healthcare,21(36):89 5.Heneman, H.G.,1985. Pay Satisfaction In K. Rowland, and G. Ferris (eds.) Research in Personnel and Resources Management, 3:115-139. Greenwich, CT:JAI Press. 6.Heneman, R.L., D.B.Green Berger, &S.Strasser,1988. The Relationship Between Pay-for-performance Perceptions and Pay Satisfaction. Personnel Psychology, 41:745-760. 7.Heneman, H.G. & D.P.Schwab, 1979.Work and Rewards Theory. In D .Yoder & H.G. Heneman , Jr.(Eds.)ASPA Handbook of personnel and industrial relations, 6:1-12.Washington, DC: Bureau of National Affairs. 8.Katzenbach, J.R. &D.K. Smith, 1993. The wisdom of team : Creating the High-Performance Organization. Boston : Havard Business School Press. 9.Lawler, E.III .Edward,1971.Pay and Organizational Effectiveness : A psychological Approach. New York : Mcgraw-Hill. 10.Lawler,E.E.and G.D. Jenkins, 1981.Impact of Employee Participation in Pay Plan Development .Organizational Behavior and Human Performance,28:111-128. 11.Michael, C.E. & P.E.Spector, 1982. Causes of Employee Turnover : A Test of the Mobley, Griffeth, Hand, and Meglino Model. Journal of Applied Psychology, 67(1):53-59 12.Mobely, W. H.,1997. Intermediate Linkages in the Relationship Between Job Satisfaction and Employee Turnover, Journal of Applied Psychology, 62(2):238 13.Mobley, W.H., S.O.Horner, & A.T. Hollingsworth, 1978.An Evaluation of Precursors of Hospital Employee Turnover. Journover. Journal of Applied Psychology, 63:408-414 14.Mowday, R.T., L.Porter, & R.M.Steers, 1982. Employee-Organizational Linkages : The Psychology of Commitment, Absenteeism and Turnover. New York : Academic Press. 15.Maslow, A.H., 1954, Motivation and Personality.(2nded.)N.Y., Harper & Row. 16.Morris, J.H., and J.D.Sheman, 1981, Eneralizability of Organizational Commitment Model.” Academy of Management Journal. 24(3) :512-526. 17.Newman, J.E.,1974,Predicting Absenteeism and Turnover : A Field Comparison of Fishbein’s Mold and Traditional Job Attitude Measures. Journal of Applied Psychology, 59 :610-615. 18.Newman,J.E., H.Willam, E.Charles Summer, and E. Kirby. Warren (1972). The Process of Management : Concept, Behavior and Practice. New York, NY: Prentice-Hall. 19.Porter, L.W. & F.J.Smith, 1970. The Etiology of Organizational Commitment. University of California, Irvine. 20.Porter, L.W., R.M. Steers, R.T.Mowday, & P.V. Boulian ,1974. Organizational Commitment, Job Satisfaction, and Turnover among Psychiatric Technicians. Journal of Applied Psychology, 59(5): 603-609 21.Porter, L.W. and E.E.Lawler, 1968,Managerial Attitudes and Performance, Illinoiss: Homewood Company. 22.Porter, L.W. and F.J.Smith, 1970, The Etiology of Organization Commitment. Unpublished Paper, University of California, Iivine.17 :556-560. 23.Robbins, S.P., 1996, Organizational Behavior, Concept, Controversies, and Application. (7thed.) New Jersey : Prentice-Hall, Inc., 24.Steer, R.M., 1977, Antecedents and Outcomes of Organizational Commitment.Administrative Science Quarterly.22 (1) : 46. 25.Schuler, S.R., 1987. Personnel Human Resource Management, 3rd Edition. New York West Publishing Co. 26.Sizlagyi, A.D., 1979,Keeping Employee. Turnover under Control, Personnel, The Management of People at Work :42-52 27.Spector, P.E., 1997.Job Satisfaction : Application, Assessment, and Consequences. Thousand Oaks, CA: Sage. 28.Vroom ,V.H., 1964. Work and Motivation. New York : Wiley.id NH0921457001 sid 906108 cfn 0 / id NH0921457002 auc 林誌銘 tic 通訊業者選擇第三方物流之準則分析 adc 陳鴻基 adc 林則孟 ty 碩士 sc 國立清華大學 dp 高階經營管理碩士班 yr 92 lg 中文 pg 90 kwc 3PL kwc 通信產業 kwc 選擇準則 abc 中文摘要 tc 目錄 中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 圖目錄 Ⅶ 表目錄 Ⅷ 壹丶 緒論 1 一丶 研究背景與動機 1 二丶 研究目的 3 三丶 研究流程 3 四丶 研究範圍與假設限制 5 貳丶 文獻探討 6 一丶 物流委外 6 (一) 物流的定義丶演進 6 (二) 物流委外的選擇準則及產業環境影響構面 9 二丶 第三方物流(3PL, 3rd Party Logistics) 13 (一) 定義 13 (二) 業務範圍及運用情形 14 三丶 台灣通訊產業 18 (一) 通訊產業定義 18 (二) 通訊產業發展概況 21 (三) 研究對象簡介 23 (四) 結論 34 參丶 研究方法 36 一丶 研究架構 36 二丶 檢定假設 42 三丶 分析流程 43 四丶 問卷設計丶回收及樣本結構 45 肆丶 資料分析與結果 48 一丶 回收樣本架構 48 二丶 各選擇準則之分析 52 (一) 整體樣本選擇準則之認知分析 52 (二) 供應鏈層級間選擇準則之認知分析 54 三丶 各環境影響層面分析 57 (一) 整體樣本產業環境影響層面之認知分析 57 (二) 供應鏈層級間產業環境影響層面之認知分析 59 四丶 選擇準則之因素及信度分析 61 (一) 成本面 61 (二) 時程面 62 (三) 管理面 62 (四) 品質面 63 (五) 附加價值面 64 (六) 資訊系統架構面 65 (七) 各選擇準則構面之信度分析 65 五丶 環境之因素及信度分析 66 (一) 企業的反應速度 67 (二) 產業的競爭程度 68 (三) 產業環境機會面 68 (四) 各環境影響構面之信度分析 69 六丶 環境影響構面與選擇準則構面之迴歸分析 70 (一) 整體性迴歸分析 71 (二) 供應鏈不同層級之迴歸分析 73 七丶 研究假設驗證 76 伍丶 結論與建議 78 一丶 結論 78 二丶 建議與研究方向 79 (一) 對產業的建議 79 (二) 未來研究 79 參考文獻 81 附錄 問卷內容 85rf 參考文獻 1. 毛國荃,2002, “供應鏈中製造商對第三方物流服務知覺服務知研究”,國立成功大學工業管理研究所,碩士論文。 2. 余章鈞,2002,“第三者委外物流運輸業者(3PL)與廠商間介面管理之研究”,中原大學企業管理研究所,碩士論文。 3. 吳作樂,1992,“MIC IT IS 計劃”,資策會。 4. 林宜萱譯,Edward H. Frazelle,2002,供應鏈高績效管理,麥格羅-希爾/台北。 5. 黃宏彬,2000,“供應鏈下探討主要層級之物流外包準則及相關性分析”,高雄第一科技大學儲運所,碩士論文。 6. 黃詩雲,2000,“影響電子商務與專業物流業者策略聯盟模式因素之探討”,台灣大學商業研究所,碩士論文。 7. 張雲鵬,2002,“發展台灣第三者航太物流事業模式之探索性研究”,朝陽大學企業管理研究所,碩士論文。 8. 張志華,2002,“建構台灣高科技產業因應全球運籌模式之物流策略法則”,高雄第一科技大學儲運所,碩士論文。 9. 廖德璋,2000,“企業建立VMI管理機制以追求供應鏈整體綜效之研究”,淡江大學資訊管理研究所,碩士論文。 10. 劉悟,1999,“物流話語-3PL”,物流技術專論,P66-71,1999/3。 11. 謝玟穎,2001,“策略成本管理-以提供全球運籌服務知新創事業為例”, 台大會計研究所,碩士論文。 12. 蘇義雄,1999,“企業物流委外專論”,物流技術與專論,P61~65,1999/3。 13. “1995年我國通訊產業產銷調查報告”,1995,資策會MIC IT IS計劃。 14. “1996我國通訊產業產銷調查報告”,1996,資策會MIC IT IS計劃。 15. “1999我國通訊產業產銷調查報告”,1999,資策會MIC IT IS計劃。 16. “1998年我國通訊工業產銷現況分析”,1998,資策會MIC IT IS計劃。 17. “2001訊產業產銷調查報告”,2001, 工研院經資中心,資策會MIC IT IS計劃。 18. “MIC數位式無線電話用IC產業發展前景”,1996,資策會。 19. “台灣通訊產業調查”,1999,工研院電通所,IT IS 計劃。 20. “商業現代化與物流發展”,2000,P20-27,中華民國物流年鑑。 21. “美國物流市場”,2002,P78-113,中華民國物流年鑑。 22. “通信器材製造業”,1992,資策會。 23. “通訊業物流發展現況分析”,2000,P206-232,中華民國物流年鑑。 24. “無線通訊設備產業”,2002,工研院經資中心,IT IS計劃。 25. “國際物流業者經營現況”,2002,P25-47,中華民國物流年鑑。 26. Bowersox D.J. & Daugherty P.J. 1987,“Emerging Patterns of Logistics Organization” ,Journal of Business Logistics,Vol. 8, No.1,P46-60。 27. Christy,D.P. & Grout,J.R. 1994,“Safeguarding Supply Chain Relationships”,International Journal Production Economics,Vol.36, P233-242。 28. Coyle,J.J. & Bardi & Laugley,C.J. 1996, The Management of Business Logistics,West Pub. Co. ,Sixth Edi.。 29. Craig,T. 1996,“Outsourcing: Let the Buyers Beware” ,Transportation and Distribution,P102-110,May。 30. Ellram, L.M. & Maltz, A.B. 1995, “ The Use of Total Cost of Ownership Concepts to Model the Outsourcing Decision”,The International Journal of Logistics Management,Vol.6,No.2,P55~65。 31. Ellram,L.M. & Sue,S. 1993,“The Cornerstone of Total Cost of Ownership Concepts” ,Journal of Business Logistics,Vol.14,No.1, P166。 32. Larson,P.D. & Dulchitsky,J.D. 1988,“Logistics Improvement Programs: Scale for Measuring Customer Perceptions of Service Quality”,Journal of Retail,Vol.64,No.2,P12~40。 33. Lieb,R. & Schwarz,B. 2002,The Use of Third Party Logistics Services by Large American Manufacturers,the 2001 Survey 。 34. McGinnis,M.A. & Kohn,J.W. 1993,“Logistics Strategy, Organization Environment and Time Competitiveness”,Journal of Business Logistics,Vol.14,Iss.2,P1~23。 35. Mohan,K.M.,McGinnis,M. 1998,“Selection Criteria for Providers of Third-party Logistics Services: An Exploratory Study”,Journal of Business Logistics,Vol.19,No.1,P121~137 。 36. Nicosia,J. 1997,“Buyers & Suppliers”,Purchasing,March 20, P28-31。 37. Prabir,B.K. & Virum,H. 1996,“ European Logistics Alliances : A Management Model” ,The International Journal of Logistics Management, Vol.7,No.2,P41~63。 38. Prahalad,C.K. & Hamel,G. 1993,“The Core Competence of the Corporation”,Harvard Business Review,90,May-Jun,P102。 39. Simchi-Levi,D. & Kaminsky,P. 2001,Design and Managing the Supply Chain: Concept,Strategies and Case Studies,McGraw-Hill 。 40. Susan,A. 1997,“Buyers & Suppliers Unite Against Cost”,Purchasing, Vol.122,Iss.4,P55~65。id NH0921457002 sid 896104 cfn 0 / id NH0921457003 auc 陸耀文 tic 目標管理的實施與企業營運績效之研究-以某大陸台商為例 adc 陳鴻基 adc 林則孟 ty 碩士 sc 國立清華大學 dp 高階經營管理碩士班 yr 92 lg 中文 pg 114 kwc 目標管理 kwc 平衡計分卡 kwc 績效評估 abc 基本上,目標管理制度是一種經過許多專家學者長期研討及驗證,並發展已臻成熟的管理制度。時至今日,廣泛受到一般大型企業的青睞及採用。但一般中小型企業因先天條件不足及受限於企業環境,採用的情況較不普遍。故本研究以實施目標管理的大陸中小型台商企業為個案研究的對象,實際深入了解其所遭遇的困難,並將研究的發現及結果,提出具體建議及心得,分享大眾。 tc 中文摘要……………………………………………………………II 英文摘要……………………………………………………………III 謝誌…………………………………………………………………V 目錄…………………………………………………………………VI 圖目錄……………………………………………………………VIII 表目錄………………………………………………………………IX 第一章  緒論……………………………………………………1 第一節  研究背景與動機…………………………………1 第二節  研究目的…………………………………………3 第三節 論文架構…………………………………………5 第四節 研究對象與範圍…………………………………6 第五節 研究流程…………………………………………8 第一章  註釋………………………………………………9 第二章  文獻回顧………………………………………………10 第一節 目標管理發展的歷史背景及演進………………10 第二節 目標管理的基本概念……………………………16 第三節 目標管理的理論基礎……………………………24 第四節 目標管理的實施程序及問題……………………34 第五節 企業運營績效的衡量……………………………42 第六節 發展研究假說……………………………………46 第二章  註釋………………………………………………48 第三章 研究方法……………………………………………54 第一節 研究架構…………………………………………54 第二節 研究假設…………………………………………57 第三節 變數的定義與衡量………………………………58 第四節 研究設計…………………………………………63 第五節 資料分析方法……………………………………66 第三章  註釋………………………………………………68 第四章  實證分析……………………………………………69 第一節 個案背景簡介………………………………………69 第二節 訪談結論分析………………………………………70 第三節 問卷調查結果分析…………………………………73 第四節 研究發現……………………………………………83 第五章  結論與建議…………………………………………86 第一節 研究結論……………………………………………86 第二節 管理意涵……………………………………………89 第三節 研究限制……………………………………………90 第四節 建議及未來研究方向………………………………91 【參考文獻及書目】………………………………………………93 【附錄】 ……………………………………………………………97 圖目錄 圖1-1研究流程……………………………………………………8 圖2-1目標設定程序圖……………………………………………23 圖2-2兩構面理論圖………………………………………………31 圖2-3目標管理的循環體系圖……………………………………35 圖2-4平衡計分卡架構……………………………………………44 圖2-5參與管理模式………………………………………………47 圖3-1觀念性架構圖(Ι)………………………………………54 圖3-2觀念性架構圖(Π)………………………………………54 圖3-3研究架構圖(Ι)…………………………………………55 圖3-4研究架構圖(Π)…………………………………………56 圖3-5企業開放系統圖……………………………………………59 圖3-6統計分析架構圖……………………………………………67 表目錄 表2-1目標之定義…………………………………………………16 表2-2相關文獻整合………………………………………………32 表3-1問卷內容分析………………………………………………65 表4-1問卷受訪者之性別統計……………………………………73 表4-2問卷受訪者之年齡統計……………………………………74 表4-3問卷受訪者之教育程度統計………………………………75 表4-4問卷受訪者之現有公司服務年資統計……………………75 表4-5問卷受訪者之產業服務年資統計…………………………76 表4-6問卷受訪者之目前擔任職務統計…………………………77 表4-7問卷結果之綜合統計………………………………………78 表4-8本研究信度值表……………………………………………79 表4-9構面平均值統計表…………………………………………81 表4-10 廻歸分析表………………………………………………81 表4-11「高階主管訪談」及「員工問卷調查」之共通性……………85rf 中文部分: 1.王忠宗(1993),目標管理實務,臺北:日正企管顧問。 2.王忠宗(2001),目標管理與績效考核,第1版,臺北:日正企管顧問。 3.呂文祺(1990),「工作目標屬性與工作本身滿足、上司滿足、角色知覺之關連性研究─以實施目標管理公司爲例」,國立交通大學管理科學研究所碩士論文。 4.呂山海譯(1997),目標管理實務,第2版,臺北:書泉,譯自幸田一男(1988)。 5.朱道凱譯(2003),平衡計分卡,第1版27刷,臺北:臉譜,譯自Robert S. Kaplan & David P. Norton(1999)。 6.李長貴(1997),績效管理與績效評估,第1版,臺北:華泰。 7.幸田一男(1981),目標管理的推行方法,東京:産業能率短大。 8.林建煌譯(1999),現代管理學,第1版,臺北:華泰,譯自Stephen P. Robbins & David A. De Cenzo. 9.林正明(2001),目標管理成功入門,第3版,臺北:超越企管顧問。 10.陳定國(1981),實用目標管理學,臺北:華泰。 11.陳正芳(1987),「營業預算與目標管理的結合運用」,東吳大學會計學研究所碩士論文。 12.陳照明(1999),實用目標管理,第1版,臺北:世茂。 13.陳弘/陳良/張模/張承(2000),企業管理管理概論篇,臺北:鼎茂。 14.陳弘/陳良/宋方/張承(2000),企業管理企管概論篇,臺北:鼎茂。 15.張金鑑(1967),行政學典範,臺北:五南。 16.張志豪(1996),「目標管理激勵機制之研究─以生産數量爲例」,國立中興大學企業管理研究所碩士論文。 17.張元寶(1998),「臺灣企業與外商企業目標設定差異性之研究」,東吳大學企業管理研究所碩士論文。 18.許是祥(1980),目標管理制度,臺北:中華企管。 19.黃曾賜(1986),「目標管理人性面的探討」,國立交通大學管理科學研究所碩士論文。 20.賴士葆(1995),生産作業管理─理論與實務,第2版,臺北:華泰。 21.賴信榮(1995),「實施目標管理之公司中,員工激勵誘因偏好之研究─以基層主管(含)以上之主管爲例」,東吳大學企業管理研究所碩士論文。 22.趙繼虎(1980),「組織推行目標管理之研究─以台電爲例」,國立交通大學管理科學研究所碩士論文。 英文部分: 1.Carroll, S.J.& H.L.Tosi (1974), Management by Objective: Application and Research, N.Y.: Macmillan Co.﹐pp.49-52 。 2.Drucker, P.F.(1954), The Practice of Management, N.Y.: Harper & Row﹐pp.121-127。 3.Kondrasuk, J.N.(1982),“Management by Objectives: past, present, and future”, Managerial Planning﹐pp.31-32。 4.Latham, G P. & G.A.Yukl (1975), “A Review of Research on the Application of Goal Setting in Organizations”, Academy of Management Journal, Vol.18, P.824。 5.Locke, E.A.(1977),“The myth of behavior mod in organizations”, Academy of Management Review。 6.Locke, E.A, & G.P.Latham(1984),Goal Setting, Eaglewood cliffs, N.J.: Prentice-Hall。 7.McGregor, D.(1957), “An Uneasy look at Performance Appraisal”, Havard Business Review, May-June 1957。 8.McGregor, D.(1960), The Human Side of Enterprise, N. Y.: McGraw Hill Book Co.﹐pp.33-45 。 9.Myers, M.S.(1964),“Who are your Motivated Workers?”, Havard Business Review, Jan.-Feb. 1964,42﹐pp.73-88。 10.Muchinsky, P.M.(1990), Psychology Applied to work, 3rd ed., pacific Grove, Brooks/Cole Publishing Company﹐pp.271-272。 11.Raia, A.P.(1965), “Goal Setting and Self-Control”, Journal of Management studies, Vol.1-2, Feb.1965﹐pp.149-151。 12.Sashkin, M.(1984), “Participative Management Is an Ethical Imperative”, Organizational Dyamics﹐pp.5-21。 13.Tosi, Jr., H.L. & S.J.Carrol Jr. (1970), “Setting Goals in Management by Objectives”, California Management Review﹐pp.10-12。 14.Vroom, V.M.(1964), Work and Motivation, N.Y.: Wiley。 15.Venkatraman, N.& R.Vasudevan(1986),“Measurement of Business Performance in Strategy Research: A Comparison of Approaches”, Academy of Management Review, Oct.1986﹐pp.804-815。id NH0921457003 sid 906105 cfn 0 / id NH0921457004 auc 黃國治 tic 資訊系統委外開發成敗要素之探討 adc 陳鴻基 adc 林則孟 ty 碩士 sc 國立清華大學 dp 高階經營管理碩士班 yr 92 lg 中文 pg 135 kwc 委外 kwc 資訊系統委外 kwc 資訊系統委外開發 abc 本研究主要是藉由資訊專家訪談的方式,來探討契約、廠商、專案管理這三個構面,對資訊系統委外開發成敗的影響,並從中找出影響成敗的關鍵因素。 從訪談的綜合分析,發現契約對於資訊系統委外開發的成敗沒有影響; 廠商構面中廠商能力影響很大,廠商管理也有些影響, 廠商關係則沒有多大關係; 專案管理構面則對資訊系統委外開發成敗的影響最大。 本研究發現影響資訊系統委外開發成功的關鍵因素有:專案目標與範圍要明確、需求的變更能掌握、流程改造要完整、溝通良好、時程能掌控、會議定期召開、人員異動能掌握、使用者要配合、高階主管支持、專案成員與相關主管有決心、 資訊人員及廠商清楚企業領域的技術、技術文件有良好的管控。 tc 中文摘要 1 英文摘要 2 誌謝 3 目錄 4 表目錄 6 圖目錄 7 第1章 緒論 8 第1節 研究背景 9 第2節 研究動機 13 第3節 研究目的 15 第4節 研究流程 16 第5節 名詞解釋 17 第2章 文獻探討 19 第1節 資訊系統委外定義 19 第2節 資訊委外系統委外的優缺點 24 第3節 資訊系統委外契約之擬定 27 第4節 資訊系統委外廠商管理 31 第5節 資訊系統委外專案管理與成功因素 36 第6節 資訊系統委外績效 46 第3章 研究架構與研究方法 51 第1節 研究架構 51 第2節 研究方法 55 第3節 研究對象 56 第4節 訪談過程 58 第4章 專家訪談分析 60 第1節 專家訪談-A 60 第2節 專家訪談-B 66 第3節 專家訪談-C 71 第4節 專家訪談D 76 第5節 專家訪談-E、F、G 80 第6節 專家訪談-H 85 第7節 專家訪談-I 90 第5章 研究成果分析 95 第1節 研究架構模式與訪談綜合分析 95 第2節 研究架構模式與個案綜合分析 103 第6章 結論與建議 110 第1節 研究成果綜合整理 110 第2節 其他相關研究發現 119 第3節 研究限制 121 第4節 後續研究方向建議 122 附錄 一: 訪談問題清單 125 參考文獻 129 中文部分 129 英文部分 131rf 中文部分 1. 卜一(1997),『政府資訊委外,等待良機、把握三贏』,資訊與電腦,201期,民國 86 年 4 月,頁 29 2. 王 溥(2000), 『影響專案團隊績效之團隊管理研究』,國立中山大學資訊管理研究所碩士論文, 民國 89 年 7 月 3. 王慶富(1996)、 『專案管理』,台北:聯經出版社,民85 4. 王慶富(1999), 『專案管理』,台北:聯經出版社,民88 5. 戎懷章(2001),『資訊業務委外管理機制之設計與應用』,淡江大學資訊管理學系碩士論文,民國90 年6 月 6. 行政院主計處(2001) ,行政院主計處九十年度電腦應用概況調查結果的台本地區資訊應用狀況,民國 90 年 7. 何秉衡(2000),『政府採購法下資訊技術委外決策支援系統之研究』,私立銘傳大學資訊管理研究所碩士論文,民國 89 年 6 月 8. 吳以文,潘佩蓉(1990),『從第七屆世界軟體大會展望資訊服務業的未來』,資訊與電腦,民國 79 年 9 月, 頁 17-19 9. 吳采菽,李建復(1991),『90 年代的服務業 — 資訊系統外包』,資訊與電腦,民國 80 年 9 月 10. 吳琮籓、謝清佳(1998),『資訊管理 — 理論與實務』, 台北, 智勝, 民國 87 年 11. 李庭毓(2000),『在不同的專案特性下控制機制對專案績效之影響』,靜宜大學企業管理研究所碩士論文,民國89年6月 12. 李坤清(1998),『我國公民營機構應用資訊系統軟體委外績效評估之研究 — 從影響應用軟體資訊系統委外滿意因素角度探討』,八十七年度行政院國家委員會專體研究計劃成果報告,民國 87 年 13. 李淑芳(1995),『台灣地區資訊系統外包決策考慮因素之研究』,國立中央大學資訊管理研究所碩士論文, 民國 84 年 6 月 14. 周明昌(1998),『資訊系統委外承包商選擇模式之建立』,國立政治大學資管系碩士論文 15. 周文賢、科國慶,『工程專案管理』,台北:華泰書局, 1994 16. 周世静(1992),『企業研究發展專案績效評估模式之研究-以化學材料、化學產品製造業為例』,國立中山大學企業管理研究所碩士論文,民國 81 年 17. 林竒瑩(1997),『組織特性、管理特性及策略型態對資訊系統外包的影響與系統績效相關研究: 以大型企業為例』,國立中正大學資訊管理研究所碩士論文,民國 86 年 6 月 18. 林佑達(2001),『』,國立台北大學企業館理學系碩士論文 19. 高文麒、蔡淑娟合譯(2000), 『資訊科技的商業價值』, 第一版,台北:天下遠見出版股份有限公司, 譯自: 湯瑪士〮戴文波特(Thomas H. Davenport)等著, 2000 年11 月 20. 高秀美(2003),『資訊委外服務市場現況概述』, 電子化企業報告 經理人報告, 42 期, 2003 年 2 月, pp10-13 21. 高秀美(2003),『資訊委外服務廠商戮力發展多元化產品』, 電子化企業報告 經理人報告, 42 期, 2003 年 2 月, pp15-21 政府資訊作業委外的成功因素: 22. 高志宏(1993),『管理行為與專案特徵對專案績效的權變影響研究』,國立交通大學管理科學研究所碩士論文,民國 82年 23. 徐建智(2002), 『專案管理要徑法中逐步遞減與全面遞減在時間成本抵換之比較』,義守大學管理科學研究所碩士論文, 民90 年 24. 許欽嘉(1998),『以組織層面論資訊系統外包績效評估指標之研究』, 國立雲林科技大學資訊管理研究所碩士論文,民國 87 年 6 月。 25. 許光華,何文榮,『專案管理理論與實務』,台北:華泰書局, 1998 26. 曹廷傑,『專案管理』,台北:格致圖書有限公司, 1990 27. 張一飛(1993) ,『CIO 該不該考慮外包』,資訊與電腦, 154 期,民國 82 年 3月, 頁 67-69 28. 張保隆、鄭毅萍(1996),『專案管理環境特性因素對專案執行的影響』,科技管理學刊,第一卷第一期,頁161-177, 1996 29. 張慧莉(1997),『資訊系統委外成功因素之探討』,國立台灣大學資訊管理研究所碩士論文, 民國86 年 6 月 30. 陳盛揮(1997), 『資訊系統外包服務品質之實證研究』,私立東吳大學商學院企業管理學研究所碩士論文,民國 86年 31. 陳恩航(1993),『影響專案計劃計劃成效之關鍵因素研究』,交通大學管理科學研究所碩士論文,民國 82年6 月 32. 郭澤原(1995),『科技研究發展專案績效評估作業之探討』,交通大學管理科學研究所碩士論文,民國 84年6 月 33. 黃仁伯(1996), 『資訊系統委外 — 資訊服務業之新戰場』,軟體產業通訊,民國 85 年 12 月,頁13-15 34. 黃昆明(2001), 『功能是矩陣組織研發管理關鍵成功因素之探討』, 國立中山大學企業館理學系碩士論文,民國 90 年 6 月 35. 黃振榮(1993),『專案管理之研究』,台灣大學政治學研究所碩士論文, 民國 82 年 6 月 36. 萬金生(1999), 『自我性能影響個人參與資訊委外績效之研究:以臺灣公營機構為例』, 國立中山大學資訊館李研究所碩士論文,民國 88 年 6 月 37. 董正淥(1989), 『金融實務上下冊』, 台北:松崗電腦圖書資料股份有限公司出版, 民國 78 年 38. 榮泰生(1994), 『專案管理』, 自動化科技, 民國83 年 39. 鄭義熙(2001),『政府資訊系統作業委外管理之研究-以國稅局資訊系統為例』, 義守大學管理科學研究所碩士論文, 民90 年 40. 盧彥旭(2000), 『資訊系統委外選商評選準則及權重之建立』,世新大學管理學院資訊管理學系碩士論文,民國 89 年。 41. 盧娜譯(2001), 『企業外包模式:如何利用外部資源提昇競爭力』; 初版, 台北:商周出版。 譯自查爾斯〮蓋伊(Charles L. Gay),詹姆斯〮艾辛格(James Essinger),民國 90 年 42. 劉雯瑜(1999), 『資訊系統外包決策模式-以「需求能力評估矩陣」為基礎』, 雲林科技大學資訊管理研究所碩士論文, 民國 88 年 6 月 43. 蔡坤佑(2000),『限制理論下建置企業資源規劃系統(ERP)之關鍵成功因素與導入架構』,國立台灣大學資訊管理研究所碩士論文,民國 89 年 6 月 44. 蔡政達(1995), 『資訊系統委外之研究』, 國立中央大學資訊管理研究所碩士論文, 民國 84 年 6 月 45. 蔡馨儀(1999), 『台灣中小企業資訊系統委外關係管理』, 國立政治大學資訊管理所碩士論文, 民國 88 年 6 月 英文部分 1. Archihald R.B.(1981), “The Implementation of Project Management: The Professional’s Handbook”, Massachusette: Addison-Wesley Publishing, 1981, 178. 2. Adams J.R., & Barndt S.E.(1988), “Behavivorial Implications of the Project Life Cycle”, Project Management Handbook, D.I. Cleland and W.R. King(Eds.), Van Nostrand Reinhold, New York, 1988 3. Alpar, P., & Saharia, A. N.(1995) “Outsourcing information system functions: An organization economics persperctive”, Journal of Organizational Computing, Vol. 5, No. 3 pp.197-217 4. Atinkemer, K., Chaturvedi, and R. Gulati,(1994), “Information Systems Outsourcing: Issues and Evidence”, Information Systems Management, Vol. 14, No. 4, pp.33-35 5. Barkley, Bruce T. & Saylor ,James H., “Customer-Driven Project Management”, McGraw-Hill Inc. 1994 6. Bailey, J. E. & Pearson, S. W. (1983), “Development of a tool for measureing and analyzing computer user satisfaction”, Management sentence, Vol. 29, No. 6, May 1983,pp519-529 7. Bugetz, B.(1991), “Outsourcing Computer Services”, CMA Magazine, April 1991, pp.24 8. Cavinato Joseph.(1991), “How to Make the Outsourcing Decision”, Distribution, January 1991, pp.84-86 9. Cleland, D.I. & King,W.R.(1983), “System Analysis and Project Management”, 3rd, New York: McGraw-Hill Book Company, 1983 10. Corbett, M.F.(1994), “Outsourcing and the New IT Executive — A Trend Report”, Information System Management, Fall 1994, pp.19-22 11. Due, R. T.(1992), “The real Costs of Outsourcing”, Information Systems Management, Winter 1992, pp.78-81 12. Duncan, William R.(1996), “A Guide To The Project Management Body of Knowledge”, P.M.I. USA, 1996 13. Feeny, D. F. & Willcocks, L. P., “Core IS capabilities for exploiting information technology.”, Soloan Management Review, Spring 1998, pp.9-21 14. Ganesan. S.(1994), “Determinants of long-tern orientation in buyer-seller relationships”, Journal of Marketing, Vol.58, April 1994, pp.1-9 15. Gordon, H. A.(1994), “Outsourcing Information technology — When Does It Make Sense?”, Fortnightly, January, Vol. 15, 1994, pp10-15 16. Grover V. and Teng, J. T.C.(1994) “A Descriptive Study on The Outsourcing of Information Systems Functions”, Information & Management, No. 27, 1994, pp.22-44 17. Guterl, F.(1996), “How to manage your outsourcing”, Datamation, March 1, 1996, pp.79,80,83 18. Grupe, F. H.(1997), “ Outsourcing The Help Desk Function”, Information System Management, Vol. 14, No.2, 1997, pp15-22 19. Henderson,J.C.(1990), “Plugging into strategic partnerships: the critical IS connection”, Sloan Management Review, Spring 1990, pp.7-18 20. Hubbard, C.M.(1993), “How to Make That Tough Outsourcing Decision Word for your”, Facility Design & Management, July 1993, pp.46-49 21. Jones, Capers.(1994), “Evaluating Software Outsourcing Options”, Informations Systems Management, Fall, 1994, pp.28-33 22. Judenberg, J.(1994), “Application Maintenance Outsourcing”, Information System Management, Fall 1995, pp.34-38 23. Killer R.T.(1994), “Technology-Information and the Locus of Influence in the R&D Nartix”, Academy of Management Journal, Vol. 28, No. 1, 1994, pp.167-179 24. Kerzner Harold(1997), “Project Management:A system Approach to Planning, Scheduling and controlling”, NY: Van Nostrand Reinhold,1997 25. Kobielus(1996), “Evaluation time: Pick Outsourcers by Using This Critia”, Network World, Novermber, 1996, pp48. 26. Lacity, M. and Hirschheim, R.(1993) “The Information Systems Outsourcing Bandwagon”, Sloan Management Review, Vol. 35, No. 1, Fall, 1993, pp73-86 27. Leibs, S.(1998), “Outsourcing’s no cure-all”, Industry Week, April 6, 1998 pp.20,22,24,26,28 28. Loh, L. and Venkatraman, N.(1991),“Outsourcing as a Mechanism of Information Technology Governance: A Test of alternative Diffusion Models”, Working Paper, No. BSP 3211-91, Massachusetts Institute of Technology, Alfred P. Sloan School of Management, 1991 29. Loh, L. and Venkatraman, N.(1992),“Determinants of Information Technology Outsourcing: A Cross-sectional Analysis”, Journal of Management Information System, Vol.9, No. 1, Summer 1992, pp7-24 30. Lowell, M.(1992), “Managing your outsourcing vendor in the financial services industry.” Journal of Systems Management, May 1992, pp.23-26 31. Mayer, N. D., “A Sensible Approach to Outsourcing”, Information System Management, Fall 1994, pp-23-27 32. McFarlan F.W. & R.L. Nolan(1995), “How to Management and IT Outsourcing Alliance”, Sloan Management Review, Winter, 1995, pp.9-23 33. McNurlin, Barbara C. & Ralph H. Sprague Jr.(1998), “Information Systems Management In Practice 4th edition”, pp236-237, Prent1998ic-Hall International, Inc.,1998 34. Meredith, J.R. & Mantel, S., Jr.(1989), “Project Management A Managerial Approach”, John Wiley & Sons, 2nd ed., 1989 35. Microsoft Co., “Microsoft Project Feature Guide”, Microsoft, Co.,1992 36. Minoli, D.(1995), “Analyzing Outsourcing Reengineering Information and Communication Systems”, McGraw-Hill, Inc., 1995 37. Moder, J.J.(1988), “Network Techniques in Project Management”, Project Management Handbook, 2nd ed., D.I. Cland & W.R. King(Eds.), Van Nostrand Reinhold, New York, 1988 38. Mott, R.(1996), “Outsourcing”, Chain Store Age, Sept. 1996, pp.22B,23B,24B 39. Nam et al., “A two Level Investigation of Information Systems Outsourcing”, Communication of the ACM, Vol.39, No.7, July 1996, pp.36-44 40. Newman,William H., Summer Charles E.,& Warren E. Kirby.(1972), “The Process of Management: Concept, Behavior and Practice”, New York, NY, Prentice-Hall, 1972 41. Nicholas, J.M.(1990), “Managing Business & Engineering Projects: Concepts & Implementation”, Prentice-Hall, 1990 42. Perry, Willian and Devinney, Steve(1997), “Achieving quality outsourcing”, Information Systems Managemet, Spring, 1997, pp.23-31 43. Pinto, J.K. & Covin J.G.(1989), “Critical Factors in Project Implementation: A Comparison of Construction and R&D Projects”, Technovation, Vol.9, pp.49-62, 1989 44. Pinto, J.K.,& Slevin, D.P.(1987), “Critical Factors in Successful Project Implementation”, IEEE Transactions on Engineering Management, Vol. EM-34, No. 1, Fab., P22-27, 1987 45. Pinto, J.K.,& Slevin, D.P.(1988), “Project Success: Definitions and Measurement Techniques”, Project Management Journal, Vol.19, No.1, pp67-72, 1988 46. Pinto, J.K. & Prescott J.E.(1990), “Planning and Technical Factors in the Project Implementation Process”, Journal of Management Studies, Vol.27, No.3, May, P51-54, 1990 47. Radding, A.(1991), “The Economics of Outsourcing”, Bank Management, 1991, pp.20-27 48. Reeser, C.(1973), “Management: Function and Moderm Concepts”,Foresman and Company, Scott, pp.200-250, 1973 49. Richmond, W. b. and Seidmann, A.(1992), “Incomplete Contracting Issues in Information Systems Development Outsourcing”, Decision Support Systems, 1992, pp.459-477 50. Richmond, W.B. & Seidman, A.(1993), “Software development outsourcing contract: Structure and business value”, Journal of Management Information System, Vol. 10, No. 1, 1993, pp.57-72 51. Saunders, C., Gebelt, M. & Hu, Q.(1997),“Achieving success in information systems outsourcing“, California Management Review, Vol.39, No.2, Winter 1997, pp.63-79 52. Sengupat, K. & Zviran, M.(1997), “Measuring user satisfaction in an outsourcing environment”, IEEE Transaction on Engineering Management, Vol. 44, No. 4, Nov. 1997, pp.414-421 53. Takac, P. F.(1994), “Outsourcing: A Key to Controlling Escalating IT costs?”, Int. J. Technology Management, Vol.9, No.2, 1994, pp.139-155 54. Tylar,G.(1998), “Information technology — the take away version”, Management Services, Jan. 1998, pp28-30 55. Whang, S.(1992), “Contracting for software development”, Management Science, Vol. 38, N0. 3, March 1992, pp.307-323 56. Willcocks, L. Fitzger., 1995ald, G., Feeny, D.(1995), “Outsourcing IT: The Strategic implication”, Long Range Planning, 28(5), 1995, pp.59-70id NH0921457004 sid 906110 cfn 0 / id NH0921457005 auc 林士熙 tic 高科技廠商建廠成功的關鍵因素探討 adc 黎正中 ty 碩士 sc 國立清華大學 dp 高階經營管理碩士班 yr 92 lg 中文 pg - kwc 高科技產業 kwc 建廠工程專案 kwc QDCSM kwc RFQ kwc SMART分析 abc 隨著台灣產業的轉型與升級, 高科技產業, 包括生物科技, 新材料, 通訊/ 電子以及新能源等, 已經逐漸取代舊有的傳統產業,成為台灣產業的主流. 這些高科技產業由於國際化的競爭, 其建廠方式, 標準, 速度和舊有的傳統產業有非常大的不同. 早期, 由於國內的廠務人員和工程公司缺乏高科技廠房的設計與監造經驗, 絕大多數建廠工程都掌控在歐, 美, 日等有經驗的工程公司手中. 二十多年來, 隨著台灣高科技產業的蓬勃發展, 帶動了建廠工程案的日漸增加, 相對地也培育了不少高科技廠的廠務建廠人才以及建廠相關的工程公司, 如負責設計與監造的工程顧問公司, 無塵室材料製造及施工廠商, 氣體, 化學供應系統的製造/ 施工廠商, 純水, 廢水系統的施工廠商等. 這些有經驗的建廠人才及廠商, 除了在國內發揮所長外, 也隨著台灣高科技廠的西進以及中國大陸高科技產業的興起, 逐漸地在彼岸找到了另一片揮灑的舞台. tc 目錄 頁次 摘要 ……………………………………………………………………...….… …. i 英文摘要 ……………………………………………………… ……..….….……. ii 目錄 ………………………………………………………………… …..….……. iii 表目錄 ……………………………………………………………… ………..….viii 圖目錄 ………………………………………………………………….…..……….x 第1章 緒論………………………………………………………………..………...1 1.1高科技產業在台灣的發展…………………………………..…..…… 1 1.1.1高科技產業的分類與特色…………………………..….….…..1 1.1.2台灣高科技產業的發展歷程…………………………...….…..2 1.1.2.1萌芽期(1964年~1974年) ………………………..…….2 1.1.2.2 技術引進期 (1974年~1979年)………………..….…..2 1.1.2.3 技術自立及擴散期 (1979年~現在) ..…….…………. 3 1.2 高科技產業建廠工程發展背景…………………………….…..…….4 1.3建廠工程之有效管理架構…………………………………….…..…..8 1.3.1建廠工程之組織架構…………………………………..………8 1.3.2建廠小組成員之工作執掌…………………………...…………9 1.4高科技廠商建廠成功的關鍵因素探討…………………..…………..11 1.4.1品質……………………………………………………..………11 1.4.2時程…………………………………………………….………12 1.4.3成本………………………………………………….…………13 1.4.4環安衛……………………………………………….…………13 1.4.5士氣…………………………………………………….………15 第2章 文獻探討……………………………………………………………………17 2-1參考文獻與本論文之差異……………………………………………17 2-2參考文獻探討…………………………………………………………19 2.2.1快速建廠, 離線設計與同步工程……………………………..19 2.2.2 FMEA於廠建廠計畫管理之應用…………………………….19 2.2.3建廠及廠務設施標準化, 模組化的建構……………………..20 2.2.4 ABC, LCC, VE, QFD於建廠管理之應用…………………….20 2.2.5採購, 發包與施工規劃………………………………………..22 2.2.6廠房設計與建築配置………………………………………….24 2.2.7建廠的知識管理……………………………………………….25 第3章 高科技廠商建廠流程介紹………………………………………….…….27 3.1前置作業………………………………………………………………27 3.1.1建廠小組成立………………………………………………….27 3.1.2團隊組織運作模式建立……………………………………….30 3.1.3未來公司運作模式與產品特性了解………………………….33 3.1.4生產設備的廠務需求資料收集……………………………….34 3.1.5建廠預算編列………………………………………………….37 3.1.6設廠地點選擇以及環境影響評估…………………………….40 3.1.6.1設廠地點選擇………………………………………..40 3.1.6.2環境影響評估………………………………………..40 3.1.7風險分析/ 評估及管理………………………………………..42 3.2 設計…………………………………………………………………...46 3.2.1建築師, 機電工程顧問公司遴選……………………………..46 3.2.2建廠設計所需資料收集……………………………………….47 3.3.3廠務機電設計資料收集……………………………………….49 3.2.4設計/ 繪圖與檢討/ 修正……………………………………...52 3.2.5 RFP 撰寫………………………………………………………56 3.2.5.1工程背景介紹…………………………………………..56 3.2.5.2工程範圍……………………… ……………………..59 3.2.5.3施工規範………………………………………………..60 3.2.5.4參考資料………………………………………………..60 3.2.5.5報價單…………………………………………………..62 3.2.5.6工程圖面………………………………………………..66 3.2.6工程進度計畫擬定…………………………………………….69 3.3 工程招標………………………………………..………………….…71 3.3.1合格廠商評選………………………………………………….71 3.3.2 施工廠商評選…………………………………………………73 3.3.3 工程決標………………………………………………………73 3.4 建廠申請與設立.……………………………………………………..77 3.5 建廠工程 ……………………………………………………………..79 3.5.1開工大吉……………………………...………………………..80 3.5.2土木工程施工………………………………………...………..80 3.5.3機電工程…………………………………………….………....81 3.5.4無塵室完工製程設備進場…………………………………….83 3.5.5 Hook-up 工程施工…………………………………………….83 3.5.6 生產支援工程………………………………………..………..88 3.5.7外圍及園藝施工……………………………………….….…...88 3.5.8建廠工程管理………………………………….…………..…..88 3.6驗收及證照………………………………………………………......104 3.6.1驗收…………………………………………………………...104 3.6.2公司營運證照取得…………………………………………...108 3.7後續作業 ..…………………………………………………………..108 3.7.1應付帳款支付 .………………………………………………108 3.7.2取得保固合約 ..……………………………………….……..108 3.7.3順利完成移交 …………………….…………………..……..108 3.7.4完成訓練課程…………………………………….…………..108 3.7.5 Lesson-learned 撰寫 ..………………………………...……..110 3.7.6安排建廠團隊成員出路…………………………….………..110 第4章 高科技產業廠務設施之特色……………………………………………..111 4.1 高科技產業廠務設施之特色 ..……………………………...……..111 4.2 高科技產業廠務設施介紹…………………………….……..……..111 4.2.1 建築工程………………………………………..………..…..111 4.2.2 機電工程…………………………………………..……..…..114 4.2.2.1 電力供應系統(Power Supply Systems) …….………..114 4.2.2.2空調系統(Air Condition Systems) ….…………..…..115 4.2.2.3水處理供應系統(Water supply Systems) ….……..…..117 4.2.2.4化學供應系統(Chemical Supply Systems) …………..120 4.2.2.5氣體供應系統(Gases Supply Systems) …..…..……..123 4.2.2.6無塵室系統(Clean Room Systems) …………………..128 4.2.2.7廠務監控系統(Facility Monitor and Control Systems) 134 4.2.2.8消防安全系統(Fire Protection and Safety systems) .....135 4.2.2.9廢水處理系統(Waste Water treatment Systems) .…….137 4.2.2.10保全系統(Security Systems) ..…………………….....140 4.2.2.11其他廠務設施(Others Facility Systems)……………..140 第5章 高科技廠商建廠成功的關鍵因素探討………………………….………..141 5.1 專家訪談問卷設計及內容 …..………………………………...…..141 5-2高科技廠商建廠成功的關鍵因素專家訪談問卷統計結果…..…....149 5-2-1 專家訪談受訪者及公司基本資料………………….……....149 5-2-2專家訪談問卷內容統計……………………………………..151 第6章 結論與建議………………………..…………………………...………….165 6.1建廠成功的關鍵因素…………………………………………..…………..165 6.1.1品質 .…………………………………………………………………165 6.1.2時程 …..………………………………………………………….…..165 6.1.3成本 ..…………………………………………………………….…..165 6.1.4環安衛 ………………………………………………..……………..166 6.1.5士氣 …..……………………………………………………….……..166 6.2高科技廠商建廠成功的關鍵因素專家訪談問卷統計……………..……..167 6.2.1專家訪談問卷得分最高(最關鍵)因素前十項統計 …..………...…..167 6.2.2專家訪談問卷得分最高(最關鍵)因素前十項原因分析 …………..167 6.2.3專家訪談問卷得分最低(最不關鍵)因素後十項統計 ……....……..168 6.2.4專家訪談問卷得分最低(最不關鍵)因素後十項原因分析…….……169 6.3 結論與建議…………………………………………………..…..….……..170rf 中文文獻 1. 李仲明, "快速興建半導體晶圓製造廠作法之研究”, 國立清華大學, 工業工程與工程管理學系, 碩士論文, 1998年 2. 蕭朝銘, "半導體晶圓廠建廠計畫管理之研究”, 元智大學, 工業工程研究所, 碩士論文, 2001年 3. 邱健寶, "高科技產業建廠管理之個案研究-以薄膜電晶體液晶顯示器與半導體產業為例”, 國立交通大學, 管理科學學程碩士班, 碩士論文, 2000年 4. 張書萍, "高科技廠房營建工程特性之調查與分析”, 國立交通大學, 土木工程系, 碩士論文, 2002年 5. 林子郁, “建構工程進度與成本管理之整合性方法— 以無塵室建廠為例”, 國立清華大學, 工業工程與工程管理學系, 碩士論文, 2000年 6. 李偉文, “半導體廠房採購發包與施工規劃之研究-以新竹科學工業園區半導體相關廠房為例”, 國立臺灣大學, 土木工程學研究所, 碩士論文, 2000年 7. 劉弼民, "積體電路製造廠房建築計畫之研究--以新竹科學工業園區為例”, 中華大學, 建築與都市計畫學系碩士班, 碩士論文, 2000年 8. 顧峻魁, "新竹科學園區廠房形式之研究”, 國立台灣科技大學, 工程技術研究所建築學程, 碩士論文, 2000年 9. 黃拓中, “晶圓廠知識管理導入之研究-以旺宏電子為例”, 中原大學, 企業管理學系碩專班, 碩士論文, 2001年 10. 徐嘉立, “半導體晶圓廠建廠工程管理(演講講義)”, 旺宏電子股份有限公司, 2002年 11. 莊達人, “VLSI 製造技術”, 高立圖書有限公司, 1998年 12. 嚴登通, “潔淨室設計與管理” 全華科技圖書公司, 2001 13. 黃建彰等, “關鍵廠務設備安全設計研討會講義”, 科學園區管理局及交通大學次微米人才培育中心, 1998年 14. 史欽泰, “我國IC產業的發展史與未來展望”, 工研院電子所出版, 2001年 15. 德?半導體廠務處, "德?半導體建廠資料”, 1997 16. 台灣應用材料, “台灣應用材料建廠資料", 1998 17. 悠立半導體廠務部, “悠立半導體建廠資料” 2000~ 2003 18. 新竹科學工業園區管理局, http:// www.sipa.gov.tw 網站相關資料, 2003 英文文獻: 1. Jack Gldo, James P. Clements, “Successful Project Management”, South-Western, a division of Thomson Leaning, Inc. 2001. 2. James A. Brickley, Clifford W. Smith, Jr. Jerold L. Zimmerman, “Managerial Economics and Organizational Architecture”, Second Edition, McGraw-Hill Higher Education, 2001. 3. Avraham Shtub, Jonathan F. Bard, Shlomo Globerson, “Project Management Engineering, Technology, and Implementation”, Tel Aviv University and University of Texas at Austin, 1995. 4. Kenneth C. Laudon, Jane P. Laudon, “Essentials of Management Information Systems” Fourth Edition, Prentice Hall International, Inc. 2002. 5. Robert A. Burgelman, Modesto A. Maidique, Steven C. Wheelwright, “Strategic Management of Technology and Innovation” Third Edition, McGraw-Hill International Edition, 2002. 6. H. P. Tseng and R. Jansen, Cleanroom Technology, 1997 7. SCLA Technology Center—Facility, “Materials of Project Program- B2 Facilities Project”, Applied Materials, 1998 8. National Fire Protection Association (NFPA) 13, 318, 1 Batterymarch Park, PO Box 9101, Quincy, MA 02269-9101, 2000. 9. Factory Mutual System (FM), Loss preventation 2-8, Earthquake protection for water-based fire protection systems.id NH0921457005 sid 906102 cfn 0 / id NH0921457006 auc 吳明章 tic 物料供應模式演進之研究 - 以半導體製造業(台積電)為個案研究 adc 洪世章 ty 碩士 sc 國立清華大學 dp 高階經營管理碩士班 yr 92 lg 中文 pg 99 kwc 供應鏈 kwc 物料供應 kwc 持續補貨 kwc 供應商管理存貨 kwc 緊急訂購 kwc 廠商寄放 kwc 台積電 abc 「速度」與「彈性」不但是當今企業強化競爭力的不二法門,更是在當前全球化高度嚴苛生存壓力下不可或缺的基本配備,如何發展創新先進的物料供應模式以提高競爭優勢更是企業所重視的議題。本研究所探討的是企業如何以「外在環境資源配合」、「內部策略演化」、以及「供需合作關係」三大元素,並以流程改善的QC七大手法為工具,按照時間序列發展出一系列的物料供應模式的發展過程。在實證分析部份,採取個案研究法,並以台積電作為單一分析個案,研究結果指出,台積電從1987年創辦至今,先後按照其物料存貨管理策略,發展出六種物料供應模式,不僅大幅度降低台積電的存貨成本,在物料供應的彈性調整上更為靈活,與供應商的夥伴關係亦更為緊密,這些供應鏈系統的建構,最終都反應在台積電在全球晶圓代工服務的競爭力之上。 tc 摘要 I Abstract II 誌謝詞 III 目錄 IV 圖目錄 VII 表目錄 VIII 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的 4 第三節 研究流程 5 第四節 論文組織結構 6 第二章 文獻探討與理論基礎 8 第一節 供應鏈管理的定義 8 第二節 供應鏈的整合 12 第三節 供應商管理存貨的運作流程 15 第四節 供應商管理存貨的效益 18 第五節 供應商管理存貨的關鍵成功因素與限制 20 第三章 研究方法 22 第一節 研究策略 22 第二節 研究對象選取準則 25 第三節 個案資料來源 26 第四節 資料分析方式 29 第五節 效度與信度分析 30 第四章 個案分析 32 第一節 個案公司簡介與緒論 32 第二節 自己存放安全庫存模式 39 第三節 及時供應模式 43 第四節 廠商寄放模式 46 第五節 持續補貨模式 48 第六節 緊急訂購系統模式 56 第七節 供應商管理存貨模式 59 第八節 結論 66 第五章 結論與建議 69 第一節 研究結論 69 第二節 研究貢獻 70 第三節 理論意涵與管理實務意涵 72 第四節 研究限制及未來研究建議 73 參考文獻 74 附錄一、台積電十大經營理念 78 附錄二、台積電經營團隊 82 附錄三、台積電創業發展過程年表 85 附錄四、台積電重要財務項目資料 87 附錄五、台灣半導體製造業經營績效標竿 88 圖目錄 圖1-1 研究流程圖 5 圖2-1 供應鏈:價值傳傳遞與累積的網路圖 9 圖2-2 台積電運用資訊科技達成虛擬晶圓廠之架構圖 15 圖2-3 內部供應鏈與外部供應鏈關連圖 16 圖2-4 VMI作業流程圖 17 圖2-5 VMI關鍵成功因素 20 圖4-1 採購前置時間的組成因素 40 圖4-2 及時供應模式基礎設施 44 圖4-3 及時供應模式旳流程圖 44 圖4-4 晶片持續補貨流程圖 50 圖4-5 寄放品高低庫存水準ERP系統輸入畫面 51 圖4-6 寄放品存貨資料拋到台積電TSMC-Supply Online畫面 52 圖4-7 台積電TSMC-Supply Online畫面 53 圖4-8 供應商的物料企劃人員在台積電TSMC-Supply Online輸入交貨安排的畫面 53 圖4-9 台積電TSMC-Supply Online發的存貨水準異常e-mail 54 圖4-10 台積電TSMC-Supply Online上顯示的該交貨數量 55 圖4-11 緊急訂購系統模式流程圖 57 圖4-12 物料服務水準 65 圖4-13 台積電的物料存貨水準趨勢圖 66 圖4-14 6吋晶圓廠物料管理績效標竿 67 圖4-15 8吋晶圓廠物料管理績效標竿 68 表目錄 表2-1 量化的供應鏈效益改善彙整表 14 表2-2 VMI對供應商及配銷商的優點彙整表 18 表3-1 研究策略與問題類型 22 表3-2 個案資料來源方式 26 表3-3 個案資料分析方式 29 表3-4 效度與信度分析 30 表4-1 台積電最近五年營運實績 35 表4-2 台積電物料供應模式存貨管理策略 37 表4-3 台積電物料供應模式運作流程比較 38rf 中文書籍: 1.王裕文(1998),半導體設備供應商備用零件存貨導入VMI之研究,交通大學工管所未出版之碩士論文。 2.中央大學管理學院ERP中心(2003),ERP-企業資源規劃導論,台北市旗標出版股份有限公司。 3.天下雜誌台灣製造業1000 / 2000大特刊(1994 ~ 2002),台北市天下雜誌股份有限公司。 4.古永嘉 譯(1996),企業研究方法,台北市華泰文化事業有限公司。(原文書名:Cooper, Donald R. & Emory, C. William. Business Research Methods,published by Times Mirror Pte Ltd.)。 5.台灣積體電路製造股份有限公司民國九十一年年報(2003)。 6.吳鴻鈞(2002),行動、資源與信念:互動演化觀點,清華大學科管所未出版之碩士論文。 7.吳進榮(2001),電子化運籌管理平台之資料交換研究,台灣大學工工所未出版之碩士論文。 8.林偉仁 譯(2002),The Agenda 議題制勝,台北市天下雜誌股份有限公司。(原文書名:Hammer, Michael, The Agenda:What Every Business Must Do to Dominate the Decade,published by Grown Business, New York.)。 9.周貝珊(2001),供應鏈中應用VMI之價值研究,淡江大學資管所未出版之碩士論文。 10.張力元(2000),台灣電子產業市場,台北市華泰文化事業有限公司。 11.張忠謀(1998),張忠謀自傳,台北市天下文化出版股份有限公司。 12.陳金錫(2001),供應鏈後勤供應端流程再造之研究,成功大學企管所未出版之碩士論文。 13.曾渙釗(1995),MRP電腦化物料需求計劃,台北市資策會資訊與電腦出版社。 14.曾渙釗(2002),供應鏈管理演講稿,新竹市安瑟管理顧問有限公司。 15.蔡碧鳳(2003),策略創業軌跡之探討,清華大學科管所未出版之碩士論文。 16.楊艾俐(1998),IC教父 — 張忠謀的策略傳奇,台北市天下文化出版股份有限公司。 17.楊政寧(2002),台灣電子製造業與傳統產業推行VMI管理機制之異同比較與分析研究,交通大學管科所未出版之碩士論文。 18.鄧祖漢(2001),供應商代管庫存模式在緊固件供應鏈之企業動態經營研究,中山大學國際高階經營管理研究所未出版之碩士論文。 19.廖德璋(2000),企業建立VMI管理機制以追求供應鏈整體綜放效之研究,淡江大學資管所未出版之碩士論文。 20.鄭穎聰(1999),供應鏈長鞭效應政策之研究,台北科技大學生產系統工程與管理研究所未出版之碩士論文。 21.鄭金龍(2001),台灣半導體供應鏈體系之探討,高雄第一科技大學運輸與倉儲營運所未出版之碩士論文。 22.盧舜年、鄒坤霖(2002),供應鏈管理的第一本書,台北市城邦文化事業股份有限公司。 23.顏德(2000),供應鏈存貨管理模式之研究,台北大學企管所未出版之碩士論文。 英文書籍: 24.Arnold, J.R.Tony and Chapman, Stephen N.(2001). Introduction to Materials Management, Prentice Hall, Upper Saddle River, New Jersey, Columbus, Ohio。 25.Chase, Richard B., Aquilano, Nicholas J., Jacobs, F. Robert(2001). Operations Management for Competitive Advantage, 9th edition, McGraw-Hill Irwin, Boston Burr Ridge, IL。 26.Hill, Charles W.L. and Jones, Gareth R.(2002). Strategic Management Theory, Houghton Mifflin Company, Boston, New York。 27.Yin, Robert K.(1994). Case Study Research:Design and Methods, Sage Publications, Inc, 2455 Teller Road Thousand Oaks, CA 91320。id NH0921457006 sid 906104 cfn 0 / id NH0921457007 auc 李俊欣 tic 經營企劃案研究--以新創事業投資為個案 adc 洪世章 博士 ty 碩士 sc 國立清華大學 dp 高階經營管理碩士班 yr 92 lg 中文 pg 107 kwc 經營企劃 kwc 平衡計分卡 kwc 精密塗佈技術 kwc 創新投資 abc 本研究將要探討如何規畫具備成功特質的一家新創公司,將從評估外部產業環境變化著手,其次則研究市埸定位策略再深入規劃企業內部的策略、組織架構、企業文化、執行力等重要準則。研究目的在於經由外部環境評估和企業內部詳盡規劃後,能夠讓有心投資者和想加入此新創公司的友人們,在充分了解此新創公司未來將佔有的產業位置、發展潛力及核心能力等的情形下,做出參加與否的決策。 tc 摘要…………………………………………………………….I Abstract……………………………………………………….III 目錄…………………………………………………………….IV 圖目錄………………………………………………………….VI 表目錄………………………………………………………….VII 第一章 緒論……………………………………………………1 第一節 研究動機、對象與目的………………………………1 第二節 研究方法………………………………………………2 第三節 研究流程………………………………………………5 第四節 論文組織架構…………………………………………6 第二章 文獻探討………………………………………………8 第一節 外部產業及市場分析的文獻…………………………10 第二節 公司領域層面的文獻…………………………………14 第三章 產業與市場分析………………………………………25 第一節 事業概念與事業之描述………………………………25 第二節 產業市場成長規模分析………………………………36 第三節 產業價值鏈和競爭者分析……………………………44 第四節 五力分析………………………………………………45 第五節 SWOT分析………………………………………………49 第六節 本研究案關鍵成功因素分析…………………………50 第七節 未來成長空間與利基分析……………………………51 第八節 潛在的問題……………………………………………53 第四章 公司領域層面分析……………………………………54 第一節 公司治理………………………………………………54 第二節 新公司的策略規畫……………………………………57 第三節 財務構面………………………………………………65 第四節 顧客構面………………………………………………77 第五節 內部流程構面…………………………………………84 第六節 學習與成長構面………………………………………90 第五章 結論與建議……………………………………………98 第一節 研究結論………………………………………………98 第二節 研究貢獻………………………………………………99 第三節 研究限制與未來研究建議……………………………100rf 1.ARC遠擎管理顧問公司策略績效事業部譯(2001),Kaplan,R.S. & Norton,D.P.著,The Strategy – Focused Organization:How Balanced Scorecard Companies Thrive in the New Business Environment,策略核心組織:以平衡計分卡有效執行企業策略,臺北 市:臉譜文化出版,城邦文化事業股份有限公司發行,第53-496頁。 2.于泳泓譯(2002),Niven,P.R.著,Balanced Score card STEP-BY STEP:Maximizing Performance and Maintaining Results,平衡計 分卡最佳實務,按部就班,成功導入,臺北市:商周出版,城邦文化 事業股份有限公司發行,第7-258頁。 3.司徒達賢著(2001),策略管理新論,臺北市:智勝文化事業股份有限 公司出版發行 4.朱道凱譯(1999),Kaplan,R.S. & Norton,D.P.著,The Balanced Scorecar d:Translating Strategy into Action,平衡計分卡:資 訊時代的策略管理工具,臺北市:臉譜文化出版,城邦文化事業股份 有限公司發行。 5.李明軒、邱如美譯(1996), Michael E. Porter 著,國家競爭優勢, 臺北市:天下文化出版股份有限公司出版。 6.吳平耀 (2003),超薄塗佈技術簡介—精密的製造師,工業材料雜誌 194期,新竹縣:工業技術研究院工業材料研究所出版。 7.吳安妮(2001a),「平衡計分卡:將策略轉換成行動」,政治大學商學 院經營管理碩士學程平衡計分卡課程之上課講義。 8.吳安妮(2001b),「策略為焦點的組織--平衡計分卡式的公司如何在新 企業環境中取勝」,政治大學商學院經營管理碩士學程平衡計分卡課 程之上課講義。 9.吳安妮(2001c),「績效評估制度」,政治大學商學院經營管理碩士學 程平衡計分卡課程之上課講義。 10.吳安妮(2002a),「平衡計分卡及績效管理--平衡計分卡之理論內 容」,政治大學商學院經營管理碩士學程平衡計分卡課程之上課講 義。 11.吳安妮(2002b),「平衡計分卡及績效管理--平衡計分卡之設計與實 施及常見問題」,政治大學商學院經營管理碩士學程平衡計分卡課程 之上課講義。 12.吳安妮(2002c),「平衡計分卡及績效管理--平衡計分卡常見問題解 決之道,平衡計分卡與其他管理制度結合」,政治大學商學院經營管 理碩士學程平衡計分卡課程之上課講義。 13.吳安妮(2002d),「平衡計分卡及績效管理--平衡計分卡應用之案例 及平衡計分卡實施後之效益分析」,政治大學商學院經營管理碩士學 程平衡計分卡課程之上課講義。 14.吳安妮(2002e),「淺談平衡計分卡成功實施之精髓概念」,會計研 究月刊,第198期,第26-32頁。 15.吳啟銘著(2000),企業評價:個案實證分析,臺北市:智勝文化事業 有限公司出版。 16.李明譯(2003),Larry Bossidy & Ram Charan著,執行力—沒有執行 力,那有競爭力,臺北市:天下遠見出版股份有限公司出版。 17.林公孚(2003),本學會、我國、美國、及日本戴明獎之比較與建議, 品質月刊2003.02,臺北市:品質月刊社發行。第52 – 58頁。 18.徐俊明(2002)著,財務管理理論與實務,臺北市:新陸書局股份有限 公司出版。 19.徐曉慧(2000)譯,Robert S. Kaplan & Robin Cooper著,成本與效 應--以整合性成本制度提升獲利興績效,臺北市:臉譜出版,城邦文 化事業股份有限公司發行。 20.紀國鐘、鄭晃忠主編(2002),液晶顯示器技術手冊,新竹市:臺灣電 子材料與元件協會出版,經濟部技術處發行。 21.財團法人資訊工業策進會資訊市場情報中心著(2003),光電投資導 覽,臺北市:商周出版,城邦文化發行。 22.孫善政譯(2002),Tarek M. Khalill著作,科技管理,臺北市:美商 麥格羅.希爾國際股份有限公司台灣分公司出版。 23.陳正平譯(1996),Geoffrey A. Moore著作,龍捲風暴 : 矽谷的高科 技行銷策略,臺北市:麥田出版,城邦文化事業股份有限公司發行。 第48–117頁 24.陳茂成、王心婷主編(2003),2003平面顯示器年鑑,新竹縣:工業技 術研究院產業經濟與資訊服務中心出版,經濟部技術處發行。 25.溫恕?、朱文彬(2003),精密塗佈產品開發—花樣入門,工業材料雜 誌194期,第98-104頁。新竹縣:工業技術研究院工業材料研究所出 版。 26.齊若蘭譯(2002),Jim Collins 著作,從A 到 A﹢,臺北市:遠流出 版事業股份有限公司出版發行。 27.賴春田、薛明玲、蔡朝安編著(2003),落實公司治理實務守策,臺北 市:財團法人資誠教育基金會出版,會計研究月刊發行。 28.戴國良著(2003),企劃案撰寫實戰全書,臺北市:商周出版,城邦文 化事業股份有限公司發行。 29.戴燈山(2003),平衡計分卡之規劃與設計--以合作金庫銀行為個案研 究,清華大學科技管理研究所碩士論文。 30.台灣積體電路製造股份有限公司民國九十一年度年報。 英文部份 31.Burgelman R.A. & Maidique M.A. & Wheelwright S.C. (2001), Strategic Management of Technology and Innovation , Exclusive rights by McGraw-Hill Book Co – Singapore。 32.Bossidy L. & Charan R. (2002), Execution: The Discipline of Getting Things Done,Random House, Inc. 33.Collins Jim (2001),Good to Great—Why Some Companies Make the Leap…and Others Don’t ,New York:Curtis Brown Ltd.。 34.Kaplan R. S. & Cooper R.(1998) , Cost & Effect: Using Integrated Cost Systems to Drive Profitability and Performance,Arts & Licensing International, Inc., USA 31.Kaplan R.S. & Norton D.P.(2001),The Strategy – Focused Organization:How Balanced Scorecard Companies Thrive in the New Business Environment , Harvard Business School publishing corporation。 32.Kaplan R.S. & Norton D.P. (1996),The Balanced Scorecard: Translating Strategy into Action, President & Fellows of Harvard College。 35.Kaplan R.S. & Cooper R. (1998),Cost & Effect using integrated cost systems to drive profitability and performance , President & Fellows of Harvard College。 36.Khalil T.M. (2000),Management of Technology,New York: McGraw-Hill Companies, Inc.。 37.Moore G.A. (1995), Inside the Tornado : Marketing Strategies from Silicon Valley''''s Cutting Edge,New York: James Levine Communications, Inc. 38.Niven P.R.(2002),Balanced Scorecard Step by Step: Maximizing Performance and Maintaining Results,New York: John Wiley & Sons, Inc. 。 39.Porter M.E.(1990),The Competitive Advantage of Nations , New York:Mori Agency, Inc. 40.Yin R.K.(1994),Case Study Research:Design and Methods,2 nd ed.,London:Sage Publications, Ltd.id NH0921457007 sid 906109 cfn 0 / id NH0921457008 auc 吳顯揚 tic 產業結構變遷之策略性回應- 以台積電及聯電為個案研究 adc 洪世章 ty 碩士 sc 國立清華大學 dp 高階經營管理碩士班 yr 92 lg 英文 pg 36 kwc 產業結構變遷 kwc 策略性回應 abc 晶圓代工產業的誕生,促發了IC產業的垂直分工趨勢。隨著晶圓代工產業生命週期,由萌芽、成長、到戰國階段的演進,企業經營焦點亦由製造生產導向轉為技術發展導向,進而成為今日的客戶中心導向。在每一個產業生命週期階段,業者採取不同的策略,來回應產業環境的變化,以達到永續經營的目的。 tc Table of Content Abstract ……………………………………………………………………………………..II I. Introduction ..………………...……………………………………………………….. …1 II. Evolution of IC Industry ..………………………………………………………… …5 Technology Innovation — Integrated Circuits (ICs) …………………………………5 Process Innovation — DRAMs ………………………………………………………..6 Product Innovation — Logic and MCU ……………………………………………….7 Product Innovation — SoC ……………………………………………………………9 III. Strategic Response to Foundry Industry ……………………………………….11 TSMC …………………………………………………………………………………11 The Embryonic Stage (1987 — 1990) ………………………………………..11 The Growth Stage (1991 — 2000) ……………………………………………13 The Shake-out Stage (2001 and beyond) …………………………………..16 UMC …………………………………………………………………………………..19 The Embryonic Stage (1987 — 1990) ………………………………………..19 The Growth Stage (1991 — 2000) ……………………………………………19 The Shake-out Stage (2001 and beyond) ………………………………….22 IV. Discussion and Conclusion ………………………………………………………25 V. References ……………………………………………………………………………30rf 1. Macher, Jeffrey, Mowery C. Daivd and Hodges A. David, 1998, “Reversal of Fortune? The Recovery of the U.S. Semiconductor Industry,” California Management Review 41 (1), 107-136 (Fall). 2. Langlois N. Richard and Steinmueller W. Edward, 1999, “Strategy and Circumstance: the Response of American Firms to Japanese Competition in Semiconductors, 1980-1995,” University of Connecticut, Department of Economics Working Paper Series (June). 3. Watanabe, Makoto, 1984, “Semiconductor Industry in Japan — Past and Present,” IEEE Transactions on Electron Devices ED31 (11), 1562-1570 (November). 4. Braun A.E., 2000. “Dedicated Fabs Reinvent Industry,” 23 (1), Semiconductor International, p.74. 5. Chen, W.L., Chang, P.L., 2003, “Achieving Manufacturing Excellence through Proactive Practices: A Case Study of Taiwan’s IC Industry”, Business Excellence, p. 1-4. 6. Hsu Jinn-yuh, 1997, “A Late-industrial District? Learning Networks in the Hsin-Chu Science-based Industrial Park, Taiwan,” Ph.D. Dissertation, University of California, Berkeley. 7. Mathews John A., 1997, “A Silicon Valley of the East: Creating Taiwan’s Semiconductor Industry,” California Management Review 39 (4), 26-54, (Summer). 8. Porter, E. Michael, 1985, Competitive Advantage: Creating and Sustaining Superior Performance (New York: Freee Press). 9. Linden, Greg and Somaya, Deepak, 2003, “System-on-a-chip in the Semiconductor Industry: Industry Structure and Firm Strategies” Industrial and Corporate Change 12 (3), 545-576. 10. Braun E., Macdonald S., 1982, "Revolution in Miniature, The History and Impact of Semiconductor Electronics", Cambridge University Press, p.153. 11. Saxenian, A.L. 1994, Regional Advantage: Culture and Competition in Silicon Valley and Route 128 Cambridge, MA: Harvard University Press. 12. Keller, William and Pauly Louis, 2001, “Crisis and Adaptation in East Asian Innovation Systems: Semiconductors in Taiwan and South Korea,” MIT Japan Program, Working paper series 01.05. 13. Dhayagude, T., Jayagopal, M., Manayathara, T., Suri, S. and Yaga, A., 2001, “Is the IDM Model Doomed … Emergence of the Fabless-Foundry Model in the Semiconductor Industry,” MECN 441 S61 Final Report. 14. Macher, Jeffrey T., “Vertical Disintegration and Process Innovation in Semiconductor Manufacturing: Foundries vs. Integrated Producers,” working paper. 15. Aldirch, H.E., Fiol, C.M., 1994, “Fools Rush In? The Institutional Context of Industry Creation,” Academy of Management Review, 19:645-670. 16. Zimmerman, M., Callaway, S., 2001, “Institutional Entrepreneurship and the Industry Life Cycle: the Legitimation of New Industries,” USASBE - SBIDA Conference Proceedings. 17. Shu, C.Y. and Tu, L.C., 1992, “Designing, Operating a Submicron Facility with Isolation Technology,” Microcontamination, March. 18. TSMC’s annual reports at website: http://www.tsmc.com 19. Chang, C.W., 2000, “Wafer foundry leaders who change the world semiconductor game rule”, KGI Securities Taiwan. 20. Clendenin Mike, 2002, “Philips, STMicro, TSMC ally on deep-submicron process work,” EE Times, http://www.eetimes.com, March 5. 21.Press release at TSMC’s website: http://www.tsmc.com, Mar., 2000. 22. Wade, Will, 1999, “TSMC, UMC use copper as weapon in marketing battle,” EE Times, http://www.eetimes.com, December 3. 23. Morrison, Gale, 1999, “UMC Ends Multi-unit Structure”, Electronic News, July 21. 24. UMC’s 2000 annual report at website: http://www.umc.com 25. Press release at UMC’s website: http://ww.umc.com, Jan. 27, 2000. 26. Press release at UMC’s website: http://www.umc.com, Mar. 21, 2000. 27. Hall, Chris, 2001, “Focus on Taiwan: UMC on the move,” Semiconductor International, vol.24 no.10, p.107-110, Sept. 28. Clendenin, Mike, 2002, “AMD, Infineon, UMC tighten R&D alliance,” EE times, http://www.eetimes.com, July 30. 29.Clendenin, Mike, 2003, “UMC to go solo on 65-nm process development”, EE times, http://www.eetimes.com, Aug. 7. 30. Gomes-Casseres, Bajamin, 2000, “Strategy must lie at the heart of alliances,” Financial Times, Mastering management, pp. 14-15, Oct. 16. 31. Kampas, J. Paul, 2003, “Shifting Cultural Gears in Technology-Driven Industries,” MIT Sloan Management Review, 41-48 (Winter) 32. Ries Al, 1997, Focus : The Future of Your Company Depends on It, Harper Business. 33. Wafertech (TSMC’s subsidiary) website: http://www.wafertech.comid NH0921457008 sid 906118 cfn 0 / id NH0925010001 auc 郭禎麟 tic 故鄉不見了?!---現代化下墾丁人的地方認同 adc 潘英海 ty 碩士 sc 國立清華大學 dp 人類學研究所 yr 92 lg 中文 pg 146 kwc 墾丁 kwc 國家公園 kwc 地方認同 kwc 現代性 kwc 觀光 abc 本文描述在現代性下的地方認同在經歷環境的的巨變後呈現了多元與流動的特性,在這巨變中的人們逐漸積累的生存焦慮在互動的日常生活中產生了微妙的變化。藉著競爭,人們運用著外來的素材和壓力激發下的創造力,使得焦慮轉化而為形構地方認同的新動力,而此動力同時也推動著物質環境的變化。本研究以墾丁社區為研究對象,第一章主要釐清問題意識、文獻的回顧、田野地的基本描述、研究方法和內文材料鋪陳的邏輯等;在第二章中透過描述一宗教事件的發生,呈現出在傳統宗教物的遺留下所表現出地方認同多重和流動的特質;而在第三章中則著重在於現實政治經濟環境下之生存焦慮的層層積累,以及他們對此的抗爭和漠視回應;在第四章回到人們的生活主軸—觀光產業,詮釋墾丁人在壓力下對生存競爭的奮力掙扎、由此激發出的創意風格和無限的可能性,以及轉換後的焦慮在此氛圍下形成的地方認同;最後一章筆者總結在墾丁人的例子中所觀察到現代性地方認同的特質與其變化的動力和方向。 tc 目 錄 《中文摘要》 I 《ABSTRACT》 II 《 謝辭 》 III 《 目錄 》 V 《 照片目錄 》 …..VI 第一章 導 論 1 第一節 緣起 2 第二節 問題意識 3 第三節 田野概述 3 1. 國家公園成立前後之墾丁發展概述 3 2. 墾丁現況綜合概述 8 第四節 文獻回顧 11 第五節 研究方法 17 第二章 墾丁人的信仰:新舊之間 20 第一節 從歷史的夢境到紛亂的現實 20 1. 八寶公主的源起 21 2. 關於歷史 23 3. 關於乩花背景 25 4. 八寶公主附身再現 25 5. 關於人們的論述 27 6. 石獅安座 28 7. 金身的價值 30 8. 新金身入座 31 9. 新金身風波 33 10. 文本再述 37 第二節 集體祭祀 38 1. 地方普渡 39 2. 外庄法會普渡 40 3. 文本再述 44 第三節 個人宗教行為 45 1. 算命改運 46 2. 問神辦事 47 3. 文本再述 51 第四節 地方意義的認同:地方化VS.全球化 52 第三章 墾丁人的抗爭 55 第一節 墾丁國家公園與墾丁 55 第二節 大灣沙灘 57 1. 大灣的管理背景 58 2. 協調前的政治動員 60 3. 與業者的協調 60 4. 文本再述 62 第三節 小灣沙灘 63 1. 小灣的過去 63 2. 招標前地方上的權力流動 65 3. 招標前之地方協商會 66 4. 小灣抗議 69 5. 關於抗議 73 6. 小灣的招標 74 7. 小灣公聽會 75 8. 招標後的協調 77 9. 文本再述 84 第四節 廢除墾丁國家公園事件 84 1. 政治遊說 85 2. 尋求結盟與媒體 87 3. 基層動員和住民反應 88 4. 尾聲 90 5. 文本再述 92 第五節 文本分析 93 1. 權利與認同 93 2. 地方意義的抗爭:內與外VS.新與舊 94 第四章 觀光下的墾丁人……………………………………………………………96 第一節 觀光下的墾丁生活:來觀光VS.去觀光 96 1. 民宿業者 97 2. 從觀光業者到觀光客 104 3. 文本再述 109 第二節 觀光下的墾丁 110 1. 攤販與垃圾 110 2. 大自然 112 3. 文本再述 115 第三節 墾丁人眼中的墾丁:分裂的墾丁 116 1. 社區 116 2. 關於地方概念 120 3. 文本再述 124 第四節 競爭與生存 125 第五章 明天的墾丁人 126 第一節 理論的反思 126 第二節 終點與起點 128 後 記 131 參考書目 133 附錄一: 國家公園法 136 附錄二:國家公園法施行細則 141 附錄三:國家風景區管理處組織通則 144 照 片 目 錄 圖表 2 1萬應公祠:即為文中所述之公廟 22 圖表 2 2八寶公主廟:即位於上圖萬應公祠之右列 22 圖表 2 3廟旁堆置古荷蘭時期之船骸:由墾丁溪打撈上岸 22 圖表 2 4八寶公主附身乩花 27 圖表 2 5眾人協助石獅安座 28 圖表 2 6道士開始起乩進行開光點眼儀式 29 圖表 2 7點眼完成的大小石獅 29 圖表 2 8八寶公主新金身點眼 31 圖表 2 9新爐主擲筊請示公主入座意願 32 圖表 2 10中元節主祭的廟委們 39 圖表 2 11擲筊選任下一年度的爐主和委員 40 圖表 2 12墾丁人募捐之成果 41 圖表 2 13眾人協力將王船抬入沙灘 43 圖表 2 14眾人祭拜燃燒的王船 44 圖表 2 15元帥附身乩花進行儀式中 50 圖表 3 1大、小灣沙灘位置示意圖(橘色區域即為沙灘) 58 圖表 3 2 綿長的大灣沙灘:非夏都房客皆不得進入 59 圖表 3 3開放的小灣沙灘 64 圖表 3 4 地方業者自行經營的小灣沙灘 64 圖表 3 5在社區活動中心的行前集合 69 圖表 3 6舉布條遊行抗議的民眾 70 圖表 3 7抗議的高潮:吉普車衝撞警戒線 71 圖表 3 8警方與抗議民眾的協調 71 圖表 3 9無奈的警員與攀談的民眾 71 圖表 3 10抗議民眾的展示與忙碌的媒體 72 圖表 3 11宣傳車上賣力表演的鎮民代表 72 圖表 3 12 準備收隊的警員 73 圖表 3 13抗議結束準備解散的民眾 73 圖表 3 14列席之立委與處長等政務官 77 圖表 3 15參與公聽會之民眾 77 圖表 3 16排成長列投票的住民 91 圖表 3 17公投的老太太與拍攝的媒體 91 圖表 3 18公投開票結果 92 圖表 4 1台南南鯤鯓代天府,請神入座的地方信眾行列 107 圖表 4 2儀式結束,預備將吳府千歲迎 107 圖表 5 1墾丁形象商圈標誌 126rf 江海 2002 悠悠蒼天—荷蘭公主玉殞墾丁記。屏東縣:屏東縣政府文化局。 林信華 2003 「後現代社會中的認同現象」,現代性 後現代性 全球化。黃瑞祺 編。 北縣:左岸文化。 林瓊瑤 編著 2002 琅嶠史話:恆春半島史蹟與人文風物。屏東縣:瓊麻園城鄉文教發展 協會。 恆春鎮志編纂委員會 1998 恆春鎮志。屏東縣:恆春鎮公所。 席慕容 1998 「忠告」、「鹽漂拂草」,墾丁國家公園詩文攝影集。屏東縣:內政部 營建署墾丁國家公園管理處。 梅丁衍 1997 「攝影蒙太奇美學與後現代紀元」,中影攝影教育學會 1997:162。 蘇一志 1997 恆春地區觀光遊憩空間之演化:社會作用者與空間生產的關係。台灣 大學地理學研究所碩士論文。台北:台灣大學。 墾丁社區發展協會編輯委員會 2001 墾丁舊事。屏東縣:墾丁社區發展協會編輯委員會。 台灣省政府住宅及都市發展局 1991 屏東縣綜合發展計劃。臺北市:台灣省政府住宅及都市發展局。 屠繼善 1960 恆春縣誌。臺北市 : 臺灣銀行。 Bauman, Zygmunt 1996 From Pilgrim to Tourist- or a Short History of Identity. In Questions of Cultural Identity. Stuart Hall and Paul du Gay, eds. Pp. 18-36. Longdon: Sage Publications. 1998 Globalization: The Human Consequences. Cambridge: Polity Press. Beck, Ulrich 2000 What Is Globalization? P. Camiller, trans. Malden, MA: Polity Press. Dables, Heidi 1996 The Social Construction of Mokum: Tourism and the Quest for Local Identity in Amsterdam. In Coping with Tourists: European Reactions to Mass Tourism. J. Boissevain, eds. Pp. 227-246. Providence, RI: Berghahn Books. Doorne, S., I. Ateljevic and Z. Bai 2003 Representing Identities through Tourism: Encounters of Ethnic Mingorities in Dali, Yunan Province, Peoples Republic of China. International Journal of Tourism Research 5:1-11. Friedman, Jonathan 1994 Order and Disorder in Global Systems: A Sketch. In Cultural Identity and Global Process. Pp. 205-234. Longdon: Sage Publications. Giddens, Anthony 1991 Modernity and Self-identity : Self and Society in the Late Modern Age. Stanford, Calif.: Stanford University Press. Hall, Stuart 1991 The Local and the Global: Globalization and Ethnicity. In Culture, Globalization and the World-System : Contemporary Conditions for the Representation of Identity. A. D. King, eds. Pp. 19-39. Binghamton: Department of Art and Art History, State University of New York at Binghamton. 1996 Introduction: Who Needs Identity? In Questions of cultural identity. S. Hall and Paul du Gay, eds. Pp. 1-17. Longdon: Sage Publications. Lash, Scott and Jonathan Friedman 1992 Introduction: Subjectivity and Modernity’s Other. In Modernity and Identity. S. Lash and J. Friedman, eds. Pp. 1-29. Oxford, UK: Blackwell. Linnekin, Jocelyn 1997 Consuming Cultures: Tourism and the Commoditization of Cultural Identity in the Island Pacific. In Tourism, Ethnicity, and The State in Asian and Pacific Societies. M. Picard and R. E. Wood, eds. Pp. 215-250. Honolulu: University of Hawaii Press. Karlsson, B. G. 2000 Introduction. and Modernity, Agency and Cultural Identity. In Contested Belonging: An Indigenous People’s Struggle for Forest and Identity in Sub-Himalayan Bengal. Pp. 3-25, 231-261. Richmond, Surrey: Curzon. Medina, L. K. 2003 Commoditizing Culture: Tourism and Maya Identity. Annals of Tourism Research 30:253-268. Melucci, Alberto 1996 The Playing Self : Person and Meaning in A Planetary Society. Cambridge: Cambridge University Press. Olwig, Karen F. 1993 Global Culture, Island Identity: Continuity and Change in the Afro-Caribbean Community of Nevis. Switzerland: Harwood Academic Publishers. Pedregal, Antonio Miguel Nogue’s 1996 Tourism and Self-Consciousness in a South Spanish Coastal Community. In Coping with Tourists: European Reactions to Mass Tourism. J. Boissevain, eds. Pp. 56-83. Providence, RI: Berghahn Books. Urry, John 1990 Mass tourism and the Rise and Fall of the Seaside Resort. In The Tourist Gaze. Pp. 16-39. Longdon: Routledge.id NH0925010001 sid 886002 cfn 0 / id NH0925010002 auc 張雅婷 tic 實踐的軌跡:安親班教學的脈絡化研究 adc 潘英海 ty 碩士 sc 國立清華大學 dp 人類學研究所 yr 92 lg 中文 pg 112 kwc 安親班 kwc 脈絡化 kwc 教育人類學 kwc 實踐理論 abc 本論文擬藉由對於安親班之親身觀察,來探尋安親班之所以存在之時空背景以及藉由其教學而反映之社會文化意義。研究理論將援引Pierre Bourdieu的實踐理論,研究方法將採取微觀社會學的教室凝視法,希冀藉由理論以及方法之輔佐,而能對於安親班之教學實踐呈現一中肯且詳實之敘述分析。 tc 目錄 第一章 安親班實踐的脈絡化研究 1 前言 1 第一節 問題意識 1 第二節 與教育人類學相關之理論 5 一、 關於教育人類學 5 二、 與教學相關的理論 6 (一) 符號互動論 6 (二) 行為社會學 8 (三) 實踐理論 10 (四) 小結 13 第三節 研究方法 15 一、 參與觀察 15 二、 深度訪談 15 三、 在課堂外建立與教師、學生以及家長的互動 16 第四節 小結 16 第二章 安親班之發展與生態 18 前言: 18 第一節 補習教育與安親班 18 一、 「補習教育」之定義 18 二、 台灣補習教育之發展史 19 (一) 政府遷台後 19 (二) 50~70年代 19 (三) 80年代中期迄今 20 三、 補習教育下的安親班 22 第二節 安親班現象之奇異 23 一、 適用法規以及權責機關之曖昧 23 二、 安親班與功課補習之難解因果 24 第三節 關於K安親班 26 一、 課輔安親班 26 二、 班主任的理念 27 三、 地點與學生來源 28 四、 招生情形與市場地位 29 五、 教師背景 29 六、 課程內容與上課情境 30 七、 家長的期待 32 第四節 小結 33 第三章 安親班的日常慣習與結構 34 前言:慣習是個體內化了的結構 34 第一節 K安親班的日常慣習 35 一、 日常作息 35 二、 學生對於安親班功能之認知 37 第二節 K安親班的結構:學業至上與分數主義 38 一、 學業要求 38 二、 分數主義 40 三、 學生對於「成績」之理解 41 第三節 K安親班結構的再生產:規範與獎懲 42 一、 規範與懲罰 43 二、 獎勵 44 三、 標籤化 45 四、 學生對於他人的分類 45 第四節 小結:結構與慣習的互饋 46 第四章 安親班的場域與文化資本 48 前言:資本構成場域動態力學 48 第一節 安親班作為一場域 49 第二節 K安親班的文化資本 50 第三節 文化資本與其他資本的轉換 54 一、 文化資本轉換成經濟資本 54 二、 文化資本轉換成社會資本 55 三、 文化資本轉換成象徵資本 57 第四節 文化資本與經濟資本的相互牴觸 59 第五節 小結:資本效力視場域結構而定 61 第五章 安親班師生的實踐邏輯 63 前言:隱身於時間之流的實踐邏輯 63 第一節 文化不平等的實踐邏輯—「別人能,你也可以!」 64 一、 「文化不平等」 64 二、 K安親班的文化不平等實踐 65 三、 家長對於文化不平等的附和 66 四、 文化不平等的人性觀 67 第二節 體罰的實踐邏輯—「打過一定有用!」 68 一、 體罰之爭議 68 二、 K安親班的體罰實踐 68 三、 家長對於體罰的默許 69 四、 K安親班與學校之體罰標準 70 五、 體罰之深層結構 71 第三節 教師權威的實踐邏輯—「師尊!」 72 一、 教師對於「權威」之捍衛 72 二、 教師對於自我角色之認同 74 三、 師何以尊? 75 第四節 學生不喜競爭之實踐邏輯 76 一、 教師對於「競爭」的矛盾情結 77 二、 競爭難以延續至學校場域 78 三、 壓抑個人突出之文化潛意識 79 第五節 小結:兼具主觀與客觀之實踐邏輯 80 第六章 與Bourdieu教育觀的對話 82 前言 82 第一節 文化「不」獨斷,可能嗎? 83 第二節 承認文化不平等的兩難 85 第三節 教室內的階級? 87 第四節 小結 90 第七章 結論:安親班與學校之間 92 第一節 K安親班的現況 92 第二節 K安親班與學校之間 94 一、 安親班與學校之依存 94 二、 安親班之獨立邏輯 97 三、 既依存又獨立之場域關係 99 第三節 展望:安親班研究之未來可能 99 參考書目 101 附錄一:訪問家長之問卷 108 附錄二:訪問K安親班學生之問卷 109rf 參考書目 李永熾 2000 波笛爾與文化再生產,當代 161:18–23。 李亦園 1996 文化與修養。台北:幼獅文化。 李新民 2001 課後托育理論與實務。高雄:麗文文化。 李繼宏 2002 城鄉心理和生活世界:從齊美爾到舒茨,二十一世紀(網路版) 7。http://www.cuhk.hk/ics/21c/supplem/essay/0208055.htm. 2004年6月27日。 邱天助 2002 布爾迪厄文化再製理論。台北:桂冠圖書。 林月盛 1999 從教育法學觀點論教師管教與學生懲戒的有關問題,研習資訊 第16卷第四期。http://www.naer.edu.tw/issue/j1/v16n4/47.htm. 2004年6月29日。 林文瑛 1992a 體罰實態、理論,及心理因素之探討,應用心理學報 1:53–77。 1992b 中國人的兒童教育觀初探:以體罰現象為基礎,輔仁學誌 21:81–120。 周德禎 1999 教育人類學導論:文化觀點。台北:五南圖書。 翁秉仁 2004 談九年一貫數學,數學教育公共論壇。 http://tms.math.ntu.edu.tw/edu/article_03_04_14.htm. 2004年6月27日。 高宣揚 1991 再論布爾迪厄的「生存心態」概念,思與言 29:295–304。 2002 布爾迪厄。當代大師系列 24。台北:生智。 孫隆基 1983 中國文化的深層結構。香港:集賢社。 馬塞勒 1990 東西方人的透視:文化與自我。任鷹等譯。比較文化叢書 5。台北:遠流。 陳其男 1990 文化的軌跡(下冊):婚姻家族與社會。允晨叢刊 3。台北:允晨文化。 陳娟娟 1991 再談鑰匙兒,托兒問題知多少。現代父母親職叢書 9:37–42。台北:牛頓。 陳淑美 1996 後南陽街時代來臨!:補習文化再探,光華畫報 1996 (10):24。 莊瑞琳 2000 應用波笛爾,當代 161:24–39。 曾文昌、張浩然 1998 補教業,行職業資訊研發成果專輯。行政院勞工委員會職業訓練局發行。 張凱元 2004 解讀九年一貫教育。台北:心理出版社。 張雅筑 2002 補身、補腦、補功課:補習面面觀,發表於「人間福報教育論壇」。人間福報、教育電台主辦,6月6日,台灣桃園。 黃光國 2003 「誰捉弄了台灣教改?」新書發表會暨「台灣教改體檢」座談會,心理出版社主辦,8月7日,台灣台北。 黃吉實 2001 中等學校以下學生學習及生活概況調查摘要報告,教育部資訊網。http://www.edu.tw/EDU_WEB/EDU_MGT/STATISTICS/EDU7220001/project/k882.htm. 2004年6月27日。 楊文彥 2004 從Bourdieu之資本理論看國小英語補習教育,網路社會學通訊期刊 38。 http://mail.nhu.edu.tw/~society/e-j/38/38-18.htm. 2004年6月27日。 楊慧美 2001 分析國三學生對補習班與學校教學的看法及其與基本學測自然科之表現的關係。國立師範大學科學教育研究所碩士論文。 滕淑芬 2000a 一棒打下誰最痛?:校園啟示錄,光華畫報 2000(4):82。 2000b 都是「不打不成器」惹的禍?,光華畫報 2000(4):94。 鄭明樁 1992 波迪爾的文化社會學,當代 77:32–41。 鄧淑慧 1993 學校圍牆外的教室:礁溪鄉桂村中『安親班』之教育人類學民族誌報告。國立清華大學社會人類學研究所碩士論文。 賴淑芬 2003 補身、補腦、補功課:補習面面觀,發表於「人間福報教育論壇」。人間福報、教育電台主辦,6月6日,台灣桃園。 蕭旭智 1999 從實體到關係:Pierre Bourdieu實作理論之探討。國立清華大學社會學研究所碩士論文。 謝孟穎 2003 家長社經背景與學生學業成就關聯性之研究,教育研究集刊第49輯第2期:255–287。 謝淑芬 1997 打破IQ迷思:中國人的智慧觀,光華畫報 1997(1):110。 謝麗玉 1991 請放心打,但不要太過火!,中國人的養育觀:付出與期待。中國人的心理 22。台北:張老師出版社。 蘇順發 1999 國小英語教學實施問題初探,英語教學 23(3):22 – 37。 Bonnewitz, Patrice 2002 布赫德厄社會學的第一課。孫智綺譯。麥田人文 35。台北︰麥田出 版。 Bourdieu, Pierre 1974 The School as a Conservative Force:Scholastic and Cultural Inequalities, Contemporary Research in the Sociology of Education. J. Eggleston, ed. London:Methuen. 1984 Dictiction:A Social Critique of the Judgement of Taste. Richard Nice , trans. London:Routledge & Kegan Paul. 1988 Homo Academicus. Peter Collier, trans. Cambridge:Polity Press. 1990 The Logic of Practice. Richard Nice, trans. Cambridge:Polity Press. 1997 文化資本與社會煉金術。包亞明譯。上海:人民出版社。 1999 Outline of A Theory of Practice. Richard Nice, trans. Cambridge:Cambridge University Press. Bourdieu, Pierre and Jean Claude Passeron 1970 La Reproduction:Elements pour une Theorie du Systeme D´enseignement. Paris:Editions de Minuit. 1979 The Inheritors:French Students and Their Relation to Culture. Richard Nice, trans. Chicago:University of Chicago Press. Bourdieu, Pierre and Loïc J. D. Wacquant 1992 An Invitation to Reflexive Sociology. Chicago:The University of Chicago Press. Bruner, Jerome 2000 教育的文化︰文化心理學的觀點。 宋文里譯。 台北︰遠流出版。 Bushell, Don and Robert Burgess 1969 Some Basic Principles of Behavior, Behavioral Sociology. Robert Burgess and Don Bushell, eds. New York:Columbia University Press:27–48。 Cladis, Mark S. 1998 Durkheim and Foucault on Education and Punishment, Durkheim and Foucault:Perspectives on Education and Punishment. Mark S. Cladis, ed. Oxford:Durkheim Press. Cooley, Charles H. 1902 Human Nature and the Social Order. New York:Scriner’s. Durkheim, Emile 1979 Durkheim:Essays on Morals and Education. W. S. F. Pickering, ed. London:Routledge & Kegan Paul. Eddy, Elizabeth M. 1987 Theory, Research, and Application in Educational Anthropology, Education and Cultural Process:Anthropological Approaches. George Spindler, ed. Illinois:Waveland Press. Foucault, Michel 1992 規訓與懲罰:監獄的誕生。劉北成等譯。當代思潮系列叢書 48。台北:桂冠。 Goffman, Erving 1967 Interaction Ritual. New York:Anchor Books. 1992 日常生活中的自我表演。徐江敏、李姚軍譯。當代思潮系列叢書 34。台北:桂冠出版社。 Grenfell, M. and D. James 1998 Theory, Practice, and Pedagogic Research, Bourdieu and Education: Acts of Practical Theory. Pennsylvania:Falmer Press. Harker, Richard, Cheleen Mahar and Chris Wilkes 1990 An Introduction to the Work of Pierre Bourdieu. New York︰St. Martin’s Press. Homans, George C. 1974 Social Behavior:Its Elementary Forms. New York:Harcourt Brace Jovanovich. Mead, George Herbert 1997 心靈,自我與社會。趙月瑟譯。上海:上海譯文。 Mead, Margaret 1970 Culture and Commitment. New York:Doubleday. Malinowski, Bronislaw 1929 Pratical Anthropology, Africa 2:23–38。 Pickering, W. S. F. 1999 The Administration of Punishment in Schools, Durkheim and Foucault:Perspectives on Education and Punishment. Mark S. Cladis, ed. Oxford:Durkheim Press. Spindler, George Dearborn 1984 Roots Revised:Three Decades of Perspective, Anthropology and Education Quarterly 15:3–10. Wills, P. 1981 Cultural Production Is Different from Cultural Reproduction Is Different from Social Reproduction Is Different from Reproduction, Interchange 12:48–67。 Wolcott, Harry F. 1987 The Anthropology of Learning, Education and Cultural Process:Anthropological Approaches. George Spindler, ed. Illinois:Waveland Press.id NH0925010002 sid G906001 cfn 0 / id NH0925010003 auc 張雪真 tic 越南新娘在台之生活調適:以苗栗縣頭份鎮為例 adc 林淑蓉 ty 碩士 sc 國立清華大學 dp 人類學研究所 yr 92 lg 中文 pg 113 kwc 跨國婚姻 kwc 越南新娘 kwc 婚姻仲介 kwc 生活調適 abc 摘要 rf 參考資料 中文部分: Argyle, Michael & Monika Henderson(苗延威譯)   1996 人際關係剖析。台北:巨流。 王宏仁  2000 婚姻階層化的「生產力」移動:婚姻移民與國內勞動市場, 刊於全球化下的社會學想像:國家、經濟與社會學術研討會論 文集。台大社會學系。 王甫昌  1993 光復後台灣漢人族群通婚的原因與形式初探,中央研究院民族 學研究所集刊 76:43-96。 孔祥明  1999 婆媳過招為哪樁?:婆婆、媳婦與兒子(丈夫)三角關係的探 討,收於關秉寅等編的兩岸社會變遷中的家庭。應用心理研 究 4:57-96。 朱玉玲  2002 澎湖外籍新娘生活經驗之探討。嘉義大學家庭教育研究所碩士 論文。 李亦園  1975 傳統文化因素對男嗣偏好及生育行為的影響,中山學術文化集 刊 16:1-4。 1978 信仰與文化。台北:巨流圖書公司。 1982 近代中國家庭的變遷:一個人類學的探討,中央研究院民族學 研究所集刊 52:7-23。 李美賢  2002 離鄉、跨海、遠嫁、作他婦:由越南性別文化看越南新娘,2003 台灣的東南亞區域研究研討會發表論文。 呂美紅  1999 外籍新娘生活適應與婚姻滿意及其相關因素之研究:以台灣地 區東南亞新娘為例。中國文化大學生活應用科學研究所碩士論 文。 利翠珊  1993 已婚婦女代間互動與婚姻滿意度之關係。輔仁學誌 27:81- 89。 何青蓉  1999 婦女、婚姻與識字教育,成人教育 52:14-21。 沈倖如、王宏仁  2002 融入或逃離?:越南新娘的在地反抗策略。2003台灣的東南亞 區域研究年度研討會發表論文。 宋鎮照  1997 社會學。台北:五南。 邱琡雯  1999a 在地國際化:日本農村菲律賓新娘,當代 141:108-118。 1999b 在地國際化?外籍新娘在地化:就讀嘉義地區國小補校的外 籍新娘之社會生活。台灣社會問題研究學術研討會發表論 文。 2001 女性移民:文化邊界標誌與認同。當代 164:92-104。 胡台麗  1980 台灣農村工業化對婦女地位的影響,刊於婦女在國家發展 過程中的角色研討會論文集,頁339-353。台北:台大人口研 究中心。 胡幼慧  1995 三代同堂迷思與陷阱。台北:巨流。 夏曉鵑  1997 女性身體的貿易:台灣/印尼新娘貿易的階級、族群關係與性 別分析。騷動 4:10-21。 2002 流離尋岸:資本國際化下的外籍新娘現象。台灣社會學研究叢 刊9。 高淑貴  1996 家庭社會學。台北:黎明。 莊英章  1994 家族與婚姻:台灣北部兩個閩客村落之研究。台北:中央研究 院民族學研究所。 陳其南  1986 文化的軌跡:婚姻、家族與社會。台北:允晨。 陳美惠  2002 彰化縣東南亞外籍新娘教養子女經驗之研究。嘉義大學家庭教 育研究所碩士論文。 陳運棟等  2002 頭份鎮誌。苗栗:頭份鎮誌編輯委員會。 陳麗玉  1999 來自東南亞的新娘:一個後殖民女性主義觀點的深度報 導。台灣大學新聞研究所碩士論文。 彭懷恩  1991 台灣發展之政治經濟分析。台北:風雲論壇出版社。 葉明華、楊國樞  1997 中國人的家族主義:概念分析與實徵衡鑑,中央研究院民 族學研究所集刊 83:169-225。 詹宏志  1986 趨勢索隱:新工人、新商人、新社會。台北:遠流。 張書銘  2000 台越跨國婚姻市場分析:越南新娘仲介業之運作。淡江大學東 南亞研究所碩士論文。 楊宜音 2001 自己人:從中國人的情感格局看婆媳關係,本土心理學研 究 16:3-41。 劉美芳  2001 跨國婚姻中菲籍女性的生命述說。高醫護理學研究所碩士論 文。 蔡雅玉  2001 台越跨國婚姻現象之初探。成功大學政治經濟學研究所碩士論 文。 蔡淑玲  1994 台灣之婚姻配對模式,人文及社會科學集刊 6(2):335-370。 鄭雅雯  2000 南洋過台灣:東南亞外籍新娘在台婚姻與生活探究—以台南市 為例。東華大學族群關係與文化研究所。 顏錦珠  2001 東南亞外籍新娘在台生活經驗與適應歷程之研究。嘉義大學家 庭教育研究所碩士論文。 蕭新煌  1990 變遷中台灣社會的中產階級,頁28-113。台北:巨流。 蕭昭娟  2000 國際遷移之調適研究:以彰化縣社頭鄉外籍新娘為例。台灣師 大博士論文。 蕭鳳霞  1996 婦女何在?--抗婚和華南地域文化的再思考,中國社會學季 刊 14:24-40。 英文部分: Baker, Hugh David Roberts. 1979 Chinese Family and kinship. The Macmillan Press LTD. Beresford, Melanie. 1988 tnam:Politics, Economics and Society. Great Britain:Printer Publishers Limited press. Bernard, H. Russell. 1993 earch Methods in Anthropology. Qualitative and Quantitative . Approaches. Altamira. Emersom, Robert M. 1983 Contemporary Field Research. A Collection of Readings. Waveland. Fischer, L. R. 1983 Mother and mother-in-law. Journal of Marriage and the Family 45:187-192. Freneir, Mariam Darce and Kimberly Mancini. 1996 Vietnamese Women in a Confucian Setting: The Causes of the Initial Decline in the Staus of East Asian women. In Vietnam Women in Transition. Kathleen Barry, ed., pp21-37. NY: St. Martin’sPress. Huynh Dinh Te 1962 Vietnamese Cultural Patters and Values as Express in Proverbs. Ph.D.dissertation, Columbia University. Imamura, Anne E. 1990 Strangers in Strange Land: Coping with Marginality in International Marriage. in Journal of Comparative Family Studies 21(2):171-191. Krier, Jennifer. 1995 Narrating Herself: Power and Gender in a Minangkabau Woman’s Tale of Conflict, in Bewitching Women, pious Men: Gender and Body Politics in Southeast Asia, A. Ong & M. Peletz eds. Pp.51-75. Berkeley: California University Press. Landis, J.T. & Landis, M. G. 1977 Building a Successful marriage(7th ed). Englewood Cliffs. NJ: prentice-Hall. Mai Thi Tu and Le Thi Nham Tuyet 1978 Wmnen in Vietnam. Hanoi. Makino Tatsumi 1994 Researches on the Chinese Family(in Japanese).Tokyo. Marotz-Baden, R. & Cowan, D. 1987 Mother-un-law and Daughter-in-law: The Effects of Proximity on Conflict and Stress. In Family Relation 36:385-390. Mann, Susan. 1991 Grooming a Daughter for Marriage Brides and wives in the Mid-ch’ing Period. In Watson, Rubies. ed. Pp.204- 230. Marriage and Inequality in Chinese Society..Berkeley: U. of California Press. Moore, Henrietta L. 1993 Fantasies of Power and Fantasies of Identity: Gender, Race and Violence, in A Passion For Difference, H. Moore ed. Pp.49-70. Indianapolis: Indiana University Press. Ong, Aihwa. 1985 Spirits of Resistance, in Spirits of Resistance and Capitalist Discipline: factory Women in Malaysia, A. Ong ed. Pp.195-213. Albany: State University of New York Press. Scott, James C. 1990 Behind the Official Story. in Domination and the Arts of Resistance: Hidden Transcripts, J. Scoot ed. Pp.1- 16. London: Yale University Press. Ta Van Tai 19981 The Status of Women in Traditional Vietnam. in Journal of Asian History 15(2):97-141. Tran Thi Que 1995 Gender Issue in Vietnam’s Development. In Vietnam in a Changing World, Irene Norlund Carolyn L. Gates and Vu cao Dam ed. Pp.187-218.V,etnam: Curzon Press. Watson, Rubies 1993 Girls’ Houses and Working Women: Expressive Culture in the Pearl River Delta, 1900-41, in Women and Chinese patriarchy : submission, servitide and escape, M. Jaschok and S. Miers eds. Pp.25-44. Hong Kong : Hong Kong University Press. Watson, Rubies. & Patricia b. Ebrey 1991 Marriage and Inequality in Chinese Society. Pp. 204-230.Berkeley: U. of California Press. Wolf A. P. 1992 Chinese Family Size: a Myth Revitalized. In The Chinese Family & its Ritual Behavior. J-C., Hsieh & Y- C., Chuang eds. pp 30-49.Institute of Ethnology Academia Sinica Monographh series B. No. 15. Wolf, Margery 1972 Uterine Families and the Women’s Community, in Women and the Family in Rural Taiwan, M. Wolf ed. Pp.32-41. Stanford: Stanford University Press. Yu, Insun 1990 Law and Society in 17th-and 18th-Century Vietnam. Seoul: Asiatic Research Center, Korea University. 中文報紙及網站: 民視新聞,2004/04/09,〈奔父喪為由,越南新娘落跑不歸〉。 自由時報,2002/11/16,自由廣場,作者陳瓊芬,〈被物化的外籍新娘〉。 越南勞動報,2002/09/28,〈嫁台灣郎,歸根究底—萬事皆由貧困而起〉。 聯合報,2002/11/11,〈仲介越南新娘,四大保證真新鮮〉。 聯合報,2003/01/19,〈越南新娘不性福,寧鳳凰便回麻雀〉。 001正派越南新娘網站http://home.kimo.com.tw/gjphoto2/bride/interest.htm 越南新娘網http://home.kimo.tw/lcs460310/new-page-2.htmid NH0925010003 sid 896010 cfn 0 / id NH0925010004 auc 許懿萱 tic 傳統的再現與再造:以屏東加匏朗聚落的仙姑祖祭儀為例 adc 潘英海 ty 碩士 sc 國立清華大學 dp 人類學研究所 yr 92 lg 中文 pg 110 kwc 傳統再現 kwc 馬卡道 kwc 山腳 kwc 平埔傳統祭儀 kwc 社會過程 abc 本論文主要在觀察集體意識運作的行動者如何詮釋及再現「傳統」,而以屏東加匏朗聚落作為觀察案例。台灣自八○年代解嚴之後,隨著本土運動及族群復振運動的興起,讓平埔族群文化成了大眾傳播媒體關注的焦點。然而對於平埔後裔而言,平埔意識的覺醒,不只是正名、復名的政治訴求,還是追溯傳統的文化復振。而如何認知平埔文化?我們發現除了文字歷史,它還與傳統祭儀的展演息息相關。也因此原是聚落內部的宗教祭儀活動,也在大社會環境的營造下,啓動了地方平埔族群的意識與文化傳統展演的糾葛交纏,並產生了各式令人迷惑的現象。在本論文中,筆者想以屏東加匏朗仙姑祖祭儀的再現為例,透過對其行動者、文本及社會過程的分析,來說明其間衍生的種種現象,並進一步闡明傳統再現對其地方社會的意義。而解決問題的重點,大致可分成以下三個,即:傳統再現的在地條件、地方對祭儀傳統的詮釋,以及地方文化傳統在祭儀的社會過程中所隱含的社會文化意涵。 tc 第一章 緒 論…1 第一節 研究緣起…1 第二節 問題意識…2 第三節 文獻回顧…4 一、過去、傳統再現與集體記憶…4 二、儀式、集體意識與社會過程…8 第四節 研究方法…11 第五節 章節安排…14 第二章 加匏朗的生活與信仰…16 第一節 加匏朗的生活規律…16 第二節 從山腳看加匏朗的人群歷史與記憶…19 一、山腳人認同的形塑過程…21 二、加匏朗的村莊內部認同…23 第三節 加匏朗的集體信仰…31 一、加匏朗的神明們…31 (一)村廟主神:五谷先帝爺…32 (二)村廟以外的公司性神明…33 二、建構集體意識的村廟信仰…35 (一)凝結共識的信徒大會…36 (二)集體共識的實踐:宗教慶典的模式…37 小結:加匏朗的歷史與地方╱宗教傳統…40 第三章 仙姑祖祭儀的傳續與再現…43 第一節 加匏朗仙姑祖祭儀的歷史…43 一、仙姑祖的神話傳說…44 二、仙姑祖祭儀歷史的片斷記憶…45 三、長期執行於加匏朗的Ma-olau…46 第二節 神明代言人…50 一、加匏朗的乩童認同…50 二、加匏朗仙姑祖代言系統的轉變…53 第三節 文獻中的Ma-olau相關記錄…58 第四節 將Ma-olau帶出去的人…62 小結:仙姑祖祭儀的過去與現在…70 第四章 歷史的想像與傳統的再造…73 第一節 分裂的產生(breach)…74 一、Ma-olau人群的新組合…75 二、傳統領域的新定義…79 第二節 危機的出現(crisis)…81 第三節 修復或補救性行動(redressive action)…84 第四節 和解╱分裂(reintegration╱schism)…90 小結:歷史想像與傳統再造…92 第五章 結 論…95 第一節 仙姑祖傳統祭儀再現的回顧…95 一、在地條件的提出:加匏朗的生活與信仰…96 二、傳統祭儀的詮釋:仙姑祖祭儀的傳續與再現…98 三、傳統再現的社會過程:以2003年仙姑祖祭儀展演的過程為例,說明地方的歷史的想像與傳統的再造…99 第二節 傳統再現的社會意義…101 第三節 研究面向的未來發展…103 參考書目…105rf 丁仁傑 2004 會靈山現象的社會學考察:去地域化情境中民間信仰的轉化與再連結。發表於「宗教教義、實踐與文化:一個跨學科的整合研究學術研討會」,國家科學委員會社會科學研究中心、中央研究院民族學研究所主辦,4月16-17日,台北南港。 王雅倫 1997 法國珍藏早期台灣影像:攝影與歷史的對話。台北:雄獅。 台糖五十 1996 台糖五十。台北:台灣糖業股份有限公司。 台灣總督府民政部蕃務本署 1910 熟蕃戶口及沿革調查綴(又名:平埔蕃調查書)。台北:台灣總督府民政部蕃務本署。(未出版) 有住左武郎 1941 台灣南部住民ノ手掌皮膚隆線系統ニ關スル研究(第二報)所謂熟番ニ就イテ。台灣醫學會雜誌40(8):76-105。 李國銘 2000a 屏東平原東港溪南岸山腳下的Ma-olau祭典:Ma-olau祭典記錄一百週年,刊於第一屆屏東研究研討會論文集Ⅱ,頁163-183。屏東:屏縣文化。 2000b 屏東平原山腳下年尾節初探。發表於「平埔族群與台灣社會國術學術研討會」,中央研究院民族學研究所、台灣史研究所籌備處主辦,10月23-25日,台北南港。 呂一中 2001 「會靈山」運動興起及其對民間宗教之影響。台灣宗教協會通訊7。 何翠萍 1992 比較象徵學大師:特納。刊於見證與詮釋:當代人類學家,黃應貴主編,頁282-377。台北:正中。 吳東南 1995 高、屏先民信仰之口述記錄。刊於民族學研究所資料彙編10,頁143-177。台北:中央研究院民族學研究所。 林美容 1987 由祭祀圈來看草屯鎮的地方組織。中央研究院民族學研究所集刊62:53-114。 岡田謙 1960 台灣北部村落之祭祀範圍,陳乃蘗譯。台北文物9(4):14-29。 季麒光 1985[1684 ] 台灣雜記。北京:中華書局。 施振民 1973 祭祀圈與社會組織:彰化平原聚落發展模式的探討。中央研究院民族學研究所集刊36:191-208。 施添福 1998 清代台灣屏東平原的土地拓墾和族群關係。發表於「平埔族群與台灣歷史文化學術研討會」,中央研究院民族學研究所、台灣史研究所籌備處、語言學研究所籌備處主辦,5月16-17日,台北南港。 宮本延人 1951[1932 ] 關於台灣原始陶器的信仰,李根源譯。發表於公論報副刊台灣風土130期,3月9日。 移川子之藏、宮本延人、馬淵東一 1935 台灣高砂族系統所屬の研究。台北:台北帝國大學土俗人種學研究室。 許嘉明 1973 彰化平原福佬客的地域組織。中央研究院民族學研究所集刊36:165-191。 張珣 2003 儀式與社會:大甲媽祖轄區之擴展與變遷。刊於信仰、儀式與社會,林美容主編,頁297-338。台北:中央研究院民族學研究所。 陳文達 1993[1721 ] 鳳山縣志。台灣省文獻委員會。 陳怡君 2003 族群文化的形塑與實踐─噶瑪蘭族文化復興與族群動員之檢視。刊於族群意識與文化認同:平埔族群與台灣社會大型研討會論文集,頁191-203。台北:中央研究院民族學研究所。 黃叔璥 1996[1724 ] 台海使槎錄。南投:台灣省文獻委員會。 童元昭 2000 屏東平原沿山地帶的形成與轉變。刊於第一屆屏東研究研討會論文集Ⅰ,頁104-117。屏東:屏縣文化。 鳥居龍藏 1900 台灣通信(12)。東京人類學會雜誌15(168):260-261。 1996 探險台灣,鳥居龍藏原著,楊南郡譯註。台北:遠流。 曾振名、童元昭 1999 噶瑪蘭西拉雅古文書。台北:台灣大學人類學系。 黃瓊慧等 2001 台灣地名辭書•卷四:屏東縣。施添福總編纂,台灣省文獻委員會採集組編輯。南投:省文獻會。 劉還月 1996 馬卡道民族誌。屏東:屏東縣立文化中心。 潘英海 1998 「文化系」、「文化叢」與「文化圈」:有關「壺的信仰叢結」分佈與西拉雅族群遷徙的思考。刊於平埔族群的區域研究,劉益昌、潘英海主編,頁163-202。台中:台灣省文獻會。 1999 社會是如何再被記憶的?一個「儀式」的觀點。發表於中央研究院民族學研究所「週一學術演講」,中央研究院民族學研究所主辦,3月1日,台北南港。 2001 傳統文化?文化傳統?─關於「平埔族群傳統文化」的迷思。刊於平埔族群與台灣歷史文化論文集,詹素娟、潘英海主編,頁205-236。台北:中央研究院台灣史研究所籌備處。 潘謙銘 2000 赤山萬金庄的代誌。屏東文獻2:104-122。 蔣毓英 1985[1685 ] 台灣府志。北京:中華書局。 鍾壬壽 1973 六堆客家鄉土誌。屏東:長青。 戴炎輝 1979[1941-1942 ] 赤山地方的平埔族。刊於清代台灣之鄉治,頁731-764。台北:聯經。 簡炯仁 2000 由一個「仙蛋」論加匏朗地區的族群關係。刊於南台灣鄉土文化學術研討會論文集,頁461-497。嘉義:國立中正大學歷史學系暨研究所。 Barth, Fredrik 1969 Ethnic Groups and Boundaries. Boston: Little Brown and Company. Bell, Catherine 1992 Ritual Theory, Ritual Practice. N.K.: Oxford University Press. Durkehim, E. 1957[1915 ] The Elementary Forms of the Religious Life. J.W. Swain, trans. London : George Allen & Unwin. 1964[1893 ] The Divison of Labor in Society. George Simpson, trans. New York : The Free Press of Glencoe. Gennep, Arnold van. 1960 The Rites of Passage. Monica B. Vizedom and Gabrielle L. Caffee, trans. Chicago: the University of Chicago Press. Halbwachs, Maurice 1992[1941,1952 ] On Collective Memory. Lewis A. Coser, edited and trans. Chicago: the University of Chicago Press. Hobsbawm, E. 1983 Introduction: inventing traditions. In The invention of Tradition. E. Hobsbawm and T. Ranger, eds. Pp.1-14. Cambridge: Cambridge University Press. Ortner, Sherry B. 1984 Theory in Anthropology since the Sixties. Comparative Studies in Society and History 26 (1):126-166. Radliffe-Brown, A. R. 1964 The Andaman Islanders. N.Y.: Free Press. Sangren, Steven 1993 Power and Transcendence in the Ma Tsu Pilgrimages of Taiwan. American Ethnologist 20:264-282. Shils, Edward 1981 Tradition. Chicago : The University of Chicago Press. Silverman, Marilyn and P. H. Gulliver 1992 Approaching the past : historical anthropology through Irish case studies. New York : Columbia University Press. ter Haar, Barend J. 1995 Local Society and the Organization of Cults in Early Modern China: A Preliminary Study. Studies in Central and East Asian Religions 8:1-43. Tsai, Yi-Jia(蔡怡佳) 2003 The Reformative Visions of Mediumship in Contemporary Taiwan. Unpublish ed Doctoral Dissertation. Rice University. Turner, Victor 1969 The Ritual Process: Structure and Anti-Structure. Chicago, Illinois: Aldine. 1974 Dramas, Fields and Metaphos: Symbolic Action in Human Society. Ithaca, N.Y.: Cornell University Press. 1987 The anthropology of performance. New York : PAJ Publications.id NH0925010004 sid 906003 cfn 0 / id NH0925010005 auc 孟智慧 tic 從嶔岑與石濤農場人群的研究看離散人群的認同 adc 魏捷茲 ty 碩士 sc 國立清華大學 dp 人類學研究所 yr 92 lg 中文 pg 210 kwc 認同 kwc 離散 kwc 少數族群化 abc 本研究描述國共內戰末期,離開中國西南邊區來臺定居的嶔岑與石濤農場人群,在共同的離散經驗與不同的安置歷史下,形塑我群認同的歷程。本研究從對戰後定居於兩地農場的人群,從離散到安置的歷史、過去生活的記憶、農場人群的現況,認為離散人群對我群的認識與表述,是基於他們對生活環境的觀察與回應,而不是先驗地建立在某一種身份類別(族群身份)的基礎之上。戰時的求生經驗與害怕是兩地農場人群共有的離散經驗。這兩種離散經驗,一方面形成他們不再離散時,生活上著重表相的行事慣性;一方面在生活不順遂時,成為害怕的想像與猜忌的歸因。戰後安置地點的歷史經濟條件不同,讓共享戰時離散經驗的兩地農場人群在生活態度、我群形塑、敘事表現上,各有不同的發展。嶔岑農場人群安置地點的自然條件優越,農作成果豐厚,順利援用著重表相的行事慣性,發展他們的生活。其中,達觀新村村民更得以對內逐漸發展出以村為單位的我群感與光榮化的自我觀。近兩三年間,他們更嘗試以「擺夷」作為我群認同的新方向。相對而言,石濤農場人群安置地點的自然條件欠佳,農作成果貧乏,離散經驗中所培養的著重表相的行事慣性,無法改善生活。在生活挫折中,更強化了既有離散經驗中的恐懼,成為一種無所不在的氛圍,猜忌、害怕的想像與矮化的自我觀,以及形塑我群認同嘗試上反覆失敗的結果。本研究指出當代臺灣社會在認同研究上,將離散人群的認同現象窄化為族群認同是有理解偏差的。 tc 目錄 第一章、 緒論………………………………………………………………………5 第一節 研究緣起…………………………………………………5 第二節 問題意識與論文主旨……………………………………7 第三節 文獻回顧…………………………………………………8 (一) 族群研究與動態人群研究的批評…………………………9 (二) 動態的人群研究……………………………………………11 1、 從結群層次展開的「離散人群」之研究…………………11 2、 從個人經驗層次展開的「離散人群」之研究……………12 3、 從關係層次展開的「離散人群」之研究…………………14 第四節 田野歷程、研究方法與章節安排………………………15 (一) 田野歷程………………………………………………………15 (二) 研究方法………………………………………………………19 1、訪談…………………………………………………………19 2、文獻參閱……………………………………………………21 3、參與觀察……………………………………………………22 (三) 章節安排………………………………………………………22 第二章、 從離散到安置………………………………………25 第一節 歷史沿革………………………………………………26 (一) 民國五十年以前,兩地農場人群來臺前的大事記要…26 (二) 民國五十年之後,在臺安置時期大事紀………………28 1、 五十年代初期安置在臺大事記……………………………28 2、 五十年代中期至七十年代初期的嶔岑農場………………29 3、 五十年代中期至七十年代初期的石濤農場………………30 4、 七十年代末期迄今之兩地農場大事記……………………31 第二節 地理環境…………………………………………………33 (一) 聚落位置及行政區劃……………………………………33 1、 嶔岑農場人群聚落…………………………………………33 2、 石濤農場人群聚落…………………………………………34 (二) 村落空間……………………………………………………36 1、 嶔岑農場人群聚落…………………………………………36 2、 石濤農場人群聚落…………………………………………39 (三) 家屋空間……………………………………………………43 第三節 人群與語言…………………………………………………44 第四節 臺灣各地雲南人社區之往來………………………………48 (一) 婚配對象……………………………………………………48 (二) 日常往來……………………………………………………49 第五節 關係稱謂………………………………………………50 第六節 當前的經濟活動………………………………………53 (一) 嶔岑農場與花卉生產………………………………………54 (二) 石濤農場與砂石開採………………………………………58 第七節 宗教活動………………………………………………61 (一) 嶔岑農場達觀新村的慶安宮………………………………62 (二) 石濤農場愛國新村的浸信會………………………………64 第八節 「從離散到初安置」的敘事與自我…………………65 第三章、 表相與生存……………………………………………72 第一節 人與人之間的辨識與衣著………………………………72 第二節 兵對官的觀察與謀生之道………………………………80 第三節 戰後農場人群與「著重表相以求生存」的經驗法則…86 第四節 小結………………………………………………………96 第四章、 恐懼……………………………………………………98 第一節 害怕的記憶………………………………………………100 (一) 衣黝的逃難故事……………………………………………100 (二) 駱巧瓔與駱碧芬的故事……………………………………106 (三) 國家遺孤刀可香的故事……………………………………110 (四) 駱繁昂與倪清光的故事……………………………………114 (五) 楊廣能的戰後生活…………………………………………118 (六) 倪蘭岑夫婦來臺的故事……………………………………121 (七) 黨巧芳的故事………………………………………………122 (八) 戰後初期兩地農場的自殺案件……………………………123 (九) 滕立松與曹勤風的故事……………………………………125 (十) 萊荻送長子入伍的故事……………………………………126 第二節 害怕的想像………………………………………………127 (一) 「共匪」的傳言………………………………………………128 (二) 「細胞」的傳言…………………………………………………129 (三) 卡在「國」「共」之間的石濤農場人群…………………133 (四) 疾病與鬼的作崇……………………………………………135 第三節 小結………………………………………………………141 第五章 擺夷風情與其效應…………………………………………142 第一節 擺夷風情的形成…………………………………………142 (一) 嶔岑農場的非漢族群論述…………………………………143 1、我們擺夷(或我們傣)……………………………………………143 2、我們華僑…………………………………………………………150 (二) 擺夷風情文本的產生……………………………………154 (三) 大嶔岑社區總體營造活動的影響………………………158 第二節 擺夷風情催化石濤農場人群舉辦照片展……………177 第三節 小結……………………………………………………183 第六章、結論…………………………………………………………185 參考書目………………………………………………………………195 附錄一、國雷計劃待安置人員志願調查表…………………………204 附錄二、達觀新村與仁莊眷舍重建案公文…………………………205 附錄三、達觀新村興建土主廟碑序…………………………………206 附錄四、民國九十二年達觀新村舉行的中元普渡法會……………207 附錄五、民國九十二年達觀新村慶安宮城隍爺生日當天的卦象…210 圖目錄 圖1嶔岑農場各村的相對位置圖………………………………………37 圖2達觀新村空間佈局…………………………………………………39 圖3石濤農場各村的相對位置圖………………………………………40 圖4立遠新村空間佈局…………………………………………………42 圖5勝利新村空間佈局…………………………………………………42 圖6軍與民的關係圖……………………………………………………67 圖7環境知覺圖………………………………………………………120 表目錄 表1兩地農場第一代男性省籍統計表………………………………45 表2石濤農場雲南籍義民縣份統計表………………………………45 表3嶔岑農場雲南籍義民縣份統計表………………………………45 表4兩地農場第一代女性族群統計表………………………………46rf 參考書目 丁穩勝 2001 資本主義計件外包生產制:家庭代工、勞動控制與性別宰制意涵的政治 經濟學批判分析。碩士論文,勞工研究所碩士論文。臺北市:政治大學。 王正華、和少英 1999 中國少數民族文化史叢書:拉祜族文化史。昆明:雲南民族出版社。 王甫昌 1993a 省籍融合的本質:一個理論與經驗的探討。刊於族群關係與國家認同,張茂桂編,頁53-100。臺北市:葉強出版社。 1993b 光復後臺灣漢人族群通婚的原因與形成初探。刊於中央研究院民族學研究所集刊 76: 43-96。臺北市:中央研究院民族學研究所。 方怡潔 2003 地景、風水與儒商文化:雲南和順僑鄉的民間文化與國家象徵實踐。碩士論文,人類學研究所。新竹市:清華大學。 中國大百科全書出版社編輯部 1993 中國大百科全書民族卷,頁188。臺北市:錦繡出版公司。 行政院國軍退除役官兵輔導委員會 2001 行政院國軍退除役官兵輔導委員會各農場管理經營辦法修正草案條文,7月18日。 宋光宇 1982 「清境與吉洋」從滇緬邊區來臺義民聚落的調查報告。刊於中央研究院歷史語言研究所集刊 53(4): 747-794。臺北市:中央研究院歷史語言所。 芮逸夫 1972 中國民族及其文化論稿,頁93。臺北市:藝文印書館。 李紀平 1998 寓兵於農的東部退撫政策:一個屯墾的活歷史。碩士論文,族群關係與文化研究所。花蓮縣:東華大學。 林勝偉 2003 從「戰士」到「榮民」:國家的制度建構與人口類屬的型塑(1949-1970),臺灣社會研究季刊,52: 187-254。 金家琦 2003 雲南傣洒人與超自然的關係。碩士論文,人類學研究所。 新竹市:清華大學。 吳明季 2001 失落的話語:花蓮安和、樂利村外省老兵的流亡處境及其論述。碩士論文,族群關係與文化研究所。花蓮縣:東華大學。 拉祜族簡史編寫組 1986 中國少數民族簡史叢書:拉祜族簡史。昆明:雲南人民出版社。 胡慶蓉 1967 滇邊游擊史話。臺南市:中國世紀雜誌社。 1980 丁博士巨變歷險記。臺北市:出版者不詳。 柏楊 1961 異域。臺北市:星光出版社。 世外桃源空中花園渡假山莊 2002 「擺夷人家作客」。提供於http://www.shangrila-restort.com.tw/chinese/activity.htm 美濃鎮誌編輯委員會 1997 美濃鎮誌。高雄縣:美濃鎮公所 孫立梅 2001 外省人的「家」:多義的記憶與移動的認同。碩士論文,人類學研究所。新竹市:清華大學。 連繡華編 2000 清境擺夷傳奇:回首雲之南擺夷老照片專輯。南投市:南投縣立文化中心。 陳祥水 1991 紐約皇后區新華僑的社會結構。臺北市:中央研究院民族學研究所。 陳秋坤、吳庚元編 2003 里港鄉志。屏東縣:里港鄉公所。 許烺光(王芃、徐隆德、余伯泉合譯) 1997 驅逐搗蛋者—魔法、科學與文化。臺北市:南天出版社。 黃耀能總纂 1997 南投縣志。南投縣:南投縣政府。 國防部史政編譯局 1996 滇緬邊區風雲錄—柳元麟將軍八十八回憶。臺北市:國防部史政編譯局。 國家民委民族問題五種叢書編輯委員會 1981 中國少數民族,頁345。北京:人民出版社。 張茂桂、吳忻怡 2001 關於民族主義論述中的認同與情緒:尊重與承認的問題。刊於民族主義與兩岸關係,林佳龍、鄭永年編,頁147-180。臺北市:新自然主義。 雲南省歷史研究所編 1983 雲南少數民族,頁627-633。昆明:雲南人民出版社。 趙彥寧 2001 a 國族想像的權力邏輯:試論五○年代流亡主體、公領域、與現代性之間的可能關係,頁151-245。刊於戴著草帽到處旅行—性/別、權力、國家。臺北市:巨流圖書有限公司。 2001b 家國語言的公開秘密:流亡、公民認同、與流亡敘事的物質性。發表於「生活/社會新視界:理論與實踐的對話學術研討會」,臺灣社會學會主辦,11月2-3日,臺北。提供於http://tsa.sinica.edu.tw/2001-paper1.html 趙剛、侯念祖 1995 認同政治的代罪羔羊:父權體制及論述下的眷村女性,臺灣社會研究季刋,19:125-163。 詹伯慧編 1991 漢語方言及方言調查,頁1-117。湖北:湖北教育出版社。 蔡寶鳳、周碧瑟 1992 痲瘋病的文獻回顧,傳染病防治第二輯,譚文海主編,頁126-159。臺北縣:臺灣省公共衛生研究所。 潘美玲、張維安 2003 經濟行動與社會關係:社會自我保護機制的研究,臺灣社會研究季刊,30: 51-88。 謝世忠 1993 傣泐:西雙版納的族群現象,頁53。臺北市:自立晚報。 2001 清境擺夷族群基本調查。(未出版) 謝國雄 1992 隱形工廠:臺灣外包點與家庭代工,臺灣社會研究季刊,13: 137-160。 蔣竹山 2002 性、蟲與過癲—明清中國有關痲瘋病的社會想像。演講稿。 譚偉臣 1984 雲南反共大學校史。高雄市:塵鄉出版社。 Barth, Fredrik 1969 Pathan Identity and Its Maintenance. In Ethnic Groups and Boundaries. Pp. 115-134. London: Allen Press. 1996 Ethnic Groups and Boundaries. In Ethnicity. John Huntchinson and Anthony D. Smith, eds. Pp. 75-82. New York: Oxford University Press. Blum, Susan D. 2001 Portraits of “Primitives”: Ordering Human Kinds in the Chinese Nation. Lanham: Rowman & Littlefield Publishers, Inc. Camino, Linda A. and Ruth M. Krulfeld, eds. 1994 Reconstructing Lives, Recapturing Meaning: Refugee Identity, Gender, and Culture Change. Pp. 1-178. CA: The George Washington University Press. Chang, Wen-Chin 1999 Beyond the Military: The complex Migration and Resettlement of the KMT Yunnanese Chinese in Northern Thiland. Leuwen: Katholieke University. 2001 From War Refugees to Immigrants: The Case of the KMT Yunnanese Chinese in Northern Thailand. The International Migration Review 35(4):1086-1105. 2002a 從難民到移民的跨越—再論泰北前國民黨雲南人遷移模式的轉變。海華與東南亞研究,2(1): 47-73。 2002b Identification of Leadership among the KMT Yunnanese Chinese in Northern Thailand. Journal of Southeast Asian Studies 33(1): 123-146. Clifford, James 1994 Diaspora. Cultural Anthropology 9(3): 302-338. Cohen, Ronald 1978 Ethnicity: Problem and Focus in Anthropology. Annual Review of Anthropology 7:379-403. Comaroff, Jean and John 1992 Totemism and Ethnicity. In Ethnography and the Historical Imagination. Pp. 49-68. Boulder: Westview Press. De Beauclair, Inez 1986 Ethnic Groups of South China. In Ethnographic Studies: The Collected Papers of Inez De Beauclair. Pp. 488. Taipei: Southern Materials Center Press. Eller, Jack and Reed Coughlan 1996 The Poverty of Primordialism. In Ethnicity. John Huntchinson and Anthony D. Smith, eds. Pp. 45-51. New York: Oxford University Press. Espiritu, Yen Le 1992 Asian American Panethnicity: Bridging Institutions and Identities. Pp. 1-18. Philadelphia: Temple University Press. Foucault, Michel 傳柯 1992[1979 ] 規訓與懲罰:監獄的誕生,劉北成,楊遠嬰譯,頁3-30。臺北市:桂冠圖書公司。 Genette, Gerard 1980[1972 ] Narrative Discourse: An Essay in Method. E. Lewin, trans. Itacal: Cornell University Press. Gans, Herbert 1996 Symbolic Ethnicity. In Ethnicity. John Huntchinson and Anthony D. Smith, eds. Pp. 146-155. New York: Oxford University Press. Goffman, Erving 高夫曼 1992[1959 ]日常生活中的自我表演。徐江敏、李姚軍譯。臺北市:桂冠圖書股份有限公司。 Hall, Stuart 1990 Cultural Identity and Diaspora, In Identity, Community, Culture, Difference. Rutherford, ed. Pp. 222-237. London: Lawrence and Wishart Press. Hill, Ann Maxwell 1998 Merchants and Migrants: Ethnicity and Trade among Yunnanese Chinese in Southeast Asia. Monograph 47, Southeast Asian Studies, Yale University. Hoskins, Janet 1996 Introduction. In Biographical Objects: How Things Tell the Stories of People’s Lives. Pp. 2-24. New York: Routledge Press. Huntchinson, John and Anthony D. Smith 1996 Introduction. In Ethnicity. John Huntchinson and Anthony D. Smith, eds. Pp. 3-14. New York: Oxford University Press. Malkki, Liisa 1990 Context and Consciousness: Local Conditions for the Production of Historical and National Thought among Hutu Refugees in Tanzania. In Nationalist Ideologies and the Production of National Cultures. Richard G. Fox, ed. Pp. 32-62. New York: American Anthropological Association Press. 1995 Refugees and Exile: From “Refugee Studies” to the National Order of Things. Annual Review of Anthropology 24:495-523. Matthews, Stephen 1996 South and Southeast Asia. In The ATLAS of Languages: The Origin and Development of Languages Throughout the World. Comrie, Bernard,Stephen Matthews, and Maria Polinsky, eds. Pp. 56-64. New York: Facts On File Press. Omidian, Patricia A. 1994 Life Out of Context: Recording Afghan Refugees’ Stories. In Reconstructing Lives, Recapturing Meaning: Refugee Identity, Gender, and Culture Change. Camino, Linda A. and Ruth M. Krulfeld, eds. Pp. 151-178. CA: George Washington University Press. Ong, Aihwa 1996 Cultural Citizenship as Subject-Making: Immigrants Negotiate Racial and Cultural Boundaries in the United States. Current Anthropology 37(5): 737-762. 1999 Flexible Citizenship: the Cultural Logics of Transnationality. Pp. 1-26. Durham: Duke University Press. Schermerhorn, Richard 1996 Ethnicity and Minority Groups. In Ethnicity. John Huntchinson and Anthony D. Smith, eds. Pp. 17-18. New York: Oxford University Press. Talor, Charles 1989 The Sources of Self. Pp. 1-27. Cambridge: Harvard University Press. Tannenbaum, Nicola 1987 Tattoos: invulnerability and power in Shan Cosmology. American Ethnologist. 14: 693-711. Tokin, Elisabeth, Mayron McDonald, and Malcoln Chapman 1997 History and Ethnicity. In Ethnicity. John Huntchinson and Anthony D. Smith, eds. Pp. 1-24. New York: Oxford University Press. Van den Berghe, Pierre 1996 Does Race Matter? In Ethnicity. John Huntchinson and Anthon D. Smith, eds. Pp. 57-63. New York: Oxford University Press. Waters, Mary C. 1990 Ethnic Options: Choosing Identities in America. Pp. 1-7. CA: California University Press. 新聞報導 民國九十二年四月七日19:04東森新聞臺 來去南投/信不信!清境擺夷族吃石頭治痛風的報導 民國九十二年四月七日東森新聞臺 「南投滇緬族人嗜吃頁岩片」的報導 民國九十二年四月七日華視新聞 「吃石頭治病補充鈣質」報導 民國九十二年六月三日GTV第一臺 阿龐、洪愛莉南投行「石」在好味道的節目 網頁資料 「行政院國軍退除役官兵輔導委員會」網頁 http://www.vac.gov.tw/ 「戰後臺灣歷史年表」網頁 http://twstudy.iis.sinica.edu.tw/twht/General/Mpeople Twht Query.asp 「清境擺夷傳奇」網頁 www.nthg.gov.tw,現已移除 南投縣仁愛鄉公所網頁 http://village.nthg.gov.tw/jenai/introduction2/intro.htm http://village.nthg.gov.tw/jenai/service_6.htm 高雄縣美濃鎮戶政事務所網頁 http://163.29.105.99/intranet/rosseauism/meinu/ 屏東縣里港鄉戶政事務所網頁 http://civ.pthg.gov.tw/aseip_folder/里港戶政事務所.htm 屏東縣里港鄉資訊服務網 http://www.pthg.gov.tw/chinese/town/PTT03/p0101.asp 國立臺灣戲曲專科學校網頁 http://sec.ntjcpa.edu.tw/%B5o%AEi%A5v.htm 文化總會網頁 http://www.ncatw.org.tw/home.php 清境旅遊網 http://www.cjta.org.tw/top.htm 世外桃源空中花園渡假山莊網頁http://www.shangrila-resort.com.tw/ad/news_2.htmlid NH0925010005 sid 896002 cfn 0 / id NH0925010006 auc 高金豪 tic 起源敘事,婚禮政治與階序實踐: 一個排灣族村落的例子 adc 蔣斌 ty 碩士 sc 國立清華大學 dp 人類學研究所 yr 92 lg 中文 pg 124 kwc 起源敘事 kwc 婚禮政治 kwc 階序實踐 kwc 排灣族 abc 本論文的問題意識與研究架構以「起源」做為論述中心,貫穿部落創始歷史與頭目家系口傳源流的起源敘事,並進一步將此專屬頭目家系的歷史資源帶入強調個人生命源流與家系地位的婚禮中討論,並探討婚禮政治過程中在地人實踐的階序競逐所彰顯的現代意義。 tc 圖表目次 iii 排灣語語音符號系統 iv 第一章 緒 論 1 第一節 研究緣起:一則「平地起源傳說」的歷史記憶 1 第二節 田野觀察與問題意識 4 Ⅰ、田野現象的觀察 4 Ⅱ、問題意識與研究架構 8 第三節 相關理論與文獻回顧 10 Ⅰ、起源論與南島研究 10 Ⅱ、階序與「precedence概念」 16 第四節 田野顯影 16 Ⅰ、排灣族的族群、區域與部落 16 Ⅱ、田野地簡史 18 第二章 起源敘事之一: 部落創始與第一家源流─以安平部落為例 25 第一節 始祖:從平地遷移山地的起源傳說 29 第二節 創始:先佔與分家的姊弟傳說 30 第三節 遷徙:ludja部落的遷移史 34 第四節 討論:起源傳說做為頭目家系的歷史資源 37 第三章 起源敘事之二: 頭目家系譜─以Zingrur和Rupavatjes為例 40 第一節 系譜人生與頭目家系 40 第二節 安平系統:Zingrur家 44 第三節 萬安系統:Rupavatjes家 49 第四節 系譜敘事的個人傳記 54 第五節 討論:系譜的政治與詩學 59 Ⅰ、系譜政治之一:頭目家系的長嗣承繼 59 Ⅱ、系譜政治之二:婚姻是一條條的(家)路─djalan與nasi 60 Ⅲ、系譜敘事的文學性:個人傳記 63 第四章 婚禮的階序實踐:nasi(生命源流)與婚禮政治 65 第一節 田野當代的婚禮政治:從〈喜慶公約書〉談起 67 Ⅰ、公約書的由來、村民反應與內容 67 Ⅱ、當代婚禮的行事 70 第二節 議婚、婚禮聘物與nasi(生命源流) 80 Ⅰ、女方與男方的nasi:從議婚的爭議談起 81 Ⅱ、婚禮的家系位階與聘禮(lalisian)的階序 86 第三節 配戴熊鷹羽飾的爭議 87 Ⅰ、熊鷹羽飾的由來、型制與象徵 88 Ⅱ、當代婚禮配戴羽飾的爭議 90 第四節 討論 92 Ⅰ、初探nasi的社會文化意涵 92 Ⅱ、婚禮與階序:婚禮做為頭目貴族競逐的場域 93 第五章 結論:頭目階層的起源優先性 95 參考書目 附錄一:排灣語各種語音符號系統對照表 附錄二:舊萬安各部落家戶圖 附錄三:系譜資料 附錄四:《喜慶公約書》89年版與92年版對照表 圖表目次 表1-1:馬淵東一排灣族地域分類表 18 表1-2:萬安舊部落與戰後新址之部落名稱與戶數表 20 表1-3:萬安部落名稱對照表 22 表1-4:舊部落時代與萬安新址之頭目家對照表 22 表3-1:kazazaljan各部落之各黨民分佈 42 表3-2:《報告書第一冊》Rupavatjes家由來之簡表 50rf 參考文獻 小林保祥 1998 排灣傳說集,松澤員子編,謝荔譯。台北:南天書局。 中央研究院民族學研究所 編譯 2003a[1920 ] 番族慣習調查報告書 第五卷 排灣族 第一冊。小島由道、安原信三、小林保祥原著,黃秀敏校譯。台北:中央研究院民族學研究所。 2003b[1920 ] 番族慣習調查報告書 第五卷 排灣族 第五冊。小島由道、安原信三、小林保祥,李璧年校譯。台北:中央研究院民族學研究所。 20041920 ] 番族慣習調查報告書 第五卷 排灣族 第小島由道、安原信三、小林保祥原著,李璧年校譯。台北:中央研究院民族學研究所。 王明珂 1999 根基歷史:羌族的弟兄故事,刊於時間、歷史與記憶,黃應貴編,頁283-341。台北:中央研究院民族學研究所。 2001a 歷史事實、歷史記憶與歷史心性。歷史研究5:136-147。 2001b 起源的魔力及相關探討。語言暨語言學2(1):261-267。 王崧興 1959 排灣族泰武鄉佳平村的家族。考古人類學刊13、14。國立臺灣大學。 末成道男 1973 臺灣排灣族的〈家族〉─M村的贈與老大的習俗,以pasadan為中心─。東洋文化研究所紀要,第59冊,頁1-87。黃耀榮譯。台北:中央研究院民族學研究所。(譯稿未出版) 石 磊 1971 筏灣─一個排灣族的民族學田野調查報告。中央研究院民族學研究所專刊甲種第21號。台北:中央研究院民族學研究所。 行政院原住民委員會 1999 台灣南島民族起源神話與傳說比較研究,行政院原住民委員會委託研究案。台北:行政院原住民委員會。 李亦園 1956 來義鄉排灣族中箕模人的探究。中央研究院民族學研究所集刊1:55-84。1956來義鄉白鷺等村排灣族的家族構成。中央研究院民族學研究所集刊2:-。 周德禛 2001 排灣族教育─民族誌之研究。台北:五南。 松澤員子 1979 台灣排灣族之首長家:在與其首長制之關連上,同志社大學人文科學研究所社會科學26:1-40。翁英惠譯。台北:中央研究院民族學研究所。(譯稿未出版) 1986[1976 ] 東部排灣族之家族與親族─以ta-djaran(一條路)之概念為中心,刊於台灣土著社會文化研究論文集,黃應貴編,頁445-478,張燕秋等譯。台北:聯經。 邱馨慧 2001 家、物與階序─以一個排灣社會為例。國立台灣大學人類學研究所碩士論文。(未出版) 施添福 2001 國家與地域社會─以清代臺灣屏東平原為例,刊於平埔族群與臺灣歷史文化論文集,詹素娟、潘英海主編,頁33-112。台北:中央研究院臺灣史研究所籌備處。 胡台麗 1999a 儀式與影像研究的新面向:排灣古樓祭儀活化文本的啟示。中央研究院民族學研究所集刊86:1-28。 1999b 百步蛇與鷹:排灣族的文化認同與表徵,發表於台灣原住民國際研討會。中央研究院民族學研究所、順益台灣原住民博物館主辦,5月1-3日。台北南港。 1999c 排灣古樓五年祭的「文本」與詮釋,刊於人類學在台灣的發展:經驗研究篇,徐正光、林美容編,頁183-222。台北:中央研究院民族學研究所。 2000 笛的哀思:排灣族情感與美感初探,發表於情感、情緒與文化研討會。中央研究院民族學研究所主辦,9月29-30。台北南港。 2001 排灣影像的美學,發表於影像與民族誌研討會。中央研究院民族學研究所、台灣民族誌影像學會主辦,4月14日。台北南港。 2003 虛構傳說的「真實」,發表於傳統藝術研討會,國立傳統藝術中心主辦,10月24-26日。屏東:屏東文化中心。 唐美君 1986[1966 ] 來義村排灣族之離婚率與其財產制度之關係,蔣斌譯,刊於臺灣土著社會文化研究論文集,黃應貴主編,頁541-551。台北:聯經。 翁佳音 1996 歷史記憶與歷史事實:原住民史研究的一個嘗試。台灣史研究3(1):5-29。 高業榮 1986 關於排灣族的尖頂闊頤人頭像。藝術家134: 1991 擬視的祖靈─試論排灣族石雕祖先像的兩種風格,刊於第一屆山胞藝術暨專輯,頁24-48。台中:台中縣立文化中心。 2003a 祖靈的象徵─試論屏東縣七佳舊社排灣族的石質祖靈柱(上)。藝術家342:464-466。 2003b 祖靈的象徵─試論屏東縣七佳舊社排灣族的石質祖靈柱(中)。藝術家343:480-485。 2003c 祖靈的象徵─試論屏東縣七佳舊社排灣族的石質祖靈柱(下)。藝術家344:370-375。 馬淵東一 1954 高砂族之移動與分佈(第二部)。民族學研究季刊第18卷第3/4號。林旻譯。台北:中央研究院民族學研究所。(譯稿未出版) 移川子之藏 1935 高砂族系統所屬之研究,臺北帝國大學。黃麗雲譯。台北:中央研究院民族學研究所。(譯稿未出版) 張秀絹 2000 排灣語參考語法。台北:遠流。 梁秀美(編著) 1992 山胞職業教育稀有類科教材之二十一:排灣族結婚禮俗。教育部技術及職業教育司、臺灣省政府教育廳。 許功明 1991 魯凱族的藝術與文化。台北:稻香出版社。 1994 排灣族古樓村的祭儀與文化。台北:稻鄉出版社。 郭東雄 2004 台灣原住民排灣族行路文化研究。原住民教育季刊34:47-80。 陳文德 1999 起源、老人與歷史:以一個卑南族聚落對發祥地的爭議為例,刊於時間、歷史與記憶,黃應貴編,頁343-379。台北:中央研究院民族學研究所。 陳奇祿 1996[1961 ] 臺灣排灣群諸族木雕標本圖錄。台北:南天書局。 1992 臺灣土著文化研究。台北:聯經。 陳國強 1966 台灣土著始祖傳說。台北:東方文化書局。 湯賢慧 1995 排灣族傳統神話傳說集。中央研究院歷史語言研究所。(未出版) 童春發 1997 歷代統治者對排灣族人的影響─從文化的認同與族群意識的角度來看─,刊於八十六年度全國文藝季屏東縣排灣文明系列活動成果專輯,頁159-173。屏東:屏東縣立文化中心。 2001 臺灣原住民史:排灣族史篇。南投:臺灣省文獻委員會。 黃應貴 1986 台灣土著族的兩種社會類型及其意義,刊於台灣土著社會文化研究論文集,黃應貴編,頁3-43。台北:中央研究院民族學研究所。 1999 導論:幾個有關人類學在台灣之發展的議題,刊於人類學在台灣的發展:回顧與展望篇,徐正光、黃應貴編,頁25-57。台北:中央研究院民族學研究所。 2002 人類學的評論。台北:允晨。 楊淑媛 2003 過去如何被記憶與經驗:以霧鹿布農人為例的研究。台灣人類學刊1(2):88-114。 劉克襄 1999 福爾摩沙大旅行。台北:玉山社。 蔣 斌、李靜怡 1995 北部排灣族家屋的空間結構與意義,刊於空間、力與社會,黃應貴編,頁167-212。台北:中央研究院民族學研究所。 蔣 斌 1984 排灣族貴族制度的再探討:以大社為例。中央研究院民族學研究所集刊55:1-48。1992排灣族的社會文化人類學研究(上)1895-1971。台灣史田野研究24:17-47。 1997 口述歷史的舞台,發表於文化展演與人類學研討會。中央研究院民族學研究所主辦,6月6、7日。台北南港。 1999 墓葬與襲名:排灣族的兩個記憶機制,刊於時間、歷史與記憶,黃應貴編,頁381-421。台北:中央研究院民族學研究所。 衛惠林 1960 排灣族的宗族組織與階級制度。中央研究院民族學研究所集刊9:71-96。 瀨川昌久 1999[1996 ] 族譜:華南漢族的宗族風水移居,錢杭譯。上海書店出版社。 譚昌國 1992 家、階層與人的觀念:以東部排灣台扳村為例的研究。國立台灣大學人類學研究所碩士論文。(未出版) 2003 歷史書寫、主體性與權力:對「排灣人寫排灣族歷史」的觀察與反省。台大文史哲學報59:65-95。 2004 祖靈屋與頭目家階層地位:以東排灣土扳村Patjalinuk家為例。刊於物與物質文化,黃應貴主編,頁111-169。台北:中央研究院民族學研究所。 鐘(石)興華 2001 從Vetsik(徽號)看排灣族社會文化之變遷─以Chivetskadan部落為例。國立政治大學民族學系碩士論文。(未出版) Errington, Shelly 1989 Meaning and Power in a Southeast Asian Realm. Princeton: Princeton University Press. Fox, J. J. 1994 Reflections on “Hierarchy” and “Precedence”. History and Anthropology7(1-4):87-108. 1995 Origin Structures and Systems of Precedence in the Comparative Study of Austronesian Societies. In Austronesian Studies Relating to Taiwan. Paul J-K. Li, C-H. Tseng, Y-K. Huang, D-A. Ho and C-Y. Tseng, eds. Pp.109-140. Taipei: Academia Sinica. 1996 Introduction. In Origins, Ancestry and Alliance: Explorations in Austronesian Ethnography. J.J. Fox and C. Sather, eds. Pp.1-17. Canberra: The Australian National University. Kazuko Matsuzawa(松澤員子) 1995 Social and Ritual Power of Paiwan Chiefs: Oceanian Perspectives. In Austronesian Studies Relating to Taiwan. Paul J-K. Li, C-H. Tseng, Y-K. Huang, D-A. Ho and C-Y. Tseng, eds. Pp.109-140. Taipei: Academia Sinica. Pannell, S. 1996 Histories of Diversity, Hierarchies of Unity: the Politics of Origin in a South-west Moluccan Villages. In Origins, Ancestry and Alliance: Explorations in Austronesian Ethnography. J.J. Fox and C. Sather, eds. Pp.1-17. Canberra: The Australian National University. Reuter, T. 1993 Precedence in Sumatra: An Analysis of the Construction Status in Affinal Relations and Origin Groups. Bijdragen tot de Taal-, Land- en Volkenkunde148:489-520.id NH0925010006 sid 876011 cfn 0 / id NH0925031001 auc 王正華 tic 維修管理人機模式之發展與應用 adc 黃雪玲 ty 博士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 85 kwc 維修管理模式 kwc 人為錯誤 kwc 飛行器維修管理 kwc 飛航安全 kwc 決策支援系統 abc 大多數的工業生產系統會受限於使用年限,而使其作業績效趨於退化。為預防系統退化與失效,維修管理作業將扮演一關鍵性的角色。人員對機器設備進行維修作業過程中,期望設備能達到最大的可用度。系統可用度提高的方式,除了作業人員加以訓練之外,亦可改良設備,使設備能容忍人為操作上的小錯誤,在容許的時間內加以復原,則可使系統之可用度提高。 tc 目 錄 第一章 導論……………………………………………….……...1 1-1研究背景………………………………………….…………2 1-2研究目的……………………………….………………..…2 1-3研究步驟………………………………………………...…3 第二章 維修管理與人機模式文獻探討…………..…….….…..5 2-1 維修管理模式……………………………………………..5 2-2 人機系統模式…………………….……………………...8 第三章 維修管理人機模式之建立……………..……..………..12 3-1系統狀態說明…………………………………………..…....13 3-2 模式假設……………………………………………………...15 3-3 符號說明……………………………………………….......15 3-4 模式分析與求解………………………………….……......16 第四章 實驗…………………......………………………......21 4-1 實驗設計……………………………...………………………21 4-2 實驗工作…………………………….….…….………………22 4-3 受試者背景………………………….………..………………25 第五章 實驗結果……………………………….…..…….......26 5-1 嚴重性與隱藏性人為錯誤率………….………….......26 5-2 復原時間的機率密度函數…………..……………………28 5-3 模式結果…………………………………..………………32 5-3-1 模擬實驗之相關參數………………………………32 5-3-2 其他參數………………………….……………….32 5-3-3 相關參數對系統可用度之影響……………………33 5-3-4 隨機維修管理模式之討論…………….………….41 第六章 個案研究-飛行器維修管理決策支援系統設計……....44 6-1 個案研究背景說明………………………………….…...44 6-2 航空公司維修管理系統概述………………….………….48 6-2-1 維修管理人員分類……………….……………….48 6-2-2 飛行器維修管理工作分類……….……….……………….49 6-2-3 甲航空公司現行維修管理系統說明……………………...50 6-3飛行器維修管理系統(AMMDSS)架構發展……….........51 6-4 AMMDSS之結構………………………………...………….53 6-5 AMMDSS應用說明………………………...……………….55 6-6個案研究討論…………………………..………..…………..59 第七章 結論…………………………………………………………………….63 參考文獻……………………........…………………………...66 附錄一 複式飼水模擬系統程式………………….……………….70 附錄二 複式飼水模擬實驗相關表格…………….……………….77rf 參考文獻 甲航空股份有限公司機械部-MEMIS維修資料。 林我聰, (1996), 專家決策支援系統建構器之物件模式建立的研究, 工業工程學刊, Vol. 13, No. 4, 295-305. 曾憲雄, (2002), 專家系統導論/工具/應用, 松崗。 Anderson, R.T. & Neri, L. (1990), Reliability Centered Maintenance- Management and Method, Elsevier Science Publishing Co. New York. Al-Zubaid, H., and Christer, A.H., (1997), “Maintenance manpower modeling for a hospital Building complex”, European Journal of Operational Reseach, Vol.99, 603-618. Batanov, D., Nagarur, N., and n Nitikhunkasem, P., 1994),” EXPERT-MM: A knowledge-based system for maintenance management”, Artificial Intelligence in Engineering, Vol. 8, 283-291. Berg, M., (1984), ”A preventive Replacement Policy for Subject to Intermittent Demand”, Operations Research, Vol. 32, 584-595. Berg, M., (1995), “The marginal cost analysis and its application to repair and replacement policies”, European Journal of Operational Research, Vol.82, Issue: 2, 214-224. British Standards Institution (1984), BS3811 Glossary of maintenance term in Tero-technology. Canfild, R.V.(1986), “Cost optimization of Periodic Preventive Maintenance”, IEEE Transactions on Reliability, Vol. 35, 78-81. Carnino, A., (1986), “Role of Data and Judgment in Modeling Human Error”, Nuclear Engineering and Design, Vol.13, 303-309. Cox, D. R. and Milles, H. D.(1968), The Theory of Stochastic Process, John Wiley & Sons, New York. Dhillon, B.S., 1986, Human Reliability with Human Factors, Pergamon Press, New York. Dijkstra, M.C, Kroon, L.G., Van Nune, J.A.E.E., and Salomon, M., (1991), “A DSS for capacity planning of aircraft maintenance personnel”, International Journal of Production Economics, vol.23, no.1-3, 69-78. Dietz, D.C., and Rosenshine, M., (1997),” Optimal specialization of a maintenance Workforce”, IIE Transaction, Vol. 29, 423-433. Dirickx, Y.M.I, and Kistner, K.P. (1979), “Reliability of a Repairable System with Redundant Units and Preventive Maintenance”, IEEE Transactions on Reliability, Vol. 28 No. 2, 170-171. Dedopoulos, I.T. and Shah, N.(1995), “Preventive Maintenance Policy Optimization for Multipurpose Plant Equipment”, Computers & Chemical Engineering, Vol.19, 693-698. Dekker, R. (1995), “Integrating optimization, priority setting, planning and combining of maintenance activities”, European Journal of Operational Research, Vol.82, Issue: 2, 225-240 Dekker, R. (1996) “Application of maintenance optimization model : a review and analysis” Reliability Engineering and System Safety, Vol. 51, 229-240 Dey, D.K.,and Jaisingh, L.R. (1988), “Estimation of System availability for Independent Series Components with Weibull life Distributions”, IEEE Transactions on Reliability, Vol. 37, Issue 4, 401-405. Dohi, T., Kaio, N., and Osaki, S. (1998), ” Minimal repair policies for an economic manufacturing process” Journal of Quality in Maintenance Engineering, Vol. 4 No. 4, 248-262. Dohi, T., Ashoko, A.,Kaio, and Osaki, S. (2001).,” Optimizing the repair-time limit replacement schedule with discounting and imperfect repair ” Journal of Quality in Maintenance Engineering, 7(1) , 71-84. Dorn, M.D., (1996), “Effects of maintenance human factors in maintenance-related aircraft accidents”, Transportation Research Record. No.1517, 17-28 Duffuaa, S.O., and Al-Sultan, K.S., (1997),” Mathematical Programming approaches for the management maintenance planning and scheduling”, Journal of Quality in Maintenance Engineering, Vol. 3, 163-167. Graeber, R.C., Marx, D.A., (1993), “Reducing human error in aircraft maintenance Operation”, In proceeding of the Flight Safety Foundation International Federation of Air-worthiness 46th Annual International Air Safety Seminar. Flight Safety Foundation, Arlington, VA, 147-160. Gonella, R., and Verfaillie, G., (1989), “An online diagnosis method (aircraft maintenance expert system)”, 8th International Workshop. Expert Systems and their Applications. Specialized Conference. Artificial Intelligence and Defense, Expert Systems and Maintenance, Expert Systems and Medicine, 856, 643-60. Gopalakrishnan, M., Ahire, S.L. and Miller, D.M. ” Maximizing the Effectiveness of a Preventive Maintenance System: An Adaptive Modeling Approach”, Management Science, Vol. 43 No. 6, 827-840 Gupta, A. (1981), “Reduced tree search for Optimal Preventive Maintenance of Generating Facilities”. IEEE Trans. Reliability, Vol. R-30, 476-477 Hecht, M., Handal, J., Czekalski, L., and Rosin, A. (1998), “Impact of maintenance staffing on Availability of the U.S. air traffic control system”, Proceeding of the Annual Reliability and Maintainability Symposium, (IEEE), Anaheim CA, 113-119. Heider, R., (1997), “Improving the quality of technical data for developing case based reasoning diagnostic software for aircraft maintenance”, 13th International Conference on Data Engineering, Birmingham UK, 584. Ivaturi, S., Gramopadhye, A.K., Kraus, D., and Blackmon, R., (1995), “Team training to mprve the effectiveness of teams in the aircraft maintenance environment”, Proceeding of the Human Factors and Ergonomics Society, Vol.2, 1355-9. Jardine, A. K. S. (1973), Maintenance Replacement and Reliability, Pitman Publishing Company. Jayabalan, V. and Chaudhuri, D.(1992), “Cost Optimization of Maintenance Scheduling for a System with Assured Reliability”, IEEE Transactions on Reliability, Vol. 41 No. 1, 21-25. Knotts, R.M.N., (1999), “Civil aircraft maintenance and support: Fault diagnosis from a business perspective”, Journal of Quality in Maintenance Engineering, Vol.5 No. (4), 335-347. Kraus, D.C., “Human factors training in the aircraft maintenance environment”, Proceeding of the Human Factors and Ergonomics Society, Vol.2, 1152-1153. Latorella, K.A. and Prabhu, P.V. (2000), “A review human error in aviation maintenance and inspection”, International Journal Industrial Ergonomics, Vol.26, 133-161. Lee, K.W., Tillman, F.A., and Higgins, J.J.(1988),”Literature Survey of Human Reliability Component in A Man-Machine System”, IEEE Transaction on Reliability, Vol. 37, Issue:1, 24-34. Lischke, M.P., and Meyer, K.L., (1992), “TEAMS: Technical Expert Aircraft Maintenance System”, Aerospace and Electronics Conference, vol.3, 960-964. Maggard, B.N., and Rhyne, D.M. (1992), “Total Productive Maintenance: A Timely Integration of Production and Maintenance”, Production and Inventory Management Journal, 6-10. McDonal, N., (1998), “Human factors and aircraft dispatch and maintenance safety”, 3rd Aero Days Post-Conference Proceedings, Volume: 6, Issue: 2, 143-146. Meister, D., (1971), Human Factors: Theory and Practice, John Wiley, New York. Mohamed, A.M., 1996, “Aircraft maintenance budgetary and costing systems at the Saudi Arabian Airlines: An integrated business approach”, Journal of Quality in Maintenance Engineering, Vol. 2 No. (4), 32-47. Murthy, D.N.P and Hwang, M.C.(1996), “Optimal Discrete and Continuous Maintenance Policy for a Complex Unreliable Machine”, International Journal of Systems Science, Vol. 27 No 5, 483-495. Nagarur, N., Keawplang, J. and Batanov, D., (1999), “Methodology for Developing Maintenance Management System Using Object Orientation”, Human Factors and Ergonomics in Manufacturing, Vol. 9 (1), 27-47. Nakajima, S. (1986), “TPM-challenge to the improvement of productivity by small group activities”, Maintenance Management International, Vol. 6, 52-56. Nowlan, F.S. & Heap, H.F. (1978), ” Reliability-centered Maintenance”, Technical Report AD/A066-579. Pat-Cornell, M.E., Lee, H.L., and Tagaras, G..(1987), “Warning of Malfunctions: The Decision to Inspect and Maintain Processes on Schedule or on Demand”, Management Science, Vol. 33 No.10, 1277-1290 Pintelon, L.M. & Gelders, L.F. (1992)”Maintenance management decision making” European Journal of Operations Research, vol.58, 301-317. Rasmussen, J., (1983), “Skill, Rules and Knowledge;Signal, Signs, and Symbols, and other Distinctions in Human Performance Models”, IEEE Transaction on Systems, Man and Cybernetics, Vol.SMC-13, NO.3, 247-266. Russell, S.G., (1999) “The factors influencing human errors in military aircraft maintenance”, Human Interfaces in Control Rooms, Cockpits and Command Centers, International Conference, 263 -269. Sherif, Y.S. (1982), “ Reliability analysis: Optimal inspection and maintenance schedules of failing systems”. Micro. Reliability, Vol. 22, 59-115 Susova, G.M. and Petrov, A.N., (1997), “Markov Model-Based Reliability and Safety Evaluation for Aircraft Maintenance-System Optimization”, Proceedings of the Annual Reliability and Maintainability Symposium, 29-36. Turban, E., (1990), Decision Support and Expert System: Management Support Systems, 2nd Edition, MacMillan Publishing. Van, N., Jan, M., Cooke, R. M., Kok, M., (1995) “ A Bayesian failure model based on isotropic deterioration”, European Journal of Operation Research, Vol.82, Issue 2, 270-282. Wang, C.H. and Hwang, S.L., (June 2004 in press), “A Stochastic Maintenance Management model with Recovery Factor”, Journal of Quality in Maintenance Engineering. WASH-1400(NUREG-75/014) (1964), “Reactor Safety Study- An Assessment of Accident Risks in U.S. commercial Nuclear Power Plants”, U.S. Nuclear Regulatory Commission (NRC) Report.id NH0925031001 sid 867810 cfn 0 / id NH0925031002 auc 魏俊卿 tic 利用模糊理論選擇適合的企業資訊系統-以企業資源規劃系統與供應鏈管理系統為例 adc 王茂駿 ty 博士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 英文 pg 116 kwc 企業資訊系統 kwc 企業資源規劃 kwc 供應鏈管理 kwc 模糊理論 kwc 決策分析 abc 資訊時代已經大幅度地改變企業的環境,迫使企業必須支出龐大的金錢、人力和時間於大型企業資訊系統(Enterprise Information System; EIS),如:企業資源規劃系統(Enterprise Resource Planning; ERP)、供應鏈管理系統(Supply Chain Management; SCM) 等的導入以期提昇企業的競爭力。導入此類的企業資訊系統將會廣泛且深遠地影響未來企業績效的良窳。因此在企業資訊系統導入之初,選擇適當的企業資訊系統將是此類專案成功最重要的第一步。 rf References 1. Al-Mashari, M., Zairi, M., 2000. Supply-chain re-engineering using enterprise resource planning (ERP) systems: an analysis of a SAP R/3 implementation case. International Journal of Physical Distribution & Logistics 30 (3/4), 296-313. 2. Ash, C.G., Burn, J.M., 2003. A strategic framework for the management of ERP enabled e-business change. European Journal of Operational Research 146, 374-387. 3. Ayers, J.B., 2000. Handbook of supply chain management. CRC Press LCC, Boca Raton. 4. Badri, M.A., Davis, D., Davis D., 2001. A comprehensive 0-1 goal programming model for project selection. International Journal of Project Management 19, 243-252. 5. Bakos, Y., 1998. The emerging role of electronic marketplaces on the Internet. Communications of the ACM 41 (8), 35-42. 6. Beach, R., Muhlemann, A.P., Price, D.H.R., Paterson, A., Sharp, J.A., 2000. The selection of information systems for production management: An evolving problem. International Journal of Production Economics 64, 319-329. 7. Beamon, B.M., 1998. Supply chain design and analysis: Models and methods. International Journal Production Economics 55, 281-294. 8. Boone, T., Ganeshan, R., 2002. New directions in supply-chain and technology management: technology, strategy, and implementation. AMACOM, New York. 9. Buckley, J.J., 1985. Ranking alternatives using fuzzy numbers. Fuzzy Sets and Systems 15, 21-31. 10. Buckley, J.J., 1985. Fuzzy hierarchical analysis. Fuzzy Sets and Systems 17, 233-247. 11. Buss, M.D.J., 1983. How to rank computer projects. Harvard Business Review 61 (1), 118-125. 12. Chandler, J.S., 1982. A multiple criteria approach for evaluating information systems. MIS Quarterly 6 (1), 61-74. 13. Chang, P.L., Chen, Y.C., 1994. A fuzzy multi-criteria decision making method for technology transfer strategy selection in biotechnology. Fuzzy Sets and Systems 63, 131-139. 14. Chen, I.J., 2001. Planning for ERP systems: Analysis and future trend. Business Process Management Journal 7 (5), 374-386. 15. Chen, K., Gorla, N., 1998. Information system project selection using fuzzy logic. IEEE transactions on systems, man, and cybernetics — part A: systems and humans 28, 849-855. 16. Chen, S.J., Hwang, C.L., 1992. Fuzzy multiple attribute decision making. Springer-Verlag, New York. 17. Chen, S.H., 1985. Ranking fuzzy numbers with maximizing set and minimizing set. Fuzzy Sets and Systems 17, 113-129. 18. Chen, S.M., 2001. Fuzzy group decision making for evaluating the rate of aggregative risk in software development. Fuzzy Sets and Systems 118, 75-88. 19. Chen, S.M., Lee, C.H., 1999. New methods for students' evaluation using fuzzy sets. Fuzzy Sets and Systems 104, 209-218. 20. Cheng, C.H., 1998. A new approach for ranking fuzzy numbers by distance method. Fuzzy Sets and Systems 95, 307-317. 21. Cheng, C.H., 1999. Evaluating weapon systems using ranking fuzzy numbers. Fuzzy Sets and Systems 107, 25-35. 22. Christopher, M., Juttner, U., 2000. Developing strategic partnerships in the supply chain a practitioner perspective. European Journal of Purchasing & Supply Management 6, 117-127. 23. Christoper, M., 1992. Logistics and Supply Chain Management: Strategies for Reducing Costs and Improving Services. Pitman, London. 24. Chopra, S., Meindl, P., 2001. Supply chain management: strategy, planning, and operation. Prentice-Hall, Upper Saddle River. 25. Clemen, R.T., 1996. Making hard decisions: an introduction to decision analysis. Duxbury Press, Pacific Grove. 26. Cooper, M.C., Lambert, D.M., Pagh, J.D., 1997. Supply chain management: More than a new name for logistics, The International Journal of Logistics Management 8 (1), 1-13. 27. Davenport, T.H., 1998. Putting the enterprise into the enterprise system. Harvard Business Review, July-August, 121-131. 28. DeLone, W.H., McLean, E.R., 1992. Information systems success: the quest for the dependent variable. Information Systems Research 3, 60-95. 29. Devedzic, G.B., Pap, E., 1999. Multicriteria-multistages linguistic evaluation and ranking of machine tools. Fuzzy Sets and Systems 102, 451-461. 30. Dyer, J.S., Forman, E.H., 1992. Group decision support with the analytic hierarchy process. Decision Support Systems 8, 99-124. 31. Farbey, B., Land, F. and Targett, D. 1992, Evaluating investments in IT. Journal of Information Technology 7 (2), 109-122. 32. Fisher, ML., 1997. What is the right supply chain for your product? Harvard Business Review March-April, 83-93. 33. Hagood, W.O., Friedman, L., 2002. Public Personnel Management 31 (4), 543-557. 34. Handfield, R.B., Ernest L.N., 1999. Introduction to supply chain management. Prentice-Hall, Upper Saddle River. 35. Herrera, F., Herrera-Viedma, E., 2000. Linguistic decision analysis: steps for solving decision problems under linguistic information. Fuzzy Sets and Systems 115, 67-82. 36. Hicks, D.A, Stecke, K.E., 1995. The ERP maze: enterprise resource planning and other production and inventory control software. IIE Solutions 27 (8), 12-16. 37. Ishikawa, A., Amagasa, M., Shiga, T., tomizawa, G., Tatsuta, R., Mieno, H., 1993. The Max-Min Delphi method and fuzzy Delphi method via fuzzy integration, Fuzzy Sets and Systems 55, 241-253. 38. Jiang, J.J., Klein, G., 1999. Project selection criteria by strategic orientation. Information & Management 36, 63-75. 39. Jiang, J.J., Klein, G., 1999. Information system project-selection criteria variation within strategic classes. IEEE Transactions on Engineering Management 46 (2), 171-176. 40. Kaufmann, A., Gupta, M.M., 1991. Introduction to Fuzzy Arithmetic: Theory and Application. Van Nostrand Reinhold, New York. 41. Keeney, R.L., Raiffa, H., 1993. Decisions with multiple objectives: preferences and value tradeoffs. Cambridge University Press, New York. 42. Kumar, V., Maheshwari, B., Kumar, U., 2002. Enterprise resource planning systems adoption process: a survey of Canadian organizations. International Journal of Production Research 40, 509-523. 43. Lai, V.S., Robert, T.P., Wong, B.K., 1999. Software selection: a case study of the application of the analytical hierarchical process to the selection of a multimedia authoring system. Information Management 36, 221-232. 44. Lai, V.S., Wong, B.K. Cheung, W., 2002. Group decision making in a multiple criteria environment: A case using the AHP in software selection. European Journal of Operational Research 137, 134-144. 45. Lambert, D.M., Cooper, M.C., 2000. Issues in supply chain management, Industrial Marketing Management 29, 65-83. 46. Lee, D.H., Park, D., 1997. An efficient algorithm for fuzzy weighted average. Fuzzy Sets and Systems 87, 39-45. 47. Lee, E.S., Li, R.J., 1988. Comparison of fuzzy numbers based on the probability measure of fuzzy events. Computers and Mathematics with Applications 15, 887-896. 48. Lee, H.M., 1996a. Applying fuzzy set theory to evaluate rate of aggregative risk in software development. Fuzzy Sets and Systems 79, 323-336. 49. Lee, H.M., 1996b. Group decision making using fuzzy set theory for evaluating the rate of aggregative risk in software development. Fuzzy Sets and Systems 80, 261-271. 50. Lee, J.W., Kim, S.H., 2000. Using analytic network process and goal programming for interdependent information system project selection. Computers & Operations Research 27,367-382. 51. Lee, J.W., Kim, S.H., 2001. An integrated approach for interdependent information system project selection. International Journal of Project Management 19,111-118. 52. Lee-Kwang, H., Lee, J. H., 1999. A method for ranking fuzzy numbers and its application to decision-making. IEEE Transactions on Fuzzy Systems 7, 677-685. 53. Liang, G.S., Wang, M.J., 1993. A fuzzy multi-criteria decision-making method for robot selection. Robotics & Computer-Integrated Manufacturing 10 (4), 267-274. 54. Liang, G.S., Wang, M.J.J., 1994. Personnel selection using fuzzy MCDM algorithm. European Journal of Operational Research 78, 22-33. 55. Liou, T.S., Wang, M.J., 1992. Ranking fuzzy numbers with integral value. Fuzzy Sets and Systems 50, 247-255. 56. Liou, T.S., Wang, M.J., 1992. Fuzzy weighted average: An improved algorithm. Fuzzy Sets and Systems 49, 307-315. 57. Liou, T.S., Wang, M.J., 1994. Personnel selection using fuzzy MCDM algorithm. European Journal of Operational Research 78, 22-33. 58. Lucas, H.C., Moore, J.R. Jr., 1976. A multiple-criterion scoring approach to information system project selection. Infor 14 (1), 1-12. 59. Mandal, P., Gunasekaran, A., 2002. Application of SAP R/3 in on-line inventory control. International Journal of Production Economics 75, 47-55. 60. Matarazzo, B., Munda, G.., 2001. New approaches for the comparison of L-R fuzzy numbers: a theoretical and operational analysis. Fuzzy Sets and Systems 118, 407-418. 61. Miller, J., Doyle, B.A., 1987. Measuring the effectiveness of computer-based information systems in the financial service sector. MIS Quarterly, Mar. 107-124. 62. Min, H., Zhou, G., 2002. Supply chain modeling: past, present and future. Computers & Industrial Engineering 43, p231-249. 63. Motwani, J., Mirchandani, D., Madan, M., Gunasekaran, A., 2002. Successful implementation of ERP projects: Evidence from two case studies. International Journal of Production Economics 75, 83-96. 64. Murillo, L., 2001. Supply chain management and the international dissemination of e-commerce. Industrial Management & Data Systems 101 (7), 370-377. 65. Ngai, E.W.T., 2003. Selection of web sites for online advertising using the AHP. Information & Management 40, 233-242. 66. Pandey, P.C. Kengpol, A., 1995. Selection of an automated inspection system using multiattribute decision analysis. International Journal of Production Economics 39 (3), 289-298. 67. Ptak, C.A., 2000. ERP Tools, Techniques, and Applications for Integrating the Supply Chain. St. Lucie Press. 68. Radding, A., 1999. ERP: more than an application. Information Week 5 April. 69. Reimers, K., 2002. Implementing ERP systems in China. Proceedings of the 35th Hawaii International Conference on System Sciences, Hawaii. 70. Saad, M., Jones, M., James, P., 2002. A review of the progress towards the adoption of supply chain management (SCM) relationships in construction. Europeans Journal of Purchasing & Supply Management 8, 173-183. 71. Saarinen, T., 1996. An expanded instrument for evaluating information system success. Information & Management 31, 103-118. 72. Saaty, T.L., 1980. The analytic hierarchy process. McGraw-Hill, New York. 73. Sahay, B.S., Gupta, A.K., 2003. Development of software selection criteria for supply chain solutions. Industrial Management & Data Systems 103 (2), 97-110. 74. Santhanam, R., Kyparisis, G.J., 1996. A decision model for interdependent information system project selection. European Journal of Operational Research 89, 380-399. 75. Santhanam, R., Kyparisis, G.J., 1995. A multiple criteria decision model for information system project selection. Computers & Operations Research 22 (8), 807-818. 76. Sarkis, J., Sundarraj, R.P., 2000. Factors for strategic evaluation of enterprise information technologies. International Journal of Physical Distribution & Logistics Management 30 (3/4), 196-220. 77. Schniederjans, M.J., Wilson, R.L., 1991. Using the analytic hierarchy process and goal programming for information system project selection. Information & Management 20, 333-342. 78. Semich, J.W., 1994. Here’s how to quantify IT investment benefits. Datamation 40 (1), 45-47. 79. Simchi-Levi, D., Kaminsky P., Simchi-Levi E., 2000. Designing and managing the supply chain: concepts, strategies, and case studies. McGraw-Hill, Boston. 80. Skok, W., Kophamel, A., Richardson, I., 2001. Diagnosing information systems success: importance-performance maps in the health club industry. Information & Management 38, 409-419. 81. Sohal, A.S., Power, D.J., and Terziovski, M., 2002. Supply chain management in Australian manufacturing- two case studies. Computers & Industrial Engineering 43, 97-109. 82. Talluri, S., 2000. An IT/IS acquisition and justification model for supply-chain management. International Journal of Physical Distribution & Logistics 30 (3/4), 221-237. 83. Taylor, D.A., 2004. A master plan for software selection. Supply Chain Management Review 8 (1), 20-27. 84. Teltumbde, A., 2000. A framework of evaluating ERP projects. International Journal of Production Research 28, 4507-4520. 85. Wang, X., Kerre, E.E., 2001. Reasonable properties for the ordering of fuzzy quantities (I). Fuzzy Sets and Systems 118, 375-385. 86. Wang, X., Kerre, E.E., 2001. Reasonable properties for the ordering of fuzzy quantities (Ⅱ). Fuzzy Sets and Systems 119, 387-405. 87. Wang, T.Y., Shaw, C.F., Chen, Y.L., 2000. Machine selection in flexible manufacturing cell: a fuzzy multiple attribute decision-making approach. International Journal of Production Research 38 (9), 2079-2097. 88. Wang, M.J., Singh, H.P., Huang, W.V., 1991. A decision support system for robot selection. Decision Support Systems 7, 273-283. 89. West, R., Shields, M., 1998. Strategic software selection. Strategic Finance, August, 3-7. 90. Yager, R.R., Ovchinnikov S., Tong, R.M., Nguyen, H.T., Fuzzy sets and applications: Selected papers by L.A. Zadeh. John Wiley & Sons, Inc., New York. 91. Yao, Y., He, H.C., 2000. Data warehousing and the internet’s impact on ERP. IT Pro March/ April, 37-41. 92. Yuan, Y., 1991. Criteria for evaluating fuzzy ranking methods. Fuzzy Sets and Systems 44, 139-157. 93. Yusuf, Y., Gunasekaran, A., Abthorpe, M.S., 2004. Enterprise information systems project implementation: A case study of ERP in Rolls-Royce. International Journal of Production Economics 87, 251-266. 94. Zimmermann, H.J., 1987. Fuzzy sets, decision making, and expert system. Kluwer Academic Publishers, Dordrecht.id NH0925031002 sid 887801 cfn 0 / id NH0925031003 auc 阮敬文 tic 供應商評選模式之構建-以無限網路設備製造商為例 adc 劉志明 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 107 kwc 供應商關係 kwc 供應商評選 kwc 層級分析法 kwc 模糊理論 kwc 灰關聯分析 abc 隨著整個供應鏈的演進及全球運籌管理之競爭環境變遷,企業與供應商之間的角色扮演也由過去的對立關係轉變成現在的合作伙伴關係,所以選擇適合的供應商已經成為供應鏈管理中的要務。 rf Arnold, J.R.T. and Chapman, S.N., “Introduction to Material to Management”, Prentice Hall, p.404-405., 2001. Barbarosoglu, G. and Yazgac, T., “An Application of the Analytic Hierarchy Process to the Supplier Selection Problem”, Production and Inventory Management Journal, p.14-21., 1997. Chaudhry, S.S., Forst, F.G., and Zydiak, J.L., “Vendor Selection With Price Breaks”, European Journal of Operational Research, Vol.70, No.1, p.52-56., 1993. Chen, S. J. and Hwang, C. L., “Fuzzy Multiple Attribute Decision Making”, New York: Springer-Verlag, 1992. Cheng, T.C.E. and Podolsky, S., “Just-in-Time Manufacturing: An Introduction”, Chapman & Hall, p.107-115., 1996. Christopher, M. and J?厎tner, U., “Developing strategic partnership in the supply chain: a practitioner perspective”, European Journal of Purchasing and Supply Management, Vol.6, p.117-127., 2000. Cousins P.D., “Competitive Advantage through Relationship Re-Engineering”, IEE Colloquium, p.1/4-1/4., 1999. Deng, J., “ Introduction to Grey System”, Journal of Grey System, Vol.1, No.1, p.1~24., 1989. Dickson, G.W., “An Analysis of Vender Selection Systems and Decisions”, Journal of Purchasing, Vol.2, No.1, p.5-17., 1996. Dobler, D.W. and Burt, D.N., “Purchasing and Supply Management: Text and Cases”, McGraw-Hill, p.430-463, 1996. Donaldson, B., “Supplier selection criteria on the service dimension”, European Journal of Purchasing and Supply Management, Vol.4, p. 209-217., 1994. Dowlatshahi, S., “Designer-buyer-supplier interface: Theory versus practice”, Int. J. Production Economics, Vol. 63, p.111-130., 2000. Dussart, C., “Category Management: Strengths, Limits, Developments”, European Management Journal, Vol.16, No.1, p.50-62., 1998. Ellram, L. M. and Edis, O.R.V., “A Case Study of Successful Partnering Implementation”, Internal Journal of Purchasing and Materials Management, Vol.32, No.4, Fall, p.20-28., 1996. Ellram, L.M., “The Supplier Selection Decision in Strategic Partnerships”, International Journal of Purchasing and Materials Management, Vol.26, No.4, Fall, p.8-14., 1990. Goffin, K., Szwejczewski, M., and New, C., “Managing Suppliers : When Fewer Can Mean More”, International Journal of Physical Distribution and Logistics Management, Vol.27, No.7, p.422-436., 1997. Houshyar, A. and David, L., “A Systematic Selection Procedure”, Computer and Industrial Engineering, Vol.23, No.1-4, p.173-176., 1992. Kraljic, P., “Purchasing must become supply management”, Harvard Business Review September-October, p.109-117., 1983. Lamming, R.C., Cousin, P.D., and Notman, D.M., “Beyond Vendor Assessment: The Relationship Assessment Project”, European Journal of Purchasing and Supply Management, 1996. Matthyssens, P. and den Bulte, C.V., “Getting Closer and Nicer: Partnerships in the Supply Chain”, Long Range Planning, Vol.27, No.1, February, p.72-83., 1994. McCutchen, D., and Stuart, F.I., “Issues in the choice of supplier alliance partners”, Journal of Operations Management, Vol.18, p.279-301., 2001. Mohanty, R.P. and Deshmukh, S.G., “Using of Analytic Hierarchic Process for Evaluating Sources of Supply”, International Journal of Physical Distribution & Logistics Management, Vol.23, No.3, p.22-28., 1993. Monczka, R. and Trent, R., Handfield, R., “Purchasing and supply chain Management”, International Thomson Publishing, p.341-351., 470-483., 1998. Narasimhan. R., “An Analytical Approach to Supplier Selection”, Journal of Purchasing and Materials Management, Vol.19, No.4, p.27-32., 1983. Nydick, R. L. and Hill, R. P., “Using the Analytic Hierarchy Process to Structure the Supplier Selection Procedure”, International Journal of Purchasing and Materials Management, Vol.28, No.2, pp31-36, 1992. Pooler, H.V. and Pooler, D.J., “Purchasing and supply management: creating the vision”, Chapman & Hall, p.148-155., 1997. Pearson, J.N. and Ellram, L.M., “Supplier Selection and Evaluation in Small versus Large Electronics Films”, Journal of Small Business Management, 1995. Ptak, C.A. and E. Schragenheim, “ERP: tools, techniques, and applications for integrating the supply chain”, St. Lucie Press, p.109-120., 2000. Riggs, D.A. and Robbins, L., “The Executive’s Guide to Supply Management Strategies, Building Supply Chain Thinking Into All Business Processes”, AMACOM, p.83., 1998. Russell, R.S. and Taylor, B.W., “Operations Management”, Prentice Hall, p.77., 2000. Soukup, W.R., “ Supplier Selection Strategies”, Journal of Purchasing and Materials Management, Vol.23, Iss.2. p.7-13., 1987. Stuart, F.I. and Mueller, P., “Total Quality Management and Supplier Partnership: A Case Study”, International Journal of Purchasing and Materials Management, Vol.30, No.1, Winter, p.13-21., 1994. Swift, C.O., “Performance for Single Sourcing and Supplier Selection Criteria,” Journal of Business Research, Vol.32, No.2, p.105-111., 1995. Thompson, K.N., “ Vendor Profile Analysis”, Journal of Purchasing and Materials Management, Vol.26, Iss.1, p.11-19., 1990. Timmerman, E., “An Approach to Vendor Performance Evaluation,” Journal of Purchasing and Materials Management, Vol.22, Iss.4, p.2-9., 1986. Weber, C.A., Current, J.R. and Benton, W. C., “Vendor Selection Criteria and Method,” European Journal of Operational Research, Vol.50, No.1, p.2-18., 1991. Weber, C.A. and Current, J.R., “A Multiobjective Approach to Vendor Selection ”, European Journal of Operational Research, Vol.68, No.2, p.173-176., 1993 Weele, A.J., “Purchasing and Supply Chain Management: Analysis, Planning and Practice”, Thomson learning, p.8-10., 2000. Wilson, E.J., “The Relative Importance of Suppliers Selection Criteria: A Review and Update”, International Journal of Purchasing and Materials Management, Vol.30, No.3, p.35-41., 1994. Zadeh, L.A., “The Concept of a Linguistic Variable and its Application to Approximate Reasoning”, Information Science, No.8, p.199-249.(I), 1975. Zadeh, L.A., “The Concept of a Linguistic Variable and its Application to Approximate Reasoning”, Information Science, No.8, p.301-357.(II), 1975. Zanakis, S.H., Solomon, A., Wishart, N. and Dublish, S., “Multi-attribute Decision Making: A Simulation Comparison of Select Methods”, European Journal of Operational Research, Vol.107, No.3, p.507-529., 1998. 王榮祖、馮正民,“國內上市海運公司財務績效評估之研究”,交通運輸,第19期,1-13頁,2000。 王鵬華,“模糊多準則決策支援系統應用在臺灣高等教育之選擇”,高雄工學院管理科學研究所碩士論文,1996。 江金山等,“灰色理論入門”,高立圖書有限公司,1998。 李又樸,“模糊綜合評估在最佳供應商選擇之應用”,國立台灣工業技術學院管理技術研究所,工業管理學程碩士論文,1993。 李宏文,“結合層級分析法、模糊理論與灰色系統理論建構供應商評選模式之研究”,國立台北科技大學生產系統工程與管理研究所碩士論文,2002。 吳佩珊,“Fuzzy 模式人事績效考評規則庫系統之研究—以高雄市政府人事處為例”,國立成功大學工業管理研究所碩士論文,1994。 吳漢雄、溫坤禮、鄧聚龍,“灰色分析入門”,高立書局有限公司,1996。 林虹君,“模糊理論應用於管理才能評鑑模式研究”,高雄工學院管理科學研究所碩士論文,1996。 張力友,“台灣電子業績效評比-灰關聯分析與資料包絡法之應用與比較”, 銘傳大學金融研究所碩士論文,2002。 張偉哲、溫坤禮、張廷政,“灰關聯模型方法與應用”,高立圖書有限公司,2000。 陳山火,“模糊數之運算、排序及推估理論及其應用之研究”,淡江大學管理科學研究所博士論文,1983。 陳怡和,“供應商管理標竿之建立與分析—以台灣筆記型電腦產業為例”,元智大學工業工程研究所碩士論文,1998。 陳彥彰,“模糊理論應用在企業人材任用之研究”,高雄工學院管理科學研究所碩士論文,1997。 陳啟政,“運用總品質成本分析之供應商績效評估模式”,中原大學工業工程研究所博士論文,2003。 陳曉琪,“供應商遴選之決策支援系統之研究”,義守大學工業工程研究所碩士論文,2001。 陳繁興,“灰關聯分析在教師評量之應用”,灰色系統學刊,第三卷,第二期,2000。 陳耀竹,“一個模糊多評準決策方法之構建及其應用”,國立交通大學管理科學研究所博士論文,1994。 連佳文,“模糊決策支援系統於人員遴選作業之應用”,國立臺灣海洋大學航運管理研究所碩士論文,1998。 黃子賢,“供應商遴選模式之建立”,國立雲林科技大學工業工程與管理技術系,國科會大學生參與專題研究計畫成果報告。 黃火燦,“應用模糊多準則決策理論於資訊管理專業人員遴選之研究”,中國文化大學資訊管理研究所碩士論文,1999。 黃盛祺,“經理人員遴選引用模糊多重屬性決策之研究—以立榮海運公司為例”,國立台灣海洋大學航運管理研究所碩士論文,1993。 曾國雄、胡宜珍,“公車系統營運與服務績效指標擷取之研究-灰色關聯分析之應用“, Journal of Chinese Fuzzy Systems Association, vol.2, No.1, p.73-82., 1996. 溫坤禮,“利用灰關聯分析於績優導師評比之比較”,第十一屆全國技術及職業教育研討會論文集,1996。 蔡相如,“台灣地區商業銀行之經營績效評估-灰色關聯度與因素分析法之應用”,銘傳大學管理科學研究所碩士論文,1999。 鄭景俗等,“多層次灰色預測方法—以國軍軍官考績評鑑為例”,灰色系統理論與應用研討會論文集,2000。 鄧振源、曾國雄,“層級分析法(AHP)的內涵特性與應用(上)”,中國統計學報,第27卷,第6期,p.5-22.,1989。 鄧振源、曾國雄,“層級分析法(AHP)的內涵特性與應用(下)”,中國統計學報,第27卷,第7期,p.1-20,1989。 鄧聚龍,“灰色分析入門”,高立圖書有限公司,1996。 鄧聚龍,“灰色系統理論與應用”,高立圖書有限公司,2000。 錢鑄鈞,“運用AHP法建構策略性合夥關係之供應商評選模式”,輔仁大學管理科學研究所碩士論文,2000。 盧靜怡,“企業經營績效排名之預測-灰色關聯分析與類神經網路之應用”,國立台灣科技大學資訊管理系碩士論文,2001。 鍾興永,“實施JIT採購的中心廠與衛星廠溝通指標績效研究”,國立臺灣工業技術學院管理技術研究所工業管理學程碩士論文,1997。 羅一忠,“國內綜合證券商經營績效之評估-主成分分析及灰關聯分析之應用”,銘傳大學金融研究所碩士論文,2001。id NH0925031003 sid 893822 cfn 0 / id NH0925031004 auc 楊文鐘 tic 大陸勞動環境對工廠管理的影響之研究--以食品包裝製罐業為例 adc 陳光辰 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 77 kwc 勞動環境 kwc 適應力 kwc 原點看管理 kwc 以人為本 kwc 競爭力 abc 號稱世界製造中心的中國市場,吸引世界各地的資金、技術、人 tc 目   錄   摘要………………………………………………………………Ⅰ   誌謝辭……………………………………………………………Ⅲ   目錄………………………………………………………………Ⅳ   圖目錄……………………………………………………………Ⅵ   表目錄……………………………………………………………Ⅶ 第 1 章 緒論 ………………………………………………………1 1.1 研究背景與動機 …………………………………………1 1.2 研究目的 …………………………………………………1 1.3 研究範圍 …………………………………………………2 1.4 研究流程 …………………………………………………3 第 2 章 文獻探討 …………………………………………………5 2.1 大陸勞動環境的概況 ……………………………………5 2.1.1 經濟方面的概況 ………………………………………5 2.1.2 法令方面的概況 ………………………………………9 2.1.3 人力資源面的概況 ……………………………………14 2.1.4 目前大陸製造業面臨管理問題的對策與建議 ………20 2.2 管理與管理者的概述 ……………………………………27 2.2.1 管理的定義 ……………………………………………27 2.2.2 管理者的概述 …………………………………………32 第 3 章 研究設計與方法 ………………………………………36 3.1 研究設計 …………………………………………………36 3.2 問卷設計與問卷回收 ……………………………………36 3.3 資料整理與分析 …………………………………………49 第 4 章 結論及建議 ………………………………………………64 4.1 結論 ………………………………………………………64 4.2 建議 ………………………………………………………69 4.3 後續研究之建議 …………………………………………75 參考文獻………………………………………………………………76 圖 目 錄 圖1.1 金屬飲料罐產業關聯圖 ……………………………………3 圖1.2 研究流程圖 …………………………………………………4 圖2.1 馬斯洛需求層級 ……………………………………………8 圖2.2 管理的功能 …………………………………………………33 圖2.3 不同管理階層所需的管理技能 ……………………………35 圖3.1 本研究之理論架構圖(管理的定義) ………………………36 圖3.2 人際關係角色問卷資料分析圖 ……………………………49 圖3.3 資訊處理角色問卷資料分析圖 ……………………………51 圖3.4 決策者角色問卷資料分析圖 ………………………………52 圖3.5 管理技能問卷資料分析圖 ………………………………..53 圖3.6 管理的功能問卷資料分析圖 ………………………………55 圖3.7 管理者責任問卷資料分析圖 ……………………………..56 圖3.8 管理者執行力問卷資料分析圖 ……………………………57 圖3.9 企業文化(1-10項)問卷資料分析圖 ……………………..60 圖3.10 企業文化(11-20項)問卷資料分析圖 …………………..61 表 目 錄 表 2.1 世界各經濟預測機構對大陸經濟成長估算 ……………6 表 2.2 經濟處罰項目表 …………………………………………6 表 2.3 經營管理面臨的實務問題 ………………………………10 表 2.4 大陸進出口報關面臨的實務問題 ………………………11 表 2.5 內銷方面面臨的實務問題 ………………………………11 表 2.6 大陸海關問題 ……………………..…………………..12 表 2.7 避免報關困擾的因應對策 ………………………………13 表 2.8 大陸員工與台籍幹部彼此所存在的看法.………………16 表 2.9 大陸職工的職場價值觀和特質 …………………………17 表 2.10 目標管理之本質 …………………………………………17 表 2.11 走動式管理的具體說明 ………………………………..18 表 2.12 X 與 Y 理論 ……………………………………………19 表 2.13 大陸生產方面所面臨之實務問題 ………………………20 表 2.14 大陸投資常見的管理問題及其因應對策 ………………22 表 2.15 大陸各方面所面臨之問題及因應對策 …………………24 表 2.16 企業文化的定義(國外部分)彙整表 …………………29 表 2.17 企業文化的定義(國內部分)彙整表 …………………31 表 2.18 管理者的角色 ……………………………………………32 表 3.1 管理者的角色的構面因素 ………………………………37 表 3.2 管理功能、技能與責任的構面因素 ……………………37 表 3.3 執行力的構面因素 ………………………………………38 表 3.4 研究樣本一覽表 …………………………………………43 表 3.5 問卷回收狀況表 …………………………………………44 表 3.6 各階回收問卷數量統計 …………………………………44 表 3.7 人際關係角色問卷資料統計表 …………………………49 表 3.8 資訊處理角色問卷資料統計表 …………………………50 表 3.9 決策者角色問卷資料統計表 ……………………………52 表 3.10 管理技能的問卷資料統計表 ……………………………53 表 3.11 管理功能問卷資料統計表 ………………………………54 表 3.12 管理者責任問卷資料統計表 ……………………………56 表 3.13 管理者執行力問卷資料統計表 …………………………57 表 3.14 企業文化問卷資料統計表 ………………………………59 表 3.15 整體問卷資料統計表 ……………………………………63 表 4.1 大陸製罐業管理者對「管理」的認知與其影響 ………67rf 參考文獻 【1】 王世偉,成大企研所碩士論文,1998年,P28~29 【2】 包熙迪與夏藍,執行力,天下文化出版社,2003年 【3】 李莉莉,中國計算機報,「信息化如何作用于管理者的角色轉變」2002年10月20日 【4】 林集養,走動式管理在安全生産中的應用,中國農村水電及電氣化信息網,2003年05月12日,http://www.shp.com.cn 【5】 林森福,「台商生產面臨之問題與解決對策」,台商張老師月刊,第41期,焦點主題,2001年9月 【6】 彼得.杜拉克,杜拉克精選-管理篇,李田樹譯,天下文化出版社2001年9月 【7】 施清枝,「淺談台商面對大陸海關與稅務問題」,台商張老師月刊,第48期,2002年4月 【8】 高長,「二十一世紀大陸經濟趨勢」,發表於民進黨中央黨部主辦的「二十一世紀的中國」研討會,台北,1999年11月6∼7日 【9】 袁明仁,「台商在大陸投資失敗經驗總結」,台商張老師月刊,第60期,風險管理實務,2003年4月,頁3-4 【10】 袁明仁,「台商經理人如何塑造本土企業文化及建立管理模式」,台商張老師月刊,第10期,焦點主題,1999年3月 【11】 袁明仁,「台商大陸投資常見的管理問題及其因應對策」,台商張 老師月刊,第五期,1998年10月 【12】 馬斯洛(Abraham H. Maslow)&海爾(Gary Heil)史蒂芬絲(Deborah C. Stephens),馬斯洛人性管理經典,李美華、吳凱琳譯 【13】 陳德昇,「2003年大陸經濟情勢與動向」,台商張老師月刊,第58期,2003年2月,頁7-9 【14】 陳彬,「制度是死的 人是活的」,投資中國月刊,第77期,企劃專題, 2000年7月 【15】 許俊達,「台資企業面臨新的挑戰-談中共全面徵收社會保險費」,台商張老師月刊,第14期,台商園地,88年7月 【16】 黃慧芬,「大陸沿海與內陸地區投資環境差異性評估」,投資中國月刊,第61期,專題報導區域篇,1999年3月 【17】 黃同圳,大陸台商人力資源管理,風和出版社,86年01月 【18】 道格拉斯.麥格利克,企業的人性面,林錦勝譯,協志工業叢書出版社 【19】 盧鐵吾,「2001年台商人才運用與勞動管理」,台商張老師月刊,第34期,勞動人事實務,2001年2月 【20】 蕭新永,「人事管理實務 - 台商如何建立員工獎懲管理制度」,台商張老師月刊,第64期,2003年8月 【21】 蕭新永,「大陸員工的招募」,大陸台商簡訊,第117期,2002年9月 【22】 Louis E. Boone, David L.Kurtz, Management,丁明勇譯,管 理學,1994年id NH0925031004 sid 893871 cfn 0 / id NH0925031005 auc 花麒昌 tic 整合消費者行為模式與服務代理人之網路購物輔助系統 adc 王明揚 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 107 kwc 消費者行為模式 kwc 服務代理人 kwc 網路購物 kwc 購物幫手 kwc 心智負荷評估 abc 近年來由於網際網路快速發展,促使許多企業相繼成立線上購物網站,企業期望可提供消費者豐富之商品資訊以及便利之購買商品程序,但消費者面臨網路商家之眾多資訊,如何找到消費者本身所需要之資訊,以及找到資訊後必須進行整理與評估之過程,常造成消費者必須花費許多人力及時間,甚至造成消費者購物意願的低落。 tc 目錄 摘要 i Abstract ii 致謝辭 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章、前言 1 第一節 研究背景與動機 1 第二節 研究目的 2 第三節 研究架構 5 第二章、文獻回顧 7 第一節 服務代理人 7 第二節 消費者行為模式 14 第三節 心智負荷測量 16 第四節 商品資訊格式標準 18 第五節 小結 20 第三章、實驗系統設計 21 第一節 網路商店之建立 21 第二節 服務代理人之建立 26 第三節 小結 42 第四章、研究方法 43 第一節 受試者之招募 43 第二節 實驗設備架構 44 第三節 實驗流程之建立 44 第四節 實驗問卷內容之設計 45 第五節 實驗資料之蒐集 50 第六節 小結 52 第五章、實驗結果與討論 53 第一節 實驗問題之假設 53 第二節 以數據分析驗證假設 54 第三節 討論 68 第六章、結論與建議 75 參考文獻 77 附錄一、問卷內容 82 附錄二、統計分析資料 85 圖目錄 圖 1、結合服務代理人與消費者行為模式組織圖 (Karacapilidis and Moraitis, 2001) 4 圖 2、研究架構圖 6 圖 3、服務代理人應用於網路購物關聯圖 11 圖 4、E-K-B消費者行為模式圖 (Engel, Blackwell, and Kollat, 1993) 14 圖 5、電子商務之消費者行為模式圖 (Kuo, Hwang, and Wang, 2002) 16 圖 6、各評比維度區間圖 20 圖 7、預期網站架構圖 22 圖 8、會員管理系統執行圖 23 圖 9、商品搜尋與分類執行圖 24 圖 10、商品購買流程執行圖 25 圖 11、方案執行圖 29 圖 12、消費者與本研究建立之服務代理人互動模式關聯圖 31 圖 13、本研究建立之代理人功能分類圖 32 圖 14、代理人功能中使用者資料管理功能架構圖 32 圖 15、代理人功能中商品購買輔助功能架構圖 33 圖 16、代理人功能中購後行為輔助功能架構圖 34 圖 17、啟動代理人初始畫面圖 35 圖 18、代理人方案提供功能中輸入預算與優先順序圖示 36 圖 19、代理人方案提供功能中顯示方案內容與更換產品圖示 37 圖 20、代理人方案提供圖示 38 圖 21、使用者資訊維護圖示 38 圖 22、客戶滿意度調查表一~四題內容圖示 39 圖 23、客戶滿意度調查表五~六題內容圖示 40 圖 24、聯絡廠商事宜圖示 41 圖 25、其他功能圖示 42 圖 26、受試者招募流程圖 43 圖 27、電腦必備零組件結構圖 44 圖 28、實驗流程圖 45 圖 29、NASA-TLX問卷程式執行過程圖 49 圖 30、實驗過程數據之蒐集與目的說明圖 52 圖 31、使用代理人對練習時間之主效應分析圖 56 圖 32、使用代理人對於鍵盤使用次數之盒形圖 63 圖 33、使用代理人與否對第一題回答之比例圓餅圖 64 圖 34、使用代理人與否對第二題回答之比例圓餅圖 65 圖 35、使用代理人與否對第三題回答之比例圓餅圖 65 圖 36、使用代理人與否對第四題回答之比例圓餅圖 66 圖 37、使用代理人與否對第五題回答之比例圓餅圖 67 圖 38、使用代理人與否對第六題回答之比例圓餅圖 67 圖 39、使用代理人與一般網路購物於練習時間之比較直方圖 69 圖 40、使用代理人與一般網路購物於作業時間之比較直方圖 70 圖 41、心智負荷各項目權重分配直方圖 71 圖 42、心智負荷各項目分數直方圖 72 圖 43、佐證心智負荷項目之作業時間直方圖 73 圖 44、佐證體力需求項目之直方圖 73 圖 45、滿意度調查平均分數直方圖 74 表目錄 表 1、各代理人所提供之服務分類整理表 Karacapilidis and Moraitis, 2001) 11 表 2、預計代理人可執行之功能表 15 表 3、NASA-TLX各維度評比定義表 18 表 4、受試者網路購物經驗問卷調查表(林力傑、陳冠碩,民91) 46 表 5、問卷第一題範例內容 47 表 6、六項維度評分表 47 表 7、受測者對網路購物系統之滿意程度調查表 50 表 8、各維度外顯行為參考表 50 表 9、實驗比較項目、原因及詳細問題內容表 54 表 10、針對三因子進行分析之ANOVA表 55 表 11、滿意度評比分數對照表 63 表 12、滿意程度調查評分整理表 68 表 13、心智負荷分析結果整理表 75 表 14、心智負荷問卷完整內容表 82rf 參考文獻 丁明盛,”應用在及時競標的智慧型行動代理人系統”,靜宜大學資訊管理學系碩士論文,民90。 王俊卿,”購物代理人對消費者購物決策行為影響”,國立中央大學資訊管理研究所碩士論文,民90。 王建翔,”在電子商務環境下以代理人進行自動買賣協商之研究”,中原大學工業工程研究所碩士論文,民91。 朱玉枝,”心智負荷動態預測指標之研究”,國立清華大學工業工程研究所碩士論文,民84。 朱慧德、劉家驛、吳益坤,”以代理人為基黑板溝通模式系統設計-以軟體驗證為例”,國防管理學報,第二十四卷,第二期,頁1-13,民92.11。 吳宗憲,”電子產業導入RosettaNet之個案研究”,國立交通大學資訊管理研究所碩士論文,民90.7。 吳岳樺,”電子商務環境下網路購物幫手之研究”,國立中央大學資訊管理研究所碩士論文,民89。 余泰魁、林義民,”情境擾動影響電子商店購物行為之研究”,資訊管理展望,第四卷,第一期,頁97-116,民91.3。 武士戎,”線上及時分析與規則探勘應用於移動代理程式之電子商務架構”,淡江大學資訊工程學系碩士論文,民90.6。 邱川峰,”基於智慧型代理人之整合性電子商務協商暨推薦系統之研究”,淡江大學資訊工程學系博士論文,民91。 林立傑、陳冠碩,”運用多重代理人於遠距教學系統之適性化教學”,資訊管理展望,第四卷,第一期,頁31-45,民91.3。 林坤億,”在辦公室環境中建構個人代理人程式系統”,淡江大學資訊工程學系碩士論文,民89。 林啟明,”以代理人為基礎的線上協商支援系統”,靜宜大學資訊管理學系碩士論文,民92。 林詠欽,”多廠製造監控系統資料整合模式之研究”,元智大學工業工程與管理學系碩士論文,民91。 洪瑞文,”以代理程式協商建構動態供應鍊網路之研究”,朝陽科技大學資訊管理系碩士論文,民91.7。 高世偉,”以代理程式為基礎之電子商務的一種新型拍賣機制”,淡江大學資訊工程學系碩士論文,民91。 高德穎,”以代理人程式為基礎之政府採購資訊系統研究”,國立成功大學工業管理研究所碩士論文,民90.6。 梁中平、駱賢齊、陳蕙琪、盧秋樺、蔡峻雄、劉德豐合著,”RosettaNet標準與B2B電子商務”,財團法人資訊工業策進會,民90.10。 莊妙華,”網路商店使用智慧型店員對消費者購買意願影響之研究”,國立中山大學資訊管理學系研究所碩士論文,民91。 郭建男,”以行動代理人為基礎商務環境下之群體代理人合作協商機制-設計與實作”,朝陽科技大學資訊管理系碩士論文,民90。 郭輝明,”網路消費者之行為模式與輔助介面設計之研究”,國立清華大學工業工程與工程管理研究所國科會計劃書。 郭木興,”以軟體代理人為基動態資訊防護模式在資訊戰中之應用”,國防管理學報,第二十二卷,第二期,頁15-30,民90.10。 陳振東、戴偉勝,”網際網路環境中個人化資訊推薦系統實作之研究”,資訊管理學報,第九卷,第一期,頁21-38,民91.7。 陳木炯,”台灣醫師心智負荷量表之發展與建立”,中國醫藥學院醫務管理研究所碩士論文,民91。 許佳雯,”針對高齡使用者之WWW介面設計”, 國立交通大學傳播所碩士論文,民90。 黃廷謙,”開發以代理者為主的分散式入侵偵防系統之誘因”,國立政治大學資訊科學系碩士論文,民91。 黃國倫,”網際網路購物代理人之設計與建構”,元智大學資訊管理研究所碩士論文,民90。 喻正翔、黃明達,”國內網路購物消費者行為之調查研究”,資訊管理展望,第一卷,第一期,頁93-111,民87.6。 楊宗憲,”智慧型代理人於個人化多媒體頻道選擇之研究”,屏東科技大學資訊管理系碩士論文,民91。 葉禮宗,”對話介面代理人—以推薦旅遊行程為例”,國立清華大學資訊工程學系碩士論文,民91。 劉致宏,”個人化智慧型代理人自動化推薦之研究”,屏東科技大學資訊管理系碩士論文,民90。 鄭安成,”以代理程式為媒介的電子市集交易中心”,淡江大學資訊工程學系碩士論文,民90。 蔣興志,”消費者導向智慧型代理群在電子商務上之應用”,國立東華大學資訊工程學系碩士論文,民88。 蔡鴻遠,”消費者對智慧代理人實質接受度研究—以線上拍賣為例”,國立台灣科技大學資訊管理系碩士論文,民91。 鍾聰美,”台中市連鎖書店消費者滿意度及行銷策略之研究”,南華大學出版學研究所碩士論文,民92.6。 簡守維,”智慧型代理人於Web-Based醫療資源系統之整合與應用”,南華大學資訊管理學系碩士論文,民91。 羅弘偉,”電子折價券使用行為之研究”,國立中山大學企業管理學系研究所碩士論文,民90。 Alm, H., & Nilsson, L. (1995). The effects of a mobile telephone task on driver behaviour in a car following situation. Accident Analysis & Prevention, Vol. 27, Issue 27, 707-715. Cha, D., & Park, P. (1997). User Required Information Modality and Structure of In-Vehicle Navigation System Focused on the Urban Commuter. Computers & Industrial Engineer, Vol. 33, Issue 3-4, 517-520. Connelly, C. S. (1995). Toward an understanding of DCS control operator workload. ISA Transactions, Vol 34, Issue 2, 175-184. Corradi, A., Cremonini, M., Montanari, R., & Stefanelli, C. (1999). Mobile Agents Integrity for Electronic Commerce Applications. Information Systems, 24, 519-533. Engel, J. F., Blackwell, R. D., & Miniard, P. W. (1993). Consumer Behavior, 7th ed., 92-106, The Dryden Press. Karacapilidis, N., Moraitis, P., (2001). Building an Agent-Mediated Electronic Commerce System with Decision Analysis Features. Decision Support Systems, 32, 53-69 Kuo, H.- M., Hwang S.- L., & Wang E. M. (2002). A Preliminary Study of Consumer Behaviors in B2C. Communications of the IIMA, 2, Issue 4, 79-92. Matthews, R., Legg S., & Charlton, S. (2003). The effect of cell phone type on drivers subjective workload during concurrent driving and conversing. Accident Analysis and Prevention, Vol. 35, Issue 4, 451-457. Mayes, D. K., Sims, V. K., & Koonce, J. M. (2001). Comprehension and workload difference for VDT and paper-based reading. International Journal of Industrial Ergonomics, Vol. 28, Issue 6, 367-378. Moray, N. (1988). Mental Workload since 1979. International Reviews of Ergonomics, 2, 123-150. Park, J., Jung, W., & Ha, J. (2000). Development of the step complexity measure for emergency operating procedures using entropy concepts. Reliability Engineering and System Safety, Vol. 71, Issue 2, 115-130. RosettaNet organization, http://www.rosettanet.org RosettaNet Taiwan, http://www.rosettanettaiwan.org.tw Sanders, M. S., & McCormick, E. J. (1998). Human Factors in Engineering and Design, 7th ed., McGraw-Hill, Inc. Salem, A. A., & Nabeel, A. F. (2002). A Trade Server for Electricity E-Commerce. Computers in Industry, 47, 89-97. Shen, X., Radakrishnan, T., & Georganas, N. D. (2002). vCOM: Electronic Commerce in a Collaborative Virtual World. Electronic Commerce Research and Applications, 1, 281-300. Turban, E. (2001). Decision Support Systems And Intelligent Systems, 688-726. Turowski, K. (2002). Agent-Based E-Commerce in Case of Mass Customization. International Journal of Production Economics, 75, 69-81. Vidulich, M., & Tsang, P. (1986). Techniques of subjective workload assessment: A comparison of SWAT and the NASA-Bipolar methods. Ergonomics, 29(11), 1385-1398. Vulkan, N. (2001). Equilibria in Automated Interactions. Games and Economic Behavior, 35, 339-348. Wang, T., Guan, S. U., & Tai, K. C. (2002). Integrity protection for Code-on-Demand mobile agents in e-commerce. Journal of Systems and Software, 60, 211-221. Zakaria, M. (2002), Association of users with Software Agents in E-Commerce. Electronic Commerce Research and Applications, 1, 104-112.id NH0925031005 sid 903807 cfn 0 / id NH0925031006 auc 周璟宇 tic 具時間窗限制之物流配送系統區位-途程問題研究 adc 溫于平 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 75 kwc 時間窗限制 kwc 物流配送系統 kwc 區位-途程問題 kwc 塔布搜尋法 abc 在企業營運的各項成本中,物流配送系統之區位-途程成本佔有很大的比例,因而降低物流配送系統之區位-途程成本是一個重要的研究主題。而隨著消費者意識抬頭,顧客服務滿意度逐漸受到重視,使得物流配送系統加入時間窗限制來考量,增加配送服務的品質。 rf 參考文獻 [1 ] 日本文摘翻譯中心,流通事典,故鄉出版公司,(1991)。 [2 ] 王耿彬,「應用遺傳演算法於低溫冷凍物流中心之車輛配送排程規劃」,朝陽科技大學工業工程與管理研究所,(2000)。 [3 ] 李政佑,「工廠與配銷中心區位選擇之研究」,清華大學工業工程與工程管理研究所,(2000)。 [4 ] 吳琴玲,「物流配送系統之區位-途程問題研究」,雲林科技大學工業工業與管理研究所,(2000)。 [5 ] 林惠民,「具時窗之多趟次車輛途程問題」,元智大學資訊管理研究所,(2002)。 [6 ] 陳百傑,「以啟發式演算法求解時窗限制車輛途程問題」,中原大學工業工程研究所,(2002)。 [7 ] 陳契伸,「軟性/硬性時窗限制之車輛途程問題研究」,中原大學工業工程研究所,(2001)。 [8 ] 潘忠煜,「含時間窗車輛途程問題各演算法適用範圍之探討」,東海大學工業工程研究所,(2000)。 [9 ] Bodin, L. and B. Golden, “Classification in vehicle routing and scheduling,” Networks, 11, 97-108, (1981). [10 ] Bodin, L., B. Goden, A. Assad and M. Ball, “Routing and scheduling of vehicles and crews -The state of the art,” Computers and Operations Rsearch, 10, 63-211, (1983). [11 ] Bramel, J. and D. Simchi-Levi, “A location based heuristic for general routing problems,” Operations Research, 43, 649-660, (1995). [12 ] Chao, I. M., B. L. Golden and E. Wasil, “A new heuristic for the multi-depot vehicle-routing problem that improves upon best-known solutions,” American journal of mathematical and management science,13, 371-406, (1993). [13 ] Christofides, N. and S. Eilon,“An algorithm for the vehicle-dispatching problem,” Operational Research Quarterly, 20, 309-318, (1969). [14 ] Clark, G. and J. Wright, “Scheduling of vehicles from a central depot to number of delivery points,” Operations Research, 12, 568-581, (1964). [15 ] Dueck, G. and T. Scheuer,“Threshold Accepting : A general purpose optimization algorithm appearing superior to simulated annealing,” Journal of Computational Physics, 90, 161-175, (1990). [16 ] Gillett, B. E. and J. G. Johnson, “Multi-terminal vehicle-dispatching algorithm,” Omega, 4, 711-718, (1976). [17 ] Glover, F., ” Tabu search-partⅠ,” ORSA Journal on Computing, 13, 190-206, (1989). [18 ] Jacques, R., L. Gilbert and F. B. Fayez, “A Tabu search heuristic for the multi-depot vehicle routing problem,” Computers Operations Research, 23, 29-235, (1996). [19 ] Liu, F. and S. Y. Shen, “A route-neighborhood-based metaheuristic for vehicle routing problem with time windows,” European Journal of Operational Research, 118, 485-504, (1999). [20 ] Marius M. Solomon, ”Algorithms for the vehicle routing and scheduling problems with time window constraints,” Operations Research, 35:2, 254-265, (1987). [21 ] Owen, S. H. and M. S. Daskin, “Strategic facility location: A review, ” European Journal of Operations Research, 111,426-447, (1998). [22 ] Perl, J. and M. S. Daskin, ”A warehouse location-routing problem,” Transportation Research B, 19, 381-396, (1985). [23 ] Philippe B., G. Francois, G. Michel, P. Jean-yves and T. Eric, “A Parallel Tabu Search Heuristic For The Vehicle Routing Problem With Time Windows,” Transportation Research C, 5, 109-122, (1997). [24 ] Pirkul, H. and V. Jayaraman, “A multi-commodity,multi-plant,capacitated facility location problem:formulation and efficient heuristic soultion,” Computers & Operations Research, 869-877, (1998). [25 ] Potvin, J. Y., T. Kervahut, B. L. Garcia and J. M. Rousseau, “The vehicle routing problem with time windows partⅠ: Tabu search,”Informs Journal on Computing, 8:2, 158-164, (1996).id NH0925031006 sid 903815 cfn 0 / id NH0925031007 auc 江孟芬 tic 晶圓廠緊急防危監控系統視、聽覺顯示對系統績效之影響 adc 黃雪玲 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 74 kwc 聽覺警報 kwc 操控方式 kwc 監控人員 abc 即時監控緊急防危警示系統(Facilities Management Control System 簡稱FMCS)對於半導體業生產安全扮演不可忽視的角色,稍有差池便會造成嚴重損失甚至不可彌補的傷害。即時監控緊急防危警示系統(FMCS)係一套結合生產系統、電子資料庫和環境監控,以電腦視、聽覺顯示為安全監控的警示系統,專用於提供監控者狀況偵測、狀況顯示、狀況確認並評估及對緊急事件的管理與支援。 rf 參考文獻 Cheng, B., Masahiro H., Takamasa S., 2002, “Analysis of driver response to collision warning during car following”, Society of Automotive Engineers of Jaman, 23, p.p.231~237. Carryl, L. Baldwin1, David Struckman-Johnson2, 2002, “Impact of speech resentation level on cognitive task performance: implications for auditory display design”, Ergonomics, Vo.45, Number 1, January 15. Constantine Trahiotis *, Klaus Hartung, 2002, “ Peripheral auditory processing, the precedence effect and responses of single units in the inferior colliculus”, Hearing Research, 168, p.p.55-59. Chen, Hsiao-Ru, 2002, “Interface Design and Ergonomic Considerations for In-Vehicle Auditory Guidance Systems”, NTHU. Coleman, G.., 1998, “The signal design window revisited”, International Journal of Industrial Ergonomics, Vol.22, pp.313-318. Hass, E.C. and J.G.. , 1993, “The perceived urgency and detection time of Multi-tone and Frequency- Modulated warning signals”, Proceedings of the Human Factors and Ergonomics Society 37th Annual Meeting, p.p.544-548. Hsu, Hong-Te, 2002, “The Effects of Human on Whole Body Reaction Speed to Visual and Auditory Signals”, NKFUST. Heffner, Henry E., 1998, “ Auditory Awareness”, Applied Animal Behavior Science, Vol.57, Issue:3-4, p.p.259-268. Hellier, E., Edworthy, J. And Dennis. I., 1993, “Improving auditory warning design: Quantifying and predicting the effects of different warning parameters on perceived urgency”, Human Factors, Vol.35(4), p.p.693-706. Hellier, Elizabeth J.,1   Edworthy, J. and Dennis, Jan, 1993, “Improving Auditory Warning Design: Quantifying and Predicting the effects of Different Warning Parameters on Perceived Urgency”, Human Factors, Vol.35, No.4, pp.693-706,. Ken, Sagawa, 1999, “Visual Comfort to colored Images Evaluated by Saturation Distribution”, Color research and application, Vol.24, No.5. pp313-321. King, R.A. and Corso, Gregory, M., 1993, “Auditory Display: If they are so useful, why are they turned off?”, Human Factors And Ergonomics Society 37th Annual Meeting, pp.549-553. Neville, Stanton1  ,  *  and Edworthy2  ,, J., 1998, “Auditory affordances in the intensive treatment unit”, Applied Ergonomics, Vol.29, No.5, pp.389-394. Stanton, Neville and Edworthy, J., “Towards a methodology for constructing and evaluating representational auditory alarm displays”. Sanders, M.S., McCormick, E.J. , 1991,”Human Factors in Engineering and Design”, McGraw-Hill, N.Y.. Shneiderman, B., 1987, “Design the user interface”, Addison-wesley Publishing company. Conzola, V.C., Wogalter*, M.S., 1999, “Using voice and print directive and warnings to supplement product manual instruction”, International Journal of Industrial Ergonomics, Vol.23, pp.549-556. Wilkins, P., and Martin, A.M., 1987, "Hearing Protection and Warning Sounds in Industry-A Review", Applied Acoustics, Vol.21: pp.267-293. Wickens, Christopher, D., and Hollands, Justin G., 2000, ” Engineering Psychology and Human Performance”, 3th, pp11-14. 張春興,1995,現代心理學,初版,台灣東華書局,台北。 李開偉,2000,實用人因工程學,初版,全華科技圖書有限公司,台北。 林俊男,2000,人工聲意信號意象感知評價之研究,國立雲林科技大學。 吳水丕、許勝雄、彭游,1998,人因工程-工程與設計之人性因素(上冊),滄海書局,台中,pp.62。 高靜蓉,1996,色彩的視覺判斷效果在包裝設計應用上的實驗研究─以大小、輕重、冷暖感覺為例,國立雲林科技大學。 賴瓊琦,1999,設計的色彩心理,視傳文代事業有限公司。 陳文英,2002,整合式防危警示系統之介面的評估與改善,國立清華大學。 黃慶旭,2002,利用簡易型駕駛模擬器探討警示系統對駕駛者的影響,國立清華大學。 蔡佳仁,2001,整合式監控系統之開發,國立中山大學。 http://www.llaids.com.tw/id NH0925031007 sid 903816 cfn 0 / id NH0925031008 auc 莊建鏵 tic 基於等候時間分配的達交率導向派工法則 adc 許棟樑 教授 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 106 kwc 派工法則 kwc 達交 kwc & kwc #63841; kwc 等候時間分配 abc 半導體廠因其設備昂貴生產流程複雜,派工是否有效率對提高機台之使用效率、整體生產效率及機台使用率有相當程度的影響。派工法則雖然眾多,但其主要的目的有優化產量、週期時間、機台使用率、瓶頸機台使用率或最低成本考量,然而從企業整體的角度觀之,影響最終結果的主要因素有達交率、利潤、和顧客關係之考量。本研究以『達交率』的改善作研究,製造過程中有許多影響達交率的原因,但是最直接的原因是在工作站前等候加工的時間過長,因此希望藉由過去歷史的『等候時間分配』的方式,將加工批次達交前做有效率的將等候時間分配於各個工作站,使產品的生產週期時間更加穩定,以提昇達交率。 tc 目錄 摘要 II Abstract III 致謝詞 IV 目錄 V 圖目錄 VII 表目錄 I 第一章 緒論 1 1.1 研究動機與背景 1 1.2 研究目的 2 1.3 研究範圍與限制 2 第二章 文獻探討 3 2.1半導體製程簡介 3 2.2 各種投料、派工法則之探討 6 2.2.1投料法則探討 7 2.2.2派工法則探討 15 2.4 模型建構與模擬 18 2.4.1 模擬的定義 18 2.4.2 模擬的角色 18 2.5 eM-Plant模擬軟體簡介 19 2.6 Duncan多重全距檢定手法 20 2.7 綜合分析與討論 21 第三章 研究方法與理論分析 23 3.1 研究方法與進行步驟 23 3.2 名詞及符號定義 24 3.3 本派工法則之物理意義 28 3.4 派工法則說明 30 3.4.1非成批作業 30 3.4.2成批作業 34 第四章 實例驗證 36 4.1目的 36 4.2模式建構基本環境說明 36 4.3.1 產品組合 37 4.3.2 決定預熱時間 39 4.3.3 工作站歷史資料 39 4.3.4 實驗因子選擇 39 4.3.5 批次交期設定 40 4.4 模擬實驗及分析(一) 40 4.4.1隨機性及常態性檢定 43 4.4.2 Duncan檢定 44 4.5模擬實驗及分析(二) 46 4.5.1模式建構基本環境說明 46 4.5.2 ASU製程資料 47 4.5.3 統計資料分析 48 第五章 結論及未來研究方向 51 5.1 結論 51 5.2 未來研究方向 52 參考文獻 53 附錄A:模擬實驗製程加工資訊 56 附錄B:Mini Fab相關資料 59 附錄C:ASU相關資料 75rf [1 ] Bechte, W., “ theory and Practice of Load-Oriented Manufacturing Control”,International journal of Production Research. Vol. 26,pp. 375- 395, 1998 [2 ] Blackstone, J. H., D.T., Phillips, and G. L., Hogg, “A state-of-The Art Survey of Dispatching Rules for Manufacturing Job Shop Operations”, International Journal of Production Research, Vol.20, pp. 27- 45, 1982 [3 ] Chang, Sueyoshi Y.T., and R.S., Sullivan, “Ranking Dispatching Rules by Data Envelopment Analysis in a Job Shop Environment”, IIE Transactions, Vol.28, pp.631-642,1996. [4 ] Conway, R.W., “Priority Dispatching and Work-in-process Inventory in A Job Shop,” Journal of Industrial Engineering, Vol. 16, pp. 228-236,1965 [5 ] Montgomery, Douglas C., ”Design and Analysis of experiments”, 4thd,1991 [6 ] Glassey, C.R., and M.G.C., Resende, “Closed-loop Job Shop Release Control for VLSI Circuit Manufacturing”, IEEE Transaction on Semiconductor Manufacturing, Vol.1, No.1, pp. 26- 46, 1988 [7 ] Glassey, C.R., and M.G.C., Resendei, “A scheduling Rule For Job Release in Semiconductor Fabrication”, Operation Research Letters, Vol.7 No.5i 213- 217, 1988. [8 ] Kim, Y.D., J.U., Kim, S.K., Lim, and H.B., Jum, “Due-Date Based Scheduling and Control Policies in a Multiproduct Semiconductor Wafer Fabrication Facility”,IEEE Transactions on Semiconductor Manufacturing, Vol.11, No.1, pp.155-164(1998). [9 ] Lou ,S., and P.W., Kager, “A Robust Production Control Policy for VLSI Wafer Fabrication”, IEEE Transactions on Semiconductor Manufacturing, Vol.2, No.4, pp 159-164,1989 [10 ] Monden, Y., and D.W., Pentico, Heuristic Scheduling Systems, Wiley, New York, 1993 [11 ] Pieerbal H., and N., Mebarki, “Dynamic Selection of Dispatching Rules for manufacturing System Scheduling”, International Journal of Production Research, Vol.35, No.6, pp. 1575- 1591, 1997. [12 ] Schragemheim, E., and B., Ronen, “Drum-Buffer-Rope Shop Floor Control”,Production and Inventory Management Journal, Third Quarter, pp.18- 22, 1990 [13 ] Schragenheim E., and B., Ronen, “Buffer Management :A Diagnostic Tool for Production Control”, Production and Inventory Management Journal, Third Quarter, pp.74- 79, 1990 [14 ] Spearman, M. L., L.Woodruff, Dabid, and J. Hopp, Wallace, “CONWIP:A Pull Alternative to Kanban”, International journal of Production Research, Vol.28,No. 5, pp879- 894, 1990 [15 ] Steven, A. M. and L. C., Philip, Production Activity Control, Richard D. Irwin,Inc, 1987 [16 ] Wien, L. M., “Scheduling Semiconductor Wafer Fabrication”, IEEE Transaction on Semiconductor Manufacturing, Vol. 1, pp.115- 130, 1988 [17 ] Yan, H. S. Lou, S., Sethi, A., Gardel, and P., Deosthali, “Testing the Robustnesss of Various Production Control Policies in Semiconductor Manufacturing”, IEEE Transactions on Semiconductor Manufacturing, Vol.9, No. 2, pp.285- 289, 1996 [18 ] 大野耐一,“豐田生產方式與現場管理”,日本能率協會,中華企業管理發展中心,民國70 年 [19 ] 林則孟,“系統模擬理論與應用”,滄海書局,1999 [20 ] 吳振寧,指導教授:許棟樑,“台灣半導體廠設備管理指標模型建立與評比”,國立清華大學工業工程與管理學系論文,1999 [21 ] 黃宏文,指導教授:鍾淑馨,“晶圓製造廠生產活動控制策略之構建”,國立交通大學工業工程與管理學系論文,1995 [22 ] 游淑晴,指導教授:許棟樑,“黃光機台群組限制下之生產活動控制策略”,國立清華大學工業工程與管理學系論文,2003 [23 ] 莊達人編著,“ VLSI 製造技術”,高立圖書有限公司,1997 [24 ] 羅仕宗,指導教授:許棟樑,“時間加權的及時派工法則”,國立清華大學工業工程與管理學系論文,2001 [25 ] 鐘淑馨,周煜智,溫伊蓁,“生產活動控制之探討與文獻回顧”,管理與系統,第七卷 第四期 459-484 頁,2000 [26 ] http://www.eas.asu.edu/~aar [27 ] http://www.eas.asu.edu/~masmlab/ftp.htmid NH0925031008 sid 903820 cfn 0 / id NH0925031009 auc 洪碧溎 tic 筆記型電腦業新產品導入績效衡量機制與評估系統 adc 許棟樑 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 121 kwc 新產品導入、標竿管理、筆記型電腦、績效指標、績效評估、DFX abc 筆記型電腦產品的生命週期非常短,筆記型電腦產業的新產品導入生命週期,從「概念的產生」到量產階段,只剩四到六個月的時間,加上全球性競爭時代的來臨,新產品導入之時效性、品質與產品可靠度,成為企業增加本身競爭力日益重要的一環。本研究之目的在建立完整的筆記型電腦新產品導入績效指標評估系統,利用此評估系統,提供改善建議以提升筆記型電腦業新產品導入的績效。藉由問卷與訪談的方式,收集兩家主要筆記型電腦公司的資料,本研究中所達成之成果包括:1)建構台灣筆記型電腦廠新產品導入績效指標,包括: 27項新績效指標、10項市場面績效指標、9項研發面績效指標、8項製造面績效指標與10項跨部門評估方式(DFX)指標;2)建構一套以EXCEL為基礎,系統化評估的介面『筆記型電腦廠新產品導入績效評估系統』,提供一個人性化的輸入介面,使用者只需依據步驟填寫問卷資料,系統會自動將評估結果輸出,提供使用者本廠的新產品導入績效評比與改善建議。 tc 目 錄 摘要 II ABSTRACT III 致謝詞 IV 目 錄 V 圖表目錄 VIII 第一章、 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 貢獻與成果 2 第二章 、文獻探討 4 2.1 新產品導入的績效指標 4 2.1.1 新產品的定義 4 2.1.2 新產品導入 5 2.1.3 新產品導入績效指標 6 2.2 標竿制度 7 2.2.1 標竿制度之起源 7 2.2.2 標竿之定義 8 2.2.3 標竿之種類 8 2.2.4 標竿制度中之標竿層面 9 2.2.5 標竿之重要及效益 10 2.2.6 標竿之實行步驟 11 2.2.7 標竿制度成功的必要條件 12 2.2.8 標竿制度與績效評估之關係 13 2.2.9 本研究中之標竿制度 13 2.3 平衡計分卡(BALANCED SCORECARD; BSC) 14 2.4 績效評估 14 2.4.1 多準則評估方式 15 2.5 特性要因圖(CAUSE AND EFFECTS CHARTS) 18 2.5.1 特性要因圖的繪製與實施方法 19 2.6 同步工程 20 第三章 、研究方法 22 3.1 研究策略 22 3.2 研究範圍 22 3.3 研究步驟 23 第四章 、新產品導入績效指標與決定因子 25 4.1 指標訂定原則及分類 25 4.1.1 指標訂定原則 25 4.1.2 指標特性分類 25 4.2 績效指標架構 26 4.3 決定因子 27 4.3.1 決定因子訂定方法 27 4.3.2 市場面決定因子 29 4.3.3 研發面決定因子 30 4.3.4 製造面決定因子 31 4.4 績效指標定義 31 4.4.1 市場面指標 32 4.4.2 研發面指標 35 4.4.3 製造面指標 38 4.5 跨部門評估方式的指標系統(DFX) 41 4.5.1 製造可行性的考量(DFM) 41 4.5.2 SMT元件置放優化的考量(DFP-1) 42 4.5.3 重要元件延遲之解決與替代方案的考量(DFP-2) 42 4.5.4 維修注意事項的考量(DFS) 42 4.5.5 降低元件及模具費用的考量(DFC-1) 42 4.5.6 元件共同使用的考量(DFC-2) 43 4.5.7 測試相關要求的考量(DFT-1) 43 4.5.8 CPU散熱問題的考量(DFT-2) 43 4.5.9 EMI的考量(DFE) 43 4.5.10 品質的考量(DFQ) 44 第五章 、新產品導入績效評估系統 46 5.1 系統簡介 46 5.1.1 登入 47 5.1.2 資料輸入 48 5.1.3 結果輸出 50 5.2 資料轉換 57 5.2.1 資料標準化 57 5.2.2 權重設定 59 5.2.3 資料庫資料 60 第六章 、研究個案分析 62 6.1 A公司 62 6.1.1 新產品導入流程 62 6.1.2 評比結果 63 6.2 B公司 67 6.2.1 新產品導入流程 67 6.2.2 評比結果 68 第七章 、結論與建議 74 7.1 綜合討論 74 7.2 對參與廠商的建議 74 7.3 後續研究方向 75 參考文獻 76 附件一、新產品導入流程圖 79 附件二、決定因子特性要因圖 81 附件三、問卷 92rf 參考文獻 1. Alting, L. (1991), “Life cycle design”, Concurrent Engineering, 1(6), pp.19-27. 2. Brown, W. B. and D. Gobeli (1992),” Observations on the Measurement of R&D Productivity: A Case Study”, IEEE Transactions on Engineering Management, 39(4), pp.324-331 3. Calantone, Roger J., Shawnee K. Vickery, and Cornelia Droge, “Business performance and Strategic New Product Development Activities: An Empirical Investigation”, J prod Innov. Manag. 1995; 12:214-223. 4. Cornelia, D., Jayanth Jayaram, and Shawnee K. Vickery, “The Ability to Minimize the Timing of New Product Development and Introduction: An Examination of Antecedent Factors in the North American Automobile Supplier Industry”, J prod Innov. Manag. 2000; 17:24-40. 5. Geisler, E. (1994), “Key Output Indicators in Performance Evaluation of Research and Development Organization”, Technological Forecasting and Social Change, pp.189-203. 6. Gobeli, D. H. and J. Brown (1987), “Analtzing Product Innovations”, Research Management, pp.25-31. 7. Green, David L., David L. Wilemon, “Accelerating Team Learning in New Product Development” Innovation Management Program, School of Management Suite 400 Syracuse University, Syracuse NY 13244, USA. 8. Jan, O., “Competence Management by Informatics in R&D:The Corporate Level”, IEEE Transactions on Engineering Management, Vol. 44, No. 2, May 1997. 9. Kurt, M., Hans H. Hinterhuber, “How to Make Product Development Projects More Successful by Integrating Kano’s Model of Customer Satisfaction into Quality Function Deployment” Technovation, 18(1) (1998) 25-38. 10. Larso, D. and Hacker M., “Performance measurement in new product development: concepts and literature review”, Management of Engineering and Technology, 1999. Technology and Innovation Management. PICMET '99. Portland International Conference on , Volume: 1 , 1999 Page(s): 495 vol.1 11. Lebas, Michael J. (1995), “Performance Measurement and Performance Management”, International Journal of Production Economics, No.41, pp.23-35. 12. Michael, N. and Barry Stoker (1991), “Data Envelopment Analysis-The Assessment of Performance”, John Wiley & Sons. 13. Narahari, Yadati, Nukala Viswanadham, Fellow, IEEE, and V. Kiran Kumar, “Lead Time Modeling and Acceleration of Product Design and Development”, IEEE Transactions on Robotics and Automation, Vol. 15, No. 5, October 1999. 14. Packer (1983), “Analyzing productivity in R&D Organizations”, Research Management, No.21 (1) pp.13-20. 15. Rauscher, Tomlinson G. and Preston G. Smith, “From Experience Time-Driven Development of Software in Manufactured Goods” J prod Innov. Manag. 1995; 12:186-199. 16. Sameh R Salem, “New Product Development Balanced Scorecard”, GE power Systems, Schenectady, NY, 2001 IEEE 17. Sbragia, R., (1984), “Clarity of Manager Roles and Performance on R&D Multi-disciplinary Projects in Matrix Structures”, R&D Management, 14(2): 113~126 18. Smith, M., P.J., Pretorius, “Common problems in the performance measurement of profit and cost centers”, 2002. IEEE AFRICON. 6th , Volume: 1 , 2002 Page(s): 485 –488 19. Speirs, J., Nash, T.J., “The use of standards in performance measurement”, IEE Colloquium on 3 Apr 1995 20. Taudes, A., G. Dorffner, M. Natter, M. Feurstein, C. Merz, A. Mild, M. Trcka, “Learning Marketing-Production Interactions”, 1999 IEEE 21. Ulrich, Karl T., Steven D. Eppinger著, 宋同正/蔡登傳譯,產品設計與開發,華泰文化事業公司 22. 朱詣尹,「同步工程與整合性產品開發」,清華大學工業工程系課程講義。 23. 伍家德,『新產品開發特性與新產品開發管理機制相關之研究』,東海管理評論,第二卷,第一期,民國八十九年十一月 24. 邱淮治,『層級一致分析法(HCA)-一種新的權重設定方法』,元智工學院工業工程研究所,85,碩士論文。 25. 林育理,『企業研發部門知識學習能力、組織能耐與研發績效關係模式之研究』,長榮管理學院,經營管理研究所,89,碩士論文。 26. 林明杰,李政雄,『新產品開發策略與市場資訊處理機制對新產品績效影響之研究』,技術管理學刊,第五卷,第一期,民國八十九年六月。 27. 林明杰,彭凌峰,『不同情境下創新專案關鍵成功因素間關係之研究』,管理學報,第十七卷,第四期,民國八十九年十二月。 28. 許棟樑,『台灣筆記型電腦全面品質管理標竿建立及分析---總計畫』,行政院國家科學委員會專題研究計畫成果報告,民國86年。 29. 張政楠,『筆記型電腦業管理評估系統』,國立清華大學,工業工程學系,90,碩士論文。 30. 陳俊依,『同步工程應用於新產品開發專案工作協調之研究』,國立台北科技大學,生產系統工程與管理研究所,91,碩士論文。 31. 黃建銘,『組織績效指標的運用與管理意涵--英國經驗之探討』,人力發展,66 民國八十八年七月 頁52-63。 32. 黃振煜,『產品開發在接單後生產模式中所扮演角色之研究』,國立成功大學,工業設計學系,88,碩士論文。 33. 楊長林,『新產品開發』,國立台灣科技大學,工業管理系,博士論文。 34. 蔣維理,『成功的新產品開發模式研究』,國立交通大學,管理學程碩士班,90,碩士論文。id NH0925031009 sid 903848 cfn 0 / id NH0925031010 auc 陳音卲 tic 電腦基層隱喻之探索-以新竹市四所國中為例 adc 王明揚 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 84 kwc 人與電腦互動 kwc 人與電腦介面 kwc 基層隱喻 abc 由於近年來電腦的迅速發展,使得越來越多的使用者無法有效地利用既有的知識經驗來操作軟體系統上所有功能;因此許多學者提出可將隱喻運用至電腦系統的介面設計之上,幫助學習者可以快速地將過去的知識經驗,轉換映對至新的知識領域當中。然而每個人,包括使用者與設計者,在生活與學習上經驗的不同,所可利用的隱喻來源也就不盡相同,為了能有效地減少設計者與使用者之間認知的差異,Wang & Hwang(2000)提出基層隱喻(Basic Metaphor)的概念及探索程序,企圖能藉由大部分人中所共有的知識經驗,來找出能被一般使用者所接受的電腦基層隱喻。 tc 摘要 I Abstract II 誌謝 III 圖目錄 VI 表目錄 VII 1.1 研究背景 1 1.2 研究動機 1 1.3 研究目的 2 1.4 研究架構 3 第二章 文獻回顧 5 2.1. 互動式使用者介面 5 2.1.1. 互動式使用者介面的重要性 5 2.1.2. 互動式使用者介面的發展 6 2.2. 隱喻 9 2.2.1. 隱喻的定義與功能 10 2.2.2. 隱喻與個人經驗 12 2.2.3. 隱喻與系統的關係 13 2.2.4. 系統化隱喻的架構 15 2.3. 人機介面隱喻 17 2.3.1. 人機介面隱喻與心智模式 19 2.3.2. 人機介面隱喻研究與分類 20 2.3.3. 人機介面隱喻的設計方法 22 2.4. 基層隱喻 25 2.4.1. 基層隱喻的隱喻來源 26 2.4.2. 基層隱喻的探索程序 28 2.5. 結論 29 第三章 研究方法 30 3.1 問卷施測流程 30 3.2 初次測驗 32 3.2.1. 問卷設計 32 3.2.2. 施測目的 32 3.2.3. 研究對象 32 3.3 第二次問卷施測 32 3.3.1. 問卷設計 32 3.3.2. 施測目的 34 3.3.3. 研究對象 34 3.3.4. 預計分析方法 35 3.4 第三次問卷施測 35 3.4.1. 問卷設計 35 3.4.2. 施測目的 35 3.4.3. 研究對象 36 第四章? 研究結果與分析 37 4.1 初次問卷的結果與分析 37 4.1.1. 受試者基本資料 37 4.1.2. 結果與討論 39 4.2 第二次問卷的結果與分析 41 4.2.1. 受試者基本資料 42 4.2.2. 結果與分析 45 4.2.3. 小結 56 4.3 第三次問卷 59 4.3.1. 受試者基本資料 59 4.3.2. 結果與分析 60 4.3.3. 小結 64 第五章 結論與建議 65 5.1 目前存在之基層隱喻 65 5.2 未來潛在之基層隱喻 66 5.3 基層隱喻的建議使用 69 5.4 後續研究之方向 70 參考文獻 71 附錄一、九年一貫分段能力指標 76 附錄二、初次問卷 78 附錄三、第二次問卷 80 附錄四、第三次問卷 83rf 方裕民,GUI界面設計理論與實務,中日設計教育研討會論文集,民88。 李賢輝,多媒體藝術導論, http://ceiba.cc.ntu.edu.tw/th6_500/th6_500g1.htm,民92。 陳坤淼,電腦多媒體之使用者介面設計探討,高速計算世界,民89。 陳雍正,互動多媒體之使用者介面設計初探,雲林科技大學工業設計所專題研討, 民92 許有真 人機介面隱喻之探討,教學科技與媒體,58,頁26-33,民90。 唐國豪,人與機器的對話,科學發展,368,頁18-23,民92 黃育信,人與電腦互動中的基層隱喻研究,清華大學工業工程所碩士論文, 民87.6。 孫名之,心理學導論,台北:曉園出版社,頁99 – 107,民83。 小松原明哲,對話型認知人間工學設計(日文),東京:技報堂出版社,頁89-105, 民81。 Alty, J. L., Kontt, R. P., Andersin, B., Smyth, M. (2000). A framework for engineering metaphor at the user interface. Interacting with Computers, 13(2), 301-322. Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA:Harvard University Press. Anderson, B., Smyth, M.G., Knott, R.P., Bergan, M., Bergan, J., Alty, J.L., (1994). Minimizing conceptual baggage: making choices about metaphor. In People and Computers IX, Proceedings of HCI'94 (pp. 179-194), 28-30 August, 1994, Glasgow, UK. Bielenberg, D. (1993). Interactive design and the mythical intuitive user interfaces. Journal of Interactive Instruction Development. 6(2), 14-19. Bruner, J. S. (1960). The process of education. London, Oxford University Press. Carroll, J. M., Mack, R. L. (1985). Metaphor, computing systems, and active learning. International Journal of Man-Machine Studies, 22(1), 39-57. Busch, T. (1995). Gender differences in self-efficacy and attitudes toward computers. Journal of Educational Computing Research, 12(2), 147-158. Bush, V. (1945). As we may think. The Atlantic Monthly, 176(1), 101-108. Carroll, J. M., Mack, R. L., &Kellogg, W. A. (1988). Interface metaphors and user interface design. In Handbook of Human-Computer Interface (M. Helander, Ed), 67-85, North-Holland, Amsterdam. Carroll, J. M., Neal, D. C. (1997). The Role of Metaphors in User Interface Design. In Handbook of Human-Computer Interaction (M. Helander, Ed), 441-457. Carroll, J. M., Thomas, J. C. (1982). Metaphor and the cognitive representation of computing systems. IEEE Transactions on Systems, Man, and Cybernetics, SMC, 12(2), 107-116. Cates, W. M. (1994). Designing hypermedia is hell: Metaphor’s role in instructional design. Proceedings of Selected Research and Development Presentations at the 1994 Annual Convention of the Association for Educational Communications and Technology, Nashville, TN, 95-108. Chi, M. T. H., Feltovich, P. J. & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121-152. Colley A. (2003). Gender differences in adolescents’ perceptions of the best and worst aspects of computing at school. Computers in Human Behavior, 19(6), 673-682. Comber, C., Colley, A., Hargreaves, D., & Dorn, L. ( 1997). The effects of age, gender and computer experience upon computer attitudes. Educational Research, 39, 123-133. Gailey, C. (1993). Mediated messages: gender, class and cosmos in home video games. Journal of Popular Culture, 27, 81-97. Geissler, J. E. & Horridge, P. H. (1993). University student’s computer knowledge and commitment to learning. Journal of Research on Computing in Education, 25(3), 347-365. Gentner, D. R. (1977). Children’s performance on a spatial analogies task. Child Development, 48, 1034-1039. Gentner, D. R. (1988). Metaphors as structure mapping: The relational shift. Child Development, 59, 47-59. Gillan D. J., Fogas B. S., & Suzanne Aberasturi & Shannon Richards (1995). Cognitive ability and computing experience influence interpretation of computer metaphor. In Proceedings of the hum an factors and ergonomics society 39th annual meeting-1995. 243-247, Human Factors and Ergonomics Society, Santa Monica, CA. Hammond, N., Allinson, L., (1987). The travel metaphor as design principle and training aid for navigating around complex systems. In People and Computers III ( Diaper, D., & Winder, R.,Eds), 75-90. Heckel, P. (1991). Conceptual models and metaphor in software design. In 36th IEEE Computer Society International Conference – COMPCON, 498-499, Piscataway, NJ: IEEE Service Center. Hsu Y. C. (2000). The effects of varying levels of interface cues derived from metaphors on the computer user’ information search performance. Doctoral dissertation, Indiana University, USA. Hutchins, E. (1989). Metaphors for interface design. In The structure of multimodal dialogue (M. M. Taylor, F. Neel, and D. G. Bouwhuis, Eds), 11-28. Elsevier, Amsterdam. Lakoff, G., Johnson, M. (1980). Metaphors We Live By. Chicago, IL: University of Chicago Press. Laurel, B. (1993). Computers as Theatre. Reading, MA:Addison-Wesley. Lin, L. Y. (1989). Learning to use hypertext systems with metaphors: An interface design perspective. Unpublished doctoral dissertation, University of Illinois at Urbana-Champaign. MacCormac, E.R., (1985). A Cognitive Theory of Metaphor. Cambridge, MA/London: MIT Press. Madsen, K. H. (1994). A guide to metaphorical design. Communications of the ACM, 37(12), 57-62. Madsen K. H. (2000). Magic by Metaphors, In Proceedings of DARE 2000 on design augmented reality environments. Mandel, T. (1997). The Elements of User Interface Design. John Wiley & Sons, New York. Marcus, A (1994). Managing metaphors for advanced user interface. In Proceedings of the Workshop on Advanced Visual Interfaces: AVI’94, 12-18, New York: Association of Computing Machinery. Mayhew, D. J. (1992). Principles and Guidelines in Software User Interface Design. PrenticeHall, Englewood Cliffs (New Jersey). Norman, K. L., and Chin, J. P. (1989). The menu metaphor: food for thought. Behavior and Information Technology, 8(2), 125-134. Preece, J., Roger, Y., Benyon, D., Davies, G., and Keller, L. (1993). A Guide to Usability-Human Factors in computing. Addison-Wesley, New York. Preece, J., Roger, Y., Sharp, D., Holland, S., and Carey, T. (1994). Human-Computer Interaction. Addison-Wesley, New York. Rogers, Y., Leiser, R., Carr, D., (1988). Evaluating Metaphors for use at the User-System Interface, In Eurinfo'88, Proceedings of the First European Conference on Information Technology for Organizational Systems, ( Bullinger, H-J., Protonotarios, E.N., Bouwhuis, D., Reim, F., Eds.) Athens, Greece, 16-20. Elsevier, Amsterdam. Rummerlhart, D. E., & Norman, D. A. (1981). Analogical processes in learning. In Cognitive Skills and Their Acquisition ( J. R. Anderson, Ed), 335-361. Siltanen, S. A. (1986). Butterflies are rainbows? : A developmental investigation of metaphor comprehension. Communication Education, 35, 1-12. Smyth, M. and Kontt R. (1993). The Role of Metaphors at the Human Computer Interface. Proceedings of VAMMS’93. Smyth, M., Anderson, B & Alty, J. L. (1995). Metaphor Reflections and a Tool for Thought. In People and Computers X, Proceedings of HCI’95 ( M. A. R. Kirby, A. J. Dix and J. E. Finlay,. Eds.), 137-150, Haddonfield, UK: Cambridge University Press. Väänänen, K., and Schmidt, J. (1994). User interfaces for hypermedia: How to find good metaphor. In CHI’87 Short Papers, Conference on Human Factors in Computing System, 263. New York: Association for Computing Machinery. Wang, E. & Hwang, A. (2001). A Study on Basic Metaphors in Human-Computer Interaction. In Proceedings of the 14th Congress of the International Ergonomics Association, 140-143, Human Factors and Ergonomics Society, Santa Monica, CA. Winner, E., Rosentiel, A & Gardner, H. (1976). The development of metaphoric understanding. Developmental Psychology, 12, 289-297.id NH0925031010 sid 903858 cfn 0 / id NH0925031011 auc 張晏蓉 tic 不確定環境下半導體機台產能規劃分析 adc 溫于平 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 英文 pg 47 kwc 需求不確定性 kwc 半導體製造 kwc 產能規劃 kwc 機台產能規劃 abc 半導體產業中機台設備的採購需要耗費龐大的資本,因此半導體廠商在採購新機台設備時面臨重大的投資決策。為了滿足顧客的需求,廠商必須進一步擴充產能添購機台設備。由於技術與產品快速的變化,要有效率地採購機台設備實在是件艱鉅的任務。本研究主要針對半導體產業機台設備管理問題,透過不同機台、產能限制進行產能擴充計畫。在考慮需求不確定環境下,加入COO成本模式作為單位生產成本、並考量產能不足成本與產能過剩成本,在多期數的條件下建立一套機台設備投資計畫。最後,我們針對產品種類、預算分配方式及需求的機率進行實驗,藉以觀察參數對於模式績效的影響。 rf 1. 洪美妙,「考慮不同需求狀況下之半導體產能擴張問題」,清華大學工業工程與工程管理所碩士論文,2001。 2. 姜庭隆譯,「半導體製程」,美商麥格羅希爾國際股份有限公司,2001。 3. Ahmed, S., “Semiconductor Tool Planning via Multi-Stage Stochastic Programming,” Proceeding of 2002 International Conference on Modeling and Analysis of Semiconductor Manufacturing, Tempe, Arizona, U.S.A., 153-157 (2002). 4. Bai, X., and Gershwin, S.B., “A Manufacturing Scheduler’s Perspective on Semiconductor Fabrication,” Massachusetts Institute of Technology, VLSI Memo 89-518 (1990). 5. Barahona, F., Bermon, S., Gunluk, O., and Hood, S., “Robust Capacity Planning in Semiconductor Manufacturing,” Research Report RC22196, IBM (2001). 6. Cakanyildirim, M., and Roundy, R.O., “Demand Forecasting and Capacity Planning in the Semiconductor Industry,” School of Operations Research and Industrial Engineering, Cornell University, New York (1999). 7. Carnes, R., and Su, M., “Long Term Cost of Ownership: Beyond Purchase Price,” IEEE/SEMI Int”1 Semiconductor Manufacturing Science Symposium, 39-43 (1991). 8. Catay, B., Erenguc, S.S., and Vakharia, A.J., “Tool Capacity Planning in Semiconductor Manufacturing,” Computers & Operations Research, 30, 1349-1366 (2003). 9. Choi, Y.C., and Kim, Y.D., “Tool Replacement Policies for A Machining Center Producing Multiple Types of Products with Distinct Due Dates,” International Journal of Production Research, 39(5), 907-921 (2001). 10. Chou, Y.C., and Liang, Y.Y., “A Literature Review on the Methodologies of Capacity Planning in Semiconductor Manufacturing” Institute of Industrial Engineering, National Taiwan University, 49-52 (2002). 11. Christie, M.E., and Wu, S.D., “Semiconductor Capacity Planning: Stochastic Modeling and Computational Studies,” IIE Transactions, 34, 131-143 (2002). 12. Dance, D.L., Jimenez, A.L., and Levine, A.L., “Understanding Equipment Cost-of-Ownership,” Semiconductor International, 21(8) (1998). 13. Eppen, G.D., Martin R.K., and Schrage, L., “A Scenario Approach to Capacity Planning,” Operations Research, 37(4), 517-527 (1989). 14. Gray, A.E., Seidmann, A., and Stecke, K.E., “A Synthesis of Decision Models for Tool Management in Automated Manufacturing,” Management Science, 39(5), 549-567 (1993). 15. Hicks, D.A., “Evolving Complexity and Cost Dynamics in the Semiconductor Industry,” IEEE Transactions on Semiconductor Manufacturing, 9(3), 294-302 (1996). 16. Hood, S.J., Bermon, S., and Barahona, F., “Capacity Planning under Demand Uncertainty for Semiconductor Manufacturing,” IEEE Transactions on Semiconductor Manufacturing, 16(2), 273-280 (2003). 17. Hughes, R.A., and Shott, J.D., “The Future of Automation for High-Volumn Wafer Fabrication and ASIC Manufacturing,” Proceedings of IEEE, 74(12), 1775-1793 (1986). 18. Kotcher, R., and Chance, F., “Capacity Planning in the Face of Product-Mix Uncertainty,” Proceedings of the IEEE International Symposium on Semiconductor Manufacturing Conference, Santa Clara, California, 73-76 (1999). 19. Ku, C.K., “Research to Relationship of Global Capacity Constraints Resource and Single Product Capacity Constraints Resource,” Industrial Engineering, Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C., Master Thesis (2001). 20. Lin, C.C., “Tool Requirements Analysis under Uncertain Environment in Semiconductor Manufacturing,” Graduate Institute of Industrial Engineering, National Taiwan University, Taipei, Taiwan, R.O.C., Master Thesis (2003). 21. Occhino, T.J., “Capacity Planning Model: The Important Inputs, Formulas, and Benefits,” IEEE/SEMI Advanced Semiconductor Manufacturing Conference (2000). 22. Sohn, S.Y., and Moon, H.U., “Cost of Ownership Model for Inspection of Multiple Quality Attributes,” IEEE Transactions on Semiconductor Manufacturing, 16(3), 565-571 (2003). 23. Stafford, M., “A Product-Mix Capacity Model,” Technical Report ORP97-03, Graduate Program in Operations Research Technical Report Series, The University of Texas at Austin (1997). 24. Swaminathan, J.M., “Tool Capacity Planning for Semiconductor Fabrication Facilities under Demand Uncertainty,” European Journal of Operational Research, 120(3), 545-558 (2000). 25. Swaminathan, J.M., “Tool Procurement Planning for Wafer Fabrication Facilities: a Scenario-Based Approach,” IIE Transactions, 34, 145-155 (2002). 26. Uzsoy, R., Lee, C.Y., and Martin-Vega, L.A., “A Review of Production Planning and Scheduling Models in the Semiconductor Industry Part I: System Characteristics, Performance Evaluation and Production Planning,” IIE Transactions, 24(4), 47-60 (1992). 27. Wang, K.J., and Lin, S.H., “Capacity Expansion and Allocation for a Semiconductor Testing Facility under Constrained Budget,” Production Planning and Control, 13(5), 429-437 (2002).id NH0925031011 sid 913802 cfn 0 / id NH0925031012 auc 黃馨儀 tic 多階存貨系統在逐一補貨策略下之METRIC模式探討 adc 溫于平 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 英文 pg 51 kwc 多階存貨系統 kwc METRIC kwc 逐一補貨策略 abc 本論文主旨是利用METRIC模式以探討多階存貨系統的存貨整合問題。文中將原先的二階存貨系統擴展到三階存貨系統,使將原本求得的區域最佳解能夠轉換成為系統最佳解,且藉由實驗的分析可以驗證出METRIC的適用範圍,並且定義METRIC當中所需參數的設定適合範圍,以使METRIC模式求出的近似解和正確解的差距可在一定合理範圍之內。 tc Abstract i Table of Contents iii List of Figures v List of Tables vi Chapter 1 Introduction 1 1.1 Preface 1 1.2 Motivation of the Study and its Objectives 2 1.3 Scope and Process of the Study 4 1.4 Framework of the thesis 4 Chapter 2 Literature Review 7 2.1 Inventory Policy 7 2.2 Inventory system 9 2.2.1 Multi-level-inventory system 10 2.2.2 Two-Echelon Inventory System 11 2.3 Multi-echelon Technique for Recoverable Item Control (METRIC) 12 2.3.1 Introduction 12 2.3.2 Mathematical Assumption 13 2.3.3 Recoverable Item versus Consumable Item 15 2.4 Conclusion 16 Chapter 3 Problem Formulation 17 3.1 System Characteristic 17 3.2 Model Framework 18 3.2.1 Basic Assumption 18 3.2.2 Notation 18 3.3 METRIC Approach 20 3.3.1 Two-echelon Inventory System 20 3.3.2 Three-echelon Inventory System 21 3.4 Exact Solution 24 3.4.1 Two-echelon Inventory System 24 3.4.2 Three-echelon Inventory System 25 Chapter 4 Computational Experiments 29 4.1 Parameter Setting 29 4.2 Computational Experiments of Two-echelon Inventory System 29 4.2.1 Computational Experiments for Demand Intensity 29 4.2.2 Computational Experiments for Order-up-to Inventory Position 32 4.2.3 Computational Experiments for Lead Time 34 4.3 Computational Experiments of Three-echelon Inventory System 35 4.3.1 Computational Experiments for Demand Intensity 35 4.3.2 Computational Experiments for Order-up-to Inventory Position 41 4.3.3 Computational Experiments for Lead Time 42 4.4 Comparison 44 Chapter 5 Conclusions 45 Reference 47 Appendix 50rf [1 ] 邵芊苹,「存貨協調及資訊分享對供應鏈整合之影響」,國立清華大學工業工程與工程管理學系碩士論文(2002) [2 ] Abdul-Jalbar, B., J. Gutiérrez, J. Puerto, and J. Sicilia, “Policies for Inventory/Distribution Systems: The Effect of Centralization vs. Decentralization”, International Journal of Production Economics, 81-82, 281-293 (2003) [3 ] Aichlymayr, M., “DC mart: Who Manages Inventory in a Value Chain?”, Transportation and Distribution, 41, 60-68 (2000) [4 ] Allen, D. S., “Aggregate Dynamics of (S, s) Inventory Management”, International Journal of Production Economics, 59, 231-242 (1999) [5 ] Andersson, J. and J. Marklund, “Decentralized Inventory Control in a Two-Level Distribution System”, European Journal of Operation Research, 127, 483-506 (2000) [6 ] Andersson, J., and P. Melchiors, “A Two-Echelon Inventory Model with Lost Sales”, International Journal of Production Economics, 69, 307-315 (2001) [7 ] Andersson, J., S. Axsäter, and J. Marklund, “Decentralized Multiechelon Inventory Control”, Production and Operations Management, 7, 4, 370-386 (1998) [8 ] Axsäter, S., “ Simple solution procedures for a class of two-echelon inventory problems”, Operations Research, 38, 1, 64-69 (1990) [9 ] Axsäter, S., “Continuous Review Policies for Multi-Level Inventory Systems with Stochastic Demand”, Handbooks in OR & MS, 4, 175-197 (1993) [10 ] Axsäter, S., “Approximate Optimization of a Two-Level Distribution Inventory System”, International Journal of Production Economics, 81-82, 545-553 (2003) [11 ] Cachon, G. P. and M. Fisher, “Supply Chain Inventory Management and Value of Shared Information”, Management Science, 46, 8, 1032-1048 (2000) [12 ] Caplin, A. S., “The Variability of Aggregate Demand with (S, s) Inventory Policies”, Econometrica, 53, 6, 1395-1409 (1985) [13 ] Certinkaya, S. and C. Y. Lee, “Stock Replenishment and Shipment Scheduling for Vendor-Managed Inventory System”, Management Science, 46, 2, 217-232 (2000) [14 ] Chase, R. B. and N. J. Aquilano, Production and Operations Management ─ Manufacturing and Services, Seventh Ed., Richard D. Irwin, INC (1995) [15 ] Chen, F., A. Federgruen, and Y. S. Zheng, “Coordination Mechanisms for a Distribution System with One Supplier and Multiple Retailers”, Management Science, 47, 5, 693-708 (2001) [16 ] Chen, F. and Y. S. Zheng, “One-Warehouse Multiretailer Systems with Centralized Stock Information”, Operations Research, 45, 2, 275-287 (1997) [17 ] Chopra, S. and P. Meindl, Supply Chain Management: Strategy, Planning, and Operation (2000) [18 ] Clark, A. J. and H. Scarf, “Optimal policies for a multi-echelon inventory problem”, Management Science, 6, 475–490 (1960) [19 ] Diks, E. B. and A. G. Kok, “Computational Results for the Control of a Divergent N-Echelon Inventory System”, International Journal of Production Economics, 59, 327-336 (1999) [20 ] Forsberg, R., “Optimization of Order-up-to-S Policies for Two-Level Inventory Systems with Compound Poisson Demand”, European Journal of Operational Research, 81, 143-153 (1995) [21 ] Ganeshan, R., “Managing Supply Chain Inventory: A Multiple Retailer, One Warehouse, Multiple Supplier Model”, International of Production Economics, 59, 341-354 (1999) [22 ] Heijden, M. C. and T. Kok, “Estimating Stock Levels in Periodic Review Inventory Systems”, Operation Research Letters, 22, 179-182 (1998) [23 ] Lee, H.L., V. Padmanabhan, and S. Whang, “Information Distortion in a Supply Chain: The Bullwhip Effect”, Management Science, 43, 546-558 (1997) [24 ] Love, S. F., Inventory Control, McGraw-Hill, Inc. (1997) [25 ] Matheus, P. and L. Gelders, “The (R, Q) Inventory Policy Subject to a Compound Poisson Demand Pattern”, International Journal of Production Economics, 68, 307-317 (2000) [26 ] Naddor, E., Inventory System, John Wiley & Sons, Inc. (1966) [27 ] Nozick, L. K. and M. A. Turnquist, “A Two-Echelon Inventory Allocation and Distribution Center Location Analysis”, Transportation Research Part E, 37, 425-441 (2001) [28 ] Sherbrooke, C. C., “METRIC: A Multi-Echelon Technique for Recoverable Item Control”, Operations Research, 16, 122-141 (1968) [29 ] Simchi-Levi, D., P. Kaminsky, and E. Simchi-Levi, Designing and Managing the Supply Chain: Concept, Strategy and Case Studies, Second Ed., McGraw-Hill/Irwin (2003) [30 ] Svoronos, A. and P. Zipkin, “Estimating the Performance of Multi-Level Inventory Systems”, Operations Research, 36, 1, 57-72 (1988) [31 ] Tyan, J. and H. M. Wee, “Vendor Managed Inventory: A Survey of the Taiwanese Grocery Industry”, Journal of Purchasing and Supply Management, 9, 11-18 (2003) [32 ] Zomerdijk, L. G. and J. Vries, “An Organizational Perspective on Inventory Control: Theory and a case study”, International Journal of Production Economics, 81-82, 173-183 (2003)id NH0925031012 sid 913803 cfn 0 / id NH0925031013 auc 麥姿穎 tic 應用決策樹分析求解隨機生產計劃問題 adc 洪一峰 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 65 kwc 生產計劃問題 kwc 隨機需求 kwc 完美資訊期望值 kwc 決策樹分析 abc 生產計劃問題(production planning problem)充滿了許多不確定因素。大部分的生產計劃模型研究為了簡化問題以快速求得生產計劃,通常以確定性的模式來求解生產計劃。本論文將不確定性因素納入考量,對生產計劃問題進行研究探討。 tc 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究方法 3 1.4 研究架構與大綱 5 第二章 文獻探討 7 2.1 不確定性的建構 7 2.2 穩健最佳化方法 9 2.3 整合模式方法 10 2.4 決策樹分析 13 2.5 決策樹的基本做法 17 2.5.1 決策樹的建構 17 2.5.2 決策樹的計算 20 2.5.2.1 機會點的計算 20 2.5.2.2 決策點的計算 22 2.5.3 決策樹的結果 23 2.6 文獻探討之結論 24 第三章 方法建構 26 3.1 問題描述 26 3.2 問題模式化 27 3.3 決策樹分析 29 3.3.1 決策樹的建構 30 3.3.1.1 決策樹的展開 30 3.3.1.2 決策點下生產計劃數目的縮減 34 3.3.1.3 決策樹的評估 38 3.3.2 決策樹的計算 42 3.4 決策樹分析的結果 43 第四章 實驗結果與分析 44 4.1 實例探討 44 4.1.1 決策樹分析 45 4.1.1.1 決策樹的建構 45 4.1.1.2 決策樹的計算 49 4.1.2 決策樹分析的結果 50 4.2 問題參數設定與說明 51 4.3 實驗方法與結果分析 56 4.3.1 隨機需求數目 56 4.3.2 需求與產能的比值 59 第五章 結論 62 文獻參考 63rf 參考文獻 Ballestero E. (2001), “Stochastic goal programming: a mean-variance approach”, European Journal of Operational Research, Vol. 131, pp. 476-481. Beale E. (1955), “On minimizing a convex function subject to linear inequalities”, Journal of the Royal Statistical Society, B 17, pp. 173-184. Birge J. R. (1997), “Stochastic programming computation and applications”, INFORMS Journal on Computing, Vol. 9, No. 2, pp. 111-133. Charnes A. and Cooper W. W. (1959), “Chance-constrained programming”, Management Science, Vol. 5, pp. 73-79. Chen X. (2000), “Newton-type methods for stochastic programming”, Mathematical and Computer Modeling, Vol. 31, pp.89-98. Coles S. and Rowley J. (1995), “Revisiting decision trees”, Management Decision, Vol. 33, No. 8, pp. 46-50. Danzig G. B. (1955), “Linear programming under uncertainty”, Management Science, Vol. 1, pp. 197-206. Dupa?ova J. (2002), “Applications of stochastic programming: achievements and questions”, European Journal of Operational Research, Vol. 140, pp. 281-290. Hillier F. S. and Lieberman G. J. (2001), Introduction to Operations Research, 7th edition, McGraw-Hill, New York, NY, U.S.A.. James M. (1995), “Decision tree analysis - choosing between options by projecting likely outcomes”, Mind Tools, http://www.mindtools.com/dectree.html. Liu B. (1997), “Dependent-chance programming: a class of stochastic programming”, Computers Mathematics Application, Vol. 34, No. 12, pp. 89-104. Liu B. (2001), “Uncertain programming: a unifying optimization theory in various uncertain environments”, Applied Mathematics and Computation, Vol. 120, pp. 227-234. Masaru T. and Masahiro H. (2003), Genetic algorithm for supply planning optimization under uncertain demand, Genetic and Evolutionary Computation-GECCO 2003: Genetic and Evolutionary Computation Conference, Chicago, IL, U.S.A., pp. 2337-2346. Papadopoulos C. E. and Yeung H. (2001), “Uncertainty estimation and Monte Carlo simulation method”, Flow Measurement and Instrumentation, Vol. 12, pp. 291-298. Shapiro J. F. (2001), Modeling the Supply Chain, 1st edition, Duxbury press, CA, U.S.A.. Thompson S. D. and Wayne J. D. (1990), “An integrated approach for modeling uncertainty in aggregate production planning”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 20, No. 5, pp. 1000-1012. Wets R. J-B (1996), “Challenges in stochastic programming”, Mathematical Programming, Vol. 75, pp. 115-135. Zimmermann H. -J. (2000), “An application-oriented view of modeling uncertainty”, European Journal of Operational Research, Vol. 122, pp. 190-198.id NH0925031013 sid 913805 cfn 0 / id NH0925031014 auc 汪威志 tic OSPF通訊網路之訊務工程與壅塞控制 adc 溫于平 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 英文 pg 57 kwc 啟發式演算法 kwc 鏈路權重值 kwc 網路壅塞 kwc 最佳化 kwc 開放最短路徑優先協定 kwc 訊務工程 abc 在網際網路的環境中,開放最短路徑優先協定為最常被應用的協定之一,其隸屬於內部路由通訊協定,該協定的特色在於:以鏈路權重值來決定最短路徑,進而以最短路徑的方式傳送訊務。在該協定當中,訊務工程之主要目的著重在:透過已定義的目標函數式,來提升與最佳化網路的績效表現;其中,我們最常採取最小化「最大鏈路使用率」的目標式,來降低網路壅塞的情形。 tc TABLE OF CONTENT ABSTRACT i TABLE OF CONTENT iv LIST OF FIGURES vi LIST OF TABLES vii 1. INTRODUCTION 1 1.1 Background 1 1.2 OSPF Routing Protocol 2 1.3 Purpose and Scope 5 1.4 Research Framework 6 2. LITERATURE REVIEW 8 2.1 Optimal Routing Problem 8 2.2 Characteristics of OSPF Routing 9 2.3 Measurement of Traffic Demands 11 2.4 Previous Solution Approaches 12 3. THE PROPOSED METHODS 17 3.1 Problem Statement 17 3.2 Notations and Formulation 17 3.3 Approaches of Weights Setting 20 4. EXPERIMENTAL DESIGN AND RESULTS 30 4.1 Experimental Design 30 4.2 Preliminary Test 31 4.3 Computational Test 37 4.4 Equal-Cost Multiple Paths 40 5. NUMERICAL EXAMPLE 41 5.1 An Illustrative Example 41 5.2 Computational Result 43 5.3 Traffic Engineering Framework 44 6. CONCLUSIONS AND DISCUSSION 47 REFERENCE 49 APPENDIX 52rf [1 ] 曾春榮譯,「Cisco網路架構設計指南」,儒林,初版 [2000 ]。 [2 ] 張智勝譯,「TCP/IP互連網路」,全華,第四版 [2001 ]。 [3 ] 林班侯、林長毅譯,「IP選徑技術」,歐萊禮,初版 [2003 ]。 [4 ] Ahuja, R. K., T. L. Magnanti and J. B. Orlin, Network Flows, Prentice Hall, New Jersey (1993). [5 ] Leben, J. and J. Martin, TCP/IP networking, Prentice Hall, New Jersey (1994). [6 ] Bazaraa, M. S., J. J. Jarvis and H. D. Sherali, Linear Programming and Network Flows, second edition, John Wiley and Sons, New York (1997). [7 ] Moy, J., “OSPF Version 2,” Internet Engineering Task Force (IETF), RFC 2328 (1998). [8 ] Comer, D. E. and D. L. Stevens, Internetworking with TCP/IP, third edition, Prentice Hall, New Jersey (1999). [9 ] Lewis, C., Cisco TCP/IP routing professional reference, McGraw-Hill, New York (2000). [10 ] Fortz, B. and M. Thorup, “Internet Traffic Engineering by Optimizing OSPF Weights,” Proceedings of the INFOCOM’2000, 2, 519-528 (2000). [11 ] Metz, C., “IP Protection and Restoration,” IEEE Internet Computing, 97-101 (2000). [12 ] Ramakrishnan, K. G. and M. A. Roudrigues, “Optimal Routing in Shortest-path Data Networks, ” Lucent Bell Labs Technical Journal, 6, 117-138 (2001). [13 ] Bhattacharyya, S., C. Diot, J. Jetcheva and N. Taft, “Pop-Level and Access- Link-Level Traffic Dynamics in a Tier-1 POP,” Proceedings of 1st ACM Sigcomm Internet Measurement Workshop (2001). [14 ] Goralski, W. J., Juniper and Cisco routing, John Wiley, Indiana (2002). [15 ] Pióro, M., Á. Szentesi, J. Harmatos, A. Jüttner, P. Gajowniczek and S. Kozdrowski, “On Open Shortest Path First Related Optimisation Problems,” Performance Evaluation, 48, Issue 1-4, 201-223 (2002). [16 ] Fortz, B. and M.Thorup, “Optimizing OSPF/IS-IS Weights in a Changing World,” IEEE Journal on Selected Areas in Communications, 20, 756-767 (2002). [17 ] Villamizar, C., “OSPF Optimized Multipath (OMP),” Internet Engineering Task Force, Internet-Draft (2002). [18 ] Fortz, B., J. Rexford and M. Thorup, “Traffic Engineering with Traditional Routing Protocols,” IEEE Communications Magazine, 40, 118-124 (2002). [19 ] Kalyanaraman, S., H. T. Kaur, S. Raghunath, J. Akella, H. Nagar and K. Chandrayana, “BANANAS: A New Connectionless Traffic Engineering Framework for the Internet,” Rensselaer Polytechnic Institute Technical Report, 1-14 (2002). [20 ] Platt, D., “Improved Utilisation in IP Networks Using Multiple Path Routing”, ICCS2002 8th International Conference on Communication Systems, 1, 617-622 (2002). [21 ] Abrahamsson, H., B. Ahlgren, J. Alonso, A. Andersson and P. Kreuger, “A Multi Path Routing Algorithm for IP Networks Based on Flow Optimisation,” Lecture Notes in Computer Science (LNCS), 2511 (2002). [22 ] Harris, R., J. Murphy and R. J. Suryasaputra, “A Rapid Hot Spot Remover in OSPF networks,” presented at Australian Telecommunications, Networks and Applications Conference (2003). [23 ] Kaur, H. T., Tao Ye, S. Kalyanaraman and K. S. Vastola, “Minimizing Packet Loss by Optimizing OSPF Weights Using Online Simulation,” presented at 11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer Telecommunications Systems, 79-86 (2003). [24 ] Bhattacharyya, S., C. Diot, A. Nucci, B. Schroeder and N. Taft, “IGP Link Weight Assignment for Transient Link Failures,” presented at 18th international Teletraffic Congress (2003). [25 ] Diot, C., R. Guérin and A. Sridharan, “Achieving Near-Optimal Traffic Engineering Solutions for Current OSPF/IS-IS Networks,” IEEE INFOCOM 2003, 2, 1167-1177 (2003).id NH0925031014 sid 913807 cfn 0 / id NH0925031015 auc 陳彥翔 tic 網際網路交易之動態價格模式 adc 溫于平 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 英文 pg 45 kwc 動態價格 kwc 有時限的商品 kwc 收益管理 kwc 網際網路市場 abc 很多企業的業者都有機會透過動態價格來增加收益,尤其是針對像是飛機票、旅館房間和流行性商品等有時限的商品,這些商品在一特定期間內若沒售完就會變得沒有價值,因此如何利用顧客不同的購買時間和剩下的商品數,動態地調整有時限商品的價格使業者收益最大,即成為一個重要的議題。由於網際網路的發達,使得賣方對於市場變化能夠作即時的反應,以及網路上較低的價格更新成本,於是動態價格在網際網路交易的應用顯得更有價值。 tc Table of Content Abstract……………………………………………………………...……i Acknowledgement……………………………………………………….iii Table of Content………………...……………………………………… iv List of Figures…………………………………………………………vi List of Tables…………………………………………….……………vii Chapter 1 Introduction………………………………………………….1 1.1 Background and Motivation………………………………………………….1 1.2 Research Aims and Scope……………………………………………………4 1.3 Framework of this Thesis…………………………………………………….5 Chapter 2 Literature Review……………………………………………7 2.1 Revenue Management………………………………………………………..7 2.2 Seat Inventory Control……………………………………………………….8 2.3 Dynamic Pricing Policy……………………………………………………...9 2.4 Overbooking…………………………………………………………...……11 2.5 Dynamic Pricing on the Internet……………………………………………12 Chapter 3 Model Construction………………………………………..14 3.1 Problem Statement………………………………………………………….14 3.1.1 Problem Assumptions and Restrictions………………….……………...…..14 3.1.2 Notations…..……………………………………………….………...……..15 3.2 Model Framework…………………………………………………………..16 3.2.1 Model Description ………………………………………….………...…….16 3.2.2 Model Formulation………………………………………….………...…….16 3.3 Structure of the Time Thresholds…………………………………………...24 Chapter 4 Numerical Examples………………………….…………...27 4.1 Ticket Pricing Example……………………………………………………..27 4.2 Character of the Time Thresholds…………………………………………..31 Chapter 5 Extensions………………………………….……………...35 5.1 Re-supply…………………………………………………………………...35 5.2 Cancellations……………………………………………………………….37 Chapter 6 Conclusion…………………………………………………41 Reference………………………………………………………………..43 List of Figures Figure 1.1 Procedure of the study……………………………………………………..6 Figure 2.1 Framework of revenue management……………………………………….7 Figure 4.1 All time thresholds in the entire period…………………………………...30 Figure 4.2 Time thresholds with last 5 tickets left…………………………………...31 Figure 4.3 Comparisons in high demand and low demand…………………………..32 Figure 4.4 Time thresholds in time period 8 to 12…………………………………...33 Figure 4.5 Time thresholds in time period 23 to 26………………………………….34 Figure 5.1 Comparisons in three different probability of the cancellations………….40 Figure 6.1 Time thresholds with last 20 tickets left………………………………….42 List of Tables Table 4.1 Data in Example 1…………………………………………………………27 Table 4.2 Demand and revenue in Example 1………………………………………..28 Table 4.3 Optimal time thresholds in high demand (Example 1)……………….28 Table 4.4 Optimal time thresholds in low demand (Example 1)………………..29 Table 4.5 Optimal time thresholds in medium demand (Example 1)…………...29 Table 5.1 The expected revenue in Example 2……………………………..36 Table 5.2 The expected revenue at t = 28.5…………………………………37 Table 5.3 Time thresholds in three cases in Example 3…………………………39rf [1 ] Belobaba, P. P., “Airline yield management: an overview of seat inventory control,” Transportation Science, Vol. 21, No. 2, pp. 63-73, 1987. [2 ] Bichler, M. et al., “Applications of flexible pricing in business-to-business electronic commerce,” IBM Systems Journal, Vol. 41, No. 2, pp. 287-302, 2002. [3 ] Bitran, G. R. and Mondschein, S. V., “Periodic pricing of seasonal products in retailing,” Management Science, Vol. 43, No. 1, pp. 64-79, 1997. [4 ] Boston Consulting Group, “Winning the online consumer: insight into online consumer behavior,” research report, Cambridge, MA, 2000. [5 ] Brynjolfsson, E. and Smith, M. D., “Frictionless commerce? a comparison of Internet and conventional retailers,” Management Science, Vol. 46, No. 4, pp. 563-585, 2000. [6 ] Cao, Y., Gruca, T. S., and Klemz, B. R., “Internet pricing, price satisfaction and customer satisfaction,” International Journal of Electronic Commerce, Vol. 8, No. 2, pp. 31-50, 2003. [7 ] Chatwin, R. E., “Optimal dynamic pricing of perishable products with stochastic demand and a finite set of prices,” European Journal of Operational Research, 125, pp. 149-174, 2000. [8 ] Chun, Y. H., “Optimal pricing and ordering policies for perishable commodities,” European Journal of Operational Research, 144, pp. 68-82, 2003. [9 ] Feng, Y. and Gallego, G., “Optimal starting times for end-of-season sales and optimal stopping times for promotional fares.” Management Science, Vol. 41, No. 8, pp. 1371-1391, 1995. [10 ] Feng, Y. and Gallego, G., “Perishable asset revenue management with Markovian time dependent demand intensities,” Management Science, Vol. 46, No. 7, pp. 941-956, 2000. [11 ] Feng, Y. and Xiao, B., “Optimal policies of yield management with multiple predetermined prices,” Operations Research, Vol. 48, No. 2, pp. 332-343, 2000a. [12 ] Feng, Y. and Xiao, B., “A continuous-time yield management model with multiple prices and reversible price changes,” Management Science. Vol. 46, No. 5, pp. 644-657, 2000b. [13 ] Gallego, G. and van Ryzin, G., “Optimal dynamic pricing of inventories with stochastic demand over finite horizons,” Management Science, Vol. 40, No. 8, pp. 999-1020, 1994. [14 ] Gallego, G. and van Ryzin, G., “A multiproduct dynamic pricing problem and its applications to network yield management,” Operations Research, Vol. 45, No. 1, pp. 24-41, 1997. [15 ] Kannan, P. K. and Kopalle, P. K., “Dynamic pricing on the Internet: importance and implications for consumer behavior,” International Journal of Electronic Commerce, Vol. 5, No. 3, pp. 63-83, 2001. [16 ] Lee, T. C. and Hersh, M., “A model for dynamic airline seat inventory control with multiple seat bookings,” Transportation Science, Vol. 27, No. 3, pp. 252-265, 1993. [17 ] Liang, Y., “Solution to the continuous time dynamic yield management model,” Transportation Science, Vol. 33, No. 1, pp. 117-123, 1999. [18 ] Lin, K. Y., “A sequential dynamic pricing model and its applications,” Naval Research Logistics, Vol. 51, No. 4, pp. 501-521, 2004. [19 ] Littlewood, K., “Forecasting and control of passengers,” 12th AGIFORS Symposium Proceedings, Nathanya, Israel, 1972. [20 ] McGill, J. I. and van Ryzin, G. J., “Revenue management: research overview and prospects,” Transportation Science, Vol. 33, No. 2, pp. 233-256, 1999. [21 ] Pak, K. and Piersma, N., “Overview of OR techniques for airline revenue management,” Statistica Neerlandica, Vol. 56, No. 4, pp. 480-496, 2002. [22 ] Subramanian, J., Stidham, S. J., and Lautenbacher, C. J., “Airline yield management with overbooking, cancellations, and no-shows,” Transportation Science, Vol. 33, No. 2, pp. 147-167, 1999. [23 ] Wollmer, R. D., “An airline seat management model for a single leg route when lower fare classes book first,” Operations Research, Vol. 40, No. 1, pp. 26-37, 1992. [24 ] Zhao, W. and Zheng, Y. S., “Optimal dynamic pricing for perishable assets with nonhomogeneous demand,” Management Science, Vol. 46, No. 3, pp. 375-388, 2000. [25 ] Zhao, W. and Zheng, Y. S., “A dynamic model for airline seat allocation with passenger diversion and no-shows,” Transportation Science, Vol.35, No. 1, pp. 80-98, 2001.id NH0925031015 sid 913809 cfn 0 / id NH0925031016 auc 許漢昇 tic 結合層級分析法與資料包絡分析法之績效評估模式─以某背光模組公司之供應商評選為例 adc 劉志明 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 84 kwc 績效評估 kwc 資料包絡分析法 kwc 層級分析法 kwc 供應商評鑑 abc 本研究參照層級分析法(Analytical Hierarchy Process, AHP)的概念,加以修改後導入資料包絡分析法(Data Envelopment Analysis, DEA)之CCR模式,發展出一套改良的績效評估方法,此方法能夠有效地評估各單位之績效值,並且對於績效差的對象可提出較有效率的改善建議。本研究方法是基於DEA之模式,並且加入了AHP的概念,因此本績效評估模式具有DEA利用數字來說話的客觀性,同時評估結果比起原始DEA模式將更切合實際狀況,例如用在供應商的評選上,在少量的評選對象上仍然可以使用,這是原有的DEA方法所無法應用的。 rf 1. Andersen, P., N.C. Petersen. “A Procedure for Ranking Efficient Units in Data Envelopment Analysis,”Management Science 39 1261-1264, 1993. 2. Barbarosoglu, G., Yazgac, T., 1997, “An Application of the Analytic Hierarchy Process to the supplier Selection Problem”, Production and Inventory Management Journal, pp. 14-21. 3. Beamon, B. M., “Measuring supply chain performance,” International Journal of Operations & Production Management, 19(3), 1999, 275-292. 4. Charnes, A., Cooper, W. W. and Rhodes, E.“Measuring the Efficiency of Decision Making Units,” European Journal of Operational Research, 2(6), pp. 429-444, 1978. 5. Choi, T. Y., Hartley, J. L., “An Explortation of Supplier Selection Practices Across the Supply Chain,” Journal of Operations Management, Vol.14, pp.333-343, 1996. 6. Dickson, G.W., “An Analysis of Vender Selection Systems and Decisions”, Journal of Purchasing, Vol. 2, No. 1, pp.5-17. 1966. 7. Doyle, J. R. and R. H. Grew (1991), “Comparing products using data envelopment analysis,” Omega, 19(6), pp. 631-638. 8. Elyasiani,E., Median, S. and Rezvanian, R.,“An Empirical Test of Association Between Production and Financial Performance The Caseof the Commercial Banking Industry”, Applied Financial Economics 14,PP. 55-59. 1994. 9. Lo, F. Y., Chien, C. F. and Lin, J. T., “A DEA study to evaluate the relative efficiency and investigate the district reorganization of the Taiwan power company,” IEEE Trans. Power Syst., vol. 16, pp. 170–178, Feb. 2001. 10. Golany, B. and Y. Roll, “An application procedure for DEA,” Omega,17(3), pp. 237-250, 1989. 11. Goffin, K., Szwejczewski, M. and New, C., “Managing Suppliers: When Fewer Can Mean More,” International Journal of Physical Distribution and Logistics Management, Vol.27, No.7, pp.422-436, 1997. 12. Lewin, A.Y., Morey, R.C. and Cook,T.J.,1982,”Evaluating the Administrative Efficiency of Courts”,OMEGA,Vol.10,No.4,P.401-411. 13. Lynch, J. R,., Ozcan, Y. A., “Hospital closure: An efficiency analysis”, Hospital & Health Services Administration. Summer 1994. Vol. 39, Iss. 2. 14. Murphy, D. J., Pearson, J.N. and Siferd, S. P., “Evaluating Performance of the Purchasing Eepartment Using Data Envelopment Analysis”, Journal of Business Logistics. Oak Brook: 1996. Vol. 17, Iss. 2; p. 77. 15. Narasimhan, R., Talluri, S,. and Mendez, D., “Supplier Evaluation and Rationalization via Data Envelopment Analysis: An Empirical Examination” The Journal of Supply Chain Management; Summer 2001. 16. Ondrich, J., and Ruggiero, J., “Efficiency Measurement in the Stochastic Frontier Model”, European Journal of Operational Research, Vol.129, 2001 pp.434-436. 17. Pearson, J. N. and Ellram, L. M., “Supplier Selection and Envaluation in Small versus Large Electronics Films”, Journal of Small Business Management, 1995. 18. Sarrico, C.S., Hogan, S.M., Dyson, R.G., Athanassopoulos, A.D., “Data envelopment analysis and university selection”, Journal of the Operational Research Society, 48, 1163 - 1177 (Dec 1997). 19. Swift, C. O., “Performance for Single Sourcing and Supplier Selection Criteria,” Journal of Business Research, Vol.32, No.2, pp.105-111, 1995. 20. Taskin, F. and Zaim, O., 2001, ”The role of international trade on environ-mental efficiency:a DEA approach”,Economic Modelling 18,P.1-17 21. Tser-Yieth Chen and Tsai-Lien Yeh.,1998, ”A study of efficiency evaluation in Tai-wan`s Banks”,International Journal of Service Industry Management,Vol.9,No.5,P.402-415. 22. Weber, C.A., Current, J.R. and Bonton, W.C., “Vendor Selection Criteria and Methods”, European Journal of Operations Research, 50, 1991, 2-18. 23. Wilson, E. J., “The Relative Importance of Suppliers Selection Criteria : A Review and Update”, International Journal of Purchasing and Materials Management, Vol.30, No.3, pp.35-41, 1994. 24. 刀根薰、真鍋龍太郎,1990,AHP事例集/階層化意思決定法,東京巿日科技連出版。 25. 吳偉立,教學醫院醫療部門之績效評估─資料包絡法觀點,碩士論文,國立臺灣大學,2002。 26. 李宏文,結合層級分析法、模糊理論與灰色系統理論建構供應商評鑑模式之研究,碩士論文,國立台北科技大學,2002。 27. 林文信,台灣產業的環境資源效率-以資料包絡分析法探討,碩士論文,國立台北大學,2002。 28. 林世磬,以資料包絡分析法評估我國紡織業經營績效之研究-國內五十家上市公司之實證,碩士論文,實踐大學,2003。 29. 邱美玲,1994,製造業供應商的選擇與評估,國立台灣工業技術學院工業管理學程,碩士論文。 30. 洪海玲,以資料包絡分析法作製造業之營運效率分析,碩士論文,國立成功大學,2002。 31. 孫遜,2004,資料包絡分析法─理論與應用,揚智文化。 32. 高強、黃旭男、Toshiyuki Sueyoshi,2003,管理績效評估─資料包絡分析法,華泰文化。 33. 張錫峰、周齊武,資料包絡分析及其在效率評估上之應用,會計評論第二十六期,1992。 34. 陳永志,使用資料包絡分析法評估我國資訊服務業之經營效率,碩士論文,國立交通大學,2001。 35. 陳怡和、汪行全,1999,供應商管理標竿之建立與分析—以台灣筆記型電腦產業為例,品質學報 第六卷第一期。 36. 陳啟政,運用總品質成本分析之供應商績效評估模式,博士論文,中原大學,2003。 37. 游智超,應用資料包絡分析法評估國籍貨櫃航商整體營運效率之研究,碩士論文,國立高雄第一科技大學,2003。 38. 童宗傑,台灣地區新銀行經營績效比較分析資料包絡分析法之應用,碩士論文,國立中山大學,2001。 39. 黃智偉,供應鏈管理下供應商選擇評估之研究—以臺灣地區中衛體系之汽機車業與電腦資訊業為例,碩士論文,雲林科技大學,2000。 40. 楊淑惠,運用資料包絡分析法於電子化採購績效評估系統之研究-以紡織成衣業為例,碩士論文,國立成功大學,2003。id NH0925031016 sid 913811 cfn 0 / id NH0925031017 auc 吳立民 tic 液晶注入之批次加工機台排程 adc 洪一峰教授 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 85 kwc 液晶顯示器 kwc 批次加工機台 kwc 隨機塔布搜尋法 kwc 模擬退火法 abc 「批次加工機台」在許多製造環境中扮演著相當重要的角色,例如液晶顯示器產業的液晶注入(liquid crystal injection)製程工作站中,是由許多相同的平行批次機台所組成,一部機台能同時加工某特定數目的面板。我們主要的排程問題是在含生產順序相關的裝設時間條件下,求得「批量在等候線中的期望延遲時間」及「批次機台的產能利用率」兩者之間的平衡。 tc 目錄 第一章 緒論 ……………………….……….…………………………………...1 1.1 研究背景與動機 ……………..…………………………………….….1 1.2 研究目的 …..……………………………………………………….….4 1.3 研究範圍與特性 …..…………………………………………………..5 1.4 研究架構與流程 ……..………...……………………………….……..9 第二章 文獻回顧與探討 ……..…..……………………………………...…..10 2.1 液晶發展史 ……………………………………………………...…10 2.1.1 液晶的性質與分類 .…..….…………………………………….10 2.1.2 液晶的光電效應與顯像原理 …..……..……………………….11 2.1.3 總結 ……..…………………..………..………………………...13 2.2 TFT-LCD製程簡介 ………..…….…………………………………14 2.2.1 薄膜電晶體陣列製程(TFT Array) ….…………..……………...14 2.2.2 液晶顯示器面板組裝製程(LCD cell assembly) …………..…...18 2.2.3 液晶顯示器模組組裝製程(LCD module assembly) …………...22 2.2.4 總結 ……..…………………..………..………………………...23 2.3 彩色濾光片製程簡介 ……….…….…………………………………25 2.3.1 彩色濾光片製造方法 .…..….………………………………….25 2.3.2 彩色濾光片製造流程 .…..….……………………………….....26 2.4 結語 ……….…….……………………………………………………29 2.5 文獻回顧 ……….…….………………………………………………32 2.5.1 批量服務等候線系統(bulk service queueing systems)問題 …..32 2.5.2 批量排程問題 …..……..………………………….….….……..33 第三章 方法建構 …..…………...……………...………………….….……….38 3.1 問題定義及假設 ……….……………………….……………………38 3.2 問題的初始模型分析 ……………………..…………...……….……39 3.2.1 模型的理論依據 .…..….…………………………………….....39 3.2.2 起始解的建構 .…..….…………………………………..……...40 3.3 隨機塔布搜尋法求解平行批次機台生產模式的方法建構 ..……..43 3.3.1 前言 .…..….……………………………………..……………...43 3.3.2 基本元素設定 .…..….…………………………………..……...44 3.3.3 隨機塔布搜尋法之演算步驟 .…..…….……………………….47 3.4 模擬退火法求解平行批次機台生產模式的方法建構 …………….49 3.4.1 前言 .…..….……………………………………..……………...49 3.4.2 基本元素設定 .…..….…………………………………..……...50 3.4.3 模擬退火法之演算步驟 .…..…….……………………..……...52 3.5 計算總成本函數的方法建構 ………………………………………..54 3.6 求解流程架構 …………………………………………………….….60 第四章 實驗設計的方法與結果分析 ……..…..………………………....62 4.1 實驗問題設定與環境說明 ……………..……………..……….........62 4.1.1 實驗的問題設定 .…..…….……………………..……………...62 4.1.2 實驗的環境說明 .…..…….……………………..….……...…...63 4.2 問題參數設計 …………………………..…………..………….…....64 4.2.1 鄰近解的產生方式 .…..…….……………………..…….……..64 4.2.2 模擬退火法的參數設定 .…..…….……………………..……...65 4.2.3 隨機塔布搜尋法的參數設定 .…..…….……………..………...66 4.2.3.1 參數設計實驗的問題設定 .…..…….……………..…… 66 4.2.3.2 參數設計實驗的結果分析 .…..…….……………..…… 67 4.3 多因子混合模型分析 …………………..……………..……………..69 4.3.1 實驗的問題設定 .…..…….……………………..……………...69 4.3.2 對解改善幅度的因子分析實驗結果 .…..…….……...………..72 4.3.3 對演算法效能比較的因子分析實驗結果 .…..…….………….76 4.4 實驗結論 ….……………………………..……………..…………….78 第五章 結論與未來研究建議 …..…………...……………...……………...79 參考文獻 ……………………………………………………………….……….81 圖目錄 圖1-1 平面顯示器分類 ……...…….…………..……………..……………….2 圖1-2 液晶注入製程生產特性圖 ……………..……………………………...6 圖1-3 研究架構流程圖 …………..…………..……………………………….8 圖1-4 研究架構流程圖 …………..…………..……………………………….9 圖2-1 液晶分子配列的基本結構 ………..…....…………………………….11 圖2-2 未加電場前的TN效應動作原理 ……..….…….……………………12 圖2-3 施加電場後的TN效應動作原理 ...………...………………………..12 圖2-4 TFT-LCD顯像原理 …….…………….………………………...….....13 圖2-5 TFT-LCD組裝剖面圖 …….…………….……………………...….....14 圖2-6 薄膜電晶體陣列製程 …………..….……..…………………………..17 圖2-7 間隔材結構圖 …………..….……..…………………………………..19 圖2-8 液晶顯示器面板組裝製程 ……………………………..…………….21 圖2-9 液晶顯示器模組組裝製程 ….………………………………………..24 圖2-10 顏料分散法 ………………………………………..………………...26 圖2-11 彩色濾光片結構 ………..……………………………………….......27 圖2-12 彩色濾光片製造流程 ……………………...………………………..28 圖2-13 非晶矽TFT-LCD的製造流程 ………..…………………………....31 圖2-14 DBH的控制策略 ………………..…………………………….....…35 圖3-1 起始解之生產模式示意圖 …..…………………………………….....43 圖3-2 取代鄰近解示意圖 …………………………..……………………….44 圖3-3 刪除鄰近解示意圖 …………………………..……………………….45 圖3-4 插入鄰近解示意圖 …………………………..……………………….46 圖3-5 隨機塔布搜尋法流程圖 …………………………..………………….48 圖3-6 模擬退火法跳出局部最佳解示意圖 …………………………...……50 圖3-7 模擬退火法流程圖 …………………………..……………………….53 圖3-8 存欠貨數量時間示意圖 ……………………………………...………55 圖3-9 兩轉折時點的三種不同存欠貨狀態示意圖 …………...……………56 圖3-10 兩種啟發式演算法的流程架構圖 .…………………………………61 圖4-1 實驗設計(2)-問題大小 vs. 改善幅度分析圖 ……………………..73 圖4-2 實驗設計(2)-產能/需求比例 vs. 改善幅度分析圖 …………..…74 圖4-3 實驗設計(2)-到達量與需求量變異vs. 改善幅度分析圖 ……...…75 圖4-4 實驗設計(2)-演算法vs. 改善幅度分析圖 ………………………...76 圖4-5 演算法效能比較趨勢圖 ………..……………..……………………...77 表目錄 表4-1 實驗設計(1)-實驗因子水準設計值 ……...………………….…….67 表4-2 實驗設計(1)-參數實驗的因子檢定分析表 ...………………...…...68 表4-3 實驗設計(1)-鄰近解集合數的Duncan’s Test分析表 ………….68 表4-4 實驗設計(2)-實驗因子水準設計值 ………………………..….…..70 表4-5 實驗設計(2)-總成本改善幅度實驗的多因子檢定分析表 …..…...72 表4-6 實驗設計(2)-問題大小的Duncan’s Test分析表 ………………..73 表4-7 實驗設計(2)-產能/需求比例的Duncan’s Test分析表 ………..74 表4-8 實驗設計(2)-到達量與需求量變異的Duncan’s Test分析表 .….75rf 英文部分: Armentano, V. A. and Yamashita, D. S. (2000), “Tabu search for scheduling on identical parallel machines to minimize mean tardiness”, Journal of intelligent manufacturing, Vol. 11, No. 5, pp. 453-460. Bailey, N. T. J. (1954), “On queueing processes with bulk service”, Journal of Royal Statistical Society: Series B (Statistical Methodological), Vol. 16, pp. 80-87. Bilge et al., (2004), “A tabu search algorithm for parallel machine total tardiness problem”, Computers & Operations Research, Vol. 31, No. 3, pp. 397-414. Chandru, V., Lee, C. Y., and Uzsoy, R. (1993), “Minimizing total completion time on batch processing machines”, International Journal of Production Research, Vol. 31, No. 9, pp. 2097-2121. Cheng, T. C. E., Chen, Z. L., Kovalyov, M. Y., and Lin, B. M. T. (1996), “Parallel-machine batching and scheduling to minimize total completion time”, IIE Transactions, Vol. 28, No. 11, pp. 953-956. Deb, R. K. and Serfozo, R. F. (1973), “Optimal control of batch service queues”, Advances in Applied Probability, Vol. 5, pp. 340-361. Dupont, L. and Dhaenens-Flipo, C. (2002), “Minimizing the makespan on a batch machine with non-identical job sizes: an exact procedure”, Computers & Operations Research, Vol. 29, No. 7, pp. 807-819. Fowler, J. W., Hogg, G. L., and Phillips, D. T. (1992), “Control of multiproduct bulk server diffusion/oxidation processes”, IIE Transactions, Vol. 32, No. 2, pp. 84-96. Fowler, J. W., Hogg, G. L., and Phillips, D. T. (2000), “Control of multiproduct bulk server diffusion/oxidation processes. Part 2: Multiple servers”, IIE Transactions, Vol. 32, No. 2, pp. 167-176. Franca et al. (1996), “A tabu search heuristic for the multiprocessor scheduling problem with sequence dependent setup times”, International Journal of Production Economics, Vol. 43, No. 2-3, pp. 79-89. Glassey, C. R. and Weng, W. W. (1991), “Dynamic batching heuristic for simultaneous processing”, IEEE Transaction on Semiconductor Manufacturing, Vol. 4, No. 2, pp. 77-82. Gurnani, H., Anupindi, R., and Akella, R. (1992), “Control of batch processing systems in semiconductor wafer fabrication facilities”, IEEE Transaction on Semiconductor Manufacturing, Vol. 5, No. 4, pp. 319-328. Jang et al. (2002), “Technology development and production of flat panel displays in Korea”, Proceedings of the IEEE, Vol. 90, No. 4, pp. 501-513. Jeong B., Kim, S. W., and Lee, Y. J. (2001), “An assembly scheduler for TFT LCD manufacturing”, Computers & Industrial Engineering, Vol. 41, No. 1, pp. 37-58. Kim, C. O. and Shin, H. J. (2003), “Scheduling jobs on parallel machines: a restricted tabu search approach”, International Journal of Advanced Manufacturing Technology, Vol. 22, No. 3-4, pp. 278-287. Kirkpatrick et al. (1983), “Optimization by simulated annealing”, Science, Vol. 220, pp. 671-680. Kovalyov, M. Y. and Shafransky, Y. M. (1997), “Batch scheduling with deadlines on parallel machines: An NP-hard case”, Information Processing Letters, No. 64, pp. 69-74. Lee, C. Y., Uzsoy, R., and Martin-Vega, L. A. (1992), “Efficient algorithms for scheduling semiconductor burn-in operations”, Operations Research, Vol. 40, No. 4, pp. 764-775. Medhi J. (1975), “Waiting time distribution in a Poisson queue with a general bulk service rule”, Management Science, Vol. 21, No. 7, pp. 777-782. Mendes et al. (2002), “Comparing meta-heuristic approaches for parallel machine scheduling problems”, Production Planning & Control, Vol. 13, No. 2, pp. 143-154. Metropolis et al. (1953), “Equation of state calculations by fast computing machines”, Journal of Chemical Physics, Vol. 21, pp. 1087-1092. Neuts, M. F. (1967), “A general class of bulk queues with Poisson input”, Annals of Mathematical Statistics, Vol. 38, pp. 759-770. Park, M. W. and Kim, Y. D. (1997), “Search heuristics for a parallel machine scheduling problem with ready times and due dates”, Computers & Industrial Engineering, Vol. 33, No. 3-4, pp. 793-796. Potts, C. N. and Kovalyov, M. Y. (2000), “Scheduling with batching: A review”, European Journal of Operational Research, Vol. 120, No. 2, pp. 228-249. Uzsoy, R. (1994), “Scheduling batch processing machines with non-identical job sizes”, International Journal of Production Research, Vol. 32, pp. 1615-1635. Uzsoy R., Lee, C. Y. and Martin-Vega, L. A. (1994), “A review of production planning and scheduling models in the semiconductor industry. Part II:Shop-floor control”, IIE Transactions, Vol. 26, No. 5, pp. 44-55. VanderZee, D. J., VanHarten, A., and Schuur, P. C. (1997), “Dynamic job assignment heuristics for multi-server batch operations: A cost based approach”, International Journal of Production Research, Vol. 35, No. 11, pp. 3063-3093. Weng, W. W. and Leachman, R. C. (1993), “An improved methodology for real-time production decisions at batch-process workstations”, IEEE Transaction on Semiconductor Manufacturing, Vol. 6, No. 3, pp. 219-225. Winston, W. L. (1991), Operations research:applications and algorithms, 2nd edition, Pws-kent, Boston, U.S.A.. Zhang, G. C., Cai, X. Q., and Wong, C. K. (2003), “Optimal on-line algorithms for scheduling on parallel batch processing machines”, IIE Transactions, Vol. 35, No. 2, pp. 175-181. 中文部分: 松本正一、角田巿良合著,劉瑞祥譯 (1996),「液晶之基礎與應用」,國立編譯館,台北。 顧鴻壽 (2001),「光電液晶平面顯示器技術基礎及應用」,新文京開發出版有限公司,台北。 紀國鐘,鄭晃忠 (2002),「液晶顯示器技術手冊」,台灣電子材料與元件協會,新竹。 工業技術研究院光電工業研究所 (2002),「2002光電工業綜論」,工業技術研究院產業經濟與資訊服務中心,新竹。 拓墣產業研究所 (2003),「2002年光電產業與市場巡弋」,拓墣科技股份有限公司,台北。 拓墣產業研究所 (2003),「2002年光電產業與市場瞭望」,拓墣科技股份有限公司,台北。 拓墣產業研究所 (2003),「掌握光電大脈動」,拓墣科技股份有限公司,台北。 王啟仲 (1998),「半導體製造多頭測試機器排程問題研究」,國立清華大學工業工程研究所碩士論文。 胡雅傑 (2003),「彩色濾光片生產之批量排程」,國立清華大學工業工程研究所碩士論文。 李俊昇 (2003),「液晶面板組裝廠批量製程派工法則之設計」,國立交通大學工業工程與管理研究所碩士論文。 展茂光電,http://www.amtc.com.tw/tech.html 統寶光電,http://www.toppoly.com.twid NH0925031017 sid 913812 cfn 0 / id NH0925031018 auc 陳新元 tic 倒數矩陣上決策評估的容忍度分析 adc 王小璠教授 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 英文 pg 50 kwc 容忍度分析 kwc 固有系統 kwc 成對倒數矩陣 kwc 可接受的一致性 kwc 有效度 abc 矩陣上的容忍度分析是十分的複雜,然而近幾年來卻是廣泛的討論,特別是在決策評估的成對倒數矩陣(positive reciprocal matrix)上。成對倒數矩陣的容忍度分析是在固有系統中,隨著一致性和倒數性質的要求下所執行的。在矩陣和可被視為在評估問題中屬性重要性權重的固有向量之間的關係,透露了在容忍度分析中高度的複雜性卻有趣的含意。因此,我們所提出容忍度分析的第一個主題是給定一個成對倒數矩陣和所導致的權重向量,在可接受的一致性要求下,對於這一個權重向量而言,成對倒數矩陣最大的容忍範圍為何?既然在給定成對倒數矩陣上的容忍度分析中,同一個權重向量未必是有意義的,因此,我們的第二個主題是給定一個一致性的成對倒數矩陣,在要求達到有效度的前提下,成對比較矩陣的最大容忍範圍為何?在得到容忍範圍之後,我們進一步提出了可能的應用。從給定有效的容忍範圍,以建構在固有系統中同一或不同權重的一致性成對倒數矩陣。我們將以例子來驗證所提出的步驟。結果顯示了容忍度分析提供充分的資訊給決策者做一個較佳的決策。 tc CONTENTS ABSTRACT I CHINESE ABSTRACT II ACKNOWLEDGEMENT III CONTENTS IV FIGURE AND TABLE CAPTIONS VI CHAPTER 1. INTRODUCTION 1 CHAPTER 2. LITERATURE REVIEW 5 2.1 Basic Concept and Definitions 6 2.2 Calibration Methods of An Inconsistent Matrix 8 2.3 Calibration Effectiveness 9 2.4 Interval Computation 10 2.5 Summary 11 CHAPTER 3. TOLERANCE ANALYSIS OF A PRM BY CONSISTENCY CONDITION 12 3.1 Tolerance Analysis in an Eigensystem 12 3.1.1 Interval Derivation 12 3.1.2 Construction of a New PRM with the Same Eigenvector 15 3.1.3 Construction of a New PRM with Different Eigenvector 15 3.2 Procedure of Tolerance Analysis and Reconstruction of An Inconsistent PRM 19 3.3 Numerical Example 21 3.4 Summary 22 CHAPTER 4. TOLERANCE ANALYSIS OF A CONSISTENT PRM BY EFFECTIVENESS CONDITIONS 24 4.1 Tolerance Analysis with Single Parameter 25 4.1.1 Theoretical Development 25 4.1.2 Pattern of the Tolerance Matrix 26 4.1.3 The Procedure 28 4.1.4 Numerical Example 29 4.2 Tolerance Analysis with Different Parameters 32 4.2.1 The Procedure 32 4.2.2 Numerical Example 33 4.3 Summary 35 CHAPTER 5. AN ILLUSTRATIVE CASE 39 5.1 A Numerical Example For Tolerance Analysis 39 5.2 A Numerical Example of Effectiveness For Tolerance Analysis 41 5.2.1 Tolerance Analysis For The Same Variation 41 5.2.2 Tolerance Analysis For The Different Variations 44 5.3 Summary 46 CHAPTER 6. SUMMARY AND CONCLUSION 49 REFERENCE 50 FIGURE AND TABLE CAPTIONS Figure 4.1 Range of “a” 26 Figure 4.2 Flow Chart of the Algorithm (1) 37 Figure 4.3 Flow Chart of the Algorithm (2) 38 Table3.1 THE MEAN CONSISTENCY INDEX OF RANDOMLY GENERATED MATRICES 20rf REFERENCE 1.Franklin J.N., Matrix Theory, Prentice-hall, N.J., 1968 2.Hillier F.S., Lieberman G.J., Introduction to Operations Research 6th edition, McGraw-Hill Inc, Singapore, 1995 3.Kwiesielewicz M., Uden, E.V., Inconsistent and contradictory judgements in pairwise comparison method in the AHP, Computers & Operations Research 31 (2004) 713-719 4.Ma. Weiyi, X. Jiangyue, W. Yixiang, A practical approach to modifying pairwise comparison matrices and two criteria of modificatory effectiveness, Systems Science and Systems Engineering 2 (1993) 334-338 5.Moore R.E., Interval Analysis, Prentice-hall, N.J., 1966 6.Moore R.E., Methods And Application of Interval Analysis, SIAM, Philadelphia,1979 7.Saaty T.L., The Analytic Hierarchy Process, McGraw-Hill, New York, 1980 8.Wilkinson J.H., The Algebraic Eigenvalue Problem, Oxford University Press, London, 1965 9.Xu Zeshui, Wei Cuiping, A consistency improving method in the analytic hierarchy process, European Journal of Operational Research 116 (1999) 443-449 10.Xu Z., On consistency of the weighted geometric mean complex judgment matrix in AHP, European Journal of Operational Research 126 (2000) 683-687id NH0925031018 sid 913813 cfn 0 / id NH0925031019 auc 蔡建民 tic 新產品開發之供應商評估系統建立 adc 劉志明教授 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 125 kwc 新產品開發 kwc 供應商參與 kwc 績效評估 abc 面對新產品生命週期越來越短,供應商參與企業新產品開發以縮短新產品開發時間已成為一種趨勢。過去許多文獻提到供應商參與在新產品開發過程中的優點,但尚未能進一步說明在新產品開發過程中該如何區分供應商的類別及不同的參與模式。因此本研究將以市場需求角度思考新產品類型,探討新產品零組件依重要程度採取ABC分類;結合在新產品開發之不同階段來區分供應商參與新產品開發之9種不同模式,訂定不同模式下供應商之評選標準。在不同模式下關於供應商的績效評估指標皆不相同,但其最終目的皆為提高供應商之管理績效。所以本研究希望藉由建立不同的供應商參與模式,釐清不同模式之間績效指標的共同性與差異性,以提供企業未來對於新產品開發過程中之供應商選擇有一套清楚的準則。並可利用此系統累積有關於供應商之合作歷史資料,為找出不同模式下的關鍵指標,作為以後評比的依據;同時也可避免以後開發相同類型新產品時,重新建立供應商評估系統之工作。 rf 1. 英文部分 1. Barbarosoglu, G., Yazgac, T., 1997, “An Application of the Analytic Hierarchy Process to the supplier Selection Problem”, Production and Inventory Management Journal, pp. 14-21. 2. Bidault, F., Despres, C. and Butler, C. , 1998 , “The drivers between buyers and supplier for product innovation”, Research Policy, 26,pp.719-732 3. Birou, L.M., and Fawcett, S.E., 1994 , ”Supplier Involvement in Integrated Product Development: A Comparison of U.S. and European Practices” International Journal of Physical Distribution & Logistics Management, 24(5),pp4-14. 4. Bonaccorsi,A. and Lippaini, A. , 1994 , ”Strategic Partnerships in New Product Development: an Italian Case Study”, Journal of Product Innovation Management, 11,pp.134-145 5. Booz, Allen and Hamilton, 1982 , New Product management for the 1980’s, New York. 6. Choi, T.Y, Hartley, J.L, 1996 , “An explortation of supplier selection practices across across the supply chain”, Journal of Operations Management, Vol. 14, pp.333-343. 7. Clark, K. B. and Fujimoto, T. , 1991 , “Product development performance: Strategy, Organization and Management in the World Auto Industry”, Harvard Business School Press, Boston, Massachusetts. 8. Clark, K.B. and Wheelwright, S.C., 1993 , Revolutionizing Product Development, New York, The Free press, pp.165-187. 9. Crawford C. M., New Products Management, IRWIN, New York , 1997. 10. Crawford, C. Merle and Di Benedetto, C. Anthony , 2000 , New Products Management, 6th ed, Boston, Mass.: Irwin/McGraw-Hill. 11. Day,George S., 1994 “The Capabilities of Market-Driven Organizations”, Journal of Marketing , Vol.58(October),pp.37-52. 12. Dickson, G.W., 1966, “ An Analysis of Vender Selection Systems and Decisions”, Journal of Purchasing, Vol. 2, No. 1, pp.5-17. 13. Giffin, A. and Page, A. L.,1993 ,”An interim report om measuring product development success and failure”, Journal of Product Innovation Management, 10(4), pp.291-308. 14. Handfield, R. B., Ragatz G. L., Peterson K. J. and Monczka R. M., 1999 ,”Involving Suppliers in New Product Development”,California Management Review, 42(1), pp.59-82 15. Hartley, J. L., Zirger, B. J. and Kamath, R.R., 1997 ,”Managing the buyer-supplier interface on-time performance in product development”, Journal of Operations Management, 15,pp.57-70. 16. Henard, David H. and Szymanski, David M., 2001 ,”Why Some New Products Are More Successful Than Others,” Journal of Marketing Research, 38(August), 362-375. 17. Huktink, E. J. and Robben H. S. J., 1995 , “Measuring new product success: The difference that time perspective makes”, Journal of Product Innovation Management, 12(5), pp.392-405. 18. Kaplan, R. S. and. D. P. Norton, The Balanced Scorecard: Translating Strategy into Action, Harvard Business School, 1996. 19. LaBahn, D.W. and Krapfel, R., 2000 ,”Early Supplier Involvement in Customer New Product Development - The Story of Lean Production”, Journal of Business Research, 47(3), pp. 173-190. 20. Lamming, R., 1993 , Beyond Partnership: Strategies for Innovation and Lean Supply. Prentice Hall, Hemel Hempstead. 21. Liker, J.K., Kamath, R.R., Watsi, S. N. and Nagamachi, M., 1996 ,”Supplier involvement in automotive component design: are there really large US Japan differences? ”, Research Policy, 25,pp.59-89 22. Pearson, N., Ellram, L.M., 1995 , “Supplier Selection and Evaluation in Small versus Large Electronics Firms” , Journal of Small Business Management, Octorber. 23. Sherman, J. D. ,Souder, W. E. and Jenssen, S.A., 2000 , “Differential Effects of the Primary Forms of Cross Function Integration on Product Development Cycle Time”, Journal of Product Innovation Management, 17(4), pp.257-267. 24. Sobrero, M., Roberts, E. B. , 2002 , “Strategic management of supplier- manufacturer relations in new product development”, Research Policy, 13(1), pp.159-182. 25. Song, X. M. and Montoya-Weiss M. M., 1998 , “Critical Development Activities for Really New versus Incremental Products”, Journal of Product Innovation management , Vol.15(2) , pp.124-135. 26. Song X. M., Souder W. E. and Barbara Dyer, 1997 , “A Causal Model of the Impact of Skills, Synergy, and Design Sensitivity on New Product Performance”, Journal of Product Innovation Management, 14, pp.88-101. 27. Souder, W. E., Sherman, J. D. and Cooper, R. D., 1998 , “Environmental Uncertainty, Organizationa l Integration, and New Product Development Effectiveness: A Test of Contingency Theory”, Journal of Product Innovation management , Vol.15(6) , pp.520-533. 28. Swink, M., 1999 , ”Threats to new product manufacturability and the effects of development team integration processes”, Journal of Operations Management, 17, pp.691–709. 29. Toni, A. and Nassimbeni, G. , 2001 , “A method for the evaluation of supplier’s co-design effort”, International Journal of Product Economics, 72(2), pp.169-180. 30. Urban, G.L. and Hauser, J.R. , 1993, Design and Marketing of New Products. Englewood Cliffs, NJ:Prentice-Hall. 31. Wasti,S. N. and Liker, J.K., 1997 ,”Risky Business or Competitive Power? Supplier Involvement in Japanese Product Design”, Journal of Production Innovation Management, 14,pp.337-355. 32. Weber, C.A., Current, J.R. and Benton, W.C., 1991 , “Vendor Selection Criteriaand Method,”European Journal of Operational Research, Vol.50, No.1, pp. 2-18. 33. Weber, C. A., J. R. Current and W. C. Benton, 1993 , “Vendor Selection Criteria and Methods”, European Journal of Operational Research, Vol. 50, No. 1, pp. 2-18. 34. Wynstra, F. and Pierick, E.t., 2000 ,”Managing supplier involvement in new product development: a portfolio approach”, European Journal of Purchasing & Supply Management, 6,pp.49-57. 35. Wynstra, F., Wheele, A. , Weggwmann, M., 2001 , “Managing supplier involvement in product development : Three critical issues”, European Management Journal, 19(2), pp.157. 2. 中文部分 1. 方國定、許欽嘉,”資訊系統外包績效評估指標之建構”,國立中正大學學報社會科學分冊,第十卷第一期,頁139、159。 2. 鄭友超,工職機械類設科與職訓機構所辦職類配合調整之規畫研究,師範大學工教所碩士論文,1980。 3. 林明杰,”技術能力與技術引進績效相關之研究”,國立政治大學企業管理研究所未出版博士論文,1992。 4. 李長貴,績效管理與績效評估,台北,華泰文化事業有限公司,1997。 5. 陳怡和,”供應商管理標竿之建立與分析--以台灣筆記型電腦產業為例”,私立元智大學工業工程研究所,1998。 6. 何安邦,”供應商參與角色與新產品開發專案績效關係之研究”,國立中央大學企業管理研究所,2000。 7. 黃智偉,”供應鏈管理下供應商選擇評估之研究—以臺灣地區中衛體系之汽機車業與電腦資訊業為例”,國立雲林科技大學工業工程與管理研究所,2000。 8. 陳建中,”供應商管理系統之建立-以筆記型電腦為例”,國立清華大學工業工程與管理研究所碩士論文,2001。 9. 陳曉琪,”供應商遴選之決策支援系統之研究”,私立義守大學工業工程研究所碩士論文,2001。 10. 郭朝榮,”建構供應商參與之產品開發團隊之探討”,國立台灣科技大學工業管理研究所,2001。 11. 黃鴻圖,”市場資訊處理能力與組織設計對新產品績效影響之研究”,國立中央大學企業管理研究所,2001。 12. 林哲儀,”供應商涉入程度與新產品開發績效關係之研究”,國立中央大學企業管理研究所,2002。 13. 盧舜年、鄒坤霖,”供應鏈管理的第一本書”,台北市,商周出版,2002。 14. 洪碧溎,”筆記型電腦新產品導入績效衡量機制與評估系統”,國立清華大學工業工程研究所,2003。 15. 陳啟政,”運用總成本品質分析之供應商績效評估模式”,私立中原大學工業工程研究所博士論文,2003。 16. 葉明豪,”以核心競爭力為基礎的採購與供應商管理系統再造之方法-以筆記型電腦公司為例”, 國立清華大學工業工程研究所,2003。id NH0925031019 sid 913816 cfn 0 / id NH0925031020 auc 賴建成 tic 企業敏捷度績效評估方法 adc 劉志明 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 117 kwc 敏捷性供應鏈 kwc 關鍵成功因素 kwc 平衡計分卡 kwc 績效評估 kwc 筆記型電腦 abc 筆記型電腦產業本身具有產品的生命週期短、技術淘汰率高、市場反應快速、原料價值變動大以及競爭性高等特性。加上在此成熟的供應鏈體系之下,低生產成本已經變成了產業的必備因素,唯有以顧客為導向的快速反應能力、提升服務水準等的敏捷經營思考才能建立廠商的競爭優勢。本研究提出了一套供應鏈敏捷性的績效評估發展方法,期望能藉由此評估方法,來檢視企業整體的敏捷能力,並進而提昇產業的競爭力。 rf 英文部分: 1. Aaker, D.A., “Strategic Market Management”, NY: John Wiley & Sons Co., 1988. 2. Ahn, H., “Applying the Balanced Scorecard Concept: An experience report”, Long Range Planning, 2001. 3. Aitken, J., Christopher, M., Towill, D. R., “Understanding, Implementing and Exploiting Agility and Leanness”, International Journal of Logistics : Research and Application, Vol 5, No 1, 2001. 4. Barbuceanu, M. and Fox, M. S., “Coordinating Multiple Agents in the Supply Chain”, Enable Technologies:Infrastructure for Collaborative Enterprises pp. 134-141, IEEE, 1996. 5. Beamon, B. M., “Supply Chain Design and Analysis:Model and Method”, Int. J. Production Economics 55 pp. 281-294, Elsevier Science, 1998. 6. Beamon, B.M., “Measuring Supply Chain Performance”, International Journal of Operations & Production Management, Vol. 19, No. 3, pp. 275-292, 1999. 7. Bullen, Christine V. and Rockart, John F., “A Primer on Critical Success Factors”, CISR ND.69, MIT, 1981, P10-12. 8. Butler, A., Letza, S. R., “Linking the Balanced Scorecard to Strategy.”, Long Range Planning, Vol.30, No. 2, PP.242-153, 1997. 9. Christopher, M., “The Agile Supply Chain: Competing in Volatile Markets”, Ind. Mark. Man., 2000. 10. Christopher, M. and Towill, D.R., “Don’t Lean Too Far – Distinguishing Between the Lean and Agile Manufacturing Paradigms”, Proc. MIM Conf. Aston, 2000. 11. Christopher, M. and Towill, D.R. “An Integrated Model for the Design of Agile Supply Chains”, Proc. LRN Conference, Cardiff, 2000. 12. Christopher, M., Towill, D.R., “Supply Chain Migration from Lean and Functional to Agile and Customized”, Supply Chain Management, 2000. 13. Donald, C.Hambric, “Key Success Factors: Test of a General Theory in the Mature Industrial-Product Sector”, Strategic Management Journal, VOL. 10, 1989. 14. Douglas, J. T. and Paul, M. G., “Coordinated supply chain management”, European Journal of Operational Research 94, 1996. 15. Douglas, M. L. and Martha, C. C., “Issues in Supply Chain Management”, Industrial Marketing Management, pp. 65-83, Vol. 29, 2000. 16. Dove, R., “Agile Supply Chain Management”, Production, No.4, 1996. 17. Dove, R., “Critical Business Practices for Agility”, Production, No. 6, 1996. 18. Dove, R., “Building Agility Improvement Strategies”, Production, No 7, 1996. 19. Fisher, M.L., “What is the Right Supply Chain for Your Product?”, Harvard Business Review, 1997. 20. Fisher, M.L., Hammond, J.H., Obermeyer, W.R., Raman, J., “Making Supply Meet Demand in an Uncertain World”, Harvard Business Review, May-June, pp83-93, 1994. 21. Gaynor, G. H., “Handbook of Technology Management”, McGraw HILL, p.387, 1996. 22. Gunasekaran, A., Patel, C., Tirtiroglu E., “Performance Measures and Metrics in a Supply Chain Environment”, International Journal of Operations & Production Management, Vol. 21 No. 1/2, pp. 71-87, 2001. 23. Gunasekaran, A., “Agile manufacturing: The 21st Century Competitive Strategy.”, Elsevier Science Ltd, 2001. 24. Gunasekaran, A., Patel, C., McGaughey, R. E., “A Framework for Supply Chain Performance Measurement”, International Journal of Production Economics, 2003. 25. Harrison, A., Christopher, M. and van Hoek, R., “Creating the Agile Supply Chain”, School of Management Working Paper, Cranfield University, 1999. 26. Hofer, C. W. and Schendel, D., “Strategic Management”, New York: McGraw-Hill, Inc., 1985. 27. Iacocca Institute, “21st century Manufacturing Strategy: An Industry-Lead View”, vol. 1&2, Lehigh University, Bethlehem, PA, 1991. 28. Kaplan, R.S., Norton, D.P., “The Strategy-focused Organization: How Balanced Scorecard Companies Thrive in the New Business Environment”, Harvard Business School, Boston, MA, 2001. 29. Kaplan, R.S. and Norton, P.D., “The balanced scoreboard-measures that drives performance”, Harvard Business Review, January-February, pp. 71-9. 1992. 30. Kaplan R. S., and Norton, D. P., “The Balanced Scorecard/Translating Strategy into Action”, Harvard Business School Press, 1996. 31. Kearney, A. T., “Partnership or Powerplay?”, A. T. Kearney Ltd, 1994. 32. Lambert, D. M. and Cooper, M. C., “Issues in Supply Chain Management”, Industrial Marketing Management, Volume: 29, Issue: 1, January, pp. 65-83, 2000. 33. Leidecker, Joel K. and Bruno, Albert V., "Identifying and Using Critical Success Factors", Long Range Planning, Vol.17, No.1, pp.23-32 1984. 34. Mason-Jones, R., Naylor, J.B. and Towill, D.R., “Engineering the Leagile Supply Chain”, International Journal of Agile Management Systems, 2000. 35. Murakoshi, T., “Customer-driven manufacturing in Japan”, International Journal of Production Economics, VOl. 37, pp. 63-72, 1994. 36. Naylor, J.B., Naim, M.M. and Berry, D., “Leagility: Interfacing the Lean and Agile Manufacturing Paradigm in the Total Supply Chain”, International Journal of Production Economics 62, pp. 107-118, 1999. 37. Neely, A., K. Platts and M. Gregory, “Performance Measurement System Design”, International Journal of Production Economics, Vol. 15, No. 4, pp. 80-116, 1995. 38. Oleson, J. D., “Pathways to Agility: Mass Customization in Action”, John Wiley & Sons, Inc, 1998 39. Otto, A., Kotzab, H., “Does Supply Chain Management really Pay? Six Perspectives to Measure the Performance of Managing a supply chain.”, European Journal of Operational Research, 2003. 40. Paula van Veen-Dirks and Martin Wijn, “Strategic Control: Meshing Critical Success Factors with the Balanced Scorecard”, Long Range Planning, Elsevier Science Ltd, 2002. 41. Sharifi, H., Zhang, Z., “A Methodology for Achieving Agility in Manufacturing Organizations: An introduction”, International Journal of Production Economics, 1999. 42. Stratton R., Warburton, R.D.H. “The Strategic Integration of Agile and Lean Supply”, International Journal of Production economics, 2003. 43. Towill, D.R., “The Seamless Supply Chain”, International Journal Technology Management, Vol. 13 No. 1, pp. 37-56, 1997. 44. Towill, D.R., “Time Compression and Supply Chain Management- A Guided Tour”, Supply Chain Management, Vol. 1 No. 1, pp. 15-27, 1996. 45. Towill, D.R., “The Seamless Supply Chain”, International Journal Technology Management, Vol. 13 No. 1, pp. 37-56, 1997. 46. Waddington, T., Childerhouse, P. and Towill D. R., “Engineer your supply chain to cope with demand uncertainties.”, IOM Control Magazine, Vol. 27, No. 10, pp. 14-18, 2002. 47. Yusuf, Y.Y., Sarhadi, M., Gunasekaran, A., “Agile manufacturing: The drivers, Concepts and Attributes”, International Journal of Production Economics, 1999. 中文部分: 1. David S-L, and Philip, K. and Edith S-L原著,蘇雄義譯, “供應鏈之設計與管理/觀念.策略.個案”, McGraw-Hill Inc., 2001 2. Kaplan, R. S. and Norton, D. P.原著, 朱道凱譯, “平衡計分卡”, 臉譜文化事業股份有限公司, 1999. 3. Kaplan, R. S. and Norton, D. P.原著, 朱道凱譯, “策略核心組織”, 臉譜文化事業股份有限公司, 2001. 4. 王立志, “系統化運籌與供應鏈管理”, 滄海出版社, 1999. 5. 皮文豪, “台灣地區高科技產業作業靈活性之研究:以電子資訊產業為例”, 清華大學工業工程與工程管理所碩士論文, 1996. 6. 吳佳倫, “台灣地區個人電腦與筆記型電腦製造業全球運籌模式之探討”, 銘傳大學管理科學研究所碩士論文, 2001. 7. 林紹祺, “台灣筆記型電腦產業競爭策略研究”, 國立台灣大學國際企業研究所碩士論文, 2000. 8. 林芯玫, “我國筆記型電腦代工廠商競爭優勢之探討”, 東吳大學企業管理學所碩士論文, 2002. 9. 陳建中, “供應商管理系統之建立—以筆記型電腦廠為例”, 清華大學工業工程與工程管理所碩士論文, 2001. 10. 黃兆春, “企業卓越與靈活經營之研究-以台灣製造業為例”, 管理碩士學程在職進修專班碩士論文, 2002. 11. 黃營杉, “企業政策”, 國立空中大學, 1996. 12. 葉明豪,“以核心競爭力為基礎的採購與供應商管理系統再造之方法—以筆記型電腦公司為例”, 清華大學工業工程與工程管理所碩士論文, 2003. 13. 彭筱嵐, “台灣筆記型電腦廠商製造管理績效評估”, 國立清華大學工業工程管理研究所碩士論文, 1999. 14. 張勇毅, “CTO生產模式之研究-以我國筆記型電腦為例”, 國立政治大學/經營管理碩士論文, 2002. 15. 詹瑾琛、林連華,“現行台灣OEM/ODM 全球運籌管理模式”,1999 國際物流研討會論文集,P43-51, 1999. 16. 盧舜年、鄒坤霖, “供應鏈管理的第一本書”, 商周出版, 2002. 17. 酈怡德, “筆記型電腦產業發展近況”, 台灣工業銀行, 2003年9月. 18. http://www.digitimes.com.tw, 電子時報網站. 19. http://www.topology.com.tw/TRI/default.asp, 拓墣產業研究所網站.id NH0925031020 sid 913817 cfn 0 / id NH0925031021 auc 張偉立 tic 利用分支界限法求解多資源零工式生產排程 adc 洪一峰 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 61 kwc 多資源 kwc 離散圖形 kwc 分支界限法 kwc 零工式生產排程 abc 零工式生產排程(job shop scheduling)在生產排程上佔了很重要的角色,很多產業的排程問題是屬於零工式生產型態。近年來,關於零工式生產問題的研究很多,這些研究大多只考慮單一資源(single-resource)。在製造業中,機台常是唯一被考慮的資源,我們需要決定各種工件在有限機台上的加工順序,例如半導體產業,機器通常是非常昂貴的,所以數量是有限的。 tc 目錄 第一章 序論 ……………………….…………………………………………...1 1.1研究背景 ……………………………………………………………...1 1.2研究動機 ……………………………………………………………...1 1.3研究方法 ……………………………………………………………...2 1.4研究目的 …………………………………………………………….. 3 1.5論文架構 ……………………………………………………………...5 第二章 文獻探討 …………………………………………………...…………7 2.1零工式生產問題…………………………………………...……………7 2.1.1 零工式生產問題簡介……….……………………………………7 2.2求解零工式生產問題的方法………………………………………...…8 2.2.1數學模式方法(mathematical formulation)………..………...…8 2.2.2 分支界限法(branch-and-bound technique)………..………...…10 2.2.3 優先順序派工法則(priority dispatch rules)…………………….12 2.2.4 人工智慧方法(artificial intelligence)……..………..………...…14 2.2.5 區域搜尋法(local search)…………………………..………...…15 2.3 多資源(multiple resource)排程問題…………………………..……..15 第三章 方法建構…………………………………………………………16 3.1問題的定義和描述 ………………………………..………….………16 3.2離散圖形建構…………………………………....……………….……19 3.3分支界限法建構………………………………………………….……21 3.4 舉例說明……………………. ……………………..…………………32 第四章 實驗設計與分析 …………………...……………………………….43 4.1 舉例說明…………………………………….………………………...43 4.2實驗問題假設與參數設定……………………..……………….……48 4.3 實驗因子設定…... …………………………..…………………….……49 4.4 實驗分析……... …………………………..……....……………….……50 4.4.1實驗因子之變異數分析………………..…………………….……50 4.4.2 反應變數之統計值………………..………………………………51 第五章 結論與未來展望 …………………………………………..…..54 參考文獻 ………………………………………………………………..……….55 圖目錄 圖1.1 離散圖形(disjunctive graph)……….……………………...………..3 圖1.2 流程圖架構..………………………………………………………..6圖3.1 各種資源…………………………..………………………………16 圖3.2 回流現象…………………………………………………………..18 圖3.3 非主動的排程(non-active schedule)………………………………19 圖3.4 主動的排程(active schedule)……...………………………………19 圖3.5 以離散圖形表示多資源零工式生產問題………………………..20 圖3.6 離散弧線(disjunctive arc)以節點(3,1,2)為例……………………..21 圖3.7離散圖形………………………...…………………………………24 圖3.8完整分支樹狀圖...……………………………..……….………….24 圖3.9分支樹狀圖...…………………..……………….………………….26 圖3.10分支節點圖形,決定使用資源一之作業派序….…………..…..28 圖3.11作業排序的分支樹狀圖…..………..….…………………………29 圖3.12 ………………..……………………....…...………………………30 圖3.13 ………….…………………………………………………………31 圖3.14初始圖形……………………...………………….………….……32 圖3.15分支樹狀圖…………….…………………………………………33 圖3.16作業(1,1,3)離散弧線已被決定..…………………………………34 圖3.17決定作業後的圖形.………………………………………………35 圖3.18 …………………….………………………………………………35 圖3.19作業(3,1,4),(2,1,3)的離散弧線……………………………………36 圖3.20資源1作業排序分支樹狀圖……………………….……………37 圖3.21資源2作業排序分支樹狀圖……………………….……………38 圖3.22 資源4作業排序的分支樹狀圖………………………....………40 圖3.23每個分支節點的上界和下界值………………………...………..41 圖3.24分支界限法流程圖……………………………………...………..42 圖4.1小問題甘特圖………………….………………………..…………44 圖4.2中問題甘特圖………………….……………………..……………46 圖4.3大問題甘特圖…………………………………...…………………48 表目錄 表3.1 資源表單…………………………………..………………………17 表3.2 資源表單……………..……………………………………………17 表3.3 資源表單………………..…………………………………………20 表3.4 資源表單…………………………………………………………..30 表3.5 資源表單……………..……………………………………………32 表3.6………………………………………………………………………36 表3.7………………………………………………………………………38 表3.8………………………………………………………………………39 表3.9………………………………………………………………………35 表4.1 小問題……………………………………………………………..44 表4.2 中問題……………………….………...…………………………..45 表4.3 大問題……………………………………………………………..47 表4.4解題時間與各因子的變異數分析……….………………………..51 表4.5資源數在不同水準之下解題時間的統計值…….………………..52 表4.6工件數不同水準之下解題時間的統計值….……………………..52 表4.7作業數不同水準之下解題時間的統計值….……………………..52 表4.8資源使用率不同水準之下時間的統計值.………………………..53rf 參考文獻 Applegate, D. and Cook, W. (1991), “A Computational Study of the Job-Shop Scheduling Problem”, ORSA Journal on Computing, Vol. 3, No. 2, pp. 149-156. Ashour, S. (1967), “A Decomposition Approach for the Machine Scheduling Problem”, International Journal of Production Research, Vol. 6, No. 2, pp. 109-122. Balas, E. (1965), “Machine scheduling via disjunctive graphs: An implicit enumeration algorithm”, Operations Research, Vol. 17, pp. 941-957. Balas, E. (1969), “Machine Scheduling via Disjunctive Graphs: An Implicit Enumeration Algorithm”, Operation Research, Vol. 17, pp. 941-957. Baker, K. R. (1977), “Computational Experience With a Sequencing Algorithm Adapted to the Tardiness Problem”, American Institute of Industrial Engineers. , Vol. 9, pp. 32-35. Baker, K. R. and Bertrand, J. W. M. (1982), “A Dynamic Priority Rule for Scheduling Against Due-Date”, Journal of Operations Management, Vol. 3, pp. 37-42. Baker, K. R. and Schrage, L. E. (1978), “Finding an Optimal Sequence by Dynamic Programming: An Extension to Precedence-Related Tasks”, Operation Research, Vol. 26, pp. 111-120. Barker, J. R. and McMahon, G. B. (1985), “Scheduling the General Job-Shop”, Management Science, Vol. 31, No. 5, pp.594-598. Blazewicz, J., Dror, M. and Weglarz, J. (1991), “Mathematical Programming Formulations foe Machine Scheduling: A Survey”, European Journal of Operation Research, Vol. 51, No. 3, pp. 283-300. Barnes, J. W. and Brennan, J. J. (1977), “An Improved Algorithm for Scheduling Jobs on Identical Machines”, American Institute of Industrial Engineers, Vol. 9, pp.25-31. Brooks, G. H. and White, C. R. (1965), “An Algorithm for Finding Optimal or Near Optimal Solutions to the Production Scheduling Problem”, Journal of Industrial Engineering, Vol. 16, No. 1, pp. 34-40. Brucker, P. , Garey, M. R. and Johnson, D. S. (1977), “Scheduling Equal-length Tasks under Treelike Precedence Constraints to Minimize Maximum Lateness”, Mathematics of Operations Research, Vol. 2, pp.275-284. Carlier, J. and Pinson, E. (1989), “An algorithm for solving the job shop problem”, Management Science, Vol. 35, pp. 164-176. Chao, X. and Pinedo, M. (1999), Operations Scheduling with Applications in Manufacturing and Services, Irwin, McGRAW-Hill, U.S.A.. Chen, T.-R. and Hisa T. C. (1994), Job Shop Scheduling with Multiple Resources and an Application to a Semiconductor Testing Facility, 1994 Proceedings of the 33rd IEEE Conference on Decision and Control, LakeBuenaVista, FL , U.S.A., pp. 1564-1570. Chu, C., Portmann, M. C. and Proth, J. M. (1992), “A Splitting-Up Approach to Simplify Job-Shop Scheduling Problems”, International Journal of Production Research, Vol. 30, No. 4, pp. 859-870. Coffman, Jr., E. G. and Graham, R. L. (1972), “Optimal Scheduling for Two-Processors Systems”, Acta Informatica, Vol. 1, pp.200-213. Colorni, A., Dorigo, M., Maniezzo, V. and Trubian, M. (1994). “Ant system for Job-shop Scheduling”, JORBEL - Belgian Journal of Operations Research, Statistics and Computer Science, Vol. 34, No. 1, pp.39-53. Czerwinski C. S. and Luh, P. B. (1992), An Improved Lagrangian Relexation Approach for Solving Job Shop Scheduling Problems, 1992 Proceedings of the 31rd IEEE Conference on Decision and Control, Tucson, AZ. Della Croce, F., Menga, G., Tadei, R., Cavalotto, M. and Petri, L. (1993), “Cellular Control of Manufacturing Systems”, European Journal of Operation Research, Vol. 69, pp. 498-509. Dobson, G. and Karmarker, U. S. (1989), “Simultaneous Resource Scheduling to Minimize Weighted Flow Times”, Operations research, Vol. 37, No. 4., pp. 592-560. Dogramaci, A. and Surkis, J. (1979), “Evaluation of a Heuristic for Scheduling Independent Jobs on Parallel Identical Processors”, Management Science, Vol. 25, pp.1208-1216. Elmaghraby, S. E. and Park, S. H. (1974), “Scheduling Jobs on a Number of Identical Machines”, American Institute of Industrial Engineers. , Vol. 6, pp. 1-13. Emmons, H. (1969), “One-Machine Sequencing to Minimize Certain Functions of Job Tardiness”, Operations research, Vol. 17, pp. 701-715. Fisher, M. L. (1973a), “Optimal Solution of Scheduling Problems using Lagrange Multipliers: Part I”, Operations Research, Vol. 21, pp. 1114-1127. Fisher, M. L. (1973b), “Optimal Solution of Scheduling Problems using Lagrange Multipliers: Part II”, Symposium on the Theory of Scheduling and its Applications, Springer, Berlin. Fisher, M. L. (1976), “A Dual Algorithm for the One-Machine Scheduling Problem”, Mathematical Programming, Vol. 11, pp.229-251. Fry. T. D., Vicens, L., Macleod, K. and Fernandez, S. (1989), “A Heuristic Solution Procedure to Minimize on a Single Machine”, Journal of the Operational Research Society, Vol. 40, pp.293-297. Gere, W. S. Jr. (1966), “Heuristics in Job-Shop Scheduling”, Management Science, Vol. 13, pp. 167-190. Giffler, B. and Thompson, G. L. (1960), “Algorithms for Solving Production Scheduling Problems”, Operations Research, Vol.8, No. 4, pp.487-503. Glover, F. (1977), “Heuristics for integer programming using surrogate constraints”, Decision Sciences, Vol. 8, No. 1, pp. 156-166. Graham, R. L. (1966), “Bounds on Certain Multiprocessing Anomalies”, Bell System Technical Journal, Vol. 45, pp. 1563-1581. Graham, R. L. (1969), “Bounds on Multiprocessing Timing Anomalies”, SIAM Journal of Applied Mathematics, Vol. 17, pp. 416-429. Gupta, J. N. D. and Maykut, A. R., (1973), “Scheduling Jobs on Parallel Processors With Dynamic Programming”, Decision Sciences, Vol. 4, pp.447-457. Hoitomt, D. J., Luh, P. B. and Pattipati, K. R. (1993), “Practical Approach to Job Shop Scheduling Problems”, IEEE Transaction on Robotics and Automation, Vol. 9, No. 1, pp. 1-13. Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor. Hu, T. C. (1961), “Parallel Sequencing and Assembly Line Problems”, Operation Research, Vol. 9, pp.841-848. Ignall, E. and Schrage, L. (1965), “Application of the Branch and Bound Technique to some Flow-Shop Scheduling Problems”, Operation Research, Vol.13, pp.400-412. Jackson, J. R. (1955), Scheduling a Production Line to Minimise Maximum Tardiness, Research Report 43, Management Science Research Projects, University of California, Los Angeles, U.S.A.. Jackson, J. R. (1956), “An Extension of Johnson’s Result on Job Lot Scheduling”, Naval Research Logistics Quarterly, Vol. 3, No. 3, pp.201-203. Jain, A. S. and Meeran, S. (1999), “Deterministic Job Shop Scheduling: Past, Present, Future”, European Journal of Operation Research, Vol. 113, pp. 390-434. Kim, Y. D. (1993a), “A New Branch and Bound Algorithm for Minimizing Mean Tardiness in Two-Machine Flowshops”, Computers and Operation Research, Vol. 20, pp.391-401. Kim, Y. D. (1993b), “Heuristics for Flowshop Scheduling Problems Minimizing Mean Tardiness”, Journal of Operation Research Society, Vol. 44, pp.19-28. Kirkpatrick, S., Gelatt, C. D. Jr. and Vecchi, M. P. (1983), “Optimization by Simulated Annealing”, Science, Vol. 220, No. 4598, pp.671-680. Lageweg, B. J., Lenstra, K. and Rinnooy Kan, A. H. G. (1997), “Job-Shop Scheduling by Implicit Enumeration”, Management Science, Vol. 24, No. 4, pp. 441-450. Lawler, E. L. (1964), “On Scheduling Problems with Deferral Costs”, Management Science, Vol. 11, pp.280-288. Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G.. and Shmoys, D. B. (1993), “Sequencing and Scheduling: Algorithms and Complexity”, in Graves, S. C., Rinnooy Kan, A. H. G., Zipkin, P. H. (eds), Handbook in Operations Research and Management Science, Volume 4: Logistics of Production and Inventory, North Holland, Amsterdam. Lomnicki, Z. A. (1965), “A Branch and Bound Algorithm for the Exact Solution of the Three-Machine Scheduling Problem”, Operational Research Quarterly, Vol. 16, No. 1, pp. 89-100. Manne, A. S. (1960), “On the Job-Shop Scheduling Problem”, Operations Research, Vol. 8, pp. 219-223. McHugh, J. A. M. (1984), “Hu’s precedence tree scheduling algorithm: A Simple Proof”, Naval Research Logistics Quarterly, Vol. 31, pp.409-411. McNaughton, R. (1959), “Scheduling with deadlines and loss functions”, Management Science, Vol. 6, pp.1-12. Nakano, R. and Yamada, T. (1991), Conventional Genetic Algorithm for Job-Shop Problems, in Kenneth, M. K. and Booker, L. B. (eds), 1991 Proceedings of the 4th International Conference on Genetic Algorithms and their Applications, San Diego, U.S.A., pp. 474-479. Nemhauser, G. L. and Wolsey, L. A. (1988), Integer and Combinatorial Optimisation, John Wiley and Sons, New York. Ow, P. S. (1985), “Focused Scheduling in Proportionate Flow Shops”, Management Science, Vol. 31, pp.852-869. Panwalkar, S. S. and Iskander, W. (1977), “A Survey of Scheduling Rules”, Operations Research, Vol. 25, No. 1, pp.45-61. Picard, J. and Queyranne, M. (1978), “The Time-Dependent Traveling Salesman Problem and Its Application to the Tardiness Problem in One-Machine Scheduling”, Operation Research, Vol. 26, pp.86-100. Pinedo, M. and Singer, M. (1999), “A Shifting Bottleneck Heuristic for Minimizing the Total Weighted Tardiness in a Job Shop”, Naval Research Logistics, Vol 46, pp. 1-17. Potts, C. N. and Van Wassenhove, L. N. (1982), “A Decomposition Algorithm for the Single Machine Total Tardiness Problem”, Operation Research Letters, Vol. 1, pp.177-181. Potts, C. N. and Van Wassenhove, L. N. (1991), “Single Machine Tardiness Sequencing Heuristics”, IIE Transaction, Vol. 23, pp.346-354. Rajaraman, M. K. (1975), “An Algorithm for Scheduling Parallel Processors”, International Journal of Production Research, Vol. 13, pp.479-486. Rajaraman, M. K. (1977), “A Parallel Scheduling Algorithm for Minimizing Total Cost”, Naval Research Logistics Quarterly, Vol. 24, pp.473-481. Root, J. G. (1965), “Scheduling With Deadlines and Loss Functions on k Parallel Machines”, Management Science, Vol. 11, pp. 460-475. Roy, B. and Sussmann, B., (1964), Les problemes d’ordonnancement avec constraint disjonctives, Note D.S. No. 9 bis, SEMA, Paris, France. Rowe, A. J. and Jackson, J. R. (1956), “Research Problems in Production Routing and Scheduling”, Journal of Industrial Engineering, Vol. 7, pp.116-121. Sarin, S. C., Ahn, S., and Bishop, A. B. (1988), “An Improved Branching Scheme for the Branch and Bound Procedure of Scheduling n Jobs On m Parallel Machines to Minimize Total Weighted Flowtime”, International Journal of Production Research, Vol. 27, pp.925-934. Sen, T. P., Dileepan, P. and Gupta, J. N. D. (1989), “The Two-Machine Flowshop Scheduling Problem With Total Tardiness”, Computers and Operations Research, Vol. 16, pp. 333-340. Singer, M. and Pinedo, M. (1998), “A computational study of branch and bound techniques for minimizing the total tardiness in job shops”, IIE Scheduling Logistics, Vol 29, pp. 109-119. Smith, W. E. (1956), “Various Optimizers for Single Stage Production”, Naval Research Logistics Quarterly, Vol. 3, No. 3, pp.59-66. Srinivasan, V. (1971), “A Hybrid Algorithm for the One Machine Sequencing Problem to Minimize Total Tardiness”, Naval Research Logistics, Vol. 18, pp. 317-327. Van De Velde, S. (1991), Machine Scheduling and Lagrangian Relaxation, Ph. D. Thesis, CWI Amsterdam,The Netherlands.id NH0925031021 sid 913819 cfn 0 / id NH0925031022 auc 林峰興 tic 多層級知識/使用者分類模式與技術建構 adc 侯建良 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 160 kwc 多層級分類法則 kwc 關聯性分析 kwc 文件分類 kwc 使用者類別判定 kwc 知識管理 kwc 文件探勘 abc 受惠於電腦資訊科技之蓬勃發展、網際網路之普及化,人類擁有更具即時性與便利性之傳輸、溝通與交易環境。在此資訊高速發展的環境中,電子化文件與電子化交易紀錄以幾何級數之速度成長與流通,使網際網路儼然成為一龐大之資料庫。面對此資料庫中數量驚人之資料,如何利用自動化文件分類技術協助企業組織與個體管理電子化文件、以及透過使用者偏好判定技術提供適切之資訊與服務予目標顧客,實為現今相關研究與實務應用之重要議題。 tc 中文摘要 I 英文摘要 II 誌謝辭 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章、研究背景 1 1.1研究動機與目的 1 1.2研究步驟 3 1.3研究定位 5 第二章、文獻回顧 8 2.1網頁探勘 8 2.1.1網頁內容探勘 9 2.1.2網頁結構探勘 12 2.1.3網頁使用歷程探勘 13 2.2關聯性分析 15 2.2.1關聯性 15 2.2.2序列性 17 2.2.3有趣性 18 2.3文件分類 20 2.3.1文件特徵選取 20 2.3.2文件分類技術 22 2.4使用者偏好類型判定 24 2.4.1偏好類型判定方法 24 2.4.2個人化 27 第三章、文件與使用者類別判定模式 30 3.1單一層級自動分類法則 30 3.1.1單一層級類別與關鍵詞彙關聯推論 30 3.1.2單一層級文件分類 35 3.1.3單一層級使用者偏好類別判定 41 3.2多層級自動分類法則 46 3.2.1多層級類別與關鍵詞彙關聯推論 47 3.2.2多層級文件分類 58 3.2.3多層級使用者偏好類別判定 61 第四章、系統架構與規劃 66 4.1文件與使用者類別判定模式之流程架構 66 4.2系統功能架構 68 4.3資料模式定義 70 4.4系統流程 71 4.4.1系統操作流程 72 4.4.2系統資料流程 82 4.5系統開發工具 83 第五章、系統開發與案例分析 85 5.1系統功能操作 85 5.1.1文件解析 87 5.1.2文件分享 93 5.1.3文件資料維護 96 5.1.4文件類別管理 103 5.1.5詞彙維護 108 5.1.6人事管理功能 114 5.1.7系統參數╱門檻值設定 121 5.2單一層級自動分類案例驗證與分析 123 5.3多層級自動分類案例驗證與分析 127 5.3.1案例驗證進行方式 128 5.3.2案例驗證結果分析 132 5.3.3系統學習趨勢 135 第六章、結論與未來展望 138 參考文獻 141 附錄一、VSIA SIP分類法 149 附錄二、多層級自動分類案例驗證結果(第二階段至第八階段) 150rf 1. 王經篤,2001,「中文文件自動分類方法的設計與評估」,國立中正大學資訊工程研究所碩士論文(指導教授:蔡志忠)。 2. 巫啟台,2002,「文件之關聯資訊萃取及其概念圖自動建構」,國立成功大學資訊工程研究所碩士論文(指導教授:蔣榮先)。 3. 沈清正、高鴻斌、張元哲、陳仕昇、陳家仁、黃琮盛、陳彥良,2002,「資料間隱含關係的挖掘與展望」,資訊管理學報,第九卷,專刊,第 75-99頁。 4. 林若萍,2002,「以從眾化機制過濾超載資訊之效果研究」,國立中正大學資訊管理研究所碩士論文(指導教授:王俊程)。 5. 侯永昌、楊雪花,1998,「以模糊理論和遺傳演算法為基礎之中文文件自動分類之研究」,模糊系統學刊,第四卷,第一期,第45-57頁。 6. 侯建良、林峰興、畢威寧,2003,「以關鍵字推論為基之網路消費者類型判定模式」 ,2003年產業電子化運籌管理學術暨實務研討會—挑戰2008數位台灣會議,Paper ID: 004。 7. 侯建良、林峰興、畢威寧,2003,「知識文件之多層級分類演算法」,中國工業工程學會九十二年度年會暨學術研討會,Paper ID: CIIE2003-365。 8. 凌俊青、許秉瑜、陳彥良,2001,「在包裹式資料庫中挖掘數量關聯規則」,資訊管理學報,第七卷,第二期,第215-232頁。 9. 翁瑞鋒,2001,「網頁瀏覽者行為之泛化分群分析」,國立交通大學資訊科學系研究所碩士論文(指導教授:曾憲雄)。 10. 張恭維,2000,「結合關聯法則與模糊叢聚之網際探勘架構」,元智大學資訊管理學系研究所碩士論文(指導教授:劉俞志)。 11. 許毅嘉,2001,「關聯法則應用於代理伺服器上之快取置換機制」,國立中興大學資訊科學研究所碩士論文(指導教授:賈坤芳)。 12. 陳仕昇、許秉瑜、陳彥良,1999,「以可重覆序列挖掘網路瀏覽規則之研究」,資管評論,第九卷,第53-71頁。 13. 陳正宏,2002,「以網路流量為基礎分析網路使用者之行為-以淡江大學為例」,淡江大學資訊管理學系研究所碩士論文(指導教授:黃明達)。 14. 陳家仁、陳彥良、陳禹辰,2003,「在少樣商品或短交易長度情況下挖掘關聯規則」,資訊管理學報,第九卷,第二期,第55-72頁。 15. 陳振東、朱志浩,2003,「應用資料採庫技術於網際網路使用者資訊偏好分析之研究」,產業論壇,第五卷,第二期,第43-64頁。 16. 曾元顯,2002,「文件主題自動分類成效因素探討」,中國圖書館學會會報,第六十八期,第62-83頁。 17. 楊允言,1999,「中文文件自動分類之探討」,大漢學報,第十三卷,第241-256頁。 18. 楊昇宏,1999,「資料挖掘應用於找尋瀏覽網頁之型樣」,逢甲大學資訊工程學系研究所碩士論文(指導教授:楊東麟)。 19. 楊煜愷,2000,「以完全項目集合演算法挖掘與分析使用者瀏覽行為」,暨南國際大學資訊管理學系研究所碩士論文(指導教授:游子宜)。 20. 楊錦生,2001,「文件探勘技術中字詞擴展之研究」,國立中山大學資訊管理研究所碩士論文(指導教授:魏志平)。 21. 詹智凱,2000,「以詞的關聯性為基礎的文件自動分類」,國立台灣科技大學資訊管理研究所碩士論文(指導教授:徐俊傑)。 22. 賴育昇,2001,「自然語言處理於網際網路常用問答集檢索之研究」,國立成功大學資訊工程研究所博士論文(指導教授:吳宗憲)。 23. 顏秀珍、李御璽、何仁傑,2001,「利用資料探勘語言挖掘感興趣的資訊」,電腦學刊,第十三卷,第四期,第44-60頁。 24. 魏源谷,2001,「多分類器系統在自動化文件分類之研究」,國立中正大學資訊工程研究所碩士論文(指導教授:蔡志忠)。 25. 蘇育民,2001,「意圖行為於網路瀏覽習慣探勘之探索」,義守大學資訊工程學系研究所碩士論文(指導教授:陶幼慧)。 26. Adelberg, B., 1998, “NoDOSE — A tool for semi-automatically extracting structured and semistructured data from text documents,” Proceedings of SIGMOD’98, pp. 283-294. 27. Agrawal, R. and Srikant, R., 1994,“Fast algorithms for mining association rules,” Proceedings of the International Conference on Very Large Database, pp. 487-499. 28. Agrawal, R. and Srikant, R., 1995, “Mining Sequential Patterns,” Proceedings of the Eleventh International Conference on Data Engineering, pp. 3-14. 29. Ashish, N. and Knoblock, C.A., 1997, “Semi-automatic wrapper generation for Internet information sources,” Proceedings of the Second IFCIS International Conference on Cooperative Information Systems, pp. 160-169. 30. Brin, S. and Page, L., 1998, “The anatomy of a large-scale hypertextual web search engine,” Computer Networks and ISDN System, Vol. 30, No. 1-7, pp. 107-117. 31. Buckley, C., Salton, G. and Allan, J., 1994, “The Effect of Adding Relevance Information in a Relevance Feedback Environment,” Proceedings of SIGIR’94, pp. 292-300. 32. Cai, C. H., Fu, A.W.C., Cheng, C. H., and Kwong, W. W., 1998, “Mining association rules with weighted items,” Proceedings of the International Conference on Database Engineering and Applications Symposium, pp. 68-77. 33. Celmins, A., 2000, “Classification by attribute evaluation,” The 19th International Conference of the North American Fuzzy Information Processing Society, pp. 123-127. 34. Chakrabarti, S., Dom, B., Raghavan, P., Rajagopalan, S., Gibson, D. and Kleinberg, J., 1998, “Automatic resource compilation by analyzing hyperlink structure and associated text,” Computer Networks and ISDN System, Vol. 30, No. 1-7, pp. 65-74. 35. Chakrabarti, S., Dom, B. E., Kumar, S. R., Raghavan, P., Rajagopalan, S., Tomkins, A., Gibson, D. and Kleinberg, J., 1999, “Mining the Web's link structure,” Computer, Vol. 32, No. 8, pp. 60-67. 36. Chang, I. C. and Hwang, H. G., 1998, “Applying neural networks in time series forecasting,” Information and Management Sciences, Vol. 9, No. 3, pp. 35-43. 37. Changchien, S. W. and Lu, T.-C., 2001,“Mining association rules procedure to support on-line recommendation by customers and products fragmentation,”Expert Systems with Applications, pp. 325-335. 38. Charles, L. and Vincent, Ng., 1999, “Mining quantitative association rules under inequality constraints,” Proceedings of Knowledge and Data Engineering Exchange, pp. 53-59. 39. Chen, Y. L., Chen, S. S. and Hsu, P. Y., 2002, “Mining hybrid sequential patterns and sequential rules,” Information Systems, Vol. 27, No. 5, pp. 345-362. 40. Chenoweth, M., 1998, “The early 19th century climate of the Bahamas and a comparison with 20th century average,” Climatic Change, Vol. 40, pp. 577-603. 41. Cooley, R., Mobasher, B. and Srivastava, J., 1997, “Web mining: information and pattern discovery on the World Wide Web,” IEEE International Conference on Tools with Artificial Intelligence, pp. 558-567. 42. Dorre, J., Gerstl, P. and Seiffert, R., 1999, “Text mining: finding nuggets in mountains of textual data,” Proceedings of the 5’s ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 398-401. 43. Ellen, S., 1997, “ParaSite: mining structural information on the web,” Computer Networks and ISDN Systems, Vol. 29, No. 8-13, pp. 1205-1215. 44. Feldman, R. and Dagan, I., 1995, “Knowledge discovery in textual database,” Proceedings of the first ACM SIGKDD International Conference on knowledge discovery and data mining, pp. 112-117. 45. Feng, T. and Murtagh, K., 2000, “Towards knowledge discovery from WWW log data,” Proceedings of International Conference on Information Technology: Coding and Computing, pp. 302-307. 46. Guan, T. and Wong, K.-F., 1999, “KPS: A web information mining algorithm,” Computer Networks, Vol. 31, pp. 1495-1507. 47. Han, J. and Fu, Y., 1995, “Discovery of multiple-level association rules from large databases,” Proceedings of the 21st International Conference on VLDB, pp. 420-431. 48. Haruechaiyasak, C., Shyu, M.-L. and Chen, S.-C., 2002, “Web document classification based on fuzzy association,” Proceedings of the 26th Annual International Computer Software and Applications Conference, pp. 487-492. 49. Hay, B., Wets, G. and Vanhoof, K., 2003, “Segmentation of visiting patterns on web sites using a sequence alignment method,” Journal of Retailing and Consumer Services, Vol. 10, No. 3, pp. 145-153. 50. Hilderman, R. J. and Hamilton, H. J., 2000, “Principles for mining summaries using objective measures of interestingness,” Proceedings of 12th IEEE International Conference on Tools with Artificial Intelligence, pp. 72-81. 51. Jenamani, M., Mohapatra, Pratap K.J. and Ghose, S., 2003, “A stochastic model of e-customer behavior,” Electronic Commerce Research and Applications, Vol. 2, No. 1, pp. 81-94. 52. Kaski, S., Honkela, T., Lagus, K. and Kohonen, T., 1998, “WEBSOM – Self-organizing maps of document collections,” Neurocomputing, Vol. 21, No. 1-3, pp. 101-117. 53. Kim, J. K., Cho, Y. H., Kim, W. J., Kim, J. R. and Suh, J. H., 2002, “A personalized recommendation procedure for Internet shopping support,” Electronic Commerce Research and Applications, Vol. 1, No. 3-4, pp. 301-313. 54. Kim, K.-S. and Han, I., 2001, “The cluster-indexing method for case-based reasoning using self-organizing maps and learning vector quantization for bond rating cases,” Expert Systems with Applications, Vol. 21, No. 3, pp. 147-156. 55. Klusch, M., 2001, “Information agent technology for the Internet: A survey,” Data and Knowledge Engineering, Vol. 36, No. 3, pp. 337-372. 56. Kohonen, T., 1982, “Self-organizing formation of topologically correct feature maps,” Biological Cyberneties, Vol. 43, pp.59-69. 57. Kosala, R. and Blockeel, H., 2000, “Web mining research: a survey,” ACM SIGKDD, Vol. 2, No. 1, pp. 1-15. 58. Lin, F.-R. and Hsueh, C.-M., 2001, “Knowledge map discovery in virtual communities of practice,” The 12th International Conference on Information Management, pp. 158-170. 59. Lin, S.-H., Chen, M.-C., Ho, J.-M. and Huang, Y.-M., 2002, “ACIRD: intelligent internet document organization and retrieval,” IEEE Transactions on Knowledge and Data Engineering, Vol. 14, No. 3, pp. 599-614. 60. Lin, X., Liu, C. Zhang, Y. and Zhou, X., 1999, “Efficiently computing frequent tree-like topology patterns in a web environment,” Proceedings of TOOLS 31 on Technology of Object-Oriented Languages and Systems, pp. 440-447. 61. Liu, B., Hsu, W., Mun, L.-F. and Lee, H.-Y., 1999, “Finding interesting patterns using user expectations,” IEEE Transactions on Knowledge and Data Engineering, Vol. 11, No. 6, pp. 817-832. 62. Liu, C.-H., Lu, C.-C. and Lee, W.-P., 2000, “Document categorization by genetic algorithms,” IEEE International Conference on Systems, Man, and Cybernetics, Vol. 5, pp. 3868-3872. 63. Liu, L., Chen, J. and Song, H., 2002, “The research of Web mining,” Proceedings of the 4th World Congress on Intelligent Control and Automation, Vol. 3, pp. 2333-2337. 64. Liu, S.-T. and Kao, C., 2002, “Fuzzy measures for correlation coefficient of fuzzy numbers,” Fuzzy Sets and Systems, Vol. 128, No. 2, pp. 267-275. 65. Liu, Y. and Yao, X., 1999, “Ensemble learning via negative correlation,” Neural Networks, Vol. 12, No. 10, pp. 1399-1404. 66. Madhavji, N. H., Zhang, M., Boulos, S. and Yuan, X. G., 1989, “Semi-structured cursor movements in MUPE-2,” Software Engineering Journal, Vol. 4, No. 6, pp. 309-317. 67. Martin-Bautista, M. J., Vila, M.-A., Sanchez, D. and Larsen, H. L., 2000, “Fuzzy genes: improving the effectiveness of information retrieval,” Proceedings of the 2000 Congress on Evolutionary Computation, Vol. 1, pp. 471-478. 68. Meo, R., Psaila, G. and Ceri, S., 1996, “A new SQL-like operator for mining association rules,” Proceedings of the International Conference on Very Large Database, pp. 122-133. 69. Mittal, B. and Lassar, W. M., 1996, “The role of personalization in service encounters,” Journal of Retailing, Vol. 72, No. 1, pp. 95-109. 70. Mostafa, J. and Lam, W., 2000, “Automatic classification using supervised learning in a medical document filtering application,” INF. PROCESS. MANAGE, Vol. 36, No. 3, pp. 415-444. 71. Nahm, U. Y. and Mooney, R. J., 2002, “Text mining with information extraction,” Proceedings of the AAAI on Mining Answers from Texts and Knowledge Bases, pp. 60-67. 72. Oja, E., Kiviluoto, K. and Malaroiu, S., 2000, “Independent component analysis for financial time series,” Adaptive Systems for Signal Processing, Communications, and Control Symposium, pp. 111-116. 73. Padmanabhan, B. and Tuzhilin, A., 1999, “Unexpectedness as a measure of interestingness in knowledge discovery,” Decision Support Systems, Vol. 27, pp. 303-318. 74. Piatesky, G. and Matheus, C. J., 1994, “The interestingness of deviations,” Proceedings on Workshop Knowledge Discovery in Database, pp. 25-36. 75. Sakagami, H. and Kamba, T., 1997, “Learning personal preferences on online newspaper articles from user behaviors,” Computer Networks and ISDN Systems, Vol. 29, No. 8-13, pp. 1447-1455. 76. Salton, G. and McGill, M. J., 1983, “Introduction to Modern Information Retrieval,” McGraw-Hill, NY, USA. 77. Silberschatz, A. and Tuzhilin, A., 1995, “On subjective measures of interestingness in knowledge discovery,” Proceedings of the International Conference on Knowledge Discovery and Data Mining, pp. 275-281. 78. Silberschatz, A. and Tuzhilin, A., 1996, “What makes patterns interesting in knowledge discovery systems,” IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No. 6, pp. 970-974. 79. Silva, J., Mexia, J., Coelho, A. and Lopes, G., 2001, “Document clustering and cluster topic extraction in multilingual corpora,” Proceedings IEEE International Conference on Data Mining, pp. 513-520. 80. Singh, L., 1999, “An algorithm for constrained association rule mining in semi-structured data,” Proceedings of PAKDD’99, pp. 148-158. 81. Smith, K. A. and Ng, A., 2003, “Web page clustering using a self-organizing map of user navigation patterns,” Decision Support Systems, Vol. 35, No. 2, pp. 245-256. 82. Sundaresan, N. and Yi, J., 2000, “Mining the Web for relations,” Computer Networks, Vol. 33, No. 1-6, pp. 699-711. 83. Tang, J., Goodrich, M. and Ng, Y.-K., 2001, “A binary-categorization approach for classifying multiple-record web documents using application anthologies and a probabilistic model,” Proceedings of 7th International Conference on Database Systems for Advanced Applications, pp. 58-65. 84. Terano, T. and Murakami, E., 2000, “Finding users’ latent interests for recommendation by learning classifier systems,” Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies, Vol. 2, pp. 651-654. 85. Wang, J., Huang Y., Wu G. and Zhang F., 1999, “Web mining: knowledge discovery on the Web,” IEEE SMC '99 Conference Proceedings on Systems, Man, and Cybernetics, Vol. 2, pp. 137-141. 86. Wei, C.-S., Liu, Q., Wang, J. T. L. and Ng, P. A., 1997, “Knowledge discovering for document classification using tree matching in TEXPROS,” Information Sciences, Vol. 100, No. 1-4, pp. 255-310. 87. Yen, S.J. and Chen, A. L. P., 1997, “An Efficient Data Mining Technique for Discovering Interesting Association Rules,” Proceedings of the 8th International Conference and Workshop on Database and Expert Systems Applications, pp. 664-669. 88. Yuan, S.-T. and Chang, W.-L., 2001, “Mixed-initiative synthesized learning approach for web-based CRM,” Expert Systems with Applications, Vol. 20, No. 2, pp. 187-200. 89. Zadeh, L. A., 1965, “Fuzzy Sets,” Information and Control,” Vol. 8, pp. 338-353.id NH0925031022 sid 913820 cfn 0 / id NH0925031023 auc 吳昇洋 tic 應用資料採礦技術評估客服中心顧客關係管理之績效 adc 張瑞芬 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 88 kwc 資料採礦 kwc 顧客關係管理 kwc 群集分析 kwc 類神經網路 kwc 客服中心 abc 在目前商業環境不斷快速變遷,迫使企業必須持續求新求變來因應。而顧客意識的抬頭,更使得企業不得不去關注,並想辦法將其網絡往外擴展,將顧客所擁有的資訊纳入企業的競爭能力當中。而在資訊科技的推波助瀾下,激增的市場交易也使得各企業所需儲存與處理的資料量越來越龐大。在這種情況下,企業的焦點已從以往的資料蒐集與整理,轉變成如何有效的利用資料庫來進行資訊的獲取。本論文整理出與客服中心顧客滿意度具有顯著關係之關鍵績效指標,客服中心管理者可透過績效指標與產業平均之比較來衡量客服中心營運績效進而改善。另外,本論文將關鍵績效指標以加權平均方法產生顧客滿意度與客服人員績效兩個指標,透過這兩個指標值對顧客與客服人員分別進行分群分析,分群後,客服管理者可以找出顧客滿意度高的群組成員進行一對一關係行銷,或找出績效略低之客服人員加強訓練,藉此維持顧客忠誠度與改善客服人員表現進而提升客服中心營運績效。在產生顧客滿意度指標方面,本論文以類神經方法來訓練推導出各變數的權重值,而實際的顧客資料由問卷方式進行蒐集。本論文主要目的在於應用資料採礦方法於客服中心上,並搭配關鍵績效指標的輔助,分析顧客的滿意程度以及客服人員工作績效,以落實顧客關係管理的理念,並實做資料分析雛型系統供顧客服務中心作為參考之用。 tc 摘要 I Abstract II 謝辭 III 目錄 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章、緒論 1 1.1研究動機與背景 1 1.2研究目的 3 1.3研究架構與進行步驟 4 第二章、文獻探討 6 2.1顧客關係管理 6 2.1.1顧客關係管理定義 7 2.1.2顧客關係管理步驟 10 2.1.3顧客關係管理效益 13 2.2 客服中心 13 2.2.1客服中心之演進 14 2.2.2客服中心角色定位與延伸功能應用 16 2.2.3客服中心與顧客關係管理 17 2.3資料採礦 18 2.3.1資料採礦定義 19 2.3.2資料採礦方法 20 2.3.3資料採礦與統計分析比較 22 2.3.4資料採礦應用領域 24 2.3.5資料採礦在CRM上的應用 26 2.4群集分析 27 2.4.1統計集群分析 27 2.4.2分群結果的評估 30 2.5類神經網路 31 2.5.1類神經網路的類別 32 2.5.2類神經網路架構 33 2.5.3認知器(Perceptron) 35 第三章、客服中心服務績效評估 37 3.1關鍵績效指標評量 37 3.1.1KPI選擇 38 3.1.2 KPI介紹 39 3.1.3 標竿(Benchmark) 40 3.1.4利用KPI和Benchmark進行評量 40 3.2群集分析 42 3.2.1K-mean介紹 42 3.2.2為何使用k-mean 42 3.2.3利用k-mean進行分群 42 3.3分群權重產生 46 3.3.1顧客滿意度指標(CS)權重: 46 3.3.2客服人員績效指標(AP)權重: 49 3.4分群檢驗 50 3.4.1計算群組內、群組間密集度指標 50 3.4.2二維分析說明 51 3.4.4二維分析結果說明 52 第四章、系統功能分析與設計 54 4.1系統功能分析 54 4.2系統架構 56 4.2.1Web Services介紹 57 4.2.2Web Services架構 58 4.2.3Web Services重要標準 58 4.3系統軟硬體分析 60 4.3.1系統硬體相關 60 4.3.2系統軟體相關 60 4.4系統資料庫分析 60 4.5系統各功能細部流程 61 4.5.1關鍵績效指標查詢流程 61 4.5.2類神經訓練流程 62 4.5.3群集分析流程 63 第五章、系統實作 65 5.1系統管理者功能 65 5.2一般使用者功能 71 5.3系統評估說明 78 第六章、結論 80 6.1研究結論 80 6.2未來展望 82 參考文獻 83 附錄1、問卷內容 87 附錄2、客服紀錄與問卷資料範例 88rf 1. Anton, 2001, eBusiness Best Practices for All Industries, Purdue University Press. 2. Adriaans, P. and Zantinge, D., 1996, Data Mining, Addison Wesley. 3. Bhatia, A., 1999, A Roadmap to Implementation of Customer Relationship Management, http:// crm.ittoolbox.com/peer/docs/crm_abbhatia.htm 4. Bails, D. G. and Peppers, L. C., 1993, Business fluctuations: forecasting techniques and applications, Englewood Cliffs, NJ, Prentice Hall. 5. Berry, M. J.A. and Linoff, G., 1997, Data Mining Technique for Marketing: Sale, and Customer Support, New York, John Wiley & Sons, Inc. 6. Bennington, L., Cummane, J. and Conn, P., 2000, “Customer satisfaction and call centers: an Australian study,” International Journal of Service Industry Management, 11(2), 162-173. 7. Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., and Zanasi, A., 1998, Discovering Data Mining From Concept to Implementation, Upper Saddle River, NJ, Pretice Hall PTR. 8. Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P., 1996, “The KDD process for extracting useful knowledge from volumes of data,” Communications of the ACM, 39(11), 27-34. 9. Grupe, F. H. and Owrang, M. M., 1995, “Database mining discovering new knowledge and cooperative advantage,” Information Systems Management, 12(4), 26-31. 10. Haykin, S., 1999, Neural net works – a comprehensive foundation (2nd ed.), Upper Saddle River, NJ, Prentice Hall. 11. Goldenberg, B. J., 2002, CRM Automation, Upper Saddle River, NJ, Prentice Hall PTR. 12. Kalakota, R. and Robinson, M., 1999, e-Business: Roadmap for Success, Boston, MA, Addison-Wesley. 13. Kandell, J., 2000, CRM, ERM, one-to-one Decoding Relationship Management Theory and technology, Trusts & Estates. 14. Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., and Wu, A., 2002, “An Efficient k-Means Clustering Algorithm:Analysis and Implementation,” IEEE, 24(7), pp. 881-892. 15. Liu, H.-I., 2003, “Designing a Multi-Functional The contact center Using Internet Technology,” Master Thesis of Department of Industrial Engineering and Engineering Management, National Tsing Hua University. 16. Merly, D., 1999, “How to Avoid the 10 Biggest Mistake in CRM,” Journal of Business Strategy, 20(6), 22-26. 17. Peppers, D., Rogers, M., and Dorf, B., (1999, January/February), “Is your company ready for one to one marketing?,” Harvard Business Review, 77(1), 151-164. 18. Peacock, P. R., 1998, “Data mining in marketing: Part I,” Marketing Management, 6(4), pp. 8-18. 19. Sharp, D. E., 2003, Customer Relationship Management Systems Handbook, Boca Raton, Fla., Auerbach. 20. Sharma, S.C, 1996, Applied Multivariate Techniques, New York, John Wiley & Sons. 21. Saville, D., 2000, Why KPIs and Process Documentation are Critical in Running an Effective Contact Center, SITEL, http://www.sitel.com/enu/Interview02.stm. 22. Stone, M., Woodcock, N., and Wilson, M., 1996, “Managing the Change from Marketing Planning to Customer Relationship Management,” Long Range Planning, 29(5), 675–683. 23. Trappey, A.J.C., Trappey, C.V., and Hsu, F.-C., 2004, "Customer Service Evaluation Using Key Performance Indicators," Proceedings ISOneWorld 2004 Conference and Convention, Les Vegas, USA, April 14-16. 24. Trappey, A.J.C. 2003, 顧客服務管理-CRM實戰理論與實務, Hwa-Tai Publishing Co. Taipei, Taiwan (in Chinese), ISBN 957-607-486-0. 25. Trepper, C. (2000, May), “Customer care goes end-to-end,” Information Week, 786, 55-73. 26. Wayland, R. E. and Cole, P. M., 1997, Customer Connections: New Strategies for Growth, MA: Harvard Business School Press. 27. Waite, A. J., 2001, A practical guide to the contact center technology, Gilroy, CA , CMP Books. 28. NCR,「整合企業經營策略與顧客關係管理」,電子化企業經理人報告,民國89年9月,頁20-25。 29. 吳淑貞,2001,「台灣導入與運用顧客關係管理系統的困難及因應之道」,國立中正大學企業管理研究所碩士論文。 30. 周政宏,1995,「神經網路理論與實務」,松崗電腦圖書資料股份有限公司出版。 31. 邱志洲,2002,Journal of the Chinese Institute of Industrial Engineers, 19(2), 9-22。 32. 陳文華,2000,「運用資料倉儲技術於顧客關係管理」, 能力雜誌。 33. 陳石麟,2002,「資料採礦於預測國人出國觀光需求之應用-以整體、香港和澳門為例」,(指導教授:陳文賢),國立臺灣大學資訊管理研究所論文。 34. 曾世忠,2003,「效率客服,客服中心的程序規劃」,培生教育出版集團。 35. 經濟部商業司,「電子商務導航」,第二卷第十三期, http://www.ec.org.tw 36. 童啟晟,2000,「CRM 之產業現況與應用趨勢」,Internet 網際先鋒。 37. 張妤莉,2001,「資料挖掘之導入與影響--以銀行業為例」,(指導教授:洪順慶),國立政治大學企業管理學系碩士論文。 38. 曾慶深,2002,「應用類神經在流場影像上質點運動之辨識」,(指導教授:林銘崇、丁肇隆),國立台灣大學工程科學及海洋工程學研究所碩士論文。 39. 廖雅郁,2002,「應用資料探採於我國西藥行銷之研究」,(指導教授:陳光華),國立交通大學經營管理研究所論文。 40. 盧坤利,2000,「台灣地區企業採用顧客關係管理系統之影響因素研究」,(指導教授:陳文賢),國立台灣大學商學研究所碩士論文。 41. 樓玉玲,1998,「以資料採擷技術分析政大通識課程」,(指導教授:劉文卿),國立政治大學資訊管理研究所碩士論文。 42. 劉志剛,2003,「以資料分析技術評估顧客服務管理之績效」,(指導教授:張瑞芬),國立清華大學工業工程與工程管理研究所碩士論文。 43. 羅華強,2001,「類神經網路─Matlab的應用」,儒林書局。 44. 聯慷科技,2001,「從傳統CTI到Web Enable」,通訊雜誌,87。http://www.cqinc.com.tw/grandsoft/cm/087/afo879.htmid NH0925031023 sid 913821 cfn 0 / id NH0925031024 auc 廖紳凱 tic 考量等候時間限制之半導體生產排程問題 adc 阮約翰 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 71 kwc 成批機台 kwc 生產績效指標 kwc 等候時間限制 kwc 動態派工法則 abc 半導體晶圓廠複雜的製程流程裡,包括有等候時間限制、再迴流特性、成批機台等,以及製造現場常會發生一些不可預期事件,如機台當機、晶圓重工、良率隨機性等,都使得晶圓廠生產規劃與控制更加困難且複雜。各晶圓廠莫不致力於各種生產控制策略的考量與評估,以期降低其對系統生產績效的影響。 rf [1 ] 台灣應用材料股份有限公司全球資訊網半導體製程簡介 http://www.amt.com.tw/product/product_1.html [2 ] 徐政宏,“多能工派工法則之模擬比較-以面臨緊急訂單之流線 型生產系統為例”,私立朝陽科技大學,碩士論文 (2000)。 [3 ] 梁治國教授,交通大學「半導體現場製造管理資訊系統」課程上課講義 (2000)。 [4 ] 蔡啟聰,“晶圓製造廠考慮等候時間限制之派工策略”,國立交通大學工業工程研究所碩士論文 (1995)。 [5 ] 張書銘,“成批機台在等候時間限制下生產控制策略之建立與應用”,國立清華大學工業工程與工程管理研究所碩士論文 (2002)。 [6 ] 劉博文,ULSI 製程技術,文京圖書有限公司,台北縣 (2001)。 [7 ] Akcali, E., Uzsoy, R., Hiscock, D.G., Moser A.L., and Teyner, T.J., “Alternative loading and dispatching policies for furnace operations in semiconductor manufacturing: a comparison by simulation,” Proceedings of the 2000 Winter Simulation Conference, 1428-1435 (2000). [8 ] Avramids, A. N., Healy, K. J., and Uzsoy, R., “Control of a batch-processing machine:a computational approach,” International Journal of Production Research, 36(11), 3167-3181 (1998). [9 ] Blackstone, J. H., Philips, D. T., and Hogg, D. L., “A state-of-the-art survey of dispatching rules for manufacturing job shop operations,” International Journal of Production Research, 25, 1143-1156 (1982). [10 ] Chaudry, M. L., and Templeton, J. G. C., “A First Course in Bulk Queues,” Wiley, New York (1983). [11 ] Conway, R. W., “Some tactical problems in digital simulations,” Management Science, l10(1), 47-61 (1963). [12 ] Deb, R. K., and Serfozo, R. F., “Optional control of batch service queues,” Applied Probability, 5, 340-361 (1973). [13 ] Fowler, J. W., Phillips, D. T., and Hong, G. L., “Real-time control of multi-product bulk service semiconductor manufacturing processes,” IEEE Transactions on Semiconductor Manufacturing, 5(2), 158-163 (1992). [14 ] Gurnani, H., Anupindi, R., and Akella, R., “Control of batch processing system in semiconductor manufacturing wafer fabrication facilities,” IEEE Transactions on Semiconductor Manufacturing, 5(4), 319-328 (1992). [15 ] Glassey, C. R., and Weng, W. W., “Dynamic batch heuristic for simultaneous processing,” IEEE Transactions on Semiconductor Manufacturing, 4(2), 77-82 (1991). [16 ] Jeffery, K. C., and Lin, L., ”Assembly line system dynamic behavior for high priority job processing,” International Journal of Production Research, 30(7), 1683-1697 (1992). [17 ] Rulkens, H.J.A., Van Campen, E.J.J., Van Herk, J., and Rooda, J.E., “Batch size optimization of a furnace and pre-clean area by using dynamic simulations,” IEEE SEMI Advanced Semiconductor Manufacturing Conference (1998). [18 ] Robinson, J. K., Fowler, J. W., and Bard, J. F., “The use of upstream and downstream in scheduling semiconductor batch operation,” International Journal of Production Research, 33(7), 1849-1869 (1995). [19 ] Robinson, J. K., and Giglio, R., “Capacity planning for semiconductor wafer fabrication with time constraints between operation,” Proceedings of the 1999 Winter Simulation Conference, 880-887 (1999). [20 ] Stevenson, W.J., “Production/Operations management,”5th ed, IL:Irwin, Chicago (1996). [21 ] Scholl, W., and Domaschke, J., “Implementation of modeling and simulation in semiconductor wafer fabrication with time constraints between wet etch and furnace operations,” IEEE Transactions on Semiconductor Manufacturing, 13(3), 273-277 (2000). [22 ] Savsar, M., “Simulation analysis of a pull-push system for an electronic assembly line,” International Journal of Production Economics, 51, 205-214 (1997). [23 ] Van Der Zee, D. J., Van Harten, A., and Schuur, P. C., “Dynamic job assignment heuristics for multi-server batch operations-a cost based approach,” International Journal of Production Research, 35(11), 3063-3093 (1997). [24 ] Van Der Zee, D. J., “Look-ahead strategies for controlling batch operations in industry-overview, comparison and exploration,” Proceedings of the 2000 Winter Simulation Conference, 1364-1373 (2000). [25 ] Weng, W. W. and Leachman, R.C., “An improved methodology for real -time production decisions at batch-process work station,” IEEE Transactions on Semiconductor Manufacturing, 6(3), 219-225 (1993).id NH0925031024 sid 913822 cfn 0 / id NH0925031025 auc 趙英哲 tic 強化沖壓業競爭力之研究 adc 陳光辰 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 116 kwc 沖壓業 kwc 中小企業 kwc 競爭力 kwc 模具 kwc PDCA循環 kwc 企業診斷 abc 沖壓業為台灣典型的製造業之一,在台灣經濟的發展過程中也曾經創造過輝煌的榮景。然而,沖壓業現今面對的艱難挑戰更甚以往,面對惡劣環境的企業主,不能以為仰賴過去的成功經驗就能為未來指引出一條明路,更不能再短視地要求政府以補貼的方式來幫助企業度過難關,而是要更積極主動地為自己找出一條生路。 tc 目錄 摘要..... Ⅰ 誌謝..... Ⅲ 目錄.....Ⅳ 圖目錄... Ⅶ 表目錄... Ⅷ 第一章 緒論...... 1 1.1研究背景....... 1 1.2研究動機....... 4 1.3研究目的與方法. 4 1.3.1研究目的..... 4 1.3.2研究方法..... 5 1.3.3研究限制..... 5 1.4研究架構....... 6 第二章 台灣沖壓業分析研究. 7 2.1台灣沖壓業簡介. 7 2.2沖模設計與製造. 10 2.3沖壓業自動化程度分析.... 11 2.4沖壓業沖壓製程複合化普及率分析... 12 2.5沖壓業主要使用的板材規格分析..... 13 2.6沖壓業上游產品的發展機會與技術研發課題.... 14 2.7沖壓業主要下游應用產業的市場變化分析...... 15 2.8產業競爭力分析. 18 2.9沖壓廠商生產上面臨的主要困擾分析. 20 2.10沖壓業面臨經營難題極待解決...... 21 第三章 文獻探討.. 25 3.1生產管理....... 25 3.1.1生產管理概述. 25 3.1.2生產管理實務探討之內涵 27 3.2企業診斷....... 29 3.2.1診斷概述..... 30 3.2.2診斷文獻之概念與架構.. 33 3.2.3中小企業診斷目標及要點 36 3.3提升產業競爭力. 37 3.3.1現場 38 3.3.1.1回歸現場的管理...... 38 3.3.1.2外資與本土企業的現場管理..... 38 3.3.2科技:....... 39 3.3.2.1升級....... 39 3.3.2.2科技的應用與迷思.... 40 3.3.3網路 41 3.3.3.1社會脈絡與產業網路.. 41 3.3.3.2產業網路在台灣...... 41 3.3.3.3中小企業於產業網路的問題及突破之道.... 42 3.3.4國際 42 3.3.5小結 43 3.4製造業自動化與電子化.... 44 3.4.1政府推行之產業自動化及電子化簡述........ 44 3.4.2製造業自動化的發展歷程 46 3.4.3相關管理手法討論...... 48 3.4.4小結 51 第四章 研究設計與方法..... 53 4.1診斷及操作架構. 53 4.2 PDCA之現場管理體制..... 55 4.3問卷調查及診斷表........ 58 4.3.1問卷調查..... 58 4.3.2診斷表....... 58 第五章 結果整理與分析..... 59 5.1案例公司簡介... 59 5.2 診斷表診斷結果 61 5.2.1診斷結果彙總. 61 5.2.2診斷表計分方式-以案例甲公司為例........ 62 5.2.3小結 68 5.3深度訪談結果... 69 5.3.1案例公司資料一覽...... 69 5.3.2案例公司訪談問卷之問題與對策一覽........ 73 5.4綜合比較分析... 80 5.4.1基本議題不同做法...... 80 5.4.2好公司的特色. 82 5.4.3各公司獨到的做法...... 85 5.4.4沖壓業成長軌跡........ 87 5.4.5向上提升等級的關鍵做法 90 5.4.6共通問題探討. 90 5.4.7科技於沖壓業的應用.... 94 第六章 結論與建議........ 96 6.1結論.. 96 6.2建議.. 99 6.3後續研究建議... 100 參考文獻. 101 附錄 問卷、診斷表 103 圖目錄 圖1-1 經濟部中小企業輔導體系分工架構圖...... 2 圖1-2 研究架構... 6 圖2-1 機械加工與沖壓加工之關係..... 8 圖2-2 沖壓件應用產品關聯圖 8 圖2-3 沖壓模具生產流程及配合資源... 10 圖2-4 沖壓模具技術應用魚骨圖....... 11 圖2-5 五力分析圖. 19 圖2-6 沖壓業SWOT分析圖.... 20 圖3-1 生產管理的基本機能.. 27 圖3-2 現場生產管理示意圖.. 29 圖3-3 企業診斷之目的圖.... 31 圖3-4 企業診斷及改善之程序圖....... 32 圖3-5 FQCD工廠改善體系概念圖....... 34 圖3-6 FQCD工廠改善體系的推進過程圖. 35 圖3-7 台灣日系企業事業變革類型..... 39 圖3-8 升級進程圖. 39 圖3-9 協力廠獲利能力及技術能力示意圖........ 42 圖3-10 角色示意圖 43 圖3-11 製造業自動化技術關聯圖...... 48 圖3-12 製造業電子化技術關聯圖...... 48 圖4-1 診斷及操作架構...... 54 圖5-5-1 甲公司雷達圖...... 65 圖5-5-2 乙公司雷達圖...... 65 圖5-5-3 丙公司雷達圖...... 66 圖5-5-4 丁公司雷達圖...... 66 圖5-5-5 戊公司雷達圖...... 67 圖5-5-6 己公司雷達圖...... 67 表目錄 表1-1 1999年至2002年各製造業受雇員工人數..... 3 表1-2-1 2001年及2002年製造業中分業家數....... 3 表1-2-2 2001年及2002年製造業中分業銷售額..... 3 表1-2-3 2001年及2002年製造業中分業內銷額..... 3 表1-2-4 2001年及2002年製造業中分業出口額..... 3 表2-1 國內沖壓產業的全公司員工人數分佈....... 9 表2-2 我國沖壓業生產線直接作業員工年齡層分佈. 9 表2-3 不同沖壓加工類型廠商的機械設備平均擁有數........ 10 表2-4 不同沖壓加工類型廠商的省力化程度統計... 12 表2-5 不同沖壓加工類型廠商的自動化程度統計... 12 表2-6 目前國內廠商沖壓複合化的採用情形....... 13 表2-7 不同沖壓加工類型廠商的使用材料一覽表... 14 表2-8 我國沖壓加工廠商的主要競爭對象分析..... 18 表2-9 不同沖壓加工類型廠商在生產上面臨的主要困擾...... 21 表2-10 我國沖壓業者未來營運策略方向與期待協助項目..... 21 表3-1 生產管理的架構....... 26 表3-2 製造業自動化的發展歷程........ 46 表3-3 製造業電子化的發展歷程........ 47 表4-1 PDCA之現場管理體制.. 56 表4-2 執行項目與查檢項目關聯表..... 57 表5-1 診斷結果彙總表...... 62 表5-2 案例甲公司診斷結果計算表..... 64 表5-3 案例公司資料一覽表.. 71 表5-4 案例公司訪談問卷之問題與對策一覽表.... 74rf 【1】 丁惠民等,製造業電子化推動手冊 e-Business─策略篇,經濟部工業局,2001 【2】 工業局工業自動化及電子化小組,產業自動化及電子化推動方案,http://proj.moeaidb.gov.tw/iaeb/htm/02-plan/plan.htm,2003 【3】 王光賢等,傳統工業技術升級推廣與輔導計畫成果彙編/昨日的傳統,今日的創新,明日的成功,臺北市工業局,2001 【4】 王百祿,「ERP導入何難之有」,工業自動化電子化第2期,2000,頁9-12 【5】 今井正明,許文治譯,現場改善:日本競爭力的成功之鑰,麥格羅希爾,1997 【6】 中國生產力中心,中小企業白皮書,經濟部中小企業處編印,2002 【7】 沙永傑、王忠宗、周賢榮、廖文志,企業診斷,國立空中大學,1996 【8】 林則孟,製造電子化講義,清華大學工業工程與工程管理研究所,2003 【9】 林秀玲,「企業e化提升競爭力之研究」,國立台灣大學國際企業學研究所,2000年 【10】 並木高矣,楊燦煌校閱,企業診斷要領-企業診斷的理論和方法,書泉,1988 【11】 馬君梅,實用企業診斷學,超越企管顧問股份有限公司,1994 【12】 張鼎技,「自動化生產確保有效稼動率-東培攻佔國際市場自動化生產技術示範觀摩發表」工業自動化電子化第17期,2000,頁37-39 【13】 梅村弘,陳坤賞譯,工廠改善作戰手冊-沖壓鈑金篇,中衛發展中心,1997 【14】 黃惠娟,「探索瑞士-腦內革命」,商業周刊803期,2003年4月,頁106-139 【15】 陳永甡,「由黑手轉型為現代化公司(通過ISO9001驗證)-信鋐工業(股)公司」,品質管制月刊第三十六卷第四期,2000,頁43-46 【16】 陳志明,「中小型製造業生產管理系統問題診斷與制度導入架構之研究:機械製造業案例分析」,清華大學工業工程與工程管理研究所碩士論文,1998年1月 【17】 陳建任,沖壓品專題研究,金屬工業研究發展中心,1997 【18】 編輯部,「用『優勢』為工作加分」,EMBA世界經理文摘176期,2001年4月,頁112-119 【19】 劉仁傑,重建臺灣產業競爭力,遠流,1997 【20】 蔡明螢,「生產管理診斷與改善方向之研究-由生產管理機能之分析」,清華大學工業工程與工程管理研究所碩士論文,1986年6月 【21】 賴宣名,「傳統製造業e化面面觀」,工業自動化電子化第3期,2000,頁7-11 【22】 盧舜年、鄒坤霖,供應鏈管理的第一本書,商周,2002 【23】 DAVID A. AAKER,Strategid Market Management,JOHN WILEY & SONS, INC.,2001 【24】 Kiyoshi Suzaki,The New Shop Floor Management,Simon & Schuster Inc.,1993 【25】 名古屋QS研究會,実践現場の管理と改善講座-目で見る工場診断,日本規格協会,2003id NH0925031025 sid 913824 cfn 0 / id NH0925031026 auc 薛志輝 tic 拉式多廠區之生產規劃與排程 - 以電腦組裝產業為例 adc 林則孟 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 93 kwc 多廠 kwc 規劃與排程 kwc 拉式 kwc 電腦組裝業 abc 在日漸擴大的市場需求之下,企業不願流失訂單,往往會選擇擴充產能。而擴充產能的選擇有許多種,包含產品外包、擴充生產線、興建新的工廠等,當選擇在低成本的環境如東南亞、大陸等地,興建新的廠房時,過去的單廠生產環境即轉變成多廠生產環境,因此企業將面臨到多廠的生產規劃與排程問題。然而在以客製化為導向的環境中,傳統存貨式生產已無法滿足顧客多樣化的需求,因此,生產策略漸漸從推式生產轉變成拉式生產,由顧客訂單驅動裝配生產與備料作業。而在這兩種環境趨勢之下,出現了拉式多廠區生產規劃與排程問題:在接到顧客確定性訂單後,如何在滿足目標情況下,考量各項限制集結物料,配置訂單與物料,並分配到各個廠區進行生產。 tc 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究範圍與限制 3 1.4 研究步驟與方法 3 第二章 多廠規劃與排程架構分析 5 2.1 多廠規劃與排程問題組成要素 5 2.2 多廠概念模式 9 2.3 產品結構 13 2.4 生產策略 14 2.5 生產製程與能力 20 2.6 多廠規劃與排程考量限制 21 2.7 績效指標分類 23 第三章 問題分析與定義 26 3.1 以電腦組裝產業為例 26 3.1.1 背景介紹 26 3.1.2 拉式多廠規劃與排程 27 3.2 問題定義 29 3.3 拉式多廠規劃與排程問題特性 37 第四章 拉式多廠區規劃與排程方法 39 4.1 拉式多廠區規劃與排程架構 39 4.2 拉式多廠區規劃階段 44 4.2.1 物料規劃問題 44 4.2.2 物料規劃方法 46 4.2.3 訂單分配問題 47 4.2.4 訂單分配方法 48 4.3 各廠排程階段 51 4.3.1 各廠排程問題 51 4.3.2 各廠排程方法 53 4.4 多廠區規劃流程範例 55 4.4.2 物料規劃範例 57 4.4.3 訂單分配範例 59 4.4.4 各廠排程範例 60 第五章 模擬構建與分析 64 5.1 模擬模式構建 64 5.1.1 模擬環境假設 64 5.1.2 模擬模式目的 68 5.1.3 模擬模式範圍 68 5.1.4 模擬模式細緻度 69 5.1.5 模擬模式構建 69 5.1.6 模式驗證與確認 73 5.2 實驗分析 74 5.2.1 實驗目的 74 5.2.2 績效指標 74 5.2.3 實驗因子 75 5.2.4 實驗架構 77 5.3 實驗結果與分析 78 5.3.1 實驗分析步驟 78 5.3.2 實驗結果分析 79 5.3.3 小結 86 第六章 結論與建議 87 6.1 結論 87 6.2 建議 87 參考文獻 89 附錄一 變異數分析表 92 附錄二 LSD檢定結果 93rf 1. 林則孟, 系統模擬-理論與應用, 滄海書局, 2001. 2. 林慈傑, “以遺傳演算法求解類運輸問題模式化的多廠訂單分配問題”, 臺灣大學工業工程學研究所碩士論文, 2002. 3. 周哲維, “多廠區整體物料規劃”, 元智大學工業工程與管理學系研究所碩士論文, 2003. 4. 陳子立, “以模擬為基礎之先進規劃與排程方法-以TFT-LCD產業模組廠為例”, 清華大學工業工程與工程管理研究所碩士論文, 2003. 5. 陳永隆, “製鞋業相同平行機台搭配模具生產現場排程之研究”, 東海大學工業工程與經營資訊研究所碩士論文, 2002。 6. 陳恩齊, “推式多廠區之生產規劃與排程-以TFT-LCD面板產業為例”, 清華大學工業工程與工程管理研究所碩士論文, 2004. 7. 黃建中, “多廠區規劃與排程--以TFT-LCD廠為例”, 清華大學工業工程與工程管理研究所碩士論文, 2003. 8. Bhatnagar, R., Chandra, P., and Goyal, S. K., “Models for Multi-Plant Coordination”, European Journal of Operational Research, 67, pp.141-160, 1993. 9. Bitran, G. R., Marieni, D., Noonan, J., “Introduction to multi-plant MRP”, Sloan School of Management, Working paper #1486-83, 1983. 10. Bruns, R. and Sauer, J. “Knowledge-Based Multi-Site Coordination and Scheduling”, In R.D. Schraft et al. eds., Flexible Automation and Intelligent manufacturing , New York: Begell House, 1995. 11. Carrie, A., Simulation of Manufacturing Systems, Wiley, 1986. 12. Derringer, G., and Suich, R., “Simultaneous optimization of several response variables”, Journal of Quality Technology, Vol. 12, No. 4, pp. 214-219, October 1980. 13. Fogarty, D. W., Blackstone, J. H. and Hoffmann, T. R., Production & Inventory Management, Second Edition, South-Western , 1991. 14. Fuyuki, M. and Inoue, I., “Due-Date-Conformance Oriented Production Scheduling in a Make-To-Order Production On a Basis of Backward/Forward Hybrid Simulation”, Journal of Japan Industrial Management Association, 46(2), pp.144-151, 1995. 15. Gnoni, M. G., Iavagnilio, R., Mossa, Mummolo, G., Di Leva, A., “Production Planning of a Multi Site Manufacturing System by Hybrid Model: A Case Study from the Automotive Industry”, International Journal of Production economics, 85, pp.251-262, 2003. 16. Guinet, A., “Multi-site planning: a transshipment problem”, International Journal of Production economics, 74, pp. 21-32, 2001. 17. Harland, C., “Supply chain operational performance roles”, Integrated Manufacturing System, 8(2), pp.70-78, 1997. 18. Hastings, N. A. J. and Yeh, C. H., “Bill of Manufacture”, Production and Inventory Management Journal, 33(4), pp.27-31, 1992. 19. Hoekstra, S. and Romme, J., Integral Logistic Structures: Developing Customer-Oriented Goods, First Edition , McGraw-Hill, 1992. 20. i2, “Supply Chain Key Model Definitions”, SCP Master Planning Technical Implementer Reference Manual. 21. Jang, Y. J., Jang, S. Y., Chang, B. M. and Park, J., “A combined model of network design and production/distribution planning for a supply network”, Computers & Industrial Engineering, 43, pp. 263-281, 2002. 22. Lampel, J. and Mintzberg, H., “Customizing Customization”, Sloan Management Review, Vol. 37, pp.21-30 , 1996. 23. Leachman, R. C., Benson, R. F., Liu, C., and Raar, D. j., “IMPReSS : An Automated Production-Planning and Delivery-Quotation System at Harris Corporation — Semiconductor Sector”, Institute for Operation Research and the Management Sciences, 1996. 24. Lee, Y. H., Kim, S. H. and Moon, C., “Production-distribution planning in supply chain using a hybrid approach”, Production Planning and Control, 13(1), pp. 35-46, 2002. 25. Metaxiotis, K., Psarras, J. and Askounis, D., “Building ontologies for production scheduling systems:towards a unified methodology”, Information Management and Computer Security, pp.44-50, 2001. 26. Moon, C., Kim, j., Hur, S., “Integrated process planning and scheduling with minimal total tardiness in multi-plants supply chain”, Computers & Industrial Engineering, 43, pp. 331-349, 2002. 27. Pape, C., “Constraint based scheduling:principles and application”, The institution of Electrical Engineers, 1996. 28. Ramasesh, R., “Dynamic Job Shop Scheduling: a survey of simulation research”, International Journal of Management Science, Vol. 18, No. 1, pp43-57, 1990. 29. Roux, W., Dauzere, P. S. and Lasserre, J. B., ”Planning and scheduling in a multi-site environment”, Production Planning & Control, 10(1), pp.19-28, 1999. 30. Sauer, J. and Appelrath, H. J., “Integrating Transportation in a Multi-Site Scheduling Environment”, Proceedings of the 33rd Hawaii International Conference on System Sciences, 2000 31. Simchi-Levi, D., Kaminsky, P. and Simchi-Levi, E., Design & managing the supply chain, McGraw-Hill, 2003. 32. Taal, M. and Wortmann, J. C., “Integrating MRP and finite capacity planning”, Production Planning & Control, 8(3), pp.245-254, 1997. 33. Thierry, G., Besnard, P., Ghattas, D., and Bel, G., “Multi-Site Planning:Non Flexible Production Units and Setup Time Treatment”, Proceedings of 1995 INRIA/IEEE Symposium, Volume: 3 , 10-13 Oct, 1995. 34. Timple, C. H., and Kallrath J., “Optimal Planning in Large Multi-Site Production Networks”, European Journal of Operational Research, 126, pp.422-435, 2000. 35. Vercellis, G., “Multi-plant production planning in capacitated self-configuring two-stage serial systems”, European Journal of Operation Research, 119, pp. 451-460, 1999. 36. Vollmann, T. E., Berry, W. L. And Whybark, D. C., Manufacturing Planning and Control Systems, Fourth Edition, McGrawHill Press, 1997. 37. Watson, E. F.,Medeiros, D. J. and Sadowski, R. P., “Generating Component Release Plans with Backward Simulation”, Proceedings of the 1993 Winter Simulation Conference, pp.930-938, 1993. 38. Watson, E. F., Medeiros, D. J. and Sadowski, R. P., “Order-release planning using variable lead times based on a backward simulation model”, International Journal of Production Research, 33(10), pp.2867-2888, 1995. 39. Watson, E. F., Medeiros, D. J. and Sadowski, R. P., “A Simulation-based Backward Planning Approach for Order-Release”, Proceedings of the 1997 Winter Simulation Conference, pp.765-772, 1997.id NH0925031026 sid 913826 cfn 0 / id NH0925031027 auc 蔡佳君 tic 以SCOR為基之供應鏈分析與設計方法論 adc 林則孟 博士 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 127 kwc 供應鏈 kwc SCOR kwc 方法論 kwc 型態分析 kwc 績效分析 kwc 模擬 abc 本研究嘗試探討企業因不了解現行供應鏈作業模式所衍生之諸多問題,故提以一系統化之方法論期以輔助企業進行供應鏈作業模式之分析與設計。本方法論並以1996年供應鏈協會(Supply Chain Council,SCC)所發展之供應鏈作業參考模式(Supply Chain Operations Reference Model,SCOR Model)為基礎,具體論述應用SCOR之方法,同時以一TFT-LCD產業為案例,進行方法論之驗證。 tc 第一章 緒論 9 1.1 研究背景與動機 9 1.2 研究目的 10 1.3 研究範圍與限制 11 1.4 研究架構 11 第二章 文獻回顧 15 2.1 供應鏈作業參考模式 15 2.1.1 SCOR Model簡介 15 2.1.2 SCOR Model之應用 21 2.2 供應鏈型態分析 24 2.3 供應鏈績效分析 26 2.3.1 績效評估 26 2.3.2 因果分析(Causes and Effects Analysis) 28 2.3.3 延遲理論(Postponement Theory) 30 2.4 供應鏈作業模式設計 33 2.4.1 以SCOR為基之模擬 33 2.4.2 多屬性決策 35 2.5 供應鏈分析與設計 36 第三章 以SCOR為基之供應鏈型態分析 41 3.1 供應鏈型態分析之目的 41 3.2 供應鏈型態分析之方法 41 3.2.1 供應鏈分析方法之架構 42 3.2.2 供應鏈範圍確認 43 3.2.3 第一階段型態分析 43 3.2.4 供應鏈結構建立 45 3.2.5 第二階段供應鏈型態分析 47 3.2.6 供應鏈模式建立 53 3.3 供應鏈型態分析之案例驗證 56 第四章 以SCOR為基之供應鏈績效分析 71 4.1 供應鏈績效分析之目的 71 4.2 供應鏈績效分析之方法 72 4.2.1 供應鏈績效分析方法之架構 72 4.2.2 供應鏈績效評分卡之建立 73 4.2.3 資料蒐集與差距分析 75 4.2.4 根本因素之搜尋 76 4.2.5 延遲理論應用之剖析 78 4.2.6 建立改善後之供應鏈作業模式 79 4.3 供應鏈績效分析之案例驗證 80 第五章 以SCOR為基之供應鏈作業模式設計 92 5.1 供應鏈作業模式設計之目的 92 5.2 供應鏈作業模式設計之方法 93 5.2.1 供應鏈作業模式設計方法之架構 93 5.2.2 問題定義 94 5.2.3 模擬模式之建構 96 5.2.4 模式驗證與確認 105 5.2.5 模擬輸出分析 106 5.2.6 供應鏈作業模式評選 107 5.3 供應鏈作業模式設計之案例驗證 109 第六章 結論與建議 121 6.1 結論 121 6.2 建議 122rf 1. 林則孟,「系統模擬理論與應用」,滄海書局,2001。 2. 林啟良、吳國禎、唐燕飛、孫黎芳,”供應鏈管理系統的績效評估方法”,中國工業工程學會九十年度學術研討會,2001。 3. 陳子立,“以模擬為基礎之先進規劃排程法-以TFT-LCD模組廠為例”,清華大學工業工程與工程管理所碩士論文,2003。 4. 黃建中,“多廠區規劃與排程–以TFT-LCD廠為例”,清華大學工業工程與工程管理所碩士論文,2003。 5. 鄧振源、曾國雄,”層級分析法(AHP)的內涵特性與應用”,中國統計學報,第27卷,第6期,1989。 6. Beamon, B. M. "Supply Chain Design Analysis Models and Method" International Journal of Production Economic, l55, pp 281-294, 1998. 7. Beamon, B. M. " Measuring Supply Chain Performance" International Journal of Operations and Production Management, 19(3), pp 275-292, 1999. 8. Bolstorff, P. and Rosenbaum, R., Supply Chain Excellence: A Hand Book For Dramatic Improvement Using the SCOR Model, AMACOM, 2003. 9. e-SCOR User’s Guide, Version 4.0. 10. Herrann, J. W., "Supply chain simulation models for evaluating the impact of rescheduling frequencies" ISR., ,Master's Thesis, 2002. 11. Hoek, R. I. V., “The Rediscovery of Postponement A Literature Review and Directs for Research” Journal of Operation Management, 19(2), pp. 161-184 2001. 12. Huan, S. H. Sheoran, S. K. and Wang G. “A Review and Analysis of Supply Chain Operations Reference (SCOR) Model” Supply Chain Management: A International Journal, 9(1), pp 23-29, 2004 13. Hwang, C. L. and Yoon, K. “Multiple Attribute Decision Making – Method and Applications”, Spring-Verlag, New York, 1981. 14. Hwang, C. L. and Yoon, K. “Multiple Attribute Decision Making – An Introduction”, Sage Publications Inc., Thousand Oaks, 1995. 15. Lai, K. Ngai, E. W. T. and Cheng T. C. E. “Measures For Evaluating Supply Chain Performance In Transportation Logistics” Transportation Research, Part E (38), pp 439-456, 2002 16. Lee, H. L. and Amaral Jason, “Continuous and Sustainable Improvement Through Supply Chain Performance Management” Stanford Global Supply Chain Management Forum, 2002. 17. Lohman, C. Fortuin, L. and Wouters, M. “Design A Performance Management System: A Case Study” European Journal of Operation Research, 156, pp. 267-286, 2004. 18. Lu, H. and Su, Y., “An Approach Towards Overall Supply Chain Efficiency- A Future Oriented Solution And Analysis In Inbound Process”, Masters Thesis, Graduate Business School, Economics and Commercial Law, Göteborg University, 2002. 19. Meyr, H. Rohde, J. and Stadtler, H., Supply Chain Management and Advanced Planning- Concepts, Models, Software and Case Studies, Second Edition, Springer, 2002. 20. Naim, M. M. Barker, R. and Hong-Minh, S. M. “Terrain Scanning Methodology For Construction Supply Chains”, Working Paper, 1999. 21. Naim, M. M. Childerhouse, P. Disney, S. M. and Towill D. R., “A Supply Chain Diagnostic Methodology:Determining The Vector of Change” Computer and Industrial Engineering, 43, pp. 135-157, 2002. 22. Pagh, J. D. and Cooper, M. C., “Postponement and Speculation Strategies: How To Choose The Right Strategy” Journal of Business Logistics, 9(2), pp. 13-33, 1998. 23. Rahman, S. “The Theory of Constrains’ Thinking Process Approach to Developing Growth Strategies in Supply Chain”, The University of Sydney, Working Paper, 2002. 24. SAP Consult Group “SAP SCM Business Assessment”, 2002. 25. SCOR v6.0 Overview. 26. SCOR-Wizard Quick Reference 27. Simchi-Levi, D. and Kaminsky, P. "Design and Managing The Supply Chain". McGRAW Hill, 2003. 28. Smith, C. D., Supply Chain Processes, Supply Chain Management, Working Paper, 2003. 29. Spille, J., “A SCOR Based Simulation Model to Analyze the Impact of Fluctuations in Demand on Supply Chains”, Master’s Thesis, Aachen University of Technology, Aachen, Germany, 2001. 30. Tanner, J. F. and Honeycutt, E. D. “Reengineering Using the Theory of Constrains: A Case Analysis of Moore Business Forums” Industrial Marketing Management, 25, pp 311-319, 1996. 31. Tracey, B. “The Theory of Constrains and Its Thinking Processes”, Goldratt Institute, 2001. 32. Yano, T. and Barrett, M. “A Case Report of Application to LCD Factory” Supply Chain World Conference and Exposition, 1996. 33. Fu, Yonghui and Rajesh Piplani. "Multi-agent enabled modeling and simulation towards collaborative inventory management in supply chain " Proceeding of the 2000 Winter Simulation Conference, 2000. 34. Zinn, W. and Bowersox, D. J. “Planning Physical Distribution With The Principle of Postponement”, Journal of Business Logistics, 9(2), pp. 117-136 1988.id NH0925031027 sid 913827 cfn 0 / id NH0925031028 auc 林敦睦 tic CPFR導入方法之研究—以木工機械業為例 adc 林則孟 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 183 kwc 協同規劃預測補貨 kwc 協同 kwc 供應鏈管理 abc   隨著微利時代的來臨,快速反應市場已成為企業提升競爭力不可或缺之條件,透過「協同(collaboration)」之概念,可提升買賣雙方之效率進而改善供應鏈上所面臨之問題。而協同規劃、預測與補貨(Collaborative Planning Forecasting and Replenishment,CPFR)之出現,強調供應鏈上買賣雙方透過協同合作流程的概念,藉由成員之間的資訊分享,促進供應鏈管理上有關預測與補貨流程之處理績效。 tc 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 1 1.3 研究範圍與限制 2 1.4 研究步驟與方法 2 第二章 文獻回顧 4 2.1 預測、補貨模式的演進 4 2.1.1 傳統的預測、補貨模式 4 2.1.2 協同規劃、預測與補貨(CPFR)之起源 7 2.2 協同規劃、預測與補貨(CPFR) 10 2.2.1 CPFR之簡介 10 2.2.2 CPFR之導入指南(Roadmap) 11 2.2.3 CPFR導入關鍵成功因素(Critical success factors) 13 2.2.4 CPFR國內外相關文獻 15 2.2.5 相關文獻之CPFR導入問題點 17 2.3 CPFR模式之特徵 18 2.3.1 協同流程(Collaboration process)之特徵 18 2.3.2 CPFR模式之核心概念 22 2.4 流程對應(process mapping) 22 2.4.1 流程對應之簡介 23 2.4.2 流程對應之方法 24 2.5 異常處理機制(exception handling) 26 2.5.1 預測(forecast)相關之異常狀態標準 26 2.5.2 績效指標(metric)之異常狀態標準 29 2.5.3 作業層面(operational)之異常狀態標準 29 2.5.4 異常狀態與時間軸之關連性 29 2.6 資訊分享(information sharing) 31 2.6.1 資訊分享的種類 31 2.6.2 資訊分享的動機 33 2.6.3 CPFR相關資訊分享之文獻 35 2.7 績效指標評選(performance index selection) 37 2.7.1 績效評估之定義 37 2.7.2 CPFR之績效指標考量因素及評選方式 38 2.7.3 分析層級程序法(Analytic Hierarchy Process,AHP) 39 第三章 協同預測補貨之形成背景與原因 42 3.1 範例情境背景簡介 42 3.2 範例情境發展(m4~m7) 43 3.2.2 狀況一:製造商(m4)應該訂購多少物料? 44 3.2.3 狀況二:針對經銷商(m5)下單,製造商該回覆多少訂單數量 50 3.2.4 狀況三:通路商(m6)發現銷售趨勢變好,但已無法更改訂單 55 3.2.5 狀況四:通路商(m7)發現市場存在缺貨的現象 58 3.3 範例情境問題探討 59 3.3.1 原因一:雙方的預測不一致(預測技術之介紹) 59 3.3.2 原因二:前置時間的影響 60 3.3.3 原因三:預測更新之頻率(反應市場變化的能力) 61 3.3.4 原因四:交易合作關係 62 3.4 範例情境問題之解決方式 62 3.4.1 雙方的預測不一致之解決方法 62 3.4.2 情境之解決方案—「協同規劃、預測與補貨(CPFR)」 63 第四章 CPFR導入方法論說明—以範例情境為例 68 4.1 CPFR導入方法論架構說明 68 4.1.1 CPFR導入方法論之由來 68 4.1.2 CPFR導入方法論之架構 69 4.2 階段一(Analysis):導入動機探討與現行問題分析 70 4.2.1 發展程序及運用技術之說明 71 4.2.2 步驟一(Step 1):導入CPFR動機探討 (Why CPFR) 71 4.2.3 步驟二(Step 2):釐清問題之間的邏輯關係(Identify Problems’ Relation) 73 4.2.4 步驟三(Step 3):找出核心問題為何(Find core problems) 75 4.3 階段二(Buildup):現行流程對應與未來流程設計 78 4.3.2 發展程序及運用技術之說明 78 4.3.3 步驟一(Step 1):現行流程對應(AS-IS process mapping) 79 4.3.4 步驟二(Step 2):分析核心問題的解決方法 84 4.3.5 步驟三(Step 3):未來流程設計(TO-BE process mapping) 86 4.4 階段三(CSF):找出導入關鍵成功因素 86 4.4.2 成功關鍵因素一(CSF1):預測方式的變革 87 4.4.3 成功關鍵因素二(CSF2):相關資訊的分享 89 4.4.4 成功關鍵因素三(CSF3):異常判斷機制的建立 91 4.4.5 非流程面之成功關鍵因素 93 4.5 階段四(Definition):定義主要績效指標及確定未來流程 93 4.5.1 主要績效指標之評選方法(KPI Selection method)說明 94 4.5.2 步驟一(Step 1):選出評估核心問題之參考指標 95 4.5.3 步驟二(Step 2):透過AHP問卷,決定績效指標之排序 97 4.5.4 步驟三(Step 3):未來流程確定 101 4.5.5 步驟四(Step 4):擬定協同協議 102 4.6 階段五(Execution):系統導入執行 104 4.6.1 系統分析方法 106 4.6.2 步驟一(Step 1):需求分析 106 4.6.3 步驟二(Step 2):系統設計 112 4.6.4 步驟三(Step 3):系統構建 114 4.7 階段六(Feedback):指標差異分析與導入成功關鍵因素檢討 115 4.7.1 指標評估與差異分析 116 4.7.2 導入成功關鍵因素之檢討 117 4.8 CPFR導入方法論與VICS CPFR Roadmap之差異 118 第五章 CPFR導入方法論之應用—(案例公司:A公司木工機械製造商) 121 5.1 案例公司簡介 121 5.1.1 產業背景 121 5.1.2 案例公司背景簡介與供應鏈架構 122 5.2 案例公司商業情境說明 123 5.2.1 雙方討論促銷活動行事曆,產生銷售預測 123 5.2.2 製造商根據銷售預測進行備料 124 5.2.3 通路商下單詢問,製造商回覆船期與可允諾訂單量 125 5.2.4 製造商生產完畢出貨到通路商倉庫後,再到通路商之店鋪 125 5.2.5 雙方現行所面臨之問題 125 5.3 階段一(Analysis):導入動機探討與現行問題分析 126 5.3.1 步驟一(Step 1):導入CPFR動機探討 (Why CPFR) 126 5.3.2 步驟二(Step 2):釐清問題之間的邏輯關係(Identify Problems’ Relation) 127 5.3.3 步驟三(Step 3):找出核心問題為何(Find core problems) 129 5.4 階段二(Buildup):現行流程對應與未來流程設計 132 5.4.1 步驟一(Step 1):現行流程對應(AS-IS process mapping) 132 5.4.2 步驟二(Step 2):分析核心問題的解決方法 138 5.4.3 步驟三(Step 3):未來流程設計(TO-BE process mapping) 140 5.5 階段三(CSF):找出導入關鍵成功因素 140 5.5.1 成功關鍵因素一(CSF1):預測方式的變革 141 5.5.2 成功關鍵因素二(CSF2):相關資訊的分享 142 5.5.3 成功關鍵因素三(CSF3):異常判斷機制的建立 144 5.5.4 非流程面之成功關鍵因素 145 5.6 階段四(Definition):決定出主要績效指標(KPI) 145 5.6.1 步驟一(Step 1):選出評估核心問題之參考指標 145 5.6.2 步驟二(Step 2):透過AHP問卷,決定績效指標之排序 147 5.6.3 步驟三(Step 3):未來流程確定 151 5.6.4 步驟四(Step 4):擬定協同協議 151 5.7 階段五(Execution):系統導入執行 152 5.7.1 系統分析與設計(參考辛瑋雄, 2003) 152 5.7.2 系統構建 153 5.8 階段六(Feedback):指標差異分析與導入成功關鍵因素之檢討 156 5.8.1 指標評估與差異分析 156 5.8.2 導入成功關鍵因素之檢討 157 第六章 個案探討(導入方法論之可行性分析) 159 6.1 案例公司應用VICS CPFR Roadmap導入過程描述 159 6.1.1 步驟一:評估現況(Evaluate Your Current State) 160 6.1.2 步驟二:定義協同範圍及目標(Define Scope and Objectives) 162 6.1.3 步驟三:準備進行協同合作(Prepare for Collaboration) 165 6.1.4 步驟四:執行(Execute: Performing the Pilot) 167 6.1.5 步驟五:績效評估(Assess Performance and Identify Next Step) 167 6.2 案例公司應用CPFR Roadmap與本方法論之差異分析 169 6.2.1 導入方法論之比較 170 6.2.2 導入細部步驟之比較 171 6.3 CPFR導入方法論之可行性分析 175 第七章 結論與建議 177 7.1 結論 177 7.2 建議 179 參考文獻 181 附錄:中英對照表 184rf 1.VICS CPFR官方網站, http://www.cpfr.org/ 2.辛瑋雄, “CPFR協同商務平台系統分析與設計”, 清華大學工業工程與工程管理學系研究所碩士論文, 2003. 3.吳志忠, ”建構一個具有CPFR 流程特性之企業間商務電子交易市集平台的模式”, 政治大學資訊管理研究所碩士論文, 2001. 4.吳慧玲, ”台灣零售業應用協同規劃預測補貨模式之可行性研究—以烘焙業與百貨量販業為例”, 淡江大學資訊管理研究所碩士論文, 2002. 5.邱柏仁, “Web Services為基之Peer-to-peer CPFR訊息交換架構”, 清華大學資訊系統與應用研究所碩士論文, 2004. 6.施仁和, “台灣百貨量販業供應鏈管理參考模式之研究”, 台北科技大學商業自動化與管理研究所碩士論文, 1999. 7.張榮圳, “供應鏈管理資訊分享模式之研究” ,中山大學資管所碩士論文, 2001. 8.陳衍至, “台灣木工機市場柳暗花明”, MM機械技術雜誌 221期, 2003. 9.曾民堂,企業夥伴之資訊分享與資訊不對稱之研究,中正大學企業管理研究所碩士論文, 2001. 10.魏志強, “合作式商務的經典CPFR—Wal-Mart和Sara Lee示範案例”, 經濟部商業司, 2001. 11.鄧振源, 曾國雄, “層級分析法(AHP)的內涵特性與應用(上)(下)”, 中國統計學報, 27卷6~7期, 1989. 12.盧舜年, 鄒坤霖, 供應鏈管理的第一本書, 商周出版, 2002. 13.Aldowaisan, T. A. and Gaafar, L. K., “Business process reengineering: an approach for process mapping”, Omega International Journal of Management Science. vol 27, pp 515-524, 1999. 14.“An introduction to Process Mapping”, Information Management and Modelling research Group (IMMaGe), 2001, http://www.lsbu.ac.uk/immage/Process_mapp-ing/Process_mapping.htm. 15.Anjard, R., “Process mapping: a valuable tool for construction management and other professionals”, Facilities, 16(3), pp.79-81, 1998. 16.Barratt, M., and Oliviera, A., “Exploring the experiences of collaborative planning initiatives”, International Journal of Physical Distribution & Logistics Management, 31(4), pp.266-289, 2001. 17.“EAN.UCC Business Message Standards Version 1.0”, July 2001. 18.ECR Europe , “European CPFR Insights”, ECR Europe, 2002. 19.Fliedner, G.., ”CPFR: an emerging supply chain tool”, Industrial Management & Data Systems, 103(1), pp.14-23, 2003. 20.Fuglseth, A. & Gronhaug, K., “IT-enabled redesign of complex and dynamic business processes; the case of bank credit evaluation.”, OMEGA International Journal of Management Science. vol 25, pp93-106, 1997 21.Goldratt, E. M., "It’s Not Luck", North River Press, 1994 22.Holmstrom, J., Framling, K., Kaipia, R. , Saranen, J., “Collaborative planning, forecasting, and replenishment: new solutions needed for mass collaboration”, Supply Chain Management: An International Journal, 7(3), pp.136-145, 2000. 23.Keller, P. J., and Jacka, J. M., "Process mapping", The Internal Auditor, pg.60, Oct 1999. 24.Konsynski, B. R.,“Strategic Control in The Extended Enterprise", IBM Systems Journal, vol. 32, pp. 111-142, 1993. 25.Lee, H. L. and Whang, S.,“Information Sharing in a Supply Chain”,International Journal of Technology Management, Vol.20, Iss.3.4, pp.373-387, 2002. 26.Matt, J.,"Collaboration Data Modeling:CPFR Implementation Guidelines", 1999 Annual Conference Proceedings of the Council of Logistics Management, 1999, http://www.cpfr.org/documents/pdf/CollaborationDataModelingA.pdf. 27.McClellan, M,. ,“Collaborative manufacturing:using real-time information”, ST. LUCIE PRESS, 2003 28.Noekkentved, C., “Collaborative Processes in E-supply Networks”, European SAP Centre of Expertise, PricewaterhouseCoopers, 2000. 29.Pramataris, K., Papakiriakopoulos, D., Poulymenakou, A., and Doukidis, G.,"New forms of CPFR: Daily collaboration at store level", ECR Journal, 2(2), pp.38-43, 2003. 30.Petersen, K., Eschinger, C., and Frey, N., “Supply chain collaboration:lessons from the leading edge”, Gartner Group Strategic Analysis Report, R-13-9859, 2001 31.Robert, B., and Ron, I., “What’ s the difference: VMI, Co-managed, CPFR?”, V.C.C. Associates, Inc., August 2002, http://www.vccassociates.com/articles/Artic -le - August VMI CPFR.pdf. 32.Satty, T. L., “The Analytic Hierarchy Process”, McGraw-Hill, 1980. 33.Seifert, D., ”Collaborative Planning, Forecasting, and Replenishment - How to Create a Supply Chain Advantage”, AMAZOM, 2003. 34.Simchi-Levi, D., Kaminsky, P., and Simchi-Levi, E., “Designing and Managing the Supply Chain”, McGraw-Hill, pp.258-259, 2001. 35.Singh, H., “Collaborative Forecasting”, Supply Chain Consultants (SCC), 2002, http://www.supplychain.com/whitepapers/pdf/collaborativeforecasting.pdf. 36.Sliwa, C., “CPFR clamor persists, but adoption remains slow”, Computerworld, 1 July, pp.10, 2002. 37.Sommerville, I., “Software Engineering”, Fourth Edition, USA: Addison-Wesley, 1992. 38.Stadtler, H., Kilger C., “Supply Chain Management and Advanced Planning Concepts, Models, Software and Case Studies “, Second Edition, Springer, 2002. 39.Stank, T. P., Daugherty, P. J. and Autry, C. W., “Collaborative planning: supporting automatic replenishment programs”, Supply Chain Management, 4(2), pp. 75-85,1999. 40.Tage, S., Christian, T., and Claus, A., "Supply chain collaboration Theoretical perspectives and empirical evidence", International Journal of Physical Distribution & Logistics Management, vol. 33, No.6, pp.531-549,2003. 41.Teigen, R., ”Information Flow in a Supply Chain management System”, February 2000, http://www.eil.utoronto.ca/profiles/rune/dipthesis.html. 42.VICS, “Collaborative Planning, Forecasting and Replenishment (CPFR®), Vision 2.0”, Voluntary Interindustry Commerce Standards Association, 2002. 43.VICS, “Procter&Gamble Pilot”, Voluntary Interindustry Commerce Standards Association, 2002, http://www.cpfr.org/cpfr_pdf/11_4_4_Procter_Gamble_Pilot. pdf. 44.VICS, “Roadmap to CPFR”, Voluntary Inter-industry Commerce Standards Association, 2002.id NH0925031028 sid 913829 cfn 0 / id NH0925031029 auc 陳麗 auc & auc #20227; tic 以資料挖礦為基礎之半導體測試性WAT資料分析診斷 adc 陳飛龍 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 79 kwc 半導體 kwc 測試性製程 kwc 工程資料分析 kwc 晶圓允收測試 kwc 資料挖礦 kwc 自組織特徵映射網路 abc 半導體是一個製程相當複雜的產業,其產品具有生產周期長與生命週期短之特徵。因為半導體產業產品更新迅速,擁有快速提升測試性製程良率的能力是相當重要的。在半導體測試製程當中,通常使用晶圓允收測試資料分析其樣型(patterns),以判定及診斷出可能異常的製程。本研究使用資料挖礦的概念,配合使用類神經網路中自組織特徵映射網路方法,建立測試性WAT參數特徵值之萃取的模式,使得隱含在測試性晶圓中高維度的測試性WAT資料中可能影響良率的因素得以發現。 rf 參考文獻 工研院經資中心ITIS計畫,2000。 李偉傑,半導體之工程資料分析與診斷系統,國立清華大學工業工程與工程管理學研究所碩士論文,1996。 林寅志,以工程資料為基礎之半導體故障分析系統,國立清華大學工業工程與工程管理學研究所碩士論文,1998。 葉怡成,類神經網路模式應用與實作,儒林,2003。 張智星,MATHLAB程式設計與應用,清蔚科技,2000。 張柏年,以倒傳遞網路為基礎之自動化晶圓缺陷檢測系統,國立清華大學工業工程與工程管理學研究所碩士論文,2003。 張斐章、張麗秋、黃浩倫,類神經網路理論與實務,東華書局,2003。 陳順宇,多變量分析,華泰書局,1999。 黃大倫,半導體製程良率提升專家系統之失效模式與效應&晶圓允收測試異常分析,國立清華大學工程與系統科學研究所碩士論文,2001。 蔡明正,半導體製程良率提升專家系統之故障樹建構與分析及專家系統之驗証,國立清華大學工程與系統科學研究所碩士論文,2001。 游智翔,多重bin層良率群集分析之研究,國立清華大學統計學研究所碩士論文,2001。 羅華強,類神經網路-MATLAB的應用,清蔚科技,2001。 Berry, M. and Linoff, G., Data Mining Techniques: for marketing, sales, and customer support, John Wiley and Sons, 1997. Campbell, S. A., The science and engineering of microelectronic fabrication, Oxford University Press, 2001. Chine, C. and Lin, T., “Developing Data Mining Framework and Methods for Diagnosing Semiconductor Manufacturing Defects and An Empirical Study of Wafer Acceptance Test Data in a Wafer Fab,” Journal of Chinese Institute of Industrial Engineers, Vol.18, No. 4, pp. 37-48, 2001. Chine, C., Lin, T., Liu, Q., Peng, C., and Hsu, S., “Developing a Data Mining Method for Wafer Binmap Clustering and an Empirical Study in a Semiconductor Manufacturing Fab,” Journal of Chinese Institute of Industrial Engineers, Vol.19, No. 2, pp. 23-38, 2002. Collica, R. S., Card, J. P., and Martin, W., “SRAM Bitmap Shape Recognition and Sorting Using Neural Network”, IEEE Transactions on Semiconductor Manufacturing, Vol.8, No. 3, pp. 326-332, 1995. Doong, K. Y. and Cheng, Jye-Yen, “Design and simulation of addressable failure site test structure for IC process control monitor,” VLSI Technology, Systems, and Applications, Vol. 8, No. 10, pp. 219-222, 1999. El-Kareh, B., Process Integration and Device Characterization in Microelectronic Manufacturing Course, SEMICON Taiwan, 1997. Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P., “The KDD Process for Extracting Useful Knowledge from Volumes of Data,” Communications of the ACM, Vol. 39, No. 11, pp. 27-34, 1996. Kohonen, T., “The self-organizing map,” Proceedings of the IEEE, Vol. 78, No.9, pp.1464-1480, 1990. Freeman, J. A. and Skapura, D. M., Neural Networks Algorithms, Applications, and Programming Techniques, Addison-Wisley, 1991. Ferris-Prabhu, A. V., Introduction to Semiconductor Device Yield Modeling, IBM Corporation, 1992. Friedman, D. J., Hansen, M.H., Nair, V.N., and James, D. A., “Model-Free Estimation of Defect Clustering in Integrated Circuit Fabrication,” IEEE Transactions on Semiconductor Manufacturing, Vol. 10, No. 3, pp. 344-359, 1997. Gordon E. M., “Cramming more components onto integrated circuits,” Electronics, Vol. 38, No. 8, April 19, 1965. Hattori, T., “Contamination Control: Problems and Prospects,” Solid State Technol, Vol. 33, No. 7, 1990。 Kaempf, U., “The Binomial Test: A Simple Tool to Identify Process Problems,” IEEE Transactions on Semiconductor Manufacturing, Vol. 8, No. 2, pp. 160-166, 1995. Haykin, S., Neural Networks, Macmillan, 1994. Lee, J. H., Yu, S. J., and Park, S. C., ”Design on Intelligent Data Sampling Methodology Based on Data Mining” IEEE Transactions on Robotics and Automation, Vol. 17, No. 2, pp. 637-649, 2001. Maynard, D. N., Rosner, R. J., Kerbaugh, M. L., Hamilton, R. A., Bentlage, J. R., and Boye, C. A., “Wafer Line Productivity Optimization in a Multi-Technology Multi-Part-Number Fabricator,” IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 34 - 42, 1998. Nag, P. K., Maly, W, Jocobs. And H. J., “Simulation of Yield/Cost Learning Curves with Y4,” IEEE Transactions on Semiconductor Manufacturing, Vol. 10, No. 2, pp. 256-266, 1997. Pak, J., Kittler, R., and Ping Wen, “Advanced methods for analysis of lot-to-lot yield variation,” Proceedings of IEEE International Symposium on Semiconductor Manufacturing, E.17 - 20, 1997. Rastogi, P., Kozicki, M. N. and Golshani, G., “Expro- An Expert System Based Process Management System,” IEEE Transactions on Semiconductor Manufacturing, Vol.6, No. 3, pp. 207-218, 1993. Roiger, R. J. and Geatz, M. W., Data Mining A Tutorial-Base Primer, Addison Wesley, 2003. Seymour, L., Data Structures, McGraw-Hill, 1986. Tochtrop, T., ”Integrated Measurement and Analysis Concept at SMST, a Defect Management System,” IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 86 - 91, 1996. Weber, C., ”Yield learning and the sources of profitability in semiconductor manufacturing and process development,” IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 324 - 329, 2002. Xiao, H., Introduction to Semiconductor Manufacturing Technology, Prentice Hall, 2001. Zant, P. V., Microchip Fabrication: A practical Guide to Semiconductor Processing, McGraw Hill, 2000.id NH0925031029 sid 913830 cfn 0 / id NH0925031030 auc 楊綠淵 tic 以文件相關性為基礎之企業知識分群與管理模式 adc 侯建良 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 152 kwc 相關性分析 kwc 文件分群 kwc 資訊發佈 abc 隨著網際網路(Internet)之快速發展,「資訊過量」、「資訊爆炸」等狀況漸形嚴重,造成網際網路使用者進行資訊檢索/查詢時,無法有效篩選真正想要尋找之資訊。此外,近年來以顧客為導向之顧客關係管理(Customer Relationship Management,CRM)觀念盛行,企業若能掌握使用者之需求,建立「個人化(Personalized)」之顧客關係,主動發佈使用者需要之資訊,將可更契合未來資訊之管理模式。本論文乃以文件關鍵屬性之擷取為基礎,進行文件間之相關性分析;並以此相關性分析之結果進行自動化文件分群。之後,透過使用者閱讀趨勢之收集與分析,結合文件分群結果,自動推論文件接受對象,達成文件(或訊息)自動發佈之目的。最後,建立一套以文件相關性為基礎之企業知識分群與管理模式與系統技術,並以一案例驗證此模式與技術之可行性。整體而言,藉由本研究所發展之知識文件管理模式,除可促成企業體實現一對一行銷之理念外,尚可應用於企業知識文件管理體系,協助企業組織發展智慧型知識文件管理機制,使電子化知識管理與顧客關係管理理念能相互整合支援,並帶動知識服務型產業之發展。 tc 中文摘要 I 英文摘要 II 目錄 III 致謝詞 VI 圖目錄 VII 表目錄 X 第一章、 研究背景 1 1.1研究動機與目的 1 1.2研究方法與步驟 2 1.3研究定位 5 第二章、 文獻回顧 6 2.1 文件關鍵屬性擷取 6 2.1.1 文件關鍵字擷取 6 2.1.2 文件分類(類別)擷取 7 2.2 文件相關性分析 8 2.3 文件分群 9 2.3.1 自動群集偵測 9 2.3.2 自組織映射圖 10 2.3.3 類神經網路 10 2.3.4 文件相關性 11 2.3.5 其他方法 11 2.4 文件/訊息發佈 12 2.4.1 使用者閱讀趨勢資料之收集與探勘 12 2.4.2 文件接受者自動推論 15 第三章、 企業知識分群與管理模式 17 3.1 文件相關性分析 17 3.1.1 以關鍵字為基之文件相關性分析 17 3.1.2以文件多屬性為基之文件相關性分析 25 3.2 文件分群 29 3.3 文件/訊息發佈 33 3.3.1 文件權限對象推論—依使用者角度 34 3.3.2文件接受對象推論—以文件層面 39 3.4 小結 47 第四章、 系統架構 49 4.1企業知識分群與管理系統核心架構 49 4.2系統功能架構 52 4.3資料模式定義 53 4.4系統流程 53 4.4.1系統操作流程 54 4.4.2系統資料流程 54 4.5系統開發工具 60 第五章、 系統實作與案例驗證 63 5.1系統功能操作 63 5.1.1文件上傳功能 63 5.1.2文件相關性管理 68 5.1.3文件分群管理 72 5.1.4文件發佈對象推論管理 75 5.1.5文件管理 80 5.1.6相關參數設定 86 5.1.7使用者基本資料管理 94 5.1.8使用者管理 96 5.2系統分析與評估 101 5.2.1文件匯入 102 5.2.2相關性分析 104 5.2.3文件分群 104 5.2.4文件發佈對象推論 111 第六章、 結論與未來展望 117 參考文獻 120 附錄一、文件分類類型量化方式 126 附錄二、文件提供/製作者所屬部門量化方式 143 附錄三、關鍵字量化方式 149 圖目錄 圖1.1、研究架構 4 圖1.2、研究定位 5 圖3.1、文件相關性分析之輸入/輸出 18 圖3.2、以關鍵字為基礎之相關性分析模組 21 圖3.3、多屬性關聯性分析流程示意圖 26 圖3.4、系統運作流程圖 29 圖3.5、文件分群之輸入/輸出 30 圖3.6(a)、群集質心改變示意圖1 32 圖3.6(b)、群集質心改變示意圖2 33 圖3.7、文件分群流程圖 34 圖3.8、文件接受對象推論—依使用者角度--輸入輸出之示意圖 35 圖3.9、文件接受對象推論模式流程 39 圖3.10、「文件權限對象推論—以文件層面」模式之輸入/輸出 40 圖3.11、以文件層面之文件權限開放模式流程 46 圖4.1、知識分群與管理系統核心架構 49 圖4.2、系統操作架構 52 圖4.3、資料模式關聯 53 圖4.4、「文件關鍵屬性上傳」功能流程 54 圖4.5、「文件相關性分析」功能流程 55 圖4.6、「文件相關性變更」功能流程 56 圖4.7、「文件分群」功能流程 56 圖4.8、「文件分群變更」功能流程 57 圖4.9、「文件發佈推論」功能流程 58 圖4.10、「文件發佈對象變更」功能流程 58 圖4.11、「文件管理」功能流程 59 圖4.12、「使用者管理」功能流程 59 圖4.13、「個人資料管理」功能流程 60 圖4.14、知識分群與管理系統資料流程模式 61 圖5.1、文件上傳介面 64 圖5.2、上傳文件指定 64 圖5.3、文件上傳介面-文件類型選單 65 圖5.4、文件上傳介面-文件製作者選單 65 圖5.5、文件上傳成功訊息回饋1 66 圖5.6、重要詞彙與待確認詞彙資訊回饋 67 圖5.7、文件上傳成功訊息回饋2 67 圖5.8、上傳檔案名稱重複—重新輸入檔名處理 68 圖5.9、相關性分析—選擇欲進行相關性分析之文件 69 圖5.10(a)、相關性分析—分析結果回饋 70 圖5.10(b)、相關性分析—分析結果回饋 70 圖5.11、相關性修改—欲修改相關性文件選擇 71 圖5.12、相關性修改—目標文件與其他文件相關性列表 72 圖5.13、相關性修改結果回饋 72 圖5.14、文件分群之維度決定 73 圖5.15、文件分群結果回饋 74 圖5.16、文件分群修改介面 75 圖5.17、文件分群修改成功回饋訊息 75 圖5.18、文件相關性推論—指定文件以計算相關性 76 圖5.19、依文件面自動推論方式之回饋畫面 77 圖5.20、依使用者閱讀趨勢自動推論之回饋畫面 77 圖5.21、文件權限對象變更—目標文件挑選 79 圖5.22、文件權限對象變更—權限對象挑選 79 圖5.23、文件權限對象變更成功之回饋畫面 80 圖5.24、文件內容全文檢索介面 81 圖5.25、文件內容全文檢索—查詢結果列表 82 圖5.26、文件內容全文檢索—文件內容檢視 82 圖5.27、文件各屬性條件查詢介面 83 圖5.28、文件各屬性條件查詢—查詢結果列表 84 圖5.29、文件各屬性條件查詢—文件內容檢視 84 圖5.30、相關性查詢—欲查詢相關性文件選擇 85 圖5.31、相關性查詢—目標文件與其他文件相關性列表 86 圖5.32、文件分群查詢回饋列表 87 圖5.33、檔案上傳時,檔名重複處理方式設定 88 圖5.34、檔案上傳時,檔名重複處理方式設定成功回饋訊息 88 圖5.35、關鍵字萃取方式設定 89 圖5.36、關鍵字萃取方式設定成功回饋訊息 90 圖5.37、以文件多屬性進行文件相關性分析—屬性選擇 90 圖5.38、以文件多屬性進行文件相關性分析—距離計算方式選擇 91 圖5.39、文件相關性分析方法設定成功回饋訊息 91 圖5.40、系統環境參數設定—分群群組數設定 92 圖5.41、系統環境參數設定—分群群組數設定成功回饋訊息 92 圖5.42、文件發佈對象推論—推論方式選擇 93 圖5.43、文件發佈對象推論—依照使用者閱讀趨勢推論方式細部設定 94 圖5.44、個人資料查詢回饋介面 95 圖5.45、個人資料修改輸入介面 96 圖5.46、個人資料修改成功回饋介面 96 圖5.47、新增使用者之輸入介面 97 圖5.48、新增使用者—隸屬部門以子視窗方式點選系統內建選項 98 圖5.49、新增使用者成功之回饋訊息 98 圖5.50、使用者查詢介面 99 圖5.51、以關鍵字串查詢使用者 100 圖5.52、使用者修改介面 100 圖5.53、使用者刪除警示介面 101 圖5.54、系統績效驗證流程 102 圖5.55、文件相關性分佈圖 104 圖5.56、八階段文件分群與理想分類結果相比之召回率趨勢圖 111 圖5.57、八階段文件分群與理想分類結果相比之符合率趨勢圖 111 圖5.58、各文件之召回率與準確率分佈圖 115 圖5.59、各階段文件發佈對象推論之召回率與準確率 116 表目錄 表3.1、文件關鍵字擷取列表 19 表3.2、文件相關性對照表 20 表3.3、屬性j之距離矩陣 27 表3.4、目標文件與各文件間之綜合距離係數 28 表3.5、文件相關性分析列表 31 表3.6、文件相關性分析列表 36 表3.7、文件相關性分析列表 41 表3.8、各文件之權限開放群組集合 42 表3.9、文件分享者被開放權限之機率 44 表3.10、文件 權限開放群組列表 45 表5.1、上傳文件種類、篇數與編號 103 表5.2、各上傳文件之關鍵字 103 表5.3、各分群對應各類別文件之召回率 105 表5.4、一份種子文件份數之文件分群結果 106 表5.5、一份種子文件之文件分群結果—各分群對應各理想分類結果之召回率 與準確率 107 表5.6、五份種子文件之文件分群結果 107 表5.7、五份種子文件之文件分群結果-各分群對應各理想分類結果之召回率 及準確率 108 表5.8、十份種子文件之文件分群結果 109 表5.9、十份種子文件之文件分群結果-各分群對應各理想分類結果之召回率 與準確率 109 表5.10、隨機產生每位使用者對於每類型文件之權限或閱讀份數 113 表5.11、理想值與測試資料之推論對象評估 114 表A.1、依照關聯性重新分類與編號之中國圖書分類—哲學篇 129 表A.2、依照關聯性重新分類與賦予新編號之VSIA分類 140 表A.3、組織功能的分類 143 表A.4、組織功能分類的再細分 144 表A.5、各類別編號表 146 表A.6、中國圖書分類法依關連性排序編號對照表 151rf 1.卜小蝶,2001,「以圖書借閱記錄探勘加強圖書資源利用之探討」,中國圖書館學會會報,Vol. 66,第59-72頁。 2.卜小蝶,2002,「以使用記錄分析探索網路使用者檢索興趣之研究」,碩士論文(指導教授:楊千),交通大學資訊管理學系。 3.何昶毅,2001,「以網頁探勘技術提供一對一個人化服務」,碩士論文(指導教授:王本正),東海大學企業管理學系。 4.林信志等,2002,「長榮管理學院網頁瀏覽行為之分類探勘」,長榮學報,Vol. 6:1,第1-16頁。 5.林俊佑,李青松,曾廣華,2002,「基於文件分類技術之資訊追蹤系統」,電腦與通訊,第99期,第133-144頁。 6.林珊如,2002,「網路使用者特性與資訊行為研究趨勢之探討」,圖書資訊學刊,Vol. 17,第35-47頁。 7.孫銘聰、侯建良,2002,「以推論法則為基之知識文件權限管理程序模式」,產業電子化運籌管理學術暨實務研討會,長庚大學,九十一年六月二十八日,Paper ID:39. 8.侯永昌、楊雪花,1998,「以模糊理論和遺傳演算法為基礎的中文文件自動分類之研究」,模糊系統學刊,第4卷,第1期,第45-57頁。 9.曹乃龍,2000,「模糊自動文件分類在網際網路上的探討」,博士論文(指導教授:林丕靜),淡江大學資訊工程學系。 10.張玉華,2003,「從檔案整理原則談國家檔案之分類」,檔案季刊,第2卷,第一期,第44-56頁。 11.陳鈺瑾,1999,「可調式之中文文件自動摘要」,碩士論文(指導教授:張俊盛),清華大學資訊工程學系。 12.陳振東、戴偉勝,2002,「網際網路環境中個人化資訊推薦系統實作之研究」,資訊管理學報:中華民國資訊管理學會會報,Vol. 9:1,第21-38頁。 13.陳佳鴻,2001,「發展基於使用者行為導向之智慧型財經資訊系統」,碩士論文(指導教授:陳安斌),交通大學資訊管理學系。 14.許中川、陳景揆,2001,「探勘中文新聞文件」,中華民國資訊管理學會會報,Vol. 14:2,第103-122頁。 15.許銀雄、周世俊,2002,「利用資料探勘技術改進網站人機界面」,電腦學刊,Vol. 7:2,第1-15頁。 16.國家圖書館編目園地全球資訊網,http://datas.ncl.edu.tw/catweb/sect-2.htm 17.曾元顯,1997,「關鍵詞自動擷取技術之探討」,中國圖書館學會會訊,第106期,第26-29頁。 18.曾元顯,2002,「文件主題自動分類成效因素探討」,中國圖書館學會會報,第68期,第62-83頁。 19.詹智凱,2000,「以詞的關聯性為基礎的文件自動分類」,碩士論文,(指導教授:徐俊傑),國立台灣科技大學資訊管理學系。 20.楊允言,1999,「中文文件自動分類之探討」,大漢學報,第13期,第241-256頁。 21.楊傑勝,2000,「適應性聚類演算法及其應用」,碩士論文,(指導教授:蔣榮先),成功大學資訊工程學系。 22.蔡聰洲,2001,「整合資料倉儲與資料探勘於網站瀏覽分析」,碩士論文(指導教授:劉敦仁),交通大學資訊管理學系。 23.顏秀珍、李御璽、何仁傑,2001,「利用資料探勘語言挖掘感興趣的資訊」,電腦學刊,Vol. 9:1,第44-60頁。 24.顏嘉惠,2002,「資料探勘於圖書館行銷及顧客關係管理之應用」,圖書與資訊學刊,Vol. 42,第58-68頁。 25.顧皓光,莊裕澤,1998,「網路文件自動分類」,臺大管理論叢,第9卷,第1期,第201-242頁。 26.Abe, K., Taketa, T. and Nunokawa, H., 2000, “An idea of the agent-based information recommending system using the statistical information,” The Seventh International Conference on Parallel and Distributed Systems: Workshops, pp. 143-146. 27.Aggarwal, C.C. and Yu, P.S., H., 2001, “On effective conceptual indexing and similarity search in text data,” Proceedings, IEEE International Conference on Data Mining, pp. 3-10. 28.Carrere, J., Cholvy, L., Cuppens, F. and Saurel, C., 1998, "Merging security policies: analysis of practical example," Proceedings, The 11th IEEE on Computer Security Foundations Workshop, pp. 123-136. 29.Cooley, B., Mobasher, B., and Srivastava J., 1997, "Web mining: information and pattern discovery on the World Wide Web," Proceedings of the 1997 International Conference on Tools with Artificial Intelligence, Vol. 3-8, pp. 558-567. 30.Cooper, J.W., Coden, A.R. and Brown, E.W., 2002, " A novel method for detecting similar documents," Proceedings of the 35th Annual Hawaii International Conference on System Sciences, pp. 1153- 1159. 31.Dridi, F. and Neumann, G.., 1998, "Towards access control for logical document structure," Proceedings, The Ninth International Workshop on Database and Expert Systems Applications, pp. 322-327. 32.Feldella, E. and Prandini, M., 2000, "A novel approach to on-line status authentication of public-key certificates," The 16th Annual Conference on Computer Security Applications, pp. 270-277. 33.Freeman, R., Yin, H. and Allinson, N.M., 2002, “Self-organising maps for tree view based hierarchical document clustering,” Proceedings of the 2002 International Joint Conference on Neural Networks, Vol. 2, pp. 1906-1911. 34.Fu, W., Wu, B., He, Q. and Shi, Z., 2001, “Text document clustering and the space of concept on text document automatically generated,” Proceedings, International Conferences on Info-tech and Info-net, Vol. 3, pp. 107-112. 35.Furuse, K., Miura, T., Ishikawa, M., Chen, H. and Ohbo, N., 2001, “Applying the branch and bound technique to document similarity search,” Processing, IEEE Pacific Rim Conference on Communications, Computers and signal, Vol. 1, pp. 331-336. 36.Hammouda, K. M. and Kamel, M. S., 2002, “Phrase-based document similarity based on an index graph model,” Proceeding, IEEE International Conference on Data Mining, pp. 203-210. 37.Haruechaivasak, C., Shyu, M.-L. and Chen S.-C., 2002, "Web document classification based on fuzzy association," Proceedings, The 26th Annual International On Computer Software and Applications Conference, pp487-492. 38.Her, J.-H., Jun, S.-H., Choi, J.-H. and Lee J.-H., 1999, “A Bayesian neural network model for dynamic web document clustering,” Proceedings of the IEEE Region 10 Conference, Vol. 2, pp. 1415-1418. 39.Khan, I., Blight, D., McLeod, R. D. and Card, H. C., 1997, “Categorizing Web documents using competitive learning: an ingredient of a personal adaptive agent,” International Conference on Neural Networks, Vol. 1, pp. 96-99. 40.Kim, J.-G. and Lee, E.-S., 1999, “Intelligent information recommend system on the Internet,” Proceedings, International Workshops on Parallel Processing, Man and Cybernetics, pp. 376-380. 41.Kobayashi, K., Sumi, Y. and Mase, K., 1998, “Information presentation based on individual user interests,” Proceedings, Second International Conference on Knowledge-Based Intelligent Electronic Systems, Vol. 1, pp. 375-383. 42.Kondadadi, R. and Kozma, R., 2002, “A modified fuzzy ART for soft document clustering,” Proceedings of the International Joint Conference on Neural Networks p, Vol. 3, pp. 2545-2549. 43.Kovics, L. and Baranyi, P., 2002, “Document clustering based on concept lattice,” IEEE International Conference on Systems, Man and Cybernetics, Vol. 7, pp. 241-246. 44.Lancieri, L., 1999, “Description of Internet user behavior,” International Joint Conference on the Neural Networks, Vol. 4, pp. 2514-2519. 45.Lin, C.-H. and McLeod, D., 2000, “Temperament-based information filtering: a human factors approach to information recommendation,” IEEE International Conference on Multimedia and Expo, Vol. 2, pp. 941-944. 46.Lin, K.-I. and Kondadadi, R., 2001, “A similarity-based soft clustering algorithm for documents,” Proceedings, Seventh International Conference on Database Systems for Advanced Applications, pp. 40-47. 47.Lin, S.-H., Chen, M. C., Ho, J. M. and Huang Y.-M., 2002, "ACIRD:intelligent Internet document organization and retrieval," IEEE Transactions on Knowledge and Data Engineering, Vol. 14, pp. 599-614. 48.Lu, H., Lu, Z. and Li, Y., 2001, “TRUST!-A distributed multi-agent system for community formation and information recommendation,” IEEE International Conference on Systems, Man, and Cybernetics, Vol. 3, pp. 1734-1739. 49.Michael J. A. Berry, Gordon S. Linoff, 2001, Data Mining, 維科圖書有限公司。 50.Motta, C.L.R. and Borges, M.R.S., 2000, “A cooperative approach for information recommendation and filtering,” Proceedings, The Sixth International Workshop on Groupware, pp. 42-49. 51.Navathe, S. B. and Yong, C. O., 1998, "Avoiding inference problem using page level security classification," Proceedings, The Ninth International Workshop on Database and Expert Systems Applications, pp. 294-299. 52.Ng, Y.-K., Tang, J., and Goodrich, M., 2001, "A binary-categorization approach for classifying multiple-record Web documents using application ontologies and a probabilistic model," Proceedings, Seventh International Conference on Database Systems for Advanced Applications, pp. 58-65. 53.Pagnia, H., Theel, O. and Schupp, H., 2000, “Transparent management of replicated WWW document clusters,” Seventh International Conference on Parallel and Distributed Systems, pp. 263-268. 54.Peltonen, J., Sinkkonen, J. and Kaski, S., 2002, “Discriminative clustering of text documents,” Proceedings of the 9th International Conference on Neural Information, Vol. 4, pp. 1956-1960. 55.Shyu, M.-L., Chen, S.-C. and Shu, C.-M., 2000, “Affinity-based probabilistic reasoning and document clustering on the WWW,” The 24th Annual International Computer Software and Applications Conference, pp. 149-154. 56.Silva, J., Mexia, J., Coelho, A. and Lopes, G., 2001, “Document clustering and cluster topic extraction in multilingual corpora,” Proceedings IEEE International Conference on Data Mining, pp. 513-520. 57.Shibata, H., Hoshiai, T. and Kubota, M., 2000, “A study on personalized information recommending agents,” Proceeding, International Workshop on Autonomous Decentralized Systems, pp. 28-33. 58.Su, Z., Yang, Q., Zhang, H., Xu, X. and Hu, Y., 2001, “Correlation-based document clustering using web logs,” Proceedings of the 34th Annual Hawaii International Conference on System Sciences, pp. 1831-1837. 59.Tan, A.-H., Teo, C., 1998, “Learning user profiles for personalized information dissemination,” Proceedings, IEEE International Joint Conference on Neural Networks, Vol. 1, pp. 183-188. 60.Tzeras, K. and Petrakis, E.G.M., 1999, “Similarity searching in text databases with multiple field types,” Proceedings, the 15th International Conference on Data Engineering, pp. 100. 61.Wewers, T. and Wargitsch, C., 1998, "Four dimensions of interorganizational, document-oriented workflow: A case study of the approval of hazardous-waste disposal," Proceedings of the Thirty-First Hawaii International Conference on System Sciences, Vol.4, pp. 332-341. 62.Wu, B., Zheng, Y., Liu, S. and Shi, Z., 2002, “CSIM: a document clustering algorithm based on swarm intelligence,” Proceedings of the 2002 Congress on Evolutionary Computation, Vol. 1, pp. 477-482. 63.Xiao, J. and Zhang, Y., 2001, "Clustering of web users using session-based similarity measures," Proceedings of the 2001 International Conference on Computer Networks and Mobile Computing, pp. 223-228. 64.Xiao, J., Zhang, Y., and Tianzhu, 2001, "Measuring similarity of interests for clustering Web-users," Proceedings of the 2001 International Conference on Database, pp. 107-114. 65.Yang, H.-C., Lee, C.-H., 2000, “Automatic category generation for text documents by self-organizing maps,” Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, Vol. 3, pp. 581-586. 66.Yoshida, H., Shida, T. and Kindo, T., 2001, “Asymmetric similarity with modified overlap coefficient among documents,” Processing, IEEE Pacific Rim Conference on Communications, Computers and signal, Vol. 1, pp. 99-102. 67.Yoshioka, T., Takata, Y., Ito, M. and Ishii, S., 2001, “A neural visualization method for WWW document clusters,” Proceedings, International Joint Conference on Neural Networks, Vol. 3, pp. 2270-2275.id NH0925031030 sid 913833 cfn 0 / id NH0925031031 auc 陳恩齊 tic 推式多廠區生產規劃與排程-以TFT-LCD面板產業為例 adc 林則孟 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 121 kwc 多廠規劃與排程問題分析架構 kwc 模擬 kwc TFT-LCD產業 abc 對現今的企業而言,隨著顧客需求量的增加,利用擴廠或外包方式來擴充產能,已為普遍之實務的方法。導致企業的生產環境,由過去的單廠生產環境,變成多廠生產環境。在多廠的生產環境下,企業的生產規劃將不再單純,導致過去的生產計劃無法使用,須另外發展多廠規劃與排程(Multi-Site Planning and Scheduling)方法,整合多廠生產資源,進行規劃與排程,以滿足現今顧客需求與交期。 tc 目 錄 摘 要 I 謝 誌 II 目 錄 III 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究範圍與限制 3 1.4 研究步驟 4 第二章 多廠規劃與排程架構分析 6 2.1 多廠規劃與排程問題與組成要素 6 2.2 多廠概念模式 9 2.3 產品結構 14 2.4 生產策略 14 2.5 生產製程與能力 22 2.6 多廠規劃與排程考量限制 23 2.7 績效指標分類 26 第三章 問題分析與定義 29 3.1 以TFT-LCD面板產業為例 29 3.1.1 製程簡介 29 3.1.2 生產環境背景說明 31 3.1.3 推式多廠規劃與排程目的 33 3.1.4 推式多廠規劃與排程與其它規劃模組之關聯 34 3.2 問題定義 36 3.3 推式多廠規劃與排程問題特性 45 第四章 推式多廠規劃與排程 47 4.1 推式多廠區規劃與排程架構 47 4.2 推式多廠規劃階段 51 4.2.1 訂單分配問題 51 4.2.2 參數化訂單分配方法 54 4.2.3 物料規劃問題 62 4.2.4 物料規劃方法 63 4.3 各廠排程 65 4.3.1 各廠排程問題 65 4.3.2 各廠排程方法 67 4.4 推式多廠規劃與排程範例 73 4.4.1 範例情境 73 4.4.2 多廠區規劃階段 75 4.4.3 各廠排程階段 82 第五章 模擬構建與分析 85 5.1 模擬模式 85 5.1.1 模擬環境假設 85 5.1.2 模擬之目的 90 5.1.3 系統模式之範圍 90 5.1.4 模擬模式細緻度 90 5.1.5 模擬模式建構 91 5.1.6 模擬模式確認與驗證 93 5.2 實驗分析 94 5.2.1 實驗目的 94 5.2.2 績效指標 95 5.2.3 實驗因子 96 5.2.4 實驗架構 99 5.2.5 實驗結果分析 101 5.2.6 小結 114 第六章 結論與建議 116 6.1 結論 116 6.2 建議 117 參考文獻 118rf 1.王世欽,多廠區生產系統之訂單分配模式—以液晶顯示器產業為例”, 東海大學工業工程與經營資訊研究所碩士論文,2002。 2.李志勇,”多廠整合型生產指派與排程系統”, 東海大學工業工程與經營資訊研究所碩士論文,2002。 3.吳仲昇, ”遺傳演算法在晶圓針測排程問題之應用,” 國立清華大學工業工程研究所論文, 1996。 4.行政院國家科學委員會科學技術資料中心,http://cdnet.stic.gov.tw/techroom/market/eedisplay/eedisplay010.htm。 5.林則孟,系統模擬理論與應用,滄海書局,2001 6.林慈傑,”以遺傳演算法求解類運輸問題模式化的多廠訂單分配問題”,臺大工業工程研究所碩士論文,2002。 7.陳子立,”以模擬為基礎之先進規劃與排程方法--TFT-LCD產業模組廠為例”,清華大學工業工程與工程管理研究所碩士論文,2003。 8.陳永隆,”製鞋業相同平行機台搭配模具生產現場排程之研究”, 東海大學工業工程與經營資訊研究所碩士論文,2002。 9.郭佩蒓,"多屬性待測品之半導體針測區機台排程模擬分析”, 清華大學工業工程與工程管理研究所碩士論文,2002。 10.黃彥彰,”TFT-LCD多廠訂單規劃與排程”,東海大學工業工程與經營資訊研究所碩士論文,2003。 11.黃建中,”多廠區規劃與排程--以TFT-LCD廠為例”,清華大學工業工程與工程管理研究所碩士論文,2003。 12.曾煥雯,”跨廠訂單分配模式之構建—應用模擬退火演算法”,元智大學工業工程研究所碩士論文,2000。 13.薛志輝,” 拉式多廠區生產規劃與排程--以電腦組裝產業為例”,清華大學工業工程與工程管理研究所碩士論文,2004。 14.鄧振源、曾國雄,「層級分析法(AHP)的內涵特性與應用(上)」,中國統計學報,Vol. 27,No. 6,pp. 5-22,1989。 15.鄧振源、曾國雄,「層級分析法(AHP)的內涵特性與應用(下)」,中國統計學報,Vol. 27,No. 7,pp. 1-20,1989。 16.Banks, J., Handbook of simulation, John Wiley & Sons, 1998. 17.Belton, V., “A comparison of the analytic hierarchy process and a simple multi-attribute value function”, European Journal of Operational Research, 26, pp. 7-21, 1986. 18.Bhatnagar, R., Chandra, P. and Goyal, S. K., “Models for Multi-Plant Coordination”, European Journal of Operational Research, 67, pp.141-160, 1993. 19.Derringer, G. and Suich, R., “Simultaneous optimization of several response variables,” Journal of Quality Technology, Vol. 12, No. 4, pp. 214-219, October 1980. 20.Fogarty,D. W., Blackstone, J. H. and Hoffmann, T. R., Production & Inventory Management, Second Edition, South-Western , 1991. 21.Gnoni, M. G., Iavagnilio, R., Mossa, Mummolo, G. and Di Leva, A., “Production Planning of a Multi Site Manufacturing System by Hybrid Model: A Case Study from the Automotive Industry”, International Journal of Production economics, 85, pp.251-262, 2003. 22.Guinet, A., “Multi-site planning: a transshipment problem”, International Journal of Production economics, 74, pp. 21-32, 2001. 23.Harland, C., ”Supply chain operational performance roles”, Integrated Manufacturing System, 8(2), pp.70-78, 1997. 24.Hoekstra, S. and Romme, J., Integral Logistic Structures, McGraw-HILL, 1992. 25.Jang, Y. J., Jang, S. Y., Chang, B. M. and Park, J., “A combined model of network design and production/distribution planning for a supply network”, Computers & Industrial Engineering, 43, pp. 263-281, 2002. 26.i2, “SCM Overview”, i2, 2000. 27.i2, SCP Master Planning Technical Implementer Reference Manual, i2, 2000. 28.Lampel, J. and Mintzberg, H., “Customizing Customization”, Sloan Management Review, Vol. 37, pp.21-30, 1996 29.Leachman, R. C., Benson, R. F., Liu, C. and Raar, D. j., ”IMPReSS : An Automated Production-Planning and Delivery-Quotation System at Harris Corporation — Semiconductor Sector”, Institute for Operation Research and the Management Sciences, 1996. 30.Lee, Y. H., Kim, S. H. and Moon, C., “Production-distribution planning in supply chain using a hybrid approach”, Production Planning and Control, 13, pp. 35-46, 2002. 31.Lee, Y. H. and Kim, S. H., “Production-distribution planning in supply chain considering capacity constraints”, Computers & Industrial Engineering, 43, pp. 169-190, 2002. 32.LG. Philip公司網站,http://www.lgphilips-lcd.com/en/product/index.html。 33.Metaxiotis, K., Psarras, J. and Askounis, D., “Building ontologies for production scheduling systems:towards a unified methodology”, Information Management and Computer Security, pp.44-50, 2001. 34.Moon, C., Kim, j. and Hur, S., “Integrated process planning and scheduling with minimal total tardiness in multi-plants supply chain”, Computers & Industrial Engineering, 43, pp. 331-349, 2002. 35.Pape, C., “Constraint based scheduling:principles and application”, The institution of Electrical Engineers, 1996. 36.Ramasesh, R., “Dynamic Job Shop Scheduling: a survey of simulation research”, International Journal of Management Science, 18, No. 1, pp43-57, 1990. 37.Ramesh, R. and Cary, J. M., “An efficient approach to stochastic jobshop scheduling: Algorithms and empirical investigations,” Computers and Industrial Engineering, Vol. 18, No. 2, pp. 181-190, 1990. 38.Roux, W., Dauzere, P. S. and Lasserre, J. B., ”Planning and scheduling in a multi-site environment”, Production Planning & Control, 10(1), pp.19-28, 1999. 39.Sambasivan, M. and Schmidt, C. P., “A heuristic procedure for solving multi-plant, multi-item, multi-period capacitated lot-sizing problems”, Asia-Pacific Journal of Operational Research, 19,pp. 87-105, 2002. 40.Saaty, T.L., The Analytic Hierarchy Process, McGraw-Hill, New York, USA, 1980. 41.Sauer, J., Suelmann, G. and Apperlrath, H. J., ”Multi-site scheduling with fuzzy concepts”, International Journal of Approximate Reasoning, 19, pp.145-160, 1998. 42.Simchi, L. D., Kaminsky, P. and Simchi, L. E., Design & managing the supply chain, McGraw-Hill, 2003. 43.Taal, M. and Wortmann, J. C., “Integrating MRP and finite capacity planning”, Production Planning & Control, 8(3), pp.245-254, 1997. 44.Tabucanon, M.T., Multiple criteria decision making in industry, ELSEVIER, 1988. 45.Thierry, G., Besnard, P., Ghattas, D. and Bel, G., ”Multi-Site Planning:Non Flexible Production Units and Setup Time Treatment”, ETFA '95 Proceedings , 1995 INRIA/IEEE Symposium, 3, pp.10-13, 1995 46.Timple, C. H. and Kallrath J., ”Optimal Planning in Large Multi-Site Production Networks”, European Journal of Operational Research, 126, pp.422-435, 2000. 47.Vercellis, G., “Multi-plant production planning in capacitated self-configuring two-stage serial systems”, European Journal of Operation Research, 119, pp. 451-460, 1999. 48.Vollmann, T. E., Berry, W. L. and Whybark, D. C., Manufacturing Planning and Control Systems, Fourth Edition, McGraw-Hill Press, 1997. 49.Wyman, F. P., “Common features of simulation based scheduling”, Proceedings of the 1991 Winter Simulation Conference, pp.341-347, 1993. 50.Yang, K. K. and Sum, C. C., “A comparison of job shop dispatching rules total cost criterion,” International Journal of Production Research, 32, pp.807-820, 1994.id NH0925031031 sid 913834 cfn 0 / id NH0925031032 auc 張建和 tic 半導體化學機械研磨探討最佳平坦化之研究 adc 陳飛龍 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 74 kwc 化學機械研磨 kwc 碟盤效應 kwc 填入虛擬電路 kwc 資料群集化 kwc 最佳平坦化 abc 半導體製造業具有高成本、低生命週期的性質,如何提升其產品良率、減少不良品的發生,進而使得企業獲利提升,是一個相當重要的課題。改善良率的方式,可藉由在生產的過程中快速的找到發生問題之加工站,進而立即尋求改善,但是經過冗長資訊的回饋再做改善過程的同時,不良品已經產生;而且,在生產製造上已花了許多的時間,不僅無法有效的因應產品生命週期的變化,對於分秒必爭的資訊科技時代,無形中形成了一個阻擋企業成長的阻力。如果能夠在製程問題發生之初,也就是在設計階段就先將可能發生影響問題的原因找出再加以解決,那麼不僅可以節省許多不必要的製程成本,更可以縮短產品上市的時間,進而提升良率,降低成本,最終達成更具有競爭力的產品。 rf 參考文獻 王建榮,半導體平坦化CMP技術,全華科技圖書股份有限公司,2000。 李培瑞,半導體製程資料挖礦架構、決策樹分類法則及其實證研究,國立清華大學碩士論文,2000。 林寅智,以工程資料為基礎之半導體故障分析系統,國立清華大學碩士論文,1998。 張柏年,以倒傳遞網路為基礎之自動化晶圓缺陷檢測系統,國立清華大學碩士論文,2003。 張智星,MATLAB程式設計與應用,清蔚科技,2000。 莊達人,VLSI製造技術,高立圖書有限公司,1997。 劉淑範,以缺陷分析為基礎之自動化與智慧型良率提升系統,國立清華大學碩士論文,1998。 羅正忠、張鼎張,半導體製程技術導論,台灣培生教育出版股份有限公司,2003 Agrawal, R., Imilienski, T., and Swami, A., “Mining Association Rules between Sets of Items in Large Databases,” Proc. of the ACM SIGMOD Int'l Conf. on Managementof Data”, May 1993, pp. 207-216. Agrawal, R. and Srikant, R., “Fast Algorithm for Mining Association Rules in LargeDatabases,” In Proc. 1994 Int'l Conf. VLDB, Santiago, Chile, Sep., 1994, pp. 487-499. Bielmann, M., Mahajan, U. and Singh, R. K., “Effect of Particle Size during Tungsten Chemical Mechanical Polishing,” Electrochemical and Solid State Letters, Vol. 2, No. 8, 1999, pp. 401-403. Cook, L.M., “Chemical Process in Glass Polishing,” J. Non-cryst. Solids, Vol. 120, 1990, pp. 152-171. Divecha, R., Stine, B. E., Ouma, D. O., Yoon, J. U., Boning, D. S., Chung, J. E., Nakagawa, O. S., and Oh, S. Y., “Effect of fine-line density and pitch on interconnect ILD thickness variation in oxide CMP process,” in Proc. CMP-MIC, Santa Clara, Feb. 1998. Dubes, R. C. and Jain, A. K., Algorithms for Clustering Data. Prentice Hall, 1988. Elbel, Norbert, Neureither, Bernhard, Ebersberger, Bernd. Journal of the Electrochemical Society, Vol. 145, Iss. 5; May 1998, pp. 1659. El-Kareh, B., Process Integration and Device Characterization in Microelectronic Manufacturing Course, SEMICON Taiwan, 1997. Gandner, M., and Bieker, J. “Data Mining Solves Tough Semiconductor Manufacturing Problem,” Proc. KDD2000. Gerd Nanz and Lawrence E. “Modeling of Chemical-Polishing: A review,” IEEE Transaction on Semiconductor Manufacturing, Vol. 8, No. 4, 1995, pp.382-389. Irani, K. B., Cheng, J., Fayyad, U. M., and Qian, Z., “Applying Machine Learning to Semiconductor Manufacturing,” IEEE Expert, Vol. 8, No. 1, 1993, pp. 41-47. Kasslin, M., Kangas, J., and Simula, O., “Process state monitoring using self-organizing maps”, in Aleksander, & I., Taylor, J. (Eds), Artificial Neural Network, North-Holland, Amsterdam, Vol. 2, 1992, pp. 1532-1534. Khang, A. ,et al., “Filling algorithms and analyses for layout density control,” IEEE Transaction Computer-Aided Design, Vol. 18, 1999, pp. 445-461. Kohone,T., “Self-Organizing Map”, Springer-Verlag, Berlin, 1995. Kohonen,T., Oja, E., Simula, O., Visa, A., and Kangas, J., ”Engineering applications of the self-organizing map,” Proc.IEEE, Vol. 84, No. 10, 1996, pp. 1358-1384. Kolwnkow, R. and Nagahara, R., “Chemical-mechanical wafer polishing and planarization in batch systems,” Solid State Techno., June 1993, pp. 112-114. Lampinen, J., and Oja, E., “Distortion tolerant pattern recognition based on self-organizing feature extraction,” IEEE Transactions on Neural. Networks, Vol. 6, 1995, pp. 539-547. Liu, C.W.,. Tsai, C.S, Liu, J. M. and Shih, T., “Method of Planarization using Dummy Leads,” US Patent 6156660, December 5, 2000. Liu, H. and Motoda, H., “Feature Selection for Knowledge Discovery and Data Mining,” Kluwer Academic Publisher, 1998. Maly, W., “Moore’s law and physical design of IC’s,” in Proc. Int. Symp. Physical Design, special address, Monterey, CA, Apr. 1998. May, G.. S. and Spanos, C. J., “Automated Malfunction Diagnosis of Semiconductor Fabrication Equipment: A plasma Etch Application ,” IEEE Transaction on Semiconductor Manufacturing, Vol. 6, No. 1, 1993, pp. 28-40 Nag, P. K., Maly, W and Jocobs, H. J., “Simulation of Yield/Cost Learning Curves with Y4,” IEEE Transaction on Semiconductor Manufacturing, Vol. 10, No. 2, 1997, pp. 256-266. Nelson, M.M.; University/Government/Industry Microelectronics Symposium, “optimized pattern fill process for improve cmp uniformity and interconnect capacitance, ”2003. Proceedings of the 15th Biennial, June 30 - July 2, 2003, pp. 374-375. Nguyen, V.H.; Van Der Velden, P.; Daamen, R.; Van Kranenburg, H.; Woerlee, P.H.; “Modeling of dishing for metal chemical mechanical polishing, ” Electron Devices Meeting, 2000. IEDM Technical Digest. International, 10-13, Dec.2000, pp. 499-502. Nguyen, VH. et. al. Digest of IEDM-2000 Ohta, T.; Suzuki, K.; “A new SP (simultaneous polishing) model for copper CMP process,” International Conference on Simulation of Semiconductor Processes and Devices, 2002. SISPAD 2002., 4-6 Sep. 2002, pp. 257-260. Park, T., Tugbawa, T., Boning, D., Chung, J., Hymes, S., Muralidhar, R., Wilks, B., Smekalin, K., and Bersuker, G., “Electrical Characterization of Copper Chemical Mechanical Polishing, ” 1999 Chemical Mechanical Polish for ULSI Multilevel Interconnection Conference (CMP-MIC), Santa Clara, Feb. 1999. Prasad, S., Loh, W., Kapoor, A., Chang, E., Stine, B., Boning, D., and Chung, J., “Statistical metrology for characterizing CMP processes,” Microelectron. Eng., Vol. 33, 1997, pp. 231-240. Patrick, W. J., Guthrie, W. L., Standley, C. L., and Schiable, P. M., “Application of chemical-mechanical polishing to the fabrication of VLSI circuit interconnections,” J. Electrochem. Soc., Vol. 138, No. 6, June 1991, pp. 1778-1784. Rastogi, P., Kozicki, M. N. and Golshani, F., “Expro-An Expert System Based Process Management System,” IEEE Transaction on Semiconductor Manufacturing, Vol. 6, No. 3, 1994, pp. 207-217. Rung, R.D. “Determining IC layout rule for cost minimization,” IEEE J. Solid-State Circuits, Vol. SC-16, No. 1, Feb. 1981, pp. 35-42. Singer, P.H., “Searching for Perfect Planarity,” Semiconduct. Int., Mar.1992, pp. 44-48. Stavreva, Z., Zeidler, D., Plotner, M., Grasshoff, G. and Drescher, K., “Chemical Mechanical Polishing of Copper for Interconnect Formation,” Microelectronic Engineering, Vol. 33, 1997, pp. 249-257. Stevenson, William J., “Production Operations Management 6th ed.”, 1999. Tomozawa, M., “Oxide CMP mechanisms,” Solid-State Technol., 1997, pp. 169-175. Tugbawa, T., et.al., CMP Symposium, 1999. Yang, M.T. and Pan, H.T., “Method of Automatically Generating Dummy Metals for Multilevel Interconnection,” US Patten 5798298, August 25,1998.id NH0925031032 sid 913835 cfn 0 / id NH0925031033 auc 林仁貴 tic 以RDF規範為基礎之知識文件內容與結構解析技術 adc 侯建良 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 191 kwc 斷詞 kwc 知識本體結構 kwc RDF kwc 知識管理 kwc 資訊擷取 abc 在現今知識經濟時代下,產業知識之擷取、儲存、管理與再利用為企業體保有產業競爭力之重要課題。然而,現今知識管理之相關技術多以文件知識的關鍵文字搜尋、版本控管、集中管理等重點進行發展,針對知識文件之內涵與結構解析之研究甚少,此乃造成知識真正有價值之資訊被忽略於知識管理課題之外,並使產業知識管理之有效性降低。此外,隨著網際網路技術進步,知識交換與分享於網路上進行已成為一種必然趨勢,如何有效解析並表達文件資訊使其易於閱讀與瞭解,成為企業進行知識管理另一項重要課題。因此,本研究乃根據網際網路下知識管理活動之特質,發展一套知識文件結構之解析模式,以文件中詞彙發生頻率及詞彙間關聯性為依歸,發展知識文件之詞彙截斷技術,以進行知識內容之剖析;並以詞彙截斷機制所得之斷詞組合為基礎,配合詞彙詞性分析模組,以決定斷詞組合之詞性結構。最後,再藉由RDF語法定義之知識本體結構解析,使知識文件產生具語意層次之結構,以有效表達知識文件之結構。除方法論與模式之發展外,本研究並完成一雛形系統開發與案例驗證,以確認方法論之可行性。本研究除了以既有文件庫為基礎,自動建置適用於各特定領域之詞頻庫與知識本體結構外,並融合詞彙發生頻率、詞彙關聯性與詞彙詞性等因子,使知識文件之表達結果具正確性與一致性,以便於知識文件之閱讀、交換與分享,進而提升產業知識管理效能與可再利用性,並強化企業知識管理之效度與深度。 tc 目錄 中文摘要 Ⅰ 英文摘要 Ⅱ 目錄 Ⅲ 圖目錄 Ⅴ 表目錄 III 第一章、 研究背景 1 1.1 研究動機與目的 1 1.2 研究方法與步驟 3 1.3 研究定位 5 第二章、 文獻回顧 7 2.1知識內容剖析 7 2.1.1法則式 7 2.1.2統計式 8 2.1.3混合式 10 2.2知識表示法 11 2.2.1語意網 11 2.2.2框架式 13 2.2.3法則式 14 2.2.4敘述邏輯 15 2.2.5其他 16 2.3知識表示法之應用 17 2.4知識表示法之程式語言 20 第三章、 文件結構解析模式 24 3.1文件詞彙結構解析模組 24 3.1.1詞頻庫建置 25 3.1.2詞彙截斷模組 28 3.2詞彙詞性分析模組 37 3.2.1詞彙-詞性關係庫建立 38 3.2.2詞句結構判定機制 41 3.3 知識結構表達機制 44 3.3.1 RDF模式與語法 45 3.3.2知識單元庫與知識描述庫建置 47 3.3.3文件結構表達機制 53 第四章、 系統架構與規劃 56 4.1知識文件結構解析模式架構 56 4.2系統功能架構 57 4.3資料模式定義 60 4.4系統流程 62 4.4.1系統操作流程 62 4.4.2系統資料流程 70 4.5系統開發工具 71 第五章、 案例驗證與評估 73 5.1系統操作說明 73 5.1.1文件資訊匯入 73 5.1.1.1文件分享 73 5.1.1.2文件下載 83 5.1.2文件資料維護 95 5.2系統分析與評估 102 第六章、 結論與未來展望 118 參考文獻 121 附錄一 129rf 參考文獻 1. 王良志、貝子勝、黎偉權、黃麗卿,1991,「以剖析為導向的中文斷詞法」,電子發展月刊,第一六三期,第40-45頁。 2. 王志宏,1998,「機械組合設計之物件導向式專家系統核層」,碩士論文(指導教授:鍾添東),台灣大學機械工程學系。 3. 王聖中,1994,「法語式中文斷詞之研究」,碩士論文(指導教授:洪文斌),淡江大學資訊工程學系。 4. 白美滿,2003,「租稅規劃專家系統設計與建置之研究」,碩士論文(指導教授:黃華山),彰化師範大學會計學系在職進修專班。 5. 何文雄,1983,「中文斷詞的研究」,碩士論文(指導教授:謝清俊、梅廣),台灣科技大學工程技術研究所。 6. 吳政叡,1998,「資源描述架構在都柏林核心集的應用介紹」,國立中央圖書館台灣分館館刊,第五卷,第一期,第30-40頁。 7. 邱和源,1997,「機械系統型態設計之專家系統核層」,碩士論文(指導教授:鍾添東),台灣大學機械工程學系。 8. 林宜隆、鄢志豪、楊鍵樵,1994,「金融機構搶劫犯罪偵查專家系統建構與其應用之研究」,警專學報,第一卷,第七期,第382-411頁。 9. 林昭銘,2002,「使用特定領域的詞彙集與本體論回答簡單的歷史問題」,碩士論文(指導教授:蘇豐文),清華大學資訊工程學系。 10. 林銘裕,1993,「中文斷詞的研究」,碩士論文(指導教授:蘇克毅),清華大學電機工程學系。 11. 施東和、張俊盛、樑曉興,1991,「自然語言處理:中文之斷詞」,中正嶺學報,第十九卷,第二期,第69-73頁。 12. 侯建良、詹權恩,2003,「電子化文件庫之詞彙相關性解析模式」,2003電子商務與數位生活研討會,第38-47頁。 13. 段裘慶,1992,「軟體元件規格的知識表示法」,台北工專學報,第二十五卷,第二期,第137-154頁。 14. 唐大任,2002,「中文斷詞器之研究」,碩士論文(指導教授:王逸如),交通大學電信工程研究所。 15. 徐芷儀,1999,「兩文三語-語法系統比較」,台灣學生書局。 16. 高鼎翔、劉舜仁,2000,「日治時期臺鐵官舍建築平面構成法則之初探」,建築學報,第三十二卷,第65-86頁。 17. 韋耀華,2001,「應用框架觀念於供應鏈管理中知識表示及推導之研究」,碩士論文(指導教授:楊正甫),國防管理學院國防資訊研究所。 18. 張俊盛、陳志達、陳舜德,1991,「限制式滿足及機率最佳化的中文斷詞方法」,第四屆計算語言學研討會論文集,第147-165頁。 19. 梁效榕,2003,「以知識為基之機械設備錯誤診斷及維修諮詢系統」,碩士論文(指導教授:鍾添東),台灣大學機械工程學系。 20. 陳克健、陳正佳、林隆基,1986,「中文語句分析的研究—斷詞與構詞」,TR-86-004,中央研究院。 21. 陳舜德,1990,「商用英文書信產生程式」,碩士論文(指導教授:張俊盛),清華大學資訊科學系。 22. 陳何仁淵,1988,「規則型專家系統的設計與製作」,碩士論文(指導教授:吳憲明),淡江大學資訊科學研究所。 23. 陳稼興、謝佳倫、許芳誠,2000,「以遺傳演算法為基礎的中文斷詞研究」,資訊管理研究,第二卷,第二期,第27-44頁。 24. 曾琪淑,1991,「探討知識表達法在圖書分類系統中的應用」,美國資訊科學學會臺北學生分會會訊,第四期,第14-26頁。 25. 陳鍾誠、許聞廉,1998,「結合統計與規則的多層次中文斷詞系統」,第十一屆計算語言學研討會論文集,第63-72頁。 26. 黃宇斌,2000,「警察勤務執行機構設置調整分析專家系統雛型之研究」,碩士論文(指導教授:王本正),東海大學管理研究所。 27. 黃華山、蔡淑惠,1993,「以Prolog為基礎的知識庫系統支援物料存量管制決策之研究」,彰化師範大學學報,第四期,第573-589頁。 28. 彭載衍、張俊盛,1993,「中文辭彙岐義之研究—斷詞與詞性標示」,第六屆計算語言學研討會論文集,第173-193頁。 29. 葉肇鈞,2002,「透過語意網方式使用可分享的本體知識結構擷取歷史圖片」,碩士論文(指導教授:蘇豐文),清華大學資訊工程學系。 30. 楊正甫、應敏貞,2001,「管理資訊系統」,全華科技圖書股份有限公司。 31. 楊豐兆,1990,「在事物導向與法則基底混合式知識表示法環境下推論機之設計」,碩士論文(指導教授:何裕琨),成功大學電機工程研究所。 32. 趙鳴、雷一明,1995,「鋼結構構材電腦輔助設計系統之研究」,正修學報,第八卷,第27-34頁。 33. 蔡英聖,2001,「公共工程履約爭議處理資訊輔助系統之研究-以爭議調解為例」,碩士論文(指導教授:王明德),台灣大學土木工程學系。 34. 鄭魁香、蔣偉寧,1992,「使用物件導向程式語言建構一個可以應用在公路邊坡穩定分析的模糊專家系統的外殼」,高苑技術學報,第一卷,第53-64頁。 35. 賴芳敏,1993,「一個2-3階馬可夫語言模式於中文斷詞及詞性標示之應用」,碩士論文(指導教授:李錫堅),交通大學資訊工程研究所。 36. 儲永強、陳天鴻,1999,「柑橘病蟲害診斷與諮詢專家系統之建立」,農林學報,第四十八卷,第四期,第39-53頁。 37. 鍾榮富、洪敏雄、林秀春,1997,「華語文能力測驗編製-語法結構的考慮」,華文世界,第八十五期,第23-32頁。 38. 蘇育新,1994,「中文文句自動斷詞標詞類之研究與應用」,碩士論文(指導教授:陳信宏),交通大學電信工程研究所。 39. Bayer, T. A., 1993, “Understanding structured text documents by a model based document analysis system,” Proceedings of the Second International Conference on Document Analysis and Recognition, pp. 448-453. 40. Brickley, D., Guha, R.V. and McBride B., 2003, "RDF Vocabulary Description Language 1.0: RDF Schema," http://www.w3.org/TR/rdf-schema/. 41. Broekstra, J., Klein, M., Decker, S., Fensel, D., Harmelen, F.-V. and Horrocks, I., 2002, “Enabling knowledge representation on the Web by extending RDF Schema,” Computer Networks, Vol. 39, pp. 609-634. 42. Chen, T., 1988, “The frame-based spatial knowledge representation,” IEEE Workshop on Languages for Automation: Symbiotic and Intelligent Robots, pp. 69-72. 43. Chudziak, J. and Piotrowski, M., 1995, “Semantic support for multimedia information system,” IEEE International Conference on Systems, Man and Cybernetics, Vol. 5, pp. 3914-3919. 44. Ebenhoch, M.P., 2001, “Legal knowledge representation using the resource description framework (RDF),” Proceedings, The 12th International Workshop on Database and Expert Systems Applications, pp. 369-373. 45. Fan, C.-K. and Tsai, W.-H., 1988, “Automatic word identification in Chinese sentences by the relaxation technique, ” Computer Processing of Chinese and Oriental Languages, Vol. 4, No. 1, pp. 33-56. 46. Fan, T.-F., Hu, W.-C. and Liau, C.-J., 2001, “Decision logics for knowledge representation in data mining,” The 25th Annual International Conference on Computer Software and Applications, pp. 626-631. 47. Hiyama, T., 1989, “Application of rule-based stabilising controller to electrical power system,” Proceedings, IEE Generation, Transmission and Distribution, pp. 175-181. 48. Hsu, C.-K., Chang, J.-C., Chang, M., Jehng, J.-C. and Heh, J.S., 2002, “An approach for automatic learning and inference by knowledge map,” Proceedings, International Conference on Computers in Education, pp.957-958. 49. Hsu, W.-L. and Chen, Y.-S., 1999, “On phoneme-to-character conversion systems in Chinese processing,” Journal of the Chinese Institute Engineers, Vol. 22, No. 5, pp. 573-579. 50. Jenkins, C., Jackson, M., Burden, P., and Wallis, J., 1999, “Automatic RDF metadata generation for resource discovery,” Computer Networks, Vol. 31, pp. 1305-1320. 51. Klein, M., 2001, “XML, RDF, and relatives,” IEEE Intelligent Systems, Vol. 16, pp.26-28. 52. Kurzynski, M. W., Sas, J. and Puchala, E., 1992, “Rule-based medical diagnosis with learning: application to the diagnosis of acute renal failure in children,” Engineering in Medicine and Biology Society, Vol. 14, pp. 1259-1260. 53. Lam, S.-W. and Srihari, S.-N., 1991, “Frame-based knowledge representation for multi-domain document layout analysis,” IEEE International Conference on Systems, Man, and Cybernetics, Decision Aiding for Complex Systems, Conference Proceedings, Vol. 3, pp. 1859-1864. 54. Lambrix, P. and Padgham, L., 1998, “Using knowledge representation for agent world model,” Proceedings, International Conference on Multi Agent Systems, pp. 443-444. 55. Lank, E. and Blostein, D., 1997, “N-grams: a well-structured knowledge representation for recognition of graphical documents,” Proceedings of the Fourth International Conference on Document Analysis and Recognition, Vol.2, pp. 801-804. 56. Lassila, O. and Swick, R.-R., 1999, “Resource Description Framework(RDF) Model and Syntax Specification,” http://www.w3.org/TR/REC-rdf-syntax/. 57. Liu, L., Zhang, Z., Gao, Z., Yang, Q. and Liu, B., 1998, “Research on case representation of case-based reasoning approaches for electric power engineering design,” Proceedings, International Conference on Power System Technology, Vol. 2, pp. 968-970. 58. Liu, X., Li, X. and Zhang, L., 2000, “Knowledge graphs,” Chinese Journal of Engineering Mathematics, Vol. 17, pp. 33-40. 59. Lovrek, I., 1995, “Petri net based knowledge representation for intelligent networks,” Proceedings of the IEEE International Symposium on Intelligent Control, pp. 602-607. 60. Lu, Z.-Q., 1997, “Knowledge representation model for inference of English text-to-phoneme conversion,” IEEE International Conference on Intelligent Processing Systems, Vol. 2, pp. 1214-1216. 61. Manjula, D., Aghila, G. and Geetha, T. V., 2003, “Document knowledge representation using description logics for information extraction and querying,” Proceedings, ITCC International Conference on Information Technology, pp. 189-93. 62. Mitri, M., 1993, ”Combing semantic networks with multi-attribute utility models: An evaluative database indexing method,” Proceedings, Ninth Conference on Artificial Intelligence for Applications, pp. 462. 63. Ngai, C.H., Chan, P.W., Yau, E. and Lyu, M.R., 2002, “XVIP: an XML-based video information processing system,” Proceedings, The 26th Annual International on Computer Software and Applications Conference, pp. 173-178. 64. Nie, J.-Y., Hannan, M.-L., and Jin, W., 1995, “Combining Dictionary, Rule and Statistical Information in Segmentation of Chinese,” Computer Processing of Chinese and Oriental Languages, Vol. 9, No. 2, pp. 125-143. 65. Palacio, M.P., Sol, D. and Gonzalez, J., 2003, “Graph-based knowledge representation for GIS data,” Proceedings of the Fourth Mexican International Conference on Computer Science, pp. 117-124. 66. Papp, Z., 1991, “A framework for cooperative numeric and symbolic signal processing in real-time,” The 8th IEEE Conference on Instrumentation and Measurement Technology, pp.489-494. 67. Pan, H., Zhong L., and Yuan J.-L., 2002, “A study of dynamic knowledge representation based on neural networks,” Proceedings, International Conference on Machine Learning and Cybernetics, pp.126-128. 68. Rahman, S. and Moghram, I. S., 1989, “Application of a rule-based technique to weekly load forecast,” Proceedings, IEEE Energy and Information Technologies in the Southeast, Vol. 1, pp. 380-385. 69. Ruan, W., Buerkle, T. and Dudeck, J., 2000, “Object-oriented design for automated navigation of semantic networks inside a medical data dictionary,” Artificial Intelligence in Medicine, Vol. 18, No. 1, pp. 83-103. 70. Sarma, V.V.S. and Raju, S., 1991, “Multisensor data fusion and decision support for airborne target identification,” IEEE Transactions on Systems, Man and Cybernetics, Vol.21, pp. 1224-1230. 71. Sasakura, M., 2001, “ A visualization method for knowledge represented by general logic programs,” Proceedings, The Fifth International Conference on Information Visualisation, pp. 135-140. 72. Schmidt, J. and Putz, W., 1993, “Knowledge acquisition and representation for document structure recognition: The CAROL project,” Proceedings, Ninth Conference on Artificial Intelligence for Applications, pp. 177-181. 73. Schroder, C. and Neumann, B., 1996, “On the logics of image interpretation: model-construction in a formal knowledge-representation framework,” Proceedings, International Conference on Image Processing, Vol. 2, pp. 785-788. 74. Smolentsev, S. V., 2002, “The identification and self-organization problems in dynamic semantic networks,” IEEE International Conference on Artificial Intelligence Systems, pp. 35-39. 75. Sproat, R. and Shih, C., 1990, “A statistical method for finding word boundaries in Chinese text,” Computer Processing of Chinese and Oriental Languages, Vol. 4, No. 4, pp. 336-351. 76. Talluru, L.R. and Akgiray, V., 1988, “Knowledge representation for investment strategy selection,” Proceedings of the Twenty-First Annual Hawaii International Conference on Decision Support and Knowledge Based Systems Track, Vol. 3, pp. 189-196. 77. Tanaka, M., Aoyama, N., Sugiura, A. and Koseki, Y., 1995, “Integration of multiple knowledge representation for classification problems”, Artificial Intelligence in Engineering, Vol. 9, pp. 243-251. 78. Teoh, E.K. and Wong, C.Y., 1990, “A rule-based expert control for the SIR-3 robotic system,” The 16th Annual Conference of IEEE on Industrial Electronics Society, Vol. 2, pp. 1309-1313. 79. Tomosy, G., Dobrowiecki, T. P. and Roman, G., 1998, “Reasoning about signals and systems in complex measurement environment,” Proceedings of the 24th Annual Conference on Industrial Electronics Society, Vol. 4, pp. 2549-2554. 80. de Vos, A. and Rowbotham, C.T., 2001, “Knowledge representation for power system modelling,” The 22nd IEEE Power Engineering Society International Conference on Power Industry Computer Applications, pp.50-56. 81. Venkateswar, V. and Chellappa, R., 1990, “A framework for interpretation of aerial images,” Proceedings, The 10th International Conference on Pattern Recognition, Vol.1, pp.204-206. 82. Vranes, S. and Stanojevic, M., 1994, “Prolog/Rex-a way to extend Prolog for better knowledge representation,” IEEE Transactions on Knowledge and Data Engineering, Vol. 6, pp. 22-37. 83. Yeh, C.-L. and Lee H.-J., 1991, “Rule-base word identification for Mandarin Chinese sentences – A unification approach,” Computer Processing of Chinese and Oriental Languages, Vol. 5, No. 2, pp. 97-118. 84. Zarri, G.P., 1995, “The Narrative Knowledge Representation Language, a knowledge-based approach for representing the meaning of textual documents,” Proceedings of the Third International Conference on Document Analysis and Recognition, Vol. 2, pp. 545-548.id NH0925031033 sid 913836 cfn 0 / id NH0925031034 auc 林家誼 tic 應用類神經網路文件自動分類技術建構電子化知識文件管理系統 adc 張瑞芬 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 78 kwc 知識管理 kwc 文件管理 kwc 電子化文件 kwc 自動分類 kwc 類神經網路 kwc 後向傳導網路 abc 本論文著重於電子化知識文件之分類管理,應用類神經網路之技術,建構一個具備自我學習能力的文件自動分類系統,來幫助使用者對大量之電子化知識文件進行分類管理。首先透過文字處理(text processing)技術,對文件進行關鍵字詞擷取,從中選取資訊量高的字詞,作為文件關鍵字詞。接著計算關鍵字詞出現頻率,再進一步推導出關鍵字詞之間的相關性矩陣,透過相關性矩陣可進行關鍵字詞合併之動作。最後可得一關鍵字詞頻率向量,可充分代表文件之內容。接著本論文使用已經發展相當成熟的後向傳導網路系統(Back-Propagation Network)來做為分類運算法的基礎,透過網路的學習機制可使自動分類的輸出接近於真實人類的分類結果。在本論文中我們運用國際專利分類系統(International Patent Classification)建立階層式的文件類別,再利用動力手工具相關之專利文件進行分類測試,可達到相當程度之分類準確率。最後本論文亦利用訓練完成之網路系統,發展一個文件搜尋功能,可透過網路計算之結果輔助使用者縮小文件搜尋範圍。結果顯示本論文發展的文件分類功能與文件搜尋功能對於大量文件之分類管理與搜尋有顯著之效益。 tc 目 錄 中文摘要 II Abstract III 1 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 1 1.3 研究方法及進行步驟 3 2 文獻探討 5 2.1 知識管理 5 2.1.1 知識管理的定義 7 2.1.2 知識管理與文件管理 7 2.2 電子化文件管理 8 2.2.1 文件內容解析 9 2.2.2 文件分類與文件分群 10 2.2.3 文件分類法之研究 11 2.3 類神經網路簡介 18 2.4 國際專利分類系統(International Patent Classification, IPC) 21 3 知識文件管理系統架構與方法論 23 3.1 系統流程分析 23 3.2 文件內容擷取方法論 25 3.2.1 建立文件類別關鍵字詞庫 25 3.2.2 文件內容關鍵字擷取 27 3.2.3 文件內容相關參數計算 28 3.3 應用類神經網路技術之文件分類方法論 30 3.3.1 後向傳導網路系統(Back-Propagation Network) 30 3.3.2 文件分類系統網路模型建構 34 3.3.3 階層式分類流程 38 3.4 文件搜尋方法論 41 3.4.1 網路輸入向量 41 3.4.2 網路輸出 41 3.5 分類結果評估標準 42 4 系統細部分析與設計 44 4.1 系統角色定義 44 4.2 系統功能模組架構 44 4.3 系統軟硬體設施分析 45 4.3.1 系統模擬工具 45 4.3.2 系統分析工具 46 4.3.3 系統硬體設備 46 4.3.4 系統軟體環境 47 4.4 系統資料庫分析 47 4.5 類神經文件分類系統設計 50 4.5.1 建立文件類別 50 4.5.2 擷取文件分類關鍵字詞 52 4.5.3 建構網路模型 54 4.5.4 分類績效評估 58 4.6 系統功能之各細部流程 59 4.6.1 文件分類功能 60 4.6.2 文件搜尋功能 62 4.6.3 管理者控管功能 63 5 系統實作 64 5.1 文件分類功能 64 5.2 文件搜尋功能 67 6 結論 70 6.1 研究結論 70 6.2 未來展望 70 7 參考文獻 72 附錄 77rf 參考文獻 1. 許雅芬,「新聞文件自動分類之研究」,碩士論文(指導教授:柯淑津),東吳大學資訊科學系研究所(2001) 2. 闕豪恩,「模糊相關應用於文件多重分類問題」,碩士論文(指導教授:林丕靜),淡江大學資訊工程學系研究所(2000) 3. 莊慧美,「以智慧型計算方法探討文件分類」,碩士論文(指導教授:李偉柏),屏東科技大學資訊管理系研究所(1999) 4. 吳文峰,「中文郵件分類器之設計及實作」,碩士論文(指導教授:賴榮滄),逢甲大學資訊工程系研究所(2001) 5. 洪春鳳,「媒介模型為主之XML文件倉儲架構」,碩士論文(指導教授:陳煇煌),大同大學資訊工程研究所(2001) 6. 鄭靜如,「以可延伸標記語言建立一個自動化文件管理系統」,碩士論文(指導教授:曾憲雄),交通大學資訊科學系研究所(2000) 7. 陳彥呈,「智慧型新聞推薦系統」,碩士論文(指導教授:蔣榮先),成功大學資訊工程研究所(2000) 8. 蔡佩君,「在電子商務環境下建構以XML為基礎的顧客回應文件管理之研究」,碩士論文(指導教授:翁頌舜),輔仁大學資訊管理學系研究所(2000) 9. 廖益助,「使用演化計算改善模糊適應共振理論於文件分群之應用」,碩士論文(指導教授:陳大正),長榮管理學院經營管理研究所(2001) 10. 雷穎傑,「應用在結構化文件之階層式文件分群法」,碩士論文(指導教授:曾憲雄),交通大學資訊科學系研究所(2002) 11. 張柏年,「以倒傳遞網路為基礎之自動化晶圓缺陷檢測系統」,碩士論文(指導教授:陳飛龍),清華大學工業工程與工程管理學系研究所(2003) 12. 李宗翰,「使用Web Services技術及UNSPSC分類標準建立以XML為基之內容管理系統」,碩士論文(指導教授:張瑞芬),清華大學工業工程與工程管理學系研究所(2003) 13. 孫銘聰,「啟發式電子化文件權限推論模式與技術建構」,碩士論文(指導教授:侯建良),清華大學工業工程與工程管理學系研究所(2003) 14. 尤克強,「知識管理與創新」,天下遠見出版(2001) 15. 勤業管理顧問公司,劉京偉譯,「知識管理的第一本書」,商周出版(2000) 16. 杜拉克等著,張玉文譯,「知識管理」,天下遠見出版(2000) 17. Downes, L., Mui, C., 邱文寶譯,「Killer App 12步打造數位企業」,天下遠見出版(2000) 18. 羅華強,「類神經網路:Matlab的應用」,清蔚科技出版(2001) 19. 周政宏,「神經網路─理論與實務」,松崗出版(1995) 20. 蔡瑞煌,「類神經網路概論」,三民出版(1995) 21. 盧炳勳、曹登發編譯,「類神經網路理論與應用」,全華出版(1992) 22. 經濟部智慧財產局, http://www.tipo.gov.tw/ (2003) 23. Antonie, M.-L., Zaiane, O.R., 2002, “Text document categorization by term association,” Proceedings, IEEE International Conference on Data Mining, pp. 19-26. 24. Boley, D., Gini, M., Gross, R., Han, E., Hastings, K., Karypis, G., Kumar, V., Mobasher, B., Moore, J., 1999, “Partitioning-based clustering for web document categorization,” Decision Support Systems, Vol. 27, pp. 329-341. 25. Bayer, T., Kressel, U., Mogg-Schneider, H., Renz, I., 1998, “Categorizing paper documents – a generic system for domain and language independent text categorizaiton,” Computer Vision and Image Understanding, Vol. 70, pp. 299-306. 26. Chiang, J., Chen, Y., 2001, “Hierarchical fuzzy-knn networks for news documents categorization,” Proceedings, the 10th IEEE International Conference on Fuzzy Systems, No. 2, pp. 720-723. 27. Chen, H., Schuffels, C., Orwig R., 1996, “Internet categorization and search: a self-organizing approach,” Journal of Visual Communication and Image Representation, Vol. 7, No. 1, pp. 88-102. 28. Deng, W., Wu, W., 2001, “Document categorization and retrieval using semantic microfeatures and growing cell structures,” Proceedings, 12th International Workshop on Database and Expert Systems Applications, pp. 270-274. 29. Deng, J., Chen, L., 2000, “Web documents categorization using fuzzy representation and HAC,” Proceedings, the First International Conference on Web Information Systems Engineering, Vol. 2, pp. 24-28. 30. Frigui, H., Nasraoui, O., 2002, “Simultaneous categorization of text documents and identification of cluster-dependent keywords,” Proceedings, the 2002 IEEE International Conference on Fuzzy Systems, No. 2, pp. 1108-1113. 31. Gurney, K., 1997, An Introduction to Neural Networks, London, UCL Press. 32. Hou, J.L., Chan, C.A., 2003, “A document content extraction model using keyword correlation analysis,” International Journal of Electronic Business Management (Taiwan), Vol. 1, No. 1, pp. 54-62. 33. Haykin, S., 1999, Neural Networks – a comprehensive foundation, Second Edition, Upper Saddle River, NJ, Prentice-Hall International, Inc. 34. Huaizhong Kou, Gardarin, G., 2002, “Similarity model and term association for document categorization,” Proceedings, the 13th International Workshop on Database and Expert Systems Applications, pp. 218-222. 35. Ko, Y., Park, J., Seo, J., 2004, “Improving text categorization using importance of sentences,” Information Processing and Management, Vol. 40, pp. 65-79. 36. Lam, W., Han, Y., 2003, “Automatic textual document categorization based on generalized instance sets and a metamodel,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, pp. 628-633. 37. Luo, X., Nur Zincir-Heywood, A., 2003, “A comparison of SOM based document categorization systems,” Proceedings, the International Joint Conference on Neural Networks, Vol. 3, pp. 1786-1791. 38. Mak, B., Bui, T., and Blanning, R., 1996, “Aggregating and updating experts’ knowledge: an experimental evaluation of five classification techniques,” Expert System with Applications, Vol. 10, No. 2, pp. 233-241. 39. Massey, L., 2003, “On the quality ART1 text clustering,” Neural Networks, Vol. 16, pp. 771-778. 40. Maderlechner, G., Suda, P., Bruckner, T., 1997, “Classification of document by form and content,” Pattern Recognition Letters, Vol. 18, pp. 1225-1231. 41. Meier, J., Sprague, R. 1996, “Towards a better understanding of electronic document management,” Proceedings, the Twenty-Ninth Hawaii International Conference on System Sciences, No. 5, pp. 53-61. 42. Mladenic, D., Grobelnik, M., 2003, “Feature selection on hierarchy of web documents,” Decision Support Systems, Vol. 35, pp. 45-87. 43. O’leary, D. E., 1998, “Enterprise knowledge management,” Computer IEEE, Vol. 31, pp. 54-61. 44. Principe, J. C., Euliano, N. R., Lefebvre, W. C., 2000, Neural and Adaptive Systems – fundamentals through simulations, New York, John Wiley & Sons, Inc. 45. Sasaki, M., Kita, K., 1998, “Rule-based text categorization using hierarchical categories,” Proceedings, IEEE International Conference on Systems, Man, and Cybernetics, No. 3, pp. 2827-2830. 46. Tam, V., Santoso, A., Setiono, R., 2002, “A comparative study of centroid-based, neighborhood-based and statistical approaches for effective document categorization,” Proceedings, 16th International Conference on Pattern Recognition, No. 4, pp. 235-238. 47. Turban, E., Aronson, J. E., 2001, Decision Support Systems and Intelligent Systems, Sixth Edition, Upper Saddle River, NJ, Prentice-Hall International, Inc. 48. Tu, C. L., Trappey, A.J.C., 1998, “Decision making of mortgage loan approval using artificial neural network approach,” Journal of The Chinese Fuzzy Systems Association (Taiwan), Vol. 4, No. 1, pp. 31-44. 49. Tan, C., Wang, Y., Lee, C., 2002, “The use of bigrams to enhance text categorization,” Information Processing and Management, Vol. 38, pp. 529-546. 50. Tyrvainen, P., Paivarinta, T., 1999, “On rethinking organizational document genres for electronic document management,” Proceedings, the 32nd Annual Hawaii International Conference on System Sciences, No. 2, pp. 10. 51. Wang, B.B., McKay, R.I., Abbass, H.A., Barlow, M., 2002, “Learning text classifier using domain concept hierarchy,” Proceedings, IEEE International Conference on Communications, Circuits and Systems and West Sino Expositions, No. 2, pp. 1230-1234. 52. World Intellectual Property Organization, 2003, “International Patent Classification” , http://www.wipo.int/classifications/en/id NH0925031034 sid 913837 cfn 0 / id NH0925031035 auc 曾文駒 tic 應用代理人技術開發協同設計工作流程管理系統 adc 張瑞芬 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 62 kwc 軟體代理人 kwc 工作流程管理 kwc 協同產品設計 kwc XML/RDF abc 現今資訊技術蓬勃發展,網際網路打破了地球上原本因地理環境因素而分開的界線,為因應全球化競爭的來臨,各企業無不以提昇產品的品質與加快產品開發的速度,以期能夠增加企業的競爭力。企業要掌握競爭優勢,就必須對於顧客快速變化的需求,在最短的時間內,設計出符合市場需求的產品。近來許多研究皆提到使用工作流程管理促成協同產品設計的完成,來提昇企業競爭力。因此,本研究提出了一結合協同產品設計作業之工作流程管理雛型系統,希望不僅能利用協同產品開發的概念,更能因為工作流程系統的導入,而使整個系統的運作更多樣化也更具彈性。在本研究所提出的系統雛型架構中,採用軟體代理人技術將流程建構與流程推進分離,以利更新與管理推進機制。並利用XML╱RDF的語法,將工作流程以RDF格式呈現,以利網際網路上流程資料之交換及溝通。最後,以本研究提出之系統架構,實作一雛型系統,藉由代理人技術來建立分散式環境下資訊傳遞溝通的機制,以充分發揮其流程元件之再使用性、擴充性及安全性。並以協同產品設計作業管理之概念設計及實作代理人間溝通行為模式,以達成產品開發的多樣化、溝通的及時性並縮短產品開發時間。因工作流程管理控管機制的建立,能減少重覆的工作,並增加協調合作及資源利用的效率。 tc 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究方法與架構 3 第二章 文獻探討 4 2.1 代理人程式發展 4 2.1.1 近期發展 4 2.1.2 相關規範及組織 4 2.1.3 代理人的特徵 5 2.1.4 代理人的分類 6 2.2 技術與發展環境 8 2.2.1 物件導向程式設計 vs. 代理人導向程式設計 8 2.2.2 環境介紹 - Java Agent DEvelopment Framework (JADE) 9 2.2.3 Resource Description Framework (RDF)介紹 11 2.2.4 近期以代理人為基之工作流程系統相關研究 12 2.3 三層式架構 12 2.4 工作流程 15 2.4.1 工作流程之定義 15 2.4.2 工作流程管理系統 15 2.4.3 工作流程管理系統之分類 18 2.5 協同產品設計 19 2.5.1 協同作業之分類 20 第三章 系統功能方法論 21 3.1 系統架構分析 21 3.1.1 使用者表現層 22 3.1.2 應用程式邏輯層 23 3.1.3 資料存取層 23 3.2 工作流程系統運作模式 23 3.3 代理人管理系統運作模式 29 3.4 代理人行為模式 31 3.4.1 工作流程代理人群組─使用者代理人、流程監控代理人 31 3.4.2 工作流程代理人群組─流程維護代理人、系統維護代理人 32 3.4.3 工作流程代理人群組─流程執行代理人 33 3.4.4 代理人伺服器─資料暫存代理人、流程推進代理人 34 第四章 系統導入與實作 35 4.1 系統建置與環境需求 35 4.2 工業電梯協同設計案例介紹 36 4.3 系統維護模組 41 4.4 流程維護模組 41 4.4.1 工作項目設計 41 4.4.2 工作流程設計 43 4.5 流程監控模組 47 4.6 使用者模組 48 4.7 流程執行模組 48 第五章 結論與建議 51 5.1 結論 51 5.2 未來建議 53 參考文獻 54 相關網站 58 附錄一、DTD檔案內容 59 附錄二、RDF檔案內容 61rf 林泰良,『應用行動代理人技術開發矽智財知識服務與交易平台機制』,(指導教授:張瑞芬),碩士論文,國立清華大學工業工程研究所,新竹,2003。 邱政興,『以工作流程為基之協同專案管理平台─以IC設計專案為例』,(指導教授:張瑞芬),碩士論文,國立清華大學工業工程研究所,新竹,2003。 何佩芳,『協調機制之應用─以工作流程代理人為例』,(指導教授:施學琦),碩士論文,國立雲林科技大學資訊管理研究所,雲林,2000。 陳卓觀,『代理人技術應用於全球運籌管理之及時線上訂單追蹤』,(指導教授:張瑞芬),碩士論文,國立清華大學工業工程研究所,新竹,2002。 黃敬仁、姚銀河、張瑞芬、邱政興、鄭宇雄,『模組化網路協同設計環境架構與系統設計』, 2002第一屆知識管理與協同規劃研討會論文集,東海大學,台中,2002。 黃程韋,『跨平台協同設計管理系統之探討』,碩士論文,國立台灣大學機械工程學研究所,台北,2002。 簡君穎,『以網際網路為基之工作流程管理系統設計』,(指導教授:張瑞芬),碩士論文,國立清華大學工業工程研究所,新竹,2002。 Alonso, G., and Schek, H. J., “Research issues in large workflow management system,” Proceedings of the NSF Workshop on Workflow and Process Automation in Information Systems, Athens, Georgia, USA, 1996. < http://lsdis.cs.uga.edu/activities/NSF-workflow/alonso.html> Anumba, C. J., Newnham, L. N., Thorpe, A., and Ugwu, O. O., “Agent-Based Collaborative Design of Constructed Facilities,” Proceedings of the 6th EG-SEA-AI Workshop, Artificial Intelligence in Structural Engineering - Information Technology for Design, Manufacturing, Maintenance and Monitoring Borkowski A.(Ed.), Wierzba, Poland, 199-208, 1999. Bellifemine, F., Caire, G., Rimassa, G., and Trucco, T., “JADE programmer's guide,” TILab, 2003. Blake, M.B., “An agent-based cross-organizational workflow architecture in support of Web services,” Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02), 176 -181, 2002. Chan, H.C.B., Ho, I.S.K., and Lee, R.S.T., “Design and implementation of a mobile agent-based auction system,” Communications, Computers and signal Proc. PACRIM 2001 IEEE Pacific Rim Conf., 2, 740-743, 2001. DC. “Dublin Core Metadata for Resource Discovery,” , 1998. Edwards, J., Harkey, D., and Orfali, R., The Essential Distributed Objects Survival Guide, New York, John Wiley & Sons, Inc., 1996. Georgakopoulos, D., Hornick, M., and Sheth, A., “An overview of workflow management: from process modeling to workflow automation infrastructure,” Distributed and Parallel Databases, 3(2), 119-153, 1995. Gou, H.-M., Huang, B.-Q., Liu, W.-H., Ren, S.-J., and Li, Y., “An agent-based approach for workflow management,” Systems, Man, and Cybernetics, IEEE International Conference, 1, 292 -297, 2000. Hollingsworth, D., “The Workflow Reference Model,” Workflow Management Coalition, 1995. Huang, C.-J., Trappey, A.J.C., and Yao, Y.-H., “Design and develop WfMC-based modularized network collaborative design system,” Journal of Chinese Institute of Industrial Engineers, 20(4), 422-434, 2003. Huang, C.-J., Trappey, A.J.C., Yao, Y.-H., Yeh, S.-C., and Cheng, Y.-H., “Adopting contact center approach to collaborative product development – using TFT-LCD design chain as case study,” International Journal of Electronic Business Management, 1(3), 120-128, 2003. Huang, G.Q., Huang, J., and Mak, K.L., “Agent-based workflow management in collaborative product development on the Internet,” Computer-Aided Design, 32, 133-144, 2000. Jacques F., Multi-agent Systems – an Introduction to Distributed Artificial Intelligence, Boston, Addison-Wesley, 1999. Jennings, N.R. and Wooldridge, M., “Software agents,” IEE Review, 42(1), 17-20, 1996. Jennings, N.R., “On Agent-Based Software Engineering,” Artificial Intelligence, 117, 277-296, 2000. Jennings, N.R., “An Agent-Based Approach for Building Complex Software Systems,” Communications of the ACM, 44(4), 35-41, 2001. Kahn, R.E., and Cerf, V.G., “An Open Architecture for a Digital Library System and a Plan for Its Development, Technical Report,” Corporation for National Research Initiatives, Reston, Virginia, 1988. , Kalakota, R., and Whinston, A.B., Frontiers of Electronic Commerce, Massachusetts, USA: Addison-Wesley Press, 1999. Leymann, F., and Roller, D., “Production workflow: concepts and techniques,” Prentice Hall PTR, 1999. Maamar, Z., “Association of users with software agents in e-commerce,” Electronic Commerce Research and Applications, 1(1), 104-112, 2002. Maes. P., “Agents that reduce work and information overload,” Communications of the ACM, 37(7), 31-40, 146 ACM Press, 1994. McCarthy, J., “Programs with Common Sense,” Proceedings of the Teddington Conf. on the Mechanization of Thought Processes, 1958. Mohan, C., “State of the Art in Workflow Management Research and Products,” ACM SI GMOD International Conference on Management of Data, 1996. Papaioannou, T., and Edwards, J., “Using mobile agents to improve the alignment between manufacturing and its IT support systems,” Robotics and Autonomous Systems, 27(1-2), 45-57, 1999. Pham, V. and Karmouch. A., “Mobile software agents: an overview,” IEEE Computer, 31(7), 1998. San, M., “Intelligent agents on the Internet and Web,” TENCON ’98, IEEE Region 10 International Conference on GlobalConnectivity in Engery, Computer, Communication and Control, 1, 97-102, 1998. Shoham, Y., “Agent-oriented programming,” Artificial Intelligence, 60, 51-92, 1993. Silver, B., “BIS guide to workflow software,” BIS Strategic Decisions, September 1995. Trappey, A.J.C., Trappey, C.V., Hou, J.-L., and Chen, B.J.G., “Mobile agent technology and application for online global logistic services,” Industrial Management and Data System (Accepted), 2004. VCARD, “vCard MIME Directory Profile,” Draft IETF RFC, , 1998. W3C, “Resource Description Framework (RDF) Schemas,” W3C Working Draft, , 1998. W3C, “Extensible Markup Language (XML),” W3C Recommendation, , 1998. W3C, “Resource Description Framework (RDF) Model and Syntax,” W3C Proposed Recommendation, , 1999. W3C, “Namespaces in XML. W3C Recommendation,” , 1999. Wang, H., and Xu, D., “Collaborative multi-agents for work-flow management,” Proc. of the 34th Hawaii International Conf. on System Sciences, Jan. 3-6, Maui, Hawaii, 108-116, 2001. Yan, Y., Maamar, Z., and Shen, W., “Integration of workflow and agent technology for business process management,” The Sixth International Conference on, Computer Supported Cooperative Work in Design, 420-426, 2001. Zeng, D.D., and Zhao, J.L., “Achieving software flexibility via intelligent workflow techniques,” Proceedings of the 35th Annual Hawaii International Conference on System Sciences, HICSS, 606 -615, 2002. Zeng, L.-Z., Ngu, A., Bentallah, B., and O'Dell, M., “An agent-based approach for supporting cross-enterprise workflows,” Proceedings, Database Conference, ADC 12th, Australia, 123 -130, 2001. 相關網站 ACSSoftware FIPA JADE ORACLE RDFid NH0925031035 sid 913838 cfn 0 / id NH0925031036 auc 柯文周 tic 建構以專家系統之推論引擎為基之工作流程管理系統 adc 張瑞芬 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 107 kwc 專案管理 kwc 工作流程 kwc 協同產品設計 kwc 專家系統 kwc JESS kwc 推論引擎 abc 面對全球化的趨勢之下,企業必須要在最短時間內,設計完成符合市場需求的產品,快速上市,搶得市場先機,因此在既有的組織架構中,能迅速成軍的專案便扮演了重要的角色。除此之外,網路機制的發達造成了專案協同產品設計,透過資訊的快速傳播,專案工作的進行,變成可以讓散布在全球各地的相關人員共同執行,以快速地完成產品的設計,並提高產品品質。在這樣的環境之下,傳統人工化的工作流程方式已不再適用,運用自動化的工作流程管理系統 (WfMS) 在限定的期限之內,考慮資源、成本、流程、進度控制等因子,讓工作能自行驅動,且視情況即時修改流程,成為了一個新的課題。 tc 中文摘要 I Abstract II 謝辭 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 序論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究方法與架構 2 1.4 論文架構 4 第二章 文獻探討 5 2.1 專案管理 5 2.1.1 專案管理定義 5 2.1.2 專案成功因素 7 2.1.3 專案管理的範籌 10 2.1.4 專案管理相關研究 14 2.2 工作流程 16 2.2.1 工作流程定義 16 2.2.2 工作流程分類 17 2.2.3 工作流程管理系統 18 2.2.4 工作流程相關研究 19 2.3 專家系統 23 2.3.1 專家系統定義 23 2.3.2 專家系統架構 24 2.3.3 專家系統推論引擎 26 第三章 系統功能方法論 30 3.1 系統架構 30 3.2 推論機制架構 32 3.3 事實定義 35 3.3.1 事實模板定義 36 3.3.2 事實變數定義 41 3.4 規則定義 48 3.4.1 規則定義方式 49 3.4.2 流程運行推論規則 50 第四章 系統功能分析設計 57 4.1 系統主架構 57 4.2 系統架構分析 59 4.2.1 系統階段架構 59 4.2.2 系統角色權限 60 4.3 系統軟硬體分析 60 4.3.1 系統分析工具 60 4.3.2 系統軟硬體環境 61 4.4 系統功能模組概觀 61 4.5 系統功能細部流程分析 63 4.5.1 系統管理功能流程分析 63 4.5.2 專案維護功能流程分析 64 4.5.3 專案變數維護功能流程分析 65 4.5.4 工作執行功能流程分析 66 4.5.5 專案監督功能流程分析 67 4.5.6 流程定義功能流程分析 67 4.5.7 推論引擎功能流程分析 68 4.6 系統資料庫分析 69 4.7 系統實作範例說明 71 第五章 系統實作 74 5.1 範例流程定義說明 74 5.2 系統管理模組說明 75 5.3 流程定義模組說明 79 5.4 專案維護模組說明 80 5.5 工作執行模組說明 84 5.6 專案監督模組說明 87 第六章 結論與未來展望 89 6.1 分析評估 89 6.2 結論 90 6.3 未來展望 91 參考文獻 93 附錄一、系統基本語法 97 附錄二、Microsoft Visio流程定義說明 101 附錄三、系統碼轉換 104rf 中文部份 [1 ] 王偉宇,「協同設計與工作流程之探討」,碩士論文(指導教授:尤春風),國立臺灣大學機械工程學研究所,2003。 [2 ] 邱政興,「以工作流程為基之協同專案管理平台-以IC設計專案為例」,碩士論文(指導教授:張瑞芬),國立清華大學工業工程與工程管理學系,2003。 [3 ] 林逸群,「應用專家系統於中央空調系統之故障診斷」,碩士論文(指導教授:陳昭榮),國立台北科技大學電機工程學系,2001。 [4 ] 洪勖芳,「全球化協同式產品開發之知識整合與智慧資產管理-以系統單晶片產品開發為例」,碩士論文(指導教授:朱詣尹),國立清華大學工業工程與工程管理學系,2001。 [5 ] 莊宗文,「運用三維同步工程於知識網路上之整合性產品開發」,碩士論文(指導教授:朱詣尹),國立清華大學工業工程與工程管理學系,2002。 [6 ] 陳俊伊,「同步工程應用於新產品開發專案工作協調之研究」,碩士論文(指導教授:張光旭),國立台北科技大學生產系統工程與管理研究所,2002。 [7 ] 張瑞芬,姚銀河,「企業流程元件運用在系統整合之研究」,財團法人中衛發展中心分包學術機構研究計畫期中研究成果報告,國立清華大學,2001。 [8 ] 蓋瑞•哈肯。專案管理立即上手(丁惠民 譯),臺北市:美商麥格羅•希爾國際股份有限公司,台灣分公司,2002。 [9 ] 簡君穎,「以網際網路為基之工作流程管理系統設計」,碩士論文(指導教授:張瑞芬),國立清華大學工業工程與工程管理學系,2002。 英文部份 [10 ] Abdomerovic, M., and Blakemore, G., “Project process interactions,” International Journal of Project Management, 20, 315-323, 2002. [11 ] Anderson, D. K., and Bower, D., “Project management domains: stepping stones,” Proceedings of 15th IPMA World Congress on Project Management, Universal Project Management, London, England, May 2000. [12 ] Anderson, D. K., and Merna, T., “Project management strategy – project management represented as process based set of management domains and the consequences for project management strategy,” International Journal of Project Management, 21(6), August 2003. [13 ] Archibald, R. B., The Implementation of Project Management: The Professional’s Handbook, Massachusette: Assison-Wesley Publishing, 178, 1981. [14 ] Armitage, K., “Project management – concept and some basic principles,” The British Journal of Administrative Management, Dec 2002/Jan 2003, 34, ABI/INFORM Global, 10-11, 2002. [15 ] Chen, C.-H., Ling, S. F., and Chen, W., “Project scheduling for collaborative product development using DSM,” International Journal of Project Management, 21(4), 291-299, May 2003. [16 ] Cleland, D. I., and King, W. R., System Analysis and Project Management. Graw-Hill, Inc., New York, 1983. [17 ] Cooke, D. J., “The real success factors on projects,” International Journal of Project Management, 20, 185-190, 2002. [18 ] Czuchry, A. J., and Yasin, M. M., “Managing the project management process,” Industrial Management & Data Systems, 103(1), 39-46, 2003. [19 ] Dawes, T., “Project management – an integrated approach,” The British Journal of Administrative Management, Dec 2002/Jan 2003, 34, ABI/INFORM Global, 24-25, 2002. [20 ] Fakas, G., and Karakostas, B., “A workflow management system based on intelligent collaborative objects,” Information and Software Technology, 41, 907-915, 1999. [21 ] Forgy, C. L., “Rete: A fast algorithm for the many pattern/ many object pattern match problem,” Artificial Intelligence, 19(1), 17-37, 1982. [22 ] Giarratano, J. C., and Riley, G. D., Expert Systems: Principles and Programming, 2nd ed, PWS Publishing, Boston, 1993. [23 ] Kerzner, H., Project Management: A System Approach to Planning, Scheduling, and Controlling, 2nd ed., Van Nostrand Reinhold Co. Inc., New York, 1984. [24 ] Knapp, G. M., and Wang, B., “Modeling of automated storage/retrieval systems using petri nets,” Journal of Manufacturing Systems, 11(l), 1992. [25 ] Liberatore, M. J., and Pollack, J. B., “Factors influencing the usage and selection of project management software,” IEEE Transactions on Engineering Management, 50(2), 164-174, May 2003. [26 ] Plesums, C., Introduction to Workflow, Workflow Handbook 2002, Future Strategies Inc., 19-38, March 2002. [27 ] Rob A., Workflow: An Introduction, Workflow Handbook 2001, Future Strategies Inc., 15-38, October 2000. [28 ] Romano, N. C., Chen, F., and Nunamaker, J. F., “Collaborative project management software,” Proceedings of the 35th Annual Hawaii International Conference on System Sciences, 7-10, Jan 2002. [29 ] Shih, H. M., and Tseng, M. M., “Workflow technology-based monitoring and control for business process and project management,” International Journal of Project Management, 14(6), 373-378, 1996. [30 ] Stevenson, W. J., Operations Management, 7th ed, Irwin/McGraw-Hill, 2002. [31 ] Turban, E., and Aronson, J. E., Decision support systems and intelligent systems, 6th ed., Upper Saddle River, Prentice Hall Inc., 2001. [32 ] Van der Aalst, W. M. P., “On the automatic generation of workflow processes based on product structures,” Computers in Industry, 39, 97-111, 1999. [33 ] White, D., and Fortune, J., “Current practice in project management - an empirical study,” International Journal of Project Management, 20, 1-11, 2002. [34 ] Zhuge, H., “A process matching approach for flexible workflow process reuse,” Information and Software Technology, 44, 445-450, 2002. 網站 [35 ] Rete演算法,http://www.cis.temple.edu/~ingargio/cis587/readings/rete.html#2 [36 ] Rete演算法,http://cindy.cis.nctu.edu.tw/AI96/team08/ai13.htm [37 ] Jess, the Rule Engine for the Java Platform, http://herzberg.ca.sandia.gov/jessid NH0925031036 sid 913839 cfn 0 / id NH0925031037 auc 陳文政 tic 設備維護費用合理化之研究-以台電為例 adc 陳飛龍 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 79 kwc 設備維護 kwc 預防保養 kwc 費用合理化 kwc 資料包絡分析法 abc 資本密集的產業中,設備是非常重要的資產,也是使得產品或服務能夠有高附加價值的來源。設備因長時間的使用運轉,難免會造成故障情形,因此適度的維護與保養是不可避免的。在設備維護與保養的活動範疇之中,可分成故障保養與預防保養,預防保養為減少機器設備故障損壞的事先維護,故障保養為機器設備故障損壞後的事後維修。決定適當的預防保養頻率之決策因子通常是以成本為衡量指標,亦即以總成本最小值為目標來訂定預防保養的頻率,然而要有正確的預防保養頻率就要有正確的預防成本與故障成本的計算方式,本研究因此希望提出對於預防保養成本費用合理化的理論架構。不同於一般處理方法中採用單一合理價格,設備維護事實上包含許多的費用項目,本研究將這些不同費用項目視為不同空間維度之資料,不能互相作比較。因此建議以歷史資料為基礎,針對每一筆輸入資料,藉由資料包絡分析法分析得出各個費用項目之合理費用值。研究中並以台灣電力公司之161kv GIS變電開關設備定期維護檢查為個案分析對象,分析結果顯示在8筆輸入的資料當中,有3筆資料可依據其他5筆資料為標竿,得出其各個費用項目之合理值與可以合理降低的量。本研究方法並可以用來檢視未來定期維護檢查時維修廠商所提供的費用是否合理,甚至進一步可以找出合理降低的費用量。 rf 參考文獻 Carsten, H., “Using Data Envelopment Analysis to Benchmark Activities”, International Journal of Production Economic, Vol. 73, 2001, pp.51-58. Charles, T. H., George F. and Srikant, M. D., Cost Accounting: A Managerial Emphasis, Prentice Hall, 2002. Cooper and Kaplan, R. S., “Measure Costs Right: Make the Right Decision”, Harvard Business Riew, Sep/Oct 1988, pp.96-103. Jeffery, K. and Shlomo, M. “Measuring Efficiency by Product Group: Integrating DEA with Activity-Based Accounting in a Large Mideast Bank.”, Interfaces, Vol. 29, Issue. 3, 1999, pp.27-36. Laurens, C. and Tom V. P., “A comment on multi-stage DEA methodology,” Operations Research Letters, Vol. 28, 2001, pp.93-98. McQueen, J. “Some Methods for Classification and Analysis of Multivariate Observations,” Proc. of the Fifth Berkeley Symposium on Mathematics, Statistics and Probability, Vol. 1, 1967, pp.281-296. Nooreha, H., Mokhtar, A. and Suresh, K., “Evaluating public sector efficiency with data envelopment analysis(DEA):a case study in Road Transport Department, Selangor, Malaysia,” Total Quality Management, Vol.11, No.11, 2000, pp.830-836. Stevenson, W. J., Production Operations Management, McGraw Hill, 1999. Sueyoshi and Toshiyuki, “Tariff Structure of Japanese Electric Power Companies: An Empirical Analysis Using DEA”, European Journal of Operational Research, Vol. 118, Issue. 2, 1999, pp.350-374. Thanassoulis, E., “DEA and its Use in The Regulation of Water Companies”, European Journal of Operational Research, Vol. 127, Issue. 1, 2000, pp.1-13. Tim, C., “A multi-stage methodology for the solution of oriented DEA models,” Operations Research Letters, Vol. 23, 1998, pp.143-149. 石松康男,成本管理與改善,先鋒企管,1991。 吳偉立,教學醫院醫療部門之績效評估-資料包絡分析法觀點,國立台灣大學碩士論文,2001。 吳惠如,「台灣省自來水價格合理化問題之研究」,台灣銀行季刊,第48卷第1期,1997,258-278。 呂葛登,「零件成本分析概念介紹」,機械工業雜誌,1994.11,136-148。 周文賢,多變量統計分析,智勝文化,2002。 林哲勳,基隆港務局貨櫃裝卸量與維護費比率合理化之研究,國立台灣海洋大學碩士論文,2001。 胡明輝、陳珠龍、張石柱,「成本分析與作業改善:整合作業基礎成本與資料包絡分析法於國軍某修(造)船廠之應用」,國防管理學報,第23卷第1期,2002,23-38。 高強、黃旭男、Toshiyuki Sueyoshi,管理績效評估資料包絡分析法,華泰文化,2003。 許哲瑋,資料挖掘與統計方法應用於資料庫行銷之實證研究—以美妝保養品業為例,國立台北大學碩士論文,2002。 陳淑萍,資料探勘應用於財務危機預警模式之研究,銘傳大學碩士論文,2002。 陳順宇,多變量分析,華泰書局,1998。 許萬寶、蘇正我、陳永源,「電氣設備的劣化原因、維護對策與其維護機制運作」,台電工程月刊,第630期,2001,51-74。 張維仁,群集分析法應用於東勢林區管理處大安溪事業區林地分類之研究,國立中興大學碩士論文,2003。 黃元欣,作業基礎成本制度對經營績效之響影-以國內製造業為例,淡江大學碩士論文,1999。 黃郁東,變電及開關設備,全華科技,1983。 曾勝滄,多重bin層良率群集分析之研究,國立清華大學碩士論文,2001。 賈方霈,結合集群分析與資料視覺於低良率晶圓之成因探討,元智大學碩士論文,2001。 楊啟鈿,以資料包絡分析法評詁榮民醫院之經營效率,國立陽明大學碩士論文,2001。 楊進德,配電系統規劃的可靠度成本模型設計與價值分析之研究,國立中山大學博士論文,2000。 劉復華,5483績效評量技術上課講義,國立交通大學,2002。 賴鉻洲,「中國大陸東部沿海省份投資區位選擇因素分析-以臺商製造業為例」,台北銀行月刊,第29卷第五期,1999,155-170。 謝依真,不同分群方法與不同資料來源之比較,國立成功大學碩士論文,2001。 嚴玉珠,成本會計,五南圖書,1999。 譚令蒂、于若蓉,「幼兒看護與婦女勞動供給勞動市場進入成本模型之應用」,經濟論文叢刊,第25卷第4期,1997,493-520。id NH0925031037 sid 913840 cfn 0 / id NH0925031038 auc 謝仁豪 tic 電子組裝製造屬性展開─取置製程 adc 許棟樑 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 95 kwc 表面黏著技術 kwc 製造屬性展開 kwc 可製性分析 kwc 反向設計鏈分析 abc 本研究的目的是整理出一套製造與設計部門之間的整合機制,從電路板組裝的取置機著手,事先將機台的製造資源限制讓設計部門知道,使設計部門能考量到製造的可行性,並分析製程與產品的失效資料,推論出設計規範。透過雙方良好的溝通,以減少工程變更的次數、縮短研發時程及降低成本,進而加速新產品導入的時間,增加企業的競爭力。 tc 摘 要 I ABSTRACT II 致 謝 III 目 錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 貢獻與成果 2 1.4 相關研究 3 1.5 論文架構 4 第二章 筆記型電腦製造流程 6 2.1 筆記型電腦製程簡介 6 2.2 電路板組裝流程 6 2.2.1 放置印刷電路板(Board Preparation) 9 2.2.2 錫膏印刷(Screen Printing) 9 2.2.3 點膠(Glue Dispenser) 10 2.2.4 元件置放(SMD Placement) 10 2.2.5 迴銲(Reflow) 11 2.2.6 外觀檢驗及後銲(補錫)(Vision Inspect and Touch-Up) 15 2.2.7 ICT(In Circuit Test)測試 16 2.2.8 功能測試(Function Test,FT) 16 2.2.9 修理(Repair) 17 2.3 表面黏著技術的優點 18 第三章 文獻探討 20 3.1 品質機能展開 20 3.1.1 品質機能展開的起源 20 3.1.2 品質機能展開的要點 21 3.1.3 品質機能展開的步驟 23 3.1.4 相關研究探討 24 3.2 優質設計 24 3.2.1 發展沿革 25 3.2.2 設計考量組裝(Design For Assembly,DFA) 26 3.2.3 設計考量製造(Design For Manufacturing,DFM) 27 3.2.4 相關研究範圍 28 3.3 表面黏著元件 30 3.3.1 被動元件 31 3.3.2 主動元件 33 3.4 取置機 40 3.4.1 取置機的基本觀念及分類 41 3.4.2 取置機的結構 42 3.4.3 取置機的誤差源及其對策 44 3.4.4 取置機的選擇原則 47 3.5 特性要因圖 48 3.6 柏拉圖 49 第四章 研究方法 52 4.1 研究對象與範圍 52 4.2 研究理念與架構 52 4.3 研究步驟及手法 58 第五章 製造屬性展開實例與軟體介面說明 61 5.1 製造屬性 61 5.2 設計屬性 64 5.3 製造屬性展開 65 5.3.1 製造與設計屬性相關探討 65 5.3.2 預防機制與設計規範 69 5.4 失效分析 72 5.4.1 失效資料探討 72 5.4.2 預防機制與設計規範 74 5.5 軟體介面說明 79 5.5.1 軟體介面功能 79 5.5.2 軟體介面應用 81 第六章 結論與後續研究方向 88 6.1 結論 88 6.2 後續研究方向 89 參考文獻 90 附錄A 設計規範分析 93 附錄B 計算說明 95rf 1.刁建成編譯,半導體IC產品製造與應用,全華科技圖書股份有限公司,90年12月。 2.水野滋,赤尾洋二編著,品質機能展開研究小組譯,品質機能展開法,先鋒企業管理發展中心,86年。 3.王通成,『筆記型電腦廠製造流程分析:電路板組裝線』,清華大學工業工程與工程管理學系碩士論文,89年。 4.呂志平,『整合QFD與DFA之同步設計與評估方法之構建』,清華大學工業工程與工程管理學系碩士論文,87年。 5.巫政祐,『產品屬性與設計屬性之連結--以手機市場為例』,台北大學企業管理學系碩士論文,91年。 6.李賢仁編譯,SMT組裝技術之實務,電子技術出版社,86年11月。 7.取置機型錄,Universal Instruments Corporation。 8.許盛堡,『建構一個QFD與FMEA之整合架構』,元智大學工業工程與管理學系碩士論文,91年。 9.許棟樑,陳大仁,『整合性優質設計架構』,科技管理學刊,審稿中,民國93年。 10.郭嘉龍編譯,圖解SMT接合材料入門,全華科技圖書股份有限公司,89年11月。 11.陳俊元,『筆記型電腦廠系統組裝線診斷與改善』,清華大學工業工程與工程管理學系碩士論文,91年。 12.黃錦烈,『電腦廠從接單到出貨的時間分析與改善手法』,清華大學工業工程與工程管理學系碩士論文,92年。 13.葉榮鵬編著,吳聯樹總校閱,品質管制,高立圖書,83年。 14.電子技術編輯群主編,表面黏著技術(SMT),電子技術出版社,81年9月。 15.謝宗雍,「電子構裝」,華梵大學機電工程學系課程講義。 16.鍾文仁,陳佑任編著,IC封裝製程與CAE應用,全華科技圖書股份有限公司,92年6月。 17.魏隆章,『以製造為導向的研發設計以提高電腦機板生產力之研究』,義守大學管理科學學系碩士論文,89年。 18.Bendell, A., “Introduction to Taguchi Methodology, Taguchi Methods”, In: Proceedings for 1988 European Conference, pp.1-14, London: Elsevier Applied Science, 1988. 19.Boothroyd, G., and Alting, L., “Design for Assembly and Disassembly”, Keynote Paper, Annals of the CIRP, 41 (2), pp.625-636, 1992. 20.Boothroyd, G. and Dewhurst, P., “Design for Assembly—A Designers Handbook”, Technique Report, Department of Mechanical Engineering, University of Massachusetts, 1983. 21.Boothroyd, G. and Dewhurst, P., “Product Design for Assembly”, Wakefield, RI: Boothroyd and Dewhurst, 1986. 22.Boothroyd, G., Poli, C., and March, L., “Handbook of Feeding and Operating and Orienting Techniques for Small Parts”, Technique Report, Department of Mechanical Engineering, University of Massachusetts, 1978. 23.Corbett, J., “How Design Can Boost Profit”, Eureka Transfers Technology, May, pp.59-65, 1987. 24.Crow, K. A., Concurrent engineering In R. Bakerjian, “Tool and Manufacturing Engineers Handbook: Design for Manufacturability”, pp.2-1-2-19, Vol. 6, 1983. 25.Giachetti, Ronnald E., and Alvi, Mohammed I., “An Object-Oriented Information Model for Manufacturability Analysis of Printed Circuit Board Fabrication”, Computer in Industry, Vol. 45, Issue 2, pp.177-196, 2001. 26.Henstock, M. E., “Design for Recyclability”, Conservation and Recycling, Vol. 4, Issue 3, September 1990, pp.253-254, 1988. 27.Huthwaite, B., “Link Between Design and Activity-Based Accounting”, Manufacturing Systems, 7(10), pp.44-47, 1989. 28.Jovane, F., Alting, L., Armillotta, A., Eversheim, W., Feldmann, K., Seliger, G., and Roth, N., “A Key Issue in Product Life Cycle: Disassembly”, Annals of CIRP, pp.1-13, 1993. 29.Keoleian, G. A., Meanery, D., and Curran, M. A., “A Life Cycle Approach to Product System Design”, Pollution Prevention Review, pp.293-306, 1993. 30.Leonard, L., “Design for Environment”, Plastics Design Forum, May/June, pp.25-32, 1991. 31.Martin O’Driscoll, “Design for Manufacture”, Journal of Materials processing Technology, pp.318-321, 2002. 32.SMT Back to Basics, IHS Publishing Group, July 1998. 33.Stoll, H. W., “Design for Manufacturing”, Manufacturing Engineering, January, pp.67-73, 1988. 34.Ullman, David G., The Mechanical Design Process, The McGraw-Hill Companies, Inc., 1997. 35.Warnecke, H. V., and Bassler, R., “Design for Assembly—Part of Design Process”, Annals of CIRP, 37(1), 1, 1988. 36.Waterbury, R., “Designing Parts for Automated Assembly”, Assembly Engineering, February, pp.24-28, 1985.id NH0925031038 sid 913842 cfn 0 / id NH0925031039 auc 詹權恩 tic 以詞彙關聯性詞庫為基礎之文件關鍵字擷取模式 adc 侯建良 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 114 kwc 詞彙關聯性 kwc 關鍵字擷取 kwc 文件內容管理 kwc 知識管理 abc 近年來由於網際網路技術之盛行,資訊需求者需面對越來越多之網路資訊/文件,如何自廣泛資訊中取得使用者真正需要之資訊,同時節省大量資訊過濾與篩選時間,以成為資訊/文件/知識管理之一項重要課題。另一方面,為使資訊需求者快速地瀏覽文件,藉以判斷文件所欲傳達之資訊,即須擷取文件中關鍵詞彙作為文件索引,供資訊需求者參考。傳統資訊管理機制下,文件關鍵字判定工作多以人工方式進行,故需耗費大量人力與時間而無法滿足時效性。因此,本論文首先分析文件內容並擷取各詞彙之出現頻率與位置,根據此兩因子自動建立詞彙關聯關係,並建立詞彙關聯庫。而針對關鍵字擷取議題,本論文乃以詞彙關聯性為基礎,進行各文件關鍵字之自動擷取,且所擷取之關鍵字能適切表達文件內容之重要訊息。最後,發展一詞彙間關聯性為基之文件內容管理模式與系統,以確認模式之可行性,並以一案例評估此模式之有效性。綜合言之,本研究所提出之文件內容管理模式與技術不限於特定應用領域,藉由導入此文件內容管理模式,除可提供企業於知識內容管理議題一可行之解決方案,亦可協助企業累積個人經驗/文件/知識與再利用,方便組織成員利用此架構於網際網路之系統,進行文件資訊擷取、資料集中式儲存、分享與管理。 tc 目錄 中文摘要 I 英文摘要 II 目錄 III 圖目錄 V 表目錄 IX 第一章、 研究背景 1 1.1研究動機與目的 1 1.2研究步驟 2 1.3研究定位 5 第二章、 文獻回顧 7 2.1詞彙關聯性分析 7 2.1.1詞彙關聯特性 7 2.1.2詞彙關聯性擷取 8 2.1.3詞彙關聯性應用 11 2.2詞庫建立與應用 12 2.2.1詞庫建立 12 2.2.2詞庫應用 13 2.3 資訊檢索 13 2.3.1文字型資訊擷取 14 2.3.2特殊型態資訊擷取 18 2.3.3資訊檢索技術應用 19 第三章、 詞彙關聯解析與關鍵字擷取模式 22 3.1詞彙關聯分析模式 22 3.1.1頻率為基之詞彙關聯解析 23 3.1.2位置為基之詞彙關聯解析 27 3.2關鍵字擷取模式 32 3.2.1遞迴關鍵字擷取模式 32 3.2.2一般化關鍵字擷取模式 38 第四章、 系統架構規劃 44 4.1自動化關鍵字擷取模式 44 4.2系統功能架構 45 4.3資料模式定義 48 4.4系統流程 50 4.4.1系統操作流程 50 4.4.2系統資料流程 55 4.5系統開發工具 56 第五章、 案例驗證與評估 58 5.1系統操作說明 58 5.2系統分析與評估 94 第六章、 結論與未來發展 106 參考文獻 109rf 參考文獻: 1. 中華民國專利公報資料庫─一般查詢方式,http://nbs.apipa.org.tw/twplogin.htm。 2. 方策民,2002,「電視新聞文稿之研究」,碩士論文(指導教授:傅心家),國立交通大學資訊工程研究所。 3. 牛維娟,2003,「應用於USENET之Q&A系統之研究與設計」,碩士論文(指導教授:李錫捷),元智大學資訊管理研究所。 4. 王朝煌,1998,「資料檢索技術及其警察文件管理應用之探討」,警學叢刊,第二十八卷,第五期,第219-236頁。 5. 吳仕先,2002,「文件資料之概念主題檢索」,碩士論文(指導教授:姚修慎),元智大學資訊工程研究所。 6. 吳偉欽,2003,「模糊性對跨領域技術聯盟知識移轉影響之研究」,碩士論文(指導教授:蔡淑梨),輔仁大學織品服裝學系碩士班。 7. 吳潮崇,2002,「線上新聞之自動摘要系統」,碩士論文(指導教授:王振興、林敏勝),國立台北科技大學電機工程研究所。 8. 呂春嬌,1996,「相關概念在資訊檢索中之發展與趨勢」,圖書與資訊學刊,第十六期,第21-32頁。 9. 李紹群,2000,「以關鍵字相關性為基礎之超本文資訊檢索系統」,碩士論文(指導教授:賀嘉生),中原大學資訊工程學系研究所。 10. 沈天佐,2002,「以網際網路內容為基礎之問答系統“為什麼”問句之研究」,碩士論文(指導教授:陳信希),國立台灣大學資訊工程研究所。 11. 侯建良、林峰興、畢威寧,2003,"知識文件之多層級分類演算法," 中國工業工程學會九十二年度年會暨學術研討會,Paper ID: CIIE2003-365. 12. 侯建良、黃佳新、詹權恩、林仁貴,2003,"建構電子化法律知識管理與服務模式," 第九屆資訊管理暨實務研討會,Paper ID: 8. 13. 侯建良、詹權恩,2004,"電子化文件內容擷取技術—結合詞彙相關性與關鍵字擷取模式," 2004電子商務與數位生活研討會, Paper ID: 2003008. 14. 施衣喬,2003,「適用於入侵偵測之模糊關聯法則機制研究」,碩士論文(指導教授:曹偉駿),大葉大學資訊管理學系碩士班。 15. 柯俊宏,2003,「灰關聯分析結合田口參數設計運用於逆向工程點群資料處理之研究」,碩士論文(指導教授:王中行、劉大銘),大葉大學自動化工程學系碩士班。 16. 孫銘聰,2003,啟發式電子化文件權限推論模式與技術建構,碩士論文(指導教授:侯建良),清華大學工業工程與工程管理研究所。 17. 孫銘聰、侯建良,2002,「以推論法則為基之知識文件權限管理程序模式」,產業電子化運籌管理學術暨實務研討會,Paper ID:39. 18. 陳永承,2002,「以灰色理論為基礎之關聯式索引典應用於互動式查詢拓展」,碩士論文(指導教授:李漢銘),國立台灣科技大學電子工程研究所。 19. 陳光華,1996,「資訊檢索查詢之自然語言處理」,中國圖書館學會會報,第57期,第141-153頁。 20. 陳光華、莊雅蓁,2001,「資訊檢索之中文詞彙擴展」,資訊傳播與圖書館學,第8卷,第1期,第59-75頁。 21. 陳光華、莊雅蓁,2001,「應用於資訊檢索的中文同義詞之建構」,中國圖書館學會會報,第67期,第93-107頁。 22. 陳俊德,2003,「應用灰關聯分析於改善供應商決策分析-以筆記型電腦廠為例」,碩士論文(指導教授:楊錦洲),中原大學工業工程研究所。 23. 陳威丞,2000,「Unicode全文檢索之研究與實作」,碩士論文(指導教授:陳賀翔),國立中正大學資訊工程研究所。 24. 陳雅娟,2003,「基於Ontology之模糊代理人於中文新聞文件摘要技術之研究」,碩士論文(指導教授:李健興、陳宗禧),長榮大學經營管理研究所。 25. 陳鈺瑾,1999,「可調式之中文文件自動摘要」,碩士論文(指導教授:張俊盛),國立清華大學資訊工程研究所。 26. 陳鴻儀,2001,「應用關聯法則於語言模型之調整及建立個人化新聞文件瀏覽器」,碩士論文(指導教授:簡仁宗),國立成功大學資訊工程學系研究所。 27. 曾元顯,1997,「關鍵詞自動擷取技術之探討」,中國圖書館學會會訊,第一零六期,第26-29頁。 28. 曾元顯,1997,「關鍵詞自動擷取技術與相關詞回饋」,中國圖書館學會會報,第五十九卷,第59-64頁。 29. 黃乾綱,2001,「全球資訊網互動式檢索之相關詞推薦之研究」,碩士論文(指導教授:歐陽彥正、簡立峰),國立台灣大學資訊工程學研究所。 30. 黃雲龍,1998,「中文全文資訊檢索研究架構與重要議題探討」,大學圖書館,第二卷,第三期,第4-26頁。 31. 黃慕萱,1996,「資訊檢索」,台灣學生書局。 32. 楊綠淵、侯建良,2003,"以網路閱讀趨勢為基之企業知識文件管理模式," 九十二年度國防整體後勤年會暨研討會論文集,pp. 483-494. 33. 董振東,董強,1996,《知網》http://www.keenage.com/html/index.html 34. 趙俊彥,2001,「以關聯式規則探勘為基礎建構關聯式索引典用於互動式查詢擴展」,碩士論文(指導教授:李漢銘),國立台灣科技大學電子工程研究所。 35. 蔡澤銘,廖炳堯,喻瀚寬,2002,「下一波Web趨勢:語意網」,資訊與電腦,第8期,第82-88頁。 36. 鄭錫聰,2003,「服務接觸滿意度與購後行為關聯性之研究-以推廣教育為例」,碩士論文(指導教授:賴其勛、張景旭),大葉大學工業關係學系碩士班。 37. 謝君偉、江政欽、陳蘊彥,1999,「影像視訊資料庫檢索技術」,電腦與通訊,第76期,第40-47頁。 38. Agichtein, E., Lawrence, S. and Gravano, L., 2001, “Learning search engine specific query transformations for question answering,” Proceedings of the 10th World Wide Web Conference, pp. 169-178. 39. Ando, K., Yamasaki, T., Shishibori, M., and Aoe, J., 2001, “Automatic text summarization based on keyword derivation,” IEEE International Conference on Systems,Man,and Cybernetics, Vol. 1, pp. 464-469. 40. Aoe, J.-I., 1989, “An efficient implementation of static string pattern matching machines,”, IEEE Transactions on Software Engineering, Vol. 15, pp. 1010-1016. 41. Atlam, E.-S., Fuketa, M., Morita, K and Aoe, J.-I., 2000, “Similarity measurement using term negative weight and its application to word similarity,” Information Processing and Management, Vol. 36, No. 5, pp. 717-736. 42. Beaulieu, M. and Jones, S., 1998, “Interactive searching and interface issues in the Okapi best match probabilistic retrieval system,” Processing of the International Conference on Interacting with Computers, Vol. 10, pp. 237-248. 43. Boger, Z., Kuflik, T., Shoval, P. and Shapira, B., 2001, “Automatic keyword identification by artificial neural networks compared to manual identification by users of filtering systems,” Information Processing and Management, Vol. 37, pp. 187-198. 44. Brown, P.-F., 1992, “Class-based n-gram models of natural language,” Computational Linguistics , Vol. 18, No 4., pp. 467-479. 45. Chen, S.-F. and Goodman, J., 1999, “An empirical study of smoothing techniques for language modeling,” Computer Speech and Language , Vol.13, pp. 359-394. 46. Chien, L.-F., 1995, “Fast and quasi-natural language search for gigabytes of Chinese texts,” Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.112-120. 47. Chien., L.-F., 1997, “PAT-tree-based keyword extraction for Chinese information retrieval,” ACM SIGIR Forum, Vol. 31, pp. 50-58. 48. Church, K.-W. and Hanks, P., 1990, “Word association norms, mutual information and lexicography,” Computational Linguistics, Vol. 16, No. 1, pp. 22-29. 49. Cuadra, C.-A., and Katter, R.V., 1967 “Experimental studies of relevance judgment,” Systems Development Corporation, Vol. 3, pp. 34-41. 50. Dagan, I., Marcus, S., and Markovitch, S., 1995, “Contextual word similarity and estimation from sparse data,” Computer Speech and Language, Vol. 9, pp. 123-152. 51. Frakes, W.-B., and Ricardo, B.-Y., 1992, “Information Retrieval data structures and algorithms,” Prentice Hall, pp.44-65. 52. Goldstain, J., kantrowitz, M., Mittal, V. and Carbonell, J. 1999, “Summarizing text documents: sentence selection and evaluation metrics,” The 22nd annual international ACM SIGIR conference on Research and development in information retrieval, pp. 121-128. 53. Han, J.-J., Choi, J.-H., Park, J.-J., Yang, J.-D. and Lee, J.-K., 1998, “An object-based information retrieval model: toward the structural construction of thesauri,” IEEE International Forum on Research and Technology Advances in Digital Librarys, pp. 117-125. 54. Horng, J.-T. and Yeh, C.-C., 2000, “Applying genetic algorithms to query optimization in document retrieval,” Information Processing and Management, Vol. 36, pp. 737-759. 55. Ikeji, A.-C., and Fotouhi, F., 1999, “An adaptive real-time web search engine,” Proceedings of the Second International Workshop on Web Information and Data Management, pp.12-16. 56. Iyer, R. and Ostendorf, M., 1999, “Relevance weighting for combining multi-domain data for n-gram language modeling,” Computer Speech and Language, Vol.13, pp. 267-282. 57. Jain, R., 1999, “A new multimedia technology today-a standards challenge for the future,” IEEE International Conference on Multimedia Computing and Systems, Vol.1, pp.128-130. 58. Krulwich, B., 1995, “Learning document category descriptions through the extraction of semantically significant phrases,” The IJCAI Workshop on Data Engineering for Inductive Learning, pp. 1-10. 59. Kuo, S.-S. and Agazzi, O.-E., 1994, “Automatic keyword recognition using hidden Markov models,” Journal of Visual Communication and Image Representation, Vol. 5, pp. 265-272. 60. Kupiec, J., Pedersen, J., and Chen, F., 1995, “A Trainable Document,” Proceedings of the 18th annual international ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 68-73. 61. Lagus, K., and Kaski, S., 1999, “WEBSOM–self organizing maps of document collections,”, ICANN 99. Ninth International Conference on Artificial Neural Networks, Vol. 1, pp. 371-376. 62. Lagus, K., Kaski, S., Honkela, T., and Kohonen, T., 1998, “WEBSOM–self organizing maps of document collections,”, Neurocomputing, Vol. 21, pp. 101-117. 63. Lin, C.-H. and Chen, H.-C., 1996, “An automatic indexing and neural network approach to concept retrieval and classification of multilingual (Chinese-English) documents,” IEEE Transactions on Systems, Man and Cybernetics, Part B, Vol. 26, No. 1, pp. 75-88. 64. Lin, S.-C., Chien, L.-F., Chen, K.-J., and Lee, L.-S., 1996, “An efficient voice retrieval system for very-large-vocabulary Chinese textual databases with a clustered language model,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 1, pp. 287-290. 65. Lin, Z., 1991, “CAT: an execution model for concurrent full text search,” Proceedings of the First International Conference on Parallel and Distributed Information Systems, pp.151-158. 66. Louise, T.-S., 1992, “Evaluation measures for interactive information retrieval,” Information Process and Management, Vol. 28, No. 4, pp. 503. 67. Lu, C., Lee, K.-H., and Chen, H.-Y., 1995, “TheSys-a comprehensive thesaurus system for intelligent document analysis and text retrieval,” IEEE International Conference on Document Analysis and Recognition, Vol. 2, pp. 1169-1173. 68. Manjunath, B.-S., and Ma, W.-Y., 1996, “Texture features for browsing and retrieval of image data,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, pp.837-842. 69. Miller, G.-A., 1995, “WordNet: a lexical database for English,” Communications of the ACM, Vol. 38, No. 11, pp. 39-41. 70. Moldovan, D. I. and Mihalcea, R., 2000, “Using WordNet and lexical operators to improve Internet searches,” IEEE Internet Computing, Vol. 4, No. 1, pp. 34-43. 71. National Library of Medicine, 2001, “UMLS knowledge sources,” National Library of Medicine, 12th Experimental Edition. 72. Parikh, J. and Narasimha, M.-M., 2002, “Adapting question answering techniques to the Web,” Proceedings of Conference on Language Engineering, pp. 163-171. 73. Peat, H. J and Willett, P., 1991, “The limitations of term co-occurrence data for query expansion in document retrieval systems,” Journal of the American Society for Information Science, Vol. 42, No. 5, pp. 379-380. 74. Ricardo, B.-Y. and Berthier, R.-N., 1999, “Modern information retrieval,” New York,Addison-Wesley. 75. Rijsbergen, C.-J., 1983, “Information retrieval: new directions: old solutions,” Proceedings of the 6th annual international ACM SIGIR conference on Research and Development in Information Retrieval, Vol. 264, pp. 264-265. 76. Roberston, S.-E., 1969, “The parametric description of retrieval tests,” Journal of Documents, Vol. 25, pp. 3. 77. Sanderson., M., 1998, “Accurate user directed summarization from existing tools,” Proceedings of the 7'th International Conference on Information and Knowledge Management. pp. 45-51. 78. Saracevic, T., 1970, “The concept of ‘Relevance’ in information science: a historical review,” Introduction to Information Science, pp. 114. 79. Shaw, W.-M., Burgin, R. and Howell, P., 1997, “Performance standards and evaluations in IR test collections: cluster-based retrieval models, ” Information Processing and Management, Vol. 33, pp. 1-14. 80. Sparck, J.-K., 1972, “A statistical interpretation of term specificity and its application in retrieval,” Journal of Documentation, Vol. 28, No. 1, pp. 11-21. 81. Sproat, R., Shih, C., Gale, W. and Chang, N., 1996, “A stochastic finite-state word-segmentation algorithm for Chinese,” Computational Linguistics, Vol. 22, No. 3, pp. 376-404. 82. Stricker, M., and Orengo, M., 1995, “Similarity of Color Image,” Proceedings IS&T/SPIE Conference on Storage and Retrieval for Image and Video Databases, pp. 381-392. 83. Su, W.-F., Li, S.-Z., Li, T.-Q. and You, W.-J., 2002, “Cross-language text filtering based on text concepts and kNN,” Computational Linguistics and Chinese Language Processing, Vol. 7, No. 1, pp. 79-90. 84. Surdeanu, M., Moldovan, D.-I., and Harabagin, S.-M., 2001, “Performance Analysis of a Distributed Question/Answering System,” Proceedings, 15th International Conference on Parallel and Distributed Processing Symposium, pp. 23-27. 85. Thomas, B., 1998, “URL diving,” IEEE Internet Computing, Vol. 2, pp.92-93. 86. Tseng, Y.-H., 2001, “Fast co-occurrence thesaurus construction for Chinese news,” IEEE International Conference on Systems , Man , and Cybernetics, Vol. 2, pp. 853-858. 87. Vickery, B.-C., 1958, “The structure of information retrieval system,” Proceeding of the International Conference on Scientific Information, pp.1275-1289. 88. Vickery, B.-C., 1958, “The structure of information retrieval system,” Proceeding of the International Conference on Scientific Information, pp.1275-1289. 89. Wakami, N., Mizutani, K., Kataoka, M. and Imanaka, T., 1997, “Fuzzy intelligent information processing in home appliances,” Proceedings, Ninth International Conference on Scientific and Statistical Database Management, pp. 12-21. 90. Wan, X., and Kuo, C.-C.-J., 1998, “A new approach to image retrieval with hierarchical color clustering,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 8, pp.628-643. 91. Wei, J., Bressen, S. and Ooi, B.-C., 2000, “Mining term association rules for automatic global query expansion: methodology and preliminary results,” Proceedings of the First International Conference on Web Information Systems Engineering, Vol. 1, pp. 366-373. 92. Zhou, G.-D. and Lua, K.-T., 1999, “Interpolation of n-gram and mutual-information based trigger pair language models for Mandarin speech recognition,” Computer Speech and Language, Vol. 13, pp. 125-141.id NH0925031039 sid 913843 cfn 0 / id NH0925031040 auc 甘一婷 tic 台灣地區20至40歲成人體型變化之研究 adc 王明揚 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 110 kwc 人體計測 kwc 成人體型 kwc 體型比較 kwc 人體尺寸變化趨勢 kwc 人體尺寸預測 kwc 線性迴歸分析 abc 台灣地區近三十年由於歷經快速的經濟成長,以及科技、醫學的進步等因素,使得生活條件改善,並造成國人的身高、體重有明顯的增加趨勢。身高、體重的改變可能影響人體各部位尺寸的改變,故本研究引用了自民國六十一年起至民國九十一年,國內的十二個人體計測資料庫,依量測年份排序,找出身高、體重及二十六個人體部位在此三十年間大致的變化趨勢,以及建立男、女性間的比較。 rf 中國農村復興聯合委員會,民國61年。中華民國台灣地區國民身高體重調查報告,中華民國民意測驗協會承辦。 王明揚、黃雪玲、王茂駿、游志雲、李永輝、何明泉,民國85年。勞工靜態與動態人體計測資料之量測 (Ⅱ),行政院勞工委員會勞工安全衛生研究所委託計畫,IOSH85-H121。 王茂駿、王明揚、林昱呈,民國91年。台灣地區人體計測資料庫手冊,新竹市,中華民國人因工程學會。 行政院體育委員會,民國90年。中華民國體育統計。 行政院體育委員會,民國91年。中華民國體育統計。 杜壯、李玉龍,民國73年。我國青年期人體計測調查研究,國科會專題研究計畫報告,計畫編號:NSC73-0415-E027-01。 杜壯,民國77年。台灣地區少年人體計測調查研究,技術學刊,第三卷,第二期,165-173。 邱魏津,民國73年。青年女子服裝標準尺寸規格及體型別之探討,國科會專題研究計畫報告,計畫編號:NSC73-0415-E020-01。 邱魏津,民國75年。國人女子體型及標準尺寸規格之探討,國科會專題研究計畫報告,計畫編號:NSC75-0415-E020-01。 林昱呈,1997。人體尺寸比例關係與預測模式之建立,碩士論文,國立清華大學工業工程系工業工程組。 教育部體育司,民國64、66-82年。台閩地區各級學校學生身高體重胸圍測量報告書。 陳順宇,1996。迴歸分析,台灣,華泰書局。 張一岑,1997。人因工程學,台北,揚智文化。 張正憲,1997。人體計測資料庫之可用性設計與評估,碩士論文,國立清華大學工業工程系工業工程組。 張永忠,1997。應用3D人體掃瞄資料於靜態人體尺寸的擷取方法,碩士論文,國立清華大學工業工程系工業工程組。 張媚,陳季員,陳彰惠,葉莉莉,劉向援,黃秀華,許瑛真,劉雅瑛,楊玉娥,周汎澔,邱秀渝,1997。人類發展之概念與實務,台北,華杏出版社。 陳芬苓,民國87年。台灣地區女子20-49歲人體計測調查之研究,中國紡織工業研究中心,服裝及服飾部。 經濟部工業局,民國84年。國人腳型量測與鞋楦設計,經濟部工業局八十四年度專案計畫執行成果報告。 黎正中、黃雪玲、王明揚,民國75年。國人靜態人體測量資料庫之建立,國科會專題研究計畫報告,計畫編號:NSC74-0415-E007-04。 鄭國彬,民國76年。台灣地區成年婦女及男士人體計測調查研究專案報告,七十六年度經濟部工業技術研究推展提高傳統性工業生產力報告書。 鄭國彬,民國77年。『台灣地區6-17歲人體計測調查研究』,七十七年度經濟部工業技術研究推展提高傳統性工業生產力報告書。 鄭國彬,民國78年。『台灣地區35-51歲人體計測調查研究』,七十八年度經濟部工業技術研究推展提高傳統性工業技術與管理報告書。 Abdi, O., Iscan, Y., M., Inci, O., Harun, T., Sermet, K. (2003). Estimation of stature from body parts. Forensic Science International, 132, 40-45. Cole, T. J. (2003). The secular trend in human physical growth: a biological view. Economics and Human Biology, 161-168. Kroemer, K. H. E. (1989). Engineering anthropometry. Ergonomics, 32, 767-784. Mall, G., Hubig, M., Buttner, A., Kuznik, J., Penning, R., Graw, M. (2001). Sex determination and estimation of stature from the longbones of the arm. Forensic Science International, 117, 23-30. Ray, G.G., Ghosh, S., & Atreya, V. (1995). An anthropometric survey of Indian schoolchildren aged 3-5 years. Applied Ergonomics, 26, No. 1, 67-72. Shan, G., Bohn, C. (2003). Anthropometrical data and coefficients of regression related to gender and race. Applied Ergonomics, 34, 327-337. Wang, E.M., Wang, M.J., Yeh, W.Y., Shih, Y.C. (1996). Toward an Ergonomic Work Environment: Anthropometry Survey for Taiwan Workers. Proceedings of the 4th Pan Pacific Conference on Occupational Ergonomics. 131-134.id NH0925031040 sid 913846 cfn 0 / id NH0925031041 auc 黃佳新 tic 關鍵字擷取與文件分類之因子分析 adc 侯建良 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 121 kwc 文件分類 kwc 關鍵字擷取 kwc 知識管理 kwc 資訊擷取 abc 由於資訊技術之普遍運用,各企業與機構之電子化文件不斷快速累積,如何利用自動化技術快速、有效地協助人工進行文件分類,以應付大量暴增之分類需求,實為現今資訊服務與知識管理之重要課題。目前文件自動分類大多採取文件關鍵字作為分類依據,過去針對關鍵字擷取相關研究大多探討關鍵字擷取方法之改善,然甚少針對關鍵字特性進行分析研究。有鑑於此,本研究針對關鍵字於文件中之發生頻率、位置等特性進行探索,期能將分析結果應用於自動化關鍵字擷取,並使擷取之文件關鍵字更具代表性與合理性;另一方面,若單純利用關鍵字資訊進行文件自動分類,可能因文件內容缺漏而導致分類結果錯誤。因此,本研究以文件內容結構與內容提供者為作為文件分類依據,發展自動化文件分類分類演算法,期使文件分類結果更具合理性。除方法論與模式之發展外,本研究並實際開發一雛形系統且利用此系統進行案例驗證,以確認方法論與技術之可行性。本研究除了以漢學研究論文為基礎,分析關鍵詞彙發生頻率、位置與詞彙詞性等因子,歸納關鍵字之特性外,另以文件結構資訊(如內容字節與符號)作為分類指標,並運用新聞文件集進行文件分類雛形系統之案例驗證,以確認此研究之實用價值。整體而言,本研究所提出之關鍵字擷取特徵與文件自動分類因子分析,將有利企業達成自動化知識管理之目標。 tc 目錄 摘要 I ABSTRACT II 目錄 III 圖目錄 V 表目錄 VIII 第一章、研究背景 1 1.1研究動機與目的 1 1.2研究方法與步驟 3 1.3研究定位 5 第二章、文獻回顧 8 2.1文件關鍵字 8 2.1.1關鍵字特性 8 2.1.2關鍵字擷取方法 9 2.1.3關鍵字應用於文件分類 13 2.1.4關鍵字應用於文件搜尋 13 2.2文件標題 15 2.3文件結構 17 第三章、關鍵字擷取因子分析 21 3.1頻率因子 21 3.2 詞性因子 36 第四章、新聞分類特徵分析 40 4.1參數符號說明 40 4.2提供者指標 42 4.3字節指標 46 4.4符號指標 49 第五章、系統架構與規劃 52 5.1系統功能架構 52 5.2系統操作架構 53 5.3資料模式定義 54 5.4系統流程 56 5.4.1系統操作流程 56 5.4.2系統資料流程 58 5.5系統開發工具 60 第六章、系統實作與案例分析 62 6.1系統功能操作 62 6.1.1一般使用者功能 62 6.1.2新聞提供者功能 68 6.1.3系統管理者功能 88 6.2系統分析與評估 94 第七章、結論與未來展望 98 參考文獻 101 附錄一、關鍵詞解析 108 圖目錄 圖1.1、研究架構 6 圖1.2、研究定位 7 圖3.1、內容分析之十項研究步驟 21 圖3.2、關鍵字個數與所佔百分比VS.名次排序範圍 29 圖3.3、1∼10篇論文之段落與關鍵字濃度關係 32 圖3.4、11∼20篇論文之段落與關鍵字濃度關係 32 圖3.5、21∼30篇論文之段落與關鍵字濃度關係 33 圖4.1、新聞分類機制 40 圖4.2、利用提供者資訊推論所提供新聞類別之過程 42 圖4.3、提供者與所提供之新聞 43 圖5.1、文件文件類別推論架構 52 圖5.2、系統運作架構 54 圖5.3、資料模式關聯 55 圖5.4、文件分享功能使用流程 56 圖5.5、文件查詢功能使用流程 57 圖5.6、系統參數設定功能使用流程 58 圖5.7、系統資料流程 59 圖5.8、文件存入伺服器流程 59 圖6.1、一般使用者功能介面 62 圖6.2、日期查詢畫面 63 圖6.3、日期查詢結果 64 圖6.4、類別查詢結果 65 圖6.5、關鍵詞查詢結果 65 圖6.6、複合查詢畫面 66 圖6.7、複合查詢結果(CASE 1) 67 圖6.8、複合查詢結果(CASE 2) 67 圖6.9、全文檢索 68 圖6.10、新聞提供者登入畫面 69 圖6.11、新聞提供者可使用之功能架構 69 圖6.12、文件上傳畫面 70 圖6.13、顯示文件詳細資訊 71 圖6.14、全文檢索 72 圖6.15、全文檢索查詢結果 72 圖6.16、新聞下載 73 圖6.17、以表格方式顯示文件 74 圖6.18、線上閱覽新聞 74 圖6.19、下載新聞 75 圖6.20、條件值查詢 76 圖6.21、顯示新聞標題與摘要 76 圖6.22、查詢文件 77 圖6.23、選擇新類別 78 圖6.24、顯示文件名稱與變更之類別 78 圖6.25、文件關鍵字新增 79 圖6.26、文件關鍵字刪除 80 圖6.27、顯示已刪除之文件關鍵字 80 圖6.28、確認刪除文件 81 圖6.29、文件類別查詢 82 圖6.30、文件類別新增 83 圖6.31、顯示新增之文件類別資料 83 圖6.32、選定文件類別 84 圖6.33、輸入新類別名稱 84 圖6.34、顯示修改之類別資訊 85 圖6.35、刪除文件類別 85 圖6.36、輸入帳號密碼 86 圖6.37、顯示個人資料 87 圖6.38、修改個人資料 87 圖6.39、顯示修改個人資料之結果 88 圖6.40、新增會員資料 89 圖6.41、輸入查詢會員帳號 89 圖6.42、顯示所有會員 90 圖6.43、顯示會員詳細資料 90 圖6.44、選擇修改或刪除會員資料 91 圖6.45、修改會員資料 91 圖6.46、確認刪除會員資料 92 圖6.47、文件版本管理 93 圖6.48、系統門檻值維護 93 圖6.49、綜合性新聞分類架構 97 圖6.50、各分類指標之學習曲線 101rf 參考文獻 1. 王稔志,2000,「適應性的新聞分類系統」,碩士論文(指導教授:張俊盛),清華大學資訊工程學系。 2. 王靜翊,2000,「以XML技術所設計之合作式文件架構」,碩士論文(指導教授:周忠信),東海大學資訊工程學系。 3. 毛文芳,2001,「晚明『狂禪』探論」,漢學研究,第20 卷第2 期,頁171-200。 4. 朴宣泠,2002,「體制內抵抗:滿洲國統治之下的秘密反日活動」,漢學研究,第20 卷第1 期,頁369-397。 5. 吳信德,2002,「以相關性辭典建構為基礎---實現複合關鍵字之概念查詢擴張」,碩士論文(指導教授:姚修慎),元智大學資訊工程學系。 6. 吳智和,2002,「明人山水休閒生活」,漢學研究,第20 卷第1 期,頁 101-129。 7. 李金松,2002,「金批《水滸傳》的批評方法研究」,漢學研究,第20 卷第2 期,頁217-248。 8. 李明輝,2002,「劉蕺山對朱子理氣論的批判」,漢學研究,第20 卷第1 期,頁1-32。 9. 李祥賓,2001,「資料探勘技術運用於文件自動分群之研究」,碩士論文(指導教授:王朝煌),中央警察大學資訊管理學系。 10. 李紹群,1999,「以關鍵字相關性為基礎之超本文資訊檢索系統」,碩士論文(指導教授:賀嘉生),中原大學資訊工程學系。 11. 何冠彪,2002,「乾綱獨御、乾綱獨斷─康熙、雍正二帝君權思想的一個側面」,漢學研究,第20 卷第2 期,頁275-300。 12. 杜海倫,1998,「以標題進行新聞自動分類」,碩士論文(指導教授:張俊盛),清華大學資訊工程學系。 13. 林素英,2001,「先秦儒家的喪葬觀」,漢學研究,第19 卷第2 期,頁83-112。 14. 林嵩富,2002,「主題分類關鍵詞之動態更新模式研究」,碩士論文(指導教授:陳振東),大葉大學資訊管理學系。 15. 林頌華,1998,「新聞標題自動分類」,碩士論文(指導教授:張智星),清華大學資訊工程學系。 16. 林啟彥,2002,「嚴復與章士釗—有關盧梭《民約論》的一次思想論爭」,漢學研究,第20 卷第1 期,頁339-367。 17. 施政瑋,2002,「以階層式詞義網路為基礎的中文文件分析及其效能評估」,碩士論文(指導教授:呂芳懌),東海大學資訊工程學系。 18. 洪萬生,2002,「十八世紀東算與中算的一段對話:洪正夏vs. 何國柱」,漢學研究,第20 卷第2 期,頁57-80。 19. 洪森杰,1998,「類神經網路於文件結構分析之探討─以XML為例」,碩士論文(指導教授:王元凱)國防管理學院國防資訊學系。 20. 紀志昌,2002,「東晉居士謝敷考」,漢學研究,第20 卷第1 期,頁55-83。 21. 孫銘聰、侯建良,2002,「以推論法則為基之知識文件權限管理程序模式」,產業電子化運籌管理學術暨實務研討會,Paper ID:39。 22. 孫振凱,2001,「利用網頁建構知識分布圖」,碩士論文(指導教授:陳年興),中山大學資訊管理學系。 23. 孫豪聲,2002,「字彙自動整合方法及其應用之研究」,碩士論文(指導教授:蘇耀新),中國文化大學資訊管理學系。 24. 孫衛國,2002,「朝鮮《皇明遺民傳》的作者及其成書」,漢學研究,第20 卷第1 期,頁163-188。 25. 徐碧玉,2000,「利用熵作為網際網路文件搜尋之排名方法」,碩士論文(指導教授:賈坤芳),中興大學資訊科學系。 26. 徐雁平,2002,「近代中日學術交流考論—以胡適與青木正兒為中心」,漢學研究,第20 卷第2 期,頁81-107。 27. 郜積意,2002,「漢代隱逸與經學」,漢學研究,第20 卷第1 期,頁27-54。 28. 章秉純,2001,「以機器學習與文字探勘技術解整合文件分類問題」,碩士論文(指導教授:許清琦)臺灣大學資訊工程學系。 29. 許暉煌,1999,「應用資料探勘技巧於多媒體文件分類法則之研究」,碩士論文(指導教授:鄭錫齊),銘傳大學資訊管理學系。 30. 許琇娟,2000,「以漸進式標籤區域分析為基礎之網頁分類器」,碩士論文(指導教授:林丕靜)淡江大學資訊工程學系。 31. 許雅芬,2001,「新聞文件自動分類之研究」,碩士論文(指導教授:柯淑津),東吳大學資訊科學系。 32. 陳孟君,1998,「 WWW上智慧型圖文檢索代理器建構之研究」,碩士論文(指導教授:陳鴻文),大葉大學資訊管理學系。 33. 陳俊啟,2002,「重估梁啟超小說觀及其在小說史上的意義」,漢學研究,第20 卷第1 期,頁309-338。 34. 陳萬成,2002,「滬藏〈觀音證驗賦〉殘卷考辨」,漢學研究,第20 卷第1 期,頁85-99。 35. 陳煜儒,2001,「利用資料探勘建構一個有彈性的網路搜尋系統」,碩士論文(指導教授:楊東麟),逢甲大學資訊工程學系。 36. 陳鼓應,2002,「《管子》〈形勢〉〈宙合〉〈樞言〉〈水地〉諸篇的黃老思想」,漢學研究,第20 卷第1 期,頁1-26。 37. 陳贇,2002,「王船山理氣之辨的哲學闡釋」,漢學研究,第20 卷第2 期,頁249-274。 38. 張素卿,2000,「從線上目錄主題檢索詞彙來探討主題編目工作-以私立東吳大學圖書館為例」,碩士論文(指導教授:陳和琴),淡江大學資訊與圖書館學系。 39. 張麗珠,2002,「紀昀反宋學的思想意義—以《四庫提要》與《閱微草堂筆記》為觀察線索」,漢學研究,第20 卷第1 期,頁253-276。 40. 曾元顯,1997,「關鍵詞自動擷取技術與相關回饋」,中國圖書館學會會報,第59期,頁59-64. 41. 曾元顯,2002,「文件主題自動分類成效因素探討」,中國圖書館學會會報, 第68期,頁62-83. 42. 曾耀順,2000,「在超連結環境下針對資訊分類相關權威網頁之探勘」,碩士論文(指導教授:何裕琨),成功大學電機工程學系。 43. 湯開建,2002,「明清之際澳門與中國內地天主教傳播之關係」,漢學研究,第20 卷第2 期,頁29-56。 44. 黃一農,2002,「 劉興治兄弟與明季東江海上防線的崩潰」,漢學研究,第20 卷第1 期,頁. 131-161。 45. 黃政偉,1998,「具語句特徵選取能力的類神經網路文件分類器」,碩士論文(指導教授:李漢銘),台灣科技大學電子工程學系。 46. 黃浩文,2000,「使用JSP技術設計電子商務應用系統」,機械工業出版社。 47. 黃寬重,2002,「賈涉事功述評─以南宋中期淮東防務為中心」,漢學研究,第20 卷第2 期,頁165-188。 48. 黃燕萍,1998,「中文社會新聞文件資訊擷取」,碩士論文(指導教授:許中川),雲林科技大學資訊管理學系。 49. 葉慶章,1998,「應用遺傳演算法於文件萃取之查詢」,碩士論文(指導教授:劉寶鈞),中央大學資訊工程學系。 50. 馮樹仁,2001,「以潛在語意分析法發展摘要寫作評量系統」,碩士論文(指導教授:陳世旺),臺灣師範大學資訊教育學系。 51. 彭國翔,2001,「王龍溪的《中鑒錄》及其思想史意義:有關明代儒學思想基調的轉換」,漢學研究,第19 卷第2 期,頁59-81。 52. 楊維中,2001,「論禪宗心性思想的發展」,漢學研究,第19 卷第2 期,頁141-169。 53. 楊翠華,2002,「胡適對臺灣科學發展的推動:『學術獨立』夢想的延續」,漢學研究,第20 卷第2 期,頁327-352。 54. 詹智凱,2000,「以詞的關聯性為基礎的文件自動分類」,碩士論文(指導教授:徐俊傑)台灣科技大學資訊管理學系。 55. 歐麗娟,2002,「林黛玉立體論—『變╱正』、『我╱群』的性格轉化」,漢學研究,第20 卷第1 期,頁221-252。 56. 鄭振偉,2001,「道家與原始思維」,漢學研究,第19 卷第2 期,頁113-140。 57. 蔡坤修,2002,「以動態式詞分群為基礎之文件分群研究」,碩士論文(指導教授:徐俊傑),台灣科技大學資訊管理學系。 58. 蔡純純,2002,「中文新聞文件空間資訊擷取之研究—以火災、搶劫、車禍事件為例」,碩士論文(指導教授:朱子豪),臺灣大學地理環境資源學系。 59. 鄧克銘,2001,「羅欽順『理氣為一物』說之理論效果」,漢學研究,第19 卷第2 期,頁33-57。 60. 鄧伊雯,2002,「以關鍵詞分割為基礎的文件分群與概念呈現」,碩士論文(指導教授:徐俊傑),台灣科技大學資訊管理學系。 61. 謝儒誠,2001,「資料探勘技術運用於文件自動分群之研究」,碩士論文(指導教授:王朝煌)中央警察大學資訊管理學系。 62. 顏健富,2002,「發現孩童與失去孩童─論魯迅對孩童屬性的建構」,漢學研究,第20 卷第2 期,頁301-325。 63. 羅志田,2002,「從清季的古學復興到民國的新潮」,漢學研究,第20 卷第1 期,頁277-307。 64. 蘇瑞隆,2002,「論劉宋諸王對鮑照樂府創作的影響—以七言體與絕句體為主的探討」,漢學研究,第20 卷第2 期,頁141-163。 65. Ando, K., Yamasaki, T., Shishibori, M. and Aoe, J., 2001, “Automatic text summarization based on keyword derivation,” IEEE International Conference on Systems, Man, and Cybernetics, Vol. 1, pp. 464-469. 66. Anthony, L., 2001, “Characteristic features of research article titles in computer science,” IEEE Transactions on Professional Communication, Vol. 44, pp. 187-194. 67. Atlam, E. S., Fuketa, M., Kashiji, S., Nakata, H. and Aoe, J., 2002, “A new method for construction filed association terms using co-occurrence words and declinable words information,” IEEE International Conference on Systems, Man and Cybernetics, Vol. 4, pp. 1217-1224. 68. Blake, C. and Pratt, W., 2001, “Better rules, fewer features: a semantic approach to selecting features from text,” Proceedings. IEEE International Conference on Data Mining, pp. 59-66. 69. Chang, C.-H. and Hsu, C.-C., 1997, “Customizable multi-engine search tool with clustering,” Computer Networks and ISDN Systems, Vol. 29, pp. 1217-1224. 70. Chang, H.-H., Ko, Y.-H. and Hsu, J.-P., 2000, “An event-driven and ontology-based approach for the delivery and information extraction of e-mails,” Proceedings. International Symposium on Multimedia Software Engineering, pp. 103-109. 71. Ebenhoch, M. P., 2001, “Legal knowledge representation using the resource description framework (RDF),” Proceedings. 12th International Workshop on Database and Expert Systems Applications, pp. 369-373. 72. Gokcay, D. and Gokcay, E., 1995, “Generating titles for paragraphs using statistically extracted keywords and phrases,” IEEE International Conference on Intelligent Systems for the 21st Century, Vol. 4, pp. 3174-3179. 73. Grootjen, E., 2000, “A semantical twist to syntactical navigation,” Proceedings. 11th International Workshop on Database and Expert Systems Applications, pp. 523-527. 74. Hua, Yang, Onda, N., Kashimura, M. and Ozawa, S., 1999, “Extraction of bibliography information based on image of book cover,” Proceedings. International Conference on Image Analysis and Processing, pp. 921-926. 75. Jo, T. C., 1999, “Text categorization with the concept of fuzzy set of informative keywords,” Proceedings. IEEE International Conference on Fuzzy Systems, Vol. 2, pp. 609-614. 76. Kise, K., Mizuno, H., Yamaguchi, M. and Matsumoto, K., 1999, “On the use of density distribution of keywords for automated generation of hypertext links from arbitrary parts of documents,” Proceedings of the Fifth International Conference on Document Analysis and Recognition, pp. 301-304. 77. Lee, H-M., Chen, C-M., and Tan C-C., 2001, “An intelligent web-page classifier with fair feature-subset selection,” IFSA World Congress and 20th NAFIPS International Conference, Vol. 1, pp. 395-400. 78. Lin, C-H. and Chen, H-C., 1996, “An automatic indexing and neural network approach to concept retrieval and classification of multilingual (Chinese-English) documents,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 26, pp.75-88. 79. Miyazaki, M, 1984, “Automatic segmentation method for compound word using semantic dependent relationships between words,” Journal of Information Processing Society of Japan (IPSJ), Vol. 25, pp. 970-979. 80. Najman, L., Gibot, O. and Berche, S., 2001, “Indexing technical drawings using title block structure recognition,” Proceedings. The Sixth International Conference on Document Analysis and Recognition, pp. 587-591. 81. Ricardo, B.-Y. and Berthier, R.-N., 1999, “Modern information retrieval,” New York, Addison-Wesley. 82. Runkler, T.-A. and Bezdek, J.-C., 2001, “Classification of internet newsgroup articles using RACE,” IFSA World Congress and 20th NAFIPS International Conference, Vol. 3, pp. 1437-1442. 83. Sadakane, K. and Imai, H., 1999, “Text retrieval by using k-word proximity search,” Proceedings. 1999 International Symposium on Database Applications in Non-Traditional Environments, pp. 183-188. 84. Smith, D., Harvey, R., Chan, Y. and Bangham, J. A., 1999, “Classifying Web pages by content,” IEE European Workshop on Distributed Imaging, pp. 8/1-8/7. 85. Summers, K., 1995, “Near-wordless document structure classification,” Proceedings of the Third International Conference on Document Analysis and Recognition, Vol. 1, pp. 462-465. 86. Taylor, S. L., Lipshutz, M. and Nilson, R. W., 1995, “Classification and functional decomposition of business documents,” Proceedings of the Third International Conference on Document Analysis and Recognition, Vol. 2, pp. 563-566. 87. Tseng, Y-H., 2001, “Fast co-occurrence thesaurus construction for Chinese news,” IEEE International Conference on Systems, Man, and Cybernetics, Vol. 2, pp. 853-858. 88. Watanabe, T., Luo, Q., Yoshida, T. and Inagaki, Y., 1991, “A stepwise recognition method of library cataloging cards on the basis of various kinds of knowledge,” Proceedings, The Tenth Annual International Phoenix Conference on Computers and Communications, pp. 821-827.id NH0925031041 sid 913849 cfn 0 / id NH0925031042 auc 陳建銘 tic 狹窄道路之行車輔助系統對駕駛者績效之影響 adc 黃雪玲 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 英文 pg 67 kwc 行車輔助系統 kwc 碰撞警示系統 kwc 漸進式警示系統 kwc 視覺輔助系統 kwc 虛擬實境 abc 行車輔助系統已成為當今確保駕駛者安全駕駛的一種輔助系統。然而,我們仍然須要了解駕駛者在使用這些輔助系統下,駕駛行為是如何被改變的、以及行車輔助系統是否存在導致駕駛安全性的降低的潛在問題。因此,本次研究主要致力於尋找較佳的狹窄道路輔助系統,來幫助缺乏經驗的駕駛者避免可能發生的汽車碰撞,並且降低駕駛者可能的肇事傾向。實驗採用虛擬實境的技術模擬真實的駕駛環境來測試比較不同組合的道路輔助系統之輔助效用。此外,我們也利用統計方法分析並解釋實驗的結果。 tc TABLE OF CONTENTS LIST OF FIGURES ………………………………………………………Ⅲ LIST OF TABLES ………………………………………………………Ⅳ 1.INTRODUCTION ………………………………………………………1 1.1Motivation ………………………………………………………1 1.2Research Purpose and Schema ………………………………………………………2 2.LETERATURE REVIEW ………………………………………………………4 2.1 The Major Cause of Driving Accidents and the Importance of AVCSS ………………………………………………………4 2.2 The Introduction of Advanced Driving Assistance System ………………………………………………………6 2.3 The Introduction of Advanced Driving Support Systems Sensors ………………………………………………………9 2.4 Collision Warning Modalities on Driver’s Performance ………………………………………………………13 2.4.1 Audio Warning Contents ………………………………………………………14 2.4.2 Visual Warning Contents ………………………………………………………15 2.4.3 Behavioral Implications and Design Ideas of Collision Warning Systems ………………………………………………………19 2.5 Driving Mode Analysis ………………………………………………………22 2.5.1 Vehicle-Related Driving Behaviors ………………………………………………………22 2.5.2 Driving Skills and Attitudes ………………………………………………………24 2.5.3 Control Input Stereotypes ………………………………………………………26 2.6 Virtual Reality ………………………………………………………28 3. PLAN OF TEST METHOD ………………………………………………………29 3.1 Methodology ………………………………………………………29 3.2 Test Environment ………………………………………………………30 3.3 Participants and Experiment Design ………………………………………………………33 3.4 Experiment Variables ………………………………………………………34 3.4.1 Independent Variables ………………………………………………………34 3.4.2 Dependent Variables ………………………………………………………40 3.5 Experiment Procedure ………………………………………………………40 4. THE RESULTS ………………………………………………………42 4.1 The Number of collisions ………………………………………………………42 4.2 Task Completion Time in the Portion of Trip Duration ………………………………………………………46 4.3 The Analysis of Subjective Questionnaire ………………………………………………………52 5. DISCUSSION AND CONCLUSION ………………………………………………………55 5.1 Graded Warning Modalities ………………………………………………………55 5.2 The Different View of Driving ………………………………………………………55 5.3 Driving Conditions ………………………………………………………56 5.4 Limitations ………………………………………………………57 5.5 Contribution ………………………………………………………57 5.6 Further Research Directions ………………………………………………………58 References ………………………………………………………59 APPENDIX A ………………………………………………………62 APPENDIX B ………………………………………………………66 LIST OF FIGURES Figure 1.1 Research Schema ………………………………………………………3 Figure 2-1 Main factors of traffic accidents ………………………………………………………4 Figure 2-2 Benz motor company exhibited their lateral control devices on the driving simulator in September 2002 ………………………………………………………8 Figure 2-3 Some examples of different driving views ………………………………………………………9 Figure 2-4 Sensor information processing ………………………………………………………11 Figure2-5 Object detection, object tracking and object classification on a sequence of 1000 frames under various lighting conditions, different relative velocities and a large range of distances ………………………………………………………11 Figure 2-6 The processing of the three dimensional image data ………………………………………………………12 Figure 2-7 An aerial photograph of part of the University of Central Florida’s campus where the system was tested ………………………………………………………14 Figure2-8 An aerial view of the construction site ………………………………………………………14 Figure 2-9 Rear-end collision warnings ………………………………………………………15 Figure 2-10 The selection of the information display (LCD) ………………………………………………………16 Figure 2-11 The principle of displaying the HUD image ………………………………………………………17 Figure 2-12 HUD messages and graphics ………………………………………………………17 Figure 2-13 HUD for digital speedometer ………………………………………………………17 Figure 2-14 Locations of HUD ………………………………………………………18 Figure 2-15 F1 racing cars equipped HUD for racing routes ………………………………………………………18 Figure 2-16 Driving assistance system ………………………………………………………19 Figure 2-17 Drivers’information processing ………………………………………………………23 Figure 3-1 The main experiment equipments ………………………………………………………30 Figure 3-2 Test environment and equipments layout ………………………………………………………32 Figure 3-3 Visual warnings: simple warning versus graded warnings ………………………………………………………35 Figure 3-4 The design of graded warning system ………………………………………………………36 Figure 3-5 Visual enhancement device ………………………………………………………36 Figure 3-6 Simple driving condition ………………………………………………………38 Figure 3-7 Complex driving condition ………………………………………………………39 Figure 4-1 the correlation between the number of hit and the task completion time in the portion of trip duration ………………………………………………………52 Figure 4-2 The subjective feeling of nervous level in the experiment ………………………………………………………53 Figure 4-3 The subjective feeling of fatigue level in the experiment ………………………………………………………53 Figure 4-4 The difficult level of driving task in the experiment ………………………………………………………53 Figure 4-5 The subjective feeling of the effectiveness of driving assistant among different experiment groups ………………………………………………………54 LIST OF TABLES Table 2.1 Causes of traffic accidents in Taiwan ………………………………………………………5 Table 2.2 Services of AVCSS in ITS ………………………………………………………6 Table 3-1 The scale comparison of real world and virtual world ………………………………………………………31 Table 3-2 Experiment layout ………………………………………………………33 Table 4-1 Descriptive statistic of the number of collisions in each driving condition ………………………………………………………43 Table 4-2 The ANOVA of the number of collisions ………………………………………………………43 Table 4-3 Estimated marginal means of the warning modality ………………………………………………………44 Table 4-4 The multiple comparisons of different combinations of driving assistants in simple driving condition ………………………………………………………45 Table 4-5 The multiple comparisons of different combinations of driving assistants in complex driving condition ………………………………………………………46 Table 4-6 Descriptive statistic of the task completion time in the portion of trip duration in each driving condition ………………………………………………………47 Table 4-7 The ANOVA of the task completion time in the portion of trip duration ………………………………………………………48 Table 4-8 Estimated marginal means of different driving conditions ………………………………………………………48 Table 4-9 The multiple comparisons of different combinations of driving assistants in simple driving condition ………………………………………………………50 Table 4-10 The multiple comparisons of different combinations of driving assistants in complex driving condition ………………………………………………………51 Table 4-11 The correlations between two dependent variables ………………………………………………………52rf 張紹卿 (Chang), 1999, 利用跟車駕駛模擬績效發展簡單型汽車駕駛模擬器驗證分析程序之研究,運輸計畫期刊,第28卷2期,民國88年6月,頁203~234. Bellotti, F., Gloria, A., 2000. STATE OF THE ART OF DRIVING SUPPORT SYSTEMS AND ON-VEHICLE MULTIMEDIA HMI, Communication Multimedia Unit Inside CAR IST 11595, http://www.comunicar-eu.org/ Breznitz, S., 1983. Cry-Wolf: The Psychology of False Alarms (Hillsdale: Lawrence Erlbaum). Christ, R., 1975. Review and analysis of color coding research for visual displays, Human Factors, 17, 542-570. Farber, E., Paley, M., 1993. Using freeway traffic data to estimate the effectiveness of rear end collision countermeasures. Paper presented at the Third Annual IVHS America Meeting, IVHS America, Washington, DC, April. Handmann, U., Kalinke, T., Tzomakas, C., Werner, M., Seelen, W.V., 2000. An image processing system for driver assistance, Image and Vision Computing, 18, 367-376. Hwang, C.H., 2002. Using a simple driving simulator to study the effect of warning system, The master thesis in industrial engineering and engineering management department (IEEM) National Tsing Hua University. Jennie P.P., Carolyn M.S., Gary A.M., Samuel D.M., 2001. A field evaluation of monitor placement effects in VDT users, Applied Ergonomics, 32, (4), 313-325 Jensen, C., Schultz, G., Bangerter, B., 1983. Applied kinesiology and bio-mechanics. New York: McGraw-Hill. Kelso, J., 1982. Human motor behavior: An introduction. Hillsdale, NJ: Lawrence Erlbaum Associates. Knipling, R.R., Mironer, M., Hendricks, D.L., Tijerina, L., Everson, J., Allen, J.C., Wilson, C., 1993. Assessment of IVHS countermeasures for collision avoidance: rear-end crashes, NTIS No. DOT-HS-807-995, National Highway and Traffic Safety Administration, Washington, DC. Nitin, G., Ann, M.B., and Tarunraj, S. 2002. The effect of adverse condition warning system characteristics on driver performance: an investigation of alarm signal type and threshold level, Behavior and Information Technology, 2002, 21, (4), 235-248 Oloufa, A., Radwan, E., 2000. Server-Based Collision Avoidance using DGPS, Center for Advanced Transportation Systems Simulation University of Central Florida. Parasuraman, P., Hancock, P.A., Olofinboba, O., 1997. Alarm Effectiveness in Driver- Centred Collision Warning Systems. Ergonomics, 40, (3), 390-399. Research Projects Institute of Transportation Ministry of Transportation and Communications, 2003. Application of Driving Simulation Systems to Intelligent Transportation Systems and Traffic Safety Studies-Framework Design and Demonstration), Institute of Transportation Ministry of Transportation and Communications, Project Number 91-SB02. Robert, G., 1999. Use of auditory icon as emergency warnings: evaluation within a vehicle collision avoidance application, Ergonomics, 42, (9), 1233-1248. Rumar, K., 1990. The Basic Driver Error: Late Detection. Ergonomics, 33, (10)-(11), 1281-1290. Sanders, M.S., McCormick E.J., 1992. Human Factors in engineering and design, seven edition, 7th Edition. Schmidt, R., 1982. More on motor programs and the schema concept. In J. Kelso (ed.), Human motor behavior: An introduction. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 188-235. Sorkin, R.D., 1988. Why are people turning off our alarms? Journal of the Acoustical Society of America, 84, 1107-1108. Steven, A., Quimby, A., Board, A., Kersloot, T., Burns, P., 2001. Design guidelines for safety of in-vehicle information systems. Transport Research Laboratory, PA3721. Summala, H., 1988. Zero-risk theory of driver behavior. Ergonomics, 31, 491-506. Toshihisa S., 2001. A study on human interface of narrow road driving assistance system based on driver’s information processing, School of Science for Open and Environmental Systems, Faculty of Science and Technology, Keio University. Wiener, E.L., 1988. Cockpit automation, in E. L. Wiener and D. C. Nagel (eds), Human Factors in Aviation (Academic Press, San Diego, CA), 433-461. Wilde, G.., 1982. The theory of risk-homeostasis: Implications for safety and health. Risk Analysis, 2, 209-255. Wilde, G., 1986. Notes on the interpretation of traffic accident data and of risk homeostasis theory: A reply to L. Evans. Risk Analysis, 6, 95-101. Yung, C.L., 2001. Comparative study of the effects of auditory, visual and multimodality displays on drivers’ performance in advanced traveler information systems, Ergonomics, 44, (4), 425-442.id NH0925031042 sid 913851 cfn 0 / id NH0925031043 auc 楊正鈺 tic 導引輔助電子地圖於虛擬實境之研究 adc 王明揚 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 71 kwc 導引 kwc 輔助工具 kwc 電子地圖 kwc 虛擬實境 abc 隨著科技的快速成長,虛擬實境的技術被大量運用在日常生活中。過去,研究改善虛擬實境的導引領域大致可分為兩部份:虛擬實境的設計與導引輔助工具的發展。最普及的導引輔助工具是電子地圖,常可在交通工具GPS、個人PDA或是旅遊資訊類上發現。 rf 參考文獻 林政宏 (民國85年),深入虛擬實境VR,?眳p資訊出版,台北市。 洪蘭 譯 (民國86年),心理學,遠流出版事業股份有限公司。 蕭秀玲、莊慧秋、黃漢耀 譯 (民國80年),心理學系列—環境心理學,台北市。 謝馥圭 (民國85年),PC虛擬實境,儒林圖書有限公司,台北市。 欒斌 (民國87年),網際網路虛擬實境之製作,松崗電腦圖書資料股份有限公司, 台北市。 Carles, M & Kent, B.著,葉庭芬 譯 (1981),人體,記憶與建築,尚林出版社,台北市。 Francis, M.著,Environmental Psychology,危芷芬 譯 (1995),五南圖書出版公司— 環境心理學,台北市。 Anandikar, S., beccue, B., & Vila, J. (2003). The Gender Factor in Virtual Reality Navigation and Wayfinding. Proceeding of IEEE System Sciences’03, 1-7. Aretz, J. A., & Wickens, D. C. (1992). The Mental Rotation of Map Displays. Human Performance, 303-328. Ballegooij, A., & Eliens, A. (2001). Navigation by Query in Virtual Worlds. ACM Press, 77-83. Baker, M. P. & Wicken, C. D. (1995). Human Factors in Virtual Environments for the Visual Analysis of Scientific Data. Battele/Pacific Northwest Laboratory, Richland, Washington. Burdea, G., & Coiffet, P. (1994). Virtual Reality Technology. John Wiley & Sons Ltd. Canada. Cevik, H., & Darken, R. P. (1999). Map Usage in Virtual Environments: Orientation Issues. Proceeding of IEEE Virtual Reality’99, 133-140. Chittaro, L., Ieronutti, L., & Ranon, R. (2004). Automatic derivation of Electronic Maps from X3D/VRML Worlds. ACM Press, 61-70. Chittaro, L., & Scagnetto, I. (2001). Is Semitransparency Useful For Navigating Virtual Environments? . VRST’01, ACM Press, 159-166. Conway, M. J., Pausch, R., & Stoakley, R. (1995). Virtual Reality on a WIM:Interactive Worlds in Miniature. Proceeding of CHI’95, ACM Press, 265-272. Darken, R. P., & Peterson, B. (2001). Spatial Orientation, Wayfinding, and Representation. Handbook of Virtual Environment Technology. Stanney , K. Ed. Califaornia, USA. Darken, R. P., & Sibert, J. L. (1993). A Toolset for Navigation in Virtual Environment. Proceeding of User Interface Software & Technology’93, ACM Press, 157-165. Darken, R. P., & Sibert, J. L. (1996). Navigating Large Virtual Spaces. The International Journal of Human-Computer Interaction, anuary-March, Volume 8, N. 1, 49-72. Darken, R. P., & Sibert, J. L. (1996). Wayfinding Strategies and Behaviors in Large Virtual Worlds. Proceeding of CHI’96, ACM Press, 13-18. Desney, S. T., Darren, G., Peter, G. & Scupelli, R. P. (2004). Physically Large Displays Improve Path Integration in 3D Virtual Navigation Tasks. Proceedinf of CHI’04, ACM Press, 24-29. Dijk, V., Akker, O. D., Nijholt, A., & Zwiers, J. (2003). Navigation Assistance in Virtual Worlds. Informing Science Journal, Volumn 6, 115-125. Elvins, T. T., Nadeau, D. R., & Kirsh, D. (1997). Worldlets-3D thumbnails for Wayfinding in virtual environments. Proceeding of User Interface Software and Technology Symposium, ACM Press. Haik, E., Barker, T., Sapsford, J., & Trainis, S. (2002). Investigation into Effective Navigation in Desktop Virtual Interfaces. ACM Press, 56-66. Harshada, P. & Sarah, N. (2003). Health and safety implications of virtual reality: a Review of empirical evidence. Applied Ergonomics. Volumn 33, 251-271. HO, A., & LI, Z. (2002). Design Dynamic Maps For Land Vehicle Navigation. IAPRS, Volume 34, Part 2, Commission 2, Xi’an. Hsu, S. W., & Li, T. Y. (2004). An Intelligent 3D User Interface Adapting to User Control Behaviors. Proceeding IUI’04, ACM Press, 184-190. Isaaces, P., Kent, J., Marrin, C, Mohageg, M., Mott, D., & Myers, R. (1996). A User Interface for Accessing 3D Content on the World Wide Web, Proceeding of CHI’96, ACM Press, 466-472. Kalawsky, R. S. (1993). The Science of Virtual Reality and Virtual Environment. Addison-Wesley Publishing Company. Wokingham, England. Laakso, K., Gjesdal, O., & Sulebak, J. R. (2003). Tourist information and navigation support by using 3D maps display on mobile devices.Mobile HCI’03, ACM Press. Loeffler, C. E., & Anderson, T. (1994). The Virtual Reality Casebook. VNR Computer Library. New York. Moore, K. (1997). Interactive Virtual Environments for Fieldwork. British Cartographic Society Annual Symposium’97. University of Leicester. Avaliable at http://geog.le.ac.uk/mek/. Ohmi, M. (1998). How egocentric and exocentric information are used to find a way in virtual environment. Proceeding of the Eighth International Conference on Artificial Reality and Tele-Existence, 196-201. Porathe, T., & Sivertun, A. (2002). Real-Time 3D Nautical Navigational Visualisation. Proceeding the NATO’s Research and Techology Organization’s Workshop. Massive Military Data Fusion and Visualization in Halden, Norway 10-13. Ruddle, R. A., Payne, S. J., & Jones, D. M. (1998). Navigating Large-Scale “Desk-top” Virtual Buildings:Effects of Orientation Aids and Familiarity. Presence: Teleoperators and Virtual Environments, Volume 7, N. 2, 179-192. Skelly, E. (2003). M68C S/Map & M68C IceMachine. Available at:http://www.lowrance.com, Loweance Electronics Inc. Tulsa, USA. Stephen, K. (1996). Cognition. The Brooks/Cole Publishing Company. USA. Stuart, R. (1996 ). The Design of Virtual Environments. The McGraw-Hill Companies. USA. Swan, J. E., Gabbard, J. I., Hix, D., Schulman, R. S., & Kim, K. P. (2003). A Comparative Study of User Performance in a Map-Based Virtual Environment. Proceeding of IEEE Virtual Reality’03, 259-266. Vinson, N. G. (1999). Design Guildlines for Landmarks to Support Navigation in Virtual Environments. Proceeding of CHI’99, ACM Press, 278-284. Wickens, C. D. (2002). Spatial Awareness Biases. Paper for NASA Ames Reasrch Center Moffett Field. 2D地圖, Available at: http://www.3dwebs.com/gardenva/tour.htm 3D地圖, Available at: http://www.greenwoodlake.org/MapHome.htm 附錄A 正式實驗中四個搜尋作業的安排順序 電子地圖 人員 經驗 無輔助 有順序 無順序 無提式 3D 1 專家 4 2 3 1 2 專家 1 3 2 4 3 專家 4 2 3 1 4 專家 4 3 2 1 5 專家 1 3 2 4 6 專家 1 3 2 4 7 專家 1 2 3 4 8 專家 4 2 3 1 3D 1 生手 1 3 2 4 2 生手 1 2 3 4 3 生手 4 2 3 1 4 生手 1 3 2 4 5 生手 4 2 3 1 6 生手 4 2 3 1 7 生手 1 3 2 4 8 生手 4 3 2 1 2D 1 專家 1 3 2 4 2 專家 4 2 3 1 3 專家 1 2 3 4 4 專家 1 3 2 4 5 專家 4 3 2 1 6 專家 4 3 2 1 7 專家 4 2 3 1 8 專家 1 2 3 4 2D 1 生手 4 2 3 1 2 生手 4 3 2 1 3 生手 1 2 3 4 4 生手 1 2 3 4 5 生手 1 3 2 4 6 生手 4 2 3 1 7 生手 1 3 2 4 8 生手 4 3 2 1 附錄B 主觀者評比問卷 大螢幕 找尋目標的策略 備註 使用時機 無輔助 大螢幕 電子地圖VS.大螢幕 找尋目標的策略 備註 時間分配比例與使用時機 有順序 電子 地圖 大螢幕 電子地圖VS.大螢幕 找尋目標的策略 備註 時間分配比例與使用時機 無順序 電子 地圖 大螢幕 電子地圖VS.大螢幕 找尋目標的策略 備註 時間分配比例與使用時機 無提示 電子 地圖 大螢幕 附錄C 主觀者評比問卷結果 專家 生手 使用電子地圖時機 相同 1. 確定自己的位置。 2. 確定自己與環境的相對位置。 3. 確定目標物的位置。 4. 決定前進的方向。 5. 決定搜尋路線。 相異 1. 做路徑的決策與確認會用到電子地圖。 2. 確認走過的區塊。 1. 行走過程中都注視電子地圖,依循所顯示的路徑行走。 2. 注視電子地圖較不容易找不到路。 使用大螢幕時機 相同 1. 確認目標物位置。 2. 搜尋過程。 相異 1. 行走的過程。 2. 注視大螢幕較不容易撞到障礙物。 3. 往顏色球前進。 1. 快接近顏色球標明的方位才會注意。 2. 撞到障礙物時。 搜尋目標物的策略 相同 1. 在交叉口環顧四周。 2. 一排一排的檢視。 相異 1. 繞外圍居多。 2. 若有顏色球顯示時,會先決定行走路線。 3. 猜測、推敲。 1. 邊走邊找,沒有特定行走路線。 2. 地毯式繞行。 3. 一排一排的走。 備註 地圖一直轉造成困擾。id NH0925031043 sid 913852 cfn 0 / id NH0925031044 auc 林春慶 tic 人力資源問題之個案研究-以半導體廠設備部門為例 adc 吳鑄陶 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 64 kwc 設備維護人員 kwc 工作生態 kwc 激勵 abc 今日企業處於一個高科技的時代,面對的是一個相互競爭的環境,半導體設備工程師為維護設備機器的長期運轉,日以繼夜、不眠不休的從事半導體維護工程及固定保養工作,設備工程師如此兢兢業業,默默付出,如何在晶園廠占有一席之地?本篇探討設備維護人員的工作生態與企業所處競爭環境轉變下,公司應使用何種因應策略,何種激勵方式,留住設備工程師,並且探討未來設備保養工作發展方向。 tc 目錄 第一章. 緒論 1.1.研究背景與動機 ..........................................1 1.2.研究範圍與目 .............................................4 1.3.論文架構 .................................................5 第二章. 文獻探討 2.1.影響高科技產業離職率因素 ................................................7 2.2.職位評價 .................................................10 2.3.辭職員工類型 .............................................10 2.4.員工三次離職高潮期 .......................................11 2.5.組織生命週期與人力資源管理關聯 .......................................11 2.6.企業活動委外 .............................................12 2.7.本章小結 ..........................................................................16 第三章. 個案背景敘述 3.1. 設備工作職掌定義 ............................................................19 3.2. 設備工作生態 ..................................................................21 3.3.設備工作情境轉變 ........................................ 30 第四章. 個案分析與應用 4.1. 內、外部環境因素 .........................................33 4.2 訪談 ...............................................................................34 4.3 工程師工作困難點分析 .......................................................36 第五章. 研究建議方案 5.1心理需求 .........................................................................39 5.2內部現行設備工作未來規劃 .................................................43 5.3主管給予之激勵 ................................................................47 第六章. 研究結論與未來發展方向 6.1高學歷政策 ................................................50 6.2相關產業是否面臨人力資源不足的問題 .......................51 6.3配套措施 ..................................................51 參考文獻 ....................................................................52 中文部分 .................................................................................52 英文部分 .................................................................................53 附錄............................................................................55 圖表目錄 第一章. 緒論 表 1.1. 全球專業晶圓代工銷售排名 .............................2 圖 1.1. 半導體產業與光電產業就業員工成長趨勢 .................3 圖 1.2. 本研究流程圖 ..........................................5 第二章. 文獻探討 表2.1. 工作滿意相關理論 ......................................9 圖 2.1. 競爭優勢與委外風險......................................................14 第三章. 個案背景敘述 表 3.1 現行設備工程師工作職掌 ................................................20 第四章. 個案分析與應用 圖 4.1. 設備工程師工作困難點分析 ............................................38 第五章. 研究建議方案 圖 5.1. 設備工作分析與人力計劃 ...............................................41 圖 5.2. 設備工程師工作分析與改善 ............................................44 表5.1工程師未來職務考量建議 .................................45 表5.2助理工程師未來職務考量建議 .............................46 表5.3助理工程師正面及負面影響分析 ...........................46 附錄 附錄 A. 設備間接人員職等定義與條件 ........................55 附錄 B. 設備工程師工作訪談結果整理 ........................57 附錄 C. 設備工程師工作分析與問題反映問卷 ..................59 附錄 D. 設備工程師工作分析與問題反映問卷結果資料分析(1) ...61 附錄 E. 設備工程師工作分析與問題反映問卷結果資料分析(2) ...64rf 中文部分 1. 行政院國家科學委員會科學技術資料中心, 2004. 2. 行政院勞工委員會職業訓練局, 2003. 3. 司徒達賢, 策略管理, 遠流出版社, 台北 , 民國 84年。 4. 周旭華譯, Porter M.E. 著, 競爭策略, 天下文化, 台北, 民國 89 年 11月。 5. 魏正德, 組織生命週期與人力資源管理型態知關聯性研究, 國立海洋大學航運管理學系碩士論文, 民國 87年。 6. 方妙玲, 組織生命週期與策略性人力資源管理, 人力資源發展月刊, 民國 86年8月, pp. 1-6。 7. 陳宗宏, 組織特徵與薪資策略對員工離職率之影響-以新竹科學園區半導體產業為研究對象, 國立中央大學人力資源管理研究所碩士論文, 民國 90年。 8. 賴以倫, 高科技廠商薪資策略與離職率關係之探討, 國立中央大學人力資源管理研究所碩士論文, 民國 91年。 9. 張耀輝, 國內積體電路產業人員離職現象之調查分析:以新竹科學園區某公司為例, 中華大學/工業工程與管理研究所碩士論文, 民國 89年。 10. 陳盈成, 分紅入股滿意度、工作投入、工作滿意度、工作壓力與離職傾向之相關研究, 國立交通大學/經營管理研究所碩士論文, 民國 89年。 11. 怎樣讓最優秀的員工為你工作 JOB 88咨訊2004年6月24日 12. 職位評價暨薪資管理實務戰鬥營 鼎新知識學院 吳萬吉顧問 13. 人力資源管理專欄刊載資料(14) 人力資源管理專欄刊載資料(14) 作者:丁志達 14. e 世代組織的改變與創新e HR 第六章 吳正興 15. 組織與人力資源 e HR第五期 第五章 李長貴教授 英文部分 1. Allen, S. and Chandrashekar, A (1997), Outsourcing Services: The contract is just the begging, Business Horizons, March-April, 2000. 2. Dess, G.G., Rasheed, A, McLaughlin, K., and Priem, R. (1995), The new corporate architecture, Academy of Management Executive, Vol. 9, No.3, pp. 7-20. 3. Gilley, K.M., and Rasheed, A., (2000), Making More by Doing Less: An Analysis of Outsourcing and its Effect on Firm Performance, Journal of Management, Vol. 26, No.4, pp. 763-790. 4. Gugler, P. (1992), Building transactional alliance to create competitive advantage, Long Range Planning, Vol. 25, No. 1, pp.1-9. 5. Henderson, K. (2000), Five levels of outsourcing operations and maintenance in the pulp and paper industry, Pulp and Paper Industry Technical Conference, 2000, pp. 9-17. 6. Hunt, B. (2000), Outsourcing to Outmanoeuvre: Outsourcing Re-defines Competitive Strategy and Structure, European Management Journal, Vol. 18, No.3, pp. 285-295. 7. Kotabe, M., (1992), Global sourcing strategy: R&D, manufacturing, and marketing interfaces. New York: Quorum. 8. Lei, D. and Hitt, M. (1995), Startegic restructuring and outsourcing: The effect of mergers and acquisitions and LBOs on building firm skills and capabilities, Journal of Management, Vol. 21, No. 5, pp. 835-859. 9. Levery, M., (1998), Outsourcing maintenance-a question of strategy, Eginerring Management Journal, Vol. 8, Issue 1, pp.34-40. 10. Momme, J. (2002, Framework for outsourcing manufacturing: strategic and operational implications, Computers in Industry, Vol. 49, pp. 59-75. 11. Nellore, R. and Soderquist, K., (2000), Strategc outsourcing through specifications, The International Journal of Management Science, Vol. 28, pp. 525-540. 12. Quinn, J.B., and Hilmer F.G., (1994), Startegic Outsourcing, Sloan Management Review, Vol. 35, No.4, pp. 43-55. 13. Quinn, J.B. (1999), Startegic Outsourcing: Leverage Knowledge Capabilities, Soan Management Review, Vol. 40, No.4, pp. 9-21. 14. Richardson, J., (1993), Parallel sourcing and supplier performance in the Japanese automobile industry, Strategic management Journal, Vol. 14, No.3, pp. 39-50. 15. Venkatesan R. (1992), Startegic sourcing: to make or not to make, Harvard Business Reviewich, Nov-Dec, 1992, pp. 98-108.id NH0925031044 sid 913861 cfn 0 / id NH0925031045 auc 喬鴻培 tic 設備代理商原廠技術移轉之研究-以TFT-LCD產業為例 adc 吳鑄陶教授 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 132 kwc 技術 kwc 技術移轉 kwc 技術移轉模式 kwc 技術移轉績效 kwc 組織行為 kwc 代理商 kwc 原廠 kwc 通路權力 kwc TFT-LCD關鍵零組件 kwc 產業分析 kwc 五力分析 kwc 國家競爭優勢 kwc TFT-LCD三大製程 kwc 文化差異 kwc 溝通策略 kwc 情境規劃 kwc 技術移轉契約 kwc 關鍵成功因素 abc 伴隨著市場需求的提昇與產業競爭擴張,產品推陳出新的速度已儼然成為企業優勝劣敗的關鍵要素。在精密及量產的基本條件下,設備選擇正確與否對製程品質與生產效能具有決定性的影響能力,使得設備評估成為製程規劃中重要的一環。 tc 目錄………………………………………………………………… i 圖目錄……………………………………………………………… iii 表目錄……………………………………………………………… iv 第一章 緒論 第一節 研究動機與目的………………………………………… 1 第二節 研究範圍與流程………………………………………… 2 第二章 文獻回顧 第一節 技術移轉模式…………………………………………… 4 (理論、定義、技術選擇、移轉流程與誘因) 第二節 技術移轉績效…………………………………………… 12 第三節 技術移轉之組織行為…………………………………… 13 第四節 國際貿易代理商功能、型態與通路權力關係………… 15 第三章 台灣TFT-LCD設備產業分析 第一節 台灣TFT-LCD產業發展概述……………………………. 17 第二節 台灣TFT-LCD產業特性暨關鍵零組件分析……………. 21 第三節 台灣TFT-LCD產業競爭力分析…………………………. 29 第四節 台灣TFT-LCD市場現況與趨勢…………………………. 41 第四章 設備代理技術移轉策略 第一節 TFT-LCD製造原理與製程技術…………………………. 49 第二節 設備代理原廠之開發與建立…………………………… 57 第三節 原廠技術移轉策略模式………………………………… 60 第四節 社會文化差異暨企業文化差異之跨國比較…………… 70 第五節 設備代理商溝通策略模式……………………………… 72 第六節 原廠轉換或終止代理之因應策略……………………… 80 第五章 個案模擬 第一節 情境規劃--移轉技術之選擇…………………………… 83 第二節 國際技術移轉流程……………………………………… 88 第三節 技術移轉績效評估……………………………………… 91 第四節 技術移轉定型化契約暨其他特別條款解析…………… 93 第五節 政府相關規定暨程序…………………………………… 108 第六節 關鍵成功因素綜論……………………………………… 108 第六章 結論與建議 第一節 結論……………………………………………………… 111 第二節 建議與後續研究………………………………………… 111 參考文獻……………………………………………………………. 112 附錄…………………………………………………………………. 118 1. 華僑及外國人投資申請流程圖………………………… 119 2. 華僑及外國人投資申請案件審理作業流程…………… 120 3. 對外投資及技術合作申請/核備案件審理作業流程…. 121 4. 外國人投資條例……………………………………….. 122 5. 華僑及外國人投資額審定辦法……………………….. 125 6. 國外投資或技術合作輔導及審核處理辦法…………… 127 7. 對外技術合作申請書…………………………………… 132rf 一、 中文文獻 1. 丁鏗升 (1999), 技術移轉模式、技術互動與移轉績效關係之研究-以半導體產業為例;長榮學報,長榮管理學院 2. 日本大和總研 (2001), 2003年全球經濟景氣預測 3. Philip Kolter (1996), 行銷管理學;方世榮譯,東華書局 4. 石豐銘 (2003), 技術移轉授權機制於科技工業機構之運作模式分析與探討;國立清華大學工業工程暨工程管理研究所未出版碩士論文;朱詣尹教授指導 5. 江炯聰-台灣大學工商管理學系教授 (1981), 「工業技術之創新、移轉與採用」;工業技術第八十六期 6. 牟利凡 (1990), 台灣電子產業進口代理商面臨原廠轉換之因應策略;私立元智大學管理研究所未出版碩士論文;許士軍教授指導 7. 余序江, 許志義, 陳澤義 (1998), 科技管理導論:科技預測與規劃;台北:五南出版社 8. 吳翔 (2002/12), 全球TFT-LCD產業的趨勢與展望;MIC 9. 林宏六-亞太智財科技服務股份有限公司(ATIPS)總經理、郭雪芳-智財部經理 (1999/06), 專利授權暨技術移轉合約 10. 林明杰 (1992), 技術能力與技術引進績效相關之研究;國立政治大學企業管理研究所博士論文 11. 林麗雪-明新技術學院企業管理系副教授 (2001/03), 「台灣液晶顯示器產業發展之初探」;產業金融季刊第一一○期 12. 陳忠仁, 社會文化差異、組織文化差異及其對技術移轉影響之研究;國立成功大學企業管理系所;管理研究學報 13. 陳泳丞 (2003/1), 「台日TFT廠結盟禦韓創雙贏」;工商時報 14. 陳慧玲 (1985), 技術移轉之研究;國立台灣大學法律學研究所未出版碩士論文;徐小波教授指導 15. 楊千/李能松/吳佳純(2004), 台灣TFT-LCD監視器產業之競爭優勢分析 16. 楊維廉-方法部經理 (2000,3), 「淺談製程授權與技術移轉」;中鼎月刊248 17. 廖洲棚、詹中原 (1999), 「團隊型組織之溝通訊息傳遞-符號與資訊科技互動(上)」;人力發展月刊,第60期 18. 蔡忠育 (1995), 「技術接受者涉入與技術移轉績效之關係」;中華民國科技管理研討會 19. 劉平文 (1991), 經營分析與企業診斷;華泰書局 20. 簡志宏 (1990), 技術移轉策略與原有技術配合對技術移轉績效之影響;私立中原大學企業管理研究所未出版碩士論文;謝龍發教授指導 21. 鍾金全 (2000), 台灣監視器產業競爭優勢研究;台北科技大學生產系統工程與管理研究所未出版碩士論文 22. 謝文凱 (1993), 技術移轉過程互動程度與技術移轉績效關係之研究—以共同研發聯盟為例;私立中原大學企業管理研究所未出版碩士論文 23. 謝孟玹 (2003/5), 「LCD控制IC市場動態走向分析」;工研院經資中心 24. 魏啟林 (1993), 策略行銷 25. Edward Wang (2002/5), 「市場及技術分析」;LCD Display產業 26. Henry Shieh (2003/4), 「LCD顯示器市場發展預測」;拓璞產業研究所 二、 國外文獻 1. Ansoff, HI, Stewart, JM (1967), "Strategies for a Technology-Based Business," Harvard Business Review, Vol. 45, No. 6; pp. 71 - 83 2. Baranson J. (1970), "Technology Transfer through International Firms," American Economic Review, Vol. 60, pp. 435 - 440 3. Bieber (1969), "Planification des transports et analyse des systèmes," Analyse et Prévision VIII; pp. 597 - 616 4. Bitondo, Domenic, and Frohman, Alan (1981), "Linking Technological and Business Planning," November, Vol. 24, No. 6; pp. 19 - 23 5. Course Material from Franklin Pierce Law Center--Licensing Intellectual Property / Technology Transfer & Intellectual Property Management 6. Djeflat, A. (1988), "The management of technology transfer:views and experiences of developing countries," International Journal of Technology Management, Vol. 3, No1/2, pp. 149 - 165 7. Edward P. White (1990), Licensing -A strategy for Profits, Kew Licensing Press 8. Farace, RV, Monge PR and Russell HM (1977), Communicating and Organizing, Menlo Park, CA: Addison-Wesley 9. Frazier and John O. Summers (1984), "Interfirm Influence Strategies and Their Application within Distribution Channels," Journal of Marketing, 48 (Summer), pp. 43 - 55 10. Gary L. Frazier and Jagdish N. Sheth (1985), "An AttitudeBehavior Framework for Distribution Channel Management," Journal of Marketing, 49 (Summer), pp. 38 - 48 11. Geneva (October 4 to 15 1993), The Role of Intellectual Property Rights in the Licensing, Acquisition and Transfer of Technology, WIPO academy English Session 12. Godet M., Roubelat F. (1996), "Creating the future : the use and misuse of scenarios," Long Range Planning, Avril, Vol. 29, No. 2 13. Harry R. Mayers、Brian G. Brunsvold, Drafting Patent Licensing Agreements, (Third Edition) The Bureau of National Affairs, Inc., Washington, D.C.(BNA books) 14. Hofstede, G. (1980), "Motivation, Leadership, and Organization:Do American Theories Apply Abroad?," Organizational Dynamics, P 42-63 15. Jarillo, J. C. (1993), Strategic Networks:Creating the Borderless Organization, Butterworth-Heinemann, Oxford. 16. Kojima, K. (1977), "Transfer of Technology to Developing Countries:Japanese Type Versus American Type," Hitotsubashi Journal of Economics, pp.103-116 17. L. S. Chang (March 24-25, 1995), High-Tech Strategic Relationships;Conference on Intellectual Property Rights Issues for Industrial Development into the next Century, Taipei, Taiwan, ROC 18. Lee, J., Bae, Z. T. and Choi, D. K. (1988), "Technology Development Process:A Model for a Developing Country with a Global Perspective," Rand D Management, 18(3), pp.235-250 19. Lewis C. Lee, U.S. Patent Licensing Practice;Case study material prepared by Center For advance study and research on Intellectual Property 20. Louis, L.W. Stern, Adel El-Ansary & Anne Coughlan (1996), Marketing Channels, Upper Saddle River, NJ: Prentice Hall International 21. Louis W. Stern, Adel I. El-Ansary, James R. Brown (1989), Management in Marketing Channels, Prentice Hall 22. Madeuf B. (1984), International Technology Transfers and International Technology Payments:Definitions, Measurement and Firms’ Behaviour, Research Policy 13 (3) 23. Maidique, M.A. and Patch, P. (1982), "Corporate Strategy and Technological Policy," in Readings in the Management of Innovation, M.L. Tushman and W.L. Moore, eds., Marchfield, MA: Pitman Publications, pp. 273 - 285 24. Mansfield, E. (1975), "International Technology Transfer:Forms," Journal of American Economic Association, 68(2) 25. Miles, Raymond E., and Snow, Charles C. (1978), Organizational Strategy, Structure and Process, Mcgraw-Hill 26. Mohr, Fisher J., R. ,and Nevin J. (1996), "Collaborative Communication in Interfirm Relationships: Moderating Effects of Integration and Control," Journal of Marketing, July, pp. 103 - 115 27. Porter Michael (1980), Competitive Strategy, Free Press 28. Porter Michael (1990), Competitive Advantage of Nations, Free Press 29. Wong, J. K. (1995), "Technology Transfer in Thailand:Descriptive Validation of a Technology Transfer Model," International Journal of Technology Management, 10(7/8), pp.788-796 30. Yu Xie (1996), A Demographic Approach to Studying the Process of Becoming a Scientist/Engineer, edited by National Research Council, Washington, D.C. National Academy Press. 31. Zahra, Shaker A., Rajendra S., Sisodia and Brett Matherne (1999), "Exploiting the Dynamic Links Between Competitive and Technology Strategies", European Management Journal, April, Vol. 17, No. 2; pp. 188 - 204 32. Zahra, Shaker A., Sisodia R., and Das S. (1994), "Technological Choices within Strategic Types:Toward a Conceptual Integration" International Journal of Technology Management 9, No. 2, pp. 172 - 195 三、 網路資源 1. http://www.topology.com.tw/TRI/default.asp(拓璞產業研究所) 2. http://member.digitimes.com(電子時報) 3. http://www.displaysearch.com.tw(全球FPD市場分析及諮詢的領導者) 4. http://ieknet.itri.org.tw(工研院經資中心) 5. http://www.moneydj.com/default.htm 6. http://hirecruit.nat.gov.tw/twview/index.htm(台灣面面觀) 7. http://investintaiwan.nat.gov.tw/moea-web/index-c.htm(中華民國招商網) 8. http://www.sid.org/ (Society for Information Display) 9. http://202.85.169.139/gate/big5/china.nikkeibp.co.jp/(日經BP網) 10. http://stanfordresources.isuppli.com/index.asp(isuppli / Stanford Resources) 11. http://www.tpvaoc.com/index.html(TPV/冠捷科技) 12. http://www.moeaic.gov.tw/(經濟部投資審議委員會)id NH0925031045 sid 913862 cfn 0 / id NH0925031046 auc 林恩鶴 tic 邏輯測試產業關鍵設備與部品供應商評估及管理 adc 吳鑄陶 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 66 kwc 邏輯測試 kwc 測試機 kwc 分類機 kwc 針測機 kwc 探針卡 kwc AHP kwc 層級分析法 kwc 供應商管理 abc 半導體測試業位居半導體供應鏈之下游,產業特性與其它半導體產業同為勞力,技術和資本密集之產業,在微利時代來臨和毛利逐年降低的嚴峻挑戰下,營運成本的控制成為產業競爭中成敗的關鍵因素,而邏輯測試業設備相關成本與支出佔邏輯測試產業經營成本70%以上,因此設備相關成本成為經營者必需努力控制的一項管理指標;設備相關成本來自折舊費用與維護費用,讓機台在最佳狀況產生最大的稼動是測試業者必需努力的方向。在技術密集的產業中,設備供應商的有效支援是絕對必要的,因此本研究針對邏輯測試產業之關鍵設備與部品供應商管理策略及評估方法進行研究,透過次級資料分析、產業資訊蒐集及個案公司訪談,產生供應商管理策略;本研究並運用AHP層級分析法,以系統化的方法快速產生供應商評比結果,經過實證研究證實本研究所建議之供應商管理策略及評比方法的確可行並能對邏輯測試業者產生實際價值。 tc 目錄 致謝 1 ABSTRACT 3 圖目錄 6 表目錄 7 第一章 緒論 9 1.1 研究動機 9 1.2 研究目的 10 第二章 文獻探討 11 2.1供應商績效評估準則評選 11 2.2績效評估準則量化方法 – 層級分析法 13 第三章、研究設計 16 3.1研究方法 16 3.2研究架構 17 3.3 研究範圍 18 3.4 層級分析法的運用 18 第四章 邏輯測試關鍵設備分析 22 4.1 產業供應鏈 22 4.2 晶圓針測流程 23 4.3 最終測試流程 25 4.4 測試產業關鍵設備/部品 28 4.4.1 測試機供應商現況 30 4.4.2 分類機供應商現況 34 4.4.3 晶圓針測機與其產業現況 36 4.4.4 探針卡及供應商現況 38 第五章 國內邏輯測試大廠之關鍵供應商管理及AHP運用 40 5.1 封測串連服務(TURN KEY SERVICE ) 41 5.2 客戶和供應商關係 42 5.3 層級分析法應用在 S公司的供應商管理 43 5.4 本研究建議S公司的供應商管理模式 49 5.5 效益評估及個案分析結論 52 第六章 結論與建議 55 參考文獻 57 附錄A 我國測試業現況(本研究整理) 58 附錄B 分類機技術發展現況(本研究整理) 62 附錄C 晶圓針測市場及技術發展現況(本研究整理) 64 附錄D 探針卡技術發展現況(本研究整理) 66 圖目錄 圖1.1 半導體產量需求趨勢(1998-2008) 9 圖1.2 半導體測試業成本結構 10 圖3.1 研究架構 17 圖4.1 半導體製造流程 22 圖4.2 晶圓針測流程 23 圖4.3 晶圓針測設備/部品組成 24 圖4.4 最終測試流程 25 圖4.5 最終測試設備/部品組成 26 圖 4.6 測試機 28 圓4.7 分類機 28 圖4.8 晶圓針測機 28 圖4.9 邏輯測試機供應商市場佔有率趨勢 31 圖4.10 測試產業關聯圖 32 圖4.11 邏輯測試機市場規模 33 圖4.12 分類機廠商營運關聯圖 34 圖4.13 全球晶圓針測機產值 37 圖4.14 探針卡與晶圓針測組件 39 圖 5.1 TURN KEY SERVICE FLOW 41 圖 5.2 個案公司之客戶與供應商運作 42 圖 5.3 個案公司之供應商管理運作模型 51 圖A.1 1999~2004年全球半導體檢測設備市場 59 圖A.2 1999及2003年半導體檢測設備各種類別市場佔有率 60 表目錄 表2.1 DICKSON〔1966〕提出選擇外包商的23 個指標 12 表 2.2 BARBAROSOGLU AND YAZGAC〔1997〕之主要評估指標 13 表2.3 陳怡和〔1998〕所分析出之關鍵性指標 13 表2.4 層級分析法之評比尺度 15 表3.1 國內測試產品分佈 18 表3.2 不同平均數之計算方法 20 表3.3 成偶比對矩陣 20 表4.1 測試廠製程別設備/部品一覽表 29 表4.2 設備/部品生產運作重要性分析 30 表4.3 測試機供應商領先廠商 31 表4.4 測試機供應商發展與測試廠對策 33 表4.5 分類機供應商 35 表4.6 分類機供應商發展與測試業者之對策 36 表4.7 晶圓針測供應商基本資料 37 表4.8 針測機發展及測試廠對策 38 表5.1 個案基本資料(2003) 40 表5.2 S公司主要設備供應商 43 表5.3 個案公司機台採購決策權與供應商評估結果 43 表5.4 評估準則產生 44 表5.5 測試機供應商評比因子 44 表5.6 第一/二層準則表 45 表5.7 測試機供應商評比準則成對比較結果 45 表5.8 測試機評估因子相對權重 46 表5.9 權重矩陣的優先向量 46 表5.10 供應商成對相比 ( 取得成本 ) 47 表5.11 供應商成對比較矩陣 47 表5.12 因子VS供應商之列向量 47 表5.13 測試機供應商總分 47 表5.14 晶圓針測機供應商總分 48 表5.15分類機供應商總分 48 表5.16 本研究建議S公司供應商管理準則 49 表5.17 S公司對探針卡供應商的管理指標 50 表5.18 效益評估 52 表5.19 供應商管理系統改變前後比較 53 表5.20 供應商評比系統改變前後比較 53 表6.1 研究推論與建議 55 表A.1 全球前十大專業測試服務廠商排名 58 表A.2 我國測試業歷年重要指標 60 表A.3 我國測試業業務分佈比例(依營業額) 61 表A.4 我國測試業客戶型態分佈 61 表B.1 分類機機械特性 62rf 1. 工研院電子所,2004,2003半導體工業年鑑 ,台北ITIS 2. 工研院電子所,2003 DEC,台灣封測業發展前景分析,台北ITIS 3. 陳怡和,民87,供應商管理標竿之建立與分析—以台灣筆記型電腦產業 4. 為例,元智大學工業工程研究所碩士論文 5. 陳怡均,2004/5,IDM廠出脫封測產能趨勢明顯,安可買IBM上海廠房及星國廠設備,經濟日報 6. 李純君,2004/5,晶圓針測訂單委外趨勢加溫,封測廠應接不暇,電子時報 7. 葉牧青,1989,「AHP 層級結構設定問題之探討」,國立交通大學管科所碩士論文。 8. 劉晟熙,民86,「外包成功關鍵因素之探討」,國立政治大學企管所碩士論文。 9. 鄧振源、曾國雄,民78,「層級分析法(AHP)的內涵特性與應用(上)(下)」, 10. Agilent Web site: WWW.Agilent.com 11. Teradyne Web site : WWW.Teradyne.com 12. NP test Web site : WWW.NP.com 13. Synax web site : www.synax.com 14. Seiko Epson web site : www.epson.com 15. Spirox web site : www.spirox.com.tw 16. Barbarosoglu, G.., Yazgac, T., (1997),“An Application of the Analytic 17. Hierarchy Process to the supplier Selection Problem ” , Productio n andInventory Management Journal, pp.14-21. 18. Houshyar, A., David, L., 1992, “A systematic Selection Procedure”, Computersand Industrial Engineering, Vol. 23, No. 1-4, pp.173-176. 19. Nydick,R.L. and Hill,R.P.,(1992),“Using the Analytic Hierarchy Process toStructure the Supplier Selection Procedrue” , Internation Journal of Purchasing and Materials Management,Vol.28,No.2,pp.31-36. 20. Narasimhan,R.,(1983), “An Analytical Approach to Supplier Selection”,Journal of Purchasing and Materials Management,Vol.19,No.4, 21. Thomas, L. Saaty(1980),”The Analytic Hierarchy Process”, Mc Graw-Hill, NewYork. 22. Wilson, E. J., “The Relative Importance of Suppliers Selection Criteria : A Review and Update,” International Journal of Purchasing and MaterialsManagement, Vol.30, No.3, pp.35-41, 1994.id NH0925031046 sid 913863 cfn 0 / id NH0925031047 auc 王忠誠 tic IC測試設備(分類機)開發評估-以成品系統層級測試自動化應用為例 adc 吳鑄陶 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 95 kwc 系統工程管理 kwc 可靠度評估 kwc 成品系統測試 abc 本文之研究目的在於探討IC封裝測試產業的測試流程中,檢視其測試設備與國內設備製造商共同開發的可行性。藉著系統工程管理的績效評估方式和技術策略的觀點,進一步探索其績效意涵。本研究以Blanchard 與 Fabrycky系統工程時間維之七階段(1)定義問題(2)系統規劃(3)系統研究(4)系統設計(5)生產製造(6)系統評估(7)系統使用與後勤支援,和Mosard的邏輯維七步驟的系統工程程序(1)定義問題(2)設定目標與發展評估指標(3)發展可行方案(4)建構可行性的模式(5)方案評估(6)選擇最佳方案(7)規劃改善行動,來評骨新設備開發績效。系統工程開發之可靠度評估,以DFX(Design for Reliability)的方法,對於設備開發的決策和設備研發的可靠度加以分析,在分析的過程中能予以確認,同時藉著技術策略觀點予以確認。本研究的結果顯示,對於成品系統測試的傳統手測方式,藉著上述方法,能成功地轉換成為自動化測試,獲得顯著的成效。在有形效益方面;降低生產成本從每顆新台幣5元降低至新台幣2.5元、降低測試板損壞率90%、提昇5%第一次測試良率、具備SPC功能針對第一次良率管制等,在無形效益方面;領先全球封測廠具備自動化測試、提昇競爭力和客戶滿意度。 tc 目錄 誌謝…………………………………………………………………………………..01 摘要…………………………………………………………………………………..02 Abstract…..…..………………………………………………………………………03 圖目錄………………………………………………………………………………..06 表目錄………………………………………………………………………………..08 第壹章 緒論…………………………………………………………………………09 1.1研究動機………………………………………...………………………….10 1.2研究目的…………………………………………………………………....10 第貳章 文獻探討……………………………………………………………………11 2.1統工程定義…………………………………………………………………11 2.2系統工程程序……………………………………………………...……….12 2.3系統設計……………………………………………………………………18 2.4初步設計階段………………………………………………………………18 2.5技術策略之定義……………………………………………………………20 2.6技術策略之構面……………………………………………………………21 第參章 研究設計……………………………………………………………………28 3.1研究方法……………………………………………………………………29 3.2研究架構……………………………………………………………………29 3.3研究範圍……………………………………………………………………29 第肆章IC封裝測試產業概況……………………………………………….……...30 4.1產業結構………………………………………………………….………...30 4.2台灣IC產業2003年產值分析……………………………………………30 4.3 IC產業優勢…………………………………………...……………………31 4.4 IC產業前景…………………………………...……………………………31 4.5測試產業特性………………………………………………………………32 4.6成功產品開發特徵…………………………………………………………33 4.7完善的開發程序……………………………………………………………33 4.8企業營運關係人分析………………………………………………………34 4.9 IC封裝技術演進………………………...…………………………………40 4.10封裝技術類別……………………………………………………………..41 4.11 IC分類…………………………………………………………………….43 4.12封測成本結構分析………………………………………………………..47 4.13封裝產品應用與技術發展………………………………………….…….48 4.14封測與半導體產業之關聯性……………………………………….…….49 4.15封測產業聯盟……………………………………………………………..50 4.16封裝測試流程圖…………………………………………………………..51 第伍章 個案分析………………………………………………..…………………..57 5.1個案公司簡介………………………………………………………………57 5.2個案公司願景………………………………………………………………57 5.3個案需求分析……………………………………………………………....58 5.4五力分析…………………………………………………………………....59 5.5競爭優勢分析……………………………………………………………....61 5.6新設備開發時程表…………………………………………………………63 5.7構想形成……………………………………………………………………63 5.8專案分析…………………………………………………………………....64 5.9系統評估架構……………………………………………………………....65 5.10透過不同層次的評估……………………………………………………....67 5.11影響技術獲取決策的重要因素……………………………………………68 5.12國內設備商提供解決方案…………………………………………………69 5.13平衡計分卡評估分析………………………………………………………70 5.14建立新設備開發之績效指標………………………………………………70 5.15案例之效益分析與檢討……………………………………………………89 第陸章 結論與建議…………………………………………………………………93 6.1 結論………………..……………………………………………………….93 6.2 建議……………………………..………………………………………….94 6.3 未來研究方向………………………………………...94 參考文獻…………………………………………………95 圖目錄 圖2-1 Hall’s three dimension………………………………………………………...13 圖2-2 Blanchard and Fabrycky 的時間為七階段…………………………………..13 圖2-3 Mosard的邏輯維七階段……………………………………..………………14 圖2-4系統需求定義流程…………………………………………………………...14 圖2-5 Reliability requirements in the System Life…………………………………..15 圖2-6失效模式效應分析流程圖……………………………………………………17 圖2-7系統流程圖……………………………………………………………………18 圖2-8系統工程展開圖……………………………………………………………...19 圖2-9細部設計流程圖………………………………………………………………20 圖3-1研究架構流程圖……………………………………………………………....29 圖4-1台灣半導體產業結構圖….…………………………………………………..30 圖4-2台灣IC產業產值分析圖.………………………………………………….…31 圖4-3 IC封裝技術演進……………………………………………………………...41 圖4-4 IC Assembly Technology Level...…………………………………………….42 圖4-5 Fine Pitch wire bonding..……………………………………………………...42 圖4-6 TAB Driver IC………………………………………………………………...43 圖4-7 晶片凸塊………………………..…………………………………………....43 圖4-8 IC產品分類圖…………………………………………………………….….45 圖4-9 Graphic Chipset Roadmap..…………………………………………………...47 圖4-10 封裝成本結構分析…………………………………………………………47 圖4-11 測試成本結構分析…………………………………………………………48 圖4-12半導體產業關聯圖………………………………………………………….50 圖4-13 柵陣列封裝測試製程………………………………………………………52 圖5-1成品系統層級人工測試………………………………………………………59 圖5-2 整合性工程管理系統程序…………………………………………………..59 圖5-3 Porter五力分析……………………………………………………………….61 圖5-4 競爭優勢分析圖……………………………………………………………..61 圖5-5 構想形成流程圖……………………………………………………………..64 圖5-6 新設備開發專案管理流程圖………………………………………………..65 圖5-7 系統評估架構圖……………………………………………………………..67 圖5-8 新產品開發決策圖…………………………………………………………..68 圖5-9 新設備開發程序圖…………………………………………………………..71 圖5-10新設備開發需求分析圖…………………………………………………….72 圖5-11新設備開發可靠度分析流程圖……………………………………………..77 圖5-12新設備導入持續改善計劃………………………………………………….78 圖5-13 成品系統層級測試分類機自動化概念……………………………………79 圖5-14 Reliability Analysis Method…………………………………………………81 圖5-15新設備開發前置時間評估…………………………………………………..83 圖5-16品質機能展開圖…………………………………………………………….84 圖5-17 SPC示意圖………………………………………………………………….90 表目錄 表1-1 全球委外封裝市場-營收分佈(2000~2007)…………………………………5 表1-2全球委外封裝市場-數量分佈(200~2007)……………………………………6 表2-1品質機能展開的階段步驟…………………………………………………..12 表2-2失效模式分析表……………………………………………………………..13 表4-1封裝技術演進歷程……………………………………………………………39 表4-2封裝產品與消費產品應用……………………………………………………47 表4-3封測廠與上游半導體之策略聯盟……………………………………………49 表5-1 Supplier’s Ranking ……………...……………………………………………56 表5-2設備開發時程表………………………………………………………………61 表5-3技術獲取方法及因素…………………………………………………………66 表5-4解決方案之優缺點比較表……………………………………………………67 表5-5新設備開發成本分析…………………………………………………………70 表5-6設備商開發能力評估比較表…………………………………………………71 表5-7細部技術開發日程表…………………………………………………………76 表5-8 Reliability Analysis Method…………………………………………………..78 表5-9失效模式與效應實例分析……………………………………………………79 表5-10新設備開發指標試算表…………………………………………………….83 表5-11有形效益分析………………………………………………………………..90 表5-12 SLT生產良率管制表………………………………………………………..91 表5-13成品系統層級測試分類機改良和特性比較……………………………….92rf 1. 績效管理與績效評估,李長貴,華泰文化出版86年9月。 2. 產品設計與開發,Karl T. Ulrich & Steven D. Eppinger 著,張書文、戴華亭 譯,麥格羅•希爾出版91年5月。 3. 創新管理,Allan Afuah 著,徐作聖、邱奕嘉 譯,華泰文化出版89年5月。 4. 產品開發,中村和夫 著,產品開發研究小組 譯,先鋒企業管理出版77年8月。 5. 系統績效評估技術上課講義,劉志明 教授,清大工工系。 6. 晶圓廠生產機台整體投入效率之研究,吳大中,南澳洲大學碩士學分班碩士論文92年6月。 7. Benjamin S.Blanchard &Wolter J. Fabrycky“ Design for Reliability” pp363~383。id NH0925031047 sid 913864 cfn 0 / id NH0925031048 auc 郭子壽 tic 背光模組標準化探討 adc 吳鑄陶 博士 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 69 kwc LCD kwc BL kwc 標準化 abc 摘 要 rf 參考文獻 1. 王淑珍,台灣邁向液晶王國之秘辛,,2001。 2. 柯博偉,經濟部資訊工業發展推動小組,2002。 3. 陳盈棋,液晶顯示器產業之進入策略,台北大學,2000。 4. 陳建宏,DigiTimes Research,2002。 5. 陳健誠,工研院經資中心產業分析,2003。 6. 黃鋰,LCD產業發展現況與展望,拓墣產業研究所,2003。 7. 黃柏誠,背光模組概述,2002。 8. 劉居全,資策會資訊市場情中心,2003。 9. 劉慶全,台灣LCD產業發展現況與趨勢,2000。 10. 工研院經資中心ITIS計畫,2001。 11. 工研院化學工業研究所ITIS計畫,2002。 12. 工研院IEK,2002。 13. 日本大和總研液晶面板中長期需求預測報告書,2003。 14. 富士總研,2002。 15. 友達、奇美、瀚宇彩晶、華映、廣輝、中光電、瑞儀、輔祥、科橋公司網站。 16. Display search,2004。 17. DigiTimes Research,2004。 18. IT IS,光電工業年鑑,2003。 19. IT IS,平面顯示器年鑑,2003。 20. 電子工業市場年鑑,2002。id NH0925031048 sid 913867 cfn 0 / id NH0925031049 auc 楊國材 tic LCD 面板廠與背光模組廠之制衡分析︰資源依賴論之應用 adc 吳鑄陶 博士 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 55 kwc TFT-LCD kwc 資源依賴 kwc 背光模組 kwc In-House abc 摘要 rf 參考文獻 一、英文部份 1. Henry E. Riggs(1994) ,Financial and Cost Analysis︰For Engineering and Technology Management, John Wiley & Sons. 2. Jeffrey Pfeffer and Gerald R. Salancik(2003) ,The External Control of Organizations︰A Resource Dependence Perspective, Stanford Business Classics. 3. Mary Jo Hatch (1997) ,Organization Theory︰Modern Symbolic and Postmodern Perspectives, Oxford University Press. 4. Yohei Kanazawa(2003) ,LCD TV Market Trend and Related Sectors and Companies, Daiwa Institute of Research. 二、中文部份 1. 王心婷,全球背光模組產業發展趨勢,工業材料, P137-141,2004/06。 2. 王信陽,台灣背光模組產業現況,光訊雜誌,P40-44,2003/01。 3. 王信陽,「TFT-LCD發展」,光訊雜誌,P17-22,2002/10。 4. 李恆毅,「台灣監視器產業之競爭環境與發展之研究」,碩士論文,國立清華大學工業工程與工業管理學系,1997。 5. 李怡靜,「台灣監視器產業技術創新的過程︰以國家創新系統為理論架構」,碩士論文,國立清華大學工業工程與工業管理學系,1998。 6. 林金雀,「TFT-LCD上游材料」,工業材料,P128-133,2003/07。 7. 柯博偉,經濟部資訊工業發展推動小組,2002/08。 8. 郝晉明,「挑戰2008年我國平面顯示器」,工業材料,P114-119,2003/07。 9. 郭子壽,「背光模組標準化之探討」,碩士論文,國立清華大學工業工程與工業管理學系, 2004。 10. 郭昇鑫,「導光板簡介」,塑膠資訊,P16-22,2002/10。 11. 郭瑾瑋,「LCD背光源」,電機產業資訊報導,P25-28,2003/03。 12. 陳盈棋,液晶顯示器產業之進入策略,台北大學,2000。 13. 陳建宏,DigiTimes Research,2002。 14. 陳健誠,工研院經資中心產業分析,2003。 15. 陳婉如,「科學LCD」,光連雜誌,P36-41,2003/09。 16. 陳鍚楨,「TFT-LCD Key Component」,產業經濟,P46-53,2003/05。 17. 張義宮,「台灣TFT-LCD產業發展」,電子資訊產業年鑑,P68-70,2003。 18. 張明義,「背光模組產業概況」,產業調查與技術,P98-114,2003/06。 19. 黃鋰,「LCD產業發展現況與展望」,拓墣產業研究所,2003。 20. 楊榮強,「台灣液晶現況」,產業經濟,P19-33,1993/10。 21. 鄭德珪,「LCD未來方向」,光連雜誌,P12-16,2002/07。 22. 鮑友南,「TV用液晶顯示器之背光」,機械工業雜誌,P158-169,2003/08。 23. 劉大鵬,LCD-TV發展現況與展望,2001。 24. 劉居全,資策會資訊市場情中心,2003。 25. 藍浩益,「TFT-LCD供應鏈」,電工資訊雜誌,P8-25,2003/07。 26. 劉慶全,台灣LCD產業發展現況與趨勢,2000。 27. 許昭瑾,背光模組技術市場均有空間,2000。 28. 廖顯杰,經濟部科技專案成果,第5期,2000。 29. 梁素真,LCD TV 關鍵零組件發展商機與挑戰,2003。 30. 梁素真,TFT-LCD前進G5考驗國內彩色濾光片廠商之佈局,2003。 31. 日本大和總研液晶面板中長期需求預測報告書,2003。 32. 電子工業市場年鑑,2002。 33. 友達、奇美、瀚宇彩晶、華映、廣輝、中光電、瑞儀、輔祥、科橋公司網站。 34. DigiTimes Research,2003。 35. IT IS,光電工業年鑑,2003。 36. IT IS,平面顯示器年鑑,2003。id NH0925031049 sid 913870 cfn 0 / id NH0925031050 auc 范博昇 tic 從資產折舊方式看LCD TV用面板降價趨勢及LCD TV普及化 adc 吳鑄陶 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 58 kwc 液晶電視 kwc 資產折舊 abc 由於液晶顯示器(liquid crystal display,LCD)具有輕、薄、低耗電、零輻射、省空間及方便攜帶等特性,多年來已經普遍應用於各項產品上。在眾多應用產品中,平面電視一直是全球消費電子市場的熱門商品。儘管多數消費電子產品在問世不久後價格就呈直線滑落,液晶電視的價格趨勢卻是一大異數,問世幾年後價格依然居高不下。也因此消費者雖然有高度興趣,其偏高的價格仍讓多數消費大眾望之卻步。可見價格的確是LCD TV普及化過程中很重要的因素;而左右LCD TV價格走勢的關鍵則是面板價格。 rf 1. Charles T. Horngren, George Foster, and Srikant M. Datar著,「成本會計-強調管理」,第九版,黃金成、顏信輝、林谷峻譯,東華書局,1997。 2. 李秀玉,「應用賽局理論分析我國薄膜電晶體液晶顯示器產業之競爭策略」,國立交通大學科技管理研究所,碩士論文,1999。 3. 林秀津,「液晶電視明年底可望大落價」,工商時報,2004/5/28。 4. 徐美雯,「2004年全球大尺寸TFTLCD面板供需預測」,資策會產業研究報告,2003。 5. 徐美雯,「台灣大尺寸TFT、LCD面板再創佳績」,資策會產業評析, 2003/10/20。 6. 許金池,「2002我國產業生命力之新契機研討會-監視器面板Q1躍居TFT廠出貨主力」,電子時報, 2002/3/21。 7. 陳奕祥,「省成本 友達LCD監視器廠重新分工、交TFT-LCD模組半成品予明?硉市?戶組裝」,電子時報, 2001/11/13。 8. 郭靜蓉,「台灣12月大尺寸LCD TV面板出貨逾15萬片;但市場是否長紅分析機構持觀望態度」,電子時報, 2003/12/30。 9. 張嘉麟,「台灣薄膜電晶體液晶顯示器產業核心能力與競爭優勢分析」,國立交通大學科技管理學程碩士班,碩士論文,2001。 10. 郭靜蓉,「LCD TV高成長市場 廠商忙佈局家電廠與TFT面板廠結盟趨勢 明年更明顯」,電子時報, 2003/12/31。 11. 曾而汶,「NB廠:提升筆記型電腦產業競爭力」,電子時報, 2001/3/14。 12. 鄒民欽,「TFT-LCD製程探討-以模組廠製程的改善為案例」,國立清華大學工業工程與工程管理研究所,碩士論文,2003。 13. 趙志遠,「台灣TFT-LCD產業之競爭策略分析」,國立清華大學工業工程與工程管理研究所,碩士論文,2001。 14. 厲秀玲,「台灣監視器廠商在液晶電視的發展機會與挑戰」,資策會產業評析, 2003/04/14。 15. 蔡東晃,「大台北地區電視機消費者對平面顯示器電視(FPD-TV)接受意願及其產品屬性評估之研究」,國立交通大學經營管理研究所,碩士論文,2003。 16. 鄭丁旺、汪泱若、黃金發,「初級會計學」,第五版,1994。 17. 2002平面顯示器年鑑,工研院經資中心,2002。 18. 2003平面顯示器年鑑,工研院經資中心,2003。 19. 「台灣家電業想靠數位電視翻身」,商業周刊819期,2003。 20. 「LCD引爆產業革命-投資下一個台積電」,今周刊343期,2003。 21. 「大尺寸TFT LCD面板產能分析」,資策會MIC,2003/12。 22. 奇美電子,http://www.cmo.com.tw/t-chinese/technology.jsp 23. 友達光電,http://www.auo.com/chinese/index.phpid NH0925031050 sid 913871 cfn 0 / id NH0925031051 auc 翁震宇 tic 全球小型記憶卡領導廠商競爭優勢之研究 adc 吳鑄陶 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 68 kwc 記憶卡 kwc 競爭優勢 kwc 價值鏈 kwc 記憶棒 kwc 快閃記憶體 kwc 技術授權 abc 本研究以目前全球小型記憶卡市場佔有率最高的前三大公司為個案,透過次級資料蒐集了解個別廠商營運概況,彙整競爭現況與產業特色後,以波特的價值鏈為工具,分析記憶卡產業領導廠商之價值活動,並比較其成本優勢與差異化的來源,藉此推論領導廠商策略擬定以及產業未來發展的趨勢。 tc 第一章 緒論.....1 1.1 研究動機與目的 1.2 研究範圍與對象 1.3 研究限制 1.4 研究架構 第二章 文獻探討.....4 2.1 價值鏈 2.2 與小型記憶卡產業相關的學術研究 2.3 快閃記憶體與小型記憶卡 第三章 研究方法.....19 3.1 次級資料的蒐集 3.2 理論架構的應用 第四章 小型記憶卡產業現況.....21 4.1 小型記憶卡全球市場趨勢 4.2 產業領導廠商營運概況 4.3 記憶卡用快閃記憶體供應現況 4.4 小型記憶卡競爭特色 第五章 價值鏈分析與競爭優勢.....47 5.1 主要供應商價值鏈分析 5.2 建立假說 5.3 邏輯推演及驗證 第六章 結論與建議.....63 6.1 研究結論 6.2 建議後續研究方向 參考文獻.....66rf 中文部分 1林志鴻,小型記憶卡的未來與技術動向,數位視訊多媒體月刊2001年一月號,民國九十年一月。 2曾淑華,小型快閃記憶卡市場百花爭嗚,經濟部工業技術研究院經資中心ITIS計畫評析,民國九十二年。 3 Michael E. Porter著,Competitive Advantage,李明軒、邱如美譯,競爭優勢(上、下),天下遠見出版公司,民國八十八年。 4司徒達賢,策略管理,遠流出版社,民國八十四年。 5羅招龍,台灣Flash與Mask ROM產業競爭力之研究,國立交通大學科技管理研究所碩士論文,民國九十一年六月。 6張錫華,從DRAM產業發展經驗探討Flash Memory產業經營策略,元智大學資訊管理研究所碩士論文,民國九十一年六月。 7王董慧,小型記憶卡產業發展之研究,淡江大學國際貿易研究所碩士在職專班碩士論文,民國九十二年六月。 8張振欽,策略制定與策略執行之關聯性─以一家資訊家電產業週邊設備供應商為例,國立清華大學工業工程與工程管理研究所碩士論文,民國九十二年六月。 9謝文獻,快閃記憶體的特性、分析以及參數萃取,國立交通大學電子工程研究所碩士論文,民國九十年六月。 10洪鵬雲,行動裝置上的快閃記憶體儲存管理與清除策略的研究,國立暨南國際大學資訊管理學研究所碩士論文,民國九十年六月。 11曾淑華,新一代小型記憶卡之應用與發展,經濟部工業技術研究院,民國九十年十月。 12溫在昇,「閃耀光芒的明日之星-Flash Memory」,新電子科技雜誌vol.80,民國九十年三月。 13賴麗秋,連結各種平台溝通無障礙-小型儲存卡潛在商機無限,電子時報,民國九十一年八月。 14張芝榕,Flash Memory於行動電話之應用,經濟部工業技術研究院經資中心ITIS計畫評析,民國九十一年。 15曾淑華,小型快閃記憶卡之價格變動分析,經濟部工業技術研究院經資中心ITIS計畫評析,民國九十二年三月。 16 Michael E. Porter,Competitive strategy,周旭華譯,競爭策略-產業環境及競爭者分析著,天下遠見出版公司,民國八十七年。 17林瑞霖,高性能高密度快閃記憶體之研究,國立清華大學電機工程研究所博士論文,民國八十九年六月。 18陳宏銘,低腳數記憶卡的系統實現,國立清華大學電子工程研究所碩士論文,民國九十一年六月。 19唐群惠,國內積體電路產業之產業價值鏈分析,國立台灣大學會計學研究所碩士論文,民國九十年六月。 20彭茂榮、張芝榕,IA時代記憶體產業的新契機,經濟部工業技術研究院,民國九十年八月。 21李奉煦,Samsung Rising,楊純惠、黃蘭琇譯,三星秘笈,大塊文化,民國九十二年。 22彭茂榮,快閃記憶體產業未來趨勢,經濟部工業技術研究院,民國九十二年二月。 23洪嘉良,系統產品之架構競爭與擴散機制-以無線通訊系統為例,國立台灣大學商學研究所碩士論文,民國八十九年六月。 英文與網路部分 24 Renesas Technology Corporation, Flash Memory Technology Overview, http://www.renesas.com/eng/products/memory/fmemory/index.html, May 2004. 25 CompactFlash Association, http://www.compactflash.org/, February 2004. 26 Power Quotient International Co., PQI Flash Product Data Sheet, http://www.pqi.com.tw/eng/download/datasheet/datasheet/HITACHI-cf/FCXXX.XH7%20datasheet.pdf, May 2002. 27 SSFDC Forum, http://www.ssfdc.or.jp/english/index.htm, February 2004. 28 Toshiba Corporation, SmartMedia TC58NS100DC product datasheet, http://www.toshiba.com/taec/components/Datasheet/TC58NS100DC_030312.pdf, March 2003. 29 MultiMedia Card Association, http://www.mmca.org/, February 2004. 30 SanDisk Corporation, MultiMedia Card Product Manual Rev. 5.2, http://www.sandisk.com/pdf/oem/ProdManualMMCv5.2.pdf, March 2003. 31 Sony Corporation, http://www.sony.net/Products/MS/, February 2004. 32 Memory Stick Developers’ Site Office, ‘What Is Memory Stick’, http://www.memorystick.org/eng/aboutms/index.html, February 2004. 33 SD Card Association, http://www.sdcard.org/, February 2004. 34 Matsushita Electric Corporation of America, ‘SD Technology Explained’, http://www.panasonic.com/consumer_electronics/sd/sd_explained.asp, February 2004. 35 Fuji Photo Film U.S.A. Inc., Press Release, http://www.fujifilm.com/JSP/fuji/epartners/PRNewsDetail.jsp?DBID=NEWS_499702, July 2002. 36 Olympus America Inc., Press Release, http://www.olympusamerica.com/cpg_section/cpg_pressDetails.asp?pressNo=192, July 2002. 37 http://www.idc.com 38 SanDisk Corporation, http://www.sandisk.com, February 2004. 39 SanDisk Corporation, SanDisk Corporation 2002 Annual Report, http://www.corporate-ir.net/ireye/ir_site.zhtml?ticker=SNDK&script=10903&layout=-6&item_id='http://media.corporate-ir.net/media_files/NSD/SNDK/reports/ar2002t.pdf', April 2003. 40 Lexar Media Corporation, http://www.lexarmedia.com, February 2004. 41 SanDisk Corporation, JP Morgan 32nd Annual Technology & Telecom Conference Presentation, http://media.corporate-ir.net/media_files/NSD/SNDK/ presentations/jpmorgan050604.pdf, Feb 2004. 42 http://www.memorystick.comid NH0925031051 sid 913872 cfn 0 / id NH0925031052 auc 蔡佳宏 tic 台灣記憶體模組商進入小型記憶卡產業之策略研究 adc 吳鑄陶 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 58 kwc 台灣記憶體模組商 kwc 小型記憶卡 kwc 五力分析 kwc 競爭策略 abc 台灣記憶體模組商在2002年全球記憶體模組廠商十大排名中,上榜的就有四家,顯然地台灣已成為全球記憶體模組的生產重鎮。就記憶體的分類來看,DRAM和Flash Memory都各屬於其中的一種,兩者的最終產品皆可用SMT製程做最後的組裝,再加上小型記憶卡市場前景看好的情況下,現今許多台灣記憶體模組商紛紛開始著手投入這塊市場,期望能在Flash Memory應用市場找尋另一個發展的機會。 rf 1.Michael E Porter(1980),Competitive Strategy, New York:Free Press. 2.Michael E Porter(1985),Competitive Advantage: Creating and Sustaining Superior Performance,New York:Free Press. 3.2003/09/22 民生報 4.曾淑華(2001),新一代小型記憶卡之應用與發展,財團法人工業技術研究院 5.彭茂榮(2003),快閃記憶體產業未來趨勢,財團法人工業技術研究院 6.柯博偉(2002年7月),全球DRAM市場現況與展望,電子時報報訊 7.唐紀忠, 2003年7月, 台灣DRAM模組產業之競爭優勢及公司策略—以勝創為例, 國立清華大學科技管理所論文 8.薛志強, 2004年1月, 台灣記憶體模組廠商其歐洲市場之通路定位、策略群組之研究—以勤茂資通為例, 淡江大學國際貿易所論文 9.張振欽, 2003年1月, 策略制定與策略執行之關聯性—以一家資訊家電產業週邊設備供應商為例, 國立清華大學工業工程與管理所論文 10.三星電子http://www.samsung.com/index_02.htm 11.公開資訊觀測站http://newmops.tse.com.tw/ 12.電子時報www.digitimes.com.twid NH0925031052 sid 913873 cfn 0 / id NH0925031053 auc 楊立天 tic 研發中心之技術創新擴散與行銷推廣之協同發展動態模式及模擬 adc 朱詣尹 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 92 kwc 技術創新 kwc 技術擴散 kwc 協同合作發展 kwc 動態模式及模擬 abc 台灣在面臨整體的產業升級的過程中,技術創新及智慧資產之創造,技術行銷與推廣應用等議題備受重視。政府與企業研究中心與事業單位研發團隊作跨組織、產業與公司之協同合作開發,技術創新擴散與推廣行銷,更能有效地提升整體的競爭優勢。因此本研究就研究中心目前的協同合作發展狀況進行探索與瞭解,分析其技術創新與推廣運用的有效應用模式,並探究如何能藉由協同合作之作法於技術創新與技術推廣過程中整合其內部與外部之資源,做充分有效之運用,並透過運用動態模式,探索創新擴散與行銷等活動之協同合作發展過程其主要影響因素為何,隨著這模式中因素的變動,其公司的競爭力與產業間的競爭情勢會有哪些變化等。 rf 英文參考文獻: 1. Abernathy, W. J., Utterback, J., 判atterns of Industrial Innovation”, Technology Review, June–July, 1978 2. Bass, F. M., “A New Product Growth Model for Consumer Durables”, Manage. Sci., vol. 15, pp.215-217, 1969. 3. Blair, W. D., ” A Strategy to Enhance Technology Transfer Efforts at the Stennis Space Center”, Research Policy, vol.21, pp.56-72, 1992 4. Basil, A. , Nicholas A., ”The Dynamics of Technological Innovation: the Case of the Pharmaceutical Industry”, Research Policy, 2000 5. Baranson, J., “A Challenge of Low Development”, In:. Technology in Western Civilization, vol. II. Oxford University Press, Inc, New York, pp.251–271, 1967 6. Branscomb, L. M. & Keller, J. H.,” Toward a Research and Innovation policy, Investing in Innovation: Creating a Research and Innovation Policy that Works,” the MIT press, 1998, p462-494 7. Bo, C. , Staffan, J. , Magnus H.and Annika R.,” Innovation Systems: Analytical and Methodological Issues”, Research Policy, 2002 8. Brown, L., “Innovation Diffusion”, Methuen, 1981 9. Betz, F.,(1997)”Managing Technological Innovation Competivities Advantage from Change,” John Wiley & Sons, Inc,(p.5;p.282;p.314;p.14) 10. Christoph, Z., ”Dynamic Capabilities and the Emergence of Intraindustry Differential Firm Performance : Insights from a Simulation Study”, Strategic Management”Journal ,24 ,97-125, 2003 11. Clark, K.B., “The Interaction of Design Hierachies and Market Concepts in Technological Evolution”, Research Policy V.14, 1985 12. Clark, K. B. and Fujimoto, T., ”The Power of Product Integrity”, Harvard Business Review, p.107-118, 1990 13. Dosi, G., “Technological Paradigms and Technological Trajectories”, Research Policy, V.11, 1982. 14. Duk, B. J., Yoon S. P. ,”A Choice-Based Diffusion Model for Multiple Generations of Products”, North-Holland, 1999 15. Davenport, T. H. and Prusak, L., “Working Knowledge”, Boston, MA: Harvard Business School Press, 1998 16. Freeman, C.,(1987)”Technology Policy and Economic Performance:Lessons from Japan”, London and New York, Pinter 17. Frédéric, D. ,” Formation of Social Networks and Diffusion of Innovations”, Research Policy, 2001 18. Gregory, N. S. , Noel P.G. , William A. F., ” Firm Size and Dynamic Technological Innovation”, Pergamon, 2001 19. Grant, R. M., “Prospering in Dynamically-Competitive Environments : Organizational Capability as Knowledge Integration”, Organization Science, 1996, Vol.7, pp.375-387 20. Hahn, Y. H. ,Yu. P. , "Towards a New Technology Policy:The Integration of Generation and Diffusion", Technovation, V.19, pp.177-186, 1999 21. Hung, S.-C., Wu, C.-T. and Chu, Y.-Y.,(1999) “National System, Technology and Industry Development:A Case Study of Taiwan's Monitor and Hard Disk Driver Industries,” A New Technological Landscape In Asia Pacific Workshop, March 11-12, pp.257-285, 1 22. Hsu, C.-W. and Chiang, H.-C., “The Government Strategy for The Upgrading of Industrial Technology in Taiwan”, Technovation ,Volume: 21, Issue: 2, February, 2001, pp. 123-132 23. James T. C., Varun G..and Wolfgang G.., ”Information Technology Innovations: General Diffusion Patterns and Its Relationships to Innovation Characteristics ”, IEEE Transactions on Engineering Management, vol. 49, No. 1,February, 2002. 24. Jan, F., Bart V. ,”Technology-gaps, Innovation-Diffusion and Transformation: an Evolutionary Interpretation”, Research Policy, 2001 25. Janszen, F.H.A., Degenaars, G.H., "A Dynamic Analysis of the Relations between the Structure and the Process of National Systems of Innovation Using Computer Simulation;the Case of the Dutch Biotechnological Sector", Research Policy, vol.27, pp.37-54, 1998 26. Jassawalla, A. R. & S., Hemant C., “The Role of Senior Management and Team Leaders in Building Collaborative New Product Teams”, Engineering Management Journal, 2001, Vol.13, pp.33-39 27. John, L., “Theory and Methodology On the Dynamics of Stochastic Diffusion of Manufacturing Technology”, European Journal of Operational Research 124, 2000 28. Kim, B. W., ”Manufacturing Learning Propensity in Operations Improvement”, Human Factors and Ergonomics in Manufacturing, Vol. 8, No. 1, p.79-104, 1998 29. Kingsley, G. and Bozeman B. and Coker K.(1996)”Technology Transfer and Absorption: an “R & D Value-mapping” Approach to Evaluation,” Research Policy 25 pp. 967-995. 30. Kangasharju, A., and Nijkamp, P., "Innovation Dynamics in Space:Local Actors and Local Factors", Socio-Economic Planning Sciences, vol.35, pp31-56, 2001 31. Leonard-Barton, D., “Core Capabilities and Core Rigidities : A Paradox in Managing New Product Development”, Strategic Management Journal, 1995, Vol.13, pp.11-125 32. Malone, T.W. and Crowston, K., “The Interdisciplinary Study of Coordination”, ACM Comput. Surv. 26, Mar., 1994, Pages 87-119. 33. McGahan, A., M. and Silverman, B, S, "How Does Innovative Activity Change as Industries Mature", International Journal of Industry Organization, vol.19, pp1141-1160, 2001 34. Matusik, S. F., “Managing Public and Private Firm Knowledge Within the Context of Flexible Firm Boundaries”, 2001 35. Nelson, R. R., "The Co-evolution of Technology, Industrial Structure, and Supporting Institutions", Technology, Organization, and Competitiveness - Perspectives on Industrial and Coporate, edited by Dosi, G., Teece, D.J., Chytry, J., pp.319-335, 1998 36. Nelson, R.R. and Winter, S.G., “An Evolutionary Theory of Economic Change”, Belknup Press of Harvard University Press, 1982. 37. Namwoon, K., Eileen, B. and Rajendra K. S., “A Simultaneous Model for Innovative Product Category Sales Diffusion and Competitive Dynamics” ,International Journal of Research in Marketing 16, 1999 38. Orihata, M. and Watanabe, C., “The Interaction Between Product Concept and Institutional Inducement: A New Driver of Product Innovation”, Technovation, in press, 1978 39. Orihata, M. and Watanabe, C., “Evolutional Dynamics of Product Innovation: The Case of Consumer Electronics”, Technovation, V.20, Issue 8, pp.437-449, August, 2000. 40. Petroni, A., “The Analysis of Dynamic Capabilities in a Competence-oriented Organization”, Technovation, 1996, Vol.18, pp.179-189 41. Park, Y.T., "Technology Diffusion Policy: A Review and Classification of Policy Practices", Technology In Society, V.21, pp.275-586, 1999 42. Rhonda, R. “Managing innovation: The Pursuit of Competitive Advantage and the Design of Innovation Intense Environments ”, Research Policy 27, 1998 43. Rezayat, M., “Knowledge-based Product Development Using XML and KCs”, Computer-Aided Design, Vol. 32, Issue. 5-6, May, 2000, pp. 299-309 44. Rome, P., “Increasing Returns and Long-run Growth”, Journal of Political Economy, pp.1002–1037, October, 1986 45. Rogers, E.M., “Diffusion of Innovation”, 3rd ed. The Free Press, 1982. 46. Sherman, J. D.; Souder, W. E. & Jenssen, S. A., “Differential Effects of the Primary Forms of Cross Functional Integration on Product Development Cycle Time”, J Prod Innovation Management 2000, Vol.17, pp.257-267 47. Tripsas, M., “Surviving Radical Technological Change through Dynamic Capability : Evidence from the Typesetter Industry”, Industrial and Corporate Change, 1997, Vol.6, pp.341-377 48. Utterback, J.M. and Mastering, “The Dynamics of Innovation”, Harvard Business School Press, 1994. 49. Van Eijck, D.T.T. and De Vreede, G.J., “The Dynamics of Organizational Coordination”, System Sciences, 1995. Vol. V, Proceedings of the Twenty-Eighth Hawaii International Conference on, Vol. 4, 1995, Page(s): 851-860. 50. William, M. W.”Business Aspects of Technology Transfer:Marketing and Acquisition, “Noyes Publications New Jersey, 1989. 中文參考文獻: 1. 劉常勇(民87),我國大陸地區科研成果轉移情況研究 2. 李素華(2003),”生技產業、人才與技術擴散”, 台灣經濟研究月刊 3. 張智翔,”技術預測:利用專利分析技術探討接觸式影像感測器技術擴散過程之研究”,國立雲林科技大學企業管理技術研究所碩士論文,2000 4. 朱城山,”微電子產品開發專案之同步工程流程模式與分析”,國立清華大學工業工程與工程管理研究所碩士論文,1997 5. 劉士豪,“知識擴散與產業之創新及發展—以台灣掃描器產業為例”,國立清華大學工業工程與工程管理研究所碩士論文,2000 6. 王志揚,“新產品原型開發時之知識的產生、吸收與應用之模式”,國立清華大學工業工程與工程管理研究所碩士論文,2001 7. 葉世文,“技術創新體系之演進—我國影像擷取產業之案例與流程模擬”,國立清華大學工業工程與工程管理研究所碩士論文,2001 8. 吳文愿,“運用行動代理人在電子化採購協調溝通模式之研究” ,國立清華大學工業工程與工程管理研究所碩士論文,2001 9. 霍莘瑜,“前瞻性技術商品化過程的創新機制之研究-以研究中心為例”,國立清華大學工業工程與工程管理研究所碩士論文,2002 10. 洪勖芳, “全球化協同式產品開發之知識整合與智慧資產管理—以系統單晶片產品開發為例”,國立清華大學工業工程與工程管理研究所碩士論文,2002 11. 蘇耿賢,“國家創新系統之動態分析與應用”,國立中山大學財務管理研究所,?2002 12. 陳仲景,“研究機構之技術推廣行銷模式與模擬系統之發展” ,國立清華大學工業工程與工程管理研究所碩士論文,2003id NH0925031053 sid g913875 cfn 0 / id NH0925031054 auc 柳浩宇 tic 制度環境於促進技術應用與行銷推廣之角色:以研究中心為例 adc 朱詣尹 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 84 kwc 技術行銷 kwc 制度環境 abc 研究機構如何促進技術行銷以創造價值是科技管理重要議題。本研究主要探討制度環境與制度設計對於研究機構創新團隊推廣行銷之影響,建構一制度環境與制度設計分析架構以檢視研究中心創新團隊推廣行銷作法。本研究採用個案探討之方式,以國內研發中心為例,經由蒐集國內外文獻與個案資料、時地訪談等方法歸納與分析整體制度環境與制度設計主要因子。以研究機構創新團隊為分析單位探討制度環境因子對於其技術與技術商品推廣行銷的影響,提出一個分析制度環境影響模式,並藉以探討我國研究機構技術創新應用與推廣過程中其制度環境與設計促進技術應用與行銷推廣可扮演之角色。 rf 國外文獻 1. Achrol, S., 1997, Changes in the Theory of Interorganizational Relationships in Marketing: Towards a Network Paradigm, Journal of the Academy of Marketing Science 2. Amit, R. and Zott, C., 2000, Value Creation in E-Business, Strategic Management Journal 3. Arkebauer, B., 1995, Guide to Writing a High-Impact Business Plan, McGraw-Hill 4. Athaide, G.A., Meyers, P.W., & Wilemom, David L., 1996, Seller-Buyer Interactions During the Commercialization of Technological Process Innovation , Journal of Production Innovation Management 5. Bello, D. C., Lohtia, R. & Sangtani, V., 2004, An Institutional Analysis of Supply Chain Innovations in Global Marketing Channels, Industrial Marketing Management 6. Bergen, M., Shantanu D., & Orville W., 1992, Agency Relationships in Marketing: A Review of the Implications and Applications of Agency and Related Theories, Journal of Marketing 7. Bouwman, H. & Hulsink, W., 2002, A Dynamic Model of Cyber-Entrepreneurship and Cluster Formation: Applications in the United States and in the Low Countries, Telematics & Informatics 8. Brown, R., Chekitan D., & Dong-Jin L., 2000, Managing Marketing Channel Opportunism: The Efficacy of Alternative Governance Mechanisms, Journal of Marketing 9. Callan, B. and Cervantes, M., 2000, The Management of Intellectual Property from Public Research, OECD : Management of Intellectual Property Generated from Publicly Funded Research Workshop. 10. Covello J. A. & Hazelgren B. J., 2001, The Complete Book of Business Plan, Naperville 11. Crawford-Lucas, A., 1992, Providing Business Plan Assistance toward Small Manufacturing Companies, Economic Development Review 12. Carson, S. J., Devinney, T. M., Dowling, G. R. & John, G., 1999, Understanding Institutional Designs within Value Systems, Journal of Marketing 13. Eisenhardt, K. M., 1989, Building theories from case study research, Academy of Management. 14. Foray, Dominnque, 2000, The Economic Impact of a More Active Public SectorIP Strategy, OECD : Management of Intellectual Property Generated from Publicly Funded Research Workshop 15. Griffin, A. and Hauser, J., 1996, Integrating R&D and Marketing: A Review and Analysis of the literature, Journal of Production Innovation Management 16. Grewal, R. & Dharwadkar, R., 2002, The Role of the Institutional Environment in Marketing Channels, Journal of Marketing 17. Hisrich, D.,1997, One Giant Step toward a Loan, Journal of Consumer Marketing 18. Hormozi, A. M., Sutton, G. S., McMinn, R. D. & Lucio, W., 2002, Business Plans for New or Small Business: Paving the Process to Success, Management Decision 19. Hunt, D., 1997, Resource-Advantage Theory and the Wealth of Nations: Developing the Socio-Economic Research Tradition, Journal of Socio Economics 20. Kleinaltenkamp, M. & Jacob, F., 2002, German Approaches to Business-to-Business Marketing Theory Origins and Structure, Journal of Business Research 21. Minister Bulmahn ,2002, Short Summary Report of The Workshop on GeneticInventions, Intellectual Property Rights and Licensing Practices, OECD Workshop, Held ding Berlin, Germany 22. Murray, J. W., 2000, Institution Building: Example of Best Practices, OECD : Management of Intellectual Property Generated from Publicly Funded Research Workshop 23. Morgan, L. O. & Daniels, R. L., 2001, Integrating Product Mix and Technology Adoption Decisions: a Portfolio Approach for Evaluating Advanced Technologies in the Automobile Industry, Journal of Operations Management 24. Morgan, N. A., Clark, B. H. & Gooner R., 2002, Marketing Productivity, Marketing Audits, and Systems for Marketing Performance Assessment, Journal of Business Research 25. North, C., 1990, Institutions, Institutional Change and Economic Performance, Cambridge University Press 26. O’Hara, P., 1995, The Total Business Plan, John Wiley & Sons 27. Powell, J. &Lellock, K., 2000, Development, Commercialization, and Diffusion of Enabling Technology: Progress Report, National Institute of Standards and Technology Advanced Technology Program 28. Ragin, C. C. & Becker, H. S. (eds), 1992, What is a case? : Exploring the Foundations of Social Inquiry. England: Cambridge University Press 29. Sahlman, A., 1997, How to Write a Great Business Plan, Harvard Business Review 30. Teece, D., J., 1986, Profiting from Technological Innovation: Implications for Integration, Collaboration, Licensing, and Public Policy, Research Policy 31. Torger, R., & Louis, S., 1983, The Environment of Marketing Channel Dyads: A Framework for Comparative Analysis, Journal of Marketing 32. Tsukamoto, Y., 2000, IP Policy Approach in Japan, OECD : Management of Intellectual Property Generated from Publicly Funded Research Workshop 33. Varpu, L., 2000, IP Management in a Research Organization- Maximization of economical Spillovers:VTT Technology Research Centre of Finland, OECD : Management of Intellectual Property Generated from Publicly Funded Research Workshop 34. Yin, R. K., 1989, Case study research: design and methods, London: Sage 國內文獻 1. 王文娟,1999,美日產業技術政策之比較,經濟情勢暨評論季刊 2. 王韋翔,2002,我國智慧財產權資訊服務業之研究,國立政治大學科技管理研究所碩士論文 3. 石豐銘,2003,技術移轉授權機制於科技工業機構之運作模式分析與探討,國立清華大學工業工程與工程管理所碩士論文 4. 吳豐祥 & 蔡政安,2002,技術交易服務業的發展與政策初探,工研院產業論壇 5. 杲中興,2001,中科院承製陸軍訓模器可行性分析簡報,模擬組簡報資料。 6. 杲中興,2001,航空研究所模擬組產業多構面分析及策略規劃,模擬組簡報資料。 7. 陳新民,2001,國防法制的再革新,憲政法制組政策國政研究報告 8. 陳仲景,2003,研究機構之技術推廣行銷模式與模擬系統之發展,國立清華大學工業工程與工程管理所碩士論文 9. 陳素娟,2000,政府出資研究發展之技術移轉與績效,台灣經月刊 10. 黃鴻期,2002, 技術商品化-以台灣醫用超音波技術為例,國立清華大學工業工程與工程管理所碩士論文 11. 黃宗能 & 陳素娟,2003,國家級研究機構轉型之研究--以日本產業技術總合研究所為例,工研院產業論壇 12. 黃宗能 & 鄭淑穎, 2002,美、日技術移轉機制及對我國之啟示,工研院產業論壇 13. 曾銘深,1999,OECD國家推動產學合作之作法,經濟情勢暨評論季刊 14. 張根榮,2002,企業競爭策略與創新領域配適對企業競爭力之相關研究,中原大學企業管理研究所碩士論文 15. 詹秋貴,2002,我國國防產業發展策略之研究,工研院產業論壇 16. 楊偉森,2003,國防智權管理新契機,中山科學研究院無線通訊網站,網址:http://www.csist.gov.tw/csist/asp/announceDetail.asp?RECNO=181 17. 詹勝創,2001,國防科技移轉法制之探討及產業發展機會,2001中華民國科技法律論文集 18. 陳信宏 & 劉孟俊,2001,美歐國家創新政策推動機機制及成效分析,中華經濟研究院 19. 劉孟俊,2001,美歐國家創新政策推動機制及成效分析,經濟情勢暨評論季刊 20. 歐陽讓,1999,模擬組策略規劃簡報,內部資料 21. 霍莘瑜,2002,前瞻性技術商品化過程的創新機制研究-以研究中心為例,國立清華大學工業工程與工程管理所碩士論文id NH0925031054 sid 913876 cfn 0 / id NH0925031055 auc 蔡秋怡 tic 促進技術創業之智慧資本開發 adc 朱詣尹 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 93 kwc 技術創業 kwc 智慧資本 kwc 機會確認 kwc 社會資本 abc 本研究之目的在於探討國內以技術創業為起始之企業,如何運用本身的知識在環境中發掘機會,確認在市場上的定位,並運用複雜的社會網路關係取得必要之資源,此過程中蘊含了知識的創造及累積,因而得以形成以智慧資本為基礎之競爭優勢,而此即為本研究探討之主軸。 rf 參考文獻 國內文獻 溫肇東,2002,育成中心的知識獲得、擴散與累積, 2000年中華民國科技管理研討會論文集(上)。 陳盈太,2002,新事業選擇育成中心關鍵因素與策略,國立成功大學企業管理研究所碩士論文。 陳雲芳,2002,大學校園創新育成中心進駐之新興事業其技術資金的籌集和網路運作模式之研究,國立交通大學科技管理研究所碩士論文。 邱紹成,2001,以資料包絡分析法評估國內育成中心營運效率之研究,國立交通大學科技管理所碩士論文。 梭羅,1998,資本主義的未來(李華夏譯),立緒出版社。 國外文獻 1. Ardichvili, A., Cardozo R. and Ray, s. 2003. A theory of entrepreneurial opportunity identification and development. Journal of Business Venturing. 2. Almeida, Dokko and Rosenkopf .2002. Start-up size and the mechanisms of external learning: increasing opportunity but declining usefulness?. Research Policy. 3. Barney, J. 1991. Firm resources and sustained competitive advantage. Journal of Management. 4. Barringer, B. R., and Bluedon, A. C., 1999. The relationship between corporate entrepreneurship and strategic management. Strategic Management Journal. 5. Bourdieu, P. 1986. The forms of capital in J. G. Richardson (Ed.). Handbook of Theory and Research for the Sociology of Education. 6. Bouwman, H. and Hulsink W. 2002. A dynamic model of cyber-entrepreneurship and cluster formation: applications in the United States and in the Low Countries. Telematics and Informatics. 7. Bouwman, H. and Hulsink, W, 2000. Silicon Valley in de polder. ICT-cluster in de Lage Landen. 8. Burt, R., 1992. Structural holes. The social structure of competition. Harvard University Press. 9. Cohan, P., 1999. Netprofit. how to invest and compete in the real word of internet business. Jossy-Bass Publishers. 10. Cohen, W.M. and Levinthal, D.A. 1990. Absorptive capacity: a new perspective on learning and innovation. Administrative Science Quarterly. 11. Coleman, J. S. 1988. Social capital in the creation of human capital. American Journal of Sociology. 12. Dacin, M. T., Ventresca, M. J. and Beal, B. D. 1999. The embeddedness of organizations: dialogue and directions. Journal of Management. 13. De Carolis, D. M. and Deeds, D. L. 1999. The impact of stocks and flows of organizational knowledge on firm performance: An empirical investigation of the biotechnology industry. Strategic Management Journal. 14. De Carolis, D.2002. The role of social capital and organizational knowledge in enhancing entrepreneurial opportunities in high technology environments. The Strategic Management of Intellectual Capital and Organizational Knowledge Published by Oxford University Press. 15. Dess, G. G. and Beard, D. W., 1984. Dimensions of organizational task environments. Administrative Science Quarterly. 16. Drucker, P., 1985. Innovation and Entrepreneurship. New York: Harper & Row. 17. Eisenhardt, K. M. 1989. Building theories from case study research. Academy of Management. 18. Fox, M. S., Barbuceanu, M. and Gruninger, M. 1996. An organisation ontology for enterprise modeling: preliminary concepts for linking structure and behaviour, Computers inIndustry. 19. Gans, J. S. and Stern, S., 2003. The product market and the market for ideas: commercialization strategies for technology entrepreneurs. Research Policy. 20. Getzels, J. 1962. Creativity and Intelligence. Routledge, London. 21. Gulati, R., Nohria, N. and Zaheer, A., 2000. Strategic networks. Strategic Management Journal. 22. Hill, S. G., Lumpkin, G.T. and Singh, R.P. 1997. Opportunity recognition: perceptions and behaviors of entrepreneurs. Frontiers of Entrepreneurial Research. Babson College. 23. Hitt, M.A., Ireland, R.D., Camp S.M., and Sexton, D.L., 2001. Guest editors; introduction to the special issue strategic entrepreneurship: entrepreneurial strategies for wealth creation. Strategic Management Journal. 24. Jacobs, J. 1965. The death and life of great American cities. London: Penguin Books. 25. Katila, R. and Mang, P.Y. 2003. Exploiting technological opportunities : the timing of collaboration. Research Policy. 26. Kodithuwakku, S.S. and Rosa, P. 2002. The entrepreneurial process and economic success in a constrained environment. Journal of Business Venturing. 27. Kogut, B. and Zander, U. 1996. What do firms do? Coordination, identity and learning. Organization Science. 28. Koller, R. H. 1988. On the source of entrepreneurial ideas. Frontiers of Entrepreneurial Research. Babson College. 29. Krueger, N. J. and Dickson, P.R. 1994. How believing in ourselves increase risk taking: perceived self-efficacy and opportunity recognition. Decis. 30. Krugman, P., 1991. Geography and Trade. MIT Press. 31. Liebeskind, J.P. and Oliver, A.L. et al. 1996. Social networks, learning, and flexibility: sourcing scientific knowledge in new biotechnology firms. Organization Science. 32. Liu, T. H., Hung, S. C. and Chu, Y. Y. 2003. Entrepreneurial actions, environmental jolts and value creation: a case study. Service Industries Journal. 33. Liu, T. H., Hung, S. C. and Chu, Y. Y. 2004. Technology entrepreneurial styles: a comparison of UMC and TSMC. International Journal of Technology Management. 34. Lundvall, B.-Å. 1992. Introduction. In: Lundvall B.-Å, (ed) National Systems of Innovation: Towards a Theory of Innovation and Interactive Learning. London: Pinter. 35. Marshal, A. 1965. Principles of economics, London: Macmillum. 36. Meyer, A.D. 1982. Adapting to environmental jolts, Administrative Science Quarterly. 37. Moran, P. and Ghoshal, S. 1996. Value creation by firms. Academy of Management Best Paper Proceedings. 38. Mowery, D.C. and Oxley, J.E. et al. 1996. Strategic alliances and interfirm knowledge transfer. Strategic Management Journal. 39. Nahapiet, J.E. and Ghoshal, S. 1998. Social capital, intellectual capital, and the organizational advantage. Academy of Management Review. 40. Neches, R., Fikes, R. E., Finin, T., Gruber, T. R., Senator, T. and W. R. Swartout, 1991. Enabling Technology for Knowledge Sharing, AI Magazine. 41. Nelson, R.R. 1992. National Innovation Systems: A Retrospective on a Study. Industrial and Corporate Change. 42. Penrose, E. 1959. The theory of the growth of the firms. Oxford England: Basil Blackwell. 43. Prahalad, C. K. and Hamel, G. 1990. The core competence of the organization. Harvard Business Review. 44. Quinn, J.B. 1992. Intelligent enterprise. New York: Free Press. 45. Ragin, C. C. and Becker, H. S.(eds) 1992. What is a case? : exploring the foundations of social inquiry. England: Cambridge University Press. 46. Ray, S. and Cardozo, R. 1996. Sensitivity and creativity in entrepreneurial opportunity recognition: a framework for empirical investigation. Presented at the Sixth Global Entrepreneurship Research Conference. 47. Sarah, L J.and Alistair, R A. 2002. The effects of embeddedness on the entrepreneurial process. Journal of Business Venturing. 48. Saxenian, A,-L., 1991. The Origins and Dynamics of Production Networks in Silicon Valley. Research Policy. 49. Schumpeter, J. A., 1975 Capitalism, socialism and democracy. New York: Harper & Brothers. (originally published in 1942 by Harper and Brothers.). 50. Scott, A.J., 1994. Technopolis. high-technology industry and regional development in southern california. University of California Press. 51. Shane, S. 1999. Prior knowledge and the discovery of entrepreneurial opportunities. Organ. 52. Shane, S. and S. Venkataraman, 2000. The Promise of Entrepreneurship as a Field of Research. Academy of Management Review. 53. Shapero, A. 1975. The displaced, uncomfortable entreneur. Psychol. 54. Sine, W.D. and David, R.J. 2003. Environmental jolts, institutional change, and the creation of entrepreneurial opportunity in the US electric power industry. Research Policy. 55. Smilor, R. W. and Gibson, D.V., Kozmetsky, G., 1988. Creating the technopolis: high-technology development in Austin, Texas. Journal of Business Venturing. 56. Spender, J-C. 1996. Making knowledge the basis of a dynamic theory of the firm. Strategic Management Journal. 57. Stevenson, H. H. Robert, M. J. and Grousbeck, H. I. 1985. New business venture and the entrepreneur. Irwin, Homewood, IL. 58. Timmons, J. A., Muzyka, D. F. Stevenson, H. H. and Bygrave, W. D. 1987. Opportunity recognition: the core of entrepreneurship. In Churchill, N. C., et al. (Eds.), Frontiers of Entrepreneurship Research. Babson College. 59. Von Hippel, E. 1994. “Sticky information” and the locus of problem solving: implications for innovation. Manage. 60. Van de Ven, A. H.1993. The emergence of an industrial infrastructure for technological innovation. Journal of Comparative Economics. 61. Yin, R. K. 1989. Case study research: design and methods, London: Sage. 62. Zucker, L. G., Barby, M. R., Brewer, M. B., and Peng, Y. 1996. Collaboration structures and information dilemmas in biotechnology: organization boundries as trust production. In R. M. Kramer and T. R.: Tyler (Eds.) Trust in organizations: from tiers of theory and research; Thousand Oaks, CA: Sage. 63. Zucker, L. G. 1998. Geographically localized knowledge: spillovers or markets? Economic Inquiry.id NH0925031055 sid 913878 cfn 0 / id NH0925031056 auc 李輝鈞 tic 台灣中小尺寸TFT-LCD專業製造廠競爭優勢分析 adc 吳鑄陶 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 78 kwc 薄膜液晶顯示器 kwc 競爭優勢 kwc 五力分析 kwc 價值鏈 abc 透明、輕薄,卻能點亮千萬條沒有輻射線的色彩,薄膜液晶顯示面板(TFT-LCD)正提升台灣產業嶄新的全球「能見度」,是繼資訊產業及半導體產業為我國下一世紀明星產業之一。近十年來平面顯示器的發展重心一直圍繞在10寸以上的面板,因其市場可以涵蓋PC用和TV用,潛在的市場驚人。大尺寸面板單價高,並可隨解析度、尺寸等的性能提升而刺激市場的成長。相比之下小尺寸顯示器就較不受青睞,單價不僅偏低,出貨量也遠不如PC用面板,且所要求的性能非標準化,直到近來全球手機、可攜式電視及DVD顯示器、電玩遊戲機及PDA等IA應用市場呈現爆炸性需求,其功能要求邁入多元化,使得全球中小尺寸TFT面板隨著產品愈來愈多元化,市場已可以明顯感覺到小尺寸顯示器勢力擡頭。 tc 目錄 摘 要…………………………………………………………………………….. I 英文摘要.. ……………………………………………………………………….….. II 誌 謝………………………………………..………………………….…………….III 目錄………………………………………………………………………………... IV 圖目錄………………………………………………………………………………..VI 表目錄…………………………………………………………………………….. VII 第一章 緒論… 1 1.1研究背景與動機 1 1.2研究目的 3 1.3研究範圍 4 1.4研究方法與架構 6 1.5研究限制 8 第二章 文獻探討 9 2.1競爭環境 …9 2.2產業總體環境發展 10 2.3產業環境結構...…………………………………………………………….10 2.3.1一般性策略 10 2.3.2 Amoco策略群組分析模式 12 2.3.3五力分析 13 2.3.4價值鏈模型 18 2.3.5鑽石模型分析模式...………………………………………………..19 第三章 TFT-LCD中小尺寸液晶顯示器產業概況……………………………….. 22 3.1全球液晶顯示器產業發展動向.. ………………………………………….22 3.2日本中小尺寸液晶顯示器產業發展概況 24 3.2.1日本廠商發展動向 25 3.3韓國中小尺寸液晶顯示器產業發展概況.. ……………………………….32 3.3.1韓國廠商發展動向 33 3.4台灣中小尺寸液晶顯示器產業發展概況 ………………………………..36 3.4.1台灣廠商發展動向………………………………………………… 38 3.5中國中小尺寸液晶顯示器產業發展概況…………………………………45 3.5.1中國廠商發展動向.…………………………………………………45 3.5.2外商在中國發展動向.………………………………………………46 第四章 TFT-LCD中小尺寸平面顯示器產品技術發展 49 4.1行動電話面板 50 4.2數位相機面板 52 4.3攝錄影機面板 53 4.4車用導航系統面板 56 4.5 PDA面板… ……………………………………………………………… .56 4.6 遊戲機面板……………………………………………………………….. 56 4.7 DVD Player面板……………………………………………………………56 第五章 TFT-LCD中小尺寸平面顯示器之製程技術與發展 57 5.1陣列製程(Array)…………………………………………………………... 57 5.2液晶注入製程(Cell) 59 5.3模組製程(Module) 60 第六章 TFT-LCD中小尺寸平面顯示器產業競爭環境分析.. ………………….. .64 6.1產能分析 65 6.2成本分析 66 6.3應用市場分析 71 第七章 結論與建議…………………………………………………………………72 7.1結論…………………………………………………………………………72 7.1.1少量多樣的定位…………………………………………………….72 7.1.2提供完整解決方案………………………………………………….73 7.1.3持續研究與創新…………………………………………………….73 7.2研究建議……………………………………………………………………74 7.3對後續研究之建議…………………………………………………………74 參考文獻 76 圖目錄 圖1-1:台灣光電產業分佈 5 圍1-2:本論文之研究方法與流程……………………………………………..6 圖1-3:本研究之研究架構圖 7 圖2-1:Porter之競爭策略矩陣 10 圖2-2:Amoco競爭策略群組….. 12 圖2-3:Porter之五力分析 13 圖2-4:Porter之價值鏈模型 19 圖2-5:Porter之國家競爭力 21 圖3-1:全球TFT-LCD中小尺寸產值預估 23 圖3-2:TFT-LCD產值依面板技術分佈圖 24 圖3-3:日本面板營收分布情形 24 圖3-4:日本中小尺寸面板生產實績 26 圖3-5:台灣中小尺寸TFT-LCD產值推估 37 圖3-6:友達光電出貨產品應用範圍 38 圖3-7︰友達光電出貨量 39 圖3-8︰元太科技歷年之營業額 43 圖4-1︰全球TFT-LCD中小尺寸主要應用市場需求 49 圖4-2:行動電話面板技術應用趨勢 50 圖4-3︰2002年手機AM-LCD面板廠商分佈 52 圖4-4︰數位相機面板應用趨勢………………………………………………52 圖4-5︰2003年第一季數位相機全球市場佔有率(數量)..…………………..53 圖4-6︰攝錄影機技術應用趨勢………………………..……………………..54 圖4-7︰汽車導引系統面板發展趨勢…………………………………………55 圖4-8:2002年汽車導引系統面板主要供應商………………………………55 圖4-9:PDA面板技術應用趨勢………………………………………………49 圖5-1:TFT的陣列製程與彩色濾光片的對組………………………………58 圖5-2:非晶系簿膜電晶體作用原理…………………………………………58 圖5-3:液晶注入工程流程……………………………………………………60 圖5-4:模組製程的流程說明…………………………………………………62 圖5-5:TFT-LCD產業與製程的上下游關係說明……………………………63 圖6-1:TFT-LCD大尺寸與中小尺寸產品的成本比較………………………66 圖6-2:7"COG產品材料成本比例……………………………………………67 圖6-3:15"LCD材料成本分析………………………………………………..67 圖6-4:30"LCD-TV材料成本結構……………………………………………68 圖6-5:奇美及LG.Philips在中小尺寸面板市場佈局…….…………………70 表目錄 表1-1:全球平面顯示器面板產值統計 1 表1-2:台灣平面顯示器面板產值統計 2 表1-3:LCD產品主要應用領域 3 表1-4:全球中小尺寸TFT-LCD發展現況 4 表2-1:Porter三種一般競爭策略 11 表3-1:全球平面顯示器主要應用產品市場產量規模 23 表3-2:Sharp在中小尺寸TFT-LCD生產線 26 表3-3:Sharp生產產品 26 表3-4:TMD在中小尺寸TFT-LCD生產線 27 表3-5:TMD生產產品 27 表3-6:Seiko Epson的TFT-LCD生產線 28 表3-7:Seiko Espon目前主要產品 28 表3-8:Hitachi在中小尺寸TFT-LCD生產線 29 表3-9:Hitachi主要生產產品 29 表3-10:ST-LCD在中小尺寸TFT-LCD生產線 30 表3-11:Sony主要生產產品 30 表3-12:Sanyo在中小尺寸TFT-LCD生產線 30 表3-13:Tottori Sanyo主要生產產品 30 表3-14:NEC主要生產產品 31 表3-15:NEC在TFT-LCD生產線狀況 31 表3-16:ADI目前主要生產產品 32 表3-17:Casio的TFT-LCD生產線 32 表3-18:韓國三代廠以上TFT-LCD生產線產能概況及計劃…………………… 33 表3-19:三星電子主要生產產品 34 表3-20:LG-Philips LCD主要生產產品 35 表3-21:BOE-Hydis主要生產產品 36 表3-22:台灣業者中小尺寸面應用及技術佈局現況 37 表3-23:奇美電子各廠產能及切割尺寸面取數……………………………………40 表3-24:奇美各產品別出貨量預估…..……………………………………………41 表3-25:a-Si TFT與LTPS TFT特性比較…………………………………………44 表3-26:中國TFT-LCD廠商………………………………………………………45 表3-27:外商在中國的LCD產業分佈情形………………………………………47 表4-1:行動電話面板技術的比較…………………………………………………51 表6-1:各世代切割玻璃之分析表…………………………………………………67 表6-2:ODF與傳統液晶注入方式比較……..…………………………………….69 表7-1:日本TFT-LCD廠商中小尺寸顯示器發展概況………… …………………74rf 1. 兩兆雙星計劃,經濟部投資業務處,http://www.investintaiwan.nat.gov/ 2. 從TFT-LCD競爭中走出-小尺寸面板抬頭,國際光電產業資訊,http://www.optoelectro.com/ 3. 2003平面顯示器年鑑,財團法人工業技術研究院產業經濟與資訊服務中心,民國92年七月 4. 李恆毅,台灣監視器產業之競爭環境與發展之研究,清華大學碩士論文,民國86年 5. 戴劍泉,台灣顯示器產業創新政策與產業組合分析,交通大學碩士論文,民國92年 6. 廖聰賢,中小型液晶顯示板經營策略之個案研究---以台灣夏普光電為例,台灣科技大學,民國92年 7. 蔣漢旗,台、韓TFT-LCD製造發展策略比較分析之研究,交通大學碩士論文,民國92年 8. 陳振昌,薄膜電晶體液晶顯示器產業競爭優勢分析,中山大學碩士論文,民國92年 9. 張瑞銘,我國液晶顯示器產業發展關鍵成功因素,高雄第一科技大學碩士論文,民國92年 10. 蕭慕荊,TFT-LCD產業策略群組廠商之關鍵成功因素探討,元智大學碩士論文,民國92年 11. 黃信勳,TFT-LCD最適化生產決策—以中小尺寸面板為例,清華大學碩士論文,民國90年 12. 黃欣怡,以Porter的國家競爭優勢架構分析台灣的TFT-LCD工業,清華大學碩士論文,民國90年 13. 趙志遠,台灣TFT-LCD產業之競爭策略分析,清華大學碩士論文,民國90年 14. 張嘉麟,台灣薄膜電晶體液晶顯示器產業核心能力與競爭優勢分析,交通大學碩士論文,民國90年 15. 吳鑄陶,「企業組織的競爭優勢」,1996年3月。國立清華大學工業管理研討會,新竹 16. Jauch,Lawrence R. and Glueck, William F.“Stragegic Management and Business Policy”,Mc Graw Hill Book Company,(1989) 17. Gereffi, Gary and Hamilton,Gary G.“Commodit Chains and Embedded Networks:The Economic Oganization of Global Capitalism”(1996) 18. 同註17 19. 李輝鈞,台灣積體電路競爭優勢及創新政策分析之研究,交通大學碩士論文,民國89年 20. Porter,M.E.,“Competitive Strategy: Techniques for Analyzing Industries and Competitors”,Free Press,New York,1980 21. “New Business Strategy”,Amoco Chemicals company,1991 22. Porter,M.E.“Competitive Advantage Creating and Superior Performance”,Free Press,New York,1985 23. 同註19 24. Porter, M. E., “The Competitive Advantage of Nations”, Free Press, 1990 25. 同註3 26. 2003年光電顯示器產業及技術動態調查報告,光電科技工業協進會,2004年二月 27. 2003年我國與全球光電產業及技術動態調查報告,光電科技工業協進會,2004年二月 28. 數位時代,TFT-LCD產業大投資,巨思文化股份有限公司,http://www.bnext.com.tw/ 29. 台灣TFT-液晶顯示器前景, 國際光電產業資訊,http://www.optoelectro.com/ 30. 2003平面顯示器年鑑,財團法人工業技術研究院產業經濟與資訊服務中心,民國92年七月 31. 2003平面顯示器年鑑,財團法人工業技術研究院產業經濟與資訊服務中心,民國92年七月 32. 2003平面顯示器年鑑,財團法人工業技術研究院產業經濟與資訊服務中心,民國92年七月 33. 2003年光電顯示器產業及技術動態調查報告,光電科技工業協進會,2004年二月 34. 中小尺寸顯示器發展趨勢,拓墣產業研究所,2003年夏 35. 同註26 36. 夏普光電股份有限公司,http://www.sharp.com/,http//www.sharp.com.tw/ 37. 劉大鵬,光電顯示器NO.39技術分析,拓墣產業研究所,2003/04/17 38. 陳彌彰,sharp營運分析,Digitimes Reseurch,2003/08/25 39. 陳彌彰,科技大廠剖析-sharp, Digitimes Reseurch,2003/08/18 40. Sharp在中小尺寸LCD的利器-CG Silicon技術發展,拓墣產業研究所,2003/06 41. 劉大鵬,Seiko-Epson在中小尺顯示器的發展態度與布局,Digitimes Research,2003/08/04 42. 金美敬,展望2004年三星電子TFT-LCD經營佈局分析,工研院經資中心ITIS計畫 43. 2003年光電顯示器產業及技術動態調查報告,光電科技工業協進會,2004年二月 44. 2003平面顯示器年鑑,財團法人工業技術研究院產業經濟與資訊服務中心,民國92年七月 45. 同註3 46. 同註26 47. 2003年我國與全球光電產業及技術動態調查報告,光電科技工業協進會,2004年二月 48. 蔡燿駿,三貓一猴、打出什麼牌,e天下雜誌,2004年五月 49. 友達光電股份有限公司,http://www.auo.com/ 50. 奇美電子股份有限公司,http://www.cmo.com.tw/ 51. 中華映管股份有限公司,http://www.cptt.com.tw/ 52. 瀚宇彩晶股份有限公司,http://www.hannstar.com/ 53. 廣輝電子股份有限公司,http://www.qdi.com.tw/ 54. 元太科技股份有限公司,http://www.pvi.com.tw/ 55. 統寶光電股份有限公司,http://www.toppoly.com/ 56. 日本廠商投資動態看LTPS之未來潛力,華經產經研究部 57. 群創光電股份有限公司,http://www.innolux.com.tw/ 58. 同註3 59. 同註26 60. 陳健誠,兩岸LCD產業互動研究與商機探討,工研院經資中心ITIS計畫 61. 2003年中國大陸光電產業及市場動態調查報告,光電科技工業協進會,2004年二月 62. 黃振邦,京東方引爆中國大陸LCD產業鏈變革,新電子科技雜誌,2003/11 63. 邱翔,國內最大薄膜電晶體顯示器廠探營,中國廣播網,2004/05/26 64. 賴文漢,TFT-LCD廠-中小尺寸面板市場策略分析, ,拓墣產業研究所 65. 2003年光電顯示器產業及技術動態調查報告,光電科技工業協進會,2004年二月 66. 蕭楓,手機新技術前瞻與應用,手機與行動通訊NO.11產業與技術動態,拓墣產業研究所,2003/09/11 67. 廖顯杰,PDA面板發展趨勢,工研院經資中心ITIS計畫 68. 鄒民欽,TFT-LCD製程探討-以模組廠製程的改善為案例,清華大學碩士論文,民國92年七月 69. 李俊昇,液晶面板組裝廠批量製程派工法則之設計,交通大學碩士論文,民國92年七月 70. 同註26 71. 楊國材,Panel廠降低B/L取得成本之探討,清華大學碩士論文,民國93年七月 72. 陳英傑,我國LCD產業專利資料分析之研究,逢甲大學碩士論文,民國92年六月 73. 陳茂成,先期投資可行性分析,工研院經資中心ITIS計畫 74. TFT-LCD三國演義,電工資訊第151期,2003/7/1 75. 賴彥儒,台灣TFT-LCD產業在零組件及五代廠的進程,新電子科技雜誌,2007期六月號 76. 同註75 77. 賴文漢,焦點報告,平面顯示器NO.8市場策略分析,拓墣產業研究所,2003/09/11 78. 2003年我國與全球光電產業及技術動態調查報告,光電科技工業協進會,2004年二月 79. 同註77id NH0925031056 sid 913879 cfn 0 / id NH0925031057 auc 張炯星 tic 以成本結構為基礎探討高單價產品是高獲利的迷思 adc 吳鑄陶 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 63 kwc 成本結構 kwc 傳統成本制度 kwc 作業基礎成本制度 kwc 隱性成本 abc 台灣中小企業由於它們在資金、人才與相關經營資源的缺乏與弱勢,在回應內外部環境的衝擊時,其所能做的選擇就比較有限。一般而言,朝著新式樣、新功能、新材質等附加價值提升的產品升級方式,是較為常見的。 tc 中文摘要………………………………………………………….Ⅰ ABSTRACT………………………………………………………….Ⅱ 目錄…………………………………………………………..Ⅲ 圖目錄………………………………………………………..Ⅴ 表目錄………………………………………………………..Ⅵ 第一章 緒論………………………………………………….…1 1.1研究背景與動機………………………………………………..1 1.2研究目的…………………………………………………………3 1.3研究範圍與研究程序……………………………………………4 1.4研究方法…………………………………………………………5 1.4.1研究架構……………………………………………………5 1.4.2研究方法……………………………………………………6 1.4.3研究限制……………………………………………………7 1.5論文結構……………………………………………………….…8 第二章 文獻探討…………………………………………………9 2.1價值鏈…………………………………………………………….9 2.2傳統成本制度……………………………………………………10 2.3作業基礎成本制…………………………………………………13 2.3.1作業基礎成本制的源起與發展…………………………13 2.3.2作業基礎成本制之觀念與架構……………………………14 2.3.3作業基礎成本制度的模式…………………………………16 2.3.4作業基礎成本制度之作業層級……………………………17 2.3.5作業成本動因………………………………………………19 2.3.6作業基礎成本制度對管理決策的效益……………………19 2.4本章結論………………………………………………………….22 第三章 產業及個案公司介紹……………………………………23 3.1產業概況……………………………………………………….…23 3.2個案公司背景介紹……………………………………………….24 3.3個案公司組織與流程介紹……………………………………….27 3.4個案公司現況…………………………………………………….28 3.5個案公司成本結構……………………………………………….29 3.6標準成本制度…………………………………………………….29 第四章 從成本結構、技術、環境分析個案……………………33 4.1案例說明…………………………………………………….……33 4.2制度評析……………………………………………….…………35 4.3成本結構剖析…………………………………………………….38 4.4影響成本結構變動的參數……………………………………….44 4.5成本結構對決策的影響………………………………………….46 4.6從隱性成本分析個案…………………………………………….51 4.6.1決策面………………………………………………………51 4.6.2技術面………………………………………………………52 4.6.3環境面………………………………………………………53 第五章 結論與建議……………………………………………..55 5.1結論……………………………………………………………….55 5.2研究限制與建議………………………………………………….57 參考文獻…………………………………………………..…....…59 附錄一:民國91年台灣企業規模別概況……………………………62 附錄二:寶成大事紀…………………………………………………63rf 中文部分 1.李建華(1993),新成本與管理會計制度,超越企管顧問公司。 2.陳明璋(1994),台灣中小企業發展論文集,聯經出版事業公司。 3.92年中小企業白皮書,經濟部。 4.江智遠(2002),企業透過產品升級增加利潤的迷思—兩家電路板廠商的比較分析,清華大學工業工程與工程管理研究所,碩士論文。 5.商業週刊686期(2001),我是一個現金主義者,pp72-77。 6.商業週刊689期(2001),一億雙鞋子的傳奇,pp38-45。 7.高瑞霞(2001),國際供應關係與專業代工製造商垂直整合範圍之研究:以運動鞋為例,台灣大學國際企業研究所,碩士論文。 8.高熏芳,林盈助,王向葵合譯(1996),質化研究設計—一種互動取向的方法Qualitative Research Design – An Interactive Approach(Maxwell J.A.),心理出版社。 9.張雅如(1999),作業基礎成本制設計及交易成本理論之應用—以個案公司為例.,東吳大學會計研究所,碩士論文。 10.簡建全(2001),潛藏性成本之管理—作業基礎成本制之應用,台灣大學會計研究所,碩士論文。 11.李明軒,邱如美合譯(1999),競爭優勢Competitive Advantage(Michael, Porter 1985),天下遠見出版股份有限公司。 12.徐曉慧譯(2000),成本與效應Cost & Effect—Using Integrated Cost Systems to Drive Profitability and Performance(Robert S. Kaplan & Robin Cooper1988),臉譜出版。 13.吳安妮(1996),你是否每天創造高品質的工作,會計研究月刊,127期,pp133-134。 14.吳安妮(2001),作業制成本制度(ABC)在管理決策上之效益,會計研究月刊,182期,pp1-5。 15.嚴玉珠(2000),成本會計(上),五南圖書出版公司。 16.台灣區製鞋工業同業公會(1989),台灣製鞋三十年誌,台灣鞋訊,pp1.1-2.5。 17.92年中小企業白皮書,經濟部。id NH0925031057 sid 913883 cfn 0 / id NH0925031058 auc 王香齡 tic 以XACML標準為基礎之RBAC系統建置研究 adc 陳飛龍 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 英文 pg 56 kwc 資訊安全 kwc 以角色為基礎之存取控制 abc 電腦網路與其相關技術在現今的企業裡已扮演著不可或缺的重要角色。然而,在資訊技術所帶來的便利之下隱藏著資訊安全相關的問題,存取控制問題即是一例。 rf [1 ] Osborn, S., Sandhu, R., & Munawer, Q., (2000). Configuring Role-based Access Control to Enforce Mandatory and Discretionary Access Control Policies. ACM Transactions on Information and System Security, 3(2), 85-106. [2 ] Chang, S. H. (2001). On the Design and the Implementation of Role-based Access Control Model-A View from Bank Lending Workflow. Master thesis, National Chiao Tung University, Hsinchu, Taiwan. [3 ] Vuong, N. N., Smith, G. S., & Deng, Y. (2001, March). Managing Security Policies in a Distributed Environment Using eXtensible Markup Language (XML). Symposium on Applied Computing, Las Vegas, NV, USA. 405-411. [4 ] Chandramouli, R. (2000, July). Application of XML Tools for Enterprise-Wide RBAC Implementation Tasks. In Proceedings of the 5th ACM Workshop on Role-based Access Control, 11-18. [5 ] Schaad, A., Moffett, J., & Jacob J. (2001). The Role-Based Access Control System of a European bank: A Case Study and Discussion. ACM Press, 3-9. [6 ] Bhatti, R., Joshi, J., Bertino, E., & Ghafoor, A. (2003, June 23-26). Access Control in Dynamic XML-based Web-Services with X-RBAC. In Proceedings of the International Conference on Web Services, ICWS ’03, 243–249. [7 ] Mönkeberg, A., & Rakete, R. (2000). Three for one: Role-Based Access-Control Management in Rapidly Changing Heterogeneous Environments. In Proceedings of the 5th ACM Workshop on Role-based Access Control, 83-88. [8 ] Sandhu, R., Ferraiolo, D., & Kuhn, R. (2000, July). The NIST Model for Role-Based Access Control:Towards A Unified Standard. In Proceedings of the 5th ACM Workshop on Role-based Access Control, 47-63. [9 ] Ferraiolo, D., & Kuhn, R. (1992, October). Role-Based Access Control. In Proceedings of 15th National Computer Security Conference, 554-563. [10 ] Sandhu, R. S., Coyne, E. J., Feinstein, H. L., & Youman, C. E. (1996). Role-Based Access Control Models. IEEE Computer, 29(2), 38-47. [11 ] Sandhu, R., Bhamidipati, V., Coyne, E., Ganta, S., & Youman C. (1997, November). The ARBAC97 Model for Role-based Administration of Roles: Preliminary Description and Outline. In Proceedings of the second ACM Workshop on Role-based Access Control, 41-50. [12 ] Sandhu, R., & Munawer, Q. (1999). The ARBAC97 Model for Role-Based Administration of Roles. ACM Transactions on Information and System Security, 2(1), 105-135. [13 ] Sandhu, R. & Munawer, Q. (1999, December). The ARBAC99 Model for Administration of Roles. In Proceedings of 15th Annual Computer Security Applications Conference, Phoenix, Arizona, USA, 229-238. [14 ] Oh, S. & Sandhu R. (2002, June). A Model for Role Administration Using Organization Structure. In Proceedings of the 7th ACM Symposium on Access Control Models and Technologies (SACMAT 2002), Monterey, California, USA, 155-168. [15 ] National Institute of Standards and Technology. (2003, April 4). Role Based Access Control. Retrieved January 13, 2004 from the World Wide Web: http://csrc.nist.gov/rbac/#intro [16 ] OASIS. (2003, March 14). A Brief Introduction to XACML. Retrieved January 13, 2004 from the World Wide Web: http://www.oasis-open.org/committees/dow nload.php/2713/ Brief_Introduction_to_XACML.html [17 ] Humenn, P. (2003, October 29). The Formal Semantics of XACML. Retrieved January 13, 2004 from the Oasis World Wide Web: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml [18 ] Kay, R. (2003, May 19). XACML. Computerworld Framingham, 37(20), 44. [19 ] Sun's XACML Implementation. Retrieved January 15, 2004 from the World Wide Web: http://sunxacml.sourceforge.net [20 ] Anderson, A. (2004, February 13). XACML Profile for Role Based Access Control (RBAC). Retrieved March 18, 2004 from the Oasis World Wide Web: http://docs.oasis-open.org/xacml/cd-xacml-rbac-profile-01.pdf [21 ] http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml [22 ] OASIS. (2003, Auguest 7). eXtensible Access Control Markup Language (XACML) Version 1.1. Retrieved February 18, 2004 from the World Wide Web: http://www.oasis-open.org/committees/xacml/repository/cs-xacml-specification-1.1.pdf [23 ] Lorch, M., Kafura, D., Shah, S. (2003, November 17). An XACML-based Policy Management and Authorization Service for Globus Resources. Grid Computing, 2003. In Proceedings of Fourth International Workshop, 208 – 210.id NH0925031058 sid 913825 cfn 0 / id NH0925031059 auc 吳光耀 tic 最佳排列問題與模糊線性規劃之研究及其在主生產排程案例之應用 adc 王小璠 ty 博士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 英文 pg 145 kwc 最佳化方法 kwc 排列問題 kwc 模糊線性規劃 kwc 基因演算法 kwc 偏好式模式化 kwc 一般化線性分式規劃 kwc 主生產排程 abc 最佳化是一個決策過程,在其過程中要找出最好的方案以利達成我們所欲的目標。依據變數、關係式與評估準則的類型,最佳化問題可謂多樣化。在本論文中,我們考慮兩類源自於一個主生產排程案例的最佳化問題,它們分別稱之為排列問題最佳化(Optimization in permutation problems,簡稱PO)與模糊線性規劃最佳化(Optimization in fuzzy linear programs,簡稱FLO)。兩者皆在應用面與理論面有顯著的重要性。既是最佳化方法,本研究亦即要探討PO與FLO的模式結構與演算法。兩者的發展要點如下所述: tc 中文摘要 I Abstract II Acknowledgements IV Table of Contents V List of Tables VIII List of Figures IX List of Notations X List of Abbreviations XII Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Objectives 2 1.3 Methodology 5 1.4 Framework and Organization 6 Chapter 2. Permutation Property and Uncertainty in a Case of Master Production Scheduling 9 2.1 Preliminary 9 2.2 Problem Statement and Literature Review 11 2.2.1 The Role of Master Production Scheduling 11 2.2.2 Literature Review 12 2.2.3 A Case of MPS 14 2.3 Modeling of the Considered MPS Problem 18 2.3.1 Production Environment 18 2.3.2 The Proposed MPS Model (MS0) 19 2.3.3 Properties of Model (MS0) 22 2.3.4 Decomposition of Model (MS0) 25 2.4 Solution Approaches for Model (MS0) with Extraction and Resolution 27 2.4.1 Mixed-binary Programming Approach 27 2.4.2 Pattern-based Heuristic Approach 28 2.4.3 Extracting Sub-model (MS1) as a Permutation Problem 33 2.4.4 Resolving Sub-model (MS2) as a Fuzzy Linear Program 34 2.5 Summary 35 Chapter 3. Optimization in Permutation Problems based on a Hybrid Genetic Algorithm 38 3.1 Preliminary 38 3.2 Problem Statement and Solution Review 40 3.2.1 Modeling of Permutation Optimization Problems as Model (PO) 40 3.2.2 Review of Solution Approaches to Model (PO) 43 3.2.3 Resolution of Solution Approaches to Model (PO) 45 3.3 A Survey of NS and GA for Model (PO) 46 3.3.1 Foundation of Neighborhood Search 46 3.3.2 Foundation of Genetic Algorithm 50 3.3.3 Foundation of a Hybrid GA 56 3.4 The Proposed Hybrid GA 57 3.4.1 Solution Framework 57 3.4.2 Functional Features of the NS 59 3.4.3 Functional Features of the GA 60 3.4.4 Measure of Performance and Termination Condition of the Hybrid GA 61 3.4.5 Summary of the Hybrid GA with Illustrations 62 3.5 Simulation Results 65 3.5.1 Evaluation and Comparative Studies of Efficiency 66 3.5.2 Evaluation and Comparative Studies of Effectiveness 70 3.5.3 Discussion of Performance Measure 72 3.5.4 Discussion of the Number of Evaluated Solutions 74 3.5.5 Application to the Quadratic Assignment Problem 76 3.6 Summary 78 Chapter 4. Optimization in Fuzzy Linear Programs based on Preference Approach 80 4.1 Preliminary 80 4.2 Problem Statement and Solution Review 82 4.2.1 The Basic Concept of Fuzzy Programming Approach 82 4.2.2 Modeling of Symmetric Fuzzy Linear Programs as Model (FLO) 84 4.2.3 Review of Solution Approaches to Model (FLO) 85 4.2.4 Resolution of Solution Approaches to Model (FLO) 88 4.3 Preference Presentation in a Fuzzy Linear Inequality 90 4.3.1 Target Hyperplanes of a Fuzzy Linear Inequality 90 4.3.2 Validation of the Extremes of Coefficients 91 4.3.3 Membership Functions based on Target Hyperplanes 93 4.4 Preference Approach to Fuzzy Linear Optimization 96 4.4.1 Preference Constraint for the Objective with Target Levels 96 4.4.2 Representation of Model (FLO) with the Proposed Membership Function 98 4.4.3 Existing Solution Approaches to the Auxiliary Model 101 4.5 The Proposed Solution Procedure for the Auxiliary Model 104 4.5.1 Problem Reformulation and Karush-Kuhn-Tucker Condition 104 4.5.2 Basic Solutions and Optimality 106 4.5.3 The Proposed Solution Procedure 108 4.6 The Proposed Fuzzy Linear Optimization Approach with a Numerical Illustration 110 4.7 Numerical Results of the Application Case 117 4.7.1 The Efficiency of our Solution Procedure 118 4.7.2 The Applicability of our FLO Approach 119 4.8 Summary 120 Chapter 5. Conclusions and Future Research 123 5.1 Summary of the Results 123 5.2 Conclusions with Further Research 125 References 128 Appendix 137 A. Solution Procedures of the Proposed Hybrid GA 137 B. An Introduction of Fuzzy Sets and Fuzzy Numbers 139 C. Collections of the Proofs Related to Chapter 4 140 D. Procedures of both Bisection and Dinkelbach-type-2 Algorithms 143 E. The Fuzzy Model corresponding to Model (MS2) 145rf Aarts, E. and Lenstra, J.K., 1997. Local Search in Combinatorial Optimization, John Wiley & Sons, Chichester. Aickelin, U. and Dowsland, K., 2004. An indirect genetic algorithm for a nurse scheduling problem, Computers & Operations Research, 31 761-778. Avriel, M., Diewert, W.E., Schaible, S. and Zang, I., 1988. Generalized Concavity, Plenum Press, New York. Bäck, T., Fogel, D. and Michalewicz, M., 1997. Handbook of Evolutionary Computation, IOP Publishing and Oxford University Press, New York. Balas, E. and Perregaard, M., 2002. Lift-and-project for mixed 0-1 programming: recent progress, Discrete Applied Mathematics 123 129-154. Barros, A.I., Frenk, J.B.G., Schaible, S. and Zhang, S., 1996. A new algorithm for generalized fractional programs, Mathematical Programming 72 147-175. Bean, J., 1994. Genetic algorithms and random keys for sequencing and optimization, ORSA Journal on Computing 6 154-160. Bellman, R. and Zadeh, L.A., 1970. Decision-making in a fuzzy environment, Management Science 17 B141-164. Berry, W.L. and Hill, T., 1992. Linking systems to strategy, International Journal of Operations and Production Management 12 3-15. Bhatia, D. and Kumar, P., 1997. A note on fractional minmax programs containing n-set functions, Journal of Mathematical Analysis and Applications 215 283-292. Billington, P.J., McClain, J.O. and Thomas, L.J., 1983. Mathematical programming approaches to capacity-constrained MRP systems: review, formulation and problem reduction, Management Science 29 1126-1140. Birge, J.R. and Louveaux, F., 1997. Introduction to Stochastic Programming, Springer Series in Operations Research, Springer-Verlag, Berlin. Blackburn, J.D., Kropp, D.H. and Millen, R.A., 1986. A comparison of strategies to dampen nervousness in MRP systems, Management Science 32 413-329. Bodin, L.D., Golden, L., Assad, A.A. and Ball, M.O., 1983. Routing and scheduling of vehicles and crews, Computers & Operations Research 10 63-211. Bruen, A. and Dixon, D., 1975. The n-queens problem, Discrete Mathematics 12 393-395. Burkard, R.E., 1984. Quadratic assignment problems, European Journal of Operational Research 15 282-289. Chanas, S., 1983. The use of parametric programming in FLP, Fuzzy Sets and Systems 11 243-251. Chu, S.C.K., 1995. A mathematical programming approach towards optimized master production scheduling, International Journal of Production Economics 38 269-279. Chu, P.C. and Beasley, J.E., 1997. A genetic algorithm for the generalized assignment problem, Computers & Operations Research 24 17-23. Crouzeix, J.P., Ferland, J.A. and Schaible, S., 1985. An algorithm for generalized fractional programs, Journal of Optimization Theory and Applications 47 35-49. Crouzeix, J.P., Ferland, J.A. and Schaible, S., 1986. A note on an algorithms for generalized fractional programs, Journal of Optimization Theory and Applications 50 183-187. Crouzeix, J.P. and Ferland, J.A., 1991. Algorithms for generalized fractional programming, Mathematical Programming 52 191-207. Djerid, L. and Portmann, M.-C., 2000. How to keep good schemata using cross-over operators for permutation problems, International Transactions in Operational Research 7 637-651. Drexl, A. and Kimms, A., 1998. Beyond Manufacturing Resource Planning (MRP II): Advanced Models and Methods for Production Planning, Springer-Verlag, Berlin. Du, D.Z. and Pardalos, P.M., 1998. Handbook of Combinatorial Optimization, Kluwer Academic, Boston. Fang, S.-C. and Puthenpura, S., 1993. Linear Optimization and Extensions: Theory and Algorithms, Prentice-Hall, New Jersey. Floudas, C.A. and Pardalos, P.M., 2001. Encyclopedia of Optimization, Kluwer Academic, Dordrecht. Frenk, H. and Schaible, S., 2001. Fractional programming. In: Floudas C.A. and Pardalos P.M. (Eds.), Encyclopedia of Optimization 2, Kluwer Academic, Dordrecht, pp. 162-172. Freund, R.W. and Jarre, F., 1995. An interior-point method for multi-fractional programs with convex constraints, Journal of Optimization Theory and Applications 85 125-161. Garey, M.R. and Johnson, D.S., 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, New York. Gen, M. and Cheng, R., 1997. Genetic Algorithms and Engineering Optimization, John Wiley & Sons, New York. Gessner, R.A., 1986. Master Production Schedule Planning, John Wiley & Sons, New York. Glover, F., 1993. A user’s guide to tabu search, Annals of Operations Research 41 3-28. Gue, K.R., Nemhauser, G.L. and Padron, M., 1997. Production scheduling in almost continuous time, IIE Transactions 29 391-398. Hansen, P. and Mladenović, N., 1999. First improvement may be better than best improvement: an empirical study, Les Cahiers du GERAD G-99-40, Montréal, Canada. Ho, Y.C., 1997. On the numerical solution of stochastic optimization problem, IEEE Transactions on Automatic Control 42 727-729. Holland, J.H., 1975. Adaptation in Natural and Artificial Systems, University of Michigan Press. (Second edition, 1992, MIT Press, Cambridge.) Houck, C.R., Joines, J.A. and Kay, M.G., 1996. Comparison of genetic algorithms, random restart, and two-opt switching for solving large location-allocation problems, Computers & Operations Research 23 587-596. Hung, Y.F. and Chien, K.L., 2000. A multi-class multi-level capacitated lot sizing model, Journal of Operational Research Society 51 1309-1318. ILOG, 1997. Using the CPLEX Callable Library, ILOG CPLEX Division, Incline Village. Inuiguchi, M., Ichihashi, H. and Tanaka, H., 1990. Fuzzy programming: a survey of recent developments. In: Slowinski, R. and Teghem, J. (Eds.), Stochastic versus Fuzzy Approaches to Multiobjective Programming under Uncertainty, Kluwer Academic, Dordrecht, pp. 45-68. Inuiguchi, M. and Ramík, J., 2000. Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem, Fuzzy Sets and Systems 111 3-28. Iyer, S.K. and Saxena, B., 2004, Improved genetic algorithm for the permutation flowshop scheduling problem, Computers & Operations Research 31 593-606. Johnson, D.S., Bentley, J.L., McGeoch, L.A. and Rothberg, E.E., 2003. Near-optimal solutions to very large traveling salesman problems, Monograph, in preparation. Joines, J.A., Kay, M.G., King, R.E. and Culbreth, C.T., 2000. A hybrid genetic algorithm for manufacturing cell design, Journal of Chinese Institute of Industrial Engineers 17 549-564. Kimms, A., 1998. Stability measures for rolling schedules with applications to capacity expansion planning, master production scheduling, and lot sizing, Omega 26 355-366. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P., 1982. Optimization by Simulated Annealing, IBM Research Report RC 9355, Yorktown Heights, NY. Klir, G.J. and Folger, T.A., 1988. Fuzzy Sets, Uncertainty and Information, Prentice-Hall, Englewood Cliffs. Kljajić, M., Breskvar, U. and Bernik, I., 2002. Production planning using a simulation model and genetic algorithms. In: Proceedings of IASTED, Modelling and Simulation, Marina Del Rey, California, USA, May 13-15, 2002, 54-58. Knuth, R.M., 1973. The Art of Computer Programming Volume 3: Sorting and Searching, Addison-Wesley, Reading. Lai, Y.J. and Hwang, C.L., 1992. Fuzzy Mathematical Programming – Methods and Applications, Spring-Verlag, Berlin. Lawler, E.L., Lenstra, J.K., Rinnoy Kan, A.H.G. and Shmoys D.B., 1979. The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, John Wiley & Sons, New York. Lin, N.P. and Krajewski, L., 1992. A model for master production scheduling in uncertain environments, Decision Sciences 23 839-861. Mangasarian, O.L., 1969. Nonlinear Programming, Academic Press, New York. Mitchell, M., 1996. An Introduction to Genetic Algorithm, MIT Press, Cambridge. Moore, R.E., 1979. Methods and Applications of Interval Analysis, SIAM Publ., Philadelphia. Moscato, P. and Norman, M., 1992. A memetic approach for the traveling salesman problem: implementation of a computational ecology for combinatorial optimization on message-passing systems. In: Proceeding of the International Conference on Parallel Computing and Transputer Applications, 1992, Amsterdam. Murata, T., Ishibuchi, H. and Tanaka, H., 1996. Genetic algorithms for flowshop scheduling problems, Computers & Industrial Engineering 30 1061-1071. Nakamura, K., 1984. Some extensions of fuzzy linear programming, Fuzzy Sets and Systems 14 211-229. Nemhauser, G.L. and Wolsey, L.A., 1988. Integer and Combinatorial Optimization, John Wiley & Sons, New York. Olhager, J. and Wikner, J., 1998. A framework for integrated material and capacity based master scheduling. In: Drexl, A. and Kimms, A. (Eds.), Beyond Manufacturing Resource Planning (MRP II): Advanced Models and Methods for Production Planning, Springer-Verlag, Berlin, pp. 3-20. Phuong, N.T.H. and Tuy, H., 2003. A unified monotonic approach to generalized linear fractional programming, Journal of Global Optimization 26 229-259. Poon, P.W. and Carter, J.N., 1995. Genetic algorithm crossover operators for ordering applications, Computers & Operations Research 22 135-147. Proud, J.F., 1999. Master Scheduling: A Practical Guide to Competitive Manufacturing, John Wiley & Sons, New York. Ramachandran, B. and Pekny, J.F., 1998. Lower bounds for nonlinear assignment problems using many body interactions, European Journal of Operational Research 105 202-215. Ramík, J. and Rommelfanger, H., 1996. Fuzzy Mathematical Programming based on some New Inequality Relations, Fuzzy Sets and Systems 81 77-87. Rardin, R.L., 1998. Optimization in Operations Research, Prentice-Hall, New Jersey. Reeves, C.R., 1993. Modern Heuristic Techniques for Combinatorial Problems, Oxford, Blackwell. Renders, J.-M. and Flasse, S.P., 1996. Hybrid methods using genetic algorithms for global optimization, IEEE Transactions on Systems, Man and Cybernetics B26 243-258. Rinnooy Kan, A.H.G., 1976. Machine Scheduling Problems: Classification, Complexity and Computation, Martinus Nijhoff, The Hague. Rommelfanger, H., 1984. Concave membership functions and their application in fuzzy mathematical programming. In: Proceedings of the Workshop on the Membership Function, EIASM, Brussels, 88-101. Rommelfanger, H., 1996. Fuzzy mathematical programming and application, European Journal of Operational Research 92 512-527. Sox, C.R. and Gao, Y., 1999. The capacitated lot sizing problem with setup carry over, IIE Transactions 31 173-181. Sridharan, S.V., Berry, W.L. and Udayabhanu, V., 1987. Freezing the master production schedule under rolling planning horizons, Management Science 33 1137-1149. Stancu-Minasian, I.M., 1997. Fractional Programming: Theory, Methods and Applications, Kluwer Academic Publishers, Dordrecht. Süer, G.A., Saiz, M. and Rosado-Varela, O., 1998. Knowledge-based system for master production scheduling. In: Drexl, A. and Kimms, A. (Eds.), Beyond Manufacturing Resource Planning (MRP II): Advanced Models and Methods for Production Planning, Springer-Verlag, Berlin, pp. 21-44. Swarup, K., 1965. Linear fractional functional programming, Operations Research 13 1029-1036. Tate, D.M. and Smith, A.E., 1995. A genetic approach to the quadratic assignment problem, Computers & Operations Research 22 73-83. Tian, P., Ma, J. and Zhang, D.-M., 1999. Application of the simulated annealing algorithm to the combinatorial optimization problem with permutation property: An investigation of generation mechanism, European Journal of Operational Research 118 81-94. Tigan, S., Stancu-Minasian, I. M. and Tigan, I., 2001. Specific numerical methods for solving some special max-min programming problems involving generalized convex functions. In: Hadjisavvas, N., Martinez-Legaz, J.E. and Penot, J.-P. (Eds.), Generalized Convexity and Generalized Monotonicity, Springer-Verlag, Berlin, pp. 349-361. Tong, S., 1994. Interval number and fuzzy number linear programming, Fuzzy Sets and Systems 66 301-306. Trzaskalik, T. and Michnik, J., 2002. Multiple Objective and Goal Programming: Recent Developments, Physica-Verlag, New York. Vasant, P.M., 2003. Application of fuzzy linear programming in production planning, Fuzzy Optimization and Decision Making 3 229-241. Vavasis, S., 1991. Nonlinear Optimization: Complexity Issues, Oxford University Press, New York. Verdegay, J.L., 1982. Fuzzy mathematical programming, in approximate reasoning. In: Gupta, M.M. and Sanchez, E. (Eds.), Decision Analysis, North-Holland, Amsterdam, pp. 231-236. Voss, S., 2001. Meta-heuristics: the state of the art. In: Nareyek, A. (Eds.), Local Search for Planning and Scheduling, Lecture Notes in Artificial Intelligence 2148, Springer, Berlin, pp. 1-23. Wang, R.-C. and Fang, H.-H., 2000. Aggregate production planning in a fuzzy environment, International Journal of Industrial Engineering / Theory, Application and Practice 7 5-14. Wang, R.-C. and Liang, T.-F., 2004. Application of fuzzy multi-objective linear programming to aggregate production planning, Computers & Industrial Engineering 46 17-41. Weinstein, L. and Chung, C.H., 1999. Integrating maintenance and production decisions in a hierarchical production planning environment, Computers & Operations Research 26 1059-1074. Whitley, D., 1997. Permutations. In: Bäck, T., Fogel, D. and Michalewicz, M. (Eds.), Handbook of Evolutionary Computation, IOP Publishing and Oxford University Press, New York, pp. C1.4:1-C1.4:8. Whitley, D., Gordan, V. and Mathias, K., 1994. Lamarckian evolution, the Baldwin effect and function optimization. In: Davidor, Y., Schwefel, H.-P. and Männer, R. (Eds.), Parallel Problem Solving from Nature: PPSN III, Springer-Verlag, Berlin, pp. 6-15. Whitley, D. and Yoo, N.-W., 1995. Modeling simple genetic algorithms for permutation problems. In: Whitley, D. and Vose, M. D. (Eds.), Foundations of Genetic Algorithms 3, Morgan Kaufmann, San Mateo, pp. 163–184. Wolsey, L. A., 1998. Integer Programming, John Wiley & Sons, New York. Wu, K.Y., Wang, H.F., Huang, C. and Chi, C., 2000. Multi-period, multi-product production scheduling – a case of LED manufacturing system. In: Proceedings of the 5th Annual International Conference on Industrial Engineering – Theories, Applications and Practice, Dec 13-15, 2000, Hsinchu, Taiwan. Xie, J., Zhao, X. and Lee, T.S., 2003. Freezing the master production schedule under single resource constraint and demand uncertainty, International Journal of Production Economics 83 65-84. Yagiura, M. and Ibaraki, T., 1996. The use of dynamic programming in genetic algorithms for permutation problems, European Journal of Operational Research 92 387-401. Yamada, T. and Reeves, C.R., 1997. Permutation flowshop scheduling by genetic local search. In: Proceedings of Second International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications (GALESIA '97), Institution of Electrical Engineers, London, 232-238. Zadeh, L.A., 1965. Fuzzy sets, Information and Control 8 338-353. Zäpfel, G., 1998. Customer-order-driven production: an economical concept for responding to demand uncertainty?, International Journal of Production Economics 56 699-709. Zhang, H.-C. and Huang, S.H., 1994. A fuzzy approach to process plan selection, International Journal of Production Research 32 1265-1279. Zimmermann, H.-J., 1976. Description and optimization of fuzzy systems, International Journal of General Systems 2 209-215. Zimmermann, H.-J., 1985. Application of fuzzy set theory to mathematical programming, Information Sciences 36 29-58. Zimmermann, H.-J., 1996. Fuzzy Set Theory and its Application, Kluwer, Boston.id NH0925031059 sid 887810 cfn 0 / id NH0925031060 auc 錡信堯 tic 手工具設計開發與人因評估-以螺絲起子為例 adc 王茂駿 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 137 kwc 螺絲起子設計 kwc 肌電圖 kwc 自主最大施力 kwc 人因工程 abc 本研究以螺絲起子做為研究重點,整合人因工程原則與產品設計的觀念進行新型握把之開發、設計與評估,期能增加螺絲起子握持時的舒適性、增加螺絲起子使用時的效率及功能。 tc 中文摘要••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••Ⅰ 英文摘要••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••Ⅱ 誌謝••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••Ⅳ 目錄••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••Ⅴ 圖目錄•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••Ⅸ 表目錄•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••…•••••••••••XⅢ 第一章 緒論••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••1 1-1 研究背景•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••1 1-2 研究動機•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••2 1-3 研究目的•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••2 1-4 研究流程•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••3 1-5 研究範圍及限制••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••4 第二章 文獻探討••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••5 2-1 手部生物力學分析•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••5 2-2 手部與握把介面操作探討••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••8 2-3 累積性傷害••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••11 2-3-1累積性傷害簡介•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••12 2-3-2手工具引起之傷害及原因•••••••••••••••••••••••••••••••••••••••••••••••••••••••12 2-4 手工具設計準則與人因設計個案••••••••••••••••••••••••••••••••••••••••••••••••••16 2-4-1手工具設計準則••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••16 2-4-2手工具之人因設計••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••19 2-5 螺絲起子相關研究••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••25 2-6 專利文獻握把分析•••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••31 第三章 新型握把研究開發構想••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••34 3-1 研究架構•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••34 3-2 設計開發構想•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••36 3-2-1 設計理念•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••36 3-2-2 設計流程•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••36 3-2-3 概念設計說明•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••37 3-2-4 初步相關資料蒐集-觀察法•••••••••••••••••••••••••••••••••••••••••••••••••••••37 第四章 起子握把與手套評量(實驗一)••••••••••••••••••••••••••••••••••••••••••••••••••••48 4-1實驗目的••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••48 4-2實驗設計••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••48 4-2-1受測者•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••48 4-2-2實驗變項••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••48 4-2-3實驗器材••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••51 4-2-4實驗場地••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••53 4-2-5實驗相關設定•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••54 4-2-6實驗流程••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••54 4-2-7分析方法••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••55 4-3 實驗結果••••••••••••••••••••••••••••••••••••••••••••••••••••••••..••••••••••••••••••••••••57 4-3-1 作業績效相關分析•••••••••••••••••••••••••••••••••••••..••••••••••••••••••••••••57 4-3-2 肌電圖(EMG)相關分析•••••••••••••••••••••••••••••••••..••••••••••••••••••••••••58 4-3-3 主觀感受相關分析•••••••••••••••••••••••••••••••••••••••..•••••••••••••••••••••••60 4-3-4 結果•••••••••••••••••••••••••••••••••••••••••••••••••••••••••..•••••••••••••••••••••••64 4-3-5 實驗相關結果••••••••••••••••••••••••••••••••••••••••••••••…••••••••••••••••••••••66 4-4 初步設計•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••67 4-1-1 樣品規格•••••••••••••••••••••••••••••••••••••••••••••••••••..•••••••••••••••••••••••67 4-1-2 樣品模型••••••••••••••••••••••••••••••••••••••••••••••••••••…••••••••••••••••••••••68 第五章 新型握把直徑與作業面評量(實驗二)•••••••••••••••••••••••••••••••••••••••••••70 5-1實驗目的••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••70 5-2實驗設計••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••70 5-2-1受測者•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••70 5-2-2實驗變項••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••70 5-2-3實驗器材••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••73 5-2-4實驗場地••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••74 5-2-5實驗相關設定•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••74 5-2-6實驗流程••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••76 5-2-7分析方法••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••77 5-3 實驗結果••••••••••••••••••••••••••••••••••••••••••••••••••••••••..••••••••••••••••••••••••80 5-3-1 作業績效相關分析•••••••••••••••••••••••••••••••••••••..••••••••••••••••••••••••80 5-3-2 肌電圖(EMG)相關分析•••••••••••••••••••••••••••••••••..••••••••••••••••••••••••82 5-3-3 壓力片相關分析••••••••••••••••••••••••••••••••••••••••••..•••••••••••••••••••••••83 5-3-4 主觀感受相關分析••••••••••••••••••••••••••••••••••••••..•••••••••••••••••••••••85 5-3-5 結果•••••••••••••••••••••••••••••••••••••••••••••••••••••••••…••••••••••••••••••••••90 5-4 樣品修正設計••••••••••••••••••••••••••••••••••••••••••••••••••..••••••••••••••••••••••••92 5-5 握把成品••••••••••••••••••••••••••••••••••••••••••••••••••••••••..••••••••••••••••••••••••95 第六章 新型握把績效評量(實驗三)•••••••••••••••••••••••••••••••••…•••••••••••••••••••••96 6-1實驗目的••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••96 6-2實驗設計••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••96 6-2-1受測者•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••96 6-2-2實驗變項••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••96 6-2-3實驗器材••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••98 6-2-4實驗場地••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••99 6-2-5實驗相關設定•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••99 6-2-6實驗流程•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••99 6-3 實驗結果••••••••••••••••••••••••••••••••••••••••••••••••••••••••..••••••••••••••••••••••••101 6-3-1 作業績效相關分析•••••••••••••••••••••••••••••••••••••..••••••••••••••••••••••••101 6-3-2 肌電圖(EMG)相關分析•••••••••••••••••••••••••••••••••..••••••••••••••••••••••••103 6-3-3 主觀感受相關分析••••••••••••••••••••••••••••••••••••••..•••••••••••••••••••••••103 6-3-4 結果•••••••••••••••••••••••••••••••••••••••••••••••••••••••••…••••••••••••••••••••••106 6-4成品評估及特色說明••••••••••••••••••••••••••••••••••••••••••..••••••••••••••••••••••••107 第七章 結論與建議•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••109 7-1 結論••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••..••••••••••••••••••••••••109 7-2 建議••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••..••••••••••••••••••••••••110 參考文獻•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••..•••••••••••••••••••112 附錄一 主觀評比問卷•••••••••••••••••••••••••••••••••••••••••••••••••••.••.•••••••••••••••••••117 附錄二 手部尺寸量測數據•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••133 圖目錄 圖1-1 研究流程圖••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••3 圖2-1 手指與手掌結構圖•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••6 圖2-2 手腕關節之活動••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••7 圖2-3 手臂結構圖••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••8 圖2-4 手臂肌肉分佈圖••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••8 圖2-5 手與工具握把間的偶合•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••10 圖2-6 手部抓握的類型••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••11 圖2-7 人因握把設計之鑿子••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••19 圖2-8 人因握把設計鑿子握持姿勢•••••••••••••••••••••••••••••••••••••••••••••••••••••••19 圖2-9 人因鑿子握柄•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••20 圖2-10 彎柄式鐵鎚•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••20 圖2-11 鎗型握把之工具•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••21 圖2-12 不同型式刀具作業之姿勢••••••••••••••••••••••••••••••••••••••••••••••••••••••••••21 圖2-13 實驗測試用之平銼刀型式••••••••••••••••••••••••••••••••••••••••••••••••••••••••••22 圖2-14 抓握時前臂正中姿勢與握把中心自然角度•••••••••••••••••••••••••••••••••••••22 圖2-15 不同型式剪鉗作業之姿勢••••••••••••••••••••••••••••••••••••••••••••••••••••••••••23 圖2-16 尖嘴鉗握把上包覆著具壓縮性塑膠材質•••••••••••••••••••••••••••••••••••••••23 圖2-17 按手掌尺寸所設計之三種不同大小的剪鉗•••••••••••••••••••••••••••••••••••••24 圖2-18 剪鉗設計所考慮的人因要素•••••••••••••••••••••••••••••••••••••••••••••••••••••••24 圖2-19 金屬線打結手工具••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••25 圖2-20 螺絲起子造型之差異••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••25 圖2-21 直柱型握把專利-頭細尾粗型•••••••••••••••••••••••••••••••••••••••••••••••••••••31 圖2-22 直柱型握把專利-頭細中粗尾縮型•••••••••••••••••••••••••••••••••••••••••••••••31 圖2-23 直柱型握把專利-三階段增粗型••••••••••••••••••••••••••••••••••••••••••••••••••32 圖2-24 槍型握把專利•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••32 圖2-25 直柱轉槍型握把專利••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••33 圖3-1 研究架構圖••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••35 圖3-2 設計流程圖••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••36 圖3-3 手部握合握把之邊界••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••38 圖3-4 握持邊界試驗••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••38 圖3-5 握把造型適手與手掌表面積利用度最高之狀態•••••••••••••••••••••••••••••••39 圖3-6 握持小握把之狀態••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••39 圖3-7 握持大握把之狀態••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••39 圖3-8 特徵點間距•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••39 圖3-9 正確的特徵點周長••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••40 圖3-10 錯誤的特徵點周長•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••40 圖3-11 消失的長度••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••41 圖3-12 手指與握把相交夾角••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••41 圖3-13 多估計之特徵點長度••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••41 圖3-14 握把前端-力握之差異••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••42 圖3-15 手部尺寸量測結果••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••42 圖3-16 握把部位區分•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••43 圖3-17 對準(垂直作業) •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••43 圖3-18 對準(水平作業) •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••43 圖3-19 一般轉動(高阻力)(垂直作業) ••••••••••••••••••••••••••••••••••••••••••••••••••45 圖3-20 一般轉動(低阻力)(垂直作業) •••••••••••••••••••••••••••••••••••••••••••••••••••45 圖3-21 一般轉動(高阻力)(水平作業) •••••••••••••••••••••••••••••••••••••••••••••••••••45 圖3-22 一般轉動(低阻力)(水平作業) •••••••••••••••••••••••••••••••••••••••••••••••••••45 圖3-23 力握扭轉(垂直作業) •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••46 圖3-24 力握扭轉(水平作業) •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••46 圖3-25 不同狀態下握把部位的使用情形•••••••••••••••••••••••••••••••••••••••••••••••••46 圖4-1 實驗一之握把種類•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••49 圖4-2 實驗一之手套種類•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••50 圖4-3 無線肌電訊號儀••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••51 圖4-4 扭力量測儀••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••52 圖4-5 可調式作業平台••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••52 圖4-6 實驗一之螺絲•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••52 圖4-7 實驗一之鎖附版••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••53 圖4-8 實驗場地•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••53 圖4-9 實驗一之儀器配置•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••53 圖4-10 實驗一之流程圖••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••55 圖4-11 握把偏好統計圖•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••61 圖4-12 握把特徵重要性統計圖••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••62 圖4-13 螺絲起子握把樣品規格•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••68 圖4-14 握把樣品3D設計圖••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••68 圖4-15 握把樣品實體•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••69 圖5-1 實驗二之握把種類•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••71 圖5-2 實驗二之作業方向種類••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••72 圖5-3 壓力片•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••73 圖5-4 實驗二之螺絲•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••74 圖5-5 實驗二之鎖附版••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••74 圖5-6 實驗二之儀器配置•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••74 圖5-7 拿取螺絲移動距離之設定••••••••••••••••••••••••••••••••••••••••••••••••••••••••••75 圖5-8 鎖附螺絲深度之設定••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••75 圖5-9 作業高度之設定••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••75 圖5-10 實驗二流程圖••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••77 圖5-11 壓力片分析方式••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••78 圖5-12 壓力片分析結果彙整方式•••••••••••••••••••••••••••••••••••••••••••••••••••••••••79 圖5-13 綜合績效圖(時間-扭力) •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••81 圖5-14 壓力分佈圖••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••85 圖5-15 握把偏好統計•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••87 圖5-16 受試者提出缺點數統計•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••87 圖5-17 實驗二-握把區段評量•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••93 圖5-18 螺絲起子握把成品規格•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••94 圖5-19 握把成品3D設計圖••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••95 圖5-20 握把成品實體•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••95 圖6-1 實驗三之握把種類•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••97 圖6-2 實驗三之流程圖••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••100 圖6-3 綜合績效圖(時間-扭力)••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••102圖6-4 握把偏好統計••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••104 圖6-5 實驗三-握把區段評量•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••108圖6-6 新型握把特色•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••108 表目錄 表2-1 螺絲起子相關研究(1/2)•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••29表2-2 螺絲起子相關研究(2/2)•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••30 表3-1 螺絲起子設計特點•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••47 表4-1 受測者基本資料表•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••48 表4-2 實驗一變項••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••49表4-3 作業績效變異數分析••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••58 表4-4 握把之作業績效-Duncan多重檢定••••••••••••••••••••••••••••••••••••••••••••••58 表4-5 手套之作業績效-Duncan多重檢定••••••••••••••••••••••••••••••••••••••••••••••58 表4-6 EMG變異數分析••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••59 表4-7 握把之肌肉活動度-Duncan多重檢定•••••••••••••••••••••••••••••••••••••••••••59 表4-8 手套之肌肉活動度-Duncan多重檢定•••••••••••••••••••••••••••••••••••••••••••60 表4-9 主觀評比變異數分析結果-身體部位••••••••••••••••••••••••••••••••••••••••••••62 表4-10 主觀評比變異數分析結果-手掌部位••••••••••••••••••••••••••••••••••••••••••••63 表4-11 主觀評比變異數分析結果-握把部分••••••••••••••••••••••••••••••••••••••••••••63 表4-12 握把之主觀評比-Duncan多重檢定••••••••••••••••••••••••••••••••••••••••••••••64 表4-13 手套之主觀評比-Duncan多重檢定••••••••••••••••••••••••••••••••••••••••••••••64 表4-14 實驗一結果-握把方面••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••65 表4-15 實驗一結果-手套方面••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••66 表4-16 實驗法-握把設計參考資訊••••••••••••••••••••••••••••••••••••••••••••••••••••••••66 表5-1 受測者基本資料表•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••70 表5-2 實驗二變項••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••71 表5-3 作業績效變異數分析•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••81 表5-4 握把之作業績效-Duncan多重檢定••••••••••••••••••••••••••••••••••••••••••••••81 表5-5 作業面之作業績效-平均值••••••••••••••••••••••••••••••••••••••••••••••••••••••••81 表5-6 綜合績效表(時間-扭力) ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••82 表5-7 EMG變異數分析••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••83 表5-8 握把之肌肉活動度-Duncan多重檢定•••••••••••••••••••••••••••••••••••••••••••83 表5-9 作業面之肌肉活動度-平均值••••••••••••••••••••••••••••••••••••••••••••••••••••83 表5-10 壓力片變異數分析•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••84 表5-11 握把之壓力片-Duncan多重檢定•••••••••••••••••••••••••••••••••••••••••••••••••85 表5-12 作業面之壓力片-平均值•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••85 表5-13 主觀評比變異數分析結果-身體部位••••••••••••••••••••••••••••••••••••••••••••88 表5-14 主觀評比變異數分析結果-手掌部位••••••••••••••••••••••••••••••••••••••••••••88 表5-15 主觀評比變異數分析結果-握把整體部分••••••••••••••••••••••••••••••••••••••89 表5-16 主觀評比變異數分析結果-握把局部部分••••••••••••••••••••••••••••••••••••••89 表5-17 握把之主觀評比-Duncan多重檢定••••••••••••••••••••••••••••••••••••••••••••••89 表5-18 作業方向之主觀評比-平均值•••••••••••••••••••••••••••••••••••••••••••••••••••••90 表5-19 實驗二結果-握把方面•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••91 表5-20 實驗二結果-作業方向方面••••••••••••••••••••••••••••••••••••••••••••••••••••••••92 表5-21 握把樣品缺點與改善••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••93 表6-1 受測者基本資料表•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••96 表6-2 實驗三變項••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••97 表6-3 作業績效變異數分析••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••101 表6-4 握把之作業績效-Duncan多重檢定••••••••••••••••••••••••••••••••••••••••••••••102 表6-5 綜合績效表(時間-扭力)••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••102 表6-6 EMG變異數分析•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••103 表6-7 握把之肌肉活動度-Duncan多重檢定•••••••••••••••••••••••••••••••••••••••••••103 表6-8 主觀評比變異數分析結果-身體部位•••••••••••••••••••••••••••••••••••••••••••••105 表6-9 主觀評比變異數分析結果-手掌部位•••••••••••••••••••••••••••••••••••••••••••••105 表6-10 主觀評比變異數分析結果-握把整體部分•••••••••••••••••••••••••••••••••••••••106 表6-11 主觀評比變異數分析結果-握把局部部分•••••••••••••••••••••••••••••••••••••••106 表6-12 握把之主觀評比-Duncan多重檢定••••••••••••••••••••••••••••••••••••••••••••••106 表6-13 實驗三結果•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••107rf [1 ] 手工具使用危害性之調查研究,行政院勞工委員會勞工安全衛生研究所, 1996。 [2 ] 李開偉,人因工程-基礎與應用第一版,全華科技圖書,1999。 [3 ] 房屋建築業勞工肌肉骨骼傷害問題調查研究,行政院勞工委員會勞工安全衛生研究所, 1997。 [4 ] 房屋建築業勞工下背傷害危害分析及改善研究,行政院勞工委員會勞工安全衛生研究所,1998。 [5 ] 胡明一、陳懿慧、謝慧瑛、孫穆乾,人體解剖學,藝軒圖書,1995。 [6 ] 陳松林,單指與雙指最大屈力之生物力學分析,工業技術研究院碩士論文, 1993。 [7 ] 陳明德、林清泉、李滄江,握把直徑與總長度對起子工作績效與主觀偏好之影響,中華民國人因工程學會2002年會暨研討會論文集,2002。 [8 ] 許勝雄、彭游、吳水丕,人因工程學,揚智文化,1991。 [9 ] 電子業從業人員之皮膚與肌肉骨骼疾病調查研究,行政院勞工委員會勞工安全衛生研究所,1996。 [10 ] 黃証柳,滑鼠之人因工程與績效評估,台灣科技大學碩士論文,1998。 [11 ] 黃翠華,握持姿勢、握持物體重量對握力之影響,中華大學碩士論文,1999。 [12 ] 職業疾病監控實證研究—上肢傷害,行政院勞工委員會勞工安全衛生研究所,1996。 [13 ] Armstrong, T., Foulke, J., Joseph, B. and Goldstein, S., “Investigation of cumulative trauma disorders in a poultry processing plant”, American Industrial Hygiene Association Journal, 43(2), 103-116 (1982). [14 ] Ayoub, M.M. and Presti,P.L., “The determination of optimum size cylindrical handle by use of electromyography”, Ergonomics, 14(4), 509-518 (1971). [15 ] Buchholz, B., Frederick, L.J. and Armstrong, T.J., “An investigation of human palmar skin friction and the effect of materials, pinch force and moisture”, Ergonomics, 31(3), 317-325 (1988). [16 ] Chung, H.C., Kluth, K., Strasser, H. and Wang, M.J., “Evaluating the effect of Grease on Screwdriver Torque MVC”, Proceedings of the Annual Spring Conference of the GfA on the Occasion of the 50 Anniversary of the Foundation of Gesellschaft fuer Arbeitswissenschaft e.V. (GfA) and the XVII Annual Conference of the International Society for Occupational Ergonomics & Safety (ISOES), Munich, Germany, 399-402 (2003). [17 ] Cochran, D.J. and Riley, M.W., “The effects of handle shape and size on exerted forced”, Human Factors, 28(3), 253-265 (1986). [18 ] Dempsey, P.G., McGorry, R.W., O’Brien, N.V.,“ The effect of work height, workpiece orientation, gender, and screwdriver type on productivity and wrist deviation”, International Journal of Industrial Ergonomics, 33, 339-346 (2004) [19 ] Eastman Kodak Company, “Human Factors Section, Ergonomic Design for People at Work: Workplace, Equipment Design and Information Transfer”, Vol.1, Belmont, CA: Lifetime Learning Publications (1983). [20 ] Emanuel, J., Mills, S. and Bennett, J., “In search of a better handle”, In Proceedings of the Symposium: Human Factors and Industrial Design in Consumer Products, Medford, MA: Tufts University (1980). [21 ] Fellows, G.L. and Freivalds, A., “Ergonomics evaluation of a foam rubber grip for tool handles”, Applied Ergonomics, 22(4), 225-230 (1991). [22 ] Greenberg, L. and Chaffin, D.B., “Workers and their Tools”, Pendell Publishing, Midland (1977). [23 ] Habes, D.J. and Grant, K.A. “An electromyoraphic study of maximum torques and upper extremity muscle activity in simulated screwdriving tasks”, International Journal of Industrial Ergonomics, 20, 339-346 (1997). [24 ] Hsia, P. and Drury, C.G., “A simple method of evaluating handle design”, Applied Ergonomic, 17(3), 209-213 (1986). [25 ] Hsu, S.H. and Chen, Y.H., “Evaluation of bent-handled files”, International Journal of Industrial Ergonomics, 25, 1-10 (1999). [26 ] Imrhan, S.N. and Farahmand, K., “Male troque strength in simulated oil rig task:the effects of grease-smeared gloves and handle length, diameter and orientation”, Applied Ergonomics, 30, 455-462 (1999). [27 ] Jacob, W.W., “The turn of the screw: The history of Stanley screwdrivers”, The Chronicle of the Early American Industries Association, Inc., 55(1), 31-34 (2002). [28 ] Kadefors, R., Areskoug, A., Dahlman, A., Kilbom A., Sperling, L., Wikstrom, L. and Oster, J., “An approach to ergonomics evaluation of hand tools”, Applied Ergonomics, 24(3), 203-211 (1993). [29 ] Kroemer, K.H.E., “Coupling the hand with the handle: An improved notation of touch, grip, and grasp”, Human Factors, 28(3), 337-339 (1986). [30 ] Konz, S., “Work Design: Industrial Ergonomics”, Publishing Horizons, Inc., Worthington, Ohio, USA (1990). [31 ] Lewis, W.G., Narayan C.V., “Design and Size of Ergonomic Handles for Hand Tool.”, Appliced Ergonomics, 24, 351-356 (1993). [32 ] Li, K.W., “ Ergonomic design and evaluation of wire-tying hand tools”, International Journal of Industrial Ergonomics,30,149-161 (2002). [33 ] Loslever, P., and Ranaivosoa A., “Biomechanical and epidemiological of carpal tunnel syndrome at workplaces with high risk factors”, Ergonomics, 36(5), 537-554 (1993). [34 ] Mital , A., “Effect of body posture and common hand tools on peak torque exertion capabilities”, Applied Ergonomics, 17(2), 87-96 (1986). [35 ] Mital, A. and Channaveeraiah, C., “Peak volitional torques for wrenches”, International Journal of Industrial Ergonomics, 3, 41-64 (1988) [36 ] Mital, A. and Karwowski, W., “Workspace, Equipment and Tool Design”, Amsterdam, Elsevier, 219-256 (1991). [37 ] Mital A., Kuo T. and Faard H.F., “A quantitative evaluation of gloves used with non-powered hand tools in routine maintenance tasks”, Ergonomics, 37(2), 333-343 (1994). [38 ] Mital, A., “Nonfatal occupational injuries in the United States”, International Journal of Industrial Ergonomics , 25 , 109-129 (1999). [39 ] Napier, J., “The prehensile movement of the human hand”, Journal of bone and Joint surgery, 38, 902-913 (1956). [40 ] Nordin M., Frankle V.H., basic Biomechanics of the Musculoskeletal System, 1980. [41 ] Pheasant, S. and O`Neill, D., “Performance in gripping and turning -a study in hand/handle effectiveness”, Applied Ergonomics, 6, 205-208 (1975). [42 ] Pryce, J., “The wrist position between neutral and ulnar deviation that facilitates the maximum power grip strength”, Journal of Biomechanics, 13, 505-511 (1980). [43 ] Putz-Anderson, V., Cumulative Trauma Disorders: A manual for musculoskeletal diseases of upper limbs”, Taylor & Francis, London , 1988. [44 ] Purswell, J. and Terrell, R., “The influence of forearm and wrist orientation on static grip strength as a design criterion for hand tool”, Proceeding of the International Ergonomics Association, IEA College Park, Maryland, 28-32 (1976). [45 ] Radwin, K. and Haney, S., “An ergonomics guide to hand tools”, AIHA Ergonomics Committee, Fairfax, VA.22031 ISBN 0-932627-75-7 (1996). [46 ] Schoenmarklin, R.W. and Marras, W.S., “Effects of handle angle and work orientation on hammering: Wrist motion and hammering performance", Human Factors, 31(4), 397-411 (1989a). [47 ] Schoenmarklin, R.W. and Marras, W.S., “Effects of handle angle and work orientation on hammering: Wrist motion and hammering performance", Human Factors, 31(4), 413-420 (1989b). [48 ] Shih, Y.C. and Wang, M.J.,“ Hand/tool interface effects on human torque capacity”, International Journal of Industrial Ergonomics, 18, 205-213 (1996) [49 ] Smith, S. and McMullin, D.L., “ Comparison of force output and muscle EMG during use when using a sit/stand stool versus standing”, Proceedings of the IEA 2000/HFES 2000 Congress, 264-267 (2000). [50 ] Strasser, H., “Electromyography of upper extremity muscles and ergonomic applications”, Electromyography in ergonomics, Taylor & Francis Inc., 217-226 (1996). [51 ] Strasser, H. and Wang, B., “Screwdriver torque strength and physiological cost of muscles dependent on hand preference and direction of rotation”, Occupational Ergonomics, 1(1), 13-22 (1998). [52 ] Tichauer, E.R., “Biomechanics sustains occupational safety and health”, Industrial Engineering, 8(2), 46-56 (1976). [53 ] Tichauer, E.R. and Gage, H., “Ergonomics principles basis to hand tool design”, American Industrial Hygiene Association Journal, 38, 103-116 (1977). [54 ] Tichauer, E.R.,The Biomechanical Basis of Ergonomics: Anatomy Applied to the Design of work Stations, New York Wiley, 1978. [55 ] Wang, M.J., Lin, C.L., Shih, Y.C., Strasser, H., “The effect of screwdriver handle design and blade length on muscle activity and torque MVC”, Proceedings of the IEA 2003 Congress (2003). [56 ] Wells, R. and Greig, M., “Characterizing human hand prehensile strength by force and moment wrench”, Ergonomics, 44(15), 1392-1402 (2001).id NH0925031060 sid 913847 cfn 0 / id NH0925031061 auc 黃啟明 tic "樣本平均數變異數"之理想線性組合估計式分析 adc 桑慧敏 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 31 kwc 樣本平均數變異數 kwc 線性組合 abc 在模擬實驗中,我們通常需要考慮兩個重要的問題:一是如何選擇適當的績效衡量指標(performance measure);決定了績效衡量指標之後,另一個問題便是如何決定績效衡量指標的品質(quality measure)。對於前者,我們通常以母體平均數作為績效衡量指標,以樣本平均數為其點估計(point estimator)。對於後者,我們通常以樣本平均數的變異數大小作為其品質指標,本論文就是研究這個問題。 tc 目 錄 摘 要 i 誌 謝 詞 ii 第 1 章 緒 論 1 1-1 研究背景 1 1-2 研究目的 2 1-3 符號定義 3 第 2 章 文獻回顧 4 2-1 批量估計式(Batch means) 4 2-2 近似最佳批量估計式(1-2-1 OBM) 7 第 3 章 Song 的線性組合估計式 9 3-1 一般型線性組合估計式模型 9 3-2 特殊型線性組合估計式模型 10 第 4 章 線性組合估計式之演算法 12 4-1 各參數之估計式 12 4-2 線性組合估計式之演算法 14 第 5 章 實驗結果與討論 16 5-1 實驗模式與條件 16 5-2 實驗結果 18 5-3 結果分析與討論 23 第 6 章 結論與未來研究方向 27 6-1 結論 27 6-2 未來研究方向 27 參考文獻 28 表 目 錄 表 5.1:AR(1)實驗參數表,樣本數30,Var(Y-bar)=1 17 表 5.2:M/M/1實驗參數表,樣本數30,Var(Y-bar)=1 17 表 5.3:AR(1)模式結果 19 表 5.4:M/M/1模式結果 20 表 5.5:AR(1)模式下,自我相關係數估計值結果 21 表 5.6:M/M/1模式下,自我相關係數估計值結果 21 表 5.7:AR(1)模式下之改善率 25 表 5.8:M/M/1模式下之改善率 25 圖 目 錄 圖 2.1:批量估計式 7 圖 5.1:AR(1)模式下,自我相關係數估計值之圖形 21 圖 5.2:AR(1)模式下,各估計式之均方誤 22 圖 5.3:M/M/1模式下,自我相關係數估計值之圖形 22 圖 5.4:M/M/1模式下,各估計式之均方誤 23 圖 5.5:AR(1)模式下,線性組合估計式與1-2-1OBM 之均方誤 24 圖 5.6:M/M/1模式下,線性組合估計式與1-2-1OBM 之均方誤 25rf Crane, M. A., and Iglehart, D. L. 1975. Simulating stable stochastic systems, III: regenerative processes and discrete-event simulations. Operations Research, 23, 33-45. [2 ] Crane, M. A., and Lemoine, A. J. 1977. An Introduction to the Regenerative Method for Simulation Analysis. Lecture Notes in Control and Information Sciences, vol. 4. Springer-Verlag, New York. [3 ] Glynn, P. W., and Iglehart, D. L. 1986. Estimation of steady-state central moments by the regenerative method of simulation. Operations Research Letters, 5, 271-276. [4 ] Priestly, M. B. 1981. Spectral Analysis and Time Series. Academic Press, London. [5 ] Heidelberger, P., and Welch, P. D. 1981. A spectral method for confidence interval generation and run length control in simulation. Communications of the ACM, 24, 233-245. [6 ] Foley, R. D. and Goldsman, D. 1988. Confidence intervals using orthonormally weighted standardized time series. In Proceedings of the Winter Simulation Conference, 422-424. [7 ] Goldsman, D., Kang, K. and Seila, A. F. 1993. Cramer-von Mises variance estimators for simulations. Technical Report, School of Industrial and System Engineering, Georgia Institute of Technology, Atlanta, Georgia. [8 ] Welch, P.D. 1987. On the relationship between batch means, overlapping batch means and spectral estimation. In Proceedings of the Winter Simulation Conference, 320-323. [9 ] Hanna, E. J. 1957. The variance of the mean of a stationary process. Journal of the Royal Statistical Society, B 19, 282-285. [10 ] Moran, P. A. P. 1975. The estimation of standard errors in Monte Carlo simulation experiments. Biometrika, 62, 1-4. [11 ] Schmeiser, B. W. 1982. Batch size effects in the analysis of simulation output. Operations Research 30, 556-568. [12 ] Meketon, M. S. and B. W. Schmeiser. 1984. Overlapping batch means: Something for nothing ? In Proceedings of the Winter Simulation Conference, 227-230. [13 ] Schruben, L. W.1983. Confidence interval estimation using standardized time series. Operations Research 31, 1090-1108. [14 ] Glynn, P. W. and Iglehart, D. L. 1990. Simulation output analysis using standardized time series. Mathematics of Operations Research, 15, 1-16. [15 ] Song, W.-M.T., “Estimators of the variance of the sample mean: Quadratic forms, optimal batch sizes, and linear combinations”, Ph.D. Dissertation, School of Industrial Engineering, Purdue University, 1988. [16 ] Song,W.-M.T., and B. W. Schmeiser. 1988a. On the Dispersion Matrix of Variance Estimators of the Sample Mean in the Analysis of Simulation Output. Opns. Res. Letts. 7, 259-266. [17 ] Song,W.-M.T., and B. W. Schmeiser. 1988b. Minimal-mse Linear Combinations of Variance Estimators of the Sample Mean. In Proceedings of the Winter Simulation Conference, M. Abrams, P. Haigh and J. Comfort (eds.), 414-421. [18 ] Song,W.-M.T., 1996. On the estimation of optimal batch sizes in the analysis of simulation output. European Journal of Operational Research, Vol: 88, Issue: 2, p. 304-319, January 20, 1996. [19 ] Pedrosa and B. W. Schmeiser, 1994. Estimating Variance of the Sample Mean: Optimal Batch-Size Estimation and 1-2-1 Overlapping Batch Means. [20 ] Song,W.-M.T., and Schmeiser, B. W. 1995. Optimal mean-squared-error batch size. Management Science, vol:41, No.1, January.id NH0925031061 sid 913814 cfn 0 / id NH0925031062 auc 劉佑信 tic 台灣動態記憶體公司的技術轉移與知識擴散:個案探討 adc 朱詣尹 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 117 kwc 技術移轉 kwc 知識擴散 abc 高科技公司的技術智慧資本是競爭力的來源,技術智財權之運用能夠增加技術發展與內部知識擴散加速,有效利用公司內外研發資源以提升競爭力,是企業發展與轉型的關鍵因素。其中技術的來源有兩種途徑,一是自行開發,另外就是技術轉移。而臺灣動態記憶體產業型態與工業基礎,最快且最佳的途徑就是引進高層次的技術轉移。因此,台灣動態記憶體產業與國際的各大廠之間的技術轉移,影響了臺灣動態記憶體產業發展。其過程中的知識擴散和技術轉移作法,是本研究的主要議題。 tc 目 錄 摘要………………………………………………………………………………i Abstract…………………………………………………………………………ii 目錄……………………………………………………………………………iii 表目錄…………………………………………………………………………iv 圖目錄…………………………………………………………………………iv 第一章 概論……………………………………………………………………1 1.1研究動機與目的……………………………………………………………1 1.2背景探討……………………………………………………………………1 1.3研究範圍……………………………………………………………………2 1.4研究方法及步驟……………………………………………………………2 1.5研究架構…………………………………………………………………3 1.6論文架構…………………………………………………………………4 第二章 文獻探討………………………………………………………………5 2.1前言…………………………………………………………………………5 2.2技術移轉……………………………………………………………………6 2.3知識擴散……………………………………………………………………11 2.4技術創新……………………………………………………………………21 第三章 研究方法………………………………………………………………25 3.1研究架構……………………………………………………………………25 3.2 資料蒐集……………………………………………………………………26 3.3研究限制……………………………………………………………………26 第四章 個案探討………………………………………………………………27 4.1前言…………………………………………………………………………27 4.2台灣動態記憶體公司技轉個案……………………………………………27 4.3個案公司簡介………………………………………………………………30 4.4第一階段的B技術個案……………………………………………………32 4.5第二階段的C技術個案……………………………………………………45 4.6案例討論……………………………………………………………………54 4.7國際各動態記憶體公司技術擴散…………………………………………59 第五章 結論與建議……………………………………………………………61 5.1結論…………………………………………………………………………61 5.2建議…………………………………………………………………………62 參考文獻………………………………………………………………………64 附錄 ……………………………………………………………………………70 表 目 錄 表1-1次級資料的來源………………………………………………………………3 表4-1半導體設備相闋技術………………………………………………………46 圖 目 錄 圖2-1競爭的驅動力…………………………………………………………………5 圖2-2 Intel的技術轉移策略圖………………………………………………………8 圖2-3為Intel使用”Copy Exactly”技術移轉方法前良率比較…………………10 圖2-4 為Intel使用”Copy Exactly”技術移轉方法後良率比較…………………10 圖2-5 Toshiba在研發中心與生產工廠間的技術轉移方式………………………10 圖2-6 四種知識轉換模式…………………………………………………………12 圖2-7建構新產品開發能力的程序………………………………………………17 圖2-8知識分享的機制……………………………………………………………18 圖2-9企業知識水準的決定因素…………………………………………………19 圖2-10動態解決半導體製造與製程發展的技術流程圖…………………………20 圖3-1研究流程圖 …………………………………………………………………25 圖4-1 V公司製程技術發展圖……………………………………………………29 圖4-2 U集團與M公司的結合關係………………………………………………30 圖4-3微影製程各步驟與製程流程………………………………………………38 圖4-4異常孔洞 ……………………………………………………………………41 圖4-5正常孔洞 ……………………………………………………………………41 圖4-6理想機能系統方塊圖 ………………………………………………………43 圖4-7加熱處理溫度與熱硬化層厚度函數關係圖 ………………………………43 圖4-8熱硬化厚度及產生裂痕特性要因圖………………………………………44 圖4-9熱硬化厚度對加熱處理溫度函數關係圖…………………………………44 圖4-10改善孔洞裂痕………………………………………………………………45 圖4-11每一世代產品的技術與技術移轉關係……………………………………54 圖4-12案例公司動態解決問題與技術知識流動圖………………………………55 圖4-13案例公司技術轉移方式與對象……………………………………………58 圖4-14臺灣DRAM產業人員與知識流動關係……………………………………59 圖4-15 DRAM 產業技術擴散網絡圖………………………………………………60rf <中文文獻> 【1】 曾昆銘,"以創新系統架構探討台灣影像掃描器產業之創新與發展",國立清華大學工業工程研究所工程管理組碩士論文,2000 【2】 小池洋一,谷蒲孝雄編著,雷慧英譯,“台灣的工業化:國際加工基地的形成”,人間台灣政治經濟叢刊,第4卷,台北:人間出版,1988。 【3】 李仁芳、花櫻芬,"技術知識類型與知識交流網路模型",科技管理學刊,第二卷第一期,1997年6月 【4】 洪世章(A),“幻滅的台灣硬碟機產業”,未發表之企業個案,1998。 【5】 洪世章(B),“國家創新系統、組織學習與產業發展:為何台灣沒能有效的發展硬碟機工業?”,未發表之研究論文,1998。 【6】 林博文 清大技術轉移與鑑價上課講義 2001 【7】 劉士豪 清大知識擴散與產業之創新及發展論文 2000 【8】 洪勖芳 清大全球化協同式產品開發之知識整合與智慧資產管理論文 2002 【9】 李奉煦 三星秘笈 大塊文化出版公司 2003 【10】 洪夏祥 李健熙的第一主義 大塊文化出版公司 2003 【11】 林琬萍、劉詠萱 技術移轉成功之道座談會 智慧財產權季刊 第18期 1998 【12】 摩爾 半導體業快速成長期已過 摩爾定律10年內仍將有效 電子時報 2003 【13】 蕭宏著 羅正忠譯 半導體製程技術導論 歐亞書局 2001 【14】 林振華編譯 ULSI DRAM 技術 全華書局 2001 <國外文獻> 【1】 Arndt, K ”Reliability of Laser Activated Metal Fuses in DRAMs”, Interanal Electronics Manufacturing Technology Symposium, IEEE, 1999 【2】 Appleyard, M. M., “How Dose Knowledge Flow? ” - Interfirm Patterns in the Semiconductor Industry“, 2001 【3】 Beruvides, M.G “Intra-Firm Technology Transfer: A Model and Case Study.” in Khalil , T, M. Management of Technology, 1990 【4】 Betz, F. Strategic Technology Management, McGraw-Hill, Inc., 1993 【5】 Bordogna, J “Innovation and Creative Transformation in the Knowledge Age: Critical Trajectories”, International Conference on Management of engineering and Technology, 1997 【6】 Bowser, H. “Maestros of Technology: An Interview with Arthur M. Squires.”, American Heritage of Invention and Technology, vol.1, pp.24-30. 1987 【7】 Cadbury, A. ”The English Midlands: Cradle of Technology.”, European Conference on Management of Technology,Aston University, Birmingham, UK, 1995 【8】 Charles, W. “Knowledge Transfer and the Limits to Profitability: An Empirical Study of Problem-Solving Practices in Semiconductor Manufacturing and Process Development”, Transaction on Semiconductor Manufacturing, Vol. 15, No. 4, IEEE 2002 【9】 Chris, J “Copy EXACTLY! A Paradigm Shift in Technology Transfer Method”, Advanced Semiconductor Manufacturing Conference, IEEE, 1997 【10】 Frank J, R, “Successful Joint Venture in Japan: Transferring Knowledge Through Organization Learning “, 1995 【11】 Gabriel, S., “The Process of Knowledge Transfer: A Diachronic Analysis of Stickiness”, Organizational Behavior and Human Decision Processes, Vol. 82, no. 1, pp.9-27, 2000 【12】 Gibbons, M. and Johnson, R., “The Roles of Science in Technological Innovation”, Reach Policy, Vol. 3, pp.220-242, 1974 【13】 Herbert, J “The Profitable Transfer of Technology and Processes from Mature Industrial Nations to Low-Cost Countries”, Industry address, Sixth International Conference on Management of Technology, Gothenberg, Sweden, 1997 【14】 Itoh, K “VLSI Memory Chip Design”, Springer, 2001 【15】 Johannessen, J.A., Olsen, B., Olaisen, J., "Aspects of Innovation Theory based on Knowledge Management", International Journal of Information Management, V.19, pp.121-139, 1999 【16】 Joseph, B. “Analysis of Laser Metal Cut Energy Process Window”, IEEE Transactions of semiconductor manufacturing, Vol.13, No.2, May 2000 【17】 Junnarkar, B., “Leveraging Collective Intellect by Building Organizational Capabilities”, Expert System With Applications, Vol. 13, No. 1, pp. 29-40, 1997 【18】 Kelley, E., “Keys to Effective Virtual Global Teams”, The Academy of Management Executive, 2001, Vol.15, pp.132-133 【19】 Khalil , T, M. “Management of Technology”, McGrawHill, 2000 【20】 Kim,L: “The Dynamics of Samsung’s Technological Learning in Semiconductors“ California Management Review, 1997 【21】 Laursen, K. and Mahnke, V., Vejrup-Hansen, P., "Firm Growth from a Knowledge Structure Perspective", DRUID’s Summer Conference on National Innovation Systems, Industrial Dynamics and Innovation Policy, 9th-12th, 1999 【22】 Leonard-Barton, D., “Core Capabilities and Core Rigidities A Paradox in Managing New Product Development”, Strategic Management Journal, 1995, Vol.13, pp.11-125 【23】 Libeskind, J. P., "Knowledge, Strategy, and the Theory of the Firm", Strategic Management Journal, V.17, pp.93-107, 1996 【24】 Lu, C.Y, “Explosion of Poly-Silicide Links in Laser Programmable Redundancy for VLSI Memory Repair”, IEEE Transactions on Electron Devices, Devices, Vol.36, No.6, 1989 【25】 Lundvall, B. A., "National System of Innovation—Towards a Theory of Innovation and Interactive Learning, London and New York, Pinter, 1988 【26】 Matusik, S. F., “Managing Public and Private Firm Knowledge Within the Context of Flexible Firm Boundaries”, 2001 【27】 Moore, G , “Gorden Moore Speech” , ISSCC, 2003 【28】 Mort,J, “Xerography- 50 Years of Technological Innovation” In Khalil,T., Management of Technology, McGrawHill ,1990 【29】 Nakatsuka, H "Technology Transfer", ISSM, 1993 【30】 Nelson, R.R., "National Innovation System—A Comparative Analysis", Oxford University Press, Oxford, N.Y., 1993 【31】 Nonaka, I. and Takeuchi, H., “The Knowledge-Creating Company”, Oxford University Press New York, 1995, 【32】 Nonaka, I., Toyama, R. and Konno, N., “SECI, Ba and Leadership: a Unified Model of Dynamic Knowledge Creation”, Long Range Planning, Vol. 33, Issue. 1, pp. 5-34,2000 【33】 OECD, "National Innovation System:Background Report", OECD, 1997 【34】 Pavitt, K., “The Objectives of Technology Policy”, Science and Public Policy, Vol. 14, Issue 4, pp.182-188, 1987 【35】 Persaud, A.; Kumar, U. & Kumar, V., “Harnessing Scientific and Technological Knowledge for Rapid Deployment of Global Innovations”, Engineering Management Journal, 2001, Vol.13, pp.12-18 【36】 Petroni, A., “The Analysis of Dynamic Capabilities in a Competence-oriented Organization”, Technovation, 1996, Vol.18, pp.179-189 【37】 Pisano, G. P. and Wheelwright, S. C., “The New Logic of High-tech R&D,” Harvard Business Review, Vol. 75,No. 5, pp. 93-105,1995. 【38】 Polanyi, M., “The Tacit Dimension,” London: Routledge & Kegan Paul, 1966 【39】 Rogers, E. M., “Diffusion of Innovation,” 4 rd ed, New York: Free Press, 1995. 【40】 Rothwell, R., “The Characteristics of Successful Innovators and Technically Progressive Firms”, R&D Management, Vol. 7, Issue 3, pp.191-206, 1977 【41】 Sergio, R.L, “Technology Transfer in the Americas” from Khalil, T, M. Management of Technology, 1994 【42】 Shen, Y.L, ”Laser Linking of Metal Interconnects: Analysis and Design Considerations”, IEEE Transactions on Electron Devices, Devices, Vol.43, No.3, 1993 【43】 Senker, J., “National Systems of Innovation, Organizational Learning and Industrial Biotechnology” Technovation, Vol.16, Issue 5, pp.219-229, 1996 【44】 Sheu, W.H, “RELACS Technique for Printing sub-100nm Trench Using KrF Lithography”, Microprocess and Nanotechnology Conference, 2002 【45】 Tomoya K, ”A Built-In Self-Repair Analyzer (CRESTA) for embedded DRAMs”, International Test Conference, 2000. 【46】 Toyashima, T “0.1um Level Contact Hole Pattern Formation with KrF Lithography by Resolution Enhancement Lithography Assisted by Chemical Shrink (RELACS)”, IEDM, IEEE, 1998 【47】 Utterback, J.M., “Mastering the Dynamics of Innovation,” Harvard Business School Press, 1994. 【48】 Winch, G., “Knowledge Management,” Manufacturing Engineer, Vol. 784, pp. 178-180, August 1999. 【49】 Yin, R. K., “Application of Case Study Research,” London:Sage, 1993.id NH0925031062 sid 903875 cfn 0 / id NH0925031063 auc 王淑貞 tic 設備總和效率模式及試算表之建立-以步進機為例 adc 許棟樑 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 98 kwc 微影製程 kwc 綜合設備使用率 kwc 整體投入效率 kwc 設備擁有成本 kwc 績效指標 kwc 理想值 abc 設備在半導體產業中佔製造成本的大部分,故準確地衡量設備效率是很重要的,本研究以步進機為例,建立一個計算設備整體效率的模式。業界大多只著重在設備綜合效率之計算,在此提出設備投入效率(OIE)為另一個影響設備效率的重要因素,其構成投入效率之計算有四:廠務、人力,原材料、及耗材。經過本研究建立的模式可以得到:1)訂定投入標準; 2)以Excel為主來建立一個結合OIE和OEE成TEE的整合計算表格,並以步進機台為例。 rf [1 ] 孫銘新,指導教授 許棟樑,”台灣晶圓製造廠設備管理標竿 ”,國立清華大學工業工程與工程管理學系碩士論文,1998 [2 ] 吳振寧,指導教授 許棟樑,”台灣半導體廠設備管理指標模型建立與評比”, 國立清華大學工業工程與工程管理學系碩士論文,1999 [3 ] 郭亦桓,指導教授 許棟樑,”台灣半導體廠設備管理標竿:黃光區設備”,國立清華大學工業工程與工程管理學系碩士論文,2000 [4 ] 洪碧溎,指導教授 許棟樑,”筆記型電腦業新產品導入績效衡量機制與評估系統”,國立清華大學工業工程與工程管理學系碩士論文,2003 [5 ] 吳大中,指導教授 許棟樑,”晶圓廠生產機台整體投入效率之研究”,南澳大學產業管理碩士論文,2003 [6 ] 財團法人中衛發展中心,TPM簡介資料 ”Total Productive Maintenance”,財團法人中衛發展中心,1997 [7 ] 高福成,TPM全面生產保養推進實務,中衛發展中心,1995 [8 ] 日本設備維護協會編著,TPM小集團活動,中衛發展中心,1996 [9 ] 莊達仁編著,VLSI製造技術,高立圖書有限公司,第五版 [10 ] 張聖麟編著,卓越化生產管理,華泰書局,1998 [11 ] 陳力俊編著,微電子材料與製程,中國材料科學學會,2000 [12 ] Peter Van Zant著,薑庭隆譯,半導體製程,滄海書局,第四版,2001 [13 ] 王麗琴編著,深入淺出Excel VBA程式應用,松崗電腦圖書資料股份有限公司,2002 [14 ] 劉志明,系統績效評估技術,清華大學工業工程研究所上課講義,2003 [15 ] 陳文哲、葉宏謨合著,工作研究,中興管理顧問公司,第八版 [16 ] Haruka SETO & VB Tech Lab., Excel VBA我也會,博碩文化,2002 [17 ] Stephen A. Campbell , The Science and Engineering of Microelectronic Fabrication, Oxford University Press, 1996. [18 ] Dance, Daren L. etc., Understanding Equipment Cost-of-Ownership, Semiconductor International, Vol.21, No.7, pp117-122, 1998. [19 ] SEMI E10, Standard for Definition and Measurement of Equipment Reliability, Availability, and Maintainability (RAM), 2000. [20 ] SEMI E35, Cost of Ownership for Semiconductor Manufacturing Equipment metrics, 2000. [21 ] SEMI E58, Automated Reliability, Availability, and Maintainability Standard (ARAMS): concepts, behavior, and services, 2000. [22 ] SEMI E79, Standard for Definition and Measurement of Equipment Productivity, 2000. [23 ] Sarah A. Mosley, Tim Teyner, and Reha M. Uzsoy, Maintenance Scheduling and Staffing Policies in a Wafer Fabrication Facility, IEEE Transactions on Semiconductor Manufacturing, Vol.11, No.2, pp84-97,1998 [24 ] SEMATECH, Guideline for Manufacturing Equipment Reference Manuals, SEMATECH Technical Repots, 1996. [25 ] Robert C. Leachman, Closed-Loop Measurement of Equipment Efficiency and Equipment Capacity, IEEE Transactions on Semiconductor Manufacturing, Vol.10, No.1, Feb, pp84-97, 1997. [26 ] Tom Pomorski , Managing Overall Equipment Effectiveness to Optimize Factory Performance, IEEE, 1997. [27 ] Pete Steege, Overall Equipment Effectiveness in Resist Processing Equipment, IEEE, 1996. [28 ] Robert W. Freck, Using Overall Equipment Effectiveness (OEE) and the Equipment Improvement Process (EI) to Improve Fab Throughput, IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 2000. [29 ] Daren L. Dance, Modeling Test Cost of Ownership, IEEE, 1996. [30 ] Ross Carnes, Long Term Cost of Ownership: beyond purchase price, IEEE, 1991. [31 ] Peter T. Rahaim, The Cost of Ownership, IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 1994. [32 ] John Konopka, Overall Equipment Effectiveness (OEE) and Cost Measurement, IEEE/SPMT Int’l Electronics Manufacturing Technology Symposium, 1996. [33 ] Raul Nanez, Development of Cost of Ownership Modeling at a Semiconductor Production Facility, IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 1995. [34 ] Hussein Naguib, A Roadmap for the Implementation of Total Productive Maintenance (TPM) in a Semiconductor Manufacturing Operations, IEEE/SEMI int’l Semiconductor Manufacturing Science Symposium, 1993. [35 ] 網址http://www.net-broadband.com.tw/科技辭典id NH0925031063 sid 913874 cfn 0 / id NH0925031064 auc 陳昶旭 tic 醫院健康檢查中心流程之模擬研究 adc 桑慧敏 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 44 kwc 健康檢查 kwc 模擬 kwc 再生模式 abc 隨著全民健保開辦,全民對醫療保健的重視與日俱增,健康檢查所強調之”預防大於治療”的觀念也逐漸被民眾接受,然而全民健保所提供的健檢內容並不能滿足民眾對自身健康資訊的需要,因此近年來自費健康檢查的醫療服務開始蓬勃發展,市場的競爭也日趨激烈,健檢中心在提供健檢服務以外更要求高受檢者的滿意度。而不良的健檢流程設計將造成受檢者總檢查時間拉長,引發受檢者抱怨,因此健檢中心欲提高其服務品質,則流程的設計便是一項重要的問題。 tc 1. 緒論 1 1.1. 研究背景與動機 1 1.2. 研究目的 4 1.3. 論文內容與研究流程 5 2. 文獻探討 7 2.1. 健檢服務現況 7 2.2. 模擬在醫療健檢上的應用 10 2.3. 模擬軟體介紹 13 3. 研究方法 17 3.1. 現況描述與系統假設 17 3.2. 模擬實驗與metamodel 19 3.2.1. 輸入分析 20 3.2.2. 模擬實驗 21 3.2.3. 輸出分析 22 3.3. 抱怨率指標 24 3.4. 改善策略 27 3.4.1. 受檢流程 27 3.4.2. 受檢者報到批次 29 3.4.3. 家醫科醫師開始看診時間 29 3.4.4. 受檢者遲到情形之改善 30 4. 研究結果 31 4.1. 受檢流程改善方案 31 4.2. 受檢者報到批次改善方案 32 4.3. 醫師開始看診時間 34 4.4. 受檢者遲到情形之改善 37 5. 結論與建議 39 5.1. 結論 39 5.2. 建議 41 6. 參考文獻 42rf Brewer, T.F. , Hetmann, S.J., Krumplitsch S.M. ,Wilson M.E., Colditz G.A. and Fineburg H.V.(2001), “Strategies to decrease tuberculosis inUS homeless populations: a computer simulation model”, JAMA, Vol. 286, No. 7 , pp834-842. Carlson, R.C. and Kropp, D.H.(1977), “Recursive Modeling of Outpatient Health Care Settings”, Journal of Medical Systems, Vol. 1, No. 2 , pp. 123-135. Dexter, F. and Traub ,R.D. (2002), “How to schedule elective surgical cases into specific operating rooms to maximize the efficiency of use of operating room time“, Anesth Abalg: 94 , Volume 4, pp933-942 England, W. and Roberts ,S.D. (1978), “Applications of computer simulation in health care “, Proceedings of the 10th conference on Winter simulation : December 1978 , Volume 2, pp665-677 Friedman ,L.W.(1996),The Simulation Metamodel, Kluwer Academic Publishers Groothuis ,S. , Godefridus G. van Merode , Hasman A.(2001), “ Simulation as decision tool for capacity planning”, Computer Methods and Programs in Biomedicine, Vol.66,pp139–151 Hashimoto,F. and Bell, S.(1996), “Improving outpatient clinic staffing and scheduling with computer simulation”, J Gen Intern Med 11:182 Hung, Ying-Chao and Michailidis, G.(2003), “Developing Efficient Simulation Methodology for Complex Queueing Networks”, Proceedings of the 2003 Winter Simulation Conference Kim, S.C. , Horowitz I. , Young K.K., Buckley,T.A.(2000), “Flexible bed allocation and performance in the intensive care unit ”, Journal of Operations Management , Vol.18 , pp427–443 Kleijnen, Jack P.C.(1994) “Sensitivity analysis and optimization of simulation models”, Procedings of the European Simulation Symposium, October, pp9-12, 1994, Istanbul,Turkey,SCS. Kleijen, Jack P.C.(1993) “Simulation and Optimization in production planning”, Decision Support Systems 9,pp269-280 Kotler ,P. (1991), Marketing Management—Analysis, Planning, Implementation and Control, 7th edition, Englewood Cliffs, NJ: Prentice-Hall, Inc. Lane, P.M., Lindquist, J.D.(1998), “Hospital Choice : A Summary of the Key Empirical and Hypothetical Findings of the 1980s.” , Journal of Health Care Marketing, Vol. 8, pp 5-20. Law A.M. and Kelton W.D.(2000), Simulation Modeling and Analysis, 3rd edition, McGraw-Hill, Inc. Lin, Li, Jeffery K. Cochran, and Joseph Sarkis(1992)” A metamodel-based decision support system for shop floor production control”, Computers in Industry 19,pp155-168 Lowery, J. C. (1998), “Getting Started in Simulation in Healthcare”, Proceedings of the 1998 Winter simulation conference,PP31-35 McGuire, F. (1997),”Using simulation to reduce length of stay in emergency department”, JSHS, ;5(3),pp81-90 Myers, R.H, Montgomery, D.C.(2002), Response Surface Methodology, John Wiley & Sons, Inc. Simpson, T., Dennis, L., and Chen, W.(2002),“Sampling Strategies for Computer Experiments: Design and Analysis" , Journal of International Journal of Reliability and Application, 2(3), pp209-240 Swain, J.J.(2003), “Simulation Reloaded: Sixth biennial survey of discrete-event simulation software tools that empower users to imagine new systems, and study and compare alternative designs”, OR/MS Today, August Schruben, L.W.(2002), Event Graph Simulation Song W.T. and Su, C.C. (1996), “An extension of the multiple-blocks strategy on estimating simulation metamodels”, IIE Transactions, Vol.28,p511-519 Vogt W. and Braun, S.L. (1994), “Realistic Modeling of Clinical Laboratory Operation by Computer Simulation”, Clinical Chemistry, Vol.40,p922-928 Wilt A. and Goggin D.(1989), “Health Care Case Study: Simulation Staffing Needs and Work Flow in an Outpatient Diagnostic Center”, Industrial Engineering, Vol.12,p22-26 藍采風、廖榮利(1992),社會醫療學,三民書局 盧瑞芬、謝啟瑞(2000),醫療經濟學,學富文化事業有限公司 李石燕(1992), ”台北市老人健康檢查經驗之探討”,國立台北護理學校護理研究長所碩士論文 蔡宗仁(1996), ”健檢發展史”,中華民國醫檢會報,11卷,3期pp52-54 李智峰(1997), ”健檢服務業現狀與經營策略之分析”,長庚大學醫學暨工程學院管理研究所碩士論文 侯幸雨(1999), ”應用模擬技術探討台灣醫院門診預約掛號系統”, 國立中正大學企業管理研究所碩士論文 黎家銘(2000), ”全民健康成人健檢實施情形調查分析”, 國立台灣大學醫療機構管理研究所碩士論文 陳秀珠(2003), ”醫療服務品質與病患滿意度非線性關係的探討與應用”, 國立台灣大學商學研究所博士論文 吳欣芳(2002), ”隨機性作業與排序性作業之比較─以台大醫院健檢中心流程為例”,國立台灣大學商學研究所碩士論文 謝淑慧(2002), ”健檢中心之經營策略與經營績效之探討”,國立雲林科技大學工業工程與管理研究所碩士論文 李建廷(2003), ”急診檢查排程系統之研究”,國立暨南國際大學資訊管理研究所碩士論文 林怡君(2003), ”運用模擬技術於手術室排程管理─以某醫學中心為例”,國立台灣大學醫療機構管理研究所碩士論文 陳春枝(2003), ”流程管理介入對手術室服務效能之影響”,台北醫學大學護理研究所碩士論文 行政院衛生署衛生統計資料網站, http://www.doh.gov.tw/statistic/index.htm 馬偕紀念醫院新竹分院網站, http://www.hc.mmh.org.tw/div_int/health/health01.aspid NH0925031064 sid 913804 cfn 0 / id NH0925031065 auc 陳柔妤 tic 管制圖的製程失效機制及抽樣間隔之探討 adc 桑慧敏 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 59 kwc 變動抽樣區間 kwc 統計經濟設計管制圖 kwc GG3分配 kwc 反應曲面 abc 中文摘要 tc 目 錄 致 謝 i 中文摘要 ii 目 錄 iii 表 目 錄 v 圖 目 錄 vi 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究範圍與假設 3 1.3 研究方法與步驟 4 1.4 研究流程與架構 6 第二章 文獻回顧與探討 7 2.1 製程管制之相關文獻 7 2.1.1 工程製程管制 7 2.1.2 統計製程管制 8 2.1.3 工程製程管制與統計製程管制比較 11 2.2 管制圖的介紹 12 2.3 管制圖的設計 13 2.3.1 heuristic design of control chart 14 2.3.2 統計設計管制圖 14 2.3.3 經濟設計管制圖 15 2.3.4 統計經濟設計管制圖 19 2.3.5 管制圖設計比較 20 2.4 變動抽樣方式之簡介 20 2.5 Generalized Gamma( )分配簡介 22 第三章 之統計經濟設計管制圖模型發展 26 3.1 模型假設條件 26 3.2 符號說明 26 3.3 機率之定義 27 3.4 變動抽樣區間之機率定義 28 3.5 製程週期時間之定義 29 3.6 成本項目之推導 33 第四章 模型求解發展 36 4.1 反應曲面法 36 4.1.1 反應曲面數學模式 36 4.1.2 反應曲面的搜尋過程 37 4.2 非線性規劃的搜尋方法 37 第五章 個案研究與敏感度分析 41 5.1 個案研究 41 5.1.1 個案一 41 5.1.2 個案二 44 5.2 個案研究綜合探討 45 5.3 製程與成本參數敏感度分析 47 5.3.1 敏感度分析 47 5.3.2 敏感度分析 48 第六章 結論與未來研究方向 50 6.1 研究結果與發現 50 6.2 未來研究方向 50 參考文獻 52 附錄一 公式推導 55 附錄二 5種成本與製程參數數據資料 59 表 目 錄 表1 機遇原因與可歸屬原因之區別 9 表2 EPC與SPC之特性綜合比較表 11 表3 以Duncan模型為基礎所發展的經濟管制圖相關文獻整理 17 表4 以抽樣間隔種類所發展的經濟管制圖相關文獻整理 18 表5 統計經濟設計管制圖之相關文獻 19 表6 各管制圖設計方法之比較 20 表7 各分配的P.D.F及瞬間失效率 23 表8 個案研究一:不同成本與製程參數下的模型變數解 43 表9 個案研究二:不同成本與製程參數下的模型變數解 43 表10 個案一中不同決策變數組合下的E(L)值 45 表11 分配之抽樣間隔比較表 49 表12 分配之抽樣間隔比較表 49 圖 目 錄 圖1 研究架構流程圖 6 圖2 工程製程管制流程 8 圖3 統計製程管制流程 10 圖4 管制圖之型式 13 圖5 =0.05時的O.C.曲線圖 14 圖6 Duncan經濟設計模型示意圖 16 圖7 管制圖之二區間變動抽樣間隔設計 21 圖8 分配的機率分配圖 22 圖9 與其他分配的相關圖 24 圖10 各分配的 25 圖11 非線性規劃反應曲面之演算流程 40 圖12 個案研究一中兩種製程分配之p.d.f 42 圖13 個案研究一中兩種製程分配的h(t) 42 圖14 個案研究二中三種製程分配之p.d.f 44 圖15 個案研究二中三種製程分配的h(t) 44 圖16 個案一與個案二中製程分配的h(t)圖(t從0到10) 46 圖17 個案一與個案二中製程分配的h(t)圖(t從0到200) 47 圖18 個案一中 值改變對各變數的敏感度分析圖 48 圖19 個案一中 值改變對各變數的敏感度分析圖 48rf 參考文獻 [1 ] 鄭春生, 1996, 品質管理, 三民書局, 台北市。 [2 ] 朱一中, 雙變數加速衰變模型分析(LED產品之個案研究), 清華大學碩士論文, 民國85年7月。 [3 ] Amin, R. W., and Miller, R. W., 1993, A Robustness Study of Charts With Variable Sampling Intervals Control, Journal of Quality Technology, 25, 36-44. [4 ] Bai, D. S., and Lee, K. T., 1998, An Economic Design of Variable Sampling Interval Control Charts, International Journal of Production Economics, 54, 57-64 [5 ] Banerjee, P. K., and M. A. Rahim, 1988, Economic Design of Control Charts Under Weibull Shock Models, Technometrics, 30(4), 407-414. [6 ] Box, G. E. P., and T. Kramer, 1992, Statistical Process Monitoring and Feedback Adjustment—A Discussion, Technometrics, 34(3),251-267. [7 ] Box, G. E. P., D. E. Coleman, and R. V. Baxley, 1997, A Comparison of Statistical Process Control and Engineering Process Control, Journal of Quality Technology, 29, 128-130. [8 ] Chen, Y. S, and Yang, Y, M, 2002, An Extension of Banerjee and Rahim’s Model for Economic Design of Moving Average Control Chart for A Continuous Flow Process, European Journal of Operational Research, 143, 600-610. [9 ] Chiu, W. K., 1974, The Economic Design of Cusum Charts for Controlling Normal Means, Applied Statistics, 23(3), 420-433. [10 ] Chiu, W. K., 1975, Economic Design of Attribute Control Charts, Technometrics, 17, 81-87. [11 ] Chiu, W. K., 1976, Economic Design of np Charts for Processes Subject to A Multiplicity of Assignable Causes, Management Science, 23(4), 404-411. [12 ] Chung, K. J., and Lin, C. N., 1993, The Economic Design of Dynamic Control Charts Under Weibull Shock Models, International Journal of Quality and Reliability Management, 10(8), 41-56. [13 ] Costa, AFB., 1993, Joint Economic Design of and R Control Charts for Process Subject to Two Independent Assignable Causes, IIE Transactions, 25, 27-33. [14 ] Cui, R., and Reynolds, M. R., Jr., 1988, Charts With Runs Rules and Variable Sampling Intervals, Communications in Statistics:Simulation & Computation, 17, 1073-1093. [15 ] Duncan, A. J., 1956, The Economic Design of Charts Used to Maintain Current Control of A Process, Journal of the American Statistical Association, 51, 228-242. [16 ] Fletcher, R., and Reeves, C. M., 1964, Function Minimization by Conjugate Gradients, Computer Journal, 7, 149-154. [17 ] Gibra, I. N., 1971, Economically Optimal Determination of the Parameters of an Control Chart, Management Science, 17(9), 635-646. [18 ] Gibra, I. N., 1975, Recent Developments in Control Chart Techniques, Journal of Quality Technology, 7(4), 183-192. [19 ] Girshick, M. A., and Rubin, H., 1952, A Bayes’ Approach to A Quality Control Model, Annals of Mathematical Statistics, 23,114-125. [20 ] Goel, A. L., and Wu, S. M., 1973, Economically Optimum Design of Cusum Charts, Management Science, 19(11), 1271-1282. [21 ] Ho, C. C., and Case, K. E., 1994, The Economically-Based EWMA Control Chart, International Journal of Production Research, 32, 2179-2186. [22 ] Ho, C. C., and Case K., E., 1994, Economic Design of Control Chart:A Literature Review for 1981-1991, Journal of Quality Technology, 26, 39-53. [23 ] Hu, P. W., 1984, Economic Design of An Control Chart Under Nonpoisson Process Shift, Abstract, TIMS/ORSA Joint National Meeting, San Francisco, May 84, 14-16. [24 ] Hu, P. W., 1986, Economic Design of An Control Chart With Nonexponential Times Between Process Shifts, IIE News, Quality Control and Reliability Engineering, 21, 1-3. [25 ] Janakiram, M., and J. B. Keats, 1998, Combing SPC and EPC in a Hybrid Industry, Journal of Quality Technology, 30, 189-199. [26 ] Jones, L. L., and Case, K. E., 1981, Economic Design of A Joint and R Control Chart, AIIE Transactions, 13, 182-195. [27 ] Joshi, S., Sherali, H. D., and Tew, J. D., 1998, An Enhanced Response Surface Methodology (RSM) Algorithm Using Gradient Deflection and Second Order Search Strategies, Computers and Operations Research, 25, 531-542. [28 ] Kwei, T., and Jen, T., 1994, Design of Screening Procedures:A Rewiew, Journal of Quality Technology, 26(3), 209-225. [29 ] Lorenzen, T. J., and Vance, L. C., 1986, The Economic Design of Control Charts:A Unified Approach, Technometrics, 28(1),3-10. [30 ] McWilliams, T. P., 1989, Economic Control Chart Design and The In-Control Time Distribution:A Sensitivity Analysis, Journal of Quality Technology, 21, 103-110. [31 ] McWilliams, T. P., 1994, Economic, Statistical, and Economic-Statistical Chart Designs, Journal of Quality Technology, 26(3), 227-238. [32 ] Montgomery, D. C., 1980, The Economic Design of Control Charts:A Review and Literature Survey, Journal of Quality Technology, 12(2), 75-87. [33 ] Montgomery, D. C., and Friedman, D. J., 1989, Statistical Process Control in a Computer-Integrated Manufacturing Environment, Statistical Process Control in Automated Manufacturing,(J. B. Keats and N. F. Hubele, Eds.)Marcel Dekker, New York, NY, 67-87. [34 ] Montgomery, D. C., 1992, The Use of Statistical Process Control and Design of Experiments in Product and Process Improvement, IIE Transactions, 24(5), 4-17. [35 ] Montgomery, D. C., J. B. Keats, G. C. Runger, and W. S. Messina, 1994, Integrating Statistical Process Control and Engineering Process Control, Journal of Quality Technology, 26, 79-87. [36 ] Montgomery, D. C., Torng. C.-C., Cochran, J. K., and Lawrence, F. P., 1995, Statistically Constrained Economic Design of The EWMA Control Chart, Journal of Quality Technology, 27, 250-256. [37 ] Montgomery, D. C., 2001, Introduction to Statistical Quality Control, 4th ed., John Wiley & Sons, New York. [38 ] Oraini, H. A., and Rahim M. A., 2002, Economic Statistical Design of Control Charts for Systems With Gamma( ) In-Control Times, Computer and Industrial Engineering, 43, 645-654. [39 ] Panagos, M. R., Heikes R. G., and Montgomery, D. C., 1985, Economic Design of Control Charts for Two Manufacturing Process Models, Naval Research Logistics Quarterly, 32, 631-646. [40 ] Parkhideh, B, and Case, K. E., 1989, The Economic Design of a Dynamic -Control Chart, IIE Transactions, 21,313-323. [41 ] Reynolds, M. R., and Arnold, J. C., 1986, Optimal One-Sided Shewhart Control Charts With Variable Sampling Intervals between Samples, Technical Report, 86(3). [42 ] Reynolds, M. R., Jr, Amin, R. W., Arnold, J. C., and Nachlas, J. A., 1988, Charts With Variable Sampling Intervals, Technometrics, 30(2), 181-192. [43 ] Runger, G. C., and Montgomery, D. C., 1993, Adaptive Sampling Enhancements for Shewhart Control Charts, IIE Transactions, 25, 41-51. [44 ] Saniga, E. M., 1978, Joint Economical Design of and R Control Charts, Management Science, 24, 420-431. [45 ] Saniga, E. M., 1989, Economic Statistical Control Chart Designs With an Application to and R Charts, Technometrics, 31(3), 313-320. [46 ] Shao, Y. E., G. C. Runger, J. Haddock, and W. A. Wallace, 1999, Adaptive Controllers to Integrate SPC and EPC, Communications in Statistics Part B:Simulation & Computation, 28, 13-36. [47 ] Tagaras, G., 1998, A Survey of Recent Developments in the Design of Adaptive Control Charts, Journal of Quality Technology, 30(3), 212-231. [48 ] Taylor, H. M., 1968, The Economic Design of Cumulative Sum Control Chart, Technometrics, 10, 479-488. [49 ] Vance, L., C., 1992, A Bibliography of Statistical Quality Control Chart Techniques, 1970-1980, Journal of Quality Technology, 15(2) ,59-62. [50 ] Wiel, S. A. J., Tucker, W. T., Faltin, F. W., and Doganaksoy N., 1992, Agorithmic Statistical Process Control:Concepts and an Application, Technometrics, 34(3), 286-297 [51 ] Woodall, W. H., 1985, The Statistical Design of Quality Control Charts, The Statistician, 34,155-160. [52 ] Woodall, W. H., 1986, Weaknesses of the Economic Design of Control Charts, Technometrics, 28, 408-409. [53 ] Zhang, G., and Berardi, V., 1997, Economic Statistical Design of Control Chart for Systems With Weibull In-Control Times, Computers and Industrial Engineering, 32, 575-586.id NH0925031065 sid 913801 cfn 0 / id NH0925031066 auc 何佩勳 tic 以XML-Hub為基之供應鏈整合電子化運籌交易平台 adc 張瑞芬 博士 ty 博士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 英文 pg 94 kwc 企業間應用系統整合 kwc 電子交易平台 kwc XML kwc XML Schema kwc XSLT abc 中文摘要 tc Table of Content 中文摘要 3 ABSTRACT 4 1. INTRODUCTION 9 1.1 Motivation 9 1.2 Research procedure and related technology/ standards 10 1.3 Goal 12 2. BACKGROUND 15 2.1 Business-to-Business e-commerce 15 2.2 XML technologies 18 2.3 XML standards 23 2.4 The role of XML in supply chain integration 32 2.5 The evolution of B2Bi solutions 35 3. THE EXCHANGE HUB DESIGN APPROACH 40 3.1 XML-Hub architecture requirement 40 3.2 A novel approach for modeling business process definition 42 3.3 B2B exchange hub architecture 46 3.4 Mapping services 51 3.5 Exchange services 57 4. IMPLEMENTING THE AEROSPACE SUPPLY HUB 59 4.1 The registry services 59 4.2 The mapping services 60 4.3 Exchange services 64 4.4 The aerospace suppliers hub 67 4.5 Evaluation of XML-Hub platform 74 4.6 A comparison of the B2Bi solutions 80 5. CONCLUSION 86 5.1 Contribution 88 5.2 Future works 90 REFERENCES 92rf REFERENCES 鄧友賓 (Deng, Y. B. (2002))XML應用於電子商務之資料交換整合研究, 國立清華大學工業工程與工程管理研究所碩士論文 Aberdeen Group (2001), E-Procurement: Finally Ready for Prime Time, Aberdeen Group, Vol. 14, No. 2, Boston, MA. Aerospace transport association (2000), “SPEC 2000 Benchmark suite information,” Retrieved 31 July 2001 from www: http://www.spec.org. Berryman, K. and Heck, S. (2001), “Is the Third Time the Charm for B2B?,” McKinsey Quarterly, No. 2, pp.18-22. BizTalk (2002), “BizTalk Framework,” Retrieved 15 January 2004 from www: http://www.biztalk.org BizTalk (2003), “Microsoft BizTalk Mapper,” Retrieved 18 December from www: http://www.informationweek.com/8080/biztalk.htm Bray, T., Paoli, J., Sperberg, C. and Mayler, E. (2000), “Extensible Markup Language (XML) 1.0 Second Edition,” Retrieved 19 October 2001 from www: http://www.w3.org/TR/REC-xml. Bussler, C. (2002), “B2B Protocol Standards and their Role in Semantic B2B Integration Engines,” IEEE Computer Society, Vol. 24, No. 1, pp. 45-56. Casati, F., Dayal, U. and Shan., M.C. (2001), “E-Business Application for Supply Chain Management: Challenge and Solutions,” Proceeding of the 17th International Conference on data engineering, April 2-6, Heidelberg, Germany, pp.71-78. Collins, C., Ho, M., and Mukkamala, H. (2002), “B2B Collaboration Using ebXML: A JavaTM Technology-based Implementation,” JavaOne 2002, March 23-29, Sanfrancisco, USA, pp.31-38. EbXML (2002), “Business Process Specification Schema (BPSS), Version 1.01,” Retrieved from www: http://www.ebxml.org/specs/ebBPSS.pdf. EMarketer (2001), “eComerce B2B Report,” Retrieved 22 November 2002 from www: http://www.emarketer.com. EMarketer (2002), “E-business Report,” Retrieved 22 November 2003 from www: http://www.emarketer.com. Fan, M., Stallaert, J. and Whinston, A.B. (2001), “A Web-based Financial Trading System,” IEEE Computer, Vol. 32, No. 4, pp.44-56. Forrester (2003), “The B2B Internet Report: Collaborative Commerce,” Retrieved 22 November 2003 from www: http://www.forrester.com. Georgantis, N.P., Koutsomitropoulos, D.A., Zafiris, P.A. and Papatheodorou, T.S. (2002), “A Review and Evaluation of Platforms and Tools for Building e-Catalog,” Proceeding of the 35th Hawaii International Conference on System Science, pp.22-40. Gartner (2003), “E-business Report,” Retrieved 22 November 2003 from www: http://www.gartner.com/2_events/conferences_briefings/conferences/. Hajibashi, M. (2001), “E-Marketplaces: The shape of the New Economy,” white paper, The ASCENT Project, Retrieved 15 March 2002 from www: http://www.ascet.com/documents.asp?d_ID=475. Hasselbring, W. (2000), “Information System Integration,” Communications of the ACM, Vol. 43, No. 6, pp.116-130. Ho, J., Trappey A., Bailey, D., Gulledge, T., Sherwin, J. and Sommer, R. (2001), “A Soultion for eBusiness Technology Transfer,” The Impact of the Digital Economy and Electronic Commerce on APEC Small and Medium Enterprises, GPN:1009002208, pp.113-124. Hanson, J., Nandi, P. and Kumaran, S. (2002), “Conversation Support for Business Process Integration,” Proceedings of the Sixth International Enterprise Distributed Object Computing Conference, September 17-20, Lausanne, Switzerland, pp.40-44. Ho, P.-S., Trappey, A.J.C., and Trappey, C.V. (2003), “Data Interchange Services Using an XML Hub Approach for the Aerospace Supply Chain,” International Journal of Technology Management (Accepted). Kaplan, S. and Sawhney, M. (2000), “E-Hubs: The New B2B Marketplace,” Harvard Business Review, Boston Kobayashi, M. and Takeda, K. (2001), ‘Information Retrival on the Web,” ACM Computing Surveys, Vol. 32, No 2, pp. 144-173. Kotok, A. and Webber, D. (2001), ebXML: The New Global Standard for Doing Business over the Internet, New York, New Rider. Kumaran, S., Huang, Y. and Chung, J. (2002), “A Framework-based Approach to Building Private Trading Exchange,” IBM System Journal, Vol. 41, No 2, pp. 253-271. Linthicum, D. S. (2000), B2B Application Integration, New York: Addison-Wesley. Maruyama, H., Tamura, K.and Uramoto, N. (1999), XML and Java: Developing Web Applications, New York, Addison-Wesley. McLaughlin, B. (2001), Java and XML, 2nd edition, Boston, O’Reilly & Associates, Inc. Norris, G., Hurley, J., Hartley, K., Dunleavy, J. and Balls, J. (2000), E-Business and ERP: Transforming the Enterprise, Chichster, John Wiley and Sons. OAGIS (2003), “OAGIS Standard,” Retrieved 15 January 2004 from www: http://www.opneapplications.org OMG (2003), “Model Driven Architecture,” Retrieved 16 November 2003 from www: http://www.omg.org/mda/ Pardi, W. (1999), XML in Action Web Technology, New York, Microsoft Press. Shim, S., Pendyala, V., Sundaram, M. and Gao, J. (2001), “Business-to-Business e-commerce frameworks,” IEEE Computer, Vol. 33, No. 10, pp.40-47. Siekman, P. (1999), “How a Tighter Supply Chain Extends the Enterprise,” Fortune, Vol. 14, No. 9, pp.227. Thoresen, J. (1999), “Environmental Performance evaluation: a Tool for industrial Improvement,” Journal of Cleaner Production, Vol. 7, pp. 365-370. Timmers, P. (1999), Electronic Commerce: Strategies and Models for Business to Business Trading, Boston, John Wiley and Sons. Trappey, A.J.C., and Ho, P.-S. (2001), “Human Resource Assignment System for Distribution Centers,” Industrial Management and Data Systems, Vol. 102, No. 2, pp. 64-72. Trappey, A.J.C., Chen, S., and Ho, P.-S. (2001), “Internet-based Electronic Trade Exchange and Interfaces for e-business Integration,” Proceedings, The 9th International Conference on Human-Computer Interaction (HCI), August 5-10, New Orleans, USA. Trappey, A.J.C., and Ho, P.-S. (2002), “E-Business process modeling, Evaluation and Reengineering for Distribution Center Services,” Proceedings, the 30th International Conference on Computers & Industrial Engineering (The 30th IC C&IE), Tinos Island, Greece, June 29th – July 2, pp. 917-922. Trappey, A.J.C., Trappey, C.V., and Ho, P.-S. (2003), “XML Interchange Hub Services for Global Supply Chain Integration,” Proceedings, the International Symposium on Product Life Cycle Management (PLM’2003), Bangalore, India, July 16-18. van der Aalst, W.M.P. (2000), “Loosely Coupled Interorganization Workflow: Modeling and Analyzing Workflows Crossing organizational Boundaries,” Information and Management, Vol. 37, No. 2, pp. 67-75. World Wide Web Consortium (W3C) (2001), “XML Schema,” Retrieved 16 November 2001 from www: http://www.w3.org/XML/Schema.html. World Wide Web Consortium (W3C) (2002), “Web Service Architecture,” Retrieved 16 November 2001 from www: http://www.w3.org/TR/2002/WD-ws-arch-20021114l. Yao, Y.-H., Trappey, A.J.C., and Ho, P.-S. (2002), “XML-based ISO9000 Electronic Document Management System,” Robotics and CIM, Vol. 19, pp. 355-370.id NH0925031066 sid 883823 cfn 0 / id NH0925031067 auc 林蒼威 tic 汽車駕駛訓練模擬環境開發與應用-以停車訓練為例 adc 黃雪玲 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 英文 pg 55 kwc 虛擬實境 kwc 人機介面設計 kwc 駕駛行為 kwc 模擬器設計 abc 在從事訓練的過程之中,必須審慎的考慮安全性以及確實度,尤其是本研究的主題-駕駛訓練,訓練不足或所造成的傷害更是嚴重。因此虛擬實境是一個相當適用的技術來模擬駕駛環境,並且藉由各種硬、軟體裝置的整合,能夠對駕駛者的心智思考模式加以考慮。本研究中的駕駛訓練模擬器,為首次將模擬的概念導入停車的訓練之中,藉由如此的訓練環境以及方法,並在正式實驗之前利用前測實驗來做最後的修正,而實驗的結果顯示了駕駛新手的績效有顯著的提升。經由實驗結果的討論,闡述實驗可能的缺失與有待注意、改進之處,並提出本研究的貢獻、限制與未來發展性,有待未來加以更多的應用範圍及層面。 tc Abstract III Content V Figure Captions VII List of Tables VIII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Importance 2 1.3 Objectives 2 1.4 Research framework 3 Chapter 2 Literature Review 5 2.1 Driving behavior 5 2.1.1 Models of driving behavior 5 2.1.2 DSQ for measuring driver’s properties 8 2.1.3 Measuring of driving behavior 9 2.1.4 Analysis of driving actions 12 2.2 User Interface 13 2.2.1 Introduction of virtual reality 13 2.2.2 The design principles for driving simulator 14 2.2.3 Driving assistance system 17 2.3 In-vehicle Information Display 20 2.3.1 Visual and audio demand 21 2.3.2 Cognitive Demand 23 Chapter 3 Research Methodology 26 3.1 Choice of assistance functions for driving simulator 26 3.2 Research Hypotheses 27 3.3 Simulator design 27 3.3.1 The introduction of Virtools Dev 2.1 27 3.3.2 The introduction of 3D studio max 5.0 28 3.3.3 Hardware design of the simulator system 29 3.3.4 Software design of the simulated system 30 3.3.5 System Integration 30 3.4 Experiment design 31 3.4.1 Experiment environment 31 3.4.2 Simulation environment 33 3.4.3 Pilot Study 36 3.4.4 Experiment procedure 38 3.4.5 Indices measurement 39 Chapter 4 Experimental Result 40 4.1 Task completing time 40 4.2 Repeating frequency 41 4.3 The analysis of the subjective questionnaire 43 4.4 Discussion 46 4.4.1 Driving performance 46 4.4.2 Other effects 47 Chapter 5 Conclusion 48 5.1 Contribution of the research 48 5.2 Limitations of experiments 48 5.3 Future work 49 References 50 Appendix 53rf 陳文哲、葉宏謨,工作研究(十訂版),中興管理顧問公司發行。 邱俊凱,2003,「E-Car車用電腦功能分析與操控設計」,碩士論文,指導教授:黃雪玲,清華大學工業工程與工程管理研究所。 莊忠益,2003,「車用電腦中央控制介面之階層式選單對駕駛者績效之影響」,碩士論文,指導教授:黃雪玲,清華大學工業工程與工程管理研究所。 陳曉如,2002,「車內語音導航系統之介面設計與人因考量」,碩士論文,指導教授:黃雪玲,清華大學工業工程與工程管理研究所。 黃慶旭,2002,「利用簡易型駕駛模擬器探討警示系統對駕駛者的影響」,碩士論文,指導教授:黃雪玲,清華大學工業工程與工程管理研究所。 Andreoni G., Santambrogio G. C., Rabuffetti M., Pedotti A., 2002, “Method for the analysis of posture and interface pressure of car drivers,” Applied Ergonomics 33, pp. 511-522. Arthur E. J. & Hancock P. A., 2001, “Navigation Training in Virtual Environments,” International Journal of Cognitive Ergonomics, 5(4), pp. 387-400. Barnes M., 1996, “Virtual Reality and Simulation,” Proceedings of the 1996 Winter Simulation Conference, pp. 101-110. Daimon T. & Kawashima H., 1996, “New viewpoints for evaluation of in-vehicle information systems: applying methods in cognitive engineering,” JSAE Review 17, pp. 151-157. Fort N. L. & Rombaut M., 1994, “An Intelligent Copilot System in a Real Vehicle,” Proceedings of Industrial Electronics Symposium, pp. 357-362. Fort N. L., Piat E., Ramamonjisoa D., 1993, “Toward a Copilot Architecture Based on Embedded Real Time Expert Systems,” Proceedings of the IFAC Intelligent Autonomous Vehicles, pp. 403-408. Fujioka T. & Muramatsu K., 1996, “Driver’s behavior in ITS Environment Investigated by a Driving Simulator,” IEEE Intelligent Vehicles Symposium, pp. 295-299. LabVIEW User Manual, 1996, National Instruments Lee W. S., 1991, “Compensation of Transport Delay in Driving Simulator,” American Control Conference, pp. 161-172. Lee W. S., Kim J. H., Cho J. H., 1998, “A Driving Simulator as a Virtual Reality Tool,” Proceedings of the IEEE International Conference on Robotics & Automation, vol. 1, pp. 71-76. Lee W. S. & Kim S. S., 1994, “Real-Time Vehicle Dynamic Simulation,” Proceedings of AVEC, pp. 105-109. Lee W. S. & Tak T. O., 1991, “Parallel Processing of Controlled Multibody Mechanical System Dynamics,” Engineering with Computers, Vol. 7, pp. 161-172. Miyazaki T., Kodama T., Furuhashi T., Ohno H., 2001, “Modeling of Human Behaviors in Real Driving Situations,” IEEE Intelligent Transportation Systems Conference Proceedings, pp. 643-646. Neumann U. & Majoros A., 1998, “Cognitive, Performance, and Systems Issues for Augmented Reality Applications in Manufacturing and Maintenance,” Proceedings of the Virtual Reality Annual International Symposium, pp. 14-18. Ohno H., 2001, “Analysis and Modeling of Human Driving Behaviors Using Adaptive Cruise Control,” Applied Soft Computing Journal, pp. 237-243. Pauzie A., 1994, “Human Interface of in-Vehicle Information System,” Proceedings of Vehicle Navigation and Information Systems Conference, pp. 35-40. Pleczon P. & Kessaci A., 1991, “The Prolab1 Man-Machine interface,” Proceedings of the Prometheus Pro-Art Workshop on Intelligent Copilot, pp. 71-82. Rombaut M., 1993, “A Driving Assistance System,” Proceedings of the IEEE International Workshop on Advanced Robotics, pp.97-101. Sato T., Daimon T., Kawashima H., Kinoshita M., Ikeda A., 2003, “Fundamental study on human interface of narrow road drive assist system based on drivers’ cognitive process,” JSAE Review 24, pp. 189-196. Shekbar C., Gaudin V., Moisan S., Thonnat M., 1994, “Automatic Supervision of Perception Programs for Prolab2,” Proceedings of the IMACS International Symposium on Signal Processing, Robotics and Neural Networks. Srinivasan R., Landau F. H., Jovanis P. P., 1995, “A Simulator Evaluation of Five in-Vehicle Route Guidance Systems,” Proceedings of the 6th International Conference on Vehicle Navigation and Information Systems, pp. 90-95. Todoriki T., Junichi Fukano J., Okabayashi S., Sakata M., Tsuda H., 1994, “Application of Head-up Displays for in-Vehicle Navigation (Route) Guidance,” Proceedings of Vehicle Navigation and Information Systems Conference, pp. 479-484. Wewerinke P. H., 1996, “Model Analysis of Adaptive Car Driving Behavior,” Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pp. 2558-2563. Wewerinke P. H., 1994, “Modeling Human Learning Involved in Car Driving,” Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pp. 1968-1973. Wittenberg G., 1995, “Training with Virtual Reality,” Assembly Automation v.15 n3 pp. 12-14.id NH0925031067 sid 913850 cfn 0 / id NH0925031068 auc 鍾孟容 tic 應用資料挖礦方法於建立中小學生尺碼系統 adc 王茂駿 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 129 kwc 尺碼系統 kwc 群集分析 kwc 資料挖礦 kwc 體型分類 kwc 人體計測 abc 目前國內成衣市場的尺碼系統因廠而異,分類方法和尺碼數據也都大相逕庭,使得消費者往往只能夠透過試誤法(Trial and Error)來尋找適合自己的衣服,加以近年來國人體型有著增高增胖的趨勢,現有的尺碼系統已漸漸不敷使用,因此,建立一套符合時宜的標準尺碼系統顯然已是刻不容緩的當務之急。 tc 目 錄 摘要 Ⅰ 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 第二章 文獻探討 4 2.1 人體計測學 4 2.1.1 人體尺寸的比例關係 4 2.1.2 體型分類方法 8 2.1.3 成長階段的體型特徵與變化 9 2.1.4 台灣地區之人體計測與體型變化 11 2.2 尺碼系統概念 15 2.2.1 尺碼系統的種類 15 2.2.2 尺碼的標式方法 17 2.2.3 尺碼系統的建立程序 19 2.2.4 尺碼系統的相關研究 22 2.2.5 服裝寬鬆份之選取 24 2.3 國際尺碼介紹 27 2.3.1 台灣.......... 28 2.3.2 中國.......... 28 2.3.3 日本.......... 29 2.3.4 美國.......... 30 2.3.5 加拿大........ 31 2.3.6 匈牙利........ 32 2.3.7 澳大利亞...... 33 2.3.8 德國.......... 34 2.3.9 歐洲.......... 36 2.4 資料挖礦 37 2.4.1 群集分析 38 2.4.2 群集分析於服飾的應用 40 第三章 研究方法 41 3.1 量測方法 41 3.1.1 儀器與設備 41 3.1.2 尺寸項目定義 43 3.2 研究流程 46 第四章 研究結果 55 4.1 尺碼表 55 4.2 尺碼系統的應用 80 第五章 討論 83 5.1 尺寸定義問題 83 5.2 尺碼系統與服裝規格 84 5.3 服裝產業調查 85 5.4 亞洲國家尺碼比較 87 5.4.1 日本 87 5.4.2 中國 89 第六章 結論與建議 90 6.1 結論 90 6.2 後續研究建議 91 參考文獻 92 附錄一 尺碼數據表 97rf 〔1〕 中國國家標準CNS L4027,棉絨衛生衣-成人男用,民國59年9月7日修訂。 〔2〕 中國國家標準CNS L4028,棉絨衛生褲衣-成人男用,民國59年9月7日修訂。 〔3〕 中國國家標準CNS L4139,運動衣,民國70年10月23日公佈。 〔4〕 中國國家標準CNS L4140,睡衣,民國70年10月23日公佈。 〔5〕 中國國家標準CNS L4143,工作服,民國71年1月13日公佈。 〔6〕 中國國家標準CNS L4160,襯衫基本尺度,民國79年11月20日修訂。 〔7〕 中國心理諮詢網,青春期男孩女孩有什麼不同,2003,http://www.xlzx.com/cgi/xr_html/articles/Sexeducation/567.html 〔8〕 日本文化女子大學文化服裝學院編,朱炳樹譯,1991,文化服裝講座8-童裝,實踐學院影清出版部,頁12-18。 〔9〕 日本文化女子大學文化服裝學院編,實踐設計管理學院服裝設計系譯,1988,文化服裝講座5-男裝,實踐學院影清出版部,頁20-23。 〔10〕 王茂駿,王明揚,林昱呈,2002,台灣地區人體計測資料庫手冊,中華民國人因工程學會,頁3-20。 〔11〕 鄭國彬,1987,台灣地區成年婦女及男士人體計測調查研究專案報告,七十六年度經濟部工業技術研究推展提高傳統性工業生產力報告書。 〔12〕 鄭國彬,1988,臺灣地區18-34歲成年婦女、男士成衣標準尺碼之擬定成果報告。 〔13〕 鄭國彬,1991,台灣地區標準尺碼之擬定研究計劃台灣地區成衣標準尺碼資料庫報告書。 〔14〕 杜壯,李玉龍,1984,「我國青年期人體計測調查研究」,國科會專題研究計畫報告,計畫編號:NSC73-0415-E027-01。 〔15〕 林昱呈,1997,人體尺寸比例關係與預測模型之建立,國立清華大學工業工程與工程管理研究所,碩士論文。 〔16〕 邱魏津,1984,青年女子服裝標準尺寸規格及體型體型別之探討,國科會專題研究計畫報告,計畫編號:NSC73-0415-E020-01。 〔17〕 邱魏津,1986,國人女子體型及標準尺寸規格之探討,國科會專題研究計畫報告,計畫編號:NSC75-0415-E020-01。 〔18〕 教育部體育司,1993,台閩地區各級學校學生身高體重胸圍測量報告書,民國64-82年。 〔19〕 張瑾芳,申屠光,1999,台灣18至22歲女性上衣服裝尺碼計測模型分析,華岡紡織期刊,第6卷第1期,頁86-94。 〔20〕 張瑾芳,申屠光,2000,我國18至22歲女性上衣製圖尺碼標準化之研究,第十六屆纖維紡織科技研討論文集,D59。 〔21〕 許勝雄,1991,人因工程學,揚智文化事業股份有限公司,頁50-54。 〔22〕 陳芬苓,1998,台灣地區女子(20-49歲)人體計測調查之研究,紡織中心期刊,第9卷第1期,頁1-11。 〔23〕 陳芬苓,1998,成人女子服裝用尺碼規格,1998年台灣最新20-49歲女性人體計測調查及尺碼規格制定-研討會。 〔24〕 游智翔,2001,多重bin層良率群集分析之研究,國立清華統計學研究所,碩士論文。 〔25〕 傅美玲,1993,台灣18至26歲女性成衣用人體標準尺碼之制定(先導研究) 研究報告。 〔26〕 蔡佳靜,1999,應用三度空間人體計測資料於成衣尺碼分類系統之建立,國立清華大學工業工程與工程管理研究所,碩士論文。 〔27〕 蔡青如,1997,應用人體計測資料於女用長褲尺碼系統之建立,國立清華大學工業工程與工程管理研究所,碩士論文。 〔28〕 黎正中,黃雪玲,王明揚,1986,國人靜態人體測量資料庫之建立,國科會專題研究計畫。 〔29〕 戴鴻,1998,服裝型號標準及其應用,中國紡織出版社,頁9-20。 〔30〕 蘇月梅譯,1981,Debbie, A. G., Beverly, B.著,體型與尺碼,大陸書局,頁7-24。 〔31〕 Adriaans, P., Zantinge, D., 1996, Data Mining, Addison.Wesley. 〔32〕 Anderberg, MR., 1973, Cluster Analysis for Applications, New York, Academic Press, pp.185-190. 〔33〕 Anthropology Research Project Ohio, 1978, Anthropometry for Designers, Vol. 1, NASA, Washington, DC. 〔34〕 Ashdown, S. P., 1998, An Investigation of the Structure of Sizing Systems”, International Journal of Clothing Science and Technology, 10 (5), pp. 324-341. 〔35〕 Beazley, A., 1998, Size and Fit: Formulation of Body Measurement Tables and Sizing Systems-Part 2, Journal of Fashion Marketing and Management, 2(3), pp.260-284. 〔36〕 Berry, M.J.A., Linoff, G., 1997, Data Mining Techniques For Marketing, Sales and Customer support, Wiley. 〔37〕 Cabena, P., Hadjinian, P. O., Stadler, R., Verhees, J., Zanasi , A., 1997, Discovering Data mining from Concept to Implementation, Prentice Hall. 〔38〕 CAN/CGBS-49.8-M89- Girls’ and Boys’ Canada Standard Sizes Model Form, Regular range, 1989. 〔39〕 CAN/CGSB-49.94-M91-Girls’Canada Standard Size 2 to 16 overalls regular range, 1991 〔40〕 CAN/CGSB-49.66-M91-Boys’Canada Standard Size 2 to 20 overalls regular range, 1991. 〔41〕 CAN/CGSB-49.203-M87-Canada Standard Sizes for Women's Apparel - Trade Sizes, 1987. 〔42〕 Cooklin, G.,1992, Pattern Grading for Women's Clothes, Blackwell, Oxford. 〔43〕 Cooklin, G.,1994, Pattern Cutting for Women’s Outerwear, Blackwell Science. 〔44〕 Emanuel, I., 1959, A Height-Weight Sizing System for Flight Clothing, WADC TR, Aero Med Lab, 56-365. 〔45〕 Ferrari, L.C.,1987,Vogue Easy Sewing, New York:Harper & Row,Publish. 〔46〕 Han, J., Kamber, M., 1991, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishes , San Francisco. 〔47〕 Huck, J., Maganga, O., 1997, Protective overalls: evaluation of garment design and fit, International Journal of Clothing Science and Technology, Vol. 9 No. 1, pp. 45-61. 〔48〕 Jasper, C.R.,Chun, J.S., 1993, Garment-Sizing Systems: An International Comparison, International Journal of Clothing Science and Technology, Vol.5, No. 5, pp.28-37. 〔49〕 Laing, R.M., Holland, E. J., Wilson, C. A., Niven, B. E., 1999, Development of Sizing System for Protective Clothing for Adult Male, Ergonomics, Vol. 42, No.10, pp.1249-1257. 〔50〕 Laubach, L.L., Marshall, M.E., 1970, A Computer Program for Calculation Parnell’s Anthropometric Phenotype, Journal of Sports and Medicine, pp.217-224. 〔51〕 MacQueen, J.B., 1967, Some Methods for Classification and Analysis of Multivariate Observations, Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281-297. 〔52〕 McCulloch, C. E., Paal, B., Ashdown, S. P., 1998, An Optimal Approach to Apparel Sizing, Journal of the Operational Research Society, 49 (5), pp. 492-499. 〔53〕 Moon, J.Y., Nam, Y.J., A Study the Elderly Women’s Lower Body Type Classification and Lower Garment Sizing Systems, Proceedings of International Ergonomics Association 2003 Conference, Korea. 〔54〕 Mououdi, M. A., 1997, Static Anthropometric Characteristics of Tehran University Students Age 20-30 age, Applied Ergonomics, Vol. 28, No. 2, pp.149-150. 〔55〕 Park, S.J., Park, S.C., Kim, J.H., Kim, C.B., 1999, Biomechanical Parameters on Body Segments of Korean Adults, International Journal of Industrial Ergonometric, Vol.23, pp.23-31. 〔56〕 Palaganas, D.,1991,The Uni-sizing Europe, Apparel Industry Magazine, 52, No.9,82-87. 〔57〕 Ray, G.G.., Ghosh, S., Aterya, V., 1995, An Anthropometric Survey of Indian Schoolchildren Age 3-5 Years, Applied Ergonomics, Vol.26, No. 1, pp.67-72. 〔58〕 Skerlj, B., Brozek, J., Edward E, Hunt, JR, 1953, Subcutaneous Fat and Age Change in Body Build and Body Form in Women, American Journal of Physical Anthropology, pp577-600. 〔59〕 Turner, J. P., Bond, T., 1999, Made-to-Measure Garments for Ladies -Catering for Wide Ranging Stature and Length Measurements for Standard and Outsize Ladies, International Journal of Clothing Science and Technology, Vol.11, No. 4, pp.216-225. 〔60〕 Wang, M.J., Wang, M.Y., Lin, Y.C., 2002, The Anthropometric Database for Children and Young Adults in Taiwan, Applied Ergonomics, Vol. 33(6), pp.583-585. 〔61〕 Winks, J. M., 1997, Clothing Size International Standardization, Redwood Books, UK, pp.47-58.id NH0925031068 sid 913845 cfn 0 / id NH0925031069 auc 楊景晴 tic 整合決策樹與關聯規則之資料挖礦架構及其實證研究 adc 簡禎富 教授 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 89 kwc 資料挖礦 kwc 決策樹 kwc 關聯規則 kwc 事故排除 kwc 決策分析 abc 隨著資訊科技進步與電腦的普及,企業逐漸開始建構屬於自己的資料庫,資料亦被大量的儲存與紀錄下來。企業擁有更多的資料來獲取更準確的答案,但也由於資料的大量與複雜度,亦增加使用者萃取資訊的困難度,降低其資料的價值,而資料挖礦可從大量資料中以自動或是半自動的方式來探索(explore)和分析資料,以發掘出潛在有用的資訊。在現代企業製商整合與電子化之經營環境下,決策者可以應用資料挖礦技術萃取出有價值的資訊或原本隱藏不知的特殊樣型,以處理大量資料混雜時的決策問題。本研究目的在於整合決策樹與關聯規則之方法,架構一適用於一般性事故排除問題的資料挖礦架構,並以台灣電力公司配電事故表與某半導體廠實際資料與進行實證研究,以驗證此架構之效度。 tc 中文摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 vi 第一章 緒論 1 1.1 研究背景及重要性 1 1.2 研究目的 3 1.3 論文結構與研究流程 4 第二章 文獻探討 6 2.1 知識發現與資料挖礦 6 2.2 資料挖礦模式與工具 14 2.2.1 資料挖礦挖掘結果類型 15 2.2.2 資料挖礦工具 16 2.3 關聯規則 19 2.3.1 關聯規則定義與說明 20 2.3.2 關聯規則類型 22 2.3.3 關聯規則演算法 23 2.3.4 關聯規則的應用 28 2.4 決策樹 29 2.4.1 決策樹演算法 32 2.4.2 應用決策樹於事故診斷之相關研究 34 第三章 研究架構 37 3.1 問題定義 39 3.2 資料選擇 39 3.3 資料前置處理 41 3.4 目標與顯著變數的選取 43 3.5 資料挖礦 47 3.5.1 決策樹 47 3.5.2 關聯規則 49 3.5.3 整合決策樹與關聯規則 51 3.6 解釋與評估 51 第四章 實證研究 53 4.1 實證研究一:台灣電力配電事故定位 53 4.2 實證研究二:以某半導體廠工程資料為實證對象 67 4.3 案例討論 80 第五章 結論 81 參考文獻 82 附錄A 89rf 王文志(2003),「實驗設計為基礎架構之資料挖礦方法及其實證研究」,國立清華大學工業工程與工程管理學研究所碩士論文。 李培瑞(2002),「半導體製程資料挖礦架構、決策樹分類法則及其實證研究」,國立清華大學工業工程與工程管理學研究所碩士論文。 林鼎浩(2000),「建構半導體製程資料挖礦架及其實證研究」,國立清華大學工業工程與工程管理學研究所碩士論文。 吳鴻志(2002),「運用關連式法則分析異常WAT良率之機台組合」,中正大學會計學研究所碩士論文。 洪紹鯤(1999),「半導體製程之資料探勘」,台灣科技大學電機工程研究所碩士論文。 孫天龍、蔡智政、羅國弘、劉泰興、賈方霈、廖建華(2002),「資料探勘技術於電子產業製程資料分析─以IC與PCB為例」,2002 PCB製造與管理技術研討會論文集,196-174頁。 陳彥良、凌俊青、許秉瑜(2001),「在包裹式資料庫中挖掘數量關連規則」,資訊管理學報,第七卷,第二期,215-229頁。 陳建銘(2001),「類神經網路於Web Mining之應用」,台北科技大學商業自動化與管理研究所碩士論文。 陳麗君(2003),「應用資料探勘技術於信用卡黃金級客戶之顧客關係管理」,元智大學工業工程與管理學系碩士論文。 劉中光(2002),「以資料挖掘為基建構製程品質問題診斷系統--以印刷電路板業為例」,元智大學工業工程與管理學系碩士論文。 陳順宇(1998),多變量分析,華泰,台北。 莊達人(1999),VLSI製造技術,高立,台北。 葉忠、吳恆睿(2002),「中醫院揀藥作業儲位規劃之研究」,運籌研究期刊,第二期,39-84頁。 蔡智政(2002),「應用CART決策樹與資料視覺技術於低良率晶圓成因探討」,元智大學工業工程與管理研究所碩士論文,頁40。 鄭仁傑(2003),「以混合決策樹方法分析有相互關係之半導體製造資料」,國立清華大學工業工程與工程管理學研究所碩士論文,頁67。 簡禎富、王鴻儒、徐紹鐘、李培瑞(2002),「決策樹資料挖礦架構及其於半導體製程之實證研究」,科技管理學刊,第七卷,第一期,137-160頁。 簡禎富、徐紹鐘、彭誠湧、林鼎浩(1999),「建構半導體製程事故資料挖礦方法及其實證研究」,中國工業工程學會88年度年會論文集,第114頁 簡禎富、林鼎浩、徐紹鐘、彭誠湧(2001),「建構半導體晶圓允收測試資料挖礦架構及其實證研究」,工業工程學刊,第十八卷,第四期,37-48頁。 簡禎富、徐紹鐘、彭誠湧、林鼎浩(2000),「建構晶圓圖分類之資料挖礦方法及其實證研究」,國科會工程處工業工程學門決策分析方法與應用研討會論文集,第439-458頁。 簡禎富、李培瑞(2001),「現代決策工具:資料挖礦及其在半導體製程資料特徵萃取與事故分析之實證」,中華決策科學學會年會暨論文研討會論文集,77-84頁。 簡禎富、李培瑞(2001),「半導體製程資料分群、特徵萃取與資料挖礦」,中華民國科技管理研討會論文集,396-401頁。 簡禎富、王鴻儒、徐紹鐘、李培瑞(2002),「決策樹資料挖礦架構及其於半導體製程之實證研究」,科技管理學刊,第七卷,第一期,137-160頁。 簡禎富、彭金堂、林怡傑、楊景晴(即將刊登),「建構關聯規則資料挖礦方法及其在台電配電事故定位之研究」,資訊管理學報。 顏月珠(2001),無母數統計方法,三民書局,台北。 Agrawal, R., Imielinsld, T. and Swami, A., “Mining Association Rules Between Sets of Items in Large Databases,” Proc. of the ACM SIGMOD International Conf. on Management of Data, 1993, pp. 207-216. Agrawal, R. and Srikant, R., “Fast Algorithms for Mining Association Rule, ” Proc. of the 20th International Conf. on Very Large Data Bases, 1994, pp. 487-499. Agrawal, R. and Srikant, R., “Mining Quantitative Association Rules in Large Relational Tables,” Proc. of the ACM-SIGMOD 1996 Conference on Management of Data, Montreal, Canada, June 1996. Berry, M., and Linoff, G., Data Mining Techniques for Marketing, Sales and Customer Support, John Wiley and Sons, New York, 1997. Berry, M. and Linoff, G., Mastering Data Mining: The Art & Science of Customer Relationship Management, John Wiley &Sons, New York, NY, 2000. Berson, A., Smith, S., and Thearling, K., Building Data Mining Applications for CRM, McGraw-Hill, 2000. Brachman, R. J., T. Khabaza, W. Kloesgen, G. Piatetsky-Shapiro and E. Simoudis “Mining business database,” Communication of ACM(39:11), 1996, pp: 42- 48. Brada, D., and Shmilovici A., “Data mining for improving a cleaning process in the semiconductor industry,” IEEE Transactions on Semiconductor Manufacturing, Vol. 15, No. 1, 2002, pp. 91-101. Braha, D. and Shmilovici, A., “On the Use of Decision Tree Induction for Discovery of Interactions in a Photolithographic Process”, IEEE Transactions On Semiconductor Manufacturing, Vol. 16, No. 4, 2003, pp.644-652. Breiman, L., Friedman, J. H., Olshen, R. J., and Stone, C. J., Classification and Regression Trees, Belmont, CA:Wadsworth, 1984. Cabena, P., Hadjinian P., Stadler R., Verhess J., and Zanasi A., Discovering Data Mining From Concept to Implementation, Prentice Hall PTR, Upper Saddle River, New Jersey, 1997. Chen, M. C.(2003), “Configuration of Cellular Manufacturing Systems Using Association Rule Induction,” International Journal of Production Research, 41 (2), pp. 381–395. Chen, M.S., Han, J., and Yu, P.S., “Data Mining:An Overview from a Database Perspective,” IEEE Transactions on Knowledge and Data Engineering, 8(6), 1996, pp. 866-883. Chen, Yun-Shiow and Min-Xun Guo, 2002, “A Study for the Determination of Threshold Value of Supportability in Association Rule – From Cost Viewpoint,” The 16th Asia Quality Symposium 2002, Japan, November 2002. Cunningham, S. P., Spanos, C. J., and Voros, K., “Semiconductor Yield Improvement: Results and Best Practices ”, IEEE Transactions on Semiconductor Manufacturing, 8(2), 1995, pp.103-109. Cherkassky, V., and Mulier, F., Learning From Data: Concepts, Theory, and Methods, A Wiley Interscience Publication, 1998. Chang Man Kuok, Ada Wai-Chee Fu, Man Hon Wong, " Mining Fuzzy Association Rules in Databases," SIGMOD Record 27(1), 1998, pp. 41-46 Chih-Min Fan, Ruey-Shan Guo, Chen, A., Kuo-Ching Hsu, Chih-Shih Wei, “Data mining and fault diagnosis based on wafer acceptance test data and in-line manufacturing data,” Semiconductor Manufacturing Symposium, 2001 IEEE International, 8-10, 2001, pp. 171-174. Chih-Min Fan, Ruey-Shan Guo, Chen, A., Hon, A., Wei, J., Mingchu King, “Integrated yield-mining solution with enhanced electrical test data correlation,” Semiconductor Manufacturing, 2003 IEEE International Symposium on, 30, 2003, pp. 497-500. Daniel, W. W., Applied Nonparametric Statistics 2nd, PWS-KENT Publishing Company, Boston, 1990. Dhar V. and Stein R., Seven Methods for Transforming Corporate Data into Business Intelligence, Upper Saddle River, New Jersey, 1997. Elovici, Y.; Braha, D., “A decision-theoretic approach to data mining”, Systems, Man and Cybernetics, Part A, IEEE Transactions on , Vol. 33(1), 2003, pp. 42 – 51. Feyyad, U.M., “ Data mining and knowledge discovery: making sense out of data”, IEEE Expert, Vol. 11 , no. 5 , 1996(a), pp.20 – 25 Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P., “ The KDD Process for Extracting Useful Knowledge from Volumes of Data ”, Communication of ACM, vol. 39, no.11, 1996(b), pp.27-34. Fayyad, U. “Data Mining and Knowledge Discovery in Database: Implication for Scientific Databases”, Scientific and Statistical Database Management 1997, pp: 2-11. Feelders, A., Daniels, H. and Holsheimer, M., “Methodological and practical aspects of data mining”, Information and Management, vol. 37(5), 2000, pp. 271-281. Grader R. M., Bieker J. and Elwell S., “Solving tough semiconductor manufacturing problems using data mining,” ASMC 2000 proceedings, pp. 46-55. Han, J. and M. Kamber, Data Mining: Concepts and Techniques, San Francisco, CA, USA: Morgan Kaufmann, 2000. Han, J. and Yongjian, “Discovery of Multiple-Level Association Rules from Large Databases,” Proceddings of the 21st VLDB Conference, 1995. Jong, S. P., Chen, Ming-Syan, and Yu, P. S., “An Effective Hash-Based Algorithm for Mining Association Rules,” Proc ACM SIGMOD, 1995, pp.175-186. John, G. H., Miller, P., and Kerber, R., “Stock Selection Using Rule Induction”, IEEE Expert, vol. 11, no. 5, 1996, pp. 52-58. Kawahara, M. and Kawano H., “Mining association algorithm with Improved threshold based on ROC analysis,” Computers and signal Processing, 2001 IEEE Pacific Rim Conference on, Vol. 2(26-28), 2001, pp. 703-706. Krivda, Chery D., “Unearthing underground data,”LAN, May 1996, pp.42-48. Kusiak, A.and Kurasek, C., “Data mining of printed-circuit board defects”, Robotics and Automation, IEEE Transactions on, Vol. 17(2), 2001, pp. 191 – 196. Liu, B., Hsu, W., Ma, Y., “Mining association rules with multiple minimum supports,” In: Proceedings of the ACM SIGKDD (KDD-99), pp. 337-341. Lu, H., Han, J. and Feng L., “Stock Movement Prediction And N-Dimensional Inter-Transaction Association Rules,” Proc. of 1998 SIGMOD'96 Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD'98), Seattle, Washington, June 1998, pp.12:1-12:7. Milne, R., M. Drummond and P. Renoux, “Predicting paper making defect on-line using data mining,” Knowledge-Based Systems (11) 1998, pp. 331-338. Pyle, D., Data Preparation for Data Mining, Morgan Kaufmann Publishers, San Francisco, California, 1999. Quinlan, J. R., “Induction of decision tree,” Machine Learning, 1, 1986, pp. 81-106. Raghavan, V., “Application of decision trees for integrated circuit yield improvement,” Advanced Semiconductor Manufacturing 2002 IEEE/SEMI Conference and Workshop, 30, 2002, pp. 262–265. Sankaran, V., Weber, C. M., Tobin Jr., K. W. and Lakhani, F., “Inspection in semiconductor manufacturing,” in Webster’s Encyclopedia of Electrical and Electronic Engineering. New York: Wiley, vol. 10, 1999, pp. 242–262. Savasere, A., Omiecinski, E. and S. Navathe (1995), “An Efficient Algorithm for Mining Association Rule in Large Databases,” Proceeding of 21th VLDB, pp. 432-444. Sharma, S., Applied Multivariate Techniques, John Wiley & Sons, New York, 1996. Shaw, M. J., Subramaniam, C. and Tan, G. W., “Knowledge management and data mining for marketing,” Decision Support Systems, 31, 2001, 127-137. Smith, M.H. and Pedrycz, W., “Expanding the meaning of and applications for data mining”, Systems, Man, and Cybernetics, 2000 IEEE International Conference on, Vol.3 , 2000, pp. 1874. Song, H. S., Kim, J. k. and Kim, S. H., “Mining the change of customer behavior in an internet shopping mall”, Expert Systems with Applications, Vol. 21(3), 2001, pp. 157-168. Stapper, C.H., and Ronser, R. J. (1995), “Integrated Circuit Yield Management and Yield Analysis : Development and implementation,” IEEE Transactions on semiconductor Manufacturing, 8(2), 95-102. Sung, H. H. and Sang, C. P., “Application of data mining tools to hotel data mart on the Intranet for database marketing”, Expert Systems with Applications, Vol. 15(1), 1998, pp. 1-31. Thuraisingham, B., “A primer for understanding and applying data mining”, IT Professional, Vol. 2(1), 2000, pp. 28–31. Tsuda H., Shiri H., Takagi O. and Take R., “Yield analysis and improvement by reducing manufacturing fluctuation noise,” ISSM 2000 proceeding, pp. 249-251. Vazquez, E., Altuve, H.J. and Chacon, O.L., “Neural network approach to fault detection in electric power systems”, Neural Networks, IEEE International Conference on , Vol. 4, 1996, pp. 2090 – 2095. Wur, Suh-Ying and Yungho Leu, “An effective Boolean algorithm for mining association rules in large databases,” Proceedings of the 6th International Conference on Database Systems for Advanced Applications, 1999, pp.179 –186. Yun, Hyunyoon, Ha, Danshim, Hwang, Buhyun and Ho Ryu, Keun, “Mining association rules on significant rare data using relative support,” Journal of Systems and Software, Vol. 67(3), 2003, pp. 181-191. Zormana, M., Masudab, G., Kokola, P., Yamamotob, R. and B. Stiglica, “Mining Diabetes Database With Decision Trees and Association Rules,” Computer-Based Medical Systems 2002, Proceedings of the 15th IEEE Symposium on, 2002, pp. 134 – 139.id NH0925031069 sid 913808 cfn 0 / id NH0925031070 auc 劉培熙 tic 望小品質特性非常態製程能力分析之系統化研究 adc 陳飛龍 ty 博士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 82 kwc 製程能力分析 kwc 非常態製程 kwc 望小品質特性 kwc 近似分配函數 kwc 當量製程能力指標 abc 中 文 摘 要 tc 目 錄 中 文 摘 要 i ABSTRACT iii 致 謝 辭 v 目 錄 vi 表目錄 viii 第 一 章 緒 論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的與範圍 4 1.4 論文架構與研究方法 5 1.5 章節架構 9 第 二 章 文獻回顧 10 2.1 製程能力分析與製程能力指標 10 2.2 非常態製程能力分析 17 2.3望小型品質特性與整體製程能力指標 26 第三章 系統架構與分析 29 3.1研究問題定義 29 3.2研究方法與步驟 31 3.3資料分群模組分析 32 3.4分配族群歸類模組分析 35 3.5製程能力指標估算模組分析 38 第四章 系統驗證 42 4.1 產品資料分析的驗證 42 4.2 製程資料分析的驗證 56 第五章 結論 66 5.1研究結果 66 5.2未來發展方向 68 參考文獻 70 附 表 一 77rf 參考文獻 AliMousa, M.A.M. and Jaiieen, 2002, Statistical inference for the Burr model based on progressively censored data, Computers and Mathematics with Applications, 43, 1441-1449. Bissell D., 1994, Statistical Method for SPC and TQM, Chapman and Hall, London. Bother, D. R., 1999-2000, Composite capability index for multiple product characteristics, Quality Engineering, 12(2), 253-258. Box, G.E.P., and Cox, D. R., 1964, An analysis of transformation, Journal of the Royal Statistical Society, Series B, 26, 211-243. Boyles, R. A., 1991, The Taguchi capability index, Journal of Quality Technology; 23(1), 17-26. Burr, I. W., 1942, Cumulative frequency distribution, Annals of Mathematical Statistics, 13, 215-232. Burr, I. W., 1967, The effect of non-normality on constants for and R charts, Industrial Quality Control, May, 563-569. Burr, I. W., 1973, Parameters for a general system of distributions to match a grid of α3 and α4, Communications in Statistics, 2, 1-21. Camp, B. H., 1922, A note on professor Narum’s paper, Biometrika, 15, 421-423. Castagliola, P., 1996, Evaluation of non-normal process capability indices using Burr’s distributions, Quality Engineering, 8(4), 587-593. Chan, L. K., Cheng, S. W. and Spiring, F. A, 1988, A new measure of process capability Cpm, Journal of Quality Technology, 20(3), 162-175. Charbonneau, H. C. and Webster, G. L., 1978, Industrial Quality Control, Prentice Hall, Engle wood Cliffs, New Jersey. Chen, K. S., Huang, M. L. and Li, R. K., 2001, Process capability analysis for an entire production, International Journal of production Research, 39(17), 4077-4087. Chen, K. S. and Pearn, W. L., 1997, An application of non-normal process capability indices, Quality and Reliability Engineering International, 13, 355-360. Choi, and Bai, 1996, Process capability indices for skewed populations, Proceedings of the 20th International Conference on Computer and Industrial Engineering, 1211-1214. Chou, C.Y. and Cheng, P.H., 1997, Ranges control chart for non-normal data, Journal of the Chinese Institute of Industrial Engineers, 14(4), 401-409. Chou, C. Y., Cheng, P. H. and Liu, H. R., 2000, Economic – statistical design of charts for non-normal data by considering quality loss, Journal of Applied Statistics, 27(8), 2000, 939-951. Cook, R. D. and Johnson M. E., 1986, Generalized Burr Pareto-Logistic distribution with applications to a Uranium exploration data set, Technometrics, 28, 123-131. Clements, J. A., 1989, Process capability calculations for non-normal Distributions, Quality Progress, 22, 95-100. Johnson N. L., 1949, Systems of frequency curves generated by methods of translation, Biometrika, 36, 149-176. Flaig, J. J., 1996, A new approach to process capability analysis, Quality Engineering, 9(2), 205-211. Franklin, L. A. and Wasserman, G. S., 1992, Bootstrap lower confidence limits for capability indices, Journal of Quality Technology; 24(4), 158-172. Gruska, G. F., Mirkhani, K. and Lamberson, L. R., 1989, Non-normal data analysis, Applied Computer Solutions, Saint Clair Shores, MI. Gunter, B. H., 1989, The use and abuse of Cpk, Quality Progress, 22(3), 108-109; 22(5), 79-80. Hubele, N. F., Shahriari, H. and Cheng, C. S., 1991, A bivariate process capability vector, in statistics and design in process control, Statistical Process Control in Manufacturing Edited by Keats, J. B. and Montgomery, D. C., Marcel Dekker, New York, 299-330. Kane, V. E., 1986, Process capability indices, Journal of Quality Technology, 18(1), 41-52. Kitska, D., 1991, Letter to the editor, Quality Progress, March, 8. Kotz, S. and Lovelace, C. R., 1998, Process Capability Indices in Theory and Practice, Arnold, London. Kotz, S. and Johnson N. L., 2002, Process capability indices --- a review, 1992-2000, Journal of Quality Technology; 34, 51-53. Meidell , B., 1921, Skandian Aktusrietidskr., 4, 230-238. Mode, E. B., 1961, Elements of Statistics, Prentice-Hall, Englewood Cliffs, New Jersey, 277-278. Montgomery D. C. 2001, Introduction to Statistical Quality Control, 4th ed., John Wiley, New York, 232-266;357-370. Pan J. N. and Wu S.L., 1997, Process capability analysis for non-normal relay test data, Microelectronics Reliability, 37(3), 421-428. Pearn, W. L., and Kotz, S., and Johnson, N. L., 1992, Distributional and Inferential Properties of Process Capability Indices, Journal of Quality Technology, 24(4), 216-231. Pearn, W. L. and Kotz, S. 1994, Application of Clements’ method for calculating second and third generation process capability indices for non-normal Pearsonian populations, Quality Engineering, 7(1), 139-145. Pearn, W. L. and Shu, M. H., 2003, An algorithm for calculating the lower confidence bounds of CPU and CPL with application to low-drop-out linear regulators, Microelectronics Reliability, 43, 495-502. Rodriguez, R. N., 1977, A guide to the Burr type XII Distributions, Biometricka, 64, 129-134. Rodriguez, R. N.,1992, Recent developments in process capability analysis, Journal of Quality Technology, 24, 176-187. Singh, S. K. and Moddola, G. S., 1976, A function for size distribution of incomes, Econometrica, 44, 963-969. Somerville, S. and Montgomery, D. C., 1996, Process capability indices and non-normal distributions, Quality Engineering, 19(2), 305-316. Spiring F., Leung B., Cheng S. and Yeung A., 2003, A bibliography of process capability papers, Quality and Reliability Engineering International; 19, 445-460. Stoumbos, Z. G., 2002, Process capability indices: overview and extensions, Nonlinear Analysis: Real World Applications, 3, 191-210 Tang, L.C. and Than, S. E., 1999, Computing process capability indices for non-normal data: A review and comparative study, Quality and Reliability Engineering International; 15, 339-353. Tasi, H. T., 1990, Probabilistic tolerance design for a subsystem under Burr distribution using Taguchi’s quadratic loss function, Communications in Statistics – Theory and Methods, 19(12), 4679-4696. Wang. F. K., Kents, J. B. and Zimmer W. J., 1996, The maximum likelihood estimation of the Burr XII parameters with censored and uncensored data, Microelectronics Reliability, 36, 359-362. Wang, F. K. ; Hubele, N. F. ; Laweence, F. P. ; Miskulin, J. O. and Shariare, H. 2000, Comparison of three multivariate process capability indices, Journal of Quality Technology, 32, 263-275. Wingo, D. R., 1983, Maximum likelihood methods for fitting the Burr type XII distribution to life test data, Biometrical, 25, 77-81. Wright, P. A. (1995), A process capability index sensitive to skewness, Journal of Statistical computer Simulation, 52, 195-203. Wu, H. H., Wang, J. S. and Liu, T. L., 1998, Discussions of the Clements-based process capability indices, Proceedings of the 1998 CIIE National Conference, 561-566. Yourstone, S. A. and Zimmer, W. J., 1992, Non-normality and the design of control charts for averages, Decision Sciences, 23, 1099-1113. Zimmer, W. J. and Burr, I. W. 1963, Variables sampling plans based on non-normal populations, Industrial Quality Control, July, 18-36. Zimmer, W. J, Keats J. B. and Wang F. K., 1998, The Burr XII distribution in reliability analysis, Journal of Quality Technology, 30(4), 2-19.id NH0925031070 sid 847803 cfn 0 / id NH0925031071 auc 林國訓 tic 多重等候時間限制下的派工法則探討 adc 許棟樑 博士 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 173 kwc 派工法則 kwc 等候時間限制 kwc 多重等候時間 kwc 達交率 abc 在半導體製程中,有幾道加工製程具有等候時間的限制,當等候時間超出限制時,產品必須重新加工或報廢。過去有許多學者對此等候時間問題進行探討,但少有人探討在多重連續等候時間下(Multiple Queue Time Constraints),考量批量釋放(Batch Release)、集批(Minimum Batch Size)及派工優化的問題。因此,本研究以半導體廠中的擴散區為案例,提出一套在多重等候時間限制與集批限制下,考慮批量釋放時間點的演算法及派工法則。此演算法適用於計算多產品-序列式機台的加工模式,此演算法之目的為輔助派工法則的建立。 rf 【1】Blackstone,J.H.,D.T.Phillips,and G.L.Hogg,”A state-of-The Art Survey of Dispatching Rules for Manufacturing Job Shop Operations,” International Journal of Production Research,Vol.20,pp. 27-45,1982 【2】B. A. Pters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, “Real-Time Adaptive Control of Multi-product Multi-Server Bulk Service Processes”, Proceeding of the 2001 Winter simulation Conference”, pp930-936, 2001 【3】C. Roger Glassey, & W. Willie Weng, “Dynamic Batching Heuristic For Simultaneous Processing”, IEEE Transactions on Semiconductor Manufacturing, 1991. 【4】Conway, R. W., “Priority Dispatching and Work-in-process Invetory in A Job Shop,” Journal of Industrial Engineering, Vol. 16, pp. 228-236, 1965 【5】Douglas Montgomery C., ”Design and Analysis of experiments”, 5th Edition, p100-103 ,2001 【6】E. Yiicesan, C.-H. Chen, J. L. snowdon, and J. M. Charnes, eds., “Some Issues of the Critical Ratio Dispatch Rule in Semiconductor Manufacturing”, Proceedings of the 2002 Winter Simulation Conference,pp1401-1405, 2002 【7】Glassey,C.R and M.G..C. Resende, ”Closed-loop Job Shop Release Control for VLSI Circuit Manufacturing, ”IEEE Transaction on Semiconductor Manufacturing,Vol.1,No.1,pp.26-46,1988 【8】Gary L. Hogg, Don T. Phillips, “Control of Multi-product Bulk Service Diffusion/Oxidation Processes”, IEEE Transaction, 1992. 【9】Gary L. Hogg, Don T. Phillips, “Control of Multi-product Bulk Service Diffusion/Oxidation Processes. Part 2:Multiple Servers, IEEE Transaction, 2000 【10】Hai Jin, Ligang He, and Zongfen Han, “Optimal Dispatching and Scheduling for Both Periodic and A periodic Jobs in Cluster”, IEEE Transactions on Semiconductor Manufacturing, 2002. 【11】Jaeger, R. C., Modular Series on Solid State Devices, Vol. V – Introduction to Microelectronic Fabrication , Addison – Wesley Co, 1989. 【12】Jonh W. Fowler, Don T. Phillips, and Gary L. Hogg,”Real-Time Control of Multi-product Bulk-Service Semiconductor Manufacturing Process”, IEEE Transactions on Semiconductor Manufacturing, 1992 【13】John. Fowler. Gary L. Hogg and Don T. Phillips, “Control of multi-product bulk server diffusion/oxidation process.” , IIE Transactions, p84-96, 1992 【14】John. Fowler. Gary L. Hogg and Don T. Phillips, “Control of multi-product bulk server diffusion/oxidation process. Part 2: multiple servers” , IIE Transactions, p167-176, 2000 【15】J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds., “Alternative Loading and Dispatching Policies For Furnace Operations in Semiconductor Manufacturing a Comparison by Simulation”, Proceeding of the 2000 Winter Simulation Conference, IEEE Transactions on Semiconductor Manufacturing, pp1429-1435, 2000. 【16】Jinmin Hu, “A Workflow Model Supporting Pre-dispatching of Tasks”, IEEE Transactions on Semiconductor Manufacturing, 2002. 【17】Kimberly Appletion-Day and Liming Shao, “Real-Time Dispatch Gets Real-Time Results in AMD’s Fab 25”, IEEE Transactions on Semiconductor Manufacturing, pp444-447, 1997 【18】Liming Shao, Advanced Mrcro Devices, Inc. Autin, Texas USA, “Real Time Dispatch Gets Real Time Results”, IEEE Transactions on Semiconductor Manufacturing, pp01-05, 1977 【19】Leachman et al, “SLIM:Short Cycle Time and Low Inventory in Manufacturing at Samsung Electronics”, Interface, 2002 【20】Noboru Ito, “Simulation and Dispatching System for Production Fab Management”, IEEE Transactions on Semiconductor Manufacturing, pp429-432 【21】Runyan, W. R. and K. E. Bean, Semiconductor Integrated Circuit Processing Technology, Addison – Wesley Co., 1990 【22】Reha Uzsoy, Chung-Yee Lee, Louis A. Martin-Vega, “A Review of Production Planning and Scheduling Models in the Semiconductor Industry Part Ⅰ:System Characteristics, Performance Evaluation and Production Planning”, IEEE Transactions, pp47-60, 1992. 【23】Reha Uzsoy, Chung-Yee Lee, Louis A. Martin-Vega, “A Review of Production Planning and Scheduling Models in the Semiconductor Industry Part Ⅱ:Shop-Floor Control”, IEEE Transactions, pp44-55, 1994. 【24】Sheldon X.C. Lou, “Wafer Fabrication using Flow Rate Control Strategy”, IEEE Transactions on Semiconductor Manufacturing, pp21-24, 1989 【25】T. K. Nakata, Matsui, Y. Miyake, and K. Nishioka, “Dynamic Bottleneck Control in Wide Variety Production Factory”, IEEE Transactions on Semiconductor Manufacturing, Vol. 12, pp.273-280, 1999 【26】Yeong-Dae Kim, Jung-Ug Kim, Seung-Kil Lim, and Hong-Bae Jun, “Due-Date Based Scheduling and Control Policies in a Multi-product Semiconductor Wafer Fabrication Facility”, IEEE Transactions on Semiconductor Manufacturing, pp155-164, 1998. 【27】Tanju Yurtsever, “Value-Based Dispatching for Semiconductor Wafer Fabrication”, IEEE Transactions on Semiconductor Manufacturing, pp245-249, 2000 【28】Ying-Jen Chen, Kuo-Sung Huang, Will Chen, yu-ja Hsu, “Using Real Time Dispatcher as a Decision-making Support System to Resolve Overlapping Problem in Fab Manufacturing”, IEEE Transactions on Semiconductor Manufacturing, pp63-66, 2001. 【29】蔡啟聰,”晶圓製造廠考慮等候時間限制之派工策略”,國立交通大學,工業工程與管理學系碩士論文,1996 【30】周煜智,”晶圓製造廠因應產品組合更動之快速規劃機制”,國立交通大學工業工程與管理學系碩士論文,1999 【31】林時龍,”晶圓廠短期動態機台調整機制”,交通大學工業工程與管理學系碩士論文,2001 【32】莊軒源,”基於等候時間分配的達交率導向派工法則”,國立清華大學工業工程與管理學系碩士論文,2003 【33】曾子晃,”台灣半導體前段製程管理成熟度分析:微影製程”,清華大學工業工程與管理學系碩士論文,1997 【34】曾文揚,”晶圓製造廠可能延遲批量之派工法則”,交通大學工業工程與管理學系碩士論文,2002 【35】黃宏文,”晶圓製造廠生產活動控制策略之構建”,交通大學工業工程與管理學系論文,1995 【36】劉其昌,”晶圓批量異學等待時間為導向之派工法則”,交通大學工業工程與管理學系碩士論文,2002 【37】羅仕宗,”時間加權的及時派工法則”,清華大學工無工程與管理學系碩士論文,2002 【38】簫佳毓,”晶圓製造廠考慮批量優先序之動態派工研究”,中原大學工業工程學系碩士論文,2001id NH0925031071 sid 913815 cfn 0 / id NH0925031072 auc 湯群輝 tic 以失效為基礎的設計回饋及績效評量系統 adc 許棟樑 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 131 kwc 失效模式效應分析(FMEA) kwc 特性要因分析(Cause and Effect Diagrams) kwc 故障樹分析(FTA) kwc 績效評量(Performance Measurement) kwc 延伸型失效模式效應分析(EFMEA) abc 摘要 tc 目 錄 摘 要…………………………………………………………Ⅰ ABSTRACT..……………………………………………………Ⅱ 致 謝…………………………………………………………Ⅲ 目 錄…………………………………………………………Ⅳ 圖目錄…………………………………………………………Ⅷ 表目錄…………………………………………………………Ⅹ 第一章 緒 論……………………………………………….01 1.1 研究背景與動機…………………………………………01 1.2 研究目的…………………………………………………02 1.3 研究流程圖………………………………………………02 1.4 研究成果與效益…………………………………………04 第二章 文獻探討……………………………………………05 2.1 DFX相關研究….…..……………………………………05 2.1.1 DFX發展沿革………………………………………….05 2.1.2 設計考慮組裝(Design for assembly;DFA)………06 2.1.3 設計考慮製造(Design for Manufacture;DFM)….07 2.1.4 同時考慮DFM與DFA因素(DFMA)………………………08 2.1.5 DFA 裝配原則整理.………………………………….09 2.1.6 將生命週期整合入新產品開發(Design For Life-Cycle;DFLC)………………………………………………………….10 2.1.7 將品質工程整合入新產品開發 (Design For Quality;DFQ)…………………………………………………………………10 2.1.8 延緩設計(Design For Postponement)…………….11 2.2 失效模式效應分析(Failure Mode and Effects Analysis; FMEA)………………………………………………………….11 2.2.1 FMEA的演進……………………………………………11 2.2.1.1 設計FMEA……………………………………………12 2.2.1.2製程FMEA…………………………………………….12 2.2.2 FMEA之概念……………………………………………12 2.2.3 FMEA之施行步驟………………………………………13 2.2.3.1確認製程與資料蒐集……………………………….14 2.2.3.2訂定FMEA的分析水準與製程的再明確化………….14 2.2.3.3製作流程機能圖與可靠度方塊圖………………….15 2.2.3.4列舉所有的失效模式……………………………….15 2.2.3.5選定重要的失效模式並記錄於FMEA工作表中…….16 2.2.3.6推斷失效模式的原因與影響……………………….16 2.2.3.7說明目前對失效模式的管制方法………………….16 2.2.3.8失效風險的評估…………………………………….16 2.2.3.9提出改善建議與預期目標………………………….16 2.2.3.10改善評估與是否改善………………………………17 2.2.4 失效風險評估與改善決策……………………………17 2.2.5 風險優先數法…………………………………………17 2.2.5.1訂定嚴重度………………………………………….17 2.2.5.2訂定發生度………………………………………….18 2.2.5.3訂定難檢度………………………………………….18 2.2.6 建立問題點處理優先順序原則………………………19 2.3 特性要因圖(Cause and Effects Charts)…………19 2.3.1 特性要因圖的繪製與實施方法………………………20 2.3.1.1 定義問題……………………………………………20 2.3.1.2 集合相關人員………………………………………20 2.3.1.3 腦力激盪及繪製特性要因圖………………………20 2.3.1.4追綜與修正………………………………………….21 2.4 故障樹分析( Fault Tree Analysis, FTA )…………21 2.4.1 故障樹分析起源………………………………………21 2.4.2 故障樹分析概要………………………………………21 2.4.3 故障樹分析常用符號說明……………………………22 2.4.4 故障樹分析實施步驟…………………………………23 2.4.5 布爾代數計算法則……………………………………24 2.5 文獻整理與探討…………………………………………24 第三章 研究方法……………………………………………25 3.1 研究架構…………………………………………………25 3.1.1 正向設計鏈分析………………………………………26 3.1.2 反向設計鏈分析………………………………………26 3.2 研究方法…………………………………………………26 3.3 研究流程…………………………………………………30 第四章 案例說明…………………………………………….41 4.1 焊點空焊…………………………………………………41 4.1.1 問題點編碼……………………………………………41 4.1.2 問題點FMEA分析………………………………………42 4.1.2.1 問題點嚴重度分析…………………………………42 4.1.2.2 問題點難檢度分析…………………………………42 4.1.2.3 問題點發生機率分析………………………………42 4.1.2.4 計算問題點優先序…………………………………45 4.1.3 完成EFMEA表格……………………………………….46 4.2 焊點變形…………………………………………………47 4.2.1 問題點編碼……………………………………………47 4.2.2 問題點FMEA分析………………………………………47 4.2.2.1 問題點嚴重度分析…………………………………47 4.2.2.2 問題點難檢度分析…………………………………47 4.2.2.3 問題點發生機率分析………………………………48 4.2.2.4 計算問題點優先序…………………………………50 4.2.3 完成EFMEA表………………………………………….51 4.3 墓碑效應…………………………………………………52 4.3.1 問題點編碼……………………………………………52 4.3.2 問題點FMEA分析………………………………………52 4.3.2.1 問題點嚴重度分析…………………………………52 4.3.2.2 問題點難檢度分析…………………………………52 4.3.2.3 問題點發生機率分析………………………………53 4.3.2.4 計算問題點優先序…………………………………55 4.3.3 完成EFMEA表格……………………………………….55 4.4 塑膠外蓋變形……………………………………………57 4.4.1 問題點編碼……………………………………………57 4.4.2 問題點FMEA分析………………………………………57 4.4.2.1 問題點嚴重度分析…………………………………57 4.4.2.2 問題點難檢度分析…………………………………57 4.4.2.3 問題點發生機率分析………………………………58 4.4.2.4 計算問題點優先順序………………………………60 4.4.3 完成EFMEA表………………………………………….61 4.5 螺絲不易鎖付……………………………………………62 4.5.1 問題點編號……………………………………………62 4.5.2 問題點FMEA分析………………………………………62 4.5.2.1 問題點嚴重度分析…………………………………62 4.5.2.2 問題點難檢度分析…………………………………62 4.5.2.3 問題點發生機率分析………………………………63 4.5.2.4 計算問題點優先順序………………………………66 4.5.3 完成EFMEA表格……………………………………….66 4.6 固定裝置損壞……………………………………………68 4.6.1 問題點編碼……………………………………………68 4.6.2 問題點FMEA分析………………………………………68 4.6.2.1 問題點嚴重度分析…………………………………68 4.6.2.2 問題點難檢度分析…………………………………68 4.6.2.3 計算問題點發生機率………………………………69 4.6.2.4 計算問題點處理優先序……………………………71 4.6.3完成EFMEA表格…………………………………………72 第五章 結論與後續研究方向………………………………73 5.1 結論………………………………………………………73 5.2 後續研究方向……………………………………………73 第六章 參考文獻……………………………………………75 附錄一:FEMA分析問卷………………………………………78 附錄二:問題點EFMEA表整理……………………………….95 附錄三:設計屬性與check list一覽表………………….117 附錄四:製造屬性與check list一覽表………………….122 附錄五:問題點失效碼編碼表…………………………….124 附錄六:發生處編碼表…………………………………….129 附錄七:問題點發現處編碼表…………………………….130 附錄八:負責單位編碼表………………………………….131 圖目錄 圖1.1 DFX績效管理系統架構圖…………………………….03 圖2.1 DFM流程架構………………………………………….07 圖2.2 DFMA程序………………………………………………08 圖2.3 FMEA手法之概要………………………………………13 圖2.4 FMEA細部程序概略圖…………………………………14 圖2.5 可靠性方塊圖…………………………………………15 圖2.6 基礎魚骨圖……………………………………………20 圖2.7 魚骨圖之主問題定義…………………………………21 圖2.8 故障樹分析概要圖……………………………………22 圖3.1 整體研究架構圖………………………………………25 圖3.2 特性要因分析圖樣……………………………………28 圖3.3反向特性要因圖樣式………………………………….29 圖3.4 FTA分析圖樣式……………………………………….29 圖3.5研究流程圖….…………………………………………30 圖3.6問題點編碼表說明圖………………………………….31 圖3.7軟體介面架構圖……………………………………….33 圖3.8系統登入頁面………………………………………….34 圖3.9系統說明頁面………………………………………….34 圖3.10系統頁面………………………………………………35 圖3.11依發生日期檢視問題點類型表單……………………35 圖3.12問題點失效編碼表頁.……………………………….36 圖3.13 依據問題點檢視問題點資料表單………………….37 圖3.13 依據負責單位檢視問題點資料頁面……………….38 圖3.15 依據發生處檢視問題點類型表單………………….39 圖3.16 績效評量系統頁面………………………………….40 圖4.1 焊點空焊特性要因分析圖……………………………42 圖4.2 焊點空焊反向特性要因圖……………………………44 圖4.3 焊點空焊FTA分析圖………………………………….45 圖4.4 焊點變形特性要分析因圖……………………………48 圖4.5 焊點變形反向特性要因圖……………………………49 圖4.6 焊點變形FTA分析圖………………………………….50 圖4.7 墓碑效應特性要因分析圖……………………………53 圖4.8 墓碑效應反向特性要因圖……………………………54 圖4.9 墓碑效應FTA分析圖………………………………….55 圖4.10 塑膠外蓋彎曲特性要因分析圖…………………….58 圖4.11 塑膠外蓋彎曲反向特性要因圖…………………….59 圖4.12 塑膠外蓋彎曲FTA分析圖……………………………60 圖4.13 螺絲不易鎖付特性要因分析圖…………………….63 圖4.14 螺絲不易鎖付反向特性要因圖…………………….64 圖4.15 螺絲不易鎖付FTA分析圖……………………………65 圖4.16 固定裝置損壞特性要因分析圖…………………….69 圖4.17 固定裝置損壞反向特性要因圖…………………….70 圖4.18 固定裝置損壞FTA分析圖……………………………71 表目錄 表2.1 製程FMEA分析表………………………………………16 表2.2 嚴重度評分表(註:表格製定視產品別而定)……17 表2.3 發生度評分表(註:表格製定與產品別而定)……18 表2.4 難檢度評分表(註:表格製定與產品別而定)……19 表2.5 故障樹分析常用記號說明表…………………………22 表2.6 布爾代數計算法則……………………………………23 表3.1 嚴重度評分基準表[公司評分基準整理 ]……………27 表3.2 問題點難檢度評分標準[本研究整理 ]………………27 表3.3 發生機率評分基準表[文獻整理與公司人員諮詢 ]…28 表3.4 問題點編碼說明表……………………………………31 表3.5 優先序分級表…………………………………………32 表4.1 焊點空焊編碼表………………………………………41 表4.2 焊點空焊發生機率計算………………………………45 表4.3 焊點空焊EFMEA分析表……………………………….46 表4.4 焊點變形編碼表………………………………………47 表4.5 焊點變形發生機率計算表……………………………50 表4.6 焊點變形EFMEA分析表……………………………….51 表4.7 墓碑效應編碼表………………………………………52 表4.8 墓碑效應發生機率計算表……………………………55 表4.9 墓碑效應EFMEA分析表……………………………….56 表4.10 塑膠外蓋彎曲編碼表………….……………………57 表4.11 塑膠外蓋彎曲發生機率計算表…………………….60 表4.12 塑膠外蓋變形EFMEA分析表…………………………61 表4.13 螺絲不易鎖付編碼表……………………………….62 表4.14 螺絲不易鎖付發生機率計算表…………………….65 表4.15 螺絲不易鎖付EFMEA分析表…………………………67 表4.16 固定裝置損壞編碼表……………………………….68 表4.17 固定裝置損壞發生機率計算表…………………….71 表4.18 固定裝置損壞EFMEA分析表…………………………72rf 中文: [1 ]羅應浮,(2000),「專案管理的失效模式與效應分析」,中華 大學工業工程與管理研究所碩士論文。 [2 ]先鋒可靠度研究小組譯,(1991),「FMEA、FTA實施法」,先鋒 企管,台北 [3 ]葉榮鵬編著,吳聯樹總校閱,「品質管制」,高立圖書,台北 (1994) [4 ]李明智,(2003),「符合ISO 9000鋼結構監造計畫書研擬之研 究」,東海大學建築所碩士論文。 [5 ]盧獻猷著,「ISO 9000:2000」,三聯書店,香港,(2003) [6 ]許盛堡,(2002),「建構一個QFD與FMEA之整合架構」,元智大 學工業工程與管理學系碩士班論文 [7 ]謝曛圭,「延遲策略應用在設計配合組裝分析之研究」,國立台 灣科技大學管理研究所工業管理學程碩士班論文 [8 ]黃清賢,(1984),「危害分析與風險評估」,三民書局,台北 [9 ]張景文,(2000),「以IDEF及Petri Nets建構同步設計流程控 制模式」,朝陽大學工業工程與管理學系碩士班論文。 [10 ]小野寺勝重著,張書文譯(2001),「實踐FMEA手法」,中衛發 展中心。 [11 ]楊朝鈞,(2003)「建構航空站空側風險架構之研究-FMEA之應 用」,成功大學碩士班論文。 [12 ]朱繼洲著(民78),「故障樹原理和應用」,陝西省,西安交通 大學。 [13 ]陳永祥著(民87),「物件導向需求分析方法之建構/以故障樹 繪製系統應用為例/Object-Oriented Requirements Analysis Method-Using a Fault Tree Drawing System as an Example」,大葉大學資訊管理研究所碩士論文。 [14 ]林成益著(民87),「品質管制實習」,揚智文化事業股份有限 公司。 英文: [15 ] Bendell, A. (1988), “Introduction to Taguchi methodology, Taguchi Methods.”, In: Proceedings for 1988 Eurpean Conference, pp. 1-14, London: Elsevier Applied Science [16 ] Boothroyd, D., Dewhurst, P., and Knight, W. (1994) Product Design for Manufacture and Assembly, Marcel Dekker. [17 ] Boothroyd, G., Poli, C., and March, L. (1978), “Handbook of Feeding and Operating and Orienting Techniques for Small Parts”, Technique Report, Department of Mechanical Engineering, University of Massachusetts. [18 ] Boothroyd, G. and Dewhurst, P. (1983), “Design for Assembly—A Designers Handbook”, Technique Report, Department of Mechanical Engineering, University of Massachusetts. [19 ] Boothroyd, G. and Dewhurst, P. (1986), “Product Design for Assembly”, Wakefield, RI: Boothroyd and Dewhurst. [20 ] Boothroyd G, Alting L, “Design for Assembly and Disassembly”, Annals of the CIRP vol. 141, no 2, 1992 [21 ] Chrysler Corporation, Ford Motor Company, General Motors Corporation,「Potential Failure Mode and Effects Analysis」, Reference Manual,(1995) [22 ] Corbett, J. (1987), “How Design Can Boost Profit”, Eureka Transfers Technology, May, pp.59-65. [23 ] Corbett, J., Dooner, M., Meleka, J., and Pym, C. (1991) Design for Manufacture Strategies, Principles, and Techniques, Addison-Wesley. [24 ] Gerald Susman , Ed. Integrating Design and Manufacturing for Competitive Advantage. (Qxford University Press, New York, 1992) [25 ] Huthwaite, B. (1989), “Link Between Design and Activity-Based Accounting”, Manufacturing Systems, 7 (10), pp.44-47. [26 ] Hunt, J. E., Price, C. J. and Lee, M. H., “Automating the FMEA Process,” Intelligent System Engineering, vol. 2, no. 2, 1993, pp. 119-132 [27 ] Hubert K. rampersad; “The House of DFA” Assembly and Task Planning,(1995), Proceedings., IEEE International Symposium on ,10-11 Aug. 1995, pp.312 – 318 [28 ] Joan Magretta, Nan Stone, “What Management Is”, 天下 文化,2002 [29 ] Jovane, F., Alting, L., Armillotta, A., Eversheim, W., Feldmann, K., Seliger, G., and Roth, N. (1993), “A Key Issue in Product Life Cycle: Disassembly”, Annals of CIRP, pp.1-13. [30 ] Keoleian, G. A., Meanery, D., and Curran, M. A. (1993), “A Life Cycle Approach to Product System Design”, Pollution Prevention Review, pp.293-306. [31 ] Martin O’Driscoll, Boston Scientific Ireland Ltd, Ballybrit Park, Galway, Ireland , 「Design for manufacture」, Journal of Materials Processing Technology vol. 122, 2002, pp 318-321 [32 ] Moss, M. A., Design for Minimal Manufacturing Expense, New York and Basel; Marcel Dekker, 1985 [33 ] Montgomery, T.A.; Pugh, D.R.; Leedham, S.T.; Twitchett, S.R.; “FMEA automation for the Complete Design Process” Reliability and Maintainability Symposium, 1996 Proceedings. 'International Symposium on Product Quality and Integrity'., Annual, 22-25 Jan. 1996 pp.30 - 36 [34 ] Palumbo, D.; “Automating Failure Modes and Effects Analysis” Reliability and Maintainability Symposium, 1994. Proceedings., Annual ,24-27 Jan. 1994 pp.304 – 309 [35 ] Price, C.J.; Pugh, D.R.; Wilson, M.S.; Snooke, N.; “The Flame system: automating electrical failure mode and effects analysis (FMEA)” Reliability and Maintainability Symposium, 1995. Proceedings., Annual ,16-19 Jan. 1995 pp.90 – 95 [36 ] Stoll, H., W., “Design for Manufacture,” Tools and Manufacturing Engineers Handbook; Manufacturing Management, vol. 5, 1988, pp. 13-1-13-32 [37 ] Stoll, H., W., “Design for Manufacture,” Manufacturing Engineering, Jan. 1988, pp. 67-73 [38 ] Trybula, W.J.; Konopka, J.; “Development of Design for Manufacturing” Electronics Manufacturing Technology Symposium, 1995. 'Manufacturing Technologies - Present and Future', Seventeenth IEEE/CPMT International ,2-4 Oct. 1995, pp.442 – 445 [39 ] Trybula, W.J.; Northcon 95. “The evolution of design for manufacturing” I EEE Technical Applications Conference and Workshops Northcon95 ,10-12 Oct. 1995, pp.332 – 334 [40 ] Waterbury, R. (1985), “Designing Parts for Automated Assembly”, Assembly Engineering, February, pp.24-28 [41 ] Warnecke, H. V., and Bassler, R. (1988), “Design for Assembly—Part of Design Process”, Annals of CIRP, 37 (1), 1.. [42 ] White, K.P., JR.; Trybula, W.J.; “DFM for the Next Generation” Electronics Manufacturing Technology Symposium, 1996., Nineteenth IEEE/CPMT ,14-16 Oct. 1996, pp.109 – 116id NH0925031072 sid 913869 cfn 0 / id NH0925031073 auc 黃建勳 tic 逆向式評估投資組合屬性並建立投資組合最佳化模型 adc 簡禎富 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 英文 pg 59 kwc 組合屬性 kwc 逆向式投資組合選擇 kwc 組合指標 kwc 多屬性混合整數二階規劃 kwc 多屬性二階規劃 abc 在很多領域上投資組合選擇的概念都被不斷地應用,隨著電腦資訊科技的蓬勃發展、作業研究與統計的方法廣泛地被使用。在財務投資的應用上,被常被應用的模型為Mean-Variance 模型,用來找出標物的投資部位。除此之外,很多數學模型是以評估公司的基本面與股價,先評斷股票的價值再來決定一組投資標的,這一類投資方法,我們把它歸類為前向式(Forward-type)組合選擇法。相反地,本研究使用逆向式(Backward-type)組合選擇法,以組合屬性為考量,將組合屬性分成獨立、相關、綜效組合屬性三類,並納入公司基本面的狀況來建立投資組合指標。並以隨機抽樣方式建立一組資料,以組合績效為標地,應用Partial R2 統計量來量化與評估投資人對當期組合屬性偏好的程度。最後再以建構好的投資組合指標為目標式,並依照不同的綜效屬性建立兩組不同的數學模型來找出最佳的投資組合部位。本研究以台灣股市八個產業中的六十四支股票為小樣本建構投資組合,經由比較發現建立的模型其長期績效的表現不差並發現綜效屬性的考量,對投資標的選擇有正向的影響。 tc i Table of Contents Chapter 1 Introduction ...................................................................................................1 1.1 Background and Motivation ................................................................................1 1.2 Research Aims .....................................................................................................3 1.3 Overview of this study .........................................................................................3 Chapter 2 Literature Review..........................................................................................4 2.1 Related portfolio selection problem.....................................................................7 2.2 Characteristics of portfolio selection .................................................................11 2.3 Behavior of the stock market .............................................................................16 2.4 Portfolio selection model in stock market .........................................................21 Chapter 3 Constructing Portfolio Index and Modeling................................................24 3.1 Sample Data .......................................................................................................27 3.2 Identify Objectives, Portfolio Attributes and Formulate Evaluation index .......28 3.2.1 Identify Portfolio Attributes........................................................................28 3.2.2 Formulated Evaluation index......................................................................30 3.3 Estimating the item attributes ............................................................................31 3.4 Constructing the Evaluation index.....................................................................33 3.5 Mathematical model...........................................................................................37 Chapter 4 Numerical Study..........................................................................................42 4.1 Case1: Monthly data problem............................................................................42 4.1.1 Evaluate the preference...............................................................................42 4.1.2 Performance Evaluation..............................................................................46 4.2 Case2: Quarterly data problem ..........................................................................49 4.2.1 Performance Evaluation..............................................................................50 Chapter 5 Conclusion and Further Research ...............................................................53 Reference .....................................................................................................................55 ii List of Figures Figure2.1 The concept of forward and backward selecting methods ............................8 Figure2.2 Procedure of one-period portfolio selection ................................................17 Figure3.1 Research framework....................................................................................25 Figure3.2 Relationship among objective, portfolio and item attributes.......................28 Figure3.3 Procedures of estimating relative importance .............................................33 Figure4.1 The monthly performance of the proposed and traditional models.............47 Figure4.2 The Geometric return of the proposed and traditional models....................49 Figure4.3 The performance of proposed and traditional models.................................51 Figure4.4 The Geometric return of the proposed and traditional models....................52 List of Tables Table2.1 Methods in the project selection and portfolio selection ..............................10 Table2.2 Typical methods of predicting stocks performance ......................................19 Table2.3 Extended portfolio selection method based the mean-variance model.........22 Table3.1 Dependent and independent variable ............................................................34 Table3.2 Formulated each portfolio attributes in objective for MIQP model..............38 Table3.3 Formulated each portfolio attributes in objective for QP model...................41 Table4.1 Summary of the Stepwise Regression for MIQP model in period 1.............43 Table4.2 Summary of the Stepwise Regression for MIQP model in period 2.............44 Table4.3 Summary of the Stepwise Regression for QP model in period 1..................45 Table4.4 Summary of the Stepwise Regression for QP model in period 2..................45 Table4.5 The performance of proposed and traditional models...................................47 Table4.6 The performance of the proposed and traditional models.............................50 Table4.7 Pair-t test of the performance with proposed and traditional model.............51rf 55 Reference Archer, NP. and F. G. (1999),” An integrated framework for project portfolio selection”, International Journal of Project Management, Vol. 17, No.4, pp. 207-216 Badri, M. A., D. Davis, and D. Davis. (2001), “A Comprehensive 0-1 Goal Programming Model for Project Selection”, International Journal of Project Management, 19, 243-252 Bertsimas, D., C. Darnell, and R. Soucy. (1999), “Portfolio Construction through Mixed-Integer Programming at Grantham, Mayo, Van Otterloo and Company”, Interface, 29(1), 49-66 Campbell, R., R. Huisman, and K. Koedijk. (2001), “Optimal Portfolio Selection in a Value-at-Risk Framework”, Journal of Banking & Finance, 25, 1789-1804Chang, F. R. (1996), ”Uncertainty and Investment in Healthy”, Journal of Health Economics, 15, 369-376 Chien, C. F. (2002), “A Portfolio-evaluation Framework for Selecting R&D Project”, R&D Management, 32, 359-368 Chow, G. (1995), “Portfolio Selection Based on Return, Risk and Relative Performance”, Financial Analyst Journal, 51, 2, 54-60 Chow, K. V., and H. M. Hulburt. (2000), “Value, Size and Portfolio Efficiency”, Journal of Portfolio Management, 26, 3, 78-89 56 Clement, R. T., and T. Reilly. (2001), Making Hard Decision: An Introduction to Decision Analysis, 3rd ed., Duxbury, Thomson Learning Academic Resource Center. Elton, E. J., M. J. Gruber, S. J. Brown, W. N. Goetzmann. (2003), Modern Portfolio Theory and Investment Analysis, 6th ed., John Wiley and Sons Farquhar, P. H., and Rao, V. R. (1976), “A Balance Model for Evaluating Subsets of Multi-attributed Items”, Management Science 22, 5, 528-539 Golabi, K., Kirkwood, C.W., and Sicherman, A. (1981), “Selecting a Portfolio of Solar Energy Projects Using Multiattribute Preference Theory”, Management Science 27, 2, 174-189. Gold, S. C., and P. Lebowitz. (1999),“Computerized stock screening rules for portfolio selection”, Financial Services Review, 8, 61–70 Hull, J. C. (2000), Options, Futures & Other Derivatives, 4th ed., Prentice-Hall, London., pp.218-235 Ingersoll, J.E., Jr. (1987), Theory of Financial Decision Making, Rowmand and Littlefield Publishers, Maryland. Jacob, W. F., and Young, H. K. (2003), “In Search of Innovative Techniques to Evaluate Pharmaceutical R&D Projects”, Technovation, 23, 291-296 Jiang, J. J., and G. Klein. (1999), “Project selection criteria by strategic orientation ” Information & Management, 36, 63-75 Kim, G. C., and J. Emery. (2000), “An Application of Zero-One Goal Programming in Project Selection and Resource Planning-a case study from the Woodward Governor Company”, Computer & Operation Research, 27, 1389-1408 57 Kariya, T.(1993), Quantitative Methods for Portfolio Analysis: MTV Model Approach,4th ed., Kluwer Academic, Boston Keeney, R.L., and Raiffa, H. (1976), Decisions with Multiple Objectives: Preferences and Value Tradeoffs, John Wiley & Sons, New York. Klapka, J., and P. Pinos. (2002), “”Decision Support System for Multicriterial R&D and Information Systems Projects Selection” European Journal of Operational Research, 140, 434–446 Konno, H., and H. Yamazaki. (1991), “Mean-Absolute Deviation Portfolio Optimization Model and Its Application to Tokyo Stock Market ”, Management Science 37, 5, 519-531 Lai, T. Y. (1991), “Portfolio Selection with Skewness: A Multiple-Objective Approach”, Review of Quantitative Finance and Accounting, 1, 293–305 Lee, S., and K. P. Chang. (1995), “Mean-Variance-Instability Portfolio Analysis: A Case of Taiwan`s Stock Market”, Management Science, vol. 41, 1151-1157. Lin, B. H., and S. K. Yeh. (2000), ” On the Distribution and Conditional Heteroscedasticity in Taiwan stock prices” Journal of Multinational Financial Management, 10, 367-395 Markowitz, H. (1952), “Portfolio Selection”, The Journal of Finance, Vol. VII, No. 1, 77-91 Markowitz, H. (1997), Portfolio Selection: Efficient Diversification of Investment, 2nd ed, John Wiley, New York. McVean, J. R., and M. Projects, The Significance of Risk Definition on portfolio Selection, Society of Petroleum Engineering, Dallas, Texas, October 2000. 58 Parra, M. A., A. B. Terol, and M. V. Rodriguez. Uria. (2001), “A Fuzzy Goal Programming Approach to Portfolio Selection”, European Journal of Operational Research, 133, 287–297 Pouge, G. A. (1970), ”An Extension of the Markowitz Portfolio Selection Model to Include Variable Transactions’ Cost, Short Sales, Leverage Policies and Taxes”, Journal of Finance, vol. 25, 5, 1005-1027 Ringuest, J. L., S. B. Graves, and R. H. Case. (2004), “Mean–Gini analysis in R&D portfolio selection”, European Journal of Operational Research, 154, 157–169 Sharpe, W. F. (1995), “Risk, Market Sensitivity and Diversification”, Financial Analyst Journal, 51, 1, 84-88 Suzuki, M. (1998), “PSR- an Efficient Stock-Selection Tool”, International Journal of Forecasting, 14, 245-254 Talpaz, H., A. Harpaz, and J. B. Penson, Jr. (1983), “Risk and Spectral Instability in Portfolio Analysis”, European Journal of Operation Research, 14, 262-269 Yu, B., E. S. Growney, D. K. Hansen., M. E. Johnson., K. N. An. (1996), “Abduction/Adduction Moment at the Knee in Stair Climbing and Level Walking”, Gait and Posture, 4, 167-208 Zaric, G. S., and Margaret, L. B. (2001), “Optimal Investment in a Portfolio of HIV Prevention Programs”, Med Decision making, vol. 11, 391-408id NH0925031073 sid 913810 cfn 0 / id NH0925031074 auc 駱豐裕 tic DEA方法應用在評估台電公司服務所經營效率之研究 adc 簡禎富博士 adc 林則孟博士 ty 博士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 106 kwc 資料包絡分析 kwc 台電公司 kwc 相對效率 kwc 效能 kwc 組織重整 abc 本論文主要目的是應用資料包絡分析(Data Envelopment Analysis, DEA)方法來評估台電公司配售電系統下區營業處及服務所之相對經營效率。績效衡量是許多企業組織最重要的課題之一。在台灣,台電公司未來將要面對電業自由化及民營化政策的挑戰與衝擊。台電公司實施責任中心制度,利用不同的績效指標來衡量各責任中心的績效,以達到提高台電公司的經營績效。 tc 目 錄 頁次 中文摘要…………………………………………………………….……. i Abstract …………………………………………………………………… iii 誌謝辭…………………………………………………………………….. v 目錄……………………………………………………………………….. vi 圖目錄…………………………………………………………………….. ix 表目錄……………………………………………………………………... x 第一章 緒論……………………………………………………………… 1 1.1研究背景與動機..……………………………………………….. 1 1.2研究目的………………...……………………………………….. 2 1.3研究方法……..………………………………………………….. 4 1.4研究步驟……..………………………………………………….. 4 1.5論文架構…..…………………………………………………….. 5 第二章 DEA方法與相關文獻回顧………..…………………………….. 7 2.1績效評估之目的…………..…………………………………….. 7 2.2傳統績效評估方法之探討………..…………………………….. 8 2.3 DEA方法之基本原理…………..…………………………….…. 10 2.4 DEA方法之特性…………..…………………………………….. 12 2.5 DEA方法之應用程序…………….…………………………….. 13 2.5.1決策單位之選擇……….………………………………….. 13 2.5.2投入項與產出項之選擇…………..…..…………………... 14 2.5.3 評估模式之選擇…………..…………..………………….. 16 2.6 DEA方法之基本模式…………..……………………………….. 17 2.6.1 CCR模式…………..……………………………………… 17 2.6.1.1 投入導向..……………………………………………. 17 2.6.1.2 產出導向..……………………………………………. 19 2.6.2 BCC模式…………..……………………………………… 22 2.6.2.1 投入導向..……………………………………………. 22 2.6.2.2 產出導向..……………………………………………. 25 2.7相關文獻回顧…………..……………………………………….. 27 2.7.1 DEA理論基礎研究之相關文獻………………………….. 27 2.7.2 DEA實例應用研究之相關文獻………………………….. 29 2.7.3電力系統效率衡量之文獻探討…………………………... 29 第三章 台電公司經營概況及績效衡量制度之簡介…………………… 33 3.1台電公司之發展歷史…………..……………………………….. 33 3.2台電公司之組織架構…………..……………………………….. 36 3.3台電公司之經營概況…………..……………………………….. 39 頁次 3.3.1 產銷概況………..…………….…………………..………… 39 3.3.2 電價與消費支出..…………….…………………..………… 39 3.3.3 員工生產力……..…………….…………………..………… 40 3.3.4 設備營運效率…..…………….…………………..………… 40 3.3.5 供電品質………..…………….…………………..………… 41 3.3.6 環保改善概況…..…………….…………………..………… 42 3.4台電公司未來的經營重點方向….……………………………….. 42 3.5台電公司績效衡量制度之簡介…..………………………...…….. 44 3.5.1推行責任中心制度之緣起…..……………………..………. 45 3.5.2推行責任中心制度之目的…..…………………..…………. 45 3.5.3責任中心制度之績效衡量指標…..………………………… 47 3.6台電公司責任中心制度所衍生的問題…………….……………. 50 第四章 評估台電公司區營業處經營效率之實例研究……..…………… 53 4.1問題定義…..……………………………………..……………….. 53 4.2投入項與產出項之選擇…..………...…………………………….. 54 4.3效率分析及差額變數分析…..…………………..……………….. 57 4.4技術效率與規模效率分析…..…………………………………… 60 4.5敏感性分析…..………………………………………………….... 61 4.6探討台電公司區營業處組織重整之可行性……………………... 63 4.7本章結語…..………………………………………………..…….. 67 第五章 評估台電公司服務所經營效率之實例研究……………..……… 68 5.1問題定義…..……………………………………………..……….. 68 5.2投入項與產出項之選擇…..……………………………..……….. 69 5.3評估新竹及台南區營業處服務所之經營效率….……………….. 71 5.3.1 評估新竹區營業處服務所之經營效率….……..…………. 71 5.3.2 評估台南區營業處服務所之經營效率….…..……………. 74 5.4評估南投區營業處服務所之經營效率…………..……………… 77 5.4.1 總效率及差額變數分析….………………………………… 77 5.4.2 技術效率、規模效率及生產規模報酬分析……………… 79 5.4.3 探討南投區營業處服務所組織重整之可行性………….... 81 5.5本章結語…..…………………………………………………….... 85 第六章 結論與建議…..………………………………………………….... 87 6.1結論…..………………………………………………………….... 87 6.1.1評估台電公司區營業處之經營效率…………….……….... 87 6.1.2評估台電公司服務所之經營效率………………………... 88 6.2建議…..……………………………………………………….….. 90 6.2.1台電公司責任中心制度方面………………….…………… 91 頁次 6.2.2台電公司服務所未來的經營管理方面………………….. 92 6.2.3台電公司組織重整方面……………………….……...…... 94 6.3未來的研究方向…..…………………………………………….... 95 參考文獻…………………………………………………………….…….. 97 附錄:博士候選人簡歷………………………………………….……….. 105 圖目錄 頁次 圖1.1研究步驟…………………………………………………..………. 6 圖2.1包絡線……………………………………………………………… 10 圖2.2 Farrell生產效率衡量之概念……………………………………… 11 圖2.3 BCC模式之幾何概念…………..………………………………… 24 圖3.1台電公司組織架構………………………………………………… 37 圖3.2台電公司區營業處組織架構……………………………………… 38 圖3.3台電公司配售電系統九十一年度責任中心績效衡量指標…...… 48 表目錄 頁次 表2.1 DEA在理論基礎方面之相關文獻…………………………….. 28 表3.1 台電公司近五年來之產銷概況……….…….………………….. 39 表3.2 台電公司近五年來之電價與消費支出….….………………….. 40 表3.3 台電公司近五年來之員工生產力……..……………………….. 41 表3.4 台電公司近五年來之設備營運效率…..….…………………….. 41 表3.5 台電公司近五年來之供電品質……..………………………….. 42 表3.6 台電公司近五年來之環保改善概況….….…………………….. 42 表3.7 台電公司責任中心制度之八大系統.…………….…………….. 45 表3.8 台電公司91年度配售電系統各區營業處營運績效衡量指標 之目標值.…………………………….………………………….. 49 表3.9 各區營業處營運績效衡量指標「售電量」項目之評分標準暨 評分表…….……………………………………………………... 50 表3.10 各區營業處九十一年度營運績效衡量指標「售電量」項目之 目標值…………….…….……………………………………….. 51 表4.1 台電公司86年度各區營業處之投入項與產出項資料………… 56 表4.2 台電公司86年度各區營業處總效率與差額變數……………… 58 表4.3 台電公司各區營業處總效率與投入產出項之相關係數……… 59 表4.4 台電公司86年度各區營業處之技術效率及規模效率………… 60 表4.5 台電公司86年度各區營業處總效率之敏感性分析…………… 62 表4.6 台電公司區營業處四個不同的組織重整方案……….………… 64 表4.7 台電公司區營業處四個不同的組織重整方案之效率評估結果.. 66 表5.1 新竹區營業處各服務所之投入項與產出項資料………………. 70 表5.2 台南區營業處各服務所之投入項與產出項資料………………. 71 表5.3 新竹區營業處服務所(含市區)之總效率、技術效率及規模 效率……………………………………………………………… 72 表5.4 新竹區營業處服務所(不含市區)之總效率、技術效率及規 模效率…………………………………………………………… 73 表5.5 新竹區營業處各服務所總效率與投入產出項之相關係數.…… 73 表5.6 台南區營業處服務所(含市區)之總效率、技術效率及規模 效率……………………………………………………………… 74 表5.7 台南區營業處服務所(不含市區)之總效率、技術效率及規 模效率…………………………………………………………… 76 表5.8 台南區營業處各服務所總效率與投入產出項之相關係數….… 76 表5.9 南投區營業處各服務所之投入項與產出項資料………………. 77 表5.10 南投區營業處各服務所之總效率與差額變數…………………. 78 表5.11 南投區營業處各服務所總效率與投入產出項之相關係數……. 79 頁次 表5.12 南投區營業處各服務所技術效率、規模效率及生產規模報酬.. 80 表5.13 南投區營業處服務所組織重整的可行方案……………………. 82 表5.14 南投區營業處服務所組織重整方案之效率評估結果…………. 84rf 中文部分: 1.王美惠,台灣銀行業經濟效率與規模經濟效率分析─參數法與無參數法之比較,私立淡江大學管理科學學系博士論文,2002。 2.王媛慧,台灣地區醫院效率與生產力變動之研究─非參數DEA方法之應用,國立政治大學經濟學系博士論文,1999。 3.古永嘉、吳世勛,「以DEA模式評估我國商業銀行之經營效率」,管理與系統,第2卷,第2期,第145-165頁,1995。 4.台灣電力公司企劃處編,台灣電力公司章則彙編(一)─組織類,台灣電力公司,台北,1993。 5.台灣電力公司企劃處編,台灣電力公司實施責任中心制度計畫,台灣電力公司,台北,1993。 6.台灣電力公司編印,台灣電力公司八十九年年報,台灣電力公司,台北,2001。 7.台灣電力公司企劃處編,台灣電力公司實施責任中心制度計畫,台灣電力公司,台北,2002。 8.台灣電力公司企劃處編,九十二年統計年報,台灣電力公司,台北,2004。 9.台灣電力公司編印,台灣電力公司九十二年年報,台灣電力公司,台北,2004。 10.朱炫璉,醫院實施管理控制制度對其效率影響之實證研究,國立台灣大學會計學系研究所博士論文,1997。 11.朱僑麗,臺灣住診市場競爭與效率,國立台灣大學衛生政策與管理研究所博士論文,2003。 12.吳志城,運用資料包絡分析法衡量台電區營業處效率之研究,國立中山大學企業管理研究所碩士論文,1994。 13.李東杰,臺灣製造業中小企業考量地區特性影響下技術效率與生產力的變化:隨機性統計邊界法與資料包絡分析法之比較,私立東吳大學經濟學系博士論文,2001。 14.李建中,同質性生產系統人員配置之效率評比模式的構建:以綜合醫療院所門診部門為例,私立淡江大學管理科學學系博士論文,2002。 15.呂理揚,「台灣地區民營加油站之相對績效評估」,能源季刊,第31卷,第1期,第77-98頁,2001。 16.吳毓佳,台灣地區銀行業經營績效之評估─DEA方法之應用,私立銘傳大學管理科學研究所博士論文,2000。 17.林嘉玲,台電公司經營績效之研究-DEA之應用,國立中興大學企業管理學系碩士論文,1998。 18.高強、黃旭男、Sueyoshi, T.合著,管理績效評估─資料包絡分析法,華泰文化,台北市,2003。 19.孫遜,「臺北市立綜合醫院營運績效評估之研究」,管理學報,第20卷,第5期,第993-1022頁,2003。 20.張石柱、廖哲聖,「國軍醫院經營效率之實證研究」,國防管理學院學報,第21卷,第1期,第1-17頁,2000。 21.張甫任,私立技術學院高階主管才能與組織績效之研究,私立中華大學科技管理研究所博士論文,2003。 22.張東生、曾國強,「利用融入價值判斷之資料包絡分析模式衡量台灣地區公共安全品質」,管理與系統,第7卷,第3期,第283-304頁,2000。 23.許玥涵,台電公司各區營業處相對經營績效之研究,私立銘傳大學管理科學研究所碩士論文,2003。 24.張保隆、陳澤義,「台灣各縣市文化中心相對績效之評估」,中國行政,第31-46頁,1995。 25.張保隆、黃旭男、沈佩蒂,「台灣地區社會福利慈善事業基金會之績效評估」,管理與系統,第4卷,第1期,第145-160頁,1997。 26.張睿詒、侯穎蕙,「省立醫院最佳經營典範探討─技術效率、分配效率與整體效率之評估」,管理評論,第20卷,第4期,第1-27頁,2001。 27.張瑞濱,我國私立技術學院經營效率之研究,私立中華大學科技管理研究所博士論文,2003。 28.張德儀,台灣地區國際觀光旅館業資源能力與經營績效因果關係之研究,私立銘傳大學管理科學研究所博士論文,2003。 29.張寶塔、王克陸、梁志豪,「我國銀行經營效率、技術效率與規模效率之分類研究─資料包絡分析法之應用」,管理研究學報,第4卷,第1期,第91-120頁,2004。 30.黃月桂、張保隆、李延春,「台北市立綜合醫院經營績效之評估」,中華公共衛生雜誌,第15卷,第4期,第382-390頁,1996。 31.黃先鋒,台電開發電源基金運用績效評估-資料包絡分析模式(DEA)之應用,國立中山大學企業管理研究所碩士論文,1998。 32.黃旭男,資料包絡分析法使用程序之研究及其在非營利組織效率評估上之應用,國立交通大學管理科學研究所博士論文,1993。 33.黃旭男,「二階段資料包絡分析法在績效評估上之應用:以臺灣地區環保機構組織績效之評估為例」,管理與系統,第6卷,第1期,第111-130頁,1999。 34.黃旭男、吳國華,「臺灣地區壽險業經營績效之衡量」,管理與系統,第8卷,第4期,第401-419頁,2001。 35.黃旭男、林進財、張元哲,「郵政總局分支機構經營效率及效率變動之評估」,交大管理學報,第2卷,第2期,第125-144頁,1997。 36.黃旭男、林進財、康傳富,「臺灣地區電子業經營績效之評估:並探討經營績效與股價變動之關係」,科技管理學刊,第3卷,第2期,第27-50頁,1998。 37.黃旭男、林昭吟,「以多元財務指標評估台灣地區證券公司之經營績效」,銘傳學刊,第10卷,第3期,第239-256頁,1999。 38.黃旭男、唐先楠,「台灣地區環境品質之衡量」,管理與系統,第3卷,第1期,第117-134頁,1996。 39.彭雅惠,台灣金融機構之效率評估:銀行業之購併效率與生產力分析及農會信用部之績效評估與影響因素,國立交通大學管理科學系博士論文,2004。 40.黃崇興、黃蘭貴,「應用數據包絡法於航空公司航線經營績效之分析」,管理學報,第17卷,第1期,第149-181頁,2000。 41.黃蘭貴,會計師事務所合併之技術效率比較分析,國立台灣大學會計學研究所博士論文,2001。 42.楊永列,新竹科學園區廠商效率與生產力變動之研究,私立東吳大學經濟學系博士論文,2000。 43.游明敏,航空噪音管制及投入擁擠對機場經營績效影響之研究,國立台灣大學土木工程學研究所博士論文,2001。 44.劉代洋、董鍾明,「研發效率評估之資料包絡分析法實證研究─以主導性新產品開發計畫為例」,管理與系統,第9卷,第4期,第399-412頁,2002。 45.郭振雄,多重生產程序之績效評估:我國大學院校效率衡量,國立台灣大學會計學研究所博士論文,2000。 46.劉祥泰,模糊資料包絡分析模式之求解與應用,國立成功大學工業管理學系博士論文,1998。 47.葉彩蓮、陳澤義,「臺灣地區銀行的總效率與技術效率─資料包絡分析之應用」,臺灣銀行季刊,第49卷,第2期,第163-183頁,1998。 48.葉彩蓮、陳澤義,「銀行經營績效評估:財務比率與DEA的整合」,東吳經濟商學學報,第30期,第19-42頁,2000。 49.劉景中,金融與生產力之研究,私立文化大學經濟學研究所博士論文,2002。 50.陶學燁,企業多角化效率分析之研究─以集團企業為實例,私立淡江大學管理科學學系博士論文,2002。 51.陳慧瀅,「科學園區主要產業的相對效率之衡量」,產業論壇,第1期,第135-146頁,2000。 52.鄒平儀,醫療社會工作績效評估模式之建構,私立東海大學社會工作學系博士論文,1998。 53.韓慧林,「臺灣地區半導體業績效評估」,管理研究學報,第4卷,第1期,第71-89頁,2004。 54.蕭志同、張國賓、涂宜君,「臺灣連鎖便利商店經營效率之研究」,臺北銀行月刊,第29卷,第5期,第144-154頁,1999。 55.顏慧明,台灣電信服務業之發展策略研究─策略形成、排序及執行績效評估,國立交通大學經營管理研究所博士論文,2002。 56.顧志遠,「高等教育單位之生產力評估與資源分配整合模式研究」,管理與系統,第6卷,第3期,第347-364頁,1999。 57.龔良智,DEA模型應用於台電配電技術部門績效評估之研究,國立交通大學經營管理研究所碩士論文,1999。 英文部分: 58.Athanassopoulos, A. D., Lambroukos, N. and Seiford, L., “Data Envelopment Scenario Analysis for Setting Targets to Electricity Generating Plants,” European Journal of Operational Research, Vol. 115, pp. 413-428, 1999. 59.Banker, R. D., Charnes, A. and Cooper, W. W., “Some Models for Estimating Technical and Scale Efficiencies in Data Envelopment Analysis,” Management Science, Vol. 30, No. 9, pp.1078-1092, 1984. 60.Banker, R. D., Charnes, A., Cooper, W. W. and Schinnar, A. P., “A Bi-external Principle for Frontier Estimation and Efficiency Evaluations,” Management Science, Vol. 27, No. 12, pp.1370-1382, 1981. 61.Banker, R. D. and Maindiratta, A., “Piecewise Loglinear Estimation of Efficient Production Surfaces,” Management Science, Vol. 32, No.1, pp.126-135, 1986. 62.Bjurek, H., Hjalmarsson, L. and Forsund, F. R., “Deterministic Parametric and Nonparametric Estimation of Efficiency in Service Production,” Journal of Economics, Vol. 46, pp.213-227, 1990. 63.Brockett, P. L., Charnes, A., Cooper, W. W., Huang, Z. M. and Sun, D. B., “Data Transformations in DEA Cone Ratio Envelopment Approaches for Monitoring Bank Performances,” European Journal of Operational Research, Vol. 98, pp.250-268, 1997. 64.Chang, K. P. and Kao, P. H., “The Relative Efficiency of Public versus Private Municipal Bus Firms: An Application of Data Envelopment Analysis,” The Journal of Productivity Analysis, Vol. 3, pp.67-84, 1992. 65.Chang, P. L., Hwang, S. N. and Cheng, W. Y., “Using Data Envelopment Analysis to Measure the Achievement and Change of Regional Development in Taiwan,” Journal of Environmental Management, Vol. 43, pp.49-66, 1995. 66.Charnes, A., Clark, T., Cooper, W. W. and Golany, B., “A Development Study of Data Envelopment Analysis in Measuring the Efficiency of Maintenance Units in the US Air Force,” Annals of Operations Research, Vol. 2, pp.95-112, 1985. 67.Charnes, A., Cooper, W. W. and Thrall, R. M., “A Structure for Classifying and Characterizing Efficiency and Inefficiency in Data Envelopment Analysis,” Journal of Productivity Analysis Vol. 2, pp.197-237, 1991. 68.Charnes, A., Cooper, W. W. and Thrall, R. M., “Classifying and Characterizing Efficiencies and Inefficiencies in Data Envelopment Analysis,” Operations Research Letters, Vol. 5, No. 3, pp.105-110, 1986. 69.Charnes, A., Cooper, W. W., Lewin, A. Y. and Seiford, L. M., Data Envelopment Analysis: Theory, Methodology and Application, Kluwer Academic, Boston, 1994. 70.Charnes, A., Cooper, W. W., Lewin, A. Y., Morey, R. C. and Rousseau, J., “Sensitivity and Stability Analysis in DEA,” Annuals of Operations Research, Vol. 2, pp.139-156, 1985. 71.Charnes, A., Cooper, W. W. and Rhodes, E., “Measuring the Efficiency of Decision Making Units,” European Journal of Operational Research, Vol. 2, No. 6, pp.429-444, 1978. 72.Charnes, A., Cooper, W. W., Divine, D., Ruefli, T. W. and Thomas, D., “Comparisons of DEA and Existing Ratio and Regression Systems for Effecting Efficiency Evaluations of Regulated Electric Cooperatives in Texas,” Research in Governmental and Nonprofit Accounting, Vol. 5, pp.187-210, 1989. 73.Charnes, A., Cooper, W. W., Seiford, L. M. and Stutz, J., “Invariant Multiplicative Efficiency and Piecewise Cobb-Douglas Envelopment.” Operations Research Letters, Vol. 2, No. 3, pp.101-103, 1983. 74.Chen, T. Y., “A measurement of the resource utilization efficiency of university libraries,” International Journal of Production Economics, Vol. 53, pp.71-80, 1997. 75.Chen, T. Y. and Yeh, T. L., “A Measurement of Bank Efficiency, Ownership and Productivity Changes in Taiwan,” The Service Industries Journal, Vol. 20, No. 1, pp. 95-109, 2000. 76.Coelli, T., A Guide to DEAP Version 2.1: A Data Envelopment Analysis Program, 1996. (http://www.une.edu.au/econometrics/cepa.htm) 77.Fare, R., Grosskopf, S. and Logan, J., “The Relative Efficiency of Illinois Electric Utilities,” Resources and Energy, Vol. 5, pp.349-367, 1983. 78.Farrell, M. J., “The Measurement of Productive Efficiency,” Journal of the Royal Statistical Society A, Vol. 120, No. 3, pp.253-290, 1957. 79.Farrell, M. J. and Fieldhouse, M., “Estimating Efficient Production Functions under Increasing Returns to Scale,” Journal of the Royal Statistical Society, Series A, General, 125, Part 2, pp.252-267, 1962. 80.Golany, B. and Roll, Y., “An Application Procedure for DEA,” OMEGA, Vol. 17, No. 3, pp.237-250, 1989. 81.Golany, B., Roll, Y. and Rybak, D., “Measuring Efficiency of Power Plants in Israel by Data Envelopment Analysis,” IEEE Transactions on Engineering Management, Vol. 41, No. 3, pp.291-301, 1994. 82.Grosskopf, S. and Valdmanis, Y., “Measuring Hospital Performance: A Nonparametric Approach,” Journal of Health Economics, Vol. 6, pp.89-107, 1987. 83.Hwang, S. N. and Chang, T. Y., “Using Data Envelopment Analysis to Measure Hotal Managerial Efficiency Change in Taiwan,” Tourism Management, Vol. 24, pp.357-369, 2003. 84.Kao, C., “Evaluation of Junior Colleges of Technology: The Taiwan case,” European Journal of Operational Research, Vol. 72, No.1, pp.43-51, 1994. 85.Kao, C., “Short-run and Long-run Eficiency Measures for Multiplant Firms,” Annals of Operations Research, Vol. 97, pp.379-388, 2000. 86.Kao, C. and Liu, S. T., “Data Envelopment Analysis with Miss Data: An Application to University Libraries in Taiwan,” Journal of the Operational Research Society, Vol. 51, pp.897-905, 2000. 87.Kao, C. and Yang, Y. C., “Reorganization of Forest Districts via Efficiency Measurement, ” European Journal of Operational Research, Vol. 58, pp.356-362, 1992. 88.Kao, C. and Yang, Y. C., “Measuring the Efficiency of Forest Management,” Forest Science, Vol. 37, pp.1239-1252, 1993. 89.Keeney, R. and Raiffa, H., Decisions with Multiple Objectives: Preferences and Value Tradeoffs, New York, NY: Cambrige University Press, 1993. 90.Lewin, A. Y. and Minton, J. W., “Determining Organizational Effectiveness: Another Look, and an Agenda for Research,” Management Science, Vol. 32, No. 5, pp.514-538, 1986. 91.Miliotis, P. A., “Data Envelopment Analysis Applied to Electricity Distribution Districts,” Journal of the Operational Research Society, Vol. 43, No. 5, pp.549-555, 1992. 92.Raczka, J., “Explaining the Performance of Heat Plants in Poland,” Energy Economics, Vol. 23, pp.355-370, 2001. 93.Schaffnit, C., Rosen, D. and Paradi, J. C., “Best Practice Analysis of Bank Branches: An Application of DEA in a Large Canadian Bank,” European Journal of Operational Research, Vol. 98, pp.269-289, 1997. 94.Scheel, H., “Undesirable Outputs in Efficiency Valuations,” European Journal of Operational Research, Vol. 132, pp.400-410, 2001. 95.Seiford, L. M., “A Bibliography for Data Envelopment Analysis (1978-1996),” Annals of Operations Research, Vol. 73, pp.393-438, 1997. 96.Sueyoshi, T., “A Special Algorithm for An Additive Model in Data Envelopment Analysis,” Journal of the Operational Research Society, Vol. 41, No. 3, pp.249-257, 1990. 97.Sueyoshi, T. and Goto, M., “Slack-adjusted DEA for Time Series Analysis: Performance Measurement of Japanese Electric Power Generation Industry in 1984-1993,” European Journal of Operational Research, Vol. 133, pp.232-259, 2001. 98.Tavares, G., A Bibliography of Data Envelopment Analysis (1978-2001), Technical Report RRR01-02, RUTCOR, Rutgers University, Piscataway, N. J., 2002. 99.Valdmanis, V. G., “Ownership and Technical Efficiency of Hospitals,” Medical Care, Vol. 28, No. 6, pp.552-561, 1990. 100.Wei, Q., Zhan, G. J. and Zhang, X., “An Inverse DEA Model for Inputs/Outputs Estimate,” European Journal of Operational Research, Vol. 121, pp.151-163, 2000.id NH0925031074 sid 847805 cfn 0 / id NH0925031075 auc 林曙熙 tic 企業資訊安全管理之認知與實施研究 adc 許棟樑 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 101 kwc 資訊安全管理 kwc BS7799 kwc ISMS abc 隨著科技之快速發展,人們及企業對於資訊系統之應用亦不斷擴大與增長。在贊歎科技為人們日常生活與企業運作帶來便利、依賴程度日益提高之際,其可能隱藏之風險與危機亦不容忽視。資訊安全管理系統( ISMS,Information Security Management System) 之導入模式如同其他管理系統,除了運用組織之管理體系制定出各項相關之政策、方針與作業準則,提昇組織成員對安全管理意識、正確作業規範外,另輔予現代技術與產品,以防範不當之操作或蓄意破壞,進而有效執行控管以降低可能之風險,確保組織安全實體之正常運作。 rf (一)、中文部份 1.資訊系統的完整性、機密性及可適用性,電腦稽核實務,中華民國電腦稽核協會,2001年9月。 2.曾淑惠,2002,以BS7799為基礎評估銀行業的資訊安全環境,淡江大學資訊管理學系碩士論文。 3.李東峰、林子銘,1999,資訊安全的風險管理,第五屆國際資訊管理研究暨實務研討會論文集。 4.蘇耀新,2003,資訊安全管理系統的導入與管理模式之研究,中國文化大學資訊管理研究所碩士論文。 5.林勤經,2001,2001資訊安全認證與電子化網路社會網際網路安全工程研討會論文集,資訊傳真周刊。 6.行政院研考會,行政院及所屬各機關資訊安全管理規範,http://www.rdec.gov.tw /mis/ eng/ security/1116spec.htm,1999年11月。 7.中央標準局,2002,資訊安全管理之作業要點CNS17799,中央標準局。 8.黃漢臣,從BS 7799到ISO 17799 – 談國際資訊安全標準的推動, http://www.secureonline. com.tw/,2001年5月。 9.資訊傳真網,ISO 17799導入 資訊安全認證有譜,http://www.infopro.com.tw,2001年6月。 10.鄧永基,BS 7799 part1 and part2 - 1999,BSI台灣分公司,2002年5月。 11.吳琮璠,謝清佳編著(1999),資訊管理理論與實務,智勝文化出版 12.劉永禮,2002,以BS7799資訊安全管理規範建構組織資訊安全風險管理模式之研究,元智大學工業工程與管理研究所碩士論文。 13.孫強、左天祖、劉偉編著,2003,資訊系統審計 安全、風險管理與控制,機械工業出版社。 14.賴松溪,資訊安全國家標準之應用與發展,資訊安全通訊第四卷第四期,中華民國資訊安全學會,1998年09月。 15.電腦稽核協會,2000,電腦稽核實務,中華民國電腦稽核協會。 16.楊鋒彬,電腦系統安全評估準則,資訊傳真,2002年9月。 17.劉國昌、劉國興,2001,資訊安全,儒林出版社。 18.鄧家駒,1998,風險管理之理念與執行策略,華泰文化公司。 19.陳光榮,1999,組織變革之探討,經濟情勢暨評論。。 20.翁景明、葉淑瑜,1999,網際網路引進時組織如何變革以提升廠商優勢,管理與資訊學報。 21.簡榮宗,2002,營業秘密與競業禁止條款實務解析, 權平法律資訊http://www.cyberlawyer.com.tw。 22.李岳貞,1998,高科技環境下的企業改造與組織變革,能力雜誌。 23.陳瑞祥,2001,ISO17799新資訊安全標準與內部稽核,安侯會計師事務所,內部稽核會訊。 24.蔡興樺,2001,企業如何做好資訊風險管理,網路通訊第九十一期。 25.古永嘉,1996,企業研究方法,第五版,華泰書局。 (二)、英文部份 1. BS 7799:1999 Information Security management-Part1,Code of practice for information security management systems,1999。 2. BS 7799:1999 Information Security management-Part2,Specification for information security management,1999。 3. ISO/IEC 17799 Information technology Code of practice for information security management,2000。 4. Implementation Services of Information Security Management System,STQC Dept. Government of India,2002。 5. Introduction to ISMS,STQC Dept.Government of India,2001。 6. John W.Lainhart IV,An International Source For Information Technology Control,ISACA,1998。 7.John D.Phillips,Operational Risk Management Program,1998。 8. Risk Management,Standards Australia Int’l.Ltd.,http://www.standards.com.au,1999。 9. Thomas R. Peltier,Information Security Risk Analysis,Auerbach Publications, Boca Raton,2001。id NH0925031075 sid 883881 cfn 0 / id NH0925031076 auc 胡志翰 tic 整合資料挖礦與遺傳演算法之混合式排程求解方法及實證 adc 簡禎富 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 53 kwc 醫療服務 kwc 復健 kwc 排程 kwc 混合式排程 kwc 屬性歸納 kwc 基因演算法 abc 近年來醫療業對於服務的品質越來越加重視,醫院不僅需具備優越的醫療技術及設備,而能否提供更貼心的醫療服務,往往是病患選擇求診醫院的關鍵。因此,醫院無不竭盡所能的提升醫療服務品質,應用工業工程與科學管理的方法妥善的規劃醫療資源,進而加強對病患的醫療服務。除了卓越的醫療技術外,完善的醫療服務,將成為醫院的競爭力核心,也是目前醫院經營的重要課題。 tc 目錄 I 圖目錄 II 表目錄 III 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究重要性與目的 3 1.3 研究方法與步驟 4 1.4 論文架構 5 第二章 文獻回顧 6 2.1 醫院管理相關研究 6 2.2 混合型排程問題 7 2.3 基因演算法相關研究 8 2.4 資料挖礦相關技術研究 14 2.4.1 屬性導向歸納法(Attribute-Oriented Induction) 15 2.4.2 概念階層的歸納(Concept Generalization) 17 第三章 混合型排程之資料挖礦應用模式建構 19 3.1 問題架構 20 3.2 混合型排程問題之資料挖礦模式分析 23 3.3 混合型排程問題之學習法則樣型分析 24 3.4 學習法則之推導與演算 28 3.5 混合型排程之資料挖礦模式建置步驟 32 第四章 混合型排程資料挖礦之實證研究 35 4.1實證資料之蒐集與整理 35 4.2 遺傳演算法之驗證 36 4.3 學習法則之推導與訓練 38 4.4 學習法則之應用 41 4.5 驗證結果分析 44 第五章 結論與未來研究 50 參考文獻 52 圖目錄 圖1-1 研究方法與步驟 5 圖2-1 混合型排程模式【1】 8 圖2-2 交配演化示意圖 10 圖2-3 突變演化示意圖 10 圖2-4 基因演算法結構圖【16】 11 圖2-5 病人與復健項目對應圖 12 圖2-6 染色體表示法 12 圖2-7 啟發式解碼法流程圖【1】 14 圖3-1 研究架構 19 圖3-2 復健項目先後關係示意圖 22 圖3-3 研究分析流程圖 23 圖3-4 基因演算法之染色體排列範例 25 圖4-1 基因演算法執行畫面 37 圖4-2 平均等候時間分佈(第十組學習法則) 45 圖4-3 最後完成時間分佈(第十組學習法則) 45 圖4-4 不同訓練法則間的評估指標表現 46 圖4-5 不同人數的評估指標表現(第十組學習法則) 47 圖4-6 平均等候時間分佈(LOCAL SEARCH 比較) 48 圖4-7 最後完成時間分佈(LOCAL SEARCH 比較) 48 表目錄 表3-1 物理復健排程問題之基本資料範例 24 表3-2 基因演算法之輸入資料範例 25 表3-3 機台負荷計算範例 28 表3-4 最初關聯資料範例 29 表3-5 主要關聯資料範例 29 表3-6 屬性歸納組合及權重計算表 30 表3-7 復健作業排序範例 31 表3-8 復健機台的相關資料 32 表3-9 病人復健資料 33 表4-1 復健項目及機台資料 36 表4-2 訓練階段之病人資料 37 表4-3 基因演算法之參數 37 表4-4 訓練階段之病人資料(加入染色體位置) 38 表4-5 最初屬性關聯表 39 表4-6 訓練之屬性關聯表 40 表4-7 學習法則表 42 表4-8 驗證階段之屬性關聯表 43 表4-9 區間權重排序表 44 表4-10 區間權重排序表 47rf 【1】曾繁斌, “醫院復健排程模式與演算法之研究”, 國立清華大 學工業工程與工程管理學系碩士論文,2003. 【2】彭文正譯, 資料挖礦顧客關係管理暨電子行銷之管理,維科, 2001 【3】Hamilton, D. M., and Breslawski, S. (1996), “Knowledge Acquisition for Multiple Site, Relate Domain Expert System: Delphi Process and Application”, Expert Systems With Applications, Vol.11, No.3, pp. 377-389. 【4】Marinagi, C. C., Spyropoulosa, C. D., Papatheodorou, C., and Kokkotos, S. (2000), “Continual planning and scheduling for managing patient tests in hospital l laboratories”, Artificial Intelligence in Medicine, Vol. 20, pp. 139-154. 【5】Focke A. and Christian S.(2003), “Strategic technology planning in hospital management”, OR Spectrum, pp. 161-182. 【6】Kim, S., Horowitz I., Young K. K., and Buckley T. A. (2000), “Flexible bed allocation and performance in the intensive care unit”, Journal of Operations Management, Vol.18, pp. 427-443. 【7】Farrington, P. A., Nembherd, H. B., and Evans, G. W. (1999), “Determination of operation room requirement using simulation”, Proceedings of the 1999 Winter Simulation Conference, pp. 1568-1572. 【8】Centeno, M. A., Albacete, C., Terzano, D. O., Carrillo, M., and Ogazon, T. (2000), “A simulation study of the radiology department at JMH”, Proceedings of the 2000 Winter Simulation Conference, pp. 1978-1984. 【9】Ramudhin, A., and Marrier, P. (1996), “The Generalized Shifting Bottleneck Procedure”, European Journal of Operational Research, Vol.93, pp. 34-48. 【10】Baesler, F. F., and Sepúlveda, J. A. (2001), “Multi- Objective simulation optimization for a cancer treatment center”, Proceedings of the 2001 Winter Simulation Conference, pp. 1405-1411. 【11】Millar, H. H., and Kiragu, M. (1998), “Cyclic and non-cyclic scheduling of 12 h shift nurses by network programming”, European Journal of Operational Research, Vol.104, pp. 582-592. 【12】Valouxis, C., and Housos, E. (2000), “Hybrid optimization techniques for the workshift and rest assignment of nursing personnel”, Artificial Intelligence in Medicine, Vol.20, pp. 155-175. 【13】Dowsland K. A.(1998), “Nurse scheduling with tabu search and strategic oscillation”, European Journal of Operational Research, Vol.106, pp. 393-407. 【14】Lee, K. M., Yamakawa, T., and Lee, K. M. (1998), “A Genetic Algorithm for General Machine Scheduling Problems”, Proceedings of the 1998 IEEE Second International Conference on Knowledge-Based Intelligent Electronic Systems, Vol. 2, pp. 60-66. 【15】Goldberg, D. (1989), Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, MA. 【16】Gen, M., and Cheng, R. (1997), Genetic Algorithms & Engineering Design, John Wiley & Sons, New York. 【17】Cai, Y., Cercone, N., & Han, J. (1991).Attribute- oriented Induction in relational databases, Knowledge Discovery in Databases. Cambridge, MA:MIT Press. 【18】Genesereth, M., and Nilsion, N. 1987. Logical Foundations of Artificial Intelligence. San Mateo, Calif.: Morgan Kaufmann. 【19】Michalski, R. S. 1983. A Theory and Methodology of Inductive Learning. In Machine Learning: An Artificial Intelligence Approach, Vol.1, 83-134. San Mateo, Calif.: Morgan Kaufmann. 【20】Han, J., & Fu, Y.(1996). Attribute-oriented induction in data mining, Advances in Knowledge Discovery and Data Mining. Cambridge, MA: T Press.id NH0925031076 sid 913831 cfn 0 / id NH0925031077 auc 許嘉裕 tic 建構掃描式曝光機台之覆蓋誤差模式與設計取樣策略之實證研究 adc 簡禎富 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 英文 pg 61 kwc 覆蓋誤差 kwc 模式 kwc 取樣策略 kwc 步進且掃描式機台 kwc 半導體製造管理 abc 中文摘要 tc Table of Content Table of Content i List of Figures ii List of Tables iii Chapter 1 Introduction 1 1.1 Background, Significance, and Motivation 1 1.2 Research aims 2 1.3 Overview of this thesis 3 Chapter 2 Literature Review 4 2.1 Advanced process control 4 2.2 Lithography Technology and Tool 5 2.2.1 Step-and-Scan System Versus Step-and-Repeat System 6 2.3 Overlay and Theoretical overlay model 9 2.3.1 Overlay errors 9 2.3.2 Existing Stepper overlay error models 14 2.3.3 Existing Scanner overlay error models 19 2.4 Sampling Strategies 23 Chapter 3 Research Framework 25 3.1 Problem Definition and Problem structuring 25 3.2 A Conceptual framework 25 3.3 Develop a scanner overlay model 30 3.3.1 Cause and effect simulation 30 3.3.2 Develop scanner overlay error model 35 3.4 Proposed sampling strategies 40 3.4.1 Cause and effect for sampling patterns 40 3.4.2 The design of sampling patterns 44 Chapter 4 An Empirical Study 47 4.1 Experimental design 47 4.2 Revised the existing sampling pattern 48 4.3 Intrafield sampling strategies 49 4.4 Interfield sampling strategies 50 4.5 Evaluation of the proposed model and integrated sampling strategies 52 Chapter 5 Conclusion 56 References 58 List of Figures Figure 1.1 the overall research process 3 Figure 2.1 the step-and-repeat and scan-and-step lateral view 8 Figure 2.2 causes-and-effects of overlay errors 9 Figure 2.3 the overlay error measurement (Chien et al 2003) 11 Figure 2.4 the intrafield overlay errors 12 Figure 2.5 the interfield overlay errors 13 Figure 3.1 a conceptual framework 27 Figure 3.2 design of sampling strategies flowchart 29 Figure 3.3 the individual factors of intrafield overlay errors 31 Figure 3.4 the combined factors of intrafield overlay errors 32 Figure 3.5 the individual factors of interfield overlay errors 33 Figure 3.6 the combined factors of interfield overlay errors 34 Figure 3.7 the intrafield overlay sampling locations 40 Figure 3.8 the interfield overlay sampling fields 42 Figure 3.9 intrafield sampling patterns 44 Figure 3.10 interfiled sampling patterns 46 Figure 4.1 the overlay location of empirical data 47 Figure 4.2 (a) Residual analysis of 20 sampled overlays (b) Residual analysis of 2295 sampled overlays 53 Figure 4.3 Histogram of residuals of the proposed and existing sampling strategies (20 overlays) 55 List of Tables Table 2.1 product critical level lithography requirements (SIA 1997) 7 Table 2.2 the advantages of step-and-scan system 8 Table 2.3 considered overlay error factors 22 Table 3.1 the relation of regression coefficients and overlay model parameters 39 Table 4.1 R-squares and error norms of different sampling numbers 49 Table 4.2 R-square and error norms of different intrafield sampling patterns 50 Table 4.3 R-squares and error norms of different interfield sampling patterns 51 Table 4.4 Error norms of proposed and existing sampling patterns with different sampling numbers 54rf References Arnold, W. H. (1988), “Image placement differences between 1:1 projection aligners and 10:1 reduction wafer steppers”, Proceedings of SPIE: Optical Microlithography, Vol.394, pp.87-98. Baliga, J. (1999), “Advanced process control: soon to be a must”, Semiconductor International, July, pp.76-88. Bode, C. A., A. J. Toprac, R. D. Edwards and T. F. Edgar (2000), “Lithography overlay controller formulation”, Proceedings of SPIE: Process Control and Diagnostics, Vol.4182, pp.2-11. Brink, M. A., C. G. M. de Mol and R. A. George (1988), “Matching performance for multiple wafer steppers using an advanced metrology procedure,” Proceedings SPIE: Integrated Circuit Metrology, Inspection, and Process Control II, Vol.921, pp.180-197. Brink, M., H. Jasper, S. Slonaker, P. Wijnhoven and F. Klaassen (1996), “Step-and-scan and step-and-repeat, A technology comparison”, Proceedings of SPIE: Optical Microlithography IX, Vol.2726, pp.734-753. Buckley, J.D. and C. Karatzas (1989), “Step and scan: A system overview of a new lithography tool”, Proceeding of SPIE: Optical/Laser Microlithography II, Vol.1088, pp.424-433. Chen, X., M. Preil, M. Goff-Dussable and M. Maenhoudt (2001), “An automated method for overlay sample plan optimization based to spatial variation modeling,” Proceedings of SPIE: Metrology, Inspection, and Process Control for Microlithography XV, Vol.4344, pp.257-266. Chien, C., K. Chang and C. Chen (2001), “Modeling overlay errors and sampling strategies to improve yield”, Journal of Chinese Institute of Industrial Engineers, Vol.18 (3), 95-102. Chien, C., K. Chang and C. Chen (2003), “Design of a sampling strategy for measuring and compensating for overlay errors in semiconductor manufacturing,” International Journal of Production Research, Vol.41(11), pp.2547-2561. Cronin, D. J. and G. M.Gallatin (1994), “Micrascan II overlay error analysis”, Proceedings of SPIE: Optical/Laser Microlithography VII, Vol. 2197, pp.932-942. Fink, I. D., N.T. Sullivan and J. S. Lekas (1994), “Overlay sample plan optimization for the detection of higher order contributions to misalignment,” Proceedings of SPIE :Integrated Circuit Metrology, Inspection, and Process Control VIII, Vol.2196, pp.389-399. Funk, M., K. Lally, R. Sundararajan (2002), “A Common APC Architecture for 200 & 300mm Etch”, Proceedings of SPIE: Design Process Integration, and Characterization for Microelectronics, Vol.4692, pp.155-161. Hasan, T. F., S. U. Katzman and D. S. Perloff (1980), “Automated electrical measurements of registration errors in step-and-repeat optical lithography systems”, IEEE Transaction on electron devices, Vol.27 (12), pp.2304-2312. Hong, J., J. Lee, J. Park, H. Cho and J. Moon (1999), “Optimization of sample plan for overlay and alignment accuracy improvement”, Jpn. J. Appl. Phys., Vol.38 pp.7164-7167. International Technology Roadmap for Semiconductors: Metrology, 2003 edition. Levinson, H. J., M. E. Preil, and P. J. Lord (1997), “Minimization of total overlay errors on product wafers using an advanced optimization scheme”, Proceedings of SPIE: Optical Microlithography X, Vol.3051, pp.362-373. Lin, Z. and W. Wu (1999), “Multiple linear regression analysis of the overlay accuracy model”, IEEE Transaction on Semiconductor Manufacturing, Vol.12, pp.229-237. MacMillen, D. and W. D. Ryden (1982), “Analysis of image field placement deviations of a 5× microlithographic reduction lens”, Proceedings of SPIE: Optical Microlithography-Technology, Vol.334, pp.78-89. Montgomery, D. C., (2000), Design and Analysis of Experiments, 5th Edition, New York Wiley National Technology Roadmap for Semiconductors: Technology Needs, 1997 Edition, Semiconductor Industry Association. Pellegrini, J. C., Z. R. Hatab, M. Brsh and T. R. Glass (1999), “Super sparse overlay sampling plans: An evaluation of methods and algorithms for optimizing overlay quality control and metrology tool throughput”, Proceedings of SPIE: Metrology, Inspection, and Process Control for Microlithography XIII, Vol. 3677, pp.72-82. Perloff, D. S. (1978), “A four-point electrical measurement technique for characterizing mask superposition errors on semiconductor wafers”, IEEE Journal of solid-state circuits, Vol.13 (4) pp.436-444. Peski, C. K. (1982), “Minimizing pattern registration errors through wafer stepper matching techniques”, Solid State Technology, Vol.25 (5), pp.111-115. Rangarajan, B., M. Templeton, L. Capodieci, R. Subramanian and A. Scranton (1998), “Optimal sampling strategies for sub-100nm overlay”, Proceedings of SPIE: Metrology, Inspection, and Process Control for Microlithography XII, Vol.3332, pp.348-359. Schoot, J. V., F. Bornebroek, M. Suddendorf, M. Mulder, J. van der Spek, J. Stoeten and A. Hunter (1999), “0.7 NA DUV step & scan system for 150nm imaging with improved overlay”, Proceedings of SPIE: Optical Microlithography XII, Vol.3679, pp.448-463. Sewell H. (1994), “Step and scan: the maturing technology”, Proceedings SPIE: Optical/Laser Microlithography VIII, Vol.2440, pp.49-60. Zwart, G.., M. van den Brink, R. George, D. Satriasaputra, J. Baselmans, H. Butler, J. van Schoot and J. de Klerk (1997), “Performance of a step and scan system for DUV lithography”, Proceedings of SPIE: Optical Microlithography X, Vol.3051, pp.817-829.id NH0925031077 sid 913818 cfn 0 / id NH0925031078 auc 賴源欽 tic 以個案分析方式探討環境會計制度對半導體產業的影響 adc 吳鑄陶 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 38 kwc 環境會計制度 abc 環境保護成為國際間越來越受到重視之課題,基於對環境保護的關心致使各國政府的環保法規日趨嚴格,同時在大眾對環境保護的要求及環保相關利害關係者的壓力下,更使得企業永續經營時對環境成本的管理,成為企業經營活動重要的一環,透過環境會計制度的建置,可以做為企業揭露從事環境活動的基礎及溝通工具。 rf 1.行政院環保署「規劃我國整體環保政策—建構產業環境會計制度﹙第三年計劃﹚」期末報告 2.沈華榮:交通大學管理科學研究所,台灣環境會計制度發展的經驗與檢討,民國92年1月. 3.王雪慧:交通大學管理科學研究所,企業環境成本會計制度建置之研究, 民國91年6月 4.行政院環保署,我國產業環境會計制度「作業手冊」,民國91年10月林慧文:南華大學環境管理研究所,環境會計建構與發展歷程探討,民國91年6月 5.行政院環保署,環境會計制度宣導講義教材,民國93年6月 6.余正陽:成本與管理會計(上),智勝文化出版社,2002年第二版 7.余正陽:成本與管理會計(下),智勝文化出版社,2002年第二版 8.李宗黎:管理會計學 9.經濟部工業局:生命週期評估技術與應用手冊 10經濟部標準檢驗局:CNS 14040環境管理-生命週期評估原則與架構 11.台積電公司環境會計作業程序2002年版 12.台積電公司2003年環境年報id NH0925031078 sid 913866 cfn 0 / id NH0925031079 auc 紀茹珮 tic 由3D動畫人模擷取機能尺寸之研究方法-以洗臉盆設計與裝設為例 adc 游志雲 ty 碩士 sc 國立清華大學 dp 工業工程與工程管理學系 yr 92 lg 中文 pg 37 kwc 人體計測 kwc 3D人體計測 kwc 機能姿勢 kwc 機能尺寸 kwc 動畫人模 abc 人體計測尺寸在產品及設施上的應用,深深地影響人機系統的適用性。自第二次世界大戰以來,世界各國紛紛建立人體計測資料庫,並且廣泛地運用在設計當中;然而這些人體計測尺寸主要是1D的資料,是人在站姿、坐姿等標準動作下量測而得,因此不容易推估在特定機能姿勢下的尺寸。機能姿勢是當我們使用一項產品或設施時,所有動作當中的關鍵姿勢。 tc 摘要 ii 誌謝 iii 目錄 iv 圖目錄 v 表目錄 vii 第一章 導論 1 1.1. 研究動機 1 1.2. 研究目的 3 第二章 文獻探討 4 2.1. 傳統人體計測及其應用 4 2.1.1. 傳統人體計測調查及資料庫 4 2.1.2. 傳統人體計測資料庫的應用 8 2.2. 3D人體掃瞄和動畫技術 16 2.2.1. 3D人體計測調查和資料庫 16 2.2.2. 動畫技術 20 第三章 研究方法 23 3.1. 使用人口母體及其代表平均人 23 3.2. 建構動畫人模 23 3.3. 機能姿勢擺位及擷取機能尺寸 24 第四章 結果 29 4.1. 實驗的機能姿勢 29 4.2. 動畫擺位並擷取機能尺寸 29 4.3. 設計與裝設洗臉盆 30 4.4. 檢驗適用性 30 第五章 討論 36 參考文獻 37rf 1. 龔錦,人體尺度與室內空間,博遠出版社, 2000 2. 王茂駿,王明揚,林昱呈,台灣地區人體計測資料庫手冊,中華民國人因工程學會 3. Alexander Kira, The Bathroom, The Viking Press, 1976 4. Chaffin et. Al., Occupational Biomechanics, John Wiley & Sons, 1988 5. Nedel L. P., Thalmann D., Anatomic modeling of deformable human bodies, The Visual Computer (2000) 16:306–321 6. Roebuck J. A., Anthropometric methods: Designing to Fit the Human Body, Human factors and ergonomics society, 1993 7. Roebuck J. A., Kroemer K. H. E., Thomson W. G., Engineering Anthropometry Methods, John Wiley & Sons, 1975 8. NASA,(1978),”Anthropometry Source Book”. 9. Seitz T., Balzulat J., Bubb H., Anthropometry and measurement of posture and motion, International Journal of Industrial Ergonomics 25 (2000) 447-453 10. Thalmann D., Shen J., Chauvineau E., 1996, Fast Realistic Human Body for Animation and VR Applications, IEEE 11. Sanders M. S., McCormick E. J., Human Factors in Engineering and Design, McGraw-Hill, 1992 12. Nedel L.P. & Thalmann D. Anatomic modeling of deformable human bodies, The Visual Computer(2000)16:306-321 13. Wilhelms, J, Van Gelder A, Anatomically based modeling. Proceedings ACM SIGGRAPH ’97, pp 173-180 14. Allen B., Curless B., Popovic Z.,The space of human body shapes: reconstruction and parameterization from range scans, SIGGRAPH 2003, 27-31 July 2003 15. Laboratory of Applied Anthropology http://www.biomedicale.univ-paris5.fr/LAA/eindex.htm 16. Cyberware, 2002. http://www.cyberware.com. 17. Vitus, 2002. http://www.vitus.de 18. 工研院光電所 www.oes.itri.org.tw 19. 工研院光電所,(2002).「3D技術網頁」,http://3d.itri.org.tw/ 20. 上海多媒體行業協會 http://www.smia.org.cn/index.aspid NH0925031079 sid 913854 cfn 0 / id NH0925045001 auc 張胤賢 tic 孟子工夫論研究 adc 楊儒賓 ty 碩士 sc 國立清華大學 dp 中國文學系 yr 92 lg 中文 pg 142 kwc 工夫論 kwc 神話 kwc 踐行 kwc 精氣 abc 本文大體上針對孟子工夫論中的「宗教神話」以及「身體現象」作為研究的核心內容。在「宗教神話」方面,本文採宗教神話學的角度,試圖挖掘出隱身於義理背後的神話回歸傳統以及宗教向度;而在「身體現象」方面,本文則嘗試以中土本身之精氣理論搭配西方論述已豐的身體研究成果,彰顯出孟子工夫論中的身體基礎,以及澄清「思孟學派」與「身體控制」之間的糾葛。在歷史脈絡上,本文認為孟子的工夫論可以上溯至周人敬慎天命下的威儀傳統;而在工夫論內容方面,筆者以為<遠遊>篇中的正氣,以及管子<內業>篇中的精氣,適足以補充說明孟子工夫論述中的身體依據;另外在儒家內部系統方面,孟子後學<帛書五行篇>徹底發揮孟子踐形理論,並將其深度內化、精緻化,是理解與印證孟子身心觀的恰當途徑。而在荀子方面,雖然與思孟學派同樣具有身體朗現的傾向,但是荀子的關懷是將身體價值置於社會面向上來考察,呈現出社會化的身體意涵,不同於思孟學派所云「形於內」的內在價值。 tc 孟子工夫論研究目錄 第一章 【導論】…………………………………1 第二章 【原型理論】………………………….12 第一節 <先秦威儀> 1.威嚇與嚮往. 2.神聖之美第二節 <身體結構> 1.原始型態 2.轉化模式第三節 <主體性的建立> 1禮樂崩壞 2.仁的自覺 第三章 【孟子工夫論的神話向度】……………………………40 第一節 <絕地天通> 第二節 <文化英雄與永恆回歸> 第三節 <「大中」意象> 第四章 【孟子工夫論的身體內容】……………………………66 第一部分 <身體基礎> 第一節 <先天之氣> 第二節<管子精氣說> 1.精的界說 2.工夫論 第二部分 <孟子與其後學的討論> 第一節 <孟子養氣論踐形觀> 1.理論界說 2.工夫內容 (1).精與氣 (2).踐形 (3)不動心 (4).知言 第二節 <帛書五行篇探討> 1.形於內與形於外 2.統合力 第三節 <社會化的身體> 第三部分 <綜合討論> 第五章 【結論】…………………………………..138rf 一、古籍文獻 王船山【周易外傳】(台北:廣文書局) 王船山【尚書引義】(北京:中華書局 1962) 王船山【讀通鑑論】(台北:里仁書局本) 王船山【楚辭通釋】,船山全集 第十四冊 (台北:華文書局) 王逸等人【楚辭四種】(台北:華正,1990) 中井履軒【孟子逢原】見關儀一郎編【日本名家四書註釋全書•孟子部貳】 (東京:東京圖書,昭和三年)。 司馬遷【史記】 朱熹【朱子語類】(台北:漢京文化,四部善本新刊) 朱熹【四書集注】(台北:世界書局,1981) 朱熹【詩集傳】 (台北:商務,1981) 朱熹【楚辭集注】(台北:河洛,民國68)。 朱彬【禮記訓纂】 (北京:中華書局) 朱丹溪【丹溪醫集】 阮元【十三經注疏】<尚書>、<左傳>、<毛詩> (新文豐出版) 阮元【揅經室集】 (台北:藝文印書館) 孔穎達【周易注疏】(台北:學生,1979) 李念莪【內經知要】 馬瑞辰【毛詩傳箋通釋】 (廣雅書局刻本) 陳淳【北溪字義】,見 岡田武彥主編【北溪先生字義詳解】(台北:廣文,1979) 黃帝【黃帝內經素問】(四部叢刊初編子部 上海商務翻印) 黃宗羲【孟子師說】,見【叢書集成續編】第15冊(上海書店) 焦循【孟子正義】卷27第39條(北京:中華書局,1998) 劉寶楠【論語正義】 (北京:中華書局,1990) 聞一多等撰【管子集校】(東風書店影印本) 葉紹鈞點註【傳習錄】(台灣商務 1994) 趙順孫【四書纂疏】 嚴復【評點老子道德經】 (台北:廣文書局,1979) 二、學術專著 (1).中(日)文部分 方東美【原始儒家道家哲學】 (黎明,台北,1982) 王國維【殷周制度論】 ( 藝文印書館) 王辛【老子新編校釋】 小野澤精一編【氣の思想】p30-81(東京大學 1985),中譯本【氣的思想】李慶譯 (上海人民 1990) 乾一夫【聖賢の原像—中國古代思想研究序說】(東京:明治書院,1988) 牟宗三【心體與性體】第一冊、第二冊(台北:正中,2001) 牟宗三【現象與物自身】 (台北:學生,民國64年) 牟宗三【才性與玄裡】 (台北:學生,民國64年) 牟宗三【從陸象山到劉蕺山】 (台北:學生,1993) 李澤厚【美學論集】 (台北:三民, 1996) 李澤厚【中國古代思想史】(台北:風雲,1991) 李澤厚【華夏美學】(台北:時報,1980) 屈萬里【書傭論學集】<仁字涵義之史的觀察> (台北:聯經,民73) 馬伯樂【尚書中的神話】 陳榮捷【中國哲學文獻選編】 (台北:巨流,1991) 陳鼓應【老子今注今譯】 (台北:商務,1992) 陳鼓應【管子四篇詮釋】 (台北:三民,2003)。 唐君毅【中國哲學原論•導論篇】,(台北:學生,1990) 唐君毅【哲學概論下】 (台北:學生,1990) 黃俊傑【孟學思想史卷一】(台北:東大,1991) 黃俊傑【孟學思想史卷二】 (台北:中研院文哲所,1997) 楊儒賓師【儒家身體觀】 (台北:中研院文哲所,1993) 楊儒賓師主編【中國古代思想中的氣論及身體觀】(台北:正中,1997) 楊儒賓【先秦道家道的觀念的發展】 (台北:台灣大學文史叢刊,1987)。 楊寬【古史新探】(北京:中華書局,1964 ) 郭沫若【青銅時代】 (上海:群益,1947) 張榮明【中國古代氣功與先秦哲學】(上海:人民,1987) 張光直【中國青銅時代】第一集及第二集(台北:聯經,1993) 費孝通【鄉土中國】(上海書店,1942) 馮友蘭【中國哲學史新編】(北京:人民,1984) 傅斯年【傅斯年全集】第二集 (台北:聯經,1981) 葉舒憲【中國神話哲學】第六章<黃帝四面>(北京:中國社科,1997) 錢穆【錢賓四先生全集•釋道家精神義】 (台北:聯經,1995) 錢穆【靈魂與心】(台北:聯經,1976)。 劉文英【夢的迷信與夢的探討】(中國社科出版社 1991) (2).中文譯本 Cassirer的介紹【語言與神話】于曉等譯(台北:桂冠,1993) Campbell【千面英雄】<原初英雄與人類> 朱侃如譯 (台北:立緒,1997) Durkheim【宗教生活的基本形式】趙學元等譯 (台北:桂冠,1992) Fingarette【孔子即凡而聖】張華等人譯 (江蘇人民 2002) Frazer【金枝】汪培基譯 (台北:桂冠,1991) Geertz【文化的解釋】 (上海人民 1999)。 Mircea Eliade【聖與俗】楊素娥譯. (台北:桂冠,1993) Mircea Eliade【宇宙與歷史】楊儒賓師譯 (台北:聯經,1993) Mircea Eliade【不死與自由—瑜珈實踐的西方闡釋】武錫申譯 (北京:中國致公,2001) Paul Ricoeur【惡的象徵】翁紹軍譯 (台北:桂冠,1992) Paul Tillich【愛情正義及力量】王秀谷譯(台北:三民,1973) Paul Tillich【信仰的動力】魯燕萍譯 (台北:桂冠,1994) Rudolf Otto【論神聖】周邦憲等譯(成都:四川人民出版社,1999) Weber【宗教社會學】劉援等譯p60 (台北:桂冠,1993) (3).西文專書 Liu Wu-Chi【Confucius, his life and time】 (Philosophical Library New York 1955) Schwartz【The World Of Thought in Ancient China】 Cambridge Wing-Tsit Chan 【A source Book In Chinese Philosophy】(Princeton University, New Jersey 1969)。 Gadamer, 【Truth and Method】 trans.G. Barden & J. Cumming (Lodon: Sheed & Ward, 1975)id NH0925045001 sid 885102 cfn 0 / id NH0925045002 auc 徐秀慧 tic 戰後初期台灣的文化場域與文學思潮的考察(1945~1949) adc 施淑教授 adc 呂正惠 教授 ty 博士 sc 國立清華大學 dp 中國文學系 yr 92 lg 中文 pg 299 kwc 戰後初期(1945~1949) kwc 台灣文學 kwc 國共內戰 kwc 二二八事件 kwc 社會主義文藝思想 kwc 「橋」副刊論爭 kwc 左翼美學 kwc 族群認同 abc 本論文的動機在釐清台灣戰後初期(1945∼1949)政治、經濟、社會、文化等等權力場域對文學生產的影響。以二二八事件為分界,分析二二八事件前後報刊、雜誌所形構的文化場域中,兩岸文化人如何各自在其所佔據的文化「位置」,爭取文化生產的支配權,與國民黨官方的文化宣傳進行意識形態與文學內部美學的鬥爭。 tc 第一章 緒論……………………………………………………1 第一節、研究動機與問題意識 第二節、文獻回顧與研究方法 第二章 回歸中國與台灣政經社會的危機……………………19 第一節 「光復」前史:長官公署的設立與台灣人的「光復運動」…………………………………………………………………………21 一、 國民黨政府「收復台灣」的政策走向 二、 台灣抗日聯合陣線團體爭取「復省建省」 三、 特殊省制的定案與台籍人士的建言與憂心 第二節 國民黨政府的接收與政治轉型 ………………………37 一、 台灣人對「光復」的期待與國民黨政府奠下「黨國體制」的基礎 二、 政治差別待遇 三、 地方自治的權限與台灣人的政治主張 第三節 中央、長官公署雙重經濟「接收」與台灣社會的貧弱化…56 一、統制經濟與公營企業 二、台幣政策與通貨膨脹 第四節 「光復」變奏曲:從二二八事件到美軍協防 ……………67 一、島內整體社會危機與二二八事變的爆發 二、冷戰與內戰交迫局勢下成為「反共」堡壘 第三章 權力場域的結構與自主性文化場域的生成………………83 第一節 「長官公署」文化政策「獨裁/民主」的縫隙…………96 第二節 官方報刊的勢力角逐與民主文化人的介入 ……………91 第三節 左、右翼文化人在權力場域的介入與分合……………116 第四節 民間報刊雜誌的人脈與傾向分析………………………128 一、民間兩大報:《民報》與《人民導報》的成員與報刊傾向 二、左翼文化人主導雜誌 第四章 左翼言論、民主思潮與二二八事件突顯的社會革命困境 第一節 「三民主義」與社會改革意識…………………………147 第二節 國內政治動向與台灣政治出路的思考…………………155 一、批判島內政經現實 二、呼應大陸的民主運動 三、圍繞「政治協商會議」展開的民主思潮 第三節 殖民地的傷痕:二二八事件與台灣文化發展的歷史侷限……………………………………………………………………172 第五章 台灣文化的重建與社會主義文藝思潮的頓挫…………183 第一節 重建台灣文化:反殖民、反專制之抗爭文學的延續…185 第二節 「魯迅戰鬥精神」的繼承與其文化抗爭的意義………197 第三節 台灣文學的「特殊性」與「一般性」…………………215 第四節 社會主義文藝理念的再出發與頓挫……………………234 一、「人民文學」、文學大眾化的倡議 二、從「五四」精神到「新現實主義」文藝論爭的意義與實踐 三、官方意識形態的文藝論調與整肅運動 第六章 結論…………………………………………………… 257 附錄…………………………………………………………………264 參考書目……………………………………………………………281rf 參 考 書 目 (ㄧ)報紙 《民報》 台灣民報社、社長林茂生。1945/10/10∼1947/02(現存於台灣省立台中圖書館)。 《台灣新生報》 長官公署宣傳委員會。1945/10/25∼現在(國家圖書館台灣分館、台灣大學、政治大學皆保存完整的微卷)。 《人民導報》 人民導報社、社長宋斐如(王添燈)。1946/01/01∼1947/03/10(國家圖書館台灣分館、中研院近史所、吳三連基金會)。 《中華日報》 台南國民黨中央宣傳部。1946/02/21∼1991(台灣大學、政治大學皆保存完整的微卷)。 《和平日報》 台中國防部宣傳部。1946/05/05∼1947/04(台南市立圖書館存有1946年7月∼1947年1月,1947年3月∼1949年4月)(曾健民提供筆者完整微捲)。 《自強報》 基隆七十軍機關報。1946/08/06∼1947/01/11(曾健民提供筆者部分報紙)。 《國聲報》 高雄湯秉衡(王天賞、彭勃)1946/06/01發行。1947/04/01∼1949/04。 《全民日報》 台北全民日報社。1947/07/07∼1951/09/16與民族報、經濟時報合併為聯合報)(現存國家圖書館台灣分館)。 《公論報》 台北李萬居發行。1947/10/25∼1961(國家圖書館台灣分館存有1948/07∼1949/0/7微捲;台南市立圖書館存有1947年11∼1952年9月原版報紙)。 《力行報》 台中力行出版社。1947/11/12∼1948/03/? (曾健民提供筆者部分報紙)。 (二)雜誌 《南音》 文藝雜誌南音社發行。第1卷第3號,1932/02/01。 《台灣文藝》 第2卷第1號∼第4號(1934/12/12∼1935/04/01)、第2卷第2號(1935/02/01)、第2卷第3號(1935/03/05)。 《台灣新文學》 第1卷第7號(1936/08/05)、第9號(1936/11/05)。 《台灣先鋒》 (復刊號)1940年4月~1942年12月,浙江:台灣義勇隊發行。1981年世界翻譯社複印,人間出版社印行。 《緣草》1945/5/1夏季號。台中銀玲會行。(現存一冊,陳建忠提供) 《前鋒》創刊號(光復紀念號)(1945/10/25)原出版者台灣留學國內學友會,資料提供者台灣史料中心,覆刻出版社:傳文文化事業有限公司 第十七期(1949/09/02)廖文毅發行。 《政經報》半月刊,1945/10/25∼1946/7/25(共11期)原出版者政經報社,資料提供者台灣史料中心,覆刻出版社:傳文文化事業有限公司 《新新》1945/11/20∼1947/1/5(共8期)原出版者新新月報社,資料提供者鄭世璠,覆刻出版社:傳文文化事業有限公司。 《現代週刊》 1945/12/10~1946.11.25(創刊號~)省立台灣圖書館發行,(國家圖書館館藏)。 《新台灣》1946/2/15∼1946/5/1(共4期)原出版者新台灣雜誌社,資料提供者1∼3期秦賢次、4期中央圖書館台灣分館,覆刻出版社:傳文文化事業有限公司 《台灣評論》1946/7/1∼1946/10/1(共4期)原出版者台灣評論社,資料提供者台灣史料中心,覆刻出版社:傳文文化事業有限公司。 《新知識》月刊第一期(1946/8/15)原出版者新知識出版社,資料提供者秦賢次,覆刻出版者:傳文文化事業有限公司覆刻出版。 《台灣文化》 1946/9/15∼1950/12/1(共6卷27期)原出版者台灣文化協進會,資料提供者台灣史料中心、秦賢次,覆刻出版者:傳文文化事業有限公司。 《台灣月刊》 1946/10/25~1947/4/10(共六期)長官公署宣傳委員會發行(台灣分館館藏)。 《文化交流》第一輯(1947/1/15)原出版者台中文化交流服務社,資料提供者台灣史料中心,覆刻出版社:傳文文化事業有限公司。 《正氣》月刊 1946/10/01~1947/05(一卷一期~二卷二期)(台大圖書館館藏)。 《建國》月刊 1947/10/01~1948/09/01(一卷一期~二卷六期)(台大圖書館館藏)。 《潮流》季刊 1948/5∼1949/5銀玲會發行。(現存共五期,陳建忠提供筆者)。 《創作》月刊 1948/4∼1948/9(共六期,四本)原出版者台北創作月刊社,資料提供者毛文昌,覆刻出版社:傳文文化事業有限公司。 《台灣文學叢刊》1948/8/10∼1948/12/15(共3輯)台中:台灣文學社發行。(陳建忠提供筆者) 《龍安文藝》創刊號 台北師院台語戲劇社發行,1949/5/02出版。(柳書琴提供筆者) 《文學界》季刊8、9、10 1983/11、1984/02、1984/05 高雄:文學界出版社。 《台灣年鑑》1∼6冊 原1947年《新生報》報社編輯出版,黃玉齋主編。覆刻出版社:海峽出版社,2001/03發行。 (三)引用期刊、書目(依著者姓氏筆畫排列,同一著者超過兩筆資料者,依出版時間排列。若有更早的版本則在後面刮號內註明。未特別標明出版地者,皆為台北。) 1.中文專著、期刊論文、學位論文 (三劃:上、下) 下村作次郎 1998/03[1992/07 ]邱振瑞譯《從文學讀台灣》前衛出版社。1992初版一刷,1998二刷。 上海社會科學院文學研究所編 1998/04《三十年代在上海的”左聯”作家》上海社會科研究院出版社。 (四劃:王、水、毛、方) 王詩琅 1995/11[1988/05 ]《台灣社會運動史--文化運動》稻鄉出版社。 王曉波編 2002/02[1985 ]《二二八真相》海峽學術出版社。(重新出版1985年「夏潮論壇」為避免查緝未署名出版、編者,補入江鵬堅1986/03/01〈為平反「二二八事件」再質詢〉一文) 水秉合 1987/09〈民族主義與中國政治發展〉《當代》第17期。 毛文昌 1997/05〈《創作》的點點滴滴〉,《台灣史料研究》第9號。 毛澤東 1991/12[1991/06 ]《毛澤東》選集(第二卷),北京人民出版社。1991/06二版,1991/12二版三刷。 方孝謙 2001/06《殖民地台灣的認同摸索——從善書到小說的敘事分析1895∼1945》巨流圖書。 (五劃:台、中、北、司、包、丘、艾、布) 台灣省行政長官公署宣傳委員會編 1946/12《台灣一年以來之宣傳》編者印。 台灣省政府 1947/05/06《台灣省政府公報》夏字號第1~2號。 台灣省文獻會主編 1952/06《台灣省通志》卷十「光復志」南投台灣省文獻會。 1970《台灣省通志》卷首下「大事記」南投台灣省文獻委員會。 台大四六事件資料蒐集小組 1997/06《台大「四六」事件考察 - 四六事件資料蒐集小組總結報告》。 中共福建省委檔史資料徵集編輯委員會研究室編 1985/12《福建抗日救亡運動》,福建人民出版社。 中島利郎編 2000/05 邱振瑞譯〈日治時期的台灣新文學與魯迅〉,收入中島利郎主編《台灣新文學與魯迅》,前衛出版社。 北京大學等現代文學教研室編 1981/06[1979/12 ]《文學運動史料選》第五冊,1979/12第一版,1981/06二刷。上海:教育出版社。 北岡正子、秦賢次、黃英哲等編 1993/03/26《許壽裳日記(自1940年8月1日至1948年2月18日)》東京東京大學東洋文化研究所。 司馬文森編 1950/11[1949/11 ]《作家印象記》香港:智源出版社,1949年初版,1950年再版。 包亞明譯 1997/01《布爾迪厄訪談錄--文化資本與社會練金術》上海:商務印書館。 丘念台 2002/10《領海微飆》海峽學術出版社。 艾曉明 1991/07《中國左翼文學思潮探源》湖南:文藝出版社。 布爾迪厄Bourdieu, Pierre 2001/03劉暉譯《藝術的法則--文學場的生成與結構》北京:北京中央編譯出版社。 (六劃:行、朱、全、沈、池、朱) 行政院文化建設委員會 1996/06《台灣文學發展現象》,編者發行。 朱家慧 2000/11《兩個太陽下的台灣作家——龍瑛宗與呂赫若研究》台南:台南市立藝術中心出版。為作者1996年成功大學歷史所碩士畢業論文。 朱雙一 2001/08(雙文)〈略論光復初期台中《和平日報》副刊--兼及《新知識》月刊和《文化交流》輯刊〉《那些年我們在台灣……》,「人間思想與創作叢刊」,人間出版社。 全國政協等編 1987/06《陳儀生平及被害內幕》北京:中國文史出版社。 沈雲龍 1989/02〈陳儀其人與二二八事變〉《傳記文學》第54卷第2期。 池田敏雄 1982/10/30〈敗戰日記ⅠⅡ〉收入《臺灣近代史研究》第四號「池田敏雄氏追悼紀念特輯」日本綠蔭書房。 (七劃:何、呂、阪) 何幹之 1937《中國社會性質問題論戰》上海:生活書店。 何容、齊鐵恨等編著 1948《台灣之國語運動》台灣省教育廳。 何義麟 1996/08〈戰後初期台灣報紙之保存現況與史料價值〉《台灣史料研究》第8號。 1997/12 (a)〈戰後初期台灣出版事業發展之傳承與移植(1945∼1950)〉《台灣史料研究》第10號。 1997/12(b)〈《政經報》與《台灣評論》解題 ——從兩份刊物看戰後台灣左翼勢力之言論活動〉,《政經報》、《臺灣評論》覆刻本導言。(又見《台灣史料研究》第10號。) 2003/09/30〈《民報》——台灣戰後初期最珍貴的的史料〉《台灣風物》53卷第三期。 呂芳上 1973/09〈台灣革命同盟會與台灣光復運動(一九四O~一九四五)〉《中國現代史專題研究報告》第三輯 中華民國史料研究中心。 1985/10〈抗戰時期在大陸的台灣抗日團體及其活動〉《近代中國雙月刊》49期。 呂正惠 2003/03/29∼30〈一個堅忍的台灣作家的後半生〉夏潮聯合會、臺灣大學東亞文明研究中心主辦「臺灣殖民地史學術研討會」會議論文。 2001/12〈陳芳明「再殖民論」質疑〉《聯合文學》第206期。 李 敖編著 1989/02《二二八研究》、《二二八研究續集》、《二二八研究三集》李敖出版社。 1991/12/31《安全局機密文件——歷年辦理匪案彙編》李敖出版社。 李純青 1993/11《望鄉》人間出版社。 李雲漢 1966/05《從容共到清黨》(上)(下)中國學術著作獎助委員會。 李筱峰 1986/02《台灣戰後初期的民意代表》自立晚報出版。 1996/10《林茂生•陳炘和他們的時代》玉山社出版社。 1998/05 李筱峰、林芳微〈回憶錄與自傳中的二二八史料〉,《台灣史料研究》第11號。 李瑞騰 1997/11〈光復初期台灣新生報《文藝》副刊研究〉收入陳義芝、亞弦主編《世界中文報紙副刊學綜論》行政院文建會。 李翼中 1992/05〈帽簷述事--台事親歷記〉收入《二二八事件資料選輯(二)》中央研究院近代史研究所出版。 阪口直樹著 2001/02宋宜靜譯《十五年戰爭期的中國文學》稻鄉出版社。 (八劃:林、吳、金、邵、周、阿) 林 忠 1985/01《台灣光復前後史料概述》皇極出版社,增訂版。 林瑞明 1984/05(林梵)〈讓他們出土〉《文學界》10,高雄:文學界雜誌社。 1993/08《台灣文學與時代精神賴和研究論集》允晨出版社。 1996/12《台灣文學的歷史考察》允晨文化。 2000/05〈賴和與魯迅〉,收入中島利郎主編《台灣新文學與魯迅》,前衛出版社。 2000/06(主編)《賴和全集》前衛出版社。 林書揚 1992/09/10《從二二八到五O年代白色恐怖》時報出版社。 林曙光 1994/07/15〈感念奇緣弔歌雷〉《文學台灣》11期。 吳 原編 1976/09周子亞、潘公展等著《民族文藝論文集》帕米爾書店出版。 吳新榮 1981張良澤編《吳新榮全集》遠景出版社。 1997/03《吳新榮選集3•震瀛回憶錄》台南縣立文化中心。 吳濁流 1977《亞細亞的孤兒》遠行出版社。 1988《台灣連翹》前衛出版社。 1990/11/15[1988/09/15 ]《無花果》前衛出版社。1988/09/15台灣版第一版,1988/09/15第四刷。 吳純嘉 1999/07《人民導報研究(1946-1947)──兼論其反映出的戰後初期台灣政治、經濟與社會文化變遷》中央大學歷史所碩論。 吳克泰 2002/08《吳克泰回憶錄》人間出版社。 金重遠 1996/06《戰後世界史》上海:復旦大學出版社,二刷。 金炳華主編 1999/11《上海文化界奮戰在"第二條戰線上"史料集》上海:人民出版社。 金冲及 2002/10《轉折的年代--中國的1947》北京三聯書局。 邵毓麟 1967/09/01(1984)《勝利前後》傳記文學出版社。 周業謙、周光淦譯 1998/09《社會學辭典》貓頭鷹出版社。譯自David Jary &Julia Jary: The HarperCollins dictionary of sociology(HarperCollins Publishires Limited 1995) 周國偉 2000/12〈尾崎秀實在虹口〉《綠土》第52期。網路資料,網址http://www.grassy.org/hq-lib/paper/200012_52.asp 阿杜塞 Althusser, Louis 1990/11/1杜智章譯《列寧與哲學》遠流出版社。 (九劃:胡、若、范、施、柳、段、姚、倪、柯) 胡允恭 1992/06/10〈地下十五年與陳儀〉《傳記文學》361期(第60卷6期)。 若林正丈 1987/09〈台灣抗日運動中的「中國座標」與「台灣座標」〉《當代》第17期。 2000/03[1994/07 ] 《台灣--分裂國家與民主化》月旦出版社。1994/07初版,2000/03一版六刷。 2003/06、2003/09〈尋找遙遠的連帶——中國國民革命與台灣青年(上)、(下)〉陳怡宏譯註《台灣風物》53卷第二、三期。 范 泉 2000/02《遙念台灣》人間出版社。 施 淑 2000/12/25〈台灣社會主義文藝理論的再出發--新生報「橋」副刊的文藝論爭(1947∼1949)〉《世界華文文學論壇》33期。 2001/12〈龍瑛宗文學思想初論〉收入《台靜農先生百歲冥誕論文集》台灣大學中文系。 柳書琴 2001/07《荊棘的道路旅日青年的文學活動與文化抗爭》清華大學中文系博士論文。 2002/10/19〈跨時代跨語作家的戰後初體驗--龍瑛宗的現代性焦慮(1945-1947)〉台中修平技術學院主辦「戰後台灣文學學術研討會」會議論文。 段炳麟 1997/9《世界當代史》北京:師範大學,三刷。 姚 辛編著 1994/12《左聯辭典》北京:光明日報社。 倪莫炎、陳九英編 2003/05《許壽裳文集》(上、下),上海:百家出版社。 柯喬志Kerr, George 1991/07[1991/03 ]陳榮成譯《被出賣的台灣》前衛出版社,1991/03一刷,1991/07三刷。 (十劃:袁、徐、涂、夏、莊、翁、秦、孫、高) 袁小倫 1999/12《戰後初期中共與香港進步文化》廣東:教育出版社。 徐秀慧 1997/04〈陰鬱的靈視者龍瑛宗--從龍瑛宗小說的藝術表現看其在台灣文學史上的歷史意義〉,《台灣新文學》第七期,1997春季號。 涂照彥 1999/02《日本帝國主義下的台灣》人間出版社,初版三刷。 夏金英 1995/06《台灣光復後之國語運動1945∼1987》師範大學歷史所碩士論文。 莊惠惇 1998/06《文化霸權、抗爭論述——戰後初期台灣的雜誌分析》中央大學歷史研究所碩士論文。 1999/03/31〈戰後初期台灣的雜誌文化(1945/8/15∼1947/2/28)〉《台灣風物》49卷1期。 翁嘉禧 1998/09《台灣光復初期的經濟轉型與政策(1945∼1947)》高雄:復文圖書公司。 秦賢次 1997/12 (a)〈《新知識》月刊導言〉,《新知識》覆刻本導言。(又見《台灣史料研究》第10號。) 1997/12(b)〈《文化交流》第一輯導言〉,《文化交流》覆刻本導言。(又見《台灣史料研究》第10號。) 秦孝儀主編 1981/09《中華民國重要史料初編——對日抗戰時期•第四冊》〈第七篇 戰後中國〉中國國民黨中央委員會黨史委員會出版。 1983《中華民國經濟發展史》第三冊 近代中國出版社。 孫萬國 1998/16〈半山與二二八初探〉,收入張炎憲、陳美容、楊雅惠編《二二八事件研究論文集》吳三連台灣史料基金會出版,一版二刷 高秋福 2003/10/02〈尾崎兄弟與中國〉新華網網路資料。 網址:http: //news3.xinhuanet.com/world/2003-10/02/content_1109475.htm (十一劃:章、梁、陳、許、黃、曹、間) 章子惠 1947/03《台灣時人誌》國光出版社。 梁華璜 1984/12〈台灣總督府在福建省的教育設施——東瀛學堂與旭瀛書院〉《成大歷史學報》11,頁39~56,台南成功大學歷史系。 陳少廷 1972/05/04〈五四與台灣新文學運動〉《大學雜誌》第53號。 陳國輝、祝萍 1987/10《台灣報業演進四十年》自立晚報出版社。 陳芳明 1998/10《殖民地台灣 - 左翼政治運動史論》,麥田出版股份有限公司。 1999/08〈台灣新文學的建構與分期〉《聯合文學》總178期。 2000/05(a)〈魯迅在台灣〉,收入中島利郎主編《台灣新文學與魯迅》,前衛出版社。 2000/08(b)〈馬克思主義有那麼嚴重嗎?--回答陳映真的科學發明與知識創見〉《聯合文學》第190期。 2000/10(c)〈當台灣文學戴上馬克思面具--再答陳映真的科學發明與知識創見〉《聯合文學》第192期。 2001/03(a)〈台灣新文學史 第九章戰後初期文學的重建與頓挫〉,《聯合文學》。 2001/05(b)〈台灣新文學史 第十章二二八事件後的文學認同與論戰〉,《聯合文學》。 2001/08(c)〈有這種統派,誰還需要馬克思--三答陳映真的科學創見與知識發明〉《聯合文學》第202期。 陳芳明編 1991/03《台灣戰後史資料選--二二八事件專輯》二二八和平促進會發行。 1995/07[1988/09 ](施敏輝編)《台灣意識論戰選集——台灣結與中國結的總決算》前衛出版社。1988初版一刷,1995二刷。 1996/03《蔣渭川和他的時代》前衛出版社。 陳映真 1999/09(a)(石家駒)〈一場被遮斷的文學論爭〉收入陳映真、曾健民主編《1947-1949台灣文學問題論議集》,「人間思想與創作叢刊」,人間出版社。 1999/09(b)(許南村)〈「台灣文學」是增進兩岸民族團結的渠道——讀楊逵〈台灣文學問答〉〉收入陳映真、曾健民主編《噤啞的論爭》,「人間思想與創作叢刊」,人間出版社。 2000/07〈以意識形態代替科學知識的災難--批評陳芳明先生的〈台灣新文學史的建構與分期〉《聯合文學》第189期。 2000/09〈關於台灣「社會性質」的進一步討論--答陳芳明先生〉《聯合文學》第191期。 2000/12〈陳芳明歷史三階段論和台灣新文學史論可以休矣!〉《聯合文學》第194期。 陳映真、曾健民編 1999/09《1947-1949台灣文學問題論議集》,人間出版社。 1999/09《禁啞的論爭》,人間出版社。 1998/12《清理與批判》,人間出版社。 2000/12《復現的星圖》,人間出版社。 陳明通 1990《威權體制下台灣地方政治菁英的流動(1945∼1986)--省參議員及省議員的流動分析》國立台灣大學政治學研究所博士論文。 2001/06[1995/10 ]《派系政治與台灣政治變遷》新自然主義出版社,1995年初版一刷,2001年二版一刷。 陳翠蓮 1995/02《派系鬥爭與權謀政治--二二八悲劇的另一面》時報出版社1995/02初版一刷、1995/05初版二刷。 1998/06〈「大中國與「小台灣」的經濟矛盾--以資源委員會與台灣行政長官公署的資源爭奪為例」〉,收入張炎憲、陳美容、楊雅惠編《二二八事件研究論文集》吳三連台灣史料基金會出版,一版二刷。 2001/11〈戰後初期台灣政治結社與政治生態〉,收入《曹永和先生八時壽慶論文集》樂學書局。 2002/12〈去殖民與再殖民的對抗--以一九四六年「台人奴化」論戰為焦點〉《台灣史研究》第九卷第二期。 陳才崑譯 1995/06《王白淵•荊棘的道路》(上、下冊),彰化:縣立文化中心出版。 許介鱗 1998/06[1996/09 ]《戰後台灣史記•卷一》文英堂。1996/09初版一刷、1997/03二版一刷,1998/06三版一刷。 許維育 1998/07《戰後龍瑛宗及其文學研究》清華大學中文系碩士論文。 許詩萱 1999/07/13《戰後初期(1945/8∼1949/12)台灣文學的重建——以《台灣新生報》「橋」副刊為主要探討對象》中興大學中文系碩士論文。 陳建忠 1998/12〈被詛咒的文學〉收入《台灣現代小說史綜論》聯經出版社。 2001/07/01〈發現台灣:日據到戰後初期台灣文學史建構的歷史語境〉,《台灣文學評論》第1卷第1期。 2002/11/22〈戰後初期台灣現實主義思潮與台灣文學場域的再建構--文學史的一個側面(1945-1949)〉台南成功大學大學主辦「台灣文學史書寫國際學術研討會」會議論文。 2004/6/19∼20〈行動主義、左翼美學與台灣性:戰後初期(19459-1949)楊逵的文學論述〉靜宜台灣文學系主辦「楊逵文學國際學術研討會論文」。 陳昭瑛 1998/04〈光復初期「台灣文化」的概念〉收入《台灣文學與本土化運動》,正中書局。 陳淑芬 1990/06《戰後之疫台灣的公共衛生與建制(1945∼1954)》,稻鄉出版社。 陳漱渝 1998/01〈藍明谷與魯迅的《故鄉》〉《魯迅研究》月刊,北京。 陳鳴鍾、陳興唐主編 1989/12《台灣光復和光復後五年省情》(上、下),南京南京出版社。 陳興唐主編 1992《台灣「二二八」事件檔案史料》(上、下)人間出版社。 陳俐甫、夏榮和、林偉盛編譯 1992/03《台灣•中國•二二八》稻鄉初版社。 陳義芝主編 1998/12《台灣現代小說史綜論》聯經出版社。 陳耀東、孫黨伯、唐達暉主編 1998/08《中國現代文學大辭典》北京:高等教育出版社。 陳幼鮭 1999/12(2000/06、2000/12)〈戰後日軍日僑在台行蹤的考察〉(上)、(下)(附錄),分別刊登《台灣史料研究》14、15、16期。 黃永玉 1950/11〈記楊逵〉,收入司馬文森編《作家印象記》香港:智源出版社。 黃英哲 1991/10〈許壽裳與戰後初期台灣的魯迅文學介紹〉《國文天地》75總77期。 1992/03[1992/02 ]〈許壽裳與台灣(1946∼1948)——兼論二二八前夕長官公署時代的文化政策〉,收入《二二八學術研討會論文集(1991)》台美文化基金會發行。1992/02一刷,1992/03二刷。 1996/06〈試論戰後台灣文學研究的成立與現階段台灣文學研究的問題點〉,收入《台灣文學發展現象》,行政院文化建設委員會 1997/02/28〈戰後初期台灣的文化重編(1945-1947)--台灣人「奴化」了嗎?〉,收入《何謂台灣?近代台灣美術與文化認同論文集》行政院文建會策劃/出版「台灣美術研討會」,雄師美術月刊社。 1998/06〈台灣省編譯館研究(1946.8∼1947.5)〉,收入張炎憲、陳美容、楊雅惠編《二二八事件研究論文集》吳三連台灣史料基金會出版,一版二刷。 2000/05〈戰後魯迅思想在台灣的傳播(1945∼49)〉,收入中島利郎主編《台灣新文學與魯迅》,前衛出版社。 2001/02/28〈黃榮燦與戰後台灣的魯迅傳播〉,《台灣文學學報》第二期,政治大學中文系出版。 2002/2〈「台灣文化協進會」研究論戰後台灣之「文化體制」的建立〉,《葉石濤及其同時代作家文學國際學術研討會論文集》高雄:春暉出版社。 黃昭堂 2002/5黃英哲譯《台灣總督府》前衛出版社,修訂一版五刷。 黃惠禎 1994/07《楊逵及其作品研究》麥田出版社。 2004/6/19∼20〈楊逵與戰後台灣新文學的重建——以《台灣文學叢刊》為中心的歷史考察〉靜宜台灣文學系主辦「楊逵文學國際學術研討會論文」。 黃煌雄 1999/12《蔣渭水傳》前衛出版社。 黃靜嘉 2002/04《春帆樓下晚濤急--日本對台灣殖民地統治及其影響》台灣商務印書館。 曹雷雨等譯 2000/10 Gramsci, Antonio 著《獄中札記》北京:三聯出版社。 (十二劃:張、葉、彭、曾、湯、游、費、葛) 張 禹(王思翔) 1955《我們的台灣》上海:新知識出版社。 2003/06(王思翔)《從心隨筆》北京:中國致公出版社。 張煦本 1978/11〈工作在浙西及台灣〉,《掃蕩二十年--掃蕩報的歷史紀錄》,中華文化基金會。 張炎憲 1992/03[1992/02 ]〈戰後初期台獨主張產生的探討--以廖家兄弟為例〉收入《二二八學術研討會論文集(1991)》台美文化基金會發行。1992/02一刷,1992/03二刷。 張光直 1998/01《蕃薯人的故事》,聯經出版事業公司,1998年1月初版。 張良澤主編 1984/05/02《台灣文化》專刊第5期。 張瑞成編 1990/06/30(a)《台籍志士在祖國的復台努力》秦孝儀主編(中國現代史史料叢編 第二集),國民黨黨史會。 1990/06/30(b)《抗戰時期收復台灣之重要言論》秦孝儀主編(中國現代史史料叢編 第三集),國民黨黨史會。 1990/06/30 (c)《光復台灣之籌畫與受降接收》秦孝儀主編(中國現代史史料叢編 第四集),國民黨黨史會。 張炎憲、李筱峰、莊永明編 1990/10《台灣近代史名人誌》第五冊,自立晚報出版部。 張炎憲、李筱峰編 1993/10[1989/01 ]《二二八事件回憶集》稻鄉出版社。1989初版,1993三刷。 張炎憲、陳美容、楊雅惠編 1998/06《二二八事件研究論文集》吳三連台灣史料基金會出版,一版二刷。 張頌聖 2001/06《文化場域的變遷》聯合文學出版社。。 張季琳 2003/03〈楊逵和入田春彥——台灣作家和總督府日本警察〉《中國文折研究集刊》第22期。 葉石濤 1984/02〈流淚撒種的,必歡呼收割--光復初期的日語文學〉《文學界》9,高雄:文學界雜誌社。 1987/02《台灣文學史綱》高雄文學界雜誌社,初版。 1991/06《一個台灣老朽作家的五O年代》前衛出版社。 葉明勳 1988/05〈後世忠邪自有評〉《傳記文學》第52卷第5期。 葉榮鐘 1987/04[1960 ]《台灣民族運動史》自立晚報出版社。1960初版,1987年五版。(註著者列名者另有蔡培火、陳逢源、林伯壽、吳三連,因據聞為葉榮鐘撰,故筆者以葉榮鐘為代表) 2000/08 [1985《台灣人物群像》台中:晨星出版社。帕米爾出版社1985初版,晨星出版社2000改版。 2002/03/31葉芸芸、陳昭英編《葉榮鐘早年文集》(葉榮鐘全集7)台中:晨星出版社。 葉芸芸 1989/08〈試論戰後初期的台灣智識份子及其文學活動〉。收入台灣文學研究會(主編)《先人之血、土地之花 ─ 台灣文學研究論文精選集》前衛出版社台灣版第一刷。初刊於《文季》第11期1985/06。 葉芸芸編 1993/02《證言二二八》人間出版社,新校增訂第二版。 1995/04 周夢江、王思翔著《台灣舊事》時報出版社。 彭瑞金 1984/05〈記一九四八年前後的一場台灣文學論戰〉《文學界》10,高雄:文學界雜誌社。 1991/03《台灣新文學運動四十年》自立晚報社文化出版部。 1997/05〈《橋》副刊始末〉,《台灣史料研究》第9 號。 彭明敏 1988/09《自由的滋味——彭明敏回憶錄》前衛出版社。 彭小妍主編 2001/09《楊逵全集(一)∼(十四)》台南國立文化資產保存研究中心籌備處。 曾士榮 1994/06《戰後台灣之文化重編與族群關係--兼以「台灣大學」為討論例案(一九四五∼五O)》台灣大學所碩士論文。 曾健民 2001/01〈「戰後再殖民論」的顛倒--關於陳芳明的戰後文學史觀的歷史批判〉《聯合文學》第195期。 2002/06〈建設人民的現實主義的台灣新文學〉收入趙遐秋、呂正惠主編《台灣新文學思潮史綱》人間出版社。 2003/03/29∼30〈日據末期(抗戰末期)的臺灣光復運動〉夏潮聯合會、臺灣大學東亞文明研究中心主辦「臺灣殖民地史學術研討會」會議論文。 曾健民等編 2001/12《因為是祖國的緣故》,「人間思想與創作叢刊」,人間出版社。 湯熙勇 1991/11〈台灣光復初期的公教人員任用方法留用台籍、羅致外省籍及徵用日人(1945.10∼1947.5)〉《人文及社會科學集刊》第4卷第1期,中研院中山人文社會科學研究所。 游勝冠 1996/07《台灣文學本土論的興起與發展》前衛出版社。 費正清主編 1992/01章建剛等譯《劍橋中華民國史•第二部》上海人民出版社。 (十三劃:楊、資、塩) 楊肇嘉 1980/04[1968/12 ]《楊肇嘉回憶錄》三民書局,第四版。 楊聰榮 1992/07《文化建構與國民認同戰後台灣的中國化》清華大學社會人類所碩士論。 楊錦麟 1993/11《李萬居評傳》人間出版社。 資中筠 2000/10《追根與溯源(1945-1950)——戰後美國對華政策的緣起與發展》上海人民出版社。 塩見俊二 2001/11《秘錄•終戰前後的台灣》文英堂出版社。 (十四劃:劉、蔡、蔣、廖、漁) 劉士永 1996/03《光復初期台灣經濟政策的檢討》稻鄉出版社。 劉進慶 1995/04[1992 ]王宏仁等譯《台灣戰後經濟分析》人間出版社,1995一版三刷。 2003/03/29∼30〈序論台灣近代化問題——晚清洋務近代化與日據殖民近代化之評比〉夏潮聯合會、臺灣大學東亞文明研究中心主辦「臺灣殖民地史學術研討會」會議論文。 劉進慶、涂照彥、隅谷喜三男 1993 雷慧英等譯《台灣之經濟--典型NIES之成就與問題》人間出版社。 劉孝春 1997/07〈「橋」論爭及其意義〉,《世界新聞傳播學院人文學報》第7期。 2003/03/29∼30〈試論《亞細亞的孤兒》〉夏潮聯合會、台大東亞文明研究中心主辦「臺灣殖民地史學術研討會」會議論文。 劉紀蕙 2000/03〈三十年代中國文化論述中的法西斯妄想以及壓抑:從幾個文本徵狀談起〉《中國文哲集刊》16。中央研究院中國文哲所出版。 劉獻彪、林治廣編 1981/08《魯迅與中日文化交流》湖南:人民出版社。 蔡其昌 1994/06《戰後(1945-1959)台灣文學與國家角色》東海大學歷史所碩士論文。 蔡德本 2003/4/15〈《龍安文藝》終於找到了〉《文學台灣》第46期,高雄:文學台灣雜誌社。 蔡淑滿 2002/06《戰後初期台北的文學活動研究》中央大學中文系碩論。 蔣梨雲等編 1996/03《蔣渭川和他的時代附冊》前衛出版社。 廖封德 1994/11《學潮與戰後中國政治(1945∼1949)》,東大圖書發行。 漁 父 1987/09〈馬克思主義與民族主義〉《當代》第17期。 (十五劃:潘、鄭、鄧、橫、瘂) 潘志奇 1980《光復初期台灣通貨膨脹之分析》聯經。 鄭 梓 1985/06《本土菁英與議會政治--台灣省參議會史研究(1946-1951)》,作者發行。 1994/03《戰後台灣的接收與重建——台灣現代史研究論集》新化圖書公司。 1998/06〈二二八悲劇之序曲--戰後報告文學中的台灣「光復」記」〉,收入張炎憲、陳美容、楊雅惠編《二二八事件研究論文集》吳三連台灣史料基金會出版,一版二刷。首次發表於1997/05《台灣史料研究》第9號。 鄭樹森 黃繼持 盧瑋鑾編 1999(a)《國共內戰時期香港本地與南來文人作品選》(上)、(下)香港:天地圖書公司。 1999(b)《國共內戰時期香港文學資料選》香港:天地圖書公司。 鄧孔昭 1991《二二八事件資料集》稻鄉出版社。 橫地剛 2000/08/16陸平舟翻譯〈販賣香菸的孩子們——台灣現實主義美術的行蹤(1945-1950)〉,「蘇州•台灣新文學思潮會議」發表論文。 2002/02陸平舟譯《南天之虹--把二二八事件刻在版畫上的人》人間出版社。 2003/06/14(a)〈「民主刊物」と台灣の文學狀況〉「日本台灣學會第五回學術大會」會議報告論文(未刊槁)。經作者於同年8月30修訂,同意引用。 2003/12/06(b)〈一九四七年の「五四」文藝節--如何に「緘默」は打破されたか?〉台大東亞文明研究中心舉辦光復初期的台灣學術研討會」會議論文。 2003/12(c)〈范泉的台灣認識--四十年代後期台灣的文學狀況〉收入《告別革命文學?》「人間思想與創作叢刊」,人間出版社。 橫地剛、藍博洲、曾健民編 2004/02/22《文學二二八》台灣社會科學出版社。 瘂 弦主編 1980/7/7∼8〈永不熄滅的爝火--光復前台灣文學中的民族意識與抗日精神〉《聯合報》「聯副」。 (十六劃:賴、薛、蕭、錢、歐) 賴澤涵 1991/02(a)〈陳儀在閩、台的施政措施〉《中國論壇》31卷五期,頁27∼32。 1991/11(b)〈陳儀與閩、台、浙三省省政(1926-1949)〉,收錄於《中華民國建國八十年學術研討會論文集》(第四冊)。近代中國出版社。 2000/01/31[1994/02 ]《「二二八事件」研究報告》行政院研究二二八事件小組/召集人陳重光、葉明勳。1994/02/20初版一刷,2000/01/31九刷。 薛月順編 1993/11《資源委員會檔案史料彙編--光復初期台灣經濟建設》(上)、(下),國史館印行。 薛化元主編 1996/02[1993/05 ]《台灣歷史年表 終戰篇Ⅰ(1945∼1965)》業強出版社。 蕭翔文 1995/06/10〈楊逵先生與力行報副刊〉,收入林亨泰主編《台灣詩史「銀鈴會」論文集》彰化:礦溪文化學會出版。 蕭阿勤 1999/07〈1980年代以來台灣文化民族主義的發展:以「台灣(民族)文學」為主的分析〉《台灣社會學研究》第三期。 2000/10〈民族主義與台灣一九七O年代的「鄉土文學」:一個文化(集體)記憶變遷的探討〉《台灣史研究》第六卷第二期。中央研究院台灣史研究所籌備處出版。 蕭友山 徐瓊二 2002/10陳景平譯《台灣光復前後的回顧與現狀》海峽學術出版社重新出版1946年書籍蕭友山《台灣解放運動的回顧》與徐瓊二《談談台灣的現狀》。 錢理群 1998/05《1948:天地玄黃》謝冕主編「百年中國文學總系」,山東:教育出版社。 錢理群等著 2001/03[1998/07 ]《中國現代文學三十年》(修訂本)北京:北京大學出版社,1998/7第一版。2001/3八刷。 歐坦生 2000/09《鵝仔》,人間出版社。 (十七劃:龍、鍾、藍、戴、謝) 龍瑛宗 1987/07/01〈崎嶇的文學路--抗戰文壇的回顧〉《文訊》7、8期。 1991/12/25〈楊逵與《台灣新文學》--一個老作家的回憶〉《文學台灣》創刊號。 鍾天啟 1989/02〈瓦窯寮裡的楊逵〉,收入陳芳明《楊逵的文學生涯》前衛出版社,臺灣版第二刷1989/02。 鍾逸人 1993《辛酸六十年》前衛出版社。 鍾鐵民編 1997/10《鍾理和全集1∼6》高雄:財團法人鍾理和文教基金會。 藍博洲 1991/06/30《沈屍、流亡、二二八》時報出版社。 1995/05/10[1994/12/15 ]《尋訪被湮滅的台灣史與台灣人》時報出版社1994初版一刷,1995二刷。 2000/04《天未亮》台中:晨星出版社。 2001/04/30(a)《麥浪歌詠隊》台中:晨星出版社。 2001/06(b)《台灣好女人》聯合文學出版社。 2001/08(c)《消失在歷史迷霧中的作家身影》聯合文學出版社。 2003/03/29∼30〈尋找祖國三千里--日據末期台灣青年學生的抗日之路〉夏潮聯合會、臺灣大學東亞文明研究中心主辦「臺灣殖民地史學術研討會」會議論文。 2004/02/02∼04〈楊逵與台灣地下黨關係的初探〉「中國作家協會台港澳暨海外華文文學聯絡委員會」於廣西南寧主辦「楊逵作品研討會」會議宣讀論文。 戴國煇 1991/11《台灣史探微》南天出版社。 1992/02/16戴國煇、葉芸芸《愛憎228》遠流出版社。 1992/03/16[1989/08 ]《台灣總體相--人間、歷史、心性》魏廷朝譯,遠流出版社。1989一版一刷,1992二版二刷。 1999/11《台灣史探微——現實與史實的相互往還》南天書局。 謝南光 1999/02 郭平坦校訂《謝南光著作選》,海峽學術出版。 謝漢儒 2002/09《早期臺灣民主運動與雷震紀事--為歷史見證》桂冠出版社。 謝 泳 2004/01/15〈打撈歷史解讀一份文件--以《中央宣傳部關于胡風及胡風集團骨幹分子的著作和翻譯書籍的處理辦法的通知》為例〉廣西南寧《南方文壇》雙月刊總第98期。 (十八劃:蘇) 蘇新 1993/02/15(a)《憤怒的台灣》時報出版社。蘇新以莊嘉農筆名,由1949/03香港:智源出版社發行初版。 1993/04/10(b)《未歸的台共鬥魂--蘇新自傳與文集》時報出版社。 (十九劃:羅) 羅秀芝 1999/05《台灣美術評論集王白淵》藝術家出版社。 (二十劃:曠) 曠新年 1998/05《1928:革命文學》謝冕主編「百年中國文學總系」,山東:教育出版社。 2.日文專著、學位論文 王惠珍 2002/03《日本統治期台灣人作家龍瑛宗研究--『改造』懸賞創作の入選及び、受賞之旅》日本關西大學文學研究科中國文學專攻修士論文。 何義麟 1998/08《臺灣人の政治社會と二二八事件--脫植民化と國民統合の葛騰》東京大學大學院總和文化研究所,國際社會科學專攻博士論文。 黃英哲 1999/09/05《台灣文化再構築1945∼1947の光と影 魯迅思想受容の行方》愛知大學國研叢書第3期第1冊,東京:創土社。 間ふさ子 2003/03 〈40年代後期の台灣演劇——語言問題を手がかりとして〉九州大學大學院修士論文。 3.英文專著 Gramsci, Antonio(葛蘭西) 1979 “Selection From the Prison Notebook” New York: International Publishers. Bourdieu, Pierre 1993 “The Field of Cultural Production ” Polity press.id NH0925045002 sid 889107 cfn 0 / id NH0925045003 auc 鄭聖勳 tic 憂鬱的價值:江淹作品解讀 adc 蔡英俊 ty 碩士 sc 國立清華大學 dp 中國文學系 yr 92 lg 中文 pg 145 kwc 江淹 kwc 憂鬱 kwc 游任道 abc Abstract tc 目次 第一章 問題意識與文獻回顧...1 第一節 問題意識的發生 第二節 漢代血統的重要性 第三節 對立史觀中的江淹 第二章 昏惑意識...20 第一節 恍惚 第二節 迷濛 第三節 黑暗 第四節 明亮 第三章 怪誕...46 第一節 衝突與瘋狂 第二節 時間 第三節 仙境 第四章 江淹作品中的內在複雜性...72 第一節 仕與隱 第二節 耀眼的悲傷 第三節 通往枉然的追尋之路 第五章 江淹的才盡...94 第一節 死亡 第二節 無言 第三節 才盡 第六章 關於憂鬱作品的評價問題...134rf 參考文獻 I 華人作者的參考文獻,按照ㄅㄆㄇ順序排列: CoPo,2000,貓空行館bbs.cs.nccu.edu.tw╱feeling版。 梅家玲,1997,《漢魏六朝文學新論——擬代與贈答篇》,里仁出版。 貓空行館/bbs.cs.nccu.edu.tw/joke版。 段錚,1982,〈江淹生平及賦研究〉。 李歐梵,《現代性的追求》,麥田出版。 劉大杰,1975,《中國文學發展史》,華正書局出版。 劉人鵬,2000,《近代中國女權論述——國族、翻譯與性別政治》,學生書局出版。 林童照,1995,《六朝人才觀念與文學》,文津出版。 林泠,〈林蔭道〉,收於《張默編.剪成碧玉葉層層:現代女詩人選集》,爾雅叢書。 零雨,1996,《特技家族》,現代詩季刊社出版。 路況,1996,《犬儒圖》,萬象圖書。 呂正惠,1989,《杜甫與六朝詩人》,大安出版。 高居翰,1999,《中國繪畫三千年》,聯經出版。 郭紹虞,《中國歷代文論選》,上海古籍出版社。 顧城,1995,《顧城詩全編》,上海三聯書局。 何瑞珠,自由時報,92/11/30。 黃節,1975,《阮步兵詠懷詩注》,藝文出版。 黃碧雲,2001,《無愛紀》,大田出版。 黃碧雲,2002,《血卡門》,大田出版。 蕭合姿,1998,〈江淹及其作品研究〉。 熊秉明,1986,《關於羅丹——日記擇抄》,雄獅圖書,P94。 張士增、洪文慶,1992,《巨匠美術》第102期,錦繡出版。 周杰倫,《the one 演唱會》專輯,2002,阿爾發唱片出版。 中國古代書畫鑑定組,1997,《中國繪畫全集I》,浙江美術出版社、文物出版。 鄭榮華,1994,《中國黑色幽默小說大觀》,群言出版。 陳克華,1989,《給從前的愛》,圓神叢書。 陳冠蒨,2002,〈欲言又止〉,8866出版。 陳傳席,2000,《六朝畫論研究》,學生書局出版。 石守謙,1986,《中國古代繪畫名品》,雄獅圖書。 羅智成,1989,《泥炭記》,少數出版。 羅智成,1999《黑色鑲金》,聯合文學出版。 羅智成,《黑色鑲金》,聯合文學出1999年再版,P89 若驩,2002,《甜蜜並且層層逼近》,唐山出版。 蔡英俊,2000,〈「擬古」與「用事」:試論六朝文學現象中「經驗」的借代與解釋〉。 曹道衡,1993,《中古文學史論文集緒編》,文津出版。 曹道衡,1996,《中古文學史論文集》,洪葉文化 孫歌,1999,〈理想家的黃昏〉,《讀書》。 宋偉航,1986,《中國古代繪畫名品》,雄獅圖書,P11。 安妮寶貝,2001,《彼岸花》,南海出版。 嚴守智,1992,《巨匠美術週刊,中國系列004》,雄獅出版。 游國恩,1985,《魏晉南北朝史參考資料》,漢京文化出版。 巫鴻,1999,《中國繪畫三千年》,聯經出版。 王德威,1996,〈序論:腐朽的期待——鍾曉陽小說的死亡美學〉,《鍾曉陽.遺恨傳奇》,麥田出版。 王達津,1986,《古詩欣賞第十三輯》,大地出版。 王瑤,1951,《中古文人生活》,上海堂棣出版社 王文進,2000,《南朝邊塞詩新論》,里仁出版。 俞劍華,1936,《中國繪畫史》上,台灣商務出版。 II 非華文的創作: 洪維信譯,2003,傅科《外邊思維》序言,行人出版。 波特萊爾,《惡之華》,莫渝譯,志文1985年出版。 沃爾夫岡.凱則爾著,曾忠祿、鍾翔荔譯,1987,《美人與野獸》,久大文化。 村上龍,1997年八月十二日讀賣新聞晚報。 三島由紀夫,《禁色》,木馬文化2002年出版。 谷崎潤一郎,《陰翳禮讚》,三聯書店1992年出版。 曾野綾子,《有限的生命》,萬象圖書,1995出版。 溝口雄三,1995,《中國的思想》,中國社會科學出版社。 清水凱夫,1989,《六朝文學論文集》,重慶出版社。 孫康宜,2001,《抒情與描寫——六朝詩歌概論》,允晨出版。 恩格斯,《自然辯證法導言》,解放社1950出版。 叔本華,《叔本華選集》,志文1990年出版。 金維諾,〈古帝王圖與北齊校書圖〉,載於《美術研究》1982年第1期。 Andre Breton,1924,《Manifeçte du surréalisme》。 Freud〈S.〉,1938,〈Abriss der Psychoanalyse〉。 Gallimard,〈Le Livre à venur〉,Paris,《Folios/Essais》,1986。 Georges Bataille,《文學與惡》,國立編譯管1997年出版,P126。 Jean Laplanche、J.B. Pontalis,2000,《精神分析詞彙》,行人出版。 Jean-Paul Sarte,《波特萊爾》,國立編譯管1997年出版。 羅藍•巴特,《明室》,台灣攝影工作室,1995年出版,P26。 Taupin,2001,《Elton John╱Songs From The West Coast》,Mercury Records Ltd。 Walter Benjamin,《說故事的人》,台灣攝影工作室1998年出版。 III 江淹的作品 《四部備要》集部,中華書局據梁氏校刻本校刊。 俞紹初,張亞新,1990,《江淹集校注》,中洲古籍出版社。id NH0925045003 sid 895107 cfn 0 / id NH0925045004 auc 蔡玉媚 tic 台灣地區福佬與客家童謠比較研究 adc 胡萬川 ty 碩士 sc 國立清華大學 dp 中國文學系 yr 92 lg 中文 pg 288 kwc 民間文學 kwc 童謠 kwc 歌謠 kwc 兒歌 kwc 福佬 kwc 客家 kwc 比較研究 kwc 台灣地區 abc 台灣地區民間文學的研究,大多集中於故事類,即使是歌謠也多專注於成人民謠或山歌的研究;或者有以童謠為研究範疇,但仍是以傳統文學的方法,研究其聲韻或修辭等,忽略或不直接正視其內容。但是民間文學有其完全不同於傳統文學的構成與傳播方式,實不能一概而論。而且單由童謠的內容而言,似乎只是趣味富有韻律的句子組合,平淺而無深度,但如能做完整的整理匯集,其實可見其整體意義與象徵。所以除了直接研究傳統童謠的文本外,本文加入唸誦時外在的聽說情境,以兩者互見的方式加以研究討論。 tc 台灣地區福佬與客家童謠比較研究 目錄 摘要 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••Ⅰ 第一章 緒論•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••001 第一節 釋名•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••001 第二節 研究範圍•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••007 第三節 文獻回顧•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••011 第四節 研究架構說明•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••020 第五節 研究動機•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••023 第二章 搖籃與嬰兒遊戲謠••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••026 第一節 搖籃謠••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••026 第二節 嬰兒遊戲謠••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••040 第三章 儀式訣術謠••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••053 第一節 生命禮俗•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••053 第二節 保育訣術•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••064 第三節 兒童祭儀遊戲••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••077 第四章 兒童遊戲謠•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••097 第一節 選人與分隊遊戲謠••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••099 第二節 捉人與追逐遊戲謠••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••109 第三節 全身動作與競賽遊戲謠••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••124 第五章 現實人生——人物••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••152 第一節 長輩與小孩•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••154 第二節 職業與綽號•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••170 第三節 外貌與性格•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••184 第四節 師生與神祇•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••199 第六章 現實人生——事物••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••216 第一節 月光•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••216 第二節 螢火蟲••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••231 第三節 禽鳥•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••241 第七章 結論•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••255 附錄••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••268 參考書目••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••277rf ㄧ、諺謠集 (ㄧ)客家歌謠集 不錄作者,《客家童謠1》,桃園:龍閣文化傳播有限公司,2002。 ------------,《客家童謠2》,桃園:龍閣文化傳播有限公司,2002。 ------------,《客家童謠3》,桃園:龍閣文化傳播有限公司,2002。 ------------,《客家山歌•戀歌•童謠》,台北:南天書局。 中原、苗友雜誌社,《客家歌謠專輯—》,苗栗:中原、苗友雜誌社,1965。 -----------------------,《客家歌謠專輯二》,苗栗:中原、苗友雜誌社,1967。 -----------------------,《客家歌謠專輯三》,苗栗:中原、苗友雜誌社1968。 -----------------------,《客家歌謠專輯五》,苗栗:中原、苗友雜誌社,1973。 胡萬川,《石岡鄉客語歌謠》,台中:台中縣立文化中心,1992。 ---------,《石岡鄉客語歌謠(二)》,台中:台中縣立文化中心,1993。 ---------,《東勢鎮客語歌謠》,台中:台中縣立文化中心,1994。 ---------,《龍潭鄉客語歌謠(一)》,桃園:桃園縣文化局,2000。 ---------,《東勢鎮客語歌謠集(二)》,台中:台中縣立文化中心,2001。 徐運德,《客家童謠集》,苗栗:中原週刊社,1996。 苗栗縣銅鑼國民小學,《客家歌謠選輯》,苗栗:苗栗縣立文化中心,1994。 馮輝岳,《客家兒歌○1逃學狗》,台北:紅番茄文化事業有限公司,1996。 ---------,《客家兒歌○2火焰蟲》,台北:紅番茄文化事業有限公司,1996。 ---------,《客家謠諺賞析》,台北:武陵出版有限公司,1999。 ---------,《客家童謠大家唸》,台北:武陵出版有限公司,2000。 張乾昌,《中山大學民俗叢書○25梅縣童歌》,1969複刊。 張鴻祥,《福建客家歌謠賞析》,台北:五南圖書,2003。 劉家丁,《客家創作童謠1》,桃園:吉聲影視音有限公司,1992。 劉鈞章,《苗栗客家山歌賞析》,苗栗:苗栗縣立文化中心,1997。 ---------,《苗栗客家山歌賞析(第二集)》,苗栗:苗栗縣立文化中心,1998。 賴碧霞,《台灣客家民謠薪傳》,台北:樂韻出版社,1993。 羅肇錦、胡萬川,《苗栗縣客語歌謠集》,苗栗:苗栗縣立文化中心,1998。 --------------------,《苗栗縣客語歌謠集(二)》,苗栗:苗栗縣立文化中心,1999。 (二)福佬歌謠集 李 赫,《台灣囝仔歌》,台北:稻田出版社,1991。 邱冠福,《台灣童謠》,台南:台南縣文化中心,1997。 林武憲,《臺灣童謠》,台北:遠流出版事業,1989。 胡萬川,《石岡鄉閩南語歌謠》,台中:台中縣立文化中心,1992。 ---------,《石岡鄉閩南語歌謠(二)》,台中:台中縣立文化中心,1993。 ---------,《沙鹿鎮閩南語歌謠》,台中:台中縣立文化中心,1993。 ---------,《沙鹿鎮閩南語歌謠(二)》,台中:台中縣立文化中心,1993。 ---------,《沙鹿鎮閩南語歌謠(三)》,台中:台中縣立文化中心,1993。 ---------,《大甲鎮閩南語歌謠(一)》,台中:台中縣立文化中心,1994。 ---------,《彰化縣民間文學集○1歌謠篇(一)》,彰化:彰化縣立文化中心,1994。 ---------,《彰化縣民間文學○3集歌謠篇(二)》,彰化:彰化縣立文化中心,1994。 ---------,《大甲鎮閩南語歌謠(二)》,台中:台中縣立文化中心,1995。 ---------,《彰化縣民間文學集○6歌謠篇(三)》,彰化:彰化縣立文化中心,1995。 ---------,《彰化縣民間文學集歌○10謠篇(四)》,彰化:彰化縣立文化中心,1996。 ---------,《苗栗縣閩南語歌謠集》,苗栗:苗栗縣立文化中心,1998。 ---------,《苗栗縣閩南語歌謠集(二)》,苗栗:苗栗縣立文化中心,1999。 ---------,《外埔鄉閩南語歌謠》,台中:台中縣立文化中心,1999。 ---------,《大安鄉閩南語歌謠》,台中:台中縣立文化中心,1999。 ---------,《苗栗縣閩南語歌謠集(二)》,苗栗:苗栗縣立文化中心,1999。 ---------,《雲林縣閩南語歌謠集(一)》,雲林:雲林縣立文化中心,1999。 ---------,《蘆竹鄉閩南語歌謠集(一)》,桃園:桃園縣立文化中心,1999。 ---------,《桃園市閩南語歌謠集(一)》,桃園:桃園縣立文化中心,1999。 ---------,《大園鄉閩南語歌謠集(一)》,桃園:桃園縣立文化中心,2000。 ---------,《雲林縣閩南語歌謠集(二)》,雲林:雲林縣立文化中心,2000。 ---------,《雲林縣閩南語歌謠集(三)》,雲林:雲林縣立文化中心,2000。 ---------,《雲林縣閩南語歌謠集(四)》,雲林:雲林縣立文化中心,2001。 ---------,《台南縣閩南語歌謠集(一)》,台南:台南縣文化局,2001。 施福珍,《彰化縣民間文學集15》,彰化:彰化縣文化局,2000。 ---------,《彰化縣民間文學集16》,彰化:彰化縣文化局,2000。 康  原、施福珍,《台灣囝仔歌的故事(1)》,台北:自立晚報出版部,1995。 ---------------------,《台灣囝仔歌的故事(2)》,台北:自立晚報出版部,1995。 ---------------------,《台灣囝仔歌的故事》,台北:玉山社出版,1996。 ---------------------,《囝仔歌教唱讀本》,台中:晨星出版社,2000 黃哲永,《東石鄉閩南語歌謠集(一)》,嘉義:嘉義縣立文化中心,1997。 ---------,《東石鄉閩南語歌謠集(二)》,嘉義:嘉義縣立文化中心,1997。 ---------,《六腳鄉閩南語歌謠集》,嘉義:嘉義縣立文化中心,1997。 ---------,《台灣童謠》,嘉義:黃哲永出版,1997。 黃勁連,《台灣囡仔歌一百首》,台北:台語文摘出版社,1998。 ---------,《台灣囡仔歌1》,台南:真平企業,2000。 ---------,《台灣囡仔歌2》,台南:真平企業,2000。 楊青矗,《台灣唸謠》,高雄市:敦理,2000。 陳義弘,《台灣戲謔歌詩》,屏東:安可出版社,2000。 謝武彰,《傳統閩南兒歌-正月正》,台北:臺灣麥克股份有限公司,1998。 ---------,《傳統閩南兒歌-火金姑》,台北:臺灣麥克股份有限公司,1998。 ---------,《傳統閩南兒歌-杏仁茶》,台北:臺灣麥克股份有限公司,1998。 簡上仁,《台灣的囝仔歌1》,台北:自立晚報出版部,1992。 ---------,《台灣的囝仔歌2》,台北:自立晚報出版部,1992。 ---------,《台灣的囝仔歌3》,台北:自立晚報出版部,1992。 (三)其他諺謠、民間文學集 史夢蘭,《古今風謠拾遺》,清同治間刊本。 李調元,《古今風謠》,台北:宏業書局,1972。 李獻璋,《台灣民間文學集》,台北:台灣新文學社,1936。 余燧賓,《基隆市民間文學采集(一)》,基隆市:基隆市文化中心,1999。 杜文瀾,《古謠諺》,北京:中華書局,1984。 邱坤良等,《宜蘭縣口傳文學》,宜蘭:宜蘭縣政府,2002。 呂自揚,《台灣民俗諺語析賞探源》,高雄:河畔,1993。 呂得勝,《小兒語》,台北:藝文印書館。 吳瀛濤,《台灣諺語》,台北:台灣英文出版社,1975。 ---------,《台灣民俗》,台北:眾文圖書,1987。 林金田,《台灣童謠選編專輯》,南投:台灣省文獻委員會,1997。 婁子匡、阮昌銳編,《中山大學民俗叢書》,台北:福祿圖書,1969。 ------------------------,第十三號:雲 聲,《閩歌甲集》。 ------------------------,第十九號:黃紹年,《孩子們的歌聲》。 ------------------------,第二十三號:劉萬章,《廣州兒歌甲集》。 ------------------------,第二十六號:張乾昌,《梅縣童歌》。 許成章,《台灣諺語講義》,高雄:河畔出版社,1999。 許梅貞,《基隆市民間文學采集(二)》,基隆市:基隆市文化中心,2001。 馮岳輝,《童謠探討與賞析》,台北:國家出版社,1982。 --------,《台灣童謠大家唸》,台北:武陵出版有限公司,1998。 舒 蘭,《中國地方歌謠集成11•台灣兒歌(一)》,台北:渤海堂,1989。 ---------,《中國地方歌謠集成12•台灣兒歌(二)》,台北:渤海堂,1989。 ---------,《中國地方歌謠集成31•廣東兒歌》,台北:渤海堂,1989。 ---------,《中國地方歌謠集成51•福建》,台北:渤海堂,1989。 喻麗清,《兒歌百首》,台北:爾雅出版社,1978。 楊兆禎,《客家民謠--九腔十八調的研究》,台北:育英出版社。 ---------,《客家老古人言》,台北:文化,1994。 ---------,《客家諺語拾穗》,新竹:新竹縣立文化中心,1999。 楊 慎,《古今謠諺》,台北:台灣商務印書館,1976。 廖漢臣,《台灣諺語》,台北:台灣英文出版社,1978。 稻田尹,《台灣歌謠集》,台北:台灣藝術社,1943。 鄧榮坤,《客家話的智慧》,台北:國際村文庫書店,1997。 ---------,《客家歌謠與俚語》,台北:武陵出版有限公司,1999。 ---------,《生趣客家話》,台北:武陵出版有限公司,1999。 ---------,《客家話順口溜》,台北:武陵出版有限公司,2001。 顏文雄,《台灣民謠(一)》,台北:中華大典編印會,1967。 陳正之,《智慧的語珠-台灣的傳統諺語》,台中:台灣省政府,1998。 陳澤平、彭怡玢,《長汀客家方言熟語歌謠》,福建:福建人民出版社,2001。 陳雪清、陳壽明,《歷代童謠故事集》,上海:兒童書局,1931。 蕭平治,《台灣俗語鹹酸甜》第一冊,彰化:賴許柔文教基金會,1997。 ---------,《台灣俗語鹹酸甜》第二冊,彰化:賴許柔文教基金會,2000。 羅香林,《粵東之風》,上海:上海書店,1992。 Iona and Peter Opie,《The Oxford Dictionary Of Nursery Rhyme》,1951。 Iona and Peter Opie,《The Oxford Nursery Rhyme Book》,1955。 二、研究專著 (一)歌謠研究 史惟亮,《論民歌》,台北:幼獅書店,1967。 朱介凡,《中國兒歌》,台北巿:純文學,1985。 ---------,《中國歌謠論》,台北巿:中華書局,1984。 朱自清,《中國歌謠》,香港:中華書局,1982。 江明惇,《漢族民歌概論》,上海:上海音樂出版社,1999。 呂炳川,《呂炳音樂論述集》,台北:時報出版社;1971。 林二、簡上仁,《台灣民俗歌謠》,台北:眾文圖書,1979。 吳 超,《中國民歌》,浙江:浙江教育出版社,。 佛格漢•威廉著、沈敦行譯,《民族音樂論》,(全三冊)上海:海燕書店,1950。 婁子匡,《北京大學歌謠週刊》,台北:東方文化,1970。 徐華龍,《中國歌謠心裡學》,烏魯木齊:新疆人民出版社,1990。 舒 蘭,《中國地方歌謠集成1•理論研究(一)》,台北:渤海堂,1989。 ---------,《中國地方歌謠集成2•理論研究(二)》,台北:渤海堂,1989。 ---------,《中國地方歌謠集成3•理論研究(三)》,台北:渤海堂,1989。 ---------,《中國地方歌謠集成4•理論研究(四)》,台北:渤海堂,1989。 ---------,《中國地方歌謠集成5•理論研究(五)》,台北:渤海堂,1989。 ---------,《中國地方歌謠集成6•理論研究(六)》,台北:渤海堂,1989。 ---------,《中國地方歌謠集成7•理論研究(七)》,台北:渤海堂,1989。 ---------,《中國地方歌謠集成8•理論研究(八)》,台北:渤海堂,1989。 ---------,《中國地方歌謠集成9•理論研究(九)》,台北:渤海堂,1989。 ---------,《中國地方歌謠集成10•理論研究(十)》,台北:渤海堂,1989。 楊民康,《中國民歌與鄉土社會》,吉林:教育,1992。 楊兆禎,《台灣客家係民歌》,台北:百科文化,1982。 楊麗祝,《歌謠與生活--日治時期的歌謠采集及其時代意義》,台北:稻香出版社,2000。 劉經菴,《歌謠與婦女》,台北:東方文化出版社,1977。 廖漢臣,《台灣兒歌》,台中:台灣省政府新聞處編印,1980。 臧汀生,《台灣閩南語歌謠研究》,台北:台灣商務印書館,1995。 簡上仁,《台灣音樂之旅》,台北:自立晚報版部,1988。 ---------,《台灣福佬系民歌》,台北:自立晚報版部,1991。 ---------,《老祖先的台灣民歌》,台北:漢光文化,1998。 ---------,《台灣民謠》,台北:眾文圖書公司,2000。 鐘敬文,《歌謠論集》,上海:上海文藝出版社,1989。 (二)客家研究 王 東,《客家學導論》,台北:南天書局有限公司,1998。 王耀華,《客家藝能文化》,福建:福建教育出版社,1995。 台北市客家公共事務協會,《客家民俗文化》,台北:客家台灣雜誌社,1997。 古鎮清,《苗栗縣客家傳統民俗器物之研究》,苗栗:苗栗縣政府,1995。 汪毅夫,《客家民間信仰》,福建:福建教育出版社,1997。 雨 青,《客家人尋根》,台北:武陵出版有限公司,1994。 邱彥貴、吳中杰,《台灣客家地圖》,台北:貓頭鷹出版社,2001。 高宗熹,《客家人─東方猶太人》,台北:武陵出版社,。 曹逢甫、蔡美慧,《台灣客家語論文集》,台北:文鶴出版社,1995。 張祖基,《客家舊禮俗》,台北:眾文圖書,1994。 曾喜城,《臺灣客家文化研究》,臺北:中央圖書館臺灣分館,1999。 黃子堯,《客家民間文學》,台北,客家台灣文史工作室,2003。 黃秋芳,《台灣客家生活紀事》,台北:台原出版社,1993。 黃榮洛,《台灣客家民俗文集》,新竹,竹縣文化局,2000。 楊國鑫,《台灣客家》,台北:唐山出版社,1993。 劉善群,《客家禮俗》,福建:福建教育出版社,1997。 劉還月,《臺灣客家關係書目與摘要(上、下)》,台中:臺灣省文獻會,1998。 ---------,《臺灣的客家人》,台北:常民文化出版社,1998。 ---------,《台灣客家風土誌》,台北,常民文化出版社,1999。 ---------,《台灣的客家族群與信仰》,台北,常民文化出版社,1999。 劉錦雲,《客家民俗文化漫談》,台北:武陵出版有限公司,1998。 陳運棟,《台灣的客家人》,台北:台原出版社,1989。 ---------,《客家人》,台北:東門出版社 1991。 ---------,《台灣的客家禮俗》,台北:台原出版社,1996。 謝重光,《客家源流新探》,福建:福建教育出版社,1995。 ---------,《海峽兩岸的客家人》,台北:幼獅文化事業,2000。 潘 英,《台灣拓殖史及其族姓分佈研究》,台北:南天書局有限公司,2000。 羅可群,《客家文學史》,廣東:廣東人民出版社,2000。 羅香林,《客家研究導論》,台北:眾文圖書,1981。 羅肇政,《臺灣客家族群史》,台中:臺灣省文獻委員會,1997。 羅肇錦,《講客話》,台北:自立晚報,1990。 ---------,《台灣的客家話》,台北:台原出版社,1990。 (三)福佬研究 王耀華,《福建傳統音樂》,福建:福建人民出版社,2001。 李如龍,《福建方言》,福建:福建人民出版社,1997。 何喬遠,《閩書》,福建:福建人民出版社,1994。 林再復,《閩南人》,台北:林再復發行,1996。 周長楫,《閩南話的形成發展及台灣的傳播》,台北:吳氏圖書,1996。 張光宇,《 閩客方言史稿》,台北:南天書局,1996。 陳永寶,《閩南語與客家話之會通研究》,臺中,瑞成,2000。 (四)民俗研究 不錄作者,《大隘聯庄客家文物展覽專輯》,新竹:新竹縣立文化中心,1998。 王秋桂,《中國節日叢書○2元宵》,台北:行政院文化委員會,1995。 ---------,《中國節日叢書○7中秋》,台北:行政院文化委員會,1995。 立石鐵臣圖,向陽文,《台灣民俗圖繪》,台北:洛城出版社,1986。 申士?煄B傅美琳,《中國風俗大辭典》,台北:國家出版社,1996。 李秀娥,《台灣傳統生命禮儀》,台中:晨星出版社,2003。 何星亮,《中國自然神與自然崇拜》,上海:上海三聯書店,1992。 東方孝義,《台灣習俗》,台北:南天書局,1992。(原1942初版) 金關丈夫主編,《民俗台灣》,東京:東都書籍,1943-1945。林川夫編譯,台北:武陵出版有限公司,1990。 林明義,《台灣婚冠葬祭家禮全書》,台北:武陵出版有限公司,2000。 林明峪,《台灣民間禁忌》,台北:聯亞出版社,1995。 林曙光,《打狗采風錄》,高雄:春暉出版社,1993。 吳瀛濤,《台灣民俗》,台北:眾文出版社,1987。 凌志四,《臺灣民俗大觀》,台北:大威,1985。 原通好著、李文祺譯,《台灣農民的生活節俗》,台北,台原,1989。 鈴木清一郎著,高賢治、馮作民編譯,《台灣舊慣習俗信仰》,台北:眾文圖書,1984。 阮昌銳,《歲時與神誕》,台北:呂木琳發行,1990。 張寅成,《中國古代禁忌》台北:稻鄉出版社,2000。 劉志文,《廣東民俗大觀》上、下卷,廣東:廣東旅遊出版社,1993。 董芳苑,《台灣民間宗教信仰》,台北:長青,1984。 羅 問,《台灣民間禁忌》,台北:禾馬文化事業,2001。 陳正之,《民俗思想起》,南投:台灣省政府,2000。 陳盛韶,《問俗錄-福建、台灣的民俗與社會》,台北:武陵出版有限公司,1991。 蔡相煇,《台灣的祠祀與宗教》,臺北巿:臺原,1989。 (五)兒童研究 杜淑貞,《兒童文學析論》上、下,台北:五南圖書,1994。 林文寶,《兒童詩歌論集》,台北:富春文化,1995。 ---------,《彩繪兒童文學又十年》,台北:幼獅文化,2000。 周 兢,《中國民間兒童遊戲》,江蘇:江蘇少年兒童出版社,1991。 黃瑞琴,《幼兒的語文經驗》,台北:五南圖書,1993。 張清榮,《兒童文學創作論》,台北:富春文化,199。 黃武雄,《童年與解放》,台北:人本文教,1994。 黃迺毓,《家庭教育》,臺北:五南圖書,1988。 熊秉真,《童年憶往-中國孩子的歷史》,台北:麥田出版社,2000。 蔣 風,《中國兒童文學大系•理論一》,山西:希望出版社,1988。 蘇建文等著,《發展心裡學》,台北:心理出版社,1993。 游恆山校閱、五南編輯部譯,《兒童心理學》,台北:五南圖書,1988。 查理斯•史密斯原著,呂翠夏譯,《兒童的社會發展-策略與活動》,台北:桂冠圖書,1992。 費妮博士原著,黃慧真譯著,《學前教育》,台北:桂冠圖書,1992。 Joe L.Frost原著,江麗莉等譯,《兒童遊戲與遊戲環境》,台北:五南圖書,1997。 歐茨(Olds,Sally W.) 巴巴利亞(Papalia,Diane E.)合著,黃慧真譯,《兒童發展》,台北:桂冠,1990。 赫洛克(Hurlock, Elizabeth B.)原著,王鍾和編譯《兒童發展》上、下(Child development),台北:大洋出版社,1993。 皮亞傑原著、吳福元譯,《兒童心理學》,台北:唐山出版社,1987。 Walter Sawyer 、Diana E.Comer原著、墨高君譯,《幼兒文學-在文學中成長》,台北:揚智文化,1998。 Hurlock, Elizabeth B. 王鍾和編譯,《兒童發展》上、下,台北:大洋出版社,1993。 三、其他 王明珂,《華夏邊緣-歷史記憶與族群認同》,台北:允晨文化,2001。 中國文藝協會、正中書局編,《五十年來的中國俗文學》,臺北:正中書局,1963。 必麒麟著、陳逸君譯,《發現老台灣》,台北:台原出版社,1994。 池田敏雄,《台灣的家庭生活》,台北:東都書籍株式會社台北支店,1944。 沈有容,《閩海贈言》,台灣文獻叢刊第56種,南投:台灣省文獻會,1999。 吳密察,《台灣近代史研究》,台北:稻香出版社,1991。 東方孝義,《台灣習俗》,台北:南天書局,1997。 周大慶、謝宗宇,《台灣野鳥地圖》,台中,晨星出版社,2001。 周作秋,《民族民間文學原理》,廣西:廣西師範大學,1995。 周鎮,《台灣鄉土鳥誌》,南投:台灣省立鳳凰谷鳥園,1998。 卓意雯,《清代台灣婦女的生活》,台北:自立晚報文化出版部,1993。 郁永河,《裨海紀遊》,台灣文獻叢刊第44種,南投:台灣省文獻會,1999。 胡萬川,《民間文學工作手冊》,台北:行政院文化建設委員會,1996。 ---------,《臺灣民間文學學術研討會論文集》,新竹:清華大學,1998。 ---------,《民間文學的理論與實際》,新竹:清華大學出版社,2004。 高國藩,《中國民間文學》,台北:台灣學生書局,1995。 段寶林,《中國民間文學概要》,北京:北京大學出版社,1993。 密契納撰,雲菁等譯,《夏威夷》,台北:皇冠出版社,1980。 張 燮,《東西洋考》,臺北:正中書局,1962。 彭瑞金,《台灣文學探索》,台北,前衛出版社,1995。 ---------,《台灣新文學運動四十年》,高雄,春暉出版社,1997。 黃叔璥,《台海使槎錄》,台灣文獻叢刊第4種,南投:台灣省文獻會,1999。 黃宣範,《語言、社會與族群意識--台灣語言社會學研究》,台北:文鶴出版社,1993。 張漢良,《比較文學理論與實踐》,台北:東大,1986。 莊英章,《家族與婚姻-台灣北部兩個閩客村落之研究》,台北:中央研究院民族學研究所,1998。 劉還月,《台灣民俗田野手冊》,台北:台原出版社,1993。 ---------,《田野工作實物手冊》,台北:常民文化,1996。 葉石濤,《台灣文學入門》,高雄,春暉出版社,1997。 葉振輝,《台灣開發史》,台北,臺原,1995。 鄭振鐸,《中國俗文學史》,台北:東方出版社, 1996。 謝重光,《?m族與客家福佬關係史略》,福建:福建人民出版社,2002。 譚達先,《中國民間文學概論》,台北:木鐸,1983。 鍾敬文,《民間文學概論》,上海:上海文藝出版社,1987。 ---------,《民俗文化學》,北京:中華書局,1996。 雄秉元,《雄秉元漫步經濟》,台北:時報出版社,2003。 熊承滌,《中國古代學校教材研究》,北京:人民教育出版社,1996。 阿蘭•鄧迪斯(Alan Dundes)編、朝戈金、尹伊、蒙梓譯,《西方神話學論文選》,上海:上海藝文出版社,1994。 J•H•布魯范德著、李揚譯,《美國民俗學》,廣東:汕頭大學,1993。 Max luthi,《The European Folktale:form and nature》,1982。 《牛津英漢百科大辭典》,台北:百科文化事業,1985。 四、論文 (一)學位論文 王幸華,《台灣閩南語兒童歌謠研究》,私立逢甲大學中國文學研究所碩士論文1992。 何如雲,《施福珍的台灣囝仔歌研究》,臺東師範學院兒童文學研究所碩士論文,2002。 官宥秀,《台灣閩南語移民歌謠研究》,國立花蓮師範學院民間文學研究所碩士論文,2001。 吳餘鎬,《台灣客家李文古故事研究》,國立中正大學中國文學研究所碩士論文,2001。 吳宜婷,《台灣當代兒歌研究研究(1945-1995)》,文化大學中國文學研究所碩士論文,1995。 施福珍,《台灣囡仔歌創作研究》,私立東吳大學音樂研究所碩士論文,2002。 彭素枝,《台灣六堆客家山歌之研究》,台灣師範大學國文研究所碩士論文,1995。 張怡仙,《民國五十六年民歌採集運動始末及成果研究》,國立台灣師範大學音樂研究所碩士論文,1988。 張復舜,《台灣閩南語歇後語研究》,國立新竹師範學院語言與語文教育研究所碩士論文,1999。 張慧玲,《台灣客家謠諺與風教互動之研究台灣客家謠諺與風教互動之研究》,國立花蓮師範學院民間文學研究所碩士論文,2001。 張燕輝,《台灣桃園閩南語歌謠研究》,台北市立師範學院碩士論文,2001。 曾瑞媛,《桃竹苗客家童謠之研究》,臺灣師範大學音樂所碩士論文,1993。 臧汀生,《台灣閩南語民間歌謠新探》,國立政大中文研究所博士論文,1989。 盧佑俞,《台灣閩南語歌謠與民俗研究》,國立台灣師範大學國文所碩士論文,1993。  謝長生,《台灣福佬與客家民歌研究》,國立高雄師範大學國文教學碩士班碩士論文,2001。 簡上仁,《台灣福佬系民歌的淵源與發展研究》,國立台灣師範大學音樂研究所碩士論文,1990。 簡正崇,《台灣閩南諺語研究》,私立逢甲大學中國文學研究所碩士論文,1995。 顏文雄,《台灣民謠研究》,私立文化大學藝術研究所碩士論文,1964。 鍾信昌,《台灣閩南語創作兒歌研究》,台北市師應用語文研究所碩士論文,2001。 (二)單篇論文 尹章義,〈台灣客家史研究的回顧與展望〉,《台灣文獻》第四十八卷第二期,1987年6月,頁1-13。 方耀乾,〈台灣古早女性的生活畫像--以台灣民間歌謠為論述場域(台語)〉,《台南女子技術學院學報》,第十八期,1999年8月,頁23-48。 朱真一,〈客家童謠創作曲〉,錄自網站:http://home.i1.net/~alchu/hakka/hakkafef.htm,(網站上標記:原載處及時間不知,可能在太平洋時報1991年間。) --------------, 〈客家台灣人的血緣:從生物學的觀點來看〉,錄自網站http://home.i1.net/~alchu/hakka/hakkafef.htm,(網站上標記:原載《客家文化研究通訊》,2000第3期,頁36-41;略加修改,也登《客家雜誌》,2001年五月號) 朱奕爵、張雅清、許惠美,〈閩南語兒童歌謠的歧異現象〉,《語文教育通訊》第二十二期,2001年6月,頁73-80 杜文靖,〈光復後台灣歌謠發展史〉,《文訊》81期119號, 1995年9月,頁23-27。 李筱峰,〈時代心聲--戰後二十年的台灣歌謠與台灣的政治和社會,《台灣風物》,47卷3期,1997年9月,頁127-153。 周建新,〈客家民俗的象徵意義分析〉,《嘉應大學學報》(哲學社會科學),第18卷第1期,2000年2月,頁114-117。 林國平,〈閩台民間信仰的興衰嬗變〉,《世界宗教研究》,1998年第1期,頁68-77。 凌火金,〈廣西客家音樂,《民俗曲藝》,第120期,1999年7月,頁125-166。 倪芳芳,〈童謠析論:以「古謠諺」為範疇〉,《元培學報》,第3期,1996年12月,頁185-203。 格孟和,〈論民間文學的哲學價值,《內蒙古師大學報》(哲學社會科學版),1994年第一期,頁49-56。 黃玉滿、劉純曲,〈客家歌謠演進及特色〉,《商業教育》16期 ,1993年6月,頁36-46。 黃瑞枝,〈客家童謠特質初探〉,《屏東師院學報》,第8期,1995年6月,頁237-256。 黃恆秋,《何謂客家文學》,《國文天地》,17卷2期194,2001年7月,頁10-13。 黃雲生,〈柳暗花明的歷史進程--幼兒文學的歷史形態及其演變之掃描〉,《浙江師大學報》(社會科學版),1994第6期,頁1-6。 黃 濤,〈語言研究的民俗學視角〉,《北方論叢》,2000年第3期(總第161期),頁106-111。 彭文宇,〈閩台家族社會宇民間信仰〉,《中國史研究》,1996年第2期,頁114-124。 張光宇,〈客家與山哈〉,《中國語文研究》,2001年第1期(總第12期),頁68-81。 張清榮,〈記得當時年紀小--兒童歌謠的特質〉,《國教之友》,第45卷第3期531號,1993年12月,頁5-9。 彭維杰,〈臺灣客家歌謠的文化面向探討--以「苗栗縣客語歌謠集」為例〉,《國文天地》,17卷2期194,2001年7月,頁14-22。 ---------,〈檢視臺灣客家歌謠的文化內涵〉,《國文學誌》,第5期,2001年12月,頁321-357。 馮輝岳,〈客家童謠中的啟蒙教育〉馮輝岳,《國教世紀》,28卷5期167號,1993年4月,頁10-12。 楊秀枝、郭智玲、劉冠宏,〈閩南語兒童歌謠專題研究--傳統念謠〉,《語文教育通訊》第二十二期,2001年6月,頁81-86。 趙艾紅,〈兒童化語言的特點和訓練〉,《語文建設》,1995年第3期,頁19-20。 陳益源,〈婁子匡民俗學論著舉隅〉,《廣西民族學院學報》(哲學社會科學版),第22卷第3期,2000年5月,頁54-55。 陳運棟,〈桃、竹、苗地區早期族群關係與開發初探〉,《苗栗文獻》,第8期,1993年6月,頁90-105。 雙峰文化工作室,〈客家研究書目--期刊部份〉,《苗栗文獻》第十二期,1987年6月,頁123-131。 ---------------------,〈客家研究書目--專書部份〉,《苗栗文獻》第期,年月,頁199-214。 羅肇錦,〈客話研究書目簡介〉,《苗栗文獻》第十二期,1987年6月,頁132-137。 --------,〈客語民間文學的界域:以苗栗地區:文學資料為例〉,《苗栗文獻》第十四期,1989年6月,頁204-236。 ---------,〈台灣文學、客家文學與客家民間文學〉,《國文天地》,17卷2期194,2001年7月,頁4-9。id NH0925045004 sid 895113 cfn 0 / id NH0925045005 auc 彭毓淇 tic 丫鬟與小姐之互動關係研究----以《紅樓夢》為主的論述 adc 胡萬川 ty 碩士 sc 國立清華大學 dp 中國文學系 yr 92 lg 中文 pg 177 kwc 丫鬟 kwc 小姐 kwc 互動關係 kwc 紅樓夢 kwc 西廂記 kwc 牡丹亭 abc 在中國古時社會階層分明的年代,主、奴的尊卑上下秩序分明,唯具備一定程度的身分地位、家世財富的家庭,才請得起奴婢來服侍主子,而奴婢之間又有等級之分。小姐身旁幾乎總少不了丫鬟的陪伴服侍,丫鬟在許多文本中也都是陪襯小姐的重要角色,甚至於情節推演中有著舉足輕重之地位。丫鬟與小姐的關係是相對的,互動極為微妙。本論文旨在研究此一饒富興味的議題,係以《紅樓夢》這部刻劃女性互動極細膩入微的作品為論述主體,並將《西廂記》、《牡丹亭》二書納入輔助引證之範圍,探討丫鬟與小姐之間的多種互動關係。首先藉由《紅樓夢》所呈現出丫鬟與小姐的生活環境為起點,探討「丫鬟」與「小姐」長期相處於某一共同空間之中,卻因社會階層、身分高低貴賤的不同等因素,使她們生活處境迥異。了解丫鬟與小姐各自面臨的境況後,再以生活處境的探討為基礎,回歸同為女性的主僕互動關係之研究,從此種人性互動層面為出發點,探討鎮日相對於相同空間中的丫鬟與小姐,依其主僕性格的不同、婚姻情況、丫鬟等級大小及複雜的人際網絡等因素,她們之間所呈現的相互扶持、監守、競爭、親疏等多元面貌,以及丫鬟之於小姐的服侍、耳目、幫襯、解語等功能。 tc 丫鬟與小姐之互動關係研究——以《紅樓夢》為主的論述 第一章•緒論………………………………………………………………………..1 第一節 研究動機與範圍………………………………………………..1 一•「丫鬟」與「小姐」的緣起……………………………..……..1 二•《紅樓夢》之丫鬟與小姐的傳承……………………………2 三•使用版本與研究回顧…………………………………….11 第二節 研究方法………………………………………………………12 第二章•由《紅樓夢》看傳統中上層社會之小姐的生活處境………….17 第一節 小姐在三綱五常中的地位與婚姻……………………………19 第二節 小姐之教養情形與貞節觀……………………………………28 第三節 小姐的活動範圍………………………………………………37 第四節 小結…………………………………………………………....42 第三章•由《紅樓夢》看傳統社會奴婢身分之丫鬟的生活處境………45 第一節 奴婢身分之丫鬟的地位、境遇…………………………….…46 第二節 奴婢身分之丫鬟的買賣情形…………………………………50 第三節 對於奴婢身分之丫鬟的管束…………………………………56 第四節 奴婢身分之丫鬟的役使功能、等級…………………………..59 第五節 小結……………………………………………………………62 第四章•扶持與監守——丫鬟與小姐的基礎互動………………………64 第一節 丫鬟「行監坐守」職責與小姐之「耳目」………………….64 第二節 丫鬟替小姐「幫襯」、「解語」之情形………………………70 第三節 丫鬟玉成才子佳人的心態……………………………………88 第四節 小結……………………………………………………………93 第五章•從多重關係來看《紅樓夢》裡的丫鬟與小姐…………….……95 第一節 不同小姐所調教出的各種丫鬟………………………………95 第二節 進入婚姻後的丫鬟與主母………………………..…………134 第三節 不同等級的丫鬟與小姐………………………..……………..145 第四節 小結…………………………………..………………………..153 第六章•結語…………………………………………………………….………155 附錄………………………………………………………………………………...162 參考書目…...……………………………………………………………….…….168rf 一•清代(含)以前之專書著作 《白虎通》。漢班固撰。板橋:藝文出版社,1966影印本。 《纏足不始於李後主》。清袁枚著。收錄於《袁枚全集》第伍卷。江蘇:古籍出版社,1993。 《陳確集》。明陳確撰。北京:中華書局,1995。 《詞壇清玩•槃簻碩人增改定本西廂記》。槃簻碩人著。台北:廣文出版社,1982。 《ユ芻梅香騙翰林風月雜劇》。元鄭德輝撰。 《輟耕錄》。明陶宗儀撰。板橋:藝文出版社,1966影印本。 《大清會典》。清允祿等奉敕撰。台北:台灣商務,1983。 《大清律例》。張榮錚等點校。天津:天津古籍出版社,1993。 《大戴禮記》。漢戴德撰。收於《珍本十六經——四禮集註》。台灣:龍泉出版社,1977。 《丹鉛錄》。明楊升庵撰。 《第六才子書西廂記》。元王實甫原著、清金聖嘆批點。台北:三民書局,1999。 《杜麗娘慕色還魂記》。收錄於《重刻增補燕居筆記》。明何大掄編。台北:天一出版社,1985。 《董解元西廂記諸宮調》。金董解元撰。台北:世界書局,1961。 《法苑珠林》。唐釋道世撰。台北:藝文出版社,1975。 《方言》。晉郭璞注。收錄於楊家駱主編《方言校箋附通檢》。台北:鼎文出版社,1972。 《婦人鞋襪考》。清余懷著。收錄於《歷代筆記小說集成》卷七十四。石家莊:河北教育出版社,1996 《婦學篇》。清章學誠撰。收錄於《叢書集成新編》第三十三冊。台北:新文豐出版公司,n.d。 《陔余叢考》。清趙翼撰。京都:中文出版社,1979。 《閨範》。明呂坤撰。收錄於《四庫全書存目叢書子部一二九》。台南:莊嚴文化事業,1995。 《漢書》。漢班固撰。台北:世界書局,1974。 《河南程氏遺書》。(宋)朱熹編。收於《叢書集成三編》第十四冊。台北:新文豐出版公司,n.d。 《紅樓夢校注》。曹雪芹、高鶚原著,馮其庸等校注。台北:里仁書局,1984。 《紅樓夢總評》。清王希廉撰。 《花朝生筆記》。清蔣瑞藻著。 《華陽國誌》。晉常璩撰。收錄於《叢書集成新編》第九十四冊。台北:新文豐出版公司,n.d。 《會真記》。唐元縝著。板橋:藝文出版社,1966影印本。 《客窗閒話》。清吳熾昌撰。中州古籍出版社,1992。 《孔子家語》。魏王肅注。收於《叢書集成續編》第三十七冊。台北:新文豐出版公司,n.d。 《禮記今註今譯》。王夢鷗註譯。台北:台灣商務印書館,1980。 《李太白匹配金錢記雜劇》。元喬吉撰。 《列異傳》。魏曹丕(一作張華)。北京:文化藝術出版社,1988。 《陸天池西廂記》。明陸采撰。台北:天一出版社,1983影印本。 《履園叢話》。清錢泳輯。北京:中華書局,1979。 《孟德耀舉案齊眉雜劇》。元無名氏撰。 《孟子譯註》。孟子及其弟子著。台北:河洛圖書出版社,1977。 《明會典》。明申時行等修。北京:中華書局,1989萬曆朝重修本。 《明律輯注》。清沈之奇撰。 《墨莊漫錄》。宋張邦基撰。台北:藝文出版社,1966影印本。 《牡丹亭》。明湯顯祖原著,徐朔方、楊笑梅校注。台北:里仁書局,1995。 《南調西廂記》。明李日華撰。台北:天一出版社,1983影印本。 《女誡》。漢班昭撰。 《女論語》。唐宋若莘撰。成都:四川人民出版社,1998。 《裴少俊牆頭馬上雜劇》。元白樸著。 《清詩鐸》。清張應昌編。北京:中華書局,1950。 《清朝文獻通考》。清高宗敕撰。台北:新興出版社,1965。 《全唐詩》。清聖祖編。台北:復興出版社,1974。 《薩真人夜斷碧桃花雜劇》。元佚名撰。 《石頭記》。習國有點校。河北:人民出版社,1994。 《說郛》。明陶宗儀纂。台北:新興書局,1972。 《說文解字注》。漢許慎著,清段玉裁注。台北:萬卷樓圖書,1990。 《四書讀本》。台北:三民書局,1988。 《太平廣記》。宋李昉編。台北:新興書局,1979影印本。 《唐律疏義》。唐長孫無忌等奉敕撰。台北:台灣商務印書館,1983據國立故宮博物院藏本影印。 《陶朱新錄》。宋馬純撰。收錄於《百部叢書集成五十三輯珠叢別錄第十四種》。台北:藝文印書館, 1966。 《通俗常言疏證》。清孫錦標撰。收錄於蔣致遠主編《中國方言謠諺集》第十一冊。台北:宗青圖書,1983影印本。 《萬曆野獲編》。明沈德符撰。北京:中華書局,1959。 《王月英元夜留鞋記雜劇》。元曾瑞卿撰。 《溫氏母訓》。明溫以介述。收錄於《叢書集成新編》第三十三冊。台北:新文豐出版公司,n.d。 《西溪叢語》。宋姚寬輯。收錄於《叢書集成新編》第十一卷。台北:新文豐出版公司,n.d。 《西廂記》。元王實甫原著,王季思校注。台北:里仁書局,1995。 《香蓮品藻》。清方絢撰。收錄於周光培編《清代筆記小說》第十冊。石家莊: 河北教育出版社,1996。 《孝經》。漢孔安國傳。黃得時註譯。台北:台灣商務印書館,1980。 《謝金蓮詩酒紅梨花雜劇》。元張壽卿撰。 《醒世恆言》。明馮夢龍撰。台北:三民書局,1988。 《繡刻南西廂記定本》。明崔時佩、李景雲撰,毛晉編。台北:台灣開明書店,1970。 《顏氏家訓》。北齊顏之推撰,清趙曦明注。收錄於《叢書集成新編》第三十三冊。台北:新文豐出版公司,n.d。 《野客叢書》。宋王楙撰。台北:台灣學生書局,n.d。 《易程傳 易本義》。程頤、朱熹撰。台北:河洛圖書出版社,1974。 《儀禮》。春秋子夏撰。收於《珍本十六經——四禮集註》。台灣:龍泉出版社,1977。 《夷堅志》。宋洪邁撰。京都:中文出版社,1980據涵芬樓藏新校輯活字本影印。 《幽明錄》。劉宋劉義慶撰。台北:藝文出版社,1966。 《玉堂逢辰錄》。宋錢惟演撰。 《欲海慈航》。清黃正元編。 《元微之崔鶯鶯蝶戀花鼓子詞》。宋趙令畤著。 《元史》。明宋濂等撰。台北:鼎文書局,1981。 《元曲選》。明臧晉叔編。北京:中華書局,1979。 《閱微草堂筆記》。清紀昀撰。上海:古籍出版社,1980。 《震川集》。明歸有光撰。台北:世界書局,1963。 《貞觀政要》。唐吳兢撰,元戈直注。收錄於《景摛藻四庫全書薈要•史部》第一一九冊〈別史〉類。台北:世界書局,1987。 《周易今註今譯》。南懷瑾、徐芹庭註譯。台北:台灣商務印書館,1974。 《周禮》。漢鄭玄注。收錄於《珍本十六經——四禮集註》。台北:龍泉出版社,1977。 《朱熹集(三)》。宋朱熹著,郭齊、尹波點校。成都:四川教育出版社,1996。 《朱文公文集》。宋朱熹撰。台北:商務印書館,1979上海商務印書館縮印明刊本。 《朱子語類》。宋朱熹撰。收錄於《傳世藏書》子庫〈諸子五〉卷六十八。n.d。 《莊元甫雜著》。明代莊元甫撰。 二•民國以降之著作 白先勇編著。《姹紫嫣紅牡丹亭》。台北:遠流出版社,2004。 陳慶浩編著。《新編石頭記脂硯齋評語輯校》。台北:聯經出版社,1979。 陳東原。《中國婦女生活史》。台北:台灣商務印書館,1981。 陳顧遠。《中國婚姻史》。台北:台灣商務印書館,1936。 陳美玲。《紅樓夢裡的小姐與丫鬟》。台北:文津出版社,2001。 陳美玲。《紅樓夢中的寧國府》。台北:文津出版社,1999。 陳美雪。《湯顯祖的戲曲藝術》。台北:台灣學生書局,1977。 陳萬鼐。《元明清劇曲史》。台北:中國學術著作獎助委員會,1966。 褚贛生。《奴婢史——中國奴婢問題的歷史思考》。上海:上海文藝出版社,1994。 辭海編輯委員會編。《辭海》。上海:辭書出版社,1984縮印本。 叢靜文。《南北西廂記比較》。台北:商務印書館,1976。 淡江大學中文系主編。《人物類型與市井文化》。台北:台灣學生書局,1995。 淡江大學中文系主編。《中國女性書寫——國際學術研討會論文集》。台北:台灣學生書局出版,1999。 董每戡。《五大名劇論》。北京:人民文學出版社,1984。 多賀秋五郎。《宗譜ソ研究》。東洋文庫刊,1960。 馮其庸纂校訂定。《八家評批紅樓夢》。北京:文化藝術出版社,1991。 馮其庸。《論庚辰本》。上海:文藝出版社,1978。 高世瑜。《中國古代婦女生活》。台北:台灣商務印書館,1998年。 Gerald Corey著,李茂興譯。《諮商與心理治療的理論與實務》。台北:揚智文化,1999。 龔鵬程、張火慶合著。《中國小說史論叢》。台北:台灣學生書局,1984。 郭立誠。《中國婦女生活史話》。台北:漢光文化,1983。 郭玉雯。《紅樓夢人物研究》。台北:里仁書局,1998。 韓大成。《明代社會經濟初探》。北京:人民出版社,1986。 靄理士(Havelock Ellis)。《性心理學(Psychology of Sex)》。北京:商務印書館,1997。 何其芳。《何其芳選集》。成都:四川人民出版社,1979。 賀新輝、朱捷合著。《西廂記鑑賞辭典》。北京:中國婦女出版社出版,1990。 胡萬川。《話本與才子佳人小說之研究》。台北:大安出版社,1994。 胡萬川、劉紹銘、馬幼垣編。《中國傳統短篇小說選集》。台北:聯經出版社,1979。 蔣瑞藻。《小說考證》。上海:古籍出版社,1984。 蔣星煜。《明刊本西廂記研究》。北京:中國戲劇出版社,1982。 蔣星煜。《西廂記考證》。上海:古籍出版社,1988。 張俊、沈治鈞。《曹雪芹與紅樓夢》。遼寧教育出版社,1992 康來新。《發跡變泰——宋人小說學論稿》。台北:大安出版社,1996。 康來新。《紅樓長短夢》。台北:駱駝出版社,1996。 康來新。《紅樓夢研究》。台北:文史晢出版社,1981。 康來新。《石頭渡海——紅樓夢散論》。台北:漢光文化,1985。 梁啟超。《中國文化史》。台北:台灣中華書局,1980。 劉大杰。《中國文學發展史》。台北:華正書局,1998。 劉達臨。《中國古代性文化》下冊。台北:新雨出版社,1995。 劉士聖。《中國古代婦女史》。青島出版社,1991。 劉詠聰。《德才色權——中國古代婦女論》。台北:麥田出版,1998。 魯迅。《魯迅文集(二)》。黑龍江人民出版社,1979。 魯迅。《中國小說史略》。上海:北新書局,1927。 呂啟祥。《紅樓夢會心錄》。台北:貫雅文化,1992。 馬玉山。《中國古代人口買賣》。台北:台灣商務印書館,1999。 聶石樵、鄧魁英。《古代小說戲曲論叢》。北京:中華書局,1985。 青木正兒著,王吉廬譯。《中國近世戲曲史》。台北:台灣商務印書館,1976。 人民文學出版社編輯部編。《紅樓夢研究論文集》,1957。 任寅虎。《中國古代婚姻》。台北:台灣商務印書館,1998。 薩孟武。《紅樓夢與中國舊家庭》。台北:東大圖書公司,1977。 山川麗。《中國女性史》。東京:笠間書院,1977。 史風儀。《中國古代婚姻與家庭》。湖北:人民出版社,1987。 西蒙•波娃(Simone de Beauvoir)。《第二性》。台北:志文出版社,1992。 蘇冰、魏林。《中國婚姻史》。台北:文津出版社,1994。 孫康宜。《古典與現代的女性闡釋》。台北:聯合文學,1998。 陶希聖。《中國政治思想史》第一冊。台北:食貨出版社,1972。 王利器輯錄。《元明清三代禁毀小說戲曲史料》。上海:古籍出版社,1981增訂本。 王紹璽。《小妾史——妾制陋俗的歷史沿革》。上海文藝出版社,1995。 吳存存。《明清社會性愛風氣》。北京:人民文學出版社,2000。 夏志清。《愛情、社會、小說》。台北:純文學出版社,1969。 熊秉真主編。《欲掩彌彰——中國歷史文化中的「私」與「情」》。 楊振良。《牡丹亭研究》。台北:台灣學生書局,1992。 岩成秀夫。《中國戲曲演劇研究》。東京:創文社,1972。 嚴蘭紳主編。《元曲論集》。河北教育出版社,1993。 嚴明。《紅樓夢與清代女性文化》。台北:洪葉文化,2003。 一粟編。《紅樓夢卷》。台北:新文豐出版公司,1989。 應必誠。《論石頭記庚辰本》。上海:古籍出版社,1983。 俞平伯輯。《脂硯齋紅樓夢輯評》。香港:太平書局,1979。 樂蘅軍。《古典小說散論》。台北:純文學出版社,1976。 曾揚華。《漫步大觀園》。台北:遠流出版社,1989。 曾永義。《中國古典戲劇的認識與欣賞》。台北:正中書局,1991。 張愛玲。《紅樓夢魘》。台北:皇冠出版社,1981。 張淑香。《元雜劇中的愛情與社會》。台北:長安出版社,1980。 張慶善、劉永良著。《漫說紅樓》。香港:三聯書店,2001。 趙元信、何錫蓉。《中國歷代女性悲劇大觀》。安徽人民出版社,1993。 鄭培凱。《湯顯祖與晚明文化》。台北:允晨文化,1995。 中國藝術研究所紅樓夢研究所編。《古典文學研究資料彙編•紅樓夢卷》。台北:里仁書局,1981。 周國雄。《中國十大古典喜劇論》。暨南大學出版社出版。1991。 周汝昌。《紅樓小講》。香港:中華書局,2002。 周汝昌等著。《曹雪芹與紅樓夢》。香港:中華書局,1977。 周中明。《紅樓夢的語言藝術》。台北:里仁書局,2001。 周中明。《紅樓夢——迷人的藝術世界》。台北:貫雅文化,1991。 朱一玄。《紅樓夢脂評校錄》。濟南:齊魯書社,1986。 三•單篇論文 陳顧遠。〈我國家族之史的觀察〉。收錄於《法學叢刊》第三號,1956年7月。 陳慧樺。〈論湯顯祖的牡丹亭〉。載於《幼獅月刊》第41卷第10期,1975年4月。 陳慶煌。〈西廂記的造型藝術—以張生形象之轉化為例〉。收錄於淡江大學中文系主編《人物類型與市井文化》。台北:台灣學生書局,1995。 陳星鶴。〈論《紅樓夢》中的女性王國〉。收錄於《紅樓夢研究》,1991年第2期 陳寅恪。〈陳寅恪讀鶯鶯傳〉。收錄於元王實甫原著,王季思校注:《西廂記》附錄。台北:里仁書局,1995。 戴德源。〈小姐與丫頭〉。收錄於《四川戲劇》,1997年第五期。 董上德。〈元雜劇的情感效應〉。收錄於《古典文學知識》,1998年第三期。 馮子禮。〈兩個不同社會圈子裡的模範女性——孟玉樓與薛寶釵形象之比較〉。收錄於《明清小說研究》,1990年第3~4期。 郭松義。〈清代納妾制度〉。收錄於《中央研究院近代婦女史研究》第四期。中央研究院近代史研究所出版,1996。 華瑋。〈婦女評點《牡丹亭》:《吳吳山三婦合評牡丹還魂記》與《才子牡丹亭》析論〉。收錄於《中國女性書寫—國際學術研討會論文集》。淡江大學中文系主編,台北:台灣學生書局出版,1999。 黃麗貞。〈西廂記的成就和影響〉。收錄於《中華文化復興月刊》第12卷第7期,1979。 林文山。〈論崔鶯鶯—《西廂六論》之二〉。收錄於汕頭大學學報人文版,1986年第一期。 曲沐。〈哀莫大於心死——論紫鵑〉。收錄於《紅樓夢研究》,1991第2期。 阮沅。〈紅樓小人物(九)——赤誠為主的紫鵑〉。收錄於《中華文化復興月刊》,第11卷第11期,1978。 阮沅。〈司棋為情碰壁〉。收錄於《中華文化復興月刊》,第12卷第8期,1979。 商志榮。〈關於薛寶釵形象及其意義的再認識〉。收錄於《錦州師院學報哲社版•紅樓夢研究》,1992年第一期。 邵炘。〈試談鶯鶯在《西廂記》裡的地位〉。收錄於《文學遺產》,1959年增刊七輯。 宋淇。〈怡紅院的四大丫鬟(下)〉。收錄於《紅樓夢學刊》,1998年第4期。 孫康宜。〈明清詩媛與女子才德觀〉,收錄於《中外文學》,第二十一卷第十一期。 孫康宜。〈性別與經典論:從明清文人的女性觀說起〉。收錄於《中國婦女與文學論集》第二集。台北:稻香出版社,1999。 孫秀榮。〈紅娘現象與民族文化心理〉。收錄於《中國古代、近代文學研究》,1995年第11期。 譚正璧。〈傳奇《牡丹亭》和話本《杜麗娘》〉。收錄於《光明日報》1958年4月27日及《文學遺產》第206期。 譚正璧。〈湯顯祖戲曲本事的歷史探溯〉。收錄於《戲劇研究》1960年第1期。 湯明。〈略論唐人小說中的婢女〉。收錄於〈寧夏大學學報人文社會科學版〉2001年第2期。 田榮。〈從襲人與晴雯「月例」的差別看清代銀錢兌率之殊異〉。收錄於《明清小說研究》,1990年第2期。 王永健。〈婦女觀不同,女性形象迥異—明清戲曲、小說比較研究〉。收錄於《明清小說研究》,1990年第3~4期。 楊國樞。〈從心理學看文學〉。收錄於《中外文學》,民國64年第4卷第1期。 鄒德祥。〈于「無心」處見匠心——《紅樓夢》奴僕名字的群體性及其意義負載〉。收錄於《明清小說研究》,1990年第2期。 張建一。〈第六才子書西廂記考證〉。收錄於王實甫原著、金聖嘆批點的《第六才子書西廂記》。台北:三民書局,1999。 鄭明娳。〈古典小說中的婦女群像〉。收錄於《台北評論•特輯——從古典小說看中國女性》,1988年1月。 鄭平。〈浪漫的崔鶯鶯〉。收錄於上海戲劇1997年第一期。 鄭榕玉。〈傳統樊籠內的卑微人生—中國文學女性形象探微(一)〉。收錄於《福建師範大學福清分校學報》,2001年第3期。 周婉窈。〈清代桐城學者與婦女的極端道德行為〉。收錄於《大陸雜誌》,第87卷第4期。 四•相關之學位論文 洪恩姬。〈元人愛情劇研究〉。私立逢甲大學中文研究所碩士論文,民國82年6月。 賴雯卿。〈元雜劇中的婦女類型研究〉。私立輔仁大學中文研究所碩士論文,民國83年6月。 李贊英。〈論牡丹亭中的情與夢〉。私立文化大學藝術研究所碩士論文,民國84年。 李昭瑢。〈邊緣與中心——紅樓夢人物互動考察〉。私立輔仁大學中國文學研究所碩士論文,民國82年。 劉灝。〈三言、二拍、一型中的婦女形象研究〉。私立中國文化大學中國文學研究所碩士論文。民國84年12月。 湯璧如。〈西廂故事的演變——以鶯鶯傳、董西廂、王西廂為例〉。私立輔仁大學中文研究所碩士論文,民國74年5月。 王祥穎。〈金批西廂記人物心理分析〉。國立中興大學中文研究所碩士論文,民國87年。 吳振漢。〈明代奴僕之研究〉。國立台灣大學歷史研究所碩士論文,民國71年6月。 周忠泉。〈《紅樓夢》中家庭形態之研究〉。國立中正大學歷史研究所碩士論文,民國82年。id NH0925045005 sid 905103 cfn 0 / id NH0925045006 auc 羅漪文 tic 《左心房漩渦》之語言風格 adc 劉承慧 ty 碩士 sc 國立清華大學 dp 中國文學系 yr 92 lg 中文 pg 90 kwc 王鼎鈞 kwc 左心房漩渦 kwc 認知 kwc 隱喻 kwc 統合理論 kwc 語言結構 kwc 修辭 abc 王鼎鈞勤於筆耕,創作數量豐碩且品質亦精。其中《左心房漩渦》最為所人稱道。作品韻味雋永,論者經常使用「詩化」、「詩質語言」、「詩質意象」等讚語形容,卻則鮮少獲得深入剖析。因此有必要進一步解釋這些評論形成的原因,找出是什麼樣的書寫方式使作品富有詩歌性質。 tc 目 錄 第1章:緒論……………………………………………………………1 1.1. 文獻回顧………………………………………………………………………1 1.2. 研究動機與研究範圍……………………………………………………………7 1.3. 研究方法與章節安排…………………………………………………………..11 第2章:分析原則………………………………………………………13 2.1. 漢語修辭學的隱喻辭格………………………………………………………..13 2.2. 當代隱喻理論…………………………………………………………………..14 2.2.1. 隱喻結構……………………………………………………………………...14 2.2.2. 隱喻與非隱喻………………………………………………………………...16 2.2.3. 擬人化與隱喻結構…………………………………………………………...17 2.2.4. 彰顯與隱藏…………………………………………………………………...17 2.2.5. 隱喻的文化性………………………………………………………………...18 2.3. 統合理論………………………………………………………………………..19 2.4. 語言分析的有效性界定………………………………………………………..21 2.4.1. 還原喻詞的語法功能………………………………………………………...22 2.4.2. 句式觀察……………………………………………………………………...25 2.5. 術語解釋………………………………………………………………………..27 第3章:隱喻……………………………………………………………31 3.1. 水、蟲、身體與疾病…………………………………………………………...31 3.1.1. 人是水………………………………………………………………………...31 3.1.2. 人是昆蟲……………………………………………………………………...35 3.1.3. 祖國是身體、苦難是疾病……………………………………………………38 3.2. 隱喻的組合……………………………………………………………………..41 3.3. 隱喻統合………………………………………………………………………..45 3.4. 「意象切斷法」商榷…………………………………………………………..51 3.5. 小結……………………………………………………………………………..56 第4章:語言結構………………………………………………………57 4.1. 錘煉的詞彙……………………………………………………………………..57 4.1.1. 同義場詞的聚焦敘述………………………………………………………...58 4.1.2. 多義語詞虛實相映…………………………………………………………...61 4.2. 平實句式………………………………………………………………………..66 4.2.1. 聯合結構……………………………………………………………………...66 4.2.2. 聯合結構的功能……………………………………………………………...69 4.2.2.1. 堆疊意象..…………………………………………………………………..69 4.2.2.2. 情感深旋……………………………………………………………………71 4.2.3. 具有特殊語義關係的聯合結構與功能……………………………………...73 4.2.3.1. 時間連貫-隱藏事理………………………………………………………74 4.2.3.2. 漸層-逐層描敘……………………………………………………………76 4.2.3.3. 讓步-以退為進……………………………………………………………78 4.2.4. 頂針式聯合結構與功能……………………………………………………...80 4.3. 意念收結的行文傾向…………………………………………………………..83 4.4. 小結……………………………………………………………………………..87 第5章:結論……………………………………………………………88 5.1. 風格綜述……………………………………………………………………….88 5.2. 研究展望……………………………………………………………………….90rf * 中文論著* Geoffrey Leech,“Semantics”.李瑞華等譯,《語義學》,(上海:外語教育,1987)。 Li and Thompson, “A Functional Reference Grammar”.黃宣範譯:《漢語語法》,(台北:文鶴,1983)。 子 敏:〈不愧是一位散文家〉,收於《左心房漩渦》,(台北:爾雅,1989)。 王 力:《古代漢語》,(北京:中華,1999)。 王鼎鈞:《文學種籽》再版,(台中:明道藝文,1996)。 王鼎鈞:《文藝與傳播》,(台北:三民, 1974)。 王鼎鈞:《左心房漩渦》,(台北:爾雅,1988)。 王鼎鈞:《情人眼》增訂版,〈自序〉,(台北:作者自印,1980)。 申小龍:《中國句型文化》,(吉林:東北師範,1988)。 朱德熙:《語法講義》,(北京:商務,1982)。 余光中:〈成語與格言〉,《中國時報》,2004/02/09-10,人間副刊。 李宜涯:〈文路無盡誓願行--力求突破的作家王鼎鈞先生〉,《文訊別冊》,1998/04。 李福印:〈從修辭到跨學科:隱喻研究管窺〉,《語文建設通訊》,第64期,2000/07。 沈 謙:〈駱駝背上的樹--王鼎鈞散文的人格與風格〉,(台北:台灣現代散文研討會,九歌文教基金,1997)。 屈承熹、紀宗仁:《漢語認知功能語法》,(台北:文鶴,1999)。 林央敏:〈散文出位〉,何寄澎主編:《散文批評》,(台北:正中書局,1993)。 林汝昌、李曼鈺:《語義學入門》,(湖北:華中理工大學,1993)。 邵敬敏:《現代漢語通論》,(上海,教育,2001)。 邱珮萱:《戰後臺灣散文中的原鄉書寫》,國立高雄師範大學,91學年度博士論文。 亮 軒:《風雨陰晴王鼎鈞--一位散文家的評傳》,(台北:爾雅,2003)。 徐通鏘:《基礎語言學教程》,(北京:北大,2001)。 徐 學:〈台灣當代散文中的色彩與節奏〉,《廈門大學學報》,1994年2期。 徐 學:〈「左心房漩渦」的憂患與昇華〉,《評論十家》,(台北:爾雅,1993),頁211-219。 袁行霈:《中國詩歌藝術研究》,(台北:五南,1989)。 袁慕直:〈「左心房漩渦」讀後〉,收於《左心房漩渦》,(台北:爾雅,1989)。 高天生:〈傳統課題與文學創作--試論「碎琉璃」中的憂患意識〉,《明道文藝》,30期,1978/07。 張春榮:〈江水江花--讀王鼎鈞「左心房漩渦」〉,《中華日報》,1992/02/21,11版。 張春榮:〈典雅與鎔裁--王鼎鈞散文的遣詞〉,《台灣新聞報》,1992/08/14。 張春榮:〈細緻與真實--王鼎鈞的描寫藝術〉,《文訊》,卷83,1992/09。 張春榮:《修辭行旅》,(台北:東大,1996)。 胡坤仲:〈瀟灑故國情--讀「海水天涯中國人」〉,《明道文藝》,卷84,1983/03,頁73-75。 曹逢甫、蔡立中、劉秀瑩:《身體與譬喻--語言與認知的首要介面》,(台北:文鶴,2001)。 梅 廣:〈簡談中國古典散文結構分析理論與實際〉,未刊稿。 郭明福:〈他把鮮血變成墨水--我讀「左心房漩渦」〉,《爾雅人》,卷72,1992/09/16。 陳本益:《漢語詩歌的節奏》,(台北:文津,1994)。 陳秀滿:《散文捕蝶人--王鼎鈞散文研究》,國立彰化師範大學國文研究所,90學年度碩士論文。 陳芳明:〈女性詩人與散文家的現代轉折〉,《聯合文學》,220期,2003/02。 陳望道:《修辭學發凡》,(上海:作家,1964)。 陸儉明:《現代漢語語法研究教程》,(北京:北大,2003)。 渡 也:〈不愧是一位詩人〉,〈風雨集序〉,《風雨陰晴--王鼎鈞散文精選》(台北:爾雅,2001)。 程祥徽、鄧駿傑、張劍樺著:《語言風格學》,(香港:三聯,2002)。 黃武忠:〈人生的說理者--試論王鼎鈞的散文風貌〉,《爾雅人》,1988/05/10。 黃慶萱:《修辭學》,增訂三版,(台北:三民,2002)。 趙元任著、丁邦新譯:《中國話的文法》,(台北:學生,1994)。 劉承慧:《中文寫作文法綱要》,未刊稿。 劉承慧:《基本標點符號的應用原則》,未刊稿。 樓肇明:〈評王鼎鈞的散文〉,《碎琉璃》2版附錄,(台北:作者自印,1989)。 蔡宗陽:《修辭學探微》,(台北:文史哲,2001)。 蔡英俊:《中國古典詩論中「語言」與「意義」的論題》,(台北:學生,2001)。 蔡倩茹:《王鼎鈞論》,(台北:爾雅,2002)。 鄭明娳:〈出入魔幻與寫實之間〉,收錄於〈風雨集序〉,《風雨陰晴--王鼎鈞散文精選》,(台北:爾雅,2001)。 黎活仁:〈五四以來散文家如何定位--沈謙教授訪談記錄〉,《幼獅文藝》,526期,1997/06。 黎運漢、張維耿:《現代漢語修辭格》,(台北:書林,1991)。 戴浩一著、黃河譯:〈時間順序和漢語的語序〉,《國外語言學》,1998/01。 薛鳳生著,沈家宣譯:〈「把」字句和「被」字句的結構意義--真的表示「處置」和「被動」?〉收於戴浩一,薛鳳生編:《功能主義與漢語語法》,(北京,北京語言學院,1994)。 鍾怡雯:《亞洲華文散文的中國圖象1949–1999》,國立台灣師範大學,88學年度博士論文。 隱 地:〈王鼎鈞的聖歌〉,《中國時報》,1999/01/05-06,第37版。 羅茵芬:〈寫時代、寫社會、寫中國人--王鼎鈞細說創作里程〉,《中央日報》第18版,1996/02/06。 *英文論著* Fauconnier, Gilles. 1997. “Mappings in Thought and Language”, Cambridge: Cambridge University Press. Fauconnier, Gilles. 1998. “Mental Space, Language Modalities, and Conceptual Intergration”, in: Michael Tomasello (ed.), “The New Psychology of Language” Mahwah: Lawrence Erlbaum Associates Publishers, p251-279. Lakoff, G. 1993. “The contemporary theory of metaphor”, in: Andrew Ortony (ed.), Metaphor and Thought. (2nd edition.) Cambridge: Cambridge University Press, 202-251. Lakoff, G.& Johnson, M. 1980.” Metaphors We Live By”. Chicago: University of Chicago Press. Lakoff, G.& Turner, M. 1989.”More than cool reason: A field guide to poetic metaphor”. Chicago: University of Chicago Press. Lily I-wen, Su. 2002. “What Can Metaphor Tell Us About Culture?”, in Language And Linguistics, 3.3:589-613.蘇以文:〈從譬喻看文化:語言之認知研究〉。 Lynn Nadel Ed-in-chief, “Encyclopedia of Cognitive Science”, Nature publishing Group, 2003. 蘇以文:〈從語用看認知:以中文之譬喻為例〉,《漢學研究》,第18卷特刊,2000/12,頁295-424。英文稿。id NH0925045006 sid 905104 cfn 0 / id NH0925045007 auc 簡淑玲 tic 東年小說研究--以善惡主題思想為主 adc 陳萬益 ty 碩士 sc 國立清華大學 dp 中國文學系 yr 92 lg 中文 pg 105 kwc 東年 kwc 善惡 kwc 知識分子 abc 東年小說創作始於一九七一年,在這三十餘年的創作?堙A他的思考主線都集中在知識分子的身上,本論文依其作品中善惡主題思想的不同轉折,將其創作分為三期。 tc 第一章 緒論··············································1 第一節 研究動機··········································1 第二節 研究文獻回顧與探討································3 第三節 研究方法··········································8 第二章 道德掙扎與善惡對立·······························11 第一節 社會關懷與批判:《落雨的小鎮》、《大火》·······12 (一) 消逝的桃花源···································13 (二) 都市底層的悲嘆·································16 第二節 知識分子強烈情感的雙重性:〈死人書〉···········18 第三節 虛無的最高點:《失蹤的太平洋三號》·············21 (一) 知識分子救世理想的養成·························22 (二) 知識分子的掙扎與痛苦···························23 (三) 知識分子理想的幻滅·····························25 1. 梅岑之善惡對立·····································25 2. 華北之善惡抹消·····································27 (1) 人性的無望······································28 (2) 永恆抹消一切意義································28 第三章 回歸現實與善惡妥協···········································································32 第一節 消逝的冬天·····················································································32 (一) 自省的能力:〈路〉···································································32 (二) 噬血的凡性:〈海鷗〉·······························································33 (三) 對現實的注重:〈去年冬天〉···················································38 1. 肯定與承擔···············································································40 2. 人心是進步之根本···································································42 第二節 尊重社會秩序與法律:《模範市民》···········································43 第三節 回歸純真的源頭:《初旅》···························································49 第四章 自我救贖與善惡消彌···········································································57 第一節 英雄原欲的解脫:《地藏菩薩本願寺》·······································57 第二節 離妄去苦之修持:《我是這麼說的》···········································66 第三節 人的創世紀:《再會福爾摩莎》···················································74 第四節 登上生命最高層:《愛的饗宴》···················································79 第五章 結論·····································································································87 附錄: 一、 參考書目及期刊論文·······································································94 二、 東年寫作年表···················································································102rf 一、 東年著作書目(及期刊篇目) 《落雨的小鎮》短篇小說集(收錄〈青蛙〉、〈一百隻鴿子〉、〈構不著的圓〉、〈無花果樹〉、〈作品〉、〈沉默的大河〉、〈公園裡的鐘聲〉、〈落雨的小鎮〉、〈沉船〉、〈酒吧〉共10篇),台北:聯經,1977年初版。 《大火》短篇小說集(收錄〈最後的月亮〉、〈老鼠〉、〈手印〉、〈乩童〉、〈惡夜的笛聲〉、〈鄉祭〉、〈暴風雨〉、〈雪夜〉、〈大火〉、〈棄嬰記〉、〈死人書〉共11篇),台北:聯經,1979年初版。 《去年冬天》短篇小說集(收錄〈去年冬天〉、〈賊〉、〈遊夜街〉、〈路〉、〈海鷗〉、〈我們永遠的朋友〉、〈在那樣的路上〉共7篇),台北:聯經,1983年初版。 《失蹤的太平洋三號》(長篇小說),台北:聯經,1985年初版。 《模範市民》(長篇小說),台北:聯經,1988年初版。 《初旅》(長篇小說),台北:麥田,1993年初版。 《地藏菩薩本願寺》(長篇小說),台北:聯合文學,1994年11月初版。 《我是這樣說的》(長篇小說),台北:聯合文學,1996年3月初版。 《再會福爾摩莎》(長篇小說),台北:聯合文學,1998年6月初版。 《愛的饗宴》(長篇小說),台北:聯合文學,2000年1月初版。 〈小說應是論本體而非論智識〉,《聯合文學》,1982年11月。 〈墨綠色的夜〉,《文季》1卷2期,1983。 〈沉靜而堅決的聲音〉,《新書月刊》第四期「密集短評」專欄,1984年1月。 〈建言三策〉,《新書月刊》第五期「觀念方塊」專欄,1984年2月。 〈從《清代起居注冊》看起-太平天國的最後一天〉,《新書月刊》第六期,1984年3月。 〈返本開新〉,《新書月刊》第七期「密集短評」專欄,1984年4月。 〈源遠流長-「吳越錢氏續慶系圖」族譜介紹〉,《新書月刊》第三期,1984年12月。 〈在黑潮之畔嘆卑南之古—評鍾肇政的「卑南平原」〉,《聯合文學》,1987年10月。 〈受苦的人沒有施捨慈悲的義務?老天可憐!〉,《聯合文學》,1988年2月。 〈東船西舫悄無言,惟見江心秋月白—評亦耕《面對赤子》〉,《聯合文學》,1989年1月。 〈一個書名兩種副標題意的曖昧--評陳燁的泥河〉,《聯合文學》,1989年6月。 〈飆過東區〉,《聯合文學》,1989年10月。 〈山在冬季〉,《聯合報》1989年11月15日。 〈我們所擁有的自由將比「解嚴」前的更少—評蔡源煌的《解嚴前後的人文觀察》〉,《聯合文學》,1990年3月。 〈靜謐的夜海〉,《聯合報》1990年3月3日。 〈美國美國我愛你—鬧劇《玫瑰玫瑰我愛你》的荒謬寓意〉,《聯合文學》,1990年12月。 <尋回訴說的意願—評《散步到他方》>,《聯合報》,1997年1月13日43版。 〈面對新文盲的可能狀態談綜合出版的整合和必要〉,《出版情報》第105、106期合刊本,1997年2月。 〈誰算是中產階級〉,《聯合文學》,1997年7月。 〈海洋台灣與海洋文學〉,《聯合文學》,1997年8月。 〈習作者的初旅—文藝營導遊〉,《聯合文學》,1997年10月。 〈大海是我的故鄉〉,《聯合文學》,1997年12月。 〈小說就是小說〉,《中國時報》,1997年12月24日。 〈我們正在穿越兩岸關係的模糊地帶〉,《聯合文學》,1998年1月。 〈鄉土文學—意識型態的虛實〉,《聯合文學》,1998年2月。 〈春天來了〉,《聯合文學》,1998年3月。 〈孤獨的探索〉,《聯合文學》,1998年4月。 〈女性主義正在作什麼〉,《聯合文學》,1998年5月。 〈再會福爾摩莎〉,《聯合文學》,1998年6月。 〈女性的性、愛情與婚姻〉,《聯合文學》,1998年7月。 〈單身女子〉,《聯合文學》,1998年8月。 〈面枯勝秋草〉,《聯合文學》,1998年9月。 〈文評家的朴通事諺解〉,《聯合文學》,1998年10月。 〈源於大藏律部性事的思議〉,《聯合文學》,1998年12月。 〈彌塞亞神曲中的復活〉,《聯合文學》,1999年1月。 〈新生代的教養〉,《聯合文學》,1999年2月。 〈寶貝女兒—再談新生代的教養〉,《聯合文學》,1999年3月。 〈評審意見〉,《聯合文學》,1999年12月。 〈表現佛陀思想的文學作品就是佛教文學〉,《普門》第250期,2000年7月。 〈小說寫作所需要的「寫實」概念〉,《聯合文學》,2001年11月。 〈航行的勇氣〉,《聯合文學》,2002年1月。 〈秋日的奏鳴:想我年輕時一起寫小說的朋友〉,《聯合文學》,2004年2月。 〈第五卷的預言〉,《聯合文學》,2004年3月。 〈遊府城談舊事〉,《聯合文學》,2004年4月。 〈山、海與平原台灣的對話〉,《聯合文學》,2004年7月。 二、專書 Alan Bullock著、董樂山譯,《西方人文主義傳統》。臺北:究竟出版社。2000年11月初版,2001年3月二刷。 C.H.Pan著、石印滇譯《尼采與佛教哲學》,台北:成文出版社,1977年8月初版。 Franklin L Baumer著、李日章譯,《西方近代思想史》,台北:聯經出版公司,1988年5月初版,1990年9月第二次印行。 Karen Armstrong著,蔡昌雄譯,《神的歷史》。台北:立緒文化。1996年出版,2002年二版。 Neil Postman著、吳韻儀譯,《通往未來的過去》。臺北:台灣商務印書館。2000年5月初版一刷。 工藤綏夫著,李永熾譯,《尼采—其人及其思想》。台北:水牛出版社。1968年3月初版,1970年3月再版。 史懷哲著,鄭泰安譯,《文明的哲學》(Philosophy of Civilization )。臺北:志文出版社。 布萊恩•威爾森(Briaa Wilson)著,傅湘雯譯,《基督宗教的世界》。台北:貓頭鷹出版,城邦文化發行。1999年初版。 弗里德里希•尼采著,張念東、凌素心譯,《權力意志-重估一切價值的嘗試》。北京:商務印書館。1991年5月一版北京第一次印刷。 朱雙一〈東年:海船作為現代人生存空間的象徵〉,《戰後台灣新世代文學論》。台北:智揚文化。2002年2月初版 吳錦發〈靈魂深處的冷—評東年的〈初旅〉〉,《一九八八台灣小說選》。前衛。1989年5月。 李明濱〈罪與罰〉,《俄國近現代文學經典》。嘉義:南華管理學院。1998年8月。 李美枝《社會心理學—理論研究與應用》,台北:大洋出版社。1986年9月初版,1987年3月再版。 李霖生《《超越善與惡》—尼采導讀》。台北:台灣書店。1998年3月初版。 松浪信三郎著,梁祥美譯,《存在主義》。台北:志文出版社。1991年1月再版。 金耀基《中國現代化與知識份子》。台北:時報文化出版企業有限公司。1977年4初版,1988年4月二版二刷。 阿爾培•卡謬著,張伯權、范文譯,《卡謬札記》。台北:萬象圖書股份有限公司。1991年1月初版。 保羅.田立克(Paul Tillich)著,成顯聰、王作虹譯,《存在的勇氣》(The Courage to be)。臺北:遠流出版公司。1990年5月初版一刷。 威廉•白瑞德(William Barrett)著、彭鏡禧譯,《非理性的人-存在哲學研究》。臺北:立緒文化事業公司。2001年8月初版一刷。 夏志清《中國現代小說史》。台北:傳記文學出版社。1991年11月15日再版。 高天生〈孤獨的先知—東年集序〉,《東年集》,前衛出版社,1992年4月。 莊雅仲〈再現、改宗與殖民抗爭--十七世紀荷蘭統治下臺灣的殖民主義與傳教工作〉,盧建榮主編《文化與權力:臺灣新文化史》。台北:麥田。2001年11月初版一刷。 許琇禎〈東年《失蹤的太平洋三號》〉,《台灣當代小說縱論—解嚴前後(1977-1997)》,台北:五南圖書公司,2001年5月初版。 彭瑞金《台灣新文學運動四十年》。高雄:春暉出版社。1997年8月初版一刷,1998年11月再版二刷。 楊照〈白描輪廓與彩繪近景—評東年的《初旅》〉,《文學的原像》,台北:聯合文學出版社,1995年5月初版。 葉啟政《社會、文化和知識份子》。臺北:東大圖書公司。1984年3月初版。 雷登•貝克等人合著、葉玄譯,《存在主義與心理分析》。臺北:巨流圖書公司。1970年7月一版一印,1986年一版七印。 鄔昆如〈存在主義真象〉,《存在主義論文集》。台北:黎明文化事業股份有限公司。1981年五月初版。 鄔昆如《存在主義論文集》,台北:黎明文化公司,1981年5月初版。 廖淑芳〈東年的前世今生—以知識份子形象為主的閱讀〉,《一九九九竹塹文學獎得獎作品輯》。新竹文化中心,1999年6月。 赫塞著、蘇念秋譯,《徬徨少年時》。臺北:志文出版社。2001年10月新版一刷。 趙建文《尼采》。香港:中華書局有限公司。1994年7月初版,1996年10月再版。 蔡維民《永恆與心靈的對話—基督教概論》。台北:智揚文化。2001年初版。 鄭鴻生《青春之歌:追憶1970年代台灣左翼青年的一段如火年華》,台北:聯經。2001年初版。 羅洛.梅(Rollo May)著,朱侃如譯,《權力與無知》(Power and Innocence)。臺北:立緒出版公司。2003年9月初版一刷。 顧忠華著,《韋伯的《基督新教倫理與資本主義精神》導讀》。台北:台灣書店。1997年3月初版。 三、期刊論文 艾雲〈逃離幸福—俄羅斯知識分子的精神氣質與命運〉,《聯合文學》第十六卷第六期。 胡文清〈閱讀東年〉,《台灣新文學》第四期,1996年春季號。 陳國棟〈十七世紀的荷蘭史地與荷據時期的臺灣〉,《台灣文獻》54卷3期。 葉石濤、李喬、楊青矗、施淑女、陳映真〈自立晚報第三次百萬元長篇小說徵文決審意見—關於東年的〈模範市民〉〉,《自立晚報》。1987.2.19 蔡源煌〈符號與靈視--評東年〈落雨的小鎮〉〉,《中外文學》第六卷第九期,1978年2月。 隱地〈〈酒吧〉附註〉,《六十六年短篇小說選》。台北:書評書目。1978年5月。 李漢呈〈視窺東年?堛熄H徵〉,《台灣時報》。1979.1.12〜13。 季季〈一個孤立而擺盪的小社會—評東年的〈賊〉〉,《書評書目》77期,1979年9月。 黃克全〈關於「賊」的二點意見〉,《書評書目》78期,1979年10月。 司馬中原〈魘境—談東年的作品〉,《中華文藝》116期,1980年10月。 高天生〈孤立的先知—試論東年的小說〉,《台灣文藝》69。1980.10 司馬中原〈從「最後的月亮」看東年〉,《中華文藝》119期,1981年1月。 簡斯偉〈轉換的時空裡迷失的心靈—談東年的小說「落雨的小鎮」〉,《文藝月刊》211期,1987年1月。 宋澤萊〈將「自然主義」和「虛無主義」推向頂峰的文學高手—論東年小說的深度〉,《台灣新文學》第十期春夏季號,民87年6月。 吳錦發〈靈魂深處的冷—評東年的〈初旅〉〉,《自立晚報》。1989.3.13 朱雙一〈現代人的焦慮和生存競爭—東年論〉,《聯合文學》,1995年1月。 黃光國〈權力意志與道德判斷〉,《聯合文學》第十三卷第八期,1997年6月。 鄧元忠〈反省史學案例之一:從虛無主義到佔有性個人主義、一類後現代人生觀的發展〉,《國立台灣師範大學歷史學報》27期。1999年6月出版 黃錦珠〈評東年《愛的饗宴》〉,《文訊雜誌》,2000年7月。 張茂桂〈知識分子的角色與「姿勢」〉,《當代》157期。2000年9月。 廖炳惠〈旅行、記憶與認同〉,《當代》175期。2002年3月。 蘭伯特著、林金源譯〈風中之葉-福爾摩沙見聞錄〉,《經典雜誌》,2002年8月。 廖茂發、江淑琳、孫銘燐〈青春懷胎的理想主義:探詢歷史洪流中學運世代的軌跡與痕跡〉,《當代》188期。2003年4月。 三、學位論文 方婉禎《從城鄉到都市—八○年代台灣小說與都市論述》,淡江大學中國文學系碩士論文,2002年6月。 林慶文《當代台灣小說的宗教性關懷》,東海大學中國文學系博士論文,民國2001年6月。 胡龍隆《台灣八○年代都市小說的生活情境與批判語調》,東海大學中國文學系碩士論文,民國2002年6月。id NH0925045007 sid 875106 cfn 0 / id NH0925045008 auc 林麗娟 tic 龍應台《野火集》研究----以台灣戒嚴時期雜文書寫做為參照 adc 陳萬益 ty 碩士 sc 國立清華大學 dp 中國文學系 yr 92 lg 中文 pg 163 kwc 龍應台 kwc 雜文 kwc 現代散文 kwc 方塊 kwc 雜文家 kwc 社會批判 abc 摘 要 tc 龍應台《野火集》研究 -以台灣戒嚴時期雜文書寫做為參照 第一章 緒論 第一節 研究的動機與目的------------------------------1 第二節 研究的方法與章節架構--------------------------9 第二章 台灣戰後戒嚴時期的雜文書寫概述(1949~1987) 第一節 「雜文」的義界-------------------------------12 第二節 台灣戰後戒嚴時期的雜文概況和相關事件--------19 一、 報紙副刊中的雜文-----------------------------19 二、 政論雜誌的潮流和演繹-------------------------25 第三節 台灣戰後戒嚴時期的重要雜文作家--------------31 一、 雜文作品的分類-------------------------------31 二、 重要的雜文家簡介-----------------------------32 第三章 《野火集》的創作背景、內容與相關作品 第一節 嚴冰初融,民心思變 --《野火集》前後的台灣社會背景概述---39 第二節 龍應台創作《野火集》前的生平經歷------------48 第三節 《野火集》的創作與發表過程------------------55 第四節 《野火集》關注的題材和焦點------------------63 第五節 龍應台創作《野火集》時的同期作品-----------78 一、 實用文學批評的宣傳者:《龍應台評小說》-------78 二、 另一把女權之火:《美麗的權利》---------------81 第四章 《野火集》的書寫特色和讀者回應的歸納分析 第一節 《野火集》的書寫風格與特色-------------------87 一、 龍應台創作《野火集》的寫作位置--------------87 二、 《野火集》的書寫風格與特色-------------------89 三、 《野火集》寫作上的缺失和侷限-----------------96 第二節 熱烈迴響--一般讀者的支持、反思與回應----------101 第三節 全力滅火--具官方色彩的【春風集】與【春雨集】--113 第四節 文學界與黨外對《野火集》的討論----------------122 第五章 結論 第一節 龍應台《野火集》研究總論-------------------130 第二節 龍應台於《野火集》之後的文風發展-----------134 參考資料-----------------------------------------------144 附錄一 龍應台生平寫作年表-----------------------------150 附錄二 龍應台《野火集》時期作品一覽表-----------------154 附錄三 龍應台《野火集》系列文章與相關評論一覽表-------158rf 參考資料:(按照出版、發表順序排列) 一、龍應台作品書目: 《龍應台評小說》,評論,台北:爾雅出版社,1985年6月。 《野火集》,台北,雜文,台北:圓神出版社,1985年12月。 《野火集外集》,雜文,台北:圓神出版社,1987年。 《人在歐洲》,雜文,台北:時報文化出版,1988年。 《龍應台雜文精品》,雜文,福州:海峽文藝出版社,1990年。 《從東歐看臺灣》,社會大學文教基金會,1990年。 《龍應台評小說》,評論,北京:作家出版社,1991年。 《寫給台灣的信》,散文,台北:圓神出版社,1992年元月。 《孩子你慢慢來》,散文,台北:皇冠出版社,1994年3月25日。 《看世紀末向你走來》,雜文,台北:時報文化出版,1994年3月28日。 《美麗的權利》,雜文,台北,台北:圓神出版社,1994年4月。 《在海德堡墜入情網》,小說,台北:聯合文學出版社,1994年。 《人在歐洲》,雜文,北京:三聯書店,1994年。 《乾杯吧,托瑪斯曼》,台北:時報文化出版,1996年4月9日。 《龍應台自選集卷一:野火集》,雜文,上上海藝文出版社,1996年5月。 《龍應台自選集卷二:龍應台評小說》,評論,上海藝文出版社,1996年5月。 《龍應台自選集卷三:女子與小人》,散文,上海藝文出版社,1996年5月。 《龍應台自選集卷四:看世紀末向你走來》,散文,上海藝文出版社,1996年5月。 《龍應台自選集卷五:在海德堡墜入情網》,短篇小說,上海藝文出版社,1996年5月。 《牽魂》,散文,湖南文藝出版社,1997年9月。 《我的不安》,雜文,台北:時報文化出版,1997年9月。 《未完成的革命-戊戍百年紀》,龔自珍、康有為、梁啟超著,龍應台、朱維錚編注, 台北:臺灣商務出版社,1998年。 《啊!上海男人》,散文,學林出版社,1998年10月。 《這個動盪的世界》,雜文,汕頭大學,1998年10月1日。 《百年思索》,散文,台北:時報文化出版,1999年8月23日。 《銀色仙人掌》,短篇小說,台北:聯經出版事業公司,2003年12月。 《面對大海的時候》,雜文,台北:時報文化出版,2003年12月22日。 二、參考書目: 楊牧,《交流道》,台北:洪範書店,1985年7月。 蘇不纏,《龍應台風暴》,台北:林白出版社,1986年5月1日。 托斯基,《我愛托斯基》,台北:自由時代系列叢書,1986年。 現代散文研究小組編,《中國現代散文理論》,台北:蘭亭書店,1986年10月31日。 李筱峰,《台灣民主運動四十年》,台北:自立晚報,1987年。 鄭明娳,《現代散文縱橫論》,台北:大安出版社,1988年9月。 楊昌年,《現代散文新風貌》,台北:東大圖書公司,1989年3月。 鄭明娳,《現代散文構成論》,台北:大安出版社,1989年3月。 公仲、汪義生,《 台灣新文學史初編》,南昌:江西人民出版社,1989年8月。 杭之,《邁向後美麗島的民間社會》,台北:唐山出版社,1990年4月30日。 北京中國華僑出版公司編,《都是醜陋中國人惹的禍》,台北:林白出版社,1990年7月5日。 林燿德、孟樊編,《世紀末偏航—八0年代台灣文學論》,台北:時報文化出版,1990年12月15日。 樓肇明編,《八十年代台灣散文選》,北京:中國友誼出版公司,1991年2月。 黎運漢、張維耿編著,《現代漢語修辭學》,台北:書林出版,1991年9月。 鄭明娳 編選,《大學散文選》,台北:業強出版社,1991年10月。 黃重添等著,《台灣新文學概觀》,廈門:鷺江出版社授權,台北:稻江出版社發行,1992年3月。 鄭明娳,《現代散文類型論》,台北:大安出版社,1992年5月。 張大春,《張大春的文學意見》,台北:遠流出版社,1992年5月。 鄭明娳,《現代散文現象論》,台北:大安出版社,1992年8月。 李旺台,《台灣的反對勢力》,五千年出版社,1993年。 劉登翰等編,《臺灣文學史(下卷)》,海峽文藝出版社,1993年1月。 何寄澎編,《散文批評卷》,當代台灣文學評論大系5,台北:正中書局,1993年5月。 林燿德編,《文學現象卷》,當代台灣文學評論大系2,台北:正中書局,1993年5月。 許極燉主編,《尋找台灣新座標》,台北:自立晚報社文化出版部,1993年7月。 劉思謙,《娜拉言說-中國現代女作家心路紀程》,上海文藝,1993年12月。 汪文頂,《現代散文史論》,福州:福建教育出版社,1994年2月。 古遠清,《臺灣當代文學理論批評史》,武漢出版社,1994年8月。 盛英著,《二十世紀女性文學史》,大陸:天津人民出版社,1995年。 包澹寧著,李連江譯,《筆桿裡出民主-論新聞媒介對台灣民主化的貢獻》,台北:時報文化出版,1995年。 向陽,《喧嘩、吟哦與嘆息-台灣文學散論》,台北:駱駝出版社,1996年11月。 鄭明娳,《現代散文》,台北:三民書局,1999年3月。 楊澤主編,《狂飆的八O年代》,台北:時報文化出版,1999年11月22日。 龍應台等著,陳祖彥主編,《賞心悅讀》,楷達出版社,2000年。 張苙雲主編,《文化產業:文化生產的結構分析》,台北:遠流出版社,2000年。 鍾怡雯,《亞洲華文散文的中國圖象1949—1999》,台北:萬卷樓圖書有限公司,2001年1月。 江宜樺,《自由民主的理路》,台北:聯經出版事業公司,2001年。 張春榮,《現代散文廣角鏡》,台北爾雅出版社,2001年5月1日。 楊素芬,《台灣報導文學概論》,台北:稻田出版有限公司,2001年9月。 陳芳明,《後殖民台灣:文學史論及其周邊》,台北:麥田出版社,2002年。 趙遐秋、呂正惠編,《台灣新文學思潮史綱》,台北:人間出版社,2002年6月。 周芬伶、鍾怡雯主編,《台灣現代文學教程—散文讀本》,台北:二魚文化,2002年8月。 趙衛民,《散文啟蒙》,台北:名田文化有限公司,2003年10月。 三、期刊論文與報章單篇 林貞羊,〈維護女權不遺餘力〉,《中華日報》,1982年4月6日。 田新彬,〈文壇女「鬥士」龍應台和她的心路歷程〉,《我們的》雜誌,1985年5月。 江靜芳,〈另一面的盲點-讀龍應台評《千江有水千江月》有感〉,《新書月刊》,1985年8月。 羊牧,〈龍應台為我們做了什麼?〉,《臺灣時報》,1985年8月16日。 胡美麗,〈龍應台這個人〉,《新書月刊》,24期,1985年9月。 楊宗潤,〈多來幾個龍應台〉,《新書月刊》,24期,1985年9月。 吳重達,〈請將炮口掉頭轉向-提醒龍應台〉,《新歸線》,13期,1985年9月21日。 洪淑苓,〈文學批評的時代來臨〉,《文訊》,20期,1985年10月。 書宇,〈野地裡的一把火-推介《龍應台評小說》〉,《育達週刊》,1985年10月17日。 書宇,〈野地裡的一把火-推介《龍應台評小說》〉,《爾雅人》,1987年9月30日。 王德威,〈考蒂莉亞公主傳奇-評《龍應台評小說》〉,《中外文學》,4卷6期,1985年11月。 余懷璘,〈請澆滅火把吧!-讀龍應台大作感言〉,《青年日報》,1985年11月19日。 言正,〈批評者應有的態度〉,《青年日報》,1985年11月27日。 林柏燕,〈評《龍應台評小說》〉,《中華日報》,11版,1985年11月28日。 又生,〈從「又是公假」談起〉,《臺灣日報》,「春雨集」特輯,1985年12月13日。 李正寰,〈「火把」與「火災」〉,《青年日報》,1985年12月14日。 余懷璘,〈亮出中國魂〉,《青年日報》,1985年12月16日。 唐震寰,〈也聽聽我們的!〉,《臺灣日報》,「春雨集」特輯,1985年12月16日。 又生,〈平心靜氣話「野火」〉,《臺灣日報》,「春雨集」特輯,1985年12月16日。 文言正,〈野火!野火!我賣……醜陋的推銷術〉,《青年日報》,「春風集」特輯,1985年12月17日。 東海,〈臺灣是我的家!〉,《臺灣日報》,「春雨集」特輯,1985年12月18日。 余西蘭,〈踩熄這一點「野火」〉,《青年日報》,11版,1985年12月19日。 余懷璘,〈「二毛子」心態〉,《青年日報》,1985年12月20日。 郭子祥,〈澆熄那把「野火」〉,《臺灣日報》,「春雨集」特輯,1985年12月21日。 羅佛,〈評燒自己家門的「野火」〉,《臺灣日報》,「春雨集」特輯,1985年12月22日。 陳明,〈寵取狹激、辯而偽言、驕而險行〉,《臺灣日報》,1985年12月23日。 曦光,〈一本說謊、不負責任、純粹攬鏡自慰的書〉,《臺灣日報》,1985年12月24日。 李正寰,〈不能再「放野火」了!〉,《青年日報》,「春風集」特輯,1985年12月27日。 蘇不纏,〈「野火」燒不盡,「敵人」認不清〉,《第一線》創刊號,1985年12月27日。 楊和哲,〈野火不足以燎原〉,《掃蕩週刊》,1986年1月15日。 張大春,〈做「指引」?還是做「知音」?〉,《自立晚報》,10版,1986年1月30日∼2月1日。 黃瑞田,〈野火˙野火-讀龍應台《野火集》有感〉,《臺灣時報》,8版,1986年2月21日。 陳幸蕙,〈鮮花與粗磚-龍應台學批評活動的省思〉,《中華日報》,11版,1986年3月25日。 劉觴,〈這是一把怎樣的「野火」?〉,《文學家》,5期,1986年3月。 陳幸蕙等,〈會談龍應台〉,《文學家》,5期,1986年3月。 林若塵,〈粗磚與野火-專訪龍應台的出版人〉,《文學家》,5期,1986年3月。 天下雜誌編輯部,〈龍應台談「野火集」-把面具撕破來看〉,《天下》雜誌,1986年3月。 夏河洛,〈期待一個更有良知的知識界-敬致龍應台〉,《在野報導》,1986年4月19日。 皮介行,〈別澆熄那把野火〉,《在野報導》,1986年4月19日。 張國財,〈評龍應台的社會批評-野火集〉,《民眾日報》,1986年5月24日。 季季,〈燃起美麗的野火〉,《希望我能有條船》,1986年6月1日。 張世民,〈我看「龍評」與「評龍」〉,《民眾日報》,1986年6月6日。 苦苓,〈評「龍應台風暴」〉,《文藝》,1986年8月。 孟浪,〈讀「野火集」〉,《臺灣新聞報》,1986年9月24日。 杭之,〈大眾市場中的「野火現象」〉,《中國時報》,1987年6月19日。 劉春城,〈送龍應台序〉,《自立晚報》,10版,1986年7月27日。 符芝瑛,〈龍應台離台前夕的批評與辯護-期待一個健康蓬勃批評的社會〉,《中國論壇》,22卷9期, 1986年8月。 何聖芬,〈期待一個華文文學競技場-訪龍應台解嚴後的文學發展〉,自立晚報,1986年8月31日。 陳翠蓮,〈人們已成熟到不能接受欺騙-專訪龍應台〉,《自立晚報》,1987年8月28日。 趙麟,〈又見「野火」亂燒!〉,《臺灣日報》,1987年8月30日。 書宇,〈野地裡的一把火〉,《爾雅人》,1987年9月30日。 許水綠,〈臺灣意識和龍應台評小說〉,《新文化》,1期,1989年2月。 黃碧端,〈銳利的觀察者〉,《聯合文學》,1992年5月13日。 蕭蔓,〈龍應台,你的名字是女人〉,《光華》雜誌,19卷6期,1994年6月。 劉瑞芬,〈從「野火」的辛辣到母性的包容-闊別十年的龍應台〉,《光華》雜誌,19卷6期,1994年6月。 王之嬿記錄,〈木材商與牙籤販-李敖談「野火集」〉,《中國時報》,1994年8月21日。 王德威,〈海德堡之死-評龍應台「在海德堡墜入情網」〉,《聯合文學》,1994年9月。 劉紹銘,〈水至清則無魚-看龍應台在新加坡點火〉,《中國時報》,23版,1994年12月16日。 舒非,〈知性有餘感性不足-龍應台最在乎的一本書〉,《明報月刊》,1995年。 許添瑞,〈野火女子點燃情火〉,《自立早報》,23版,1995年4月9日。 楊棄,〈評論的求全與創作的示範《在海德堡墜入情網》〉,《中國時報》,42版,1995年4月20日。 羅金義,〈溫柔而堅定地把心靈開放-讀「乾杯吧!托瑪斯曼」〉,《讀書人》,1996年。 胡梓,〈打破禁忌的「野火現象」〉,《書香月刊》,1996年。 薛化元,〈從「反共擁蔣」掛帥到人權意識的抬頭-《自由中國》與執政當局互動的一個歷史考察〉, 《法政學報》,第五期,1996年1月。 邱婷,〈龍應台印證不確定的年代〉,《民生報》,15版,1996年4月14日。 董青牧,〈龍應台出新書想找新的起點〉,《民眾日報》,1996年4月27日。 廖輝英,〈八○年代女性創作與社會文化之關係〉,《文訊》雜誌,1996年5月。 鹿憶鹿,〈野火以後的春風-讀龍應台「乾杯吧!托瑪斯曼」〉,《文訊》,1996年7月。 李芳蓓,〈女人美麗的權利〉,《青年日報》,1997年3月26日。 徐開塵報導,〈看臺灣的變,談台灣的變〉,《民生報》,1997年9月14日。 〈龍應台冷眼看《不安》〉,《中國時報》,43版,1997年9月18日。 鄭一青,〈打破忍不住的沈默-龍應台〉,《天下》雜誌,200期,1998年1月。 楊照,〈批判旋風-龍應台的《野火集》〉,《中國時報》,1998年2月3日。 孫康宜,〈龍應台的不安和她的上海男人〉,《中國時報》,1998年12月31日。 王敏,〈關於龍應台的創作思考〉,《河南師範大學學報》(哲學社會科學版),25卷6期,1998年。 郭士榛報導,〈龍應台出書,強調人本關懷〉,《中央時報》,1999年9月4日。 陳文芬報導,〈龍應台百年思索難掩疑惑〉,《中國時報》,1999年9月4日。 楊照,〈率直與憨膽〉,《中國時報》,1999年9月7日。 楊照採訪龍應台,王妙如記錄整理,〈不安的野火〉,《中國時報》,1999年9月28∼30日。 李欣倫記錄,龍應台、楊澤、楊照等出席,〈來自地球村的憨因仔〉,《中國時報》〈人間〉副刊, 1999年10月3日。 彭蕙仙報導,〈從野火集到百年思索〉,《中央日報》,1999年11月1日。 方美芬,〈點燃批評野火的鬥士-龍應台〉,《全國新書資訊月刊》,1999年12月。 李瑞騰,〈不妥協的身姿〉,《聯合報》,1999年12月20日。 楊照,〈李敖與文學〉,《中國時報》,2000年2月17日∼18日。 朱嘉雯,〈龍應台「百年思索」〉,《文訊》,2000年10月。 黃曜隆,〈南海血書與電影「英雄」〉,《自由時報》,2003年2月7日。 五、學位論文 許瑩月,《從臺灣報紙副刊探索現代中國知識分子的文化關懷及其困境》,輔仁大學, 大眾傳播研究所碩士論文,80學年度。 賴永忠,《臺灣地區雜誌發展研究-從日據時代到民國八十一年(上、下冊)》,政治大學, 新聞研究所碩士論文,81學年度。 秦鳳英,《知識菁英對威權體制民主化之影響研究-台灣「大學雜誌」個案分析》,台灣師範大學, 公民訓育研究所碩士論文,81學年。 施惇怡,《從報紙副刊的內容看副刊的功能-以解嚴後四家報紙副刊為例》,國立政治大學, 新聞研究所碩士論文,86學年度。 張靜倫,《顛簸躓仆來時路----論戰後台灣的女人、婦運與國家》,國立臺灣大學, 社會學研究所碩士論文,87學年度。 鍾怡雯,《亞洲華文散文的中國圖象1949—1999》,臺灣師範大學,國文研究所博士論文,88學年度。 林雯,《黨外雜誌與民族主義-七、八○年代台灣的民族主義論述》,東吳大學社會學系碩士論文,89學年。 曾遊娜,《李氏春秋:李敖的文字世界》,臺北市立師範學院,應用語言文學研究所,90學年度。 林惠萱,《臺灣黨外雜誌之研究-以「蓬萊島」系列為例》,國立中興大學,歷史研究所,90學年度。id NH0925045008 sid 895102 cfn 0 / id NH0925045009 auc 王者馨 tic 神韻詩表現手法特色研究--以王士禎所選絕句為討論範疇 adc 蔡英俊 ty 碩士 sc 國立清華大學 dp 中國文學系 yr 92 lg 中文 pg 124 kwc 神韻 kwc 王士禎 kwc 唐賢三昧集 kwc 間隔朦朧 kwc 行動表徵 abc 在中國詩歌史上,有所謂的「神韻詩」,它們並不是在標舉「神韻」之下的刻意創作,而只是同樣來自於某種審美意識的一種不自覺形成的創作流脈。其實在中國文學史上並無確定的「神韻詩」類,我們在這裡為了討論的方便,便將王士禎所標舉的,以及選集裡經他認可的詩作,稱為神韻詩。 tc 第一章、 緒論 …………………………………………………………………………………………..1 第一節、 問題的提出……………………………………………………………………………1 第二節、 前人研究成果…………………………………………………………………………7 第三節、 研究範圍與方法……………………………………………………………………..15 一、 研究範圍……………………………………………………………………………..15 二、 研究方法……………………………………………………………………………..18 第二章、 神韻詩中的知覺感受與意象經營…………………………………………………………..21 第一節、 動態的美感…………………………………………………………………………..22 一、 情感的綿延流動—流水意象………………………………………………………..23 二、 心緒的活躍與自主的選擇—飛鳥與飛雪意象……………………………………..29 第二節、 孤冷幽深的氛圍……………………………………………………………………..34 一、 神韻詩中的「孤獨」―一種不須以對比凸顯的自足狀態………………………...34 二、 深幽—捨棄同化經驗的當下感知…………………………………………………..38 第三節、 時間知覺與空間經驗的交遇………………………………………………………..43 一、 線性、循環與逆轉統整的時間知覺………………………………………………..43 二、 從「空間」到「地點」―記憶、認同感與特定時間經驗的投入………………...47 三、生存空間的掌握與心靈感知的超越—方位的運用………………………………...51 第三章、 神韻詩的表現特色—倒影藝術……………………………………………………………..56 第一節、 以小見大……………………………………………………………………………..56 一、 選擇最具生發性的時刻……………………………………………………………....57 二、 意象空間的隱蔽與明朗………………………………………………………………59 第二節、 間隔朦朧的距離感……………………………………………………………...…...64 一、 知覺感受的間隔朦朧…………………………………………………………………64 二、 心靈上的間隔朦朧……………………………………………………………………70 第四章、 神韻詩的語言特徵………………………………………………………………………..…75 第一節、 對句的設計…………………………………………………………………………..75 一、 形成對比的對句…………………...………………………………………………….77 二、 兩相呼應的對句………………………………………………………………………78 三、 對句與疊字的結合……………………………………………………………………79 第二節、 動態意象與靜態意象的營造………………………..………………………………82 一、 動態意象的經營…………………………...………………………………………….82 二、 靜態意象的經營………………………………………………………………………86 第三節、 疊字的大量使用……………………………………………………………………..89 一、 語氣的強化……………………………………………………………………………90 二、 以形容詞的重疊宣洩情感……………………………………………………………91 三、 以名詞的重疊強調事物的紛繁眾多……………………………..…………………..92 四、 少見具音樂感的摹聲疊字……………………………………………………………93 五、 從出現位置看疊字在神韻絕句中的積極作用………..……………………………..94 第五章、 由唐詩選集看王士禎神韻說審美角度—王士禎《唐賢三昧集》與李攀龍《唐詩選》、沈德潛《唐詩別裁集》選詩比較………………………………………………..…………..…96 第一節、 從選集所選詩人看王士禎論詩角度………………………………………………..96 第二節、 從王士禎獨選之詩看神韻詩表現手法……………………………………………104 第六章、 結論…………………………………………………………………………………………110 第七章、 參考書目……..……………………………………………………………………………..118rf 參 考 書 目 【專著】 (以漢語拼音順序排列) 1. 蔡英俊,《抒情的境界》,台北:聯經出版社,1982。 2. 蔡英俊,《比興物色與情景交融》,台北:大安出版社,1995。 3. 蔡英俊,《中國古典詩論中「語言」與「意義」的命題--「意在言外」的用言方式與「含蓄」的美典》,台北:學生書局,2001。 4. 陳伯海、黃剛、張寅彭,《唐詩論評類編》,濟南:山東教育出版社,1993。 5. 陳國球,《鏡花水月》,台北:東大圖書出版公司,1987。 6. 陳鵬翔,《主題學理論與實踐—抽象與想像力的衍化》,台北:萬卷樓圖書公司,2001。 7. 陳運良,《中國詩學體系論》,北京:中國社會科學出版社,1992。 8. 陳植鍔,《詩歌意象論》,北京:中國社會科學出版社,1992。 9. 成復旺,《神與物游/論中國傳統審美方式》,北京:中國人民大學出版,1989。 10. 成偉鈞、唐仲揚、向宏業主編,《修辭通鑑》,台北:建宏出版社,1996。 11. 荻原朔太郎著,徐復觀譯,陳淑女校訂,《詩的原理》,台北:學生書局,1989。 12. 【宋】鄧椿,《畫繼》,台北:藝文出版社,1966。 13. 【宋】范晞文,《對床夜語》,江蘇:廣陵古籍出版社,1965。 14. 富壽蓀選注,劉拜山、富壽蓀評解,《千首唐人絕句》,上海:上海古籍出版社,1985。 15. 高步瀛,《唐宋詩舉要》,台北:宏業書局,1961。 16. 高木森,《中國繪畫思想史》,台北:東大出版社,1992。 17. 高楠,《藝術心理學》,高雄:復漢出版社,1993。 18. 古遠清、孫光萱,《詩歌修辭學》,漢口:湖北教育出版社,1995。 19. 郭紹虞,《中國詩學批評新論》,台北:蒲公英出版社,1985。 20. 韓林德,《境生象外》,北京:三聯書店,1996。 21. 【宋】洪邁元本、【清】王士禎選,《唐人萬首絕句選》,台北:藝文印書館,1970。 22. 【明】胡應麟,《詩藪》,台北:正生書局,1973。 23. 胡曉明,《萬川之月—中國山水詩的心靈境界》,北京:三聯書店,1992。 24. 黃慶萱,《修辭學》,台北:三民書局,1985。 25. 黃永武,《中國詩學鑑賞篇》,台北:巨流圖書公司,1999。 26. 黃永武,《中國詩學設計篇》,台北:巨流圖書公司,1996。 27. 黃盛雄,《唐人絕句研究》,台北:文史哲出版社,1979。 28. 黃維樑,《中國詩學縱橫論》,台北:洪範書店,1986。 29. 黃保真、蔡鐘翔、成復旺,《中國文學理論史》,北京:北京出版社,1991。 30. 黃景進,《王漁洋詩論之研究》,台北:文史哲出版社,1980。 31. 簡政珍編,《當代台灣文學評論大系․文學理論卷》,台北:正中書局,1993。 32. 柯慶明,《境界的再生》,台北:幼獅文化,1977。 33. 柯慶明,《中國文學的美感》,台北:麥田出版社,2000。 34. 柯慶明,《文學美縱論》,大安出版社,2000。 35. 【明】李攀龍,《唐詩選》,四庫全書存目叢書/總集類,四庫全書存目叢書編纂委員會編纂,台北:莊嚴文化事業,1997。 36. 李清筠,《時空情境中的自我影像》,台北:文津出版社,2000。 37. 李元洛,《詩美學》,台北:東大圖書公司,1990。 38. 李浩著,《唐詩的美學闡釋》,合肥:安徽大學出版社,2000。 39. 林淑貞,《中國詠物詩「託物言志」析論》,台北:萬卷樓圖書公司,2002。 40. 林東海,《詩法舉隅》,上海:上海文藝出版社,1984。 41. 李豐楙、劉苑如主編,《空間、地域與文化—中國文化空間的書寫與闡釋》,中央研究院中國文哲研究所,2002。 42. 劉雨,《寫作心理學》,台北:麗文文化,1995。 43. 劉世南,《清詩流派史》,台北:文津出版社,1995。 44. 劉若愚著,杜國清譯,《中國詩學》,台北:幼獅文化公司,1977。 45. 《美學基本原理》,中和:谷風出版社,1986。 46. 米蓋爾˙杜夫海納(Mikel Dufrenne)著《美學與哲學》,北京:中國社會科學出版社,1995。 47. 莫礪鋒編,《神女之探尋》,上海:上海古籍出版社,1994。 48. 歐麗娟,《杜詩意象論》,台北:里仁出版社,1997。 49. 歐麗娟,《唐詩的樂園意識》,台北:里仁書局,2000。 50. 皮朝綱,《中國古代文藝美學概要》,成都:四川省社會科學院,1986。 51. 錢谷融、魯樞元,《文學心理學》,台北:新學識文教出版中心,1990。 52. 錢鍾書,《管錐篇》,香港:中華書局,1996。 53. 錢鍾書,《七綴集》,上海:上海古籍出版社,1985。 54. 錢鍾書,《談藝錄》,香港:中華書局,1984。 55. 仇小屏,《篇章結構類型論(上)(下)》,台北:萬卷樓出版社,2000。 56. 仇小屏,《古典詩詞時空設計美學》,台北:文津出版社,2002。 57. 《全唐詩》,【清】聖祖御製,香港:中華書局,1996。 58. 【清】沈宗騫,《芥舟學畫編》,續修四庫全書編纂委員會,上海;上海古籍出版社,1995。 59. 【清】沈德潛,《說詩晬語》,香港:中華書局,1936。 60. 【清】沈德潛,《唐詩別裁集》,香港:中華書局,1977。 61. 盛子潮、朱水涌,《詩歌型態美學》,廈門:廈門大學出版社,1987。 62. (宋)蘇東坡,《蘇東坡集》,台北:台灣商務書局,1965。 63. Philip koch,《孤獨》,台北:立緒文化,1997。 64. 任仲倫,《遊山玩水—中國山水審美文化》,上海:同濟大學出版,199。1 65. 施逢雨,《李白詩的藝術成就》,台北:大安出版社,1992。 66. 施友忠,《二度和諧及其他》,台北:聯經出版社,1976。 67. 【清】沈德潛,《說詩晬語》,上海:上海書店,1994。 68. 【清】沈德潛,《唐詩別裁集》,台北:中華書局,1980。 69. 松浦友久著,孫昌武、鄭天剛譯,《中國詩歌原理》,台北:洪葉文化,1993。 70. 滕守堯,《審美心裡描述》,成都:四川人民出版社,1998。 71. 童慶炳,《中國古代心理詩學與美學》,香港,中華書局,1997。 72. 王國瓔,《中國山水詩研究》,台北:聯經出版社,1996。 73. 【清】王士禎編纂,《十種唐詩選》,台北:廣文書局,1971。 74. 【清】王士禎,《帶經堂詩話》,北京:人民文學出版社,1998。 75. 【清】王士禎選,吳退庵、胡甘亭輯註,《唐賢三昧集箋註》,台北:廣文書局,1968。 76. 【明】王士貞,《藝苑卮言校注》,濟南:齊魯書社,1992。 77. 王隆升,《唐代登臨詩研究》,台北:文津出版社,1998。 78. 王隆升,《宋詞的登望意識與境界》,台北:文津出版社,1998。 79. 王維撰,趙殿成箋注,《王右丞集箋注》,上海:上海古籍出版社,1984。 80. 王運熙、顧易生主編,《中國文學批評史》,上海:上海古籍出版社,1985。 81. 王小舒,《神韻詩史研究》,台北:文津出版社,1994。 82. 王秀雄,《美術心理學》,高雄:三信出版社,1975。 83. 王志健,《文學論》,台北:正中出版社,1982。 84. 韋勒克(Wellek,Rene)、華倫(Warren, Austin)同撰,王夢鷗,許國衡同譯,《文學論—文學研究方法論》,台北:志文出版社,1976。 85. 吳代芳、李培坤,《唐人絕句藝術談》,西安:陝西人民教育出版社,1993。 86. 吳曉,《意象符號與情感空間》,北京:中國社會科學出版社,1993。 87. 吳戰壘,《中國詩學》,上海:東方出版社,1997。 88. 吳調公,《神韻論》,北京:人民文學出版社,1991。 89. 伍蠡甫編,《山水與美學》,台北:丹青出版社,1987。 90. 徐復觀,《中國藝術精神》,台北:學生書局,1984。 91. 謝凝高,《山水審美—人與自然的交響曲》,北京:北京大學出版社,1990。 92. 雅克•馬利坦著,劉有元、羅選民等譯,《藝術與詩中的創造性直覺》,北京:三聯書店,1992。 93. 顏忠賢,《影像地誌學》,台北:萬象出版社,1996。 94. 【元】楊載,《詩法家數》,台北:莊嚴文化事業,1997。 95. 楊辛、甘霖,《美學原理》,台北:曉原出版社,1991。 96. 楊永邦,《審美型態通論》,台北:南京大學出版社,1991。 97. 姚一葦,《欣賞與批評》,台北:聯經出版社,1989。 98. 葉嘉瑩,《迦陵談詩二集》,台北:東大圖書股份有限公司,1985。 99. 葉維廉,《比較詩學》,台北:東大圖書公司,1988。 100. 【宋】葉夢得,《石林詩話》,台北:新興書局,1976。 101. 尹在勤,《詩人心裡構架》,西安:華岳文藝出版社,1987。 102. 袁行霈,《中國詩歌藝術研究》,北京:北京大學出版社,2001。 103. 袁行霈、孟二冬、丁放,《中國詩學通論》,合肥:安徽教育出版社,1994。 104. 臧維熙主編,《中國山水的藝術精神》,上海:學林出版社,1994。 105. 張春榮,《修辭新思維》,台北:萬卷樓圖書有限公司,2001。 106. 張健,《滄浪詩話研究》,台北:國立台灣大學文學院,1966。 107. 張健,《古典到現代》,台北:三民書局,1996。 108. 張健,《王士禎論詩絕句三十二首箋證》,台北:文史哲出版社,1994。 109. 【唐】張彥遠,《歷代名畫記》,台北:台灣商務出版社,1966。 110. 張思齊,《詩文批評中的對偶範疇》,台北:文津出版社,1995。 111. 張紅雨,《寫作美學》,台北:麗文文化,1996。 112. 鄭毓瑜,《六朝情境美學》,台北:里仁書局,1997。 113. 周嘯天,《唐絕句史》,重慶:重慶出版社,1987。 114. 周發祥,《西洋文論與中國文學》,南京:江蘇教育出版社,1997。 115. 朱光潛,《談美》,台北:萬卷樓圖書公司,1998。 116. 朱光潛,《詩論》,上海:上海古籍出版社,2001。 117. 朱光潛,《論美與美感》,東美出版社,1983。 118. 宗白華,《美學散步》,台北:洪範書店,1987。 119. 宗白華,《美學與意境》,台北:淑馨出版社,1989。 120. 宗白華,《美從何處尋》,台北:蒲公英出版社,1986。 121. 祖保泉,《司空圖詩品註釋集譯文》,商務印書館,1966。 【期刊論文】 1. 陳器文,〈唐宋絕句意象美之探討〉《中興大學文史學報》,1974年5月,第4期,頁69—109。 2. 崔元和,〈王士禎詩學中的審美創造論〉《山西大學學報》(哲學社會科學版),1992年第3期,頁32—36。 3. 杜松柏,〈絕句的結構研究〉《興大中文學報》,1993年1月,頁57—66。 4. 傅道彬,〈雨:一個古典意象的原型分析〉《中國古代近代文學研究》,1993年4月,頁11—29。 5. 高友工,<律詩的美典(上)、(下)>《中外文學》第十八卷第二期、第三期,臺北:中外文學月刊社,1989。 6. 高友工、梅祖麟著,黃宣範譯,〈論唐詩的語法用字與意象(上)(中)(下)〉《中國古典文學論叢:冊一.詩歌之部》,中外文學月刊社,1976。 7. 胡立耘,〈王維山水詩中的景物語彙集其意義指向〉《中國文化月刊》,247期,2000年10月,頁52—61。 8. 黃繼立,《「神韻」詩學譜系研究—以王漁洋為基點的後設考察》,成功大學中文系90學年度碩士論文。 9. 黃景進,〈王漁洋「神韻說」重探〉《第一屆國際清代學術研討會論文集》,1993 頁539—564。 10. 柯慶明,〈試論王維詩中常見的一些技巧和象徵〉《臺靜農先生八十大壽論文集》,頁783—820。 11. 李劍波,〈神韻說的清遠沖淡的美學要求〉《齊齊哈爾大學學報》(哲學社會科學版),2001年11月,頁81—83。 12. 李致諭,《王士禛「神韻說」研究》,中正大學中文系89學年度碩士論文。 13. 劉承華,〈中國藝術之「韻」的時間表現型態〉《文藝研究》,1997年6月,頁19—27。 14. 呂怡菁,《解讀與重建王士禎「神韻說」與王國維「境界說」》,清華大學中文系84學年度碩士論文。 15. 呂怡菁,《流動與靜止--從空間感知方式論神韻詩朦朧間隔的感知與呈現方式》,清華大學中文系89學年度博士論文。 16. 毛文芳,〈論詩畫融通—以王漁洋「神韻詩」與董其昌「逸品畫」之關係為例〉《鵝湖月刊》,第22卷第1期,頁35—41。 17. 孫海沙,〈王維「詩中畫」的動感審美空間〉《齊齊哈爾大學學報》(社會科學版),2001年3月,頁48—51。 18. 王立,〈中國古典文學中的流水意象〉《中國古代近代文學研究》,1994年4月,頁5—18。 19. 王小舒,〈神韻詩學研究百年回顧〉《文史哲》,2000年第6期。 20. 吳明益,〈從詩史觀到理想典律—王漁洋擇定選集所映現的詩歌觀點與意涵〉《中國古典文學研究》,第一期,1999年6月,頁113—136。 21. 吳宗淵,〈疊字在古典詩歌中的狀況與修辭功能〉《寧夏大學學報》(社會科學版),第17卷1995年第4期,頁61—66。 22. 許清雲,〈論唐人絕句含蓄美的表現手法〉《東吳中文學報》,1997年6月,頁139—158。 23. 易新宙,《神韻派詩論之研究》,政治大學中文系71學年度碩士論文。 24. 尤雅姿,〈文學世界中的空間創設〉《中國文哲研究通訊》,第十卷第三期,頁153—167。 25. 張靜尹,《清代詩學神韻說研究》高雄師範大學國文系90學年度博士論文。 26. 周寅賓,〈論唐詩意象的心理特徵〉《中國古代近代文學研究》,頁111—117。 27. 莊文福,〈王維送別詩之意象選擇與創造〉《中國文化大學中文學報》,2002年3月。頁275—290id NH0925045009 sid 895114 cfn 0 / id NH0925045010 auc 賴昶亙 tic 從「體道自然」到「聖人有情」--論王弼思想在《老子注》、《周易注》間的轉折 adc 林聰舜 ty 碩士 sc 國立清華大學 dp 中國文學系 yr 92 lg 中文 pg 109 kwc 王弼 kwc 聖人有情 kwc 老子注 kwc 周易注 abc 論文摘要 rf 參 考 書 目 〔民國以前,依著成年代區分; 民國之後,依作者姓名筆劃排列,同一作者依出版年次先後排列〕 一、專著 (一)古籍 (民國以前,先依四部分類,後依著成年代區分): 〔唐〕孔穎達等疏:《十三經注疏》,京都:中文出版社,1972年九月再版。 〔漢〕班固撰:《漢書》,北京:中華書局,1997年6月十刷。 〔魏〕荀悦:《前漢紀》,台北:華正書局,民國63年7月台一版。 〔晉〕陳壽撰,盧弼集解:《三國志集解》,台北,新文豐出版公司,民國64年3月初版。 〔宋〕范曄撰:《後漢書》,北京:中華書局,1996年5月八刷。 〔魏〕王弼著,樓宇烈校釋:《王弼集校釋》,臺北:華正書局,民國81年初版。 〔唐〕李鼎祚輯:《周易集解》,臺北:臺灣商務印書館,1996年。 〔清〕唐晏:《兩漢三國學案》,臺北:仰哲出版社,民國76年第一版。 (二)今人著作(以姓名筆劃先後區分): 3 小野澤精一 等:《氣的思想》,上海,上海人民出版社,1999年4月第四刷。 4 王中江:《道家形而上學》,上海:上海文化出版社,2001年第一版。 王葆玹:《老莊學新探》,上海:上海文化出版社,2002年第一版。 王葆玹:《西漢經學源流》,臺北:東大圖書股份有限公司,民國83年初版。 王葆玹:《玄學通論》,臺北:五南圖書初版有限公司,民國85年初版。 王葆玹:《正始玄學》,山東:齊魯書社,1987年9月。 王葆玹:《王弼評傳》,廣西:廣西教育出版社,1997年7月。 王曉毅:《王弼評傳附何晏評傳》,南京:南京大學出版社,1996年2月。 5 皮錫瑞:《經學通論》,臺北:河洛圖書出版社,民國63年12月初版。 皮錫瑞:《經學歷史》,臺北:藝文印書館,民國89年11月初版四刷。 6 牟宗三:《周易的自然哲學與道德涵義》,臺北:文津出版社,民國77年4月。 牟宗三:《才性與玄理》,臺北:臺灣學生書局,民國82年修訂八版。 牟宗三:《周易哲學講演錄》,臺北:聯經出版事業股份有限公司,2003年7月出版。 朱伯崑:《易學哲學史》,臺北:藍燈文化事業股份也有限公司,民國80年初版。 朱伯崑主編:《易學漫步》,臺北:臺灣學生書局,1996年初版。 朱曉海:《讀易小識》,臺北:文史哲出版社,民國77年初版。 7 李申:《道教本論》,上海:上海文化出版社,2001年第一版。 李明輝編:《中國經典詮釋傳統》儒學篇,臺北:財團法人喜瑪拉雅研究發展基金會,民國91年初版。 吳冠宏:《聖賢典型的儒道義蘊試詮—以舜、甯武子、顏淵與黃憲為釋例》,臺北:里仁書局,民國89年11月初版。 何啟民:《魏晉思想與談風》,臺北:台灣學生書局,民國79年。 余敦康:《何晏王弼玄學新探》,山東:齊魯書社,1991年7月。 汪惠敏:《三國時代之經學研究》,臺北:漢京文化事業有限公司,民國70年4月初版。 李學勤:《周易經傳溯源》,長春:長春出版社,1992年8月。 8 周立升《兩漢易學與道家思想》,上海:上海文化出版社,2001年第一版。 金春峰:《周易經傳疏理與郭店楚簡思想新釋》,臺北:台灣古籍初版有限公司,2003年初版。 屈萬里:《先秦漢魏易例述評》,臺北:聯經出版事業公司,民國73年初版。 林麗真:《王弼及其易學》,臺北:國立臺灣大學文學院,民國66年初版。 林麗真:《王弼》,臺北:東大圖書股份有限公司,民國77年初版。 10 高亨:《周易雜論》,山東:齊魯書社,1979年。 高亨:《周易大傳今注》,山東:齊魯書社,1979年。 徐芹庭:《魏晉七家易學研究》,臺北:成文出版社有限公司,民國66年初版。 袁保新:《老子哲學之詮釋與重建》,臺北:文津出版社,民國80年9月初版。 徐斌:《魏晉玄學新論》,上海:上海古籍出版社,2000年。 徐復觀:《中國人性論史》,臺北;臺灣商務印書館,1994年4月第11刷。 唐翼明:《魏晉清談》,臺北:東大圖書股份有限公司,民國81年10月初版。 高懷民:《兩漢易學史》,臺北:中國學術著作獎助學會,民國59年12月初版。 高齡芬:《王弼老學之研究》,臺北:文津出版社,民國81年1月初版。 11 許抗生:《三國兩晉玄、佛、道簡論》,山東:齊魯書社,1991年12月。 許抗生:《魏晉思想史》,臺北:桂冠圖書公司,1992年12月初版。 黃沛榮:《周易彖像傳義理探微》,臺北:萬卷樓圖書有限公司,2001年初版。 強昱:《從魏晉玄學到初唐重玄學》,上海:上海文化出版社,2002年第一版。 郭彧:《京氏易傳導讀》,山東:齊魯書社,2002年第一版。 郭梨華:《王弼之自然與名教》,臺北:文津出版社,民國84年12月初版。 章啟群:《論魏晉自然觀》,北京:北京大學出版社,2000年第一版。 陳鼓應:《易傳與道家思想》,臺北:臺灣商務印書館,1994年9月初版。 陳鼓應:《道家文化研究》第十二輯,北京:三聯書店,1998年1月第一版。 陳鼓應:《道家文化研究》第十四輯,北京:三聯書店,1998年7月第一版。 陳鼓應:《道家文化研究》第十七輯,北京:三聯書店,1999年8月第一版。 陳鼓應:《道家易學建構》,臺北:台灣商務印書館,2003年初版。 黃慶萱:《魏晉南北朝易學書考佚》,臺北:幼獅文化事業公司,民國64年11月。 12 賀昌群 等:《魏晉思想》甲編、乙編,臺北:里仁書局,民國84年初版。 13 萬繩楠:《陳寅恪魏晉南北朝史講演錄》,臺北:昭明出版社,1999年第一版。 楊樹達:《周易古義》,臺灣;台灣力行書店,未注出版年月。 楊儒賓:《先秦道家道的觀念的開展》,臺北:國立臺灣大學出版委員會,民國76年初版。 楊儒賓編:《中國經典詮釋傳統》文學與道家經典篇,臺北:財團法人喜瑪拉雅研究發展基金會,民國91年初版。 14 廖名春:《周易經傳與易學史新論》,山東:齊魯書社,2001年8月。 熊鐵基:《中國老學史》,福建:福建人民出版社,1997年7月二刷。 15 劉大鈞:《象數易學研究》第三輯,成都:巴蜀書社,2003年第一版。 劉笑敢:《老子》,臺北:東大圖書股份有限公司,民國86年4月初版。 17 謝大寧:《歷史的嵇康與玄學的嵇康》,臺北:文史哲出版社,民國86年初版。 戴璉璋:《易傳之形成及其思想》,臺北:文津出版社,1989年初版。 戴璉璋:《玄智、玄理與文化發展》,臺北:中央研究院中國文哲研究所,民國91年初版。 戴君仁:《談易》,臺北:臺灣開明書店,民國84年八版。 鍾肇鵬:《讖緯論略》,臺北:洪葉文化事業股有限公司,1994年初版。 18 韓 強:《王弼與中國文化》,貴州:貴州人民出版社,2001年第一版。 20 蘇東天:《易老子與王弼注辨義》,北京:文化藝術出版社,1996年第一版。 嚴靈峯:《易學新論》,臺北:正中書局,民國58年初版。 嚴靈峯編輯:《無求備齋易經集成》,臺北:成文出版社,1976年。 21 顧頡剛等:《古史辨》第三冊,臺北:藍燈文化事業股份有限公司,民國82年二版。 二、論文 (一)期刊、單篇論文: 4 王曉毅:〈王弼易學概述〉,《中國文化月刊》179期,民國83年9月。 王曉毅:〈王弼玄學的歷史評論〉,《中國文化月刊》194期,民國84年12月。 5 白恩姬:〈王弼與歐陽建的言意之辨研究〉,《鵝湖月刊》總第211期,1993年1月。 6 江淑君:〈論王弼注老子之思維方式〉,《鵝湖月刊》第二O七號,民國84年1月。 江淑君:〈王弼易注玄學思想探述〉,《鵝湖月刊》第二五五號,民國85年9月。 江淑君:〈王弼、郭象玄解《論語》人性觀析論〉,《含章光化—戴璉璋先生七秩哲誕論文集》,民國91年12月。 7 吳冠宏:〈何晏「聖人無情說」試解—兼論關於王弼「聖人有情說」的爭議〉,《台大中文學報》,1997年6月。 杜保瑞:〈王弼哲學的方法論探究〉,《中華易學》十九卷9-11期,民國88年1月。 李周昌:〈王弼周易略例評議〉,《孔孟學報》第五十八期,民國78年9月。 何澤恆:〈老子寵辱若驚章舊義新解〉,《文史哲學報》第49期,民國87年12月。 何澤恆:〈孔子與易傳相關問題覆議〉,《臺大中文學報》第十二期,2000年5月。 8 金起賢:〈王弼易學與象數之關係〉上、下,《中華易學》182-183期,民國84年4-5月。 林平和:〈敦煌博二六一九、三八七二號唐寫本周易王弼注殘卷書後〉,《人文學報》第十一期,82年6月。 周大興:〈王弼性其情的人性遠近論〉,《中國文哲研究集刊》第十六期,2000年3月。 周大興:〈自然或因果—從東晉玄佛之交涉談起〉,《中國文哲研究集刊》第二十二期,2003年3月。 周杏芬:〈試探聖人無情與有情之義〉,《中國文化月刊》184期,民國84年2月。 林聰舜:〈王弼易注對孔老之體認〉,《孔孟月刊》第十八卷第十期,民國69年6月。 林聰舜:〈玄學式的體制與反體制論述—魏晉思想的一個思考方向〉,《第三屆魏晉南北朝文學與思想學術研討會論文集》,民國86年9月。 林聰舜:〈王弼思想的一個面向:玄學式的體制合理化論述〉,《清華學報》新二十八卷第一期,民國87年3月。 林麗真:〈魏晉人論情的幾種面向〉,《語言、情性、義理—中國文學的多層面探討國際學術會議論文集》,1996年4月。 林麗真:〈王弼玄學與黃老學的基本歧異〉,《臺大中文學報》第十二期,2000年5月。 林麗真:〈列子書中的聖人觀念及其思維特徵〉,《文史哲學報》第五十二期,2000年6月。 10 秦家懿:〈聖在中國思想史內的多重意義〉,《清華學報》新17卷第1、2期合刊,民國74年12月。 11 郭 沂:〈孔子學易新論〉,《孔子研究》,1997年2月。 張素卿:〈王弼:玄學的典範〉,《台大中文學報》第六期,1994年6月。 陳鼓應:〈彖傳的道家思維方式〉,《哲學研究》,1994年3月。 陳榮灼:〈王弼與郭象玄學思想之異同〉,《東海學報》33卷,民國81年6月。 陳榮灼:〈王弼解釋學思想之特質〉,《臺大文史哲學報》第五十五期,2001年11月。 莊耀郎:〈王弼儒道會通理論的省察〉,《國文學報》第二十三期,民國83年6月。 莊耀郎:〈魏晉玄學的有無論〉,《含章光化—戴璉璋先生七秩哲誕論文集》,民國91年12月。 許繼起:〈鄭玄周易注流變考〉,《經學研究論叢》第十一輯,2003年6月。 12 程元敏:《季漢荊州經學上、下》,《漢學研究》,第四卷一期、第五卷一期,民國75年6月、76年6月。 13 楊儒賓:〈從氣之感通到貞一之道——易傳對占卜現象的解釋與轉化〉,《中國古代思維方式探索》,臺北:正中書局,民國85年初版。 解光宇、孫以楷:〈老子與周易〉《孔子研究》1997年第期。 14 趙士孝:〈易傳陰陽思想的來源〉,《哲學研究》,1996年8月。 蔡振豐:〈道家「道」的言說可能—試論王弼《老子注》中名、稱的區分及使用〉,《中國文學研究》,民國80年5月。 蔡振豐:〈嚴遵、河上公、王弼三家《老子》注的詮釋方法及其對道的理解〉,〈(台大)文史哲學報〉第五十二期,2000年6月。 15 劉笑敢:〈經典詮釋中的方向性問題:以王弼與郭象為例〉,會議論文,東亞儒學中的經典詮釋傳統國際學術研討會,2004年3月14-15日。 蔡振豐:〈嚴遵、河上公、王弼三家《老子》注的詮釋方法極其對道的理解〉,《文史哲學報》,2000年6月。 17 謝大寧:〈試論玄學的分期問題〉,《含章光化—戴璉璋先生七秩哲誕論文集》,民國91年12月。 謝明勳:〈六朝志怪小說「王弼之死」故事考論〉,《大陸雜誌》第八十三卷第三期,民國80年9月。 戴景賢:〈論王弼認識論之立場及其思想來歷〉,《第三屆魏晉南北朝文學與思想學術研討會》,民國86年9月。 戴景賢:〈論王弼郭象思想之歧異〉,《張以仁先生七秩壽慶論文集》,1999年1月。 18 簡博賢:〈王弼易學研究〉,《孔孟學報》第三十七期,民國68年4月。 (二)學位論文: 謝大寧:《從災異到玄學》:臺北:師範大學國文研究所博士論文,民國78年5月。 莊耀郎:《王弼玄學》,臺北:師範大學國文研究所博士論文,民國80年6月。 盧桂珍:《王弼與郭象之聖人論》,臺北:台大中文所碩士論文,民國81年。 郭和杰:《王弼自然思想探微》,臺中:東海大學哲學研究所碩士論文,民國83年。id NH0925045010 sid 905113 cfn 0 / id NH0925045011 auc 吳佳珍 tic 唐宋獄訟故事研究-以文言作品為主 adc 胡萬川 ty 碩士 sc 國立清華大學 dp 中國文學系 yr 92 lg 中文 pg 97 kwc 公案 kwc 獄訟 kwc 文言 kwc 唐宋 kwc 冥判 abc 公案小說是中國文學裡一個特殊的文類,「公案」之名雖始於宋代說話,以敘述犯罪事件的訴訟、審查、判決等內容為主題的故事,在中國小說中已有長遠的歷史發展。大部分的研究者關注焦點多在明清公案作品,本文想討論的是這個題材尚未成為一個專門分類、被大量創作以前,它的發展情形和價值。以「獄訟」而不用「公案」為名,是為了避免文意上的混淆,將宋代說公案以後的作品和早期文言的折獄斷案類故事作個區隔。 rf 古籍 先秦 《左傳》,台北:台灣商務印書館,1970年 先秦 《春秋公羊傳》,台北:台灣商務印書館,1976年 先秦 《周禮》,北京:中華書局,1992年 先秦 《尚書》,台北:台灣商務印書館,1979年 先秦 《春秋公羊傳》,台北:台灣商務印書館,1965年 秦 《睡虎地秦墓竹簡》,台北:里仁書局,民國70年 漢 《太平經》,台北:鼎文書局,1979年7月 漢 王充,《論衡》,台北,中華書局,1976年 漢 班固,《漢書》,台北:鼎文書局,1978年 漢 葛洪,《抱朴子》,台北:國立編譯館,2002年 漢 范曄,《後漢書》,台北:鼎文書局,1978年 梁 僧祐,《弘明集》卷五,台北:新文豐出版社,1974年 晉 干寶,《搜神記》卷十一,台北:世界書局,2003年1月 唐 長孫無忌等撰,《唐律疏議》,台北:臺灣商務印書館,1973年 唐 張鷟,《朝野僉載》,北京;中華書局,1997年 唐 唐臨,《冥報記》,北京:中華書局,1992年 唐 韓愈,《韓愈古文校注彙輯》卷八,台北:國立編譯館,2003年 唐 段成式,《酉陽雜俎》,台北:學生書局,1985年 五代 和凝、和 ,《疑獄集》,上海:復旦大學出版,1988年 宋 《名公書判清明集》,北京:中華書局,2002年6月 宋 鄭克編撰,《折獄龜鑑》,上海:古籍出版社,1988年 宋 桂萬榮,《棠陰比事》,板橋:藝文印書館,1966年 宋 李昉編,《太平廣記》,湖南:岳麓書社出版,1996年 宋 李昉編,《白話太平廣記》,河北:河北教育出版社,1995年6月 宋 耐得翁:《都城記勝》,《叢書集成續:歙問》,上海書店,1994年 宋 吳自牧,《夢梁錄》,台北:文海出版社,1981年 宋 羅燁,《醉翁談錄》,台北:世界書局,1965年 宋 洪邁,《夷堅志》,台北:明文書局,1982年 宋 晁公武,《郡齋讀書志》,台北:廣文出版社,1978年 宋 孫光憲,《北夢瑣言》,台北:藝文印書館,1966年 宋 陳振孫,《直齋書錄解題》,台北:廣文出版社,1979年 宋 竇儀等編,《刑統》,北京:文物出版社,1982年 宋 傅霖,《刑統賦》,《叢書集成續編》,上海:上海書店,1994年 元 〈沈氏刑統疏序〉,《叢書集成續編》,上海:上海書店,1994年 元 脫脫,《宋史》,台北:鼎文書局,1980年 明 無名氏,《包公案》,台北:三民書局,1998年1月 《官箴書集成》,安徽:黃山書社,1997年 專著 王立,《中國古代復仇文學主題》,長春:東北師範大學出版社,1998年11月 王平,《中國古代小說文化研究》,濟南:山東教育出版社,1998年 王景琳,《鬼神的魔力-漢民族的鬼神信仰》,北京:三聯書店,1996年 王雲海主編,《宋代司法制度》,開封:河南大學出版社,1999年 王夢鷗,《唐人小說校釋》,台北:正中書局,1996年 王德威,《從劉鶚到王禎和:中國現代寫實小說散論》,台北:時報出版社,1986年 皮劍龍、姬素蘭,《中國古代的廉政與清官》,北京:中共中央黨校出版社,1991年 任翔,《文學的另一道風景-偵探小說史論》,北京:中國青年出版社,2001年 呂伯濤、孟向榮,《中國古代告狀與判案》,台北:台灣商務印書館,1999年 孟犁野,《中國公案小說藝術發展史》,北京:警官教育出版社,1996年 侯忠義,《中國文言小說史稿》,北京:北京大學出版社,1990年 柳立言,《宋元時代的法律思想和社會》,台北:國立編譯館,2001年 吳禮權,《中國筆記小說史》,台北:台灣商務印書館,1993年8月 武樹臣,《中國傳統法律文化鳥瞰》,河南:大象出版社,1997年12月 胡士瑩,《話本小說概論》,台北:丹青出版,1983年 胡適,《胡適作品集13 中國古典小說研究》,台北:遠流出版社,1994年1月 胡萬川,《話本與才子佳人小說之研究》,台北:大安出版社,1994年 徐朝陽,《中國訴訟法溯源》,台北:台灣商務印書館,1973年 浦安迪,《中國敘事學》,北京:北京大學出版社,1998年1月 馬小紅,《中國古代社會的法律觀》,河南:大象出版社,1997年4月 馬昌儀,《中國靈魂信仰》,上海:上海文藝出版社,2000年1月 馬書田,《中國冥界諸神》,台北:國家出版社,2001年 馬書田,《華夏諸神-鬼神卷》,台北:雲龍出版社,1993年 張國風,《公案小說漫話》,台北:遠流出版社,1990年9月 曹亦冰,《俠義公案小說史》,杭州:浙江古籍出版社,1998年 郭東旭,《宋代法制研究》,保定:河北大學出版社,2000年 陳汝衡,《說書史話》,北京:人民文學出版社,1987年5月 陳平原,《小說史:理論與實踐》,台北:淑馨出版社,1998年10月 陳文新,《中國筆記小說史》,台北:志一出版社,1995年 康來新,《發跡變態-宋人小說學論稿》,台北:大安出版社,1996年 梁治平,《尋求自然秩序中的和諧-中國傳統法律文化研究》,上海:上海人民出版社, 1991年 陸嘯釗,《冥判集》,台北:仙人掌出版社,1970年 程毅中,《宋元小說研究》,南京:江蘇古籍出版社,1999年 黃岩柏,《中國公案小說史》,瀋陽:遼寧人民出版社,1991年 葉桂桐,《中國古代小說概論》,台北:文津出版社,1998年10月 賈二強,《唐宋民間信仰》,福州:福建人民出版社,2002年 熊秉真編,《讓證據說話》,台北:麥田出版社,2001年8月 趙保玉主編,《清官史話》,陜西:人民教育出版社,1992年1月1刷 劉新主編,《中國法律思想史》,北京:中國人民大學出版社,2002年 劉道超,《中國善惡報應習俗》,台北:文津出版社,1992年 劉滌凡,《唐前果報系統的建構與融合》,台北:台灣學生書局,1999年 魯迅,《魯迅小說史論文集》,台北:里仁書局,2000年 盧建榮,《鐵面急先鋒 中國司法獨立血淚史(五一四-七五五)》,台北:麥田出版,2004年8月 蕭登福,《先秦兩漢冥界及神仙思想探原》,台北:文津出版社,1990年 蕭登福,《漢魏六朝佛道兩教之天堂地獄說》,台北:台灣學生書局,1989年 蕭相愷,《宋元小說史》,杭州:浙江古籍出版社,1997年 韓愈,《韓愈古文校注彙輯》卷八,台北:國立編譯館,民國92年 錢穆,《靈魂與心》,台北:聯經出版社,1994年 瞿同祖,《中國法律與中國社會》,台北:里仁書局,2000年 靜宜文理學院中國古典小說研究中心編,《中國古典小說研究專集》,台北:聯經出版 社,1981年 謝昕、羊列容、周啟志,《中國通俗小說理論綱要》,台北:文津出版社,1992年 法克倫.雷蒙德(Faulkner Raymond)著、羅塵譯,《埃及生死之書》,北京:京華出版社,2001年 學位論文 郭靜微,《三言獄訟故事研究》,輔仁大學中國文學碩士論文,民國78年 霍建國,《三言公案小說中的罪與法》,政治大學中國文學碩士論文,民國83年 陳智聰,《從公案到偵探-晚清公案小說敘事模式的轉變》,淡江大學中國文學研究所碩士論文,民國85年 鄭春子,《明代公案小說研究》,文化大學中文研究所碩士論文,民國86年 鄭安宜,《《龍圖公案》之公道文化研究》,暨南大學中文研究所碩士論文,民國88年 陳登武,《唐代法制研究-以庶民犯罪與訴訟制度為中心》,台灣師範大學歷史研究所博士論文,民國91年 期刊論文 卜安淳,〈公案小說的創作藝術〉,《古典文學知識》,1992年6期 卜安淳,〈公案小說與古代司法〉,《古典文學知識》,1992年5期 王立,〈中國古代冥遊母題幾種類型及演變過程-兼談冥間世界對陽世官府腐敗的揭 露〉,《東南大學學報》(哲學社會科學版)5卷3期,2003年5月 王立民,〈中國古代刑訊制度的思想基礎〉,《孔孟月刊》,2001年1月 王志強,〈南宋司法裁判中的價值取向-南宋書判初探〉,《中國社會科學》,1988年6 期 王溢嘉,〈包公案中的慾望與正義〉,《台灣春秋》3卷1期,1988年12月 王爾敏,〈清代公案小說之撰著風格〉,《中國文哲研究集刊》4期,1994年3月 吳光玉、賴瓊玉,〈生命意識的浮沉¾¾三言二拍兩性公案題材小說文化論證〉,《求 是學刊》,1997年2期 吳光玉、賴瓊玉,〈歷史的盲點¾¾三言二拍兩性公案題材小說文化論證之二〉,《海 南師院學報》,1998年4期 呂明修,〈試析兩篇唐人公案小說¾<崔碣>與<蘇無名>〉,《輔仁學誌》,1994年6 月 宋光宇,〈中國地獄罪報觀念的形成〉,《省立博物館科學年刊》26卷,1983年 宋山龍,〈聊齋公案小說的進步傾向和藝術特色〉,《上海大學學報》(社會科學版),1999 年2月 李衡梅〈獄訟辨析〉,《人文雜誌》,1987年4月 周永祥,〈古代”公案小說”辨異〉,《齊魯學刊》,2002年6期 林美君,〈從「太平廣記」「精察」類看「公案小說」的雛形〉,《國立台北商專學報》, 1996年6月 林煌達,〈宋代官箴與吏員管理〉,《中國歷史學會史學集刊》,民國83年9月 武潤婷,〈試論俠義公案小說的形成和演變〉,《山東大學學報》(哲學社會科學版),2000 年1期 苗懷明,〈二十世紀中國古代公案小說研究的回顧與前瞻〉,《社會科學戰線》,2000 年4 期 苗懷明,〈中國古代公案小說的源流與藝術特色〉,《華夏文化》,2001年3期 苗懷明,〈中國古代文言公案小說的演變軌跡及文學品格〉,《許昌師專學報》,2000 年6期 苗懷明,〈明代短篇公案小說集的商業特性與文學品格〉,《社會科學》,2001年3期 苗懷明,〈尋夢逐歡市井間¾¾公案小說在宋元時期的成熟及其文學特質〉,《海南大學學報》(人文社會科學版),2001年9月 苗懷明,〈跨越話語類型的新建構¾¾清代俠義公案小說的傳承與創新〉,《廣東社會 科學》,1997年1期 苗懷明,〈論中國古代公案小說與古代判詞的文體融合及其美學品格〉,《齊魯學刊》, 2000年1期 苗懷明,〈論中國古代文言公案小說的故事模式和敘述特性〉,《古今藝文》,2002年 11月 苗懷明,〈明代短篇公案小說集的商業特性與文學品格〉,《社會科學》,2003年3期 夏啟發,〈判官神話與義理決獄的倫理精神〉,《江漢論壇》,2003年1月 徐玉珍,〈唐人「公案小說」寫作模式分析〉,《輔大中研所學刊》9期,2002年 徐忠明,〈中國傳統法律文化視野中的清官司法〉,《中山大學學報》(社會科學版),1998 年3期 皋于厚,〈《聊齋》公案小說探微〉,《江蘇公安專科學校學報》,1999年3期 皋于厚,〈明代公案小說的發展演進〉,《江蘇公安專科學校學報》,1999年6期 高懷民,〈中國古代文化中的鬼神思想〉,《文史哲學報》35期,1987年12月 常寧文,〈略論中國公案小說及其價值〉,《江蘇公安專科學校學報》,1999年5期 張金鑑,〈中國歷代獄訟制度之演進〉,《國立政治大學學報》20期,1969年12月 張勇,〈制謎與揭謎¾¾宋元話本中公案小說的敘事特徵兼論其善惡觀〉,《蒙自師範 學校高等專科學報》,2000年10月 陳錦釗,〈談石玉崑與「龍圖公案」以及「三俠五義」的來源〉,《中國書目季刊》,民 國83年3月 曾榮汾,〈論古代官吏辦案態度差異的啟示〉,《警學叢刊》30卷2期,1999年9月 楊聯陞:〈報-中國社會關係的一個基礎〉,《中國思想與制度論集》,台北:聯經出版社,1976年 鄒文海,〈從冥律看我國的公道觀念〉,《東海學報》5卷1期,民國52年6月 劉世德、鄧紹基,〈清代公案小說的思想傾向 ¾¾ 以《施公案》、《彭公案》、《三俠 五義》為例 兼論”清官”和”俠義”的實質〉,《文學評論》2期,1964年 謝明勳,〈六朝志怪與公案小說 ¾¾ 黃岩柏「公案幼芽偏多萌生於魏晉志怪」說述 評〉,《國立編譯館館刊》,民國84年12月 羅嘉慧,〈”俠義”的蛻變及歷史定位¾¾談清代俠義公案小說〉,《中山大學學報》(社 會科學版),1999年6期 【專輯】〈官箴:歷史上的官德與官紀〉,《歷史月刊》第124期,1998年5月號 其他 《辭源》,遠流出版公司,1996年5月初版14刷id NH0925045011 sid 895111 cfn 0 / id NH0925061001 auc 郭崇涵 tic 黃果蠅初期種化機制之行為及遺傳分析 adc 丁照棣 adc 方淑 ty 碩士 sc 國立清華大學 dp 分子與細胞生物研究所 yr 92 lg 英文 pg 80 kwc 果蠅 kwc 交尾前生殖隔離 kwc 交配行為 kwc 表皮碳氫化合物 kwc 辛巴威 kwc 求偶 abc 種化的發生對於生物學家一直是一個有趣但難解的問題。交配前生殖隔離在自然族群的種化形成具有強大的推動力,但其詳細機制不易在實驗室中探討。黃果蠅在不同族群中交配喜好的差異提供了良好的機會去探索初期種化的機制。辛巴威(Z型)的雌果蠅在有選擇的情況下只會和辛巴威的雄果蠅交尾,而其他族群(M型)的雌果蠅則不具有明顯分辨的能力。這種行為系統同時也引發一系列相關的議題,譬如其它的隔離機制是否存在,造成此行為差異的遺傳基礎為何,以及雌果蠅所辨識的特徵,都是我們極欲回答的問題。首先,為了找出維持這種行為上多型性的原因,我利用各種不同的行為實驗找出M型雌果蠅在接受求偶行為上的偏好性,並發現Z型雄果蠅在求偶時有比較積極的行為。在雄果蠅求偶順序圖中也可見到這種交尾隔離並不是單方向的。其次,藉由確認兩型果蠅身上帶有不同表皮碳氫化合物以及氣味轉移實驗,雌果蠅被證實會藉由雄果蠅的表皮碳氫化合物來辨識雄果蠅。最後,為了尋找這初期種化機制相關的基因,我們利用減除式雜交法和基因微陣列實驗,找到了許多表現有差異的基因,這些基因很有可能是種化基因值得我們作更深入的研究。透過各種不同的實驗設計,我們可以得到更多和這個交尾前生殖隔離相關的知識和訊息。 tc Contents Chinese Abstract………………………………………………………………….…………...i Abstract………………………………………………………………….………….................ii Acknowledgements..…………………………………………………….…………...............iii Chapter 1 General Introduction……………………………………………….……...……..1 Chapter 2 Dissection of Mating Behavior under the Sexual Isolation in Drosophila melanogaster….………………………………………………………………….…………....5 Introduction……………………………………………………………………………...5 Materials and Methods……………………………………………….…………………8 Results………………………………………………..…………………........................13 Discussion……………………………………………….………………………………26 Chapter 3 Pheromonal Cuticular Hydrocarbons Affecting Sexual Isolation in Drosophila melanogaster….………………………………………………………………….…………..29 Introduction…………………………………………………………………………….29 Materials and Methods………………………………………………….……………..32 Results………………………………………………..…………………........................34 Discussion……………………………………………….………………………...……44 Chapter 4 Search for Differentially Expressed Gene Involved in the Sexual Isolation in Drosophila melanogaster……………………………………………..……………..………46 Introduction……………………………………………………………………………46 Materials and Methods………………………………………………….…………….49 Results………………………………………………..………………….......................59 Discussion……………………………………………….……………………………...72 References.……………………………………………………………………….…….….....76 List of Tables Table 2.1 Mating patterns between D. melanogaster Zimbabwe (Z) and Cosmopolitan (M) races in multiple-choice experiments………………………..……………………14 Table 2.2 Female choice between males of the Zimbabwe (Z) and cosmopolitan (M) races of D. melanogaster…………………………………………………………………..16 Table 2.3 Mating parameters (mean ± standard error) of individual pairs of flies from Z (Z30) and M (FR) strains……………………………………….……………………….18 Table 2.4 Male choice between females of the Zimbabwe (Z) and cosmopolitan (M) races of D. melanogaster…………………………………………………………………..21 Table 2.5 The proportion of male courtship behaviors (% mean ± standard error) of individual pairs of flies from Z (Z30) and M (FR) strains…………………...…...24 Table 3.1 Composition of male cuticular hydrocarbons (% mean ± standard error) in different populations of Drosophila melanogaster…………………………………....……36 Table 3.2 Percentages of male cuticular hydrocarbons (% mean ± standard error) of pure strains used in perfuming experiments and ‘target’ flies crowded with ‘donor’ flies………………………………………………………………………………..39 Table 3.3 Percentages of male cuticular hydrocarbons (% mean ± standard error) of different whole-chromosome substitution lines.………………………...……….…………43 Table 4.1 Primers designed for real-time PCR……..……………………………………...…57 Table 4.2 Identification of the female candidate clones selected by the subtractive hybridization method..…………………………………………………………………....…...…62 Table 4.3 Identification of the male candidate clones selected by the subtractive hybridization method……………………….……………………………………………………63 Table 4.4 Candidate male genes selected from the microarray result with the ratio of expression level for Z males relative to M males larger than 1.49…...…….....….65 Table 4.5 Candidate male genes selected from the microarray result with the ratio of expression level for M males relative to Z males larger than 1.49………...……..66 Table 4.6 Candidate female genes selected from the microarray result with the ratio of expression level for Z females relative to M females larger than 1.49...…………67 Table 4.7 Candidate female genes selected from the microarray result with the ratio of expression level for M females relative to Z females larger than 1.49….………..68 List of Figures Figure 2.1 Illustration of male courtship parameters…………………………...……11 Figure 2.2 Graphs of behavior transition of male courtship…………………………23 Figure 3.1 Typical gas chromatograms of a male M (FR) and Z (ZS11) of Drosophila melanogaster………………..……………………………………………35 Figure 3.2 Comparison of mating pairs……………………...………………………41 Figure 4.1 The procedure of Subtractive hybridization protocol……………..……..52 Figure 4.2 PCR products of the subtractive hybridization………………..…………59 Figure 4.3 Verification of insertion by PCR with M13 forward and reverse primers…………………...……………………………….………………60 Figure 4.4 One of dot blot results representing the screening condition…………….61 Figure 4.5 Numbers of candidate genes selected from cDNA microarray experiments…..………………………………………………….….……64 Figure 4.6 Quantification of the expression levels of candidate genes from the female FR subtracted library.………………………………………………….…71 Figure 4.7 Quantification of the expression levels of candidate genes from the female MMZ subtracted library…...………………………………….……….…71 Figure 4.8 Quantification of the expression levels of candidate genes from microarrays….…………………………………………………….……72rf References ADAMS, M. D., S. E. CELNIKER, R. A. HOLT, C. A. EVANS, J. D. GOCAYNE et al., 2000 The genome sequence of Drosophila melanogaster. Science 287: 2185-2195. ALIPAZ, J. A., 2001 The Nature of Incipient Speciation in Drosophila, pp. in Ph.D. Dissertation. University of Chicago, Chicago, IL. ALIPAZ, J. A., C.-I WU and T. L. KARR, 2001 Gametic incompatibilities between races of Drosophila melanogaster. Proc. R. Soc. Lond. 268: 789-795. ANTONY, C., T. L. DAVID, D. A. CARLSON, J.-M. PECHINE and J.-M. JALLON, 1985 Comparied behavior responses of male Drosophila melanogaster (Canton-S) to natural and synthetic aphrodisiacs. J. Chem. Ecol. 11: 1617-1629. ANTONY, C., and J.-M. JALLON, 1982 The chemical basis for sex recognition in Drosophila melanogaster. J. Insect Physiol. 28: 873-880. BAKER, M. C., 1991 Response of male indigo and Lazuli buntings and their hybrids to song playback in allopatric and sympatric populations. Behaviour 119: 225-242. BEGUN, D. J., and C. F. AQUADRO, 1993 African and North American populations of Drosophila melanogaster are very different at the DNA level. Nature 365: 548-550. CAMPBELL, N. A., 1996 Biology. Benjamin/Cummings, Menlo Park, CA. CAPY, P., M. VEUILLU, M. PAILLETTE, J.-M. JALLON, J. VOLUIDIBIO et al., 2000 Sexual isolation of genetically differentiated sympatric populations of Drosophila melanogaster in Brazzaville, Congo: the first steps toward speciation. Heredity 84: 468-475. CAVALLARO, S., V. D'AGATA, P. MANICKAM, F. DUFOUR and D. L. ALKON, 2002 Memory-specific temporal profiles of gene expression in the hippocampus. Proc. Natl. Acad. Sci. USA 99: 16279-16284. COBB, M., and J.-F. FERVEUR, 1996a Evolution and genetic control of mate recognition and stimulation in Drosophila. Behav. Process. 35: 35-54. COBB, M., and J.-F. FERVEUR, 1996b Female mate discrimination or male response to female stimulation. Evolution 50: 1719-1720. COLEGRAVE, N., H. HOLLOCHER, K. HINTON and G. RITCHIE, 2000 The courtship song of African Drosophila melanogaster. J. Evol. Biol. 13: 145-150. COOK, R., 1979 The courtship tracking of Drosophila melanogaster. Biol. Cybern. 34: 91-106. COYNE, J. A., 1992 Genetics and speciation. Nature 355: 511-515. COYNE, J. A., and B. CHARLESWORTH, 1997 Genetics of a pheromonal difference affecting sexual isolation between Drosophila mauritiana and D. sechellia. Genetics 145: 1015-1030. COYNE, J. A., K. MAH and A. CRITTENDEN, 1994 Genetics of pheromonal differences contributing to reproductives isolation in Drosophila. Science 265: 1461-1464. COYNE, J. A., and H. A. ORR, 1998 The evolutionary genetics of speciation. Proc. R. Soc. Lond. 353: 287-305. COYNE, J. A., C. WICKER-THOMAS and J.-M. JALLON, 1999 A gene responsible for a cuticular hydrocarbon polymorphism in Drosophila melanogaster. Genet. Res. 73: 189-203. CURTIN, K. D., Z. J. HUANG and M. ROSBASH, 1995 Temporally regulated nuclear entry of the Drosophila period protein contributes to the circadian clock. Neuron 14: 365-372. DALLERAC, R., C. LABEUR, J.-M. JALLON, D. C. KNIPPLE, W. L. ROELOFS et al., 2000 A delta 9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 97: 9449-9454. DIATCHENKO, L., Y.-F. C. LAU, A. P. CAMPELL, A. CHENCHIK, F. MOQADAM et al., 1996 Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93: 6025-6030. FANG, S., A. TAKAHASHI and C.-I WU, 2002 A mutation in the promoter of desaturase 2 is correlated with sexual isolation between Drosophila behavioral races. Genetics 162: 781-784. FERVEUR, J.-F., 1996 The pheromonal role of cuticular hydrocarbons in Drosophila melanogaster. Bioeassay 19: 353-358. FERVEUR, J.-F., and J.-M. JALLON, 1993 Nerd, a locus on chromosome III, affects male reproductive behavior in Drosophila melanogaster. Naturwissenschaften 80: 474-475. FERVEUR, J.-F., and G. SUREAU, 1996 Simultaneous influence on male courtship of stimulatory and inhibitory pheromones produced by live sex-mosaic Drosophila melanogaster. Proc. R. Soc. B. 263: 967-973. GREENBERG, A. J., J. R. MORAN, J. A. COYNE and C.-I WU, 2003 Ecological adaptation during incipient speciation revealed by precise gene replacement. Science 302: 1754-1757. HARETY, W., J.-M. JALLON, J. ROUAULT, B. C. and P. CAPY, 2002 Reproductive isolation in natural populations of Drosophila melanogaster from Brazzaville (Congo). Genetica 116: 215-224. HOIKKALA, A., and K. KANESHIRO, 1993 Change in the signal-response sequence responsible for asymmetric isolation between Drosophila planitibia and Drosophila silvestris. Proc. Natl. Acad. Sci. USA 90: 5813-5817. HOLLOCHER, H., C.-T. TING, F. POLLACK and C.-I WU, 1997a Incipient speciation by sexual isolation in Drosophila melanogaster: variation in mating preference and correlation between sexes. Evolution 51: 1175-1181. HOLLOCHER, H., C.-T. TING, M.-L. WU and C.-I WU, 1997b Incipient speciation by sexual isolation in Drosophila melanogaster: extensive genetic divergence without reinforcement. Genetics 147: 1191-1201. KANESHIRO, K. Y., 1976 Ethological isolation and phylogeny in the planitibia subgroup of Hawaiian Drosophila. Evolution 30: 259-274. KNOWLTON, N., 1986 Cryptic and sibling species among the decapod Crustacea. J. Crust. Biol. 16: 111-120. KONOPKA, R. J., and S. BENZER, 1971 Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 68: 2112-2116. KYRIACOU, C. P., and J. C. HALL, 1980 Circadian rhythm mutations in Drosophila melanogaster affect short-term fluctuations in the male's courtship song. Proc. Natl. Acad. Sci. USA 77: 6729-6733. LOCKEY, K. H., 1976 Cuticular hydrocarbons of Locusta, Schistocerca and Periplaneta. Insect Biochem. 6: 457-472. LONNSTEDT, I., and T. P. SPEED, 2002 Replicated microarray data. Stat. Sinica 12: 31-46. MANNING, A., 1959 The sexual isolation between Drosophila melanogaster and Drosophila simulans. Anim. Behav. 7: 60-65. MARIN, I., 1997 Sexual isolation in Drosophila. III. Estimating isolation using male-choice experiments. J. Theor. Biol. 188: 515-524. MAYR, E., 1963 Animal Species and Evolution. Harvard Univ. Press, Cambridge, MA. MCKAYE, K. R., J. H. HOWARD, J. R. STAUFFER, R. P. MORGAN and F. SHONHIWA, 1993 Sexual selection and genetic relationships of a sibling species complex of bower building cichilds in Lake Malawi Africa. Japan J. Ichthyol. 40: 15-21. MEIKLEJOHN, C. D., J. PARSCH, J. M. RANZ and D. L. HARTLE, 2003 Rapid evolution of male-biased gene expression in Drosophila. Proc. Natl. Acad. Sci. USA 100: 9894-9899. OHTSU, T., M. T. KIMURA and C. KATAGIRI, 1998 How Drosophila species acquire cold tolerance--qualitative changes of phospholipids. Eur. J. Biochem. 258: 608-611. PRICE, J. L., 1995 Are competing intermolecular and intramolecular interactions of PERIOD protein important for the regulation of circidian rhythms in Drosophila? Bioessay 17: 583-586. QUINN, W. G., W. A. HARRIS and S. BENZER, 1974 Conditioned behavior in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 71: 707-712. ROELOFS, W. L., and R. L. BROWN, 1982 Pheromones and evolutionary relationships of Tortricidae. Annu. Rev. Ecol. Syst. 13: 395-422. ROUAULT, J., P. CAPY and J.-M. JALLON, 2001 Variations of male cuticular hydrocarbons with geoclimatic variables: an adaptative mechanism in Drosophila melanogaster. Genetics 110: 117-130. RYAN, M. J., and A. S. RAND, 1995 Female responses to ancestral advertisement calls in the tungara frog. Science 269: 390-392. SAVARIT, F., and J.-F. FERVEUR, 2002 Genetic study of the production of sexually dimorphic cuticular hydrocarbons in relation with the sex-determination gene transformer in Drosophila melanogaster. Genet. Res. 79: 23-40. SCOTT, D., 1994 Genetic variation for female mate discrimination in Drosophila melanogaster. Evolution 48: 112-121. SOKOLOWSKI, M. B., 1998 Genes for normal behavioral variation: recent clues from flies and worms. Neuron 21: 1-4. SOKOLOWSKI, M. B., 2001 Drosophila: genetics meets behavior. Nat. Rev. 2: 879-893. SPIETH, H. T., and J. M. RINGO, 1983 Mating Behavior and Sexual Isolation in Drosophila. Academic Press, London. TAKAHASHI, A., 2000 Genetics of Incipient Speciation by Sexual Isolation in Drosophila melanogaster, pp. in Ph.D. dissertation. Hokkaido University, Sapporo, Japan. TAKAHASHI, A., and C.-T. TING, 2004 Genetic basis of sexual isolation in Drosophila melanogaster. Genetica 120: 273-284. TAKAHASHI, A., S. C. TSAUR, J. A. COYNE and C.-I WU, 2001 The nucleotide changes governing cuticular hydrocarbon variation and their evolution in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 98: 3920-3925. TAKAOMI, S., and K. YOSHIAKI, 2002 Overpression of a CREB repressor isoform enhances the female sexual receptivity in Drosophila. Behav. Genet. 32: 413-422. TING, C.-T., A. TAKAHASHI and C.-I WU, 2001 Incipient speciation by sexual isolation in Drosophila: concurrent evolution at multiple loci. Proc. Natl. Acad. Sci. USA 98: 6709-6713. TOMARU, M., and Y. OGUMA, 1994 Differences in courtship song in Drosophila auraria complex. Anim. Behav. 47: 133-140. VOLUIDIBIO, J., P. CAPY, D. DEFAYE, E. PLA, J. SANDRA et al., 1989 Short-range genetics structure of Drosophila melanogaster populations in an Afrotropical urban area and its significance. Proc. Natl. Acad. Sci. USA 86: 8442-8446. WANG, Z., and D. D. BROWN, 1991 A gene expression screen. Proc. Natl. Acad. Sci. USA 88: 11505-11509. WHITFIELD, C. W., A.-M. CZIKO and G. E. ROBINSON, 2003 Gene expression profiles in the brain predict behavior in individual honey bees. Science 302: 296-299. WHEELER, D. A., C. P. KYRIACOU, M. L. GREENACRE, Q. YU, J. E. RUTILA, M. ROSBASH, and J. C. HALL. 1991. Molecular transfer of a species-specific behavior from Drosophila simulans to Drosophila melanogaster. Science 251: 1082-1085. WU, C.-I, H. HOLLOCHER, D. J. BEGUN, C. F. AQUADRO, Y. XU et al., 1995 Sexual isolation in Drosophila melanogaster: a possible case of incipient speciation. Proc. Natl. Acad. Sci. USA 92: 2519-2523. WU, C.-I, and M. F. PALOPOLI, 1994 Genetics of post-mating reproductive isolation in animals. Ann. Rev. Genet. 28: 283-308. WU, C.-I, and C. T. TING, 2004 Genes and Speciation. Nat. Rev. 5: 114-122. YAMAMOTO, D., and Y. NAKANO, 1999 Sexual behavior mutants revisited: molecular and cellular basis of Drosophila mating. Cell Mol. Life Sci. 56: 634-646. YANG, Y. H., S. DUDOIT, P. LUU and T. P. SPEED, 2001 Normalization for cDNA microarray data. SPIE BiOS: International Biomedical Optics Symposium, San Jose, California.id NH0925061001 sid 914216 cfn 0 / id NH0925061002 auc 劉威廷 tic 根黴菌之葡糖澱粉酵素的連接片段區域對於吸附澱粉區域的功能和結構之影響 adc 張大慈 ty 碩士 sc 國立清華大學 dp 分子與細胞生物研究所 yr 92 lg 英文 pg 50 kwc 根黴菌 kwc 葡糖澱粉酵素 kwc 連接片段區域 kwc 吸附澱粉區域 abc 根黴菌 (Rhizopus oryzae) 之葡糖澱粉酵素 (glucoamylase) 包含N端的吸附澱粉區域 (SBD,106個氨基酸),o-醣基化的連接片段 (L,36個氨基酸) 和 C端的催化區域 (CD,437個氨基酸)。吸附澱粉區域具有吸附生澱粉的結合能力,而催化區域則能完全地水解澱粉成葡萄糖。至於連接片段,它的功能尚未被充分的描述。我們使用大腸桿菌 (E. coli) 和麵包酵母 (S. cerevisiae) 表現兩種重組蛋白:重組的吸附澱粉區域 (rSBD) 和重組含連接片段的吸附澱粉區域(rSBD-L)。大腸桿菌表現的胞內重組蛋白及麵包酵母分泌表現至培養液的重組蛋白利用快速蛋白質液相層析法直接純化。飽和結合分析和使澱粉分解的分析證明了這些蛋白質不同地特性。另外,圓二色光譜儀 (Circular Dichroism) 分析顯示來自於大腸桿菌和麵包酵母的重組吸附澱粉區域擁有β-摺板的構造,而且在吸附澱粉區域C端的連接片段的存在可能會影響其結構穩定性。在高溫時,藉由圓二色光譜儀、剛果紅分析和穿透式電子顯微鏡鑑定發現重組含連接片段的吸附澱粉區域能形成似類澱粉的結構。然而,在相同的條件下,單獨的重組吸附澱粉區域僅能形成不可溶的聚集體。我們證明連接片段強烈地影響吸附澱粉區域的生物化學的功能和物理的結構。除此之外,我們更進一步地表現 rSBD-s,rSBD-sk和rSBD-skptttta,研究需要多少C端的氨基酸殘基才能影響吸附澱粉區域的構造。結果顯示rSBD-s和rSBD有相似的結構性質,而rSBD-sk和rSBD-skptttta能和rSBD-L一樣形成β-似類澱粉的構造。因此,我們確定連接片段在影響吸附澱粉區域的結構和功能方面扮演重要的角色。 rf 1. Coutinho, P. M. and Reilly, P. J. (1997) Glucoamylase structural, functional, and evolutionary relationships. Proteins 29, 334 – 347. 2. Sorimachi, K., Le Gal-Coeffet, M. F., Williamson, G., Archer, D. B. and Williamson, M. P. (1997) Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure 5, 647 – 661. 3. Aleshin, A. E., Firsov, L. M. and Honzatko, R. B. (1994) Refined structure for the complex of acarbose with glucoamylase from Aspergillus awamori var. X100 to 2.4-A resolution. J. Biol. Chem. 269, 15631 – 15639. 4. Stoffer, B., Aleshin, A. E., Firsov, L. M., Svensson, B. and Honzatko, R. B. (1995) Refined structure for the complex of D-gluco-dihydroacarbose with glucoamylase from Aspergillus awamori var. X100 to 2.2 A resolution: dual conformations for extended inhibitors bound to the active site of glucoamylase. FEBS Letters 358, 57 – 61. 5. Semimaru, T., Goto, M., Furukawa, K. and Hayashida, S. (1995) Functional analysis of the threonine- and serine-rich Gp-I domain of glucoamylase I from Aspergillus awamori var. kawachi. Appl. Environ. Microbiol. 61, 2885 – 2890. 6. Sauer, J., Christensen, T., Frandsen, T. P., Mirgorodskaya, E., McGuire, K. A., Driguez, H., Roepstorff, P., Sigurskjold, B. W., and Svensson, B. (2001) Stability and function of interdomain variants of glucoamylase 1 from Aspergillus niger. Biochemistry 40, 9336 – 9346. 7. Srisailam, S., S. Kumar, T. K., Rajalingam, D., Kathir, K. M., Sheu, H. S., Jan, F. Y., Chao, P. C. and Yu, C. (2003) Amyloid-like fibril formation in an all β-barrel protein. J. Biol. Chem. 278, 17701 – 17709. 8. Pertinhez, T. A., Bouchard, M., Tomlinson, E. J., Wain, R., Ferguson, S. J., Dobson, C. M. and Smith, L. J. (2001) Amyloid fibril formation by a helical cytochrome. FEBS Letters 495, 184 – 186. 9. Lashuel, H. A., Hartley, D. M., Balakhaneh, D., Aggarwal, A., Teichberg, S., and Callaway, David J. E. (2002) New class of inhibitors of amyloid-β fibril formation. J. Biol. Chem. 277, 42881 – 42890. 10. Paldi T., Levy I. and Shoseyov O. (2003) Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization. Biochem. J. 372, 905 – 910. 11. Southall, S. M., Simpson, P. J., Gilbert, H. J., Williamson, G. and Williamson, M. P. (1999) The starch-binding domain from glucoamylase disrupts the structure of starch. FEBS Letters 447, 58 – 60. 12. Sorimachi, K., Jacks, A. J., Le Gal-Coeffet, M. F., Williamson, G., Archer, D. B. and Williamson, M. P. (1996) Solution structure of the granular starch binding domain of glucoamylase from Aspergillus niger by nuclear magnetic resonance spectroscopy. J. Mol. Biol. 259, 970 – 987. 13. Srisailam, S., Wang, H. M., S. Kumar, T. K.,Rajalingam, D., Sivaraja, V., Sheu, H. S., Chang, Y.C. and Yu, C. (2002) Amyloid-like fibril formation in an all β-barrel protein involves the formation of partially structured intermediate(s). J. Biol. Chem. 277, 19027 – 19036.id NH0925061002 sid 914227 cfn 0 / id NH0925061003 auc 吳靜玫 tic 利用蛋白質感應片及表面電漿共振技術發展偵測金屬離子之系統 adc 林立元 ty 碩士 sc 國立清華大學 dp 分子與細胞生物研究所 yr 92 lg 中文 pg 76 kwc 金屬硫蛋白 kwc 血清白蛋白 kwc 重金屬 kwc 生物感應器 kwc 表面電漿共振 abc 金屬硫蛋白與血清白蛋白是生物體內能與重金屬結合的兩種主要蛋白質,在重金屬的傳送、儲存及解毒等功能上扮演著重要的角色。近年來,重金屬污染已成為一種全球性的危害,因此,一個快速、有效的偵測方法是迫切需要的。在本實驗中,我們嘗試建立蛋白質生物感應片偵測系統,配合表面電漿共振技術來偵測並定量重金屬離子。本實驗分兩個部分,第一部分我們先將金屬硫蛋白吸附在CM5感應片上,其最佳吸附能力之pH值為4。金屬硫蛋白感應片在30℃時,與金屬有較好的結合情形,而流速則對結合力沒有影響。此外,感應片對不同金屬也有區別性,與鎘、鋅和鎳等金屬具結合能力,但對錳、鎂和鈣則沒有。而鎘、鋅和鎳等金屬在不同濃度範圍內與金屬硫蛋白感應片的結合能力有很好的相關性,其中,鎘的偵測極限可達1 ?嵱。另外,緩衝溶液中的NaCl、pH值及 Tween 20等成分都會影響金屬和金屬硫蛋白感應片的結合情形,當NaCl濃度將低至1 mM時,只能和鎘結合,而無法與鋅和鎳結合。此外,在分子之間的結合動力學研究中發現金屬硫蛋白感應片對金屬的親和力為鎘>鋅>鎳。因此金屬硫蛋白感應片不但可以評估和金屬結合的特性,也適合發展成為偵測及定量重金屬的生物感應器。 tc 目次 中文摘要...............................................1 英文摘要...............................................3 第一部份 以金屬硫蛋白感應片偵測金屬離子 序言................................................5 材料與方法..........................................12 結果................................................16 討論................................................22 參考資料............................................27 附圖................................................32 附表................................................42 第二部份 以血清白蛋白感應片偵測金屬離子 序言................................................43 材料與方法..........................................47 結果................................................51 討論................................................56 參考資料............................................61 附圖................................................65 附表................................................76rf Alvarez De Eulate MJ, Montoro R, Ybanez N, De La Guardia M. 1986. Determination of cadmium, copper, and lead in sodium chloride food salts by flame atomic absorption spectroscopy. J Assoc Off Anal Chem 69(5):871-3. Anderson. J. L. B, E. F., Pickup, P. G. 1996. Dynamic electrochemistry: methodology and application. Anal Chem 68:379R-444R. Angerer JaS, K.H. 1985. Analyses of hazardous substance in biological materials. Arseniev A, Schultze P, Worgotter E, Braun W, Wagner G, Vasak M, Kagi JH, Wuthrich K. 1988. Three-dimensional structure of rabbit liver [Cd7 ]metallothionein-2a in aqueous solution determined by nuclear magnetic resonance. J Mol Biol 201(3):637-57. Bader B, Kuhn K, Owen DJ, Waldmann H, Wittinghofer A, Kuhlmann J. 2000. Bioorganic synthesis of lipid-modified proteins for the study of signal transduction. Nature 403(6766):223-6. Bontidean I, Ahlqvist J, Mulchandani A, Chen W, Bae W, Mehra RK, Mortari A, Csoregi E. 2003. Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. Biosens Bioelectron 18(5-6):547-53. Bontidean I, Berggren C, Johansson G, Csoregi E, Mattiasson B, Lloyd JR, Jakeman KJ, Brown NL. 1998. Detection of heavy metal ions at femtomolar levels using protein-based biosensors. Anal Chem 70(19):4162-9. Braun W, Vasak M, Robbins AH, Stout CD, Wagner G, Kagi JH, Wuthrich K. 1992. Comparison of the NMR solution structure and the x-ray crystal structure of rat metallothionein-2. Proc Natl Acad Sci U S A 89(21):10124-8. Burger J, Lord CG, Yurkow EJ, McGrath L, Gaines KF, Brisbin IL, Jr., Gochfeld M. 2000. Metals and metallothionein in the liver of raccoons: utility for environmental assessment and monitoring. J Toxicol Environ Health A 60(4):243-61. Dabeka RW. 1989. Graphite-furnace atomic absorption spectrometric determination of lead, cadmium, cobalt and nickel in infant formulas and evaporated milks after nitric-perchloric acid digestion and coprecipitation with ammonium pyrrolidine dithiocarbamate. Sci Total Environ 89(3):271-7. Doz F, Roosen N, Rosenblum ML. 1993. Metallothionein and anticancer agents: the role of metallothionein in cancer chemotherapy. J Neurooncol 17(2):123-9. Dudley RE, Svoboda DJ, Klaassen C. 1982. Acute exposure to cadmium causes severe liver injury in rats. Toxicol Appl Pharmacol 65(2):302-13. Durnam DM, Palmiter RD. 1984. Induction of metallothionein-I mRNA in cultured cells by heavy metals and iodoacetate: evidence for gratuitous inducers. Mol Cell Biol 4(3):484-91. Fisher RJ, Fivash M. 1994. Surface plasmon resonance based methods for measuring the kinetics and binding affinities of biomolecular interactions. Curr Opin Biotechnol 5(4):389-95. Fowler BA, Hildebrand CE, Kojima Y, Webb M. 1987. Nomenclature of metallothionein. Experientia Suppl 52:19-22. Goering PL, Klaassen CD. 1984. Resistance to cadmium-induced hepatotoxicity in immature rats. Toxicol Appl Pharmacol 74(3):321-9. Hamer DH. 1986. Metallothionein. Annu Rev Biochem 55:913-51. Hechtenberg S, and Beyersmann, D. 1995. Regulation of nuclear calcium and zinc -Interference by toxic metal ions . In: metals. Igrt, editor. New Youk. Jackson PJ, Unkefer CJ, Doolen JA, Watt K, Robinson NJ. 1987. Poly(gamma-glutamylcysteinyl)glycine: its role in cadmium resistance in plant cells. Proc Natl Acad Sci U S A 84(19):6619-23. Jiang LJ, Vasak M, Vallee BL, Maret W. 2000. Zinc transfer potentials of the alpha - and beta-clusters of metallothionein are affected by domain interactions in the whole molecule. Proc Natl Acad Sci U S A 97(6):2503-8. Kagi JH. 1991. Overview of metallothionein. Methods Enzymol 205:613-26. Kagi JH, Schaffer A. 1988. Biochemistry of metallothionein. Biochemistry 27(23):8509-15. Kagi JH, Valee BL. 1960. Metallothionein: a cadmium- and zinc-containing protein from equine renal cortex. J Biol Chem 235:3460-5. Kagi JH, HaK Y. 1987. Chemistry and biochemistry of metallothionein. Experientia Suppl 52:25-61. Karlsson R, Falt A. 1997. Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J Immunol Methods 200(1-2):121-33. Knibiehler M, Goubin F, Escalas N, Jonsson ZO, Mazarguil H, Hubscher U, Ducommun B. 1996. Interaction studies between the p21Cip1/Waf1 cyclin-dependent kinase inhibitor and proliferating cell nuclear antigen (PCNA) by surface plasmon resonance. FEBS Lett 391(1-2):66-70. Kuswandi B. 2003. Simple optical fibre biosensor based on immobilised enzyme for monitoring of trace heavy metal ions. Anal Bioanal Chem 376(7):1104-10. Lehman-McKeeman LD, Andrews GK, Klaassen CD. 1988. Ontogeny and induction of hepatic isometallothioneins in immature rats. Toxicol Appl Pharmacol 92(1):10-7. Liska SK, Kerkay J, Pearson KH. 1985. Determination of zinc and copper in urine using Zeeman effect flame atomic absorption spectroscopy. Clin Chim Acta 151(3):231-6. Liu J, Kershaw WC, Klaassen CD. 1991. The protective effect of metallothionein on the toxicity of various metals in rat primary hepatocyte culture. Toxicol Appl Pharmacol 107(1):27-34. Lopez-Artiguez M, Camean A, Repetto M. 1993. Preconcentration of heavy metals in urine and quantification by inductively coupled plasma atomic emission spectrometry. J Anal Toxicol 17(1):18-22. Lu Y, Liu J, Li J, Bruesehoff PJ, Pavot CM, Brown AK. 2003. New highly sensitive and selective catalytic DNA biosensors for metal ions. Biosens Bioelectron 18(5-6):529-40. Margoshe M, Vallee BL. 1957. A Cadmium protein from equine kidney cortex. J Am Chem Soc 79:4813-4814. Masters SC, Pederson KJ, Zhang L, Barbieri JT, Fu H. 1999. Interaction of 14-3-3 with a nonphosphorylated protein ligand, exoenzyme S of Pseudomonas aeruginosa. Biochemistry 38(16):5216-21. Menegario AA, Packer AP, Gine MF. 2001. Determination of Ba, Cd, Cu, Pb and Zn in saliva by isotope dilution direct injection inductively coupled plasma mass spectrometry. Analyst 126(8):1363-6. Mernagh DR, Janscak P, Firman K, Kneale GG. 1998. Protein-protein and protein-DNA interactions in the type I restriction endonuclease R.EcoR124I. Biol Chem 379(4-5):497-503. Mourgaud Y, Martinez E, Geffard A, Andral B, Stanisiere JY, Amiard JC. 2002. Metallothionein concentration in the mussel Mytilus galloprovincialis as a biomarker of response to metal contamination: validation in the field. Biomarkers 7(6):479-90. Nartey NO, Banerjee D, Cherian MG. 1987. Immunohistochemical localization of metallothionein in cell nucleus and cytoplasm of fetal human liver and kidney and its changes during development. Pathology 19(3):233-8. Nettesheim DG, Engeseth HR, Otvos JD. 1985. Products of metal exchange reactions of metallothionein. Biochemistry 24(24):6744-51. Nielson KB, Atkin CL, Winge DR. 1985. Distinct metal-binding configurations in metallothionein. J Biol Chem 260(9):5342-50. Nielson KB, Winge DR. 1983. Order of metal binding in metallothionein. J Biol Chem 258(21):13063-9. Nielson KB, Winge DR. 1984. Preferential binding of copper to the beta domain of metallothionein. J Biol Chem 259(8):4941-6. Quaife CJ, Findley SD, Erickson JC, Froelick GJ, Kelly EJ, Zambrowicz BP, Palmiter RD. 1994. Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry 33(23):7250-9. Ramanathan S, Ensor M, Daunert S. 1997. Bacterial biosensors for monitoring toxic metals. Trends Biotechnol 15(12):500-6. Rensing C, Maier RM. 2003. Issues underlying use of biosensors to measure metal bioavailability. Ecotoxicol Environ Saf 56(1):140-7. Robbins AH, McRee DE, Williamson M, Collett SA, Xuong NH, Furey WF, Wang BC, Stout CD. 1991. Refined crystal structure of Cd, Zn metallothionein at 2.0 A resolution. J Mol Biol 221(4):1269-93. Saber R, Piskin E. 2003. Investigation of complexation of immobilized metallothionein with Zn(II) and Cd(II) ions using piezoelectric crystals. Biosens Bioelectron 18(8):1039-46. Stillman MJ, Cai W, Zelazowski AJ. 1987. Cadmium binding to metallothioneins. Domain specificity in reactions of alpha and beta fragments, apometallothionein, and zinc metallothionein with Cd2+. J Biol Chem 262(10):4538-48. Thornalley PJ, Vasak M. 1985. Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta 827(1):36-44. Uchida Y, Takio K, Titani K, Ihara Y, Tomonaga M. 1991. The growth inhibitory factor that is deficient in the Alzheimer's disease brain is a 68 amino acid metallothionein-like protein. Neuron 7(2):337-47. Wu Z, Johnson KW, Choi Y, Ciardelli TL. 1995. Ligand binding analysis of soluble interleukin-2 receptor complexes by surface plasmon resonance. J Biol Chem 270(27):16045-51. Anderson. J. L. B, E. F., Pickup, P. 1996. Dynamic electrochemistry: methodology and application. Anal Chem 68:379R-444R. Bal W, Christodoulou J, Sadler PJ, Tucker A. 1998. Multi-metal binding site of serum albumin. J Inorg Biochem 70(1):33-9. Bontidean I, Ahlqvist J, Mulchandani A, Chen W, Bae W, Mehra RK, Mortari A, Csoregi E. 2003. Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. Biosens Bioelectron 18(5-6):547-53. Carter DC, Ho JX. 1994. Structure of serum albumin. Adv Protein Chem 45:153-203. Cominos X, Athanaselis S, Dona A, Koutselinis A. 2001. Analysis of total mercury in human tissues prepared by microwave decomposition using a hydride generator system coupled to an atomic absorption spectrometer. Forensic Sci Int 118(1):43-7. DelRaso NJ, Foy BD, Gearhart JM, Frazier JM. 2003. Cadmium uptake kinetics in rat hepatocytes: correction for albumin binding. Toxicol Sci 72(1):19-30. Durrieu C, Tran-Minh C. 2002. Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicol Environ Saf 51(3):206-9. Fisher RJ, Fivash M. 1994. Surface plasmon resonance based methods for measuring the kinetics and binding affinities of biomolecular interactions. Curr Opin Biotechnol 5(4):389-95. Giroux E, Schoun J. 1981. Copper and zinc ion binding by bovine, dog, and rat serum albumins. J Inorg Biochem 14(4):359-62. Giroux EL, Durieux M, Schechter PJ. 1976. A study of zinc distribution in human serum. Bioinorg Chem 5(3):211-8. Goumakos W, Laussac JP, Sarkar B. 1991. Binding of cadmium(II) and zinc(II) to human and dog serum albumins. An equilibrium dialysis and 113Cd-NMR study. Biochem Cell Biol 69(12):809-20. He XM, Carter DC. 1992. Atomic structure and chemistry of human serum albumin. Nature 358(6383):209-15. Karlsson R, Falt A. 1997. Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J Immunol Methods 200(1-2):121-33. Kragh-Hansen U. 1985. Relations between high-affinity binding sites of markers for binding regions on human serum albumin. Biochem J 225(3):629-38. Kuswandi B. 2003. Simple optical fibre biosensor based on immobilised enzyme for monitoring of trace heavy metal ions. Anal Bioanal Chem 376(7):1104-10. Lau SJ, Sarkar B. 1971. Ternary coordination complex between human serum albumin, copper (II), and L-histidine. J Biol Chem 246(19):5938-43. Laurie SH, Pratt DE. 1986. Copper-albumin: what is its functional role? Biochem Biophys Res Commun 135(3):1064-8. Laussac JP, Sarkar B. 1984. Characterization of the copper(II)- and nickel(II)-transport site of human serum albumin. Studies of copper(II) and nickel(II) binding to peptide 1-24 of human serum albumin by 13C and 1H NMR spectroscopy. Biochemistry 23(12):2832-8. Lopez-Artiguez M, Camean A, Repetto M. 1993. Preconcentration of heavy metals in urine and quantification by inductively coupled plasma atomic emission spectrometry. J Anal Toxicol 17(1):18-22. Lu Y, Liu J, Li J, Bruesehoff PJ, Pavot CM, Brown AK. 2003. New highly sensitive and selective catalytic DNA biosensors for metal ions. Biosens Bioelectron 18(5-6):529-40. Masuoka J, Hegenauer J, Van Dyke BR, Saltman P. 1993. Intrinsic stoichiometric equilibrium constants for the binding of zinc(II) and copper(II) to the high affinity site of serum albumin. J Biol Chem 268(29):21533-7. Menegario AA, Packer AP, Gine MF. 2001. Determination of Ba, Cd, Cu, Pb and Zn in saliva by isotope dilution direct injection inductively coupled plasma mass spectrometry. Analyst 126(8):1363-6. Mernagh DR, Janscak P, Firman K, Kneale GG. 1998. Protein-protein and protein-DNA interactions in the type I restriction endonuclease R.EcoR124I. Biol Chem 379(4-5):497-503. Palumaa P, Vasak M. 1992. Binding of inorganic phosphate to the cadmium-induced dimeric form of metallothionein from rabbit liver. Eur J Biochem 205(3):1131-5. Peters T, Jr. 1985. Serum albumin. Adv Protein Chem 37:161-245. Ramanathan S, Ensor M, Daunert S. 1997. Bacterial biosensors for monitoring toxic metals. Trends Biotechnol 15(12):500-6. Sadler PJ, Tucker A, Viles JH. 1994. Involvement of a lysine residue in the N-terminal Ni2+ and Cu2+ binding site of serum albumins. Comparison with Co2+, Cd2+ and Al3+. Eur J Biochem 220(1):193-200. Sadler PJ, Viles JH. 1996. 1H and (113)Cd NMR Investigations of Cd(2+) and Zn(2+) Binding Sites on Serum Albumin: Competition with Ca(2+), Ni(2+), Cu(2+), and Zn(2+). Inorg Chem 35(15):4490-4496. Scott BJ, Bradwell AR. 1983. Identification of the serum binding proteins for iron, zinc, cadmium, nickel, and calcium. Clin Chem 29(4):629-33. Soares ME, Bastos ML, Ferreira M. 2000. Selective determination of chromium (VI) in powdered milk infant formulas by electrothermal atomization atomic absorption spectrometry after ion exchange. J AOAC Int 83(1):220-3. Sokolowska M, Krezel A, Dyba M, Szewczuk Z, Bal W. 2002. Short peptides are not reliable models of thermodynamic and kinetic properties of the N-terminal metal binding site in serum albumin. Eur J Biochem 269(4):1323-31. Stewart AJ, Blindauer CA, Berezenko S, Sleep D, Sadler PJ. 2003. Interdomain zinc site on human albumin. Proc Natl Acad Sci U S A 100(7):3701-6. Sudlow G, Birkett DJ, Wade DN. 1975. The characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol 11(6):824-32. Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K. 1999. Crystal structure of human serum albumin at 2.5 A resolution. Protein Eng 12(6):439-46. Tsalev DL. 1984. Atomic Absorption Spectrometry in Occupational and environmental Health practice. Watkins SR, Hodge RM, Cowman DC, Wickham PP. 1977. Cadmium-binding serum protein. Biochem Biophys Res Commun 74(4):1403-10. Wu Z, Johnson KW, Choi Y, Ciardelli TL. 1995. Ligand binding analysis of soluble interleukin-2 receptor complexes by surface plasmon resonance. J Biol Chem 270(27):16045-51.id NH0925061003 sid 914206 cfn 0 / id NH0925061004 auc 劉怡貞 tic 第四型精胺酸甲基轉化 tic & tic #37238;RMT2相互作用蛋白質之分析 adc 林立元 adc 譚鳴輝 ty 碩士 sc 國立清華大學 dp 分子與細胞生物研究所 yr 92 lg 中文 pg 73 kwc 精胺酸甲基轉化 kwc & kwc #37238; abc 精胺酸甲基轉化酶2(Arginine methyltransferase 2, RMT2)在酵母菌中被分類為第四型的精胺酸甲基轉化酶。此蛋白質表現在大腸桿菌並藉由陰離子交換樹脂純化。由膠體過濾管柱色層分析法分析可估計此重組RMT2蛋白質分子量為47 kDa,由此可知重組RMT2蛋白質主要以單體的形式存在。將重組RMT2蛋白質加至酵母菌野生種細胞分解液中反應,並利用Superose 6膠體過濾管柱色層分析法分析,由分離出來的位置得知RMT2是以複合體的型式存在。此複合體經過DNaseⅠ、RNase A 處理後,並不會影響RMT2蛋白質在膠體過濾管柱分離出來的位置。本篇論文利用專一性的RMT2抗體交叉聯結蛋白質A-膠體來純化酵母菌野生種細胞分解液。在對照組方面,選擇使用RMT2缺乏突變種細胞分解液來做相同的實驗步驟。利用一維膠體電泳分離與RMT2有相互作用之蛋白質,經胰蛋白酶消化後之胜肽則送至基質輔助雷射脫附游離飛行時間式質譜儀(matrix-assisted laser desorption/ionization time-of-flight, MALDI-TOF)中分析。經由質譜儀分析所得的胜肽圖譜,利用MASCOT程式送至NCBI資料庫做比對,鑒別出與RMT2相互作用的蛋白質。我們找到Ssa2p,Ssb1p、Cdc19p、Pdc1p、Tef2p、Eno2p、Pgk1p、Adh1p、Fba1p、Tdh3p及Tdh2p等十一個蛋白質會和RMT2相互作用。 tc 目錄 目錄 Ⅰ 英文摘要 Ⅱ 中文摘要 Ⅲ 表次 Ⅳ 圖次 Ⅴ 附錄文次 Ⅵ 縮寫表 Ⅶ 緒 論 1 材料與方法 9 結果與討論 25 參考文獻 40 附表 46 附圖 48 附錄 70rf 1. Clarke, S. (1993) Protein methylation. Curr Opin Cell Biol, 5, 977-83. 2. Paik, W.K. and Kim, S. (1968) Protein methylase I. Purification and properties of the enzyme. J Biol Chem, 243, 2108-14. 3. Kakimoto, Y. and Akazawa, S. (1970) Isolation and identification of N-G,N-G- and N-G,N'-G-dimethyl-arginine, N-epsilon-mono-, di-, and trimethyllysine, and glucosylgalactosyl- and galactosyl-delta-hydroxylysine from human urine. J Biol Chem, 245, 5751-8. 4. Miranda, T.B., Miranda, M., Frankel, A. and Clarke, S. (2004) PRMT7 Is a Member of the Protein Arginine Methyltransferase Family with a Distinct Substrate Specificity. J Biol Chem, 279, 22902-7. 5. Gary, J.D. and Clarke, S. (1998) RNA and protein interactions modulated by protein arginine methylation. Prog Nucleic Acid Res Mol Biol, 61, 65-131. 6. Najbauer, J., Johnson, B.A., Young, A.L. and Aswad, D.W. (1993) Peptides with sequences similar to glycine, arginine-rich motifs in proteins interacting with RNA are efficiently recognized by methyltransferase(s) modifying arginine in numerous proteins. J Biol Chem, 268, 10501-9. 7. Chen, D., Ma, H., Hong, H., Koh, S.S., Huang, S.M., Schurter, B.T., Aswad, D.W. and Stallcup, M.R. (1999) Regulation of transcription by a protein methyltransferase. Science, 284, 2174-7. 8. Sommer, A., Moscatelli, D. and Rifkin, D.B. (1989) An amino-terminally extended and post-translationally modified form of a 25kD basic fibroblast growth factor. Biochem Biophys Res Commun, 160, 1267-74. 9. Abramovich, C., Yakobson, B., Chebath, J. and Revel, M. (1997) A protein-arginine methyltransferase binds to the intracytoplasmic domain of the IFNAR1 chain in the type I interferon receptor. Embo J, 16, 260-6. 10. Pintucci, G., Quarto, N. and Rifkin, D.B. (1996) Methylation of high molecular weight fibroblast growth factor-2 determines post-translational increases in molecular weight and affects its intracellular distribution. Mol Biol Cell, 7, 1249-58. 11. Lin, W.J., Gary, J.D., Yang, M.C., Clarke, S. and Herschman, H.R. (1996) The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase. J. Biol. Chem., 271, 15034-15044. 12. Tang, J., Gary, J.D., Clarke, S. and Herschman, H.R. (1998) PRMT 3, a type I protein arginine N-methyltransferase that differs from PRMT1 in its oligomerization, subcellular localization, substrate specificity, and regulation. J Biol Chem, 273, 16935-45. 13. Frankel, A., Yadav, N., Lee, J., Branscombe, T.L., Clarke, S. and Bedford, M.T. (2002) The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J Biol Chem, 277, 3537-3543. 14. Paik, W.K. and Kim, S. (1967) Enzymatic methylation of protein fractions from calf thymus nuclei. Biochem Biophys Res Commun, 29, 14-20. 15. Rouault, J.P., Falette, N., Guehenneux, F., Guillot, C., Rimokh, R., Wang, Q., Berthet, C., Moyret-Lalle, C., Savatier, P., Pain, B., Shaw, P., Berger, R., Samarut, J., Magaud, J.P., Ozturk, M., Samarut, C. and Puisieux, A. (1996) Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nat Genet, 14, 482-6. 16. Montagnoli, A., Guardavaccaro, D., Starace, G. and Tirone, F. (1996) Overexpression of the nerve growth factor-inducible PC3 immediate early gene is associated with growth inhibition. Cell Growth Differ, 7, 1327-36. 17. Tang, J., Frankel, A., Cook, R.J., Kim, S., Paik, W.K., Williams, K.R., Clarke, S. and Herschman, H.R. (2000) PRMT1 Is the Predominant Type I Protein Arginine Methyltransferase in Mammalian Cells. J. Biol. Chem., 275, 7723-7730. 18. Tang, J., Kao, P.N. and Herschman, H.R. (2000) Protein-arginine Methyltransferase I, the Predominant Protein-arginine Methyltransferase in Cells, Interacts with and Is Regulated by Interleukin Enhancer-binding Factor 3. J. Biol. Chem., 275, 19866-19876. 19. Frankel, A. and Clarke, S. (2000) PRMT3 is a distinct member of the protein arginine N-methyltransferase family. Conferral of substrate specificity by a zinc-finger domain. J Biol Chem, 275, 32974-82. 20. Bachand, F. and Silver, P.A. (2004) PRMT3 is a ribosomal protein methyltransferase that affects the cellular levels of ribosomal subunits. Embo J, 23, 2641-50. 21. Henry, M.F. and Silver, P.A. (1996) A novel methyltransferase (Hmt1p) modifies poly(A)+-RNA-binding proteins. Mol Cell Biol, 16, 3668-78. 22. Smith, J.J., Rucknagel, K.P., Schierhorn, A., Tang, J., Nemeth, A., Linder, M., Herschman, H.R. and Wahle, E. (1999) Unusual Sites of Arginine Methylation in Poly(A)-binding Protein II and in Vitro Methylation by Protein Arginine Methyltransferases PRMT1 and PRMT3. J Biol Chem, 274, 13229-13234. 23. Xu, C., Henry, P.A., Setya, A. and Henry, M.F. (2003) In vivo analysis of nucleolar proteins modified by the yeast arginine methyltransferase Hmt1/Rmt1p. Rna, 9, 746-59. 24. Baldwin, G.S. and Carnegie, P.R. (1971) Specific enzymic methylation of an arginine in the experimental allergic encephalomyelitis protein from human myelin. Science, 171, 579-81. 25. Hebert, M.D., Shpargel, K.B., Ospina, J.K., Tucker, K.E. and Matera, A.G. (2002) Coilin methylation regulates nuclear body formation. Dev Cell, 3, 329-37. 26. Brahms, H., Raymackers, J., Union, A., de Keyser, F., Meheus, L. and Luhrmann, R. (2000) The C-terminal RG dipeptide repeats of the spliceosomal Sm proteins D1 and D3 contain symmetrical dimethylarginines, which form a major B-cell epitope for anti-Sm autoantibodies. J Biol Chem, 275, 17122-9. 27. Brahms, H., Meheus, L., de Brabandere, V., Fischer, U. and Luhrmann, R. (2001) Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B' and the Sm-like protein LSm4, and their interaction with the SMN protein. Rna, 7, 1531-42. 28. Pollack, B., Kotenko, S., He, W., Izotova, L., Barnoski, B. and Pestka, S. (1999) The Human Homologue of the Yeast Proteins Skb1 and Hsl7p Interacts with Jak Kinases and Contains Protein Methyltransferase Activity. J. Biol. Chem., 274, 31531-31542. 29. Rho, J., Choi, S., Seong, Y.R., Cho, W.K., Kim, S.H. and Im, D.S. (2001) PRMT5, Protein Arginine Methyltransferase 5 that Forms Distinct Homo-oligomers, is a Member of the Protein Arginine Methyltransferase Family. J Biol Chem, 276, 11393-11401. 30. Lee, J.H., Cook, J.R., Pollack, B.P., Kinzy, T.G., Norris, D. and Pestka, S. (2000) Hsl7p, the yeast homologue of human JBP1, is a protein methyltransferase [In Process Citation ]. Biochem Biophys Res Commun, 274, 105-11. 31. Gros, L., Delaporte, C., Frey, S., Decesse, J., de Saint-Vincent, B.R., Cavarec, L., Dubart, A., Gudkov, A.V. and Jacquemin-Sablon, A. (2003) Identification of new drug sensitivity genes using genetic suppressor elements: protein arginine N-methyltransferase mediates cell sensitivity to DNA-damaging agents. Cancer Res, 63, 164-71. 32. Zobel-Thropp, P., Gary, J.D. and Clarke, S. (1998) delta-N-methylarginine is a novel posttranslational modification of arginine residues in yeast proteins. J Biol Chem, 273, 29283-6. 33. Niewmierzycka, A. and Clarke, S. (1999) S-Adenosylmethionine-dependent methylation in Saccharomyces cerevisiae. Identification of a novel protein arginine methyltransferase. J Biol Chem, 274, 814-24. 34. Chern, M.K., Chang, K.N., Liu, L.F., Tam, T.C., Liu, Y.C., Liang, Y.L. and Tam, M.F. (2002) Yeast ribosomal protein L12 is a substrate of protein-arginine methyltransferase 2. J Biol Chem, 277, 15345-53. 35. Karas, M. and Hillenkamp, F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem, 60, 2299-301. 36. Neidhardt, F.C., Bloch, P.L. and Smith, D.F. (1974) Culture medium for enterobacteria. J Bacteriol, 119, 736-47. 37. Landry, F., Lombardo, C.R. and Smith, J.W. (2000) A method for application of samples to matrix-assisted laser desorption ionization time-of-flight targets that enhances peptide detection. Anal Biochem, 279, 1-8. 38. Craig, S.P., 3rd, Yuan, L., Kuntz, D.A., McKerrow, J.H. and Wang, C.C. (1991) High level expression in Escherichia coli of soluble, enzymatically active schistosomal hypoxanthine/guanine phosphoribosyltransferase and trypanosomal ornithine decarboxylase. Proc Natl Acad Sci U S A, 88, 2500-4. 39. Weiss, V.H., McBride, A.E., Soriano, M.A., Filman, D.J., Silver, P.A. and Hogle, J.M. (2000) The structure and oligomerization of the yeast arginine methyltransferase, Hmt1. Nat Struct Biol, 7, 1165-1171. 40. Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.M., Cruciat, C.M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G. and Superti-Furga, G. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415, 141-7.id NH0925061004 sid 914212 cfn 0 / id NH0925061005 auc 林秋妏 tic 胃幽門螺旋桿菌之嗜中性白血球激活蛋白的表達、純化與定性 adc 傅化文 ty 碩士 sc 國立清華大學 dp 分子與細胞生物研究所 yr 92 lg 英文 pg 57 kwc 胃幽門螺旋桿菌 kwc 嗜中性白血球激活蛋白 abc 胃幽門螺旋桿菌被認為是最常見的感染源,幾乎有一半以上的人口都感染有胃幽門螺旋桿菌。近來發現,有一種胃幽門螺旋桿菌的蛋白會高度引起人體的免疫反應,此蛋白被稱為嗜中性白血球激活蛋白。然而,直接從胃幽門螺旋桿菌中純化出嗜中性白血球激活蛋白是非常困難的,因為胃幽門螺旋桿菌一定要生長在微厭氧的環境下,而且產量也不多。迄今,沒有報導指出可以從大腸桿菌的表達系統中得到具有功能的重組嗜中性白血球激活蛋白。為了確定是否可以從大腸桿菌的表達系統中得到具有功能且由十二個單體所組成的嗜中性白血球激活蛋白,從大腸桿菌表達系統中被純化出的重組自然嗜中性白血球激活蛋白和帶有六個組胺酸的嗜中性白血球激活蛋白進一步地被定性。經由超高速離心與凝膠過濾之分析,重組自然嗜中性白血球激活蛋白和帶有六個組胺酸的嗜中性白血球激活蛋白呈現多體聚合的情況。利用旋光儀分析,確定了純化出來的重組蛋白都具有a-螺旋狀的二級結構。同時,經由化學冷光與西方墨點法,證明純化出來的重組蛋白能使細胞產生過氧化物並增加ERK的磷酸化。從此一大腸桿菌的表達系統中,可以純化得到大量的重組嗜中性白血球激活蛋白。而重組的嗜中性白血球激活蛋白之多聚體與活性都與從胃幽門螺旋桿菌來的嗜中性白血球激活蛋白相似。此結果證明著從大腸桿菌純化來的重組嗜中性白血球激活蛋白具有功能上的活性。更重要的是,大腸桿菌的表達系統能夠產生大量的重組嗜中性白血球激活蛋白以提供基礎研究、疫苗的開發、或是藥物的設計。 rf References Chang,C.C., Tsai,C.T., and Chang,C.Y. (2002). Structural restoration of inactive recombinant fish growth hormones by chemical chaperonin and solvent restraint approaches. Protein Eng, 15, 437-441. Cooksley,C., Jenks,P.J., Green,A., Cockayne,A., Logan,R.P., and Hardie,K.R. (2003). NapA protects Helicobacter pylori from oxidative stress damage, and its production is influenced by the ferric uptake regulator. J. Med. Microbiol., 52, 461-469. Del Giudice,G., Covacci,A., Telford,J.L., Montecucco,C., and Rappuoli,R. (2001). The design of vaccines against Helicobacter pylori and their development. Annu. Rev. Immunol., 19, 523-563. Dundon,W.G., Nishioka,H., Polenghi,A., Papinutto,E., Zanotti,G., Montemurro,P., Del,G.G., Rappuoli,R., and Montecucco,C. (2002). The neutrophil-activating protein of Helicobacter pylori. Int. J. Med. Microbiol., 291, 545-550. Dundon,W.G., Polenghi,A., Del Guidice,G., Rappuoli,R., and Montecucco,C. (2001). Neutrophil-activating protein (HP-NAP) versus ferritin (Pfr): comparison of synthesis in Helicobacter pylori. FEMS Microbiol. Lett., 199, 143-149. Evans,D.J., Jr., Evans,D.G., Lampert,H.C., and Nakano,H. (1995a). Identification of four new prokaryotic bacterioferritins, from Helicobacter pylori, Anabaena variabilis, Bacillus subtilis and Treponema pallidum, by analysis of gene sequences. Gene, 153, 123-127. Evans,D.J., Jr., Evans,D.G., Takemura,T., Nakano,H., Lampert,H.C., Graham,D.Y., Granger,D.N., and Kvietys,P.R. (1995b). Characterization of a Helicobacter pylori neutrophil-activating protein. Infect. Immun., 63, 2213-2220. Garnier, J., Osguthorpe, D.J., Robson, B. (1978). Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol., 120, 97-120. Ilari,A., Stefanini,S., Chiancone,E., and Tsernoglou,D. (2000). The dodecameric ferritin from Listeria innocua contains a novel intersubunit iron-binding site. Nat. Struct. Biol., 7, 38-43. Leakey,A., Hirst,R., and La Brooy,J. (2001). A low molecular weight factor is a significant mediator of non-opsonic neutrophil activation by Helicobacter pylori. J. Med. Microbiol., 50, 787-794. Leakey,A., La Brooy,J., and Hirst,R. (2000). The ability of Helicobacter pylori to activate neutrophils is determined by factors other than H. pylori neutrophil-activating protein. J. Infect. Dis., 182, 1749-1755. Montecucco,C. and de Bernard,M. (2003). Molecular and cellular mechanisms of action of the vacuolating cytotoxin (VacA) and neutrophil-activating protein (HP-NAP) virulence factors of Helicobacter pylori. Microbes. Infect., 5, 715-721. Montecucco,C. and Rappuoli,R. (2001). Living dangerously: how Helicobacter pylori survives in the human stomach. Nat. Rev. Mol. Cell Biol., 2, 457-466. Montemurro,P., Barbuti,G., Dundon,W.G., Del Giudice,G., Rappuoli,R., Colucci,M., De Rinaldis,P., Montecucco,C., Semeraro,N., and Papini,E. (2001). Helicobacter pylori neutrophil-activating protein stimulates tissue factor and plasminogen activator inhibitor-2 production by human blood mononuclear cells. J. Infect. Dis., 183, 1055-1062. Montemurro,P., Nishioka,H., Dundon,W.G., de Bernard,M., Del Giudice,G., Rappuoli,R., and Montecucco,C. (2002). The neutrophil-activating protein (HP-NAP) of Helicobacter pylori is a potent stimulant of mast cells. Eur. J. Immunol., 32, 671-676. Namavar,F., Sparrius,M., Veerman,E.C., Appelmelk,B.J., and Vandenbroucke-Grauls,C.M. (1998). Neutrophil-activating protein mediates adhesion of Helicobacter pylori to sulfated carbohydrates on high-molecular-weight salivary mucin. Infect. Immun., 66, 444-447. Niccolai,A., Fontani,S., Kapat,A., and Olivieri,R. (2003). Maximization of recombinant Helicobacter pylori neutrophil activating protein production in Escherichia coli: improvement of a chemically defined medium using response surface methodology. FEMS Microbiol. Lett., 221, 257-262. Nishioka,H., Baesso,I., Semenzato,G., Trentin,L., Rappuoli,R., Del Giudice,G., and Montecucco,C. (2003). The neutrophil-activating protein of Helicobacter pylori (HP-NAP) activates the MAPK pathway in human neutrophils. Eur. J. Immunol., 33, 840-849. Papinutto,E., Dundon,W.G., Pitulis,N., Battistutta,R., Montecucco,C., and Zanotti,G. (2002). Structure of two iron-binding proteins from Bacillus anthracis. J. Biol. Chem., 277, 15093-15098. Roche,N., Angstrom,J., Hurtig,M., Larsson,T., Boren,T., and Teneberg,S. (2004). Helicobacter pylori and complex gangliosides. Infect. Immun., 72, 1519-1529. Satin,B., Del Giudice,G., Della,B., V, Dusi,S., Laudanna,C., Tonello,F., Kelleher,D., Rappuoli,R., Montecucco,C., and Rossi,F. (2000). The neutrophil-activating protein (HP-NAP) of Helicobacter pylori is a protective antigen and a major virulence factor. J. Exp. Med., 191, 1467-1476. Shiraishi R., Itou T., Sugisawa H., Shoji Y., Endo T., and Sakai T. (2002) The respiratory burst activity of bottlenose dolphin neutrophils elicited by several stimulants. J. Vet. Med. Sci., 64, 711-714 Teneberg,S., Jurstrand,M., Karlsson,K.A., and Danielsson,D. (2000). Inhibition of nonopsonic Helicobacter pylori-induced activation of human neutrophils by sialylated oligosaccharides. Glycobiology, 10, 1171-1181. Teneberg,S., Miller-Podraza,H., Lampert,H.C., Evans,D.J., Jr., Evans,D.G., Danielsson,D., and Karlsson,K.A. (1997). Carbohydrate binding specificity of the neutrophil-activating protein of Helicobacter pylori. J. Biol. Chem., 272, 19067-19071. Tomb,J.F., White,O., Kerlavage,A.R., Clayton,R.A., Sutton,G.G., Fleischmann,R.D., Ketchum,K.A., Klenk,H.P., Gill,S., Dougherty,B.A., Nelson,K., Quackenbush,J., Zhou,L., Kirkness,E.F., Peterson,S., Loftus,B., Richardson,D., Dodson,R., Khalak,H.G., Glodek,A., McKenney,K., Fitzegerald,L.M., Lee,N., Adams,M.D., Venter,J.C., and . (1997). The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature, 388, 539-547. Tonello,F., Dundon,W.G., Satin,B., Molinari,M., Tognon,G., Grandi,G., Del Giudice,G., Rappuoli,R., and Montecucco,C. (1999). The Helicobacter pylori neutrophil-activating protein is an iron-binding protein with dodecameric structure. Mol. Microbiol., 34, 238-246. Vajdy,M., Singh,M., Ugozzoli,M., Briones,M., Soenawan,E., Cuadra,L., Kazzaz,J., Ruggiero,P., Peppoloni,S., Norelli,F., del Giudice,G., and O'Hagan,D. (2003). Enhanced mucosal and systemic immune responses to Helicobacter pylori antigens through mucosal priming followed by systemic boosting immunizations. Immunology, 110, 86-94. Yoshida,N., Granger,D.N., Evans,D.J., Jr., Evans,D.G., Graham,D.Y., Anderson,D.C., Wolf,R.E., and Kvietys,P.R. (1993). Mechanisms involved in Helicobacter pylori-induced inflammation. Gastroenterology, 105, 1431-1440. Zanotti,G., Papinutto,E., Dundon,W., Battistutta,R., Seveso,M., Giudice,G., Rappuoli,R., and Montecucco,C. (2002). Structure of the neutrophil-activating protein from Helicobacter pylori. J. Mol. Biol., 323, 125-130.id NH0925061005 sid 914251 cfn 0 / id NH0925061006 auc 戴琇苓 tic 靈長類基因啟動子的理論與實驗分析 adc 張大慈 ty 碩士 sc 國立清華大學 dp 分子與細胞生物研究所 yr 92 lg 英文 pg 86 kwc 啟動子 kwc 靈長類 abc 比較基因體常被用來定出表現序列與非表現序列的界線,也常被用來定出調控基因表現的區域。這個策略已經成功的應用在老鼠與人類的基因體比較,但,老鼠與人類在七千五百萬年前就在演化上分開了,因此,無可避免的會遺漏有些在靈長類動物才有的調控區域及表現序列。 rf 1. Hardison, R.C. Conserved noncoding sequences are reliable guides to regulatory elements. Trends Genet 16, 369-72 (2000). 2. Frazer, K.A., Elnitski, L., Church, D.M., Dubchak, I. & Hardison, R.C. Cross-species sequence comparisons: a review of methods and available resources. Genome Res 13, 1-12 (2003). 3. Lenhard, B. et al. Identification of conserved regulatory elements by comparative genome analysis. J Biol 2, 13 (2003). 4. Nobrega, M. & Pennacchio, L.A. Comparative Genomic Analysis as a Tool for Biological Discovery. J Physiol (2003). 5. Liu, Y., Liu, X.S., Wei, L., Altman, R.B. & Batzoglou, S. Eukaryotic regulatory element conservation analysis and identification using comparative genomics. Genome Res 14, 451-8 (2004). 6. Pennacchio, L.A. & Rubin, E.M. Genomic strategies to identify mammalian regulatory sequences. Nat Rev Genet 2, 100-9 (2001). 7. Nowak, R. Mining treasures from 'junk DNA'. Science 263, 608-10 (1994). 8. Su, A.I. et al. Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci U S A 99, 4465-70 (2002). 9. Noguchi, E. et al. The promoter polymorphism in the eosinophil cationic protein gene and its influence on the serum eosinophil cationic protein level. Am J Respir Crit Care Med 167, 180-4 (2003). 10. Dehal, P. et al. Human chromosome 19 and related regions in mouse: conservative and lineage-specific evolution. Science 293, 104-11 (2001). 11. Gagneux, P. & Varki, A. Genetic differences between humans and great apes. Mol Phylogenet Evol 18, 2-13 (2001). 12. Hacia, J.G. Genome of the apes. Trends Genet 17, 637-45 (2001). 13. King, M.C. & Wilson, A.C. Evolution at two levels in humans and chimpanzees. Science 188, 107-16 (1975). 14. Takahata, N. Composite stepwise mutation model under the neutral mutation hypothesis. J Mol Evol 15, 13-20 (1980). 15. Normile, D. Comparative genomics. Gene expression differs in human and chimp brains. Science 292, 44-5 (2001). 16. Enard, W. et al. Intra- and interspecific variation in primate gene expression patterns. Science 296, 340-3 (2002). 17. Gu, J. & Gu, X. Induced gene expression in human brain after the split from chimpanzee. Trends Genet 19, 63-5 (2003). 18. Caceres, M. et al. Elevated gene expression levels distinguish human from non-human primate brains. Proc Natl Acad Sci U S A 100, 13030-5 (2003). 19. Zhang, J., Dyer, K.D. & Rosenberg, H.F. RNase 8, a novel RNase A superfamily ribonuclease expressed uniquely in placenta. Nucleic Acids Res 30, 1169-75 (2002). 20. Zhang, J., Rosenberg, H.F. & Nei, M. Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci U S A 95, 3708-13 (1998). 21. Lynch, M. & Conery, J.S. The evolutionary fate and consequences of duplicate genes. Science 290, 1151-5 (2000). 22. Zhang, J., Dyer, K.D. & Rosenberg, H.F. Evolution of the rodent eosinophil-associated RNase gene family by rapid gene sorting and positive selection. Proc Natl Acad Sci U S A 97, 4701-6 (2000). 23. Futami, J. et al. Tissue-specific expression of pancreatic-type RNases and RNase inhibitor in humans. DNA Cell Biol 16, 413-9 (1997). 24. Domachowske, J.B., Bonville, C.A., Dyer, K.D. & Rosenberg, H.F. Evolution of antiviral activity in the ribonuclease A gene superfamily: evidence for a specific interaction between eosinophil-derived neurotoxin (EDN/RNase 2) and respiratory syncytial virus. Nucleic Acids Res 26, 5327-32 (1998). 25. Zhang, J. & Rosenberg, H.F. Complementary advantageous substitutions in the evolution of an antiviral RNase of higher primates. Proc Natl Acad Sci U S A 99, 5486-91 (2002). 26. Rosenberg, H.F. & Dyer, K.D. Eosinophil cationic protein and eosinophil-derived neurotoxin. Evolution of novel function in a primate ribonuclease gene family. J Biol Chem 270, 30234 (1995). 27. Singhania, N.A. et al. Rapid evolution of the ribonuclease A superfamily: adaptive expansion of independent gene clusters in rats and mice. J Mol Evol 49, 721-8 (1999). 28. Higgins, D.G., Bleasby, A.J. & Fuchs, R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci 8, 189-91 (1992). 29. Kumar, S., Tamura, K. & Nei, M. MEGA: Molecular Evolutionary Genetics Analysis software for microcomputers. Comput Appl Biosci 10, 189-91 (1994). 30. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406-25 (1987). 31. Heinemeyer, T. et al. Expanding the TRANSFAC database towards an expert system of regulatory molecular mechanisms. Nucleic Acids Res 27, 318-22 (1999). 32. Watanabe, H. et al. DNA sequence and comparative analysis of chimpanzee chromosome 22. Nature 429, 382-8 (2004). 33. Enard, W. et al. Differences in DNA methylation patterns between humans and chimpanzees. Curr Biol 14, R148-9 (2004). 34. Buscail, L. et al. Loss of sst2 somatostatin receptor gene expression in human pancreatic and colorectal cancer. Cancer Res 56, 1823-7 (1996). 35. Puente, E. et al. Transcriptional activation of mouse sst2 somatostatin receptor promoter by transforming growth factor-beta. Involvement of Smad4. J Biol Chem 276, 13461-8 (2001). 36. Knofler, M. et al. Human Hand1 basic helix-loop-helix (bHLH) protein: extra-embryonic expression pattern, interaction partners and identification of its transcriptional repressor domains. Biochem J 361, 641-51 (2002). 37. Knofler, M., Meinhardt, G., Vasicek, R., Husslein, P. & Egarter, C. Molecular cloning of the human Hand1 gene/cDNA and its tissue-restricted expression in cytotrophoblastic cells and heart. Gene 224, 77-86 (1998). 38. Hunger, S.P., Ohyashiki, K., Toyama, K. & Cleary, M.L. Hlf, a novel hepatic bZIP protein, shows altered DNA-binding properties following fusion to E2A in t(17;19) acute lymphoblastic leukemia. Genes Dev 6, 1608-20 (1992). 39. Cowell, I.G., Skinner, A. & Hurst, H.C. Transcriptional repression by a novel member of the bZIP family of transcription factors. Mol Cell Biol 12, 3070-7 (1992). 40. Ellard, S. Hepatocyte nuclear factor 1 alpha (HNF-1 alpha) mutations in maturity-onset diabetes of the young. Hum Mutat 16, 377-85 (2000). 41. Haas, N.B., Cantwell, C.A., Johnson, P.F. & Burch, J.B. DNA-binding specificity of the PAR basic leucine zipper protein VBP partially overlaps those of the C/EBP and CREB/ATF families and is influenced by domains that flank the core basic region. Mol Cell Biol 15, 1923-32 (1995). 42. Reamon-Buettner, S.M. et al. Novel NKX2-5 mutations in diseased heart tissues of patients with cardiac malformations. Am J Pathol 164, 2117-25 (2004). 43. Pashmforoush, M. et al. Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 117, 373-86 (2004). 44. Sosa-Pineda, B., Chowdhury, K., Torres, M., Oliver, G. & Gruss, P. The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature 386, 399-402 (1997). 45. Schaub, M., Myslinski, E., Schuster, C., Krol, A. & Carbon, P. Staf, a promiscuous activator for enhanced transcription by RNA polymerases II and III. Embo J 16, 173-81 (1997). 46. Ko, L.J. & Engel, J.D. DNA-binding specificities of the GATA transcription factor family. Mol Cell Biol 13, 4011-22 (1993). 47. Van Dijk, M.A., Voorhoeve, P.M. & Murre, C. Pbx1 is converted into a transcriptional activator upon acquiring the N-terminal region of E2A in pre-B-cell acute lymphoblastoid leukemia. Proc Natl Acad Sci U S A 90, 6061-5 (1993). 48. Kong, X. et al. Respiratory syncytial virus infection activates STAT signaling in human epithelial cells. Biochem Biophys Res Commun 306, 616-22 (2003). 49. Tiffany, H.L., Handen, J.S. & Rosenberg, H.F. Enhanced expression of the eosinophil-derived neurotoxin ribonuclease (RNS2) gene requires interaction between the promoter and intron. J Biol Chem 271, 12387-93 (1996). 50. Baltus, B. et al. C/EBP regulates the promoter of the eosinophil-derived neurotoxin/RNS2 gene in human eosinophilic cells. J Leukoc Biol 66, 683-8 (1999).id NH0925061006 sid 914220 cfn 0 / id NH0925061007 auc 陳永宗 tic 胃幽門螺旋菌HP0164/HP0166雙分子系統之特性探討 adc 王雯靜 ty 碩士 sc 國立清華大學 dp 分子與細胞生物研究所 yr 92 lg 中文 pg 65 kwc 胃幽門螺旋菌 kwc 雙分子系統 abc 中文摘要 rf 參考文獻 1. Blaser, M.J., Helicobacter pylori: microbiology of a 'slow' bacterial infection. Trends Microbiol, 1993. 1(7): p. 255-60. 2. Tompkins, L.S. and S. Falkow, The new path to preventing ulcers. Science, 1995. 267(5204): p. 1621-2. 3. Guarner, J., et al., The association of Helicobacter pylori with gastric cancer and preneoplastic gastric lesions in Chiapas, Mexico. Cancer, 1993. 71(2): p. 297-301. 4. Leying, H., et al., Cloning and genetic characterization of a Helicobacter pylori flagellin gene. Mol Microbiol, 1992. 6(19): p. 2863-74. 5. Hazell, S.L., et al., Campylobacter pyloridis and gastritis: association with intercellular spaces and adaptation to an environment of mucus as important factors in colonization of the gastric epithelium. J Infect Dis, 1986. 153(4): p. 658-63. 6. Leunk, R.D., et al., Cytotoxic activity in broth-culture filtrates of Campylobacter pylori. J Med Microbiol, 1988. 26(2): p. 93-9. 7. Cover, T.L. and M.J. Blaser, Purification and characterization of the vacuolating toxin from Helicobacter pylori. J Biol Chem, 1992. 267(15): p. 10570-5. 8. Chan, E.C., K.T. Chen, and Y.L. Lin, Vacuolating toxin from Helicobacter pylori activates cellular signaling and pepsinogen secretion in human gastric adenocarcinoma cells. FEBS Lett, 1996. 399(1-2): p. 127-30. 9. Dooley, C.P., et al., Prevalence of Helicobacter pylori infection and histologic gastritis in asymptomatic persons. N Engl J Med, 1989. 321(23): p. 1562-6. 10. Blaser, M.J., Gastric Campylobacter-like organisms, gastritis, and peptic ulcer disease. Gastroenterology, 1987. 93(2): p. 371-83. 11. Drumm, B., et al., Association of Campylobacter pylori on the gastric mucosa with antral gastritis in children. N Engl J Med, 1987. 316(25): p. 1557-61. 12. Marshall, B.J., et al., Pyloric Campylobacter infection and gastroduodenal disease. Med J Aust, 1985. 142(8): p. 439-44. 13. Morris, A. and G. Nicholson, Ingestion of Campylobacter pyloridis causes gastritis and raised fasting gastric pH. Am J Gastroenterol, 1987. 82(3): p. 192-9. 14. Ramsey, E.J., et al., Epidemic gastritis with hypochlorhydria. Gastroenterology, 1979. 76(6): p. 1449-57. 15. Lambert, J.R., et al., Colonization of gnotobiotic piglets with Campylobacter Pyloridis--an animal model? J Infect Dis, 1987. 155(6): p. 1344. 16. McNulty, C.A., et al., Campylobacter pyloridis and associated gastritis: investigator blind, placebo controlled trial of bismuth salicylate and erythromycin ethylsuccinate. Br Med J (Clin Res Ed), 1986. 293(6548): p. 645-9. 17. Rauws, E.A., et al., Campylobacter pyloridis-associated chronic active antral gastritis. A prospective study of its prevalence and the effects of antibacterial and antiulcer treatment. Gastroenterology, 1988. 94(1): p. 33-40. 18. Morgan, D., et al., Nitrofurans in the treatment of gastritis associated with Campylobacter pylori. The Gastrointestinal Physiology Working Group of Cayetano Heredia and The Johns Hopkins Universities. Gastroenterology, 1988. 95(5): p. 1178-84. 19. Glupczynski, Y., et al., Campylobacter pylori-associated gastritis: a double-blind placebo-controlled trial with amoxycillin. Am J Gastroenterol, 1988. 83(4): p. 365-72. 20. Wyatt, J.I., et al., Campylobacter pyloridis and acid induced gastric metaplasia in the pathogenesis of duodenitis. J Clin Pathol, 1987. 40(8): p. 841-8. 21. Graham, D.Y., et al., Effect of treatment of Helicobacter pylori infection on the long-term recurrence of gastric or duodenal ulcer. A randomized, controlled study. Ann Intern Med, 1992. 116(9): p. 705-8. 22. Correa, P., et al., Helicobacter pylori and gastric carcinoma. Serum antibody prevalence in populations with contrasting cancer risks. Cancer, 1990. 66(12): p. 2569-74. 23. Malaty, H.M., et al., Helicobacter pylori in Hispanics: comparison with blacks and whites of similar age and socioeconomic class. Gastroenterology, 1992. 103(3): p. 813-6. 24. Fox, J.G., et al., High prevalence and persistence of cytotoxin-positive Helicobacter pylori strains in a population with high prevalence of atrophic gastritis. Am J Gastroenterol, 1992. 87(11): p. 1554-60. 25. Craanen, M.E., et al., Intestinal metaplasia and Helicobacter pylori: an endoscopic bioptic study of the gastric antrum. Gut, 1992. 33(1): p. 16-20. 26. Fennerty, M.B., et al., Gastric intestinal metaplasia in ethnic groups in the southwestern United States. Cancer Epidemiol Biomarkers Prev, 1992. 1(4): p. 293-6. 27. Parsonnet, J., et al., Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med, 1991. 325(16): p. 1127-31. 28. Nomura, A., et al., Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N Engl J Med, 1991. 325(16): p. 1132-6. 29. Blaser, M.J., Helicobacter pylori and the pathogenesis of gastroduodenal inflammation. J Infect Dis, 1990. 161(4): p. 626-33. 30. Walsh, J.H., Helicobacter pylori: selection of patients for treatment. Ann Intern Med, 1992. 116(9): p. 770-1. 31. Holcombe, C., et al., Helicobacter pylori clearance in the treatment of non-ulcer dyspepsia. Aliment Pharmacol Ther, 1992. 6(1): p. 119-23. 32. Vaira, D., et al., Double blind trial of colloidal bismuth subcitrate versus placebo in Helicobacter pylori positive patients with non-ulcer dyspepsia. Ital J Gastroenterol, 1992. 24(7): p. 400-4. 33. Goh, K.L., et al., Helicobacter pylori infection and non-ulcer dyspepsia: the effect of treatment with colloidal bismuth subcitrate. Scand J Gastroenterol, 1991. 26(11): p. 1123-31. 34. Wolfe, M.M. and A.H. Soll, The physiology of gastric acid secretion. N Engl J Med, 1988. 319(26): p. 1707-15. 35. Levi, S., et al., Antral Helicobacter pylori, hypergastrinaemia, and duodenal ulcers: effect of eradicating the organism. Bmj, 1989. 299(6714): p. 1504-5. 36. Smith, J.T., et al., Inappropriate hypergastrinaemia in asymptomatic healthy subjects infected with Helicobacter pylori. Gut, 1990. 31(5): p. 522-5. 37. Figura, N., et al., Cytotoxin production by Campylobacter pylori strains isolated from patients with peptic ulcers and from patients with chronic gastritis only. J Clin Microbiol, 1989. 27(1): p. 225-6. 38. Cover, T.L., et al., Divergence of genetic sequences for the vacuolating cytotoxin among Helicobacter pylori strains. J Biol Chem, 1994. 269(14): p. 10566-73. 39. Nixon, B.T., C.W. Ronson, and F.M. Ausubel, Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc Natl Acad Sci U S A, 1986. 83(20): p. 7850-4. 40. Ninfa, A.J. and B. Magasanik, Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. Proc Natl Acad Sci U S A, 1986. 83(16): p. 5909-13. 41. Hess, J.F., et al., Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis. Cell, 1988. 53(1): p. 79-87. 42. Klumpp, S. and J. Krieglstein, Phosphorylation and dephosphorylation of histidine residues in proteins. Eur J Biochem, 2002. 269(4): p. 1067-71. 43. Stock, J.B., A.M. Stock, and J.M. Mottonen, Signal transduction in bacteria. Nature, 1990. 344(6265): p. 395-400. 44. Wolodko, W.T., et al., The crystal structure of succinyl-CoA synthetase from Escherichia coli at 2.5-A resolution. J Biol Chem, 1994. 269(14): p. 10883-90. 45. Spronk, A.M., H. Yoshida, and H.G. Wood, Isolation of 3-phosphohistidine from phosphorylated pyruvate, phosphate dikinase. Proc Natl Acad Sci U S A, 1976. 73(12): p. 4415-9. 46. Morera, S., et al., Mechanism of phosphate transfer by nucleoside diphosphate kinase: X-ray structures of the phosphohistidine intermediate of the enzymes from Drosophila and Dictyostelium. Biochemistry, 1995. 34(35): p. 11062-70. 47. Anthony, R.S. and L.B. Spector, Phosphorylated acetate kinase. Its isolation and reactivity. J Biol Chem, 1972. 247(7): p. 2120-5. 48. Stock, A.M., V.L. Robinson, and P.N. Goudreau, Two-component signal transduction. Annu Rev Biochem, 2000. 69: p. 183-215. 49. Mizuno, T., Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. DNA Res, 1997. 4(2): p. 161-8. 50. Grebe, T.W. and J.B. Stock, The histidine protein kinase superfamily. Adv Microb Physiol, 1999. 41: p. 139-227. 51. Chang, C., et al., Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science, 1993. 262(5133): p. 539-44. 52. Hua, J., et al., Ethylene insensitivity conferred by Arabidopsis ERS gene. Science, 1995. 269(5231): p. 1712-4. 53. Pao, G.M. and M.H. Saier, Jr., Nonplastid eukaryotic response regulators have a monophyletic origin and evolved from their bacterial precursors in parallel with their cognate sensor kinases. J Mol Evol, 1997. 44(6): p. 605-13. 54. Brown, J.L., S. North, and H. Bussey, SKN7, a yeast multicopy suppressor of a mutation affecting cell wall beta-glucan assembly, encodes a product with domains homologous to prokaryotic two-component regulators and to heat shock transcription factors. J Bacteriol, 1993. 175(21): p. 6908-15. 55. Surette, M.G., et al., Dimerization is required for the activity of the protein histidine kinase CheA that mediates signal transduction in bacterial chemotaxis. J Biol Chem, 1996. 271(2): p. 939-45. 56. Ninfa, E.G., et al., Mechanism of autophosphorylation of Escherichia coli nitrogen regulator II (NRII or NtrB): trans-phosphorylation between subunits. J Bacteriol, 1993. 175(21): p. 7024-32. 57. Lois, A.F., et al., Autophosphorylation and phosphatase activities of the oxygen-sensing protein FixL of Rhizobium meliloti are coordinately regulated by oxygen. J Biol Chem, 1993. 268(6): p. 4370-5. 58. Alex, L.A. and M.I. Simon, Protein histidine kinases and signal transduction in prokaryotes and eukaryotes. Trends Genet, 1994. 10(4): p. 133-8. 59. MacFarlane, S.A. and M. Merrick, The nucleotide sequence of the nitrogen regulation gene ntrB and the glnA-ntrBC intergenic region of Klebsiella pneumoniae. Nucleic Acids Res, 1985. 13(21): p. 7591-606. 60. Stock, J., Signal transduction: Gyrating protein kinases. Curr Biol, 1999. 9(10): p. R364-7. 61. Stock, J.B., A.J. Ninfa, and A.M. Stock, Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev, 1989. 53(4): p. 450-90. 62. Fankhauser, C. and J. Chory, Light receptor kinases in plants! Curr Biol, 1999. 9(4): p. R123-6. 63. Albright, L.M., E. Huala, and F.M. Ausubel, Prokaryotic signal transduction mediated by sensor and regulator protein pairs. Annu Rev Genet, 1989. 23: p. 311-36. 64. Simms, S.A., M.G. Keane, and J. Stock, Multiple forms of the CheB methylesterase in bacterial chemosensing. J Biol Chem, 1985. 260(18): p. 10161-8. 65. Shaulsky, G., R. Escalante, and W.F. Loomis, Developmental signal transduction pathways uncovered by genetic suppressors. Proc Natl Acad Sci U S A, 1996. 93(26): p. 15260-5. 66. Parkinson, J.S. and E.C. Kofoid, Communication modules in bacterial signaling proteins. Annu Rev Genet, 1992. 26: p. 71-112. 67. Volz, K., Structural conservation in the CheY superfamily. Biochemistry, 1993. 32(44): p. 11741-53. 68. Stock, A.M., et al., Three-dimensional structure of CheY, the response regulator of bacterial chemotaxis. Nature, 1989. 337(6209): p. 745-9. 69. Sanders, D.A., et al., Identification of the site of phosphorylation of the chemotaxis response regulator protein, CheY. J Biol Chem, 1989. 264(36): p. 21770-8. 70. Lukat, G.S., A.M. Stock, and J.B. Stock, Divalent metal ion binding to the CheY protein and its significance to phosphotransfer in bacterial chemotaxis. Biochemistry, 1990. 29(23): p. 5436-42. 71. Lukat, G.S., et al., Roles of the highly conserved aspartate and lysine residues in the response regulator of bacterial chemotaxis. J Biol Chem, 1991. 266(13): p. 8348-54. 72. Kondo, H., et al., Escherichia coli positive regulator OmpR has a large loop structure at the putative RNA polymerase interaction site. Nat Struct Biol, 1997. 4(1): p. 28-31. 73. Iuchi, S. and E.C. Lin, The narL gene product activates the nitrate reductase operon and represses the fumarate reductase and trimethylamine N-oxide reductase operons in Escherichia coli. Proc Natl Acad Sci U S A, 1987. 84(11): p. 3901-5. 74. Baikalov, I., et al., Structure of the Escherichia coli response regulator NarL. Biochemistry, 1996. 35(34): p. 11053-61. 75. Kustu, S., A.K. North, and D.S. Weiss, Prokaryotic transcriptional enhancers and enhancer-binding proteins. Trends Biochem Sci, 1991. 16(11): p. 397-402. 76. Tomb, J.F., et al., The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature, 1997. 388(6642): p. 539-47. 77. Beier, D. and R. Frank, Molecular characterization of two-component systems of Helicobacter pylori. J Bacteriol, 2000. 182(8): p. 2068-76. 78. Panthel, K., et al., Two-component systems of Helicobacter pylori contribute to virulence in a mouse infection model. Infect Immun, 2003. 71(9): p. 5381-5. 79. Wen, Y., et al., Acid-adaptive genes of Helicobacter pylori. Infect Immun, 2003. 71(10): p. 5921-39. 80. Pflock, M., et al., Genetic evidence for histidine kinase HP165 being an acid sensor of Helicobacter pylori. FEMS Microbiol Lett, 2004. 234(1): p. 51-61. 81. Forsyth, M.H., et al., Genome-wide transcriptional profiling in a histidine kinase mutant of Helicobacter pylori identifies members of a regulon. J Bacteriol, 2002. 184(16): p. 4630-5. 82. Foynes, S., et al., Helicobacter pylori possesses two CheY response regulators and a histidine kinase sensor, CheA, which are essential for chemotaxis and colonization of the gastric mucosa. Infect Immun, 2000. 68(4): p. 2016-23. 83. Delany, I., et al., Growth phase-dependent regulation of target gene promoters for binding of the essential orphan response regulator HP1043 of Helicobacter pylori. J Bacteriol, 2002. 184(17): p. 4800-10.id NH0925061007 sid 914209 cfn 0 / id NH0925061008 auc 陳韻曲 tic 核醣核酸水解 tic & tic #37238;之訊息序列對於酵母菌生長停滯之研究 adc 張大慈博士 ty 碩士 sc 國立清華大學 dp 分子與細胞生物研究所 yr 92 lg 英文 pg 74 kwc 核醣核酸水解 kwc & kwc #37238; kwc 訊息序列 kwc 酵母菌 kwc 生長停滯 abc 具細胞毒性的人類核醣核酸水解酶屬於核醣核酸水解酵素A族之成員,它具有抗細菌和抗寄生蟲等特性,此外亦對部分哺乳類細胞及組織造成細胞毒性。在近期研究中我們發現在大腸桿菌中大量表現全長含前導序列(leading sequence)的此核醣核酸水解酶時會造成寄主細胞的死亡,而此現象在表現不含前導序列之成熟型的酵素時不會發生。 rf 1. Rosenberg, H.F., Recombinant human eosinophil cationic protein. Ribonuclease activity is not essential for cytotoxicity. J Biol Chem, 1995. 270(14): p. 7876-81. 2. Rosenberg, H.F., S.J. Ackerman, and D.G. Tenen, Human eosinophil cationic protein. Molecular cloning of a cytotoxin and helminthotoxin with ribonuclease activity. J Exp Med, 1989. 170(1): p. 163-76. 3. C. M. Wu, et al., Signal peptide of eosinophil cationic protein is toxic to cells lacking signal peptide peptidase. BBRC accepted at 2004. 7. 22 4. Parsons AB, Geyer R, Hughes TR, Boone C, Yeast genomics and proteomics in drug discovery and target validation. Prog Cell Cycle Res., 2003. 5: p. 159-66. 5. Grant SG, Blackstock WP, Proteomics in neuroscience: from protein to network. J Neurosci., 2001. 21(21): p. 8315-8. 6. Martoglio, B., R. Graf, and B. Dobberstein, Signal peptide fragments of preprolactin and HIV-1 p-gp160 interact with calmodulin. Embo J, 1997. 16(22): p. 6636-45. 7. Wicher, K.B., et al., Deletion of a cytotoxic, N-terminal putatitive signal peptide results in a significant increase in production yields in Escherichia coli and improved specific activity of Cel12A from Rhodothermus marinus. Appl Microbiol Biotechnol, 2001. 55(5): p. 578-84. 8. Belin, D., et al., Functional activity of eukaryotic signal sequences in Escherichia coli: the ovalbumin family of serine protease inhibitors. J Mol Biol, 2004. 335(2): p. 437-53. 9. Burgers, P.M., Overexpression of multisubunit replication factors in yeast. Methods, 1999. 18(3): p. 349-55. 10. Hottiger, T., et al., 2-micron vectors containing the Saccharomyces cerevisiae metallothionein gene as a selectable marker: excellent stability in complex media, and high-level expression of a recombinant protein from a CUP1-promoter-controlled expression cassette in cis. Yeast, 1995. 11(1): p. 1-14. 11. Mao, X., et al., MET3 promoter: a tightly regulated promoter and its application in construction of conditional lethal strain. Curr Microbiol, 2002. 45(1): p. 37-40. 12. Breter, H.J., M.T. Knoop, and H. Kirchen, The mapping of chromosomes in Saccharomyces cerevisiae. I. A cosmid vector designed to establish, by cloning into cdc-mutants, numerous start loci for chromosome walking in the yeast genome. Gene, 1987. 53(2-3): p. 181-90. 13. Shevchenko, A., et al., Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem, 1996. 68(5): p. 850-8. 14. Jungblut, P.R., et al., Comparative proteome analysis of Helicobacter pylori. Mol Microbiol, 2000. 36(3): p. 710-25. 15. Bogengruber, E., et al., eds. Functional analysis in yeast of the Brix protein superfamily involved in the biogenesis of ribosomes. FEMS Yeast Res. Vol. 3. 2003. 35-43. 16. Veenhuis, M. and W. Harder, Microbodies in yeasts: structure, function and biogenesis. Microbiol Sci, 1988. 5(11): p. 347-51. 17. Daniel, T., et al., Expression and regulation of the AMP-activated protein kinase-SNF1 (sucrose non-fermenting 1) kinase complexes in yeast and mammalian cells: studies using chimaeric catalytic subunits. Biochem J, 2002. 365 (3): p. 629-38. 18. Sanz, P., et al., Snf1 protein kinase: a key player in the response to cellular stress in yeast. Biochem Soc Trans, 2003. 31 (1): p. 178-81. 19. Ahuatzi, D., et al., The glucose-regulated nuclear localization of hexokinase 2 in Saccharomyces cerevisiae is Mig1-dependent. J Biol Chem, 2004. 279 (14): p. 14440-6. 20. Lee, J., et al., A new antioxidant with alkyl hydroperoxide defense properties in yeast. J Biol Chem, 1999. 274(8): p. 4537-44. 21. Erdmann, R., et al., PAS1, a yeast gene required for peroxisome biogenesis, encodes a member of a novel family of putative ATPases. Cell, 1991. 64(3): p. 499-510. 22. Stroobants, A.K., et al., Enlargement of the endoplasmic reticulum membrane in Saccharomyces cerevisiae is not necessarily linked to the unfolded protein response via Ire1p. FEBS Lett, 1999. 453(1-2): p. 210-4. 23. Hegde, R.S., Targeting and beyond: new roles for old signal sequences. Mol Cell, 2002. 10(4): p. 697-8. 24. Weihofen, A., et al., Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science, 2002. 296(5576): p. 2215-8. 25. Willis, K.A., et al., The global transcriptional activator of Saccharomyces cerevisiae, Gcr1p, mediates the response to glucose by stimulating protein synthesis and CLN-dependent cell cycle progression. Genetics, 2003. 165(3): p. 1017-29. 26. Kim, J. and J.P. Hirsch, A nucleolar protein that affects mating efficiency in Saccharomyces cerevisiae by altering the morphological response to pheromone. Genetics, 1998. 149(2): p. 795-805. 27. Middleton JL, Marth EH, Fennema O, Dichlorofluoromethane inactivates Saccharomyces cerevisiae. Appl Microbiol., 1975. 29(2): p. 195-200. .id NH0925061008 sid 914223 cfn 0 / id NH0925061009 auc 張育寧 tic Anabaena 2-epimerase 2.0 tic & tic Aring; 之晶體結構 adc 王雯靜 ty 碩士 sc 國立清華大學 dp 分子與細胞生物研究所 yr 92 lg 中文 pg 46 kwc 蛋白質結構 kwc 蛋白質晶體結構 kwc X光繞射 kwc 晶體結構 kwc 分子置換 kwc 唾液酸 abc sialic acid在生物體中扮演了極為重要的角色,為許多細胞表面醣蛋白及生物辨識分子的碳水化合物鏈中的組成成份。N-acyl-D-glucosamine 2-epimerase長久以來被認為是生物體內催化sialic acid生合成反應的速率決定步驟的酵素,它將N-acetyl-D-glucosamine立體異構話,始產物繼續參與進行sialic acid生合成。然而現今的文獻中,皆沒有加以詳述為N-acyl-D-glucosamine 2-epimerase的反應機制。因此,我們為了了解此一酵素是如何運作的,我們用藍綠藻Anabaena中擁有此酵素活性的2-epimerase來做探討。我們在有PEG3350和tert-butanol及在室溫的條件之下成功的找到了2-epimerase蛋白質晶體的生長環境。利用X光繞射的方法,2-epimerase的蛋白質晶體的繞射數據的解析度達到2.0Å,space group為P212121,而晶格參數為a = 79.3, b = 100.0, c = 104.9 Å。最小不對稱單元為一雙元體(分子量約為85kDa),且晶體水含量為49%。我們利用以Molecular Replacement(MR)的技術解出藍綠藻Anabaena 2-epimerase的晶體結構。此結構的單元體(monomer)為由多個???{helix所組成的helix/helix-barrel結構,其中包括許多長短不一的loops及???{sheets,在這結構中心有一深深的裂縫使整個結構像一個漏斗樣,我們預測活性部位就在這裂縫中。而雙元體A chain的第1,2個殘基及第151-164個殘基;B chain的第1-3個殘基及第153-165個殘基為電子雲不明顯的區域,無法完整的建構它們的結構,預測上述連續的十多個殘基可能為不穩定的loop。 rf Comb, D. G. and S. Roseman (1960). "The sialic acids. I. The structure and enzymatic synthesis of N-acetylneuraminic acid." J Biol Chem 235: 2529-37. Datta, A. (1970). "Regulatory role of adenosine triphosphate on hog kidney N-acetyl-D-glucosamine 2-epimerase." Biochemistry 9(17): 3363-70. Ghosh, S. and S. Roseman (1965). "The Sialic Acids. Iv. N-Acyl--D-Glucosamine 6-Phosphate 2-Epimerase." J Biol Chem 240: 1525-30. Ghosh, S. and S. Roseman (1965). "The Sialic Acids. V. N-Acyl-D-Glucosamine 2-Epimerase." J Biol Chem 240: 1531-6. Itoh, T., B. Mikami, et al. (2000). "Crystal structure of N-acyl-D-glucosamine 2-epimerase from porcine kidney at 2.0 A resolution." J Mol Biol 303(5): 733-44. Jones T.A., Zou J.Y., Cowan S.W. and Kjeldgaard M.(1991)Important methods for buldingprotein models in electron density maps and the location of errors in these models. Acta Crystallog. sec A. 47, 110-119 Keppler, O. T., R. Horstkorte, et al. (2001). "Biochemical engineering of the N-acyl side chain of sialic acid: biological implications." Glycobiology 11(2): 11R-18R. Laskowski R.A., MacArthur M.W., Moss D.S. and Thornton J.M.J.A.C.(1993)PROCHECK:a program to check the stereochemical quality of protein structures. J. Appl. Crystallog. 26, 283-291 Luchansky, S. J., K. J. Yarema, et al. (2003). "GlcNAc 2-epimerase can serve a catabolic role in sialic acid metabolism." J Biol Chem 278(10): 8035-42. Maru, I., J. Ohnishi, et al. (1998). "Simple and large-scale production of N-acetylneuraminic acid from N-acetyl-D-glucosamine and pyruvate using N-acyl-D-glucosamine 2-epimerase and N-acetylneuraminate lyase." Carbohydr Res 306(4): 575-8. Maru, I., Y. Ohta, et al. (1996). "Molecular cloning and identification of N-acyl-D-glucosamine 2-epimerase from porcine kidney as a renin-binding protein." J Biol Chem 271(27): 16294-9. McGuire, E. J. and S. B. Binkley (1964). "The Structure and Chemistry of Colominic Acid." Biochemistry 170: 247-51. Otwinowski Z. and Minor W.M.E.(1997)Processing of X - ray diffraction data collected in oscillation mode. Meth. Enzymol. 276, 307-326. Perrakis A., Morris R., and Lamzin V.S.(1999)Automated protein model building combined with iterative structure refinement. Nat Struct Biol. 6, 458-463. Samuel, J. and M. E. Tanner (2002). "Mechanistic aspects of enzymatic carbohydrate epimerization." Nat Prod Rep 19(3): 261-77. Schauer, R. (1982). "Chemistry, metabolism, and biological functions of sialic acids." Adv Carbohydr Chem Biochem 40: 131-234. Schmitz, C., M. Gotthardt, et al. (2000). "Normal blood pressure and plasma renin activity in mice lacking the renin-binding protein, a cellular renin inhibitor." J Biol Chem 275(20): 15357-62. Tada, M., S. Takahashi, et al. (1992). "Tissue-specific regulation of renin-binding protein gene expression in rats." J Biochem (Tokyo) 112(2): 175-82. Takahashi, S., K. Hori, et al. (2001). "Effects of nucleotides on N-acetyl-d-glucosamine 2-epimerases (renin-binding proteins): comparative biochemical studies." J Biochem (Tokyo) 130(6): 815-21. Takahashi, S., K. Takahashi, et al. (1999). "Human renin-binding protein is the enzyme N-acetyl-D-glucosamine 2-epimerase." J Biochem (Tokyo) 125(2): 348-53.id NH0925061009 sid 914284 cfn 0 / id NH0925061010 auc 歐瓊雯 tic Knock down ADAR2基因對斑馬魚胚胎發育的影響 adc 周姽嫄 ty 碩士 sc 國立清華大學 dp 分子與細胞生物研究所 yr 92 lg 中文 pg 46 kwc 斑馬魚 kwc 細胞凋亡 abc 中文摘要 tc 目錄 Abstract 2 中文摘要 3 前言 4 材料與方法11 結果 17 討論 23 參考文獻 28 附表 33 附圖 35rf 參考文獻 Brenda L. Bass (2002). RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem. 71, 817-46. Burgess DL, Kohrman DC, Galt J, Plummer NW, Jones JM, Spear B, Meisler MH. (1995). Mutation of a new sodium channel gene, Scn8a, in the mouse mutant motor endplate disease. Nature Genet. 10, 461-5. Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders-Bush E, Emeson RB. (1997). Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387, 303-8. Chen CX, Cho DS, Wang Q, Lai F, Carter KC, Nishikura K. (2000). A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA 6, 755-67. Chen MC, Gong HY, Cheng CY, Wang JP, Hong JR, Wu JL. (2000). Cloning and characterization of a novel nuclear Bcl-2 family protein, zfMcl-1a, in zebrafish embryo. Biochem. Biophys. Res. Commun. 279, 725-31. Chen MC, Gong HY, Cheng CY, Wang JP, Hong JR, Wu JL. (2001). Cloning and characterization of zfBLP1, a Bcl-XL homologue from the zebrafish, Danio rerio. Biochim. Biophys. Acta. 1519, 127-33. Coen L, du Pasquier D, Le Mevel S, Brown S, Tata J, Mazabraud A, Demeneix BA. (2001). Xenopus Bcl-X(L) selectively protects Rohon-Beard neurons from metamorphic degeneration. Proc. Natl. Acad. Sci. 98, 7869-74. Cole LK, Ross LS. (2001). Apoptosis in the developing zebrafish embryo. Dev. Biol. 240, 123-42. Cory S, Huang DC, Adams JM. (2003). The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22, 8590-607. Dragovich T, Rudin CM, Thompson CB. (1998). Signal transduction pathways that regulate cell survival and cell death. Oncogene 17, 3207-13. Furutani-Seiki M, Jiang YJ, Brand M, Heisenberg CP, Houart C, Beuchle D, van Eeden FJ, Granato M, Haffter P, Hammerschmidt M, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Nusslein-Volhard C. (1996). Neural degeneration mutants in the zebrafish, Danio rerio. Development 123, 229-39. George CX, Samuel CE. (1999). Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proc. Natl. Acad. Sci. 96, 4621-6. Grauso M, Reenan RA, Culetto E, Sattelle DB. (2002). Novel putative nicotinic acetylcholine receptor subunit genes, Dalpha5, Dalpha6 and Dalpha7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing. Genetics 160, 1519-33. Green DR, Reed JC. (1998). Mitochondria and apoptosis. Science 281 , 1309-12. Gross A, McDonnell JM, Korsmeyer SJ. (1999). BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899-911. Haffter, P., Granato, M., Brand, M., Mullins, M. C., Hammerschmidt, M., Kane, D. A., Odenthal, J., van Eeden, F. J. M., Jiang, Y.-J., Heisenberg, C.-P., Kelsh, R. N., Furutani-Seiki, M., Vogelsang, E., Beuchle, D., Schach, U., Fabian, C. and Nüsslein-Volhard, C. (1996). The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1-36. Hartner JC, Schmittwolf C, Kispert A, Muller AM, Higuchi M, Seeburg PH. (2004). Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J. Biol. Chem. 279, 4894-902. Hensey C, Gautier J. (1998). Programmed cell death during Xenopus development: a spatio-temporal analysis. Dev. Biol. 203, 36-48. Herbert A, Alfken J, Kim YG, Mian IS, Nishikura K, Rich A. (1997). A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase. Proc. Natl. Acad. Sci. 94, 8421-6. Higuchi M, Single FN, Kohler M, Sommer B, Sprengel R, Seeburg PH. (1993). RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell 75, 1361-70. Hsieh YC, Chang MS, Chen JY, Yen JJ, Lu IC, Chou CM, Huang CJ. (2003). Cloning of zebrafish BAD, a BH3-only proapoptotic protein, whose overexpression leads to apoptosis in COS-1 cells and zebrafish embryos. Biochem. Biophys. Res. Commun. 304, 667-75. Jacobson MD, Weil M, Raff MC. (1997). Programmed cell death in animal development. Cell 88, 347-54. Kerr JF, Wyllie AH, Currie AR. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-57. Kim CH, Ueshima E, Muraoka O, Tanaka H, Yeo SY, Huh TL, Miki N. (1996). Zebrafish elav/HuC homologue as a very early neuronal marker. Neurosci. Lett. 216, 109-12. Kimura SH, Ikawa M, Ito A, Okabe M, Nojima H. (2001). Cyclin G1 is involved in G2/M arrest in response to DNA damage and in growth control after damage recovery. Oncogene 25 3290-300. Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ. (1995). Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270, 96-9. Lamborghini JE. (1987). Disappearance of Rohon-Beard neurons from the spinal cord of larval Xenopus laevis. J. Comp. Neurol. 264, 47-55. Levine TD, Gao F, King PH, Andrews LG, Keene JD. (1993). Hel-N1: an autoimmune RNA-binding protein with specificity for 3' uridylate-rich untranslated regions of growth factor mRNAs. Mol. Cell Biol. 13, 3494-504. Liu J, Dalmau J, Szabo A, Rosenfeld M, Huber J, Furneaux H. (1995). Paraneoplastic encephalomyelitis antigens bind to the AU-rich elements of mRNA. Neurology 45, 544-50. Liu Y, Emeson RB, Samuel CE. (1999). Serotonin-2C receptor pre-mRNA editing in rat brain and in vitro by splice site variants of the interferon-inducible double-stranded RNA-specific adenosine deaminase ADAR1. J. Biol. Chem. 274 , 18351-8. Lomeli H, Mosbacher J, Melcher T, Hoger T, Geiger JR, Kuner T, Monyer H, Higuchi M, Bach A, Seeburg PH. (1994). Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266, 1709-13 Maas S, Rich A, Nishikura K. (2003)A-to-I RNA editing: recent news and residual mysteries. J. Biol. Chem.. 278, 1391-4. Melcher T, Maas S, Herb A, Sprengel R, Seeburg PH, Higuchi M. (1996). A mammalian RNA editing enzyme. Nature 379, 460-4. Melcher T, Maas S, Herb A, Sprengel R, Higuchi M, Seeburg PH. (1996). RED2, a brain-specific member of the RNA-specific adenosine deaminase family. J. Biol. Chem. 271, 31795-8. Motoyama N, Wang F, Roth KA, Sawa H, Nakayama K, Nakayama K, Negishi I, Senju S, Zhang Q, Fujii S, et al. (1995). Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 1267, 1506-10. Oltvai ZN, Milliman CL, Korsmeyer SJ. (1993). Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74, 609-19. Park HC, Hong SK, Kim HS, Kim SH, Yoon EJ, Kim CH, Miki N, Huh TL. (2000). Structural comparison of zebrafish Elav/Hu and their differential expressions during neurogenesis. Neurosci. Lett. 279, 81-4. Park HC, Kim CH, Bae YK, Yeo SY, Kim SH, Hong SK, Shin J, Yoo KW, Hibi M, Hirano T, Miki N, Chitnis AB, Huh TL. (2000). Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev. Biol. 227, 279-93. Patterson JB, Samuel CE. (1995). Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol. Cell Biol. 15, 5376-88. Palladino MJ, Keegan LP, O'Connell MA, Reenan RA. (2000). A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell 102, 437-49. Parquet MC, Kumatori A, Hasebe F, Morita K, Igarashi A. (2001). West Nile virus-induced bax-dependent apoptosis. FEBS Lett. 500, 17-24. Parsadanian AS, Cheng Y, Keller-Peck CR, Holtzman DM, Snider WD. (1998). Bcl-xL is an antiapoptotic regulator for postnatal CNS neurons. J. Neurosci. 18, 1009-19. Paul,M.S. and Bass,B.L. (1998). Inosine exists in mRNA at tissue-specific levels and is most abundant in brain mRNA. EMBO J., 17, 1120-1127. Po Kwok Chan, Shuk Han Cheng. (2003). Cadmium-induced ectopic apoptosis in zebrafish embryos. Arch. Toxicol. 77, 69-79 Polson AG, Bass BL, Casey JL. (1996). RNA editing of hepatitis delta virus antigenome by dsRNA-adenosine deaminase. Nature 380, 454-6. Purves D, Augustine GJ. , Fitzpatrick D, Katz LC., Lamantia AS, McNamara JO. (1997) Neuroscience G-12 Qingde Wang, *Peter J. O’Brien, Chun-Xia Chen, Dan-Sung C. Cho, John M. Murray, and Kazuko Nishikura (2000). Altered G Protein-Coupling Functions of RNA Editing Isoform and Splicing Variant Serotonin2C Receptors. J. Neurochem. 74, 1290-300 Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD. (1992). Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262, 695-700. Raman IM, Sprunger LK, Meisler MH, Bean BP. (1997). Altered subthreshold sodium currents and disrupted firing patterns in Purkinje neurons of Scn8a mutant mice. Neuron 19, 881-91. Reenan RA. (2001). The RNA world meets behavior: A-->I pre-mRNA editing in animals. Trends Genet. 17, 53-6. Ribera AB, Nusslein-Volhard C. (1998). Zebrafish touch-insensitive mutants reveal an essential role for the developmental regulation of sodium current. J. Neurosci. 18, 9181-91. Ross AJ, Waymire KG, Moss JE, Parlow AF, Skinner MK, Russell LD, MacGregor GR. (1998). Testicular degeneration in Bcl-w deficient mice. Nature Genet. 18, 251-6. Rueter SM, Dawson TR, Emeson RB. (1999). Regulation of alternative splicing by RNA editing. Nature 399, 75-80. Runkle S, Hill J, Kantorow M, Horwitz J, Posner M. (2002). Sequence and spatial expression of zebrafish (Danio rerio) alphaA-crystallin. Mol. Vis. 8, 45-50. Schaller KL, Krzemien DM, Yarowsky PJ, Krueger BK, Caldwell JH (1995). A novel, abundant sodium channel expressed in neurons and glia. J. Neurosci. 15, 3231-42. Smith HC, Gott JM, Hanson MR. (1997). A guide to RNA editing. RNA 10, 1105-23. Sommer B, Kohler M, Sprengel R, Seeburg PH. (1991). RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11-9. Sommer B, Kohler M, Sprengel R, Seeburg PH. (1991). RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11–19 Wakamatsu Y, Weston JA. (1997). Sequential expression and role of Hu RNA-binding proteins during neurogenesis. Development 124, 3449-60. Wang Q, Khillan J, Gadue P, Nishikura K. (2000). Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science 290, 1765-8. Stefan Maas, Alexander Rich (2000). Changing genetic information through RNA editing. BioEssays 22, 790-802. Svoboda KR, Linares AE, Ribera AB. (2001). Activity regulates programmed cell death of zebrafish Rohon-Beard neurons. Development 128, 3511-20. Tonkin LA, Saccomanno L, Morse DP, Brodigan T, Krause M, Bass BL. (2002). RNA editing by ADARs is important for normal behavior in Caenorhabditis elegans. EMBO J. 21, 6025-35. Tsai CW, Tseng JJ, Lin SC, Chang CY, Wu JL, Horng JF, Tsay HJ. (2001). Primary structure and developmental expression of zebrafish sodium channel Na(v)1.6 during neurogenesis. DNA Cell Biol. 20, 249-55. Vaux DL, Korsmeyer SJ. (1999). Cell death in development. Cell 96, 245-54. Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ. (1993). Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75, 229-40. Wang Q, Miyakoda M, Yang W, Khillan J, Stachura DL, Weiss MJ, Nishikura K. (2004). Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J. Biol. Chem. 279, 4952-61. Williams JA, Barrios A, Gatchalian C, Rubin L, Wilson SW, Holder N. (2000). Programmed cell death in zebrafish rohon beard neurons is influenced by TrkC1/NT-3 signaling. Dev. Biol. 226, 220-30. Wong SK, Sato S, Lazinski DW. (2001). Substrate recognition by ADAR1 and ADAR2. RNA 7, 846-58. Yamashita M. (2003). Apoptosis in zebrafish development. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 136, 731-42.id NH0925061010 sid 914298 cfn 0 / id NH0925061011 auc 吳宜玲 tic 藻膠形成基因突變株對胃幽門螺旋菌生物膜形成及抗藥性之研究 adc 王雯靜 ty 碩士 sc 國立清華大學 dp 分子與細胞生物研究所 yr 92 lg 中文 pg 54 kwc 藻膠 kwc 胃幽門螺旋菌 kwc 生物膜 abc 胃幽門螺旋菌為一種為微好氧的革蘭氏陰性桿菌,已證實與胃潰瘍、十二指腸潰瘍、胃癌等消化道疾病的感染相關。此外,研究發現胃幽門螺旋菌能分泌胞外物質包裹細菌形成不溶於水且抗鹽酸的生物膜,進而生長在固體的表面上。本實驗室利用電子顯微鏡已觀察到胃幽們螺旋菌如何黏附於固體表面且逐漸生長形成生物膜,同時也發現當生物膜形成的越厚,其抗生素的穿透率則越低。研究發現藻膠為綠膿桿菌其生物膜胞外物質之主要成分,因此本研究目的為研究胃幽門螺旋菌中三種藻膠形成相關基因(algA, algC, algI)在生物膜形成時所扮演的角色,另利用蛋白質體學的方法找尋與生物膜形成相關的蛋白質。首先利用掃描式電子顯微鏡觀察發現,algA-、algC-、algI-菌株與野生型菌株相比,其生物膜結構緻密程度較低,其中又以algC-最明顯。測試生物膜形成能力則發現,algA-、algC-菌株生物膜形成能力與野生型菌株相比增加2倍,而algI-菌株則差異不大。抗生素穿透實驗中顯示,algA-、algC-、algI-菌株形成之生物膜抵抗抗生素穿透的能力與低於野生型菌株。此外,algA-、algI-菌株對Clarithromycin的感受性由敏感性轉變成抵抗性,而algC-菌株則仍維持不變。綜觀研究結果顯示AlgA、AlgC、AlgI蛋白質會影響胃幽們螺旋菌生物膜之特性,而AlgA、AlgI蛋白質更影響胃幽們螺旋菌對Clarithromycin的感受性。最後,利用蛋白質體學分析浮游性菌體與生物膜菌體蛋白質表現差異,找尋出約40個蛋白質差異點,這些蛋白質即可能與胃幽門桿菌生物膜之調控或形成有關。 rf Allison, D.G., and Matthews, M.J. (1992) Effect of polysaccharide interactions on antibiotic susceptibility of Pseudomonas aeruginosa. J Appl Bacteriol. 73: 484-488. Anderl, J.N., Franklin, M.J., and Stewart, P.S. (2000) Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother. 44: 1818-1824. Baltimore, R.S., Christie, C.D., and Smith, G.J. (1989) Immunohistopathologic localization of Pseudomonas aeruginosa in lungs from patients with cystic fibrosis. Implications for the pathogenesis of progressive lung deterioration. Am Rev Respir Dis. 140: 1650-1661. Blaser, M.J. (1990) Helicobacter pylori and the pathogenesis of gastroduodenal inflammation. J Infect Dis. 161: 626-633. Blaser, M.J. (1992) Helicobacter pylori: its role in disease. Clin Infect Dis. 15: 386-391. Brown, M.L., Aldrich, H.C., and Gauthier, J.J. (1995) Relationship between glycocalyx and povidone-iodine resistance in Pseudomonas aeruginosa (ATCC 27853) biofilms. Appl Environ Microbiol. 61: 187-193. Brown, M.R., and P. Gilbert (1993) Sensitivity of biofilms to antimicrobial agents. J Appl Bacteriol. 74: 87S-97S. Chyou, P.H., Nomura, A.M., Hankin, J.H., and Stemmermann, G.N. (1990) A case-cohort study of diet and stomach cancer. Cancer Res. 50: 7501-7504. Cole, S.P., Harwood, J., Lee, R., She, R., and Guiney, D.G. (2004) Characterization of monospecies biofilm formation by Helicobacter pylori. J Bacteriol. 186: 3124-3132. Costerton, J.W. (1995) Overview of microbial biofilms. J Ind Microbiol. 15: 137-140. Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., and Lappin-Scott, H.M. (1995) Microbial biofilms. Annu Rev Microbiol. 49: 711-745. Danesh, J. (1999) Helicobacter pylori infection and gastric cancer: systematic review of the epidemiological studies. Aliment Pharmacol Ther. 13: 851-856. Davies, D.G., and Geesey, G.G. (1995) Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl Environ Microbiol. 61: 860-867. de Boer, W.A., Driessen, W.M., Potters, V.P., and Tytgat, G.N. (1994) Randomized study comparing 1 with 2 weeks of quadruple therapy for eradicating Helicobacter pylori. Am J Gastroenterol. 89: 1993-1997. de Boer, W.A., Driessen, W.M., Jansz, A.R., and Tytgat, G.N. (1995) Quadruple therapy compared with dual therapy for eradication of Helicobacter pylori in ulcer patients: results of a randomized prospective single-centre study. Eur J Gastroenterol Hepatol. 7: 1189-1194. Donlan, R.M. (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis. 8: 881-890. Eaton, K.A., Morgan, D.R., and Krakowka, S. (1992) Motility as a factor in the colonisation of gnotobiotic piglets by Helicobacter pylori. J Med Microbiol. 37: 123-127. Eaton, K.A., and Krakowka, S. (1994) Effect of gastric pH on urease-dependent colonization of gnotobiotic piglets by Helicobacter pylori. Infect Immun. 62: 3604-3607. Eaton, K.A., Suerbaum, S., Josenhans, C., and Krakowka, S. (1996) Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect Immun. 64: 2445-2448. Elasri, M.O., and Miller, R.V. (1999) Study of the response of a biofilm bacterial community to UV radiation. Appl Environ Microbiol. 65: 2025-2031. Elkins, J.G., Hassett, D.J., Stewart, P.S., Schweizer, H.P., and McDermott, T.R. (1999) Protective role of catalase in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide. Appl Environ Microbiol. 65: 4594-4600. Evans, D.J., Jr., Evans, D.G., Takemura, T., Nakano, H., Lampert, H.C., Graham, D.Y., Granger, D.N., and Kvietys, P.R. (1995) Characterization of a Helicobacter pylori neutrophil-activating protein. Infect Immun. 63: 2213-2220. Fulcher, T.P., Dart, J.K., McLaughlin-Borlace, L., Howes, R., Matheson, M., and Cree, I. (2001) Demonstration of biofilm in infectious crystalline keratopathy using ruthenium red and electron microscopy. Ophthalmology. 108: 1088-1092. Gacesa, P. (1998) Bacterial alginate biosynthesis--recent progress and future prospects. Microbiology. 144 ( Pt 5): 1133-1143. Ganderton, L., Chawla, J., Winters, C., Wimpenny, J., and Stickler, D. (1992) Scanning electron microscopy of bacterial biofilms on indwelling bladder catheters. Eur J Clin Microbiol Infect Dis. 11: 789-796. Glupczynski, Y., Labbe, M., Hansen, W., Crokaert, F., and Yourassowsky, E. (1991) Evaluation of the E test for quantitative antimicrobial susceptibility testing of Helicobacter pylori. J Clin Microbiol. 29: 2072-2075. Goodwin, C.S., Blincow, E., Peterson, G., Sanderson, C., Cheng, W., Marshall, B., Warren, J.R., and McCulloch, R. (1987) Enzyme-linked immunosorbent assay for Campylobacter pyloridis: correlation with presence of C. pyloridis in the gastric mucosa. J Infect Dis. 155: 488-494. Goodwin, C.S., McConnell, W., McCulloch, R.K., McCullough, C., Hill, R., Bronsdon, M.A., and Kasper, G. (1989) Cellular fatty acid composition of Campylobacter pylori from primates and ferrets compared with those of other campylobacters. J Clin Microbiol. 27: 938-943. Goodwin, C.S., and Armstrong, J.A. (1990) Microbiological aspects of Helicobacter pylori (Campylobacter pylori). Eur J Clin Microbiol Infect Dis. 9: 1-13. Govan, J.R., and Deretic, V. (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev. 60: 539-574. Heczko, U., et al., Characteristics of Helicobacter pylori attachment to human primary antral epithelial cells. Microbes Infect, 2000. 2(14): p. 1669-76. Hentzer, M., Teitzel, G.M., Balzer, G.J., Heydorn, A., Molin, S., Givskov, M., and Parsek, M.R. (2001a) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol. 183: 5395-5401. Hodges, N.A., and Gordon, C.A. (1991) Protection of Pseudomonas aeruginosa against ciprofloxacin and beta-lactams by homologous alginate. Antimicrob Agents Chemother. 35: 2450-2452. Hoiby, N. (1974) Pseudomonas aeruginosa infection in cystic fibrosis. Relationship between mucoid strains of Pseudomonas aeruginosa and the humoral immune response. Acta Pathol Microbiol Scand [B ] Microbiol Immunol. 82: 551-558. Hommais, F., Laurent-Winter, C., Labas, V., Krin, E., Tendeng, C., Soutourina, O., Danchin, A., and Bertin, P. (2002) Effect of mild acid pH on the functioning of bacterial membranes in Vibrio cholerae. Proteomics. 2: 571-579. Huang, C.T., Xu, K.D., McFeters, G.A., and Stewart, P.S. (1998a) Spatial patterns of alkaline phosphatase expression within bacterial colonies and biofilms in response to phosphate starvation. Appl Environ Microbiol. 64: 1526-1531. Huang, C.T., S. W. Peretti, and J. D. Bryers (1994) effects of medium carbon to nitrogen ratios on biofilm formation and plasmid stability. Biotechnol. Bioeng. 44: 329-336. Huang, J.Q., Sridhar, S., Chen, Y., and Hunt, R.H. (1998b) Meta-analysis of the relationship between Helicobacter pylori seropositivity and gastric cancer. Gastroenterology. 114: 1169-1179. Ilver, D., Arnqvist, A., Ogren, J., Frick, I.M., Kersulyte, D., Incecik, E.T., Berg, D.E., Covacci, A., Engstrand, L., and Boren, T. (1998) Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science. 279: 373-377. Kuipers, E.J., Uyterlinde, A.M., Pena, A.S., Roosendaal, R., Pals, G., Nelis, G.F., Festen, H.P., and Meuwissen, S.G. (1995) Long-term sequelae of Helicobacter pylori gastritis. Lancet. 345: 1525-1528. Lin, J.T., Wang, J.T., Wu, M.S., Wang, T.H., Lee, T.K., and Chen, C.J. (1994) Seroprevalence study of Helicobacter pylori infection in patients with gastroduodenal diseases. J Formos Med Assoc. 93: 122-127. Linker, A., and Jones, R.S. (1964) A Polysaccharide Resembling Alginic Acid from a Pseudomonas Micro-Organism. Nature. 204: 187-188. Macarthur, C., Saunders, N., and Feldman, W. (1995) Helicobacter pylori, gastroduodenal disease, and recurrent abdominal pain in children. Jama. 273: 729-734. Maeda, S., Ogura, K., Yoshida, H., Kanai, F., Ikenoue, T., Kato, N., Shiratori, Y., and Omata, M. (1998) Major virulence factors, VacA and CagA, are commonly positive in Helicobacter pylori isolates in Japan. Gut. 42: 338-343. Marsh, P.D., and Bradshaw, D.J. (1995) Dental plaque as a biofilm. J Ind Microbiol. 15: 169-175. Marshall, B.J., and Warren, J.R. (1984) Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1: 1311-1315. Marshall, B.J., Warren, J.R., Francis, G.J., Langton, S.R., Goodwin, C.S., and Blincow, E.D. (1987) Rapid urease test in the management of Campylobacter pyloridis-associated gastritis. Am J Gastroenterol. 82: 200-210. McGee, D.J., and Mobley, H.L. (1999) Mechanisms of Helicobacter pylori infection: bacterial factors. Curr Top Microbiol Immunol. 241: 155-180. Morita, M., Kuwano, H., Baba, H., Taketomi, A., Kohnoe, S., Tomoda, H., Araki, K., Saeki, H., Kitamura, K., and Sugimachi, K. (1998) Multifocal occurrence of gastric carcinoma in patients with a family history of gastric carcinoma. Cancer. 83: 1307-1311. Nivens, D.E., Ohman, D.E., Williams, J., and Franklin, M.J. (2001) Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol. 183: 1047-1057. O'Toole, G.A., and Kolter, R. (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol. 30: 295-304. O'Toole, G.A., Pratt, L.A., Watnick, P.I., Newman, D.K., Weaver, V.B., and Kolter, R. (1999) Genetic approaches to study of biofilms. Methods Enzymol. 310: 91-109. O'Toole, G.A., Gibbs, K.A., Hager, P.W., Phibbs, P.V., Jr., and Kolter, R. (2000) The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J Bacteriol. 182: 425-431. Pagliaccia, C., de Bernard, M., Lupetti, P., Ji, X., Burroni, D., Cover, T.L., Papini, E., Rappuoli, R., Telford, J.L., and Reyrat, J.M. (1998) The m2 form of the Helicobacter pylori cytotoxin has cell type-specific vacuolating activity. Proc Natl Acad Sci U S A. 95: 10212-10217. Park, S.R., Mackay, W.G., and Reid, D.C. (2001) Helicobacter sp. recovered from drinking water biofilm sampled from a water distribution system. Water Res. 35: 1624-1626. Pedersen, S.S., Hoiby, N., Espersen, F., and Koch, C. (1992) Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax. 47: 6-13. Peek, R.M., Jr., and Blaser, M.J. (1997) Pathophysiology of Helicobacter pylori-induced gastritis and peptic ulcer disease. Am J Med. 102: 200-207. Picioreanu, C., van Loosdrecht, M.C., and Heijnen, J.J. (2000) A theoretical study on the effect of surface roughness on mass transport and transformation in biofilms. Biotechnol Bioeng. 68: 355-369. Portig, I., Pankuweit, S., Lottspeich, F., and Maisch, B. (1996) Identification of stress proteins in endothelial cells. Electrophoresis. 17: 803-808. Pounder, R.E., and Ng, D. (1995) The prevalence of Helicobacter pylori infection in different countries. Aliment Pharmacol Ther. 9 Suppl 2: 33-39. Sakaki, N., Momma, K., Egawa, N., Yamada, Y., Kan, T., and Ishiwata, J. (1995) The influence of Helicobacter pylori infection on the progression of gastric mucosal atrophy and occurrence of gastric cancer. Eur J Gastroenterol Hepatol. 7 Suppl 1: S59-62. Simpson, J.A., Smith, S.E., and Dean, R.T. (1988) Alginate inhibition of the uptake of Pseudomonas aeruginosa by macrophages. J Gen Microbiol. 134 ( Pt 1): 29-36. Stapper, A.P., Narasimhan, G., Ohman, D.E., Barakat, J., Hentzer, M., Molin, S., Kharazmi, A., Hoiby, N., and Mathee, K. (2004) Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. J Med Microbiol. 53: 679-690. Stark, R.M., Gerwig, G.J., Pitman, R.S., Potts, L.F., Williams, N.A., Greenman, J., Weinzweig, I.P., Hirst, T.R., and Millar, M.R. (1999) Biofilm formation by Helicobacter pylori. Lett Appl Microbiol. 28: 121-126. Stewart, P.S., R. Murga, R. Srinivasan and D. de Beer (1995) Biofilm structural heterogeneity visualized by three microscopic methods. Wat. Res. 29: 2006-2009. Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S., Hufnagle, W.O., Kowalik, D.J., Lagrou, M., Garber, R.L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L.L., Coulter, S.N., Folger, K.R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G.K., Wu, Z., Paulsen, I.T., Reizer, J., Saier, M.H., Hancock, R.E., Lory, S., and Olson, M.V. (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature. 406: 959-964. Strathmann, M., Wingender, J., and Flemming, H.C. (2002) Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa. J Microbiol Methods. 50: 237-248. Suerbaum, S. (1995) The complex flagella of gastric Helicobacter species. Trends Microbiol. 3: 168-170; discussion 170-161. Tatsuta, M., Iishi, H., Nakaizumi, A., Okuda, S., Taniguchi, H., Hiyama, T., Tsukuma, H., and Oshima, A. (1993) Fundal atrophic gastritis as a risk factor for gastric cancer. Int J Cancer. 53: 70-74. Taylor, D.N., and Blaser, M.J. (1991) The epidemiology of Helicobacter pylori infection. Epidemiol Rev. 13: 42-59. Tomb, J.F., White, O., Kerlavage, A.R., Clayton, R.A., Sutton, G.G., Fleischmann, R.D., Ketchum, K.A., Klenk, H.P., Gill, S., Dougherty, B.A., Nelson, K., Quackenbush, J., Zhou, L., Kirkness, E.F., Peterson, S., Loftus, B., Richardson, D., Dodson, R., Khalak, H.G., Glodek, A., McKenney, K., Fitzegerald, L.M., Lee, N., Adams, M.D., Venter, J.C., and et al. (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 388: 539-547. Voutilainen, M., Mantynen, T., Farkkila, M., Juhola, M., and Sipponen, P. (2001) Impact of non-steroidal anti-inflammatory drug and aspirin use on the prevalence of dyspepsia and uncomplicated peptic ulcer disease. Scand J Gastroenterol. 36: 817-821. Wang, Y., and Taylor, D.E. (1990) Chloramphenicol resistance in Campylobacter coli: nucleotide sequence, expression, and cloning vector construction. Gene. 94: 23-28. Watnick, P., and Kolter, R. (2000) Biofilm, city of microbes. J Bacteriol. 182: 2675-2679. Wu, B., Zhang, Y., Zheng, R., Guo, C., and Wang, P.G. (2002) Bifunctional phosphomannose isomerase/GDP-D-mannose pyrophosphorylase is the point of control for GDP-D-mannose biosynthesis in Helicobacter pylori. FEBS Lett. 519: 87-92.id NH0925061011 sid 914228 cfn 0 / id NH0925061012 auc 王貴君 tic 以桿狀病毒為基因載體於哺乳動物細胞內組裝D型肝炎類病毒顆粒之研究 adc 張大慈 adc 胡育誠 ty 碩士 sc 國立清華大學 dp 分子與細胞生物研究所 yr 92 lg 英文 pg 77 kwc 桿狀病毒 kwc D型肝炎病毒 kwc 類病毒顆粒 kwc 哺乳動物細胞表現系統 abc 摘 要 tc Contents Chapter 1 INTRODUCTION………………………...……………………………….1 1-1 Baculovirus biology…………………………………………………………….1 1-2 Recombinant baculovirus as mammalian cell gene-delivery vector……………4 1-3 Hepatitis Delta virus (HDV)……………………………………………………5 1-4 Motivations……………………………………………………………8 Chapter 2 MATERIALS & METHODS……………………………………………9 2-1 Generation of recombinant baculovirus………………………………………...9 2-1-1 BAC-TO-BAC® Bacculovirus Expression System………………………….9 2-1-2 Construction of Bac-GD and Bac-GB vectors……………………………10 2-1-3 Transposition……………………………………………………………...11 2-1-4 Isolation of bacmid……………………………………………………….11 2-1-5 Transfection ……………….……………………………………………..12 2-1-6 Virus amplification and titration………………………………………….12 2-2 Cell culture and medium………………………………………………………13 2-3 Baculovirus transduction and transfection….…………………………………14 2-3-1 Baculovirus transduction…………………………………………………14 2-3-2 Transfection by liposome and CaPi-DNA co-precipitation…….………...14 2-4 SDS-PAGE and Western blot……………………...…………………………..15 2-5 Flow cytometry………………………………………………………………..16 2-6 Real-time PCR………………………………………………………………...16 2-7 Immunofluorescence…………………………………………………………..17 2-8 Isolation of antigens by ultracentrifugation…………………………………...18 2-8-1 Medium concentration by sucrose cushion……………………………….18 2-8-2 Partial purification of HDV-like particles by CsCl gradient……………...19 IV 2-9 Transmission electron microscopy…………………………………………….19 Chapter 3 RESULTS……………………………………..………….………………23 3-1 Baculovirus mediated gene transduction into mammalian cells………………23 3-2 Optimization of transduction conditions for baculovirus transduction………..24 3-2-1 Dependence of transduction efficiency on cell type and efficiency……...25 3-2-2 Effect of surrounding solution on transduction efficiency……………….25 3-2-3 Depenedence of transduction efficiency on incubation time………….….26 3-2-4 Effect of different temperatures on transduction efficiency……………...27 3-3 Comparison of gene transfer methods………………………………………....28 3-3-1 Comparison of efficiency by baculovirus transduction, lipofection and CaPi-DNA co-precipitation………..………………………………...28 3-3-2 Effect of confluence………………………………………………………29 3-4 Enhancement and prolongation of baculovirus mediated gene transduction….29 3-4-1 Effect of sodium butyrate on protein expression level…………………...29 3-4-2 Transient disruption of cell-cell junction by EGTA……………………30 3-4-3 Superinfection for prolonged protein expression………………………31 3-5 Characterization of L-HDAg and HBsAg by baculovirus transduction………33 3-5-1 Localization of L-HDAg in nuclei………………………………………..33 3-5-2 Isoprenylation analysis of L-HDAg………………………………………33 3-5-3 Formation and secretion of HDV-like particles by co-infection………….34 3-6 Characterization and electron microscopic examination of HDV-like particles purified from Baculovirus-transduced HuH-7 cells…….……..……..35 3-6-1 Purification of HDV-like particles by ultracentrifugation………………..35 3-6-2 TEM analysis of particles isolated from culture medium………………...36 3-6-3 Secretion efficiency of HDV-like particles……………………………….38 Chapter 4 DISCUSSION…..…..……………………………………………………58 V Chapter 5 CONCLUSIONS……..…………………...……………………………...67 Chapter 6 FUTURE WORK…………...……………..……………………………..68 REFERENCES…………………..…………………………………………………...71rf REFERENCES Abdelhamed, A., W. E. Delaney, T. G. Miller and H. C. Isom (1999). "Use of a novel HBV recombinant baculovirus-HEPG2 system to measure the ability of antiviral agents to block the formation of covalently closed circular (CCC) HBV DNA and to reduce or eliminate existing pools of CCCHBV DNA." Hepatology 30(4): 1040. Airenne, K. J., M. O. Hiltunen, M. P. Turunen, A. M. Turunen, O. H. Laitinen, M. S. Kulomaa and S. Yla-Herttuala (2000). "Baculovirus-mediated periadventitial gene transfer to rabbit carotid artery." Gene Ther. 7(17): 1499-1504. Aoki, H., Y. Sakoda, K. Jukuroki, A. Takada, H. Kida and A. Fukusho (1999). "Induction of antibodies in mice by a recombinant baculovirus expressing pseudorabies virus glycoprotein B in mammalian cells." Vet. Microbiol. 68(3-4): 197-207. Bergmann, K. F. and J. L. Gerin (1986). "Antigens of hepatitis-delta virus in the liver and serum of humans and animals." J. Infect. Dis. 154(4): 702-706. Bilello, J. P., W. E. Delaney, F. M. Boyce and H. C. Isom (2001). "Baculovirus entry into nondividing hepatocytes is enhanced by transient disruption of intercellular junctions." Hepatology 34(4): 834. Bilello, J. P., W. E. Delaney, F. M. Boyce and H. C. Isom (2001). "Transient disruption of intercellular junctions enables baculovirus entry into nondividing hepatocytes." J Virol 75(20): 9857-9871. Bonino, F., K. H. Heermann, M. Rizzetto and W. H. Gerlich (1986). "Hepatitis delta virus: protein composition of delta antigen and its hepatitis B virus-derived envelope." J Virol 58(3): 945-50. Boyce, F. M. and N. L. R. Bucher (1996). "Baculovirus-mediated gene transfer into mammalian cells." Proc. Natl. Acad. Sci. U.S.A. 93(6): 2348-2352. Chang, F. L., P. J. Chen, S. J. Tu, C. J. Wang and D. S. Chen (1991). "The large form of hepatitis antigen is crucial for assembly of hepatitis virus." Proc. Natl. Acad. Sci. USA 88: 8490-8494. Cheshenko, N., N. Krougliak, R. C. Eisensmith and V. A. Krougliak (2001). "A novel system for the production of fully deleted adenovirus vectors that does not require helper adenovirus." Gene Ther. 8: 846-854. Condreay, J. P., S. M. Witherspoon, W. C. Clay and T. A. Kost (1999). "Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector." Proc. Natl. Acad. Sci. U.S.A 96(1): 127-132. Dee, K. U. and M. L. Shuler (1997). "A mathematical model of the trafficking of acid-dependent enveloped viruses: application to the binding, uptake, and nuclear accumulation of baculovirus." Biotechnol. Bioeng 54: 468-490. Delaney, W. E. and H. C. Isom (1998). "Hepatitis B virus replication in human HepG2 cells mediated by hepatitis B virus recombinant Baculovirus." Hepatology 28(4): 1134-1146. Delaney, W. E., IV, R. Edwards, D. Colledge, T. Shaw, J. Torresi, T. G. Miller, H. C. Isom, C. T. Bock, M. P. Manns, C. Trautwein and S. Locarnini (2001). "Cross-Resistance Testing of Antihepadnaviral Compounds Using Novel Recombinant Baculoviruses Which Encode Drug-Resistant Strains of Hepatitis B Virus." Antimicrob. Agents Chemother. 45(6): 1705-1713. Dhar, A. K., M. M. Roux and K. R. Klimpel (2001). "Detection and quantification of infectious hypodermal and hematopoietic necrosis virus and white spot virus in shrimp using real-time quantitative PCR and SYBR green chemistry." J. Clin. Microbiol. 39: 2835-2845. Diminsky, D., N. Moav, M. Gorecki and Y. Barenholz (1999). "Physical, chemical and immunological stability of CHO-derived hepatitis B surface antigen (HBsAg) particles." Vaccine 18(1-2): 3-17. Dwarakanath, R. S., C. L. Clark, A. K. McElroy and D. H. Spector (2001). "The use of recombinant baculoviruses for sustained expression of human cytomegalovirus immediate early proteins in fibroblasts." Virology 284(2): 297-307. Gao, R., C. J. McCormick, M. J. P. Arthur, R. Ruddle, F. Oakley, D. E. Smart, F. R. Murphy, M. P. G. Harris and D. A. Mann (2002). "High efficiency gene transfer into cultured primary rat and human hepatic stellate cells using baculovirus vectors." Liver 22: 15-22. Grabherr, R. and W. Ernst (2001). "The Baculovirus expression system as a tool for generating diversity by viral surface display." Combinatorial Chemistry & High Throughput Screening 4(2): 185-192. He, L.-F., E. Ford, R. H. Purcell, W. T. London, J. Philips and J. L. Gerin (1989). "The size of hepatitis delta agent." J. Med. Virol. 27: 31-33. Hofmann, C., V. Sandig, G. Jennings, M. Rudolph, P. Schlag and M. Strauss (1995). "Efficient gene-transfer into human hepatocytes by baculovirus vectors." Proc. Natl. Acad. Sci. U.S.A. 92(22): 10099-10103. Ho, Y. C., et al. (2004). "Highly efficient baculovirus-mediated gene transfer into chondrocytes."accepted by Biotechnol. Bioeng. Hsu, S. C., H. P. Lin, J. C. Wu, K. L. Ko, I. J. Sheen, B. S. Yan, C. K. Chou and W. J. Syu (2000). "Characterization of a strain-specific monoclonal antibody to hepatitis delta virus antigen." J Virol Methods 87(1-2): 53-62. Hsu, S. C., W. J. Syu, I. J. Sheen, H. T. Liu, K. S. Jeng and J. C. Wu (2002). "Varied assembly and RNA editing efficiencies between genotypes I and II hepatitis D virus and their implications." Hepatology 35(3): 665-72. Hsu, S. C., W. J. Syu, L. T. Ting and J. C. Wu (2000). "Immunohistochemical differentiation of hepatitis D virus genotypes." Hepatology 32(5): 1111-6. Hsu, S. C., J. C. Wu and W. Syu (2002). "Hepatitis delta antigens oligomerize without genotypic specificity but vary with trans-activating efficiencies between genotypes I and II HDV." J. Virol. 36: 223-223. Hsu, C. S., Y. C. Ho, K. C. Wang and Y. C. Hu (2004). "Investigation of optimal infection conditions for baculovirus-mediated gene deliver into mammalian cells." accepted by Biotechnol. Bioeng. Hu, Y. C., C. T. Tsai, Y. C. Chung, J. T. Lu and J. T. A. Hsu (2003). "Generation of chimeric baculovirus with histidine-tags displayed on the envelope and its purification using immobilized metal affinity chromatography." Enzyme Microb. Technol. 33: 445-452. Huang, Y. H., J. C. Wu, M. H. Tao, W. J. Syu, S. C. Hsu, W. K. Chi, F. Y. Chang and S. D. Lee (2000). "DNA-Based immunization produces Th1 immune responses to hepatitis delta virus in a mouse model." Hepatology 32(1): 104-10. Huser, A. and C. R. Hoffman (2003). "Baculovirus vectors: novel mammalian cell gene-delivery vehicles and their applications." Am. J. Pharmacogenomics. 3: 53-63. Kost, T. A. and J. P. Condreay (2002). "Recombinant baculoviruses as mammalian cell gene delivery vectors." Trends Biotechnol. 20(4): 173-180. Kuo, M. Y. P., M. Chao and J. Taylor (1989). "Initiation of replication of the human hepatitis delta virus genome from cloned DNA: role of delta antigen." J. Virol. 63: 1945-1950. Lai, M. M. (1995). "The molecular biology of hepatitis delta virus." Annu Rev Biochem 64: 259-86. Lee, C. Z., P. J. Chen, M. M. Lai and D. S. Chen (1994). "Isoprenylation of large hepatitis delta antigen is necessary but not sufficient for hepatitis delta virus assembly." Virology 199(1): 169-75. Lee, S. C., J. Y. Shew and A. C. Chang (1984). "Monoclonal antibodies to hepatitis B surface antigen (HBsAg) produced by somatic cell hybrids." Taiwan Yi Xue Hui Za Zhi 83(2): 142-8. Liang, C. Y., H. Z. Wang, T. X. Li, Z. H. Hu and X. W. Chen (2003). "High efficiency gene transfer into mammalian kidney cells using baculovirus vectors." Arch. Virol. 149: 51-60. Lin, H. P., S. C. Hsu, J. C. Wu, I. J. Sheen, B. S. Yan and W. J. Syu (1999). "Localization of isoprenylated antigen of hepatitis delta virus by anti-farnesyl antibodies." J Gen Virol 80: 91-96. Lopez, P., R. J. Jacob and B. Roizman (2002). "Overexpression of promyelocytic leukemia protein precludes the dispersal of ND10 structures and has no effect on accumulation of infectious herpes simplex virus 1 or its proteins." J. Virol. 76(18): 9355-9367. McCormick, C. J., D. J. Rowlands and M. Harris (2002). "Efficient delivery and regulable expression of hepatitis C virus full-length and minigenome constructs in hepatocyte-derived cell lines using baculovirus vectors." J Gen Virol 83(2): 383-394. Moraleda, G., S. Seeholzer, V. Bichko, R. Dunbrack, J. Otto and J. Taylor (1999). "Unique properties of the large antigen of hepatitis delta virus." J Virol 73(9): 7147-7152. O'Reilly, D., L. Miller and V. Luckow (1992). Baculovirus expression vectors: a laboratory manual. New York, W.H. Freeman and Co. Pohl, C., B. M. Baroudy, K. F. Bergmann, P. J. Cote, R. H. Purcell, J. Hoofnagle and J. L. Gerin (1987). "A Human Monoclonal-Antibody That Recognizes Viral Polypeptides and Invitro Translation Products of the Genome of the Hepatitis-D Virus." J Infect. Dis. 156(4): 622-629. Poomputsa, K., C. Kittel, A. Egorov, W. Ernst and R. Grabherr (2003). "Generation of recombinant influenza virus using baculovirus delivery vector." J. Virol. Methods 110: 111-114. Rizzetto, M., M. G. Canese, S. Arico, O. Crivelli, C. Trepo, F. Bonino and G. Verme (1977). "Immunofluoresence detection of new antigen-antibody system (delta/anti-delta) associated to hepatitis B virus in liver and in serum of HBsAg carriers." Gut 18: 997-1003. Ryu, W. S., M. Bayer and J. Taylor (1992). "Assembly of hepatitis-delta virus particles." J. Virol. 66(4): 2310-2315. Sarkis, C., C. Serguera, S. Petres, D. Buchet, J. L. Ridet, L. Edelman and J. Mallet (2000). "Efficient transduction of neural cells in vitro and in vivo by a baculovirus-derived vector." Proc. Natl. Acad. Sci. U. S. A. 97(26): 14638-14643. Sheu, S. Y., K. L. Chen, Y.-H. W. Lee and S. Lo (1996). "No intermolecular interaction between the large hepatitis delta antigens is required for the secretion with hepatitis B surface antigen: a model of empty HDV particle." Virology 218: 275-278. Shih, K. N. and S. J. Lo (2001). "The HDV large-delta antigen fused with GFP remains functional and provides for studying its dynamic distribution." Virology 285(1): 138-52. Smith, T. J., J. J. Piscatelli, V. Andersen, H. S. Wang and P. Lance (1996). "n-Butyrate induces plasminogen activator inhibitor type 1 messenger RNA in cultured Hep G2 cells." Hepatology 23(4): 866-871. Sollerbrant, K., J. Elmen, C. Wahlestedt, J. Acker, H. Leblois-Prehaud, M. Latta-Mahieu, P. Yeh and M. Perricaudet (2001). "A novel method using baculovirus-mediated gene transfer for production of recombinant adeno-associated virus vectors." J. Gen. Virol. 82(9): 2051-2060. Sureau, C., C. Fournier-Wirth and P. Maurel (2003). "Role of N glycosylation of hepatitis B virus envelope proteins in morphogenesis and infectivity of hepatitis delta virus." J. Virol. 77(9): 5519-5523. Tani, H., C. K. Limn, C. C. Yap, M. Onishi, M. Nozaki, Y. Nishimune, N. Okahashi, Y. Kitagawa, R. Watanabe, R. Mochizuki, K. Moriishi and Y. Matsuura (2003). "In vitro and in vivo gene delivery by recombinant baculoviruses." J. Virol. 77(18): 9799-9808. Taylor, J., M. Chao, S. Y. Hsieh and W. S. Ryu (1991). "The roles of the delta-antigen in the structure and replication of hepatitis-delta virus." J. Hepatol. 13: S119-S120. Van Loo, N. D., E. Fortunati, E. Ehlert, M. Rabelink, F. Grosveld and B. J. Scholte (2001). "Baculovirus infection of nondividing mammalian cells: mechanisms of entry and nuclear transport of capsids." J Virol 75(2): 961-70. Viswanathan, P., B. Venkaiah, M. S. Kumar, S. Rasheedi, S. Vrati, M. D. Bashyam and S. E. Hasnain (2003). "The homologous region sequence (hr1) of Autographa californica multinucleocapsid polyhedrosis virus can enhance transcription from non-baculoviral promoters in mammalian cells." J Biol Chem 278(52): 52564-71. Wang, C. J., P. J. Chen, J. C. Wu, D. Patel and D. S. Chen (1991). "Small-form hepatitis B surface antigen is sufficient to help in the assembly of hepatitis delta virus-like particles." J Virol 65(12): 6630-6. Wang, C. J., S. Y. Sung, D. S. Chen and P. J. Chen (1996). "N-linked glycosylation of hepatitis B surface antigens is involved but not essential in the assembly of hepatitis delta virus." Virology 220(1): 28-36. Ward, S. M., T. B. Macnaughton and E. J. Gowans (2001). "Development and characterisation of recombinant hepatitis delta virus-like particles." Virus Genes 23(1): 97-104. Wu, H. L., P. J. Chen, J. J. Mu, W. K. Chi, T. L. Kao, L. H. Hwang and D. S. Chen (1997). "Assembly of hepatitis delta virus-like empty particles in yeast." Virology 236(2): 374-81. Wu, J. C., C. L. Chen, S. D. Lee, I. J. Sheen and L. P. Ting (1992). "Expression and localization of the small and large delta antigens during the replication cycle of hepatitis D virus." Hepatology 16(5): 1120-7. Wu, J. C., P. J. Chen, M. Y. Kuo, S. D. Lee, D. S. Chen and L. P. Ting (1991). "Production of hepatitis delta virus and suppression of helper hepatitis B virus in a human hepatoma cell line." J Virol 65(3): 1099-104. Wu, T. T., H. J. Netter, V. Bichko, D. Lazinski and J. Taylor (1994). "Rna Editing in the Replication Cycle of Human Hepatitis-Delta Virus." Biochimie 76(12): 1205-1208. Zhou, G. Y., V. Galvan, G. Campadelli-Fiume and B. Roizman (2000). "Glycoprotein D or J delivered in trans blocks apoptosis in SK-N-SH cells induced by a herpes simplex virus 1 mutant lacking intact genes expressing both glycoproteins." J. Virol. 74(24): 11782-11791.id NH0925061012 sid 905409 cfn 0 / id NH0925061013 auc 曾凱莉 tic 胃幽門螺旋桿菌細胞毒素相關基因A的基因選殖與在哺乳動物細胞中的表達 adc 傅化文 ty 碩士 sc 國立清華大學 dp 分子與細胞生物研究所 yr 92 lg 英文 pg 54 kwc 胃幽門螺旋桿菌 kwc 細胞毒素相關基因A kwc 第四類分泌系統 kwc 蜂鳥形表型 abc 胃幽門螺旋桿菌已知是引起胃炎、消化性潰瘍,甚至是胃癌的主要原因之一。它感染在人類的胃部,且現今在世界人口中的感染率已達五成。在胃幽門桿菌所產生的毒性因子中,其中的「細胞毒性相關基因A」 (cytotoxin-associated gene A; cagA) 所產生的毒素,被認為在引起上述較嚴重的胃部疾病中扮演重要角色。然而,其之所以致病的詳細分子機制卻仍有待研究。過去已知在具cagA基因的胃幽門桿菌菌株的感染中,CagA會被經由細菌的第四類分泌系統 (type IV secretion system) 直接注入到宿主表皮細胞內。進入到細胞中的CagA會被宿主細胞的Src家族磷酸化酵素在CagA上的絡胺酸(tyrosine)處磷酸化,而被磷酸化的絡胺酸則是在麩胺酸(glutamic acid; E)-脯胺酸(proline; P)-異白胺酸(isoleucine; I)-絡胺酸(tyrosine; Y)-丙胺酸(alanine; A)的五胺基酸序列(EPIYA)中。當CagA被磷酸化後,會引起宿主細胞其細胞骨架之重組,產生所謂「蜂鳥形表型」(hummingbird phenotype),亦即細胞伸展延長,類似蜂鳥嘴巴形狀的外觀。另一方面,不同菌株的CagA蛋白質在羧基端(C-terminal)部分的胺基酸序列具有相當的差異,而這些差異被認為是不同菌株之所以造成不同疾病的原因之一。另外,各菌株的分佈亦存在著地理區域上的差異,這些地理分佈上的差異也可能與不同地區胃癌盛行率不同有關。為了研究CagA對哺乳動物細胞的影響,在此論文中,我建構了以pEGFP-N1質體為基礎的cagA基因哺乳動物細胞表現載體並於哺乳動物細胞株中表達。我發現在人類胃黏膜上皮細胞株(AGS cells)中有些細胞確實產生延展及分散的型態,然而,這些載體所表現出的CagA蛋白質量卻很低,幾乎無法偵測到,從這些結果,我推測此系統的載體對於在哺乳動物細胞中表達cagA基因並不合適。此外,我也做了26695與NCTC11637兩菌株的胺基酸序列比對;亦比對了五株台灣菌株、另一東亞菌株(F32)及26695菌株在羧基端部分的胺基酸序列。從這些序列比對的結果中,可以推測不同的序列很可能導致不同的CagA活性,進而造成胃幽門螺旋桿菌感染時不同的結果。這些序列上的差異,對於臨床上疾病的發展、預後,亦可作為一參考的指標。 rf Akopyants, N.S., Clifton, S.W., Kersulyte, D., Crabtree, J.E., Youree, B.E., Reece, C.A., Bukanov, N.O., Drazek, E.S., Roe, B.A. and Berg, D.E. (1998) Analyses of the cag pathogenicity island of Helicobacter pylori. Mol Microbiol, 28, 37-53. Amieva, M.R., Vogelmann, R., Covacci, A., Tompkins, L.S., Nelson, W.J. and Falkow, S. (2003) Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science, 300, 1430-1434. Asahi, M., Azuma, T., Ito, S., Ito, Y., Suto, H., Nagai, Y., Tsubokawa, M., Tohyama, Y., Maeda, S., Omata, M., Suzuki, T. and Sasakawa, C. (2000) Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells. J Exp Med, 191, 593-602. Azuma, T. (2004) Helicobacter pylori CagA protein variation associated with gastric cancer in Asia. J Gastroenterol, 39, 97-103. Backert, S., Moese, S., Selbach, M., Brinkmann, V. and Meyer, T.F. (2001) Phosphorylation of tyrosine 972 of the Helicobacter pylori CagA protein is essential for induction of a scattering phenotype in gastric epithelial cells. Mol Microbiol, 42, 631-644. Backert, S., Ziska, E., Brinkmann, V., Zimny-Arndt, U., Fauconnier, A., Jungblut, P.R., Naumann, M. and Meyer, T.F. (2000) Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell Microbiol, 2, 155-164. Blaser, M.J., Perez-Perez, G.I., Kleanthous, H., Cover, T.L., Peek, R.M., Chyou, P.H., Stemmermann, G.N. and Nomura, A. (1995) Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res, 55, 2111-2115. Censini, S., Lange, C., Xiang, Z., Crabtree, J.E., Ghiara, P., Borodovsky, M., Rappuoli, R. and Covacci, A. (1996) cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A, 93, 14648-14653. Censini, S., Stein, M. and Covacci, A. (2001) Cellular responses induced after contact with Helicobacter pylori. Curr Opin Microbiol, 4, 41-46. Churin, Y., Al-Ghoul, L., Kepp, O., Meyer, T.F., Birchmeier, W. and Naumann, M. (2003) Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J Cell Biol, 161, 249-255. Covacci, A., Censini, S., Bugnoli, M., Petracca, R., Burroni, D., Macchia, G., Massone, A., Papini, E., Xiang, Z., Figura, N. and et al. (1993) Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc Natl Acad Sci U S A, 90, 5791-5795. Covacci, A., Telford, J.L., Del Giudice, G., Parsonnet, J. and Rappuoli, R. (1999) Helicobacter pylori virulence and genetic geography. Science, 284, 1328-1333. Crostella, L., Lidder, S., Williams, R. and Skouteris, G.G. (2001) Hepatocyte Growth Factor/scatter factor-induces phosphorylation of cortactin in A431 cells in a Src kinase-independent manner. Oncogene, 20, 3735-3745. Danesh, J. (1999) Helicobacter pylori infection and gastric cancer: systematic review of the epidemiological studies. Aliment Pharmacol Ther, 13, 851-856. De Souza, D., Fabri, L.J., Nash, A., Hilton, D.J., Nicola, N.A. and Baca, M. (2002) SH2 domains from suppressor of cytokine signaling-3 and protein tyrosine phosphatase SHP-2 have similar binding specificities. Biochemistry, 41, 9229-9236. Dong, Q., O'Sullivan, M., Hall, W., Herra, C., Kean, C., O'Morain, C. and Buckley, M. (2002) Identification of a new segment involved in cagA 3' region variation of Helicobacter pylori. FEMS Immunol Med Microbiol, 33, 51-55. Eck, M., Schmausser, B., Haas, R., Greiner, A., Czub, S. and Muller-Hermelink, H.K. (1997) MALT-type lymphoma of the stomach is associated with Helicobacter pylori strains expressing the CagA protein. Gastroenterology, 112, 1482-1486. Finlay, B.B. and Falkow, S. (1997) Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev, 61, 136-169. Freeman, R.M., Jr., Plutzky, J. and Neel, B.G. (1992) Identification of a human src homology 2-containing protein-tyrosine-phosphatase: a putative homolog of Drosophila corkscrew. Proc Natl Acad Sci U S A, 89, 11239-11243. Guillemin, K., Salama, N.R., Tompkins, L.S. and Falkow, S. (2002) Cag pathogenicity island-specific responses of gastric epithelial cells to Helicobacter pylori infection. Proc Natl Acad Sci U S A, 99, 15136-15141. Higashi, H., Nakaya, A., Tsutsumi, R., Yokoyama, K., Fujii, Y., Ishikawa, S., Higuchi, M., Takahashi, A., Kurashima, Y., Teishikata, Y., Tanaka, S., Azuma, T. and Hatakeyama, M. (2004) Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation. J Biol Chem, 279, 17205-17216. Higashi, H., Tsutsumi, R., Fujita, A., Yamazaki, S., Asaka, M., Azuma, T. and Hatakeyama, M. (2002a) Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc Natl Acad Sci U S A, 99, 14428-14433. Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M. and Hatakeyama, M. (2002b) SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science, 295, 683-686. Huang, C., Ni, Y., Wang, T., Gao, Y., Haudenschild, C.C. and Zhan, X. (1997) Down-regulation of the filamentous actin cross-linking activity of cortactin by Src-mediated tyrosine phosphorylation. J Biol Chem, 272, 13911-13915. Huang, J.Q., Sridhar, S., Chen, Y. and Hunt, R.H. (1998) Meta-analysis of the relationship between Helicobacter pylori seropositivity and gastric cancer. Gastroenterology, 114, 1169-1179. IARC (1994) Schistomes, Liver Flukes and Helicobacter pylori. IARC Monographs on the Evaluation of Carcinogenesis Risks to Humans. 61. IARC (International Agency for Research on Cancer), Lyon, France. Jamora, C. and Fuchs, E. (2002) Intercellular adhesion, signalling and the cytoskeleton. Nat Cell Biol, 4, E101-108. Knust, E. and Bossinger, O. (2002) Composition and formation of intercellular junctions in epithelial cells. Science, 298, 1955-1959. Kodama, A., Matozaki, T., Fukuhara, A., Kikyo, M., Ichihashi, M. and Takai, Y. (2000) Involvement of an SHP-2-Rho small G protein pathway in hepatocyte growth factor/scatter factor-induced cell scattering. Mol Biol Cell, 11, 2565-2575. Lee, V.T. and Schneewind, O. (2001) Protein secretion and the pathogenesis of bacterial infections. Genes Dev, 15, 1725-1752. Marshall, B. J., and Warren, J. R. (1983) Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet, 1, 1273-1275. Maulik, G., Shrikhande, A., Kijima, T., Ma, P.C., Morrison, P.T. and Salgia, R. (2002) Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev, 13, 41-59. Mimuro, H., Suzuki, T., Tanaka, J., Asahi, M., Haas, R. and Sasakawa, C. (2002) Grb2 is a key mediator of Helicobacter pylori CagA protein activities. Mol Cell, 10, 745-755. Odenbreit, S., Puls, J., Sedlmaier, B., Gerland, E., Fischer, W. and Haas, R. (2000) Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science, 287, 1497-1500. Parsonnet, J., Friedman, G.D., Orentreich, N. and Vogelman, H. (1997) Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut, 40, 297-301. Peek, R.M., Jr. and Blaser, M.J. (2002) Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer, 2, 28-37. Segal, E.D., Cha, J., Lo, J., Falkow, S. and Tompkins, L.S. (1999) Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc Natl Acad Sci U S A, 96, 14559-14564. Segal, E.D., Falkow, S. and Tompkins, L.S. (1996) Helicobacter pylori attachment to gastric cells induces cytoskeletal rearrangements and tyrosine phosphorylation of host cell proteins. Proc Natl Acad Sci U S A, 93, 1259-1264. Selbach, M., Moese, S., Hauck, C.R., Meyer, T.F. and Backert, S. (2002) Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J Biol Chem, 277, 6775-6778. Selbach, M., Moese, S., Hurwitz, R., Hauck, C.R., Meyer, T.F. and Backert, S. (2003) The Helicobacter pylori CagA protein induces cortactin dephosphorylation and actin rearrangement by c-Src inactivation. Embo J, 22, 515-528. Stein, M., Bagnoli, F., Halenbeck, R., Rappuoli, R., Fantl, W.J. and Covacci, A. (2002) c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol Microbiol, 43, 971-980. Stein, M., Rappuoli, R. and Covacci, A. (2000) Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl Acad Sci U S A, 97, 1263-1268. Stella, M.C. and Comoglio, P.M. (1999) HGF: a multifunctional growth factor controlling cell scattering. Int J Biochem Cell Biol, 31, 1357-1362. Tomb, J.F., White, O., Kerlavage, A.R., Clayton, R.A., Sutton, G.G., Fleischmann, R.D., Ketchum, K.A., Klenk, H.P., Gill, S., Dougherty, B.A., Nelson, K., Quackenbush, J., Zhou, L., Kirkness, E.F., Peterson, S., Loftus, B., Richardson, D., Dodson, R., Khalak, H.G., Glodek, A., McKenney, K., Fitzegerald, L.M., Lee, N., Adams, M.D., Venter, J.C. and et al. (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature, 388, 539-547. Tsutsumi, R., Higashi, H., Higuchi, M., Okada, M. and Hatakeyama, M. (2003) Attenuation of Helicobacter pylori CagA x SHP-2 signaling by interaction between CagA and C-terminal Src kinase. J Biol Chem, 278, 3664-3670. Uemura, N., Okamoto, S., Yamamoto, S., Matsumura, N., Yamaguchi, S., Yamakido, M., Taniyama, K., Sasaki, N. and Schlemper, R.J. (2001) Helicobacter pylori infection and the development of gastric cancer. N Engl J Med, 345, 784-789. Uruno, T., Liu, J., Zhang, P., Fan, Y., Egile, C., Li, R., Mueller, S.C. and Zhan, X. (2001) Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nat Cell Biol, 3, 259-266. Watanabe, T., Tada, M., Nagai, H., Sasaki, S. and Nakao, M. (1998) Helicobacter pylori infection induces gastric cancer in mongolian gerbils. Gastroenterology, 115, 642-648. Weaver, A.M., Karginov, A.V., Kinley, A.W., Weed, S.A., Li, Y., Parsons, J.T. and Cooper, J.A. (2001) Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr Biol, 11, 370-374. Wong, B.C., Ching, C.K. and Lam, S.K. (1999) Helicobacter pylori infection and gastric cancer. Hong Kong Med J, 5, 175-179. Wu, H. and Parsons, J.T. (1993) Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J Cell Biol, 120, 1417-1426. Wu, H., Reynolds, A.B., Kanner, S.B., Vines, R.R. and Parsons, J.T. (1991) Identification and characterization of a novel cytoskeleton-associated pp60src substrate. Mol Cell Biol, 11, 5113-5124. Yamazaki, S., Yamakawa, A., Ito, Y., Ohtani, M., Higashi, H., Hatakeyama, M. and Azuma, T. (2003) The CagA protein of Helicobacter pylori is translocated into epithelial cells and binds to SHP-2 in human gastric mucosa. J Infect Dis, 187, 334-337. Yang, J.C., Wang, T.H., Wang, H.J., Kuo, C.H., Wang, J.T. and Wang, W.C. (1997) Genetic analysis of the cytotoxin-associated gene and the vacuolating toxin gene in Helicobacter pylori strains isolated from Taiwanese patients. Am J Gastroenterol, 92, 1316-1321. Yu, D.H., Qu, C.K., Henegariu, O., Lu, X. and Feng, G.S. (1998) Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. J Biol Chem, 273, 21125-21131.id NH0925061013 sid 914244 cfn 0 / id NH0925061014 auc 沈雅倫 tic 老鼠熱休克蛋白八十六之多聚體特性研究 adc 張大慈 ty 碩士 sc 國立清華大學 dp 分子與細胞生物研究所 yr 92 lg 英文 pg 74 kwc 熱休克蛋白 abc 熱休克蛋白九十 (HSP90) 是一種廣泛存於細胞質中的保護子,包括了兩種異構體α和β。HSP90α在老鼠中的同源基因(homologue)為HSP86,由733個胺基酸組成,可分為四個功能區:胺端區域 (第1到237個胺基酸),高電荷連接區域 (第238到272個胺基酸),中間區域 (第273到538個胺基酸) 和梭端區域 (第539到733個胺基酸)。HSP90的保護子功能是由ATP的水解和與其他輔保護子之交互作用調控。除此之外,升溫所引起的過渡狀態 – HSP90多聚體,是提高保護子功能的必要途徑。 rf 1. Jakob U, Meyer I, Bugl H, Andre S, Bardwell JC, Buchner J. Structural organization of procaryotic and eucaryotic Hsp90. Influence of divalent cations on structure and function. J Biol Chem. 1995;270:14412-14419. 2. Garnier C, Protasevich I, Gilli R, et al. The two-state process of the heat shock protein 90 thermal denaturation: effect of calcium and magnesium. Biochem Biophys Res Commun. 1998;249:197-201. 3. Garnier C, Lafitte D, Jorgensen TJ, Jensen ON, Briand C, Peyrot V. Phosphorylation and oligomerization states of native pig brain HSP90 studied by mass spectrometry. Eur J Biochem. 2001;268:2402-2407. 4. Chadli A, Ladjimi MM, Baulieu EE, Catelli MG. Heat-induced oligomerization of the molecular chaperone Hsp90. Inhibition by ATP and geldanamycin and activation by transition metal oxyanions. J Biol Chem. 1999;274:4133-4139. 5. Garnier C, Barbier P, Devred F, Rivas G, Peyrot V. Hydrodynamic properties and quaternary structure of the 90 kDa heat-shock protein: effects of divalent cations. Biochemistry. 2002;41:11770-11778. 6. Gupta RS. Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol Biol Evol. 1995;12:1063-1073. 7. Young JC, Moarefi I, Hartl FU. Hsp90: a specialized but essential protein-folding tool. J Cell Biol. 2001;154:267-273. 8. Sreedhar AS, Kalmar E, Csermely P, Shen YF. Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett. 2004;562:11-15. 9. Richter K, Muschler P, Hainzl O, Reinstein J, Buchner J. Sti1 is a non-competitive inhibitor of the Hsp90 ATPase. Binding prevents the N-terminal dimerization reaction during the atpase cycle. J Biol Chem. 2003;278:10328-10333. 10. Lotz GP, Lin H, Harst A, Obermann WM. Aha1 binds to the middle domain of Hsp90, contributes to client protein activation, and stimulates the ATPase activity of the molecular chaperone. J Biol Chem. 2003;278:17228-17235. 11. Meyer P, Prodromou C, Hu B, et al. Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol Cell. 2003;11:647-658. 12. Matsumoto S, Tanaka E, Nemoto TK, et al. Interaction between the N-terminal and middle regions is essential for the in vivo function of HSP90 molecular chaperone. J Biol Chem. 2002;277:34959-34966. 13. Pearl LH, Prodromou C. Structure, function, and mechanism of the Hsp90 molecular chaperone. Adv Protein Chem. 2001;59:157-186. 14. Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP. Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell. 1997;89:239-250. 15. Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW, Pearl LH. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell. 1997;90:65-75. 16. Panaretou B, Prodromou C, Roe SM, et al. ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. Embo J. 1998;17:4829-4836. 17. Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU. In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol. 1998;143:901-910. 18. Prodromou C, Panaretou B, Chohan S, et al. The ATPase cycle of Hsp90 drives a molecular 'clamp' via transient dimerization of the N-terminal domains. Embo J. 2000;19:4383-4392. 19. Sullivan W, Stensgard B, Caucutt G, et al. Nucleotides and two functional states of hsp90. J Biol Chem. 1997;272:8007-8012. 20. Schulte TW, Akinaga S, Murakata T, et al. Interaction of radicicol with members of the heat shock protein 90 family of molecular chaperones. Mol Endocrinol. 1999;13:1435-1448. 21. Roe SM, Prodromou C, O'Brien R, Ladbury JE, Piper PW, Pearl LH. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem. 1999;42:260-266. 22. Workman P. Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett. 2004;206:149-157. 23. Fontana J, Fulton D, Chen Y, et al. Domain mapping studies reveal that the M domain of hsp90 serves as a molecular scaffold to regulate Akt-dependent phosphorylation of endothelial nitric oxide synthase and NO release. Circ Res. 2002;90:866-873. 24. Soti C, Racz A, Csermely P. A Nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket. J Biol Chem. 2002;277:7066-7075. 25. Garnier C, Lafitte D, Tsvetkov PO, et al. Binding of ATP to heat shock protein 90: evidence for an ATP-binding site in the C-terminal domain. J Biol Chem. 2002;277:12208-12214. 26. Weikl T, Muschler P, Richter K, Veit T, Reinstein J, Buchner J. C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle. J Mol Biol. 2000;303:583-592. 27. Ramsey AJ, Russell LC, Whitt SR, Chinkers M. Overlapping sites of tetratricopeptide repeat protein binding and chaperone activity in heat shock protein 90. J Biol Chem. 2000;275:17857-17862. 28. Russell LC, Whitt SR, Chen MS, Chinkers M. Identification of conserved residues required for the binding of a tetratricopeptide repeat domain to heat shock protein 90. J Biol Chem. 1999;274:20060-20063. 29. Young JC, Obermann WM, Hartl FU. Specific binding of tetratricopeptide repeat proteins to the C-terminal 12-kDa domain of hsp90. J Biol Chem. 1998;273:18007-18010. 30. Wegele H, Muschler P, Bunck M, Reinstein J, Buchner J. Dissection of the contribution of individual domains to the ATPase mechanism of Hsp90. J Biol Chem. 2003;278:39303-39310. 31. Yonehara M, Minami Y, Kawata Y, Nagai J, Yahara I. Heat-induced chaperone activity of HSP90. J Biol Chem. 1996;271:2641-2645. 32. Nemoto T, Sato N. Oligomeric forms of the 90-kDa heat shock protein. Biochem J. 1998;330 ( Pt 2):989-995. 33. Tanaka E, Nemoto TK, Ono T. Liberation of the intramolecular interaction as the mechanism of heat-induced activation of HSP90 molecular chaperone. Eur J Biochem. 2001;268:5270-5277. 34. Nemoto TK, Fukuma Y, Yamada SI, Kobayakawa T, Ono T, Ohara-Nemoto Y. The Region Adjacent to the Highly Immunogenic Site and Shielded by the Middle Domain Is Responsible for Self-Oligomerization/Client Binding of the HSP90 Molecular Chaperone. Biochemistry. 2004;43:7628-7636. 35. Yamada S, Ono T, Mizuno A, Nemoto TK. A hydrophobic segment within the C-terminal domain is essential for both client-binding and dimer formation of the HSP90-family molecular chaperone. Eur J Biochem. 2003;270:146-154. 36. Lai Y-R. Molecular Cloning and Functional Analysis of Rat 86-kDa Heat Shock Protein. Molecular and Cell biology: National Tsing-Hua University; 2002:56. 37. Dale EC, Yang X, Moore SK, Shyamala G. Murine 86-kDa heat shock protein gene and promoter. Cell Stress Chaperones. 1997;2:87-93. 38. Smith PK, Krohn RI, Hermanson GT, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76-85. 39. Lebowitz J, Lewis MS, Schuck P. Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci. 2002;11:2067-2079. 40. Jorgensen CS, Ryder LR, Steino A, et al. Dimerization and oligomerization of the chaperone calreticulin. Eur J Biochem. 2003;270:4140-4148. 41. Benaroudj N, Triniolles F, Ladjimi MM. Effect of nucleotides, peptides, and unfolded proteins on the self-association of the molecular chaperone HSC70. J Biol Chem. 1996;271:18471-18476.id NH0925061014 sid 904235 cfn 0 / id NH0925063001 auc 陳永志 tic PTFE-SiO2有機無機複合材料製備及性質之研究 adc 李育德 ty 博士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 177 kwc 聚四氟乙烯 kwc 二氧化矽 kwc 複合材料 kwc 填充材料含量 kwc 填充材料尺寸大小 kwc 混成材料 abc 摘 要 tc 目  錄 摘要 I 謝誌 III 目錄 i 表目錄 iii 圖目錄 v 一、緒論 1 1-1 前言 1 1-2 印刷電路板的市場趨勢 1 1-3 高頻印刷電路板板材性質要求 3 1-4 印刷電路板板材常用之樹脂 9 1-5 有機-無機奈米複合材料 15 1-6 溶膠-凝膠法 17 二、理論與文獻回顧 21 2-1 PTFE材料及乳液特性 21 2-2 系統一微米級PTFE/SiO2複合材料(composite) 24 2-2-1 SiO2含量及粒徑大小之影響 25 2-2-2偶合劑種類之影響 27 2-2-3偶合劑含量之影響 28 2-3 系統二PTFE/SiO2奈米複合材料(nanocomposite) 28 2-3-1 溶膠-凝膠製備PTFE/SiO2材料 28 2-3-2 溶膠-凝膠法理論 30 2-3-3 SiO2表面的化學改質 46 2-3-4 以溶膠-凝膠法製備的有機無機混成材料 49 2-3-5 以溶膠-凝膠法製備的有機無機混成材料相關研究 52 三、研究動機及目的 57 四、研究方法與步驟 58 4-1 實驗架構 58 4-2 實驗用藥品 59 4-3 實驗流程 61 4-4 樣品製作 63 4-5 實驗儀器及測試方法 66 五、結果與討論 70 5-1 微米級PTFE/SiO2複合材料製備 70 5-2 偶合劑含量對微米級PTFE/SiO2複合材料之性質影響性研究 72 5-3 SiO2填充材料含量與尺寸大小對微米級PTFE/SiO2複合材料之性質影響性研究 83 5-4溶膠-凝膠法製備PTFE/SiO2混成材料 103 5-5 PTFE/SiO2混成材料化學表面改質研究 127 5-6 TEOS含量對PTFE/SiO2混成材料之性質影響性研究 144 六、結論 157 七、參考文獻 163 八、附錄 174 表目錄 表1-1. 基板板材的各種需求 8 表1-2. 各類高頻基板材料之介電性質與熱膨脹係數 9 表1-3. 有機高分子與無機陶瓷性質比較 16 表2-1. Characteristics of PTFE suspension 22 表2-2. Gelation time and pH for six catalysts 36 表2-3. 不同r(H2O/TEOS莫耳比)所得到不同的膠體結構 43 表2-4. 利用溶膠-凝膠反應製備有機-無機混成複材的研究與產品分類表 ………………………………………………………… 55 表2-5. 利用溶膠-凝膠反應製備有機-無機混成複材的研究及發展機構 56 表5-1. Composition and content of SiO2 in PTFE composites 74 表5-2. The effect of silane on the properties of 60wt% SiO2-reinforced PTFE composites. 74 表5-3. Comparison between experimental results and theoretical values calculated by rule of mixture for 60wt% SiO2-reinforced PTFE composites. 82 表5-4. Weight fraction of SiO2 in composites and decomposition temperature of PTFE/SiO2 composites. 85 表5-5. Material Properties of PTFE and SiO2 85 表5-6. Summarized data obtained via the DSC measurements for pure PTFE and PTFE/SiO2 composites 89 表5-7. Models for predicting the tensile strength of filled polymer. 93 表5-8. Weight fraction of SiO2 in hybrids and decomposition temperature of PTFE/SiO2 hybrids via different HF content. 110 表5-9. Weight fraction of SiO2 in hybrids and decomposition temperature of PTFE/SiO2 hybrids via different ethanol content. 115 表 5-10. Weight fraction of SiO2 in hybrids and decomposition temperature of PTFE/SiO2 hybrids via different water content. 120 表5-11. Weight fraction of SiO2 in hybrids and decomposition temperature of PTFE/SiO2 hybrids via different TEOS content. 125 表5-12. The effect of different silylation agents and reaction times on the dielectric loss (Df) properties of PTFE/SiO2 hybrids. 129 表5-13. Weight fraction of SiO2 in hybrids and decomposition temperature of dried pure PTFE, SiO2 and PTFE/SiO2 hybrids. 131 表5-14. Provisional assignment of IR reflectance peaks 135 表5-15. Summarized vibrations mode of IR peaks in the unmodified and modified PTFE/SiO2 hybrids 135 表5-16. 29Si MAS NMR deconvolution results 137 表5-17. The measured density, surface area, average pore size, pore volume and porosity properties of pure PTFE and PTFE/SiO2 hybrids. 139 表5-18. Effect of HMDS/TMCS silylation agent on the various properties of PTFE/SiO2 hybrids. 143 表5-19. The measured density, surface area, average pore size, pore volume and porosity properties of different filler content of PTFE/SiO2 hybrids. 147 表 5-20. Summarized data obtained using the DSC measurements for pure PTFE and PTFE/SiO2 hybrids 152 表 5-21. The effect of filler contents and surface modification on the various properties of PTFE/SiO2 hybrids. 155 圖目錄 圖1-1.日本通訊發展傳送速度的評估 2 圖1-2.各類高頻基板材料之性能、加工溫度與成本挑戰關係圖 10 圖1-3.利用溶膠─凝膠反應製備奈米級(Nano)型態的複合材料 17 圖1-4.凝膠化過程 18 圖2-1.SEM of primary particles of PTFE (D60A) 22 圖2-2.Viscosity behavior of PTFE dispersion as a function of Temperature.. 24 圖2-3. Water equilibrium reaction at surface of fumed silica 26 圖2-4. Concept of a Polymer/Siloxane/Glass Interphase 27 圖2-5. PTFE/SiO2塊材的SEM (A) Acid-catalyzed; (B) Base-catalyzed 30 圖2-6.水解與聚合反應對膠體結構的影響 34 圖2-7. pH值與顆粒大小關係 34 圖2-8. pH值對silica-water系統所產生之膠體的凝膠時間影響 39 圖2-9.不同的酸性觸媒對凝膠時間的影響60 41 圖2-10. Density of silica aerogel vs. Ethanol/TEOS molar ratio58 42 圖2-11.二氧化矽表面的矽氫氧基型態73 47 圖2-12.二氧化矽之表面去水及去氧基反應機構73 47 圖2-13. Si-OH表面改質反應機構 49 圖2-14.線性有機高分子崁入無機高分子的示意圖84 50 圖4-1.系統一微米級PTFE/SiO2基板的製作流程圖 62 圖4-2.系統二奈米級PTFE/SiO2基板的製作流程圖 63 圖4-3. Sintering thermal profile of the PTFE/SiO2 hybrids. 66 圖5-1. DSC curve of the 60wt% SiO2-reinforced PTFE composites. 76 圖5-2. Thermogravimetric profile of the 60wt% SiO2-reinforced PTFE composites 76 圖5-3.Tensile strength versus sintering time for the 60wt% SiO2-reinforced PTFE composites. 78 圖5-4. Tensile strength versus concentration of phenyltrimethroxy silane for the 60wt% SiO2-reinforced PTFE composites. 78 圖5-5. Cross-section SEM microghraphs of the PTFE/silica composites and pure PTFE. (a) PTFE containing 60wt% untreated SiO2, (b) PTFE containing 60wt% SiO2 treated with 3% coupling agent (c) PTFE containing 60wt% untreated SiO2, and (d) pure PTFE 80 圖5-6. Water absorption versus concentration of phenyltrimethroxy-silane for the 60wt% SiO2-reinforced PTFE composites. 83 圖5-7. Heating and cooling DSC curves of the 60wt% SiO2 (25 ?慆)-reinforced PTFE composite. 87 圖5-8. Tensile modulus vs. various SiO2 filler content for 25?慆 SiO2 (▲), 5?慆 SiO2 (●). 90 圖5-9. Tensile strength vs. various SiO2 filler content for 25?慆 SiO2 (▲), 5?慆 SiO2 (●). 91 圖5-10. Typical tensile strength-concentration curves for filled polymers showing upper and lower bound responses 102. 92 圖5-11. Comparison between calculated and experimental results of tensile strength. 94 圖5-12. Cross-section SEM microghraphs of the pure PTFE and PTFE/silica composites with different filler size. (A) Blank pure PTFE (Mag.=x500), (B) PTFE containing 60wt% 25?慆 SiO2 treated with 3% coupling agent (Mag.=x1500); and (C) PTFE containing 60wt% 5?慆 SiO2 treated with 3% coupling agent (Mag.=x1500). 96 圖5-13. SEM microghraphs of tensile fractured cross-section for the PTFE/SiO2 composites. (A) PTFE containing 60wt% 25?慆 SiO2 untreated (Mag.=x200); (B) PTFE containing 60wt% 25?慆 SiO2 treated with 3% coupling agent (Mag.=x200); (C) PTFE containing 60wt% 25 ?慆 SiO2 treated with 3% coupling agent (Mag.=x1500); (D) PTFE containing 60wt% 5?慆 SiO2 treated with 3wt% coupling agent (Mag.=x1500); (E) PTFE containing 60wt% 5?慆 SiO2 treated with 3wt% coupling agent (Mag. = x1500). 96 圖5-14. Water absorption vs. various SiO2 filler content for 25?慆 SiO2 (▲), 5?慆 SiO2 (●). 98 圖5-15. Dielectric constant (Dk) vs. various SiO2 filler content for 25?慆 SiO2 (▲), 5?慆 SiO2 (●). 100 圖5-16. Dielectric loss (Df) vs. various SiO2 filler content for 25?慆 SiO2 (▲), 5?慆 SiO2 (●). 100 圖5-17. Comparison between calculated and experimental results of Dk. The curve shown is calculated by eq 5-1. 101 圖5-18. Comparison between calculated and experimental results of Df. The curve shown is calculated by eq 5-2. 101 圖5-19. CTEz vs. various SiO2 filler content for 25?慆 SiO2 (▲), 5?慆 SiO2 (●). 103 圖5-20. Comparison between calculated and experimental results of CTEz. The curve shown is calculated by eq 5-10. 103 圖5-21. PTFE Coagulation time與TEOS Gelation time 比較圖 106 圖5-22.不同HF/TEOS molar ratio之反應時間與樣品溫度關係圖 107 圖5-24. PTFE與PTFE/SiO2 在氮氣環境下之TGA比較圖 109 圖5-25.利用高斯方程式Fitting 29Si NMR圖譜126 112 圖5-26.不同HF/TEOS molar ratio之29Si NMR圖譜 113 圖5-27.不同HF/TEOS molar ratio對交聯密度的影響 113 圖5-28.不同m(Ethanol/TEOS molar ratio)對Gelation time的影響 115 圖5-29不同m(Ethanol/TEOS molar ratio)之29Si NMR圖譜 118 圖5-30不同m(Ethanol/TEOS molar ratio)對交聯密度的影響 118 圖5-31不同r(Water/TEOS molar ratio)對Gelation time的影響 119 圖5-32不同r(Water/TEOS molar ratio)之29Si NMR圖譜 122 圖5-33不同r(Water/TEOS molar ratio)對交聯密度的影響 123 圖5-34.不同k(TEOS/PTFE Weight ratio)對Gelation time的影響 123 圖5-35.不同k(TEOS/PTFE Weight ratio)在氮氣環境下之TGA 比較圖 125 圖5-36.不同k(TEOS/PTFE Weight ratio)對交聯密度的影響 127 圖5-37.不同k(TEOS/PTFE Weight ratio)之29Si NMR圖譜 127 圖5-38.Dielectric loss (Df) versus sintering time for unmodified 50wt% SiO2-reinforced PTFE hybrid. 128 圖5-39. Thermogravimetric curve for (a) pure TEOS derived silica; (b) unmodified PTFE/SiO2 containing 50wt% SiO2; (c) modified PTFE/SiO2 containing 50wt% SiO2; (d) pure PTFE. 129 圖5-40. DSC curve of sintered PTFE/SiO2 hybrid (a) modified; (b) unmodified. 133 圖5-41. IR spectra of sintered PTFE/SiO2 hybrid (a) modified; (b) unmodified. 134 圖5-42. 29Si MAS NMR spectra of PTFE/SiO2 hybrids, (A) modified; (B) unmodified. 137 圖5-43. Pore size distribution in modified and unmodified PTFE/SiO2 hybrids. Lines are drawn as guides for the eye. 139 圖5-44. Cross-sectional SEM images of pure PTFE, SiO2 and PTFE/SiO2 hybrids. (A) Blank pure PTFE (Mag.=x500), (B) pure SiO2 by sol-gel synthesis (Mag.=x30,000) and (C) PTFE containing 50wt% equivalently SiO2 modified with HMDS/TMCS (Mag.=x60,000). Small black arrows in (B) and (C) indicate the nano-size SiO2 filler. (D) PTFE containing 50wt% equivalently SiO2 powder overly heat-treated at 900℃ for 4 h (Mag.= x10,000). 141 圖5-45. TEM images (A) and EDX spectrum (B) of the modified PTFE/SiO2 hybrids. Dark regions represent SiO2 particles. 142 圖5-46. Effect of SiO2 filler content on pore size distribution of PTFE/silica hybrids. Lines are draw as guides for the eye. 146 圖5-47. Cross-sectional SEM images of pure SiO2 and PTFE/SiO2 hybrids. (A) Blank pure SiO2 by sol-gel synthesis (Mag.=×30,000), (B) PTFE containing 30wt% equivalently SiO2 modified with HMDS/TMCS (Mag.=×60,000), and (C) PTFE containing 50wt% equivalently SiO2 modified with HMDS/TMCS (Mag.=×60,000)…. 148 圖5-48. Typical heating and cooling DSC curve of SiO2-reinforced PTFE/SiO2 hybrids. 149 圖5-49. Heating DSC curves of pure PTFE and PTFE/SiO2 hybrids. 151 圖5-50. Cooling DSC curves of pure PTFE and PTFE/SiO2 hybrids. 151 圖5-51. Tensile modulus vs. various SiO2 filler contents for PTFE/SiO2 hybrids. 153 圖5-52. Tensile strength vs. various SiO2 filler contents for PTFE/SiO2 hybrids. 154 圖 5-53. Dielectric loss (Df) vs. various SiO2 filler contents for PTFE/SiO2 hybrids. 156 圖 5-54. X-axis CTE vs. various SiO2 filler contents for PTFE/SiO2 hybrids. 157rf 七、參考文獻 1. 黃進華, 電子與材料, Vol. 3, 108-113, 1999. 2. 白蓉生, 電路板資訊雜誌, No. 89, 120-134, 1995. 3. 高繼祖, 電子與材料, Vol. 4, 75-83, 1999. 4. Fumiaki Baba, ”Plastic materials for microwave applications “ 1999,Chapter 1, pp 3~24. 5. Sanville Rober J. et al., U.S. Patent 5,670,250, 1995. 6. Smith, J. R. L.; Lee, S. B.; Komori, H.; Arai, K. Fluid Phase Equilibria 1998, 144, 315-322. 7. Arthur, D. J.; Swei, G. S. U.S. Patent 5,149,590, 1992. 8. Bob Daigle, Electronic Components and Technology Conference, 1996, pp 354-357. 9. Farquhar, D. S.; Seman, A.; Poliks, M. D., IEEE transactions advanced packaging 1999, 22, 153-159, 10. 白蓉生,電路板資訊雜誌, No. 52, 72-92, 1991. 11. Akutsu, F.; Inoki, M.; Daicho, N.; Kasashima, Y.; Shiraishi, N.; Marushima, K. J Appl Polym Sci 1998, 69, 1737-1741. 12. 電路板資訊雜誌資料室, 電路板資訊雜誌, No. 52, 62-71,1991 13. M. W. Jawitz, Printed Circuit Board Materials Handbook, 1997. 14. Musto, P.; Martuscelli, E.; Ragosta, G.; Russo, P.; Scarinzi, G. J. Appl Polym Sci 1998, 69, 1029-1042. 15. Inagaki, N.; Tasaka, S.; Ohmori, H.; Mibu, S. J Adhesion Sci Technol 1996, 10(3), 243-256. 16. Buchwalter, L. P.; Saraf, R. J Adhesion Sci Technol 1993, 7 (9), 925-940. 17. Rozovskis, G.; Vinkevicius, J.; J. Jaciauskiene J Adhesion Sci Technol 1996, 10, 399-406. 18. Chen, H. L.; Ho, S. H.; Wang, T. H.; Chen, K. M.; Pan, J. P.; Liang, S. M.; Hung, A. J Appl Polym Sci 1994, 51, 1647-1652. 19. Farquhar, D. S.; Seman, A.; Poliks, M. D. Proceedings of the 1998 48th Electronic Components and Technology Conference, pp 800-806. 20. 陳文章; 劉韋志, 化工, 第46卷第5期, 56-62, 1999. 21. Petrović, Z. S.; Javni, I.; Waddon, A.; Banhegyi, G. J Appl Polym Sci 2000, 76, 133-151. 22. Okada, H. Nanomaterials: Nano-particles, Nano-composites and their Applications; Kansai Research Institute (KRI): Report No.9 of Phase XIV, Mar. 2003; Chapter 5, pp 251-313. 23. Kickelbick, G. Prog Polym Sci 2003, 28, 83-114. 24. Jana, S. C.; Jain, S. Polymer 2001, 42, 6897-6905. 25. Sshmidt, D.; Shah, D.; Giannelis, E. P., Current Opin Solid State and Mater Sci 2002, 6, 205-212. 26. Collinson, M. M. Trend in Analytical Chemistry 2002, 21(1), 30-38. 27. Seishiro Nakamura: Organic-Inorganic Polymer Hybrids (Update-I); Kansai Research Institute (KRI): Report No.4 of Phase VIII, Nov. 1996; Chapter 1, pp 1-9. 28. Kim, M. A.; Lee, W. Y. Analy Chim Acta 2003, 142, 143-150. 29. Young, S. K.; Jarret, W. L.; Mauritz, K. A. Polymer 2002, 43, 2311-2320. 30. Doyle, W. F.; Fabes B. D.; Root J. C.; Simmons K. D., Chiang Y. M.; Uhlamann D. R. In: Ultrastructure Processing of Advanced Ceramics; Mackenzie, J. D.; Ulrich D. R., Ed.; Wiley-Interscience: New York, 1988; Chapter 78, pp 953-962. 31. Doyle, W. F. In: Uhlamann D. R. In: Ultrastructure Processing of Advanced Ceramics; Mackenzie, J. D.; Ulrich D. R., Ed.; Wiley-Interscience: New York, 1988; Chapter 61, pp 795-805. 32. Michalczyk, M. J.; Sharp, K. G.; Stewart, C. W. U.S. Pat. 5,726,247, 1998. 33. Sharp, K. G. Adv Mater 1998, 10, 1243-1247. 34. Brinker, C. J.; Scherer, G. W. Sol-Gel Science: the physics and chemistry of sol-gel processing, 2nd Ed.; Academic Press: San Diego, 1990. 35. Speck, K. R.; Hu, H. D.; Sherwin, M. E.; Potember, R. S. Thin Solid Films 1988, 165(1), 317-322. 36. Teseng, T. Y.; Muang, J.; Lin, J. G. J Mater Sci 1989, 24, 2735-2738. 37. 謝志文, “以溶膠-凝膠法製備(A1-B)或(Ti-B)雙氧化物薄膜及粉體”, 國立中央大學化工所博士論文(1992), pp. 19-45 38. Scheirs, J. Modern Fluoropolymers: high performance polymers for diverse applications, John Wiley & Sons: Chichester, 1997; pp 54. 39. Ebnesajjad, S. Non-melt Processible Fluoroplastics: / the definitive user's guide and databook, Plastics Design Library: New York; 2000, pp 19-45. 40. Arthur, D. J.; Horn III, A. F. U.S. Patent 5,061,548, 1991. 41. Fields, J. T.; Garton, A. Polym Composites 1996, 17, 242-250. 42. Arthur, D. J.; Mosko, J. C.; Jackson C. S.; Traut G. R. U.S. Patent 4,849,284, 1989. 43. Horn III, A. F.; Danielson, C. U.S. Patent 5,358,775, 1994. 44. Arthur, D. J.; Swei, G. S. U.S. Patent 5,024,871, 1991. 45. Iler, R. K. The Chemistry of Silica- Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry; Wiley-Interscience: New York, 1988; Chapter 1, pp 17. 46. Nakamura, Y.; Yamaguchi, M.; Iko, K.; Okubo, M.; Matsumoto, T. Polymer 1990, 31(11), 2006-2070. 47. Nakamura, Y.; Yamaguchi, M.; Okubo, M.; Matsumoto, T. J Appl Polym Sci 1992, 45(7), 1281-1289. 48. Han, C. D.; Weghe, T. V. D.; Shete, P.; Haw, J. R. Polym Eng Sci, 1981, 21(4), 196 -204. 49. Wong, C. P.; Bollampally, R. S. J. Appl Polym Sci 1999, 74(14), 3396-3403. 50. DiBenedetto, A. T. Mater Sci and Engine 2001, A 302(1), 74-82. 51. David J. Arthur et al. U.S. Patent 5,198,295, 1993. 52. David J. Arthur et al. U.S. Patent 5,281,476, 1994. 53. David J. Arthur et al. U.S. Patent 5,194,326, 1993. 54. David J. Arthur et al. U.S. Patent 5,384,181, 1995. 55. Elion, R. A.; Leobel, A.; Eirich, F. J Am Chem Soc 1950, 72, 5705-5710. 56. Pope, E. J. A.; Mackenzie, J. D. J Non-Cryst Solids 1986, 81, 185-198. 57. Marshall, D. B; Cole, C. L.; Norman A. D. J Chromatogr Sci 1987, 25, 262-266. 58. Yoldas, B. E. J Non-cryst Soilds 1986, 83(3), 375-390. 59. Iler, R. K. The Chemistry of Silica; Wiley-Interscience: New York, 1988; Chapter 6, pp 622-714. 60. Coltrain, B. K.; Melpolder, S. M.; Salva, J. M. Proceeding of the 11th Int'l. Conference on Ultrastructure Processing of Ceramic, Glass and Composites 1989 Feb., pp 19-24. 61. Venkateswara Rao, A.; Pajonk, G. M.; Parvathy, N. N. J Materials Science 1994, 29, 1807-1817. 62. Buckely, A. M.; Greenblatt, M. J Non-Cryst. Solids 1992, 143, 1-13. 63. Katagiri, T.; Maekawa, T. J Non-Cryst Solids 1991, 134, 183-190. 64. Wagh, P. B.; Rao, A. V.; Haranath, D. Materials of Chemistry and Physics 1998, 53, 41-47. 65. Yoldas, B. E. J Mater Sci 1986, 21(3), 1087-1092. 66. Yoldas, B. E. J Am Ceram Soc 1982, 65(8), 387-393. 67. S. Sakka, Formation of Glass and Amorphous Oxide fibers from Solution, Better Ceramic Throgh Chemistry 1984, pp 81. 68. Colby, M. W.; Osaka, A.; Mackenzie, J. D. J Non-Cryst Solids, 1985, 82(1-3), 37-41. 69. Ro, J. C.; Chung, I. J. J. Non-Cryst Solids 1991, 130(1), 8-17. 70. Aso, Y. S.; Okano, S.; Sakaino T. J Mater Sci 1979, 14, 607-611. 71. Nogami, M.; Moriya, Y. J. Non-Cryst Solids 1980, 37, 191-201. 72. Gadalla, A. M.; Yun, S. J. J. Non-Cryst Soilds 1992, 143(2-3), 121-132. 73. 卓恩宗, “中孔洞二氧化矽低介電薄膜材料在積體電路製程上的應用與研究”, 國立清華大學碩士論文, 2001 74. Hong, J. K.; Yang, H. S., Jo, M. H.; Park, H. H.; Choi, S. Y. Thin Solid Films 1997, 308-309, 495-500. 75. Shoubin, Z.; Xinsheng, W.; Yoshimura, N. Proceedings of 1998 Asian International Conference on Dielectrics and Electrical Insulation and 30th Symposium on Electrical Insulating Material, Toyohashi, Japan, Sept. 27-30, 1998, pp 43-46. 76. Vansant, E. F.; Voort P. V. D.; Vrancken K. C. Characterization and Chemical Modification of the Silica Surface. Elsevier: Amsterdam, 1995; Chapter 9, pp 193-297. 77. Lochmuller, C. H.; Marshall D. B. Analy Chim Acta 1982, 142, 63-72. 78. Akapo, S. O.; Dimandja J. M. D., Matyska, M. T.; Pesek, J. J Anal Chem 1996, 68, 1954-1959. 79. Katz; Davis, M. E. Nature 2000, 403, 286-289. 80. Pesek, J. J.; Matyska M. T.; Yu, R. J. J of Chromatography A 2002, 947, 195-203. 81. Nouvel, C.; Ydens, I.; Degée P.; Dubois P.; Dellacherie E.; Six, J. Polymer 2002, 43, 1735-1743. 82. Gun’ko, V. M.; Vedamuthu, M. S.; Henderson, G. L.; Blitz, J. P. J Colloid Interface Sci 2000, 228, 157-170. 83. Qin, H. H.; Dong, J. H.; Qin, K. Y.; Wei, Y. J Polym Sci Part A: Polym Chem 2000, 38, 321-328. 84. Calvert, P. Nature 1991, 353, 501-502. 85. Ellsworth, M. W.; Novak, B. M.; J Am Chem Soc 1991, 113, 2756-2758. 86. Chujo, Y.; Saegusa, T. In: Macromolecules: Synthesis, Order and Advanced Properties, Armistead, K. A.; Chujo, Y.; Corradini, P.; Fischer, M.; Kausch, H. H.; Kennedy, J. P. Ed., Springer Verlag, Advances in Polymer Science, No 100, 1992, pp 11. 87. Morikawa, A. et al., J Polymer 1992, 24(1), 107-113. 88. Klein, L. C. Annu Rev Material Sci 1993, 23, 437-501. 89. Brunauer, S.; Emmett, P. H.; Teller, E. J Am Chem Soc 1938, 60, 309-319. 90. Barret, E. P.; Joyner, L. G.; Halenda, P. H., J Am Chem Soc 1951, 73, 373-380. 91. Endo, M.; Yamada, K.; Tadano, K.; Nishino, Y.; Yano, S. Macromol. Rapid Commun 2000, 21(7), 396-400. 92. Wang X. Q.; Han, J. C.; Du, S.Y.; Wang, D. F. J. Reinforced Plastics and Composites 1998, 17(17), 1496-1506. 93. George, S.; Varughese, K. T.; Thomas, S. J Appl Polym Sci 1999, 73, 255-270. 94. Beecroft, L. L.; Johnen, N. A.; Ober, C. K. Polym for Adv Techn 1997, 8, 289-296. 95. Cho, J. W.; Sul, K. I. Polymer 2001, 42(2), 727-736. 96. Wang, X. Q.; Chen, D. R.; Han J.C.; Du, S. Y. J Appl Polym Sci 2001, 83(5), 990-996. 97. Ferry, L.; Vigier, G.; Alexander-Katz, R.; Garapon, C. J Polym Sci, Part B: Polym Phys, 1998, 36(12), 2057-2067. 98. Liang, J. Z.; Li, R. K. Y.; Tjong, S. C. Polymer Testing 1997, 16(6), 529-548. 99. Rozman, H. D.; Kon, B. K.; Abusamah, A.; Kumar, R. N.; Ishak, Z. A. Mohd. J Appl Polym Sci, 1998, 69(10), 1993-2004. 100. Kausch, H. H.; Béguelin, Ph. Macromol Symp 2001, 169(1), 79-87. 101. Nielsen, L. E. “Mechanical Properties of Polymers and Composites”, 2, Marcel Dekker, New York (1974). 102. Bigg, D. M. Polymer Composites 1987, 8(2), 115 -122. 103. Stricker, F. Bruch, M. Mülhaupt, R. Polymer, 1997, 38(21), 5347-5353. 104. Moloney, A. C.; Kausch, H. H.; Kaser, T.; Beer, H. R.; J Mater Sci 1987, 22(2), 381-393. 105. Ahmed, S.; Jones, F. R. Composites 1990, 21, 81-84. 106. Liang, J. Z. Macromol Mater Eng 2002, 287(9), 588-591. 107. Landon, G.; Lewis G.; Boden, G. F. J Mater Sci 1977, 12(8), 1605-1613. 108. Bigg, D. M. Polym Eng Sci 1979, 19(16), 1188-1192. 109. Nicolais, L.; Narkis, M. Polym Eng Sci 1973, 13, 469-475. 110. Leidner J.; Woodhams, R. T. J. of Appl Polym Sci 1974, 18(6), 1639-1654. 111. Nicolais, L.; Narkis, M. Polym Eng Sci 1971, 11(3), 194-199. 112. Liang, J. Z.; Li, R. K. Y. Polymer Composites 1998, 19(6), 698-703. 113. Liang J. Z.; Li, R. K. Y. Polymer Int 2000, 49(2), 170-174. 114. S. Lu, L. Yan, X. Zhu and Z. Qi, J Mater Sci, Vol. 27, 4633 (1992) 115. Pathmanathan, K.; Cavaille, J. Y.; Johari, G. P. Polymer 1988, 29(2), 311-319. 116. Radhakrishnan S.; D. R. Saini J Appl Polym Sci 1994, 52(11), 1577-1586. 117. Gustafsson, A.; Salot R.; Gedde, U. W. Polymer Composites 1993, 14(5), 421-429. 118. Kang, S.; Hong, S. I.; Choe, C. R.; Park, M.; Rim, S.; Kim, J. Polymer 2001, 42 (3), 879-887. 119. Arthur, D. J.; Kristal, K. W.; Swei, G. S.; U.S. Patent 5,077,115, 1993. 120. B. Paul, ’Prediction of elastic constants of multiphase materials”, Transactions of the Metallurgical Society of AIME 1960, 218(1), 36-41. 121. Deng, Z.; Wang, J.; Wu, A.; Shen, J.; Zhou, B. J. Non-Cryst Soilds 1998, 225, 101-104. 122. Brinker, C. J.; Scherer, G. W.; Roth, E. P. J Non-Cryst Solids 1985, 72, 345-368. 123. Mah, S. K.; Chung, I. J. J Non-Cryst Solids 1995, 83, 252-259. 124. Wei, Y.; Jin, D.; Yang, C.; Kels, M. C.; Qiu, K. Y. Mater Sci and Engin 1998,C6, 91-98. 125. Nakane, K.; Yamashita, T.; Iwakura, K.; Suzuki, F. J Appl Polym Sci 1999, 74, 133-138. 126. Mutter, C.; Bernard, T. N. M.; Peeters, M. P. J.; Thin Solid Film 1999, 351, 95-98. 127. Xenopoulus, C.; Mascia, L.; Shaw, S. J Mater Sci and Engin 1998, C6, 99-114. 128. De Witte, B. M.; Commers, D.; Uytterhoeven, J. B., J Non-Cryst Solids 1996, 202, 35-41. 129. Babonneau, F.; Bios, L.; Livage, J. J Non-Cryst Solids 1992, 147-148, 280-284. 130. Tian, D.; Dubois, P.; Jerome, R. Polymer 1996, 37, 3983-3987. 131. Lemoine, C.; Gilbert, B.; Michaux, B.; Pirard, J. P; Lecloux, A. J Non-Cryst Solids 1994, 175, 1-13. 132. Wu, C. K. J Amer Ceram Soc 1980, 63, 453-457. 133. Mukherjee, S. P.; Evans, P. E. Thin Solid Films 1972, 14, 105-118. 134. Pliskin, W. A. J Vac Sci Techn 1979, 14, 1064-1081. 135. Serhal, Z.; Morvan, J.; Rezrazi, M.; Bercot, P. Surface and Coat Techn 2001, 140, 166-174. 136. Dannetun, P.; Schott, M.; Vilar, M. R. Thin Solid Films 1996, 286, 321-329. 137. Rao, A.V.; Wagh, P. B. Mater Chem and Phy 1998, 53, 13-18. 138. Sassi, Z.; Bureau, J. C.; Bakkali, A. Vibrational Spectro 2002, 28, 299-318. 139. Sindorf, D. W.; Maciel, G. E. J Phys Chem 1982, 86, 5028-5219. 140. Sutra, P.; Fajula, F.; Brunel, D.; Lentz, P.; Daelen, G.; Nagy, J. B. Colloid Surface A 1999, 158, 21-27. 141. Yokogawa, H.; Yokoma, M. J Non-Cryst Solids 1995, 186, 23-29. 142. Wouters, B. H.; Chen, T.; Dewide, M.; Grobet, P. J. Micropor Mesopor Mater 2001, 44-45, 453-457. 143. Monde, T.; Nakayama, N.; Yano, K.; Yoko, T.; Konakahara, T.; J Colloid and Interface Sci 1997, 185, 111-118. 144. Hirash, H.; Sudoh, K. J Non-Cryst Solids 1992, 145, 51-54. 145. Takei, T.; Yamazaki, A.; Watanabe, T.; Chikazawa M.; Konakahara T. J Colloid and Interface Sci 1997, 188, 409-414. 146. Zhao, X. S.; Lu, G. Q. J Phys Chem B 1998, 102, 1556-1561. 147. Zhao, X. S.; Lu, G. Q.; Whittaker, A. K.; Millar, G. J.; Zhu, H. Y. J Phys Chem B 1997, 101, 6525-6531. 148. Fricker, J. J Sol-Gel Sci Techn 1998, 13, 299-303. 149. Fadda, E.; Berenguer, M.; Clarisse, C. J Vac Sci Techn 1995, B13: n3, 1055-1057. 150. Kano, Y.; Akiyama S. Polymer 1993, 34, 376-381. 151. Hong, J. K.; Kim, H. R.; Park, H. H.; Hyun, S. H. Applied Surface Science 2001, 169-170, 452-456. 152. Ma, C. C. M.; Lin, J.M.; Chang, W. C.; Ko, T. H. Carbon 2002, 40, 977-984.id NH0925063001 sid 857615 cfn 0 / id NH0925063002 auc 蔡兆展 tic 新型沸石MCM-22的合成與催化反應研究 adc 王奕凱 ty 博士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 93 kwc MCM-22 kwc 合成 kwc 環己酮 kwc & kwc #32927;分子進行的貝克曼重組反應 kwc 九碳芳香烴轉化反應 abc MCM-22為Mobil公司於1990年所發現的新型沸石,其具有特殊的孔洞結構,含二組二維且獨立的10圓環孔道系統,其中一組10圓環孔道以正弦曲狀貫通整個骨架結構,而另一組孔道中則包含12圓環孔洞(7.1Ǻ*7.1Ǻ*18.2Ǻ)。更特別的是在其外表面中含12圓環的半開口式袋狀孔洞,此結構使其具有非常大的外部表面積,且由於外部表面積的活性基較不具擴散阻力,將可顯現出較大反應活性。 tc 目 錄 中文摘要………………………………………………………………..Ⅰ英文摘要………………………………………………………………. Ⅳ 謝誌……………………………………………………………………..Ⅵ 目錄…………………………………………………………………..…Ⅶ 圖目錄…………………………………………………………………..Ⅹ 表目錄…………………………………………………………….….. XⅡ 第一章 緒論 1.1沸石的簡介…………………………………….…………………… 1 1.2沸石的應用…………………………………….…………………….8 1.3 MCM-22沸石的結構特性…………………….……………………10 1.4 MCM-22沸石的應用………………………….……………………13 1.5參考文獻………………………………………..…………………...14 第二章 MCM-22沸石的合成與鑑定 2.1前言……………………………………………..…………………...15 2.2 MCM-22沸石的合成………………………….……………………16 2.3 MCM-22沸石的特性分析…………………….……………………21 2.3.1晶相的分析….……..……………….…………………………21 2.3.2結晶顆粒之尺寸及形態的分析…..……..……………………23 2.3.3結晶顆粒組成的分…..……………………..…………………24 2.3.4沸石酸性的分析…..……………..……………………………24 2.3.5表面積測定…..………..………………………………………25 2.4 不同矽鋁比之MCM-22沸石的合成及鑑定……………………...26 2.5參考文獻……………..……………………………………………...28 第三章 環己酮肟之貝克曼重組反應 3.1前言…………..……………………………………………………...29 3.2實驗規劃…………………………………………………………….37 3.3 MCM-22沸石之酸性特性對貝克曼重組反應的影響………..39 3.4 MCM-22之貝克曼重組反應催化路徑………………………..41 3.5 MCM-22之貝克曼重組反應之結焦分析……………………..42 3.6反應操作條件對貝克曼重組反應的影響…………..…………46 3.6.1溶劑的影響…...…………………………………………..46 3.6.2載流氣體種類的影響…...………………………………..50 3.6.3反應溫度的影響..….……………………………………..53 3.6.4載流氣體N2/進料莫耳比和進料濃度的影響……...…...56 3.6.5 WHSV的影響……………………………………….……58 3.7添加白金於MCM-22對貝克曼重組反應的影響……..………59 3.8結論……..………………………………………………………..61 3.9參考文獻...…………………………………………………………..64 第四章 九碳芳香烴之轉化反應 4.1前言……..…………………………………………………………...67 4.2實驗規劃…………………………………………………………….72 4.3不同形式的沸石對九碳芳香烴轉化反應的影響……………….....74 4.4不同金屬含量的MCM-22對九碳芳香烴轉化反應的影響……….76 4.5不同水蒸氣修飾的MCM-22對九碳芳香烴轉化反應的影響…….77 4.6不同反應溫度的MCM-22對九碳芳香烴轉化反應的影響…..…...79 4.7 Pt/MCM-22之九碳芳香烴轉化反應催化路徑……………….84 4.8結論……………..…………………………………………………...90 4.9參考文獻……….……………………………………………………91 第五章 未來展望……………………………………………………92 附錄………………………………………………………………….93rf 第一章 1. J.N. Mcbain, "The Sorption of Gases and Vapors by Solids", Chap. 5, George Rutledge and Sons Ltd., London (1932). 2. S.M. Yang, S.T. Wu, J. Chin. Chem. Soc., 35 (1988) 141. 3. S.G. Hedge, P. Ratnasamy, L.M. Kustov, V.B. Kazansky, Zeolites, 8 (1988) 137. 4. M.E. Davis, C. Montes, J.M. Garces, ACS symposium series, 399 (1989) 291. 5. R.B. Borade, A. Clearfield, Catal. Lett., 31 (1995) 267. 6. R. Birjega, r. Ganea, C. Nenu, Stud. Surf. Sci. Catal., 141 (2002) 151. 7. N.Y. Chen, W.E. Garwood, F.G. Dwyer, "Shape Selective Catalysis in Industrial applications", Chap. 2, Second Edit., New York. 8. J. Haggin, CEN, July 4 (1994) 23. 9. M.E. Leonowicz, J.A. Lawton, S.L. Lawton, M.K. Rubin, Science, 264 (1994) 1910. 10. A.M. Prakash,L. Kevan, J. Phys.Chem., 100 (1996) 19587. 11. S.L. Lawton, M.E. Leonowicz, R.D. Partridge, P. Chu, M.K. Rubin, Micropor. Mesopor. Mater., 23 (1998) 109. 12. U.S. Patent 5,258,565. 13. A. Corma, C. Corell, A. Martinez, J. Perezpariente, Stud. Surf. Sci. Catal., 84 (1994) 859. 14. A. Corma, C. Corell, F. Lopis, A. Martinez, J. Perezpariente, Appl. Catal. A-Gen., 115 (1994) 121 15. S. Unverricht, S. Ernst, J.Weitk, Stud. Surf. Sci. Catal., 84 (1994) 1693. 16. R. Ravishankar, D. Bhattacharya, N.E. Jacob, S. Sivasanker, Micropor. Mat., 4 (1995) 83. 17. R. Ravishankar, T. Sen, V. Ramaswamy, H.S. Soni, S. Ganapathy, S. Sivasanker, Stud. Surf. Sci. Catal., 84 (1994) 331. 18. H.G. Karge, S. Ernst, M.Weihe, U. Weiss, J. Weitkamp, Stud. Surf. Sci. Catal., 84 (1994) 1805. 第二章 1. I. Mochida, S. Eguchi, M. Hironaka, S.I. Magao, K. Sakanishi, D.D. Whitehurst, Zeolite, 18 (1997) 142. 2. U.S. Patent 4,954,325. 3. M.A. Camblor, A. Corma, H. Garcia, V. Semmer-Herlédan, S. Valencia, J. Catal., 177 (1998) 267. 4. R. Ravishankar, D. Bhattacharya, N.E. Jacob, S. Sivasanker, Micropor. Mat., 4 (1995) 83. 第三章 1. G. Dahlhoff, J.P.M. Niederer, W.F. Höelderich, Catal. Rev., 43 (4) (2001) 381. 2. Toray Industries, Hydrocarbon Processing, 60 (1981) 142. 3. A. Thangaraj, S. Sivasankar, P. Ratnasamy, J. Catal. 137 (1992) 252. 4. P.S. Singh, R. Bandyopadhyay, S.G. Hegde, B.S. Rao, Appl. Catal. A, 136 (1996) 249. 5. L.X. Dai, K. Koyama, T. Tatsumi, Catal. Lett., 53 (1998) 211. 6. D. Shouro, Y. Moriya, T. Nakajima, S. Mishima, Appl. Catal. A, 198 (2000) 275. 7. L.X. Dai, Y. Iwaki, K.A. Koyama, T. Tatsumi, Appl. Surf. Sci., 121/122 (1997) 335. 8. L.X. Dai, R. Hayasaka, Y. Iwaki, K.A. Koyama, T. Tatsumi, Chem. Comm., (1996) 1071. 9. L.X. Dai, K Koyama, M. Miyamoto, T. Tatsumi, Appl. Catal. A, 189 (1999) 237. 10. A. Corma, H. Garcia, J. Primo, Zeolites, 11 (1991) 593. 11. M.C. Burguet, A. Aucejo, A. Corma, Can. J. Chem. Eng., 65 (1987) 944. 12. A. Aucejo, M.C. Burguet, A. Corma, V. Fornes, Appl. Catal., 22 (1986) 187. 13. H. Sato, K. Hirose, M. Kitamura, Y. Nakamura, in Proceedings of the 8th International Zeolite Conference, Amsterdam (Eds. P.A. Jacobs and R.A. van Santen), (1989) p.1213. 14. J. Röseler, G. Heitmann, W.F. Höelderich, Appl. Catal. A, 144 (1996) 319. 15. T. Takahashi, M. Nishi, Y. Tagawa, T. Kai, Micropor. Mater., 3 (1995) 467. 16. T. Takahashi, M.N.A. Nasution, T. Kai, Appl. Catal. A, 210 (2001) 339. 17. M. Kitamura, H. Ichihashi, G. Suzukamo, Y. Nakamura, US Pat. 4968793 (1990). 18. W.F. Hölderich, J. Roeseler, G. Heitmann, A.T. Liebens, Catal. Today, 37 (1997) 353. 19. T. Yashima, N. Oka, T. Komatsu, Catal. Today, 38 (1997) 249. 20. J.S. Reddy, R. Ravishankar, S. Sivanker, P. Ratnasamy, Catal. Lett., 17 (1993) 139. 21. D.S. Mao, G.Z. Lu, Q.L. Chen, Z.K. Xie, Y.X. Zhang, Catal. Lett., 77 (2001) 119. 22. P.S. Landis, P.B. Venuto, J. Catal., 6 (1996) 245. 23. H. Sato, K. Hirose, M. Kitamura, Y. Nakamura, Stud. Surf. Sci. Catal., 49 (1989) 1213. 24. T. Yashima, K. Miura, T. Komatsu, Zeolites Rel. Micropor. Mater., 84 (1994) 1897. 25. G.P. Heitmann, G. Dahlhoff, W.F. Hölderich, Appl. Catal. A, 185 (1999) 99. 26. M.K. Rubin, P. Chu, US Pat. 4954325 (1988). 27. C.T. Kresge, Q.N. Le, W.J. Roth, T. Thomson, US Pat. 52585655 (1992). 28. M.A. Asensi, A. Corma, A. Martinez, J. Catal., 158 (1996) 561. 29. A. Corma, V. Gonzalez-Alfaro, A.V. Orchilles, Appl. Catal., 129 (1995) 203. 30. M.E. Leonowicz, J.A. Lawton, S.L. Lawton, M.K. Rubin, Science, 264 (1994) 1910. 31. A. Corma, C. Corell, A. Martinez, J. Perez-Pariente, Stud. Surf. Sci. Catal., 84 (1994) 859. 32. A. Corma, Micropor. Mesopor. Mater., 21 (1998) 487. 33. R. Ravishankar, D. Bhattacharya, N.E. Jacob, S. Sivasanker, Micropor. Mater., 4 (1995) 83. 34. R. Ravishankar, T. Sen, V. Ramaswamy, H.S. Soni, S. Ganapathy, S. Sivasanker, Stud. Surf. Sci. Catal., 84 (1994) 331. 35. M.A. Camblor, A. Corma, H. Garcia, V. Semmer-Herlédan, S. Valencia, J. Catal., 177 (1998) 267. 36. H. Sato, K. Hirose, Y. Nakamura, Chem. Lett., (1993) 1987. 37. H. Ichihashi, M. Kitamura, Catal. Today, 73 (2002) 23. 38. H. Sato, S. Hasebe, H. Sakurai, K. Urabe, Y. Izumi, Appl. Catal. 29 (1987) 107. 39. G.P. Heitmann, G. Dahlhoff, W.F. Höelderich, J. Catal., 186 (1999) 12. 40. G.P. Heitmann, G. Dahlhoff, J.P.M. Niederer, W.F. Höelderich, J. Catal., 194 (2000) 122. 41. D. Shouro, Y. Ohya, S. Mishima, T. Nakajima, Appl. Catal. A, 214 (2001) 59. 42. H. Sato, K. Hirose, M. Kitamura, Y. Nakamura, Shokubai, 31 (1989) 136. 43.W.H. Chen, A. Pradhan, S.J. Jong, T.Y. Lee, I Wang, T.C. Tsai, S.B.Liu, J. Catal., 163 (1996) 436. 第四章 1. N. Kimbara, J.P. Charland, M.F. Wilson, Ind. Eng. Chem. Res., 35 (1996) 3874. 2. C. Song, X. Ma, Appl. Catal. B: Environ., 41 (2003) 207. 3. K.G. Knudsen, B.H. Cooper, H. Topsoe, Appl. Catal., 189 (1999) 205. 4. B.H. Cooper, B.B.L. Donnis, Appl. Catal. A, 137 (1996) 203. 5. M.V. Rahaman, M.A. Vannice, J. Catal., 127 (1991) 251. 6. M. Boudart, A. Aldag, N.A. dougharty, C.Girvin Harkins, J. Catal., 6 (1966) 92. 7. Cr. Contescu, Ch. Sivaraj, J.A. Schwaz, Appl. Catal., 74 (1991) 95. 8. S.D. Lin, M.A. Vannice, J. Catal., 143 (1993) 539. 9. S.D. Lin, M.A. Vannice, J. Catal., 143 (1993) 554. 10. G. Lietz, J. Völter, J.Catal., 45 (1976) 121. 11. J. Völter, M. Hermann and K. Heise, J. Catal., 12 (1968) 307. 12. R. Gomez, G. Del Angel, C. Damian and G. Corro, React. Kinet. Catal. Lett., 11 (1976) 137. 13. L.M. Kustov , A.Yu. Stakhee, T.V. Vasina, O.V. Masloboishchikova, E.G. Khelkovslaya-Sergeeva, P. Zeuthen, Stud. Surf. Sci. Catal., 138 (2001) 307. 14. G.B. McVicker, M.S. Touvelle, C.W. Hudson, D.P. Klein, W.C. Baird, Jr. B.R. Cook, J.G. Chen, S. Hantzer, D.E.W. Vaughan, E.S. Ellis, O.C. Feeley, J. Catal., 210 (2002) 137. 15. M.A. Arribas, A. Martinez, Appl. Catal. A:Gen., 230 (2002) 203. 16. M. Daage, G.B. McVicker, M.S. Touvelle, C.W. Hudson, D.P. Klein, B.R. Cook, J.G. Chen, S. Hantzer, D.E.W. Vaughan, E.S. Ellis, Stud. Surf. Sci. Catal., 135 (2001) 159. 17. L. Leite, E. Benazzi, N. Marchal-George, Catal. Today, 65 (2001) 241. 18. B. Coq, A. Tijani, R. Dutartre, , F. Figueras, J. Mol. Catal., 79 (1993) 253. 19. B. Coq, R. Dutartre, F. Figueras, T. Tazi, J. Catal., 122 (1982) 428. 20. B. Coq, A. Bittar, F. Fugueras, Appl. Catal., 59 (1990) 103. 21. B.J. Kip, F.B. Duivenvoorden, D.C. Koningsberger, R. Prins, J. Catal., 105 (1987) 26. 22. P.B. Wells, J.Catal., 52 (1978) 298. 23. J. Wang, L.M. Huang, Q.Z. Li, Appl. Catal. A-Gen, 175 (1998) 191.id NH0925063002 sid 863601 cfn 0 / id NH0925063003 auc 黃彥餘 tic 含圓球微相之團聯式共聚物之自組裝奈米結構研究:緊密堆積之超晶格排列與結晶引發之微相型態 adc 陳信龍 ty 博士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 英文 pg 191 kwc 自我組裝 kwc 團聯式共聚合摻合体 kwc 結晶 kwc 超晶格排列 abc Self-assembly is a process that autonomously organizes the building blocks into ordered patterns or structures from a disordered state. These ordered structures usually possess a hierarchy of length scales and represent to a state of lowest free energy. Self-assembly is reversible and can be manipulated by proper controls of the external conditions (e.g. temperature, concentration). Recently, self-assembly has been exploited as a practical strategy for constructing ordered nanostructures and has thus become an essential part in nanotechnology. Block copolymers are capable of self-assembling into a series of long-range ordered morphology governed by interblock segregation strength and the volume fraction of the constituting blocks. Therefore, they have been considered as one of the most important self-assembled polymer materials. tc Table of Contents Abstract I 誌謝辭 IV Table of Contents VI List of Tables X List of Figures XI Chapter 1. Phase Behavior of Diblock Copolymer and Its Blend with the Corresponding Homopolymer 1.1 Background 1 1.2 Amorphous-Amorphous Diblock Copolymers 2 1.2.1 Phase Behavior 2 1.2.2 Applications of A-b-B for Nanopatterning 6 1.3 Phase Behavior of Crystalline-Amorphous Diblock Copolymers 14 1.4 Phase Behavior of Diblock Copolymer/Homopolymer Blends 19 1.5 Motivations and Objectives of the Present Research 24 1.6 Overview of The Thesis 27 1.7 References 30 Chapter 2. Face-Centered Cubic Lattice of Spherical Micelles in Block Copolymer/Homopolymer Blends 2.1 Introduction 37 2.2 Experimental Section 40 2.3 Results and Discussion 41 2.3.1 The Determination of Melt Structures 41 2.3.2 Determination of ?? for PEO-b-PB 58 2.3.2.1 Theoretical Fitting Results 60 2.4 Conclusions 63 2.5 Appendix. Relative Positions of the Diffraction Peaks of the HCP Lattice 64 2.6 References and Notes 65 Chapter 3. Thermal Reversibility of BCC-FCC Order-Order Transition in the Sphere-Forming Blend of Poly(ethylene oxide)-block-Polybutadiene and Polybutadiene 3.1 Introduction 69 3.2 Experimental Section 71 3.2.1 Materials 71 3.2.2 SAXS Measurement 72 3.3 Results 73 3.4 Discussion 91 3.4.1 Temperature-Dependent Lattice Packing 92 3.4.2 The Formation of t-FCC Phase 94 3.4.3 The Precursor Effect 95 3.5 Conclusions 98 3.6 References and Note 100 Chapter 4. Crystallization-Induced Deformation of Spherical Microdomains in Block Copolymer Blends Consisting of a Soft Amorphous Phase 4.1 Introduction 104 4.2 Experimental Section 106 4.2.1 Materials 106 4.2.2 Differential Scanning Calorimetry (DSC) Measurement 106 4.2.3 SAXS Measurement 107 4.2.4 Transmission Electron Microscopy (TEM) 109 4.3 Results and Discussion 109 4.4 Concluding Remarks 119 4.5 References and Notes 123 Chapter 5. Coalescence of Crystalline Microdomains Driven by Postannealing in a Block Copolymer Blend 5.1 Introduction 125 5.2 Experimental Section 128 5.2.1 Materials 128 5.2.2 Differential Scanning Calorimetry (DSC) Measurement 128 5.2.3 SAXS Measurement 131 5.2.4 TEM Observation 131 5.3 Results and Discussion 131 5.4 Conclusions 138 5.5 References and Notes 140 Chapter 6. Crystallization-Induced Microdomain Coalescence in Sphere-Forming Crystalline-Amorphous Diblock Copolymer Systems: Neat Diblock versus The Corresponding Blends 6.1 Introduction 142 6.2 Experimental Section 145 6.2.1 Materials and Sample Preparation 145 6.2.2 SAXS Measurement 148 6.2.3 TEM Experiment 148 6.3 Results and Discussion 149 6.3.1 Microdomain Structure in B63 Blend 149 6.3.2 Microdomain Structure in B12 Blend 156 6.3.3 Microdomain Structure in N00 System 156 6.4 Conclusions 168 6.5 References 169 Chapter 7. Cocrystallization Behavior in Binary Blend of Crystalline-Amorphous Diblock Copolymers 7.1 Introduction 172 7.2 Experimental Section 173 7.3 Results and Discussion 174 7.4 Conclusions 183 7.5 References and Notes 185 Chapter 8. Suggestion to Future Work 187 List of Publication 189 List of Tables Table 2.1 Diffraction planes and relative positions of the lattice peaks of BCC, FCC, and HCP lattices………………………………………………………… 44 Table 4.1 Crystallinities (Xc) and melting points (Tm) of crystalline PEO-b-PB/PB blends subjected to the two crystallization processes………………….. 108 Table 4.2 Results of the fit by spherical form factor for amorphous and crystalline PEO-b-PB/PB blends………………………………………………….. 114 Table 4.3 Results of the fit by elliptic form factor for amorphous and crystalline PEO-b-PB/PB blends………………………………………………….. 118 Table 5.1 Crystallinities (Xc) and melting points (Tm) of as-crystallized and annealed PEO-b-PB/PB blend with fPEO = 0.17…………………………………. 129 Table 5.2 Results of the fit by elliptic form factor for PEO-b-PB/PB blend (fPEO = 0.17) subjected to crystallization at -30 °C and postannealing………… 134 Table 6.1 Characteristics of the PEO-b-PB and PEO-b-PB/h-PB blend under study…………………………………………………………….. 147 Table 6.2 Results of the fits by the ellipsoidal form factor for isothermally crystallized B63 blend…………………………………………………. 153 Table 6.3 Results of the fits by ellipsoidal form factor for isothermally crystallized N00 system…………………………………………………………….. 163 Table 6.4 The elliptic surface area (S), the amount of h-PB remaining in the coronal regions (??), free energy of mixing (Fmix), and interfacial free energy (Fint) before and after coalescence of two ellipsoidal domains for B63 blend calculated using the domain dimensions in Table 6.2………………..... 167 Table 7.1 Characteristics of the binary diblock copolymer blends studied in this work……………………………………………………………………. 175 List of Figures Figure 1.1 The phase diagram in the weak segregation regime developed by Leibler. In the diagram, “Disordered” indicates the homogeneous melt, “b.c.c” indicates the BCC packed sphere, “hex” denotes the hexagonally-packed cylinders and “lam” corresponds to the lamellar morphology………….. 4 Figure 1.2 The phase diagram established by Matsen and Bates using SCMF theory. represents the gyroid phase with symmetry and CPS represents the closely packed sphere structure, in which the spherical micelles arrange in FCC or HCP lattice………………………………….5 Figure 1.3 Schematic showing the variation of inverse scattering intensity, I-1, and domain spacing, d, across the order-disorder transition of a block copolymer melt. The mean-field transition temperature has been identified operationally as the point where, on heating, the inverse intensity crosses over to a linear dependence on T-1……………………. 7 Figure 1.4 The SEM micrographs of the morphology in (a) low-density polyethylene (LDPE) and polystyrene (PS) homopolymer blend and (b) that of adding PS-b-P(S-co-B)-b-PB triblock copolymer in the (a) blend. Form the image, the scale of phase separation can be largely reduced by adding triblock copolymer………………………………………………………. 9 Figure 1.5 Schematic showing of the formation of microporous materials in the rod-coil diblock copolymer. (a) Illustrate the formation steps of microporous pattern. (b) The discrete hollow micelles were randomly oriented in the dilute solution and (c) The hollow micelles were rearranged into highly periodic structure with uniform diameter 2 ?慆 in the concentrated solution………………………………………………. 10 Figure 1.6 The TEM micrograph shows that the nanochannel appears dark phase due to the nickel coating process. The bicontinuous structure can be well-retained without perturbing by the metal plating. In the image, the PI block has been suffered the ozonolysis process…………………….. 11 Figure 1.7 The AFM images show the morphology of nanochannels from the top and lateral views. In the image, the hollow nanochannels was initially created by the self-assembly of PMMA blocks and eventually removed by exposing to the UV light. The white region indicates the crosslinked PS blocks………………………………………………………………. 13 Figure 1.8 TEM micrograph showing the crystalline morphology of PEO-b-PB diblock. The PB phase appears as the dark region due to staining by the OsO4 vapor; the PEO phase is found as the gray interconnected lamellae………………………………………………………………... 17 Figure 1.9 The schematic classification map to illustrate the relation between the crystallization molds and the microstructures in terms of the (?粍t)c/(?粍t)ODT and ?????n. (?粍t)c indicates the strength of (?粍)t measured at isothermal crystallization temperature, Tc, and (?粍t)ODT indicates the strength of (?粍)t measured at TODT. ?????nrepresents the volume fraction of the crystalline block…………………………………………………… 18 Figure 1.10 The representative phase diagram of A-b-B/h-A blend developed by Matsen. The diagram was calculated on the basis of A-monomer fraction in A-b-B (f) and homopolymer volume fraction ?? at ?? = 2/3 and segregation strength ?粍 = 11. CPS phase was also predicted theoretically in this diagram……………………………………………20 Figure 1.11 Schematic illustration of the compatibility in A-b-B/h-A blends. (a) ???n» 1; h-A hardly penetrates into A microdomain and macrophase separates from A-b-B. (b) h-A is localized in the middle region of A microdomain or partially penetrates in the A microdomain. In this case, the system is denoted as “dry brysh”. (c) h-A is uniformly solubilized into A microdomain. This system is called “wet brush”……………………….22 Figure 1.12 Spinodal lines for the macrophase transition (solid lines) and microphase transition (broken lines) for the PS-b-PI/h-PS blends with ???nvarying?nfrom (left to right) 1.4, 4.3, to 12.6…………………………………………... 23 Figure 1.13 TEM micrographs showing the morphology of dry brush PS-b-PI/h-PS blends (???n= 1.24). The blend compositions are indicated in the left-bottom of the figure.110 The alternating packed lamellae phase formed by neat PS-b-PI, as shown in figure a, starts to bend and to transform its morphology from lamellar vesicle (figure b), to cylindrical vesicle (figure d) and finally to spherical vesicle (figure d) with increasing h-PS concentration…………………………………………. 25 Figure 2.1 Comparison between the SAXS profiles collected in-situ at 183 °C with that measured in-situ at 123 °C. The scattering profiles are presented as a function of q/qm with qm being the position of the first-order lattice peak at each temperature. The relative positions of the higher order lattice peaks are indexed by the thin arrows, while the form factor peaks (denoted by “i = n” with n = 1, 2, ...) are indicated by the bold opened arrows. The dotted line signifies the form factor profile of spheres calculated by assuming ?嵇???n= 7.5 nm and the standard deviation of R, ?箐 = 0.72 nm (Gaussian distribution was adopted for R distribution)…….. 42 Figure 2.2 SAXS profiles showing that the FCC phase at 183 °C was not destroyed immediately after cooling to room temperature. Top curve (with qm = 0.30 nm-1): collected in-situ at 183 °C. Middle curve (with qm = 0.286 nm-1): collected immediately after cooling to room temperature. Bottom curve (with qm = 0.268 nm-1): collected after annealing the cooled sample at room temperature for 168 hrs……………………………………….. 46 Figure 2.3 Representative TEM micrographs of PEO-b-PB/PB blend (fPEO = 0.17) quenched from 183 °C. The dark matrix is the PB phase owing to the preferential staining by OsO4………………………………………….. 47 Figure 2.4 Characteristics of FCC lattice and the TEM image generated by computer graphics. (a) 3-D structure of a FCC unit cell; the edge length of the unit cell is a, and the coordinate is defined in such a way that z axis aligns normal to the (111) plane. The FCC lattice can be built by stacking together (111) planes in a ABCABC... stacking sequence. The spheres in plane B fit over valleys of those in plane A and the spheres in plane C fit over valleys of those in both planes A and B. The distance between two adjacent planes is (3)1/2a/3. (b) Computer-generated TEM image for the thin section cut parallel to (111) planes in FCC lattice. The origin of the z axis is defined at the center of the spheres in plane B, and the offset position, z0, specifies the centerline of the thin section (represented by the shadowed region) relative to the position of z = 0. We binarize the contrast of each phase in such a way that the sphere is bright and matrix is dark and then calculate the average contrast of the TEM image of a given thickness. The image consistent with that observed in Figure 3 is generated using the parameters of thin section thickness = a, D/a = 0.44 (corresponding to the sphere volume fraction of 0.18, being close to the volume fractions calculated from stoichiometry (0.17) and the SAXS peak positions (0.15)), and z0 = 0.14a. In this case, the spheres at plane A are not included in the thin section, so they disappear in the TEM micrograph; the image consists of bright spheres in plane B, gray spheres in plane C, and a dark matrix…………………………………………... 49 Figure 2.5 Series of SAXS profiles collected in-situ at various temperatures from 123 to 183 °C, showing an OOT from BCC to FCC phase. The total experimental time spent between the SAXS measurement at 135 and that at 163 °C, i.e., the time period over which the BCC symmetry was transformed into the FCC symmetry, was 8 hrs. The change in qm with temperature (T) can be evaluated from that in D (= 2??/qm) with T shown in Figure 2.7……………………………………………………………. 52 Figure 2.6 Series of SAXS profiles collected in-situ at T ≥ 183 °C, showing an ODT from FCC phase to disordered micelles followed by demicellization into a homogeneous melt. The same comment as that in Figure 2.5 is applicable for the change in qm with T. The background level is drawn by the dashed line to manifest the form factor scattering…………………. 54 Figure 2.7 (a) Determinations of the lattice disordering temperature (TLDOT) or ODT from FCC phase to disordered micelle phase from the plots of Im-1 vs. T-1 and D vs. T-1 in the heating process. A small discontinuity (denoted by the solid arrows) in Im-1 is also identified across the BCC-FCC OOT, as demonstrated more clearly by the enlarged plot in part (b)………… 56-57 Figure 2.8 The plot of the theoretically calculated (see the solid line) profiles and the experimentally observed profiles (see the symbol mark) at each prescribed temperature. It can clearly see that the theoretically calculated profiles are highly matching the experimentally observed ones……… 61 Figure 2.9 ?紞EO-PB dependence on T-1. From the linear region, the relationship of can be obtained……………………………………... 62 Figure 3.1 Thermal protocol adopted in the SAXS measurement in the present study. (a) is for the blend directly heating from the as-cast state while (b) is for the blend annealing at -23 oC prior to the heating cycle. The types of thermal treatment, heating, cooling and reheating cycle, were conducted. Their respective time windows were marked by the solid arrows…. 74-75 Figure 3.2 A series of SAXS profiles of the as-cast blend collected in-situ at various temperatures from (a) 30 to 230 oC in the heating cycle and (b) subsequently cooling from 230 to 120 oC. The thermal protocol subjected to this blend was shown in Figure 3.1(a). The scattering profiles are presented as a function of q/qm with qm being the position of the first-order lattice peak at each temperature. The change in q¬m with temperature can also be evaluated from that in D (= 2??/qm) with T shown in Fig. 3.6…………………………………………………………… 76-77 Figure 3.3 A series of SAXS profiles of the blend annealed at -23 oC collected in-situ at various temperatures from (a) 100 to 200 oC and (b) 205 to 260 oC in the heating cycle. The thermal protocol subjected to this blend was shown in Figure 3.1(b). The scattering profiles are presented as a function of q/qm with qm being the position of the first-order lattice peak at each temperature. The change in q¬m with temperature can be evaluated from that in D (= 2??/qm) with T shown in Fig. 3.7. The opened arrows identify the characteristic peak positions relative to the first-order peak position ((4/3)1/2: (8/3)1/2…) that a FCC lattice should exhibit, while the solid arrows pinpoint the relative peak positions (21/2: 31/2: 41/2...) associated with a BCC phase. The broad peak marked by “i=1” is the first-order form factor of the spherical microdomain……………… 79-80 Figure 3.4 A series of SAXS profiles of the annealed blend collected in-situ at various temperatures from (a) 260 to 205 oC and (b) 200 to 110 oC in the cooling cycle from the FCC phase at 260 oC. The change in q¬m with temperature can also be evaluated from that in D (= 2??/qm) with T shown in Fig. 3.7………………………………………………………...… 82-83 Figure 3.5 A series of SAXS profiles of the annealed blend collected in-situ at temperatures from110 to 260 oC in the reheating cycle from the complete BCC order at 110 oC. The BCC ?p FCC OOT observed in the first heating cycle (cf. Figure 3.3 (b)) no longer occurs up to 260 oC, as BCC phase is found to span to whole temperature window. The change in q¬m with temperature can also be evaluated from that in D (= 2??/qm) with T shown in Fig. 3.7………………………………………………………. 85 Figure 3.6 Im-1 and D vs T-1 plots for the as-cast PEO-b-PB/h-PB blend. The boundary between t-FCC and FCC phases is marked at 170 oC by the vertical dashed line, which is determined by the slop change in Im-1 in the heating cycle. In the cooling cycle, Im-1 and D are closely agreed with those in the heating cycle when temperature elevates above 170 oC. Little hysterysis stemming from the metastable nature of the trapped FCC phase is found below 170 oC. The parenthesis in the symbol denotes the thermal treatment where H represents the Im-1 collected in the heating cycle and C represents that collected in the cooling cycle. The temperature dependence of D is similar to that in Im-1…………… 86 Figure 3.7 Im-1 vs T-1 plots for the annealed PEO-b-PB/h-PB blend. The boundary between BCC and FCC phases is marked at 200 oC by the vertical dashed line, in that this temperature roughly represents the point where FCC phase vanishes in the cooling cycle. Little hysterysis effect is found across the BCC-FCC OOT at high temperature (i.e., in the temperature region from 170 to 260 oC), while strong hysterysis stemming from the metastable nature of the trapped FCC phase is found below 170 oC. Through comparing Im-1s in cooling and reheating cycles, another strong hysterysis is found to appear with reheating the cooled blend. The hysterysis is originating from the coexistence of BCC and FCC phase in the onset of cooling. The parenthesis in the symbol denotes the thermal treatment where H represents the Im-1 collected in the heating cycle, C represents that collected in the cooling cycle and RH represents that collected in the reheating cycle. The inset in the figure shows Im-1 vs. T-1 across the BCC-FCC OOT for the system with shorter PEO block (Mb,PEO = 6.0 x 103).21…………………………………………………. 88 Figure 3.8 D and ?嵇?? vs T-1 plots for the annealed PEO-b-PB/h-PB blend. ?嵇?? is obtained by fitting the form factor profiles using polydisperse spherical form factor. The temperature dependences of D and ?嵇?? display a strong hysterysis below 170 oC due to the presence of trapped FCC phase in the as-cast blend. In the reheating cycle, a very little hysterysis originating from the coexistence of FCC and BCC phase in the onset of cooling cycle is found to appear above 170 oC………………………………… 90 Figure 3.9 Left: Wigner-Seitz (W-S) cell for a BCC and a FCC phase, respectively. Middle: The spatially packed W-S cell for individual BCC and FCC phase. Right: For a FCC/BCC mixed phase, the corresponding W-S cells do not perfectly match each other at the grain boundary between BCC and FCC phases. Vacancies (or density dips) will simultaneously appear because of the mismatch of the two distinct W-S cells as the gray regions shown. These density dips may lead the system toward instability arising from the nonuniform density distribution and the generation of extra interfacial energy………………………………………………………. 96 Figure 4.1 SAXS profiles of amorphous and crystalline PEO-b-PB/PB blends: (a) 1K17 composition (fPEO = 0.17) and (b) 1K13 composition (fPEO = 0.13). The scattering curves of the amorphous samples are marked by “AM”. Those marked by “SC” and “IX” signify the scattering profiles of the samples crystallized by cooling from the melt to -50 °C at -5 °C/min and by isothermal crystallization at -50 °C, respectively. The form factor peaks are denoted by “i = n” with n = 1, 2, 3, ...................................... 110 Figure 4.2 Fits of the experimental form factor profiles by the spherical form factor for amorphous and crystalline (a) 1K17 and (b) 1K13 blends. The solid curves are the calculated profiles…………………………………….. 113 Figure 4.3 Fits of the experimental form factor profiles by the elliptic form factor for amorphous and crystalline (a) 1K17 and (b) 1K13 blends. The solid curves are the calculated profiles. The model of the ellipsoid assumed is also shown in (a)……………………………………………………… 117 Figure 4.4 A schematic presentation proposing the structure of the ellipsoid-like crystalline microdomains…………………………………………….. 120 Figure 4.5 TEM micrographs showing (a) amorphous and (b) crystalline PEO microdomains in 1K13 blend. Spheres were drawn in the corners of the micrographs to help distinguish between the actual shape of the microdomains and that of a sphere. Crystalline microdomains with higher magnification are shown in (c) to better present the images of the ellipsoid-like domains……………………………………………….. 121 Figure 5.1 DSC melting curves of PEO-b-PB/PB blend (fPEO = 0.17) recorded after crystallizations at -30 and -50 °C. The locations of the annealing temperatures chosen (i.e., Ta = 38 and 41 °C) are indicated by the dashed lines. Both Ta’s are seen to situate near the onsets of melting………... 130 Figure 5.2 SAXS profiles of the amorphous, as-crystallized, and annealed samples of PEO-b-PB/PB blend (fPEO = 0.17). The crystallization temperatures are (a) -30 °C and (b) -50 °C. The scattering maxima denoted by “i = n” (n = 1, 2, 3, ...) are the form factor peaks. Both lattice and form factor scatterings are significantly perturbed after the as-crystallized samples have been subjected to postannealing. The solid curves in (a) are the profiles calculated using elliptic form factor. The average dimensions obtained are listed in Table 5.2……………………………………...... 132 Figure 5.3 Representative TEM micrographs showing the morphology of the as-crystallized or annealed samples for the blends with fPEO = 0.17 and 0.13. The composition and thermal treatment are (a) fPEO = 0.17, as-crystallized at -30 °C; (b) fPEO = 0.17, annealed at 38 °C after crystallization at -30 °C; (c) fPEO = 0.17, annealed at 41 °C after crystallization at -50 °C; and (d) fPEO = 0.13, annealed at 38 °C after crystallization at -30 °C………………………………………………. 135 Figure 6.1 Room-temperature SAXS profiles of B63 blend collected after crystallization at Tc ranging from -50 to -23 oC. The intensity profile of the amorphous sample is also displayed for comparison. In the plot, the maxima marked by “i = n” (n = 1, 2) are the form factor peaks associated with the scattering from isolated microdomains. The solid curves are the profiles calculated using ellipsoidal form factor. The dimensions of the ellipsoidal domains obtained from the form factor fits are listed in Table 6.2…………………………………………………………………….. 150 Figure 6.2 The position of the first-order form factor peak (qformi=1) of B63 blend as a function of Tc. The horizontal dash line specifies the qformi=1 of the amorphous sample. Two regimes separated by the vertical dash line are identified. The form factor peak locates at slightly higher q than that of the amorphous sample for Tc lower than -31 oC ( Regime I), while the form factor maxima situate at lower q for Tc lying above -31 oC (Regime II)…………………………………………………………………....... 152 Figure 6.3 TEM micrographs of B63 blend after crystallization at (a) -23 oC and (b) -50 oC…………………………………………………………………. 155 Figure 6.4 TEM micrographs of B63 blend having been postannealed at 38 oC. The samples had been crystallized at (a) -23 oC and (b) -50 oC prior to the postannealing…………………………………………………………. 157 Figure 6.5 TEM micrographs of B12 blend: (a) as-crystallized at -30 oC; and (b) annealed at 38 oC after crystallization at -30 oC……………………… 158 Figure 6.6 Room-temperature SAXS profiles of N00 collected after crystallization at -23 oC, -30 oC and -50 oC. The intensity profile of the amorphous sample is also displayed for comparison. The solid curves are the profiles calculated using ellipsoidal form factor fitting. The dimensions of the ellipsoidal domains obtained from the form factor fits are listed in Table 6.3…………………………………………………………………….. 160 Figure 6.7 TEM micrographs of N00 in (a) amorphous state and the as-crystallized state with Tc = (b) -23 oC and (c) -50 oC………………………………161 Figure 6.8 TEM micrographs of N00 having been postannealed at 38 oC. The samples had been crystallized at (a) -23 oC and (b) -50 oC prior to the postannealing…………………………………………………………. 164 Figure 7.1 (a) SAXS profiles of lamella-forming E80B481/E170B102 blends in the melt state. The SAXS experiments were conducted at 90 oC; (b) variations of the interlamellar distance (D) and the area per junction point at the lamellar interface (??) with the number fraction of the asymmetric E80B481 (nas)…………………………………………………………………….176 Figure 7.2 Schematic illustrations of the structures of E80B481/E170B102 blend: (a) the melt structure formed by the intimate mixing of the two diblocks, where each lamellar domain is constituted of two layers of brushes lying on top of each other; (b) a crystalline structure generated by the phase-segregated crystallization, where the crystallites formed by the longer and shorter PEO blocks coexist within the lamellar domains upon fractionation. The long PB blocks are highly stretched to maintain the normal density in the PB domain; (c) the crystalline structure generated by cocrystallization. This structure allows the lower interfacial energy and higher conformational entropy of the long PB blocks in the melt state to be largely retained………………………………………………….. 179 Figure 7.3 DSC melting curves of h-E76/h-E182 and E80B481/E170B102 blends obtained after isothermal crystallization; (a) h-E76/h-E182, Tc = 8 oC; (b) h-E76/h-E182, Tc = 40 oC; (c) E80B481/E170B102, Tc = 8 oC; (d) E80B481/E170B102, Tc = 40 oC. Each bracket in (a) and (b) indicates the corresponding composition of the diblock blend with the same mixing ratio of the shorter and the longer PEO chains as that in the homopolymer blend. The melting curves of neat E80B481 in (c) and (d) were obtained after cooling the sample to -50 oC…………………….. 182rf chapter 1 (1) Inoue, T.; Soen, T.; Hashimoto, T.; Kawai, H. Macromolecules 1970, 3, 87. (2) Leibler, L.; Pincus, A. Macromolecules 1984, 17, 2922. (3) Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1991, 24, 6182. (4) Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25, 422. (5) Hashimoto, T.; Koizumi, S.; Hasegawa, H.; Izumitani, T.; Hyde, S. T. Macromolecules 1992, 25, 1433. (6) Han, C. D.; Baek, D. M.; Kim, J.; Kimishima, K.; Hashimoto, T. Macromolecules 1992, 25, 3052. (7) Meier, D. J. J. Polym. Sci., part C 1969, 26, 81. (8) Helfand, E. Macromolecules 1975, 8, 552 (9) Helfand, E.; Wasserman, Z. R. Macromolecules 1976, 9, 879. (10) Helfand, E.; Wasserman, Z. R. Macromolecules 1978, 11, 960. (11) Helfand, E.; Wasserman, Z. R. Macromolecules 1980, 13, 994. (12) Weidisch, R.; Ensslen, M.; Michler, G. H.; Fischer, H.; Macromolecules 1999, 32, 5375. (13) Discher, B. M.; Won, Y. Y.; Ege, D. S.; Lee, J. C-M.; Bates, F. S.; Discher, D. E.; Hammer, D. A. Science 1999, 284, 1143. (14) Leibler, L. Macromolecules 1980, 13, 1602. (15) Hashimoto, T.; Shibayama, M.; Fujimura, M.; Kawai, H. In Block Copolymers-Science and Technology; Meier, D. J., Ed.; Harward Academic Publishers: London, 1983. (16) Hamley, I. W. The Physics of Block Copolymers; Oxford University Press: New York, 1998. (17) Bates, F. S.; Fredrickson, G. H. Phys. Today 1999, 52, 32. (18) Aggarwal, S. L. Polymer 1972, 17, 938. (19) Sakurai, S.; Kawada, H.; Hashimoto, T.; Fetter, L. J. Macromolecules 1993, 26, 5796. (20) Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091. (21) Hashimoto, T.; Kowsaka, K.; Shibayama, M.; Suehiro, S. Macromolecules 1986, 19, 750. (22) Hashimoto, T.; Kowsaka, K.; Shibayama, M.; Kawai, H. Macromolecules 1986, 19, 754. (23) Sakurai, S.; Hashimoto, T.; Fetters, L. J. Macromolecules 1996, 29, 740. (24) Almdal, K.; Koppi, K. A.; Bates, F. S.; Mortensen, K. Macromolecules 1992, 25, 1743. (25) Khandpur, A. K.; Fo¨rster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Almdal, K.; Mortensen, K. Macromolecules 1995, 28, 8796. (26) Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L.; Fetters, L. J. Macromolecules 1994, 27, 4063. (27) Hajduk, D. A.; Gruner, S. M.; Rangarajan, P.; Register, R. A.; Fetters, L. J.; Honeker, C.; Albalak, R. J.; Thomas, E. L. Macromolecules 1994, 27, 490. (28) Vigild, M. E.; Almdal, K.; Mortensen, K.; Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J. Macromolecules 1998, 31, 5702. (29) Kimishima, K.; Koga, T.; Hashimoto, T. Macromolecules 2000, 33, 968. (30) Bates, F. S.; Rosedale, J. H.; Fredrickson, G. H. J. Chem. Phys. 1990, 91, 6255. (31) Rosedale, J. H.; Bates, F. S. Macromolecules 1990, 23, 2329. (32) Almdal, K.; Rosedale, J. H.; Bates, F. S.; Wignall, G. D.; Fredrickson, G. H. Phys. Rev. Lett. 1990, 65, 1112. (33) Mai, S. M.; Fairclough, J. P. A.; Hamley, I. W.; Denny, R. C.; Liao, B.; Booth, C. Ryan, A. J. Macromolecules 1996, 29, 6212. (34) Han, C. D.; Baek, D. M.; Sakurai, S.; Hashimoto, T. Polym. J. 1989, 21, 841. (35) Sakamoto, N.; Hashimoto, T. Macromolecules 1995, 28, 6825. (36) Hashimoto, T.; Ijichi, Y.; Fetters, L. J. J. Chem. Phys. 1988, 89, 2463. (37) Ijichi, Y.; Hashimoto, T.; Fetters, L. J. Macromolecules 1989, 22, 2817. (38) Harrats, C.; Fayt, R.; Jerome, R. Polymer 2002, 43, 863. (39) Jenekhe, S. A.; Chen, X. L. Science, 1999, 283, 372. (40) Hashimoto, T.; Tsutsumi, K.; Funaki, Y. Langmuir, 1997, 13, 6869. (41) Thurn-Albrecht, T.; Steiner, R.; DeRouchey, J.; Stafford, C. M.; Huang, E.; Bal, M.; Tuominen, M.; Hawker. C. J.; Russell, T. P. Adv. Mater. 2000, 12, 787. (42) Urbas, A. M.; Fink, Y.; Thomas, E. L. Macromolecules 1999, 32, 4748. (43) Urbas, A. M.; Sharp, R.; Fink, Y.; Thomas, E. L.; Xenidou, M.; Fetters, L. J. Adv. Mater. 2000, 12, 812. (44) Ruokolainen, J.; ten Brinke, G.; Ikkala, O. Adv. Mater. 1999, 11, 777. (45) Kosonen, H.; Valkama, S.; Hartikainen, J.; Eerikäinen, H.; Torkkeli, M.; Jokela, K.; Serimaa, R.; Sundholm, F.; ten Brinke, G.; Ikkala, O. Macromolecules 2002, 35, 10149. (46) Ikkala, O.; Ruokolainen, J.; ten Brinke, G.; Torkkeli, M.; Serimaa, R. Macromolecules 1995, 28, 7088. (47) Mäki-Ontto, R.; de Moel, K.; de Odorico, W.; Ruokolainen, J.; Stamm, M.; ten Brinke, G.; Ikkala, O. Adv. Mater. 2001, 13, 117. (48) Valkama, S.; Ruotsalainen, T.; Kosonen, H.; Ruokolainen, J.; Torkkeli, M.; Serimaa, R.; ten Brinke, G.; Ikkala, O. Macromolecules 2003, 36, 3986. (49) Ruokolainen, J.; Mäkinen, R.; Torkkeli, M.; Mäkelä, T.; Serimaa, R.; ten Brinke, G.; Ikkala, O. Science 1998, 280, 557. (50) Corvazier, L.; Messe, L.; Salou, C. L. O.; Young, R. N.; Fairclough, J. P. A.; Ryan, A. J. J. Mater. Chem. 2001, 11, 2864. (51) Fink, Y.; Urbas, A. M.; Bawendi, M. G.; Joannopoulos, J. D.; Thomas, E. L. J. Light. Tech. 1999, 17, 1963. (52) Tanaka, H.; Hashimoto, T. Macromolecules 1991, 24, 5713. (53) Morrison, F. A.; Winter, H. H. Macromolecules 1989, 22, 3533. (54) Morrison, F. A.; Winter, H. H.; Gronski, W.; Barnes, J. D. Macromolecules 1990, 23, 4200. (55) Folkes, M. J.; Keller, A.; Scalisi, F. P. Colloid. Polym. Sci. 1973, 251, 1. (56) Hadziioannou, G.; Mathis, A.; Skoulis, A. Colloid. Polym. Sci. 1979, 257, 15. (57) Anastaiadis, S. H.; Russell, T. P.; Satija, S. K.; Majkrzak, C. F. J. Chem. Phys. 1990, 92, 5677. (58) Amundson, K.; Helfand, E.; Davis, D. D.; Quan, X.; Patel, S.; Smith, S. D. Macromolecules 1991, 24, 6546. (59) Amundson, K.; Helfand, E.; Davis, D. D.; Quan, X.; Smith, S. D. Macromolecules 1993, 26, 2698. (60) Amundson, K.; Helfand, E.; Davis, D. D.; Quan, X.; Hudson, S. D.; Smith, S. D. Macromolecules 1994, 27, 6559. (61) Rosa, C. D.; Park, C.; Lotz, B.; Wittmann, J.-C.; Fetters, L. J.; Thomas, E. L. Macromolecules 2000, 33, 4871. (62) Rosa, C. D.; Park, C.; Thomas, E. L.; Lotz, B. Nature 2000, 405, 433. (63) Chen, H.-L., Hsiao, S.-C., Lin, T.-L., Yamauchi, K., Hasegawa, H., Hashimoto, T. Macromolecules 2001, 34, 671. (64) Lee, W., Chen, H.-L., Lin, T.-L. J. Polym. Sci Part B: Polym. Phys. 2002, 40, 519. (65) Chen, H.-L., Wu, J.-C., Lin, T.-L., Lin, J. S. Macromolecules 2001, 34, 6936. (66) Ryan, A. J.; Hamley, I. W.; Bras, W.; Bates, F. S. Macromolecules 1995, 28, 3860. (67) Shultz, J. M. J. Polym. Sci., Polym. Phys. Ed. 1976, 14, 2291. (68) Jloudas, G.; Tsitsilianis, C. Macromolecules 1997, 30, 4381. (69) Hamley, I. W.; Fairclough, J. P. A.; Bates, F. S.; Ryan, A. J. Polymer 1998, 39, 1429. (70) Rangarajan, P.; Register, R. A.; Adamson, D. H.; Fetters, L. J.; Bras, W.; Naylor, S. Ryan, A. J. Macromolecules 1995, 28, 1422. (71) Unger, R.; Beyer, D.; Donth, E. Polymer 1991, 32, 3305. (72) Zhang, G. Y.; Luo, X. L.; Li, C. F.; Ma, D. Z. J. Polym. Sci., Polym. Phys. Ed. 1999, 37, 575. (73) Zhu, L., Chen, Y., Zhang, A., Calhoun, B. H., Chun, M., Quirk, R. P., Cheng, S. Z. D. Phys. Rev. B. 1999, 60, 10022. (74) Zhu, L.; Huang, P.; Chen, W. Y.; Ge, Q.; Quirk, R. P.; Cheng, S. Z. D. Macromolecules 2002, 35, 3553. (75) Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. Polymer 2001, 42, 5829. (76) Cohen, R. E.; Cheng, P. L.; Douzinas, K.; Kofinas, P.; Berney, C. V. Macromolecules 1990, 23, 324. (77) Loo, Y.-L.; Register, R. A.; Ryan, A. J.; Dee, G. T. Macromolecules 2001, 34, 8968. (78) Loo, Y.-L.; Register, R. A.; Adason, D. H. Macromolecules 2000, 33, 8361. (79) Quirm, D. J.; Register, R. A.; Marchand, G. R.; Adamson, D. H. Macromolecules 1998, 31, 4891. (80) Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Bates, F. S.; Towns-Andrews, E. Polymer 1996, 37, 4425. (81) Sakurai, K.; MacKnight, W. J.; Lohse, D. J.; Schultz, D. N.; Sissano, J. A.; Lin, J. S.; Agamalyan, M. Polymer 1996, 37, 4443. (82) Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 5957. (83) Quirel, D. J., Register, R. A., Marchand, G. R. Macromolecules 1997, 30, 4551. (84) Quirel, D. J., Register, R. A., Marchand, G. R. Ryan, A. J. Macromolecules 1997, 30, 8338. (85) Loo, Y.-L.; Register, R. A.; Ryan, A. J. Macromolecules 2002, 35, 2365. (86) Nojima, S.; Nakano, H.; Ashida, T. Polymer 1993, 34, 4168. (87) Nojima, S.; Hashizume, K.; Rohadi, A.; Sasaki, S. Polymer 1997, 38, 2711. (88) Nojima, S.; Nkano, H.; Takahashi, Y.; Ashida, T. Polymer 1994, 35, 3479. (89) Nojima, S.; Kikuchi, N.; Rohadi, A.; Tanimoto, S.; Sasaki, S. Macromolecules 1999, 32, 3727. (90) Nojima, S.; Kato, K.; Yamamoto, S.; Ashida, T. Macromolecules 1992, 25, 2237. (91) Nojima, S.; Tanaka, H.; Rohadi, A.; Sasaki, S. Polymer 1998, 39, 1727. (92) Nojima, S.; Toei, M.; Hara, S.; Tanimoto, S.; Sasaki, S. Polymer 2002, 43, 4087. (93) Nojima, S.; Yamamoto, S.; Ashida, T. Polym. J. 1995, 27, 673. (94) Xu, J. T.; Turner, S. C.; Fairclough, J. P. A.; Mai, S. M.; Ryan, A. J. Macromolecules 2002, 35, 3614. (95) Douzinas, K. C.; Cohen, R. E. Macromolecules 1992, 25, 5030. (96) Cohen, R. E.; Bellare, A.; Drzewinski, M. A. Macromolecules 1994, 27, 2321. (97) Hamley, I. W.; Fairclough, J. P. A.; Terrill, N. J.; Ryan, A. J.; Lipic, P. M.; Bates, F. S.; Towns-Andrews, E. Macromolecules 1996, 29, 8835. (98) Zhu, L.; Cheng, S. Z. D.; Huang, P.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh, F.; Liu, L. Adv. Mater. 2002, 14, 31. (99) Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25, 2645. (100) Adedeji, A.; Jamieson, A. M.; Hudson, S. D. Polymer 1995, 36, 2735. (101) Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules 1990, 23, 4378. (102) Tanaka, H.; Hasegawa, H.; Hashimoto, T. Macromolecules 1991, 24, 240. (103) Prahsarn, C.; Jamieson, A. M. Polymer 1997, 38, 1273. (104) Hashimoto, T.; Koizumi, S.; Hasegawa, H. Physica B. 1995, 213&214, 676. (105) Koizumi, S.; Hasegawa, H.; Hashimoto, T. Makromol. Chem. Macromol. Symp. 1992, 62, 75. (106) Mayes, A. M.; Russell, T. P.; Satija, S. K.; Majkrzak, C. F. Macromolecules 1992, 25, 6523. (107) Koizumi, S.; Hasegawa, H.; Hashimoto, T. Macromolecules 1994, 27, 7893. (108) Matsen, M. W. Macromolecules 1995, 28, 5765. (109) Matsen, M. W. Phys. Rev. Lett. 1995, 74, 4225. (110) Koizumi, S.; Hasegawa, H.; Hashimoto, T. Makromol. Chem. Macromol. Symp. 1992, 62, 75 Chapter 2 (1) Leibler, L. Macromolecules 1980, 13, 1602. (2) Hashimoto, T.; Shibayama, M.; Fujimura, M.; Kawai, H. In Block Copolymers-Science and Technology; Meier, D. J., Ed.; Harward Academic Publishers: London, 1983. (3) Hamley, I. W. The Physics of Block Copolymers; Oxford University Press: New York, 1998. (4) Bates, F. S.; Fredrickson, G. H. Phys. Today 1999, 52, 32. (5) Aggarwal, S. L. Polymer 1972, 17, 938. (6) Thomas, E. L.; Alward, D. B.; Kinning, D. J.; Martin, D. C.; Handlin, D. L.; Fetter, L. J. Macromolecules 1986, 19, 2197. (7) Hasegawa, H.; Tanaka, H.; Yamasaki, K.; Hashimoto, T. Macromolecules 1987, 20, 1651. (8) Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L. Macromolecules 1994, 27, 4063. (9) Schultz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K. Phys. Rev. Lett. 1994, 73, 86. (10) Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091. (11) Semenov, A. N. Macromolecules 1989, 22, 2849. (12) Brazovskii, A. Soviet Phys. JETP 1975, 41, 85. (13) Fredrickson, G. H.; Helfand, E. J. Chem. Phys. 1987, 87, 697. (14) Sakamoto, N.; Hashimoto, T.; Han, C. D.; Kim, D.; Vaidya, N. Y. Macromolecules 1997, 30, 1621. (15) Sakamoto, N.; Hashimoto, T.; Han, C. D.; Kim, D.; Vaidya, N. Y. Macromolecules 1997, 30, 5321. (16) Sakamoto, N.; Hashimoto, T. Macromolecules 1998, 31, 8493. (17) Han, C. D.; Vaidya, N. Y.; Kim, D.; Shin, G.; Yamaguchi, D.; Hashimoto, T. Macromolecules 2000, 33, 3767. (18) Dormidontava, E. E.; Lodge, T. P. Macromolecules 2001, 34, 9143. (19) Roe, R. J.; Zin, W. C. Macromolecules 1984, 17, 189. (20) Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules 1990, 23, 4387. (21) Nojima, S.; Roe, R. J.; Rigby, D.; Han, C. C. Macromolecules 1990, 23, 4305. (22) Tanaka, H.; Hasegawa, H.; Hashimoto, T. Macromolecules 1991, 24, 240. (23) Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25, 2645. (24) Matsen, M. W. Macromolecules 1995, 28, 5765. (25) Matsen, M. W. Phys. Rev. Lett. 1995, 74, 4225. (26) Leibler, L.; Pincus, P. A. Macromolecules 1984, 17, 2922. (27) Semenov, A. N. Macromolecules 1993, 26, 2273. (28) McConnell, G. A.; Gast, A. P.; Huang, J. S.; Smith, S. D. Phys. Rev. Lett. 1993, 71, 2102. (29) Berret, J. F.; Molino, F.; Porte, G.; Diat, O.; Lindner, P. J. J. Phys. Cond. Matter 1996, 8, 9513. (30) Diat, O.; Porte, G.; Berret, J. F. Phys. Rev. B 1996, 54, 14869. (31) Pople, J. A.; Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Komanschek, B. U.; Gleeson, A. J.; Yu, G.-E.; Booth, C. Macromolecules 1997, 30, 5721. (32) Hanley, K. J.; Lodge, T. P.; Huang, C.-I. Macromolecules 2000, 33, 5918. (33) Chen, H.-L.; Wu, J.-C.; Lin, T.-L.; Lin, J. S. Macromolecules 2001, 34, 6936. (34) Hashimoto, T.; Kowaska, K.; Shibayama, M.; Suehiro, S. Macromolecules 1986, 19, 750. (35) Chen, H.-L.; Hsiao, S.-C.; Lin, T.-L.; Yamauchi, K.; Hasegawa, H.; Hashimoto, T. Macromolecules 2001, 34, 671. (36) Medellin-Rodriguez, F. J.; Philips, P. J.; Lin, J. S. Macromolecules 1996, 29, 7491. (37) Chen, H.-L.; Li, H.-C.; Huang, Y.-Y.; Chiu, F.-C. Macromolecules 2002, 35, 2417. (38) Cullity, B. D.; Stock, S. R Elements of X-ray Diffraction; Prentice Hall: Upper Saddle River, NJ, 2001; Chapter 10. (39) Nishikawa, Y.; Kawada, H.; Hasegawa, H.; Hashimoto, T. Acta Polym. 1993, 44, 247. (40) Nishikawa, Y. Interfacial Curvatures of Bicontinuous Phase Structures in Two-Component Polymeric Systems. Ph.D. Thesis, Kyoto University 1999. (41) Nishikawa, Y.; Hasegawa, H.; Hashimoto, T.; Hyde, S. T. To be submitted for publication. (42) Matsen, M. W.; Bates, F. S. J. Chem. Phys. 1997, 106, 2436. (43) Koga, T.; Koga, T.; Hashimoto, T. J. Chem. Phys. 1999, 110, 11076. (44) Hashimoto, T.; Koga, T.; Koga, T.; Sakamoto, N. In The Physics of Complex Liquids; Yonezawa, F., Tsuji, K., Kaji, K., Doi, M., Fujiwara, T., Eds.; World Sci.: Singapore, 1988; p 291. (45) Ohta, T.; Kawasaki, K. Macromolecules 1986, 19, 2621. (46) Bonse, U.; Hart, M. Appl. Phys. Lett. 1965, 7, 238. (47) Sakamoto, N.; Hashimoto, T. Macromolecules 1995, 28, 6825. (48) Roe, R. J. Methods Of X-Ray And Neutron Scattering In Polymer Science ; Oxford University Press: New York, 2000. (49) Han, C. D.; Baek, D. M.; Kim, J. K. Macromolecules 1990, 23, 561. (50) Likos, C. N.; Lowen, H.; Poppe, A.; Willner, L.; Roovers, J.; Cubitt, B.; Richter, D. Phys. Rev. E 1998, 58, 6299. (51) Zhu, L.; Cheng, S. Z. D.; Calhoun. B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. Polymer 2001, 42, 5829. (52) Fredrickson, G. H.; Helfand, E. J. Chem. Phys. 1987, 87, 697. Chapter 3 (1) Leibler, L. Macromolecules 1980, 13, 1602. (2) Hashimoto, T.; Shibayama, M.; Fujimura, M.; Kawai, H. In Block Copolymer-Science and Technology, Meier, D. J. Ed.; Harward Academic Publishers: London, 1983. (3) Hamley, I. W. The Physics of Block Copolymers, Oxford University Press: New York, 1998. (4) Thomas, E. L.; Alward, D. B.; Kinning, D. J.; Martin, D. C.; Handlin, D. L.; Fetters, L. J. Macromolecules 1986, 19, 2197. (5) Hasegawa, H.; Tanaka, H.; Yamasaki, K.; Hashimoto, T. Macromolecules 1987, 20, 1651. (6) Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G..; Thomas, E. L.; Fetters, L. J. Macromolecules 1994, 27, 4063. (7) Roe, R. J.; Zin, W. C. Macromolecules 1984, 17, 189. (8) Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules 1990, 23, 4387. (9) Nojima, S.; Roe, R. J.; Rigby, D.; Han, C. C. Macromolecules 1990, 23, 4305. (10) Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25, 2645. (11) Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091. (12) Semenov, A. N. Macromolecules 1989, 22, 2849. (13) Dormidontova, E. E.; Lodge, T. P. Macromolecules 2001, 34, 9143. (14) Schwab, M.; Stühn, B. Phys. Rev. Lett. 1996, 76, 924. (15) Sakamoto, N.; Hashimoto, T.; Han, C. D.; Kim, D.; Vaidya, N. Y. Macromolecules 1997, 30, 1621. (16) Sakamoto, N.; Hashimoto, T. Macromolecules 1998, 31, 8493. (17) Han, C. D.; Vaidya, N. Y.; Kim, D.; Shin, G.; Yamaguchi, D.; Hashimoto, T. Macromolecules 2000, 33, 3767. (18) Choi, S.; Lee, K. M.; Han, C. D.; Sota, N.; Hashimoto, T. Macromolecules 2003, 36, 793. (19) Matsen, M. W. Macromolecules 1995, 28, 5765. (20) Matsen, M. W. Phys. Rev. Lett. 1995, 74, 4225. (21) Huang, Y.-Y.; Chen, H.-L.; Hashimoto, T. Macromolecules 2003, 36, 764. (22) Hamley, I. W.; Daniel, C.; Mingvanish, W.; Mai, S.-M.; Booth, C.; Messe, L.; Ryan, A. J. Langmuir 2000, 16, 2508. (23) Hamley, I. W.; Pople, J. A.; Diat, O. Colloid Polym. Sci. 1998, 276, 446. (24) Bang, J.; Lodge, T. P.; Wang, X.; Brinker, K. L.; Burghardt, W. R. Phys. Rev. Lett. 2002, 89, 215505 (25) McConnell, G. A.; Gast, A. P.; Huang, J. S.; Smith, S. D. Phys Rev. Lett. 1993, 71, 2102. (26) Pople, J. A.; Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Komanschek, B. U.; Gleeson, A. J.; Yu, G.-E.; Booth, C. Macromolecules 1997, 30, 5721. (27) Diat, O.; Porte, G.; Berret, J. F. Phys. Rev. B 1996, 54, 14869. (28) Berret, J. F.; Molino, F.; Porte, G.; Diat, O.; Lindner, P. J. J. Phys. Cond. Matter 1996, 8, 9513. (29) Hanley, K. J.; Lodge, T. P.; Huang, C.-I. Macromolecules 2000, 33, 5918. (30) Hashimoto, T.; Kowaska, K.; Shibayama, M.; Suehiro, S. Macromolecules 1986, 19, 750. (31) Cullity, B. D.; Stock, S. R. Elements of X-ray Diffraction. Prentice Hall, Upper Saddle River, NJ, 2001, Ch 10. (32) The (2)1/2 peak associated with the BCC lattice is weak in the scattering profiles presented here. In this case, one might speculate that the system adopts hexagonally-packed cylinder (HEX) morphology because the lattice peaks associated with this structure follows the relative positions of 1: (3)1/2: (4)1/2:. However, the spherical geometry and BCC packing of the microdomains in the blend quenched from the temperatures where BCC phase was assigned from the SAXS profiles were unambiguously verified by TEM. Moreover, we have also calculated the volume fraction of PEO domains using the SAXS data at these temperatures with the assumptions of BCC and HEX morphology. The volume fraction obtained by assuming BCC packing always agreed well (within 11 %) with the real volume fraction of PEO (i.e., fPEO = 0.17), whereas that calculated by assuming HEX packing was always more than 71 % higher. (33) Matsen, M. W.; Bates, F. S. J. Chem. Phys. 1997, 106, 2436. (34) The Wigner-Seitz (W-S) cell may be constructed according to the following four steps. First, select any lattice site as the origin. Second, start at the origin followed by drawing lines to all its neighboring lattice point. Third, draw the perpendicular bisecting plane of each of these lines. Finally, the space enclosed by the resulting polyhedron is the W-S cell. For block copolymers the W-S cell represents the space occupied by a single micelle in a lattice. It is a rhombic dodecahedron for FCC lattice and a truncated octahedron for BCC phase. (35) Wigner, E.; Seitz, F. Phys. Rev. 1933, 43, 804. (36) Fredrickson, G. H. Macromolecules 1993, 26, 4351. (37) Bowen, W. R.; Jenner, F. Chem. Eng. Sci. 1995, 50, 1707. (38) Lescanec, R. L.; Fetters, L. J.; Thomas, E. L. Macromolecules 1998, 31, 1680. (39) (a) Hashimoto, T.; Fujimura, M.; Kawai, H. Macromolecules 1980, 13, 1660. (b) Shibayama, M.; Hashimoto, T.; Kawai, H. Macromolecules 1983, 16, 1434. (c) Mori, K.; Hasegawa, H.; Hashimoto, T. Polymer 1990, 31, 2368. (40) Sakurai, S.; Umeda, H.; Taie, K.; Nomura, S. J. Chem. Phys. 1996, 105, 8902. (41) Funaki, Y.; Kumano, K.; Nakao, T.; Jinnai, H.; Yoshida, H.; Kimishima, K.; Tsutsumi, K.; Hirokama, Y.; Hashimoto, T. Polymer 1999, 40, 7147. (42) Brandrup, J.; Immergut, E. H. Polymer Handbook. 2nd edition, John Wiley & Sons Inc., 1975, Part IV. (43) The dilution approximation treats concentrated solutions as uniformly swollen melt phases and the phase behavior maps onto those of melts by replacing ?? by ???烳. This mean-field approximation is good enough for our qualitative interpretation on the increase of segregation strength with increase of block copolymer concentration during solvent removal. (44) Chen H.-L.; Li, H.-C.; Huang, Y.-Y.; Chiu, F.-C. Macromolecules 2002, 35, 2417. Chapter 4 (1) Hirata, H.; Ijutsu, T.; Soen, T.; Hashimoto, T.; Kawai, H. Polymer 1975, 16, 249. (2) Nojima, S.; Kato, K.; Yamamoto, S.; Ashida, T. Macromolecules 1992, 25, 2237. (3) Nojima, S.; Nakano, H.; Ashida, T. Polymer 1993, 34, 4168. (4) Rangarajan, P.; Register, R. A.; Fetters, L. J. Macromolecules 1993, 26, 4640. (5) Nojima, S.; Nakano, H.; Takahashi, Y.; Ashida, T. Polymer 1994, 35, 3479. (6) Nojima, S.; Yamamoto, S.; Ashida, T. Polym. J. 1995, 27, 673. (7) Rangarajan, P.; Register, R. A.; Fetters, L. J.; Naylor, S.; Ryan, A. J. Macromolecules 1995, 28, 1422. (8) Ryan, A. J.; Hamley, I. W.; Bras, W.; Bates, F. S. Macromolecules 1995, 28, 3860. (9) Schnablegger, H.; Rein, D. H.; Rempp, P.; Cohen, R. E. J. Polym. Eng. 1996, 16, 1. (10) Nojima, S.; Hashizume, K.; Rohadi, A.; Sasaki, S. Polymer 1997, 38, 2716. (11) Ryan, A. J.; Fairclough, J. P. A.; Hamley, I. W.; Mai, S.-M.; Booth, C. Macromolecules 1997, 30, 1723. (12) Quiram, D. J.; Register, R. A.; Marchand, G. R.; Ryan, A. J. Macromolecules 1997, 30, 8338. (13) Zhu, L.; Chen, Y.; Zhang, A.; Calhoun, B. H.; Chun, M.; Quirk, R. P.; Cheng, S. Z. D.; Hsiao, B. S.; Yeh, F.; Hashimoto, T. Phys. Rev. B 1999, 60, 10022. (14) Chen, H.-L.; Wu, J.-C.; Lin, T.-L.; Lin, J. S. Macromolecules 2001, 34, 6936. (15) Chen, H.-L.; Hsiao, S.-C.; Lin, T.-L.; Yamauchi, K.; Hasegawa, H.; Hashimoto, T. Macromolecules 2001, 34, 671. (16) Winey, K. I.; Thomas, E. L.; Fetters, L. Macromolecules 1992, 25, 2645. (17) Tanaka, H.; Hasegawa, H.; Hashimoto, T. Macromolecules 1991, 24, 240. (18) Medellin-Rodriguez, F. J.; Philips, P. J.; Lin, J. S. Macromolecules 1996, 29, 7491. (19) Loo, Y.-L.; Register, R. A.; Ryan, A. J. Phys. Rev. Lett. 2000, 84, 4120. (20) Chen, H.-L.; Huang, Y.-Y.; Hashimoto, T., manuscript in preparation. (21) Roe, R.-J. Methods of X-ray and Neutron Scattering in Polymer Science; Oxford University Press: New York, 2000. (22) Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules 1990, 23, 4378. (23) Polymer Handbook, 3rd ed.; Brandrup, J., Immergut, E. H., Eds.; Wiley: New York, 1989. (24) Feigin, L. A.; Svergun, D. I. Structure Analysis by Small- Angle X-ray and Neutron Scattering; Plenum Press: New York, 1987. Chapter 5 (1) Leibler, L. Macromolecules 1980, 13, 1602. (2) Hashimoto, T.; Shibayama, M.; Fujimura, M.; Kawai, H. In Block Copolymers-Science and Technology; Meier, D. J., Ed.; Harward Academic Publishers: London, 1983. (3) Hamley, I. W. The Physics of Block Copolymers; Oxford University Press: New York, 1998. (4) Bates, F. S.; Fredrickson, G. H. Phys. Today 1999, 52, 32. (5) Roe, R. J.; Zin, W. C. Macromolecules 1984, 17, 189. (6) Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules 1990, 23, 4387. (7) Nojima, S.; Roe, R. J.; Rigby, D.; Han, C. C. Macromolecules 1990, 23, 4305. (8) Tanaka, H.; Hasegawa, H.; Hashimoto, T. Macromolecules 1991, 24, 240. (9) Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25, 2645. (10) Cohen, R. E.; Cheng, P. L.; Douzinas, K.; Kofinas, P.; Berney, C. V. Macromolecules 1990, 23, 324. (11) Nojima, S.; Kato, K.; Yamamoto, S.; Ashida, T. Macromolecules 1992, 25, 2237. (12) Nojima, S.; Nakano, H.; Takahashi, Y.; Ashida, T. Polymer 1994, 35, 3479. (13) Ryan, A. J.; Hamley, I. W.; Bras, W.; Bates, F. S. Macromolecules 1995, 28, 3860. (14) Schnablegger, H.; Rein, D. H.; Rempp, P.; Cohen, R. E. J. Polym. Eng. 1996, 16, 1. (15) Nojima, S.; Tanaka, H.; Rohadi, A.; Sasaki, S. Polymer 1998, 39, 1727. (16) Zhu, L.; Chen, Y.; Zhang, A.; Calhoun, B. H.; Chun, M.; Quirk, R. P.; Cheng, S. Z. D.; Hsiao, B. S.; Yeh, F.; Hashimoto, T. Phys. Rev. B 1999, 60, 10022. (17) Loo, Y.-L.; Register, R. A.; Adamson, D. H. J. Polym. Sci., Polym. Phys. Ed. 2000, 38, 2564. (18) Chen, H. L.; Wu, J. C.; Lin, T. L.; Lin, J. S. Macromolecules 2001, 34, 6936. (19) Loo, Y.-L.; Register, R. A.; Ryan, A. J. Macromolecules 2002, 35, 2365. (20) Chen, H.-L.; Li, H.-C.; Huang, Y.-Y.; Chiu, F.-C. Macromolecules 2002, 35, 2417. (21) Quiram, D. J.; Register, R. A.; Marchand, G. R. Macromolecules 1997, 30, 4551. (22) Sakurai, S.; Kawada, H.; Hashimoto, T.; Fetters, L. J. Macromolecules 1993, 26, 5796. (23) Kimishima, K.; Koga, T.; Hashimoto, T. Macromolecules 2000, 33, 968. (24) Feigin, L. A.; Svergun, D. I. Structure Analysis by Small- Angle X-Ray and Neutron Scattering; Plenum Press: New York, 1987. (25) Cullity, B. D.; Stock, S. R Elements of X-Ray Diffraction; Prentice Hall: Upper Saddle River, NJ, 2001; Chapter 10. (26) Hong, S.; Yang, L.; MacKnight, W. J.; Gido, S. P. Macromolecules 2001, 34, 7009. Chapter 6 (1) Hamley, I. W. The Physics of Block Copolymers; Oxford University Press: New York, 1998. (2) Weimann, P. A.; Hajduk, D. A.; Chu, C.; Chaffin, K. A.; Brodil, J. C.; Bates, F. S. J. Polym. Sci. Part B: Poly. Phys. 1999, 37, 2053. (3) Chen, H.-L.; Hsiao, S.-C.; Lin, T.-L.; Yamauchi, K.; Hasegawa, H.; Hashimoto, T. Macromolecules 2001, 34, 671. (4) Chen, H.-L.; Wu, J.-C.; Lin, T.-L.; Lin, J. S. Macromolecules 2001, 34, 6936. (5) Loo, Y.-L.; Register, R. A.; Ryan, A. J.; Dee, G. T. Macromolecules 2001, 34, 8968. (6) Xu, J.-T.; Turner, S. C.; Fairclough, J. P. A.; Mai, S.-M.; Ryan, A. J.; Chainbundit, C.; Booth, C. Macromolecules 2002, 35, 3614. (7) Xu, J.-T.; Fairclough, J. P. A.; Mai, S.-M.; Ryan, A. J. Chainbundit, C. Macromolecules 2002, 35, 6937. (8) Lee, W.; Chen, H.-L.; Lin, T.-L. J. Polym. Sci Part B: Polym. Phys. 2002, 40, 519. (9) Douzinas, K. C.; Cohen, R. E. Macromolecules 1992, 25, 5030. (10) Cohen, R. E.; Bellare, A.; Drzewinski, M. A. 1994, 27, 2321. (11) Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Bates, F. S.; Towns-Andrews, E. Polymer 1996, 37, 4425. (12) Cohen, R. E.; Cheng, P. L.; Douzinas, K.; Kofinas, P.; Berney, C. V. Macromolecules 1990, 23, 324. (13) Nojima, S.; Kikuchi, N.; Rohadi, A.; Tanimoto, S.; Sasaki, S. Macromolecules 1999, 32, 3727. (14) Schnablegger, H.; Rein, D. H.; Rempp, P.; Cohen, R. E. J. Polym. Eng. 1996, 16, 1. (15) Lotz, B.; Kovacs, A. J. ACS Polym. Prepr 1969, 10, 820. (16) Zhu, L.; Huang, P.; Chen, W. Y.; Ge, Q.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh, F.; Liu, L. Macromolecules 2002, 35, 3553. (17) Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. Polymer 2001, 42, 5829. (18) Zhu, L.; Chen, Y.; Zhang, A.; Calhoun, B. H.; Chun, M.; Quirk, R. P.; Cheng, S. Z. D.; Hsiao, B. S.; Yeh, F.; Hashimoto, T. Phys. Rev. B 1999, 60, 10022. (19) Zhu, L.; Mimnaugh, B. R.; Ge, Q.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh, F.; Liu, L. Polymer 2001, 42, 9121. (20) Loo, Y.-L.; Register, R. A.; Ryan, A. J. Phys. Rev. Lett. 2000, 84, 4120. (21) Loo, Y.-L.; Register, R. A.; Ryan, A. J. Macromolecules 2002, 35, 2365. (22) Muller, A. J.; Balsamo, V.; Arnal, M. L.; Jakob, T.; Schmalz. H.; Abetz, V. Macromolecules 2002, 35, 3048. (23) Chen, H.-L.; Lin, S.-Y.; Huang, Y.-Y.; Chiu, F.-C.; Liou, W.; Lin, J. S. Macromolecules 2002, 35, 9434. (24) Quiram, D. J.; Register, R. A.; Marchand, G. R.; Adamson, D. H. Macromolecules 1998, 31, 4891. (25) Hamley, I. W.; Fairclough, J. P. A.; Terrill, N. J.; Ryan, A. J.; Lipic, P. M.; Bates, F. S.; Towns-Andrews, E. Macromolecules 1996, 29, 8835. (26) Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh. F.; Lotz, B.; J. Am. Chem. Soc. 2000, 122, 5957. (27) Zhu, L.; Cheng, S. Z. D.; Huang, P.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh. F.; Liu, L. Adv. Mater. 2002, 14, 31 (28) Nojima, S.; Kato, K.; Yamamoto, S.; Ashida, T. Macromolecules 1992, 25, 2237. (29) Nojima, S.; Nkano, H.; Takahashi, Y.; Ashida, T. Polymer 1994, 35, 3479. (30) Nojima, S.; Nkano, H.; Ashida, T. Polymer 1993, 34, 4168. (31) Nojima, S.; Yamamoto, S.; Ashida, T. Polym. J. 1995, 27, 673. (32) Chen, H.-L.; Li, H.-C.; Huang, Y.-Y.; Chiu, F.-C. Macromolecules 2002, 35, 2417. (33) Balsamo, V; von Gyldenfeldt, F.; Stadler, R. Macromolecules 1999, 32, 1226. (34) Huang, Y.-Y.; Chen, H.-L.; Li, H.-C.; Lin, T.-L.; Lin, J. S. Macromolecules 2003, 36, 282. (35) Winey, K. I.; Thomas, E. L.; Fetter, L. J. Macromolecules 1992, 25, 2645. (36) Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules 1990, 23, 4378. (37) Tanaka, H.; Hasegawa, H.; Hashimoto, T. Macromolecules 1991, 24, 240. (38) Huang, Y.-Y.; Chen, H.-L.; Hashimoto, T. Macromolecules 2003, 36, 764. (39) Feigin, L. A.; Svergun, D. I. Structure Analysis by Small- Angle X-ray and Neutron Scattering; Plenum Press: New York, 1987. (40) Leibler, L.; Pincus, P. A. Macromolecules 1984, 17, 2922. (41) Helfand, E.; Sapse, A. M. J. Chem. Phys. 1975, 62, 1327. (42) Helfand, E.; Tagami, Y. J. Chem. Phys. 1972, 56, 3592. Huang, Y.-Y. Ph. D. thesis, National Tsing Hua Univ., 2004. Chapter 7 (1) Smith, P.; Manley, R. Macromolecules 1979, 12, 483. (2) Chen, H.-L.; Hsiao, S.-C.; Lin, T.-L.; Yamauchi, K.; Hasegawa, H.; Hashimoto, T. Macromolecules 2001, 34, 671. (3) Chen, H.-L.; Wu, J.-C.; Lin, T.-L.; Lin, J. S. Macromolecules 2001, 34, 6936. (4) Loo, Y.-L.; Register, R. A.; Ryan, A. J.; Dee, G. T. Macromolecules 2001, 34, 8968. (5) Xu, J.-T.; Fairclough, J. P. A.; Mai, S.-M.; Ryan, A. J.; Chainbundit, C. Macromolecules 2002, 35, 6937. (6) Shi, A.-C.; Noolandi, J. Macromolecules 1994, 27, 2936. (7) Hashimoto, T.; Koizumi, S.; Hasegawa, H. Macromolecules 1994, 27, 1562. (8) Shi, A.-C.; Noolandi, J. Macromolecules 1995, 28, 3103. (9) Zhao, J.; Majumdar, B.; Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K.; Hajduk, D. A.; Gruner, S. M. Macromolecules 1996, 29, 1204. (10) Sakurai, S.; Irie, H.; Umeda, H.; Nomura, S.; Lee, H. H.; Kim, J. K. Macromolecules 1998, 31, 336. (11) Court, F.; Hashimoto, T. Macromolecules 2001, 34, 2536. (12) Court, F.; Hashimoto, T. Macromolecules 2002, 35, 2566. (13) Prud’homme, R. E. J. Polym. Sci., Part B: Polym Phys. 1982, 20, 307. (14) (a) Cheng, S. Z. D.; Wunderlich, B. J. Polym. Sci., Part B: Polym. Phys. 1986, 24, 577. (b) Cheng, S. Z. D.; Wunderlich, B. J. Polym. Sci., Part B: Polym. Phys. 1986, 24, 595. (c) Cheng, S. Z. D.; Wunderlich, B. J. Polym. Sci., Part B: Polym. Phys. 1988, 26, 1947. (15) Balijepalli, S.; Schultz, J. M.; Lin, J. S. Macromolecules 1996, 29, 6601. (16) The model structures are drawn based on the SAXS results of the isothermally crystallized diblock blends from which the PEO lamellar thickness was calculated to be ca. 10.8 nm. Assuming that crystalline stems orient perpendicular to the interface,17 this gives a once folded and triply folded chain structure for the shorter (extended chain length = 22.15 nm) and the longer (extended chain length = 47.47nm) PEO blocks in E80B481 and E170B102, respectively. (17) DiMarzio, E. A.; Guttman, C. M.; Hoffman, J. D. Macromolecules 1980, 13, 1194. (18) Whitmore, M. D.; Noolandi, J. Macromolecules 1988, 21, 1482.id NH0925063003 sid 883610 cfn 0 / id NH0925063004 auc 林平和 tic 供應鏈動態之行為及研究 adc 鄭西顯 ty 博士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 78 kwc 供應鏈 kwc 長鞭效應 abc 本文主要是針對供應鏈管理(supply chain management)加以探討,以往這一領域上的研究者,都是將討論的重心,放在訂貨策略(ordering policy)之議題上,使得存貨成本(inventory cost)降低,以及如何降低所謂的長鞭效應(Bullwhip effect)上。而所謂長鞭效應的意義,就是在一供應鏈系統中,即使顧客需求(customer demand)變異性不大,但當需求的資訊往上游傳遞時,便會一層一層被扭曲誇大,造成越上游的廠商誤以為其下游的客戶需求變異性非常大,因而做出不正確的訂貨策略或錯誤的生產規劃,使得廠商蒙受極大的生意損失。所以如何避免長鞭現象的發生,就成為研究供應鏈管理的專家學者所關心且極欲解決的課題。 tc 誌謝 摘要 目錄 I 第一章 1 第二章 11 第三章 18 第四章 34 第五章 41 第六章 56 第七章 64 附錄A 65 參考文獻 73rf 1.Axsäter, S. “Simple evaluation of echelon stock (R,Q) policies for two-level inventory systems,” IIE Transactions, 29, (1997)661. 2.Axsäter, S. “Evaluation of installation stock based (R,Q)-policies for two-level inventory systems with Poisson demand,” Operations Research, 46(supp.3), (1998)s135 3.Axsater, S., and Zhang, W. A joint replenishment policy for multi-echelon inventory control. . International Journal of Production Economics 85 (1999)113-122 4.Axsäter, S. “Exact analysis of continuous review (R,Q) policies in two-echelon inventory systems with compound Poisson demand,” Operations Research, 48(5), (2000)686. 5.Axsäter, S. “Scaling down multi-echelon inventory problems,” International Journal of Production Economics, 71, (2001)255. 6.Beamon, B. M. Supply chain design and analysis: Models and methods. International Journal of Production Economics 55 (1998) 281-294. 7.Bordons, C., and Cueli, J. R. Predictive controller with estimation of measurable disturbance. Application to an olive mill. Journal of Process Control 14(2004) 305-315. 8.Box, G. E. P., Jenkins, G. M., and Reinsel, G.. C. Time series analysis: forecasting and control. (1994) Prentice Hall International. 9.Bradshaw, A. and Porter, B. Synthesis of control policies for a production-inventory tacking system. International Journal of Systems Science 6(1975) 225-232. 10.Cachon, G.., and Larivere, M. A. Capacity allocation using past sales: When to turn-and0earn. Management Science 45 (1999) 685-703. 11.Cachon, G..P. Managing supply chain demand variability with scheduled ordering policies. Management Science 45 (1999) 843-856. 12.Cetinkaya, S., and Lee, C.Y. Stock replenishment and shipment scheduled for vendor-managed inventory systems. Management Science 46(2000) 2170232. 13.Chen, F., Ryan, J.K., and Simchi-Levi, D The impact of exponential smoothing forecasts on the bullwhip effect. Naval Research Logistics 47 (2000a) 269-286. 14.Chen, F., Drezner, Z., Ryan, J. K., and Simchi-Levi, D. Quantifying the bullwhip effect in a simple supply chain: The impact of forecasting, lead times, and information. Management Science 46 (2000b) 436-443. 15.DAmours S., Montreuil, B., Lefrancois, P., and Soumis, F. Networked manufacturing: The impact of information sharing. International Journal of Production Economics 58 (1999) 63-79. 16.Dejonckheere, J., Disney, S.M., Lambrecht, M.R. and Towill, D. R. Transfer function analysis of forecasting induced bullwhip in supply chains. International Journal of Production Economics 78 (2002) 133-144. 17.Dejonckheere, J., Disney, S.M., Lambrecht, M.R. and Towill, D. R. Measuring and avoiding the Bullwhip Effect: A Control Theoretic Approach. European Journal of Operational Research 147 (2003) 567-590. 18.Disney, S.M., and Towill, D. R. On the Bullwhip Effect and Inventory Variance Produced by an Ordering Policy. Omega: The International Journal of Management Science 31 (2003) 157-167. 19.Disney, S.M., and Towill, D.R. The effect of vendor managed inventory (VMI) dynamics on the bullwhip effect in supply chain. International Journal of Production Economics 85 (2003) 199-215. 20.Ehrhardt, R. (s,S) policies for a dynamic inventory model with stochastic lead tine. Operations Research 32(1984)121-132. 21.Escudero, L. F., Galindo, E., Garcia, G., Gomez, E., and Sabau, V. Case study: Schumann, a modeling framework for supply chain management under uncertainty. European Journal of Operational Research 119(1999) 14-34. 22.Forrester, J.W. Industrial dynamics.(1961) Cambridge MA,USA:MIT Press. 23.Gessing, R., and Blachuta, M. Set point and identifiability in the closed loop with a minimum variance controller. Control Engineering Practice 4(1996) 665-670. 24.Gjerdrum, J., Shah, N., and Papageogiou, L.G.. A combined optimization and agent-Based approach to supply chain modeling and performance assessment. Production Planning & Control .12 (2001) 81-88. 25.Gunasekaren, A., Macbeth, DK., and Lamming, R. Modeling and analysis of supply chain management systems: an editorial overview. Journal of the operational research society 52(2000) 1112-1115. 26.Gupta, A., Maranas, C. D., and McDonald, C. M. Mid-term supply chain planning under demand uncertainty: customer demand satisfaction and inventory management. Computers and Chemical Engineering 24 (2000)2631-2621. 27.Gupta, A., and Maranas, C. D. A two-stage modeling and solution framework for multi-site midterm planning under demand uncertainty: customer demand satisfaction and inventory management. Industrial Engineering Chemical Research. 39( 2000)3700-3813. 28.Harris, T. J. Assessment of control loop performance. The Canadian Journal of Chemical Engineering 67(1989) 856-861. 29.Johansen S, G.., and Thorstenson, A. Optimal (r,Q) inventory policies with Poisson demands and lost sales: discounted and undiscounted cases. International Journal of Production Economics 47 (1996) 359-371. 30.Kaplan, R. S. A dynamic inventory model with stochastic lead time. Management Science. 16(1970) 491-507. 31.Lee, H. L., Padmanabhan,V., and Whang, S. The bullwhip effect in supply chains. Sloan Management Review 38.(1997a) 93-102. 32.Lee, H. L., Padmanabhan, V, and Whang, S. Information distortion in supply chain: The Bullwhip effect. Management Science 43 (1997b) 546-558. 33.Lee, H. L., So, K.C., and Tang, C. S. The value of information sharing in atwo level supply chain. Management Science 5 (2000) 628-643. 34.Mak, K.L., Bradshaw, A. and Porter, B. Stabilizability of production-inventory systems with retarded control policies. International Journal of Systems Science 7 (1976) 277-288. 35.Menden, C. A., Henning, G.. P., and Cerda. J. An MILP continuous-time approach to short-term scheduling of resource-constrained multistage flow-shop batch facilities. Computers and Chemical Engineering 25 (2001)701-711. 36.Metters, R. Quantifying the bullwhip effect in supply chains. Journal of Operational Management 15(1997) 89-100. 37.Orcun, S., Altinel, I. K., and Hortacsu, O. General continuous time models for production planning and scheduling batch processing plants: mixed integer linear program formulations and computational issues. Computers and Chemical Engineering 25 (2001)371-389. 38.Perea, E.,Grossmann, I., Ydstie, E. and Tahmassebi, T. Dynamic modeling and classical control theory for supply chain management. Computers and Chemical Engineering 24 (2000) 1143-1149. 39.Perea-López, E., Grossmann, I. E., Ydstie, B.E. and Tahmassebi, T. Dynamic modeling and decentralized control of supply chains. Industrial & Engineering Chemistry Research, 40 (2001) 3369-3383. 40.Porter, B. and Bradshaw, A. Modal control of production-inventory systems using piecewise-constant control policies. International Journal of Systems Science 5 (1974) 733-742. 41.Qin, S. J. Control performance monitoring- a review and assessment. Computers and Chemical Engineering 23 (1998) 173-186. 42.Ramdas, K. ,and Spekman R. E. Chain or shackles: Understanding what derives supply-chain performance. Interfaces 30 (2000) 3-21. 43.Seo, Y., Jung, S., and Hahm, J. Optimal reorder decision utilizing centralized stock information in a two-echelon distribution system. Computers & Operations research. 29(2002)171-193. 44.Soeterboek, R. Predictive Control: A Unified Approach. (1992) Prentice Hall International. 45.Simchi-Levi, D., Kaminsky, P., and Simchi-Levi, E. Designing and Managing the Supply Chain: Concepts, Strategies, and Case Studies. McGraw-Hill International Edition. (2000) 46.Thomas, D. J., Griffin P. M. Coordinated supply chain management. European Journal of Operational Research 94(1996) 1-15. 47.Towill, D.R. Dynamic analysis of an inventory and order based production control system. International Journal of Production Research 20 (1982) 671-687. 48.Towill, D.R. Industrial dynamics modeling of supply chains. Logistics information management. 9 (1996) 43-56. 49.Venkatesan, G. An algorithm for minimum variance control of a dynamic time-delay system to reduce product variability. Computers and Chemical Engineering 28 (2002) 229-239. 50.Vergin, R. C., and Barr, K. Building competitiveness in grocery supply through continuous replenishment planning: insights from the fields. Industrial Marketing Management 28 (1999) 145-153. 51.Xu, K., Dong, Y., and Evets, P. T. Toward better coordination of the supply chain. Transportation Research Part E. 37 (2001) 35-54id NH0925063004 sid 887610 cfn 0 / id NH0925063005 auc 林進益 tic 有機無機混成分子拓印高分子材料與生化感測器之應用 adc 李 育 德 ty 博士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 181 kwc 分子拓印 kwc 有機無機混成 kwc 生化感測器 abc 大部份分子拓印(molecular imprinting)合成技術皆為有機材料為主,以有機無機混成材做為架構,辨識位址處則保留辨識效果較好的有機官能基,此種有機-無機共混成的方式所製備之分子拓印材料,不但保有原來有機材的易加工、低密度的優點,也同時兼有無機材料熱穩定、良好光學及機械性質等特性。材料穩定及低的製造成本,使得此種材料在工業級產品應用上面受到更多的注意。而使用溶膠凝膠合成技術為一快速方便隨意溫度皆可製備之方法。 tc 摘要 I Abstract IV 誌謝 VIII 目錄 IX 圖目錄 XVII 表目錄 XXII 第一章 緒論 1 第二章 文獻回顧、相關原理與應用 4 2.1分子拓印技術 4 2.1.1 分子拓印原理 4 2.1.2 分子拓印高分子的製備 11 2.1.2.1目標分子選擇 11 2.1.2.2官能性單體 13 2.1.2.3交聯劑 14 2.1.2.4分子拓印高分子結構型態 15 2.1.2.5溶劑 17 2.1.2.6合成實例 18 2.1.2.7分子拓印之應用 23 2.1.2.7.1 分子拓印色層分析(MIC) 24 2.1.2.7.2 抗體/受體結合模擬物 25 2.1.2.7.3 催化/合成的應用 25 2.1.2.7.4 仿生物感應器元件 26 2.1.2.8 分子拓印聚合物之特性 27 2.2有機無機混成(Organic-inorganic Hybrid Materials)分子拓印高分子材料 29 2.2.1 有機無機混成分子辨識(molecular recognition)材料 29 2.2.2 溶膠凝膠製程技術 34 2.2.2.1 溶膠─凝膠化學 34 2.2.2.2 溶膠─凝膠分子拓印 40 2.2.2.3 微孔矽膠共價性分子拓印 45 2.3仿生感測器(Biomimetic Sensors) 50 2.3.1 分子拓印仿生感測器 50 2.3.1.1 分子拓印感應器之發展 50 2.3.1.2氯黴素之光學偵測 53 2.3.1.3 用於莫多草淨(Atrazine)之電導性感應器 57 2.3.1.4三氮雜苯(Triazine)及唾液酸(Sialic acid)之螢光偵測 59 2.3.1.5用液相色層分析儀來偵測睪丸固酮(Testosterone) 60 2.3.1.6未來的展望 60 2.3.2 分子拓印高分子結合半導體微粒(Semiconductor Nanoparticles)仿生感測器 62 2.3.2.1半導體微結晶作為螢光生物性標籤 62 第三章 研究動機與目的 73 第四章 實驗藥品、設備及實驗步驟 77 4.1 實驗藥品 77 4.1.1非共價性分子拓印(noncovalent imprinting)技術製備咖啡因精密分離材料 77 4.1.2 共價性分子拓印(covalent imprinting)技術製備膽固醇精密分離材料 78 4.1.3分子拓印高分子結合半導體微粒(Semiconductor Nanoparticles)仿生感測器 79 4.2 實驗設備 80 4.3 實驗方法與流程 81 4.3.1非共價性分子拓印(noncovalent imprinting)技術製備咖啡因精密分離材料 81 4.3.1.1研究概述 81 4.3.1.2研究範圍 84 4.3.1.3 分子拓印聚合反應 85 4.3.1.3.1無溶劑高分子聚合法(neat copolymerization) 85 4.3.1.3.2溶液共聚和反應(Solution copolymerization.) 85 4.3.1.3.3表面Si-OH的覆蓋(End capping of surface silanol groups) 86 4.3.1.3.4以高效能液相管柱層析法評估MIPs的吸附率及辨識能力 89 4.3.1.3.5 Imprint Fact α與Selectivit β 89 4.3.2 共價性分子拓印(covalent imprinting)技術製備膽固醇精密分離材料 91 4.3.2.1 研究概述 91 4.3.2.2 4-vinylphenol的合成 92 4.3.2.3 cholesteryl (4-vinyl) phenyl carbonate合成 92 4.3.2.4 高分子聚合與溶膠-凝膠反應 93 4.3.2.5 模版(template)分子的移除 97 4.3.2.6 膽固醇之吸附實驗 97 4.3.3分子拓印高分子結合半導體微粒(Semiconductor Nanoparticles)仿生感測器 99 4.3.3.1分子拓印高分子/半導體微粒合成設計 99 4.3.3.2奈米晶體粒子製備及表面官能化改質 105 4.3.3.2.1製備CdSe半導體奈米晶體粒子 105 4.3.3.2.2 製備CdSe(ZnS)核殼奈米晶體粒子 105 4.3.3.2.3以4-Vinylpridine進行CdSe/ZnS奈米微粒表面官能化 106 第五章 實驗結果與討論 107 5.1非共價性分子拓印(noncovalent imprinting)技術製備咖啡因精密分離材料 107 5.1.1無溶劑高分子聚合法(neat copolymerization)(MAA系統) 107 5.1.1.1 聚合觸媒添加量改變對Caffeine的影響 107 5.1.1.2 Silane 組合的改變,對Caffeine吸附效果之影響 109 5.1.1.3 H2O及HCl改變對Caffeine吸附效果之影響 110 5.1.1.4 攪拌時間與溫度對MIPs吸附率之影響 113 5.1.2 溶液共聚和反應(Solution copolymerization.)(MAAM系統) 114 5.1.2.1製備MAAM系統之分子拓印高分子(MIPs)溶液共聚合反應 114 5.1.2.2 End capping 對分子辨識能力之影響 116 5.1.2.3 咖啡因模版之影響 119 5.1.2.4 造孔劑(Porogenic Solvent)效應 120 5.1.2.5 溫度與時間對吸附性之影響 121 5.1.2.6 SEM結構觀測 122 5.2 共價性分子拓印(covalent imprinting)技術製備膽固醇精密分離材料 123 5.2.1 4-Vinylphenol之合成 123 5.2.1.1 微分掃瞄熱分析儀鑑定 123 5.2.1.2 氫核磁共振圖譜鑑定(1H-NMR) 124 5.2.2 C-4-V-Pc之合成 125 5.2.2.1 C-4-V-Pc之紅外線光譜儀(IR)鑑定 126 5.2.2.2 C-4-V-Pc之核磁共振光譜鑑定 127 5.2.2.2.1 氫核磁共振光譜儀(1H-NMR) 127 5.2.2.2.2 碳核磁共振光譜儀(13C-NMR) 128 5.2.2.3 C-4-V-Pc之微分掃瞄熱分析(DSC)鑑定 130 5.2.2.4 Cholesteryl (4-vinyl)phenyl carbonate之元素分析(EA)鑑定 130 5.2.3與含雙鍵矽氧烷單體之共聚合 131 5.2.3.1 C-4-V-Pc與V-TEOS之共聚合反應 131 5.2.3.2 C-4-V-Pc與MPS之共聚合反應 134 5.2.3.2.1 一步聚合反應 135 5.2.3.2.2 二步聚合反應 139 5.2.3.3溶膠-凝膠反應 140 5.2.3.4 高效能液相層析儀分析 140 5.3分子拓印高分子結合半導體微粒(Semiconductor Nanoparticles)仿生感測器 143 5.3.1以4-Vinylpridine進行CdSe/ZnS奈米微粒表面官能化 143 5.3.2 CdSe/ZnS/4-Vinylpyridine/EGDMA/Uric Acid-MIP 144 5.3.3 CdSe/ZnS/4-Vinylpyridine/EGDMA-CAF-MIP 146 5.3.4 再鍵結實驗(Re-binding experiment) 147 5.3.5 PL spectra of CdSe/ZnS/4-VP/EGDMA-MIP:移除模版分子之前、後光譜研究 148 5.3.6 CdSe/ZnS/4-VP/EGDMA-MIP 對咖啡因之辨識效果 150 5.3.7 CdSe/ZnS/4-VP/EGDMA-MIP : CAF vs Theobromine 之選擇性鍵結能力 151 5.3.8 CdSe/ZnS/4-VP/EGDMA-MIP : CAF vs Theophylline 之選擇性鍵結能力 152 5.3.9 拓印L-Cysteine使用CdSe/ZnS當為螢光發光團 153 5.3.9.1 CdSe/ZnS/4-VP/EGDMA-L-Cysteine MIPs合成反應 153 5.3.9.2 CdSe/ZnS/4-VP/EGDMA-L-Cysteine MIPs在Re-binding 實驗 153 5.3.10拓印Estriol使用CdSe/ZnS當為螢光發光團 156 5.3.10.1 CdSe/ZnS/4-VP/EGDMA-Estriol MIPs合成反應 156 5.3.10.2 CdSe/ZnS/4-VP/EGDMA-Estriol MIPs在Re-binding 實驗 156 5.3.11 結果一覽總表 158 第六章 結論 159 參考文獻 161 作者自述 180rf [ 1 ] L. Pauling, J. Am. Chem. Soc. 62, 2643 (1940) [ 2 ] L. Pauling, Chem. Eng. News. 10, 1375 (1946) [ 3 ] M.W. Poljakow, J. Phys. Chem. 2, 799 (1931) [ 4 ] F.H. Dickey, Proc. Nat. Acad. Sci. 35, 227 (1949) [ 5 ] F.H. Dickey, J. Phys. Chem. 59, 659 (1955) [ 6 ] R. Curti, U. Colombo, F. Clerici, Gazz. Chim. Ital. 82, 491 (1952) [ 7 ] E.I. Klabunovskii, A.E. Agronomov, L.M. Volkova, A.A. Balandin, Izv. Akad. Nauk SSSr, Otd. Khim. Nauk 228 (1963) [ 8 ] E.I. Klabunovskii, A.E. Agronomov, Byul. Izobret. I Tovarnykh Znakov 16, 13 (1963) [ 9 ] H. Erlenmeyer, H. Bartels, Helv. Chim. Acta 47, 47 (1964) [10 ] H. Erlenmeyer, H. Bartels, Helv. Chim. Acta 49, 1621 (1966) [11 ] R.G. Haldeman, P.H. Emmett, J. Phys. Chem. 59, 1039 (1955) [12 ] G. Wulff, A. Sarhan, Angew. Chem. 84, 364 (1972) [13 ] J. Steinke, D.C. Scherrington, I.R. Dunkin, Adv. Polym. Sci. 124, 81 (1995) [14 ] G. Wulff, Angew. Chem. 107, 1958 (1995) [15 ] H. Bartels, B. Prijs, Adv. Chromatogr. 11, 115 (1974) [ 16 ] H. Bartels, J. Chromatogr. 30, 113 (1967) [ 17 ] G. Wulff, T. Gross, R. Scho¨ nfeld, Angew. Chem. Int. Ed. Engl. 36, 1962 (1997) [18 ] K. Morihara, S. Kurihara, J. Suzuki, Bull. Chem. Soc. Jpn 61, 3991 (1988) [19 ] K. Morihara, M. Kurokawa, Y. Kamata, T. Shimada, J. Chem. Soc., Chem. Commun. 358 (1992) [20 ] K. Morihara, Bull. Chem. Soc. Jpn 67, 748 (1994) [21 ] K. Morihara, M. Kurokawa, Y. Kamata, T. Shimada, J. Chem. Soc., Chem. Commun. 358 (1992) [22 ] G. G. Kaiser, J.T. Anderson, Fres. J. Anal. Chem. 342, 834 (1992) [23 ] M. Hunnius, A. Rufinska, W.F. Maie, Microporous and Mesoporous Materials 29, 389-403 (1999) [24 ] J. Heilmann, W.F. Maier, Angew. Chem. 106, 491 (1994) [25 ] W.F. Maier, W. BenMustapha, Catal. Lett. 46, 137 (1997) [26 ] W.F. Maier, F.M. Bohnen, J. Heilmann, S. Klein, H.-C. Ko, M.F. Mark, S. Thorimbert, I. Tilgner, M. Wiedorn, in J.F. Harrod, R.M. Laine ( Eds.), Applications of Organometallic Chemistry in the Preparation and Processing of Advanced Materials, NATO ASI Series, Kluwer Academic Publishers, Dordrecht, 1995, p. 27. [27 ] F.M. Bohnen, Ph.D. thesis, University at GH Essen, Essen, 1996. [28 ] C. Pinel, P. Loisil, P. Gallezot, Adv. Mater. 9, 582 (1997) [29 ] F. S. Sharon, A. David, M. Sharon, Chem. Mate. 15(19), 3607 (2003). [30 ] K. Toyoki, S. W.Lee, Analy. Chim. Acta 504(1), 1 (2004) [31 ] M. Sharon, Z. Amalya, T. Iva, M. Daniel, Analy. Chem. 76(1), 120 (2004) [32 ] F. L. Dickert, K. Halikias, O. Hayden, L. Piu, R. Sikorski, Sensors and Actuators, B: Chemical, 76(1-3), 295-298 (2001) [33 ] F. L. Dickert, P. A. Lieberzeit, O. Hayden, R. Bindeus, K. J. Mann, C. Haderspock, Materials Research Society Symposium - Proceedings 776, 37-24 (2003) [34 ] Brinker, J.; Scherer, G.; Sol-Gel Science; Academic Press; New York, 1989. [35 ] Hench, L. L.; West, J. K. Chem. Rev. 90, 33-72 (1990) [36 ] Avnir, D.; Braun, S.; Lev, O., Ottolenghi, M. Chem. Mater. 6, 1605-1614 (1994) [37 ] Lev, 0., Tsionsky,M.;Rabinovich,L.;Glezer.V.; Sampath, S.; Pankratov, I.: Gun, J. Anal. Chem. 67, 22A-30A (1995) [38 ] Avnir, D.: Brauns, S.; Lev, O.; Levy, D.; Ottolenghi, M. In; Sol-Gel Optics. Processing and Applications; Klein, L. C., Ed. Kluwer Academic Publications, Massachusetts, 1994. [39 ] Avnir, D. Acc. Chem. Res. 28, 328-334 (1995) [40 ] Woltbeis, O. vS.; Reisfeld, R.; Oehme, I. Structure and Bonding, 85, 51-98 (1996) [41 ] Lin, J.; Brown, C. W. Trends in Anal. Chem. 14(4), 200-211 (1997) [42 ] Lev, O.; Wu, Z.; Bharathi, S.; Glezer, V.; Modestov, A.; Gun, J.; Rabinovich, L.; Sampath, S. Chem. Mater. 9, 2354-2375 (1997) [43 ] Anvir, D.; Klein, L. C.; Levy, D.; Schubert, U.; Wojcik, A. B. The Chemistry of Organic Silicon Compounds, Vol. 2. Rappoport, Z. and Apeloig, Y., Eds., John Wiley & Sons, 1998, pp. 2317-2362. [44 ] Walcarius, A. Electronanalysis 10, 1217-1235 (1998) [45 ] (a) Dunn, B.; Miller, J. M.; Dave, B. C.; Valentine, J. S.; Zink, J. I. Acta Mater. 46, 737-741 (1998), (b) Lan, E. H.; Dave, B. C.; Fukuto, J. M.; Dunn, B.; Zink, J. I.; Valentine, J. S. J. Mater. Chem. 9, 45-53 (1999) [46 ] Anvir, D.; Levy, D.; Reisfeld, R. J. Phys. Chem. 88, 5956-5959 (1984) [47 ] (a)Schmidt, H. Mater. Res. Soc. Symp. Proc. 32, 327-335 (1984), (b) Schmidt, H. J. NonCrystalline Solids 73, 681-691 (1985), (c) Philipp, G.; Schmidt, H. J. Non-Crystalline Solids 63, 283-292 (1984) [48 ] Schmidt, H. J. Sol-Gel Sci. Technol. 1, 217-231 (1994) [49 ] Sanchez, C.; Ribot, F. New J. Chem. 18, 1007-1047 (1994) [50 ] Schubert, U.; Husing, N.; Lorenz. Chem. Mater. 7, 2010-2027 (1995) [51 ] Wen, J.; Wilkes, G.L. Chem. Mater. 8, 1667-1681 (1996) [52 ] Collinson, M. M. Mikrochim. Acta 129, 149-165 (1998) [53 ] Schubert, U. New. J. Chem. 18, 1049-1058 (1994) [54 ] Blum, J.; Avnir, D.; Schumann, H. Chemtech. 32-38 (1999) [55 ] Brinker, C. J.; Raman, N. K.; Logan, M. N.; Sehgal, R.; Assink, R-A.; Hua, D-W.; Ward, T.L. J. Sol-Gel Sci. Techn. 4, 117-133 (1995) [56 ] Gvishi, R.; Narang, U.; Ruland, G.; Kumar, D. N.; Prasad, P.N. Appl. Organometallic Chem. 11, 107-127 (1997) [57 ] Levy, D.; Esquivias, L. Adv. Mater. 7, 120-129 (1995) [58 ] Dunn, B.; Zink, J. I. J. Mater. Chem. 1, 903-913 (1991) [59 ] Levy, D. Chem. Mater. 9, 2666-2670 (1997) [60 ] Dunn, B.; Farrington, G. C.; Katz, B. Solid State Ionics 70/71, 3-10 (1994) [61 ] Skaarup, S.; West, K.; Zachau-Christiansen, B.; Popal, M.; Kappel, J.; Kron, J.; Eichinger, G.; Semrau, G. Electrochimica Ata 43, 1589-1592 (1998) [62 ] (a)Brinker, C.J.J. Non Cryst. Solids 100, 31-50 (1988) (b)Brinker, C. J., Scherer, G. W. In; Ultrastructure Processing of Ceramics, Glasses, and Composites. Hench, L. L. and Ulrich, D. R. Eds., John Wiley; 43-49 (1984) [63 ] Corriu, R. J. P.; Leclercq, D. Angew. Chem. Int. Ed. Engl. 35, 1420-1436 (1996) [64 ] Buckley, A. M.; Greenblatt, M. J. Chem. Ed. 71, 599-602 (1994) [65 ] Osterholtz, F. D.; Pohl, E. R. J. Adhesion Sci. Technol. 6, 127-149 (1992) [66 ] Schmidt, H.; Scholze, H.; Kaiser, A. J. Non-Crystalline Solids 63, 1-11 (1984) [67 ] Raman, N. K.; Anderson, M. T.; Brinker, C. J. Chem. Mater. 8, 1682-1701 (1996) [68 ] Kriz, D.; Ramstrom, O.; Mosbach, K. Anal. Chem. 345A-349A (1997) [69 ] Mayes A. G.; Mosbach, K. Trends Anal. Chem. 16, 321-332 (1997) [70 ] Sellergren, B. Trends Anal. Chem. 16, 310-320 (1997) [71 ] Mallik, S.; Plunkett, S. D.; Dhal, P. K.; Johnson, R. D.; Pack, D.; Shnek, D.; Arnold, F. H. New J. Chem. 18, 299-304 (1994) [72 ] Dickey, F. H. Proc. Natl. Acad. Sci, U.S.A. 35, 227-229 (1949) [73 ] Dickey, F. H. J. Phys. Chem. 59, 695-707 (1955) [74 ] Morrison, J. L.; Worsley, M.; Shaw, D. R.; Hodgson, G. W. Can. J. Chem. 37, 1986-1995 (1959) [75 ] Dai, S.; Shin, Y. S.; Barnes, C. E.; Toth, L. M. Chem. Mater. 9, 2521-2525 (1997) [76 ] Pinel, C.; Loisil, P. Gallezot, P. Adv. Mater. 9, 582-585 (1997) [77 ] Sasaki, D. Y.; Rush, D. J.; Daitch, C. E.; Alam, T. M.; Assink, R. A.; Ashley, C. S.; Brinker J. C.; Shea, K. J. In: Molecular and Ionic Recognition with Imprinted Polymers, ACS Symposium Series 703, Bartsch, R. A.; Maeda, M., Eds., 1998, pp. 312-323. [78 ] (a) Makote, R.; Collinson, M. M. Chem. Mater. 10, 2440-45 (1998) (b) Makote, R.; Collinson M. M. Chem. Comm. 3, 425 (1998) [79 ] Glad, M.; Norrlow, O.; Sellergren, B.; Siegbahn, N.; Mosbach, K. J. Chromatography 347, 11-23 (1985) [80 ] Hwang, K-O., Sasaki, T. J. Mater. Chem. 8, 215-356 (1998) [81 ] Morihara, K. In: Molecular and Ionic Recognition with Imprinted Polymers, ACS Symposium Series 703, Bartsch, R. A.; Maeda, M., Eds. 1998, pp. 300-313. [82 ] Lulka, M. F.; Chambers, J. P.; Valdes, E. R.; Thompson, R. G.; Valdes, J. J. Anal. Letters 30(13), 2301-2313(1997) [83 ] A. Katz, M. E. Davis, Nature 403, 286 (2000) [84 ] C.Y. Chen, I. Karube, Curr. Opin. Biotechnol. 3, 31 (1992) [85 ] I. Karube, Y. Nomura, Y. Arikawa, Trends Anal. Chem. 14, 295 (1995) [86 ] K.J. Shea, Trends Polym. Sci. 2, 66 (1994) [87 ] G. Wulff, Angew. Chem. Int. Ed. Engl. 34, 1812 (1995) [88 ] K. Mosbach and O. Ramstroë m, Biotechnology 14, 163 (1996) [89 ] T. Takeuchi, J. Matsui, Acta Polym. 47, 471 (1996) [90 ] C.J. Percival, S. Stanley, M. Galle, A Braithwaite, M. I. Newton, G. McHale, W. Hayes, Analy. Chem. 73(17), 4225-4228 (2001) [91 ] K. Hirayama, Y. Sakai, K. Kameoka, J Appl. Poly. Sci 81(14), 3378-3387 (2001) [92 ] S. Subrahmanyam, S. A. Piletsky, A. P. F. Turner, Sensor Review 21(4), 292-296 (2001) [93 ] K. Hirayama, Sensors and Actuators, B: Chemical 86(1), 20-25 (2002) [94 ] N. P. Moral, A. G. Mayes, Mater. Res. Soc. Symp. - Proceedings 723, 61-66 (2002) [95 ] A. Merkoi, S. Alegret, TrAC - Trends in Analytical Chemistry, 21(11), 717-725 (2002) [96 ] F. L. Dickert, P. A. Lieberzeit, S. Gazda-Miarecka, K. Halikias, R. Bindeus, Mate. Res. Soc. Symp. - Proceedings, 787, Molecularly Imprinted Materials – 2003, 71-77 (2003) [97 ] R. Shoji, T. Takeuchi, I. Kubo, Analy. Chem 75(18), 4882-4886 (2003) [98 ] G. M. Murray, G. E. Southard, Res. Soc. Symp. - Proceedings, 787, Molecularly Imprinted Materials – 2003, 61-70 (2003) [99 ] K. A. Marx, Biomacromolecules, 4(5), 1099-1120 (2003) [100 ] Y. C. Chen, Z. Wang, M. Yan, S. A. Prahl, Mate. Res. Soc. Symp. - Proceedings, 787, Molecularly Imprinted Materials – 2003, 35-39 (2003) [101 ] T. Y. Lin, C. H. Hu, T. C. Chou, Biosensors and Bioelectronics, 20(1), 75-81 (2004) [102 ] H. C. Huang, C. I. Lin, A. K. Joseph, Y. D. Lee, Journal of Chromatography A, 1027(1-2), 263-268 (2004) [103 ] M. C. Blanco-Lopez, M. J. Lobo-Castanon, A. J. Miranda-Ordieres, P. Tunon-Blanco, TrAC - Trends in Analytical Chemistry, 23(1), 36-48 (2004) [104 ] R. Levi, S. McNiven, S.A. Piletsky, A. Rachkov, S.-H. Cheong, K. Yano, I. Karube, Anal. Chem. 69, 2017 (1997) [105 ] S. McNiven, M. Kato, K. Yano, I. Karube, Anal. Chim. Acta 365, 69 (1998) [106 ] S. A. Piletsky, E.V. Piletskaya, A.V. Elgersma, K. Yano, I. Karube, Yu.P. Parhometz, A.V. El'skaya, Biosens. Bio-electron. 10, 959 (1995) [107 ] S. A. Piletsky, E.V. Piletskaya, T.L. Panasyuk, A.V. El'skaya, R. Levi, I. Karube, G. Wulff, Macromolecules 31, 2137 (1998) [108 ] S. A. Piletsky, E.V. Piletskaya, A.V. El'skaya, R. Levi, K. Yano, I. Karube, Anal. Lett. 30, 445 (1997) [109 ] S. A. Piletsky, E.V. Piletskaya, K. Yano, A. Kugimiya, A.V. Elgersma, R. Levi, U. Kahlow, T. Takeuchi, I. Karube, T.I. Panasyuk, A.V. El'skaya, Anal. Lett. 29, 157 (1996) [110 ] S. H. Cheong, S. McNiven, A. Rachkov, R. Levi, K. Yano, I. Karube, Macromolecules 30, 1317 (1997) [111 ] S. H. Cheong, A. Rachkov, J. K. Park, K. Yano, I. Karube, J. Polym. Sci. A: Polym. Chem. 36, 1725 (1998) [112 ] J. H. G. Steinke, I. R. Dunkin, D. C. Sherrington, Macromolecules 29, 407 (1996) [113 ] M. E. Cooper, B. P. Hoag and D.L. Gin, Polym. Prep. 38, 209 (1997) [114 ] D. Kriz, O. Ramstroë m, A. Svensson and K. Mosbach, Anal. Chem. 67, 2142 (1995) [115 ] F.L. Dickert, H. Besenboë ck and M. Tortschanoff, Adv. Mater. 10, 149 (1998) [116 ] P. Turkewitsch, B. Wandelt, G.D. Darling, W.S. Powell, Anal. Chem. 70, 2025 (1998) [117 ] M.F. Lulka, J.P. Chambers, E.R. Valdes, R.G. Thompson, J. J. Valdes, Anal. Lett. 30, 2301 (1997) [118 ] D. Kriz, L. I. Andersson, M. Khayyami, B. Danielsson, P. O. Larsson, K. Mosbach, Biomimetics 3, 81 (1995) [119 ] S.A. Piletsky, Y.P. Parhometz, N.V. Lavryk, T.L. Panasyuk, A.V. El'skaya, Sens. Actuators B 18(19), 629 (1994) [120 ] L.I. Andersson, A. Miyabayashi, D.J. O'Shannessy, K. Mosbach, J. Chromatogr. 516, 323 (1990) [121 ] E. Hedborg, F. Winquist, I. Lundstroë m, L.I. Andersson and K. Mosbach, Sens. Actuators A 37-38, 796 (1993) [122 ] D. Kriz, K. Mosbach, Anal. Chim. Acta 300, 71 (1995) [123 ] F.L. Dickert, P. Forth, P. Lieberzeit, M. Tortschanoff, Fresenius J. Anal. Chem. 360, 759 (1998) [124 ] A.L. Jenkins, O.M. Uy, G.M. Murray, Anal. Commun. 34221 (1997) [125 ] G. Chen, Z. Guan, C. T. Chen, L. Fu, V. Sundaresan, F.H. Arnold, Nature Biotechnol. 15, 354 (1997) [126 ] E.P.C. Lai, A. Fafara, V.A. VanderNoot, M. Kono, B. Polsky, Can. J. Chem. 76, 265 (1998) [127 ] J. Matsui, Y. Tachibana and T. Takeuchi, Anal. Commun. 35, 225 (1998) [128 ] O. Hayden, F. L. Dickert, Adv. Mater. 13(19), 1480-1483 (2001) [129 ] F. L. Dickert, O. Hayden, P. Lieberzeit, C. Haderspoeck, R. Bindeus, C. Palfinger, B. Wirl, Synthetic Metals 138(1-2), 65-69 (2003) [130 ] O. Hayden, R. Bindeus, F. L. Dickert, Science and Technology 14(11), 1876-1881 (2003) [131 ] O. Hayden, R. Bindeus, C. Haderspock, K. J. Mann, B. Wirl, F. L. Dickert, Sensors and Actuators, B: Chemical 91(1) 316-319 (2003) [132 ] M. Roederer, Cytometry 29, 328 (1997) [133 ] E. Schröck, Science 273, 494 (1996) [134 ] A. Waggoner, Methods Enzymol. 246, 362 (1995) [135 ] Attempts with energy transfer-sensitized probes and phycobiliprotein-conjugated dye molecules have been somewhat successful, but the efficiency of energy transfer is lower than the intrinsic excitation and emission of a dye molecule [ J. Y. Ju, C. C. Ruan, C. W. Fuller, A. N. Glazer, R. A. Mathies, Proc. Natl. Acad. Sci. U.S.A. 92, 4347 (1995); M. Roederer, A. B. Kantor, D. R. Parks, L. A. Herzenberg, Cytometry 24, 191 (1996) ]. [136 ] A. P. Alivisatos, J. Phys. Chem. 100, 13226 (1996) [137 ] S. Miltenyi, W. Muller, W. Weichel, A. Radbruch, Cytometry 11, 231 (1990) [138 ] P. M. Lackie, Histochem. Cell Biol. 106, 9 (1996) [139 ] R. Hermann, P. Walther, M. Muller, ibid., p. 31 [140 ] R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, Science 277, 1078 (1997) [141 ] A. P. Alivisatos, Nature 382, 609 (1996); C. A. Mirkin, R. L. Letsinger, R.C. Mucic, J. J. Storhoff, ibid., p. 607 [142 ] H. B. Beverloo, A. van Schadewijk, S. van Gelderen-Boele, H. J. Tanke, Cytometry 11, 784 (1990) [143 ] A. Eychmuller, A. Mews, H. Weller, Chem. Phys. Lett. 208, 59 (1993) [144 ] M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996) [145 ] X. G. Peng, M. C. Schlamp, A. V. Kadavanich, A. P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997) [146 ] C. B. Murray, D. J. Norris, M. G. Bawendi, ibid. 115, 8706 (1993) [147 ] X. G. Peng, J. Wickham, A. P. Alivisatos, ibid. 120, 5343 (1998) [148 ] L. M. Lizmarzan, M. Giersig, P. Mulvaney, Langmuir 12, 4329 (1996) [149 ] M. A. CorreaDuarte, M. Giersig, L. M. LizMarzan, Chem. Phys. Lett. 286, 497 (1998) [150 ] M. Nirmal, Nature 383, 802 (1996) [151 ] For recent books, see L.J.Kricka, Ed., Nonisotopic Probing, Blotting, and Sequencing (Academic Press, New York, 1995);. P. G. Issac, Ed., Protocols for Nucleic Acid Analysis by Nonradioactive Probes (Humana, Totowa, NJ, 1994); E.P.Diamandis and T. K. Christopoulos, Eds., Immunoassay (Academic Press, New York, 1996) [152 ] A.P.Alivisatos, Science 271, 933 (1996); J. Phys. Chem. 100, 13226 (1996) [153 ] L. E. Brus, Appl. Phys. A 53, 465 (1991); W. L. Wilson, P. F. Szajowski, L. E. Brus, Science 262, 1242 (1993) [154 ] A. Henglein, Chem. Rev. 89, 1861 (1989); H. Weller, Angew. Chem. Int. Ed. Engl. 32, 41 (1993) [155 ] C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993) [156 ] J. E. Bowen Katari, V. L. Colvin, A. P. Alivisatos, J. Phys. Chem. 98, 4109 (1994) [157 ] M. A. Hines and P. Guyot-Sionnest, ibid. 100, 468 (1996) [158 ] C. B. Murray, C. R. Kagan, M. G. Bawendi, Science 270, 1335 (1995) [159 ] R. P. Andres, ibid. 273, 1690 (1996) [160 ] J. R. Heath, J. Phys. Chem. 100, 3144 (1996); C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, J. R. Heath, Science 277, 1978 (1997) [161 ] C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, Nature 382, 607 (1996) [162 ] A. P.Alivisatos, ibid., p. 609 [163 ] V. L. Colvin, M. C. Schlamp, A. P. Alivisatos, ibid. 370, 354 (1994) [164 ] B. O. Dabbousi, M. G. Bawendi, O. Onotsuka, M. F. Rubner, Appl. Phys. Lett. 66, 1316 (1995) [165 ] B. O. Dabbousi, J. Phys. Chem. B 101, 9463 (1997) [166 ] G. T.Hermanson, Bioconjugate Techniques (Academic Press, New York, 1996) [167 ] W. C.W.Chan and S. Nie, unpublished data. [168 ] R. M. Dickson, A. B. Cubitt, R. Y. Tsien, W. E. Moerner, Nature 388, 355 (1997) [169 ] H. P. Lu and X. X. Xie, ibid. 385, 143 (1997) [170 ] D. A. Vanden, Science 277, 1074 (1997) [171 ] M. Nirmal, Nature 383, 802 (1996) ; S. A. Empedocles, D. J. Norris, M. G. Bawendi, Phys. Rev. Lett. 77, 3873 (1996) [172 ] C. I. Lin, A. K. Joseph, C. K. Chang, Y. C. Wang, Y. D. Lee, Analytica Chimica Acta 481, 175–180 (2003) [173 ] C. I. Lin, A. K. Joseph, C. K. Chang, Y. D. Lee, Journal of Chromatograpy A 1027, 259–262 (2004)id NH0925063005 sid 887617 cfn 0 / id NH0925063006 auc 姚少凌 tic 造血幹細胞體外增殖培養技術與應用 adc 朱一民 ty 博士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 113 kwc 造血幹細胞 kwc 臍帶血 kwc 無血清培養基 kwc 體外增殖 abc 本實驗的主要目的是在開發適合臍帶血中造血幹細胞的體外增殖無血清培養基,希望克服臍帶血在臨床移植應用上數量過少的缺點。實驗首先將新生兒的臍帶血進行分離與純化的步驟,可以得到單核細胞(mononuclear cell,MNC)與高均一性的CD133+ cell。接著利用2階因子的實驗設計方法來篩選造血幹細胞體外增殖所需要的細胞激素與血清取代物組成,並搭配著陡升路徑的實驗來找尋細胞激素與血清取代物的最適化濃度,之後再改變各種不同的基礎培養基,最後開發出兩種適合造血幹細胞增殖的無血清培養基,分別為SF-HSC與SF-MNC。SF-HSC的組成為Iscove’s modified Dulbecco’s medium (IMDM)內添加細胞激素配方CC-S6 (8.46 ng/ml TPO、4.09 ng/ml IL-3、15 ng/ml SCF、6.73 ng/ml FL、0.78 ng/ml IL-6 、3.17 ng/ml G-CSF 與1.30 ng/ml GM-CSF)與血清取代物配方BIT2 (1.5 g/l BSA、4.39 μg/ml insulin、60μg/ml transferrin與25.94 μM 2-ME)。CD133+ cell在SF-HSC中批次培養7天可達最佳的增殖效果,white blood cell (WBC)、CD34+ cell、CD34+CD38- cell、colony-forming unit cell (CFU) cell與long-term culture-initiating cell (LTC-IC)的增殖倍數分別為64.2倍、27.4倍、72.4倍、22.2倍與72.4倍。SF-MNC的組成為IMDM內添加細胞激素配方CC-S9 (5.53 ng/ml TPO、2.03 ng/ml IL-3、16 ng/ml SCF、4.43 ng/ml FL、2.36 ng/ml IL-6 、1.91 ng/ml G-CSF 、1.56 ng/ml GM-CSF、2.64 ng/ml SCGF與0.69 ng/ml IL-11)與血清取代物配方BIT (4 g/l BSA、0.71 μg/ml insulin與27.81μg/ml transferrin)。MNC在SF-MNC中批次培養6天可達最佳的增殖效果,WBC、CD34+ cell、CD34+CD38- cell、CFU cell與LTC-IC的增殖倍數分別為1.4倍、30.4倍、63.9倍、10.7倍與2.8倍。增殖後的細胞都具有端粒酶活性。 tc 目 錄 第一章 研究動機與目的 1 1.1 楔子 1.2 研究動機與目的 1.3 研究架構 1 2 3 第二章 文獻回顧 5 2.1幹細胞(stem cell)簡介 5 2.1.1 幹細胞研究發展的起源 5 2.1.2 何謂幹細胞 6 2.1.3 幹細胞的命運(fate) 7 2.1.4 幹細胞的分類 7 2.1.5 幹細胞的應用與前景 9 2.1.6 幹細胞的來源 11 2.2 造血幹細胞(hematopoietic stem cell, HSC)簡介 17 2.2.1 何謂造血幹細胞與造血系統 17 2.2.2 造血幹細胞的起源 19 2.2.3 造血幹細胞的鑑定 20 2.2.4 造血幹細胞的臨床應用與未來發展 22 2.2.5 造血幹細胞在臨床應用上的瓶頸 24 2.3 造血幹細胞的體外增殖( ex vivo expansion) 25 2.3.1 造血幹細胞體外增殖的瓶頸 25 2.3.2 造血幹細胞體外增殖培養的方法 26 2.3.3 細胞激素的種類 27 2.3.4血清取代物的種類 29 2.4 造血幹細胞的檢測方法 32 2.5 實驗設計與統計分析的方法 34 第三章 實驗步驟與方法 36 3.1 培養動物細胞之基本技術 36 3.2 人類臍帶血的收集 37 3.3 紅血球的去除與單核細胞(mononuclear cell, MNC)的獲得 37 3.4 CD34+ cell的富集 38 3.5 細胞培養(cell culture) 40 3.6 細胞濃度與存活率計算 40 3.7 細胞群落形成單位分析(CFU assay) 41 3.8原始細胞的長期培養分析(LTC-IC assay) 42 3.8.1 Feeder layer的製備 42 3.8.2 LTC-IC assay 43 3.9 細胞表面抗原分析(cell surface antigen analysis) 43 3.9.1 螢光抗體接合步驟 43 3.9.2 FACS Calibur analyzer分析步驟 44 3.10 端粒酶活性相關分析 45 3.10.1 端粒酶RT-PCR分析(telomerase RT-PCR analysis) 45 3.10.1.1 RNA萃取 45 3.10.1.2 RT-PCR amplification 46 3.10.1.3 DNA電泳分析 47 3.10.2 端粒酶活性分析(telomerase activity analysis) 47 3.10.2.1 蛋白質萃取 47 3.10.2.2 PCR (polymerase chain reaction) amplification 48 3.10.2.3 Page analysis 48 3.11 細胞分泌激素分析(secretion cytokine analysis) 49 3.12 實驗設計與統計分析 50 第四章 實驗材料與設備 51 4.1 實驗材料與儀器 51 4.2 實驗藥品 52 第五章 結果與討論 54 5.1 臍帶血特性分析 56 5.2 開發CD133+ cell的無血清培養基 56 5.2.1 在含血清的培養基中篩選細胞激素並最適化其濃度 56 5.2.2 在IMDM+TISF的培養基中篩選血清取代物 並最適化其濃度 59 5.2.3 在IMDM+BIT2的培養基中再次篩選細胞激素 並最適化其濃度 62 5.2.4 BIT2與CC-S6在各種基礎與商業培養基中的比較 64 5.2.5 造血幹細胞在SF-HSC中的生長曲線 66 5.2.6 SF-HSC培養基與IMDM+10% FBS+TISF培養基 的比較 67 5.2.7 造血幹細胞在SF-HSC中長期的培養 67 5.3開發MNC的無血清培養基 68 5.3.1 在IMDM+CC-S9培養基中篩選血清取代物並最適化其濃度 68 5.3.2 在IMDM+BIT的培養基中篩選細胞激素並最適化其濃度 70 5.3.3 BIT與CC-S9在各種基礎與商業培養基中的比較 72 5.3.4 MNC在SF-MNC中的生長曲線 74 5.3.5 MNC在SF-MNC中長期的培養(long-term culture) 75 5.4 端粒酶活性分析 76 5.5 在SF-HSC與SF-MNC中培養後的細胞所分泌的細胞激素 77 5.6 Scale-up 79 第六章 結論與未來展望 101 6.1 結論 101 6.2 未來展望 102 第七章 參考文獻 104 附錄一 作者介紹 112 附錄二 著作 113 圖 目 錄 圖1.1 研究架構與流程 4 圖2.1 胚胎發育的過程 9 圖2.2 造血幹細胞分化的途徑 18 圖3.1 buffy coat cells經過Ficoll-Paque分離步驟後的結果 38 圖3.2 Magnetic column與Miltenyi VarioMACS device 39 圖3.3 群落形成培養結果 41 圖3.4 FACS Calibur analyzer 45 圖5.1 臍帶血的特性與其中所含的細胞 81 圖5.2 臍帶血中(A) MNC與(B) CD133+ cell的表面抗原分析 81 圖5.3 在IMDM+10% FBS中4種細胞激素的陡升路徑及結果 82 圖5.4 在IMDM+TISF中4種血清取代物的陡升路徑及結果 82 圖5.5 在IMDM+BIT2中7種細胞激素的陡升路徑及結果 83 圖5.6在SF-HSC中WBC與CD34+ cell的生長曲線 83 圖5.7在SF-HSC與含血清培養基中WBC與CD34+ cell 的生長曲線 84 圖5.8在SF-HSC中WBC與CD34+ cell長期培養的結果 84 圖5.9在IMDM+CC-S9中3種血清取代物的陡升路徑及結果 85 圖5.10 在IMDM+BIT中9種細胞激素的陡升路徑及結果 85 圖5.11 在SF-MNC中WBC與CD34+ cell的生長曲線 86 圖5.12 在SF-MNC中WBC與CD34+ cell長期培養的結果 86 圖5.13 培養前與培養後細胞的端粒酶基因的RT-PCR分析 87 圖5.14 培養前與培養後細胞的端粒酶活性分析 88 圖5.15 CD133+ cell經過SF-HSC七天培養後所分泌的細胞激素 89 圖5.16 MNC經過SF-MNC培養六天後所分泌的細胞激素 90 圖5.17 Scale-up所用的各種不同培養器皿 91 圖5.18 CD133+ cell在24-well plate、FEP Bag、T-25 flask 以及T-75 flask中,以SF-HSC培養七天後的結果 92 圖5.19 MNC在24-well plate、FEP Bag、T-25 flask以及 T-75 flask中,以SF-MNC培養七天後的結果 92 表 目 錄 表2.1 幹細胞移植的案例 13 表2.2 人類與老鼠造血幹細胞的特殊表面抗原 21 表5.1 在IMDM+10% FBS中篩選9種細胞激素的29-5實驗 設計矩陣及結果 93 表5.2在IMDM+10% FBS中篩選4種細胞激素的24-1實驗 設計矩陣及結果 93 表5.3在IMDM+10% FBS中4種細胞激素的陡升路徑及結果 94 表5.4 在IMDM+TISF中篩選8種血清取代物的28-4實驗 設計矩陣及結果 94 表5.5在IMDM+TISF中篩選4種血清取代物的24實驗 設計矩陣及結果 95 表5.6在IMDM+TISF中4種血清取代物的陡升路徑及結果 95 表5.7 在IMDM+BIT2中篩選7種細胞激素的27-3實驗設計 矩陣及結果 96 表5.8在IMDM+BIT2中7種細胞激素的陡升路徑及結果 96 表5.9 BIT2與CC-S6在不同基礎與商業培養基中的比較 97 表5.10 CD133+ cell在SF-HSC與MNC在SF-MNC批次 培養前後的細胞表現 97 表5.11在IMDM+CC-S9中篩選4種血清取代物的24實驗 設計矩陣及結果 98 表5.12在IMDM+CC-S9中3種血清取代物的陡升路徑及結果 98 表5.13在IMDM+BIT中篩選10種細胞激素的210-6實驗 設計矩陣及結果 99 表5.14在IMDM+BIT中9種細胞激素的陡升路徑及結果 99 表5.15 BIT與CC-S9在不同基礎與商業培養基中的比較 100rf 參考文獻 [1 ] McNiece I, Briddell R. Ex vivo expansion of hematopoietic progenitor cells and mature cells. Exp Hematol 2001;29:3-11. [2 ] McAdams TA, Miller WM, Papoutsakis ET. Hematopoietic cell culture therapies (part I): cell culture considerations. Trends biotechnol 1996;14:341-349. [3 ] Thomas ED, and Clift RA. Allogenic transplantation for chronic myeloid leukemia. Blackwell Sci 1999;807-815. [4 ] Negrin RS, Atkinson K, Leemhuis T, Hanania E, Juttner C, Tierney K, Hu WW, Johnston LJ, Shizurn JA, Stockerl-Goldstein KE, Blume KG, Weissman IL, Bower S, Baynes R, Dansey R, Karanes C, Peters W, and Klein J. Transplantation of highly purified CD34+Thy-1+ henatopoietic stem cells on patients with metastatic breast cancer. Biol. Blood Marrow Transplant 2000;6:262-271. [5 ] Childs R, Chernoff A, Contentin N, Bahceci E, Schrump D, Leitman S, Read EJ, Tisdale J, Dunbar C, Linehan WM, Young NS, and Barrett AJ. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N Engl J Med 2000;343:750-758. [6 ] Joshi SS, Tarantolo SR, Kuszynski CA, and Kessinger A. Antitumor therapeutic potential of activated human umbilical cord blood cells against leukemia and breast cancer. Cli. Cancer Res 2000;6:4351-4358. [7 ] Lin SJ, Yang MH, Chao HC, Kuo ML, and Huang JL. Effect of interleukin-15 and Flt3-ligand on natural killer cell expansion and activation: umbilical cord vs. adult peripheral blood mononuclear cells. Pediatr Allergy Immunol 2000;11:168-174. [8 ] Wyrsch A, Carbonare VD, Jansen W, Chklovskaia E, Nissen C, Surbek D, Holfgang W, Tichelli A, and Wodnar-Filipowicz A. Umbilical cord blood from preterm human fetuses is rich in committed and primitive hematopoietic progenitors with high proliferative and self-renewal capacity. Exp Hematol 1999;27:1338-1345. [9 ] Gilmore GL, DePasquale DK, Lister J, Shadduck RK. Ex vivo expansion of human umbilical cord blood and peripheral blood CD34+ hematopoietic stem cells. Exp Hematol 2000;28:1297-1305. [10 ] Yonemura Y, Ku H, Lyman SD, and Ogawa M. In vitro expansion of hematopoietic progenitors and maintenance of stem cells: Comparsion between Flt3/Flt-2 ligand and KIT ligand. Blood 1997;89:1915-1921. [11 ] McAdams TA, Winter JN, Miller WM, Papoutsakis ET. Hematopoietic cell culture therapies (part II): clinical aspects and applications. Trends biotechnol 1996;14:388-396. [12 ] Bloom FE. Breakthroughs. Science 1999;286:2267. [13 ] Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Dovovan PJ, Blumanthal PD, Huggins GR, and Gearhardt JD. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl. Acad. Sci. USA.1998;95:13726-13731. [14 ] Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, and Jones JM. Embryonic stem cell lines derived from human blastocytes. Science 1998;282:1145-1147. [15 ] Ziegler BL, Valtieri M, and Porada GA. KDR receptor: A key marker defining hematopoietic stem cells. Science 1999;285:1553-1558. [16 ] Yin AH, Miraglia S, Zanjani ED, Porada GA, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997;90:5002-5012. [17 ] Moore KA, Ema H, Lemischka IR. In vitro maintenance of highly purified, transplantable hematopoietic stem cells. Blood 1997; 89:4337-4347. [18 ] Shih CC, Hu M, Hu J, Medeiros J, Forman SJ. Long-term ex vivo maintenance and expansion of transplantable human hematopoietic stem cells. Blood 1999;94:1623-1636. [19 ] Danet GH, Lee HW, Luongo JL, Simon MC, Bonnet DA. Dissociation between stem cell phenotype and NOD/SCID repopulating activity in human peripheral blood CD34+ cells after ex vivo expansion. Exp Hematol 2001;29:1465-1473. [20 ] Fuchs E, and Segre JA. Stem cell: a new lease on life. Cell 2000;100:143-155. [21 ] Weissman IL. Stem cell: units of development, units of regeneration, and units in evolution. Cell 2000;100:157-168. [22 ] Jackson K, Majka SM, and Wang H. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001;107:1-8. [23 ] Thomson JA, Eldor JI, and Shapiro SS. Embryonic stem cell lines derived from human balstocysts. Science 1998;282:1145-1147. [24 ] Watt FW, and Hogan BL. Out of eden: stem cells and their niches. Science 2000;287:1427-1430. [25 ] http://www.nih.gov/news/stemcell/primer.htm [26 ] 黃效民. Research and application of human stem cell. 食品工業 2001;33:1-8. [27 ] Mckay R. Stem cells-hype and hope. Nature 2000;406:361-364. [28 ] Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, and Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001;7:211-228. [29 ] Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, and Sharkis SJ. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 2001;105:369-377. [30 ] Cutler C, and Antin JH. Peripheral blood stem cells for allogeneic transplantation: a review. Stem Cells 2001;19:1108-117. [31 ] Chang CC. Cord blood stem cell transplantation- facts behind the media hype. Clinician Rev 1998;8:67-70. [32 ] Guzman PF, Rodriguez MG, Mayani H. In vitro proliferation, expansion, and differentiation of a CD34+ cell-enriched hematopoietic cell population from human umbilical cord blood in response to recombinant cytokines. Arch Med Res 2002;33:107-114. [33 ] Till JE, and McCullough EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 1961;14:213-222. [34 ] 斐雪濤主編. 幹細胞技術。台灣;五南圖書出版股份有限公司,2003年1月。 [35 ] Baum CM, Weissman IL, Tsukamoto AS, Buckle AM, and Peault B. Isolation of a candidate human hematopoietic stem-cell population. Proc. Natl. Acad. Sci. USA 1992;89:2804-2808. [36 ] Spangrude GJ, Heimfeld S, and Weissman IL. Purification and characteristics of murine hematopoieitc stem cells. Science 1988;241:58-62. [37 ] Whetton AD, and Graham GJ. Homing and mobilization in the stem cell niche. Trends Cell Biol 1999;9:233-238. [38 ] Bhatia M. AC133 expression in human stem cells. Leukemia 2001;15: 1685-1688. [39 ] DeWynter EA, Buck D, Hart C, Heywood R, Coutinho LH, Clayton A, Rafferty JA, Burt D, Guenechea G, Bueren JA, Gagen D, Fairbairn JF, Lord BI, Testa NG.. CD34+AC133+ cells isolated from cord blood are highly enriched in long-term culture-initiating cells, NOD/SCID-repopulating cells and dendritic cell progenitors. Stem Cells 1998;16:387-396. [40 ] Schedling S, Kratz-Alber K, Meiser B, Brugger W, and Kanz L. Ex vivo expansion of hematopoietic progenitor cells for clinical use. Semin Hematol 1998;35:232-240. [41 ] Von Kalle C, Glimm H, Schulz G, Mertelsmann R, and Henschlker R. New developments in hematopoietic stem cell expansion. Curr Opin Hematol 1998;5:79-86. [42 ] Conrad PD, and Emerson SG.. Ex vivo expansion of hematopoietic cells from umbilical cord blood for clinical transplantation. J Leukoc Biol 1998;64:147-155. [43 ] Laliuppa JA, Papoutsakis ET, and Miller WM. Ex vivo expansion of hematopoietic stem and progenitor cells for transplantation. Cancer Treat Res 1997;77:159-186. [44 ] Hoffman R. Progress in the development of systems for in vitro expansion of human hematopoietic stem cells. Curr Opin Hematol 1999;6:184-191. [45 ] Thomas ED, and Clift RA. Allogenic transplantation for chronic myeloid leukemia. Blackwell Sci 1999:807-815. [46 ] Bernat S, Enrique R, Genoveva B, Trinidad LQ, Juan R, and Franz M. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in Streptozotocin-induced diabetic mice. Diabetes 2000;49:157-162. [47 ] Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, and Mckay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 2001;292:1389-1394. [48 ] Prosper F, Vanoverbeke K, Stroncek D, and Verfaillie CM. Primitive long-term culture initiating cells (LTC-ICs) in granulocyte colony-stimulating factor mobilized peripheral blood progenitor cells have similar potential for ex vivo expansion as primitive LTC-ICs in steady state bone marrow. Blood 1997;89:3991-3997. [49 ] Shih CC, Hu M, Hu J, Weng Y, Yazaki PJ, Medeiros J, Forman SJ. A secreted and LIF-mediated stromal cell-derived activity that promotes ex vivo expansion of human hematopoietic stem cells. Blood 2000;95:1957-1966. [50 ] Collins PC, Nielsen LK, Wong CK, Papoutsakis ET, and Miller WM. Real-time method for determining the colony-forming cell content of human hematopoietic cell culture. Biotech Bioeng 1997;55:693-700. [51 ] Reems JA, and Torok-Storb B. Cell cycle and functional differences between CD34+/CD34hi and CD34+/CD38lo human marrow cells after in vitro cytokine exposure. Blood 1995;85:1480-1487. [52 ] Traycoff CM, Orazi A, Ladd AC, Rice S, McMahel J, and Srour EF. Proliferation-induced decline of primitive hematopoietic progenitor cell activity is coupled with an increase in apoptosis of ex vivo expanded CD34+ cells. Exp Hematol 1998;26:53-62. [53 ] Peters SO, Kittler ELM, Ramshaw HS, and Quesenberry PJ. In vitro expanded murine hematopoietic progenitor cells entering active cell cycling acquire an engraftment defect in irradiated hosts. Exp Hematol 1995;23:795. [54 ] Traycoff CM, Cornetta K, Yoder MC, Davidson A, and Srour EF. Ex vivo expansion of murine hematopoietic progenitor cells generates classes of expanded cells possessing varying levels of bone marrow repopulating potentials. Exp Hematol 1996;24:299-306. [55 ] Gaellagher JT. Influence of interleukin-3 and other growth factors on alpha4-betal integrim-mediaated adhesion and migration of human hematopoietic progenitor. Blood 1997;90:1858-1866. [56 ] Prosper F, Stroncek D, McCarthy JB, and Verfaillie CM. Mobilization and homing of peripheral blood progenitors in related to reversible downregulation of alpha 4-beta 1 integrin expression and function. J Clin Invest 1998;101:2456-2467. [57 ] Levesque JP, Leavesley DI, Niutta S, Vadas M, and Simmons PJ. Cytokines increase human hematopoietic cell adhesiveness by activation of very late antigen-4 and LVA-5 integrins. J Exp Med 1995;181:1805-1815. [58 ] Peters SO, Kittler ELW, Ramshaw HS, and Quesenberry PJ. Ex vivo expansion of murine marrow cells with IL-3, IL-6, IL-11, and stem cell factor leads to impaired engraftment in irradiated hosts. Blood 1996;87:30-37. [59 ] Shah AJ, Smorgorzewska EM, Hannum C, and Crooks GM. Flt3 ligand induces proliferation of quiescent human bone marrow CD34+CD38- cells and maintains progenitor cells in vitro. Blood 1996;87:3563-3570. [60 ] Luens KM, Travis MA, Chen BP, Hill BL, Scollay R and Murray LJ. Thrombopoietin, kit ligand, and flt2/flt3 ligand together induce increase numbers of primitive hematopoietic progenitors from human CD34+thy-1+lin- cells with preserved ability to engraft SCID-Hu bone. Blood 1998;91:1206-1215. [61 ] Verfaillie CM, Catanzarro PM, and Li WN. Macrophage inflammatory protein 1 alpha, interleukin 3 nad diffusible marrow stromal factors maintain human hematopoietic stem cells for at least eight weeks in vitro. J Exp Med 1994;179:643-649. [62 ] Audet J, Zandstra PW, Eaves CJ, and Piret JM. Advances in hematopoietic stem cell culture. Biochem Eng 1998;9:146-151. [63 ] Sandstrom CE, Miller WM, and Papoutsakis ET. Review: Serum-free media for cultures of primitive and mature hematopoietic cells. Biotech Bioeng 1994;43: 706-733. [64 ] Mobest D, Mertelsmann R, and Henschler R. Serum-free ex vivo expansion of CD34+ hematopoietic progenitor cells. Biotech Bioeng 1998;60:341-347. [65 ] Koller MR, Maher RJ, Manchel I, Oxender M, Smith AK. Alternatives to animal sera for human bone marrow cell expansion: Human serum and serum-free media. J Hematotherapy 1998;7:413-423. [66 ] Glassy MC, Tharaken JP, and Chaau PC. Serum-free media in hybridoma culture and monoclonal antibody production. Biotech Bioeng;1988;32:1015-1028. [67 ] Lebkowski JS, Schain LR, and Okarma TB. Serum-free culture of hematopoietic stem cells: a review. Stem Cells 1995;13:607-612. [68 ] Bonner WA, Hulett HR, Sweet RG, and Herzenberg LA. Fluorescence activated cell sorting. Rev Sci instrum 1972,43:404-409. [69 ] Herzenberg LA, and De Rosa SC. Monoclonalantibodies and the FACS: complementary tools for immunobiology and medicine. Immunol Today 2000;383-390. [70 ] Sutherland DR, Anderson L, Keeney M, Nayar R, Chin YI. The ISHAGE guidelines for CD34+ cell determination by flow cytometry. J Hematotherapy 1996;5:231-238. [71 ] Liu CH, Liao CC. Medium optimization for L-phenylalanine production by tryphophan auxotroph of Corynebacterium glutamicum. Biotechnol letter 1994;16:801-6. [72 ] Liu CH, Chu IM, Hwang SM. Factorial designs combined with the steepest ascent method to optimize serum-free media for CHO cells. Enzyme Microb Technol 2001;28:314-21. [73 ] Chen KC, Lee TC, Houng JY. Search method for the optimal medium for the production of lactase by Kluyveromyces fragilis. Enzyme Microb Technol 1992;14:659-64. [74 ] Chang YN, Huang JC, Lee CC, Shih IL, Tzeng YM. Use of response surface methodology to optimize culture medium for production of lovastatin by Monascus ruber. Enzyme Microb Technol 2002;30:889-94. [75 ] Box GEP, Hunter WG, Hunter JS. Fractional factorial design at two levels. In: Statistics for experimenters. New York: John Wiley & Sons, 1978. p.374-418. [76 ] Roβmanith T, Schroder B, Bug G, Muller P, Klenner T, Knaus R, Hoelzer D, Ottmann OG. Interleukin 3 improves the ex vivo expansion of primitive human cord blood progenitor cells and maintains the engraftment potential of SCID repopulating cells. Stem Cells 2001;19:313-320. [77 ] Denning-Kendall P, Singha S, Bradley B, Hows J. Cytokine expansion culture of cord blood CD34+ cells induces marked and sustained changes in adhesion receptor and CXCR4 expressions. Stem Cells 2003;21:61-70. [78 ] Ramsfjell V, Bryder D, Bjorgvinsdottir H, Kornfalt S, Nilsson L, Borge OJ, Jacobsen SEW. Distinct requirements for optimal growth and in vitro expansion of human CD34+CD38- bone marrow long-term culture-initiating cells (LTC-IC), extended LTC-IC, and murine in vivo long-term reconstituting stem cells. Blood 1999;94:4093-4102. [79 ] LaIuppa JA, Papoutsakis ET, Miller WM. Evaluation of cytokines for expansion of the megakaryocyte and granulocyte lineages. Stem Cells 1997;15:198-206. [80 ] Zandstra PW, Conneally E, Petzer AL, and Piret JM, Eaves CJ. Cytokines manipulation of primitive human hematopoietic cell self-renewal. Proc Natl Acad Sci USA 1997;94:4698-4703. [81 ] Dravid G, Rao GA. Ex vivo expansion of stem cells from umbilical cord blood: expression of cell adhesion molecules. Stem Cells 2002;20:183-189. [82 ] Sandstrom CE, Collins PC, McAdams TA, Bender JG, Papoutskis ET, Miller WM. Comparison of whole serum-deprived media for ex vivo expansion of hematopoietic progenitor cells from cord blood and mobilized peripheral blood mononuclear cells. J Hematothr 1996;5:461-473. [83 ] Paquette RL, Gonzales E, Yoshimura R, et al. Ex vivo expansion and differentiation of unselected peripheral blood progenitor cells in serum-free media. J Hematother 1998;6:481-491. [84 ] Fietz T, Berdel WE, Rieder H, Reufi B, Hopp H, Thiel E, Knauf WU. Cultureing human umbilical cord blood: a comparison of mononuclear vs CD34+ selected cells. Bone Marrow Transplant 1999;11:1109-1115. [85 ] Yamaguchi M, Hirayama F, Murahashi H, et al. Ex vivo expansion of human UC blood primitive hematopoietic progenitors and transplantable stem cells using human primary BM stromal cells and human AB serum. Cytotherapy 2002;2:109-118. [86 ] Porreca E, Sergi R, Baccante G, et al. Peripheral blood mononuclear cell production of interleukin-8 and IL-8-dependent neutrophil function in hypercholesterolemic patients. Atherosclerosis 1999;146:345-350. [87 ] Honda J, Okubo Y, Kusaba M, Kumagai M, et al. Fosfomycin (FOM: 1R-2S-epoxypropylphosphonic acid) suppress the production of IL-8 from monocytes via the suppression of neutrophil function. Immunopharmacology 1998;39:149-155. [88 ] Okamoto S, Nomura H, Matsushima K. Function, molecular structure and gene expression of IL-8. Nippon Rinsho 1992;50:1816-1820. [89 ] Lau EK, Paavola CD, Johnson Z, et al. Identification of the glycosaminoglycan binding site of the CC chemokine, MCP-1: implications for structure and function in vivo. J. Biol. Chem. 2004;279:22294-22305. [90 ] Kalayci O, Sonna LA, Woodruff PG, et al. Monocyte chemotactic protein-4 (MCP-4; CCL-13): a biomaker of asthma. J. Asthma. 2004;41:27-33. [91 ] Berkhout TA, Sarau HM, Moores K, et al. Cloning, in vitro expression, and function characterization of a novel human CC chemokine of the monocyte chemotactic protein (MCP) family (MCP-4) that binds and signals through the CC chemokine receptor 2B. The journal of biological chemistry 1997;272:16404-16413. [92 ] Coulombe B, Ponton A, Kerbel RS and Skup D. Structure and function of murine TIMP gene. Matrix Suppl. 1992;1:269-274. [93 ] Wei S, Xie Z, Filenova E, and Brew K. Dorsophila TIMP is a potent inhibitor MMPs and TACE: similarities in structure and function to TIMP-3. Biochemistry 2003;42:12200-12207. [94 ] Donnini S, Morbidelli L, Taraboletti G, and Ziche M. ERK1-2 and p38 MAPK regulate MMP/TIMP balance and function in response to thrombospondin-1 fragments in the microvascular endothelium. Life Sci. 2004;74:2975-2985. [95 ] Hieshima K, Imai T, Baba M, et al. A novel human CC chemokine PARC that is most homologous to macrophage-inflammatory protein-1 alpha/LD78 alpha and chemotactic for T lymphocytes, but not for monocutes. J. Immunol. 1997;159:1140-1149. [96 ] Tachimoto H, Kikuchi M, Hudson SA, et al. Eotaxin-2 alters eosinophil integrin function via mitogen-activated protein kinase. Am. J. Respir. Cell mol. Boil. 2002;26:645-649. [97 ] Mitchell RA, Liao H, Chesney J, et al. Macrophage migration inhibitory factor (MIF) sustains macrophage proinflammatory function by inhibiting p53: regulatory role in the innate immune response. Proc. Natl. Acad. Sci. USA 2002;99:345-350. [98 ] Alberu J, Richaud-patin Y, Vazquez-Lavista LG, et al. In vivo IL-10 and TGF-beta production by PBMC from long-term kidney transplant recipients with excellent graft function: a possible feedback mechanism participating in immunological stability. Clin. Transplant. 2004;18:174-178. [99 ] Horwitz DA, Zheng SG, and Gray JD. The role of the combination of IL-2 and TGF-beta or IL-10 in the generation and function of CD4+CD25+ and CD8+ regulatory T cell subsets. J. Leukoc. Biol. 2003;74:471-478. [100 ] Levings MK, Bacchetta R, Schilz U, and Roncarolo MG. The role of IL-10 and TGF-beta in the differentiation and effector function of T regulatory cells. Int. Arch. Allergy. Immunol. 2002;129:263-276.id NH0925063006 sid 897601 cfn 0 / id NH0925063007 auc 梁晃千 tic 去細胞生物組織做為組織工程人工細胞外間質的研究 adc 宋信文 ty 博士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 149 kwc 去細胞生物組織 kwc 組織工程 kwc 人工細胞外間質 kwc genipin abc 摘要 tc 目 錄 內容 頁數 摘要 I 英文摘要 IV 目錄 VIII 圖索引 XII 表索引 XX 第一章 緒論 1.1 組織工程 1 1.2 組織工程的背景 1 1.3 人體組織與器官的基本結構 1 1.4 組織工程三要素 2 1.5 天然生物組織材料 5 1.6 交聯劑 7 1.7 去細胞生物組織 8 1.8 人工補綴片 9 1.9 目前組織工程遇到的困難 9 1.10 新型促進血管生長因子(ginsenoside Rg1) 10 1.11 醣胺素在組織工程上的應用 11 1.12 免疫反應 12 1.13 研究動機與目的 13 第二章 去細胞牛心包膜的製備 2.1 研究目的 16 2.2 實驗材料與方法 16 2.2.1 去細胞牛心包膜的製備 16 2.2.2 定性分析 17 2.2.3 定量分析 17 2.2.4 變性溫度測試 20 2.2.5 機械性質測試 20 2.2.6 增加去細胞牛心包膜的孔洞大小及孔隙度 22 2.2.7 不同孔洞大小及孔隙度的牛心包膜在生物體內血管新 生的探討 25 2.3 實驗結果與討論 27 2.3.1 定性分析 27 2.3.2 定量分析 27 2.3.3 變性溫度分析 31 2.3.4 機械性質分析 31 2.3.5 不同孔洞大小及孔隙度的牛心包膜在生物體內血管新 生的探討 32 2.4 結論 34 第三章 不同交聯程度的去細胞牛心包膜:體內再生與修復評估 3.1 研究目的 39 3.2 實驗材料 39 3.2.1 去細胞牛心包膜的製備 39 3.2.2 不同交聯程度去細胞牛心包膜的製備 39 3.3 實驗方法 39 3.3.1 體外實驗 39 3.3.2 體內實驗 43 3.4 實驗結果與討論 48 3.4.1體外實驗 48 3.4.2體內實驗 52 3.5 結論 65 第四章 以genipin交聯處理的去細胞牛心包膜當做組織工程 補綴片的評估 4.1 研究目的 66 4.2 實驗材料 66 4.2.1 補綴片的製備 66 4.3 實驗方法 66 4.3.2 體外實驗 58 4.3.2 動物實驗 67 4.4 實驗結果與討論 73 4.4.1 第一部份 73 4.4.1.1 體外實驗 73 4.4.1.2 動物實驗 73 4.4.2 第二部分 86 4.4.2.1 體外實驗 86 4.4.2.2 動物實驗 87 4.5 結論 97 第五章 去細胞生物組織包覆新型血管新生因子 (Ginsenoside Rg1)組織再生的探討 5.1 研究目的 98 5.2 實驗材料 98 5.2.1 ECM的製備 98 5.2.2 製備包覆bFGF或Rg1的ECM 98 5.3 實驗方法 99 5.3.1 H&E切片染色觀察與藥物包覆量的計算 99 5.3.2 體內實驗 99 5.4 實驗結果與討論 103 5.4.1 製備包覆bFGF或Rg1的ECM 103 5.4.2 體內實驗 106 5.5 結論 115 第六章 不同GAGs含量的去細胞牛心包膜結合bFGF:體外 與體內性質評估 6.1 研究目的116 6.2 實驗材料116 6.2.1 不同GAGs含量去細胞牛心包膜的製備 116 6.3 實驗方法117 6.3.1 體外實驗 117 6.3.2 體內實驗 119 6.4 實驗結果與討論 122 6.4.1 體外實驗 122 6.4.2 體內實驗 126 6.5 結論 130 第七章 總結 131 參考文獻 133 著作目錄 143 作者簡歷 149rf 參考文獻 1. Vacanti JP, Vacanti CA. The history and scope of tissue engineering. In: Lanza RP, Langer R, Vacanti JP, editors. Principles of tissue engineering, 2nd ed. San Diego: Academic, 2000. p. 1-5. 2. Langer R, Vacanti JP. Tissue engineering. Science 1993;260: 920-26. 3. Mooney DJ, Mikos AG. Growing new organs. Sci Am 1999;280:60-5. 4. Hay ED. Cell biology of extracellular matrix, 2nd ed. New York: Plenum Press, 1991. p. 45-71. 5. 朱家榆、潘俊良、林亮宇,組織學,台北市,藝軒圖書出版社,1992,第四章:42-56 6. Pieper JS, Hafman T, Veerkamp JH, Kuppevelt TH. Development of tailor-made collagen glycosaminoglycan matrices: EDC/NHS crosslinking and ultrastructural aspects. Biomaterials 2000;21: 581-93. 7. Tabata Y. Tissue regeneration based on growth factor release. Tissue Eng 2003;9:5-15. 8. Becker WM, Kleinsmith LJ, Hardin J. The world of the cell, 4th ed. San Francisco: Addison Wesley Longman, Inc., 2000. p. 301-3. 9. Tu R, Lu CL, Thyagarajan K, Wang E, Nguyen H, Shen S, Hata C, Quijano RC. Kinetic study of collagen with polyepoxy fixatives. J Biomed Mater Res 1993;27:3-9. 10. Sung HW, Shen SH, Tu R, Lin D, Hata C, Noishiki Y, Tomizawa Y, Quijano RC. Comparison of cross-linking characteristics of porcine heart valves fixed with glutaraldehyde or epoxy compounds. ASAIO J 1993;39:532-6. 11. Tu R, Lu C, Shen S, Wang E, Hata C, Lin D. Quijano RC. A preliminary study of the reaction mechanism of collagen fixation with a polyepoxy fixative. Int J Artif Organs 1992;16:533-44. 12. Murayama Y, Satoh S, Oka T, Imanishi J, Noishiki Y. Reduction of the antigenicity and immunogenicity of xenografts by a new cross-linking reagent. Trans Am Soc Artif Intern Organs 1998; 34:546-9. 13. Nimni ME, Cheung D, Strates B, Odama MK, Sheikh K. Bioprosthesis derived from cross-linked and chemically modified collagenous tissues. Nimni ME editor. Collagen, Biotechnology. Fllorida: CRC Press, 1988;3:1-37. 14. Trowbridge EA, Lawford PV, Crofts CE. Pericardial heterografts — why do these valves fail? J Thorac Cardiovasc Surg 1998;95: 577-85. 15. Araujo JD, Braile DM, Azenha FJO. The use of bovine pericardium as an arterial graft: five year follow-up. J Cardiovasc Surg 1987;28:434-9. 16. Sung HW, Tu R, Shen SH. Can cross-linking with a polyepoxy compound improve performance of porcine heart valves? Asian Cardio & Thorac Annals 1993;1:104-9. 17. Fujikawa S, Yokota T, Koga K, Kumada SI. The continuous hydrolysis of geniposide to genpin using immobilized β-glucosidase on calcium alginate gel. Biotech Lett 1987;9:697-702. 18. Juangsu New Medical College, Zhong Yao Da Ci Dian (Dictionary of Chinese Materia Medical), Shanghai Scientific and Technological Publishers, Shanghai, 1985. 19. Sung HW, Huang RN, Huang LLH, Tsai CC. In Vitro evalualtion of cytotoxicity of a naturally occurring crosslinking reagent for biological Tissue Fixation. J Bioma Sci-Polym Edition 1998;13: 63-78. 20. Huang LLH, Sung HW, Tsai CC, Huang DM. Biocompatibility study of a biological tissue fixed with a naturally occuring crosslinking Reagent. J Biomed Mater Res 1998;42:568-76. 21. Sung HW, Huang RN, Huang LLH, Tsai CC, Chiu CT. Feasibility Study of a Natural Crosslinking Reagent for Biological Tissue Fixation. J Biomed Mater Res 1998;42:560-7. 22. Chang Y, Tsai CC, Liang HC, Sung HW. Reconstruction of the right ventricular outflow tract with a bovine jugular vein graft fixed with a naturally occurring crosslinking agent (genipin) in a canine model. J Thorac Cardiov Sur 2001;122:1208-18. 23. Schmidt CE, Baier JM. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials 2000;21:2215-31. 24. Chang Y. Tsai CC, Liang HC, Sung HW. In Vivo Evaluation of cellular and acellular bovine pericardia fixed with a naturally occurring crosslinking agent (genipin). Biomaterials 2002;23: 2447-57. 25. Allaire E, Guettier C, Bruneval P, Plissonnier D, Michel JB. Cell-free arterial grafts: morphologic characteristics of aortic isografts, allografts, and xenografts in rats. J Vasc Surg 1994;19: 446-56. 26. Courtman DW, Pereira CA, Kashef V, McComb D, Lee JM, Wilson GJ. Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction. J Biomed Mater Res 1994;28:655-66. 27. Wilson GJ, Yeger H, Klement P, Lee JM, Courtman DW. Acellular matrix allograft small caliber vascular prostheses. Trans Am Soc Artif Intern 1990;36:340-3. 28. Iguidbashian JP, Follette DM, Contino JP. Pericardial patch repair of left ventricular aneurysm. Ann Thorac Surg 1993;55:1022-4. 29. Gabbay S, Boltolotti U, Factor S. Calcification of implanted xenograft pericardium * influence of site and function. J Thorac Cardiovasc Surg 1984;87:782-7. 30. Kurosawa H, Imai Y, Nakazawa M. Standardized patch infundibuloplasty for tetralogy of Fallot. J Thorac Cardiovasc Surg 1986;92:396-401. 31. Mills SA. Complications associated with the use of heterologous pericardium for pericardial closure. J Thorac Cardiovasc Surg 1986;92:446-54. 32. Segesser LV, Jornod N, Faidutti B. Repeat sternotomy after reconstruction of the pericardial sac with glutaraldehyde-preserved equine pericardium. J Thorac Cardiovasc Surg 1987;93:616-9. 33. Becker M, Ehrensperger F. The histocompatibility of a new bovine pericardial graft. Res Exp Med 1986;186:221-7. 34. Uva MS, Jebara VA, Acar C. Mitral valve repair in patients with endomyocardial fibrosis. Ann Thorac Surg 1992;54:89-92. 35. Reichle F. Criteria for evaluation of new arterial prostheses by comparing vein with Dracon femoro-popliteal bypass. Surg Gynecol Obstet 1978;146:714-20. 36. Matsumoto H, Fuse K, Yamamoto M. Studies on the porous polytetrafluoroethylene as the vascular prosthesis. Jinko zoki 1972;1: 44-50. 37. Kofidis T, Akhyari P, Boublik J, Theodorou P, Martin U, Ruhparwar A, Fischer S, Eschenhagen T, Kubis HP, Kraft T, Leyh R, Haverich A. In vitro engineering of heart muscle: artificial myocardial tissue. J Thorac Cardiov Sur 2002;124:63-9. 38. Li RK, Yau TM, Weisel RD, Mickle DA, Sakai T, Choi A, Jia ZQ. Construction of a bioengineered cardiac graft. J Thorac Cardiov Sur 2000;119:368-75. 39. Freed LE, Vunjak-Novakovic G. Tissue culture bioreactors: chondrogenesis as a model system. In: Lanza RP, Langer R, Chick WL, editors. Principles of tissue engineering. R.G. Landes Company, Austin: Academic Press, 1997. p. 151-65. 40. Chapekar MS. Tissue engineering: challenges and opportunities. J Biomed Mater Res 2000;53:617-20. 41. Soker S, Machado M, Atala A. Systems for therapeutic angiogenesis in tissue engineering. World J Urol 2000;18:10-8. 42. Heldin CH, Usuki K, Miyazono K. Platelet-derived endothelial cell growth factor. J Cell Biochem 1991;47:208-10. 43. Kawai K, Suzuki S, Tabata Y, Ikada Y, Nishimura Y. Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis. Biomaterials 2000;21:489-99. 44. Liao B, Newmark H, Zhou R. Neuroprotective effects of ginseng total saponin and ginsenosides Rb1 and Rg1 on spinal cord neurons in vitro. Exp Neuro 2002;173;224-34. 45. Scott GI, Colligan PB, Ren BH, Ren J. Ginsenosides Rb1 and Re decrease cardiac contraction in adult rat ventricular myocytes: role of nitric oxide. Brit J Pharmacol 2001;134:1159-65. 46. 恩斯特˙D˙普林曾柏格. 人參:永保青春和活力. 小薰書房, 台北縣, 1999. 47. 張維懋, 王致權. 21世紀癌症新剋星:人參皂苷. 愛克斯文化, 台北市, 2002. 48. Liu M, Zhang JT. Effects of ginsenoside Rg1 on c-fos gene expression and cAMP levels in rat hippocampus. Zhongguo Yao Li Xue Bao/Acta Pharmacologica Sinica 1996;17:171-4. 49. Tong LS, Chao CY. Effects of ginsenoside Rg1 of Panax ginseng on mitosis in human blood lymphocytes in vitro. Am J Chinese Med 1980;8:254-67. 50. Nah SY, Oh S. Modulation of G protein alpha-subunit mRNA levels in discrete rat brain regions by cerebroventricular infusion of ginsenoside Rc and Rg1. Neurochem Res 2003;28:691-7. 51. Lee YJ, Chung E, Lee KY, Lee YH, Huh B, Lee SK. Ginsenoside-Rg1, one of the major active molecules from Panax ginseng, is a functional ligand of glucocorticoid receptor. Mol Cell Endocrinol 1997;133:135-40. 52. Losordo DW, Isner JM. Estrogen and angiogenesis: a review. Arterioscl Throm Vas 2001;21:6-12. 53. Cid MC. Schnaper HW. Kleinman HK. Estrogens and the vascular endothelium. Annals NY Acad Sci 2002;966:143-57. 54. Chan RY, Chen WF, Dong A, Guo D, Wong MS. Estrogen-like activity of ginsenoside Rg1 derived from Panax notoginseng. , J Clin Endocr Metab 2002;87:3691-5. 55. Morbidelli L, Donnini S, Ziche M. Role of nitric oxide in the modulation of angiogenesis. Curr Pharm Design 2003;9:521-30. 56. Babaei S, Stewart DJ. Overexpression of endothelial NO synthase induces angiogenesis in a co-culture model. Cardiovasc Res 2002; 55:190-200. 57. Miyamoto E, Odashima S, Kitagawa I, Tsuji A. Stability kinetics of ginsenosides in aqueous solution. J Pharm Sci 1984;73:409-10. 58. Kitagawa I, Taniyama T, Yoshikawa M, Ikenishi Y, Nakagawa Y. Chemical studies on crude drug processing. VI. Chemical structures of malonyl-ginsenosides Rb1, Rb2, Rc, and Rd isolated from the root of Panax ginseng C. A. Meyer. Chem Pharm Bull 1989;37:2961-70. 59. Sasisekharan R, Myette JR. The sweet science of glycobiology. Am Sci 2003;91:432-41. 60. Kanematsu A, Yamamoto S, Noguchi T, Ozeki M, Tabata Y, Ogawa O. Bladder regeneration by bladder acellular matrix combined with sustained release of exogenous growth factor. J Urol 2003;170:1633-8. 61. Sommer A, Rifkin DB. Interaction of heparin with human basic fibroblast growth factor: protection of the angiogenic protein from proteolytic degradation by a glycosaminoglycan. J Cell Physiol 1989;138:215-20. 62. Pieper JS, Hafman T, van Wachem PB, van Luyn MJA, Brouwer LA, Veerkamp JH, Kuppevelt TH. Loading of collagen-heparan sulfate matrices with bFGF promotes angiogenesis and tissue generation in rat. J Biomed Mater Res 2002;62:185-194. 63. 陳永泰、陳建中、林景峰等人編譯,病理學,台北市,合記圖書出版社,第二章,34-51,1991. 64. Matsuda T, Nakayama Y. Surface microarchitectural design in biomedical applications: in vitro transmural endothelialization on microporous segmented polyurethane films fabricated using an excimer laser. J Biomed Mater Res 1996;31:235-42. 65. Langer R. Selected advances in drug delivery and tissue engineering. J Controlled Release 1999;62:7-11. 66. Farndale RW, Buttle DJ, Barrett AJ. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 1986;883:173-83. 67. Williams J G. Stress Analysis of Polymers. Longman, London, 1973. 68. 李孟紘, “以天然交聯劑Genipin交聯不同孔洞結構去細胞牛心包膜之人工細胞外間質:體外性質探討與體內在生與修復評估,” 國立清華大學碩士論文, 2002. 69. Martin I, Shastri VP, Padera RF. Selective differentiation of etmammalian bone marrow stromal cells cultured on three-dimensional polymer foams. J Biomed Mater Res 2001;55: 229-35. 70. Courtman DW, Errett BF, Wilson GJ. The role of crosslinking in modification of the immune response elicited against xenogenic vascular acellular matrices. J Biomed Mater Res 2001;55:576-86. 71. Menger MD, Hammersen F, Walter P, Messmer K. Neovascularization of prosthetic vascular grafts: quantitative analysis of angiogenesis and microhemodynamics by means of intravital microscopy. Thorac Cardiovasc Surgn 1990;38:139-45. 72. Silvestro L, Viano I, Macario M, Colangelo D, Montrucchio G, Panico S, Fantozzi R. Effects of heparin and its desulfated derivatives on leukocyte-endothelial adhesion. Semin Thromb Hemos 1994;20:254-258. 73. Dorogosz WJ, Lindgren SE. US Patent No. 5 413 960, 1995. 74. White MJ, Kohno I, Rubin AL, Stenzel KH. Collagen films: effect of crosslinking on physical and biological properties. Biomat Med Dev Org 1973;1:703-15. 75. Bader A, Schiling T, Teebken OE. Tissue engineering of heart valves-human endothelial cell seeding of detergent acellularized porcine valves. Euro J Cardio Thoracic Sur 1998;14:279-84. 76. Ramshaw JA, Casagranda F, White JF, Edwards GA, Hunt JA, Williams DF, Werkmeister JA. Effects of mesh modification on the structure of a mandrel-grown biosynthetic vascular prosthesis. J Biomed Mater Res 1999;47:309-15. 77. Lubert S. Biochemistry. New York: Freeman, 1988. 78. Cipriano PR, Billingam ME, Oyer PE, Kutsche LM, Stinson EB. Calcification of porcine heart valves: a radiographic and light microscopy study. Circulation 1982;66:1100-4. 79. Faury G. Function-structure relationship of elastic arteries in evolution: From microfibrils to elastin and elastic fibers. Pathol Biol 2001;49: 310-25. 80. Pardo-Mindan FJ, Herreros J, Contreras E, Robledo C, Valerdiz S. Chondroid metaplasia in the tunica media of the aorta in dogs submitted to saphenous vein aorto-cava by-pass. Pathologica 1994;86:297-300. 81. Greisler HP. New Biologic and Synthetic Vascular Prostheses. Texas: Silent Partners Inc, 1991. p. 20-32. 82. Stevens A, Lowe J. Pathology, 2nd ed. London: Mosby, 2000. p. 7-22. 83. Tabata Y, Miyao M, Yamamoto M, Ikada Y. Vascularization into a porous sponge by sustained release of basic fibroblast growth factor. J Biomater Sci Polymer Edn 1999;10:957-68. 84. Lee KY, Halberstadt CR, Holder WD. Breast reconstruction. In: Lanza RP, Langer R, Vacanti J. editors. Principles of tissue engineering, 2nd ed. San Diego: Academic, 2000. p. 409-23.id NH0925063007 sid 897608 cfn 0 / id NH0925063008 auc 張啟聖 tic Structures and Aggregation of Electroluminescent MEH-PPV in Solution State Probed by Small Angle Neutron Scattering and Viscometry adc 陳信龍 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 英文 pg 72 kwc MEH-PPV kwc Semi-conducting polymer kwc Conjugated polymer kwc hairy-rod polymer kwc Nanoscale nematic aggregate kwc Small angle neutron scattering kwc Physical cross-links abc The hairy-rod segments of conjugated polymers MEH-PPV undergo aggregation in the solutions of low concentration and the resultant aggregates with unknown structure have strong impacts on the photophysical properties of the polymers for opto-electronic applications. Using small angle neutron scattering (SANS), we have systematically investigated the conformational structures and aggregation behavior of MEH-PPV dissolved in chloroform and toluene. MEH-PPV dissolved in good solvent chloroform exhibited the expanded Gaussian chain behavior, which can be represented by the successive connection of rod-like segments with the length of ca. 157Å. The rod segments aggregates prevalently in the poorer solvent, toluene. We have also demonstrated that these aggregates were nanoscale nematic domains characterized by the mass fractal dimension of ca. 1.7 and radius of gyration of ca. 90Å. These aggregates accounted for about 10% of the total polymer volume fraction in the freshly prepared MEH-PPV/toluene solution. This kind of nematic aggregate distinguished from the nematic phase found in the classical lyotropic liquid crystalline systems in the sense that they are microphase-separated domains appearing at the concentration well below the threshold lyotropic concentration prescribed by the mean-field theory. The anomalous segmental aggregation is proposed to stem from the enrichment of segmental concentration around the inter-chain overlap points in the solution coupled with the attractive force between the hairy-rod segments induced by the relatively poor solvent quality. This nanoscale aggregation could be prevalent among semi-rigid polymers in general as a process preceding the formal formation of macroscopic nematic phase along the concentration coordinate. rf [1 ] Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., Heeger, A. J. J. Chem. Soc. Chem. Commun. 579, 1977. [2 ] Chien, J.C.W. Polyacetylene : Chemistry, Physics, and Material Science (Academic Press, Orlando, 1984). [3 ] Tang, C.W., Van Slyke, S.A. Appl. Phys. Lett. 51, 913, 1987. [4 ] Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P. L., Holmes, A. B. Nature 347, 539, 1990. [5 ] Grüner, J., Cacialli, F., Friend, R.H. J. Appl. Phys. 80, 207, 1996. [6 ] Braun, D., Heeger, A. J. Appl. Phys. Lett. 58, 1982, 1991. [7 ] Braun, D., Heeger, A. J. Thin Solid Films, 216, 96, 1992. [8 ] Atkins, P. W. The Elements of Physical Chemistry (Oxford University Press, 1996). [9 ] Krivoshei, I. V., Skorobogatov, V. M., Polyacetylene and Polyarylenes: Synthesis and Conductive properties (Gordon and Breach Science, 1991). [10 ] Lakowicz, J. R., Principles of Fluorescence Spectroscopy (Kluwer Academic / Plenum, New York, 1999). [11 ] Hadziioannou, G., van Hutten, P. F. (Eds.), Semiconducting polymers: Chemistry, Physics and Engineering (WILEY-VCH, Weinheim, 2000). [12 ] Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., dos Santos, D. A., Brédas, J. L., Löglund, M., Salaneck, W. R. Nature 397, 121, 1999. [13 ] Malliaras, G. G., Scott, J. C. J. Appl. Phys. 83, 5399, 1998. [14 ] Inigo, A. R., Tan, C. H., Fann, W.S., Huang, Y. S., Perng, G. Y., Chen, S.-A. Adv. Mater. 13, 504, 2001. [15 ] Tan, C. H., Inigo, A. R., Fann, W. S., Wei, P.-K., Perng, G.-Y., Chen, S.-A. Organic Electronics 3, 81, 2002. [16 ] Shuai, Z., Beljonne, D., Silbey, R., Brédas, J. Phys. Rev. Lett. 84, 131, 2000. [17 ] Hong, T. M., Meng, H. F. Phys. Rev. B 63,075206, 2001. [18 ] Wohlgenannt, M., Tandon, K., Mazumdar, S., Ramasesha, S., Vardeny, Z. V. Nature 409, 494, 2001. [19 ] Lin, L. C., Meng, H. F., Shy, J. T., Horng, S. F., Yu, L. S., Chen, C. H., Liaw, H. H., Huang, C. C., Peng, K. Y., Chen, S. A. Phys. Rev. Lett. 90, 036601, 2003. [20 ] Pope, M., Swenberg, C. E. Electronic Processes in Organic Crystals (Oxford University, New York, 1982). [21 ] Pavia, D. L., Lampman, G. M., Kriz, G. S. Introduction to spectroscopy :a guide for students of organic chemistry (Harcourt College, 2001). [22 ] Köhler, A., Grüner, J., Friend, R. H., Müllen, K., Scherf, U. Chem. Phys. Letters 243, 456, 1995. [23 ] Lemmer, U., Heun, S., Mahrt, R. F., Scherf, U., Hopmeier, M., Siegner, U., Göbel, E. O., Müllen, K., Bässler, H. Chem. Phys. Letters 240, 373, 1995. [24 ] Blatchford, J. W., Gustafson, T. L., Epstein, A. J., Vanden Bout, D. A., Kerimo, J., Higgins, D. A., Barbara, P. F., Fu, D.-K., Swager, T. M., MacDiarmid, A. G. Phys Rev B 54, R3683, 1996. [25 ] Blatchford, J. W., Jessen, S. W., Lin, L.-B., Gustafson, T. L., Fu, D.-K., Wang, H.-L., Swager, T. M., MacDiarmid, A. G., Epstein, A. J. Phys Rev B 54, 9180, 1996. [26 ] Hsu, J.-H., Fann Wunshain, Tsao, P.-H., Chuang, K.-R., Chen, S.-A. J. Phys. Chem. A 103, 2375, 1999. [27 ] Truuo, N. J. Modern Molecular Photochemistry (University Science Books, Sausalito, California, 1991). [28 ] Jenekhe, S. A., Osaheni, J. A. Science 265, 765, 1994. [29 ] Samuel, I. D. W., Rumbles, G., Collison, C. J. Phys. Rev. B 52, R11573, 1995. [30 ] Nguyen, T.-Q., Wu, J., Doan, V., Schwartz, B. J., Tolbert, S. H. Science 288, 652, 2000. [31 ] Becker, H., Spreitzer, H., Ibrom, K., Kreuder, W. Macromolecules 32, 925, 1999. [32 ] Padmanaban, G., Ramakrishnan, S. J. Am. Chem. Soc. 122, 2244, 2000. [33 ] Peng, K.-Y., Chen, S.-A., Fann, W.-S. J. Am. Chem. Soc. 123, 11388, 2001. [34 ] Nguyen, T.-Q., Doan, V., Schwartz, B. J. J. Chem. Phys. 110, 4068, 1999. [35 ] Nguyen, T.-Q., Martini, I. B., Liu, J., Schwartz, B. J. J. Phys. Chem. B 104, 237, 2000. [36 ] Shi, Y., Liu, J., Yang, Y. J. Appl. Phys. 87, 4254, 2000. [37 ] Liu, J., Guo, T. F., Yang, Y. J. Appl. Phys. 91, 1595, 2002. [38 ] Grell, M., Bradley, D. D. C., Long, X., Chamberlain, T., Inbasekaran, M., Woo, E. P., Soliman, M. Acta Polym. 49, 439, 1998. [39 ] Grell, M., Bradley, D. D. C., Ungar, G., Hill, J., Whitehead, K. S. Macromolecules 32, 5810, 1999. [40 ] Huang, W. Y., Gao, W., Kwei, T. K., Okamoto, Y. Macromolecules 34, 1570, 2001. [41 ] Huang, W. Y., Matsuoka, S., Kwei, T. K., Okamoto, Y. Macromolecules 34, 7166, 2001. [42 ] Malik, S., Jana, T., Nandi, A. K. Macromolecules 34, 275, 2001. [43 ] Wudl, F., Srdanov, G. U.S. Patent No. 5,189,136, 1990. [44 ] Glinka, C. J., Barker, J. G., Hammouda, B., Krueger, S., Moyer, J. J., Orts, W. J. J. Appl. Cryst. 31, 430, 1998. [45 ] Su, A. C. joint manuscript of the Excellent project. [46 ] Cold Neutron Research Facility at the National Institute of Standards and Technology, NG3 and NG7 30-Meter SANS Instruments Data Acquisition Manual, 1999. [47 ] Bohdanecký, M., Kovář, J. Viscosity of Polymer solutions, (Elsevier, Amsterdam, 1982). [48 ] Kramer, E. O. Ind. Eng. Chem. 30, 1200, 1938. [49 ] Maron, S. H., Reznik, R. B. J. Polym. Sci. Part A-2 7, 309, 1969. [50 ] Streeter, D. J., Boyer, F. F. Ind. Eng. Chem. 43, 1790, 1951. [51 ] Huang, Y.-F. Ph.D. Thesis, National Sun Yat-sen University. [52 ] Flory, P. J. Adv. Polym. Sci. 59, 1, 1984. [53 ] Itou, T., Teramoto, A. Macromolecules 21, 2225,1988. [54 ] Khokhlov, A. R., Semenov, A. N. Physica A 108A, 546, 1981. [55 ] Rubinstein, M., Colby, R. H. Polymer Physics (Oxford University, Oxford, 2003). [56 ] The threshold lyotropic concentration of semi-rigid polymer solutions can be estimated by the semi-empirical equation, ?珽* = (8/ar) (1 – 2/ar) with ar being the aspect ratio of the Kuhn segment [52 ] [57 ]. ?珽* normally lies above 10 % except for some systems constituted by Kuhn segments with very large aspect ratio (??80). Considering a very stiff ??-helical poly(??-benzyl-L-glutamate) as an example, the threshold lyotropic concentrations were found to range from ca. 5 % to ca. 8 % for the aspect ratios spanning from ca. 150 to 95 [58 ] [59 ] . These concentrations are still higher than the concentrations of the conjugated polymer solutions containing the aggregates. [57 ] Flory, P. J. Proc. Royal Soc., London A 234, 73, 1956. [58 ] Robinson, C. Trans. Faraday Soc. 52, 571, 1956; Robinson, C., Ward, J. C., Beevers, R. B. Discuss. Faraday Soc. 25, 29, 1958. [59 ] Uematsu, I., Uematsu, Y. Adv. Polym. Sci. 59, 37, 1984. [60 ] Higgins, J. S., Benoît, H. C. Polymers and Neutron Scattering (Oxford University, New York, 1994). [61 ] Roe, R.-J. Methods of X-ray and Neutron Scattering in Polymer Science (Oxford University, New York, 2000). [62 ] Aime, J. P., Bargain, F., Schott, M., Eckhardt, H., Miller, G. G., Elsenbaumer, R. L. Phys. Rev. Lett. 62, 55, 1989. [63 ] Chen, S.H., Su, A. C., Chou, H. L., Peng, K. Y., Chen, S. A. Macromolecules 37, 167, 2004. [64 ] Gettinger, C. L., Heeger, A. J., Drake, J. M., Pine, D. J. J. Chem. Phys. 101, 1673, 1994. [65 ] Aime, J. P., Bargain, F., Schott, M., Eckhardt, H., Miller, G. G., Elsenbaumer, R. L. Phys. Rev. Lett. 62, 55, 1989. [66 ] Feigin, L.A., Svergun, D.I. Structure Analysis by Small-Angle X-Ray and Neutron Scattering (Plenum, New York, 1987). [67 ] Hu, D., Yu, J., Wong, K., Bagchi, B., Rossky, P. J., Barbara, P. F. Nature 405, 1030, 2000. [68 ] Strobl, G. R. The Physics of Polymers (Springer-Verlag, Berlin, 1996). [69 ] Yang, C. Y., Hide, F., Díaz-García, M. A., Heeger, A. J. Polymer 39, 2299, 1998. [70 ] Wenig, W., Hammel, R., MacKnight, W. J., Karasz, F. E. Macromolecules 9, 253, 1976. [71 ] Su, A. C. PhD Dissertation, University of Cincinnati, 1986; Ch. 5. [72 ] Shultz, A. R., McCullough, C. R. J. Polym. Sci. Polym. Phys. 10, 307, 1972. [73 ] Kwei, T. K., Frisch, H. L. Macromolecules 11, 1267, 1978.id NH0925063008 sid 903628 cfn 0 / id NH0925063009 auc 王若芹 tic 二苯乙烯染料之微波合成與其於螢光多層記錄媒體之應用 adc 胡德 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 84 kwc 螢光多層記錄媒體 kwc 二苯乙烯 kwc 微波合成 abc 二苯乙烯(Stilbene)類染料是著名的非線性光學材料,也是常見的螢光染料,本研究藉由分子設計,合成出適用於螢光多層碟片的螢光染料結構,並同時應用在藍光唯讀式(ROM)與可寫入一次式(WORM)螢光多層碟片(Fluorescent Multilayer Disc,簡稱FMD)上。 rf 1. M. Serei and P. Dimitry,et al. WO 000106501 2. D.A.Pathenopoulos,P.M.Rentzepis,Science,1989,254,843-845 3. J. H. Strickler, W. W. Webb,Advanced 4. S. A. Magnitski, A.V. Tarasishin, E.Levich and J.Malkin, WO 000048175 5. T. Pratt,White Paper, Dell, March 2000 Materials,1993,6,479-481 6. Mark and K.Eugene et al.,WO 000193258 7. M.Gu and D. Day, Optics Letters,1999,24,288-290 8. H. E. Pudavar,M. P. Joshi and N. Prasad, Applied Physics Letters, 1999,74,1338-1340 9. K. D. Belfiled and K. J. Schafer, Chem. Mater.,2002,14,3656-3662 10. Polyzos, G. Tsigaridas, M. Fakis, V. Giannetas, P. Persephonis, J. Mikroyannidis, Chemical Physics Letters,2003,369,264-268 11. M. S. Akselrod, S.S. Orlov ,and G. M. Akselrod, Proceedings of SPIE,2003,5096 12. Mark, Z. Irene, L. Eugene, and C. A.,WO 000048177 13. Euggen Pavel, Proceeding of The Romanian Academy Series A,2003,4,1-6 14. S. Dvornikov, P. M. Rentzepis, Optics Communications,1997, 136,1-6 15. C. E. Olson, Michael J. R. Previte and J. T. Fourkas, Nature Materials,2002,1,225-228 16. Xiaomei Wang, Yufang Zhou, Guangyong Zhou, Wanli Jiang, and Minhua Jiang Bull. Chem. Soc. Jpn.,2002,75, 1847–1854 17. M.C. Flipse, R. D. Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree ,and L. W. Jenneskens, Chemical Physics Letters,1995, 245,29 18. Kobayashi, Takayoshi; Uchiki, Hisao; Terauchi, Mamoru. JP 61204995 19. Kati Hakala, Ramin Vatanparast and Helge Lemmetyinen, Macromolecules 2000, 33, 5954-5959 20. Jason C. Quirina, John M. Torkelson , Polymer , 2003,44,423–432 21. Wolter F. Jager*Ananda M. Sarker and Douglas C. Neckers., Macromolecules ,1999, 32, 8791-8799 22. Chung-Wen Ko and Yu-Tai Tao, Andrzej Danel, Lidia Krzemin ska, and Piotr Tomasik, Chem. Mater., 2001, 13, 2441-2446 23. André Loupy , C. R. Chimie,2004, 103–112 24. R. Gedye, F. Smith, K.C. Westaway, H. Ali, L. Baldisera, L. Laberge, J. Roussel, Tetrahedron Lett. ,1986,27, 279. 25. R.J. Giguere, T.L. Bray, S.M. Duncan, G. Majetich, Tetrahedron Letters, 1986,27, 4945. 26. E. Gutierrez, A. Loupy, G. Bram, E. R. Hitzky, Tetrahedron Letters,1989, 386 27. M. Sergei and P. Dimitry, et al, WO000106501 28. S .A. Magnitski, A.V. Tarasishin, E.Levich and J. Malkin WO 000048175 29. Henri Ulrich And A. A. R. Sarigh, J . Org. Chem.,1966, 31, 4146~4149 30. D. pines, E. Pines,and W. Rettig, J. Phys.Chem.A,2003,107,236-24id NH0925063009 sid 913601 cfn 0 / id NH0925063010 auc 謝怡帆 tic PCL-b-PB團聯式共聚合物結晶動力學與結晶形態之研究 adc 陳信龍 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 123 kwc 結晶 kwc 團聯式共聚合物 kwc 形態 abc 團聯式共聚合物可利用摻合入較小分子量之均聚物的方式,利用均聚物融入團聯式共聚合物相對微相中的膨潤效果來改變系統之形態。而根據所摻合入之均聚物之分子量大小,可將摻合體系統分為wet brush與dry brush。本研究著重於團聯式共聚合物與均聚物的摻合系統,在對稱的團聯式共聚合物PB(11.5k)-b-PCL(12.5k)中,摻和入相對分子量較小的PB均聚物,造成wet brush的效果。 tc 目錄 圖目錄 表目錄 一、 文獻回顧 1.1 前言 1.2 無定形團聯式共聚合物之形態轉化 1.3 結晶性團聯式共聚合物結晶行為對形態之影響 1.4 團聯式共聚合物摻合體之形態研究 1.5團聯式共聚合物grain boundary缺陷及螺旋體形態之研究 二、 實驗部分 2.1 研究目的與動機 2.2 樣品 2.3 實驗步驟 2.3-1摻合體製備過程 2.3-2實驗項目 2.4 儀器原理 2.4-1微分熱卡計 2.4-2小角度X光散射儀 2.4-3穿透式電子顯微鏡 三、 結果與討論 3.1 PB-b-PCL╱PB摻合體熔融態之微相分離形態 3.2 PB-b-PCL╱h-PB摻合體之結晶動力學與結晶誘導形態之轉化 3.2-1結晶速率與摻合體形態之關連性 3.2-2等溫結晶動力學實驗 3.2-3 PCL-b-PB/h-PB摻合體結晶誘導形態轉化 3.3 PB-b-PCL╱PB摻合體特殊形態之研究 四、 結論 五、 參考文獻rf 1. Inoue, T.; Soen, T.; Hashimoto, T.; Kawai, H. Macromolecules 1970, 3, 87. 2. Leibler, L.; Pincus, A. Macromolecules 1984, 17, 2922. 3. Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1991, 24, 6182. 4. Hashimoto, T.; Koizumi, S.; Hasegawa, H.; Izumitani, T.; Hyde, S. T. Macromolecules 1992, 25, 1433. 5. Han, C. D.; Baek, D. M.; Kim, J.; Kimishima, K.; Hashimoto, T. Macromolecules 1992, 25, 3052. 6. Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25, 422. 7. Meier, D. J. J.Polym.Sci., part C 1969, 26, 81. 8. Helfand, E. Macromolecules 1975, 8, 552. 9. Helfand, E.; Wasserman, Z. R. Macromolecules 1978, 11, 960. 10. Helfand, E.; Wasserman, Z. R. Macromolecules 1980, 13, 994. 11. Helfand, E.; Wasserman, Z. R. Macromolecules 1978, 11, 960. 12. Hashimoto, T.; Kowsaka, K.; Shibayama, M.; Suehiro, S. Macromolecules 1986, 19, 750. 13. Hashimoto, T.; Kowsaka, K.; Shibayama, M.; Kawai, H. Macromolecules 1986, 19, 754. 14. Sakurai, S.; Kawada, H.; Hashimoto, T.; Fetters, L.J. Macromolecules 1993, 26, 5796. 15. Naoki Sakamoto.; Hashimoto, T.; Chang Dae Han.; Do Kim; Nitin Y. Vaidya Macromolecules 1997, 30, 1621. 16. Leibler, L. Macromolecules 1980, 13, 1602. 17. Ohta, T.; Kawasaki, K. Macromolecules 1986, 19, 2621. 18. Vavasour, J. D.; Whitemore, M. D. Macromolecules 1992, 25, 5477. 19. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641. 20. Haiduk, D. A.; Takenouchi, H.; Hillmyer, M.A.; Bates, F.S. Macromolecules 1997,30,3788. 21. Hajduk, D.A.; Harper, P.E.;Gruner, S.M.; Haneker, C.C.; Kim, G.;Thomas, E.L.; Fetters, L.J. Macromolecules 1994, 27, 4063.. 22. Alward, D. B.; Kinning, D.J.; Thomas, E. L.; Fetters, L. J. Macromolecules 1986,19,215. 23. Tomas, D. B.; Alward, D. B.; Kinning, D. J.;Handlin, D. L.; Jr.; Fetters, L. J. Macromolecules 1986,19,2197. 24. Hashimoto, T.; Takenaka, M. Physica A 2000, 276, 22. 25. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641. 26. Matsen, M. W.; Bates, F. S. Journal of Polymer Science B:Polymer Physics 1997, 35, 945 27. Kimishima, K.; Koga, T.; Hashimoto, T Macromolecules 2000,33,968. 28. Loo, Y. L.; Register, R. A.; Ryan, A. J.; Dee, G. T Macromolecules 2001,34, 8968. 29. Loo, Y. L.; Register, R. A.; Ryan, A. J. Macromolecules 2002,35, 2365. 30. Shiomi, T.; Takeshita,H.; Kawaguchi, H.; Nagai, M.; Takenaka, K.; Miya, M. Macromolecules 2002, 35, 8056. 31. Hamley, I. W.; Castelletto, V.; Floudas, G.; Schipper, F. Macromolecules, 2002, 35, 883. 32. Quiram, D. J.; Register, R. A.; Marchand, G. R. Macromolecules 1997, 30, 4551. 33. Rangarajan, P.; Register, R. A.; Adamson, D. H.; Fetters, L.J.; Bras, W.; Naylor, S.; Ryan, A. J. Macromolecules 1995,28, 1422. 34. Chen, H. L.; Hsiao, S. C.; Lin, T. L.; Yamauchi, K.;Hasegawa, H.; Hashimoto, T. Macromolecules 2001, 34, 671. 35. Chen, H. L.; Wu, J. C.; Lin, T. L.; Lin, J. S. Macromolecules 2001, 34, 6936. 36. Hong, S.; Yang, L.; MacKnight, W. J.; Gido, S. P. Macromolecular 2001, 34, 7009. 37. Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. Polymer,2001, 42, 5829. 38. Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R.P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. J. Am. Chem.Soc. 2000, 122, 5957. 39. Loo, Y.-L.; Register, R. A.; Ryan, A. J. Phys. Rev. Lett. 2000,84, 4120. 40. Weimann, P. A.; Hajduk, D. A.; Chu, C.; Chaffin, K. A.; Brodil, J. C.; Bates, F. S. J. Polym. Sci., Polym. Phys. 1999, 37, 2053. 41. Nojima, S.; Kato, K.; Yamamoto, S.; Ashida, T. Macromolecules 1992,25,2237. 42. Nojima, S.; Ono, M.; Ashida, T. Polymer Journal 1992,24,1271. 43. Nojima, S.; Nakano, H.; Takahashi, Y.; Ashida, T. Polymer 1994,35,3479. 44. Nojima, S.; Yamamoto, S.; Ashida, T. Polymer Journal 1995,27,673. 45. Nojima, S.; Nakano, H.; Ashida, T. Polymer 1993,34,4168. 46. Xu, J. T.; Turne×r, S. C.; Fairclough, J. P. A.; Mai, S. M.; Ryan, A. J. Macromolecules 2002, 35, 3614. 47. Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25,2645. 48. Adedeji, A.; Jamieson, A. M.; Hudson, S. D. Polymer 1995, 36, 2753. 49. Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules 1990, 23, 4378. 50. Tanaka, H.; Hasegawa, H.; Hashimoto, T. Macromolecules 1991, 24,240. 51. Hashimoto, T.; Koizumi, S.; Hasegawa, H. Physica B. 1995, 213&214, 676. 52. Koizumi, S.; Hasegawa, H.; Hashimoto,T .Makromol. Chem. Macromol. Symp. 1992, 62, 75. 53. Gido, S.P.; Gunther, J.; Thomas, E.L. Macromolecules 1993,26, 4506. 54. Gido, S.P.; Thomas, E.L. Macromolecules 1994,27, 849. 55. Gido, S.P.; Thomas, E.L. Macromolecules 1994,27, 6137. 56. Gido, S.P.; Thomas, E.L. Macromolecules 1997,30, 3739. 57. Burgaz, E.; Gido, S.P. Macromolecules 2000,33,8739. 58. Hashimoto, T; Mitsumura, N.; Yamaguchi, D.; Takenaka, M.; Morita, H.; Kawakatsu, T.; Doi, M. Polymer 2001,42,8477. 59. Krappe, U.; Stadler, R.; Martin, I.V. Macromolecules 1995,28, 4558. 60. Li, C.Y.; Cheng,S.Z.D.; Ge, J.J.; Bai, F.; Zhang, J.Z.; Mann, I.K.; Chien, L.C.; Harris, F.W.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 72. 61. Li, C.Y.; Donghang Yan, D.; Cheng, S.Z.D.; Bai, F.; He, T.; Chien, L.C.; Frank W. Harris, F.W.; Lotz, B. Macromolecules 1999, 32, 524. 62. Li, C.Y.; Ge, J.J.; Bai, F.; Calhoun, B.H.; Harris, F.W.; Cheng, S.Z.D.; Chien, L.C.; Lotz, B.; Keith, H.D. Macromolecules 2001, 34, 3634. 63. Sakurai, S.; Momii, T.; Taie, K.; Shibayama, M.; Nomura, S.; Hashimoto, T. Macromolecules 1993,26, 486.id NH0925063010 sid 913602 cfn 0 / id NH0925063011 auc 龔伯涵 tic PVA-CS水膠製備與組織工程應用之評估 adc 李育德 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 50 kwc 聚乙烯醇 kwc 硫酸軟骨素 kwc 戊二醛 kwc 組織工程 abc 本研究是以戊二醛交聯聚乙烯醇(PVA)與硫酸軟骨素(CS)的方式製備水膠,預期所得水膠將兼具兩者之優點,可用作組織工程基材。 tc 目錄 第一章 緒論……………………………………………………………..1 第二章 文獻回顧………………………………………………………..3 2.1水膠簡介………………………………………………………...3 2.1.1 水膠之歷史與定義………………………………………3 2.1.2功能性水膠……………………………………………….6 A. 溫度敏感性材料……………………………………….6 B. 酸鹼敏感性水膠……………………………………….8 C. 電致動高分子………………………………………….8 D. 光敏感性高分子……………………………………….9 E. 葡萄糖敏感性高分子………………………………….9 2.1.3 水膠在組織工程之應用………………………………..13 2.2 硫酸軟骨素……………………………………………………16 第三章 研究動機與目的………………………………………………19 第四章 實驗程序與方法………………………………………………20 4.1試藥與溶劑…………………………………………………….20 4.2實驗儀器與設備……………………………………………….21 4.3 實驗方法與流程………………………………………………22 4.3.1實驗流程圖……………………………………………...22 4.3.2 製備PVA-CS共聚物………………………………….23 4.4 測試與分析方法……………………………………………...26 1. 紅外線光譜儀測試 (IR)………………………………….26 2. 固態核磁共振儀測試 (Solid-NMR)……………………..26 3. 澎潤度測試 (Swelling ratio)……………………………..26 4. 熱重損失測試 (TGA)……………………………………26 5. 拉力測試………………………………………………….27 6. CS含量測試……………………………………………...27 7. 細胞測試 (Cell test) ……………………………………..28 第五章 結果與討論………………………………………..…………30 5.1 結構鑑定(Characterization)………………………………….30 5.1.1 PVA-CS共聚物紅外線光譜…………………………...30 5.1.2 PVA-CS共聚物固態核磁共振光譜…………………...32 5.1.3 硫酸軟骨素分光光度計定量法……………………….36 5.1.4 基材切片……………………..…………………..…….36 5.2 物理性質……………………………………………………..39 5.2.1 熱重損失測試………………………………................39 5.2.2 拉力測試……………………………………………….39 5.2.3 澎潤度測試……………………………………………..41 5.3 細胞測試………….…..………………………………………43 第六章 結論……...………………………….…………………………47 Reference………………………………………………………………..48 表目錄 表一 用作水膠之親水性高分子種類………………………….……..4 表二 聚乙烯醇與軟骨素交聯反應配方表…………………….……..25 表三 PVA-CS共聚物CS含量推算值……………………….….……37 圖目錄 圖 2-1物理性&化學性水膠…………………………………………..4 圖 2-2溫度敏感型高分子(PNIPAAm)可逆式型態變化圖…………..7 圖 2-3電致動高分子施加電場後彎曲圖……………………………..7 圖 2-4光敏感性水膠於電場下照光彎曲圖…………………………..10 圖 2-5 DDOPBA-Glucose complex……………………………………12 圖 2-6 硫酸軟骨素結構圖:(a) CS(4s), (b) CS(6s)………………….18 圖4-1 聚乙烯醇與硫酸軟骨素交聯反應示意圖…………………..24 圖 5-1 PVA-CS共聚物紅外線光譜圖…………………………………31 圖 5-2 PVA-CS共聚物固態核磁共振光譜 (a)CS00, (b)CS05……….33 圖 5-2 PVA-CS共聚物固態核磁共振光譜 (c)CS10, (d)CS15……….34 圖 5-2 PVA-CS共聚物固態核磁共振光譜 (e)CS20, (f)pure CS…….35 圖5-3 CS分光光度計檢量線……………………………………….37 圖 5-4 PVA-CS水膠切片Safranin O染色圖(a)CS00, (b)CS01, (c)CS05, (d)CS10, (e)CS15, (f)CS20……………………..………………………38 圖 5-5 PVA-CS共聚物熱重損失圖……………………………………40 圖 5-6 PVA-CS薄膜拉力-形變圖……………………………………..40 圖 5-7 PVA-CS薄膜之拉力係數………………………………………42 圖 5-8 PVA-CS水膠澎潤度變化圖……………………………………42 圖 5-9 PVA-CS基材培養BHK細胞第三天生長情形 (X200) (a)CS00, (b)CS01, (c)CS05, (d)CS10, (e)CS20, (f)Control………………………44 圖 5-10 PVA-CS基材經三天培養後細胞數目………………………..46 圖 5-11 BHK細胞在CS20基材上培養一星期時SEM圖…………..46rf 1. 陳進富. “淺談水膠在生醫之應用”. 化工科技與商情 38 (2002) 38-43. 2. 張學曾. “智慧型水膠及其生醫應用潛力”. 化工科技與商情40 (2003) 62-69. 3. Bali. J. P., Cousse, H., Neuzil, E. S. “Biochemical basis of the Pharmacologic action of chondroitin sulfates on the osteoarticular system.” Arthritis. Rheum. 31(2001) 58-68. 4. Barkalow, F. J. and Schwarzbauer, J. E. “Interactions between fibro- nectin and chondroitin sulfate are modulated by molecular context.” J. Biol. Chem. 269 (1994) 3957-3962. 5. Farndale, R. W., Buttle, D. J., Barrett, A. “Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethyl- methylene blue.” J. Biochim. Biophys. Acta. 883 (1986) 173-7. 6. Griffith, L. G. “Polymeric biomaterials.” Acta mater. 48 (2000) 263~ 277 7. Hoffman, A. S. “Hydrogels for biomedical applications.” Adv. Drug Delivery Reviews 43 (2002) 3–12. 8. Irie, M. “Photoresponsive polymers reversible bending of rod-Shaped acrylamide gels in an electric field.” Macromolecules 19 (1986) 2890- 2892. 9. Jensen, M., Hansen, P. B., Murdan, S., Frokjaer, S. and Florence, A. T. “Loading into and electro-stimulated release of peptides and proteins from chondroitin-4-sulphate hydrogels.” Euro. J. Pharm. Sci. 15 (2002) 139-148. 10. Kim, J. H., Mia, B. R., Lee, K. B., Won, J. and Kang, Y. S. “Coordina- tion structure of various ligands in crosslinked PVA to silver ions for facilitated olefin transport.” Chem. Commun. 22 (2002) 2732-2733. 11. Kim, S. J., Lee, K. J., Kim, S. I., Lee, Y. M., Chung, T. D., and Lee, S. H. “Electrochemical behavior of an interpenetrating polymer network hydrogel composed of poly(propylene glycol) and poly(acrylic acid).” J Appl. Polym. Sci. 89 (2003) 2301-2305. 12. Kirker, K. R., Luo, Y., Nielson, J. H., Shelby, J., Prestwich, G. D. “Glycosaminoglycan hydrogel films as bio-interactive dressings for wound healing.” Biomaterials 23 (2002) 3661-3671. 13. Lee. K. Y., and Mooney, D. J. “Hydrogels for tissue engineering.” Chem. Revs. 101 (2001) 1869-1879. 14. Li, Q., Williams, C. G., Sun, D. D. N., Wang, J., Leong, K., Elisseeff, J. H. “Photocrosslinkable polysaccharides based on chondroitin sulfate” J. Biomed. Mater. Res. 68 (2004) 28–33. 15. Margolis, R.U., Margolis, R.K. “Chondroitin sulfate proteoglycans as mediators of axon growth and pathfinding.” Cell Tissue Res. 290 (1997) 343-348. 16. Martens, P.& Anseth, K. S. “ Characterization of hydrogels formed from acrylate modified poly(vinyl alcohol) macromers.” Polymer 41 (2000) 7715-7722. 17. Martens, P., Holland, T., Anseth, K. S. “Synthesis and character- ization of degradable hydrogels formed from acrylate modified poly- (vinyl alcohol) macromers.” Polymer 43 (2002) 6093–6100. 18. Matsumoto, A., Ikeda, S., Harada, A., and Kataoka, K. “Glucose- responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions.” Biomacromolecules 4 (2003) 1410-1416. 19. Min, B. H., Lim, H. and Park, S. R. “Characterization of subpopulated articular chondrocytes separated by percoll density gradient.” In vitro Biology J. 38 (2004) 35-40. 20. Nonaka, T., Ogata, T., Kurihara, S. “Preparation of poly(vinyl alcohol) -graft-N-isopropylacrylamide copolymer membranes and permeation of solutes through the membranes.” J. Appl. Polym. Sci. 52 (1994)951-957. 21. Nuttelman, C. R., Mortisen, D. J., Henry, S. M. and Anseth, K. S. “ Attachment of fibronectin to poly(vinyl alcohol) hydrogels promotes NIH3T3 cell adhesion, proliferation, and migration.” J. Biomed. Mater. Res. 57 (2001) 217-223. 22. Nuttelman, C. R., Henry, S. M and Anseth, K. S. “Synthesis and characterization of photocrosslinkable, degradable poly(vinyl alcohol) based tissue engineering scaffolds.” Biomaterials 23 (2002) 3617- 3622. 23. Okano, T., Kikuchi, A., Sakurai, Y., Takei, Y. and Ogata, N. “Temperature-responsive poly(N-isopropylacrylamide) as a modulator for alteration of hydrophilic/hydrophobic surface properties to control activation/inactivation of platelets.” J. Controlled Release 36 (1995) 125-133. 24. Peppas, N. A.& Klier, J. “Controlled release by using poly(metha- crylic acid-g-ethylene glycol) hydrogels.” J. Controlled Release 16 (1991) 203-214. 25. Tateishi, T., Chen, G., Ushida, T. “Biodegradable porous scaffolds for tissue engineering.” J. Artif. Organs. 5 (2002) 77–83. 26. Wade, L. G., JR. Organic chemistry. (1999) 818-822. 27. Watanabe, T., Utsunomiya, M., Kurihara, S., Nonaka, T. “Synthesis of thermosensitive hydrogels from acryloyloxyethyl trialkylphosphonium chloride–N-isopropylacrylamide–N, N-Methylenebisacrylamide terpo- lymers and their temperature dependence of Water absorption.” J. Polym. Sci. A. 39 (2001) 1505–1514. 28. Wichterle, O., Lim, D. “Hydrophilic gels in biologic use.” Nature 185 (1960) 117.id NH0925063011 sid 913603 cfn 0 / id NH0925063012 auc 黃雅君 tic 新型血管新生因子(Ginsenoside Rg1與Re)與其在組織工程的應用 adc 宋信文 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 66 kwc 血管增生 kwc 組織工程 kwc Ginsenoside Rg1 kwc Ginsenoside Re abc 摘要 tc 目 錄 內容 頁數 摘要 I 目錄 III 圖索引 VI 圖索引---------------------------------------------------------------------------- X 第一章 緒論 1.1 組織工程 1 1.2 組織工程面臨的難題 1 1.3 新型血管新生因子 2 1.4 五加參皂苷Rg1 (Ginsenoside Rg1) 2 1.5 五加參皂苷Re (Ginsenoside Re) 3 1.6 血管新生機制 4 1.7 人工細胞外間質 5 1.8 去細胞生物組織 7 1.9 研究動機與目的 8 第二章 體外實驗—Ginsenoside Rg1 2.1 研究目的 10 2.2 材料與方法 10 2.2.1細胞培養(Cell Culture) 10 2.2.2 HUVECs增殖實驗 11 2.2.3 HUVECs遷徙實驗 11 2.2.4 HUVECs tube formation實驗 14 2.3 實驗結果與討論 15 2.3.1 Rg1對HUVECs之增殖作用 15 2.3.2 Rg1對HUVECs之遷徙作用 17 2.3.3 Rg1對HUVECs之tube formation作用 20 2.4 結論 22 第三章 體外實驗—Ginsenoside Re 3.1 研究目的 24 3.2 材料與方法 24 3.2.1 細胞培養(Cell Culture) 24 3.2.2 Re溶液的配置 24 3.2.3 HUVECs增殖實驗 24 3.2.4 HUVECs遷徙實驗 25 3.2.5 HUVECs tube formation實驗 25 3.3 實驗結果與討論 26 3.3.1 Re對HUVECs之增殖作用 26 3.3.2 Re對HUVECs之遷徙作用 28 3.3.3 Re對HUVECs之tube formation作用 29 3.4 結論 33 第四章 體內實驗—Ginsenoside Re 4.1 研究目的 35 4.2 實驗材料 35 4.2.1 ECM的製備 35 4.2.2 製備包覆bFGF或Re的ECM 37 4.3 實驗方法 39 4.3.1 ECM檢測 39 4.3.2 體內實驗 42 4.4 實驗結果與討論 46 4.4.1 ECM的製備 46 4.4.2 體內實驗 47 4.5 結論 59 參考文獻 60rf 參考文獻 1.Vacanti JP, Vacanti CA. The challenge of tissue engineering. In: Lanza RP, Langer R, Chick WL, editors. Principles of tissue engineering. R.G. Landes Company, Austin: Academic Press, 1997. p. 1-5. 2.Langer R. Tissue engineering. Science 1993;260:920-6. 3. Tabata, Y. Necessity of drug delivery dystems to tissue engineering. In: Park KD, Kwon IC, Yui N, Jeong SY, Park K, editors. Biomaterials and drug delivery toward new mellenium. Korea: Han Rim Won Publishing Co., 2000. p. 531-44. 4. Kofidis T, Akhyari P, Boublik J, Theodorou P, Martin U, Ruhparwar A, Fischer S, Eschenhagen T, Kubis HP, Kraft T, Leyh R, Haverich A. In vitro engineering of heart muscle: artificial myocardial tissue. J Thorac Cardiov Sur 2002;124:63-9. 5. Li RK, Yau TM, Weisel RD, Mickle DA, Sakai T, Choi A, Jia ZQ. Construction of a bioengineered cardiac graft. J Thorac Cardiov Sur 2000;119:368-75. 6. Freed LE, Vunjak-Novakovic G. Tissue culture bioreactors: chondrogenesis as a model system. In: Lanza RP, Langer R, Chick WL, editors. Principles of tissue engineering. R.G. Landes Company, Austin: Academic Press, 1997. p. 151-65. 7. Chapekar MS. Tissue engineering: challenges and opportunities. J Biomed Mater Res 2000;53:617-20. 8. Soker S, Machado M, Atala A, Systems for therapeutic angiogenesis in tissue engineering. World J Urol 2000;18:10-18. 9. Heldin CH, Usuki K, Miyazono K. Platelet-derived endothelial cell growth factor. J Cell Biochem 1991;47:208-10. 10. Kawai K, Suzuki S, Tabata Y, Ikada Y, Nishimura Y. Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis. Biomaterials 2000;21:489-99. 11. Liao B, Newmark H, Zhou R. Neuroprotective effects of ginseng total saponin and ginsenosides Rb1 and Rg1 on spinal cord neurons in vitro. Exp Neuro 2002;173:224-34. 12. Scott GI, Colligan PB, Ren BH, Ren J. Ginsenosides Rb1 and Re decrease cardiac contraction in adult rat ventricular myocytes: role of nitric oxide. Brit J Pharmacol 2001;134:1159-65. 13. 恩斯特˙D˙普林曾柏格. 人參:永保青春和活力. 台北縣: 小薰書房, 1999. 14. 張維懋, 王致權. 21世紀癌症新剋星:人參皂苷. 台北市: 愛克斯文化, 2002. 15. Liu M, Zhang JT. Effects of ginsenoside Rg1 on c-fos gene expression and cAMP levels in rat hippocampus. Zhongguo Yao Li Xue Bao/Acta Pharmacologica Sinica 1996;17:171-4. 16. Tong LS, Chao CY. Effects of ginsenoside Rg1 of Panax ginseng on mitosis in human blood lymphocytes in vitro. Am J Chinese Med 1980;8:254-67. 17. Nah SY, Oh S. Modulation of G protein alpha-subunit mRNA levels in discrete rat brain regions by cerebroventricular infusion of ginsenoside Rc and Rg1. Neurochem Res 2003;28:691-7. 18. Lee YJ, Chung E, Lee KY, Lee YH, Huh B, Lee SK. Ginsenoside-Rg1, one of the major active molecules from Panax ginseng, is a functional ligand of glucocorticoid receptor. Mol Cell Endocrinol 1997;133:135-40. 19. Losordo DW, Isner JM. Estrogen and angiogenesis: a review. Arterioscl Throm Vas 2001;21:6-12. 20. Cid MC, Schnaper HW, Kleinman HK. Estrogens and the vascular endothelium. Annals NY Acad Sci 2002;966:143-57. 21. Chan RY, Chen WF, Dong A, Guo D, Wong MS. Estrogen-like activity of ginsenoside Rg1 derived from Panax notoginseng. J Clin Endocr Metab 2002;87:3691-5. 22. Morbidelli L, Donnini S, Ziche M. Role of nitric oxide in the modulation of angiogenesis. Curr Pharm Design 2003;9:521-30. 23. Babaei S, Stewart DJ. Overexpression of endothelial NO synthase induces angiogenesis in a co-culture model. Cardiovasc Res 2002;55:190-200. 24. Miyamoto E, Odashima S, Kitagawa I, Tsuji A. Stability kinetics of ginsenosides in aqueous solution. J Pharm Sci 1984;73:409-10. 25. Kitagawa I, Taniyama T, Yoshikawa M, Ikenishi Y, Nakagawa Y. Chemical studies on crude drug processing. VI. Chemical structures of malonyl-ginsenosides Rb1, Rb2, Rc, and Rd isolated from the root of Panax ginseng C. A. Meyer. Chem Pharm Bull 1989;37:2961-70. 26. Jin ZQ. The action of ginsenoside Re on inotropy and chronotropy of isolated atria prepared from guinea pigs. Planta Med 1996;62:314-6. 27. Lee YJ, Jin YR, Lim WC, Ji SM, Cho JY, Ban JJ, Lee SK. Ginsenoside Rc and Re stimulate c-fos expression in MCF-7 human breast carcinoma cells. Arch Pharmacal Res 2003;26:53-7. 28. 陳榮福.中藥藥理學. 台北縣: 國立中國醫藥研究所, 1991. p. 113-264. 29. Morisaki N, Watanabe S, Tezuka M, Zenibayashi M, Shiina R, Koyama N, Kanzaki T, Saito Y. Mechanism of angiogenic effects of saponin from ginseng Radix rubra in human umbilical vein endothelial cells. Brit J Pharmacol 1995;115:1188-93. 30. Kalluri R. Basement membranes: Structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 2003;3:422-33. 31. Piper JS, Hafman T, Veerkamp JH, Kuppevelt V. Development of tailor-made collagen glycosaminoglycan matrices: EDC/NHS crosslinking and ultrastructural aspects. Biomaterials 2000;21:581- 93. 32. Kim BS, Baez CE, Atala A. Biomaterials for tissue engineering. World J Urol 2000;18:2-9. 33. Schmidt CE, Baier JM. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials 2000;21:2215-31. 34. 朱家瑜, 潘俊亮, 林亮宇. 組織學. 台北市: 藝軒圖書出版社, 1992. p. 42-56. 35. Hay ED. Cell Biology of extracellular matrix, 2nd ed. New York: Plenum Press, 1991. p. 45-71. 36. Becker WM, Kleinsmith LJ, Hardin J. The world of the cell, 4th ed. San Francisco: Addison Wesley Longman, Inc., 2000. p. 301-3. 37. Sung HW, Huang RN, Huang LLH, Tsai CC, Chiu CT. Feasibility study of a natural crosslinking reagent for biological tissue fixation. J Biomed Mater Res 1998;42:560-7. 38. Chang Y, Tsai CC, Liang HC, Sung HW. Reconstruction of the right ventricular outflow tract with a bovine jugular vein graft fixed with a naturally occurring crosslinking agent (genipin) in a canine model. J Thorac Cardiov Sur 2001;122:1208-18. 39. Chang Y, Tsai CC, Liang HC, Sung HW. In vivo evaluation of cellular and acellular bovine pericardia fixed with a naturally occurring crosslinking agent (genipin). Biomaterials 2002;23:2447- 57. 40. Chang Y, Lee MH, Liang HC, Hsu CK, Sung HW. Acellular bovine pericardia with distinct porous structures fixed with genipin as an extracellular matrix. Tissue Eng, in press. 41. Liang HC, Chang Y, Hsu CK, Lee MH, Sung HW. Effects of crosslinking degree of an acellular biological tissue on its tissue regeneration pattern. Biomaterials 2004;25:3541-52. 42. Hagan S, Hiscott P, Sheridan CM, Wong D, Grierson I, McGalliard J. Effects of the matricellular protein SPARC on human retinal pigment epithelial cell behavior. Mol Vis 2003;9:87-92. 43. Wajih N, Sane DC. Angiostatin selectively inhibits signaling by hepatocyte growth factor in endothelial and smooth muscle cells. Blood 2003;101:1857-63. 44. Riss TL, Moravec RA. Comparison of MTT, XTT, and a novel tetrazolium compound MTS for in vitro proliferation and chemosensitivity assays. Mol Biol Cell 1992;3(suppl)184. 45. Davidoff AM, Leary MA, Ng CYC, Vanin EF. Gene therapy-mediated expression by tumor cells of the angiogenesis inhibitor flk-1 results in inhibition of neuroblastoma growth in vivo. J Pediatr Surg 2001;36:30-6. 46. Okamoto H, Yatomi Y, Ohmori T, Satoh K, Matsumoto Y, Ozaki Y. Sphingosine 1-phosphate stimulates G(i)- and Rho-mediated vascular endothelial cell spreading and migration. Thromb Res 2000;99:259-65. 47. Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Brocker EB, Friedl P. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 2003;160:267-77. 48. Morales DE, McGowan KA, Grant DS, Maheshwari S, Bhartiya D, Cid MC, Kleinman HK, Schnaper HW. Estrogen promotes angiogenic activity in human umbilical vein endothelial cells in vitro and in a murine model. Circulation 1995;91:755-63. 49. Berridge MV, Tan AS. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 1993;303:474-82. 50. Lee OH, Kim YM, Lee YM, Moon EJ, Lee DJ, Kim JH,. Kim KW, Kwon YG. Sphingosine 1-phosphate induces angiogenesis: its angiogenic action and signaling mechanism in human umbilical vein endothelial cells. Biochem Biophys Res Commun 1999;264: 743-50. 51. Grant DS, Lelkes PI, Fukuda K, Kleinman HK. Intracellular mechanisms involved in basement membrane induced blood vessel differentiation in vitro. In Vitro Cell Dev Biol 1991;27A:327-36. 52. Martin I, Shastri VP, Padera RF. Selective differentiation of etmammalian bone marrow stromal cells cultured on three-dimensional polymer foams. J Biomed Mater Res 2001;55: 229-35. 53. Meus PJ, Wernly JA, Campbell CD, Takanashi Y, Pick RL, Qui ZK, Replogle RL. Long-term evaluation of pericardial substitutes. J Thorac Cardiovasc Surg 1983;85:54-8. 54. Dorogosz WJ, Lindgren SE. US Patent No. 5 413 960, 1995. 55. Silvestro L, Viano I, Macario M, Colangelo D, Montrucchio G, Panico S, Fantozzi R. Effects of heparin and its desulfated derivatives on leukocyte-endothelial adhesion. Semin Thromb Hemost 1994;20:254-8. 56. Nimini ME, Cheung D, Strates B, Kodama M, Sheikh K. Bioprosthesis derived from cross-linked and chemically modified collagenous tissues. In: Nimi ME, editor. Collagen, vol. III. Boca Raton, FL: CRC Press, 1998. p. 1-38. 57. Chan-Myers HB, Guida SH, Roberts CG, Thyagarajan K, Tu R, Quijano RC. Sterilization of a small caliber vascular graft with a polyepoxy compond. ASAIO J 1992;38:116-9. 58. Bonnabeau RC, Armanious AW, Tarnay TJ. Partial replacement of pericardium with dura substitute. J Thorac Cardiovasc Surg 1973;66: 196-201. 59. Crosby WH, Munn JI, Furth FW. Standardizing a method for clinical hemoglobinometry. US Armed Forces Med J 1954;5:693. 60. Lee KY, Halberstadt CR, Holder WD. Breast reconstruction. In: Lanza RP, Langer R, Vacanti J. editors. Principle of tissue engineering, 2nd ed. San Diego: Academic, 2000. p. 409-23id NH0925063012 sid 913605 cfn 0 / id NH0925063013 auc 蘇訓右 tic 水性聚胺酯樹脂/聚矽酸奈米複合材料之製備與性質之研究 adc 馬振基 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 157 kwc 水性聚胺酯樹脂 kwc 聚矽酸奈米顆粒 kwc 奈米複合材料 abc 本研究旨在合成水性PU ( Waterborne Polyurethane ),除具有一般水性PU樹脂的基本結構外,並利用3-aminopropyl-triethoxysilane (APTS)使得分子鏈尾端帶有silane的官能基。由於其尾端的silane會與聚矽酸 ( Polysilicic acid nanoparticle, PN ) 表面的OH進行溶膠-凝膠反應,產生共價鍵結,藉此可達到均勻分散的目的;另外利用Phenyltrimethoxysilane(PTMS)及3-(trimethoxysilyl) propyl ester (TMPE)將PN奈米顆粒改質後,藉由混摻的方法將無機奈米顆粒均勻分散在水性PU中,製備三種水性PU/聚矽酸奈米複合材料並探討材料的結構與熱、機械、氣體滲透率的性質。 tc 目錄 摘要………………………………………………………………..……..Ι ABSTRACT……………………………………………………………ΙⅤ 謝誌………………………………………………………………..…ⅤΙΙΙ 目錄……………………………………………………………..……….Χ 圖目錄…………………………………………………………...........ΧⅤ 表目錄…………………………………………………………….......ΧΧΙ 第一章、緒論……………………………………………………………1 1-1前言……………………………………………………………1 1-2高分子奈米複合材料……..…………………………………..1 1-3分離膜………………………………………………………....3 第二章、文獻回顧與理論基礎………………………………………….6 2-1 聚胺基甲酸酯(PU)的發展與性質…………………………...6 2-1-1聚胺基甲酸酯的發展歷程………………………….....6 2-1-2 聚胺基甲酸酯的反應…………………………………9 2-1-3 聚胺基甲酸酯的結構與性質………………………..11 2-2 水性聚胺基甲酸酯的發展與製備………………………….14 2-2-1 水性PU的發展歷程…………………………….…..14 2-2-2 水性PU的優點與性質…………………….………..15 2-2-3 水性PU的製備……………………………………..16 2-3 溶膠-凝膠法 (Sol-Gel method).............................................23 2-3-1 溶膠-凝膠法的基本原理……………………………23 2-3-2 影響溶膠-凝膠法的參數……………………………25 2-4 聚矽酸顆粒的發展歷史與製程…………………………….27 2-4-1聚矽酸奈米顆粒的製備……………………………...28 2-4-2 PN法在有機-無機混成材料上的應用………………29 2-5 氣體滲透性質……………………………………………….31 2-5-1 氣體滲透的研究與發展歷史………………………..31 2-5-2 氣體滲透的原理……………………………………..33 2-5-3 影響氣體滲透之因素………………………………..35 2-6 基團貢獻法(Group Contribution Method).............................36 2-6-1 偶極距與分子極性…………………………………..36 2-6-2 基團貢獻法的應用與算法…………………………..37 2-7 高分子中的氫鍵…………………………………………….42 2-8 高分子的結晶……………………………………………….44 第三章、研究目的與內容………………………………………………49 3-1 研究目的…………………………………………………….49 3-2 研究內容…………………………………………………….51 第四章、實驗方法………………………………………………………56 4-1 實驗藥品…………………………………………………….56 4-2 實驗儀器…………………………………………………….59 4-3 實驗流程…………………………………………………….61 4-4 實驗步驟…………………………………………………….63 4-4-1 PN奈米顆粒的合成與改質………………………….63 4-4-2水性PU的製備………………………………………64 4-4-3水性PU / PN奈米複合材料的製備與成膜………….64 4-5 測試方法…………………………………………………….64 4-5-1 PN奈米顆粒的粒徑測試…………………………….64 4-5-2高分子合成物的鑑定………………………………...65 4-5-3熱性質的測試………………………………………...66 4-5-4型態的測試…………………………………………...67 4-5-5氣體透過性質測試…………………………………...67 4-5-6 光學性質之測定……………………………………..69 4-5-7 抗拉強度測定………………………………………..69 4-5-8 動態機械測試………………………………………..70 第五章、結果與討論……………………………………………………71 5-1 鑑定部分…………………………………………………….71 5-1-1 PN奈米顆粒的粒徑分析…………………………….71 5-1-2 PN顆粒改質後之結構分析………………………….72 5-1-3水性PU預聚物的反應時間…………………………77 5-1-4水性PU的結構鑑定………………………………….80 5-1-5水性PU分子量的鑑定……………………………….82 5-2 水性PU/聚矽酸奈米複合材料的相容性…………………..85 5-2-1掃瞄式電子顯微鏡的觀察…………………………...85 5-2-2固態1H NMR圖譜分析……………………………..92 5-2-3氫鍵作用力的分析…………………………………...96 5-2-4外觀分析…………………………………………….103 5-2-5 UV-Vis的光學分析…………………………………105 5-3 奈米複合材料的結晶行為與型態變化…………………...110 5-3-1熱性質分析………………………………………….110 5-3-2 X-Ray繞射分析……………………………………..116 5-3-3固態29Si核磁共振圖譜…………………………….120 5-4 奈米複合材料的性質測試………………………………...126 5-4-1熱性質測試………………………………………….126 5-4-2抗拉強度測定…………………………………….....131 5-4-3氣體滲透率測試………………………………….....135 5-4-4動態機械性質測試………………………………….140 第六章、結論………………………………………………………….144 第七章、參考文獻……………………………………………………..149 圖目錄 Figure 2-1異氰酸酯基的反應………………………………………….10 Figure 2-2異氰酸酯基相關反應……………………………………….11 Figure 2-3 PU軟鍵段與硬鍵段的結構示意圖………………………...12 Figure 2-4 PU軟硬鏈段物理交聯示意圖 ……………………………..13 Figure 2-5各類的離子型乳化劑 ………………….…………………..18 Figure 2-6溶液法製備水性PU的流程………………………………..19 Figure 2-7預聚物混合法製備水性PU之過程………………………..21 Figure 2-8 Ketimine和Ketazine的水解反應………………………….23 Figure 2-9溶膠-凝膠法的水解縮合反應………………………………25 Figure 2-10溶解-擴散模式……………………………………………..33 Figure 4-1 The Concise Flow Chart on this Research…………………..61 Figure 4-2 The synthesis mechanism of WPU / PN nanocomposite……62 Figure 4-3 The Apparatus for Gas Permeability Measurement…………69 Figure 5-1 The Size Distribution of PN nanoparticles at steady state…..71 Figure 5-2 FT-IR Spectra of PN nanoparticles………………………….74 Figure 5-3 FT-IR Spectra of PTMS-PN…………………………………75 Figure 5-4 FT-IR Spectra of TMPE-PN………………………………...76 Figure 5-5 The FT-IR spectra of IPDI reacted with PCL at different reaction times……………………………………………………………79 Figure 5-6 The FT-IR spectrum of waterborne polyurethane…………...81 Figure 5-7 The GPC Spectrum of waterborne polyurethane……………82 Figure 5-8 The SEM microphotograph of waterborne polyurethane (x50,000)………………………………………………………………...85 Figure 5-9 SEM microphotograph of WPU with PN (5wt.%) (x20,000).87 Figure 5-10 SEM microphotograph of waterborne polyurethane with PN particles ( 25wt.%) (x40,000)…………………………………………...88 Figure 5-11 SEM microphotograph of waterborne polyurethane with PTMS-PN (x40,000) ……………………………………………………88 Figure 5-12 Si mapping photograph of WPU with PTMS-PN………….89 Figure 5-13 The elemental analysis of waterborne polyurethane with PTMS-PN……………………………………………………………….89 Figure 5-14 SEM microphotograph of waterborne polyurethane with PTMS-PN ( 30wt.%) (x70,000)…………………………………………90 Figure 5-15 SEM microphotograph of waterborne polyurethane with TMPE-PN (x50,000)……………………………………………………90 Figure 5-16 Si mapping photograph of waterborne polyurethane with TMPE-PN……………………………………………………………….91 Figure 5-17 Elemental analysis of waterborne polyurethane with TMPE-PN……………………………………………………………….91 Figure 5-18 SEM microphotograph of waterborne polyurethane with TMPE-PN ( 30wt.%) (x50,000)………………………………………...92 Figure 5-19 The structure of waterborne polyurethane…………………92 Figure 5-20 1H-NMR spectra of WPU nanocomposites with different PN contents………………………………………………………………….93 Figure 5-21 1H-NMR spectra of WPU nanocomposites with different...93 Figure 5-22 1H-NMR spectra of WPU nanocomposites with different TMPE-PN contents……………………………………………………...94 Figure 5-23 FT-IR analysis of carbonyl groups on WPU with different PN contents nanocomposites………………………………………………..97 Figure 5-24 The fraction of hydrogen bonded carbonyl for WPU with different PN contents nanocomposites……………………………….....98 Figure 5-25 FT-IR analysis of carbonyl groups on WPU with different PTMS-PN contents nanocomposites……………………………………98 Figure 5-26 The fraction of hydrogen bonded carbonyl for WPU with different PTMS-PN contents nanocomposites…………………………..99 Figure 5-27 FT-IR analysis of carbonyl groups on WPU with different TMPE-PN contents nanocomposites…………………………………..100 Figure 5-28 The fraction of hydrogen bonded carbonyl for WPU with different TMPE-PN contents nanocomposites………………………...101 Figure 5-29 Transparency of WPU nanocomposites with PN 20wt.% and 25 wt.% ..……………………………………………………...…….….104 Figure 5-30 Transparency of WPU nanocomposites with PTMS-PN 25 wt.% and 30 wt.%...................................................................................104 Figure 5-31 Transparency of WPU nanocomposites with TMPE-PN 25 wt.% and 30 wt.%...................................................................................104 Figure 5-32 UV spectrum of WPU nanocomposites with different PN contents ………………………………………………………………...106 Figure 5-33 UV spectrum of WPU nanocomposites with different PTMS-PN contents…………………………………………………….107 Figure 5-34 UV spectrum of WPU nanocomposites with different TMPE-PN contents…………………………………………………….107 Figure 5-35 UV-Vis absorbance of WPU nanocomposites with different PN、PTMS-PN、TMPE-PN contents ………………………………..108 Figure 5-36 DSC spectra of WPU with different PN contents……..….112 Figure 5-37 DSC spectra of WPU nanocomposites with low PN contents………………………………………………………………...113 Figure 5-38 DSC spectra of WPU nanocomposites with different PTMS-PN contents …………………………………………………....113 Figure 5-39 DSC spectra of WPU nanocomposites with different…….114 Figure 5-40 XRD curves of WPU nanocomposites with low PN contents ………………………………………………………………..117 Figure 5-41 XRD curves of WPU nanocomposites with different PN...117 Figure 5-42 XRD curves of WPU nanocomposites with different PTMS-PN contents ……………………………………………………118 Figure 5-43 XRD curves of WPU nanocomposites with different…….118 Figure 5-44 29Si-NMR spectra of PN nanoparticles…………….…...122 Figure 5-45 29Si-NMR spectra of WPU nanocomposites with different PN……………………………………………………………………...122 Figure 5-46 29Si-NMR spectra of WPU nanocomposites with different PTMS-PN contents ……………………………………………………123 Figure 5-47 29Si-NMR spectra of WPU nanocomposites with different………………………………………………………………...123 Figure 5-48 Thermal degradation curve of WPU nanocomposites with different PN contents ………………………………………………….125 Figure 5-49 Thermal degradation curve of WPU nanocomposites with different PTMS-PN contents ………………………………………….126 Figure 5-50 Thermal degradation curve of WPU nanocomposites with different TMPE-PN contents ………………………………………….127 Figure 5-51 Thermal degradation temperature of WPU nanocomposites with different PN、PTMS-PN、TMPE-PN contents ………………….128 Figure 5-52 Max. Stress of WPU nanocomposites with different PN、PTMS-PN、TMPE-PN contents………………………………………131 Figure 5-53 Young’s Modulus of WPU nanocomposites with different PN、PTMS-PN、TMPE-PN contents ………………………………..133 Figure 5-54 Oxygen permeability coefficient of WPU nanocomposites with different PN、PTMS-PN、TMPE-PN contents …………………137 Figure 5-55 Oxygen diffusivity coefficient of WPU nanocomposites with different PN、PTMS-PN、TMPE-PN contents ……………………….137 Figure 5-56 Oxygen solubility coefficient of WPU nanocomposites with different PN、PTMS-PN、TMPE-PN contents ………………………138 Figure 5-57 Storage Modulus of WPU nanocomposites with different PN contents………………………………………………………………...140 Figure 5-58 Storage Modulus of WPU nanocomposites with different PTMS-PN contents…………………………………………………….140 Figure 5-59 Storage Modulus of WPU nanocomposites with different TMPE-PN contents ……………………………………………………141 表目錄 Table 1-1高分子複合材料分類………………………………………….2 Table 1-2主要膜分離過程的趨動力…………………………………….4 Table 2-1聚胺基甲酸酯研究的重要歷程 ………………………………8 Table 2-2中心金屬離子的配位數與不飽和度…………………..……26 Table 2-1 Group contribution of the molar volume of organic liquid at room temperature (cm3/mol)……………………………………….……39 Table 2-2 Group contribution to the molar refraction (λ=589nm) ……...40 Table 2-3 Group contributions to the molar dielectric polarization in isotropic polymers (cm3/mol)…………………………………………...41 Table 4-1 Characteristic absorption peaks of FT-IR spectra of PN / Waterborne polyurethane nanocomposite……………………………….65 Table 5-1 The Absorption Intensity of NCO to NH at different reaction times……………………………………………………………………..78 Table 5-2 The dipole moment of WPU by Group contribution method..83 Table 5-3 The dipole moment of PN、PTMS-PN、TMPE-PN nanoparticles by Group contribution method………………………………………….84 Table 5-4 The curve fitting results from the FT-IR spectra of WPU with different PN nanocomposites……………………………………………98 Table 5-5 The curve fitting results from the FT-IR spectra of WPU with different PTMS-PN nanocomposites…………………………………..100 Table 5-6 The curve fitting results from the FT-IR spectra of WPU with different TMPE-PN nanocomposites…………………………………..101 Table 5-7 Max. absorption wavelength and intensity of WPU nanocomposites with different PN contents…………………………...106 Table 5-8 Max. absorption wavelength and intensity of WPU nanocomposites with different PTMS-PN contents…………………...107 Table 5-9 Max. absorption wavelength and intensity of WPU nanocomposites with different TMPE-PN contents…………………...108 Table 5-10 Glass transition、melting temperature and melting peak area of WPU nanocomposites with different TMPE-PN contents……………..114 Table 5-11 Glass transition、melting temperature and melting peak area of WPU nanocomposites with low PN contents………………………….115 Table 5-12 Glass transition、melting temperature and melting peak area of WPU nanocomposites with different PTMS-PN contents……………..115 Table 5-13 Glass transition、melting temperature and melting peak area of WPU nanocomposites with different TMPE-PN contents……………..115 Table 5-14 Thermal degradation temperature of WPU nanocomposites with different PN contents……………………………………………..127 Table 5-15 Thermal degradation temperature of WPU nanocomposites with different PTMS-PN contents………………………………..……128 Table 5-16 Thermal degradation temperature of WPU nanocomposites with different TMPE-PN contents……………………………………..129 Table 5-17 Mechanical properties of WPU nanocomposites with different PN contents…………………………………………………………….133 Table 5-18 Mechanical properties of WPU nanocomposites with different PTMS-PN contents…………………………………………………….133 Table 5-19 Mechanical properties of WPU nanocomposites with different TMPE-PN contents.…………………………………………………....133 Table 5-20 Oxygen permeation properties of WPU nanocomposites with different PN contents …………………………………………………..137 Table 5-21 Oxygen permeation properties of WPU nanocomposites with different PTMS-PN contents…………………………………………..137 Table 5-22 Oxygen permeation properties of WPU nanocomposites with different TMPE-PN contents…………………………………………..137 Table 5-23 Storage Modulus of WPU nanocomposites with different PN contents at -25℃、0℃、25℃…………………………………………142 Table 5-24 Storage Modulus of WPU nanocomposites with different PTMS-PN contents at -25℃、0℃、25℃……………………………..143 Table 5-25 Storage Modulus of WPU nanocomposites with different TMPE-PN contents at -25℃、0℃、25℃ ……………………………143rf 1. 張立德 編著,張勁燕 校訂,“奈米大浪潮 奈米材料”,五南書局,P.5,2002 2. A. Moet Akelah ,” Synthesis of Organophilic Polymer-clay nanocomposites,” J. App.Polym. Sci: Applied Polymer Symposium, 55, 153-172, 1994 3. 林景正、賴宏仁,”奈米材料技術與發展趨勢”,工業材料,153,pp95~96,1999 4. 郭文法,“納米複合材料加工應用”,工業材料,125 5. Peter C. LeBaron,Zhen Wang, Thomas J. Pinnavaia,”Polymer-layered silicate nanocomposites:an overview” Applied Clay Science 15,pp.11-29,1999 6. A.Kioul, L.Mascia,”Compatibility of polyimide-silicate creamers induced by alkoxysilane silane coupling agents” Journal of Non-crystalline solid 175,pp.169~186,1994 7. “酚醛樹脂/二氧化矽奈米混成防火複合材料增韌製程及其特性之研究”,戴炘,國立清華大學碩士論文,2003 8. 鄭領英、王學松 編著,”科技大浪潮—膜的高科技應用”,五南書局,2003 9. W. S. Winston Ho and K. K. Sirkar, Membrane Handbook, Van Nostrand Reinhold, New York, 1992 10. J. S. McBride, T. A. Massaro, and S. L. Cooper, “Diffusion of gases through polyurethane block polymers”, J. Appl. Polym. Sci.,23,201,1979 11. P. M. Knight and D. J. Lyman, “Gas permeability of various block copolyether-urethanes”, J. Membr. Sci., 17,pp.245,1984 12. Shih-Hsiung Chen, Kuang-Chang Yu, Shih-Liang Houng, Juin-Yih Lai, “Gas transport properties of HTPB based polyurethane/cosalen membrane”, J. Membr. Sci. 173, pp.99-106, 2000 13. 蔡宗燕,化工資訊,二月,28-42,1998 14. A. Wurtz, C. R. Hebd. Seance Academic SCI , 27, 241, 1848 15. Chem. Eng. News 39 , 11, 62, 1961 16. Szycher, Handbook of Polyurethane, pp.1-4 17. 岩田敬治,”聚尿脂樹脂PU原理與實用”, 復漢出版社, 1-3 18. Szycher, Handbook of Polyurethane, pp.4-6∼4-8 19. L. G. Wade, Jr. Organic Chemistry , A Simon and Schuster Company Englewood Cliffs,New Jersy(1995) 20. J. H. Saunders and K. C. Frisch. Polyurethane; Chemistry and Technology, PartsⅠ and Ⅱ, Interscience, New York (1962) 21. P. Wright and A. P. C. Cumming, Solid Polyurethane Elastomers, Maclaren and Sons, London (1969). 22. C. Hepburn, Polyurethane elastomers, Applied Science Publishers LTD (1982). 23. Day Chyuan. Lee,; Thomas A.Speckhard,; Andrew D Sorensen,.; Stuart L.Cooper, “Methods for determining the molecular weight and solution properties of polyurethane block copolymers” Macromolecules, 1986, 19(9), 2383 24. D. Diterich, Angew. Makromol. Chem., 98, 133, 1981 25. Szycher, Handbook of Polyurethane, Chapter 14 26. 張信弘, “離子基對水性PU樹脂結構影響之研究”, 文化大學碩士論文85年 27. J. B. Nichols, J. D.Christen, L. D.Booth, W. D. Clarke, “High performance appliance insulation using MDI-based urethane chemistry” J. Cell. Plast., 1985, 21(4), 277 28. 黃長澤,“水性PU合成技術及在接著劑之應用 (中)”,81,80-86,1999 29. Y. J. Huang, W. C. Jiang,“Effects of chemical composition and structure of unsaturated polyester resins on the miscibility, cured sample morphology and mechanical properties for styrene/unsaturated polyester/low-profile additive ternary systems. 1: Miscibility and cured sample morphology”Polymer, 39, 6631-6641, 1998 30. Y. J. Huang, C. J. Chu,“Effects of chemical structure of polyurethane-based low-profile additives on the miscibility, curing behavior, volume shrinkage, glass transition temperatures, and mechanical properties for styrene/unsaturated polyester/low-profile additive ternary systems. I: miscibility, curing behavior, and volume shrinkage”, J. Appl. Polym. Sci.78(3), 543-557,2000 31. D. W. V. Krevelen, “Properties of polymer:their correlation with chemical structure;their numerical estimation and prediction from additive group contributions”, pp.78、293、32, 3rd Completely Revised Ed., Elsevier, London, 1997 32. C. J. Brinker and G. W. Scherer, “Sol-gel Science, The Physics and Chemistry of Sol-gel Processing”, Published by Academic Press, Inc., p. 2-8, 1990. 33. J. Wen, G. L. Wilkes, “Organic/Inorganic Hybrid Network Materials by the Sol-Gel Approach”, Chem. Mater., 8, 1667, 1996 34. G. Schottner, “Hybrid Sol-Gel Derived Polymer:Applications of Multifunctional Materials”, Chem. Mater., 13, 3422, 2001 35. 徐國財, 張立德, “納米複合材料”, 北京化學工業出版社, 2001 36. F. Mylius, and E. Groschuff, Ber.,39, 116-25, 1906 37. R. K. Iler and P. S. Pinkney, Industrial and Engineering Chemistry, 39,1379, 1947 38. Y. Abe and T. Misono, J. Polym. Sci. Polym. Lett. Ed., 20, 205, 1982 39. T. Gunji, Y. Nagao, T. Misono, and Y. Abe. J. Polym. Sci. Polym. Chem. Ed., 30, 1779,1992 40. B.M. Novak, Adv. Mater., 5, 422, 1993 41. B. M. Novak and M. W. Ellsworth, Materials Sciences and Engineering, A162, 257,1993 42. J. Habsuda, G. P. Simon, Y. B. Cheng, D. G. Hewitt, H. Toh, D. R. Diggins,“Chemical structure of composites derived from poly(silicic acid) and 2-hydroxyethylmethacrylate” J. Polym. Sci. Part A:Polym. Chem., vol.39, 1342-1352, 2001 43. V. Stannett, “The transport of gases in synthetic polymeric membranes-an historic perspective”, J. Membr. Sci. 3, 97, 1987 44. 張良祥, “含胺基之聚胺基甲酸酯與聚尿素-胺基甲酸酯的合成、鑑定及氣體吸附與透過性質的研究”, 成功大學博士論文86年 45. S. A. Stern, W. P. Walawender, Analysis of membranes separation parameters, Separation Sci., 4(2), 129, 1969 46. L. Jia, J. Xu, A single method for prediction of gas permeability of polymers from their molecular structure, Polymer J., 23, 417, 1991 47. M. S. Suwandi, S. A. Stern, Transport of heavy organic vapors through silicone rubber, J. Polym. Sci. Phys. Ed., 11 ,663, 1973 48. K. D. Ziegel, Gas transport in segmented block copolymer, J. Macromol. Sci. Phys., B5(1), 11, 1971 49. H. Xiao, Z. H. Ping, J. W. Xie, T. Y. Yu, Permeation of CO2 through polyurethane, J. Appl. Polym. Sci., 40 ,1131, 1990 50. M. M. Coleman, C. J. Serman, P. C. Painter, ”Effect of crosslinking on the degree of molecular level mixing in an polymer blend”, Macromolecules, 20, 266~232, 1987 51. A. M. Lichkus, P. C. Painter, M. M. Coleman, ”Hydrogen bonding in polymer blends”, Macromolecules, 21, 2636~2641, 1988 52. H.I. Kim, E. M. Pearce, T. K. Kwei, “Misibility control by hydrogen bonding in polymer blends and interpenetrating networks”, Macromolecules, 22, 3374~3380, 1989 53. T. Zhang, K. Takegoshi and K. Hikichi, “Poly(vinyl phenol)/poly(methyl methacrylate) Blends: Hydrogen Bonding, Miscibility, and Blending Effect on Molecular Motions as Studies By 13C CP/MAS NMR”Macromolecules, 1991, v.24, 5776-5762. 54. M. M. Coleman; Y. Xu and P. C. Painter, “Compositional Hetergeneities in Hydrogen-Bonded Polymer Blends: Infrared Spectroscopic Results”Macromolecules, 1994, v.27, 127-134. 55. L. A. Utracki, “Polymer Alloys and Blends-thermodynamics and rheology”Hanser Publishers, 1989, Munich, Vienna, New York. 56. 蔡宗燕, “奈米黏土-高分子複合材料之發展與應用” , 材料奈米技術專刊, 2001 57. R. E. Kesting, A. K. Fritzsche, “Polymeric gas separation membranes”, John wiley & sons, Inc. 58. M. M. Coleman, J. F. Gref, P. C. Painter, Specific Interactions and the Miscibility of polymer blends, Technomic publishing, Inc. Lancaster, PA, 1991 59. H. D. Wu, C. C. M. Ma, F. C. Chang, Macromolecules, 32, 9, 3097, 1999 60. Harold Schonhorn, Macromolecules,1,145,1968 61. T. K. Kwei, H. Schonhorn, and H. L. Frisch, J. Appl. Phys.,38,2512,1967 62. Souheng Wu., Polymer Interface and Adhesion,M. Dekker, New York,p323. 63. R.C.R. Nunes, R.A. Pereira, J.L.C. Fonseca, M.R. Pereira, Polymer Testing 20, 707-712, 2001 64. B.D. Dickie, Thermochimica Acta, 304/305, 347-352, 1997 65. Fernanda M.B. Coutinho, Marcia C. Delpech, Thais L. Alves, Antonio A. Ferreira, “Degradation profiles of cast films of polyurethane and poly(urethane-urea) aqueous disersions based on hybroxytherminated polybutadiene and different diisocyanates,” Polymer Degradation and Stability, 81, 19-27, 2003 66. L.K. Saw, B.W. Brooks, K.J. Carpenter, and D.V. Keight, “Different dispersion regions during the phase inversion of an ionomeric polymer-water system,” Journal of Colloid and Interface Science, 257, 163-172, 2003 67. Byung Kyu Kim, Jang Won Seo, Han Mo Jeong, “Morphology and properties of waterborne polyurethane/clay nanocomposites,” European Polymer Journal, 39, 85-91, 2003 68. Shi Guo Chen, Ji Wen Hu, Ming Qiu Zhang, Ming Wei Li, Min Zhi Rong, “Gas sensitivity of carbon black/waterborne polyurethane composites,” Carbon, 42, 645-651, 2004 69. Chin-Lung Chiang, Chen-Chi M. Ma, “Synthesis, charactization, thermal properties and flame retardance of novel phenolic resin / silica nanocomposites,” Polymer Degradation and Stability, 83, 207-214, 2004 70. Ying-Ling Liu, Wen-Lung Wei, Keh-Ying Hsu, Wen-Hsuan Ho, “Thermal stability of epoxy-silica hybrid materials by thermogravimetric analysis,” Thermochimica Acta, 412, 139-147, 2004 71. Feng-Xian Qiu, Yu-Ming Zhou, Ju-Zheng Liu, “The synthesis and Characteristic study of 6FDA-6FHP-NLO polyimide/SiO2 nanohybrid materials,” European Polymer Journal, 40 713-720, 2004 72. Y.G. Hsu, L.F. Chang, C.P. Wang, “Organic-inorganic hybrid materials based on the incorporation of nanoparticles of polysilicic acid (nPSA) with organic polymers 2. Curing of unsaturated poly(amide-ester) resin in the presence of nPSA,” Materials Science and Engineering A, 367, 205-217, 2004 73. Chris J. Cornelius, Eva Marand, “Hybrid Silica-polyimide composite membranes: gas transport properties,” Journal of Membrane Science, 202, 97-118, 2002 74. Zhi Fen Wang, Bo Wang, Yu Run Yang, Chun Pu Hu, “Correlations between gas permeation and free-volume hole properties of polyurethane membranes,” European Polymer Journal, 39, 2345-2349, 2003 75. Ho Bum Park, Jang Ki Kim, Sang Yong Nam, Young Moo Lee, “Imide-siloxane block copolymer / Silica hybrid membranes: preparation, characterization and gas separation properties,” Journal of Membrane Science, 220, 59-73, 2003 76. Qiuju Wu, Xiaohui Liu, Lars A. Berglund, “FT-IR Spectroscopic study of hydrogen bonding in PA6 / clay nanocomposites,” Polymer, 43, 2445-2449, 2002 77. Robin L. McKiernan, Amy M. Heintz, ShawL. Hsu, Edward D. T. Atkins, Jacques Penelle, and Samuel P. Gido, “Influence of Hydrogen Bonding on the Crystallization Behavior of Semicrystalline Polyurethanes,” Macromolecules, 35, 6970-6974, 2002 78. Miwa Murakami, Hiroyuki Ishida, Masayuki Miyazaki, Hironori Kaji, and Fumitaka Horii, “Studies of the Phase Transitions, Structure, and Dynamics for Main-Chain Thermotropic Liquid Crystalline Polyethers and Polyurethanes with the Same Mesogen and Spacer Units,” Macromolecules, 36, 4160-41674, 2003 79. Mattia Bassi, Claudio Tonelli, and Antonella Di Meo, “Glass Transition Behavior of a Microphase Segregated Polyurethane Based on PFPE and IPDI. A Calorimetric Study”, Macromolecules, 36, 8015-8023, 2003 80. R. W. Seymour and S. L. Cooper, Macromolecules, 6,48,1973 81. A. Saiani, C. Rochas, G. Eeckhaut, W. A. Daunch, J.W. Leenslag, and J. S. Higgins, “Origin of Multiple Endotherms in a High Block Content Polyurethane. 2. Structure Investigation”, Macromolecules, 37, 1411-1421, 2004 82. Mackenzie, D. John, Bescher, P. Eric, “Structures, properties and potential applications of ormosils”, Journal of Sol-Gel Science and Technology, v13, n1-3, p 371-377, Kluwer Academic Publishers, 1998.id NH0925063013 sid 913606 cfn 0 / id NH0925063014 auc 陳美瑾 tic 膠原蛋白包覆Sirolimus之藥物釋放型血管支架研究 adc 宋信文 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 56 kwc 血管支架 kwc 藥物釋放 kwc 生物可分解 kwc 膠原蛋白 abc 冠狀動脈硬化為心血管系統最常見的疾病,臨床上有數種不同的治療方法,其中最有效的就屬經皮冠狀動脈擴張術(PTCA)。但是大約有30~50﹪的病患,在PTCA手術後3至6個月內,會發生血管再狹窄的病變。血管再狹窄的原因,主要是由於PTCA手術後血管回彈(recoil)與血管內膜的過度增生(hyper-proliferation)所致。為了防止擴張後血管的回彈,PTCA搭配血管支架(stent)的置放可達到良好的效果。至於血管內膜的過度增生方面,本研究擬以生物相容性佳的膠原蛋白(collagen),包覆抗血管內膜增生的藥物(sirolimus)並塗佈至血管支架上,進行藥物的控制釋放,以有效的抑制血管內膜的過度增生、降低血管再狹窄的機率。 tc 內容 頁數 摘要 I 英文摘要 III 目錄 IV 圖索引 VII 表索引 IX 第一章 緒論 1.1 前言 1 1.2 冠狀動脈疾病 1 1.3 經皮冠狀動脈血管擴張術(PTCA) 1 1.4 冠狀動脈血管支架(stent) 2 1.5 藥物釋放型血管支架(drug-eluting stent) 3 1.6 膠原蛋白(collagen) 6 1.7 交聯處理 6 1.8 Sirolimus(Rapamune) 8 1.9 研究動機與目的 9 第二章 膠原蛋白塗佈實驗 2.1 研究目的 13 2.2 膠原蛋白溶液之配製 13 2.3 膠原蛋白之塗佈方式 13 2.3.1 沉浸塗佈(dip coating) 14 2.3.2 噴塗(spray coating) 14 2.4 膠原蛋白塗佈之定量 16 2.4.1 膠原蛋白塗佈厚度之定量 17 2.4.2 膠原蛋白塗佈附著力分析 17 2.5 膠原蛋白之交聯方式 19 2.5.1 交聯指數(fixation index)分析21 2.6 支架膨脹(stent expansion)測試21 2.7 膠原蛋白塗佈方式之結果 23 2.7.1 沉浸塗佈(dip coating)結果 23 2.7.2 噴塗(spray coating)結果 24 2.8 膠原蛋白塗佈之定量結果 28 2.8.1 膠原蛋白塗佈量vs. 塗佈厚度之分析 28 2.8.2 附著力分析 28 2.9 交聯膠原蛋白之結果 31 2.9.1 交聯後之表面形態、塗佈厚度與附著力變化33 2.10支架膨脹(stent expansion)測試之結果34 2.11結論-35 第三章 藥物釋放實驗 3.1 研究目的--36 3.2 包藥方式--36 3.2.1 混合噴塗包藥法--36 3.2.2 多層式(multi-layer)噴塗包藥法--37 3.3 體外釋放藥物動力學實驗--37 3.4 包藥方式之可行性評估-38 3.4.1 混合噴塗包藥法--38 3.4.2 多層式(multi-layer)噴塗包藥法-39 3.5 體外釋放藥物動力學結果-40 3.6 結論---40 第四章 血液相容性與抗酵素分解實驗 4.1 研究目的---42 4.2 製備不同交聯程度的膠原蛋白膜----42 4.3 血液相容性實驗----------42 4.4 抗酵素分解28天(enzymatic degradation)---44 4.5 交聯指數分析結果-------46 4.6 血液相容性實驗結果-----46 4.7 抗酵素分解結果------47 4.8 結論------48 參考文獻----51rf 1. Liu, M.W., Roubin, G.S., King 3d, S.B., “Restenosis after coronary angioplasty. Potential biologic determinants and role of intimal hyperplasia,” Circulation, 79, 1374-1387, 1989. 2. 許朝添, “病理學,” 第二版, 藝軒圖書出版社, 台北巿, 175-177, 2002. 3. 王宗道, 王宗德, “簡明病理學,” 合記圖書出版社, 台北市, 125-129,1990. 4.http://www.heartcenteronline.com/myheartdr/common /articles.cfm 5. 陳永泰, 陳建中, 林昇鋒等, “病理學,” 合記圖書出版社, 台北市, 362-373, 1991. 6. 王宗道, 王宗德, “簡明病理學,” 合記圖書出版社, 台北市, 148, 1990. 7. Grossman, W., “Diastolic dysfunction in congestive heart failure,” New England Journal of Medicine, 325(242), 1557-1564, 1991. 8. 張根源, “新世代冠狀動脈支架Drug-eluting stent,” 化工科技與商情, 第42期, 2003. 9. Lewis, A.L., Tolhurst, L.A., Stratford P.W., “Analysis of a phorsphorlcholine-based polymer coating on a coronary stent pre- and post-implantation,” Biomaterials, 23, 1697-1706, 2002. 10. Kuntz, R.E., Gibson, C.M., Nobuyoshi, M., Baim, D.S., “Generalized model of restenosis after conventional balloon angioplasty, stenting and directional atherectomy,” Journal of the American College of Cardiology, 21, 15-25, 1993. 11. Mintz, G.S., Popma, J.J., Pichard, A.D., “Arterial remodeling after coronary angioplasty. A serial intravascular ultrasound study,” Circulation, 94, 35-43, 1996. 12. Serruys, P.W., de Jaegere, P., Kiemeneij, F., “A comparison of balloon-expandable stent implantation with balloon angioplasty in patients with coronary artery disease,” New England Journal of Medicine, 331, 489-495, 1994. 13. Fischman, D.L., Leon, M.B., Baim, D.S., “A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease,” New England Journal of Medicine, 331, 496-501, 1994. 14. Nakayama, Y., Ji-Youn, K., Nishi, S., Ueno, H., Matsuda, T., “Development of high-performance stent: gelatinous photogeo-coated stent that permits drug delivery and gene transfer,” Journal of Biomedical Materials Research, 57, 559-566, 2001. 15. Kereiakes, D.J., “How drug-eluting stents will impact the treatment of acute coronary syndromes, use of GP Iib/IIIa inhibitors, and U.S. hospitals,” Cath Lab Digest, 2, 1, 6-10, 2002. 16. http://www.biocompatibles.co.uk 17. Monhan, N., Babapulle, M.D., Mark, J., Eisenberg, M.D., “Coated stent for the prevention of restenosis: part I,” Circulation, 106, 2734-2740, 2002. 18. 葉明熙, 張原嘉, “淺談生醫材料-膠原蛋白,” 化工科技與商情, 第39期, 2002. 19. Djabourov, M., Lechaire, J.P., Gaill, C., “Structures and rheology of gelatin and collagen gels,” Biorheology, 30, 191-205, 1993. 20. Murayama, Y., Satoh, S., Oka, T., Imanishi, J., Noishiki, Y., “Reduction of the antigenicity and immunogenicity of xenografts by a new cross-linking reagent,” Trans. Am. Soc. Artif. Intern. Organss, 34, 546-549, 1988. 21. Nimni, M.E., Cheung, D., Strates, B., Odama, M.K., Sheikh, K., “Bioprosthesis derived form cross-linked and chemically modified collagenous tissues,” Nimni, M.E. ed. Collagen, Biotechnology, CRC Press, Inc., Fllorida, 1-37, 1988. 22. Tu, R., Lu, C.L., Thyagarajan, K., Wang, E., Nguyen, H., Shen, S., Hata, C., Quijano, R.C., “Kinetic study of collagen with polyepoxy fixatives,” J. Biomed. Mater. Res., 27, 3-9, 1993. 23. Trowbridge, E.A., Lawford, P.V., Crofts, C.E., “Pericardial heterografts-Why do these valves fail?” J. Thorac. Cardiovasc. Surg., 95, 577-585, 1988. 24. Okoshi, T., Noishiki, Y., Tomizawa, Y., “Development of an antithrombogenic cardiac wall substitute which can be reconstructed by infliltration of host cells,” Trans. Am. Soc. Artif. Intern. Organs., 34, 532-537, 1988. 25. Sung, H.W., Huang, R.N., Huang, L.L.H., Tsai, C.C., “In vitro evaluation of cytotoxicity of a naturally occurring crosslinking reagent for biological tissue fixation,” J. Biomater. Sci. Polymer Edn., 10, 63-78, 1999. 26. Sung, H.W., Tu, R., Shen, S.H., “Can cross-linking with a polyepoxy compound improve performance of porcine heart valves?” Asian. Cardio. & Thorac. Annals., 1, 104-109, 1993. 27. Fujikawa, S., Yokota, T., Koga, K., Kumada, S.I., “The continuous hydrolysis of geniposide to genpin using immobilized β-glucosidase on calcium alginate gel,” Biotech. Lett., 9, 697-702, 1987. 28. Sung, H.W., Huang, R.N., Huang, L.L.H., Tsai, C.C., Chiu, C.T., “Feasibility study of a natural crosslinking reagent for biological tissue fixation,” J. Biomed. Mater. Res., 42, 560-567, 1998. 29. Chang, Y., Tsai, C.C., Liang, H.C., Sung, H.W., “Reconstruction of the right ventricular outflow tract with a bovine jugular vein graft fixed with a naturally occurring agent (genipin) in a canine model,” Journal of Thoracic and Cardiovascular Surgery, 122, 1208-1218, 2001. 30. Sehgal, S.N., “Sirolimus: Its discovery, biological properties, and mechanism of action,” Transplantation Proceedings, 35(Suppl 3A), 7S-14S, 2003. 31. Bhargava, B., Karthikeyan, G., Abizaid, A.S., Mehran, R., “New approaches to preventing restenosis,” British Medical Journal, 327, 274-279, 2003. 32. “組合式醫療器材範例-藥物釋放型血管支架(上),” 醫療器材報導月刊, 37-40, 2003. 33. Martin, O., Christian, H., Andreas, B., Karl, R.K., “Stent-based antirestenotic coatings(Sirolimus / Paclitaxel),” Catheterization and Cardiovascular Interventions, 55, 404-408, 2002. 34. Drachman, D.E., Edelman, E.R., Kamath, K.R., Palasis, M., Yang, D., Nott, S.H., Rogers, C., “Sustained stent-based delivery of paclitaxel arrests neointimal thickening and cell proliferation,” Circulation, 98 (suppl I), I-740, 1998. 35. Murphy, E.F., Joseph, J.L., Lu, J.R., Brewer, J., Russell, J., “The reduced adsorption of lysozyme at the phosphorylcholine incorporated polymer/aqueous solution interface studied by spectroscopic ellipsometry,” Biomaterials, 20, 1501-1511, 1999. 36. Spatz, J.P., Sheiko, S., Möller, M., “Substrate induced lateral microphase separation of a diblock copolymer,” Advanced Materials, 8, 513-517, 1996. 37. 范慧雯, “減切力誘導PS-PLLA團聯共聚合物奈米為結構定向-奈米圖案成行模板之製備,” 國立中興大學化學工程系碩士論文, 59-74, 2003. 38. Lewis, A.L., Cumming, Z.L., Goreish, H.H., Kirkwood, L.C., “Crosslinkable coatings from phosphorylcholine-based polymers,” Biomaterials, 22, 99-111, 2001. 39. Lewis, A.L., Tolhurst, L.A., Stratford, P.W., “Analysis of a phosphorylcholine-based polymer coating on a coronary stent pre- and post-implantation,” Biomaterials, 23, 1697-1706, 2002. 40. Meus, P.J., Wernly, J.A., Campbell, C.D., Takanashi, Y., Pick, R.L., Qui, Z.K., Replogle, R.L., “Long-term evaluation of pericardial substitutes,” J. Thorac. Cardiovasc. Surg., 85, 54-58, 1983. 41. Dorogosz, W. J., Lindgren, S.E., U.S. Patent 5413960, 1995. 42. Silvestro, L., Viano, I., Macario, M., Colangelo, D., Montrucchio, G., Panico, S., Fantozzi, R., “Effects of heparin and its desulfated derivatives on leukocyte-endothelial adhesion,” Seminar in Thrombosis and Hemostasis, 20, 254-258, 1994. 43. Lincoff, A.M., Furst, J.G., Ellis, S.G., Tuch, R.J., Topol, E.J., “Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model,” Journal of the American College of Cardiology, 29, 808-816, 1997. 44. Maleki, S., Graves, S., Becker, S., Horwatt, R., Hicks, D., Stroshane, R. M., Kincaid, H., “Therapeutic monitoring of sirolimus in human whole-blood samples by high-performance liquid chromatography,” Clinical Therapeutics, 22(suppl. B), B25-B37, 2000. 45. Schampaert, E., Cohen, E.A., Schluter, M., Reeves, F., Traboulsi, M., Title, L.M., Kuntz, R.E., Popma, J.J., “The Canadian study of the sirolimus-eluting stent in the treatment of patients with long de novo lesions in small native coronary arteries(C-SIRIUS),” Journal of the American College of Cardiology, 43(6), 1-6, 2004. 46. 許哲誠, “以天然交聯劑(Genipin)交聯的生物組織材料表面性質探討,” 國立中央大學碩士論文, 46-49, 1999. 47. White, M.J., Kohno, I., Rubin, A.L., Stenzel, K.H., “Collagen films; effect of crosslinking on physical and biological properties,” Biomat. Med. Dev. Org., 1, 703-715, 1973.id NH0925063014 sid 913607 cfn 0 / id NH0925063015 auc 黃思瑀 tic 利用生物觸媒進行對苯二酚醣化反應之研究 adc 吳文騰 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 66 kwc 熊果素 kwc 對苯二酚 kwc 醣化 kwc 生物觸媒 abc 熊果素為植物中萃取的一種美白成分。由於萃取的產量極低,故以醣化進行結構修飾將對苯二酚轉換為熊果素為較經濟可行之方法。Kurosu等人於2002年成功的利用微生物Xanthomonas campestris WU-9701做為生物觸媒,並以麥芽糖作為醣化反應之醣基來源進行對苯二酚之醣化反應,生產熊果素達轉化率達93%。然而在具醣化催活性之菌種篩選上,至今仍尚無簡單快速之篩選方法。因此,本研究目的在於建立一簡單、高效率之篩菌策略,以期經由突變及菌種篩選獲得具有醣化對苯二酚催化活性之高活性菌株。本實驗所建立的篩菌策略是利用對苯二酚相較於熊果素其光敏感性較高之特性(對苯二酚溶液照光後較容易變質而使溶液呈現深褐色),於96孔盤反應後進行光照,以顏色深淺作為指標進行初篩。本實驗經過五次的突變、多次的菌種篩選以及反應條件之最適化探討後,已獲得轉化率約85%的高活性菌株Xanthomonas campestris 5H10。 tc 目錄 摘要 Ⅰ Abstract Ⅱ 目錄 Ⅲ 圖目錄 Ⅵ 表目錄 Ⅷ 第一章 緒論 1 第二章 文獻回顧 3 2-1 生物觸媒簡介 3 2-2 醣化反應簡介 7 2-3 微生物之菌種改良 10 2-3-1人工變異(Artificial mutation) 11 2-3-2菌種篩選(Screening) 13 2-4 與黑色素相關之資料 14 2-4-1黑色素細胞 14 2-4-2酪胺酸脢簡介 15 2-4-3黑色素生成路徑 15 2-4-4黑色素生成的抑制作用 17 2-5美白產品簡介 18 2-5-1熊果素簡介 20 2-6 Xanthomonas campestris簡介 22 第三章 實驗部分 23 3-1 實驗藥品 23 3-2 實驗儀器及設備 24 3-3 實驗原始菌種 25 3-4菌種活化與保存 25 3-5 實驗及分析方法 26 3-5-1突變 26 3-5-2 Screening 28 3-5-3細胞培養與處理 29 3-5-4反應步驟及條件 30 3-5-5細胞通透處理 30 第四章 實驗結果與討論 33 4-1 對苯二酚與熊果素之液相層析儀分析 33 4-2 建立熊果素之濃度檢量線 33 4-3篩選具醣化對苯二酚活性之X. campestris突變株 37 4-4 細胞通透處理 45 4-5 不同醣基donor對醣化反應之影響 49 4-6 反應條件對菌株5H10的醣化反應活性之影響 49 4-6-1溫度 49 4-6-2 pH 49 4-6-3生物觸媒使用量 53 4-6-4基質濃度 53 4-6-5反應時間 53 第五章 結論與未來展望 58 5-1結論 58 5-2未來展望 58 參考文獻 60 附錄一 65 圖目錄 圖2-1 Production of cis-2-substituted indanols by biocatalyst 4 圖2-2 Production of D-Sorbose by biocatalyst 4 圖2-3 利用胺樹細胞醣化麴酸之反應式 9 圖2-4 利用胺樹細胞醣化檜木精之反應式 10 圖2-5 以X. campetris冷凍乾燥細胞醣化薄荷腦之反應式 10 圖2-6 以X. campetris冷凍乾燥細胞醣化對苯二酚之反應式 10 圖2-7 黑色素的生成路徑 16 圖2-8 Hydroquinone(對苯二酚)之結構圖 19 圖2-9 熊果素(Arbutin)結構圖 21 圖2-10 X. campestris之Transmission Electron Micrograph 22 圖3-1 突變劑NTG之結構式 28 圖4-1 對苯二酚與熊果素之液相層析分析圖譜 34 圖4-2 熊果素濃度之檢量線 35 圖4-3 對苯二酚濃度之檢量線 36 圖4-4 96孔盤反應及照光後之圖片 38 圖4-5 反應樣品與熊果素標準品之液相層析圖譜比對 39 圖4-6 菌液OD值VS.菌體冷凍乾燥之乾菌重量之關係圖 46 圖4-7 以介面活性劑處理全細胞對反應活性之影響 47 圖4-8 以有機溶劑處理全細胞對反應活性之影響 48 圖4-9 溫度對菌株5H10反應活性之影響 51 圖4-10 pH值對菌株5H10的醣化反應之影響 52 圖4-11 菌量對反應之影響 54 圖4-12 Maltose濃度對菌株5H10反應的影響 55 圖4-13 Hydroquinone濃度對菌株5H10反應的影響 56 圖4-14菌株5H10之time course 57 表目錄 表2-1 生物觸媒之應用 5 表2-2 全細胞與酵素之比較 7 表4-1 第一次突變篩選之菌種與其熊果素產量與轉化率 40 表4-2 第二次突變篩選之菌種與其熊果素產量與轉化率 41 表4-3 第三次突變篩選之菌種與其熊果素產量與轉化率 42 表4-4 第四次突變篩選之菌種與其熊果素產量與轉化率 43 表4-5 第五次突變篩選之菌種與其熊果素產量與轉化率 44 表4-6 不同醣基donor對醣化反應之影響 50rf Asano Y. Overview of Screening For New Microbial Catalysts and Theiruses in Organic Synthesis—Selection and Optimization of Biocatalysts. Journal of Biotechnology. 94: 65–72. (2002) Briganti S, Camera E and Picardo M. Chemical And Instrumental Approaches To Treat Hyperpigmentation. Pigment Cell Research, 16: 101–110. (2003) Bansal-Mutalik R and Gaikar VG. Cell Permeabilization for Extraction Of Penicillin Acylase from Escherichia Coli by Reverse Micellar Solutions. Enzyme and Microbial Technology, 32: 14–26. (2003) Chang ML and Chang CM. Simultaneous HPLC Determination of Hydrophilic Whitening Agents in Cosmetic Products. Journal of Pharmaceutical and Biomedical Analysis,33: 617–626 (2003) Furuya T, Asada Y, Matsuura Y, Mizobata S and Hamada H. Biotransformation of Beta-Thuaplicin by Cultured Cells of Eucalyptu Perriniana. Phytochemistry. 46(8): 1355-1358. (1997) Giuseppe P. Melanins and Melanogenesis. Cosmetics and Toiletries, 111: 43-51. (1996) Golgsmith LA. Biochemistry and Physiology of the Skin. Oxford University Press, Inc. (1983). Garcia-Ochoa F, Santosa V, Casasb J, Gomez E. Xanthan Gum: Production,Recovery,and Properties. Biotechnology Advances 18: 549–579. (2000) Hearing V J, Korner A M, and Pawelek J M. New Regulators of Melanogenesis are Associated with Purified Tyrosinase Isoenzymes. Journal of Investigative Dermatology, 79: 16-18. (1982) Holland HL. Microbial Transformations. Current Opinion in Chemical biology, 2: 77-84. (1998) Kitao K and Sekine H. Synthesis of Two Kojic Acid Glucosides with Sucrose Phosphorylase from Leuconostoc Mesenteroides. Bioscience, Biotechnology, Biochemistry, 58: 419-420. (1994) Kurosu J, Sato T, Yoshida K, Tsugane T, Shimura S, Kirimura K, Kino K and Usami S. Enzymatic Synthesis of Alpha-Arbutin by Alpha- Anomer-Selective-Glucosylation of Hydroquinone Using Lyophilized Cells of Xanthomonas Campestris WU-9701. Journal of Bioscience and Bioengineering, 93: 328-330. (2002) Kren V and Thiem J. Glycosylation Employing Bio-Systems: from Enzymes to Whole Cells. Chemical Society Reviews, 26: 463-473. (1997) Leo´n D., Garcý, Rosa B. ,Villasen˜or, Estrada and Revilla L. Periplasmic Penicillin G Acylase Activity in Recombinant Escherichia Coli Cells Permeabilized with Organic Solvents. Process Biochemistry, 39: 301– 305 (2003) Maeda K and Fukuda M. In Vitro Effectiveness of Several Whitening Cosmetic Components in Human Melanocytes. Journal of the Society Cosmetic of Chemists, 42: 361-368. (1991) Masse MO, Duvallet V, Borremans M and Goeyens L. Identification and Quantitative Analysis of Kojic Acid and Arbutin in Skin- Whitening Cosmetics. International Journal of Cosmetic Science, 23: 219-232. (2001) May SW. New Applications for Biocatalysts. Current Opinion in Chemical Biology, 8: 181-186. (1997) Moore JC and Arnold FH. Directed Evolution of a Para-Nitrobenzyl Esterase for Aqueous-Organic Solvents. Nature Biotechnology. 14: 458-467. (1998) Mutalik RB and Gaikar VG. Cell Permeabilization for Extraction of Penicillin Acylase from Escherichia Coli by Reverse Micellar Solutions. Enzyme and Microbial Technology, 32: 14–26. (2003) Nakagawa H, Yoshiyama M, Shimura S, Kirimura K and Usami S. Anomer-Selective Glucosylation of l-Menthol by Yeast Alpha-Glucosidase. Bioscience, Biotechnology and Biochemistry, 62: 1332-1336. (1998) Nakajima N, Ishihara K, Hamada H. Functional Glucosylation of Kojic Acid and Daidzein with the Eucalyptus Membrane-Associated UDP- Glucosyltransferase Reaction Systems. Journal of Bioscience and Bioengineering, 92: 469-471. (2001) Noguchi K, Nakagawa H, Yoshiyama M, Shimura S, Kirimura K, and Usami S. Anomer-Selective Glucosylation of l-Menthol Using Lyophilized Cells of Succhuromyces Cerevisiue. Journal of Fermentation and Bioengineering, 85: 436-438. (1998) Norouzian D, Javadpour S, Moazami N and Akbarzadeh A. Immobilization of Whole Cell Penicillin G Acylase in Open Pore Gelatin Matrix. Enzyme and Microbial Technology, 30: 26–29. (2002) Roode B, Franssen M, Padt A and Boom R. Perspectives for the Industrial Enzymatic Production of Glycosides. Biotechnology Progress, 19: 1391- 1402. (2003) Sato T, Nakagawa H, Kurosu J, Yoshida K, Tsugane T, Shimura S, Kirimura K, Kino K and Usami S. Anomer-Selective Glucosylation of (+)-Catechin by the Crude Enzyme, Showing Glucosyl Transfer Activity, of Xanthomonas Campestris WU-9701. Journal of Bioscience and Bioengineering, 90: 625-630. (2000) Sato T, Takeuchi H, Takahashi K, Kurosu J, Yoshida K, Tsugane T, Shimura S, Kino K and Kirimura K. Selective α-Glucosylation of Eugenol by α-Glucosyl Transfer Enzyme of Xanthomonas Campestris WU-9701. Journal of Bioscience and Bioengineering, 96: 199-202. (2003) Stahl S, Greasham R and Chartrain M. Implementation of a Rapid Microbial Screening Procedure for Biotransformation Activities. Journal of Bioscience and Bioengineering, 89: 367-371. (2000) Stephanopoulos G and Gill RT. After a Decade of Progress, an Expanded Role for Metabolic Engineering. Advances in Biochemical Engineering and Biotechnology, 73: 11-18. (2001) Sugimoto K, Nishimura T, Nomura K, Sugimoto K and Kuriki T. Syntheses of Arbutin-α-glycosides and a Comparison of Their Inhibitory Effects with Those of α-Arbutin and Arbutin on Human Tyrosinase. Chemical & Pharmaceutical Bulletin, 51:798—801. (2003) 李銘亮 編著,微生物生理學,2002年4月。 章名春 編著,工業微生物誘變育種,1984年。 郭傑民,洪哲穎,熊光濱 著,生物觸媒之現況與發展,化工資訊月刊,2000年4月。 陳國誠 編著,微生物酵素工程學,1989年10月。 陳石根,周潤琦 編著,脢學,2002年9月。 張麗卿 編著,化妝品製造實務,1998年。 賴昆城,陳健行,徐淑媛 譯,基礎組織學,合記圖書出版社,2000年。 劉嘉煉 著,應用微生物學,1984年。 蘇遠志 著,應用微生物學,1999年。id NH0925063015 sid 913608 cfn 0 / id NH0925063016 auc 陳建強 tic 以改良之米麴菌進行麴酸生產的研究 adc 吳文騰 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 49 kwc 麴酸 kwc 發酵 kwc 培養基篩選 kwc 重複批次發酵 abc 本研究藉由改良之米麴菌進行麴酸發酵之探討,以提高麴酸生產效率。在培養基篩選方面,以sucrose 100 g/L為碳源,yeast extract 2.5 g/L或rice bran 15 g/L為氮源時,麴酸產量最高分別可達42.1 g/L及41 g/L。另外在氮源種類對於菌體形態影響的研究中,以yeast extract為氮源時,菌體會形成pellet,而此形態適合於重複批次發酵的操作。在批次發酵培養方面,實驗結果顯示各項參數與搖瓶實驗並無太大差異,productivity最高可達5.1 g kojic acid/L/day,證實利用發酵槽大量生產麴酸的可行性。在重複批次發酵實驗中,利用改良式發酵槽進行麴酸發酵研究,經過3次的培養基替換後,改良之米麴菌仍具有高麴酸生產能力。 tc 中文摘要 Ⅰ 英文摘要 Ⅱ 目錄 Ⅲ 圖目錄 Ⅵ 表目錄 Ⅷ 第一章 緒論 1 第二章 文獻回顧 2 2-1 麴酸簡介 2 2-1-1 麴酸的物化性質 3 2-1-2 麴酸的定量分析 3 2-1-3 麴酸的抗菌性 4 2-1-4 麴酸的安全性 4 2-1-5 麴酸的應用 5 2-2 麴酸的生合成 6 2-3 麴酸的發酵生產 8 2-3-1 菌種 8 2-3-2 培養基組成 9 2-3-3 培養條件 10 2-3-4 發酵系統 11 2-4 麴酸的分離回收 12 2-5 重複批次培養 12 第三章 實驗材料與方法 13 3-1 實驗材料 13 3-1-1 菌株 13 3-1-2 培養基與實驗藥品 13 3-1-3 實驗器材 14 3-2 實驗方法 15 3-2-1 菌種保存與活化 15 3-2-2 搖瓶實驗 15 3-2-3 培養基組成對麴酸生產之影響 16 3-2-4 批次發酵實驗 16 3-2-5 攪拌速度的影響 17 3-2-6 饋料批次發酵實驗 17 3-2-7 重複批次發酵實驗 18 3-2-8 分析方法 19 第四章 結果與討論 21 4-1 氮源對麴酸生產之影響 21 4-2 碳源對麴酸生產之影響 26 4-3 批次發酵實驗 29 4-4 發酵槽攪拌速度的影響 34 4-5 饋料批次發酵實驗 34 4-6 重複批次發酵實驗 38 第五章 結論與未來展望 44 第六章 參考文獻 46 圖目錄 圖2-1 麴酸的化學結構 2 圖2-2 麴酸和金屬離子形成之錯合物 3 圖2-3 黑色素生成機制 5 圖2-4 麴酸生成機制-(1) 6 圖2-5 麴酸生成機制-(2) 7 圖2-6 麴酸在A. flavus中可能之生合成路徑 8 圖3-1 改良式發酵槽示意圖 18 圖3-2 麴酸-氯化鐵水溶液在波長400nm到600nm之吸收值 19 圖3-3 麴酸濃度對500nm吸光值的檢量線 19 圖3-4 葡萄糖濃度對505nm吸光值的檢量線 20 圖4-1 氮源對麴酸生產之影響 23 圖4-2 碳源對麴酸生產之影響 27 圖4-3 發酵槽批次培養 (GR medium) 31 圖4-4 發酵槽批次培養 (SR medium) 32 圖4-5 發酵槽批次培養 (SY medium) 33 圖4-6 發酵槽攪拌速度的影響 35 圖4-7 發酵槽饋料批次培養 36 圖4-8 麴酸產物抑制測試(搖瓶) 37 圖4-9 搖瓶重複批次培養 40 圖4-10 重複批次發酵-(1) 41 圖4-11 重複批次發酵-(2) 42 圖4-12 重複批次發酵-(3) 43 表目錄 表3-1 批次發酵實驗中培養基的組成 17 表4-1 不同氮源(1 g/L)對菌體生長與麴酸生產之影響 24 表4-2 不同氮源(2.5 g/L)對菌體生長與麴酸生產之影響 24 表4-3 不同氮源(10 g/L)對菌體生長與麴酸生產之影響 24 表4-4 不同氮源(15 g/L)對菌體生長與麴酸生產之影響 25 表4-5 不同氮源(20 g/L)對菌體生長與麴酸生產之影響 25 表4-6 不同碳源對麴酸生產之影響(氮源為YE 2.5 g/L) 28 表4-7 不同碳源對麴酸生產之影響(氮源為RB 15 g/L) 28 表4-8 發酵槽與搖瓶中麴酸生產參數的比較 30 表4-9 重複批次發酵與批次發酵productivity的比較 40rf Arenstein HR, Bentley R. The biosynthesis of kojic acid. I. Production from (1-14C) and (3:4-14C2) glucose and (2-14C)-1:3-dihydroxyacetone. Biochemical Journal 54:493-508. 1953. Ariff AB, Rosfarizan M, Herng LS, Madihah S and Karim MIA. Kinetics and modelling of kojic acid production by Aspergillus flavus link in batch fermentation and resuspended mycelial system. World Journal of Microbiology & Biotechnology 13:195-201. 1997. Ariff AB, Salleh MS, Ghani B, Hassan MA, Rusul G and Karim MIA. Aeration and yeast extract requirements for kojic acid production by Aspergillus flavus Link. Enzyme and Microbial Technology 19:545-550. 1996. Bajpai P, Agrawal PK and Vishwanathan L. Kojic Acid - Synthesis and Properties. Journal of Scientific & Industrial Research 41:185-194. 1982a. Bajpai P, Agrawala PK and Vishwanathan L. Enzymes Relevant to Kojic Acid Biosynthesis in Aspergillus-flavus. Journal of General Microbiology 127:131-136. 1981. Bajpai P, Agrawala PK and Vishwanathan L. Production of kojic acid by resuspended mycelia of Aspergillus flavus. Canadian Journal of Microbiology 28:1340-1346. 1982b. Balaz S, Uher M, Brtko J, Veverka M, Bransova J, Dobias J, Podova M and Buchvald J. Relationship between antifungal activity and hydrophobicity of kojic acid derivatives. Folia Microbiology 38:387-391. 1993. Beelik A. Kojic acid. Advances in Carbohydrate Chemistry 48:145-183. 1956. Bentley R. Preparation and analysis of kojic acid. Methods in Enzymology 3:238-241. 1957. Bhat R, Hadi SM. Photoinactivation of bacteriophage lambda by kojic acid and Fe(III): role of oxygen radical intermediates in the reaction. Biochemistry and Molecular Biology International 32:731-735. 1994. Bon E and Webb C. Glucomylase production and nitrogen nutrition in Aspergillus- awamori. Applied Biochemistry and Biotechnology 39:349-369. 1993. Briganti S, Camera E and Picardo M. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Research 16:101-110. 2003. Budavari S, O'Neil MJ, Smith A, and Heckelman PE. The Merck Index. 11th . Rahway, NJ. 1989 Burdock GA, Soni MG and Carabin IG. Evaluation of health aspects of kojic acid in food. Regulatory Toxicology and Pharmacology 33:80-101. 2001. Futamura T, Ishihara H, Tamura T, Yasutake T, Huang GW, Kojima M and Okabe M. Kojic acid production in an airlift bioreactor using partially hydrolyzed raw corn starch. Journal of Bioscience and Bioengineering 92:360-365. 2001a. Futamura T, Okabe M, Tamura T, Toda K, Matsunobu T and Park YS. Improvement of production of kojic acid by a mutant strain Aspergillus oryzae, MK107-39. Journal of Bioscience and Bioengineering 91:272-276. 2001b. Horiuchi JI, Yamauchi N, Osugi M, Kanno T, Kobayashi M and Kuriyama H. Onion alcohol production by repeated batch process using a flocculating yeast. Bioresource Technology 75:153-156. 2000. Katz ME, Rice RN, Cheetham BF. Isolation and characterization of an Aspergillus nidulans gene encoding an alkaline protease. Gene 150:287-292. 1994. Kitada M and Fukimbara T. Studies on kojic acid fermentation (Ⅳ). Production and recovery of kojic acid fermentation on an industrial scale. Journal of Fermentation Technology 49:343-349. 1971. Kwak MY, Rhee JS. Cultivation Characteristics of Immobilized Aspergillus-oryzae for Kojic Acid Production. Biotechnology and Bioengineering 39:903-906. 1992. Lee HF, Boltjes B and Eisenmann WM. Kojic acid as an inhibitor of tubercle bacilli. American Review of Tuberculosis 61:738-741. 1950. Lin YC, Wu JY and Chen TL. Production of Acinetobacter radioresistens lipase with repeated batch culture in presence of nonwoven fabric. Biotechnology and Bioengineering 76:214-218. 2001. Marwaha SS, Kaur J and Sodhi GS. Organomercury(II) complexes of kojic acid and maltol: synthesis, characterization, and biological studies. Journal of Inorganic Biochemistry 54:67-74. 1994. Mohamad R, Ariff A, Ali Hassan M, Karim MIA, Shimizu H and Shioya S. Importance of carbon source feeding and pH control strategies for maximum kojic acid production from sago starch by Aspergillus flavus. Journal of Bioscience and Bioengineering 94:99-105. 2002. Morton HE, Kocholaty W, Kocholaty RJ and Kelner A. Toxicity and antibiotic activity of kojic acid produced by Aspergillus luteovirescens. Journal of Bacteriology 50:579-584. 1945. Novotny L, Rauko P, Abdel-Hamid M and Vachalkova A. Kojic acid - a new leading molecule for a preparation of compounds with an anti-neoplastic potential. Neoplasma 46:89-92. 1999. Parekh S, Vinci VA and Strobel RJ. Improvement of microbial strains and fermentation processes. Applied Microbiology and Biotechnology 54:287-301. 2000. Piccoli-Valle RH, Brandi IV, Silva DO and Passos FJV. Pectin lyase production by Penicillium griseoroseum grown in sugar cane juice in repeated batch cultures. World Journal of Microbiology & Biotechnology 17:433-437. 2001. Rosfarizan M, Ariff AB. Kinetics of kojic acid fermentation by Aspergillus flavus using different types and concentrations of carbon and nitrogen sources. Journal of Industrial Microbiology & Biotechnology 25:20-24. 2000. Sanchez S and Demain AL. Metabolic regulation of fermentation processes. Enzyme and Microbial Technology 31:895-906. 2002. vanLier FLJ, vandenHombergh JPTW, deGooijer CD, denBoer MM, Vlak JM and Tramper J. Long-term semi-continuous production of recombinant baculovirus protein in a repeated (fed-)batch two-stage reactor system. Enzyme and Microbial Technology 18:460-466. 1996. Wakisaka Y, Segawa T, Imamura K, Sakiyama T and Nakanishi K. Development of a cylindrical apparatus for membrane-surface liquid culture and production of kojic acid using Aspergillus oryzae NRRL484. Journal of Fermentation and Bioengineering 85:488-494. 1998. Wan HM, Chen CC, Chang TS, Giridhar R and Wu WT. Combining induced mutation and protoplasting for strain improvement of Aspergillus oryzae for kojic acid production. Biotechnology Letters. (in press) Werner A, Lutkemeyer D, Poggendorf I, Lehmann J and Muthing J. Serum-free production of a chimeric E-selectin-IgG protein from 1 to 100 l scale: Repeated batch cultivation versus continuous spin filter perfusion. Cytotechnology 38:47-56. 2002. Woodhead S, Walker JR. The effects of aeration on glucose catabolism in Penicillium expansum. Journal of General Microbiology 89:327-336. 1975. Zhang W, Jin MF, Yu XJ and Yuan Q. Enhanced anthocyanin production by repeated-batch culture of strawberry cells with medium shift. Applied Microbiology and Biotechnology 55:164-169. 2001.id NH0925063016 sid 913609 cfn 0 / id NH0925063017 auc 許嘉紋 tic 含橋式聚有機矽氧烷環氧樹脂奈米複合材料之合成與性質研究 adc 馬振基 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 140 kwc 環氧樹脂 kwc 聚有機矽氧烷 kwc 奈米複合材料 abc 本研究旨在利用環氧樹脂(DGEBA type epoxy resin)與三種含有不同烷氧基數的胺烷氧基矽烷化合物(aminoalkylalkoxysilane)反應,形成中間為有機鏈段兩端帶有烷氧基的前趨物,搭配不同催化劑,以直接硬化的方式進行交聯形成有機無機混成材料,比較不同烷氧基和催化劑的效應,並與純環氧樹脂比較熱性質和機械性質。 rf 1. G. L. Wilkes, B. Drier, H. H. Huang, “Ceramers-Hybrid Materials Incorporating Polymeric Oligomeric Species into Inorganic Glasses Utilizing a Sol-Gel Approach”, Abstracts of Papers of the American Chemical Society, 1985, 190, 109 2. 垣內弘,新環氧樹脂 (日文),昭晃堂,1985 3. K.C.SheI1, et. al.,“Sol-Gel Processing of Silica", Journal of Non-Crystalline Solids, 1986, 81, 227-237 4. R.C.Mehrotra,“Synthesis and Reaction of Metal Alkoxides”, Journal of Non-Crystalline Solids, 1988, l00, 1-15,. 5. 桓內弘 著, 賴耿陽 譯, “環氧樹脂應用實務”, 復漢出版本土,台北,1993 6. Dow A. Rogers, “ Epoxy-substituted organo Silicon Compounds and Method for Preparing the Same ”, U. S. Patent 2, 883, 395, 1959 7. E. M. Yorkgitis, N. S. Eiss, G. L. Wilkes and J. E. McGrath, “ Siloxane Modified Epoxy Resins ”, Advances in Polymer Science, Epoxy Resins and Composites I, 1985, No. 72, 80 8. J. L. Hedrick, B. Haidar, T. P. Russell and D. C. Hafer, “ Synthesis and Properties of Segmented and Block Poly (Hydroxy - Ether - Siloxane) Copolymers ”, Macromolecules, 1988, 21, 1967 9. J. V. Crivello, and J. L. Lee, “The Synthesis Characterization and Photoinitiated Cationic Polymerization of Silicone – Containing Epoxy Resins”, J. Polym. Sci., Part A, 1990, 28, 479 10. Ochi Mitsukazu, Kawabata Tatsuya, Yamashita Kiichi, Shimbo Masaki, Kobunshi Ronbunshu (日本高分子論文集), 1990, 47, 185 11. Kimihiro Matsukawa, Kiichi Hasegawa, Hiroshi Inoue, Akinori Fukuda and Yasushi Arita, “ Preparation and Curing Behavior of Siloxane – Containing Epoxy Resins”, J. Polym. Sci., Part A, 1992, 30, 2045 12. Ochi Mitsukazu, Katayama Toshio, Mimura Kenji, Yamana Hidekazu, Kobunshi Ronbunshu (日本高分子論文集), 1993, 50, 621 13. Philip A. Fonkalsrud, “ Polyamide – Epoxy – silicone Modified Coating Compositions ”, U. S. Patent 5, 317, 046 , 1994 14. Tzong – Hann Ho and Chun – Shan Wang, “Modification of Epoxy Resins by Hydrosilation for Electronic Encapsulation Application”, J. Appl. Polym. Sci., 1994, 54, 13 15. Tzong – Hann Ho and Chun – Shan Wang, “Low – Stress Encapsulants by Vinylsiloxane Modification”, J. Appl. Polym. Sci., 1994, 51, 2047 16. Jiangdong Tong, Ruke Bai, Yingfang Zou, Caiyuan Pan, and Shigeki Ichimura, Flexibility Improvement of Epoxy Resins by Using Polysiloxanes and Their Derivatives ”, J. Appl. Polym. Sci., 1994, 52, 1373 17. Jeng – Yueh Shieh, Tzong – Hann Ho and Chun – Shan Wang, “ Aminosiloxane – Modified Epoxy Resins as Microelectronic Encapsulants ”, Die Angewandte Makromolekulare Chemie., 1995, 224, 21 18. Shyue – Tzoo Lin and Steve K. Huang, “Study of Curing Kinetics of Siloxane - Modified DGEBA Epoxy Resins”, J. Appl. Polym. Sci., 1996, 62, 1641 19. Tsung – Han Ho and Chun – Shan Wang, “ Modification of Epoxy Resins with Polysiloxane Thermoplastic Polyurethane for Electronic Encapsulation I. ”, Polymer, 1996, 37, 2733 20. Tsung – Han Ho, Jenn – Hwa Wang and Chun – Shan Wang, “ Modification of Epoxy Resins with Polysiloxane TPU for Electronic Encapsulation II. ”, J. Appl. Polym. Sci., 1996, 60, 1097 21. Ming – Chun Lee, Tsung – Han Ho and Chun – Shan Wang, “Synthesis of Tetrafunctional Epoxy Resins and Their Modification with Polydimethylsiloxane for Electronic Application”, J. Appl. Polym. Sci., 62, 217 (1996). 22. Jeng – Yueh Shieh, Tsung – Han Ho and Chun – Shan Wang, “Synthesis and Modification of Trifunctional Epoxy Resin with Amine Terminated Polydimethylsiloxanes for Semiconductor Encapsulation Application”, Journal of Polymer Research, 1996, 3, 125 23. Po-Hou Sung, Chien-Yang Lin, “Polysiloxane modified Epoxy Polymer Network – II. Dynamic Mechanical Behavior of Multicomponent Graft-IPNs (Epoxy / Polysiloxane / Poly propylene Glycol)”, Eur. Polym. J., 1997, 33, 231 24. Shyue-Tzoo Lin, Steve K. Huang, “Thermal Degradation Study of Siloxane – DGEBA Epoxy copolymers”, Eur. Polym. J., 1997, 33, 365 25. S. S. Lee, S. C. Kim, “Morphology and Properties of Polydimethyl siloxane – Modified Epoxy Resin”, J. Appl. Polym. Sci., 1997, 64, 941 26. Emel Yilgor and Iskender Yilgor, “1, 3-bis (aminopropyl)tetra methyldisiloxane Modified Epoxy Resins : Curing and Characterization ”, Polym., 1998, 39, 1691 27. W.C. Shih and C.C.M. MA, “Tetrafunctional Aliphatic Epoxy. (I) Synthesis and Characterization”, J.of Appl. Poly. Sci., 1998, 69, 51-58 28. “改質環氧樹脂之合成方法及韌性、熱穩定性的特性研究”, 施文昌, 國立清華大學博士論文, 1998 29. W.C. Shih and C.C.M. MA, “Polydimethylsiloxane Containing Isocyanate Group Modified Epoxy Resin: Curing, Characterization and Properties”, J. Appl. Polym. Sci., 73, 2739-2747 (1999) 30. “聚矽氧烷改質環氧樹脂之硬化與增韌研究”, 陳宏德, 國立清華大學碩士論文, 1997 31. M. Ochi, R. Takahashi, A. Terauchi, “Phase structure and mechanical and adhesion properties of epoxy/silica hybrids”, Polymer, 2001, 42, 5151-5158 32. “聚矽氧烷樹脂之合成與其聚摻合物之特性研究”, 王豐益, 國立清華大學博士論文, 2001 33. Gui Zhi Li, Lichang Wang, H. Toghiani, Tyrone L. Daulton, Kiyohito Koyama, and Charles U. Pittman, Jr. “Viscoelastic and Mechanical Properties of Epoxy/Multifunctional Polyhedral Oligomeric Silsesquioxane Nanocomposites and Epoxy/ Ladderlike Polyphenylsilsesquioxane Blends”, Macromolecules 2001, 34, 8686-8693 34. Jiwon Choi, Jason Harcup, Albert F. Yee, Quan Zhu, and Richard M. Laine “Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes”, J. Am. Chem. Soc., 2001, 123, 11422 35. J. C. Cabanelas, B. Serrano, J. Gonzalez-Benito, J. Bravo, J.Baselag, ”Morphology of Epoxy/Polyorganosiloxane Reactive Blends”, Macromolecular Rapid Communication, 2001, 22, 694-699. 36. Chin-Lung Chiang, Chen-Chi M. Ma, “Synthesis, characterization and thermal properties of novel epoxy containing silicon and phosphorus nanocomposites by sol–gel method”, European Polymer Journal, 2002, 38, 2219–2224 37. Chin-Lung Chiang, Feng-Yih Wanga, Chen-Chi M. Ma, Hey-Rey Changb, “Flame retardance and thermal degradation of new epoxy containing silicon and phosphorous hybrid creamers prepared by the sol-gel method”, Polymer Degradation and Stability, 2002, 77, 273–278 38. S. Ananda Kumar, T. S. N. Sankara Narayanan, “Thermal properties of siliconized epoxy interpenetrating coatings”, Progress in Organic Coatings, 2002, 45, 323–330 39. G.-M. Kim, H. Qin, X. Fang, F. C. Sun, P. T. Mather, ” Hybrid Epoxy-Based Thermosets Based on Polyhedral Oligosilsesquioxane: Cure Behavior and Toughening Mechanisms”, Journal of Polymer Science Part B-Polymer Physics, 2003, 41 (24), 3299-3313 40. Chin-Lung Chian, Chen-Chi M. Ma, Feng-Yih Wang, Hsu-Chiang Kuan, “Thermo-oxidative degradation of novel epoxy containing silicon and phosphorous nanocomposites”, European Polymer Journal, 2003, 39, 825–830 41. Jiwon Choi, Seung Gyoo Kim, and Richard M. Laine, ”Organic/Inorganic Hybrid Epoxy Nanocomposites from Aminophenylsilsesquioxanes”, Macromolecules, 2004, 37, 99-109 42. 黃榮茂, 王禹文, 林聖富和楊得仁, “化學化工百科辭典”, 曉園, 1992 43. J. A. Meads, and F. S. Kipping, “Porosity in polysilsesquioxane xerogels”, J. Chem. Soc., 1915, 107, 459 44. J. F. Brown, and L. H. Vogt, “Phase separation in alkylene-bridged polysilsesquioxane sol-gel systems”, J. Am. Chem. Soc., 1965, 87, 4313 45. K. J. Shea, and D. A. Loy, “Bridged Polysilsesquioxanes. Molecular - Engineered Hybrid Organic – Inorganic Materials”, Chem. Mater, 2001, 13, 3306 46. R. H. Baney, M. Itoh, A.Sakakibara, T. Suzuki, “Silsesquioxanes ”, Chem. Rev 1995; 95, 1409 47. A. Provatas and J. G. Matisons, “Porosity in hexylene-bridged polysilsesquioxanes. Effects of monomer concentration”, TRIP 1997; 5, 10 48. M. Tanimura, Handbook of silicon materials. Tokyo: Dow Corning Toray Silicon; 1993, 299 49. L. H. Brown, Treatise: Silicones in protective coatings, vol. 1, Part 3. New York: Marcel Dekker; 1972, 539 50. J. D. Lichtenhan, “Aryl-bridged polysilsesquioxanes. A new class of microporous materials”, Comments Inorg Chem 1995; 17, 115 51. F. K. Chi “Carbon Containing Monolithic Glasses via the Sol-Gel Process”, Ceram. Engng. Sci Proc 1983; 4, 704 52. A. S. Gozdz, “Dialkylene Carbonate-Bridged Polysilsesquioxanes. Hybrid Organic-Inorganic Sol-Gels with a Thermally Labile Bridging Group”, Polym. Adv. Technol., 1994; 5, 70 53. Douglas A. Loy, Gergory M. Jamison, Brigitta M. Baugher, Edward M. Russick, Roger A. Assink, S. Prabakar, and Kenneth J. Shea, “Alkylene-Bridged Polysilsesquioxane Aerogels: Highly Porous Hybrid Organic-Inorganic Materials”, Journal of Non-Crystalline Solid”, 1995, 186, 44-53 54. Douglas A. Loy and Kenneth J. Shea, “Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials”, Chem. Rev., 1995, 95, 1431-1442 55. K. J. Shea, D. A. Loy and O. Webster, “Arylsilsesquioxane Gels and Related Materials. New Hybrids of Organic and Inorganic Networks”, J. Am. Chem. SOC. 1992, 114, 6700-6710 56. Kyung Moon Choi and Kenneth J. Shea, “Preparation of Nano-Sized Chromium Clusters and Intimate Mixtures of Chromium/CdS Phases in a Porous Hybrid Xerogel by an Internal Doping Method, J. Am. Chem. SOC. 1994,116, 9052-9060 57. Dale W. Schaefer, Greg Beaucage, Douglas A. Loy, Kenneth J. Shea, and J. S. Lin, “Structure of Arylene-Bridged Polysilsesquioxane Xerogels and Aerogels”, Chem. Mate., 16, 2004, 1402-1410 58. Fengyi Liu, Lianshe Fu, Jun Wang, Qingguo Meng, Huanrong Li, Junfang Guo and Hongjie Zhang, “Luminescent film with terbium-complex-bridged polysilsesquioxanesy”, New J. Chem., 2003, 27, 233–235 59. Douglas A. Loy, Gregory M. Jamison, Brigitta M. Baugher, Sharon A. Myers, Roger A. Assink, and Kenneth J. Shea, “Sol-Gel Synthesis of Hybrid Organic-Inorganic Materials. Hexylene- and Phenylene-Bridged Polysiloxanes”, Chem. Mater. 1996, 8, 656-663 60. Yunfeng Lu, Hongyou Fan, Nilesh Doke, Douglas A. Loy, Roger A. Assink, David A. LaVan, and C. Jeffrey Brinker, “Evaporation-Induced Self-Assembly of Hybrid Bridged Silsesquioxane Film and Particulate Mesophases with Integral Organic Functionality”, J. Am. Chem. Soc. 2000, 122, 5258-5261 61. G. Cerveau, R. J. P. Corriu, and E. Framery, “Nanostructured Organic-Inorganic Hybrid Materials: Kinetic Control of the Texture”, Chem. Mater. 2001, 13, 3373-3388 62. Joe¨l J. E. Moreau, Luc Vellutini, Michel Wong Chi Man, Catherine Bied, Jean-Louis Bantignies, “Self-Organized Hybrid Silica with Long-Range Ordered Lamellar Structure”, J. Am. Chem. Soc. 2001, 123, 7957-7958 63. Genevie`ve Cerveau, Sabrina Chappellet, Robert J. P. Corriu, Bertrand Dabiens, and Jean Le Bideau, “Synthesis and Characterization of New Stable α,ω-Organo(bis-silanetriols)”, Organometallics 2002, 21, 1560-1564 64. Mark C. Burleigh, Michael A. Markowitz, Mark S. Spector, and Bruce P. Gaber, “Porous Organosilicas: An Acid-Catalyzed Approach”, Langmuir 2001, 17, 7923-7928 65. Nanguo Liu, Kui Yu, Bernd Smarsly, Darren R. Dunphy, Ying-Bing Jiang, andC. Jeffrey Brinker, “Self-Directed Assembly of Photoactive Hybrid Silicates Derived from an Azobenzene-Bridged Silsesquioxane”, J. AM. CHEM. SOC. 2002, 124, 14540-14541 66. “以溶膠凝膠法製備磷/矽之有機-無機奈米複合材料及其難燃性與熱性質之研究”, 江金龍, 國立清華大學博士論文, 2003 67. Mahendra P., Kapoor, Qihua Yang, and Shinji Inagaki, “Organization of Phenylene-Bridged Hybrid Mesoporous Silisesquioxane with a Crystal-like Pore Wall from a Precursor with Nonlinear Symmetry”, Chem. Mater., 16, 2004, 1209-1213 68. Ze Li, Xinyu Cao, Hui Xu, Ping Xie, Ming Cao, and Rongben Zhang, “Synthesis and characterization of reactive ladderlike polyallylsilsesqioxane and polyvinylsilsesquioxane”, Reactive & Functional Polymers, 39, 1-7, 1999. 69. Chunqing Liu, Yang Liu, Ping Xie, Rongben Zhang, Chaobin He, and Neal Taishung Chung, “Synthesis and characterization of a novel alcohol-soluble ladderlike polysilsesqioxane containing side-chain with amino terminal groups”, Reactive & Functional Polymers, 46, 175-184, 2000 70. Chunqing Liu, Yang Liu, Juan Feng, Quan Yuan, Ping Xie, Daorong Dai, and Rongben Zhang, “Synthesis and characterization of two novel functional ladderlike polysilsesquioxanes for nonlinear optical response”, Reactive & Functional Polymers, 46, 213-223, 2001 71. Shengxiang Ji, Hui Xu, Xiaoshu Zhou, Daorong Dai, and Rongben Zhang, “Perparation of a new ladderlike oligosilsesquioxane with lateral aryl ester group”, Reactive & Functional Polymers, 50, 23-31, 2001 72. Hui Zu, Ping Xie, and Rongben Zhang, “Synthesis and characterization of oligomeric silsesquioxane with pendent carboxylic acid groups”, European Polymer Journal, 37, 2397-2405, 2001 73. Huadong Tang, Jin Sun, Jinqiang Jiang, Xiaoshu Zhou, Tengjiao Hu, Ping Xie, and Rongben Zhang, “A Novel Aryl Amide-Bridged Ladderlike Polymethylsiloxane Synthesized by an Amino H-Bonding Self-Assembled Template”, J. Am. Chem. Soc., 124, 1482-10488, 2002 74. Gu HW, Xie P, Shen DY, Fu PF, Zhang JM, Shen ZR, Tang YX, Cui L, Kong B, Wei XF, Wu Q, Bai FL, and Zhang RB, “Photo-induced orientation of a film of ladderlike polysiloxane bearing dual photoreactive side groups”, Advanced Materials, 15, 16, 1355, 2003 75. C. F. Zhu, G. Y. Shang, B. S. Li, C. Wang, L. Cui, P. Xie and R. B. Zhang, “Studies of photosensitive alignmeng layer based on ladderlike polysilsesquioxane liguid-crystal devices using atomic force microscopy/force curve”, 35, 459-462, 2003 76. Jin Sun, Huadong Tang, Jinqiang Jiang, Ping Xie, Rongben Zhang, peng-Fei Fu, Qiang Wu, “H-bonding assisted template synthesis of a novel ladderlike organo-bridged polymethylsiloxane”, 44, 2876-2874, 2003 77. Huadong Tang, Jin Sun, Xiaoshu Zhou, Pengfei Fu, Ping Xie, Rongben Zhang, “Hydrogen-bonding-directed template synthesis of novel stereo-regular organo-bridged ladder-like polymethylsiloxane”, 204, 155-163, 2003 78. “納米複合材料”, 徐國財, 張立德, 化學工業出版社, 2001 79. G. L. Wilkes, B. Orler and H. Huang, “Ceramers:Hybrid Materials Incorporating Polymeric/Oligomeric Species with Inorganic Glasses by a Sol-Gel Process.”, Polym. Bull., 1985, 14, 557 80. Connor, T. M., “NMR Basic Principles and Progress”, 1971, 4, 247-270 81. Takayuki Murayama, “Dynamic Mechanical Analysis of Polymeric Material”, Elsevier Scientific Publishing Company, 1978id NH0925063017 sid 913613 cfn 0 / id NH0925063018 auc 蘇清發 tic 以奈米沸石薄膜再生超臨界二氧化碳 adc 談駿嵩 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 68 kwc 超臨界二氧化碳 abc 由於超臨界流體本身特有的物化性質,使得近年來廣泛地取代有機溶劑成為一種新興的清潔製程(如咖啡因的去除、SCORR等)。而企業在面對全球化的競爭日趨激烈下,所伴隨而來的是毛利正逐年下降,若能以有效且最省能源方式進行回收溶劑並加以再利用,將對於企業提高國際競爭力產生一股不小的助益。由於SCORR目前面臨到其作用機制並不十分明確,再加上光阻劑經超臨界二氧化碳等清洗過後所產生的分子並不清楚,因之本實驗選擇模擬的系統為咖啡因。 rf Brennecke, J. F.; Debenedrtti, P. G.; Eckert, C. A.; Jonston, K. P. “Letters to the editer.” AICHE J., 1990, 36, 1927. Charlton, A. J.; Davis, A. L.; Jones, D. P.; Lewis, J. R.; Davies, A. P. Haslam, E.; Williamson, M. P. The Self-Association of The Black Tea Polyphenol Theaflavin And its Complexation With Caffeine. J. Chem. Soc., Perkin Trans. 2, 2000, 317. Debenedrtti, P. G. Clustering in Dilute, Brinary Supercritical Mixtures: A Fluctuation Analysis. Chem. Eng. Sci., 1987, 42, 2203. DeFillipi, R. P.; Vivian, J. E. U.S. Patent, 4,349,415, 1985. Eckert, C. A.; Ziger, D. H.; Johnston, K. P.; Ellison, T. K. The Use of Partial Molar Volume Data to Evaluate Equations of State for Supercritical Fluid Mixtures. Fluid Phase Equilibria, 1983, 14, 167. Eckert, C. A.; Ziger, D. H.; Johnston, K. P.; Kim, S. Solute Partial Molar Volumes in Supercritical Fluids. J. Phys. Chem., 1986, 90, 2738. Fujii, T.; Tokunaga, Y.; Nakamura, K. Effect of Solute Adsorption Properties on its Separation from Supercritical Carbon Dioxide with a Thin Porous Silica Membrane. Biosci. Biotech. Biochem., 1996 60, 12. Funke, H.; John, H.; Falconer, L.; Noble, R. D.; Lin, Q. Organics/Water Separation by Pervaporation With A Zeolite. J. Memb. Sci., 1996, 117, 163. Gehrig, M. German Patent, DE3443390 A1, 1984. Goswami, S.; Mahapatra, A. K.; Mukherjee, R. Molecular Recognition of Xanthine Alkaloids: First Synthetic Receptors for Theobromine and Series of New Receptors for Caffeine. J. Chem., Perkin Trans. 1, 2001, 2717. Kim, S.; Johnston, K. P. Clusterion in Supercritical Fluid Mixtures. AICHE J., 1987, 33, 1603. Kusakabe, T.; Kuroda, T.; Morooka, S. Separation of Carbon Dioxide from Nitrogen Using Ion-Exchanged Faujasite-Type Zeolite Membranes Formed on Porous Support Tubes. J. Memb. Sci., 1998, 148, 13. Martin, C. R.; Aranda, P.; chen, W. J. Pervaporation Separation of Ethanol/Water Mixtures by Polystyrenesulfonate/Alumina Composite Membranes. J. Memb. Sci., 1995, 107, 199. McHugh, M.; Krukonis, V. Supercritical Fluid Extraction – Principles and Practice, 2nd ed., Butterworth – Heinemann, Boston, 1994. O’Brian, M. J.; Spence, J. E.; Skiff, R. H.; Vogel, G. J.; Prasad, R. Caffeine Recovery from Supercritical Carbon Dioxide. U.S. Patent 4,996,317, 1991. Sarrade, S. T.; Rios, G. M.; Perre, C.; Carles, M. Performance of Supercritical Carbon Dioxide Extraction Coupled with Nanofiltration. The 3th International Symposium of Supercritical Fluid, Strasbourg, France, 1994, 2, 71. Tokunaga, Y.; Fujii, T.; Nakamura, K. Separation of Caffeine from Supercritical Carbon Dioxide with a Zeolite Membrane. Biosci. Biotech. Biochem., 1997, 61, 1024. Vroon, Z. A. E. P.; Keizer, K.; Gilde, M. J.; Verweij, H.; Burggraaf, A. J. Transport Properties of Alkanes Through Ceramic Thin Zeolite MFI Membrane. J. Memb. Sci., 1996, 113, 293. 邱郁雯,利用薄膜分離技術再生超臨界流體,碩士論文,國立清華大學化學工程研究所,2000. 連浩銓,利用沸石薄膜再生超臨界二氧化碳,碩士論文,國立清華大學化學工程研究所,2002.id NH0925063018 sid 913614 cfn 0 / id NH0925063019 auc 高佳萍 tic 不同磷脂質配方對於菸鹼胺皮膚穿透之研究 adc 朱一民 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 65 kwc 磷脂質 kwc 經皮吸收 kwc 菸鹼胺 abc 本實驗利用已廣泛運用於經皮給藥的磷脂質(phospholipids),應用於包覆目前唯一能阻斷黑色素轉移的美白成分水溶性維他命B3 (niacinamide)並添加不同的經皮吸收增加劑(penetration enhancer),藉著Franz-type擴散槽進行皮膚穿透實驗,以得知不同配方的穿透效果。 tc 摘要 目錄 圖目錄 表目錄 第一章 研究動機與目的 第二章 文獻回顧 2.1 微脂粒(liposome) 2.1.1 微脂粒結構 2.1.2 微脂粒與細胞之間的交互作用 2.2 美白活性成份及美白機制 2.3 皮膚結構 2.3.1表皮(Epidermis) 2.3.2真皮(Dermis) 2.3.3皮下組織(Subcutaneous tissue) 2.3.4表皮的細胞 2.4 微脂粒在經皮吸收之應用與發展 第三章 實驗藥品、儀器與方法 3.1實驗藥品與儀器 3.1.1實驗藥品 3.1.2實驗儀器 3.2實驗方法 3.2.1 niacinamide的濃度校正曲線 3.2.2 各式微脂粒懸浮液配方的成分組成 3.2.3 微脂粒懸浮液的製備 3.2.4 量測niacinamide的包覆效率 3.2.5 微脂粒粒徑的測量 3.2.6 微脂粒穩定度的測量 3.2.7 皮膚 3.2.8 皮膚穿透實驗 3.2.9 統計分析 第四章 結果與討論 4.1 各式微脂粒懸浮液配方之粒徑及其包覆效率 4.2 皮膚穿透實驗 4.2.1 配方中有無酒精對niacinamide穿透之影響 4.2.2 配方SPC-vitE不同酒精含量對niacinamide穿透影響 4.2.3 配方SPC-sc不同酒精含量對niacinamide穿透之影響 4.2.4 配方SPC-sc之不同粒徑對niacinamide穿透之影響 4.2.5 配方SPC-sc及SPC-vitE添加蔗糖經冷凍乾燥後對niacinamide穿透之影響 4.3 微脂粒粒徑穩定度的探討 第五章 結論與未來展望 第六章 參考文獻 附錄rf Austria R., Semenzato A., Bettero A., Stability of vitamin C derivatives in solution and topical formulations. J. Pharm. Biomed. Anal. 15, 795-801 (1997) Cevc G., Blume G., Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim. Biophys. Acta 1104, 226-232 (1992) Chinhan K., Jongwon S., Sanghoon H., The skin-permeation-enhancing effect of phosphatidylcholine : Caffeine as a model active ingredient. J. Cosmet. Sci. 53, 363-374 (2002) El Maghraby G.M.M., Williams A.C., Barry B.W., Skin delivery of oestradiol from lipid vesicles: importance of liposome structure. Int. J. Pharm. 204, 159-169 (2000) Elias P.M., Epidermal lipids, barrier function, and desquamation. J. Invest. Dermatol. 80, 44S-49S (1983) Essa E.A., Bonner M.C., Barry B.W., Iontophoretic estradiol skin delivery and tritium exchange in ultradeformable liposomes. Int. J. Pharm. 240, 55-66 (2002) Essa E.A., Bonner M.C., Barry B.W., Electrically assisted skin delivery of liposomal estradiol; phospholipids as damage retardant. J.Contr. Rel. 95, 535-546 (2004) Fang J.Y., Hong C.T., Chiu W.T., Wang Y.Y., Effect of liposomes and niosomes on skin permeation of enoxacin. Int. J. Pharm. 219, 61-72 (2001) Foldvari M., Non-invasive administration of drugs through the skin : challenges in delivery system design. PSTT 3(12) 417-425 (2000) Hakozaki T., Minwalla L., Zhuang J., Chhoa M., Matsubara A., Miyamoto K., Greatens A., Hillebrand G.G., Bissett D. L., Boissy R. E.,The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. Brit. J. Dermatol. 147 (1): 20-31 (2002) Junginger H.E., Hofland H.E.J., Bouwstra J.A., Bodde H.E., Spies F., Interaction between liposomes and human stratum corneum in-vitro: freeze fracture electron microscopical visualization and small angle X-ray scattering studies, Br. J. Dermatol. 132, 853-866 (1995) Jurkovic P., Sentjurc M., Gasperlin M., Kristl J., Pecar S., Skin protection against ultraviolet induced free radials with ascorbyl palmitate in microemulsions. Eur. J. Pharm. Biopharm. 56(1): 59-66 (2003) Kirjavainen M., Urtti A., Jaaskelainen I., Suhonen T.M., Paronen P., ValjakkaKoskela R., Kiesvaara J., Monkkonen J., Interaction of liposomes with human skin in vitro – the influence of lipid composition and structure. Biochim. Biophys. Acta 1304, 179-189 (1996) Kirjavainen M., Urtti A., ValjakkaKoskela R., Kiesvaara J., Monkkonen J., Liposome-skin interactions and their effects on the skin permeation of drugs. Eur. J. Pharm. Sci. 7, 279-286 (1999a) Kirjavainen M., Monkkonen J., Saukkosaari M., ValjakkaKoskela R., Kiesvaara J., Urtti A., Phospholipids affect stratum corneum lipid bilayer fluidity and drug partitioning into the bilayers. J. Contr. Rel. 58, 207-214 (1999b) Lasch J., Laub R., Wohlrab W., How deep do intact liposomes penetrate into human skin? J. Contr. Rel. 18, 55-58 (1991) Martin M. Rieger and Linda D. Rhein, Surfactants in Cosmetics, 2nd ed., New York : Marcel Dekker (1997) Mezei M. and Gulasekharam V., Liposomes – a selective drug delivery system for the topical route of administration. I. Lotion dosage form. Life Sci. 26, 1473-1477. (1980) Morimoto Y., Sugibayashi K., Hosoya K., Higuchi W.I., Penetration enhancing effect of Azone on the transport of 5-fluorouracil across the hairless rat skin. Int. J. Pharm. 32, 31-38 (1986) New R. R. C. Liposomes : a practical approach. Oxford University Press (1990) Nishihata T., Kotera K., Nakano Y., Yamazaki M., Rat percutaneous transport of diclofenac and influence of hydrogenated soya phospholipids. Chem. Pharm. Bull. 35, 3807-3812 (1987) Ostro M. J., Liposomes , Sci. Am. 256(1) 90-99 (1986) Perricone N., Nagy K., Horvath F., Dajko G., Uray I., Nagy I.Z., The hydroxyl free radical reactions of ascorbyl palmitate as measured in various in vitro models. Biochem. Biophys. Res. Commun. 262, 661-665. (1999) Priborsky J., Muhlbachiba E., Evaluation of in vitro percutaneous absorption across human skin and in animal model. J. Pharm. Pharmacol. 43, 468-472 (1990) Spiclin P., Gasperlin M., Kmetec V., Stability of ascorbyl palmitate in topical microemulsions. Int. J. Pharm. 222, 271-279 (2001) Steven C.R., Mark L., Absorption, transport, and disposition of ascorbic acid in humans. J. Nutr. Biochem. 9 (3): 116-130 (1998) Tamura K., Kaminoh Y., Kamaya H., Ueda I., High pressure antagonism of alcohol effects on the main phases-transition temperature of phospholipids membranes: biphasic response. Biochim. Biophys. Acta 1066, 219-224 (1991) Touitou E., Dayan N., Bergelson L., Godin B., Eliaz M., Ethosomes – novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J. Contr. Rel. 65, 403-418 (2000) Verma D.D., Verma S., Blume G., Fahr A., Liposomes increase skin penetration of entrapped and non-entrapped hydrophilic substances into human skin: a skin penetration and confocal laser scanning microscopy study. Eur. J. Pharm. Biopharm. 55, 271-277 (2003) Vrhovnik K., Kristl J., Sentjurc M., SmidKorbar J., Influence of liposome bilayer fluidity on the transport of encapsulated substance into the skin as evaluated by EPR. Pharm. Res. 15, 525-530 (1998) Waters R.E., White L.L., May J.M., Liposomes containing alpha- tocopherol and ascorbate are protected from an external oxidant stress. Free Radical Res. 26, (4), 373-379 (1997) Yokomizo Y., Sagitani H., The effects of phospholipids on the percutaneous penetration of indomethacin through the dorsal skin of guinea pig in vitro. 2. The effects of the hydrophobic group in phospholipids and a comparison with general enhancers. J. Contr. Rel. 42, 37-46 (1996) Zellmer S., Pfeil W., Lasch J., Interaction of phosphatidylcholine liposomes with the human stratum corneum. BBA, 1237, 176-182 (1995)id NH0925063019 sid 913615 cfn 0 / id NH0925063020 auc 徐菁穗 tic 桿狀病毒/哺乳動物細胞表現系統轉導條件最適化之研究 adc 胡育誠 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 40 kwc 桿狀病毒轉導 kwc 基因傳遞 kwc 哺乳動物細胞 kwc 蛋白質表現 abc 雖然目前已有許多研究報導以桿狀病毒作為載體可將基因送入哺乳動物細胞,然而研究多偏向以桿狀病毒作為基因治療載體的應用,對於最佳的轉導條件則未有系統性的研究。本研究中我們提出使用未濃縮的桿狀病毒將基因送入HeLa細胞株的轉導方法。在轉導時我們取出培養基後將細胞加入病毒液,以磷酸緩衝溶液(D-PBS)作為轉導環境溶液於室溫下進行轉導4 h,可表現報導基因並達到75-85 %的轉導效率。相較於其他研究團隊所提出將細胞與濃縮的病毒以培養基為環境溶液,於37 °C轉導1 h的方法,本研究提供的方法既簡單又有效率。經由以上最適化轉導條件研究我們發現:(1)將高劑量的病毒與HeLa細胞株進行轉導至少4 h可得到良好的轉導效率;(2)於37 °C下,桿狀病毒的半生期會明顯地降低;(3)當細胞生長到多層時,使用EGTA前處理無法明顯地增加感染效率;(4)相較於TNM-FH與D-PBS,DMEM不適合作為轉導時的環境溶液,因此我們推測DMEM中含有抑制轉導效率的因子。關於DMEM造成低轉導效率的原因,本研究中測試了數種可能的因素,如pH、陽離子效應及glucose濃度等,目前仍未發現DMEM中影響轉導效率的因素;(5)使用本研究中所提出的轉導方法雖然與一般細胞培養及利用病毒轉導的條件相差甚大,對細胞生長只有短暫的影響,對細胞的存活率沒有明顯的影響,也不會出現細胞毒性。本研究提出了省略濃縮步驟時,桿狀病毒/哺乳動物細胞表現系統的最佳轉導策略,經由此策略可成功地將重組基因送入哺乳動物細胞中,並得到與其他研究者相似的轉導結果。經由這樣的研究結果,成功的避免了超高速離心可能對病毒活性造成的影響及大量生產時超高速離心程序帶來的不便。 tc 中文摘要.....II 英文摘要.....III 目錄.........IV 圖表目錄.....VI 第一章 緒論.............................................1 第二章 文獻回顧.........................................2 2.1. 桿狀病毒與昆蟲細胞.............................2 2.2. 桿狀病毒表現載體系統的發展與應用...............3 2.3. 桿狀病毒表現載體進入細胞之路徑.................4 2.4. 桿狀病毒/哺乳動物細胞表現系統的發展............6 2.5. 研究動機.......................................7 第三章 實驗材料及分析方法...............................8 3.1. 哺乳動物細胞與培養基...........................8 3.2. 昆蟲細胞與培養基...............................8 3.3. 重組桿狀病毒載體...............................8 3.4. 病毒量的放大與濃縮.............................8 3.5. 桿狀病毒轉導哺乳動物細胞.......................9 3.6. 分析方法.......................................9 3.6.1. 細胞計數及存活率 ( Trypan blue dye exclusion method )...........9 3.6.2. 終點稀釋法( End-point dilution method ).......10 3.6.3. 轉導比例、平均螢光強度及總螢光強度定量........11 第四章 結果與討論......................................12 4.1. 不同病毒劑量與轉導時間對螢光蛋白產量的影響....12 4.2.1. 轉導溫度對螢光蛋白表現的影響..................14 4.2.2. 溫度對病毒活性的影響..........................15 4.3. 不同轉導環境對螢光蛋白表現的影響..............16 4.3.1 轉導環境溶液對病毒活性的影響..................17 4.3.2 pH對螢光蛋白表現的影響........................17 4.3.3 離子對螢光蛋白表現的影響......................18 4.3.4 Glucose濃度對螢光蛋白表現的影響...............18 4.4. 轉導程序對細胞生長的影響......................19 4.5. 使用EGTA前處理對螢光蛋白表現的影響............20 第五章 結論............................................36 參考文獻...............................................39 圖表目錄 圖目錄 圖2-1桿狀病毒的分類.....................................2 圖2-2桿狀病毒進入昆蟲細胞的機制.........................5 圖4-1依一般方式轉導之螢光表現圖........................23 圖4-2病毒劑量對轉導效率的影響..........................23 圖4-3病毒劑量、轉導時間 (A)與發螢光細胞比例的關係圖 (B)與平均螢光強度關係圖...........................24 圖4-4隨轉導時間增加病毒進入細胞的關係圖................25 圖4-5不同轉導溫度 (A)與發螢光細胞比例的關係圖 (B)與平均螢光強度的關係圖.........................26 圖4-6溫度對病毒活性的影響..............................27 圖4-7不同環境溶液 (A)與發螢光細胞比例的關係圖 (B)與平均螢光強度的關係圖.........................28 圖4-8不同環境溶液對病毒活性的影響......................29 圖4-9環境溶液中不同pH值 (A)與發螢光細胞比例的關係圖 (B)與平均螢光強度的關係圖.........................30 圖4-10環境溶液中離子 (A)與發螢光細胞比例的關係圖 (B)與平均螢光強度的關係圖。.......................32 圖4-11環境溶液中glucose濃度 (A)與發螢光細胞比例的關係圖 (B)與平均螢光強度的關係圖.........................33 圖4-12轉導程序對細胞生長的影響。(A)轉導後細胞的生長速率 (B)轉導後細胞的存活率.............................34 圖4-13 EGTA前處理 (A)與發螢光細胞比例的關係圖 (B)與平均螢光強度的關係圖.........................35 表目錄 表4-1桿狀病毒在不同溫度下的半生期......................27 表4-2比較實驗中所使用的環境溶液與一般情形下哺乳動物細胞內外 的陽離子濃度...........................................31rf Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 2002. Molecular biology of the cell. New York: Garland Science. 616 p. Andreadis S, Fuller AO, Palsson BO. 1998. Cell cycle dependence of retroviral transduction: An issue of overlapping time scales. Biotechnol Bioeng 58(2-3):272-81. Bajaj B, Lei P, Andreadis ST. 2001. High efficiencies of gene transfer with immobilized recombinant retrovirus: kinetics and optimization. Biotechnol Prog 17(4):587-96. Bilello JP, Cable EE, Myers RL, Isom HC. 2003. Role of paracellular junction complexes in baculovirus-mediated gene transfer to nondividing rat hepatocytes. Gene Ther 10(9):733-49. Bilello JP, Delaney WEt, Boyce FM, Isom HC. 2001. Transient disruption of intercellular junctions enables baculovirus entry into nondividing hepatocytes. J Virol 75(20):9857-71. Boyce FM, Bucher NL. 1996. Baculovirus-mediated gene transfer into mammalian cells. Proc Natl Acad Sci U S A 93(6):2348-52. Condreay JP, Witherspoon SM, Clay WC, Kost TA. 1999. Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc Natl Acad Sci U S A 96(1):127-32. Cruz PE, Almeida JS, Murphy PN, Moreira JL, Carrondo MJ. 2000. Modeling retrovirus production for gene therapy. 1. Determination Of optimal bioreaction mode and harvest strategy. Biotechnol Prog 16(2):213-21. Dee KU, Shuler ML. 1997. Mathematical model of the trafficking of acid-dependent enveloped viruses: Application to the binding, uptake, and nuclear accumulation of baculovirus. Biotechnology and Bioengineering 54(5):468-490. Fields DM, Knipe, and P.M. Howley. 1996. Fields Virology. Philadelphia: Lippincott-Raven. Hofmann C, Sandig V, Jennings G, Rudolph M, Schlag P, Strauss M. 1995. Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci U S A 92(22):10099-103. Hu YC, Tsai CT, Chang YJ, Huang JH. 2003. Enhancement and prolongation of baculovirus-mediated expression in mammalian cells: focuses on strategic infection and feeding. Biotechnol Prog 19(2):373-9. 張耀仁. 2002. 非溶裂桿狀病毒表現系統之研究: 清華大學化學工程研究所碩士論文. Isom HC, Secott T, Georgoff I, Woodworth C, Mummaw J. 1985. Maintenance of differentiated rat hepatocytes in primary culture. Proc Natl Acad Sci U S A 82(10):3252-6. Kost TA, Condreay JP. 2002. Recombinant baculoviruses as mammalian cell gene-delivery vectors. Trends Biotechnol 20(4):173-80. Kronschnabl M, Marschall M, Stamminger T. 2002. Efficient and tightly regulated expression systems for the human cytomegalovirus major transactivator protein IE2p86 in permissive cells. Virus Res 83(1-2):89-102. Lee CI, Kohn DB, Ekert JE, Tarantal AF. 2004. Morphological analysis and lentiviral transduction of fetal monkey bone marrow-derived mesenchymal stem cells. Mol Ther 9(1):112-23. Lee SG, Kim S, Robbins PD, Kim BG. 1996. Optimization of environmental factors for the production and handling of recombinant retrovirus. Appl Microbiol Biotechnol 45(4):477-83. Maranga L, Coroadinha AS, Carrondo MJ. 2002. Insect cell culture medium supplementation with fetal bovine serum and bovine serum albumin: effects on baculovirus adsorption and infection kinetics. Biotechnol Prog 18(4):855-61. McTaggart S, Al-Rubeai M. 2000. Effects of culture parameters on the production of retroviral vectors by a human packaging cell line. Biotechnol Prog 16(5):859-65. Morgan JR, LeDoux JM, Snow RG, Tompkins RG, Yarmush ML. 1995. Retrovirus infection: effect of time and target cell number. J Virol 69(11):6994-7000. O'Reilly DR, Miller LK, Luckow VA. 1992. Baculovirus Expression Vectors : A Laboratory Manual. New York: W. H. Freeman and Company. Ramos L, Kopec LA, Sweitzer SM, Fornwald JA, Zhao HZ, Mcallister P, McNulty DE, Trill JJ, Kane JF. 2002. Rapid expression of recombinant proteins in modified CHO cells using the baculovirus system. Cytotechnology 38(1-2):37-41. Reggiori F, Klionsky DJ. 2002. Autophagy in the eukaryotic cell. Eukaryotic Cell 1(1):11-21. Sarkis C, Serguera C, Petres S, Buchet D, Ridet JL, Edelman L, Mallet J. 2000. Efficient transduction of neural cells in vitro and in vivo by a baculovirus-derived vector. Proc Natl Acad Sci U S A 97(26):14638-43. Shoji I, Aizaki H, Tani H, Ishii K, Chiba T, Saito I, Miyamura T, Matsuura Y. 1997. Efficient gene transfer into various mammalian cells, including non-hepatic cells, by baculovirus vectors. J Gen Virol 78:2657-64. Sollerbrant K, Elmen J, Wahlestedt C, Acker J, Leblois-Prehaud H, Latta-Mahieu M, Yeh P, Perricaudet M. 2001. A novel method using baculovirus-mediated gene transfer for production of recombinant adeno-associated virus vectors. J Gen Virol 82(Pt 9):2051-60. Ward PD, Tippin TK, Thakker DR. 2000. Enhancing paracellular permeability by modulating epithelial tight junctions. PSTT 3(10):346-358. Wechuck JB, Ozuer A, Goins WF, Wolfe D, Oligino T, Glorioso JC, Ataai MM. 2002. Effect of temperature, medium composition, and cell passage on production of herpes-based viral vectors. Biotechnology and Bioengineering 79(1):112-119.id NH0925063020 sid 913616 cfn 0 / id NH0925063021 auc 何長鴻 tic 無膠系可撓式銅箔基板之製備 adc 李育德 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 85 kwc 聚亞醯胺 kwc 濺鍍 kwc 電鍍 kwc 剝離強度 abc 本研究中,使用3,5-diamino-1,2,4-triazole(DATA)以及2,6-diaminopyridine(DAP)兩種含氮雜環二胺類單體與二酸酐,以兩步驟方法(Two-steps metho)製備聚亞醯胺薄膜,並採用濺鍍/電鍍法製備無膠系軟性銅箔基板;藉著pyridine與triazole官能基上的氮原子與金屬銅形成Cu-N鍵結來達到改善與銅金屬的接著強度的目的;由於DAP與DATA單體反應性不甚理想,藉由加入ODA進行共聚反應來彌補黏度過低的缺失進而達到成膜的要求。材料結構方面以核磁共振光譜、紅外線光譜與元素分析儀加以鑑定,並利用萬能拉力機進行90o剝離強度(Peel strength)與機械強度測試,介電儀測試材料電氣特性,熱機械分析儀測量材料熱膨脹係數,熱重分析儀測定熱裂解溫度。 tc 目錄 圖目錄 Ⅴ 表格目錄Ⅷ 第一章 緒論 1 1-1 前言 1 1-2 印刷電路板 3 1-2-1 硬板 3 1-2-2 軟板 4 第二章 文獻回顧 6 2-1 軟性印刷電路板6 2-1-1 軟板組成 6 2-1-1.1.高分子基材 6 2-1-1.2.金屬銅箔 10 2-1-1.3.接著劑 11 2-1-2 軟板應用 11 2-1-3 雙層板 12 2-1-4 無膠銅箔基板製備 13 2-2 聚亞醯胺改質15 2-2-1 黏著機制 15 2-2-2 表面改質 17 2-2-2.1電漿處理 17 2-2-2.27電子束輻射(Electron Beam irradiation) 20 2-2-2.3化學改質(Chemical Modification) 22 2-2-3 含氮雜環官能基 23 2-3-2.1表面接枝聚合 26 2-3-2.2新聚亞醯胺結構 29 2-3 材料性質測試 30 2-3-1 熱性質 30 2-3-2 機械特性 30 2-3-3 接著強度 32 2-3-4 熱膨脹係數 32 2-3-5 介電性質 34 第三章 實驗動機 37 第四章 實驗部分 40 4-1藥品 40 4-2實驗設備 41 4-2-1 合成設備 41 4-2-2 分析儀器 41 4-3聚亞醯胺的合成 42 4-3-1 溶劑與藥品之純化 42 4-3-1.1溶劑的純化 42 4-3-1.2單體的純化 43 4-3-2 聚亞醯胺之合成與薄膜之製備 43 4-3-2.14聚醯胺酸溶液的合成 43 4-3-2.24聚亞醯胺薄膜之製備 44 4-4濺鍍式雙層銅箔基板(Two Layer CCL)製備 45 4-4-1 濺鍍式雙層銅箔基板的金屬化製程 45 4-4-2 濺鍍式雙層銅箔基板之金屬層增厚製程 46 4-5材料性質測試與鑑定 47 4-5-1 材料結構鑑定 47 4-5-2 聚亞醯胺薄膜性質測試 47 4-5-3 雙層銅箔基板之剝離強度測試(Peel Strength Test) 49 第五章 結果與討論 51 5-1 材料合成與薄膜製備 51 5-2 材料結構鑑定 54 5-2-1 Pyridine系統 54 5-2-2 Triazole系統 59 5-3 剝離強度測試 62 5-4 熱性質測試 64 5-5 熱膨脹係數測試 66 5-6 介電常數測試 67 5-7 機械性質測試 70 5-7-1 拉伸強度 70 5-7-2 Modulus 71 5-7-3 斷裂伸長量 73 5-8 斷裂模式 75 第六章 結論 78 第七章 參考文獻 81 圖目錄 圖 2-1Kapton film的化學結構 7 圖 2-2聚亞醯胺製備示意圖 8 圖 2-3單一步驟反應之低溫溶液聚合 9 圖 2-4單一步驟反應之酸與二胺聚合 9 圖 2-5 3L-CCL型態示意示意圖 11 圖 2-6 2L-CCL型態示意圖 12 圖 2-7 Kapton利用電漿進行改質 19 圖 2-8 RIBE實驗數據 21 圖 2-9聚亞醯胺經過RIBE改質之SEM圖 21 圖 2-10 PMDA-ODA以KOH改質反應 22 圖 2-11 KMnO4蝕刻後之SEM 22 圖 2-12 PI經KMnO4蝕刻的截面圖 23 圖 2- 13 Imidazole與Cu反應機構 24 圖 2-14 Cu與pyridine形成錯合物 25 圖 2-15 Triazole與銅金屬反應 25 圖 2-16 vinylimidazole結構 26 圖 2-17 PI表面接枝聚合後的TEM照片 27 圖 2-18 銅金屬沈積到poly(vinylimidazole)之XPS spectra 27 圖 2-19 vinylpyridine 28 圖 2-20 電漿接枝聚合示意圖 28 圖 2-21 ODPA-APB-8-azaadenine PI 29 圖 2-22 應力-應變曲線 31 圖 2-24 溫度-尺寸變化關係圖 33 圖 4- 1合成含N官能基之聚亞醯胺反應流程圖 44 圖 4- 2溫度與形變關係圖 48 圖 5-1 聚亞醯胺合成示意圖 51 圖 5-2 聚亞醯胺合成反應機構 52 圖 5-3 聚亞醯胺共聚反應 52 圖 5-4 含Pyridine官能基聚亞醯胺黏度關係圖 53 圖 5-5 含Triazole官能基聚亞醯胺黏度關係圖 53 圖 5-6 PMDA-ODA之IR圖譜 55 圖 5-7 PMDA-ODA與PMDA-ODA-DAP之IR疊圖 55 圖 5-8 DAP之H1-NMR圖譜 56 圖 5-9 PMDA-ODA的H1-NMR圖譜 57 圖 5-10 PMDA-ODA-DAP之H1-NMR圖譜 57 圖 5-11 DATA單體H1-NMR圖譜 59 圖 5-12 PMDA-ODA與PMDA-ODA-DATA的H1-NMR疊圖 60 圖 5- 13PMDA-ODA-DAP之剝離強度測試 62 圖 5-14 PMDA-ODA-DATA剝離強度測試 63 圖 5-15 PMDA-ODA-DAP之TGA圖 65 圖 5-16 PMDA-ODA-DATA之TGA圖 65 圖 5-17 PMDA-ODA-DAP介電常數關係圖 68 圖 5-18 PMDA-ODA-DATA介電常數關係圖 68 圖 5-19 PMDA-ODA-DAP拉伸強度關係圖 70 圖 5-20 PMDA-ODA-DATA拉伸強度關係圖 70 圖 5-21 PMDA-ODA-DAP彈性係數關係圖 72 圖 5-22 PMDA-ODA-DATA彈性係數關係圖 72 圖 5-23 PMDA-ODA-DAP斷裂伸長量關係圖 74 圖 5-24 PMDA-ODA-DATA斷裂深長量關係圖 74 圖 5-25 PMDA-ODA之ESCA圖譜 76 圖 5-26 PMDA-ODA-DATA之ESCA圖譜 76 圖 5-27 PMDA-ODA-DAP之ESCA圖譜 77 表格目錄 表格2-1各類2L-CCL與3L-CCL性質比較 14 表格2-2不同電漿改質之實驗結果 18 表格2-3 Kapton Film表面元素分析 18 表格2-4電漿處理後PI之粗糙度 20 表格2-5銅金屬與聚亞醯胺的熱膨脹係數 34 表格4- 1藥品清單 40 表格4- 2濺鍍製程參數 45 表格4- 3電鍍液成分表 46 表格5-1 DAP元素分析 51 表格5-2 不同配方與聚亞醯胺組成 58 表格5-3 不同配方聚亞醯胺之元素分析數據 61 表格5-4 共聚亞醯胺組成與剝離強度關係 62 表格5-5 PMDA-ODA-DATA剝離強度測試 63 表格5-6 PMDA-ODA-DAP之熱裂解溫度 64 表格5-7 PMDA-ODA-DATA之熱裂解溫度 64 表格5-8 PMDA-ODA-DAP的熱膨脹係數 66 表格5-9 PMDA-ODA-DATA熱膨脹係數 66 表格5-10 PMDA-ODA-DAP介電常數 69 表格5-11 PMDA-ODA-DATA介電常數 69 表格5-12 PMDA-ODA-DAP拉伸強度 71 表格5-13 PMDA-ODA-DATA拉伸強度 71 表格5-14 PMDA-ODA-DAP彈性係數 73 表格5-15 PMDA-ODA-DATA彈性係數 73 表格5-16 PMDA-ODA-DAP斷裂伸長量 75 表格5-17 PMDA-ODA-DATA斷裂伸長量 75rf 1. 聚亞醯胺的發展與應用,材料與社會,金進興,56期。 2. 聚醯亞胺新型材料,丁孟賢,何天白。 3. 聚亞醯胺在IC元件之應用,工業材料,金進興,114期,p.118。 4. 密度軟性印刷電路板入門 5. Polyimides Fundamentals and Applications. MALAY K. GHOSH, K. L. MITTAL 6. FPC Technology, 台灣電路板協會。 7. 高密度軟性基板材料與應用,工業材料雜誌,175期,p.122。 8. 無接著劑可撓式印刷電路基材,工業材料,86期,p.138。 9. J-H. Kim and J. A. Moor, Macromolecule, 26, 3510, 1993 10. W. M. Edwards and I. M. Rpbinson, US patent 2710853 (1955) 11. W. M. Edwards and I. M. Rpbinson, US patent 2867609 (1959) 12. T. Takekoshi, and J. E. Kochanowski, US patent 3833546 (1974) 13. Jeonghoon Seo, Jeonghoon Kang, Kilwon Cho, and Chan Eon Park, Journal of adhesion science and technology, Vol. 16, No.13, pp1839-1851, 2002 14. Stoffel, Nancy C., Hsieh, Meng, Kramer, Edward J. and Volksen, Willi. IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging 19(2), 417-422, 1996 15. A.K.S. Ang, E.T. Kang, K.G. Neoh, K.L. Tan, C.Q. Cui and T.B. Lim, Polymer, 41(2000), 489-498 16. G.H. Yang, E.T. Kang, K.G. Neoh, Y. Zang and K. L. Tan, Colloid and Polymer Science, 279:745-753 (2001) 17. N. Inagaki, S. Tasaka, and M. Masumoto, Macromolecule, 29, 1642-1648, 1996. 18. F. D. Egitto and L. J. Matienzo, Polymer Degradation Stability, 30, 293, (1990) 19. L. P. Buchwalter, Journal of Adhesion Science and Technology, 4, 697. 1990 20. W. J. van Ooij, Physicochemical Aspect of Polymer Surface, L. L. Mittal (ed.) Vol. 2, Plenum Press, New York, 1983, pp. 1035-1091 21. E. P. Plueddemann, Silanes and Other Coupling Agent, K. L. Mittal (ed.) VSP, Zeist, The Netherlands , 1992, pp. 19-44 22. J. W. McBain, D. G. Hopkins. Journal of Physical chemistry, 29, 88, 1925 23. W.C. Wake. Adhesion and the Formulation of Adhesives. London: Applied Science, 1982 24. H. Chang, K. Kim, M. Ree, and K.W. Lee, Macromolecular Chemistry and Physics. 200, 422-430 (1999) 25. N. Inagaki, S. Tasaka and K. HIBI, Journal of adhesion science and technology, Nol. 8, No. 4, pp. 395-410 (1994) 26. N. J. Chou and C. H. Tang, Journal of Adhesion Science and Technology A2, 751-755 (1984) 27. N. J. Chou, J. Paraszczak, E. Babich, J. Heidenreich, Y. S. Chaug and R. D Goldbladtt, J. Vac. Sci. Technol. A5, 1321 (1987) 28. Kyung W. Paik and Arthur L. Ruoff, Journal of Adhesion Science and Technology. Vol. 4, No. 6, pp. 465-474(1990) 29. N. J. Chou, D. W. Dong and A. C. Liu, J. Electrochem. Soc. 131, 2335 (1984) 30. Lee, K.-W. ; Kowalczyk, S. P.; Shaw, J. M. Macromolecules, 23, 2097, 1990 31. Lee, K.-W. ; Kowalczyk, S. P.; Shaw, J. M. Langmuir, 7, 2450, 1991 32. Zenglin Wang, Akihiko Furuya, Keiichirou Yasuda, Hideo Ikeda, Tomoyuki Baba, Muneaki Hagiwara, Sotaro Toki, Shoso Shingubara, Hiroshi Kubota and Tadahiro Ohmi, Journal of Adhesion Science and Technology, Vol. 16, No. 8, pp. 1027-1040 (2002) 33. Gi Xue, Shangen Jiang, Xuey Huang and Gaoguan Shi, Journal of the Chemical Society, Dalton Transactions., 1487(1988) 34. Gi Xue, Quinpin Dai and Shuangen Jiang, Journal of the American Chemical Society, 110, 2393-2395 (1988) 35. Gi Xue, Peiyi Wu, Zhenan Bao, Jian Dong, and Rongshi Cheng, Journal of the Chemical Society, chemical communications., 495-497(1990) 36. Gi Xue, Gaoquan Shi, Jianhu Ding, Weimin Chang and Rongshi Chen, Journal of Adhesion Science and Technology, Vol. 4, N0. 9, pp. 723-732(1990) 37. A. M. Lyons, M. J. Vasile, E. M. Pearce and J. V. Waszczak, Macromolecule, Vol. 21, No. 11, pp. 3125-3134 (1988) 38. Rodeiguez, Jose A., Surface Science, Vol. 273, No. 3, pp. 385-404 (1992) 39. N. Inkagaki, S. Tasaka, and M. Masumoto, Journal of Applied Polymer Science, Vol. 56, 135-145, (1995) 40. N. Inagaki, S. Tasaka and T. Baba, Journal of Adhesion Science and Technology, Vol. 15, No. 7, pp. 749-762 (2001) 41. W.C. Wang, E. T. Kang, and K. G. Neoh, Applied Surface Science, 199, 52-66 (2002) 42. Chan-Park, M. B. and Tan, S.S., International Journal of Adhesion and Adhesives, v 22, n 6, 2002, p 471-475 43. K.-W. Lee, G. F. Walker and A. Viehbeck, Journal of Adhesion Science and technology, Vol. 9, No.8 pp. 1125-1141 (1995) 44. K.-W. Lee, G. F. Walker and A. Viehbeck, Polymer Preprints, 298( 1993) 45. H. –M. Tong and K. L. Saenger, in New Characterization Technology for Thin Polymer Films. Wiley & Sons, New York, 1990, pp. 29-56 46. JJ. D. James, J. A. Spittle, S. G. R. Brown and R. W. Evans, Measurement Science and technology, 12 (2001) R1-R15 47. G. Maier, Prog. Polym. Sci. 26 (2001) 3-65 48. Gareth Hougham, Guiliana Tesoro, and Alfred Viehbeck, Macromolecules, 1996, 29, 3453-3456 49. Toshihiko Matsumotom, Macromolecules, 1999, 32, 4933-4939 50. 謝有德,工業材料雜誌,90年12月180期 pp.137。M 51. easurement Science and technology, 12 (2001) R1-R15 52. ASTM D882-02 53. ASTM D150-98 54. H. Chang, K. Kim1, M. Ree, K.-W. Lee, Macromol. Chem. Phys. 200, 422–430 (1999) 55. Numata. S., Fujisaa, K. and Kinjo. N., Polymer, 1987, 28, 2282 56. Numata. S., Oohara. S., Fujisaa, K., Imaizumi J and Kinjo N., J. Appl. Poly. Sci., 1986, 31, 101 57. Numata. S., Oohara. S., Imaizumi J and Kinjo N., Polym. J., 1985, 17, 981 58. Numata. S. and Miaw T., Polymer, 1989, 30, 1170 59. J.O. Simpson*, A.K. St.Clair, Thin Solid Film, 308-309(1997), 480-485 60. Soo-Jin Park,,. Ki-Sook Cho, and Sung-Hyun Kim, Journal of Colloid and Interface Science 272 (2004) 384–390 61. MARK EASHOO, LEONARD J. BUCKLEY, and ANNE K. ST. CLAIR, Journal of Polymer Science: Part B: Polymer Physics, Vol. 35, 173–185 (1997) 62. Tetsuya Homma, Journal of Non-Crystalline Solid, 187, (1995)49-59 63. Sadayuki Ukishima*, Masayuki Iijima, Masatoshi Sato, Yoshikazu Takahashi, Eiichi Fukada, Thin Solid Films 308–309 (1997) 475–479 64. B. Y. MYUNG, J. J. KIM, T. H. YOON, Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 40, 4217–4227 (2002) 65. J.J. Singh, T.L. St.Clair, W.H. Holt, W. Mock, NASA Tech. Memo. No. 86431 (1985). 66. A. Eftekhari, A.K. St.Clair, D.M. Stoakley, S. Kuppa, J.J. Singh, J. Polym. Mater. Sci. Eng., 66 (1992) 279. 67. G. Hougham, G. Tesoro, A. Viehbeck, Macromolecules, 29 (1996)3453. 68. M. Berrada,*a F. Carriere,b Y. Abboud,c A. Abourriche,c A. Benamara,c N. Lajrhed,c M. Kabbajc and M. Berradac, J. Mater. Chem., 2002, 12, 3551–3559id NH0925063021 sid 913617 cfn 0 / id NH0925063022 auc 陳惠美 tic 陽離子型高分子微胞之合成與性質之研究 adc 李育德 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 121 kwc 基因載體 kwc 陽離子型高分子微胞 kwc 兩性高分子 kwc 基因轉殖 abc 高分子材料用作基因載體可避免病毒型載體的安全性及免疫問題,將外界正常基因傳送到人體目標細胞,做持續性的釋放,讓基因能長期表現,進行基因修補,改正基因缺陷或抑制異常的基因,進而達到治療目的,由於兩性高分子及陽離子型高分子都是可用做基因載體的高分子材料,本研究選用親水性高、穩定不會快速分解且生物相容性高的甲氧基聚乙二醇(Poly(glycol)methyl ether)及具疏水性及生物相容性的環己內酯(ε- caprolactone)共聚合形成具有酯鍵(ester)官能基的兩性高分子,以期達到生物可分解性的目標,並且利用不同方式將兩性高分子末端改質成具胺基(amine)的高分子,成為陽離子型基因載體,經由生物測試比較材料的對細胞毒性及基因轉殖。 tc 摘要..............................................................................Ⅰ 目錄..............................................................................Ⅱ 第一章 緒論..................................................................1 第二章 理論與文獻回顧..............................................4 2-1 【基因治療】..............................................................................4 2-1-1 發展歷史.....................................................................4 2-1-2 原理.............................................................................7 2-1-3 目前應用的疾病.......................................................11 2-1-4 實施方法...................................................................15 2-2 【基因載體】............................................................................19 2-2-1 病毒型載體.............................................................. 19 2-2-1.1 反轉錄病毒載體............................................19 2-2-1.2 慢病毒載體....................................................21 2-2-1.3 腺病毒載體....................................................21 2-2-1.4 腺相關病毒載體............................................22 2-2-1.5 皰疹病毒載體................................................23 2-2-1.6 賽門病毒載體................................................24 2-2-1.7 牛乳狀瘤病毒載體........................................24 2-2-2 非病毒型載體...........................................................25 2-2-2.1 脂質體載體....................................................25 2-2-2.2 DNA直接注射............................................27 2-2-2.3 基因槍............................................................29 2-2-2.4 高分子載體....................................................30 2-3 【Polymeric Micelle】..............................................................38 第三章 實驗動機........................................................41 第四章 實驗部分........................................................42 4-1 【實驗藥品】..............................................................................42 4-2 【實驗儀器】.............................................................................44 4-3 【實驗方法與流程】................................................................45 4-3-1 兩性高分子之合成...................................................46 4-3-2 兩性高分子化學改質...............................................48 4-3-3 兩性高分子接枝改質...............................................51 4-4 【化學分析鑑定方法】............................................................53 4-4-1兩性高分子之性質分析與組成鑑定........................53 4-4-2兩性高分子化學改質鑑定........................................55 4-4-3兩性高分子接枝改質鑑定........................................57 4-5 【Gene transfection及生物性質測定】...................................59 4-5-1 Amplification of plasmid DNA…..............................59 4-5-2 Cytotoxicity : MTT……………………....................61 4-5-3 Agarose Gel Retardation Assay..................................62 4-5-4 Transfection.............................................................64 第五章 結果與討論....................................................65 5-1 兩性高分子分析與鑑定 65 5-2 化學改質高分子分析與鑑定 87 5-3 接枝改質高分子分析與鑑定 96 5-4 Gene transfection及生物性質測定 105 第六章 結論..............................................................117 第七章 參考文獻......................................................119 圖目錄 圖2- 1 基因治療圖示 7 圖2- 2 全球基因治療研發現況 14 圖2- 3 基因治療實施方法 16 圖2- 4 Mechanisms of drug release from the micelle 35 圖2- 5 Pluronic block copolymers 36 圖2- 6 Structure and transfection efficiency of PEI 36 圖2- 7 Structure of PLL and PAGA 37 圖2- 8 Transfection efficiency and toxicity of PLL and PAGA 37 圖2- 9 兩性高分子微胞化過程 38 圖4- 1 實驗流程圖 45 圖4- 2 兩性高分子合成之流程 46 圖4- 3 Moffatt Oxidation 48 圖4- 4 Conversion of function group 49 圖4- 5 Chemical coupling 51 圖5- 1 FT-IR spectrum of mPEG-PCL 65 圖5- 2 1:35.5 (A) 500MHz 1H-NMR spectrum of mPEG-PCL 67 圖5- 3 1:25 (B) 500MHz 1H-NMR spectrum of mPEG-PCL 68 圖5- 4 1:20 (C) 500MHz 1H-NMR spectrum of mPEG-PCL 69 圖5- 5 1:10 (D) 500MHz 1H-NMR spectrum of mPEG-PCL 70 圖5- 6 1:5 (E) 500MHz 1H-NMR spectrum of mPEG-PCL 71 圖5- 7 1:35.5 (A) CMC by UV of mPEG-PCL 75 圖5- 8 1:25 (B) CMC by UV of mPEG-PCL 76 圖5- 9 1:20 (C) CMC by UV of mPEG-PCL 77 圖5- 10 1:10 (D) CMC by UV of mPEG-PCL 78 圖5- 11 1:5 (E) CMC by UV of mPEG-PCL 79 圖5- 12 1:35.5 (A) CMC by FL of mPEG-PCL 80 圖5- 13 1:25 (B) CMC by FL of mPEG-PCL 81 圖5- 14 1:20 (C) CMC by FL of mPEG-PCL 82 圖5- 15 1:10 (D) CMC by FL of mPEG-PCL 83 圖5- 16 1:5 (E) CMC by FL of mPEG-PCL 84 圖5- 17 FT-IR spectrum of Conversion of function group 88 圖5- 18 500MHz 1H-NMR spectrum of mPEG-PCLA 90 圖5- 19 500MHz 1H-NMR spectrum of mPEG-PCLN-A 91 圖5- 20 ESCA of mPEG-PCLN-A 92 圖5- 21 FT-IR spectrum of Chemical Coupling 97 圖5- 22 500MHz 1H-NMR spectrum of mPEG-PCL-COOH 99 圖5- 23 500MHz 1H-NMR spectrum of mPEG-PCLN-B 100 圖5- 24 ESCA of mPEG-PCLN-B 101 圖5- 25 Agarose Gel Retardation Assay of GFP plasmid DNA 105 圖5- 26 MTT Assay (1000μg/ml,three days) figure ………..107 圖5- 27 MTT Assay (3500μg/ml,one day) figure 109 圖5- 28 mPEG-PCL、mPEG-PCLN-A/-B電泳圖 111 圖5- 29 mPEG-PCLN-B電泳圖 112 圖5- 30 mPEG-PCLN-A/-B電泳圖 113 圖5- 31 cells after transfection 115、116 表目錄 表2 - 1 Cationic Homopolymers Studied as Gene Carriers 32 表2 - 2 Cationic Copolymers Studied as Gene Carriers 33 表2 - 3 Ligands Used with CPs for Targeting of Genes 34 表4 - 1 實驗藥品..................................................................................42 表4 - 2 兩性高分子聚合之配方表......................................................47 表5- 1 mPEG-PCL 500MHz 1H-NMR spectrum之化學位移………..66 表5- 2 500MHz 1H-NMR組成鑑定…………….…………………….72 表5- 3 MW of mPEG-PCL....................................................................73 表5- 4 CMC of mPEG-PCL..................................................................74 表5- 5 DLS analysis of mPEG-PCL......................................................86 表5- 6 ESCA analysis of Conversion of function group.......................94 表5- 7 EA analysis of Conversion of function group............................95 表5- 8 ESCA analysis of Chemical Coupling……….........................103 表5- 9 EA analysis of Chemical Coupling…………..........................104 表5- 10 MTT Assay (1000μg/ml,three days) data…........................107 表5- 11 MTT Assay (3500μg/ml,one day) data…............................109 表5- 12 圖5- 28之各well所代表的樣品…......................................111 Scheme目錄 Scheme 4- 1 實驗流程圖 45 Scheme 4- 2 兩性高分子合成之流程 46 Scheme 4- 3 Moffatt Oxidation 48 Scheme 4- 4 Conversion of function group 49 Scheme 4- 5 Simple coupling 51rf 1. 張瓊方,第四代醫學革命-基因治療,Vol. 22 No. 8 August 1997,光華畫報雜誌社 2. 陳宗嶽,基因治療去氧核糖核酸(DNA)輸送方法:開發狀況及未來發展,財團法人生物技術開發中心 3. 林明定,生技時代 NO. 15,2003.01 4. 彭汪嘉康,基因治療,何去?何從?,財團法人國家衛生研究院 5. 杜寶?琚A基因治療的原理與應用,九州圖書文物有限公司 6. 徐泰浩 曾耀銘,生物技術概論,藝軒圖書出版社 7. 羅淑慧,基因治療的展望,財團法人生物技術開發中心 8. Sara-Kaye Madsen and David J. Mooney , Pharmaceutical Science & Technology Today , Vol. 3 , No. 11 November 2000 , pp.381-384 9. Lonnie D. Shea, Elizabeth Smiley, Jeffrey Bonadio, and David J. Mooney, Nature Biotechnology , VOL 17 JUNE, 1999, pp.551-554 10. Rauhi,A.M. , Chem. Eng. News , 2000 11. Thomas P. Richardson, William L. Murphy, and David J. Mooney, Critical Reviews in Eukaryotic Gene Expression , 11(1-3):47-58(2001) 12. Eric W.F.W. Alton, Uta Griesenbach, Duncan M. Geddes , Nature Medicine 1998, Volume 4 Number 10 pp. 1121 - 1122 13. Matthew J. During, Ruian Xu, Deborah Young, Michael G. Kaplitt, Robert S. Sherwin & Paola Leone, Nature Medicine 1998, Volume 4 Number 10 pp. 1131 - 1135 14. Ashim Anand & Kiran Chada , Nature genetic 2000, Volume 24 no. 4 pp. 377 - 380 15. W.FrenchAnderson, 趙裕卿譯,胡天其校,基因治療 16. 黃麗華,基因治療,pp. 367-391,九州圖書文物有限公司 17. Theodore Friedmann,Scientific American , 1997, pp.96-101 18. Philip L. Felgner, Scientific American , 1997, pp.102-106 19. Stefaan C. De Smedt, Joseph Demeester, and Wim E. Hennink, Pharmaceutical Research, Vol. 17, No. 2, 2000 20. Alexander V. Kabanov, Elena V. Batrakova and Valery Yu. Alakhov , Journal of Controlled Release 2002, 82:189-212 21. Yong-Beom Lim, Sang-Oh Han, Han-Uk Kong, Yan Lee, Jong-Sang Park, Byeongmoon Jeong, and Sung Wan Kim, Pharmaceutical Research Vol. 17, No. 7, 2000 22. W.T. Godbey, Kenneth K. Wu, Antonios G. Mikos, Journal of Controlled Release 60 (1999) 149-160 23. 莊宜靜,碩士論文, “含聚乙二醇與膽固醇側鏈之接枝高分子的合成與性質”,台灣科技大學,2001 24. Bader H., Ringsdorf H. Schmidt B. , Angew. Chem. , Vol. 123, Issue 1, 1984. Pages 457-485 25. Duncan R., Kopekova-Rejmanova P, Strohalm J., Hume I., Cable H. C., Pohl J., Lloyd B., Kopecek J., Br. J. Cancer, 55, 165-174, 1987 26. Endo N., Umemoto N., Kato Y. , Takeda Y., Hara T., J. Immunol. Methods, Vol. 104, pp.253-258, 1987 27. Manfred Wilhelm, Cheng-Le Zhao, Yongcai Wang, Renliang Xu, Mitchell A. Winnik., Jean–Luc Mura, Gerard Riess, Melvin D. Croucher, Macromolecules 1991, 24, 1033-1040 28. Koichi I., Kazuo T., Hiroshige T., Genji I., Seiqou K., Shinchi I., Macromolecules 1991, 24 , 2348-2354 29. Kanehiro N., Ryuichi E., Mastami T., Journal of Polymer Scicnce : Polymer Physics Edition, Vol. 14, pages 1287-1295, 1976 30. Amitabha Chattopadhyay, Erwin London, Analytical Biochemistry 139, 408-412, 1984 31. Irina Astafieva, Xing Fu Zhong, Adi Eisenberg, Macromolecules 1993, 26, 7339-7352 32. Paschalis Alexandridis, Josef F. Holzwarth, T. Alan Hatton, Macromolecules 1994, 27, 2414-2425 33. Alexander V. Kabanov, Irina R. Nazarova., Irina V. Astafieva, Elena V. Batrakova, Valery Yu. Alakhov, Alexander A. Yaroslavov, and Victor A. Kabanov, Macromolecules 1995, 28, 2303-2314id NH0925063022 sid 913620 cfn 0 / id NH0925063023 auc 張瑋傑 tic 磷光銥金屬錯合物之材料合成與有機發光二極體元件應用 adc 胡德 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 144 kwc 磷光 kwc 有機發光二極體 kwc 金屬環化反應 kwc 銥錯合物 kwc 可調色的 abc 有機電致發光二極體(OLED)目前備受國內產官學研各界注目;其中對於高發光效率之OLED而言,以磷光發光材料Ir complex最具潛力。原因在於銥金屬結構上強烈的電子自旋軌域偶合(spin-orbit coupling),導致銥錯合物之單態與三重態(singlet-triplet)能階混合,可避免違反自旋(spin-forbidden)的物理定律而以特有的三重態能量於室溫之下進行發光(radiative relaxation);因此此類材料在OLED的應用上,具有高的電激發光效率。本研究預計利用C^N[註1 rf 1.M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys. 38, 2042 (1963) 2. (a) S. A. VanSlyke, C. W. Tang, US 4,539,507 (1985); (b)C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987) 3. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Nature, 347, 539 (1990) 4. M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature , 395, 151 (1998) 5. (a) J. M. Lehn, Supermolecular Chemistry (VCH, Weinheim, Germany, (1995) (b)C. A. Bignozzi, J. R. Schoonover, and F. Scandola, Prog. Inorg. Chem. 44, 1 (1997) 6. B. Carlson, and L. R. Dalton, Appl. Phys. Lett. 80, 713 (2002) 7. Md. K. Nazeeruddin, R. Humphry-Baker, D. Berner, S. Rivier, L. Zuppiroli, and M. Graetzel, J. Am. Chem. Soc. 125, 8790-8797 (2003) 8. J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau, M. E. Thompson,Inorg. Chem., 41(12), 3055-3066 (2002) 9. W. Hu, M. Matsumura, M. Wang, L. Jin, Appl. Phys. Lett. 77, 4271 (2000) 10. W. Hu, M. Matsumura, M. Wang, L. Jin, Jpn. J. Appl. Phys. 39 ,6445 (2000) 11. H. Rudmann, S. Shimada, and M. F. Rubner, J. Am. Chem. Soc. 124, 4918 (2002) 12. S. Lamansky, P. Djurovich, D. Murphy, F. A. Razzaq, R. Kwong, I. Tsyba, M. Bortz, B. Mui, R. Bau, and M. E. Thompson, Inorg. Chem. 40, 1704 (2001) 13. J. P. Duan, P. P. Sun, C. H. Cheng, Adv. Mater. 15(11), 884-888 (2003) 14. R. C. Kwong, M. R. Nugent, L. Michalski, T. Ngo, K. Rajan, Y. J. Tung, M. S. Weaver, T. X. Zhou, M. Hack, M. E. Thompson, S. R. Forrest, J. J. Brown, Appl. Phys. Lett. 14, 147 (2002) 15. S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H. E. Lee,C. Adachi, P. E. Burrows, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc. 123, 4304 (2001) 16.V.V. Grushin, N. Herron, D.D. LeCloux, W.J. Marshall, V.A. Petrov, Y. Wang, Chem. Commun. 1494 (2001) 17. D. f. O’Brien, M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 74, 442 (1999) 18. S. Lamansky, M. E. Thompson, and R. C. Kwong, Appl. Phys. Lett. 78, 1622 (2001); 19. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett., 75(1), 4-6 (1999) 20. T. Tsutsui, M.-J. Yang, M. Yahiro, K. Nakamura, T. Watanabe, T. Tsuji, Y. Fukuda, T. Wakimoto, S. Miya guchi, Jpn. J. Appl. Phys. 38 , L1502 (1999) 21. M. A. Baldo, M. E. Thompson, S. R. Forrest, Nature(London), 403, 750 (2000) 22. S. Lamansky, R. C. Kwong, M. Nugent, P. I. Djurovich, M. E. Thompson, Org. Electronics, 2, 53 (2001) 23. Y. Wang, N. Herron, V. V. Grushin, D. LeCloux, V. Petrov, Appl. Phys. Lett. 79,449 (2001) 24. (a) P. I. Djurovich, A. Tamayo, M. E. Thompson, Abs. 3nd Internat. Conf. El Mol. Mater. Relat. Phenom. (ICEL-3), p.45, Sept. 5-8, 2001, Los Angelos, CA, USA (b) C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 79, 2082(2001) 25. B.W. D’Andrade, J. Brooks, V. Adamovich, M. E. Thompson, Advanced Material, 14, 1032 (2002) 26. M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, Y. Taga, Appl. Phys. Lett. 79, 156 (2001) 27. S. Lamansky, P. I. Djurovich, F. Abdel-Razzaq, S. Garon, D. L. Murphy, M. E. Thompson, J. Appl. Phys. 92, 1570 (2002) 28. W. Zhu, Y. Mo, M. Yuan, W. Yang, Y. Cao, App. Phys. Lett., 80, 2045 (2002) 29. X. Gong, M. R. Robinson, J. C. Ostrowski, D. Moses, g. C. Bazan, A. J. Heeger, Adv. Mater. 14, 581 (2002) 30. S. Sprouse, K. King, P. J. Spellane, R. J. Watts, J. Am. Chem. Soc., 106, 6647-6653 (1984) 31. V. Balzani, F. Scandola, Supramolecular Photochemistry, Ellis Horwood: Chichester, U. K., 1991 32. R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon and M. E. Thompson, Appl. Phys. Lett., 82(15), 2422-2424 (2003) 33. S. B. Heidenhain, Y. Sakamoto, T. Suzuki, A. Miura, H. Fujikawa, T. Mori, S. Tokito, and Y. Taga, J. Am. Chem. Soc, 122, 10240 (2000) 34. V. V. Grushin, N. Herron, D. D. LeCloux, W. J. Marshall, V. A. Petrov, Y. Wang, Chem. Commun. 1494 (2001) 35. S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, R. Kwong, I. Tsyba, M. Bortz, B. Mui, R. Bau, M. E. Thompson, Inorg. Chem. 40, 1704 (2001) 36. K. YOSHIAKI, T. KATSUSHIGE, JP7278100 (1995) 37. P. E. Burrows, V. Bulovic, D. M. McCarty, S. R. J. Forrest, Appl. Phys., 79, 7991 (1996)id NH0925063023 sid 913621 cfn 0 / id NH0925063024 auc 陳麗蓉 tic 製備鈀金屬奈米粒子與應用於化學鍍銅製程之研究 adc 萬其超 adc 王詠雲 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 英文 pg 89 kwc 奈米鈀粒子 kwc 無電鍍銅 kwc 活化液 kwc 印刷電路板 kwc 化學銅沉積 abc 摘要 tc Contents Abstract I 摘 要 II 謝 誌 III Contents IV Figure of contents VI Table of contents IX C h a p t e r 1 Introduction and Literature review 1 1.1 Introduction 1 1.2 Literature reviews 1 1.2.1 Fundamental theories of electroless metal deposition 1 1.2.2 The improvement of ECD in the PCB industry 2 1.2.3 Typical procedures for PCB using Tin-Palladium as activator 3 1.3 Activators used in PCB processing 3 1.3.1 The function of each process of PCB for Sn/Pd colloid 3 1.3.2 Neopact process (Atotect) 6 1.3.3 Commercial Pdion used as activator for electroless copper deposition in PCB 8 1.3.4 Pd nanoparticles as activator 9 1.4 Synthesizing palladium particles in ethylene glycol 13 1.4.1 In ethylene glycol system 13 1.4.2 Synthesis of alloy nanoparticles in EG system 16 1.5 Factors affecting the particles sizes 18 1.5.1 Influence of alkali on the mean particle size in EG 18 1.5.2 Other methods to control particle size in EG system 21 1.5.3 Control particle size in general aqueous system 22 1.6 Research purpose 26 C h a p t e r 2 Research method 27 2.1 Materials 27 2.2 Experimental instrument 28 2.3 Principle of analytical instruments 29 2.3.1 Ultraviolet-Visible Absorption Spectrometry (UV-vis) 29 2.3.2 Fourier Transform Infrared Spectrometry (FT-IR) 33 2.3.3 Scanning Electron Microscope (SEM) 35 2.3.4 Transmission Electron Microscope (TEM) 36 2.3.5 X-Ray Diffraction (XRD) 37 C h p a t e r 3 Experimental sections 38 3.1 Preparation of Pd/PVP/EG nanoparticles 38 3.1.1 Synthesis of Pd/PVP nanoparticles in EG system 38 3.1.2 Temperature effect 39 3.1.3 Effect of extra reducer (HCHO) and alkali added (NaOH) 40 3.1.4 With alkali added (NaOH) 42 3.1.5 Characterization of Pd/PVP/EG nanoparticles 43 3.2 Pd/PVP/EG as activator for electroless 44 3.2.1 Choose a suitable conditioner for Pd/PVP/EG 44 3.2.2 Pd/PVP/EG as activator for through holes plating (PTH) 50 C h a p t e r 4 Result and Discussion 54 4.1 Synthesis of Pd nanopartilces 54 4.1.1 The synthesis of Pd nanoparticles in ethylene glycol (EG) 54 4.1.2 With respect to temperature 54 4.1.3 Influence of both formaldehyde and sodium hydroxide added 55 4.1.4 Influence of sodium hydroxide added 59 4.2 Pd/PVP/EG as activator in electroless copper deposition 73 4.2.1 Pd/PVP/EG for electroless copper deposition 73 4.2.2 Pd/PVP/EG as activator for through holes plating of PCB 82 C h a p t e r 5 Conclusion 86 C h a p t e r 6 Reference 87rf [1 ] D. A. Luke Lea Ronal, Buxtion, England Electroless Plating chp. 12 [2 ] Butterworth and Luke, British Patent 1, 175, 282, 23rd December (1969) [3 ] Lukes, R. M. Plating, 51, 1066 (1964) [4 ] C.R Shipley, U. S. Patent 3001, 920 (1961) [5 ] C.L.Lee, C-C Wan and Y-Y Wang, Adv. Funct. Mater. 11,344 (2001). [6 ] A. J. Bard and L. R. Faulknerm, Electrochemical Methods, P. 725, John Wiley & Sons, New York (2001). [7 ] J. Wang, Analytical Electrochemistry, P. 52, John Wiley & Sons, New York (2000). [8 ] D. A. Buttry and M. D. Ward, Chem. Rev., 92, 1355 (1992). [9 ] F. Bonet, V. Delmas, S. Grugeon, R. Herrera Urbina*, P-Y. Silvert and K.Tekaia-Elhsissen , NanoStructured Materials, 11, 8, 1277 (1999). [10 ] K. Tekaia-Elhsissen, F.Bonet, S. Grugeon, S. Lambert, and R. Herrera-Urbina, J. Mate. Res., 14, 9, 3707 (1999) [11 ] F. Fievet, J.P. Lagier, B. Blin, Solid state Ionics, 32/33 , 198-205 (1989) [12 ] L.K. Kurihara, NanoStructured Materials, 5, 607 (1995). [13 ] W. L. Wang, Preparation of palladium nanoparticles by reactive micelles as templates and its application, Thesis of Chemical Engineering Department of National Tsing Hua University. [14 ] P. R. Van Rheenen, M. J. McKelvy, and W. S. Glaunsinger, J. Solid State Chem. , 67, 151 (1987). [15 ] K. Esumi, O. Sadakane, K. Torigoe, and K. Meguro, Colloids Surf. 62, 255 (1992). [16 ] J. H. Clint, I. R. Collins, J. A. Williams, B. H. Robinson, Th. F. Towey, Ph.Cajean, and A. Khan-Lodhi, Faraday Discuss. 95, 219 (1993). [17 ] S. Ayyappan, R. S. Gopalan, G. N. Subbanna, and C. N. R. Rao, J. Mater. Res., 12, 398 (1997). [18 ] M. T. Reetz and W. Helbig, J. Am. Chem. Soc. 116, 7401 (1994). [19 ] P.Y.Silvert, V.Vijayakrishnan, P.Vibert, R.Herera-Urbina, and T.Elhsissen, NanoStructured Materials, 6, 611 (1996). [20 ] N.Toshima and Y. Wangl, Langmuir,10, 4574 (1994). [21 ] V. K. LaMer and R. H. Dinegar, J. Am. Chem. Soc. ,72 (1950) [22 ] V. K. LaMer, Ind. Eng. Chem., 44, 1270 (1952) [23 ] F. Fievet, F. Fievet-Vincent, J.P. Lagier, B. Dumont and M. Figlarz; J. Mater. Chem., 3(6), 627-632 (1993) [24 ] G. Viau, F. Fievet-Vincent, F. Fievet.; Solid State Ionics,84, 259-270 (1996) [25 ] F. Fivet, J.P. Lagier and M. Figlarz, M.R.S. Bull. 14 (1989) [26 ] C. Ducamp-Sanguesa, R. Herrera-Urbina and M. Figlarz, Solid State Chem., 100 , 272 (1992) [27 ] C. Ducamp-Sanguesa, R. Herrera-Urbina and M. Figlarz, Solid states Ionics, 63-65, 25-30 (1993) [28 ] J. S. Bradley, Clusters and Colloids, ed. G. Schmid, Chap. 6, VCH, Weinheim (1994). [29 ] T. Yonezawa, N. Toshima, J. Chem. Soc. Faraday Trans., 91(22), 4111-4119 (1995) [30 ] H. P. Choo, K. Y. Liew and H. F. Liu, J. Mater. Chem., 12, 934 (2002). [31 ] G. Mie, Ann. Physik. , 25, 377 (1908) [32 ] J. A. Creighton and D. G. Eadon, “ Ultraviolet-visible Absorption Spectra of the Colloidal Metallic Elements”, J. Chem. Soc. Faraday Trans., 87,3881 (1991) [33 ] P. Mulvaney, “ Spectroscopy of Metal colloids-some comparison with Semiconductor colloids”, in Semiconductor Nanoclusters-Physical, Chemical, and Catalytic Aspects edited by P. C. Kamat and D. Meisel, Elsevier, Amsterdam 99, (1997). [34 ] P. Mulvaney, “ Surface Plasmon Spectroscopy of Nanosized Metal Particles”, Langmuir, 12, 788 (1996) [35 ] Veisz, B.; Kiraly, Z.; Langmuir; 19(11); 4817-4824 (2003). [36 ] Srivastava, S. C. ; Newman, L. Inorg. Chem., 5, 1506 (1966) [37 ] Feldberg, S.; Klotz, P. ; Newman, L. Inorg. Chem., 11, 2860 (1972) [38 ] Robert M. Silverstein and Francis X. Webster, Spectrometric identification of organic compounds, Sixth Edition, Wiley. [39 ] D. Brune, R. Hellborg, H. J. Whitlow and O. Hunderi, Surface characterization, Wiley-Vch.id NH0925063024 sid 913623 cfn 0 / id NH0925063025 auc 黎元中 tic 光交聯聚乳酸-聚乙二醇-聚乳酸三團聯共聚物之水膠奈米粒子 adc 朱一民 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 60 kwc 光交聯 kwc 聚乳酸 kwc 聚乙二醇 kwc 奈米水膠 abc 近十年來,利用光交聯(photocrosslinking)的方式去製備水膠,一直被認為是一個簡單又比較不會殘留毒性單體的方法。此外,又因為水膠的澎潤性質、高通透性與高生物相容性,使得水膠在組織工程方面有相當多的應用,例如:組織表面貼附型材料[6 tc 目錄 摘要 I 目錄 III 圖目錄 VI 表目錄 IX 第一章 文獻回顧 1 1.1 生物可分解性高分子簡介 1 1.1.1 生物可分解性分解高分子性質 2 1.1.2 生物可分解性高分子種類 2 1.2 生物可分解性團聯共聚物 6 1.2.1 分類 6 1.2.2 合成方法 8 1.2.3 團聯共聚物的降解 9 1.3 光交聯水膠 9 1.3.1 何謂水膠 9 1.3.2 關於光交聯 10 1.3.3 製備光交聯水膠的方法 11 1.3.4 光交聯材料 12 1.3.5 光交聯水膠的應用 14 1.4 藥物載體奈米化 16 1.5 藥物控制釋放系統的必要性 16 1.6 Camptothecin的性質與應用 17 第二章 研究動機與目的 19 第三章 實驗部分 21 3.1 實驗藥品 21 3.2 實驗儀器與裝置 21 3.3 實驗方法 23 3.3.1 藥品的純化 23 3.3.2 PDLLA-PEG-PDLLA三團聯共聚物的合成 23 3.3.3 PDLLA-PEG-PDLLA diacrylate的製備 24 3.3.4 PDLLA-PEG-PDLLA diacrylate的CMC之量測 25 3.3.5 PDLLA-PEG-PDLLA diacrylate水膠奈米粒子的製備 25 3.3.6 奈米水膠粒子包覆Camptothecin ( CPT ) 26 第四章 結果與討論 28 4.1 4.1.1 PDLLA-PEG-PDLLA結構鑑定 28 4.1.2 PDLLA-PEG-PDLLA diacrylate結構鑑定 30 4.1.3 GPC分析結果 32 4.1.4 PDLLA-PEG-PDLLA熔點測定 33 4.2 PDLLA-PEG-PDLLA diacrylate的CMC 34 4.3 UV光交聯的鑑定及熱性質分析 35 4.4 水膠奈米粒子的粒徑、澎潤性質及穩定性 測量 38 4.4.1 nanogels的粒徑大小及膨潤性質 38 4.4.2 nanogels的穩定性探討 40 4.5 nanogels的形態(morphology) 42 4.6 nanogels包覆Camptothecin(CPT)之實驗 42 4.6.1 CPT螢光強度衰退測試 42 4.6.2 nanogels組成與包覆效率的關係 43 4.6.3 nanogel包覆CPT後的熔點測試 44 4.6.4 CPT釋放實驗及nanogel包覆CPT劑型的穩定性測 試 45 第五章 結論與未來展望 50 參考文獻 52 附錄A Camptothecin檢量線及計算公式 59 附錄B 螢光染劑1-pyrenehexanoic acid的結構 59 附錄C EGDMA及DMPA的結構 60 圖目錄 圖1-1 不同型態的lactide 3 圖1-2 PLA水解途徑 4 圖1-3 熔融縮合聚合聚酸酐反應示意圖 5 圖1-4 常見的脂肪族(SA)與芳香族(CPP)聚酸酐單體 5 圖1-5 團聯共聚物的類型 7 圖1-6 光起始劑產生自由基的機制簡圖 11 圖1-7 PEG跟PETA進行光交聯的示意圖 12 圖1-8 常見dextran衍生物的結構 13 圖1-9 dex-HEMA水膠的聚合跟降解 14 圖1-10 傳統製劑與控釋藥物製劑血中藥物濃度變化之比較 17 圖1-11 CPT之兩種形式及其存在條件 18 圖1-12 兩種CPT衍生物irinotecan及topotecan的結構 18 圖3-1 PDLLA-PEG-PDLLA三團聯共聚物合成反應示意圖 23 圖3-2 PDLLA-PEG-PDLLA acrylation示意圖 24 圖3-3 光交聯反應示意圖 25 圖4-1 PDLLA-PEG-PDLLA開環聚合反應機制圖 28 圖4-2 PDLLA-PEG-PDLLA的1H-NMR圖 29 圖4-3 PDLLA-PEG-PDLLA diacrylate的1H-NMR圖 30 圖4-4 PEG與PDLLA-PEG-PDLLA的FT-IR光譜圖 31 圖4-5 PDLLA-PEG-PDLLA與PDLLA-PEG-PDLLA diacrylate的FT-IR 光譜圖 32 圖4-6 PDLLA-PEG-PDLLA diacrylate的DSC圖 33 圖4-7 添加不同共聚單體對PEG-DA水膠EV及EWC的影響 34 圖4-8 PDLLA41-PEG4K-PDLLA41 diacrylate的CMC值 35 圖4-9 光交聯前後A組的C=C官能基吸收峰的變化 36 圖4-10 交聯劑添加量對交聯後的團聯共聚物熔點的影響 37 圖4-11 micelles及nanogels的粒徑大小跟交聯劑濃度的關係 38 圖4-12 nanogels的膨潤比例( in H2O / in microemulsion) 39 圖4-13 UV燈照射時間對nanogel粒徑大小的影響 40 圖4-14 nanogels儲存在4℃下的穩定性 41 圖4-15 nanogels儲存在室溫下的穩定性 41 圖4-16 nanogel E(EGDMA:50 wt%;DMPA:3 wt%)的AFM圖 42 圖4-17 CPT的飽和水溶液在不同照射時間下的螢光強度變化 43 圖4-18 以nanogel A~E組包覆CPT的效率 44 圖4-19 nanogel B(EGDMA:6 wt%;DMPA:3 wt%)及nanogel B包 覆CPT(0.08mg CPT/10mg nanogel)後的DSC圖 44 圖4-20 以nanogel A∼E包覆CPT,藥物在37℃下的釋放比率與時 間之關係圖 45 圖4-21 nanogel A~E組在CPT釋放實驗過程中粒徑的變化 46 圖4-22 以micelle A~E組包覆CPT,藥物在37℃下的釋放比率與時 間之關係圖 47 圖4-23 以PEG-DA hydrogel包覆BSA,BSA在藥物在37℃下的釋放 比率與時間之關係圖 48 圖4-24 nanogel A~E組包覆CPT之劑型保存在4℃下的粒徑變化 49 圖4-25 nanogel A~E組包覆CPT之劑型保存在室溫下的粒徑變化 49 表目錄 表1-1 添加不同共聚單體對PEG-DA水膠EV及EWC的影響 13 表1-2 光交聯水膠應用上的優缺點 15 表4-1 合成高分子的特性分析結果 33 表4-2 進行光交聯時光起始劑及交聯劑相對於單體的比例 36rf 參考文獻 1. Chandra R., Rustgi R., “Biodegrable polymers”, Prog. Polym. Sci., 1998, 23, 1273-1335. 2. Li S., Vert M., “Biodegradable polymers: polyesters”, Global Chinese Symposium on Biomaterials and Controlled Release, 1999, 332-355. 3. Kumar N., Ravilkumar M. N. V., Domb A. J., “Biodegradable block polymers”, Adv. Drug. Deliver. Rev., 2001, 53, 23-44. 4. 范國榮, “PLLA-PEOz-PLLA三團聯共聚物降解行為的探討”, 清大化工所碩士論文, 2003, part I, 23-29. 5. Shah S. S., Zhu K. J., Pitt C. G., “Poly(D,L-lactic acid)-poly(ethylene glycol) block copolymers. The influence of polyethylene glycol on the degradation of poly(lactic acid)”, J. Biomat. Sci-Polym. E., 1994, 421-431. 6. Hill-West J. L., Chowdhury S. M. et al., “Efficacy of a resorbable hydrogel barrier, oxidized regenerated cellulose, and hyaluronic acid in the prevention of ovarian adhesions in a rabbit model”, Fertil. Steril., 1994, 62, 630-634. 7. Chowdhury S. M., Hubbell J. A., “Adhesion prevention with ancord release via a tissue-adherent hydrogel”, J. Surg. Res., 1996, 61, 58-64 8. Elisseeff J., McIntosh W. et al., “Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks”, J. Biomed. Mater. Res., 2000, 51, 164-171. 9. Venhoven B. A. M., Gee A. J., Davidson C. L., Biomaterials, 1996, 17, 2313-2318. 10. Nguyen K. T., West J. L., “Photopolymerization hydrogels for tissue engineering applications”, Biomaterials, 2002, 23, 4307-4314. 11. Scranton A. B., Bowman C. N. et al., “Photopolymerization fundamentals and applications”, New Orleans: ACS Publishers, 1996. 12. Decker C., “UV-curing chemistry: past, present, and future”, J. Coat. Technol., 1987, 59, 97-106. 13. Fisher J. P., Dean D., Engel P. S., Mikos A. G., “Photoinitiated polymerization of biomaterials”, Annu. Rev. Mater. Res., 2000, 31, 171-181. 14. Byrant S. J., Nuttelman C. R. et al., “Cytocompatibility of UV and visible kight photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro”, J. Biomater. Sci. Polym. Ed., 2000, 11, 439-457. 15. West J. L., Hubbell J. A., “Separation of the arterial wall from blood contact using hydrogel barriers reduces intimal thickening after balloon injuries in the rat:the roles of medial and luminal factors in arterial healing”, Proc. Natl. Acad. Sci. USA, 1996, 93, 13188-13193. 16. Mellott M. B., Searcy K., Pishko M. V., Biomaterial, 2002, 22, 929-941. 17. Hubbell J. A., “Hydrogel systems for barriers and local drug delivery in the control of wound healing”, Journal of controlled release, 1996, 39, 305-313. 18. West J. L., Hubbell J. A., “Photopolymerized hydrogel materials for drug delivery applications”, Reactive polymers, 1995, 25, 139-147. 19. Groot C. J., Luyn M. J. A., Dijk-Wolthuis W. N. E., Cade’e J. A., Plantinga J. A., Otter W., Hennink W. E., “In vitro biocompatibility of biodegradable dextran-based hydrogels tested with human fibroblasts”, Biomaterials, 2001, 22, 1197-1203. 20. Franssen L., Roders V. P., Hennink W. E., “Degradable dextran hydrogels:controlled release of a model protein from cylinders and microspheres”, Journal of controlled release, 1999, 60, 211-221. 21. Lee J., Macosko C. W., Urry D. W., “Swelling behavior of crosslinked elastomeric polypentapeptide-based hydrogels”, Macromolecules, 2001,34, 4114-4123. 22. Sawhney A. S., Pathak C. P. et al., “Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention”, J. Biomed. Mater. Res., 1994, 28, 831-8. 23. Lu S., Ramirez W. F. et al., “Photopolymerized, multilaminated matrix devices with optimized nonuniform initial concentration profiles to control drug release”, J. Pharm. Sci., 2000, 89, 45-51. 24. Mann B. K., Gobin A. S. et al., “Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering”, Biomaterials, 2001, 22, 3045-51. 25. Hennink W. E., Van Nostrum C. F., “Novel crosslinking methods to design hydrogels”, Adv. Drug. Del. Rev., 2002, 54, 13-36. 26. Hoffman A. S., “Hydrogel for biomedical applications”, Advanced Drug Delivery Reviews, 2002, 43, 3-12. 27. Andini S., Ferrara L., Maglio G., Palumbo R., Makromol Chem Rapid Commun, 1988, 9, 119. 28. Bruin P., Veenstra G. J., Nijenehuis A. J., Pennings A. J., J Makromol Chem Rapid Commun, 1988, 9, 584. 29. Du Y. J., Lemstra P. J., Nijenhuis A. J., Hubb A. M., Bastiaansen C., “ABA type copolymers of lactide with poly(ethylene glycol). Kinetic, Mechanistic, and Model Studies”, Macromolecules, 1995, 28, 2124-2132. 30. Kim I. S., Jeong Y., Kim S. H., “Self-assembled hydrogel nanoparticles composed of dextran and poly(ethylene glycol) macromer”, International journal of pharmaceutics, 2000, 205, 109-116. 31. Chasin M., Langer R., “Biodegradable polymers as drug delivery systems”, Marcel Dekker, Inc., New York, 1990. 32. Hollinger J. O., “Biomedical applications of synthetic biodegradable polymers”, CRC Press, Inc., Boca Raton, 1995. 33. Holland S. J., Tighe B. J., Gould P. L., “Polymers for biodegradable medical devices, I. The potential of polyesters as controlled macromolecular release systems”, J. Control. Rel., 1996, 4, 155. 34. Anderson J. M., Shive M. S., ”Biodegradable and biocompatibility of PLA and PLGA microspheres”, Adv. Drug. Del. Rev.,1997, 28, 5-24. 35. Athanasiou K. A., Agrawal C. E., Barber F. A., Burkhart S. S., “Orthopaedic applications for PLA-PGA biodegradable polymer”, J. Arthrosc. Relat. Surg., 1998, 14(7), 726-737. 36. Kimura H., Tabata Y., Ogura Y., Moridera T., Honda Y., Ikada Y., “In vitro phagocytosis of polylactide microspheres by retinal pigment epithelial cells and intracellular drug release”, Current Eye Research, 1994, 13, 353-360. 37. Hollinger J. O., Battistone G. C., “Biodegradable bone repair materials”, Clinical. Ortho. Relat. Res., 1986, 207, 290-305. 38. Sodergard A., Stolt M., “Properties of lactic acid based polymers and their correlation with compostition”, Prog. Polym. Sci., 2002, 27, 1123-1163. 39. Wall M. E., Wani M. C., Cook C. E., “The isolation and structure of camptothecin, a novel alkaloid leukemia and tumor inhibitor from Camptothecin acuminates”, J. Am. Chem. Soc., 1996, 88, 3888-3890. 40. Gottlieb J. A., Guarino A. M., Call J. B., “Preliminary pharmacologic and clinical evaluation of camptothecin sodium”, Cancer Chemother. Rep., 1970, 54, 461-470. 41. Hertzberg R. P., Caranfa M. J., Holden K. G., Jajas D. R., Gallagher G., Mattern M. R., Mong S. M., Bartus J. O., Johnson R. K., Kingsbury W. D., “Modificaton of the hydroxy lactone ring of camptothecin: inhibition of mammalian topoisomerase I and biological activity”. J. Med. Chem., 1989, 32, 715-720. 42. Miyasaka T., Sawada S., Nokata K., Sugino E., Mutai M., “Camptothecin derivates and process for preparing same”, United State Patent, patent number 4604463. 43. Berges D. A., Taggart J. J., “Water soluble camptothecin analogs”, United State Patent, patent number 5663177. 44. 沙彥文, “抗癌藥物camptothecin與脂質於單分子層及微脂粒中分子交互作用情形之研究”, 清大化工所碩士論文, 2003, 1-3. 45. Nakamura K., Endo R., Takeda M., J. Polym. Sci., Polym. Phys. Ed., 1976, 14, 135 and 1287. 46. Zhao C. L., Winnik M. A., “Fluorescence Probe Technique Used To Study Micelle Formation in Water-Soluble Block Copolymers”, Langmuir 1990, 6, 514-516. 47. Candau F., Leong Y. S., Fitch R. M., Makromol. Chem., Macromol. Symp., 1990, 35/36, 105-119. 48. Candau F., Leong Y. S., Fitch R. M., Makromol. Chem., Macromol. Symp., 1990, 31, 27-40. 49. Medizabel E., Lopez S. F., Alvarez J., Eur. Polym. J., 1998, 34, 411-420. 50. Morgan J. D., Lusvardi K. M., Kaler E. W., Macromolecules, 1997, 30, 1897-1905. 51. McAllister K., Sazani P., Adam M., Cho M. J., Rubinstein M., Samulski R. J., DeSimone J. M., “Polymeric nanogels produced via inverse microemulsion polymerization as potential gene and antisense delivery agents”, J. Am. Chem. Soc., 2002, 124, 15201. 52. Verrecchia T., Spenhauer G., Bazile D. V., Murry B. A., Archimbaud Y., Veillard M., “Non-stealth(poly(lactic acid/albumin)) and stealth (poly(lactic acid-polyehtylene glycol)) nanoparticles as injectable drug carriers”, Journal of Controlled Release, 1995, 36, 49-61. 53. Soppimath K. S., Aminabhavi T. M., Kulkarni A. R., Rudzinski W. E., “Biodegradable polymeric nanoparticles as drug delivery devices”, Journal of Controlled Release, 2001, 70, 1-20. 54. Petrak K. Pharmaceutical particulate carriers. In: Rolland A, editor. Therapeutic application. New York: Marcel Dekker Inc, 1993, 275-297. 55. Grislain L., Couvreur P., Lenaerts V., Roland M., Deprezdecampeneere D., Speiser P., “Pharmacokinetics and distribution of a biodegradable drug-carrier”, Int. J. Pharm., 1983, 15, 335-45. 56. Yong H., Xiqun J., Yin D., Haixiong G., Yuyan Y., Changzheng Y., “Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles”, Biomaterials, 2002, 23, 3193. 57. 郭芝瑩, “聚癸二酸酐-聚丙二醇共聚物合成及在生醫材料上之應用”, 清大化工所碩士論文, 2003, 7. 58. Wani M. C., Ronmol / Lan P. E., Lindley L. T., Wall M. E., “Synthesis and biological activity of camptothecin analogues”, J. Med. Chem., 1980, 23, 554-560. 59. http://www.tast.or.th/news9/ 60. http://www.chemnet.com.tw/magazine/200306/index7.htm 61. Kruszewski S., Burke T. G., “Properties of camptothecin analogues- promising topoisomerase I inhibitors determined by fluorescence spectroscopy methods”, J. Med. Phys. & Eng., 2002, 8(3), 183-192.id NH0925063025 sid 913624 cfn 0 / id NH0925063026 auc 林漢君 tic 以導氧離子材料擔載鎳觸媒行二氧化碳與甲烷重組反應之研究 adc 黃大仁 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 71 kwc 重組 kwc 二氧化碳 kwc 甲烷 kwc 氧化鈰 kwc 導氧 abc 本研究為使用導氧離子材料與α-Al2O3做為觸媒的擔體,擔載鎳金屬為本研究的活性金屬,其中導氧離子材料為Y2O3-doped CeO2(Y10%DC90%)、Gd2O3-doped CeO2(G10%DC90%)和Sm2O3-doped CeO2(S10%DC90%),以各種擔體進行XRD分析與測量其BET表面積大小,另外也對擔體做程溫還原(TPR)實驗,而活性實驗方面,做了擔體的定溫與程溫氧空缺實驗,與各觸媒的活性測試實驗。由氧空缺實驗後吾人發現,各種不同導氧離子材料的導氧性質不同,其中YDC在300℃到450℃表面氧空缺會抓住二氧化碳的其中一個氧產生晶格氧和一氧化碳,到了470℃以上晶格氧才會有往內部氧空缺傳導的現象。活性實驗結果明顯看出,具導氧離子效果的擔體,隨溫度上升,導氧離子性出現,反應會趨向且幫助重組反應,並不會幫助逆向水氣轉移反應,而使得H2/CO值更趨向於1,且吾人認為2wt%Ni/SDC觸媒為較佳的觸媒,因為不管在各溫度,他都有較高的反應性,及不易積碳的能力。 rf 1. J.R. Rostrup-Nielsen, J.-H. Bak Hansen “CO2-Reformung of Methane over Transition Metals” J. Catal. 144 (1993) 38. 2. M.J. Hei, H.B. Chen, J. Yi, Y.J. Lin, Y.Z. Lin, G. Wei, D.W. Liao “ CO2-Reformung of Methane on Transition Metal Surfaces” surface science 417 (1998) 82. 3. Michael C.J. Bradford, M. Albert Vannice “CO2 Reforming of CH4 over Support Ru Catalysts” J.Catal. 193 (1999) 69. 4. H. Cordatos, T. Bunluesin, J. Stubenrauch, J. M. Vohs, R. J. Gorte “Effect of Ceria Structure on Oxygen Migration for Rh/Ceria Catalysts” J. Phys. Chem. 100 (1996) 785. 5. Michael C. J. Bradford, M. A. Vannice “CO2 Reforming of CH4 over Supported Pt Catalysts” J. Catal. 73 (1998) 157. 6. T. Horiuchi, K. Sakuma, T. Fukui, Y. Kubo, T. Osaki, T. Mori “Suppression of Carbon Deposition in The CO2-reforming of CH4 by Adding Basic Metal Oxides to a Ni/Al2O3 Catalyst” Appl. Catal. A: General 144 (1996) 111. 7. Keiichi Tomishige, Yang-guang Chen, Kaoru Fujimoto “ Studies on Carbon Deposition in CO2 Reforming of CH4 over Nickel–Magnesia Solid Solution Catalysts” J. Catal. 181 (1999) 91. 8. K. Tomishige, O. Yamazaki, Y. Chen, K. Yokoyama, X. Li, K. Fujimoto “Development of ultra-stable Ni catalyst for CO2 reforming of methane ” Catal. Today 45 (1998) 35. 9. S. Sharma, S Hilaire, J. M. Vohs, R. J. Gorte, H.-W. Jen “Evidence for Oxidation of Ceria by CO2” J. Catal. 190 (2000) 199. 10. Jun-Mei Wei, B.-Q. Xu, J.-L. Li, Z.-X. Cheng, Q.-M. Zhu “Highly active and stable Ni/ZrO2 catalyst for syngas production by reforming of methane” Appl. Catal. A: General 196 (2000) 167. 11. A. Slagtern, Y. Schuurman, C. Leclercq, X. Verykios, C. Mirodatos “Specific Features Concerning the Mechanism of Methane Reforming by Carbon Dioxide over Ni/La2O3 Catalyst” J. Catal. 172 (1997) 118. 12. A. Erdöhelyi, J. Cserényi, E. Papp, F. Solymosi “Catalytic Reaction of Methane with Carbon-Dioxide over Supported Palladium” Appl. Catal. A: General 108 (1994) 205. 13. T. Osaki, H. Masuda, T. Mori “Intermediate Hydrocarbon Species for the CO2-CH4 Reaction on Supported Ni Catalysts” Catal. Lett. 29 (1994) 33. 14. M. C. J. Bradford, M. A. Vannice “Catalytic reforming of methane with carbon dioxide over nickel catalysts-Ⅱ.Reaction kinetics” Appl. Catal. A: General 142 (1996) 97. 15. E. Abi-Aad, R. Bechara, J. Grimblot, Antonie Aboukais “Preparation and Characterization of CeO2 under an Oxidation Atmosphere. Thermal Analysis, XPS and EPR Study” Chem. Mater. 5 (1993) 793. 16. H. C. Yao, Y. F. Y. Yao “Ceria in Automotive Exhaust Catalysts: I. Oxygen Storage” J. Catal. 86 (1984) 254. 17. C. Serre, F. Garin, G. Maire “Reactivity of Pt/Al2O3 and Pt-CeO2/ Al2O3 Catalysts for the Oxidation of Carbon Monoxide by Oxygen:II. Influence of Pretreatment Step on the Oxidation Mechanism” J. Catal. 141 (1993) 9. 18. Y. G. Chen, J. Ren “Conversion of Methane and Carbon Dioxide into Synthesis Gas over Alumina-Supported Nickel Catalyst” Catal. Lett. 29 (1994) 39. 19. R. G. Silver, C. J. Hou, J. G. Ekerdt “The Role of Lattice Anion Vacancies in the Activation CO and as the Catalytic Site for Methanol Synthesis over Zirconium Dioxide” J. Catal. 118 (1989) 400. 20. Zhang, Z., Verkyios, X. E. “Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts” Catal. Today 21 (1994) 589. 21. M. Mogensen, T. Lindegaard, U. R. Hansen “Physical Properties of Mixed Conductor Solid Oxide Fuel Cell Anodes of Doped CeO2” J. Electrochem. Soc. 141 (1994) 2122. 22. Wenjuan Shan, Mengfei Luo, Pinliang Ying, Wenjie Shen, Can Li “Reduction property and catalytic activity of Ce1-XNiXO2 mixed oxide catalysts for CH4 oxidation” Appl. Catal. A: General 246 (2003) 1. 23. Takafumi Shido, Yasuhiro Iwasawa “The Effect of Coadsorbates in Reverse Water-Gas Shift Reaction on ZnO, in Relation to Reactant-Promoted Reaction Mechanism” J. Catal. 140 (1993) 575.id NH0925063026 sid 913626 cfn 0 / id NH0925063027 auc 黃元利 tic 具電磁波防護特性之矽氧烷/聚胺基甲酸酯奈米複合材料之製備及其特性之研究 adc 黃大仁 adc 馬振基 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 150 kwc 矽氧烷/聚氨基甲酸酯 kwc 導電性 kwc 抗電磁波 kwc 碳奈米管 abc 本研究旨在合成Siloxane為軟鏈段(Soft segment)之矽氧烷/聚氨基甲酸酯樹脂,並藉由添加導電填充物,研發具導電性的矽氧烷/聚氨基甲酸酯樹脂。本實驗先合成Polydimethylsiloxane(PDMS)- tc 目錄 中文摘要……………………………………………………………I 英文摘要……………………………………………………………V 謝誌…………………………………………………………………X 目錄…………………………………………………………………XI 圖目錄………………………………………………………………XIV 表目錄………………………………………………………………XVIII 第一章、 緒論……………………………………………………1 第二章、 文獻回顧與理論基礎…………………………………5 2.1電磁波之來源…………………….………………..………..5 2.2電磁波之干擾及危害………………….………………..…..5 2.3電磁干擾遮蔽理論…………………..………………...…….8 2.4電磁波遮蔽材料……………………………………………..10 2.4.1遮蔽材料之選擇……………..…………...…………….10 2.4.2遮蔽材料之分類……….………………..…………........11 2.4.3 高分子導電複合材料…………………………………13 2.5EMI相關文獻回顧…………………..…….….……………...15 2.6奈米材料……………………………..…….……………..….23 2.6.1碳材的特性與導電機制………………..……………...24 2.6.2碳黑及碳纖維的EMI特性…………..…………….….25 2.6.3碳奈米管起源…………………………………….……29 2.6.4碳奈米管結構………………………………….………30 2.6.5碳奈米管性質……………………………….……..…..32 2.6.6高分子/碳奈米管複合材料……………………………33 2.7聚胺酯介紹……………………………………….…………..34 2.7.1 Isocyanate基礎反應……………………………………35 2.7.2 Isocyanate的衍生反應………………………………….37 2.7.3聚胺酯的結構與性質…………………………………...38 2.7.4含矽(Si)PU的合成與性質討論………………………....41 第三章、研究目的與內容……………………………………………44 3.1 研究目的………………………………………………………44 3.2研究內容…………………………………………………….….44 第四章、實驗材料、設備及實驗方法…………………………….…48 4.1實驗藥品………………………………………………………48 4.2實驗儀器………………………………………………………49 4.3實驗流程………………………………………………………51 4.3.1 流程圖………………………………..………..….51 4.3.2 PDMS為主鏈之Poly(urea-urethane)的製備………..52 4.3.3鍍金屬之碳奈米管的製備方法…………………………54 4.3.4 Conductive fillers/PDMS base PUU複合材料之製備55 4.4測試方法………………………………………..……………55 第五章、結果與討論…………………………………………….……61 5.1 FT-IR圖譜分析………………………….………………61 5.2 Raman結構鑑定…………………………………...……68 5.3 XRD結構鑑定…………………………..……….………71 5.4 EDX元素分析………………………….......…….…75 5.5 TEM型態學………………………………..…………….82 5.6 SEM型態學…………………………………….………..84 5.7 TGA熱性質分析………………………………....……......…87 5.8表面阻抗分析……………………………...….……..99 5.9 EMI分析…………………………………..….………112 5.10高頻微波吸收測試…………………………………...124 5.11機械性質分析………………………………………….134 第六章、結論……………………………………………..….….…141 第七章、參考文獻…………………………………….……………146 圖目錄 Fig.1-1 Classification of EMC……………………..……….…1 Fig.2-1 Composition of electromagnetic wave…………...…5 Fig.2-2 Various electrical products and frequency spectrum of electromagnetic wave………………………………….….....7 Fig.2-3 Attenuation of an Electromagnetic wave by a shield………............................................10 Fig.2-4 Surface resistivity spectrum………..……….…..11 Fig.2-5 Classification of EMI shielding materials………12 Fig.2-6 混入相同體積分率的粒狀填充料和纖維狀填充料在樹脂中之分散狀態………………………………………….........….…15 Fig.2-7 The effect of workload on SE of ENCF/ABS composites compounding at 220℃……………………...…..…16 Fig.2-8 EMI shielding effectiveness of various metal-coated carbon fiber reinforced ABS composites………….…17 Fig.2-9 Volume resisitivity against conductive filler and carbon fiber loading for NR and EVA based composites…………….................................….18 Fig.2-10 Shielding effectiveness at 100 and 2000 MHz as a function of filler loading for SCF filled composites……18 Fig.2-11 Effect of activator type on the EMI shielding effectiveness............................................20 Fig.2-12 EMI SE ,absorbance and reflection of PET fabric/Ppy composites with various specific volume resistivities….….......................................22 Fig.2-13 Structure of graphite……………………………….24 Fig.2-14 Structure of carbon black…………………………25 Fig.2-15 三種不同聚集程度的碳黑大小…………………………25 Fig.2-16 碳黑的構造複雜程度與電子傳遞途徑示意圖…….…….26 Fig.2-17 Electrical conductivity vs fiber volume fraction27 Fig.2-18 SEM fracto-graphs of cement/carbon fiber composite.................................................28 Fig.2-19 單層碳管……………………………………………….….30 Fig.2-20 多層奈米碳管………………………………………………30 Fig.2-21 具開口端之無缺陷單層奈米碳管(SWNT)示意圖…….….31 Fig.2-22 The urethane link………………………………….….34 Fig.2-23 Hard segment and soft segment of Polyurethane…39 Fig.2-24 Hard and soft segment phase of PU………..………40 Fig.4-1 實驗流程圖………………………………………………..51 Fig.4-2 Mechanism of nickel or silver coated CNT……….54 Fig.4-3 電絕緣性質測試儀(清大化工系複合材料研究室)………57 Fig.4-4 EMI SE量測裝置頻譜儀and同軸管(大同材料所黃繼遠教授實驗室)……………………………………………..….…58 Fig.4-5 HP8722ES及Damaskos free space 反射損失量測設備(中山科學院高分子研究所)………………………………..…..…59 Fig.4-6 啞鈴型試片大小及外觀………………………..….…..60 Fig.5-1 Characterization FT-IR peaks on PDMS-DMPA system for preparing Poly(urea-urethane).……………………………63 Fig.5-2 FT-IR spectra of the PDMS2500-DMPA based Poly(urea-urethane) systems at various reaction times……....67 Fig.5-3 Raman spectrum and SEM image of purified SWNTs.…...…..................................................68 Fig.5-4 Raman spectrum of pure Carbon nanotube………..70 Fig.5-5 Raman spectrum of CNT-COOH…………………………70 Fig.5-6 XRD patterns of (A) synthetic graphite, (B) BDH activated Carbon(from BDH Co.), (C)MWCNT/ purified, and (D)MWCNT/contamination samples…………………………71 Fig.5-7 XRD patterns of carbon nanotube…………………..72 Fig.5-8 X-ray diffraction patterns of metal-coated carbon fibers: (a)electroless nickel deposits, (b) cementation nickel deposits,(c) electroless copper deposits, and (d) cementation copper deposits……………………………………73 Fig.5-9 XRD patterns of Ni-coated CNT………………...74 Fig.5-10 XRD patterns of Ag-coated CNT……………………74 Fig.5-11 Schematic drawing of an SWNT containing carboxylic acid groups at entry ports to the nanotubes…75 Fig.5-12 EDX analysis of Cu-coated fly-ash cenosphere particles show the presence of Cu as a major element on the particles surface successful Cu coating of fly-ash cenosphere particles………………………………………………76 Fig.5-13 The EDS spectrum of pure CNT………….……….….77 Fig.5-14 The EDS spectrum of CNT-COOH…………….….…..…77 Fig.5-15 The EDS spectrum and mapping of CNT-Ag(0.0015M)…….....................................................78 Fig.5-16 The EDS spectrum and mapping of CNT-Ag(0.003M)…….................................................. 79 Fig.5-17 The EDS spectrum and mapping of CNT-Ni(0.0015M)……....................................................80 Fig5-18 The EDS spectrum and mapping of CNT-Ni(0.003M)…….....................................................81 Fig.5-19 The TEM microphotographs of (a)MWCNT, (b)MWCNT-COOH,(c)MWCNT-Ag,(d)MWCNT-Ni……...............83 Fig.5-20 The SEM microphotographs of carbon nanotube……84 Fig.5-21 The SEM microphotographs of (a)CNT-Ni(0.0015M) (b)CNT-Ni(0.003M) (c)CNT-Ag(0.0015M) (d)CNT-Ag(0.0015M).....85 Fig.5-22 The SEM microphotographs of PUU/CNT (a)1phr (b)2phr (c)3phr (d)4phr (e)5phr…………………………………86 Fig.5-23 TGA curves of PUU, DMPA, PDMS and differentiation curve of the figure……………………………………………….88 Fig.5-24 TGA curves of carbon black/PUU composite with various contents of carbon black………………………………89 Fig.5-25 TGA curves of carbon nanotube/PUU composite with various contents of carbon nanotube……………………….….90 Fig.5-26 TGA curve of CNT-metal nanocomposites with various concentration of metalcomplex………………………92 Fig.5-27 TGA curves of CNT-Ag(0.003M)/PUU nanocomposite with various CNT-Ag(0.003M) contents…………………………..95 Fig.5-28 TGA curves of CNT-Ag(0.0015M)/PUU nanocomposite with various CNT-Ag(0.0015M) contents…………………………96 Fig.5-29 TGA curves of CNT-Ni(0.003M)/PUU nanocomposite with various CNT-Ni(0.003M)contents…………………………...97 Fig.5-30 TGA curves of CNT-Ni(0.0015M)/PUU nanocomposite with various CNT-Ni(0.0015M) contents…………………………98 Fig.5-31 Surface resistance of PDMS based Poly(urea-urethane) with various Carbon black contents………..……102 Fig.5-32 Surface resistance of PDMS based Poly(urea-urethane) with various Carbon nanotubes contents…………103 Fig.5-33 Surface resistance of PDMS based Poly(urea-urethane)with various CNT-Ni contents………………………108 Fig.5-34 Surface resistance of PDMS based Poly(urea-urethane) with various CNT-Ag contents……………………111 Fig.5-35 EMI shielding effectiveness of PUU/CB nanocomposite with various CB contents……………………113 Fig.5-36 EMI shielding effectiveness of PUU/CNT nanocomposite with various CNT contents………………….115 Fig.5-37 EMI shielding effectiveness of PUU/CNT nanocomposite with various CNT contents……………….…115 Fig.5-38 EMI shielding effectiveness of PUU/CNT-Ag(0.003M) composite with various CNT-Ag(0.003M) contents…………117 Fig.5-39 EMI shielding effectiveness of PUU/CNT-Ag(0.0015M) composite with various CNT-Ag(0.0015M) contents………...118 Fig.5-40 The magnetic field is incidented on the slant at surface of the magneticmaterials…………………………….120 Fig.5-41 EMI shielding effectiveness of PUU/CNT-Ni(0.003M) composite with various CNT-Ni(0.003M) contents………..122 Fig.5-42 EMI shielding effectiveness of PUU/CNT-Ni(0.0015M) composite with various CNT-Ni(0.0015M) contents……….122 Fig.5-43 Electromagnetic absorpsion loss of PUU with various CB contents……………….......…………………………………125 Fig.5-44 Electromagnetic absorpsion loss of PUU with various CNT contents…………………………………………………126 Fig.5-45 Electromagnetic absorpsion loss of PUU with various CNT contents…………………………………………………127 Fig.5-46 Electromagnetic absorpsion loss of PUU with various CNT-Ni(0.003M)contents………………………………….129 Fig.5-47 Electromagnetic absorpsion loss of PUU with various CNT-Ni(0.0015M)contents………………………………….130 Fig.5-48 Electromagnetic absorpsion loss of PUU with various CNT-Ag(0.003M)contents………………………………….132 Fig.5-49 Electromagnetic absorpsion loss of PUU with various CNT-Ag(0.0015M) contents……………………………….132 Fig.5-50 Tensile strength of PUU/CB or CNT nanocomposite with various filler contents……………………………..…136 Fig.5-51 Young’s modulus of PUU/CB or CNT nanocomposite with various filler contents……………………………………136 Fig.5-52 Tensile strength of PUU/CNT-metal nanocomposite with various filler contents………………………………..140 Fig.5-53 Young’s modulus of PUU/CB or CNT nanocomposite with various filler contents………………………………….140 表目錄 Table 2-1 不同dB值所代表之遮蔽效果………………..………..…8 Table 2-2 Electromagnetic interference shielding effectiveness (dB) at1~2 GHz of PES-matrix composites with various fillers…........................................14 Table 2-3 EMI SE ,Ab ,RC ,Tr ,of the PET fabric/PPy composites with various specific volume resistivities……21 Table2-4 EMI shielding effectiveness of various composite materials……………………………………………….........…23 Table2-5 碳管的物理性質………………………………..…..32 Table 2-6 為碳管與傳統材料的機械強度比較………………….32 Table 5-1 FT-IR peaks on PDMS based Poly(urea-urethane)…64 Table5-2 10%weight loss temperature of carbon black/PUU with various carbon black contents…………………89 Table5-3 10%weight loss temperature of carbon nanotube/PUU with various CNT contents……………………………………….91 Table5-4 Weight distribution proportion of CNT and Metal of theoretical value and experimental value with various concentration of metal…………………….……………….…..92 Table 5-5 Proportion of CNT and Metal complex in PUU of theoretical value and experimental value with various CNT-metal contents……………………………………………..…...93 Table5-6 10%weight loss temperature of CNT-Ag(0.003M)/PUU with various CNT-Ag(0.003M) contents…………………………95 Table5-7 10%weight loss temperature of CNT-Ag(0.0015M)/PUU with various CNT-Ag(0.0015M) contents……….…96 Table5-8 10%weight loss temperature of CNT-Ni(0.003M)/PUU with various CNT-Ni(0.003M) contents………………………….97 Table5-9 10%weight loss temperature of CNT-Ni(0.0015M)/PUU with various CNT-Ni(0.0015M) contents……………………...…98 Table5-10 Air and aluminum contacting surface resistance of Carbon black/PUU composite with various filler contents…101 Table5-11 Air and aluminum contacting surface resistance of Carbon nanotubes/PUU composite with various filler contents...............................................103 Table5-12 Air and aluminum contacting surface resistance of CNT-Ni(0.003M)/PUU composite with various filler contents………………………… ..…………………......….107 Table5-13 Air and aluminum contacting surface resistance of CNT-Ni(0.0015M)/PUU composite with various filler contents………………………………………………....…...107 Table5-14 Air and aluminum contacting surface resistance of CNT-Ag(0.003M)/PUU composite with various filler contents…………………………………………....……...….110 Table5-15 Air and aluminum contacting surface resistance of CNT-Ag(0.0015M)/PUU composite with various filler contents…………………………………………………........110 Table 5-16 EMI shielding effectiveness of PUU/CB nanocomposite with various CB contents at 400MHz and 1300MHz…….….........................................114 Table 5-17 EMI shielding effectiveness of PUU/CNT composite with various CNT contents and thickness at 400MHz and 1300MHz……………………………………......……….….116 Table 5-18 EMI shielding effectiveness of PUU/CNT-Ag(0.003M) composite with various CNT-Ag(0.003M) contents at 400MHz and 1300MHz……………………...........……………118 Table 5-19 EMI shielding effectiveness of PUU/CNT-Ag(0.0015M) composite with various CNT-Ag(0.0015M) contents at 400MHz and 1300MHz…………………………….......……119 Table 5-20 EMI shielding effectiveness of PUU/CNT-Ni(0.003M) composite with various CNT-Ag(0.003M) contents at 400MHz and 1300MHz………………………………..........…123 Table 5-21 EMI shielding effectiveness of PUU/CNT-Ni(0.0015M) composite with various CNT-Ni(0.0015M) contents at 400MHz and 1300MHz………………………….......………123 Table 5-22 Electromagnetic absorpsion loss of PUU with various CB contents at 10GHz and the frequency of Max absorpsion loss…………………………………………………125 Table 5-23 Electromagnetic absorpsion loss of PUU with various CNT contents and thickness at 10GHz and the frequency of Max absorpsion loss………………………..128 Table 5-24 Electromagnetic absorpsion loss of PUU with various CNT-Ni(0.003M) contents at 10GHz and the frequency of Max absorpsion loss…………………………………….130 Table 5-25 Electromagnetic absorpsion loss of PUU with various CNT-Ni(0.0015M) contents at 10GHz and the frequency of Max absorpsion loss…………………………………….131 Table 5-26 Electromagnetic absorpsion loss of PUU with various CNT-Ag(0.003M) contents at 10GHz and the frequency of Max absorpsion loss…………………………………….133 Table 5-27 Electromagnetic absorpsion loss of PUU with various CNT-Ag(0.0015M) contents at 10GHz and the frequency of Max absorpsion loss………………………………….…133 Table5-28 Tensile properties of PUU/CB composite with various filler contents……………………………………………135 Table5-29 Tensile properties of PUU/CNT nanocomposite with various filler contents………………………………………135 Table5-30 Tensile properties of PUU/CNT-Ni(0.003M) nanocomposite with various filler contents………………138 Table5-31 Tensile properties of PUU/CNT-Ni(0.0015M) nanocomposite with various filler contents……………..138 Table5-32 Tensile properties of PUU/CNT-Ag(0.003M)nanocomposite with various filler contents………......139 Table5-33 Tensile properties of PUU/CNT-Ag(0.0015M)nanocomposite with various filler contents………………139rf 1.沈曉復,新產業EMI/EMC之市場與商機,塑膠資訊,No.21,8.1998 2.黃仁豪,抗靜電/靜電消散之導電塑膠材料及應用簡介,工業材料,102期,84,6 3.沈永清, “導電性塑膠材料技術發展介紹”, 化工資訊 9 (1998) p6 4.岡村迪夫, “淺談電磁干擾”,全華科技圖書公司,民93 5.天笠啟祐, ”電磁波的夢饜”, 台北巿,創意力文化公司,1997 6.盧敏彥,“導電塑膠應用---電磁干擾屏蔽”,化工資訊 9(1998)P15 7.Harry S. Katz, John V. Milewski., Handbook of fillers for plastics, New York :/Van Nostrand Reinhold Co.,/c1987. 8.九木元豐,工業材料(日),32(10),42(1998) 9.Li Lin, Chung D.D.L., “Electrical and mechanical properties of electrically conductive polyethersulfone composite”,Composites 25 (1994) p215 10.Li Lin, Chung D.D.L., “Effect of viscosity on the electrical properties of conducting thermoplastic composites made by compression molding of a powder mixture”, Polymer Composites 14 (1993) p467 11.CHI-YUAN HUANG, JUI-FEN PAI,” OPTIMUM CONDITIONS OF ELECTROLESS NICKEL PLATING ON CARBON FIBRES FOR EMI SHIELDING EFFECTIVENESS OF ENCF/ABS COMPOSITES”, Eur. Polym. J., Vol. 34, No. 2, pp. 261-267, 1998 12.Shinn-Shyong Tzeng , Fa-Yen Chang,” EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites”, Materials Science and Engineering A, 302 (2001) 258–267 13.N.C. Das, D. Khastgir, T.K. Chaki, A. Chakraborty,” Electromagnetic interference shielding effectiveness of carbon black and carbon fiber filled EVA and NR based composites”, Composites: Part A ,31 (2000) 1069–1081 14.Hochberg, Arie, Versieck, Johan,” Shielding for EMI and antistatic plastic resins with stainless steel fibers”, Plastics, Additives and Compounding Volume: 3, Issue: 3, March, 2001, pp. 24-28 15.Eun Gyeong Han, Eun Ae Kim, Kyung Wha Oh ,”Electromagnetic interference shielding effectiveness of electroless Cu-plated PET fabrics”, Synthetic Metals ,123, 469-476(2001) 16.M.S. Kim, H.K. Kim, S.W. Byun, S.H. Jeong ,” PET fabric /polypyrrole composite with high electrical conductivity for EMI shielding”, Synthetic Metals 126 233–239(2002) 17.Sihai Wen, D.D.L.Chung,” Electromagnetic interference shielding reaching 70 dB in steel fiber cement”, Cement and Concrete Research 34 (2004) 329–332 18.賴耿陽,”碳材料化學與工程”,化學工業出版社,1998,p.24~30 19.Janzen Jay, “Physicochemical characterization of carbon black”, Rubber Chemistry Technology 55 (1982) p.669 20.John Accorsi, Eduardo Romero, “Defining the attributes that a carbon black must supply-such as color, UV protection, or conductivity is essential to identifying the appropriate grade and proper loading level of the black”, Plastics Engineering 4 (1995) p29 21.Nobuyuki Ando, “Electrical resistivity of the polymer layers with polymer grafted carbon blacks”, Thin solid films 334 (1998) ,p.182-186 22.王秀峰, ” 碳纖維增強水泥複合材料的電導性能及其應用”,複合材料學報,第15卷 第3期, 1998年8月  23.H. W. Kroto﹐J. R. Heath﹐S﹒C﹒O'Brien﹐R﹒F﹒Curl﹐R﹒E﹒Smalley﹐Nature 1985﹐318﹐162。 24.S. Iijima, “Helical microtubules of graphitic carbon”, Nature 1991, p.354-356 25.Heath,Scientific American December 2000 P.65. 26.Pirio, G. et al., "Fabrication and electrical characteristics of carbon nanotubefield emission microcathodes with an integrated gate electrode" nanotechnology V13 pp1-4 (2002) 27.馬振基,”奈米材料科技原理與應用”,全華科技圖書公司,2003,12月 28.T. W. Odom﹐J. L. Huang﹐P. Kim﹐C. M. Lieber﹐J. Phys. Chem. B 2000﹐104﹐p.2794。 29.A. Hirsch, Angew. Chem. Int. Ed., 41, 1853 (2002). 30.E. Dujardin﹐T. W. Ebbesen﹐A. Krishnan﹐P. N. Yianilos﹐M. M. J. Treacy﹐Phys. Rev. B 1998﹐58﹐14013。 31.M. M. J. Treacy﹐T. W. Ebbesen﹐J. M. Gibson﹐Nature 1996﹐381﹐678。 32.E.Kymakis, “Single-wall carbon nanotube-polymer composites: electrical, optical and structural investigation”, Synthetic metals 55 (2002) 127,p.59-62 33.徐國財,張立德,”奈米複合材料”,材料科學與工程出版中心,北京化學工業出版社,2000年,12月 34.J. H. Saunders and K. C. Frisch. Polyurethane; Chemistry and Technology, PartsⅠ and Ⅱ, Interscience, New York (1962) 35.Jae Hyung Park, Ki Dong Park, You Han Bae. PDMS-based polyurethanes with MPEG grafts: synthesis, characterization and platelet adhesion study, Biomaterials 20 (1999) 943-953 36.C. Hepburn, “Polyurethane elastomers”, Applied Science Publishers LTD (1982). 37.P. Wright and A. P. C. Cumming, “Solid Polyurethane Elastomers”, Maclaren and Sons, London (1969). 38.Jerry March, “Advanced Organic Chemistry”, A Wiley-Interscience Publication. (1991) 39.R. Benrashid, G. L. Nelson. Surface Characterization of Segmented Siloxane-Urethane Block Copolymers, Journal of Applied Polymer Science, Vol. 49, 523-537 (1993) 40.Parton ,J.E.,Owen ,S.J.T ,”Applied Electromagnetic”,2nd ed., Macmillan publishers,Lodon,1986 41.Ramo, S. Whinnery,J.R.,”Fields and Waves in Communication Electronics”,2nd ed., Cambridge University Press, Cambridge, England,1986 42.T.Saito, ”Chemical treatment and modification of multi-walled carbon nanotubes”, Physica B 323(2002)280-283 43.黃赣麟博士論文,”奈米碳管強化複合材料”,清華大學化學系,2001 44.Jin Zhang,” Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes”, J. Phys. Chem. B 2003, 107, 3712-3718 45.Clark, R. J. H. Hester, R. E.,” Advances in infrared and Raman spectroscopy.”,Lodon,1986 46.Freeman, Stanley K. Freeman,” Applications of laser Raman spectroscopy”, New Jersey,1974 47.Nakamoto, Kazuo,” Infrared and Raman spectra of inorganic and coordination compounds ”,America,1997 48.Tobin, Marvin Charles,” Laser Raman spectroscopy”,Florida,1982 49.Gy. Onyestyak,” Equilibrium and dynamics of acetylene sorption in multiwalled carbon nanotubes”, Carbon 41 (2003) 1241–1248 50.Shinn-Shyong Tzeng , Fa-Yen Chang,” EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites”, Materials Science and Engineering A, 302 (2001) 258–267 51.Kuznetsova, A.; Popova, I.; Yates, J. T.; Bronikowski, M. J.; Huffman, C. B.; Liu, J.; Smalley, R. E.; Hwu, H. H.; Chen, J. G. J. Am. Chem. Soc. 2001, 123, 10699. 52.Kuznetsova, A.; Mawhinney, D. B.; Naumenko, V.; Yates Jr., J. T.; Liu, J.; Smalley, R. E. Chem. Phys. Lett. 2000 , 321, 292. 53.蔣見超, 黃宣銘,”利用陰離子聚合法將聚苯乙烯接枝於已官能化多壁奈米碳管表面之研究 ”,國立中正大學化學工程研究所,2004 54.Anya Kuznetsova , “Enhancement of adsorption inside of single-walled nanotubes opening the entry ports”, Chemical Physics Letters ,321, 2000, 292–296 55.S. Shukla., ”study of mechanism of electroless copper coating of fly-ash cenosphere particles”, Applied surface Science 181,2001,35-50 56.Ramanzan Benrashid, “Synthesis of New Siloxane Urethane Block Copolymers and Their Properties”, Journal of Polymer Science: Part A Polymer Chemistry, Vol.32, 1847-1865(1994). 57.謝仁傑碩士論文,”矽氧烷/聚胺基甲酸脂薄膜材料之表面性質、電氣性質、熱性質與機械性質研究及其在表面電荷消散方面的應用”,清華大學化工系,2002 58.M. G. Kanatzidis, “Chemical and Engineering News”, 36 (1991) p49 59.Rainer Waser, ”Nanoelectronics and Information Technology”, Wiley-Vch Verlag GmbH & Co.KGaA, Weinheim, Germany, 2003 60.Buchachenko. A..L ,Frankevich,”Chemical generation and reception of radio- and microwaves”, New York ,1994 61.Guanghong Lu,”Electrical and shielding properties of ABS resin field with nickel-coated carbon fibers ”, Composite Science and Technology 56,193-200,1996 62.Jana, P.B.Mallick, ”Electromagnetic interference shielding by carbon fiber-filled polychloroprene rubber composites.”, Composites, 22, 1991,451-455 63.Baker,Abdelazeez,”Measurements of the Magnex DC characteristics at microwave frequencies.”, J. Mater. Sci.,23,1988,2955-3000 64.David K. Cheng,李永勳,顏仁鴻譯,”電磁波”,曉園出版社,1992 65.張立德,牟季美,”奈米材料和奈米結構”,滄海書局,91年6月id NH0925063027 sid 913627 cfn 0 / id NH0925063028 auc 張辰安 tic 富錫區錫-銀-銅-鎳四元系統相平衡與固化性質 adc 陳信文 博士 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 87 kwc 錫-銀-銅-鎳 kwc 相平衡圖 kwc 液相線投影圖 abc Sn-Ag-Cu之共晶與近共晶合金是最熱門之無鉛銲料,Ni則是最常見的擴散障層材料。在迴焊與產品使用的過程中,Sn-Ag-Cu與Ni接觸與反應,形成了Sn-Ag-Cu-Ni之四元合金系統。Sn-Ag-Cu-Ni四元系統之等溫相平衡圖與液相線投影圖,對瞭解銲點之相生成及界面反應十分重要,然而現有文獻中並沒有相關之資料。本研究以實驗的方法,製備不同組成之富Sn合金,藉由熱處理、金相分析、組成分析、與X光繞射分析,最後配合實驗所得的結果與已知的Sn-Ag-Cu、Sn-Cu-Ni及Sn-Ag-Ni三元相平衡圖以及液相線投影圖,即可得到各種不同Sn濃度(高於60at%Sn)的等溫定Sn濃度的截面圖。最後將各層等溫、定Sn濃度的截面相圖結合起來,即可以得到由二維(Dimension)變三維的四元相圖。 tc 目 錄 摘要………………………………………………………………………………Ⅰ 目錄………………………………………………………………………………Ⅱ 圖目錄……………………………………………………………………………IV 表目錄…………………………………………………………………………...VII 第一章 前 言…………………………………………………………………....1 第二章 文獻回顧………………………………………………………………....5 2-1. 相平衡……………………………………………………………………..5 2-1.1 Sn-Ag二元系統相平衡圖……………………………………………..9 2-1.2 Sn-Ni二元系統相平衡圖………………………………………….....10 2-1.3 Sn-Cu二元系統相平衡圖……………………………………… …....11 2-1.4 Cu-Ag二元系統相平衡圖……………………………………………12 2-1.5 Cu-Ni二元系統相平衡圖…………………………………………….12 2-1.6 Ag-Ni三元系統相平衡圖…………………………………………….13 2-1.7 Sn-Cu-Ni三元系統相平衡圖………………………………...............14 2-1.8 Sn-Cu-Ag三元系統相平衡圖…………………………………… ….15 2-1.9 Sn- Ag - Ni三元系統相平衡圖………………………………………16 2-1.10 Cu-Ag -Ni三元系統相平衡圖………………………………...........17 2-1.11 Sn-Ag-Cu-Ni四元系統相平衡圖 ………………………………17 2-2.固化與液相線投影圖…………………………………………………..18 2-2.1 Sn-Ag-Cu系統………………………………………………….....19 2-2.2 Sn-Cu-Ni系統……………………………………………………..20 2-2.3 Sn-Ag-Ni系統………………………………………………………21 2-2.4 Ag-Cu-Ni系統……………………………………………………22 2-2.5 Sn-Ag-Cu-Ni四元系統……………………………………………22 第三章 研究方法 …………………………………………………………...23 3-1 Sn-Ag-Cu-Ni 四元平衡相圖………………………………………….23 3-1.1 合金之製備及熱處理……………………………………………23 3-1.2金相分析………………………………………………………….24 3-2. Sn-Ag-Cu-Ni 四元液相線投影圖……………………………………25 第四章 結果與討論……………………………………………………………..26 4-1. Sn-Ag-Cu-Ni四元系統相平衡…………………………………..26 4-1-1 定60at%Sn之相平衡圖(250℃)…………………………………35 4-1-2 定70at%Sn之相平衡圖(250℃)……………………………….40 4-1-3 定80at%Sn之相平衡圖(250℃)…………………………………46 4-1-4 定90at%Sn之相平衡圖(250℃)…………………………………52 4-2. Sn-Ag-Cu-Ni四元系統之液相線投影圖………………………….55 4-2-1 定95at%Sn之液相線投影圖…………………………………….63 4-2-2 定90at%Sn之液相線投影圖…………………………………..65 4-2-3 定80at%Sn之液相線投影圖……………………………………70 4-2-4 定70at%Sn之液相線投影圖……………………………………77 第五章 結論…………………………………………………………………......83 第六章 文獻回顧………………………………………………………………..84 圖 目 錄 圖1-1 覆晶接合之流程簡圖………………………………………………....4 圖1-2 UBM結構簡圖………………………………………………………...4 圖2-1 Development of the isopleths shown in 圖2-2………………………..6 圖2-2 Isopleths through an isomorphous system, derived from圖2-1……….6 圖2-3 Shaded section represent a system of alloys of a fixed B content……....7 圖2-4 space isopleths through the quaternary isomorphous system…………...7 圖2-5 Sn-Ag-Cu-Ni在定溫下之等溫相平衡圖………………………………8 圖2-6 銀-錫二元平衡相圖……………………………………………………9 圖2-7 錫-鎳二元平衡相圖…………………………………………………..10 圖2-8 錫-銅二元平衡相圖…………………………………………………..11 圖2-9 銅-銀二元平衡相圖…………………………………………………..12 圖2-10 銅-鎳二元平衡相圖…………………………………………………13 圖2-12 錫-銀-鎳三元平衡相圖……………………………………………..14 圖2-13 錫-銀-銅三元平衡相圖……………………………………………...15 圖2-14 錫-銀-鎳三元平衡相圖…………………………………………… ..16 圖2-15 銅-銀-鎳三元平衡相圖……………………………………………...17 圖2-16 三元系統之(a)相平衡立體示意圖與(b)液相線投影圖……………18 圖2-17 錫-銀-銅三元液相線投影圖……………………………………….. 19 圖2-18 錫-銅-鎳三元液相線投影圖……………………………………….. 20 圖2-19 錫-銀-鎳三元液相線投影圖………………………………………. .21 圖2-20銅-銀-鎳三元液相線投影圖…………………………………………22 圖3-1以電弧熔融錫、銀、銅和鎳成四元合金之示意圖………………… 24 圖4-1 (a) Sn-Ag-Cu-Ni四元合金於60at% Sn之立體示意圖……………… 28 圖4-1 (b) 合金編號1-1 ~ 1-24 Sn-Ag-Cu-Ni四元合金,對應於Sn-Ag-Cu-Ni四元相圖的位置示意圖………………………………………………28 圖4-2 (a) Sn-Ag-Cu-Ni四元合金於70at% Sn之立體示意圖………………30 圖4-2 (b) 合金編號2-1~2-19 Sn-Ag-Cu-Ni四元合金,對應於Sn-Ag-Cu-Ni四元相圖的位置示意圖………………………………………………30 圖4-3(a) Sn-Ag-Cu-Ni四元合金於80at% Sn之立體示意圖……………….32 圖4-3 (b) 合金編號3-1~3-19 Sn-Ag-Cu-Ni四元合金,對應於Sn-Ag-Cu-Ni四元相圖的位置示意圖………………………………………………32 圖4-4(a) Sn-Ag-Cu-Ni四元合金於90at% Sn之立體示意圖……………….34 圖4-4 (b) 合金編號4-1~ 4-20 Sn-Ag-Cu-Ni四元合金,對應於Sn-Ag-Cu-Ni四元相圖的位置示意圖………………………………………………34 圖4-5 合金編號1-2(Sn-10at%Ag-20at%Cu-10at%Ni)於250℃回火2星期的BEI影像及XRD……………………………………………………..35 圖4-6 It is in the Cu6Sn5+Ag3Sn+L three-phase region at 250oC……………………36 圖4-7合金編號1-15(Sn-5at%Ag-10at%Cu-25at%Ni) 之BEI影像….............37 圖4-8 It is in the Cu6Sn5+Ni3Sn4+Ag3Sn+L four-phase region at 250oC....................37 圖4-9合金編號1-12 (Sn-2.5at%Ag-2.5at%Cu-35at%Ni)回火2星期之BEI照片……………………………………………………………………….38 圖4-10合金編號1-10 (Sn-2.5at%Ag-35at%Cu-2.5at%Ni)回火2星期之BEI照片……………………………………………………………………….38 圖4-11 Sn-Ag-Cu-Ni四元系統於60at% Sn之相平衡圖(250℃)……………39 圖4-12合金編號2-3 (Sn-5at%Ag-20at%Cu-5at%Ni)在250℃回火1星期的BEI影像及XRD…………………………………………………………….40 圖4-13定70at%Sn合金於250℃下處理2星期後,分析所得之平衡圖結果對應於Sn-Ag-Cu-Ni四元相圖。…………………………………….......41 圖4-14 合金編號2-2 (Sn-20at%Ag -5at%Cu-5at%Ni)在250℃回火1星期的 BEI影像………………………………………………………………...42 圖4-15定70at%Sn合金於250℃下處理2星期後,分析所得之平衡圖結果對應於Sn-Ag-Cu-Ni四元相圖。………………………………………………..43 圖4-16 合金編號2-17 (Sn-18at%Ag -2at%Cu-10at%Ni)在250℃回火1星期的BEI影像及XRD………………………………………………………………..44 圖4-17 Sn-Ag-Cu-Ni四元系統於70at% Sn之相平衡圖(250℃)………….45 圖4-18 合金編號3-15 (Sn-12at%Ag -5at%Cu-3at%Ni)在250℃回火1星期……………………………………………………………………...46 圖4-19定70at%Sn合金於250℃下處理2星期後,分析所得之平衡圖結果對應於Sn-Ag-Cu-Ni四元相圖。……………………………………….47 圖4-20合金編號3-4 (Sn-4at%Ag-8at%Cu-8at%Ni)在250℃回火1星期的BEI影像……………………………………………………….48 圖4-21合金編號3-3 (Sn-3at%Ag -14at%Cu-3at%Ni)在250℃回火1星期的的BEI影像 ……………………………………………………………...48 圖4-22合金編號3-5 (Sn-3at%Ag-3at%Cu-14at%Ni)的BEI影像……………49 圖4-23 合金編號3-9 (Sn-13at%Ag-2at%Cu-5at%Ni)在250℃回火1星期之SEI影像…………………………………………………………………..49 圖4-24合金編號3-13 (Sn-10at%Ag-5at%Cu-5at%Ni)的BEI影像…………50 圖4-25合金編號3-14 (Sn-5at%Ag-5at%Cu-10at%Ni)的BEI影像…………50 圖4-26 Sn-Ag-Cu-Ni四元系統於80at%Sn之相平衡圖(250℃)…………..51 圖4-27為合金編號4-4 (Sn-2at%Ag- 5at%Cu-3at%Ni) 的BEI影像………..52 圖4-28為合金編號4-5(Sn-3at%Ag- 2at%Cu-5at%Ni) 的BEI影像 ……….52 圖4-29 Sn-Ag-Cu-Ni四元系統於90at% Sn之相平衡圖(250℃)……………54 圖 4-30 Sn-Ag-Cu-Ni四元合金於60、70、80、90、95 at% Sn之立體示意圖..55 圖4-31 合金編號1-1 ~1-18 Sn-Ag-Cu-Ni四元合金,對應於Sn-Ag-Cu-Ni…56 圖4-32 合金編號2-1 ~2-21 Sn-Ag-Cu-Ni四元合金,對應於Sn-Ag-Cu-Ni四元液相線投影圖的位置示意圖…………………………………………58 圖4-33 合金編號3-1 ~3-27 Sn-Ag-Cu-Ni四元合金,對應於Sn-Ag-Cu-Ni四元液相線投影圖的位置示意圖…………………………………………60 圖4-34 合金編號4-1 ~4-29 Sn-Ag-Cu-Ni四元合金,對應於Sn-Ag-Cu-Ni四元液相線投影圖的位置示意圖………………………………………...62 圖4-35合金編號1-9 (Sn-0.5at%Ag-2at%Cu-0.5at%Ni)的OM照片……………….64 圖4-36合金編號1-8 (Sn-3at%Ag-1.5at%Cu-0.5at%Ni)的OM照片…………….…64 圖4-37 95at%Sn的液相線投影圖……………………………………………64 圖4-38合金編號2-7(Sn-6at%Ag-3at%Cu-1at% Ni)的BEI照片……………..65 圖4- 39合金編號2-9(Sn-1at%Ag-5at%Cu-4at%Ni)的BEI照片……………..65 圖4-40合金編號2-7 XRD之繞射圖…………………………………………..66 圖4-41合金編號2-5 (Sn-8at%Ag-1at%Cu-1at%Ni) 的BEI照片……………67 圖4-42合金編號2-5 XRD之繞射圖…………………………………………...67 圖4-43合金編號2-21 (Sn-9at%Ag-0.5at%Cu-0.5at%Ni)的BEI照片…………68 圖4-44合金編號2-22 (Sn-0.5at%Ag-4.5at%Cu-5at%Ni)的BEI照片………..68 圖4-47為合金編號3-2 (Sn-3at%Ag-3at%Cu-14at%Ni)的SEI照片………….70 圖4-48合金編號3-2 XRD之繞射圖…………………………………………..71 圖4-49合金編號3-3 (Sn-14at%Ag-3at%Cu-3at%Ni)BEI照片……………….71 圖4-50合金編號3-9 (Sn-10at%Ag-6at%Cu-4at%Ni)BEI照片………………..71 圖4-51合金編號3-11 (Sn-9at%Ag-10at%Cu-1at%Ni)的BEI照片…………..72 圖4-52合金編號4-2 XRD之繞射圖……………………………………………72 圖4-53合金編號3-17 (Sn-5at%Ag-15at%Cu)的SEI照片……………………73 圖4-54合金編號3-26 (Sn-2at%Ag-17at%Cu-1.0at%Ni)的SEI照片…………73 圖4-55合金編號4-2 XRD之繞射圖…………………………………………...73 圖4-56為合金編號3-27 (Sn-18.0at%Ag-1.5at%Cu-0.5at%Ni)的SEI照片…..74 圖4-57為合金編號3-27 XRD之繞射圖……………………………………….74 圖4-58合金編號3-8 (Sn-1at%Ag-8at%Cu-11at%Ni)的BEI照片…………….75 圖4-59是經由XRD進行繞射的結果………………………………………….75 圖4-60 80at%Sn的液相線投影圖……………………………………………….76 圖4-61合金編號4-2 (Sn-20at%Ag-5at%Cu-5at%Ni)的BEI照片…………….77 圖4-62合金編號4-8 (Sn-15at%Ag-10at%Cu-5at%Ni)的BEI照片……………77 圖4-63合金編號4-2 XRD之繞射圖…………………………………………...78 圖4-64合金編號4-18 (Sn-20at%Ag-8at%Cu-2at%Ni)的BEI照片…………79 圖4-65合金編號4-18 XRD之繞射圖………………………………………….79 圖4-66為合金編號4-29 (Sn-28.0at%Ag-1.5at%Cu-0.5at%Ni)的SEI照片……80 圖4-67是合金編號4-29經由XRD進行繞射的結果…………………………80 圖4-68合金編號4-17 (Sn-18at%Ag-2at%Cu-10at%Ni)的BEI照片………….81 圖4-69合金編號4-17 XRD之繞射圖………………………………………….81 圖4-70合金編號4-11 (Sn-2.5at%Ag-25at%Cu-2.5at%Ni)的SEI照片……….82 圖4-71合金編號4-11 XRD之繞射圖………………………………………….82 圖4-72 70at%Sn的液相線投影圖………………………………………………82 表 目 錄 表2-1 銀-錫二元系統的各類反應……………………………………………9 表2-2 錫-鎳二元系統的各類反應…………………………………………..10 表2-3 錫-銅二元系統的各類反應…………………………………………..11 表4-1 Sn-Ag-Cu-Ni相平衡合金配製表…………………………………….27 表4-2 Sn-Ag-Cu-Ni相平衡合金配製表…………………………………….29 表4-3 Sn-Ag-Cu-Ni相平衡合金配製表…………………………………….31 表4-4 Sn-Ag-Cu-Ni相平衡合金配製表…………………………………….33 表4-5 Sn-Ag-Cu-Ni相平衡合金配製表 (95at%)………………………….56 表4-6 Sn-Ag-Cu-Ni相平衡合金配製表 (90at%Sn) ………………………57 表4-7 Sn-Ag-Cu-Ni相平衡合金配製表 (80at%Sn) ………………………59 表4-8 Sn-Ag-Cu-Ni相平衡合金配製表(70at%Sn) ………………………..61rf 第六章、參考文獻 1. R. J. Klein Wassink, “Soldering in Electronics”, Electrochemical Publications, British Isles, 1989. 2. 陳朝光,“特殊銲接-軟銲”,熔接大意,第四章,pp.131 (1978) 3. J. Glazer, International Materials Review, Vol. 40(2), pp.63-95, (1995). 4. E. Bastow, Advanced Materials & Processes, Vol. 161(12), pp. 26-29, (2003). 5. A. Zribi, A. Clark, L. Zavalij, P. Borgesen, and E.J. Cotts, Journal of Electronic Materials, Vol.30, No. 6, pp.1157-1164 (2001) 6. C. E. Ho, R. Y. Tsai, Y. L. Lin and C. R. Kao, Journal of Electronic Materials, Vol. 31, No.6, pp. 584-590 (2002) 7. M. Abtew and G. Selvaduray, Materials Science and Engineering, Vol. 27, pp. 95-141, (2000) 8. J. W. Morris, Jr., J. L. F. Goldstein and Z. Mei, JOM, Vol. 45, pp. 25-27(1993). 9. S. W. Chen, Materials Chemistry and Physics, Vol. 33, pp. 271-276(1993). 10. W. J. Plumbridge, Journal of Materials Science, Vol. 31, pp. 2501-2514, (1996) 11. 陳信文,”無鉛銲料簡介”,電子材料,第1期,pp. 74-77,(1999) 12. 陳志銘、陳信文,”銲料與界面反應”,材料會訊,Vol. 6(2),pp.74-80,(1999) 13. J. S. Huang, SMT, Vol. 15(3), pp. 60-70, (2001) 14. I. Ohnuma, M. Miyashita, K. Anzai, X. J. Liu, H. Ohtani, R. Kainuma, and K. Ishida, Journal of Electronic Materials, Vol. 29 (10), pp. 1137-1144, (2000). 15. Official Journal of the European Union, pp, L 37/19~L 37/23, 13.2.2003. 16. “Roadmap 2002 for Commercialization of Lead-free Solder”, Official version 2.1, September 2002, Lead-Free Soldering Roadmap Committee, Technical Standardization Committee on Electronics Assembly Technology. JEITA. 17. K. Yokomine, N. Shimizu, Y. Miyamoto, Y. Iwata, D. Love, and K. Newman, 51th Electronic Components & Technology Conference (ECTC), May 30-June 2, pp. 1384-1392, (2001). 18. J.-K. Lin, A. De Silva, D. Frear, Y. Guo, J.-W. Jang, L. Li, D. Mitchell, B. Yeung and C. Zhagn, 2001 Electronic Components & Technology Conference, IEEE, pp. 455-462, (2001). 19. Y.-D. Jeon, S. Nieland, A. Ostmann, H. Reichl, and K.-W. Paik, Journal of Electronic Materials, Vol. 32(6), pp. 548-557, (2003). 20. K.-S. Kim, M. Haga, and K. Suganuma, Journal of Electronic Materials, Vol. 32(12), pp. 1483-1489, (2003). 21. M. E. Loomans, M. E. Fine, K. Suganuma, Metall. Mater. Trans. A, 31A(4), pp. 1155-1162 22. 黃新鉗,“IC構裝發展趨勢”,表面黏著技術,Vol. 28, pp. 10 (1999) 23. T.M. Korphonen, P. Su, S.J. Hong, Korphonen, and C.-Y. Li, J. of electronic M.A materials, Vol. 29, No 10 (2000) 24. 陳信文、許秀鳳、吳蒔涵、李守維,電子材料,第19期,pp. 132-139 (2003) 25. C.-H. Lin, S.-W. Chen, and C.-H. Wang, . Journal. of electronic materials, Vol. 31, No 9, p907-915(2002) 26. H.-F. Hsu, S.-W. Chen, Journal of Electronic Materials, (In print), (2003). 27. S.-W. Chen and Y.-W. Yen, Journal of Electronic Materials, Vol. 31, No 9, pp.1203-1208, (1999) 28. Y. A. Chang, D. Goldberg and J. P. Neumann, J. Phys. Chem. Ref. Data, Vol. 6-3, pp. 621-624, (1977) 29. H.-T. Luo and S.-W. Chen, J. Materials Science, Vol. 31(19), pp. 5059-5067, (1996). 30. C. R. Kao, JOM, Vol. 54, pg. 44 (2002). 31. F. N. Rhines, Phase Diagrams in Metallurgy their develop and application, Chap. 19 ,pp.220-272 32. I. Karakaya and W. T. Thompson, Binary Alloy Phase Diagrams, 1, 94-97(1991). 33. P. Nash and A. Nash, ASM Hankbook Vol.3 Alloy Phase Diagrams, ed. By H. Baker, ASM International, Materials Park, Ohio(1992). 34. N. Saunders and A. P. Miodownik, Bulletin of Alloy Phase Diagrams, Vol. 11, No. 3, pp.278-287, (1990). 35. W.C. Giessen, Bulletin of Alloy Phase Diagrams, Vol. 1, pp. 41-45 (1980). 36. D. J. Chakrabarti, D. E. Laughlin, S.-W. Chen and Y. A. Chang, “Phase Diagrams of Binary Nickel Alloys”, edited by P. Nash, ASM, Materials Park, pp. 85-95, (1991). 37. M. Singleton and P. Nash, ASM Hankbook Vol.3 Alloy Phase Diagrams, ed. By H. Baker, ASM International, Materials Park, Ohio(1992). 38. E. Wachtel and E. Bayer, Zeitschrift fur Metalllunde, Vol. 75, No. 1, pp. 61-69, (1984). 39. B. J. Lee, N. M. Hawang, and H. M. Lee, Acta Metallurgica et Materialia, Vol. 45, pp. 1876-1874, (1994) 40. H. M. Lee, S. W. Yoon, and B. J. Lee, Journal of Electronic Materials, Vol. 27, pp.1161-1166, (1998) 41. E. Gebhardt, and G. Petzow, Zeitschrift fur Metallkunde, Bd. 50, pp. 597-605, (1959) 42. K. P. Gupta, Indian Institute of Metals, Vol. 1, pp. 195-218(1990) 43. C. M. Miller, I. E. Anderson and J.F. Smith, Journal of Electronic Materials, Vol.23, pp.595-600(1994)id NH0925063028 sid 913629 cfn 0 / id NH0925063029 auc 余志賢 tic 團聯式共聚物之奈米結構研究:階級性自組裝結構與光子晶體材料之製備 adc 陳信龍 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 94 kwc 團聯式共聚合物 kwc 光子晶體 kwc 四面堆積圓柱 abc 本研究主要以團聯式共聚合物(block copolymer)之分子自組裝特性為主軸,以摻合均聚物使系統產生微相分離來製造出具有規則性之奈米形態(如1-D stacked lamellae、double gyroid等 ),並將之應用於光子晶體材料上;另一方面利用團聯式共聚合物與界面活性劑以離子鍵錯合之方式,使錯合系統自組裝形成階級性奈米結構(hierarchical nanostructure)期望能應用於奈米材料上。 tc 總目錄 摘要…………………………………………………………………………………..Ⅰ Abstract………………………………………………………………………………Ⅱ 目錄…………………………………………………………………………………..Ⅲ 圖目錄………………………………………………………………………………..Ⅴ 表目錄………………………………………………………………………………..Ⅹ 一、文獻回顧………………………………….……………………...……………..1 1.1前言………………………………….……………………………………...1 1.2光子晶體概論….…………………………………………………………...3 1.3團聯式共聚物及其摻合體之微相分離形態………………………………9 1.4利用團聯式共聚物分子自組裝特性製造光子晶體材料…………………18 1.5研究動機與目的……………………………………………………………29 二、實驗部分………………………………………………………….…………….30 2.1樣品……………………………………………………...………………….30 2.2實驗項目……………………………………………………...…………….32 2.3儀器原理……………………………………………………...…………….35 三、結果與討論…………………………………………………..…………………37 3.1以PS-b-PI/h-PS/h-PI三成分摻合體製作一維光子晶體材料之基礎研究... ……………………………………………………………………………..37 3.1-1摻合體奈米結構測………………………………………………………37 3.1-2光學性質測定…………………………………………………………....46 3.2以PS-b-PI/h-PS摻合體製作三維光子晶體材料及臭氧裂解程序之探討… ……………………………………………………………………………..49 3.3 Comb-Coil團聯式共聚合物與界面活性劑階級性自組裝結構(hierarchically self-assembly structure-within-structure)於奈米材料之應用………………..………………………………………………………….57 四、結論……………………………………………………………………………..90 五、參考文獻………………………………………………………………………..91 圖目錄 圖1.1-1 不同種類的光子晶體製備方法……………………….……………….2 圖1.2-1 Al2O3中fcc排列之光子晶體能隙圖…………………….…………….4 圖1.2-2 光在光能隙材料中之導光……………………………………………...4 圖1.2-3 光子晶體的結構………………………………………………………...5 圖1.2-4 以lithographic method製造單層光子晶體週期結構之流程圖……….5 圖1.2-5 3-D光子晶體結構圖……………………………………………………6 圖1.2-6 GaAs系統不同介電常數對比的1-D週期結構光子晶體之能隙圖….7 圖1.3-1 不同理論之相圖比較.…………………………………………………..12 圖1.3-2 Matsen所推導出的團聯式共聚合物相圖……………………………..12 圖1.3-3 經由實驗所得之PS-b-PI雙團聯式共聚合物相圖……………………13 圖1.3-4 PS-b-PI系統之各種微相分離結構…………………………………….13 圖1.3-5 以wet brush方式摻合來改變團聯式共聚合物摻合體之形態……….16 圖1.3-6 由PS-b-PI及PS-b-PB分別摻合h-PS所得之恆溫相圖……………..16 圖1.3-7 以共聚物混摻的方式來改變系統之形態……………………………...17 圖1.4-1 PS-b-PI/h-PS/h-PI摻合體系統之TEM與反射率、穿透度圖譜……..18 圖1.4-2 多層系統示意圖………………………………………………………...20 圖1.4-3 多層結構之能隙圖……………..………..……………………………...20 圖1.4-4 不同3-D結構及其能隙圖………………………………..…………….21 圖1.4-5 PS-b-P4VP及NDP以氫鍵方式錯合之化學結構圖……..……………24 圖1.4-6 PS-b-P4VP(NDP)1.0錯合物經TEM觀察到的各種hierarchical structure-within-structure形態………………………………………….24 圖1.4-7 PS-b-P4VP及Zn(DBS)2以配位錯合之化學結構圖及TEM圖………25 圖1.4-8 poly(4-vinylpyridine)與p-dodecylbenzenesulfonic acid質子化反應…..25 圖1.4-9 PS-b-P4VP及過量之DBSA錯合錯合系統化學結構圖………………26 圖1.4-10 PS(238.1K)-b-P4VP(49.5K)與DBSA錯合系統之SAXS、TEM及反射率圖………………………………………………………………………….26 圖1.4-11用PS-b-P4VP與HABA以氫鍵錯合,將錯合體以甲醇浸泡而得具奈米管道之薄膜,並用以製造2-D排列的Ni金屬奈米線之流程圖……...28 圖2.3-1 臭氧化過程之概念圖……………………………………………………..33 圖3.1-1 SAXS profiles of PS-b-PI/h-PS/h-PI blends (Whomo/Wblock 2/1)………..39 圖3.1-2 SAXS profiles of PS-b-PI/h-PS/h-PI blends (Whomo/Wblock 3/1)………..40 圖3.1-3 TEM images of PS-b-PI/h-PS/h-PI blend,Whomo/Wblock=1/2…………...41 圖3.1-4 TEM images of PS-b-PI/h-PS/h-PI blend,Whomo/Wblock=1/1……………42 圖3.1-5 TEM images of PS-b-PI/h-PS/h-PI blend,Whomo/Wblock=2/1……………42 圖3.1-6 TEM images of PS-b-PI/h-PS/h-PI blend,Whomo/Wblock=3/1……………43 圖3.1-7 TEM images of PS-b-PI/h-PS/h-PI blend,Whomo/Wblock=4/1……………43 圖3.1-8 TEM images of PS-b-PI/h-PS/h-PI blend,Whomo/Wblock=5/1、6/1……..44 圖3.1-9 共聚物與均聚物之過量wet brush摻合圖……………….……………..44 圖3.1-10 摻合體各組成與interlamellar distance關係圖...…….…………………45 圖3.1-11 PS-b-PI/h-PS/h-PI摻合體系統各組成之反射光波長與反射百分比關係圖………………………………...………………………………………47 圖3.1-12 PS-b-PI層狀系統的band-gap模擬圖…….……………. ……………48 圖3.2-1 PS(44.8K)-b-PI(43.6K)/ hPS(10K)摻合體之TEM圖………………….49 圖3.2-2 臭氧化過程流程圖……………………………………………………...50 圖3.2-3 SI(88.4K) / hPS(10K)系統未經臭氧化處理的SEM圖………………..51 圖3.2-4 SI(88.4K) / hPS(10K)系統臭氧化處理6.5小時之SEM圖…………..52 圖3.2-5 SI(266K) /hPS(10K)系統未經臭氧化處理的SEM圖………………...52 圖3.2-6 SI(266K) /hPS(10K)系統經臭氧化程序6.5小時之SEM圖…………53 圖3.2-7 SI(266K) /hPS(10K)系統臭氧化程序36小時SEM圖….……………55 圖3.2-8 double gyroid於3-D座標下所呈現之形態…………………………...56 圖3.2-9 以TEMS沿(211)方向模擬double gyroid所得之形態……………….56 圖3.3-1 PS-b-P4VP與DBS錯合形成lamellae-within-lamellae之形態……...58 圖3.3-2 pure DBSA之廣角度X光散射圖譜………………..………………....59 圖3.3-3 PS-b-P4VP (Mn=99.8K)與DBSA錯合後,不同組成下之FTIR光譜圖 ,1300~800 cm-1……………………………………………………….61 圖3.3-4 PS-b-P4VP (Mn=99.8K)與DBSA錯合後,不同組成下之FTIR光譜圖 ,1700~1300 cm-1……………………………………………………...61 圖3.3-5 PS-b-P4VP(DBSA)y 系統於室溫下之POM圖………………………62 圖3.3-6 規則排列之層狀結構圖………………………………………………..62 圖3.3-7 pure PS-b-P4VP之SAXS圖譜………………………………………..64 圖3.3-8 PS-b-P4VP與DBSA錯合後之SAXS圖譜,q range為1.0~3.2 nm-1... …………………………………………………………………………...64 圖3.3-9 PS-b-P4VP(DBSA)y錯合系統各組成(y=0.25~1.0)之1-D correlation曲 線………………………………………………………………………...65 圖3.3-10 PS-b-P4VP(DBSA)1.0錯合系統之1-D correlation曲線………………66 圖3.3-11 PS-b-P4VP(DBSA)1.0錯合系統之SAXS圖譜,q range為0.04~0.8 nm-1 …………………………………………………………………………...68 圖3.3-12 PS-b-P4VP(DBSA)y錯合系統於室溫下之SAXS圖譜,q range為0.04 ~0.8 nm-1………………………………………………………………71 圖3.3-13 PS-b-P4VP(DBSA)y錯合系統y=0.5及0.75之SAXS圖譜,q range為0.04~0.8 nm-1,及cylinder form factor計算曲線之對應…….………..72 圖3.3-14 pure PS-b-P4VP之TEM圖……………………………….……………73 圖3.3-15 PS-b-P4VP(DBSA)1.0之TEM圖……………………………………….74 圖3.3-16 以TEMS模擬cylinder with hexagonal packed沿(139)方向之TEM模.. 擬圖……………………………………………………………………..74 圖3.3-17 PS-b-P4VP(DBSA)1.0 cylinder with hexagonal packed之3-D結構模型及2-D圓柱截面圖…………………………………………………………75 圖3.3-18 PS-b-P4VP(DBSA)0.25之TEM圖………………………………………77 圖3.3-19 PS-b-P4VP與DBSA錯合時之結構圖………………………………....78 圖3.3-20 PS-b-P4VP(DBSA)0.5之TEM圖………………………………………..78 圖3.3-21 PS-b-P4VP(DBSA)0.75之TEM圖……………………………………….79 圖3.3-22 square及hexagonal phase單一microdomain中高分子鏈段延伸之示意 圖………………………………………………………………………….79 圖3.3-23 zipper mechanism發生時,錯合體系統內P4VP鏈段之結構圖……...80 圖3.3-24 PS domain形成cylinder時,誘導square phase的形成結構圖……….80 圖3.3-25 PS-b-P4VP(DBSA)0.25之變溫SAXS圖譜………………………………82 圖3.3-26 PS-b-P4VP(DBSA)0.5之變溫SAXS圖譜及130℃、150℃之SAXS對照 圖…………………………………………………………………………..83 圖3.3-27以TEMS沿(110)模擬hexagonal及square packed cylinder之模擬圖...85 圖3.3-28 PS-b-P4VP(DBSA)0.5於130℃下annealing 2小時之TEM圖…………85 圖3.3-29 PS-b-P4VP(DBSA)0.75之變溫SAXS圖譜………………………………86 圖3.3-30 PS-b-P4VP(DBSA)0.75於130℃下annealing兩小時之TEM圖………..88 圖3.3-31以TEMS由(110)方向模擬hexagonal及square packed cylinder共存之模 擬圖……………………………………………………………………….88 圖3.3-32 PS-b-P4VP(DBSA)y square packed cylinder之3-D結構模型及2-D圓柱 截面圖…………………………………………………………………….89 表目錄 表一、光子晶體與半導體的差異…………………………………………………..3 表二、PS-b-PI/hPS/hPI摻合體系統之Interlamellar distance厚度…………………45 表三、PS-b-PI/h-PS/h-PI摻合體系統之Interlamellar distance厚度與反射光波長關係……………………………………………………………………………………..47 表四、PS-b-P4VP(DBSA)y錯合系統之Interlamellae distance厚度………………65 表五、PS-b-P4VP(DBSA)y錯合系統各組成PS之domain size及其形態……….73rf 六、參考文獻 [1 ] “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”, E. Yablonovitch, Phys. Rev. Lett. 1987,58,2059 . [2 ] “Strong localization of photons in certain disordered dielectric superlattices” S. John, Phys. Rev. Lett. 1987,58,2486. [3 ] Lin, S.-Y.; Fleming, J. G.; Hetherington, D. L.; Smith, B. K.; Biswas, R.; Ho, K. M.; Sigalas, M. M.; Zubrzycki, W.; Kurtz S. R.; Bur J., Nature 1998, 394, 251. [4 ] Krauss, T. F.; De La Rue R. M.; Brand, S., Nature 1996, 383,699. [5 ] Wanke, M. C.; Lehmann, O.; Mu¨ ller, K.; Wen Q.; Stuke, M., Science 1997, 275, 1284. [6 ] Cumpston, B. H.; Ananthavel, S. P.; Barlow, S.; Dyer, D. L.;Ehrlich, J. E.; Erskine, L. L.; Heikal, A. A.; Kuebler, S. M.; Lee, I.-Y.S.; McCord-Maughon, D.; Qin, J.; Rockel, H.; Rumi, M.; Wu, X.-L.;Marder, S. R.; Perry, J. W., Nature 1999, 398, 51. [7 ] Sanford A. Asher; John Holtz; Lei Liu; Zhijun Wu, J. Am. Chem. Soc. 1994,116, 4997. [8 ] Anvar A. Zakhidov; Ray H. Baughman; Zafar Iqbal, Changxing Cui; Ilyas Khayrullin, Socrates O. Dantas; Jordi Marti; Victor G. Ralchenko, Science 1998, 282, 897. [9 ] J. D. Rancourt Optical Thin Films–User Handbook, SPIE, Bellingham,WA 1996. [10 ] J. S. Foresi; P. R. Villeneuve; J. Ferrera, E. R. Thoen; G. Steinmeyer; S. Fan,J. D. Joannopoulos; L. C. Kimerling; H. I. Smith; E. P. Ippen, Nature 1997,390, 143. [11 ] Urbas, A.; Fink, Y.; Thomas, E. L., Macromolecules 1999, 32, 4748. [12 ] Fink Y.; Urbas A. M.; Bawendi, M. G.; Jonnopoulos, J. D.; Thomas, E. L., J., Lightwave Tech. 1999, 17, 1963. [13 ] Urbas, A.; Sharp, R.; Fink, Y.; Thomas, E. L.; Xenidou, M.; Fetters, L. J., Adv.Mat. 2000, 12, 812. [14 ] E. Yablonovitch; T. J. Gmitter, Phys. Rev. Lett. 1989,63, 1950. [15 ] John D. J.; Robert D. Meade; Joshua N. Winn Photonic Crystal-Molding the Flow of Light [16 ] S-Y Lin; J.G. Fleming , Optics Letters 1999, 24, 49. [17 ] M. Plihaland; A. A. Maradudin, Phys. Rev. B 1991,44,8565 [18 ] M. Plihaland; A. A. Maradudin, Opt. Comm. 1991,80,199 [19 ] D. Cassagne; C. Jouanin; D. Bertho, Phys. Rev. B 1996,53,7134 [20 ] Alexander C. Edrington; Augustine M. Urbas; Peter DeRege; Cinti X. Chen; Timothy M. Swager; Nikos Hadjichristidis; Maria Xenidou; Lewis J. Fetter; John D. Joannopoulos; Yoel Fink; Edwin L. Thomas, Advanced Materials 2001,13,421 [21 ] Nojima S.; Nkano H.; Takahashi Y.; Ashida T., Polymer 1994,35,3479. [22 ] Nojima S.; Kato K.; Yamamoto S.; Ashida T., Macromolecules 1992,25,2237. [23 ] Nojima S.; Nkano H.; Takahashi Y.; Ashida T., Polymer Journal 1995,27,673. [24 ] Nojima S.; Nkano H.; Ashida T., Polymer 1993,34,4168. [25 ] Nojima S.; Hashizume K.; Rohadi A.; Sasaki S., Polymer 1997,38,2711. [26 ] Nojima S.; Kikuchi N.; Rohadi A.; Tanimoto S.; Sasaki S., Macromolecules 1999,32,3727. [27 ] Nojima S.; Tanaka H.; Rohadi A.; Sasaki S., Polymer 1998,39,1727. [28 ] Ryan A. J.; Hamley I. W.; Bras W.; Bates F. S., Macromolecules 1995,28,3860. [29 ] Rangarajan, P.; Register, R. A.; Adamson, D. H.; Fetters, L.J.; Bras, W.; Naylor, S.; Ryan, A. J., Macromolecules 1995,28, 1422. [30 ] Jloudas G.;Tsitsilianis C., Macromolecules 1997,30, 4381. [31 ] Hamley I. W.; Fairclough J. P. A.; Bates F. S.; Ryan A. J., polymer 1998,39,1429. [32 ] Unger R.; Beyer D.; Donth E., polymer1991, 32, 3305. [33 ] Meier, D. J., J. Polym. Sci., part C 1969, 26, 81. [34 ] Helfand E., Macromolecules 1975, 8, 552. [35 ] Helfand E.; Wasserman Z. R., Macromolecules 1976, 9, 879. [36 ] Helfand E.; Wasserman Z. R., Macromolecules 1980, 13, 994. [37 ] Helfand E.; Wasserman Z. R., Macromolecules 1978, 11, 960. [38 ] Leibler L., Macromolecules 1980, 13, 1602. [39 ] Vavasour J. D.; Whitemore M. D., Macromolecules 1992, 25, 5477. [40 ] M. W. Matsen; M. Schick, Physical Review Letters, 1994,72,2660. [41 ] M. W. Matsen; F. S. Bates, Macromolecules 1996, 29, 1091. [42 ] M. W. Matsen; F. S. Bates, Macromolecules 1996, 29, 7641. [43 ] Ashish K. Khandpur; Stephan Farster; Frank S. Bates, Macromolecules 1995,28, 8796. [44 ] Winey, K. I.;T homas, E. L.; Fetters, L. J. ,Macromolecules 1992,25,2645. [45 ] Adedeji A.;J amieson A. M.; Hudson, S. D. ,Polymer 1995,36,2753. [46 ] Hashimoto T.; Tanaka H.; Hasegawa H., Macromolecules 1990,23,4378. [47 ] Tanaka H.; Hasegawa H.; Hashimoto T., Macromolecules 1991,24,240. [48 ] I. W. Hamley, The Physical of Block Copolymers 1998,Chapter 6. [49 ] Winey K. I. et al., Macromolecules 1992, 25, 2645. [50 ] Francois Court; Takeji Hashimoto, Macromolecules 2001, 34, 2536. [51 ] Francois Court; Takeji Hashimoto, Macromolecules 2002, 35, 2566. [52 ] Yoel Fink; Joshua N. Winn; Shanhui Fan; Chiping Chen; Jurgen Michel; John D. Joannopoulos; Edwin L. Thomas, Science 1998, 282, 1679. [53 ] Younan Xia; Byron Gates; Zhi-Yuan Li, Advanced Materials 2001, 13, 409. [54 ] L. Martin-Moreno; F. J. Garcia-Vidal; A. M. Somoza, Physical Review Letters 1999, 83, 73. [55 ] Yoel Fink; Augustine M. Urbas; Moungi G. Bawendi; John D. Joannopoulos; Edwin L. Thomas, Journal of Lightwave Technology 1999, 17, 1963. [56 ] Takeji Hashimoto; Kiyoharu Tsutsumi; Yoshinori Funaki, Langmuir 1997, 13, 6869. [57 ] Eberhard Rischbieter; Hendrik Stein; Adrian Schumpe, Journal of Chemical and Engineering Data 2000, 45, 338. [58 ] Vanessa Z.-H. Chan; James Hoffman; Victor Y. Lee; Hermis Iatrou; Apostolos Avgeropoulos; Nikos Hadjichristidis; Robert D. Miller; Edwin L. Thomas, Science 1999, 286, 1716. [59 ] Janne Ruokolainen; Gerrit ten Brinke; Olli Ikkala, Advanced Materials 1999, 11, 777. [60 ] Riikka Mäki-Ontto; Karin de Moel; Walter de Odorico;Janne Ruokolainen; Manfred Stamm; Gerrit ten Brinke;Olli Ikkala, Advanced Materials 2001, 13, 117. [61 ] Harri Kosonen; Sami Valkama; Juha Hartikainen; Hannele Eerika1inen; Mika Torkkeli; Kaija Jokela; Ritva Serimaa; Franciska Sundholm;Gerrit ten Brinke; Olli Ikkala, Macromolecules 2002,35,10149. [62 ] Sami Valkama; Teemu Ruotsalainen; Harri Kosonen; Janne Ruokolainen; Mika Torkkeli; Ritva Serimaa; Gerrit ten Brinke; Olli Ikkala, Macromolecules 2003, 36, 3986. [63 ] Janne Ruokolainen; Juha Tanner; Gerrit ten Brinke; Olli Ikkala; Mika Torkkeli; Ritva Serimaa, Macromolecules 1995, 28, 7779. [64 ] Olli Ikkala; Janne Ruokolainen; Gerrit ten Brinke, Macromolecules 1995, 28, 7088. [65 ] Hsin-Lung; Ming-Siao Hsiao, Macromolecules 1999,32,2967. [66 ] Harri Kosonen; Sami Valkama; Juha Hartikainen; Hannele Eerika1inen;Mika Torkkeli; Kaija Jokela; Ritva Serimaa; Franciska Sundholm; Gerrit ten Brinke; Olli Ikkala, Macromolecules 2002, 35, 10149. [67 ] H. Kosonen; S. Valkama; J. Ruokolainen; M. Torkkeli; R. Serimaa; G. ten Brinke; O. Ikkala, The European Physical Journal E 2003,10,69. [68 ] Alexander Sidorenko; Igor Tokarev; Sergiy Minko; Manfred Stamm, Journal of American Chemical Society,2003. [69 ] K. de Moel;G. O. R. Alberda van Ekenstein; H. Nijland; E. Polushkin; G. ten Brinke; R. Mäki-Ontto; O. Ikkala, Chem. Mater.,2001,13,4580. [70 ] Amir Wagih Fahmi; Hans-Georg Braun; Manfred Stamm, Advanced Materials,2003,15,1201. [71 ] Matti Knaapila; Roman Stepanyan; Lockhart E. Horsburgh; Andrew P. Monkman; Ritva Serimaa; Olli Ikkala; Andrei Subbotin; Mika Torkkeli; Gerrit ten Brinke, J. Phys. Chem. B ,2003, 107, 14199.id NH0925063029 sid 913631 cfn 0 / id NH0925063030 auc 陳鼎志 tic 以被覆TiO2之玻璃珠填充床處理三氯乙烯之研究 adc 黃世傑 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 64 kwc 光催化 kwc TCE kwc 填充床 kwc TiO2 abc 液相與氣相的光催化反應已被廣泛的探討,其中應用於毒化物的處理方面更是被熱烈的研究。本研究之目的在於使用被覆奈米級TiO2之玻璃珠之填充床來處理三氯乙烯(Trichloro- ethylene,TCE)氣體,改變進氣流量、濃度及溼度以及反應溫度來探討其對於TCE之去除率、反應速率與礦化率之影響。實驗並輔助以批次反應器來探討反應溼度對於礦化率影響。實驗結果顯示,TCE之去除效率隨氣體流量的減少、入口濃度的下降、反應溼度的下降而上升。對於TCE的反應速率而言,最佳之氣體流量為300ml/min,而在反應溫度的研究發現在高滯留時間時,去除效率隨溫度上升而上升但在低滯留時間時反應在50℃時有一最佳值,這是因為在低滯留時間時溫度過高會造成TCE在觸媒表面之吸附能力下降而使其成為速率決定步驟,故造成去除效率下降。而在批次反應器之研究發現,TCE之礦化率隨溼度上升而下降,與連續式反應器結果類似。 tc 摘要 總目錄 Ⅰ 圖目錄………………………………………………………………….Ⅳ 表目錄………………………………………………………………….Ⅶ 第1章 序論 1 1.1 研究緣起 1 1.2 研究方向 2 第2章 文獻回顧 6 2.1 光催化反應之簡介 6 2.2 TiO2之簡介 7 2.3 TiO2之製備 7 2.4 量子效應 8 2.5 反應機構 9 2.6 三氯乙烯之簡介 10 2.7 三氯乙烯之光催化反應 11 2.8 水氣對TCE光催化反應之影響 12 2.9 溫度對TCE光催化反應的影響 14 2.10 酸鹼對反應的影響 15 2.11 觸媒改質 15 2.12 反應器 16 第3章 材料與方法 23 3.1 實驗藥品 23 3.2 實驗儀器 23 3.3 連續式反應器 25 3.3.1 操作參數 26 3.4 批次反應器 27 3.4.1 觸媒表面酸鹼度實驗 27 3.4.2 溼度對反應之影響 27 3.4.3 TiO2的製備 28 3.4.4 TiO2的改質 28 3.5 分析方法 28 3.6 檢量線的製作 29 第4章 結果與討論 33 4.1 連續式反應器 33 4.1.1 反應溫度對TCE去除效率的影響 33 4.1.2 進氣流量與入口濃度對TCE去除效率的影響 34 4.1.3 TCE礦化率之研究 35 4.1.4 光源強度對光催化反應之影響 37 4.1.5 相對溼度對光催化反應之影響 37 4.2 批次反應器 38 4.2.1 相對溼度對光催化反應的影響 38 4.2.2 酸鹼度對TCE光催化反應之影響 39 4.2.3 添加金屬離子對TiO2反應性之影響 39 4.2.4 乾膠燒結溫度對光催化反應之影響 40 4.2.5 以不同醇類進行溶膠-凝膠合成觸媒性質之比較 42 第5章 結論 60 參考文獻 61 圖目錄 圖2-1. 量子效應 17 圖2-2. 觸媒改質 19 圖2-3. Immersion well photoreactor 20 圖2-4. Annular photoreactor 20 圖2-5. Flat walls photoreactor 21 圖2-6. Film type photoreactor 21 圖2-7. Multilamp photoreactor 22 圖2-8. Elliptical photoreactor 22 圖3-1. 實驗裝置圖(連續反應) 31 圖3-2. 實驗裝置圖(批次反應) 32 圖3-3. TCE之檢量線 32 圖4-1. 反應器穩定性測試 44 圖4-2. 開關燈實驗 44 圖4-3. TCE在不同溫度下之去除效率 45 圖4-4. 不同溫度下去除效率與滯留時間之關係 45 圖4-5. 進氣流量對TCE去除率之影響 46 圖4-6. 進氣流量對反應速率之影響 46 圖4-7. TCE入口濃度對去除效率的影響 47 圖4-8. TCE入口濃度對反應速率的影響 47 圖4-9. 不同流量下去除效率與TCE入口濃度之關係 48 圖4-10. 不同流量下反應速率與TCE入口濃度之關係 48 圖4-11. 不同氣體流量下之最大反應速率 49 圖4-12. 不同溫度下出口CO2濃度與滯留時間之關係 49 圖4-13. 進氣流量對低濃度TCE去除率與反應器出口CO2濃度之影響 50 圖4-14. 反應床高對TCE反應速率與礦化率之影響 50 圖4-15. TCE入口濃度對礦化率與出口CO2濃度之影響 51 圖4-16. CO2出口濃度與TCE反應速率之關係 51 圖4-17. 光源強度對TCE去除效率的影響 52 圖4-18. TCE去除效率與相對溼度之關係 52 圖4-19. 不同溼度下TCE(C/C0)與時間之關係 53 圖4-20. 出口CO2濃度與相對溼度之關係 53 圖4-21. 不同起始相對溼度下TCE之礦化率與時間之關係 54 圖4-22. 觸媒在不同酸鹼度下反應性之比較 54 圖4-23. 添加不同金屬離子反應性之比較 55 圖4-24. 不同鍛燒溫度下觸媒比較 55 圖4-25. 不同鍛燒溫度下,TiO2之X-RAY繞射圖 56 圖4-26. P-25的X-RAY繞射圖 56 圖4- 27. 不同前驅物觸媒與P-25之比較 58 圖4-28. 比較不同乾膠,鍛燒溫度對TiO2反應性之影響 59 表目錄 表1-1.揮發性有機物處理方式之比較 4 表1-2.光催化反應的應用 5 表2-1. Physical and chemical properties of TiO2 18 表2-2. Physical and chemical properties of TCE 18 表3-1. Physical and chemical properties of P-25(DEGUSSA) 30 表4-1. 以XRD圖形推估TiO2之粒徑 57 表4-2. TiO2兩種晶體主要X-Ray繞射峰所在位子 57rf Amama, P. B., Itoh, K. and Murabayashi, M. Photocatalytic oxidation of trichloroethylene in humidified atmosphere. Journal of Molecular Catalysis A: Chemical (2001), 176(1-2), 165-172. Cai R, Kubota Y, Shuin T, Sakai H, Hashimoto K and Fujishima A Induction of cytotoxicity by photoexcited TiO2 particles. Cancer research (1992), 52(8), 2346-2348. Choi, W., Termin, A. and Hoffmann, M. R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. Journal of Physical Chemistry (1994), 98(51), 13669-13679. Fan, J. and Yates, J. T., Jr. Mechanism of Photooxidation of Trichloroethylene on TiO2: Detection of Intermediates by Infrared Spectroscopy. Journal of the American Chemical Society (1996), 118(19), 4686-4692. Faust, B. C., Hoffmann, M. R. and Bahnemann, D. W. Photocatalytic oxidation of sulfur dioxide in aqueous suspensions of iron oxide (Fe2O3). Journal of Physical Chemistry (1989), 93(17), 6371-6381. Fujishima, A., Rao, T. N. and Tryk, D. A. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology, C: Photochemistry Reviews (2000), 1(1), 1-21. Pathirana, H. M. K. K. and Maithreepala, R. A. Photodegradation of 3,4-dichloropropionamide in aqueous TiO2 suspensions. Journal of Photochemistry and Photobiology, A: Chemistry (1997), 102(2-3), 273-277. Hoffmann, M. R., Martin, S. T., Choi, W. and Bahnemann, D. W. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews (1995), 95(1), 69-96. Ireland J. C., Klostermann P., Rice E. W. and Clark R. M. Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation. Applied and Environmental Microbiology (1993), 59(5), 1668-1670. Jacoby, W. A., Blake, D. M., Noble, R. D. and Koval, C. A. Kinetics of the oxidation of trichloroethylene in air via heterogeneous photocatalysis. Journal of Catalysis (1995), 157(1), 87-96. Jardim, W. F., Alberici, R. M., Takiyama, M. M. K. and Huang, C. P. Gas-phase photocatalytic destruction of trichloroethylene (TCE) using UV/TiO2. Hazardous and Industrial Wastes (1994), 26, 230-238. Kamat, P. V. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chemical Reviews (1993), 93(1), 267-300. Keller, V., Bernhardt, P. and Garin, F. Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts. Journal of Catalysis (2003), 215(1), 129-138. Kim, S. B., Hwang, H. T. and Hong, S. C. Photocatalytic degradation of volatile organic compounds at the gas-solid interface of a TiO2 photocatalyst. Chemosphere (2002), 48(4), 437-444. Kim, S. B. and Hong, S. C.. Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst. Applied Catalysis, B: Environmental (2002), 35(4), 305-315. Kishimoto, H., Takahama, K., Hashimoto, N., Aoi, Y. and Deki, S. Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD). Journal of Materials Chemistry (1998), 8(9), 2019-2024. Linsebigler, A. L., Lu, G. and Yates, J. T., Jr. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews (1995), 95(3), 735-758. Martin, S. T., Herrmann, H., Choi, W. and Hoffmann, M. R. Time-resolved microwave conductivity. Part 1. TiO2 photoreactivity and size quantization. Journal of the Chemical Society, Faraday Transactions (1994), 90(21), 3315-3322. Nimlos, M. R., Jacoby, W. A., Blake, D. M. and Milne, T. A. Direct mass spectrometric studies of the destruction of hazardous wastes. 2. Gas-phase photocatalytic oxidation of trichloroethylene over titanium oxide: products and mechanisms. Environmental Science and Technology (1993), 27(4), 732-740. Nishimoto, S., Ohtani, B., Kajiwara, H. and Kagiya, T. Correlation of the crystal structure of titanium dioxide prepared from titanium tetra-2-propoxide with the photocatalytic activity for redox reactions in aqueous propan-2-ol and silver salt solutions. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases (1985), 81(1), 61-68. Obee, T. N. and Brown, R. T. TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene. Environmental Science and Technology (1995), 29(5), 1223-1231. Pearl, J. and Ollis, D. F. Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation. Journal of Catalysis (1992), 136(2), 554-565. Pichat, P. and Hermann, J. M. Adsorption-desorption, related mobility and reactivity in photocatalysis. In: Serpone, N., Pelizzetti, E. (Eds.) Photocatalysis: Fundamentals and applications. John Wiley & Sons, NTC, (1989), pp. 217-250. Sanchez, B., Cardona, A. I., Romero, M., Avila, P. and Bahamonde, A. Influence of temperature on gas-phase photo-assisted mineralization of TCE using tubular and monolithic catalysts. Catalysis Today (1999), 54(2-3), 369-377. Schiavello M. Heterogeneous Photocatalysis, Wiley, New York, (1997), pp. 175-185. Siripala, W., Ivanovskaya, A., Jaramillo, T. F., Baeck, S. H. and McFarland, E. W. A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis. Solar Energy Materials and Solar Cells (2003), 77(3), 229-237. Sjogren, J. C. and Sierka, R. A. Inactivation of phage MS2 by iron-aided titanium dioxide photocatalysis. Applied and Environmental Microbiology (1994), 60(1), 344-347. Wang, C. Y., Liu, C. Y. and Shen, T. The photocatalytic oxidation of phenylmercaptotetrazole in TiO2 dispersions. Journal of Photochemistry and Photobiology, A: Chemistry (1997), 109(1), 65-70. Wang, C. Y., Boettcher, C., Bahnemann, D. W. and Dohrmann, J. K. A comparative study of nanometer sized Fe(III)-doped TiO2 photocatalysts: synthesis, characterization and activity. Journal of Materials Chemistry (2003), 13(9), 2322-2329. Wang, K. H., Tsai, H. H. and Hsieh, Y. H. The kinetics of photocatalytic degradation of trichloroethylene in gas phase over TiO2 supported on glass bead. Applied Catalysis, B: Environmental (1998), 17(4), 313-320. Zheng, S., Huang, Q., Zhou, J. and Wang, B. A study on dye photoremoval in TiO2 suspension solution. Journal of Photochemistry and Photobiology, A: Chemistry (1997), 108(2-3), 235-238. Zou, Z., Ye, J. and Arakawa, H. Photocatalytic water splitting into H2 and/or O2 under UV and visible light irradiation with a semiconductor photocatalyst. International Journal of Hydrogen Energy (2003), 28(6), 663-669. 劉國棟,“VOC 管制趨勢展望”,工業污染防治,48 期,pp. 15-31, 1993。id NH0925063030 sid 913632 cfn 0 / id NH0925063031 auc 劉佳房 tic 黃光製程建模與控制 adc 鄭西顯 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 53 kwc 批間控制 kwc 黃光製程 kwc 少量多樣 abc 摘要: rf Crisalle, O.D., Soper, R.A., Mellichamp, D.A., and Seborg, D.E. "Adaptive Control of Photolithography ","AIChE Journal", Vol.38 No.1, p1-p14, 1992 Del Castillo, E. and Hurwitz, A.M. "Run-to-Run Process Control: Literature Review and Extensions", "Journal of Quality Technology", Vol.29 No.2, p184-p196, 1997 Del Castillo, E. and Yeh, J.Y., "An Adaptive Run-to-Run Optimizing Controller for Linear and Nonlinear Semiconductor Processes", " IEEE Transactions on Semiconductor Manufacturing",Vol.11 No.2,p285-p295, 1998 Edgar, T.F., Butler, S.W., Campbell, W.J., Pfeifer, Bode, C., Hwang, S.B., Balakrisnan, K.S. and Hahn, J. "Automatic Control in Microelectronic Manufacturing: Practices, Challenges, and Possibilities", "Automatica", Vol.36 Issue 11, p1567-p1603, 2000 Gardarelli, G., Palumbo, M., Pelagagge, P.M., "Photolithography Process Modeling Using Neural Networks", "Semiconductor International", p199-p206, 1996 Hershel, R., and Mack, C.A., "Lumped Parameter Model for Optical Lithography," Chap.2, Lithography for VLSI, VLSI Electronics -- Microstructure Science, R.K. Watts and N.G. Einspruch eds., Academic Prss, New York, 1987 Ingolfsson, A., and Sachs, E., "Stability and Sensitivity of an EWMA Controller", "Journal of Quality Technology", Vol.25 No.4, p271-p287, 1993 Moyne, J., Del Castillo, E., Hurwitz, A.M., "Run-to-Run Control in SEMICONDUCTOR MAUNFACTURING", CRC Press LLC, 2001 Sachs, E., Hu, A., Ingolfsson, A., "Run by Run Process Control: Combining SPC and Feedback Control", "IEEE Transactions on Semiconductor Manufacturing", Vol.8 No.1, p26-p43, 1995 Smith, T.H. and Boning, D.S., "A Self-Tuning EWMA Controller Utilizing Artificial Neural Network Function Approximation Techniques", "IEEE Transactions on Components, Packaging, and Manufacturing Technology", Part C, Vol.20 No.2, p121-p132, 1997id NH0925063031 sid 913633 cfn 0 / id NH0925063032 auc 張家豪 tic 結構與表面改質對奈米二氧化鈦光觸媒效率之影響 adc 呂世源 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 78 kwc 二氧化鈦 kwc 光觸媒 kwc 網狀結構 abc 近十年來有許多利用光觸媒去除污染物的研究,光觸媒主要有金屬氧化物半導體以及金屬硫化物,例如TiO2及ZnS。光觸媒是利用光源激發來產生電子電洞對,利用電子電洞來氧化或還原空氣中及水中的污染物而達到淨化的效果。最常使用的光觸媒為TiO2,由於其具有強氧化還原的能力,價格低廉,無毒以及化學性質穩定。 rf Allen G. C., J. S. Dalton, P. A. Janes, N. G. Jones, J. A. Nicholson and K. R. Hallam, " Photocatalytic oxidation of NOx gases using TiO2: a surface spectroscopic approach, " Environmental Pollution, 120, 415-422(2002). Andrew M. and L. H. Stephen,“ An overview of semiconductor photocatalysis," Journal of photochemistry and photobiology A, 108, 1(1997). Bamwenda G. R., S. Tsubuta, T. Nakamura and M. Haruta," Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au-TiO2 and Pt-TiO2," Journal of photochemistry and photobiology A, 89, 177-189 (1995). Caruso R. A and G. Shchukin. ,"Inorganic macroporous films from performed nanoparticles and membrane templates,"Advanced functional materials, 13, 789-794(2003). Caruso R. A., Jan H. Schattka, D. G. Shchukin, J. Jia and M. Antonietti,”Photocatalytic activities of porous titania and titania/zirconia structures formed by using a polymer gel templating technique,” Chemistry of materials, 14, 5103-5108(2002). Chen D. H., S. Devahasdin, C. Fan and K. Li,“ TiO2 photocatalytic oxidation of nitric oxide:transient behavior and reaction kinetics,” Journal of Photochemistry and Photobiology A: Chemistry, 156, 161–170 (2003). Cho Y. M., W. Y Choi , C. H. Lee , T. H Hyeon and H. I. Lee, "Visiblelight- induced degradation of carbon tetrachloride on dye-sensitized TiO2," Environmental science and technology, 35, 966-970(2001). Davis A. P. and C. P. Huang," The photocatalytic oxidation of sulfur-containingorganic compounds using cadmium sulfide and the effect on CdS photocorrosion," Water research, 25, 1273-1278(1991). Driessen M.D. and V. H. Grassian,”Photooxidation of trichloroethylene on Pt/TiO2,” Journal of physical chemistry B, 102, 1418-1423(1998). Fujishima. A., K. Honda.,"Electrochemical photolysis of water at a semiconductor electrode," Nature, 37, 238-241 (1972). Gao Y. M., H. S. Shen, K. Dwight and A. Wold , "Preparation and photocatalytic properties of titanium (IV) oxide films," Materials research bulletin, 27, 1023-1030 (1992). Hattori A., Y. Tokihisa, H. Tada and S. Ito,“ Acceleration of oxidation and retardation of reactions in photocatalysis of a TiO2/SnO2 bilayer-type catalyst,” Journal of the Electrochemical Society, 147, 2279-2283(2000). Herrmann J. M. , H. Tahiri , Y. Ait-Ichon, G. Lassaletta, A. R. Gonzalez-Elipe, A. Fernandez," Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz," Applied catalysis B, 13, 219-228(1997). Herrmann J. M., H. Lachheb , M Ksibi , E Elaloui and C Guillard,” Photocatalytic degradation pathway of methylene blue in water,” Applied Catalysis B, 31, 145–157(2001). Hirano K., H. Asayama, A. Hoshino and H. Wakatsuki," Metal powder addition effect on the photocatalytic reactions and the photo-generated electric charge collected at an inert electrode in aqueous TiO2 suspensions," Journal of photochemistry and photobiology A, 110, 307-311(1997). Hoffmann M. R., S. T. Martin, W. Choi and D. W. Bahnemann," Environmental Applications of Semiconductor Photocatalysis," Chemical reviews, 95, 69-96(1995). Kamat P. V.,” Semiconductor-metal nanocomposites. Photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/gold) nanoparticles," Journal of physical chemistry B, 105, 960-966(2001). Kissa E.,"Determination of acetylaceton and alcohols in titanium chelates," Analytica Chimica Acta, 281, 385-389(1993). Linsebigler A. L., G. Lu and John T. Yates,“ Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results,” Chemical reviews, 95, 735(1995). Liu C. Y., C. Y. Wang, X. Zheng, J. Chen and T. Shen,"The surface chemistry of hybrid nanometer-sized particles. Photochemical deposition of gold on ultrafine TiO2 particles," Colloids and surfaces A, 131, 271-280(1998). Mann S, M. Breulmann and S. A. Davis," Polymer-gel templating of porous inorganic macro-structures using nanoparticle building blocks," Advanced materials, 12, 502-507(2000). Matthews R.W.,"An adsorption water purifier with in situ photocatalytic regeneration," Journal of catalysis, 113, 549-555(1988). Shchukin D. G., J. H. Schattka, M Antonietti and R. A. Caruso,”Photocatalytic properties of porous metal oxide networks formed by nanoparticle infiltration in a polymer gel template,” Journal of physical chemistry B, 107, 952-957(2003). Skoog D. A., F. J. Holler and T. A. Nieman, Principles of instrumental analysis, Chapter 13 (1998). Tanaka S. and H. Gupta,“ Photocatalytic mineralisation of perchloroethylene using titanium dioxide,” Water science and technology, 31, 47-54(1995). Terabe K., K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai and Y. Iguchi, "Microstructure and crystallization behavior of TiO2 precursor prepared by the sol-gel method using metal alkoxide," Journal of materials science, 29, 1617-1622(1994). Verykios X.E., P. Panagiotis and T. Ioannides,”Performance of doped PtTiO2 catalysts for combustion of volatile organic compounds VOCs,” Applied catalysis B, 15, 75-92(1998). Wold A, M. Albert, Y. M. Gao, D. Toft and K. dwight, "Photoassisted gold deposition of titanium dioxide," Materials research bulletin, 27, 961-966(1992). Ying J. Y., C. C. Wang," Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals," Chemistry of materials, 11, 3113-3120(1999). Yoldas B. E.,“ Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters,” Journal of materials science, 21, 1087-1092(1986). Yoshinori T, H. Yoneyanma and H. Tamura," Reduction of methylene blue on illuminated titanium dioxide in methanolic and aqueous solutions," The Journal of Physical Chemistry, 76, 3460-3464(1972). Yuhong Z., Ming W., Gouxing X and Weishen Y.," Preparation and spectroscopic characterization of quantum-size titanium dioxide," Chemistrymag, 2, 17-24 (2000). Zeltner W. A., X. Fu, M. A. Anderson," The gas-phase photocatalytic mineralization of benzene on porous titaniabased catalysts," Applied catalysis B, 6, 209-224(1995). 吳泰伯, 許樹恩, "X光繞射原理與材料結構分析," 中國材料科學學會(1996). 汪建民, "材料分析," 中國材料科學學會(1998). 林正得, 二氧化鈦奈米微粒進行光催化金屬還原以形成核-殼結構之研究, 國立清華大學碩士論文(2001). 陳陵援,"儀器分析," 三民書局 (1982). 葉志揚,以溶膠-凝膠法製備二氧化鈦觸媒及其性質鑑定,國立台灣大學碩士論文(2000). 謝坤龍, "二氧化鈦光觸媒之發展與應用," 工業材料雜誌, 183, 127-131(2002). 謝秉勳, 奈米級光觸媒之製備及光催化活性測定, 國立台灣大學碩士論文(2002). 光觸媒空氣淨化測試系統_使用手冊, 工研院環安中心.id NH0925063032 sid 913637 cfn 0 / id NH0925063033 auc 許維謙 tic 電子構裝中電遷移對界面反應及擴散影響之模擬 adc 汪上曉 adc 陳信文 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 46 kwc 電遷移 kwc 擴散 kwc 界面反應 kwc 模擬 abc 電遷移現象是目前半導體產業所關注的焦點,因其關係到所有元件的可靠度。陳志銘[2002 tc 目錄 摘要 I 目錄 II 圖標題 IV 一、序論 1 一.1 電遷移 1 一.2 電遷移對IC封裝的影響 1 一.3 研究動機 2 二、固相擴散理論與模擬 3 二.1 一般擴散理論 3 二.1.1 空間座標的質量守恆 3 二.1.2 通量 4 二.1.3 Fick定律 5 二.2固相擴散理論 6 二.2.1 晶格固定座標及本質擴散係數 6 二.2.2 反應偶實驗座標與Matano-Boltzmann方法 7 二.2.3 Darken方程式與Kirkendall標記實驗 10 二.3擴散與反應系統之模擬 12 二.3.1模擬方法 12 二.3.2 純擴散系統模擬之結果與討論 16 二.3.3 有界面反應系統模擬之結果與討論 18 三、電遷移對固體擴散的影響模擬 23 三.1 電遷移理論 23 三.2 電遷移對無界面反應(k=0)之擴散之影響 25 三.2.1 DA=DB=1、mA=mB=0.01 25 三.2.2 DA=DB=1、mA=0.01、mB=0. 1 26 三.2.3 DA=10、DB=1、mA=0.01、mB=0.01 27 三.2.4 DA=10、DB=1、mA=0.1、mB=0.01 28 三.2.5 DA=10、DB=1、mA=0.01、mB=0.1 30 三.3 電遷移對擴散控制界面反應(k=1)之擴散之影響 31 三.3.1 DA=DB=1、mA=mB=0.01 31 三.3.2 DA=DB=1、mA=0.1、mB=0.01 32 三.3.3 DA=10、DB=1、mA=mB=0.01 36 三.3.4 DA=10、DB=1、mA=0.1、mB=0.01 37 三.3.5 DA=10、DB=1、mA=0.01、mB=0.1 40 四、結論 44 五、參考文獻 45 圖標題 圖一、 1:通電之反應偶 2 圖二、 1:控制體積示意圖 3 圖二、 2:晶格固定座標示意圖 6 圖二、 3:擴散反應偶實驗所得莫耳分率與位置的關係圖 7 圖二、 4:組成與相對距離的關係圖 9 圖二、 5:Kirkendall擴散反應偶與標記及Matano界面的關係圖 11 圖二、 6:模擬反應偶示意圖 13 圖二、 7:互溶型二元系統相圖 14 圖二、 8:有界面反應之二元相圖 14 圖二、 9:濃度分佈示意圖 15 圖二、 10:組成分佈示意圖 15 圖二、 11:DA=DB=1,k=0介面層厚度與時間平方根之關係圖 16 圖二、 12:DA=10, DB=1,k=0 不同時間下莫耳分率分佈及Matano介面位置之關係 17 圖二、 13:DA=10, DB=1,k=0界面層厚度與時間平方根之關係圖 17 圖二、 14:DA=10, DB=1,k=0 Matano界面位移與時間平方根關係圖 18 圖二、 15:DA=DB=1,k=1 t=10000濃度分佈圖 19 圖二、 16:DA=DB=1,k=1 t=10000莫耳分率分佈圖 19 圖二、 17:DA=DB=1介金屬相厚度與時間平方根之關係圖 20 圖二、 18:DA=10, DB=1,k=1 不同時間下莫耳分率分佈圖 21 圖二、 19:DA=10, DB=1,k=1Matano界面位移與時間平方根關係圖 21 圖二、 20:DA=10, DB=1介金屬相厚度與時間平方根之關係圖 22 圖三、 1:實驗反應偶與模擬系統示意圖 24 圖三、 2:DA=DB=1、mA=mB=0.01、k=0 界面厚度與時間平方根關係圖 25 圖三、 3:DA=DB=1、mA=mB=0.01、k=0時 Matano界面移動距離與時間平方根關係圖 26 圖三、4:k=0、DA=DB=1、mA=0.01、mB=0.1界面層厚度與時間平方根關係圖 26 圖三、 5:、k=0、DA=DB=1、mA=0.01、mB=0.1時Matano界面移動距離 27 圖三、 6: k=0、DA=10、DB=1、mA=mB=0.01界面層厚度與時間平方根關係圖 28 圖三、 7: k=0、DA=10、DB=1、mA=mB=0.01 Matano界面移動距離 28 圖三、 8: k=0、DA=10、DB=1、mA=0.1、mB=0.01界面層厚度與時間平方根關係圖 29 圖三、 9: k=0、DA=10、DB=1、mA=0.1、mB=0.01 Matano界面移動距離 29 圖三、 10: k=0、DA=10、DB=1、mA=0.01、mB=0.1界面層厚度與時間平方根關係圖 30 圖三、 11: k=0、DA=10、DB=1、mA=0.01、mB=0.1Matano界面移動距離與時間平方根關係圖 31 圖三、 12: k=1、 DA=DB=1、mA=mB=0.01 界面厚度與時間平方根關係圖 32 圖三、 13:k=1、 DA=DB=1、mA=mB=0.01時 Matano界面移動距離與時間平方根關係圖 32 圖三、 14:k=1、DA=DB=1、mA=0.1、mB=0.01界面層厚度與時間平方根關係圖 33 圖三、 15:k=1、DA=DB=1、mA=0.1、mB=0.01、E=1、t=10000時濃度分佈 34 圖三、 16:k=1、DA=DB=1、mA=0.1、mB=0.01、E=1、t=10000時莫耳分率分佈 35 圖三、 17: k=1、DA=DB=1、mA=0.1、mB=0.01時Matano界面移動距離 36 圖三、 18: k=1、DA=10、DB=1、mA=mB=0.01界面層厚度與時間平方根關係圖 36 圖三、 19: k=1、DA=10、DB=1、mA=mB=0.01 Matano界面移動距離 37 圖三、 20: k=1、DA=10、DB=1、mA=0.1、mB=0.01界面層厚度與時間平方根關係圖 37 圖三、 21:k=1、DA=10、DB=1、mA=0.1、mB=0.01、E=1、t=10000時濃度分佈 38 圖三、 22:k=1、DA=10、DB=1、mA=0.1、mB=0.01、E=1、t=10000時莫耳分率分佈 39 圖三、 23: k=0、DA=10、DB=1、mA=0.1、mB=0.01 Matano界面移動距離與時間平方根關係圖 40 圖三、 24: k=1、DA=10、DB=1、mA=0.01、mB=0.1界面層厚度與時間平方根關係圖 40 圖三、 25:k=1、DA=10、DB=1、mA=0.01、mB=0.1、E=1、t=10000時濃度分佈 41 圖三、 26:k=1、DA=10、DB=1、mA=0.01、mB=0.1、E=1、t=10000時莫耳分率分佈 42 圖三、 27: k=1、DA=10、DB=1、mA=0.01、mB=0.1Matano界面移動距離與時間平方根關係圖 43rf Chen, S. W., Chen, C. M., & Liu, W. C., Journal of Electronic Materials, Vol. 27(11), pp. 1193-1198, (1998) Chen, C. M., & Chen, S. W., Journal of Electronic Materials, Vol. 28(7), pp. 902-906, (1999) Chen, C. M., & Chen, S. W., Journal of Electronic Materials, Vol. 29(10), pp. 1222-1228, (2000) Chen, C. M., & Chen, S. W., Journal of Applied Physics, Vol. 90(3), pp. 1208-1214, (2001) Chen, C. M., & Chen, S. W., Acta Materialia, Vol. 50(9), pp. 2461-2469, (2002) Darken, L., Trans, AIME, Vol.175, (1948) Huntington, H. B. & Grone, A. R., Journal of Physics and Chemistry of Solids, Vol. 20, pp. 76-87, (1961) Huntington, H. B., Hu, C. K., & Mei, S. N., in “Diffusion in solids: Recent Development”, edited by M. A. Daynada and G. E. Murch, TMS, Warrendale, PA, pp. 97-119, (1984) Kirkendall, E. O., Trans. AIME, Vol. 147, pp. 104-110, (1942) Matano, C., Japan. Phys., Vol. 8, (1933) Nauman, E. B., & He, D. Q., Chemical Engineering Science, Vol.56, pp. 1999-2018, (2001) 陳志銘,清華化工所博士論文,(2002)id NH0925063033 sid 913638 cfn 0 / id NH0925063034 auc 鍾孟儒 tic 利用P4VP-PCL進行有機-無機奈米混成之研究 adc 何榮銘 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 109 kwc 團聯共聚合物 kwc 混成系統 kwc 自組裝 kwc 生物可分解 kwc 無機奈米陣列 abc 摘要 tc 目錄 中文摘要 I 英文摘要 Ⅳ 目錄 Ⅴ 圖目錄 Ⅶ 表目錄 ⅩⅢ 第一章 緒論 1 第二章 簡介 6 2.1有機-無機混成系統 6 2.1.1小分子量有機材料製備混成系統 6 2.1.2高分子材料製備混成系統 7 2.2團聯共聚合物的特點 8 2.3團聯共聚合物誘導製備混成系統 11 2.3.1聚環氧乙烷(poly ethylene oxide,PEO) 11 2.3.2聚丙烯酸(poly acrylic acid,PAA) 12 2.3.3乙烯啶(vinyl pyridine) 12 2.4有機-無機混成系統物性與微結構 13 2.4.1 P2VP與P4VP 13 2.4.2添加無機金屬的種類與添加量的多寡 14 2.4.3還原金屬方式 15 2.4.4無機金屬與乙烯啶的鍵結機制 15 2.5氧化還原方式 16 2.5.1電子束(e-beam)還原反應 16 2.5.2 UV光還原反應 16 2.5.3化學還原劑(reduct agent)還原反應 17 2.6生物可分解之高分子團聯共聚合物材料 18 2.7無機奈米顆粒對共聚合物之微結構的影響 20 2.8團聯共聚合物製備混成系統之應用 22 第三章 實驗方法及試片製備 44 3.1高分子團聯共聚合物的合成 44 3.2實驗儀器 46 3.3試片製備 47 3.3.1塊狀純團聯共聚合物的試片製備與熱性質測定 47 3.3.2純團聯共聚合物薄膜之製備 48 3.3.3塊狀團聯共聚合物攙添金屬製備混成材料 48 3.4實驗方法 49 3.4.1掃描式探針顯微鏡(Scanning Probe Microscopy ) 49 3.4.2穿透式電子顯微鏡(TEM) 51 3.4.3微差掃瞄式熱卡計(DSC) 52 3.4.4同步輻射之小角度X光散射儀與廣角度X光散射儀 53 3.4.5傅立葉紅外光譜儀(FT-IR) 54 3.4.6紫外光光譜儀(UV) 54 3.4.7熱重分析儀(TGA) 54 第四章 實驗結果與討論 62 4.1混成材料之共聚合物分子設計 62 4.2 P4VP-PCL共聚合物微結構鑑定 63 4.2.1塊材P4VP-PCL共聚合物微結構鑑定 63 4.2.2 PCL鏈段結晶對小角度X光散射效應 65 4.3 P4VP –PCL熱性質分析 65 4.4 P4VP –PCL與無機材料之混成製程 66 4.5 P4VP-PCL混成材料性質光譜鑑定 67 4.6 P4VP-PCL混成材料微結構鑑定 68 4.6.1微結構的破壞 69 4.6.2微結構改變之相轉換 69 4.6.3無機材料鍵結機制 70 4.7混成系統之熱力學行為 71 4.8 P4VP-PCL混成材料之熱分析 73 4.9薄膜P4VP-PCL共聚合物微結構鑑定 74 第五章 結論 96 第六章 參考文獻 99 圖目錄 圖2-1 應用介面活性劑製備無機奈米材料,(a)圖為示意圖,(b)圖為以穿透式電子顯微鏡觀察矽球(silica vesicle),自A至D圖將倍率放大,好觀察單一矽球之微結構[1 ] 。 24 圖2-2 應用分子量較大的有機材料經自組裝形成螺旋結構(化學式如(a)圖),利 用誘導製備無機奈米 材料。(b)圖為示意圖(藍色為 有機材料,黃色為CdS);(c)圖為以穿透式電子顯微鏡觀察得到的緞帶狀(ribbon)的CdS [9 ]。 25 圖2-3 高分子團聯共聚合物之自我有序及自我排組成一微觀相分離結構,尺寸約數十奈米。 26 圖2-4 高分子團聯共聚合物因體積分率不同形成不同微結構。 27 圖2-5 PS-PI高分子團聯共聚合物之體心立方圓球 ( body center cubic) 結構。以OsO4染色PI 團聯鏈段,PS團聯鏈段為白色。(a) 為[110 ]方向之四折疊對稱之投影 (four-fold symmetry projection),(b) 為[111 ]方向之三折疊六角堆積之投影 (three-fold hexagonal symmety projection) [19 ]。 28 圖2-6 (a) PS-PB-PS高分子團聯共聚合物之六角圓柱 (hexagonal cylinder) 微觀相分離結構以OsO4染色PB團聯鏈段,PS團聯鏈段為白色。(b) PS-PB-PS團聯共聚合物六角圓柱微觀結構之SAXS圖譜[20 ]。 29 圖2-7 (a) PS-PI高分子團聯共聚合物之層板 (lamellae)微觀相分離結構。以OsO4染色PI團聯鏈段,PS團聯鏈段為白色。(b) PS-PI團聯共聚合物層板微觀相分離結構之SAXS圖譜[21 ]。 30 圖2-8 PS-PI高分子團聯共聚合物之雙連續相 (bicontinuous、gyroid) 結構。以OsO4染色PI團聯鏈段,PS團聯鏈段為白色。(a) 為三折疊之投影 (three-fold projection),(b) 為四折疊之投影 (four-fold projection) [22 ]。 31 圖2-9 圖以穿透式電子顯微鏡觀察PS-PVP團聯共聚合物之穿孔層板(Perforated Layer)微結構。亮色區域為PS,暗色區域為PVP,圖形顯示其微結構為亮色區域(PS)與暗色區域(PVP)交錯之層狀結構即為穿孔層板之形態[23 ]。 32 圖2-10 利用PS-PEO團聯共聚合物,(a)圖為形成微孢示意圖,(b)圖是以穿透式電子顯微鏡觀察其量子點分佈情形[24 ]。 33 圖2-11 PS-PAA團聯共聚合物之微胞(micelle)結構如圖(a);(b)經氫氧化鈉水溶液處理,微胞呈現破裂之形態[33 ]。 34 圖2-12 選用的材料為PS-P2VP,圖自左至右為添加Co分別10wt%、20wt%、 30wt%,同時發現自原本平行層板結構、產生波浪狀擾動,甚至變成柱狀微結構[65 ]。 35 圖2-13 選用的材料為PI-P2VP,(a)圖為假設高分子鏈與金屬顆粒鍵結機制,一共四種,而(b)圖是以SPM觀察的結果推測鍵結機制為(a)圖(d)所示[52 ]。 36 圖2-14 利用UV光還原四氯金酸氫的化學表示式[66 ]。 37 圖2-15 材料PS-P2VP利用化學還原劑聯胺還原四氯金酸氫的結果[48 ]。 38 圖2-16 PS-PLA高分子團聯共聚合物經水解過後之SEM形態觀察[77 ]。 39 圖2-17 PS-PLLA高分子團聯共聚合物經水解過後之SPM形態觀察。左圖是未水解前;右圖是水解後,可得到明顯的奈米孔洞[94 ]。 40 圖2-18 當混成材料製備成薄膜時,生物可分解鏈段經水解去除後即留下無機金屬陣列或模板。 41 圖2-19 (團聯共聚合物/無機奈米顆粒)混成材料經模擬得到之相圖[89 ] 42 圖2-20 團聯共聚合物對奈米科技的研究與應用示意圖[81 ]。 43 圖3-1 PCL的開環聚合。 55 圖3-2 Atom Transfer Radical Polymerization (ATRP)。 56 圖3-3 製備PCL-OH[87 ]。 57 圖3-4 PCL-OH作functional modified。 58 圖3-5 400 MHz 1H NMR of PCL-CL。 59 圖3-6 製備雙團聯鏈段共聚合物。 60 圖4-1 P4VP120-PCL46(fPCLv=0.28)以TGA作初步熱性質檢測,可知當共聚合物因受熱產生重量損失5wt%時期溫度約在213.70C。 76 圖4-2 (a)圖為VP120-CL46 (fPCLv=0.28)小角度X光散射1-D圖譜,(b)圖以超薄切片並使用TEM觀察的結果,黑色部分為 P4VP、白色為 PCL。 77 圖4-3 (a)圖為VP146-CL91 (fPCLv=0.39)小角度X光散射1-D圖譜,(b)圖以超薄切片並使用TEM觀察的結果,黑色部分為 P4VP、白色為 PCL。 78 圖4-4 (a)圖為VP69-CL46 (fPCLv=0.40)小角度X光散射1-D圖譜,(b)圖以超薄切片並使用TEM觀察的結果,黑色部分為 P4VP、白色為 PCL。 79 圖4-5 (a)圖為VP47-CL46 (fPCLv=0.50)微結構示意圖與小角度X光散射1-D圖譜,(b)圖以超薄切片並使用TEM觀察的結果,黑色部分為 P4VP、白色為 PCL。 80 圖4-6 (a)圖為VP32-CL46 (fPVPv=0.40)小角度X光散射1-D圖譜,(b)圖以超薄切片並使用TEM觀察的結果,黑色部分為 P4VP、白色為 PCL。 81 圖4-7 (a)圖為VP18-CL46 (fPVPv=0.27)小角度X光散射1-D圖譜,(b)圖以超薄切片並使用TEM觀察的結果,黑色部分為 P4VP、白色為 PCL。 82 圖4-8 VP146CL91 (fPCLv=0.39)分別在300C 圖(a)與1200C圖(b)以小角度X光散射鑑定,發現當溫度高於PCL熔點時,結晶造成的散射強度消失,第二特徵散射峰會強度降低。 83 圖4-9 VP47CL46 (fPCLv=0.50)分別在300C 圖(a)與1200C圖(b)以小角度X光散射鑑定,發現當溫度高於PCL熔點時,結晶造成的散射強度消失,第二特徵散射峰會強度降低。 84 圖4-10 以DSC觀察團聯共聚合物這種不同體積分率組成之P4VP-PCL的玻璃轉化溫度Tg。 85 圖4-11 以DSC觀察團聯共聚合物這種不同體積分率組成之P4VP-PCL的熔點Tm。 86 圖4-12 以UV觀察VP146CL91(fPCLv=0.39)進行無機混成後光譜的吸收,約在550nm有金的吸收特徵峰。 87 圖4-13 以FT-IR觀察VP146CL91(fPCLv=0.39)進行無機混成後光譜的吸收,此時氮原子與金原子比例為5比1,標示的特徵吸收峰是因添加金所造成。 88 圖4-14 VP146CL91 (fPCLv=0.39)與金進行混成,其中氮原子與金原子比例為5比1,低溫切片後以TEM觀察其形態。 89 圖4-15 VP146CL91 (fPCLv=0.39)與金進行混成,其中氮原子與金原子比例為7比1,低溫切片後以 TEM觀察其形態。 90 圖4-16 VP146CL91 (fPCLv=0.39)與金進行混成,其中氮原子與金原子比例為10比1,低溫切片後以 TEM觀察其形態。 91 圖4-17 VP146CL91 (fPCLv=0.39)與金進行混成,其中氮原子與金原子比例為13比1,低溫切片後以 TEM觀察其形態。 92 圖4-18 VP32CL46 (fPVPv=0.40)與金進行混成,其中氮原子與金原子比例為5比1,由(a)圖SAXS可發現微結構的改變,從六角柱狀結構轉成層板結構,(b)圖為低溫切片後以TEM觀察其形態。 93 圖4-19 以DSC鑑定VP146CL91(fPCLv=0.39)與四氯金酸氫進行混成之熱性質。 94 圖4-20 VP120CL46 (fPCLv=0.28)以正丙醇為溶劑,旋轉塗佈於基材上,利用SPM進行表面分析。 95 表目錄 表格一 一系列不同體積分率之共聚合物。 61rf 參考文獻 1. Kim, S. S.; Zhang W.; Pinavaia, T. J., Science 1998, 282, 1302. 2. Yang, H.; Coombs, N.; Ozin, G. A., Nature 1997, 386, 692. 3. Asefa, T.; MacLachlan, M. J.; Coombs, N.; Ozin, G. A. Nature 1999, 402, 867. 4. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Macromolecules 1996, 29, 5091. 5. Huo, Q. ; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D. , Nature 1994, 368, 317. 6. Stupp, S. I.; Braun, P. V., Science 1997, 277, 1242. 7. Tanev, P. T.; Pinnavaia, T. J., Science 1996, 271, 1267. 8. Tanev, P. T.; Liang, Y.; Pinnavaia, T. P., J. Am. Chem. Soc. 1997, 119, 8616. 9. Sone, E. D.; Zubarev E. R.; Stupp, S. I., Angew. Chem. Int. Ed. 2002, 41, 1705. 10. Whitesides G. M.; Mathias, J. P., Seto, C. T., Science 1991, 254, 1312. 11. Lehn, J. -M., Supramolecular Chemistry 1995, VCH, New York. 12. Stupp, S. I.; LeBonheur, Y.; Walker, K.; Li, L. S.; Huggins, K. E.; Keser, M.; Amstutz, A., Science 1997, 276, 384. 13. Zubarev, E. R.; Pralle, M. U.; Li, L.; Stupp, S. I., Science 1999, 283, 523. 14. Moore (Ed.), J. S., MRS Bull. 2000, 25, special issue. 15. Tew, G. N.; Pralle, M. U.; Stupp, S. I., J. Am. Chem. Soc. 1999, 121, 9852. 16. Zubarev, E. R.; Pralle, M. U.; Sone, E. D.; Stupp, S. I., J. Am. Chem. Soc. 2001, 123, 4105. 17. Zubarev, E. R.; Pralle, M. U.; Sone, E. D.; Stupp, S. I., Adv. Mater. 2002, 14, 198. 18. Antoneitti, M.; Wenz, E.; Bronstein, L.; Seregina, M. , Adv. Mater. 1995, 7, 1000. 19. Seregina, M. V.; Bronstein, L. M.; Platonova, O. A.; Chernyshov, D. M.; Valetsky P. M., Chem.Mater. 1997, 9, 923. 20. Spatz, J. P.;Sheiko S.; Moller, M., Macromolecule 1996, 29, 3220. 21. Spatz, J. P.; Roescher, A.; Moller, M., Adv. Mater. 1996, 8, 337. 22. Templin, M.; Franck, A.; Chesne, A. D.; Leist, H.,; Zhang, Y.; Ulrich, R.; Schadler, V.; Wiesner, U., Science 1997, 278, 1795. 23. Finnefrock, A. C.; Ulrich, R.; Toombes, G. E. S.; Gruner, S. M.; Wiesner U., J. Am. Chem. Soc. 1999, 121, 9852. 24. Bronstein, L. M.; Chernyshov, D. M.; Vorontsov, E.; Timofeeva, G. I.; Dubrovina, L. V.; Valetsky, P. M.; Kazakov, S.; Khokhlov, A. R., J. Phys. Chem. B 2001, 105, 9077. 25. Matejicek, P.; Humpolickova, J.; Procha´zka, K.; Tuzar, Z.; Spirkova, M.; Hof, M.; Webber, S. E., J. Phys. Chem. B 2003, 105, 9077. 26. Stepanek, M.; Podhajecka, K.; Tesarova, E.; Prochazka, K.; Tuzar, Z.; Brown, W., Langmuir 2001, 17, 4240. 27. Bronstein, L. M.; Chernyshov, D. M.; Timofeeva, G. I.; Dubrovina, L. V.; Valetsky, P. M.; Obolonkova, E. S.; Khokhlov, A. R., Langmuir 2000, 16, 3626. 28. Bronstein L. M.; Chernyshov D. M.; Timofeeva G. I.; Dubrovina L. V.; Valetsky, P. M.; Khokhlov A. R., JOURNAL OF COLLOID AND INTERFACE SCIENCE 2000, 230, 140. 29. Bailey, T. S.; Hardy, C. M.; Epps, T. H. III; Bates, F. S., Macromolecules 2002, 35, 7007. 30. oontongkong Y.; Cohen, R. E., Macromolecules 2002, 35, 3647 31. Liu, G.; Ding, J.; Hashimoto, T.; Kimishima, K.; Winnik, F. M.; Nigam, S., Chem. Mater. 1999, 11, 2233. 32. Boontongkong, Y.; Cohen, R. E.; Rubner, M. F., Chem.Mater. 2000, 12, 1628. 33. Moffitt, M.; Vali, H.; Eisenberg, A., Chem.Mater. 1998, 10, 1021. 34. Burke, S. E.; Eisenberg, A., Langmuir 2001, 17, 8341. 35. Bendejacq, D.; Ponsinet, V.; Joanicot, M.; Loo, Y. -L.; Register, R. A., Macromolecules 2002, 35, 6645. 36. Zhang, L.; Eisenberg, A., Macromolecules 1996, 29, 8805. 37. Zhang, L.; Shen, H.; Eisenberg, A., Macromolecules 1997, 30, 1001. 38. Ma, Y.; Cao, T.; Webber, S. E., Macromolecules 1998, 31, 1773. 39. Wang, T. C.; Rubner, M. F.; Cohen, R. E., Chem.Mater. 2003, 15, 299. 40. Sohn, B. H.; Seo, B. H., Chem.Mater. 2001, 13, 1752. 41. Bronstein, L.; Chernyshov, D.; Valetsky, P.; Tkachenko, N.; Lemmetyinen, H.; Hartmann, J.; Forster, S., Langmuir 1999, 15, 83. 42. Djalali, R.; Li, S. Y.; and Schmidt, M., Macromolecules 2002, 35, 4282. 43. Mossmer, S.; Spatz, J. P.; Moller, M.; Aberle, T.; Schmidt, J.; Burchard, W., Macromolecules 2000, 33, 4791. 44. Tsutsumi, K.; Funaki, Y.; Hirokawa, Y.; Hashimoto, T., Langmuir 1999, 15, 5200. 45. Ribbe, A. E.; Okumura, A.; Matsushige, K.; Hashimoto, T., Macromolecules 2001, 34, 8239. 46. Hashimoto, T.; Harada, M.; Sakamoto, N., Macromolecules 1999, 32, 6867. 47. Hashimoto, T.; Okumura, A.; Tanabe, D., Macromolecules 2003, 36, 7324. 48. Percy, M. J.; Barthet, C.; Lobb, J. C.; Khan, M. A.; Lascelles, S. F.; Vamvakaki, M.; Armes, S. P., Langmuir 2000, 16, 6913. 49. Amalvy, J. I.; Percy, M. J.; Armes, S. P.; Wiese, H., Langmuir 2001, 17, 4770. 50. Cho, G.; Jang, J.; Jung, S.; Moon, I. S.; Lee, J. S.; Cho, Y. S.; Fung, B. M.; Yuan, W. L.; O’Rear, E. A., Langmuir 2002, 18, 3430. 51. Fournaris, K. G.; Karakassides, M. A.; Petridis, D.; Yiannakopoulou, K., Chem.Mater. 1999, 11, 2372. 52. Moffitt, M.; Eisenberg, A., Chem.Mater. 1995, 7, 1178 53. Zhao, H.; Douglas, E. P., Chem.Mater. 2002, 14, 1418 54. Zhao, H.; Douglas, E. P.; Harrison, B. S.; Schanze, K. S., Langmuir 2001, 17, 8428. 55. Huang, J.; Lianos, P.; Yang, Y.; Shen, J., Langmuir 1998, 14, 4342. 56. Qi, L.; Co1lfen, H.; Antonietti, M., Nano Lett. 2001, 1, 61. 57. Hao, E.; Lian, T., Langmuir 2000, 16, 7879. 58. Kuo, S. W.; Wu, C. H.; Chang, F. C., Macromolecules 2004, 37, 192. 59. Valkama, S.; Ruotsalainen, T.; Kosonen, H.; Ruokolainen, J.; Torkkeli, M.; Serimaa, R.; Brinke, G. T.; Ikkala, O., Macromolecules 2003, 36, 3986. 60. Abes, J. I.; Cohen, R. E.; Ross, C. A., Chem.Mater. 2003, 15, 1125 61. Glass, R., Moller, M., Spatz, J. P., nanotechnology. 2003, 14, 1123. 62. Kurihara, K.; Kizling, J.; Stenius, P.; Fendler, J. H., J. Am. Chem. Soc. 1983, 105, 2574. 63. Bronstein, L.; Chernyshov, D.; Valetsky, P.; Tkachenko, N.; Lemmetyinen, H.; Hartmann, J.; Forster, S., Langmuir 1999, 15, 83. 64. Torigoe, K.; Esumi, K., Langmuir 1993, 9, 1164. 65. Selvan, S. T.; Hayakawa, T.; Nogami, M.; Mo1ller, M., J. Phys. Chem. B 1999, 103, 7441. 66. Youk, J. H.; Park, M. K.; Locklin, J.; Advincula, R.; Yang, J.; Mays, J., Langmuir 2002, 18, 2455 67. Wang, C.; Zhang, X.M.; Qian, X.F.; Xie, Y.; Wang, W.Z.; Qian, Y.T., Pergamon 1998, 33, 1747 68. Spatz, J. P.; Mossmer, S.; Hartmann, C.; Moller, M.; Herzog, T.; Krieger, M.; Boyen, H. G.; Ziemann, P.; Kabius, B., Langmuir 2000, 16, 407. 69. Li, Y. D.; Li, C.W.; Wang, H.R.; Li, L.Q.; Qian, Y.T., Materials Chemistry and Physics 1999, 59, 88. 70. Mossmer, S.; Spatz, J. P.; Moller, M.; Aberle, T.; Schmidt, J.; Burchard, W., Macromolecules 2000, 33, 4791. 71. Bates, F. S.; Fredrickson, G. H., Phys. Today 1999, 52, 32. 72. Bates, F. S., Science 1991, 251, 898. 73. Pochan, D. J.; Gido, S. P.; Pispas, S.; Mays, J. W.; Ryan, A. J.; Fairclough, J. P. A., Macromolecules 1996, 29, 5091. 74. Ryan, A. J.; Hamley, I. W., Morphology of block copolymers. In The physics of glassy polymers, (ed. R. N. Haward and R. J. Young). Chapman and Hall, London. 1997. 75. Khandpur, A. K.; Forster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W., Macromolecules 1995, 28, 8796. 76. Forster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J., Macromolecules 1994, 27, 6922. 77. Schulz, M. F.; Khandpur, A. K.; Bates, F. S.; Almdal, K.; Mortensen, K.; Hajduk, D. A.; Gruner, S. M., Macromolecules 1996, 29, 2857. 78. MacDonald, R. T.; McCarthy, S. P.; Gross, R. A., Macromolecules 1996, 29, 7356. 79. Liu, L.; Li, S.; Garreau, H.; Vert, M., Biomacromlecules 2000, 1, 350. 80. Zalusky, A. S.; Olayo-Valles, R.; Taylor C.; Hillmyer, M. A., J. Am. Chem. Soc. 2001, 123, 1519. 81. Li, S. J., Biomed. Mater. Res., Appl. Biomater. 1999, 48, 142. 82. Hakkarainen, M.; Karlsson, S.; Albertsson, A. C., Polymer 2000, 41, 2331. 83. 剪切力誘導PS-PLLA團聯共聚合物奈米微結構定向—奈米圖案成形模板之製備,范慧雯,中興大學化工所碩士論文 84. Lee, W. K.; Gardella, J. A., J., Langmuir 2000, 16, 3401. 85. Demicheli, A.; Russo, S.; Mariani, A., Polymer 2000, 41, 1481. 86. Zhang, Q.; Remsen, E. E.; Wooley, K. L., J. Am. Chem. Soc. 2000, 122, 3642. 87. Pasyuk, V. L.; Lauter, H. J.; Ausserre, D.; Gallot, Y.; Cabuil, V.; Kornilov, E. I.; Hamdoun, B., Physica B 1997, 241, 1092. 88. Pasyuk, V. L.; Lauter, H. J.; Ausserre, D.; Gallot, Y.; Cabuil, V.; Hamdoun, B.; Kornilov, E. I., Physica B 1998, 248, 243. 89. Huh, J.; Ginzburg, V. V.; Balazs, A. C., Macromolecules 2000, 33, 8085. 90. Thompson, R. B.; Ginzburg, V. V.; Matsen, M. W.; Balazs, A. C., Science 2001, 292, 2469. 91. Lee, J. Y.; Thompson, R. B.; Jasnow, D.; Balazs, A. C., Macromolecules 2002, 35, 4855. 92. Thompson, R. B.; Ginzburg, V. V.; Matsen, M. W.; Balazs, A. C., Macromolecules 2002, 35, 1060. 93. Parka, C.; Yoonb, J.; Thomas, E. L., Polymer 2003, 44, 6725. 94. Cuenya, B. R.; Baeck, S. H.; Jaramillo, T. F.; McFarland, E. W., J. Am. Chem. Soc. 2003, 125, 12928. 95. Straub, M.; Ventura, M.; Gu, M., Thin Solid Films 2004, 453-454, 522. 96. Wu, C.; Woo, K. F.; Luo, X.; Ma, D. Z., Macromolecules 1994, 27, 6055. 97. Hattori, H., Adv. Mater. 2001, 13, 51. 98. Walheim, S.; Schaffer, E.; Mlynek, J.; Steiner, U., Science 1999, 283, 520. 99. Kravchenko, R.; Waymouth, R. M., Macromolecules 1998, 31, 1. 100. Small, P. A., J. Appl. Chem. 1953, 3, 71. 101. Brandrup, I.; Immergut, E. R.; Polymer Handbook 1966, Interscience, New York.id NH0925063034 sid 913640 cfn 0 / id NH0925063035 auc 郭廷武 tic 聚碳酸酯與二氧化矽之奈米複合材料合成與性質分析 adc 談駿嵩 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 92 kwc 二氧化碳 kwc 聚碳酸酯 kwc 二氧化矽 abc 本研究利用溶膠-凝膠法製備聚碳酸酯/二氧化矽有機/無機混成奈米複合材料,並探討熱性質、機械性質、形態學和光學性質。對於CO2與Allyl Glycidyl Ether( AGE,屬軟鏈單體)及Cyclohexene Oxide( CHO,屬剛硬單體)共聚反應中,以Y(CF3CO2)3-Zn(Et)2- rf 第六章 參考文獻 1. 談駿嵩,“減少化工製程排放溫室效應氣體之規劃,”專案計畫執行成果報告,經濟部工業局,1995. 2. Jessop PG, Ikariya T, Noyori R. Chem Rev 1995;95:259. 3. Inoue S. US Patent3 1966;248:415. 4. Morikawa A, Iyoku Y, Kakimoto MA. “Preparation of New Polyimide-Silica Hybrid Materials via the Sol-Gel Process ”, J Mater Che 1992;2:679. 5. Novak BM. “Hybrid Nanpcomposite Materials Between Inorganic Glasses and Organic Polymers ” Adv Mater 1993;6:422. 6. Novak BM, Caroline D. “Inverse Organic/Inorganic Conposute Materials.2 Free Radical Routes into Non-shrinking Sol-Gel Composites”, Macromolecules 1991;25:5481. 7. Kim JW, Cho WJ, Ha CS. ”Morphology,Crystalline Structure, and Properties of Poly(vinylidene fluoride)/Silica Hybrid Composites ” J Polym Sci Part B:Polymer Physics 2002;40:1:19. 8. Honma I, Nomura S, Nakajima H. “Protonic Conducting Organic/Inorganic Nanocomposites for Polymer Electrolyte Membrane” J Mem Sci 2001;185:83. 9. Sunkara HB, Jethmalani JM, Ford WT. “Composite of Colloidal Crystal of Silica in Poly(methyl methacrylate)” Chem Mater 1994;6:362. 10. Nandi M, Conklin JA, Salvati LJr, Sen A. “Molecular Level Ceramic/Polymer Composites. 2.Synthesis of Polymer Trapped Silica and Titania Nanoclusters ” Chem Mater 1991;3:201. 11. Tuan D, Dbois Ph, Jerome R. “A New Poly(ε-caprolactone) Containing Hybrid Ceramer Prepared by the Sol-Gel Process ” Polym 1996;37:17:983 12. Hsiue GH, Kuo WJ, Huang YP, Jeng RJ. “Microstructural and Morphological Characteristics of PS–SiO2 Nanocomposites ” Polym 2000;41:2813. 13. Hsu YG, Tu LC, Lin KH. “Hybrid Materials Derived from Modified Styrene-Butadiene Copolymer(SBS) and Silica Through the Sol-Gel Process ” J Polym Res 2001;8:1. 14. Odian G, Principles of Polymerization, 3rd ed., Wiley, New York 1991..x 15. Osamu H, Isao I, Mitsuru U, Shigeki K. “Synthesis of Polycarbonate from Dimethyl Carbonate and Bisphenol-a through a Non-phosgene Process ” J Polym Sci : Polym Chem 1999;37:2087. 16. Hocker H, Keul H, Kuhling S. Makromol Chem Suppl 1989;15:9. 17. Kirpal SB, Yuri YS, Lori AH, Richard AG. “Lipase-Catalyzed Ring-Opening Polymerization of Trimethylene Carbonate ” Macromolecules 1997;30:7735. 18. Henry C. US Patent 3 1966;248:415. 19. Kadokawa JI, Habu H, Fukamachi S, Karasu M, Tagaya H, Chiba K. “Direct Polycondensation of Carbon Dioxide with Xylylene Glycol:A New Method for the Synthesis of Polycarbonates ” Makromol Che Rapid Commun 1998;19:657. 20. Rokicki A, Kuran W. “The Application of Carbon Dioxide as a Direct Material for Polymer Syntheses in Polymerization and Polycondensation Reactions ” J Macromol Sci Rev Macromol Chem 1981;C21:135. 21. Bher A. “Carbon Dioxide Ativation by Metal Complexes ” VCH Verlagsgesellschaft 1988;5. 22. Inoue S, Yokoo Y, “Reaction of Organozinc Coordination Compounds IV* Reactions with Carbon Dioxide in Relation to the Action of Carbonic Anhydrase ” J Organomet Chem 1972;39:11. 23. Bochkarev MN, Fedorova EA, Radkov YF, Khorshev S, Kalinlna GS, Razuvaev GA. J Organomet Chem 1983;29:258. 24. Bochkarev MN, Fedorova EA.; Radkov, Y. F.; Khorshev, S.; Kalinlna GS, RazuvaevGA. Dokl Akad Nauk SSSR 1984;279:1386. 25. Kuran W, Pasynkiewicz S, Skupinska. “On the Mechanism of the Carbon Dioxide/Propylene Oxide Alternating Copolymerization in the Presence of Organozinc Catalysts ” J Makromol Chem 1977;178:2149. 26. 許宗儒,“二氧化碳與環氧化物進行共聚反應之探討”,博士論文,國立清華大學化學工程學系,2002. 27. Wen J, Wilkes GL. “Organic/Inorganic Hybrid Network Materials by the Sol-Gel Approach ” Chem Mater 1996;8:1667. 28. Schottner G. “Hybrid Sol-Gel Derived Polymer:Applications of Multifunctional Materials ” Chem Mater 2001;13:3422. 29. Brinker CJ. “Hydrolysis and Condensation of Silicates:Effects on Strucrure ” J Non-Cryst Solids 1988;100:31. 30. Yoldas BE. “Monolithic Glass Formation by Chemical Polymerization ” J Mater Sci 1979;14:1843. 31. Nogami M, Moriya Y. “Rheology of the Gelation Process of Silica Geln ” J Non-Cryst Solids 1988;37:191. 32. Brinker CJ, Keefer KD, Schaefer DW, Ashley CS. “Sol-Gel Transition in Simple Silicates ” J Non-Cryst Solids 1982;48:47. 33. Iler RK, The Chemistry of Silica, Wiley, New York, 1979 34. Lukaszczyk J, Jaszcz K, Kuran W, Listos T. “ Synthesis of Functional Polycarbonates by Copolymerization of Carbon Dioxide with Allyl Glycidyl Ether ” Makromol Rapid Commun 2000;21:754. 35. 張家甫,”二氧化碳與環氧丙烷及環氧己烷共聚合反應 ”,碩士論文,國立清華大學化學工程學系,1999. 36. 阮俊杰,”以溶膠-凝膠法製備具碳酸酯與二氧化矽混成有機/無機奈米複合材料及性質研究 ”, 碩士論文,國立清華大學化學工程學系,2003. 37. Wei Y, Yang D, Tang L. “ Synthesis, Characterization, and Properties of New Polystyrene-SiO2 Hybrid Sol-Gel Material ”, J Mater Res 1993;8:5:1143. 38. Chen Y, Iroh JO. “ Synthesis and Characterization of Polyimide/Silica Hybride Comoposites ”, Chem Mater 1999;11:1218. 39. Chen IK, Tien YI, Wei KH. “ Synthesis and Characterization of Novel Segmented Polyurethane/Clay Nanocomposite via Poly(??-caprolactone)/Clay ” J Polym Sci:Part A 1999;37:2225. 40. Lee JH, Park TG, Park HS, Lee DS, Lee YK, Yoon SC, Nam J. “ Thermal and mechanical characteristics of poly(??-lactic acid) nanocomposite scaffold ” Bio 2003;24:2273.id NH0925063035 sid 913642 cfn 0 / id NH0925063036 auc 吳東耘 tic 不確定因素下汽電共生系統之最佳操作策略 adc 鄭西顯 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 72 kwc 汽電共生 kwc 不確定變因 kwc 蒙地卡羅 abc 本研究的主要目的為分析汽電共生系統在不確定變因下的成本分析,根據各時段的能源支出,以及向台電購售的電量,在系統的電力及蒸汽需求符合製程需求及限制下,找出在最低風險下合適的操作策略;本文研究貢獻值得注意的地方,在於第一次將不確定變因考慮入汽電共生系統找出最符合現實的最適化操作策略。 由於汽電共生廠本身具有不確定的變因(uncertainty variable),像是工廠的鍋爐臨時故障、汽渦輪機的跳車、還有電廠供應電力不穩定或是供電中斷,這些因素都將造成工廠部分區段,嚴重甚至全廠停車,造成工廠嚴重的損失,不論是超約用電或者是生產部門的損失,都是以數百數千萬來計算的,所以如何評估在最低的風險下,分析最適合工廠的運轉原則下的操作策略,便是相當重要的課題。 由於工廠的臨時性故障及台電端的跳車都是屬於隨機而且離散的,我們在此利用蒙地卡羅法對於模擬具有隨機因素(random factor)的方法,針對有可能發生的情況,給予發生的機率來模擬工廠可能發生的狀況,再由系統質量平衡及限制(constraints)來對系統數學建模,利用線性規劃(Linear Programming)的方式來找出系統的最佳操作策略,進一步分析出全年度工廠的支出,設計出一套最佳化操作策略及契約容量軟體,便是我們預計完成的項目,使工廠在最低風險下使能源管理改善,降低 rf [1 ]. O’Brien, J., Bansal, P. K., Modelling of cogeneration systems Part 1:historical perspective, Proc. Instn. Mech. Engrs, Part A, Journal of power and Energy, vol.214, 115, 2000 [2 ]. O’Brien, J., Bansal, P. K., Modelling of cogeneration systems Part 2:development of a quasi-static cogeneration model (steam turbine cogeneration analysis), Proc. Instn. Mech. Engrs, Part A, Journal of power and Energy, vol.214, 125, 2000 [3 ]. Ligang Zheng, Edward Furimsky, ASPEN simulation of cogeneration plants, Energy Conversion and Management, vol.44, 1845, 2003 [4 ]. Arivalagan A, Raghavendra, B G, Integrated energy optimization model for a cogeneration based energy supply system in the process industry, Electrical power & Energy Systems., vol.17 No. 4,227, 1995 [5 ]. Manninen Jussi and X. X. Zhu, Optimal Gas Turbine Integration to the Process Industries, Ind. Eng. Chem. Res. , vol. 38, 4317, 1999 [6 ]. M-T. Tsay, W-M. Lin, J-L. Lee, Optimal contracts decision of industrial customers, Electrical power & Energy Systems., vol.23, 795, 2001 [7 ]. M-T. Tsay, W-M. Lin, Application of evolutionary programming to optimal operational strategy cogeneration system under time-of-use rates, Electrical power & Energy Systems, vol.22, 367, 2001 [8 ]. 李基立,進化規劃法於汽電共生系統最佳運轉調度之應用,中山大學電機所碩士論文,1999 [9 ].許金和,火力發電大全,高雄復文圖書初版社,2000年9月初版 [10 ]陳文能,汽電共生系統—理論與實務,聯經出版有限公司,民國77年12月初版 [11 ]. 台灣電力公司電價表,民國92年 [12 ]. Bezdek, J. C., Ehrlich, R., and Full W., FCM: The Fuzzy C-Means Clustering Algorithm, Computers and geoscience, vol.10, 191, 1984 [13 ]. Hertz, J., A. Krogh and R. G. Palmer, Introduction to the Theory of Neural Computation, Addison-Wesley, New York, 2001 [14 ]. Hagan, M. T. and Menhaj, M. B., Training Feedforward Networks with the Marquardt Algorithm, IEEE Trans. on Neural Network, 5, 989,1994 [15 ].Shannon, C. E., A Mathematical Theory of Communication, Bell Syst. Tech. J., 27, 379, 1948 [16 ]. J., Chen, D.S.H., Wong and S.S. Jang, Product and Process Development Using Artificial Neural-Network Model and Information Analysis, AICHE J., 44, 876, 1998 [17 ]. Sobol', I. M, A Primer for the Monte Carlo Method, CRC Press, 1994 [18 ]. P. Venkataraman, APPIED OPTIMIZATION WITH MATLAB PROGRAMMING, JOHN WILEY & SONS, INC., 2001 [19 ]. 羅伯.惠特、約翰.惠特,基礎統計學桂冠圖書股份有限公司,2002年12月初版 [20 ]. 黃文隆,統計學下冊,東華書局,民國84年6月初版 72id NH0925063036 sid 913643 cfn 0 / id NH0925063037 auc 林弘凡 tic 應用分子動力學與平行運算於奈米流場分析之研究 adc 張榮語 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 201 kwc 分子動力學模擬 kwc 奈米尺度流動 kwc 平行運算 kwc 個人電腦叢集 abc 應用分子動力學(MD)搭配平行運算技術,於個人電腦叢集系統進行奈米尺寸之收縮膨脹流場分析,探討不同鏈長之無支鏈烷類分子於流場之基本性值,包括流速分佈、壓力分佈、應力張量以及分子鏈結構性值等。 tc 中文摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 XII 符號說明 XIII 第一章、緒論 1 1.1研究目的與動機 1 1.2微流體引論 4 1.2.1微流體與巨觀之差異 4 1.2.2微流體之應用 6 1.3分子動力學引論 9 1.4平行運算機制與平台 13 1.4.1平行電腦基本介紹 13 1.4.2個人電腦叢集之發展 16 1.4.3平行程式編輯設計 20 第二章、文獻回顧 23 2.1分子動力學文獻回顧 23 2.1.1分子動力學發展史 23 2.1.2分子動力學模擬流動行為文獻回顧 24 2.2平行分子動力學文獻回顧 35 2.2.1力分散方法於平行分子動力學之文獻回顧 36 2.2.2空間分散方法於平行分子動力學之文獻回顧 39 2.2.3平行分子動力學應用之文獻回顧 40 第三章、研究方法 43 3.1分子動力學理論 43 3.1.1分子動力學基本假設 43 3.1.2分子動力學模擬流程架構 44 3.1.3分子動力學系統初始化 46 3.1.4分子動力學系統控制 49 3.1.5分子動力學求解運動方程式 63 3.1.6分子動力學簡化方法 67 3.1.7分子動力學性質計算 74 3.1.8減縮單位 79 3.2分子勢能模型 80 3.2.1簡單分子勢能模型 81 3.2.2帶電分子勢能模型 86 3.2.3高分子勢能模型 90 3.2.4鍵結勢能方程式 92 3.2.5金屬勢能模型 96 3.3平行方法於分子動力學 98 3.3.1原子分散法(Atom Decomposition Method) 99 3.3.2力分散法(Force Decomposition Method) 101 3.3.3空間分散法(Spatial Decomposition Method)103 3.3.4平行化效能評估 106 第四章、模擬系統與數值方法 107 4.1簡單剪切流場 107 4.2收縮-膨脹流場 111 4.3個人電腦叢集系統 114 4.4 平行計算於分子動力學 117 4.4.1模擬程式平行化分析 117 4.4.2模擬程式平行化方法 118 第五章、結果與討論 119 5.1簡單剪切流場 119 5.1.1不同牆壁參數 119 5.1.2不同牆壁吸引力 123 5.1.3不同的剪切速率 127 5.2 收縮膨脹流場 129 5.2 收縮膨脹流場之模擬結果 129 5.2.1 長鏈分子l = 25之膨脹收縮流場 130 5.2.2 長鏈分子l = 50之膨脹收縮流場 146 5.2.3 長鏈分子l = 100之膨脹收縮流場 157 5.2.4膨脹收縮流場不同鏈長分子之比較 168 5.3 平行化結果與效率探討 186 5.3.1平行計算結果之驗證 186 5.3.2平行計算效率評估 188 第六章、結論與未來展望 193 參考文獻 195 Appendix A 減縮單位轉換 201rf 1.林鴻明,"奈米材料未來的發展趨勢",科技發展政策報導SR9109(2002), pp.648-659。 2.C.-M. Ho, Y.-C. Tai, "Micro-Electro-Mechanical-Systems(MEMS) and Fluid Flows" Annual. Review of Fluid Mechanism, vol.30(1998), pp.579-612. 3.G.E. Karniadakis, A. Beskok, "Micro Flow: Fundamentals and Simulation" Springer, 2001. 4.M. Gad-El-Hak, "The MEMS Handbook", CRC Press, 2001. 5.Sergej Fatikow, Ulrich Rembold. 黃淳權譯 "微機電概論(Microsystem Technology and Microrobotics) ",高立出版社,89年第一版。 6.楊啟榮,"微系統LIGA製程技術",科儀新知,vol.19(1998) , pp.4-17。 7.楊啟榮,強玲英,黃奇聲 "微系統LIGA製程之精密電鑄技術",科儀新知 vol.21(2000), pp.15-26。 8.R. Bennett, C. Edwards, J. Lee, K. Silz "Precision Industrial Ink Jet Printing Technology for Full Color PLED Display and TFT-LCD Manufacturing" Litrex Corp, 6670 Owens Drive,U.S.A.(2002) 9.J. M. Haile, "MOLECULAR DYNAMICS SIMULATION :ElementaryMethods", Wiley, 1997. 10.J.M. Haile "Molecular Dynamics Simulation: Elementary Methods", Wiley Professional Paperback Edition Published ,1997. 11.M.P. Allen, J.P. Tildesley "Computer simulation of Liquids" Oxford Science Publications ,1987. 12.Richard J. Sadus. "Molecular Simulatin of Fluids: Theory, Algorithms and Object-Orientation" New York, Elsevier, 1999. 13.D.C. Rapaport, "The Art of Molecular Dynamics Simulation", Cambridge University Press, 1995. 14.R. E. Tuzun, D. W. Noid, B. G. sumpter, R. C. Merkle, "Dynamics of fluid flow inside carbon nanotubes" Nanotechnology, vol.7(1996), pp.241-246. 15.M. Matsumoto, S. Saito, L. Ohmine, “Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing”, Nature, vol.416(2002), pp409-413. 16.鄭守成,"漫談平行電腦與平行計算",國家高速電腦中心,高速計算世界,第七卷第四期,1996 12。 17.蔡佳璋,張西亞,黃國展,李先知,周朝宜,鄭守成,陳敏,沈澄宇,“科學計算應用之新寵:個人電腦叢集”,國家高速電腦中心,高速計算世界,第七卷第四期,1999 12。 18."The Beowulf Project", Scyld Computing Corporation, Available from: http://www.beowulf.org/ . 19.R. Buyya, "High Performance Cluster Computing", Prentice Hall PTR Published, vol. 1(1999), pp.625-645. 20.徐宏昌,"平行計算在押出成型模擬分析和模具設計上之應用",碩士論文,國立清華大學,2000。 21.G. C. Fox, "Parallel Problem Architectures and Their Implications for Portable Parallel Software Systems", Tech. Report CRPC-TR91120, Center for Research on Parallel Computation, Rice Univ., Houston, Texas, 1991. 22.曾耀寰,"企鵝雄兵-以Linux進行電腦叢集計算",學貫科技文化,2001。 23.M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarr, "MPI:The Complete Reference", MIT Press ,1996. 24.鄭守成,"MPI平行計算程式設計",國家高速電腦中心,2002。 25.B.J. Alder, T.E. Wainwright "Phase Transition for A Hard Sphere System", Journal of Chemical Physics vol.27 (1957), pp.1208-1209. 26.A. Rahman, "Correlations in the Motion of Atoms in Liquid Argon", Physical Reivew, vol.136(1964) pp.A405-A411. 27.B. J. Berne, R. Gordon, V. F. Sears, "On the Mechanics of Vibrational Relaxation", Journal of Chemical Physics vol.49(1968), p.475. 28.A. Rahman and F. H. Stillinger, "Molecular Dynamics Study of Liquid Water", J. Chem. Phys. vol.55(1971), pp.3336-3359. 29.J. A. McCammon, B. R. Gelin and M. Karplus, "Dynamics of Folded Proteins", Nature, vol.267 (1977), pp.585-590. 30.U. Heinbuch, J. Fischer, "Liquid Flow in pores: Slip, no-slip,or multilayer sticking", Physical Review A, vol.40(1989), pp.1144-1146. 31.J. Koplik, J.R. Banavar, J.F. Willemsen "Molecular Dynamics of Poiseuile Flow and Moving Contact Lines", Physical Review Letters, vol.60(1988), pp.1282-1285. 32.J Koplik, J.R. Banavar, J.F. Willemsen, "Molecular Dynamics of Fluid Flow at Solid Surface", Phys. Fluids A , vol.1(1989), pp.781-794. 33.P.A. Thompson, M.O. Robbins, "Simulation of Contact-Line Motion: Slip and the Dynamic Contact Angle", Physical Review Letters, vol. 63(1989), pp. 766-769. 34.P.A. Thompson, M.O. Robbins, "Shear Flow Near Solids: Epitaxial order and Flow boundary condition", Physical Review A, vol.41 (1990), pp.6830-6837. 35.J. Koplik, J. FL Banavar, "Corner Flow in the Sliding Plate Problem", Phys. Fluids, vol.7(1995), pp.3118-3125. 36.P.A. Thompson and S.M. Troian, "A general boundary condition for liquid flow at solid surfaces", Nature, vol.389(1997), pp.360-362. 37.A. Satoh, "Stability of Computational Algorithms Used in Molecular Dynamics Simulations", Journal of Fluids Engineering, Vol.117 (1995), pp.531-534. 38.A. Satoh, "Stability of Various Molecular Dynamics Algorithms", Journal of Fluids Engineering, Vol.119 (1997), pp.476-480. 39.M. Cieplak, J. Koplik, J. R. Bavanar, " Molecular dynamics of flows in the Knudsen regime", Physica A, vol.287(2000), pp.153-160. 40.X.J. Fan, N. Phan-Thien, N.T. Yong ,X. Diao, "Molecular Dynamics Simulation of A Liquid in A Complex Nano Channel Flow", Physical of Fluid, vol.14 (2002), pp.1146-1153. 41.G. Nagayama, P. Cheng, "Effects of interface wettability on microscale flow by molecular dynamics simulation", International Journal of Heat and Mass Transfer, vol.47(2004), pp.501-513. 42.J. Koplik, J.R. Banavar "Reentrant corner flows of Newtonian and non-Newtonian fluids" Journal of Rheology, vol.41(1997), pp.787-805. 43.A. Jabbarzadeh, J.D. Atkinson, R.I. Tanner, "Nanorheology of Molecularly Thin Films of n-hexadecane in Couette Shear Flow By Molecular Dynamcis Simulation", Journal of Non-Newtonian Fluid Mech. vol.77(1998), pp.53-78. 44.A. Jabbarzadeh, J.D. Atkinson, R.I. Tanner, “Wall slip in the molecular dynamics simulation of thin films of hexadecane", Journal of Chemical Physics, vol.110 (1999), pp.2612-2620. 45.J.D. Moore, S.T. Cui, H.D. Cochran, P.T. Cummings, "A molecular dynamics study of a short chain polyethylene melt I. Steady state shear", Journal of Non-Newtonian Fluid Mechanism, vol.93(2000), pp.83-99. 46.J.D. Moore, S.T. Cui, H.D. Cochran, P.T. Cummings, "A molecular dynamics study of a short chain polyethylene melt II. Transient response upon onset shear", Journal of Non-Newtonian Fluid Mechanism, vol.93(2000), pp.101-116. 47.A. Jabbarzadeh, J.D. Atkinson, R.I. Tanner, “Effect of the wall roughness on slip and rheological properties of hexadecane in molecular dynamics simulation of Couette shear flow between two sinusoidal walls”, Physical Review E, Vol. 61(2000), pp.690-699. 48.S.T. O’Connell, P.A. Thompson, "Molecular Dynamics-Continuum Hybrid Computations:A Tool for Studying Complex Fluid Flows", Physical Review E, vol.52 (1995), pp.5792-5795. 49.J. Li, D. Liao, S. Yip, "Coupling continuum to molecular-dynamics simulation: Reflecting particle method and the field estimator", Physical Review E, vol.57(1999), pp.7359-7367. 50.S. Plimpton, "Fast Parallel Algorithms for Short-Range Molecular Dynamics", Journal of Computational Physics, vol.117(1995), pp.1-19. 51.H.Schreiber, O, Steinhauser, P. Schuster, "Parallel molecular dynamics of biomolecules", Parallel computing, vol.18(5)(1992) pp.557-573. 52.Y. Hwang, R. Das, F.H. Saltz, M. Hadošcek, B.R. Brooks, "Parallelizing molecular dynamics programs for distributed-memory machines", IEEE comput. Sci. and Engrg. vol.2 (1995) pp.18-29. 53.V.E. Taylor, R.L. Stevens, K.E. Arnold, "Parallel Molecualr Dynamics:Implications for Massively Parallel Machines", Journal of Parallel and Distributed Computing, vol.45(1997), pp.166-175. 54.R. Murty, D. Okunbor, "Efficient parallel algorithms for molecular dynamics simulation", Parallel Computing, vol.25(1999), pp.217-230. 55.J. W. Shu, B. Wang, M. Chen, J. Z. Wang, W. M. Zheng, " Optimization techniques for parallel force-decomposition algorithm in molecular dynamic simulations", Computer Physics Communications, vol.154(2003), pp.121-130. 56.S.G. Srinivasan, I. Ashok, Hannes Jonsson, Gretchen Kalonji, John Zahorjan, "Dynamic-domain-decomposition parallel molecular dynamics", Computer Physics Communications. vol.102 (1997), pp.44-58. 57.R. Hayashi, S. horiguchi, "Efficiency of dynamic Load Balancing Based on Permanent Cells for Parallel Molecular Dynamics Simulation", 14th International Parallel and Distributed Processing Symposium(2000), p.85. 58.D. Brown, H. Minoux, Bernard Maigret, "A domain decomposition parallel processing algorithm for molecular dynamics simulations of system s of arbitrary connectivity", Computer Physics Communications, vol.103(1997), pp.170-186. 59.D. Brown, J.H.R. Clarke, M. Okuda, T. Yamazaki, "A domain decomposition parallel processing algorithm for molecular dynamics simulations of polymers", Computer Physics Communications, vol.83(1994), pp.1-13. 60.G. Eisenhauer, K. Schwan, "Design and Analysis of a Parallel Molecular Dynamics Application", Journal of Parallel and Distributed Computing, vol.35(1996), pp.76-90. 61.M. Moseler, U. Landman, "Formation, Stability, and Breakup of Nanojets", Science, vol.289(2000), pp.1165-1169. 62.A. Jabbarzadeh, J.D. Atkinson, R.I. Tanner, "A parallel algorithm for molecular dynamics simulation of branched molecules, " Computer Physics Communications 150(2003), pp.65-84. 63.G. S. Heffelfinger, "Parallel atomistic simulations", Computer Physics Communications, vol.128(2000), pp.219-237. 64.J.N. Israelachvili, "Intermolecular and Surface Force, 2nd ed. " Academic, New York (1992). 65.W.G.. Hoover, "Canonical dynamics: Equilibrium phase-space distributions", Physical Review A, vol.31(1985), pp.1695-1697. 66.S. Nosé, "A unified formulation of the constant temperature molecular dynamics methods", Journal of Chemical Physics, vol.81(1984), pp.511-519. 67.D.D. Humphreys, R.A. Friesner, B.J. Berne, "A Multiple-Time-Step Molecular Dynamics Algorithm for Macromolecules", Journal of Physics Chemical, vol.98(1994), pp.6885-6892. 68.A. Rahman, "Correlations in the Motion of Atoms in Liquid Argon, " Physical Review, vol.136(1964), p.405. 69.C. W. Gear, "Numerical Initial Value Problems in Ordinary Differential Equations", Prentice-Hall, Englewood Cliffs, NJ, 1971, Chapter 9. 70.D. Wolff, W.G. Rudd, "Tabulated potentials in molecular dynamics simulations", Comput. Phys. Commun., vol 120(1999), pp.20-32. 71.M. Kröger, W. Loose, S. Hess, "Rheology and structural changes of polymer melts via nonequilibrium molecular dynamics", Journal of Rheology, vol.37(1993), pp.1057-1079. 72.Y. Yamaguchi, S. Maruyama, "A molecular dynamics simulation of fullerene formation process", Chemical Physies Letters, vol.286(1998), pp.336-342. 73.王鎮杰,"以分子動力學模擬高分子在奈米尺度下之流變性質與擠出行為",碩士論文,國立清華大學,2003。id NH0925063037 sid 913644 cfn 0 / id NH0925063038 auc 莊景光 tic 離子鍵結型奈米微粒製備與其對小腸上皮細胞滲透能力之探討 adc 宋信文 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 52 kwc 奈米微粒 kwc 幾丁聚醣 kwc 聚麩氨酸 kwc 小腸上皮細胞 abc 小腸上皮細胞(epithelial cell)扮演著隔開人體與外界環境的角色,主要是由細胞內的酵素與連接細胞之間的蛋白質錯合物構成屏障的功能。而由於細胞膜主要是由脂雙層所構成,因此親脂性分子可以直接穿過細胞膜(transcellular pathway)通過上皮細胞;反之,親水性分子無法直接穿過疏水性的細胞膜,需要經由細胞與細胞之間的空隙(paracellular pathway)通過上皮細胞。位於上皮細胞之間的蛋白質錯合物tight junction為paracellular pathway的主要屏障,其功用為選擇性地讓一些親水性分子進出上皮細胞。正因為小腸上皮細胞之間tight junction的阻礙,造成以往經由口服投藥的親水性蛋白質藥物在小腸無法有效地吸收,進而影響藥物治療疾病的功效。 tc 目 錄 內容 頁數 摘要 I 目錄 III 圖索引 VI 表索引 VIII 第一章 緒論 1.1 消化道 1 1.2 親水性分子在消化道的吸收途徑 3 1.3 Caco-2 cell monolayers 5 1.4 奈米微粒 5 1.5 離子鍵結型奈米微粒 6 1.6 幾丁質與幾丁聚醣 7 1.7 聚麩氨酸 8 1.8 研究動機與目的 9 第二章 製備小分子材料 2.1 研究目的 13 2.2 小分子幾丁聚醣的製備 13 2.2.1幾丁聚醣 13 2.2.2去聚合幾丁聚醣 13 2.3 小分子聚麩氨酸的製備 15 2.3.1發酵聚麩氨酸 15 2.3.2水解聚麩氨酸 17 2.4 膠體色層分析(GPC) 17 2.4.1幾丁聚醣之GPC分析 17 2.4.2聚麩氨酸之GPC分析 18 2.5 實驗結果與討論 18 2.5.1 幾丁聚醣膠體色層分析(GPC) 18 2.5.2 聚麩氨酸膠體色層分析(GPC) 19 2.6 結論 20 第三章 製備離子鍵結型奈米微粒 3.1 研究目的 21 3.2 離子鍵結型奈米微粒的製備 21 3.3 奈米微粒粒徑與表面電荷分析 22 3.4 穿透式電子顯微鏡 (TEM) 22 3.5 原子力顯微儀 (AFM) 23 3.6 實驗結果與討論 23 3.6.1巨觀分析 23 3.6.2粒徑分析 25 3.6.3表面電荷分析 29 3.6.4穿透式電子顯微鏡 (TEM) -- 31 3.6.5原子力顯微儀 (AFM) 32 3.7 結論 33 第四章 離子鍵結型奈米微粒對小腸上皮細胞滲透能力之探討 4.1 研究目的 34 4.2 Caco-2 cell monolayers的培養 34 4.3 Transepithelial electrical resistance (TEER ) 35 4.4 Confocal laser scanning microscopy (CLSM) 36 4.4.1製備FITC-labeled幾丁聚醣與奈米微粒 36 4.5 實驗結果與討論 --38 4.5.1 Transepithelial electrical resistance (TEER ) 38 4.5.2 Confocal laser scanning microscopy (CLSM) 42 4.6 結論 46 參考書目 47rf 1. 姚富洲, “生命科學,” 合記出版公司,台北, 2002. 2. 卓貴美, “圖解生理學,” 五南圖書出版公司,台北, 339-362 ,2000. 3. 朱家瑜, “人體組織學,” 藝軒出版公司, 台北, ,2000. 4. Ward, P.D., Tippin, T.K., Thakker, D.R., “Enhancing paracellular permeability by modulating epithelial tight junctions,” Pharmaceutical Science & Technology Today, 3, 346-358, 2000. 5. Diamond, J.M., “The epithelial junction: bridge, gate, and fence,” Physiologist, 20, 10-8, 1977. 6. Ballard, S.T., Hunter, J.H., Taylor, A.E., “Regulation of tight-junction permeability during nutrient absorption across the intestinal epithelium,” Annu. rev. nutr, 15, 35-55, 1995. 7. Hidalgo, I.J., Raub, T.J., Borchardt, R.T., “Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability,” Gastroenterology, 96, 736-49, 1989. 8. Wilson, G., “Transport and permeability properties of human Caco-2 cells: an in vitro model of the intestinal epithelial cell barrier,” J. control. release., 11, 25-40, 1990. 9. Delie, F. and Rubas, W., “A human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: advantages and limitations of the Caco-2 model,” Crit. rev. ther. drug carr. syst., 14, 221-286, 1997. 10. Liu, D.Z., LeCluyse, E.L., Thakker, D.R., “Dodecylphosphocholine- mediated enhancement of paracellular permeability and cytotoxicity in Caco-2 cell monolayers,” J. pharm. sci, 88, 1161-1168, 1999. 11. Liu, D.Z., Morris-Natschke, S.L., Kucera, L.S., Ishaq, K.S., Thakker, D.R., “Structure-activity relationships for enhancement of paracellular permeability by 2-alkoxy-3-alkylamidopropyl- phosphocholines across Caco-2 cell monolayers”, J. pharm. sci, 88, 1169-1174, 1999. 12. Artursson, P., Palm, K., Luthman, K., “Caco-2 monolayers in experimental and theoretical predictions of drug transport,” Adv. drug deliv. rev., 46, 27-43, 2001. 13. 李昂, “奈米顆粒在藥物輸遞的應用,” 化工資訊, 10, 44-55, 2001. 14. Soppimath, K.S., Aminabhavi, T.M., Kulkarni, A.R., Rudzinski, W.E., “Biodegradable polymeric nanoparticles as drug delivery devices,” J. control. release., 70, 1-20, 2001. 15. Hu, Y., Jiang, X., Ding, Y., Ge, H., Yuan, Y., Yang, C., “Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles,” Biomaterials, 23, 3193-3201, 2002. 16. Hans, M.L. and Lowman, A.M., “Biodegradable nanoparticles for drug delivery and targeting,” Current Opinion in Solid and Materials Science, 6, 319-327, 2002. 17. Pan, Y,. Li, Y.J., Zhao, H.Y., Zheng, J.M., Xu, H., Wei, G., Hao J.S. Cui, F.D., “Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo,” Int. j. pharm., 249, 139-147, 2002. 18. Hirano, S. and Matsumura, T., “N-acyl derivatives of chitosan and their hydrolysis by chitonase,” Carbohydr. res, 165, 120-122, 1987. 19. Brandenberg, G., Leibrock, L.G., Shuman, R., Malette, W.G., Quigley, H., “Chitosan: a new topical hemostatic agent for diffuse capillary bleeding in brain tissue,” Neurosurgery, 15, 9-13, 1984. 20. Muzzarelli, R.A., Tanfani, F., Emanuelli, M., “Sulfated N-carboxymethyl chitosan : Novel blood anticoagulants,” Carbohydr. res, 126, 225-231, 1984. 21. Stanley, W.L., Watters, G.G., Kelly, S.H., Olson, A.C., “Glucoamylase immobilized on chitin with glutaraldehyde,” Biotechnol. bioeng., 20, 135-140, 1978. 22. Onsoyen, E. and Skaugrud, O., “Metal recovery using chitosan,” J. chem. technol. biotechnol., 49, 395-404, 1990. 23. Muzzarelli, R.A.A., “Chitin and its derivatives: New trends of applied and research,” Carbohydr. res, 3, 52-57, 1993. 24. Ralston, G.B., Tracey, M.V., Wrench, P.V., “The inhibition of fermentation in baker’s yeast by chitin,” Biochimca et Biophysica Acta, 93, 652-665, 1964. 25. Nishimura, S., Ikeuchi, Y., Tokura, S., “The adsorption of bovine blood proteins onto the surface of O-carboxymethyl chitin,” Carbohydr. res, 134, 305-312, 1984. 26. Inoue, K., Baba, Y., Yoshizuka, K., “Selectivity series in the adsorption of mental ions on a resin prepared by crosslinking copper(Ⅱ)-complexed chitosan,” Chem. lett., 1281-1284, 1988. 27. Chandy, T. and Sharma, C.P., “Prostaglandin E1-immobilized poly(vmyl alcohol)-blended chitosan membranes: blood compatibility and permeability properties,” Journal of Application Polymer Science, 44, 2145-2156, 1992. 28. Kifime, K., Yamaguchi, Y., Kishimoto, S., “Wound healing effect of chitin surgical dressing,” Trans. Soc. Biomat., XI, 216-220, 1988. 29. Pelletir, A., Lemire, L., Sygnsch, J., “Chitin / chitosan transformation by thermo- chemical treatment,” Biotechnol. bioeng., 36, 310-315, 1990. 30. Peluso, G., Petille, O., Ranieri, M., Samtin, M., Ambrosio, L., Calabro, D., Avallone, B., Balsamo, G., “Chitosan-mediated stimulation of macrophage function,” Biomaterials, 15, 1215-1220, 1994. 31. Sakaguchi, T., Horikoshi, T., Nakajima, A., “Adsorption of uraniumby chitin phosphate and chitosan phosphate,” Agric. biol. chem., 45, 2191-2195, 1981. 32. Peniston, Q.P. and Johnson, E.L., “Process for depolymerization of chitosan,” U.S. Patent, No. 3922260, 1-5, 1975. 33. MacLaughlin, F.C., Mumper, R.J., Wang, J., Tagliaferri, J.M., Gill I., Hinchcliffe, M., Rolland, A.P., “Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid deliver,” J. control. release., 56, 259-272, 1998. 34. Gross, A., Bacterial γ-poly(glutamic acid). In: Kaplan, D.L. (Ed.) Biopolymers from Renewable Resources, Springer-Verlag, New York, 195-219, 1998. 35. Richard, A. and Margaritis, A., “Poly(glutamic acid) for biomedical applications,” Critical Reviews in Biotechnology, 21, 219-32, 2001. 36. Yoon, S.H., Do, J.H., Lee, S.Y., Chang, H.N., “Production of poly-γ-glutamic acid by fed-batch culture of Bacillus licheniformis,” Biotechnol. lett., 22, 585-588, 2000. 37. Thorne, C.B., Housewright, R.D., Leonard, C.G., “Production of glutamyl polypeptide by Bacillus Subtilis,” U.S. Patent, NO. 2895882, 1-4, 1959. 38. Goto, A. and Kunioka, M., “Biosynthesis and Hydrolysis of Poly(γ-glutamic acid) from Bacillus subtilis IFO3335,” Bioscience Biotechnology Biochemistry, 56, 1031-1035, 1992. 39. Kotze, A.F., Luessen, H.L., de Boer, A.G., Verhoef, J.C., Junginger, H.E., “Chitosan for enhanced intestinal permeability: prospects for derivatives soluble in neutral and basic environments,” European Journal of Pharmaceutical Sciences, 7, 145-151, 1999. 40. Thanou, M., Verhoef, J.C., Junginger, H.E., “Chitosan and its derivatives as intestinal absorption enhancers,” Adv. drug deliv. rev., 50, Suppl 1, S91-101, 2001. 41. Kotze, A.F., Thanou, M.M., Luebetaen, H.L., de Boer, A.G., Verhoef, J.C., Junginger, H.E., “Enhancement of paracellular drug transport with highly quaternized N-trimethyl chitosan chloride in neutral environments: in vitro evaluation in intestinal epithelial cells (Caco-2),” J. pharm. sci., 88, 253-257, 1999. 42. Thanou, M., Verhoef, J.C., Junginger, H.E., “Oral drug absorption enhancement by chitosan and its derivatives,” Adv. drug deliv. rev., 52, 117-126, 2001. 43. Kotze, A.F., Thanou, M.M., Luessen, H.L., de Boer, B.G., Verhoef, J.C., Junginger, H.E., “Effect of the degree of quaternization of N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2),” European Journal of Pharmaceutics & Biopharmaceutics, 47, 269-274, 1999. 44. Kotze, A.F., Luessen, H.L., de Leeuw, B.J., de Boer, B.G., Verhoef, J.C., Junginger, H.E., “N-trimethyl chitosan chloride as a potential absorption enhancer across mucosal surfaces: in vitro evaluation in intestinal epithelial cells (Caco-2),” Pharm. res., 14, 1197-1202, 1997. 45. 陳家全, “生物電子顯微鏡學,” 行政院國家科學委員會精密儀器發展中心”, 新竹, 1997. 46. Yamashita, S., Konishi, K., Yamazaki, Y., Taki, Y., Sakane, T., Sezaki, H., Furuyama, Y., “New and better protocols for a short-term Caco-2 cell culture system,” J. pharm. sci., 91, 669-679, 2002. 47. Borchard, G., Lueßen, H.L., de Boer, Albertus, G., Verhoef, J., C., Lehr, C.M., “The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. III: Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro,” J. control. release., 39, 131-138, 1996. 48. Zengshuan, M. and Lim, L.Y., “Uptake of chitosan and associated insulin in Caco-2 cell monolayers: a comparison between chitosan molecules and chitosan nanoparticles,” Pharm. res., 20, 1812-1819, 2003.id NH0925063038 sid 913647 cfn 0 / id NH0925063039 auc 龔世杰 tic 光擴散燈箱片之研發與製作 adc 劉大佼 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 75 kwc 燈箱片 kwc 噴墨列印 kwc 黏著 kwc PET kwc 塗佈 abc 光擴散燈箱片為數位彩色列印主流噴墨技術中所用到層次最高,生產製作最困難的產品,其構造為在透明聚酯膜上塗佈,包括光擴散層、吸墨顯色層及黏著層的數層塗層。其功能為捷運站、百貨公司、機場等地點所用到的背面打光的廣告招牌。 tc 摘要 I 目錄 III 圖目錄 VI 表目錄 X 壹、緒論 1 1-1 光擴散燈箱片背景與簡介 1 1-2 黏著性探討 3 1-3 塗佈工程 4 貳、文獻回顧 9 2-1 吸墨層配方 9 2-2 黏著理論及實務探討 10 2-3 狹縫式塗佈技術與乾燥 11 2-3.1 單層狹縫式塗佈工程 11 2-3.2 雙層共擠壓塗佈工程 13 參、實驗方法 16 3-1 分析儀器 16 3-2 藥品及耗材 18 3-3 實驗流體的配製 20 3-4 實驗量測方法 20 3-5 基本配方及黏著性測試 22 3-5.1 手塗裝置 22 3-5.2 繪圖機裝置 22 3-5.3 黏著性測試裝置 23 3-5.4 手塗實驗步驟 23 3-5.5 黏著性測試實驗步驟 23 3-6 狹縫式塗佈工程 28 3-6.1 單層狹縫式塗佈裝置 28 3-6.2 雙層共擠壓塗佈裝置 29 3-6.3 單層狹縫式塗佈之實驗步驟 29 3-6.4 雙層共擠壓塗佈之實驗步驟 30 3-6.5 小型連續式塗佈機 31 3-6.6 工研院材料所連續式塗佈機 31 肆、研究方法 41 4-1 SEM分析技術 41 4-2基本配方之研究 44 4-3黏著性之研究 46 4-4 狹縫式塗佈工程 49 伍、結果與討論 52 5-1吸墨層配方之建立 52 5-2黏著性探討 53 5-3狹縫式塗佈工程 65 陸、結論 71 參考文獻 73 符號說明 75 圖目錄 圖1-1.光擴散燈箱片之廣告看板 6 圖1-2.光擴散燈箱片基本結構 6 圖1-3.預先計量式的塗佈方式 7 圖1-4.常見的塗佈缺陷 8 圖2-1.Lubar(1999)所提出的燈箱片基本結構 14 圖2-2.Kinloch(1987)書中所提之表面自由能示意圖 14 圖3-1.PVA化學結構式 19 圖3-2.PVP化學結構式 19 圖3-3.PET化學結構式 19 圖3-4.黏著劑可能之化學結構式 19 圖3-5.手塗裝置示意圖 25 圖3-6.實際手塗後結果 25 圖3-7.繪圖機主體外觀 26 圖3-8.手塗樣品列印處 26 圖3-9. (a)黏著性測試刀主體 (b)刀口局部放大 27 圖3-10. (a)黏著性測試膠帶 (b)橡皮擦 27 圖3-11.單層狹縫式塗佈實驗裝置示意圖 32 圖3-12.單層狹縫式模具示意圖 33 圖3-13.實驗各項參數定義 34 圖3-14.單層狹縫式塗佈實際裝置圖 35 圖3-15.雙層共擠壓塗佈實驗裝置示意圖 36 圖3-16.雙層共擠壓模具示意圖 37 圖3-17.小型連續式塗佈機外觀 38 圖3-18.烘箱內部情形 38 圖3-19.實際塗佈情形 39 圖3-20.工研院之連續式塗佈機 39 圖3-21.塗佈機相關設備示意圖 40 圖3-22.實際塗佈情形 40 圖4-1.六家廠商SEM比較圖(4000倍) 43 圖4-2.列印測試之標準圖檔 45 圖4-3.手塗成品結構示意圖 47 圖4-4.ASTM D3359-95A黏著性評分表 48 圖4-5.單層狹縫式塗佈視窗q-V圖 μ=1043cps;H=0.2mm & 0.5mm;W=0.2mm;β=0° 50 圖4-6.單層狹縫式塗佈視窗t-Ca圖 μ=1043cps;H=0.2mm & 0.5mm;W=0.2mm;β=0° 51 圖5-1.在PET基材上塗上單純PVA層(5~10μm) 58 圖5-2.在PET基材上塗上PVA加黏著劑層(5~10μm) 58 圖5-3.在PET基材上先塗上黏著劑A1092層(1~3μm)再塗上單純PVA層(5~10μm) 58 圖5-4.在PET基材上先塗上黏著劑2007層(1~3μm)再塗上單純PVA層(5~10μm) 59 圖5-5.在PET基材上先塗上黏著劑A1120層(1~3μm)再塗上單純PVA層(5~10μm) 59 圖5-6.在PET基材上先塗上黏著劑2007層(1~3μm)再塗上PVA加黏著劑2007層(5~10μm) 59 圖5-7.在PET基材上先塗上黏著劑A1092層(1~3μm)再塗上PVA加低於7%之黏著劑A1092層(5~10μm) 60 圖5-8.在PET基材上先塗上黏著劑A1092層(1~3μm)再塗上PVA加高於7%之黏著劑A1092層(5~10μm) 60 圖5-9.在PET基材上先塗上黏著劑A1120層(1~3μm)再塗上PVA加黏著劑A1120層(5~10μm) 60 圖5-10.在PET基材上先塗上PVA層(5~10μm),再塗上光擴散層(3~8μm) 61 圖5-11.在PET基材上先塗上PVA加黏著劑層(5~10μm),再塗上光擴散層(3~8μm) 61 圖5-12.在PET基材上先塗上A1120黏著層(1~3μm),再依序塗上PVA層(5~10μm)及光擴散層(3~8μm) 61 圖5-13.在PET基材上先塗上A1120層(1~3μm),再依序塗上PVA加A1120層(5~10μm)及光擴散層(3~8μm) 62 圖5-14.FT-IR光譜圖 (上方為A1092,下方為A1120) 62 圖5-15.A1092之NMR光譜圖 (氫譜) 63 圖5-16.A1120之NMR光譜圖 (氫譜) 63 圖5-17. SEM剖面圖 (未經primer處理,PVA層及光擴散層) 64 圖5-18.SEM剖面圖 (A1092為底層加上PVA+A1092及光擴散層) 64 圖5-19. SEM剖面圖 (A1120為底層加上PVA及光擴散層) 64 圖5-20.SEM剖面圖 (單層by單層) 68 圖5-21.SEM剖面圖 (雙層共擠壓塗佈 in 實驗室) 68 圖5-22. SEM剖面圖 (雙層共擠壓塗佈 in 工研院) 69 圖5-23.SEM剖面圖 (雙層共擠壓塗佈 in 工研院) 69 圖5-24.於工研院製作之光擴散燈箱片 70 表目錄 表2-1.Kinloch(1987)書中提及的鍵結能量表 15 表3-1.單層狹縫式模具之幾何參數 33 表3-2.雙層共擠壓外部接觸型模具之幾何參數 37 表4-1.各家燈片可能基本結構比較圖 43 表4-2.黏著劑基本性質 48 表5-1.黏著性測試評斷結果 57 表5-2.工研院雙層塗佈各項參數 67 表5-3.光擴散層基本配方 67 表5-4.吸墨層基本配方 67rf Comyn. J., “Adhesion Science”, Royal Society of Chemistry, UK(1997) Fourche, G., “An Overview of the Basic Aspects of Polymer Adhesion. Part I: Fundamentals”, Polym. Eng. Sci., 35, 957(1995) Fourche, G., “An Overview of the Basic Aspects of Polymer Adhesion. Part II: Application to Surface Treatments”, Polym. Eng. Sci., 35, 968(1995) Goetzen, K., A. Niemoeller, “Recording Material for the Inkjet Process”, U. S. Patent, 5,989,701(1999) Ishiwata, M., Y. Uchida, Y. Nagai, “Process and Apparatus for Continuous Fluid Coating of A Traveling Web”, U. S. Patent, 3,502,494 (1970) Kinloch, A.J., “Adhesion and Adhesives”, Chapman and Hall, New York( 1987) Lubar, M. J., “Ink Jet Recording Medium”, U. S. Patent, 5,888,629(1999) Li, H., “Inkjet Printing Medium Comprising Multiple Coatings”, U. S. Patent, 6,183,844(2001) Lavielle, L., J. Schultz, K. Nakajima, “Acid-Base Surface Properties of Modified Poly(ethylene Terephthalate) Films and Gelatin:Relationship to Adhesion”, J. Appl. Polym Sci., 42, 2825(1991) Myers, D., “Surface, Interfaces, and Colloids: Principles and Applications”, John Willey & Sons., New York(1993) Miller, F.D., J.J. Wheeler, “Coating High Viscosity Liquid”, U. S. Patent, 3,206,323(1965) Okamoto, Y., P.T. lemarczyk, “Primers for Bonding Polyolefin Substrates with Alkyl Cyanoacrylate Adhesive”, J. Adhesion, 40, 81 (1993) Ruschak, K.J., “Limiting flow in a pre-metering coating device”, Chem. Eng. Sci. 31, 1057(1976) Van der Leeden, M.C., G. Frens, “Surface Properties of Plastic Materals in Relation to Their Adhering Performance”, Adv. Eng. Mater, 4, 280(2002) Yang, J., A. Garton, “Primers for Adhesive Bonding to Polyolefins”, J. Appl. Polm. Sci., 48, 359(1993) Ylitalo, C. M., J. L. Lee, R. L. Severance, O. S. Woo and E. P. Janulis, “Primed Substrates Comprising Radiation Cured Ink Jetted Images”, U. S. Patent, 6,720,042(2004) Ylitalo, C. M., B. W. Ludwig, D. J. Kinning, E. M. Rinehart, J. L. Lee, O. S. Woo, R. L. Severance, R. F. Theissen and E. P. Janulis, “Imaged Articles Comprising A Substrate Having A Primed Surface”, U. S. Patent, 2003/0054139 A1(2003) 李國陽,1990,擠壓式塗佈工程之研究。國立清華大學化學工程研究所博士論文。 朱文彬,1997,低黏度牛頓流體之預調式塗佈分析。國立清華大學化學工程研究所碩士論文。 林庭瑜,1999,高黏度塗液塗佈視窗之測定與分析。國立清華大學化學工程研究所碩士論文。 俞文正,1994,共擠壓塗佈技術之建立與分析。國立清華大學化學工程研究所碩士論文。 林瑜平,1999,PVA水溶液雙層共擠壓式塗佈視窗之研究與分析。國立清華大學化學工程研究所碩士論文。id NH0925063039 sid 913649 cfn 0 / id NH0925063040 auc 李俊賢 tic 負載銀二氧化鈦光觸媒分散及其光催化反應之研究 adc 周更生 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 77 kwc 奈米銀 kwc 二氧化鈦 kwc 光催化反應 abc 在本論文研究中,首先是將市售之二氧化鈦粉末分散,使其粒子表面積能夠充分展現以提高光催化活性,而經比較後加入界面活性劑Triton X-100比純以超音波震盪的分散效果好,且穩定性也較佳,其中若調整加入界面活性劑後之懸浮液pH值以增強二氧化鈦粒子表面之帶電量,由粒徑儀結果顯示可將原先聚集成3 μm大小之粒子分散至20 nm大小左右,而由對亞甲基藍之光催化測試結果亦証實了經分散過之二氧化鈦粒子有較佳之光催化活性。 tc 目錄 一、前言 1 二、文獻回顧 2 2.1 二氧化鈦簡介 2 2.2 二氧化鈦的特性 4 2.2.1 抑菌、殺菌能力 4 2.2.2 無毒性 4 2.2.3 脫臭 4 2.2.4 親水性 5 2.2.5 自淨性 5 2.3 光催化反應原理 5 2.4 量子效應 6 2.5 光催化反應器 7 2.5.1 泥漿反應器 7 2.5.2 薄膜反應器 8 2.5.3 填充床反應器 9 2.5.4 流體化床反應器 10 2.6 改質二氧化鈦觸媒 11 2.6.1 Au/TiO2 11 2.6.2 Pt/TiO2 12 2.6.3 Ag/TiO2 12 2.6.4 Mn+/TiO2 13 2.6.5 F-/TiO2 13 2.6.6 MgO/TiO2 14 2.6.7 V2O5/TiO2 14 2.6.8 CdS/TiO2 14 2.7 光催化分解酚 16 三、實驗部分 18 3.1 實驗藥品 18 3.2 實驗儀器 20 3.3 實驗步驟 21 3.3.1 二氧化鈦粒子基本性質之分析 21 3.3.1.1 表面結構分析 21 3.3.1.2 比表面積分析 21 3.3.1.3 晶相分析 22 3.3.1.4 光催化測試 22 3.3.2 二氧化鈦粒子之分散 23 3.3.2.1 超音波震盪分散 23 3.3.2.2 調整懸浮液之pH值觀察二氧化鈦 粒子分散行為 23 3.3.2.3 以Triton X-100分散 24 3.3.2.4 調整Triton X-100之pH值觀察二 氧化鈦粒子分散行為 24 3.3.2.5 光催化測試 24 3.3.3 奈米銀負載二氧化鈦粒子 25 3.3.3.1 沉浸法 25 3.3.3.1.1 製備步驟 25 3.3.3.1.2 光催化測試 26 3.3.3.1.3 不同粒徑之奈米銀負載對二氧 化鈦光活性之影響 26 3.3.3.2 化學還原法 27 3.3.3.2.1 固定銀離子濃度下改變鹼濃度 還原奈米銀於二氧化鈦粒子 27 3.3.3.2.2 固定鹼濃度下改變銀離子濃度 還原奈米銀於二氧化鈦粒子 28 3.3.3.2.3 改變銀離子吸附於二氧化鈦粒 子上之量 28 3.3.4 以高溫氫氣還原二氧化鈦 28 3.3.4.1 製備步驟 28 3.3.4.2 晶相與比表面積分析 29 3.3.4.3 程溫還原分析 29 3.3.4.4 光催化測試 30 3.3.4.5 負載奈米銀於經高溫氫氣還原之 二氧化鈦粒子 30 3.3.4.6 光催化分解酚 30 3.3.5 二氧化鈦薄膜之製備 31 3.3.5.1 以Silicone Rubber溶液與二氧 化鈦粉末混合作為覆膜液 31 3.3.5.2 以幾丁聚醣溶液與二氧化鈦粉末 混合作為覆膜液 32 3.3.5.3 以PU水溶液與二氧化鈦粉末混合 作為覆膜液 33 3.3.5.4 二氧化鈦薄膜的光催化測試 33 四、實驗結果與討論 35 4.1 二氧化鈦粒子基本性質之分析 35 4.1.1 表面結構分析 35 4.1.2 比表面積分析 35 4.1.3 晶相分析 37 4.1.4 光催化測試 39 4.2 二氧化鈦粒子之分散 42 4.2.1 以超音波震盪分散二氧化鈦粒子 42 4.2.2 調整懸浮液之pH值觀察二氧化鈦粒 子分散行為 43 4.2.3 以不同濃度之Triton X-100水溶液 分散二氧化鈦粒子 45 4.2.4 以不同pH值之Triton X-100水溶液 分散二氧化鈦粒子 47 4.2.5 比較分散後二氧化鈦懸浮液之穩定 程度 49 4.2.6 二氧化鈦粒子經分散後之光催化測 試 50 4.3 奈米銀負載二氧化鈦粒子 51 4.3.1 沉浸法 51 4.3.1.1 固態UV-Vis吸收光譜圖 51 4.3.1.2 光催化測試 52 4.3.1.3 不同粒徑之奈米銀負載對二氧化 鈦光活性之影響 55 4.3.2 化學還原法 57 4.3.2.1 固定銀離子濃度下改變鹼濃度還 原奈米銀於二氧化鈦粒子 57 4.3.2.2 固定鹼濃度下改變銀離子濃度還 原奈米銀於二氧化鈦粒子 59 4.3.2.3 改變銀離子吸附於二氧化鈦粒子 上之量 60 4.4 以高溫氫氣還原二氧化鈦 62 4.4.1 晶相與表面積分析 62 4.4.2 程溫還原分析 63 4.4.3 光催化測試 63 4.4.4 負載奈米銀於經高溫氫氣還原之二 氧化鈦粒子 65 4.4.5 光催化分解酚 67 4.5 二氧化鈦薄膜製備 68 4.5.1 薄膜厚度與表面均勻程度 68 4.5.2 光催化測試 70 五、結論 72 六、參考文獻 74rf Aguado, M. A., and M. A. Anderson, “Degradation of Formic Acid over Semiconducting Membranes Supported on Glass: Effects of Structure and Electronic Doping”, Solar Energy Mat. Solar Cell, 28, p.345, (1993) Albert, M., Y-M. Gao, D. Toft, K. Dwight, and A. Wold, “Photoassisted Gold Deposition of Titanium Dioxide”, Mat. Res. Bull., 27, p.961, (1992) Bamwenda, G. R., S. Tsubuta, T. Nakamura, and M. Haruta, “Photoassisted Hydrogen Production from a Water-Ethanol Solution: a Comparision of Activities of Au- TiO2 and Pt- TiO2”, J. Photochemistry and Photobiology A:Chemistry, 89, p.177, (1995) Burdett, J. K., Timothy Hughbanks, Gordon J. Miller, James W. Richardson, and Joseph V. Smith, “Structural-Electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295K”, J. Am. Chem. Soc., 109, p.3639, (1987) Carlson, T., and G.L. Griffin, “Photooxidation od Methanol Using V2O5/TiO2 and MoO3/TiO2 Surface Oxide Monolayer Catalysts”, J. Phys. Chem., 90, p.5896, (1986) Dibble, L. A., and G. B. Raupp, “Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Air Streams”, ES&T, 26, p.492, (1992) Dobosz, A., and A. Sobczyński, “The Influence of Silver Additivies on Titania Photoactivity in the Photooxidation of Phenol”, Water Research, 37, p.1489, (2003) Dobosz, A., and A. Sobczyński, “Water Detoxification: Photocatalytic Decomposition of Phenol on Ag/TiO2”, Monatshefte für Chemie, 132, p.1037, (2001) Driessen, M. D., and V. H. Grassian, “Photooxidation of Trichloroethylene on Pt/ TiO2”, J. Phys. Chem. B, 102, p.1418, (1998) Gao, Y-M., H-S. Shen, K. Dwight, and A. Wold, “Preparation and Photocatalytic Properties of Titanium (IV) Oxide Films”, Mat. Res. Bull., 27, p.1023, (1992) Herrmann, J. M., H. Tahiri, Y. Ait-Ichon, G. Lassaletta, A. R. Gonzalez-Elipe, and A. Fernandez, Appl. Catal. B: Environ., 13, p.219, (1997) Hsu, J. P., and Y. T. Chang, “An Experimental Study of the Stability of TiO2 particles in Organic-Water Mixtures’, Colloids and Surfaces, 161, p.423, (2000) Hung, C. H., and B. J. Marinas, “Role of Chlorine and Oxygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films”, ES&T, 31(2), p.562, (1997) Hyung, M. S-S., R. C. Jae, J. H. Hoe, M. K. Sang, and C. B. Young, “Comparasion of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visable and UV light irradiation”, Journal of Photochemistry and Photobiology A: Chemistry, 163, p,37, (2004) Ilisz, I., Z. László, and A. Dombi, “Investigation of the photodecomposition of phenol in near-UV-irradiated aqueous TiO2 suspensions. I: Effect of charge-trapping species on the degradation kinetics”, Applied Catalysis A: General, 180, p.25, (1999) Karakitsou, K. E., and X. E. Verykios, “Effects of Altervalent Cation Doping of TiO2 on Its Performance as a Photocatalyst for Water Cleavage”, J. Phys. Chem., 97, p.1184, (1993) Linsebigier, A. L., Lu. G., and J. T. Yates, “Photocatalysis on TiO2 Surface: Principle, Mechanism, and Selected Results”, Chem. Rev., 95, p.735, (1995) Peral, J., and D. F. Ollis, “Heterogeneous Photocatalytic Oxidation of Gas-Phase Organics for Air Purification: Acetone, 1-Butanol, Butyraldehyde, Formaldehyde, and m-Xylene Oxidation”, J. Catal., 134, p.554, (1992) Phase Diagram for Ceramists Figure 4150~4999, The American Ceramic Society, Inc., 75, (1975) Sauer, T., G. Cesconeto Neto, H. J. Jose, and R. F. P. M. Moreira, “Kinetics of Photocalytic Degradation of Reactor”, J. Photochemistry and Photobiology A:Chemistry, 149, p.147, (2002) Sun, B., A. V. Vorontsov, and P. G. Smirniotis, “Role of Platinum Deposited on TiO2 in Phenol Photocatalytic Oxidation”, Langmuir, 19, p.3151, (2003) Yoneyama, H., Y. Toyoguchi, and H. Tamura, “Reduction of Methylene Blue on Illuminated Titanium Dioxide in Methanolic and Aqueous Solution”, J. Phys. Chem., 76, p.3460, (1972) Yu., J. C., Jiagou Yu, Wingkei Ho, Zitao Jiang, and Lizhi Zhang, “Effect of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders”, Chem. Master., 14, p.3808, (2002) Wang C., H. Shang, Y. Tao, T. Yuan, and G. Zhang, “Properties and Morphology of CdS Compounded TiO2 Visible-light Photocatalytic Nanofilms Coated on Glass Surface”, Separation and Purification Technology, 32, p.357, (2003) Windholz, M., The Merck Index, 10th ed., Merck & CO., Inc, N. J., p.9301, (1983) 林正豐, “奈米二氧化鈦之製備及活性測定”, 國立台灣大學碩士論文, (2001) 林彥志, “TiO2光觸媒分解亞甲基藍之變因探討及動力學研究”, 國立台灣大學碩士論文, (1999) 徐惠美, “光觸媒材料與應用製品現況”, 化工資訊, 12, p.28, (2000) 台灣日光燈公司網頁網址:http://www.tfc.com.tw/index.htmlid NH0925063040 sid 913651 cfn 0 / id NH0925063041 auc 林耀楠 tic 斜板-擠壓(S-X)雙層模具塗佈之研究 adc 黃世傑 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 76 kwc 最小濕膜厚度 kwc 斜板擠壓式雙層塗佈 kwc PVA kwc 流場觀察技術 kwc 塗佈缺陷 abc 本研究以實驗方式利用斜板式與狹縫式模具的組合(S-X組合)針對聚乙烯醇(polyvinyl alcohol, PVA)水溶液進行預調式雙層塗佈實驗。研究主要在比較S-X雙層模具與外部接觸型雙層共擠壓式塗佈,實驗發現S-X模具雙層塗佈較外部接觸型雙層共擠壓式更有利於低黏度、低流量比的操作條件,且適用於上下層黏度比範圍大的情形,只要實驗流體能夠在S-X模具上的斜板成膜,即可進行雙層塗佈,並不會出現外部接觸型雙層塗佈在流量比低時因上層塗液膜厚過低而產生的spreading failure現象。在塗佈缺陷方面,低塗佈速率下出現之缺陷為下層所主導的空氣滲入現象;在高塗佈速率下則容易受到上層流體不穩定的影響而產生橫向波塗佈缺陷,此種塗佈缺陷與外部接觸型雙層塗佈相當類似。 tc 摘要……………………………………………………………………I錄………………………………………………………………………II 圖目錄…………………………………………………………………III 表目錄…………………………………………………………………V 緒論……………………………………………………………………1 文獻回顧………………………………………………………………9 擠壓式塗佈工程………………………………………………………9 斜板式塗佈工程………………………………………………………10 多層塗佈模具之設計…………………………………………………10 雙層共擠壓塗佈工程…………………………………………………11 實驗方法………………………………………………………………13 分析儀器及藥品………………………………………………………13 3-1-1 分析儀器…………………………………………………13 3-1-2 藥品………………………………………………………16 實驗流體的配製………………………………………………………17 實驗量測方法……………………………………………………………18 S-X雙層模具塗佈技術…………………………………………………19 3-4-1 塗佈模具………………………………………………………19 3-4-2 實驗裝置………………………………………………………19 3-4-3 實驗步驟………………………………………………………20 流場觀察技術……………………………………………………………24 結果與討論………………………………………………………………27 4-1 S-X模具雙層塗佈技術……………………………………………27 4-2流量比效應…………………………………………………………31 4-3不同黏度比的效應…………………………………………………38 4-4不同塗佈方式比較…………………………………………………49 4-5 CMC效果之分析……………………………………………………52 4-6甘油之S-X雙層塗佈…………………………………………………55 4-7塗佈液珠與流場觀察………………………………………………59 4-7-1觀察技術之建立…………………………………………………59 4-7-2 S-X雙層模具之流場觀察………………………………………61 4-7-3 S-X雙層模具與雙層共擠壓式之流場比較……………………61 結論……………………………………………………………………69 參考文獻………………………………………………………………72 符號說明………………………………………………………………75rf Beck, R. H., “Extrusion Apparatus and Processes of Extruding,” U.S. Patent 2,901,770 (1959). Chino, N., Y. Hiraki, N. Shibata and T. Sato, “Extrusion-type Coating Head for Coating A Magnetic Recording Medium,” U.S. Patent 5,072,688 (1991). Choinski, E. J. and W. Mass, “Method of Multilayer Coating,” U.S. Patent 4,113,903 (1978). Cohen, E. B. and E. B. Gutoff, “Modern Coating and Drying Technology,” VCH Press, New York (1992). Gutoff, E. B. and C. E. Kendrick, “Low Flow Limits of Coating on A Slide Coater,” AIChE J. 33, 141 (1987). Hens, J. and L. Boiy, “Operation of the Bead of A Premetered Coating Device,” Chem. Eng. Sci. 41, 1827 (1986). Higgins, B. G. and L. E. Scriven, “Capillary Pressure and Viscous Pressure Drop Set Bounds on Coating Bead Operability,” Chem. Eng. Sci. 35, 673 (1980). Ishiwata, M, Y. Uchida and Y. Nagai, “Multilayer Coating Method,” U.S. Patent 3,573,965 (1971). Jackson, B. W., D. E. Winkler and C. B. Woodworth, “Apparatus for coating a multiple number of layers onto a substrate,” US Patent 3,996,885 (1976) . Lee, K. Y., L. D. Liu and T. J. Liu, “Minimum Wet Thickness in Extrusion Slot Coating,” Chem. Eng. Sci., 47, 1703 (1992). Miller, F. D., J. J. Wheeler and N. Y. Rochester, “Coating High Viscosity Liquids,” U.S. Patent 3,206,323 (1965). Ning, C. Y., C. C. Tsai and T. J. Liu, “The Effect of Polymer Additives on Extrusion Slot Coating” Chem. Eng. Sci. 51, 3289 (1996). Ruschak, K. J., “Limiting Flow in A Pre-metered Coating Device,” Chem. Eng. Sci. 31, 1057 (1976). Russell, T. A., “Multiple Coating Apparatus,” U.S. Patent 2,761,418 (1956a). Russell, T. A., “Method of Multiple Coating ” U.S. Patent 2,761,791 (1956b). Tallmadage, J. A., C.B. Weiberger and H. L. Faust, “Bead Coating Instability:A Comparison of Speed Limit Data with Theory,” AIChE J. 25, 1065 (1979). 俞文正,1994,共擠壓式塗佈技術之建立與分析。國立清華大學化學工程碩士論文。 高明清,1997,高分子添加劑對雙層共擠壓式塗佈的影響。國立清華大學化學工程碩士論文。 林庭瑜,1999,高黏度塗佈視窗之測定與分析。國立清華大學化學工程研究所碩士論文。 林瑜平,1999,PVA水溶液雙層共擠壓式塗佈視窗之研究與分析。國立清華大學化學工程研究所碩士論文。 楊之光,2001,先進狹縫式塗佈研究。國立清華大學化學工程研究所博士論文。id NH0925063041 sid 913652 cfn 0 / id NH0925063042 auc 陳建志 tic 可見光應答型光觸媒製備及催化活性研究 adc 王奕凱 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 83 kwc 光觸媒 kwc 二氧化鈦 kwc 可見光應答 abc 本研究中以兩種製備方式合成出具可見光催化活性之二氧化鈦光觸媒。其一為溶膠凝膠法製備二氧化鈦,以低溫鍛燒的方式製備出可見光應答型二氧化鈦光觸媒。另一為以含浸法擔載白金化合物在市售光觸媒(UV100)表面,UV100經表面改質後而具有可見光催化活性。以藍、綠、紅光三種LED作為反應光源來測試光催化降解氮氧化合物(NOx),證實本研究中的光觸媒確實具有可見光催化活性,可利用的光源波段可達紅光範圍(580nm-680nm)。光觸媒材料鑑定分析發現,以溶膠凝膠法的二氧化鈦粉體以低溫鍛燒的方式使得二氧化鈦結構中存在C、N元素,造成二氧化鈦結構缺陷而使得部份能隙縮小,因此促進了可見光的吸收。而UV100以含浸法方式觸媒表面擔載白金化合物則是似半導體接合的方式,使得UV100具可見光催化活性。 rf 1. Sid Devahasdin, Chiun Fan, Jr., Kuyen Li, Daniel H. Chen. , Journal of Photochemistry and Photobiology A: Chemistry 156 (2003) 161–170. 2. Sang Bum Kim, Sung Chang Hong, Applied Catalysis B: Environmental 35 (2002) 305–315. 3. Ammar Houas, Hinda Lachheb, Mohamed Ksibi, Elimame Elaloui, Chantal Guillard, Jean-Marie Herrmann, Applied Catalysis B: Environmental 31 (2001) 145–157. 4. Kayano Sunada, Toshiya Watanabe, Kazuhito Hashimoto, Journal of Photochemistry and Photobiology A: Chemistry 156 (2003) 227–233 5. Andrew Mills, Stephen le hunte, Journal of Photochemistry and Photobiology A: Chemistry 108 (1997) 1-35. 6. 陳永芳,國立交通大學應用化學研究所,以四異丙醇鈦為前驅物利用化學氣相沉積法和水解法製備二氧化鈦, 2003。 7. http://www.webelements.com/webelements/compounds/text/Ti/O2Ti1-13463677.html 8. 高濂,鄭珊,張青紅,陳憲偉,奈米光觸媒,2004。 9. Yaldos.B.E, J.Mater.Sci. 21 (1986) 1087. 10. J.S. Dalton, P.A. Janes, N.G. Jones, J.A. Nicholson, K.R. Hallam, G.C. Allen, Environmental Pollution 120 (2002) 415–422. 11. Tak Hyoung Lim, Sang Mun Jeong, Sang Done Kim, Janos Gyenis, Journal of Photochemistry and Photobiology A: Chemistry 134 (2000) 209–217. 12. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, SCIENCE 293 13 (2001). 13. Isao Nakamura, Nobuaki Negishi, Shuzo Kutsuna, Tatsuhiko Ihara, Shinichi Sugihara c, Koji Takeuchi, Journal of Molecular Catalysis A: Chemical 161 2000 205–212. 14. T. Ihara, M. Miyohsy, Journal of Materials Science 36 (2001) 4201 – 4207. 15. Hiromi Yamashita , Masaru Harada, Junko Misaka, Masato Takeuchi, Keita Ikeue, Maskazu Anpo, Journal of Photochemistry and Photobiology A: Chemistry 148 (2002) 257–261. 16. Masakazu Anpo, Masato Takeuchi, Keita Ikeue, Satoru Dohshi, Current Opinion in Solid State and Materials Science 6 (2002) 381–388. 17. Mitsunobu Iwasaki, Masayoshi Hara, Hiromi Kawada, Hiroaki Tada, Seishiro Ito, Journal of Colloid and Interface Science 224 (2000) 202–204. 18. Teruhisa Ohno, Fumihiro Tanigawa, Kan Fujihara, Shinobu Izumi, Michio Matsumur, Journal of Photochemistry and Photobiology A: Chemistry 127 (1999) 107–110. 19. A. Fuerte, M. D. Hernández-Alonso, A. J. Maira, A. Martínez-Arias, M. Fernández-García, J. C. Conesa, J. Soria, Chem. Commun. (2001) 2718–2719 20. Christian Lettmann, Knut Hildenbrand, Horst Kisch, W. Macyk, Wilhelm F. Maier, Applied Catalysis B: Environmental 32 (2001) 215–227id NH0925063042 sid 913656 cfn 0 / id NH0925063043 auc 蘇紋正 tic 離子熔液對水之環境性質量測 adc 汪上曉 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 60 kwc 離子熔液 kwc 正辛醇/水分配係數 kwc 對水之擴散係數 abc 在一般藥物製造及精密化學品工業上的有機合成反應中,大部分皆在液相中做反應,而其主要的廢棄物就是廢溶劑,而這些溶劑往往是有毒性、揮發性高、可燃性高和不易回收再使用。所以科學家近來正積極發展新溶劑來改善目前污染性高的製程,而常溫離子熔液(Room Temperature Ionic Liquids)即為其中一種新興的溶劑。 tc 目錄 摘要 1 目錄 2 圖目錄 4 表目錄 6 一、緒論 8 一.1 離子熔液簡介 8 一.2 離子熔液的組成 9 一.3 離子熔液的合成方法 10 一.4 離子熔液的應用潛力 11 一.5 研究動機與方向 12 一.5.1 研究起因 12 一.5.2 離子熔液之正辛醇/水的分配係數 13 一.5.3 離子熔液對水的擴散係數 14 二、離子熔液之正辛醇/水的分配係數 16 二.1實驗所需物品 16 二.1.1實驗設備 16 二.1.2實驗藥品 17 二.2 實驗步驟與其原理 17 二.2.1 傳統相平衡的做法 17 二.2.2 OECD Shake Flask法 19 二.3 HPLC的分析 20 二.4 實驗結果討論 24 二.4.1 傳統相平衡法數據討論 24 二.4.2 OECD Shake Flask法的數據討論 30 二.4.3 實驗方法不同的比較 34 二.4.4 離子熔液與一般有機溶劑在正辛醇/水分配係數上的比較 35 三、離子熔液對水之擴散係數 37 三.1實驗所需物品 37 三.1.1 實驗設備 37 三.1.2 實驗藥品 37 三.2 實驗原理 38 三.3 裝置設計與實驗步驟 42 三.3.1裝置設計 42 三.3.2實驗步驟 43 三.3.3分析方法 44 三.4 實驗結果討論 46 三.4.1實驗數據分析 46 三.4.2一般鹽類的驗證 50 三.4.3 Taylor Dispersion法與全影像法的比較 50 三.4.4 特定離子熔液對水的擴散係數 51 三.4.5 一般有機溶劑的比較 52 三.4.6 Wilke-Chang估計方法比較 52 三.4.7 由導電度驗證擴散係數 53 四、結論 57 五、參考文獻 58 圖目錄 圖一.1: 常見的離子熔液陽離子基團的配位圖與陰離子5 10 圖一.2: 離子熔液合成方法流程圖6 11 圖一.3: [EMIM ][PF6 ]與水之相平衡圖15 12 圖一.4: 物質於正辛醇/水之中相平衡示意圖 14 圖一.5: 物質於自然界中的擴散機制圖 15 圖二.1: 離子熔液之正辛醇/水分配係數的傳統相平衡實驗流程圖 18 圖二.2: 離子熔液之正辛醇/水分配係數之OECD SHAKE FLASK法實驗流程17 19 圖二.3: [EMIM ][BF4 ]之HPLC檢量線圖 21 圖二.4: [BMIM ][BF4 ]之HPLC檢量線圖 22 圖二.5: [HMIM ][BF4 ]之HPLC檢量線圖 22 圖二.6: [EMIM ][PF6 ]之HPLC檢量線圖 23 圖二.7: [BMIM ][PF6 ]之HPLC檢量線圖 23 圖二.8: [HMIM ][PF6 ]之HPLC檢量線圖 24 圖二.9: 傳統相平衡法之[EMIM ][BF4 ]濃度對KOW之外插示意圖 26 圖二.11: 傳統相平衡法之[HMIM ][BF4 ]濃度對KOW之外插示意圖 27 圖二.12: 傳統相平衡法之[EMIM ][PF6 ]濃度對KOW之外插示意圖 28 圖二.13: 傳統相平衡法之[BMIM ][PF6 ]濃度對KOW之外插示意圖 28 圖二.14: 傳統相平衡法之[HMIM ][PF6 ]濃度對KOW之外插示意圖 29 圖二.15: 傳統相平衡法之特定離子熔液的正辛醇/水分配係數 30 圖二.16: OECD SHAKE FLASK法之特定離子熔液的正辛醇/水分配係數圖 34 圖二.17: 離子熔液之正辛醇/水分配係數在實驗方法不同的比較 35 圖二.18: 離子熔液KOW值與一般有機溶劑的比較圖 36 圖三.1: TAYLOR DISPERSION法在毛細管中的平均濃度分佈情形19 39 圖三.2: 毛細管中不同環境變數中的各種擴散機制區域 40 圖三.3: 離子熔液對水之擴散係數實驗裝置流程圖 43 圖三.4: CSW軟體分析出的原始濃度對時間的高斯分佈圖形 45 圖三.5: 實驗值與GAUSSIAN FITTING值的比較圖 46 圖三.6: [BMIM ][PF6 ]對其甲醇溶液的擴散係數在兩種不同方法下的比較圖(25℃) 51 圖三.7: [PF6 ]與[BF4 ]兩個陰離子群離子熔液對水的擴散係數(30℃) 51 圖三.8: 擴散係數之實驗值與經驗計算值的關係圖 53 圖三.9: 導電度對濃度的關係圖與其趨勢外差關係 55 圖三.10: TAYLOR DISPERSION法(30℃)與NERNST-HARTLEY關係式28 (25℃)的比較圖 56 表目錄 表一.1: 各種化學工業上廢棄副產品與主產物的比例1 8 表一.2: [EMIM ][PF6 ]在水中的飽和溶解度15 13 表一.3: 水在[EMIM ][PF6 ]中的飽和溶解度15 13 表二.1: 傳統相平衡法之[EMIM ][BF4 ]相平衡數據 24 表二.2: 傳統相平衡法之[BMIM ][BF4 ]相平衡數據 25 表二.3: 傳統相平衡法之[HMIM ][BF4 ]相平衡數據 25 表二.4: 傳統相平衡法之[EMIM ][PF6 ]相平衡數據 25 表二.5: 傳統相平衡法之[BMIM ][PF6 ]相平衡數據 25 表二.6: 傳統相平衡法之[HMIM ][PF6 ]相平衡數據 26 表二.7: 傳統相平衡方法之離子熔液的正辛醇/水分配係數 29 表二.8: OECD SHAKE FLASK法的[EMIM ][PF6 ]之KOW數據處理的過程表 31 表二.9: OECD SHAKE FLASK法的[BMIM ][PF6 ]之KOW數據處理的過程表 32 表二.10: OECD SHAKE FLASK法的[HMIM ][PF6 ]之KOW數據處理的過程表 33 表二.11: 一般常見有機溶劑的正辛醇/水分配係數 35 表三.1: NACL對水擴散數據運算處理表(25℃) 47 表三.2: CACL2對水擴散數據運算處理表(25℃) 47 表三.3: [BMIM ][PF6 ]對甲醇擴散數據運算處理表(25℃) 47 表三.4: [BMIM ][PF6 ]對甲醇溶液(X=0.0028)擴散數據運算處理表(25℃) 47 表三.5: [EMIM ][BF4 ]對水擴散數據運算處理表(30℃) 47 表三.6: [BMIM ][BF4 ]對水擴散數據數據運算處理表(30℃) 48 表三.7: [HMIM ][BF4 ]對水擴散數據運算處理表(30℃) 48 表三.8: [OMIM ][BF4 ]對水擴散數據運算處理表(30℃) 48 表三.9: [EMIM ][PF6 ]對水擴散數據運算處理表(30℃) 48 表三.10: [BMIM ][PF6 ]對水擴散數據運算處理表(30℃) 49 表三.11: [HMIM ][PF6 ]對水擴散數據運算處理表(30℃) 49 表三.12: [OMIM ][PF6 ]對水擴散數據運算處理表(30℃) 50 表三.13: 一般鹽類對水擴散係數實驗值與文獻值22, 23的比較(25℃) 50 表三.14: 一般有機溶劑對水的擴散係數列表(25℃)25,26 52rf 1. Sheldon, R.A. (1993) "The Role of Catalysis in Waste Minization." In Precision Process Technology: Perspectives for Pollution Prevention, eds M.P.C. Weijnen & A.A.H. Drinkenburg. Kluwer, Dordrecht, 125-138 2. 曾憲文 (2000)“積極處理廢溶劑 經部特急件報院: 將排除「廢棄物清理法」相關約束 爭取由工業局直接認定有能力廠 商緊急介入”, 中國時報, 財經焦點,第六版 3. Seddon, K.R. (1997) " Ionic Liquids for Clean Technology." J. Chem. Tech. Biotechnol.", 68, 351-356 4. Earle, M.J. and Seddon, K.R. (2000) "Ionic Liquids : Green Solvents for The Future." Pure Appl. Chem., 72, 1391-1398 5. Holbrey, J.D. and Rogers, R.D. (2002) "Green Chemistry and Ionic Liquids - Synergies and Ironies." In Ionic Liquids; Industrial Applications to Green Chemistry, Rogers, R. D.; Seddon, K. R. (Eds.); ACS Symposium Series 818; American Chemical Society: Washington DC, 2-14. 6. Bonh?鏒e, P., Dias, A.P., Papageorgiou, N., Kalyanasundaram, K., and Gra1tzel, M., (1996) "Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts." Inorg. Chem., 35, 1168-1178 7. Germany Solvent Innovation GmbH (http://www.solvent-innovation.com/Englisch/index2.htm) 8. Welton, T. (1999) "Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis." Chem. Rev., 99, 2071-2083 9. Bowlas, C.J., Bruce, D.W., and Seddon, K.R., (1996) "Liquid-crystalline Ionic Liquid." Chem. Commun., 14, 1625-1626 10. Takuya, N. and Nobuo, K. (2003) "Interfacial Synthesis of Hollow TiO2 Microspheres in Ionic Liquids." J. Am. Chem. Soc., 125, 6386-6387 11. Hagiwara, R. and Ito, Y. (2000) "Room Temperature Ionic Liquid of Alkyl-imidazolium Cation and Fluoroanions." J. Fluorine Chem., 105, 221-227 12. Fuller, J., Carlin, R.T., and Osteryoung, R.A. (1997) "The Room Temperature Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrafluoroborate : Electrochemical Couples and Physical Properties." J. Electrochem. Soc. 144, 3881-3886 13. Huddleston, J.G., Willauer, H.D., Swatloski, R.P., Visser A.E., and Rogers, R.D. (1998) "Room Temperature Ionic Liquids as Novel Media for ‘Clean’ Liquid-liquid Extraction." Chem. Commun., 16, 1765-1766 14. Blanchard, L.A. and Brennecke, J.F. (2001) "Recovery of Organic Products from Ionic Liquids Using Supercritical Carbon Dioxide." Ind. Eng. Chem. Res., 40, 287-292 15. 陳佳佩 (2000) “離子熔液和水的相平衡”, 國立清華大學化學工程研究所碩士論文。 16. Tse, G. and Sander, S.I. (1994) "Determination of Infinite Dilution Activity Coefficient and 1-Octanol/Water Partition Coefficient of Volatile Organic Pollutants." J. Chem. Eng. Data, 39, 354-357 17. OECD Guideline for Testing of Chemicals-Partition Coefficient (n-octanol/water): Shake Flask Method. Adopted by the Council on 27th July 1995. (http://www.oecd.org/dataoecd/17/35/1948169.pdf) 18. Taylor, G. (1953) "Dispersion of Soluble Matter in Solvent Flowing Slowly through A Tube." Proc. R. Soc. Lond., Ser. A, Math. phys. sci., 219, 186-203 19. Probstein, R.F. (1989); Physicochemical Hydrodynamics; Butterworth Publishers:Boston, 82-96 20. Baldauf, W. and Knapp, H. (1983) "Measurements of Diffusivities in Liquids by The Dispersion Method." Chem. Eng. Sci., 38, 1031-1037 21. Alizadeh, A., Nieto de Castro, C.A., and Eakeham, W.A. (1980) "The Theory of the Taylor Dispersion Technique for Liquid Diffusivity Measurement." Int. J. Thermophys., 1, 243-284 22. Harned, H.S. and Hildreth, C.L. "The Differential Diffusion Coefficients of Lithium and Sodium Chlorides in Dilute Aqueous Solution at 25℃." J. Amer. Chem. Soc., 73, 650-652 23. Lyons, P.A. and Riley, J.F. (1954) "Diffusion Coefficients for Aqueous Solutions of Calcium Chloride and Cesium Chloride at 25 ℃.", J. Am. Chem. Soc., 76, 5216-5220. 24. Richter, J., Leuchter, A., and Gro?惷r, N. (2003) "Digital Image Holography for Diffusion Measurements in Molten Salt and Ionic Liquids-Method and Fast Result." J. Mol. Liq., 103–104, 359–370 25. Perry, R.H., Green, D.W. and Maloney, J.O. (1984); Perry's Chemical Engineers' Handbook; McGraw-Hill: New York, 3-(258-259) 26. Tyn, M.T. and Calus, W.F. (1975) "Temperature and Concentration Dependence of Mutual Diffusion Coefficients of Some Binary Liquid Systems." J. Chem. Eng. Data., 20, 310-316 27. Wilke, C.R. and Chang, P. (1955) "Correlation of Diffusion Coefficients in Dilute Solutions." AICHE J., 1, 264-270 28. Robinson, R.A. and Stokes, R.H. (1959); Electrolyte Solutions; Butterworth Publishers: London, 29. Shugar, G.J. and Dean, J.A. (2003); Chemist’s Ready Reference Handbook; Mc-Graw-Hill: New York, 5-96 30. Shedlovsky, T., (1932) "An Equation for Electrolytic Conductance.", J. Am. Chem. Soc., 54, 1405-1411id NH0925063043 sid 913657 cfn 0 / id NH0925063044 auc 俞天峻 tic 以導氧離子材料擔載鎳觸媒行甲烷蒸汽重組反應之研究 adc 黃大仁 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 69 kwc 導氧離子材料 kwc 甲烷蒸汽重組 kwc SDC abc 本研究主要是以不同導氧離子材料及α-Al2O3為擔體,含浸鎳金屬作為觸媒在低CH4/H2O=1的條件下進行甲烷蒸汽重組反應。其中導氧離子材料為Gd2O3-doped CeO2(G10%DC90%)和Sm2O3-doped CeO2(S10%DC90%)。利用BET及二氧化碳解離吸附實驗來分析擔體SDC及GDC的表面積及導氧離子性的大小。而結果發現表面積數值相近,故不考慮其對反應性活性影響;而不同導氧離子材料由於表面氧空洞數目及導氧離子效果的不同,晶格氧的產生也有所差異。溫度達到500℃後導氧離子材料表面氧空洞吸附的晶格氧會有往內部移動的效應。以Ni(2wt%)/S10DC90、Ni(2wt%)/G10DC90為觸媒,在不同溫度下分別通入水汽/二氧化碳 前處理之甲烷積碳去積碳實驗,實驗結果發現水汽主要吸附在擔體的氧空洞上,而二氧化碳同時可吸附在鎳觸媒及擔體氧空洞上。水汽前處理當溫度從450℃升到500℃時有晶格氧往內部移動的現象,而Ni/S10DC90不論是二氧化碳前處理或是水汽前處理,積碳均比Ni/G10DC90少。在H2O/CH4=1的比例下進行20小時甲烷蒸汽重組反應活性實驗,結果顯示Ni/S10DC90活性稍弱於Ni/G10DC90,但其優異的抗積碳性質使得Ni/S10DC90適合在低H2O/CH4比值下進行甲烷蒸汽重組反應且具有良好的穩定性。 tc 第一章 緒論................................................1 第二章 文獻回顧............................................3 2-1反應相關的化學反應方程式................................3 2-2相關反應機構............................................5 2-3金屬與擔體作用力與氧空洞催化效應........................9 2-4導氧離子氧化物與氧空洞擔體.............................10 2-4.1固有缺陷擔體.........................................11 2-4.2非固有缺陷擔體.......................................12 第三章 實驗方法與步驟.....................................14 3-1 實驗使用藥品..........................................14 3-2 製備方法..............................................14 3-2.1 擔體製備............................................14 3-2.2 Ni(2wt%)/SDC、Ni(2wt%)/GDC......................15 3-3 活性測試系統..........................................15 3-3.1 儀器................................................15 3-3.2 活性測試實驗........................................16 3-3.3 CO2與H2O前處理之觸媒積碳去積碳實驗.................17 3-3.4 BET表面積..........................................18 第四章 研究結果與討論.....................................21 4-1 BET表面積測試........................................21 4-2 擔體氧空洞實驗.......................................22 4-2.1定溫氧空洞實驗.......................................22 4-2.2變溫氧空缺實驗.......................................22 4-3以水及二氧化碳前處理之Ni-GDC與Ni-SDC行積碳去積碳反應...26 4-3.1水汽之前處理.........................................26 4-3.2 二氧化碳之前處理....................................33 4-4 GC分離情形............................................40 4-4.1氫氣、甲烷、一氧化碳的空白實驗.......................40 4-4.2二氧化碳、水的空白實驗...............................41 4-5以Ni-GDC、Ni-SDC、Ni-αAl2O3行甲烷蒸汽重組反應活性測試.42 4-5.1溫度對催化活性的影響.................................42 4-5.2 不同擔體對催化活性的影響............................42 4-5.3 積碳速率的探討......................................50 4-5.4 甲烷蒸汽重組反應機制的探討..........................54 第五章 結論...............................................66 參考文獻..................................................68 圖目錄 圖2.1 20wt%Ni-ZrO2 水汽前處理之甲烷積碳圖.................8 圖2-2 20wt%NiO-ZrO2甲烷積碳圖............................8 圖3.1 反應器(石英管)......................................19 圖3.2 反應裝置圖圖4.1 GDC、YDC和SDC在500℃反應溫度下的 CO生成圖......................................................24 圖4.2 YDC在500℃、450℃和400℃反應溫度下之CO生成圖........25 圖4.3在各溫度下Ni-GDC經水前處理後CO的產量對時間圖.........29 圖4.4在各溫度下Ni-SDC經水前處理後CO的產量對時間圖.........30 圖4.5在各溫度下Ni-GDC經二氧化碳前處理後CO的產量對時間圖...35 圖4.6在各溫度下Ni-SDC經二氧化碳前處理後CO的產量對時間圖...36 圖4.7 氫氣、甲烷、一氧化碳分離情形........................40 圖4.8 二氧化碳及水分離情形................................40 圖4.9 2wt%Ni/SDC、2wt%Ni/GDC、2wt%Ni/α-Al2O3在CH4/H2O=1下甲烷轉化速率對溫度關係圖................................43 圖4.10 2wt%Ni/SDC、2wt%Ni/GDC、2wt%Ni/α-Al2O3在CH4/H2O=1下甲烷轉化率對溫度關係圖..................................44 圖4.11 2wt%Ni/SDC、2wt%Ni/GDC、2wt%Ni/α-Al2O3在CH4/H2O=1下水汽轉化速率對溫度關係圖................................45 圖4.12 2wt%Ni/SDC、2wt%Ni/GDC、2wt%Ni/α-Al2O3在CH4/H2O=1下水汽轉化率對溫度關係....................................46 圖4.13 2wt%Ni/SDC、2wt%Ni/GDC、2wt%Ni/α-Al2O3在CH4/H2O=1下氫氣生成速率對溫度關係圖................................47 圖4.14 2wt%Ni/SDC、2wt%Ni/GDC、2wt%Ni/α-Al2O3在CH4/H2O=1下一氧化碳生成速率對溫度關係圖............................48 圖4.15 2wt%Ni/SDC、2wt%Ni/GDC、2wt%Ni/α-Al2O3在CH4/H2O=1下二氧化碳生成速率對溫度關係圖............................49 圖4.16 2wt%Ni/SDC、2wt%Ni/GDC、2wt%Ni/α-Al2O3在CH4/H2O=1下積碳生成速率對溫度關係圖................................51 圖4.17 2wt%Ni/SDC、2wt%Ni/GDC、2wt%Ni/α-Al2O3在CH4/H2O=1下積碳生成速率與甲烷轉化速率比值對溫度關係圖..............52 圖4.18 2wt%Ni/SDC、2wt%Ni/GDC、2wt%Ni/α-Al2O3在CH4/H2O=1下水汽轉化速率與甲烷轉化速率比值對溫度關係圖..............59 圖4.19 2wt%Ni/SDC、2wt%Ni/GDC、2wt%Ni/α-Al2O3在CH4/H2O=1下氫氣生成速率與甲烷轉化速率比值對溫度關係圖..............60 圖4.20 2wt%Ni/SDC、2wt%Ni/GDC、2wt%Ni/α-Al2O3在CH4/H2O=1下一氧化碳生成速率與甲烷轉化速率比值對溫度關係圖..........61 圖4.21 2wt%Ni/SDC、2wt%Ni/GDC、2wt%Ni/α-Al2O3在CH4/H2O=1下二氧化碳生成速率與甲烷轉化速率比值對溫度關係圖..........62 圖4.22 2wt%Ni/SDC、2wt%Ni/GDC、2wt%Ni/α-Al2O3在CH4/H2O=1下一氧化碳生成速率與水汽轉化速率比值對溫度關係圖..........63 圖4.23 2wt%Ni/SDC、2wt%Ni/GDC、2wt%Ni/α-Al2O3在CH4/H2O=1下二氧化碳生成速率與水汽轉化速率比值對溫度關係圖..........64 表目錄 表4-1 GDC和SDC之表面積測試結果............................21 表4.2各溫度下Ni-GDC水汽前處理積碳反應之出口組成...........31 表4.3各溫度下Ni-SDC水汽前處理積碳反應之出口組成...........32 表4.4 各溫度下Ni-GDC二氧化碳前處理積碳反應之出口組成.....37 表4.5各溫度下Ni-SDC二氧化碳前處理積碳反應之出口組成.......38 表4.6積碳生成速率之值.....................................53 表4.7積碳生成速率與甲烷轉化速率比值.......................53 表4.8各溫度及擔體下反應的N/M值............................55 表4.9水汽轉化速率與甲烷轉化速率比值對溫度關係表...........59 表4-10 氫氣生成速率與甲烷轉化速率比值對溫度關係表.........60 表4-11 一氧化碳生成速率與甲烷轉化速率比值對溫度表.........61 表4-12 二氧化碳生成速率與甲烷轉化速率比值對溫度關係表.....62 表4-13 一氧化碳生成速率與水汽轉化速率比值.................65 表4-14 二氧化碳生成速率與水汽轉化速率比值.................65rf 1.J. R. Rostrup-Nielsen, in: J. R. Anderson, M.Boudard,(Eds.),“Catalysis, Science and Technology”, vol. 5, Springer, New York p.3 (1984). 2.D. Wen-Sheng, R. Hyun-Seog,“Methaane Steam reforming over Ni/Ce-ZrO2 Catalysts:effect of nickel content”, Appl. Catal. A: Gen, 226, 63 (2002). 3. M. Mogensen, T. Lindegaard, and U. R. Hansen, “Physical Properties of Mixed Conductor Solid Oxide Fuel Cell Anodes of Doped CeO2”, J.Electrochem.Soc, 141, 2122 (1994). 4.A. E. Castro Luna, A. M Becerra, “Kinetics of Methane Steam Reforming on A Ni on Alumina-titania Catalyst”, Reaction Kinetics&Catalysis Letters, 61, 369 (1997). 5.V. A. Sobyanin, V. D. Belyaev, T. I. Politova, O. A. Marina, “Internal Steam Reforming of Methane over Ni-based Electrode in Solid Oxide Fuel Cells”, Appl. Catal. A: Gen, 133, 47 (1995). 6.P. Vernoux, M. Guillodo, J. Fouletier, A. Hammou, “Alternative Anode Material for Gradual Methane Reforming in Solid Oxide Fuel Cells”, Solid State Ionics, 135, 425 (2000). 7. E. G. M. Kuijpers, A. K. Breedijk, W. J. J. van der Wal, and J. W. Geus, “Chemisorption of Methane on Ni/SiO2 Catalysts and Reactivity of the Chemisorption Products Toward Hydrogen”, J. Catal, 81, 429 (1983). 8.T. P. Beebe, Jr., D. W. Goodman, B. D. Kay, and J. T. Yates, Jr., “Kinetics of the Activated Dissociative Adsorption of Methane on the Low Index Planes of Nickel Single-Crystal Surfaces”, J. Chem.Phys, 87, 2305 (1987). 9.Yasuyuki Matsumura, Toshie Nakamori, “Steam reforming of methane over nickel catalysts at low reaction temperature”, Appl. Catal. A: Gen. 258, 107 (2004). 10.S. J. Tauster, S. C. Fung, and R .L. Garten, “Strong Metal-Support Interactions. Group VIII Noble Metals Supported on TiO2”, J.Amer. Chem. Soc, 100, 170 (1978). 11.S. J. Tauster and S. C. Fung, “Strong Metal-Support Intractions: Occurrence among the Binary Oxides of Groups IIA-VB”, J. Catal, 55, 29 (1978). 12. R. Burch, and A. R. Flambard, “Strong Metal-Support Interactions in Nickel/Titania Catalysts:The Impportance of Interfacial Phenomena ”, J. Catal, 78, 389 (1982). 13.S. A Stevenson, J. A. Dumesic, R. T. K. Baker,and Ruckenstein, E., Eds., “Metal-support interactions in catalysis, sintering, and redispersion”, Van Nostrand-Reinhold, New York (1987). 14.G. L. Haller, and D. E. Resasco, Metal Support Interaction - Group-VIII Metals and Reducible Oxides, Advances in catalysis, 36, 173 (1989). 15. 林漢君,“以導氧離子材料擔載鎳觸媒行甲烷與二氧化碳重組反應之研究”,碩士論文,清華大學化工所,民國九十三年。 16. T. Shido et al. “Surface catalytic reactions assisted by gas phase molecules:activation of reaction intermediates”, Journal of Molecular Catalysis A: Chemical, 163, 67 (2000).id NH0925063044 sid 913658 cfn 0 / id NH0925063045 auc 林子瑋 tic 牙齒矯正線形狀記憶合金的相平衡、Pourbaix diagram與耐腐蝕性質 adc 陳信文 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 77 kwc 形狀記憶合金 kwc 牙齒矯正線 kwc 耐腐蝕性質 abc Ni-Ti形狀記憶合金,因為具有無毒性、耐腐蝕性佳、且具有形狀記憶效應的特性,因此成為熱門之牙齒矯正線材料。Pourbaix diagram是標示合金與其化合物,在不同電壓與酸鹼值下之穩定區域。此圖是水溶液中電化學之相平衡圖,與材料之腐蝕性直接相關。本研究之主要目的是探討此材料系統,在具形狀記憶特性組成範圍內之相平衡與其Pourbaix diagram,並從此資料中探討其與形狀記憶效應及腐蝕性質之關係。傳統之相平衡探討技巧用於探討相平衡。探討鈦鎳合金是利用電位動態陽極極化測定,得到商業用鎳鈦合金矯正線在0˚C以及35oC時,於不同酸鹼值中的陽極極化曲線,並且結合於不同pH值(pH=1~14)下的極化曲線,組合成電位-pH圖,即Pourbaix diagram。雖然此合金已是商業用之合金,然而現有文獻中並未存在著此鈦鎳合金於水溶液中電化學之相平衡圖,本實驗建構了初步的Pourbaix diagram並標示三種主要區域:免疫區、腐蝕區、鈍化區(immunuty、corrosion、passivity)的邊界。 tc 目錄 摘要 1 目錄 2 圖目錄 4 第一章、前言 6 第二章、文獻回顧 12 2-1 TI-NI相平衡 12 2-2 TI-NI之形狀記憶與相變化 15 2-3 腐蝕 19 2-3.1 極化 21 2-3.2 鈍化 26 2-4 POURBAIX DIAGRAM 28 2-5 利用極化曲線建構POURBAIX DIAGRAM 32 第三章、研究方法 37 3-1 材料製備與採購 37 3-2 相平衡探討 37 3-2.1 合金之製備及熱處理 38 3-2.2 金相分析 38 3-2.3微差掃描熱卡計測試 39 3-3 POURBAIX DIAGRAM 量測 40 3-3.1 實驗材料 40 3-3.2 試樣前處理 40 3-3.3 循環動電位極化參數量測 40 3-4 耐腐蝕性質量測 42 第四章、結果與討論: 43 4-1 金相部分: 43 4-2 DSC部分: 44 4-3 拉伸試驗: 46 4-4 TINI記憶合金線之極化曲線: 49 4-5 POURBAIX DIAGRAM 61 4-6腐蝕測試: 62 第五章、結論 74 參考文獻 75rf 參考文獻 1. 吳方棟, 臨床牙醫學, Vol. 7, pp. 79-86, (1987) 2. R. P. Kusy, G. J. Dillery and J. Q. Whitley, Clinic Materials, Vol. 3, pp. 41-59, (1998) 3. G. E. Dieter, Jr., “Mechanical Metallugry”, (1961) 4. Funakubo, “Shape memory alloys”, (1987) 5. 吳方棟, 牙醫學雜誌, Vol. 19, pp.99-104, (1999) 6. G. F. Andreasen, American Journal of Orthodontics, Vol. 63, pp. 462-470, (1973) 7. G. F. Andreasen, US patent 4037324, (1977) 8. M. Iijima, dental materials, Vol. 18, pp.88-93 (1995) 9. H. H. Huang, Biomaterials, Vol. 24, pp.3585-3592 (2003) 10. W. A. Brantley, Thermochimica Acta, Vol. 392-393, pp.329-337 (2002) 11. M. Lijima, Biomaterials, Vol. 23, pp.1769-1774 (2002) 12. B. Coluzzi, Journal of alloys and compounds, Vol. 233, pp.197-205 (1996) 13. T. Eliades, European journal of orthodontics, Vol. 22, pp.317-326 (2001) 14. J. L. Murray, “Alloy Phase Diagrams”, (1992) 15. 劉國雄, “材料工程科學” , (2000) 16. J. A. Shaw, Journal of the mechanics and physics of solids, Vol. 43, pp.1243-1281 (1995) 17. Uhlig, “Corrosion and corrosion control : an introduction to corrosion science and engineering ”, (1985) 18. M. R. Grimsdottir, American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 101, pp525-523 (1992) 19. D. J. Wever, Biomaterials, Vol. 18, pp115-120 (1997) 20. J. Ryhanen, Journal of biomedical materials research, Vol. 35, pp451-457 (1997) 21. H. H. Hwang, Journal of biomedical materials research, Vol. 66A, pp829-839 (2003) 22. G. Rondelli, Biomaterials, Vol. 17, pp2003-2008 (1996) 23. G. Rondelli, Biomaterials, Vol. 20, pp785-792 (1999) 24. 林富雄, 材料科學, Vol. 4, pp317-325 (1972) 25. 鮮祺振, “金屬腐蝕膜特性探討”, (1998) 26. M. Pourbaix, “Atlas of electrochemical equilibria in aqueous solutions”, (1974) 27. Y. Liu, Journal of Alloys and Compounds, Vol. 247, pp115-121 (1997) B. E. Wilde, Corrosion, Vol. 28, pp283-291 (1972)id NH0925063045 sid 913659 cfn 0 / id NH0925063046 auc 吳東川 tic 智慧型控制系統應用於射出成型產品品質控制 adc 張榮語 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 91 kwc 射出成型 kwc 類神經網路 kwc 田口方法 kwc 實驗計畫法 abc 近年來高分子工業發展迅速,使得塑膠製品成為日常生活中最普遍的產品,甚至跨入高科技產業,如何改善產品的生產效率及提高產品品質,儼然成為當前首要之研究課題。在進行射出成型加工時,為獲得所期望的加工特性,往往需先決定適當的加工參數,但因加工參數眾多且複雜,選取時完全需仰賴有經驗的操作人員。由於射出過程中除了加工條件為變因之外,仍有許多不確定性變因存在,因此造成了,即使在相同的加工條件下,產品的品質特性仍會有所不同。 tc 中文摘要 II ABSTRACT III 目錄 IV 圖目錄 VII 表目錄 X 第一章、緒論 1 1.1研究目的與動機 1 1.2射出成型加工簡介 2 1.2.1射出成型加工程序 2 1.2.2全電式射出成型機 5 1.3類神經網路簡介 7 1.3.1何謂類神經網路 7 1.3.2多層類神經網路 10 1.3.3類神經網路的類型 12 1.3.4類神經網路的運作過程 13 1.3.5類神經網路的學習演算法 14 1.3.6類神經網路之應用 15 1.3.7類神經網路之優缺點 16 1.4田口式實驗計畫法 17 1.4.1田口式品質工程簡介 17 1.4.2品質損失函數 17 1.4.3信號雜音比 20 1.4.4直交表 23 1.4.5變異數分析 23 1.4.6數據分析流程 25 第二章、文獻回顧 27 2.1 品質預測 27 2.2 智慧型控制 29 第三章、研究方法 30 3.1倒傳遞類神經網路 30 3.1.1倒傳遞類神經網路演算法 30 3.1.2倒傳遞類神經網路測試 33 3.1.3改良式倒傳遞類神經網路 39 3.1.4以田口方法求倒傳遞類神經網路最佳組合參數 43 3.1.5最佳學習循環次數 44 3.2實驗流程 45 3.2.1 實驗設備 47 3.2.2 L25(56)田口式直交表 51 3.2.3 品質預測器 52 3.2.4 程序控制器 53 第四章、結果與討論 55 4.1類神經網路最佳參數組合 55 4.1.1 訓練範本 55 4.1.2 田口方法求類神經網路最佳參數組合 57 4.1.3 驗證實驗結果與討論 59 4.2品質預測器 60 4.2.1 單變數預測實驗 60 4.2.2 双變數預測實驗 64 4.2.3 多變數預測實驗 68 4.2.4 品質預測結果與討論 72 4.3程序控制器 73 4.3.1 控制器設計 73 4.3.2 單變數控制實驗 77 4.3.3 双變數控制實驗 79 4.3.4 多變數控制實驗 81 4.3.5 不同鬆弛因子實驗 83 4.3.6 程序控制結果與討論 87 第五章、結論與展望 88 參考文獻 89rf 參考文獻 1. 張榮語 主編 “射出成型模具設計-模具設計” 高立出版社2001. 2. 葉怡成 著 “類神經網路模式應用與實作” 儒林圖書有限公司 1998. 3. 李輝煌 著 “田口方法-品質設計的原理與實務” 高立出版社 2002. 4. G. H. Choi, K. D. Lee, N. Chang, and S. G.. Kim, ”Optimization of Process Parameters of Injection Molding with Neural Network Application in a Process Simulation Environment”, Annals of the CIRP, Vol. 43, pp. 449-452, 1994. 5. W. He, Y. F. Zhang, K. S. Lee, J. Y. H. Fuh, and A. Y. C. Nee, “Automated Process Parameter Resetting for Injection Molding : a Fuzzy-neuro Approach”, Journal of Intelligent Manufacturing, Vol. 9, No. 1, pp. 17-27, 1998. 6. T. Petrova, and D. Kazmer., “Incorporation of Phenomenological Models in a Hybrid Neural for Quality Control of Injection Molding”, Polymer Plastic Technology Engineer, Vol. 38, No. 1, pp. 1-18, 1999. 7. R. A. Jacobs, “Increased Rate of Convergence through Learning Rate Adaptation”, Neural Network, Vol. 1, pp. 295-307, 1988. 8. P. Arabshahi, J. J. Choi, R. J. Marks, and T. P. Caudell, “Fuzzy Parameter Adaptation in Optimization : Some Neural net Training Examples”, IEEE Computational Science & Engineering, Vol. 3, No. 1, pp. 57-65, 1996. 9. A. G. Parlos, B. Fernandez , A. F. Atiya, J. Muthusami, and W. K. Tsai, “Accelerated Learning Algorithm for Multilayer Perceptron Networks”, IEEE Transactions on Neural Networks, Vol. 5, No. 3, pp. 493-497, 1994. 10. A. D. kulkarni, and C. D. Cavanaugh, “Fuzzy Neural Method for Classification”, Applied Intelligence, Vol. 12, pp. 207-215, 2000. 11. R. C. Hwang, H. C. Huang, Y. J. Chen, J. G. Hsieh, and H. Chao, ”Adaptive Power Signal Prediction by Non-Fixed Neural Network Model with Modified Fuzzy Back-Propagation Learning Algorithm”, Proceedings of the International Conference on Information, Communications and Signal Processing, Part 2, pp. 689-692, 1997. 12. M. B. Gorzalczany, and Z. Pizsta, “Neural-Fuzzy Approach Versus Rough-Set Inspired Methodology for Intelligent Decision”, Information Sciences, Vol. 120, pp. 45-68, 1999. 13. G. J. Wang, and T. C. Chen, “A Robust Parameters Self-Tunings Learning Algorithm for Multilayer Feed-forward Neural Network”, Neuralcomputing, Vol. 25, pp. 167-189, 1999. 14. K. S. Tang, C. Y. Chan, K. F. Man, and S. Kwong, “Genetic Structure for NN Topology and Weights Optimization”, Proceedings of the 1st IEE/IEEE International Conference on Genetic Algorithms in Engineering System, pp. 250-255, 1995. 15. 田口玄一 , “Introduction to Design of Experiment”, 滄海書局. 16. G. J. Wang, J. C. Tsai, P. C. Tseng, and T. C. Chen, “Neural-Taguchi Method for Robust Design Analysis”, Journal of the Chinese Society of Mechanical Engineers, Vol.19, No. 2, pp. 223-230, 1998. 17. 周孟賢, ”化學機械研磨時控製程參數最佳化技術”, 國立中興大學機械工程學系碩士論文, 1999. 18. Y. S. Tarng, W. H. Yang, and S. C. Juang, “The Use of Fuzzy Logic in the Taguchi Method for the Optimization of the Submerged Arc Welding Process”, International Journal of Advanced Manufacturing Technology, Vol. 16, pp. 688-694, 2000. 19. Karmal, M. R., Varela, A. E. and Patterson, W. I., “Control of Part Weight in Injection Molding of Amorphous Thermoplastics”, Polymer Eng. Sci., Vol. 39, No. 5, pp. 940-952, 1996. 20. Sonja, M. and Dubay, R., “The Effect of Varying Injection Molding Condition on Cavity Pressure”, ANTEC, p653, 2000. 21. S. L. Suzane, D.J. Copper, and V. Blair, ”Online Pattern-Based Part Quality Monitoring of the Injection Molding Process”, Polymer Eng. Sci., Vol. 36, No.11, pp.1477-1488,1996. 22. 梁瑞閔, ”智慧型程序控制整合於射出成型之分析”, 國立清華大學動力機械系博士論文, 2002. 23. Furong Gao, “Injection Molding Packing Profile - Toward Closed-Loop Quality Control”, 國際化短期密集訓練-先進材料,成型與模具技術, 2003.id NH0925063046 sid 913661 cfn 0 / id NH0925063047 auc 陳亮羽 tic 藉由模板輔助法生成奈米陣列之研究 adc 呂世源 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 103 kwc 模板法 kwc 奈米陣列 kwc 陽極氧化鋁 kwc 鎳 kwc 二氧化鈦 kwc 高分子模板 abc 本研究論文是以模板法合成奈米陣列為主題,所利用的模板可分成兩種:(一)無機模板–商業用陽極氧化鋁模板(100nm、200nm)及(二)有機模板–高分子模板(以PS為主體,孔徑30nm),我們利用此兩種模板來合成奈米陣列;所合成出的材料有以溶膠凝膠法(sol–gel method)及電化學沉積法(electrodeposition)合成具有優秀光催化性能之二氧化鈦,以及電化學沉積法合成具有磁性的鎳金屬。 rf Akamatsu, K., S. Deki, "Dispersion of gold nanoparticles into a nylon 11 thin film during heat treatment:in situ optical transmission study," J. Mater. Chem., 8, 637–640(1998) AlMawlawi, D., N. Coombs, M. Moskovits, "Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size," J. Appl. Phys., 70, 4421–4425(1991) Cheng, J.Y., C.A. Ross, V.Z.H. Chan, E.L. Thomas, R.G.H. Lammertink, G.J.Vancso, "Formation of cobalt magnetic dot array via block copolymer lithography," Adv. Mater., 13, 1174–1178(2001) Choi, J., S. Guido, K. Nielsch, R.B. Wehrspohn and U. Gosele, "Hexagonally Arranged Monodisperse Silver Nanowires with Adjustable Diameter and High Aspect Ratio," Chem. Mater., 15, 776-779 (2003) Chu, S.Z., K. Wada, S. Inoue, S.I. Todoroki, "Synthesis and characterization of titania nanostructures on glass by al anodization and sol-gel process," Chem. Mater., 14, 266–272(2002) Chung, S.H., Y. Wang, L. Persi, F. Croce, S.G. Greenbaum, B. Scrosati, E. Plichta, "Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides," J. Power Sources, 97–8, 644–648(2001) Duan, X, J. Wang, C.M. Lieber, "Synthesis and optical properties of gallium arsenide nanowires," Appl. Phys. Lett., 76, 1116–1118(2000) Fan S., M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, "Self-oriented regular arrays of carbon nanotubes and their field emission properties," Science, 283, 512–514(1999) Huczko, A., "Template-Based Synthesis of Nanomaterials," Appl. Phys. A, 70, 365–376 (2000) Iijima, S., "Helical microtubules of graphitic carbon," Nature, 354, 56–58 (1991) Jiang, K., Y. Wang, J. Dong, L. Gui, Y. Tang, "Electrodeposited metal sulfide semiconductor films with ordered nanohole array structures," Langmuir, 17, 3635–3638(2001) Kang, H., Y.W. Jun, J.I. Park, K.B. Lee, J. Cheon,"Synthesis of Porous Palladium Superlattice Nanoballs and Nanowires," Chem. Mater.,12, 3530–3532(2000) Kim, Y.S., K.Y. Suh, H.H. Lee, "Fabrication of three-dimensional microstructures by soft molding," Appl. Phys. Lett., 79, 2285–2287(2001) Kim, Y.S., K.Y. Suh, H.H. Lee, "Three-dimensional pattern transfer and nanolithography: modified soft molding," Appl. Phys. Lett., 81, 1011–1013(2002) Kresge, C.T., M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, "Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism," Nature, 359, 710-712(1992) Lakshmi, B.B., P.K. Dorhout, C.R. Martin,"Sol-Gel Template Synthesis of Semiconductor Nanostructures," Chem. Mater., 9, 857–862(1997) Lee, J.S., A. Hirao, S. Nakahama, "Polymerization of monomers containing functional silyl groups. 7. Porous membranes with controlled microstructures," Macromolecule, 22, 2602–2606(1989) Martin, C.R., "Membrane-Based Synthesis of Nanomaterials," Chem. Mater., 8, 1739–1746 (1996) Masuda, h. and K. Fukuda, "Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina," Science, 268, 1466 (1995) Masuda, H., H. Yamada, M. Satoh, M. Nakao and T. Tamamura, "Highly Ordered Nanochannel-Array Architecture in Anodic Alumina," Appl. Phys. Lett., 71, 2770–2772 (1997) Memming, R., Semiconductor Electrochemistry, 1st ed., Wiley–Veh, New York,264–274(2001) Misner, M.J.,H. Skaff, T. Emrick, T.P. Russell, "Directed Deposition of Nanoparticles Using Diblock Copolymer Templates," Adv. Mater., 15, 221–224(2003) Neamen, D. A., Semiconductor Physics and Devices, 2nd ed., Mc Graw Hill: New York, 1-25 (1999) Nielsch K.,R.B. Wehrspohn,J. Barthel,J. Kirschner, U. Gösele, S.F. Fischer, H. Kronmüller, "Hexagonally ordered 100 nm period nickel nanowire arrays," Appl. Phys. Lett., 79, 1360–1362(2001) Sakurai, Y., S. Okuda, H. Nishiguchi, N. Nagayama, M. Yokoyama, "Microlens array fabrication based on polymer electrodeposition," J. Mater. Chem., 13, 1862–1864(2003) Sellmyer, D.J., M. Zheng and R. Skomski, "Magnetism of Fe, Co and Ni Nanowires in Self-Assembled Arrays," J. Phys.: Condens. Matter., 13, R433–R460 (2001) Serpone,N., D. Lawless, R. Khairutdinovt, "Size Effects on the Photophysical Properties of Colloidal Anatase Ti02 Particles: Size Quantization or Direct Transitions in This Indirect Semiconductor," J. Phys. Chem., 99, 16646–16654(1995) Skoog, D.A., J.J. Leary, Principles of instrumental analysis, 5th ed., Saunders college:New York(1992) Sleytr, U.B., P. Messner, D. Pum, M. Sára, "Crystalline Bacterial Cell Surface Layers (S Layers):From Supramolecular Cell Structure to Biomimetics and Nanotechnology," Angew. Chem. Int. Ed., 38, 1034–1054(1999) Thompson, G.E., "Porous Anodic Alumina: Fabrication, Characterization and Applications," Thin Solid Films, 297,192–201(1997) Thurn-Albrecht, T., J. Schotter, G.A.Kästle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C.T. Black, M.T. Tuominen, T.P. Russell, "Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates," Science, 290, 2126–2129(2000) Wang, Z., Y.K. Su and H.L. Li, "Study of Gold Nanowire Array Electrodeposited within Anodic Aluminum Oxide Template," Appl. Phys. A, 74, 563~565 (2002) Wu J.J., S.C. Liu, “Catalyst-free growth and characterization of ZnO nanorods,” J. Phys. Chem. B, 106, 9546–9551(2002) Wu, C.G., T. Bein, "Conducting polyaniline filaments in a mesoporous channel host," Science, 266, 1757–1759(1994) Xia, Y., P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, "One-Dimensional Nanostructures: Synthesis, Characterization, and Applications," Adv. Mater., 15, 353–389(2003) Yamashita I., Thin Solid Films, 393, 12(2001) Zhang, X.Y., L.D. Zhang, W. Chen, G.W. Meng, M.J. Zheng, L.X. Zhao, "Electrochemical Fabrication of Highly Ordered Semiconductor and Metallic Nanowire Arrays," Chem. Mater., 13, 2511–2515(2001) Zhang, Y., N. Wang, S. Gao, R. He, S. Miao, J. Liu, J. Zhu, X. Zhang, "A Simple Method To Synthesize Nanowires," Chem. Mater., 14, 3564–3568(2002) Zhang, Z., J. Ying, S.M. Dresselhaus, "Bismuth Quantum-Wire Arrays Fabricated by a Vacuum Melting and Pressure Injection Process," J. Mater. Res., 13, 1745~1748 (1998) Zhao, D.,J.Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, "Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores," Science, 279, 548-551(1998) 尹邦躍編撰, 奈米時代, 五南出版社, 台灣(2002) 王正全, 周淑金, 李秉璋, 王正和, ”金屬氧化物奈米模板製備及其應用簡介,” 工業材料, 185, 165–169(2002) 伍秀菁, 汪若文, 林美吟, 儀器總覽, 國科會精儀中心, 台灣(1998) 汪建民主編, 材料分析, 中國材料科學學會,台灣(1998) 林欣瑋, "奈米金屬線之製程研發及特性研究," 國立台灣大學碩士論文, 台灣(2002) 林逸欣, "以電化學沈積法製備含多層矽化鎘–鍗化鎘薄膜之奈米複合材料,"國立清華大學碩士論文, 台灣(2002) 范慧雯, "剪切力誘導PS–PLLA團聯共聚物奈米微結構定向–奈米圖案成形模板之製備," 國立中興大學碩士論文, 台灣(2003) 馬遠榮著, 奈米科技, 商周出版, 台灣(2002) 張立德, 牟季美, 奈米材料和奈米結構, 滄海書局, 台灣(2002) 莊萬發編撰, 超微粒子理論應用, 復漢出版社,台灣(1995) 黃永盛, "SEM/ESD 與 FIB 的原理及其在半導體工業之應用 ," 科儀新知, 17, 36–54(1995) 楊鴻昌, "超導量子干涉磁量儀," 科儀新知, 12, 6, 72–79(1991) 蘇品書編撰, 超微粒子材料技術, 復漢出版社, 台灣(1999)id NH0925063047 sid 913662 cfn 0 / id NH0925063048 auc 王又慶 tic 背噴燈箱片之光擴散層的研發與製作,以及懸浮液之塗佈行為研究 adc 劉大佼 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 132 kwc 燈箱片 kwc 懸浮液 kwc 塗佈 kwc 二氧化鈦 kwc 二氧化矽 kwc 流場觀測系統 abc 背噴光擴散燈箱片為數位彩色列印主流噴墨技術中所用到層次最高,產品單價最高,生產製作最困難的產品,其構造為在透明聚酯(PET)膜上進行塗佈,包括光擴散層,吸墨顯色層及黏著層的數層塗層。其應用為捷運站、百貨公司、機場等地點所常用到的背面打光廣告招牌。 tc 摘要………………………………………………………………………I 目錄……………………………………………………………………III 圖目錄 …………………………………………………………………VI 表目錄……………………………………………………………………X 壹、緒論…………………………………………………………………1 1-1 背噴燈箱片簡介 …………………………………………………1 1-2 燈箱片原理 ………………………………………………………2 1-3 塗佈技術應用簡介 ………………………………………………4 1-4 工業上常用之塗佈方式 …………………………………………5 1-5 塗佈視窗與塗佈缺陷 ……………………………………………8 1-6 本研究的目的 ……………………………………………………12 貳、文獻回顧……………………………………………………………14 2-1 光擴散層配方 ……………………………………………………14 2-2 多層共擠壓塗佈工程 ……………………………………………16 2-3 懸浮液之塗佈行為研究 …………………………………………18 參、分析儀器及藥品……………………………………………………21 3-1 分析儀器 …………………………………………………………21 3-2 藥品 ………………………………………………………………26 肆、研究1:背噴光擴散燈箱片……………………………………… 31 4-1 電子顯微鏡(Scanning Electron Microscopy)觀察 …………31 4-2 EDS元素分析(Energy Dispersive Spectrometer)……………37 4-3 防水性測試……………………………………………………… 44 4-4 黏著性測試……………………………………………………… 46 4-5 蒐集各種光擴散用微粒………………………………………… 46 4-6 各種微粒手塗結果比較………………………………………… 48 4-7 SiO2的龜裂現象………………………………………………… 51 4-8 光擴散層內之微粒種類的挑選………………………………… 52 4-9 改善TiO2不易分散的缺點……………………………………… 53 4-10 高速攪拌的影響 ……………………………………………… 54 4-11 氣泡問題的改善 ……………………………………………… 55 4-12 下墨性的改善1:配方組成…………………………………… 58 4-13 下墨性的改善2:溶劑比例與乾燥速率……………………… 61 4-14 下墨性的改善3:厚度控制…………………………………… 64 4-15 光擴散配方之塗佈視窗的建立 ……………………………… 65 4-16 雙層共擠壓塗佈工程1:本實驗室的小型塗佈生產線……… 67 4-17 雙層共擠壓塗佈工程2:工研院的小型塗佈生產線………… 69 伍、研究2:懸浮液之塗佈行為研究………………………………… 71 5-1 緒論……………………………………………………………… 71 5-2 塗佈實驗的理想狀態…………………………………………… 72 5-3 影響塗佈實驗的四種常見情形………………………………… 75 5-4 實驗流體配置…………………………………………………… 76 5-5 塗佈間隙之架設………………………………………………… 79 5-6 刮刀架設………………………………………………………… 82 5-7 缺陷判斷………………………………………………………… 83 5-8 即時顯微攝影觀測技術………………………………………… 87 5-9 研究方法1:尋找合適實驗流體 ………………………………93 5-10 研究方法2:尋找分散良好不結塊的微粒 ……………………95 5-11 研究方法3:添加微粒對塗佈視窗的影響1……………………96 5-12 研究方法4:添加微粒對塗佈視窗的影響2……………………97 5-13 研究方法5:微粒添加量之效應 ………………………………98 5-14 研究方法6:黏度效應 ……………………………………… 100 5-15 研究方法7:粒徑大小之效應 ……………………………… 101 5-16 研究方法8:pH的效應 ……………………………………… 102 5-17 研究方法9:失敗經驗 ……………………………………… 104 a. 高濃度懸浮液之塗佈 …………………………………………… 104 b. 流線觀察實驗 …………………………………………………… 106 c. 含微粒之甘油水溶液的塗佈 ………………………………… 108 5-18 歸納與討論…………………………………………………… 110 a. 不含微粒的PVA水溶液 ………………………………………112 b. 含分散性良好之微粒的PVA水溶液 …………………………112 c. C803型SiO2增大塗佈視窗之效果較R700型TiO2更好 …… 116 d. 塗佈視窗的變大效果隨著微粒添加量的增加而增加 …… 118 e. 在相同的黏度與表面張力之下,含微粒之PVA水溶液的塗佈視窗較不含微粒者大…………………………………………………… 118 f. 分散性差之微粒的塗佈視窗變大效果不明顯 …………… 119 g. C803型、C809型SiO2的塗佈視窗變大效果相同……………120 h. 含微粒之PVA水溶液的pH值由微酸性提高至微鹼性後,塗佈視窗變大的效果明顯減小……………………………………………… 120 陸、研究結果及展望 …………………………………………………126 柒、參考文獻 …………………………………………………………128 附錄:名詞解釋 ………………………………………………………132rf 1. Beck, R. H. and F. N. J. Haven, 1959, Extrusion Apparatus and Processes of Extruding, U.S.Patent 2,901,770 2. Blake, T. D., A. Clarke and K. J. Ruschak, 1994, Hydrodynamic Assist of Dynamic Wetting, AIChE J. 40, 229-242 3. Boisvert, J. P., J. Persello and A. Guyard, 2003, Influence of the Surface Chemistry on the Structural and Mechanical Properties of Silica-Polymer Composites, J. of Polymer Science 41, 3127-3138 4. Buonoplane, R. A., E. B. Gutoff and M. M. Rimore, 1986, Effect of Plunging Tape Surface Properties on Air Entrainment Velocity, AIChE J. 32, 682 5. Burley, R. and B. S. Kennedy, 1976, An Experimental Study of Air Entrainment at a Solid-Liquid-Gas Interface, Chem. Eng. Sci. 31, 901 6. Chibowski, 2001, Studies of the Influence of Acetate Groups from Polyvinyl Alcohol on Adsorption and Electrochemical Properties of the TiO2-Polymer Solution Interface, J. of Dispersion Science and Technology 22, 281-289 7. Chino, N., N. Shibata, Y. Hiraki, and T. Sato, 1991, Extrusion Type Coating Head for Coating a Magnetic Recording Medium, U.S.Patent 5,072,688 8. Cohen, E. D. and E. B. Gutoff, 1992, Modern Coating and Drying Technology, VCH Publishers, New York 9. Cohen, E. D. and E. B. Gutoff, 1995, Coating and Drying Defects, Wiley Interscience, New York 10. Deryagin, B. V. and S. M. Levi, 1964, Film Coating Theory, The Focal Press, New York. 11. Gibson, F. W., R. M. Davis and J. S. Riffle, 1997, Adsorption of water-soluble polymers on submicron metal oxide particles, Polymer Preprints (American Chemical Society, Division of Polymer Chemistry) 38, 642-643 12. Gilbert, N. and A. Eckel, 1992, Analysis of Extrusion Coating in the Presence of External Forces, AIChE Spring National Meeting 13. Guo, J., C. Tiu, P. H. T. Uhlherr and T. N. Fang, 2003, Yielding behavior of organically treated anatase TiO2 suspension, Korea-Australia Rheology J. 15, 9-17 14. Gutoff, E. B. and C. E. Kendrick, 1987, Low Flow Limits of Coating on A Slide Coater, AIChE J. 33, 141. 15. Heijman, S. G. and H. N. Stein, 1993, Preparation of oxide dispersions which are stabilized both sterically and electrostatically, Chem. Eng. Sci. 48, 313-322 16. Hens, J. and L. Boiy, 1986, Operation of the Bead of a pre-metered Coating Device, Chem. Eng. Sci. 41, 1827-1832 17. Kistler, S. F. and P. M. Schweizer, eds., 1997, Liquid Film Coating, Chapman & Hall, London 18. Lee, K.Y., L. D. Liu and T. J. Liu, 1992, Minimum Wet Thickness in Extrusion Slot Coating, Chem. Eng. Sci. 47, 1703 19. Macosko, Ch. W., 1994, Rheology Principles Measurements and Applications, WILEY-VCH Publishers, New York 20. Mainstone, K. A., 1978, Internal and External Combining System for Slot Die Co-extrusion, Paper, Film & Foil Convecter, 65 21. Ning, C. Y., C. C. Tsai and T. J. Liu, 1996, The Effect of Polymer Additives on Extrusion Slot Coating, Chem. Eng. Sci., 51, 3289-3297 22. Ruschak, K. J., 1976, Limiting Flow in a Pre-metered Coating Device, Chem. Eng. Sci., 31, 1057-1060 23. Scanlan, D. J., 1990, Two-Slot Coater Analysis: Inner Layer Separation Issues in Two Layer Coating, MS Thesis. 24. Strauss, H., H. Heegn and I. Strienitz, 1993, Effect of PAA Adsorption on Stability and Rheology of TiO2 Dispersions, Chem. Eng. Sci. 48, 323-332 25. Toivakka, M., D. Eklund, D. W. Bousfield, 1992, Pigment motion during drying, Proc.–AIChE For. Prod. Symp., TAPPI Publisher, Atlata 26. Yang, H. G., C. Z. Li, H. C. Gu and T. N. Fang, 2001, Rheological Behavior of Titanium Dioxide Suspensions, J. of Colloid and Interface Science 236, 96-103 27. 朱文彬, 1997, 低黏度牛頓流體之預調式塗佈分析。國立清華大學化學工程研究所碩士論文。 28. 高明清, 1997, 高分子添加劑對雙層共擠壓式塗佈的影響。國立清華大學化學工程研究所碩士論文。 29. 俞文正, 1994, 共擠壓塗佈技術之建立與分析。國立清華大學化學工程研究所碩士論文。 30. 張永漢, 1995, 黏彈性流體在擠壓型模具內入口流動之分析與觀察。國立清華大學化學工程研究所碩士論文。 31. 化工技術雜誌,塗料與塗裝技術,1998年,12月號,第69期 32. 李傳宏, 陳利君, 葉昱昕, zeta電位測定儀在奈米粉體的應用, 工業材料雜誌190期, 105-114 33. http://www.colloidal-dynamics.com/applications.htm 34. http://www.colloidal-dynamics.com/techniques.htm 35. http://www.colloidal-dynamics.com/science.htm 36. http://www.capital-hplc.co.uk/id NH0925063048 sid 913663 cfn 0 / id NH0925063049 auc 黃楷熒 tic 化學還原法生成鎳絲及其反應機制探討 adc 周更生 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 63 kwc 鎳絲 kwc 化學還原 kwc 機制 abc 這份研究主要是對本實驗室首度提出以化學方法製造鎳絲進行改進及探討。該方法係使用鎳的鹽類溶液為原料,在鹼性環境下,使用聯氨為還原劑,以及其他必要添加劑(例如PAA及NaBH4),並且在磁場中反應。根據觀察,溶液中的鎳離子首先還原成具有磁性的鎳微粒,這些鎳微粒沿著磁力線排列並互相連結生成絲狀產物。鎳絲的粗細主要受反應速率的影響,反應愈慢產物愈細,而反應速率會隨著pH值的增加而減緩。PAA的存在確保產物不會互相凝聚,但濃度過高亦會影響鎳微粒在軸向的凝聚而生成短棒狀產物。目前藉由不同配方,可生成直徑0.5、1、2μm的鎳絲。NaBH4的添加有助於克服產生新成核點的高活化能,降低反應溫度及時間。透過電性研究,明顯看出鎳絲的導電度會隨著直徑減小而大幅降低,且理論極限值大約只有塊材的30%,這可能是由於硼參雜於鎳絲中,以及鎳金屬氧化的影響。 tc 摘要 1 Abstract 2 第一章 緒論 3 第二章 文獻回顧 5 2-1 金屬絲的製備方法 5 2-1.1陽極處理氧化鋁生成法 5 2-1.2共聚合體生成法 6 2-1.3超音波生成法 7 2-2 鎳絲的製備方法 8 2-2.1 Polyol Process 8 2-2.2 模版(template)生成法 9 2-2.3 化學還原法 10 2-3化學還原法生成鎳絲之產物性質 11 2-4 研究方向 12 第三章 實驗 13 3-1 實驗藥品 13 3-2 實驗儀器 14 3-3 實驗原理 15 3-4 實驗步驟 16 3-4.1 不同介面活性劑對鎳絲生成的影響 17 3-4.2 提高Na2CO3濃度對鎳絲生成的影響 18 3-4.3 氫硼酸鈉對鎳絲生成的影響 18 3-4.4 PAA濃度對鎳絲生成的影響 19 3-4.5 提高Ni2+濃度對鎳絲生成的影響 20 3-4.6 N2H6用量對鎳絲生成的影響 20 3-4.7加入NH3對鎳絲生成的影響 21 3-4.8 放大反應系統 22 3-4.8.1 E2組放大實驗 23 3-4.8.2 G1組放大實驗 24 3-4.9溶液中各反應之探討 25 3-4.9.1 N2H3COO-離子的生成 25 3-4.9.2 以Ni(N2H4)32+為前驅鹽進行還原反應 25 3-4-9.3 以Ni(OH)2為前驅鹽進行還原反應 26 3-4-10 鎳絲導電度分析 26 第四章 結果與討論 27 4-1 不同介面活性劑對鎳絲生成的影響 27 4-2 提高Na2CO3濃度對鎳絲生成的影響 29 4-3 氫硼酸鈉對鎳絲生成的影響 30 4-4 PAA濃度對鎳絲生成的影響 33 4-5 提高Ni2+濃度對鎳絲生成的影響 34 4-6 降低N2H4濃度對鎳絲生成的影響 37 4-7加入NH3對鎳絲生成的影響 38 4-8 放大反應系統 39 4-9 溶液中各反應之探討 41 4-9.1 N2H3COO-錯離子的生成 42 4.9-2以Ni(N2H4)32+為前驅鹽進行還原反應 44 4.9-3以Ni(OH)2為前驅鹽進行還原反應 47 4-10導電性分析 54 4-11產物性質鑑定 55 第五章 結論 60 第六章 參考文獻 61rf Belloni, J., M. Mostafavi, H. Remita, J. L. Marigniar, and M. O. Delcourt, “Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids”, N. J. Chem., 22(11), 1239(1998) Cardulla, F., “Hydrazine”, J. Chem. Edu., Vol. 60, No. 6(1983) Cepak, V. M., and C. R. Martin, “Preparation and stability of template-synthesized metal nanorod sols in Organic solvents”, J. Phys. Chem. B, 102, 9985(1998) Chi, G.J., S.W. Yao, J. Fan, W.G. Zhang, and H.Z. Wang, “Antibacterial activity of anodized aluminum with deposited silver”, Surface and Coatings Tech., 157, 162(2002) Dhas, N. A., C. P. Raj, and A Gedanken, “Synthesis, Characterization, and Properties of Metallic Copper Nanoparticles”, Chem. Mater., 10, 1446(1998) Hirai, H., N. Yakura, Y. Seta, and S. Hodoshima, “Characterization of palladium nanoparticles protected with polymers as hydrogeneration catalyst”, Reactive & Functional polymers, 37, 121(1998). Huang, J. C., “EMI Shielding Plastics: A Review”, Adv. in Polymer Tech., Vol. 14, No. 2, 137(1995) Knez, M., A. M. Bittner, F. Boes, C. Wege, H. Jeske, E. Maiβ, and K. Kern, “Biotemplate Synthesis of 3-nm Nickel and Cobalt Nanowires”, NANO LETTERS, Vol. 3, No. 8, 1079(2003) LEE, H. H., H. T. Kuo, and K. S. Chou, “Formation of Crystalline nickel Fibers by Chemical Reduction in the Presence of a Magnetic Field”, J. Chin. Inst. Chem. Engrs., Vol. 34, No 3, 327(2003) Pradhan, B. K., T. Kyotani, and A. Tomita, “Nickel nanowires of 4 nm diameter if the cavity of carbon nanotubes”, Chem Commum, 1317(1999) Roosen, A. R., and W. C. Carter, “Simulation of microstructural evolution: anisotropic growth and coarsening”, Physica A, 261, 232(1998) Shui, X. P., and D. D. L. Chung, “Submicron nickel filaments made by electroplating carbon filaments as a new filler material for electromagnetic interference shielding”, J. Electronic Material, 24(2), 107(1995) Sloan, J., D. M. Wright, H.G. Woo, S. Bailey, G. Brown, A. P. E. York, K. S. Coleman, J. L. Hutchison, and M. L. H. Green, “Capillary and silver nanowire formation observed in single walled carbon nanotubes”, Chem. Commum 699(1999) Suzuki, H., N. Fukuzawa, T. Tanigaki, T. Sato,O. Kido, Y. Kimura, and C. Kaito, “Fabrication of an amorphous carbon tube from copper oxide whisker”, J CRYST GROWTH 244 (2), 168(2002) Vaiu, G., F. Fie’vet-Vincent, and F. Fie’vet, “Nucleation and growth of bimetallic CoNi and FeNi monodisperse particles prepared in polyols”, Solid State Ionics, 84, 259 (1996) Windholz, M.,S. Budavari, R.F. Blumeti, andE. S. Otterbein, Merk Index, p.932, Merk & CO., Inc., Rahway, NJ, U.S.A.(1983) Yin, Y., Y. Lu, Y. Sun, and Y. Xia, “Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica”, NANA LETTERS, 2(4) 427(2002) Yu, K., D. J. Kim, H. S. Chung, and H. Liang, “Dispersed rodlike nickel powder synthesized by modified polyol process”, Mater. Latt., 57, 3992(2003) Zhang, D., L. Qi, J. Ma, H. Chen, “Formation of silver nanowires in aqueous solution of double-hydrophilic block copolymer”, Chem. Mater. 13, 2753(2001) Zhang, Q., Y. Li, D. Xu, and Z. Gu, “Preparation of silver nanowire arrays in anodic aluminum oxide template”, J. Material Science Letters, 20, 925(2001) Zhu, J.Z., Q.F. Qio, H. Wang,J.R. Zhang, J.M. Zhu, and Z.Q. Chen, “Synthesis of silver nanowires by a sonoelectrochemical method”, Inorg. Chem. Commu., 5, 242(2002) 張順吉,“化學還原法製備高轉化率之奈米鎳微粒極其特性探討”,國立清華大學碩士論文(2003)。 郭宏達,“鎳絲的合成及其在電磁波遮蔽材料上的應用”, 國立清華大學碩士論文(2002)。id NH0925063049 sid 913666 cfn 0 / id NH0925063050 auc 高靖雅 tic 錫/釩、錫-銀/釩、錫/(鎳,釩) 及錫-銀/ (鎳,釩)之界面反應 adc 陳信文 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 82 kwc 界面反應 kwc 錫鎳帆系統 abc 本研究探討Sn/V、Sn/(Ni,V)及Sn-3.5%Ag/V、Sn-3.5Ag% /(Ni,V)在250°C下之界面反應。多數之無鉛銲料組成主要以Sn為主,而Sn-3.5%Ag又是目前最具潛力之無鉛銲料之一。近年來覆晶技術受到極大的重視,在銲料與UBM多層金屬間之界面反應更顯重要,而(Ni,V)合金則最常被用來作為UBM阻障層,以避免銲料直接與線路反應,造成電子元件通路失效。本研究之討論對於提供材料基礎性質之學術價值外,亦具有在業界應用上之價值。 tc 摘要 Ⅰ 目錄 Ⅱ 圖目錄 Ⅲ 一、前言 1 二、文獻回顧 4 2-1 界面反應 4 2-1.1 錫-鎳界面反應 5 2-1.2 錫-銀/鎳界面反應 6 2-1.3 錫-釩界面反應 6 2-1.4 鎳-釩相平衡圖 7 2-1.5 錫-鎳-釩相平衡圖 7 2-2 無鉛銲料 7 2-3 濕潤性 8 三、研究方法 13 3-1 界面反應 13 3-1.1 V片與(Ni,V)合金基材之製備 13 3-1.2 界面反應 13 3-1.3 金相觀察 14 3-2 V基材對銲料濕潤性之量測 14 四、結果與討論 16 4-1 Sn/V及Sn-3.5%Ag/V之界面反應 16 4-2 Sn/(Ni,V)之界面反應 19 4-2.1 Sn/Ni-3wt%V之界面反應 19 4-2.2 Sn/Ni-5wt%V之界面反應 20 4-2.3 Sn/Ni-7wt%V之界面反應 21 4-2.4 Sn/Ni-12wt%V之界面反應 23 4-3 Sn-3.5wt%Ag/(Ni,V)之界面反應 25 4-3.1 Sn-3.5wt%Ag/ Ni-3wt%V之界面反應 25 4-3.2 Sn-3.5wt%Ag/ Ni-5wt%V之界面反應 25 4-3.3 Sn-3.5wt%Ag/ Ni-7wt%V之界面反應 26 4-3.4 Sn-3.5wt%Ag/ Ni-12wt%V之界面反應 27 五、結論 44 六、參考文獻 45 附錄 49 圖目錄 圖1-1 覆晶結構之示意圖 1 圖2-1 三元系統中擴散路徑之概要圖 10 圖2-2 錫-鎳系統二元相平衡圖 10 圖2-3 錫-釩系統二元相平衡圖 11 圖2-4 鎳-釩系統二元相平衡圖 11 圖2-5 (a)Sessile drop與(b)Wilhelmy plate方法示意圖 12 圖2-6 典型濕潤曲線及基材與銲料之相對位置示意圖 12 圖3-1 界面反應試樣之配置圖 15 圖3-2 濕潤測試簡單示意圖 15 圖4-1 Sn/V反應偶在950°C, 經1小時熱處理之微結構照片 29 圖4-2 Sn/V反應偶在300°C, 經96小時熱處理之微結構照片 29 圖4-3 Sn/V反應偶在600°C, 經 72小時熱處理之金相照片 30 圖4-4 Sn/V系統浸漬速度20mm/sec,在不同時間下之濕潤 曲線 31 圖4-5 Sn-Ag/V系統,浸漬速度20mm/sec,浸漬時間5sec之濕潤曲線 31 圖4-6 Sn /Ni-3wt%V系統之界面反應 (a) 1小時 (b) 12小時 32 圖4-7 圖4-8 Sn /Ni-5wt%V系統之界面反應 (a) 1小時 (b) 12小時 Sn /Ni-5wt%V系統在250°C下反應12小時,由EPMA對界面進行掃瞄所得組成與距離的關係圖 33 34 圖4-9 推測之Sn-Ni-V三元系統在250°C下之等溫橫截面 圖 34 圖4-10 Sn/Ni-5wt%V系統界面之擴散路徑圖 35 圖4-11 Sn /Ni-7wt%V系統之界面反應 (a) 2小時 (b) 12小 時 36 圖4-12 Sn/Ni-7wt%V系統界面之擴散路徑圖 37 圖4-13 圖4-14 Sn /Ni-12wt%V系統之界面反應,反應時間1小時 在Sn-Ni-V相圖中,Sn-3.5%Ag/Ni-12wt%V系統生 成相之標示圖 38 38 圖4-15 Sn -3.5wt%Ag /Ni-3wt%V系統之界面反應 (a) 1小 時 (b) 25小時 39 圖4-16 Sn -3.5wt%Ag /Ni-5wt%V系統之界面反應,反應時 間12小時 40 圖4-17 Sn-3.5%Ag/Ni-5wt%V系統界面之擴散路徑 40 圖4-18 Sn -3.5wt%Ag /Ni-7wt%V系統之界面反應 (a) 1小 時 (b) 12小時 41 圖4-19 Sn-3.5%Ag/Ni-7wt%V系統界面之擴散路徑 42 圖4-20 Sn -3.5wt%Ag /Ni-12wt%V系統之界面反應,反應時 間12小時 43 圖4-21 在Sn-Ni-V相圖中,Sn-3.5%Ag/Ni-12wt%V系統生 成相之標示圖 43rf 1.H. Gan, W. J. Choi, G. Xu, and K. N. Tu, JOM, vol.54 (6), (2002) 2.楊明芳, ”覆晶封裝技術簡介”, 產業調查與技術 一 三一期, pp. 47-54 3.陳明坤, ”高密度覆晶封裝技術概論”, 表面黏著技術 第三十八期, pp. 34-42 4.H. Ezawa, M. Miyata, H. Inoue, IEEE/CPMT Int´l Electronics Manufacturing Technology Symposium, pp.293-298, 1997 5.P. Elenius, J. Leal, J. Ney, D. Stepniak, S. Yeh, Electronic Components and Technology Conference, pp.260-265, 1999 6.S. Y. Jang and K. W. Paik, Electronic Components and Technology Conference, pp.64-68 7.C. Y. Liu, K. N. Tu, T. T. Sheng, C. H. Tung, D. R. Frear, and P. Elenius, American Institue of Physics, vol87(2), pp.750-754, 2000 8.G. Ghosh, Acta Material, vol.49, pp.2609-2624, 2001 9.K. Zeng, V. Vuorinen, and J. K. Kivilahti, Electronic Components and Technology Conference, 2001 10.S. Y. Jang, J. Wolf, O. Ehrmann, H. Gloor, H. Reichl, K. W. Paik, Electronic Components and Technology Conference, 2001 11.W. J. Choi, E. C. C. Yeh, and K. N. Tu, Electronic Components and Technology Conference, pp.1201-1205, 2002 12.J. D. Wu, P. J. Zheng, K. Lee, C. T. Chiu, and J. J. Lee, Electronic Components and Technology Conference, pp.452-457, 2002 13.S. Y. Jang, J. Wolf, W. S. Kown, and K. W. Paik, Electronic Components and Technology Conference, pp.1213-1220, 2002 14.W. J. Choi, E. C. C. Yeh, and K. N. Tu, American Institue of Physics, vol94(9), 2003 15.J. D. Wu, P. J. Zheng, C. W. Lee, S. C. Hung, and J. J. Lee, IEEE 41st Annual International Reliability Physics Symposium, Dallas, Texas, pp.132-139, 2003 16.S. W. Yoon, Vaidyanathan Kripesh, W. W. Kwan, and L. C. Yong, Electronic Components and Technology Conference, pp.1222-1229, 2003 17.G. A. Rinne, Electronic Components and Technology Conference, pp.240-247, 1997 18.A. Rahn, “The Basics of Soldering”, John Wiely & Sons, New York, pp.1-54, 1993 19.K. N. Tu and R. D. Thompson, Acta Matallurgica, vol. 30(5), pp. 947-952, 1982 20.S. W. Chen, C. M. Chen and W. C. Liu, Journal of Electronic Materials, vol. 27 (11), pp. 1193-1198 , 1998 21.L. H. Su, Y. W. Yen, C. C. Lin, and S. W. Chen, Matallurgical and Materials Transactions B, vol. 28B, pp.927-934, 1997 22.S. Bader, W. Gust, and H. Hieber, Acta Matallurgica, vol. 30(5), pp. 947-952, 1982 23.J. Haimovich, Welding Research Supplement, vol. 68(3), pp.s102-s111, 1989 24.W. J. Tomlinson and H. G. Rhodes, Journal of Materials Science, vol. 22(5), pp. 1769-1772, 1987 25.T. Y. Lee, K. N. Tu, and D. R. Frear, Journal of Applied Physics, vol.90(9), pp. 4502-4508, 2001 26.S. K. Kang and V. Simic, Thin Solid Films, vol. 98(2), pp. 95-100, 1982 27.J. A. Van Beek, S. A. Stolk, and F. J. Jvan Loo, Zeitschrift Fur Meatalkunde, vol. 73(7), pp.439-444, 1982 28.J. Y. Park, C. W. Yang, J. S. Ha, C. U. Kim, E. J. Kwon, S. B. Jung, and C. S. kang, Journal of Electronic Materials, vol. 30(9), pp. 1165-1170, 2001 29.H. M. Lee, W. K. Choi, Journal of Electronic Materials, vol. 28(11), pp. 1251-1255, 1999 30.王朝弘, 國立清華大學化學工程研究所碩士論文, 2002 31.D. R. Frear, J. W. Jang, J. K. Lin, and C. Zhang, Journal of Metals, vol. 53(6), pp. 28-32, 2001 32.羅偉成, 高振宏 , 2002材料年會中國材料科學學會, 2002年年會論文集(光碟) , 電子構裝及材料組。 33.J. B. Clark, Transactions of the Metallurgical Society of AIME, Vol. 227, pp. 1250-1251, (1963). 34.P. Nash and A.Nash, in ”Binary Alloy Phase Diagrams” ed. By T. B. Massalski, ASM international, Materials Park, Ohio, 1990 35.S. K. Kang, R. S. Rai, and S. Purushothaman, Journal of Electronic Materials, vol.25, pp.1113-1120, 1996 36.陳志銘,國立清華大學化學工程研究所博士論文,2002 37.J. F. Smith, O. N. Carlson, and P. G. Nash, Phase Diagrams of Binary Nickel Alloys, pp.361-367 38.J. Smith, Bulletion of Alloy Phase Diagrams, vol.2 (2), 1981 39.D. R. Frear, J. W. Jang, J. K. Lin and C. Zhang, JOM, pp. 28-38, 2001 40.Y. Kariya, Y. Hirata and M. Otsuka, Journal of Electronic Materials, vol. 28, pp.1263-1269, 1999 41.J. C. Berg, “ Wettability ”, Marcel Dekker. Inc., New York, chapter 1, 1993 42.Instruction Manual for SAT-5000, Rhesca Co., LTD, ver.1.12. 43.Rostoker William,“The metallurgy of vanadium”, 1958 44.饒瑞孟,清華大學化工所博士論文預講初稿 (未發表),2003 45.C. M. Chen, S. W. Chen, Acta Materialia, 50, pp.2461 –2469, (2002). 46.C. Y. Huang and S. W. Chen, Journal of Electronic Materials. Vol. 31. No.2., pp. 152-160, (2002). 47.S. Geller, B.T.Matthias and R.Goldstein, J.Am.Chem.Soc., vol.77, pp.1502-1504, 1955 48.許秀鳳,清華大學化工所碩士論文,2003id NH0925063050 sid 913665 cfn 0 / id NH0925063051 auc 邱文俊 tic KOH/醇類蝕刻液系統應用於單晶矽濕式蝕刻之研究 adc 金惟國 ty 博士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 203 kwc 蝕刻 kwc 單晶矽 kwc 醇類 kwc 氫氧化鉀 abc 摘要 tc 目錄 摘要………………………………………………………I 謝誌………………………………………………………III 目錄………………………………………………………IV 圖目錄…………………………………………………VIII 表目錄……………………………………………………XVIII 壹、 緒論..…………………………………………1 1.1. 乾式電漿蝕刻……………………………………4 1.2. 濕式化學蝕刻…………………………………4 1.2.1. 蝕刻液…………………………………………4 1.3. 研究方向………………………………………8 貳、 理論與文獻回顧………………………………10 2.1. 矽晶體特性…………………………………………10 2.1.1. 矽之晶體結構…………………………………10 2.1.2. N型矽晶(n-type silicon)與P型矽晶(p-type silicon)………13 2.1.3. 電子能帶…………………………………………13 2.2.濕式化學蝕刻(Wet Chemical Etching)………16 2.2.1. 濕蝕刻原理………………………………………16 2.2.2. 均向蝕刻(Isotropic Etching)………………17 2.2.3. 非等向性蝕刻(Anisotropic Etching) ……19 2.3. 相關研究報告及理論……………………… ……24 2.3.1. 鍵結密度模型(Bond density model)……24 2.3.2. 水合模型(Hydration Model)………………24 2.3.3. 表面自由能模型(Surface Free Energy Model)……………24 2.3.4. 電化學模型(Electrochemical model)…………25 2.3.5. 階梯自由能模型(Step-free energy)模型……26 2.3.6. 化學反應速率限制/擴散限制(Chemical reaction-rate limited/ Diffusion limited )………………28 2.3.7. 其他研究報告………………………………31 2.4. 蝕刻表面之凸起結構…………………………35 2.5. 蝕刻停止機制…………………………………37 2.5.1. 高摻雜硼之蝕刻停止機制…………………37 2.5.2. 電化學控制蝕刻停止機制…………………38 2.6. 角落補償機制…………………………………39 2.7. 蝕刻幕罩………………………………………41 2.8. 電腦模擬…………………………………………42 參、實驗方法與設計 …………………………………46 3.1. 實驗分析儀器………………………………………46 3.1.1. 掃描式電子顯微鏡(Scanning Electron Microscopic簡稱SEM )原理………………………………………………46 3.1.2. 原子力電子顯微鏡(Atomic Force Microscopic簡稱AFM )原理………………………………………………48 3.2. 實驗藥品及設備…………………………………50 3.2.1. 實驗設備………………………………………50 3.2.2. 實驗藥品………………………………………50 3.3. 實驗步驟………………………………………53 3.4. 實驗流程………………………………………57 肆、實驗結果與討論………………………………59 4.1.單晶矽在KOH/醇類蝕刻液系統之蝕刻行為……59 4.1.1. (100)單晶矽之蝕刻…………………59 4.1.2. (110)單晶矽之蝕刻.……………………73 4.1.3. (111)單晶矽之蝕刻.………………………82 4.1.4. (110)/(100)晶格面蝕刻速率比…………85 4.1.5. (100)晶格蝕刻表面粗糙度…………………88 4.2. (100)及(110)單晶矽在不同蝕刻液中圓形圖案之演化行為...99 4.2.1. (100)單晶矽……………………………………99 4.2.2. (110)單晶矽……………………………………131 4.2.3.最大非等向蝕刻比值(Highest Anisotropy Ratio)之蝕刻液系統......................................158 4.3. 方形凸角演化(square corner development)..161 4.3.1. 65?aC蝕刻溫度下方形圖案演化行為……162 4.3.2. 85?aC蝕刻溫度下方形圖案演化行 ………175 4.3.3. KOH添加不同醇類修飾劑對(211)晶格面之蝕刻速率之影響............................................184 4.3.4. 不同KOH/醇類蝕刻液系統下蝕刻後(100)方形平台面積…182 伍、結論…………………………………………………191 陸、參考文獻……………………………………………194rf 陸、參考文獻 1. M. Koch, A .G. R. Evans and A. Brunnschweiler, J. Micromech. Microeng., 1997, 7, 221 2. K. Menace and T. Shiozawa, Sens. Actuators, A 1994, 43, 72 3. L. M. Roylance and J. B. Angell, IEEE Trans. Electron Devices 1979, 26, 1917 4. J. S. Shie and S. H. Yu, Sens. Actuators, A 2000, 82, 297 5. J. Drott, K. Lindstrom, L. Rosengen and T. Laurell, J. Micromech. Microeng., 1997, 7, 14 6. P.J. Holmes, The Electrochemistry of Semiconductors, page 329, Academic press, 1962 7. 張勁燕, 電子材料, 五南圖書公司,1999 8. I. Zubel and M. Kramkowska, Sens. Actuators, A 2002, 101, 255 9. B. D. Cullity, Element of X-ray Diffration, Addison-Wesley, 1978 10. S.M. Sze and G.Y. Chang, ULSI Technology, McGraw-Hill, 1996. 11. 施敏、張俊彥,半導體元件與物理與製作技術, 高立圖書公司, 1996 12. D.G. Hill, K.L. Lear, and J. S. Harris, J. Electrochem. Soc. 1990, 137, 2912 13. E.D. Palik, H.F. Gray and P.B. Klien, J. Electrochem. Soc. 1983, 130, 956 14. W. Kern, RCA Rev. 1978, 39, 278 15. P. Allonge, V. Costa-Kieling and H. Gerischer, J. Electrochem. Soc. 1993, 140, 1018 16. J. M. Crishal and A. L. Harrington, J. Electrochem. Soc. 1962, 111, 202 17. R. M. Finne and D. L. Klein, J. Electrochem. Soc. 1967, 114, 965 18. O. Tabata, R. Asahi, H. Funabashi, K. Shimaoka and S. Sugiya, Sens. Actuators A 1992, 34, 51 19. J.B. Price, Semiconductor Silicon, The Electrochemical Socity Softbound Proceedings Series, 1973, p. 339 20. D.L. Kendall, Annual Review of Materials Science, 1979, 9, 373 21. A. Reisman, M. Berkenblit, S. A. Chan, F. B. Kaufman, and D. C. Green, J. Electrochem. Soc. 1979, 126, 1406 22. H. G. Linde, L. W. Austin, Sens. Actuators A, 1995, 49, 167 23. J. J. Kelly, A.C. Reynders, Appl. Surf. Sci. 1987,29,149 24. P. M. M. C. Bressers, S. A. S. P. Pagano and J. J. Kelly, J. Electroanal. Chem. 1995, 391, 159 25. C. Moldovan, R. Iosub, D. Dascalu and G. Nechifor, Sens. Actuators A, 1999, 58, 438 26. O. J. Glembocki, E. D. Palik, G. R. de Guel and D. L. Kendall, J. Electrochem. Soc. 1991, 138, 1055 27. P. J. Hesketh, C. Ju and S. Gowda, J. Electrochem. Soc.1993, 140, 1080 28. H. Seidel, L. Csepregi, A. Heuberger and H. Baumgartel, J. Electrochem. Soc.1990, 137, 3612 29. M. Elwenspoek, U. Linderg, H. Kok and L. Smith, IEEE Internal Workshop on Micro Electro Mechanical Systems, MEMS’94, Osio, Japan, 1994, p.223 30. Madou, Fundamentals of microfabrication, CRC Press, New York, 1997, p. 145 31. K. Bean, IEEE Transactions on Electron Devices, 1978, 25, 1185 Q. Lai, W. Hunziker and H. Melchior, Electronics Letters, 1996,32,20 32. M. Elwenspoek, J. Electrochem. Soc. 1993, 140, 2075 33. F.C. Frank, in: R. H. Doremus, B. W. Roberts, D. Turnbull (Eds.), Growth and Perfection of Crystals, Wiley, New York, 1958, p. 411 34. N. Cabrera, in: J. H. de Boer (Ed.), Reactivity of Solids, Elsevier, Amsterdam, 1961, p. 345 35. K. Sangwal, Etching of Crystals, North-Holland, Amsterdam, 1987, Chapter 4 36. R. A. Wind and M. A. Hines, Surface Science, 2000, 460, 21 37. J. Flide, Y.-C. Huang, T. A. Newton, M. A. Hines, J. Chem. Phys. 1998, 108, 5542 38. H. Schroder and E. Obermeier, J. Micromech. Microeng. 2000, 10, 163 39. G. C. DeSalvo, W. F. Teseng, and J. Comas, J. Electrochem. Soc. 1992, 139, 831 40. P. M. M. C. Bressers, S. A. S. P. Pagano and J. J. Kelly, J. Electroanal. Chem., 1995, 391, 159 41. T. Baum, and D. J. Schiffrin, J. Micromech. Microeng. 1997, 7, 338 42. I. Zubel, Sens. Actuators A, 2000, 84, 116 43. I. Zubel, I. Barycka, K. Kotowska, M. Kramkowska, Sens. Actuators A, 2001, 87, 163 44. I. Zubel, M. Kramkowska, Sens. Actuators A, 2001, 93, 183 45. K. Sato, M. Shikida, K. Tokoro, D. Uchikawa, Sens. Actuators A, 2000, 80, 179 46. H. Tanaka, Y. Abe, T. Yoneyama, J. Ishikawa, O. Takenaka, K. Inoue, Sens. Actuators A, 2000, 82, 270 47. S. S. Tan, M. L. Reed, H. Han, and R. Boudreau, J. Micromech. Microeng., 1994, 4, 147 48. Y. K. Bhatnagar and A. Nathan, Sens. Actuators A, 1993, 36, 233 49. A. P. Abbott, S. A. Campbell, J. Satherley, and D. Schiffrin, J. Electroanal. Chem. 1993, 348, 473 50. U. Schnakenberg, W. Benecke, B. Lochel, S. Ullerich and P. Lange, Sens. Actuators A, 1991, 25-27, 1 51. J. Weyher, and W. J. P. van Enckevort, J. Crystal Growth, 1983, 63, 292 52. S. A. Campbell, K. Cooper, L. Dixon, R. Earwaker, S. N. Port and D. J. Schiffrin, J. Micromech. Microeng. 1995, 4, 147 53. L. M. Landsberger, S. Naseh, M. Kahrizi and M. Paranjape, J. Micromech. Microeng. 1996, 6, 106 54. S. S. Tan, M. L. Reed, H. Han and R. Boudreau, J. Microelectromech. Syst. 1996, 5, 66 55. H. Schroder, E. Obermeier and A. Steckenborn, J. Micromech. Microeng. 1996, 9, 139 56. E. D. Palik, O. J. Glembocki, I. J. Heard, P. S. Burno and L. Tenerz, J. Appl. Phys. 1991, 70, 3291 57. J. T. L. Thong, P. Luo, W. K. Choi and S. C. Tan, J. Micromech. Microeng., 2001, 11, 61 58. J. C. Greenwood, J. Electrochem. Soc., 1969, 116, 1325 59. D. R. Turner, J. Electrochem. Soc., 1960, 107, 810 60. J. W. Faust, Jr. and E. D. Palik, J. Electrochem. Soc., 1983, 130, 1413 61. H. A. Waggener, Bell Sysr. Tech. J., 1970, 49, 473 62. H. Schrőder, E. Obermeier, J. Micromech. Microeng. 1999, 10, 163 63. K. E. Bean and W. R. Runyan, J. Electrochem. Soc. 1977, 124, 5C 64. A. Koide, K. Sato and S. Tanaka, Proc. IEEE Micro Electro Mechanical Systems (MEMS)(Nara, Japan, 1992)(Technical Digest), p 216 65. G. K. Mayer, H. L. Offereins, H. Sandmeier and K. Kuhl, J. Electrochem. Soc. 1990, 137, 3947 66. E. Herr and H. Baltes, Sensors Actuators A, 1992, 31, 283 67. A. Merlos, M. Acero, M. H. Bao, J. Bausells and J. Esteve, Sens. Actuators A, 1993, 37-38, 737 68. D. W. Shaw, J. Crystal Growth, 1979, 47, 509 69. R. J. Jaccodine, J. Applied Physics, 1962, 33, 2643 70. A. Koide and S. Tanaka, Proceedings of 4th IEEE MEMS Workshop, 1991, 216 71. “IntelliCAD”, Intellisense Corp., Wilmington, MA 72. O. Than and S. Buttgenbach, Sens. Actuators A, 1994, 45, 85 73. E. V. Veenedaal, K. Sato, M. Elwenspoek, A. J. Nijdam, J. V. Suchtelen, J. G. E. Gardeniers, W. J. P. V. Enckevort, Sens. Actuators A, 2000, 84, 324 74. 陳力俊, 微電子材料與製程, 中國材料協會, 2000 75. Y. K. Bhatnagar and A. Nathan, Sen. Actuators A, 1993, 36, 233 76. T. Bitzer, N. V. Richardson and D. J. Schiffrin, Surf. Sci., 1997, 382, 686 77. M. A. Gosálvez and R. M. Nieminen, New J. Phys. 2003, 5, 100.1 78. M. Shikida, T. Masuda, D. Uchikawa and K. Sato, Sen. Actuators A, 2001, 90, 223 79. E. V. Veedneeal, K. Sato, M. Shikida, A. J. Nijdam and J.V. Suchtelan, Sen. Actuators A, 2001, 93, 232 80. E. V. Veedneeal, K. Sato, M. Shikida and J.V. Suchtelan, Sen. Actuators A, 2001, 93, 219 81. T. Baum, J. Satherley and D. J. Schiffrin, Langmuir, 1998, 14, 2925 82. T. Baum, and J. Satherley, J. Micromech. Microeng. 1997, 7, 338 83. T. Baum and D. J. Schiffrin, J. Electroanal Chem, 1997, 436, 239 84. H. Schrőder, E. Obermeier and A. Steckenborn, J. Micromech. Microeng. 1999, 9, 139 85. R. L. David: Handbook of Chemistry and Physics, CRC, 2002-2003, p.9 86. M. A. Gosálvez, A. S. Foster and R. M. Nieminen, Sens. Materials, 2003, 15, 53 87. J. V. Suchtelen and E. V. Veenendaal, Sens. Materials, 2000, 13, 325 88. B. Puers and W. Sansen, Sens. Actuators A, 1990, 21, 1036 89. M. M. Abu-Zeid, J. Electrochem. Soc., 1984, 131, 2138 90. H. L. Offereins, K. Kűhl and H. Sandmaier, Sens. Actuators A, 1998, 8, 80 91. H. K. Trieu and W. Mokwa, J. Electrochem. Soc., 1984, 131, 2138 92. D. B. Lee, J. Applied Phys., 1969, 40, 4569 93. X. P. Wu. and W. H. Ko, Sens. Actuators A, 1989, 18, 207 94. I. Zubel, Sens. Actuators A, 1998, 70, 260 95. K. Sato, Sens. Actuators A, 1988, 64, 87id NH0925063051 sid 857608 cfn 0 / id NH0925063052 auc 張益榮 tic 先進封裝測試所用方匡式塗佈技術之建立 adc 劉大佼 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 64 kwc 連續式塗佈 kwc 狹縫式塗佈 kwc 圖騰式塗佈 kwc 方匡式塗佈 kwc 方塊式塗佈 kwc 條紋式塗佈 kwc 模具塗佈 abc 摘要 tc 目錄 II 圖目錄 III 摘要 VI 壹、序論 1 貳、文獻回顧 5 2-1 連續式狹縫塗佈 5 2-2 條紋式塗佈 10 2-3方塊式塗佈 11 2-4 研究方向 17 參、方匡式塗佈技術的建立 18 3-1 研究動機 18 3-2 實驗儀器 19 3-3方匡式塗佈技術硬體之建立 20 3-3-1 方塊式塗佈機均勻性測試 20 3-3-2 實驗裝置 21 3-3-3 實驗步驟 22 3-3-4 實驗結果 23 3-4 方塊式塗佈前後端膜機制探討與分析 24 3-4-1 實驗步驟 27 3-4-2 實驗結果與討論 28 3-5 方匡式塗佈技術之硬體的建立 30 3-5-1 實驗步驟 30 3-5-2 實驗結果與討論 32 3-6 方匡式塗佈視窗之建立與分析 39 3-6-1 簡介 39 3-6-2 實驗量測方法 41 3-6-3 實驗步驟 43 3-6-4 實驗結果討論 44 3-6-5 條紋式塗佈視窗、間歇性條紋式塗佈視窗與單層狹縫式塗佈視窗之關聯性 48 肆、結論 56 伍、參考文獻 59 陸、符號說明 64rf 1、 Bagen, S., Melgaard, H., Minnich, C., and Gibbson, G.(1996),”Novel low coat process technologies for application and curing of polyimide films.Int” J. of Microcircuits & Electronic Package, 19,418-426. 2、 Choinski, E.J. and W. Mass (1978), “Method of Multilayer Coating,” U.S. Patent, 4,113,903。 3、 Choinski, E.J.(1990), ‘Method and Apparatus for Patch-Coating Printed Circuit Boards. U.S .Patent, 4,938,994. 4、 Cohen, E.B. and Gutoff E.B. (1992), “Modern Coating and Drying Technology,” VCH press, New York. 5、 Gutoff E.B. and Kendrick C.E. (1987), “Low Flow Limits of Coating on A Slide Coater,” AIChE J. 33, 141. 6、 Hens, J. and Boiy L., (1996) “Operation of the Bead of A Premetered Coating Device,” Chem. Eng. Sci., 41, 1827. 7、 Haaland, P.,Mackibben, J., and Parodi, M.(1995),“The Art and Science of Thin Film Coating: a Progress Report” Solid State Technology, 38, 83-85. 8、 Higgins, B.G. and Scriven, L.E. (1980), “Capillary Pressure and Viscous Pressure Drop Set Bounds on Coating Bead Operability” Chem. Eng. Sci. 35, 673. 9、 Lee, K.Y., L.D. Liu and T.J. Liu(1992), “Minimum Wet Thickness in Extrusion Slot Coating,” Chem. Eng. Sci., 47, 1703. 10、 Liu T. J. and Yu Y. W. (2000),”Apparatus And Method For Forming a Coating Layer of Multiple Stripes” U.S. Patent, 6,159,544. 11、 Liu T. J. and Yu Y. W. (2002), "Die Set For Preparing ABCABC Multiple-Stripe Coating" United States Patent, 6,423,140 B1. 12、 Milbourn, T.M. and Barth, J.J.(1994), “Method of Appling Discrete Coating Patches on a Moving Web” U.S. Patent No.5,360,629. 13、 Nagai, H., and Scriven, L.E. (2000), “Start-up of Slot coating” 10th International Coating Science and Technology Symposium. 14、 Ning, C.Y., C.C. Tsai and T.J. Liu(1995), “The Effect of Polymer Additives on Extrusion Slot Coating” Chem. Eng. Sci. 51, 3289. 15、 Ruschak, K.J. (1979), “Limiting Flow in A Pre-metered Coating Device,” Chem. Eng. Sci., 31, 1057. 16、 Russell, T.A. (1956), “Multiple Coating Apparatus,” U.S. Patent 2,761,418. 17、 Russell, T.A., “Method of Multiple Coating ,” U.S. Patent,2,761,791 (1956)。 18、 Sandock, L.R.(1996), “Coating Process and Apparatus” U.S. Patent, 5,516,545. 19、 Shikhmurzaev, Y.D. (2000), “Discrete Coating: How does it Start?” 10th International Coating Science and Technology Symposium. 20、 Snodgrass, O.T., Farney, M.K. and Gibson, G.M.(1992),”Filtering and Dispensing System With Independently Activated Pumps in Series” U.S. Patent, 5,167,837. 21、 Tallmadage, J.A., C.B. Weiberger and Faust H.L. (1979),“Bead Coating Instability:A Comparison of Speed Limit Data with Theory,” AIChE J. 25, 1065。 22、 Watanabe M. (1997), "Coating Device and a Method Of Coating" U.S. Patent,5,700,325 23、 Wells, G.T., Gibson, G., and Newquist, C. (1998), ”Large Area Processing(LAP):Performance Studies on Extrusion Coating” International Journal of Microcircuits and Electronic Package,21,28-33 24、 李國陽(1990)”擠壓式塗佈工程之研究”,國立清華大學化學工程研究所博士論文。 25、 朱文彬(1997)”低黏度牛頓流體之預調式塗佈分析”,國立清華大學化學工程碩士論文。 26、 喻雲威 (1998) “擠壓式模具內複雜流動之分析”,國立清華大學化學工程研究所博士論文 27、 蔡境哲(1998)”低黏度牛頓流體與含高分子添加劑水溶液之預測式塗佈分析”, 國立清華大學化學工程研究所碩士論文。 28、 林庭瑜(1999)”高黏度塗佈液塗佈視窗之測定與分析”, 國立清華大學化學工程研究所碩士論文。 29、 劉峻昌 (2000)“高分子添加劑對擠壓式塗佈缺陷之影響”, 國立清華大學化學工程研究所碩士論文 30、 楊之光(2000)”先進狹縫式塗佈研究”,國立清華大學化學工程博士論文。 31、 方聰偉(2001)”微米級條紋式塗佈”,國立清華大學化學工程研究所碩士論文。id NH0925063052 sid 913639 cfn 0 / id NH0925063053 auc 李香寰 tic 鋰離子電池中碳極表面鈍化層之研究 adc 萬其超 adc 王詠雲 ty 博士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 英文 pg 127 kwc 鋰離子電池 kwc 鈍化層 kwc 介面 kwc 碳極 kwc 熱穩定性 kwc 熱添加劑 abc 鋰離子電池中,碳極(負極)上的鈍化層因是決定電池性能的關鍵因素,而受到廣泛的研究與注意。因此,本論文從三方面著手,分別探討化成程序的電位範圍、熱處理、以及熱添加劑乙烯碳酸酯(vinylene carbonate;VC)對此鈍化層造成的影響。所採用的分析工具包括X光線電子光譜(ESCA)、富利葉紅外光譜(FTIR)、差分掃瞄式卡計(DSC)、核磁共振光譜(NMR)、交流阻抗頻譜及一些標準的電化學分析技術。由化成電位對鈍化層形成的影響,我們發展出一套更快速的化成程序。此外,本論文也清楚點出造成鈍化層的熱不穩定性之原因,以及VC之所以能成為好的熱添加劑,其主要的功用所在。 tc 摘 要 I ABSTRACT III 誌 謝 V 誌 謝 錄 VI CONTENTS VII LIST OF FIGURES IX LIST OF TABLES XV Chapter 1 INTRODUCTION 1 1-1 Development Background of Lithium Batteries 2 1-2 Liquid Electrolytes 10 1-2.1 Solvents 11 1-2.2 Lithium salts 16 1-2.3 Additivies 18 1-3 Solid Electrolyte Interphase on Anode 21 1-3.1 Chemical composition of SEI 23 1-3.2 Morphology of SEI 31 1-3.3 Mechanisms of SEI formation 34 1-3.4 Relative Models of SEI 40 1-4 Motivation and Scope of This Study 45 1-5 References 47 Chapter 2 THE EFFECT OF FORMATION POTENTIAL ON THE SOLID ELECTROLYTE INTERPHASE 54 2-1 Experimental 55 2-2 Results and Discussions 56 2-3 Conclusions 68 2-4 References 71 Chapter 3 THERMAL STABILITY OF SOLID ELECTROLYTE INTERPHASE ON ELECTRODE 73 3-1 Experimental 74 3-2 Results and Discussions 76 3-2.1 Thermal characteristic of SEI 76 3-2.2 The impact of salt 83 3-2.2 The role of PF5 86 3-3 Conclusions 95 3-4 References 95 Chapter 4 THE FUNCTION OF VINYLENE CARBONATE AS A THERMAL ADDITIVE TO ELECTROLYTE 98 4-1 Experimental 99 4-2 Results and Discussions 101 4-2.1 Graphite cycling performance 101 4-2.2 Thermal reactions of electrolytes 103 4-2.3 Thermal reactions of SEI associated with VC 109 4-3 Conclusions 120 4-4 References 121 Chapter 5 CONCLUSIONS 124 ABOUT THE AUTHOR 126rf [1 ] N. Eda and A. Ohta, Ch.2 in Energy Storage Systems for Electronics, T. Osaka and M. Datta, Eds., New Trends in Electrochemical Technology Series, Gordon and Breach Science Publishers, Amsterdam, Netherland (2000). [2 ] J. R. Owen, “Rechargeable lithium batteries”, Chemical Society Reviews, 26, 259-267 (1997). [3 ] P. Arora, R. E. White, and M. Doyle, “Capacity fade mechanisms and side reactions in lithium-ion batteries”, J. Electrochem. Soc., 145, 3647-3667 (1998). [4 ] Y. S. Jan and J. M. Chen, “Current development of lithium battery at ITRI”, in Proceedings of 2002 (6th) Taipei Battery Forum, 23-24 Apr. (2002). [5 ] C. A. Vincent, “Lithium batteries: a 50-year perspective, 1959-2009”, Solid State Ionics, 134, 159-167 (2000). [6 ] J. M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries”, Nature, 454, 359-367 (2001). [7 ] M. S. Whittingham, “Insertion electrodes as SMART materials: the first 25 years and future promises”, Solid State Ionics, 134, 169-178 (2000). [8 ] E. Peled, “The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems – The solid electrolyte interphase model”, J. Electrochem. Soc., 126, 2047-2051 (1979). [9 ] S. Megahed and B. Scrosati, “Lithium-ion rechargeable batteries”, J. Power Sources, 51, 79-104 (1994). [10 ] L. A. Dominey, Ch.4 in Lithium Batteries. New Materials, Developments and Perspectives, G. Pistoia, Ed., Elsevier, Amsterdam (1994). [11 ] L. Bretherick, “Solvated metal perchlorates” Chem. and Eng. News, 68, 4 (1990). [12 ] D. E. Penton, J. M. Parker, and P. V. Wright, “Complexes of alkali metal ions with poly(ethylene oxide)”, Polymer, 14, 589 (1973). [13 ] M. B. Armand, J. M. Chabagno, and M. Duclot, Ext Abstr., Second International Meeting on Solid Electrolytes, St. Andrews, Scotland, 20-22 Sep. (1978). [14 ] J. Y. Song, Y. Y. Wang, and C. C. Wan, “Review of gel-type polymer electrolytes for lithium-ion batteries”, J. Power Sources, 77, 183-197 (1999). [15 ] K. Murata, S. Izuchi, and Y. Yoshihisa, “An overview of the research and development of solid polymer electrolyte batteries”, Electrochim. Acta, 40, 1501-1508 (2000). [16 ] A. S. Gozdz, C. N. Schmutz, and J. M. Tarascon, “Rechargeable lithium intercalation battery with hybrid polymeric electrolyte”, U. S. Patent No. 5,296,318 (1994). [17 ] A. S. Gozdz, C. N. Schmutz, J. M. Tarascon, and P. C. Warren, “Polymeric electrolytic cell separator membrane”, U. S. Patent No. 5,418,091 (1995). [18 ] S. Suzuki, “Toshiba battery new products for cellular phone, personal computer and power tools”, in Proceedings of 2000 (4th) Taipei Battery Forum, 25-26 Apr. (2000). [19 ] D. Guyomard, Ch.9 in Energy Storage Systems for Electronics, T. Osaka and M. Datta, Eds., New Trends in Electrochemical Technology Series, Gordon and Breach Science Publishers, Amsterdam, Netherland (2000). [20 ] K. Kinoshita, Ch.8 in Energy Storage Systems for Electronics, T. Osaka and M. Datta, Eds., New Trends in Electrochemical Technology Series, Gordon and Breach Science Publishers, Amsterdam, Netherland (2000). [21 ] J. Barthel and H. J. Gores, Ch.7 in Handbook of Battery Materials, J. O. Besenhard, Ed., Wiley-VCH, Weinheim (1999). [22 ] 竹原善一郎, Ch.6 in 高密度リチウム二次電池-その反應、材料と技術開發, 株式會社テクノツステム (1998). [23 ] D. Aurbach, B. Markovsky, I. Weissman, E. Levi, and Y. Ein-Eli, “On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries”, Electrochim. Acta, 45, 67-86 (1999). [24 ] D. Aurbach, B. Markovsky, M. D. Levi, E. Levi, A. Schechter, M. Moshkovich, and Y. Cohen, “New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries”, J. Power Sources, 81-82, 95-111 (1999). [25 ] M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, “Insertion electrode materials for rechargeable lithium batteries”, Adv. Mater., 10, 725-763 (1998). [26 ] C. R. Yang, Y. Y. Wang, and C. C. Wan, “Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte”, J. Power Sources, 72, 66-70 (1998). [27 ] T. Kobayashi, Ch.5 in Report No.2: Materials for New Energy Technologies Focusing on Fuel Cells, Secondary Batteries and Hydrogen Utilization (Update-I), Japanese R&D Trend Analysis, KRI, Japan (1999). [28 ] D. Aurbach, Y. Ein-Eli, B. Markovsky, Y. Carmeli, H. Yamin, and S. Luski, “The dependence of the performance of Li-C intercalation anodes for Li-ion secondary batteries on the electrolyte solution composition”, Electrochim. Acta, 39, 2559-2569 (1994). [29 ] Y. Ein-Eli, S. R. Thomas, and V. R. Koch, “New electrolyte system for Li-ion battery”, J. Electrochem. Soc., 143, L195-L197 (1996). [30 ] Y. Ein-Eli, S. R. Thomas, and V. R. Koch, “The role of SO2 as and additive to organic Li-ion battery electrolytes”, J. Electrochem. Soc., 144, 1159-1165 (1997). [31 ] H. Gan and E. S. Takeuchi, “Dicarbonate additives for nonaqueous electrolyte rechargeable cells”, U.S. Patent No. 6,174,629 (2001). [32 ] F. Coowar, A. M. Christie, P. G. Bruce, and C. A. Vincent, “Improving the performance of graphite anodes in rechargeable lithium batteries”, J. Power Sources, 75, 144-150 (1998). [33 ] M. Contestabile, M. Morselli, R. Paraventi, and R. J. Neat, “A comparative study on the effect of electrolyte/additives on the performance of ICP383562 Li-ion polymer (soft-pack) cells”, J. Power Sources, 119-121, 943-947 (2003). [34 ] R. Oesten, U. Heider, and M. Schmidt, “Advanced electrolytes”, Solid State Ionics, 148, 391-397 (2002). [35 ] S. S. Zhang, K. Xu, and T. R. Jow, “A thermal stabilizer for LiPF6-based electrolytes of Li-ion cells”, Electrochem. Solid-State Lett., 5, A206-A208 (2002). [36 ] E. Peled, D. Golodnitsky, and J. Penciner, Ch.6 in Handbook of Battery Materials, J. O. Besenhard, Ed., Wiley-VCH, Weinheim (1999). [37 ] S. K. Jeong, M. Inaba, T. Abe, and Z. Ogumi, “Surface film formation on graphite negative electrode in lithium-ion batteries. AFM study in an ethylene carbonate-based solution”, J. Electrochem. Soc., 148, A989-A993 (2001). [38 ] S. Geniès, R. Yazami, J. Garden, and J. C. Frison, “SEM and FT-IR characterization of the passivation film on lithiated mesocarbon fibers”, Synthetic Metals, 93, 77-82 (1998). [39 ] D. Aurbach, Y. Gofer, M. Ben-Zion, and P. Aped, “The behavior of lithium electrodes in propylene and ethylene carbonate: the major factors that influence Li cycling efficiency”, J. Electroanal. Chem., 339, 451-471 (1992). [40 ] D. Aurbach, B. Markovsky, I. Weissman, E. Levi, and Y. Ein-Eli, “On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries”, Electrochim. Acta, 45, 67-86 (1999). [41 ] M. Moshkovich, M. Cojocaru, H. E. Gottlieb, and D. Aurbach, “The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS”, J. Electroanal. Chem., 497, 84-96 (2001). [42 ] P. Novák, F. Joho, R. Imhof, J. C. Panitz, and O. Haas, “In situ investigation of the interaction between graphite and electrolyte solutions”, J. Power Sources, 81-82, 212-216 (1999). [43 ] K. Suzuki, T. Hamada, and T. Sugiura, “Effect of graphite surface on initial irreversible reaction in graphite anodes”, J. Electrochem. Soc., 146, 890-897 (1999). [44 ] J. S. Shin, C. H. Han, U. H. Jung, S. I. Lee, H. J. Kim, and K. Kim, “Effect of Li2CO3 additive on gas generation in lithium-ion batteries”, J. Power Sources, 109, 47-52 (2002). [45 ] H. Yoshida, T. Fukunaga, T. Hazama, M. Terasaki, M. Mizutani, and M. Yamachi, “Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging”, J. Power Sources, 68, 311-315 (1997). [46 ] K. Kumai, H. Miyashiro, Y. Kobayashi, K. Takei, and R. Ishikawa, “Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell”, J. Power Sources, 81-82, 715-719 (1999). [47 ] A. Ohta, H. Koshina, H. Okuno, and H. Murai, “Relationship between carbonaceous materials and electrolyte in secondary lithium-ion batteries”, J. Power Sources, 54, 6-10 (1995). [48 ] D. Aurbach, A. Zaban, O. Chusid, and I. Weissman, “LiC(SO2CF3)3, a new salt for Li battery systems. A comparative study of Li and non-active metal electrodes in its ethereal solutions using in situ FTIR spectroscopy”, Electrochim. Acta, 41, 747-760 (1996). [49 ] I. Ismail, A. Noda, A. Nishimoto, M. Watanabe, “XPS study of lithium surface after contact with lithium-salt doped polymer electrolytes”, Electrochim. Acta, 46, 1595-1603 (2001). [50 ] D. Aurbach, I. Weissman, and A. Schechter, “X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions. A comparison with previous studies by Fourier Transform Infrared Spectroscopy”, Langmuir, 12, 3991-4007 (1996). [51 ] A. Schechter, D. Aurbach, and H. Cohen, “X-ray photoelectron spectroscopy study of surface films formed on Li electrodes freshly prepared in alkyl carbonate solutions”, Langmuir, 15, 3334-3342 (1999). [52 ] K. Kanamura, S. Shiraishi, H. Tamura, and Z. I. Takehara, “X-ray photoelectron spectroscopic analysis and scanning electron microscopic observation of the lithium surface immersed in nonaqueous solvents”, J. Electrochem. Soc., 141, 2379-2385 (1994). [53 ] D. Aurbach, I. Weissman, A. Zaban, and P. Dan, “On the role of water contamination in rechargeable Li batteries”, Electrochim. Acta, 45, 1135-1140 (1999). [54 ] D. Aurbach, A. Zaban, Y. Ein-Eli, I. Weissman, O. Chusid, B. Markovsky, M. Levi, E. Levi, A. Schechter, and E. Granot “Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems”, J. Power Sources, 68, 91-98 (1997). [55 ] M. Winter, “An overview on SEI formation processes of lithium battery anodes in organic solvent based electrolyte”, in C4, Proceedings of 2003 Taipei Power Forum, Taipei, Taiwan, 1-3 Dec. (2003). [56 ] M. Yoshio, “Materials for Lithium-ion Batteries”, in C1, Proceedings of 2002 (6th) Taipei Power Forum, Taipei, Taiwan, 23-25 Apr. (2002). [57 ] F. Orsini, A. D. Pasquier, B. Beaudoin, J. M. Tarascon, M. Trentin, N. Langenhuizen, E. D. Beer, and P. Notten, “In situ scanning electron microscopy (SEM) observation of interfaces within plastic lithium batteries”, J. Power Sources, 76, 19-29 (1998). [58 ] A. Naji, J. Ghanbaja, P. Willmann, and D. Billaud, “TEM characterization of the passivating layer formed during the reduction of graphite electrodes in selected electrolytes”, J. Power Sources, 81-82, 207-211 (1999). [59 ] D. Zane, A. Antonini, and M. Pasquali, “A morphological study of SEI film on graphite electrodes”, J. Power Sources, 97-98, 146-150 (2001). [60 ] R. Yazami, “Surface chemistry and lithium storage capability of the graphite- lithium electrode”, Electrochim. Acta, 45, 87-97 (1999). [61 ] D. Aurbach, M. Koltypin, and H. Teller, “In situ AFM imaging of surface phenomena on composite graphite electrodes during lithium insertion”, Langmuir, 28, 9000-9009 (2002). [62 ] S. K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi, “AFM study of surface film formation on a composite graphite electrolyte in lithium-ion batteries”, J. Power Sources, 119-121, 555-560 (2003). [63 ] M. Inaba, Z. Siroma, Y. Kawatate, A. Funabiki, and Z. Ogumi, “Electrochemical scanning tunneling microscopy analysis of the surface reactions on graphite basal plane in ethylene carbonate-based solvents and propylene carbonate”, J. Power Sources, 68, 221-226 (1997). [64 ] M. Inaba, Z. Siroma, A. Funabiki, Z. Ogumi, T. Abe, Y. Mizutani, and M. Asano, “Electrochemical scanning tunneling microscopy observation of highly oriented pyrolytic graphite surface reactions in an ethylene carbonate-based electrolyte solution”, Langmuir, 12, 1535-1540 (1996). [65 ] S. K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi, “Surface film formation on a graphite negative electrode in lithium-ion batteries: AFM study on the effects of co-solvents in ethylene carbonate-based solutions”, Electrochim. Acta, 47, 1975-1982 (2002). [66 ] D. Aurbach and Y. Ein-Eli, “The study of Li-Graphite intercalation processes in several electrolyte systems using in situ X-ray diffraction”, J. Electrochem. Soc., 142, 1746-1752 (1995). [67 ] M. Koltypin, Y. S. Cohen, B. Markovsky, Y. Cohen, and D. Aurbach, “The study of lithium insertion-deinsertion processes into composite graphite electrodes by in situ atomic force microscopy (AFM)”, Electrochem. Commun., 4, 17-23 (2002). [68 ] D. Alliata, R. Kötz, P. Novák, and H. Siegenthaler, “Electrochemical SPM investigation of the solid electrolyte interphse film formed on HOPG electrodes”, Electrochem. Commun., 2, 436-440 (2000). [69 ] D. Aurbach, “Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries”, J. Power Sources, 89, 206-218 (2000). [70 ] A. Zaban and D. Aurbach, “Impedance spectroscopy of lithium amd nickel electrodes in propylene carbonate solutions of different lithium salts. A comparative study”, J. Power Sources, 54, 289-295 (1995). [71 ] M. D. Levi and D. Aurbach, “Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium”, J. Phys. Chem. B, 101, 4630-4640 (1997). [72 ] B. Markovsky, M. D. Levi, and D. Aurbach, “The basic electroanalytical behavior of practical graphite-lithium intercalation electrodes”, Electrochim. Acta, 43, 2287-2304 (1998). [73 ] C. R. Yang, J. Y. Song, Y. Y. Wang, and C. C. Wan, “Impedance spectroscopic study for the initiation of passive film on carbon electrodes in lithium ion batteries”, J. Appl. Electrochem., 30, 29-34 (2000). [74 ] D. Aurbach, Y. Ein-Eli, O. Chusid, Y. Carmeli, M. Babai, and H. Yamin, “The basic electroanalytical behavior of practical graphite-lithium intercalation electrodes”, J. Electrochem. Soc., 141, 603-611 (1994). [75 ] Y. Ein-Eli, “A new perspective on the formation and structure of the solid electrolyte interface at the graphite anode of Li-ion cells”, Electrochem. Solid-State Lett., 2, 212-214 (1999).id NH0925063053 sid 897605 cfn 0 / id NH0925063054 auc 張淑雅 tic 以無電鍍法研製銅內連線擋層Ni-W-P之研究 adc 萬其超 adc 王詠雲 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 英文 pg 82 kwc 擋層 kwc 銅製程 abc 本研究係以無電鍍法製備高熱穩定性及低電阻率之Ni-W-P薄膜,且藉著調整無電鍍槽之參數如:鍍槽溫度、[Na2WO4 tc Table of Contents 摘要.......................................................................................................................Ⅰ Abstract…………………………………………………………………………Ⅱ Table of Contents……………………………………………………………….Ⅳ List of Tables……………………………………………………………………Ⅶ List of Figures…………………………………………………………………..Ⅷ Chapter1. Introduction………………………………………………………….1 1.1 Introduction…………………………………………………………………………..1 1.2 Copper metallization…………………………………………………………………2 1.3 Application of diffusion barriers in electronic devices……………………………… 2 1.4 Requirements of diffusion barriers………………………………………………….. 2 1.5 Types of diffusion barriers…………………………………………………………... 3 1.6 Barrier materials……………………………………………………………………...4 1.7 Barrier deposition technologies……………………………………………………... 5 Chapter2. Electroless Nickel-based barriers for copper interconnects…......10 2.1 Introduction…………………………………………………………………………10 2.2 Literature review……………………………………………………………………10 2.2.1 Electroless cobalt-based layers………………………………………………… 10 2.2.1.1 Co-W-P films……………………………………………………………………10 2.2.1.2 Co-Mo-P films…………………………………………………………………..12 2.2.2 Electroless nickel-based layers…………………………………………………...13 2.2.2.1 Ni-P films……………………………………………………………………….13 2.2.2.2 Ni-B and Ni-W-B films…………………………………………………………14 2.2.2.3 Ni-Mo-P films…………………………………………………………………..15 2.2.2.4 Ni-W-P films……………………………………………………………………16 2.2.2.4.1 Phase of binary Ni-W alloy system…………………………………………...16 2.2.2.4.2 Application and physical properties…………………………………………..16 2.2.2.4.3 Fabrication and composition………………………………………………….17 2.2.2.4.4 Mechanical property and corrosion resistance………………………………..17 2.2.2.4.5 Microstructure and thermal property…………………………………………18 2.2.2.4.6 Electrical property…………………………………………………………….18 2.2.2.4.7 Interfacial interaction between coopper/barrier………………………………19 2.2.2.4.8 Direct Cu deposition on seedless barrier……………………………………. 20 2.3 The objective of this research………………………………………………………21 2.4 Experimental………………………………………………………………………..26 2.4.1 Pretreatment before electroless deposition……………………………………….26 2.4.2 Electroless deposition of Ni-W-P film……………………………………………26 2.4.3 Electrodeposition of Cu film.…………………………………………………….26 2.4.4 Procedure of annealing…………………………………………………………....26 2.4.5 Characterization and measurement……………………………………………….27 2.4.5.1 Surface morphology and composition analysis………………………………... 27 2.4.5.2 Crystal structure identification………………………………………………… 27 2.4.5.3 Film thickness measurement……………………………………………………27 2.4.5.4 Electrical resistivity measurement……………………………………………...27 2.4.5.5 SIMS analysis…………………………………………………………………..28 2.5 Results and Discussions…………………………………………………………….32 2.5.1 Effects of deposited parameters in Ni-W-P film………………………………….32 2.5.1.1 Deposition rate and film composition…………………………………………. 32 2.5.1.1.1 [Na2WO4 ] effect………………………………………………………………32 2.5.1.1.2 pH effect………………………………………………………………………33 2.5.1.1.3 Bath temperature effect……………………………………………………….33 2.5.1.1.4 Deposition time……………………………………………………………….34 2.5.2 Microstructure and crystal structure……………………………………………... 34 2.5.3 Electrical property……………………………………………………………….. 35 2.5.4 Effect of heat-treatment on structure and sheet resistance……………………… 36 2.5.4.1 Phase identification of heat-treated Ni-W-P films…………………………….. 36 2.5.4.2 Sheet resistance of heat-treated Ni-W-P films………………………………… 37 2.5.5 Electroless Ni-W-P film as Diffusion barrier……………………………………..38 2.5.5.1 Phase formation of Cu/Ni-W-P/Si………………………………………………38 2.5.5.2 SIMS depth profile……………………………………………………………...38 Chapter3. Electrochemical investigation of Ni-W-P bath…………………...58 3.1 Introduction…………………………………………………………………………58 3.2 Literature review……………………………………………………………………59 3.2.1 Kinetics of the autocatalytic deposition of Ni-P alloys in ammoniacal solutions...59 3.2.2 Investigation of electroless Ni-based ternary alloys……………………………...60 3.3 The objective of this research……………………………………………………… 63 3.4 Experimental………………………………………………………………………..65 3.4.1 CV investigation…………………………………………………………….. …...65 3.4.2 UV-Vis measurement……………………………………………………………..65 3.4.3 XPS analysis……………………………………………………………………...65 3.5 Results and Discussions…………………………………………………………… 66 3.5.1 CV investigation………………………………………………………………….66 3.5.1.1 [Na2WO4 ] effect……………………………………………………………….. 67 3.5.1.2 pH effect………………………………………………………………………..67 3.5.2.3 Bath temperature effect…………………………………………………………68 3.5.2 UV results………………………………………………………………………...68 3.5.3 XPS analysis……………………...………………………………………………70 Chapter4. Conclusions…………………………………………………………76 Chapter5. References…………………………………………………………..78rf Chapter5. References 1. Semiconductor Industrial Association (SIA) Roadmap (1997). 2. Copper interconnects in Altera Device White Paper, Altera Corporation (2001). 3. T. Oku, E. Kawakami, M. Uekubo, K. Takahiro, S. Yamaguchi and M. Murakami, Applied Surface Science, 99, p.265 (1996). 4. M. A. Nicolet, Thin solid Films, 52, p.415 (1978). 5. Y. Shacham-Diamand, Journal of Electronic Materials, 30, p.336 (2001). 6. G. S. Sandhu, S. G. Meikle and T.T. Doan, Applied Physical Letter, 62, p.240 (1993). 7. M. H. Staia, E. S. Puchi, D. B. Lewis, J. Cawley and D. Morel, Surface and Coatings Technology, 86-87, p.432 (1996). 8. M. H. Tsai, S. C. Sun, C. P. Lee, H. T. Chiu and S. C. Wu, Thin solid films, 270, p.531 (1995). 9. K. N. Cho, C. H. Han, K. B. Noh and J. G. Lee, Japan Journal of Appied Physics, 37, p.6502 (1998). 10. K. C. Walter, R. P. Fetherston, K. Sridharan, A. Chen and J. R Conrad, Materials Research Bulletin, 29, p.827 (1994). 11. K. Baba and R. Hatada, Surface and Coatings Technology, 84, p.429 (1996). 12. A. Brenner, Journal of Research National Bar, Standard, 37, p.1 (1946). 13. M. Paunovic, P. J. Bailey and R.G. Schad, Journal of Tthe Electrochemical Society, p.1843 (1994). 14. V. M. Dubin and Y. Shacham-Diamand, Journal of The Electrochemical Society, 144, p.898 (1997). 15. Y. Shacham-Diamand and S. Lopatin, Microelectronic Engineering, 37/38, p.77 (1997). 16. Y. Shacham-Diamand, Y. Sverdlov and N. Petrov, Journal of Tthe Electrochemical Society, 148, c162 (2001). 17. N. Petrov, A. Kolics, Y. Shacham-Diamand and I. Ivanov, 201stElectrochemical Society Meeting, Philadelphia, May, p.535 (2002). 18. Y. Shacham-Diamand, A. Zylberman and N. Petrov,Y., Microelectronic Engineering, p.315 (2002). 19. K. Baba and R. Hatada, Surface and Coatings Technology, 84, p.429(1996). 20. J. F. Rohan and G.. O’Riordan, Microelectronic Engineering, 65, p.77 (2003). 21. T. Osaka, N. Takano, T. Kurokawa and T. Kaneko, Surface And Coatings Technology, 169-170, p.124 (2003). 22. Y. Wu, Y. Y. Wang and C. C. Wan, Journal of the Electrochemical Society (2003 submit). (Electroless Deposition of a Novel NiMoP Diffusion Barrier/Seed Layer for Cu Interconnect). 23. Y. Wu, W. C. Chen, H. P. Fong, C. C. Wan and Y. Y. Wang, Journal of The Electrochemical Society, 149, G309 (2002). 24. E. D. D’Ottavio, U.S. Pat. 3,532,518 (1970); U.S. Pat. 3,650,913 (1972). 25. T. Osaka, H. Takematsu, and K Nihei, Journal of The Electrochemical Society, 148, c162 (2001). 26. P. Nash, ASM International, June (1991). 27. E.J. O’Sullivan, A.G. Schrott, M. Paunovic, C.J. Sambucetti, J.R. Marino, P.J. Bailey, S. Kaja and K.W. Semkow, IBM Journal Research Development, 42, p.607 (1998) . 28. G. O, M. Juan, B. Hajdu, American Electroplaters and Surface Finishers Society, p.3(1990). 29. M. M. Younan, Galvanotechnik, 4, p.932 (2002). 30. Y. Y. Tsai, F. B. Wu, Y. I Chen, Surface And Coatings Technology, 146-147, p.502 (2001). 31. T. Osaka, N. Takano, T. Kurokawa, T. Kaneko, and K. Ueno, Journal of The Electrochemical Society,149, C573 (2002). 32. International technology roadmap for semiconductors, 2001 edition. 33. I. Koiwa, M. Usuda, and T. Osaka, Journal of The Electrochemical Society,135,p.1222 (1988). 34. D. Kim, K. Aoki and O.Takano, Journal of The Electrochemical Society,142, p.3763 (1995). 35. K. Chen,Y. Chen, Plating and Surface Finishing.,84, p.80 (1997). 36. T. Osaka, M. Usuda, I. Koiwa, H. Sawai, Jpn. J. Appl. Phys., 27(10), p1885 (1988). 37. S.-H. Kim, D.-S. Chung, K.-C. Park, K.-B. Kim and S.-H. Min, Journal of The Electrochemical Society, 146, p.1455 (1999). 38. A.E. Kaloyeros, X. Chen, T. Stark, K. Kumar, S.-C. Seo, G.G. Peterson, H.L. Frisch, B. Arkles and J. Sullivan, Journal of The Electrochemical Society,146,p.170 (1999). 39. X. Sun, J.S. Reid, E. Kolawa, M.-A. Nicolet and R.P. Ruiz, Journal of Applied Physic, 81, p.664(1997). 40. V. D. Papachristos, C. N. Panagopoulos and U. Wahlstrom, Material Science Engineering, A281, P.286 (2000). 41. K. Abe, Y. Harada and H. Onoda, Applied Physical Letter, 71(19), p.2782 (1997). 42. S.S. Wong, C. Ryu, H. Lee and L.S. Loke, IEEE, p.98 (1998). 43. C. Ryu, L.S. Loke and T. Nogami ,IEEE, p.201(1997). 44. R. G. Wilson, Secondary ion mass spectrometry: a practical handbook for depth profiling and bulk impurity analysis, John Wiley &Sons Inc. (1989). 45. L. Liu, International Journal of Modern Physics B, 16, p.322 (2002). 46. C. Wagner and W. Traud, Zata Electrochemistry, 44, p.391(1938). 47. B. J. Hwang and S. H. Lin, Journal of The Electrochemical Society,142, p.3749 , (1995). 48. A. Brenner, Electrodeposition of alloys,Vol.1-2, Academic Press, New York (1963). 49. E. J Padlaha and D. Landolt, Journal of The Electrochemical Society,144, p.1672 (1997). 50. M. Ebn Touhami, E. Chassaing and M. Cherkaoui, Electrochimica Acta, 97, p.1 721 (1998). 51. W.E. Clark and M. H. Lietzke, Journal of The Electrochemical Society, 99, p. 246 (1952). 52. D.W. Ernst, R. F. Amlie and M.L. Holt, Journal of The Electrochemical Society,105, p.686 (1958). 53. E. Chassaing, K. Vu Quang and R.Wiart, Journal of Applied Electrochemistry,19, p.839 (1989). 54. G. Lu and G. Zangari, Journal of The Electrochemical Society, 150, C777(2003). 55. N. DU and M. PRITZKER, Journal of Applied Electrochemistry, 33, p.1001(2003). 56. I. Ohno, Material science Engineering, A146, p.33 (1991). 57. M. EBN Touham, M. Chassaing, Journal of Applied Electrochemistry, 26, p. 487 (1996). 58. F. Pearlstein and R. Weightman, Electrochemical Technology, 6, p.427 (1968). 59. O. Younes and E. Gileadi, Journal of The Electrochemical Society, 149, C100 (2002). 60. L. V. Shastri, R. E. Huie and P. Neta, Journal of Physical Chemistry, 94, P.1895 (1990). 61. E. Beltowska-Lehman and P. Ozga, Electrochimistry Acta, 43, p.617(1998). 62. Rauscher, V. Rogoll, M.E. Baumgaertner and Ch. J. Raub, Trans Inst. Metal Finish,71(3), p. 95 (1993). 63. N. Petrov, Y. Sverdlov and Y. Shacham-Diamand, Journal of The Electrochemical Society, 149, C187 (2002). 64. I. Genutiene, J. Lenkaitiene and Z. Jusys, Journal of Applied Electrochemistry, 26, p.118 (1996). 65. S. Song, X. Bao and M. Muhler, Applied Surface Science,148, p.241(1999).id NH0925063054 sid 913611 cfn 0 / id NH0925063055 auc 王梓仲 tic PAN-PCL高分子團聯共聚合物碳化之研究 adc 何榮銘 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 96 kwc 碳化 kwc 高分子團聯共聚合物 kwc 聚丙烯 kwc & kwc #33096;─聚己內酯共聚物 abc 本實驗利用活性開環聚合反應(living ring-opening polymerization)與活性自由基聚合反應(living free radical polymerization),製備聚丙烯腈─聚己內酯共聚物(poly(acrylonitrile)-block-poly(ε-caprolactone),PAN-PCL)。其中PAN為一碳化之前置材料,而PCL為一可生物分解之結晶性材料。將發展許久之碳化製程應用於高分子團聯共聚合物系統中,由傅立葉轉換紅外光譜儀(Fourier transform infrared, FTIR)及掃描式探針顯微鏡(scanning probe microscopy, SPM)觀察其化學反應變化及其形態之改變,且結合熱重分析儀(thermal gravimetric analysis, TGA)分析,初步推論在奈米空間下,對PAN-PCL高分子團聯共聚合物而言,於微相分離時,其PAN鏈段形態並非如以往所認定為不規則形(random coil),而是有具有分子拉伸排列特性之鏈段;由於分子拉伸排列性質之故,PAN-PCL高分子團聯共聚合物中之PAN鏈段其碳化過程將因為此特性而減少分子鏈斷裂(chain scission)的情形,使其碳化率遠高於一般未經拉伸處理之PAN碳纖前置材料。 tc 摘要 I 英文摘要 III 目錄 V 圖目錄 VIII 第一章 緒論 1 第二章 簡介 4 2.1 碳材於奈米科技之發展 4 2.2 奈米碳管之研究 5 2.3 高分子團聯共聚合物之相分離形態 6 2.4 碳纖簡介 7 2.5 PAN碳纖之化學反應 8 2.6 PAN碳纖之物理性質及內部結構鑑定 12 2.7 碳化之於高分子團聯共聚合物之應用 15 2.8 水解生物可分解高分子鏈段水解 16 第三章 實驗 36 3.1 實驗材料 36 3.2 實驗儀器 37 3.3 實驗方法及試片製備 38 3.3.1 微觀相分離薄膜試片製備、鑑定與基本熱性質之測定 38 3.3.2 TEM薄膜試片製備及染色 39 3.3.3 碳化薄膜試片製備、鑑定 40 3.3.4 塊材之結構鑑定 40 3.3.5 FTIR樣本製備 41 3.4 儀器原理 41 3.4.1 掃瞄式探針顯微鏡 (Scanning probe microscopy) 41 3.4.1.1 接觸式掃瞄探針顯微鏡 42 3.4.1.2 非接觸式掃瞄探針顯微鏡 44 3.4.1.3 間歇接觸式掃瞄探針顯微鏡 45 3.4.2 穿透式電子顯微鏡(TEM) 46 3.4.3 同步輻射之小角度X光散射儀 48 第四章 結果與討論 57 4.1 共聚合物之分子設計 57 4.2 溶劑選擇 58 4.3 熱性質分析 59 4.4 微觀相分離與結構之鑑定 60 4.4.1 塊材微觀相分離結構之鑑定 61 4.4.2 薄膜微觀相分離結構之鑑定 62 4.5 PAN主相多孔性碳化材料製程 63 4.6 PAN-PCL高分子團聯共聚合物之於奈米圖案成形技術 65 4.7 分子鏈排列與熱穩定性之影響 67 4.8 高分子團聯共聚合物鏈段之自我排整性質 68 第五章 結論 91 參考文獻 93 圖目錄 圖2-1 高分子團聯共聚合物之自我有序及自我排組成一微觀相分離結構,尺寸約數十奈米。 18 圖2-2 高分子團聯共聚合物之形態隨藍色團聯鏈段之體積分率增加,有序微觀相分離結構之變化情形。. 19 圖2-3 PS-PI高分子團聯共聚合物之體心立方圓球 ( body center cubic) 結構。以OsO4染色PI 團聯鏈段,PS團聯鏈段為白色。(a) 為[110 ]方向之四折疊對稱之投影 (four-fold symmetry projection),(b) 為[111 ]方向之三折疊六角堆積之投影 (three-fold hexagonal symmetry projection) 。 20 圖2-4 (a) PS-PB-PS高分子團聯共聚合物之六角圓柱 (hexagonal cylinder) 微觀相分離結構以OsO4染色PB團聯鏈段,PS團聯鏈段為白色。(b) PS-PB-PS團聯共聚合物六角圓柱微觀結構之SAXS圖譜。 21 圖2-5 (a) PS-PI高分子團聯共聚合物之層板 (lamellae) 微觀相分離結構。以OsO4 染色 PI團聯鏈段, PS團聯鏈段為白色。(b) PS-PI團聯共聚合物層板微觀相分離結構之 SAXS圖譜。 22 圖2-6 PS-PI高分子團聯共聚合物之雙連續相 (bicontinuous、gyroid) 結構。以OsO4 染色PI團聯鏈段,PS團聯鏈段為白色。(a) 為三折疊之投影 (three-fold projection),(b) 為四折疊之投影 (four-fold projection)。 23 圖2-7 PS-P2VP團聯共聚合物摻和系統之穿孔層板 (perforated layer) 微觀結構。以RuO4 染色PS團聯鏈段, P2VP團聯鏈段為白色。 24 圖2-8 PS-PLLA高分子團聯共聚合物之單股螺旋結構,以RuO4染色PS鏈段,PLLA為白色區域。 25 圖2-9 SEBS高分子團聯共聚合物摻和系統之無序形態 (disorder)。以OsO4染色PB團聯鏈段, PS團聯鏈段為白色。 26 圖2-10 高分子團聯共聚合物之χN對體積分率fs之相圖。 27 圖2-11 PAN高分子碳化程序之簡易流程圖。 28 圖2-12 PAN高分子stabilization於不同反應溫度下進行之FTIR圖譜(a)225oC(b)250oC(c)275oC (d)300oC。 29 圖2-13 PAN碳纖三維示意圖。 30 圖2-14 於不同反應條件之碳纖之XRD,列表為其各別處理條件。 31 圖2-15 Reynolds和Sharp張力破壞纖維示意圖。 32 圖2-16 以輕敲式原子力顯微鏡鑑定 PAN-PBA-PAN碳化之形態。 33 圖2-17 以拉曼光譜鑑定PAN-PBA-PAN碳化形態。1350 cm-1為sp3C鍵結,而1600cm-1為石墨之sp2鍵結。 34 圖2-18 PS-PLLA高分子團聯共聚合物之單股螺旋結構於水解以FESEM觀察所得。 35 圖3-1 PCL之開環聚合途徑。 49 圖3-2 PCL氫氧基以Br官能化途徑。 50 圖3-3 PAN-b-PCL ATRP聚合途徑。 51 圖3-4 AN05CL03於氮氣環境下之TGA圖。 52 圖3-5 PAN於氮氣環境下之TGA圖。 53 圖3-6 原子力顯微鏡原理 (a) 接觸距離與凡得瓦力(van der Waals force)之關係。(b) 原子間作用力的變化使得懸臂產生彎曲,導致打在懸臂後方反射至偵測器之雷射訊號發生改變。 54 圖3-7 原子力顯微鏡中之恆定-力量偵測模式與恆定-高度偵測模式示意圖。 55 圖3-8 TEM之成像原理 (a)高度對比影像; (b)低度對比影像。 56 圖4-1 AN05CL03之PCL結晶熔點、最快結晶時間及PAN玻璃轉換溫度之測定圖。 71 圖4-2 AN03CL05之PCL結晶熔點、最快結晶時間及PAN玻璃轉換溫度之測定圖。 72 圖4-3 AN05CL03之TEM圖。暗色部份為PAN,白色為PCL 。......73 圖4-4 未經處理AN05CL03之SAXS圖,其d-spacing為12.54nm。 74 圖4-5 未經處理AN03CL05之TEM圖。暗色部份為PAN,白色為PCL 。 75 圖4-6 未經處理AN03CL05之SAXS圖,其d-spacing為21.22nm。 76 圖4-7 AN03CL05 stabilization前後之SAXS圖。 77 圖4-8 未經處理AN05CL03之SPM圖。 78 圖4-9 未經處理AN03CL05之SPM圖。 79 圖4-10 AN05CL03於氮氣環境下10oC/min昇溫至500oC之DSC圖。 80 圖4-11 AN05CL03於空氣環境下10oC/min昇溫至500oC之DSC圖。 81 圖4-12 PAN於氮氣環境下10oC/min昇溫至500oC之DSC圖。 82 圖4-13 PAN於空氣環境下10oC/min昇溫至500oC下之DSC圖。 83 圖4-14 AN05CL03於260oC進行stabilization反應,不同反應時間之FTIR圖譜。 84 圖4-15 AN05CL03低溫氧化後之SPM圖。 85 圖4-16 AN03CL05低溫氧化後之SPM圖。. 86 圖4-17 AN03CL05高溫碳化後之SPM圖。 87 圖4-18 AN03CL05高溫碳化後之SPM圖高低對比分析。 88 圖4-19 PAN與PAN-PCL經stabilization後之TGA圖。 89 圖4-20 PAN分子鏈拉伸模型示意圖。實線為PCL鏈段,虛線為PAN鏈段。 90rf [1 ] Iijima, S., Nature, 1991, 354, 56 [2 ] Smalley, R. E., Science, 1996, 273, 483 [3 ] Qin, L. C.; Iijima, S., MATER. LETT., 1997, 30, 314 [4 ] Fan, S.; Chapline, M. G.; Franklin, N, R.; Tombler, T, W.; Cassell, A, M., Dai, H., Science, 1999, 283, 512 [5 ] Choi, W. B.; Yun, M. J.; Jin, Y. W., US patent, 2004, 20040045817 [6 ] Adedeli, A.; Ho, R. M.; Giles, D. W.; Hajduk, D. A.; Macosko, C. W.; Bates, F. S., J. Polym. Sci.: Polym. Phys., 1997, 35, 2857 [7 ] Bates, F. S.; Fredrickson, G. H., Phys. Today, 1999, 52, 32. [8 ] Pochan, D. J.; Gido, S. P.; Pispas, S.; Mays, J. W.; Ryan, A. J.; Fairclough, J. P. A., Macromolecules 1996, 29, 5091 [9 ] Ryan, A. J.; Hamley, I. W., Morphology of block copolymers. In The physics of glassy polymers, (ed. Haward R. N. and Young R. J.)Chapman and Hall, London, 1997 [10 ] Khandpur, A. K.; Forster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W., Macromolecules, 1995, 28, 8796 [11 ] Forster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J., Macromolecules, 1994, 27, 6922 [12 ] Schulz, M. F.; Khandpur, A. K.; Bates, F. S.; Almdal, K.; Mortensen, K.; Hajduk, D. A.; Gruner, S. M., Macromolecules, 1996, 29, 2857 [13 ] Ho, R-M.; Chiang, Y-W.; Tsai, C-C.; Lin C-C.; Ko B-T.; Huang B-H., J. Am. Chem. Soc., 2004, 126, 2704 [14 ] Mansky, P.; Chaikin, P. M.; Thomas, E. L. J. Mater. Sci. 1995, 30, 1987. [15 ] Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Science 1997, 276, 1401. [16 ] Johnston, W.; Phillips, L. N.; Watt, W., UK Patent, 1964, 1,110,791 [17 ] Johnston, W.; Phillips, L. N.; Watt, W., US Patent, 1968, 3,412,062 [18 ] Singer, L. S.,US Patent, 1977, 4,005,183 [19 ] Standage, A. E.; Prescott, R., Nature, 1966, 211, 169 [20 ] Bashir, Z., Carbon, 1991, 29, 1081 [21 ] Houtz, R. C., Textile Res., 1950, 20, 786 [22 ] Coleman, M. M.; Petcativh, R., J. Polym. Sci. Polym. Phys. Edn., 1978, 16, 821 [23 ] Gupta, A. K.; Maiti, A. K., J. Appl. Polym. Sci., 1982, 27, 2409 [24 ] Xue, J. T.; McKinney, M. A.; Wilkie, C. A., Polym. Degrad. Stabil., 1995, 47, 217 [25 ] Diefendorf, R. J.; Tokarsky, E. Polym. Eng. Sci., 1975, 25,150 [26 ] Johnson, D. J., J. Phys. D: Appl. Phys., 1987, 20, 287 [27 ] Huang, Y.; Young, R. J., Carbon, 1995, 33, 97 [28 ] Endo, M., J. Mater. Sci., 1988, 23, 598 [29 ] Guigon, M.,; Overlin, A.; Desarmot, G., Fiber Sci. Tech., 1984, 20,177 [30 ] Kaburaki, M.; Bin, Y.; Zhu, D.; Xu, C.; Matsuo, M., Carbon, 2003, 41, 915 [31 ] Reynolds, W. N.; Sharp, J. V., Carbon, 1974, 12, 103 [32 ] Edie, D. D. Carbon 1998, 36, 345 [33 ] Kowalewski, T.; Tsarevsky, V. N.; Matyjaszewski, K., J. Am. Chem. Soc., 2002, 124, 10632 [34 ] Kowalewski, T.; McCullough, R. D.; Matyjazawski, K., Eur. Phys. J. E., 2003, 10, 5 [35 ] Lee, W. K.; Gardella, J. A. Jr., Langmuir, 2000, 16, 3401 [36 ] Zalusky, A. S.; Olayo-Valles, R.; Taylor, C.; Hillmyer, M. A., J. Am. Chem. Soc., 2001, 123, 1519 [37 ] Zhu, L.; Mimnaugh, B. R.;Ge, Q.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh, F.; Liu, L., Polymer, 2001, 42, 9192 [38 ] Gupta, A.; Harrison, I. R., Carbon, 1996, 11, 1427id NH0925063055 sid 913660 cfn 0 / id NH0925063056 auc 鄭丞良 tic 鋰二次電池之多孔交聯型高分子電解質的製備與熱關閉行為之研究 adc 萬其超 adc 王詠雲 ty 博士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 英文 pg 146 kwc 鋰電池 kwc 高分子電解質 kwc 交聯 kwc 熱關閉 abc 本論文提出新的高分子電解質製備方法,使其能同時具備多孔結構與化學交聯結構。實驗中以聚氟乙烯共聚合物 (poly(vinylidene fluoride-co- hexafluoropropylene; PVdF-HFP) 作為高分子主體,聚乙二醇 (polyethylene glycol; PEG)為塑化劑,聚乙二醇丙烯酸甲酯 (polyethylene glycol dimethacrylate; PEGDMA) 則為交聯寡合物,高分子薄膜經由溶劑控制揮發法與PEGDMA交聯反應之後而得。除了以微差掃描卡計 (differential scanning calorimeter; DSC),傅立葉轉換紅外線光譜儀 (Fourier transform infrared spectroscopy; FTIR) 以及掃描式電子顯微術 (scanning electron microscopy; SEM) 鑑定高分子電解質的基本性質與表面形貌外。亦利用交流阻抗頻譜分析(AC impedance analysis)、線性掃描伏安法(linear sweep voltammetry; LSV)以及循環伏安法 (cyclic voltammetry; CV) 分析高分子電解質的電化學特性,包括離子導電度、電化學穩定度和熱關閉行為。此外,我們亦將此高分子電解質組裝成全電池MCMB/LiCoO2 系統,進行電池性能 (循環能力 (cycleability) 和快速放電能力 (rate capability))與安全性 (針穿實驗 (nail penetration) 和過充電實驗 (overcharge))的測試。 tc Abstract Ⅰ Chinese Abstract Ⅳ Acknowledgements Ⅵ Table of Contents Ⅶ List of Figures ⅩⅠ List of Table ⅩⅦ List of Symbols ⅩⅧ Chapter 1 Introduction and Literature Review 1 1.1 Introduction of Lithium Secondary Battery 1 1.2 Review of Polymer Electrolytes 11 1.2.1 Classification and History of Polymer Electrolytes 11 1.2.2 Conduction Mechanism in Solid Polymer Electrolytes 18 1.2.3 Ion Transport in Gelled Polymer Electrolytes 23 1.3 Safety Issues of Lithium batteries 30 1.3.1 Abuse Behavior of Lithium Batteries 30 1.3.2 Reactions in Lithium Secondary Batteries 34 1.3.3 Thermal Shutdown Behaviors in Lithium Secondary Batteries 43 1.4 Motivation and Purpose of the Study 46 1.5 References 49 Chapter 2 PVdF-HFP Based Polymer Electrolytes Reinforced by PEGDMA Network 57 2.1 Introduction 57 2.2 Experimental 61 2.2.1 Preparation of Chemically Crosslinked Gel Polymer Electrolytes and Electrodes 61 2.2.2 Mechanical Measurements 62 2.2.3 Electrical Measurements 62 2.3 Results and Discussion 64 2.3.1 Mechanical Properties 64 2.3.2 Electrochemical Properties 65 2.3.3 Battery Performance 74 2.4 Conclusions 77 2.5 References 78 Chapter 3 Preparation of Porous, Chemically-Crosslinked PVdF-HFP Based Gel Polymer Electrolytes 82 3.1 Introduction 82 3.2 Experimental 84 3.2.1 Preparation of Gel Polymer Membranes and Electrodes 84 3.2.2 Morphology and Electrolyte Uptake 85 3.2.3 Electrochemical and Mechanical Measurements 85 3.2.4 Cell testing 86 3.3 Results and Discussion 87 3.3.1 Characterization 87 3.3.2 Electrochemical Properties 90 3.3.3 Mechanical Properties 100 3.3.4 Cell Performance 103 3.4 Conclusions 106 3.5 References 107 Chapter 4 Thermal Shutdown Behaviors of PVdF-HFP Based Polymer Electrolytes Comprising Heat Sensitive Crosslinkable Oligomers 110 4.1 Introduction 110 4.2 Experimental 113 4.2.1 Preparation of PVdF-HFP Based Gel Electrolytes Comprising Crosslinkable Oligomers 113 4.2.2 FTIR and DSC Analysis 113 4.2.3 Ionic Conductivity and Mechanical Measurements 114 4.2.4 Fabrication of the Prismatic and Card Cell 114 4.2.5 Safety Tests 115 4.3 Results and Discussion 116 4.3.1 Characterization of Polymer Electrolytes 116 4.3.2 Ionic Conductivity 120 4.3.3 Mechanical Properties 124 4.3.4 Thermal Shutdown Behaviors 129 4.3.5 Battery Safety Tests 137 4.4 Conclusions 138 4.5 References 139 Chapter 5 Conclusions 143 About Author 145 List of Figures Fig. 1-1 Energy density of various rechargeable batteries 2 Fig. 1-2 Schematic diagram of the electrochemical process of Li-ion cell 5 Fig. 1-3 Brief evolution of lithium batteries 10 Fig. 1-4 Structure of PEO, viewed parallel and normal to the axis of the helix. (The white circles represent oxygen atoms, the gray circles represent carbon atoms and the black circles represent hydrogen atoms) 18 Fig. 1-5 Representation of cation motion in a polymer electrolyte assisted by polymer chain motion only and taking account of ionic cluster contributions 20 Fig.1-6 An evolution process of the ionic species in a LiClO4 − organic solvent (plasticizer) solution: (a) at very low concentration, the salt is completely dissolved and there are only solvated lithium ions; (b) when the concentration is raised solvent-separated ion pairs appear in the solution; (c) further increase of salt concentration leads to ion pairs and the ionic atmosphere is damaged; (d) in concentrated solution, ionic aggregates appear and dominate the solution while the concentration of the free lithium ions drops dramatically 24 Fig.1-7 Association of the ionic species in a plasticizer removed LiClO4 – PAN system; (a) the lithium ions are associated with the nitrile groups of the PAN molecules. The coordination number could be as large as four; (b) when the salt content is further increased, the extra ions will turn to form ion pairs, [Li+ ] 27 Fig. 1-8 Association of ionic species in a plasticized LiClO4 – PAN system. (a) when a plasticizer is added, the Li+ – PAN associates and the ion pairs are decoupled due to the salvation and strong competition effects of the plasticizer for the lithium ions; (b) and (c) when more plasticizer is added, more and more ion associates are decupled; a gel polymer electrolyte with high ionic conductivity is obtained; (d) if a plasticizer with very strong competitive capability is added, the Li+ – PAN associates are decoupled and solvent-separated ion pairs tends to be formed. The appearance of the ion pairs will reduce the concentration of free charge carriers 27 Fig. 1-9 7Li NMR spectrum of PAN-EC-PC-DMSO-LiClO4 at room temperature (frequency: 34.964MHz) 28 Fig. 1-10 Common UL marks 31 Fig. 1-11 DSC and TGA profiles of negative electrode material from the 550mAh commercial Li-ion cell, with open-circuit potential at 4.15V: (A) washed sample, (B)unwashed sample, and (C) unwashed sample with lithium plating 35 Fig. 1-12 DSC profiles of intercalated graphite electrodes in (a) 1M LiClO4 in EC/DEC (1/1 v/v) and (b) 1M LiPF6 in EC/DEC (1/1 v/v). The scan is carried out between 35 and 250 °C with a scan rate 5 °C min-1 36 Fig. 1-13 DSC trace of the reactions occurring in a fully lithiated MCMB 25-28 graphite plastic anode containing electrolyte or not 37 Fig. 1-14 DSC at 10 °C/min on fully lithiated graphite electrode (a) without electrolyte, after rinsing ---dotted line, (b) with electrolyte — full line 38 Fig. 1-15 DSC profiles of 1M LiPF6/EC+DEC (1:1), 1M LiPF6/EC+DMC (1:1), 1M LiPF6/PC+DEC (1:1), and 1M LiPF6/PC+DMC (1:1) electrolytes with/without water 39 Fig. 1-16 DSC and TG of positive material from 550mAh commercial Li-ion cell, with open-circuit potential at 4.15 V; (A) washed sample and (B) unwashed sample 41 Fig. 1-17 Open-circuit potential of the cathode in a fully-charged three-electrode battery 42 Fig. 1-18 Behavior of the enthalpy and decomposition temperature of a battery at different OCP for the LixCoO2 electrode 42 Fig. 1-19 Impedance vs. temperature curves for cells containing polyolefin separators: PP, PE and PP/PE/PP trilayer 45 Fig. 1-20 DSC thermograms of polyolefin separators containing PP, PE and PP/PE/PP trilayer 45 Fig. 2-1 Test cell for ionic conductivity 63 Fig. 2-2 Tensile modulus of PVdF-HFP/PEG/PEGDMA polymer membranes 66 Fig. 2-3 Elongation of PVdF-HFP/PEG/PEGDMA polymer membranes 67 Fig. 2-4 Schematic illustration of IPN structure in PVdF-HFP/PEG/PEGDMA blend membrane 68 Fig. 2-5 Ionic conductivity of PVdF/PEGDMA polymer membranes as a function of PEGDMA content 69 Fig. 2-6 Liquid electrolytes uptake of PVdF/PEGDMA polymer membranes as a function of PEGDMA content 71 Fig. 2-7 Cyclic voltammetry of various solution systems 72 Fig. 2-8 Cyclic voltammetry of PVdF-HFP/PEG/PEGDMA (5/3/2) blend electrolytes containing 1M LiClO4 in EC/DEC (1/1 v/v) 73 Fig. 2-9 Cycle life test of MCMB/LiCoO2 cell containing PVdF-HFP/PEG/ PEGDMA (5/3/2) blend electrolyte in the presence of 1M LiPF6 in EC/DEC (1/1 v/v) 75 Fig. 2-10 Rate capability of MCMB/LiCoO2 cell containing PVdF-HFP/PEG/ PEGDMA (5/3/2) blend electrolyte in the presence of 1M LiPF6 in EC/DEC (1/1 v/v) 76 Fig. 3-1 SEM images of surface morphology of chemically crosslinked PVdF-HFP/PEG/PEGDMA (5/3/2) gel polymer electrolytes prepared by (a) natural evaporation, (b) vacuum evaporation and (c) controlled evaporation, respectively 88 Fig. 3-2 The liquid electrolyte uptake as function of the composition of PVdF-HFP/PEG/PEGDMA polymer membranes 88 Fig. 3-3 The ionic conductivity of PVdF-HFP/PEG/PEGDMA gel polymer electrolytes containing 1M LiPF6/EC-DEC 91 Fig. 3-4 Wetting time of the PVdF-HFP/PEG/PEGDMA (5/3/2) blend electrolytes 95 Fig. 3-5 Arrhenius plot of the ionic conductivity of PVdF-HFP/PEG/PEGDMA gel polymer electrolytes containing 1M LiPF6/EC-DEC 96 Fig. 3-6 The AC impedance spectra of Li|PVdF-HFP/PEG/PEGDMA (5/3/2)|Li cell in the presence of 1M LiPF6/EC-DEC 98 Fig. 3-7 The electrochemical stability window of SS|polymer electrolytes|Li cells in the presence of 1M LiPF6 in EC/DEC (1/1 v/v) 99 Fig. 3-8 Tensile modulus of the PVdF-HFP/PEG/PEGDMA blend membranes 101 Fig. 3-9 Tensile elongation of PVdF-HFP/PEG/PEGDMA blend membranes 102 Fig. 3-10 Rate capability of MCMB|(porous chemically crosslinked gel polymer electrolyte)|LiCoO2 cell with controlled evaporation and activated by 1M LiPF6 in EC/DEC (1/1 v/v) at room temperature 104 Fig. 3-11 Cyclability of MCMB|(porous chemically crosslinked gel polymer electrolyte)|LiCoO2 cell with controlled evaporation and activated by 1M LiPF6 in EC/DEC (1/1 v/v) at a C/2 rate at room temperature 105 Fig. 4-1 FTIR spectra of PVdF-HFP/PEGDMA prepared at different casting temperature and casting time 118 Fig. 4-2 The influence of casting temperature and casting time on crosslinking degree of PEGDMA in PVdF-HFP/PEGDMA membranes 119 Fig. 4-3 The influence of casting temperature and casting time on the ionic conductivity of the PVdF-HFP/PEGDMA electrolytes containing 1M LiPF6 in EC/DEC (1/1 v/v) 122 Fig. 4-4 Correlation between ionic conductivity and crosslinking degree 123 Fig. 4-5 Tensile tests of the PVdF-HFP/PEGDMA membranes prepared at 130 oC for different casting time 126 Fig. 4-6 Influence of casting temperature and casting time on the tensile modulus of PVdF-HFP/PEGDMA membranes 127 Fig. 4-7 Correlation between tensile modulus and crosslinking degree 128 Fig. 4-8 DSC thermograms of PVdF-HFP copolymer and polyolefin separators 131 Fig. 4-9 Impedance of polyolefin separators (PP/PE/PP and PE) and PVdF-HFP/PEGDMA electrolyte at different temperature 132 Fig. 4-10 Impedance of PVdF/PEGDMA electrolytes with or without initiator in 1M LiPF6 EC/DEC (1/1 v/v) under different temperature 135 Fig. 4-11 Correlation between relative increase of impedance increase and initial crosslinking degree of PVdF-HFP/PEGDMA electrolyte (The impedance at 100 oC as reference) 136 List of Tables Table 1-1 Manufacturers of rechargeable lithium batteries in Taiwan 3 Table 1-2 Various types of lithium batteries 3 Table 1-3 Reactions in Li-ion cell 6 Table 1-4 Physical properties of solvents for lithium secondary batteries 8 Table 1-5 Fundamental properties of the separators and the polymer hosts commonly used in lithium secondary batteries 12 Table 1-6 Various types of SPE 14 Table 1-7 Ionic conductivity of various gel polymer electrolytes at room temperature 16 Table 1-8 Main safety tests proposed for lithium batteries 32 Table 1-9 Procedures and requirements of common safety test 33 Table 1-10 DSC thermal behavior of some positive materials from DSC compared to O2 release temperature measured by DTA +MS (10°C /min) 40 Table 1-11 Energy of main reactions in lithium battery 43 Table 3-1 Characteristics of blend electrolyte membranes as a function of composition 94rf [1 ] R. J. Brodd, “Trends and advances in battery markets and technology”, in Proceedings of 2001 (5th ) Taipei Battery Forum, Apr. (2001) [2 ] Y. S. Jan and J. M. Chen, “Current development of lithium battery at ITRI”, in Proceedings of 2002 (6th ) Taipei Battery Forum, Apr. (2002) [3 ] C. A. Vincent, “Lithium batteries: a 50-year perspective, 1959-2009”, Solid State Ionics, 134, 159-167 (2000) [4 ] Y. Nishi, “Lithium ion secondary batteries: past 10 years and the future”, J. Power Source, 100, 101-106 (2001) [5 ] S. Megahed and B. Scrosati, “Rechargeable nonaqueous batteries”, J. Power Source, 51, 79-104 (1994) [6 ] J. R. Dahn, A. K. Sleigh, H. Shi, B. M. Way, W. J. Weydanz, J. N. Reimers, Q. Zhong and U. von Sacken, Ch.1 in Lithium Batteries. New Materials, Developments and Perspectives, G. Pistoia, Ed., Elsevier, Amsterdam (1994), [7 ] E. Peled, “The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems − The solid electrolyte interphase model”, J. Electrochem. Soc. 126, 2047-2051 (1979) [8 ] J. Barthel and H. J. Gores, in Handbook of Battery Materials, J. O. Besenhard, Ed., Wiley-Vch, Weinheim, 457-497 (1999) [9 ] L. Bretherick, “Solvated metal perchlorates”, Chem. And Eng. News, 68, 4 (1990) [10 ] R. Jasinsky and S. Carroll, “Thermal stability of a propylene carbonate electrolyte”, J. Electrochem. Soc., 117, 218-219 (1970) [11 ] G. H. Newman, R. W. Francis, L. H. Gaines and B. M. L. Rao, “Hazard investigations of LiClO4/Dioxolane Electrolyte”, J. Electrochem. Soc., 127, 2025-2027 (1980) [12 ] J. Y. Song, Y. Y. Wang and C. C. Wan, “Conductivity study of porous plasticized polymer electrolytes based on poly(vinylidene fluoride) - A comparison with polypropylene separators”, J. Electrochem. Soc., 147, 3219-3225 (2000) [13 ] M. Gauthier, A. Bélanger, B. Kapfer, G. Vassort and M. Armand, in Polymer Electrolyte Reviews-2, J. R. MacCallum and C. A. Vincent, Eds., Elsevier, London (1989) [14 ] D. E. Fenton, J. M. Parker and P. V. Wright, “Complexes of alkali metal ions with poly(ethylene oxide)”, Polymer, 14, 589 (1973) [15 ] M. B. Armand, J. M. Chabagno, M. Duclot, in Proceedings of the 2nd International Conference on Solid Electrolytes, St. Andrews, Scotland, September 20-22 (1978) [16 ] W. H. Meyer, “Polymer electrolytes for lithium-ion batteries”, Advanced Materials, 10, 439-448 (1998) [17 ] F. M. Gray, in Polymer Electrolytes, The Royal Society of Chemistry, UK (1997) [18 ] M. Alamgir and K. M. Abraham, Ch.3 in Lithium Batteries. New Materials, Developments and Perspectives, G. Pistoia, Ed., Elsevier, Amsterdam (1994), [19 ] K. Murata, S. Izuchi and Y. Yoshihisa, “An overview of the research and development of solid polymer electrolyte batteries”, Electrochim. Acta, 45, 1501-1508 (2000) [20 ] K. Murata, “An overview of the research and development of solid polymer electrolyte batteries”, Electrochim. Acta, 40, 2177-2184 (1995) [21 ] G. Feuillade and Ph. Perche, “Ion-conductive macromolecular gels and membranes for solid lithium cells”, J. Applied electrochem., 5, 63-69 (1975) [22 ] K. M. Abraham and M. Alamgir, “Ambient-temperature rechargeable polymer electrolyte batteries”, J. Power Source, 43, 195-208 (1993) [23 ] K. M. Abraham and M. Alamgir, “Room-temperature polymer electrolytes and batteries based on them”, Solid State Ionics, 70, 20-26 (1994) [24 ] G. Nagasubramanian, A. I. Attia and G. Halpert, “A polyacrylonitrile-based gelled electrolyte electrochemical kinetic studies”, J. Applied Electrochem., 24, 298-302 (1994) [25 ] F. Croce, B. Scrosati and G. Mariotto, “Electrochemical and spectroscopic study of the transport properties of composite polymer electrolytes”, Chemistry of Materials, 4, 1134-1136 (1992) [26 ] F. Croce and B. Scrosati, “Ambient-temperature lithium polymer rocking-chair batteries”, J. Electrochem. Soc., 141, 1405-1408 (1994) [27 ] G. B. Appetecchi, F. Croce and B. Scrosati, “High-performance electrolyte membranes for plastic lithium batteries”, J. Power Sources, 66, 77-82 (1997) [28 ] B. Scrosati, in Lithium Ion Batteries-Fundamentals and Performance, M. Wakihara and O. Yamamoto Eds, Wiley-Vch, Tokyo (1998) [29 ] A. S. Gozdz, J. M. Tarascon, C. N. Schmutz, P. C. Warren, O. S. Gebizlioglu and F. K. Shokoohi, Fall Meeting of The Electrochemical Soceity, Abstract No. 117, Extended Abstracts, Vol. 94-2, Miami, Florida, October 9-14 (1994) [30 ] A. S. Gozdz, C. N. Schmutz and J. M. Tarascon, “Rechargeable lithium intercalation battery with hybrid polymeric electrolyte”, U. S. Patent No. 5,296,318 (1994) [31 ] A. S. Gozdz, C. N. Schmutz, J. M. Tarascon and P. C. Warren, “Polymeric electrolytic cell separator membrane”, U. S. Patent No. 5,418,091 (1995) [32 ] A. S. Gozdz, J. M. Tarascon and P. C. Warren, “Electrolyte activatable lithium-ion rechargeable battery cell”, U. S. Patent No. 5,460,904 (1995) [33 ] A. S. Gozdz, C. N. Schmutz, J. M. Tarascon and P. C. Warren, “Lithium secondary battery extraction method”, U. S. Patent No. 5,540,741 (1996) [34 ] T. Michot, A. Nishimoto and M. Watanabe, “Electrochemical properties of polymer gel electrolytes based on poly(vinylidene fluoride) copolymer and homopolymer”, Electrochim. Acta, 45, 1347-1360 (2000) [35 ] X. Andrieu and L. Josset, “Bifunctional electrode for an electrochemical cell or a supercapacitor and a method of producing it”, U. S. Patent No. 5,811,205 (1998) [36 ] H. Kataoka, Y. Saito, T. Sakai, E. Quartarone and P. Mustarelli, “Conduction mechanisms of PVDF-type gel polymer electrolytes of lithium prepared by a phase inversion process”, J. Phys. Chem. B, 104, 11460-11464 (2000) [37 ] A. Magistris, P. Mustarelli, E. Quartarone, P. Piaggio and A. Bottino, “Poly(vinylidenefluoride)-based porous polymer electrolytes”, Electrochim. Acta, 46, 1635-1639 (2001) [38 ] A. Magistris, P. Mustarelli, F. Parazzoli, E. Quartarone, P. Piaggio and A. Bottino, “Structure, porosity and conductivity of PVdF films for polymer electrolytes”, J. Power Sources, 97-98, 657-660 (2001) [39 ] F. Boudin, X. Andrieu, C. Jehoulet, I. I. Olsen, “ Microporous PVdF gel for lithium-ion batteries”, J. Power Source, 81-82, 804-807 (1999) [40 ] A. Du. Pasquier, P. C. Warren, D. Culver, A. S. Gozdz, G. G. Amatucci and J. M. Tarascon, “Plastic PVDF-HFP electrolyte laminates prepared by a phase-inversion process”, Solid State Ionics, 135, 249-257 (2000) [41 ] H. Huang and S. L. Wunder, “Preparation of microporous PVDF based polymer electrolytes”, J. Power Sources, 97-98, 649-653 (2001) [42 ] C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno and P. Rigaud, “Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts”, Solid State Ionics, 11, 91-95 (1983) [43 ] C. A. Angell, “Recent developments in fast ion transport in glassy and amorphous materials”, Solid State Ionics, 18-19, 72-88 (1985) [44 ] M. A. Ratner and D. F. Shriver, “Ion transport in solvent-free polymers”, Chem. Rev., 88, 109-124 (1988) [45 ] M. A. Ratner, Ch.7 in Polymer Electrolyte Reviews-1, J. R. MacCallum and C. A. Vincent, Eds., Elsevier, London (1989) [46 ] F. Croce, S. D. Brown, S. G. Greenbaum, S. M. Slane and M. Salomon, “Lithium-7 NMR and ionic conductivity studies of gel electrolytes based on poly(acrylonitrile)”, Chem. Mater., 5, 1268-1272 (1993) [47 ] P. E. Stallworth, S. G. Greenbaum, F. Croce, S. Slane and M. Salomon, “Sodium-23 NMR and complex impedance studies of gel electrolytes based on poly(acrylonitrile)”, Solid State Ionics., 73, 119-126 (1994) [48 ] P. E. Stallworth, S. G. Greenbaum, F. Croce, S. Slane and M. Salomon, “Lithium-7 NMR and ionic conductivity studies of gel electrolytes based on poly(methyl methacrylate)”, Electrochim. Acta, 40, 2137-2141 (1995) [49 ] Z. Wang, B. Huang, H. Huang, L. Chen, R. Xue and F. Wang, “Infrared spectroscopic study of the dual plasticizer γ-butyrolactone and sulpholane”, Solid State Ionics, 85, 159-162 (1996) [50 ] D. Ostrovskii, A. Brodin , L. Torell, G. B. Appetecchi and B. Scrosati, “Molecular and ionic interactions in poly(acrylonitrile)- and poly (methylmetacrylate)- based gel electrolytes”, J. Chem. Phys., 109, 7618- 7624 (1998) [51 ] Z. Wang, B. Huang, R. Xue, X. Huang and L. Chen, “Spectroscopic investigation of interactions among components and ion transport mechanism in polyacrylonitrile based electrolytes”, Solid State Ionics, 121, 141-156 (1999) [52 ] E. Cazzanelli, G. Mariotto, G. B. Appetecchi, F. Croce, and B. Scrosati, “Study of ion-molecule interaction in poly(methyl methacrylate) based gel electrolytes by Raman spectroscopy”, Electrochim. Acta, 40, 2379-2382 (1995) [53 ] Z. Wang, B. Huang, Z. Lu, S. Wang, R. Xue and L. Chen, “Vibrational spectroscopic studies of interactions between LiClO4 and the plasticizer dimethylformamide”, Solid State Ionics, 92, 265-271 (1996) [54 ] Z. Wang, B. Huang, Z. Lu, S. Wang, R. Xue, L. Chen and F. Wang, “The vibrational spectroscopic study of polyacrylonitrile-based electrolytes”, Spectrochim. Acta Part A, 52, 691-703 (1996) [55 ] Z. Wang, B. Huang, S. Wang, R. Xue, X. Huang and L. Chen, “Competition between the plasticizer and polymer on associating with Li+ ions in polyacrylonitrile-based electrolytes”, J. Electrochem. Soc., 144, 778-786 (1997) [56 ] B. Huang, Z. Wang, L. Chen, R. Xue and F. Wang, “The mechanism of lithium ion transport in polyacrylonitrile based polymer electrolytes”, Solid State Ionics, 91, 279-284 (1996) [57 ] J. Y. Song, Y. Y. Wang and C. C. Wan, “Review of gel-type polymer electrolytes for lithium-ion batteries”, J. Power Sources, 77, 183-197 (1999) [58 ] A. Du Pasquier, F. Disma, T. Bowmer, A. S. Gozdz, G. Amatucci and J-M. Tarascon, “Differential scanning calorimetry study of the reactivity of carbon anodes in plastic Li-ion batteries”, J. Electrochem. Soc., 145, 472-477 (1998) [59 ] H. Maleki, G. Deng, A. Anani and J. Howard, “Thermal stability studies of Li-ion cells and components”, J. Electrochem. Soc., 146, 3224-3229 (1999) [60 ] M. N. Richard and J. R. Dahn, “Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte I. Experimental”, J. Electrochem. Soc., 146, 2068-2077 (1999) [61 ] Ph. Biensan, B. Simon, J. P. Peres, A. de Guibert, M. Broussely, J. M. Bodet and F. Perton, “On safety of lithium-ion cells”, J. Power Sources, 81-82, 906-912 (1999) [62 ] S. Tobishima, K. Takei, Y. Sakurai and J. Yamaki, “Lithium ion cell safety”, J. Power Sources, 90, 188-195 (2000) [63 ] J. Yamaki, H. Takatsuji, T. Kawamura and M. Egashira, “Thermal stability of graphite anode with electrolyte in lithium-ion cells”, Solid State Ionics, 148, 241-245 (2002) [64 ] E. P. Roth and D. H. Doughty, “Thermal abuse performance of high-power 18650 Li-ion cells”, J. Power Sources, 128, 308-318 (2004) [65 ] H. H. Lee, C. C. Wan and Y. Y. Wang, “Thermal stability of the solid electrolyte interface on carbon electrodes of lithium batteries”, J. Electrochem. Soc., 151, A542-A547 (2004) [66 ] R. Spotnitz and J. Franklin, “Abuse behavior of high-power, lithium-ion cells”, J. Power Sources, 113, 81-100 (2003) [67 ] S. Tobishima and J. Yamaki, “A consideration of lithium cell safety”, J. Power Sources, 81-82, 882-886 (1999) [68 ] Y. F. Chen and J. W. Evans, “Thermal analysis of lithium polymer electrolyte batteries by a two dimensional model-thermal behaviour and design optimization”, Electochim. Acta, 39, 517-526 (1994) [69 ] Underwriters Laboratories Inc., “Standard for lithium batteries”, UL 1642, third edition (1995) [70 ] Underwriters Laboratories Inc., “Standard for household and commercial batteries”, UL 2054 (1997) [71 ] S. Tobishima, Y. Sakurai and J. Yamaki, “Safety characteristics of rechargeable lithium metal cells”, J. Power Sources , 68, 455-458 (1997) [72 ] K. Kitoh and H. Nemoto, “100Wh large size Li-ion batteries and safety tests”, J. Power Sources , 81-82, 887-890 (1999) [73 ] M. S. Wu, P. C. J. Chiang, J. C. Lin and Y. S. Jan, “Correlation between electrochemical characteristics and thermal stability of advanced lithium-ion batteries in abuse tests-short-circuit tests”, Electrochim. Acta, 49, 1803-1812 (2004) [74 ] S. Al Hallaj, H. Maleki, J. S. Hong and J. R. Selman, “Thermal modeling and design considerations of lithium-ion batteries”, J. Power Sources , 83, 1-8 (1999) [75 ] J. T. Lundquist, C. B. Lundsager, N. I. Palmer and H. J. Troffkin, “Battery separator”, U. S. Patent No.4,650,730 (1987) [76 ] J. T. Lundquist, C. B. Lundsager, N. I. Palmer and H. J. Troffkin, “Battery separator”, U. S. Patent No. 4,731,304 (1988) [77 ] H. T. Taskier, S. M. Mullins, E A. Langford and R. J. Fleming, “Battery separator with integral thermal fuse”, U. S. Patent No. 4,973,532 (1990) [78 ] W. C. Yu and M. W. Geiger, “Shutdown, bilayer battery separator”, U. S. Patent No. 5,565,281 (1996) [79 ] H. Kuruchi, T. Akazawa and A. Kawabata, “Porous multi-layer film”, U. S. Patent No. 5,691,047 (1997) [80 ] R. M. Spotnitz, “Trilayer battery separator”, U. S. Patent No. 6,180,280 (2001) [81 ] R. W. Call, P. C. Cook, S. E. Hux, K. V. Nguyen and W. C. Yu, “Structurally stable fusible battery separators and method of making same”, U. S. Patent No. 6,346,350 (2002) [82 ] F. C. Laman, M. A. Gee and J. Denovan, “Impedance studies for separators in rechargeable lithium batteries”, J. Electrochem. Soc., 140, L51-L53 (1993) [83 ] G. Venugopal, J. Moore, J. Howard and S. Pendalwar, “Characterization of microporous separators for lithium-ion batteries”, J. Power Sources , 77, 34-41 (1999) [84 ] G. Venugopal, “Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries”, J. Power Sources , 101, 231-237 (2001) [85 ] R. A. M. Hikmet and M. P. J. Peeters, “A study of the effect of the polymer network and the solvent on the ion conductivity in gels”, Solid State Ionics, 126, 25-39 (1999)id NH0925063056 sid 907608 cfn 0 / id NH0925063057 auc 傅俊中 tic 塔式生化反應器之混合分析及其應用 adc 吳文騰 adc 呂世源 ty 博士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 127 kwc 混合 kwc 氣泡塔 kwc 氣舉式反應器 kwc 網狀內管氣舉式反應器 kwc 奇異值分解法 kwc 特徵值 kwc 麴酸 kwc 最慢模態 abc 混合時間是評定塔式生化反應器混合效果的一項重要指標。混合時間越短,反應器的混合效能越佳,系統越快達到混合均勻的平衡狀態。為有效掌握塔式反應器的混合過程,本研究提出一改善型巨觀混合模型(modified macromixing model),分別從反應器內管的設計與選擇較佳進料位置的角度,來討論提昇塔式生化反應器混合效益的原理與方法。反應器內管的設計方面是以模型的最慢模態特徵值(slow mode eigenvalue)以及混合時間,作為檢視塔式生化反應器混合成效的標的。本研究成功地以模型的最慢模態特徵值與非對稱進料實驗,證明出網狀內管氣舉式反應器(airlift reactor with a net draft tube)在混合效益上優於氣舉式反應器(airlift reactor)與氣泡塔反應器(bubble column reactor)的理由。最慢模態特徵值的分析結果說明:在相同的單位體積流率下,相較於其他兩款反應器,網狀內管氣舉式反應器有最小的最慢模態特徵值。對於提升混合效益的實驗結果具體說明:網狀內管反應器較其他兩款塔式生化反應器有優越的軸向、徑向流量分配比。於選擇較佳進料位置的研究上:本研究提出一個最適化初始進料演算法與進料操作模式,以期在要求之時限內,達到系統內各處混合均勻的結果。此研究是根據改善型巨觀混合模型的解析解,應用奇異值分解演算法,反推本模型的最適化初始進料條件。以給定的時限作為限制條件,估算出最少進料口數量,計算對應的進料位置與各進料位置的最佳進料量,於要求時限內達成混合的要求。研究結果可得知,一般所採行的塔頂進料方式,是較差的進料位置。也驗證出多口進料方式,確實有提升混合效益的成果;比較最差與最佳的例子,其所需的混合時間差異高達三倍。進一步利用塔式生化反應器來進行米麴黴菌(Aspergillus oryzae)發酵生產麴酸的應用。實驗證明,氣泡塔與攪拌槽反應器在相同的培養條件下,能產出幾乎等量的麴酸;在同樣的通氣成本下,比較氣泡塔與網狀內管反應器的產酸效能,因網狀內管氣舉式反應器有較氣泡塔為佳的氧氣質傳係數,所以有較高的溶氧量,同時反應在麴酸7天的產量約為27克/升,高於氣泡塔反應器的20克/升之具體成果上。 tc 目錄 目錄 1 圖目錄 4 表目錄 7 摘要 8 Abstract 10 誌謝 12 第1章 緒論 13 1-1 文獻回顧 14 1-2 研究動機 17 1-3 章節架構 19 1-4 塔式生化反應器的實驗設備與系統 20 第2章 塔式生化反應器之混合成效 23 2-1塔式生化反應器的改善型巨觀混合模型建立 24 2-2 改善型巨觀混合模型的參數估計 42 2-3改善型巨觀混合模型的驗證與實驗結果說明 45 2-4 三款塔式生化反應器的混合時間比較 58 2-5 結果與討論 60 第3章 塔式生化反應器之最適化進料 61 3-1 特徵函數矩陣的秩(rank)與時間的關係 62 3-2 以奇異值分解法求初始值的方法與結果 66 3-3 模擬的結果與討論 74 3-4 實驗驗證的結果與討論 78 3-4-1 氣泡塔單一進料口之不同進料位置實驗 78 3-4-2 氣舉式反應器的多進料口進料方式實驗 81 3-4-3 網狀內管氣舉式反應器以多進料口進料方式在模擬與實驗上的比較 84 3-5結果與討論 89 第4章 塔式生化反應器的麴酸生產應用 90 4-1 簡介 91 4-1-1 麴酸的介紹 91 4-1-2 麴酸的毒性 94 4-1-3 麴酸的應用 95 4-1-4 麴酸的生產與製造 96 4-2 實驗目的 97 4-3 培養基與實驗藥品 98 4-4 實驗器材 99 4-5 氣泡塔與攪拌槽反應器在產麴酸上的比較 100 4-5-1 實驗材料與方法 100 4-5-2 實驗結果 102 4-6 網狀內管反應器與氣泡塔反應器在麴酸生產上的比較 109 4-6-1 實驗材料與方法 109 4-6-2 實驗結果 111 4-7結果與討論 113 第5章 總結與未來展望 114 參考文獻 117 符號說明 124 作者簡歷 126 圖目錄 圖1-1三款塔式生化反應器的示意圖 19 圖2-1改善型巨觀混合模型近似(approach)塔式生化反應器的示意圖 26 圖2-2 四種不同a參數值,模擬熱電耦P5回應追蹤劑的動態響應 (n=28,w=1,b=5) 29 圖2-3 四種不同b參數值,模擬熱電耦P1回應追蹤劑的動態響應 (n=28,w=1,a=5) 31 圖2-4四種不同b參數值,模擬熱電耦P3回應追蹤劑的動態響應 (n=28,w=1,a=5) 32 圖2-5四種不同b參數值,模擬熱電耦P5回應追蹤劑的動態響應 (n=28,w=1,a=5) 33 圖2-6採用上部進料方式,不同體積流量w下,模擬熱電耦P1回應追縱劑的動態響應(n=28,a=5,b=5) 34 圖2-7採用上部進料方式,不同體積流量w下,模擬熱電耦P5回應追縱劑的動態響應 (n=28,a=5,b=0) 35 圖2-8不同位置的熱電耦回應追蹤劑的動態響應(n=28,w=1,a=5,b=0) 37 圖2-9 b與最慢模態特徵值及其虛部值的關係(n=28,w=1,a=5) 40 圖2-10 a、b與最慢模態特徵值之間的關係(n=28,w=1) 41 圖2-11單位體積流率w對應氣體流速的關係 44 圖2-12氣舉式反應器之P3與P4的預測與實驗之動態響應比較 47 圖2-13氣舉式反應器之P5與P6的預測與實驗之動態響應比較 48 圖2-14氣舉式反應器之P1與P2的預測與實驗之動態響應比較 49 圖2-15氣泡塔反應器之P1與P2的預測與實驗之動態響應結果比較 51 圖2-16 氣泡塔反應器之P3與P4的預測與實驗之動態響應結果比較 52 圖2-17 氣泡塔反應器之P5與P6的預測與實驗之動態響應結果比較 53 圖2-18 網狀內管氣舉式反應器之P3與P4的預測與實驗之動態響應比較 55 圖2-19 網狀內管氣舉式反應器之P1與P2的預測與實驗之動態響應比較 56 圖2-20 三種塔式生化反應器在各個流速下所估算出的混合時間 59 圖3-1 3種不同b值下,其特徵矩陣的秩隨時間下降的關係(n=28,w=1、a=5,e=±5%) 63 圖3-2 不同單位體積流速下,其特徵矩陣的秩隨時間下降的關係 (n=28,a=5,b=0,e=±5%)。 64 圖3-3 不同容忍程度e值下,其特徵矩陣的秩隨時間下降的關係 (n=28,w=1,a=5,b=5) 65 圖 3-4 在氣泡塔的進料(a)位置2,(b)位置13條件下,不同位置的熱耦計回應熱追蹤劑的溫度動態響應 80 圖3-5 氣舉式反應器內(a)單一進料在位置2(28)與(b)兩個進料口在位置14(14)與16(14)的混合過程差異比較 83 圖 3-6 網狀內管反應器在 (a)單一進料口 2(28),(b) 兩個進料口,進料位置11(14)、17(14)兩個不同條件下的混合程序過程與效益的比較。(c)模型所預測的混合過程。進料條件與(b)相同為11(14)、17(14),模擬的結果與實驗的結果比較 87 圖4-1 麴酸的結構式 92 圖 4-2葡萄糖氧化、脫水生成麴酸的反應機制 93 圖 4-3 由兩個三碳糖脫水聚合形成的麴酸 93 圖 4-4 攪拌槽與氣泡塔發酵生產麴酸的比較 103 圖4-5 攪拌槽與氣泡塔在發酵程序中,發酵液內的溶氧值隨時間變化的過程 105 圖4-6 發酵過程中,麴酸與葡萄糖在攪拌槽與氣泡塔反應器內,隨時間變化的過程 106 圖4-7 以氣泡塔反應器發酵生產麴酸的過程 108 圖4-8 氣泡塔反應器與網狀內管反應器在通氣6 LPM的條件下進行麴酸發酵的產量比較 112 表目錄 表1-1 混合時間測量方法的比較 22 表3-1 單一進料位置與預測的混合時間表 76 表3-2 兩個進料口的進料位置與對應的進料量,以及對該條件所做的混合時間預測 77 表3-3預測值與實驗值在通氣流速條件10 LPM下的差異比較 88rf 參考文獻 Ariff, A.B., Salleh, M.S., Ghani, B. Hassan, M.A., Rusul, G. & Karim, M.I. A., (1996). Aeration and yeast extract requirements for kojic acid production by Aspergillus flavus link. Enzyme and Microbial Technology, 19, 545-550 Bailey, J.E. (1980), Biochemical reaction engineering and biochemical reactors. Chemical Engineering Science, 35, 1854-1886 Balaz, S., Uher, M., Brtko, J., Veverka, M., Bransova, J., Dobias, J., Podova, M. & Buchvald, J.,(1993) Relationship between antifungal activity and hydrophobicity of kojic acid derivatives. Folia Microbiol, 38, 387-391. Beelik, A., (1956). Kojic acid. Advances in Carbohydrate Chemistry, 48, 145-183. Bentley R., (1957). Preparation and analysis of kojic acid. Method in Enzymology, 3, 238-241 Brauer, H., (1985) Stirred Vessel Reactors, Biotechnology, 2, 395-444 Briganti, S., Camera, E. & Picardo, M. (2003) Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Research, 16, 101-110. Burdock, G.A., Soni, M.G. & Carabin I.G., (2001) Evaluation of health aspects of kojic acid in food. Regulatory Toxicology and Pharmacology, 33, 80-101. Cheng, H.P., Wang, P.M., Chen, J.W. & Wu, W.T., (2002). Cultivation of Acetobacter xylinum for bacterial cellulose production in a modified airlift reactor, Biotechnology Apply Biochemical, 35, 125-132 Chisti M.Y. (1989) Airlift bioreactors (1 st ed) Elsevier Science Publisher, N.Y., U.S.A. Degaleesan S., Roy S., Kumar S.B. & Dudukovic M.P., (1996). Liquid mixing based on convection and turbulent dispersion in bubble columns. Chemical Engineering Science, 51(10), 1967-1976. Delnoij E., Kuipers J.A.M. & van Swaaij W.P.M., (1997). Computational fluid dynamics applied to gas-liquid contactors. Chemical Engineering Science, 52, 3623-3638. Dhaouadi H., Poncin S., Hornut J.M. Wild G.., & Oinas P., (1996). Hydrodynamics of an airlift reactor: experiments and modeling. Chemical Engineering Science, 51, 2625-2630. Fu, C.C., Lu, S.Y., Hsu, Y.J., Chen G.C. & Lin, Y.R., (2004). Superior Mixing Performance for Airlift Reactor with a Net Draft Tube, Chemical Engineering Science, 59, 3021-3028. Fu, C.C., Wu, W.T. & Lu, S.Y. (2003). Performance of airlift bioreactors with net draft tube. Enzyme and Microbial Technology, 33, 333-342. Futamura, T., Okabe, M., Tamura, T. Toda, K., Matsunobu, T. & Park, Y.S., (2001). Improvement of production of kojic acid by a mutant strain Aspergillus oryzae, MK 107-39. Journal of Bioscience and Bioengineering, 91, 273-276. Futamura, T., Ishihara, H., Tamura, T., Yasutake, T., Huang, G., Kojima, M. & Okabe, M., (2001). Kojic acid production in an airlift bioreactor using partially hydrolyzed raw corn starch. Journal of Bioscience and Bioengineering, 92, 360-365. Hsiun, D.Y. & Wu, W.T., (1995). Mass transfer and liquid mixing in an airlift reactor with a net draft tube, Bioprocess Engineering, 12, 221-225 Jong, J.Z., Hsiun, D.Y., Wu, W.T. & Tzeng, Y.M., (1995). Fed-batch culture of Bacillus thuringiensis for thuringiensin production in a tower type bioreactor, Biotechnology and Bioengineering, 48, 207-213 Joshi J.B., & Sharma M.M., (1979). A circulation model for bubble columns. Transactions of the Institute of Chemical Engineers, 57(1), 244-251. Kanai T., Ichikawa J., Yoshikawa H. & Kawase Y., (2000). Dynamic modeling and simulation of continuous airlift bioreactor. Bioprocess Engineering, 23, 213-220. Kang, Y., Gan, L.T., Min, G.T. & Kim, S.D., (1991) Promotion of oxygen transfer in three-phase fluidized-bed bioreactors by floating bubble breakers. Biotechnology and Bioengineering, 37, 580-586 Kang, Y., Min, B.T., Nah, J.B. & Kim, S.D., (1990). Mass transfer in continuous bubble columns with floating bubble breakers, American Institute of Chemical Engineers Journal, 36, 1255-1258 Kawase, Y., & Moo-Young, M., (1987). Influence of very small bubbles on kLa measurement in viscous microbial culture. Biotechnology and Bioengineering, 30, 345-347. Khare, A.S., & Niranjan, K. (1995). Impeller-agitated aerobic reactor: the influence of tiny bubbles on gas hold-up and mass transfer in highly viscous liquids. Chemical Engineering Science, 50, 1091-1105. Korpijarvi J., Oinas P., & Reunanen J., (1999). Hydrodynamics and mass transfer in an airlift reactor. Chemical Engineering Science, 54(13-14), 2255-2262. Kubota, H., Hosono, Y. & Kujie, K.,(1978) Characteristic evaluations of ICI air-lift type deep shaft aerator. Journal of Chemical Engineering Japan, 11, 319-325. Lee, James M. (1992) Biochemical Engineering (1st ed.). Prentice-Hall, Inc Englewood Cliffs, New Jersey Mann R., (1986). Gas-liquid stirred vessel mixers: towards a unified theory based on network of zones. Transactions of the Institution of Chemical Engineers, 64 23-34. Mann R., Williams R.A., Dyakowski T., Dickin F.J. & Edwards R.B., (1997). Development of mixing model using electrical resistance tomography. Chemical Engineering Science, 52, 2073-2085. Marwaha, S.S., Kaur, J. & Sodhi, G.S., (1994) Organomercury(II) complexes of kojic acid and maltol: synthesis, characterization, and biological studies. Journal of Inorganic Biochemistry, 54, 67-74. McNeil, B. & Harvey, L.M., (1990). Fermentation: a practical approach, Oxford University Press, Oxford. England. Merchuk, J.C. & Yunger, R., (1990). The role of the gas-liquid separator of airlift reactors in the mixing process. Chemical Engineering Science, 45, 2973-2975. Mohamad, R., Ariff, A.B., Hassan, M.A., Karim, M.I.A., Shimizu, H. & Shioya, S., (2002). Importance of carbon source feeding and pH control strategies for maximum kojic acid production from sago starch by Aspergillus flavus. Journal of Bioscience and Bioengineering, 94(2), 99-105. Muller, F.L., & Davidson, J.F. (1992). On the contribution of small bubbles to mass transfer in bubble columns containing highly viscous liquid. Chemical Engineering Science, 47, 3525-3532. Noble, B. & Daniel, J.W. (1977) Applied Linear Algebra, 2nd edition, Prentice-Hall Inc., Englewood Cliffs, N.J., U.S.A. Novotny, L., Rauko, P., Abdel-Hamid, M. & Vachalkova, A., (1999), Kojic acid - a new leading molecule for a preparation of compounds with an anti-neoplastic potential. Neoplasma 46 89-92. Pandit, A.B., & Joshi, J.B., (1983) Mixing in mechanically agitated gas-liquid contactors, bubble columns and modified bubble columns. Chemical Engineering Science , 38, 1189-1215 Rosfarizan, M. & Ariff, A.B., (2000). Kinetics of kojic acid fermentation by Aspergillus flavus using different types and concentration of carbon and nitrogen sources. Journal of industrial Microbiology & Biotechnology, 25, 20-24 Scragg, A.H., (1988). Biotechnology for engineers: biological system in technological processes, Ellis Horwood Limited, Chichester, England. Shah, Y.T., Kelkar, B.G., Godbole, S.P. & Deckwer, W.D., (1982) Design parameters estimations for bubble column reactors. American Institute of Chemical Engineer Journal. (28), 353-379. Shuler, M.L. & Kargi, F., (1992) Bioprocess Engineering: Basic concepts, Prentice-Hall Inc. Stanbury, P. F. & Whitaker, A. (1984) Principles of fermentation technology, Progamon Press Ltd., Headington Hill Hall Oxford, England. Todt J., Lucke J., Schugeral K. & Renken A., (1977). Gas holdup and longitudinal dispersion in different types of multiphase reactors and their possible application for microbial process. Chemical Engineering Science, 32, 369-375. Tung, H.L., Chang, Y.Y., Hwang, T.K. & Wu, W.T., (1998). Liquid mixing and mass transfer in a modified bubble column with suspended particles. Journal of the Chinese Institute of Chemical Engineers, 29, 467-472 Tung, H.L., Chiou, S.Y., Tu, C.C. & Wu, W.T., (1997). An airlift reactor with double net draft tubes and its application in fermentation, Bioprocess Engineering, 17, 1-5. Tung, H.L., Tu, C.C., Chang, Y.Y. & Wu, W.T.,(1998). Bubble characteristics and mass transfer in an airlift reactor with multiple net draft tubes, Bioprocess Engineering, 18, 323-328 Tzeng, Y.M. & Liu, B.L., (2000). Characterization study on the sporulation kinetics of Bacillus thuringiensis. Biotechnology and Bioengineering, 68, 11-17. Ulbrecht, J.J., Kawase, Y. & Auyeung, K.F., (1985) More on mixing of viscous liquids in bubble columns. Chemical Engineering Communication, 35, 175-191. Wang, D.I.C., Cooney, C.L., Demain, A.L., Dunnill, P., Humphrey, A.E. & Lilly, M.D., (1979) Fermentation and Enzyme technology, John Wiley & Sons, Inc., Canada. Wu, J.Y. & Wu, W.T., (1991). Fed-batch culture of Saccharomyces cerevisiae in an airlift reactor with net draft tube, Biotechnology Progress, 7, 230-233 Wu, J.Y. & Wu, W.T., (1992), Glutamic acid production in an airlift reactor with net draft tube, Bioprocess Engineering, 8, 183-187. Wu, W.T., Huang, T.K., Wang, P.M. & Chen J.W. (2001) Cultivation of Absidia coerulea for chitosan production in a modified airlift reactor, Journal of Chinese Institute Chemical Engineers, 35, 235-240. Wu, W.T., Wang, P.M., Chang, Y.Y., Huang, T.K. & Chien, Y.H. (2000) Suspended rice particles for cultivation of Monascus purpureus in a tower-type bioreactor, Apply Microbiology Biotechnology, 53, 543-544. Wu, W.T. & Wu, J.Y., (1990). Airlift reactor with net draught tube. Journal of Fermentation and Bioengineering, 70, 359-361. Wu, W.T., Wu, J.Y. & Jong, J.Z., (1992). Mass transfer in an airlift reactor with a net draft tube. Biotechnology Progress, 8, 465-468. Zahradnik J., Mann R., Fialova M., Vlaev D., Vlaev S.D., Lossev V., & Seichter P., (2001). A networks-of-zones analysis of mixing and mass transfer in three industrial bioreactors. Chemical Engineering Science, 56, 485-492. 尤新 & 潘子明,(2001). 機能性醱酵製品 藝軒圖書出版社 仝漢霖, (1998). 雙網狀導管氣舉式反應器的設計及其在盤尼西林發酵上的應用. 清華大學化學工程學系 博士論文 吳文騰,傅俊中,呂世源, (2003) 網狀內管氣舉式生化反應器 興大工程學刊, 14卷, 77-86 陳建強, (2004). 以改良之米麴黴菌進行麴酸生產的研究 清華大學化學工程學系 碩士論文 萬曉明, (2004). 利用米麴菌進行麴酸生產的開發 清華大學化學工程學系 博士論文id NH0925063057 sid 887605 cfn 0 / id NH0925063058 auc 董繼堯 tic 空氣式超音波對SiO2粒子組裝的影響 adc 汪上曉 adc 呂世源 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 62 kwc 矽 kwc 音 kwc 組 abc 摘要 tc 總目錄 摘要…………………………………………………………………………………….Ⅰ 總目錄………………………………………………………………………………….Ⅱ 圖目錄………………………………………………………………………………….Ⅳ 表目錄………………………………………………………………………………….Ⅶ 第一章 序論……………………………………………………………………………1 1.1 光子晶體簡介…………………………………………………………………….1 1.2 光子晶體的種類………………………………………………………………….4 1.3 光子晶體的製作方法…………………………………………………………….6 第二章 文獻回顧 與 研究動機………………………………………………………9 2.1自然沉降法(Sedimentation method)……………………………………………..9 2.2 高速離心法(Centrifugal method)………………………………………………..12 2.3 毛細吸引力法(Attractive capillary force)……………………………………….13 2.4 有限空間排列法(Physical confinement method)………………………………..17 2.5 電泳沉澱法(Eletrophoretic deposition method)………………………………...19 2.6 熱對流法(Heat convective flow method)………………………………………..21 2.7 電場可逆法(Electric field-reversible method)…………………………………..22 2.8 界面成長法(Growth at an interface)…………………………………………….24 2.9 研究動機…………………………………………………………………………26 2.10 超音波簡介……………………………………………………………………..27 第三章 研究方法……...………………………………………………………………29 3.1 實驗藥品…………………………………………………………………………29 3.2 實驗器材……………………………………………………………………….. 30 3.3 分析儀器與軟體…………………………………………………………………32 3.3.1 掃描式電子顯微鏡(Scanning electron microscope, SEM)…………….……32 3.3.2 影像分析軟體…………………………..........................................................33 3.4 實驗…………………..…………………………………………………………..34 3.4.1 SiO2粒子的合成反應………………………………………………………..34 3.4.2 SiO2粒子的合成實驗步驟…………………………………………………..34 3.4.3 製備蛋白石結構所用的過濾槽……………………………………………..38 3.4.4 製備蛋白石結構的實驗步驟……………………………………………..…39 第四章 結果與討論…………………………………………………………….……..43 4.1 SiO2粒子的合成…………………………………………………………………43 4.1.1 308nm SiO2粒子的合成條件………………………………………………..43 4.1.2 SiO2粒子的平均粒徑與粒徑標準差………………………………………..44 4.2 濾紙數目與過濾時間的關係………………………………………………...….46 4.3 濾紙改質後對過濾時間的影響…………………………………………………48 4.4 掃描式電子顯微鏡(SEM)影像觀察…………………………………………….50 第五章 結論……………………………………………………………………...……56 參考文獻……………………………………………………………………………….57 附錄:A.蛋白石結構堆疊層數與堆疊厚度的估算………...……………………….59 圖目錄 圖1-1蛋白石結構的SEM影像……………………………………………………..…2 圖1-2光子波導式意圖…………………………………………………………………3 圖1-3以蝕刻方式製作60°彎曲波導的SEM影像……………………………….…..3 圖1-4一個光子晶體光纖截面 (核心直徑:7μm)……………………………………..5 圖1-5逆蛋白石結構的SEM影像………………………………………………….….6 圖1-6以奈米光蝕刻技術所製成二維光子晶體結構SEM影像………………..……7 圖1-7以奈米光蝕刻技術所製成的三維光子晶體結構………………...…………….7 圖 2-1自然沉降法之示意圖…………………………………………………………..10 圖 2-2 Vickreva et al所用的剪切力震盪法裝置示意圖……………...………………11 圖 2-3 Vickreva et al實驗結果的LCFM影像,深度:10μm (a)Γ=0 (b)Γ=16.4 (c)Γ=18.6(d) Γ=34.5, 比例尺:2μm.……………………….………..……………….11 圖 2-4 …Vickreva et al實驗結果的LCFM影像,Γ=21.2,深度:(a)0μm (b)40μm (c)80μm (d)100μm……..………………………………………….…………..12 圖 2-5 Wijnhoven and Vos實驗結果的SEM影像: TiO2的逆蛋白石結構……….…13 圖 2-6單層粒子系統之毛細吸引力示意圖…………………………………………..14 圖 2-7 Dimitrov et al的塗佈裝置(A)沾濕式塗佈(B)淋幕式塗佈………...………….15 圖 2-8 Dimitrov et al的實驗結果:500nm SiO2粒子(A)非晶相的(B)多晶相的(C) 反射光譜…………………………………………………………………………..….15 圖 2-9 Meng et al的實驗裝置示意圖……………………………………...………….16 圖 2-10 Meng et al實驗結果的SEM影像:大範圍的逆蛋白石結構…………..…..16 圖 2-11 Park et al的實驗裝置示意圖…………………………………...…………….17 圖 2-12 Park et al實驗結果的SEM影像(a)頂視圖(b)斜視圖(c)最上面25層的截面圖(d)最下面25層的截面圖…………………………..……………………...……18 圖 2-13 Holgado et al所使用的電泳槽…………………………………….………….20 圖 2-14 Holgado et al以粒徑870nm的SiO2粒子進行排列後的SEM影像與傅立葉轉換圖形……………………………….…………..………………………………20 圖 2-15熱對流法的實驗裝置示意圖……………………………………………..…..21 圖 2-16 Vlasov et al實驗結果的SEM影像………………………………….……….22 圖 2-17 Gong et al的實驗裝置示意圖…………………………………….………….23 圖 2-18 Gong et al將粒子排列後所得之影像(中央黑色區域為氣泡,比例尺: 100μm)……………………………………………………...……………..………..24 圖 2-19 PS 粒子在水面自組裝的示意圖………………………………………..……25 圖 2-20 (a)240nm PS 在90℃的烘箱中會在液面上自組裝(b)(c)粒子排列後上表面與斜視的SEM 影像(d) 穿透光譜……..…………………………………………….25 圖 3-1我們所使用的掃描式電子顯微鏡(JEOL JSM-5600)…………………………33 圖 3-2 SPI 鍍金機………………………………………………………………..…….33 圖 3-3合成SiO2粒子的反應裝置示意圖………………………………………...…..35 圖 3-4合成SiO2粒子的流程圖……………………………………………………….37 圖 3-5 0.2μm PC過濾膜的SEM影像……………………………………………….38 圖 3-6我們所使用濾紙的SEM影像…………………………………………...…….39 圖 3-7過濾槽示意圖……………………………………………………………….….39 圖 3-8過濾槽加上空氣式超音波的裝置示意圖……………………………..………40 圖 3-9製做蛋白石結構的流程圖……………………………………………….…….42 圖 4-1合成後的SiO2粉末外觀…………………………………………...…………..44 圖 4-2 Optimas 5.1的操作界面………………………………………………………..45 圖 4-3濾紙數目與過濾時間的關係圖…………………………………….………….46 圖 4-4添加塗佈PS的濾紙數對過濾時間的影響(水)…………………….…………49 圖 4-5添加塗佈PS的濾紙數對過濾時間的影響(SiO2懸浮液)………….…………49 圖 4-6 SEM影像:SiO2粒子在PC過濾膜上 (0張塗佈上PS的濾紙 + 8 張普通濾紙,未加入空氣式超音波,35X)………………………………..………...……..52 圖 4-7 SEM影像:SiO2粒子在PC過濾膜上 (0張塗佈上PS的濾紙 + 8 張普通濾紙,未加入空氣式超音波,5000X)…………………………………...…………52 圖 4-8 SEM影像:SiO2粒子在PC過濾膜上 (1張塗佈上PS的濾紙 + 8 張普通濾紙,未加入空氣式超音波)………………………………………………………..53 圖 4-9 SEM影像:SiO2粒子在PC過濾膜上 (2張塗佈上PS的濾紙 + 8 張普通濾紙,未加入空氣式超音波)……………………………………………………..…53 圖 4-10 SEM影像:SiO2粒子在PC過濾膜上 (1張塗佈上PS的濾紙 + 8 張普通濾紙,加入空氣式超音波:50V)…………………………………………..……….54 圖 4-11 SEM影像:SiO2粒子在PC過濾膜上 (2張塗佈上PS的濾紙 + 8 張普通濾紙,加入空氣式超音波:50V)………………………………………...…………54 圖 4-12 SEM影像:SiO2粒子在PC過濾膜上(以揮發方式來移去溶劑)…….……55 圖 A-1 SiO2粒子排列的單位晶格示意圖.……………………..……………………..61 表目錄 表 4-1合成308nm SiO2粒子的反應條件………………………….…………………44 表 4-2 SiO2粒子的粒徑分佈……………………………………………………..……45 表 4-3 SiO2粒子的平均粒徑與粒徑標準差……………………………..……………46rf [1 ] S. John; (1987) “Strong Localization of Photons in Certain Disordered Dielectric Superlattices” Phys. Rev. Lett., 58, 2486-2489 [2 ] E. Yablonovitch; (1987) “Inhibited Spontaneous Emission in Solid-State Physics and Electronics” Phys. Rev. Lett., 58, 2059-2062 [3 ] S. Lin, E. Chow, V. Hietala, P. R. Villeneuve, J. D. Joannopoulos; (1998) “Experimental Demonstration of Guiding and Bending of Electromagnetic Waves in a Photonic Crystal” Science, 282, 274-276 [4 ] M. Lončar, T. Doll, Jelena Vučkovič, A. Scherer; (2000) “Design and Fabrication of Silicon Photonic Crystal Optical Waveguides” J. Lightwave Technol., 18, 1402-1411 [5 ] J. C. Knight; (2003) “Photonic Crystal Fibres” Nature, 424, 847-851 [6 ] A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, V. G. Ralchenko; (1998) “Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths” Science, 282, 897-901 [7 ] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim; (1999) “Two-Dimensional Photonic Band-Gap Defect Mode Laser” Science, 284, 1819-1821 [8 ] S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan1; (2000) “Fully 3D Photonic Bandgap Crystal” Science, 289, 604-606 [9 ] Y. Xia, B. Gates, Y. Yin, Y. Lu; (2000) “Monodispersed Colloidal Spheres: Old Materials with New Applications” Advanced Materials, 12, 693-713 [10 ] O. Vickreva, O. Kalinina, E. Kumacheva; (2000) “Colloid Crystal Growth under Oscillatory Shear” Advanced Materials, 12, 110-112 [11 ] J. E. G. J. Wijnhoven, W. L. Vos; (1998) “Preparation of Photonic Crystals Made of Air Spheres in Titania” Science, 281, 802-804 [12 ] A. S. Dimitrov, C. D. Dushkin, H. Yoshimura, K. Nagayama; (1994)” Observations of Latex Particle Two-Dimensional-Crystal Nucleation in Wetting Films on Mercury, Glass, and Mica” Langmuir, 10, 432-440 [13 ] A. S. Dimitrov, T. Miwa, K. Nagayama; (1999) “A Comparison between the Optical Properties of Amorphous and Crystalline Monolayers of Silica Particles” Langmuir, 15, 5257-526 [14 ] Q.-B. Meng, Z.-Z. Gu, O. Sato, A. Fijushima; (2000) “Fabrication of Highly Ordered Prous Sructures” Appl. Phys. Lett., 77, 4313-4315 [15 ] S. H. Park, D. Qin, Y. Xia; (1998) “Crystallization of Mesoscale Particles over Large Areas” Advanced Materials, 10, 1028-1032 [16 ] M. Holgado, F. García-Santamaría, A. Blanco, M. Ibisate, A. Cintas, H. Míguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, C. López; (1999) “Electrophoretic Deposition to Control Artificial Opal Growth” Langmuir, 15, 4701-4704 [17 ] Y. A. Vlasov, X-Z. Bo, J. C. Sturm, D. J. Norris; (2001) “ On-chip Natural Assembly of Silicon Photonic Bandgap Crystals” Nature, 414, 289-293 [18 ] T. Gong, D. T. Wu, D. W. M. Marr; (2003) “Electric Field-Reversible Three-Dimensional Colloidal Crystals” Langmuir, 19, 5967-5970 [19 ] S. H. Im, Y. T. Lim, D. J. Suh, O. O. Park; (2002) “Three-Dimensional Self-Assembly of Colloids at a Water-Air Interface: A Novel Technique for the Fabrication of Photonic Bandgap Crystals” Advanced Materials, 14, 1367-1369 [20 ] 鄭振東 編譯,1999,”超音波工程”,全華科技圖書股份有限公司,ISBN: 957-21-2547-8 [21 ] 賴耿陽 編著,2001,”超音波工學理論實務”,復漢出版社,ISBN: 957-749-537-0 [22 ] W. Stöber, A. Fink, E. Bohn; (1968) “Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range” J.Colloid Interface Sci. ,26, 62-69 [23 ] A.K.V. Helden, J.W. Jansen, A. Vrij; (1981) “Preparation and Characterization of Spherical Monodisperse Silica Dispersion in Nonaqueous Solvents” J.Colloid Interface Sci., 81, 354-368 [24 ] G.H. Bogush, M.A. Tracy, C.F. Zukoski IV; (1988) “Preparation of Monodisperse Silica Particles:Control of Size and Mass Fration” J.Non-Cryst.Solid., 104, 95-106id NH0925063058 sid 913641 cfn 0 / id NH0925063059 auc 李昌鴻 tic 高溫穩定性之賓主型及側鏈型非線性光學聚亞醯胺之合成及其光電特性研究 adc 薛敬和 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 106 kwc 非線性光學 kwc 聚亞醯胺 kwc 發色團 abc 摘要 tc 目錄 第一章 緒論…………………………………………………………1 1-1 前言…………………………………………………….1 1-2 非線性光學簡介……………………………………….2 1-3 非線性光學原理……………………………………….2 1-4 非線性光學材料……………………………………….9 1-4-1 無機材料……………..…………………………...9 1-4-2 有機材料……………..………………………….10 1-5 非線性光學元件……………………………………...18 第二章 文獻回顧…………………………………………………..25 2-1 有機材料之微觀與巨觀非線性係數之間的關係…...25 2-2 分子結構與β值之間的關係………………………...26 2-3 賓主型及側鏈型非線性光學高分子之發展沿革...…31 2-4 研究動機……………………………………………...36 第三章 實驗………………………………………………………..39 3-1 試藥…………………………………………………...40 3-2 基本物性檢測………………………………………...40 3-3 材料合成……………………………………………...42 3-3-1 可溶性聚亞醯胺高分子之合成………………...42 3-3-2 側鏈系統發色團之合成………………………...42 3-3-3 側鏈型聚亞醯胺高分子之合成………………...46 3-3-4 賓主系統發色團之合成………………………...47 3-4 賓主型及側鏈型非線性光學高分子薄膜之製備…...52 3-5 二次非線性光學特性檢測……………………….…..53 3-5-1 高分子薄膜之配向極化…….…………………..53 3-5-2 二次非線性光學量測儀器裝置簡介…………...54 第四章 結果與討論………………………………………………..56 4-1 賓主型非線性光學高分子…………………………...56 4-1-1 賓主系統發色團之合成及化學結構鑑定……...56 4-1-2 發色團之熱性質分析…………………………...61 4-1-3 可溶性聚亞醯胺之合成及化學結構鑑定……...62 4-1-4 可溶性聚亞醯胺之熱性質分析………………...64 4-1-5 摻混系統之熱性質分析………………………...65 4-1-6 摻混系統之發色團分散型態分析……………...71 4-1-7 摻混系統之紫外/可見光光譜分析……………..74 4-1-8 折射率與膜厚之量測…………………………...78 4-1-9 最適化排列極化條件……………..………….....78 4-1-10 賓主系統之熱穩定性分析………………….….80 4-1-11 賓主系統之時間穩定性分析…………….…….83 4-1-12 材料之緩和行為分析………………….……….85 4-1-13 賓主系統之比較……………………………….87 4-2 側鏈型非線性光學高分子…………..………………..88 4-2-1 側鏈系統發色團之合成及化學結構鑑定……....88 4-2-2 側鏈型非線性光學聚亞醯胺高分子之合成及 化學結構鑑定……….………………………….91 4-2-3 側鏈系統之熱性質分析………………………...91 4-2-4 側鏈型非線性光學高分子之紫外/可見光光譜 分析……………………………………………..94 4-2-5 側鏈型非線性光學高分子薄膜折射率與膜厚 之量測…………………………………………..94 4-2-6 側鏈系統之熱穩定性分析………………….…..95 4-2-7 側鏈系統之時間穩定性及緩和行為分析….…..96 4-2-8 側鏈系統之比較………………………………...98 第五章 結論………………………………………………………100 第六章 參考文獻…………………………………………………102 List of Schemes Scheme 3-1 Synthesis of the hydroxy-containing polyimide. ….....…49 Scheme 3-2 Synthesis of 1-D side-chain NLO polyimide. …………..50 Scheme 3-3 Synthesis of guest-host system NLO chromophore. ……51 List of Tables Table 2.1 β values for various substituted benzenes. ……………….28 Table 3-1 Composition of PI and chromophore in Guest-Host NLO polymer. …………………………………………………...52 Table 4-1 Thermal decomposition temperature (Td10) of PI-1 to PI-6 and chromophore. …………….…………………………...67 Table 4-2 Order parameter of PI-1 to PI-6. …………………………..74 Table 4-3 The refractive index of side-chain NLO polymer at 633、 830 and 1160nm , respectively. …………………………...78 Table 4-4 T0 values of PI-1 to PI-6. …………….………………….....82 Table 4-5 The relaxation time (τvalue) and relaxation time distribution(βvalue) of PI-1 to PI-6 calculated by KWW equation. …………………………………………………..86 Table 4-6 Comparisons of some guest-host NLO polyimides with excellent property. ………………………………………...87 Table 4-7 The refractive index of side-chain NLO polymer at 633、 830 and 1160nm , respectively. …………….……………..95 Table 4-8 The relaxation time (τvalue) and relaxation time distribution(βvalue) of the side-chain NLO polymer. …...97 Table 4-9 Comparisons of some side-chain NLO polyimides with highly thermal and temporal stability. …………………….98 List of Figures Figure 1-1 Induced polarization for linear and nonlinear materials upon applied field. ……………………………………….4 Figure 1-2 The polarization response P(x) of a molecular in the x-axis as a function of time due to a dielectric field oscillating at E(w),and Fourier analysis of P(x) at frequencies w,2w,and 0. ……………………………... 6 Figure 1-3 Several 2nd nonlinear optical organic crystals. ………..…11 Figure 1-4 L-B multiple films. …………………….....……………..12 Figure 1-5 A procedure of self-assembly layer. …………………..…13 Figure 1-6 Sol/Gel process. ………………………..………………..18 Figure 1-7 Applications for nonlinear optical materials. ………..…..19 Figure 1-8 A typical frequency doubling waveguide configuration. ..20 Figure 1-9 A waveduide Mach-Zehnder modulator. ………….....….21 Figure 1-10 (a) 2*2 directional coupler;(b) Y-junction. …………….22 Figure 1-11 (a) A sensor protection based on self-focusing or self-defocusing theory;(b) Distributed feedback Bragg reflector. ……………………………………………..…...24 Figure 2-1 Basic structure for 2nd organic NLO chromophore. …..…27 Figure 2-2 Plot of βvalues versus the dipole moment for some monosubstituted benzene derivatives. ……………..…….27 Figure 2-3 Ground-state and lowest energy polar resonance forms for p and o substitution. Charge transfer resonance is forbidden for the m substituent. …….………..………29 Figure 2-4 Variety of NLO polymers : (a) side-chain;(b) head-to-tail type;(c) shoulder-to-shoulder type;(d) accordion type; (e)Λ-shape type. ……………………………………….35 Figure 3-1 A typical setup for corona poling. …………….. ……….53 Figure 3-2 Second harmonic coefficient measurement system. ….....55 Figure 4-1 NMR spectra of (a) GH-2 and (b) GH-6. …………..…...58 Figure 4-2 NMR spectra of (a) GH-8 and (b) GHC. ………..………59 Figure 4-3 FTIR spectrum of GHC. ………………………..……….60 Figure 4-4 (a) DSC and (b) TG analysis for GHC. …………..……..61 Figure 4-5 NMR spectrum of the soluble polyimide. ………...……..63 Figure 4-6 FTIR spectrum of the soluble polyimide. ………..……...63 Figure 4-7 DSC thermograph of the soluble polyimide. ……..……..64 Figure 4-8 TGA of the soluble polyimide. ………………..………...65 Figure 4-9 DSC thermograph of the NLO polymer PI-1 to PI-6. …..69 Figure 4-10 TGA thermograph of the NLO polymer PI-1 to PI-6. …..70 Figure 4-11 EDS images of (a) PI-1 (b) PI-2 (c) PI-3 (d) PI-4 (e) PI-5 (f) PI-6. …………………………………………………73 Figure 4-12 UV/vis spectra of (a) PI-1 (b) PI-2 (c) PI-3 (d) PI-4 (e) PI-5 (f) PI-6 (with and without poling). ………...…..77 Figure 4-13 In-situ poling dynamics of PI-3. ………………………...80 Figure 4-14 Thermal stability of PI-1 to PI-6 and compared with PI-3 without thermal annealing (frozen). ………………83 Figure 4-15 Temporal stability of PI-1 to PI-6 and compare with PI-3 without thermal annealing (frozen) at (a)80℃(b)125℃. 85 Figure 4-16 NMR spectra of (a) SC-2 and (b) SC-8. ………………...89 Figure 4-17 FTIR spectrum of SC-8. ………………………………...90 Figure 4-18 NMR spectra for the side-chain polymer (a) backbone and (b) functionalized with chromophore molecules. ….92 Figure 4-19 DSC for the side-chain NLO polymer. ………………….93 Figure 4-20 TGA for the side-chain NLO polymer. ………………….94 Figure 4-21 UV/vis spectrum of side-chain NLO polymer before and after poling. ………………………….……………..95 Figure 4-22 Thermal stability of the side-chain NLO polymer. ……...96 Figure 4-23 Temporal stability of the side-chain NLO polymer. …….97 Figure 4-24 Relationship ofτvalue andβvalue of the side-chain NLO polymer at different temperature. …………...……97rf 參考文獻 1. Prazad N., and David J. Williams, Introduction to Nonlinear Optical Effect in Molecules and Polymer, John Willey and Sons, New York, 1987. 2. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Phys. Rev. Lett. 1961,7,118. 3. K. H. Lii, and Y. Huang, Chemistry (The Chinese Chem. Soc., Taiwan China) Dec., 1993,51(4) pp.505~511. 4. J. Zyss, D. S. Chemla,and J. F. Nicoud, J. Chem. Phys.1981,74,4800. 5. G. Zerbi, European Materials Research Society Monograph vol.6:Organic Materials for Photonics – Science and Technology, North-Holland, 1993 6. Yu T. Tao, CHEMISTRY ( THE CHINESE CHEM. SOC., TAIWAN CHINA ) Dec., 1993,51(4) pp.548~552. 7. Geoffrey A. Lindsay and Kenneth D. Singer ACS Sympothium Series 601Polymer for Second-Order Nonlinear Optics, American Chemical Society, Washington, DC 1995. 8. Robert W. Boyd, Nonlinear Optics, Academic Press, 1992. 9. S.Marturunkuakul, J.I.Chen, L.Li, R.J.Jeng, J.Kumar, and S.K.Tripathy, Chem. Mater. 1993,5,592. 10. J. I. Chen, S. Marturunkuakul, L. Li, R. J. Jeng, J.Kumar, and S. K .Tripathy, Macromolecule 1993,26,7379. 11. 李雅明 固態電子學 全華科技圖書股份有限公司. 12. Donald M. Burland, Robert D. Miller, and Cecilia A. Walsh, Chem.Rev.1994, 94,31. 13. K. Lizuka, Spriger Series in Optical Science 35:Engineering Optics 2nd Edition, Springer-Verlag,1985. 14. Seth R. Marder, John E. Sohn, and Galen D.Stucky, ACS Soypothium Series 455:Materials for Nonlinear Optics:Chemical Perspectives, ACS Washington, 1991. 15. C. Weder, P. Neuenschwander, Ulrich W. Suter, P. Prêtre, P. Kaatz, and P. Gunter, Macromoleculse 1994, 27,2181. 16. B. F. Levine, and G. F. Bethea, J. Chem. Phys. 1975, 63, 2666. 17. J. L. Oudar, J. Chem. Phys. 1977, 67, 446. 18. J. L. Oudar, and D.S. Chemla, Opt. Commun. 1975, 13, 164. 19. A. Dulcic, and C. Sauteret, J. Chem. Phys. 1978, 25, 402. 20. A. Dulcic, C. Flytzanis, C. L. Tang, D. Pepin, M. Fitzon, and Y.Hoppiliard, J. Chem. Phys. 1981, 74, 1559. 21. J. D. Morley, V. J. Docherty, and D. Pugh, J. Chem. Soc. Perkin Trans. 1987, 2, 1357. 22. G. Berkovic, Y. R. Shen, and M. Schadt, Mol. Cryst. Liq. Cryst. B 1987, 150, 607. 23. G. Meredish, J. Van Dusen, and D. Williams, Macromolecules 1982, 15,1385. 24. K. Singer, J. Son, and S. Lalama, Appl. Phys. Lett. 1986,49,248. 25. K. Singer, M. Kuzyk, W. Holland, J. Son, S. Lalama, R. Comizzoli, H. Katz, and M. Schilling, Appl. Phys. Lett. 1988,53,1800. 26. M. Stahelin, C. Walsh, D. Burland, R. Miller, R. Twieg, and W. Volksen, J. Appl. Phys. 1993,73,8471. 27. M. Stahelin, D. Burland, M. Ebert, R. Miller, B. Smith, R. Twieg, W. Volksen, and C. Walsh, Appl. Phys. Lett. 1992,61,1626. 28. C. Walsh, D. Burland, V. Lee, R. Miller, B. Smith, R. Twieg, and W. Volksen, Macromolecules 1993,26,3720. 29. H. L. Hampsch, J. Yang, G. K. Wong. and J. M. Torkelson, Polym. Commun. 1989,30,40. 30. J. Wu, E. Binkley, J. Kenny, R. Lytel, and A. Garito, J. Appl. Phys. 1991,69,7366. 31. J. Valley, J. Wu, S. Ermer, E. Binkley, J. Kenny, and R. Lytel, Appl. Phys. Lett. 1991,59,2213. 32. Jen. A. K.-Y., K. Y. Wang, V. P. Rao, K. Drost, Y. M. Cai, B.Caldwell , R. M. Mininni, Mater. Res. Soc. Symp. Proc. 1994,328,413. 33. J. Kenny, E. Binkley, Jen. A. K.-Y., and K. Y. Wang, Mater. Res. Soc. Symp. Proc. 1994.328.511. 34. H. H. Fujimoto, S. Das, J. F. Valley, M. Stiller, L. Dries, D. Girton, and T. Van Eck, S. Ermer, E. Binkley, J.C. Nurse, and J. Kenny, Mater. Res. Soc. Symp. Proc. 1994,328,553. 35. P. A. Cahill, C. H. Seager, M. B. Meinhardt, A. J. Beuhler, D. A. Wargowski, and K. Singer, Proc. SPIE 1993,2025,48. 36. S. Ermer, J. Valley, R. Lytel, G. Lipscomb, T. Van Eck, and D. Girton , Appl. Phys. Lett. 1992,61,2272. 37. J. Valley, J. Wu, S. Ermer, M. Stiller, E. Binkley, J. Kenny, G. Lipscomb, and R. Lytel, Appl. Phys. Lett. 1992,60,160. 38. H. Katz, K. Singer, J. Son, C. Dirk, L. King, and H. Gordan, J. Am. Chem. Soc. 1987,109,6561. 39. D. Yu, and L. Yu, Macromolecules 1994,27,6718. 40. D. Yu, L. Yu, and G. Ali, J. Am. Chem. Soc. 1995,117,11680. 41. T. A. Chen, Alex K. -Y. Jen, and Y. Cai, Macromolecules 1996,29, 535. 42. E. H. Kim, I. K. Moon, H. K. Kim, M. H. Lee, S. G. Han, M. H. Yi, and K. Y. Choi, Polymer 1999,40,6157. 43. H. Saadeh, L. Wang, and L. Yu, Macromolecules 2000,33,1570. 44. W. Leng, Y. Zhpu, Q. Xu, and J. Liu, Macromolecules 2001,34,4774. 45. B. J. Jeon, S. W. Cha, M. Y. Jeong, T. K. Lim, and J. I.Ji. J. Mater. Chem. 2002,12,546. 46. W. N. Leng, Y. M. Zhou, Q. Xu, and J. Liu, Polymer 2001,42,9235. 47. J. D. Luo, M. Haller, H. Li, H. Z. Tang, Alex K.-Y. Jen, K. Jakka, C. H. Chou, and C. F. Shu, Macromolecules 2004,37,248. 48. G. Boyd, C. Francis, J. Trend, and D. Ender, J. Opt. Soc. Am. B 1991,8,887. 49. L. Hampsch, J. Yand, G. K. Wang, J. M. Torkelson, Polymer commun. 1989,30(2),40. 50. H. L. Hampsch, J. Yand, G. K. Wang, J. Torkelson, Macromolecules 1988,21,526. 51. M. A. Mortazavi, A. Knoesen, S. T. Kowel, B. G. Higgins, and A. Dienes, J. Opt. Soc. Am. B 1989,6(4),733. 52. D. L. Pavia, G. M. Lampman, and G. S. Kriz, Introduction to spectro- scopy, Thomas Learning Inc., Washington 2001. 53. W. J. Kuo, G. H. Hsiue, and R. J. Jeng, Macromolecules 2001,34,2373. 54. Y. Sukai, M. Ueda, T. Fukuda, and H. Matsuda, J. Polym. Sci. A: Polym. Chem 1999,37,1321. 55. D. Yu, A. Gharavi, and L. Yu, Macromolecules 1996,29,6139. 56. K. Y. Wong, and A. K. –Y. Jen, J. Appl. Phys. 1994,75,1.id NH0925063059 sid 913634 cfn 0 / id NH0925063060 auc 林雋倫 tic 結合超過濾系統與固定化金屬親合力層析法以純化昆蟲桿狀病毒 adc 胡育誠 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 53 kwc 昆蟲桿狀病毒 kwc 固定化金屬親合力層析法 kwc 病毒純化 kwc 基因治療 abc 昆蟲桿狀病毒(baculovirus)已於1995年證實可感染哺乳動物細胞,因此被認為具有成為基因治療載體的潛力。若要將其應用在基因治療載體方面,先決條件是取得高純度及高濃度之桿狀病毒。傳統的多次超高速離心純化法因相當費時費力且較難以規模放大,並不適合作病毒載體的大量純化。相對地,層析法已廣泛應用於蛋白質純化 但尚未普遍應用於基因治療載體之大規模純化。因此,本實驗室先前應用固定化金屬親合力層析法(IMAC)結合超過濾(ultrafiltration)系統純化桿狀病毒,在IMAC部分回收率可達8 %。為提升回收率以使此結果可以應用至大規模純化,在本研究中針對IMAC及超過濾系統的各項參數予以改進,這些參數包含IMAC進料流速(提升病毒結合速率並縮短操作時間),IMAC溶液鹽度(提升病毒結合速率並減低對病毒傷害),IMAC溶液pH值(提升病毒結合速率並減低對病毒傷害),IMAC沖提液梯度(提升純化效率),超過濾濾膜孔徑(提升前處理效率)以提升回收率及純度等。並以終點稀釋法(EPDA, End Point Dilution Assay)及流式細胞儀作為監測每一純化步驟病毒回收率的工具,希望能找出適當的純化步驟。 tc 目 錄 第一章 文獻回顧..........................................1 1-1 昆蟲桿狀病毒簡介.....................................1 1-2 桿狀病毒應用於基因治療之潛力.........................1 1-3 超過濾系統...........................................2 1-4 固定化金屬親和力層析法...............................3 1-5 研究動機.............................................3 第二章 實驗材料與方法....................................8 2-1 昆蟲細胞培養.........................................8 2-2 哺乳動物細胞(BHK)培養................................8 2-3 放大桿狀病毒.........................................8 2-4 以流式細胞儀計數病毒顆粒.............................9 2-5 以終點稀釋法計算病毒濃度 ...........................10 2-6 以流式細胞儀計算病毒感染哺乳動物細胞效率............10 2-7 以超過濾系統濃縮病毒................................10 2-8 以IMAC純化經超過濾系統濃縮後的病毒..................11 第三章 實驗架構.........................................14 第四章 實驗結果及討論......................................................16 4-1 提升病毒生產效率....................................16 4-2 自然接合液的pH值對病毒活性的影響....................17 4-3 自然接合液的鹽類濃度對病毒活性的影響................19 4-4 Bac-CEH病毒結構的效應...............................21 4-5 以哺乳動物細胞評估病毒活性的變化....................22 4-6 在自然接合液中溶液中加入Ca2+, Mg2+的效應............24 4-7 超過濾系統中轉速的影響..............................26 4-8 超過濾系統中濾膜的孔徑大小與操作轉速對病毒回收率的共 同效應..............................................27 4-9 超過濾系統緩衝液交換策略............................29 4-10 IMAC病毒灌流方式對結合效率的影響...................31 第五章 結論.............................................44 第六章 未來努力方向.....................................46 參考文獻................................................48 圖表目錄 圖1-1 桿狀病毒的分類.....................................5 圖1-2 各種濃縮方法的使用範圍比較.........................5 圖1-3 組胺酸的共振結構以及形成的錯合結構.................6 圖1-4 固定化金屬親合力層析法(IMAC)的基本原理...........6 表1-1 IMAC與其他管柱層析法的優劣比較.....................7 圖2-1 Stirred Cell裝置圖................................12 表2-1 在IMAC純化中所使用的緩衝溶液配方..................13 圖3-1 本研究主要架構....................................15 圖4-1 溶液pH值對病毒活性及顆粒數的影響..................33 表4-1 溶液pH值對病毒影響:粒子與感染力比值及保存率......33 圖4-2 溶液鹽度對病毒活性及顆粒數影響....................34 表4-2 溶液鹽度對病毒影響:粒子與感染力比值及保存率......34 表4-3 以滲透壓儀測定2-7,2-8節中使用溶液的滲透度........35 表4-4 2-7,2-8節中使用溶液的滲透度與病毒生產時滲透度差異35 圖4-3 不同病毒在PBS及自然接合液中其活性及顆粒數的變化...36 圖4-4 不同病毒量與病毒對BHK感染力的關係.................37 圖4-5 不同病毒經過PBS或自然接合液處理後,其對BHK的感染力變 化................................................37 圖4-6 在自然接合液中,摻入Ca2+及Mg2+對改善病毒活性及對BHK感 染力的幫助........................................38 圖4-7 超過濾系統內轉速對病毒活性及顆粒數之影響..........39 圖4-8 超過濾系統內濾膜孔徑及操作轉速對除去病毒液雜蛋白效率 的影響............................................40 表4-5 濃縮方式對病毒液最終吸光值的影響..................40 圖4-9 超過濾系統內濾膜孔徑與操作轉速對病毒活性,及病毒顆粒 數的影響..........................................41 圖4-10 修正超過濾步驟對除去病毒液雜蛋白效率的影響.......42 表4-6 修正超過濾步驟對超過濾系統中病毒保存率的各項指標的影 響................................................42 圖4-11 灌流次數對病毒與樹脂結合力的變化.................43rf 參考文獻 Airenne KJ, Hiltunen MO, Turunen MP, Turunen AM, Laitinen OH, Kulomaa MS, Yla-Herttuala S. 2000. Baculovirus-mediated periadventitial gene transfer to rabbit carotid artery. Gene Ther. 7(17):1499-1504. Aloia RC, Jensen FC, Curtain CC, Mobley PW, Gordon LM. 1988. Lipid composition and fluidity of the human immunodeficiency virus. Proc Natl Acad Sci U S A 85(3):900-4. Boublik Y, Di Bonito P, Jones IM. 1995. Eukaryotic virus display: engineering the major surface glycoprotein of the Autographa californica nuclear polyhedrosis virus (AcNPV) for the presentation of foreign proteins on the virus surface. Biotechnology (N Y) 13(10):1079-84. Boyce FM, Bucher NLR. 1996. Baculovirus-mediated gene transfer into mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 93(6):2348-2352. Braunagel SC, Summers MD. 1994. Autographa californica nuclear polyhedrosis virus, PDV, and ECV viral envelopes and nucleocapsids: structural proteins, antigens, lipid and fatty acid profiles. Virology 202(1):315-28. Brugh M, Jr. 1977. Butylated hydroxytoluene protects chickens exposed to Newcastle disease virus. Science 197(4310):1291-2. Condreay JP, Witherspoon SM, Clay WC, Kost TA. 1999. Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc. Natl. Acad. Sci. U.S.A 96(1):127-132. Dee KU, Shuler ML. 1997. Optimization of an assay for baculovirus titer and design of regimens for the synchronous infection of insect cells. Biotechnol Prog 13(1):14-24. Duisit G, Saleun S, Douthe S, Barsoum J, Chadeuf G, Moullier P. 1999. Baculovirus vector requires electrostatic interactions including heparan sulfate for efficient gene transfer in mammalian cells. J Gene Med 1(2):93-102. Dwarakanath RS, Clark CL, McElroy AK, Spector DH. 2001a. The use of recombinant baculoviruses for sustained expression of human cytomegalovirus immediate early proteins in fibroblasts. Virology 284(2):297-307. Dwarakanath RS, Clark CL, McElroy AK, Spector DH. 2001b. The use of recombinant baculoviruses for sustained expression of human cytomegalovirus immediate early proteins in fibroblasts. Virology 284(2):297-307. Fields DM, Knipe,and P.M. Howley. 1996. Fields Virology. Philadelphia: Lippincott-Raven. Gaberc-Porekar V, Menart V. 2001. Perspectives of immobilized-metal affinity chromatography. J Biochem Biophys Methods 49(1-3):335-60. Green AP, Huang JJ, Scott MO, Kierstead TD, Beaupre I, Gao GP, Wilson JM. 2002. A new scalable method for the purification of recombinant adenovirus vectors. Hum Gene Ther 13(16):1921-34. Hofmann C, Sandig V, Jennings G, Rudolph M, Schlag P, Strauss M. 1995. Efficient gene-transfer into human hepatocytes by baculovirus vectors. Proc. Natl. Acad. Sci. U.S.A. 92(22):10099-10103. Hu YC, Bentley WE, Edwards GH, Vakharia VN. 1999. Chimeric infectious bursal disease virus-like particles expressed in insect cells and purified by immobilized metal affinity chromatography. Biotechnology and Bioengineering 63(6):721-729. Hu YC, Tsai CT, Chang YJ, Huang JH. 2003. Enhancement and prolongation of baculovirus-mediated expression in Mammalian cells: focuses on strategic infection and feeding. Biotechnol Prog 19(2):373-9. Keith AD, Arruda D, Snipes W, Frost P. 1982. The antiviral effectiveness of butylated hydroxytoluene on herpes cutaneous infections in hairless mice. Proc Soc Exp Biol Med 170(2):237-44. Kim KS, Moon HM, Sapienza V, Carp RI, Pullarkat R. 1978. Inactivation of cytomegalovirus and Semliki Forest virus by butylated hydroxytoluene. J Infect Dis 138(1):91-4. Kost TA, Condreay JP. 2002. Recombinant baculoviruses as mammalian cell gene-delivery vectors. Trends in Biotechnology 20(4):173-180. Kuiper M, Sanches RM, Walford JA, Slater NK. 2002. Purification of a functional gene therapy vector derived from Moloney murine leukaemia virus using membrane filtration and ceramic hydroxyapatite chromatography. Biotechnol Bioeng 80(4):445-53. Liang CY, Wang HZ, Li TX, Hu ZH, Chen XW. 2004. High efficiency gene transfer into mammalian kidney cells using baculovirus vectors. Arch Virol 149(1):51-60. Ma L, Tamarina N, Wang Y, Kuznetsov A, Patel N, Kending C, Hering BJ, Philipson LH. 2000. Baculovirus-mediated gene transfer into pancreatic islet cells. Diabetes. 49:1986-1991. Maranga L, Coroadinha AS, Carrondo MJ. 2002. Insect cell culture medium supplementation with fetal bovine serum and bovine serum albumin: effects on baculovirus adsorption and infection kinetics. Biotechnol Prog 18(4):855-61. Marheineke K, Grunewald S, Christie W, Reilander H. 1998. Lipid composition of Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tn) insect cells used for baculovirus infection. FEBS Lett 441(1):49-52. Markovic I, Pulyaeva H, Sokoloff A, Chernomordik LV. 1998. Membrane fusion mediated by baculovirus gp64 involves assembly of stable gp64 trimers into multiprotein aggregates. J Cell Biol 143(5):1155-66. Martell AEaMC. 1952. Chemistry of the Metel Chelate Compounds. New York: Prentice-Hall. Merrihew RV, Clay WC, Condreay JP, Witherspoon SM, Dallas WS, Kost TA. 2001. Chromosomal integration of transduced recombinant baculovirus DNA in mammalian cells. J. Virol. 75(2):903-909. Miriam. 1999. Concentration of recombinant baculovirus by cation-exchange chromatography. Biotechniques 26(5):834-6, 838, 840. Monsma SA, Oomens AG, Blissard GW. 1996. The GP64 envelope fusion protein is an essential baculovirus protein required for cell-to-cell transmission of infection. J Virol 70(7):4607-16. Moore NF, Patzer EJ, Shaw JM, Thompson TE, Wagner RR. 1978. Interaction of vesicular stomatitis virus with lipid vesicles: depletion of cholesterol and effect on virion membrane fluidity and infectivity. J Virol 27(2):320-9. Mottershead DG, Alfthan K, Ojala K, Takkinen K, Oker-Blom C. 2000. Baculoviral display of functional scFv and synthetic IgG-binding domains. Biochem. Biophys. Res. Commun. 275(1):84-90. Ojala K, Mottershead DG, Suokko A, Oker-Blom C. 2001. Specific binding of baculoviruses displaying gp64 fusion proteins to mammalian cells. Biochem. Biophys. Res. Commun. 284(3):777-784. Oomens AG, Monsma SA, Blissard GW. 1995. The baculovirus GP64 envelope fusion protein: synthesis, oligomerization, and processing. Virology 209(2):592-603. Pieroni L, Maione D, La Monica N. 2001. In vivo gene transfer in mouse skeletal muscle mediated by baculovirus vectors. Hum. Gene Ther. 12(8):871-881. Porath J, Carlson, J., Olsson, I. and Belfrage, G. 1975. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258:598-599. Rosinski M, Reid S, Nielsen LK. 2000. Osmolarity effects on observed insect cell size after baculovirus infection are avoided using growth medium for sample dilution. Biotechnol Prog 16(5):782-5. Sandig V, Hofmann C, Steinert S, Jennings G, Schlag P, Strauss M. 1996. Gene transfer into hepatocytes and human liver tissue by baculovirus vectors. Hum. Gene Ther. 7(16):1937-1945. Sarkis C, Serguera C, Petres S, Buchet D, Ridet JL, Edelman L, Mallet J. 2000. Efficient transduction of neural cells in vitro and in vivo by a baculovirus-derived vector. Proc Natl Acad Sci U S A 97(26):14638-43. Schlegel R, Tralka TS, Willingham MC, Pastan I. 1983. Inhibition of VSV binding and infectivity by phosphatidylserine: is phosphatidylserine a VSV-binding site? Cell 32(2):639-46. Shapiro M. 2001. The effects of cations on the activity of the gypsy moth (Lepidoptera: Lymantriidae) nuclear polyhedrosis virus. J Econ Entomol 94(1):1-6. Shen CF, Meghrous J, Kamen A. 2002. Quantitation of baculovirus particles by flow cytometry. J Virol Methods 105(2):321-30. Shoji I, Aizaki H, Tani H, Ishii K, Chiba T, Saito I, Miyamura T, Matsuura Y. 1997. Efficient gene transfer into various mammalian cells, including non-hepatic cells, by baculovirus vectors. J. Gen. Virol. 78:2657-2664. Tani H, Nishijima M, Ushijima H, Miyamura T, Matsuura Y. 2001. Characterization of cell-surface determinants important for baculovirus infection. Virology 279(1):343-53. Transfiguracion J, Jaalouk DE, Ghani K, Galipeau J, Kamen A. 2003. Size-exclusion chromatography purification of high-titer vesicular stomatitis virus G glycoprotein-pseudotyped retrovectors for cell and gene therapy applications. Hum Gene Ther 14(12):1139-53. Ueda EK, Gout PW, Morganti L. 2003. Current and prospective applications of metal ion-protein binding. J Chromatogr A 988(1):1-23. Xiong H, Li C, Garami E, Wang Y, Ramjeesingh M, Galley K, Bear CE. 1999. ClC-2 activation modulates regulatory volume decrease. J Membr Biol 167(3):215-21. Ye K, Dhiman HK, Suhan J, Schultz JS. 2003. Effect of pH on Infectivity and Morphology of Ecotropic Moloney Murine Leukemia Virus. Biotechnol Prog 19(2):538-43. 張耀仁,非溶裂桿狀病毒表現系統之研究(2002),國立清華大學化學工程研究所碩士論文。 蔡建泰,利用固定化金屬親合力層析法純化基因重組昆蟲桿狀病毒(2003,國立清華大學化學工程研究所碩士論文。id NH0925063060 sid 913622 cfn 0 / id NH0925063061 auc 陳坤暘 tic 有機薄膜電晶體之高分子閘極介電層研究 adc 金惟國教授 adc 何家充博士 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 82 kwc 五環素 kwc 介電層 kwc 高分子 kwc 有機薄膜電晶體 abc 本論文利用旋轉塗佈技術製作高分子薄膜,並以蒸鍍方式完成有機半導體pentacene,觀察pentacene成長與高分子基材間的關係,接著利用選擇適當的高分子PMMA作為OTFT之有機介電層,製作元件。 tc 摘要 І 謝誌 IІ 目錄 ІII 圖目錄 VI 表目錄 VIII 第一章 緒論 1 第二章 文獻回顧 3 2-1 有機半導體材料簡介 3 2-2 有機半導體之電子結構與導電機制 5 2-2.1能帶理論 5 2-2.2偏極子(polaron)和雙偏極子(bipolaron) 6 2-3 有機半導體的傳導方式 8 2-3.1 分子鏈上(intramolecular)的傳導 8 2-3.2 分子鏈間(intermolecule) 的傳導 9 2-3.3 Multiple Trap and Releasing(MTR) 10 2-4 Pentacene的性質 11 2-5 有機薄膜電晶體簡介 13 2-6 有機薄膜電晶體操作模式 16 2-7 OTFT載子遷移率 19 2-8 各項重要參數 22 2-8.1載子遷移率(mobility) 22 2-8.2 threshold voltage(VT) 23 第三章 實驗材料、設備及實驗方法 25 3-1 前言 25 3-2 實驗藥品及設備 26 3-2.1 實驗藥品 26 3-2.2 實驗設備 27 3-3 實驗方法 29 3-3.1 高分子薄膜的製備 30 3-3.2 熱蒸鍍Pentacene 32 3-3.3 製作元件 32 3-4 分析方法 33 3-4.1 高分子溶液在玻璃基板上的成膜性觀察 33 3-4.2 接觸角分析 33 3-4.3 原子力顯微鏡(AFM)-粗糙度分析 33 3-4.4 熱重分析儀 33 3-4.5 原子力顯微鏡(AFM)-grain size量測 33 3-4.6 x-ray分析 33 3-4.7 電性分析 34 第四章 結果與討論 35 4-1 高分子薄膜的成膜分析 35 4-1.1 電漿前處理對於高分子成膜性的影響 35 4-1.2 接觸角量測 37 4-1.3 高分子膜粗糙度 44 4-2 pentacene特性分析 48 4-2.1 材料的熱性質分析(DSC、TGA分析) 48 4-2.2 晶粒大小 50 4-2.3 x-ray圖譜 59 4-3 元件討論 71 4-3.1 MIM漏電量測 71 4-3.2 元件量測 74 第五章 結論 78 第六章 Reference 79rf [1 ] J. H. Postlethwait, and J. L. Hopson, “The Nature of Life”, pp.26-57, 1989 [2 ] A.Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett. 1986, 49, 1210 [3 ] A.Assadi, C. Svensson, M. Willander, O. Ingans, Appl. Phys. Lett. 1988 [4 ] J. Paloheimo, E. Punkka, H. Stubb, P.Kuivalainen, in Lower Dimensional Systems and Molecular Devices, Proceedings of NATO ASI, Spetses, Greece (Ed: R. M. Mertzger), Plenum, New York 1989 [5 ] Z. Bao, A. Dodabalapur, A. J. Lovinger, Appl. Phys. Lett., 1996, 69, 4108 [6 ] H. Sirringhaus, N. Tessler, R. H. Friend, Science 1998,280,1741 [7 ] F. Ebisawa, T. Kurokawa, S. Nara, J. Appl. Phys. 1983, 54, 3255 [8 ] J. H. Burroughes, C. A. Jones, R. H. Friend, Nature 1988, 335, 137 [9 ] H. Fuchigami, A. Tsumura, H. Koezuka, Appl. Phys. Lett. 1993, 63, 1372 [10 ] F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, s. Ries, P. Alnot, J. Am. Chem. Soc. 1993, 115, 8716 [11 ] B.Servet, G. Horowitz, S. Ries, O. Lagorsse, P. Alnot, A. Yassar, F. Deloffre, P. Srivastava, R. Hajlaoui, P. Lang, F. Garnier, Chem. Mater. 1994, 6, 1809 [12 ] A. Dodabalapur, L. Torsi, H. E. Katz, Science 1995, 268, 270. L. Torsi, A. Dodabalapur, A. J. Lovinger, H. E. Katz, R. Ruel, D. D. Davis, K. W. Baldwin, Chem. Mater. 1995, 7, 2247 [13 ] C. D. Dimitrakopoulos, B. K. Furman, F. Graham, S. Hegde, S. Purushothaman, Synth. Met. 1998, 2 [14 ] H. E. Katz, L. Torsi, A. Dodabalapur, Chem. Mater. 1995, 7, 2235 [15 ] R. Hajlaoui, D. Fichou, G. Horowitz, B. Nessakh, M. Constant, F. Garnier, Adv. Mater. 1997, 9, 557 [16 ] R. Hajlaoui, G. Horowitz, F. Garnier, A. Arce-Brouchet, L. Laigre, A. Elkassmi, F. Demanze, F. Kouki, Adv. Mater. 1997, 9, 389 [17 ] J. H. Sch^n, C. Kloc, B. Batlogg, Org. Electron. 2000, 1, 57 [18 ] Y. -Y. Lin, D. J. Gundlach, S. Nelson, T. N. Lett. 1997, 18, 606. Jackson, IEEE Electron Device. [19 ] C. D. Dimitrakopoulos, A. R. Brown, A. Pomp, J. Appl. Phys. 1996, 80, 2501 [20 ] Y. -Y. Lin, D. J. Gundlach, T. N. Jackson, 54th Annual Device Research Conference Digest 1996, p.80. 1991, 58, 1500 [21 ] G. Horowitz, X. Peng, D. Fichou, F. Garnier, Synth. Met. 1992, 51, 419 [22 ] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M. Fleming, Appl. Phys. Lett. 1995, 67, 121 [23 ] J. Kastner, J. Paloheimo, H. Kuzmany, in Solid State Sciences(Eds:H. Huzmany, M. Mehring, J. Fink), Springer, New York 1993, pp. 515-521 [24 ] G. Guillaud, M. Al Sadound, M. Maitrot, Chem. Phys. Lett. 1990, 167,503. [25 ] Z. Bao, A. J. Lovinger, J. Brown, J. Am. Chem. Soc. 1998, 120, 207. [26 ] H. Fuchigami, A. Tsumura, H. Koezuka, Appl. Phys. Lett. 1993, 63, 1372. [27 ] A. R. Brown, D. M. de Leeuw, E. J. Lous, E. E. Havinga, Synth. Met. 1994, 66, 257. [280 ] J. G. Laquindanum, H. E. Katz, A. Dodabalapur, A. J. Lovinger, J. Am. Chem. Soc. 1996, 118, 11 331. [29 ] M. G. Kanatzidls, Chem. And Eng. News, December 3, 36, 1990 [30 ] W. R. Salaneck, Contem. Phys. 30, 403, 1989 [31 ] C. D. Dimitrakopoulos and D. J. Mascaro, « Organic thin-film transistors: A review of recent advances”, IBM, vol. 45, pp. 11-27, 2001 [32 ] K. Y. Chung, and G. W. Neudeck, “Analytical modeling of α-Si:H thin-film transistors”, J. Appl. Phys. Vol. 62, pp. 4617-4624, 1987 [33 ] M. Shur, M. Hack, and G. S. John, “A new analytic model for amorphous silicon thin-film transistors”, J. Appl. Phys. Vol. 66, pp. 3371-3380, 1989 [34 ] P. G. Le Comber, and W. E. Spear, “Electronic transport in amorphous silicon films”, vol. 25, pp. 509-511, 1970 [35 ] P. W. Anderson, “Absence of Diffusion in Certain Random Lattices”, Physical Review, vol. 109, pp. 1492-1505, 1958 [36 ] Gilles Horowitz, “Organic Field-Effect Transistors”, Advanced Materials, vol. 10, pp. 365-377, 1998 [37 ] Gilles Horowitz, “Field-effect transistors based on short molecules”, J. Mater. Chem. Vol. 9, pp. 2021-2026, 1999 [38 ] C. D. dimitrakopoulos and D. J. Mascaro, IBM J. RES. & DEV. 45(1), 11, 2001 [39 ] S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1981, CH. 7 [40 ] A. R. Brown, C. P. Jarrett, D. M. de Leeuw and M. Matters, “Field-eddect transistor made from solution-procceed organic semiconductors”, Synth. Met., vol. 88, pp. 37-55, 1997 [41 ] M. A. Lampert, “Simplified Theory of Space-Charge Limited Currents in an Insulator with Traps”, Physical Review, vol. 103, pp. 1648-1656, 1956 [42 ] Katoh, M., Izumi, Y., Kimura, H., Ohte, T., Kojima, A., & Ohtani, S., “Investigation of characteristics of carbon materials with variousstructures modified by plasmas using diagnostics and materials-surface analysis.” Applied Surface Science, 100/101, 226-231, 1996 [43 ] Max Shtein, Jonathan Mapel, Jay B. Benziger, and Stephen R. Forrest, “Effect of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors”, Applied Physics Letters, vol.81, pp.268-270, 2002id NH0925063061 sid 913655 cfn 0 / id NH0925063062 auc 吳清茂 tic DNA-脂質錯合體自組裝結構之研究 adc 陳信龍 ty 博士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 英文 pg 121 kwc 基因治療 kwc DNA/陽離子微脂粒錯合體 kwc DC-Chol kwc DOPC kwc 凝結 kwc 脂質 abc Polyanionic DNA can bind electrostatically with cationic liposomes (CLs) to form the complex exhibiting rich self-assembled structures at various length scales. This class of bioassembly has been considered as a nonviral gene delivery system for gene therapy or as a template for nanostructure construction. Understanding the self-assembly of DNA/CL complexes is crucial both for building the detailed nucleic acid delivery mechanism and also for application of this class of materials as nanostructural templates. This dissertation investigates the self-assemblies of the bioassemblies of DNA with (1) a cationic lipid, cholesteryl 3β-N-((dimethylamino)et- tc TABLE OF CONTENT ACKNOWLEDGEMENTS............................................................................................I ABSTRACT.................................................................................................................III TABLE OF CONTENT……………………………………………………………….V LIST OF TABLES.....................................................................................................VIII LIST OF FIGURES…………………………………………………………..………IX CHAPTER 1. INTRODUCTION AND LITERATURE SURVEY....................................1 1.1 Background............................................................................................1 1.2 Literature Survey………………………………………………………4 1.2.1 A Brief Overview of Cationic Liposomes……………………….4 A. Chemical Structure and Polymorphism of Lipids…………..6 B. Mechanism of Liposome Formation………………………..6 C. Gel-Liquid Crystalline Phase Transition of Lipid Bilayers…9 1.2.2 Progress in the Finding of Self-Assembled Structures of DNA-Cationic Liposome Complex……………………………10 A. Self-Assembled Structures of DNA-Cationic Liposome Complexes………………………………………………10 B. DNA-CL Complex Formation and Thermodynamic Driving Force……………………………………………...15 C. Condensation of DNA onto Lipid Bilayers and Effect of Divalent Cations………………………………………19 D. DNA-Zwitterionic Lipid-divalent Cation (DNA-ZL-Me2+) Complexes...........................................................................24 1.3 Motivations of Study and Overview of the Dissertation....................25 1.4 References............................................................................................30 2. SELF-ASSEMBLED STRUCTURE OF THE BINARY COMPLEX OF DNA WITH CATIONIC LIPID…………………………………………..33 2.1 Introduction.........................................................................................33 2.2 Experimental Section………………………………………………...35 2.2.1 Materials and Complex Preparations………………………...35 2.2.2 Ultraviolet-Visible (UV-Vis) Spectroscopy Experiment……. 35 2.2.3 Small-Angle X-ray Scattering (SAXS) Measurements……... 36 2.2.4 Transmission Electron Microscopy (TEM) Experiment……. 36 2.3 Results and Discussion……………………………………………….37 2.4 Conclusions…………………………………………………………..51 2.5 References and Notes………………………………………………...52 3. A TWO-STATE MODEL FOR THE MULTILAMELLAR STRUCTURE OF DNA/CATIONIC LIPID COMPLEX IN THE BULK …………………………………………………………………………… ...55 3.1 Introduction…………………………………………………………..55 3.2 Experimental Section……………………………………………….56 3.2.1 Materials and Complex Preparations………………………..56 3.2.2 X-Ray Measurements………………………………………...56 3.3 Results and Discussion…………………………………………57 3.4 Conclusions………………………………………………………66 3.5 References and Notes………………………………………………...68 4. DNA-INDUCED AGGREGATION OF ZWITTERIONIC OLIGOLAMELLAR LIPOSOME ………………………………………70 4.1 Introduction…………………………………………………………70 4.2 Experimental Section……………………………………………72 4.2.1 Materials and Methods……………………………………72 4.2.2 SAXS Measurements………………………………………..72 4.2.3 TEM Observations.............................................................73 4.2.4 Ultraviolet-Visible (UV-Vis) Spectroscopy Experiment..........74 4.3 Results and Discussion…………………………………………74 4.4 Conclusions………………………………………………………84 4.5 References………………………………………………………85 5. EFFECT OF DIVALENT METAL IONS ON DNA CONDENSED ON THE SURFACES OF RIGID CATIONIC MEMBRANES………………87 5.1 Introduction……………………………………………………87 5.2 Experimental Section……………………………………………….88 5.2.1 Materials and Sample Preparations........................................88 5.2.2 TEM Experiments.................................................................89 5.2.3 SAXS Measurements…………………………………90 5.2.4 Differential Scanning Calorimeter (DSC)……………90 5.3 Results and Discussion…………………………………………91 5.4 Conclusions……………………………………………………104 5.5 References………………………………………………………106 LIST of TABLES Tables 1.1. The most key findings of self-assembled structures of DNA-CL complexes...12 5.1. DSC characterization of the phase transition exhibited by DOPC and DC-Chol /DOPC mixtures……………………………………………………………….100 LIST OF FIGURES Figures 1.1 Simplified schematic presentation of the transfection…………………………3 1.2 The schematic presentations of liposomes……………………………………….5 1.3 Schematic representations of lipid-water phase: (a) lamellar gel; (b) lamellar liquid crystalline; (c) hexagonal type II; (d) hexagonal type I. Various dimensions that can be measured by X-ray diffraction are indicated…………………………7 1.4 A schematic view of the geometric considerations for forming micelles and bilayers…………………………………………………………………………...8 1.5 (A) Differential scanning calorimetry profiles of three phospholipids. (B) Schematic showing the molecular organization of phosphatidylcholine and phosphatidylethanolamine as a function of temperature………………………11 1.6 Schematic of two distinct pathways from the lamellar phase to the columnar inverted hexagonal phase of CL-DNA complexes……………..14 1.7 Cationic lipid-DNA complexes embedded in vitreous ice and imaged by cryo-el- ectron microscopy………………………………………………………………16 1.8 Two typical images of the condensed DNA molecules on DPDAP in 20 mM NaCl and the corresponding Fourier transforms………………………………..17 1.9a An abundance of DNA-coated unilamellar vesicles are evident in samples with higher DNA/lipid charge ratio = 0.9. Multilamellar complexes are present in low amounts. These complexes often possess unclosed outer bilayers. The white arrows indicate the edges of unclosed bilayers. The dark spots near the edges in (B) are believed to be caused by DNA accumulating or coiling at the edges. Black arrows indicate unilamellar vesicles on which the pattern caused by the parallel DNA helices is particularly well-visible……………………………….18 1.9b Clusters of DNA-coated unilamellar vesicles at DNA/lipid charge ratio = 0.9. As in Fig. 1.9a, the black arrows indicate locations where the pattern caused by adsorbed DNA is best visible. Flattening of the bilayers at the contact regions of adjacent vesicles is evident……………………………………………………..18 1.10 Proposed mechanism for the reorganization of lipid bilayers in the presence of DNA…………………………………………………………………………….20 1.11 (a) Synchrotron XRD measurements of the powder isoelectric [ρ= (weight lipid)/(weight DNA) = 2.2, ΦDOPC = (weight DOPC)/(weight lipid) =mole fraction of DOPC = 0.6 ] CL-DNA complex samples in the presence of MgCl2. dDNA abruptly changes from 47 Å (set by ΦDOPC) at low MgCl2 concentrations (M) to 28.9 Å above M = M* = 48.2 mM. Also, the complex periodicity d increases to 70 ± 1 Å for M > M*. (b) Similar XRD measurements in the presence of CoCl2 show that Co2+ ions also cause a condensation transition of the 2D DNA arrays but at smaller M* ≈ 24 mM. The (003) peak appears for M > M* in a and b, while the (004) is visible below and above M*. This is because the (003) peak in the lipid-DNA lamellar structure factor is near a zero crossing of the form factor. For M > M*, the screening of the head groups in the presence of the trapped counterions leads to a decrease in the area per charged head group. To match the change in the area per head, the area per tail decreases through chain stretching, which leads to a different position for the zero-crossing of the form factor. (c) Variation of the dDNA with the concentrations of four different divalent salts…………………………………………………………………….22 1.12 Schematic illustration of the force reversal between DNA chains adsorbed on cationic membrane surfaces within the lamellar LαC phase. For divalent counterion concentrations M < M* the electrostatic forces (Fe) are repulsive. For M < M* the forces become attractive, which leads to the DNA condensation transition on a surface. In contrast, the electrostatic forces between DNA chains in bulk aqueous solution with divalent counterions are purely repulsive. During the transition, the spacing between the DNA double helices rapidly decreases to a separation of order the diameter of the condensing ions (shown as red spheres). In the condensed state (M > M*) there are ≈ 0.63 ions/base pair along the DNA……………………………………………………………………………23 1.13 Chemical structures of lipids used in the present work…………………………27 2.1 (a) Representative UV spectra of the supernatants for the samples with x = 0.75, 1.5 and 2.0. The existence of free DNA is clearly demonstrated by the DNA absorption peak near 260 nm. (b) The actual complex composition xa obtained from eq. 2.1 versus the corresponding prescribed composition. It can be seen that xa is about 2.2 irrespective of x…………………………………………………39 2.2 Lorentz-corrected SAXS profiles of neat DC-Chol as a function of weight fraction of water (Ww)…………………………………………………………..40 2.3 TEM micrograph of neat DC-Chol showing the formation of worm-like cylindrical micelles with the diameter of ca. 5.4 nm……………………………42 2.4 Representative Lorentz-corrected SAXS profiles of DNA/DC-Chol complexes in excess water. For x = 10.0 the multilamellar peaks in the corresponding SAXS profile appear to superpose on a broad halo (represented by the legend of filled circle) due to the presence of unbound DC-Chol micelles……………………..43 2.5 A series of TEM micrographs showing the multilamellar phases of DNA/DC-Chol complexes: (a) x = 10.0; (b) x = 3.6; (c) x = 2.4; (d) x = 0.5. In (a) the arrow marks the presence of unbound DC-Chol micelles…………………..45 2.6 Enlarged plots of the SAXS profiles showing the presence of a DNA-DNA correlation peak at ca. 2.5 nm-1 (marked by the arrows) for DNA/DC-Chol complexes………………………………………………………………………46 2.7 Relative electron density profiles of DNA/DC-Chol complexes in excess water. For x = 10 the corresponding ?歋(z) profile was obtained by subtracting the broad halo associated with unbound DC-Chol from the overall scattering profile……48 2.8 Schematic model showing the coexistence of closely packed DNA arrays and water domains in the hydrophilic layer for the complexes at x > 2…………….50 3.1 X-ray scattering profiles of DNA/DC-Chol complexes in the bulk state: (a) Lorentz-corrected SAXS profiles. The multilamellar phase found below the stoichiometric composition is denoted by LI, while that observed at x > 2 is denoted by LII. The scattering pattern of the complex with x = 3.6 in excess water is also displayed for comparison; (b) wide-angle profiles; (c) enlarged plots of the SAXS profiles showing the presence of a DNA-DNA correlation peak at 2.61 nm-1 (marked by qDNA) at x > 2……………………………………58 3.2 The relative electron density profiles of DNA/DC-Chol complexes in the bulk state……………………………………………………………………………..62 3.3 Schematic illustrations of the packing modes of DC-Chol and DNA packing in (a) LI and (b) LII phases. The DNA conformations are B-form and A-form in LII and LI phases, respectively……………………………………………………..64 4.1 Lorentz-corrected SAXS profile of neat DOPC liposomes. The scattering pattern is characterized by a broad diffuse halo, indicating that the liposomes do not exhibit an ordered multilamellar structure……………………………………..75 4.2 The representative TEM micrograph of neat DOPC liposomes. Oligolamellar vesicles (consisting of 3 ~ 8 hydrophilic/hydrophobic layers per vesicle) with the dark and gray striations corresponding to the hydrophilic and hydrophobic layers, respectively are predominantly observed……………………………………….76 4.3 Photographs showing the appearances of neat DOPC (left) and DNA/DOPC (?? = 2.0) suspensions. Precipitate of DNA/DOPC (indicated by the arrow) is clearly observed at the bottom of the container, indicating aggregation of the oligolamellar liposomes into large particles upon binding with DNA…………77 4.4 Lorentz-corrected SAXS profiles showing two diffraction peaks for the DNA/DOPC precipitates in the samples with various overall lipid-to-base pair molar ratios. Also shown here is the SAXS profile of multilamellar DOPC liposomes prepared without imposing sonication to the liposome suspension. It can be seen that the SAXS patterns of the DNA/DOPC precipitates and of neat DOPC liposomes are essentially the same in terms of the positions and relative intensities of the scattering peaks……………………………………………….79 4.5 A representative TEM micrograph showing the morphology of the DNA/DOPC precipitate particles. It can be seen that the particles are simply formed by the aggregation of a number of the oligolamellar DOPC liposomes, while these liposomes did not fuse and reorganize further to form the compact multilamellar particles found in the DNA/CL complexes……………………………………..82 4.6 SAXS profiles of DNA/DOPC with ?? = 2.0 dispersed in NaCl aqueous solutions with various NaCl concentrations………………………………………………83 5.1 TEM micrographs of isoelectric DNA/DC-Chol/DOPC complexes with (a) n=0.25; (b) n=1…………………………………………………………………92 5.2 (a) SAXS profiles of isoelectric DNA/DC-Chol/DOPC complexes with distinct n in excess water. (b) Variation of d and dDNA as a function of n…………………93 5.3 Comparative SAXS profiles of isoelectric DNA/DC-Chol/DOPC complex with n=3 in excess water and pure DOPC with weight fraction of water (Ww = 0.7)..95 5.4 (a) SAXS profiles of isoelectric DNA/DC-Chol/DOPC complexes with n = 2.5 dispensed in CaCl2 aqueous solutions with different CaCl2 concentrations. (b) Variation of d and dDNA as a function of CaCl2 concentrations…………………96 5.5 (a) SAXS profiles of isoelectric DNA/DC-Chol/DOPC complexes with n = 2.5 dispensed in NiCl2 aqueous solutions with different NiCl2 concentrations. (b) Variation of d and dDNA as a function of NiCl2 concentrations…………………98 5.6 Representative DSC thermograms of pure DOPC and DC-Chol/DOPC mixture with various ratios………………………………………………………………99 5.7 Schematic possible model illustrating (a) inclusion of DC-Chol into DOPC bilayers results in the formation of liquid-ordered domains composed of DC-Chol/DOPC lipid mixtures (denoted as lo) and liquid-disordered domains composed only of DOPC (denoted as ld). DNA in the complex selectively binds to lo domains because of the electrostatic attractions and long-range repulsions exist between DNA molecules. When divalent metal ions (indicated by small red spheres) are added into DNA-CL complex suspensions, they get adsorbed onto the surfaces of bilayers and situate around DNA rods to mediate the interhelical repulsions. (b) At the critical ionic concentration (C*), charge reversal between DNA molecules occurs and hence they approach each other (as depicted by arrow on DNA), leading to the reduction of interhelical spacing and release of DOPC lipids between lo domains by lateral diffusion. The lo domains behave like rigid barrier walls and reduce the lateral diffusive rates of DOPC lipids so that they cannot immediately diffuse out at corresponding ionic concentrations…102rf Chapter 1 (1) Huang, L.; Hung, M. C.; Wagner, E. Nonviral Vectors for Gene Therapy. Academic Press: New York, 1999. (2) Lasic, D. D.; Templeton, N. S. Adv. Drug Delivery Rev. 1996, 20, 221. (3) Miller A. D. Angew. Chem. Int. Ed. 1998, 37, 1768. (4) Chesnoy, S.; Huang, L. Annu. Rev. Biophs. Biomol. Struct. 2000, 29, 27. (5) Amos, H. Biochem. Biophys. Res. Comm. 1961, 5, 1. (6) Dimitriadis, D. Nucleic Acid Res. 1979, 6, 2697. (7) Fraley, P.; Subramani, S.; Berg, P.; Papahadjopoulos, D. J. Biol. Chem. 1980, 255, 10431. (8) Felgner, P. L.; Gadek, T. R.; Holm, M.; Roman, R.; Chan, H. W.; Wenz, M., Northrop, J. P.; Ringold, G. M.; Danielsen, M. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 7413. (9) Fraley, P.; Papahadjopoulos, D. Curr. Top. Microbial. Immunol. 1982, 96, 171. (10) Hoffmam, R. M.; Margolis, L. B.; Bergelson, L. D. FEBS Lett. 1978, 93, 365. (11) Budker, V. G..; Godvikov, A. A.; Naumova, L. P.; Slepneva, I. A. Nucleic Acid Res. 1980, 8, 2499. (12) Behr, J. P. Tetrahedron Lett. 1986, 27, 5861. (13) Xu, Y., Szoka, F. C. Biochemistry 1996, 35, 5616. (14) Rädler, J. O.; Koltover, I.; Salditt, T.; Safinya, C. R. Science 1997, 275, 810. (15) Koltover, I.; Salditt, T.; Rädler, J. O.; Safinya, C. R. Science 1998, 281, 78. (16) Zhou, S.; Chu, B. Adv. Mater. 2000, 12, 545. (17) Antonietti, M.; Burger, C.; Effing, J. Adv. Mater. 1995, 7, 751. (18) Ober, C. K.; Wegner, G. Adv. Mater. 1997, 8, 17. (19) Liang, H.; Angelini, T. E.; Ho, J.; Braun, P. V.; Wong, G. C. L. J. Am. Chem. Soc. 2003, 125, 11786. (20) Gennis, R. B. Biomembranes: Molecular Structure and Function. Springer-Verlag Press: New York, 1989. (21) Israelachvili, J. Innermolcular and Surface Forces. Academic Press: New York, 1985. (22) Kreuter, J. Colloidal Drug Delivery Systems. Marcel Dekker Press: New York, 1994. (23) New, R. R. C. Liposomes A Practical Approach. Oxford University Press: New York, 1990. (24) Ruocco, M. J.; Shipley, G. G. Biochim. Biophys. Acta. 1982, 684, 59. (25) Slater, J. L.; Huang, C. Biophys. J. 1987, 52, 667. (26) Safinya, C. R. Curr. Opinion Struct. Biol. 2001, 11, 440. (27) Felgner, P. L. Nature 1991, 349, 351. (28) Sternberg, B.; Sorgi, F. L.; huang, L. FEBS Lett. 1994, 356, 361. (29) Gustafsson, J.; Arvidson, G..; Karlsson, G.; Almgren, M. Biochim. Biophys. Acta. 1995, 1235, 305. (30) Lasic, D. D.; Strey, H.; Stuart, M. C. A.; Podgornik, R.; Frederik, P. M. J. Am. Chem. Soc. 1997, 119, 832. (31) Koltover, I.; Salditt, T.; Safinya, C. R. Biophys. J. 1999, 77, 915. (32) Rädler, J.O.; Koltover, I.; Jamieson, A.; Salditt, T.; Safinya, C. R. Langmuir 1998, 14, 4272. (33) Subramanian, G.; Hjelm, R. P.; Deming, T. J.; Smith, G. S.; Li, Y.; Safinya, C. R. J. Am. Chem. Soc. 2000, 122, 26. (34) Wong, G. C. L.; Tang, J. X.; Lin, A.; Li, Y.; Janmey, P. A.; Safinya, C. R. Science 2000, 288, 2035. (35) Battersby, B. J.; Grimm, R.; Huebner, S.; Cevc, G. Biochim. Biophys. Acta. 1998, 1235, 379. (36) Huebner, S.; Battersby, B. J.; Grimm, R.; Cevc, G. Biophys J. 1999, 76, 3158. (37) Kennedy, M.; Pozharski, E. V.; Rakhmanova, V. A.; MacDonald R.C. Biophys. J. 2000, 78, 1620. (38) Wagner, K.; Harries, D.; May. S.; Kahl, V.; Rädler, J. O.; Ben-Shaul, A. Langmuir 2000, 16, 303. (39) Bloomfield, V. A. Biopolymers 1991, 31, 1471. (40) Bloomfield, V. A. Curr. Opinion Struct. Biol. 1996, 6, 334. (41) Bloomfield, V. A. Biopolymers 1997, 44, 269. (42) Fang, Y.; Yang, J. J. Phys. Chem. B 1997, 101, 441. (43) Fang, Y.; Yang, J. J. Phys. Chem. B 1997, 101, 3453. (44) Fang, Y.; Hoh, J. H. J. Am. Chem. Soc. 1998, 120, 8903. (45) Koltover, I.; Wagner, K.; Safinya, C. R. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 14046. (46) Lin, A. J.; Slack, N. L.; Ahmad, A.; George, C. X.; Samuel, C. E.; Safinya, C. R. Biophys. J. 2003, 84, 3307. (47) Pott, T.; Roux, D. FEBS Lett. 2002, 511, 150. (48) Monnard, P.; Berclaz, N.; Conde-Frieboes, K.; Oberholzer, T. Langmuir 1999, 15, 7504. (49) Tarahovsky, Y. S.; Khusainova, R. S.; Gorelov, A. V.; Nicolaeva, T. I.; Deev, A. A.; Dawson, A. K.; Ivanitsky, G. R. FEBS Lett. 1996, 390, 133. (50) Kharakoz, D. P.; Khusainova, R. S.; Gorelov, A. V.; Dawson, K. A. FEBS Lett. 1999, 446, 27. (51) Hayes, M. E.; Gorelov, A. V.; Dawson, K. A. Progr. Colloid. Polym. Sci. 2001, 118, 243. (52) Francescangeli, O.; Stanic, V.; Gobbi, L.; Bruni, P.; Iacussi, M.; Tosi, G. Phys. Rev. E 2003, 67, 011904. (53) McManus, J. J.; Rädler, J. O.; Dawson, K. A. J. Phys. Chem. B 2003, 107, 9869. (54) O’Hern, C. S.; Lubensky, T. C. Phys. Rev. Lett. 1998, 80, 4345. (55) Schmutz, M.; Durand, D.; Debin, A.; Palvadeau, Y.; Etienne, A.; Thierry, A. R. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 12293. Chapter 2 (1) Zhou, S.; Chu, B. Adv. Mater. 2000, 12, 545. (2) Antonietti, M.; Burger, C.; Effing, J. Adv. Mater. 1995, 7, 751. (3) Ober, C. K.; Wegner, G. Adv. Mater. 1997, 8, 17. (4) Rädler, J. O.; Koltover, I.; Salditt, T.; Safinya, C. R. Science 1997, 275, 810. (5) Lasic, D. D.; Templeton, N. S. Adv. Drug Delivery Rev. 1996, 20, 221. (6) Miller, A. D. Angew. Chem. Int. Ed. 1998, 37, 1768. (7) Chesnoy, S.; Huang, L. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 27. (8) Rädler, J. O.; Koltover, I.; Jamieson, A.; Salditt, T.; Safinya, C. R. Langmuir 1998, 14, 4272. (9) Sternberg, B.; Sorgi, F. L.; Huang, L. FEBS Lett. 1994, 356, 361. (10) Huang, L.; Hung, M. C.; Wagner, E. Nonviral Vectors for Gene Therapy; Academic Press: New York, 1999. (11) Gustafsson, J.; Arvidson, G.; Karlsson, G.; Almgren, M. Biochim. Biophys. Acta 1995, 1235, 305. (12) Pitard, B.; Aguerre, O.; Airiau, M.; Lachages, A. M.; Boukhnikachvili, T.; Byk, G.; Dubertret, C.; Herviou, C.; Scherman, D.; Mayaux, J. F.; Crouzet, J. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 14412. (13) Lasic, D. D.; Strey, H.; Stuart, M. C. A.; Podgornik, R.; Frederik, P. M. J. Am. Chem. Soc. 1997, 119, 832. (14) Koltover, I.; Salditt, T.; Safinya, C. R. Biophys. J. 1999, 77, 915. (15) Koltover, I.; Salditt, T.; Rädler, J. O.; Safinya, C. R. Science 1998, 281, 78. (16) Koltover, I.; Wagner, K.; Safinya, C. R. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 14046. (17) Fang, Y.; Yang, J. J. Phys. Chem. B 1997, 101, 441. (18) Fang, Y.; Yang, J. J. Phys. Chem. B 1997, 101, 3453. (19) Malghani, M. S.; Yang, J. J. Phys. Chem. B 1998, 102, 8930. (20) Fang, Y.; Hoh, J. H. J. Am. Chem. Soc. 1998, 120, 8903. (21) Ono. M. Y.; Spain, E. M. J. Am. Chem. Soc. 1999, 121, 7330. (22) Leonenko, Z. V.; Merkle, D.; Lees-Miller, S. P.; Cramb, D. T. Langmuir 2002, 18, 4873. (23) Battersby, B. J.; Grimm, R.; Huebner, S.; Ceve, G. Biochim. Biophys. Acta 1998, 1372, 379. (24) Huebner, S.; Battersby, B. J.; Grimm, R.; Cevc, G. Biophys. J. 1999, 76, 3158. (25) Schmutz, M.; Durand, D.; Debin, A.; Palvadeau, Y.; Etienne, A.; Thierry, A. R. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 12293. (26) Pitard, B.; Oudrhiri, N.; Vigneron, J. P.; Hauchecorne, M.; Aguerre, O.; Toury, R.; Airiau, M.; Ramasawmy, R.; Scherman, D.; Crouzet, J.; Lehn, J. M.; Lehn, P. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 2621. (27) Raspaud, E.; Pitard, B.; Durand, D.; Aguerre-Chariol, O.; Pelta, J.; Byk, G.; Scherman, D.; Livolant, F. J. Phys. Chem. B 2001, 105, 5291. (28) Zantl, R.; Baicu, L.; Artzner, F.; Sprenger, I.; Rapp, G.; Rädler, J. O. J. Phys. Chem. B 1999, 103, 10300. (29) Liang, H.; Angelini, T. E.; Ho, J.; Braun, P. V.; Wong, G. C. L. J. Am. Chem. Soc. 2003, 125, 11786. (30) Gao, X.; Huang, L. Biochem. Biophys. Res. Commun. 1991, 179, 280. (31) Dias, R.; Mel’nikov, S.; Lindman, B.; Miguel, M. G. Langmuir 2000, 16, 9577. (32) Medellin-Rodriguez, F. J.; Phillips, P. J.; Lin, J. S. Macromolecules 1996, 29, 7491. (33) Liou, W.; Geuze, H. J.; Slot, J. W. Histochem. Cell Biol. 1996, 106, 4. (34) Hayagawa, K.; Santerre, J. P.; Kwak, J. C. T. Macromolecules 1983, 16, 1642. (35) Chandar, P.; Somasundaran, P.; Turro, N. J. Macromolecules 1988, 21, 950. (36) Philips, B.; Dawydoff, W.; Linow, K. J. Z. Chem. 1982, 22, 1. (37) Bakturov, E. A.; Bimendina, L. A. Adv. Polym. Sci. 1982, 41, 99. (38) Kabanov, V. A.; Zezin, A. B. Makromol. Chem. Suppl. 1984, 6, 259. (39) Jones, A. A. L. Soft Condensed Matter; Oxford University Press: New York, 2002. (40) Podgornik, R.; Rau, D. C.; Parsegian, V. A. Macromolecules 1989, 22, 1780. (41) Wachtel, E.; Borochov, N.; Bach, D.; Miller, I. R. Chem. Phys. Lipids 1998, 92, 127. (42) Heller,W. T.;Waring, A. J.; Lehrer, R. I.; Harroun, T. A.;Weiss, T. M.; Yang, L.; Huang, H. W. Biochemistry 2000, 39, 139. (43) Pott, T.; Roux, D. FEBS Lett. 2002, 511, 150. (44) Lewis, R. N. A. H.; Winter, I.; Kriechbaum, M.; Lohner, K.; McElhaney, R. N. Biophys. J. 2001, 80, 1329. Chapter 3 (1) Ikkala, O.; Brinke, G. ten. Science 2002, 295, 2407. (2) Rädler, J. O.; Koltover, I.; Salditt, T.; Safinya, C. R. Science 1997, 275, 810. (3) Koltover, I.; Salditt, T.; Rädler, J. O.; Safinya, C. R. Science 1998, 281, 78. (4) Wong, G. C. L.; Tang, J. X.; Lin, A.; Li, Y.; Janmey, P. A.; Safinya, C. R. Science 2000, 288, 2035.; Subramanian, G.; Hjelm, R. P.; Deming, T. J.; Smith, G. S.; Li, Y.; Safinya, C. R. J. Am. Chem. Soc. 2000, 122, 26. (5) Huang, H. W. Biochemistry 2000, 39, 8347. (6) Huebner, S.; Battersby, B. J.; Grimm, R.; Cevc, G. Biophys. J. 1999, 76, 3158.; Lasic, D. D.; Strey, H.; Stuart, M. C. A.; Podgornik, R.; Frederik, P. M. J. Am. Chem. Soc. 1997, 119, 832.; Rädler, J. O.; Koltover, I.; Jamieson, A.; Salditt, T.; Safinya, C. R. Langmuir 1998, 14, 4272.; Battersby, B. J.; Grimm, R.; Huebner, S.; Ceve, G. Biochim. Biophys. Acta. 1998, 1372, 379. (7) Miller, A. D. Angew. Chem. Int. Ed. 1998, 37, 1768. (8) Salditt, T.; Koltover, I.; Rädler, J. O.; Safinya, C. R. Phys. Rev. Lett. 1997, 79, 2582. (9) Neat DNA tends to adopt A conformation when the water activity is reduced for the sake of more economical hydration [16 ]. (10) Gao, X.; Huang, L. Biochem. Biophys. Res. Commun. 1991, 179, 280. (11) Sinden, R. R. DNA Structure and Function, Academic Press: New York, 1994. (12) Wu, C. M.; Liou, W.; Chen, H. L.; Lin, T. L.; Jeng, U. S. Macromolecules 2004, 37, 4974. (13) Wachtel, E.; Borochov, N. Bach, D.; Miller, I. R. Chem. Phys. of Lipids 1998, 92, 127. (14) Pott, T.; Roux, D. FEBS Lett. 2002, 511, 150. (15) The cross sectional area of DNA-bound DC-Chol was measured from the surface pressure-area (??-A) isotherm using a Langmuir-Blodgett trough (Nima Technology Model 622D1). We spread 22 ?尳 of DC-Chol solution in chloroform (2.5 mg/mL) on a water solution of 1.0 ?嵱 DNA, and the monolayer was compressed for recording the ??-A isotherm after 1 hr. The cross sectional area per DC-Chol molecule was estimated from the region where ?? started to rise sharply. (The data were kindly provided by Prof. Lin) (16) Saenger, W.; Hunter, W. N.; Kennard, O. Nature 1986, 324, 385. (17) Franklin, R. E.; Gosling, R. G. Nature 1953, 172, 156. (18) Liang, H.; Angelini, T. E.; Ho, J.; Braun, P. V.; Wong, G. C. L. J. Am. Chem. Soc. 2003, 125, 11786. Chapter 4 (1) Lasic, D. D.; Templeton, N. S. Adv. Drug Delivery Rev. 1996, 20, 221. (2) Miller, A. D. Angew. Chem. Int. Ed. 1998, 37, 1768. (3) Chesnoy, S.; Huang, L. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 27. (4) Rädler, J. O.; Koltover, I.; Salditt, T.; Safinya, C. R. Science 1997, 275, 810. (5) Lasic, D. D.; Strey, H.; Stuart, M. C. A.; Podgornik, R.; Frederik, P. M. J. Am. Chem. Soc. 1997, 119, 832. (6) Koltover, I.; Salditt, T.; Rädler, J. O.; Safinya, C. R. Science 1998, 281, 78. (7) Rädler, J. O.; Koltover, I.; Jamieson, A.; Salditt, T.; Safinya, C. R. Langmuir 1998, 14, 4272. (8) Sternberg, B.; Sorgi, F. L.; Huang, L. FEBS Lett. 1994, 356, 361. (9) Huang, L; Hung, M. C.; Wagner, E. Nonviral Vectors for Gene Therapy, Academic Press: New York, 1999. (10) Gustafsson, J.; Arvidson, G.; Karlsson, G.; Almgren, M. Biochim. Biophys. Acta. 1995, 1235, 305. (11) Pitard, B.; Aguerre, O.; Airiau, M.; Lachages, A. M.; Boukhnikachvili, T.; Byk, G.; Dubertret, C.; Herviou, C.; Scherman, D.; Mayaux, J. F.; Crouzet, J. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 14412. (12) Koltover, I.; Salditt, T.; Safinya, C. R. Biophys. J. 1999, 77, 915. (13) Koltover, I.; Wagner, K.; Safinya, C. R. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 14046. (14) Fang, Y.; Yang, J. J. Phys. Chem. B 1997, 101, 441. (15) Fang, Y.; Yang, J. J. Phys. Chem. B 1997, 101, 3453. (16) Fang, Y.; Hoh, J. H. J. Am. Chem. Soc. 1998, 120, 8903. (17) Ono. M. Y.; Spain, E. M. J. Am. Chem. Soc. 1999, 121, 7330. (18) Leonenko, Z. V.; Merkle, D.; Lees-Miller, S. P.; Cramb, D. T. Langmuir 2002, 18, 4873. (19) Battersby, B. J.; Grimm, R.; Huebner, S.; Cevc, G. Biochim. Biophys. Acta. 1998, 1372, 379. (20) Huebner, S.; Battersby, B. J.; Grimm, R.; Cevc, G. Biophys. J. 1999, 76, 3158. (21) Schmutz, M.; Durand, D.; Debin, A.; Palvadeau, Y.; Etienne, A.; Thierry, A. R. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 12293. (22) Pitard, B.; Oudrhiri, N.; Vigneron, J. P.; Hauchecorne, M.; Aguerre, O.; Toury, R.; Airiau, M.; Ramasawmy, R.; Scherman, D.; Crouzet, J.; Lehn, J. M.; Lehn, P. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 2621. (23) Raspaud, E.; Pitard, B.; Durand, D.; Aguerre-Chariol, O.; Pelta, J.; Byk, G.; Scherman, D.; Livolant, F. J. Phys. Chem. B 2001, 105, 5291. (24) Zantl, R.; Baicu, L.; Artzner, F.; Sprenger, I.; Rapp, G.; Rädler, J. O. J. Phys. Chem. B 1999, 103, 10300. (25) Pott, T.; Roux, D. FEBS Lett. 2002, 511, 150. (26) Monnard, P.; Berclaz, N.; Conde-Frieboes, K.; Oberholzer, T. Langmuir 1999, 15, 7504. (27) Malghani, M. S.; Yang, J. J. Phys. Chem. B 1998, 102, 8930. (28) Tarahovsky, Y. S.; Khusainova, R. S.; Gorelov, A. V.; Nicolaeva, T. I.; Deev, A. A.; Dawson, A. K.; Ivanitsky, G. R. FEBS Lett. 1996, 390, 133. (29) Kharakoz, D. P.; Khusainova, R. S.; Gorelov, A. V.; Dawson, K. A. FEBS Lett. 1999, 446, 27. (30) Hayes, M. E.; Gorelov, A. V.; Dawson, K. A. Progr. Colloid Polym. Sci. 2001, 118, 243. (31) Francescangeli, O.; Stanic, V.; Gobbi, L.; Bruni, P.; Iacussi, M.; Tosi, G. Phys. Rev. E 2003, 67, 011904. (32) McManus, J. J.; Rädler, J. O.; Dawson, K. A. J. Phys. Chem. B 2003, 107, 9869. (33) Dias, R.; Mel’nikov, S.; Lindman, B.; Miguel, M. G. Langmuir 2000, 16, 9577. (34) Medellin-Rodriguez, F. J.; Phillips, P. J.; Lin, J. S. Macromolecules 1996, 29, 7491. (35) Liou, W.; Geuze, H. J.; Slot, J. W. Histochem. Cell Biol. 1996, 106, 41. (36) Wu, C. M.; Liou, W.; Chen, H. L.; Lin, T. L.; Jeng, U. S. Macromolecules 2004, 37, 4974. Chapter 5 (1) Lasic, D. D.; Templeton, N. S. Adv. Drug Delivery Rev. 1996, 20, 221. (2) Miller, A. D. Angew. Chem. Int. Ed. 1998, 37, 1768. (3) Chesnoy, S.; Huang, L. Annu. Rev. Biophs. Biomol. Struct. 2000, 29, 27. (4) Rädler, J. O.; Koltover, I.; Salditt, T.; Safinya, C. R. Science 1997, 275, 810. (5) Lasic, D. D.; Strey, H.; Stuart, M. C. A.; Podgornik, R.; Frederik, P. M. J. Am. Chem. Soc. 1997, 119, 832. (6) Koltover, I.; Salditt, T.; Rädler, J. O.; Safinya, C. R. Science 1998, 281, 78. (7) Rädler, J. O.; Koltover, I.; Jamieson, A.; Salditt, T.; Safinya, C. R. Langmuir 1998, 14, 4272. (8) Sternberg, B.; Sorgi, F. L.; Huang, L. FEBS Lett. 1994, 356, 361. (9) Huang, L; Hung, M. C.; Wagner, E. Nonviral Vectors for Gene Therapy, Academic Press: New York, 1999. (10) Gustafsson, J.; Arvidson, G.; Karlsson, G.; Almgren, M. Biochim. Biophys. Acta 1995, 1235, 305. (11) Pitard, B.; Aguerre, O.; Airiau, M.; Lachages, A. M.; Boukhnikachvili, T.; Byk, G.; Dubertret, C.; Herviou, C.; Scherman, D.; Mayaux, J. F.; Crouzet, J. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 14412. (12) Koltover, I.; Salditt, T.; Safinya, C. R. Biophys. J. 1999, 77, 915. (13) Koltover, I.; Wagner, K.; Safinya, C. R. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 14046. (14) Fang, Y.; Yang, J. J. Phys. Chem. B 1997, 101, 441. (15) Fang, Y.; Yang, J. J. Phys. Chem. B 1997, 101, 3453. (16) Fang, Y.; Hoh, J. H. J. Am. Chem. Soc. 1998, 120, 8903. (17) Ono. M. Y.; Spain, E. M. J. Am. Chem. Soc. 1999, 121, 7330. (18) Leonenko, Z. V.; Merkle, D.; Lees-Miller, S. P.; Cramb, D. T. Langmuir 2002, 18, 4873. (19) Battersby, B. J.; Grimm, R.; Huebner, S.; Cevc, G. Biochim. Biophys. Acta 1998, 1372, 379. (20) Huebner, S.; Battersby, B. J.; Grimm, R.; Cevc, G. Biophys. J. 1999, 76, 3158. (21) Schmutz, M.; Durand, D.; Debin, A.; Palvadeau, Y.; Etienne, A.; Thierry, A. R. Proc. Natl. Acad. Sci. U.S.A.1999, 96, 12293. (22) Pitard, B.; Oudrhiri, N.; Vigneron, J. P.; Hauchecorne, M.; Aguerre, O.; Toury, R.; Airiau, M.; Ramasawmy, R.; Scherman, D.; Crouzet, J.; Lehn, J. M.; Lehn, P. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 2621. (23) Raspaud, E.; Pitard, B.; Durand, D.; Aguerre-Chariol, O.; Pelta, J.; Byk, G.; Scherman, D.; Livolant, F. J. Phys. Chem. B 2001, 105, 5291. (24) Zantl, R.; Baicu, L.; Artzner, F.; Sprenger, I.; Rapp, G.; Rädler, J. O. J. Phys. Chem. B 1999, 103, 10300. (25) Lin, A. J.; Slack, N. L.; Ahmad, A.; George, C. X.; Samuel, C. E.; Safinya, C. R. Biophys. J. 2003, 84, 3307. (26) Bloomfield, V. A. Curr. Opinion Struct. Biol. 1996, 6, 334. (27) Bloomfield, V. A. Biopolymers 1997, 44, 269. (28) Rau, D. C.; Parsegian V. A. Biophys. J. 1992, 51, 246. (29) Dias, R.; Mel’nikov, S.; Lindman, B.; Miguel, M. G. Langmuir 2000, 16, 9577. (30) Liou, W.; Geuze, H. J.; Slot, J. W. Histochem. Cell Biol. 1996, 106, 41. (31) Medellin-Rodriguez, F. J.; Phillips, P. J.; Lin, J. S. Macromolecules 1996, 29, 7491. (32) Podgornik, R.; Rau, D. C.; Parsegian, V. A. Macromolecules 1989, 22, 1780. (33) Strey, H. H.; Parsegian, V. A.; Podgornik, R.; Phys. Rev. Lett. 1997, 78, 895. (34) Ghosh, Y. K.; Indi, S. S.; Bhattacharya, S. J. Phys. Chem. B 2001, 105, 10257. (35) Paré, C.; Lafleur, M. Langmuir 2001, 17, 5587. (36) Linseisen, F. M.; Thewalt, J. L.; Bloom, M.; Bayerl, T. M. Chem. Phys. Lipids 1993, 65, 141. (37) Binder, W. H.; Barragan, V.; Menger, F. M. Angew. Chem. Int. Ed. 2003, 42, 5802.id NH0925063062 sid 897613 cfn 0 / id NH0925063063 auc 葛書鈴 tic 以PEG添加劑用於晶圓金屬化之酸性鍍銅系統之研究 adc 王詠雲 adc 萬其超 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 英文 pg 77 kwc 無孔沉積 kwc 聚乙二醇 kwc 添加劑 kwc 吸附 kwc 銅內連線 abc 為了達到無孔洞的沉積,我們在鍍液中加入添加劑。傳統電鍍銅的鍍液包含了多種的添加劑。在眾多添加劑中,聚乙二醇(Poly-ethylene glycol, PEG)因為能吸附於電極表面上,達到抑制電流的作用,因此在鍍液中扮演著抑制劑(Suppressor)的角色。尤其當鍍液中含有氯離子(Cl-)時,其抑制的效果尤其明顯。再加上原本因擴散行為所造成濃度的分佈差異,使得導孔內的電流分佈因此受到改變,進而使我們興起以單一添加劑系統進行填孔相關研究的動機。 tc Abstract Ⅰ 中文摘要 Ⅲ List of Figures Ⅴ List of Tables Ⅸ Chapter 1. Introduction and Literature Rewiew 1 1-1. Introduction 1 1-2. Literature review 5 1-2-1. Electroplating copper into submicron features 5 1-2-2. Effect of additives on electroplating of copper 11 1-2-3. Fundamental adsorption isotherm of additives 24 1-2-4. Surface coverage measurement by electrochemical methods 27 1-3. Motivation and objective of this research 32 Chapter 2. Experimental Procedures 34 2-1. Filling capability 34 2-2. Electrochemical analyses 36 2-3. Film properties 37 Chapter 3. Results and Discussions 38 3-1. The molecular-weight and concentration effect of PEG on the degree of suppression for copper deposition 38 3-2. The molecular-weight and concentration effect of PEG on the via-filling 54 3-3. The molecular-weight effect of PEG on the film properties 65 3-3-1. Film morphology 65 3-3-2. Crystallographic texture 70 Chapter 4. Conclusions 72 References 74rf 1. H. S. Rathore and D. Nguyen, Copper Metallization for Sub-micron Intergrated, 8, May, (1998). 2. S. P. Heng et al., International Symposium on VLSI TSA, 164 (1995). 3. 陳來助, “ULSI 超大型積體電路之銅導線技術”, 電子與材料, 1, 85 (1998). 4. R. L. Jackson, E. Broadbent, T. Cacouris, A. Harrus, M. Biberger, E. Patton, and T. Walsh, Solid State Technol., 41, 49 (1998). 5. C. Ryu, K. W. Kwon, A. L. S. Loke, H. Lee, T. Nogami, V. M. Dubin, R. A. Kavari, G. W. Ray, and S. S. Wong, IEEE Trans. Electron Device, ED-46, 1113 (1999). 6. B. Chin, P. J. Ding, B. X. Sun, T. Chiang, D. Angelo, Z. Xu, S. Edelstein, and F. S. Chen, Solid State Technol., 41, 141 (1998). 7. J. Reid, S. Mayer, E. Broadbent, E. Klawuhn, and K. Ashtiani, Solid State Technol., 43, 86 (2000). 8. D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. McDevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce and J. Slattery, Technical Digest, IEEE International Electron Devices Meeting, 773 (1997). 9. P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans and H. Deligianni, IBM J. Res. Develop., 42(5) , 567 (1998). 10. L. T. Romankiw, U.S. Patent 3,853,715, December 10 (1974). 11. P. C. Andricacos and L. T. Romankiw, Advances in Electrochemical Science and Engineering, 3, VCH Publishers, New York, 1994, 227-321. 12. M. Datta, R. V. Shenoy, C. Jahnes, P. C. Andricacos, J. Horkans, J. O. Dukovic, L. T. Romankiw, J. Roeder, H. Deligianni, H. Nye, B. Agarwala, H. M. Tong and P. Totta, J. Electrochem. Soc., 142, 3779 (1995). 13. R. J. Contolini, L. Tarte, R. T. Graff and L. B. Evans, VMIC Conference, 27 (1995). 14. C. K. Hu and J. M. E. Harper, Mater. Chem. Phys., 52, 5 (1998). 15. R. D. Mikkola, Q. T. Jiang and B. Carpenter, Plating & Surface Finishing, 81 2000. 16. Jack W. Dini, Electrodeposition: The Materials Science of Coatings and Substrates, Noyes Publication, 1992, and references therein. 17. D. Stoychev, Trans IMF, 76, 73 (1998). 18. J. J. Kelly and A. C. West, J. Electrochem. Soc., 145, 3472 (1998). 19. P. Taephaisitphongse, Y. Cao and A. C. West, J. Electrochem. Soc., 148, C492 (2001). 20. A. J. Bard, L. R. Faulkner, Electrochemical methods, John Wiley & Sons, Inc., Second Edition, 2001., and references therein. 21. T. P. Moffat, J. E. Bonevich, W. H. Huber, A. Stanishevsky, D. R. Kelly, G. R. Stafford and D. Josell, J. Electrochem. Soc., 147, 4524 (2000). 22. T. P. Moffat, D. Wheeler, W. H. Huber and D. Josell, Electrochemical & Solid-State Letters, 4(4), C26 (2001). 23. Y. Cao, P. Taephaisitphongse and A. C. West, J. Electrochem. Soc., 148, C466 (2001). 24. K. R. Hebert, J. Electrochem. Soc., 148, C726 (2001). 25. W. C. Gau, T. C. Chang, J. Vac. Sci. Technol. A, 18, 656 (2000). 26. M. Hayase, M. Taketani, K. Aizawa, T. Hatsuzawa and K. Hayabusa, Electrochemical & Solid-State Letters, 5(10), C98 (2002). 27. B. H. Wu, C. C. Wan and Y. Y. Wang, J. Appl. Electrochem, 33(9), 823 (2003). 28. T. C. Franklin, Plating & Surface Finishing, 81, 62 (1994). 29. Z. Nagy, J. P. Blaudeau, N. C. Hung, L. A. Curtiss and D. J. Zurawski, J. Electrochem. Soc., 142, L87 (1995). 30. D. Stoychev and C. Tsvetanov, J. Appl. Electrochem., 26, 741 (1996). 31. I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918). 32. A. C. West, J. Electrochem. Soc., 147, 227 (2000). 33. A. C. West, S. Mayer and J. Reid, Electrochemical &. Solid-State Letter, 4, C50 (2001). 34. A. N. Frumkin, Z. Phys. Chem., 116, 166 (1925). 35. M. Paunovic and M. Schlesinger, Fundamentals of Electrochemical Deposition, John Wiley & Sons, Inc., 1998, and references therein. 36. M. W. Breiter and S. Gilman, J. Electrochem. Soc., 109, 622 (1962). 37. M. W. Breiter, Electrochem. Acta., 8, 447 (1963). 38. M. Paunovic and R. Oechslin, Plating, 58, 599 (1971). 39. T. Mimani and S. M. Mayanna, J. Electrochem. Soc., 140, 984 (1993). 40. P. Kern and D. Landolt, J. Electrochem. Soc., 148, B228 (2001). 41. E. Gileadi, Electrode Kinetics, VCH Publishers, 1993, and references therein. 42. K. G. Jordan and C. W. Tobias, J. Electrochem. Soc., 138, 1251 (1991). 43. C. Madore, D. Landolt, J. Electrochem. Soc., 143, 3936 (1996). 44. R. Caban., T. W. Chapman, J. Electrochem. Soc., 124, 1371 (1977). 45. Robert H. Perry, Cecil H. Chilton and Sidney D. Kirkpatrick., Chemical engineers' handbook, McGraw-Hill, New York (1963). 46. 吳邦豪, “非等向性電鍍銅於積體電路內連線之研究”, 清華大學博士論文 (2003). 47. B. H. Wu, C. C. Wan, Y. Y. Wang, J. Electrochem. Soc., 150 (1), C7 (2003). 48. W. C. Gau, T. C. Chang, Y. S. Lin, J. C. Hu, L. J. Chen, C. Y. Chang, and C. L. Cheng, J. Vac. Sci. Technol. A, 18(2), 656-660 (2000). 49. J. M. E. Harper, C. Cabral, Jr., P. C. Andricacos, L. Gignac, I. C. Noyan, K. P. Rodbell, and C. K. Hu, J. Appl. Phys., 86, 2516 (1999).id NH0925063063 sid 913618 cfn 0 / id NH0925063064 auc 陳偉倫 tic 透明性染色奈米高分子複合材料之製備─Dye-Colloid Silica/HEMA混成系統 adc 金惟國 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 88 kwc 奈米矽膠 kwc 奈米高分子複合材料 kwc 染料紫外光硬化 abc 本論文利用紫外光聚合方法製備Colloid silica / Dye / HEMA混成薄膜。實驗中利用摻混平均粒徑為20nm之奈米矽膠(Colloid silica)於高分子基材HEMA中,而使得薄膜兼具良好的透光性與強度。同時在研究中藉由添加染料而使此複合膜達到特定光波長濾光的特性。然而無機摻雜粒子與有機化合物的混合,在去除溶劑的步驟下,有機相與無機相易產生相分離,使得穿透度與其他物理性能下降。因此製程中另採用γ-methacryloxypropyl -trimethoxysilane (簡稱γ-silane)改質劑,將Colloid silica表面進行有機化改質(M-Colloid silica),並利用FT-IR、TGA鑑定Colloid silica表面有機化改質之結果。 tc 第一章 緒論 1 第二章 文獻回顧及基礎理論 3 2.1 複合材料 3 2.1.1 複合材料的定義與區分 3 2.1.2 高分子複合材料簡介 4 2.1.3 奈米粒子的基本性質 6 2.1.4 奈米高分子複合材料 7 2.2 染料 10 2.2.1 染料之簡 10 2.2.2 染料的發色原理 12 2.2.3 發色團學說 13 2.3 Colloid silica 15 2.3.1 膠體溶液簡介 15 2.3.2 二氧化矽(Silica) 16 2.3.3 溶膠-凝膠法(sol-gel) 18 2.3.4 Colloid silica 22 第三章 實驗部分 25 3.1 研究動機 25 3.2 實驗藥品 26 3.3 儀器與設備 29 3.3.1 實驗儀器 29 3.3.2 測試方法 31 3.3 實驗步驟 34 3.3.1 表面有機改質奈米矽膠 35 3.3.2 實驗配方 35 3.3.3 高分子奈米複合材料製作方式 37 第四章 結果與討論 39 4.1 表面有機改質鑑定 39 4.2 HEMA單體聚合探討 41 4.2.1 溫度與起始劑添加量對HEMA單體聚合之影響 41 4.2.2 Colloid Silica / HEMA、DO11 / HEMA、 DB1 / HEMA之Photo-polymerization分析…... 41 4.2.3 Colloid Silica / DO11/ HEMA及Neat Colloid Silica / DB1/ HEMA 之Photo- polymer ization分析…... 44 4.2.4 Modified Colloid Silica / HEMA之Photo- polymerization分析…... 45 4.2.5 Modified Colloid Silica / DO11 / HEMA及 Modified Colloid Silica / DB1 / HEMA之Photo-polymerization分析…... 46 4.3 薄膜分析…... 48 4.3.1 UV-Visible光穿透度分析…... 48 4.3.2 AFM型態學分析…... 48 4.3.3 鉛筆硬度分析…... 49 4.4 熱性質分析…... 51 4.4.1 熱重損失分析(TGA)…... 51 4.4.2 微分掃描熱卡計分析(DSC)…... 55 第五章 結論. 84 參考文獻 86 圖目錄 圖2-1 複合材料的主要成份與性質…... .3 圖2-2 複合材料塡充材的形態 4 圖2-3 部份結晶塑膠與非結晶塑膠彈性模數的差異 5 圖2-4 奈米複合材料聚合模式圖 9 圖2-5 Colloid silica的particle 23 圖2-6 SiO2 sol與SiO2 gel 23 圖2-7 PH及鹽類對silica溶液穩定度的影響 24 圖3-1 鉛筆式硬度計示意圖 32 圖3-2 實驗流程圖 34 圖3-3 γ-silane改質Colloid silica 示意圖 35 圖4-1 經γ-silane改質後的M-Colloid silica 之FT-IR圖譜 56 圖4-2 經γ-silane改質後的M-Colloid silica 之TGA圖譜 56 圖4-3 M-Colloid silica在700℃下的殘重對應γ-silane改質量 之比較 57 圖4-4 不同溫度下之HEMA Photo-polymerization分析 58 圖4-5 不同溫度下之HEMA Photo-polymerization轉化率分析 58 圖4-6 不同起始劑添加量下之HEMAPhoto-polymerization分析59 圖4-7 不同起始劑添加量下之HEMAPhoto-polymerization 轉化率分析 59 圖4-8 不同Colloid silica添加量下之HEMA Photo- polymerization分析 60 圖4-9 不同Colloid silica添加量下之HEMA Photo- polymerization轉化率分析 60 圖4-10 不同DO11添加量下之HEMA Photo-polymerization 分析 61 圖4-11 不同DO11添加量下之HEMA Photo-polymerization 轉化率分析 61 圖4-12 不同DB1添加量下之HEMA Photo-polymerization 分析 62 圖4-13 不同DB1添加量下之HEMA Photo-polymerization 轉化率分析 62 圖4-14 0.4wt.% DB1添加量下,長時間曝光之HEMA photo- polymerization分析 63 圖4-15 起始劑、DO11及DB1之特性光吸收波長比較 63 圖4-16 40wt.% Colloid silica不同DO11添加量下之HEMA Photo-polymerization分析 64 圖4-17 40wt.% Colloid silica 不同DO11添加量下之HEMA Photo-polymerization轉化率分析 64 圖4-18 40wt.% Colloid silica不同DB1添加量下之HEMA Photo-polymerization分析 65 圖4-19 40wt.% Colloid silica不同DB1添加量下之HEMA Photo-polymerization轉化率分析 65 圖4-20 不同M-Colloid silica添加量下之 HEMA Photo- polymerization分析 66 圖4-21 不同M-Colloid silica添加量下之HEMA Photo- polymerization轉化率分析 66 圖4-22 40wt.% M-Colloid silica,不同DO11添加量下之 HEMA Photo-polymerization分析 67 圖4-23 40wt.% M-Colloid silica,不同DO11添加量下之 HEMA Photo-polymerization轉化率分析 67 圖4-24 40wt.% M-Colloid silica,不同DB1添加量下之 HEMA Photo-polymerization分析 68 圖4-25 40wt.% M-Colloid silica,不同DB1添加量下之 HEMA Photo-polymerization轉化率分析 68 圖4-26 經光硬化後的樣品之Photo-DSC分析 69 圖4-27 Colloid silica / UV-HEMA光硬化薄膜之UV-Visible光 穿透度分析 69 圖4-28 DO11/ UV-HEMA光硬化薄膜之UV-Visible光穿透度分析 70 圖4-29 DB1/ UV-HEMA光硬化薄膜之UV-Visible光穿透度分析 70 圖4-30 40wt.% Colloid silica / DO11/ UV-HEMA光硬化薄膜之 UV-Visible光穿透度分析 71 圖4-31 40wt.% Colloid silica / DB1/ UV-HEMA光硬化薄膜之 UV-Visible光穿透度分析 71 圖4-32 Colloid silica / Poly-HEMA薄膜之UV-Visible光穿透 度分析 72 圖4-33 DO11/ Poly-HEMA及DB1/ Poly-HEMA薄膜之 UV-Visible光穿透度分析 72 圖4-34 40wt.% Colloid silica / DO11/ Poly-HEMA及40wt.% Colloid silica / DB1/ Poly-HEMA薄膜之UV-Visible光穿 透度分析 73 圖4-35 M-Colloid silica / UV-HEMA 光硬化薄膜之UV-Visible 光穿透度分析 73 圖4-36 40wt.% M-Colloid silica / DO11/ UV-HEMA 光硬化薄 膜之UV-Visible光穿透度分析 74 圖4-37 40wt.% M-Colloid silica / DB1/ UV-HEMA 光硬化薄膜 之UV-Visible光穿透度分析 74 圖4-38 M-Colloid silica / Poly-HEMA薄膜之UV-Visible光穿透 度分析 75 圖4-39 40wt.% M-Colloid silica / DO11/ Poly-HEMA及40wt.% M-Colloid silica / DB1/ Poly-HEMA薄膜之UV-Visible光穿透度分析75 圖4-40 Poly-HEMA 薄膜之AFM型態學分析 76 圖4-41 40wt.% Colloid silica / Poly-HEMA 薄膜之AFM型態 學分析 76 圖4-42 40wt.% Colloid silica /0.4wt.% DB1/ Poly-HEMA 薄膜 之AFM型態學分析 77 圖4-43 40wt.% M-Colloid silica /0.4wt.% DB1/ Poly-HEMA 薄 膜之AFM型態學分析 77 圖4-44 DO11/ UV-HEMA光硬化塊材之熱重損失分析 78 圖4-45 DB1/ UV-HEMA光硬化塊材之熱重損失分析 78 圖4-46 DO11/ Poly-HEMA及DB1/ Poly-HEMA塊材之熱重損 失分析 79 圖4-47 Colloid silica / UV-HEMA光硬化塊材之熱重損失分析 80 圖4-48 Colloid silica / Poly-HEMA塊材之熱重損失分析 80 圖4-49 M-Colloid silica / UV-HEMA光硬化塊材之熱重損失分析 81 圖4-50 M-Colloid silica / Poly-HEMA塊材之熱重損失分析 81 圖4-51 Colloid silica / Poly-HEMA、0.4wt.% DO11 / Poly- HEMA及0.4wt.% DB1 / Poly-HEMA塊材之DSC分析 82 圖4-52 Colloid silica / UV-HEMA、0.4wt.% DO11 / UV-HEMA 及0.4wt.% DB1 / UV-HEMA光硬化塊材之DSC分析 82 圖4-53 M-Colloid silica / UV-HEMA光硬化塊材之DSC分析 83 圖4-54 M-Colloid silica / Poly-HEMA塊材之DSC分析 83 表目錄 表2-1 染料的應用 11 表2-2 染料離子集合體的可能形式 12 表2-3 吸收光線及其補色之關係 12 表2-4 常見的發色團基 13 表2-5 常見的助色團基 13 表2-6 膠體溶液之類別 15 表2-7 二氧化矽粉體之應用 17 表2-8 火焰合成法之原料及特點 18 表4-1 不同Colloid silica添加量下之HEMA單體聚合放熱量 42 表4-2 不同DO11添加量下之HEMA單體聚合放熱量 42 表4-3 不同DB1添加量下之HEMA之單體聚合放熱量 42 表4-4 40wt.% Colloid silica,不同DO11添加量下之HEMA單 體聚合放熱量 44 表4-5 40wt.% Colloid silica,不同DB1添加量下之HEMA單 體聚合放熱量 44 表4-6 不同M-Colloid silica添加量下之HEMA單體聚合放熱 量 46 表4-7 40wt.% M-Colloid silica,不同DO11添加量下之HEMA 單體聚合放熱量 47 表4-8 40wt.% M-Colloid silica不同DB1添加量下之HEMA 單體聚合放熱量 47 表4-9 鉛筆硬度分析─UV-HEMA系列 49 表4-10 鉛筆硬度分析─Poly-HEMA系列 50 表4-11 Td與Char Yield─不同DO11、DB1添加量 / UV-HEMA 53 表4-12 Td與Char Yield─不同DO11、DB1添加量 / Poly-HEMA 53 表4-13 Colloid silica / UV-HEMA光硬化塊材之Td與CharYield 53 表4-14 Colloid silica / Poly-HEMA塊材之Td與Char Yield 54 表4-15 M-Colloid silica / UV-HEMA光硬化塊材之Td與Char Yield 54 表4-16 M-Colloid silica / Poly-HEMA塊材之Td與Char Yield 54rf 1. J. Zyss, J. L. Oudar, Phys. Rev. A, 2016 and 2028 (1982) 2. S. F. Nara, K. N. Fushimi, US patent 5354497(1994) 3. H. B. Sunkara, J. M. Jethmalani, W. T. Ford, Chem.Mater. 6,362-364(1994). 4. J. M. Jethmalani and W. T. Ford, Chem. Mater. 8, 2138-2146(1996) 5. J. M. Jethmalani and W. T. Ford, Langmuir, 13, 3338-3344 (1997) 6. C.G. Roffey, Photopolymerization of Surface Coatings(1982) 7. Wenjiang Nie, Optical Nonlinearity: Phenomena, Application, and Material, Adv. Mater., 5, 520 (1993) 8. 魏碧玉,賴明雄,工業材料53期,116 (1999) 9. 馬振基,”高分子複合材料”,國立編譯館(1995) 10. 蘇品書、賴耿陽,”複合材料科學”,復漢出版社(1993) 11. 許名發、郭文雄,”複合材料”,高立圖書有限公司(1998) 12. 吳國卿,董玉蘭;”奈米粒子的基本性質”;化工資訊,42(1999) 13. 廖建勛, 長谷川博三,”奈米複合材料研討會論文”,997.5.27 14. 邱永亮,”染料之合成與特性”,1997.9.10 15. 張有義,郭蘭生,”膠體及界面化學入門”,2001.1.10 16. 魏碧玉,賴明雄,賴宏仁;”奈米材料之合成技術”,材料會訊第八卷第四期。 17. 曾科博;”化學機械研磨用二氧化矽粉體之火焰製程開發”,成大化工所碩士論文(1999)。 18. 江易錫;”火焰法合成二氧化矽微粉之製程開發”,成大化工所碩士論文(2000)。 19. 韋文誠;”奈米陶瓷粉體之特性及奈米結構應用概況”,化工技術第九卷第九期。 20. 吳聖威;”奈米級二氧化矽SiO2粒子之燒結”,清大化工所碩士論文(2001)。 21. Osseo-Asare, K. and F. J. Arriagada, J. Colloids Interf. Sci. 170,8(1995) 22. 黃淑絹,周更生,林慧祈,呂世源,”氣相反應法製備微細粒子”,化工,44(3),113(1997) 23. C. J. Brinker, K. D. Keefer, D. W. Schaefer and C. S. Ashley,“Sol-gel transition in simple silicates,” J. of Non-Crystalline Solids, 48, 1982, 47-64. 24. Bergner,H. E.(ed),”The colloid Chemistry of silica”,Advances in Chemistry Series 234, Am. Chem. Soc. , Washington,DC(1994) 25. Chang, C. and H. S. Fogler, AIChEJ, 42,3153(1996) 26. Chang, C. and H. S. Fogler, Langmuir, 13,3259(1997) 27. A. P. Philipse , A. Vrij, J. of Colloidal Interface Sci., 128,121-135(1989) 28. Iler R. K. (ed). “The Chemistry of Silica”, Wiley, New York(1979) 29. Odian G. (ed). “Principles Of Polymerization”, Wiley J. and SONS, INC(1933)id NH0925063064 sid 913645 cfn 0 / id NH0925063065 auc 龔建同 tic 利用Streptomyces clavuligerus以進料批式操作下生產clavulanic acid之研究 adc 陳國誠 adc 黃世傑 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 72 kwc 甘油進料 abc Clavulanic acid是一種由Streptomyces clavuligerus發酵生產的β-lactamase抑制劑,醫療上經常合併使用clavulanic acid與amoxicillin。本論文利用批式與進料批式的操作,以S. clavuligerus進行clavulanic acid的發酵生產,探討大豆萃取液與clavulanic acid的前驅物甘油、ornithine、arginine對其生化合成的影響,並尋求最適的前驅物及其進料量,以及建立進料批式操作的方法。在搖瓶培養過程中,含有大豆萃取液(TKN=0.59 g/L)會有較佳的clavulanic acid產量,而進料批式操作的過程中,利用間歇進料的方式,將甘油持續進料到培養液內,其所生成clavulanic acid的最高濃度是未進行glycerol進料的2.3倍。同時進行甘油和ornithine或arginine的進料,所生成的clavulanic acid濃度分別是未進行glycerol進料的2.7、2.8倍。甘油的進料添加能夠提供clavulanic acid分子左側結構上β-lactam環的前驅物,而ornithine或arginine的添加則能提供clavulanic acid分子右側結構上C5-moiety的前驅物,這顯示甘油和ornithine或arginine能有效率地構成clavulanic acid。 rf 1. Rollinson, G. N. (1994) A review of the microbiology of amoxycillin/clavulanic acid over the 15 year period 1978-1993. Journal of Chemotherapy 6(5), 283-318. 2. 2002生技產業白皮書 3. 羅麗珠 (1998) 生技產值-歷史到未來. 工業簡訊 28(10), 46-52. 4. 劉英俊 (1996) 最新微生物應用工業. 中央圖書出版社, 台北市, pp.182-190. 5. 楊春茂, 楊聖信, 許桂森, 林君穎, 張國志 (1997) 人體藥理學. 藝軒圖書出版社, 台北市, pp.626-662. 6. Brown, A. G., Butterworth, D., Cole, M., Hanscomb, G., Hood, J.D., Reading, C. and Robinson, G. N. (1976) Naturally occurring β-lactamase inhibitors with antibacterial activity. Journal of Antibiotics 29, 668-669. 7. Betina, V. (1994) Bioactive secondary metabolites of microorganisms. Elsevier Science Publishers BV, Amsterdam, Netherlands. 8. Liras, P. and Rodriguez-Garcia, A. (2000) Clavulanic acid, a β-lactamase inhibitor: biosynthesis and molecular genetics. Applied Microbiology and Biotechnology 54, 467-475. 9. Brody, T. M., Larner, J. and Minneman, K. P. (1998) Human pharmacology, molecular to clinical. Mosby-Year Book, Inc., Saint Louis, MO. 10. Hsu, L. Y. (1991) Antibacterial activities of amoxicillin alone and in combination with clavulanic acid correlated with β-lactamase production. Chinese Journal of Microbiology Immunology 24, 272-280. 11. Hsueh, P. R., Chang, S. C., Chen, Y. C., Hsu, L. Y., Luh, K. T. and Hsieh, W. C. (1992) In vitro antibacterial activities of ticarcillin alone and ticarcillin plus clavulanic acid against β-lactamase producing and non-producing microorganisms. Chinese Journal of Microbiology Immunology 25, 149-159. 12. Higgens, C. E. and Kastner, R. E. (1971) Streptomyces clavuligerus sp. nov. a β-lactamases antibiotics producer. International Journal of Systematic Bacteriology 21, 326-331. 13. Buchanan, R. E. and Gibbons, N. E. (1974) Group 25: Streptomycetes and related genera. In: Buchanan, R. E. and Gibbons, N. E. (Eds.), Bergey’s Manual of Determinative Bacteriology. Williams & Wilkins, Baltimore, MD, pp.667-675. 14. Hopwood, D. A. (1981) Genetic studies of antibiotics and other secondary metabolites. In: Glover, S. W. and Hopwood, D. A. (Eds.), Symposia of the Society for General Microbiology: Genetics as a Tool in Microbiology. Cambridge University Press, Cambridge, pp.187-218. 15. Nagarajan, R. (1972) β-Lactam antibiotics from Streptomyces. In: Flynn, E. H. (Ed.), Cephalosporin and penicillins: Chemistry and biology. Academic Press, New York, pp.636. 16. Reading, C. and Cole, M. (1977) Clavulanic acid: a beta-lactamase-inhibiting beta-lactam from Streptomyces clavuligerus. Antimicrobial Agents and Chemotherapy 11, 852-857. 17. Box, S. J. (1978) Preparation of clavulanic using Streptomyces jumonjinensis. Beecham Group Ltd. US patent: 4072569. 18. Kitano, K. (1983) New species Streptomyces katsurahamanus. Takeda Yakuhin Kogyo. JP patent: 58081778. 19. Okamurak, K. (1980) Preparation of clavulanic acid. Sanraku Inc. JP patent: 55162993. 20. Butterworth, D. (1984) Clavulanic acid: properties, biosynthesis, and fermentation. In: Vandamme, E. J. (Ed.), Biotechnology of Industrial Antibiotics, Chap 6. Marcel Dekker, New York, pp.225-235. 21. Baggaley, K. H., Brown, A. G. and Schofield, C. J. (1997) Chemistry and biosynthesis of clavulanic acid and other clavams. Natural Product Reports 14, 309-333. 22. Hodgson, J. E., Fosberry, A. P., Rawlinson, N. S., Ross, H. N. M., Neal, R. J., Arnell, J. C., Earl, A. J. and Lawlor, E. J. (1995) Clavulanic acid biosynthesis in Streptomyces clavuligerus: gene cloning and characterization. Journal of Genetics 166, 49-55. 23. Thirkettle, J. E., Baldwin, J. E., Edwards, J., Griffin, J. P. and Schofield, C. J. (1997) The origin of theβ-lactam carbons of clavulanic acid. Journal of the Chemical Society: Chemical Communications 1025-1026. 24. Khaleeli, N., Li, R. and Townsend, C. A. (1999) Origin of the β-lactam carbons in clavulanic acid from an unusual thiamine pyrophosphate-mediated reaction. Journal of the American Chemical Society 121, 9223-9224. 25. Jensen, S. E. and Paradkar, A. S. (1999) Biosynthesis and molecular genetics of clavulanic acid. Antonie van Leeuwenhoek 75, 122-133. 26. Paradkar, A. S., Aidoo, K. A. and Jensen, S. E. (1998) A pathway-specific transcriptional activator regulates late steps of clavulanic acid biosynthesis in Streptomyces clavuligerus. Molecular Microbiology 27, 831-843. 27. Egan, L. A., Busby, R. W., Iwata-Reuyl, D. and Townsend, C. A. (1997) Probable role of clavaminic acid as the terminal intermediate in the common pathway to clavulanic acid and the antipodal clavam metabolites. Journal of the American Chemical Society 119, 2348-2355. 28. Nicholson, N. H., Baggaley, K. H., Cassels, R., Davison, M., Elson, S. W., Fulston, M., Tyler, J. W. and Wononieck, S. R. (1994) Evidence that the intermediate biosynthetic precursor of clavulanic acid is its N-aldehyde analogue. Journal of the Chemical Society: Chemical Communications 1281-1282. 29. McGowan, S. J., Bycroft, B. W. and Salmond, G. P. C. (1998) Bacterial production of carbapenems and clavams: evolution of β-lactam antibiotic pathways. Trends in Microbiology 6, 203-208. 30. Aharonowitz, Y. and Demain, A. L. (1978) Carbon catabolite regulation of cephalosporin production in Streptomyces clavuligerus. Antimicrobial Agents and Chemotherapy 14, 159-164. 31. Romero, J., Liras, P. and Martin, J. F. (1984) Dissociation of cephamycin and clavulanic acid biosynthesis in Streptomyces clavuligerus. Applied Microbiology and Biotechnology 20, 318-325. 32. Elson, S. W. and Oliver, R. S. (1978) Studies on the biosynthesis of clavulanic acid: I. Incorporation of 13C-labelled precursors. The Journal of Antibiotics 31, 586-592. 33. Garcia-Dominguez, M., Martin, J. F. and Liras, P. (1989) Characterization of sugar uptake in wild-type Streptomyces clavuligerus, which is impaired in glucose uptake, and in a glucose-utilizing mutant. Journal of Bacteriology 171, 6808-6814. 34. Choi, D. B., Tamura, S., Park, Y. S., Okabe, M., Seriu, Y. and Takeda, S. (1996) Efficient tylosin production from Streptomyces fradiae using rapeseed oil. Journal of Fermentation and Bioengineering 82, 183-186. 35. Lee, P. C. and Ho, C. C. (1996) Production of clavulanic acid and cephamycin C by Streptomyces clavuligerus in palm-oil medium. World Journal of Microbiology and Biotechnology 12, 73-75. 36. Mayer, A. F. and Deckwer, W. D. (1996) Simultaneous production and decomposition of clavulanic acid during Streptomyces clavuligerus cultivations. Applied Microbiology and Biotechnology 45, 41-46. 37. Gouveia, E. R., Baptista-Neto, A., Azevedo, A. G., Badino-Jr, A. C. and Hokka, C. O. (1999) Improvement of clavulanic acid production by Streptomyces clavuligerus in medium containing soybean derivatives. World Journal of Microbiology and Biotechnology 15, 623-627. 38. Pruess, D. L. and Kellett, M. Ro-22-5417 (1983) A new clavam antibiotic from Streptomyces clavuligerus: I. Discovery and biological activity. Journal of Antibiotics 36, 208-212. 39. Gutman, A. L., Ribon, V. and Boltansk, A. (1985) Incorporation of β-hydroxypropionate in the β-lactam residue of clavulanic acid. Journal of the Chemical Society: Chemical Communications 1627-1629. 40. Townsend, C. A. and Mao, S. S. (1987) Clavulanic acid biosynthesis: the stereochemical course of β-lactam formaion from chiral glycerol. Journal of the Chemical Society: Chemical Communications 86-89. 41. Stryer, L. (1995) Stryer’s Biochemistry. W. H. Freeman and Company, New York. 42. Aharonowitz, Y. and Demain, A. L. (1979) Nitrogen nutrition and regulation of cephalosporin production in Streptomyces clavuligerus. Canadian Journal of Microbiology 25, 61-67. 43. Brana, A. F., Wolfe, S., and Demain, A. L. (1986) Relationship between nitrogen assimilation and cephalosporin synthesis in S. clavuligerus. Archives Microbiology 146, 46-51. 44. Fernandez, J. L., Moreno, M. A., Salto, F., Oheros, T. and Costa, L. (1989) Preparation of clavulanic acid and its salts and esters. Antibioticos. EP patent: 0182522 B1. 45. Otero, R., Valle, M., De-La-Vieja C. and Alba, V. (1997) Process for the production of clavulanic acid and/or salts thereof. Antibioticos. WO patent: 9719187. 46. Belmar-Beiny, M. T. and Thomas, C. R. (1991) Morphology and clavulanic acid production of Streptomyces clavuligerus: Effect of stirrer speed in batch fermentation. Biotechnology and Bioengineering 37, 456-462. 47. Romero, J., Liras, P. and Martin, J. F. (1986) Utilization of ornithine and arginine as specific precursors of clavulanic acid. Applied and Environmental Microbiology 52, 892-897. 48. Porto, A. L. F., Campos-Takaki, G. M. and Lima-Filho J. L. (1996) Effects of culture conditions on pretease production by Streptomyces clavuligerus growing on soy bean flour medium. Applied Biochemistry and Biotechnology 60, 115-122. 49. Townsend, C. A. and Ho, M. F. (1985) Biosynthesis of clavulanic acid: Origin of the C5 Unit. Journal of the American Chemical Society 107, 1065-1066. 50. Townsend, C. A., Ho, M. F. and Mao, S. S. (1986) The stereochemical fate of (2RS,5R)- and (2RS,5S)-[5-3H ] Ornithine in clavulanic acid biosynthesis. Journal of the Chemical Society: Chemical Communications 638-639. 51. Bycroft, B. W., Penrose, A., Gillett, J. and Elson, S. W. (1988) The incorporation of DL-[4-2H2,5-13C ] Ornithine into clavulanic acid and N-Acetylglycylclavaminic acid. Journal of the Chemical Society: Chemical Communications 980-981. 52. Elson, S. W. (1981) In: Gregory, G. I. (Ed.), Recent Advance in the Chemistry of β-lactam Antibiotics. Royal Society of Chemistry, London, pp. 142-150. 53. Elson, S. W. and Oliver, R. S. (1982) Studies on the biosynthesis of clavulanic acid.Ⅲ. Incorporation of DL-[3,4-13C2 ] glutamic acid. The Journal of Antibiotics 35, 81-86. 54. Elson, S. W. (1989) In: Bentley, P. H. and Southgate, R. (Eds.), Recent Advance in the Chemistry of β-lactam Antibiotics. Royal Society of Chemistry, London, pp. 303-320. 55. Townsend, C. A. and Ho, M. F. (1985) Biosynthesis of clavulanic acid: Origin of the C3 Unit. Journal of the American Chemical Society 107, 1066-1068. 56. Valentine, B. P., Bailey, C. R., Doherty, A., Morris, J., Elson, S. W., Baggaley, K. H. and Nicholson, N. H. (1993) Evidence that arginine is a late metabolic intermediate than ornithine in the biosynthesis of clavulanic acid by Streptomyces clavuligerus. Journal of the Chemical Society: Chemical Communications 1210-1211. 57. Kirk, S., Avignone-Rossa, A. and Bushell, M. E. (2000) Growth limiting substrate affects antibiotic production and associated metabolic fluxes in S. clavuligerus. Biotechnology Letters 22, 1803-1809. 58. Fulston, M., Davison, M., Elson, S. W., Nicholson, N. H., Tyler, J. W. and Woroniecki, S. R. (2001) Clavulanic acid biosynthesis; the final steps. Journal of the Chemical Society: Perkin Transactions 1, 1122-1130. 59. De-la-Fuente, J. L., Martin, J. F. and Liras, P. (1996) New type of hexameric ornithine carbamoltransferase with arginase activity in the cephamycin producers Streptomyces clavuligerus and Nocardia lactamdurans. The Biochemical Journal 320, 173-179. 60. 陳國誠 (1992) 微生物酵素工程學. 藝軒圖書出版社, 台北市. 61. Modak, J. M., Lim, H. C. and Tayeb, Y. L. (1986) General characteristics of optimal feed rate profiles for various fed-batch processes. Biotechnology and Bioengineering 28, 1396-1406. 62. Pirt, S. J. (1975) Principles of Microbes and Cell Cultivation. John Wiley, New York. 63. Ates, S., Elibol, M. and Mavituna, F. (1997) Production of actinorhodin by Streptomyces coelicolor in batch and fed-batch cultures. Process Biochemistry 32, 273-278. 64. Lee, S. Y. (1996) High cell-density of Escherichia coli. Trends in Biotechnology 14, 98-105. 65. Yamada, H., Suzuki, T. and Shimizu, K. (1993) Efficient pH-stat methods for fed-batch E. coli cultivation. Process Control and Quality 5, 29-34. 66. Yano, T., Kurokawa, M., Nishizawa, Y. (1991) Optimum substrate feed rate in fed-batch culture with the DO-stat method. Journal of Fermentation and Bioengineering 71, 345-349. 67. Foulstone, M. and Reading, C. (1982) Assay of amoxicillin and clavulanic acid, the components of Augmentin, in biological fluids with HPLC. Antimicrobial Agents and Chemotherapy 22, 753-762. 68. Mccullough, H. (1967) The determination of ammonia in whole blood by a direct colorimetric method. Clinica Chimica Acta 17, 297-304. 69. Andrietta, M. G. S., Andrietta, S. R., Rodrigues, M. V. N., Hokka, C. O. and Serra, G. E. (1997) Selection of industrial complex medium for cephalosporin C production. Journal of the Brazilian Society for Microbiology 28, 109-113. 70. Lounes, A., Lebrihi, A., Benslimane, C., Lefebvre, G. and Dermain, P. (1996) Effect of nitrogen/carbon ratio on the specific production rate of spiramycin by Streptomyces ambofaciens. Process Biochemistry 31(1), 13-20. 71. Suzuki, T., Yamane, T. and Shimizu, S. (1988) Effect of ammonium feeding on production of thiostrepton by fed-batch culture. Applied Microbiology and Biotechnology 28, 188-192. 72. Ives, P. R. and Bushell, M. E. (1997) Manipulation of the physiology of clavulanic acid production in Streptomyces clavuligerus. Microbiology 143, 3573-3579. 73. Park, S. Y., Momose, I., Tsunoda, K. and Okabe, M. (1994) Enhancement of cephamycin C using soybean oil as the sole carbon source. Applied Microbiology and Biotechnology 40, 773-779. 74. Hu, W. S., Brana, A. F. and Demain, A. L. (1984) Carbon source regulation of cephem antibiotic production by resting cell of Streptomyces clavuligerus and its reversal by protein synthesis inhibitors. Enzyme and Microbial Technology. 6, 155-160. 75. White, R. L., John, E-M. M., Baldwin, J. E., Abraham, E. P. (1982) Stoichiometry of oxygen consumption in the biosynthesis of isopenicillin from a tripeptide. Biochem. J.;203, 791-793. 76. Mitsuyasu, O., Takeshi, K., Michikatsu, S., Kiyoshi, K., Kazuhiko, O., Rokuro, O. (1992) Preferential and High-Yield Production of a Cephamycin C by Dissolved Oxygen Controlled Fermentation. Journal of fermentation and bioengineering.;vol. 73, No. 4, 292-296 77. Peddie, C. C., Mavinic, D. S. and Jenkins, C. J. Use of ORP for monitoring and control of aerobic sludge digestion. J. Environmental Engineer. 1990, 116, 461-471.id NH0925063065 sid 913653 cfn 0 / id NH0925063066 auc 范文欽 tic 探討蛋白質PEGylation的反應特性及其應用在重組腺病毒的修飾 adc 徐祖安 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 57 kwc 腺病毒 abc 我們利用Tresyl monomethoxy polyethylene glycol (TM-PEG) 與free lysine的PEGylation反應,探討其動力學模式,利用螢光分析及作圖法,估計出TM-PEG及Lysine於PEGylation反應中的反應級數分別為1.69及1.09,同時並以Arrhenius學說為基礎,推論PEGylation反應的活化能,進而探討反應對溫度的敏感性。 rf 1. Abuchowski, A., J. R. McCoy, N. C. Palczuk, v. E. T, and F. F. Davis. 1977. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem 252:3582-3586. 2. Abuchowski, A., v. E. T., P. N. C., and D. F.F. 1977. Alteration of immunogical properties of polyethylene glycol. J. Biol. Chem 252:3578-3581. 3. Andrew, P., C. 2002. PEGylated antibodies and antibody fragments for improved therapy: a review. Advanced Drug Delivery Reviews 54:531-545. 4. Armentan, D., J. Zabner, C. Sacks, C. C. Sookdeo, P. Smith M, J. A. George, S. C. Wadsworth, A. E. Smith, and R. J. Gregory. 1997. Effect of the E4 region on the persistence of transgene expression from adenovirus vectors. J. Virol. 71:2408-2416. 5. Bai, M., B. Harfe, and P. Freimuth. 1993. Mutations that alter an Arg-Gly-Asp (RGD) sequence in the adenovirus type 2 penton base protein abolish its cell-rounding activity and delay virus reproduction in flat cells. Journal of Virology 67:5198-5205. 6. Benihoud, K., P. Yeh, and M. Perricaudet. 1999. Adenovirus vectors for gene therapy. Current Opinion in Biotechnology 10:440-447. 7. Bennett, E., J. R. Bennink, J. W. Yewdell, and F. M. Brodsky. 1999. Cutting edge : adenovirus E19 has two mechanisms for class 1 MHC expression. The Journal of Immunology 162:5049-5052. 8. Bergelson, J. M., J. A. Cunningham, G. Droguett, E. A. Kurt-Jones, A. Krithivas, J. S. Hong, M. S. Horwitz, R. L. Crowell, and R. W. Finberg. 1997. Isolation of common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320-1323. 9. Cheng, T. L., P. Y. Wu, M. F. Wu, J. W. Chern, and S. R. Roffler. 1999. Accelerated clearance of polyethylene glycol-modified proteins by anti-polyethylene glycol IgM. Bioconjugate Chemistry 10:520-528. 10. Croyle, M. A., X. Cheng, and J. M. Wilson. 2001. Development of formulations that enhance physical stability of viral vectors for gene therapy. Gene Therapy 8:1281-1290. 11. Croyle, M. A., N. Chirmule, Y. Zhang, and J. M. Wilson. 2002. PEGylation of E1-deleted adenovirus vectors allows significant gene expression on readministration to liver. Human Gene Therapy 13:1887-1900. 12. Croyle, M. A., B. J. Roessler, B. L. Davidson, J. M. Hilfinger, and G. L. Amidon. 1998. Factors that influence stability of recombinant adenoviral preparations for human gene therapy. Pharmaceutical Development and Technology 3:373-383. 13. Croyle, M. A., Q. C. Yu, and J. M. Wilson. 2000. Development of a rapid method for the PEGylation of adenovirus with enhanced transduction and improved stability under harsh storage conditions. Human Gene Therapy 11:1713-1722. 14. Delgado, C., G. Francis, and D. Fisher. 1992. The usesand properties of PEG-linked proteins. Crit. Rev. Ther. Drug Carrier Syst 9:249-304. 15. Delgado, C., J. N. Patel, G. E. Francis, and D. Fisher. 1990. Coupling of poly(ethylene glycol) to albumin under very mild conditions by activation with trsyl chloride: characterization of the conjugate by partitioning in aqueous two-phase systems. Biotechnology and Applied Biochemistry 12:119-128. 16. Delgado, M., F. Malik, B. FSelisko, D. Fisher, and G. E. Francis. 1994. Quantitative analysis of polyethylene glycol(PEG) in PEG-modified proteins/cytokines by aqueous two-phase system. Journal of Biochemical and Biophysical Methods 29:237-250. 17. Enders, J., J. Bell, and J. Dingle. 1956. ''Adenoviruses'':group name proposed for new respiratory -tract viruses. science 124:119-120. 18. Fields, B. N., D. M. knipe, and P. M. Howley. 1995. Fields Virology, vol. 2. 19. Gao, G. P., Y. Yang, and J. M. Wilson. 1996. Biology of adenovirus vectors with E1 and E4 deletions for liver-directed gene therapy. Journal of Virology 70:8934-8943. 20. Graham, F. L., and L. Prevec. 1992. Adenovirus-based expression vectors and recombinant vaccines. biotechnology 20:363-390. 21. Graham, F. L., J. Smiley, W. C. Russell, and R. Nairn. 1977. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. Journal General Virology 36:59-72. 22. Greber, U. F., M. Willetts, P. Webster, and A. Helenius. 1993. Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75:477-486. 23. Han, J., P. Sabbatini, L. Rao, D. Modha, and E. White. 1996. The E1B 19K protein blocks apoptosis by interacting with and inhibiting the p53-inducible and deth-promoting Bax protein. Gene and Develop 10:461-477. 24. Hosakawa, K., and M. T. Sung. 1976. Isolation and characterization of an extremely basic protein from adenovirus type 5. Journal of Virology 17:924-934. 25. Kannabiran, C., G. F. Morris, and M. B. Mathews. 1999. Dual action of the adenovirus E1A 234R oncoprotein on the human proliferating cell nuclear antigen promoter : repression of transcriptional activation by p53. Oncogene 18:7825-7833. 26. Kenneth, D. H., and S. W. Kim. 2002. Effects of PEG conjugation on insulin properties. Advanced Drug Delivery Reviews 54:505-530. 27. Lai, C. M., K. Y. Lai, and P. E. Rakoczy. 2002. Adenovirus and adeno-associated virus vectors. DNA and Cell Biology 21:895-913. 28. Lusky, M. 1998. In vitro and in vivo biology of recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted. Journal of Virology 72:2022-2032. 29. Milton Harris, J., N. E. Nancy, and M. Marlene. 2001. Pegylation: A Novel Process for modifying Pharmacokinrtics. Clinical Pharmacokinetics 40:539-551. 30. Nunes, F. A., E. E. Furth, J. M. Wilson, and S. E. Raper. 1999. Gene transfer into the liver of non-human primates with E1-deleted recombinant adenoviral vectors: Safety of re-administration. 10. 2515-2526. Human Gene Therapy 10:2515-2526. 31. O'Riordan, C. R., A. Lachapelle, C. Delgado, V. Parkes, S. C. Wadsworth, A. E. Smith, and G. E. Francis. 1999. PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Human Gene Therapy 10:1349-1358. 32. Parks, R. J., C. M. Evelegh, and F. L. Graham. 1996. Use of helper-dependent adenoviral vectors of alternative serotypes permits repeat vector administration. Gene Therapy 6:1565-1573. 33. Pettersson, U., and R. J. Roberts. 1986. Adenovirus gene expression and replication : a historical review. Cancer cells 4:37-57. 34. Romanczuk, H., C. E. Galer, J. Zabner, G. Barsomian, S. C. Wadsworth, and C. R. O'Riordan. 1999. Modification of an adenoviral vector with biologically selected peptides: a novel strategy for gene delivery to cells of choice. Human Gene Therapy 10:2615-2626. 35. Rowe, W. P., R. J. Huebner, and L. K. Gilmore. 1953. Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proceedings of the Society for Experimental Biology and Medicine 65:570-573. 36. Russell, W. C. 2000. Update on adenovirus and its vectors. Journal of General. Virology 81:2573-2604. 37. Russell, W. C., W. G. Laver, and P. J. Sanderson. 1968. Internal components of adenovirus. nature 219:1127-1130. 38. Shabram, P. W., D. D. Giroux, A. M. Goudreau, R. J. Gregory, M. T. Horn, B. G. Huyghe, X. Liu, M. H. Nunnally, B. J. Sugarman, and S. Sutjipto. 1997. Analytical anion-exchange HPLC of recombinant type-5 andenovirus particles. Human Gene Therapy 8:453-456. 39. Stephan, A., Vorburger, K. Kelly, and Hunt. 2002. Adenoviral Gene Therapy. The Oncologist 7:46-59. 40. Stewart, P. L., R. M. Burnett, M. Cyrklaff, and S. D. Fuller. 1991. Image reconstruction reveals the complex molecular organization of adenovirus. cell 67:145-154. 41. Stewart, P. L., S. D. Fuller, and R. M. Burnett. 1993. Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy. The EMBO Journal 7:2589-2599. 42. Tomko, R. P. X. R., and L. Philipson. 1997. HCAR and MAR: The human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proceedings of the National Academy of Sciences of the United States of America 94:3352-3356. 43. Tsujinoue, H., S. Kuriyama, K. Tominaga, H. Okuda, T. Nakatani, H. Yoshiji, T. Tsujimoto, T. Akahane, K. Asada, and H. and Fukui. 2001. Intravenous re-administration of an adenoviral vector performed long after the initial administration failed to induce re-expression of the original transgene in rats. International Journal of Radiation Oncology, Biology, Physics 18:575-580. 44. Valentine, R. G., and H. G. Pereira. 1965. Antigens and structure of the adenovirus. Journal of Molecular Biology 13:13-20. 45. Vorburger, S. A., and K. K. Hunt. 2002. Adenoviral gene therapy. The Oncologist 7:46-59. 46. Wang, K., T. Guan, D. A. Cheresh, and G. R. Nemerow. 2000. Regulation of adenovirus membrane penetration by the cytoplasmic tail of integrin ?. Journal of Virology 74:2731-2739. 47. Wickham, T. J., P. Mathias, D. A. Cheresh, and G. R. Nemerow. 1993. Intergrins alpha3 and alpha5 promote adenovirus internalization but not virus attachment. Cell 73:309-331. 48. Worgall, S., G. Wolfe, E. Falck-Pedersen, and R. G. Crystal. 1997. Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Human Gene Therapy 8:37-44. 49. Yang, Y., H. C. J. Ertl, and J. M. Wilson. 1994. MHC class Irestricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses. Immunity 1:433-442.id NH0925063066 sid 913646 cfn 0 / id NH0925063067 auc 王鴻傑 tic 感溫性聚異丙基丙醯胺系凝膠藥物載體之製備 adc 薛敬和 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 92 kwc 異丙基丙醯胺 abc 本研究擬以感溫性高分子poly(N-isopropylacrylamide) (PNIPAAm)為主體,並導入高親水性的poly(acrylic acid) (PAAc)進行改質,並提高AAc所佔比例,以增進PAAc-PNIPAAm共聚合高分子的含水率及柔軟度,並將其製成PAAc-co-PNIPAAm雜亂共聚合體(random copolymer)及PAAc-g-PNIPAAm接枝共聚合體(graft copolymer)兩種結構,線性共聚合體及凝膠粒子兩種型態,以製作一新型的青光眼藥物傳釋系統。此高分子眼藥水在室溫為澄清之溶液,在接觸眼角膜後會經由相轉移的變化而形成一柔軟的高分子薄膜。並以青光眼腎上腺素(epinephrine)作為模式藥物,物理包埋其中,期望能製備可有效控制藥物釋放,且具生物適應性的高分子釋放劑型。 tc 一、 緒論…………………………………………………………………1 1-1. 前言……………………………………………………………1 1-2. 藥物傳釋系統…………………………………………………3 1-3. 青光眼簡介……………………………………………………7 1-3-1眼睛結構……………………………………………….....7 1-3-2青光眼……………………………………………..…….11 1-4. 眼用藥物傳釋劑型…………………………………………..14 1-4-1眼睛生理與藥物之關係…………………………...……14 1-4-2眼用傳釋劑型之介紹………………………………...…16 1-5. 感溫性聚合體………………………………………………..20 1-5-1感溫性高分子之介紹……………………………...……20 1-5-2感溫性高分子PNIPAAm的應用…………………..…….21 二、 研究動機與目的…………………………………………………..26 三、 實驗方法…………………………………………………………..29 3-1.實驗藥品與儀器………………………………………………29 3-1-1實驗藥品…………………………………………..……...29 3-1-2實驗儀器………………………………………….….…...30 3-2.高分子合成……………………………………………………32 3-2-1藥品純化………………………………………….……...32 3-2-2 PAAc-co-PNIPAAm 雜亂共聚合體之合成……….......….32 3-2-2-1 PAAc-co-PNIPAAm線性共聚合體之合成………….32 3-2-2-2 PAAc-co-PNIPAAm凝膠粒子之合成……………… 32 3-2-3 PAAc-g-PNIPAAm 接枝共聚合體之合成………………34 3-2-3-1 NIPAAm 寡聚合物之合成……….……………......34 3-2-3-2 NIPAAm 巨單體之合成…………………..……….35 3-2-3-3 PAAc-g-PNIPAAm線性共聚合體之合成……….....36 3-3 .PAAc-PNIPAAm感溫性基質材料之結構分析實驗……….….39 3-3-1 FT-IR結構分析…………………………………………39 3-3-2 1H NMR結構分析…………………………….…………...39 3-3-3 GPC鑑定數目平均分子量Mn…………… ………….…39 3-4. PAAc-PNIPAAm感溫性基質材料之基本性質測定…...……...40 3-4-1相轉移溫度之測定………………………………….......40 3-4-2 PAAc-PNIPAAm凝膠粒子之粒徑分析實驗…….……….40 3-4-3 PAAc-PNIPAAm線性共聚合體之含水率分析實驗……..40 3-5.體外藥物釋放之模擬……….………………………………...41 3-5-1 PAAc-PNIPAAm線性共聚合體…….………………….....41 3-5-2 PAAc-PNIPAAm凝膠粒子…….………………….............42 3-5-3 PAAc-PNIPAAm線性共聚合體與凝膠粒子混合物……..42 3-6 動物實驗….……………………………………….………….44 四、 結果與討論………………………………………………………..45 4-1. PAAc-PNIPAAm感溫性基質材料之結構分析實驗………......45 4-1-1 FT-IR分析…….………………………………………...46 4-1-2 1H NMR分析結果…….…………………………………..51 4-1-3 GPC鑑定數目平均分子量Mn…………… ……………..56 4-2. PAAc-PNIPAAm感溫性基質材料之基本性質測定……..........57 4-2-1 PAAc-PNIPAAm共聚合體相轉移溫度分析結果………..57 4-2-2 PAAc-PNIPAAm凝膠粒子之粒徑分析結果………….….62 4-2-3 PAAc-PNIPAAm線性共聚合體之含水率分析實驗結果..66 4-3.體外藥物釋放….………………………………………….…..68 4-3-1 PAAc-PNIPAAm凝膠粒子之藥物釋放分析……….……70 4-3-2 PAAc-PNIPAAm線性共聚合體之藥物釋放分析…….….73 4-3-3 PAAc-PNIPAAm線性共聚合體與凝膠粒子混合物藥物之釋放分析………………………………………………76 4-4 .PAAc-PNIPAAm感溫性基質材料之動物實驗結果…………..81 五、 結論…….………………………………………………………….87 六、 參考資料…………………………………………………………..90 圖目錄 圖1-1. 傳統輸藥劑型與釋放控制劑型血中藥物濃度變化之比較…..2 圖1-2. 眼的外觀………………………………………………………..7 圖1-3. 眼球水平斷面圖………………………………………………..8圖1-4. 前房隅角附近的構造…………………………………………10圖1-5. 虹彩、睫狀體之斷面圖……………………………………….10圖1-6. 角膜的橫切面…………………………………………..……..15圖1-7. Hoffman 之抗體分離程序示意圖……………………………22圖1-8. Cussler 之萃取分離程序示意圖……………………………..23圖1-9. 感溫性膠體應用機制示意圖…………………………..……..24圖1-10. 程序2之藥物釋放機制示意圖………………………….….25圖2-1. 研究設計……………………………………………………....28圖3-1. PAAc-co-PNIPAAm線性共聚合體之合成流程圖………….….37圖3-2. PNIPAAm-co-AAc凝膠粒子之合成流程圖……………………37 圖3-3. PNIPAAm-g-AAc接枝共聚合體之合成流程圖…………….….38圖4-1. PAAc-co-PNIPAAm雜亂共聚合體之FT-IR光譜圖…….….…45圖4-2. NIPAAm及NIPAAm寡聚合物之FT-IR光譜圖……….……….48圖4-3. NIPAAm寡聚合物、VA及NIPAAm巨單體之FT-IR光譜圖……49圖4-4. PAAc-g-PNIPAAm 線性共聚合體之FT-IR光譜圖.…….……..50圖4-5. PAAc-co-PNIPAAm線性共聚合體Rl 3之1H NMR光譜圖.….….51圖4-6. PNIPAAm聚合體之1H NMR光譜圖…………………….…….…53圖4-7. NIPAAm寡聚合物之1H NMR光譜圖……….……………..….…53圖4-8. NIPAAm巨單體 之1H NMR光譜圖………................................54 圖4-9. PAAc-g-PNIPAAm線性共聚合體G2l 50之1H NMR光譜圖….. 54 圖4-10.PAAc-co-PNIPAAm線性共聚合體之穿透度對溫度變化曲線.58圖4-11. PAAc-co-PNIPAAm凝膠粒子之穿透度對溫度變化曲線圖…58圖4-12. PAAc-co-PNIPAAm雜亂共聚合體之相轉移溫度對組成變化曲 線圖…………………………………………………………..59圖4-13. PAAc-g-PNIPAAm線性共聚合體之穿透度對溫度變化曲線 圖……………………………………………………………..60圖4-14. PAAc-co-PNIPAAm雜亂共聚合物與PAAc-g-PNIPAAm接枝共 聚合物之相轉移變化差異圖………………………………..61 圖4-15. PAAc-co-PNIPAAm凝膠粒子Rg 3a之粒徑分佈圖…………..62圖4-16. PAAc-co-PNIPAAm凝膠粒子Rg 5a之粒徑分佈圖….……….63圖4-17. PAAc-co-PNIPAAm凝膠粒子Rg 7a之粒徑分佈圖.…………63圖4-18. PAAc-co-PNIPAAm凝膠粒子Rg 3b之粒徑分佈圖.…………64圖4-19. PAAc-co-PNIPAAm凝膠粒子Rg 5b之粒徑分佈圖.…………64圖4-20. PAAc-co-PNIPAAm凝膠粒子Rg 7b之粒徑分佈圖.…………65圖4-21. PAAc-PNIPAAm線性共聚合體之含水率結果….……………67圖4-22. PAAc-PNIPAAm分子內氫鍵之示意圖…………………….67 圖4-23. PAAc-co-PNIPAAm凝膠粒子之藥物釋放曲線圖………...…72圖4-24. PAAc-co-PNIPAAm凝膠粒子之藥物釋放曲線以ln(Mt/Mo) 對 ln(min)作圖…………………………………………....72圖4-25. PAAc-PNIPAAm線性共聚合體之藥物釋放曲線圖................75 圖4-26. PAAc-PNIPAAm線性共聚合體之藥物釋放曲線以ln(Mt/Mo) 對 ln(min)作圖……………………………….……….…..75圖4-27. PAAc-g-PNIPAAm凝膠粒子包埋於PAAc-g-PNIPAAm線性共聚 合體混合物之藥物釋放示意圖……………………………78圖4-28. PAAc-g-PNIPAAm共聚合體混合物之藥物釋放曲線圖….....79 圖4-29. PAAc-g-PNIPAAm共聚合體混合物之藥物釋放曲線以ln(Mt/Mo)對ln(min)作圖………………………………..…………….79 圖4-30. PAAc-co-PNIPAAm凝膠粒子與PAAc-g-PNIPAAm線性共聚合體混合物(實驗組)之眼壓變化曲線圖…............................82 圖4-31. PAAc-co-PNIPAAm凝膠粒子與PAAc-g-PNIPAAm線性共聚合體混合物(對照組)之眼壓變化曲線圖……………….....83 圖4-32. PAAc-co-PNIPAAm凝膠粒子與PAAc-g-PNIPAAm線性共聚合體混合物之實驗組與對照組兩組之平均眼壓差值變化圖84 圖4-33. PAAc-co-PNIPAAm凝膠粒子與PAAc-g-PNIPAAm線性共聚合體混合物於兔眼之變化(施藥前)...………………………..85 圖4-34. PAAc-co-PNIPAAm凝膠粒子與PAAc-g-PNIPAAm線性共聚合體混合物於兔眼之變化(施藥三秒時)...…………………..85 圖4-35. PAAc-co-PNIPAAm凝膠粒子與PAAc-g-PNIPAAm線性共聚合體混合物於兔眼之變化(施藥十秒時).……………………86 表目錄 表1-1. 青光眼的分類……………………………………………...…11 表3-1. PAAc-co-PNIPAAm線性共聚合體之合成條件………….…….33 表3-2. PAAc-co-PNIPAAm凝膠粒子之合成條件…………….…....…34 表3-3. PAAc-g-PNIPAAm線性共聚合體之合成條件…………….…...36 表4-1. PAAc-co-PNIPAAm線性共聚合體成分組成表………….….....55 表4-2. PAAc-g-PNIPAAm線性共聚合體成分組成表………...….…...55 表4-3. GPC鑑定數目平均分子量之分析結果……………………….56 表4-4. PAAc-PNIPAAm凝膠粒子之平均粒徑…………………………65 表4-5. 擴散指數及各種形狀膠體之相對輸送機構........................…69 表4-6. PAAc-co-PNIPAAm凝膠粒子之擴散動力學常數k、擴散指數n與線性回歸常數R2…………………………………...…….….73 表4-7. PAAc-PNIPAAm線性共聚合體之擴散動力學常數k、擴散指數n與線性回歸常數R2……………………………………….….76 表4-8. PAAc-PNIPAAm線性共聚合體與凝膠粒子混合物之擴散動力學常數k、擴散指數n與線性回歸常數R2……….…….………..80rf 六、參考資料 1. T. Okano, N. Yui, M. Yokoyama, R. Yoshida, Advances in polymeric systems for drug delivery (1994) 2. 鄭建新, 化工技術 第二卷 第十期 (1994) 89~93 3. S.J. Holland, B.J. Tighe, P.L. Gould, J. Control. Release 4 (1986) 155 4. R.W. Baker, Controlled release of biologically active agents (1987), John Wiley & Sons 5. 邱信程, 化工技術 第七卷 第五期 (1999) 150~157 6. C. Underhill, A. Horfman, Exp. Cell Res. 117 (1978) 155 7. C.B. Underhill, B.P. Toole, J. Cell Biol. 82 (1979) 475 8. R.L. Goldberg, B.P. Toole, Arth. Rheum. 82 (1979) 475 9. D.C. West, S. Kumar, Exp. Cell Res. 183 (1989) 179 10. G.A. Peyman, G.W. Koa, Int. Ophthalmol. 10 (1987) 133 11. 劉佩芬, 小眼科書 (1997), 合記圖書出版社 12. 傅堯安, 長庚眼科, 第三卷 第二期 (1987) 706 13. 劉瑞玲, 臨床醫學 37 (1996) 315 14. 郭宜娟, 藥學雜誌, 第三十三卷 第一期 (1997) 121 15. 林子舜, 藥學雜誌, 第七卷 第一期 (1991) 38 16. C.H. Chiang, H.S. Huang, R.D. Schoenwald, J. Taiwan Pharm. Assoc. 38 (1986) 67 17. J. Sieg, J.R. Robinson, J. Pharm. Sci. 65 (1976) 1816 18. Maichuk, Invest. Ophthalmol. 14 (1975) 87 19. T.F. Patton, J.R. Robinson, J. Pharm. Sci. 64 (1975) 1312 20. I.M. Katz, W.M. Blackman, J. Ophthalmol. 83 (1977) 728 21. R. Bensinger, D.H. Shin, M.A. Kass, S.M. Podos, B. Becker, Ophthalmol. 15 (1976) 1008 22. S.E. Bloomfield, T. Miyata, M.W. Dunn, N. Bueser, K.H. Stenzel, A.L. Rubin, Arch. Ophthalmol. 96 (1978) 885 23. S.E. Bloomfield, T. Miyata, M.W. Dunn, K.H. Stenzel, S.S. Randle, A.L. Rubin, Arch. Ophthalmol. 95 (1977) 247 24. S. Miyazaki, K. Ishii, M. Takada, Chem. Pharm. Bull. 30 (1982) 3405 25. A. Gwon, L.R. Borrmann, E. Duzman, D.S. Ribins, D. Shen, Ophthalmol. 93 (1988) 82 26. R. Vansantha, P.K. Sehgal, K.P. Rao, Int. J. Pharm. 47 (1988) 95 27. A. Urtti, J.D. Popkin, G. Rock, T.Sendo, U. Finne, A.J. Repta, Int. J. Pharm. 61 (1990) 241 28. U. Finne, M. Hannus, A. Urtti, Int. J. Pharm. 78 (1992) 237 29. A. Gutowska, Y.H. Bae, H. Jacobs, J. Feijen, S.W. Kim, Macromolecules, 27 (1994) 4167 30. R. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai, T. Okano, Nature 347 (1995) 240 31. T. Okano, Y.H. Bae, S.W. Kim, Pulsed and self-regulated drug delivery, CRC Press, Boca Raton, Florida (1990) 32. A.S. Hoffman, J. Control. Release, 6 (1987) 297 33. K. Dusek, Responsive gels: volume transitionsⅡ, Advances in Polymer Science (1993) 34. Y. Osada, H. Okuzaki, H. Hori, Nature 355 (1992) 242 35. I.C. Kwon, Y.H. Bae, S.W. Kim, Nature 354 (1991) 291 36. G. Chen, A.S. Hoffman, Nature, 375 (1995) 49 37. G. Kiler, A.B. Scranton, N.A. Peppas, Macromolecules, 23 (1990) 4944 38. J.A. Walker, C.A. Vause, Sci. Am. 253 (1987) 253 39. C. Tanford, The hydrophobic effect, Wiley, New York (1973) 40. A. Bennaim, Hydrophobic interactions (1980) 41. Ignor Yu. Galaev, Bo Mattiasson, Enzyme Microb. Technol. 15 (1993) 354 42. A.S. Hoffman, J. Control. Release, 6 (1987) 297 43. G.H. Hsiue, R.W. Chang, C.H. Wang, S.H. Lee, Biomaterials, 24 (2003) 2423 44. N. A. Peppas. Analysis of Fickan and non-Fickian drug release from polymers. Pharm. Actahelv, 60 (1985) 110 45. A.S. Hoffman, A. Afrassiab, L.C. Dong, J. Controlled Release, 4 (1986) 213id NH0925063067 sid 913628 cfn 0 / id NH0925063068 auc 洪邦彥 tic WOx/TiO2可見光應答光觸媒之研究 adc 黃世傑博士 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 83 kwc 二氧化鈦 kwc 可見光 kwc 亞甲基藍 kwc 光觸媒 abc 本研究以複合半導體的方式來合成可見光應答光觸媒,所添加的半導體為氧化鎢,採用的方法為溶膠凝膠法。隨著鎢的前驅物添加之不同,所合成出的觸媒計有WOx/TiO2及WO3/TiO2兩大類。藉由亞甲基藍脫色實驗來測試其分別在可見光和紫外光下之光催化活性,再配合所檢測之觸媒物性,來解釋其光催化行為。 tc 目錄 第一章 緒論...............................................1 1.1 研究動機...............................................1 1.2 研究目的...............................................2 第二章 文獻回顧...........................................3 2.1 光催化.................................................3 2.2 二氧化鈦之簡介.........................................5 2.2.1 二氧化鈦之構造與特性........................5 2.2.2 二氧化鈦光催化之機制........................7 2.3 二氧化鈦之製備.........................................9 2.3.1 溶膠凝膠法..................................9 2.3.2 微乳液法...................................11 2.3.3 水熱法.....................................14 2.4 二氧化鈦光催化之改良..................................15 2.4.1 光催化活性之提升...........................15 2.4.1.1 複合半導體...................15 2.4.1.2 添加貴金屬....................18 2.4.1.3 過渡金屬離子之負載............20 2.4.2 可見光應答之提升...........................22 2.4.2.1 染料之添加...................22 2.4.2.2 過渡金屬之摻合................24 2.4.2.3 複合半導體....................27 2.4.2.4 離子植入法....................29 2.5 亞甲基藍之性質........................................31 2.6 亞甲基藍之動力學......................................34 第三章 材料及方法.........................................35 3.1 材料..................................................35 3.1.1 實驗藥品...................................35 3.1.2 實驗儀器及設備.............................36 3.2 實驗方法..............................................37 3.2.1 觸媒製備...................................37 3.2.1.1 WOx/TiO2的製備.................37 3.2.1.2 WO3/TiO2的製備.................38 3.2.2 物性分析...................................39 3.2.2.1 紫外光-可見光吸收光譜(UV-Vis).39 3.2.2.2 X光粉末繞射(XRD).............39 3.2.2.3 穿透式電子顯微鏡(TEM).........40 3.2.2.4 比表面積儀.....................40 3.2.3 光催化測試.................................41 3.2.3.1 吸附實驗........................41 3.2.3.2 光解實驗........................41 3.2.3.3 可見光光催化實驗................42 3.2.3.4 紫外光光催化實驗................43 蒂四章 結果與討論.........................................47 4.1 物性分析..............................................47 4.1.1 紫外光-可見光吸收分析......................47 4.1.2 X光粉末繞射分析.........................48 4.1.3 電子顯微鏡分析.............................49 4.1.4 比表面積分析...............................50 4.2 光催化活性檢測........................................51 4.2.1 背景實驗...................................51 4.2.1.1 吸附實驗........................51 4.2.1.2 直接光解實驗....................52 4.2.2 可見光活性測試.............................52 4.2.2.1 WOx/TiO2可見光活性測試.........53 4.2.2.2 WO3/TiO2可見光活性測試.........54 4.2.3 紫外光活性測試.............................55 4.2.3.1 WOx/TiO2紫外光活性測試.........55 4.2.3.2 WO3/TiO2紫外光活性測試.........56 第五章 結論...............................................71 參考文獻..................................................73 附錄......................................................78 圖目錄 圖2.1 光催化原理示意圖.....................................4 圖2.2 光催化與其他方法處理VOCs之年成本比較.................4 圖2.3 二氧化鈦相圖.........................................6 圖2.4 二氧化鈦晶體結構圖(a) Rutile (b) Anatase.............6 圖2.5 二氧化鈦光催化反應機制之動力學.......................8 圖2.6 微乳液法合成奈米粒子................................13 圖2.7 微乳液法合成二氧化鈦................................13 圖2.8 複合半導體經激發後之電子電洞對轉移能階圖............17 圖2.9 WO3/TiO2之能階圖....................................17 圖2.10 TiO2及Pt/TiO2觸媒上之Ti3+隨UV光照射時間關係圖......19 圖2.11 Au/TiO2系統之電子電洞傳遞圖........................19 圖2.12 過渡金屬離子負載於TiO2上之電子電洞對傳遞圖.........21 圖2.13 金屬離子摻入TiO2之氧化還原能力圖...................21 圖2.14 有添加染料的TiO2之電子傳遞圖.......................23 圖2.15 光敏化TiO2之UV-Vis圖...............................23 圖2.16 無摻雜、摻雜5及10mol%鉛的二氧化鈦之UV-Vis圖........25 圖2.17 粗估能隙差與摻入鉛的量之關係圖.....................26 圖2.18 (a)PVG (b)TiO2/PVG (c) TiO2/V/PVG (d) V/TiO2/PVG之 UV-Vis圖..................................................26 圖2.19 純TiO2及WOX-TiO2之UV-Vis圖.........................28 圖2.20 亞甲基藍經WOX-TiO2光催化後之濃度變化隨時間關係圖...28 圖2.21 (a) 0 (b) 2.2 (c) 6.6 (d) 13(單位:10-7mol/g)之Cr離子以離子植入法摻合入TiO2之UV-Vis圖........................30 圖2.22 (a)0 (b/) 16 (c/) 200 (d/)1000 (e/) 2000(單位:10-7mol/g)之Cr離子以化學方法摻合入TiO2之UV-Vis圖............30 圖2.23 亞甲基藍之吸收光譜圖...............................32 圖2.24 亞甲基藍的665nm吸收度與濃度之關係圖................33 圖3.1 實驗流程圖..........................................44 圖3.2 可見光實驗所用反應器示意圖..........................45 圖3.3 光源箱之光源波長範圍圖..............................45 圖3.4 紫外光濾片之穿透光譜圖..............................46 圖3.5 紫外光實驗所用反應器示意圖..........................46 圖4.1 WOx/TiO2之UV-Vis圖..................................58 圖4.2 WO3/TiO2之UV-Vis圖..................................58 圖4.3 JCPDS之TiO2的Anatase phase標準圖譜..................59 圖4.4 WOx/TiO2之XRD圖.....................................59 圖4.5 WO3/TiO2之XRD圖.....................................60 圖4.6 1.5%WOx/TiO2之TEM圖.................................60 圖4.7 3%WOx/TiO2之TEM圖...................................60 圖4.8 4.5%WOx/TiO2之TEM圖.................................61 圖4.9 6%WOx/TiO2之TEM圖...................................61 圖4.10 TiO2-1之TEM圖......................................61 圖4.11 TiO2-2之TEM圖......................................61 圖4.12 2%WO3/TiO2之TEM圖..................................62 圖4.13 4%WO3/TiO2之TEM圖..................................62 圖4.14 亞甲基藍之濃度與吸收度(663nm)之關係圖............62 圖4.15 WOx/TiO2之吸附量對時間關係圖.......................63 圖4.16 WO3/TiO2之吸附量對時間關係圖.......................63 圖4.17 亞甲基藍可見光之光解實驗圖.........................64 圖4.18 亞甲基藍紫外光之光解實驗圖.........................64 圖4.19 WOx/TiO2於可見光下之-ln(1-x) vs. t圖...............65 圖4.20 WO3/TiO2於可見光下之-ln(1-x) vs. t圖...............65 圖4.21 WOx/TiO2於紫外光下之-ln(1-x) vs. t圖...............66 圖4.22 添加WOx後之WOx/TiO2所形成新不純物能階圖............66 圖4.23 WO3/TiO2於紫外光下之-ln(1-x) vs. t圖...............67 表目錄 表4.1 各觸媒之晶粒大小一覽表(by XRD)....................68 表4.2 各觸媒之晶粒大小一覽表(by TEM)....................68 表4.3 各觸媒之比表面積一覽表..............................68 表4.4 各觸媒與亞甲基藍達吸附平衡時間一覽表................69 表4.5 WOx/TiO2之可見光一次反應速率常數一覽表..............69 表4.6 WO3/TiO2之可見光一次反應速率常數一覽表..............69 表4.7 WOx/TiO2之紫外光一次反應速率常數一覽表..............70 表4.8 WO3/TiO2之紫外光一次反應速率常數一覽表..............70rf Anpo, M., Takeuchi, M., Ikeue, K. and Dohshi, S. Design and development of titanium oxide photocatalysts operating under visible and UV light irradiation. The applications of metal ion-implantation techniques to semiconducting TiO2 and Ti/zeolite catalysts. Current Opinion in Solid State & Materials Science (2002), 6(5), 381-388 Anpo, M. and Takeuchi, M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of Catalysis (2003), 216(1-2), 505-516 Chhabra, V., Pillai, V., Mishra, B. K., Morrone, A. and Shah, D. O. Synthesis, Characterization, and Properties of Microemulsion Mediated Nanophase TiO2 Particles. Langmuir (1995), 11(9), 3307-11 Cho, Y., Choi, W., Lee, C. H., Hyeon, T. and Lee, H. I. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environmental Science and Technology (2001), 35(5), 966-970 Choi, W., Termin, A. and Hoffmann, M. R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. Journal of Physical Chemistry (1994), 98(51), 13669-79 Doong, R. A., Chen, C. H., Maithreepala, R. A. and Chang, S. M. The influence of pH and cadmium sulfide on the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspensions. Water Research (2001), 35(12), 2873-2880 Hoffmann, M. R., Martin, S. T., Choi, W. and Bahnemann, D. W. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews (Washington, D. C.) (1995), 95(1), 69-96 Iliev, V., Tomova, D., Bilyarska, L.; Prahov, L. and Petrov, L. Phthalocyanine modified TiO2 or WO3-catalysts for photooxidation of sulfide and thiosulfate ions upon irradiation with visible light. Journal of Photochemistry and Photobiology, A: Chemistry (2003), 159(3), 281-287 Inagaki, M., Nakazawa, Y., Hirano, M., Kobayashi, Y. and Toyoda, M. Preparation of stable anatase-type TiO2 and its photocatalytic performance. International Journal of Inorganic Materials (2001), 3(7), 809-811 Kang, M. Preparation of TiO2 photocatalyst film and its catalytic performance for 1,1'-dimethyl-4,4'-bipyridinium dichloride decomposition. Applied Catalysis, B: Environmental (2002), 37(3), 187-196 Klosek, S. and Raftery, D. Visible Light Driven V-Doped TiO2 Photocatalyst and Its Photooxidation of Ethanol. Journal of Physical Chemistry B (2001), 105(14), 2815-2819 Kumar, K. N. P., Keizer, K., Burggraaf, A. J.; Okubo, T., Nagamoto, H. and Morooka, S. Densification of nanostructured titania assisted by a phase transformation. Nature (London, United Kingdom) (1992), 358(6381), 48-51 Lettmann, C., Hinrichs, H. and Maier, W. F. Combinatorial discovery of new photocatalysts for water purification with visible light. Angewandte Chemie, International Edition (2001), 40(17), 3160-3164 Levin, E. M. and McMurdie, H. F. Phase diagrams for ceramists(figures 4150-4999), The American ceramic society, Inc. 1975, P76 Li, X. Z., Li, F. B., Yang, C. L. and Ge, W. K. Photocatalytic activity of WOx-TiO2 under visible light irradiation. Journal of Photochemistry and Photobiology, A: Chemistry (2001), 141(2-3), 209-217 Linsebigler, A. L., Lu, G. and Yates, J. T. Jr. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews (Washington, D. C.) (1995), 95(3), 735-58 Lyons, C. E., Turchi, C. and Gratson, D. Solving widespread low-concentration VOC air pollution problem:Gas photocatalytic oxidation answers the needs of many small businesses, The 88th Air&Waste Management Association, Annual Meeting, June 1995 Martin, C., Solana, G., Rives, V., Marci, G., Palmisano, L. and Sclafani, A. Physicochemical properties of WO3/TiO2 systems employed for 4-nitrophenol photodegradation in aqueous medium. Catalysis Letters (1997), Volume Date 1997, 49(3,4), 235-243 Mills, A. and Le H. S. An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology, A: Chemistry (1997), 108(1), 1-35 Rahman, M. M., Krishna, K. M., Soga, T., Jimbo, T. and Umeno, M. Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO2 thin films. Journal of Physics and Chemistry of Solids (1999), Volume Date 1999, 60(2), 201-210 Rajeshwar, K. Photoelectrochemistry and the environment. Journal of Applied Electrochemistry (1995), 25(12), 1067-82. Rampaul, A., Parkin, I. P., O'Neill, S. A., DeSouza, J., Mills, A. and Elliott, N. Titania and tungsten doped titania thin films on glass; active photocatalysts. Polyhedron (2003), 22(1), 35-44 Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E. and Hidaka, H. Exploiting the interparticle electron transfer process in the photocatalyzed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. Journal of Photochemistry and Photobiology, A: Chemistry (1995), 85(3), 247-55 Sjoeblom, J., Lindberg, R. and Friberg, S. E. Microemulsions - phase equilibria characterization, structures, applications and chemical reactions. Advances in Colloid and Interface Science (1996), 65, 125-287 Sonawane, R. S., Hegde, S. G. and Dongare, M. K. Preparation of titanium(IV) oxide thin film photocatalyst by sol-gel dip coating. Materials Chemistry and Physics (2002), 77(3), 744-750 Sopajaree, K., Qasim, S. A., Basak, S. and Rajeshwar, K. An integrated flow reactor-membrane filtration system for heterogeneous photocatalysis. Part I: experiments and modelling of a batch-recirculated photoreactor. Journal of Applied Electrochemistry (1999), 29(5), 533-539. Takahashi, T., Nakabayashi, H., Yamada, N. and Tanabe, J. Photocatalytic properties of TiO2/WO3 bilayers deposited by reactive sputtering. Journal of Vacuum Science & Technology, A: Vacuum, Surfaces, and Films (2003), 21(4), 1409-1413 Tang, H., Prasad, K., Sanilines, R., Schmid, P. E. and Levy, F. Electrical and optical properties of TiO2 anatase thin films. Journal of Applied Physics (1994), 75(4), 2042-7 Wang, C. Y., Liu, C. Y., Zheng, X., Chen, J. and Shen, T. The surface chemistry of hybrid nanometer-sized particles. I. Photochemical deposition of gold on ultrafine TiO2 particles. Colloids and Surfaces, A: Physicochemical and Engineering Aspects (1998), 131(1-3), 271-280 Wang, C. Y., Boettcher, C., Bahnemann, D. W. and Dohrmann, J. K. A comparative study of nanometer sized Fe(III)-doped TiO2 photocatalysts: synthesis, characterization and activity. Journal of Materials Chemistry (2003), 13(9), 2322-2329 Yasumori, A., Ishizu, K., Hayashi, S. and Okada, K. Preparation of a TiO2 based multiple layer thin film photocatalyst. Journal of Materials Chemistry (1998), 8(11), 2521-2524 Young, T. K., Kang. Y. S., Wan, I. L., Guang, J. C. and Young. R. D. Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction. Journal of Catalysis (2000), 191(1), 192-199 Yu, J. C., Tang, H. Y., Yu, J., Chan, H. C., Zhang, L., Xie, Y., Wang, H. and Wong, S. P. Bactericidal and photocatalytic activities of TiO2 thin films prepared by sol-gel and reverse micelle methods. Journal of Photochemistry and Photobiology, A: Chemistry (2002), 153(1-3), 211-219 Zhao, G., Kozuka, H., Lin, H. and Yoko, T. Sol-gel preparation of Tix-1VxO2 solid solution film electrodes with conspicuous photoresponse in the visible region. Thin solid films, (1999), 339(1-2), 123-128 林彥志, 1999, TiO2光觸媒電極分解亞甲基藍之變因探討及動力學研究, 國立台灣大學化學工程研究所碩士論文 陳富亮, 2003, 最新奈米光觸媒應用技術, 普林斯頓國際有限公司, 初版 魏國修, 1997, 利用TiO2薄膜光電催化亞甲基藍去色之反應動力學探討, 國立台灣大學化學工程研究所碩士論文id NH0925063068 sid 913625 cfn 0 / id NH0925063069 auc 鄭仲恩 tic 以超重力技術自排放氣體中移除二氧化碳 adc 談駿嵩 ty 碩士 sc 國立清華大學 dp 化學工程學系 yr 92 lg 中文 pg 75 kwc 二氧化碳 kwc 旋轉床 kwc 醇胺 kwc 超重力 abc 摘 要 tc 目 錄 頁次 摘要 1 目錄 2 圖目錄 4 表目錄 5 第一章 緒論 6 1-1前言 6 1-2處理CO2的方法 7 1-3工業上回收CO2的方法 9 1-4醇胺吸收CO2的反應機制 11 1-5 Higee技術相關文獻 13 1-6未來具應用潛力的技術 14 第二章 實驗方法 22 2-1實驗儀器 22 2-2實驗藥品 22 2-3吸收實驗 23 2-4流量和Analyzer的校正 24 2-5再生程序 25 第三章 高濃度CO2實驗結果與討論 27 3-1 總質傳係數KGa與Enhancement Factor(I) 27 3-2氣體/液體流量對KGa的影響 28 3-3 反應速率常數 29 3-4 CO2與吸收液莫耳數比對KGa的影響 31 3-5 溫度對KGa的影響 31 3-6 回流系統的探討 31 3-7 與傳統填充塔之KGa值比較 32 第四章 低濃度CO2實驗結果與討論 55 4-1 不同組合吸收液對CO2去除之影響 55 4-2 吸收液體積對CO2去除之影響 56 4-3 溫度對CO2去除影響 57 4-4 轉速對CO2去除影響 58 4-5 再生吸收液對CO2去除影響 59 第五章 結論 70 參考文獻 72 圖 目 錄 頁次 圖1.1 旋轉床構造示意圖 20 圖1.2 我國1990~2000年二氧化碳總排放量統計圖 21 圖2.1 實驗裝置圖 26 圖3.1 氣體流量與KGa關係圖 47 圖3.2 液體流量與KGa關係圖 48 圖3.3 CO2與吸收液負載比與KGa關係圖 49 圖3.4 Enhancement Factor (I)與QG關係圖 50 圖3.5 Enhancement Factor (I)與QL關係圖 51 圖3.6 QG在不同溫度與KGa關係圖 52 圖3.7 QG在不同溫度與KGa關係圖 53 圖3.8 回流系統中不同時間下之出口與進口CO2濃度比 54 圖4.1 吸收液組成對出口CO2濃度關係圖 65 圖4.2 吸收液體積對出口CO2濃度關係圖 66 圖4.3 操作溫度對出口CO2濃度關係圖 67 圖4.4 旋轉床轉速對出口CO2濃度關係圖 68 圖4.5 再生吸收液對出口CO2濃度關係圖 69 表 目 錄 頁次 表1.1 各種醇胺吸收劑優缺點之比較 17 表1.2 目前工業上採用的二氧化碳回收方法 18 表1.3 各醇胺吸收劑價格表 19 表3.1 0.5M PZ/0.5M MEA吸收數據表 33 表3.2 0.7M PZ吸收數據表 34 表3.3 0.5M PZ/0.5M AMP吸收數據表 35 表3.4 0.5M PZ/0.5M MDEA吸收數據表 36 表3.5 0.3M PZ/0.7M MEA吸收數據表 37 表3.6 0.3M PZ/0.7M AMP吸收數據表 38 表3.7 0.3M PZ/0.7M MDEA吸收數據表 39 表3.8 0.5M MEA/0.5M AMP吸收數據表 40 表3.9 1M MEA吸收數據表 41 表3.10 1M AMP吸收數據表 42 表3.11 1M MDEA吸收數據表 43 表3.12 溫度對KGa關係表 44 表3.13 回流系統中CO2出口對進口濃度比與時間關係表 45 表3.14 旋轉床與傳統填充塔的KGa值比較 46 表4.1 各種比例吸收液與CO2出口濃度關係表 60 表4.2 吸收液體積與CO2出口濃度關係表 61 表4.3 溫度與CO2出口濃度關係表 62 表4.4 轉速與CO2出口濃度關係表 63 表4.5 再生液與原液對CO2出口濃度關係表 64rf 參考文獻 [1 ]. Adisorn, A.; Paitoon, T. High-Efficiency Strctured Packing for CO2 Separation Using 2-Amino-2-Methyl-1-Propanol (AMP). Separation and Purification Technology 1997, 12, 67. [2 ]. Adisorn, A.; Amornvadee, V.; Paitoon, T. Behavior of the Mass-Transfer Coefficient of Structured Packings CO2 Absorbers with Chemical Reactions. Ind. Eng. Chem. Res. 1999, 38, 2044. [3 ]. Adisorn, A.; Paitoon, T. Mass Transfer Coefficients and Correlation for CO2 Absorption into 2-Amino-2-Methyl-1-Propanol (AMP) Using Structured Packing. Ind. Eng. Chem. Res. 1998, 37, 569. [4 ]. Amit, C. CO2 Capture Processes-Opportunities for Improved Energy Efficiencies. Energy Convers. Mgmt. 1997, 38, S51. [5 ]. Browning, J. G.; Weiland, H. R. Physical Solubility of Carbon Dioxide in Aqueous Alkanolamines via Nitrous Oxide Analogy. J. Chem. Eng. Data, 1994, 39, 817. [6 ]. Danckwerts, V. P. Gas-Liquid Reactions. McGraw-Hill, 1970. [7 ]. Hydrocarbon Processing Gas Process Handbook. McGraw-Hill, 1990, 69. [8 ]. Li, M. H.; Xiao, J.; Li, C. W. Kinetics of Absorption of Carbon Dioxide into Aqueous Solutions of 2-Amino-2-Methyl-1-Propanol + Monoethanolamine. Chem. Eng. Sci. 2000, 55, 161. [9 ]. Li, M. H.; Liao, C. H. Kinetics of Absorption of Carbon Dioxide into Aqueous Solutions of Monoethanolamine + N-Methyldiethanolamine. Chem. Eng. Sci. 2002, 57, 4569. [10 ]. Liu, H. S.; Lin, C. C.; Wu, S. C.; Hsu, S. W. Characteristics of a Rotating Packed Bed. Ind. Eng. Chem. Res. 1996, 35, 3590. [11 ]. Liu, H. S.; Chen, Y. S. Absorption of VOCs in a Rotating Packed Bed. Ind. Eng. Chem. Res. 2002, 41, 1583. [12 ]. Munjal, S.; Dudukovic, M. P.; Ramachandran, P. A. Mass Transfer in Rotating Packed Beds: I. Development of Gas-Liquid and Liquid-Solid Mass-Transfer Coefficients. Chem. Eng. Sci. 1989a, 44, 2245. [13 ]. Paitoon, T.; Meisen, A.; Lim, C. J. CO2 Absorption by NaOH, Monoethanolamine and 2-Amino-2-Methyl-1-Propanol Solutions in a Packed Column, Chem. Eng. Sci. 1992, 47, 381. [14 ]. Ramshaw, C.; Mallinson, R. H. Mass Transfer Process. U.S. Patent 4, 383, 255, 1981. [15 ]. Reid, C. R.; Prausnitz, M. J.; Poling, E. B. The Properties of Gases and Liquids. McGraw Hill, 4th Edition 1988. [16 ]. Rochelle, T. G.; Bishnoi, S. Absorption of Carbon Dioxide in Aqueous Piperazine/Methyldiethanolamine. AIChE Journal, 2002, 48, 2788. [17 ]. Rochelle, T.G.; Dang, H. CO2 Absorption Rate and Solubility in Monoethanolamine/Piperazine/Water. Separation and Purification Technology, 2003, 38, 337. [18 ]. Rochelle, T. G.; Bishnoi, S. Absorption of Carbon Dioxide into Aqueous Piperazine: Reaction Kinetics, Mass Transfer and Solubility. Chem. Eng. Sci. 2000, 55, 5531. [19 ]. Tan, C. S.; Lin, C. C.; Liu, W. T. Removal of Carbon Dioxide by Absorption in a Rotating Packed Bed. Ind. Eng. Chem. Res. 2003, 42, 2381. [20 ]. Trevour, K.; James, R. F. Distillation Studies in a High-Gravity Contactor. Ind. Eng. Chem. Res. 1996, 35, 4646. [21 ]. Tung, H. H.; Mah, R. S. H. Modeling of Liquid Mass Transfer in HIGEE Separation Process. Chem. Eng. Commun. 1985, 39, 147. [22 ]. Xu, S.; Wang, Y. W.; Frederick, O. D.; Alan, M. E. Rate of Absorption of CO2 in a Mixed Solvent. Ind. Eng. Chem. Res. 1991, 30, 1213. [23 ]. Xu, Z.; Zhang, C. F.; Qin, S. J.; Zheng, Z. S. A Kinetics Study on the Absorption of Carbon Dioxide into a Mixed Aqueous Solution of Methyldiethanolamine and Piperazine. Ind. Eng. Chem. Res. 2001, 40, 3785. [24 ]. 潘守保,以混合醇胺溶液(MEA+AMP)吸收二氧化碳溫室效應氣體之可行性研究,交通大學環境工程所碩士論文,民國87年 [25 ]. 曾映棠,化學溶劑吸收再生法回收廢氣中二氧化碳之溶劑使用成本分析,交通大學環境工程所碩士論文,民國91年。 [26 ]. 經濟部工業局,以吸收法回收二氧化碳之技術手冊,九十一年十一月。 [27 ]. 林佳璋;劉文宗,二氧化碳回收技術,工研院化工所。id NH0925063069 sid 913619 cfn 0 / id NH0925065001 auc 吳學亮 tic 樟腦衍生物為掌性配位基於不對稱合成之研究 adc 汪炳鈞 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 305 kwc 樟腦衍生物 kwc 掌性配位基 kwc 不對稱催化劑 kwc 不對稱氧化 kwc 不對稱加成 abc 本論文含三個部分:第一個部分是利用Ketopinic Acid衍生之Hydroxamic Acid為掌性配位基進行烯丙醇的不對稱環氧化反應;第二部分是利用Ketopinic Acid衍生之掌性胺基醇或是由樟腦磺酸製備而得之掌性胺基硫醇為掌性配位基進行不對稱二乙基鋅加成反應;第三部分是以第二部分所發展之掌性胺基硫醇應用在不對稱乙烯基鋅加成反應上。 tc 中文摘要…………………………………………………………………i 英文摘要(abstract)………………………………………………….iii 目錄……………………………………………………………………..v 第一章 緒論…………………………………………………………1 第二章 不對稱環氧化反應................................19 2-1文獻回顧..............................................19 2-2結果與討論…………………………………………………………37 2-3結論…………………………………………………………………53 第三章 不對稱二乙基鋅加成反應............................54 3-1文獻回顧..............................................54. 3-1結果與討論…………………………………………………………62 3-3新掌性配位基的構想與設計………………………………………66 3-4文獻回顧……………………………………………………………67 3-5結果與討論…………………………………………………………74 3-6結論…………………………………………………………………88 第四章 不對稱乙烯基鋅加成反應……………………………………89 4-1文獻回顧……………………………………………………………89 4-2結果與討論…………………………………………………………98 4-3結論……………………………………………………………….107 第五章 實驗部分…………………………………………………….108 5-1一般實驗方法…………………………………………………….108 5-2製備掌性hydroxamic acids 9之實驗步驟…………………….110 5-3製備掌性羧酸12之實驗步驟…………………………………….116 5-4製備掌性hydroxamic acids 11之實驗步驟……………….….121 5-5不對稱環氧化反應……………………………………………...129 5-6製備醯胺化合物16a-f之實驗步驟………………………………138 5-7還原醯胺化合物之實驗步驟…………………………………….145 5-8從樟腦磺酸製備 30之步驟………………………………………152 5-9製備31、32、33之實驗步驟…………………………………….157 5-10製備35-38之實驗步驟………………………………………….162 5-11二乙基鋅加成至醛類的標準步驟……………………………..167 5-12不對稱乙烯基鋅加成反應..............................184 參考文獻……………………………………………………….…...204 附錄一HPLC 分析之原始圖譜……………………………………...213 附錄二 氫核磁共振光譜………………………………….....…..250rf 1. (a) Stinson, S. C. Chem. Eng. News 1993, 71, 28. (b) Stinson, S. C. Chem. Eng. News 1994, 72, 38. (c) Stinson, S. C. Chem. Eng. News 1995, 73, 44. (d) Stinson, S. C. Chem. Eng. News 1997, 75, 38. 2. Blaschke, G.; Kraft, H. P.; Markgraf, H. Chem. Ber. 1980, 113, 2318. 3. Stinson, S. C. Chem. Eng. News 1992, 70, 46. 4. Stereoselective Synthesis; Helmchen, G.; Hoffmann, R. W.; Mulzer, J.; Schaumann, E.; Eds., Houben-Weyl, 1995. 5. (a) Santaniello, E.; Ferraboschi, P.; Grisenti, P.; Manzochi, A. Chem. Rev. 1992, 92, 1071. (b) Application of Biochemical System in Organic Chemistry; Jones, J. B.; Sih, C. J.; Perlman, D.; Eds., Wiley: New York, 1976. (c) Biocatalysts in Organic Syntheses. Studies in Organic Chemistry, 22; Tramper, J.; van der Plas, H. C.; Linko, P.; Eds., Elservier: Amsterdam, 1985. 6. (a) Asymmetric Synthesis, Morrison, J. D. Ed, Vol. 1-5, Academic, New York 1983. (b) Blaser H. U. Chem. Rev. 1992, 92, 935. 7. (a) Catalytic Asymmetric Synthesis, Ojima, I. Ed., VCH, Weinheim 1993. (b) Comprehensive Asymmetric Catalysis I-III, Jacobson, E. N.; Pfaltz, A.; Yamamoto, H. Eds., Springer, Berlin 1999. (c) Catalytic Asymmetric Synthesis, 2nd ed, Ojima, I. Ed., Wiley-VCH, New York 2000. (d) Principles And Application of Asymmetric Synthesis, Lin, G. Q.; Li, Y. M.; Chan, Albert S. C. Eds., Wiley-Interscience, New York 2001. 8. (a) Knowles, W. S. Acc. Chem. Res. 1983, 16, 106. (b) Knowles, W. S. Angew. Chem. Int. Ed. 2002, 41, 1998. 9. Young, J. F.; Osborn, J. A.; Jardine, F. H.; Wilkinson, G. Chem. Commun. 1965, 131. 10. (a) Ikariya, T.; Ishii, Y.; Kawano, H.; Arai, T.; Saburi, M.; Yoshikawa, S.; Akutagawa, S. Chem Commun. 1985, 922. 11. (a) Noyori, R.; Ohta, M.; Hsiao, Y.; Kitamura, M.; Ohta, T.; Takaya, H. J. Am. Chem. Soc. 1986, 108, 7117. (b) Ohta, T.; Takaya, H.; Noyori, R. Inorg. Chem. 1988, 27, 566. (c) Kitamura, M.; Tokunaga, M.; Noyori, R. J. Org. Chem. 1992, 57, 4053. (d) Takaya, H.; Ohta, T.; Inoue, S.; Tokunaga, M.; Noyori, R. Org. Synth. 1993, 72, 74. 12. For hydrogenation of allylic and homoallyic alcohols, see :(a) Takaya, H.; Ohta, T.; Sayo, N.; Kumobayashi, H.; Akutagawa, S.; Inoue, S.; Kasahara, I.; Noyori, R. J. Am. Chem. Soc. 1987, 109, 1596. (b) Takaya, H.; Ohta, T.; Sayo, N.; Kumobayashi, H.; Akutagawa, S.; Inoue, S.; Kasahara, I. Noyori, R. J. Am. Chem. Soc. 1987, 109, 4129. racemic allylic alcohos can be resolved by the BINAP- Ru(II)-catalyzed hydrogenation, see :(c) Kitamura, M.; Kasahara, I.; Manabe, K.; Noyori, R.; Takaya, H. J. Org. Chem. 1988, 53, 708. enantioselective hydrogenation of (Z)-2-acyl-1-benzylidene-1,2,3,4-tetrahydroquinolines, see :(d) Kitamura, M.; Hsiao, Y.; Noyori, R.; Takaya, H. Tetrahedron Tett. 1987, 28, 4829. (e) Kitamura, M.; Hsiao, Y.; Ohta, M.; Tsukamoto, M.; Ohta, T.; Takaya, H.; Noyori, R. J. Org. Chem. 1994, 59, 297. 13. (a) Tani, K.; Yamagata, T.; Otsuka, S.; Akutagawa, S.; Kumobayashi, H.; Taketomi, T.; Takaya, H.; Miyashita, A.; Noyori, R. Chem. Commun. 1982, 600. (b) Tani, K.; Yamagata, T.; Akutagawa, S.; Kumobayashi, H.; Taketomi, T.; Takaya, H.; Miyashita, A.; Noyori, R.; Otsuka, S. J. Am. Chem. Soc. 1984, 106, 5208. 14. Kitamura, M.; Nagai, K.; Hsiao, Y.; Noyori, R. Tetrahedron Tett. 1990, 31, 549. 15. (a) Henbest, H. B. Chem. Soc. Spec. Publ. 1965, 19, 83. (b) Ewins, R. C.; Henbest, H. B.; Mckervey, M. A. Chem. Commun. 1967, 1085 16. Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974. 17. Gao, Y.; Hanson, R.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765. 18. Klunder, J. M.; Ko, S. Y.; Sharpless, K. B. J. Org. Chem. 1986, 51, 3710. 19. Gao, Y.; Sharpless, K. B. J. Org. Chem. 1988, 53, 4081. 20. Hentges, S. G.; Sharoless, K. B. J. Am. Chem. Soc. 1980, 102, 4263. 21. Kwong, H. L.; Sorato, C.; Ogino, Y.; Chen, H.; Sharpless, K. B. Tetrahedron Tett. 1990, 31, 2999. (b) Ogino, Y.; Chen, H.; Kwong, H. L.; Sharpless, K. B. Tetrahedron Tett. 1991, 32, 3965. 22. Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K. S.; Kwong, H. L.; Morikawa, K.; Wang, Z. M.; Xu, D.; Zhang, X. L. J. Org. Chem. 1992, 57, 2768. 23. Wang, Z. M.; Kolb, H. C.; Sharpless, K. B. J. Org. Chem. 1994, 59, 5104. 24. Li, G.; Chang, H. T.; Sharpless, K. B. Angew. Chem. Int. Ed. 1996, 35, 451. 25. Rudolph, J.; Sennhenn, P. C.; Vlaar, C. P.; Sharpless, K. B. Angew. Chem. Int. Ed. 1996, 35, 2810. 26. Li, G.; Sharpless, K. B. Acta. Chem. Scand. 1996, 50, 649. 27. Bernet. S.; Vasella, A. Tetrahedron Lett. 1983, 24, 5491. 28. Ko, S. Y.; Lee, A. W. M.; Masamune, S.; Reed, L. A. III; Sharpless, K. B.; Walker, F. J. Science. 1983, 220, 949. 29. (a) Sharpless, K. B. Aldrichimica Acta 1979, 12, 63. (b) Gould, E. S.; Hiatt, R. R.; Irwin, K. C. J. Am. Chem. Soc. 1968, 90, 4573. 30. Michaelson, R. C.; Palermo, R. E.; Sharpless, K. B. J. Am. Chem. Soc. 1977, 99, 1990. 31. (a) Sharpless, K. B.; Verhoeven, T. R. Aldrichim. Acta. 1979, 99, 1990. (b) Sharpless, K. B. CHEMTECH. 1985, 15, 692. 32. Berrisford, D. J.; Bolm, C.; Sharpless, K. B. Angew. Chem. Int. Ed. Engl. 1995, 34, 1059. 33. Murase, N.; Hoshino, Y.; Oishi, M., Yamamoto, H. J. Org. Chem. 1999, 64, 338. 34. Bolm, C.; Kuhn, T. Synlett. 2000, 6, 899. 35. Hoshino, Y.; Yamamoto, H. J. Am. Chem. Soc. 2000, 122, 104. 36. Lin, C. C.; Wang, Y. C.; Hsu, J. L.; Chiang, C. C.; Su, D. W.; Yan, T. H. J. Org. Chem. 1997, 62, 3806. 37. Genov, M.; Kostova, K; Dimitrov, V. Tetrahedron: Asymmetry. 1997, 8, 1869. 38. Wu, H. L.; Uang, B. J. Tetrahedron: Asymmetry, 2002, 13, 2625. 39. Oguni, N.; Omi, T. Tetrahedron Lett. 1984, 25, 2823. 40. Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833. 41. Pu, L.; Yu, H. B. Chem. Rev. 2001, 101, 757. 42. Hursthouse, M. B.; Motevaili, M.; Obrien, P.; Walsh, J. R.; Jones, A. C. J. Mater. Chem. 1991, 1, 139. 43. Kitamura, M.; Suga, S.; Kawai, K.; Noyori, R. J. Am. Chem. Soc. 1986, 108, 6071. 44. Kitamura, M.; Okada, S.; Suga, S.; Noyori, R. J. Am. Chem. Soc. 1989, 111, 4028. 45. Yamakawa, M.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 6327. 46. Huang, C. D.; Uang, B. J. Tetrahedron: Asymmetry 1998, 9, 3979. 47. Radinov, R.; Oppolzer, W. Tetrahedron Lett. 1988, 29, 5645. 48. Kang, J.; Lee, J. W.; Kim, J. I. Chem. Commun. 1994, 2009. 49. Nakano, H.; Kumagai, N.; Matsuzaki, H.; Kabuto, C.; Hongo, H. Tetrahedron : Asymmetry 1997, 8, 1391. 50. Harding, M.; Anderson, J. C. Chem. Commun. 1998, 393. 51. Gibson, C. L. Tetrahedron: Asymmetry. 1999, 10, 1551. 52. Jimeno, C.; Moyano, A.; Riera, A.; Pericas, M. A. Synlett. 2001, 1155. 53. Rijnberg, E.; Jastrzebski, J. T. B. H.; Janssen, M. D.: Boersma, J.; van Koten, G. Tetrahedron: Lett. 1994, 35, 6521. 54. Oae, S.; Togo, S. Bull. Chem. Soc. Jpn. 1983, 56, 3802. 55. Campos, K. R.; Jounet, M.; Cai, D.; Kowai, J. J.; Lee, S.; Larsen, R. D.; Reider, P. J. J. Org. Chem. 2003, 68, 2338. 56. Eschweiler, W. Chem. Ber. 1905, 38, 880. 57. Dai, W. M.; Zhu, H. J.; Hao, X. J. Tetrahedron: Asymmetry. 2000, 11, 2315. 58. Kitamura, M.; Suga, S.; Niwa, M.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 4832. 59. (a) Fitzpatrick, K.; Hulst, R. Kellogg, R. M. Tetrahedron: Asymmetry. 1995, 8, 1861. (b) Kang, J.; Kim, J. B.; Kim, J. W.; Lee, D. J. Chem. Soc., Perkin Trans. II 1997, 189. 60. Puchot, C.; Samuel, O.; Duñach, E,; Zhao, S.; Agami, C.; Kagan, H. B. J. Am. Chem. Soc. 1986, 108, 2353. 61. Guillananeux, D.; Zhao, S.; Samuel, O.; Rainford, D.; Kagan, H. B. J. Am. Chem. Soc. 1994, 116, 9430. 62. Oppolzer, W.; Radinov, R. N. Helv. Chim. Acta. 1992, 75, 10. 63. Dahmen, S.; Bräse, S. Org. Lett. 2001, 3, 4119. 64. Chen, Y. K.; Lurain, A. E.; Walsh, P. J. J. Am. Chem. Soc. 2002, 124, 12225. 65. Lurain, A. E.; Walsh, P. J. J. Am. Chem. Soc. 2003, 125,10677. 66. Ji, J. X.; Qiu, L. Q.; Yip, C. W.; Chan, A. S. C. J. Org. Chem. 2003, 68, 1589. 67. Radinov, R. N.; Oppolzer, W. J. Am. Chem. Soc. 1993, 115, 1593. 68. Wipf, P.; Ribe, S. J. Org. Chem. 1998, 63, 6454. 69. Schwartz, J.; Labinger, J. A. Angew. Chem. Int. Ed. Engl. 1976, 15, 333.id NH0925065001 sid 863459 cfn 0 / id NH0925065002 auc 張文德 tic 氣相層析質譜儀及電子鼻技術於油品洩漏及運動鞋類中揮發性有機化合物之檢測分析及研究 adc 凌永健 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 130 kwc 揮發性有機化合物 kwc 電子鼻 kwc 油品洩漏 kwc 運動鞋 kwc 氣相層析質譜儀 abc 揮發性有機化合物是近十年來普遍被認為是影響土壤、空氣、水源及人體健康的一種污染物質。隨著工業化的發展許多的物質或是使用這些物質已經被證實可釋放出揮發性有機化合物,這些物質如汽油產品、有機溶劑、染料及黏著劑等。透過使用這些物質則有助於揮發性有機化合物釋放於環境中,或者因為人們的不當使用也是導致這些污染物逸散的原因之一。然而,藉由檢測這類物質的逸散濃度,可使我們瞭解環境遭受污染的程度,也可以進一步採取必要的整治或是預防措施。因此本論文發展氣相層析質譜及電子鼻技術應用於檢測油品洩漏及運動鞋類中揮發性有機化合物分析。本論文共分成四章: tc 第1章 緒論 1.1 前言 - 1 - 1.2 研究動機及目的 - 2 - 1.2.1 運用氣相層析質譜儀及主成分分析法於漏油的檢測 - 2 - 1.2.2 發展電子鼻快速分析法於檢測環境的漏油樣品 - 2 - 1.2.3 運用氣相層析質譜儀及主成分分析法於鞋材逸散氣體的檢測 - 3 - 1.3 參考文獻 - 4 - 第2章 建立氣相層析質譜與主成分分析技術以鑑定地下汽油儲槽洩漏 2.1 前言 - 5 - 2.1.1 汽油使用簡介 - 5 - 2.1.2 地下儲油槽介紹 - 7 - 2.1.3 分析方法簡介 - 9 - 2.1.4 主成分分析法簡介 - 10 - 2.2 研究動機 - 13 - 2.2.1 漏油及相關研究 - 13 - 2.2.2 研究目的 - 13 - 2.3 實驗部分 - 16 - 2.3.1 儀器設備 - 16 - 2.3.2 藥品來源 - 17 - 2.3.3 氣體及液體標準品製備方法 - 18 - 2.4 結果與討論 - 21 - 2.4.1 分析方法確效與QA/QC確認 - 21 - 2.4.2 定性及定量分析 - 22 - 2.4.3 加油站土壤監測井之真實樣品分析 - 23 - 2.4.4 汽油標準品GC/MS分析 - 25 - 2.4.5 油品的PCA分類 - 26 - 2.4.6 簡化PCA - 28 - 2.4.7 洩漏的地下儲油槽鑑定預測 - 29 - 2.5 結論 - 31 - 2.6 參考文獻 - 32 - 第3章 使用電子鼻做為油品洩漏及非法油行油品之快速檢測及使用氣相層析質譜儀確認 3.1 前言 - 53 - 3.1.1 漏油事件介紹 - 53 - 3.1.2 非法油行油品介紹 - 54 - 3.1.3 電子鼻介紹 - 54 - 3.2 研究動機 - 56 - 3.3 實驗部分 - 58 - 3.3.1 儀器設備 - 58 - 3.3.2 藥品與相關材料來源 - 58 - 3.3.3 實驗方法 - 59 - 3.4 結果與討論 - 61 - 3.4.1 油品洩漏之電子鼻分析 - 61 - 3.4.2 油品洩漏之GC/MS確認 - 63 - 3.4.3 非法油行油品之電子鼻分析 - 64 - 3.4.4 非法油行油品之GC/MS確認 - 65 - 3.5 結論 - 67 - 3.6 參考文獻 - 68 - 第4章 利用吸附管熱脫附法結合氣相層析質譜儀鑑定鞋材中逸散的揮發性有機化合物 4.1 前言 - 96 - 4.1.1 鞋子製造簡介 - 96 - 4.1.2 有機溶劑之影響 - 97 - 4.2 研究動機 - 98 - 4.2.1 研究緣由 - 98 - 4.2.2 研究目的 - 99 - 4.3 實驗部分 - 101 - 4.3.1 儀器設備 - 101 - 4.3.2 藥品與相關材料來源 - 102 - 4.3.3 實驗方法 - 103 - 4.4 結果與討論 - 104 - 4.4.1 定性及定量分析 - 104 - 4.4.2 線性、再現性及偵測極限 - 104 - 4.4.3 鞋子樣品測試 - 105 - 4.4.4 群聚分析及主成分分析 - 107 - 4.5 結論 - 110 - 4.6 參考文獻 - 111 - 第5章 總結及未來研究方向 5.1 論文總結………………………………………………………………- 125 - 5.2 未來研究方向…………………………………………………………- 126 -rf Reference 1. 環檢所 ''加油站漏油事件之地下水污染調查分析'' 環檢所環境檢驗通訊雜誌第42期, 2002. 2. 環保署 ''地下水潛在污染源調查計畫初步調查報告'' ww2.epa.gov.tw, 2000. 3. 馮晉嘉 ''電子鼻(Electronic nose)'' 工業技術研究院經資中心生醫組, 2002. 4. Lynge E.; Anttila A.; Hemminki K. ''Organic solvents and cancer.'' Cancer Cause Control, 1997, 8, 406-419. 5. Henke, S. "Underground - Storage Tanks - the Environmental - Health Role.'' J. Environ. Health, 1994, 56, 13-15. 6. 劉希平 "加油站之污染." 厚生雜誌, 2002, 12. 7. Fitzgerald, J. H. "Corrosion of Underground-Storage Tanks - Causes and Cures." Plant Eng., 1983, 37, 46-48. 8. 葉宗裕 "加油站地下儲油槽-談土壤及地下水污染." 環保訓練園地, 環訓所. 9. U.S. EPA "Approval of the state underground storage tank programs." Office of the federal register national archives and records administration, Code of Federal Regulations, CFR 40, parts 281. 10. Nadim, F.; Hoag, G. E.; Liu, S. L.; Carley, R. J.; Zack, P. "Detection and remediation of soil and aquifer systems contaminated with petroleum products: an overview." J. Petrol. Sci. Eng., 2000, 26, 169-178. 11. Day, M. J.; Reinke, R. F.; Thomson, J. A. M. "Fate and transport of fuel components below slightly leaking underground storage tanks (Reprinted Proceedings of the 2000 Petroleum Hydrocarbons and Organic Chemicals in Ground Water Conference, 2000)." Environ. Forensics, 2001, 2, 21-28. 12. 環保署 "地下水潛在污染源調查計畫初步調查報告." ww2.epa.gov.tw, 2000. 13. 行政院環保署 "新設加油站防止污染地下水體設施暨監測設備審查規範." 民國88年. 14. 趙民德 ''多變量分析(Multivariate Data Analysis)." 曉園出版社, 2000, 5. 15. Jolliffe, I. T. "Principle component analysis." 2002, Second edition. 16. Bence, A. E.; Kvenvolden, K. A.; Kennicutt, M. C. "Organic geochemistry applied to environmental assessments of Prince William Sound, Alaska, after the Exxon Valdez oil spill - A review." Org. Geochem., 1996, 24, 7-42. 17. Wang, Z. D.; Fingas, M.; Sigouin, L. "Using multiple criteria for fingerprinting unknown oil samples having very similar chemical composition." Environ. Forensics, 2002, 3, 251-262. 18. Boehm, P. D.; Page, D. S.; Burns, W. A.; Bence, A. E.; Mankiewicz, P. J.; Brown, J. S. "Resolving the origin of the petrogenic hydrocarbon background in Prince William Sound, Alaska." Environ. Sci. Technol., 2001, 35, 471-479. 19. Barakat, A. O.; Mostafa, A. R.; Qian, Y. R.; Kennicutt, M. C. "Application of petroleum hydrocarbon chemical fingerprinting in oil spill investigations - Gulf of Suez, Egypt." Spill Sci. Technol. B, 2002, 7, 229-239. 20. Etkin, D. S. "Oil spill intelligence report's white paper series." 1998, 2. 21. Etkin, D. S. "Oil spill intelligence report's white paper series." Cutter information Corp., 1997, 1. 22. Wang, Z. D.; Fingas, M.; Page, D. S. "Oil spill identification." J. Chromatogr. A, 1999, 843, 369-411. 23. Doble, P.; Sandercock, M.; Du Pasquier, E.; Petocz, P.; Roux, C.; Dawson, M. "Classification of premium and regular gasoline by gas chromatography / mass spectrometry, principal component analysis and artificial neural networks." Forensic Sci. Int., 2003, 132, 26-39. 24. Wang, Z. D.; Fingas, M.; Landriault, M.; Sigouin, L.; Xu, N. N. "Identification of Alkylbenzenes and Direct Determination of BTEX and (BTEX+C-3-Benzenes) in Oils by GC/MS." Anal. Chem., 1995, 67, 3491-3500. 25. Chung, H.; Choi, H. J.; Ku, M. S. "Rapid identification of petroleum products by near-infrared spectroscopy." B. Kor. Chem. Soc., 1999, 20, 1021-1025. 26. Steers, D.; Gerrard, C.; Hirst, B.; Sibbett, W.; Padgett, M. J. "Gasoline analysis and brand identification using a static Fourier-transform ultraviolet spectrometer." J. Opt. a-Pure Appl. Op., 1999, 1, 680-684. 27. U.S. EPA "Method-18, Measurement of gaseous organic compound emissions by gas chromatography." 1048-1118. 28. Zenetos, A.; Hatzianestis, J.; Lantzouni, M.; Simboura, M.; Sklivagou, E.; Arvanitakis, G. "The Eurobulker oil spill: mid-term changes of some ecosystem indicators." Mar. Pollut. Bull., 2004, 48, 122-131. 29. Short, J. W.; Lindeberg, M. R.; Harris, P. M.; Maselko, J. M.; Pella, J. J.; Rice, S. D. "Estimate of oil persisting on the beaches of Prince William Sound 12 years after the Exxon Valdez oil spill." Environ. Sci. Technol., 2004, 38, 19-25. 30. Mendelssohn, I. A.; Slocum, M. G. "Relationship between soil cellulose decomposition and oil contamination after an oil spill at Swanson Creek, Maryland." Mar. Pollut. Bull., 2004, 48, 359-370. 31. Garcia-Soto, C. "'Prestige' oil spill and Navidad flow." J. Mar. Biol. Assoc. Uk, 2004, 84, 297-300. 32. Anon "Locating oil spill sources." Futurist, 2004, 38, 15-15. 33. Ritter, S. "Lingering legacy of Valdez oil spill." Chem. Eng. News, 2003, 81, 11-11. 34. Bence, A. E.; Kvenvolden, K. A.; Kennicutt, M. C. "Organic geochemistry applied to environmental assessments of Prince William Sound, Alaska, after the Exxon Valdez oil spill - A review." Organic Geochem., 1996, 24, 7-42. 35. Wang, Z. D.; Fingas, M.; Sigouin, L. "Using multiple criteria for fingerprinting unknown oil samples having very similar chemical composition." Environ. Forensics, 2002, 3, 251-262. 36. Boehm, P. D.; Page, D. S.; Burns, W. A.; Bence, A. E.; Mankiewicz, P. J.; Brown, J. S. "Resolving the origin of the petrogenic hydrocarbon background in Prince William Sound, Alaska." Enviro. Sci. Technol., 2001, 35, 471-479. 37. Barakat, A. O.; Mostafa, A. R.; Qian, Y. R.; Kennicutt, M. C. "Application of petroleum hydrocarbon chemical fingerprinting in oil spill investigations - Gulf of Suez, Egypt." Spill Sci. & Technol. Bulletin, 2002, 7, 229-239. 38. Etkin, D. S. "Oil spill intelligence report's white paper series." 1998, 2. 39. Etkin, D. S. "Oil spill intelligence report's white paper series." Cutter information Corp., 1997, 1. 40. Wang, Z. D.; Fingas, M.; Page, D. S. "Oil spill identification." J. Chromatogr. A, 1999, 843, 369-411. 41. http://www.anp.gov.br. 42. Moreira, L. S.; d'Avila, L. A.; Azevedo, D. A. "Automotive gasoline quality analysis by gas chromatography: Study of adulteration." Chromatogr. A, 2003, 58, 501-505. 43. Castello, G.; Damato, G. "Mixed Porapak Columns for the Gas-Chromatographic Separation of Light-Hydrocarbons." Ann. Chim-Rome, 1979, 69, 541-549. 44. Castello, G.; Damato, G. "Gas-Chromatographic Analysis of Light-Hydrocarbons for the Characterization of Porapak Columns." J. Chromatogr., 1980, 196, 245-254. 45. Suri, S. K.; Prasad, K.; Ahluwalia, J. C.; Rogers, D. W. "Application of Phase-Titrations for Estimation of Adulteration of Gasoline and High-Speed Diesel with Kerosene." Talanta, 1981, 28, 281-286. 46. Bornhop, D. J.; Verga, G. R. "Gasoline Analysis by Rapid Scanning Absorbency Detection for Capillary Gas - Chromatography." Trac - Trend Anal. Chem., 1992, 11, 194-199. 47. 馮晉嘉 "電子鼻(Electronic nose)." 工業技術研究院經資中心生醫組, 2002. 48. Wu, T. Z. "A piezoelectric biosensor as an olfactory receptor for odourdetection: electronic nose." Biosensors & Bioelectronics, 1999, 14, 9-18. 49. Cunningham, A. J. "Introduction to bioanalytical sensors." 1998, 10-24. 50. http://cyranosciences.com. 51. Luo, D. H.; Hosseini, H. G.; Stewart, J. R. "Application of ANN with extracted parameters from an electronic nose in cigarette brand identification." Sensor Actuat. B-Chem., 2004, 99, 253-257. 52. Tokusoglu, O.; Balaban, M. O. "Correlation of odor and color profiles of oysters (Crassostrea virginica) with electronic nose and color machine vision." J. Shellfish Res., 2004, 23, 143-148. 53. James, D.; Scott, S. M.; O'Hare, W. T.; Ali, Z.; Rowell, F. J. "Classification of fresh edible oils using a coated piezoelectric sensor array-based electronic nose with soft computing approach for pattern recognition." T. I. Meas. Control, 2004, 26, 3-18. 54. Dodd, T. H.; Hale, S. A.; Blanchard, S. M. "Electronic nose analysis of tilapia storage." T. Asae., 2004, 47, 135-140. 55. Brudzewski, K.; Osowski, S.; Markiewicz, T. "Classification of milk by means of an electronic nose and SVM neural network." Sensor Actuat. B-Chem., 2004, 98, 291-298. 56. Kaipainen, A.; Ylisuutari, S.; Lucas, Q.; Moy, L. "A new approach to odour detection." Int. Sugar. J., 1997, 99, 403-408. 57. Freitas, A. M. C.; Parreira, C.; Vilas-Boas, L. "The use of an electronic aroma-sensing device to assess coffee differentiation - Comparison with SPME gas chromatography-mass spectrometry aroma patterns." J. Food Compos. Anal., 2001, 14, 513-522. 58. Alocija, E. C.; Ritchie, N. L.; Grooms, D. L. "Protocol development using an electronic nose for differentiating E-coli strains." Ieee. Sens. J., 2003, 3, 801-805. 59. Mantini, A.; Di Natale, C.; Macagnano, A.; Paolesse, R.; Finazzi-Agro, A.; D'Amico, A. "Biomedical application of an electronic nose." Crit. Rev. Biomed. Eng., 2000, 28, 481-485. 60. Ali, Z.; O'Hare, W. T.; Theaker, B. J. "Detection of bacterial contaminated milk by means of a quartz crystal microbalance based electronic nose." J. Therm. Anal. Calorim., 2003, 71, 155-161. 61. Delpha, C.; Lumbreras, M.; Siadat, M. "Discrimination and identification of a refrigerant gas in a humidity controlled atmosphere containing or not carbon dioxide: application to the electronic nose." Sensor Actuat. B-Chem., 2004, 98, 46-53. 62. Lorenz, J. K. "Using electronic nose technology and headspace GC/MS to monitor organoleptic properties and stability of fragrances and flavors." Abstr. Pap. Am. Chem. S., 2003, 226, U113-U113. 63. Stuetz, R. M.; George, S.; Fenner, R. A.; Hall, S. J. "Monitoring wastewater BOD using a non-specific sensor array." J. Chem. Technol. Biot., 1999, 74, 1069-1074. 64. Chen SW.; Ling YC. "An integrated use of electronic nose and mass spectrometers to determine the pollutant profiles in an industrial park." Pittsburgh Conference,Orlando, 2003, 1980-1982. 65. Doble, P.; Sandercock, M.; Du Pasquier, E.; Petocz, P.; Roux, C.; Dawson, M. "Classification. of premium and regular gasoline by gas chromatography/mass spectrometry, principal component analysis and artificial neural networks." Forensic Science International, 2003, 132, 26-39. 66. Wang, Z. D.; Fingas, M.; Landriault, M.; Sigouin, L.; Xu, N. N. "Identification of Alkylbenzenes and Direct Determination of BTEX and (BTEX+C-3-Benzenes) in Oils by GC/MS." Anal. Chem., 1995, 67, 3491-3500. 67. Chung, H.; Choi, H. J.; Ku, M. S. "Rapid identification of petroleum products by near-infrared spectroscopy." B. Kor Chem. Soc., 1999, 20, 1021-1025. 68. Steers, D.; Gerrard, C.; Hirst, B.; Sibbett, W. "Gasoline analysis and brand identification using a static Fourier-transform ultraviolet spectrometer." J. Opt. a-Pure Appl. Op., 1999, 1, 680-684. 69. 行政院勞委會 "製鞋工人有機溶劑暴露之研究報告." 民國77年. 70. 三芳化學股份有限公司 "NEO GREEN環保產品開發及品質提升." http://proj.moeaidb.gov.tw. 71. Administration, F. S. E. "Shoe manufacturing." www. vyh. fi/ tila/ilma/ paastot/shoe_production.doc. 72. Lynge, E.; Anttila, A.; Hemminki, K. "Organic solvents and cancer." Cancer Cause Control, 1997, 8, 406-419. 73. Costantini, A. S.; Quinn, M.; Consonni, D.; Zappa, M. "Exposure to benzene and risk of leukemia among shoe factory workers." Scand. J. Work Envron. Heal., 2003, 29, 51-59. 74. Uuksulainen, S. O.; Heikkila, P. R.; Olkinuora, P. S.; Kilunen, M. "Self-reported occupational health hazards and measured exposures to airborne impurities and noise in shoe repair work." Int. J. Occup. Envron. Heal., 2002, 8, 320-327. 75. Jockel, K. H.; Pohlabeln, H.; Bolm-Audorff, U.; Bruske-Hohlfeld, I.; Wichmann, H. E. "Lung cancer risk of workers in shoe manufacture and repair." Am. J. Ind. Med., 2000, 37, 575-580. 76. Tomei, F.; Giuntoli, P.; Biagi, M.; Baccolo, T. P.; Tomao, E.; Rosati, M. V. "Liver damage among shoe repairers." Am. J. Ind. Med., 1999, 36, 541-547. 77. Agnesi, R.; Valentini, F.; Mastrangelo, G. "Risk of spontaneous abortion and maternal exposure to organic solvents in the shoe industry." Int. Arch. Occ. Env. Hea., 1997, 69, 311-316. 78. Fu, H.; Demers, P. A.; Costantini, A. S.; Winter, P.; Colin, D.; Kogevinas, M.; Boffetta, P. "Cancer mortality among shoe manufacturing workers: An analysis of two cohorts." Occup. Environ. Med., 1996, 53, 394-398. 79. Mcdonald, A. D.; Mcdonald, J. C. "Outcome of Pregnancy in Leatherworkers." Brit. Med. J., 1986, 292, 979-981. 80. Clarke, M.; Mason, E. S. "Leatherwork - a Possible Hazard to Reproduction." Brit. Med. J., 1985, 290, 1235-1237. 81. Clarke, M.; Mason, E. S. "Shoe Manufacture and Possible Hazards to Reproduction." Brit. Med. J., 1988, 296, 466-466. 82. Yuasa, J.; Kishi, R.; Eguchi, T.; Harabuchi, I.; Kawai, T.; Ikeda, M.; Sugimoto, R.; Matsumoto, H.; Miyake, H. "Investigation on neurotoxicity of occupational exposure to cyclohexane: A neurophysiological study." Occup. Environ. Med., 1996, 53, 174-179. 83. Kawai, T.; Nakahara, Y.; Horiguchi, S.; Zhang, Z. W.; Higashikawa, K.; Ikeda, M. "Monitoring of occupational exposure to cyclohexanone by diffusive sampling and urinalysis." Biomarkers, 1999, 4, 328-341. 84. Yasugi, T.; Kawai, T.; Mizunuma, K.; Kishi, R.; Harabuchi, I.; Yuasa, J.; Eguchi, T.; Sugimoto, R.; Seiji, K.; Ikeda, M. "Exposure Monitoring and Health Effect Studies of Workers Occupationally Exposed to Cyclohexane Vapor." Int. Arch. Occ. Environ. Heal., 1994, 65, 343-350. 85. Gobba, F. "Occupational exposure to chemicals and sensory organs: A neglected research field." Neurotoxicology, 2003, 24, 675-691. 86. Directive, C. "1999/13/EC of 11 March 1999 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain activities and installations." 1999. 87. ASTM "D5116-97 Standard guide for small-scale environmental chamber determinations of organic emission from indoor materials/products." 1997. 88. Helmig, D. "Air analysis by gas chromatography." J. Chromatogr. A, 1999, 843, 129-146. 89. Yamamoto, N.; Matsubasa, T.; Kumagai, N.; Mori, S.; Suzuki, K. "A diffusive badge sampler for volatile organic compounds in ambient air and determination using a thermal desorption-GC/MS system." Anal. Chem., 2002, 74, 484-487. 90. 趙民德 ''多變量分析(Multivariate Data Analysis)." 曉園出版社, 2000, 5. 91. Jolliffe, I. T. "Principle component analysis." 2002, Second edition.id NH0925065002 sid 877409 cfn 0 / id NH0925065003 auc 陳思偉 tic 新竹科學工業園區高科技產業廢水分析與對承受水體之影響研究 adc 凌永健 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 146 kwc 新竹科學園區 kwc 客雅溪 kwc 放流水 kwc 重金屬 kwc 塑化劑 kwc 非離子型介面活性劑 kwc 生物毒性 abc 新竹科學園區至今以開發21年,為我國第一個高科技產業群落,現在已經發展成重要的科技基地。700公頃的園區範圍中聚集近400加工科技工廠,於2001年創造出近700的年營業額。由於大量的事業廢水竹科事業廢水經污水廠處理後排放至單一承受水體—客雅溪,再加上市區的民生污水,對客雅溪而言無疑的是相當沈重的負荷。 tc 第1章 序論 1 1.1 前言 1 1.1 研究背景 3 1.1.1 新竹科學園區 3 1.1.2 竹科廢水承受河川–客雅溪流域簡介 5 1.2 論文架構與研究方法 6 1.3 參考文獻 7 第2章 竹科高科技產業廢水與承受水體重金屬分析 13 2.1 前言 13 2.1.1 新竹科學園區 13 2.1.2 工業區河川中的重金屬分析 14 2.2 研究方法 15 2.2.1 採樣點介紹 15 2.2.2 採樣方法 17 2.2.3 樣品分析 18 2.2.4 主成份分析 21 2.3 結果與討論 22 2.3.1 竹科事業廢水分析結果 22 2.3.2 竹科雨水溝分析結果 29 2.3.3 承受水體水樣分析結果 29 2.4 結論 31 2.4.1 竹科事業廢水分析結論 32 2.4.2 雨水溝分析結論 33 2.4.3 承受水體分析結論 33 2.5 參考文獻 33 第3章 竹科高科技產業廢水與承受水體中的半揮發與非揮發性有機污染物分析研究 71 3.1 前言 71 3.2 研究方法 72 3.2.1 採樣點及採樣方法 72 3.2.2 樣品分析 74 3.3 結果與討論 75 3.3.1 竹科事業廢水分析結果 75 3.3.2 竹科雨水溝分析結果 78 3.3.3 承受水體分析結果 79 3.4 結論 81 3.4.1 竹科事業廢水分析結論 81 3.4.2 竹科雨水溝分析結論 81 3.4.3 承受水體分析結論 82 3.5 參考文獻 82 第4章 竹科事業廢水與承受水體之水質分析結果 104 4.1 前言 104 4.2 研究方法 105 4.2.1 採樣方法 105 4.2.2 樣品分析 105 4.3 結果與討論 108 4.3.1 竹科事業廢水分析結果 108 4.3.2 竹科雨水溝分析結果 112 4.3.3 承受水體水樣分析結果 112 4.4 結論 115 4.4.1 竹科事業廢水分析結論 115 4.4.2 竹科雨水溝分析結果 116 4.4.3 承受水體分析結論 117 4.5 參考文獻 118 第5章 總 結 141 5.1 新竹科學園區污水處理廠廢水 141 5.2 新竹科學園區產業廢水 142 5.2.1 半導體產業 142 5.2.2 光電產業 142 5.3 竹科雨水溝水體 143 5.4 竹科承受水體 143 5.5 對客雅溪的衝擊 144 5.6 參考文獻 146 表目錄 第1章 序 論 表1.2.1-1 竹科事業污水下水道可容納排入之水質標準……………..8 第2章 竹科高科技產業廢水與承受水體重金屬分析 表2.2.1-1 竹科事業廢水樣品分布表..................................................35 表2.2.1-2、竹科區內放流水管道一覽表..............................................35 表2.2.1-3 客雅溪溪水樣品分布表......................................................35 表2.3.1-1、污水處理廠目標重金屬之處理效率..................................36 表2.3.1-2 竹科事業廢水與污水放流水之重金屬平均濃度(μg/L).........................................................................................................37 表2.3.1-3 竹科事業廢水與污水放流水之重金屬統計濃度(μg/L) .......................................................................................................38 表2.3.1-4 竹科事業廢水重金屬平均濃度經污水放流口水樣之重金屬平均濃度標準化後之結果..................................................................39 表2.3.1-5 竹科事業廢水重金屬平均濃度經半導體產業廢水重金屬平均濃度標準化後之結果......................................................................40 表2.3.1-6 竹科事業廢水重金屬平均濃度經光電產業廢水重金屬平均濃度標準化後之結果..........................................................................41 表2.3.1-7 竹科代表事業廢水重金屬濃度與生物毒性測試結果......42 表2.3.2-1 竹科雨水溝放流水之重金屬平均濃度表(μg/L)..........43 表2.3.3-1、客雅溪各採樣點水樣之重金屬平均濃度表(μg/L)....44 表2.3.3-2、客雅溪水樣重金屬平均濃度經上游背景水樣(K2)之重金屬平均濃度標準化後結果......................................................................45 表2.3.3-3、客雅溪水樣重金屬平均濃度經廢水注入口(K3)水樣之重金屬平均濃度標準化後結果..................................................................46 表2.3.3-4、客雅溪水樣重金屬平均濃度經出海口(K5)水樣之重金屬平均濃度標準化後結果..........................................................................47 表2.3.3-5、排入客雅溪的每日貢獻量(Daily Loading)......................48 第3章 竹科高科技產業廢水與承受水體中的半揮發與非揮發性有機污染物分析研究 表3.1-1、國內公告為度性化學物質管之三種塑化劑.........................84 表3.2.2-1、7種塑化劑與17種非離子型界面活性劑待測物.............85 表3.3.1-1、竹科污水處理廠進水、出水端半揮發與非揮發性有機物濃度 (μg/L) 及污水廠之處理效率.......................................................86 表3.3.1-2、竹科代表性產業廠放流水中半揮發與非揮發性有機物濃度 (μg/L) ................................................................................................86 表3.3.1-3、 竹科各產業廢水濃度經污水處理廠出水之濃度標準化後結果..........................................................................................................87 表3.3.2-1 a、竹科雨水溝D03、D04中的半揮發與非揮發性有機物濃度(μg/L) ..............................................................................................87 表3.3.2-1 b、竹科雨水溝D08、D09中的半揮發與非揮發性有機物濃度(μg/L) ..............................................................................................88 表3.3.2-2、五雨水溝之平均分析結果與污水處理廠(WWTP)水樣平均分析結果(μg/L) ..................................................................................88 表3.3.2-3、竹科雨水溝樣品分析結果經污水廠樣品標準化後結果..89 表3.3.2-4、竹科雨水溝與污水廠分析結果經D03標準化後結果.....89 表3.3.3-1、客雅溪流域水中半揮發與非揮發性有機物濃度(μg/L)...90 表3.3.3-2、客雅溪流域各採樣點分析結果經污水處理廠放流水濃度標準化後結果..........................................................................................90 表3.3.3-3、客雅溪流域各採樣點分析結果經K3 (牛埔橋) 濃度標準化後結果..................................................................................................91 第4章 竹科事業廢水與承受河川之水質分析結果 表4.1-1、陸域地面水體水質標準.......................................................119 表4.1-2、陸域水體分類適用表...........................................................119 表4.3.1-1、竹科污水處理廠入出水口分析結果................................120 表4.3.1-2、污水處理廠入出口統分析結果........................................120 表4.3.1-3、竹科之半導體產業水質與陰離子統計分析結果............121 表4.3.1-4、竹科之光電產業水質與陰離子統計分析結果................122 表4.3.1-5、竹科之生技產業水質與陰離子統計分析結果................123 表4.3.1-6、竹科產業水質與陰離子分析經半導體產業廢水分析數據標準化後結果........................................................................................124 表4.3.1-7、竹科產業水質與陰離子分析經光電產業廢水分析數據標準化後結果............................................................................................125 表4.3.2-1、雨水溝傳統水質項目與陰離子分析結果........................126 表4.3.2-2、雨水溝傳統水質項目與陰離子分析結果經生活污水標準化後結果................................................................................................127 表4.3.3-1、客雅溪流域水質分析項目與陰離子分析結果................128 表4.3.3-2、客雅溪流域水質分析結果經注水口下游(K2)標準化後結果............................................................................................................129 表4.3.3-3、客雅溪流域水質分析結果經市區污水匯入後的牛埔橋(K3)分析結果標準化後結果.................................................................130 表4.3.3-4、客雅溪流域水質分析結果經各採樣點大腸桿菌對數(logE. Coli)標準化後結果................................................................................131 表4.3.3-5、客雅溪採樣點經取對數之大腸桿菌指數標準化後的各採樣點水質分析項目增加倍率................................................................132 表4.4.1-1、竹科污水廠可能每日排放量(kg)................................132 圖目錄 第1章 序 論 圖1.2.1-1 、新竹科學園區範圍示意圖………………………….……9 圖1.2.1-2、竹科污水處理廠處理流程示意圖………………………..10 圖1.2.1-3、竹科各雨水溝位置示意圖……………………………….11 圖1.2.1-4、竹科與客雅溪流域採樣點示意圖……………………….12 第2章 竹科高科技產業廢水與承受水體重金屬分析 圖2.1-1、典型的積體電路製造流程(摘自國家奈米元件實驗室網頁)..........................................................................................................49 圖2.1-2、典型的TFT-LCD模組製造流程(摘自友達光電網頁)..49 圖2.2.1-1、竹科工廠之事業廢水採樣情況,左上圖為一矽半導體廠;右圖為一記憶體晶片製造廠;左下圖為一LED製造廠............50 圖2.2.1-2、竹科雨水溝採樣情況,左上為D02廢水放流口之法定採樣口;右上圖為D04雨水溝;左下圖為D09雨水溝;右下圖為D08雨水溝......................................................................................................51 圖2.2.1-3、客雅溪水樣採集情況,左一圖為中興橋採樣點;中圖為當賢橋採樣點;右上圖為牛埔橋採樣點;左下圖為香雅橋採樣點..52 圖2.2.2-1(a)、水體採樣用採樣勺.........................................................53 圖2.2.2-1(b)、水體採樣用深層水採樣器.............................................53 圖2.2.3-1、本研究所使用的重金屬分析設備Perkin Elmer Elan 5000 感應耦合電漿質譜儀..............................................................................54 圖2.3.1-1、半導體、光電產業與放流水之重金屬相對濃度圖(以放流水為分母)..........................................................................................55 圖2.3.1-2、三種竹科主要產業之重金屬雷達指紋圖(相對於事業廢水濃度) ........................................................................................................56 圖2.3.1-3、生技產業之重金屬污染物雷達指紋圖..............................57 圖2.3.1-4 (a)、半導體產業重金屬污染物雷達指紋圖譜.....................58 圖2.3.1-4 ( b)、三種半導體相關產業重金屬污染物雷達指紋圖譜...58 圖2.3.1-5 ( b)、三種半導體相關產業重金屬污染物雷達指紋圖.......59 圖2.3.1-5 (a)、半導體產業重金屬污染物雷達指紋圖........................59 圖2.3.1-6、半導體、光電產業與放流水之重金屬經圖(以半導體產業廢水為分母)......................................................................................60 圖2.3.1-7、半導體、光電產業與放流水之重金屬相對濃度圖(以光電產業廢水為分母)..............................................................................61 圖2.3.1-8、竹科廢水重金屬之PCA三維分析結果,以重金屬為變數..............................................................................................................62 圖2.3.1-9、竹科廢水重金屬之PCA二維分析結果,以重金屬為變數..............................................................................................................63 圖2.3.1-10、竹科廢水重金屬去除異常排放工廠E之PCA二維分析結果,以重金屬為變數..........................................................................64 圖2.3.1-11、竹科廢水重金屬之PCA二維分析結果,以重金屬為變數..............................................................................................................65 圖2.3.1-12、將四水樣的生物毒性與重金屬濃度進行PCA分析之三維分析結果..............................................................................................66 圖2.3.2-1、竹科雨水溝中水樣平均重金屬濃度 (μg/L)..............67 圖2.3.2-2、事業廢水及雨水溝進行主成份分析之二維結果示意圖..68 圖2.3.3-1、客雅溪水中金屬濃度經注入口上游(K2)濃度標準化後結果..............................................................................................................69 圖2.3.3-2、污水處理廠放流水與客雅溪水樣品重金屬濃度進行PCA分析之二維分析結果..............................................................................70 第3章 竹科高科技產業廢水與承受水體中的半揮發與非揮發性有機污染物分析研究 圖3.1-1環境荷爾蒙化合物的化學結構:(a)辛基苯酚,(b)壬基苯酚,和(c)17貝他-雌二醇雌激素.................................................................92 圖3.2.2-2、本研究所使用之LC/MS 為ThermoQuest 的Finnigan LCQ Duo ....................................................................................................93 圖3.2.2-1、塑化劑與非離子界面活性劑分析流程圖..........................94 圖3.3.1-1、廢水經污水處理廠廢水標準化後的相對雷達圖..............95 圖3.3.1-2、竹科事業廢水分析目標物與生物毒性之PCA 2D分析結果..............................................................................................................96 圖3.3.1-3、竹科事業廢水分析目標物與生物毒性之PCA 3D分析結果..............................................................................................................97 圖3.3.2-1 a、塑化劑與非離子型界面活性劑分析結果雷達圖,上排由做至右為D03、D04、D08................................................................98 圖3.3.2-1 b、塑化劑與非離子型界面活性劑分析結果雷達圖,上排由做至右為D09、D10、WWTP(D01)............................................................................................99 圖3.3.2-2、竹科雨水溝中塑化劑與非離子型界面活性分析............100 圖3.3.3-1、客雅溪流域各採樣點濃度經污水廠(WWTP)標準化後的分析結果................................................................................................101 圖3.3.3-2、客雅溪流域各採樣點濃度經市區採樣點K3(牛埔橋)標準化後的分析結果....................................................................................102 圖3.3.3-3、客雅溪流域各採樣點與污水處理廠之PCA分析結果..103 第4章 竹科事業廢水與承受河川之水質分析結果 圖4.2.2-2、O.I. Analytical Model 1010總有機碳分析儀.................133 圖4.2.2-1、Metrohm離子層析............................................................133 圖4.3.1-1、竹科污水廠入/出水口傳統水質分析項目與陰離子分析雷達圖........................................................................................................134 圖4.3.1-2、廢水傳統水質項目與陰離子分析結果之二維PCA圖..135 圖4.3.1-3、廢水傳統水質項目與陰離子分析結果之三維PCA圖..136 圖4.3.1-4、傳統水質分析項目與生物毒性之PCA分析結果..........137 圖4.3.2-1、竹科雨水溝傳統水質分析項目與陰離子分析雷達圖....138 圖4.3.3-1、客雅溪流域水質分析項目分析結....................................139 圖4.3.3-2、客雅溪流域水質分析項目經各點大腸桿菌對數值標準化後之分析結果........................................................................................140rf 第一章 1. 張俊彥,蔡清彥 「國家矽導計畫」, 2001, http://www.eic.nctu.edu.tw/SOC/set.htm 2. 行政院經建會, 「新世紀國家建設計畫」, 2000 , 三民書局 3. 行政院經建會,「挑戰2008-兩兆雙星產業推動計畫」, 2001 4. 邱花妹, 「科學園區真能成為綠色矽島?」, 天下雜誌, 2000, http://news.yam.com/cw/cw_business/200005/11/15236300.html 5. US EPA, http://www.epa.gov/superfund/ 6. Join venture’s index of silicon valley, 2004 http://www.jointventure.org/2004index/about.html 7. 行政院環保署, 2004 http://ww2.epa.gov.tw/enews/Newsdetail.asp?InputTime=0910426152902 8. 新竹科學園區管理局網頁, 2004, http://www.sipa.gov.tw/ 9. 新竹科學園區污水處理廠介紹, 2004, http://pavo.sipa.gov.tw/wastewater/index.htm 10. 環保署, 「客雅溪、中港溪、南崁溪流域水環境生態調查與水質生物指標建置」, EPA-91-G103-02-221, 2003 第二章 [1 ] SIPA 2004. http://www.sipa.gov.tw/ [2 ] NDL 2004. http://www.ndl.gov.tw/ [3 ] Chen, C.U. 1998. [4 ] El-kaeeh, B. Foundmentals of semiconductor processing technologies, 1995. [5 ] 友達光電 AUO 2004. http://auo.com/ [6 ] CorpWatch 2003. [7 ] Coalation, S. V. T. 2003. [8 ] Tariq, J.; Ashraf, M.; Jaffar, M. Toxicological and Environmental Chemistry 1993, 38, 175-181. [9 ] Schuhmacher, M.; Domingo, J. L.; Llobet, J. M.; Corbella, J. Journal of Environmental Science and Health Part a-Environmental Science and Engineering & Toxic and Hazardous Substance Control 1995, 30, 1361-1372. [10 ] Quemerais, B.; Lum, K. R.; Lemieux, C. Aquatic Sciences 1996, 58, 52-68. [11 ] Hatje, V.; Bidone, E. D.; Maddock, J. L. Environmental Technology 1998, 19, 483-487. [12 ] Soylak, M.; Uzun, A.; Elci, L. Kuwait Journal of Science & Engineering 2001, 28, 151-160. [13 ] Das, S.; Jana, B. B. Chemosphere 2003, 52, 161-173. [14 ] Losi, M. E.; Frankenberger, W. T. Water Air and Soil Pollution 1994, 74, 405-413. [15 ] Voutsa, D.; Zachariadis, G.; Camara, C.; Kouimtzis, T. Journal of Environmental Science and Health Part a-Environmental Science and Engineering & Toxic and Hazardous Substance Control 1996, 31, 657-671. [16 ] Szafnicki, K.; Bourgois, J.; Graillot, D.; Di Benedetto, D.; Breuil, P.; Poyet, J. P. Water Research 1998, 32, 2480-2490. [17 ] Qu, W. C.; Dickman, M.; Wang, S. M. Hydrobiologia 2001, 450, 83-89. [18 ] Ho, T. L. T.; Egashira, K. Communications in Soil Science and Plant Analysis 2000, 31, 2901-2916. [19 ] Xao, M. D. H., B.C. Multivariate data analysis, 2000. [20 ] CHEN, S. U. Multivariate data analysis, 1998. 第三章 [1 ] Keith, L. H. PURE AND APPLIED CHEMISTRY 1998, 70, 2319-2326. [2 ] Chung, B. F. [3 ] Di, C. A. JOURNAL OF CHROMATOGRAPHY A 1998, 794, 165-185. [4 ] Ding, W. S. Journal OF Environmental Analysis Communication 2002, 40. [5 ] Petrovic, M.; Barcelo, D. ANALYTICAL CHEMISTRY 2000, 72, 4560-4567. 第四章 [1 ] Nyholm, N. Water Science and Technology 1992, 25, 449-456. [2 ] Becares, E.; Garciaolivares, A. J. Water Science and Technology 1994, 30, 229-232. [3 ] Brorson, T.; Bjorklund, I.; Svenstam, G.; Lantz, R. Environmental Toxicology and Chemistry 1994, 13, 543-552. [4 ] Poole, A. J.; Cord-Ruwisch, R.; Jones, F. W. Water Research 1999, 33, 1981-1988. [5 ] Jordao, C. P.; Pereira, M. G.; Bellato, C. R.; Pereira, J. L.; Matos, A. T. Environmental Monitoring and Assessment 2002, 79, 75-100. [6 ] Santiago, S.; Thomas, R. L.; Larbaigt, G.; Corvi, C.; Rossel, D.; Tarradellas, J.; Gregor, D. J.; Mccarthy, L.; Vernet, J. P. Aquatic Sciences 1994, 56, 220-242. [7 ] Neal, C.; Williams, R. J.; Neal, M.; Bhardwaj, L. C.; Wickham, H.; Harrow, M.; Hill, L. K. Science of the Total Environment 2000, 251, 441-457. 第五章 [1 ] DeBusk, W. F. http://edis.ifas.ufl.edu/SS400 2001. [2 ] Degenhardt, D. A.; Fromuth, C. C. Environmental Monitoring and Assessment 1993, 26, 235-247. [3 ] Pickett, P. J. Journal of the American Water Resources Association 1997, 33, 465-480. [4 ] TCEQ http://www.tnrcc.state.tx.us/water/quality/tmdl/need2know.html 2004. [5 ] USEPA http://www.epa.gov/owow/tmdl/intro.htm 2004. [6 ] TWEPA http://ivy2.epa.gov.tw/nsdn/download/intsus-c.doc 2003. [7 ] Yu, S. L. http://www.epa.gov.tw/cooperation/中美雙邊合作環保計畫/epa-ww8g.html 1999. [8 ] Sarakinos HC, B. N., White PA, Rasmussen JB ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2000, 19, 63-71. [9 ] Bailey HC, K. R., Elphick JR, Mulhall AM, Hunt P, Tedmanson L, Lovell A ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2000, 19, 72-81.id NH0925065003 sid 887425 cfn 0 / id NH0925065004 auc 洪國維 tic 人體纖維母細胞生長因子受體之第二功能區塊在結構與性質的探討 adc 余靖 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 英文 pg 148 kwc 纖維母細胞生長因子 kwc 第二功能區塊 kwc β-摺板蛋白 kwc 液態結構 kwc 再摺疊 kwc 核磁共振 abc 人體纖維母細胞生長因子(FGF)在細胞中所調節的機制過程非常廣泛,其生物活性主要是藉由和細胞表面受體(FGF receptor)之間的結合來傳達.在本研究當中,我們已經成功地利用大腸桿菌(E. coli)將表面受體中的第二功能區塊(domain 2)蛋白表達出來,並經由各種純化步驟得到大量的高純度蛋白.在蛋白質結構的初步鑑定上,經由圓二色光譜儀(circular dichroism, CD)和化學位移預測法(chemical shift index, CSI)我們可以得知, 第二功能區塊蛋白主要是由9個β摺板(β-sheet)所組成.至於第二功能區塊蛋白的生物活性,則是透過恆溫滴定熱卡計(isothermal titration calorimetry, ITC)和尿素變性實驗(Urea-induced denaturation),來加以證實第二功能區塊蛋白和配體(ligand,包括FGF, heparin和SOS)之間的結合作用力. tc Chapter 1. Introduction 1.1 The Function and Structure of FGFs ……………………...……… 1 1.2 FGFs and Heparin Binding ……………………………………….. 5 1.3 Role of Heparin in the Cell Proliferation Activity of FGFs ……… 7 1.4 FGF Receptor(s)-Ligand Interaction ………………...…………… 9 1.5 Significance of the D2 Domain in FGF Receptor ………………... 18 Chapter 2. Molecular Cloning, Overexpression, Purification and Characterization of the D2 Domain of the Human Basic Fibroblast Growth Factor Receptor 2.1 Introduction ………………………………………………………. 25 2.2 Materials and Methods …………………………………………… 27 2.3 Results and Discussions ………………………………...………… 32 The D2 protein was expressed as inclusion bodies ………………... 32 Purification of the D2 domain ……………………………………... 35 Secondary structure of the D2 domain …………………………….. 38 Stability of the D2 domain ……...………………………………….. 39 Heparin binding affinity …………………………………………… 44 D2 domain-FGF interaction ………...……………………………… 46 NMR analysis of the D2 domain …………………………………... 48 Chapter 3. Resonance Assignments of the D2 Domain of the Human Basic Fibroblast Growth Factor Receptor 3.1 Introduction ………………………………………………………. 50 3.2 Materials and Methods …………………………………………… 51 3.3 Results and Discussions …………………………………………... 53 Triple-resonance experiments of the D2 domain …………………... 53 Heteronuclear experiments of the D2 domain ……………………... 56 Reverse-selective 15N-labeling experiments of the D2 domain ……. 59 Extent of assignments and data deposition of the D2 domain ……... 63 Chemical Shift Index ………………………………………………. 63 Chapter 4. Structure Determination and 15N NMR Relaxation Studies of the D2 Domain of the Human Basic Fibroblast Growth Factor Receptor 4.1 Introduction ……………………………………………....………. 71 ARIA- CNS ………………………………………………..….…... 71 Residual dipolar coupling constants (RDCs) ………………...……. 72 15N NMR relaxation …………………………………….……..…... 73 4.2 Materials and Methods …………………………………..….…… 75 Constraints for structure calculation ……………………..…..……. 75 Structure calculation ………………………………………..….….. 81 Measurement of NMR relaxation times ………………….….….… 82 4.3 Results and Discussions ………………………………….…..…... 85 Distance restraints………………………………………………….. 85 Dihedral angle restraints…………………………………….…..…. 87 Long range restraints …………………………………………...…. 87 Parameters for structure calculations …………………………...…. 89 Structure calculations and quality of calculated structures ……...… 89 Structure description and comparison between solution andcrystal structures ……………….………………………………..… 98 15N NMR relaxation measurements ……………………………...... 103 Chapter 5. Molecular Interaction of the D2 Domain of the Human Basic Fibroblast Growth Factor Receptor 5.1 Introduction ……………………………………………………... 107 Characterization of Binding Sites ………………………………... 107 Investigation of oligomerization …………………………………. 109 Structure-Activity Relationship (SAR) …………………………... 111 5.2 Materials and Methods ………………………………………….. 112 5.3 Results and Discussions ………………………………………… 114 D2/ hFGF1 interactions …………………………………………... 114 D2/ SOS interactions ……………………………………………... 122 Minimization of hFGF-1 binding site ……………………………. 125 Investigation of oligomerization …………………………………. 129 Conclusions ………………………………………………………. 132 References ………………………………………………………… 134 Publication List…………………………………………………… 148rf Arun Kumar, A. I., Kumar, T. K. S., Kathir, K. M., Srisailam, S., Wang, H. M., Chi, Y. H., Chen, H. C., Wu, C. H., Wu, R. T., Chang, G. G., Chiu, I. M. and Yu, C. (2002) Oligomerization of acidic fibroblast growth factor is not a prerequisite for its cell proliferation activity. Protein Science, 11, 1050-1061. Arun Kumar, A. I., Srisailam, S., Kumar, T. K. S., Kathir, K. M., Peng, C. L., Chen, C., Chiu, I. M. and Yu, C. (2000) 1H, 13C and 15N Chemical shift assignments of the acidic fibroblast growth factor from Notopthalmus viridiscens. J. Biomolec. NMR, 17, 279-280. Blaber, M., Disalvo, J. and Thomas K. A. (1996) X-ray crystal structure of Human Acidic Fibroblast Growth Factor. Biochemistry, 35, 2086-2094. Burgess, W. H and Maciag, T. (1989) The heparin-binding (fibroblast) growth factor family of proteins. Ann. Rev. Biochem., 58, 575-606. Burgess, W. H., Friesel, R. and Winkles, J. A. (1994) Structure-function studies of FGF-1: dissociation and partial a reconstitution of certain of its biological activities. Mol. Reprod. Dev., 39, 56-60. Burke, C. J., Volkin, D. B., Mach, H., and Middaugh, C. R., (1993) Effect of polyanions on the unfolding of acidic fibroblast growth factor. Biochemistry, 32, 6419-6426. Burke, D. Wilkes, D., Blundell, T. L. and Malcolm, S. (1998) Fibroblast growth factor receptors: lessons from the genes. Trends.Biochem. Sci., 23, 59-62. Chellaiah, A. T., Mc Ewen, D. G., Werner, S., Yu, J. and Ornitz, D. M. (1994) Fibroblast growth factor receptor (FGFR-3). Alternative splicing in immunoglobin-like domain III creates a receptor highly specific for acidic FGF/FGF-1. J. Biol. Chem., 269, 11620-11627. Chiu, I. M., Liu, Y. and Payson, R. A. (1998) Isolation of yeast artificial chromosome containing the entire transcriptional unit of the human FGF1 gene: a 720-kb contig spanning human chromosome sq31.3 ® q32. Cancer Genet. Cytogenet., 106, 1-10. Chi, Y., Kumar, T. K. S., Wang, H. M., Ho, M. C., Chiu, I. M. and Yu, C. (2001) Thermodynamic characterization of the human acidic fibroblast growth factor: evidence for cold denaturation. Biochemistry, 40, 7746-7753. Chi, Y. H., Kumar, T. K. S., Chiu, I. M. and Yu, C. (2000) 15N NMR relaxation studies of free and ligand-bound human acidic fibroblast growth factor. J. Biol. Chem., 275,39444-39450. Coulier, F., Pontarotti, R., Roubin, R., Hartung, H., Goldfard, M. Birnbaum.D. (1997) Of worms and Men: an evolutionary perspective of fibroblast growth factor (FGF) and FGF receptor families. J. Mol. Evol., 44, 43-56. Cornilescu, G., Delaglio, F. and Bax, A. (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomolec. NMR., 13, 289-302. Cuevas, P., Carcellar, F., Munoz-Willery, L., Gimenez-Gallego, G. (1998) Intravenous fibroblast growth factor penetrates the blood-brain barrier and protects hippocampal neurons against ischemia-reperfusion injury. Surg. Neurol. 49, 77-83. DiGabriele, A. D., Lax, I., Chen, D. I., Svahn, C. M., Jaye, M., Schlessinger, J. and Hendrickson, W. A., (1998) Structure of a heparin-linked biologically active dimer of fibroblast growth factor. Nature, 393, 812-817. Delehedde, M., Seve, M., Sergeant, N., Wartelle, I., Rudland, P. S. and Fernig, D. S. (2000) Fibroblast growth factor-2 stimulation of P42/ 44MAPK phosphorylation and IKb degradation is regulated by heparan sulfate/heparinin rat mammary fibroblasts. J. Biol. Chem., 275, 33905-33910. Engleka, K. A. and Maciag, T. (1992) Inactivation of human fibroblast growth factor-1 (FGF-1) activity by interaction with copper ions involves FGF-1 dimer formation induced by copper-catalyzed oxidation. J. Biol. Chem., 267, 11307-11315. Eriksson, A. E., Causens, L. S., Weaver, L. H. and Matthews, B. W. (1991) Three-dimensional structure of human acidic fibroblast growth factor. Proc. Natl. Acad. Sci. (USA), 88, 3441-3445. Faham, S., Linhardt, R. J. and Rees, D. C. (1998) Diversity does make a difference: fibroblast growth factor-heparin interactions. Curr. Opin. Struct. Biol., 8, 578-586. Faham, S., Hileman, R. E., Fromm, J. R., Linhardt, R. J. and Rees, D. C. (1996) Heparin structure and interactions with basic fibroblast growth factor. Science, 271, 1116-1120. Fannon, M., Forsten, K. E. and Nugent, M. A. (2000) Potentiation and Inhibition of bFGF binding by heparin: A model for regulation of cellular response. Biochemistry, 39, 1434-1445. Fernig DG, Gallagher JT. (1994) Fibroblast growth factors and their receptors: an information network controlling tissue growth, morphogenesis and repair. Prog Growth Factor Res., 5, 353-377 Folkman, J., and Klagsburn, M. (1987) Angiogenic Factors. Science, 235, 442-447. Folkman, J. (1985) Tumor angiogenisis. Adv. Cancer Res., 43, 175-203. Friesel, R. E. and Maciag, T. (1995) Molecular Mechanisms of angiogenesis: Fibroblast growth factor signal transduction. FASEB. J. 9, 919-925. Gaspodarowicz, D., and Cheng, J. (1986) Heparin protects basic and acidic FGF from inactivation. J.Cell Physiol., 128, 475-484. Grzesiek, S. and Bax, A. (1992) Correlating backbone amide and side-chain resonances in larger protein by multiple relayed triple resonance NMR. J. Am. Chem. Soc., 114, 6291-6293. Grzesiek, S. Anglister, J. and Bax, A. (1993) Correlation of backbone amide and aliphatic side-chain resonances in 13C/15N-enriched proteins by isotopic mixing of 13C-magnetization. J. Magn .Reson. Ser B., 101, 114-119. Guimond, S., Maccarana, M., Olwin, B. B., Lindahl, U. and Rapraeger, A. C. (1993) Activating and inhibitory heparin sequences for FGF-2 (basic FGF). Distinct requirements for FGF-1, FGF-2 and FGF- 4. J. Biol. Chem., 268, 23906-23914. Hogan, B. L. (1999) Morphogenesis. Cell, 96, 225-233. Herr, A. B., Ornitz, D. M., Sasisekharan, R., Venkataraman, G. and Waksman, G (1997) Heparin-induced self-association of fibroblast growth factor-2. Evidence for two oligomerization processes. J. Biol. chem., 272, 16382-6389. Issacs, H. V., Tannabil, D. and Slack, J. M. (1992) Expression of novel FGG in the Xenopus embryo. A new candidate inducing factor for mesoderm formation and anteoposterior specification. Development, 114, 711-720. Ishihara, M. Tyrrel, D. J., Stauber, G. B., Brown, S., Cousens, L. S. and Stack, R. J. (1993) Preparation of affinity-fractionated, heparin-derived oligosaccharides and their effects on selected biological activities mediated by basic fibroblast growth factor. J. Biol. Chem., 268, 4675-4683. Jackson, A., Tarantini, F., Gamble, S., Friedman, S. and Maciag, T. (1995). The release of fibroblast growth factor-1 from NIH 3T3 cells in response to temperature involves the function of cysteine residues. J. Biol. Chem., 270, 33-36. Johnson, D. E., Lee, P. L., Lu, J and Williams, L. T. (1990) Diverse forms of a receptor for acidic and basic fibroblast growth factors. Mol. Cell. Biol., 10, 4728-4736. Johnson, D. E and Williams, L. T. (1993) Structural diversity and functional diversity in the FGF receptor multigene family. Adv. Cancer Res., 60, 1-41. Kannan K. and Givol D. (2000) FGF receptor mutations: dimerization syndromes, cell growth suppression, and animal models. IUBMB Life., 49, 197-205. Klagsburn, M. and Baird, A. (1991) A dual receptor system is required for bFGF activity. Cell, 67, 229-231. Kobrin, M. S., Yamanaka, Y., Friess, H., Lopez, M. E. and Korc, M. (1993) Aberrant expression of type-1 fibroblast growth factor receptor in human pancreatic adenocarcinomas. Cancer Res., 53, 4741-4744. Landriscina, M., Bagala, C., Mandinova, A., Soldi, R., Micucci, I., Bellum, S., Prudovsky, I. and Maciag, T. (2001) Copper induces assembly of a multi-protein aggregate implicated in the release of fibroblast growth factor 1 in response to stress. J. Biol. Chem., 276, 25549-25557. Lee, P. L., Johnson, D. E., Causens, L. S., Fried, V. A., Williams, L. T. (1989) Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor. Science, 245, 57-60. Lemmon, M. A. and Schlessinger, J. (1994) Regulation of signal transduction and signal diversity by receptor oligomerization. Trends. Biochem. Sci., 19, 459-463. Lerche MH, Meissner A, Poulsen FM, Sorensen OW. (1999) Pulse sequences for measurement of one-bond 15N-1H coupling constants in the protein backbone. J Magn Reson., 140, 259-263. Linemeyer, D. L., Menke, J. G., Kelly, L. J., Disalvo, J., Soderman, D., Schaeffer, M. T., Ortega, S., Gimenez-Gallego, G. and Thomas, K. A. (1990) Disulfide bonds are neither required, present, nor compatible with full activity of human recombinant acidic fibroblast growth factor. Growth factors, 3, 287-298. Lozano, R.M., Pineda-Lucena, A., Gonzalez, C., Jimenez, M.A., Cuevas, P., Redono-Horcajo, M., Sanz, J.M., Rico, M., Gimenez-Gallego, G. (2000) 1H NMR structural characterization of a nonmitogenic, vasodilatory, ischemia-protector and neuromodulatory acidic fibroblast growth factor. Biochemistry 39, 4982-4993. Luo, Y., Gabriel, J., Wang, F., Zhan, X., Maciag, T., Kan, M. and Mckeehan, W. L. (1996) The molecular modeling and deletion mutagenesis implicate the nuclear translocation sequence in structural integrity of fibroblast growth factor-1. J. Biol. Chem., 271, 26876-26883. Maciag, T. and Friesel, R. E (1995) Molecular mechanisms of fibroblast growth factor-1 Traffick, signalling and Release. Thrombosis and Haemostasis. 74, 411-414. Mach, H., Volkin, D. B., Burke, C. J., Middaugh, C. R., Linhardt, R. J., Fromm, J. R., Loganathan, D. and Mattson, L. (1993) Nature of the interaction of heparin with acidic fibroblast growth factor. Biochemistry, 32, 5480-5489. Martin, G. R. (1998) The roles of FGFs in the early development of vertebrate limbs. Genes Dev., 12, 1571-1586. Mason, V. (1994) The ins and outs of the fibroblast growth factors. Cell, 78, 547-552. Mckeehan, W. L. (1993) Exon switching and activation of stromal and embroyonic fibroblast growth factor (FGF) receptor genes in prostrate epithelial cells accompany stromal independence and malignancy. Mol. Cell Biol., 13, 4513-4522. Mckeehan, W. L., Wang, F. and Kan, M. (1998) The heparan sulfate-fibroblast growth factor family; diversity of structure and function. Prog. Nucleic Acid Res. Mol. Biol., 59, 135-176. Melnynk, V. O., Shipley, G. D., Steinfeld, M. D., Sherman, L. and Rosenbaum, J. T. (1990) Synoviocytes synthesize, bind and respond to basic fibroblast growthfactor. Arthritis Rheum., 33, 493-500. Miyamoto, M., Narso, K. J., Seko, C., Matsumoto, S., Kondo, T., Kurokawa, T. (1993). Molecular cloning of a novel cytokine CDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property. Mol. Cell. Biol., 13, 4251-4259. Moscatelli. D. (1992) Basic Fibroblast Growth factors (bFGF) dissociates rapidly from heparan sulfates but slowly from receptors. J. Biol. Chem., 267, 25803-25809. Moy, F. J., Safran, M. Seddon, A. P., Kitchen, D., Bohlen, P., Avlezer, D., Yayon, A. and Powers, R. (1997) Properly oriented heparin-decasaccharide-induced dimers are the biologically active form of basic fibroblast growth factor. Biochemistry, 36, 4782-4791. Naski, M. C. and Ornitz, D. M. (1998) FGF signaling in skeletal development. Front. Biosci., 3, D781-D784. Nilges, M. Maciag, T., O’Donoghue, S. I. and Oschkinat, H. (1997) Automated interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from b-spectrin. J. Mol. Biol., 408-422. Nishimura, T., Utsunomiya, Y., Hoshikawa, M., Ohuchi, H. and Iton, N. (1999) Structure and expression of a novel human FGF, FGF-19, expressed in the fetal brain. Biochim. Biophys. Acta, 1444, 148-151. Ogura, K., Nagata, K., Hatanaka, H., Habuchi, H., Kimata, K., Tati, S., Ravera, M. W., Jaye, M., Schlessinger, J. and Inagaki, F. (1999) Solution structure of human acidic fibroblast growth factor and interaction with heparin-derived hexasaccharide. J. Biomolec. NMR., 13, 11-24. Ohmachi, S., Watanabe, Y., Mikanii, T., Kusu, N., Ibi, T., Akaike, A. and Itoh, N. (2000) FGF-20, a novel neurotrophic factor, preferentially expressed in the substanta niga pars compacta of rat brain. Biochem. Biophys. Res. Commun., 277, 355-360. Ornitz, D. M., Xu, J., Colvin, J. S., McEwen, D. G., MacArthur, C. A., Coulier, F., Gao, G. and Goldfarb, M. (1996) Receptor specificity of the fibroblast growth factor family. J. Biol. Chem., 271, 15292-15297. Ornitz, D. M. and Itoh. N. (2001) Fibroblast Growth Factors. Genome Biology, 2, 1-12. Ornitz. D. M. (2000) FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays, 22, 108-112. Ornitz, D. M., Yayon, A., Flanagan, J. G., Svahn, C. M., Levi, E., Leder, P.( ). Heparin is required for cell free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol. Cell. Biol., 12, 240-247. Ortega, S., Schaeffer, M. T., Soderman, D., Disalvo, J., Linemeyer, D. L., Gimenez-Gallego, G. and Thomas, K. A. (1991) Conversion of cysteine or serine residues alters the activity, stability and heparin dependence of acidic fibroblast growth. J. Biol. Chem., 266, 5842-5846. Padera, R., Venkataraman, G., Berry, D., Godavarti, R. and Sasisekharan, R. (1999) FGF-2 / fibroblast growth factor receptor/heparin-like glydosaminoglycan interactions: a compensation model for FGF-2 signaling. FASEB. J., 1677-1687. Pascal, S. M., Muhandiram, D. R., Yamazaki, T., Forman-Kay, J. D. and Kay, L. E. (1994) Simultaneous acquisition of 15N and 13C-edited NOE spectra of proteins dissolved in H2O. J. Magn. Reson. Ser B, 103, 197-201. Patrie, K. M., Botelho, M. J., Franklin, K. and Chiu, I. M. (1999) Site-directed mutagenesis and Molecular Modeling Identify a crucial Amino Acid in specifying the Heparin Affinity of FGF-1. Biochemistry, 38, 9264-9272. Pawson, T. (1995) Protein modules and signaling networks. Nature, 373, 573-580. Pellegrini L, Burke DF, von Delft F, Mulloy B and Blundell TL. (2000) Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature, 407, 1029-1034. Pineda-Lucena, A., Jimenez, M. A., Nieto, J. L., Santoro, J., Rico, M. and Gimenez-Gallego, G. (1994) 1H NMR Assignment and solution structure of Human Acidic Fibroblast Growth Factor Activated by Inositol hexasulfate. J. Mol. Biol., 242, 81-98. Pineda-Lucena, A., Jimenez, M. A., Lozano, R. M., Nieto, J. L., Santoro, J., Rico, M., and Gimenez-Gallego, G. (1996) Three-dimensional structure of acidic fibroblast growth factor in solution: Effects of binding to a heparin functional analog. J. Mol. Biol., 264, 162-178. Plotnikov, A. N., Schlessinger, J., Hubbard, S. R. and Mohammadi, M. (1999) Structural basis for FGF receptor dimerization and activation. Cell, 98, 641-650. Plotnikov, A., Hubbard, S. R., Schlessinger, J., and Mohammadi, M. (2000) Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity. Cell, 101, 413-424. Predovsky, I. A., Savion, N., Lavallee, T. M. and Maciag, T. (1996) The nuclear Trafficking of Extracellular Fibroblast Growth Factor (FGF)-1 correlates with the perinuclear association of the FGF Receptor-1a isoforms but not the receptor-1b isoforms. J. Biol. Chem., 271, 14198-14205. Pye, D. A. Vives, R. R., Turnbull, J. E., Hyde, P. and Galagher, J. T. (1998) Heparan sulfate oligosaccharides require 6-0-sulfation for promotion of basic fibroblast growth factor mitogenic activity. J. Biol. Chem., 273, 22936-22942. Roghani, M., Mansukhani, A., Deil’Erat, P., Beilosta, P., Basilico, C., RifKin, D. B. and Moscatelli, D. (1994) Heparin increases the affinity of basic fibroblast growth factor for its receptor but is not required for binding. J. Biol. Chem., 269,3976-3988. Saksela, D., Moscatelli, D., Sommer, A., RifKin, D. B. (1988) Endothelial cells derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic digestion. J. Cell. Biol., 107, 743-751. Samuel, D., Kumar, T. K. S., Srimathi, T., Hsieh, H. and Yu, C (2000) Identification and Characterization of an equilibrium intermediate in the unfolding pathway of an all beta-bayel protein. J. Biol. Chem., 275, 34968-34975. Samuel, D., Kumar, T. K. S., Balamurugan, K., Lin, W. Y., Chin, D. H. and Yu, C. (2001) Structural events during the refolding of an all beta-sheet protein J. Biol. Chem., 276, 4134-4141. Sattler, M., Schleacher, J. and Griesinger, C. (1999) Heteronuclear – multidimensional NMR experiments for structure determination of proteins in solution using pulsed field gradients. Prog. Nucl. Magn. Reson. Spectro., 34, 93-158. Schlessinger, J., Lax, I. and Lemmon, M. (1995) Regulation of growth factor activation of proteoglycans: what is the role of low affinity receptors. Cell, -- 357-360. Schlessinger, J., Plotnikov, A. N., Ibrahami, O. A., Eliseenkova, A. V., Yeh, B. K., Yayon, A., Linhardt, R. J. and Mohammadi, M. (2000) crystal structure of a ternary FGF-FGFR-heparain complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell., 6, 743-750. Scotet, E. and Houssaint, E. (1998) The choice between alternative IIIb and IIIc exons of the FGFR-3 gene is not strictly tissue-specific. Biochim. Biophys.Acta, 1264, 238-242. Sommer, A. and RifKin, D. B. (1989) Interaction of heparin with human basic fibroblast growth factor protection of the angiogenic protein from proteolytic degradation by glycosaminoglycan. J. Cell. Physiol., 138, 215-220. Springer, B. A., Pantoliano, M. W., Barbera, F. A., Gunyuzlu, D. L., Thompson, L. D., Herbilin, W., Rosenfeld, S. A. and Book, G. W. (1994) Identification and concerted function of two receptor binding surfaces on basic fibroblast growth factor required for mitogenesis. J. Biol. Chem, 259, 26879-26884. Sharpe, R. J., Amidt, K. A., Bauer, S. I. and Maionne, T. E. (1989) Cyclosporine inhibits basic fibroblast growthfactor-driven proliferation of human endothelial cells and Keratinocytes. Arch. Dermatol., 125, 1359-1362. Shireman, P. K., Xue, L., Madox, E., Burgess, W. H., and Greisler, H. P. (2000). The S130K fibroblast growth factor-1 mutant induces heparin independent proliferation and is resistant to thrombin degradation in fibrin glue. J. Vasc. Surg., 31, 382-390. Sivalingam, A., Kenney, J., Brown, G. C., Benson, W. E., Donoso, L. (1990) Basic fibroblast growthfactor levels in the Vitreous of patients with proliferative diabetic retinopathy. Arch. Opthalmol., 100, 869-872. Spivak-Kroizman T, Lemmon MA, Dikic I, Ladbury JE, Pinchasi D, Huang J, Jaye M, Crumley G, Schlessinger J, Lax I. (1994) Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell, 79, 1015-1024. Stauber, D. J., DiGabriele, A. D. and Hendrickson, W. A. (2000) Structural interactions of fibroblast growth factor receptor with its ligands. Proc. Natl. Acad. Sci. USA, 97,49-54. Stringer, S. E. and Gallagher, J. T. (1997) Heparan sulfate. Int. J. Biochem. Cell Biol., 29, 709-714. Tarantini, F., Gamble, S., Jackson, A. and Maciag, T. (1995) The cysteine residue responsible for the release of fibroblast growth factor-1 resides in domain independent of the domain for phosphatidylserine binding. J. Biol. Chem., 270,29039-29042. Thomas, K. A. and Gimenez-Gallego, G. (1988) Transforming potential of fibroblast growth factor genes. Trends. Biochem. Sci. 13, 327-328. Thompson, L. D., Pantoliano, M. W., and Springer, B. A., (1994) Energetic characterization of the basic fibroblast growth factor-heparin interaction:identification of the heparin binding domain. Biochemistry, 33, 3831-3840. Wang, F., Kan, M., Yan, G., Xu, J., McKeehan, W. L. (1993) Alternatively spliced NH2-terminal immunoglobulin-like loop1 in the ectodomain of the fibroblast growth factor (FGF) receptor-1 lowers affinity for both heparin and FGF-1. J. Biol. Chem., 270, 10231-10235. Wang, F., Lu, W., Mckeehan, K., Mohamedali, K., Gabriel, J. L., Kan, M. and Mckeehan, W. L. (1999) Common and specific determinants fibroblast growth factors in the ectodomain of the receptor kinase complex. Biochemistry, 38, 160-171. Wittlekind, M. and Mueller, L. (1993) HNCACB, a highly sensitivity 3D NMR experiment to correlate amide-proton and beta-carbon resonances in proteins. J. Magn. Reson. Ser. B, 101, 201-205. Xue, L., Shireman, P. K., Hampton, B., Burgess, W. H., and Greisler, H. P. (2000). The cysteine-free fibroblast growth factor 9 mutant induces heparin-independent proliferation of endothelial cells and smooth muscle cells. J. Surg, Res., 92, 255-260. Yamaguchi, F., Saya, H., Bruner, J. M. and Morrison, R. S. (1994) Differential expression of two fibroblast growth factor-receptor genes is associated with malignant progression in human astrocytomas. Proc. Natl. Acad. Sci., USA., 91, 484-488. Yan, G., Fukabori, Y., Mcbride, G. S., Nikolaropolous, S. and Mckeehan, W. L. (1993) Exon switching and activation of stromal and embryonic fibroblast growth factor (FGF) receptor genes in prostrate epithelial cells accompany stromal independence and malignancy. Mol. Cell. Biol., 13, 4513-4522. Yayon, A., Klagsburn, M., Esko, J. D., Leder, P. and Ornitz, D. M. (1991) Cell surface, Heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell, 64, 841-848. Yeh BK, Eliseenkova AV, Plotnikov AN, Green D, Pinnell J, Polat T, Gritli-Linde A, Linhardt RJ and Mohammadi M. (2002) Structural basis for activation of fibroblast growth factor signaling by sucrose octasulfate. Mol Cell Biol., 22, 7184-7192. Zhan, X., Hu, X. G., Friesel, R. and Maciag, T. (1992) Analysis of Endogenous and Exogenous nuclear translocation of Fibroblast Growth factor-1 in NIH 3T3 cells. Biochim. Biophys. Res. Commun., 188, 982-991. Zhan, X., Hu, X. G., Friesel, R. and Maciag, T. (1993) Long term growth factor exposure and differential tyrosine phosporylation are required for DNA Synthesis in BALB/c 3T3 cells. J. Biol. Chem., 268, 9611-9620. Zhu, X., Komiya, H., Chirino, A., Fahamo. S., Fox, G. M., Arakawa, T., Hsu, B. T. and Rees. D. C. (1991) Three-dimensional structures of acidic and basic fibroblast growth factors. Science, 253, 90-93. Zhu, H., Ramnarayanan, K., Anchin, J., Miao, W. Y., Sereno, A., Millman, L., Zheng, J., Balaji, V. N. and Wolff, M. E. (1995) Glu-96 of basic fibroblast growth factors essential for high affinity receptor binding. Identification by structure-based site-directed mutagenesis. J. Biol. Chem., 270, 21869-21874. Zhu, H., Anchin, J., Ramanarayan, K., Zheng, J., Kawai, T., Mong, S. and Wolff, M. E. (1997) Analysis of high-affinity binding determinants in the receptor binding epitope of basic fibroblast growth factor, Protein Eng. 10, 417-421. Zhu, H., Anchin, J., Ramanarayan, K., Menzel, P., Miao, Y., Zheng, J. and Mong, S. (1998) Identification of two new hydrophobic residues on basic fibroblast growth factor important for fibroblast growth factor receptor binding. Protein Eng. 11, 937-940.id NH0925065004 sid 897408 cfn 0 / id NH0925065005 auc 曾新華 tic 研發線上衍生氣相層析儀結合液相化學游離質譜術與電子鼻技術在環境與尿液樣品之分析 adc 凌永健 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 英文 pg 143 kwc 線上衍生 kwc 液相化學游離 abc 氣相層析質譜儀(GC-MS)是一部廣泛用來檢測揮發性與半揮發性有機化合物的儀器,但是對於一些熱不穩定及高極性化合物通常需經過衍生化步驟,而傳統的衍生法步驟通常是耗時費力,因此近年來開發簡單快速的線上(On-line)衍生技術友吸引各研究者的興趣。在本研究論文中即是利用了Phenyltrimethylammonium iodide (PTMA-I)、Tetramethylammonium hydroxide (TMA-OH)與Acetic anhydride衍生試劑,搭配直接樣品導入裝置,利用氣相層析儀注射埠熱源,分別針對氫氧基(-OH)、羧酸基(-COOH)與胺基(-NH2)開發線上衍生技術,並實際應用於檢測不同水環境中含有氫氧關能基的環境賀爾蒙及尿液中安非他命類濫用藥物的濃度。 tc Chapter 1 8 Introduction 8 1.1 Introduction 8 1.2 Objective of the work 10 1.2.1 Development of on-line derivatization gas chromatography 10 1.2.2 Development of liquid chemical ionization mass spectrometry 10 1.2.3 Analytical applications of electronic nose 11 References 12 Chapter 2 16 Selective on-line derivatization study of polar functional groups by phenyl-trimethylammonium iodide ion-pair reagent using gas chromatography-mass spectrometry 16 2.1 Introduction 16 2.2 Experimental 18 2.2.1 Chemical and reagents 18 2.2.2 Sample preparation 18 2.2.3 On-line derivatization in GC injector 18 2.2.4 GC-MS analysis 18 2.3 Results and discussion 20 2.3.1 Effect of injection temperature 20 2.3.2 GC-MS analysis of 1-naphthoic acid 20 2.3.3 GC-MS analysis of 1-naphthol 20 2.3.4 GC-MS analysis of naphthalene-1-carboxyamide 21 2.3.5 Comparison of PTMA-I and TMA-OH 22 2.4 Conclusions 24 References 25 Chapter 3 34 Chemical ionization of substituted naphthalenes using tetrahydrofuran as a reagent in gas chromatography with ion trap mass spectrometry 34 3.1 Introduction 34 3.2 Experimental 36 3.2.1 Chemicals and reagents 36 3.2.2 On-column derivatization using TMA-OH reagent 36 3.2.3 GC-MS analysis 36 3.3 Results and discussion 38 3.3.1 THF chemical ionization 38 3.3.2 Effect of proton affinity on THF CI-MS spectra of substituted naphthalene compounds 38 3.3.3 Condensation reactions in THF chemical ionization 39 3.3.4 Substituent effects on THF CI mass spectra of naphthalene compounds 40 3.3.5 Site specific cluster attachment in NA-COOCH3 and NA-CON(CH3)2 41 3.4 Conclusions 43 References 44 Chapter 4 52 Selective adduct formation by furan chemical ionization reagent in gas chromatography ion trap mass spectrometry 52 4.1 Introduction 52 4.2 Experimental 55 4.2.1 Chemical and reagents 55 4.2.2 On-column derivatization using TMA-OH ion-pair reagent 55 4.2.3 GC-MS analysis 55 4.3 Results and discussions 57 4.3.1 Furan as CI reagent 57 4.3.2 Comparison of influence of proton affinity effect 57 4.3.3 Activity effect of substituents on [C3H3 ]+ adduct ion formation 58 4.3.4 Selectivity in furan CI 60 4.3.5 Analysis of amino acids using furan CI 60 References 63 Chapter 5 72 Determination of hydroxyl-containing endocrine disruptors in surface water by on-line derivatization gas chromatography-ion trap mass spectrometry with electron impact and chemical ionization 72 5.1 Introduction 72 5.2 Experimental 74 5.2.1 Chemicals and reagents 74 5.2.2 Sample collection 74 5.2.3 Sample extraction and preparation 74 5.2.4 On-line derivatization using TMA-OH reagent 75 5.2.5 GC-MS analysis 75 5.3 Results and discussion 77 5.3.1 On-line derivatization of EDs 77 5.3.2 Sensitivity evaluation using EI MS and CI MS 78 5.3.3 CI MS/MS 78 5.3.4 Linearity, precision, detection limits, and recovery 79 5.3.5 Application to environmental samples 79 5.4 Conclusions 81 Reference 82 Chapter 6 94 Selective and sensitive method for detection of amphetamines in trace urine sample using on-line derivatization gas chromatography with furan chemical ionization mass spectrometry 94 6.1 Introduction 94 6.2 Experimental section 97 6.2.1 Chemicals and Reagents 97 6.2.2 Sample preparation 97 6.2.3 On-line derivatization in GC injector 97 6.2.4 GC-MS analysis 98 6.3 Results and discussion 100 6.3.1 On-line derivatization 100 6.3.2 Selectivity using furan CI MS Analysis 101 6.3.3 Furan CI MS/MS detection 101 6.3.4 Method validation 102 6.3.5 Analysis of Urine samples 103 6.4 Conclusion 104 References 105 Chapter 7 119 A simple and rapid method for identifying the source of spilled oil using an electronic nose: confirmation by gas chromatography with mass spectrometry 119 7.1 Introduction 119 7.2 Experimental 122 7.2.1 Materials and sample preparation 122 7.2.2 Sensors array: eNose analysis 122 7.2.3 FGC/SAW: zNose analysis 123 7.2.4 GC-MS Analysis 123 7.3 Results and discussion 125 7.3.1 Identification using eNose 125 7.3.2 Identification using zNose 126 7.3.3 Non-specific determination of TPHs 127 7.3.4 Specific determination of PAHs and their alkylated homologues 127 7.3.5 Specific determination of the n-alkanes 128 7.4 Conclusions 129 References 130rf (1) Knapp, D. R. Handbook of Analytical Derivatization Reactions; Wiley: New York, 1979. (2) Segura, J.; Ventura, R.; Durado, C. J. Chromatogr. B 1998, 713, 61-90. (3) Blau, K.; Halker, J. M. Handbook of Derivatives for Chromatography, 2nd ed.; Wiley: Chichester, 1993. (4) El-Haj, B. M.; Al-Amri, A. M.; Hassan, M. H.; Ali, H. S.; Bin Khadem, R. K. Forensic Sci. Int. 2003, 135, 16-26. (5) Opfermann, G.; Schaenzer, W. Recent Adv. Doping Anal. Proc. Manfred Donike Workshop, Cologne Workshop Dope Anal.14th., 1996. (6) Klaffenbach, P.; Holland, P. T. J. Agric. Food Chem. 1993, 41, 396-401. (7) Klaffenbach, P.; Holland, P. T. Biol. Mass Spectrom. 1993, 22, 565-578. (8) Wang, Z. D.; Fingas, M.; Landriault, M.; Sigouin, L.; Castle, B.; Hostetter, D.; Zhang, D. C.; Spencer, B. Hrc-J. High Res. Chromatogr. 1998, 21, 383-395. (9) Wang, Z. D.; Fingas, M.; Sigouin, L. LC GC N. Am. 2000, 18, 1058-1074. (10) Jensen, T. S.; Arvin, E.; Svensmark, B.; Wrang, P. Soil Sediment Contam. 2000, 9, 549-577. (11) Goodnough, D. B.; Lutz, M. P.; Wood, P. L. J. Chromatogr. B 1995, 667, 223-232. (12) Preu, M.; Guyot, D.; Petz, M. J. J. Chromatogr. A 1998, 818, 95-108. (13) Soderling, A. S.; Ryberg, H.; Gabrielsson, A.; Larstad, M.; Toren, K.; Niari, S.; Caidahl, K. J. Mass Spectrom. 2003, 38, 1187-1196. (14) Sievert, H. J. P. Chirality 1994, 6, 295-301. (15) Dobson, R. L. M.; Dirr, M. K.; Merkt, B. L. J. Mass Spectrom. 1997, 32, 1290-1298. (16) Ding, W. H.; Chen, C. T. J. Chromatogr. A 1999, 862, 113-120. (17) Berg, K. J.; Boon, J. J.; Pastorova, I.; Spetter, L. F. M. J. Mass Spectrom. 2000, 35, 512-533. (18) Munson, M. S. B.; Field, F. H. J. Am. Chem. Soc. 1966, 88, 2621-2630. (19) Harrison, A. G. Chemical Ionization Mass Spectroscopy; CRC Press: Boca Raton, 1983. (20) Munson, B. Int. J. Mass Spectrom. 2000, 200, 243-251. (21) Brodbelt, J. S. Mass Spectrom. Rev. 1997, 16, 91-110. (22) Lias, S. G.; Liebman, J. F.; Levin, R. D. J. Phys. Chem. Ref. Data 1984, 13, 695-808. (23) Keough, T.; DeStefano, A. J. Finnigan Spectra 1982, 8, 7-17. (24) Donovan, T.; Brodbelt, J. Org. Mass Spectrom. 1992, 27, 9-16. (25) McLafferty, F. W. Science 1981, 214, 280-287. (26) Yost, R. A.; Enke, C. G. Anal. Chem. 1979, 51, 1251-1261A. (27) Munson, B. Anal. Chem. 1977, 49, 772-778A. (28) Richter, W. J.; Schwartz, H. Angew. Chem. Int. Ed. Engl. 1978, 17, 424-439. (29) Vairamani, M.; Mirza, U. A.; Srinivas, R. Mass Spectrom. Rev. 1990, 9, 235-258. (30) Vairamani, M.; Saraswathi, M.; Siva Kumar, K. V. Org. Mass Spectrom. 1993, 28, 689-692. (31) Prabhakar, S.; Vairamani, M. Mass Spectrom. Rev. 1997, 16, 259-281. (32) Budzikiewicz, H. Anal. Chem. 1985, 321, 150-158. (33) Ferrer-Correia, A. J. V.; Jennings, K. R.; Sharma, D. K. S. Org. Mass Spectrom. 1976, 11, 867-872. (34) Lane, D. C.; McGuire, M. Org. Mass Spectrom. 1983, 18, 494-495. (35) Keough, T. Anal. Chem. 1982, 54, 2540-2547. (36) Dzidic, I. J. Am. Chem. Soc. 1972, 94, 8333-8335. (37) Orlando, R.; Strobel, F.; Ridge, D. P.; Munson, B. Org. Mass Spectrom. 1987, 22, 597-605. (38) Wang, S.; Sah, Y.; Xu, S.; Pan, J. Anal. Chem. 1985, 57, 2283-2286. (39) Douglas, G. S.; Bence, A. E.; Prince, R. C.; Mcmillen, S. J.; Butler, E. L. Environ. Sci. Technol. 1996, 30, 2332-2239. (40) Boehm, P. D.; Page, D. S.; Burns, W. A.; Bence, A. E.; Mankiewicz, P. J.; Brown, J. S. Environ. Sci. Technol. 2001, 35, 471-479. (41) Wang, Z.; Fingas, M.; Blenkinsopp, S.; Sergy, G.; Landriault, M.; Sigouin, L.; Lambert, P. Environ. Sci. Technol. 1998, 32, 2222-2232. (42) Kaipainen, A.; Ylisuutari, S.; Lucas, Q.; Moy, L. Int. Sugar J. 1997, 99, 403-408. (43) Freitas, A. M. C.; Parreira, C.; Vilas-Boas, L. J. Food Compos. Anal. 2001, 14, 513-522. (44) Natale, C. D.; Macagnano, A.; Paolesse, R.; Tarizzo, E.; Mantini, A.; D'Amico, A. Sens. Actuators B 2000, 65, 216-219. (45) Ali, Z.; O'Hare, W. T.; Theaker, B. J. J. Therm. Anal. Calorim. 2003, 71, 155-161.id NH0925065005 sid 897410 cfn 0 / id NH0925065006 auc 王俊智 tic 鈷金屬錯合物催化烯-烯基及烯-炔基之還原偶合反應及其在環酯、環醯系列化合物的合成應用 adc 鄭建鴻 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 217 kwc 共軛烯類化合物 kwc 長鏈雙丙烯醯化合物 kwc 鈷金屬錯合物 abc 鈷金屬錯合物催化一系列共軛烯類化合物1a-1g,可得到一系列β-碳對β-碳鍵結的還原偶合產物2a-2g,並具有高位向選擇,這樣的反應模式提供了非常直接、有效率的方法,在碳碳鍵的合成上,另外也提供了非常直接的方法去合成adipic acid。其次比較特殊的,若使用非共軛的烯類vinylarenes 3a-3l,則可得到雙偶合的產物4a-4l,而非還原偶合的產物,所得到的產物,也具有很好的位向選擇性,皆為E-form的形式。 rf 1. For reviews: (a) Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763-2793. (b) Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169-196. (c) Moreno-mañas, M.; Pleixats, R. Acc. Chem. Res. 2003, 36, 638-643. (d) Denmark, S. E.; Sweis, R. F. Acc. Chem. Res. 2002, 35, 838-846. (e) Amatore, C.; Jutand, A. Acc. Chem. Res. 2000, 33, 314-321. (f) Luh, T. Y.; Leung, M. K.; Wong, K. T. Chem. Rev. 2000, 100, 3187-3204. 2. Diederich, F.; Stang, P. J. “Metal-catalyzed Cross-coupling Reactions”; Wiley-VCH verlag GmbH, Germany, 1998. 3. (a) Fürstner, A.; Grela, K. Angew. Chem., Int. Ed. 2000, 39, 1234-1236. (b) Fürstner, A.; Seidel, G. Angew. Chem., Int. Ed. 1998, 37, 1734-1736. (c) Eisch, J. J.; Kaska, W. C. J. Am. Chem. Soc. 1966, 88, 2213-2220. 4. Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067-2096. 5. (a) Montgomery, J. Acc. Chem. Res. 2000, 33, 467-473. (b) Montgomery, J.; Oblinger, E.; Savchenko, A. V. J. Am. Chem. Soc. 1997, 119, 4911. 6. Furstner, A. Angew. Chem. Int. Ed. 2000, 39, 3012-3043. 7. DiRenzo, G. M.; White, P. S.; Brookhart, M. J. Am. Chem. Soc. 1996, 118, 6225-6234. 8. Duan, I. F.; Cheng, C. H.; Shaw, J. S.; Cheng, S. S.; Liou, K. F. J. Chem. Soc, Chem. Commun. 1991, 19, 1347-1348. 9. Chao, K. C.; Rayabarapu, D. K.; Wang, C. C.; Cheng, C. H. J. Org. Chem. 2001, 66, 8804-8810. 10. Wu, M. S.; Shanmugasundaram, M.; Cheng, C. H. Chem. Commun., 2003, 718-719. 11. (a) Zieglar, T.; Versluis, L. Adv. Chem. Ser. 1992, 230, 75. (b) Slaugh, L. H.; Mullineaux, R. D. J. Organomet. Chem. 1968, 13, 469. 12. (a) Boese, R.; Harvey, D. F.; Malaska, M. J.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1994, 116, 11153. (b) Vollhardt, K. P. C. Angew. Chem., Int. Ed. Engl. 1984, 23, 539. (c) Hegedus, L. S. Transition Metals in the Synthesis of Complex Organic Molecules; 2nd ed.; University Science Books: Sausalito, CA, 1999; Chapter 8. 13. (a) Geis, O.; Schmalz, H-G. Angew. Chem., Int. Ed. 1998, 37, 911. (b) Pauson, P. L. Tetrahedron 1985, 41, 5855. (c) Khand, I. U.; Pauson, P. L. J. Chem. Soc, Chem. Commun. 1974, 379. (d) Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E.; Foreman, M. I. J. Chem. Soc., Perkin Trans. 1 1973, 977. 14. (a) Marguez, V. E.; Blumberg, P. M. Acc. Chem. Res. 2003, 36, 434-443. (b) Banik, I.; Becker, F. F.; Banik, B. K. J. Med. Chem. 2003, 46, 12-15. (c) Min, B. S.; Lee, S. Y.; Kim, J. H.; Kwon, O. K.; Park, B. Y.; An, R. B.; Lee, J. K.; Moon, H. I.; Kim, T. J.; Kim, Y. H.; Joung, H.; Lee, H. K. J. Nat. Prod. 2003, 66, 1388-1390. (d) Hargittai, B.; Solé, N. A.; Groebe, D. R.; Abramson, S. N.; Barany, G. J. Med. Chem. 2000, 43, 4787-4792. (e) Imming, P.; Klar, B.; Dix, D. J. Med. Chem. 2000, 43, 4328-4331. (f) Miyazawa, M.; Shimabayashi, H.; Hayashi, S.; Hashimoto, S.; Nakamura, S. T.; Kosaka, H.; Kameoka, H. J. Agric. Food. Chem. 2000, 48, 5406-5410. 15. (a)Hughes, G.; Kimura, M.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11253-11258. (b) Cortez, G. S.; Tennyson, R. L.; Romo, D. J. Am. Chem. Soc. 2001, 123, 7945-7946. (c) Yamamoto, Y.; Sakamoto, A.; Nishioka, T.; Oda, J.; Fukazawa, Y. J. Org. Chem. 1991, 56, 1112-1119. (d) Baker, R.; Boyes, A. L.; Swain, C. J. J. Chem. Soc. Perkin Trans. 1. 1990, 5, 1415-1421. 16. (a) Wang, S.; Kayser, M. M. J. Org. Chem. 2003, 68, 6222-6228. (b) Berkessel, A.; Andreae, M. R. M.; Schmickler, H.; Lex, J. Angew. Chem. Int. Ed. 2002, 41, 4481-4484. 17. Bieräugel, H.; Jansen, T. P.; Schoemarker, H. E.; Hiemstra, H.; Maarseveen, J. H. V. Org. lett. 2002, 2673-2674. 18. Getzler, Y. D. Y. L.; Mahadevan, V.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 1174-1175. 19. Yoneda, E.; Zhang, S. W.; Zhou, D. Y.; Onitsuka, K.; Takahashi, S. J. Org. Chem. 2003, 68, 8571-8576. 20. Van den Hoven, B. G.; Ali, B. E.; Alper, H. J. Org. Chem. 2000, 65, 4131-4137. 21. Wilke, G. Angew. Chem., Int. Ed. Engl. 1988, 27,185-206. 22. Liao,H. Y.; Cheng, C. H. J. Org. Chem. 1995, 60, 3711-3716. 23. Rayabarapu, D. K.; Cheng, C. H. J. Am. Soc. Chem. 2002, 124, 5630-5631. 24. Rayabarapu, D. K.; Shukla, P.; Cheng, C. H. Org. Lett. 2003, 4903-4906. 25. Rayabarapu, D. K.; Sambaiah, T.; Cheng, C. H. Angew. Chem., Int. Ed. 2001, 1286-1288. 26. (a)Yet, L. Chem. Rev. 2003, 103, 4283-4306. (b) Magiatis, P.; Spanakis, D.; Mitaku, S.; Tsitsa, E.; Mentis, A.; Harvala, C. J. Nat. Prod. 2001, 64, 1093-1094. 27. Bradshaw, J. S.; Maas, G. E.; Izatt, R. M.; Christensen, J. J. Chem. Rev. 1979, 1, 37-52. 28. (a) Shiina, I. Tetrahedron 2004, 60, 1587-1599. (b) Nakamura, T.; Matsuyama, H.; Kamigata, N.; Iyoda, M. J. Org. Chem. 1992, 57, 3783-3789. (c) Kamigata, N. Nakamura, T.; J. Org. Chem. 1989, 54, 5218-5223. (d) Pedersen, C. J. J. Am. Chem. Soc. 1967, 7017-7036. (e) Harris, E. G. US Patent 4499288, 1985. 29. (a) Tor, Y.; Libman, J.; Frolow, F.; Gottlieb, H. E.; Lazar, R.; Shanzer, A. J. Org. Chem. 1985, 50, 5476-5480. (b) Shanzer, A.; Libman, J. Gottlieb, H.; Frolow, F. J. Am. Chem. Soc. 1982, 104, 4220-4225. (c) Picard, C.; Cazaux, L.; Tisnes, P. Tetrahedron. 1986, 13, 3503-3519. (d) Shanzer, A.; Mayer-Shochet, N.; Frolow, F.; Rabinovich, D. J. Org. Chem. 1981, 46, 4662-4665. 30. (a) Trost, B. M.; Chisholm, J. D. Org. Lett. 2002, 21, 3743-3745. (b) Grela, K.; Ignatowska, J. Org. Lett. 2002, 21, 3747-3749. (c) Doyle, M.; Hu, W. J. Org. Chem. 2000, 65, 8839-8847. (d) Philippon, A.; Degueil-Castaing, M.; Beckwith, A. L.; Maillard, B. J. Org. Chem. 1998, 63, 6814-6819. (e) Guo, Z. W.; Charles, J. S. J. Am. Chem. Soc. 1988, 110, 1999-2001. 31. (a) Lee, C. W.; Choi, T. L.; Grubbs, R. H. J. Am. Chem. Soc. 2002, 124, 3224-3225. (b) Lee, C. W.; Choi, T. L.; Grubbs, R. H. J. Org. Chem. 2001, 66, 7155-7158. 32. Fürstner, A.; Guth, O.; Rumbo, A.; Seidel, G. J. Am. Chem. Soc. 1999, 121, 11108-11113. 33. Trost, B. M.; Matsubara, S.; Caringi, J. J. J. Am. Chem. Soc. 1989, 111, 8745-8746. 34. Trost, B. M.; Warner, R. W. J. Am. Chem. Soc. 1983, 105, 5940-5942.id NH0925065006 sid 897416 cfn 0 / id NH0925065007 auc 郭慧通 tic 混合四配位二價銅錯合物的合成及其在化學氣相沉積的應用 adc 季昀 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 113 kwc 混合四配位二價銅錯合物的合成及其在化學氣相沉積的應用 abc 由於銅金屬具有低電阻及良好的電子遷移阻抗性與應力誘導遷移性,所以用銅金屬作為導線的元件可以承受更密集的電路排列,因而大幅減少所需的金屬層數目,進而降低生產成本和提昇訊號傳遞速度,所以在IC 產業中已經漸漸取代鎢及鋁的金屬導線製程。基於此我們合成了一系列的混合型四配位二價銅錯合物來作為銅金屬化學氣相沉積 (CVD) 的前驅物。此系列的四配位二價銅錯合物是混合四配位含β- 戊二酮 (β-diketonate) 及醇胺類(aminoalcoholate) 配位基的二價銅金屬錯合物,β-戊二酮是用六氟戊二酮,藉由改變醇胺類配位基上的醇官能團及胺官能團上的取代基,進一步來探討錯合物的一些物理及化學的性質並用來進行Cu CVD 實驗。以此系列的化合物 tc <目錄> 第一章、序論 1 第一節、前言 1 第二節、化學氣相沉積簡介 5 第三節、銅金屬化學氣相沉積之文獻回顧 14 第四節、研究動機 24 第二章、實驗部分 25 第一節、一般敘述 25 一、藥品 25 二、直立冷壁式化學氣相沉積裝置 26 三、分析工具 28 第二節、實驗步驟 33 第一部份、銅金屬錯合物的合成 33 一、有機配位基化合物之合成 33 二、混合型銅金屬錯合物的合成 40 第二部份、化學氣相沉積 70 第三章、實驗結果與討論 71 第一部份、錯合物之結構性質探討 71 第二部份、錯合物之物理及化學性質探討 75 第三部份、化學氣相沉積的結果與探討 83 第四章、結論 109 第五章、參考文獻 111 <圖目錄> 圖1. 鋁的電子的遷移效應 2 圖2. 鋁的電子遷移效應的一些現象 2 圖3. 階梯覆蓋性的好與壞所造成的一些現象 3 圖4. Cu CMP 應用到dualdamascene 程序的情形 6 圖5. CVD 與PVD 技術的差異 7 圖6. 化學氣相沉積原理示意圖 8 圖7. 化學氣相沉積反應程序示意圖 10 圖8. 數種化學氣相沉積反應器示意圖 13 圖9. 數種液態植入式化學氣相沉積系統示意圖 13 圖10. 二價銅化學氣相沉積前驅物之分子結構 22 圖11. 一價銅化學氣相沉積前驅物之分子結構 22 圖12. 冷壁式化學氣相沉積反應裝置圖 27 圖13. 錯合物2a 之分子結構圖 71 圖14. 錯合物2a 之TG/DTA 圖 80 圖15. 錯合物2b 之TG/DTA 圖 80 圖16. 錯合物2c 之TG/DTA 圖 81 圖17. 錯合物2d 之TG/DTA 圖 81 圖18. 2a、2b、2c 及2d 的TGA 重量損失曲線總合 82 圖19. 化合物2a 的成膜機制圖 85 圖20. 化合物2b 的成膜機制圖 86 圖21. 薄膜成長方式之示意圖 88 圖22. 化合物2a 鍍製的薄膜其SEM (a) 正視 (b) 45°角斜視圖 91 圖23. 化合物2b 鍍製的薄膜其SEM (a) 正視 (b) 45°角斜視圖 92 圖24. 化合物2d 鍍製的薄膜其SEM (a) 正視 (b) 45°角斜視圖 93 圖25. 化合物2a 所鍍製的薄膜其XRD 圖 96 圖26. 化合物2b 所鍍製的薄膜其XRD 圖 96 圖27. 化合物2d 所鍍製的薄膜其XRD 圖 97 圖28. 銅金屬薄膜2a 系列其沉積速率對基板溫度關係圖 102 圖29. 銅金屬薄膜2a 系列其沉積溫度對電阻值關係圖 102 圖30. 銅金屬薄膜2b 系列其沉積速率對基板溫度之關係圖 103 圖31. 銅金屬薄膜2b 系列其沉積溫度對電阻值之關係圖 103 圖32. 銅金屬薄膜2d 系列其沉積速率對基板溫度之關係圖 104 圖33. 銅金屬薄膜2d 系列其沉積溫度對電阻值之關係圖 104 圖34. 銅金屬薄膜2a-1 之XPS 全光譜圖(Ar 濺擊1 min) 105 圖35. 銅金屬薄膜2a-2 之XPS 全光譜圖(Ar 濺擊1 min) 105 圖36. 銅金屬薄膜2a-3 之XPS 全光譜圖(Ar 濺擊1 min) 106 圖37. 銅金屬薄膜2b-1 之XPS 全光譜圖(Ar 濺擊1 min) 106 圖38. 銅金屬薄膜2b-2 之XPS 全光譜圖(Ar 濺擊1 min) 107 圖39. 銅金屬薄膜2d-1 之XPS 全光譜圖 (Ar 濺擊1 min) 107 圖40. 銅金屬薄膜2d-2 之XPS 全光譜圖(Ar 濺擊1 min) 108 圖41. 銅金屬薄膜2d-3 之XPS 全光譜圖(Ar 濺擊1 min) 108 <表目錄> 表1. 一些常見的銅金屬化學氣相沉積前驅物及其鍍膜條件 23 表2. 實驗所用的化合物 25 表3. 配位基的基本性質 37 表4. 銅錯合物的基本性質 48 表5. 錯合物2a 之X-ray 繞射數據資料 73 表6. 錯合物2a 之選擇性鍵長[Å ] 74 表7. 錯合物2a 之選擇性鍵角[° ] 74 表8. 錯合物的基本物理及化學性質 77 表9. 前驅物的化學氣相沉積成膜機制實驗條件 84 表10. 前驅物及化學氣相沉積實驗條件 90 表11. 銅金屬薄膜(2a 系列)之組成及物理性質 101 表12. 銅金屬薄膜(2b 系列)之組成及物理性質 101 表13. 銅金屬薄膜(2d 系列)之組成及物理性質 101rf 1 Microelectronic Materials and processes, edited by R. A. Levy pp275, 319. 2 潘扶民博士,<半導體製程課程講義>,2002 3 ULSI Technology, the McGRAW-HILL 1996, 663. 4 C. Steinbrüchel, Applied Surface Science 1995, 91, 139. 5 H. Ono, T. Nakano, T. Ohta, Appl. Phys. Lett. 1994, 64, 1511. 6 S. W. Kang, S. H. Han, S. W. Rhee, Thin Solid Films 1999, 350, 10. 7 S. W. Kang, S. H. Han, S. W. Rhee, Thin Solid Films 1998, 335, 229. 8 J. P. Endle, Y. M. Sun, N. Nguyen, S. Madhukar, R. L. Hance, J. M. White, J. G.. Ekerdt, Thin Solid Films 2001, 388, 126. 9 S. W. Kang, S. W. Rhee, J. Electrochem. Soc. 2002, 149(6) C345. 10 P. O’Brien, N. L. Pickett, D. J. Otway, Chem. Vapor Deposition 2002, 8(6), 237. 11 R. L.Van Hemert, , Spendlove, L.B., Sievers, R.E. J. Electrochem. Soc. 1965, 112, 1123. 12 D. Temple, A. Reisman, J. Electrochem. Soc. 1989, 136(11), 3525. 13 A. E. Kaloyeros, A. Feng, J. Garhart, K. C. Brooks, S. K. Ghosh, A. N. Saxena, F. Luehers, J. Electronic Maters. 1990, 19, 271. 14 N. Awaya, Y. Arita, Digest of Technical Papers 1989, Section 12-4, 103. 15 S. M. Fine, P. N. Dyer, J. A. T. Norman, B. A. Muratore, R. L. Iampietro, Mater. Res. Soc. Symp. 1990, 204, 415. 16 S. C. Goel, K. S. Kramer, M. Y. Chiang, W. E. Buhro, Ployhedron 1990, 9(4), 611. 17 V. L. Young, D. F. Cox, M.E. Davis, Chem. Mater. 1993, 5, 1701. 18 R. M. Jeffries, S. R. Wilson, G.. S. Girolami , Inorg. Chem. 1992, 31(22), 4503. 19 J. Pinkas, J. C. Huffman, J. C. Bollinger, W. E. Streib, D. V. Baxter, M. H. Chisholm, K. G. Caulton, Inorg. Chem. 1997, 36(14), 2930. 20 S. Hwang, H. Choi, Chem. Mater. 1996, 8, 981. 21 M. J. Mouche, J. L. Mermet, M. Romand, M. Charbonnier, Thin Solid Films 1995, 262, 1. 22 A. Jain, T. T. Kodas, T. S. Corbitt, M. J. Hampden-Smith, Chem. Mater. 1996, 8, 1119. 23 T. Y. Chen, J. Vaissermann, E. Ruiz, J. P. Senateur, P. Doppelt, Chem. Mater. 2001, 13, 3993. 24 The Chemistry of Metal CVD, edited by T. T. kodas, M. J. Hampden-Smith pp185, 253. 25 J. V. Singh, B. P. Baranwal, R. C. Mehrotra, Anorg. Allg. Chem. 1981, 477, 235. 26 S. C. Goel, K. S. Kramer, M. Y. Chiang, W. E. Buhro, Polyhedron 1990, 9, 611. 27 A. W. Maverick, F. R. Fronczek, E. F. Maverick, D. R. Billodeaux, Z. T. Cygan, R. A. Isovitsch, Inorg. Chem. 2002, 41, 6488. 28 S. Wang. J. Cluster Science 1995, 6(4), 463. 29 W. Bidell, V. Shklover, H. Berke, Inorg. Chem. 1992, 31(26), 5561. 30 J. E. Saavedra, D. W. Farnsworth, G.. K. Pei, Synth. Communi. EN. 1988, 18(3), 313. 31 M. Okada, E. Suzuki, M. Iiyoshi, Chem. Pharm. Bull. 1978, 26(12), 3891. 32 T. Foster, P. R. West. Can. J. Chem. 1973, 51, 4009. 33 I. S. Chang, C. J. Wills. Can. J. Chem. 1977, 55, 2465. 34 VOGEL’s Textbook of PRACTICAL ORGANIC CHEMISTRY. page 432. 35 C. Dunn, C. L. Gibson, C. J. Suckling, Tetrahedron 1996, 52, 13017. 36 J. W. Skiles, V. Fuchs, C. Miao, R. Sorcek, K. G.. Grozinger, S. C. Mauldin, J. Victor, P. W. Mui, S. Jacober, G.. Chow, M. Matteo, M. Skoog, S. M. Weldon, G.. Possanza, J. Keirns, G.. Letts, A. S. Rosenthal, J .Med. Chem. 1992, 35, 641. 37 A. B. Burdukov, D. A. Guschin, N. V. Pervukhina, V. N. Ikorskii, Y. G. Shvedenkov, V. A. Reznikov, V. I. Ovcharenko1, Crystal Engineering 1999, 2(4), 265. 38 J. Pinkas, J. C. Huffman, J. C. Bollinger, W. E. Streib, D. V. Baxter, M. H. Chisholm, K. G. Caulton, Inorg. Chem. 1997, 36, 2930. 39 S. W. Kanga, S. H. Hanb, S. W. Rheea, Thin Solid Films 1999, 350, 10. 40 J. H. Son, M. Y. Park, S. W. Rhee, Thin Solid Films 1998, 335, 229. 41 A. C. Jones, Chem .Vap. Deposition 1998, 4, 169. 42 P. M. Jeffries, L. H. Dubois, G. S. Girolami, Chem. Mater. 1992, 4, 1169. 43 P. Doppelt, Coordination Chemistry Reviews 1998, 178-180, 1785. 44 A. E. Kaloyeros, A. Feng, J. Garhart, J .Electron. Mater. 1990, 19, 271. 45 T. H. Baum, J. Electrochem. Soc. 1987, 134, 2616. 46 J. I. Yamaguchi, T. Takeda, Chem .Lett. 1992, 1933. 47 P. F. Hsu, Y. Chi, T. W. Lin, C. S. Liu, A. J. Carty, S. M. Peng, Chem. Vap .Deposition 2001, 7, 28. 48 S. S. Pak, F. C. Montgomery, D. M. Duggan, K. C. Chen, K. S. Mazdiyasni, J. Am .Ceram. Soc. 1992, 75, 2268. 49 V. L. Young, D. F. Cox, M. E. Davis, Chem. Mater. 1993, 5, 1701. 50 W. J. Lee, J. S. Min, S. K. Rha, S. S. Chun, C. O. Park, J. Mater. Sci. mater. electronic 1996, 7, 111. 51 D. H. Kim, R. H. Wentorf, W. N. Gill, in Advanced Metallization and Processing for Semiconductor Devices and Circuits-II, A. Katz, S. Murarka, Y. I. Nissim, J. M. E. Harper, Materials Research Society, Pittsburgh, PA, 1992, San Francisco Spring Metting, 1992, 107. 52 D. H. Kim, R. H. Wentorf, W. N. Gill, Mat. Res. Soc. Symp. Proc. 1992, 260, 107. 53 N. Awaya, Y. Arita, Jpn. J. Appl. Phys. 1993, 32, 3915. 54 S. Vaidya, D. B. Fraser, A. K. Sinhar, in Proceedings of IRPS, IEEE, 1980, 165. 55 J. Li, Y. Shacham-Diamand, J. Electrochem. Soc. 1992, 139, L37. 56 D. N. Armitage, N. I. Dunhill, R. H. West, J. O. Williams, J. Crystal Growth, 1991, 108, 683.id NH0925065007 sid 903407 cfn 0 / id NH0925065008 auc 林俊甫 tic 咪唑及其次烯基異構物反應之研究 adc 儲三陽 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 101 kwc 次烯基 kwc 路易士酸 kwc 親核取代 kwc 類次烯基 abc 咪唑(imidazole)的雜環化合物(1)可利用其不接氫的氮原子作配位基。其氫原子轉移異構物(2)是含氮雜環次烯基化合物(N-Heterocyclic Carbene)。在1990年代中期開始被發現它可以扮演一個相當有效的有機金屬配位基1。本論文在於探討它們和各種路易士酸之間酸鹼作用能量大小酸類。包括BR3,CR3+,AlR3,SiR3+,NR2+,PR2+,O,S (R=氫,鹵素)等。我們感興趣的問題是兩者和酸作用的相對強度,又(2)雖然較(1)不穩定,但親核性較強,我們想知道何種酸使得鍵結物的相對穩定性順序相反於原先異構物。 tc 摘要…………………………………………………………………..1 一、計算方法………………………………………………………3 1-1計算方法簡介…………………………………………….…3 1-2 B3LYP方法…………………………………………………3 二、含氮次烯基分子與其咪唑異構物之性質及其反應…………5 2-1前言……..……………………………………………………5 2-2研究方法….………………………………………………….16 2-3結果與討論…..………………………………………………17 三、含氮矽次烯基分子與其咪唑異構物之性質及其反應………26 3-1前言………………………………………………..…………26 3-2研究方法……………………………………………………..30 3-3結果與討論…………………………………………………..31 四、雙鍵小分子碳矽次烯基與其氫轉移異構物之鍵結………....45 4-1前言………………………………………………..…………45 4-2研究方法……………………………………………………..46 4-3結果與討論…………………………………………………..47 五、HNC/HCN小分子的親核反應…………………………….…61 5-1前言………………………………………………..…………61 5-2研究方法……………………………………………………..62 5-3結果與討論…………………………………………………..63 六、次烯基分子與一些主族元素的親核反應……………………73 6-1前言………………………………………………..…………73 6-2研究方法……………………………………………………..46 6-3結果與討論…………………………………………………..78 七、結論……………………………………………………………92 參考文獻……………………………………………………………..98rf 1.Robert H. Crabtree 〝Carbenes. Pincers, chelates, and abnormal bindind modes,〞 Pure Appl. Chem. 2003, 75, No. 4, 435 2.Levine, I. N. 〝Quantum Chemistry〞5th., Prentice Hall International, Inc., 1997. 3.Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. 〝Stable Carbene, 〞 Chem. Rev. 2000, 100, 39 4.Regitz; Maas Diazo Compound; Academic Press: New York, 1986, 170 5.H. W. Wanzlick, 〝Aspects of Nucleophilic Carbene Chemistry,〞 Angew. Chem. Int. Ed. Engl. 1962, 1, 75 6.E. O. Fisher; Maasböl, A. Angew. Chem. Int. Ed. Engl. , 1964, 3, 580 7.H. W. Wanzlick, H. J. Schonherr, Liebigs Ann. Chem. 1970, 731, 176 8.H. J. Schonherr, H. W. Wanzlick, Chem. Ber. 1970, 103, 1037 9.A. J. Arduengo, D. A. Dixon, K. D. Dobss, J. Am. Chem. Soc. 1991, 113, 6463 10.A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361 11.W. Kirmse: Carbene, Carbenoide and Carbenanaloge, Verlag Chemie, Weinheim, 1969, p. 6ff 12.W. Kirmse: Carbene Chemistry, 2nd ed. , Academic press, New York 1971 13.M. Jones, R. A. Moss: Carbene I, Wiley, New York 1973 14.M. Jones, R. A. Moss: Carbene Ⅱ, Wiley, New York 1975 15.A. J. Arduengo, III, H. V. Rasika Dias, David A. Dixon, Richard L. Harlow, W. T. Klooster, T. F. Koetzle, 〝Electron Distribution in a Stable Carbene,〞 J. Am. Chem. Soc. , 1994, 116, 6812 16.D. DiXon, A. J., III. J. Phys. Chem. 1991, 95, 4180 17.G. Sini, O. Eisenstein, R. H. Crabtree, 〝Preferential C-Binding versus N-Binding in Imidazole Depends on the Metal Fragment Involved, 〞 Inorg. Chem., 2002, 41, 602 18.C. Heinemann, W. Thiel Chem Phys. Lett. 1994, 217, 11 19.A. Graham McGibbon, Christoph Heinemann, David J. Lavorato, Helmut Schwarz, 〝Imidazol-2-ylidene: Generation of a Missing Carbene and Its Dication by Neutralization-Reionizatin and Charge-Stripping Mass Spectrometry, 〞 Angew. Chem. Int. Ed. Engl. 1997, 36, 1478 20.Jonas Volker, Frenking Gernot, T. Reetz Manfred, 〝Comparative Theoretical Study of Lewis Acid-Base Complexes of BH3, BF3, BCl3, AlCl3, and SO2, 〞 J. Am. Chem. Soc. 1994, 116, 8741 21.G. N. Lewis, Valence and the Structure of Atoms and Molecules; The Chemical Catalog Co., Inc.: New York, 1923 22.E. O. Fischer, A Maasbol, Angew. Chem. Int. Ed. Engl. 1964, 76, 645 23.K. Ofele, J. Organomet. Chem. 1968, 12,42 24.W. A. Herrmann, C. Kocher, Angew. Chem. Int. Ed Engl. 1997, 36, 2126 25.A. J. Arduengo, H. V. R. Dias, J. C. Calabrese, J. Am. Chem. Soc. 1992, 114, 9724 26.N. Kuhn, G. Henkel, T. Krate, J. Kreutzberg, R. Boese, A. H. Maulitz, Chem. Ber., 1993, 126, 2041 27.A. J. III Arduengo, Siegfried F. Gamper, Matthias Tamm, Joseph C. Calabrese, Frederic Davidson, Hugh A. Craig, J. Am. Chem. Soc. 1995, 117, 572 28.W. A. Herrmann, O. Runte, G. R. J. Artus, J. Organomet. Chem., 1995, 501, C1 29.A. J. Arduengo, H. V. R. Dias, F. Davidson, R. L. Harlow, J. Organomet. Chem., 1993, 462, 13 30.O. Runte, Dissertation, Technische Universitat Munchen, 1997. 31.N. Kuhn, H. Bohnen, J. Kreutzberg, D. Blaser, R. Boese, J. Chem. Soc. Chem. Commun., 1993, 1136 32.N. Kuhn, T. Kratz, D. Blaser, R. Boese, Chem. Ber., 1995, 128, 245 33.A. Wolfgang, Herrmann, Elison Martina, Fischer Jakob, Köcher Christian, R. J. Artus Georg, Angew. Chem. Int. Ed. Engl. 1995, 34, 2371 34.Applied Homogeneous Catalysis with Organometallic Complexes(Eds.:B. Cornils, W. A. Herrmann), VCH, Weinheim, 1996 35.R. H. Grubbs in Comprehensive Organometallic Chemistry, Vol 8(Eds.:G. Wilkinson, F. G. A. Stone, E. W. Abel), Pergamon, Oxford, 1982, p.499. 36.M. Brookhart, W. B. Studabaker, Chem. Rev. 1987, 87, 411. 37.K. H. Dotz in Organometallics in Organic Synthesis(Eds,:A de Meijere. H. Tom Dieck), Springer, Berlin, 1998. 38.Ch. Aubauer, T.M. Klapötke, A. Schulz, J. Mol. Struct. (Theochem), 2001, 543, 285 39.F. Bessac, G. Frenking, Inorg. Chem. 2003, 42, 7990 40.Siberberg, Chemistry-The Molecular Nature of Matter and Change, 1996, Mosby-Year Book, Inc. 41.P. P. Gaspar, React. React. Intermed. 1981, 2, 335 42.W. P. Neumann, Nachr. Chem. Tech. Lab. 1982, 30, 190 43.G. Maier, H. P. Peisenauer, K. Schoettler, J. Organomet. Chem. 1989, 366, 25 44.G. Raabe, J. J. Michl, Chem. Rev. 1985, 85,419 45.M. Veith, E. Wele, R. Lisowsky, R. Loppe, H. Schno ckel, Chem. Ber. 1992, 125,1375 46.G. R. Gillette, G. Noren, R. West, Organometallics. 1990, 9, 2925 47.W. Sander, A. Patyk, G. Bucher, J. Mol. Struct. 1990, 222, 21 48.G. Maier, J. Glatthaar, H. P. Reisenauer, Chem. Ber. 1989, 122,2403 49.M. Denk, R. West, R. Hayashi, Silylenes, Stable and Unstable in Organosilicon Chemistry. VCH. Weinherim. 1995, p.251 50.R. Okazaki, N. Tokitoh, Acc. Chem. Res. 2000, 33,625 51.N. Tokitoh, T. Matsumoto, R. Okazaki, Bull. Chem. Soc. Jpn. 1999, 72, 1665 52.Auner N., Weis J. In Organosilicon Chemistry IV; VCH:Weinheim, Germany, 2000 53.C. Heinemann, W. Thiel, Chem. Phys. Lett. 1994, 217, 11 54.C. Bohme, G. Frenking, J. Am. Chem. Soc. 1996, 118, 2039 55.A. J. Arduengo, H. Bock, H. Chen, M. Denk, D. A. Dixon, J. C. Green, W. A. Herrmann, N. L. Jones, M. Wagner, R. West, J. Am. Chem. Soc. 1994, 116, 6641 56.Su Ming Der, Chu San Yan, Inorg. Chem. 1999, 38, 4819 57.V. A. Basiuk, J. Phys. Chem. A. 2001, 105, 4252 58.V. A. Basiuk, Bogillo VI, ADV SPACE RES., 2002, 30(6), 1445 59.Petrie, S. J. Phys. Chem. A, 2002, 106, 11181 60.Yitzhak Apeloig, Karsten Albrecht, J. Am. Chem. Soc.; 1995, 117, 7263 61.Liao, H. Y.; Chu, S. Y., Int. J. Quantum Chem., 2002, 41, 1320 62.C. J. Carmalt and A. H. Cowley, Adv. Inorg. Chem., 2000, 50, 1 63.N. Kuhn, H. Bohnen, J. Kreutzberg, D. Bläser and R. Boese, J. Chem. Soc. Chem. Commun. , 1993, 1136 64.Arduengo, A. J., III; Davidson, F.; Dias, H. V. R.; Goerlich, J. R.; Khasnis, D.; Marshall, W. J.; Prakasha, T. K.; J. Am. Chem. Soc. , 1997, 119, 12742 65.W. M. Boesveld, B. Gehrhus, P. B. Hitchcock, M. F. Lappert and P. v. R. Schleyer, Chem. Commun. , 1993, 32, 1541 66.C. Glidewell, H. D. Holden and D. C. Liles, J. Mol. Struct. , 1980, 66, 325 67.Dieter Enders, Klaus Breuer, Gerhard Raabe, Jan Runsink, J. Henrique Teles, Johann-Peter Melder, Klaus Ebel, Stefan Brode, Angew. Chem. Int. Ed. Engl. 1995, 34, 1021 68.G. B. Ansell, D. M. Forkey and D. W. Moore, J. Chem. Soc. Chem. Commun. , 1970, 56 69.G. B. Ansell, J. Chem. Soc., Perkin Trans. 2, 1972, 841 70.Gilles Frison, Alain Sevin, J. Chem. Soc., Perkin Trans. 2, 2002, 16 71.L. Paulin:The Nature of the Chemical Bond. 3rd Ed., Cornell University Press, Ithaca, NY 1960id NH0925065008 sid 903471 cfn 0 / id NH0925065009 auc 謝依萍 tic 紅色和藍色材料之研究 adc 劉瑞雄 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 239 kwc 有機發光二極體 kwc 紅色磷光材料 kwc 藍色磷光材料 kwc 發光機制 kwc 氟原子 abc 本論文的目的在於合成與研究有機銥金屬紅色與藍色磷光電激發光材料。我們主要分為兩個研究部分,第一部分是以含氟的異喹啉作為銥金屬配位基的主體,利用Suzuki coupling接上苯環形成配位基,接著與銥金屬及乙醯丙酮結合而形成銥金屬—乙醯丙酮錯化合物,此為紅色磷光材料;第二部分則是以吡啶作為銥金屬配位基的主體,分別在吡啶環上不同位置接上推電子基,利用Kumada coupling和Suzuki coupling與含不同位置接有拉電子基的苯環結合形成配位基,再與銥金屬形成銥金屬—乙醯丙酮錯化合物,此為藍色磷光材料。 tc 中文摘要 i 英文摘要 iii 謝誌 iv 目錄 vi 圖目錄 x 表目錄 xiii 第一章 緒 論 1 第一節 前言 1 第二節 螢光與磷光 4 第三節 OLED元件發光原理和基本結構 7 3-1 元件發光原理 7 3-2 元件基本結構 8 3-3 元件材料 10 第四節 OLED元件的發光效率 14 第五節 磷光材料之摻雜(doping)原理 17 第六節 紅色與藍色磷光材料之設計 19 第二章 紅色磷光材料之研究 21 第一節 緒論 21 第二節 結果與討論 24 2-1 紅色磷光材料之合成 24 2-2 物理光學性質探討 27 2-3 元件結構及性質探討 30 第三節 結論 35 第三章 藍色磷光材料之研究 37 第一節 緒論 37 第二節 結果與討論 39 2-1 藍色磷光材料之合成 40 2-2 物理光學性質探討 44 2-3 元件結構及性質探討 56 第三節 結論 67 第四章 實驗部分 71 第一節 實驗藥品之中英文對照 71 第二節 實驗的一般操作 73 第三節 化合物的合成 76 化合物1的合成 76 化合物1c的合成 80 化合物2的合成 81 化合物2c的合成 85 化合物3的合成 86 化合物3c的合成 88 化合物4的合成 90 化合物4c的合成 91 化合物5的合成 92 化合物5c的合成 95 化合物6的合成 96 化合物6c的合成 98 化合物7的合成 99 化合物7c的合成 101 化合物8的合成 102 化合物8c的合成 104 化合物9的合成 106 化合物9c的合成 106 化合物10的合成 108 化合物10c的合成 109 化合物11的合成 110 化合物11c的合成 111 化合物12的合成 113 化合物12c的合成 115 第四節 磷光的物理性質測定 116 第五章 參考文獻 122 附錄 126 圖 目 錄 圖一 1987年柯達公司所發表的元件結構 2 圖二 螢光與磷光示意圖 4 圖三 激發態電子去活化的形式 5 圖四 OLED元件發光機制 7 圖五 雙層式薄膜OLED的多層膜結構 8 圖六 三層式薄膜OLED的多層膜結構 9 圖七 多層式薄膜的OLED 10 圖八 NPB等電洞傳輸材料結構圖 11 圖九 Alq3等電子傳輸材料結構圖 12 圖十 OLED的內部量子效率及doping的能階轉換圖 16 圖十一 (a) Förster and (b) Dexter能量傳遞過程示意圖 18 圖十二 紅色磷光材料結構 22 圖十三 2002年Okada發表的紅色銥金屬磷光發光材料 .23 圖十四 銥金屬紅色磷光材料設計 23 圖十五 紅色磷光材料的UV和PL光譜比較圖 29 圖十六 紅色磷光材料元件結構圖 30 圖十七 紅色磷光材料的EL電激發光光譜比較圖 31 圖十八 紅色磷光材料電流密度與外部量子效率的關係比較圖 33 圖十九 紅色磷光材料電壓與電流密度和電壓與亮度的關係比較圖 35 圖二十 藍色磷光材料結構 38 圖二十一 銥金屬藍色磷光材料設計 39 圖二十二 錯合物3c~6c的UV和PL光譜比較圖 47 圖二十三 錯合物7c~12c的UV和PL光譜比較圖 47 圖二十四 錯合物3c~6c的循環伏安電位比較圖 53 圖二十五 錯合物7c~12c的循環伏安電位比較圖 54 圖二十六 錯合物3c、5c和7c的循環伏安電位比較圖 55 圖二十七 錯合物4c、6c和9c的循環伏安電位比較圖 55 圖二十八 錯合物3c~11c元件結構圖 57 圖二十九 錯合物3c~6c的EL電激發光光譜比較圖 58 圖三十 錯合物7c~11c的EL電激發光光譜比較圖 59 圖三十一 錯合物3c~6c的電流密度與外部量子效率的關係比較圖 62 圖三十二 錯合物7c~11c電流密度與外部量子效率的關係比較圖 63 圖三十三 錯合物3c~6c的電流密度與發光效率的關係比較圖 64 圖三十四 錯合物7c~11c的電流密度與發光效率的關係比較圖 65 圖三十五 錯合物3c~6c的電流密度與能量效率的關係比較圖 65 圖三十六 錯合物7c~11c的電流密度與能量效率的關係比較圖 66 圖三十七 錯合物3c~6c電壓與電流密度和電壓與亮度關係比較圖 67 圖三十八 錯合物7c~11c電壓與電流密度和電壓與亮度關係比較圖 68 表 目 錄 表一 紅色磷光材料的UV吸收、PL及量子產率數據整理表 27 表二 紅色磷光材料的各項元件數據整理表 32 表三 錯合物3c~6c的UV吸收、PL及量子產率數據整理表 44 表四 錯合物7c~12c的UV吸收、PL及量子產率數據整理表 45 表五 錯合物3c~12c的HOMO、LUMO和Band gap的整理表 51 表六 錯化合物3c ~ 6c各項元件數據整理表 60 表七 錯化合物7c ~ 11c各項元件數據整理表 61rf 1. Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042. 2. Helfrich, W.; Schneider, W. G. Phys. Rev. Lett. 1965, 14, 229. 3. Williams, D. F.; Schadt, M. Proc. IEEE. 1970, 58, 476. 4. Vincett, D. S.; Barlow, W. A.; Hann, R. A.; Robert, G. G. Thin Solid Films, 1982, 94, 171. 5. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913. 6. Burroughs, J. H.; Bradley, D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature, 1990, 347, 539. 7. 黃春暉,李富友,黃岩誼,光電功能超薄膜,北京大學出版社, 2001, 4, 329. 8. Schulman, S. G. Fluorescence and Phosphorescence Spectroscopy: Physicochemical Principles and Practice; Pergamon Press, Oxford, 1995. 9. VanSlyke, S. A.; Chen, C. H.; Tang, C. W. Appl. Phys. Lett. 1996, 69, 2160. 10. Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1989, 55, 1489. 11. Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Jpn. J. Appl. Phys. Part 2, 1988, 27, L269. 12. Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Jpn. J. Appl. Phys. Part 2, 1988, 27, L713. 13. VanSlyke, S. A.; Tang, C. W. US 5,061,569 (1991) 14. 李文連,液晶與顯示, 2000, 15, 108-113. 15. Thompson, M. E.; Shoustikov, A.; You, Y.; Sibley, S.; Baldo, M.; Koslov, V.; Burrows, E. P.; Forrest, S. R. MRS Abstract, G2.4, Spring Meeting, 1998. 16. O’Brien, D. F.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999, 74, 442. 17. (a) Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999, 75, 4. (b) Thompson, M. E.; Burrows, P. E.; Forrest, S. R. Cur. Opinion Solid State Mater. Sci. 1999, 4, 369. 18. (a) Wilde, A. P.; King, K. A.; Watts, R. J. J. Phys. Chem. 1991, 95, 629. (b) Sprouse, S.; King, K. A.; Spellane, P. J.; Watts, R. J. J. Am. Chem. Soc. 1984, 106, 6647. (c) Crosby, G. A. J. Chem. Phys. 1967, 64, 160. (d) Columbe, M. C.; Hauser, A.; Güdel, H. U. Top. Curr. Chem. 1994, 171, 143. 19. Su, Y. J.; Huang, H. L.; Li, C. L.; Tao, Y. T.; Chou, P. T.; Datta, S.; Liu, R. S. Adv. Mater. 2003, 15, 884. 20. Li, C. L.; Shieh, S. J.; Lin, S. C.; Liu, R. S. Org. Lett. 2003, 5, 1131. 21. Li, C. L.; Su, Y. J.; Tao, Y. T.; Chou, P. T.; Datta, S.; Liu, R. S. Adv. Funct. Mater. 2004, in press. 22. (a) Wang, Y.; Herron, N.; Grushin, V. V.; LeCloux, D.; Petrov, V. Appl. Phys. Lett. 2001, 79, 449. (b) Grushin, V. V.; Herron, N.; LeCloux, D. D.; Marshall, W. J.; Petrov, V. A.; Wang, Y. Chem. Commun. 2001, 1494. 23. Tang, C.W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610. 24. Bulovic, V.; Shoustikov, A.; Bose, M. A. E.; Kozlov, V. G.; Thompson, M. E.; Forrest, S. R. Chem. Phys. Lett. 1998, 287, 455. 25. Zhang, X. H.; Chen, B. J.; Lin, X. Q.; Wong, O. Y.; Lee, C. S.; Kwong, H. L. Lee, S. T.; Wu, S. K. Chem. Mater. 2001, 13, 1565. 26. Kido, J.; Hayase, H.; Kongawa, K.; Hagai, K.; Okamoto, K. Appl. Phys. Lett. 1994, 65, 2124. 27. Adachi, C.; Baldo, M. A.; Forrest, S. R. J. Appl. Phys. 2000, 87, 8049. 28. Baldo, M. A.; O’ Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature, 1998, 395, 151. 29. Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Nature, 2000, 403, 750. 30. Adachi, C.; Baldo, M. A.; Forrest, S. R.; Lamansky, S.; Thompson, M. E.; Kwong, R. Appl. Phys. Lett. 2001, 78, 1622. 31. Okada, S.; Iwawaki, H.; Furugori, M.; Kamatani, S.; Lgawa, S.; Moriyama, T.; Miuva, S.; Tsuboyama, A.; Takiguchi, T.; Mizutani, H. SID Symp. Dig. 2002, 1360. 32. Yamanaka, H.; Hayashi, K.; Sakamoto, T.; Kondo, Y.; Miura, N. Heterocycles, 1986, 24, 2311. 33. Colombo, M. G.; Brunold, T. C.; Riedener, T.; Gu¨del, H. U. Inorg. Chem. 1994, 33, 545. 34. Garces, F. O.; King, K. A.; Watts, R. J. Inorg. Chem. 1988, 27, 3464. (b) Carlson, G. A.; Djurovich, P. I.; Watts, R. J Inorg.Chem. 1993, 32, 4483. 35. Lamansky, S.; Djurovich, P.; Murphy, D.; Razzaq, F. A.; Kwong, R.; Tsyba, I.; Bortz, M.; Mui, B.; Bau, R.; Thompson, M. E. J. Inorg. Chem. 2001, 40, 1704. 36. Lamansky, S.; Djurovich, P.; Murphy, D.; Razzaq, F. A.; Lee, H. E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4304. 37. Sarkar, A.; Sankar, C. J. Lumin. 1995, 65, 163. 38. Lamansky, S.; Kwong, R. C.; Nugent, M.; Djurorich, P. I.; Thompson, M. E. Org. Electronics. 2001, 2, 53. 39. Grushin, V. V.; Herron, N.; LeCloux, D. D.; Marshall, W. J.; Petrov, V. A.; Wang, Y. Chem. Commun. 2001, 1494. 40. Djurovich, P. I.; Tamayo, A.; Thompson, M. E. Abs. 3th Internat. Conf. EL Mol. Mater. Relat. Phenom. (ICEL-3), p. 45, Sept.5-8, 2001, Los Angelos, CA, USA. 41. Brooks, J.; Babbayan, Y.; Lamansky, S.; Djurovich, P. I.; Tsyba, I.; Bau, R.; Thompson, M. E. Inorg. Chem. 2002, 41, 3055. 42. Holmes, R. J.; D’Andrade, B. W.; Forrest, S. R.; Ren, X.; Li, J.; Thompson, M. E. Appl. Phys. Lett. 2003, 83, 3818. 43. Tamayo, A. B.; Alleyne, B. D.; Djurovich, P. I.; Lamansky, S.; Tsyba, I.; Ho, N. N.; Bau, R.; Thompson, M. E. J. Am. Chem. Soc. 2003, 125, 7377. 44. Tsuzuki, T.; Shirasawa, N.; Suzuki, T.; Tokito, S. Adv. Mater. 2003, 15, 1455. 45. Nazeeruddin, M. K.; Baker, R. H.; Berner, D.; Rivier, S.; Zuppiroli, L.; Graetzel, M. J. Am. Chem. Soc. 2003, 125, 8790. 46. Tokito, S.; Iijima, T.; Tsuzuki, T.; Sato, F. Appl. Phys. Lett. 2003, 83, 2459. 47. Amishiro, N.; Nagamura, S.; Kobayashi, E.; Gomi, K.; Saito, H. J. Med. Chem. 1999, 42, 669. 48. Walters, M. A.; Shay, J. J. Tetrahedron Lett. 1995, 36, 7575. 49. Connon, S. J.; Hegarty, A. F. Tetrahedran Lett. 2001, 42, 735. 50. Cuperly, D.; Gros, P.; Fort, Y. J. Org. Chem. 2002, 67, 238. 51. Bonnet, V.; Mongin, F.; Trécourt, F.; Quéguiner, G.; Knochel, P. Tetrahedron, 2002, 58, 4429. 52. Jones II, G.; Jackson, W. R.; Choi, C. Y.; Bergmark, W. R. J. Phys. Chem. 1985, 89, 294. 53. Hamada, Y.; Kanno, H.; Tsuyoshi, T.; Takahashi, H.; Usuki, T. Appl. Phys. Lett. 1999, 75, 1682. 54. Brédas, J. L.; Silbey, R.; Boudreaux, D. S.; Chance, R. R. J. Am. Chem. Soc. 1983, 105, 6555. 55. Janietz, S.; Bradley, D. D. C.; Grell, M.; Giebeler, C.; Inbasekaran, M.; Woo, E. P. Appl. Phys. Lett. 1998, 73, 2453.id NH0925065009 sid 913402 cfn 0 / id NH0925065010 auc 黃國瑩 tic 中孔洞氧化矽薄膜:製備及X光反射率之鑑定 adc 趙桂蓉 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 147 kwc 中孔洞薄膜 kwc X光反射率 abc 中孔洞薄膜 (mesoporous film) 具有一致且可調的孔徑(2-30nm)、規則的孔道排列結構以及大表面積 (最大可至1000 m2/g) 因而可應於分離技術、偵測器以及多項光電方面的應用。薄膜的應用性與薄膜的性質 (膜厚、薄膜孔隙度、孔洞大小以及孔道排列結構等) 有關,因此控制薄膜的性質的方法及建立其鑑定方法是一件必要的工作。 rf 1. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710 2. Sing, K. S. W.; Everett, D. H.; Haul, R. H.; Moscou, W. L.;Pierotti, R. A.; Rouquerol, J.; Siemieniewaka, T. Pure Appl. Chem. 1985, 57, 603 3. Raman, N.; Anderson, M.; Brinker, C. Chem. Mater. 1996, 8, 1682 4. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D. J. Am. Chem. Soc. 1992, 114, 10834 5. Inagaki, S.; Fukushima, Y.; Kuroda, K. J. Chem. Soc.-Chem. Commun. 1993, 680 6. Karge, H. G.; Weitkamp, J. “Molecular sieves:vol. 1:Science and technology”, Springer 1998 7. Yang, H.; Kuperman, A.; Coombs, N.; Mamiche-Afara, S.; Ozin, G. A.; Nature 1996, 379, 703 8. Yang, H.; Coombs, N.; Sokolov, I.; Ozin, G. A.; J. Mater. Chem. 1997, 7, 1285 9. Miyata, H.; Kuroda, K. J. Am. Chem. Soc. 1999, 121, 7618 10. Miyata, H.; Kuroda, K. Chem. Mater. 1999, 11, 1609 11. Miyata, H.; Noma, T.; Watanabe, M.; Kuroda, K. Chem. Mater. 2002, 14, 766 12. Ko, E. I. ‘Sol-gel Process’, Handbook of Heterogeneous Catalysis ed. By Ertl, G.; Knozinger, H.; Weitkamp, J. VCH 1997, 1, 86 13. Lu, Y.; Ganguil, R.; Drewien, C. A.; Anderson, M. T.; Brinker, C. J.; Gong, W.; Guo, Y.; Soyez, Z.; Dunn, B.; Huang, M. H.; Zink, J. I. Nature 1997, 389, 364 14. Sellinger, A.; Weiss, P.M.; Nguyen, A.; Lu, Y.; Assink, R.A.; Gong, W.; Brinker, C.J.; Nature 1998, 394, 256 15. Ryoo, R.; Ko, C.H.; Cho, S.J.; Kim, J.M. J. Phys. Chem. B 1997, 101 10610. 16. Ko, C. H.; Kim, J. M.; Ryoo, R.; Microporous and Mesoporous Mater. 1998, 21, 235. 17. Zhao, D.; Yang, P.; Melosh, N.; Feng, J.; Chmelka, B. F.; Stucky, G. D. Adv. Mater. 1998, 10, 1380 18. Zhao, D.; Yang, P.; Margolese, D. I.; Feng, J.; Chmelka, B. F.; Stucky, G.D. Chem. Comm. 1998, 2499 19. Yang, P.; Wirnsberger, G.; Huang, H. C.; Cordero, S.R.; McGehee, M. D.; Scott, B.; Deng, T.; Whitesides, G. M.; Chmelka, B. F.; Buratto, S. K.; Stucky, G. D. Science 2000, 287, 465 20. Grosso, D.; Babonneau, F.; Albouy, P. A.; Amenitsch, H.; Balkenende, A. R.; Brunet-Bruneau, A.; Rivory, J. Chem. Mater. 2002, 14, 931 21. Cagnol, F.; Grosso, D.; Soler-Illia, G. J. de A. A.; Crepaldi, E. L.; Babonneau, F.; Amenitsch, H.; Sanchez, C. J. Mater. Chem. 2003, 13, 61 22. Brinker, C. J.; Lu, Y.; Sellinger, A.; Fan, H. Adv. Mater. 1999, 11, 579 23. Brinker, C. J.; Scherer, G. W. “Sol-Gel Science” Academic, London, 1990 24. Doshi, D. A.; Gibaud, A.; Goletto, V.; Lu, M.; Gerung, H.; Ocko, B.; Han, S. M.; Brinker, C. J. J. Am. Chem. Soc. 2003, 125, 11646 25. Petkov, N.; Mintova, S.; Jean, B.; Metzger, T. H.; Bein, T. Chem. Mater. 2003, 15, 2240 26. Scriven, L. E. Better Ceramics Through Chemistry III eds. Brinker, C. J.; Clark, D. E.; Ulrich, D. R. Mat. Res. Soc. Pittsburgh 1988, 717 27. Spiers, R. P.; Subaraman, C. V.; Wilkinson, W. L. Chem. Eng. Sci. 1974, 29, 389 28. Landau, L. D.; Levich, B. G. Acta Physiochim, U. R. S. S. 1942, 17, 42 29. Bornside, D. E.; Macosko, C. W.; Scriven, L. E. J. Imaging Tech. 1987, 13, 122 30. Meyerhofer, D. J. Appl. Phys. 1978, 49, 3993 31. Doshi, D. A.; Hiesing, N. K.; Lu, M.; Fan, H.; Lu, Y.; Simmons-potter , K.; Potter Jr., B. G.; Hurd, A. J.; Brinker, C. J. Science 2000, 290, 108 32. Lu, Y.; McCaughey, B. F.; Wang, D.; Hampsey, J. E.; Doke, N.; Yang, Z.; Brinker, C. J. Adv. Mater. 2003, 15, 1733 33. Bandyopadhyaya, R.; Nativ-Roth, E.; Yerushalmi-Rozen, R.; Regev, O.; Chem. Mater. 2003, 15, 3619 34. Nishiyama, N.; Tanaka, S.; Egashira, Y.; Oku, Y.; Ueyama, K. Chem. Mater. 2003, 15, 1006 35. Tanaka, S.; Nishiyama, N.; Oku, Y.; Egashira, Y.; Ueyama, K. J. Am. Chem. Soc. 2004, 126, 4854 36. Israelachvili, J. N. “Intermolecular and Surface Forces” Academic, London 1992 37. Wanka, G.; Hoffmann, H.; Ulbricht, W. Maromolecules 1994, 27, 4145 38. Mitchell, D. J.; Tiddy, J. T.; Waring, L.; Bostock, T.; MacDonald, M. P. J. Chem. Soc. Faraday Trans. I 1983, 79, 975 39. Vansant, E. F.; Van Der Voort, P.; Vrancken, K. C.; “Characterization and Chemical Modification of The Silica Surface” studies in surface science and catalysis 193 Elsevier 1995. 40. Antonietti, M.; Berton, B.; Goltner, C. Hentze, H. P. Adv. Mater. 1998, 10, 154 41. Balkenend, A. R.; Theije, F. K.; Kriege, J. C. K. Adv. Mater. 2003, 15, 139 42. Andreas, S.; Melde, B. J.; Schroden, R. C. Adv. Mater. 2000, 12, 1403 43. Anwander, R.; Plam, C.; Stelzer, J.; Groeger, O. Engelhardt, G. Stud. Surf. Sci. Catal. 1998, 117, 135 44. Burkett, S. L.; Sims, S. D.; Mann, S. Chem. Commun. 1996, 1367 45. 邱建洋,國立清華大學化學研究所碩士論文,2004年。 46. Daillant, J.; Gibaud, A. “X-ray and neutron reflectivity” Springer 1999, 87-120 47. 李信義,科儀新知,22卷第二期,39頁,2000 48. Bolze, J.; Ree, M.; Youn, H. S.; Chu, S. H.; Char, K. Langmuir 2001, 17, 6683 49. Peralta, L. G.; Temkin, H. J. Appl. Phys. 2003, 93, 1974 50. Li, X.; Wong, T. K. S.; Rusli; Yang, D. Diamond and Related Materials 2003, 12, 963 51. Gibaud, A.; Baptiste, A.; Doshi, D. A.; Brinker, C. J.; Yang, L.; Ocko, B. Europys. Lett. 2003, 63, 833 52. Chu, S.; Yong,; Robinson, I. K.; Cewirth, A. A.; Phys. Rew. B 1997, 55, 7945 53. Brennan, T.; Roser, S. J.; Mann, S.; Edler, K. J. Langmuir 2003, 19, 2639 54. Brown, A. S.; Holt, S. A.; Reynolds, P. A.; Penfold, J.; White, J. W. Langmuir 1998, 14, 5532 55. Lee, H. J.; Soles, C. L.; Liu, D. W.; Bauer, B. J.; Wu, W. L. J. Polymer Sci. 2002, 2170 56. 楊家銘,國立清華大學化學研究所博士論文,2002年。 57. Grosso, D.; Balkenende, A. R.; Albouy, P. A.; Ayral, A.; Amenitsch, H.; Babonneau, F. Chem. Mater. 2001, 13, 1848 58. 卓恩宗,國立清華大學化學研究所碩士論文,2001年。 59. 鄭幸伶,國立清華大學化學研究所碩士論文,2002年。 60. Chao, K. J.; Liu, P. H.; Huang, K. Y. Comptes-rendus Chimie (submited) 61. Chao, K. J.;He, Z. P.;Chiu, C. Y.;Chiang, A. S. T. Proceedings: 14th IZC, 2004, 1363 62. Haas, D. E.; Birnie, III D. P. Proc. Am. Ceram. Soc. Symposium on Sol-Gel Processing 2000 63. www.mse.arizona.edu/faculty/brinie/coatings/Defects.htm 64. Innocenzi, P. J. Non-Crystalline Solid 2003, 316, 309 65. Almeida, R. M.; Pantano, C. G. J. Appl. Phys. 1990, 68, 4225 66. Chao, K. J.;Liu, P. H.;Guo, X. J.;Huang, K. Y.;Lee, Y. R.;Cheng, C. W.;Chiu, M. S.;Chang, S. L. J. Appl. Cryst. 2004 (to be publish) 67. Hillhouse, H. W.;Egmond, J. W.;Tsapatsis, M.;Hanson, J. C.;Larese, J. Z. Microporous and mesoporous mater. 2001, 44-45, 639 68. Holy, V.; Pietsch, U.; Baumbach, T. “High-resolution X-ray scattering from thin films and multilayers” Springer 1999 69. parratt 32 70. Parratt, L. G. Phys. Rev. 1954, 95, 359 71. Nevot, L.;Croce, P. Revue Phys. Appl. 1980, 15, 761 72. Lin, E. K.; Lee, H.; Bauer, B. J.; Wang, H.; Wetzel, J. T.; Wu, W. in Ho, P. S.; Leu, J.; Lee, W. W. (Eds) “Low dielectric constant materials for IC application” Springer, 2003, 75-92 73. Coulomb, J. P.; Martin, C.; Grillet, Y.; Llewellyn, P. L.; Andre, G in Bonneviot, L; Beland, F.; Danumah, C.; Giasson, S.; Kaliaguine, S. (eds) “Mesoporous molecular sieves” Studies in surface science and catalysis 117 Elsevier 1998 74. Bruggeman, D. A. G. Ann. Phys. (Leip.) 1935, 24, 636 75. Bourgeois, A.; Bruneau, A. B.; Fisson, S.; Demarets, B.; Grosso, D.; Cagnol, F.; Sanchez, C.; Rivory, J. Thin Solid Film 2004, 447, 46 76. Lucovsky, G.;Manitini, J.;Srivastava, J. K.;Irene, E. A. J. Vac. Sci. Technol. B 1987, 5, 530id NH0925065010 sid 913404 cfn 0 / id NH0925065011 auc 林津瑋 tic 雙亞硝基鐵錯合物之新衍生物:合成與反應性的探討 adc 廖文 adc & adc #23791; ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 80 kwc 雙亞硝基鐵錯合物 kwc 一氧化氮 kwc 酵素活化中心 kwc 晴水解酵素 abc 為了模擬NHase之後修飾作用,本研究中,首先利用[PPN tc 中文摘要………………………………………………………………………..…...i 英文摘要………………………………………………………………………..…..ii 目錄………………………………………………………………………..…..iii 第一章:緒論 ………………………………………………………….…………..1 1-1:前言……………………………………………………………….……….1 1-2:NO的儲存與傳輸~DNICs……………………………………………….1 (1)DNICs………..…………………………………………………………….1 (2)Fe(NO)2架構之模型化合物研究……………………………………...4 1-3:NO與蛋白質的後修飾作用~NHase……………………………………...7 (1)NO與含硫蛋白之後修飾作用…………………………………………...7 (2)NHase.………………………………………..………………………...….7 (3)修飾後之NHase模型化合物研究……………………………………….9 1-4:實驗研究方向…………………………………………………………….11 第二章:實驗部份………………………………………………………………….13 2-1:一般實驗………………………………………………………………..13 2-2:儀器……………………………………………………………………..13 2-3:藥品……………………………………………………………………..14 2-4:化合物的合成、鑑定與反應性研究…………………………………..15 2-5:晶體結構解析(Crystallography)………………………………….23 第三章:結果與討論……………………………………………………….…….30 3-1:化合物[PPN ] [(NO)Fe(S,S-C6H4)2 ](1)與化合物[PPN ] 2 [(NO)Fe (S,S-C6H4)2 ](6A)對O2、H2O2與NO+的反應性探討 (1)[PPN ] [(NO)Fe(S,S-C6H4)2 ](1)({Fe(NO)}6)對O2與H2O2的反應性比較 (2)化合物[PPN ]2 [(NO)Fe(S,S-C6H4)2 ](6A)({Fe(NO)}7)對O2的反應性探討∼電子環境的影響 (3)[PPN ] [(NO)Fe(S,S-C6H4)2 ]({Fe(NO)}6)(1)與[PPN ]2 [(NO)Fe (S,S-C6H4)2 ]({Fe(NO)}7)(6A)對NO+的反應性比較 3-2:化合物[PPN ] [(NO)Fe(μ-S,SO2-C6H4) (μ-S,S-C6H4)Fe(NO)2 ](8)的合成、光譜、結構分析、磁性與反應性探討 3-3:化合物[PPN ] [(NO)Fe(μ-S,S-C6H4)2Fe(NO)2 ](7)的磁性、反應性、與DNICs性質探討 第四章:結論 References Table Table 2-1. Crystallographic Data of [PPN ]2 [Fe(H2O)2(OSO2-C6H4)2 ] Table 2-2. Crystallographic Data of [Me4N ]2 [Fe(NO)(S,S-C6H4)2 ] Table 2-3. Crystallographic Data of [PPN ] [(NO)Fe(μ-S,S-C6H4)2Fe(NO)2 ] Table 2-4. Crystallographic Data of [PPN ] [(NO)Fe(μ-S,SO2-C6H4) (μ-S,S-C6H4)Fe(NO)2 ] Table 2-5. Crystallographic Data of [PPN ] [(NO)Fe(S,S-C6H4) (S,S-CNMe2) ] Table 3-1-1. Selected bond distances(Å)and angles(deg)for [PPN ]2 [Fe(H2O)2(OSO2-C6H4)2 ](5) Table 3-1. 不同H2O2當量數以及不同的溶劑條件下(CH3CN與THF)之產率結果 Table 3-1-2. Selected bond distances(Å)and angles(deg)for [Me4N ]2 [Fe(NO)(S,S-C6H4)2 ](6) Table 3-1-3. Selected bond distances(Å)and angles(deg)for [PPN ] [(NO)Fe(μ-S,S-C6H4)2Fe(NO)2 ](7) Table 3-2-1. Selected bond distances(Å)and angles(deg)for [PPN ] [(NO)Fe(μ-S,SO2-C6H4) (μ-S,S-C6H4)Fe(NO)2 ](8) Table 3-2. 化合物(NO)Ni0-Fe(NO)2、NiII-Fe(NO)2、8、7與Fe(NO)2(PPh3)2之Fe(NO)2部分的結構參數比較 Table 3-3-1. Selected bond distances(Å)and angles(deg)for [PPN ] [(NO)Fe(S,S-C6H4) (S,S-CNMe2) ](9) Table 3-3. [Me4N ]2 [Fe(NO)(S,S-C6H4)2 ](6)、[PPN ] [(NO)Fe(S,S-C6H4) (S,S-CNMe2) ](9)與[(NO)Fe(S,S-CNMe2) 2 ]之結構比較 Figure Figure 1-1. NO與高電位之鐵硫蛋白質(HiPIP)的反應 Figure 1-2. (a) [NiII(μ-S(CH2)2N(Et)(CH2)3N(Et)(CH2)2μ-S)Fe(NO)2 ]; (b) [(NO)Ni0(μ-(SCH2CH2)2S)Fe(NO)2 ] Figure 1-3. (a) [Fe(NO)2{Fe(NS3)(CO)}-S,S’ ]; (b) [Fe(NO)2{Fe(NS3)(CN)}-S,S’ ]–; (c) [Fe(NO)2{Fe(NS3)(NO)}-S,S’ ] Figure 1-4. NHase之催化功能 Figure 1-5. NHase active site as determined by X-ray crystallography:(a)photoactivated form determined at 2.65 Å resolution and (b)NO inactivated form determined at 1.7 Å resolution Figure 1-6. (a) [FeIII (PyPepSO2)2 ]-;(b) [FeIII (PyP{SO2}2) ]-; (c) [FeIII (LN2S3O2) ]2- Figure 1-7. 化合物1、3之可逆性 Figure 3-1-1. [PPN ]2 [Fe(H2O)2(OSO2-C6H4)2 ](5)的單晶結構圖 Figure 3-1-2. 化合物5的IR光譜(KBr) Figure 3-1-3. 化合物5之UV/VIS光譜(CH2Cl2) Figure 3-1-4. 化合物5之1H NMR光譜(CD2Cl2) Figure 3-1-5. 化合物1的IR光譜(KBr) Figure 3-1-6. 化合物1之UV/VIS光譜(THF) Figure 3-1-7. 化合物2之IR光譜(THF) Figure 3-1-8. 化合物2之UV/VIS光譜(THF) Figure 3-1-9. 化合物3的IR光譜(KBr) Figure 3-1-10. 化合物3之UV/VIS光譜(THF) Figure 3-1-11. 化合物4的IR光譜(KBr) Figure 3-1-12. 化合物4之UV/VIS光譜(CH2Cl2) Figure 3-1-13. 化合物6A與過量氧氣在CH3CN中之UV/VIS光譜反應變化 Figure 3-1-14. [PPN ]2 [Fe(S,S-C6H4)2 ]2之UV/VIS光譜(CH3CN) Figure 3-1-15. [PPN ] [NO3 ]的IR光譜(KBr) Figure 3-1-16. [PPN ]2 [Fe(S,S-C6H4)2 ]2與[PPN ] [NO2 ]在CH3CN中之UV/VIS光譜反應變化 Figure 3-1-17. [Me4N ]2 [Fe(NO)(S,S-C6H4)2 ](6)的單晶結構圖 Figure 3-1-18. [PPN ] [(NO)Fe(μ-S,S-C6H4)2Fe(NO)2 ](7)的單晶結構圖 Figure 3-1-19. 化合物7的IR光譜(KBr) Figure 3-1-20. 化合物7之UV/VIS光譜(CH2Cl2) Figure 3-2-1. [PPN ] [(NO)Fe(μ-S,SO2-C6H4) (μ-S,S-C6H4)Fe(NO)2 ](8)的單晶結構圖 Figure 3-2-2. 化合物8的IR光譜:(a) CH2Cl2;(b)KBr Figure 3-2-3. 化合物8之UV/VIS光譜(CH2Cl2) Figure 3-2-4. Molecular orbital energy level orderings for five-coordinate nitrosyls and their correlations28 Figure 3-2-5. 以磷酸為標準樣品,所進行之31P NMR光譜分析:(a)反應試劑PPh3;(b)比對用之標準樣品OPPh3;(c)化合物8與PPh3之反應產物 Figure 3-2-6. 化合物8之1H NMR光譜(CD2Cl2) Figure 3-3-1. 化合物7之1H NMR光譜(CD2Cl2) Figure 3-3-2. 化合物7與硫粉之反應產物光譜:(a)IR(THF);(b)UV/VIS光譜(THF) Figure 3-3-3. 化合物7與[Fe(S,S-CNMe2) 3 ]之反應產物[(NO)Fe(S,S-CNMe2) 2 ]的光譜: (a)IR(KBr);(b)UV/VIS光譜(CH2Cl2) Figure 3-3-4. 化合物7與[Fe(S,S-CNMe2) 3 ]之反應產物[(NO)Fe(S,S-C6H4) (S,S-CNMe2) ]的光譜:(a)IR(THF);(b)UV/VIS光譜(THF) Figure 3-3-5. 化合物7與[PPN ] [(S,S-CNMe2) ] 於THF中之反應IR光譜變化:(a)反應5分鐘,中間產物訊號已出現;(b) 反應1小時,起始物訊號明顯下降;(c) 反應6小時,起始物訊號幾乎消失;(d) 反應約4天時,中間產物訊號亦幾乎消失,THF溶液顏色近乎透明,同時,瓶壁下方有大量綠色沉澱產物。 Figure 3-3-6. [PPN ] [(NO)Fe(S,S-C6H4) (S,S-CNMe2) ](9)的單晶結構圖 Figure 3-3-7. 化合物9的IR光譜(KBr) Figure 3-3-8. 化合物9之UV/VIS光譜(CH2Cl2) Figure 3-3-9. 化合物9之1H NMR光譜(CD2Cl2)rf 1. Stamler, J. S.; Singel, D. J.; Loscalzo, J. Science 1992, 258, 1898. 2. Stamler, J. S. Cell 1994, 78, 931. 3. Williams, D. L. H. Acc. Chem. Res. 1999, 32, 869. 4. Wiegant, F. A. C.; Malyshev, I. Y.; Kleschyov, A. L.; Faassen, E. V.; Vanin, A. F. FEBS Letters 1999, 455, 179. 5.Severina, I. S.; Bussygina, O. G.; Pyatakova, N. V.; Malenkova, I. V.; Vanin, A. F. Nitric Oxide 2003, 155. 6. Wang, P. G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, A. J. Chem. Rev. 2002, 102, 1091. 7. Alencar, J. L.; Chalupsky, K.; Sarr, M.; Schini-Kerth, V.; Vanin, A. F.; Stoclet, J.-C.; Muller, B. Biochemical Pharmacology 2003, 2365. 8. Ueno, T.; Suzuki, Y.; Fujii, S.; Vanin, A. F.; Yoshimura, T. Biochemical Pharmacology 2002, 485. 9. Vlasova, M. A.; Vanin, A. F.; Muller, B.; Smirin, B. V.; Malyshev, I. Y.; Manukhina, E. B. Bulletin of Experimental Biology and Medicine 2003, 136, 226. 10. Lee, S. C.; Holm, R. H. Chem. Rev. 2004, 104, 1135. 11. Foster, M. W.; Cowan, J. A. J. Am. Chem. Soc. 1999, 121, 4093. 12. Liaw, W.-F.; Chiang, C.-Y.; Lee, G..-H.; Peng, S.-M.; Lai, C.-H.; Darensbourg, M. Y. Inorg. Chem. 2000, 39, 480. 13. Davies, S. C.; Evans, D. J.; Hughes, D. L.; Konkol, M.; Richards, R. L.; Sanders, J. R.; Sobota, P. J. Chem. Soc., Dalton Trans. 2002, 2473. 14. Tsai, M.-L.; Chen, C.-C.; Hsu, I.-J.; Ke, S.-C.; Hsieh, C.-H.; Chiang, K.-A.; Lee, G.-H.; Wang, Y.; Liaw, W.-F. Inorg. Chem., in press. 15. Becker, K.; Savvides, S. N.; Keese, M.; Schirmer, R. H.; Karplus, P. A. Nature Structural Biology 1998, 5, 267. 16. Claiborne, A.; Yeh, J. I.; Mallet, T. C.; Luba, J.; Crane, III, E. J.; Charrier, V.; Parsonage, D. Biochemicry, Vol. 38, No. 47, 1999 17. Mascharak, P. K. Coordination Chemistry Reviews 2002, 225, 201. 18. Odaka, M.; Fujii, K.; Hoshino, M.; Noguchi, T.; Tsujimura, M.; Nagashima, S.; Yohda, M.; Nagamune, T.; Inoue, Y.; Endo, I. J. Am. Chem. Soc. 1997, 119, 3785. 19. Jackson, H. L.; Shoner, S. C.; Rittenberg, D.; Cowen, J. A.; Lovell, S.; Barnhart, D.; Kovacs, J. A. Inorg. Chem. 2001, 40, 1646. 20. Odaka, M.; Tsujimura, M.; Endo, I. RIKEN Review 2001, No. 41, 58. 21. Greene, S. N.; Chang, C. H.; Richards, N. G. J. Chem. Commun. 2002, 2386. 22. Noveron, J. C.; Olmsread , M. M.; Mascharak, P. K. J. Am. Chem. Soc. 2001, 123, 3247. 23. Kovacs, J. A. Chem. Rev. 2004, 104, 825. 24. Lee, C.-M.; Hsieh, C.-H.; Dutta, A.; Lee, G. -S.; Liaw, W.-F. J. Am. Chem. Soc. 2003, 125, 11492. 25.本實驗室李建明學長係利用[PPN ][S,NH2-C6H4 ]與[PPN ][(NO)Fe(S,S-C6H4)2 ],於THF溶液中進行反應,經數小時之後,則可得一綠色沉澱,此沉澱即為化合物[PPN ]2[(NO)Fe (S,S-C6H4)2 ]。 26. Lobysheva, I. I.; Stupakova, M. V.; Mikoyan, V. D.; Vasilieva, S. V.; Vanin, A. F. FEBS Letters 1999, 454,177. 27.Grapperhaus, C. A.; Darensbourg, M. Y. Acc. Chem. Res. 1998, 31, 451. 28. Eisenberg, R.; Meyer, C. D. Acc. Chem. Res. 1975, 8, 26. 29. Pierpont, C. G.; Eisenberg, R. Inorg. Chem. 1973, 12, 199. 30. Albano, V. G.; Araneo, A.; Bellon, P. L.; Ciani, G.; Manassero, M. J. Organomet. Chem. 1974, 67, 413.id NH0925065011 sid 913405 cfn 0 / id NH0925065012 auc 黎明倩 tic 黃嘌呤氧化 tic & tic #37238;催化過程交互作用之研究 adc 黃國柱 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 72 kwc 黃嘌呤氧化 kwc & kwc #37238; kwc 交互作用 abc 【摘要】 tc 目錄 第一章 緒論 1-1交互作用簡介 …………………………………………………. 1 1-2 酵素的調節策略 ……………………………………………… 1 1-3 異位酵素的例子 ……………………………………………… 2 1-4 異位交互作用模型 …………………………………………… 5 1-5 Michaelis-Menten方程式 …………………………………….. 7 1-6 黃嘌呤氧化酶 ……………………………………………….... 12 1-7黃嘌呤氧化酶相關疾病 ………………………………………. 16 1-8 ”受質-抑制作用”與”受質-活化作用” …………………………23 1-9異位次黃嘌呤對黃嘌呤氧化酶抑制作用 ……………………. 25 第二章 實驗原理與實驗方法 2-1實驗藥品清單 …………………………………………………..28 2-2 設備與儀器 ………………………………………………….... 29 2-3純化黃嘌呤氧化酶原理 ………………………………………..31 2-4 黃嘌呤氧化酶純化步驟 ……………………………………….33 2-5 黃嘌呤氧化酶濃度與活性測定方式 ………………………….34 2-6 除氧方式與原理 ……………………………………………….36 2-7製備異位黃嘌呤-黃嘌呤氧化酶複合體 ……………………….37 2-8受質的簡介 …………………………………………………….39 2-9 螢光光譜實驗條件 ……………………………………………41 2-10旋光光譜實驗條件 …………………………………………...42 第三章 實驗結果與討論 3-1 異位黃嘌呤對異位黃嘌呤-黃嘌呤氧化酶複合物解離的影響…43 3-2 受質對異位黃嘌呤-黃嘌呤氧化酶複合物解離的影響 ……….49 3-3 異位黃嘌呤-黃嘌呤氧化酶複合物對其他受質的影響 ……….56 3-4 異位黃嘌呤對異位黃嘌呤-黃嘌呤氧化酶複合物構型的改變….67 第四章 結論 ………………………………………………………...69 第五章 參考文獻 ……………………………………………………71rf 1. L. Stryer, “Biochemistry”, Fourth ed. Chap. 10, p237~239 2. L. Stryer, “Biochemistry”, Fourth ed. Chap. 7, p157 3. Monod, J., Wyman, J., and Changeux, J. P. (1965) J. Mol. Cell. Biol. 12, 88 4. Koshland, D. E., Jr., Nemethy, G., and Filmer, D. (1966) Biochemistry 5, 365 5. L. Stryer, “Biochemistry”, Fourth ed. Chap. 8, p192~194 6. Hill, R., and Nishino, T. (1995) FASEB. J. 9, 995 7. Hill, R., (1996) Chem. Rev. 96, 2757 8. Massey, V., Brumby, P. E., Komai, H., and Palmer, G. (1969) J. Biol. Chem. 244, 1682 9. Hart, L. I., McGartoll, M. A., Chapman, H. R., and Bray, R. C. (1970) Biochem. J. 116, 851 10. Edmondson, D., Massey, V., Palmer, G., Beacham, L. M., and Elion. G.B., (1972) 247, 1597-1604 11. L. Stryer, “Biochemistry”, Fourth ed. Chap. 29, p756 12. http://www.zx.gov.tw/phr/phr046.htm中興藥訊第二十期 13. B. Halliwell, “Free radical in Biological and Medicine”, chap. 8. 14. Hofstee, B. H. J. (1955) J. Biol. Chem. 216, 235 15. Massey, V., Brumby, P. E., Komai, H., and Palmer, G. (1969) J. Biol. Chem. 244, 1682 16. Morpeth, F. F. (1983) Biochemica et Biophysica Acta 744, 328 17. Rubbo, H., Radi, R., and Prodano, E. (1991) Biochemica et Biophysica Acta 1074, 386 18. Cleere, W. F., and Coughlan, M. P. (1975) Comp. Biochem. Physiol. 50B, 311 19. Feigelson, P., Davidson, J. D., and Robins, R. K. (1957) J. Biol. Chem. 266, 993 20. Massey, V., Komai, H., Palmer, G., and Elion, G. B. (1970) J. Biol. Chem. 245,2837-2844 21. Massey, V., and Edmondson, D. (1970) J. Biol. Chem. 245, 6595 22. Nishino, T., and Tsushima, K. (1981) FEBS letters 131, 369 23. Avis, P. G., Bergal, P., and Bray, B. C. (1955) J. Chem. Soc.1100 24.戴麟靄,”Substrates-regulated enzyme activity—interactions between the homodimer units of xanthine oxidase”,清華大學博士論文,2003,黃國柱教授id NH0925065012 sid 913407 cfn 0 / id NH0925065013 auc 蔡逸婷 tic 在水相中將中性與正電性分子修飾於金奈米微粒表面之方法研究 adc 陳俊顯 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 95 kwc 金奈米微粒 kwc 修飾 abc 在金奈米微粒表面修飾中性或正電性的有機分子,常導致奈米微粒因不穩定而聚集。常見的金奈米微粒表面會吸附陰離子而帶負電,靠著同電相斥分散在溶液中,但當加入中性或正電性分子時,奈米微粒會因表面負電荷減少或被中和而產生碰撞聚集。為解決此現象,我們設計兩階段修飾的方法,將中性或正電性分子修飾在金奈米微粒表面。第一階段為將帶負電的短碳鏈硫醇修飾在金奈米微粒的表面,利用硫金鍵結將吸附的陰離子取代,而形成穩定的分子保護層。第二階段為利用長碳鏈分子易取代短碳鏈分子的特性,加入中性或正電性的長鏈分子來置換表面的短鏈硫醇。 tc 第一章、緒論.............................................1 1-1 金奈米微粒相關介紹..... ..............................1 1-1-1 簡介...............................................1 1-1-2 金奈米微粒的光學性質. ..............................2 1-1-3 金奈米微粒的製備方法...............................3 1-1-4 金奈米微粒的相關應用. ..............................6 1-1-4-1 DNA偵測器. .......................................6 1-1-4-2 溫度感應器 .......................................11 1-2 研究動機...... .......................................15 第二章、實驗部分.........................................17 2-1 實驗藥品與器材.......................................17 2-1-1 化學藥品...........................................17 2-1-2 實驗器材...........................................19 2-2 實驗儀器設備.........................................20 2-3 實驗步驟.............................................21 2-3-1 金奈米微粒的製備...................................21 2-3-2 硫醇分子的合成.....................................22 2-3-2-1 2-(12-mercaptododecyloxy)methyl-15-crown-5 ether 的合成...........................................22 2-3-2-1-1 2-(12-bromododecyloxy)methyl-15-crown-5 ether 的合成.........................................23 2-3-2-1-2 2-(12-mercaptododecyloxy)methyl-15-crown-5 ether 的合成.........................................23 2-3-2-2 per-6-thio-β-cyclodextrin的合成..................26 2-3-2-2-1 合成前的處理步驟...............................26 2-3-2-2-1-1 β-cyclodextrin的除水.........................26 2-3-2-2-1-2 Vilsmeier-Haack reagent的合成................27 2-3-2-2-2 per-6-bromo-β-cyclodextrin的合成...............29 2-3-2-2-3 per-6-thio-β-cyclodextrin的合成................31 2-3-2-3 11-mercaptoundecylamine的合成....................34 2-3-2-3-1 11-mercaptoundecylamide的合成..................34 2-3-2-3-2 11-mercaptoundecylamine的合成..................35 2-3-3修飾硫醇分子於金奈米微粒之步驟......................37 2-3-3-1 金奈米微粒粒徑篩選...............................37 2-3-3-2 硫醇分子第一階段的修飾...........................37 2-3-3-3 硫醇分子第二階段的修飾...........................38 2-3-4 測定金奈米微粒性質之相關儀器.......................40 2-3-4-1 紫外光/可見光(UV/Vis)光譜儀的量測................40 2-3-4-1-1 紫外光/可見光(UV/Vis)光譜的樣品製備與量測......40 2-3-4-1-2 緩衝溶液的配製.................................41 2-3-4-2 紅外光(IR)光譜儀的量測...........................43 2-3-4-3 穿透式電子顯微鏡(TEM)的量測......................44 2-3-4-3-1 穿透式電子顯微鏡(TEM)的樣品製備................44 2-3-4-3-2 計算平均粒徑的軟體操作.........................44 2-3-4-3-2-1 TEM照片的處理................................44 2-3-4-3-2-2 金奈米微粒之粒徑計算.........................46 2-3-4-4 X光電子能譜儀(XPS)的量測.........................47 第三章、結果與討論.......................................49 3-1第一階段硫醇分子的選擇................................51 3-1-1金奈米微粒粒徑的篩選................................51 3-1-2 第一階段硫醇分子的篩選.............................54 3-1-3 硫醇分子TA的修飾過程...............................57 3-1-4 表面修飾TA的金奈米微粒的穩定性.....................59 3-2 第二階段硫醇分子的修飾...............................61 3-2-1 第二階段硫醇分子的修飾過程.........................61 3-2-2 硫醇分子在金奈米微粒表面的覆蓋率...................65 3-3 經兩階段修飾後各金奈米微粒的穩定性...................70 第四章、其他應用.........................................75 4-1 11-MUASA修飾的金奈米微粒.............................75 4-1-1 11-MUASA的修飾過程.................................75 4-1-2表面含11-MUASA的金奈米微粒辨識離子能力的測試........81 4-2 萬古黴素二聚物的修飾.................................88 第五章、結論.............................................91 第六章、參考文獻.........................................92rf (1) Li, W.; Liang, C.; Zhou, W.; Qiu, J.; Zhou, Z. H.; Sun, G.; Xin, Q. J. Phys. Chem. B. 2003, 107, 6292. (2) Long, J. W.; Stroud, R. M.; Swider-Lyons, K. E.; Rolison, D. R. J. Phys. Chem. B. 2000, 104, 9772. (3) Daniel, M.-C.; Astruc, D. Chem. Rev. 2004, 104, 293. (4) Leslie-Pelecky, D. L.; Rieke, R. D. Chem. Mater. 1996, 8, 1770. (5) 王崇人 科學發展, 2002, 9106, 48. (6) 張仕欣; 王崇人 化學, 1998, 56, 209. (7) Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 4212. (8) Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 8410. (9) Chang, S.-S.; Shih, C.-W.; Chen, C.-D.; Lai, W.-C.; Wang, C. R. C. Langmuir 1999, 15, 701. (10) Yu, Y.-Y.; Chang, S.-S.; Lee, C.-L.; Wang, C. R. C. J. Phys. Chem. B 1997, 101, 6661. (11) Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Science 2001, 294, 1901. (12) Link, S.; Mohamed, M. B.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 3073. (13) Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 1959. (14) Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc. Chem. Commun. 1994, 801. (15) Templeton, A. C.; Wuelfing, W. P.; Murray, R. W. Acc. Chem. Res. 2000, 33, 27. (16) Frens, G. Nature Phys. Sci. 1973, 241, 20. (17) Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Anal. Chem. 1995, 67, 735. (18) Mirkin, C. A. Inorg. Chem. 2000, 39, 2258. (19) Roucoux, A.; Schulz, J.; Patin, H. Chem. Rev. 2002, 102, 3757. (20) Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Science 1997, 277, 1078. (21) Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. Science 2000, 289, 1757. (22) Reynolds, R. A., III; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 2000, 122, 3795. (23) Taton, T. A.; Lu, G.; Mirkin, C. A. J. Am. Chem. Soc. 2001, 123, 5164. (24) Park, S.-J.; Taton, T. A.; Mirkin, C. A. Science 2002, 295, 1503. (25) Mucic, R. C.; Storhoff, J. J.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 12674. (26) Liu, T.; Tang, J. a.; Zhao, H.; Deng, Y.; Jiang, L. Langmuir 2002, 18, 5624. (27) Zhu, M.-Q.; Wang, L.-Q.; Exarhos, G. J.; Li, A. D. Q. J. Am. Chem. Soc. 2004, 126, 2656. (28) Zhang, W.; Gaberman, I.; Ciszkowska, M. Anal. Chem. 2002, 74, 1343. (29) Hsiue, G.-H.; Hsu, S.-h.; Yang, C.-C.; Lee, S.-H.; Yang, I.-K. Biomaterials 2002, 23, 457. (30) Lin, S.-Y.; Liu, S.-W.; Lin, C.-M.; Chen, C.-h. Anal. Chem. 2002, 74, 330. (31) Aslan, K.; Perez-Luna, V. H. Langmuir 2002, 18, 6059. (32) Flink, S.; Boukamp, B. A.; Berg, A. v. d.; Veggel, F. C. J. M. v.; Reinhoudt, D. N. J. Am. Chem. Soc. 1998, 120, 4652. (33) Gorin, B. I.; Riopelle, R. J.; Thatcher, G. R. J. Tetrahedron Lett. 1996, 37, 4647. (34) Vizitiu, D.; Walkinshaw, C. S.; Gorin, B. I.; Thatcher, G. R. J. J. Org. Chem. 1997, 62, 8760. (35) Rojas, M. T.; Koniger, R.; Stoddart, J. F.; Kaifer, A. E. J. Am. Chem. Soc. 1995, 117, 336. (36) Zhu, M.; Schneider, M.; Papastavrou, G.; Akari, S.; Mohwald, H. Langmuir 2001, 17, 6471. (37) Hostetler, M. J.; Templeton, A. C.; Murray, R. W. Langmuir 1999, 15, 3782. (38) Nath, N.; Chilkoti, A. Anal. Chem. 2002, 74, 504. (39) Johnson, S. R.; Evans, S. D.; Brydson, R. Langmuir 1998, 14, 6639. (40) Weisbecker, C. S.; Merritt, M. V.; Whitesides, G. M. Langmuir 1996, 12, 3763. (41) Mayya, K. S.; Patil, V.; Sastry, M. Langmuir 1997, 13, 3944. (42) Chen, S.; Kimura, K. Langmuir 1999, 15, 1075. (43) Kumar, A.; Mandale, A. B.; Sastry, M. Langmuir 2000, 16, 6921. (44) Mandal, S.; Gole, A.; Lala, N.; Gonnade, R.; Ganvir, V.; Sastry, M. Langmuir 2001, 17, 6262. (45) Boal, A. K.; Rotello, V. M. Langmuir 2000, 16, 9527. (46) Hao, E.; Lian, T. Chem. Mater. 2000, 12, 3392. (47) Fukushima, H.; Seki, S.; Nishikawa, T.; Takiguchi, H.; Tamada, K.; Abe, K.; Colorado, R., Jr.; Graupe, M.; Shmakova, O. E.; Lee, T. R. J. Phys. Chem. B 2000, 104, 7417. (48) Yam, C. M.; Tong, S. S. Y.; Kakkar, A. K. Langmuir 1998, 14, 6941. (49) Han, S. W.; Seo, H.; Chung, Y. K.; Kim, K. Langmuir 2000, 16, 9493. (50) Lee, T. R.; Carey, R. I.; Biebuyck, H. A.; Whitesides, G. M. Langmuir 1994, 10, 741. (51) Demers, L. M.; Mirkin, C. A.; Mucic, R. C.; Reynolds, R. A., III; Letsinger, R. L.; Elghanian, R.; Viswanadham, G. Anal. Chem. 2000, 72, 5535. (52) Murthy, V. S.; Cha, J. N.; Stucky, G. D.; Wong, M. S. J. Am. Chem. Soc. 2004, 126, 5292. (53) Roberts, J. C.; Pincock, J. A. J. Org. Chem. 2004, 69, 4279. (54) Gaukroger, K.; Hadfield, J. A.; Hepworth, L. A.; Lawrence, N. J.; McGown, A. T. J. Org. Chem. 2001, 66, 8135. (55) Rumi, M.; Ehrlich, J. E.; Heikal, A. A.; Perry, J. W.; Barlow, S.; Hu, Z.; McCord-Maughon, D.; Parker, T. C.; Rockel, H.; Thayumanavan, S.; Marder, S. R.; Beljonne, D.; Bredas, J.-L. J. Am. Chem. Soc. 2000, 122, 9500. (56) Watanabe, S.; Sonobe, M.; Arai, M.; Tazume, Y.; Matsuo, T.; Nakamura, T.; Yoshida, K. Chem. Commun. 2002, 2866. (57) Sundram, U. N.; Griffin, J. H.; Nicas, T. I. J. Am. Chem. Soc. 1996, 118, 13107. (58) Gu, H.; Ho, P. L.; Tong, E.; Wang, L.; Xu, B. Nano Lett. 2003, 3, 1261.id NH0925065013 sid 913408 cfn 0 / id NH0925065014 auc 張書銘 tic 支撐在活性碳上鉑-釕雙金屬觸媒的製備及鑑定 adc 葉君棣 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 107 kwc 燃料電池 kwc 觸媒 kwc 程溫還原 kwc 鉑-釕雙金屬 kwc 活性碳 abc 本研究以沉澱法並以活性碳(Vulcan XC- 72)作為支撐物,製備金屬含量為10 wt%的Pt/C、Ru/C與PtRu/C的電化學觸媒並以X光繞射(XRD)、穿透式電子顯微鏡(TEM)和程溫還原(TPR)等技術,來鑑定金屬顆粒的大小,並首先以程溫還原(TPR)此技術探討氧化還原處理對觸媒特性的影響。再配合循環伏安法(cyclic voltammetry),測試PtRu/C合金觸媒對甲醇氧化(methanol oxidation)的電化學活性,探討觸媒結構與催化活性的關聯。 tc 摘要 I 謝誌 III 目錄 IV 第一章 緒論 1 第二章 實驗 20 第三章 結果與討論 33 第四章 結論 94 第五章 參考文獻 96 附錄 100rf [1 ] Klaiber, T., J. Power Sources, 1996, 61, 61. [2 ] Velu, S.; Suzuki, K.; Okazaki, M.; Kapoor, M. P.; Osaki, T.; Ohashi, F. J. Catal. 2000, 194, 373. [3 ] Shukla, A. K.; Raman, R. K.; Choudhury, N. A.; Priolkar, K. R.; Sarode, P. R.; Emura, S.; Kumashiro, R. J. Electroanal. Chem. 2004, 563, 181. [4 ] 葉君棣,科學人,2002, 12月. [5 ] Lamy, C.; Lima, A.; Le Rhun, V.; Coutanccau, C.; Léger, J. M. J. Power Sources 2002, 105, 283. [6 ] Hogarth, M. P.; Ralph, T. R. Platinum Met. Rev. 2002, 46, 146. [7 ] Yang, H.; Alonso-Vante, N.; Lége, J. M.; Lamy, C. J. Phys. Chem. B 2004, 108, 1938. [8 ] Li, W.; Liang, C.; Zhou, W.; Qiu, J.; Zhou, Z.; Sun, G.; Xin, Q. J. Phys. Chem. B 2003, 107, 6292. [9 ] Gasteiger, H. A.; Markovic, N.; Ross, P. N. J. Phys. Chem. 1995, 99, 8290. [10 ] Steigerwalt, E. S.; Deluga, G. A.; Cliffel, D. E.; Lukehart, C. M. J. Phys. Chem. 2001, 105, 8097. [11 ] Burstein, G. T.; Barnett, C. J.; Kucernak, A. R.; Williams, K. R. Catal. Today 1997, 38, 425. [12 ] Liu, R.; Iddir, H.; Fan, Q.; Hou, G.; Bo, A.; Ley, K. L.; Smotkin, E. S. J. Phys. Chem. B 2000, 104, 3518. [13 ] Lin, W. F.; Zei, M. S.; Eiswirth, M.; Ertl, G.; Iwasita, T.; Vielstich, W. J. Phys. Chem. B 1999, 103, 6968. [14 ] Beden, B.; Kadirgan, F.; Lamy, C.; Leger, J. M. J. Electroanal. Chem. 1981, 127, 75. [15 ] Zhong, C. J.; Maye, M. M. Adv. Mater. 2001, 13, 1507. [16 ] Hamnett, A. Catal. Today 1997, 38, 445. [17 ] Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E. ; Science 1998, 280, 1735. [18 ] Long, J. W.; Stroud, R. M.; Swider-Lyons, K. E.; Rolison, D. R. J. Phys. Chem. B 2000, 104, 9772. [19 ] Liu, Z.; Lee, J. Y.; Han, M.; Chen, W.; Gan, L. M. J. Mater. Chem. 2002, 12, 2453. [20 ] Watanabe, M.; Uchida, M.; Motoo, S. J. Electroanal. Chem. 1987, 29, 395. [21 ] Takasu, Y.; Sugimoto, W.; Murakami, Y. Catal. Surf. 2003, 7, 21. [22 ] Antolini E.; Cardellini, F. J. Alloys Compd. 2001, 315, 118. [23 ] Takasu, Y.; Fujiwara, T.; Murakami, Y.; Sasaki, K.; Oguri, M.; Asaki, T.; Sugimoto, W. J. Electrochem. Soc. 2000, 147, 4421. [24 ] Steigerwalt, E. S.; Deluga, G. A.; Lukehart, C. M. J. Phys. Chem. B 2002, 106, 760. [25 ] Radmilovic, V.; Gasteriger, H.; Ross, P. J. Catal. 1995, 154, 98. [26 ] Antolini E.; Giorgi, L.; Cardellini, F.; Passalacqua, E. J. Solid State Electrochem. 2001, 5, 131. [27 ] Kenedy, B.; Smith, A. J. Electroanal. Chem. 1990, 293, 103. [28 ] 萬本儒,康義明,蕭志楊,”含金觸媒的燃燒效應”,行政院國家科學委員會專題研究計畫成果報告,1996. [29 ] Lee, S. A.; Park, K. W.; Choi, J. H.; Kwon, B. K.; Sung, Y. E. J. Electrochem. Soc. 2002, 149, 1299. [30 ] Boxall, D.; Deluga, G.; Kenik, E.; King, W.; Lukehart, C. Chem. Mater. 2001, 13, 891. [31 ] Steigerwalt, E. S.; Deluga, G. A.; Cliffel, D. E.; Lukehart, C. M. J. Phys. Chem. B 2001, 105, 8097. [32 ] Nashner, M. S.; Frenkel, A. I.; Adler, D. L.; Shapley, J. R.; Nuzzo, R. G. J. A m. Chem. Soc. 1997, 119, 7760. [33 ] Nashner, M. S.; Frenkel, A. I.; Somerville, D.; Hill, C. W.; Shapley, J. R.; Nuzzo, R. G. J. A m. Chem. Soc. 1998, 120, 8093. [34 ] Robertson, S. E.; McNicol, B. D.; De Bass, J. M.; Kloest, S. C. ; Jenkins, J. W.; J. Catal. 1975, 37, 424. [35 ] 黃敬佩, “鉑族金屬氧化及脫氧現象之程溫分析研究”, 國立清華大學化學研究所博士論文,1997. [36 ] 黃華鋒, “煅燒處理對支撐性鉑觸媒的影響”, 國立清華大學化學研究所碩士論文,2003. [37 ] 汪成斌, “氧和一氧化氮與分散在氧化鋁上鈀金屬簇的作用”, 國立清華大學化學研究所博士論文,1997. [38 ] 黃勝揚, “分散度對鈀觸媒吸著熱的影響”, 國立清華大學化學研究所碩士論文,2000. [39 ] Hosokawa, S.; Kanai, H.; Utani, K.; Taniguchi, Y.; Saito, Y.; Imamura, S. Appl. Catal. B 2003, 45, 181. [40 ] Mazzieri, V.; Coloma-Pascual, F.; Arcoya, A.; L’Argentière, P. C.; Fígoli, N. S. Appl. Surf. Sci. 2003, 210, 222. [41 ] Crisafulli, C.; Scirè, S.; Minico, S.; Solarino, L. Appl. Catal. A 2002, 225, 1. [42 ] Rouco, A. J.; Haller, G. L.; Oliver, J. A.; Kemball, C. J. Catal. 1983, 84, 297. [43 ] Koopman, P. G.; Kieboom, A. P. G.; Bekkum, H. V. J. Catal. 1981, 69, 172. [44 ] Bond, G. C. Heterogeneous Catalysis: Principles and Applications; Oxford, 1987, p.33.id NH0925065014 sid 913409 cfn 0 / id NH0925065015 auc 張文明 tic 有機/無機複合鎵和混合金屬磷酸鹽的水熱合成、晶體結構與性質研究 adc 王素蘭 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 313 kwc 磷酸鹽 kwc 水熱合成 kwc 結構 kwc 有機 kwc 無機 kwc 鎵 abc 本論文研究的方向主要以水熱合成法合成具有微孔結構或特殊性質的金屬磷(砷)酸鹽材料,並探討其合成條件、結構化學與化合物的物理性質。其中微孔材料是具有分子篩或開放性骨架結構的固態無機物,其孔洞的大小範圍為5 ~ 20Å。在本論文中總共合成了21個新穎結構的化合物,依照種類不同主要可以區分為三個部分: tc 第一章 緒論 1-1 前言 1 1-2 微孔材料的簡介與應用 3 第二章 儀器分析 2-1 鑑定方法 12 2-1-1 本研究中所使用的儀器機型 12 2-1-2 鑑定的流程方式 13 2-2 儀器測量簡介 13 2-2-1 單晶X-ray結構分析 13 2-2-2 粉末X-ray繞射分析 18 2-2-3 熱重量/微差熱分析 20 2-2-4 元素分析 21 2-2-5 超導量子干涉磁量儀之磁性分析 23 2-2-6 電子微碳分析 27 2-2-7 傅立葉紅外線光譜分析 29 第三章 實驗部分 3-1 研究方法 32 3-2 實驗藥品 37 3-3 合成步驟 39 3-4 研究成果與摘要 47 第四章 結果與討論 4-1 (C3H12N2)2[(VO)2(C2O4)Ga2(PO4)4 ] 56 4-1-1 晶體結構解析 56 4-1-2 結構描述與討論 57 4-1-3 鑑定與性質研究 60 4-2 (C10H28N4)[(VO)2(C2O4)Ga2(PO4)4 ]•2H2O 63 4-2-1 晶體結構解析 63 4-2-2 結構描述與討論 64 4-3 (C7H21N3)0.5(H3O)[Mn(H2O)2Ga4F2(C2O4)(PO4)4 ]•4H2O 67 4-3-1 晶體結構解析 67 4-3-2 結構描述與討論 68 4-3-3 鑑定與性質研究 72 4-4 (C5H14N2)[Mn(H2O)2Ga4F2(C2O4)(PO4)4 ]•3H2O 75 4-4-1 晶體結構解析 75 4-4-2 結構描述與討論 76 4-4-3 鑑定與性質研究 80 4-5 (C4H12N2)[Mn(H2O)2Ga4F2(C2O4)(PO4)4 ]•3H2O 83 4-5-1 晶體結構解析 83 4-5-2 結構描述與討論 84 4-6 (C4H16N3)[MnGa2(C2O4)2(HPO4)2(PO4) ] 88 4-6-1 晶體結構解析 88 4-6-2 結構描述與討論 89 4-6-3 鑑定與性質研究 93 4-7 (C10H10N2)[Ga4(OH)2(C2O4)(HPO4)2(PO4)2 ] 96 4-7-1 晶體結構解析 96 4-7-2 結構描述與討論 97 4-8 (C10H10N2)(C10H9N2)[Ga(C2O4)2(H2PO4)2 ] 100 4-8-1 晶體結構解析 100 4-8-2 結構描述與討論 101 4-9 (C4H12N2)[Ga2(C2O4)(HPO4)3 ] 103 4-9-1 晶體結構解析 103 4-9-2 結構描述與討論 105 4-9-3 鑑定與性質研究 107 4-10 (C6H18N3)(H3O)[Ga4(OH)(C2O4)(H2PO4)(PO4)4 ]•2H2O 108 4-10-1 晶體結構解析 108 4-10-2 結構描述與討論 110 4-10-3 鑑定與性質研究 113 4-11 (C10H28N4)[Ga4(OH)(C2O4)(H2PO4)(PO4)4 ] 115 4-11-1 晶體結構解析 115 4-11-2 結構描述與討論 116 4-11-3 鑑定與性質研究 119 4-12 (C3H12N2)2[Ga4F2(C2O4)(PO4)4 ] 121 4-12-1 晶體結構解析 121 4-12-2 結構描述與討論 122 4-12-3 鑑定與性質研究 125 4-13 (C6H16N2)2[Ga4(C2O4)(PO4)4(H2PO4)2 ]•2H2O 126 4-13-1 晶體結構解析 126 4-13-2 結構描述與討論 127 4-13-3 鑑定與性質研究 130 4-14 (C13H16N2)[Ga4(PO4)4(H2PO4)2 ] 132 4-14-1 晶體結構解析 132 4-14-2 結構描述與討論 133 4-14-3 鑑定與性質研究 136 4-15 (C6H21N4)[Ga(HPO4)3 ] 137 4-15-1 晶體結構解析 137 4-15-2 結構描述與討論 138 4-15-3 鑑定與性質研究 140 4-16 (C4H16N3)[Ga2(PO4)3 ] 141 4-16-1 晶體結構解析 141 4-16-2 結構描述與討論 142 4-16-3 鑑定與性質研究 145 4-17 (C6H18N3)[Ga5(OH)2(PO4)4(HPO4)2 ]•2H2O 146 4-17-1 晶體結構解析 146 4-17-2 結構描述與討論 147 4-18 (C4H12N2)[Ga3(H2O)F3(HPO4)(PO4)2 ] 151 4-18-1 晶體結構解析 151 4-18-2 結構描述與討論 152 4-18-3 鑑定與性質研究 154 4-19 (C3H12N2)[Ga4F2(H2O)(PO4)4 ] 155 4-19-1 晶體結構解析 156 4-19-2 結構描述與討論 157 4-19-3 鑑定與性質研究 159 4-20 (C10H28N4)[Ga4O2(AsO4)4 ] 160 4-20-1 晶體結構解析 160 4-20-2 結構描述與討論 161 4-20-3 鑑定與性質研究 164 4-21 K[Ga(VO)2(H2O)2(C2H4P2O6)2 ]•3.5H2O 165 4-21-1 晶體結構解析 165 4-21-2 結構描述與討論 166 4-21-3 鑑定與性質研究 169 第五章 結論 5-1 結構部分 173 5-2 實驗部分 176 5-3 未來展望 177 參考文獻 179 附錄A 晶體結構解析的詳細資料表 185 附錄B 化合物的粉末X-ray繞射圖比對 296rf 1. Julien, C. Material Science and Engineering 1990, B6, 9. 2. (a) Fang, J.; Holloway, P. H.; Yu, J. E.; Jones, K. S.; Pathangey, B.; Brettschneider, E.; Anderson, T. J. Applied Surface Science 1993, 7 (b) Futh, A.; Gallinger, R. P.; Schuster, P.; Adolph, J.; Gaporalettio, O. Thin Solid Film 1992, 207, 202. 3. Sharrock, M. P. MRS BULLETIN 1990, March, 53. 4. (a) Hiroshi, M. JEE 1992, January, 32. (b) Zeng, Z. J. Phys. Chem. Solids 1991, 52, 659. 5. Rickert, H. Angew. Chem. Int. Ed. Engl. 1978, 17, 37. 6. Smith, J. V. Chem. Rev. 1988, 88, 149. 7. (a) D. Breck, Zeolite Molecular Sieves:Structure, Chemistry and use, Wiley, New York, 1974. (b) R. Barrer, Hydrothermal Chemistry of Zeolites, Academic Press, New York, 1982. 8. S. Wilson, T. Cannan, E. Flanigen, B. Lok and C. Messina, ACS Symp. Ser., 1983, 218, 79. 9. Eur. J. Solid State Inor. Chem. 1991, 28, Special Issue. 10. Haushalter, R. C.; Mundi, L. A. Chem. Mater. 1992, 4, 31. 11. Bu, X; Feng, P; Stucky, G. D. Science 1997, 278, 2080. 12. Barrer, R. M. Hydrothermal Chemistry of Zeolites; Academic Press:New York, 1982. 13. El Brahimi M.; Durand J.; Revue de Chimie Mineral, 1986, 23, 146. 14. Zumsteg, F. C.; Bierlein, J. D.; Gier, T. E. J. Appl. Phys. 1976, 47, 4980. 15. (a) Amoros, P.; Beltran-Porter, A.; Vilieneuve, G.; Beltran-Porter, D. Eur. J. Solid State Inorg. Chem. 1992, 29, 257. (b) Wang, S. L.; Lee, W. C. Acta Cryst. 1991, C47, 1709. 16. Linde, S. A.; Gorbunova, Y. E.; Lavrov, A, V.; Kuznestov, V.G. Doklady Akademii Nauk SSSR, 1979, 244, 1411. 17. Aranda, M. A. G.; Attfied, J. P.; Bruque, S; Maria, M. L. Inorg. Chem. 1992, 31, 1045. 18. Jiang, Y. C.; Wang, S. L.; Lii, K. H. Chem. Mater. 2003, 15, 1633. 19. Tsai, Y. M.; Wang, S. L.; Huang, C. H.; Lii, K. H. Inorg. Chem. 1999, 38, 4183. 20. Mrak, M.; Kolitsch, U.; Lengauer, C.; Kaucic, V.; Tillmanns, E.; Inorg. Chem. 2003, 42, 598. 21. Choi, C. T. S.; Anokhina, E. V.; Day, C. S.; Zhao, Y,; Taulelle, F.; Huguenard, C.; Gan, Z.; Lachgar, A. Chem. Mater. 2002, 14, 4096. 22. Chen, C. Y.; Chu, P. P.; Lii, K. H. Chem. Commun. 1999, 1473. 23. H. de Sainte Claire Deville, C. R. Hebd. Seances Acad. Sci. 1862, 54, 324. 24. Barrer, R. M. J. Chem. Soc. 1948, 127. 25. Barrer, R. M.; Denny, P. J. J. Chem. Soc. 1961, 971 26. Wagner, P.; Yoshikawa, M.; Lovallo, M.; Tsuji, K.; Taspatsis, M.; Davis, M. E. Chem. Comm. 1997, 2179. 27. Freyhardt, C. C.; Khodabandeh, S.; Wagner, P.; Chen, C. Y.; Balkus, K. J.; Zones, S. I.; Davis, M. E. J. Am. Chem. Soc. 1997, 119, 8474. 28. Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T. R.; Flanigen, E. M. J. Am. Chem. Soc. 1982, 104, 1146. 29. Jones, R. H.; Thomas, J. M.; Chen, J.; Xu. R.; Huo, Q.; Li, S.; Ma, Z.; Chippindale, A. M. J. Solid Sate Chem. 1993, 102, 204. 30. Davis, M. E.; Saldarriaga, C.; Montes, C.; Garces, J. M.; Crowder, C. Nature 1988, 331, 698. 31. Khan, M. L.; Lee, Y. -S.; O’Conner, C. J.; Haushalter, R. C.; Zubieta, J. Chem. Mater. 1994, 6, 721. 32.Khan, M. I.; Lee, Y. S.; O’Conner, C. J.; Haushalter, R. C.; Zubieta, J. J. Am. Chem. Soc. 1994, 116, 4525. 33. Khan, M. I.; Meyer, L. M.; Haushalter, R. C.; Schweitzer, A. L.; Zubieta, J.; Dye, J. L. Chem. Mater. 1996, 8, 43. 34. Soghomonian, V.; Chen, Q.; Haushalter, R. C.; Zubieta, J.; O’Conner, C. J.; Lee, Y. –S. Chem. Mater. 1993, 5, 1690. 35. Haushalter, R. C.; Strohmaier, K.; Lai, F. W. Science 1989, 246, 1289. 36. Cavellec, M.; Riou, D.; Ferey, G. Acta Crystallogr. Sect. C. 1995, 51, 2242. 37. Ferey, G.; Loiseau, T.; Riou, D. Mater, Sci. Forum 1994, 152, 125. 38. Ferey, G. J. Fluorine Chem. 1995, 72, 187. 39. Estermann, M.; McCusker, L. B.; Baerlocher, C.; Merrouche, A.; Kessler, H. Nature 1991, 352, 320. 40. Loiseau, T.; Ferey, G. Eur. J. Solid State Inorg. Chem. 1993, 30, 369. 41. Loiseau, T.; Ferey, G. J. Solid State Chem. 1994, 111, 403. 42. Loiseau, T.; Retoux, R.; Lacorre, P.; Ferey, G. J. Solid State Chem. 1994, 111, 427. 43. Loiseau, T.; Ferey, G. J. Mater. Chem. 1996, 6, 1073. 44. Loiseau, T.; Ferey, G. Chem. Commun. 1997, 1093. 45. Kinoshita, Y.; Matsubara, I.; Higuchi, T.; Saito, Y. Bull. Chem. Soc. Jpn 1959, 32, 122. 46. Li, Hailian.; Eddaoudi, Mohamed.; O’Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276. 47. Grün, M.; Kurganov, A. A.; Schacht, S.; Schüth, F.; Unger, K. K. J. Chromatogr. 1996, A740, 1. 48. Thoelen, C.; van deWalle, K.; Vankelecom, I. F. J.; Jacobs, P. J. Chem. Commun. 1999, 1841. 49. Sierra, L.; Lopez, B.; Ramirez, A.; Guth, J. L. Stud. Surf. Sci. Catal. 2001, 135. 50. McCoy, M. Chem. Eng. News. 2000, 78, 13. 51. Wang, Z.; Wang, H.; Mitra, A.; Huang, L.; Yan, Y. Stud. Surf. Catal. 135, [CD-ROM ] Paper 20-P-11 (Elsevier 2001). 52. Lauffer, R. B. Chem. Rev. 1987, 87, 901. 53. Cacheris, W. P.; Quay, S. C.; Rocklage, S. M. Magn. Reson Imaging 1990, 8, 467. 54. Balkus, K. J. Jr.; Sherry, A. D.; Young, S. W. US Patent 1992, 5, 122, 363. 55. Balkus, K. J. Jr.; Bresinska, I.; Kowalak, S.; Young, S. W. Mater. Res. Soc. Symp. Ser. 1991, Proc 223, 225. 56. Balkus, K. J. Jr.; Shi, J. J. Phys. Chem. 1996, 100, 16429. 57. Balkus, K. J. Jr.; Shi, J. Langmuir. 1996, 12, 6277. 58. (a) Wirnsberger, G.; Stucky, G. D. Chem. Mater. 2000, 12, 2525. (b) Wada, Y. et al. J. Am. Chem. Soc. 2000, 122, 8583. 59. Crabtree, R. H. Nature 2000, 408, 415. 60. Sheldrick, G. M. SHELXTL programs, Release Version 5.1; Brucker AXS, 1998. 61. Brown, I. D.; Altermann, D. Acta Crystallogr. 1985, B41, 244. 62. Spek, L. Acta Crystallogr. Sect. A 1990, 46, C34. 63. Alcock, N. W. Bonding and structure; Ellis Horwood: New York, 1990. 64. (a)Hawthoren, F. C. Zeit. Fűr Kridtallogr. 1992, 201, 183. (b) Hawthoren, F. C. Acta Crystallogr. 1994, B50, 481 65. Values of Lewis acid strength (v. u.) for cations were taken from Brown, I. D. Structure and Bonding in Crystals 1981, Vo2., edited by O’keeffe, M. and Navrotsky, A., pp. 1-30. New York: Academic press. 66. Mabbs, F. E.; Machin, D. J. “Magnetism and Transition Metal Complex” 67. Stephen, J. L. “Progress in Inorganic Chemistry vol 29” 68. Richard, L. C. “Magnetochemistry” 69. Selwood, P. W. Magnetochemistry; Interscience: New York, 1956. 70. Silverstein, R. M.; Webster, F. X. “Spectrometric Identification of Organic”, 1963. 71. Wang, S. L., Richardson, J. W. Jr., Z. Krystallogr. 1992, 202, 227. 72. Stucky, G. D., Phillids, M. L. F., Gier, T. E., Chem. Mater. 1989, 1, 492. 73. West, A. R., Solid State Chemistry and Its Applications, John Weiley & Sons, New York, 1984. 74. Johnson, J. W., Jacobson, A. J. Angew. Chem. Int. Ed. Engl. 1983, 22, 412. 75. Rabenau, A. Angew. Chem. Int. Ed. Engl. 1985, 24, 1026. 76. Moore, P. B.; Shen, J. Nature 1983, 24, 356. 77. Angew. Chem. Int.Ed. Engl. 1995, 24, 1026. 78. Lin, H. M.; Jiang, Y. C.; Lii, K. H.; Wang, S. L. Chem. Mater. 1999, 11, 3. 79. Lii, K. H.; Chen, C. Y. Inorg. Chem. 2000, 39, 3374. 80. Ayi, A. A.; Choudhury, A.; Natarajan, S.; Neeraj, S.; Rao, C. N. R. J. Mater. Chem., 2001, 11, 1181. 81. Wei, B.; Zhu, G.; Yu, J.; Qiu, S.; Xiao, F. S.; Terasaki, O. Chem. Mater. 1999, 11, 3417. 82. Lii, K. H.; Huang, Y. F. Chem. Commun. 1997, 1311. 83. Cheng, C. Y.; Fu, S. J.; Yang, C. J.; Chen, W. H.; Lin, K. J.; Lee, G. H.; Wang, Y. Angew. Chem. Int. Ed. 2003, 42, 1937.id NH0925065015 sid 913410 cfn 0 / id NH0925065016 auc 郭俊宏 tic 以植晶法合成多截面的金奈米粒子及具分支的金奈米晶體 adc 黃暄益 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 英文 pg 81 kwc 植晶 kwc 截面 kwc 金 kwc 奈米粒子 kwc 奈米晶體 kwc 分支 abc 奈米材料是近幾十年來非常熱門的尖端材料。其吸引中科學家注目的主要原因,在於隨尺寸大小、形狀而改變,有別於塊材的特殊物理及化學性質。為了能將奈米材料這些特殊的性質成功應用於科技、醫藥等各方面上,製作奈米材料的成熟技術是不可或缺的。要將材料成功的應用,材料的一致性是不可忽略,所以合成技術首重於控制。 tc TABLE OF CONTENTS Title Page i Abstract of The Thesis ii Acknowledgment v Table of Contents vii List of Figures x List of Tables xiv CHAPTER 1 THE BACKGROUND KNOWLEDGE 1.1 Introduction 1 1.2 Size- and Shape-Dependent Properties 3 1.3 Basic Knowledge of Nanomaterials – Metal 11 Nanocrystal Cases 1.3.1 Formation of Metal Particles – Mechanism 12 Discussion 1.3.2 Methods for Preparation of Monodispersive 16 Metal Nanoparticles 1.3.3 Shape Control of Nanomaterials 20 1.3.4 Analysis of Self-Assembly 23 1.4 References 29 CHAPTER 2 SYNTHESIS OF HIGHLY FACETED PENTAGONAL- AND HEXAGONAL-SHAPED GOLD NANOPARTICLES WITH CONTROLLED SIZES BY SODIUM DODECYL SULFATE 2.1 Introduction 34 2.2 Experimental Section 35 2.2.1 Synthesis of Gold Seeds 35 2.2.2 Preparation of Growth Solution 36 2.2.3 Synthesis of Size- and Shape-controlled 36 Gold Nanoparticles 2.3 Results and Discussion 39 2.4 Summary 52 2.5 References 54 Chapter 3 SYNTHESIS OF BRANCHED GOLD NANOCRYSTALS BY A SEEDING GROWTH APPROACH 3.1 Introduction 58 3.2 Experimental Section 60 3.2.1 Synthesis of 2.5 nm Gold Seeds 60 3.2.2 Preparation of Growth Solution 60 3.2.3 Synthesis of Gold Nanocrystal 61 3.3 Results and Discussion 62 3.4 Conclusion 79 3.5 References 80rf CHAPTER 1 THE BACKGROUND KNOWLEDGE 1. Wong, E.; Boyd, R.S. Knight Rider Newspapers 1999, Monday, November 8. 2. Klabunde, J. K. (Editor) Nanoscale Materials in Chemistry, Wiley-Interscience, New York, 2001. 3. Bradley, J. S.; Hill, E. W.; Behal, S.; Klein, C.; Chaudret B.; Duteil, A. Chem. Mater. 1992, 4, 1234. 4. Porta, F.; Ragaini, F.; Cenini, S.; Scari, G. Chim. Ital., 1992, 122, 361. 5. Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 8410. 6. Hummel, R. E.; Wissmann, P. (Editors) Handbook of Optical Properties,,Vol. II, Optics of Small Particles, Interfaces and Surfaces, CRC Press, Boca Raton, FL, 1997. 7. Chang, S. S.; Wang, C. R. Langmuir 1999, 15, 701. 8. Sun, Y.; Xia, Y. Adv. Mater. 2003, 15, 695. 9. Liz-Marzan, L. M.; Giersig, M.; Mulvaney, P. Chem. Commun., 1996, 731. 10. Goia, D. V.; Matijevic, E. New J. Chem. 1998, 1203. 11. Harfenist, S. A.; Wang, Z. L.; Alvarez, M. M.; Vezmar, I.; Whetten, R. L. Adv. Mater. 1997, 9, 817. 12. Faraday, M. Phil. Trans. Roy. Soc., 1857, 147, 145. 13. Jana, N. R.; Gearheart, L.; Murphy, C. J. Langmuir 2001, 17, 6782. 14. Jiang, X.; Xie, Y. ; Lu, J.; Zhu, L.; He, W.; Qian, Y. Langmuir 2001, 17, 3795. 15. Liu, Y.; Male, K. B.; Bouvrette, P.; Luong, H. T. Chem. Mater. 2003, 15, 4172. 16. Su, C. H.; Wu, P. L.; Yeh, C. S. J. Phys. Chem. B 2003, 107, 14240. 17. Fujimoto, T.; Terauchi, S.; Umehara, H.; Kojima, I.; Henderson, W. Chem. Mater. 2001, 13, 1057. 18. Liu, F. K.; Ker, C. J.; Chang, Y. C.; Ko, F. H.; Chu, T. C.; Dai, B. T. J. Appl. Phys. 2003, 42, 4152. 19. Kim, F.; Song, J. H.; Yang, P. J. Am. Chem. Soc. 2002, 124, 14316. 20. Sun, Y.; Xia, Y. Adv. Mater. 2003, 15, 695. 21. Maillard, M.; Huang, P.; Brus, L. Nano Lett. 2003, 3, 1611. 22. Jana, N. R.; Geaheart, L.; Murphy, C. J. J. Phys. Chem. B 2001, 105, 4065. 23. Jana, N. R.; Gearheart, L.; Murphy, C. J. Adv. Mater. 2001, 13, 1389. 24. Jana, N. R.; Gearheart, L.; Obare, S. O.; Murphy, C. J. Langmuir 2002, 18, 922. 25. Busbee, B. D.; Obare, S. O.; Murphy, C. J. Adv. Mater. 2003, 15, 414. 26. Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15, 1957. 27. Jana, N. R.; Gearheart, L.; Murphy, C. J. Chem. Mater. 2001, 13, 2313. 28. Choi, J.; Sauer G.; Nielsch, K.; Wehrspohn, R. B.; Gosele, U. Chem. Mater. 2003, 15, 776. 29. Luan, Z.; Maes, E. M.; Zhao, D.; Czernuszewicz, R. S.; Kevan, L. Chem. Mater. 1999, 11, 3680. 30. Sun, Y.; Mayers, B. T.; Xia, Y. Nano Lett. 2002, 2, 481. 31. Sun, Y.; Xia, Y. Adv. Mater. 2003, 15, 695. 32. Sun, Y.; Xia, Y. Science 2002, 298, 2176. 33. Fievet, F.; Lagier, J. P.; Figiarz, M. Mater. Res. Soc. Bull. 1989, 14, 29. 34. Turkevich, J.; Stevenson, P. C.; Hiller, J. J. Discuss. Faraday Soc. 1951, 11, 55. 35. Milligan, W. O.; Morriss, R. H. J. Am. Chem. Soc. 1964, 86, 3461. 36. Bruche, B. Kolloid-Z. 1960, 170, 97. 37. Curtis, A. C. Angew. Chem. Int. Ed. Engl. 1988, 27, 1530. 38. Duff, D. G.; Edwards, P. P.; Johnson, B. F. G. J. Phys. Chem. 1995, 99, 15934. 39. Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science 2001, 292, 1897. 40. Kim, J. U.; Cha, S. H.; Shin, K.; Jho, J. Y.; Lee, J. C. Adv. Mater. 2004, 16, 459. 41. Chen, C. C.; Lin, J. J. Adv. Mater. 2001, 13, 136. 42. Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El-Sayed, M. A. Science 1996, 272, 1924. 43. Chen, S.; Wang, Z. L.; Ballato, J.; Foulger, S. H.; Carroll, D. L. J. Am. Chem. Soc. 2003, 125, 16186. 44. Hao, E.; Bailey, R. C.; Schatz, G. C.; Hupp, J. T.; Li, S. Nano Lett. 2004, 4, 327. 45. Wang, Z. L. Adv. Mater. 1998, 10, 13. 46. Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105, 4481. 47. Whetten, R. L.; Khoury, J. T.; Alvarez, M. M.; Murthy, S.; Vezmar, I.; Wang, Z. L.; Cleveland, C. C.; Luedtke, W. D.; Landman, U. Adv. Mater. 1996, 8, 428. 48. Dorogi, J.; Gomez J.; Osifchin, R.; Andres, R. P.; Refenberger, R. Phys. Rev. B 1995, 52, 9071. 49. Leff, D. V.; Ohara, P. C.; Heath, J. R.; Gelbart, W. M. J. Phys. Chem. 1995, 99, 7036. 50. S. Harfenist, A.; Wang, Z. L.; Alvarez, M. M.; Vezmar, I.; Whetten, R. L. J. Phys. Chem. 1996, 100, 13904. 51. Heath, J. R.; Knobler, C. M.; Leff, D. V. J. Phys. Chem. B 1997, 101, 189. 52. Motte, L.; Billoudet, F.; Lacaze, E.; Pileni, M.-P. Adv. Mater. 1996, 8, 1018. 53. Motte, L.; Billoudet, F.; Lacaze, E.; Douin, J.; Pileni, M.-P. J. Phys. Chem. B 1997, 101, 138. 54. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc. Chem. Commun. 1994, 801. 55. Brust, M.; Fink, J.; Bethell, D.; Schiffrin, D. J.; Kiely, C. J. Chem. Soc., Chem. Commun. 1995, 1655. 56. Alvarez, M. M.; Khoury, J. T.; Schaaff, T. G.; Shafigullin, M.; Vezmar, I.; Whetten, R. L. Chem. Phys. Lett. 1997, 266, 91. 57. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Science 1995, 270, 1335. 58. Alvarex, M. M.; Khoury J. T.; Schaaff T. G.; Shafigullin, M. N.; Vezmar, I.; Whetten, R. L. Chem. Phys. Lett. 1997, 79, 1873. CHAPTER 2 SYNTHESIS OF HIGHLY FACETED PENTAGONAL- AND HEXAGONAL-SHAPED GOLD NANOPARTICLES WITH CONTROLLED SIZES BY SODIUM DODECYL SULFATE 1. Levi, S. A.; Mourran, A.; Spatz, J. P.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; Möller, M. Chem. Eur. J. 2002, 8, 3808. 2. Thomas, K. G.; Kamat, P. V. J. Am. Chem. Soc. 2000, 122, 2655. 3. Xu, P.; Yanagi, H. Chem. Mater. 1999, 11, 2626. 4. Taton, T. A.; Mirkin, C. A.; Lestinger, R. L. Science 2000, 289, 1757. 5. Mucic, R. C.; Storhoff, J. J.; Mirkin, C. A.; Lestinger, R. L. J. Am. Chem. Soc. 1998, 120, 12674. 6. Loweth, C. J.; Caldwell, W. B.; Peng, X.; Alivisatos, A. P.; Schultz, P. G. Angew. Chem. Int. Ed. 1999, 38, 1808. 7. Lin, C.-C.; Yeh, Y.-C.; Yang, C.-Y.; Chen, C.-L.; Chen, G.-F.; Chen, C.-C.; Wu, Y.-C. J. Am. Chem. Soc. 2002, 124, 3508. 8. (a) Kanehara, M.; Oumi, Y.; Sano, T.; Teranishi, T. J. Am. Chem. Soc. 2003, 125, 8708. (b) Teranishi, T.; Hasegawa, S.; Shimizu, T.; Miyake, M. Adv. Mater. 2001, 13, 1699. (c) Teranishi, T.; Sugawara, A.; Shimizu, T.; Miyake, M. J. Am. Chem. Soc. 2002, 124, 4210. (d) Wang, Z. L. Adv. Mater. 1998, 10, 13. 9. (a) He, H. X.; Zhang, H.; Li, Q. G.; Zhu, T.; Li, S. F. Y.; Liu, Z. F. Langmuir 2000, 16, 3846. (b) Zheng, J.; Zhu, Z.; Chen, H.; Liu, Z. Langmuir 2000, 16, 4409. 10. Frankamp, B. L.; Uzun, O.; Ilhan, F.; Boal, A. K.; Rotello, V. M. J. Am. Chem. Soc. 2002, 124, 892. 11. Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russell, T. P.; Rotello, V. M. Nature 2000, 404, 746. 12. (a) Maye, M. M.; Chun, S. C.; Han, L.; Rabinovich, D.; Zhong, C.-J. J. Am. Chem. Soc. 2002, 124, 4958. (b) Maye, M. M.; Zheng, W.; Leibowitz, F. L.; Ly, N. K.; Zhong, C.-J. Langmuir 2000, 16, 490. 13. Novak, J. P.; Feldheim, D. L. J. Am. Chem. Soc. 2000, 122, 3979. 14. Fink, J.; Kiely, C. J.; Bethell, D.; Schiffrin, D. J. Chem. Mater. 1998, 10, 922. 15. Lin, S.-Y.; Tsai, Y.-T.; Chen, C.-C.; Lin, C.-M.; Chen, C.-H. J. Phys. Chem. B 2004, 108, 2134. 16. (a) Chang, S.-S.; Shih, C.-W.; Chen, C.-D.; Lai, W.-C.; Wang, C. R. C. Langmuir 1999, 15, 701. (b) Yu, Y.-Y.; Chang, S.-S.; Lee, C.-L.; Wang, C. R. C. J. Phys. Chem. B 1997, 101, 6661. 17. Busbee, B. D.; Obare, S. O.; Murphy, C. J. Adv. Mater. 2003, 15, 414. 18. Jana, N. R.; Gearheart, L.; Murphy, C. J. Adv. Mater. 2001, 13, 1389. 19. Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15, 1957. 20. Kim, F.; Song, J. H.; Yang, P. J. Am. Chem. Soc. 2002, 124, 14316. 21. Métraux, G. S.; Cao, Y. C.; Jin, R.; Mirkin, C. A. Nano Lett. 2003, 3, 519. 22. Zhou, Y.; Wang, C. Y.; Zhu, Y. R.; Chen, Z. Y. Chem. Mater. 1999, 11, 2310. 23. Sun, Y.; Xia, Y. Science 2002, 298, 2176. 24. Hao, E.; Bailey, R. C.; Schatz, G. C.; Hupp, J. T.; Li, S. Nano Lett. 2004, 4, 327. 25. Chen, S.; Wang, Z. L. Ballato, J.; Folger, S. H.; Carroll, D. L. J. Am. Chem. Soc. 2003, 125, 16186. 26. (a) Fleming, D. A.; Williams, M. E. Langmuir 2004, 20, 3021. (b) Liu, Y.; Male, K. B.; Bouvrette, P.; Luong, J. H. T. Chem. Mater. 2003, 15, 4172. (c) Walker, C. H.; St. John, J. V.; Wisian-Neilson, P. J. Am. Chem. Soc. 2001, 123, 3846. 27. Jana, N. R.; Gearheart, L.; Murphy, C. J. Langmuir 2001, 17, 6782. 28. Jana, N. R.; Gearheart, L.; Murphy, C. J. Chem. Mater. 2001, 13, 2313. 29. Brown, K. R.; Walter, D. G.; Natan, M. J. Chem. Mater. 2000, 12, 306. 30. Jin, Y.; Kang, X.; Song, Y.; Zhang, B.; Cheng, G.; Dong, S. Anal. Chem. 2001, 73, 2843. 31. Shimizu, T.; Teranishi, T.; Hasegawa, S.; Miyake, M. J. Phys. Chem. B 2003, 107, 2719. 32. Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 8410. 33. Kim, B.; Tripp, S. L.; Wei, A. J. Am. Chem. Soc. 2001, 123, 7955. 34. Sun, Y.; Mayers, B.; Herricks, T.; Xia, Y. Nano Lett. 2003, 3, 955. 35. Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S. J. Mater. Chem. 2002, 12, 1765. 36. Gai, P. L.; Harmer, M. A. Nano Lett. 2002, 2, 771. 37. (a) Brinker, C. J.; Lu, Y.; Sellinger, A.; Fan, H. Adv. Mater. 1999, 11, 579. (b) Raman, N. K.; Anderson, M. T.; Brinker, C. J. Chem. Mater. 1996, 8, 1682. 38. (a) Huang, M. H.; Dunn, B. S.; Zink, J. I. J. Am. Chem. Soc. 2000, 122, 3739. (b) Huang, M. H.; Dunn, B. S.; Soyez, H.; Zink, J. I. Langmuir 1998, 14, 7331. 39. Marks, L. D. Rep. Prog. Phys. 1994, 57, 603. 40. Everett, D. H. Basic Principles of Colloid Science; Royal Society of Chemistry: London, 1988; p156. Chapter 3 SYNTHESIS OF BRANCHED GOLD NANOCRYSTALS BY A SEEDING GROWTH APPROACH 1. (a) Loweth, C. J.; Caldwell, W. B.; Peng, X.; Alivisatos, A. P.; Schultz, P. G. Angew. Chem. Int. Ed. 1999, 38, 1808. (b) Mucic, R. C.; Storhoff, J. J.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 12674. (c) Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J. J. Am. Chem. Soc. 2003, 125, 13914. 2. (a) Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russell, T. P.; Rotello, V. M. Nature, 2000, 404, 746. (b) Lin, C.-C.; Yeh, Y.-C.; Yang, C.-Y.; Chen, C.-L.; Chen, G.-F.; Chen, C.-C.; Wu, Y.-C. J. Am. Chem. Soc. 2002, 124, 3508. (c) Novak, J. P.; Feldheim, D. L. J. Am. Chem. Soc. 2000, 122, 3979. 3. (a) Levi, S. A.; Mourran, A.; Spatz, J. P.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; Möller, M. Chem. Eur. J. 2002, 8, 3808. (b) Thomas, K. G.; Kamat, P. V. J. Am. Chem. Soc. 2000, 122, 2655. 4. Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. Science 2000, 289, 1757. 5. Lin, S. Y.; Liu, S.-W.; Lin, C.-M.; Chen, C.-H. Anal. Chem. 2002, 74, 330. 6. (a) Busbee, B. D.; Obare, S. O.; Murphy, C. J. Adv. Mater. 2003, 15, 414. (b) Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15, 1957. (c) Kim, F.; Song, J. H.; Yang, P. J. Am. Chem. Soc. 2002, 124, 14316. (d) Gai, P. L.; Harmer, M. A. Nano Lett. 2002, 2, 771. (e) Chang, S.-S.; Shih, C.-W.; Chen, C.-D.; Lai, W.-C.; Wang, C. R. C. Langmuir 1999, 15, 701. 7. Sun, Y.; Xia, Y. Science 2002, 298, 2176. 8. (a) Kim, J.-U.; Cha, S.-H.; Shin, K.; Jho, J. Y.; Lee, J.-C. Adv. Mater. 2004, 16, 459. (b) Ibano, D.; Yokota, Y.; Tominaga, T. Chem. Lett. 2003, 32, 574. 9. (a) Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J. J. Am. Chem. Soc. 2003, 125, 13914. (b) Dujardin, E.; Hsin, L.-B.; Wang, C. R. C.; Mann, S. Chem. Commun. 2001, 1264. 10. Chen, S.; Wang, Z. L.; Ballato, J.; Foulger, S. H.; Carroll, D. L. J. Am. Chem. Soc. 2003, 125, 16186. 11. Hao, E.; Bailey, R. C.; Schatz, G. C.; Hupp, J. T.; Li, S. Nano Lett. 2004, 4, 327. 12. Jana, N. R.; Gearheart, L.; Murphy, C. J. Langmuir 2001, 17, 6782. 13. Jin, Y.; Kang, X.; Song, Y.; Zhang, B.; Cheng, G.; Dong, S. Anal. Chem. 2001, 73, 2843.id NH0925065016 sid 913416 cfn 0 / id NH0925065017 auc 劉人銪 tic 環境中異味物質之電子鼻檢測研究與奶粉中丙烯醯胺之分析方法研究 adc 凌永健 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 75 kwc 異味 kwc 電子鼻 kwc 丙烯醯胺 abc 在第一子題的方法研發上,本論文利用美國環保署公告標準方法TO-17 Method以多重床式吸附管採集氣體樣品,進行氣相層析質譜儀檢測分析。搭配使用三種攜帶型氣體偵測器、兩種電子鼻與氣味偵測器分別在具有簡易實地立即量測、氣味群類辨別與污染源判斷三項功能,以客觀量化的辨別實測結果,建立可能產生異味污染之各類型工廠廠內揮發性物質背景資料庫,成功應用於一般垃圾焚化廠、傳統紡織廠,鋼鐵廠及事業廢棄物處理廠等工廠並提供工廠規劃污染減量與輔導改善的後續發展。 rf [1 ] Swiss Federal Office of Public Health (SFOPH) http://www.bag.admin.ch/ [2 ] F. Tateo, M. Bononi, Ital. J. Food Sci. 15 (2003) 149. [3 ] The Center for Science in the Public Interest’s (CSPI) http://www.cspinet.org/ [4 ] D. Andrzejewski, J. A. G. Roach, M. L. Gay, S. M. Musser, J. Agric. Food Chem. 52 (2004) 1996. [5 ] The U.S. Food and Drug Administration (FDA)id NH0925065017 sid 913418 cfn 0 / id NH0925065018 auc 梁育嘉 tic 在導電金屬層上成長垂直奈米碳管之研究 adc 黃國柱 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 113 kwc 垂直奈米碳管 abc 摘要 tc 目錄 第一章 簡介 1-1 前言--------------------------------------------------------------------------01 1-2 奈米碳管的發展-----------------------------------------------------------02 1-2.1 石墨碳---------------------------------------------------------------02 1-2.2 鑽石------------------------------------------------------------------03 1-2.3 碳六十---------------------------------------------------------------04 1-2.4 奈米碳管------------------------------------------------------------06 1-3 奈米碳管的結構-----------------------------------------------------------10 1-4 奈米碳管的特性-----------------------------------------------------------16 1-4.1 機械性質------------------------------------------------------------17 1-4.2 電性------------------------------------------------------------------17 1-4.3 場發射效應---------------------------------------------------------18 1-4.4 熱傳導性------------------------------------------------------------18 1-4.5 熱穩定性------------------------------------------------------------20 1-5 奈米碳管的應用-----------------------------------------------------------21 1-5.1場發射顯示器-------------------------------------------------------22 1-5.2 碳管應用在原子力顯微鏡---------------------------------------25 1-5.3 複合材料之添加劑------------------------------------------------28 1-5.4 電池電極的應用---------------------------------------------------29 1-5.5 高效電晶體---------------------------------------------------------30 1-6 奈米碳管的合成方法-----------------------------------------------------31 1-6.1 電弧放電法---------------------------------------------------------32 1-6.2 雷射激發法---------------------------------------------------------34 1-6.3 化學氣相沈積法---------------------------------------------------35 第二章 利用化學氣相沈積法合成垂直式奈米碳管---37 2-1 實驗原理--------------------------------------------------------------------38 2-1.1 在矽基版上長垂直的奈米碳管---------------------------------38 2-1.2 反應過程中氣流對碳管成長面積的影響---------------------39 2-1.3 垂直奈米碳管合成缺點改進------------------------------------40 2-2 實驗裝置、藥品和步驟----------------------------------------------------41 2-2.1 實驗裝置------------------------------------------------------------41 2-2.2 實驗藥品------------------------------------------------------------43 2-2.3 實驗步驟------------------------------------------------------------43 2-3 實驗結果--------------------------------------------------------------------47 2-3.1 垂直碳管之結果---------------------------------------------------47 2-3.2 氣流對反應的影響------------------------------------------------53 2-3.3 改進奈米碳管合成時的缺點------------------------------------57 2-4 結果與討論-----------------------------------------------------------------59 第三章 垂直碳管長在導電金屬層上--------------------------60 3-1 實驗原理--------------------------------------------------------------------61 3-1.1鉬導電層上長垂直奈米碳管-------------------------------------61 3-1.2 垂直碳管成長機制的討論---------------------------------------62 3-1.3 氨氣的影響---------------------------------------------------------62 3-2 實驗裝置、藥品和步驟----------------------------------------------------63 3-2.1 實驗裝置------------------------------------------------------------63 3-2.2 實驗藥品------------------------------------------------------------63 3-2.3 實驗步驟------------------------------------------------------------64 3-3 實驗結果--------------------------------------------------------------------65 3-3.1 利用金屬鹽類溶入高分子溶液中當作催化劑,塗佈在矽基板或是導電金屬層上成長垂直碳管-----------------------------------65 3-3.2 垂直碳管成長機制的討論---------------------------------------72 3-3.3 氨氣對垂直奈米碳管的影響------------------------------------88 3-4 結果與討論-----------------------------------------------------------------90 第四章 固定垂直式奈米碳管-------------------------------------91 4-1實驗原理---------------------------------------------------------------------92 4-2實驗裝置、藥品和步驟-----------------------------------------------------93 4-2.1 實驗裝置------------------------------------------------------------93 4-2.2實驗藥品-------------------------------------------------------------94 4-2.3 實驗步驟------------------------------------------------------------94 4-3 實驗結果--------------------------------------------------------------------95 4-3 .1 以聚甲基丙烯酸甲酯固定垂直碳管的結果-----------------95 4-3 .2 以聚乙烯醇固定垂直碳管的結果-----------------------------99 4-3.3 以聚苯乙烯固定垂直碳管的結果-----------------------------100 4-4 結果與討論----------------------------------------------------------------103 第五章 結論---------------------------------------------------------------105 參考文獻---------------------------------------------------------------------106rf 參考文獻 1. 李宗培,國立成功大學材料科學及工程學系碩士論文,第8頁,民國九十二年。 2. R. F. Service, Science 1998, 281, 940. 3. H. W. Kroto, J. R. Heath, S. C. O`Brien, R. F. Curl, and R. E. Smalley, Nature 1985, 318, 162. 4. P. J. F. Harris, Carbon Nanotubes and Related Structure, Cambridge University Press: New York, 1999. 5. S. Iijima, Nature 1991, 354, 56. 6. S. Iijima, Physica B 2002, 323, 1. 7. T. W. Ebbesen, Annu. Rev. Mater. Sci. 1994, 24,235. 8. S. Iijima, T. Ichihashi, Y. Ando, Nature 1992, 356, 776. 9. T. Ichihashi, S. Iijima, Nature 1993, 363, 603. 10. D. S. Bethune, C. H. Kiang, M. S. Vries, G. Gorman, R. Savoy, J. Vasquez, R. Beyers, Nature 1993, 363, 605. 11. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett. 1995, 243, 49. 12. H. Ray, Baughman, A. Anvar, Zakhidov, Walt A. de Heer, Science 2002, 297, 787. 13. 徐逸明,國立成功大學化學工程研究所博士論文,第13頁, 民國九十年。 14. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature 1998, 391, 59. 15. T. Odom, J. Huang, P. Kim, C. Lieber, Nature 1998, 391, 62. 16. M. S. Dresselhaus, P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press: San Diego, 1996. 17. M. Terrones, W. K. Hsu, H. W. Kroto, D. R. M. Walton, 1998, Nanotube : A Revolution in Materials Science, Topics in Current Chemistry 199 ,p. 1 18. 李元堯,奈米學程教材,國立中正大學,民國九十二年。 19. M. P. Campbell, C. J. Brabec, J. Bernholc, Comput. Mater. Sci. 1997, 8, 341. 20. Sishen Xie, J. Phys. Chem. Solid 2000, pp.1153∼1158. 21. M. Buongiorno Nardelli, B. I. Yakobson, J. Bernholc, Phys. Rev. Lett. 1998, 81, 4656. 22. B. I. Yakobson, Appl. Phys. Lett. 1998, 72, 918. 23. P. Zhang, P. E. Lammert, V. H. Crespi, Phys. Rev. Lett. 1998, 81, 5346. 24. M. Buongiorno Nardelli, B. I. Yakobson, J. Berhholc, Phys. Rev. B, 1998, 57, R4277. 25. 鄭凱文,國立東華大學材料科學與工程研究所碩士論文,第8頁,民國九十一年。 26. A. M. Rao, D. Jacques, R. C. Haddon, W. Zhu, C. Bower, S. Jin, , Applied Physics Letters, 2000, 76, pp.3813-3815. 27. O. Groning, O. M. Kuttel, C. H. Emmenegger, P. Groning, L. Sch- lapbach, Journal of Vacuum Science&Technology B, 2000, 18, 665. 28. R. S. Ruoff and D. C. Lorents, Carbon, 1995, 33, 925. 29. W. Yi, L. Lu, D-L Zhang, Z. W. Pan, and S. S. Xie, Phys. Rev. B, 1999, 59, R9015. 30. J. Hone, M. C. Llaguno, N. M. Nemes, A. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, Appl. Phys. Lett., 2000, 77, 666. 31. Berber, Y. K. Kwon, and D. Tomanek, Phys. Rev. Lett., 2000, 84, 4613. 32. M. A. Osman and D. Srivastava, Nanotechnology, 2001, 12, 21. 33. N. Krishnankutty, C. Park, N. M. Rodriguez, R. T. K. Baker, Catalysis Today, 1997, 37, 295. 34.台灣奈米科技,工業技術研究院奈米研究中心,第86頁。 35. I. Brodie, C. A. Spindt, Adv. Electron. Electron Phys., 1992, 83, 1. 36. W. Zhu, G. P. Kochanski, S. Jin, L. Seibles, J. Vac. Sci. Technol. B, 1996, 14, 2011. 37. N. Kumar, H. K. Schmidt, C. Xie, Solid State Technol., 1995, 38, 71. 38. W. Zhu, G. P. Kochanski, S. Jin, Science, 1998, 282, 1471. 39. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, H. Dai, Science, 1999, 283, 822. 40. Y. Zhang, H. Dai, Appl. Phys. Lett. 2000, 77, 3015. 41. Y. Zhang, N. W. Franklin, R. J. Chen, H. Dai, Chem. Phys. Lett. 2000, 331, 35. 42. S. C. Kung, K. C. Hwang, I. N. Lin, Appl. Phys. Lett. 2002, 80, 4819. 43. Chin Li Cheung, C. M. Lieber, Nature, 1998, 394, 52. 44. M. Yumura, S. Ohshima, K. Uchida, Y. Tasaka, Y. Kuriki, F. Ikazaki, Y. Saito, and S. Uemura, Diamond and Related Materials, 1999, 8, 785. 45. Takayuki Arie, Hidehiro Nishijima, Seiji Akita, Yoshikazu Nakayama, J. Vac. Sci. Technol. B, 2000, 18, 104. 46. Seiji Akita, Hidehiro Nishijima, Yoshikazu Nakayama, Fuyuki Tokumasu, Kunio Takeyasu, J. Phys. D: Appl. Phys. , 1999, 32 , 1044. 47. E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. C. Minne, T. Hunt, C. F. Quate, Appl. Phys. Lett. , 1999, 75, 29. 48. V. Barwich, M. Bammerlin, A. Baratoff, R. Bennewitz, M.Guggisberg C. Loppacher, O. Pfeiffer, E. Meyer, H. J. Guntherodt, J. P. Salvetat, J. M. Bonard, L. Forro, Applied Surface Science, 2000, 157, 269. 49. M. Ishikawa, M. Yoshimura, K. Ueda, Physica B, 2002, 323, 184. 50. J. H. Hafner, C. L. Cheung, C. M. Lieber, J. Am. Chem. Soc. 1999, 121, 9750. 51. Y. Nakayama, H. Nishijima, S. Akita, J. Vac. Sci. Technol. B, 2000, 18, 661. 52. Y. Nakayama, Ultramicroscopy, 2002, 91, 49. 53. B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin, Science, 2000, 290, 1331. 54. The web site of Hyperion Catalysis Intermational Inc., is available at www.fibrils.com 55. M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnson, J. E. Fischer, Appl. Phys. Lett., 2002, 80, 2767. 56. D. Qian, E. C. Dickey, R. Andrews, T. Rantell, Appl. Phys. Lett., 2000, 76, 2868. 57. G. L. Hwang, Y. T. Shieh, K. C. Hwang, Adv. Funct. Materials, 2004, 14, 487. 58. B, Gao, A, Kleinhammes, X. P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou, Chem. Phys. Lett., 1999, 307, 153. 59. M. S. Dresselhaus, K. A. Williams, P. C. Eklund, Mater. Res. Soc. Bull., 2000, 24, 45. 60. G. G. Tibbetts, G. P. Meisner, C. H. Olk, Carbon, 2001, 39, 2291. 61. M. Hirscher, M. Becher, M. Haluska, A. Quintel, V. Skakalova, Y. M. Choi, , U. D. Weglikowska, J. Alloys Compounds, 2002, 654, 330. 62. C. Zandonella, Nature, 2001, 410, 734. 63. Y. Ye, C. C. Ahn, C. Witham, B. Fultz, J. Liu, A. G. Rinzler, D. Colbert, K. A. Smith, R. E. Smalley, Appl. Phys. Lett., 1999, 74, 2307. 64. Y. Chen, D. T. Shaw, X. D. Bai, E. G. Wang, C. Lund, W. M. Lu, D. L. Chung, Appl. Phys. Lett., 2001, 78, 2128. 65. A. C. Dollon, M. J. Heben, Appl. Phys. A, 2001, 72, 133. 66. E. Frackowiak, K. Jurewicz, S. Delpeux, F. Beguin, J. Power Sources, 2001, 97-98, 822. 67. S. J. Tans, A. R. M. Verschueren, C. Dekker, Nature, 1998, 393, 49. 68. Shea, H.R., Martel, R., Hertel, T., Schmidt, T., Avouris, Ph., Microelectronic Engineering, 1999, 46, 102. 69. 李元堯,21 世紀的尖端材料- 奈米碳管-化工技術,第120期,第140∼159 頁,民國九十二年 70. Kin-Tak Lau, David Hui, Composites : Part B, 2002, 33, 263. 71. 施漢章, 奈米碳管之現狀與展望, 興大工程學刊, 第13期, No. 1, 第1-19頁, 2002. 72. 黃建良, “ 新世代的材料-奈米碳管”, 觸媒與製程, 第7期, No.3,第17-25頁, 1999. 73. P. G. Wiles et al., Carbon, 1992, 16, 341. 74. Y. Saito, T. Yoshikawa, M. Inagaki, Chem. Phys. Lett., 1993, 204, 277. 75. 高英哲,電弧電漿法製備碳微管暨水溶性碳微管之製備及應用,清華大學碩士論文,2001. 76. E. G. Garnaly, T. W. Ebbesen, Phys. Rev. B, 1995, 52, 2083. 77. T. W. Ebbesen, P. M. Ajayan, Nature, 1992, 358, 220. 78. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett., 1995, 243, 49. 79. www.ee.virginia.edu/~cmf6p/research_docs/nanotubes.ppt (2004) 80. W. Z. Li et al., Appl Phys A-MATER, 2002, 74, 397. 81. Sen Rahul, Govindaraj A., Rao C.N.R., Chem. Phys. Lett., 1997, 267, 276. 82. J. M. Mao, L. F. Sun, L. X. Qian, Z. W. Pan, B. H. Chang, W. Y. Zhou, G. Wang, S. S. Xie, Appl. Phys. Lett., 1998, 72, 3297. 83. Y. J. Yoon, J. C. Bae, H. K. Baik, S. J. Cho, S. J. Lee, K. M. Song, Physics B, 2002, 323, 318. 84. Y. Chen, L. W. Zhong, S. Y. Jin, D. J. Johnson, R. H. Prince, Chem. Phys. Lett., 1997, 272, 178. 85. H. R. Shea, R. Martel, T. Hertel, T. Schmidt, P. H. Avouris, Microelectronic Engineering, 1999, 46, 102. 86. F. Kreupl, A. P. Graham, G. S. Duesberg, W. Steinhögl, M. Liebau, E. Unger, W. Hönlein, Microelectronic Engineering, 2002, 64, 399. 87. W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, G. Wang, Science, 1996, 274, 1701. 88. Y. C. Sui, D. R. Acosta, J. A. Gonzalez-Leon, A. Bermudez, J. Feuchtwanger, B. Z. Cui, J. O. Flores, J. M. Saniger, J. Phys. Chem. B, 2001, 105, 1523. 89. J. S. Lee, G. H. Gu, H. Kim, Chem. Mater., 2001, 13, 2387. 90. S. H. Jeong, H. Y. Hwang, K. H. Lee, Appl. Phys. Lett., 2001, 78, 2052 91. C. W. Wang, M. K. Li, H. L. Li, Sci. China Ser. A, 2001, 44, 234. 92. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, P. N. Provencio, Science, 1998, 282, 1105. 93. C. J. Lee, J. Park, J. A. Yu, Chem. Phys. Lett., 2002, 360, 250. 94. H. L. Young, G. K. Seong, T. David, Phys. Rev. Lett., 1997, 78, 2393 95. J. L. Chen, Y. D. Li, Y. M. Ma, Y. N. Qin, C. Liu, Carbon, 2001, 39, 1467. 96. C. Bower, O. Zhou, W. Zhu, D. J. Werder, S. H. Jin, Appl. Phys. Lett., 2000, 77, 2767. 97. C. J. Lee, J. H. Park, Appl. Phys. Lett., 2000, 77, 3397. 98. J. W. Jang, C. E. Lee, Appl. Phys. Lett., 2004, 84, 2877id NH0925065018 sid 913421 cfn 0 / id NH0925065019 auc 陳建志 tic 利用低電位沈積法在金表面修飾銀、銅、汞、鉍單層原子對硫醇自組單層膜結構的研究 adc 陳俊顯 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 70 kwc 低電位沈積法 kwc 分子自組薄膜 kwc 奇偶效應 kwc 混成軌域 abc Underpotential deposition (upd)是利用電化學的方式,將金屬離子還原至電極表面形成一層或不滿一層的金屬層。本實驗在金表面修飾單層銀、銅、汞、鉍金屬,且藉由不同的還原電位,控制金屬在金表面上的覆蓋率,接著在表面製作硫醇分子(HS-(CH2)n-CH3, n = 4-11, 13-15)自組單層膜,探討硫醇分子的硫原子與在這四種upd表面鍵結的混成軌域。反射式紅外線光譜儀(RAIR)測量的結果顯示,末端甲基(CH3)在表面的吸收度,會隨著亞甲基(CH2)個數是奇或偶數的不同,而呈現大小交替的吸收值,即為奇偶效應。Au/Bi(upd)所呈現的奇偶效應趨勢與硫醇在金表面相似,而Au/Ag(upd)與Au/Cu(upd)的奇偶效應趨勢與硫醇在銀表面相似,所以推測在這兩類upd系統硫原子分別是以sp3和sp混成軌域與表面形成鍵結。Au/Hg(upd)在不同覆蓋率下,硫原子具有不同的鍵結形式,在高覆蓋率以sp形式鍵結,低覆蓋率是以sp3形式鍵結。由硫醇分子在Au/Ag(upd)表面的紅外光譜吸收值計算得知,隨著金表面上銀原子覆蓋率增多,硫醇分子在表面的傾斜角會變小。 tc 總目錄 第一章、緒論...........................................1 1-1、研究動機..........................................1 1-2、分子自組薄膜的介紹................................3 1-2-1、歷史簡介........................................3 1-2-2、基本原理........................................3 1-3、紅外線光譜的測量: 奇偶效應(odd-even effect).......6 1-4、低電位沈積法的介紹...............................10 1-4-1、原理...........................................10 1-4-2、Upd相關文獻簡介................................12 1-4-2-1、Ag(upd)簡介..................................12 1-4-2-2、Cu(upd)簡介..................................13 1-4-2-3、Hg(upd)簡介..................................18 1-4-2-4、Bi(upd)簡介..................................18 1-5、接觸角的介紹.....................................21 第二章、實驗部分......................................24 2-1、實驗藥品與實驗器材...............................24 2-1-1、實驗藥品.......................................24 2-1-2、實驗器材.......................................27 2-2、實驗步驟.........................................28 2-2-1、蒸鍍儀的使用...................................28 2-2-1-1、載玻片清洗...................................28 2-2-1-2、金片和銀片的製作.............................28 2-2-2、Upd的製備......................................30 2-2-3、SAMs的製備.....................................30 2-2-3、接觸角的測量...................................32 2-2-3-1、靜態測量法...................................32 2-2-3-2、動態測量法...................................32 2-2-4、反射式紅外線光譜的測量.........................35 2-2-4-1、反射式紅外線光譜儀使用前的校正...............35 2-2-4-2、硫醇自組薄膜反射式紅外線光譜的測量...........35 第三章、結果與討論....................................36 3-1、Upd的製備........................................36 3-2、接觸角的測量.....................................37 3-3、紅外線光譜的測量.................................43 3-4、Ag(upd)覆蓋率對分子自組薄膜影響..................52 3-5、電化學測量.......................................57 3-5-1、苯硫醇脫附電位的測量...........................57 3-5-2、苯硫醇覆蓋率的測量.............................58 第四章、結論..........................................60 第五章、參考文獻......................................62rf (1)Lin, S.-Y.; Tsai, T.-K.; Lin, C.-M.; Chen, C.-h.; Chan, Y.-C.; Chen, H.-W. Langmuir 2002, 18, 5473. (2)Lin, S.-Y.; Chen, C.-h.; Chan, Y.-C.; Lin, C.-M.; Chen, H.-W. J. Phys. Chem. B 2001, 105, 4951. (3)Bigelow, W. C.; Pickett, D. L.; Zisman, W. A. J. Colloid Interface Sci. 1946, 1, 513. (4)Kuhn, H.; Mobious, D. In Physical Methodes in Chemistry Weissberger, A., Rossiter, B. W. eds. Wiley, New York, 1972. (5)Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105, 4481. (6)Bain, C. D.; Troughton, E. B.; Tao, Y.-T.; Evall, J.; Whitesides, G. M.; Nuzzo, R. G. J. Am. Chem. Soc. 1989, 111, 321. (7)Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc., Chem. Commun. 1994, 801. (8)Chailapakul, O.; Sun, L.; Xu, C.; Crooks, M. J. Am. Chem. Soc. 1993, 115, 12459. (9)Thomas, R. C.; Sun, L.; Crooks, M. Langmuir 1991, 7, 620. (10)Dubois, L. H.; Nuzzo, R. G. Ann. Phys. Chem. 1992, 43, 437. (11)Sellers, H.; Ulman, A.; Shnidman, Y.; Eilers, J. E. J. Am. Chem. Soc. 1993, 115, 9389. (12)Laibinis, P. E.; Whitesides, G. M.; Allara, D. L.; Tao, Y.-T.; Parikh, A. N.; Nuzzo, R. G. J. Am. Chem. Soc. 1991, 113, 7152. (13)Laibinis, P. E.; Whitesides, G. M. J. Am. Chem. Soc. 1992, 114, 1990. (14)Walczak, M. M.; Chung, C.; Stole, S. M.; Widrig, C. A.; Porter, M. D. J. Am. Chem. Soc. 1991, 113, 2370. (15)Ihs, A.; Liedberg, B. Langmuir 1994, 10, 734. (16)Laibinis, P. E.; Whitesides, G. M. J. Am. Chem. Soc. 1992, 114, 9022. (17)Demoz, A.; Harrison, D. J. Langmuir 1993, 9, 1046. (18)Muskal, N.; Turyan, I.; Shurky, A.; Mandler, D. J. Am. Chem. Soc. 1995, 117, 1147. (19)Shimazu, K.; Sato, Y.; Yagi, I.; Uosaki, K. Bull. Chem. Soc. Jpn. 1994, 67, 863. (20)Volmer, M.; Stratmann, M.; Viefhaus, H. Surf. Interface Anal. 1990, 16, 278. (21)Stratmann, M. Adv. Mater. 1990, 2, 191. (22)Schlotter, N. E.; Porter, M. D.; Bright, T. B.; Allara, D. L. Chem. Phys. Lett. 1986, 132, 93. (23)Tao, Y.-T.; Lee, M.-T.; Chang, S.-C. J. Am. Chem. Soc. 1993, 115, 9547. (24)Soundag, A. H. M.; Tol, A. J. W.; Touwslager, F. J. Langmuir 1992, 8, 1127. (25)Smith, E. L.; Porter, M. D. J. Phys. Chem. 1993, 97, 4421. (26)Allara, D. L.; Nuzzo, R. G. Langmuir 1985, 1, 45. (27)Allara, D. L.; Nuzzo, R. G. Langmuir 1985, 1, 52. (28)Samart, M. G.; Brown, C. A.; Gordon, J. G. Langmuir 1993, 9, 1082. (29)Tao, Y.-T. J. Am. Chem. Soc. 1993, 115, 4350. (30)Thompson, W. R.; Pemberton, J. E. Langmuir 1995, 11, 1720. (31)Ogawa, H.; Chihera, T.; Taya, K. J. Am. Chem. Soc. 1985, 107, 1365. (32)Sagiv, J. J. Am. Chem. Soc. 1980, 102, 92. (33)Silberzan, P.; Leger, L.; Ausserre, D.; Benattar, J. J. Langmuir 1991, 7, 1647. (34)Wasserman, S. R.; Tao, Y.-T.; Whitesides, G. M. Langmuir 1989, 5, 1074-1087. (35)Le Grange, J. D.; Markham, J. L.; Kurjian, C. R. Langmuir 1993, 9, 1749. (36)Maoz, R.; Sagiv, J. J. Colloid Interface Sci. 1984, 100, 465. (37)Gun, J.; Sagiv, J. J. Colloid Interface Sci. 1986, 112, 457. (38)Gun, J.; Iscovici, R.; Sagiv, J. J. Colloid Interface Sci. 1984, 101, 201. (39)Tillman, N.; Ulman, A.; Schildkraut, J. S.; Penner, T. L. J. Am. Chem. Soc. 1988, 110, 6136. (40)Brandriss, S.; Margel, S. Langmuir 1993, 9, 1232. (41)Mathauser, K.; Frank, C. W. Langmuir 1993, 9, 3002. (42)Mathauser, K.; Frank, C. W. Langmuir 1993, 9, 3446. (43)Carson, G.; Granick, S. J. Appl. Polym. Sci. 1989, 37, 2767. (44)Kessel, C. R.; Granick, S. Langmuir 1991, 7, 532. (45)Schwartz, D. K.; Steinberg, S.; Israelachvili, J.; Zasadzinski, Z. A. N. Phys. Rev. Lett. 1992, 69, 3354. (46)Finklea, H. O.; Robinson, L. R.; Blackburn, A.; Richter, B.; Allara, D. L.; Bright, T. Langmuir 1986, 2, 239. (47)Rubinstein, I.; Sabatani, E.; Maoz, R.; Sagiv, J. Proc. Electrochem. Soc. 1986, 86, 175. (48)Rubinstein, I.; Sabatani, E.; Maoz, R.; Sagiv, J. J. Electroanal. Chem. 1987, 219, 365. (49)Linford, M. R.; Chidsey, C. E. D.; Fenter, P.; Eisenberger, P. M. J. Am. Chem. Soc. 1995, 117, 3145. (50)Linford, M. R.; Chidsey, C. E. D. J. Am. Chem. Soc. 1993, 115, 12631. (51)Ulman, A. Chem. Rev. 1996, 96, 1533. (52)Atre, S. V.; Liedberg, B.; Allara, D. L. Langmuir 1995, 11, 3882. (53)Collard, D. M.; Fox, M. A. Langmuir 1991, 7, 1192. (54)Chidsey, C. E. D.; Bertozzi, C. R.; Putvinski, T. M.; Mujsce, A. M. J. Am. Chem. Soc. 1990, 112, 4301. (55)Uosaki, K.; Sato, Y.; Kita, H. Langmuir 1991, 7, 1510. (56)Chidsey, C. E. D. Science 1991, 251, 919. (57)Popenoe, D. D.; Deinhammer, R. S.; Porter, M. D. Langmuir 1992, 8, 2521. (58)Sato, Y.; Frey, B. L.; Corn, R. M.; Uosaki, K. Bull. Chem. Soc. Jpn. 1994, 67, 21. (59)Creager, S. E.; Rowe, G. K. Anal. Chim. 1991, 246, 233. (60)Rowe, G. K.; Creager, S. E. Langmuir 1991, 7, 2307. (61)Rowe, G. K.; Creager, S. E. Langmuir 1994, 10, 1186. (62)Haussling, L.; Ringsdorf, H.; Schmitt, F.-J.; Knoll, W. Langmuir 1991, 7, 1837. (63)Haussling, L.; Michel, B.; Ringsdorf, H.; Rohrer, H. Angew. Chem., Int. Ed. Engl. 1991, 30, 679. (64)Schmitt, F.-J.; Haussling, L.; Ringsdorf, H.; Knoll, W. Thin Solid Films 1992, 210/211, 815. (65)Spinke, J.; Liley, J.; Guder, H.-J.; Angermaier, L.; Knoll, W. Langmuir 1993, 9, 1821. (66)Spinke, J.; Liley, M.; Schmitt, F.-J.; Guder, H.-J.; Angermaier, L.; Knoll, W. J. Chem. Phys. 1993, 99, 7012. (67)Lee, D.; Rayment, T. Phys. Chem. Chem. Phys. 1999, 1, 4389. (68)Ramadan, A. R.; Chabala, E. D.; Rayment, T. Chem. Phys. Phys. Chem. 1999, 1, 1591. (69)Chabala, E. D.; Rayment, T. J. Chem. Soc., Faraday Trans. 1996, 96, 4657. (70)Chabala, E. D.; Rayment, T. J. Chem. Soc., Faraday. Trans. 1996, 92, 1277. (71)Chabala, E. D.; Rayment, T. J. Electroanal. Chem. 1996, 401, 257. (72)Chabala, E. D.; Ramadan, A. R.; Brunt, T.; Rayment, T. J. Electroanal. Chem. 1996, 421, 67. (73)Endo, K.; Sugawara, Y.; Mishima, S.; Okada, T.; Morita, S. Jpn. J. Appl. Phys. 1991, 30, 2592. (74)Hachiya, T.; Itaya, K. Ultramicroscopy 1992, 42, 445. (75)Sugita, S.; Abe, T.; Itaya, K. J. Phys. Chem. 1993, 97, 8780. (76)Ogaki, K.; Itaya, K. Electrochim. Acta 1995, 40, 1249. (77)Corcora, S. G.; Chakarova, S. G.; Sieradzki, K. Phys. Rev. Lett. 1993, 71, 158. (78)Corcora, S. G.; Chakarova, S. G.; Sieradzki, K. J. Electroanal. Chem. 1994, 377, 85. (79)Garcia, S. J.; Salinas, D.; Mayer, C.; Vilche, J. R.; Pauling, H.-J.; Vinzelberg, S.; Staikov, G.; Lorenz, W. J. Surf. Sci. 1994, 316, 143. (80)Ikemiya, N.; Yamada, K.; Hara, H. Surf. Sci. 1996, 348, 253. (81)Garcia, S.; Salinas, D.; Mayer, C.; Schmidt, E.; Staikov, G.; Lorenz, W. J. Electrochim. Acta 1998, 43, 3007. (82)Whelan, C. M.; Smyth, M. R.; Barnes, C. J.; Attard, G. A.; Yang, X. F. J. Electroanal. Chem. 1999, 474, 138. (83)Esplandiu, M. J.; Schneeweiss, M. A.; Kolb, D. M. Phys. Chem. Chem. Phys. 1999, 1, 4847. (84)Chen, C.-h.; Vesecky, S. M.; Gewirth, A. A. J. Am. Chem. Soc. 1992, 114, 451. (85)Chen, C.-h.; Gewirth, A. A. Ultramicroscopy 1992, 42, 437. (86)Mrozek, P.; Sung, Y.-E.; Han, M.; Gamboa-Aldeco, M.; Wieckowski, A.; Chen, C.-h.; Gewirth, A. A. Electrochim. Acta 1995, 40, 17. (87)Uchida, H.; Miura, M.; Watanabe, M. J. Electroanal. Chem. 1995, 386, 261. (88)Schultze, J. W.; Dickertmann, D. Surf. Sci. 1976, 54, 489. (89)Cappadonia, M.; Linke, U.; Robinson, K. M.; Schidberger, J.; Stimming, U. J. Electroanal. Chem. 1996, 405, 227. (90)Shi, Z.; Lipkowski, J. J. Electroanal. Chem. 1994, 364, 289. (91)Shi, Z.; Lipkowski, J. J. Electroanal. Chem. 1994, 365, 303. (92)Shi, Z.; Lipkowski, J. J. Electroanal. Chem. 1994, 369, 283. (93)Shi, Z.; Lipkowski, J. J. Phys. Chem. 1995, 99, 417. (94)Shi, Z.; Wu, S.; Lipkowski, J. J. Electroanal. Chem. 1995, 384, 171. (95)Holze, M. H.; Retter, U.; Kolb, D. M. J. Electroanal. Chem. 1994, 371, 101. (96)Omar, I. O.; Pauling, H. G.; Juttner, K. J. Electrochem. Soc. 1993, 140, 2187. (97)Haiss, W.; Sass, J. K. Langmuir 1996, 12, 4311. (98)Haiss, W.; Sass, J. K. J. Electroanal. Chem. 1996, 410, 119. (99)Manne, S.; Hansma, P. K.; Massie, J.; Elings, V. B.; Gewirth, A. A. Science 1991, 251, 183. (100)Ikemiya, N.; Miyaoka, S.; Hara, S. Surf. Sci. 1995, 327, 261. (101)Borges, G. L.; Kanazawa, K. K.; Gordon, J. G., II; Ashley, K.; Richer, J. J. Electroanal. Chem. 1994, 364, 281. (102)Watanabe, M.; Uchida, H.; Miura, M.; N., I. J. Electroanal. Chem. 1995, 384, 191. (103)Uchida, H.; Hiei, M.; Watanabe, M. J. Electroanal. Chem. 1998, 452, 97. (104)Hachiya, T.; Honbo, H.; Itaya, K. J. Electroanal. Chem. 1991, 315, 275. (105)Toney, M. F.; Howard, J. N.; Richer, J.; Borges, G. l.; Gordon, J. G.; Melroy, O. R. Phys. Rev. Lett. 1995, 75, 4472. (106)Herrero, E.; Abruna, H. D. Langmuir 1997, 13, 4446. (107)Herrero, E.; Abruna, H. D. J. Phys. Chem. B 1998, 102, 444. (108)Inukai, J.; Sugita, S.; Itaya, K. J. Electroanal. Chem. 1996, 403, 159. (109)Chen, C.-h.; Gewirth, A. A. Phys. Rev. Lett. 1992, 68, 1571. (110)Li, J.; Abruna, H. D. J. Phys. Chem. B 1997, 101, 244. (111)Li, J.; Abruna, H. D. J. Phys. Chem. B 1997, 101, 2907. (112)Li, J.; Herrero, E.; Abruna, H. D. J. Colloids Surf. A 1998, 134, 113. (113)Abruna, H. D.; Feliu, J. M.; Brock, J. D.; Buller, L. J.; Herrero, E.; Li, J.; Gomez, R.; Finnefrock, A. Electrochim. Acta 1998, 43, 2899. (114)Herrero, E.; Buller, L. J.; Li, J.; Finnefrock, A.; Salomon, A. B.; Alonso, C.; Brock, J. D.; Abruna, H. D. Electrochim Acta 1998, 44, 983. (115)Cadle, S. H.; Bruckenstein, J. J. Electrochem. Soc. 1972, 119, 1166. (116)Schmidt, E.; Gygax, H. R.; Cramer, Y. Helv. Chim. Acta 1970, 53, 649. (117)Chen, C.-h.; Kepler, K. D.; Gewirth, A. A.; Ocko, B. M.; Wang, J. J. Phys. Chem. 1993, 97, 7290. (118)Chen, C.-h.; Gewirth, A. A. J. Am. Chem. Soc. 1992, 114, 5439. (119)Deakin, M. R.; Melroy, O. J. Electroanal. Chem. 1988, 239, 321. (120)Porter, M. D.; Smith, E. L. J. Phys. Chem. 1993, 97, 8032. (121)Shimazu, K.; Kawaguchi, T.; Isomura, T. J. Am. Chem. Soc. 2002, 124, 652. (122)Bain, C. D.; Whitesides, G. M. J. Am. Chem. Soc. 1989, 111, 7164. (123)Shon, Y.-S.; Lee, S.; Colorado, R., Jr.; Perry, S. S.; Lee, T. R. J. Am. Chem. Soc. 2000, 122, 7556. (124)Bryant, M. A.; Pemberton, J. E. J. Am. Chem. Soc. 1991, 112, 8284. (125)Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E. D. J. Am. Chem. Soc. 1987, 109, 3559. (126)Nuzzo, R. G.; Dubois, L. H.; Allara, D. L. J. Am. Chem. Soc. 1990, 112, 558. (127)Hahner, G.; Woll, C.; Buck, M.; Grunze, M. Langmuir 1993, 9, 1955. (128)Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd Edition; Wiley: New York, 2000.id NH0925065019 sid 913425 cfn 0 / id NH0925065020 auc 塗立群 tic 酵素動力學:利用烷烴和烯烴小分子探討嗜甲烷菌中微粒體甲烷單氧化酵素之羥化反應以及環氧化反應 adc 陳長謙 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 英文 pg 91 kwc 酵素動力學 kwc 嗜甲烷菌 kwc 微粒體甲烷單氧化酵素 kwc 羥化反應 kwc 環氧化反應 abc 微粒體甲烷單氧化酵素是嗜甲烷菌中分布於細胞內脂質膜中的一種酵素,可將甲烷羥化成甲醇,啟動嗜甲烷菌新陳代謝的進行。其基因的表現受到環境中銅離子濃度所調控,為一富含銅離子之膜蛋白質。 tc Abstract Chinese Abstract Acknowledge Table of Content Chapter 1....9 Chapter 2....36 Chapter 3....65 Chapter 4....80 Reference.....89rf 1. Schmid A.; Dordick J.S.; Hauer B.; Kiener A.; Wubbolts M.; Witholt B. Nature 2001, 409, 258-268 2. Straathof, A. J.J.; Panke, S.; Schmid, A. Curr. Opin. Biotechnol. 2002, 13, 548-556 3. Holland, H. L.; Weber, H. K. Curr. Opin. Biotechnol. 2000, 11, 547-553 4. de Vries, E. J.; Janssen, D. B. Curr. Opin. Biotechnol. 2003, 14, 414-420 5. Hanson, R. S.; Hanson, T. E. Microbiol. Rev. 1996, 60, 439-471. 6. Anthony, C. The Biochemistry of Methylotrophs; Academic Press: New York, 1982, pp 17 7. Colby, J.; Stirling, D. I.; Dalton, H. Biochem. J. 1977, 165, 395-402 8. Nguyen, H.-H. T.; Elliott, S. J. Yip, J. H.-K.; Chan, S. I. J. Biol. Chem. 1998, 273, 7957- 7966 9. Elliott, S. J.; Zhu, M.; Tso, L.; Nguyen, H.-H. T.; Yip, J. H.-K.; Chan, S. I. J. Am. Chem. Soc. 1997, 119, 994???{??955 10. Newcomb, M.; Shen, R.; Lu, Y.; Coon, M. J.; Hollenberg, P. F.; Kopp, D. A.; Lippard, S. J. J. Am. Chem. Soc. 2002, 124, 6879-6886 11. Liu, K. E.; Johnson, C.C.; Newconb, M.; Lippard, S. J. J. Am. Chem. Soc. 1993, 115, 939-947. 12. Choi, S.-Y.; Eaton, P. E.; Kopp, D. A.; Lippard, S. J.; Newcomb, M.; Shen R. J. Am. Chem. Soc. 1999, 121, 12198-12199. 13. Yu, S. S.-F.; Wu, L.-Y.; Chen, K. H.-C.; Luo, W.-I.; Huang, D.-S.; Chan, S. I. J. Biol. Chem. 2003, 278, 40658-40669. 14. Yu, S. S.-F.; Chen, K. H.-C.; Tseng, M. Y.; Wang, Y.-H.; Tseng, C.-F.; Chen, Y.-J.; Huang, D.-S.; Chan, S. I. J. Bacteriol. 2003, 185, 5915-5924. 15. Wilkinson, B.; Zhu, M.; Priestley, N. D.; Nguyen, H.-H. T.; Morimoto, H.; Williams, P. G.; Chan, S. I. J. Am. Chem. Soc. 1996, 118, 921-922. 16. Valentine, A. M.; LeTadic-Biadatti, M.-H.; Toy, P.-H.; Newcomb, M.; Lippard, S. J. J. Biol. Chem. 1999, 274, 10771-10776. 17. Carrol, F. A., Perspective on structure and mechanism in organic chemistry; Brooks Cole: Florence, 1997. 18. Kohen, A.; Jonsson, T.; Klinman, J. P. Biochemistry. 1997, 36, 2603-2611. 19. Seymour, S.; Klinman, J. P. Biochemistry. 2002, 41, 8747-8758. 20. Bahnson, B. J.; Klinman, J. P. Methods Enzymol. 1995, 249, 373-397. 21. Huang, D.-S., Wu, S.-H., Wang, Y.-S., Yu, S. S.–F. and Chan S. I. ChemBioChem, 2002, 3, 76?~?{??65. 22. Chan, S. I.; Chen, K. H.-C.; Yu, S. S.-F.; Chen C.-L.; Kuo, S. S.-J. Biochemistry. 2004, 43, 4421-4430. 23. Information of hollow fiber is brought by Mitsubishi Rayon Co., Ltd 24. Valentine, A. M.; Wilkinson, B.; Liu, K. E.; Komar-Panicucci, S.; Priestley, N. D.; Williams, P. G.; Morimoto, H.; Floss, H. G.; Lippard, S. J. J. Am. Chem. Soc. 1997, 119, 1818-1827. 25. a) Helmkamp, G. K; Rickborn, B. F. J. Org. Chem. 1957, 22, 47???{??82; b) Krishnamurthy, S.; Brown, H. C. J. Org. Chem. 1976, 41, 306???{??066. 26. Schurig, V.; Koppenhoefer, B.; Buerkle, W. J. Org. Chem. 1980, 45, 538-541 27. Seeley, D. A.; McELWEE, J. J. Org. Chem. 1973, 38, 1691-1693. 28. Hill, R. K.; Rhee, S.-W.; Leete, E.; McGaw, B. A. J. Am. Chem. Soc. 1980, 102, 7344-7348. 29. Baik, M.-H.; Newcomb, M.; Friesner, R. A.; Lippard, S. J. Chem. Rev. 2003, 103, 2385-2419. 30. Bell, S. G.; Stevenson, J.-A.; Boyd, H. D.; Campbell, S.; Riddle, A. D.; Orton, E. L.; Wong, L. L. J. Chem. Soc. Chem. Comm. 2002, 490. 31. Glieder, A.; Farinas, E. T.; Arnold, F. H. Nat. Biotech. 2002, 20, 1135.id NH0925065020 sid 913426 cfn 0 / id NH0925065021 auc 陳彥至 tic 奈米Fe3O4顆粒以溶膠凝膠法包覆二氧化矽或二氧化鈦層研究 adc 王素蘭 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 91 kwc 四氧化三鐵 kwc 二氧化矽 kwc 二氧化鈦 kwc 包覆 abc 核殼 (core/shell)的複合材料包含兩個部分,一個部分為中心的核,另一部份則是為外圍的層,核與殼是由兩種不同的材料所組成。這種核殼材料最近被廣泛的研究,可以被推展至許多藥物的傳遞、MRI顯影劑等等的應用上。 tc 目錄 第一章 緒論 1-1 簡介 1 1-1-1 奈米材料 1 1-1-2 磁流體的製備與應用 3 1-1-3 膠體之穩定機構與二氧化矽奈米粒子生成機制 6 1-1-4 Fe3O4奈米粒子之表面二氧化矽之包覆 10 1-2 研究目標 16 第二章 實驗部分 2-1 儀器鑑定原理 19 2-1-1 儀器鑑定流程 19 2-1-2 穿透式電子顯微鏡 20 2-1-3 動態光散射粒徑儀與表面電位儀 22 2-1-4 熱重分析儀 25 2-1-5 粉末X光繞射儀 26 2-2 實驗藥品 30 2-3 水基磁性流體之製備 30 2-3-1 雙層油酸水基磁流體製備 30 2-3-2 硝酸離子水基磁流體製備 31 2-4 溶劑比例與穩定性之測試 32 2-5 以二氧化矽包覆Fe3O4粒子之實驗 35 2-6 以二氧化鈦包覆Fe3O4粒子之實驗 38 第三章 結果與討論 3-1 水基磁性流體之性質討論 41 3-1-1 雙層油酸水基磁流體 41 3-1-2 硝酸離子水基磁流體 43 3-2 溶劑比例與穩定性之討論 44 3-3 二氧化矽包覆Fe3O4粒子之結果與討論 45 3-3-1 反應試劑加入方式之研究 45 3-3-2 反應溶劑劑量之研究 46 3-3-3 離子效應之研究 47 3-3-4 TEOS濃度改變之研究 48 3-3-5 反應溫度之研究 49 3-3-6 溶劑比例效應之研究 49 3-4 二氧化鈦包覆Fe3O4粒子之結果與討論 50 3-4-1 反應試劑加入方式之研究 50 3-4-2 反應溶劑劑量之研究 51 3-4-3 離子效應之研究 52 3-4-4 TIPO濃度改變之研究 52 第四章 結論 88 第五章 參考文獻 90rf 1. A. N. Galdstein, C. M. Echer, A. P. Alivisatos, Science 256, 1425 (1992). 2. G. bergert, P. Gallezot, “Handbook of Heterogeneous Catalysis” VCH, p432 (1997). 3. T. Vossmeyer, L. Kalsikas, M. Giersig, I. G. Popovic, J. Phys. Chem. B 98, 7665 (1994). 4. T. Tago, J. Toshiro, M. Kishida, H. Nagata, K. Wakabayshi, S. Nagamatsu, M. Inomata, J. Jpn. Petro. Ins. 45, 99 (2002). 5. P. Tartaj, M. Morales, C. Serna, S. Verdaguer, T. Carreno, J. Phys. D 36, 182 (2003). 6. 莊萬發,”超微粒子理論應用” 復漢出版社, p27 (1998). 7. D. Hogemann, L. Josephson, R. Weissleder, J. P. Basilion, Bioconjugate Chem. 11, 941 (2000). 8. 鄭永平,”磁性流體密封原理與設計” 復漢出版社, p334 (1987). 9. S. Morisada, N. Miyata, K. Iwahori, J. Microbiol. Methods 51, 141 (2002). 10. J. P. Dailey, J. P. Phillips, C. Li, J. S. Ribe, J. Magn. Magn. Mater. 194, 140 (1999). 11. S. R. Rudge, T. L. Kurtz, C. R. Vessely, L. G. Catterall, Biomaterials 21, 1411 (2000). 12. U. O. Hafeli, G. J. Pauer, J. Magn. Magn. Mater. 194, 76 (1999). 13. M. Shinkai, M. Yanase, M. Suzuki, H. Honda, J. Yoshida, T. Wakabayashi, T. Kobayash, J. Magn. Magn. Mater. 194, 176 (1999). 14. 黃忠良,” 磁性流體理論應用” 復漢出版社, p11 (1989). 15. S. Sun, H. Zeng, D. Robinson, S. Wang, G. Li, S. Raoux, R. Philip, J. Am. Chem. Soc. 126, 273 ( 2004). 16. S. Sun, H. Zeng, J. Am. Chem. Soc. 124, 8204 (2000). 17. 魏明芬,”磁性金屬氧化物奈米粒的製備與鑑定” 中正大學碩士論文(2001). 18. L. Shen, A Stachowiak, T. Hatton, E. Laibini, Langmuir 16, 9907 (2000). 19. R. Massart, IEEE Trans Magn. 17, 1247 (1981). 20. A. Wooding, M. Kiner, D. Lamerick, J. Colloid Interface Sci. 144, 236 (1991). 21. D. Napper,” Polymeric Stabilization of Colloidal Dispersions” Academic Press, p10 (1993). 22. 徐治平,林天賜,”膠體懸浮液的凝聚現象–DLVO理論” 廣西教育出版,p14 (1998). 23. R. K. Iler, “The Chemistry of Silica,” Wiley, p211 (1979). 24. A. Philipse, M. Bruggen, C. Pathmamanohara, Langmuir 10, 92 (1994). 25. A. M. Correaduarte, M. Giersig, N. A. Kotov, L. M. Lizmarzan, Langmuir 14, 6430 (1998). 26. Q. Liu, Z. Xu, J. A. Finch, R. Egerton, Chem. Mater. 10, 3936 (1998). 27. S. Santra, R. Tapec, T. Weihong, N. Thedoropoulou, J. Dobson, Langmuir 17, 2900(2001). 28. Y. Lu, Y. Yin, B. Mayers, Y. Xia, Nano Lett. 2,183 (2002). 29. F. Grasset, N. Labhsetwar, D. Li, D. Park, N. Saito, H. Haneda, O. Cador, T. Roisnel, S. Mornet, E. Duguet, J. Portier, J. Etourneau, Langmuir 18, 8209 (2002). 30. X. Gao, K. M. Yu, K. Y. Tam, S. C. Tsang, Chem. Commun. 2998 (2003). 31. H. H. Yang, S. Q. Zhang, X. L. Chen, Z. X. Zhuang, J. G. Xu, X. R. Wang, Anal. Chem. 76, 1316 (2004). 32. S. J. Gregg,” Adsorption, Surface Area and Porosity” Academic Press, P35 (1982). 33. 陳力俊,”微電子材料與製程” 中國材料科學學會, p499 (1990).id NH0925065021 sid 913429 cfn 0 / id NH0925065022 auc 郭子駿 tic 氧化鋅與氧化鎘奈米線的合成 adc 黃暄益 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 151 kwc 氧化鋅 kwc 氧化鎘 kwc 奈米線 abc Abstract rf Reference [1 ] Klabunde, K. J. (Editor), Nanoscale Materials in Chemistry, John Wiley & Sons, Inc. New York, 2001 [2 ] Jongh, J. de (Editor), Physics and Chemistry of Metal Cluster Compounds, Kluwer Academic Publishers, Dordrecht, 1994 [3 ] Castro, T.; Reifenberger, R.; Choi, E.; Andres, P. Phys. Rev. B 1990, 13, 8548 [4 ] Schmid, G.; Emde, S.; Maihack, V.; Meyer-Zaika, W.; Peschel, St. J. Mol. Catal. A, 1996, 107, 95. [5 ] Hummel, R.; Wissmann, E. P. (Editors), Handbook of Optical Properties, Vol. Ⅱ, Optics of Small Particles, Interfaces and Surfaces, CRC Press, Boca Raton, FL, 1997. [6 ] Rodriguez-Gattorno, G.; Diaz, D.; Rendon, L.; Hernandez-Segura, G. O. J. Phys. Chem. B. 2002, 106, 2482. [7 ] von Klitzing, K.; Dora, D.; Pepper, M. Phys. Rev. Lett. 1980, 45, 494. [8 ] Kroto, H. W.; Heath, J. R.; O`Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature, 1985, 318, 162. [9 ] Iijima, S. Nature, 1991, 354, 56. [10 ] Dai, H. Acc. Chem. Res. 2002, 35, 1035. [11 ] Morales, A. M.; Lieber, C. M. Science,1998, 279, 208. [12 ] Gao, J.; Bender, C. M.; Murphy, C. J. Langmuir, 2003, 19, 9065. [13 ] Sun, Y.; Gates, B.; Mayers, B.; Xia, Y. Nano Lett. 2002, 2, 165. [14 ] Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 2003, 125, 4430. [15 ] Vayssieres, L. Adv. Mater. 2003,15, 464. [16 ] Jun, Y.-W.; Casula, M. F.; Sim, J.-H.; Kim, S. Y.; Cheon, J.; Alivisatos, A. P. J. Am. Chem. Soc. 2003, 125, 15981. [17 ] Xu, S.; Zhou, H.; Xu, J.; Li, Y. Langmuir, 2002, 18, 10503. [18 ] Liu, C.; Zapien, J. A.; Yao, Y.; Meng, X.; Lee, C. S.; Fan, S.; Lifshitz, Y.; Li, S. T. Adv. Mater. 2003, 15, 838. [19 ] Huang, M. H.; Choudrey, A.; Yang, P. Chem. Commun. 2000, 12, 1063. [20 ] Wilson, N. R.; Macpherson, J. V. Nano Lett. 2003, 3, 1365. [21 ] Li, H.; Park, S. H.; Reif, J. H.; LaBean, T. H.; H. Yan, J. Am. Chem. Soc. 2004, 126, 418. [22 ] Hong, B. H.; Bae, S. C.; Lee, C. W.; Jeong, S.; Kim, K. S. Science, 2001, 294, 348. [23 ] Gudlksen, M. S.; Lauhon, L. J.; Wang, J.; Smith, D. C.; Lieber, C. M. Nature, 2002, 415, 617. [24 ] Lauhon, L. J.; Gudlksen, M. S.; Wang, D.; Lieber, C. M. Nature, 2002, 420, 57. [25 ] Li, Y.; Mann, D.; Rolandi, M.; Kim, W.; Ural, A.; Hung, S.; Javey, A.; Cao, J.; Wang, D.; Yenilmez, E.; Wang, Q.; Gibbons, J. F.; Nishi, Y.; Dai, H. Nano Lett. 2004, 4, 317. [26 ] Park, W. I.; Kim, D. H.; Jung, S. W.; Yia, G. C. Appl. Phys. Lett. 2002, 80, 4232. [27 ] Sears, G. W. Acta Met. 1953, 1, 457. [28 ] Sears, G. W. Acta Met. 1955, 3, 361. [29 ] Wagner, R. S.; Ellis, W. C. Appl. Phys. Lett. 1964, 4, 89. [30 ] Wagner, R. S.; Ellis, W. C. Trans. Met. Soc. AIME, 1965, 233, 1053. [31 ] Volmer, M.; Esterman, I. Z. Physik 1921, 7, 13. [32 ] Burton, W.; Cabrera, N.; Frank, F. C. Phil. Trans. Roy. Soc. 1951, A243, 299. [33 ] Price, P. B.; Vermilyea, D. A.; Webb, M. B. Acta Met. 1958, 6, 524. [34 ] Wagner, R. S.; Ellis, W. C.; Jackson, K. A.; Arnold, S. M. J. Appl. Phys. 1964, 35, 2993. [35 ] Hafner, J. H.; Cheung, C. L.; Oosterkamp, T. H.; Lieber, C. M. J. Phys. Chem. B. 2001, 105, 743. [36 ] Johnson, J. C.; Yan, H.; Schaller, R. D.; Haber, L. H.; Saykally, R. J.; Yang, P. J. Phys. Chem. B. 2001, 105, 11387. [37 ] Duan, X.; Huang, Y.; Agarwal, R.; Lieber, C. M. Nature, 2003, 42, 241. [38 ] Tseng, Y. K.; Huang, C. Y.; Cheng, H. M.; Lin, I. N.; Liu, K. S. Adv. Funct. Mater. 2003, 13, 881. [39 ] Melosh, N. A.; Boukai, A.; Diana, F.; Gerardot, B.; Badolato, A.; Petroff, P. M.; Health, J. R. Science, 2003, 300, 112. [40 ] Martensson, T.; Borgstrom, M.; Seifert, W.; Ohlsson, B. J.; Samuelson, L. Nanotech. 2003, 14, 1255. [41 ] Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M. Nano Lett. 2003, 3, 1255. [42 ] Cordaro, J. F.; Shim, Y.; May, J. E. J. Appl. Phys. 1986, 60, 4186. [43 ] Yang, T. L.; Zhang, D. H.; Ma, J.; Ma, H. L.; Chen, Y. Thin Solid Film 1998, 326, 60. [44 ] Verardi, P.; Nastase, N.; Gherasim, C.; Ghica, C.; Dinescu, M.; Dinu, R.; Flueraru, C. J. Cryst. Growth 1999, 197, 523. [45 ] Johnson, J. C.; Yan, H.; Schaller, R. D.; Peterson, P. B.; Yang, P.; Saykally, R. J. Nano Lett. 2002, 2. 279. [46 ] Yang, P.; Yan, H.; Mao, S.; Russo, R.; Johnson, J.; Saykally, R.; Morris, N.; Pham, J.; He, R.; Choi, H. J. Adv. Func. Mater. 2002, 12, 323. [47 ] Wan, Q.; Lin, C. L.; Yu, X. B.; Wang, T. H. Appl. Phys. Lett. 2004, 84, 124. [48 ] Wang, Z. L. Adv. Mater. 2003, 15, 402. [49 ] Lee, C. J.; Lee, T. J.; Lyu, S. C.; Zhang, Y.; Ruh, H.; Lee, H. J. Appl. Phys. Lett. 2002, 19, 3648. [50 ] Park, W. I.; Yi, G. C. Adv. Mater. 2004, 16, 87. [51 ] Kind, H.; Yan, H.; Messer, B.; Law, M.; Yang, P. Adv. Mater. 2002, 14, 158. [52 ] Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science 2001, 292, 1897. [53 ] Duan, X.; Lieber, C. M. Adv. Mater. 2000, 12, 298. [54 ] Okamoto, H.; Massalski, T. B. (Editor) Phase Diagrams of Binary Gold Alloy, ASM International, Metals Park, Ohio, 1987 [55 ] Liu, S. C.; Wu, J. J. J. Mater. Chem. 2002, 12, 3125. [56 ] Gudiksen, M. S.; C. Lieber, M. J. Am. Chem. Soc. 2000, 122, 8801. [57 ] Gruner, W.; Stolle, S.; Berger, L. M.; Wetzig, K. Int. J. Refractory Metal and Hard Materials 1999, 17, 227. [58 ] Li, Y.; Meng, G. W.; Zhang, L. D. Appl. Phys. Lett. 2000, 76, 2011. [59 ] Yan, H.; He, R.; Johnson, J.; Law, M.; Saykally, R. J.; Yang, P. J. Am. Chem. Soc. 2003, 125, 4728. [60 ] Zhang, Y.; Jia, H.; Luo, X.; Chen, X.; Yu, D.; Wang, R. J. Phys. Chem. B 2003, 107, 8289. [61 ] B?黌erker, K. Ann. Phys. Lpz. 1907, 22, 749. [62 ] Lakshmanan, T. K. J. Electrochem. Soc. 1963, 110, 548. [63 ] Ye, Z.; Ma, D.; He, J.; Huang, J.; Zhao, B.; Luo, X.; Xu, Z. J. Crystal Growth 2003, 256, 78. [64 ] Li, X.; Gessert, T. A.; Coutts, T. Appl. Surf. Sci. 2004, 223, 138. [65 ] Coutts, T. J.; Young, D. L.; Li, X. MRS Bull. 2000, 25, 15. [66 ] Ocampo, M.; Fernandez, A. M.; Sebastian, P. J. Semicond. Sci. Technol. 1993, 8, 750. [67 ] Gould, R. D.; Hassan, A. K.; Mahmood, F. S.; Int. J. Electron. 1994, 76, 901. [68 ] Kondo, R.; Okhimura, H.; Kasai, Y. Jpn. J. Appl. Phys. 1997, 10, 1475. [69 ] Benko, F. A.; Koffyberg, F. P. Solid State Commun. 1986, 57, 901. [70 ] Yamazoe, N. Sens. Actcuator 1991, 5, 7. [71 ] Wu, X.; Wang, R.; Zou, B.; Wu, P.; Wang, L.; Xu, J.; Huang, W. Appl. Phys. Lett. 1997, 71, 2097. [72 ] Ando, M.; Kadono, K.; Haruta, M.; Sakaguchi, T.; Miya, M. Nature 1995, 374, 625. [73 ] Wang, W.; Liang, C. H.; Wang, G. Z.; Gao, T.; Wang, X. S.; Fan, J. C.; Zhang, L. D. J. Mater. Sci. Lett. 2001, 20, 1687 [74 ] Liu, Y.; Yin, C.; Wang, W.; Zhan, Y.; Wang, G. J. Mater. Sci. Lett. 2002, 21, 137 [75 ] Peng, X. S.; Wang, W. F.; Wang, W. Y.; Wang, C. Z.; Meng, G. W. J. Phys. D: Appl. Phys. 2002, 35, L101 [76 ] Koparanova, N.; Zlatev, Z.; Genchev, D.; Popovich, G. J. Mater. Sci. 1994, 29, 103 [77 ] Liu, X.; Li, C.; Han. S.; Han, J.; Zhou, C. Appl. Phys. Lett. 2003, 24, 1950 [78 ] Duan, X.; Lieber, C. M. Adv. Mater. 2000, 12, 298. [79 ] Okamoto, H.; Massalski, T. B. (Editor) Phase Diagrams of Binary Gold Alloy, ASM International, Metals Park, Ohio, 1987id NH0925065022 sid 913431 cfn 0 / id NH0925065023 auc 黃俊偉 tic 釕金屬催化烯炔類以及烯二炔類分子環化反應 adc 劉瑞雄 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 185 kwc 釕金屬 kwc 烯炔類 kwc 烯二炔類 abc 本論文分成兩個部分:第一部份主要利用釕金屬錯合物催化促進烯二炔類的環化加成反應;第二部分則是研究相同釕金屬錯合物可催化促進烯炔類的環化反應。 tc 摘 要 I 謝 誌 II 目 錄 III 縮寫對照表 VII 第一章 釕金屬催化烯二炔類分子環化加成反應 第一節 緒 論 1 第二節 文獻回顧 2 2.1. 前言 2 2.2. 有關碳-氫鍵活化的反應 3 2.3. 過渡金屬活化碳氫鍵的相關反應 4 2.4. Bergman苯環化反應 7 第三節 結果與討論 14 3.1. 實驗構思與動機 14 3.2. 配位基Tp與金屬釕的作用 16 3.3. 催化劑[TpRu(CH3CN)2(PPh3) ]PF6的製備 17 3.4. 配位基的合成 17 3.5. 官能基容忍度測試(Ⅰ) 24 3.6. 不同長碳鏈忍度測試(Ⅱ) 26 3.7. 官能基容忍度測試(Ⅲ) 27 3.8. 同位素標定實驗 33 3.9. 反應機構討論 34 第四節 結 論 36 第二章 釕金屬催化烯炔類分子環化反應 第一節 前言 38 第二節 文獻回顧 39 2.1. The Pauson-Khand Reaction 40 2.2. Titanium-Catalyzed Carbocyclizations 41 2.3. Nickel-Catalyzed Carbocyclizations 42 2.4. Palladium-Catalyzed Carbocyclizations 43 2.5. Rhodium-Catalyzed Carbocyclizations 44 2.6. Pt-Catalyzed Carbocyclizations 45 2.7. Ruthenium-Catalyzed Carbocyclizations 46 第三節 結果與討論 48 3.1. 實驗構思 48 3.2. 配位基的合成 52 3.3. 官能基容忍度測試 54 3-4. 反應的最佳化 57 3-4-1.溶劑的最佳化 57 3.4-2. 反應機構的探討 59 3-5反應物的延伸與展望 61 3-5-1反應條件的最佳化 62 3-5-2催化劑當量數的最佳化 62 3-5-3反應溫度的最佳化 63 3-5-4反應溶劑的最佳化 64 3-5-5同位素的標定 65 3-5-6反應機構 67 3.7. 改變不同官能基實驗的探討 70 第四節 結 論 71 第三章 實驗部份 第一節 實驗藥品之中英文對照表 72 第二節 實驗的一般操作 74 第三節 化合物的合成 76 第四章 參考文獻 113 附錄 118rf (1)(a) Yeh, K.-L.; Lo, C.-Y.; Huang, H.-L.; Liu, R.-S. J. Am. Chem.Soc 2002, 124, 6510.(b) 國立清華大學化學系蘇浩立碩士論文2002年。 (2)(a) Seddon, E. A.; Seddon K. R. The Chemistry of Ruthenium; Elsevier: Amsterdam, 1984. (b) Griffith, W. P. The Chemistry of the Rarer Platinum Metals; Os, Ru, Ir and Rh; Wiley-Interscience: New York, 1967. (c) Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 4th ed.; John Wiley & Sons: New York, 1980. (3)(a) Noyori, R. Asymmetric Catalysis in Organic Synthesis; John Wiley & Sons: New York, 1994; Chapter 2. (b) Takaya, H.; Ohta, T.; Noyori, R. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH: Weinheim, 1993; Chapter 1. (c) Brunner, H.; Zettlmeier, W. Handbook of Enantioselective Catalysis; VCH: Weinheim, 1993. (d) Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345. (e) Noyori, R. Chem. Soc. Rev. 1989, 18, 187. (f) Noyori, R.; Kitamura, M. In Modern Synthetic Methods; Scheffold, R., Ed.; Springer-Verlag: Berlin, 1989; Vol. 5, pp115-198. (g) Kitamura, M. Kikan Kagaku Sosetsu 1993, 19, 77. (4) For recent reviews, see : (a) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev.2002, 102, 1731. (b) Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35,826. (c) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698. (5) (a) Tan, K. L.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2001, 123, 2685. (b) Jia, C.; Pao, D.; Oyamada, J.; Lu, W.; Kitamura, T. Science, 2000, 287, 1992. (c) Lail, M.; Arrowood, B. N.; Gunnoe, T. B. J. Am. Chem. Soc. 2003, 125, 7506. (d) Murai, S; Kakiuchi, P.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Nature, 1993, 366, 529. (e) S. H. Brown, R. H. Crabtree, J. Chem. Educ. 1988, 65, 290 –294. (6) (a) Doyle, M. P.; Forbes,D. C. Chem. Rev. 1998, 98, 911. (b) Davies, H. W. L.; Beckwith, R. E. J.Chem. Rev. 2003, 103, 2861.(c) Kennedy, M.; McKervey, M. A.; Maguire, A. R.; Roos, G. H. P. J. Chem. Soc., Chem. Commun. 1990, 22, 361. (7) (a) Miki, K.; Ohe, K.; Uemura, S. J. Org. Chem. 2003, 68, 8505(b) Martin-Matute, B.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2003, 125, 5757. (c) Yamamoto, Y.; Kitahara, H.; Ogawa, R.; Kawaguchi, H.; Tatsumi, K.; Itoh, K. J. Am. Chem. Soc. 2000, 122, 4310. (d) Trost, B. M.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 1993, 32, 1085. (8) Kleiman, J. P.; Dubeck, M. J. Am. Chem. Soc. 1963, 85, 1544. (9)(a) Chatt, J.; Watson, H. R. J. Chem.Soc. 1962, 2545. (b) Chatt, J.; Davidson, J. M. J. Chem. Soc.1965, 843. (10) Trost, B. M.; Lautens, M.; Chan, C.; Jebaratnam, D. J.; Mueller, T. Angew. Chem. Int. Ed. 1999, 38, 1698 . (11) Bergman, R.G Acc. chem. res 1973, 6. 25. (12) Wang, Y.; Finn, M. G. J. Am. Chem. Soc. 1995, 117, 8045. (13) Ohe, K.; Kojima, M.; Yonehara, K.; Uemura, S. Angew. Chem., Int. Ed. Engl. 1996, 35, 1823. (14) (a)Warner, B. P.; Miller. S. P.; Broee, R. D.; Buchwald, S. L. Science 1995, 269, 814.(b) Semmelhack, M. F.; Neu, T. F. J. Org. Chem. 1994, 59, 5038. (15) Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E.; Foreman,M. I. J. Chem. Soc., Perkin Trans. 1973, 977-981. (16) Hoye, T. R.; Suriano, J. A. J. Org. Chem. 1993, 58, 1659-1660. (17) Jeong, N.; Hwang, S. H.; Lee, Y. J. Am. Chem. Soc. 1994, 116, 3159-3160. (18)Camps, F.; Coll, J.; Motero´, J. M.; Torras, J. Tetrahedron Lett. 1985, 26, 6397-6398. (19) Camps, F.; Coll, J.; Motero´, J. M.; Torras, J. Tetrahedron Lett. 1987, 28, 4745-4748. (20) Wilke, G. Angew. Chem., Int. Ed. Engl. 1988, 27, 185-206. (21) Oppolzer, W.; Keller, T. H.; Bedoya-Zurita, M.; Stone, C. Tetrahedron Lett. 1989, 30, 5883-5886. (22) Trost, B. M.; Tour, J. M. J. Am. Chem. Soc. 1987, 109, 5268-5270. (23) Trost, B. M.; Lautens, M.; Chan, C.; Jebaratnam, D. J.; Mueller, T. J. Am. Chem. Soc. 1991, 113, 636-644. (24)Grigg, R.; Stevenson, P.; Worakun, T. Tetrahedron 1988, 44, 4967-4972. (25) Badrieh, Y.; Greenwald, A.; Schumann, H.; Blum, J. Chem. Ber. 1992, 125, 667-674. (26) Berk, S. C.; Grossman, R. B.; Buchwald, S. L. J. Am. Chem. Soc. 1993, 115, 4912-4913. (27) (a) Mendez, M.; Munoz, M. P.; Echavarren, A. M. J. Am. Chem. Soc. 2000, 122, 11549-11550. (b) Mendez, M.; Munoz, M.P.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2001, 123, 10511-10520. (28) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 2000, 122, 714. (29) (a) Kondo, T.; Suzuki, N.; Okada, T.; Mitsudo, T. J. Am. Chem. Soc. 1997, 119, 6187. (b) Marimoto, T.; Chatani, N.; Fukumoto, Y.; Murai, S. J. Org. Chem. 1997, 62, 3762. (30) Nishida, M.; Adachi, N.; Onozuka, K.; Matsumura, H.; Mori, M. J. Org. Chem. 1998, 63, 9158. (31) Le Paih, J.; Rodrý´guez, D. C.; De´rien, S.; Dixneuf, P. H. Synlett 2000, 95. (32)(a) S. H. Brown, R. H. Crabtree, J. Chem. Educ. 1988, 65, 290-294; (b) S. H. Brown, R. H. Crabtree, J. Am. Chem. Soc. 1989, 111, 2935 –2953. (33) (a) Dedichen, G. Ber. 1906, 39, 1831. (b) Grandberg, I. I.; Kost, A. N. Dokl. Akad. Nauk SSSR 1961, 141, 1087.; Proc. Acad. Sci. USSR 1961, 141, 1251. (c) Grandberg, I. I.; Kost; A. N. Zh. Obshch. Khim. 1962, 32, 1556.; J. Gen. Chem. USSR 1962, 32, 1542. (d) Grandberg, I. I.; Kost; A. N. Zh. Obshch. Khim. 1962, 32, 3025.; J. Gen. Chem. USSR 1962, 32, 2974. (e) Grandberg, I. I. Zh. Obshch. Khim. 1962, 32, 3029.; J. Gen. Chem. USSR 1962, 32, 3029. (34) Trofimenko, S. J . Am. Chem. Soc. 1966, 88, 1842. (35) Trofimenko, S. Chem Rev. 1972, 72, 749. (36) Trofimenko, S. Chem Rev. 1993, 93, 943. (37) (a) Alcock, N. W.; Burns, I. D.; Claire, K. S.; Hill, A. F. Inorg. Chem. 1992, 31, 2906. (b) Gemel, C.; Trimmel, G.; Slugovc, C.; Kremel, S.; Mereiter, K.; Schmid, R.; Kirchner, K. Organometallics 1996, 15, 3998. (38) Onishi, M.; Ikemoto, K.; Hiraki, K. Inorg. Chim. Acta 1991, 190, 157. (39) (a) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2039. (b) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100. (c) Alcock, N. W.; Burns, I. D.; Claire, K. S.; Hill, A. F. Inorg. Chem. 1992, 31, 2906. (40) Chan, W.-C.; Lau, C.-P.; Chen, Y.-Z.; Fang, Y.-Q.; Ng, S.-M.; Jia, G. Organometallics 1997, 16, 34. (41) Karpukhin, p. p and Levchenko, A. I. ,Zh. Prikl. Khim. (Leningrad),1959, 32, 1359. (42) Quere, J. P and Marechal, E. Bull. Soc. Chim. Fr., 1971, 2227. (43) Rinaldo, B and Quentin, n. p. Aust. J. chem.,1977, 30, 1051-1059. (44) Richard, P.J. and Katherine, S. D.TetrahedronLetters, 1981, 22, 3171-3174. (45) Marta, R ; Gema, D. and Javier, P. C. J. Org. Chem. 2004, 73, 7993. (46) E.; Carbo, J. J.; Lledos, A.; Mereiter, K.; Puerta, M. C.; Valerga, P. J. Am. Chem. Soc. 2003, 125, 3311. (47)(a) Trost, B. M.; Flygare, J. A. J. Am. Chem. Soc. 1992, 114, 5476.(b)Trost, B. M.; Flygare, J. A. Tetrahedron Lett. 1994, 35, 4059. (c)Nishibayashi, Y.; Wakiji, I.; Hidai, M. J. Am. Chem. Soc. 2000, 122, 11019. (d) Madhushaw, R. J.; Li, C.-L.; Shen, K.-H.; Hu, C.-C.; Liu, R.-S. J. Am. Chem. Soc. 2001, 123, 7427. (48) (a) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911. (b) Davies, H. W. L.; Beckwith, R. E. J. Chem Rev. 2003, 103, 2861.id NH0925065023 sid 913432 cfn 0 / id NH0925065024 auc 林家慧 tic 亞硝基錳錯合物:一氧化氮捕捉劑與小分子氣體(NO/CO/O2)辨識之研究 adc 廖文峰 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 52 kwc 一氧化氮 kwc 小分子辨識 kwc 亞硝基錳錯合物 abc 將[Na tc 中文摘要 Abstract 第一章:緒論.....1 1-1:Ligand discrimination 1-1-1:前言 1-1-2:NO / CO / O2的辨識 O2 discrimination NO discrimination CO discrimination 1-2:NO trapping 1-2-1:簡介 1-2-2:金屬亞硝基化合物之電子結構及化學特性 1-2-3:具non-innocent特性的配位基 1-3:實驗研究方向 第二章:實驗部分.....12 2-1:一般實驗 2-2:儀器 2-3:藥品 2-4:化合物的合成與鑑定 (1) 合成[PPN ][(THF)Mn(S,S-C6H4)2 ] (1) (2) 合成[PPN ]2[Mn(S,S-C6H4)2 ]2 (2) (3) 合成[PPN ][(NO)Mn(S,S-C6H4)2 ] (3) (4) 合成[PPN ]2[Mn(S,S-C6H4)2 ] (4) (5) 合成[Me4N ]2[(NO)Mn(S,S-C6H4)2 ] (5) (6) 合成[PPN ]2[Mn(S,S-C6H4)3 ] (6) 2-5:化合物的反應 (1) [PPN ][(THF)Mn(S,S-C6H4)2 ] (1) 與CO的反應 (2) [PPN ][(THF)Mn(S,S-C6H4)2 ] (1) 與O2的反應 (3) [PPN ]2[Mn(S,S-C6H4)2 ] (4) 與CO的反應 (4) [PPN ]2[Mn(S,S-C6H4)2 ] (4) 與O2的反應 2-6:晶體結構解析(Crystallography) 第三章:結果與討論.....25 3-1:化合物[PPN ]2[Mn(S,S-C6H4)2 ]2 (2)的合成、光譜及結構分析探討 3-2:化合物[PPN ][(NO)Mn(S,S-C6H4)2 ] (3)、[PPN ]2[Mn(S,S-C6H4)2 ] (4)、[Me4N ]2[(NO)Mn(S,S-C6H4)2 ] (5)的合成、光譜、結構分析及反應性的探討 3-3:化合物[PPN ]2[Mn(S,S-C6H4)3 ] (6)的合成、光譜及結構分析探討 第四章:結論.....49 參考文獻.....51rf 1.Antonini, E.; Brunori, M. (1971): Hemoglobin and myoglobin intheir reactions with ligands. North-Holland, Amsterdam 2. Rinku, J. A.; Chan, M. K.; J. Biol. Inorg. Chem. 2003, 8, 1–11. 3. John S.; Olson 7 George N.; Phillips, Jr. J. Biol. Inorg. Chem. 1997, 2, 544-552. 4. Ribeiro, JMC.; Hazzard, JMH.; Nussenzveig, RH.; Champagne, DE.; Walker, FA.; Science, 1993, 260, 539–541. 5. Shelnutt, J. A.; Song, X.-Z.; Ma, J.-G.; Jia, S.-L.; Craig, W. J.; Medforth, J.; Chemical Society Reviews, 1998, 27, 31-41. 6. Sharma, V. S.; Traylor, T. G.; Gardiner, R. Biochemistry, 1987, 26, 3837-3843. 7. Deinum, G.; Stone, J. R.; Babcock, G. T.; Marletta, M. A. Biochemistry, 1996, 35, 1540-1547. 8. Zhao, Y.; Brandish, P.; Ballou, D.; Marletta, M. Proc. Natl. Acad. Sci. USA. 1999, 96, 14753–14758. 9. Traylor, T.; Sharma, V. Biochemistry, 1992, 31, 2847–2849. 10. Aono, S.; Nakajima, H.; Saito, K.; Okada, M. Biochem. Biophys. Res. Commun. 1996, 228, 752–756. 11. He, Y.; Shelver, D.; Kerby, R.; Roberts, G. J. Biol. Chem. 1996, 271, 120–123. 12. Uchida, T.; Ishikawa, H.; Takahashi, S.; Ishimori, K.; Morishima, I.; Ohkubo, K.; Nakajima, H.; Aono, S. J. Biol. Chem. 1998, 273, 19988–19992. 13. Reynolds, M.; Parks, R.; Burstyn, J.; Shelver, D.; Thorsteinsson, M.; Kerby, R.; Roberts, G.; Vogel, K.; Spiro, T. Biochemistry, 2000, 39, 388–396. 14. Aono, S.; Nakajima, H.; Saito, K.; Okada, M. Biochem. Biophys. Res. Commun. 1996, 228, 752–756. 15. Culotta, E.; Koshland, D. E. Science 1992, 258, 1862. 16. John, E. Molecules at an Exhibition, 2001, 112. 17. Jonathan, S.; Stamler, D. J.; Singel, J. L. Science 1992, 258, 1898. 18. Enemark, J. H.; Feltham, R. D. Coord. Chem. Rev. 1974, 13, 339. 19. Inorganic chemistry 2nd: Gary L. Miessler; Donald A, Tarr: Prentice Hall International, Inc. p443. 20. Franz, K. J.; Lippard, S. J. J. Am. Chem. Soc. 1998, 120, 9034-9040. 21. Brown, C. A.; Pavlosky, M. A.; Westre, T. E.; Zhang,Y.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc., 1995, 117(2), 715-732. 22. Herebian, D.; Bothe, E.; Bill, E.; Weyhermuller, T.; Wieghardt, K. J. Am. Chem. Soc. 2001, 123, 10012-10023 23. Boese, M.; Mordvintcev, P. I.; Vanin, A. F.; Busse, R.; MÜlsch, A. J. Biol. Chem. 1995, 270, 29244. 24. Ghosh, K.; Eroy-Reveles, A. A.; Avila, B.; Holman, T. R.; Olmstead, M. M.; Mascharak, P. K. Inorg. Chem. 2004, 43, 2988-2997. 25. Scheidt, W. R.; Hatano, K.; Rupprecht, G. A.; Piciulo, P. L. Inorg. Chem. 1979, 18, 292-299. 26. Coleman, W. M.; Taylor, L. T. J. Am. Chem. Soc. 1978, 100, 1705-1710., (ZSALDPT) Schiff base pentadentate ligand of salicylaldehydeand 3,3-bis(aminopropyl)amine. 27. Fujii, S.; Yoshimura, T. Coord. Chem. Rev. 2000, 198, 89–99.id NH0925065024 sid 913436 cfn 0 / id NH0925065025 auc 李佳樺 tic 鎳-硫-硫醇化合物:[NiFe] Hydrogenase 之生態模擬化合物 adc 廖文峰 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 49 kwc 氫化酵素 kwc 模型化合物 kwc 硫醇 kwc 雙核鎳化合物 abc 在THF溶劑中以1:1的比例混合Ni(ClO4)2.6H2O與P(o-C6H4SH)3 可形成雙核化合物Ni2{P(o-C6H4S)2(o-C6H4SH)}2 (1)。化合物1由兩個扭曲的平面四方形N(II)組成,每一個Ni(II)配位三個thiolate與一個phosphorus,其中兩個thiolate將兩個Ni(II)橋接起來。化合物1具有兩個未鍵結到Ni(II)的S-H,經由IR (νS-H 2391cm-1), 1H NMR (δ 5.88(s))和X-ray單晶繞射結構,證實化合物1中具有[Ni-S…H-S rf 1. Adams, M. W.; Stidfel, E. I. Science 1998, 282, 1842 2. Paschos, A.; Glass, R. S. ; Book, A. FEBS Letters 2000, 488, 9 3. Peck, H. D.; Pietro, A. San; Gest, H. Proc. Natl. Actad. Sci. 1956, 42, 13 4. Graf, E.G.; Thauer, R. K. FEBS Letters 1981, 136, 165 5. Darensbourg, M. Y.; Lyon, E. J.; Smee J. J. Coord. Chem. Rev. 2000, 206-207, 533 6. Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C. Structure 1999, 7, 12 7. Higuchi, Y.; Ogata, H.; Miki, K.; Yasuoka, N.; Yagi, T. Sturcture 1999, 7, 549 8. Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. Science 1998, 282, 1853 9. Volbed, A.; Gharon, M. H.; Piras, C.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps J. C. Nature 1995, 737, 580 10. Volbed, A.; Garcin, E.; Piras, C.; de Lacey, A. L.; Fernadez, V. M.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps J. C. J. Am. Chem. Soc. 1996, 96, 3031 11. Fontecilla-Camps, J. C. Structure. Bonding 1998, 91, 1 12. Marr, A. C.; Spencer, Douglas J.E.; Martin Schröder Coord. Chem. Rev. 2001, 219-221, 1055 13. Montat, Y.; Amara, P.; Volbeda, A.; Vernede, X.; Hatchikian, E. C.; Field, M. J.; Frey, M.; Fontcilla-Camps, J. C. Nature Sturct. L Biol. 1997, 119, 7181 14. Davies, S. C.; Evans, D. J.; Hughes, D. L.; Longhurst, S.; Sanders, J. R. J. Am. Chem. Commun. Soc. 2000, 122, 488 15. LeGall, J.; Ljungdahl, P. O.; Moura, I.; Peck, H. D.; Xavier, A. V.; Moura, J. J. G.; Teixerira, M.; Huynh, B. H.; Dervartanuan, D. V. Biochem. Biophy. Res. Commun, 1982, 34, 5527 16. Poberts, L. M.; Lindahl, P. A. Biochemistry, 1994, 33, 14339 17. Bagley, K. A.; Duin, E. C.; Roseboon, W.; Albracht, S. P. J.; Woodruff, W. H. Biochemistry, 1995, 34, 5527 18. de Lacey, A. L.; Hatchikian, C. E.; Volbeda, A.; Fontecilla-Camps, J. C. J. Am. Chem. Soc. 1997, 119, 7181 19. Ogata, H.; Mizoguchi, Y.; Mizuno, N.; Miki, K.; Adachi, S.-I.; Yasuoka, N.; Yagi, T.; Yamauchi, O.; Hirota, S.; Higuchi, Y. J. Am. Chem. Soc. 2002, 124, 11628 20. Siegbahn, P. E. M.; Blomberg, M. R. A.; Wirstam nee Pavlov, M. Crabtree, R. H. J. Bio. Inorg. Chem. 2001, 6, 460 21. Fan, H.-J.; Hall, M. B. J. Am. Chem. Soc. 2002, 124, 394 22. Davidson, G.; Choudhury, S. B.; Gu, Z.; Bose, K.; Roseboom, W.; Albracht, S. P. J.; Maroney, M. J. Bichemistry 2000, 5, 36 23. Barondeau, D. P.; Roberts, L. M.; Lindahl, P. A. J. Am Chem. Soc. 1994, 116, 3442 24. Albracht, S. P. J. Biochim, Biophys. Acta. 1994, 1188, 167 25. Roberts. L. M.; Lindahl, P. A. Biochemistry 1994, 33, 14339 26. Baidya, N.; Olmstead, M.; Mascharak, P. K. Inorg. Chem. 1991, 30, 929 27. Baidya, N.; Olmstead, M.;Whitehead, J. P.;Bagyinka, C.; Maroney, M. J.; Mascharak, P. K. Inorg. Chem. 1992, 31, 3612 28. Baidya, N.; Olmstead, M.; Mascharak, P. K. J. Am. Chem. Soc. 1993, 115, 4665 29. Volbeda, A.; Garain, E.; Piras, C.; Delacey, A. L.; Fernandez. V. M.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps J. C. J. Am. Chem. Soc. 1996, 118, 12989 30. Sellmann, D.; Geipel, F.; Moll, M. Angew. Chem. Int. Edt. Engl. 2000, 39, 561 31. Forester, S.; Stein, M.; Brecht, M.; Ogata, H.; Higuchi, Y.; Lubitz, W. J. Am. Chem. Soc. 2003, 125, 83 32. (a) Fan, C.; Teixeira, M.; Moura, J.; Moura, I.; Huynh, B. H.; Le Gall, J.; Peck, H. D., Jr; Hoffman, B. M. J. Am. Chem. Soc. 1991, 113, 20-24 (b) Whitehead, J. P.; Gurbiel, R. J.; Bagyinka, C.; Hoffman, B. M.; Maroney, M. J. J. Am. Chem. Soc. 1993, 115, 5629 33. Smith, M.C.; Longhurst, S.; Barclay, J. E.; Cramer, S. P.; Davies, S. C.; Hughes, D. L.; Gu. W.-W.; Evans, D. J. J. Chem. Soc., Dalton Trans., 2001, 1387 34. Sellmann, D.; Geipel, F.; Lauderbach, F.; Heinemann, F. W. Angew. Chem. Int. Ed. 2002, 41, 632 35. Davies, S. C.; Evans, D. J.; Hughes, D. L.; Longhurst, S.; Sanders, J. R. Chem. Commun. 1999, 1935 36. Lai, C.-H.; Reibenspies, J. H.; Darensbouorg, M. Y. Angew. Chem. Int. Ed. Engl. 1996, 35, 2390 37. Rauchfuss, T. B.; Roundhill, D. M. J. Am Chem. Soc 1975, 97, 3386 38. Bouwmann, E.; Henderson, R. K.; Spek, A. L.; Reedijk, J.; Eur, J. Inorg, Chem. 1999, 217 39. Block, E.; Ofori-Okai, G.; Zubieta, J. J. Am. Chem. Soc. 1989, 111, 2327 40. Liaw, W.-F.; Lee N.-H.; Chen, C.-H.; Lee, C.-M.; Lee, G.-H.; Peng, S.-M. J. Am. Chem. Soc. 2000, 122, 488 41. Davies, S. C.; Evans, D. J.; Hughes, D. L.; Longhurst, S. Acta. Cryst. 1999, C55, 1436 42. Franolic, J. D.; Wang, W. Y.; Millar, M. J. Am. Chem. Soc. 1992, 114, 6587 43. Cotton, F. A.; Matusz, M.; Poli, R.; Feng, X. J Am. Chem. Soc. 1988, 110, 1144 44. Choudhury, S. B.; Pressler, M. A.; Mirza, S. A.; Day, R. O.; Maroney, M. J. Inorg. Chem. 1994, 33, 4831 45. Casalot, L.; Rousset, M. TRENDS in Microbiology 2001, 9, 228 46 Adams, M. W. W.; Stiefel, E. I. Science 1998, 282, 1842 47 Stein, M.; Lubitz, W. Phys. Chem. Chem. Phys. 2001, 3, 2668 48 Evans, D. J.; Pickett, C. J. Chem. Soc. Rev. 2003, 32, 268id NH0925065025 sid 913437 cfn 0 / id NH0925065026 auc 葉永城 tic 層狀鈣矽酸鹽gyrolite及reyerite之矽烷接枝反應 adc 王素蘭 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 80 kwc 層狀鈣矽酸鹽 kwc 水熱合成 kwc 矽烷化反應 abc 本研究以水熱合成法製備具2-D結構之鈣矽酸鹽gyrolite(Ca16Si24O60(OH)8.13H2O)及reyerite(KCa14Si24O60(OH)5.3H2O),再使用矽烷化反應(silylation)針對上述兩種層狀鈣矽酸鹽進行有機修飾(organic modification)的工作,反應所選用的矽烷接枝劑有trimethylchlorosilane, phenyldimethylchlorosilanes, n-decyldimethylchlorosilane and n-octyldimethylchlorosilane。不同於文獻上需先與長碳鏈有機銨鹽(alkylammonium)進行離子交換作為中間產物,本文的矽烷化反應為將層狀矽酸鹽混合酸、矽烷接枝劑(silane grafting reagents)及DMF為溶劑的環境下直接進行矽酸鹽的矽烷接枝反應。反應物及產物利用PXRD、29Si Solid State NMR、TGA及元素分析等進行鑑定分析;藉由29Si Solid State NMR及TGA進行定量分析探討;BET吸附面積多寡則受到矽烷接枝劑在層間排列情形所控制,與接枝率好壞無直接相關。 tc 目錄 頁數 目錄 A 表目錄 D 圖目錄 E 第一章緒論 1-1前言 1 1-2奈米複合材料簡介 2 1-3研究動機與目的 4 1-4層狀矽酸鹽及其矽烷接枝反應 5 1-5矽烷接枝矽酸鹽回顧 7 1-6層狀矽酸鹽材料簡介 11 1-6-1黏土 11 1-6-2層狀鹼金屬矽酸鹽 14 1-6-3 Gyrolite之結構與特性 17 1-6-4 Reyerite之結構與特性 21 1-7水熱合成鈣矽酸鹽 21 第二章實驗部分 2-1實驗分析流程圖 26 2-2實驗儀器簡介 27 2-3儀器原理及鑑定 2-3-1粉末X-ray繞射分析(PXRD) 28 2-3-2熱重量╱微差熱分析(TGA╱DTA) 29 2-3-3元素分析(EA) 31 2-3-4固態核磁共振分析(Solid State NMR) 32 2-3-5紅外線光譜儀(Infrared Spectroscopy) 33 2-3-6 掃瞄式顯微鏡SEM 35 2-3-7 比表面積測試儀BET 37 2-4實驗使用藥品 38 2-5層狀鈣矽酸鹽的合成 2-4-1 Gyrolite的合成與鑑定 40 2-4-2 Reyerite的合成與鑑定 41 2-5實驗進行方法 41 2-6以Trimethylchlorosilane(TMSCl)進行接枝反應 3C1-Gyrolite的合成與鑑定 42 3C1-Reyerite的合成與鑑定 42 2-7 以Phenyldimethylcholorosilane進行接枝反應 Ph2C1-Gyrolite的合成與鑑定 43 Ph2C1-Reyerite的合成與鑑定 43 2-8以n-Octyldimethylcholorosilane進行接枝反應 C82C1-Gyrolite的合成與鑑定 43 2-9以n-Decyldimethylcholorosilane進行接枝反應 C102C1-Gyrolite的合成與鑑定 44 第三章實驗結果與討論 3-1層狀鈣矽酸鹽的合成與鑑定 47 3-1-1 Gyrolite鑑定 47 3-1-2 Reyerite鑑定 50 3-2 Silylation Product討論 3-2-Ⅰ 層間距變化 54 3-2-Ⅱ 29Si Solid State NMR分析 59 3-2-Ⅲ Amounts of the silyl groups 65 3-2-Ⅳ SEM 69 3-2-Ⅴ BET 70 第四章 總結與展望 75 第五章 參考文獻 77 附錄 表目錄 表2-1、RS-30產品資料簡介 38 表2-2、層狀鈣矽酸鹽的合成條件 40 表2-3、電子顯微鏡之特性 46 表3-1、Chemical Shift of Silylated-Gyrolites 60 表3-2、Peak Area Ratio of Silylated-Gyrolites 60 表3-3、Silylated-Gyrolites之M1Q3Q4百分比 62 表3-4、Chemical Shift of Silylated-Reyerites 63 表3-5、Peak Area Ratio of Silylated-Reyerites 63 表3-6、Silylated-Reyerites 之M1Q3Q4百分比 64 表3-7、Composition of Silylated-Gyrolites 65 表3-8、Compounds of Silylated-magadiites 66 表3-9、Compounds of Silylated-Gyrolites 66 表3-10、Composition of Silylated-Reyerites 68 表3-11、Compounds of Silylated-Reyerites 68 表3-12、3C1-Reyerite不同接枝率與BET surface area 71 表3-13、BET surface area of silylated-gyrolites 71 表3-14、BET surface area之比較 72 圖目錄 圖1-1、矽烷具有1至4端可供水解之位置 6 圖1-2、層狀矽酸鹽與酸反應之示意圖 7 圖1-3、2:1型的黏土構造圖 14 圖1-4、Kanemite的結構圖 15 圖1-5、天然Gyrolite外觀 18 圖1-6、Gyrolite的結構圖 19 圖1-7、Gyrolite之T1層 20 圖1-8、Gyrolite之T2層 21 圖1-9、Reyerite構造圖 22 圖1-10、Compounds in the system CaO-SiO2-H2O 24 圖1-11、The approximate conditions of formation of the better established anhydrous and hydrated calcium silicates under hydrothermal conditions 25 圖2-1、熱重分析其質量與溫度的變化 45 圖2-2、矽酸鹽基本組成單元之5種可能結構型態 45 圖2-3、Q的型態與化學位移的比照 45 圖2-4、掃瞄式電子顯微鏡系統設計圖 46 圖3-1、合成Gyrolite與JCPDF File 42-1452比對圖 48 圖3-2、合成Gyrolite之29Si Solid State NMR光譜圖 49 圖3-3、合成Gyrolite的熱重分析圖 50 圖3-4、合成Gyrolite之SEM圖 50 圖3-5、合成Reyerite與JCPDF File 17-0760比對圖 51 圖3-6、合成Reyerite之29Si Solid State NMR光譜圖 52 圖3-7、合成Reyerite之熱重分析圖 53 圖3-8、合成Reyerite之SEM圖 53 圖3-9、Silylated-Gyrolite之粉末X光繞射圖譜 54 圖3-10、左圖為3C1-Gyrolite裡之可能排列模式,右圖推測TMS的鍵長 55 圖3-11、Ph2C1-Gyrolite的可能層間排列 56 圖3-12、Paraffin Structure示意圖 56 圖3-13、Silylated-Reyerite之粉末X光繞射圖譜 57 圖3-14、Silylated-Reyerite可能層間排列 58 圖3-15、Si的鍵結環境示意圖 59 圖3-16、29Si Solid State NMR of Silylated-Gyrolites 60 圖3-17、29Si Solid State NMR of Silylated-Reyerites 63 圖3-18、3C1-Gyrolite之SEM照片 69 圖3-19、左圖為Ph2C1-Gyrolite之SEM照片;右圖為C82C1-Gyrolite之SEM照片 70 圖3-20、為C102C1-Gyrolite之SEM照片 70 圖3-21、左圖為3C1-Reyerite之層間排列圖;右圖為3C1-Gyrolite之層間排列圖 72 圖3-22、Nitrogen adsorption/desorption isotherms of (●, ○) 3C1-Gyrolite and (▲, △) synthetic gyrolite 74 圖3-23、Nitrogen adsorption/desorption isotherms of (●, ○) 3C1-Reyerite and (▲, △) synthetic reyerite 74rf (1)LeBorn, P. C.; Wang, Z.; Pinnavaia, T. J. Applied Clay Science. 1999, 15, 11. (2)Gleiter, H. Adv. Mater. 1992, 4. 474. (3)Komarneni, S. J. Mater. Chem. 1992, 2, 1219. (4)Eckert, H.; Ward. M. Chem. Mater. 2001, 13, 3059. (5)Sanchez, C.; Ribot, F. New J. Chem. 1994, 18, 1007. (6)Novak, B. M. Adv. Mater. 1993, 5, 422. (7)Giannelis, E. P. Adv. Mater. 1996, 8, 29. (8)Okada, A.; Usuki, A. Mater. Sci. Eng. 1995, C3, 109 (9)蔡宗燕,化工資訊,1998,2月刊。 (10)Okada, A.; Kawasumi, M.; Kurauchi, T.; Kamigaito, O. Polym Prepr. 1987, 28, 447. (11)Loy, D. A.; Shea. K. J. Chem. Rev. 1995, 95, 1431. (12)Shea, K. J.; Loy, D. A. Chem. Mater. 2001, 3, 3306. (13)Liu, N.; Yu, K.; Smarsly, B.; Dunphy, D. R.; Jiang, Y. -B.; Brinker, C. J. J. Am. Chem. Soc. 2002, 14, 14540. (14)Lentz, C. W. Inorg. Chem. 1964, 3, 574. (15)Frazier, S. E.; Bedford, J. A.; Hower, J.; Kenny, M. E. Inorg. Chem. 1967, 6, 1693. (16)Ruiz-Hitzky, E.; Rojo, J. M. Nature. 1980, 287, 28. (17)Hefter. J.; Kenny. M. E. J. Am. Chem. Soc. 1981, 103, 5929. (18)Ruiz-Hitzky, E.; Rojo, J. M.; Lagaly, G. Colloid. Polym. Sci. 1985, 263, 1025. (19)Chao, T. C.; Katsoulis, D. E.; Kenny, M. E. Chem. Mater. 2001, 3, 4269 and reference therein. (20)http://content.edu.tw/junior/earth/td_jb/content/s_03/stone/content/stones/sm23.htm (21)Yeh, L. T. Ph. D. Thesis, Case Western Reserve University, Cleveland, Ohio, USA, 1991. (22)林志光, “聚苯乙烯╱蒙脫土奈米複合材料之合成與性質研究”, 私立中原大學論文(2002). (23)Wang, Z.; Lan, T.; Pinnavaia, T. J. Chem. Mater. 1996, 8, 2200. (24)Gies, H.; Marler, B.; Vortmann, S.; Oberhagemann, U.; Bayat, P.; Krink, K.; Rius, J.; Wolf, I.; Fyfe, C. Microporous Mesoporous Mater. 1998, 21, 183. (25)Vortmann, S.; Rius, J.; Marler, B.; Gies, H. Eur. J. Mineral. 1999, 11, 125. (26)Schwieger, W.; Heidemann, D.; Bergk, K. H. Rev. Chim. Minér. 1985, 12, 639. (27)Leu, C.; Wu, Z. W.; Wei, K. H. Chem. Mater. 2002, 14, 3016. (28)Okutomo, S.; Kuroda, K.; Ogawa, M. Applied Clay Science. 1999, 15, 253. (29)Eugster, H. P. Science. 1967, 157, 1177. (30)Rojo, J. M.; Ruiz-Hitzky, E. Sanz. J. Inorg. Chem. 1988, 27, 2785. (31)Okutomo, S.; Kuroda, K.; Ogawa, M. J. Am. Chem. Soc. 1998, 120, 7361. (32)Anderson, T. Phil. Mag. 1851, 1, 111. (33)Mackay, A. L.; Taylor, H. F. W. Mineral. Mag. 1953, 30, 80. (34)http://www.johnbetts-fineminerals.com/. Photo Copyright © 2000-2001 by John H. Betts. All Rights Reserved. (35)Merlino, S. Mineral. Mag. 1988, 52, 377. (36)Chalmers, R. A.; Farmer, V. C.; Harker, R. I.; Kelly, S.; Taylor, H. F.W. Mineral. Mag. 1964, 33, 821. (37)Merlino, S. Mineral. Mag. 1988, 52, 247. (38)Lippmaa, E.; Magi, M.; Samoson, A.; Engelhardt, G.; Grimmer, A. R. J. Am. Chem. Soc. 1980, 102, 4889. (39)Miyake, M.; Iwaya, M.; Suzuki, T. J. Am. Ceram. Soc. 1990, 73(11), 3524. (40)http://www.iupac.org/goldbook/D01751.pdf (41)Okada, Y.; Fang, Y.; Ishida, H.; Nishido, H. Journal of the Ceramic Society of Japan. 1994, 102(May), 452. (42)Buckle, E. R. Journ. Phys. Chem. 1959, 63, 1231. (43)Shimojima, A.; Mochizuki, D.; Kuroda, K. Chem. Mater. 2001, 13, 3603. (44)Gregg, S. J.; Sing, K. S. W. Adsorption, Surface Area and Porosity. Academic Press: London, 1982. (45)Kruk, M.; Jaroniec, M. Chem. Mater. 2001, 13, 3169. (46)Streitwieser, Jr. A.; Heathcock, C. H. Introduction to Organic Chemistry. Macmillan: New York, 18981; (a) p 147-148, (b) p 229, (c) p 278, (d) p 726. (47)http://140.114.18.41/micro/chap11/ch11-2-2.html. (48)Taylor, H. F. W. The Calcium Silicate Hydrates. And reference therein. (49)Meyer, J. W.; Jaunarajs, K. L. Amer. Min. 1961, 43, 913.id NH0925065026 sid 913438 cfn 0 / id NH0925065027 auc 侯雅慧 tic 山楂中多酚類化合物之加速溶劑萃取分析與藥膳品中雌激素之質譜分析研究 adc 凌永健 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 138 kwc 加速溶劑萃取 kwc 植物性雌激素 abc 摘要 tc 第一章 緒論 1.1研究動機與目的 1 1.1.1 加速溶劑萃取分析多酚類化合物之研究 2 1.1.2 藥材食品植物性雌激素之研究 3 1.2 參考文獻 3 第二章 加速溶劑萃取-高效液相層析儀分析山楂中多酚類活性成分之方法開發研究 2.1 前言 5 2.1.1 高血壓性疾病與其相關併發症之簡介 7 2.1.3 中草藥萃取方法回顧 12 2.1.4 各種萃取方法的比較 13 2.2 研究動機 14 2.3 研究方法 15 2.3.1 山楂 15 2.3.2 山楂的活性成分簡介 15 2.3.3 加速溶劑萃取 17 2.3.4 多變量統計分析 22 2.4 實驗方法 24 2.4.1 試藥 24 2.4.2 藥材與樣品 24 2.4.3 儀器設備 25 2.4.4 實驗方法 26 2.5 結果與討論 27 2.5.1 加速溶劑萃取參數-最佳化 27 2.5.2 檢量線製備與偵測極限 29 2.5.3 儀器的精密度與穩定度 30 2.5.4 加速溶劑萃取之回收率測試 30 2.5.4 重複性 31 2.5.5 真實樣品之定量 31 2.5.6 存放時間對待測物濃度之影響 33 2.6 結論 35 2.7 參考文獻 36 第三章 以液相層析-電灑式質譜儀分析植物性雌激素之研究 3.1 前言 79 3.1.1 荷爾蒙與內分泌 79 3.1.2 更年期的藥物治療 80 3.1.3 植物性雌激素之取代性 82 3.2 研究動機 84 3.3 研究方法 85 3.3.2 大豆異黃酮之簡介 85 3.3.3 液相層析質譜儀 86 3.4 實驗方法 88 3.4.1 試藥 88 3.4.2 藥材與樣品 89 3.4.3 儀器設備 89 3.4.4 實驗方法 89 3.5 結果與討論 91 3.5.1 層析條件之選擇 91 3.5.2 液相層析質譜儀界面參數探討 91 3.5.3 各待測物碰撞誘導解離能之串聯質譜參數探討 94 3.5.4 超音波振盪萃取時間 94 3.5.5 檢量線製備與偵測極限 95 3.5.6 空白樣品之回收率測試 95 3.5.7 重複性 96 3.5.8 真實樣品之分析 97 3.5.9 營養補充品之分析 98 3.6 結論 99 3.7 參考文獻 100rf 參考文獻(1) [1 ] http://www.doh.gov.tw/statistic/index.htm". [2 ] 吳煥、顧冠彬,『台灣降壓草藥』,「阿嬷的知識-台灣草藥展」系列講座,http://www.nmns.edu.tw/New/Areas/BGarden/Exhibits/Herb/speech/sub8.htm. [3 ] http://www.yputh.com.tw/joanna/nursing/N92.11.06-A.htm. [4 ] 陳夏蓮、李薇莉,『重新認識高血壓』,護理雜誌,2000年,第47卷第5期,64-70頁。 [5 ] 洪金烈,『中醫藥治療高血脂的探討』,北縣中醫會刊雜誌,2004年,第6卷第2期,65-71頁。. [6 ] 吳煥、顧冠彬,『台灣降脂草藥』,「阿嬷的知識-台灣草藥展」系列講座,http://ww.nmns.edu.tw/New/Areas/BGarden/Exhibits/Herb/speech/sub7.htm [7 ] 孫善美,『無聲的殺手-高血脂的中醫觀』,鄉間小路,2004年元月號,58-59頁。 [8 ] 張睯,『與高脂血症賽跑』,2000年,書泉出版社。 [9 ] 吳龍源,『高脂血症之中藥治療方法與作用機轉』,中國中醫臨床醫學雜誌,2000年,第6卷第1期。 [10 ] 陳如茵,『抗氧化成分對動脈粥樣硬化影響的機制』,食品工業,2002年,第34卷第11期,34-42頁。 [11 ] da Silva, A. P.; Rocha, R.; Silva, C. M. L.; Mira, L.; Duarte, M. F.; Florencio, M. H. "Antioxidants in medicinal plant extracts. A research study of the antioxidant capacity of Crataegus, Hamamelis and Hydrastis", Phytotherapy Research, 2000, 14(8), 612-616. [12 ] 增山吉成,『自由基的陰謀』,1997年8月,健康世界雜誌出版。 [13 ] Lester Packer, Carol Colman著,陳芳智譯,『抗氧化物的奇蹟』,2002年5月,原水文化出版。 [14 ] Graham, A.; Hogg, N.; Kalyanaraman, B.; Oleary, V.; Darleyusmar, V.; Moncada, S. "Peroxynitrite Modification of Low-Density-Lipoprotein Leads to Recognition by the Macrophage Scavenger Receptor", Febs Letters, 1993, 330(2), 181-185. [15 ] Haenen, G. R. M. M.; Paquay, J. B. G.; Korthouwer, R. E. M.; Bast, A. "Peroxynitrite scavenging by flavonoids", Biochemical and Biophysical Research Communications, 1997, 236(3), 591-593. [16 ] Arteel, G. E.; Sies, H. "Protection against peroxynitrite by cocoa polyphenol oligomers", Febs Letters, 1999, 462(1-2), 167-170. [17 ] 林正忠,『壓力流體萃取松樹中生物活性物質之研究』,國立中興大學碩士論文,2002年。 [18 ] Hvattum, E.; Ekeberg, D. "Study of the collision-induced radical cleavage of flavonoid glycosides using negative electrospray ionization tandem quadrupole mass spectrometry", Journal of Mass Spectrometry, 2003, 38(1), 43-49. [19 ] Heijnen, C. G. M.; Haenen, G. R. M. M.; Vekemans, J. A. J. M.; Bast, A. "Peroxynitrite scavenging of flavonoids: structure activity relationship", Environmental Toxicology and Pharmacology, 2001, 10(4), 199-206. [20 ] Heijnen, C. G. M.; Haenen, G. R. M. M.; van Acker, F. A. A.; van der Vijgh, W. J. F.; Bast, A. "Flavonoids as peroxynitrite scavengers: the role of the hydroxyl groups", Toxicology in Vitro, 2001, 15(1), 3-6. [21 ] Choi, J. S.; Chung, H. Y.; Kang, S. S.; Jung, M. J.; Kim, J. W.; No, J. K.; Jung, H. A. "The structure-activity relationship of flavonoids as scavengers of peroxynitrite", Phytotherapy Research, 2002, 16(3), 232-235. [22 ] 簡志鴻,『高血壓病』,北縣中醫會刊雜誌,2004年,第6卷第2期,52-64頁。 [23 ] 郝立智,『高血脂症之飲食及藥物治療』,當代醫學,2002年7月,第29卷第7期,548-555頁。 [24 ] 吳龍源,『中國醫學對高脂血症的認識及治療文獻回顧』,中國醫學網。 [25 ] Huie, C. W. "A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants", Analytical and Bioanalytical Chemistry, 2002, 373(1-2), 23-30. [26 ] Esteban, J. L.; MartinezCastro, I.; Morales, R.; Fabrellas, B.; Sanz, J. "Rapid identification of volatile compounds in aromatic plants by automatic thermal desorption-GC-MS", Chromatographia, 1996, 43(1-2), 63-72. [27 ] Hwang, B. H.; Lee, M. R. "Solid-phase microextraction for organochlorine pesticide residues analysis in Chinese herbal formulations", Journal of Chromatography A, 2000, 898(2), 245-256. [28 ] Chen, Y. T.; Ling, Y. C. "An overview of supercritical fluid extraction in Chinese herbal medicine: From preparation to analysis", Journal of Food and Drug Analysis, 2000, 8(4), 235-247. [29 ] Guo, Z. K.; Jin, Q. H.; Fan, G. Q.; Duan, Y. P.; Qin, C.; Wen, M. J. "Microwave-assisted extraction of effective constituents from a Chinese herbal medicine Radix puerariae", Analytica Chimica Acta, 2001, 436(1), 41-47. [30 ] Ong, E. S.; Woo, S. O.; Yong, Y. L. "Pressurized liquid extraction of berberine and aristolochic acids in medicinal plants", Journal of Chromatography A, 2000, 904(1), 57-64. [31 ] Palma, M.; Pineiro, Z.; Barroso, C. G. "Stability of phenolic compounds during extraction with superheated solvents", Journal of Chromatography A, 2001, 921(2), 169-174. [32 ] E. Prichard, G. M. M., J. Points Trace analysis: A structured approach to obtaining reliable results; Royal Society if Chemistry, 1996. [33 ] http://www.37c.com.cn". [34 ] http://www.e2121.com/herb_db/". [35 ] Chang, Q.; Zuo, Z.; Harrison, F.; Chow, M. S. S. "Hawthorn", Journal of Clinical Pharmacology, 2002, 42(6), 605-612. [36 ] 梅全喜編,『現代中藥藥理手冊』,1998年10月,北京。 [37 ] 葉璐君等編,『山楂的保健功能與食療方』,2000年5月,北京,金盾出版社。 [38 ] Nakatani, N.; Kayano, S.; Kikuzaki, H.; Sumino, K.; Katagiri, K.; Mitani, T. "Identification, quantitative determination, and antioxidative activities of chlorogenic acid isomers in prune (Prunus domestica L.)", Journal of Agricultural and Food Chemistry, 2000, 48(11), 5512-5516. [39 ] Aramendia, M. A.; Garcia, I. M.; Lafont, F.; Lizaso, J.; Marinas, J. M.; Urbano, F. J. "Rapid determination of chlorogenic acid and related compounds in sunflower seeds by highperformance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry", Rapid Communications in Mass Spectrometry, 2000, 14(12), 1019-1022. [40 ] Zeeb, D. J.; Nelson, B. C.; Albert, K.; Dalluge, J. J. "Separation and identification of twelve catechins in tea using liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry", Analytical Chemistry, 2000, 72(20), 5020-5026. [41 ] 郭智宏,『自然界抗氧化高手之一-兒茶素-兒茶素在生理上抗氧化之作用』,食品工業,1999年5月,第31卷第9期,27-33頁。 [42 ] 季宇彬、張翠 編,『中藥抗衰老有效成分藥理與應用』,2001年3月出版,黑龍江科學技術出版社。 [43 ] 吳家誠,李迪雯,『加速溶劑萃取技術的原理及運用』,科儀新知,1997年10月,第19卷第2期,143-148頁。 [44 ] 范志豪,『以加速溶劑萃取技術自固態樣品中萃取含極性官能基與離子性有機化合物的研究』,國立中央大學碩士論文,1999年。 [45 ] 林佳葳,『牛奶中粗脂肪之加速溶劑萃取測定與六種合成代謝性荷爾蒙之液相層析質譜分析研究』,清華大學碩士論文,2002年。 [46 ] Dabrowski, L.; Giergielewicz-Mozajska, H.; Biziuk, M.; Gaca, J.; Nameisnik, J. "Some aspects of the analysis of environmental pollutants in sediments using pressurized liquid extraction and gas chromatography-mass spectrometry", Journal of Chromatography A, 2002, 957(1), 59-67. [47 ] Gomez-Ariza, J. L.; Bujalance, M.; Giraldez, I.; Velasco, A.; Morales, E. "Determination of polychlorinated biphenyls in biota samples using simultaneous pressurized liquid extraction and purification", Journal of Chromatography A, 2002, 946(1-2), 209-219. [48 ] Muller, A.; Bjorklund, E.; von Holst, C. "On-line clean-up of pressurized liquid extracts for the determination of polychlorinated biphenyls in feedingstuffs and food matrices using gas chromatography-mass spectrometry", Journal of Chromatography A, 2001, 925(1-2), 197-205. [49 ] Marchese, S.; Perret, D.; Gentili, A.; Curini, R.; Marino, A. "Development of a method based on accelerated solvent extraction and liquid chromatography/mass spectrometry for determination of arylphenoxypropionic herbicides in soil", Rapid Communications in Mass Spectrometry, 2001, 15(6), 393-400. [50 ] Petrovic, M.; Lacorte, S.; Viana, P.; Barcelo, D. "Pressurized liquid extraction followed by liquid chromatography-mass spectrometry for the determination of alkylphenolic compounds in river sediment", Journal of Chromatography A, 2002, 959(1-2), 15-23. [51 ] Tavazzi, S.; Benfenati, E.; Barcelo, D. "Accelerated solvent extraction then liquid chromatography coupled with mass Spectrometry for determination of 4-t-octyl phenol, 4-nonylphenols, and bisphenol A in fish liver", Chromatographia, 2002, 56(7-8), 463-467. [52 ] Alexandrou, N.; Smith, M.; Park, R.; Lumb, K.; Brice, K. "The extraction of polycyclic aromatic hydrocarbons from atmospheric particulate matter samples by Accelerated solvent extraction (ASE)", International Journal of Environmental Analytical Chemistry, 2001, 81(4), 257-280. [53 ] Lee, H. K.; Koh, H. L.; Ong, E. S.; Woo, S. O. "Determination of ginsenosides in medicinal plants and health supplements by pressurized liquid extraction (PLE) with reversed phase high performance liquid chromatography", Journal of Separation Science, 2002, 25(3), 160-166. [54 ] Ferrer, I.; Furlong, E. T. "Accelerated solvent extraction followed by on-line solid-phase extraction coupled to ion trap LC/MS/MS for analysis of benzalkonium chlorides in sediment samples", Analytical Chemistry, 2002, 74(6), 1275-1280. [55 ] Ong, E. S. "Chemical assay of glycyrrhizin in medicinal plants by pressurized liquid extraction (PLE) with capillary zone electrophoresis (CZE)", Journal of Separation Science, 2002, 25(13), 825-831. [56 ] Hoang, T. H.; Farkas, R.; Wells, C.; McClintock, S.; Di Maso, M. "Application of pressurized liquid extraction technology to pharmaceutical solid dosage form analysis", Journal of Chromatography A, 2002, 968(1-2), 257-261. [57 ] Papagiannopoulos, M.; Mellenthin, A. "Automated sample preparation by pressurized liquid extraction-solid-phase extraction for the liquid chromatographic-mass spectrometric investigation of polyphenols in the brewing process", Journal of Chromatography A, 2002, 976(1-2), 345-348. [58 ] Alonso-Salces, R. M.; Korta, E.; Barranco, A.; Berrueta, L. A.; Gallo, B.; Vicente, F. "Determination of polyphenolic profiles of Basque cider apple varieties using accelerated solvent extraction", Journal of Agricultural and Food Chemistry, 2001, 49(8), 3761-3767. [59 ] Palma, M.; Pineiro, Z.; Barroso, C. G. "In-line pressurized-fluid extraction-solid-phase extraction for determining phenolic compounds in grapes", Journal of Chromatography A, 2002, 968(1-2), 1-6. [60 ] 趙民德、謝邦昌著,『多變量分析』,2000年7月,曉園出版社。 [61 ] 陳順宇著,『多變量分析』,2000年7月二版。 [62 ] Li, W. K.; Fitzloff, J. F. "High performance liquid chromatographic analysis of St. John's Wort with photodiode array detection", Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2001, 765(1), 99-105. [63 ] Brolis, M.; Gabetta, B.; Fuzzati, N.; Pace, R.; Panzeri, F.; Peterlongo, F. "Identification by high-performance liquid chromatography diode array detection mass spectrometry and quantification by high-performance liquid chromatography UV absorbance detection of active constituents of Hypericum perforatum", Journal of Chromatography A, 1998, 825(1), 9-16. [64 ] Zhang, Z. S.; Chang, Q.; Zhu, M.; Huang, Y.; Ho, W. K. K.; Chen, Z. Y. "Characterization of antioxidants present in hawthorn fruits", Journal of Nutritional Biochemistry, 2001, 12(3), 144-152. [65 ] van der Sluis, A. A.; Dekker, M.; de Jager, A.; Jongen, W. M. F. "Activity and concentration of polyphenolic antioxidants in apple: Effect of cultivar, harvest year, and storage conditions", Journal of Agricultural and Food Chemistry, 2001, 49(8), 3606-3613. 參考文獻(2) [1 ] 出村 博著,李毓昭譯,『荷爾蒙的奇蹟:活化荷爾蒙,提昇免疫力』,2000年,晨星出版社。 [2 ] Theo Colborn, Dianne Dumanoski, John, Peterson Myers著,李芸玫、李靜瑤譯,『失竊的未來:生命的隱形浩劫』,1999年,先覺出版社。 [3 ] 更年期荷爾蒙療法衛教手冊,國民健康局 編,2002年12月。 [4 ] 健康生活家,http://www.HealthOnline.com.tw [5 ] 經期與更年期健康生活網,http://www.healthcity.net.tw/womansweb/index.htm [6 ] Miriam E. Nelson, Sarah Wernick著,連心瑜、陳芳智譯,『女性骨質疏鬆症全書』,2001年出版,城邦文化發行。 [7 ] Garbe, E.; Levesque, L.; Suissa, S. "Variability of breast cancer risk in observational studies of hormone replacement therapy: a meta-regression analysis", Maturitas, 2004, 47(3), 175-183. [8 ] Diamanti-Kandarakis, E. "Hormone replacement therapy and risk of malignancy", Current Opinion in Obstetrics & Gynecology, 2004, 16(1), 73-78. [9 ] Vassilopoulou-Sellin, R. "Breast cancer and hormonal replacement therapy", Women's Health and Disease: Gynecologic and Reproductive Issues, 2003, 997(341-350. [10 ] 李瑟、齊若蘭等人撰,『你可以輕鬆度過更年期:荷爾蒙的戰爭』,2000年5月30日,天下生活股份有限公司出版。 [11 ] Cos, P.; De Bruyne, T.; Apers, S.; Berghe, D. V.; Pieters, L.; Vlietinck, A. J. "Phytoestrogens: Recent developments", Planta Medica, 2003, 69(7), 589-599. [12 ] 婦女醫療諮詢網,http://www.healthwomen.com.tw/ [13 ] 李耀泰、郭宗正、陳福民,『植物性雌激素』,台北縣醫師公會會刊,第46卷,第10期。 [14 ] Jack Challem, Victoria Dolby Teows, Linda knittel著,許琇萍譯,『預防癌症、心臟病,骨質疏鬆的神奇大豆』,2003年1月,麥格羅希爾國際股份有限公司出版。 [15 ] 台北榮總婦產科專業醫療網站-衛教專區,http://www.okmammy.idv.tw/contents/case74.htm [16 ] Tice, J. A.; Ettinger, B.; Ensrud, K.; Wallace, R.; Blackwell, T.; Cummings, S. R. "Phytoestrogen supplements for the treatment of hot flashes: The Isoflavone Clover Extract (ICE) study - A Randomized controlled trial", Jama-Journal of the American Medical Association, 2003, 290(2), 207-214. [17 ] van de Weijer, P. H. M.; Barentsen, R. "Isoflavones from red clover (Promensil (R)) significantly reduce menopausal hot flush symptoms compared with placebo", Maturitas, 2002, 42(3), 187-193. [18 ] Johnson, E. B.; Muto, M. G.; Yanushpolsky, E. H.; Mutter, G. L. "Phytoestrogen supplementation and endometrial cancer", Obstetrics and Gynecology, 2001, 98(5), 947-950. [19 ] Bouker, K. B.; Hilakivi-Clarke, L. "Genistein: Does it prevent or promote breast cancer?" Environmental Health Perspectives, 2000, 108(8), 701-708. [20 ] 周昱菁、洪正修,『植物性荷爾蒙可否取代傳統荷爾蒙補充療法』,癌症新探,32-34頁。 [21 ] Kirakosyan, A.; Kaufman, P. B.; Warber, S.; Bolling, S.; Chang, S. C.; Duke, J. A. "Quantification of major isoflavonoids and L-canavanine in several organs of kudzu vine (Pueraria montana) and in starch samples derived from kudzu roots", Plant Science, 2003, 164(5), 883-888. [22 ] 季宇彬、張翠 編,『中藥抗衰老有效成分藥理與應用』,2001年3月出版,黑龍江科學技術出版社。 [23 ] Bhasin, S.; Storer, T. W.; Berman, N.; Callegari, C.; Clevenger, B.; Phillips, J.; Bunnell, T. J.; Tricker, R.; Shirazi, A.; Casaburi, R. "The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men", New England Journal of Medicine, 1996, 335(1), 1-7. [24 ] LCQ MS Detector Harware manual, Fininigan, 1999." [25 ] Harris, D. C. Quantutative Chemical Analysis, Fifth ed.; W. H. Freeman and Company New York, 1998. [26 ] 詹舜安、劉宗榮,『液相層析串聯式質譜儀之原理與應用』,科儀新知,第24卷,第1期,77-89頁。 [27 ] 陳仁焜,『液相層析/質譜/質譜的原理與其在食品科學領域的應用』,食品工業月刊,第33卷,第3期,44-54頁。 [28 ] Wu, Q. L.; Wang, M. F.; Simon, J. E. "Determination of isoflavones in red clover and related species by high-performance liquid chromatography combined with ultraviolet and mass spectrometric detection", Journal of Chromatography A, 2003, 1016(2), 195-209. [29 ] Cuyckens, F.; Claeys, M. "Optimization of a liquid chromatography method based on simultaneous electrospray ionization mass spectrometric and ultraviolet photodiode array detection for analysis of flavonoid glycosides", Rapid Communications in Mass Spectrometry, 2002, 16(24), 2341-2348. [30 ] Griffith, A. P.; Collison, M. W. "Improved methods for the extraction and analysis of isoflavones from soy-containing foods and nutritional supplements by reversed-phase high-performance liquid chromatography and liquid chromatography-mass spectrometry", Journal of Chromatography A, 2001, 913(1-2), 397-413. [31 ] Prasain, J. K.; Jones, K.; Kirk, M.; Wilson, L.; Smith-Johnson, M.; Weaver, C.; Barnes, S. "Profiling and quantification of isoflavonoids in kudzu dietary supplements by high-performance liquid chromatography and electrospray ionization tandem mass spectrometry", Journal of Agricultural and Food Chemistry, 2003, 51(15), 4213-4218. [32 ] Rostagno, M. A.; Palma, M.; Barroso, C. G. "Ultrasound-assisted extraction of soy isoflavones", Journal of Chromatography A, 2003, 1012(2), 119-128. [33 ] Hutabarat, L. S.; Greenfield, H.; Mulholland, M. "Quantitative determination of isoflavones and coumestrol in soybean by column liquid chromatography", Journal of Chromatography A, 2000, 886(1-2), 55-63.id NH0925065027 sid 913457 cfn 0 / id NH0925065028 auc 陳泰延 tic 新型咪唑銥錯合物之合成及其在有機電致發光元件上的應用 adc 鄭建鴻 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 188 kwc 有機銥金屬磷光材料 kwc 咪唑苯環配位基 kwc 吸收波長、放光波長 kwc 量子效率 kwc 三重激發態生命週期 abc 本論文的目的在於研究與合成有機銥金屬藍色磷光材料,利用不同之咪唑苯環配位基和常見之單負價雙牙配位基,我們合成了一系列具發光性質之銥金屬錯合物,依單負價雙牙配位基的不同,基本上我們將所合成出之咪唑苯環銥錯合物分成乙醯丙酮(acetyl acetone)、吡啶甲酸(picolinic acid)及三配位基螫合銥錯化物三類。我們對這些發光材料作一系列的性質研究,包括吸收波長、放光波長及量子效率三重激發態生命週期及元件的效能,實驗結果證明我們可以得到不錯外部量子效率的綠光材料,以及放光波長較短的磷光材料。 rf 參考文獻 1. Burrows, P. E.; Gu, G.; Bulovic V.; Shen, Z.; Forrest, S. R.; Thompson, M. E. IEEE Trans. Electron Device 1997, 44, 11888. 2. Pope, P.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042. 3. T. C. Werner, J. Chang, and D. M. Hercules, J. Am. Chem. Soc. 92, 73 (1970). 4. G. G. Roberts, B. S. Keating, P. S.Vincett, and W. A. Barlow, J. Phys. C: Solid State Phys. 11, 3847 (1978). 5. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913. 6. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay K. D.; Friend R.H.; Burn P. L.; Holmes A. B. Nature 1990, 347, 539. 7. H. a. Mizes and E. M. Conwell, Phys. Rev. Lett. 70, 1505 (1993) 8. M. E. Thompson, A. Shoustikov, Y. You, S. Sibley, M. A. Baldo, V. Koslov, E. P. Burrows, S. R. Forrest, MRS Abstract, G2.4, Spring Meeting, 1998 9. M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature, 1998, 395, 151. 10. D. F. O’Brien, M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett., 1999, 74, 442. 11. Text book of Basic Optics. 12. G. Gu, D. z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, Opt. Lett. 22, 396(1997). 13. T. Tsutsui and S. Satio, in Intrinsically Conducting Polymer: An Emerging Technology, edited by M. Aldissi, Kluwer Academic, Dordreccht 1993, p. 123. 14. M. A. Baldo, M. E. Thompson, S. R. Forrest, Nature, 2000, 403, 750. 15. C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, R. C. Kwong, J. Am. Chem. Soc. 78, 1622 (2001). 16. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett., 1999, 75, 4. 17. C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, J. Appl. Phys. 90 (2000) 5048. 18. R. J. Holmes, S. R. Forrest, Y.-J. Tung, R. C. Weong, J. J. Brown, S. Garon, and M. E. Thompson, Appl. Phys. Lett., 2003, 82, 2422. 19. R. J. Holmes, B. W. D’Andrade, S. R. Forrest, X. Ren, J. Li, and M. E. Thompson, Appl. Phys. Lett., 2003, 83, 3818. 20. Arnold B. Tamayo, Bert D. Alleyne, Peter I. Djurovich, Sergey Lamansky, Irina Tsyba, Nam N. Ho, Robert Bau, and M. E. Thompson, J. Am. Chem. Soc. 125, 7377 (2003). 21. S. Lamansky, Peter I. Djurovich, Drew Murphy, Feras Abdel-Razzaq, Hae-Eun Lee, Chihaya Adachi, Paul E Burrows, S. R. Forrest, and M. E. Thompson, J. Am. Chem. Soc. 123, 4304 (2001). 22. P. Jeffrey. Hay, J. Phys. Chem. A. 2002, 106, 1634 23. Y. Ohsawa, S Sprouse, K. A. King, M. W. Hanck, and R. J. Watts, J. Phys. Chem. 1987, 91, 1047. 24. J. N. Demas, D. G. Taylor, Inorg. Chem. 1979, 18, 3177 25. N. H. Damrauer, T. R. Boussie, M. Devenney, J. K. McCusker, J. Am. Chem Soc. 1997, 119, 8253.id NH0925065028 sid 913458 cfn 0 / id NH0925065029 auc 何家齊 tic 醣化及磷酸化對普昂胜 tic & tic #32957;構形及其形成澱粉樣沈澱的影響 adc 余靖 博士 adc 陳佩燁 博士 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 英文 pg 80 kwc 普昂蛋白質 kwc 澱粉樣沈澱 kwc 磷酸化 kwc 醣化 abc 普昂疾病(prion disease)是一種腦神經退化疾病,於許多動物及人類都有發現,例如發生於牛群的狂牛病,發生於人類的庫賈氏症…等等,患者共同特徵為運動不協調性及在患者腦切片中發現有海綿狀空隙般的空洞。而其疾病的病原體為蛋白質,由自然態蛋白質(PrPC)轉變成非自然態蛋白質(PrPSc),但是,其轉變機制仍是個謎。之前的研究已經發現如果加入單醣於大頰鼠普昂蛋白序列108-144則會對形成澱粉樣沈澱過程有所影響,如果加入?娗-N-乙醯半乳醣胺(?娗-GalNAc)會抑制澱粉樣沈澱的形成,但有趣的是?涀-N-乙醯葡萄醣胺(?涀-GlcNAc)卻沒有卻沒有如此大的影響,表示澱粉樣沈澱具有『單醣專一性』。為了更深入了解其影響原因,我們合成了兩個非自然的單醣胜肽(?涀-N-乙醯半乳醣胺(?涀-GalNAc)和?娗-N-乙醯葡萄醣胺(?娗-GlcNAc))。發現?娗-殊碳醣異構物(?娗-GalNAc,?娗-GlcNAc)皆具有抑制澱粉樣沈澱的效用,但??-殊碳醣異構物卻沒有。並且由核磁共振光譜看出Ser-135和Arg-136附近的位置對形成澱粉樣沈澱具有相當的重要性。除此之外,我們還比較了磷酸化和醣化對對普昂胜肽構形及其形成澱粉樣沈澱的影響。 tc Abbreviations i Chapter 1 Introduction 1.1 Introduction to prion disease 1 1.2 The structural studies of PrP 4 1.3 The mechanism studies of amyloid 7 1.4 Glycosylation of proteins 10 1.5 The mucin-type O-linked glycoprotein 13 1.6 The O-GlcNAc type glycoprotein 14 1.7 Previous studies about the effects of sugars on protein conformation 15 1.8 The aim of this project 16 Chapter 2 Materials and Methods 2.1 Materials 18 2.1.1 Water 18 2.1.2 Chemicals 18 2.1.3 Buffer solution 20 2.2 Method 21 2.2.1 Peptide synthesis, purification, identification 21 2.2.2 The concentration standard curve of PrP(108-144) 25 2.2.3 Fibrillization time course was monitored by Circular dicroism (CD) spectroscopy 25 2.2.4 Time course of fibrillization was monitored by Fluorescence microscopy 28 2.2.5 Two-dimensional NMR spectroscopy in solution 29 2.2.6 Transmission Electron Microscope (TEM) 30 Chapter 3 Results and Discussion (I): Purification and Identification of Peptides 3.1 Cleavage and deprotection of peptides from resin 31 3.2 Peptide purified by HPLC 32 3.3 Identification of peptides by mass spectrometry 36 3.4 The concentration standard curve of PrP(108-144) 37 Chapter 4 Results and Discussion (II): The kinetics of amyloid fibrillization and solution structure of peptides 4.1 Fibrillization and structure of PrP(108-144) 40 4.1.1 PrP(108-144) is self-assembled from random coil to fibril 40 4.1.2 Fibrillization process is depending on peptide concentration 43 4.1.3 Fibrillization process is depending on incubation temperature 45 4.1.4 Time course of PrP(108-144) fibrillization with seeding 46 4.1.5 The critical concentration of PrP(108-144) 51 4.1.6 The 2D-TOCSY spectra of PrP(108-144) 52 4.2 Fibrillization and structure of S135-a-GalNAc, S135-b-GlcNAc, S135-a-GlcNAc, and S135-b-GalNAc 53 4.2.1 Time course of amyloid formation for S135-a-GalNAc, S135-b-GlcNAc, S135-a-GlcNAc, and S135-b- GalNAc 53 4.2.2 The effect of glycosylated peptide of S135-a-GalNAc, S135-b-GlcNAc, S135-a-GlcNAc, and S135-b-GalNAc on the structure in solution 57 4.3 Time course of amyloid formation for R136G 61 4.4 Fibrillization and structure of S135-p 62 4.4.1 Time course of amyloid formation and structure for S135-p 62 4.4.2 The 2D-TOCSY spectra of S135-p 65 Chapter 5 Conclusions and Future Outlooks 66 References 69 Mass spectra 74rf 3r LH (1993) Thioflavine T interaction with synthetic Alzheimer's disease beta-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci. 2: 404-410 Amy Hamilton Andreotti DK (1993) The effects of glycosylation on peptide backbone conformation. J. Am. Chem. Soc. 115: 3352-3353 Apetri AC, Surewicz WK (2002) Kinetic intermediate in the folding of human prion protein. J. Biol .Chem. 277: 44589-44592 Arnold CS JG, Cole RN, Dong DL, Lee M, Hart GW. (1996) The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. J. Biol. Chem. 271: 28741 Bouma B, Kroon-Batenburg LM, Wu YP, Brunjes B, Posthuma G, Kranenburg O, de Groot PG, Voest EE, Gebbink MF (2003) Glycation induces formation of amyloid cross-beta structure in albumin. J. Bio. Chem. 278: 41810-41819 Chesebro B (2003) Introduction to the transmissible spongiform encephalopathies or prion diseases. Br. Med. Bull. 66: 1-20 Comer FI, Hart GW (2000) O-Glycosylation of nuclear and cytosolic proteins. Dynamic interplay between O-GlcNAc and O-phosphate. J. Biol. Chem. 275: 29179-29182 Donne DG, Viles JH, Groth D, Mehlhorn I, James TL, Cohen FE, Prusiner SB, Wright PE, Dyson HJ (1997) Structure of the recombinant full-length hamster prion protein PrP(29-231): the N terminus is highly flexible. Proc. Natl. Acad. Sci. USA 94: 13452-13457 Gajdusek DC, Gibbs CJ, Alpers M (1966) Experimental transmission of a Kuru-like syndrome to chimpanzees. Nature 209: 794-796 Gajdusek DC, Gibbs CJ, Jr. (1971) Transmission of two subacute spongiform encephalopathies of man (Kuru and Creutzfeldt-Jakob disease) to new world monkeys. Nature 230: 588-591 Gajdusek DC, Zigas V (1959) Kuru; clinical, pathological and epidemiological study of an acute progressive degenerative disease of the central nervous system among natives of the Eastern Highlands of New Guinea. Am. J. Med. 26: 442-469 Griffith LS, Mathes M, Schmitz B (1995) Beta-amyloid precursor protein is modified with O-linked N-acetylglucosamine. J. Neurosci. Res. 41: 270-278 Harper JD, Lansbury PT, Jr. (1997) Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66: 385-407 Harrison PM, Bamborough P, Daggett V, Prusiner SB, Cohen FE (1997) The prion folding problem. Curr. Opin. Struct. Biol. 7: 53-59 Hart GW (1997) Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Annu. Rev. Biochem. 66: 315-335 Hindsgaul MFaO (2000) Molecular and cellular Glycobiliogy. Horwich AL, Weissman JS (1997) Deadly conformations--protein misfolding in prion disease. Cell 89: 499-510 James TL, Liu H, Ulyanov NB, Farr-Jones S, Zhang H, Donne DG, Kaneko K, Groth D, Mehlhorn I, Prusiner SB, Cohen FE (1997) Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc. Natl. Acad. Sci. USA 94: 10086-10091 Kaneko K, Ball HL, Wille H, Zhang H, Groth D, Torchia M, Tremblay P, Safar J, Prusiner SB, DeArmond SJ, Baldwin MA, Cohen FE (2000) A synthetic peptide initiates Gerstmann-Straussler-Scheinker (GSS) disease in transgenic mice. J. Mol. Biol. 295: 997-1007 Kaneko K, Peretz D, Pan KM, Blochberger TC, Wille H, Gabizon R, Griffith OH, Cohen FE, Baldwin MA, Prusiner SB (1995) Prion protein (PrP) synthetic peptides induce cellular PrP to acquire properties of the scrapie isoform. Proc. Natl. Acad. Sci. USA 92: 11160-11164 Kelly WG, Dahmus ME, Hart GW (1993) RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc. J. Biol. Chem. 268: 10416-10424 Kusumoto Y, Lomakin A, Teplow DB, Benedek GB (1998) Temperature dependence of amyloid beta-protein fibrillization. Proc. Natl. Acad. Sci. USA 95: 12277-12282 Kuwata K, Kamatari YO, Akasaka K, James TL (2004) Slow conformational dynamics in the hamster prion protein. Biochemistry 43: 4439-4446 M Hasegawa MM-K, K Takio, M Suzuki, K Titani and Y Ihara (1992) Protein sequence and mass spectrometric analyses of tau in the Alzheimer's disease brain. J. Biol. Chem. 267: 17047-17054 MacPhee CE, Dobson CM (2000) Chemical dissection and reassembly of amyloid fibrils formed by a peptide fragment of transthyretin. J. Mol. Biol. 297: 1203-1215 Maho Morishima-Kawashima MH, Koji Takio , Masami Suzuki , Hirotaka Yoshida , Koiti Titani , Yasuo Ihara (1995) Proline-directed and Non-proline-directed Phosphorylation of PHF-tau. J. Biol. Chem. 270: 823-829 Manning MC, Illangasekare M, Woody RW (1988) Circular dichroism studies of distorted alpha-helices, twisted beta-sheets, and beta turns. Biophys. Chem. 31: 77-86 Murphy RM (2002) Peptide aggregation in neurodegenerative disease. Annu. Rev. Biomed. Eng. 4: 155-174 Neustroev KN GA, Firsov LM, Ibatullin FM, Protasevich II, Makarov AA. (1993) Effect of modification of carbohydrate component on properties of glucoamylase. FEBS Lett. 316: 157-160 Nunziante M, Gilch S, Schatzl HM (2003) Prion diseases: from molecular biology to intervention strategies. Chem. Biochem. 4: 1268-1284 O'Conner SE, Imperiali B (1998) A molecular basis for glycosylation-induced conformational switching. Chem. Biol. 5: 427-437 O'Connor SEI, B. (1997) A molecular basis for glycosylation-induced conformational switching. J. Am. Chem. Soc. 119: 2295-2296 Oh-eda M HM, Hattori K, Kuboniwa H, Kojima T, Orita T, Tomonou K, Yamazaki T, Ochi N. (1990) O-linked sugar chain of human granulocyte colony-stimulating factor protects it against polymerization and denaturation allowing it to retain its biological activity. J. Biol. Chem. 265: 11432-11435 Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE, et al. (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. USA 90: 10962-10966 Pei-Yeh Chen C-CL, Yin-Ting Chang, Su-Ching Lin, and Sunney I. Chan (2002) One O-linked sugar can affect the coil-to- structural transition of the prion peptide. Proc. Natl. Acad. Sci. USA 99: 12633-12638 Plaza del Pino IM, Ibarra-Molero B, Sanchez-Ruiz JM (2000) Lower kinetic limit to protein thermal stability: a proposal regarding protein stability in vivo and its relation with misfolding diseases. Proteins 40: 58-70 Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216: 136-144 Prusiner SB (1991) Molecular biology of prion diseases. Science 252: 1515-1522 Safar J, Roller PP, Gajdusek DC, Gibbs CJ, Jr. (1993) Conformational transitions, dissociation, and unfolding of scrapie amyloid (prion) protein. J. Biol. Chem. 268: 20276-20284 Shaw P, Freeman J, Bovey R, Iggo R (1996) Regulation of specific DNA binding by p53: evidence for a role for O-glycosylation and charged residues at the carboxy-terminus. Oncogene 12: 921-930 Shmerling D, Hegyi I, Fischer M, Blattler T, Brandner S, Gotz J, Rulicke T, Flechsig E, Cozzio A, von Mering C, Hangartner C, Aguzzi A, Weissmann C (1998) Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell 93: 203-214 Tagliavini F, Prelli F, Verga L, Giaccone G, Sarma R, Gorevic P, Ghetti B, Passerini F, Ghibaudi E, Forloni G, et al. (1993) Synthetic peptides homologous to prion protein residues 106-147 form amyloid-like fibrils in vitro. Proc. Natl. Acad. Sci. USA 90: 9678-9682 Taraboulos A, Rogers M, Borchelt DR, McKinley MP, Scott M, Serban D, Prusiner SB (1990) Acquisition of protease resistance by prion proteins in scrapie-infected cells does not require asparagine-linked glycosylation. Proc. Natl. Acad. Sci. USA 87: 8262-8266 Van den Steen P, Rudd PM, Dwek RA, Opdenakker G (1998) Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 33: 151-208 Wells L, Vosseller K, Hart GW (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291: 2376-2378 Wille H, Michelitsch MD, Guenebaut V, Supattapone S, Serban A, Cohen FE, Agard DA, Prusiner SB (2002) Structural studies of the scrapie prion protein by electron crystallography. Proc. Natl. Acad. Sci. USA 99: 3563-3568id NH0925065029 sid 913459 cfn 0 / id NH0925065030 auc 陳膺仁 tic (Ⅰ)奈米碳微粒之製備 (Ⅱ)奈米碳管為模版生長奈米金屬線之研究 adc 黃國柱 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 98 kwc 碳微粒 kwc 奈米金屬線 kwc 奈米碳管 abc 根據目前文獻上的報導,使用電弧電漿法來製備碳微粒,雖然可以成功地製備出來,但是其純度往往不高,而且會有碳微管、非晶形的碳以及其他副產物伴隨地產生,並無法對於碳微粒其他性質(如:機械性質、抗摩擦、、、等)做進一步的研究。此外,傳統的電弧電漿法必須仰賴昂貴的真空設備,以維持其反應腔體之真空度,並無法應用於工業界的大量生產。本論文針對此一缺點加以改進,將傳統電弧電漿法所施加的直流電電源改為交流電電源,並配合高頻率電流交換器,可成功地製備出純度高達85 %之碳微粒。 tc 目錄 1. 緒論 1-1 碳、碳六十、碳微管、奈米碳球-------------------------02 1-1.1 碳--------------------------------------------------02 1-1.2 碳六十---------------------------------------------03 1-1.3 碳微管---------------------------------------------04 1-1.4 奈米碳球-------------------------------------------06 1-2 奈米碳球的製備方法-----------------------------------09 1-3 奈米碳球的性質與應用---------------------------------24 2. 液相與氣相電弧電漿法製備奈米碳球 2-1實驗原理簡介------------------------------------------26 2-2 鑑定儀器簡介-----------------------------------------28 2-3 藥品與設備-------------------------------------------34 2-3.1實驗藥品--------------------------------------------33 2-3.2 實驗設備--------------------------------------------35 2-3.3 石墨棒填充磷粉之方法-------------------------------36 2-4 液相電弧電漿法與實驗裝置圖--------------------------37 2-5氣相電弧放電法與實驗裝置圖--------------------------41 2-6 實驗結果與討論--------------------------------------43 2-6.1 液相電弧電漿法-------------------------------------43 2-6.2 氣相電弧電漿法製備奈米碳球-------------------------54 3. 以碳微管為模版製備金屬奈米線 3-1簡介--------------------------------------------------84 3-2 實驗步驟---------------------------------------------86 3-3 實驗結果與討論---------------------------------------87 3-3.1 碳微管為模版,表面生成鎘金屬奈米線------------------87 3-3.2 碳微管為模版,表面生成鉑金屬奈米線------------------89 4. 結論---------------------------------------------------91 5. 參考文獻-----------------------------------------------93 6. 附錄---------------------------------------------------97 圖目錄 圖1-1、石墨與鑽石的結構----------------------------------03圖1-2、碳六十與碳管的結構--------------------------------04圖1-3、S. Iijima當初所發現的奈米碳管-----------------------05圖1-4、單層奈米碳管與其螺旋性的示意圖--------------------06圖1-5、填充金屬奈米碳球與中空奈米碳球之穿透式電子顯微鏡(Transmission Electron Microscope, TEM)照片-----------------08圖1-6、Krätschmer和Huffman當年使用之電弧放電法裝置圖----09 圖1-7、Saito當初利用電弧放電法所合成出來的碳微管與多邊形的碳微粒之掃瞄式電子顯微鏡圖---------------------------------11 圖1-8、Saito當初利用電弧放電法所合成出來的碳微管與多邊形的碳微粒之穿透式電子顯微鏡圖---------------------------------12 圖1-9、Saito等人在1993年利用電弧放電法製備的包含鐵的碳微粒之穿透式電子顯微鏡照片-----------------------------------13圖1-10、Saito等人在1993年利用電弧放電法製備的包含鐵的碳微粒之高解析度穿透式電子顯微鏡照片---------------------------14圖1-11、Saito等人合成出的含鈷碳微粒之穿透式電子顯微鏡照片-15圖1-12、水中電弧放電裝置示意圖---------------------------16圖1-13、本實驗室於2001年利用液相電弧放電法所製備出的碳微管與碳微粒之TEM照片--------------------------------------17圖1-14、在水中電弧放電合成奈米碳球-----------------------18圖1-15、Ugarte當年所發現之碳微粒-------------------------19圖1-16、電漿火炬前端之反應機制---------------------------21圖1-17、射頻電漿火炬反應腔體與多孔金屬濾網---------------21圖1-18、微波電漿化學氣相沈積法反應機制圖-----------------22 圖2-1、碳微管與碳微粒之反應機制圖------------------------27 圖2-2、穿透式電子顯微鏡內部構造簡圖----------------------29圖2-3、X射線與晶體之作用示意圖--------------------------32圖2-4、JCPDS所列之石墨晶格繞射資料圖--------------------33圖2-5、鑽孔石墨棒之尺寸圖--------------------------------36圖2-6、液相中電弧放電裝置圖------------------------------37圖2-7、氣相中電弧放電裝置圖------------------------------41圖2-8、石墨棒與銅棒在水中以電壓20 V、電流交換頻率900 Hz之穿透式電子顯微鏡照片-------------------------------------42圖2-9、石墨棒與銅棒在水中以電壓20 V、電流交換頻率900 Hz之掃描式電子顯微鏡照片-------------------------------------42圖2-10、液相電漿法所製備的包覆銅碳微粒之高解析度穿透式電子顯微鏡照片-------------------------------------------------44圖2-11、石墨棒與銅棒在水中以電壓20 V、電流交換頻率900 Hz製備的碳微粒其X光粉末繞射圖-------------------------------45圖2-12、JCPDS資料庫所列之銅繞射資料圖-------------------46圖2-13、JCPDS資料庫所列之石墨繞射資料圖-----------------46 圖2-14、內部包覆銅的碳微粒之電子繞射圖案-----------------46 圖2-15、液相電弧電漿法所製備出的中空碳微粒之高解析度穿透式電子顯微鏡照-----------------------------------------------47圖2-16、填充5 %莫爾比磷粉所製備出的碳微粒之穿透式電子顯微鏡照片-----------------------------------------------------48圖2-17、填充5 %莫爾比磷粉所製備出的碳微粒之穿透式電子顯微鏡照片-----------------------------------------------------49圖2-18、填充5 %莫爾比磷粉所製備出的碳微粒之穿透式電子顯微鏡照片-----------------------------------------------------49圖2-19、填充10 %莫爾比磷粉所製備出的碳微粒之穿透式電子顯微鏡照片---------------------------------------------------50圖2-20、填充10 %莫爾比磷粉所製備出的碳微粒之穿透式電子顯微鏡照片---------------------------------------------------51圖2-21、填充25%莫爾比磷粉所製備出的碳微粒之穿透式電子顯微鏡照片---------------------------------------------------52圖2-22、填充25%莫爾比磷粉所製備出的碳微粒之穿透式電子顯微鏡照片---------------------------------------------------52圖2-23、兩根石墨棒填充5 %莫爾比的磷粉在氬氣環境下,以電弧電漿法製備碳微粒之穿透式電子顯微鏡照片---------------------55圖2-24、兩根石墨棒填充5 %莫爾比的磷粉在氬氣環境下,以電弧電漿法製備碳微粒之穿透式電子顯微鏡照片---------------------56圖2-25、此圖為圖2-24穿透式電子顯微鏡照片之局部放大圖----57圖2-26、兩根石墨棒填充5 %莫爾比的磷粉在氬氣環境下,以電弧電漿法製備碳微粒其X光粉末繞射圖---------------------------57圖2-27、兩根石墨棒填充10 %莫爾比的磷粉在氬氣環境下,以電弧電漿法製備碳微粒之穿透式電子顯微鏡照片-------------------59圖2-28、兩根石墨棒填充10 %莫爾比的磷粉在氬氣環境下,以電弧電漿法製備碳微粒之穿透式電子顯微鏡照片-------------------59圖2-29、兩根石墨棒填充10 %莫爾比的磷粉在氬氣環境下,以電弧電漿法製備碳微粒其X光粉末繞射圖-------------------------60圖2-30、兩根石墨棒填充25 %莫爾比的磷粉在氬氣環境下,以電弧電漿法製備碳微粒之穿透式電子顯微鏡照片-------------------62圖2-31、兩根石墨棒填充25 %莫爾比的磷粉在氬氣環境下,以電弧電漿法製備碳微粒之穿透式電子顯微鏡照片-------------------63圖2-32、兩根石墨棒填充25 %莫爾比的磷粉在氬氣環境下,以電弧電漿法製備碳微粒之穿透式電子顯微鏡照片-------------------64圖2-33、兩根石墨棒填充25 %莫爾比的磷粉在氬氣環境下,以電弧電漿法製備碳微粒其X光粉末繞射圖-------------------------64圖2-34、電流交換頻率為100 Hz,於氬氣環境下,以電弧電漿法所製備的碳微粒之穿透式電子顯微鏡照片-----------------------66圖2-35、電流交換頻率為100 Hz,於氬氣環境下,以電弧電漿法所製備的碳微粒之穿透式電子顯微鏡照片-----------------------67 圖2-36、為圖2-35之紅色區塊局部放大圖--------------------68 圖2-37、為圖2-35之藍色區塊局部放大圖--------------------69圖2-38、電流交換頻率為300 Hz,於氬氣環境下,以電弧電漿法所製備的碳微粒之穿透式電子顯微鏡照片-----------------------70 圖2-39、電流交換頻率為300 Hz,於氬氣環境下,以電弧電漿法所製備的碳微粒之穿透式電子顯微鏡照片-----------------------70 圖2-40、電流交換頻率為500 Hz,於氬氣環境下,以電弧電漿法所製備的碳微粒之穿透式電子顯微鏡照片-----------------------71 圖2-41、電流交換頻率為500 Hz,於氬氣環境下,以電弧電漿法所製備的碳微粒之穿透式電子顯微鏡照片-----------------------72圖2-42、電流交換頻率為500 Hz,於氬氣環境下,以電弧電漿法所製備的碳微粒之穿透式電子顯微鏡照片-----------------------72圖2-43、電流交換頻率為700 Hz,於氬氣環境下,以電弧電漿法所製備的碳微粒之穿透式電子顯微鏡照片-----------------------73圖2-44、電流交換頻率為700 Hz,於氬氣環境下,以電弧電漿法所製備的碳微粒之穿透式電子顯微鏡照片-----------------------74圖2-45、為圖2-44之局部放大圖----------------------------74圖2-46、電流交換頻率為900 Hz,於氬氣環境下,以電弧電漿法所製備的碳微粒之穿透式電子顯微鏡照片-----------------------75 圖2-47、電流交換頻率為900 Hz,於氬氣環境下,以電弧電漿法所製備的碳微粒之穿透式電子顯微鏡照片-----------------------76圖2-48、為圖2-47之局部放大圖----------------------------77 圖2-49、在氮氣之下,一端為石墨棒,另一端為石墨棒內部填充10 %莫爾比磷粉,以電弧電漿法所製備的碳微粒之穿透式電子顯微鏡照片---------------------------------------------------------78圖2-50、為圖2-49之局部放大圖----------------------------79 圖2-51、在氮氣環境底下,以電弧電漿法所製備出的碳微粒之X光粉末繞射圖-----------------------------------------------79圖2-52、(a)多孔性碳微粒分散於D.I.Water之中的照片;(b) 多孔性碳微粒分散於ethyl alcohol之中的照片--------------------------80 圖2-53、(a)多孔性碳微粒分散於acetone之中的照片;(b) 多孔性碳微粒分散於tetrahydrofuran之中的照片--------------------------80 圖2-54、(a)多孔性碳微粒分散於n-hexane之中的照片;(b)多孔性碳微粒分散於hexane之中的照片;(c)多孔性碳微粒分散於toluene之中的照片-----------------------------------------------------81 圖2-55、在氮氣之下,兩端為石墨棒,以電弧電漿法所製備的碳微粒之穿透式電子顯微鏡照片-----------------------------------82 圖2-56、在氮氣之下,兩端為石墨棒,以電弧電漿法所製備的碳微粒之穿透式電子顯微鏡照片-----------------------------------83 圖3-1、碳微管表面生成金屬鎘奈米線之掃描式電子顯微鏡照片—88圖3-2、碳微管表面生成金屬鎘奈米線之能量分散光譜圖--------88圖3-3、碳微管表面生成金屬鉑奈米線之掃描式電子顯微鏡照片--89圖3-4、碳微管表面生成金屬鉑奈米線之掃描式電子顯微鏡照片--90圖3-5、碳微管表面生成金屬鉑奈米線之能量分散光譜圖--------90 表目錄 表1-1、碳六十、奈米碳球、奈米碳管之性質比較---------------24 表2-1、填充5、10、25 %莫爾比例磷粉所製備之碳微粒結果比 較表-----------------------------------------------------65rf 1. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature 318, 162 (1985) 2. W. Krätschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, Nature 347, 354 (1990) 3. S. Iijima, Nature 354, 56 (1991) 4. http://www.mos.org/cst/article/4864/ 5. 余仁斌, 奈米碳管、碳微粒吸收自由基之性質及其應用暨垂直基版奈米碳管列陣合成, 國立清華大學碩士論文 (2003) 6. D. Ugarte, Nature 359, 707 (1992) 7. 黃贛麟, 奈米碳球, 台灣奈米科技, page71 (2004) 8. W. Krätschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, Nature 347, 354 (1990) 9. R. S. Ruoff, D. C. Lorents, B. Chan, R. Malhotra, S. Subramoney, Science 259, 346 (1993) 10. M. Tomita, Y. Saito, T. Hayashi, Jpn. J. Appl. Phys. 32, L280 (1993) 11. Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita, T. Hayashi, Chem. Phys. Lett. 204, 277 (1993) 12. Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita, T. Hayashi, Chem. Phys. Lett. 204, 277 (1993) 13. Y. Saito, T. Yoshikawa, M. Inagaki, Chem. Phys. Lett. 212, 379 (1993) 14. Y. Saito, T. Yoshikawa, M. Okuda, N. Fujimoto, J. Appl. Phys. 75, 134 (1994) 15. Y. Yosida, Appl. Phys. Lett, 64, 3084 (1994) 16. S. Seraphin, D. Zhou, J. Jiao, J. C. Whithers, and R. Loufty, Appl. Phys. Lett, 63, 2073 (1993) 17. Y. Saito, Y. Yoshikawa, M. Inagaki, M. Tomita, and T. Hayashi, Chem. Phys. Lett. 204, 277 (1993) 18. R. S. Ruoff, D. C. Lorentzs, B. Chan, R. Malhotra, and S. Subramoney, Science 259, 297 (1993) 19. M. Tomita, Y. Saito, and T. Hayashi, Jpn. J. Appl. Phys. 32, L280 (1993) 20. Y. Yosida, S. Shida, T. Ohsuna, and N. Shiraga, Abst. Fall Metting Phys. Soc. Jpn. 2, 414 (1993) 21. Y. Yosida, Appl. Phys. Lett. 62, 3447 (1993) 22. Y. L. Hsin, K.C. Hwang, F. R. Chen, J.J. Kai, Adv. Mater. 13, 803 (2001) 23. 高英哲,電弧電漿法製備碳微管暨水溶性碳微管之製備及應用 國立清華大學碩士論文 (2001) 24. N. Sano, H. Wang, M. Chhowalla, I. Alexandrou, G. A. J. Amaratunga, Nature 414, 506 (2001) 25. V. P. Dravid, J. J. Host, M. H. Teng, B. Elliott, J. Hwang, D. L. Johnson, T. O. Mason, J. R. Weertman, Nature 374, 602 (1995) 26. T. Hayashi, S. Hirono, M. Tomita, S. Umemura, Nature 381, 772 (1996) 27. Z. Turgut, J. H. Scott, M. Q. Huang, S. A. Majetich, M. E. Mchenry, J. Appl. Phys. 83, 6468 (1998) 28. S. H. Tsai, C. L. Lee, C. W. Chao, H. C. Shih, Carbon 38, 775 (2000) 29. S. C. Tsang, J. Qiu, Peter J. F. Harris, Q. J. Fu, N. Zhang, Chem. Phys. Lett. 322, 553 (2000) 30. 黃贛麟, 奈米碳球簡介, 強塑廣用新知 (2003) 31. E. S. Murdock, R. F. Simmons, R. Davison. IEEE. Trans. Mag. 28, 3078 (1992) 32. T. Yogi, T. A. Nguyen. IEEE. Trans. Mag. 29, 307 (1993) 33. R. S. Ruoff, D. C. Lorents, B. Chan, R. Malhotra, S. Subramoney, Science 259, 346 (1993) 34. Saito, Y. et al. Chem. Phys. Lett. 204, 277 (1993) 35. W. H. Richardson Jr., Infinite Energy 1996, July-August, 45 36. F. S. Robert, Science 304, 42 (2004) 37. Y. Zhang, N. W. Franklin, R. J. Chen, H. Dai, Chem. Phys. Lett. 331, 35 (2000) 38. G. L. Hwang, K. C. Hwang, et al. Chem. Mater. 15, 1353 (2003)id NH0925065030 sid 913461 cfn 0 / id NH0925065031 auc 陳淑樺 tic 以固相微萃取法配合高效能液相層析儀偵測水中磺胺類抗生素 adc 黃賢達 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 78 kwc 固相微萃取法 kwc 磺胺類抗生素 abc 本篇論文是以固相微萃取法結合高效能液相層析儀來偵測自然界水樣中的磺胺類抗生素,而實驗中所要分析的七種磺胺類抗生素分別為:sulfacetamide, sulfadiazine, sulfathiazole, sulfamerazine, sulfadimidine, sulfamonomethoxine與sulfamethoxazole。 tc 第一章 緒論..................................................................................................1 1-1 前言.................................................................................................1 1-2 磺胺類抗生素................................................................................2 1-3 固相微萃取法................................................................................4 1-3-1 直接固相微萃取(direct SPME)之原理..............................4 1-4 磺胺類抗生素的檢測方法...........................................................7 第二章 實驗部分.........................................................................................10 2-1 試藥................................................................................................10 2-2 標準溶液和真實樣品...................................................................10 2-3 儀器裝置........................................................................................11 2-4 實驗步驟........................................................................................12 第三章 結果與討論.....................................................................................15 3-1 各種影響變因探討.......................................................................15 3-1-1 纖維的種類..........................................................................15 3-1-2 萃取時間..............................................................................16 3-1-3 脫附模式..............................................................................17 3-1-4 浸泡的時間..........................................................................18 3-1-5 脫附的時間..........................................................................18 3-1-6 脫附液的組成......................................................................19 3-1-7 攪拌速率..............................................................................20 3-1-8 夾帶.......................................................................................20 3-1-9 樣品溶液的pH值...............................................................21 3-1-10 萃取溫度............................................................................22 3-1-11 溶劑強度的影響...............................................................23 3-1-12 離子強度的影響...............................................................24 3-2 方法偵測極限、精密度和線性..................................................27 3-3 環境樣品的測試...........................................................................28 第四章 結論..................................................................................................29 第五章 參考文獻.........................................................................................30rf (1) Chee-Sanford,J.C.;Aminov,R.I.;Krapac,I.J.;Garrigues-Jeanjean,N.;Mackie,R.I.“Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities” Appl.Environ.Microbiol.2001,67,1494. (2) Yang,S.;Carlson,K. “Evolution of antibiotic occurrence in a river through pristine, urban and agricultural landscapes ”Water Research2003,37,4645. (3) Guardabassi,L.;Petersen,A.;Olsen,J.E.;Dalsgaard,A. “Antibiotic resistance in Acinetobacter spp. isolated from sewers receiving waste effluent from a hospital and a pharmaceutical plant ”Appl.Environ. Microbiol.1998,64,3499. (4) Goni-Urriza,M.;Capdepuy,M.;Arpin,C.;Raymond,N.;Caumette,P.;Quentin,C.“Impact of an urban effluent on antibiotic resistance of riverine Enterobacteriaceae and Aeromonas spp.” Appl.Environ.Microbiol.2000,66,125. (5) 陳德輝,常用的抗生素《第二版》,2003. (6) 林誠一等,“磺胺噻唑餵飼土番鴨之探討”,畜產研究,1993,26(2),155. (7) Agarwal,V.K.“High-performance liquid chromatographic methods for the determination of sulfonamides in tissue, milk and eggs”J.Chromatogr.1992,624,411. (8) Korpimäki,T.;Brockmann,E.-C.;Kuronen,O.;Saraste,M.;Lamminmäki,U.;Tuomola,M.“Engineering of a broad specificity antibody for simultaneous detection of 13 sulfonamides at the maximum residue level”J.Agric.Food Chem.2004,52,40. (9) Hartig,C.;Storm,T.;Jekel,M. “Detection and identification of sulphonamide drugs in municipal waste water by liquid chromatography coupled with electrospray ionisation tandem mass spectrometry”J.Chromatogr.A1999,854,163. (10) Hirsch,R.;Ternes,T.A.;Haberer,K.;Mehlich,A.;Ballwanz,F.;Kratz, K.-L. “Determination of antibiotics in different water compartments via liquid chromatography-electrospray tandem mass spectrometry”J.Chromatogr.A1998,815,213. (11) Lindsey,M.E.;Meyer,M.;Thurman,E.M. “Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography /mass spectrometry”Anal.Chem.2001,73,4640. (12) Arthur,C.L.;Pawliszyn,J. “Solid phase microextraction with thermal desorption using fused silica optical fibers”Anal.Chem.1990,62,2145. (13) Chen,J.;Pawliszyn,J.B. “Solid phase microextraction coupled to high-performance liquid chromatography” Anal.Chem.1995,67,2530. (14) Salleh,S.H.;Saito,Y.;Kiso,Y.;Jinno,K. “Solventless sample preparation procedure for organophosphorus pesticides analysis using solid phase microextraction and on-line supercritical fluid extraction/high performance liquid chromatography technique”Anal.Chim.Acta2001,433,207. (15) Boyd-Boland,A.A.;Pawliszyn,J. Solid-Phase Microextraction Coupled with High-Performance Liquid Chromatography for the Determination of Alkylphenol Ethoxylate Surfactants in Water”Anal.Chem.1996,68,1521. (16) Wu,L.;Almirall,J.R.;Furton,K.G.“An improved interface for coupling solid-phase microextraction(SPME) to high performance liquid chromatography (HPLC) applied to the analysis of explosives”J.High.Resol.Chromatogr.1999,22,279. (17) Negrao,M.R.;Alpendurada,M.F. “Solvent-free method for the determination of polynuclear aromatic hydrocarbons in waste water by solid-phase microextraction–high-performance liquid chromatography with photodiode-array detection ” J.Chromatogr.A,1998,823,211. (18) Gbatu,T.P.;Sutton,K.L.;Caruso,J.A. “Development of new SPME fibers by sol–gel technology for SPME-HPLC determination of organometals” Anal.Chim.Acta1999,402,67. (19) Jia,C.;Luo,Y.;Pawliszyn,J. “Solid phase microextraction combined with HPLC for determination of metal ions using crown ether as selective extracting reagent” J.Microcolumn.Sep.1998,10,167. (20) Queiroz,M.E.C.;Silva,S.M.;Carvalho,D.;Lancas,F.M. “Solid-phase microextraction-liquid chromatography (SPME-LC) determination of lamotrigine simultaneously with carbamazepine and carbamazepine 10,11-epoxide in human plasma”J.Sep.Sci.2002,25,91. (21) McCooeye,M.A.;Mester,Z.;Ells,B.;Barnett,D.A.;Purves,R.W.; Guevremont,R. “Quantitation of amphetamine, methamphetamine, and their methylenedioxy derivatives in urine by solid-phase microextraction coupled with electrospray ionization-high-field asymmetric waveform ion mobility spectrometry-mass spectrometry”Anal.Chem.2002,74,3071. (22) Lock,C.M.;Chen,L.;Volmer,D.A. “Rapid analysis of tetracycline antibiotics by combined solid phase microextraction/high performance liquid chromatography/mass spectrometry” Rapid.Commun.Mass.Spectrom.1999,13,1744. (23)Bevill,R.F.;Schemske,K.M.;Luther,H.G.;Dzierzak,E.A.;Limpoka,M.; Felt,D.R. “Determination of sulfonamides in swine plasma” J.Agric.Food Chem.1978,26,1201. (24)Perkins,J.R.;Games,D.E.“Analysis of sulphonamides using supercritical fluid chromatography and supercritical fluid chromatography-mass spectrometry” J.Chromatogr.1991,540,239. (25)Heifetz,C.L.;Chodubski,J.A.;Decarlo,M.O.;Fisher,M.W. “Disc-agar diffusion microbiological assay procedure for determining serum and urine levels of sulfacytine and other sulfonamides ”Appl.Microbiol. 1971,21,893. (26)Muldoon,M.T.;Holtzapple,C.K.;Deshpande,S.S.;Beier,R.C.;Stanker, L.H. “Development of a monoclonal antibody-based cELISA for the analysis of sulfadimethoxine.1.Development and characterization of monoclonal antibodies and molecular modeling studies of antibody recognition” J.Agric.Food Chem.2000,48,537. (27)Koch,H.;Mooser,A.E. “Confirmatory method for sulfonamide residues in animal tissues by gas chromatography and pulsed positive ion-negative ion-chemical ionization mass spectrometry”J.AOAC Int.1993,76,976. (28)Cannavan,A.;Hewitt,S.A.;Blanchflower,W.J.;Kennedy,D.G. “Gas chromatographic-mass spectrometric determination of sulfamethazine in animal tissues using a methyl/trimethylsilyl derivative”Analyst 1996,121,1457. (29)Suhre,F.B.;Simpson,R.M.;Shafer,J.W. “Qualitative /quantitative determination of sulfamethazine in swine tissue by gas chromatographic/electron impact mass spectrometry using a stable isotope labeled internal standard” J.Agric.Food Chem.1981,29, 727. (30)Tarbin,J.A.;Clarke,P.;Shearer,G. “Screening of sulphonamides in egg using gas chromatography-mass-selective detection and liquid chromatography-mass spectrometry” J.Chromatogr.B1999,729,127. (31)Reeves,V.B. “Confirmation of multiple sulfonamides residues in bovine milk by gas chromatography-positive chemical ionization mass spectrometry” J.Chromatogr.B1999,723,127. (32)Kao,Y.M.;Chang,M.H.;Cheng,C.C.;Chou,S.S.“Multiresidue determination of veterinary drugs in chicken and swine muscles by high performance liquid chromatography”Journal of Food and Drug Analysis2001,9,84. (33)Heller,D.N.;Ngoh,M.A.;Donoghue,D.;Podhorniak,L.;Righter,H.; Thomas,M.H. “Identification of incurred sulfonamide residues in eggs:methods for confirmation by liquid chromatography-tandem mass spectrometry and quantitation by liquid chromatography with ultraviolet detection” J.Chromatogr.B2002,774,39. (34)Long,A.R.;Hsieh,L.C.;Malbrough,M.S.;Short,C.R.;Barker,S.A.“Multiresidue method for the determination of sulfonamides in pork tissue” J.Agric.Food Chem.1990,38,423. (35)Cavaliere,C.;Curini,R.;Corcia,A.D.;Nazzari,M.;Samperi,R. “A simple and sensitive liquid chromatography-mass spectrometry confirmatory method for analyzing sulfonamide antibacterials in milk and egg” J.Agric.Food Chem.2003,51,558. (36)Abián,J.;Churchwell,M.I.;Korfmacher,W.A. “High-performance liquid chromatography-thermospray mass spectrometry of ten sulfonamide antibiotics. Analysis in milk at the ppb level” J.Chromatogr. 1993,629,267. (37)Kristiansen,G.K.;Brock,R.;Bojesen,G.“Comparison of flow injection/thermospray MS/MS and LC/thermospray MS/MS methods for determination of sulfonamides in meat and blood” Anal.Chem.1994,66,3253. (38)Verzegnassi,L.;Savoy-Perroud,M.-C.;Stadler,R.H. “Application of liquid chromatography-electrospray ionization tandem mass spectrometry to the detection of 10 sulfonamides in honey” J.Chromatogr.A2002,977,77. (39)Fuh,M.-R.S.;Chan,S.-A. “Quantitative determination of sulfonamide in meat by liquid chromatography-electrospray –mass spectrometry”Talanta2001,55,1127. (40)Jen,J.-F.;Lee,H.-L.;Lee,B.-N. “Simultaneous determination of seven sulfonamide residues in swine wastewater by high-performance liquid chromatography” J.Chromatogr.A1998,793,378. (41)Louch,D.;Motlagh,S.;Pawliszyn,J. “Dynamics of organic compound extraction from water using liquid-coated fused silica fibers” Anal.Chem.1992,64,1187. (42)Berg,J.R. “Automation and optimization of solid-phase microextraction”Anal.Chem.1992,64,1960. (43)Ai,J. “Solid phase microextraction for quantitative analysis in nonequilibrium situations” Anal.Chem.1997,69,1230. (44)Górecki,T.;Pawliszyn,J. “Sample introduction approaches for solid phase microextraction/rapid GC” Anal.Chem.1995,67,3265. (45)Djozan,D.;Assadi,Y.;Haddadi,S.H. “Anodized aluminum wire as a solid-phase microextraction fiber” Anal.Chem.2001,73,4054. (46)Giardina,M.;Olesik,S.V. “Application of low-temperature glassy carbon films in solid-phase microextraction” Anal.Chem .2001,73,5841. (47)Wu,J.;Pawliszyn,J. “Polypyrrole-coated capillary coupled to HPLC for in-tube solid-phase microextraction and analysis of aromatic compounds in aqueous samples” Anal.Chem.2001,73,55. (48)The Merck index (12th) (49)Prichard,E.;Mackay,G.M.;Points,J.Trace Analysis:A structured approach to obtaining reliable results1996,177. (50)Scheppers,S.;Wercinski,A.Solid-phase microextraction-A Practical Guide,Varian Chromatography System Walnut Creet,California 1999 ,21.id NH0925065031 sid 913462 cfn 0 / id NH0925065032 auc 劉嘉林 tic 苯 tic 噻 tic 吩[2,3-c] tic 吡 tic 咯衍生物之合成及其電激發光元件試製 adc 沙晉康 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 134 kwc 劉嘉林 kwc 電激發光 abc 本篇論文利用了實驗室所開發的iso-condensed heteroaromatic pyrroles的三種合成法中的retro-malonate反應合成出一系列苯□吩[2,3-c rf 1. Bonnett, R.; North. S. A. Advances in Heterocyclic Chemistry 1981, 29, 341. 2. Bornstein, J.; Bedell, S. F.; Drummond, P. E.; Kosloski, C. L. J. Am. Chem. Soc. 1956, 78, 83. 3. Veber, D. F.; Lwowski, W. J. Am. Chem. Soc. 1964, 86, 4152. 4. Bonnett, R.; Brown, R. F. C. J. Chem. Soc. Chem. Commum. 1972, 393. 5. 陳良吉, 博士論文, 清華大學(1999) 6. Chacko, E.; Bornstein, J.; Sardella, D. J. Tetrahedron Lett. 1979,1055 7. Diaz, A. F.; Kanazawa, K. K.; Gardini, G. P. J. Chem. Soc. Chem. Commum. 1979, 635. 8. Sha, C.-K. in "Advance in Nitrogen Hetercycles",Moody,J. C. Ed.,JAI Press, Greenwich,CT,1996,2,pp147-148. 9. Sha, C.-K.;Chuang, K.-S.; Young, J.-J. J. Chem. Soc. Chem. Commum. 1984, 1552. 10. Sha, C.-K.; Tsou, C.-P. J. Chem. Soc. Chem. Commum. 1986, 310. 11. Sha, C.-K.; Tsou, C.-P.; Li, Y.-C.; Lee, R.-S.; Tsai, F.-Y.; Yen, R.-H. J. Chem. Soc. Chem. Commum. 1988, 1801. 12. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913 13. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burbs, P. L.; Holmes, A. B. Nature 1990, 347, 539. 14. Ma, Y.; Che, C.-M.; Chao, H.-Y.; Zhou, X.; Chan, W.-H.; Shen, J. Adv. Mater. 1999, 11, 852. 15. Sano, T.; Fujita, M.; Fulita, T.; Nishio, Y.; Hamada, Y.; Shibata, K.; Kurpki, K. US 5, 432, 014, 1995. 16. Shirota, Y.; Kuwabara, Y.; Inada, H. Appl. Phys. Lett. 1994, 65, 807. 17. Imai, K.; Shinkai, M.; Wakimoto, T.; Shirota, Y. US 5,256, 945, 1993. 18. Hosakawa, C.; Sakamoto, S.; Kusumoto, T. US 5, 389, 444, 1995. 19. Wu, I.; Lin, J. T.; Tao, Y. T.; Balasubramaniam, E.; Su, Y. Z.; Ko, C. W. Chem. Mater. 2001, 13, 2626. 20. (a) Thomas, J. K. R.; Lin, J. T.; Tao, Y. T.; Ko, C. W. Adv. Mater. 2000, 12, 1949. (b) Thomas, J. K. R.; Lin, J. T.; Tao, Y. T.; Ko, C. W. J. Am. Chem. Soc. 2001, 123, 9404. 21. Tao, Y. T.; Ko, C. W. Synth. Met. 2002, 126, 37. 22. Sha, C.-K.; Hsu, H.-Y.; Cheng, S.-Y.; Kuo, Y.-L. Tetrahedron 2003 , 59, 1477. 23. Noda, T.; Ogawa, N.; Shirota, Y. Adv. Mater. 1997, 9, 720. 24. Walton, R.; Paul, M. L. Synth. Commun. 1998, 28(6), 1087. 25. Corey, E. J.; Roberts, B. E. J. Am. Chem. Soc. 1997, 119, 12425. 26. Marcantoni, E.; Nobili, F.; Bartoli, G.; Bosco, M.; Sambri, L. J. Org. Chem. 1997, 62, 4183. 27. Shi, M.; Xu, B. J. Org. Chem. 2002, 67, 294. 28. Gordan, J.; Sheldon, T. J.; Bradley, D. D. C.; Burn, P. L. J. Mater. Chem. 1996, 6(8), 1253. 29. Merlic, G. A.; Motamed, S.; Quinn, B. J. Org. Chem. 1995, 60, 3365. 30. Goodbrand, H. B.; Hu, N.-X. J. Org. Chem. 1999, 64, 670. 31. Cammenga, H. K.; Epple, M. Angew. Int. Ed. Engl. 1995, 34, 1171. 32. Schmidt, H.-W.; Thelallat, M. Adv. Mater. 1998, 10, 219. 33. Koene, B. E.; Loy, D. E.; Thomposon, M. E. Chem. Mater. 1998, 10, 2235.id NH0925065032 sid 913469 cfn 0 / id NH0925065033 auc 蔡明利 tic 雙-亞硝鐵化合物(Dinitrosyl Iron Complexes):[2Fe2S] cluster降解(degradation)及修復(repair)之生化模型化合物研究 adc 廖文 adc & adc #23791; ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 47 kwc 一氧化氮 kwc 雙-亞硝鐵化合物 kwc 模型化合物 kwc 鐵硫錯合物 abc [PPN rf 1. Koshland, D. E. Jr. Science 1992, 258, 1861. 2. Stamler, J. S. Cell 1994, 78, 931. 3. Garrett, R. H.; Grisham, C. M. Biochemistry 2nd, Harcourt college publishers, 1999; p S-31. 4. Ford, P. C.; Lorkovic, I. M. Chem. Rev. 2002, 102, 993 5. Ignarro, L. J. Angew. Chem. Int. Ed. 1999, 38, 1882 6. Saura, M.; Zaragoza, C.; McMillan, A.; Quick, R. A.; Hohenadl, C.; Lowenstein, J. M.; Lowenstein, C. J. Immunity 1999, 10, 21. 7. Lipton, S. A.; Choi, Y. B.; Pan, Z. H.; Lei, S. Z.; Chen, H-S. V.; Sucher, N. J.; Loscalzo, J.; Singel, D. J.; Stamler, J. S. Nature 1993, 364, 626. 8. Vanin, A. F.; Stukan, R.A.; Manukhina, E. B. Biochimica et Biophysica Acta 1996, 1295, 5 9. Butler, A. R.; Megson, I. L. Chem. Rev. 2002, 102, 1155. 10. Reginato, N; McCrory, C. T. C.; Pervitsky, D.; Li, L. J. Am. Chem. Soc. 1999, 121, 10217. 11. Costanzo, S.; Menage, S.; Purrello, R.; Bonomo, R. P.; Fontecave, M. Inorganica Chimica Acta 2001, 318, 1. . 12. Vanin, A. F.; Malenkova, I. V.; Serezhenkov, V. A. NITRIC OXIDE:Biology and Chemistry 1997, 1, 191. 13. Voevodskaya, N. V.; Serezhenkov, V. A.; Cooper, C. E.; Kubrina, L. N.; Vanin, A. F. Biochem. J. 2002, 368, 633. 14. Ueno, T.; Suzuki, Y.; Fujii, S.; Vanin, A. F.; Yoshimura, T. Biochemical Pharmacology 2002, 63, 485. 15. Wu, C. K.; Dailey, H. A.; Rose, J. P.; Burden, A.; Sellers, V. M.; Wang, B. C. Nature Structural Biology 2001, 8, 156. 16. Sellers, V. M.; Johnson, M. K.; Dailey, H. A. Biochemistry 1996, 35, 2699. 17. Ding, H.; Demple, B. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 5146. 18. Hidalgo, E.; Demple, B. The EMBO journal 1994, 13, 138. 19. Rogers, P. A.; Ding, H. J. Biol. Chem. 2001, 276, 30980. 20. Yang, W.; Rogers, P. A.; Ding, H. J. Biol. Chem. 2002, 277, 12868 21. Boese, M.; Mordvintcev, P. I.; Vanin, A. F.; Busse, R.; Műlsch, A. J. Biol. Chem. 1995, 270, 29244 22. Boese, M.; Keese, M. A.; Becker, K.; Busse, R.; Műlsch, A. J. Biol. Chem. 1997, 272, 21767 23. Enemark, J. H.; Feltham, R. D.; Coord. Chem. Rev. 1974, 13, 339 24. Franz, K. J.; Lippard, S. J. J. Am. Chem. Soc. 1999, 121, 10504. 25. Ileperuma, O. A.; Feltham, R. D.; Inorg. Chem. 1975, 14, 3042. 26. Xia, Y.; Zweier, J. L. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 12705. Xia, Y.; Cardounel, A. J.; Vanin, A. F.; Zweier, J. L. Free Radical Biology & Medicine 2000, 29, 793.id NH0925065033 sid 913475 cfn 0 / id NH0925065034 auc 江喬華 tic BakkenolideⅢ之全合成研究 adc 沙晉康 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 45 kwc BakkenolideⅢ kwc 自由基環化 abc 本實驗室近年來對於利用碘化鈉與間-氯過苯甲酸的作用,可以由三甲基矽烯醇醚製備出??-碘基酮,做了深入的研究。並搭配由Curran教授所發展之碘原子轉移法(iodine atom-transfer)自由基環化方式進行自由基環化反應得到不錯的結果。 tc 目 錄 摘要…………………………………………………………Ⅰ 目錄…………………………………………………………Ⅱ 縮寫對照表…………………………………………………Ⅲ 第一章:緒 論..................................1 §1.1 Bakkenolide Ⅲ的單離及結構鑑定................1 §1.2 Bakkane家族的合成文獻回顧.....................3 第二章:結果與討論.................................14 §2.1 (±). Bakkenolide Ⅲ之逆合成分析..............14 §2.2 符合立體化學的關鍵中間體94之合成製備.........17 §2.3 結論.........................................26 第三章:實驗部分 ..................................27 §4.1 一般實驗敘述.................................27 §4.2 實驗步驟與光譜資料...........................29 參考文獻...........................................44rf 參考文獻 1. (a) Abe, N.; Onoda, R.; Shirahata, K.; Kato, T.; Woods, M. C.; Kitahara,Y. Tetrahedron Lett. 1968, 9, 369-373. (b) Shirahata, K.; Kato, T.;Kitahara, Y.; Abe, N. Tetrahedron 1969, 25, 3179-3191 and 4671-4680. 2. Silva, L. F., Jr. Synthesis 2001, 671-689. 3. Wu, T.-S.; Kao, M.-S.; Wu, P.-L.; Lin, F.-W.; Shi, L.-S.; Teng, C.-M. Phytochemistry 1999, 52, 901-905. 4. Evans. D. A.,; Sims. C. L. Tetrahedron Lett 1973, 47, 4691-4694. 5. Hayashi, K.; Nakamura, H.; Mitsuhashi, H. Chem. Pharm. Bull. 1973, 21, 2806-2807 6. Srikrishna, A. Nagaraju, S.; Raghava Sharma, G. V. J. Chem. Soc., Chem. Commun. 1993, 285-288 7. Heilbron, I.; Jones, E.R.H.; Sondheimer, F. J. Chem. Soc. 1949, 604 8. Back, T. G.; Nava-Salgado, V. O.; Payne J. E. J. Org. Chem. 2001, 66, 4361-4368. 9. Brocksom, T. J.; Coelho, F.; Depre´ s, J.-P.; Greene, A. E.; Freire de Lima, M.E.; Hamelin, O.; Hartmann, B.; Kanazawa, A. M. and Wang ,Y. J. Am. Chem. Soc. 2002, 124, 15313-15325 10. Luche, J.-L. J. Am. Chem. Soc. 1978, 100, 2226. 11. Huang, S. L.; Omura, K.; Swern, D. J. Org. Chem. 1976, 41, 3329. 12. (a)Sha, C.-K.; Yang, J.-J.; Jean, T.-S. J. Org. Chem. 1987, 52, 3919-3920. (b) Sha, C.-K.; Jean, T.-S.; Wang, D.-C. Tetrahedron Lett. 1990, 31, 3745-3748. 13. Lambert, J. B.; Taba, K. M. J. Org. Chem. 1980, 45, 452-455. 14. Pirrung, M.C. J. Am. Chem. Soc. 1981, 103, 82-87. 15. Meinwald. J.; Grossman. R. F. J. Amer. Chem. Soc. 1956, 78, 992. 16. Ireland, R. E.; Bey, P.; Cheng, K.-F.; Czarny, R.J.; Moser, J.-F.; Trust, R. I. J. Org. Chem. 1975, 40, 1000-1007. 17. Curran, D. P.; Chen, M.-H.; Kim, D. J. Am. Chem. Soc. 1989, 111, 6265-6276 18. Tori, M.; Ikawa, M.; Sagawa, T.; Furuta, H.; Sono, M.; Asakawa,Y. Tetrahedron. 1996, 52, 9999-10010 19. Sha, C.-K.; Chiu, R.-T.; Yang, C.F.; Yao, N.-T.; Tseng, W.-H.; Liao, F.-L.; Wang S.-L. J. Am. Chem. Soc. 1997, 119, 4130-4135. 20. Wei, A.; Kishi, Y. J. Org. Chem. 1994, 59, 88-96. 21. Carlsen, P. H.; Katsuki, T.; Martin, V. S.; Sharpless,K. B. J. Org. Chem. 1981, 46, 3936-3938.id NH0925065034 sid 913477 cfn 0 / id NH0925065035 auc 杜尚耘 tic 利用模版生長奈米尺寸有機金屬線及奈米粒子陣列 adc 陶雨台教授 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 89 kwc 奈米線 kwc 金奈米粒子 kwc AAO kwc 微米轉印技術 abc 本論文主要是在架構在硫酸銅會與吡嗪(pyrazine)可形成交錯排列的一維配位錯合物(如附圖所示),而在表面或奈米尺度孔洞環境中,生長奈米尺寸的錯合物導線,以備未來的分子電子元件應用。。 tc 壹、緒論………………………………………………………………………………………(1) 1-1分子自組裝……………………………………………………………………(1) 1-1-1自組裝分子薄膜…………………………………………………(1~4) 1-1-2硫醇自組裝分子薄膜的應用……………………………(4~6) 1-2奈米材料……………………………………………………………...…………(7) 1-2-1奈米材料的簡介………………………………….……………..…(7~8) 1-2-2奈米材料的特殊性質…………………………………………(8~11) 1-2-3奈米晶體的合成方式…………………………………….………(11) 1-3奈米導線……………………….…………………….………………….……(12) 1-3-1製作奈米導線的價值及種類…………………….…(12~13) 1-3-2製作奈米導線的方法………………………………………(13~15) 貳、研究動機與方法…………………………………………………….…(16~18) 參、實驗部分……………………….…………………….……………………. ……(19) 3-1實驗用藥品……………………….……………..……….…………………(19) 3-1-1基材來源…………….……………..………. …………….……………(19) 3-1-2清洗矽晶片用藥品………….……..……………….……………(19) 3-1-3合成用藥品…………….……………..………..……….……………(19) 3-1-4有機薄膜用藥品………….………..………..………………………(19) 3-2實驗步驟………………………………………………………………………(20) 3-2-1合成部分…………………………………………………………(20~22) 3-2-2金片基材的清洗與製備…………………………………(22~23) 3-2-3 以模紋的方式製備分子薄膜…………….…………(23~24) 3-2-4 在特定的表面上形成晶體……………………….…(24~25) 3-2-5 製作均勻分散的單層分子薄膜…………………………(25) 3-2-6 製作晶體奈米線………………………………………………..…(26) 3-2-7 製作金奈米粒子…………………………………………..…(26~27) 3-2-8製作金奈米粒子串連的導線…………………………….…(27) 3-2-9 在金表面製作分子導線……………………….…………..…(27) 3-3實驗用儀器與技術………………….………………….……………(28) 3-3-1真空蒸鍍機……….………………….……….………………….……(28) 3-3-2核磁共振光譜儀……………………………………………………(28) 3-3-3傅立葉紅外線光譜儀………………………………………(28~30) 3-3-4掃描式電子顯微鏡………………………………………………(30) 3-3-5穿透式電子顯微鏡…………………………………………(32~33) 3-3-6 X光繞射儀……………………………………………………………(33) 3-3-7原子力顯微鏡…………………………………………………(33~34) 3-3-8 Near Edge X-Ray Absorption Fine Structure(35~36) 3-3-9旋轉塗佈機(Spin Coating System)……………………(36) 3-3-10臭氧產生器(Ozone Generator)……………………….…(36) 肆、結果與討論………………………………………………………………………(37) 4-1在單分子層上生長晶體………………………………………(37) 4-1-1在模紋化分子膜上製備分子導線及結構鑑定 ………………………………………………………...………………………………(37) 4-1-1.1製備條紋化分子薄膜…………………….…(37~40) 4-1-1.2在條紋化分子薄膜上長晶體………….…(40~47) 4-1-1.3對於薄膜表面晶體做定性的偵測.…(48~50) 4-1-1.4確定薄膜表面晶體的方向性………….…(50~61) 4-2利用銅與吡嗪的交錯對位特性來做應用…..…(62) 4-2-1以AAO為模版來長晶體…………………………….…(62) 4-2-1.1以AAO為模版在孔洞內長晶體奈米線… ………………………………………………………………(62~70) 4-2-1.2改變AAO表面的性質提高其反應性(70~74) 4-2-2以AAO為模版讓金奈米粒子串連…………………(75) 4-2-2.1以AAO為模版在孔洞內把金奈米粒子串連 成線………………………………………………………(75~76) 4-2-2.2改變AAO表面的性質提高其反應性(77~81) 伍、結論………………………………………………………………………………(82~83) 陸、參考資料……………………………………………………………………(84~87)rf 01. A. Ulman. An Introduction to Ultrathin Organic Films, Academic Press:Boston, 1991. 02. W. C. Bigelow, D. L. Pickett, W. A. Zisman, J. Colloid Interface Sci. 1946, 1, 513. 03. R. G. Nuzzo, D. L. Allara, J. Am. Chem. Soc. 1983, 105, 4418. 04. a) M. J. Wirth, R. W. P. Fairbank, H. O. Fatunmbi, Science 1997, 275, 44-47;b) J. B. Brzoska, I. B. Azouz, F. Rondelez, Langmuir 1994, 10, 4367-4373. 05. a) P. Fenter, A. Eberhardt, P. Eisenberger, Science 1994, 266, 1216-1218;b) E. Delamarche, B. Michel, H. Kang, C. Gerber, Langmuir 1994, 10, 4103-4108. 06. a) P. Fenter, P. Eisenberger, J. Li, N. Camillone Ш, S. Bernasek, G. Scoles, T. A. Ramnanarayanan, K. S. Liang, Langmuir 1991, 7, 2013-2016;b) A. Dhirani, M. A. Hines, A. J. Fisher, O. Ismail, P. Guyot-Sionnest, ibid. 1995, 11, 2609-2614. 07. a) H. Keller, P. Sirnak, W. Schrepp, J. Dembowski, Thin Solid Film 1994, 244, 799-805;b) M. Itoh, K. Nishihara, K. Aramaki, J. Electrochem. Soc. 1995, 117, 12528-12536. 08. a) H. A. Biebuyck, Colin, G. M. Whitesides, Langmuir 1994, 10, 1825-1831;b) H. Schönherr, H. Ringsdorf, ibid. 1996, 12, 3891-3896. 09. a) J. P. Folkers, C. B. Gorman, P. E. Laibinis, S. Buchholz, G. M. Whitesides, R. G. Nuzzo, Langmuir 1995, 11, 813-824.;b) T. R. Lee, P. E. Laibinis, J. P. Folkers., G. M. Whitesides, Pure Appl. Chem. 1991, 63, 821-828. 10. a) D. L. Allara, R. G. Nuzzo, Langmuir 1985, 1, 54-71;b) P. E. Laibinis, J. J. Hickinan, M. S. Wrighton, G. M. Whitesides, Science 1989, 245, 845-847;c)Y. -T. Tao, M. -T. Lee, S. –C. Chang, J. Am. Chem. Soc. 1993, 115, 9547-9555. 11. K.-B. Lee, S.-J. Park, C. A. Mirkin, J. C. Smith, M. Mrksich, Science 2002, 295, 1702. 12. (a)A. Kumar, H. A. Biebuyck, N. L. Abbott, G. M. Whitesides, J. Am. Chem. Soc. 1992, 114, 9188. (b)P. E. Laibinis, G. M. Whitesides, J. Am. Chem. Soc. 1992, 114, 9022. 13. C.-C. Chen, J.-J. Lin, Adv. Mater. 2001, 13, 136. 14. a) J. Xu, H. –L. Li, J. Coll. Interf. Sci. 1995, 176, 138-149;b) A. Ulman, MRS Bull. 1995, 30(6), 46-51. 15. a) M. Mrksich, G. M. Whitesides, TIBTECH 1995, 13, 228-235;b) Annu. Rev. Biophys. Biomol. Struc. 1996, 25, 55-78. 16. Q. Du, E. Freysz, Y. R. Shen, Science 1994, 264, 826-828;b) C. D. Bain, J. Chem. Soc. Faraday Trans. 1995, 91, 1281-1296. 17. J. P. Folkers, P. E. Laibinis, G. M. Whitesides, Langmuir 1992, 8, 1330-1341. 18. E. Delamarche, B. Michel, H. A. Biebuyck, C. Gerber, Adv. Mater. 1996, 8, 719-729. 19. F. Robert, Science 1998, 282, 2178~2179. 20. L. E. Brus, A. L. Efros, T. Toh, J. Lumin 1996, 70, R7~R8 21. H. Gleiter, Prog. Mater. Sci. 1989, 32, 223~315 22. a) H. Gleiter, Prog. Mater. Sci. 1989, 33, 223 b) R. Birring, H. Gleiter, H. P. Klein, P. Marquardt, Phys. Lett. A 1984, 102, 365 c) R. Birring, U. Herr., H. Glieter, Trans. Jpn. Inst. Met. (suppl) 1986, 27, 43 d) H. E. Schraefer, R. Wurschurr, R. Birringer, H. J. Gleiter, Less Common Metal 1988, 140, 161 23. D.-C. Liu, C.-P. Lee, Appl. Phys. Lett. 1993, 63, 3503. 24. G. S. Hsiao, M. G. Anderson, S. Gorer, D. Harris, R. M. Penner, J. Am. Chem. Soc. 1997, 119, 1439. 25. a) Chem. Commun., 2000, 1063-1064 b) Chem. Commun., 1999, 1653 c) Chem. Mater. 1999, 11, 1659 26. a) Jana, N. R., Gearheart, L.; Murphy, C. J. Langmuir 2001, 17, 6782-6786 b) Catherine J. Murphy, and Nikhil, Adv. Mater. 2002, 14, 80 c) Y. Y. Yu, S. S. Chang, C. R. Wang J. Phy. Chem. B 1997, 101, 6661 27. a) Lorraine Nagle and Donald Fitzmaurice Adv. Mater. 2003, 15, 933 b) E.Fort, C. Ricolleau, and J. Sau-Pueyo Nano. Lett. 2003, 3, 65-67 c) Thomas O.Hutchinson, Yun-Ping Liu,Carol Kiely,and Mathias Brust Adv. Mater. 2001, 13, 1800 28. a) N. Bryson, J. C. Dewan, Inorg. Chem. 1988, 27, 2154-2161, b) D. A. Pearson, M. Blanchette, Tetra. Lett. 1989, 30, 2739-2742. 29. A. Kumar, A. B. Biebuyck, G. M. Whiteside, Langmuir, 1994, 10, 1498 30. Klein, H.; Bellini, N.; Bellini, B.: Dumas, Ph. Mater. Sci. Eng. C 2002, 19, 279 31. Brust M., Walker M., Berthell D., Schiffrin D. J., Whyman R., J. Chem. Soc., Chem. Commun. 1994, 801id NH0925065035 sid 913478 cfn 0 / id NH0925065036 auc 薛翰聲 tic 利用中孔洞沸石材料形成氮化鈦奈米金屬線及合成規則性中孔洞有機矽薄膜 adc 黃暄益 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 英文 pg 94 kwc 沸石材料 kwc 氮化鈦 kwc 有機矽薄膜 abc 中孔洞沸石材料因為本身的孔洞大小約介於2到50個奈米之間,所以近年來在合成奈米金屬粒子或是奈米金屬線上一直是很熱門的研究項目。這邊我們利用中孔洞沸石材料成功的合成出氮化鈦的奈米金屬線,金屬線的直徑大約介於5到6個奈米長度則達到數百個奈米。 rf (1) Brinker, C. J.; Scherer, G. W. Sol-Gel Science, Academic Press, Inc.: Boston, 1990. (2) (a) Ellerby, L. M.; Nishida, C. R.; Nishida, F.; Yamanaka, S. A.; Dunn, B.; Valentine, J. S.; Zink, J. I. Science 1992, 255, 1113. (b) Chung, K. E.; Lan, E. H.; Davidson, M. S.; Dunn, B. S.; Valentine, J. S.; Zink, J. I. Analytical Chem. 1995, 67, 1505. (b) Dave, B. C.; Soyez, H.; Miller, J. M.; Dunn, B.; Valentine, J. S.; Zink, J. I. Chem. Mater. 1995, 7, 1431. (3) Minoofar, P. N.; Hernandez, R.; Chia, S.; Dunn, B.; Zink, J. I.; Franville, A. C. J. Am. Chem. Soc. 2002, 124, 14388. (4) (a) Wirnsberger, G.; Stucky, G. D. Chem. Mater. 2000, 12, 2525. (b) Scott, B. J.; Wirnsberger, G.; Stucky, G. D. Chem. Mater. 2001, 13, 3140. (5) (a) Shea, K. J.; Loy, D. A.; Webster, O. J. Am. Chem. Soc. 1992, 114, 6700. (b) Loy, D. A.; Shea. K. J. Chem. Rev. 1995, 95, 1431. (6) Brown, J. F. Jr.; Vogt, L. H.; Prescott, P. I. J. Am. Chem. Soc. 1964, 86, 1120. (7) Ellsworth, M. W.; Novak, B. M. Chem. Mater. 1993, 5, 39. (8) Chen, K. C.; Tsuchiya, T.; Mackenzie, J. D. J. Non-Cryst. Solid. 1986, 81, 227. (9) (a) Kresge, C. T.; Leonowicz, M. D.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710. (b) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.-W.; Olson, K. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. L. J. Am. Chem. Soc. 1992, 114, 10834. (10) Huq, R.; Mercier, L. Chem. Mater. 2001, 13, 4512. (11) Lai, C. Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, S.-Y. J. Am. Chem. Soc. 2003, 125, 4451. (12) Chong, A. S. M.; Zhao, X. S. J. Phys. Chem. B 2003, 107, 12650. (13) Sellinger, A.; Weiss, P. M.; Nguyen, A.; Lu, Y. F.; Assink, R. A.; Gong, W.; Brinker, C. J. Nature 1998, 394, 256. (14) Israelachvili, J. N.; Marcelja, S.; Horn, R. G. Rev. Biophys. 1980, 13, 121. (15) Raman, N. K.; Anderson, M. T.; Brinker, C. J. Chem. Mater. 1996, 8, 1682. (16) Ross, S.; Morrison, I. D. Colloid Systems and Interfacs, John Willey & Sons; New York 1988; pp 173. (17) Chen, C.-Y.; Burkett, S. L.; Li, H. -X.; Davis, M. E. Micropor. Mater. 1993, 2, 27. (18) Attard, G. S.; Glyde, J. C.; Goltner, C. G. Nature 1995, 378, 366. (19) Huo, Q.; Margolese, D. I.; Ciesla, U.; Demuth, D. G.; Feng, P.; Gier, T. E.; Sieger, P.; Firouzi, A.; Chmelka, B. F.; Schüth, F.; Stucky, G. D. Chem. Mater. 1994, 6, 1176. (20) Monnier, A.; Schüth, F.; Huo, Q.; Kumar, D.; Margolese, D. I.; Maxwell, R. S.; Stucky, G. D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chmelka, B. F. Science 1993, 261, 1299. (21) (a) Gregg, S. J.; Sing, K. S. W. Adsorption, Surface Area and Porosity, Academic Press, Inc.: New York, 1982. (b) Cai, Q.; Luo, Z. -S.; Pang, W. -Q.; Fan, Y. -W.; Chen, X. -H.; Cui, F. -Z. Chem. Mater. 2001, 13, 258. (22) Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309. (23) Barrett, E. P.; Joyner, L. G.; Halenda, P. P. J. Am. Chem. Soc. 1951, 73, 373. (24) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548. (25) El-Sayed, M. A. ACC. Chem. Res. 2001, 34, 257. (26) Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647. (27) Santra, A. K.; Ghosh, S.; Rao, C. N. R. Langmuir 1994, 10, 3937. (28) Gillet, E.; Channakhone, S.; Matolin V.; Gillet, M. Surf. Sci. 1996, 152/153, 603. (29) Doering, D. L.; Dickinson, J. T.; Poppa, H. J. Catal. 1982, 73, 91. (30) Santra, A. K.; Ghosh, S.; Rao, C. N. R. Langmuir 1994, 10, 3937. (31) Rao, C. N. R.; Kulkarni, G. U.; Thomas, P. J.; Edward, P. P. Chem. Eur. J. 2002, 8, 29. (32) Steigerwald, M. L.; Brus, L. E. Acc. Chem. Res. 1990, 23, 183. (33) Wang, Y.; Herron, N. J. Phys. Chem. 1991, 95, 525 (34) Wang, Y. Acc. Chem. Res. 1991, 24, 133. (35) Hines, M. A.; Guyot-Sionnest, P. J. Phys. Chem. B 1996, 100, 468. (36) Rosencher, E.; Fiore, A.; Vinter, B.; Berger, V.; Bois, P.; Nagle, J. Science 1996, 271, 168. (37) Wang, Y.; Suna, A.; Mahler, W.; Kasowski, R. J . Chem. Phys. 1987, 81, 7315. (38) Wang, Y.; Herron, N. Phys. Rev. B 1990.42, 7253. (39) Alivisatos, A. P. Science 1996, 271, 933. (40) Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Nature 1994, 370, 354. (41) Klein, D. L.; Roth, R.; Lim, A. K. L.; Alivisatos, A. P.; McEuen, P. L. Nature 1997, 389, 699. (42) (a) Srdanov, V. I.; Alxneit, I.; Stucky, G. D.; Reaves, C. M.; DenBaars, S. P. J. Phys. Chem. B 1998, 102, 3341. (b) Agger, J. R.; Anderson, M. W.; Pemble, M. E.; Terasaki, O.; Nozue, Y. J. Phys. Chem. B 1998, 102, 3345. (43) Dag, O.; Ozin, G. A.; Yang, H.; Reber, C.; Bussiere, G. Adv. Mater. 1999, 11, 474. (44) Winkler, H.; Brinker, A.; Hagen, V.; Wolf, I.; Schmechel, R.; von Seggern, H.; Fischer, R. A. Adv. Mater. 1999, 11, 1444. (45) Zhang, Z.; Dai, S.; Fan, X.; Blom, D. A.; Pennycook, S. J.; Wei, Y. J. Phys. Chem. B 2001, 105, 6755. (46) Xu, W.; Liao, Y.; Akins, D. L. J. Phys. Chem. B 2002, 106, 11127. (47) Wang, D.; Zhou, W. L.; McCaughy, B. F.; Hampsey, J. E.; Ji, X.; Jiang, Y. -B.; Xu, H.; Tang, J.; Schmehl, R. H.; O’Connor, C.; Brinker, C. J.; Lu, Y. Adv. Mater. 2003, 15, 130.id NH0925065036 sid 913479 cfn 0 / id NH0925065037 auc 陳靜嫻 tic 由二甲氧基酚製備雙環[3.2.1]辛酮之骨架 adc 廖俊臣教授 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 133 kwc 雙環[3.2.1] kwc 雙環[2.2.2]辛烯酮 kwc 掩飾鄰苯 kwc & kwc #37260; kwc Diels-Alder反應 kwc 三環[3.3.0.02,8]辛-3-酮 kwc 氧-雙烯-甲烷重排反應 kwc 氫化三正丁基錫 kwc 二乙醯氧基碘(III)苯 kwc 還原開環法 kwc 環丙烷開環法 abc 本實驗室致力研究多年的掩飾鄰本醌是由二甲氧基酚氧化得來,其容易與許多親雙烯劑進行Diels-Alder反應得到雙環[2.2.2 rf 1.Diels, O,; Alder, K. Ann. 1928, 460, 98. 2.(a)Carruthers, W. Cycloaddition Reaction in Organic- Synthesis, Pergamon: Oxford; 1990. (b) Desimoni, G.; Barco, A.; Pollini, G. P. Natural Product Snythesis Through Pericyclic Reaction, ACS Monograph no.180, Americal Society, Washington, DC, 1983. (c) Fringuelli, F.; Taticchi, A. Dienes in the Diels-Alder Reaction, John-Wiley: New York, 1990. (d) Ho, T.-L. Carbocycli Ring Construction in Terpene Synthesis, VCH: Weinheim, 1988. (e) Curran, D. P., Ed.; Advances in Cycloaddition, JAI press: Greenwich, 1990, Vol. 1-3. 3.Oppolzer, W. In Comprehensive Organic Synthesis, Combining C-C π-bonds; Trost, B. M.; Flemming, I.; Paquette, L. A., Eds.; Pergamon press: Oxford, 1991; Vol. 5, Chapter 4.1. 4.Nicolaou, K. C.; Snyder, S. A.; Vassilikogiannakis, G. E.; Montagnon, T. Angew. Chem. Int. Ed. 2002, 41, 1668-1698. 5.Stocking, E. M.; Williams, R. M. Angew. Chem. Int. Ed. 2003, 42, 3078-3115. 6.Hsu, D.-S.; Hsu, P.-Y.; Liao C.-C. Org. Lett. 2001, 3, 263. 7.(a) Alder, K.; Flock, F. H.; Lessenich, H. Chem. Ber. 1957, 90, 1709. (b) Metlesics, W.; Wessely, F.; Budzikiewicz, H. Monatsh. Chem. 1958, 89, 102. (c) Yates, P.; Stevens, K. E. Tetrahedron 1981, 37, 4401. (d) Schultz, A. G.; Dittami, J. P.; Lavieri, F. P.; Salowey, C.; Sundarraraman, P., Szymula, M. B. J. Org. Chem. 1984, 49, 4429. (e) Hirao, K.; Unno, S.; Miura, H.; Yonemisu, O. Chem. Pharm. Bull. 1977, 25, 3354. 8.(a) Hwang, J.-T.; Liao, C.-C. Tetrahedron Lett. 1991, 32, 6583. (b) Lee, T.-H.; Liao, C.-C.; Liu, W.-C. Tetrahedron Lett. 1996, 37, 5897. 9.高世育,清華大學,2000年碩士論文。 10.Given, R. S.; Oettle, W. F.; Coffin, R. L.; Carlson, R. G. J. Am. Chem. Soc. 1971, 93, 3957. 11.Paquett, L. A.; Oplinger, J. A. Tetrahetron 1987, 45, 107. 12.(a) Arjona, O.; Medel, R.; Plumet, Tetrahedron Lett. 2001, 42, 1287. (b)Mehta, G.; Venkatrswaran, R. V. Tetrahedron 2000, 56, 1399. (c) Gilday, J. P.; Paquette, L. A. Tetrahedron 1990, 22, 167. 13.(a) Uyehara, T.; Osanai, K.; Sugimoto, M.; Suzuki, I.; Yamamoto, Y. J. Am. Chem. Soc. 1989, 111, 7264. (b) 朱崇玄,清華大學,1994年博士論文。 14.Meinwald, J.; Franenglass, E. J. Am. Chem. Soc. 1958, 80, 2349. 15.Liao, C.-C.; Chu, C.-S.; Lee, T.-H.; Rao, P. D.; Ko, San.; Song, L.-D.; Shiao, H.-C. J. Org. Chem. 1999, 64, 4102. 16.Gao, S.-Y.; Ko, S.; Lin, Y.-L.; Rama, K.-P.; Liao, C.-C. Tetrahedron 2001, 57, 297. 17.Dauben, W. G.; Lodder, G.; Ipatschki, J. Top. Curr. Chem. 1975, 54, 73. 18.Houk, K. N. Chem. Rev. 1976, 76, 1. 19.Schuster, D. I. in Rearrangements in Ground and Excited States; de Mayo, P. Ed.; Academic Press : New York, 1980; vol. 3, p167. 20.李宗和,清華大學,1992年碩士論文。 21.Lee, T.-H.; Rao, P. D.; Liao, C.-C. Chem. Commun. 1999, 801. 22.Castellino, A. J.; Bruice, T. C. J. Am. Chem. Soc. 1988, 110, 7512. 23.Iwata, C.; Imanishi, T.; Matsui, M.; Yamashita, M. Tetrahedron Lett. 1986, 27, 3161. 24.Uyehara, T.; Murayama, T,; Sakai, K.; Ueno, M.; Sato, T. Tetrahedron Lett. 1996, 37, 7295. 25.黃振倉,清華大學,1992年碩士論文。 26.Murphy, W. S.; Wattanasin, S. J. Chem. Soc., Perkin Trans. 1. 1986, 8, 1445. 27.Barton, D. H. R.; Gilham, P. T. J. Am. Chem. Soc. 1960, 4596. 28.Kim, Y.-H, Lee, I.-S. Heteroatom Chem. 1992, 3, 509. 29.呂學聖,清華大學,1996年博士論文。 30.Umehara, M.; Hisida, S.; Fujieda, K.; Ogura, H.; Takayanagi, H. Bull. Chem. Soc. Jpn. 1978, 51, 2449. 31.Han, Z.; Uehira, S.; Tsuritani, T.; Shinokubo, H.; Oshima, K. Tetrahedron 2001, 987. 32.Danishefsky, S. Acc. Chem. Res. 1979, 12, 66. 33.Demuth, M.; Mikhail, G. Tetrahedron 1983, 39, 991. 34.Rigby, J. H.; Senanayake, C. J. Org. Chem. 1988, 53, 440. 35.Wei, C.-P.; Liao, C.-C. Tetrahedron Lett. 1989, 30, 2255. 36.(a) Enholm, E. J.; Jia, Z. J. Tetrahedron Lett. 1995, 36, 6819. (b) Enholm, E. J.; Jia, Z. J. J. Org. Chem. 1997, 62, 174. 37.Osterhage, C.; König, G. M.; Höller, U.; Wrigh, A. D. J. Nat. Prod. 2002, 65, 306. 38.König, G. M.; Wright, A. D. Planta Med. 1996, 62, 193. 39.Pietra, F. Nat. Prod. Rep. 1997, 14, 453. 40.Hsieh, M.-F.; Rao, P. D.; Liao, C.-C., J. Chem. Soc. Chem. Commun. 1999, 1441. 41.Gao, S.-Y.; Lin, Y.-L.; Rao, P. D.; Liao, C.-C. Synlett 2000, 421. 42.林妍伶,清華大學,1999年大學專題 43.宋玲端,清華大學,1993年碩士論文。 44.Hsu, D.-S.; Rao, P. D.; Liao, C.-C. Chem. Commun. 1998, 1795.id NH0925065037 sid 913482 cfn 0 / id NH0925065038 auc 郭致賢 tic 於自組裝單分子膜表面製備聚苯胺導線之研究 adc 陶雨台 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 83 kwc 聚苯胺 kwc 自組裝單分子膜 kwc 分子導線 kwc 混合自組裝單分子膜 abc 在漸漸崛起的分子電子學領域中,可控制長度與尺寸的分子導線是非常重要的元件之一。在此研究中,我們在分散且均勻混合的自組裝單層分子膜表面,以四聚苯胺為起發劑,起始表面聚合反應,在矽晶片表面製備了奈米尺度且分散良好的聚苯胺分子導線。 tc 總目錄 摘要(I) Abstract(II) 總目錄(III) 圖目錄(VI) 表目錄(IX) 壹、緒論(1) 1-1導電高分子(1) 1-1.1導電高分子的沿革(1) 1-1.2 導電高分子的種類及特性(3) 1-2聚苯胺(7) 1-2.1結構與形貌(7) 1-2.2 聚合方式(11) 1-3自組裝單分子膜(13) 1-3.1烷基硫醇自組裝單分子膜(15) 1-3.2烷基矽烷自組裝單分子膜(17) 1-3.3混合自組裝單分子膜(19) 貳、研究動機與方法(21) 參、實驗部分(23) 3-1實驗用藥品(23) 3-1.1合成用藥品(23) 3-1.2基材來源(23) 3-1.3清洗矽晶片所使用藥品(24) 3-1.4有機薄膜用藥品(23) 3-2實驗步驟(25) 3-2.1合成部分(25) 3-2.2矽晶片基材製備(28) 3-2.3金片基材製備(28) 3-2.4混合自組裝單分子膜製備(29) 3-2.5表面末端烯基氧化反應(30) 3-2.6表面羧酸官能基活化及醯胺化反應(30) 3-2.7表面嫁接聚合反應(30) 3-3實驗用儀器與技術(31) 3-3.1真空蒸鍍機(31) 3-3.2核磁共振光譜儀(31) 3-3.3傅立葉紅外線光譜儀(31) 3-3.4螢光光譜儀(35) 3-3.5原子力顯微鏡 (35)3-3.6與水接觸角測量(36) 肆、結果與討論(38) 4-1以矽晶片表面為基材之系統(38) 4-1.1混合烷基矽烷自組裝單層分子薄膜(40) 4-1.2矽晶片表面混合末端烯基自組裝單分子膜氧化反應(46) 4-1.3矽晶片表面混合羧酸自組裝單分子膜活化及醯胺化反應(50)4-1.4矽晶片表面混合四聚苯胺單分子膜表面嫁接聚合反應(56) 4-1.5 表面官能基分散均勻度測試(65) 4-2以金表面為基材之系統(66) 4-2.1金表面混合烷基硫醇自組裝單分子膜 (69)4-2.2金表面羧酸官能基活化及醯胺化反應 (72)4-2.3金表面混合四聚苯胺單分子膜表面嫁接聚合反應(75) 伍、結論(80) 陸、參考資料(81)rf 1. Dall’ Olio, A.; Dascola, G.; Varacca, V. and Bocchi, V. Acad. Sci. Ser., 1968, 433, C267. 2. Heeger, A. J., J. Phys. Chem. B 2001, 105, 8475. 3. MacDiarmid, A. G., Angew. Chem. Int. Ed., 2001, 40, 2581. 4. MacDiarmid, A. G.; Epstein, A. J., Faraday Discussions, 1989, 88, 317. 5. Genies, E. M.; Boyle, A.; Lapkowski, M. and Tsintavis, C., Synthetic Metals, 1990, 139. 6. Heeger, A. J., Angew. Chem. Int. Ed., 2001. 40, 2591. 7. Epstein, A.J.; MacDiarmid, A.G., Mol. Cryst. Liq. Cryst., 1988. 160, 165. 8. Wudl, F.; Angus, R.O. Jr.; Lu, F.L.; Allemand, P.M.; Vachon, D.J.; Nowak, M.; Liu,Z.X.; Heeger, A.J., J. Am. Chem. Soc., 1987. 109. 3677. 9. Angelopoulos, M.; Liao, Y.H.; Saraf, R.F., Polycrystalline Conducting Polymers and Precursors There of Having Adjustable Morphology and Properties. 2001, U.S. 6,210,606 B1. 10. Yan, F. ; Xue, G., J. Mat. Chem., 1999, 9, 3035. 11. Cao, Y.; Smith, P.; Heeger, A.J., Synth. Met., 1993. 27, 3514. 12. Armes, S. P. ; Miller, J. F., Synth. Met., 1988. 22, 385. 13. Nu, S. L.; Somasiri, N. L. D.; Wu, W. and Yaniger, S. I. Mol. Cryst. Liq. Cryst., 1985, 121, 173. 14. Wang, B.; Tang, J. and Wang, F. Synth. Met., 1987. 18, 323. 15. Bacon, J. and Adams, R. N. J. Am. Chem. Soc., 1968, 90, 6596. 16. Wawzonek, S; and MacIntyre, T. W., J Electrochem. Soc., 1967, 114, 1025; 1972, 119, 1350. 17. Bigelow, W. C.; Pickettl, D. L. and Zisman, W. A., J. Colloid Interface Sci. 1946, 1, 513. 18. Nuzzo, R. G. and Allara, D. L., J. Am. Chem. Soc. 1983, 105, 4481. 19. Delamarche, E.; Michel, B.; Kang, H. and Gerber,C., Langmuir 1994, 10, 4103. 20. (a) Allara, D. L. and Nuzzo, R. G., Langmuir 1985, 1, 54. (b) Laibinis, P. E.; Hickinan, J. J.; Wrighton, M. S.; and Whitesides, G. M., Science 1989, 245, 845. (c) Tao, Y. T.; Lee, M. T. and Chang, S. C., J. Am. Chem. Soc. 1993, 115, 9547. 21. Brzoska, J. B.; Azouz, I. B. and Rondelez, F., Langmuir 1994, 10, 4367. 22. Lee, K. B.; Park, S. J.; Mirkin, C. A.; Smith, J. C.and Mrksich, M., Science 2002, 295, 1702. 23. (a)I. Willner; V. Heleg-Shabtai; R. Blonder; E. Katz; G. Tao, J. Am. Chem. Soc. 1996, 118, 10321. (b)M. Wells; R. M. Crooks; J. Am. Chem. Soc. 1996, 118, 3988. (c)K. Sirkar; A. Revzin; M. V. Pishko; Anal. Chem. 2000, 72, 2930. (d)J. Rao; L. Yan; B. Xu, G. M. Whitesides, J. Am. Chem. Soc. 1999, 121, 2629. (e)J. M. Brockman; A. G. Frutos; R. M. Corn, J. Am. Chem. Soc. 1999, 121, 8044. (f)Y. Dong; C. Shannon, Anal. Chem. 2000, 72, 2371 24. (a) Kumar, A.; Biebuyck, H. A.; Abbott, N. L. and Whitesides, G. M., J. Am. Chem. Soc. 1992, 114, 9188. (b) Laibinis, P. E.; Whitesides, G. M., J. Am. Chem. Soc., 1992, 114, 9022. 25. Chen, C. C. and Lin, J.J., Adv. Mater. 2001, 13, 136. 26. Widrig, C. A.; Alves, C. A.; Porter, M. D., J. Am. Chem. Soc. 1991, 113, 2805. 27. Sagiv, J., J. Am. Chem. Soc. 1980, 102, 92. 28. Tillman, N.; Ulman, A.; Schildkraut, J. S.; Penner, T. L., J. Am. Chem. Soc., 1988, 111, 6136. 29. Tillman, N.; Ulman, A.; Penner, T. L., Langmuir, 1989, 5, 101. 30. Ulman, A. Chem. Rev. 1996, 96, 1533. 31. Bain, C. D. and Whitesides, G. M., J. Am. Chem. Soc. 1989, 111, 7164. 32. Overney, R. M.; Meyer, E.; Frommer, J.; Brodbeck, D.; Lüthi, R.; Howald, L.; Güntherodt, H. J.; Fujihara, M.; Takano, H. and Gotoh, Y., Nature 1992, 359, 133. 33. Siepmann J. I.; and McDonald, I. R., Mol. Phys. 1992, 75, 255. 34. Stranick, S. J.; Tao, Y. T.; Allara, D. L.; and Weiss, P. S., J. Phys. Chem. 1994, 98, 7636. 35. Ulman, A. J.Mater.Educ., 1989, 11, 205. 36. Hadara, Y.; Girolami, G. S. and Nuzzo, R. G., Langmuir, 2003, 19, 5104 37. Frydman, E.; Cohen, H.; Maoz, R. and Sagiv, J., Langmuir, 1997, 13, 5089. 38. A. Garnier ; R. Yassar ; G. Hajlaoui ; F. Horowitz ; F. Deloffre ; B. Servet ; S. Ries ; P. Alnot, J. Amer. Chem. Soc. 1993, 115, 8716. 39. Z. F. Li and E. Ruckenstein, Macromolecules 2002, 35, 9506. 40. Tarachiwin, L.; Kiattibutr, P.; Ruangchuay, L.; Sirivat, A.; Schwank, J., Synth. Met., 2002, 129, 9506. 41. Li, L.; Chen. S.; and Jiang, S., Langmuir 2003, 19, 3266. 42. P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y.-T, Tao, A. N. Parikh, R. G. Nuzzo, J. Am. Chem. Soc. 1991, 113, 7152. 43. Schonherr, H.; Feng, C,; Shovsky, A., Langmuir 2003, 19, 10843. 44. Pavia, D. L.; Lampman, G. M and Kriz, G. S., Introduction to spectroscopy (3rd ed), P51.id NH0925065038 sid 913484 cfn 0 / id NH0925065039 auc 張繼遠 tic 以無電鍍製備鈀膜及其純化氫氣之應用 adc 趙桂蓉 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 英文 pg 91 kwc 鈀膜 kwc 氫氣純化 kwc 不 kwc � kwc 袗 kwc � kwc 管 kwc 選擇率 abc 摘要 tc Contents 博碩士論文授權書 I 指導教授推薦書 II 考試委員審定書 III Abstract IV 摘要 V 謝誌 VI Chapter 1. Introduction 1 1.1 Hydrogen Demand 1 1.2 Hydrogen Separation through Palladium Membrane 5 1.3 Preparation of Palladium Membrane 12 1.4 Permeability of a Porous Media 27 1.5 Purpose of This Research 32 Chapter 2. Experimental 33 2.1 Chemicals 33 2.2 Overview of experimental section 35 2.3 Surface Cleaning of PSS Tube 36 2.4 Surface Planarization of PSS Tubes 37 2.5 Colloid Coating 43 2.6 Deposition of Palladium Membranes 45 2.7 Characterization 50 Chapter 3. Results and Discussion 54 3.1 Surface Modification of PSS Tubes 54 3.2 Peeling of Pd membrane 66 3.3 Permeability through Pd membranes 71 3.4 Performance of Pd membranes 79 3.5 Characteristic of Pd Nano-colloids 85 Chapter 4. Conclusion 91 Figure Contents Figure 1.1 Hydrogen diffusion through palladium film. 6 Figure 1.2 H/Pd phase diagram 10 Figure 1.3 The scheme for the electroless plating combined with osmosis. 20 Figure 1.4 MOCVD 22 Figure 1.5 Magnetron sputtering 23 Figure 1.6 Electroplating 25 Figure 1.7 Composite membrane 30 Figure 2.1 The scheme of preparation of Pd composite membranes 35 Figure 2.2 The schematic diagram of planarization 38 Figure 2.3 The set-up of the dip-coating 42 Figure 2.4 The set-up for Pd colloidal coating. 47 Figure 2.5 The set-up of electroless plating 49 Figure 2.6 The set-up for the measurement of permeability. 51 Figure 2.7 The set-up for the measurement of selectivity. 52 Figure 3.1 The Surface of original PSS tube 55 Figure 3.2 The Surface of polished PSS tube 55 Figure 3.3 The difference between polished surface and original surface 55 Figure 3.4 The Cleaned surface 56 Figure 3.5 The OM picture of PSS surface after the growth of MFI membrane 58 Figure 3.6 The OM picture of PSS surface after coating of colloidal MFI membrane 58 Figure 3.7 The OM picture of PSS surface after coating with colloidal MFI membrane and polish posttreatment 59 Figure 3.8 The OM picture of colloidal silica membrane after calcination 60 Figure 3.9 The argon permeability of Tube A 61 Figure 3.10 The argon permeability of Tube B 61 Figure 3.11 The PSS tube filled with alumina powders 62 Figure 3.12 The argon permeability of modified PSS tubes (the values of estimated pore sizes are listed in the parentheses) 63 Figure 3.13 The PSS surface after calcination 64 Figure 3.14 The argon permeability of modified PSS tubes 65 Figure 3.15 Time period of preparation 65 Figure 3.16 The peeling of Pd membrane 66 Figure 3.17 The peeling area 67 Figure 3.18 The anchoring effect 68 Figure 3.19 The line scan of EPMA 69 Figure 3.20 The argon permeability of modified PSS tubes 73 Figure 3.21 The relation between the permeability of Pd membrane and pore size of substrate 78 Figure 3.22 The selectivity and hydrogen flux of each tube 79 Figure 3.23 Hydrogen flux through Pd composite membrane 82 Figure 3.24 The result of the regression analysis 84 Figure 3.25 The path of x-ray 86 Figure 3.26 The original PXRD spectrum of Pd nanocolloids 86 Figure 3.27 The corrected PXRD spectrum 87 Figure 3.28 The differences of the peak positions at different angle 88 Figure 3.29 The lattice constant 89 Table Captions Table 1.1 Comparison of different fuel cells 2 Table 1.2 Use of fuel cells1 2 Table 1.3 The thickness of Pd membrane and n value in literature 9 Table 1.4 The composition of the activation bath reported by Li et al 14 Table 1.5 The composition of the activation bath reported by Ma et al 15 Table 1.6 The composition of the activation bath reported by Varma et al 15 Table 1.7 The compositions of the plating bath 17 Table 1.8 The compositions of the plating bath reported by Hughes et al 18 Table 1.9 The compositions of the plating bath reported by Ma et al 18 Table 1.10 The calculation of the effective concentration in the plating bath 20 Table 2.1 The composition of the plating bath. 48 Table 3.1 Procedures of each tube 70 Table 3.2 The Ar permeability of Pd/Modified PSS 71 Table 3.3 The Ar permeability of Pd membranes 75 Table 3.4 Rise in permeability after heat treatment at 350 °C 77 Table 3.5 The selectivity and hydrogen flux at different pressure 80 Table 3.6 The result of calculation 83 Table 3.7 The calculation of PXRD 90rf 1. Rennie, J.; Scientific American Chinese Version, 2002, No. 10, Dec. 2. Quirk, M.; Serda, J.; “Semiconductor Manufacturing Technology”, 2001, Chapter 2 3. Kushmerick, J.G.; Kandel, S.A.; Han, J.A. J. Phys. Chem. B 2000, 104, 2980-2988 4. Paturzo L.; Basile, A. Ind. Eng. Chem. Res. 2002, 41, 1703-1710 5. She, Y.; Han, J.; Ma, Y. H. Catalysis Today 2001, 67, 43-53. 6. Hollein, V.; Thornton, M.; Quicker, P.; Dittmeyer, R. Catalysis Today 2001, 67, 33-42. 7. Paglieri, S. N.; Foo, K. Y.; Way, J. D.; Collins, J. P.; Harper-Nixon, D. L. Industrial and Engineering Chemistry Research 1999, 38, 1925. 8. Lopez, N.; Norskov, J. K. Surface Science 2001, 477, 59 9. Mardilovich, I.P; Engwall, E.; Ma, Y.H.; Desalination 2002, 144(1-3), 85-89 10. Li, A.; Liang, W.; Hughes, R.; Catalysis Today 2000, 56, 45-51 11. Wu, C.W.; “Study on the preparation of Pd/Ag alloy membrane tube and simulating the structure” Master Thesis of Department of Chemistry Engineering in National Tsing Hua University, Taiwan 2003, P.54 12. Nam, S.E.; Lee, K.H.; J. Membrane Sci. 2000, 170(1), 91-99 13. Yeh, C.S.; “Hydrogen Separation of Ag Tube Coated with Pd-Ag membrane” Master Thesis of Department of Materials Science and Engineering in National Tsing Hua University, 2002, P.9 14. Stocker, J.; Whysall, M. et al; "30 Years of PSA Technology for Hydrogen Purification" Universal Oil Products 1998 July 2818 15. Heung, L. K.; “Separation Using Encapsulated Metal Hydride” Westinghouse Savannah River Company (USA), 2002, 00558 16. Uemiya, S.; Sato, N.; Anto, H., et al; J. Membrane Sci. 1991, 56 (3), 303-313 17. Uemiya, S.; Matsuda, T.; Kikuchi, E.; J. Membrane Sci. 1991, 56 (3), 315-325 18. Govind, R.; Atnoork, D.; Ind. Eng. Chem. Res. 1991, 30(3), 591-594 19. Shu, J.; Grandjean, B.P.A.; Ghali, E.; et al; J. Membrane Sci. 1993, 77(2-3), 181-195 20. Mardilovich, P.P.; She, Y.; Ma, Y.H., AIChE J. 1998, 44(2), 310-322 21. Lee, C.L.; Wan, C.C.; Wang, Y.Y.; J. Eelectrochem. Soc. 2003,150(3), C125-C130 22. Wang, Y.H.; Wan, C.C.; Plating and Surface Finishing 1982, August, 59-61 23. Lee, C.L.; Wan, C.C.; Wang, Y.Y.; Adv. Funct. Mater. 2001, 11(5), 344-347 24. Mallory, G.O.; Hajdu, J.B. et al; “Electroless Plating: Fundamentals And Applications”, 1990, 421 25. Yeung, K.L.; Sebastien, J.M.; Varma, A.; Catalysis Today 1995, 25, 231-236 26. Chen, B.H.; Hong, L.; Ko, T.M. et al; Ind. Eng. Chem. Res. 2002, 41, 2668-2678 27. Li, Z.Y.; Maeda, K.; Kusakabe, K. et al; J. Membrane Sci. 1993, 78, 247 28. Kainourgiakis, M.E.; Stubos, A.K.; Konstantinou, N.D. et al; J. Membrane Sci. 1996, 114, 215-225 29. Cheng, S.L.; “孔洞性氧化矽管狀膜” Master Thesis of Department of Chemistry in National Tsing Hua University, Taiwan 2002, Chap. 2, P.11-14 30. Kao, C.H.; “MFI沸石薄膜的合成、鑑定與應用” Master Thesis of Department of Chemistry Engineering in National Tsing Hua University, Taiwan 2000, P.23-34id NH0925065039 sid 913480 cfn 0 / id NH0925065040 auc 邱建洋 tic 氣體吸附運用在中孔洞二氧化矽分子篩的結構鑑定 adc 趙桂蓉 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 118 kwc 氣體吸附 kwc 氪氣吸附 kwc 中孔洞分子篩 kwc 孔徑分佈 abc 利用模版合成法製備之中孔洞二氧化矽分子篩具有下列特性:孔 tc 第一章 緒論 1 1.1 中孔洞分子篩簡介 1 1.2中孔洞二氧化矽分子篩形成機制 4 1.3 本論文研究的目的與方法 10 第二章 實驗 12 2.1藥品 12 2.2 中孔洞分子篩的合成 13 2.3 金屬嵌入中孔洞分子篩 15 2.4 中孔洞二氧化矽薄膜的製備 19 2.5 鑑定分析 20 2.5.1等溫物理吸附 20 2.5.2等溫化學吸附 22 2.5.3 X光繞射實驗 27 2.5.4 場發射掃瞄式電子顯微鏡實驗 28 第三章 氣體吸附簡介 29 3.1吸附等溫曲線(adsorption isotherm) 32 3.2化學氣體吸附分析方法 34 3.3物理氣體吸附分析方法 35 3.3.1 表面積- BET理論[29 ] 35 3.3.2 孔洞體積與面積- t-plot &αs-plot 40 3.3.3孔徑分佈分析方法 43 第四章 結果與討論 59 4.1 中孔洞二氧化矽分子篩粉體樣品之孔徑分析方法 59 4.2 中孔洞二氧化矽粉體的鑑定 64 4.3 孔徑分析方法的比較 81 4.4 氪氣吸附與中孔洞二氧化矽薄膜的鑑定 88 4.4.1小表面積樣品的氪氣吸附 88 4.4.2 利用氪氣吸附求得孔徑分佈(Pore size distribution) 89 4.5 金屬嵌入中孔洞分子篩對氣體吸附的影響 102 第五章 結論 105 第六章 參考文獻 108 附錄 111 附錄A 111 附錄B 115 附錄C 118rf 1 Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature, 1992, 359, 710. 2 Beck, J. S. et al. J. Am. Chem. Soc. 1992, 114, 10834. 3 Sayari, A; Liu, P Micro. Mater. 1997, 12, 149. 4 Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548. 5 Kabanov, A. V.; Batrakova, E. V.; Alakhov, V. Y. J. Contr. Rel. 2002, 82, 189. 6 Solar-Illia, G. J. A. A.; Crepaldi, E. L.; Grosso, D.; Sanchez, C. Curr Opinion ColloidInterf Sci. 2003, 8, 109. 7 Vartuli, J. C.; Roth, W. J; Beck, J. S.; McCullen, S. B.; Kresge, C. T. Molecular Sieves, 1998, 1, 97. 8 Tanev, P. T.; Pinnavaia, T. J. Science 1995, 267, 865. 9 Antonelli, D. M.; Ying, J. Y. Angew, Chem. In.t Ed. Engl. 1996, 35, 426. 10 Antonelli, D. M.; Ying, J. Y. Chem. Mater. 1996, 8, 874. 11 Henriksson, U.; Blackmore, E. S.; Tiddy, G. J. T.; Soderman, O. J. Phys. Chem. 1992, 96, 3894. 12 Brinker, C. J.; Scherer, G. W. Sol-Gel Science 1990. 13 Regev, O Langmuir 1996, 12, 4940. 14 Lin, H. P.; Mou, C. Y. Acc. Chem. Res. 2002, 35, 927. 15 Huo, Q.; Feng, J.; Schuth, F.; Stucky, G. D. Chem. Mater. 1997, 9, 14. 16 Winkel, P. S.; Yang, P.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D. Adv. Mater. 1999, 11, 303. 17 Feng, P.; Bu, X.; Stucky, G. D.; Pine, D. J. J. Am. Chem. Soc. 2000, 122, 994. 18 Wirnsberger, G.; Yang, P.; Scott, J.; Chmelka, B. F.; Stucky, G. D. Spectrochim. Acta A 2001, 57, 2409. 19 Cai, Q.; Lin, W. Y.; Xiao, F. S.; Pang, W. Q.; Chen, X. H.; Zou, B. S. Micro. Meso. Mater. 1999, 32, 1. 20 Mou, C. Y.; Lin, H. P. Pure Appl. Chem., 2000, 72, 137. 21 Ryoo, S. H. Joo, J. M. Kim, J. Phys. Chem. B. 1999, 103, 7435. 22 鄭明欣,國立清華大學化學研究所碩士論文,民國92年 23 D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc. 1998, 120, 6024. 24 Zhao, D.; Sun, J.; Li, Q.; Stucky, G. D. Chem. Mater. 2000, 12, 275. 25 Newalkar, B. L.; Komarneni, S. Chem. Mater. 2001, 13, 4573. 26 楊家銘,國立清華大學化學研究所博士論文,民國91年。 27 Rouquerol, F. et al. Adsorption by Powders and Porous Solids; Academic Press: 1999, p 10. 28 Boudart, M.; Djega-Mariadassou, G. Kinetic of Heterogeous Catalytic Reactions, Princeton University Press, 1984, p 20. 29 Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309. 30 Langmuir, I. J. Am. Chem. Soc. 1918, 40, 1631. 31 Brunauer, S.; Emmett, P. H. J. Am. Chem. Soc. 1937, 59, 2682. 32 Webb, P. A.; Orr, C. Analytical Methods in Fine Particle Technology; Micromeritics instrument Corporation: 1997, p 63. 33 Gregg, S. J.; Sing, K. S. W. Adsorption, Surface Area and Porosity, 2nd Ed.; New York: 1982. 34 Barrett, E. P.; Joyner, L. G.; Halenda, P. P. J. Am. Chem. Soc. 1951, 73, 373. 35 Cohan, L. J. J. Am. Chem. Soc. 1938, 60, 433. 36 Harkins, M. R.; Jura, G. J. Am. Chem. Soc. 1944, 66, 1366. 37 Halsey, G.D., J. Chem. Phys., 1948, 16, 931. 38 Magee, R.W., Presented Paper, Rubber Div., J. Am. Chem. Soc. Meeting, Pittsburgh, Pa., Oct., 11-14, (1994). 39 Chao, K. J.; He, Z. P.; Chiu, C. Y.; Chiang. A. S. T. Proceedings: 14th IZC, 2004, 1363. 40 Derjaguin, B. V.; Churaev, N. V. J. Coll. Interf. Sci. 1976, 54,157. 41 Broekhoff, J.; De Boer, J. H. J. Catal. 1967, 9, 8. 42 Broekhoff, J.; De Boer, J. H. J. Catal. 1968, 10, 368. 43 Ravikovitch, P. I.; O’Domhnail, S. C.; Neimark, A. V.; Schuth, F.; Unger, K. K. Langmuir 1995, 11, 4765. 44 Ravikovitch, P. I.; Vishnyakov, A.; Neimark, A. V. Phys. Rev. E 2001, 6401, 011602. 45 Tarazona, P.; Marconi, U. M. B.; Evans, R. Mol. Phys. 1987, 60, 573. 46 Ravikovitch, P. I.; Neimark, A. V. J. Phys. Chem. B 2001, 105, 6817. 47 Weeks, J. D.; Chandler, D.; Anderson, H. C. J. Chem. Phys. 1971, 54, 5237. 48 Ravikovitch, P. I.; Haller, G. L.; Neimark, A. V. Adv. Colloid Interface Sci. 1998, 76-77, 203. 49 Lukens, W. W.; Schmidt-Winkel, P; Zhao, D. Y.; Feng, J. L.;Stucky, G. D. Langmuir 1999, 15, 5403. 50 Neimark, A. V.; Ravikovitch, P. I. Micro. Meso. Mater. 2001, 44-45, 697. 51 Jaroniec, M.; Kruk, M.; Olivier, J. P. Langmuir 1999, 15, 5410. 52 Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R. Chem. Mater. 2000, 12, 1961. 53 賀志平,國立清華大學化學研究所碩士論文,民國91年。 54 Ball, P. C.; Evans, R. Langmuir 1989, 5, 714. 55 Kabe, T; Mizuno, T.; Yasumori, I. Bull. Chem. Soc. Japan 1967, 40, 2047. 56 Adams, T. J.; Sherwood, J. N.; Swinton, F. L. J. Chem. Soc. A 1966, 1195. 57 Suzuki, I. Rev. Sci. Instrum. 1995, 66, 5070. 58 Suzuki, I.; Oosawa, K. Rev. Sci. Instrum. 1997, 68, 4531. 59 Chenebault, P.; Shurenkamper, A. J. Phys. Chem. 1965, 69, 2300. 60 Suzuki, I.; Kiuchi, H.; Saitou, K. J. Catal. 1995, 155, 163. 61 Beebe, R. A.; Beckwith, J. B.; Honig, J. M. J. Amer. Chem. Soc. 1945, 67, 1554. 62 Bohra, J. N.; John, P. T.; Saxena, R. K. J. Mater. Sci. Lett. 1993, 1362. 63 Kavan, L.; Gratzel, M.; Rathousky, J.; Zukal, A. J. Electrochem. Soc. 1996, 143, 394. 64 Schweinnicke, C.; Shimmelpfenning, J.; Pfnur, H. Phys. Rev. B 1993, 48, 8928. 65 Schmidt, R.; Stöcker, M.; Hansen, E.; Akporiaye, D.; Ellestad, O. H. Micro. Mater. 1995, 3, 443. 66 Coasne, B.; Pellenq, R. J. M. J. Chem. Phys. 2004, 120, 2913. 67 Buchel, G.;Denoyel, R.; Llewellyn, P. L.; Rouquerol, J. J. Mater. Chem. 2001, 11, 589. 68 Clark, J.; Ruiz, J. D.; Fan, H.; Brinker, C. J.; Swanson, B.; Parikh, A. N. Chem. Mater. 2000, 12, 3879. 69 Grosso, D.; Balkenende, A. R.; Albouy, P. A.; Ayral, A.; Amenitsch, H.; Babonneau, F. Chem. Mater. 2001, 13, 1848.id NH0925065040 sid 913455 cfn 0 / id NH0925065041 auc 郭乃瑋 tic 研究轉彎序列對於beta-摺板型胜 tic & tic #32957;結構、穩定度及摺疊動力學的影響 adc 陳長謙教授 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 英文 pg 82 kwc 蛋白質摺疊 kwc 貝他摺板型胜 kwc & kwc #32957; kwc 轉彎序列 abc 中文摘要 tc Table of contents Abstract I Abstract Chinese II Acknowledgements III Abbreviation V Table of Contents VII Chapter 1: Introduction 1 1.1 The general concepts of protein folding and folding problem 1 1.2 The role of ??-turns on the stability and structure of ??-sheets 6 1.3 The classes of the turn type 9 1.4 Previous studies on 20-mer 11 1.5 The development of cyclized strategy 14 1.6 The aim of this project 18 Chapter 2: Materials and Methods 23 2.1 Materials 23 2.1.1 Water 23 2.1.2 Chemicals 23 2.1.3 Chromatography column, membranes, filters 25 2.1.4 pH meter 25 2.1.5 Peptide automated synthesizer 25 2.1.6 Centrifuge 25 2.1.7 Reverse-phase high performance liquid chrometagraphy 26 2.1.8 Lyophilizer 26 2.1.9 Mass spectroscopy 26 2.1.10 Circular dicroism spectroscopy 27 2.1.11 Ultraviolet spectroscopy 27 2.1.12 Phtotchemical reactor 27 2.1.13 Nuclear magnetic resonance spectroscopy 27 2.2 Methods 28 2.2.1 Solid phase peptide synthesis 28 2.2.2 Purified the linker 28 2.2.3 Head-to-side chain cyclization of peptide with linker 29 2.2.4 Cleavage peptide from resin 30 2.2.5 Peptide purification and identification 30 2.2.6 NMR spectra 31 2.2.7 NMR assignment 31 2.2.8 Hydrogen exchange rate 32 2.2.9 Structure calculation 32 2.2.10 Circular dichroism spectroscopy 33 2.2.11 Ultraviolet spectroscopy 33 2.2.12 Photochemical experiment 34 2.2.13 Photoacoustic Calorimetry 34 Chapter 3: Results and Discussion (I): structure calculation 38 3.1 Peptide synthesis, purification, and identification 38 3.2 Aggregation studies 38 3.3 Estimation of peptide 19-mer adopt a three-stranded antiparallel ??-sheet structure 40 3.4 19-mer adopted a left-handed twist 53 3.5 Structural stability of 19-mer by CD 54 Chapter 4: Results and Discussion (II): Cyclized peptide 59 4.1 Peptide synthesis 59 4.2 Purification of BrAc-CMB-OH 59 4.3 Synthesis of c-19merE11C (cyclized for 1 to 11) 60 4.4 Peptide purification, identification and CD data 61 4.5 The initial kinetic data of c-19merE11C 66 4.5.1 Introduction to Photoacousitc Calorimetry 66 4.5.2 The PAC signals of c-19merE11C 69 4.5.3 Introduction to Photothermal Beam Deflection 73 4.5.4 The PBD signals of c-19merE11C 74 Chapter 5: Conclusion and Future Plans 77 Reference 80rf Reference 1. Levinthal, C. (1968) J. Chim. Phys. 65, 44-45. 2. Anfisen, C. B. (1973) Science 181, 223-230. 3. Ptitsin, O. B. (1973) Doklady Akademii Nauk SSSR 210, 1213-1215. 4. Kim, P. S. & Baldwin, R. L. (1990) Annual review of biochemistry 59, 631-660. 5. Dyson, H. J. & Wright, P. E. (1993) Current opinion in structure biology 3, 60-65. 6. Jackson, S. E. & Fersht, A. R. (1991) Biochemistry 30, 10436-10443. 7. Volk, M. (2001) European Journal of Organic Chemistry, 2605-2621. 8. Dill, K. A., Bromberg, S., Yue, K., Fiebig, K. M., Yee, D. P., Thomas, P. D. & Chan, H. S. (1995) Protein Sci 4, 561-602. 9. Ptitsyn, O. B. (1996) nature structural biology 3, 488-490. 10. Leopold, P. E., Montal, M. & Onuchic, J. N. (1992) Proc Natl Acad Sci U S A 89, 8721-5. 11. Davin, L. N. & Michael, M. C. (2000) Lehninger Principles of Biochemistry. 12. Dobson, C. M. (2003) Nature 426, 884-890. 13. Dinner, A. R., Sali, A., Smith, L. J., Dobson, C. M. & Karplus, M. (2000) Trends in Biochemical Sciences 25, 331-339. 14. Scholtz, J. M. & Baldwin, R. L. (1993) Biochemistry 32, 4604-8. 15. Lyu, P. C., Wemmer, D. E., Zhou, H. X., Pinker, R. J. & Kallenbach, N. R. (1993) Biochemistry 32, 421-425. 16. Chakrabartty, A. & Baldwin, R. L. (1995) Adv Protein Chem 46, 141-76. 17. Munoz, V. & Serrano, L. (1997) Biopolymers 41, 495-509. 18. Aurora, R. & Rose, G. D. (1998) Protein Science 7, 21-38. 19. Santiveri, C. M., Santoro, J., Rico, M. & Jimenez, M. A. (2004) Protein Science 13, 1134-1147. 20. De Alba, E., Rico, M. & Jimenez, M. A. (1999) Protein Science 8, 2234-2244. 21. Kortemme, T., Ramirez-Alvarado, M. & Serrano, L. (1998) Science 281, 253-256. 22. Struthers, M. D., Cheng, R. P. & Imperiali, B. (1996) Science 271, 342-345. 23. Kelly, J. W. (2000) Nature Structural Biology 7, 824-826. 24. Gorman, P. M. & Chakrabartty, A. (2001) Biopolymers 60, 381-394. 25. Minor, D. L. & Kim, P. S. (1994) Nature 367, 660-663. 26. Griffiths-Jones, S. R., Sharman, G. J., Maynard, A. J. & Searle, M. S. (1998) Journal of Molecular Biology 284, 1597-1609. 27. Das, C., Raghothama, S. & Balaram, P. (1999) Chemical Communications, 967-968. 28. Das, C., Nayak, V., Raghothama, S. & Balaram, P. (2000) Journal of Peptide Research 56, 307-317. 29. Blanco, F. J., Jimenez, M. A., Herranz, J., Rico, M., Santoro, J. & Nieto, J. L. (1993) Journal of American Chemistry Society 115, 5887-5888. 30. de Alba, E., Jimenez, M. A. & M., R. (1997) Journal of American Chemistry Society 119, 175-183. 31. Sibanda, B. L., Blundell, T. L. & Thornton, J. M. (1989) J Mol Biol 206, 759-77. 32. Chou, P. Y. & Fasman, G. D. (1977) Journal of Moleclar Biology 115, 135-175. 33. Rose, G. D., Gierasch, L. M. & Smith, J. A. (1985) Advances in Protein Chemistry 37, 1-109. 34. Sibanda, B. L. & Thornton, J. M. (1985) Nature 316, 170-4. 35. Schenck, H. L. & Gellman, S. H. (1998) Journal of the American Chemical Society 120, 4869-4870. 36. Chen, P. Y., Lin, C. K., Lee, C. T., Jan, H. & Chan, S. I. (2000) Protein Science 10, 1794-1800. 37. Bieri, O. & Kiefhaber, T. (1999) Biol Chem 380, 923-9. 38. Jones, C. M., Henry, E. R., Hu, Y., Chan, C. K., Luck, S. D., Bhuyan, A., Roder, H., Hofrichter, J. & Eaton, W. A. (1993) Proceedings of the National Academy of Sciences of the United States of America 90, 11860-11864. 39. Pascher, T., Chesick, J. P., Winkler, J. R. & Gray, H. B. (1996) Science 271, 1558-1560. 40. Williams, S., Causgrove, T. P., Gilmanshin, R., Fang, K. S., Callender, R. H., Woodruff, W. H. & Dyer, R. B. (1996) Biochemistry 35, 691-697. 41. Ballew, R. M., Sabelko, J. & Gruebele, M. (1996) Nature Structural Biology 3, 923-926. 42. Rock, R. S. & Chan, S. I. (1996) Journal of Organic Chemistry 61, 1526-1529. 43. Sheehan, J. C., Wilson, R. M. & Oxford, A. W. (1971) Journal of the American Chemistry Society 93, 7222-7228. 44. Stowell, M. H. B., Rock, R. S., Rees, D. C. & Chan, S. I. (1996) Tetrahedron Letters 37, 307-310. 45. Rock, R. S. & Chan, S. I. (1998) Journal of the American Chemical Society 120, 10766-10767. 46. Chen, P.-Y., Huang, J.-T., Chen, H.-L., Jan, H., Velusamy, M., Lee, C.-T., Fann, W., Larsen, R. W. & Chan, S. I. (2004) Proceedings of the national academy of sciences of the United States of America 101, 7305-7310. 47. Hansen, K. C., Rock, R. S., Larsen, R. W. & Chan, S. I. (2000) Journal of the American Chemical Society 122, 11567-11568. 48. Sibanda, B. L. & Thornton, J. M. (1991) Methods Enzymol 202, 59-82. 49. Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meyer, E. F., Jr., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. & Tasumi, M. (1977) J Mol Biol 112, 535-42. 50. Griffiths-Jones, S. R., Maynard, A. J. & Searle, M. S. (1999) Journal of Molecular Biology 292, 1051-1069. 51. Ramirez-Alvarado, M., Blanco, F. J., Niemann, H. & Serrano, L. (1997) J Mol Biol 273, 898-912. 52. Ramirez-Alvarado, M., Blanco, F. J. & Serrano, L. (1996) Nat Struct Biol 3, 604-12. 53. Johnson JR., W. C. (1988) Annual Review of Biophysics and Biophysical Chemistry 17, 145-166. 54. Woody, R. W. (1995) Methods Enzymol 246, 34-71. 55. Woody, R. W. & Dunker, A. K. (1996) in Circular dichroism and the conformational analysis of biomolecules, ed. Fasman, G., New York), pp. 109-158. 56. Strickland, E. H. (1974) CRC Critical reviews in biotechnology 2, 113-175. 57. Gensch, T. & Viappiani, C. (2003) Photochemical & Photobiological Sciences 2, 699-721. 58. Miksovska, J. & Larsen, R. W. (2003) Journal of Protein Chemistry 22, 387-394. 59. Abbruzzetti, S., Crema, E., Masino, L., Vecli, A., Viappiani, C., Small, J. R., Libertini, L. J. & Small, E. W. (2000) Biophysical Journal 78, 405-415.id NH0925065041 sid 913414 cfn 0 / id NH0925065042 auc 陳昌立 tic 銅離子與嗜甲烷菌Methylococcus capsulatus (Bath)中之微粒體甲烷單氧化酵素 adc 陳長謙 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 英文 pg 103 kwc 嗜甲烷菌 kwc 銅離子 kwc 電子自旋光譜 abc 銅離子在嗜甲烷菌 Methylococcus capsulatus (Bath) 的微粒體甲烷單氧化酵素中扮演著不可獲缺的重要角色。一個甲烷單氧化酵素中含有十五個呈還原態的銅離子,而且這些銅離子排列成五個三核銅離子簇(trinuclear copper cluster)。其中兩個三核銅離子簇稱為“基質催化銅離子簇”(C-cluster),它們參與了氧氣的鍵結與轉化以及碳氫化合物受質的羥化反應。剩下的銅離子簇稱為“電子傳遞銅離子簇”(E-cluster),它們負責將電子由NADH傳送給“基質催化銅離子簇”。初步分離的微粒狀甲烷單氧化酵素其低溫電子自旋光譜含有兩組訊號:一組屬於“第二型銅離子”(type 2 copper) ,另一組則是屬於三核銅離子簇。經過計算模擬,我們發現這組三核銅離子簇的電子自旋光譜訊號其電子自旋偶合常數J 約為 15?{20 cm-1,零場分裂常數D 及E約為0.0175 cm-1及0.005 cm-1。藉著結合低溫電子自旋光譜以及快速低溫擷取的技術,我們成功地觀察到甲烷單氧化酵素在催化循環過程中的不同氧化態,並證實了此酵素的催化反應機制。 tc Table of contents Abstract…….……………………………………..………………….…........................ i 中文摘要………………………..……………………………………………………… iii 謝誌……..……………………………………………………………………………… iv Table of contents………………………………………………………………………. vi Chapter 1: Introduction……….…………………..………………………....................................... 1 1.1 Methanothrophs…………………………………..…………………………….. 2 1.2 MMOs: sMMO and pMMO………………….………..……..….……………... 3 1.3 Hydroxylation of alkanes by pMMO. Unusual regioselectivity and stereoselectivity….………...................................................................................... 7 1.4 Unsettled issues……….…….………………………………………..………….. 11 Chapter 2: The role of copper ions on pMMO……………….…………………..………….. 12 2.1 Transcriptional switch and metabolic activation….………………………...... 13 2.2 High yield expression and purification of pMMO…………...…….………….. 16 2.3 Electron transfer and catalytic activity………………………………………... 19 Chapter 3: Electron paramagnetic resonance and X-ray absorption spectra of copper ions…………………………………………………………………………………...…… 25 3.1 Basic principles of EPR…………………..…………………………………….. 26 Introduction……………………………………………………………..……...... 26 Magnetic moments and magnetic resonance (g-values)……………….……….. 26 Hyperfine splittings………………….…………………………..………………. 29 Spectral Anisotropy……………………………….….…………..………………. 31 Spin Hamitonians……………………..………………….……………………… 33 3.2 EPR signal of Cu(II)……………………………………….……......................... 35 3.3 EPR of a trinuclear copper cluster……………………………………...……... 39 3.4 Power saturation and EPR relaxation………………………………………… 44 3.5 X-ray absorption spectroscopy of copper ions………………………………... 47 Chapter 4: Identification and characterization of a trinuclear copper cluster in pMMO…...………………………..……………...…………..…………...... 51 4.1 Introduction.………………..………………………………...……………….…. 52 4.1 Materials and methods.………………..………………….………………….…. 53 pMMO-Enriched Membranes from Methylococcus capsulatus (Bath)……….... 53 EPR spectroscopy…………………………………….……..…………..……….... 54 pMMO activity assay…………………………………………………….………... 55 EPR deconvolution……………………………………………………………….. 55 4.2 The EPR signals of pMMO-enriched membreanes…………………………… 56 Power saturation the EPR signal of pMMO-enriched membranes……………... 56 Origin of 14N superhyperfine in type 2 Cu(II) EPR……….…………………….. 58 4.3 Simulation of the EPR spectra of pMMO ……….……..……………..………. 60 4.4 Oxidative conversion of pMMO in the presence or in the absence of hydrocarbon substrate…………………………………………………………... 64 The dioxygen chemistry mediated by the C-clusters in pMMO in the absence of hydrocarbon substrate…………………..…………………………….....….......... 64 Hydrocarbon substrate binding and hydroxylation during enzyme turnover…………..………………………………….……………………………. 68 Coupling of dioxygen chemistryto alkane hydroxylation. Experiments with methane as substrate…………………………………..…………………….....… 71 Coupling dioxygen chemistry to alkane hydroxylation. Experiments with propane as substrate……………………………………..……………………….. 73 Coupling dioxygen chemistry to alkane/alkene hydroxylation. Experiments with propylene as substrate………………….………...…..................................... 75 4.5 Conclusions………………..…………………………………….………….….... 82 Chapter 5: (Cu, Zn)-pMMO………………………………………………………………..…….... 84 5.1 Motivation for preparation of the (Cu, Zn)-pMMO ……………………….…. 85 5.2 Preparation of a (Cu, Zn)-pMMO …………………………..………………….. 85 5.3 Metal contents ………………………………………………………...……….… 86 5.4 Reduction of (Cu, Zn)-pMMO …………………….……………………………. 88 5.5 Activity of (Cu, Zn)-pMMO ………………………………….………………..... 89 5.6 Summary ………………………………………………………..………………... 91 Chapter 6: Summary of thesis………………………………………………………...................... 93 References……………………………………………………………...…………….….. 96rf 1. Hanson, R. S.; Hanson, T. E. Micorbiol. Rev. 1996, 60, 439?{471. 2. Anthony, C. In The Biochemistry of Methylotrophs; Academic Press: London, 1982. 3. Higgins, I. J.; Best, D. J.; Hammond, R. C. Nature 1980, 286, 561?{564. 4. Hanson, R. S.; Netrusov, A. I.; Tsuji, K. In The Prokaryotes; Balows, A.; Truper, H. G.; Dworkin, M.; Harder, W.; Schleifer, K.-H. Eds.; Springer-Verlag: New York, 1992, Vol. I, Chap. 118. 5. Voss, D. Technol. Rev. 2002, 105, 69–72. 6. Periana, R. A.; Taube, D. J.; Gamble, S.; Taube, H.; Satoh, T.; Fujii, H. Science 1998, 280, 560–564. 7. Periana, R. A.; Taube, D. J.; Evitt, E. R.; Löffler, D. G.; Wentrcek, P. R.; Voss, G.; Masuda, T. Science 1993, 259, 340–343. 8. Murrell, J. C.; McDonald, I. R.; Gilbert, B. Trends Microbiol. 2000, 8, 221–225. 9. Hyman, M. R.; Murton, I. B.; Arp, D. J. Appl. Environ. Microbiol. 1988, 54, 3187–3190. 10. Ortiz de Montellano, P. R. In Cytochrome P450: Structure, Mechanism, and Biochemistry; Plenum: New York, 1986. 11. Colby, J.; Stirling, D. I.; Dalton, H. Biochem. J. 1977, 165, 395?{402. 12. Dalton, H. Adv. Appl. Microbiol. 1980, 26, 71?{87. 13. Green, J.; Dalton, H. J. Biol. Chem. 1989, 264, 17698?{??7703. 14. Fox, B. G.; Borneman, J. G.; Wackett, L. P.; Lipscomb, J. D. Biochemistry 1990, 29, 6419?{6427. 15. Rataj, M. J.; Kauth, J. E.; Donnelly, M. I. J. Biol. Chem. 1991, 266, 18684?{18690. 16. Andersson, K. K.; Froland, W. A.; Lee, S.-K.; Lipscomb, J. D. New J. Chem. 1991, 15, 411?{415. 17. Fox, B. G.; Froland, W. A.; Dege, J. E.; Lipscomb, J. D. J. Biol. Chem. 1989, 264, 10023?{10033. 18. Colby, J.; Dalton, H. Biochem. J. 1978, 171, 461?{468. 19. Woodland, M. P.; Dalton, H. J. Biol. Chem. 1984, 259, 53?{59. 20. Gassner, G. T.; Lippard, S. J. Biochemistry 1999, 38, 12768?{12785. 21. Rosenzweig, A. C.; Frederick, C. A.; Lippard, S. J.; Nordlund, P. Nature 1993, 366, 537?{543. 22. Rosenzweig, A. C.; Nordlund, P.; Takahara, P.; M. Frederick, C. A.; Lippard, S. J. Chem. Biol. 1995, 2, 409?{418. 23. Elango, N.; Radhakrishnan, R.; Froland, W. A.; Wallar, B. J.; Earhart, C. A.; Lipscomb, J. D.; Ohlendorf, D. H. Protein Sci. 1997, 6, 556?{568. 24. Chang, S.-L.; Wallar, B. J.; Lipscomb, J. D.; Mayo, K. H. Biochemistry 1999, 38, 5799?{5812. 25. Walters, K. J.; Gassner, G. T.; Lippard, S. J.; Wagner, G. Proc. Natl. Acad. Sci. USA 1999, 96, 7877?{7882. 26. Whittington, D. A.; Lippard, S. J. J. Am. Chem. Soc. 2001, 123, 827?{838. 27. Merkx, M.; Kopp, D. A.; Sazinsky, M. H.; Blazyk, J. L.; Műller, J.; Lippard, S. J. Angew. Chem. Int. Ed. Engl. 2001, 40, 2782?{2807. 28. Stainthorpe, A. C.; Lees, V.; Salmond, G. P. C.; Dalton, H.; Murrell, J. C. Gene 1990, 91, 27?{34. 29. Coufal, D. E.; Blazyk, J. L.; Whittington, D. A.; Wu, W. W.; Rosenzweig, A. C.; Lippard, S. J. Eur. J. Biochem. 2000, 267, 2174?{2185. 30. Cardy, D. L. N.; Laidler, V.; Salmond, G. P. C.; Murrell, J. C. Arch. Microbiol. 1991, 156, 477?{483. 31. Cardy, D. L. N.; Laidler, V.; Salmond, G. P. C.; Murrell, J. C. Mol. Microbiol. 1991, 5, 335?{342. 32. McDonald, I. R.; Uchiyama, H.; Kambe, S.; Yagi, O.; Murrell, J. C. Appl. Environ. Microbiol. 1997, 63, 1898?{1904. 33. Grosse, S.; Laramee, L.; Wendlandt, K.-D.; McDonald, I. R.; Miguez, C. B.; Kleber, H.-P. Appl. Environ. Microbiol. 1999, 65, 3929?{3935. 34. Shigematsu, T.; Hanada, S.; Eguchi, M.; Kamagata, Y.; Kanagawa, T.; Kurane, R. Appl. Environ. Microbiol. 1999, 65, 5198?{5206. 35. Nielsen, A. K.; Gerdes, K.; Degn, H.; Murrell, J. C. Microbiology 1996, 142, 1289?{1296. 36. Nielsen, A. K.; Gerdes, K.; Murrell, J. C. Mol. Microbiol. 1997, 25, 399?{409. 37. Chan, S. I.; Nguyen, H.-H. T.; Shiemke, A. K.; Lidstrom, M. E. In Bioinorganic Chemistry of Copper; Karlin, K. D., Tyeklar, Z., Eds.; Chapman and Hall: New York, 1993. 38. Chan, S. I.; Nguyen, H.-H. T.; Shiemke, A. K.; Lidstrom, M. E. In Microbial Growth on C1 Compounds; Murrell, J. C., Kelly, D. P., Eds.; Intercept: Andover, Hampshire, U.K., 1993. 39. Semrau, J. D.; Chistoserdov, A.; Lebron, J.; Costello, A.; Davagnino, J.; Kenna, E.; Holmes, A. J.; Finch, R.; Murrell, J. C.; Lidstorm, M. E. Journal of Bacteriology 1995, 177, 3071?{3079. 40. Nguyen, H.-H. T.; Shiemke, A. K.; Jacobs, S. J.; Hales, B. J.; Lidstrom, M. E.; Chan, S. I. J. Biol. Chem. 1994, 269, 14995?{15005. 41. Nguyen, H.-H. T.; Elliott, S. J.; Yip, J. H.-K.; Chan, S. I. J. Biol. Chem. 1998, 273, 7957-7966. 42. Stolyar, S.; Costello, A. M.; Peeples, T. L.; Lidstrom, M. E. Microbiology 1999, 145, 1235?{1244. 43. Semrau, J. D.; Zolandz, D.; Lidstrom, M. E.; Chan, S. I. J. Inorg. Biochem. 1995, 58, 235?{244. 44. Chan, S. I.; Nguyen, H.-H. T.; Shiemke. A. K.; Lidstrom, M. E. In Studies Toward Characterization of Methane Monooxygenase; Murrel, J. C.; Kelly, D. P., Eds.; Intercept: Andover, Hampshire, U.K., 1993, pp 93?{107. 45. Nguyen, H.-H. T.; Nakagawa, K. H.; Hedman, B.; Elliott, S. J.; Lidstrom, M. E.; Hodgson, K. O.; Chan, S. I. J. Am. Chem. Soc. 1996, 118, 12766?{12776. 46. Chan, S. I.; Chen, K. H.-C.; Yu, S. S.-F.; Chen, C.-L.; Kuo, S. S.-J., Biochemistry. 2004, 43, 4421?{4430. 47. Elliott, S. J.; Zhu, M.; Tso, L.; Nguyen, H.-H. T.; Yip, J. H.-K.; Chan, S. I. J. Am. Chem. Soc. 1997, 119, 9949?{9955. 48. Yu, S, S.-F.; Wu, L.-Y.; Chen, K. H.-C.; Luo, W.-I.; Huang, D.-S.; Chan, S. I. J. Biol. Chem. 2003, 278, 40658?{???~??????. 49. Kirmse, W.; Őzkir, J. S. J. Am. Chem. Soc. 1992, 114, 7590?{7591. 50. Yu, S. S.-F.; Chen, K. H.-C.; Tseng, M. Y.-H.; Tseng, C.-F.; Wang, Y.-S.; Chen, Y.-J.; Huang, D.-H.; Chan, S. I. J. Bacteriol. 2003, 185, 5915?{5924. 51. Stanley, S. H.; Prior, S. D.; Leak, D. J.; Dalton, H. Biotechnol. Lett. 1983, 5, 487?{492. 52. Choi, D. W.; Kunz, R. C.; Boyd, E. S.; Semrau, J. D.; Antholine, W. E.; Han, J. I.; Zahn, J. A.; Boyd, J. M.; Mora, A. M.; DiSpirito, A. A. J. Bacteriol. 2003, 185, 5755?{5764. 53. Prior, S. D., and Dalton, H. J. Gen. Microbiol. 1985, 131, 155?{163. 54. Madigan, M. T.; Martnko, J. M.; Parker, J. In Biology of Microorganisms, 8th ed., Simon & Schuster: New York, 1997. 55. Kao, W.-C., MSD. Dissertation, NTU, Taipei, Taiwan, 2004. 56. Smith, D. D.; Dalton, H. Eur. J. Biochem.1989, 182, 667?{671. 57. Lieberman, R. L.; Shrestha, D. B.; Doan, P. E.; Hoffman, B. M.; Stemmler, T. L.; Rosenzweig, A. C. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 3820?{3825. 58. Basu, P.; Katterle, B.; Andersson, K. K.; Dalton, H. Biochem. J. 2003, 369, 417?{427. 59. Takeguchi, M.; Okura, I. Catal. SurV. Jpn. 2000, 4, 51?{63. 60. Xin, J. Y.,;Cui, J. R.; Hu, X. X.; Li, S. B.; Xia, C. G.; Zhu, L. M.; Wang, Y. Q. Biochem. Biophys. Res. Commun. 2002, 295, 182?{186. 61. Cook, S. A.; Shiemke, A. K. J. Inorg. Biochem.1996, 64, 273?{284. 62. Holm, R. H.; Kennepohl, P.; Solomon, E. I. Chem. Rev. 1996, 96, 2239?{2314. 63. Marko, I. E.; Tsukazaki, M.; Giles, P. R.; Brown, S. M.; Urch, C. J. Angew. Chem. 1997, 109, 2297; Angew. Chem. Int. Ed. Engl. 1997, 36, 2208. 64. Solomon, E. I.; Jones, P. M.; May, J. A. Chem. Rev. 1993, 93, 2623?{2644. 65. Reitz, J. B.; Solomon, E. I. J. Am. Chem. Soc. 1998, 120, 11 467?{11478. 66. Solomon, E. I.; Tuczek, F.; Root, D. E.; Brown, C. A. Chem. Rev. 1994, 94, 827?{856. 67. Klinman, J. P. Chem. Rev. 1996, 96, 2541?{2562. 68. Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E. Chem. Rev. 1996, 96, 2563?{2605. 69. Ferguson-Miller, S.; Babcock, G. T. Chem. Rev. 1996, 96, 2889?{2908. 70. Solomon, E. I.; Chen, P.; Metz, M.; Lee, S.-K.; Palmer, A. E. Angew. Chem. Int. Ed. 2001, 40, 4570?{4590. 71. Elliott, S. J. Ph.D. thesis, California Institute of Technology, Pasadena, CA., 2000. 72. Solomon, E. I.; Baldwin, M. J.; Lowery, M. D.; Chem. Rev. 1992, 92, 521?{542 73. Cole, J. L.; Clark, P. A.; Solomon, E. I. J. Am. Chem. Soc. 1990, 112, 9534?{9548. 74. Sundaram, U. M.; Zhang, H. H.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc., 1997, 119, 12525?{12540. 75. Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E. Chem. Rev. 1996, 96, 2563?{2605. 76. Kahn, O. Angew. Chem. Int. Ed. Engl. 1985, 24, 834?{850. 77. Miller, J. S.; Epstein, A. J.; Angew. Chem. Int. Ed. Engl., 1994, 33, 385?{415. 78. Butcher, R. J.; O'Connor, C. J.; Sinn, E. Inorg. Chem. 1981, 20, 537?{545. 79. Chaudhuri, P.; Winter, M.; DellaVedova, B. P. C.; Bill, E.; Trautwein, A.; Gehring, S.; Fleischhauer, P.; Nuber, B.; Weiss, J. Inorg. Chem. 1991, 30, 2148?{2157. 80. Suh, M. P.; Han, M. Y.; Lee, J. H.; Min, K. S.; Hyeon, C. J. Am. Chem. Soc., 1998, 120, 3819?{3829. 81. Bernhardt, P. V.; Sharpe, P. C. J. Chem. Soc., Dalton Trans. 1998, 1087?{1088. 82. Springborg, J.; Glerup, J.; Sotofte, I. Acta Chem. Scand. 1997, 51, 832?{838. 83. Bazzicalupi, C.; Bencini, A.; Bencini. A.; Bianchi, A.; Corana, F.; Fusi, V.; Giorgi, C.; Paoli, P.; Paoletti, P.; Valtancoli, B.; Zanchini, C. Inorg. Chem. 1996, 35, 5540?{5548. 84. Pavlova, S. V.; Chen, K. H.-C.; Chan, S. I. J. Inorg. Biochem. 2003, 96, 210. 85. Bencini, A.; Gatteschi, D. 1990, EPR of exchange-coupled systems, Springer, Berlin. 86. DuBois, J. L.; Mukherjee, P.; Stack, T. D. P.; Hedman, B.; Solomon, E. I.; Hodgson, K. O. J. Am. Chem. Soc. 2000, 122, 5775?{5787 87. Elliott, S. J.; Randall, D. W.; Britt, R. D.; Chan, S. I. J. Am. Chem. Soc. 1998, 120, 3247?{3248. 88. Sroll. S., Ph.D. thesis, ETH, Zurich, 2003. 89. Hung, S.-C., Ph.D. thesis, California Institute of Technology, Pasadena, CA, 2001. 90. Vinchurkar, M. S.; Chen, K. H.-C.; Yu, S. S.-F.; Kuo, S.-J.; Chiu, H.-C.; Chien, S.-H.; Chan, S. I. Biochemistry 2004 (submitted). 91. Tseng, C.-F., MSD. Dissertation, NTHU, Hsinchu, Taiwan, 2001. 92. Lemos, S. S.; Collins, M. L. P.; Eaton, S. S.; Eaton, G. R.; Antholine, W. E. Biophys. J. 2000, 79, 1085-1094. 93. Tolman, W. B. Acc. Chem. Res. 1997, 30, 227?{237. 94. Mahadevan, V.; Henson, M. J.; Solomon, E. I.; Stack, T. D. P. J. Am. Chem. Soc. 2000, 122, 10249?{10250. 95. Taki, M.; Itoh, S.; Fukuzumi, S. J. Am. Chem. Soc. 2001, 123, 6203?{6204. 96. This total protein concentration in the membranes was determined by the Lowry method. The pMMO concentration was estimated to be 83(1)% of the total protein by SDS-gel-analysis. 97. Lee, H. Y.; Wu, T. B.; Lee, J. F. J. Appl. Phys. 1996, 80, 2175?{2180.id NH0925065042 sid 897418 cfn 0 / id NH0925065043 auc 王柏森 tic 二價銅、二價鎳巨環錯合物配位化學之研究與化學教育 adc 鍾崇燊 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 140 kwc 四胺基大環配位子 kwc x光晶體繞射 kwc 金屬錯合物 kwc 晶體結構 kwc 著作 kwc 化學 abc 兩個四胺基大環配位子,1,4,7,11-Tetraazacyclotetradecane和3-[8-(2-Cyano-ethyl)-3,5,7,7,10,12,14,14-octamethyl- tc 目 錄 頁次 中文摘要 ---------------------------------- Ⅰ Abstract -------------------------------II、Ⅲ 謝誌 -----------------------------------IV 目錄 ------------------------------------Ⅴ 圖目錄 ------------------------------------VI 表目錄 ------------------------------------VII 第一章 緒論 ----------------------------------1 第二章 四胺基大環配位子與鎳(Ⅱ)錯合 物之合成研究----------------------------15 一、 前言 ---------------------------------------15 二、實驗部分 ----------------------------------20 第三章 四胺基大環配位子與銅(Ⅱ)錯合 物之合成研究----------------------------30 一、 前言 -----------------------------------30 二、實驗部分 -----------------------------------33 第四章 四胺基大環鎳(Ⅱ)錯合物和銅(Ⅱ)錯合 物之晶體結構研究 ----------------------43 一、 前言 -----------------------------------43 二、 鎳錯合物晶體的資料收集--------------------- 46 三、 鎳錯合物晶體討論----------------------------51 四、 銅錯合物晶體的資料收集----------------------52 五、 銅錯合物晶體討論----------------------------60 參考文獻 ---------------------------------- 61 著作 ---------------------------------65 1. 以實驗教學法提昇高中生的化學創造力------------65 2. 以岑賓與本斯的學習理論為基礎的科學教學法 提昇高中生的化學 創造力:米立肯油滴實驗-------89 3. Kinetic studies of the conversion of cis-[Ni(isocyclam)(H2O)2 ]2+ to the square planar complex ---------115 圖目錄 圖 1-1 Chlorophyll and Heme 分子結構 2 圖 1-2 數種自然界大環分子結構 5 圖 1-3 tetraazaquaterene, cyclic amine,dibenzoaza -crown 分子結構 6 圖 1-4 以金屬模板技術合成大環四胺基鎳金屬錯合物 7 圖 1-5 四胺基大環分子跟非環狀分子 10 圖 1-6 四胺基大環配位子結構 13 圖 2-1 非配位金屬模板之反應機構 17 圖 2-2 配位金屬模板之反應機構 19 圖 2-3 1H NMR spectrum of isocyclam 25 圖 2-4 13C NMR spectrum of isocyclam 26 圖 2-5 1H NMR spectrum of Ni( isocyclam)2+ 29 圖 3-1 含有官能基四胺基大環配位子 32 圖3-2 1H NMR spectrum of 14ane﹝N﹞4-diene 37 圖3-3 1H NMR spectrum of Lb 38 圖3-4 13C NMR spectrum of Lb 39 圖3-5 1H NMR spectrum of Lb2CN 40 圖3-6 13C NMR spectrum of Lb2CN 41 圖4-1 有關錯合物Co(cyclam)3+之五種可能的 對掌性氮組織 45 圖4-2 cis-[Ni(isocyclam)(OH2)2 ]2+的X-ray圖形 46 圖4-3 Cu2+Lb2CN.2ClO4‾的X-ray圖形 52 表目錄 表1-1 四胺基大環配位子IUPAC命名跟縮寫 12 表4-1 錯合物cis-[Ni(isocyclam)(H2O)2 ]2+之晶體數據 及收集強度相摘要 47 表4-2 cis-[Ni(isocyclam)(H2O)2 ]2+Atomic coordination (´104) and equivalent isotropic置換參數 (Å2´ 103 ) 48 表 4-3 錯合物cis-[Ni(isocyclam)(H2O)2 ]2+之鍵長(Å) 49 表 4-4 錯合物cis-[Ni(isocyclam)(H2O)2 ]2+之鍵角(o) 50 表4-5 錯合物Cu2+Lb2CN.2ClO4‾之晶體數據及收集強度 相關摘要 53 表4-6 錯合物Cu2+Lb2CN.2ClO4‾Atomic coordination (´104) and equivalent isotropic 置換參數 (Å2´103) 55 表4-7 錯合物Cu2+Lb2CN.2ClO4‾之鍵長(Å) 56 表4-8 錯合物Cu2+Lb2CN.2ClO4‾之鍵角(o) 58rf 參考文獻 1.McMillan,D.R.J.ChEM.Educ.1985,62,916. 2.Hay,R.W.Bioinorganic Chemistry,ELLis Horwood limited,England,1897. 3.Burger,K.Bioinorganic Chemistry:Corrdination Equilibrium in Biologica -lly Active Systems, ELLis Horwood limited,England,1990. 4.Kendrick,M.J.;May,M.T.;Plishka,M.J.;Roninson,K.D.Metals in Biologica -l Systems, ELLis Horwood limited,England,1992. 5.Wang,J.H.Acc.Chem.Res.1970,3,90. 6.Lindoy,L.F.The Chemistry of Macrocyclic Ligand Complexes,Cambridge University Press, Cambridge,1989. 7.Melson,G.A.(Editor)Coordination Chemistry of Macrocyclic Compounds, Plenum Press,New York,1989. 8.Melson,G.A.(Editor)Coordination Chemistry of Macrocyclic Compounds, Plenum Press,New York,1979 9.Izatt,R.M.;Christensen,J.J.(Editor)Synthesis of Macrocyclic: The Design of Selective Complexing Agents,Progress in Macrocyclic Chemistry; Wiley-Interscience: New York,1987.Vol.3. 10. Lindoy,L.F.The Chemistry of Macrocyclic Ligand Complexes,Cambridge University Press, Cambridge,1989. 11.Dalley,N.K.In Synthesis Multidentate Macrocyclic Compounds; Izatt ,R.M.;Christensen,J.J.(Editor);Aeademic Press: New York,1987. 12.Moser,F.H.;Thomas,A.L.J.Chem.Edu.1964,41,245. 13.Curtis,N.F.J.Chem.Soc.1960,4409. 14.Thompson,M.C.;Busch,D.H.J.Am.Chem.Soc.1964,86,3651. 15.Pederson,C.J. J.Am.Chem.Soc.1967,89,7017. 16.Curtis,N.F.Coord.Chem.Rev. 1968,3,4409. 17. Christensen,J.J.;Eatough,D.J.; Izatt,R.M.Chem.Rev.1974,74,651. 18.Colquhoum,H.M.;Stoddart,J.F.;William,D.J.Angrew.Chem.Int.Ed.Engl. 1986,25,487. 19.Bianchi,A,;Micheloni,M.;Paoletti,P.Coord.Chem.Rev.1991,110,17. 20.Hiraoka,M.(Editor)Crowm Ethers and Analogous Compounds Elsevier ,1992. 21.Kimura,E.Tetrahedron 1992,48,6175. 22.Cabbiness,D.K.;Margerum,D.W. J.Am.Chem.Soc.1969,91,6540. 23.Clay,R.;Corr,S.; Micheloni,M.;Paoletti,P.Inorg.Chem.1985,24,3300. 24.Lin,C.T.;Rorabacher,D.B.;Caley,G.R.; Margerum,D.W. Inorg.Chem.1975, 14,919. 25.Hay,R.W.;Clark,G.R.J.Chem.Soc.Dalton Trans.1977,1148. 26 .Margerum,D.W.;Cayley,G.R.; Weatherburm,D.C.;Pagenkof,G.K.ACS In Coor -dination Chemistry, ACS Monograph 174;American Chemistry Society;Washin -gton DC,1978,Vol.2,p.1-220 27.Turan.T.S.;Rorabacher,D.B. Inorg.Chem.1972,11,288. 28.Busch,D.H.;Farmery,K.;Goedken,V.;Katovic,V.;Melnyk,A.C.;Sperati,C.R.;Tokel,N.Adv.Chem.Ser.1971,100,44. 29.Olson,D.C.;Vasilevskis,J. Inorg.Chem.1969,8,1611 30. Cabbiness,D.K.;Margerum,D.W. J.Am.Chem.Soc.1969,91,6540. 31. Richman, J. E.; Atkins, T. J. J. Am. Chem. Soc. 1974, 96, 2268 32. Tang, S. C.; Weinstein, G. N.; Holm, R. H. J. Am. Chem. Soc. 1973, 95, 613. 33.Koch, S.; Holm, R. H.; Frankel, R. B. J. Am. Chem. Soc. 1975, 97, 6714. 34. Curtis, N. F. J. Chem. Soc. 1964, 2644. 35. Lindoy, L. F.; Busch, D. H. Inorg. Chem. 1974, 13, 2494. 36.Thompson, M. C.; Busch, D. H. J. Am. Chem. Soc. 1964, 86, 3651. 37.Studer, M.; Kaden, T. A. Helv. Chim. Acta 1986, 69, 2081. 38.Kang,S.G.;Ryu,K.;Kim,M.S.Bull.Korean Chem.Soc.2000,21,81. 39.Treuex,T.J.;Holm,R.H.J.Am.Chem.Soc.1972,94,4529. 40.Tang,S.C.;Weinstein,G.N.; Holm,R.H.J.Am.Chem.Soc.1973,95,613. 41.Lee,C.S.;Chung,C.S.Inorg .Chem. 1984,23,639. 42.Bosnich,C.K.;Poon;Tobe,M. .Inorg .Chem. 1965,4,1102id NH0925065043 sid 913464 cfn 0 / id NH0925065044 auc 黃仕霖 tic 1,3,3-三甲基雙環[2.2.2]辛-5,7-二烯-2-酮系列化合物之光化學反應研究 adc 廖俊臣 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 79 kwc 雙-π-甲烷重排反應(di-π-methane rearrangement) kwc 氧-雙-π-甲烷重排反應(oxa-di-π-methane kwc DPM重排反應和ODPM重排反應的競爭性 kwc 鈀錯合物催化還原反應 kwc 雙環[2.2.2]辛二烯酮系列化合物之光化學反應 kwc 系統間跨越(intersystem crossing,ISC) kwc 光穩定狀態(photostationary state) abc 本論文主旨在研究1,3,3-三甲基雙環[2.2.2 rf 1. Zimmerman, H. E.; Grunewald, G. L. J. Am. Chem. Soc. 1966, 88, 183. 2. Zimmerman, H. E.; Pratt, A. C. J. Am. Chem. Soc. 1970, 92, 6267. 3. Zimmerman, H. E.; Mariano, P. S.; Hixson, S. S. Chem. Rev. 1973, 73, 531. 4. Zimmerman, H. E.; Pratt, A. C. J. Am. Chem. Soc. 1970, 92, 6259. 5. Hart, H.; Love, G. M. J. Am. Chem. Soc. 1973, 95, 4592. 6. (a) Givens, R. S.; Oettle, W. F.; Coffin, R. L.; Carlson, R. G. J. Am. Chem. Soc. 1971, 93, 3957. (b) Givens, R. S.; Oettle, W. F. J. Am. Chem. Soc. 1971, 93, 3963 7. Yates, P.; Stevens, K. E. Can. J. Chem. 1982, 60, 825. 8. Becker, H. D.; Ruge, B. J. Org. Chem. 1980, 45, 2189. 9. 張仕羿,清華大學,1995年碩士論文。 10. Murov, S. L. Handbook of Photochemistry, Marcel Dekker, Inc., New York, 1973. 11. (a) Luibrand, R. T.; Fujinari, E. M. J. Org. Chem. 1980, 45, 958. (b) Paguette, L. A.; Meisinger, R. H. Tetrahedron Lett. 1970, 1479. (c) Hart, H.; Murray, R. K.; Jr. Tetrahedron Lett. 1969, 379. 12. Murray, R. K.; Jr.; Hart, H. Tetrahedron Lett. 1969, 379. 13. Huang, N. Z.; Xing, Y. D. J. Org. Chem. 1982, 47, 140. 14. Padwa, A.; Chou, C. S.; Rieker, W. F. J. Org. Chem. 1980, 45, 4555. 15. Bei, X.; Turner, H. W.; Weinberg, W. H.; Guram, A. S. J. Org. Chem. 1999, 64, 6797. 16. Hirsch, J. A.; Anzalone, L. J. Org. Chem. 1985, 50, 2128. 17. Windisch, B.; Voegtle, F.; Niegar, M.; Lahtinen, T.; Rissanen, K.; JPCHF4. 2000, 342, 642. 18. Zhang, W.; Haight, A. R.; Hsu, M. C.; Tetrahedron Lett. 2002, 6575. 19. (a) Nace, H. R. Org. Reactions 1962, 12, 57. (b) De Groot, Ae.; Evenhuis, B.; Wynberg, H. J. Org. Chem. 1968, 33, 2214. (c) Gilman, R. E.; Henion, J. D.; Shakshooki, S.; Patterson, J. I. H.; Finley, K. T.; Boganowicz, M. J.; Griffith, R. J.; Harrington, D. E.; Grandall, R. K. Can. J. Chem. 1970, 48, 970 20. Cacchi, S.; Morera, E.; Ortar, G. Tetrahedron Lett. 1984, 25, 4821. 21. (a) Paquette, L. A.; Moerck, R. E.; Harirchian, B.; Magnus, P. D. J. Am. Chem. Soc. 1978, 100, 1597. (b) De Lucchi, O.; Modena, G. Tetrahedron 1984, 25, 2585. (c) De Lucchi, O. Tetrahedron 1988, 44, 6755. 22. Nair, V.; Thomas, A.; Anilkumar, G. Tetrahedron 1996, 52, 2481. 23. Yang, M. S.; Lu, S. S.; Rao, C. P.; Tsai, Y. F.; Liao, C. C. J. Org. Chem. 2003, 68, 6543.id NH0925065044 sid 913401 cfn 0 / id NH0925065045 auc 裘元杰 tic 新型不對稱銅金屬錯合物的合成及其在化學氣相沉積上之應用 adc 季昀 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 84 kwc 銅化學氣相沉積 abc 在本篇論文中,我們分別利用胺醇類配位基及六氟戊二酮兩種配基之鈉鹽與氯化銅進行反應,可得到一系列不對稱銅二價金屬錯合物1~7,這些化合物具有良好的空氣穩定性和揮發性,其熱物理性質皆詳述於論文中。經由錯合物2的X-ray單晶繞射鑑定,推測這系列的錯合物皆以雙聚物形式存在。 tc 【目錄】 第一章、序論 1 第一節、前言 1 第二節、化學氣相沉積簡介 4 第三節、研究背景與動機 7 第二章、實驗部份 11 第一節、一般敘述與討論 11 (一)藥品 11 (二)直立冷壁式化學氣相沉積裝置 11 (三)分析工具 14 第二節、實驗步驟 19 (一)不對稱銅二價金屬錯合物的合成 19 (二)化學氣相沉積 33 第三章、結果與討論 35 第一節、銅金屬錯合物之結構解析與性質探討 35 (一)錯合物 2 之構造解析 35 (二)錯合物之物理與化學性質探討 41 第二節、銅金屬薄膜微結構與物理性質的探討 52 (一)錯合物5化學氣相沉積之討論 56 (二)錯合物6化學氣相沉積之討論 65 第四章、結論 81 第五章、參考文獻 82rf 1. S. P. Murarka, Solid State technology, 1996, 83. 2. S. P. Murarka, R. J. Gutmann, A. E. Kaloyerors and W. A. Lanford, Thin Solid Films, 1993, 236, 257. 3. C. Y. Chang, S. M. Sze, ULSI Technology, the McGRAW-HILL 1996, 663. 4. H. Ono, T. Nakano, T. Ohta, Appl. Phys. Lett., 1994, 64, 1511. 5. E. Kolawa, J. S. Chen, J. S. Reid, P. J. Pokela and M. A. Nicolet, J. Appl. Phys., 1991, 70, 1369. 6. P. Doppelt, Microelectron. Eng., 1997, 37/38, 89. 7. P. Motte, J. Torres, J. Palleau, F. Tardif, O. Demolliens and H. Bernard, Microelectron. Eng., 2000, 50, 487. 8. C. Steinbrüchel, Appl. Surf. Sci., 1995, 91, 139. 9. Z. Stavreva, D. Zeidler, M. PlÖtner and K. Drescher, Appl. Surf. Sci., 1995, 91, 192. 10. P. Doppelt, M. Stelzle, Microelectron. Eng., 1997, 33, 15. 11. K. Weiss, S. Riedel, S. E. Schulz, M. Schwerd, H. Helneder, H. Wendt and T. Gessner, Microelectron. Eng., 2000, 50, 433. 12. S. T. Hwang, I. Shim, K. O. Lee, K. S. Kim, J. H. Kim, G. J. Choi, Y. S. Cho and H. Choi, J. Mater. Res., 1996, 11, 1051. 13. D. Temple, A. Reisman, J. Electrochem. Soc., 1989, 136, 3525. 14. A. E. Kaloyeros, A. Feng, J. Garhart, K. C. Brooks, S. K. Ghosh, A. N. Saxena and F. Luehers, J. Electronic Maters., 1990, 19, 271. 15. N. Awaya, Y. Arita, Jpn. J. Appl. Phys., 1993, 32, 3915. 16. B. Lecohier, B. Calpini, J. M. Philippoz, T. Stumm and H. Van den Bergh, Appl. Phys. Lett., 1992, 60, 3114. 17. H. S. Horowitz, S. J. McLain, A. W. Sleight, J. D. Druliner, P. L. Gai, M. J. VanKavelaar, J. L. Wahgner. B. D. Biggs and S. J. Poon, Science., 1989, 243, 66. 18. S. C. Goel, K. S. Kramer, M. Y. Chiang and W. E. Buhro, Polyhedron, 1990, 9, 611. 19. V. L. Young, D. F. Cox and M. E. Davis, Chem. Mater., 1993, 5, 1701. 20. J. Pinkas, J.C. Huffmann, M. H. Chisholm and K. G. Caulton, Inorg. Chem., 1995, 34, 5314. 21. J. Pinkas, J. C. Huffman, J. C. Bollinger, W. E. Streib, D. V. Baxter, M. H. Chisholm and K. G. Caulton, Inorg. Chem., 1997, 36, 2930. 22. a)P. –F. Hsu, Y. Chi, T. –W. Lin, Chem. Vap. Deposit., 2001, 7, 28.b)Y. Chi, P. -F. Hsu, C. -S. Liu, W. -L. Ching, T. -Y. Chou, A. J. Carty, S. -M. Peng, G. -H. Lee and S. -H. Chuang, J. Mater. Chem., 2002, 12, 3541. 23. T. Foster, P. R. West, Can. J. Chem., 1973, 51, 4009. 24. K. Woo, H. Paek, W. I. Lee, Inorg. Chem., 2003, 42, 6484. 25. R. Becker, A. Devi, J. Weiβ, U. Weckenmann, M. Winter, C. Kiener, H. –W. Becker and R. A. Fisher, Chem. Vap. Deposit., 2003, 9, 149. 26. 郭慧通, 國立清華大學化學所碩士論文, 2003. 27. W.–J. Lee, J. S. Min, S.–K. Rha, S.–S. Chun, C.–O. Park, J. Mater. Sci., 1996, 7, 111. 28. (a) D.-H. Kim, R. H. Wentorf and W. N. Gill, Mat. Res. Soc. Symp. Proc., 1992, 260, 107. (b) D.-H. Kim, R. H. Wentorf and W. N. Gill, J. Electrochem. Soc., 1993, 140, 3273. 29. C. Marcadal. E. Richard, J. Torres, J. Palleau and R. Madar, Microelectron. Eng., 1997, 37/38, 97. 30. D. Bollmann, R. Merkel and A. Klumpp, Microelectron. Eng., 1997, 37/38, 105. 31. S. Vaidya, D. B. Fraser, A. K. Sinhar, Proceedings of IRPS, IEEE, 1980, 165. 32. J. Li, Y. Shacham-Diamand, J. Electrochem. Soc., 1992, 139, L37. 33. (a)N. –I. Cho, D. I. Park, Thin Solid Films, 1997, 465, 308-309. (b)K. K. Choi, S. W. Rhee, J. Electrochem. Soc., 2001, 148, C473. 34. M. B. Naik, W. N. Gill, R. H. Wentorf and R. R. Reeves, Thin Solid Films, 1995, 262, 60.id NH0925065045 sid 913460 cfn 0 / id NH0925065046 auc 鄭美玲 tic 化學教育與三價鈷巨環錯合物配位化學之研究 adc 鍾崇燊 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 113 kwc 配位化學 abc 摘要 rf 1. Moser, F. H.; Thomas, A. L. J. Chem. Educ. 1964, 41, 245. 2. Antonini, E.; Brunori, M. Hemoglobin and Myoglobin in Their Reaction with Ligand, Northhollard, Amsterdam, 1971. 3. Mark ; G. S. Heme and Chlorophylls, Van Nodtrand, London, 1975. 4. Smith, E. L. Vitamin B12, 3nd. Ed., Methneu, London, 1965. 5. Wang, J. H. Acc. Chem. Res. 1970, 1, 90. 6. Lemberg, R.; Barrett, J. Cytochromes, Academic Press, London, 1973. 7. Jones, D. R.; Lindoy, L. F.; Sargeson, A. M. J. Am. Chem. Soc. 1983, 105, 7327. 8. Stubbe, J.; Kozarich, J. W. Chem. Rev. 1987,87, 1107. 9. Chin, J.; Zou, X. J. Am. Chem. Soc. 1988, 110, 223. 10. Connolly, J. A.; Banaszczyk, M.; Hynes, R. C.; Chin, J. Inorg. Chem. 1994, 33, 665. 11. Curtis, N. F. J. Chem. Soc., 1964, 2644. 12. Gabbiness, D. K.; Margerum, D. W. J. Am. Chem. Soc. Dalton Trans., 1992, 2019. 13. Margues, H. M., Bradley, J. C.; Campbell, L. A. J. Chem. Soc. Dalton Trans., 1992, 2019. 14. Douglas, B. E.; McDaniel, D. H.; Alexander, J. J. Concepts and Models of Inorganic Chemistry, 2nd. Ed., 1983. 20 Gillard, R. D.; Wilkinson, G. J. Chem. Soc. 1963, 3193. 21 Bosnich, B.; Poon, C. K.; Tobe, M. L. Inorg. Chem. 1965, 4, 1102. 22 Hay, R. W.; Bembi, R.; Moodie, W. T.; Norman, D. R. J. Chem. Soc., Dalton Trans. 1982,2131. 23 Sargenson, A. M.; Searle, G. H. Inorg. Chem.1967, 6, 787. 24 Buckingham, D. A.; Marzilli, D. Inorg. Chem.1965, 4, 1387. 25 Buckingham, D. A.; Marzilli, D. A.; Sargenson, A. M. Inorg. Chem.1967, 6, 1032. 26 Poon, C. K.; Lau, T. C.; Kan, Y. P. J. Chem. Soc., Dalton Trans. 1978, 1641. 27 Poon, C. K.; Liaso, Sarah S. T. J. Chem. Soc., Dalton Trans. 1978, 1180. 28 Poon, C. K.; Mak. P. W. J. Chem. Soc., Dalton Trans. 1978, 216. 29 Poon, C. K.; Wong, C. L., Mak, P. W. J. Chem. Soc., Dalton Trans. 1977, 1931. 30 Poon, C. K.; Wan, W. K. J. Chem. Soc., Dalton Trans. 1977, 1247. 31 Poon, C. K.; Wong, C. L. J. Chem. Soc., Dalton Trans. 1976, 1966. 32 Cooksey, C. J.; Tobe, M. L. Inorg. Chem. 1978, 17, 1558. 33 Lai, T. F.; Poon, C. K. Inorg. Chem. 1976, 15, 1562. 34 Poon, C. K.; Wong, C. L. Inorg. Chem. 1976, 15, 1562. 35 Poon, C. K.; Wong, C. L. Inorg. Chem. 1976, 15, 1573. 36 Lee, W. K.; Poon, C. K. Inorg. Chem. 1974, 12, 2016. 37 Poon, C. K. Coord. Chem. Rev. 1973, 10, 1. 38 Lui, C. K.; Poon, C. K. J. Chem. Soc., Dalton Trans. 1972, 216. 39 Poon, C. K. Inorg. Chim. Acta Rev. 1970, 4, 123. 40 Poon, C. K.; Mok, K. S. Inorg. Chem. 1971, 10, 225. 41 Poon, C. K.; Tobe, M. L. Inorg. Chem. 1968, 7, 2398. 42 Poon, C. K.; Tobe, M. L. Inorg. Chem. 1968, 7, 1549. 43 Poon, C. K.; Tobe, M. L. Chem. Commun. 1968, 3, 156. 44 Poon, C. K.; Tobe, M. L. J. Chem. Soc. A 1967, 2069. 45 Mok, K. S.; Poon, C. K.; J. Chem. Soc., Dalton Trans. 1971, 1358. 46 Mok, K. F.; House, D. A. Inorg. Chim. Acta. 1988, 148, 209. 47 Hung, H.; Martin, L. Y.; Jackels, S. C.; Tait, A. M.; Busch, D. H. J. Am. Chem. Soc. 1977, 99, 4029. 48 Hung, H.; Busch, D. H. J. Am. Chem. Soc. 1977, 99, 4977. 49 Bembi, R.; Roy, T. G.; Jhanji, A. K. Inorg. Chem. 1988, 27, 496. 50 Hay, R. W.; Pujari, M. P. Inorg. Chim. Acta 1985, 99, 75. 51 Yamashita, M.; Ito, H.; Ito, T. Inorg. Chem. 1983, 22, 2101. 52 Burmeister, J. L. Coord. Chem. Rev. 1990, 105, 77. 53 Sabatini, A.; Bertin, I. Inorg. Chem. 1965, 4, 925. 54 Nelson, S. M.; Shepherd, T. M. J. Inorg. Nucl. Chem. 1965, 27, 2123. 55 Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533. 56 Mitchell, P. C. H.; Williams, R. J. J. Chem. Soc. 1960, 1912. 57 Resitvo, R. J.; Horney, J.; Ferguwon, G. J. Chem. Soc., Dalton Trans. 1976,. 58 Poon, C. K.; Tobe, M. L. J. Chem. Soc. (A), 1967, 2069. 59 Mok, K. S.; Poon, C. K. Inorg. Chem., 1971, 10, 225. 60 Hung, Y.; Busch, D. H. J. Am. Chem. Soc., 1977, 99, 4977. 61 Rillema, D. P.; Endicott, J. F.; Barber, J. R. J. Am. Chem. Soc., 1973, 95, 6987. 62 Cookcey, C. J.; Tobe, M. L. Inorg. Chem., 1978, 17, 1588. 63 Hay, R. W. ; Norman, P. R.; House, D. A.; Poon, C. K. J. Chem. Soc. Dalton Trans., 1981, 81. 64 Kernohan, J. A.; Endicott, J. F. Inorg. Chem., 1970, 9, 1504. 65 Tobe, M. L. Inorg. Chem., 1968, 7, 1260. 66 Hay, R. W. ; Bembi, R; House, D. A.; Poon, C. K. J. Chem. Soc. Dalton Trans., 1984, 1921 67 Hay, R. W. ; Bembi, R; House, D. A.; Poon, C. K. J. Chem. Soc. Dalton Trans., 1984, 1927. 68 Brown, D. D.; Ingold, C. K.; Nyholm, R. S. J. Chem. Soc., 1953, 2678. 69 Hernohan, R. A.; Tobe, M. L. Inorg. Chem., 1977, 16, 2576. 70 Ahmed, E.; Trucker, M. L.; Tobe. M. L. Inorg. Chem., 1975, 14, 1. 71 Mak, P. W.; Poon, C. K. Inorg. Chem., 1976, 15, 1949. 72 Poon, C. K.; Mak, P. W. J. Chem. Soc. Dalton Trans., 1978, 216.id NH0925065046 sid 903411 cfn 0 / id NH0925065047 auc 金志龍 tic (±)-Pygmaeocin C之全合成研究及新有機合成方法:1,3-環己二烯及烯環戊烷之製備 adc 劉行讓 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 220 kwc 多重烯環化反應 kwc 還原烷化反應 kwc Diels-Alder反應 kwc 雙 kwc & kwc #33820;類天然物 abc 本論文共分為三部分,分別為 (1) (±)-pygmaeocin C之全合成研究;(2) γ-氰基-α,β-不飽和酮化合物之合成應用:1,3-環己二烯之製備;(3) ω-矽炔α-氰酮分子內環化反應之研究。 rf 1.Mehta, G.; Srikrishna, A. Chem. Rev. 1997, 97, 671. 2.(a)Curran, D. P.; Porter, N. A.; Giese, B. Stereochemistry of RadicalReactions; VCH; Weinhein, 1996. (b)Julia, M. Acc. Chem. Res. 1971, 4, 386. (c)Curran, D. P.; Rakiewicz, D. M. J. Am. Chem. Soc. 1985, 107, 1448. 3.(a)Sha, C.-K.; Jean, T.-S.; Wang, D.-C. Tetrahedron Lett. 1990, 31, 3745. (b)Sha, C.-K.; Santhosh, K. C.; Lih, S.-H. J. Org. Chem. 1998, 63, 2699. (c)Sha, C.-K.; Chiu, R.-T.; Yang, C.-F.; Yao, N.-T.; Tseng, W.-H.; Liao, F.-L.; Wang, S.-L. J. Am. Chem. Soc. 1997, 119, 4130. (d)Sha, C.-K.; Lee, F.-K.; Chang, C.-J. J. Am. Chem. Soc. 1999, 121, 9875. (e)Sha, C.-K.; Ho, W.-Y. J. Chem. Soc.,Chem. Commun. 1998, 2709. (f)Sha, C.-K.; Liao, H.-W.; Cheng, P.-C.; Yen, S.-C. J. Org. Chem. 2003, 68, 8704. 4.Citterio, A.; Cerati, A.; Sebastiano, R.; Finzi, C.; Santi, R. Tetrahedron Lett. 1989, 30, 1289. 5.Snider, B. B.; Cole, B. M.; Han, L. J. Org. Chem. 1996, 61, 7832. 6.(a)Trost, B. M.; Curran, D. P. J. Am. Chem. Soc. 1981, 103, 7380. (b)Trost, B. M. Angew. Chem. Int. Ed. Engl. 1986, 25, 1 7.Singleton, D. A.; Huval, C. C.; Church, K. M.; Priestly, E. S. Tetrahedron Lett. 1991, 32, 5765 8.Kuwajima, I.; Takahashi, Y.; Tanino, K. Tetrahedron Lett. 1996, 37, 5943. 9.Conia, J.-M.; Le Perchec, P. Synthesis 1975, 1. 10.Drouin, J.; Leyendecker, F.; Conia, J. M. Tetrahedron Lett. 1980, 21, 1203. 11.Koradin, C.; Rodriguez, A.; Knochel, P. Synlett 2000, 10, 1452. 12.(a)Malacria, M.; Cruciani, P.; Stammler, R.; Aubert, C. J. Org. Chem. 1996, 61, 2699. (b)Renaud, J.-L.; Petit, M.; Aubert, C.; Malacria, M. Synlett 1997, 8, 931. 13.Iwasawa, N.; Maeyama, K.; Kusama, H Org. Lett. 2001, 3, 3871. 14.(a)McDonald, F. E.; Olson, T. C. Tetrahedron Lett. 1997, 38, 7691. (b)Cutchins, W. W.; McDonald, F. E. Org. Lett. 2002, 4, 749. 15.Drouin, J.; Boaventura, M. A.; Conia, J. M. J. Am. Chem. Soc. 1985, 107, 1726. 16.(a)Kitagawa, O.; Suzuki, T.; Inoue, T.; Taguchi, T. Tetrahedron Lett. 1998, 39, 7357. (b)Kitagawa, O.; Suzuki, T.; Inoue, T.; Watanabe, Y.; Taguchi, T. J. Org. Chem. 1998, 63, 9470. 17.Trost, B. M. Angew. Chem. Int. Ed. Engl. 1989, 28, 1173. 18.Trost, B. M.; Tanoury, G. J.; Lautens, M.; Chan, C.; Macpherson, D. T. J. Am. Chem. Soc. 1994, 116, 4255. 19.Saegusa, T.; Ito, Y.; Hirao, T. J. Org. Chem. 1978, 43, 1011. 20.Saegusa, T.; Ito, Y.; Aoyama, H.; Hirao, T.; Mochizaki, A. J. Am. Chem. Soc. 1979, 101, 494. 21.(a)Kende, A. S.; Robh, B.; Sanfilippo, P. J. J. Am. Chem. Soc. 1982, 104, 1784. (b)Kende, A. S.; Robh, B.; Sanfilippo, P. J.; Blacklock, T. J. J. Am. Chem. Soc. 1982, 104, 5808. 22.Tsukada, N.; Yamamoto, Y. Angew. Chem. Int. Ed. Engl. 1997, 36, 2277. 23.Toyota, M.; Ilangovan, A.; Okamoto, R.; Masaki, T.; Arakawa, M.; Ihara, M. Org. Lett. 2002, 4, 4293. 24.Monteiro, N.; Gore, J.; Balme, G. Tetrahedron 1992, 48, 10103. 25. Monteiro, N.; Gore, J.; Balme, G. Tetrahedron Lett. 1999, 40, 1297. 26.Liu, H.-J.; Kung, L.-R.; Tu, C.-H.; Shia, K.-S. Chem. Commun., 2003, 2490. (b)龔亮仁,博士論文,國立清華大學,2003年.27.Luche, J. L.; Petrier, C. Tetrahedron Lett. 1984, 25, 753. 28.感謝張文昇同學熱情的贊助. 29.Philip, C.; B.; Sukhbinder, S. K.; Stephen, R. Chem. Soc. Rev. 1990, 19, 147. 30.(a)Espinet, P.; Albeniz, A. C.; Catalina, N. M.; Redon, R. Organometallics 1999, 18, 5571. (b)Sodeoka, M.; Tokunoh, R.; Miyazaki, F.; Hagiwara, E.; Shibasaki, M. Synlett. 1997, 463. 31.Baldwin, J. E. J. Chem. Soc.,Chem. Commun. 1976, 734. 32.Corey, E. J.; Kirst, H. A.; Katzenellenbogen, J. A. J. Am. Chem. Soc. 1970, 92, 6314. 33.Jackson, W. P.; Ley, S. V. J. Chem. Soc., Perkin Trans 1 1981, 1516. 34.Lee, K.; Kim, H.; Miura, T.; Kiyota, K.; Kusama, H.; Kim, S.; Iwasawa, N.; Lee, P. H. J. Am. Chem. Soc. 2003, 125, 9682. 35.Spangler, L. A.; Swenton, J. S. J. Org. Chem. 1984, 49, 1800. 36.Cohen, T.; Yu, L. C.; Daniewski, W. M. J. Org. Chem. 1985, 50, 4596. 37.Wilson, S. R.; Misra, R. N. J. Org. Chem. 1978, 43, 4903. 38.Shia, K.-S.; Jan, N.-W.; Zhu, J.-L.; Ly, T.-W.; Liu, H.-J. Tetrahedron Lett. 1999, 40, 6753. 39.Yi, X.-H.; Meng, Y.; Hua, X.-G.; Li, C.-J. J. Org. Chem. 1998, 63, 7472. 40.(a)Liu, H.-J.; Browne, E. N. C.; Pendnekar, P. R. Can. J. Chem. 1982, 60, 921. (b)Liu, H.-J.; Browne, E. N. C. Can. J. Chem. 1987, 65, 1262. (c)Liu, H.-J.; Chew, S. Y.; Browne, E. N. C. Tetrahedron Lett. 1991, 32, 2005. (d)Liu, H.-J.; Han, Y.-X.; Tetrahedron Lett. 1993, 34, 423. (e)Liu, H.-J.; Yeh, W.-L.; Browne, E. N. C. Can. J. Chem. 1995, 73, 1135. (f)Zhu, J.-L.; Shia, K.-S.; Liu, H.-J. Chem. Commun., 2000, 1599. 41.(a)Liu, H.-J.; Tran, D. D. P. Tetrahedron Lett. 1999, 40, 3827. (b)Liu, H.-J.; Sun, D.; Shia, K.-S. Tetrahedron Lett. 1996, 37, 8073. (c)Liu, H.-J.; Tran, D. D. P. Tetrahedron Lett. 1997, 38, 6501. (d)Liu, H.-J.; Sun, D.; Shia, K.-S. Tetrahedron Lett. 1997, 38, 6159. 42.Liu, H.-J.; Tai, C.-L.; Ly, T.-W.; Shia, K.-S.; Wu, J.-D. Synlett. 2001, 214.id NH0925065047 sid 883460 cfn 0 / id NH0925065048 auc 蔡廷岳 tic (I)還原去氰反應在有機合成上的應用(II)抗糖尿病化合物4-羥基-2- tic & tic #21579;喃酸 L-825,373與其類似物之合成研究 adc 劉行讓 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 294 kwc 還原烷化 kwc 還原去氰 kwc & kwc #33816;化鋰試劑 kwc 還原消去 kwc 抗糖尿病 kwc 縮合反應 abc 本論文主要分成兩個部分:第一部份報導還原去氰反應在有機合成上的應用,其再分成四小節。第一節探討利用雙取代的芳基乙腈化合物11、41與萘化鋰試劑和各類的親電子基試劑進行還原烷化/加成反應,可成功地製備出一般方法不易製備的含有三級取代基之碳環16及雜環77芳香族化合物;第二節探討利用雙取代的丙二腈 84作為起始物可以經由還原烷化/加成反應製備出三取代乙腈94。另外經還原加成與還原消去反應則可製備具有多取代的烯烴類154;第三節探討經由還原加成反應與還原消去反應來建立環外雙鍵雙取代之exo-Glycal;雖然無法成功地合成環外雙鍵雙取代之exo-Glycal,但可成功地將一多取代的乙腈引入醣類中且其具有單一的立體選擇性173;第四節探討經由還原加成反應與還原消去反應來建立丙二烯化合物。 rf 第四章 參考文獻 1. Holy, N. L. Chem. Rev. 1974, 74, 243. 2. Cohen, T.; Bhupathy, M. Acc. Chem. Res. 1989, 22, 152. 3. Najera, C.; Yus, M. Trends Org. Chem. 1991, 2, 155. 4. Yus, M. Chem. Soc. Revs. 1996, 155. 5. Raccanelli, S.; Pavoni, B.; Maroli, L. Toxicol. Environ. Chem. 1994, 45, 121. 6. Dunnavant, W. R.; Hauser, C. R. J. Org. Chem. 1960, 25, 503. 7. (a) Harring, S. R.; Livinghouse, T. Tetrahedron Lett. 1989, 30, 1499. (b) Barluenga, J.; Fernandez-Simon, J. L.; Concellon, J. M.; Yus, M. Synthesis 1988, 234. (c) Komatsu, K.; Nishinaga, T.; Aonuma, S.; Hirosawa, C.; Takeuchi, K.; Lindner, H. J.; Richter, J. Tetrahedron Lett. 1991, 32, 6767. (d) Kondo, Y.; Muraata, N.; Sakamoto, T. Heterocycles 1994, 37, 1467. (e) Guijaro, A.; Yus, M. Tetrahedron 1994, 50, 13269. (f) Guijaro, A.; Romon, D. J.; Yus, M. Tetrahedron 1993, 49, 469. 8. Guijaro, A.; Yus, M. Tetrahedron 1994, 50, 3447. 9. Agawa, T.; Ishida, M.; Ohshiro, Y. Synthesis 1980, 933. 10. Pradhan, S. K.; Radhakrishnan, T. V.; Subramanian, R. J. Org. Chem. 1976, 41, 1943. 11. (a) Bartmann, E.; Angew. Chem. Int. Ed. Engl. 1986, 25, 653. (b) Almena, J.; Foubeo, F.; Yus, M. J. Org. Chem. 1994, 59, 3210. 12. Clive, D. L. J.; Keshava, Murthy, K. S.; Zhang, C.; Hayward, W. D.; Daigneault, S. J. Chem. Soc., Chem. Commum. 1990, 509. 13. Philips, K. D.; Horwitz, J. P. J. Org. Chem. 1975, 40, 1856. 14. (a) Rieke, R. D.; Dawson, B. T.; Stack, D. E.; Stinn D. E. Synth. Commum. 1990, 20, 2711. (b) Jutzi, P.; Hielscher, B. Organometallics 1986, 5, 1201. 15. Ashby, E. C.; Tung, N. P. Tetrahedon Lett. 1984, 25, 4333. 16. Liu, H. J.; Browne, E. N. C. Can. J. Chem. 1987, 65, 1262. 17. Liu, H. J.; Han, Y. Tetrahedon Lett. 1993, 34, 423. 18. Liu, H. J.; Shia, K. S. Zhu, J. L. Tetrahedron Lett. 1998, 39, 4183. 19. Martin, J. G..; Hill, R. K. Chem. Rev. 1961, 61, 359. 20. (a) Corey, E. J.; Nimura, K.; Konishi, Y.; Hasimoto, S; Hamada, Y. Tetrahedron Lett. 1986, 27, 2199. 21. Suga, K.; Watanabe, S.; Kamma, K. Can. J. Chem. 1967, 45, 933. 22. (a) 吳仁達,博士論文,國立清華大學,2003年. (b) 廖志雄,博士論文,國立清華大學,2004年 23. (a) Rychnovsky, S. D.; Swenson, S. S.; J. Org. Chem. 1997, 62, 1333. (b) Malassene, R.; Vanquelef, E.; Toupet, L.; Hurvois, J. P.; Moinet, C. Org. Biomol. Chem. 2003, 1, 547. (c) Savoia, D.; Taglivini, E.; Trombini, C.; Umani-Ronchi, A. J. Org. Chem. 1980, 45, 3227. (d) Shono, T.; Terauchi, J.; Kitayama, K.; Takeshima, Y. I.; Matsumura, Y. Tetrahedron, 1992, 48, 8253. (e) Kang, H. Y.; Hong, W. S.; Cho, Y. S.; Koh, H. Y. Tetrahedron Lett. 1995, 36, 7661. (f) Black, D. St. C.; Doyle, J. E. Aust. J. Chem. 1978, 31, 2323. (h) Tamele, E. E.; Bjorklund, H. R. C. J. Am. Chem. Soc. 1971, 93, 7113. 24. Shia, K. S.; Chang, N. Y.; Yip, J.; Liu, H. J. Tetrahedon Lett. 1997, 38, 7713. 25. 戴嘉良,碩士論文,國立清華大學,1999年. 26. 謝琬萍,碩士論文,國立清華大學,2001年. 27. For leading references, see (a) Grashey, R. In Comprehensive Organic Synthesis, Vol. 6; Trost, B. M.; Fleming, I.; Winterfelidt, E.; Eds.; Pergamon Press: Oxford, UK, 1991, Chap. 1.8, 225-229. (b) Larock, R. C. Comprehensive Organic Transformations; John Wiley and Sons, Inc.: New York, 1999. 28. For leading references, see (a) Fleming, I.;Barbero, A.; Walter, D. Chem. Rev. 1997, 97, 2063. (b) van Staden, L. F.; Gravestork, D.; Ager, D. Chem Soc. Rev. 2002, 31, 195. 29. Julia, M.; Paris, J. M. Tetrahedron Lett. 1973, 4833. 30. Kocienski, P. Chem. Ind. ( London ) 1981, 548. 31. Oediger, H.; Moller, F. Liebigs Ann. Chem. 1976, 348. 32. (a) Marshall, J. A.; Karas, L. J. J. Am. Chem. Soc. 1978, 100, 3615. (b) Marshall, J. A.; Karas, L. J.; Royce, R. D.; J. Org. Chem. 1979, 44, 2994. 33. Pojer, P. M.; Angyal, S. Tetrahedron Lett. 1976, 3067. 34. Cohen, T.; Kreethadumrongdat, T.; Liu, X.; Kulkarni, V. J. Am. Chem. Soc. 2001, 123, 3478. 35. Alcaraz, M. L.; Griffin, F. K.; Paterson, D. E.; Taylor, R. J. K.; Tetrahedron Lett. 1998, 39, 8183. 36. Yang, W. B.; Patil, Sachinadra S.; Tsai, C. H.; Lin, C. H.; Fang, J. M. Tetrahedron 2002, 58, 253. 37. (a) Brockhaus, M.; Lehmann, J. Carbohydr. Res. 1977, 53, 21. (b) Lehmann, J.; Schwesinger, B. Carbohydr. Res. 1982, 107, 43. 38. Wu, C. Y.; Chang, C. F.; Chen. Jenny, S. Y.; Wong, C. H.; Lin, C. H. Angew. Chem. Int. Ed. Engl. 2003, 42, 4661. 39. (a) Toepfer, A.; Schmidt, R. R.; Carbohydr. Res. 1993, 247, 159. (b) Rollin, P.; Sinay, P.; Carbohydr. Res. 1981, 98, 139. (c) Wilcox, C. S.; Long, G. W.; Suh, H. Tetrahedron, Lett. 1984, 25, 395. 40. Taylor, R. J. K. J. Chem. Soc. Chem. Commum. 1999, 217. 41. (a) Haudrechy, A.; Sinay, P. J. Org. Chem. 1992, 57, 4142. (b) Ali, M. H.; Collins, P. M.; Overend, W. G. Carbohydr. Res. 1990, 205, 428. 42. (a) Xie, J.; Molina, A.; Czernecki, S. J. Cabrohydr. Chem. 1999, 18, 481. (b) Molina, A.; Czernecki, S. Xie, J. Tetrahedron Lett. 1998, 39, 7507. 43. (a) Praly, J.-P.; Chen, G. -R.; Gola, J.; Hetzer, G.; Raphoz, C. Tetrahedron Lett. 1997, 38, 8185. (b) Praly, J. -P.; Kharrkf, Z. E.; Descotes, G. Cabrohydr. Res. 1992, 232, 117. 44. Somsak, L.; Toth, M. J. Chem. Soc., Perkin Trans, 1, 2001, 942. 45. Yang, W. B.; Tang, Y. Y.; Gu, Y. F.; Wang, S. H.; Chang, C. C.; Lin, C. H. J. Org. Chem. 2002, 67, 3773. 46. Yang, Y. Y.; Yang, W. B.; Teo, C. F.; Lin, C. H. Synlett 2000, 1634. 47. (a) Borbas, A.; Szabovik, G.; Antal, Z.; Feher, K.; Csavas, M.; Szilagyi, L.; Herczegh, P.; Liptak, A. Tetrahedron:Asymmetry 2000, 11, 549. 48. Liu, H. J.; Yip, J. Tetrahedron Lett 1997, 38, 2253. 49. (a) Llerena, D.; Buisine, O.; Aubert, C.; Malacria, M.; Tetrahedron 1998, 54, 9373. and references. (b) The Chemistry of the Allenes; Lander, S. R. Ed.; Academic, Press Inc. Ltd.: London, 1982; Volume 2. 50. Myers, A. G.; Zheng, B. J. Am. Chem. Soc. 1996, 118, 4492. 51. Tanaka, K.; Otsubo, K.; Fuji, K. Synlett, 1995, 933. 52. Doering, W. E.; LaFlamme, P. M. Tetrahedron 1958, 2, 75. 53. Brummond, K. M.; Dingess, E. A.; Kent, J. L.; J. Org. Chem. 1996, 61, 6096. 54. Raynold, K. A.; Dopico, P, G.; Brody, M. S.; Finn, M. G. J. Org. Chem. 1997, 62, 2564. 55. Deluvrie, B.; Lacote, E.; Fensterbank, L.; Malacria, M. Tetrahedron Lett. 1999, 40 3565. 56. Ogasawara, M.; Ikeda, H.; Hayashi, T. Angew. Chem. Int. Ed. Engl. 2000, 39, 1042. 57. Nagaoka, Y.; Tomioka, K. Org. Lett.1999, 1, 1467. 58. Liu, H. J.; Zhu, J. L. Tetrahedron Lett. 1998, 39, 4183. 59. Shia, K. S.; Chang, N. Y.; Yip, J.; Liu, H. J. Tetrahedron Lett. 1997, 38, 7713. 60. Zhang, B.; Salituro, G.; Szalkowski, D.; Li, Z.; Zhang, Y.; Royo, I.; Vilella, D.; Diez, M. T.; Pelaez, F.; Ruby, C.; Kendall. R. L.; Mao, X.; Griffin, P.; Calaycay, J.; Zierath, J. R.; Heck, J. V.; Smith, R. G.; Moller, D. E. Science 1999, 284, 974. 61. (a) Liu, K.; Wood, H. B.; Jones, A. B. Tetrahedron Lett. 1999, 40, 5119. (b) Pirrung, M. C.; Li, Z.; Park, K.; Zhu, J. J. Org. Chem. 2002, 67, 7919. 62. Chen, S. S. T.; Zhang, B. B.; Li, X.; U. S. Patent 6,596,760 (2003). 63. Kondo, Y.; Kojima, S.; Sakamoto, T. Heterocycles 1996, 43, 2741. 64. (a) Rossi, R.; Carpita, A.; Pazzi, P.; Mannina, L.; Valensin, D. Tetrahedron 1999, 55, 11343. (b) Faul, M. M.; Winneroski, L. L.; Krumrich, C. A. J. Org. Chem. 1998, 63, 6053. 65. Tse, B.; Jones, A. B.; Tetrahedron Lett. 2001, 42, 6429. 66. Babudri, F.; Fiandanese, V.; Marchese, G.; Punzi, A. Tetrahedron 1996, 52, 13513. 67. Guo, Z.; Dowdy, E. D.; Li, W. S.; Polniaszek, R.; Delaney, E. Tetrahedron Lett. 2001, 42, 1843. 68. Terasawa, T.; Okada, T. J. Org. Chem. 1977, 42, 1163. 69. Pirrung, M. C.; Yan Zhao, M. W. Synlett. 2002, 143. 70. Sanz-Cervera, J. F.; Glinka, T.; Williams, R. M. Tetrahedron 1993, 49, 8471. 71. Bull, S. D.; Davies, S. G.; Fenton, G.; Mulvaney, A. W.; Prasad, R. S.; Smith, A. D. Chem. Commum. 2000, 337. 72. 節錄自糖尿病關懷協會id NH0925065048 sid 897422 cfn 0 / id NH0925065049 auc 林智立 tic 以頂空固相微萃取法配合離子阱式氣相層析質譜儀偵測台灣酒類氣味物中的酯類化合物 adc 黃賢達 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 96 kwc 酒類 kwc 氣味 kwc 酯類化合物 kwc 固相微萃取法 kwc 氣相層析質譜儀 abc 本論文是利用頂空固相微萃取法配合氣相層析離子阱式質譜儀 (HS-SPME—GC/ITMS) 分析酒類氣味中氣味分子的主要成分—酯類化合物 (esters):ethyl acetate (EA)、isobutyl acetate (IBA)、ethyl butyrate (EB)、isoamyl acetate (IAA)、ethyl hexanoate (EHx)、hexyl acetate (HA)、benzyl acetate (BA)、ethyl octanoate (EO)、2-phenylethyl acetate (2PEA)。 tc 目錄 壹.緒論...........................................1 一.前言.........................................1 二.酯類化合物...................................2 三.前處理方法...................................5 四.固相微萃取法.................................9 五.酯類化合物的相關研究........................20 六.離子阱式質譜儀..............................21 七.研究目的....................................25 貳.實驗部份......................................26 一.試藥........................................26 二.實驗裝置....................................27 三.儀器........................................28 四.標準溶液....................................30 五.真實樣品....................................34 六.實驗步驟....................................35 參.結果與討論....................................38 一.SPME最佳化之變因探討........................38 1.纖維種類..................................38 2.萃取方式..................................42 3.脫附時間..................................44 4.萃取時間..................................47 5.樣品攪拌程度..............................50 6.離子強度..................................53 7.樣品體積..................................56 8.脫附溫度..................................58 9.萃取溫度..................................61 10.酒精濃度..................................64 二.校正曲線、精密度、方法偵測極限..............72 1.校正曲線..................................72 2.精密度....................................73 3.方法偵測極限..............................73 4.與文獻之比較..............................75 三.真實樣品的定量..............................77 肆.結論..........................................91 伍.參考文獻......................................92 表目錄 Table 1 本研究中各分析物之物理性質.......................4 Table 2 吹氣捕捉法與固相微萃取法的比較...................6 Table 3 固相萃取法與固相微萃取法的比較...................8 Table 4 各標準品之定量離子一覽表........................29 Table 5 工作標準溶液中各標準品濃度表....................30 Table 6 校正曲線、精密度、方法偵測極限、真實樣品測試之標準品儲存溶液中各標準品濃度表................................31 Table 7 校正曲線、精密度、方法偵測極限、真實樣品測試之內標準品儲存溶液中各內標準品濃度表............................31 Table 8 校正曲線建立時,工作溶液所使用之溶劑中所含內標準品濃度表....................................................32 Table 9 建立各標準品校正曲線之各點濃度表................32 Table 10 本實用使用之SPME纖維之調態溫度與時間表.........35 Table 11 目前已商業化之固相微萃取纖維之種類、厚度、適用範圍表......................................................39 Table 12 各標準品所對應之內標準品一覽表.................69 Table 13 各標準品之線性範圍與線性相關係數表.............72 Table 14 各標準品之相對標準偏差值表.....................73 Table 15 各標準品在標準溶液、米酒、高粱酒中之偵測極限表.74 Table 16 參考文獻[7 ]與本研究之實驗結果比較..............75 Table 17 米酒與高粱酒之氣味中所含待測物之定量表.........78 Table 18 各標準品之回收率表.............................79 圖目錄 Fig.1 本研究中所偵測之酯類化合物結構式...................3 Fig.2 Pawliszyn實驗室最初設計之固相微萃取裝置...........11 Fig.3 商業化之手動式固相微萃取裝置圖....................12 Fig.4固相微萃取之操作流程圖.............................14 Fig.5靜止水層之概念圖...................................16 Fig.6 離子阱的基本構造..................................22 Fig.7 離子在阱中之安定圖................................23 Fig.8 離子在阱中的運動軌跡圖............................24 Fig.9 固相微萃取裝置圖..................................36 Fig.10 纖維種類與萃取效率關係圖.........................41 Fig.11 萃取方式與萃取效率關係圖.........................43 Fig.12 脫附時間與萃取效率關係圖.........................45 Fig.13 萃取時間與萃取效率關係圖.........................48 Fig.14 樣品攪拌程度與萃取關係圖.........................51 Fig.15 NaCl添加克數與萃取效果關係圖.....................54 Fig.16 樣品液氣相比與萃取效率圖.........................57 Fig.17 脫附溫度與萃取效率圖.............................59 Fig.18 萃取溫度與萃取效率圖.............................62 Fig.19 酒精濃度與萃取效率圖(NaCl未飽和)...............65 Fig.20 酒精濃度與萃取效率圖(NaCl已飽和)...............67 Fig.21 酒精濃度與各標準品之相對波峰面積關係圖...........70 Fig.22 各標準品以Table 9中濃度2的濃度,內標準品以Table 8的濃度配製而成的標準溶液,經最佳化條件萃取之後所得氣相層析圖......................................................77 Fig.23 標準品與兩種真實樣品經最佳化條件萃取之後所得到之層析圖比對..................................................81 Fig.24 Ethyl acetate在真實樣品中與標準溶液中之質譜圖比較......................................................82 Fig.25 Isobutyl acetate在真實樣品中與標準溶液中之質譜圖比較......................................................83 Fig.26 Ethyl butyrate在真實樣品中與標準溶液中之質譜圖比較......................................................84 Fig.27 Isoamyl acetate在真實樣品中與標準溶液中之質譜圖比較......................................................85 Fig.28 Ethyl hexanoate在真實樣品中與標準溶液中之質譜圖比較......................................................86 Fig.29 Ethyl octanoate在真實樣品中與標準溶液中之質譜圖比較......................................................87 Fig.30 2-Phenylethyl acetate在真實樣品中與標準溶液中之質譜圖比較....................................................88 Fig. 31 在標準品層析圖中(Fig. 23),compound 9與compound 10之間的訊號,其質譜圖經過資料庫比對之後得到的結果........89 Fig. 32 在標準品層析圖中(Fig. 23),compound 10與compound 11之間的訊號,其質譜圖經過資料庫比對之後得到的結果......90rf [1 ] Rapp, A. In Wine Analysis, Modern Methods of Plant Analysis; H. F. Linskens, J. F. Jackson Eds.; Springer: Berlin, 1988, Vol. 6, p29, Chapter 3. [2 ] De La Calle, D.; Reichenbächer, M.; Danzer, K.; Hurlbeck, C.; Bartzsch, C.; Feller, K. H. “Investigations on wine bouquet components by solid-phase microextraction-capillary gas chromatography (SPME-CGC) using different fibers”, J. High Resolut. Chromatogr. 1997, 20, 665. [3 ] Vas, G. Y.; Koteleky, K.; Farkas, M.; Dobo, A.; Vekey, K. “Fast screening method for wine headspace compounds using solid-phase microextraction (SPME) and capillary GC technique”, Am. J. Enol. Vitic. 1998, 49, 100-104. [4 ] Rocha, S.; Ramalheira, V.; Barros, A.; Delgadillo, I.; Coimbra, M. A. “Headspace solid phase microextraction (SPME) analysis of flavor compounds in wines. Effect of the matrix volatile composition in the relative response factors in a wine model.”, J. Agric. Food Chem. 2001, 49, 5142. [5 ] De La Calle, D.; Magnaghi, S.; Reichenbächer, M.; Danzer, K. “Systematic optimization of the analysis of wine bouquet components by solid-phase microextraction”, J. High Resolut. Chromatogr. 1996, 19, 257-262. [6 ] Mestres, M.; Busto, O.; Guasch, J. “Simultaneous analysis of thiols, sulphides and disulphides in wine aroma by headspace solid-phase microextraction-gas chromatography”, J. Chromatogr. A 1999, 849, 293-297. [7 ] Rodríguez-Bencomo, J. J.; Conde, J. E.; Rodríguez-Delgado, M. A.; García-Monnntelongo, F.; Pérez-Trujillo, J. P. “Determination of esters in dry and sweet white wines by headspace solid-phase microextraction and gas chromatography”, J. Chromatogr. A 2002, 963, 213-223. [8 ] 蔡文鈴,「細辛揮發性及抗氧化成分之研究」,東海大學食品研究所碩士論文,2001。 [9 ] 環署檢字第31083號公告NIEAR104.00C,民國八十五年六月。 [10 ] Scheppers, S.; Wercinski, A. In Solid Phase Microextraction – A Practical Guide, Varian Chromatography System Walnut Creet. California, 1999; p31. [11 ] 陳介武,「革新的分離技術在食品工業上的應用」,美國黃豆協會技術文獻。http://www.soybean.org.tw/ [12 ] Scheppers, S.; Wercinski, A. In Solid Phase Microextraction – A Practical Guide, Varian Chromatography System Walnut Creet. California, 1999; p29. [13 ] Pawliszyn, J. In Solid Phase Microextraction Theory and Practice, Wiley-VCH. New York, 1997. [14 ]黃敬德,謝有容,「固相微萃取法」,科儀新知,第十八卷四期,59-67,1997。 [15 ] Supelco, Solid phase microextraction: Theory and optimization of condictions, Bulletin 923, 1998, 1-5. [16 ] 黃賢達,「氣相層析及固相微萃取技術」,化學,1996,54,119-122。 [17 ] 黃敬德,謝有容,「固相微萃取技術之原理與應用」,化學,1998,56,311-318 [18 ] 黃寶慧,李茂榮,「固相微量萃取法」,科儀新知,1996,18(2),58-67。 [19 ] Zhang, Z. Y.; Pawliszyn, J. “Headspace Solid-Phase Microextraction”, Anal. Chem. 1993, 65, 1843-1852. [20 ] Yang. Y.; Miller, D. J.; Hawthorne, S. B.”Adsorption versus absorption of polychlorinated biphenyls onto solid-phase microextraction coatings”, J. Chromatogr. A 1998, 800, 1866-1869. [21 ] Hawthorne, S. B.; Grabanski, C. B.; Hageman, K. J.; Miller, D. J. “Simple method for estimating polychlorinated biphenyl concentrations on soil and sediments using subcritical water extraction coupled with solid-phase microextraction”, J. Chromatogr. A 1998, 814, 151-160. [22 ] Goncalves, C.; Alpendurada, M. F. “Comparison of three different poly(dimethylsiloxane)-divinylbenzene fibers for the analysis of pesticide multiresidues in water samples: structure and efficiency”, J. Chromatogr. A 2002, 963, 19-26. [23 ] Langenfeld, J. J.; Hawthorne, S. B.; Miller, D. J. “Quantitative analysis of fuel-related hydrocarbons in surface water and wastewater samples by solid-phase microextraction”, Anal. Chem. 1996, 68, 144-155. [24 ] Doong, R.; Chang, S.; Sun, Y. “Solid-phase microextraction for determining the distribution of sixteen US Environmental Protection Agency polycyclic aromatic hydrocarbons in water samples” J. Chromatogr. A 2000, 879, 177-188. [25 ] Miller, M. E.; Stuart, J. D. ”Comparison of gas-sampled and SPME-sampled static headspace for the determination of volatile flavor components”, Anal. Chem. 1999, 71, 23-27. [26 ] Cai, Y.; Monsalud, S.; Furton, K. G.; Jaffe, R.; Jones, R. D. “Determination of methylmercury in fish and aqueous samples using solid-phase microextraction followed bt gas chromatography atomic flourescence spectrometry”, Applied Organometallic Chemistry 1998, 12, 565-569. [27 ] Huang, M.-K.; Liu, C.; Huang, S.-D. “One step and highly sensitive headspace solid-phase microextraction sample preparation approach for the analysis of methamphetamine and amphetamine in human urine”, Analyst 2002, 127, 1203-1206. [28 ] Lord, H. L.; Pawliszyn, J. “Method optimization for the analysis of amphetamines in urine by solid-phase microextraction”, Anal. Chem. 1997, 69, 3899-3906. [29 ] Ortega, C.; López, R.; Cacho, J.; Ferreira, V. “Fast analysis of important wine volatile compounds development and validation of a new method based on gas chromatographic-flame ionisation detection analysis of dichloromethane microextracts”, J. Chromatogr. A 2001, 923, 205-214. [30 ] Culleré, L.; Aznar, M.; Cacho, J.; Ferreira, V. “Fast fractionation of complex organic extracts by normal-phase chromatography on a solid-phase extraction polymeric sorbent optimization of a method to fractionate wine flavor extracts”, J. Chromatogr. A 2003, 1017, 17-26. [31 ] 凌永健,「質譜儀」,科儀新知,1997,19(2),31-39。 [32 ] 凌永健,李茂榮等,《質譜分析術專輯》,國科會精密儀器發展中心,1992。 [33 ] 張耀仁,何國榮,「離子阱質譜儀」,科儀新知,1995,14(5),48-55。 [34 ] 黃忠智,「氣相層析/離子阱串聯質譜儀」,科儀新知,1995,17(2),42-49。 [35 ] Supelco, SPME application guide, 1999. [36 ] Thackston, E. L.; Wilson, D. J.; Hanson, J. S.; Miller, D. L. “Lead removal with adsorbing colloid flotation”, J. Water Pollut Control Fed. 1980, 52, 317-328. [37 ] Rocha, S.; Ramalheira, V.; Barros, A.; Delgadillo, I.; Coimbra, M. A. “Headspace solid phase microextraction (SPME) analysis of flavor compounds in wines. Effect of the matrix volatile composition in the relative response factors in a wine model”, J. Agric. Food Chem. 2001, 49, 5142-5151.id NH0925065049 sid 903417 cfn 0 / id NH0925065050 auc 徐豪貝 tic 利用多元素石墨爐原子吸收光譜儀直接且同時測定尿液中的鉍, 鉛, 鎘, 硒, 銻元素 adc 黃賢達 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 132 kwc 石墨爐原子吸收光譜 kwc 鉍 kwc 鉛 kwc 鎘 kwc 硒 kwc 銻 abc 近幾年來,微量元素與人體健康的關係日益受到人們的重視,對人體內的生化反應能產生重大的影響,並參與生物分子中的組成,具有特異性的功能。微量元素臨床醫學,已引起世界各國的研究熱潮,成為臨床醫學上的醫療指標。 tc 目錄 第一章 緒論…………………………………………………1 1.1 前言………………………………………………………1 1.2 微量金屬的功能與危害…………………………………4 1.2.1 鉍………………………………………………………5 1.2.2 鉛………………………………………………………7 1.2.3 鎘………………………………………………………10 1.2.4 硒………………………………………………………13 1.2.5 銻………………………………………………………17 1.3 微量金屬元素的分析方法之回顧與探討………………19 1.4 尿液中微量金屬的分析…………………………………22 1.5 多元素石墨爐原子吸收光譜儀…………………………25 1.5.1溫控程式…………………………………………………28 1.5.2溫度穩定化平台概念……………………………………30 1.6 化學修飾劑………………………………………………32 1.6.1 鈀修飾劑的應用………………………………………34 1.6.2 鎂修飾劑的應用………………………………………36 1.6.3 氫氣的使用……………………………………………37 1.7 感應耦合電漿質譜儀(ICP-MS)…………………………37 1.8 研究目的…………………………………………………38 第二章 實驗…………………………………………………39 2.1 儀器及裝置………………………………………………39 2.2 試劑………………………………………………………40 2.3 真實樣品的收集與儲存…………………………………40 2.4 Chelex-100的特性與管柱製備…………………………41 2.5 空白尿液的製備…………………………………………42 2.6 鈀修飾劑的製備…………………………………………42 2.7 污染控制…………………………………………………42 第三章 結果與討論…………………………………………44 3.1 最佳溫控程式的尋找……………………………………44 3.1.1 灰化溫度………………………………………………45 3.1.2 原子化溫度……………………………………………51 3.2 最佳修飾劑用量的選擇…………………………………52 3.3 未來的實驗方向及展望…………………………………53 3.3.1 不同溫度條件的結果…………………………………53 3.3.2 尋找最佳溫控程式……………………………………54 3.3.3 真實尿液的分析………………………………………55 3.3.4 查看稀釋的結果………………………………………55 3.3.5 比較不同的方法………………………………………55 3.3.6 偵測極限與精密度……………………………………56 第四章 結論…………………………………………………57 參考文獻………………………………………………………58rf 參考資料: [1 ]International Commission on Radiological Protection. Report of the task group on reference man, Publ. 23. Pergamon press, Oxford, Chap. 2. 1975. [2 ]E. I. Ochiai, General principles of Biochemistry of the Elements. Plenum Press, New York, 3, 1987. [3 ]E. J. Underwood, Trace elements in Human Animal Nutrition, 211. [4 ]H. J. M. Brown, Trace elements in biological samples. Nuclear Analytical Techniques in Medicine. R. Cesareo, Elsevier, New york, p. 1, 1988. [5 ]洪源亮, 牛頓化學辭典, Newton, p71-72. [6 ]方克美 楊大明 等人, 急性中毒治療學. [7 ]中國醫藥報, 麥國榮, 2003年1月1日. [8 ]吳登強, 幽門螺旋桿菌、三瓣狀蛋白質與胃腸道病變相關性之研究, 高雄醫學大學醫學研究所, 博士論文, 2000. [9 ]美聯社, 田納西州橡樹嶺, 2000年8月3日. [10 ]醫院藥學, 醫用微量元素參考數據表, 大眾醫藥網. [11 ]葉永烈, 化學元素漫談, 商務印書館, 1976. [12 ]艾金斯, 化學元素王國之旅, 天下文化, 1996年6月15日. [13 ] Morgan & Burstall, 近代無機化學, 國立編譯館, 1948. [14 ]大不列顛百科全書. [15 ]王澄霞, 元素, 幼獅文化. [16 ] Ramsden E. N., 無機化學, 導師出版社. [17 ]朱樹恭譯, 基本無機化學, 復興書局. [18 ]李立凱, 不同生成時期對含鉍硫化物抑制綠膿桿菌生物膜胞外多醣之影響, 國立臺灣大學農業化學研究所, 碩士論文, 2001. [19 ] 3. Bierer, D. W. 1990.Bismuth subsalicylate: history, chemistry, and safety. Rev Infect Dis.12 Suppl 1: S3-8. [20 ] 29. Ericsson, C. D., C. Tannenbaum, and T. T. Charles 1990.Antisecretory and antiinflammatory properties of bismuth subsalicylate. Rev Infect Dis. 12 Suppl 1: S16-20. [21 ] 20. Domenico, P., R. J. Salo, S. G. Novick, P. E. Schoch, K. Van Horn, and B. A. Cunha 1997.Enhancement of bismuth antibacterial activity with lipophilic thiol chelators. Antimicrob Agents Chemother.41: 1697-703. [22 ] 3. Bierer, D. W. 1990.Bismuth subsalicylate: history, chemistry, and safety. Rev Infect Dis.12 Suppl 1: S3-8. [23 ] 45. Lambert, J. R., and P. Midolo 1997.The actions of bismuth in the treatment of Helicobacter pylori infection. Aliment Pharmacol Ther. 11 Suppl 1:27-33. [24 ] 1. Archer, G. L., and M. W. Climo 1994.Antimicrobial susceptibility of coagulase-negative staphylococci. Antimicrob Agents Chemother.38: 2231-7. [25 ] 53. Manhart, M. D. 1990. In vitro antimicrobial activity of bismuth subsalicylate and other bismuth salts. Rev Infect Dis.12 Suppl 1: S11-5. [26 ] 9. Cornick, N. A., M. Silva, and S. L. Gorbach 1990.In vitro antibacterial activity of bismuth subsalicylate. Rev Infect Dis.12 Suppl 1: S9-10. [27 ] 21. Domenico, P., J. M. Tomas, S. Merino, X. Rubires, and B. A. Cunha 1999. Surface antigen exposure by bismuth dimercaprol suppression of Klebsiella pneumoniae capsular polysaccharide. Infect Immun.67: 664-9. [28 ] 47. Leive, L. 1968. Studies on the permeability change produced in coliform bacteria by ethylenediaminetetraacetate. J Biol Chem.243: 2373-80. [29 ] 72. Stratton, C. W., R. R. Warner, P. E. Coudron, and N. A. Lilly 1999. Bismuth- mediated disruption of the glycocalyx-cell wall of Helicobacter pylori: ultrastructural evidence for a mechanism of action for bismuth salts. J Antimicrob Chemother.43: 659-66. [30 ] 71. Stoltenberg, M., M. Martiny, K. Sorensen, J. Rungby, and K. A. Krogfelt 2001.Histochemical tracing of bismuth in Helicobacter pylori after in vitro exposure to bismuth citrate. Scand J Gastroenterol.36: 144-8. [31 ] 14. de Boer, W. A. 1999. Bismuth triple therapy: still a very important drug regimen for curing Helicobacter pylori infection. Eur J Gastroenterol Hepatol.11: 697 -700. [32 ] 17. Domenico, P., T. Hopkins, and B. A. Cunha 1990.The effect of sodium salicylate on antibiotic susceptibility and synergy in Klebsiella pneumoniae. J Antimicrob Chemother.26: 343-51. [33 ] 19. Domenico, P., R. O'Leary, and B. A. Cunha 1992.Differential effects of bismuth and salicylate salts on the antibiotic susceptibility of Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis.11: 170-5. [34 ] 18. Domenico, P., D. R. Landolphi, and B. A. Cunha 1991.Reduction of capsular polysaccharide and potentiation of aminoglycoside inhibition in gram- negative bacteria by bismuth subsalicylate. J Antimicrob Chemother.28: 801-10. [35 ] 68. Shih, P. C. 2000.The effect of quorum sensing signal molecules on Pseudomonas aeruginosa biofilms formation and resistance. Master thesis, Graduate Institute of Agricultural Chemistry. National Taiwan Univ. [36 ]林乃蓁, 牙菌斑及胃中幽門螺旋桿菌之探討, 碩士論文, 高雄醫學大學牙醫學研究所, 2002. [37 ] P.J. Craig, “Organometallic Compounds in the Environment Principles and Reaction”, John Wiley & Son Inc., New York, 1986. [38 ] 唐瑞菁,“船隻使用含有機錫的漆料對沿海生態的影響”,環境科學技術教育專刊,第11 期,66,民國85 年12 月。 [39 ] L. Ebdon, S.J. Hill, and C. Rivas, “Organotin Compounds in Solid Waste: a Review of their Properties and Determination Using High-Performance Liquid Chromatography”, Anal. Chem, 17, 277, 1998. [40 ] A.M. Caricchia, S. Chiavarini, C. Cremisini, R. Morabito , and R. Scerbo, “ Influence of Storage Condition on the Determination of Organotin in Mussels” , Anal. Chim. Acta, 286, 329, 1994. [41 ] C.J. Evans, and S. Karpel, “Organotin Compounds in Modern Technology”, Elsenier Science Publishers, Amsterdam, 1985. [42 ] A.O. Valkirs, P.F. Seligmen, P.M. Stang , and V. Homer, “ Measurement of Butyltin Compounds in San Diego Bay.” , Mar. Pollut. Bull. , 17, 319, 1986. [43 ] H. Harion, and M. Fukushima, “Simultaneous Determination of Butyltin and Phenyltin Compounds in the Aquatic Environment by Gas Chromatography”, Anal. Chim. Acta. ,264, 91, 1992. [44 ]張簡振銘,“氣相層析╱火焰光度偵測法應用於底泥中微量有機錫的分析”,私立東海大學應用化學研究所碩士論文,民國84年。 [45 ] J.A. Stab, W.P. Cofino, B.V. Hattum, V.A.T. Brinkman, and Fresenius, J. Anal. Chem.,347, 247, 1993. [46 ] 李東益,“台灣西部沿岸生物體有機錫分析”,國立台灣大學海洋研究所碩士論文,民國86 年。 [47 ]陳雍程, 土壤樣品鉛、鎘的逐步萃取, 國立中興大學環境工程學系, 碩士論文, 2000年. [48 ]陳麗如, 物質流- 鎘在台灣生活圈中之流向與流量初探, 國立臺灣大學環境工程學研究所, 碩士論文, 2002年. [49 ]中西實用內科學, 啟業書局, 1978, pp351-369. [50 ]Frank C. Lu 原著, 劉宗榮; 康照洲等編譯, Basic Toxicology(基礎毒理學), 藝軒圖書出版社, 1996, pp344?{351. [51 ]阮中清, 活性微量元素, 青春出版社, 1997, pp69–80. [52 ]曹治權主編, 微量元素與中醫藥, 中國中醫藥出版社. 北京, 1992, p4. [53 ]孫毓璋, 中藥(材)中微量元素之檢驗方法及規格研訂I ?o?n成藥(材)中微量元素(銅、汞、鎘、鉛、砷、鈷、錳)檢驗方法及規格研訂之研究, 行政院衛生署中醫藥委員會中醫藥年報第十七期III, 1999,pp1-66. [54 ]吳壽金; 越泰; 秦永祺, 現代中草藥成分化學, 中國醫藥科技出版社.北京, 2001 , pp1061-1068. [55 ]何敏夫, 臨床化學概論, 合記圖書出版社, 2002, p440. [56 ]陳吉平譯, 最新毒理學, 合計圖書出版社, 2000, pp255-269. [57 ]WHO Lead, Environmental Health Criteria 3 Geneva:World HealthOrganization, 1977 [58 ]李勇進; 譚延輝等譯, 醫用藥理學, 九州圖書文物有限公司, 1989,p653. [59 ]許鴻源, 礦物性中藥之研究, 國立中國醫藥研究所, 1975, pp19.40.53 [60 ]詹智遠, 環境微生物處理重金屬之研究, 國立東華大學生物技術研究所, 碩士論文, 1999年. [61 ]連森興, 中藥成藥中金屬濃度與人體暴露評估---以苗栗地區為例, 台北醫學院公共衛生學研究所, 碩士論文, 2000年. [62 ]莊一全, 以原子吸收光譜法測定中藥及子宮頸黏液之微量元素研究, 高雄醫學大學醫學研究所, 博士論文, 2001年. [63 ]International Agency for Research on Cancer, Overall evaluations of carcinogenicity: an updating of IARC Monographs volumes 1-42, Lyon, 139-142,(IARC Monographs on the Evaluation of Carcinogenic Risk to Humans, Suppl. 7) 1987. [64 ]International Agency for Research on Cancer, Overall evaluations of carcinogenicity: an updating of IARC monographs volumes 1–42, Lyon, 230-232,(IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Suppl. 7) 1987. [65 ]M. J. Quinn, J. C. Sherlock, Food additives and contaminants, 7, 387, 1990. [66 ]H. Galal-Gorchev, Food additives and contaminants, 8, 6, 793, 1991. [67 ]S. A. Slorach et al, Vår Föda, 1, 35, 1983. [68 ] P. Varo, P. Kovistoinen, Acta agriculturae scandinavica, l, 22, 165, 1980. [69 ]E. L. Gunderson, Journal of the Association of Official Analytical Chemists, 71, 1200, 1988. [70 ]C. D. Strehlow, D. Barltrop, Environmentalgeochemistry and health, 9, 74, 1987. [71 ]R. W. Dabeka, A. D. McKenzie, G. M. A. Lacroix, Food additives and contaminants,4, 89, 1987. [72 ]Karolinska Institute. Global Environmental Monitoring System (GEMS) assessment of human exposure to lead: comparison between Belgium, Malta, Mexico and Sweden. Stockholm, 1985. [73 ]C. G. Elinder et al, Food additives and contaminants, 5, 641, 1988. [74 ] Joint FAO/WHO Expert Committee on Food Additives. Toxicological evaluation of certain food additives and contaminants. Cambridge, Cambridge University Press, 223-255 (WHO Food Additives Series, No. 21) 1987 [75 ]E. E. Ziegler et al, Pediatric research, 12, 29, 1978. [76 ] J. E. Ryu et al, American journal of diseases of children, 137, 886, 1983. [77 ] Evaluation of certain food additives and contaminants: forty-first report of the Joint FAO/WHO Expert Committee on Food Additives. Geneva, World Health Organization, (WHO Technical Report Series, No. 837) 1993. [78 ] International Agency for Research on Cancer. Cadmium, nickel, some epoxides, miscellaneous industrial chemicals and general considerations on volatile anaesthetics. Lyon, 39-74 (IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man, Vol. 11) 1976. [79 ]Barltrop, Mineral metabolism in paediatrics. Oxford, Blackwell Scientific Publications, 135, 1969. [80 ] Galal-Gorchev H. Dietary intake of pesticide residues, cadmium, mercury and lead. Food additives and contaminants, 8:793-806, 1991. [81 ] Friberg L, Nordberg GF, Vouk VB, eds. Handbook of the toxicology of metals, Vol. II. Amsterdam, Elsevier, 130-184, 1986. [82 ] Cadmium. Geneva, World Health Organization, (Environmental Health Criteria, No. 134) 1992. [83 ]World Health Organization, Toxicological evaluation of certain food additives and contaminants, Cambridge, Cambridge University Press, 163-219 (WHO Food Additives Series, No. 24), 1989. [84 ] Evaluation of certain food additives and contaminants: forty-first report of the Joint FAO/WHO Expert Committee on Food Additives. Geneva, World Health Organization, (WHO Technical Report Series, No. 837) 1993. [85 ]US Environmental Protection Agency. Research Triangle Park, NC, 1986 (Report EPA-600/8-83/028F). [86 ] F. W. Alexander, Environmental health perspectives, 7,155,1974. [87 ] E. E. Ziegler et al., Pediatric research, 12,29, 1978. [88 ] A. A. Van Barneveld, C. J. A. Van den Hamer,Nutrition research, 1, 345, 1985. [89 ] K. C. Blake, G. O. Barbezat, M. Mann, Environmental research, 30, 182, 1983. [90 ]K. C. Blake, M. Mann, Environmental research, 30, 188, 1983. [91 ] K. R. Mahaffey, Nutrition reviews, 39, 353, 1981. [92 ] M. R. Moore, Science of the total environment, 71, 419, 1988. [93 ] C. N. Ong,W. R. Lee, British journal of industrial medicine, 37, 292, 1980. [94 ] M. B. Rabinowitz, C. W. Wetherill, J. D. Kopple, Journal of clinical investigations, 58, 260, 1976. [95 ] R. B. Holtzman. Application of radiolead to metabolic studies. Amsterdam, Elsevier/North Holland Biomedical Press, 37, 1978. [96 ] L. Alessio, V. Foa, Human biological monitoring of industrial chemicals series. Luxembourg, Commission of the European Communities, 107, 1983. [97 ] P. S. I. Barry, The biogeochemistry of lead in the environment. Part B. Amsterdam, Elsevier/North Holland Biomedical Press, 97, 1978. [98 ] D. Barltrop, Mineral metabolism in paediatrics. Oxford, Blackwell Scientific Publications, 135, 1969. [99 ] N. F. Angell, J. P. Lavery, American journal of obstetrics and gynecology, 142, 40, 1982. [100 ] M. R. Moore et al, Scottish medical journal, 27, 113, 1982. [101 ] J. J. Gershanik, G. G. Brooks, J. A. Little, American journal of obstetrics and gynecology, 119, 508, 1974. [102 ] R. F. Lacey, Science of the total environment, 41, 235, 1985. [103 ] Syracuse Research Corporation. Toxicological profile for lead. Atlanta, GA, Agency for Toxic Substances and Disease Registry (ATSDR), US Public Health Service and US Environmental Protection Agency, 1990. [104 ]J. E. Ryu et al, American journal of diseases of children, 137, 886, 1983. [105 ]H. L. Needleman et al, New England journal of medicine, 300, 689, 1979. [106 ]E. I. Krajnc et al, National Institute of Public Health and Environmental Protection, (Report no. 758476004) 1987. [107 ]World Health Organization. Toxicological evaluation of certain food additives and contaminants. Cambridge, Cambridge University Press, 163, (WHO Food Additives Series, No. 24) 1989. [108 ] Cadmium. Geneva, World Health Organization, (Environmental Health Criteria, No. 134) 1992. [109 ]林蕙雅, 安胎劑中鉛、鎘、鉻、砷元素含量之分析探討, 朝陽科技大學應用化學系, 碩士論文, 2001年. [110 ]林聖富、黃榮茂、楊得仁、王禹文編譯, 化學化工百科辭典,曉園出版社, 1992年. [111 ]詹武忠、楊肇政、鄭阿全編著, 污染防治, 高立圖書有限公司, 1994年. [112 ]歐育憲, 土壤中重金屬污染物之生物有效性意義研究, 逢甲大學土木及水利工程研究所, 碩士論文, 1999年. [113 ]朱子賢, 中醫門診病患與一般民眾服用中藥之金屬暴露與健康風險評估, 台北醫學院公共衛生學研究所, 碩士論文, 1999年. [114 ]王嘉媜, 活性氧分子在鎘及汞誘發人類正常肺細胞MRC-5凋亡之作用探討, 台北醫學院醫學研究所, 碩士論文, 1999年. [115 ]陳錕榮, 重金屬污染場址調查與復育技術評估之研究, 雲林科技大學環境與安全工程技術研究所, 碩士論文, 2000年. [116 ]楊婷卉, 逢甲大學校園及周邊地面街塵特性分析, 逢甲大學 土木及水利工程研究所, 碩士論文, 2000年. [117 ]陳松甫, 碳化農業廢棄物改良水田重金屬污染之可行性研究, 國立中興大學土壤環境科學系, 碩士論文, 2002年. [118 ]郭美君, 鎘所誘導水稻幼苗毒害與氧化逆境間關係之研究, 國立台灣大學農藝學系研究所, 碩士論文, 2003年. [119 ]梁曉芳, 鎘誘導人類正常肺細胞MRC-5細胞凋亡之探討, 臺北醫學大學醫學研究所, 碩士論文, 2002年. [120 ]吳明晃, 以化學置換程序處理水溶液中含鎘、汞離子之研究, 國立台灣科技大學化學工程系, 碩士論文, 1999年. [121 ]何子潔, 重金屬鎘在布袋蓮中的隔離與輸送之研究, 國立臺灣大學農業化學研究所, 碩士論文, 2001年. [122 ]賴奕蓁, 高屏溪流域主要及微量元素地球化學:自然風化與人為作用之影響, 國立中山大學海洋地質及化學研究所, 碩士論文, 2003年. [123 ]洪清吉, 煉鋼廠員工尿中微量元素鉛、鎘及鎳濃度之研究, 高雄醫學大學藥學研究所碩士在職專班, 碩士論文, 2000年. [124 ]J. J. Duke, T. H. Risby, Ultratrace Metals in Some Enviromental and Biological Systems, Anal. Chem., 48, 640 A, 1976. [125 ]L. Friberg, G. F. Nordberg, V. B. Vouk, Handbook on the toxicology of metals. Elsevier/North-Holland Biomedical Press, Amsterdam, New York, Oxford, 452-484, 1979. [126 ]H. B. Elkins, The Chemistry of Industrial Toxicology, John Wiley and Sons, New York, 1959. [127 ]M. Carty, Trace inorganic material, chemistry for environmental engineering. Kein Tai Book Publishers Inc. Taipei, Taiwan, 548-552, 1982. [128 ]E. J. Underwood, Trace elements in human and animal nutrition. Academic Prss. New York, 4th ed., 243-257, 1977. [129 ]C. G. Elinder, T. Kjellstrom, L. Linnman, G. Pershagen, Urinary excretion of cadmium and zinc among persons from Sweden, Environ. Res., 15, 473-84, 1978. [130 ]L. Friberg, G. F. Nordberg, V. B., Handbook on the toxicology of metals. Elsevier/North-Holland Biomedical Press, Amsterdam, New York, Oxford, 355-381, 1979. [131 ]A. M. Bond, and J. B. Reust, A simple pretreatment of urine for the direct differential-pulse anodic stripping voltammetric determination of lead. Anal. Chim. Acta 162, 389-392, 1984. [132 ]S. J. Yel, T. S. Wei, C. N. Kuo, Comparative analysis of trace elements in serum and urine of patients with patient disease. Report of Blackfoot Disease Research. 25, 18-32, 1982. [133 ]W. H. Lin, M. D. Chen and P. Y. Lin, Investigation of the profile of selected trace metals in genetically Obese (ob/ob) and Lean (t/) Mice. J. Formosan Med. Assoc. 19, s 27-33, 1992. [134 ]R. D. Beaty, Concepts, intrumentation and techniques in atomic absorption spectrophotometry. Perkin Elmer, 3-49, 1978. [135 ]C. H. Murphy, Atomic absorption spectrometry. Handbook of particle sampling and analysis methods. Verlag Chimie International, In. 280-291, 1984. [136 ]林保瑞, 銅、鎘在幾種台灣土壤中脫附性之探討, 屏東科技大學環境工程與科學系, 碩士論文, 2001年. [137 ]施伶穎, 環境污染與健康風險之網路教育---以重金屬與水產食品為例, 台北醫學院公共衛生學研究所, 碩士論文, 2001年. [138 ]尹順君, 鎘的毒性研究:脂質過氧化作用與硒的抗氧化效應之探討, 高雄醫學大學醫學研究所, 博士論文, 2000年. [139 ]王譽朝, 鎘對百日草的效應, 國立臺灣大學植物學研究所, 碩士論文, 2000年. [140 ]H. G. Seilier and H. Sigel, Handbook on toxicity of inorganic compounds. Marcel Dekker, New York, pp. 521-594 (1988). [141 ]E. B. Walker, J. C. Walker, S. E. Zaugg and R. Davidson, J. Chromatogr. A, Vol. 745, pp. 111-115 (1996). [142 ]L. C. Clark, G. F. Comps, and B. W. Turnbull, et. al., Journal of the America Medical Association, Vol. 276, No. 24, pp. 1957-1963 (1996). [143 ]Windholz, M. The Merck Index 10th Edition 1983, 872. [144 ]Ebbing, D.D. General Chemistry 3rd Edition 1990, 898~903. [145 ]Frey, R. Encyclopdia of Alternative Medicine Gale Group, 2001. [146 ]Moore, F.R., Urda, G.A., Krishna, G., T Heiss, J.C. Mutation Research 1996, 367, 33-41. [147 ]Sasakura, C., Suzuki, K.T. Journal of Inorganic Biochemistry 1998, 71, 159-162. [148 ]Gupta, K. D., and Das, S. R, Indian J. Phys. 15, 401 (1941). [149 ]舒聖懸浮液使用說明書 [150 ]善存(Centrum)綜合維他命成分表 [151 ]T. D. Smaele; P. Verrept; L. Moens; R. Dams, Spectrochim. Acta. B. 1995, 50, 1409. [152 ]J. E. Conde; M. S. Alaeios, Chem. Rev. 1997, 97, 1979. [153 ]林依亭, 荷蘭牛與乳山羊於分娩前肌肉注射維生素E 及硒對其分娩後乳液中體細胞數之影響, 國立中興大學畜產學系研究所, 碩士論文, 2002年. [154 ]張心怡, 荷蘭母牛於分娩前行肌肉注射β-carotene、Vitamin E 和硒對其乳腺健康之影響, 國立中興大學畜產學系研究所, 碩士論文, 2002年. [155 ]陳慶隆, 酸鹼值、液固比與醋酸鹽濃度對飛灰中金屬溶出之影響, 國立中興大學環境工程學系, 碩士論文, 2001年. [156 ]石界智, 台灣附近海域鯨豚體內重金屬蓄積之研究, 國立中山大學海洋資源研究所, 碩士論文, 2001年. [157 ]徐錦和, 肉雞飼糧添加硒對生長性能及免疫反應之研究, 國立屏東科技大學畜產系碩士研究所, 碩士論文, 2002年. [158 ]林和靜, 利用Microbore-HPLC-ICP-MS連線分析系統進行尿中硒物種的分析研究, 國立清華大學原子科學系研究所, 碩士論文, 2001年. [159 ]許宇嵐, 動力反應室結合感應耦合電漿質譜儀在環境及生物樣品中鍺、砷、硒及銻分析之應用, 國立中山大學化學研究所分析組, 碩士論文, 2000年. [160 ]D. Mayer, S. Haubenwallner and W. Kosmus, Anal. Chim. Acta., 1992, 268, 315. [161 ]F. H. Nielsen and E. O. Uthus, in E. Frieden (E.d.),Biochemistry of the Essential Trace Elements, Plenum, New York, 1984, p319 [162 ]鹽田剛三原著,陳洪周譯"化學工業中毒防治手冊",五洲出版社, 1990. [163 ]X. Zhang, R. Cornelis and L. Mees, J. Anal. At. Spectrom., 1998, 13, 105 [164 ]M. Dodd, S. A. Pergantis, W. R. Cullon, H. Li, K. Eigendorf and K. J. Reimer, Analyst., 1996, 121, 223. [165 ]Y. A. Gawargious, N. B. Tadros, A. Besada and L. F. Ibrahim, Analyst, 1997, 112, 545. [166 ]J. L. Gomez Ariza, E. Morales, D. Sanchez-Rodas and I. Giraldez, Trends in Anal. Chem., 2000, nos. 2+3, 19. [167 ]R. R. Lauwery and P. Hoet, Industrial Chemical Exposure, Guidelines for Biological Monitoring, Lewis Publishers, Boca Raton, 2nd edn., FL, 1993, p.19. [168 ]D. G. Elinder and L. Friberg, in Handbook on the Toxicology of Metals, L. Friberg, G. F. Nordberg and V. B. Vouk, ed., Elsevier Amsterdam, 1979, p.283. [169 ]Relating to the Quality of Water Intended for Human Consumption (80/778/EEC) [170 ]S. Riosegade and C. Bendicho, Spectrochim. Acta PartB., 1999, 54, 1129. [171 ]M. Krachler, W. Shotyk and H. Emons, Anal. Chim. Acta., 2001, 432, 303. [172 ]C. Vargasrazo and J. F. Tyson, Fresenius´ J. Anal. Chem., 2000, 366, 182. [173 ]B. Do, P. Alet, D. Pradeau, J. Poupon, M. Guilleygaillot and F. Guyon, J. Chromatography B., 2000, 740, 179. [174 ]J. Stripeikis, M. Tudino, O. Troccoli, R. Wuilloud, R. Olsina and L. Martinez, Spectrochim. Acta PartB., 2001, 56, 93. [175 ]S. Boulyga, J. Dombovari, J. S. Becker and H. J. Dietze, At. Spectrosc., 2000, 21, 149 [176 ]N. Ulrich, P. Shaked and D. Zilberstein, Fresenius´ J. Anal. Chem., 2000, 368, 62. [177 ]J. T. Vanelteren, Z. Slejkovec and H. A. Das, Spectrochim. Acta PartB., 1999, 54, 311. [178 ]N. V. Semenova, F. M. B. Demirabo, R. Forteza and V. Cerda, Anal. Chim. Acta., 2000, 412, 169. [179 ]A. M. Featherstone, P. R. Boult, B. V. Ogrady and E. C. V. Butler, Anal. Chim. Acta., 2000, 409, 215. [180 ]G. E. M. Hall and J. C. Pelchat, J. Anal. At. Spectrom., 1997, 12, 97. [181 ]J. M. G. Lafuente, M. Dlaska, M. L. F. Sanchez and A. Sanzmedel, J. Anal. At. Spectrom., 1998, 13, 423. [182 ]H. G. Infante, M. L. F. Sanchez and A. Sanzmedel, J. Anal. At. Spectrom., 1999, 14, 1343. [183 ]J. X. Li, F. Lu, T. Umemura and K. Tsunoda, Anal. Chim. Acta., 2000, 419, 65. [184 ]A. Menegario and M. F. Gine, Spectrochim. Acta PartB,, 2000, 55, 355. [185 ]Y. Cai, M. Georgiadis and J. W. Fourqurean, Spectrochim. Acta PartB., 2000, 55, 1411. [186 ]G. Centineo, MM. Bayon and A. Sanzmedel, J. Anal. At. Spectrom., 2000, 15, 1357. [187 ]I. Feldmann, N. Jakubowski, C. Thomas and D. Stuewer, Fresenius´ J. Anal. Chem., 1999, 365, 422. [188 ]P. R. D. Manson, K. Kaspers, J. Anal. At. Spectrom., 1999, 14, 1067. [189 ]J. Sloth, E. H. Larsen, J. Anal. At. Spectrom., 2000, 15, 669. [190 ]U. Vollkopf, K. Klemm and M. Pfluger, At. Spectrosc., 1999, 20, 53. [191 ]A. McLean, B. W. Acon, A. Montaser, J. Singh, D. E. Pritchard and S. R. Patierno, Appl. Spectrosc., 2000, 15, 1093. [192 ]J. M. Marchantegayon, C. Thomas, I. Feldmann and N. Jakubowski, J. Anal. At. Spectrom., 2000, 15, 1093. [193 ]S. Natarajan, At. Spectrosc., 1988, 9, 59. [194 ]Y. Nojiri, A. Otsuki, K. Fuwa, Anal. Chem., 1986, 58, 544. [195 ]M. A. Amwari, H. U. Abbasi, M. Volkan, O. Y. Ataman, Fresenius J. Anal. Chem., 1996, 355, 284. [196 ]G. S. B. Januzzi, F. J. Krug, M. A. Z. Arruda, J. Anal. At. Spectrom., 1997, 12, 375. [197 ]G. R. Chen, K. W. Jackson, Spectrochim. Acta, PartB, 1996, 51, 1505. [198 ]J. M. Garey, E. H. Evans, J. A. Caruso, W. L. Shen, Spectrochim. Acta, PartB, 1991, 46, 1711. [199 ]T. Ashino, K. Takada, J. Anal. At. Spectrom., 1996, 11, 577. [200 ]N. Z. Ming, H. Bin, J. Anal. At. Spectrom., 1995, 10, 747. [201 ]劉忠昌, 動力反應室感應偶合電漿質譜儀於土壤及沉積土中鍺、砷及硒元素分析之應用, 國立中山大學化學研究所 , 碩士論文, 2003年. [202 ]蔡育端, 動力反應室感應偶合電漿質譜儀於水樣中砷與硒之物種分析以及魚肉樣品中微量元素分析之應用, 國立中山大學化學研究所 , 碩士論文, 2003年. [203 ]M. Bueno , M. Potin-Gautier, J. Chromatogy. A, 2002, 963, 185. [204 ]X. C. Le, X.-F. Li,V. Lai, M. Ma, S. Yalcin, J. Feldmann, Spectrochim. Acta, Part B, 1998, 53, 899 [205 ]M. Ochsenkühn-Petropoulou , B. Michalke , D. Kavouras , P. Schramel, Anal. Chim. Acta, 2003, 478, 219. [206 ]B. Michalke, Fresenius’ J. Anal. Chem., 1995, 351, 670. [207 ]Y. Shibata, M. Morita, K. Fuwa, Adv. Biophys., 1992, 28, 31 [208 ]A. L. Moxon, Science, 1938, 88, 81 [209 ]M. Quaghebeur, Z. Rengel, M. Smirk, J. Anal. At. Spectrom., 2003, 18, 128. [210 ]J. A. Day, M. Montes-Bayón ,•A. P. Vonderheide, J. A. Caruso, Anal. Bioanal. Chem., 2002, 373 , 664. [211 ]M. V. Hulle, C. Zhang, X. Zhang, R. Cornelis, Analyst, 2002, 127, 634. [212 ]M. Ochsenkühn-Petropoulou, B. Michalke, D. Kavouras, P. Schramel. Anal. Chim. Acta, 2003, 478, 219. [213 ]M. Bueno , M. Potin-Gautier, J. Chromatogr. A , 2002, 963, 185. [214 ]K.-L. Yang, S.-J. Jiang, Anal. Chim. Acta, 1995, 307, 109. [215 ]林孟瑜, 探討血液中金屬濃度與男性不孕症之關係, 台北醫學院醫學研究所, 碩士論文, 2001年. [216 ]陳元光, 蛋雞換羽前飼糧中有機硒和維生素E之添加濃度對其強迫換羽成績之影響, 屏東科技大學畜產系研究所, 碩士論文, 2001年. [217 ]林文仁, 飼糧中有機硒濃度對肉雞生長性能、屠體品質及免疫力之影響, 屏東科技大學畜產系研究所, 碩士論文, 2002年. [218 ]陳晉賢, 飼糧中添加有機硒對泌乳牛產乳品質、健康與繁殖性能之影響, 碩士論文, 2002年. [219 ]洪意玲, 環境中的硫酸鹽與硒酸鹽對植物中有機硫化合物生合成量的影響 (I), 中國文化大學應用化學研究所, 碩士論文, 2002年. [220 ]賴志昌, 懷孕婦女血清中微量元素變化之分析探討, 中山醫學院生物化學研究所, 碩士論文, 1999年. [221 ]Wada L. King JC. Trace element nutrition during pregnancy. Clinical Obstetrics & Gynecology. 37(3):574-86, 1994 Sep. [222 ]Bothwell TH. Charlton RW. Current problems of iron overload. Recent Results in Cancer Research. 69:87-95, 1979. 79248143 [223 ]Fox JM. Selenium: nutritional implications and prospects for therapeutic medicine. Methods & Findings in Experimental & Clinical Pharmacology. 14(4):275-87, 1992 May. [224 ]Heinz GH. Hoffman DJ. LeCaptain LJ. Toxicity of seleno-L-methionine, seleno-DL-methionine, high selenium wheat, and selenized yeast to mallard ducklings. Archives of Environmental Contamination & Toxicology. 30(1):93-9,1996 Jan. [225 ]Thomas WC. Lars F. and Polly RS. (1988) In Gunnar, F. N.,(eds). Biological Monitoring of Toxic Metals. New York, Plenum Press. [226 ]基礎毒理學:劉宗榮康照洲郭明良翁祖輝著(中華民國85 年第一版)第338-357 頁藝軒出版社,臺北。 [227 ]Khan MZ. Szarek J. Saeed M. Koncicki A. Krasnodebska-Depta A. Effects of concurrent oral administration of monensin and selenium on some haematological and biochemical parameters in broiler chickens. Zentralblatt fur Veterinarmedizin - Reihe B. 40(9-10):667-75, 1993 Dec. [228 ]He R. Bao KG. [Effects of selenium and DTPA on cadmium excretion in rats ]. [Chinese ] Chung-Hua Yu Fang iHsueh Tsa Chih [Chinese Journal of Preventive Medicine ]. 28(2):97-9, 1994 Mar. [229 ]Ip C. Ganther H. Biological activities of trimethylselenonium as influenced by arsenite. Journal of Inorganic Biochemistry. 46(3):215-22, 1992 May 15. [230 ]Ip C. Thompson H. Ganther H. Activity of triphenylselenonium chloride in mammary cancer prevention. Carcinogenesis. 15(12):2879-82, 1994 Dec. [231 ]Chakraborty I. Sharma A. Talukder G. Antagonistic and synergistic effects of lead and selenium in Rattus norvegicus. Toxicology Letters. 37(1):21-6, 1987 Jun. [232 ]Groff JL. Gropper SS. and Hunt SM. Microminerals. Advanced Nutrition and Human Metabolism. Second Edition. West Publication Company. 1995, 389-394. [233 ]Burk RF. Hill KE. Regulation of selenoproteins. Annual Review of Nutrition. 13:65-81, 1993. [234 ]Barceloux DG. Selenium. Clinical Toxicology 1999;37(2):145-72. [235 ]Spallholz JE: On the nature of selenium toxicity and carcinostatic activity. Free Radical Biological and Medicine 1994;17:45-64. [236 ]Hilmy AM,. El-Domiaty NA, Kamal MA, Mohamed MA and Abou Samra WE. Effect of some arsenic antagonists on the toxicity,distribution and excretion of arsenite and arsenate in rats. Comparative Biochemistry and Physiology 1991;99C:357-62. [237 ]Biswas S, Talukder G, Sharma A. Prevention of cytotoxic effects of arsenic by short-term dietary supplementation with selenium in mice in vivo. Mutation Research 1999;441:155-60. [238 ]Berry JP, Galle P. Selenium- arsenic interation in renal cells: role of lysosomes. Electron microprobe study. Journal of Submicroscopic Cytological Pathology 1994;26:203-10. [239 ]Ueda H, Kuroda K and Endo G. The inhibitory effect of selenium on induction of tetraploidy by dimethylarsinic acid in Chinese hamster cells. Anticancer Research 1997;17:1939-44. [240 ]Styblo M.,and Thomas DJ In vitro inhibition of glutathione reductase by arsenotriglutathione. Biochemistry Pharmacology 1995;49:971-7. [241 ]Kenyon EM and Hughes MF. Influence of dietary selenium on the disposition of arsenate in the female B6C3F1 mouse. Journal of Toxicology and Environmental Health 1997;51:279-99. [242 ]Merck & Co.,INC. The Merck Index.1996;12th ed.:1448-9. [243 ]Simonoff M:Selenium in food and nutrition in France. Selenium in Medicine and Biology. 15-20,1988. [244 ]Vahter M. Biotransformation of trivalent and pentavalent inorganic arsenic in mice and rats. Environmental Research 1981;25:286-93. [245 ]Rotruck JT, Pope AL,Ganther HE,S wanson AB, Hafeman DG, Hoekstra WG: Selenium:Biochemical role as a component of glutathione peroxidase. Science 1973; 269:588-90. [246 ]Marafante E, Vahter M, and Envall J. The role of the methylation in the detoxication of arsenate in the rabbit. Chemico-Biological Interactions, 1985;56:225-38. [247 ]Franke: A new toxicant occuring naturally in certain samples of plant foodstuffs. Journal of Nutrition 1934;8:597-608. [248 ]Schwarz K,Foltz CM: Selenium as an intergral part of factor 3 against dietary necrotic liver degeneration. Journal of American Chemical Society 1957;79:3292. [249 ]Valentine JL, Cebrian ME, Garcia-vargas GG, Faraji B, Kuo J, Gibb HJ, and Lachenbruch PA. Daily selenium intake estimates for residents of arsenic-endemic areas. Environmental Research 1994;64:1-9. [250 ]Tsalev DL, Zaprianov ZK. Atomic Absorption Spectrometry in Occupational and Environmental Health Practice. 1983 Volume I p182-187 CRC Press Inc Boca Raton, Florida. [251 ]Hoffman JL and McConnell KP. Periodate-oxidized adenosine inhibits the formation of dimethylselenide and trimethylselenonium ion in mice treated with selenite. Archives of Biochemistry and Biophysics 1987;254:534-40. [252 ]江憲宗, 以毛細管電泳/雷射激發螢光間接偵測法─分析硒及銻類化合物, 朝陽科技大學應用化學系研究所, 碩士論文, 2001年. [253 ]H. G. Seilier and H. Sigel, Handbook on toxicity of inorganic compounds. Marcel Dekker, New York, pp. 521-594 (1988). [254 ]E. B. Walker, J. C. Walker, S. E. Zaugg and R. Davidson, J. Chromatogr. A, Vol. 745, pp. 111-115 (1996). [255 ]L. C. Clark, G. F. Comps, and B. W. Turnbull, et. al., Journal of the America Medical Association, Vol. 276, No. 24, pp. 1957-1963 (1996). [256 ]H. G. Seilier and H. Sigel, Handbook on toxicity of inorganic compounds. Marcel Dekker, New York, pp. 67-76 (1988). [257 ]H. A. Schroeder, Arch. Environ. Health, Vol. 21, pp. 798- (1970) [258 ]周銘源, 亞砷酸鈉與三氯化銻在淋巴細胞株WTK1及TK6 中引起的一氧化氮與抗氧化物變動情形, 國立清華大學生命科學研究所, 碩士論文, 2001年. [259 ]Y. A. Gawargious, N. B. Tadros, A. Besada and L. F. Ibrahim, Analyst 1987, 112, 545. [260 ]B. A. Fowler, P. L. Georing, Metal and Their Compounds in the Environment Occurrence, Analysis and Biological Relevance, ed. Merien, E., VCH, New York, 1991, p.743. [261 ]X. Zhang, R. Cornelis and L. Mees, J. Anal. At. Spectrom., 1998, 13, 105. [262 ]M. Dodd, S. A. Pergantis, W. R. Cullon, H. Li, K. Eigendorf and K. J. Reimer, Analyst, 1996, 121, 223. [263 ]B. Vengopal and T. D. Luckey, Metal Toxicity in Mammals, vol. 2, Chemical Toxicity of Metals and Metalloids, Plenum Press, New York, 1978. [264 ]MAK- and BAT -Werte-Liste 1996, ed. Deutsche Forchungsgemeinschaft (DFG), VCH, Weinheim, 1996. [265 ]S. Maeda, H. Fukuyama, E. Yokoyama, T. Kuroiwa and K. Naka, Appl. Organomet. Chem., 1997, 11, 393. [266 ]M. Sadiq, A. A. Mian and A. P. Saji, Chem. Speciation Bioavailability, 1995, 7, 351. [267 ]M. O. Andreae, J. F. Asmode, P. Foster and L. Van´t Dack, Anal. Chem. 1981, 53, 1766. [268 ]Relating to the Quality of Water Intended for Human Consumption (80/778/EEC). [269 ]H. Onoshi, in Handbook of Geochemistry, ed. K. H. Wedepohl, Springer, Berlin, Heidelberg, New York, 1969. [270 ]D. F. Schltz and K. K. Turelan, Geochim. Cosmochim. Acta, 1965, 29, 259. [271 ]J. L. Gomez Ariza, E. Morales, D. Sanchez-Rodas, I. Giraldez, Trends in Anal. Chem., 2000, nos. 2+3, 19. [272 ]R. R. Lauwery and P. Hoet, Industrial Chemical Exposure, Guidelines for Biological Monitoring, Lewis Publishers, Boca Raton, 2nd edn., FL, 1993, p.19. [273 ]D. G. Elinder and L. Friberg, in Handbook on the Toxicology of Metals,L. Friberg, G. F. Nordberg and V. B. Vouk, ed., Elsevier Amsterdam, 1979, p.283. [274 ]E. Steinnes, O. Hvatum, B. Bolviken, Environ. Biogeochem. Ecol. Bull. 1983, 35, 351. [275 ]R. Iffland, in Handbook on Toxicology of Inorganic Comounds, H. G. Seiler and H. Sigel, ed., Marcel Dekker, New York, 1988. [276 ]K. L. Stemmer, Pharm. Ther., 1976, 1, 157. [277 ]D. L. Tsaler and Z. K. Zaprianov, in Occupational and Environmental Health Practice, CRC Press, Boca Raton, FL, 1983, 1, 85. [278 ]A. Menendez Garcia, M. C. Perez Rodriguez, J. E. Sanchez Uria and A. Sanz Medel, Fresenius´ J. Anal. Chem., 1995, 353, 128. [279 ]P. Smichowski, J. Anal. At. Spectrom., 1995, 10, 815. [280 ]M. B. de la Calle Guntinas, Y. Mardrid and C. Camara, Anal. Chim. Acta, 1991, 252, 161. [281 ]S. C. Apte and A. G. Howard, J. Anal. At. Spectrom., 1986, 1, 221. [282 ]T. Nakahara and N. Kukui, Anal. Chim. Acta, 1985, 172, 127. [283 ]S. Nakashima, Analyst, 1980, 105, 732. [284 ]M. Yamamoto, M. Yasuda and Y. Yamamoto, Anal. Chem. 1985, 57, 1382. [285 ]T. Guo, M. Liu and W. Schrader, J. Anal. At. Spectrom., 1992, 7, 667. [286 ]A. D´ Ulivo, L. Lampugnani, G. Pellegrini and R. Zamboni, J. Anal. At. Spectrom., 1995, 10, 696. [287 ]X. J. Feng and B. Fu, Anal. Chim. Acta, 1998, 371, 109. [288 ]A. Sayago, R. Beltran and J. L. Gomez-Ariza, J. Anal. At. Spectrom., 2000, 15, 423. [289 ]M. Krachler and H. Emons, J. Anal. At. Spectrom., 2000, 15, 281. [290 ]N. Ulrich, Anal. Chim. Acta, 1998, 359, 245. [291 ]J. Lintschinger, O. Schramel and A. Kettrup, Fresenius´ Anal. Chem., 1998, 361, 96. [292 ]J. Lintschinger, I. Koch, S. Serves, J. Feidmann and W. R. Cullen, Fresenius´ Anal. Chem., 1997, 359, 484. [293 ]T. Lindemann, A. Prange, W. Dannecker and B. Neidhart, Fresenius´ Anal. Chem., 1999, 364, 462. [294 ]B. Michalke and P. Schramel, J. Chromatogr. A, 1999, 834, 341. [295 ]Y. L. Feng, H. Narasaki, H. Y. Chen and L. C. Tian, Anal. Chim. Acta, 1999, 386, 297. [296 ]記者王淑瑛報導, 高硒豬肉問世 號稱健康食品, 聯合新聞網2004 / 06 / 3星期三. [297 ]臺北市土壤污染優先地區重金屬含量調查研究, 民國83年6月. [298 ]彭安、王文華, 環境生物無機化學, 1993年. [299 ]X. R. Wang, Z. X. Zhuang, D. H. Sun, J. X. Hong, X. H. Wu, F. S. C. Lee, M. S. Yang, H. W. Leung, Trace metals in traditional Chinese medicine: A preliminary study using ICP-MS for metal determination and as speciation , At. Spectrom, 1999, 20(3), 86. [300 ]B. Buckley, W. Fang, C. Gilmartin, W. Johnson, (EOHSI-Rutgers Univ., Pascataway, NJ 08855, USA). Presented at FACSS XXIII, Kansas City, MO, USA, 1996, Sep. 29-Oct. 4. [301 ]X. D. Tian, Z. X. Zhuang, B. Chen, X. R. Wang, Determination of arsenic speciation by capillary electrophoresis and ICP-MS using a movable reduction bed hydride generation system, At. Spectrom, 1999, 20(4), 127. [302 ]A. H. Osteras, M. Greger, Accumulation of, and interactions between, calcium and heavy metals in wood and bark of Picea abies., J. Plant Nutr. Soil Sc., 2003, 246, 166. [303 ]C. Dietz, T. Perez-Corona, Y. Madrid-Albarran and C. Camara, SPME for on-line volatile organo-selenium speciation., J. Anal. At. Spectrom., 2003, 18, 467. [304 ]T, Matousek, R. E. Sturgeon, Surfactant assisted chemical vapour generation of silver for AAS and ICP-OES: a mechanistic study., J. Anal. At. Spectrom., 1980, 52, 182. [305 ]J. V. Headley, W. Massiah, D. Laberge, J. R. Purdy, Rapid screening for mancozeb in exposure trials by inductively coupled plasma-atomic emission spectrometric determination of manganese, J. AOAC Int., 1996, 79(5), 1184. [306 ]K. Kahen, A. Strubinger, J. R. Chirinos and A. Montaser, Direct injection high efficiency nebulizer-inductively coupled plasma mass spectrometry for analysis of petroleum samples., Spectrom. Acta, 2003, 58(B), 397. [307 ]M. Dogutan and H. Filik, I. Tor, Preconcentration and speciation of chromium using a melamine based polymeric sequestering succinic acid resin: its application for Cr(VI) and Cr(III) determination in wastewater., Talanta, 2003, 59, 1053. [308 ]A. Bertolino, M. Frye, J. H. Callicott, V. S. Mattay, R. Rakow, J. Shelton-Repella, R. Post and D. R. Weinberger, Neuronal pathology in the hippocampal area of patients with bipolar disorder: A study with proton magnetic resonance spectroscopic imaging., Biol. Psychiat., 2003, 53, 906. [309 ]S. D'Angeli, P. Lauri, W. Dewitte, H. Van Onckelen and E. Caboni, Factors affecting in vitro shoot formation from vegetative shoot apices of apple and relationship between organogenic response and cytokinin localization., Plant. Biosyst., 2001, 135, 95. [310 ]Y. Ke, J. T. Coyle, N. S. Simpson, S. A.Gruber, P. F. Renshaw, D. A. Yurgelun-Todd, Frontal brain NAA T2 values are significantly lower in schizophrenia., Schizophr. Res., 2003, 60, 242. [311 ]D. J. Hall, et al., Clin. Chimica Acta, 114, 21, 1981. [312 ]P. Allain, Y. Mauras, Anal. Chem., 51, 2089, 1976. [313 ]K. M. Hambrige, Anal. Chem., 43, 103, 1971. [314 ]R. A. Kehoe, J. Cholak, R. V. Story, J. Nutr., 19, 579, 1940. [315 ]H. J. M. Bowen, CRC Crit. Rev. Anal. Chem., 10, 127, 1980. [316 ]P. O. Wester, Acta Med. Scand., 194, 505, 1973. [317 ]E. L. Kanabrocki, F. L. Case, T. Fields, G. Graham, E. B. Miller, Y. T. Oester, E. Kaplan, J. Nurl. Med., 6, 780, 1965. [318 ]P. Jouhanneau, G. M. Raisbeck, F. Yiou, B. Lacour, Clin. Chem., 43(6), 1023, 1997. [319 ]B. Buckley, W. Fang, C. Gilmartin, W. Johnson, (EOHSI-Rutgers Univ., Pascataway, NJ 08855, USA). Presented at FACSS XXIII, Kansas City, MO, USA, Sep. 29-Oct. 4, 1996. [320 ]J.V. Headley, W. Massiah, D. Laberge, J.R. Purdy, J. AOAC Int., 79(5), 1184, 1996. [321 ]J. P. Clavel, M. C. Jandon, A. Galli, Ann. Biol. Clin, 36, 33, 1978. [322 ]L. Pozzoli, C. Minoia, S. Angeler, Aurora Leg. Cart. DiC. Ge, Pavia, 1976. [323 ]M. W. Routh, Anal. Chem., 52, 182, 1980. [324 ]R. L. Bertholf, S. Brown, B. W. Renoe, M. R. Wills, J. Savory, Clin. Chem., 29, 1087, 1983. [325 ]B. C. Romana, C. V. Jon, Anal. Chim. Acta, 72, 231, 1981. [326 ]S. S. Kunnath, At. Spectro., 9(5), 169, 1988. [327 ]K. Yasuda, T. Okumoto, A. Yonetani, H. Yamada and K. Ohishi, in Colloquium Atomspektrometrische Spurenanlytik. Ed. B. Welz, Perkin-Elmer GmbH, Uberlingen, 5, 133, 1989. [328 ]B. C. Fitz-Patrick, United Atates Patent No. 5, 1991, 135, 305. [329 ]B. Radziuk, G. Rodel and H. Stenz, J. Anal. At. Spectrom., 10, 127, 1995. [330 ]B. Radziuk, G. Rodel, M. Zeiher, S. Mizuno and K. Yamamoto, J. Anal. At. Spectrom., 10, 415, 1995. [331 ]J. M. Harnly, Fresenius J. Anal. Chem., 355, 501, 1996. [332 ]H. J. M. Bowen, and M. Omar, Pre-concentration of environmental tin and its determination using catechol violet., Analyst, 1982, 107, 654. [333 ]B. Welz, "Atomic Absorption Spectrometry", 2nd, VCH publishers, 1985. [334 ]J. B. Dawson, Analytical atomic spectroscopy-learning from its past., J. Anal. At. Spectrom., 1991, 6, 93. [335 ]W. Slavin, D. C. Manning and G. R. Carnrick, Effect of graphite-furnace substrate materials on analyses by furnace atomic-absorption spectrometry., At. Spectrosc., 1981, 2, 137. [336 ]J. D. Ingle and S. R. Crouch, Spectrometry Analysis, Prentice-Hall, Inc, 1988. [337 ]G. Carnrick, G. Schlemmer, and W. Slavin, American Laboratory, 2 120, 1991. [338 ]G. Schlemmer, B. Welz, Spectrochimica Acta, vol. 41B, no.11, 1157, 1986. [339 ]G. Weibust, F. J. Langmyhr, and Y. Thomassen, Anal. Chim. Acta, 128, 23, 1981. [340 ]L. Z. Jin, Z. M. Ni, Can. J. Spectrosc. 26, 219, 1981. [341 ]X.Q. Shan, M. Z. Ni, L. Zhang, Anal. Chim. Acta, 151, 179, 1983. [342 ]X.Q. Shan, M. Z. Ni, L. Zhang, At. Spectrosc., 5, 1, 1984. [343 ]X.Q. Shan, M. Z. Ni, L. Zhang, Talanta, 31, 150, 1984. [344 ]Z. Grobenski, W. Erler, and U. Voellkopf, At. Spectrosc. 6, 91, 1985. [345 ]L. Ping, K. Fuwa, and K. Matsumoto, Anal. Chim. Acta, 171, 279, 1985. [346 ]X.Q. Shan, M. Z. Ni, Z. N. Yvan, Anal. Chim. Acta, 171, 269, 1985. [347 ]A. J. Curtius et al., J. Anal. At. Spectrom., 2, 115, 1987. [348 ]B. Welz, G. Schlemmer, and J. R. Mudakavi, J. Anal. At. Spectrom. 3 695, 1988. [349 ]L. M. Voth-Beach, D. E. Shrader, J. Anal. At. Spectrom., 2, 45, 1987. [350 ]L. M. Voth-Beach, D. E. Shrader, Spectroscopy, 1 (10), 49, 1986. [351 ]M. B. Knowles, K. G. Brodie, J. Anal. At. Spectrom., 3, 511, 1988. [352 ]Z. Grobenski, W. Erler, and U. Voellkopf, At. Spectrosc., 6, 917, 1985. [353 ]D. E. Shrader, L. M. Beach, and T. M. Rettberg, Res. Nat. Inst. Stand. Technol. 93 (3), 450, 1988. [354 ]L. M. Beach, Spectroscopy, 2, 1121, 1987. [355 ]B. V. L’vov, Spectrochim Acta, 33 B, 153, 1978. [356 ]B. Welz, G. Schlemmer, J. R. Mudukavi, Anal. Chem., 60, 2567, 1988. [357 ]J. Greed, T. Martin, J. O’Dell, Environ. Sci. Technol., 26, 102, 1992. [358 ]B. Welz, G. Schlemmer, and J. R. Mudakavi, Palladium nitrate magnesium-nitrate modifier for graphite-furnace atomic-absorption spectrometry .2. determination of arsenic, cadium, copper, manganese, lead, antimony, selenium and thallium in water., J. Anal. At. Spectrom., 1988, 3 ,695. [359 ]D. L. Tsalev, V. I. Slaveykova, and P. B.Mandjukov, Chemical modification in graphite-furnace atomic-absorption spectrometry., Spectrochim. Acta Rev., 1990, 13, 225. [360 ]H. Qiao, K. W. Jackson, Modification by palladium in the analysis of slurries by graphite-furnace atomic-absorption spectrometry – a physical-mechanism., Spectrochim. Acta, 1992, 47A, 1267. [361 ]B. Welz, G. Schlemmer, Specrtochim. Acta, Palladium and magnesium nitrates, a more universal modifier for graphite-furnace atomic-absorption spectrometry., 1986, 41B, 1157. [362 ]B. Welz, G. Schlemmer, and J. R. Mudukavi, Palladium nitrate madifier for electrothermal atomic-absorption spectrometry .3. determination of mercury in environmental standard reference materials., J. anal. At. Spectrom., 1992, 7, 499. [363 ]G. Carnrick, G. Schlemmer, and W. Slavin, Matrix modifiers-their role and history for furnace AAS., American Laboratory, 1991, 2, 120. [364 ]B. Welz, G. Schlemmer, and J. R. Mudukavi, Investigation and elimination of chloride interference on thallium in graphite-furnace atomic-absorption spectrometry., Anal. Chem., 1988, 60, 2567. [365 ]D. E. Shrader, L. M. Beach, and T. M. Rettberg, Graphite-furnace AAS-application of reduced palladium as a chemical modifier., Res. Nat. Inst. Stand. Technol. 1988, 93 (3), 450. [366 ]L. M. Voth-Beach, D. E. Shrader, Investigation of a reduced palladium chemical modifier for graphite-furnace atomic-absorption spectrometry., J. Anal. At. Spectrom., 1987, 2, 45. [367 ]B. Welz, G. Schlemmer, J. R. Mudukavi, Investigation and elimination of chloride interference on thallium in graphite-furnace atomic-absorption spectrometry., Anal. Chem., 1988, 60, 2567. [368 ]Skoog, Holler, Nieman, Principles of Instrumental Analysis, fifth edition, 253-271. [369 ]Chakraborty R., Das A. K., Cervera, M. L., dela Guardia, M. Determination of cadmium by electrothermal atomic absorption spectrometry after microwave assisted digestion of animal tissues and sewage sludges., Fresenius J. Anal. Chem., 1996, 355, 43. [370 ]http://www.windrug.com/pic/30/11/75/063.htm [371 ]H. Qiao, K. W. Jackson, Spectrochimica Acta, 46B, 1841,1991. [372 ]Riley, J. P. , and D. Taylor, Anal. Chim. Acta., 40, 479,1968. [373 ]Bio-Rad Laboratories, Bulletin 2020, 1983. [374 ]S. D. Huang and K. Y. Shih, Spectrochim. Acta, 48B, 1451, 1993. [375 ]C. R. Lan, Analyst, 118, 189,1993. [376 ]H. Qiao, K. W. Jackson, Spectrochimica Acta, 47B (11), 1267, 1991. [377 ]T. M. Rettberg, L. M. Beach, J. Anal. At. Spectrom., 4, 427, 1989. [378 ]X.Q. Shan, M. Z. Ni, L. Zhang, Talanta, 31, 150, 1984. [379 ]L. M. Voth-Beach, D. E. Shrader, Spectroscopy, 1 (10), 49, 1986. [380 ]M. B. Knowles, K. G. Brodie, J. Anal. At. Spectrom., 3, 511, 1988. [381 ]Z. Grobenski, W. Erler, and U. Voellkopf, At. Spectrosc., 6, 917, 1985. [382 ]D. E. Shrader, L. M. Beach, and T. M. Rettberg, Res. Nat. Inst. Stand. Technol. 93 (3), 450, 1988. [383 ]L. M. Beach, Spectroscopy, 2, 1121, 1987. [384 ]B. V. L’vov, Spectrochim Acta, 33 B, 153, 1978. [385 ]B. Welz, G. Schlemmer, J. R. Mudukavi, Anal. Chem., 60, 2567, 1988. [386 ]J. Greed, T. Martin, J. O’Dell, Environ. Sci. Technol., 26, 102, 1992. [387 ]G. bozai, G. Schlemmer, and Z. Grobernski, Talanta, 37, 545, 1990. [388 ]K. S. Subramanian, J. C. Meranger, J. E. Mackeen, Anal. Chem., 55, 1064, 1983. [389 ]E. W. Loya, Atomic Spectroscopy, vol. 10, no. 2, 61, 1989. [390 ]A. L. Styris, L. J. Prell, D. A. Redfield, Anal. Chem., 63 508, 1991. [391 ]B. Weiz, G. Schlemmer, J. R. Mudakavit, 3, 695, 1988. [392 ]S. Luan, X. Q. Shan, Z. M. Ni, J. Anal. At. Spectrom., 3, 989, 1988. [393 ]G. Weibust, F. J. Langmyhr, and Y. Thomassen, Anal. Chim. Acta, 128, 23, 1981. [394 ]L. Z. Jin, Z. M. Ni, Can. J. Spectrosc. 26, 219, 1981. [395 ]X.Q. Shan, M. Z. Ni, L. Zhang, Anal. Chim. Acta, 151, 179, 1983. [396 ]X.Q. Shan, M. Z. Ni, L. Zhang, At. Spectrosc., 5, 1, 1984. [397 ]B. Radziuk, G. Rodel and H. Stenz, J. Anal. At. Spectrom., 10, 127, 1995. [398 ]B. Radziuk, G. Rodel, M. Zeiher, S. Mizuno and K. Yamamoto, J. Anal. At. Spectrom., 10, 415, 1995. [399 ]J. M. Harnly, Fresenius J. Anal. Chem., 355, 501, 1996. [400 ]G. Carnrick, G. Schlemmer, and W. Slavin, American Laboratory, 2 120, 1991. [401 ]G. Schlemmer, B. Welz, Spectrochimica Acta, vol. 41B, no.11, 1157, 1986. [402 ]J. R. Andersen, S. Reimert, Analyst, 111, 657, 1986. [403 ]P. Dube, Analyst, 113, 917, 1988. [404 ]D. E. Richard, Atomic Absorption Newsletter, vol. 14, no.5 127, 1975. [405 ]M. Bettinelli, U. Baroni, F. Fontana, P. Poisetti, Analyst, 110, 19, 1985. [406 ]K. G. Feitsma, J. P. Franke, Analyst, 109, 789, 1984. [407 ]葉榮泰, 同時多元素分析-石墨爐原子吸收光譜儀之設計原理與應用, 科儀新知第18卷第4期, 1997, p50.id NH0925065050 sid 913451 cfn 0 / id NH0925065051 auc 徐偉勛 tic 以頂空固相微萃取法配合離子阱氣相層析質譜儀偵測尿液中的克倫特羅 adc 黃賢達 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 71 kwc 氣相層析質譜儀 kwc 衍生化 kwc 克倫特羅 abc 本論文主要是利用頂空固相微萃取法配合氣相離子阱層析質譜儀(HSSPME-GC/ITMS)並使用衍生化法來分析人體尿液中的一種合成代謝劑:克倫特羅(Clenbuterol)。 tc 一、緒論..............................................1 1-1前言...............................................1 1-2合成代謝劑.........................................3 1-3固相微萃取法.......................................4 1-3-1固相微萃取裝置演進...............................4 1-3-2固相微萃取的實驗步驟.............................4 1-3-3固相微萃取的原理.................................4 1-3-4操作模式.........................................6 1-3-5固相微萃取的應用.................................7 1-4衍生化法...........................................9 1-5 Clenbuterol的檢測方法............................10 1-5-1酵素免疫連結吸附分析法..........................10 1-5-2高效能液相層析法................................10 1-5-3氣相層析法......................................11 1-6研究目的..........................................13 二、實驗部分.........................................14 2-1實驗藥品..........................................14 2-2實驗裝置..........................................14 2-3實驗儀器..........................................15 2-4標準溶液..........................................16 2-5真實樣品..........................................17 2-6實驗步驟..........................................17 三、結果與討論.......................................20 3-1各種變因之探討....................................20 3-1-1衍生反應........................................20 3-1-2纖維種類........................................20 3-1-3萃取時間........................................22 3-1-4攪拌速率........................................23 3-1-5脫附時間........................................24 3-1-6脫附溫度........................................25 3-1-7酸鹼值..........................................25 3-1-8離子強度........................................26 3-1-9萃取溫度與冷卻系統..............................28 3-1-10最佳化條件.....................................30 3-2線性、精密度及方法偵測極限........................31 3-3真實樣品的測試....................................32 四、結論.............................................33 五、參考文獻.........................................34 表一、Clenbuterol的性質..............................42 表二、HMDS的性質.....................................43 表三、固相微萃取纖維之調態與操作溫度條件.............44 表四、商業化固相微萃取纖維的比較.....................45 表五、吸附型與吸收型靜相纖維的比較...................46 表六、最佳化條件選擇結果.............................47 表七、線性係數、精密度及方法偵測極限.................48 表八、實驗結果與相關文獻的比較.......................49 圖一、Clenbuterol、HMDS、Clenbuterol-TMS的結購.......50 圖二、Pawliszyn實驗室最早設計的固相微萃取裝置圖......51 圖三、商業化的手動固相微萃取裝置圖...................52 圖四、固相微萃取裝置的操作流程圖.....................53 圖五、三種不同的固相微萃取操作模式...................54 圖六、直接注射1μl ,1 ppm的已衍生完的Clenbuterol-TMS溶液所得到的層析圖...........................................55 圖七、Clenbuterol-TMS 的質譜圖.......................56 圖八、Clenbuterol-TMS經EI撞擊後可能分裂的六離子......57 圖九、固相微萃取裝置架設圖...........................58 圖十、直接注射1μl ,2 ppm的標準Clenbuterol溶液所得到的層析圖...................................................59 圖十一、各種纖維之性質差異...........................60 圖十二、纖維種類與萃取效率之關係圖...................61 圖十三、萃取時間與萃取效率之關係圖...................62 圖十四、攪拌速率與萃取效率之關係圖...................63 圖十五、脫附時間與萃取效率之關係圖...................64 圖十六、脫附溫度與萃取效率之關係圖...................65 圖十七、酸鹼值與萃取效率之關係圖.....................66 圖十八、鹽類濃度與萃取效率之關係圖...................67 圖十九、萃取溫度與萃取效率之關係圖...................68 圖二十、冷卻系統的存在與否與萃取效率之關係圖.........69 圖二十一、以最佳化條件萃取真實尿液中所得到的層析圖...70 圖二十二、Clenbuterol-TMS 在標準樣品與真實人體尿液中質譜圖的比較.................................................71rf [1 ]Brambilla, G.; Cenci, T.; Franconi, F.; Galarini, R.; Macri, A.; Rodoni, F.; Strozzi, M.; Loizzo, A. “Clinical and pharmacological profile in a clenbuterol epidemic poisoning of contaminated beef meat in Italy” Toxicol. Lett., 2000, 114(1-3), 47-53. [2 ]Clarkson, P.M.; Thompson, H.S. “Drugs and sport - Research findings and limitations” Sports Med., 1997, 24(6), 366-384. [3 ]許美智,「運動員與禁藥」,一九九八年亞運會培訓教練研討會手冊,1998。 [4 ]許美智,「運動與禁藥」,台北合記圖書出版社,2000。 [5 ]詹德基,「運動禁藥之管制」,講義,2002。 [6 ]行政院衛生署動物用藥殘留標準,衛署食字第0900002580號公告修正,2001。 [7 ]Pawliszyn, J. Solid Phase Microextraction Theory and Practice , Wiley-VCH; New York, 1997. [8 ]黃敬德,謝有容,「固相微萃取法」,科儀新知,1997,18(4),59-67。 [9 ]Supelco, Solid Phase Microextraction Theory:Theory and Optimization of condiction, Bulletin 1998; Vol. 923, p1-5. [10 ]黃賢達,「氣相層析及固相微萃取技術」,化學,1996,54,119-122。 [11 ]黃敬德,謝有容,「固相微萃取技術之原理及應用」,化學,1998,56,311-318。 [12 ]黃寶慧,李茂榮,「固相微量萃取法」,科儀新知,1996,18(2),58-67。 [13 ]Zhang, Z. Y.; Pawliszyn, J. “Headspace Solid-Phase Microextraction” Anal. Chem., 1993, 65(14), 1843-1852. [14 ]Arthur, C.L.; Killam, L.M.; Buchholz, K.D.; Pawliszyn, J.; Berg, J.R. “Automation and Optimization of Solid-Phase Microextraction” Anal. Chem., 1992, 64(17), 1960-1966. [15 ]Buchholz, K.D.; Pawliszyn, J. “Optimization of Solid-Phase Microextraction Conditions for Determination of Phenols” Anal. Chem., 1994, 66(1), 160-167. [16 ]Langenfeld, J.J.; Hawthorne, S.B.; Miller, D.J. “Optimizing split/splitless injection port parameters for solid-phase microextraction” J. Chromatogr. A., 1996, 740(1), 139-145. [17 ]Doong, R.; Chang, S.; Sun, Y. “Solid-Phase Microextraction for Detemnining the Distribution of Sixteen US Environmental Protection Agency Polycyclic Aromatic Hydrocarbons in Water Samples” J. Chromatogr. A., 2000, 879(2), 177-188 [18 ]Goncalves, C.; Alpendurada, M.F. “Comparison of Three Different Poly(dimethylsiloxane)-Divinylbenzene Fibres for the Analysis of Pesticide Multiresidues in Water Samples: Structure and Efficiency” J. Chromatogr. A., 2002, 963(1-2), 19-26. [19 ]Eisert, R.; Pawliszyn, J. “Automated In-Tube Solid-Phase Microextraction Coupled to High-Performance Liquid Chromatography” Anal. Chem., 1997, 69(16), 3140-3147. [20 ]Hawthorne, S.B.; Grabanski, C.B.; Hageman, K.J.; Miller, D.J. “Simple Method for Estimating Polychlorinated Biphenyl Concentrations on Soils and Sediments Using Subcritical Water Extraction Coupled with Solid-Phase Microextraction” J. Chromatogr. A., 1998, 814(1-2), 151-160. [21 ]Yang, Y.; Miller, D.J.; Hawthorne, S.B. “Solid-phase microextraction of polychlorinated biphenyls” J. Chromatogr. A., 1998, 800(2), 1866-1869. [22 ]Gbatu, T.P.; Sutton, K.L.; Caruso, J.A. “Development of New SPME Fibers by Sol-Gel Technology for SPME-HPLC Determination of Organometals” Anal. Chim. Acta., 1999, 402(1-2), 67-79. [23 ]Lock, C.M.; Chen, L.; Volmer, D.A. “Rapid Analysis of Tetracycline Antibiotics by Combined Solid Phase Microextraction/High Performance Liquid Chromatography/Mass Spectrometry” Rapid Commun. Mass. Spectrom., 1999, 13(17), 1744-1754. [24 ]Lord, H.L.; Pawliszyn, J. “Method Optimization for the Analysis of Amphetamines in Urine by Solid-Phase Microextraction” Anal. Chem., 1997, 69(19), 3899-3906. [25 ]Huang, M.K.; Liu, C.R.; Huang, S.D. “One Step and Highly Sensitive Headspace Solid-Phase Microextraction Sample Preparation Approach for the Analysis of Methamphetamine and Amphetamine in Human Urine” Analyst, 2002, 127(9), 1203-1206. [26 ]Suzuki, T.; Tsuzurahara, K.; Murata, T.; Takeyama, S. “Quantitative-Determination of Trimetoquinol in Plasna as its Mixed Pentafluoropropionyl-Trimethylsilyl Derivative by Gas-Chromatography Mass-Spectrometry” Biomed. Mass Sp., 1982, 9(3), 94-98. [27 ] Hoai, P.M.; Tsunoi, S.; Ike, M.; Kuratani, Y.; Kudou, K.; Viet, P.H.; Fujita, M.; Tanaka, M. ” Simultaneous Determination of Degradation Products of Nonylphenol Polyethoxylates and Their Halogenated Derivatives by Solid-Phase Extraction and Gas Chromatography-Tandem Mass Spectrometry After Trimethylsilylation” J. Chromatogr. A., 2003, 1020(2), 161-171. [28 ] Purse, B.W.; Ballester, P.; Rebek, J. “Reactivity and Molecular Recognition: Amine Methylation by an Introverted Ester” J. Am. Chem. Soc., 2003, 125(48), 14682-14683. [29 ]Ploum, M.E.; Haasnoot, W.; Paulussen, R.J.A.; Bruchem, G.D.; Hamers, A.R.M.; Schilt, R.; Huf, F.A. “Test Strip Enzyme Immunoassays And the Fast Screening of Nortestosterone and Clenbuterol Residues in Urine Samples at the Parts-Per-Billion Level” J. Chromatogr. Biomed. Appl., 1991, 564(2), 413-427. [30 ]Qureshi, G.A.; Erisson, A. “Determination of Clenbuterol and Mabuterol in Equine Plasma by Ion-Pair Liquid-Chromatography with Electrochemical Detection - Chromatographic and Electrochemical Characteristics” J. Chromatogr., 1988, 441(1), 197-205. [31 ]Haasnoot, W.; Ploum, M.E.; Paulussen, R.J.A.; Schilt, R.; Huf, F.A. “Rapid-Determination of Clenbuterol Residues in urine by High-Performance Liquid-Chromatography With Online Automated Sample Processing Using Immunoaffinity Chromatography” J. Chromatogr., 1990, 519(2), 323-335. [32 ]Hooijerink, H.; Schilt, R.; Haasnoot, W.; Courtheijn, D.; “Determination of Clenbuterol in Urine of Calves by High-Performance Liquid-Chromatography with in Series Ultraviolet and Elevtrochemical Detection” J. Pharm. Biomed. Anal., 1991, 9(6), 485-492. [33 ]Courtheyn, D.; Desaever, C.; Verhe, R. “High-Performance Liquid-Chromatographic Determination of Clenbuterol and Cimaterol Using Postcolumn Derivatizat” J. Chromatogr. Biomed. Appl., 1991, 564(2), 537-549. [34 ]Aboul-Enein, H.Y.; Serignese, V. “Quantitative Determination of Clenbuterol Enantiomers in Human Plasma by High-Performance Liquid Chromatography Using the Macrocyclic Antibiotic Chiral Stationary Phase Teicoplanin” Biomed. Chromatogr., 1999, 13(8), 520-524. [35 ]Diquet, B.; Doare, L.; Simon, P. “Determination of Clenbuterol in the High Nanogram Range in Plasma of Mice by High-Performance Liquid Chromatography With Amperometric Detection” J. Chromatogr., 1984, 336(2), 415-421. [36 ]Guy, P.A.; Savoy, M.C.; Stadler, R.H. “Quantitative Analysis of Clenbuterol in Meat Products Using Liquid Chromatography-Electrospray Ionisation Tandem Mass Spectrometry” J. Chrmatogr. B., 1999, 736(1-2), 209-219. [37 ]Dumasia, M.C.; Houghton, E. “Screenung and Confirmatory Analysis of Beta-Agonists, Beta-Antagonists and Their Metabolites in Horse Urine by Capillary Gas- Chromatography Mass-Spectrometry” J. Chrmatogr. Biomed. Appl., 1991, 564(2), 503-513. [38 ] Vanginkel, L.A.; Stephany, R.W.; Vanrossum, H.J. “Development and Validation of a Multiresidue Method for Beta-Agonists in Biological Samples and Animal Feed” J. AOAC. Int., 1992, 75(3), 554-560. [39 ]戴東發,華宏達,簡良潭,劉朝鑫,「台灣農業化學與食品科學」, 2000,38,42-50。 [40 ]Wilson, R.T.; Groneck, J.M.; Holland, K.P.; Henry, A.C.; “Determination of Clenbuterol in Cattle, Sheep, and Swine Tissues by Electron Ionization Gas-Chromatography Mass-Spectrometry” J. AOAC. Int., 1994, 77(4), 917-924. [41 ]Pulce, C.; Lamaison, D.; Keck, G.; Bostvironnois, C.; Nicolas, J.; Descotes, J. “Collective Human Food Poisonings by Clenbuterol Residues in Veal Liver” Vet. Hum. Toxicol., 1991, 33(5), 480-481. [42 ]Girault, J.; Fourtillan, J.B. “Determination of Clenbuterol in Bovine Plasma and Tissues by Gas-Chromatography Negative-Ion Chemical Ionization Mass-Spectrometry” J. Chromatogr., 1990, 518(1), 41-52. [43 ]Engelmann, M.D.; Hinz, D.; Wenclawiak, B.W. “Solid-Phase Micro Extraction (SPME) and Headspace Derivatization of Clenbuterol Followed by GC-FID and GC-SIMMS Quantification” Anal. Bioanal. Chem., 2003, 375(5), 460-464. [44 ]Musshoff, F.; Junker, H.P.; Lachenmeier, D.W.; Kroener, L.; Madea, B. “Fully Automated Determination of Amphetamines and Synthetic Designer Drugs in Hair Samples using Headspace Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry” J. Chromatogr. Sci., 2002, 40(6), 359-364. [45 ]Kataoka, H.; Lord, H.L.; Pawliszyn, J. “Applications of Solid-Phase Microextraction in Food Analysis” J. Chromatogr. A., 2000, 800(1-2), 35-62. [46 ]Leendert, A.G.; Stephany, R.W.; Rossum, H.J. “Development and Validation of a Multiresidue Method for β-agonists in Biological Samples and Animal Feed” J. AOAC. Int., 1992, 75(3), 554-560. [47 ]Supelco, SPME application guide, 1999. [48 ]Shirey, R.E.; Mindrup, R.F. “SPME-Adsorption verus Absorption: Which Fiber is Best for Your Application” 1-31 PTTTCON 2000. [49 ]Thackston, E.L.; Wilson, D.J.; Hanson, J.S.; Miller, D.L. “Lead Removal with Adsorbing Colloid Flatation” J. Water. Pollut. Control. Fed., 1980, 52(2), 317-328. [50 ]Horng, J.Y.; Huang, S.D. “Determination of The Semivolatile Compounds Nitrobenzene, Isophorone, 2,4-Dinitrotoluene and 2,6-Dinitrotoluene in Water Using Solid-Phase Microextraction with a Polydimethylsiloxane-Coated Fiber” J. Chromatogr. A., 1994, 678(2), 313-318. [51 ]Pfaffl, M.W.; Reck, B.; Dreher, R.; Meyer, H.H.D. “Production of Clenbuterol, Diethylstilbestrol and Trenbolone Mass Standards in Lyophilised Bovine Urine” Anal. Chim. Acta., 2003, 483(1-2), 401-412. [52 ] Van, Hout, M.W.J.; Niederlander, H.A.G.; de Zeeuw, R.A. de Jong, G.J. “Ion Suppression in the Determination of Clenbuterol in Urine by Solid-Phase Extraction Atmospheric Pressure Chemical Ionisation Ion-Trap Mass Spectrometry” Rapid Commun. Mass. Spectrom., 2003, 17(3), 245-250. [53 ] Blomgren, A.; Berggren, C.; Holmberg, A.; Larsson, F.; Sellergren, B.; Ensing, K. “Extraction of Clenbuterol from Calf Urine Using a Molecularly Imprinted Polymer Followed by Quantitation by High-Performance Liquid Chromatography with UV Detection” J. Chromatogr. A., 2002, 975(1), 157-164. [54 ]Van, Eenoo, P.; Delbeke, F.T.; Deprez, P. “Detection of Inhaled Clenbuterol in Horse Urine by GC/MS2” Biomed. Chromatogr., 2002, 16(7), 475-481. [55 ]Guan, F.Y.; Uboh, C.E.; Soma, L.R.; Luo, Y.; Li, R.B.; Birks, E.K.; Teleis, D.; Rudy, J.A.; Tsang, D.S. “Quantification of Clenbuterol in Equine Plasma, Urine and Tissue by Liquid Chromatography Coupled On-Line with Quadrupole Time-Of-Flight Mass Spectrometry” Rapid Commun. Mass. Spectrom., 2002, 16(17), 1642-1651. [56 ] Amendola, L.; Colamonici, C.; Rossi, F.; Botre, F. “Determination of Clenbuterol in Human Urine by GC-MS-MS-MS: Confirmation Analysis in Antidoping Control” J. Chromatogr. B. 2002, 773(1), 7-16.id NH0925065051 sid 913422 cfn 0 / id NH0925065052 auc 蔡東剛 tic 氧氫氧化鈷的製備及在一氧化碳感測器上的應用 adc 葉君棣 adc 吳仁彰 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 76 kwc 氧氫氧化鈷 kwc 一氧化碳感測器 kwc 靈敏度 abc 本研究以硝酸鈷為前驅物,氫氧化鈉為沉澱劑,空氣為氧化劑, tc 第一章 緒論 1 1-1 前言 1 1-2 氣體感測器 1 1-3 氣體感測器的種類與工作原理 4 1-4 一氧化碳的危害性 10 1-5 金屬氧化物半導體型CO氣體感測器的文獻回顧 13 1-6 鈷氧化物的簡介 14 1-7 研究動機與目的 16 第二章 實驗部分 18 2-1 實驗藥品 18 2-2 CoOX樣品的製備 18 2-3 CoOX樣品的命名 19 2-4樣品的特性鑑定 21 2-4.1 程溫還原系統(TPR) 21 2-4.2 熱重分析儀(TG/DTA) 21 2-4.3 X光粉末繞射儀(XRD) 24 2-4.4 穿透式電子顯微鏡(TEM) 24 2-4.5 掃描式電子顯微鏡(SEM) 24 2-5氣體感測器的製作 25 2-5.1 新鮮CoOX樣品的製備 25 2-5.2 感測材料層的製備 26 2-5.3 SCS感測電極的製作 26 2-6 SCS感測器的氣體測試 30 第三章 結果與討論 35 3-1 前驅物Co(OH)2的製備 35 3-2 CoOX樣品中鈷氧化態的探討 35 3-2.1 鹼度對CoOX組成的影響 36 3-2.2 沉澱溶液pH值與CoOX組成之關係 43 3-2.3 水熱溫度對CoOOH樣品的影響 47 3-3 CoOOH樣品的熱穩定性分析 50 3-4 SCS感測器的氣體測試 52 3-4.1 CoOOH材料的CO感測測試 52 3-4.2 CoOOH和Co3O4對CO的靈敏度測試 55 3-4.3 CoOOH材料對不同濃度CO的感測測試 58 3-4.3.1 低濃度CO的感測測試 58 3-4.3.2 靈敏度與CO濃度之關係 58 3-4.4 CoOOH感測材料層對不同氣體的感測測試 67 3-4.5 CoOOH感測材料層的穩定性測試 67 第四章 結論 71 第五章 參考文獻 74rf 1. 蔡嬪嬪,曾明漢,氣體感測器之簡介、應用及市場,材料與社會 第68期 (1992) 50. 2. 曾明漢,觸煤燃燒型氣體感測器,材料與社會,第68期 (1992) 57. 3. Riegel, J.; Haerdtl, K. H. Sensors and Actuators B1991, 1, 54. 4. Wang, X.; Miura, N.; Yamazoe, N. Sensors and Actuators B 2000, 66,74. 5. 楊明長,一氧化碳感測器之原理與應用,化工技術,第八卷第二 期 (2000) 158. 6. 陳一誠,金屬氧化物半導體型氣體感測器,材料與社會,第68期 (1992) 62. 7. 吳乃立,一氧化碳感測之工研院研究報告 (1993). 8. Albert, K. J.; Lewis, N. S.; Schauer, C. L.; Sotzing, G. A.; Stitzel, S. E.;Vaid, T. P.; Walt, D. R. Chem. Rev. 2000, 100, 2595. 9. Yamaura, H.; Moriya, K.; Miura, N.; Yamazoe, N. Sensors and Actuators B 2000, 65, 39. 10.Nelli, P.; Faglia, G.; Sberveglieri, G.; Cereda, E.; Gabetta, G.; Dieguez,A.; Rodriguez, A. R.; Morante, J. R. Thin Solid Films 2000, 371, 249. 11.Sakai, G.; Baik, N. S.; Miura, N.; Yamazoe, N. Sensors and Actuators B 2001, 77, 116. 12.Tsai, P. P.; Chen, I. C.; Ho, C. J.Sensors and Actuators B 2001, 76, 380. 13.Li, F.; Xu, J.; Chen, L.; Zhu, J.; Yang, Z.; Xin, X. Sensors and Actuators B 2002, 81, 165. 14.Han, K. R.; Kim, C. S.; Kang, K. T.; Koo, H. J.; Kang, D.; Jingwen, H. Sensors and Actuators B 2002, 81, 182. 15.Ryu, H. W.; Park, B. S.; Akbar, S. A.; Lee, W. S.; Hong, K. J.; Seo, Y. J.; Shin, D. C.; Park, J. S.; Choi, G. P. Sensors and Actuators B 2003, 96,182. 16.Neri, G.; Bonavita, A.; Galvagno, S.; Siciliano, P.; Capone, S. Sensors and Actuators B 2002, 82, 40. 17.Tao, W. H.; Tsai, C. H. Sensors and Actuators B 2002, 81, 237. 18.Albert, L.“Carbon Monoxide in the Home Environment” University Microfilm International, Michigan (1986). 19.Satterfied, C. N.“Heterogeneous Catalysis in Industrial Practice” 2nd ed., McGraw-Hill, Inc. (1991). 20.林敬二、楊美惠、楊寶旺、廖德章、薛敬和,化學大辭典, 初版,高立圖書有限公司 (1993). 21.Gilbert, M.“Introduction to Environmental Engineering and Science”Prentice Hall, New Jersey (1997). 22.Seinfeld, J. H.“Atmospheric Chemistry and Physics of Air Pollution”, Wiley, New York (1986). 23.葉欣誠,環境工程與科學概論,五南圖書出版股份有限公司 (2000). 24.Wu, R. J.; Hu, C. H.; Yeh, C. T.; Su, P. G. Sensors and Actuators B 2003,96, 596. 25.Hutchins, M. G.; Wright, P. J.; Grebenik, P. D. Solar Energy Mater. 1987, 16, 113. 26.Ramachandram, K.; Oriakhi, C. O.; Lerner, M. M.; Koch, V. R. Mater. Res. Bull. 1996, 31, 767. 27.Burke, L. D.; Lyons, M. E.; Murphy, O. J. J.Electroanal. Chem. 1982, 132, 247. 28.Yamaura, H.; Tamaki, J.; Moriya, K.; Miura, N.; Yamazoe, N. J. Electrochem. Soc. 1997, 144, L158. 29.Ando, M.; Kobayashi, T.; Lijima, S.; Haruta, M. J.Mater. Chem. 1997, 7, 1779. 30.Nkeng, P.; Koening, J.; Gautier, J.; Chartier, P.; Poillerat, G. J. Electroanal. Chem. 1996, 402, 81. 31.Weichel, S.; Moller, P. J. Surf. Sci. 1998, 399, 219. 32.Mosset, A.; Respaud, M.; Broto, J. M.; Chaudret, B. Chem. Mater.1999, 11, 2702. 33.Chen, Y. J.; Wu, D. E.; Yeh, C. T. Rev. Adv. Mater. Sci. 2003, 5, 41. 34.Zee, R. V.; Hamrick, Y.; Li, S.; Weltner, W. J. Phys. Chem. 1992, 96, 7247. 35.Elemongy, M.; Gouda, M.; Elewady, Y. J. Electroanal. Chem. 1977, 76, 367. 36.Chen, D.; Wen, Y.; Rommel, N. N. J. Electrochem. Soc. 1984, 131, 731. 37.Christoskova, St. G.; Stoyanova, M.; Georgieva, M.; Mehandjiev, D. Mater. Chem. Phys. 1999, 60, 39. 38.Huang, J. F.; Hong, A.; Wang, C. B.; Yeh, C. T. J. Chin. Chem. Soc. 2002, 49, 819. 39.Avramov, L. K. Thermochimica Acta 1974, 10, 409.id NH0925065052 sid 913472 cfn 0 / id NH0925065053 auc 楊子毅 tic 第一部分 天然物Ingenol之形式合成研究 第二部分 Benz[de]isoquinolinium-1-ide與碳六十的1,3-偶極環化加成反應研究 adc 沙晉康 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 240 kwc 碳六十 kwc 1,3-偶極環化加成反應 abc 本論文共分為兩個部分,第一部分是敘述天然物ingenol之形式合成研究。以(+)-3-carene為起始物經數步反應獲得化合物119後,經由1,4-加成及碘化反應得到具有丙二烯支鏈的α-碘基酮化合物152,以原子轉移環化反應為關鍵步驟建立ingenol的A、C環部分得到旋酮化合物174b,再經由還原、烷基化反應以及第二代Grubbs催化劑199進行合環歧化反應,順利獲得具有inside-outside組態的四環架構化合物216,最後進行去保護及氧化反應得到Winkler教授發表ingenol全合成文獻中的化合物39,成功的完成了ingenol的形式合成研究。 rf 第一部分 1.Hoppe, W.; Zechmeister, K.; Röhrl, M.; Brandl, F.; Hecker, E.; Kreibich, G.; Bartsch, H. Tetrahedron Lett. 1969, 10, 667. 2.Hergenhahn, M.; Adolf, W.; Hecker, E. Tetrahedron Lett. 1975, 16, 1595. 3.Zechmeister, K.; Brandl, F.; Hoppe, W.; Hecker, E.; Opferkuch, H. J.; Adolf, W. Tetrahedron Lett. 1970, 11, 4075. 4.Hasler, C. M.; Acs, G.; Blumberg, P. M. Cancer Res. 1992, 52, 202. 5.Kupchan, S. M.; Uchida, I.; Branfnan, A. R.; Dailey, R. G., Jr.; Yu Fei, B. Science 1976, 191, 571. 6.Alder, R. W.; East, S. P. Chem. Rev. 1996, 96, 2097. 7.(a) Paquette, L. A.; Nitz, T. J.; Ross, R. J.; Springer, J. P. J. Am. Chem. Soc. 1984, 106, 1446. (b) Paquette, L. A.; Nitz, T. J.; Ross, R. J. J. Org. Chem. 1987, 52, 5497. (c) Paquette, L. A.; Ross, R. J.; Springer, J. P. J. Am. Chem. Soc. 1988, 110, 6192. 8.Mehta, G.; Pathak, V. P. J. Chem. Soc. Chem. Commun. 1987,876. 9.(a) Winkler, J. D.; Hey, J. P.; Hannon, F. J. Heterocycles 1987, 25, 55. (b) Winkler, J. D.; Henegar, K. E. J. Am. Chem. Soc. 1987, 109, 2850. (c) Winkler, J. D.; Hey, J. P.; Williard, P. G. Tetrahedron Lett. 1988, 29, 4691. (d) Winkler, J. D.; Hong, B.-C.; Hey, J. P.; Williard, P. G. J. Am. Chem. Soc. 1991, 113, 8839. (e) Winkler, J. D.; Henegar, K. E.; Hong, B.-C.; Williard, P. G. J. Am. Chem. Soc. 1994, 116, 4183. (f) Winkler, J. D.; Hong, B.-C.; Kim, S.; Lewin, N. E.; Blumberg, P. M. Synlett 1995, 533. (g) Winkler, J. D.; Hong, B.-C.; Bahador, A.; Kazanietz, M. G.; Blumberg, P. M. J. Org. Chem. 1995, 60, 1381. (h) Winkler, J. D.; Kim, S.; Harrison, S.; Lewin, N. E.; Blumberg, P. M. J. Am. Chem. Soc. 1999, 121, 296. (i) Winkler, J. D.; Rouse, M. B.; Greaney, M. F.; Harrison, S. J.; Jeon, Y. T. J. Am. Chem. Soc. 2002, 1241, 9726. 10.(a) Funk, R. L.; Olmstead, T. A.; Parvez, M. J. Am. Chem. Soc. 1988, 110, 3298. (b) Funk, R. L.; Olmstead, T. A.; Parvez, M.; Stallman, J. B. J. Org. Chem. 1993, 58, 5873. 11.(a) Rigby, J. H.; Moore, T. L.; Rege, S. J. Org. Chem. 1986, 51 2398. (b) Rigby, J. H.; Moore, T. L. J. Org. Chem. 1990, 55, 2959. (c) Rigby, J. H.; Cuisiat, S. V. J. Org. Chem. 1993, 58, 6286. (d) Rigby, J. H.; Rege, S. D.; Sandanayaka, V. P.; Kirova, M. J. Org. Chem. 1996, 61, 842. (e) Rigby, J. H.; Claire, Valérie de Sainte; Cuisiat, S. V.; Heeg, M. J. J. Org. Chem. 1996, 61, 7992. (f) Rigby, J. H.; Hu, J.; Heeg, M. J. Tetrahedron Lett. 1998, 39, 2265. (g) Rigby, J. H.; Bazin, B.; Meyer, J. H.; Mohammadi, F. Org. Lett. 2002, 4, 799. 12.Harmata, M.; Elahmad, S.; Barnes, C. L. Tetrahedron Lett. 1995, 36, 1397. 13.(a) Nakamura, T.; Matsui, T.; Tanino, K.; Kuwajima, I. J. Org. Chem. 1997, 62, 3032. (b) Tanino, K.; Onuki, K.; Asano, K.; Miyashita, M.; Nakamura, T.; Takahashi, Y.; Kuwajima, I. J. Am. Chem. Soc. 2003, 125, 1498. 14.Molander, G. A.; Bessiéres, B; Eastwood, P. R.; Noll, B. C. J. Org. Chem. 1999, 64, 4124. 15.Kigoshi, H.; Suzuki, Y.; Aoki, K.; Uemura, D. Tetrahedron Lett. 2000, 41, 3927. 16.Tang, H.; Yusuff, N.; Wood, J. L. Org. Lett. 2001, 3, 1563. 17.Mistlin, G. L.; Miesch, M. J. Org. Chem. 2003, 68, 433. 18.(a) Debono, M.; Molloy, R. M.; Bauer,D.; Iizuka, T.; Schaffner, K.; Jeger, O. J. Am. Chem. Soc. 1970, 92, 420. (b) Suginome, H.; Yabe, T.; Osawa, E. J. Chem. Soc., Perkin Trans. 1 1982, 931. 19.Mukaiyama, T.; Banno, K.; Narasaka, K. J. Am. Chem. Soc. 1974, 96, 7503. 20.(a) Crimmins, M. T. Chem. Rev. 1988, 88, 1453. (b) Winkler, J. D.; Bowen, C. M.; Liotta, F. Chem. Rev. 1995, 95, 2003. 21.(a) Funk, R. L.; Abelman, M. M.; Munger, J. D. Tetrahedron 1986, 42, 2831. (b) Funk, R. L.; Abelman, M. M. J. Org. Chem. 1986, 51, 3247. 22.(a) Garst, M. E.; Roberts, V. A.; Prussin, C. Tetrahedron 1983, 39, 581. (b) Garst, M. E.; Roberts, V. A.; Houk, K. N.; Rondan, N. G. J. Am. Chem. Soc. 1984, 106, 3882. 23.Eggert, U.; Stohrer, I.; Hoffmann, H. M. R. Tetrahedron Lett. 1992, 33, 3465. 24.Harmata, M.; Gamlath, C. B. J. Org. Chem. 1988, 53, 6156. 25.(a) Schreiber,S. L.; Sammakia, T.; Crowe, W. E. J. Am. Chem. Soc. 1986, 108, 3128. (b) Nicholas, K. M. Acc. Chem. Res. 1987, 20, 207. 26.Overman, L. E. Acc. Chem. Res. 1992, 25, 352. 27.(a) Molander G. A.; Cameron, K. O. J. Org. Chem. 1993, 58, 5931. (b) Molander, G. A.; Eastwood, P. R. J. Org. Chem. 1995, 60, 8382. 28.(a) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413. (b) Armstrong, S. K. J. Chem. Soc., Perkin Trans. 1 1988, 371. 29.(a) Schrock, R. R.; Hoveyda, A. H.; Weatherhead, G. S.; Ford, J. G.; Alexanian, E. J. J. Am. Chem. Soc. 2000, 122, 1828. (b) Morgan, J. P.; Morrill, C.; Grubbs, R. H. Org. Lett. 2002, 4, 67. 30.Franck-Neumann, M.; Miesch, M.; Gross, L. Tetrahedron Lett. 1990, 31, 5027. 31.(a) Doyle, T. W. Can. J. Chem. 1970, 48, 1629. (b) Leigh, W. J. Can. J. Chem. 1993, 71, 147. 32.何文岳,博士論文,國立清華大學,2000。 33.Sha, C.-K.; Young, J.-J.; Jean, T.-S. J. Org. Chem. 1987, 52, 3919. 34.Curran, D. P.; Chen, M.-H.; Kim, D. J. Am. Chem. Soc. 1989, 111, 6265. 35.(a) Sha, C.-K.; Jean, T.-S.; Yau, N.-T.; Uuang, S.-J.; Chiou, R.-T. J. Chin. Chem. Soc. (Taipei) 1995, 42, 637. (b) Sha, C.-K.; Chiu, R.-T.; Yang, C.-F.; Yao, N.-T.; Tseng, W.-H.; Liao, F.-L.; Wang, S.-L. J. Am. Chem. Soc. 1997, 119, 4130. (c) Sha, C.-K.; Santhosh, K. C.; Lih, S.-H. J. Org. Chem. 1998, 63, 2699. (d) Sha, C.-K.; Ho, W.-Y. Chem. Commun. 1998, 2709. (e) Sha, C.-K.; Lee, F.-K.; Chang, C.-J. J. Am. Chem. Soc. 1999, 121, 9875. (f) 程平昌,博士論文,國立清華大學,2000。 36.羅順原,碩士論文,國立清華大學,2000。 37.林賢勳,碩士論文,國立清華大學,2001。 38.Satoh, T.; Kaneko, Y.; Okuda, T.; Uwaya, S.; Yamakawa, K. Chem. Pharm. Bull. 1984, 32, 3452. 39.Johnson, E. P.; Chen, G.-P., Fales, K. R.; Lenk, B. E.; Szendroi, R. J.; Wang, X.-J.; Carison, J. A. J. Org. Chem. 1995, 60, 6595. 40.Huang, H.; Forsyth, C. J. Tetrahedron Lett. 1993, 34, 7889. 41.House, H. O.; Czuba, L. J.; Gall, M.; Olmstead H. D. J. Am. Chem. Soc. 1969, 91, 2324. 42.Baraldi, P. G.; Barco, A.; Benetti, S.; Pollini, G. P.; Zanirato, V. Tetrahedron Lett. 1984, 25, 4291. 43.Russo, J. M.; Price, W. A. J. Org. Chem. 1993, 58, 3589. 44.Sha, C.-K.; Ho, W.-Y.; Mohanakrishnan, A. K.; Lin, C.-L.; Chu, S.-Y. Chem. Commun. 2001, 439. 45.Yang, D.; Gao, Q.; Lee, O.-Y. Org. Lett. 2002, 4, 1239. 46.劉邦鴻,碩士論文,國立清華大學,2004。 47.(a) Chatterjee, A. K.; Grubbs, R. H. Org. Lett. 1999, 1, 1751. (b) Chatterjee, A. K.; Sanders, D. P.; Grubbs, R. H. Org. Lett. 2002, 4, 1939. 48.Wender, P. A.; Zhang, L. Org. Lett. 2000, 2, 2323. 第二部分 1.Kroto, H. K.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162. 2.Kräetschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354. 3.Hawkins, J. M.; Meyer, A.; Lewis, Tt. A.; Loren, S.; Hollander, F. J. Science 1991, 252, 312. 4.Kroto, H. K. Nature 1987, 329, 529. 5.Taylor, R.; Hare, J. P.; Abdul-Sada, A. K.; Kroto, H. W. J. Chem. Soc. Chem. Commun. 1990,1423. 6.Ajie, H.; Alvarez, M. M.; Anz, S. J.; Beck, R. D.; Diederich, F.; Fostiropoulos, K.; Huffman, D. R.; Kräetschmer, W.; Rubin, Y.; Schiver, K. E.; Sensharma, D.; Whetten, R. L. J. Phys. Chem. 1990, 94, 8630. 7.Scrirens, W. A.; Bedworth, P. V.; Tour, J. M. J. Am. Chem. Soc. 1992, 114, 7917. 8.Tokuyama, H.; Yamago, S.; Nakamura, E.; Shiraka, T.; Sugiura, Y. J. Am. Chem. Soc. 1993, 115, 7918. 9.(a) Friedman, S. H.; DeCamp, D. L.; Sijbesma, R. P.; Srdanov, G.; Wudl, F.; Kenyon, G. L. J. Am. Chem. Soc. 1993, 115, 6506. (b) Sijbesma, R. P.; Srdanov, G.; Wudl, F.; Castoro, J. A.; Wilkin, C.; Friedman, S. H.; DeCamp, D. L.; Kenyon, G. L. J. Am. Chem. Soc. 1993, 115, 6510. 10.An, Y. Z.; Chen, C. H. B.; Anderson, J. L.; Sigman, D. S.; Foote, C. S.; Rubin, Y. Tetrahedron 1996, 52, 5179. 11.Nalwa, H. S. Adv. Mater. 1993, 5, 341. 12.Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science 1992, 258, 1474. 13.Schick, G.; Levitus, M.; Kvetko, L. D.; Johnson, B. A.; Lamparth. I.; Lunkwitz, R.; Ma, B.; Khan, S. I.; Garcia-Garibay, M. A.; Rubin, Y. J. Am. Chem. Soc. 1999, 121, 3246. 14.Hutchison, K.; Gao, J.; Schick, G.; Rubin, Y.; Wudl, F. J. Am. Chem. Soc. 1999, 121, 5611. 15.Prato, M.; Suzuki, T.; Foroudian, H.; Li, Q.; Khemani, K.; Wudl, F.; Leonetti, J.; Little, R. D.; White, T.; Rickborn, B.; Yamago, S.; Nakamura, E. J. Am. Chem. Soc. 1993, 115, 1594. 16.Shiu, L.-L.; Lin, T.-I.; Peng, S.-M.; Her, G.-R.; Ju, D. D.; Lin, S.-K.; Hwang, J.-H.; chung, Y. M.; Luh, T.-Y.; J. Chem. Soc. Chem. Commun. 1994, 647. 17.Akasaka, T.; Ando, W.; Kobaayashi, J.; Nagase, S. J. Am. Chem. Soc. 1993, 115, 10366. 18.Meier, M. S.; Poplawska, M. J. Org. Chem. 1993, 58, 4524. 19.Maggini, M.; Scorrano, G.; Prato, M. J. Am. Chem. Soc. 1993, 115, 9798. 20.Zhang, X.; Willems, M.; Foote, C. S. Tetrahedron Lett. 1993, 34, 8187. 21.Shu, L.-H.; Wang, G.-W.; Wu, S.-H.; Wu, H.-M.; Lao, X.-F. Tetrahedron Lett. 1995, 36, 3871. 22.Ikeda, M.; Miki, Y.; Kaita, S.; Nishikawa, Y.; Tamura, Y. J. Chem. Soc., Perkin Trans. 1 1977, 44. 23.Oehlschlager, A. C.; Yim, A. S.; Akhtar, M. H. Can. J. Chem. 1978, 56, 273. 24.Sha, C.-K.; Tsou, C.-P. J. Org. Chem. 1990, 55, 2446.id NH0925065053 sid 873403 cfn 0 / id NH0925065054 auc 林穎瑞 tic 以三氯化鋁媒介之α-碘基酮離子性環化反應研究 adc 沙晉康 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 98 kwc 研究 kwc 結果 kwc 環化 kwc 溫度 kwc 產物 kwc 媒介 abc 摘要 tc 目錄 摘要……………………………………………………….…………….Ⅰ 英文摘要………………………………………………………………. Ⅱ 謝誌……………………………………………………………………. Ⅲ 目錄……………………………………………………………………...V 縮寫對照表…………………………………………………….…..…...VI 第一章:緒論 …………………………………………………….…..…1 §1-1 丙二烯支鏈的介紹及引入………..……………………….2 §1-2 路易士酸媒介之離子性環化反應之文獻及相關研究…...4 第二章:結果與討論……………………………………………………..8 §2-1 利用路易士酸催化具有丙二烯支鏈之α-碘基酮反應之探討…………………………………………………………………..8 §2-2 反應機構………………………………………………….15 第三章:結論…………………………………………………………...19 第四章:實驗部分 §4-1 一般實驗敘述…………….……………………..………..20 §4-2 實驗步驟與光譜資料………….…………………..……..23 參考文獻………………………………………………………………..48 附錄……………………………………………………………………..50rf 參考文獻 1. Lewis acids in Organics Synthesis ; Yamamoto, H., Ed.; Wiley-VCH: New York, 2000. 2. Haszeldine, R. N.; Leedham k.; Steele B. R. J. Chem. Soc. 1954, 2040. 3. 羅順原,碩士論文,國立清華大學,2000。 4. Johnson, E. P.; Chen, G.-P. J. Org. Chem. 1995, 60, 6595. 5. Kotsuki, H.; Miyazaki, A.; Kadota, I.; Ochi, M. J. Chem. Soc., Perkin Trans. I 1990, 429.; Kamal, A.; Rao, M. V.; Meshram, H. M. Tertahedron Lett. 1991, 32, 2657.; Chio, H. C.; Kim, Y. H. Synth. Commun. 1994, 2307.; Enders, D.; Bhushan, V.; Z. Naturforsch. 1987,1595.; McKillop, A.; Tarbin, J. A. Tetrahedron 1987, 43, 1753.; Laszlo, P.; Polla, E. Tetrahedron Lett. 1984, 3309.; Boruah, A.; Baruah, B. Prajapati, D.; Sandhu, J. S. Syn. Lett. 1997, 1251. 6. Jackson, W. P.; Ley, S. V.; Morton, J. A.-L. Tetrahedron Lett. 1981, 22, 2601. 7. Nicolaou. K.-C.; Claremon D.-A.; Barnette. W. E.; Seitz. S.-P. J. Am. Chem. Soc. 1979, 101, 3704. 8. (a) Kitagawa, O.; Inoue, T.; Taguchi, T. Tetrahedron Lett. 1992, 33, 2167. (b) Kitagawa, O.; Inoue, T.; Hirano, K.; Taguchi, T. J. Org. Chem. 1993, 58, 3106. (c) Inoue, T.; Kitagawa, O.; Kurumizawa, S.; Ochiai, O.; Taguchi, T. Tetrahedron Lett. 1995, 36, 1479. (d) Inoue, T.; Kitagawa, O.; Ochiai, O.; Taguchi, T. Tetrahedron: Asymmetry 1995, 6, 691. (e) Inoue, T.; Kitagawa, O.; Ochiai, O.; Shiro, M.; Taguchi, T. Tetrahedron Lett. 1995, 36, 9333. 9. Toru, T.; Kawai, S.; Uedo, Y. Synlett, 1996, 539. 10. (a) 李芳城,碩士論文,國立清華大學,2000。(b) 林耿誼,碩士論文,國立清華大學,2003。Sha, C.-K.; Lee, F.-C.; Lin, H.-H. J. Chem. Soc., Chem. Commun. 2001, 39. 11. Sha, C.-K.; Young, J.-J.; Jean, T.-S. J. Org. Chem. 1987, 52, 3919.id NH0925065054 sid 913473 cfn 0 / id NH0925065055 auc 陳加博 tic 環硫丙烷在波長範圍206-230 nm之雷射誘發螢光光譜及熱解反應 adc 陳益佳 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 84 kwc 環硫丙烷 abc 藉由雷射誘發螢光及分子射束之技術,研究環硫丙烷在波長範圍206 – 230 nm之螢光光譜,也進一步地在染料雷射內加入干涉片以取得高解析度之轉動光譜,由光譜初步分析之結果可指認一長振動序列,區間頻率約為377 cm-1,此振動態應為環硫丙烷在激發態之碳硫鍵擺動運動,另外也指認出另一振動分佈為分子反轉運動,由此振動分佈可發現在激發態時,環硫丙烷之結構近似於平面,不同於基態之非平面結構;此外,從螢光衰減曲線之擬合結果可發現到,大多數為雙自然對數衰減,且由曲線也可看到有量子振盪之現象存在,此可能是由於與三重態有強烈耦合所造成,此外,也發現所得之生命期在高能量區域變短,可能為所激發到之能態屬於預解離途徑;在理論計算上,分別將基態分子視為平面與非平面之結構以推論其垂直躍遷之能量,所得之結果可得知兩者在能量上並無太大差異,且藉由此結果推論實驗上所激發之能態應為S2,為3P (硫原子上之未鍵結的軌域)至4S躍遷所形成之能階;最後,關於環硫丙烷熱解以產生硫甲醛之研究在此實驗條件上並無法得到預期之結果,主要原因可能為,硫甲醛本身並不穩定,且生命期小於三分鐘,使得在所進行實驗之區域其含量太少,也或許是因為在所研究之能態其量子效益太低,因此無法得到其螢光訊號。 tc 第一章 緒論 1 1.1研究動機 1 1.2環硫丙烷的紫外光區光譜及分解研究(trimethylene sulfide, TMS) 2 (i)光譜 2 (ii)光解反應 5 1.3 H2CS光譜 7 第二章 原理 16 2.1 電振動光譜 16 2.2非對稱型轉子的轉動光譜 17 2.3躍遷選擇率(selection rule) 19 第三章 實驗 23 3.1樣品 TMS 23 3.2分子射束法 24 3.3雷射誘發螢光 24 3.4雷射光源 25 中低解析度 25 高解析度 25 3.5分子脈衝射束與真空系統 28 3.6實驗步驟 28 3.7生命期之測量 29 第四章 結果與討論 37 4.1 TMS之振動光譜 37 4.2 TMS之轉動光譜 38 4.3 理論計算 40 第五章 結論 82 參考資料 83rf 1. R. A. Shaw, C. Castro, N. Ibrahim, and H. Wieser, J. Phys. Chem. 92, 6528 (1988). 2. L. B. Clark and W. T. Simpson, J. Chem. Phys. 43, 3666 (1965). 3. J. A. B. Whiteside and P. A. Warsop, J. Mol. Spectrosc. 29, 1 (1969). 4. F. H. Dorer, M. E. Okazakl, and K. E. Salomon, J. Phys. Chem. 85, 2671 (1981). 5. I. Tokue, A. Hiraya, and K. Shobatake, J. Chem, Phys. 91, 2808 (1989). 6. H. A. Wiebe and Julian Heicklen, J. Am. Chem. Soc. 92, 7031 (1970). 7. D. R. Dice and R. P. Steer, J. Phys. Chem. 77, 434 (1973). 8. D. R. Dice and R. P. Steer, Can. J. Chem. 53, 1744 (1975). 9. A. G. Suit and Fei Qi, J. Elec. Spectro. Rel. Phenom. 119, 127 (2001). 10. C. R. Drury and D. C. Moule, J. Mol. Spectrosc. 92, 469 (1982). 11. D. O. Harris, H. W. Harrington, A. C. Luntz, and W. D. Gwinn, J. Chem, Phys. 44, 3467 (1966). 12. D. J. Clouthier and R. S. Grev, J. Am. Chem. Soc. 120, 9386 (1998) 13.Vadin, Terry, A. Miller, Chemisrty, OSU. 14. Gaussian 98 (Revision A.1), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998. 15. A. D. Becke, "Density-functional thermochemistry. III. The role of exact exchange," J. Chem. Phys. 98, 5648 (1993). 16. R. A. Kendall, T. H. Dunning Jr. and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992). 17. T. H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989). 18. K. A. Peterson, D. E. Woon and T. H. Dunning Jr., J. Chem. Phys. 100, 7410 (1994). 19. C. C. J. Roothan, "New Developments in Molecular Orbital Theory," Rev. Mod. Phys. 23, 69 (1951). 20. J. A. Pople and R. K. Nesbet, "Self-Consistent Orbitals for Radicals," J. Chem. Phys. 22, 571 (1954). 21. R. McWeeny and G. Dierksen, J. Chem. Phys. 49, 4852 (1968). 22. G. A. Petersson and M. A. Al-Laham, J. Chem. Phys. 94, 6081 (1991). 23. T. Clark, J. Chandrasekhar, P.v.R. Schleyer, J. Comp. Chem., 4, 294 (1983). 24. J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, J. Phys. Chem. 96, 135 (1992).id NH0925065055 sid 913427 cfn 0 / id NH0925065056 auc 周勝隆 tic 利用衝擊波管研究O(3P) + CH3OH高溫的反應速率常數及其反應機制 adc 李遠鵬 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 99 kwc 衝擊波管 kwc 高溫動力學 kwc 吸收光譜法 kwc 甲醇 abc 利用活塞型衝擊波管-原子共振吸收光譜系統測量甲醇與氧反應之反應速率常數,並利用模型適解法求得此反應在989-1450 K的速率常數。結果為k7a(T)=(8.83 1.26)×10-11exp[-(3476 175)/T tc 目錄 第一章 緒論 1 1-1文獻的統整與研究動機 2 1-2 參考文獻 6 第二章 實驗原理 12 2-1高溫系統 12 2-2 衝擊波管之運作原理 14 2-2-1衝擊波的特性 14 2-2-2入射衝擊波過後氣體分子熱力學狀態之推導 16 2-2-3反射衝擊波過後氣體分子熱力學狀態之推導 19 2-3 衝擊波管的優缺點 22 2-3-1 衝擊波管的優點 22 2-3-2衝擊波管的缺點 24 2-4 衝擊波管的構造與演進 27 2-5 參考文獻 30 第三章 實驗裝置與實驗步驟 46 3-1 衝擊波管 46 3-2偵測系統 49 3-2-1微波共振燈 49 3-2-2真空紫外單光儀 50 3-2-3光電倍增管 50 3-2-4訊號放大器 51 3-2-5示波器 52 3-3樣品的配製 52 3-3-1無水甲醇的製備方式 52 3-3-2 樣品配置系統的使用 53 3-4 溫度及濃度的計算 54 3-5實驗條件 56 3-6 參考文獻 56 第四章 實驗結果與討論 65 4-1 [O ]的校正 65 4-2 CH3OH+O→CH2OH+OH的反應速率之研究 67 4-3 反應機構的探討 69 4-3-1 CH3OH的光解所造成的影響 69 4-3-2 CH3OH的熱解對反應溫度的影響 69 4-3-3 CH3OH+O最主要的產物 70 4-3-4 可能發生的干擾反應 71 4-4 參考文獻 80rf 1. LeFevre, H. F.; Meagher, J. F.; Timmons, R. B. Int. J. Chem. Kinet. 1972, 4, 103. 2. Charles, W.; Bauschlicher, Jr.; Langhoff, S. R.; Walch, S. P. J. Chem. Phys. 1992, 96, 450. 3. Owens, C. M.; Roscoe, J. M. Can. J. Chem. 1976, 54, 984. 4. Sutoh, M.; Morioka, Y.; Nakamura, M. J. Chem. Phys. 1980, 72, 20. 5. Keil, D. G.; Tanzawa, T.; Skolnik, E. G.; Klemm, R. B.; Michael, J. V. J. Chem. Phys. 1981, 75, 2693. 6. Grotheer, H. H.; Just, T. Chem. Phys. Lett. 1981, 78, 71. 7. Failes, R. L.; Singleton, D. L.; Paraskevopoulos, G.; Irwin, R. S. Int. J. Chem. Kinet. 1982, 4, 371. 8. Tsang, W. J. Phys. Chem. Ref. Data 1987, 16, 471. 9. Gaydon, A. G.; Wolfhard, H. G. Flames, Their Structure, Radiation, and Temperature, 2nd ed. Macmillan, New York, 1960. 10. Kirshenbaum, A. D.; Grosse, A. V. J. Am. Chem. Soc. 1956, 78, 2020. 11. Schuller T.; Durox D.; Candel S. Combustion and Flame 2003, 135, 525. 12. Ko, T.; Marshall, P.; Fontijn, A. J. Phys. Chem. 1990, 94, 1401. 13. Rasor, N. S.; McClelland, J. D. Rev. Sci. Instr., 1960, 31, 595. 14. Srart, P. L. J. Sci. Instr. 1960, 37, 17. 15. Kingery, W. D. Property Measurements at High Temperatures. J. Wiley and Sons, New York, 1959. 16. Greene, E. F.; Toennies, P. J. Chemical Reactions in Shock Waves. New York, 1964. 17. Takano, Y.; Akamatsu, T. J. Phys. E: Sci. Instrum 1984, 17, 644. 18. Koshi, M.; Yoshimura, M.; Fukuda, K.; Matsui, H.; Saito, K.; Watanabe, M.; Imamura, A.; Chen, C. J. Chem. Phys. 1990, 93, 8703. 19. Hsiao, C.-C.; Lee, Y.-P.; Wang, N.-S.; Wang, J. H.; Lin, M. C. J. Phys. Chem. A 2002, 106, 10231. 20. Davis, D.; Bruan, W. Applied Optics 1968, 7, 2071. 21. Stuart, K. R.; James, W. S.; Szu-Cherng, K,; Klemm, R. B. J. Phys. Chem. A 1997, 101, 1104. 22. Cheng, B. M.; Bahou, M.; Chen, W. C.; Yui, C. H.; Lee, Y. P; Lee, L. C J. Chem. Phys. 2002, 117, 1633. 23. Satyapal S.; Park J.; Bersohn R.; Katz, B. J. Chem. Phys. 1989, 91, 6873. 24. (a) Grillo, A.; Reed, R.; Slack, M. W. Proc. 12th International Symposium on Shock Tubes and Shock Wave, 1980, 486 (University of Washington, Seattle, 1979). (b) Grillo, A.; Reed, R.; Slack, M. W. J. Chem. Phys. 1979, 70, 1634. 25. Singleton, D. L.; Cvetanovic, R. J. J. Phys. Chem. Ref. Data 1988, 17, 1377. 26. Smith, O. I.; Tseregounis, S.; Wang, S.-N. Int. J. Chem. Kinet. 1982, 14, 679. 27. Plach, H. J.; Troe, J. Int. J. Chem. Kinet. 1984, 16, 1531. 28. Tsang, W.; Hampson, R. F. J. Phys. Chem. Ref. Data 1986, 15, 1087. 29. Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Frank, P.; Hayman, G.; Just, Th.; Kerr, J. A.; Murrells, T.; Pilling, M. J.; Troe, J.; Walker, R. W.; Warnatz,J. J. Phys. Chem. Ref. Data 1994, 23, 847. 30. Hidaka, Y.; Oki, T.; Kawano, H. J. Phys. Chem. 1989, 93, 7134. 31. Dombrowsky, Ch.; Hoffmann, A.; Klatt, M.; Wagner, H. Gg. Ber. Bunsenges. Phys. Chem. 1991, 95, 1685. 32. Tsang, W. J. Phys. Chem. Ref. Data 1987, 16, 471. 33. Fockenberg, C.; Preses, J. M. J. Phys. Chem. A 2002, 106, 2924. 34. Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Esser, C.; Frank, P.; Just, Th.; Kerr, J. A.; Pilling, M. J.; Troe, J.; Walker, R. W.; Warnatz, J. J. Phys. Chem. Ref. Data 1992, 21, 411. 35. Cobos, C. J.; Troe, J. J. Chem. Phys. 1985, 83, 1010. 36. Sutherland, J. W.; Patterson, P. M.; Klemm, R. B. Symp. Int. Combust. Proc. 1991, 23, 51. 37. Li, S. C.; Williams, F. A. Symp. Int. Combust. Proc. 1996, 26, 1017. 38. Warnatz, J. Combustion Chemistry; Springer-Verlag: New York, 1984. 39. Vandooren, J.; Oldenhove de Guertechin, L.; van Tiggelen, P. J. Combust. Flame 1986, 64, 127. 40. Hidaka, Y.; Taniguchi, T.; Tanaka, H.; Kamesawa, T.; Inami, K.; Kawano, H. Combust. Flame 1993, 92, 365. 41. FACSIMILE is a computer software for modeling process and chemical reaction kinetics released by AEA Technology, Oxfordshire, United Kingdom. 42. Grotheer, H.; Riekert, G.; Walter, D.; Just, Th. Symp. Int. Combust. Proc. 1989, 22, 963.id NH0925065056 sid 913435 cfn 0 / id NH0925065057 auc 劉邦鴻 tic 四氯化錫媒介α-碘基環酮光誘導環化反應研究 adc 沙晉康 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 45 kwc α-碘基環酮 kwc 四氯化錫 kwc 自由基反應 abc 本論文主要研究具有丙二烯支鏈之α-碘基環酮化合物22a-c與39a-b的環化反應。在太陽燈的照射同時加入四氯化錫SnCl4此一路易士酸,藉由與起始物羰基作用,形成具立體選擇性的產物。 tc 目錄………………………………………………………………………I 縮寫對照表………………………………………………………………II 第一章 緒論……………………………………………………………1 1.1 路易士酸在自由基反應中的應用…………………………2 1.2 具有丙二烯基之自由基環化反應…………………………8 第二章 結果與討論…………………………………………………16 2.1 螺旋雙環化合物的環化研究……………………………………16 2.2 駢環化合物的環化研究…………………………………………21 2.3 反應機構與立體選擇性之討論…………………………………25 2.4 結論………………………………………………………………27 第三章 實驗部分………………………………………………………28 3.1 一般實驗敘述………………………………………………28 3.2 實驗步驟與光譜資料………………………………………30 參考文獻………………………………………………………………44rf 1.(a) Gomberg, M. J. Am. Chem. Soc. 1900, 22, 757. (b) Guthrie, R. D. Chem. Comm. 1969, 1316. 2.〝有機合成〞,方俊民;陸天堯;何子樂;郭悅雄;周大紓;蔡蘊明;藝軒:台灣台北,1993,p.421。 3.Renaud, P.; Gerster, M. Angew. Chem. Int. Ed. Engl. 1998, 37, 2562. 4.Penelle, J.; Padias, A. B.; Hall, J. H. K.; Tanaka, H. Adv. Polym. Sci. 1992, 102, 73. 5.Newcomb, M.; Ha, C. Tetrahedron Lett. 1991, 32, 6493. 6.Feldman, K. S.; Romanelle, A. L.; Ruckle, J. R. E.; Jean, G. J. Org. Chem. 1992, 57, 100. 7.Vionnet, J. P.; Schenk, K.; Renaud, P. Helv. Chim. Acta 1993, 76, 2490. 8.Urabe, H.; Kobayashi, K.; Sato, F. J. Chem. Soc., Chem. Commun. 1995, 1043. 9.Gerster, M.; Audergon, L.; Moufiud, N.; Renaud, P. Tetrahedron Lett. 1996, 37, 6335. 10.Molander, G. A.; Kenny, C. J. Am. Chem. Soc. 1989, 111, 8236. 11.Porter, N. A.; Lacher, B.; Chang, V. H. Magnin, D. R. J. Am. Chem. Soc. 1989, 111, 8309. 12.Mayumi, N.; Atsushi, N.; Norio, K. J. Org. Chem 1996, 61, 3574. 13.Sibi, M. P.; Manyem, S.; Zimmerman, J. Chem, Rev. 2003, 103, 3263. 14.羅順原,碩士論文,國立清華大學,2000。 15.Mariano, P. S.; Somekawa, K.; Haddaway, K.; Tossell, J. A. J. Am. Chem. Soc. 1984, 106, 3060. 16.林賢勳,碩士論文,國立清華大學,2001。 17.張文昇,碩士論文,國立清華大學,2001。 18.Johnson, E. P.; Chen, G.-P. J. Org. Chem. 1995, 60, 6595. 19.(a)Kotsuki, H.; Miyazaki, A.; Kadota, I.; Ochi, M. J. Chem. Soc., Perkin Trans. 1, 1990, 429.; (b)Kamal, A.; Rao, M. V.; Meshram, H. M. Tetrahedron Lett. 1991, 32, 2657.; (c)Chio, H. C.; Kim, Y. H. Synth. Commun. 1994, 2307.; (d)Enders, D.; Bhushan, V. Z. Naturforsch. 1987, 1595.; Mckillop, A.; (e)Tarbin, J. A. Tetrahedron 1987, 43, 1753.; (f)Laszlo, P.; Polla, E. Tetrahedron Lett. 1984, 25, 3309.; Boruah, A.; (g)Baruah, B.; Prajapati, D.; Sandhu, J. S. Synlett 1997, 1251. 20.Sha, C.-K.; Young, J.-J.; Jean, T.-S. J. Org. Chem. 1987, 52, 3919. 21.Crandall, J. K.;Ayers, T. A. J. Org. Chem. 1992, 57, 2993. 22.Price, W. A.; Russo, J. M. J. Org. Chem. 1993, 58, 3589.id NH0925065057 sid 913415 cfn 0 / id NH0925065058 auc 陳揚中 tic 雙三甲基苯基硼基化合物在有機電激發光二極體 adc 陳秋炳 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 123 kwc 雙三甲基苯基硼基 kwc 有機電激發光二極體 abc 我們利用具有藍色螢光特性的TNB列系化合物為發光層,配合不同的洞子及電子傳輸層,並且改變電子傳輸層的厚度,也應用了洞子傳輸層與發光層共蒸鍍的方法,製作了一系列高藍光純度、高效率和高亮度的有機電激藍光元件,例如:其中一個以TNB04為發光層的元件為ITO/m-MTDATA (10 nm)/NPB (30 nm)/TNB04 (20 nm)/TPBI (10 nm)/AlQ (30 nm)/Mg:Ag (55 nm)/Ag (100 nm),其最大放光波長454 nm,半高寬50 nm,1931 CIE座標為(0.15, 0.12),最大外部放光效率5.16% (5.48 cd/A),最大亮度為17425 cd/m2;接下來我們使用9,10-bis(dimesitylboryl)anthracene (V3)做為電子傳輸層,製作了元件為ITO/m-MTDATA (10 nm)/NPB (30 nm)/TNB04 (20 nm)/ TPBI (20 nm)/V3 (20 nm)/Mg:Ag (55 nm)/Ag (100 nm),最大放光波長448 nm,半高寬60 nm,1931 CIE座標為(0.15, 0.16),最大外部放光效率2.43% (3.41 cd/A),最大亮度為11534 cd/m2,證實V3雖然可做為電子傳輸層,但與Alq3比起來還是差了一點,造成藍光純度偏離以及外部放光效率降低的情形發生;最後,我們測量了元件之壽命,發現半生期只有2-3個小時,推測是TNB系列化合物本身不穩定所導致。 tc 壹、緒論----------------------------------------------------------------------------1 1.1 有機電激發光二極體(OLED)的起源----------------------------------1 1.2 OLED的發光原理--------------------------------------------------------3 1.3 OLED元件的基本結構--------------------------------------------------5 1.3-1 陰陽電極----------------------------------------------------------------6 1.3-2 洞子傳輸材料----------------------------------------------------------7 1.3-3 電子傳輸材料----------------------------------------------------------9 1.4 各種藍光材料的介紹----------------------------------------------------10 1.4-1 DSA(distyrylarylene derivatives)-------------------------------12 1.4-2 PAP-X (dipyrazolopyridine)和PAQ-X (pyrazoloquinoline)----15 1.4-3 ADN (9,10-di-(2-naphthyl) anthracene),舊簡稱為DNA-----22 1.4-4 Spiro-linked molecules-----------------------------------------------28 1.4-5 其他(未分類)----------------------------------------------------------36 貳、實驗--------------------------------------------------------------------------46 2.1 藥品-------------------------------------------------------------------------46 2.2 儀器-------------------------------------------------------------------------49 2.3 合成-------------------------------------------------------------------------50 2.3-1 Pd(dba)2的合成方法-------------------------------------------------50 2.3-2 2-naphthyl-m-tolylamine的合成方法-----------------------------52 2.3-3 1-naphthyl-m-tolylamine的合成方法-----------------------------53 2.3-4 TNB01-2a(4-Diphenylamino-4’-dimesitylborylbiphenyl)的合成方法------------------------------------------------------------------54 2.3-5 9,10-bis(Dimesitylboryl)anthracene 的合成方法----------------57 2.4 昇華-------------------------------------------------------------------------58 2.5 元件製程-------------------------------------------------------------------59 2.5-1 ITO玻璃處理---------------------------------------------------------59 2.5-2 膜層蒸鍍---------------------------------------------------------------61 2.5-3 元件封裝---------------------------------------------------------------61 2.6 元件測量--------------------------------------------------------------------62 2.6-1 元件效率---------------------------------------------------------------62 2.6-2 放光波長---------------------------------------------------------------62 2.6-3 元件壽命---------------------------------------------------------------63 參、結果與討論-----------------------------------------------------------------64 3.1 元件的材料----------------------------------------------------------------64 3.2 元件製作與性質討論----------------------------------------------------66 3.2-1 使用電子傳輸層Alq3(元件E與元件F)---------------------68 3.2-2 使用電洞注入層m-MTDATA(元件G與元件H-3)--------72 3.2-3 改變Alq3厚度對元件之影響(元件H-1~6)------------------76 3.2-4 共蒸鍍之應用(元件I)--------------------------------------------85 3.2-5 TNB系列化合物之元件(元件J、H-3、K、L、M、N、O)---------------------------------------------------------------------------89 3.2-6 使用電子傳輸層V3(元件P-1與元件P-2)------------------99 3.3 元件壽命之量測--------------------------------------------------------105 肆、結論------------------------------------------------------------------------109 伍、附錄------------------------------------------------------------------------112 參考文獻------------------------------------------------------------------------119rf 1.Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042. 2.Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913. 3.Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610. 4.Skoog, D. A.; Holler, F. J.; Nieman, T. A. PRINCIPLES OF INSTRUMENTAL ANALYSIS, 5th ed. 5.Tsutsui, T.; Yahiro, M.; Yokogawa, H.; Kawano, K.; Yokoyama, M. Adv. Mater. 2001, 13, 1149. 6.J. Shinar, Organic Light-Emitting Device, 1st ed. 7.Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Japan J. Appl. Phys. 1988, 27, L713. 8.Era, M.; Adachi, C.; Tsutsui, T.; Saito, S. Chem. Phys. Lett. 1991, 178, 488. 9.Kido, J.; Kohda, M.; Okuyama, K.; Nadai, K.; Appl. Phys. Lett. 1992, 61, 761. 10.陳金鑫, 石建民, 鄧青雲, 化學, 第五十四卷第一期, pp.125-145. 11.Deng, Z.; Lee, S. T.; Webb, D. P.; Chan, Y. C.; Gambling, W. A. Syn. Met. 1999, 107, 107. 12.O’Brien, D. F.; Burrows, P. E.; Forrest, S. R.; Koene, B. E.; Loy, D. E.; Thompson, M. E. Adv. Mater. 1998, 10, 1108. 13.Shirota, Y.; Kuwabara, Y.; Inada, H. Appl. Phys. Lett. 1994, 65, 807. 14.VanSlyke, S. A.; Chen, C. H.; Tang, C. W. Appl. Phys. Lett. 1996, 69, 2160. 15.Elschner, A.; Bruder, F.; Heuer, H. W.; Jonas, F.; Karbach, A.; Kirchmeyer, S.; Thurm, S.; Wehrmann, R. Syn. Met. 2000, 111-112, 139. 16.Chen, B. J.; Lai, W. Y.; Gao, Z. Q.; Lee, C. S.; Lee, S. T.; Gambling, W. A. Appl. Phys. Lett. 1999, 75, 4010. 17.Tao, Y. T.; Balasubramaniam, E.; Danel, A.; Jarosz, B.; Tomasik, P. Appl. Phys. Lett. 2000, 77, 1575. 18.Wong, T. C.; Kovac, J.; Lee, C. S.; Hung, L. S.; Lee, S. T. Chem. Phys. Lett. 2001, 334, 61. 19.Hosokawa, C.; Sakamoto, S.; Kusumoto, T. U.S. Patent 5,389,444. Feb. 14, 1995. 20.Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1990, 56, 799. 21.Hosokawa, C.; Tokailin, H.; Higashi, H.; Kusumoto, T. J. Appl. Phys. 1995, 78, 5831. 22.Hosokawa, C.; Higashi, H.; Nakamura, H.; Kusumoto, T. Appl. Phys. Lett. 1995, 67, 3853. 23.Wu, Y. Z.; Zheng, X. Y.; Zhu, W. Q.; Sun, R. G.; Jiang, X. Y.; Zhang, Z. L.; Xu, S. H. Appl. Phys. Lett. 2003, 83, 5077. 24.Balasubramaniam, E.; Tao, Y. T.; Danel, A.; Tomasik, P. Chem. Mater. 2000, 12, 2788. 25.Tao, Y. T.; Balasubramaniam, E.; Danel, A.; Tomasik, P. Appl. Phys. Lett. 2000, 77, 933. 26.Tao, Y. T.; Balasubramaniam, E.; Danel, A.; Wisla, A.; Tomasik, P. J. Mater. Chem, 2001, 11, 768. 27.Tao, Y. T.; Balasubramaniam, E.; Danel, A.; Jarosz, B.; Tomasik, P. Chem. Mater. 2001, 13, 1207. 28.Tao, Y. T.; Chuen, C. H.; Ko, C. W.; Peng, J. W. Chem. Mater. 2002, 14, 4256. 29.Shi, J.; Tang, C. W.; Chen, C. H. U.S. Patent 5,935,721, Aug. 10, 1999. 30.Shi, J.; Tang, C. W. Appl. Phys. Lett. 2002, 80, 3201. 31.Li, Y.; Fung, M. K.; Xie, Z.; Lee, S. T.; Hung, L. S.; Shi, J. Adv. Mater. 2002, 14, 1317. 32.Kan,Y.; Wang, L.; Duan, L.; Hu, Y.; Wu, G.; Qui, Y.; Appl. Phys. Lett. 2004, 84, 1513. 33.Kim, Y. H.; Shin, D. C.; Kim, S. H.; Ko, C. H.; Yu, H. S.; Chae, Y. S.; Kwon, S. K. Adv. Mater. 2001, 13, 1690. 34.Wu, C. C.; Lin, Y. T.; Chiang, H. H.; Cho, T. Y.; Chen, C. W.; Wong, K. T.; Liao, Y. L.; Lee, G. H.; Peng, S. M. Appl. Phys. Lett. 2002, 81, 577. 35.Shen, W. J.; Dodda, R.; Wu, C. C.; Wu, F. I.; Liu, T. H.; Chen, H. H.; Chen, C. H.; Shu, C. F. Chem. Mater. 2004, 16, 930. 36.Wong, K. T.; Chien, Y. Y.; Chen, R. T.; Wang, C. F.; Lin, Y. T.; Chiang, H. H.; Hsien, P. Y.; Chou, C. H.; Su, Y. O.; Lee, G. H.; Peng, S. M. J. Am. Chem. Soc. 2002, 124, 11576. 37.Wu, C. C.; Lin, Y. T.; Wong, K. T.; Chen, R. T.; Chien, Y. Y. Adv. Mater. 2004, 16, 61. 38.Gao, Z.; Lee, C. S.; Bello, I.; Lee, S. T.; Chen, R. M.; Luh, T. Y.; Shi, J.; Tang, C. W. Appl. Phys. Lett. 1999, 74, 865. 39.Murata, H.; Kafafi, Z. H.; Uchida, M. Appl. Phys. Lett. 2002, 80, 189. 40.Palilis, L. C.; Mäkinen, A. J.; Uchida, M.; Kafafi, Z. H. Appl. Phys. Lett. 2003, 82, 2209. 41.Danel, K.; Huang, T. H.; Lin, J. T.; Tao, Y. T.; Chuen, C. H. Chem. Mater. 2002, 14, 3860. 42.Shih, H. T.; Lin, C. H.; Shin, H. H.; Cheng, C. H. Adv. Mater. 2002, 14, 1409. 43.Okumoto, K.; Shirota, Y. Chem. Mater. 2003, 15, 699. 44.國立清華大學王祥瑞碩士論文, 2001. 45.國立清華大學池俊毅碩士論文, 2003. 46.So, S. K.; Choi, W. K.; Leung, L. M.; Neyts, K. Appl. Phys. Lett. 1999, 74, 1939.id NH0925065058 sid 913428 cfn 0 / id NH0925065059 auc 周俊邦 tic 利用間質隔離法研究鍺與一氧化氮反應產物之紅外光譜 adc 李遠鵬 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 98 kwc 間質隔離法 kwc 一氧化氮 kwc 鍺 kwc GeNO kwc Ge(NO)2 abc 經由雷射蒸鍍法產生之鍺原子與一氧化氮反應後共沈積於低溫的間質(Ar)晶格中並利用霍氏轉換紅外光譜儀(FTIR)做為偵測技術。吾人直接在間質中觀測到新的吸收譜線分別為於1417.0、1420.1、1423.0、1482.8、1543.8、1546.7、1552.0、1645.5以及3059.7 cm-1。在利用波長為308與193 nm 的雷射光對間質樣品光解以及對間質樣品進行回溫後,可將新的吸收譜線分為三組:a組包含 3059.7、1543.8 (1546.7、1552.0) cm-1;b組包含1645.5、1482.8 cm-1;c組包含、1417.0 (1423.0、1420.1) cm-1。從15N- 與18O- 同位素取代實驗以及密度泛函理論之計算結果,吾人將 1543.8 cm-1指認為直線型GeNO之NO伸張振動模,譜線3059.7 cm-1為其二倍頻(overtone)吸收;1645.5 cm-1指認為角型Ge(NO)2 之NO對稱伸張振動模,1482.8 cm-1指認為角型Ge(NO)2 之NO不對稱伸張振動模;譜線1417.0指認為直線型GeNO-之NO伸張振動模,實驗中並沒有觀測到GeNO之其他異構物。理論計算方面,B3LYP與BLYP對同位素比例的預測無大差異,但對振動波數方面的預測,BLYP要比B3LYP較實驗值接近。B3LYP預估值比實驗值大(+6.16%以內),BLYP預估值比實驗值小(-1.04%以內)。 tc 目錄 第一章 緒論…………………………………………………………..1. 第二章 原理簡介……………………………………………........19. 2-1:間質隔離法…………………………………………………….19. 2-2:間質主體的選擇……………………………………………….20. 2-3:間質效應……………………………………………………….21. 2-4:霍氏轉換紅外光譜儀………………………………………….25. 第三章 實驗裝置與步驟……………………………………….....41. 3-1:間質隔離系統…………………………………………….41. 3-2:霍氏轉換紅外光譜儀…..…………..………………….42. 3-3:雷射蒸鍍法光源………………………………………….43. 3-4:雷射光解光源…………………………………………….43. 3-5:樣品製備………………………………………………….44. 3-6:實驗步驟………………………………………………….45. 第四章 結果討論……………………………………………........52. 4-1:沈積後之樣品間質……………………………………….54. 4-2:15N與18O同位素取代實驗……...……………………….54. 4-3:理論計算與實驗值之比較……………………………….59. 4-4:反應機制的研究………………………………………….67. 4-5:結論……………………………………………………….70.rf 第一章 Doo, V. Y.; Nichols, D. R.; Silvey, G. A. J. Electrochem. Soc. 1966, 113, 1279. 2 Doo, V. Y.; Kerr, D. R.; Nichols, D. R. J. Electrochem. Soc. 1968, 115, 61. 3 Gritzenko, V. A. Prog. Surf. Sci. 1975, 28, 387. 4 Young, A. B.; Rosenberg, J. J. J. Electrochem. Soc. 1987, 134, 2867. 5 Serp, P.; Kalck, P.; Feurer, R. Chem. Rev. 2002, 102, 3085. 6 Zhang, L. N.; Dong, J.; Zhou, M. F. J. Phys. Chem. A 2000, 104, 8882. 7 Chen, M.; Zheng, A.; Lu, H.; Zhou, M. J. Phys. Chem. A 2002, 106, 3077. 8 Maier, G.; Reisenauer, H. P.; Glatthaar, J. Organometallics 2000, 19, 4775. 9 Bahou, M.; Sankaran, M.; Wu, Y. J.; Lee, Y. P. J. Chem. Phys. 2003, 118, 9710. 10 Stroh, F.; Winnewisser, M.; Winnewisser, B. P. J. Mol. Spectrosc. 1993, 162, 435. 11 Stroh, F.; Winnewisser, M.; Winnewisser, B. P. Can. J. Phys. 1994, 72, 1252. 12 Botschwina, P.; Sebald, P. Chem. Phys. 1990, 141, 311. 13 Botschwina, P. Chem. Phys. Lett. 1994, 225, 480. 14 Maier, G.; Reisenauer, H. P.; Egenolf, H.; Glatthaar, J. Eur. J. Org. Chem. 1998, 1307. 15 Andrews, L.; Citra, A. Chem. Rev. 2002, 102, 885. 16 Willson, S. P.; Andrews, L.; Neurock, M. J. Phys. Chem. A 2000, 104, 3446. 17 Zhou, M.; Andrews, L. J. Chem. Phys. 1999, 111, 11044. 18 Andrews, L.; Zhou, M.; Wang, X. J. Phys. Chem. A 2000, 104, 8475. 19 Swearengen, P. M.; Davis, S. J.; Niemczyk, T. M. Chem. Phys. Lett. 1978, 55, 274. 20 Zumbusch, A.; Schnockel, H. J. Chem. Phys. 1998, 108, 8092. 21 Friesen, M.; Junker, M.; Schnockel, H. J. Chem. Phys. 2000, 112, 1782. 22 Koppe, R.; Schnockel, H. J. Mol. Spectrosc. 1990, 238, 429. 23 Friesen, M.; Junker, M.; Schnockel, H. Heteroat. Chem. 1999, 10, 658. 24 Zhang, L.; Dong, J.; Zhou, M., J. Chem. Phys. 2000, 113, 8700. 25 Palagyi, Z.; Schaefer, H. F.; Kapuy, E. J. Am. Chem. Soc. 1993, 122, 9793. 26 Grev, R. S.; Deleeuw, B. J.; Schaefer, H. F. Chem. Phys. Lett. 1990, 165, 257. 27 Wang, X. F.; Andrews, L.; Kushto, G. P. J. Phys. Chem. A 2002, 106, 5809. 28 Erkoc, S. J. Mol. Struct.(Theochem) 2001, 574, 127. 第二章 1 Norman, I.; Porter, G.. Nature 1954, 174, 508. 2 Whittle, E.; Dows, D. A.; Pimentel, G. C. J. Chem. Phys. 1954, 22, 1943. 3 Lo, W. J.; Lee, Y. P. J. Chem. Phys. 1994, 101, 5494. 4 Lo, W. J.; Lee, Y. P. Chem. Phys. Lett. 1994, 229, 357. 5 Lo, W. J.; Shen, M. Y.; Yu, C. H.; Lee, Y. P. J. Chem. Phys. 1996, 104, 935. 6 Lo, W. J.; Lee, Y. P.; Tsai, J. H. M.; Tsai, H. H.; Hamilton, T. P.; Harrison, J. G.; Beckman, J. S. J. Chem. Phys. 1995, 103, 4026. 7 Lo, W. J.; Lee, Y. P.; Tsai, J. H. M.; Beckman, J. S. Chem. Phys. Lett. 1995, 242, 147. 8 Jou, S. H.; Shen, M. Y.; Yu, C. H.; Lee, Y. P. J. Chem. Phys. 1996, 104, 5745. 9 Chen, L. S.; Lee, C. I.; Lee, Y. P. J. Chem. Phys. 1996, 105, 9454. 10 Lee, C. I.; Lee, Y. P.; Wang, X.; Qin, Q. Z. J. Chem. Phys. 1998, 109, 10446. 11 Bahou, M.; Chen, S. F.; Lee, Y. P. J. Phys. Chem. A 2000, 104, 3613. 12 Bahou, M.; Lee, Y. C.; Lee, Y. P. J. Am. Chem. Soc. 2000, 122, 661. 13 Hallam, H. E.; ed. Vibrational Spectroscopy of Trapped Species; Wiley: London, 1973. 14 (a)Jacox, M. J. J. Mol. Spectrosc. 1985, 113, 286. (b) Jacox, M. J. J. Mol. Spectrosc. 1987, 157, 43. 15 Cairns, B. R.; Pimentel, G.. C. J. Chem. Phys. 1965, 43, 3432. 16 Momose, T.; Shida, T. Bull. Chem. Soc. Jpn. 1998, 71, 1. 17 Momose, T.; Miki, M.; Uchida, M.; Shimizu, T.; Yoshizawa, I. Shida, T. J. Chem. Phys. 1995, 105, 1400. 18 Hinde, R. J.; Anderson, D. T.; Fajardo, M. E. Chem. Phys. Lett. 2002, 356, 355. 19 Tam, S.; Fajardo, M. E. Rev. Sci. Instrum. 1999, 70, 1926. 20 Wu, Y. J.; Yang, X.; Lee, Y. P. J. Chem. Phys. 2004, 120, 1168. 第三章 Noyes, A.; Jr., J. J. Am. Chem. Soc. 1931, 53, 515. 第四章 Andrews, L.; Zhou, M.; Willson, S. P.; Kushto, G. P. J. Chem. Phys. 1998, 109, 177. 2 Chang, T. L.; Li, W. J.; Qiao, G. S.; Qian, Q. Y.; Chu, Z. Y. Int. J. Mass. Spectrom. 1999, 189, 205. 3 Krim, L.; Lacome, N. J. Phys. Chem. A. 1998, 102, 2289. 4 Andrews, L.; Citra, A. Chem. Rev. 2002, 102, 885. 5 Bahou, M.; Sankaran, M.; Wu, Y. J.; Lee, Y. P. J. Chem. Phys. 2003, 118, 9710. 6 Chen, L. S.; Lee, C. I.; Lee, Y. P. J. Chem. Phys. 1996, 105, 9454. 7 Bahou, M.; Lee, Y. C.; Lee, Y. P. J. Am. Chem. Soc. 2000, 122, 661.id NH0925065059 sid 913466 cfn 0 / id NH0925065060 auc 張國瑞 tic 鈀錯化合物催化1,2-雙烯之加成反應與應用及以鈷錯化合物為催化劑之偶合環化反應 adc 鄭建鴻 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 258 kwc Pd金屬錯合物 kwc 有機碘化物 kwc 矽硼試劑 kwc 高位向選擇性及高立體選擇性 kwc 羰基烯丙基化反應 kwc homoallylic alcohol 化合物 kwc 鈷金屬錯化合物 kwc 環化偶合反應 kwc indenol 之衍生物 kwc indene 之衍生物 abc 我們成功地使用Pd金屬錯合物與有機碘化物共同催化矽硼試劑加成到1,2-雙烯的反應;且此反應具有高位向選擇性及高立體選擇性,而且對於1,2-雙烯上的各種官能基有很好的容忍性。硼酯基是接於1,2雙烯的末端雙鍵上,而矽基是接於1,2雙烯中間碳上。而且就立體選擇性來說,主要的產物都是E form的形式。反應的反應機構是經由氧化加成I-Si鍵而啟動的,並不是直接的氧化加成Si-B鍵。此反應結果跟單純只用Pd金屬催化加成反應的結果是不一樣的。 rf 第一章 1. (a) Crabtree, R. H. The Organometallic Chemistry of the Transition Metals; John Wiley & Sons, Inc.: New York, 1994, 329. (b) Iqbal, J.; Bhatia, B.; Nayyar, N. K. Chem. Rev. 1994, 94, 519. (c) Malleron, J.-L.; Fiaud, J.-C.; Legros, J.-Y. Handbook of Palladium-Catalyzed Organic Reactions; Academic Press: San Diego, 1997. (d) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987, Chapter 19. (e) Trost, B. M.; Verhoeven, T. R. In Comprehensive Organometallic Chemistry; Wilkinson, G.; Stone, F. G.; Abel, E. W.; Eds.; Pergamon Press: Oxford, U.K., 1982, Vol. 8, p 799. 2. (a) Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 581. (b) Heck, R. F.; Nolley, J. P., Jr. J. Org. Chem. 1972, 37, 2320. (c) Heck, R. F. Palladium Reagents in Organic Synthesis; Academic Press: London, 1985. (d) Dieck, H. A.; Heck, R. F. J. Am. Chem. Soc. 1974, 96, 1133. 3. Shaw, B. L.; Perera, S. D. Chem. Commun. 1998, 1863. 4. (a) Tamao, K. Comprehensive Organic Synthesis, Vol. 3, Pergamon Press, Oxford, 1991, 435. (b) Knoght, D. W. Comprehensive Organic Synthesis, Vol. 3, Pergamon Press, Oxford, 1991, 481. (c) Negishi, E. Acc. Chem. Res. 1982, 15, 340. 5. Stille, B. J. Angew. Chem., Int. Ed. Engl. 1986, 25, 508. 6. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. 7. Farina, V.; Krishan, B. D.; Marshall, R.; Roth, G. P. J. Org. Chem. 1993, 58, 5434. 8. Jones, K.; Keenan, M.; Hibbert, F. Synlett . 1996, 509. 9. Kosugi, M.; Kimura, T.; Oda, J.; Migita, T. Bull. Chem. Soc. Jpn. 1993, 66, 3522. 10. Ishiyama, T.; Kizaki, H.; Hayashi, T.; Suzuki, A.; Miyaura, N. J. Org. Chem. 1998, 63, 4726. 11. Grigg, R.; Brown, S.; Sridharan, V.; Micheal, D. U. Tetrahedron Lett. 1997, 38, 5031. 12. Murai, S.; Amishiro, N. J. Am. Chem. Soc. 1991, 113, 7778. 13. Godleski, S. Comprehensive Organic Synthesis, Vol 4, 1991, Pergamon Press, Oxford, 585. 14. Tsuji, J. In Palladium Reagents and Catalysts: Innovations in Organic Synthesis; John Wiley & Sons: Chichester, 1995. 15. Hegedus, L. S. Transition Metals in the Synthesis of Complex Organic Molecules; University Science Books: Mill Valley, CA, 1994, Chapter 9. 16. Larock, R. C.; Gong, W. H. J. Org. Chem. 1990, 55, 407. 17. (a) Larock, R. C.; Lee, N. H. J. Am. Chem. Soc. 1991, 113, 7815. (b) Larock, R. C.; Kondo, F.; Narayanan, K.; Sydes, L.; Hsu, M. H. Tetrahedron Lett. 1989, 30, 5737. (c) Torri, S.; Okumoto, H.; Akahoshi, F.; Kotani, T. J. Am. Chem. Soc. 1989, 111, 8932. 18. (a) Cheng, C. H.; Wu, M. Y.; Yang, F. Y. J. Org. Chem. 1999, 64, 2471. (b) Cheng, C. H.; Yang, F. Y.; Wu, M. Y. Tetrahedron Lett. 1999, 40, 6055. (c) Yang, F, Y.; Wu, M. Y.; Cheng, C. H. J. Am. Chem. Soc. 2000, 122, 7122. (d) Yang, F, Y.; Cheng, C. H. J. Am. Chem. Soc. 2001, 123, 761. (e) Wu, M, S.; Dinesh K. R.; Cheng, C. H. J. Am. Chem. Soc. 2003, 125, 12426. (f) Masilamani Jegamohan.; Muthian Shanmugasundaram.; Cheng, C. H. Chem. Commun. 2003, 1746. (e) 國立清華大學化學系 吳銘源博士論文(民國八十七年). (f) 國立清華大學化學系 湯美玲碩士論文(民國八十六年). (g) 國立清華大學化學系 莊士億碩士論文(民國八十八年). (h) 國立清華大學化學系 古博仁碩士論文(民國八十八年). (i) 國立清華大學化學系 黃泰翔碩士論文(民國九十年). (j) 國立清華大學化學系 蔡麗菁碩士論文(民國九十年). 第二章 1. Beletskaya, I.; Moberg, C. Chem. Rev. 1999, 99, 3435. 2. Watanabe, H.; Kobayashi, M.; Saito, M.; Nagai, Y. J. Organomet. Chem. 1981, 216, 149. (b) Sakurai, H.; Kamiyama, Y.; Nakadaira, Y. J. Am. Chem. Soc. 1975, 97, 932. (c) Ito, Y.; Suginome, M.; Murakami, M. J. Org. Chem. 1991, 56, 1948. (d) Suginome, M.; Oike, H.; Park, S.-S.; Ito, Y. Bull. Chem. Soc. Jpn. 1996, 69, 289. (e) Yamashita, H.; Catellani, M.; Tanaka, M. Chem. Lett. 1991, 241. 3. Okinoshima, H.; Yamamoto, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 26. 4. Watanabe, H; Saito, M. Sutou, N.; Kishimoto, K.; Inose, J.; Nagai, Y. J. Organomet. Chem. 1982, 225, 343. 5. Hayashi, T.; Kobayashi, T.-a.; Kawamoto, A. M.; Yamashita, H.; Tanaka, M. Organometallics 1990, 9, 280. 6. For Pt-catalyzed diboration reaction see: (a) Ishiyama, T.; Matsuda, N.; Miyaura, N.; Suzuki, A. J. Am. Chem. Soc. 1993, 115, 11018. (b) Ishiyama, T.; Yamamoto, M.; Miyaura, N. Chem. Commun. 1997, 689. (c) Ishiyama, T.; Kitano, T.; Miyaura, N. Tetrahedron Lett. 1998, 39, 2357. (d) Iverson, C. N.; Smith III, M. R. Organometallics 1997, 16, 2757.(e) Ishiyama, T.; Yamamoto, M.; Miyaura, N. Chem. Commun. 1996, 2073. (f) Iverson, C. N.; Smith III, M. R. J. Am. Chem. Soc. 1995, 117, 4403. (g) Mann, G.; John, K. D.; Baker, R. T. Org. Lett. 2000, 2, 2105-2108. (h) Ishiyama, T.; Matsuda, N.; Murata, M.; Ozawa, F.; Suzuki, A.; Miyaura, N. Organometallics 1996, 15, 713. (i) Marder, T. B.; Norman, N.; Rice, C. R. Tetrahedron Lett. 1998, 39, 155. (j) Clegg, T. M.; Johann, T. R. F.; Marder, T. B.; Norman, N. C.; Orpen, A. G.; Peakman, T. M.; Quayle, M. J.; Rice, C. R.; Scott, A. J. J. Chem. Soc. Dalton Trans. 1998, 1431. (k) Anderson, K. M.; Lesley, M. J. G.; Norman, N. C.; Orpen, A. G.; Starbuck, J. Chem. Commun. 1999, 1053. (l) Marder, T. B.; Norman, N. C. Topics in Catalysis, 1998, 5, 63-73. (m) Lawson, Y. G.; Lesley, M. J. G.; Marder, T. B.; Norman, N. C.; Rice, C. R. J. Chem. Soc., Chem. Commum. 1997, 2051. (n) Maderna, A.; Pritzkow, H.; Siebert, W. Angew. Chem. Int. Ed. Engl. 1996, 35, 1501. (o) Lesley, G.; Nguyen, P.; Taylor, N. J.; Marder, T. B.; Scott, A. J.; Clegg, W.; Norman, N. C. Organometallics, 1996, 15, 5137. (p) Iverson, C. N.; Smith III, M. R. Organometallics, 1996, 15, 5155. 7. (a) Suginome, M.; Nakamura, H.; Ito, Y. Chem. Commun. 1996, 2777. (b) Suginome, M.; Matsuda, T.; Nakamura, H.; Ito, Y. Tetrahedron 1999, 55, 8787. (c) Onozawa, S.-y.; Hatanaka, Y.; Tanaka, M. Chem. Commun. 1997, 1229. 8. Suginome, M.; Matsuda, T.; Ito, Y. Organometallics 1998, 17, 5233. 9. Suginome, M.; Nakamura, H.; Ito, Y. Angew. Chem., Int. Ed. Engl. 1997, 36, 2516. 10. (a) Suginome, M.; Ohmori, Y.; Ito, Y. Synlett 1999, 1567. (b) Onozawa, S.-y.; Hatanaka, Y.; Tanaka, M. Chem. Commun. 1999, 1863. 11. Yang, F.-Y.; Cheng, C.-H. J. Am. Chem. Soc. 2001, 123, 761. 12. Suginome, M.;Matsuda, T.; Ito, Y. Organometallics 2000, 19, 4647. 第三章 1. (a) Yamamoto, Y. Acc. Chem. Res. 1987, 20, 243. (b) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207. (c) Marshall, J. A. Chem. Rev. 2000, 100, 3163. 2. Wilson, S. R.; Guazzaroni, M. E. J. Org. Chem. 1989, 54, 3087. 3. Chan, T. H.; Yang, Y.; Li, C. J. J. Org. Chem. 1999, 64, 4452. 4. Uneyama, K.; Kamaki, N.; Moriya, A.; Torii, S. J. Org. Chem. 1985, 50, 5396. 5. Kimura, M.; Kiyama, I.; Tomizawa, T.; Horino, S.; Tanaka, S.; Tamaru, Y. Tetrahedron Lett. 1999, 40, 6795. 6. Sebelius, S.; Olov A. Wallner.; Szabo, K. J. Org. Lett. 2003, 17, 3065. 7. Chang, H. M.; Cheng, C. H. Org. Lett., 2000, 2, 3439. 8. Shimizu, M.; Kitagawa, H.; Kurahashi, T.; Hiyama, T. Angew. Chem. Int. Ed. 2001, 40, No. 22, 4283. 9. Suginome, M.; Ohmori, Y.; Ito, Y. J. Am. Chem. Soc. 2001, 123, 4061. 10. (a) Kennedy, J. W. J.; Hall, D. G. J. Am. Chem. Soc. 2002, 124, 11586. (b) Kennedy, J. W. J.; Hall, D. G. J. Am. Chem. Soc. 2002, 124, 898. 11. Ishiyama, T.; Ahiko, T. –a.; Miyaura, N. J. Am. Chem. Soc. 2002, 124, 12414. 第四章 1. (a) Tsuji, J. Transition Metal Reagents and Catalysts: InnoVationsin Organic Synthesis; Wiley: New York, 2002. (b) Hegedus, L. S. Transition Metals in the Synthesis of Complex Organic Molecules, 2nd ed.; University Science Books: Sausalito, CA, 1999. 2. Grotjahn, D. B. In ComprehensiVe Organometallic Chemistry II;Hegedus, L. S., Ed.; Pergamon/Elsevier Science: Kidlington, 1995; Vol 12, pp 703, 741. (b) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. (c) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. Rev. 1996, 96, 635. (d) Fruhauf, H. W. Chem. Rev. 1997, 97, 523. 3. (a) Vollhardt, K. P. C. Angew. Chem. Int. Ed. Engl. 1984, 23, 539. (b) Grotjahn, D. B.; Vollhardt, K. P. C.; J. Am. Chem. Soc. 1986, 108, 2091. (c) Butenschon, H.; Winkler, M.; Vollhardt, K. P. C. Chem. Commun. 1986, 388. (d) Johnson, E. P.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1991, 113, 381. 4. Wu, M. S.; Shanmugasundaram, M.; Cheng, C. H. Chem. Commun. 2003, 718. 5. Chen, K. C.; Rayabarapu, D. K.; Wang, C. C.; Cheng, C. H. J. Org. Chem. 2001, 66, 8804. 6. (a) Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E.; Foreman, M. I. J. Chem. Soc. Perkin Trans.1 1973, 977. (b) Pauson, P. L. Tetrahedron 1985, 41, 5855. (c) Khand, I. U.; Pauson, P. L. J. Chem. Soc, Chem. Commun. 1974, 379. 7. (a) Zieglar, T.; Versluis, L. Adv. Chem. Ser. 1992, 230, 75. (b) Slaugh, L. H.; Mullineaux, R. D. J. Organometal. Chem. 1968, 13, 469. 8. Wang, C. C.; Lin, P. S.; Cheng, C. H. J. Am. Chem. Soc. 2002, 124, 9696. 9. Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E. J. Chem. Soc. D 1971, 36. 10. Jeong, N.; Hwang, S. H.; Lee, Y. J. Am. Chem. Soc. 1994, 116, 3159. 11. Lee, B. Y.; Chung, Y. K.; Jeong, N.; Lee, Y.; Hwang, S. H. J. Am. Chem. Soc. 1994, 116, 8793. 12. (a) Cahiez, G.; Avedissian, H. Tetrahedron Lett. 1998, 39, 6159. (b) Avedissian, H.; Berillon, L.; Cahiez, G.; Knochel, P. Tetrahedron Lett. 1998, 39, 6163. (c) Ikeda, Y.; Nakamura, T.; Yorimtsu, H.; Oshima, K. J. Am. Chem. Soc. 2002, 124, 6514. (d) Fillon, H.; Gosmini, C.; Perichon, J. J. Am. Chem. Soc. 2003, 125, 3867. (e) Gomes, P.; Gosmini, C.; Perichon, J. Org. Lett. 2003, 5, 1043. 13. (a) Kurakay Co., Ltd. Jpn. Kokai Tokkyo Koho JP 81, 113, 740 (C1.C07C69/017), Sept 7, 1981; Chem. Abstr. 1982, 96, 68724b. (b) Kurakay Co., Ltd. Jpn. Kokai Tokkyo Koho JP 82 04,945 (C1. C07C69/013), Jan 11, 1982; Chem. Abstr. 1982, 96, 199935u.(c) Samula, K.; Cichy, B. Acta Pol. Pharm. 1985, 42, 256; Chem. Abstr. 1986, 105, 171931v. 14. (a) Vicente, J.; Abad, J. A.; Rubio, J. G. J. Organomet. Chem. 1992, 436, C37. (b) Vicente, J.; Abad, J. A.; Rubio, J. G. Organmetallics 1996, 15, 3509. (c) Vicente, J.; Abad, J. A.; Lobpez-Pelaes, B.; Martinez-Pivente, E. Organometallics 2002, 21, 58. 15. (a) Gevorgyan, V.; Quan L. G.; Yamamoto, Y. J. Am. Chem. Soc. 1999, 121, 3545. (b) Gevorgyan, V.; Quan L. G.; Yamamoto, Y. J. Am. Chem. Soc. 1999, 121, 9485. 16. Gevorgyan, V.; Quan L. G.; Yamamoto, Y. Tetrahedron Lett. 1999, 40, 4089. 17. Rayabarapu, D. K.; Cheng, C. -H. Chem. Commun. 2002, 942. 第五章 1. (a) Cahiez, G.; Avedissian, H. Tetrahedron Lett. 1998, 39, 6159. (b) Avedissian, H. Berillon, L.; Cahiez, G.; Knochel, P. Tetrahedron Lett. 1998, 39, 6163. (c) Ikeda, Y.; Nakamura, T.; Yorimtsu, H.; Oshima, K. J. Am. Chem. Soc. 2002, 124, 6514. (d) Fillon, H.; Gosmini, C.; Perichon, J. J. Am. Chem. Soc. 2003, 125, 3867. (e) Gomes, P.; Gosmini, C.; Perichon, J. Org. Lett. 2003, 5, 1043. 2. Matsuda, K.; Toyoda, H.; Kakutani, Koji; H., Masayuki; Ouchi, S.; ABCHA6; Agric.Biol.Chem.; EN; 54; 11; 1990; 3039-3040. (b) Boehme, T. M.; Keim, C.; Kreutzmann, K.; Linder, M.; Dingermann, T.; Dannhardt, G.; Mutschler, E.; Lambrecht, G.; JMCMAR; J.Med.Chem.; EN; 46; 5; 2003; 856 - 867. (c) Malleron, J.; Gueremy, C.; Mignani, S.; Peyronel, J.; Truchon, A.; et al.; JMCMAR; J.Med.Chem.; EN; 36; 9; 1993; 1194-1202. 3. (a) Gomes, P.; Gosmini, C.; Nedelec, J. -Y.; Perichon, J. Tetrahedron Lett. 2000, 41, 3385. (b) In another electrolysis method using nickel, indene was obtained as by-product; Condon, S.; Dupre, D.; Falgayrac, G.; Nedelec, J. –Y. Eur. J. Org. Chem. 2002, 105. 4. For recent reports on reductive decyanation, please see; (a) Vilsmaier, E.; Milch, G.; Bergstrasser, U. Tetrahedron 1998, 54, 6403. (b) Liu, H. J.; Yip, J. Synlett. 2000, 1119. (c) Walker, J. A.; Zhao, M.; Baker, M. D.; Dormer, P. G.; McNamara, J. Tetrahedron Lett. 2002, 43, 6747. (d) Guijarro, D.; Yus, M. Tetrahedron 1994, 50, 3447. (e) Kang, H. Y.; .Hong, W. S.; Cho, Y. S.; Koh, H. Y. Tetrahedron Lett. 1995, 36, 7661. (f) Curran, D. P.; Seong, C. M. J. Am. Chem. Soc. 1990, 112, 9401. (g) Curran, D. P.; Seong, C. M. Synlett 1991, 107.id NH0925065060 sid 883455 cfn 0 / id NH0925065061 auc 鄭丞博 tic 樟腦衍生之胺基醇為配位基在不對稱亞 tic 噻 tic 化反應的研究 adc 汪炳鈞 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 82 kwc 樟腦 kwc 亞□ kwc 催化 abc 本論文主要探討以樟腦衍生之胺基醇與水楊醛衍生物縮合而得之三牙配位基與VO(acac)2所形成的掌性錯合物為催化劑,應用在不對稱亞□化反應上的研究。以1 mol%催化量的催化劑在0oC下,以H2O2為氧化劑,氧化硫醚化合物生成掌性亞□化合物,鏡像選擇性最好可達88% ee,且不會有□化合物的生成。而相較於其它的催化系統,本論文合成的催化劑使反應速度加快很多,惟產率略低。 rf 1.(a) Knowles, W. S.; Sabacky, M. J. J. Chem. Soc., Chem. Commun. 1968, 1445. (b) Noyori, R. Science 1990, 248, 1194. (c) Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765. 2.Kitamura, M.; Okada, G.; Suga, S.; Noyori, R. J. Am. Chem. Soc. 1989, 111, 4028. 3.Aggarwal, V. K.; Hynd, G.; Picoul, W.; Vasse, J. L. J. Am. Chem. Soc. 2002, 124, 9964. 4.黃全德博士論文,國立清華大學化學系,1999年。 5.Solladie, G. Synthesis 1981, 185. 6.Posner, G. H. Acc. Chem. Res. 1987, 20, 72. 7.Arai, Y.; Koizumi, T. Sulfur Rep. 1993, 15, 41. 8.Kosugi, H.; Konta, H.; Uda, H. J. Chem. Soc., Chem. Commun. 1985, 211. 9Lindberg, P.; Br□ndstorm, A.; Wallmark, B.; Mattson, H.; Rikner, L.; Hoffman, K. –J. Med. Res. Rev. 1990, 10, 1. 10.Matsugi, M.; Fukuda, N.; Minamikawa, J.-i.; Otsuka, S. Tetrahedron Lett. 1998, 35, 5591. 11.Miloskowski, C.; Solladie, G. Tetrahedron 1980, 36, 227. 12.(a) Marino, J. P.; Kim, M.-W.; Lawrence, R. J. Org. Chem. 1989, 54, 1784. (b) Marino, J. P.; Bogdan, S.; Kimura, K. J. Am. Chem. Soc. 1992, 114, 5566. (c) Arai, Y.; Yamamoto, M.; Koizumi, T. Chem. Lett. 1986, 1225. 13.Arai, Y.; Yamamoto, M.; Koizumi, T. Bull. Chem. Soc., Jpn. 1988, 61, 467. 14.Andersen, K. K. Tetrahedron Lett. 1962, 93. 15.Colonna, S.; Gaggero, N.; Casella, L.; Carrea, G.; Pasta, P. Tetrahedron: Asymmetry 1992, 3, 95. 16.H. B. Kagan, in I. Ojima (Ed.), Catalytic Asymmetric Synthesis; VCH: Weinheim, 1993, pp. 203-226. 17.Komatsu, N.; Hashizume, M.; Sugita, T.; Uemura, S. J. Org. Chem. 1993, 58, 4529. 18.Donnoli, M. I.; Superchi, S.; Rosini, C. J. Org. Chem. 1998, 63, 9392 19.Yamanoi, Y.; Imamoto, T. J. Org. Chem. 1997, 62, 8560. 20.Palucki, M.; Handson, P.; Jacobsen, E. N. Tetrahedron Lett. 1992, 33, 7111. 21.Nagata, T.; Imagawa, K.; Yamada, T.; Mukaiyama, T. Bull. Chem. Soc., Jpn. 1995, 68, 3241. 22.Nakajima, K.; Kojima, M.; Toriumi, K.; Saito, K.; Fujita, J. Bull. Chem. Soc., Jpn. 1989, 62, 760. 23.Nakajima, K.; Kojima, K.; Kojima, M.; Fujita, J. Bull. Chem. Soc., Jpn. 1990, 63, 2620. 24.Bolm, C.; Bienewald, F. Angew. Chem. 1995, 107, 2883; Angew. Chem., In. Ed. Engl. 1995, 34, 2640. 25.Vetter, A. H.; Berkessel, A. Tetrahedron Lett. 1998, 39, 1741. 26.Pelotier, B.; Anson, M. S.; Campbell, I. B.; Macdonald, S. J. F.; Priem, G.; Jackson, R. F. W. Synlett 2002, 1055. 27.黃德仁博士論文,國立清華大學化學系,1999年。 28.陳培儂專題報告,國立清華大學化學系,2003年。 29.許筑婷碩士論文,國立清華大學化學系,2004年。 30.Robert, E.; Zhang, P. J. Org. Chem. 1996, 61, 8103. 31.Kouklovsky, C.; Pouilhes, A.; Langlois, Y. J. Am. Chem. Soc 1990, 112, 6672. (b) Malcolm R.; Blake, A. J.; Cadogan, J. I. G.; Doyle, A. A.; Gosney, I. Tetrahedron 1996, 52, 4079. 32.Oppolzer, W.; Radinov, R. N. Tetrahedron Lett. 1988, 29, 5645.id NH0925065061 sid 913430 cfn 0 / id NH0925065062 auc 楊家銘 tic 以超快雷射研究I-(CH2)n-Ph (n=0~2) 系列分子電子能轉移動態學 adc 鄭博元 教授 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 111 kwc 電子能轉移 kwc 超快雷射 kwc 光譜 abc 本論文主旨在以超快速雷射光譜研究氣相中I-(CH2)n-Ph (n = 0~2)系列分子的電子能轉移過程,主要的技術為激發-探測多光子游離法,及動能解析飛行時間質譜。待測分子由激發雷射光解,並以探測雷射游離光解產物後,再由飛行時間質譜儀解析碎片分子。 tc 1.封面 2.摘要 3.謝誌 4.目錄 5.第一章--------1 6.第二章-------20 7.第三章-------56 8.第四章-------83 9.第五章------107 10.參考文獻---109rf [1 ] photosynthesis [2 ] Mita Chattoraj, Balakrishna Bal, G. L. Closs, and Donald H. Levy, J. Phys. Chem. 95, 9666 (1991) . [3 ] Mita Chattoraj, Basil Paulson, Yan Shi, G. L. Closs, and Donald H. Levy, J. Phys. Chem. 97, 13046 (1993) . [4 ] Mita Chattoraj, Dutch D. Chung, Basil Paulson, G. L. Closs, Donald H. Levy, J. Phys. Chem. 98, 3361 (1994) . [5 ] W. T. Yip and Donald H. Levy, J. Phys. Chem. A 103, 10 (1999). [6 ] M. D. Person, P. W. Kash, and L. J. Bulter, J. Chem. Phys. 97, 355 (1992) . [7 ] P. W. Kash, G. C. G. Waschewsky, and L. J. Bulter, J. Chem. Phys. 99, 4479 (1993) . [8 ] P. W. Kash, G. C. G. Waschewsky, R. E. Morss,and L. J. Bulter, J. Chem. Phys. 100, 3463 (1994) . [9 ] Nicholas J. Turro , Modern Molecular Photochemistry. [10 ] P. Y. Cheng, D. Zhong, Ahmed H. Zewail, Chem. Phys. Lett. 237, 399 (1995) . [11 ] M. Kadi, J. Davidsson, A. N. Tarnovsky, M. Rasmusson, E.Akesson, Chem. Phys. Lett.350, 93 (2001). [12 ] T. Baumert, S. Pedersen, A. H. Zewail, J. Phys. Chem. 97, 12447 (1993). [13 ] P. Y. Cheng, D. Zhong, A. H. Zewail, Chem. Phys. Lett. 237, 399 (1995). [14 ] P. Y. Cheng, D. Zhong, A. H. Zewail, J. Phys. Chem. 99, 15733 (1995). [15 ] P. Y. Cheng, D. Zhong, A. H. Zewail, J. Phys. Chem. 105, 6216 (1996). [16 ] D. Zhong, A. H. Zewail, J. Phys. Chem.A 102, 4031 (1998). [17 ] Assion, A.; Baument, T.; Geisler, M.; Seyfried, V.; Gerber, G., European Physical Journal D: Atomic, Molecular and Optical Physics 145, 1034 (1998). [18 ] Cheng, Po-Yuan; Chen, Wei-Kan; Ho, Jr-Wei. Abstracts of Papers, 227th ACS National Meeting, Anaheim, CA, United States, March 28-April 1, (2004). [19 ] Cheng, P. Y.; Zhong, D.; Zewail, A. H. Chem. Phys. Lett. 242, 369 (1995). [20 ] Willam H. Pence, Steven L. Baughcum, and Stephen R. Leone, J. Phys. Chem. 85, 3844 (1981). [21 ] A. P. Baronavski and J. C. Owrutsky, J. Chem. Phys. 108, 3445 (1998). [22 ] A. Freedman, S.C. Yang, M. Kawasaki, and R. Bersohn, J. Chem. Phys. 72, 1028 (1980). [23 ] Ya-Jun Lin, Petter Persson, and Sten Lunell, J. Phys. Chem. A 108, 2339 (2004). [24 ] W Radloff, Th. Freudenberg, H.-H. Ritze, V. Stert, F. Noack, I. V. Hertel 1. Chem. Phys. Lett. 261, 301 (1996). [25 ] P. Farmanara, V. Stert, W. Radloff, and I. V. Hertel , J. Phys. Chem. A 105, 5613 (2001). [26 ] Shih-Huang Lee, Kuo-Chun Tang, I-Chia Chen, M. Schmitt, J. P. Shaffer, T. Schultz, Jonathan G. Underwood, M. Z. Zgierski, and Albert Stolow J. Phys. Chem. A 106, 8989 (2002). [27 ] P.Y. Cheng, D. Zhong, Ahmed H. Zewail, Chem. Phys. Lett. 237, 399 (1995). [28 ] M. Kadi, J. Davidsson, A.N. Tarnovsky, M. Rasmusson, E. Akesson, Chem. Phys. Lett. 350, 93 (2001).id NH0925065062 sid 913467 cfn 0 / id NH0925065063 auc 王坤鵬 tic 具抑制第一號介白素生合成潛力之2,4-二芳香基-5- tic & tic #21537;啶基咪唑類化合物及其類似物之合成研究 adc 劉行讓 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 252 kwc 咪唑類化合物 kwc 第一號介白素 kwc 生合成 kwc 類風濕性關節炎 kwc 發炎反應 kwc 抑制劑 kwc 前發炎細胞激素 abc 本論文主要分為兩部份:首先報導一個在2,4-二芳香基-5-吡啶基咪唑類化合物合成中,具備高效率和高度通用性之合成途徑。此方法可輕易的製備一系列2,4-二芳香基-5-吡啶基咪唑類化合物及在咪唑骨架五號碳上具不同氮雜環取代之2,4-二芳香基咪唑類化合物。首先我們利用市售之甲基吡啶作為起始物製備化合物10,經簡單氧化反應後可得到雙酮化合物 8,在此之後我們選擇性的利用市售具不同官能基之苯甲醛與雙酮化合物8進行合環反應,得到所需要的咪唑類骨架化合物4。此方法可在兼具產率和便利性的情形下,快速合成一系列具不同官能基取代的咪唑類化合物作為生物活性測試之用 tc 目 錄 中文摘要…………………………………………………………… I 英文摘要……………………………………………………………… III 謝誌……………………………………………………………………. V 縮寫對照表………………………………………………………... VI 目錄…………………………….……………………………………... VII 流程之目錄……………………………………………………………. XII 式之目錄…………………………………………………………….... XIII 表之目錄……………………………………………………………… XIV 圖之目錄……………………………………………………………… XV 第一章 緒論…………………………………………………………. 1 第二章 結果與討論………………………………………………… 13 2.1 2,4-二芳香基-5-吡啶基咪唑類化合物合成途徑的改良及其 類似物之合成………………………………………………. 13 2.1.1 2,4-二芳香基-5-(2-吡啶基)咪唑類化合物之合成研究 18 2.1.2 2,4-二芳香基-5-(3-吡啶基)咪唑類化合物之合成研究 27 2.1.3 2,4-二芳香基-5-(4-吡啶基)咪唑類化合物之合成研究 29 2.1.4 其他於五號碳上具不同氮雜環取代之2,4-二芳香基 咪唑類化合物之合成研究…………………………... 30 2.2 2,4-二芳香基-5-吡啶基咪唑類化合物及其類似物之生物活 性測試數據及其結構與活性之關聯性歸納………………. 31 2.3 具氮15同位素標記之2,4-二芳香基-5-吡啶基咪唑類化合 物合成途徑之研究…………………………………………. 36 第三章 結論…………………………………………………………. 37 第四章 實驗部份……………………………………………………. 39 4.1 一般實驗方法………………………………………………. 39 4.2 實驗步驟及光譜資料………………………………………. 42 4.2.1 化合物14的合成……………………………………. 42 4.2.2 化合物15的合成……………………………………. 43 4.2.3 化合物16的合成……………………………………. 44 4.2.4 化合物18及18a的合成……………………………. 45 4.2.5 化合物19的合成……………………………………. 46 4.2.6 化合物20a的合成…………………………………… 47 4.2.7 化合物20b的合成…………………………………… 48 4.2.8 化合物20c的合成…………………………………… 49 4.2.9 化合物20d的合成…………………………………… 50 4.2.10 化合物20e的合成…………………………………… 51 4.2.11 化合物20f的合成…………………………………… 52 4.2.12 化合物20g的合成…………………………………… 53 4.2.13 化合物20h的合成…………………………………… 54 4.2.14 化合物20i的合成……………………………………. 55 4.2.15 化合物20j的合成……………………………………. 56 4.2.16 化合物21a的合成…………………………………… 57 4.2.17 化合物21b的合成…………………………………… 58 4.2.18 化合物22及22a的合成……………………………… 59 4.2.19 化合物23及23a的合成…………………………….. 60 4.2.20 化合物24的合成…………………………………….. 61 4.2.21 化合物25a的合成…………………………………… 62 4.2.22 化合物25b的合成…………………………………… 63 4.2.23 化合物25c的合成…………………………………… 64 4.2.24 化合物25d的合成…………………………………… 66 4.2.25 化合物25e的合成…………………………………… 67 4.2.26 化合物25f的合成…………………………………… 68 4.2.27 化合物26的合成……………………………………. 69 4.2.28 化合物27a的合成…………………………………… 70 4.2.29 化合物27b的合成…………………………………… 71 4.2.30 化合物28的合成……………………………………... 72 4.2.31 化合物29a的合成…………………………………… 73 4.2.32 化合物29b的合成…………………………………… 74 4.2.33 化合物30的合成…………………………………….. 75 4.2.34 化合物31的合成…………………………………….. 76 4.2.35 化合物32a的合成…………………………………… 77 4.2.36 化合物32b的合成…………………………………… 78 4.2.37 化合物32c的合成…………………………………… 79 4.2.38 化合物32d的合成…………………………………… 80 4.2.39 化合物32e的合成…………………………………… 81 4.2.40 化合物32f的合成…………………………………… 82 4.2.41 化合物32g的合成…………………………………… 83 4.2.42 化合物32h的合成…………………………………… 84 4.2.43 化合物32i的合成……………………………………. 86 4.2.44 化合物34及34a的合成……………………………... 87 4.2.45 化合物35的合成…………………………………….. 88 4.2.46 化合物36a的合成……………………………………. 89 4.2.47 化合物36b的合成……………………………………. 90 4.2.48 化合物37a的合成……………………………………. 91 4.2.49 化合物37b的合成……………………………………. 92 4.2.50 化合物38a的合成……………………………………. 93 4.2.51 化合物38b的合成……………………………………. 95 4.2.52 化合物39的合成…………………………………….. 96 4.2.53 化合物40的合成…………………………………….. 97 4.2.54 化合物41的合成…………………………………….. 98 4.2.55 化合物42的合成…………………………………….. 99 4.2.56 化合物43的合成..……………………………………. 100 4.2.57 化合物44的合成..……………………………………. 101 4.2.58 化合物45的合成..……………………………………. 102 4.2.59 化合物47及48的合成..……………………………… 102 第五章 參考文獻…………………………………………………… 105 附錄…………………………………………………………………... 108rf 1. Gallagher, T. F.; Seibel, G. L.; Kassis, S.; Laydon, J. T.; Blumenthal, M. J.; Lee, J. C.; Lee, D.; Boehm, J. C.; Fier-Thompson, S. M.; Abt, J. W.; Soreson, M. E.; Smietana, J. M.; Hall, R. F.; Garigipati, R. S.; Bender, P. E.; Erhard, K. F.; Krog, A. J.; Hofmann, G. A.; Sheldrake, P. L.; McDonnell, P. C.; Kumar, S.; Young, P. R.; Adams, J. L. Bioorg. Med. Chem. 1997, 5, 49. 2. Taylor, S. S.; Radizo-Andzelm, E. Structure 1994, 2, 345. 3. Brennan, F. M.; Feldman, M. Curr. Opin. Immunol. 1996, 8, 872. 4. Wilson, K. P.; McCaffrey, P. G.; Hsiao, K.; Pazhanisamy, S.; Galullo, V.; Bemis, G. W.; Fitzgibbon, M. J.; Caron, P. R.; Murcko, M. A.; Su, M. Chem. & Biol. 1997, 4, 423. 5. Camussi, G. Lupia, E. Drugs 1998, 55, 613. 6. Han, J.; Lee, J. D.; Bibbs, L.; Ulevitch, R. J. Science 1994, 265, 808. 7. Lee, J. C.; Griswold, D. E.; Votta, B.; Hanna, N. Int. Immunopharmacol. 1988, 10, 835. 8. Lee, J. C.; Kumar, S.; Griswold, D. E.; Underwood,D. C.; Votta, B. J.; Adams, J. L. Immunopharmacology 2000, 47, 185. 9. Smalley, K.; Eisen, T. FEBS Letters 2000, 476, 198. 10. Lin, A.; Karin, M. Seminars in Cancer Biology 2003, 13, 107. 11. Timothy S. F., John K. W., Jacqueline L. N., Amer A. B., Channing J. D., and Albert S. B. Jr. J. Bio. Chem. 1997, 272, 24113. 12. Gallagher, T. F.; Fier-Thompson, S. M.; Garigipati, R. S.; Sorenson, M. E.; Smietana, J. M.; Lee, D.; Bender, P. E.; Lee, J. C.; Laydon, J. T.; Griswold, D. E.; Chabot-Fletcher, M. C.; Breton, J. J.; Adams, J. L. Bioorg. Med. Chem. Lett. 1995, 5, 1171. 13. Lee, J. C.; Laydon, J. T.; McDonnell, P. C.; Gallagher, T. F.; Kumar, S.; Green, D.; McNulty, D.; Blumenthal, M. J.; Heys, J. R.; Landvatter, S. W.; Strickler, J. E.; McLaughlin, M. M.; Siemens, I. R.; Fisher, S. M.; Livi, G. P.; White, J. R.; Adams, J. L.; Young, P. R. Nature 1994, 372, 739. 14. Cuenda, A.; Rouse, J.; Doza, Y. N.; Meier, R.; Cohen, P.; Gallagher, T. F.; Young, P. R.; Lee, J. C. FEBS Letters 1995, 364, 229. 15. Tong, L.; Pav, S.; White, D. M.; Rogers, S.; Crane, K. M.; Cywin, C. L.; Brown, M. L.; Pargellis, C. A. Nature Structural Biology 1997, 4, 311. 16. Wolfe, J. F.; Portlock, D. E.; Feuerbach, D. J. J. Org. Chem. 1974, 39, 2006. 17. Rabjohn Org. React. 1976, 24, 261. 18. Verbeek, J.; Brandsma, L. J. Org. Chem. 1984, 49, 3857. 19. Gros, P.; Fort, Y.; Caubère, P. J. Chem. Soc. Perkin Trans.2 1997, 1, 3597. 20. Laus, G. J. Chem. Soc. Perkin Trans.2 2001, 6, 864. 21. Van-Ammers, M.; Den-Hertog, H. J. Tetrahedron 1962, 18, 227. 22. Leonard, F.; Wajngurt, A. J. Org. Chem. 1956, 21, 1077. 23. Ochiai, E. J. Org. Chem. 1953, 18, 534. 24. Malinowski, M.; Kaczmarek, L. Synthesis 1987, 1013. 25. Negishi, E.; Kotora, M.; Xu, C. J. Org. Chem. 1997, 62, 8957. 26. Okubo, J.; Shinozaki, H.; Koitabashi, T.; Yomura, R. Bull. Chem. Soc. Jpn. 1998, 71, 329. 27. Srinivasan, N. S.; Lee, D. L. J. Org. Chem. 1979, 44, 1574. 28. Paraskewas, S. M. Synthesis 1980. 378.id NH0925065063 sid 913406 cfn 0 / id NH0925065064 auc 王彥鵬 tic 鉑四價金屬錯合物之合成及發光性質研究 adc 陳秋炳 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 120 kwc 鉑 kwc 錯合物 kwc 發光 abc 為了想要獲得能夠應用在有機電激發光元件上的藍色磷光材料,一般均是藉由改變配位基上取代基結構的方法,來得到增大或是減少HOMO-LUMO能階差,以達到讓這有機金屬錯合物有更佳藍位移或是紅位移的效果。但是我們以另一個方向來著手,希望能夠藉由直接改變中心金屬氧化數的方式,提高中心金屬氧化數從鉑二價到鉑四價,降低原本是MLCT能量傳輸的HOMO能階,來達到使鉑二價金屬錯合物發出來的光波長能夠更加藍位移的結果。 tc 目錄 -------------------------------------------------------- 緒論 (1) 實驗步驟 (25) 結果與討論 (46) 結論 (78) 參考資料 (80) 附件 (84)rf 1. Perrin F. (1929) Doctoral thesis, Paris; Annales de Physique 12, 2252-4 2. Nickel B. (1996) Pioneers in Photochemistry. From the Perrin Diagram to Jablonski Diagram, EPA Newsletter 58, 9-38 3. 林敬二; 林宗義. 儀器分析第四版. 1994, 上冊, 174 -193. 4. W. Helfrich and W. G. Schneidere. Phys Rev Lett. 1965, 14, 229 5. J. Dresner. RCA Rev. 1969, 30, 322 6. D. F. Williams and M. Schadt. Proc IEEE. 1970, 58, 476. 7. P. S. Vincett and W. A. Barlow. Thin Solid Flims. 1982, 94. 171 8. C. W. Tang and S. A. VanSlyke. Appl. Phys Lett. 1987, 51, 913 9. C. W. Tang and S. A. VanSlyke. J. Appl. Phys. 1989 , 65, 3610 10. M. Kawabe, K. Masuda, and S. Namba. Jpn. J. Appl. Phys. 1971, 10, 527 11. Junji KIDO. Chem. Lett. 1990, 657 12. Junji KIDO. Chem. Lett. 1991, 1267 13. Junji KIDO. Appl. Phys. Lett. 1994, 65, 2124 14. M. E. Thompson. Nature. 1998, 395, 151 15. Nir Tessler. Advanced Mater. 1999, 11, 285 16. M. E. Thompson. Chem. Mater. 1999, 11, 3709 17. M. E. Thompson. J. Am. Chem. Soc. 2001, 123, 4304 18. .King, K. A. J. Am. Chem. Soc. 1985, 107, 1431 -1432 19. Di Marco. G. Anal. Chem. 1998, 70, 5019 -5023 20. M. E. Thompson. J. Am. Chem. Soc. 2003, 125, 12971 -12979 21. K. A. King. J. Am. Chem. Soc. 1985, 107, 1431 -1432 22. M. A. Baldo. Appl. Phys. Lett. 1999, 75, 4 -6 23. Shizuo Tokito. Appl Phys Lett. 2001, 79, 156 -158 24. Mark. E. Thompson. J. Appl. Phys. 2001, 90, 5048 -5051 25. M. E. Thompson. J. Am. Chem. Soc. 2003, 125, 12971 -12979 26. M. E. Thompson. J. Am. Chem. Soc. 2003, 125 (24), 7377 -7387 27. M. E. Thompson. Appl. Phys. Lett. 2001, 79 (13), 2082 -2084 28. M. E. Thompson. Appl. Phys. Lett. 2003, 82 (15), 2422 -2424 29. Shizuo. Appl. Phys. Lett. 2003, 83 (3), 569 -571 30. Mark. E. Thompson. Appl. Phys. Lett. 2003, 83 (18), 3818 -3820 31. M. E. Thompson. U.S. Pattren. US2002 / 0182441 A1 32. Maestri, M.; von Zelewsky. A. Chem. Phys. Lett. 1985, 122, 375 -379 33. M. E. Thompson. Inorg. Chem. 2002, 41, 3055 -3066id NH0925065064 sid 913488 cfn 0 / id NH0925065065 auc 萬厚德 tic 鉑催化劑上的部分氧化甲醇反應 adc 葉君棣 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 69 kwc 鉑催化劑 kwc 鉑 kwc 甲醇的部分氧化反應 kwc 甲醇 kwc 部分氧化反應 abc 本研究的目的是要在低溫下從甲醇製備出氫氣的裕氣(hydrogen rich gas),用來當作質子交換膜燃料電池(proton exchange membrane fuel cell, PEMFC)的燃料。利用初濕含浸法(incipit wetness)、和共沉澱法(coprecipitaton)製備以ZnO當擔體的鉑觸媒,來觀察Pt/ZnO觸媒對於催化甲醇部分氧化反應(partial oxidation of methanol, POM)製氫的特性。 tc 第一章 緒論 1 1-1前言 1 1-2 燃料電池 1 1-3甲醇製氫 4 1-4 POM的文獻回顧和金屬及支撐物的選擇 6 1-5研究目的和方向 8 第二章 實驗 9 2-1 藥品 9 2-2 鉑觸媒的製備 10 2-2.1以初濕含浸法(IW)製備Pt/Zn-I觸媒 10 2-2.2 以共沉澱浸法(CP)製備Pt/Zn-C和Pt/CeZn觸媒 10 2-4 觸媒的特性鑑定 11 2-4.1程溫還原反應(TPR) 11 2-4.2 元素分析(ICP-AES) 15 2-4.3 X光粉末繞射儀 15 2.4.4 穿透式電子顯微鏡(TEM) 15 2.4.5 觸媒催化POM的反應活性測試 16 第三章 結果與討論 21 3-1鉑觸媒的特性鑑定 21 3-1.1 X光粉末繞射 21 3-1.2鉑金屬的顆粒大小 21 3-1.3 程溫還原分析 33 3-2 鉑觸媒的催化活性 42 3-2.1 鉑金屬含量對催化活性的影響 42 3-2.2製備過程pH值對催化活性的影響 45 3-2.3 Pt/Zn催化POM的反應機制 48 3-2.4 Pt/Zn加入Ce對催化活性的影響 53 3-2.5 溫度對於催化活性的影響 56 3-2.7 氧醇比(O2/MeOH)對催化活性的影響 59 3-3 未來研究方向 62 第四章 結論 64 第五章 參考文獻 65rf [1 ] S. Velu, K. Suzuki, M. Okazaki, M.P. Kapoor, T. Osaki, F.Ohashi, J. Catal., 194 (2000) 373. [2 ] T. Klaiber, J. Power Sources, 61 (1996) 61. [3 ] P. Ekdunge, M. Råberg, Int. J. Hydrogen Energy, 23 (1998) 381. [4 ] W.J. Piel, Fuel Processing Technology, 71 (2001) 167. [5 ] B. Höhlein, J. Bøgild-Hansen, P. Bröckerhoff, G. Colsman, B. Emonts, R. Menzer, E. Riedel, J. Power Sources, 61 (1996) 143. [6 ] M. Specht, F. Staiss, A. Bandi, T. Weimer, Int. J. Hydrogen Energy, 23 (1998) 387. [7 ] A. Docter, A. Lamm, J. Power Sources, 84 (1999) 194. [8 ] 葉君棣,科學人,12 (2002) 52. [9 ] A.K. Shukla, P. A. Christensen, A. Hamnett, M.P. Hogarth, J. Power Sources, 55 (1995) 87. [10 ] G.G. Scherer, Solid State Ionics, 94 (1997) 249. [11 ] B. Linström, L.J. Pettersson, Catal. Lett., 74 (2001) 27. [12 ] F. Joensen, J.R. Rostrup-Nielsen, J. Power Sources, 105 (2002) 195. [13 ] C.R. Manns, C.E. Taylor, Furl Chemistry Division Perprints, 46 (2001) 6. [14 ] D.J. Moon, K. Sreekumar, S.D. Lee, B.G. Lee, H. S. Kim, Appl. Catal. A: General, 215 (2001) 1. [15 ] A.S. Arico, P. Creti, P.L. Antonucci, V. Antonucci, Electrochemical and Soild-State Letters, 1 (1998) 66. [16 ] Bård Lindström, Lars J. Pettersson, Int. J. Hydrogen Energy, 26 (2001) 923. [17 ] J.R. Rostrup-Nielsen, T.S. Christensen, I. Dybkjaer, Recent Advances in Basic and Applied Aspects of Industrial Catalysis, 113 (1998) 81. [18 ] T. Takahashi, M. Inoue, T. Kai, Appl. Catal. A: General, 218 (2001) 189. [19 ] Y.M. Lin, M.H. Rei, Int. J. Hydrogen Energy, 25 (2000) 211. [20 ] W. Wiese, B. Enonts, R. Peters, J. Power Source, 84 (1999) 187. [21 ] N. Takezawa, N. Iwasa, Catal. Today, 36 (1997) 45. [22 ] C.J. Jiang, D.L. Trimm, M.S. Wainwright, Appl. Catal. A: General, 97 (1993) 145. [23 ] T.L. Reitz, S. Ahmed, M. Krumpelt, R. Kumar, H.H. Kung, J. Mole. Catal. A Chemical, 162 (2000) 275 [24 ] S. Velu, K. Suzuki, M.P. Kapoor, F. Ohashi, T. Osaki, Appl. Catal. A: General, 213 (2001) 47. [25 ] S. Murcia-Mascaròs, R.M. Navarro, L. Gòmez-Sainero, U. Costantino, M. Nocchetti, J.L.G. Fierro, J. Catal., 198 (2001). [26 ] T.L. Reitz, P.L. Lee, K.F. Czaplewski, J.C. Lang, K.E. Popp, H.H. Kung, J. Catal., 199 (2001) 193. [27 ] K. Sekizawa, S.I. Yano, K. Eguchi, H. Arai, Appl. Catal. A: General, 169 (1998) 291. [28 ] B. Emonts, J.B. Hansen, S.L. Jørgensen, B. Höhlein, R. Peters, J. Power Sources, 71 (1998) 288. [29 ] G. Jacobs, L. Williams, U. Graham, D. Sparks, B.H. Davis, J. Phys. Chem. B, 107 (2003) 10398. [30 ] J. Larminie, A. Dicks, Fuel Cell Systems Explained, 206-207 [31 ] S. Velu, K. Suzuki, T. Osaki, Catal. Lett., 62 (1999) 159. [32 ] Z. Wang, J. Xi, W. Wang, G. Lu, J. Mole. Catal., 191 (2003) 123 [33 ] Cubeiro, J.L.G. Fierro, Appl. Catal. A: General, 168 (1998) 307. [34 ] 尚未發表 [35 ] 洪華聖,碩士論文(2002) [36 ] L. Mo, X. Zheng and C. T. Yeh, Chem. Comm., (2004)1426. [37 ] C. B. Wang, and C. T. Yeh, J. Catal.,178 (1998) 450 [38 ] S. C. Chou and C. T. Yeh,J. Chem. Soc. Faraday Trans.,92 (1996) 1409 [39 ] C. P. Hwang and C. T. Yeh, J. Catal,182 (1999) 48 [40 ] D. R. Lide, CRC Handbook of Chemistry and Physics 72 (1991~1992) 16-11id NH0925065065 sid 913423 cfn 0 / id NH0925065066 auc 戴慧中 tic 有機與無機汞理論化學研究: 配位立體化學,化學鍵及蛋白質/核酸與金屬相互之選擇性 adc 林小喬博士 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 英文 pg 25 kwc 計算生物化學 kwc 蛋白質 kwc 汞金屬 kwc 重金屬中毒 abc 重金屬中毒一直是高度工業化社會日益嚴重的問題。近年來,國際間層出不窮的汞污染包括日本水俁縣發生的有機汞中毒及前幾年的跨國公害糾紛-台塑汞汙泥事件,使得汞汙染對環境及人體的影響成為大家關注的焦點。汞汙染的來源非常多,例如氯鹼、塑膠、電池和電子工業排放的廢水造成的水污染及使用含汞的農藥或肥料則造成土壤汙染乃至垃圾焚化爐、燃煤發電廠對空氣的污染等。由於一般工業產生的無機汞在環境中易透過微生物的作用轉化成有機汞,因此汞污染主要可分為有機汞、無機汞兩大類。無機汞對人體造成的影響主要會引起噁心、嘔吐、腹痛等症狀,長期甚至會對肝或腎造成傷害,通常有機汞比無機汞化合物更容易被人體吸收,毒性更重,在人體滯留時間也更久,其對人體的損害主要在神經及免疫系統相關疾病,也會破壞重要遺傳物質如DNA的結構。目前科學研究上對重金屬中毒的作用機制並無深入了解,也未提出有效的解毒方法,為此,我們系統性地分析並比較有機與無機汞金屬在不同化學環境下和蛋白質間相互之選擇性與化學鍵結,以助於了解與發展中毒及解毒機制的研究。 tc 目錄 中文摘要---------------------------------------------------0 英文摘要---------------------------------------------------1 緒論------------------------------------------------------2 方法------------------------------------------------------4 結果-----------------------------------------------------10 討論-----------------------------------------------------20 感謝-----------------------------------------------------21 參考文獻--------------------------------------------------22 rf References (1) Craig, P. J.; Wilkinson, G. Comprehensive Organometallic Chemistry; Pergamon: New York, 1982. (2) Klaassen, C. D. Casarett and Doull’s Toxicology; International Press: McGraw-Hill, New York, 1996. (3) Albers, R.; Bloksma, N. Immunology 1996, 89, 468. (4) Jin, G.; Inoue, S.; Cyong, J. Toxicol. Appl. Pharmacol. 2002, 185, 98. (5) Hess, E. V. Toxicology 2002, 181, 65. (6) Prizant, L.; Olivier, M. J.; Rivest, R.; Beauchamp, A. L. Can. J. Chem. 1981, 59, 1311. (7) Buncel, E.; Norris, A. R.; Racz, W. J.; Taylor, S. E. Inorg. Chem. 1981, 20, 98. (8) Buncel, E.; Hunter, B. K.; Kumar, R.; Norris, A. R. J. Inorg. Biochem. 1984, 20, 171. (9) Norris, A. R.; Kumar, R.; Buncel, E. J. Inorg. Biochem. 1984, 22, 11. (10) Sponer, J.; Burda, J. V.; Hobza, P. J. Phys. Chem. A 1998, 102, 5951. (11) Sponer, J.; Sabat, M.; Hobza, P. J. Phys. Chem. B 1999, 103, 2528. (12) Sponer, J.; Sponer, J. E.; Lippert, B. J. Phys. Chem. A 1999, 103, 11406. (13) Richens, D. T. The Chemistry of Aqua Ions; John Wiley & Sons: New York, 1997. (14) Goggin, P. L.; Woodward, L. A. Trans. Farad. Soc. 1960, 56, 1591. (15) Goggin, P. L.; Woodward, L. A. Trans. Farad. Soc. 1962, 58, 1495. (16) Jawaid, M.; Ingman, F.; Liem, D. H. Acta. Chem. Scand. 1978, 32A, 333. (17) Schwarzenbach, G.; Schellenberg, M. Helv. Chim. Acta. 1965, 48, 28. (18) Clarke, J. H. R.; Woodward, L. A.; Trans. Farad. Soc. 1966, 62, 3032. (19) Libich, S.; Rabenstein, D. L. Anal. Chem. 1973, 45, 118. (20) Sudmeier, J. L.; Perkins, T. G. J. Mag. Reson. 1978, 30, 491. (21) Erni, I. W.; Geier, G. Helv. Chim. Acta. 1979, 62, 1007. (22) Geier, G.; Gross, H. Inorg. Chim. Acta. 1989, 156, 91. (23) Raychera, J. M. T.; Geier, G. Inorg. Chem. 1979, 18, 2486. (24) Peringer, P. J. Chem. Research. (S) 1980, 194. (25) Satchell, D. P. N.; Satchell, R. S. J. Chem. Research. (S) 1988, 262. (26) Diaddario, L. L.; Rorabacher, D. B. Inorg. Chem. 1992, 31, 2347. (27) Autschbach, J.; Ziegler, T. J. Am. Chem. Soc. 2001, 123, 3341. (28) Barone, V.; Bencini, A.; Uytterhoeven, M. G. J. Phys. Chem. 1995, 99, 12743. (29) Barone, V.; Bencini, A.; Uytterhoeven, M. G. Organometallics 1996, 15, 1465. (30) Cundari, T. R.; Yoshikawa, A. J. Comp. Chem. 1998, 8, 902. (31) Tossell, J. A. J. Phys. Chem. A 1998, 102, 3587. (32) Sheldrick, W. S.; Heeb, G. Inorg. Chim. Acta. 1992, 194, 67. (33) Lawley, K. P. Ab Initio Methods in Quantum Chemistry; John Wiley & Sons: New York, 1987. (34) Pyykko, P.; Desclaux, J. Acc. Chem. Res. 1979, 12, 276. (35) Ros, P.; Snijders, J. G.; Ziegler, T. Chem. Phys. Lett.1980, 69, 297. (36) Ziegler, T.; Snijders, J. G.; Baerends, E. J. J. Chem. Phys. 1981, 74, 1271. (37) Stevens, W. J.; Krauss, M. Can. J. Chem. 1992, 70, 612. (38) Eigen, M.; Eyring, E. M. Inorg. Chem. 1962, 2, 636. (39) Johansson G. Acta. Chem. Scand. 1971, 25, 2799. (40) Tamura, K.; Yasunaga, T. Bull. Chem. Soc. Japan 1978, 51, 2928. (41) Barnum, D. W. Inorg. Chem. 1983, 22, 2297. (42) Marcus, Y. Chem. Rev. 1988, 88, 1475. (43) Bergstrom, P.; Sandstrom, M. Inorg. Chem. 1992, 31, 150. (44) Marcus, Y. Biophys. Chem. 1994, 51, 111. (45) Yamamura, T.; Watanabe, T.; Hirota, H. Inorg. Chem. 1997, 36, 4849. (46) Rulisek, L.; Havlas, Z. J. Am. Chem. Soc.2000, 122, 10428. (47) Tossell, J. A. J. Phys. Chem. A 2001, 105, 935. (48) Rulisek, L.; Havlas, Z. J. Phys. Chem. A 2002, 106, 3855. (49) Matzapetakis, M.; Farrer, B. T.; Weng, T.; Pecoraro, V. L. J. Am. Chem. Soc.2002, 124, 8042. (50) DeSilva, T. M.; Veglia, G.; Porcelli, F.; Prantner, A. M.; Opella, S. J. Biopolymers 2002, 64, 189. (51) Rulisek, L.; Havlas, Z. J. Phys. Chem. B 2003, 107, 2376. (52) Bache, C. A.; Gutenmann, W. H.; Lisk, D. J. Science 1971, 172, 951. (53) Lippard, S. J.; Berg, J. M. Pinciples of Bioinorganic Chemistry; University Science Books: Mill Valley, California, 1994. (54) Krizek, B. A.; Merkle, D. L.; Berg, J. M. Inorg. Chem. 1993, 32, 937. (55) Hartwig, A. Toxicol. Lett. 1998, 102-103, 235. (56) Hartwig, A. Pure Appl. Chem. 2000, 72, 1007. (57) Hartwig, A. Antiox. redox signaling 2001, 3, 625. (58) Hartwig, A.; Asmuss, M.; Blessing, H.; Hoffmann, S.; Jahnke, G.; Khandelwal, S.; Polzer, A.; Burkle, A. Food Chem. Toxicol. 2002, 40, 1179. (59) Asmuss, M.; Mullenders, L. H. F.; Hartwig, A. Toxicol. Lett. 2000, 112-113, 227. (60) Petering, D. H.; Huang, M.; Moteki, S.; Shaw III, C. F. Marine Environ. Res. 2000, 50, 89. (61) Moteki, S. A.; Huang, M.; Shaw III, C. F.; Petering, D. H. J. Inorg. Biochem. 1999, 74, 239. (62) Razmiafshari, M.; Kao, J.; d'Avignon, A.; Zawia, N. H. Toxicol. Appl. Pharmacol. 2001, 172, 1. (63) Payne, J. C.; Horst, M. A. T.; Godwin, H. A. J. Am. Chem. Soc. 1999, 121, 6850. (64) Predki, P. F.; Sarkar, B. J. Biol. Chem. 1992, 267, 5842. (65) Huan, Y.; Chu, D. Y.; Tang, Y.; Cao, W. Acta Phys. Chim. Sinica 2000, 16, 764. (66) Roesijadi, G. Cell. Mol. Biol. 2000, 46, 393. (67) Fonseca Guerra, C.; Snijders, J. G.; Te Velde, G.; Baerends, E. J. Theor. Chem. Acc. 1998, 99, 391. (68) Bickelhaupt, F. M.; Baerends, E. J. Reviews in Computational Chemistry; Lipkowitz, K. B., Boyd, D. B., Eds.;VCH: New York, 2000; Vol. 15, p 1. (69) Te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; Van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J. Comput. Chem. 2001, 22. 931. (70) Jaguar 5.0; Schrodinger, Inc.: Portland, OR, 2003. (71) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich. S.; Milliam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomberts, R.; Martin, R. L.; Fox, D. J.; Keith, T. A.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 03; Gaussian Inc.: Pittsburgh, PA, 2003. (72) Becke, A. D. Phys. Rev. A 1988, 38, 3098. (73) Perdew, J. P. Phys. Rev. B 1986, 33, 8822. (74) Van Lenthe, E.; Ehlers, A. E.; Baerends, E. J. J. Chem. Phys. 1999, 110, 8943 and refs. cited therein. (75) Snijders, J. G.; Baerends, E. J.; Vernooijs, P. At. Data Nucl. Tables 1982, 26, 483. (76) Baerends, E. J.; Ellis, D. E.; Ros, P. Chem. Phys. 1973, 2, 41 (77) Ziegler, T.; Rauk, A. Theor. Chim. Acta 1977, 46, 1. (78) Ziegler, T.; Rauk, A. Inorg. Chem. 1979, 18, 1755. (79) Frenking, G.; Fröhlich, N. Chem. Rev. 2000, 100, 717. (80) Becke, A. D. Phys. Rev. A 1988, 38, 3098. (81) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200. (82) Lee, C.;Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (83) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (84) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. (85) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284. (86) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. (87) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007. (88) McQuarrie, D. A. Statistical Mechanics; Harper and Row: New York, 1976; p 137. (89) Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502. (90) Tomasi, J.; Persico, M. Chem. Rev. 1994, 94, 2027. (91) Cramer, C. J.; Truhlar, D. G. Solvent Effects and Chemical Reactivity; Tapia, O., Bertran, J.,Eds.; Kluwer: Dordrecht, The Netherlands, 1996; p 1. (92) Tannor, D. J.;Marten, B.; Murphy, R. B.; Friesner, R. A.; Sitkoff, D.; Nicholls, A.; Ringnalda, M. N.; Goddard, W. A., III; Honig, B. J. Am. Chem. Soc. 1994, 116, 11875. (93) Marten, B.; Kim, K.; Cortis, C.; Friesner, R. A.; Murphy, R. B.; Ringnalda, M. N.; Sitkoff, D.; Honig, B. J. Phys. Chem. 1996, 100, 11775. (94) Gilson, M. K.; Honig, B. Biopolymers 1986, 25, 2097. (95) Harvey, S. C.; Hoekstra, P. J. Phys. Chem. 1972, 76, 2987. (96) Perdew, J. P.; Wang, Y. Phys. Rev. 1992, B45, 13244 (97) Dolg, M.; Stoll, H.; Preuss, H.; R. M. Pitzer, R. M. J. Phys. Chem. 1993, 97, 5852. (98) Alex, S.; Savoie, R.; Corbeil, M.; Beauchamp, A. L. Can. J. Chem. 1986, 64, 148. (99) Jamieson, E. R.; Lippard, S. J. J. Am. Chem. Soc. 1999, 99, 2467. (100) Deubel, D. V. J. Am. Chem. Soc. 2002, 124, 5834. (101) X-ray structures of endopeptidase (PDB entry 1IAC), dehydratase (PDB entry 1QML), mercuric transport protein (PDB entry 1AFJ), Metallochaperone (PDB entry 1CC8), and Hydrolase (PDB entry 1PTK). (102) Dudev, T.; Lin, Y.; Dudev, M.; Lim, C. J. Am. Chem. Soc. 2003, 125, 3168 and refs. cited therein. (103) Dudev, T.; Lim, C. J. Am. Chem. Soc. 2000, 122, 11146. (104) Dudev, T.; Lim, C. Chem. Rev. 2003, 103. 773. (105) Klamt, A.; Jonas, V. J. Phys. Chem. A 1998, 102, 5074 and refs. (106) Tannor, D.; Marten, B.; Friesner, R. J. Am. Chem. Soc. 1994, 116, 11875 and refs. (107) Martell, A. E. Metal Complexes in Aqueous Solution; Plenum Press, 1996id NH0925065066 sid 913463 cfn 0 / id NH0925065067 auc 陳仁焜 tic 液相層析電灑游離串聯質譜儀與電子鼻探討乳類製品暨食用油脂之鑑別與摻假 adc 凌永健 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 英文 pg 120 kwc 摻假 kwc 電灑游離串聯質譜 kwc 電子鼻 kwc 乳類製品 kwc 食用油脂 kwc 乳球蛋白 kwc 熱誘發醣化指標 kwc 三酸甘油酯 abc 由於全球市場競爭日益激烈,而有越來越多國家加入世界關稅貿易組織(Word Trade Organization, WTO),此舉已對部分國家的經濟產生嚴重衝擊,特別是食品及消費性產品的生產成本較高,同時人事成本亦逐漸攀升的國家。例如,為了謀取不當的利潤,某些製造商會以摻假的手法矇騙消費者。以牛乳為例,它是一種被廣泛消費的乳製品,在我國的生產成本卻相對偏高,約為世界主要乳品輸出地區(包含紐西蘭、澳大利亞、歐洲等地)的2~3倍,因此國人對於乳製品摻假的疑慮已有長達20年以上的歷史,其中以在鮮牛乳中摻雜低價乳粉與在羊乳中摻雜牛乳的情況最為常見。除了液態乳品之外,近年來在魚油產品中摻混植物油以求降低成本的傳聞亦漸有所聞。事實上,欲憑藉著食品的外觀或是簡易的可攜式設備去鑑別乳品與食用油脂的品質有極高的困難度,故有必要建立一套標準可靠的鑑別方法。為因應此類需求,本研究整合多種分析方法,能夠可靠的鑑別乳品與食用油脂的種類與測定該類樣品的摻假情形。 tc Contents Abstract (Chinese) I Abstract III Acknowledgements VI Contents VII Chapter 1 Introduction 1 1.1 Motivation and goals 1 1.2 Instrumentation 3 1.2.1 Electronic nose 3 1.2.2 Electrospray ionization mass spectrometer 4 1.3 Statistical tools and analysis 5 1.3.1 Hierarchical cluster analysis (HCA) 5 1.3.2 Principal components analysis (PCA) 8 1.3.3 Factor analysis 9 References 11 Chapter 2 Classification of fresh cow milk, goat milk, and reconstituted milk using flavors and milk fat as target molecules by electronic nose and direct infusion ESI-MS 15 2.1 Introduction 15 2.2 Experimental 17 2.2.1 Sample preparation 17 2.2.2 Electronic nose 18 2.2.3 Electrospray ionization mass spectrometer 18 2.2.4 Urea SDS-PAGE 19 2.3 Results and discussion 20 2.3.1 Classification of fresh milk and adulterated milk samples 20 2.3.2 Evaluation of reconstituted milk concentration in fresh milk 21 2.3.3 Classification of cow milk and goat milk 24 2.3.4 Detection of casein by urea SDS-PAGE 28 2.4 Conclusions 29 References 29 Chapter 3 Investigation of adulterated goat milk by cow milk using high-performance liquid chromatography electrospray ionization mass spectrometry 32 3.1 Introduction 32 3.2 Experimental 34 3.2.1 Sample preparation 34 3.2.2 Liquid chromatography/mass spectrometry 34 3.3 Results and discussion 36 3.3.1 Sample pretreatment 36 3.3.2 Qualitative analysis by HPLC/ESI-MS 37 3.3.3 Selection of biological markers 41 3.3.4 Quantitative analysis of adulterated goat milk 43 3.3.5 Comparison to currently used CNS method 47 3.4 Conclusions 47 References 49 Chapter 4 Simple, rapid method for differentiating fresh cow milk from reconstituted and sterilized milk using HPLC/ESI-MS 52 4.1 Introduction 52 4.2 Experimental 55 4.2.1 Materials and sample preparation 55 4.2.2 Liquid chromatography/mass spectrometry 55 4.3 Results and discussion 56 4.3.1 Chromatographic analysis 56 4.3.2 Mass spectrometric analysis 57 4.3.3 Thermal-induced glycation index (TGI) 62 4.3.4 Characteristics of fresh, reconstituted and sterilized milk 64 4.3.5 Comparison of TGI-LGA and TGI-LGB 68 4.3.6 Quantitative analysis of adulterated fresh cow milk 69 4.3.7 Classification of milk based on milk treatment process 69 4.3.8 Comparison of currently available methods 71 4.4 Conclusions 72 References 73 Chapter 5 Probing the lactosylation sites of lactoglobulins in cow milk by HPLC/ESI-MS/MS 77 5.1 Introduction 77 5.2 Experimental 78 5.2.1 Separation of lactoglobulins using RP-HPLC 78 5.2.2 Digestion of lactoglobulins 79 5.2.3 Mass spectrometry for analysis of protein 79 5.2.4 Identification of protein 81 5.3 Results and discussion 81 5.3.1 Glycation process 81 5.3.2 Sequence coverage and protein identification 82 5.3.3 Probing lactosylation sites 84 5.3.4 Tandem mass spectrometry 87 5.3.5 Supplementary method for identification 87 5.4 Conclusions 89 References 90 Chapter 6 Characterization of edible oil and fat using triglycerides as biological markers by ESI-MS and ESI-MS/MS 93 6.1 Introduction 93 6.2 Experimental 95 6.2.1 Sample preparation 95 6.2.2 ESI-MS and ESI-MS/MS 95 6.2.3 Statistical analysis 96 6.3 Results and discussion 96 6.3.1 Mass spectral profiles of triglycerides 96 6.3.2 Calculation of equivalent carbon number 98 6.3.3 Statistical analysis of edible oil and fat samples 99 6.3.4 Biomarker selection approach 101 6.3.5 Identification of suspicious fish oil products 104 6.3.6 Tandem mass spectrometric analysis of triglycerides 107 6.4 Conclusions 108 References 109 Chapter 7 Comprehensive comments 112 7.1 Dual roles played by mass spectrometer 113 7.2 Total solution for milk identification 115 7.3 Differentiation of oil for diet assurance 117 Appendix 119 A1. Abbreviation 119 A2. Definition 120rf Chapter 1 1.Ogrinc, N.; Kosir, I. J.; Spangenberg, J. E.; Kidric, J. "The application of NMR and MS methods for detection of adulteration of wine, fruit juices, and olive oil: A review." Analytical and Bioanalytical Chemistry 2003, 376, 424-430. 2.Cordella, C.; Moussa, I.; Martel, A. C.; Sbirrazzuoli, N.; Lizzani-Cuvelier, L. "Recent developments in food characterization and adulteration detection: Technique-oriented perspectives." Journal of Agricultural and Food Chemistry 2002, 50, 1751-1764. 3.Garciajares, C.; Garciamartin, S.; Celatorrijos, R. "Analysis of some highly volatile compounds of wine by means of purge and cold trapping Injector capillary gas-chromatography - application to the differentiation of Rias-Baixas spanish white wines." Journal of Agricultural and Food Chemistry 1995, 43, 764-768. 4.Ogrinc, N.; Kosir, I. J.; Kocjancic, M.; Kidric, J. "Determination of authenticy, regional origin, and vintage of Slovenian wines using a combination of IRMS and SNIF-NMR analyses." Journal of Agricultural and Food Chemistry 2001, 49, 1432-1440. 5.Twomey, M.; Downey, G.; Mcnulty, P. B. "The potential of NIR spectroscopy for the detection of the adulteration of orange juice." Journal of the Science of Food and Agriculture 1995, 67, 77-84. 6.Arena, E.; Campisi, S.; Fallico, B.; Maccarone, E. "Fatty acids of Italian blood orange juices." Journal of Agricultural and Food Chemistry 1998, 46, 4138-4143. 7.Spangenberg, C. E.; Macko, S. A.; Hunziker, J. "Characterization of olive oil by carbon isotope analysis of individual fatty acids: Implications for authentication." Journal of Agricultural and Food Chemistry 1998, 46, 4179-4184. 8.Zamora, R.; Alba, V.; Hidalgo, F. J. "Use of high-resolution C-13 nuclear magnetic resonance spectroscopy for the screening of virgin olive oils." Journal of the American Oil Chemists Society 2001, 78, 89-94. 9.Blanch, G. P.; Caja, M. D.; del Castillo, M. L. R.; Herraiz, M. "Comparison of different methods for the evaluation of the authenticity of olive oil and hazelnut oil." Journal of Agricultural and Food Chemistry 1998, 46, 3153-3157. 10.Martos, I.; Ferreres, F.; Tomas-Barberan, F. A. "Identification of flavonoid markers for the botanical origin of Eucalyptus honey." Journal of Agricultural and Food Chemistry 2000, 48, 1498-1502. 11.Chen, S. H.; Huang, T. C.; Ho, C. T.; Tsai, P. J. "Extraction, analysis, and study on the volatiles in roselle tea." Journal of Agricultural and Food Chemistry 1998, 46, 1101-1105. 12.daSilva, M. D. R. G.; dasNeves, H. J. C. "Differentiation of strawberry varieties through purge-and-trap HRGC-MS, HRGC-FTIR and principal component analysis." Journal of High Resolution Chromatography 1997, 20, 275-283. 13.Ng, L. K.; Hupe, M. "Analysis of sterols: A novel approach for detecting juices of pineapple, passionfruit, orange and grapefruit in compounded beverages." Journal of the Science of Food and Agriculture 1998, 76, 617-627. 14.Val, A.; Huidobro, J. F.; Sanchez, M. P.; Muniategui, S.; Fernandez-Muino, M. A.; Sancho, M. T. "Enzymatic determination of galactose and lactose in honey." Journal of Agricultural and Food Chemistry 1998, 46, 1381-1385. 15.Leblebici, J.; Volkan, M. "Sample preparation for arsenic, copper, iron, and lead determination in sugar." Journal of Agricultural and Food Chemistry 1998, 46, 173-177. 16.Liu, Y.; Chen, Y. R.; Ozaki, Y. "Two-dimensional visible/near-infrared correlation spectroscopy study of thermal treatment of chicken meats." Journal of Agricultural and Food Chemistry 2000, 48, 901-908. 17.Simpkins, W. A.; Louie, H.; Wu, M.; Harrison, M.; Goldberg, D. "Trace elements in Australian orange juice and other products." Food Chemistry 2000, 71, 423-433. 18.Baxter, M. J.; Crews, H. M.; Dennis, M. J.; Goodall, I.; Anderson, D. "The determination of the authenticity of wine from its trace element composition." Food Chemistry 1997, 60, 443-450. 19.Simpkins, W. A.; Patel, G.; Harrison, M.; Goldberg, D. "Stable carbon isotope ratio analysis of Australian orange juices." Food Chemistry 2000, 70, 385-390. 20.Spangenberg, J. E.; Ogrinc, N. "Authentication of vegetable oils by bulk and molecular carbon isotope analyses with emphasis on olive oil and pumpkin seed oil." Journal of Agricultural and Food Chemistry 2001, 49, 1534-1540. 21.Meier-Augenstein, W. "Stable isotope analysis of fatty acids by gas chromatography-isotope ratio mass spectrometry." Analytica Chimica Acta 2002, 465, 63-79. 22.Vogels, J. T. W. E.; Terwel, L.; Tas, A. C.; vandenBerg, F.; Dukel, F.; vanderGreef, J. "Detection of adulteration in orange juices by a new screening method using proton NMR spectroscopy in combination with pattern recognition techniques." Journal of Agricultural and Food Chemistry 1996, 44, 175-180. 23.Sacchi, R.; Mannina, L.; Fiordiponti, P.; Barone, P.; Paolillo, L.; Patumi, M.; Segre, A. "Characterization of Italian extra virgin olive oils using H-1-NMR spectroscopy." Journal of Agricultural and Food Chemistry 1998, 46, 3947-3951. 24.Spyros, A.; Dais, P. "Application of P-31 NMR spectroscopy in food analysis. 1. Quantitative determination of the mono- and diglyceride composition of olive oils." Journal of Agricultural and Food Chemistry 2000, 48, 802-805. 25.Breitschuh, B.; Windhab, E. J. "Direct measurement of thermal fat crystal properties for milk-fat fractionation." Journal of the American Oil Chemists Society 1996, 73, 1603-1610. 26.Kantor, Z.; Pitsi, G.; Thoen, J. "Glass transition temperature of honey as a function of water content as determined by differential scanning calorimetry." Journal of Agricultural and Food Chemistry 1999, 47, 2327-2330. 27.Kerkvielt, J. D.; Meijer, H. A. J. "Adulteration of honey: relation between microscopic analysis and delta13C measurements." Apidologie 2000, 31, 717-726. 28.Persaud, K.; Dodd, G. "Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose." Nature 1982, 299, 352-355. 29.Schaller, E.; Bosset, J. O.; Escher, F. "'Electronic noses' and their application to food." Food Science and Technology-Lebensmittel-Wissenschaft & Technologie 1998, 31, 305-316. 30.Kaipainen, A.; Ylisuutari, S.; Lucas, Q.; Moy, L. "A new approach to odour detection." International Sugar Journal 1997, 99, 403-408. 31.O'Riordan, P. J.; Delahunty, C. M. "Characterisation of commercial Cheddar cheese flavour. 1: traditional and electronic nose approach to quality assessment and market classification." International Dairy Journal 2003, 13, 355-370. 32.O'Riordan, P. J.; Delahunty, C. M. "Characterisation of commercial Cheddar cheese flavour. 2: study of Cheddar cheese discrimination by composition, volatile compounds and descriptive flavour assessment." International Dairy Journal 2003, 13, 371-389. 33.Gibson, T. D.; Prosser, O.; Hulbert, J. N.; Marshall, R. W.; Corcoran, P.; Lowery, P.; Ruck-Keene, E. A.; Heron, S. "Detection and simultaneous identification of microorganisms from headspace samples using an electronic nose." Sensors and Actuators B-Chemical 1997, 44, 413-422. 34.Chen, S. W.; Chen, R. K.; Ling, Y. C. "An integrated use of electronic nose and mass spectrometers to determine the pollutant profiles in an industrial park." Pittsburgh Conference 2003, p.1980-1982. 35.Tzing, S. H.; Chang, J. Y.; Ghule, A.; Chang, J. J.; Lo, B.; Ling, Y. C. "A simple and rapid method for identifying the source of spilled oil using an electronic nose: confirmation by gas chromatography with mass spectrometry." Rapid Communications in Mass Spectrometry 2003, 17, 1873-1880. 36.陳仁焜,侯雅慧,凌永健 "液相層析質譜儀:分析膳食補充劑的關鍵性儀器" 科儀新知 2003, 25, 14-21. 37.Sharma, S. Applied Multivariate Techniques, 1st ed.; John Wiley & Sons, Inc.: New York, 1996. Chapter 2 1.Cordella, C.; Moussa, I.; Martel, A. C.; Sbirrazzuoli, N.; Lizzani-Cuvelier, L. "Recent developments in food characterization and adulteration detection: Technique-oriented perspectives." Journal of Agricultural and Food Chemistry 2002, 50, 1751-1764. 2.Manning, D. J.; Nursten, H. E. In Developments in Dairy Chemistry, Vol. 3: Lactose and minorconstituents; Fox, P. F., Ed.; Elsevier Applied Science: London, 1989, pp 217-238. 3.Senorans, F. J.; Tabera, J.; Herraiz, M.; Reglero, G. "A method for the direct isolation and gas chromatographic analysis of milk flavor components using a programmed temperature vaporizer." Journal of Dairy Science 1996, 79, 1706-1712. 4.Marsili, R. T. "Shelf-life prediction of processed milk by solid-phase microextraction, mass spectrometry, and multivariate analysis." Journal of Agricultural and Food Chemistry 2000, 48, 3470-3475. 5.O'Riordan, P. J.; Delahunty, C. M. "Characterisation of commercial Cheddar cheese flavour. 1: traditional and electronic nose approach to quality assessment and market classification." International Dairy Journal 2003, 13, 355-370. 6.O'Riordan, P. J.; Delahunty, C. M. "Characterisation of commercial Cheddar cheese flavour. 2: study of Cheddar cheese discrimination by composition, volatile compounds and descriptive flavour assessment." International Dairy Journal 2003, 13, 371-389. 7.Aime, D. B.; Arntfield, S. D.; Malcolmson, L. J.; Ryland, D. "Textural analysis of fat reduced vanilla ice cream products." Food Research International 2001, 34, 237-246. 8.Specter, S. E.; Setser, C. S. "Sensory and physical-properties of a reduced-calorie frozen dessert system made with milk-fat and sucrose substitutes." Journal of Dairy Science 1994, 77, 708-717. 9.Kahkonen, P.; Tuorila, H.; Hyvonen, L. "Dairy fat-content and serving temperature as determinants of sensory and hedonic characteristics in cheese soup." Food Quality and Preference 1995, 6, 127-133. 10.Aime, D. B.; Arntfield, S. D.; Malcolmson, L. J.; Ryland, D. "Textural analysis of fat reduced vanilla ice cream products." Food Research International 2001, 34, 237-246. 11.Karoui, R.; Mazerolles, G.; Dufour, E. "Spectroscopic techniques coupled with chemometric tools for structure and texture determinations in dairy products." International Dairy Journal 2003, 13, 607-620. 12.Iverson, J. L.; Sheppard, A. J. "Detection of adulteration in cow, goat, and sheep cheeses utilizing gas-liquid-chromatographic fatty-acid data." Journal of Dairy Science 1989, 72, 1707-1712. 13.Ulberth, F. "Detection of milk-fat adulteration by linear discriminant-analysis of fatty-acid data." Journal of Aoac International 1994, 77, 1326-1334. 14.Povolo, H.; Bonfitto, E.; Contarini, G.; Toppino, P. M.; Daghetta, A. "Study on the performance of three different capillary gas chromatographic analyses in the evaluation of milk fat purity." Hrc-Journal of High Resolution Chromatography 1999, 22, 97-102. 15.Fontecha, J.; Diaz, V.; Fraga, M. J.; Juarez, M. "Triglyceride analysis by gas chromatography in assessment of authenticity of goat milk fat." Journal of the American Oil Chemists Society 1998, 75, 1893-1896. 16.Lee, K. T.; Jones, K. C.; Foglia, T. A. "Separation of structured lipids by high performance liquid chromatography." Chromatographia 2002, 55, 197-201. 17.Marzilli, L. A.; Fay, L. B.; Dionisi, F.; Vouros, P. "Structural characterization of triacylglycerols using electrospray ionization-MSn ion-trap MS." Journal of the American Oil Chemists Society 2003, 80, 195-202. 18.CNS Method of test for milk and milk products: detection of cow's milk in goat's milk; Chinese National Standard Method 14117, 1999. 19.Fox, P. F.; McSweeney, P. L. H. Dairy Chemistry and Biochemistry, 1st ed.; Blackie Academic & Professional: London, 1998. 20.Walstra, P.; Geurts, T. J.; Noomen, A.; Jellema, A.; van Boekel, M. A. J. S. Dairy Technology; Marcel Dekker: New York, 1999. 21.Capone, S.; Epifani, M.; Quaranta, F.; Siciliano, P.; Taurino, A.; Vasanelli, L. "Monitoring of rancidity of milk by means of an electronic nose and a dynamic PCA analysis." Sensors and Actuators B-Chemical 2001, 78, 174-179. 22.Fraga, M. J.; Fontecha, J.; Lozada, L.; Juarez, M. "Silver ion adsorption thin layer chromatography and capillary gas chromatography in the study of the composition of milk fat triglycerides." Journal of Agricultural and Food Chemistry 1998, 46, 1836-1843. 23.Goudjil, H.; Fontecha, J.; Fraga, M. J.; Juarez, M. "TAG composition of ewe's milk fat. Detection of foreign fats." Journal of the American Oil Chemists Society 2003, 80, 219-222. Chapter 3 1.Roncada, P.; Gaviraghi, A.; Liberatori, S.; Canas, B.; Bini, L.; Greppi, G. F. "Identification of caseins in goat milk." Proteomics 2002, 2, 723-726. 2.Rolland, M. P.; Bitri, L.; Besancon, P. "Polyclonal antibodies with predetermined specificity against bovine alpha-s1-casein - application to the detection of bovine-milk in ovine milk and cheese." Journal of Dairy Research 1993, 60, 413-420. 3.Molina, E.; FernandezFournier, A.; DeFrutos, M.; Ramos, M. "Western blotting of native and denatured bovine beta-lactoglobulin to detect addition of bovine milk in cheese." Journal of Dairy Science 1996, 79, 191-197. 4.Rodriguez, E.; Martin, R.; Garcia, T.; Gonzalez, I.; Morales, P.; Sanz, B.; Hernandez, P. E. "Detection of cows milk in ewes milk and cheese by a sandwich enzyme-linked-immunosorbent-assay (ELISA)." Journal of the Science of Food and Agriculture 1993, 61, 175-180. 5.Anguita, G.; Martin, R.; Garcia, T.; Morales, P.; Haza, A. I.; Gonzalez, I.; Sanz, B.; Hernandez, P. E. "Immunostick ELISA for detection of cow's milk in ewe's milk and cheese using a monoclonal antibody against bovine beta-casein." Journal of Food Protection 1996, 59, 436-437. 6.Iverson, J. L.; Sheppard, A. J. "Detection of Adulteration in Cow, Goat, and Sheep Cheeses Utilizing Gas-Liquid-Chromatographic Fatty-Acid Data." Journal of Dairy Science 1989, 72, 1707-1712. 7.Furtado, M. M. "Detection of cow milk in goat milk by polyacrylamide-gel electrophoresis." Journal of Dairy Science 1983, 66, 1822-1824. 8.Kim, H. H. Y.; Jimenezflores, R. "2-Dimensional analysis of skim milk-proteins using preparative isoelectric-focusing followed by polyacrylamide-gel electrophoresis." Journal of Food Biochemistry 1993, 16, 307-321. 9.Dejong, N.; Visser, S.; Olieman, C. "Determination of milk-proteins by capillary electrophoresis." Journal of Chromatography A 1993, 652, 207-213. 10.Bordin, G.; Raposo, F. C.; de la Calle, B.; Rodriguez, A. R. "Identification and quantification of major bovine milk proteins by liquid chromatography." Journal of Chromatography A 2001, 928, 63-76. 11.Bramanti, E.; Sortino, C.; Onor, M.; Beni, F.; Raspi, G. "Separation and determination of denatured alpha(s1)-, alpha(s2)-, beta- and kappa-caseins by hydrophobic interaction chromatography in cows', ewes' and goats' milk, milk mixtures and cheeses." Journal of Chromatography A 2003, 994, 59-74. 12.Marsilio, R.; Catinella, S.; Seraglia, R.; Traldi, P. "Matrix-assisted laser-desorption ionization mass-spectrometry for the rapid evaluation of thermal-damage in milk." Rapid Communications in Mass Spectrometry 1995, 9, 550-552. 13.Catinella, S.; Traldi, P.; Pinelli, C.; Dallaturca, E. "Matrix-assisted laser desorption ionization mass spectrometry: A valid analytical tool in the dairy industry." Rapid Communications in Mass Spectrometry 1996, 10, 1123-1127. 14.Catinella, S.; Traldi, P.; Pinelli, C.; Dallaturca, E.; Marsilio, R. "Matrix-assisted laser desorption/ionization mass spectrometry in milk science." Rapid Communications in Mass Spectrometry 1996, 10, 1629-1637. 15.Angeletti, R.; Gioacchini, A. M.; Seraglia, R.; Piro, R.; Traldi, P. "The potential of matrix-assisted laser desorption/ionization mass spectrometry in the quality control of water buffalo mozzarella cheese." Journal of Mass Spectrometry 1998, 33, 525-531. 16.Fanton, C.; Delogu, G.; Maccioni, E.; Podda, G.; Seraglia, R.; Traldi, P. "Matrix-assisted laser desorption/ionization mass spectrometry in the dairy industry 2. The protein fingerprint of ewe cheese and its application to detection of adulteration by bovine milk." Rapid Communications in Mass Spectrometry 1998, 12, 1569-1573. 17.Catinella, S.; Seraglia, R.; Marsilio, R. "Evaluation of protein profile of human milk by matrix-assisted laser desorption/ionization mass spectrometry." Rapid Communications in Mass Spectrometry 1999, 13, 1546-1549. 18.Siciliano, R.; Rega, B.; Amoresano, A.; Pucci, P. "Modern mass spectrometric methodologies in monitoring milk quality." Analytical Chemistry 2000, 72, 408-415. 19.Cozzolino, R.; Passalacqua, S.; Salemi, S.; Malvagna, P.; Spina, E.; Garozzo, D. "Identification of adulteration in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry." Journal of Mass Spectrometry 2001, 36, 1031-1037. 20.Cozzolino, R.; Passalacqua, S.; Salemi, S.; Garozzo, D. "Identification of adulteration in water buffalo mozzarella and in ewe cheese by using whey proteins as biomarkers and matrix-assisted laser desorption/ionization mass spectrometry." Journal of Mass Spectrometry 2002, 37, 985-991. 21.Ho, Y. P.; Hsu, P. H. "Investigating the effects of protein patterns on microorganism identification by high-performance liquid chromatography-mass spectrometry and protein database searches." Journal of Chromatography A 2002, 976, 103-111. 22.Swiss-Prot "database at http://tw.expasy.org/." 23.PROWL "database at http://prowl.rockefeller.edu/PROWL/prowl.html." Chapter 4 1.Murthy, G. K.; Kaylor, L. "Detection of nonfat dried milk in whole milk." Journal of Dairy Science 1971, 54, 826-829. 2.Helrich, K., Ed. Official Methods of Analysis of the AOAC, 15th ed.; Association of Official Analytical Chemists, Inc.: Washington, D. C., 1990. 3.Walstra, P.; Geurts, T. J.; Noomen, A.; Jellema, A.; van Boekel, M. A. J. S. Dairy Technology; Marcel Dekker: New York, 1999, 459-460. 4.Hillier, R. M. "The quantitative measurement of whey proteins using polyacrylamide-gel electrophoresis." Journal of Dairy Research 1976, 43, 259-265. 5.Meyer, D. H.; Kunin, A. S.; Maddalena, J.; Meyer, W. L. "Ribionuclease activity and isozymes in raw and processed cows' milk and infant formulas." Journal of Dairy Science 1987, 70, 1797-1803. 6.Kislinger, T.; Humeny, A.; Peich, C. C.; Zhang, X. H.; Niwa, T.; Pischetsrieder, M.; Becker, C. M. "Relative quantification of N-epsilon-(carboxymethyl)lysine, imidazolone A, and the Amadori product in glycated lysozyme by MALDI-TOF mass spectrometry." Journal of Agricultural and Food Chemistry 2003, 51, 51-57. 7.Andrews, G. R. "Formation and occurrence of lactulose in heated milk." Journal of Dairy Research 1986, 53, 665-680. 8.Marconi, E.; Messia, M. C.; Amine, A.; Moscone, D.; Vernazza, F.; Stocchi, F.; Palleschi, G. "Heat-treated milk differentiation by a sensitive lactulose assay." Food Chemistry 2004, 84, 447-450. 9.Erbersdobler, H. F.; Dehn, B.; Nangpal, A.; Reuter, H. "Determination of furosine in heated milk as a measure of heat intensity during processing." Journal of Dairy Research 1987, 54, 147-151. 10.Corzo, N.; Delgado, T.; Troyano, E.; Olano, A. "Ratio of lactulose to furosine as indicator of quality of commercial milks." Journal of Food Protection 1994, 57, 737-739. 11.Cordella, C.; Moussa, I.; Martel, A. C.; Sbirrazzuoli, N.; Lizzani-Cuvelier, L. "Recent developments in food characterization and adulteration detection: Technique-oriented perspectives." Journal of Agricultural and Food Chemistry 2002, 50, 1751-1764. 12.Belloque, J.; Smith, G. M. "Thermal denaturation of beta-lactoglobulin. A H-1 NMR study." Journal of Agricultural and Food Chemistry 1998, 46, 1805-1813. 13.Aebersold, R.; Mann, M. "Mass spectrometry-based proteomics." Nature 2003, 422, 198-207. 14.Fanton, C.; Delogu, G.; Maccioni, E.; Podda, G.; Seraglia, R.; Traldi, P. "Matrix-assisted laser desorption/ionization mass spectrometry in the dairy industry 2. The protein fingerprint of ewe cheese and its application to detection of adulteration by bovine milk." Rapid Communications in Mass Spectrometry 1998, 12, 1569-1573. 15.Sabbadin, S.; Seraglia, R.; Allegri, G.; Bertazzo, A.; Traldi, P. "Matrix-assisted laser desorption/ionization mass spectrometry in evaluation of protein profiles of infant formulae." Rapid Communications in Mass Spectrometry 1999, 13, 1438-1443. 16.Catinella, S.; Seraglia, R.; Marsilio, R. "Evaluation of protein profile of human milk by matrix-assisted laser desorption/ionization mass spectrometry." Rapid Communications in Mass Spectrometry 1999, 13, 1546-1549. 17.Siciliano, R.; Rega, B.; Amoresano, A.; Pucci, P. "Modern mass spectrometric methodologies in monitoring milk quality." Analytical Chemistry 2000, 72, 408-415. 18.De Kok, P. M. T.; Rosing, E. A. E. In Thermally Generated Flavors; Parliment, T. H., Morello, M. J., McGorrin, R. J., Eds.; American Chemical Society: Washington, DC, 1994, pp 158-165. 19.Chen, R. K.; Chang, L. W.; Chung, Y. Y.; Lee, M. H.; Ling, Y. C. "Quantification of cow milk adulteration in goat milk using high-performance liquid chromatography with electrospray ionization mass spectrometry." Rapid Communications in Mass Spectrometry 2004, 18, 1167-1171. 20.Hearn, M. T. W. In HPLC of Biological Macromolecules, 2 ed.; Gooding, K. M., Regnier, F. E., Eds.; Marcel Dekker, Inc.: New York, 2002. 21.Hearn, M. T. W.; Quirino, J. P.; Whisstock, J.; Terabe, S. "Thermal unfolding of proteins studied by coupled reversed-phase HPLC-electrospray ionization mass spectrometry techniques based on isotope exchange effects." Analytical Chemistry 2002, 74, 1467-1475. 22.Chen, R. K.; Chang, L. W.; Chung, Y. Y.; Lee, M. H.; Ling, Y. C. "Quantification of Cow Milk Adulteration in Goat Milk Using High-Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry." Rapid Commun. Mass Spectrom. 2004, (in press). 23.Cozzolino, R.; Passalacqua, S.; Salemi, S.; Malvagna, P.; Spina, E.; Garozzo, D. "Identification of adulteration in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry." Journal of Mass Spectrometry 2001, 36, 1031-1037. 24.Pizzano, R.; Nicolai, M. A.; Siciliano, R.; Addeo, F. "Specific detection of the Amadori compounds in milk by using polyclonal antibodies raised against a lactosylated peptide." Journal of Agricultural and Food Chemistry 1998, 46, 5373-5379. 25.Del Castillo, M. D.; Corzo, N.; Olano, A. "Early stages of Maillard reaction in dehydrated orange juice." Journal of Agricultural and Food Chemistry 1999, 47, 4388-4390. 26.Sanz, M. L.; Del Castillo, M. D.; Corzo, N.; Olano, A. "Formation of Amadori compounds in dehydrated fruits." Journal of Agricultural and Food Chemistry 2001, 49, 5228-5231. 27.Sanz, M. L.; Del Castillo, M. D.; Corzo, N.; Olano, A. "2-Furoylmethyl amino acids and hydroxymethylfurfural as indicators of honey quality." Journal of Agricultural and Food Chemistry 2003, 51, 4278-4283. 28.Fox, P. F.; McSweeney, P. L. H. Dairy Chemistry and Biochemistry, 1st ed.; Blackie Academic & Professional: London, 1998, pp.347-348. 29.Walstra, P.; Geurts, T. J.; Noomen, A.; Jellema, A.; van Boekel, M. A. J. S. Dairy Technology; Marcel Dekker: New York, 1999, 208-209. Chapter 5 1.Mottram, D. S. In Thermally Generated Flavors; Parliment, T. H., Morello, M. J., McGorrin, R. J., Eds.; American Chemical Society: Washington, DC, 1994, pp 104-126. 2.Humeny, A.; Kislinger, T.; Becker, C. M.; Pischetsrieder, M. "Qualitative determination of specific protein glycation products by matrix-assisted laser desorption/ionization mass spectrometry peptide mapping." Journal of Agricultural and Food Chemistry 2002, 50, 2153-2160. 3.French, S. J.; Harper, W. J. "Maillard reaction induced lactose attachment to bovine beta-lactoglobulin: Foam-and emulsion functionality." Milchwissenschaft-Milk Science International 2003, 58, 252-256. 4.Umetsu, H.; Van Chuyen, N. "Digestibility and peptide patterns of modified lysozyme after hydrolyzing by protease." Journal of Nutritional Science and Vitaminology 1998, 44, 291-300. 5.Naranjo, G. B.; Malec, L. S.; Vigo, M. S. "Reducing sugars effect on available lysine loss of casein by moderate heat treatment." Food Chemistry 1998, 62, 309-313. 6.Del Castillo, M. D.; Villamiel, M.; Olano, A.; Corzo, N. "Use of 2-furoylmethyl derivatives of GABA and arginine as indicators of the initial steps of Maillard reaction in orange juice." Journal of Agricultural and Food Chemistry 2000, 48, 4217-4220. 7.Elliott, A. J.; Dhakal, A.; Datta, N.; Deeth, H. C. "Heat-induced changes in UHT milks - Part 1." Australian Journal of Dairy Technology 2003, 58, 3-10. 8.Pizzano, R.; Nicolai, M. A.; Siciliano, R.; Addeo, F. "Specific detection of the Amadori compounds in milk by using polyclonal antibodies raised against a lactosylated peptide." Journal of Agricultural and Food Chemistry 1998, 46, 5373-5379. 9.Pallini, M.; Compagnone, D.; Di Stefano, S.; Marini, S.; Coletta, A.; Palleschi, G. "Immunodetection of lactosylated proteins as a useful tool to determine heat treatment in milk samples." Analyst 2001, 126, 66-70. 10.Galvani, M.; Hamdan, M.; Righetti, P. G. "Two-dimensional gel electrophoresis/matrix-assisted laser desorption/ionisation mass spectrometry of a milk powder." Rapid Communications in Mass Spectrometry 2000, 14, 1889-1897. 11.Fenaille, F.; Morgan, F.; Parisod, W.; Tabet, J. C.; Guy, P. A. "Solid-state glycation of beta-lactoglobulin monitored by electrospray ionisation mass spectrometry and gel electrophoresis techniques." Rapid Communications in Mass Spectrometry 2003, 17, 1483-1492. 12.Fenaille, F.; Morgan, F.; Parisod, V.; Tabet, J. C.; Guy, P. A. "Solid-state glycation of beta-lactoglobulin by lactose and galactose: localization of the modified amino acids using mass spectrometric techniques." Journal of Mass Spectrometry 2004, 39, 16-28. 13.Siciliano, R.; Rega, B.; Amoresano, A.; Pucci, P. "Modern mass spectrometric methodologies in monitoring milk quality." Analytical Chemistry 2000, 72, 408-415. 14.French, S. J.; Harper, W. J.; Kleinholz, N. M.; Jones, R. B.; Green-Church, K. B. "Maillard reaction induced lactose attachment to bovine beta-lactoglobulin: Electrospray ionization and matrix-assisted laser desorption/ionization examination." Journal of Agricultural and Food Chemistry 2002, 50, 820-823. 15.Kislinger, T.; Humeny, A.; Peich, C. C.; Zhang, X. H.; Niwa, T.; Pischetsrieder, M.; Becker, C. M. "Relative quantification of N-epsilon-(carboxymethyl)lysine, imidazolone A, and the Amadori product in glycated lysozyme by MALDI-TOF mass spectrometry." Journal of Agricultural and Food Chemistry 2003, 51, 51-57. 16.Fenaille, F.; Campos-Gimenez, E.; Guy, P. A.; Schmitt, C.; Morgan, F. "Monitoring of beta-lactoglobulin dry-state glycation using various analytical techniques." Analytical Biochemistry 2003, 320, 144-148. 17.Chen, R. K.; Chang, L. W.; Chung, Y. Y.; Lee, M. H.; Ling, Y. C. "Quantification of adulteration of goat milk by cow milk using high-performance liquid chromatography with electrospray ionization mass spectrometry." Rapid Communication in Mass Spectrometry 2004, 18, 1167-1171. 18.Dass, C. Principles and Practice of Biological Mass Spectrometry; John Wiley & Sons, Inc.: New York, 2001. 19.Yang, W. H.; Hattori, M.; Kawaguchi, T.; Takahashi, K. "Properties of starches conjugated with lysine and poly(lysine) by the Maillard reaction." Journal of Agricultural and Food Chemistry 1998, 46, 442-445. 20.Ajandouz, E. H.; Puigserver, A. "Nonenzymatic browning reaction of essential amino acids: Effect of pH on caramelization and Maillard reaction kinetics." Journal of Agricultural and Food Chemistry 1999, 47, 1786-1793. 21.Palzkill, T. Proteomics, 2nd ed.; Kluwer Academic Publishers: Norwell, 2002. 22.Griffiths, W. J. In Proteomics in Functional Genomics; Jolles, P., Jornvall, H., Eds.; Birkhauser Verlag: Basel, 2000, pp 69-79. Chapter 6 1.Stryer, L. Biochemistry, 4th ed.; W. H. Freeman and Company: New York, 1995. 2.Nagy, K.; Jakab, A.; Fekete, J.; Vekey, K. "An HPLC-MS approach for analysis of very long chain fatty acids and other apolar compounds on octadecyl-silica phase using partly miscible solvents." Analytical Chemistry 2004, 76, 1935-1941. 3.Vauterin, L.; Yang, P.; Hoste, B.; Pot, B.; Swings, J.; Kersters, K. "Taxonomy of xanthomonads from cereals and grasses based on SDS-PAGE of proteins, fatty-acid analysis and DNA hybridization." Journal of General Microbiology 1992, 138, 1467-1477. 4.Basile, F.; Voorhees, K. J.; Hadfield, T. L. "Microorganism Gram type differentiation based on pyrolysis mass spectrometry of bacterial fatty acid methyl ester extracts." Applied and Environmental Microbiology 1995, 61, 1534-1539. 5.Barshick, S. A.; Wolf, D. A.; Vass, A. A. "Differentiation of microorganisms based on pyrolysis ion trap mass spectrometry using chemical ionization." Analytical Chemistry 1999, 71, 633-641. 6.Wolff, R. L.; Lavialle, O.; Pedrono, F.; Pasquier, E.; Destaillats, F.; Marpeau, A. M.; Angers, P.; Aitzetmuller, K. "Abietoid seed fatty acid compositions - A review of the genera Abies, Cedrus, Hesperopeuce, Keteleeria, Pseudolarix, and Tsuga and preliminary inferences on the taxonomy of Pinaceae." Lipids 2002, 37, 17-26. 7.Willis, W. M.; Marangoni, A. G. "Biotechnological strategies for the modification of food lipids." Biotechnology and Genetic Engineering Reviews, Vol 16 1999, 16, 141-175. 8.Fontecha, J.; Diaz, V.; Fraga, M. J.; Juarez, M. "Triglyceride analysis by gas chromatography in assessment of authenticity of goat milk fat." Journal of the American Oil Chemists Society 1998, 75, 1893-1896. 9.Povolo, H.; Bonfitto, E.; Contarini, G.; Toppino, P. M.; Daghetta, A. "Study on the performance of three different capillary gas chromatographic analyses in the evaluation of milk fat purity." Hrc-Journal of High Resolution Chromatography 1999, 22, 97-102. 10.Fontecha, J.; Rios, J. J.; Lozada, L.; Fraga, M. J.; Juarez, M. "Composition of goat's milk fat triglycerides analysed by silver ion adsorption-TLC and GC-MS." International Dairy Journal 2000, 10, 119-128. 11.Iverson, J. L.; Sheppard, A. J. "Detection of adulteration in cow, goat, and sheep cheeses utilizing gas-liquid-chromatographic fatty-acid data." Journal of Dairy Science 1989, 72, 1707-1712. 12.Ulberth, F. "Detection of milk-fat adulteration by linear discriminant analysis of fatty acid data." Journal of AOAC International 1994, 77, 1326-1334. 13.Gamazo-Vazquez, J.; Garcia-Falcon, M. S.; Simal-Gandara, J. "Control of contamination of olive oil by sunflower seed oil in bottling plants by GC-MS of fatty acid methyl esters." Food Control 2003, 14, 463-467. 14.Kim, S. J.; Woo, H. K.; Seo, M. Y.; Joh, Y. G. "Analysis of fatty acids in puffer fish liver oils by combined chromatographic procedures - Resolution of fatty acid methyl esters by Ag+-chromatography and their identification by GC-MS using 4,4-dimethyloxazoline derivatives." Food Science and Biotechnology 2003, 12, 326-336. 15.Fraga, M. J.; Fontecha, J.; Lozada, L.; Juarez, M. "Silver ion adsorption thin layer chromatography and capillary gas chromatography in the study of the composition of milk fat triglycerides." Journal of Agricultural and Food Chemistry 1998, 46, 1836-1843. 16.Goudjil, H.; Fontecha, J.; Fraga, M. J.; Juarez, M. "TAG composition of ewe's milk fat. Detection of foreign fats." Journal of the American Oil Chemists Society 2003, 80, 219-222. 17.Jakab, A.; Jablonkai, I.; Forgacs, E. "Quantification of the ratio of positional isomer dilinoleoyl-oleoyl glycerols in vegetable oils." Rapid Communications in Mass Spectrometry 2003, 17, 2295-2302. 18.Dorschel, C. A. "Characterization of the TAG of peanut oil by electrospray LC-MS-MS." Journal of the American Oil Chemists Society 2002, 79, 749-753. 19.Han, X. L.; Gross, R. W. "Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry." Analytical Biochemistry 2001, 295, 88-100. 20.Mu, H. L.; Sillen, H.; Hoy, C. E. "Identification of diacylglycerols and triacylglycerols in a structured lipid sample by atmospheric pressure chemical ionization liquid chromatography/mass spectrometry." Journal of the American Oil Chemists Society 2000, 77, 1049-1059. 21.Jakab, A.; Nagy, K.; Heberger, K.; Vekey, K.; Forgacs, E. "Differentiation of vegetable oils by mass spectrometry combined with statistical analysis." Rapid Communications in Mass Spectrometry 2002, 16, 2291-2297. 22.Parcerisa, J.; Casals, I.; Boatella, J.; Codony, R.; Rafecas, M. "Analysis of olive and hazelnut oil mixtures by high-performance Liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry of triacylglycerols and gas-liquid chromatography of non-saponifiable compounds (tocopherols and sterols)." Journal of Chromatography A 2000, 881, 149-158. 23.Mottram, H. R.; Evershed, R. P. "Structure analysis of triacylglycerol positional isomers using atmospheric pressure chemical ionisation mass spectrometry." Tetrahedron Letters 1996, 37, 8593-8596. 24.Mottram, H. R.; Woodbury, S. E.; Evershed, R. P. "Identification of triacylglycerol positional isomers present in vegetable oils by high performance liquid chromatography atmospheric pressure chemical ionization mass spectrometry." Rapid Communications in Mass Spectrometry 1997, 11, 1240-1252. 25.Marzilli, L. A.; Fay, L. B.; Dionisi, F.; Vouros, P. "Structural characterization of triacylglycerols using electrospray ionization-MSn ion-trap MS." Journal of the American Oil Chemists Society 2003, 80, 195-202.id NH0925065067 sid 897421 cfn 0 / id NH0925065068 auc 張許永 tic 新型 tic & tic #21554; tic & tic #21722;衍生物之合成與應用潛力 adc 胡紀如 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 德文 pg 53 kwc & kwc #21554; kwc & kwc #21722; abc 在本論文中,新型多取代吲哚衍生物被設計且合成出以作為藍光有機發光材料。我們利用Larock heteroannulation為關鍵步驟,在100℃或120℃進行偶合及環化反應成功合成出一系列新型吲哚衍生物,其放光在藍光和紫光的範圍。在此我們提供一個方法藉由C2-、C3-、和C5-推拉電子官能基之改變,可成功調控所合成出吲哚化合物之放光波長。且在二氯甲烷溶劑中以anthrance為標準物,所測得之量子產率為0.41-0.59。在熱性質方面,所有的吲哚衍生物之熔點皆在150℃以上,而且熱裂解溫度高於250℃,其中以化合物1e和10a有最佳的熱穩定性。該筆新型多取代吲哚衍生物有作為藍光有機發光材料之潛力。 rf (1) Wu, Y. Z.; Zheng, X. Y.; Zhu, W. Q.; Sun, R. G.; Jiang, X. Y.; Zhang, Z. L.; Xu, S. H. Appl. Phys. Lett. 2003, 83, 5077–5079. (2) Hung, L. S.; Chen, C. H. Mater. Sci. Eng. 2002, R39, 143–222. (3) Tao, Y. T.; Balasubramaniam, E.; Danel, A.; Wisla, A.; Tomasik, P. J. Mater. Chem. 2001, 11, 768–772. (4) Mitschke, U.; Bäuerle, P. J. Mater. Chem. 2000, 10, 1471–1507. (5) Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1990, 56, 799–801. (6) Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610–3616. (7) Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913–915. (8) Anderson, S.; Taylor, P. N.; Verschoor, G. L. B. Chem. Eur. J. 2004, 10, 518–527. (9) Kan, Y.; Wang, L.; Duan, L.; Hu, Y.; Wu, G.; Qiu, Y. Appl. Phys. Lett. 2004, 84, 1513–1515. (10) Okumoto, K.; Shirota, Y. Appl. Phys. Lett. 2001, 79, 1231–1233. (11) Gu, G.; Forrest, S, R.; IEEE J. Sel. Top. Quantum Electron. 1998, 4, 83–99. (12) Hosokawa, C.; Eida, M.; Matsuura, K.; Nakamura, H.; Kusumoto, T. Synth. Met. 1997, 91, 3–7. (13) Rurrows, P. E.; Gu, G.; Bulovic, V.; Shen, Z.; Forrest, S. R.; Thompson, M. E. IEEE Trans. Electron Devices 1997, 44, 1188–1203. (14) Wu, C. C.; Lin, Y. T.; Chiang, H. H.; Cho, T. Y.; Chen, C. W.; Wong, K. T.; Liao, Y. L.; Lee, G. H.; Peng, S. M. Appl. Phys. Lett. 2002, 81, 577–579. (15) Tao, X. T.; Suzuki, H.; Wada, T.; Miyata, S.; Sasabe, H. J. Am. Chem. Soc. 1999, 121, 9447–9448. (16) Leung, L. M.; Lo, W. Y.; So. S. K.; Lee, K. M.; Choi, W. K. J. Am. Chem. Soc. 2000, 122, 5640–5641. (17) Liu, Y.; Guo, J.; Feng, J.; Zhang, H.; Li, Y.; Wang, Y. Appl. Phys. Lett. 2001, 78, 2300–2302. (18) Im, W. B.; Hwang, H. K.; Lee, J. G.; Han, K.; Kim, Y. Appl. Phys. Lett. 2001, 79, 1387–1389. (19) Lin, T. S. U.S. Patent 0 001 967, 2004. (20) Shi, J.; Tang, C. W. Appl. Phys. Lett. 2002, 80, 3201–3203. (21) Hosokawa, C.; Kawasaki, N.; Sakamoto, S.; Kusumoto, T. Appl. Phys. Lett. 1992, 61, 2503–2505. (22) Krasovitskii, B. M.; Bolotin, B. M. Organic Luminescent Materials, VCH: New York, 1988. (23) Gan, J. A.; Song, Q. L.; Hou, X. Y.; Chen, K.; Tian, H. J. Photochem. Photobiol. A, 2004, 162, 399–406. (24) Shirota, Y. J. Mater. Chem. 2000, 10, 1–25. (25) Zhou, H.; Liao, X.; Cook, J. M. Org. Lett. 2004, 6, 249–252. (26) Walsh, T. F.; Toupence, R. B.; Ujjainwalla, F.; Young, J. R.; Goulet, M. T. Tetrahedron 2001, 57, 5233–5241. (27) Larock, R. C.; Yum, E. K.; Refvik, M. D. J. Org. Chem. 1998, 63, 7652–7662. (28) Wadsworth, D. H.; Geer, S. M.; Detty, M. R. J. Org. Chem. 1987, 52, 3662–3668. (29) Pelter, A.; Ward, R. S.; Little, G. M. J. Chem. Soc. Perkin Trans. 1 1990, 10, 2775–2790. (30) Tichy, M.; Holy, P.; Závada, J.; Cisarova, I.; Podlaha, J. Tetrahedron: Asymmetry 2001, 12, 2295–2300. (31) Xiao, W. J.; Alper, H. J. Org. Chem. 1999, 64, 9646–9652. (32) Beugelmans, R.; Chbani, M. Bull. Soc. Chim. Fr. 1995, 132, 306–313. (33) Kelly, T. R.; Sestelo, J. P.; Tellitu, I. J. Org. Chem. 1998, 63, 3655–3665. (34) Su, Y. Z.; Lin, J. T.; Tao, Y. T.; Ko, C. W.; Lin, S. C.; Sun, S. S. Chem. Mater. 2002, 14, 1884–1890. (35) Scaiano, J. C. CRC Handbook of Organic Photochemistry; CRC: Boca Raton, 1989. (36) Lee, J.; Liu, Q. D.; Motala, M.; Dane, J.; Gao, J.; Kang, Y.; Wang, S. Chem. Mater. 2004, 16, 1869–1877. (37) Janietz, S.; Bradley, D. D. C.; Grell, M.; Giebeler, C.; Inbasekaran, M.; Woo, E. P. Appl. Phys. Lett. 1998, 73, 2453–2455. (38) Hosokawa, C.; Higashi, H.; Nakamura, H.; Kusumoto, T. Appl. Phys. Lett. 1995, 67, 3853–3855. (39) Balasubramaniam, E.; Tao, Y. T.; Danel, A.; Tomasik, P. Chem. Mater. 2000, 12, 2788–2793. (40) Gao, X. C.; Cao, H.; Zhang, L. Q.; Zhang, B. W.; Cao, Y.; Huang, C. H. J. Mater. Chem. 1999, 9, 1077–1080. (41) Gao, Z. Q.; Lee, C. S.; Bello, I.; Lee, S. T.; Wu, S. K.; Yan, Z. L.; Zhang, X. H. Synth. Met. 1999, 105, 141–144.id NH0925065068 sid 913434 cfn 0 / id NH0925065069 auc 莊高樹 tic 合成功能性苯并 tic & tic #21579;喃作為有機發光二極體材料之研究 adc 胡紀如 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 英文 pg 65 kwc 苯并 kwc & kwc #21579;喃 kwc 有機發光二極體 kwc 量子效率 abc 在本論文中,我們合成出一系列新型苯并呋喃為發展藍光發光材料。並分別在苯并呋喃的第4號位置的碳上接上醛基、氰基、乙烯酸基、乙烯苯、乙烯雙苯等不同取代基。新型苯并呋喃化合物主要是利用Sonogashira coupling reaction和Horner–Wadsworth–Emmons reaction,並利用雙乙烯苯當架橋系統連接二個苯并呋喃形成新的雙苯并呋喃合成物。其中部分的苯并呋喃化合物具有高量子效率,發光波長為450到482 nm。此類雙苯并呋喃具有較佳的熱穩定性,其熔點為252 °C。 利用此雙苯并呋喃當客發光體製作成一個有機發光二極體。元件為ITO/NPB(40 nm)/19b(4.0%) in ADN(30 nm)/TPBI(10 nm) /Alq3 (30 nm)/Mg–Ag(50 nm)/Ag(10 nm)。此元件最低驅動電壓為3.6 V,在7.0 V下1931 CIE 座標為(0.15, 0.25),最大外部放光效率3.75% (7.13cd/A),最大亮度為53430 cd/m2。 rf Reference (1) Tang, C. W.; Van Slyke, S. A. Appl. Phys. Lett. 1987, 51, 913–915. (2) Tang, C. W.; Van Slyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610–3616. (3) Huang, L. S.; Chen, C. H. Mater. Sci. Eng. 2002, R39, 143–222. (4) Chen, C. H.; Shi, J.; Tang, C. W. Coord. Chem. Rev. 1998, 171, 161–174. (5) For reviews, see: (a) Shinar, J. A. Organic Light-Emitting Devices A Survey; Springer: New York, 2002; (b) Wu, C. C.; Lin, Y. T.; Chiang, H. H.; Cho, T. Y.; Chen, C. W.; Wong, K. T.; Liao, Y. T.; Lee, G. H.; Peng, S. M. Appl. Phys. Lett. 2002, 81, 577–579; (c) Wu, C. C.; Lin, Y. T.; Wong, K. T.; Chen, R. T.; Chien, Y. Y. Adv. Mater. 2004, 16, 61–65; (d) Wu, Y. Z.; Zheng, X. Y.; Zhu, W. Q.; Sun, R. G.; Jiang, X. Y.; Zhang, Z. L.; Xu, S. H. Appl. Phys. Lett. 2003, 83, 5077–5079; (e) Shi, J.; Tang, C. W.; Chen, C. H. U.S. Patent 5 935 721, 1999; (f) Shi, J.; Tang, C. W. Appl. Phys. Lett. 2002, 80, 3201–3203; (g) Tao, Y. T.; Chuen, C. H.; Ko, C. W.; Peng, J. W. Chem. Mater. 2002, 14, 4256–4261; and (h) Tao, Y. T.; Balasubramaniam, E.; Danel, A.; Jarosz, B.; Tomasik, P. Chem. Mater. 2001, 13, 1207–1212. (6) Hosokawa, C.; Higashi, H.; Nakamura, H.; Miyata, S. Appl. Phys. Lett. 1995, 67, 3853–3855. (7) Zheng, S.; Shi, J. Chem. Mater. 2001, 13, 4405–4407. (8) Jacob, J.; Sax, S.; Piok, T.; List, E. J. W.; Grimsdale, A. C.; Mullen, K. J. Am. Chem. Soc. 2004, 126, 6987–6995. (9) Jin, S. H.; Kim, M. Y.; Kim, J. Y.; Lee, K.; Gal, Y. S. J. Am. Chem. Soc. 2004, 126, 2474–2480. (10) Matzger, A. J.; Zhang, X. J. Org. Chem. 2003, 68, 9813–9815. (11) (a) Anderson, S.; Taylor P. N.; Verschoor, G. L. B. Chem. Eur. J. 2004, 10, 518–527; (b) Conley, S. R. U.S. Patent 0 081 853, 2004. (12) Hanack, M.; Behnisch, B.; Hackl, H.; Martinez–Ruiz, P.; Schweikart, K. H. Thin. Solid Films 2002, 417, 26–31. (13) Li, C. L.; Shien, S. J.; Lin, S. C.; Liu, R. S. Org. Lett. 2003, 5, 1131–1134. (14) Kraft, A.; Grimsdale, A. C.; Holms, A. B. Angew. Chem. Int. Ed. 1998, 37, 402–428. (15) Schweikart, K. H.; Hannack, M.; Luer, L.; Oelkrug, D. Eur. J. Org. Chem 2001, 293–302. (16) Nizhegorodov, N. I.; Downey, W. S. J. Phys. Chem. 1994, 98, 5639–5643. (17) Wong, K. T.; Wang, Z. J.; Chien, Y. Y.; Wang, C. L. Org. Lett. 2001, 3, 2285–2288. (18) (a) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 3769–3772; (b) Pelter, A.; Ward, R. S.; Little, G. J. Chem. Soc. Perkin Trans. 1 1990, 10, 2775–2790. (19) Markovich, K. M.; Tantishaiyakul, V.; Hamada, A.; Miller, D. D.; Romstedt, K. J.; Shin, Y.; Fraundorfer, P. F.; Doyle, K.; Feller, D. R. J. Med. Chem. 1992, 35, 466–479. (20) Talukdar, S.; Hsu, J. L.; Chou, T. Z.; Fang, J. M. Tetrahedron Lett. 2001, 42, 1103–1105. (21) (a) McGarry, D. G.; Regan, J. R.; Volz, F. A.; Hulme, C.; Moriarty, K. J.; Djuric S. W.; Souness, J. E.; Miller, B. E.; Travis, J. J.; Sweeney, D. M. Bioorg. Med. Chem. 1999, 7, 1131–1139; (b) Flynn, B. L.; Hamel, E.; Jung, M. K. J. Med. Chem. 2002, 45, 2670–2673. (22) Salomon, C. J.; Breuer, E. Tetrahedron Lett. 1995, 36, 6759–6760. (23) Kauffman, J. M.; Moyna, G. J. Org. Chem. 2003, 68, 839–853. (24) Plater, M. J., Jackson, T. Tetrahedron 2003, 59, 4673–4685. (25) Meier, H.; Lehmann, M.; Kolb, U. Chem. Eur. J. 2000, 6, 2462–2469. (26) Segura, J. L.; Gomez, R.; Martin, N.; Guldi, D. M. Org. Lett. 2001, 3, 2645–2648. (27) Ito, J.; Tayaka, Y.; Oshima, Y.; Niwa, M. Tetrahedron 1999, 55, 2529–2544. (28) Yang, Z.; Liu, H. B.; Lee, C. M.; Chang, H. M.; Wong, H. C. J. Org. Chem. 1992, 57, 7248–7257. (29) Lin, Y. L.; Chang, Y. Y.; Kuo, Y. H.; Shiao, M. H. J. Nat. Prod. 2002, 65, 745–747. (30) Scaiano, J. C. CRC Handbook of Organic Photochemistry; CRC: Boca Raton, 1989. (31) Yeh, H. C.; Lee, R. H.; Chan, L. H.; Lin, T. Y.; Balasubramaniam, E.; Chen, C. T.; Tao, Y. T. Chem. Mater. 2001, 13, 2788–2796. (32) Janietz, S.; Bradley, D. D. C.; Giebeler, C.; Inbasekaran M.; Woo, E. P. Appl. Phys. Lett. 1998, 73, 2453–2455. (33) Chan, L. H.; Lee, R. H.; Hsieh, C. F.; Yeh, H. C.; Chen, C. T. J. Am. Chem. Soc. 2002, 124, 6469–6479. (34) Kolosov, D.; Admovich, V.; Djurovich, P.; Thompson, M. E.; Adach, C. J. Am. Chem. Soc. 2002, 124, 9945–9954. (35) Lee, M. T.; Yen, C. K.; Yang, W. P.; Chen, H. H.; Liao, C. H.; Tsai, C. H.; Chen, C. H. Org. Lett. 2004, 6, 1241–1244. (36) (a) Kan, Y.; Wang, L.; Duan, L.; Hu, Y.; Wu, G.; Qiu, Y. Appl. Phys. Lett. 2004, 84, 1513–1515; (b) Kim, Y. H.; Shin, D. C.; Kim, S. H.; Ko, C. H.; Yu, H. S.; Chae, Y. S.; Kwon, S. K. Adv. Mater. 2004, 13, 1690–1693.id NH0925065069 sid 913486 cfn 0 / id NH0925065070 auc 詹德品 tic N,N-二異丙基-10-樟腦磺醯胺衍生之具光學活性1,3-二□環戊烷化合物在不對稱反應及天然物合成上的應用 adc 汪炳鈞 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 224 kwc 樟腦 kwc 樟腦磺酸 kwc 掌性輔助基 kwc 不對稱醛醇反應 kwc 不對稱1,4-加成反應 kwc 1,3-二□環戊烷 abc 本論文研究包含三個部份:第一部份是利用N,N-二異丙基-10-樟腦磺醯胺25作為掌性輔助基衍生之1,3-二□環戊-4-酮化合物50和51進行不對稱醛醇反應的研究;第二部份是利用N,N-二異丙基-10-樟腦磺醯胺25作為掌性輔助基衍生之1,3-二□環戊-4-酮化合物48和50進行不對稱1,4-加成反應的研究;第三部份是利用1,3-二□環戊-4-酮化合物48進行(-)-k252a的不對稱形式合成研究。 rf 1. Calne, D. B.; Sandlar, M. Nature 1970, 226, 21. 2. "Reagents, Catalysts and Building Blocks for Enantioselective Synthesis Resolving Agent" Merck''s Chiralica. 3. Seyden-penne J. In "Chiral Auxiliaries and Ligands in Asymmetric Synthesis", John-Wiley and sons, New York, 1995. 4. Canedo, L. M.; Fernandez Puentes, J. L.; Perez-Baz, J.; Acebal, C.; de la Calle, F.; Garcia-Gravalos, D.; Garcia de Quesada, T. J. Antiviot. 1997, 50, 175. 5. (a) Rivero-Cruz, J. F.; Garcia-Aguirre, G.; Cerda-Garcia-Rojas, C. M.; Mata, R. Tetrahedron 2000, 56, 5337. (b) Rivero-Cruz, J. F.; Macias, M.; Cerda-Garcia-Rojas, C. M.; Mata, R. J. Nat. Prod. 2003, 66, 511. 6. (a)Sezaki, M.; Sasaki, T.; Nakazawa, T.; Takeda, U.; Iwata, M.; Watanabe, T.; Koyama, M.; Kai, F.; Shomura, T.; Kojima, M. J. Antiviot. 1985, 38, 1437. (b) Kase, H.; Iwahashi, K.; Matsuda, Y. J. Antiviot. 1986, 39, 1059. (c) Nakanishi, S.; Mastuda, Y.; Iwahashi, K.; Kase, H. J. Antiviot. 1986, 39, 1066. 7. Puri, S. C.; Sawhney, R. S.; Atal, C. K. Experientia 1973, 29, 390. 8. 劉宏信,清華大學七十五學年度碩士論文。 9. 卜詩堯,清華大學八十學年度博士論文。 10. 葉家宗,清華大學七十七學年度碩士論文。 11. (a) 林怡秀,清華大學七十九學年度碩士論文。(b) Uang, B.-J.; Lin, Y.-S.; Hsu, C.-Y. Tetrahedron: Asymmtry 1992, 1, 219. 12. Seebach, D.; Naef, R.; Calderari, G. Tetrahedron 1984, 40, 1313. 13. Pearson, W. H.; Cheng, M.-C. J. Org. Chem. 1986, 51, 3746. 14. Ley, S. V.; Boons, G.-J.; Downham, R.; Kim, K. S.; Woods, M. Tetrahedron 1994, 50, 7157. 15. 張家文,清華大學八十九學年度博士論文。 16. (a)詹德品,清華大學八十六學年度碩士論文。(b) Chang, J.-W.; Jang, D.-P.; Uang, B.-J.; Liao, F.-L.; Wang, S.-L. Org. Lett. 1999, 1, 2061. 17. Zamojski, A.; Giynkiewioz, G. In Total Synthesis of Natural Products, Vol 6, Apsimon, J. Ed. Wiley, New York, 1984, p141. 18. Wierenga, W. In Total Synthesis of Natural Products, vol. 4, Apsimon, J. Ed. Wiley, New York, 1984, p263. 19. Zamojski, A.; Giynkiewioz, G. In Total Synthesis of Natural Products, Vol 6, Apsimon, J. Ed. Wiley, New York, 1984, p141. 20. Dixon, D. J.; Ley, S. V.; Polara, A.; Sheppard, T. Org. Lett. 2001, 3, 3749. 21. Andrus, M. B.; Soma Sekhar, B. B. V.; Turner, T. M.; Meredith, E. L. Tetrahedron Lett. 2001, 42, 7197. 22. Zimmerman, H. E.; Traxler, M. D. J. Am. Chem. Soc. 1957, 79, 1920. 23. Evans, D. A.; Vogel, E.; Nelson, J. V. J. Am. Chem. Soc. 1979, 101, 6120. 24. (a) Evans, D. A. In Asymmetric Synthesis; Morrison, J. D., Scott, J. W., Eds.; Academic Press: New York, 1983; Vol. 3. (b) Heathcock, C. H. In Asymmetric Synthesis; Morrison, J. D., Scott, J. W., Eds.; Academic Press: New York, 1984; Vol. 4. (c) Kagan, H. B. In Stereochemistry Fundamental and Methods 19; Kangan, H. B. Ed.; Georg Thieme: Stuttgart, 1977. 25. Calderari, G.; Seebach, D. Helv. Chim. Acat 1985, 68, 1592. 26. Aitken, R. A.; Thomas, A. W. SynLett. 1998, 102. 27. Hattori, K.; Yamamoto, H. J. Org. Chem. 1993, 58, 5301. 28. Dixon, D. J.; Ley, S. V.; Rodriguez, F. Org. Lett. 2001, 3, 3753. 29. Yamaguchi, M.; Tsukamoto, M.; Tanaka, S.; Hirao, I. Tetrahedron Lett. 1984, 25, 5661. 30. (a) 顏光輔,清華大學八十四學年度博士論文。 (b) Yen, K.-F.; Uang, B.-J. Tetrahedron: Asymmetry 1992, 3, 697. 31. (a) Amstutz, R.; Schweizer, W. B.; Seebach, D.; Dunitz, J. D. Helv. Chim. Acta. 1981, 64, 2617. (b) Seebach, D.; Amstutz, R.; Dunitz, J. D. ibid. 1981, 64, 2622. 32. Huang, J.; Meinwald, J. J. Am. Chem. Soc. 1981, 103, 861. 33. Chen, M.-Y.; Fang, J.-M. J. Org. Chem. 1992, 57, 2937. 34. Donohoe, T. J.; Stevenson, C. A.; Helliwell, M.; Irshad, R.; Ladduwahetty, T. Tetrahedron: Asymmetry 1999, 10, 1315. 35. Wood, J. L.; Stoltz, B. M.; Dietrich, H.-J. J. Am. Chem. Soc. 1995, 117, 10413. 36. (a) Sarstede, B.; Winterfeldt, E. Heterocycles 1983, 20, 469. (b) Hughes, I.; Nolan, W. P.; Raphael, R. A. J. Chem. Soc. Perkin Trans. I. 1990, 2475. (c) Moody, C. J.; Rahimtoola, K. F.; J. Chem. Soc. Chem. Commun. 1990, 1667. (d) Moody, C. J.; Rahimtoola, K. F.; Porter, B.; Rose, B. C. J. Org. Chem. 1992, 57, 2105. (e) Toullec, D.; Pianetti, P.; Coste, H.; Bellevergue, P.; Grand.-Perret, T.; Ajakane, M.; Baudet, V.; Boissin, P.; Boursier, E.; Loriolle, F.; Duhamel, L.; Charon, D.; Kirilovsky, J. J. Biol. Chem. 1991, 266, 15771. (f) Harris, W.; Hill, C. H.; Keech, E.; Malsher, P. Tetrahedron Lett. 1993, 34, 8361. (g) Xie, G. Lown, J. W. Tetrahedron Lett. 1994, 35, 5555. (h) Fabre, S.; Prudhomme, M.; Rapp, M. Bioorg. Med. Chem. Lett. 1992, 2, 449. (i) Fabre, S.; Prudhomme, M.; Rapp, M. Bioorg. Med. Chem. 1993, 1, 193. 37. Kobayashi, Y.; Fujimoto, T.; Fukuyama, T. J. Am. Chem. Soc. 1999, 121, 6501.id NH0925065070 sid 877411 cfn 0 / id NH0925065071 auc 徐明聖 tic 台灣地區戴奧辛類化合物膳食攝入量調查及其健康風險評估 adc 凌永健 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg - kwc 戴奧辛 kwc 戴奧辛類多氯聯苯 kwc 戴奧辛類化合物 kwc 膳食攝入量 kwc 健康風險 kwc 食品 abc 本研究採用選擇研究個別食品方式以估算台灣地區民眾之膳食戴奧辛類化合物(dioxin-like compounds, DLCs)攝入量,並進行健康風險評估。本研究於2000年~2003年間,在台灣地區共採集市售3477件動物來源或高脂食品樣品,經混樣後得到380件組合樣品,分析其中的17種2,3,7,8-氯取代戴奧辛/呋喃化合物。在調查的22類食品中,總重基準上界平均戴奧辛濃度介於0.020~0.255 pg WHO-TEQPCDD/F/g fw,而脂肪重基準上界平均戴奧辛濃度則介於0.179~3.74 pg WHO-TEQPCDD/F/g lw。此外,本研究亦藉由測定部份牛肉、魚肉與全脂牛乳樣品中12種戴奧辛類多氯聯苯的濃度,推估陸生與水生動物來源食品中戴奧辛與戴奧辛類多氯聯苯的毒性當量(toxicity equivalency quantity, TEQ)比例,陸生動物食品:戴奧辛佔65% TEQ,戴奧辛類多氯聯苯佔35% TEQ;水生動物食品:戴奧辛佔35% TEQ,戴奧辛類多氯聯苯佔65% TEQ。 rf Chapter 1 1. de Vito, M. J.; Gallow, M. A. (2000). Dioxins and dioxin-like chemicals. in: Environmental toxicants: Human exposures and their health effects, ed. by Lippmann, M., John Wiley & Sons, Inc. 2. European Commission (2001). Fact sheet on dioxin in feed and food, MEMO/01/270, Brussels, EC. 3. Scientific Committee on Food (SCF) (2000). Opinion of the SCF on the risk assessment of dioxins and dioxin-like PCBs in food, SCF/CS/CNTM/DIOXIN/8 FINAL, SCF, EC. 4. US Environmental Protection Agency (2000). Draft exposure and human health reassessment of 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds, US EPA. 5. Joint FAO/WHO Expert Committee on Food Additives (JECFA) (2001). Summary and conclusions of the fifty-seventh meeting, JECFA. 6. Wexler, P. ed. (1998). Encyclopedia of toxicology, Volume 1, San Diego: Academic Press. 7. World Health Organization (1999). Dioxins and their effects on human health, Fact sheet No 225, WHO. 8. Agency for Toxic Substances and Disease Registry (ATSDR) (1999). Chlorinated dibenzo-p-dioxins (CDDs), Department of Health and Human Services, USA. 9. US Environmental Protection Agency (2000). Questions and answers about dioxins, US EPA. 10. Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (COT) (2001). Statement on the tolerable daily intake for dioxins and dioxin-like polychlorinated biphenyls, Department of Health, UK. 11. International Agency of Research on Cancer (IARC) (1997). Polychlorinated dibenzo-para-dioxins and polychlorinated dibenzofurans - IARC Monographs on the Evaluation of Carcinogenic Risks to Humans and Their Supplements, Vol. 69, IARC, WHO. 12. International Agency of Research on Cancer (IARC) (1987). Polychlorinated biphenyls – Overall evaluations of carcinogenicity: An updating of IARC Monographs Volumes 1 to 42, Supplement No. 7, IARC, WHO. 13. North Atlantic Treaty Organization, Committee on the Challenges of Modern Society (NATO/CCMS) (1988). International toxicity equivalency factors (I-TEF) method of risk assessments for complex mixtures of dioxins and related compounds, Report No. 176, North Atlantic Treaty Organization. 14. 廢棄物焚化爐戴奧辛管制及排放標準,中華民國八十六年八月六日行政院環境保護署(八六)環署空字第四三五九三號令訂定發布全文十一條。 15. 中小型廢棄物焚化爐戴奧辛管制及排放標準,中華民國八十九年十月十一日。(八九)環署空字第00五八九0六號令發布。 16. Van den Berg, M.; Birnbaum, L.; Bosveld, A. T. C.; Brunstrom, B.; Cook, P.; Feeley, M.; Giesy, J. P.; Hanberg, A.; Hasegawa, R.; Kennedy, S.W.; Kubiak, T.; Larsen, J. C.; van Leeuwen, F. X. R.; Liem, A. K. D.; Nolt, C.; Peterson, R. E.; Poellinger, L.; Safe, S.; Schrenk, D.; Tillitt, D.; Tysklind, M.; Younes, M.; Waern, F.; Zacharewski, T. (1998). Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife, Environmental Health Perspectives, 106, 775-792. 17. World Health Organization (1998). Executive Summary: Assessment of the health risk of dioxins: re-evaluation of the Tolerable Daily Intake (TDI), WHO Consultation, WHO. 18. Norén, K.; Lundén, A. (1991). Trend studies of polychlorinated biphenyls, dibenzo-p-dioxins and dibenzofurans in human milk, Chemosphere, 23, 1895-1901. 19. Alder, L.; Beck, H.; Mathar, W.; Palavinskas, R. (1994). PCDDs, PCDFs, PCBs and other organochlorine compounds in human milk levels and their dynamics in Germany, Organohalogen compounds, 21, 39-44. 20. Chlorine Chemistry Council (CCC) (2002). A comparison of dioxin risk characterizations, American Chemistry Council. 21. Department for Environment, Food and Rural Affairs (DEFRA) (2002). Dioxins and dioxin-like PCBs in the UK environment, DEFRA, UK. 22. Masho, R.; Tohyama, C. (2003). Trend of dioxin and PCB risk assessment in Japan, Organohalogen Compounds, 63, 429-432. 23. US Environmental Protection Agency (2001). Dioxin reassessment: An SAB’s review of the Office of Research and Development’s reassessment of dioxin, EPA-SAB-EC-01-006, US EPA. 24. Kociba, R. J. et al. (1978). Results of a two year chronic toxicity and oncogenicity study of 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) in rats, Toxicology and Applied Pharmacology, 46, 279-303. 25. WHO (1991). Consultation on Tolerable Daily Intake from Food of PCDDs and PCDFs, Summary Report, WHO. 26. Gehrs, B. C.; Riddle, M. M.; Williams, W. C.; Smialowicz, R. J. (1997). Alterations in the developing immune system of the F344 rat after perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin II. Effects on the pup and the adult, Toxicology, 122, 229-240. 27. Gehrs, B. C.; Smailowicz, R. J. (1998). Persistent suppression of delayed-type hypersensitivity (DTH) in rats perinatally exposed to TCDD, Toxicologist, 42, 1501. 28. Gray, L. E.; Ostby, J. S.; Kelce, W. R. (1997). A dose-response analysis of the reproductive effects of a single gestational dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in male Long Evans hooded rat offspring, Toxicology and Applied Pharmacology, 146, 11-20. 29. Gray, L. E.; Wolf, C.; Mann, P.; Ostby, J. S. (1997). Inutero exposure to low doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters reproductive development of female Long Evans hooded rat offspring, Toxicology and Applied Pharmacology, 146, 237-244. 30. Rier, S. E.; Martin, D. C.; Bowman, R. E.; Dmowski, W. P.; Becker, J. L. (1993). Endometriosis in Rhesus Monkeys (macaca mulatta) following chronic exposure to 2,3,7,8,-tetrachlorodibenzo-p-dioxin. Fundamental and Applied Toxicology, 21, 433-441. 31. Schantz, S.; Bowman, R. E. (1989). Learning in monkeys exposed perinatally to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), Neurotoxicology and Teratology, 11, 13-19. 32. Ohsako, S.; Miyabara, Y.; Nishimura, N.; Kurosawa, S.; Sakaue, M.; Ishimura, R.; Sato, M.; Takeda, K.; Aoki, Y.; Soni, H.; Tohyama, C.; Yonemoto, J. (2001). Maternal exposure to a low dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suppressed the development of reproductive organs of male rats: dose-dependent increase of mRNA levels of 5-alpha-reductase type 2 in contrast to decrease of androgen receptor in the pubertal ventral prostate. Toxicological Sciences, 60, 132-143. 33. Faqi, A. S.; Dalsenter, P. R.; Merker, H. J.; Chahoud, I. (1998). Reproductive toxicity and tissue concentrations of low doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin in male offspring rats exposed throughout pregnancy and lactation, Toxicology and Applied Pharmacology, 150, 383-392. 34. Mably, T. A.; Moore, R. W.; Goy, R. W.; Peterson, R. E. (1992). Inutero and lactational exposure of male rats to 2,3,7,8-tetrachlorodibenzo-p-dioxin. 2. Effects on sexual behavior and the regulation of luteinizing hormone secretion in adulthood, Toxicology and Applied Pharmacology, 114, 108-117. 35. Gehrs, B. C.; Smialowicz, R. J. (1999). Persistent suppression of delayed-type hypersensitivity in adult F344 rats after prenatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin, Toxicology, 134, 79-88. 36. Scientific Committee on Food (SCF) (2001). Opinion of the SCF on the risk assessment of dioxins and dioxin-like PCBs in food. Update based on new scientific information available since the adoption of the SCF opinion of 22nd November 2000, CS/CNTM/DIOXIN/20 final, SCF, EC. 37. Food and Nutrition Board, Institute of Medicine (2003). Dioxins and dioxin-like compounds in the food supply: Strategies to decrease exposure, National Academies Press, USA. 38. European Commission (2000). White paper on food safety, COM (1999) 719 final, EC. 39. European Commission (2001). Commission proposes strategy to reduce dioxin in food and feed, IP/01/1045, EC. 40. European Commission (2001). The Commission adopts strategy to reduce dioxins and PCBs in environment, feed and food, IP/01/1492, EC. 41. Council Regulation No 2375/2001 (2001). Amending Commission Regulation (EC) No 466/2001 setting maximum levels for certain contaminants in foodstuffs, EC. 42. Commission Recommendation of 4 March 2002 on the reduction of the presence of dioxins, furans and PCBs in feedingstuffs and foodstuffs (2002). 2002/201/EC, EC. 43. Ministry of Health and Welfare (1996). Interim report of studies on dioxin risk assessment, Ministry of Health and Welfare, Japan. 44. Environment Agency (1997). Dioxin Risk Assessment Committee Report, Environment Agency, Japan. 45. Environmental Health Committee of the Central Environment Council (Environment Agency) and Living Environment Council and Food Sanitation Investigation Council (Ministry of Health and Welfare) (1999). Report on Tolerable Daily Intake (TDI) of dioxins and related compounds, Ministry of Health and Welfare, Japan. 46. Department of the Environment (1989). Dioxins in the environment, Pollution Paper No. 27, Department of the Environment, UK. 47. Department for Environment, Food and Rural Affairs (DEFRA) (2002). Dioxins and dioxin-like PCBs in the UK environment, Consultation Document, DEFRA, UK. 48. Nordic Council of Ministers (1988). Nordisk dioxinrisk bedömning (Nordic dioxin risk assessment, with english summary), NORD 1988:7. 49. Nordic Council of Ministers (2001). The Nordic Environmental Action Plan 2001-2004, Tema Nord 2001:504. 50. Agency for Toxic Substances and Disease Registry (ATSDR) (2004). Minimal Risk Levels (MRLs) for hazardous substances, Department of Health and Human Services, USA. 51. German Federal Environmental Agency (2002). Comments on the “Opinion of the Scientific Committee on Food on the Risk Assessment of Dioxins and Dioxin-like PCBs in Food. Update based on new scientific information available since the adoption of the SCF Opinion of 22 November 2000”, German Federal Environmental Agency. 52. Schecter, A.; Cramer, P.; Boggess, K.; Stanley, J.; Olson, J. R. (1997). Levels of dioxins, dibenzofurans, PCB and DDE congeners in pooled food samples collected in 1995 at supermarkets across the United States, Chemosphere, 34, 1437-1447. 53. Schecter, A.; Cramer, P.; Boggess, K.; Stanley, J.; Päpke, O.; Olson, J.; Silver, A.; Schmitz, M. (2001). Intake of dioxins and related compounds from food in the U.S. population, Journal of Toxicology and Environmental Health Part A, 63, 1-18. 54. Harrison, N.; Wearne, S.; Gem, de M. M. G.; Gleadle, A.; Startin, J.; Thorpe, S.; Wright, C.; Kelly, M.; Robinson, C.; White, S.; Hardy, D.; Edinburgh, V. (1998). Time trends in human dietary exposure to PCDDs, PCDFs and PCBs in the UK, Chemosphere, 37, 1657-1670. 55. Ministry of Agriculture, Fisheries and Food (MAFF) (1997). Dioxins and polychlorinated biphenyls and foods and human milk, Food Surveillance Information Sheet 105, MAFF, UK. 56. Food Standards Agency (FSA) (2000). Dioxins and PCBs in the UK diet: 1997 Total Diet Study, Food Surveillance Information Sheet 4/00, FSA, UK. 57. Food Standards Agency (FSA) (2003). Dioxins and Dioxin-like PCBs in the UK diet: 2001 Total Diet Study samples, Food Surveillance Information Sheet 38/03, FSA, UK. 58. Fürst, P.; Fürst, W.; Groebel, W. (1990). Levels of PCDDs and PCDFs in foodstuffs from the Federal Republic of Germany, Chemoshpere, 20, 787-792. 59. Beck, H.; Dross, A.; Mathar, W. (1992). PCDDs, PCDFS and related contaminants in the German food supply, Chemosphere, 25, 1539-1550. 60. Malisch, R. (1998). Update of PCDD/PCDF-intake from food in Germany, Chemosphere, 37, 1687-1698. 61. Mayer, R. (2001). PCDD/F levels in food and canteen meals from Southern Germany, Chemosphere, 43, 857-860. 62. Theelen, R. M. C.; Liem. A. K. D.; Slob, W.; van Wijnen, J. H. (1993). Intake of 2,3,7,8 chlorine substituted dioxins, furans, and planar PCBs from food in the Netherlands: median and distribution, Chemosphere, 27, 1625-1635. 63. Jimènez, B.; Hernàndez, L. M.; Eljarrat, E.; Rivera, J.; Gonzàlez, M. J. (1996). Estimated intake of PCDDs, PCDFs and co-planar PCBs in individuals from Madrid (Spain) eating an average diet, Chemosphere, 33, 1465-1474. 64. Domingo, J. L.; Schuhmacher, S.; Granero, S.; Llobet, J. M. (1999). PCDDs and PCDFs in food samples from Catalonia, Spain. An assessment of dietary intake, Chemosphere, 38, 3517-3528. 65. Focant, J. F.; Eppe, G.; Pirard, C.; Massart, A. C.; André, J. E.; Pauw, E. De (2002). Levels and congener distributions of PCDDs, PCDFs and non-ortho PCBs in Belgian foodstuffs: Assessment of dietary intake, Chemosphere, 48, 167-179. 66. Schmid, P.; Gujer, E.; Degen, S.; Zennegg, M.; Kuchen, A.; Wüthrich, C. (2002). Levels of polychlorinated dibenzo-p-dioxins and dibenzofurans in food of animal origin. The Swiss Dioxin Monitoring Program, Journal of Agricultural and Food Chemistry, 50, 74827487. 67. European Commission (2000). Reports on tasks for scientific cooperation (SCOOP). Assessment of dietary intake of dioxins and related PCBs by the population of EU Member States, Report of experts participating in Task 3.2.5, 7, Directorate-General Health and Consumer Protection, EC. 68. Takayama, K.; Miyata, H.; Aozasa, O.; Mimura, M.; Kashimoto, T. (1991). Dietary intake of dioxin-related compounds through food in Japan, Journal of Food Hygiene Society of Japan, 32, 525-532. 69. Tsutsumi, T.; Yanagi, T.; Nakamura, M.; Kono, Y.; Uchibe, H.; Iida, T.; Hori, T.; Nakagawa, R.; Tobiishi, K.; Matsuda, R.; Sasaki, K.; Toyoda, M. (2001). Update of daily intake of PCDDs, PCDFs, and dioxin-like PCBs from food in Japan, Chemoshpere, 45, 1129-1137. 70. Wu, Y.; Li, J.; Zhao, Y.; Chen, Z.; Li, W.; Chen, J. (2002). Dietary intake of ploychloranited dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in populations from China, Organohalogen Compounds, 57, 221-223. 71. Food and Environmental Hygiene Department (2002). Dietary exposure to dioxins of secondary school students, Food and Environmental Hygiene Department, HKSAR. 72. Schecter, A.; Dellarco, M.; Päpke, O.; Olson, J. (1998). A comparison of dioxins, dibenzofurans and coplanar PCBs in uncooked and broiled ground beef, catfish and bacon, Chemosphere, 37, 1723-1730. 73. Rose, M.; Thorpe, S.; Kelly, M.; Harrison, N.; Startin, J. (2001). Changes in concentration of five PCDD/F congeners after cooking beef from treated cattle, Chemosphere, 43, 861-868. 74. Swedish Environmental Protection Agency (1999). Levels, Sources and Trends of Dioxins and Dioxin-Like Substances in the Swedish Environment - The Swedish Dioxin Survey, Volume I, Swedish Environmental Protection Agency. Chapter 2 1. European Commission (2001). Fact sheet on dioxin in feed and food, MEMO/01/270, EC. 2. Scientific Committee on Food (SCF) (2000). Opinion of the SCF on the risk assessment of dioxins and dioxin-like PCBs in food, SCF/CS/CNTM/DIOXIN/8 FINAL, SCF, EC. 3. US Environmental Protection Agency (2000). Draft exposure and human health reassessment of 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds, US EPA. 4. Hsu, M. S.; Chen, P. C.; Ma, E.; Chou, U.; Liou, E. M. L.; Ling, Y. C. (2001). Levels of PCDD/DFs in retail cows’ milk in Taiwan, Organohalogen Compounds, 51, 255-258. 5. Hsu, M. S.; Ma, E.; Cheng, P. S.; Chou, U.; Chen, S. Y.; Chang, C. F.; Chou, S. S.; Cheng, C. C.; Yu, C. Y.; Liao, C. H.; Ling, Y. C. (2002). Levels of PCDD/DFs in foodstuffs in Taiwan, Organohalogen Compounds, 57, 73-76. 6. Hsu, M. S.; Cheng, P. S.; Ma, E.; Chou, U.; Chen, L. P.; Jone, C. H.; Chou, S. S.; Cheng, C. C.; Yu, C. Y.; Liao, C. H.; Ling, Y. C. (2002). A preliminary total diet study of PCDD/DFs-intake from food in Taiwan, Organohalogen Compounds, 55, 231-234. 7. Chang, C. F.; Hsu, M. S.; Jone, C. H.; Ma, E.; Ling, Y. C. (2002). Survey of PCDD/Fs levels in fish oil and cod liver oil sold on Taiwan market, Organohalogen Compounds, 57, 197-200. 8. World Health Organization (1985). Guidelines for the study of dietary intakes of chemical contaminants, WHO. 9. Global Environment Monitoring System/Food Contamination Monitoring and Assessment Programme (GEMS/Food) (1997). Guides for predicting dietary intake of pesticide residues (revised), GEMS/Food, WHO. 10. World Health Organization (1999). Report of a Joint USFDA/WHO International Workshop on Total Diet Studies in Cooperation with the Pan American Health Organization: GEMS/Food Total Diet Studies, WHO. 11. Tsutsumi, T.; Yanagi, T.; Nakamura, M.; Kono, Y.; Uchibe, H.; Iida, T.; Hori, T.; Nakagawa, R.; Tobiishi, K.; Matsuda, R.; Sasaki, K.; Toyoda, M. (2001). Update of daily intake of PCDDs, PCDFs, and dioxin-like PCBs from food in Japan, Chemoshpere, 45, 1129-1137. 12. Schecter, A.; Dellarco, M.; Päpke, O.; Olson, J. (1998). A comparison of dioxins, dibenzofurans and coplanar PCBs in uncooked and broiled ground beef, catfish and bacon, Chemosphere, 37, 1723-1730. 13. Rose, M.; Thorpe, S.; Kelly, M.; Harrison, N.; Startin, J. (2001). Changes in concentration of five PCDD/F congeners after cooking beef from treated cattle, Chemosphere, 43, 861-868. 14. Swedish Environmental Protection Agency (1999). Levels, Sources and Trends of Dioxins and Dioxin-Like Substances in the Swedish Environment - The Swedish Dioxin Survey, Volume I, Swedish Environmental Protection Agency. 15. Joint FAO/WHO Expert Committee on Food Additives (JECFA) (2001). Summary and conclusions of the fifty-seventh meeting, JECFA. 16. Wu, S. J.; Chang, Y. H.; Fang, C. W.; Pan, W. H. (1999). Food sources of weight, calories, and three macro-nutrients-NAHSIT 1993-1996, Nutritional Sciences Journal, 24, 41-58. 17. 行政院主計處,八十九年戶口及住宅普查初步結果提要分析。 18. 台北市政府主計處,市政統計週報http://www.dbas.taipei.gov.tw/NEWS_WEEKLY/S4_2/93259.htm 19. 台北縣統計資料 -- 本縣各鄉鎮市土地人口預算概況http://gis.tpc.gov.tw/Human2/county/Statistics/OfficeFiles/sp1.xls 20. 桃園縣政府主計室 -- 本縣各鄉鎮市土地、人口、預算概況http://www.tycg.gov.tw/cgi-bin/SM_theme?page=40bed340 21. 台中市政府主計室 -- 現住戶數、人口密度及性比例http://www.tccg.gov.tw/sys/unit/sys/upload/現住戶數、人口密度及性比例.xls 22. 台中縣政府主計室 -- 臺中縣人口統計月報 http://accgov.com.tw/人口月報/9305.xls 23. 彰化縣政府主計室,人口統計速報http://www.chhg.gov.tw/basc/html/poputab3.htm 24. 台南縣政府主計室,統計月報http://intranet.tnhg.gov.tw/files/tnhg/A17/dept4/month_papers/93_5.xls 25. 高雄市區里人口統計資料查詢系統http://cabu.kcg.gov.tw/people/92r3110.htm 26. 高雄縣民政局,現住戶數、人口密度及性比例,1222-01-01-2。 27. Liem, A. K. D. (1999). Basic aspects of methods for the determination of dioxins and PCBs in foodstuffs and human tissues, Trends in Analytical Chemistry, 18, 429-439. 28. AOAC Official Methods of Analysis 970.52L(c) “Fat-Containing Foods”, 15th Ed. 1990, 278-279. 29. Ryan, J. J.; Lizotte, R.; Panopio, L. G.; Lau, B. P. Y. (1989). The effect of strong alkali on the determination of polychlorinated dibenzofurans (PCDFs) and polychlorinated dibenzo-p-dioxins (PCDDs), Chemosphere, 18, 149-154. 30. US EPA Method 1613B (1994). Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS, US EPA. 31. Malisch, R.; Schmid, P.; Frommberger, R.; Fürst, P. (1996). Results of a quality control study of different analytical methods for determination of PCDD/PCDF in egg samples, Chemosphere, 32, 31-44. 32. Strandberg, B.; Bergqvist. P. A.; Rappe, C. (1998). Dialysis with semipermeable membranes as an efficient lipid removal method in the analysis of bioaccumulative chemicals, Analytical Chemistry, 70, 526-533. 33. Grochowalski, A.; Chrzaszcz, R. (2000). The result of the large scale determination of PCDDs, PCDFs and coplanar PCBs in polish food product samples using GC-MS/MS technique, Organohalogen Compounds, 47, 310-313. 34. Smith, L. M.; Stalling, D. L.; Johnson, J. L. (1984). Determination of part-per-trillion levels of polychlorinated dibenzofurans and dioxins in environmental samples, Analytical Chemistry, 56, 1830-1842. 35. Liem, A. K. D.; de Jong, A. P. J. M.; Marsman, J. A.; den Boer, A. C.; Groenemeijer, G. S.; den Hartog, R. S.; de Korte, G. A. L.; Hoogerbrugge, R.; Kootstra, P. R.; van’t Klooster, H. A. (1990). A rapid clean-up procedure for the analysis of polychlorinated dibenzo-p-dioxins and dibenzofurans in milk samples, Chemosphere 1990, 20, 843-850. 36. Krokos, F.; Creaser, C. S.; Wright, C.; Startin, J. R. (1997). Congener-specific method for the determination of ortho and non-ortho polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in foods by carbon-column fractionation and gas chromatography-isotope dilution mass spectrometry, Fresenius Journal of Analytical Chemistry, 357, 732-742. 37. Reiner, E. J.; Schellenberg, D. H.; Taguchi, V. Y.; Mercer, R. S.; Townsend, J. A.; Thompson, T. S.; Clement, R. E. (1990). Application of tandem quadrupole mass spectrometry for the ultra-trace determination of polychlorinated dibenzo-p-dioxins and dibenzofurans, Chemosphere, 20, 1385-1392. 38. Hayward, D. G. (1997). Determination of polychlorinated dibenzo-p-dioxin and dibenzofuran background in milk and cheese by quadrupole ion storage collision induced dissociation MS/MS, Chemosphere, 34, 929-939. 39. Hayward, D. G.; Hooper, K.; Andrzejewski, D. (1999). Tandem-in-time mass spectrometry method for the sub-parts-per-trillion determination of 2,3,7,8-chlorine-substituted dibenzo-p-dioxins and –furans in high-fat foods, Analytical Chemistry, 71, 212-220. 40. Hayward, D. G.; Holcomb, J.; Glidden, R.; Wilson, P.; Harris, M.; Spencer, V. (2001). Quadrupole ion storage tandem mass spectrometry and high-resolution mass spectrometry: complementary application in the measurement of 2,3,7,8-chlorine substituted dibenzo-p-dioxins and dibenzofurans in US foods, Chemosphere, 43, 407-415. 41. Ferrario, J.; Byrne, C.; McDaniel, D.; Dupuy, A. Jr. (1996). Determination of 2,3,7,8-chlorine-substituted dibenzo-p-dioxins and furans at the part per trillion level in United States beef fat using high-resolution gas chromatography / high-resolution mass spectrometry, Analytical Chemistry, 68, 647-652. 42. Schecter, A.; Cramer, P.; Boggess, K.; Stanley, J.; Olson, J. R. (1997). Levels of dioxins, dibenzofurans, PCB and DDE congeners in pooled food samples collected in 1995 at supermarkets across the United States, Chemosphere, 34, 1437-1447. 43. US FDA Laboratory Information Bulletin No. 4084 Dioxins (1997). “Quadrupole Ion Storage Mass Spectrometry/Mass Spectrometry Application to the Analysis of all 17 2,3,7,8 substituted Chlorodibenzo-p-dioxins (dioxins) and Chlorodibenzofurans (furans) in Dairy Products and High Fat Foods” 44. Harrison, N.; Wearne, S.; Gem, M. G. de M.; Gleadle, A.; Startin, J.; Thorpe, S.; Wright, C.; Kelly, M.; Robinson, C.; White, S.; Hardy, D.; Edinburgh, V. (1998). Time trends in human dietary exposure to PCDDs, PCDFs and PCBs in the UK, Chemosphere, 37, 1657-1670. 45. Ryan, J. J.; Mills, P. (1997). Lipid extraction from blood and biological samples and concentrations of dioxin-like compounds, Chemosphere, 34, 999-1009. 46. Malisch, R. (1998). Update of PCDD/PCDF-Intake from food in Germany, Chemosphere, 37, 1687-1698. 47. Schecter, A.; Päpke, O.; Dellarco, M.; Olson, J. (1996). A comparison of dioxins and dibenzofurans in cooked and uncooked food, Organohalogen Compounds, 28, 166-170. 48. Theelen, R. M. C.; Liem, A. K. D.; Slob, W.; van Wijnen, J. H. (1993). Intake of 2,3,7,8 chlorine substituted dioxins, furans, and planar PCBs from food in the Netherlands: median and distribution, Chemosphere, 27, 1625-1635. 49. van der Velde, E. G.; Marsman, J. A.; de Jong, A. P. J. M.; Hoogerbrugge, R.; Liem, A. K. D. (1994). Analysis and occurrence of toxic planar PCBs, PCDDs and PCDFs in milk by use of carbosphere activated carbon, Chemosphere, 28, 693-702. 50. Choi, D.; Hu, S.; Jeong, J.; Won, K.; Song I. (2000). Levels of dioxin-like compounds in Korea food, Organohalogen Compounds, 47, 375-377. 51. Jeong, G. H.; You, J. C.; Joo, C. H.; Jeon, S. E. (2001). Distribution characteristics of 2,3,7,8-substituted dioxins in the fresh water fishes from the major rivers in S. Korea, Organohalogen Compounds, 51, 247-250. 52. Abad, E.; Llerena, J. J.; Caixach, J.; Rivera, J. (2000). Polychlorinated dibenzo-p-dioxins, dibenzofurans and co-planar biphenyls in foodstuffs samples from Catalonia (Spain), Organohalogen Compounds, 47, 306-309. 53. Jimènez, B.; Hernàndez, L. M.; Eljarrat, E.; Rivera, J.; Gonzàlez, M. J. (1996). Estimated intake of PCDDs, PCDFs and co-planar PCBs in individuals from Madrid (Spain) eating an average diet, Chemosphere, 33, 1465-1474. 54. Focant, J. F.; Massart, A. C.; Eppe, G.; Pirard, C.; André, J. E.; Xhrouet, C.; Pauw, E. D. (2001). Levels and trends of PCDD/Fs and cPCBs in Belgian foodstuffs one year after the “dioxin crisis”, Organohalogen Compounds, 51, 243-246. 55. Amirova, Z.; Kruglov, E.; Donnic, I.; Grosheva, E. (2001). Control instrumentation of PCDD/Fs content in foodstuff in Russia, Organohalogen Compounds, 51, 298-301. 56. Scortichini, G.; Diletti, G.; Torreti, L.; Forti, A. F.; Scarpone, R.; Migliorati, G. (2001). Food and animal feeds contamination by PCDDs-PCDFs in Italy in years 1999 and 2000: incidence and TEQ congeners patterns, Organohalogen Compounds, 51, 400-403. 57. Peng, J. H.; Weng, Y. M. (2001). PCDDs, PCDFs and dioxin-like PCBs in fish from Tung Kang, Kao Ping rivers in Taiwan, Organohalogen Compounds, 51, 364-367. 58. 經濟部標準檢驗局:中國國家標準CNS 14758「食品中戴奧辛及多氯聯苯殘留量檢驗方法」。經濟部標準檢驗局,2003年7月。 59. US EPA Method 1668A (1997). Toxic Polychlorinated Biphenyls by Isotope Dilution High Resolution Gas Chromatography / High Resolution Mass Spectrometry, US EPA. 60. Malisch, R.; Baumann, B.; Behnisch, P. A.; Canady, R.; Fraisse, D.; Fürst, P.; Hayward, D.; Hoogenboom, R.; Hoogerbrugge, R.; Liem, D.; Päpke, O.; Traag, W.; Wiesmüller, T. (2001). Harmonised quality criteria for chemical and bioassays analyses of PCDDs/PCDFs in feed and food -- Part 1: general considerations, GC/MS methods Organohalogen Compounds, 50, 53-58. 61. Global Environment Monitoring System/Food Contamination Monitoring and Assessment Programme (GEMS/Food) (2003). GEMS/Food Regional Diets -- Regional per Capita Consumption Of Raw and Semi-processed Agricultural Commodities, GEMS/Food, WHO. Chapter 3 1. 台灣地區食品營養成分資料庫 (1998),行政院衛生署。 2. 台灣地區食品營養成分資料庫(二) (2002),行政院衛生署。 3. 常見食品營養圖鑑 (1998),行政院衛生署。 4. 民國89年漁業年報,行政院農業委員會漁業署http://www.fa.gov.tw/tfb7/2000c.htm 5. 91年度農業統計年報,行政院農業委員會 http://agr.pdaf.gov.tw/list.htm 6. 內政統計月報 (93年5月),行政院內政部http://www.moi.gov.tw/stat/month/m1-01.xls 7. Joint FAO/WHO Expert Committee on Food Additives (JECFA) (2001). Summary and conclusions of the fifty-seventh meeting, JECFA. 8. 農業統計月報,農產加工業主要產品產銷存量值 (93年5月) 行政院農業委員會。 http://www.coa.gov.tw/statistic/mon/t33.htm 9. 鄭速珍 (1999),我國乳製品產業供需現況分析,食品市場資訊,8803期。 10. 許可嬰兒配方奶粉相關資訊,食品衛生處,行政院衛生署http://www.doh.gov.tw/org2/b3/1212-1.htm 11. Van den Berg, M.; Birnbaum, L.; Bosveld, A. T. C.; Brunstrom, B.; Cook, P.; Feeley, M.; Giesy, J. P.; Hanberg, A.; Hasegawa, R.; Kennedy, S.W.; Kubiak, T.; Larsen, J. C.; van Leeuwen, F. X. R.; Liem, A. K. D.; Nolt, C.; Peterson, R. E.; Poellinger, L.; Safe, S.; Schrenk, D.; Tillitt, D.; Tysklind, M.; Younes, M.; Waern, F.; Zacharewski, T. (1998). Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife, Environmental Health Perspectives, 106, 775-792. 12. World Health Organization (1998). Executive Summary: Assessment of the health risk of dioxins: re-evaluation of the Tolerable Daily Intake (TDI), WHO Consultation, WHO. 13. Council Regulation No 2375/2001 (2001). Amending Commission Regulation (EC) No 466/2001 setting maximum levels for certain contaminants in foodstuffs, EC. 14. Malisch, R. (1998). Update of PCDD/PCDF-intake from food in Germany, Chemosphere, 37, 1687-1698. 15. Schuler, F.; Schmid, P.; Schlatter, Ch. (1997). The transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans from soil into eggs of foraging chicken, Chemosphere, 34, 711-718. 16. European Commission (2000). Reports on tasks for scientific cooperation (SCOOP). Assessment of dietary intake of dioxins and related PCBs by the population of EU Member States, Report of experts participating in Task 3.2.5, 7, Directorate-General Health and Consumer Protection, EC. 17. European POPs Expert Team, EPET (2002). Preparatory actions in the field of dioxin and PCBs – Executive Summary, EC. 18. 經濟部標準檢驗局:中國國家標準CNS 5036「食品中粗脂肪之檢驗方法」。經濟部標準檢驗局,1984年1月。 19. 經濟部標準檢驗局:中國國家標準CNS 3444「乳品檢驗法--乳脂肪之測定」。經濟部標準檢驗局,1996年9月。 20. US EPA Method 1613B (1994). Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS, US EPA. Chapter 4 1. Wu, S. J.; Chang, Y. H.; Fang, C. W.; Pan, W. H. (1999). Food sources of weight, calories, and three macro-nutrients-NAHSIT 1993-1996, Nutritional Sciences Journal, 24, 41-58. 2. 91年度農業統計年報,行政院農業委員會 http://agr.pdaf.gov.tw/list.htm 3. 農業統計月報,農產加工業主要產品產銷存量值 (93年5月) 行政院農業委員會。 http://www.coa.gov.tw/statistic/mon/t33.htm 4. 民國91年漁業年報,行政院農業委員會漁業署http://www.fa.gov.tw/tfb7/2002c.htm 5. 台灣地區食品營養成分資料庫 (1998),行政院衛生署。 6. 台灣地區食品營養成分資料庫(二) (2002),行政院衛生署。 Chapter 5 1. Chlorine Chemistry Council (CCC) (2002). A comparison of dioxin risk characterizations, American Chemistry Council. 2. World Health Organization (1998). Executive Summary: Assessment of the health risk of dioxins: re-evaluation of the Tolerable Daily Intake (TDI), WHO Consultation, WHO. 3. Joint FAO/WHO Expert Committee on Food Additives (JECFA) (2001). Summary and conclusions of the fifty-seventh meeting, JECFA. 4. Scientific Committee on Food (SCF) (2000). Opinion of the SCF on the risk assessment of dioxins and dioxin-like PCBs in food, SCF/CS/CNTM/DIOXIN/8 FINAL, SCF, EC. 5. Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (COT) (2001). Statement on the tolerable daily intake for dioxins and dioxin-like polychlorinated biphenyls, Department of Health, UK. 6. Environmental Health Committee of the Central Environment Council (Environment Agency) and Living Environment Council and Food Sanitation Investigation Council (Ministry of Health and Welfare) (1999). Report on Tolerable Daily Intake (TDI) of dioxins and related compounds, Ministry of Health and Welfare, Japan. 7. Hsu, M. S.; Ma, E.; Cheng, P. S.; Chou, U.; Chen, S. Y.; Chang, C. F.; Chou, S. S.; Cheng, C. C.; Yu, C. Y.; Liao, C. H.; Ling, Y. C. (2002). Levels of PCDD/DFs in foodstuffs in Taiwan, Organohalogen Compounds, 57, 73-76. 8. Malisch, R. (1998). Update of PCDD/PCDF-Intake from food in Germany, Chemosphere, 37, 1687-1698. 9. Food Standards Agency (FSA) (2003). Dioxins and Dioxin-like PCBs in the UK diet: 2001 Total Diet Study samples, Food Surveillance Information Sheet 38/03, FSA, UK. 10. Focant, J. F.; Eppe, G.; Pirard, C.; Massart, A. C.; André, J. E.; Pauw, E. De (2002). Levels and congener distributions of PCDDs, PCDFs and non-ortho PCBs in Belgian foodstuffs: Assessment of dietary intake, Chemosphere, 48, 167-179. 11. Food and Environmental Hygiene Department (2002). Dietary exposure to dioxins of secondary school students, Food and Environmental Hygiene Department, HKSAR. 12. Wu, Y.; Li, J.; Zhao, Y.; Chen, Z.; Li, W.; Chen, J. (2002). Dietary intake of ploychloranited dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in populations from China, Organohalogen Compounds, 57, 221-223. 13. Tsutsumi, T.; Yanagi, T.; Nakamura, M.; Kono, Y.; Uchibe, H.; Iida, T.; Hori, T.; Nakagawa, R.; Tobiishi, K.; Matsuda, R.; Sasaki, K.; Toyoda, M. (2001). Update of daily intake of PCDDs, PCDFs, and dioxin-like PCBs from food in Japan, Chemoshpere, 45, 1129-1137. 14. Schecter, A.; Cramer, P.; Boggess, K.; Stanley, J.; Päpke, O.; Olson, J.; Silver, A.; Schmitz, M. (2001). Intake of dioxins and related compounds from food in the U.S. population, Journal of Toxicology and Environmental Health Part A, 63, 1-18. 15. Jimènez, B.; Hernàndez, L. M.; Eljarrat, E.; Rivera, J.; Gonzàlez, M. J. (1996). Estimated intake of PCDDs, PCDFs and co-planar PCBs in individuals from Madrid (Spain) eating an average diet, Chemosphere, 33, 1465-1474. 16. Global Environment Monitoring System/Food Contamination Monitoring and Assessment Programme (GEMS/Food) (2003). GEMS/Food Regional Diets -- Regional per Capita Consumption Of Raw and Semi-processed Agricultural Commodities, GEMS/Food, WHO.id NH0925065071 sid 897428 cfn 0 / id NH0925065072 auc 侯惠芳 tic 掩飾鄰苯 tic & tic #37260;與相關2,4-環己二烯酮的Diels-Alder反應之研究 adc 廖俊臣 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 253 kwc 掩飾鄰苯 kwc & kwc #37260; kwc 反應的活化能 kwc 指數前因子 kwc 活化焓 kwc 活化熵 kwc 活化自由能 abc 中文摘要 tc 目錄 中文摘要…………………………………………………………………i 英文摘要………………………………………………………………iii 謝誌……………………………………………………………………..v 縮寫對照表……………………………………………………………..vi 目錄……………………………………………………………………..vii 第一章 緒論………………………………………………………….….1 第一節2,4-環己二烯酮的合成……………..………..…………….….3 第二節 掩飾鄰苯醌的Diels-Alder反應在有機合成上之應用…....5 (1) 掩飾鄰苯醌與烯類的分子間Diels-Alder反應………………...7 (2) 掩飾鄰苯醌與雙烯類的Diels-Alder反應…..……………….....9 (a) 與環戊二烯分子間的Diels-Alder反應…………………....9 (b) 與非環狀烯類分子間的Diels-Alder反應………………..10 (3) 掩飾鄰苯醌與芳香性分子的環化加成反應……………….....11 (a) 呋喃…...…………………….……………………………..11 (b) 吡咯……………………...………….……………………..12 (c) 吲哚…………………………..…………………………....14 (d) 噻吩………………………….…………………………….14 第三節 面不對稱2,4-環己二烯酮的Diels-Alder反應之文獻回顧…………………………………………………………..15 第四節 研究構思…..……………….……………………………...…18 第二章 結果與討論……………………………………………...…….23 第一節 結果…………………………...…………………………..….23 (1) 面不對稱2,4-環己二烯酮42b-f的製備……………...……...23 (2) 2,4-環己二烯酮42的Diels-Alder反應……………...……..…27 (3) 2,4-環己二烯酮43的Diels-Alder反應……………………..…35 第二節 結構鑑定………………………………………..…………....39 第三節 討論……………………………………………………..…66 (1) 位置選擇性…………………………………...………………..66 (2) 立體選擇性………..…………...…………………………..…..75 (3) 面向選擇性……………………………...……………………..76 第四節 理論計算…………………………………………………..…80 (1) 計算方法……………………………………………………….80 (2) 標號系統……………………………………………...………..81 (3) 2,4-環己二烯酮43a與甲基乙烯基酮72a的Diels-Alder反應 ……………………………………………………………………...83 (4) 面不對稱2,4-環己二烯酮43b與甲基乙烯基酮72a的 Diels-Alder反應…………..…….……………………………..86 (5) 2,4-環己二烯酮43a與甲基乙烯基酮72a的Diels-Alder反應 …………………………………………………………………88 第五節 結論……………………………………………………...….91 第三章 動力學…………………………………………………………93 第一節 結果…………………..…………………………………...….94 (1) Diels-Alder反應的反應級數……………………………...……94 (2) Diels-Alder反應的二級速率常數……………………...........99 (3) Diels-Alder反應之活化參數………………………..........…103 第二節 Diels-Alder反應的活化參數與反應速率之比較………..107 (1) 相同雙烯劑與不同親雙烯劑反應之比較………………..….107 (a) 双甲氧基的2,4環己二烯酮43a與親雙烯劑72a-d反.107 (b) 甲氧基甲基的2,4-環己二烯酮43b與親雙烯劑72a-d反應之 比較…………………………………..…………………..108 (c) 双甲基的2,4-環己二烯酮2,4-環己二烯酮43c與親雙烯劑 72a、72b及72d反應之比較………….………………..…110 (2) 不同雙烯劑與相同親雙烯劑反應之比較….………………..111 (a) 2,4-環己二烯酮43a-c與甲基乙烯基酮72a反應之比較..111 (b) 2,4-環己二烯酮43a-c與丙烯酸酯72b反應之比較…...…112 (c) 2,4-環己二烯酮43a-c與苯乙烯72c反應之比較…………114 (d) 2,4-環己二烯酮43a-c與二甲氧基呋喃72d反應之比…115 第三節 溶劑效應……………………………………………………117 (1) 双甲氧基的2,4環己二烯酮43a與甲基乙烯基酮72a反應的溶 劑效應……………………………………………………...…117 (2) 双甲氧基的2,4環己二烯酮43a與丙烯酸酯72b反應的溶劑效 應……………………………………………………………..119 (3) 双甲氧基的2,4環己二烯酮43a與苯乙烯72c反應的溶劑效應 ………………………………………………………………..121 (4) 甲氧基甲基的2,4-環己二烯酮43b與甲基乙烯基酮72a反應的 溶劑效應………………………………………………….….123 (5) 甲氧基甲基的2,4-環己二烯酮43b與丙烯酸酯72b反應的溶劑 效應……..……………………………………………………125 (6) 甲氧基甲基的2,4-環己二烯酮43b與苯乙烯72c反應的溶劑 效應……..……………………………………………………127 (7) 双甲基的2,4-環己二烯酮43c與甲基乙烯基酮72a反應的溶劑 效應…………………………………………………………..129 (8) 双甲基的2,4-環己二烯酮43c與丙烯酸酯72b反應的溶劑效 應……………………………………………………….…….131 第四節 結論……………………………..…………………………..134 第四章 實驗部份與參考資料………………………………………..135 第一節 一般實驗方法……………..………………………………135 第二節 2,4-環己二烯酮的合成及Diels-Alder反應的實驗步驟及光譜資料…………………………………...………………….139 4-1. 化合物24a的合成…………………………………………….....139 4-2. 化合物60b的合成…………………………………………….....140 4-3. 化合物24b的合成…………………………………………….....141 4-4. 化合物60c的合成…………………………………………….....142 4-5. 化合物24c的合成…………………………………………….....143 4-6. 化合物60d的合成……………………...…………………….....144 4-7. 化合物24d的合成………………...………………………….....146 4-8. 化合物60e的合成…………………………………………….....147 4-9. 化合物24e的合成…………………………………………….....148 4-10. 化合物60f的合成……………………………………..…….....149 4-11. 化合物62a及63a的合成……………………………...…….....151 4-12. 化合物62b及63b的合成………………………………..….....152 4-13. 化合物62c及63c的合成………………………………...….....154 4-14. 化合物62d及63d的合成………………………………..….....156 4-15. 化合物62e及63e的合成………………………………...…..158 4-16. 化合物64a及65a的合成………………………………….....160 4-17. 化合物64b的合成………………………………………..….....162 4-18. 化合物64c的合………………………………………...……....163 4-19. 化合物64e的合成…………………………………………....187 4-20. 化合物66a的合成……………………………………………...164 4-20. 化合物66a的合成……………………………………………...165 4-21. 化合物66b的合成………………………………………….......166 4-22. 化合物66c的合成……………………………………..…….....168 4-23. 化合物66e的合成……………………………………..…….....169 4-24. 化合物43a的合成………………………………………..….....170 4-25. 化合物73a的合成………………………………………..….....172 4-26. 化合物73b的合成………………………………………..….....173 4-27. 化合物73c的合成………………………………………..….....174 4-28. 化合物73d的合成………………………………………..….....175 4-29. 化合物43b的合成……………………………………………...177 4-30. 化合物74a的合成……..…………………………………........178 4-31. 化合物74b的合成………………………………………….......179 4-32. 化合物74c的合成………………………………………..….....180 4-33. 化合物74d的合成……………………………………..…….....182 4-34. 化合物75a的合成………………………………………..….....183 4-35. 化合物75b的合成………………………………………….......184 4-36. 化合物75c的合成……………………………………..…….....186 4-37. 化合物75d的合成…………………………………..……….....187 第三節 動力學的實驗步驟……………………………..………......189 (1) 起始物的純化…………..…………………..…..………........189 (2) 校正取線…………………………………….…………....…189 (3) 動力學的操作…………………………………………….…191 參考資料……………………………………………………….....193 附錄……………………………………………………………….197 表目 表II-1 : 掩飾鄰苯醌24a與Grignard試劑加成的結果…………………24 表II-2 : 不對稱2,4-環己二烯酮24b的製備…………………………...25 表II-3 : 不對稱2,4-環己二烯酮24b-f的製備………………………….26 表II-4 : 2,4-環己二烯酮24與甲基乙烯基酮61a的Diels-Alder反應…..28 表II-5 : 2,4-環己二烯酮24與苯乙烯61b的Diels-Alder反應………..32 表II-6 : 2,4-環己二烯酮24與苄基乙烯基醚61c的Diels-Alder反應...34 表II-7 : 双甲氧基的2,4環己二烯酮43a與親雙烯劑72a-d的Diels-Alder反應…………………………………………………………...37 表II-8 : 甲氧基甲基的2,4-環己二烯酮43b與72a-d的Diels-Alder反應.39 表II-9 : 双甲基的2,4-環己二烯酮43c與72a-d的Diels-Alder反應……..38 表II-10 : 化合物60的部份診斷性光譜資料………………………….40 表II-11 : 化合物60的主要氫核磁共振光譜之化學位移(??)…………42 表II-12 : 化合物60的主要氫核磁共振光譜之耦合常數(Hz)………...42 表II-13 : 2,4-環己二烯酮24的部份診斷性光譜資料…………...……44 表II-14 : 2,4-環己二烯酮24的主要氫核磁共振光譜之化學位移(??)…46 表II-15 : 2,4-環己二烯酮24主要氫核磁共振光譜之耦合常數(Hz)….46 表II-16 : 雙環[2.2.2 ]辛烯酮類產物62的部份診斷性光譜資料……...47 表II-17 : 雙環[2.2.2 ]辛烯酮類產物63的部份診斷性光譜資料……...48 表II-18 : 雙環[2.2.2 ]辛烯酮類產物64及65的部份診斷性光譜資料……………………………………………………………50 表II-19 : 雙環[2.2.2 ]辛烯酮類產物66的部份診斷性光譜資料….….51 表II-20 : 雙環[2.2.2 ]辛烯酮類產物的主要氫核磁共振光譜之化學位移(??)………………………………………………………54 表II-21 : 雙環[2.2.2 ]辛烯酮類產物的主要氫核磁共振光譜之耦合常數(Hz)……………………………………………………..55 表II-22 : 雙環[2.2.2 ]辛烯酮類產物的主要氫核磁共振光譜之耦合常數(Hz)…………………………………………………….56 表II-23 : 雙環[2.2.2 ]辛烯酮類產物73的部份診斷性光譜資料……..59 表II-24 : 雙環[2.2.2 ]辛烯酮類產物74的部份診斷性光譜資料……..60 表II-25 : 雙環[2.2.2 ]辛烯酮類產物75的部份診斷性光譜資料……..61 表II-26 : 雙環[2.2.2 ]辛烯酮類產物的主要氫核磁共振光譜之化學位移(??)………………………………………………………..63 表II-27 : 雙環[2.2.2 ]辛烯酮類產物的主要氫核磁共振光譜之耦合常數(Hz)……………………………………………………..64 表II-28 : 雙環[2.2.2 ]辛烯酮類產物的主要氫核磁共振光譜之耦合常數(Hz)……………………………………………………..65 表II-29 : 2,4-環己二烯酮24與親雙烯劑61a-e的前沿分子軌域交互作用(FMO interaction)之能差(energy gaps, eV)……………..71 表II-30 : 2,4環己二烯酮24及親雙烯劑61的HOMO與LUMO之係數(PM3)…..……………..................................................……73 表II-31 : 双甲氧基的2,4-環己二烯酮43a與甲基乙烯基酮72a的Diels-Alder反應的活化能和過渡態的主要鍵長…..…………………...……83 表II-32 : 甲氧基甲基2,4-環己二烯酮43b與甲基乙烯基酮72a的Diels-Alder反應的活化能和過渡態的主要鍵長………………………………….………………………..86 表II-33 : 双甲基的2,4-環己二烯酮43c與甲基乙烯基酮72a的Diels-Alder反應的活化能和過渡態的主要鍵長……….……………………………………………………89 表III-1 : 不同濃度的43a與甲基乙烯基酮72a的Diels-Alder反應….95 表III-2 : 不同濃度的43a與甲基乙烯基酮72a在33 oC甲苯中的Diels-Alder反應之二級速率常數k2……………………...100 表III-3 : 双甲氧基的2,4環己二烯酮43a與親雙烯劑72a-d在四個不同溫度時的Diels-Alder反應之二級速率常數k2………...............................................................................100 表III-4 : 甲氧基甲基的2,4-環己二烯酮43b與親雙烯劑72a-d在四個不同溫度時的Diels-Alder反應之二級速率常數k2……….………………………………………………….101 表III-5 : 双甲基的2,4-環己二烯酮43c與親雙烯劑72a-d在四個不同溫度時的Diels-Alder反應之二級速率常數k2 ………………………………………………….………..102 表III-6 : 双甲氧基的2,4環己二烯酮43a與72a在四個不同溫度時的Diels-Alder反應之二級速率常數k2、ln k2及ln (k2h/kBT)………………………………………………….104 表III-7 : 2,4-環己二烯酮43與親雙烯劑72的Diels-Alder反應之活化參數………………………………………………………..…106 表III-8: 双甲氧基的2,4環己二烯酮43a與親雙烯劑72在甲苯中的相對反應速率………………………………………………….....108 表III-9 : 甲氧基甲基的2,4-環己二烯酮43b與親雙烯劑72a-d在83 oC甲苯中的相對反應速率……………….……………………....109 表III-10: 双甲基的2,4-環己二烯酮43c與親雙烯劑72a-b及72d在83 oC甲苯中的相反應速率……………………………………....111 表III-11 : 2,4-環己二烯酮43a-c與甲基乙烯基酮72a在甲苯中的相對反應率………………………………………………………....112 表III-12 : 2,4-環己二烯酮43a-c與丙烯酸酯72b在甲苯中的相對反應速率………………………………………………….………....114 表III-13 : 2,4-環己二烯酮43a-b與苯乙烯72c在甲苯中的相對反應速率…………………………………………………………115 表III-14 : 2,4-環己二烯酮43a-c與二甲氧基呋喃72d在甲苯中的相對反應速率……………………………………………………116 表III-15 : 双甲氧基的2,4環己二烯酮45a與甲基乙烯基酮46a在不同溶劑中的Diels-Alder反應之二級速率常數k2………………118 表III-16 : 溶劑效應對双甲氧基的2,4環己二烯酮43a與甲基乙烯基酮72a的Diels-Alder反應的影響……………………………119 表III-17 : 双甲氧基的2,4環己二烯酮43a與丙烯酸酯72b在不同溶劑中的Diels-Alder反應之二級速率常數k2……………...120 表III-18 : 溶劑效應對双甲氧基的2,4環己二烯酮43a與丙烯酸酯72b的Diels-Alder反應的影響………………………………..121 表III-19 : 双甲氧基的2,4環己二烯酮43a與苯乙烯72c在不同溶劑中的Diels-Alder反應之二級速率常數k2…………….……..122 表III-20 : 溶劑效應對双甲氧基的2,4環己二烯酮43a與苯乙烯72c的Diels-Alder反應的影響…………………………………...123 表III-21 : 甲氧基甲基的2,4-環己二烯酮43b與甲基乙烯基酮72a在不同溶劑中的Diels-Alder反應之二級速率常數k2…….…..124 表III-22 : 溶劑效應對甲氧基甲基的2,4-環己二烯酮43b與甲基乙烯基酮72a的Diels-Alder反應的影響………………………....124 表III-23 : 甲氧基甲基的2,4-環己二烯酮43b與丙烯酸酯72b在不同溶劑中的Diels-Alder反應之二級速率常數k2……………...126 表III-24 : 溶劑效應對甲氧基甲基的2,4-環己二烯酮43b與丙烯酸酯72b的Diels-Alder反應的影響…………………………...127 表III-25 : 甲氧基甲基的2,4-環己二烯酮43b與苯乙烯72c在不同溶劑中的Diels-Alder反應之二級速率常數k2……………128 表III-26 : 溶劑效應對甲氧基甲基的2,4-環己二烯酮43b與苯乙烯72c的Diels-Alder反應的影響………………………………...129 表III-27 : 双甲基的2,4-環己二烯酮43c與甲基乙烯基酮72a在不同溶劑中的Diels-Alder反應之二級速率常數k2………....…..130 表III-28 : 溶劑效應對双甲基的2,4-環己二烯酮43c與甲基乙烯基酮72a的Diels-Alder反應的影響………………………..130 表III-29 : 双甲基的2,4-環己二烯酮43c與丙烯酸酯72b在不同溶劑中的Diels-Alder反應之二級速率常數k2…………………....131 表III-30 : 溶劑效應對双甲基的2,4-環己二烯酮43c與丙烯酸酯72b的Diels-Alder反應的影響………………………………..132 圖目 圖I-1………………………………………...……………………………1 圖I-2…………………………………...………………………………..19 圖I-3…………………………………...……………………………..…19 圖I-4…………………………………...……………………………..…20 圖I-5…………………………………...……………………………..…21 圖II-1 : 間位(meta)加成產物…………………………………………..32 圖II-2……………………………………………………………………41 圖II-3……………………………………………………………………42 圖II-4……………………………………………………………………45 圖II-5……………………………………………..……………………..46 圖II-6………………..…………………………………………………..52 圖II-7 : 化合物62e的ORTEP圖………….…………………………..56 圖II-8 : 雙環[2.2.2 ]辛烯酮類產物的NOE……………………………57 圖II-9……………………………………………………………………62 圖II-10……………………………………………………………….….65 圖II-11…………………………………………………………………..66 圖II-12…………………………………..………………………………67 圖II-13………………………………………..………..………………..71 圖II-14…………………………………………..………………………74 圖II-15……………..……………………………………………………75 圖II-16 : 2,4環己二烯酮24與甲基乙烯酮61a的次級軌域作用………76 圖II-17 : 軌域混合(Mixing)……………………………………………77 圖II-18 : 軌域混合(Mixing)………………………………………….77 圖II-19………………………………………………………………….78 圖II-20…………………………………………………………………..78 圖II-21………………………………………………………………….79 圖II-22 : 標號系統說明………………………….…………………….82 圖II-23 : 標號系統範例…………………………………….………….83 圖II-24……………………………………………………………….….84 圖II-25……………………………………………………………….….87 圖II-26……………………………………………………………….….89 圖III-1 : ln([43a ]t/[43a ]o)對時間t的作圖結果………...……………..98 圖III-2 : Arrhenius 圖………………………………………………...104 圖III-3 : Eyring 圖…………………………………………...……….105 圖III-4 : 掩飾鄰苯醌43a與甲基乙烯基酮72a的Diels-Alder反應之溶劑效應………………………………………………………….117 圖III-5: log k2 與Kirkwood函數的關係圖……………………….….119 圖III-6 : log k2. 與Kirkwood函數的關係圖……………………….....121 圖III-7 : log k2. 與Kirkwood函數的關係圖……………………….....123 圖III-8: log k2 與Kirkwood函數的關係圖………………..………….125 圖III-9: log kobs. 與Kirkwood函數的關係圖………………………....127 圖III-10: log k2 與Kirkwood函數的關係圖……………………….....129 圖III-11: log k2 與Kirkwood函數的關係圖……………………….....131 圖III-12: log k2 與Kirkwood函數的關係圖……………………….....132rf 參考資料 1. Liao, C.-C.; Wei, C.-P. Tetrahedron Lett. 1991, 32, 4553. 2. (a) Miller, B. Mechanisms of Molecular Migrations, Wiley, New York, 1968, Vol. 1, pp. 247. (b) Gammill, R. B. Tetrahedron Lett. 1985, 26, 1385. (c) Quideau, S.; Pouységu, L.; Looney, M. A. J. Org. Chem. 1998, 63, 9597. 3. Banwell, M. G.; Collis, M. P. J. Chem. Soc., Chem. Commun. 1991, 1343. 4. Quideau, S.; Pouysegu, L. Org. Prep. Proced. Int. 1999, 31, 617. 5. Givens, R. S.; Oettle, W. F.; Coffin, R. L.; Carlson, R. G. J. Am. Chem. Soc. 1971, 93, 3957. 6. (a) Paquette, L. A.; Oplinger, J. A. Tetrahedron 1987, 43, 107. (b) Devaux, J. F.; Hanna,I.; Lallemand, J. Y. J. Org. Chem. 1993, 58, 2349, and references therein. 7. (a) Uyehara, T.; Osanai, K.; Sugimoto, M.; Suzuki, I.; Yamamoto, Y. J. Am. Chem. Soc. 1989, 111, 7264. (b) Uyehara, T.; Osanai, K.; Sugimoto, M.; Suzuki, I.; Yamamoto, Y. J. Chem. Soc., Chem. Commun. 1989, 1841. 8. (a) Meinwald, J.; Franenglass, E. J. Am. Chem. Soc. 1958, 80, 2349. (b) Liao, C.-C.; Hung, S.-C. J. Chem. Soc., Chem. Commun. 1993, 1457. 9. Zimmerman, H. E.; Baeckstom, P,; Johnson, T.; Kurtz, D.W. J. Am. Chem. Soc. 1972, 94, 5504. 10. (a) Largeron, M.; Dupuy, H.; Fleury, M.-B. Tetrahedron 1995, 51, 4953. (b) Rieker, A.; Beisswenger, R.; Regier, K. Tetrahedron 1991, 47, 645. 11. (a) Wessely, F.; Grossa, M. Monatsch. Chem. 1954, 85, 637. (b) Takaes, F. Monatsch. Chem. 1964, 95, 961. (c) Bubb, W. A.; Strnhell, S. Tetrahedron Lett. 1970, 11, 4499. 12. (a) Coleman, R. S.; Grant, E. B. J. Org. Chem. 1991, 56, 1357. (b) Coleman, R. S.; Grant, E. B. J. Am. Chem. Soc. 1995, 117, 10889. (c) Quideau, S.; Feldman, K. S. Chem. Rev. 1996, 96, 475. 13. (a) Singh, V.; Porinchu, M. J. Chem. Soc., Chem. Commun. 1993, 134. (b) Singh, V.; Samanta, B. Tetrahedron Lett. 1999, 40, 383. 14. (a) Andersson, G. Acta Chem. Scand. 1976, B30, 64. (b) Andersson, G. Acta Chem. Scand. 1976, B30, 403. (c) Andersson, G.; Berntsson, P. Acta Chem. Scand. 1975, B29, 948. 15. McKillop, A.; Perry, D. H.; Edwards, M.; Antus, S.; Farkas, L.; Nógrádi, M J. Org. Chem. 1976, 41, 282. 16. (a) Chu, C.-S.; Lee, T.-H.; Liao, C.-C. Synlett 1994, 635. (b) Chu, C.-S.; Lee, T.-H.; Rao, P. D.; Song, L.-D.; Liao, C.-C. J. Org. Chem. 1999, 64, 4111. 17. Mitchell, A. S.; Russell, R. A. Tetrahedron Lett. 1993, 34, 545. 18. (a) Tamura, Y.; Yakura, T.; Harnata, J. I.; Kita, Y. J. Org. Chem. 1987, 52, 3927. (b) Yahura, T.; Tohma, H.; Kikchi, K.; Kita, Y. Synthesis 1989, 126. 19. (a) Hwang, J.-T.; Liao, C.-C. Tetrahedron Lett. 1991, 32, 6583. (b) Liao, C.-C.; Chu, C.-S.; Lee, T.-H.; Rao, P. D.; Ko. S.; Song, L.-D.; Shiao, H.-C. J. Org. Chem. 1999, 64, 4102. 20. (a) Berney, D. J. F.; Deslongchamps, P. Can. J. Chem. 1969, 47, 515. (b) Deslongchamps, P. Pure Appl. Chem. 1977, 49, 1329. 21. Fleck, A. E.; Hobart, J. A.; Morrow, G. W. Synth. Commun. 1996, 1537. 22. Pelter, A.; Elgendy, S. Tetrahedron Lett. 1988, 29, 677. 23. (a) Berney, D. J. F.; Deslongchamps, P. Can. J. Chem. 1969, 47, 515. (b) Deslongchamps, P.; Belanger, A.; Berney, D. J. F.; Borschberg, H.-J.; Brousseau, R.; Doutheau, A.; Durand, R.; Katayama, H.; Lapalme, R.; Leturc, D. M. ; Liao, C.-C.; MacLachlan, F. N.; Maffrand, J.-P.; Marazza, F.; Martino, R.; Moreau, C.; Ruest, L; Saint-Laurent, L.; Saintonge, R.; Soucy, P. Can. J. Chem. 1990, 68, 115 and 127. 24. (a) Andersson, G.; Berntsson, P. Acta Chem. Scand. B 1975, 29, 948. (b) Andersson, G. Acta Chem. Scand. B 1976, 30, 64. (c) Andersson, G. Acta Chem. Scand. B 1976, 30, 403. 25. Liao, C.-C.; Wei, C.-P. Tetrahedron Lett. 1989, 30, 2255. 26. (d) Liao, C.-C.; Chu, C.-S.; Lee, T.-H.; Rao, P. D.; Ko, S.; Song, L.-D.; Hsiao, H.-C. J. Org. Chem. 1999, 64, 4102. (e) Chu, C.-S.; Lee, T.-H.; Rao, P. D.; Song, L.-D.; Liao, C.-C. J. Org. Chem. 1999, 64, 4111. 27. Liu, W.-C.; Liao C.-C. Synlett 1998, 912. 28. Gao, S.-Y.; Lin, Y.-L.; Rao, P. D.; Liao, C.-C. Synlett 2000, 421. 29. Hsu, D.-S.; Rao, P. D.; Liao, C.-C. Chem. Commun. 1998, 1795. 30. (a) Chen, C.-H.; Rao, P. D.; Liao, C.-C. Chem. Commun. 1998, 155. (b) Chen, C.-H.; Rao, P. D.; Liao C.-C. J. Am. Chem. Soc. 1998, 120, 13254. (c) Chen, C.-H; Liao, C.-C. Org. Lett. 2000, 2, 2049. 31. Hsieh, M.-F.; Peddinti, R. K.; Liao, C.-C. Tetrahedron Lett. 2001, 42, 5481. 32. Hsieh, M.-F.; Rao, P. D.; Liao, C.-C. Chem. Commun. 1996, 1537. 33. Lai, C.-H.; Ko, S.; Rao, P. D.; Liao, C.-C. Tetrahedron Lett. 2001, 42, 7851. 34. Peddinti, R. K.; Liao, Acc. Chem. Res. 2003, 35, 856. 35. 柯森,博士論文,國立清華大學,2002年。 36. Auksi, H.; Yates, P. Can. J. Chem. 1981, 59, 2510. 37. Bonnarme, V.; Bachmann, C.; Cousson, A.; Mondon, M.; Gesson, J.-P. Tetrahedron 1999, 55, 433. 38. Drutu, I.; Njardarson, J. T.; Wood, J. L. Org. Lett. 2002, 4, 493. 39. (a) Bach, T.; Eilers, F. J. Org. Chem. 1999, 64, 8041. (b) Domingo, L. R.; Aurell, M. J., J. Org. Chem. 2002, 67, 959. 40. (a) Danishefsky, S.; Kitahara. T.; Schuda, P. F.; Etheredge, S. J. J. Am. Chem. Soc. 1976, 98, 3028; (b) Danishefsky, S.; Kitahara. T.; McKee, R.; Schuda, P. F. (c) Danishefsky, S.; Kitahara. T.; Schuda, P. F.; Etheredge, S. J. 1977, 99, 6066. 41. (b)Chittimalla, S. K. Liao, C.-C. Synlett 2002, 565-568. 42. Forster, H.; Vogtle, F. Angew. Chem. Int. Ed. Engl. 1977, 16, 429. 43. (a) Fallis, A. G.; Lu, Y.-F. In Advances in Cycloaddition; Curran, D. P., Ed.; JAI Press: Greenwich, CT, 1993; Vol. 3, Chapter 1. (b) Ohwada, T. Chem. Rev. 1999, 99, 1337. (c) Macaulay, J. B.; Fallis, A. G. J. Am. Chem. Soc. 1990, 112, 1136. 44. (a) Inagaki, S.; Fujimoto, H.; Fukui, K. J. Am. Chem. Soc. 1976, 98, 4054. (b) Ishida, M.; Beniya, Y.; Inagaki, S.; Kato, S. J. Am. Chem. Soc. 1990, 112, 8980. (c) Ishida, M.; Aoyama, T.; Beniya, Y.; Yamabe, S.; Kato, S.; Inagaki, S. Bull. Chem. Soc. Jpn. 1993, 66, 3430. 45. Khan, S. D.; Hehre, W. J. J. Am. Chem. Soc. 1987, 109, 663-666. 46. Cieplak, A. S. J. Am. Chem. Soc. 1981, 103, 4540. 47. Epiotis, N. D.; Cherry, W. R.; Shaik, S.; Yates, R. L.; Bernardi, F. Top. Curr. Chem. 1977, 70, 1. 48. 陳建興,博士論文,國立清華大學,2000年。 49. Lightner, D. A.; Gurst, J. E. Organic Conformational Analysis and Stereochemistry from Circular Dichroism Spectroscopy John-Wiley: New York, 2000.id NH0925065072 sid 883452 cfn 0 / id NH0925065073 auc 林永展 tic 二價鎳與二價銅大環錯合物之結構與動力學 adc 鍾崇燊 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 259 kwc 結構 kwc 動力學 kwc 大環 abc 本論文所使用之四胺基大環配位子合成方法有兩種。(一)Richman與Atkins所發展的方法,以保護基方法進行大環配位子之合成如isocyclam;(二)一般有機合成法,利用麥可加成反應合成大環配位子如3-10-C-meso-Me8[14 tc 中文摘要 ……………………………………………………… I Abstract ……………………………………………………… V 謝誌 ………………………………………………………… VI 目錄 ………………………………………………………… VII 表目錄 ………………………………………………………… X 圖目錄 ……………………………………………………… XIV 第一章 緒論…………………………………………………… 1 第二章 四胺基大環配位子及其過渡金屬錯合之合成……… 18 一、前言……………………………………………… 18 二、藥品與溶劑……………………………………… 19 三、儀器設備………………………………………… 19 四、四胺基大環配位子之合成……………………… 20 五、鎳(II)及銅(II)金屬錯合物之合成…………… 31 第三章 3-10-C-meso-Me8[14 ]aneN4配位子之異構物分離純化及其鎳(II)、銅(II)錯合物之結構鑑定…………………………… 36 一、前言……………………………………………… 36 二、實驗結果與討論………………………………… 44 (一)合成結果……………………………………… 44 (二)熔點測定……………………………………… 45 (三)1H NMR與13C NMR之研究…………………… 45 (四)LB、LC在質譜儀中之斷裂片研究…………… 49 (五)LB、LC及其銅(II)、鎳(II)錯合物之晶體結構探 討……………………………………… 51 三、結論………………………………………………… 84 四、實驗部分…………………………………………… 87 (一)試藥與溶劑………………………………… 87 (二)儀器設備…………………………………… 87 第四章 八面體與方型平面結構之熱力學研究……………… 88 一、前言………………………………………………… 88 二、實驗結果…………………………………………… 91 三、討論………………………………………………… 99 (一)離子強度效應……………………………… 99 (二)溫度效應…………………………………… 99 (三)大環配位子環上取代基於水溶液中對平衡反應之影響………………………………… 99 (四)從電子光譜中探討錯合物結構中Ni-N鍵之作用……………………………………… 104 四、結論………………………………………………… 105 五、實驗部分…………………………………………… 106 (一)試藥與溶劑………………………………… 106 (二)儀器設備…………………………………… 106 (三)實驗方法…………………………………… 106 第五章 鹼催化cis-[Ni(isocyclam)(H2O)2 ]2+之不對稱氮中心反轉反應………………………………………………… 108 一、前言………………………………………………… 108 二、實驗結果…………………………………………… 114 (一)錯合物之合成……………………………… 114 (二)不對稱氮中心反轉反應之動力學測量…… 115 三、討論………………………………………………… 145 (一)Ni(II)錯合物之結構分析…………………… 145 (二)在低OH-濃度水溶液中之反應速率式與反應機構……………………………………… 165 (三)在高OH-濃度水溶液中之反應反應速率式與反應機構………………………………… 178 四、結論……………………………………………… 183 五、實驗部分………………………………………… 184 (一)試藥與溶劑………………………………… 184 (二)儀器設備…………………………………… 184 (三)不對稱氮中心反轉反應之動力學測量…… 184 第六章 總結………………………………………………… 187 參考文獻 …………………………………………………… 188 附錄一 ……………………………………………………… 198 附錄二 ………………………………………………………… 223rf 1. Moser, F. H.; Thomas, A. L., J. Chem. Educ. 1964, 41, 245. 2. Wang, J. H. Acc. Chem. Res. 1970, 1, 90. 3. Smith, E. L. “Vitamib B12”, 3rd. ed. Methneu : Lodaon,1965. 4. Mark,G. S. “Heme and Chlorophylls”;van Norstrand :Lodon, 1975. 5. Melson, G. A., Ed. Coordination chemistry of Marocyclic Compounds ; Plenum: New York,1979. 6. Lindoy, L. F., The Chemistry of Marcrocyclic Ligand Complexes; Cambridge University Press: Cambridge.1989. 7. Jones, D. R.; Lindoy, L. F.; Sargeson, A. M. J. Am. Chem. Soc. 1983, 105, 7327. 8. Stubbe, J.; Kozarich, J. W. Chem. Rev. 1987, 87, 1107. 9. Chin, J.; Zou, X. J. Am. Chem. Soc. 1988, 110, 223. 10. Connolly, J. A.; Banaszczyk, M.; Hynes, R. C.; Chin, J. Inorg. Chem. 1994, 33, 665. 11. Spitzangle, L. A.; Marion, C. A. and Kasina, S. J. Nucl. Med. 1981, 22(Abstr.), 13. 12. Kaden, T. A. Top. Curr. Chem. 1984, 121, 157. 13. Bernhardt, P. V.; Lawrance, G. A. Coord. Chem. Rev. 1990, 104, 297. 14. Kaden, T. A. Pure & Appl. Chem. 1993, 65, 1477. 15. Curtis,N. F. Coord. Chem. Rev. 1968, 3, 3. 16. Thomposn, M. C.; Busch, D. H. J. Am. Chem. Soc.1964, 86, 3651. 17. Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017. 18. Christensen, J. J.; Eatough, D. J.; Izatt, R. M. Chem. Rev. 1974, 74, 651. 19. Colquhoun, H. M.; Stoddart, J. F.; William, D. J. Angew. Chem. Int. Ed. Engl. 1986, 25, 487. 20. Bianchi, A.; Micheloni, M.; Paoletti, P. Chem. Rev. 1991, 110, 17. 21. Hiraoka, M. (Editor) Crown Ethers and Analogous Compounds Elsevier, 1992. 22. Kimura, E. Tetrahedron 1992, 48, 6175. 23. Cabbiness, D. K.; Margerum, D. W. J. Am. Chem. Soc. 1969, 91, 6540. 24. Fabbrizzi, L.; Paoletti, P.; Lever, A. B. P. Inorg. Chem. 1976, 15, 1502. 25. Lin, C. T.; Rorabacher, D. B.; Cayley, G. R.; Margerum, D. W. Inorg. Chem. 1975, 14, 919. 26. Hay, R. W.; Clark, C. R., J. Chem. Soc.Dalton Trans. 1977, 1148. 27. Margerum, G. W.; Cayley, G. R.; Weatherburn, D. C., Pageakopt A. “Coordination Chemistry”, ACS Monograph 174; American Chemistry Society; Washington D. C. 1978, Vol. 2, p. 1-220. 28. Busch, D. H.; Farmery, F.; Goedken, V. ; Katovic, V.; Melnyk, A. G.; Sperati, C. R.; Tokel, N. Adv. Chem. Ser. 1971, 100, 44. 29. Olson, D. C.; Vasilevskis, J. Inorg. Chem. 1969, 8, 1611. 30. Christensen, J. J.; Eatough, D. J.; Izatt, R. M. Chem. Rev. 1974, 74, 351. 31. Izatt, R. M., Eatough, D. J., Christensen, J. J., Struct, J. J. Bonding(Berlin). 1973, 16, 161. 32. Frensdorff, H. K. J. Am. Chem. Soc. 1971, 93, 600. 33. Watkins, D. D.; Jr. Riley, D. P.; Stone, J. A.; Busch, D. H. Inorg. Chem. 1976, 15, 387. 34. Hing, Y. L.; Martin, Y.; S. Jackels, C. S. C.; Tait, A. M.; Busch, D. H. J. Am .Chem. Soc. 1977, 99, 4029. 35. Hinz, E. P.; Margerum, D. W. Inorg. Chem. 1974, 13, 2941. 36. Busch, D. H. Rec. Chem Prog. 1964, 25, 107. 37. Busch, D. H. Helv. Chim. Acte. 1967, 50, 174. 38. Warn, L. G.; Bisch, D. H. J. Am. Chem. Soc. 1969, 91, 4092. 39. Dei, A. Inorg. Chem. 1979, 18, 891. 40. Kolinsky, R. A.; Korybutm, D. B. Inorg. Chim. Acte. 1975, 14, 237. 41. Lee, C.-S.; Wu, S.-Y.; Chung, C.-S. Inorg. Chem. 1984, 23, 1298. 42. Buxtorf, R.; Raden, T. A. Helv. Chim. Acte. 1974, , 1035. 43. Wagner, F.; Barafield, E. K. Inorg. Chem. 1976, 15, 408. 44. Wagner, F.; Barafield, E. K. Inorg. Chem. 1973, 12, 2435. 45. Curtis, N. F. J. Chem. Soc. 1964, 2644. 46. Bryan, P. S.; Dabrowiak, J. C. Inorg. Chem. 1975, 14, 296. 47. Curtis, N. F.; Milestone, Aust. J. Chem. 1975, 28, 275. 48. Hay, R. W.; Lawrence, G. A. J. Chem. Soc. Dalton Trans. 1975, 1466. 49. Martin, J. G.; Cumming, S. C. Inorg. Chem. 1973, 12, 1477. 50. Cook, D. F.; Curtis, N. F.; Hay, R. W. J. Chem. Soc. Dalton Trans. 1973, 1160. 51. Palmer, J. M.; Papaconstantinou, E.; Endicott, J. F. Inorg. Chem. 1969, 8, 1516. 52. Curtis, Y. M.; Curtis, N. F. Aust. J. Chem. 1966, 16, 609. 53. Blight, M. M.; Curtis, N. F. J. Chem. Soc. 1962, 3016. 54. Curtis, N. F. J. Chem. Soc. Dalton Trans, 1973, 863. 55. Bhattacharya, P. K. J. Inorg. Chem. 1981, 43, 41. 56. Richman, J. E.; Atkins, T. J. J. Am. Chem. Soc. 1974, 96, 2268. 57. Martin, L. Y.; Serati, C. R.; Busch, D. H. J. Am. Chem. Soc. 1977, 99, 2968. 58. Tang, S. C.; Koch, S.; Weinstein, G. N.; Lane, R. W.; Holm, R. H., Inorg. Chem. 1973, 12, 2589. 59. Koch, S.; Holm, R. H.; Frankel, R. B. J. Am. Chem. Soc. 1975, 97, 6714. 60. Honeybourne, C. L. Inorg. Nucl. Chem. Lett. 1975, 11, 191. 61. Lindoy, L. F.; Busch, D. H. Inorg.Chem. 1974, 13, 2494. 62. Thomposn, M. C.; Busch, D. H. J. Am. Chem. Soc.1964, 86, 3651. 63. Curtis, N. F.; Swan, D. A.; Water, T. N. and Maxwell, I. E. J. Am. Chem. Soc. 1969, 91, 4588. 64. Lukyanenko, N. G.; Basok, S. S.; Filonova, L. K. J. Org. Chem. USSR, 1988, 24, 1562. 65. Hay, R. W.; Kinsman, B.; Smith, C. I. Polyhedron 1995, 14, 1245. 66. Pasternack, R. F.; Robic, N.; Bied-Charreton, C.; Perree-Fauvet, M.; Verchere-Beaur, C.; Salmon, L.; Gaudemer, A. Tetrahedron Lett. 1990, 33, 4739. 67. Little, R. G.; Anton, J. A.; Loach, P. A.; Ibers, J. A. J. Heterocyclic Chem. 1975, 12, 343. 68. Tahirov,T. H.; Lu, T.-H.; Lan, W.-J.; Lai, C.-Y.; Chi, T.-Y.; Chung, C.-S. Acta Cryst. 1995, C51, 1531. 69. Tait, A. M.; Busch, D. H. Inorg. Nucl. Chem. Letters 1972, 8, 491. 70. Ito, T.; Busch, D. H. Inorg. Chem. 1974, 13, 1770. 71. Lee, T.-J.; Lee, T.-Y.; Juang, W.-B.; Chung, C.-S. Acta Cryst. 1985, C41, 1596. 72. Bembi, R.; Sondhi, S. M.; Singh, A. K.; Jhanji, A. K.; Roy, T. G.; Lown, J. W.; Ball, R. G. Bull. Chem. Soc. Jpn. 1989, 62, 3701. 73. Bembi, R.; Roy, T. G.; Jhanji, A. K.; Maheswari, A. J. Chem. Soc. Dalton Trans. 1990, 3531. 74. Ferguson, G.; Lough, A. J.; Bembi, R. Acta Cryst. 1990, C46, 213. 75. Bembi, R.; Drew, M. G. B.; Singh, R.; Roy, T. G. Inorg. Chem. 1991, 30, 1403. 76. Hazari, S. K. S; Roy, T. G.; Dey, B. K.; Das, S. C.; Tiekink, E. R. T. Metal-Based Drugs 1997, 4, 255. 77. Hay, R. W.; Fraser, I. Polyhedron 1998, 17, 1931. 78. Choi, K.-Y,; Chun, K. M.; Suh, I.-H. Inorg. Chem. Comm. 1999, 2 210. 79. Roy, T. G. J. Bangl. Chem. Soc. 2002, 15, 23. 80. Roy, T. G.; Bembi, R.; Hazari, S. K. S.; Dey, B. K.; Acharjee, T. K.; Horn, E.; Tiekink, E. R. T. J. Coord. Chem. 2002, 55, 853. 81. Holliger, C.; Pierik, A. J.; Reijersa, E. J.; Hagen, W. R. J. Am. Chem. Soc. 1993, 115, 5651. 82. Furenlid, L. K.; Renner, M.W.; Fajer, J. Am. Chem. Soc. 1990, 112, 8987. 83. Sacconi, L. Trans. Met. Chem. 1968, 4, 199. 84. Wilkins, R. G.; Yelin, R.; Margerum, D. W.; Weatherburn, D. C. J. Am. Chem. Soc. 1969, 91, 4326. 85. Hinz, F. P.; Margerum, D. W. Inorg. Chem. 1974, 15, 1370. 86. inz, F. P.; Margerum, D. W. Inorg. Chem. 1972, 13, 2941. 87. Billo, E. J. Inorg. Chem. 1984, 23, 2223. 88. Fabbrizzi, L. Inorg. Chem. 1980, 19, 2667. 89. Sabatini, L.; Fabbrizzi, L. Inorg. Chem. 1979, 18, 438. 90. Passman, W. H.; Swisher, R. G.; Blinn, E. L. Inorg. Chem. 1980, 19, 1101. 91. Anichini, A.; Fabbrizzi, L.; Paoletti, P. Inorg. Chim. Acta. 1977, 24, L21. 92. Fabbrizzi, L.; Paoletti, P.; Clay, R. M. Inorg. Chem. 1978, 17, 1042. 93. Martin, L. Y.; DeHayes, L. J.; Zompa, L. J.; Busch, D. H.; J. Am. Chem. Soc. 1974, 96, 4046. 94. Bosnich, B.; Mason, R.; Pauling, P.; Robertson, G. B.; Tobe, M. L. J. Chem. Soc., Chem. Commun. 1965, 97. 95. Mcpherson, A.; Rossmann, M. G.; Margerum, D. W.; James, M. R. J. Coord. Chem. 1971, 1, 39. 96. Nyberg, S. C.; Wood, J. S. Inorg. Chem. 1964, 3, 468. 97. Water, J. M.; White, K. R. J. Inorg. Nucl. Chem. 1972, 34, 155. 98. Smierciak, R.; Passariello, J.; Blinn, E. L. Inorg. Chem. 1977, 16, 646. 99. Fabbrizzi, L.; Micheloni, M.; Paoletti, P. Inorg. Chem. 1980, 19, 535. 100. Sugimoto, M.; Nonoyama, M.; Ito, T.; Fujita, J. Inorg. Chem. 1983, 22, 950. 101. Ciampolini, M; Fabbrizzi, L.; Liccheli, M.; Perotti, F.; Pezzini, F.; Poggi, A. Inorg. Chem. 1986, 25, 4131. 102. Sabatini, L.; Fabbrizzi, L. Inorg. Chem. 1979, 18, 438. 103. 黃慶順Ph.D. dissertation, National Tsing Hua University, Taiwan, R.O.C. 2000. 104. Hay, R. W.; Jeragh, B.; Ferguson, G.; Kaitner, B.; Ruhl, B. L. J. Chem. Soc., Dalton Trans. 1982, 1531. 105. Fabbrizzi, L. J. Chem. Soc., Dalton Trans. 1979, 1857. 106. Buckingham, D. A.; Marzilli, L. G.; Sargeson, A. M. Inorg. Chem. 1966, 6, 1032 107. Buckingham, D. A.; Marzilli L. G.; Sargeson, A. M. J. Am. Chem. Soc. 1967, 89, 3428. 108. Buckingham, D. A.; Marzilli, L. G.; Sargeson, A. M. Inorg. Chem. 1968, 7, 915. 109. Halpen, B. A.; Sargeson, M.; Turnbull, K. B. J. Am. Chem. Soc. 1966, 88, 4630. 110. Erickson, L. E.; Dappen, A. J.; Uhlenhopp, J. C. J. Am. Chem. Soc. 1969, 91, 2510. 111. Erickson, L. E.; Fritz, H. L.; May, R. J.; Wright, D. A. J. Am. Chem. Soc. 1969, 91, 2513. 112. Goddard, J. B.; Basolo, F. Inorg. Chem. 1969, 90, 2293. 113. Haake, P.; Turley, P. C. J. Am. Chem. Soc. 1968, 90, 2293. 114. Buckingham, D. A.; Marzilli, L. G.; Sargeson, A. M. J. Am. Chem. Soc. 1969, 91, 5227. 115. Buckingham, D. A.; Dwyer, M.; Sargeson, A. M.; Watson, K. J. Acta. Chem. Scand. 1972, 26, 2813. 116. Pitner, T. P.; Martin, R. B. J. Am. Chem. Soc. 1971, 93, 4400. 117. Chung, C.-S. Ph.D. dissertation, Purdue University. 1974. 118. Liang, B. F.; Margerum, D. W.; Chung, C.-S. Inorg. Chem. 1979, 18, 2001. 119. Liang, B. F. Ph.D. dissertation, National Tsing Hua University, Taiwan, R.O.C. 1980. 120. Liang, B. F.; Chung, C. S. Inorg. Chem. 1980, 19, 1867. 121. Liang, B. F.; Chung, C.-S. Inorg. Chem. 1981, 20, 2152. 122. Billo, E. J. Inorg. Chem. 1981, 20, 4019. 123. Hay, R. W. M.; Ali, A. Inorg. Chim. Acta. 1985, 103, 23. 124. Hay, R. W.; Pujari, M. P. J. Chem. Soc., Dalton Trans. 1986, 1485. 125. Hay, R. W.; Chen, Y.-Q. Inorg. Chim. Acta. 1991, 180, 147. 126. Hay, R. W.; Govan, N. Transition Met. Chem. 1992, 17, 119. 127. Linnet, N. “pH Measurements in Theory and Practice” 1st edition, Radiometer A/S; Copenhagen, Denmark, 1970, p. 104. 128. Satake, Y.; Ihara, Y.; Senda, H.; Suzuki, M.; Uehara, A. Inorg. Chem. 1992, 31, 3248. 129. Martin, A. M.; Grant,K. J.; Billo, E. J. Inorg. Chem. 1986, 25, 4904. 130. Spetnagel,W. J. Ph.D. Dissertation, New Mexico State University, 1973. 131. Barefield, E. K.; Bianchi, A.; Billo, E. J.; Connolly, P. J.; Paoletti, P.; Summers, J. S.; Derveer, D. G. V. Inorg. Chem. 1986, 25, 4197. 132. Tanirov, T. H.; Lu, T.-H.; Chen, B. H.; Chi, T.-Y.; Chung, C.-S. Acta. Cryst. 1994, C50, 1686. 133. Billo, E. J.; Inorg. Chim. Acta. 1995, 230, 19. 134. 林超鼎, Master D. dissertation, National Tsing Hua University, Taiwan, R.O.C. 1980. 135. Domasevich, K.V.; Ponomareva, V. V.; Skopenko, V. V.; Zan, H. Siler J Zhurnal Neorganicheskoi Khimii, 1997, 42, 1128-1133. 136. Boeyens, J. C. A. Acta. Cryst. 1983, C39, 846. 137. Krajewski, J.; Urbanczyk-Lipkowka, Z.; Gluzinski, P. Bull. Acad. Pol. Sci., Ser. Sci. Chum. 1977, 25, 853. 138. Pell,R. J.; Dodgen, H. W.; Hunt, J. P. Inorg. Chem. 1983, 22, 529. 139. Lee, C.-S.; Chung, C.-S. Inorg. Chim. Acta. 1984, 23, 639. 140. Vitiello, J. D.; Billo, E. J. Inorg. Chem. 1980, 19, 3477. 141. Beatti, J. K.; Kelso, M. T.; Moody, W. E.; Tregloan, P. A. Inorg. Chem. 1985, 24, 415. 142. Morstyn, G.; Kaye, A. H. Phototherapy of Cancer; Harwood Academic: Switzerland, 1990. 143. Mitchell, J. B.; Cook, J. A.; Russo, A. In Phototherapy of Cancer; Morstyn, G.; Kaye, A. H., Eds.; Harwood Academic: Switzerland, 1990, Chapter 1. 144. Cutler, P. D.; Schwara, S. W.; Anderson, C. J.; Connett, J. M.; Welch, M. J.; Philpott, G. W.; Siegel, B. A. J. Nucl. Med. 1995, 36, 2363. 145. Shen, S.; DeNardo, G. L.; DeNardo, S. J.; DeNardo, D. A. J. Nucl. Med. 1996, 37, 146. 146. DeNardo, G. L.; Kukis, D. L.; Shen, S.; DeNardo, S. J. J. Nucl. Med. 1996, 37, 302. 147. Zamora, P. O.; Mercer-Smith, J. A.; Marker, M. J.; Schulte, L. D.; Rhodes, B. A. Nucl. Med. Biol. 1992, 19, 797. 148. Roberts, J. C.; Figard, S. D.; Mercer-Smith, J. A.; Schulte, L. D.; Rhodes, B. A. J. Immunol. Methods. 1987, 105, 153. 149. Desphande, S. V.; DeNardo, S. J.; Meares, C. F.; McCall, M. J.; Adams, G. P.; DeNardo, G. L. J. Nucl. Med. 1988, 29, 217. 150. Roberts, J. C.; Newmyer, S. L.; Mercer-Smith, J. A.; Schreyer, S. A.; Lavallee, D. K. Appl. Radiat. Isot. 1989, 40, 775. 151. Lavallee, D. K. Coordn. Chem. Revs. 1985, 61, 55. 152. Jr., C. C.; Hambright, P. J. Am. Chem. Soc. 1969, 91, 4195. 153. Turay, J.; Hambright, P. Inorg. Chem. 1980, 19, 562. 154. Shamin, A.; Hambright, P. Inorg. Chem. 1983, 22, 694. 155. Funahashi, S.; Yamaguchi, Y.; Tanaka, M. Inorg. Chem. 1984, 23, 2249. 156. Pasternack, R. F.; Vogel, G. C.; Skowronek, C. A.; Harris, R. K.; Miller, J. G. Inorg. Chem. 1981, 20, 3763. 157. Fleischer, E. B.; Wang, J. H. J. Am. Chem. Soc. 1960, 82, 3498. 158. Chen, B. M. L.; Tulinsky, A. J. Am. Chem. Soc. 1972, 94, 4144. 159. Funahashi, S.; Yamaguchi, Y.; Tanaka, M. Bull. Chem. Soc. Jpn. 1984, 57, 204. 160. Bain-Ackerman, M. J.; Lavallee, D. K. Inorg. Chem. 1979, 18, 3358. 161. Lavallee, D. K.; Onady, G. M. Inorg. Chem. 1981, 20, 907. 162. Turay, J. Inorg. Chim. Acta. 1981, 53, L147.id NH0925065073 sid 877403 cfn 0 / id NH0925065074 auc 白孟宜 tic (一)微米金屬管之製備與鑑定, (2)奈米金屬/導電高分子核-殼型態粒子之製備與鑑定 adc 韓建中 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 318 kwc 微米金屬管 kwc 奈米粒子 kwc 導電高分子 abc 本論文的主旨是利用本實驗室近來所開發的一些新化學方法製備出新穎的微米或奈米結構物。本論文分為兩個主題進行討論,分別為 rf 1.Martin, C. R. Acc. Chem. Res. 1995, 28, 61. 2.Brumlik, C. J.; Martin, C. R. J. Am. Chem. Soc. 1991, 113, 3175. 3.Whitney, T. M.; Jiang, J. S.; Searson, P. C.; Chien, C. L. Science 1993, 261, 1316. 4.Zhang, Z.; Gekhtman, D.; Dresselhaus, M. S.; Ying, J. Y. Chem. Mater. 1999, 11, 1659. 5.Mitrofanov, A. V.; Tokarchuk, D. N.; Gromova, T. I.; Apel, P. Y.; Didyk, A. Y. Radiation Measurements 1995, 25, 733. 6.Fox, G. R. J. Mater. Sci. Lett. 1995, 14, 1496. 7.Upadhya, K.; Hoffman, W. P. J. O. M. 1994, 54. 8.Li, Q. Q.; Fan, S. S.; Han, W. Q.; Sun, C. H.; Liang, W. J. Jpn. J. Appl. Phys. 1997, 36, L501. 9.Krebs, J. J.; Rubinstein, M.; Lubitz, P.; Harford, M. Z.; Baral, S.; Shashidhar, R.; Ho, Y. S.; Chow, G. M.; Qadri, S. J. Appl. Phys. 1991, 70, 6404. 10.W, G. J.; Hollingsworth, R. I. Langmuir 1999, 15, 6135. 11.Nánai, L.; George, T. F. J. Mater. Res. 1997, 12, 283. 12.Chow, G. M.; Stockton, W. B.; Price, R.; Baral, S.; Ting, A. C.; Ratna, B. R.; Shoen, P. E.; Schnur, J. M.; Bergeron, G. L.; Czarnaski, M. A.; Hickman, J. J.; Kirkpatrick, D. A. Materials Science and Engineering 1992, A158, 1. 13.Oro, J. A.; Wolfe, J. C. J. Vac. Sci. Technol. B 1983, 1, 1088. 14.Lee, S. B.; Martin, C. R. Anal. Chem. 2001, 73, 768.id NH0925065074 sid 883401 cfn 0 / id NH0925065075 auc 張家耀 tic 超臨界水對奈米碳管之處理暨生物錯合性奈米粒子之製備與在生物上應用 adc 凌永健 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 156 kwc 超臨界水 kwc 奈米碳管 kwc 肥胖性蛋白質 kwc 分子信標 kwc 金奈米棒 kwc 螢光二氧化矽奈米粒子 abc 使用超臨界水對於多層奈米碳管進行將兩端變細及層與層之間的剝蝕。超臨界水中以不同的條件,例如: 溫度,壓力,時間 進行實驗。當超臨界水搭配氧氣(∼ 2mmol)的存在之下特別能對於將變細的多層奈米碳管外層結構變成崩塌結構。除此之外,超臨界水還能改變多層奈米碳管的外觀形狀,並且搭配電子損失能譜觀察此種外觀上變化會引起電子能階的分布情況。同時在4種假設之下搭配簡單的數學模式解釋在超臨界水實驗中所觀察的多層奈米碳管的外觀形狀變化。本文中更以超臨界水的高度破壞性的環境下將銀的凝聚物脆裂成2~20 nm奈米粒子而將其帶入奈米碳管的奈米孔洞。實驗中發現超臨界水除了將銀奈米粒子帶入奈米碳管的奈米孔洞,並且隨著時間增長銀奈米粒子會堆積在一起,並因為高溫燒結使其成為奈米棒子。不同的超臨界水實驗條件可以得到不同粒徑分布的銀奈米粒子,更隨著壓力增大銀奈粒子會形成銀奈米線,和 少許類似三角形的銀奈米板。 tc Table of Contents Page CHAPTER 1 BACKGROUND AND INTRODUCTION 1 1.1 CARBON NANOTUBES 1 1.1.1 PROPERTIES OF CARBON NANOTUBES 1 1.1.1.1 Chemical reactivity 1 1.1.1.2 Electronic properties 3 1.1.1.3 Mechanical strength 4 1.1.2 SYNTHESIS METHODS 5 1.1.2.1 Arc discharge method 6 1.1.2.2 CVD method 7 1.1.2.3 Laser ablation method 8 1.1.3 POTENTIAL APPLICATIONS 9 1.1.3.1 Field-effect transistors 9 1.1.3.2 Electron field emission 10 1.1.3.3 Sensors 11 1.1.3.4 Composite materials 12 1.1.3.5 Hydrogen storage 13 1.2 MOLECULAR BEACON 14 1.2.1 PRINCIPLE OF MBS 14 1.2.2 ADVANTAGES OF MBS 15 1.2.3 APPLICATIONS OF MBS 16 1.3 NANOMATERIALS 17 1.3.1 METAL NANORODS AND NANOWIRES 17 1.3.1.1 Gold nanorods 18 1.3.1.2 Silver nanowires 18 1.3.2 FLUORESCENT-DOPED SILICA NANOPARTICLES 19 1.3.3 BIOCONJUGATED NANOPARTICLES 21 1.3.3.1 Carboxylic acid-amine cross-linking 22 1.3.3.2 Thiol-amine cross-linking 22 1.3.3.3 Amine–amine cross-linking 23 1.3.3.4 Hydroxy-amine cross-linking 23 1.4 OBESITY-RELATED PROTEIN 24 1.5 FIGURES 27 1.6 REFERENCES 29 CHAPTER 2 OPENING AND THINNING OF MULTIWALL CARBON NANOTUBES IN SUPERCRITICAL WATER 38 2.1 INTRODUCTION 38 2.2 EXPERIMENTAL SECTION 40 2.3 RESULTS AND DISCUSSION 41 2.3.1 OXIDATION 41 2.3.2 OPENING AND THINNING OF MWNTS 44 2.3.3 RAMAN SPECTROSCOPY 48 2.4 CONCLUSION 49 2.5 FIGURES 50 2.6 REFERENCES 53 CHAPTER 3 MORPHOLOGICAL VARIATION OF MULTIWALL CARBON NANOTUBES IN SUPERCRITICAL WATER OXIDATION 55 3.1 INTRODUCTION 55 3.2 EXPERIMENTAL SECTION 57 3.3 RESULT AND DISCUSSION 57 3.3.1 ASSUMPTION FOR THE MORPHOLOGICAL VARIATION OF CNTS 57 3.3.2 MORPHOLOGICAL VARIATION BETWEEN TWO ADJOINING BLOCKS 59 3.3.3 EELS SPECTRA OF PEELED-TUBES 61 3.4 CONCLUSION 63 3.5 FIGURES 64 CHAPTER 4 TRANSPORTATION OF SILVER NANOPATICLES IN NANOCHANNELS OF CARBON NANOTUBES WITH SUPERCRITICAL WATER 68 4.1 INTRODUCTION 68 4.2 EXPERIMENTAL SECTION 70 4.3 RESULTS AND DISCUSSION 71 4.4 CONCLUSION 73 4.5 FIGURES 74 4.6 REFERENCES 76 CHAPTER 5 SILVER NANOPARTICLES SPONTANEOUS ORGANIZE INTO NANOWIRES AND NANOBANNERS IN SUPERCRITICAL WATER 78 5.1 INTRODUCTION 78 5.2 EXPERIMENTAL SECTION 79 5.3 RESULTS AND DISCUSSION 80 5.3.1 SILVER NANOPARTICLES PREPARED IN SCW 80 5.3.2 SILVER NANOWIRES AND NANOBANNERS PREPARED IN SCW 81 5.3.3 SILVER NANOSTRUCTURES FORMATION MECHANISM 83 5.4 CONCLUSION 84 5.5 FIGURES 86 5.6 REFERENCES 89 CHAPTER 6 GOLD/SILVER ALLOY NANOPARTICLES AS THE QUENCHER IN THE MOLECULAR BEACON 91 6.1 INTRODUCTION 91 6.2 EXPERIMENTAL SECTION 95 6.2.1 BUFFER 95 6.2.2 COUPLING OF DABCYL 95 6.2.3 COUPLING OF FLUOROPHORE 96 6.2.4 AUTOMATED SYNTHESIS 97 6.2.6 MB WITH CY3 FLUOROPHORE AND QUENCHER OF GOLD/SILVER NANOPARTICLE 98 6.3 RESULTS AND DISCUSSION 99 6.3.1 SYMTHESIS OF MB WITH CY3 FLUOROPHORE AND DABCYL QUENCHER 99 6.3.2 SYNTHESIS OF MB WITH TRI-THIOL AT 3’ TERMINUS 101 6.3.3 SILVER, GOLD, AND GOLD/SILVER ALLOY NANOPARTICLES 102 6.3.4 FRET EFFICIENCY 103 6.4 CONCLUSION 105 6.5 FIGURES 106 6.6 REFERENCES 116 CHAPTER 7 FLUORESCENT BIOCONJUGATED SILICA NANOPARTICLES FOR THE OBESITY-RELATED PROTEIN ASSAY 118 7.1 INTRODUCTION 118 7.2 EXPERIMENTAL SECTION 121 7.2.1 CHEMICALS AND REAGENTS 121 7.2.2 PREPARATION OF SAMPLE AND BUFFER SOLUTION 122 7.2.3 PREPARATION OF FLUORESCENT SILICA NPS 122 7.2.4 SURFACE MODIFICATION OF FLUORESCENT SILICA NPS 122 7.2.5 DETERMINATION OF CARBOXYLATE, AMINE, AND THIOL FUNCTIONAL GROUP ON THE NPS 123 7.2.6 PREPARATION OF FLUORESCENT SILICA NPS COATING WITH STV 124 7.2.7 CONSTRUCTION OF PROTEIN SANDWICH ASSAY 124 7.2.8 CONFOCAL FLUORESCENCE MICROSCOPY AND IMAGE ANALYSIS 125 7.3 RESULTS AND DISCUSSION 125 7.3.1 SURFACE MODIFICATION OF NPS 125 7.3.2 CHARACTERIZATION OF FLUORESCENT SILICA NPS WITH DIFFERENT FUNCTION GROUP 127 7.3.3 CHARACTERIZATION OF FLUORESCENT SILICA NPS COATING WITH STV 127 7.3.4 CONSTRUCTION OF PROTEIN SANDWICH ASSAY 128 7.4 CONCLUSION 131 7.5 FIGURES 132 7.6 REFERENCES 141 CHAPTER 8 ORIENTED ASSEMBLY OF GOLD NANORODS AS BIORECOGNITION SYSTEM FOR IMMUNOSENSING 143 8.1 INTRODUCTION 143 8.2 EXPERIMENTAL SECTION 144 8.3 RESULTS AND DISCUSSION 145 8.4 CONCLUSION 147 8.5 FIGURES 148 8.6 REFERENCES 152 LIST OF PUBLICATIONS 153rf References 1. Iijima, S. Nature 1991, 354, 56. 2. Sinnott, S. B.; Andrews, R. Crit. Rev. Solid State Mater. Sci. 2001, 26, 145. 3. Rao, A. M.; Jacques, D.; Haddon, R. C.; Zhu, W.; Bower, C.; Jun, S. Appl. Phys. Lett. 2000, 76, 3813. 4. Niyogi, S.; Hamon, M. A.; Hu, H.; Zhao, B.; Bhowmik, P.; Sen, R.; Itkis, M. E.; Haddon, R. C. Acc. Chem. Res. 2002, 35, 1105. 5. Haddon, R. C. J. Am. Chem. Soc.1990, 112, 3385. 6. Weedon, B. R.; Haddon, R. C.; Spielmann, H. P.; Meier, M. S. J. Am. Chem. Soc.1999, 121, 335. 7. Haddon, R. C.; Scuseria, G. E.; Smalley, R. E. Chem. Phys. Lett.1997, 272, 38. 8. Dujardin, E.; Ebbesen, T. W.; Krishnan, A.; Treacy, M. M. J. Adv. Mater. 1998, 10, 1472. 9. Ebbesen, T. W. Acc. Chem. Res. 1998, 31, 558. 10. Liu, J.; Rinzler, A. G.; Dai, H.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez- Macias, F.; Shon, Y.-S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. Science 1998, 280, 1253. 11. Mawhinney, D. B.; Naumenko, V.; Kuznetsova, A.; Yates, J. T. J.; Liu, J.; Smalley, R. E. Chem. Phys. Lett. 2000, 324, 213. 12. Hu, H.; Bhowmik, P.; Zhao, B.; Hamon, M. A.; Itkis, M. E.; Haddon, R. C. Chem. Phys. Lett. 2001, 345, 25. 13. Ausman, K. D.; Piner, R.; Lourie, O.; Ruoff, R. S.; Korobov, M. J. Phys. Chem. B 2000, 104, 8911. 14. Chen, J.; Rao, A. M.; Lyuksyutov, S.; Itkis, M. E.; Hamon, M. A.; Hu, H.; Cohn, R. W.; Eklund, P. W.; Colbert, D. T.; Smalley, R. E.; Haddon, R. C. J. Phys. Chem. B 2001, 105, 2525. 15. Bahr, J. L.; Yang, J.; Kosynkin, D. V.; Bronikowski, M. J.; Smalley, R. E.; Tour, J. M. J. Am. Chem. Soc. 2001, 123, 6536. 16. Bahr, J. L.; Tour, J. L. Chem. Mater. 2001, 13, 3823. 17. Mickelson, E. T.; Chiang, I. W.; Zimmerman, J. L.; Boul, P. J.; Lozano, J.; Liu, J.; Smalley, R. E.; Hauge, R. H.; Margrave, J. L. J. Phys. Chem. B 1999, 103, 4318. 18. Holzinger, M.; Vostrowsky, O.; Hirsch, A.; Hennrich, F.; Kappes, M.; Weiss, R.; Jellen, F. Angew. Chem., Int. Ed. 2001, 40, 4002. 19. Georgakilas, V.; Kordatos, K.; Prato, M.; Guldi, D. M.; Holzinger, M.; Hirsch, A. J. Am. Chem. Soc. 2002, 124, 760. 20. Holzinger, M.; Vostrowsky, O.; Hirsch, A.; Hennrich, F.; Kappes, M.; Weiss, R.; Jellen, F. Angew. Chem., Int. Ed. 2001, 40, 4002. 21. Pekker, S.; Salvetat, J.-P.; Jakab, E.; Bonard, J.-M.; Forro´, L. J. Phys. Chem. B 2001, 105, 7938. 22. Bahr, J. L.; Yang, J.; Kosynkin, D. V.; Bronikowski, M. J.; Smalley, R. E.; Tour, J. M. J. Am. Chem. Soc. 2001, 123, 6536. 23. Boul, P. J.; Liu, J.; Mickelson, E. T.; Huffman, C. B.; Ericson, L. M.; Chiang, I. W.; Smith, K. A.; Colbert, D. T.; Hauge, R. H.; Margrave, J. L.; Smalley, R. E. Chem. Phys. Lett.1999, 310, 367. 24. Mickelson, E. T.; Huffman, C. B.; Rinzler, A. G.; Smalley, R. E.; Hauge, R. H.; Margrave, J. L. Chem. Phys. Lett.1998, 296, 188. 25. Georgakilas, V.; Kordatos, K.; Prato, M.; Guldi, D. M.; Holzinger, M.; Hirsch, A. J. Am. Chem. Soc.2002, 124, 760. 26. Charlier, J. C. Acc. Chem. Res. 2002, 35, 1063. 27. Heer, W. A. d.; Chatelain, A.; Ugarte, D. Science 1995, 270, 1179. 28. Bonnard, J. M.; Salvetat, J. P.; Stockli, T.; Herr, W. A. d.; Forro, L.; Chatelain, A. Appl. Phys. Lett. 1998, 73, 918. 29. Dean, K. A.; Chalamala, B. R. Appl. Phys. Lett. 2000, 76, 375. 30. Choi, W. B.; Chung, D. S.; Kang, J. H.; Kim, H. Y.; Jin, Y. W.; Han, I. T.; Lee, Y. H.; Jung, J. E.; Lee, N. S.; Park, G. S.; Kim, J. M. Appl. Phys. Lett. 1999, 75, 3129. 31. Saito, Y.; Uemura, S.; Hamaguchi, K. Jpn. J. Appl. Phys.1998, 37, L346. 32. Rosen, R.; Simendinger, W.; Debbault, C.; Shimoda, H.; Fleming, L.; Stoner, B.; Zhou, O. Appl. Phys. Lett. 2000, 76, 1197. 33. Yu, M. F.; Lourie, O. Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. Science, 2000, 287, 637. 34. Campbell, M. P.; Brabec, C. J.; Bernholc, J. Comput. Mater. Sci. 1997, 8, 341. 35. Yakobson, B. I.; Brabec, C. J.; Bernholc, J. Phys. Rev. Lett. 1996, 76, 2511. 36. Lu, J. P. J. Phys. Chem. Solids 1997, 58, 1679. 37. Zhang, P.; Lammert, P. E.; Crespi, V. H. Phys. Rev. Lett. 1998, 81, 5346. 38. Buongiorno Nardelli, M.; Yakobson, B. I.; Berhholc, J. Phys. Rev. B 1998, 57, R4277. 39. Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Science 1997, 277, 1971. 40. Salvetat, J. P.; Kulik, A. J.; Bonard, J. M.; Briggs, G. A. D.; Stöckli, T.; Metenier, K.; Bonnamy, S.; Beguin, F.; Burnham, N. A. Adv. Mater. 1999, 11, 161. 41. Walters, D. A.; Ericson, L. M.; Casavant, M. J.; Liu, J.; Colbert, D. T.; Smith, K. A.; Smalley R. E. Appl. Phys. Lett. 1999, 74, 3803. 42. Lourie, O.; Cox, D. M.; Wagner, H. D. Phys. Rev. Lett. 1998, 81, 1638. 43. Wagner, H. D.; Lourie, O.; Feldman, Y.; Tenne, R. Appl. Phys. Lett. 1998, 72, 188. 44. Kong, J.; Cassell, A. M.; Dai, H. Chem. Phys. Lett. 1998, 292, 567. 45. Homma, Y.; Kobayashi, Y.; Ogino, T.; Yamashita, T. Appl. Phys. Lett. 2002, 81, 2261. 46. Maruyama, S.; Kojima, R.; Miyauchi, Y.; Chiashi, S.; Kohno, M. Chem. Phys. Lett. 2002, 360, 229. 47. Homma, Y.; Kobayashi, Y.; Ogino, T.; Takagi, D.; Ito, R.; Jung, Y. J.; Ajayan, P. M. J. Phys. Chem. B 2003, 107, 12161. 48. Andrews, R.; Jacques, D.; Rao, A. M.; Derbyshire, F.; Qian, D.; Fan, X.; Dickey, E. C.; Chen, J. Chem. Phys. Lett. 1999, 303, 467. 49. Sen, R.; Govindaraj A.; Rao, C. N. R. Chem. Phys. Lett. 1997, 267, 276. 50. Rao, C. N. R.; Sen, R.; Satishkumar, B. C.; Govindaraj, A. Chem. Commun. 1998, 1525. 51. Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E. Chem. Phys. Lett. 1995, 2, 243. 52. Yudasaka, M.; Yamada, R.; Sensui, N.; Wilkins, T.; Ichihashi, T.; Iijima, S. J. Phys. Chem. B 1999, 30, 103. 53. Maser, W. K.; Munoz, E.; Benito, A. M.; Martinez, M. T.; de la Fuente, G. F.; Maniette, Y.; Anglaret, E.; Sauvajol, J. L. Chem. Phys. Lett. 1998, 4, 292. 54. Avouris, P. Acc. Chem. Res. 2002, 35, 1026. 55. Brodie, I.; Spindt, C. A. Adv. Electron. Phys. 1992, 83, 1. 56. Heer, W. A. d.; Chatelain, A.; Ugarte, D. Science 1995, 270, 1179. 57. Bonnard, J. M.; Salvetat, J. P.; Stockli, T.; Herr, W. A. d.; Forro, L.; Chatelain, A. Appl. Phys. Lett. 1998, 73(7), 918. 58. Dean, K. A.; Chalamala, B. R. Appl. Phys. Lett. 2000, 76, 375. 59. Choi, W. B.; Chung, D. S.; Kang, J. H.; Kim, H. Y.; Jin, Y. W.; Han, I. T.; Lee, Y. H.; Jung, J. E.; Lee, N. S.; Park, G. S.; Kim, J. M. Appl. Phys. Lett.1999, 75, 3129. 60. Saito, Y.; Uemura, S.; Hamaguchi, K. Jpn. J. Appl. Phys.1998, 37, L346. 61. Cinke, M.; Li, J.; Chen, B.; Cassell, A.; Delzeit, L.; Han, J.; Meyyappan, M. Chem. Phys. Lett. 2002, 365, 69. 62. Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. Science 2000, 287, 622. 63. Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science 2000, 287, 1801. 64. Qi, P.; Vermesh, O.; Grecu, M.; Javey, A.; Wang, Q.; Dai, H. Nano. Lett. 2002, 3, 347. 65. Ago, H., Petritsch, K.; Shaffer, M. S. P.; Windle, A. H.; Friend, R. H. Adv. Mater. 1999, 11, 1281. 66. Ago, H., Shaffer, M. S. P.; Ginger, D. S.; Windle, A. H.; Friend, R. H. Phys. ReV. B 2000, 61, 2286. 67. Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J. Nature 1997, 386, 377. 68. Chambers, A.; Park, C.; Baker, R. T. K.; Rodriguez, N. M. J. Phys. Chem. 1998, 102, 4253. 69. Cheng, H. M.; Yang, Q. H.; Liu, C. Carbon 2001, 39, 1447. 70. Stan, G.; Cole, M. W. J. Low Temp. Phys. 1998, 110, 539. 71. Maddox, M. W.; Gubbins, K. E. Langmuir 1995, 11, 3988. 72. Tyagi, S.; Kramer, F. R. Nat. Biotechnol. 1996, 14, 303. 73. Tyagi, S.; Marras, S. A. E.; Kramer, F. R. Nat. Biotechnol. 2000,18, 1191. 74. Stryer, L. Annu. Rev. Biochem. 1978, 47, 819. 75. Kostrikis, L. G.; Tyagi, S.; Mhlanga, M. M.; Ho, D. D.; Kramer, F. R. Science 1998, 279, 1228. 76. Bonnet, G.; Tyagi, S.; Libchaber, A.; Kramer, F. R. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 6171. 77. Tyagi, S.; Bratu, D. P.; Kramer, F. R. Nat. Biotech. 1996, 16, 49. 78. EI-Sayed, M. A. Acc. Chem. Res. 2001, 34, 257. 79. Hu, J.; Odom, T. W.; Lieber, C. M. Acc. Chem. Res. 1999, 32, 435. 80. Favier, F.; Walter, E. C.; Zach, M. P.; Benter, T. Penner, R. M. Science 2001, 293, 2227. 81. Zach, M. P.; Ng, K. H.; Penner, R. M. Science 2000, 290, 2120. 82. Marszalek, P. E.; Greenleaf, W. J.; Li, H.; Oberhauser, A. F.; Fernandez, J. M. Proc. Nat. Acad. Sci. 2000, 97, 6282. 83. Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226. 84. Henglein, A. J. Phys. Chem. 1993, 97, 8457. 85. van der Kooij, F. M.; Kassapidou, K.; Lekkerkerker, H. N. W. Nature 2000, 406, 868. 86. Frens, G. Nature 1973, 241, 20. 87. Leff, D. V.; Ohara, P. C.; Heath, J. R.; Gelbart, W. M. J. Phys. Chem. 1995, 99, 7036. 88. Yu, Y. Y.; Chang, S. S.; Lee, C. L.; Wang, C. R. C. J. Phys. Chem. B 1997, 101, 6661. 89. Esumi, K.; Matsuhisa, K.; Torigoe, K. Langmuir 1995, 11, 3285. 90. Martin, B. R.; Dermody, D. J.; Reiss, B. D.; Fang, M. M.; Lyon, L. A.; Natan, M. J.; Mallouk, T. E. Adv. Mater. 1999, 11, 1021. 91. Cepak, V. M.; Martin, C. R. J. Phys. Chem. B 1998, 102, 9985. 92. Link, S.; Mohammed, M. B.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 3073. 93. Martin, C. R. Science, 1994, 266, 1961. 94. Martin, B. R.; Dermody, D. J.; Reiss, B. D.; Fang, M.; Lyon, L. A.; Natan, M. J. Mallouk, T. E. Adv. Mater. 1999, 11, 1021. 95. Zhang, Z.; Gekhtman, D.; Dresselhaus, M. S. Ying, J. Y. Chem. Mater. 1999, 11, 1659. 96. Han, Y. J.; Kim, J. M.; Stucky, G. D. Chem. Mater. 2000, 12, 2068. 97. Huang, M. H.; Choudrey, A.; Yang, P. Chem. Commun. 2000, 1063. 98. Ugarte, D. Chatelain, A.; de Heer, W. A. Science 1996, 274, 1897. 99. Govindaraj, A.; Satishkumar, B. C.; Nath, M. Rao, C. N. R. Chem. Mater. 2000, 12, 202. 100. Braun, E.; Eichen, Y. sivan, U.; Ben-Yoseph, G. Nature 1998, 391, 775. 101. Link, S.; Mohamed, M. B.; EI-Sayed, M. A. J. Phys. Chem. B 1999, 103, 3073. 102. Jiang, X.; Xie, Y.; Lu, J.; Zhu, L.; He, W.; Qian, Y. J. J. Mater. Chem. 2001, 11, 1775. 103. Jana, N. R.; Gearheart, L.; Murphy, C. J. Chem. Commun. 2001, 617. 104. Sun, Y.; Xia, Y. Adv. Mater. 2002, 14, 833. 105. Stantra, S.; Wang, K.; Tapec, R.; Tan, W.J. Biomed. Opt. 2001, 6, 160. 106. Santra, S.; Zhang, P.; Wang, K.; Tapec, R.; Tan, W. Anal. Chem. 2001, 73, 4988. 107. Shibata, S.; Yano, T.; Yamane, M. J. Appl. Phys. 1998, 37, 41. 108. Stöber, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62 109. Kopelman, P. G. Nature 2000, 404, 635. 110. Friedman, J. M.; Halaas, J. L. Nature 1998, 395,763. 111. Seeley, R. J.; Yagaloff, K. A.; Fisher, S. L.; Burn, P.; Thiele, T. E.; van Dijk, G.; Baskin, D. G.; Schwartz, M. W. Nature 1997, 390, 349. 112. Kim, K. H.; Lee, K.; Moon, Y. S.; Sul, H. S. J. Biol. Chem. 2001,276,11252. 113. Steppan, C. M.; Bailey, S. T.; Bhat, S.; Brown, E. J.; Banerjee, R. R.; Wright, C. M.; Patel, H. R.; Ahima, R. S.; Lazar, M. A. Nature 2001, 409, 307. 114. Heilbronn, L. K.; Smith, S. R.; Ravussin, E. Curr. Pharm. Design. 2003, 9, 1411. 115. Hotta, K.; Funahashi, T.; Bodkin, N. L.; Ortmeyer, H. K.; Arita, Y.; Hansen, B. C.; Matsuzawa, Y. Diabetes 2001, 50, 1126. 116. Mohamed-Ali, V.; Goodrick, S.; Rawesh, A.; Katz, D. R.; Miles, J. M.; Yudkin, J. S.; Klein, S.; Coppack, S. W. J Clin. Endocrinol. Metab. 1997, 82, 4196. 117. Nonogaki, K.; Fuller, G. M.; Fuentes, N. L.; Moser, A. H.; Staprans, I.; Grunfeld, C.; Feingold, K. R. Endocrinology 1995, 136, 2143. 118. Tsigos, C.; Papanicolaou, D. A.; Kyrou, I.; Defensor, R.; Mitsiadis, C. S.; Chrousos, G. P. J Clin. Endocrinol. Metab. 1997, 82, 4167. 119. Fried, S. K.; Bunkin, D. A.; Greenberg, A. S.; J. Clin. Endocrinol. Metab.1998, 83, 847. 120. Mohamed-Ali, V.; Goodrick, S.; Bulmer, K.; Holly, J. M. P.; Yudkin, J. S.; Coppack, S. W. Am. J. Physiol. Endocrinol. Metab.1999, 277, E971.id NH0925065075 sid 897424 cfn 0 / id NH0925065076 auc 劉嘉林 tic 苯 tic � tic A吩[2,3-c] tic & tic #21537;咯衍生物之合成及其電激發光元件試製 adc 沙晉康 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 134 kwc 劉嘉林 kwc 電激發光 abc 本篇論文利用了實驗室所開發的iso-condensed heteroaromatic pyrroles的三種合成法中的retro-malonate反應合成出一系列苯?A吩[2,3-c rf 1. Bonnett, R.; North. S. A. Advances in Heterocyclic Chemistry 1981, 29, 341. 2. Bornstein, J.; Bedell, S. F.; Drummond, P. E.; Kosloski, C. L. J. Am. Chem. Soc. 1956, 78, 83. 3. Veber, D. F.; Lwowski, W. J. Am. Chem. Soc. 1964, 86, 4152. 4. Bonnett, R.; Brown, R. F. C. J. Chem. Soc. Chem. Commum. 1972, 393. 5. 陳良吉, 博士論文, 清華大學(1999) 6. Chacko, E.; Bornstein, J.; Sardella, D. J. Tetrahedron Lett. 1979,1055 7. Diaz, A. F.; Kanazawa, K. K.; Gardini, G. P. J. Chem. Soc. Chem. Commum. 1979, 635. 8. Sha, C.-K. in "Advance in Nitrogen Hetercycles",Moody,J. C. Ed.,JAI Press, Greenwich,CT,1996,2,pp147-148. 9. Sha, C.-K.;Chuang, K.-S.; Young, J.-J. J. Chem. Soc. Chem. Commum. 1984, 1552. 10. Sha, C.-K.; Tsou, C.-P. J. Chem. Soc. Chem. Commum. 1986, 310. 11. Sha, C.-K.; Tsou, C.-P.; Li, Y.-C.; Lee, R.-S.; Tsai, F.-Y.; Yen, R.-H. J. Chem. Soc. Chem. Commum. 1988, 1801. 12. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913 13. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burbs, P. L.; Holmes, A. B. Nature 1990, 347, 539. 14. Ma, Y.; Che, C.-M.; Chao, H.-Y.; Zhou, X.; Chan, W.-H.; Shen, J. Adv. Mater. 1999, 11, 852. 15. Sano, T.; Fujita, M.; Fulita, T.; Nishio, Y.; Hamada, Y.; Shibata, K.; Kurpki, K. US 5, 432, 014, 1995. 16. Shirota, Y.; Kuwabara, Y.; Inada, H. Appl. Phys. Lett. 1994, 65, 807. 17. Imai, K.; Shinkai, M.; Wakimoto, T.; Shirota, Y. US 5,256, 945, 1993. 18. Hosakawa, C.; Sakamoto, S.; Kusumoto, T. US 5, 389, 444, 1995. 19. Wu, I.; Lin, J. T.; Tao, Y. T.; Balasubramaniam, E.; Su, Y. Z.; Ko, C. W. Chem. Mater. 2001, 13, 2626. 20. (a) Thomas, J. K. R.; Lin, J. T.; Tao, Y. T.; Ko, C. W. Adv. Mater. 2000, 12, 1949. (b) Thomas, J. K. R.; Lin, J. T.; Tao, Y. T.; Ko, C. W. J. Am. Chem. Soc. 2001, 123, 9404. 21. Tao, Y. T.; Ko, C. W. Synth. Met. 2002, 126, 37. 22. Sha, C.-K.; Hsu, H.-Y.; Cheng, S.-Y.; Kuo, Y.-L. Tetrahedron 2003 , 59, 1477. 23. Noda, T.; Ogawa, N.; Shirota, Y. Adv. Mater. 1997, 9, 720. 24. Walton, R.; Paul, M. L. Synth. Commun. 1998, 28(6), 1087. 25. Corey, E. J.; Roberts, B. E. J. Am. Chem. Soc. 1997, 119, 12425. 26. Marcantoni, E.; Nobili, F.; Bartoli, G.; Bosco, M.; Sambri, L. J. Org. Chem. 1997, 62, 4183. 27. Shi, M.; Xu, B. J. Org. Chem. 2002, 67, 294. 28. Gordan, J.; Sheldon, T. J.; Bradley, D. D. C.; Burn, P. L. J. Mater. Chem. 1996, 6(8), 1253. 29. Merlic, G. A.; Motamed, S.; Quinn, B. J. Org. Chem. 1995, 60, 3365. 30. Goodbrand, H. B.; Hu, N.-X. J. Org. Chem. 1999, 64, 670. 31. Cammenga, H. K.; Epple, M. Angew. Int. Ed. Engl. 1995, 34, 1171. 32. Schmidt, H.-W.; Thelallat, M. Adv. Mater. 1998, 10, 219. 33. Koene, B. E.; Loy, D. E.; Thomposon, M. E. Chem. Mater. 1998, 10, 2235.id NH0925065076 sid 913469 cfn 0 / id NH0925065077 auc 鄭丞博 tic 樟腦衍生之胺基醇為配位基在不對稱亞 tic � tic A化反應的研究 adc 汪炳鈞 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 82 kwc 樟腦 kwc 亞 kwc � kwc A kwc 催化 abc 本論文主要探討以樟腦衍生之胺基醇與水楊醛衍生物縮合而得之三牙配位基與VO(acac)2所形成的掌性錯合物為催化劑,應用在不對稱亞?A化反應上的研究。以1 mol%催化量的催化劑在0oC下,以H2O2為氧化劑,氧化硫醚化合物生成掌性亞?A化合物,鏡像選擇性最好可達88% ee,且不會有?A化合物的生成。而相較於其它的催化系統,本論文合成的催化劑使反應速度加快很多,惟產率略低。 tc 中文摘要 Abstract 目錄 第一章 緒論.....1 第二章 樟腦衍生之胺基醇為配位基在不對稱亞?A化反應的研究..4 2.1 前言 2.2 具掌性亞?A化合物的合成 2.3 研究動機 2.4 三牙配位基的合成 2.5 結果與討論 2.6 結論 第三章 實驗部分.....28 3.1 一般實驗方 3.2 利用樟腦衍生之胺基醇合成水楊醛衍生物之三牙配位基 3.3 釩錯合物催化不對稱亞?A化反應的標準實驗步驟 參考文獻.....45 附錄一 化合物之核磁共振光譜圖 附錄二 HPLC分析之原始圖譜rf 1.(a) Knowles, W. S.; Sabacky, M. J. J. Chem. Soc., Chem. Commun. 1968, 1445. (b) Noyori, R. Science 1990, 248, 1194. (c) Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765. 2.Kitamura, M.; Okada, G.; Suga, S.; Noyori, R. J. Am. Chem. Soc. 1989, 111, 4028. 3.Aggarwal, V. K.; Hynd, G.; Picoul, W.; Vasse, J. L. J. Am. Chem. Soc. 2002, 124, 9964. 4.黃全德博士論文,國立清華大學化學系,1999年。 5.Solladie, G. Synthesis 1981, 185. 6.Posner, G. H. Acc. Chem. Res. 1987, 20, 72. 7.Arai, Y.; Koizumi, T. Sulfur Rep. 1993, 15, 41. 8.Kosugi, H.; Konta, H.; Uda, H. J. Chem. Soc., Chem. Commun. 1985, 211. 9Lindberg, P.; Br?躪dstorm, A.; Wallmark, B.; Mattson, H.; Rikner, L.; Hoffman, K. –J. Med. Res. Rev. 1990, 10, 1. 10.Matsugi, M.; Fukuda, N.; Minamikawa, J.-i.; Otsuka, S. Tetrahedron Lett. 1998, 35, 5591. 11.Miloskowski, C.; Solladie, G. Tetrahedron 1980, 36, 227. 12.(a) Marino, J. P.; Kim, M.-W.; Lawrence, R. J. Org. Chem. 1989, 54, 1784. (b) Marino, J. P.; Bogdan, S.; Kimura, K. J. Am. Chem. Soc. 1992, 114, 5566. (c) Arai, Y.; Yamamoto, M.; Koizumi, T. Chem. Lett. 1986, 1225. 13.Arai, Y.; Yamamoto, M.; Koizumi, T. Bull. Chem. Soc., Jpn. 1988, 61, 467. 14.Andersen, K. K. Tetrahedron Lett. 1962, 93. 15.Colonna, S.; Gaggero, N.; Casella, L.; Carrea, G.; Pasta, P. Tetrahedron: Asymmetry 1992, 3, 95. 16.H. B. Kagan, in I. Ojima (Ed.), Catalytic Asymmetric Synthesis; VCH: Weinheim, 1993, pp. 203-226. 17.Komatsu, N.; Hashizume, M.; Sugita, T.; Uemura, S. J. Org. Chem. 1993, 58, 4529. 18.Donnoli, M. I.; Superchi, S.; Rosini, C. J. Org. Chem. 1998, 63, 9392 19.Yamanoi, Y.; Imamoto, T. J. Org. Chem. 1997, 62, 8560. 20.Palucki, M.; Handson, P.; Jacobsen, E. N. Tetrahedron Lett. 1992, 33, 7111. 21.Nagata, T.; Imagawa, K.; Yamada, T.; Mukaiyama, T. Bull. Chem. Soc., Jpn. 1995, 68, 3241. 22.Nakajima, K.; Kojima, M.; Toriumi, K.; Saito, K.; Fujita, J. Bull. Chem. Soc., Jpn. 1989, 62, 760. 23.Nakajima, K.; Kojima, K.; Kojima, M.; Fujita, J. Bull. Chem. Soc., Jpn. 1990, 63, 2620. 24.Bolm, C.; Bienewald, F. Angew. Chem. 1995, 107, 2883; Angew. Chem., In. Ed. Engl. 1995, 34, 2640. 25.Vetter, A. H.; Berkessel, A. Tetrahedron Lett. 1998, 39, 1741. 26.Pelotier, B.; Anson, M. S.; Campbell, I. B.; Macdonald, S. J. F.; Priem, G.; Jackson, R. F. W. Synlett 2002, 1055. 27.黃德仁博士論文,國立清華大學化學系,1999年。 28.陳培儂專題報告,國立清華大學化學系,2003年。 29.許筑婷碩士論文,國立清華大學化學系,2004年。 30.Robert, E.; Zhang, P. J. Org. Chem. 1996, 61, 8103. 31.Kouklovsky, C.; Pouilhes, A.; Langlois, Y. J. Am. Chem. Soc 1990, 112, 6672. (b) Malcolm R.; Blake, A. J.; Cadogan, J. I. G.; Doyle, A. A.; Gosney, I. Tetrahedron 1996, 52, 4079. 32.Oppolzer, W.; Radinov, R. N. Tetrahedron Lett. 1988, 29, 5645.id NH0925065077 sid 913430 cfn 0 / id NH0925065078 auc 詹德品 tic N,N-二異丙基-10-樟腦磺醯胺衍生之具光學活性1,3-二 tic � tic I環戊烷化合物在不對稱反應及天然物合成上的應用 adc 汪炳鈞 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 224 kwc 樟腦 kwc 樟腦磺酸 kwc 掌性輔助基 kwc 不對稱醛醇反應 kwc 不對稱1,4-加成反應 kwc 1,3-二 kwc � kwc I環戊烷 abc 本論文研究包含三個部份:第一部份是利用N,N-二異丙基-10-樟腦磺醯胺25作為掌性輔助基衍生之1,3-二?I環戊-4-酮化合物50和51進行不對稱醛醇反應的研究;第二部份是利用N,N-二異丙基-10-樟腦磺醯胺25作為掌性輔助基衍生之1,3-二?I環戊-4-酮化合物48和50進行不對稱1,4-加成反應的研究;第三部份是利用1,3-二?I環戊-4-酮化合物48進行(-)-k252a的不對稱形式合成研究。 tc 目 錄 摘要……………..……………………………………………………..i 英文摘要…………………………………………………………..…iii 縮寫對照表…………………………………………………….….….v 目錄……………………………………………………………....…..vi 第一章 緒論………………..….………………………………….….1 第一節 研究動機…………………………………...…….….3 第二節 樟腦為掌性輔助基在不對稱合成上的應用…....….5 第三節 研究構思………………………………………....….9 第二章 以1,3-二?I環戊-4-酮化合物進行不對稱醛醇反應的研究……………………………………………………...……15 第一節 文獻回顧………………………………………..….15 第二節 內酯縮酮化合物50和51的不對稱醛醇反應…….18 第三節 結構鑑定與反應機構……………………....……...23 第四節 結論………………………………………...….…...31 第三章 以1,3-二?I環戊-4-酮化合物進行不對稱1,4-加成反應的研究…………………………………………..………..……...33 第一節 文獻回顧………….………………...……………...33 第二節 內酯縮酮化合物48和50的不對稱1,4-加成反應.35 第三節 (+)-Trans-Crobarbatic Acid以及其相似結構之內酯衍生物的不對稱合成………………………..…….42 第四節 結論……………………………………...….……...49 第四章 (-)-k252a的不對稱形式合成研究…...…...……... ……….51 第一節 文獻回顧………………………….………...…...…52 第二節 合成策略…………………………….……..............54 第三節 結果與討論…………………………….…………..55 第四節 結論………………………………….……………..66 第五章 實驗部分……………………...……………………………69 第一節 一般實驗方法……………………….……………..69 第二節 內酯縮酮化合物50和51的不對稱醛醇反應實驗步驟及光譜資料……………………..…….…………71 第三節 內酯縮酮化合物48和50的不對稱1,4-加成反應實驗步驟及光譜資料………………….……………118 第四節 (-)-k252a的不對稱形式合成實驗步驟及光譜資料…………………………………….……………133 參考文獻…………………………………………………………...145 附錄一 化合物61a, 62k, 63a, 64g, 67b, 68h, 72, 85和95之X-ray單晶繞射數據……………………...……………………149 附錄二 化合物73c-e和74之NOE實驗光譜…….………….…159 附錄三 氫核磁共振光譜…………………………..………….…169rf 1. Calne, D. B.; Sandlar, M. Nature 1970, 226, 21. 2. "Reagents, Catalysts and Building Blocks for Enantioselective Synthesis Resolving Agent" Merck's Chiralica. 3. Seyden-penne J. In "Chiral Auxiliaries and Ligands in Asymmetric Synthesis", John-Wiley and sons, New York, 1995. 4. Canedo, L. M.; Fernandez Puentes, J. L.; Perez-Baz, J.; Acebal, C.; de la Calle, F.; Garcia-Gravalos, D.; Garcia de Quesada, T. J. Antiviot. 1997, 50, 175. 5. (a) Rivero-Cruz, J. F.; Garcia-Aguirre, G.; Cerda-Garcia-Rojas, C. M.; Mata, R. Tetrahedron 2000, 56, 5337. (b) Rivero-Cruz, J. F.; Macias, M.; Cerda-Garcia-Rojas, C. M.; Mata, R. J. Nat. Prod. 2003, 66, 511. 6. (a)Sezaki, M.; Sasaki, T.; Nakazawa, T.; Takeda, U.; Iwata, M.; Watanabe, T.; Koyama, M.; Kai, F.; Shomura, T.; Kojima, M. J. Antiviot. 1985, 38, 1437. (b) Kase, H.; Iwahashi, K.; Matsuda, Y. J. Antiviot. 1986, 39, 1059. (c) Nakanishi, S.; Mastuda, Y.; Iwahashi, K.; Kase, H. J. Antiviot. 1986, 39, 1066. 7. Puri, S. C.; Sawhney, R. S.; Atal, C. K. Experientia 1973, 29, 390. 8. 劉宏信,清華大學七十五學年度碩士論文。 9. 卜詩堯,清華大學八十學年度博士論文。 10. 葉家宗,清華大學七十七學年度碩士論文。 11. (a) 林怡秀,清華大學七十九學年度碩士論文。(b) Uang, B.-J.; Lin, Y.-S.; Hsu, C.-Y. Tetrahedron: Asymmtry 1992, 1, 219. 12. Seebach, D.; Naef, R.; Calderari, G. Tetrahedron 1984, 40, 1313. 13. Pearson, W. H.; Cheng, M.-C. J. Org. Chem. 1986, 51, 3746. 14. Ley, S. V.; Boons, G.-J.; Downham, R.; Kim, K. S.; Woods, M. Tetrahedron 1994, 50, 7157. 15. 張家文,清華大學八十九學年度博士論文。 16. (a)詹德品,清華大學八十六學年度碩士論文。(b) Chang, J.-W.; Jang, D.-P.; Uang, B.-J.; Liao, F.-L.; Wang, S.-L. Org. Lett. 1999, 1, 2061. 17. Zamojski, A.; Giynkiewioz, G. In Total Synthesis of Natural Products, Vol 6, Apsimon, J. Ed. Wiley, New York, 1984, p141. 18. Wierenga, W. In Total Synthesis of Natural Products, vol. 4, Apsimon, J. Ed. Wiley, New York, 1984, p263. 19. Zamojski, A.; Giynkiewioz, G. In Total Synthesis of Natural Products, Vol 6, Apsimon, J. Ed. Wiley, New York, 1984, p141. 20. Dixon, D. J.; Ley, S. V.; Polara, A.; Sheppard, T. Org. Lett. 2001, 3, 3749. 21. Andrus, M. B.; Soma Sekhar, B. B. V.; Turner, T. M.; Meredith, E. L. Tetrahedron Lett. 2001, 42, 7197. 22. Zimmerman, H. E.; Traxler, M. D. J. Am. Chem. Soc. 1957, 79, 1920. 23. Evans, D. A.; Vogel, E.; Nelson, J. V. J. Am. Chem. Soc. 1979, 101, 6120. 24. (a) Evans, D. A. In Asymmetric Synthesis; Morrison, J. D., Scott, J. W., Eds.; Academic Press: New York, 1983; Vol. 3. (b) Heathcock, C. H. In Asymmetric Synthesis; Morrison, J. D., Scott, J. W., Eds.; Academic Press: New York, 1984; Vol. 4. (c) Kagan, H. B. In Stereochemistry Fundamental and Methods 19; Kangan, H. B. Ed.; Georg Thieme: Stuttgart, 1977. 25. Calderari, G.; Seebach, D. Helv. Chim. Acat 1985, 68, 1592. 26. Aitken, R. A.; Thomas, A. W. SynLett. 1998, 102. 27. Hattori, K.; Yamamoto, H. J. Org. Chem. 1993, 58, 5301. 28. Dixon, D. J.; Ley, S. V.; Rodriguez, F. Org. Lett. 2001, 3, 3753. 29. Yamaguchi, M.; Tsukamoto, M.; Tanaka, S.; Hirao, I. Tetrahedron Lett. 1984, 25, 5661. 30. (a) 顏光輔,清華大學八十四學年度博士論文。 (b) Yen, K.-F.; Uang, B.-J. Tetrahedron: Asymmetry 1992, 3, 697. 31. (a) Amstutz, R.; Schweizer, W. B.; Seebach, D.; Dunitz, J. D. Helv. Chim. Acta. 1981, 64, 2617. (b) Seebach, D.; Amstutz, R.; Dunitz, J. D. ibid. 1981, 64, 2622. 32. Huang, J.; Meinwald, J. J. Am. Chem. Soc. 1981, 103, 861. 33. Chen, M.-Y.; Fang, J.-M. J. Org. Chem. 1992, 57, 2937. 34. Donohoe, T. J.; Stevenson, C. A.; Helliwell, M.; Irshad, R.; Ladduwahetty, T. Tetrahedron: Asymmetry 1999, 10, 1315. 35. Wood, J. L.; Stoltz, B. M.; Dietrich, H.-J. J. Am. Chem. Soc. 1995, 117, 10413. 36. (a) Sarstede, B.; Winterfeldt, E. Heterocycles 1983, 20, 469. (b) Hughes, I.; Nolan, W. P.; Raphael, R. A. J. Chem. Soc. Perkin Trans. I. 1990, 2475. (c) Moody, C. J.; Rahimtoola, K. F.; J. Chem. Soc. Chem. Commun. 1990, 1667. (d) Moody, C. J.; Rahimtoola, K. F.; Porter, B.; Rose, B. C. J. Org. Chem. 1992, 57, 2105. (e) Toullec, D.; Pianetti, P.; Coste, H.; Bellevergue, P.; Grand.-Perret, T.; Ajakane, M.; Baudet, V.; Boissin, P.; Boursier, E.; Loriolle, F.; Duhamel, L.; Charon, D.; Kirilovsky, J. J. Biol. Chem. 1991, 266, 15771. (f) Harris, W.; Hill, C. H.; Keech, E.; Malsher, P. Tetrahedron Lett. 1993, 34, 8361. (g) Xie, G. Lown, J. W. Tetrahedron Lett. 1994, 35, 5555. (h) Fabre, S.; Prudhomme, M.; Rapp, M. Bioorg. Med. Chem. Lett. 1992, 2, 449. (i) Fabre, S.; Prudhomme, M.; Rapp, M. Bioorg. Med. Chem. 1993, 1, 193. 37. Kobayashi, Y.; Fujimoto, T.; Fukuyama, T. J. Am. Chem. Soc. 1999, 121, 6501.id NH0925065078 sid 877411 cfn 0 / id NH0925065079 auc 李佳樺 tic 鎳-硫-硫醇化合物:[NiFe] Hydrogenase 之生態模擬化合物 adc 廖文峰 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 49 kwc 氫化酵素 kwc 模型化合物 kwc 硫醇 kwc 雙核鎳化合物 abc 在THF溶劑中以1:1的比例混合Ni(ClO4)2.6H2O與P(o-C6H4SH)3 可形成雙核化合物Ni2{P(o-C6H4S)2(o-C6H4SH)}2 (1)。化合物1由兩個扭曲的平面四方形N(II)組成,每一個Ni(II)配位三個thiolate與一個phosphorus,其中兩個thiolate將兩個Ni(II)橋接起來。化合物1具有兩個未鍵結到Ni(II)的S-H,經由IR (νS-H 2391cm-1), 1H NMR (δ 5.88(s))和X-ray單晶繞射結構,證實化合物1中具有[Ni-S…H-S tc Abstract 摘要 謝誌 頁次 第一章 序論 1-1:前言 1 1-2:氰化酵素(Hydrogenase) 1 1-3:[NiFe ] Hydrogenase的氧化還原態與反應機構 5 1-4: [NiFe ] Hydrogenase相關化合物探討 11 1-5:實驗研究方 向 12 第二章:實驗部分 13 2-1:一般實驗 13 2-2:儀器 13 2-3:藥品 14 2-4:化合物的合成及鑑定 14 (1)合成 Ni2{P(o-C6H4S)2(o-C6H4SH)}2 14 (2)合成Ni{P(o-C6H4S)(o-C6H4SH)2}2 15 (3)合成[PPN ][Fe(CO)2(CN)(S,NH2-C6H4)(S-C6H4NH2) ] 15 2-5 : 化合物的反應 15 (1) Ni2{P(o-C6H4S)2(o-C6H4SH)}2與Et3N的反應 15 (2)Ni{P(o-C6H4S)(o-C6H4SH)2}2與Et3N的反應 16 (3)[PPN ][Fe(CO)2(CN)(S,NH2-C6H4)(S-C6H4NH2) ]與氧氣的反應 16 (4)[PPN ][Fe(CO)2(CN)(S,NH2-C6H4)(S-C6H4NH2) ]與Et3N反應 16 2-5:晶體結構解析(Crystallography) 17 第三章:結果與討論 22 3-1:Ni2{P(o-C6H4S)2(o-C6H4SH)}2 (1) 的合成、結構及光譜分析 22 3-2:Ni2{P(o-C6H4S)2(o-C6H4SH)}2 (1) 的相關反應 29 3-3:Ni{P(o-C6H4S)(o-C6H4SH)2}2 (3) 的合成、結構及光譜分析 33 3-4:Ni{P(o-C6H4S)(o-C6H4SH)2}2的反應 36 3-5:[PPN ][Fe(CO)2(CN)(S,NH2-C6H4)(S-C6H4NH2) ] (5) 的合成、結構及光譜分析 37 3-6 [PPN ][Fe(CO)2(CN)(S,NH2-C6H4)(S-C6H4NH2) ] (5) 的相關反應 43 3-6-1 [PPN ][Fe(CO)2(CN)(S,NH2-C6H4)(S-C6H4NH2) ] (5) 與O2的反應 43 3-6-2 [PPN ][Fe(CO)2(CN)(S,NH2-C6H4)(S-C6H4NH2) ] (5) Et3N 的反應 43 第四章:結論 43 Reference 46rf 1. Adams, M. W.; Stidfel, E. I. Science 1998, 282, 1842 2. Paschos, A.; Glass, R. S. ; Book, A. FEBS Letters 2000, 488, 9 3. Peck, H. D.; Pietro, A. San; Gest, H. Proc. Natl. Actad. Sci. 1956, 42, 13 4. Graf, E.G.; Thauer, R. K. FEBS Letters 1981, 136, 165 5. Darensbourg, M. Y.; Lyon, E. J.; Smee J. J. Coord. Chem. Rev. 2000, 206-207, 533 6. Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C. Structure 1999, 7, 12 7. Higuchi, Y.; Ogata, H.; Miki, K.; Yasuoka, N.; Yagi, T. Sturcture 1999, 7, 549 8. Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. Science 1998, 282, 1853 9. Volbed, A.; Gharon, M. H.; Piras, C.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps J. C. Nature 1995, 737, 580 10. Volbed, A.; Garcin, E.; Piras, C.; de Lacey, A. L.; Fernadez, V. M.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps J. C. J. Am. Chem. Soc. 1996, 96, 3031 11. Fontecilla-Camps, J. C. Structure. Bonding 1998, 91, 1 12. Marr, A. C.; Spencer, Douglas J.E.; Martin Schröder Coord. Chem. Rev. 2001, 219-221, 1055 13. Montat, Y.; Amara, P.; Volbeda, A.; Vernede, X.; Hatchikian, E. C.; Field, M. J.; Frey, M.; Fontcilla-Camps, J. C. Nature Sturct. L Biol. 1997, 119, 7181 14. Davies, S. C.; Evans, D. J.; Hughes, D. L.; Longhurst, S.; Sanders, J. R. J. Am. Chem. Commun. Soc. 2000, 122, 488 15. LeGall, J.; Ljungdahl, P. O.; Moura, I.; Peck, H. D.; Xavier, A. V.; Moura, J. J. G.; Teixerira, M.; Huynh, B. H.; Dervartanuan, D. V. Biochem. Biophy. Res. Commun, 1982, 34, 5527 16. Poberts, L. M.; Lindahl, P. A. Biochemistry, 1994, 33, 14339 17. Bagley, K. A.; Duin, E. C.; Roseboon, W.; Albracht, S. P. J.; Woodruff, W. H. Biochemistry, 1995, 34, 5527 18. de Lacey, A. L.; Hatchikian, C. E.; Volbeda, A.; Fontecilla-Camps, J. C. J. Am. Chem. Soc. 1997, 119, 7181 19. Ogata, H.; Mizoguchi, Y.; Mizuno, N.; Miki, K.; Adachi, S.-I.; Yasuoka, N.; Yagi, T.; Yamauchi, O.; Hirota, S.; Higuchi, Y. J. Am. Chem. Soc. 2002, 124, 11628 20. Siegbahn, P. E. M.; Blomberg, M. R. A.; Wirstam nee Pavlov, M. Crabtree, R. H. J. Bio. Inorg. Chem. 2001, 6, 460 21. Fan, H.-J.; Hall, M. B. J. Am. Chem. Soc. 2002, 124, 394 22. Davidson, G.; Choudhury, S. B.; Gu, Z.; Bose, K.; Roseboom, W.; Albracht, S. P. J.; Maroney, M. J. Bichemistry 2000, 5, 36 23. Barondeau, D. P.; Roberts, L. M.; Lindahl, P. A. J. Am Chem. Soc. 1994, 116, 3442 24. Albracht, S. P. J. Biochim, Biophys. Acta. 1994, 1188, 167 25. Roberts. L. M.; Lindahl, P. A. Biochemistry 1994, 33, 14339 26. Baidya, N.; Olmstead, M.; Mascharak, P. K. Inorg. Chem. 1991, 30, 929 27. Baidya, N.; Olmstead, M.;Whitehead, J. P.;Bagyinka, C.; Maroney, M. J.; Mascharak, P. K. Inorg. Chem. 1992, 31, 3612 28. Baidya, N.; Olmstead, M.; Mascharak, P. K. J. Am. Chem. Soc. 1993, 115, 4665 29. Volbeda, A.; Garain, E.; Piras, C.; Delacey, A. L.; Fernandez. V. M.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps J. C. J. Am. Chem. Soc. 1996, 118, 12989 30. Sellmann, D.; Geipel, F.; Moll, M. Angew. Chem. Int. Edt. Engl. 2000, 39, 561 31. Forester, S.; Stein, M.; Brecht, M.; Ogata, H.; Higuchi, Y.; Lubitz, W. J. Am. Chem. Soc. 2003, 125, 83 32. (a) Fan, C.; Teixeira, M.; Moura, J.; Moura, I.; Huynh, B. H.; Le Gall, J.; Peck, H. D., Jr; Hoffman, B. M. J. Am. Chem. Soc. 1991, 113, 20-24 (b) Whitehead, J. P.; Gurbiel, R. J.; Bagyinka, C.; Hoffman, B. M.; Maroney, M. J. J. Am. Chem. Soc. 1993, 115, 5629 33. Smith, M.C.; Longhurst, S.; Barclay, J. E.; Cramer, S. P.; Davies, S. C.; Hughes, D. L.; Gu. W.-W.; Evans, D. J. J. Chem. Soc., Dalton Trans., 2001, 1387 34. Sellmann, D.; Geipel, F.; Lauderbach, F.; Heinemann, F. W. Angew. Chem. Int. Ed. 2002, 41, 632 35. Davies, S. C.; Evans, D. J.; Hughes, D. L.; Longhurst, S.; Sanders, J. R. Chem. Commun. 1999, 1935 36. Lai, C.-H.; Reibenspies, J. H.; Darensbouorg, M. Y. Angew. Chem. Int. Ed. Engl. 1996, 35, 2390 37. Rauchfuss, T. B.; Roundhill, D. M. J. Am Chem. Soc 1975, 97, 3386 38. Bouwmann, E.; Henderson, R. K.; Spek, A. L.; Reedijk, J.; Eur, J. Inorg, Chem. 1999, 217 39. Block, E.; Ofori-Okai, G.; Zubieta, J. J. Am. Chem. Soc. 1989, 111, 2327 40. Liaw, W.-F.; Lee N.-H.; Chen, C.-H.; Lee, C.-M.; Lee, G.-H.; Peng, S.-M. J. Am. Chem. Soc. 2000, 122, 488 41. Davies, S. C.; Evans, D. J.; Hughes, D. L.; Longhurst, S. Acta. Cryst. 1999, C55, 1436 42. Franolic, J. D.; Wang, W. Y.; Millar, M. J. Am. Chem. Soc. 1992, 114, 6587 43. Cotton, F. A.; Matusz, M.; Poli, R.; Feng, X. J Am. Chem. Soc. 1988, 110, 1144 44. Choudhury, S. B.; Pressler, M. A.; Mirza, S. A.; Day, R. O.; Maroney, M. J. Inorg. Chem. 1994, 33, 4831 45. Casalot, L.; Rousset, M. TRENDS in Microbiology 2001, 9, 228 46 Adams, M. W. W.; Stiefel, E. I. Science 1998, 282, 1842 47 Stein, M.; Lubitz, W. Phys. Chem. Chem. Phys. 2001, 3, 2668 48 Evans, D. J.; Pickett, C. J. Chem. Soc. Rev. 2003, 32, 268id NH0925065079 sid 913437 cfn 0 / id NH0925065080 auc 劉嘉林 tic 苯 tic � tic A吩[2,3-c] tic & tic #21537;咯衍生物之合成及其電激發光元件試製 adc 沙晉康 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 134 kwc 劉嘉林 kwc 電激發光 abc 本篇論文利用了實驗室所開發的iso-condensed heteroaromatic pyrroles的三種合成法中的retro-malonate反應合成出一系列苯?A吩[2,3-c tc 目錄……………………………………………………………………..Ⅰ 縮寫對照表……………………………………………………………..Ⅲ 第一章:緒 論…………………………………………………………..1 §1-1 異駢芳香性雜環吡咯合成簡介…………………………….1 §1-2 有機發光二機體簡介……………………………………….8 §1-3 分子設計原理……………………………………………...15 第二章:結果與討論……………………………………………………17 §2-1 Diethyl2-{[2-(bromomethyl)benzo[b ]thiophen-3-yl ] methylene}malonate 70的合成……………………...17 §2-2 2H-苯?A吩[2,3-c ]吡咯氮取代之衍生物74~83的合成…..18 §2-3 2H-苯?A吩[2,3-c ]吡咯氮取代之衍生物96~97的合成…..21 §2-4 熱化學性質的探討………………………………………...35 §2-5 螢光光譜性質的探討……………………………………...37 §2-6 電化學性質的探討………………………………………...43 §2-7 量子產率的量測…………………………………………...45 §2-8 發光元件製作和性質研究………………………………...46 第三章:結論.…………………………………52 第四章:實驗部分………………………………………………………54 §4-1 一般實驗敘述……………………………………………...54 §4-2 實驗步驟與光譜資料……………………………………...56 參考文獻………………………………………………………………..78 附錄……………………………………………………………………..81rf 1. Bonnett, R.; North. S. A. Advances in Heterocyclic Chemistry 1981, 29, 341. 2. Bornstein, J.; Bedell, S. F.; Drummond, P. E.; Kosloski, C. L. J. Am. Chem. Soc. 1956, 78, 83. 3. Veber, D. F.; Lwowski, W. J. Am. Chem. Soc. 1964, 86, 4152. 4. Bonnett, R.; Brown, R. F. C. J. Chem. Soc. Chem. Commum. 1972, 393. 5. 陳良吉, 博士論文, 清華大學(1999) 6. Chacko, E.; Bornstein, J.; Sardella, D. J. Tetrahedron Lett. 1979,1055 7. Diaz, A. F.; Kanazawa, K. K.; Gardini, G. P. J. Chem. Soc. Chem. Commum. 1979, 635. 8. Sha, C.-K. in "Advance in Nitrogen Hetercycles",Moody,J. C. Ed.,JAI Press, Greenwich,CT,1996,2,pp147-148. 9. Sha, C.-K.;Chuang, K.-S.; Young, J.-J. J. Chem. Soc. Chem. Commum. 1984, 1552. 10. Sha, C.-K.; Tsou, C.-P. J. Chem. Soc. Chem. Commum. 1986, 310. 11. Sha, C.-K.; Tsou, C.-P.; Li, Y.-C.; Lee, R.-S.; Tsai, F.-Y.; Yen, R.-H. J. Chem. Soc. Chem. Commum. 1988, 1801. 12. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913 13. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burbs, P. L.; Holmes, A. B. Nature 1990, 347, 539. 14. Ma, Y.; Che, C.-M.; Chao, H.-Y.; Zhou, X.; Chan, W.-H.; Shen, J. Adv. Mater. 1999, 11, 852. 15. Sano, T.; Fujita, M.; Fulita, T.; Nishio, Y.; Hamada, Y.; Shibata, K.; Kurpki, K. US 5, 432, 014, 1995. 16. Shirota, Y.; Kuwabara, Y.; Inada, H. Appl. Phys. Lett. 1994, 65, 807. 17. Imai, K.; Shinkai, M.; Wakimoto, T.; Shirota, Y. US 5,256, 945, 1993. 18. Hosakawa, C.; Sakamoto, S.; Kusumoto, T. US 5, 389, 444, 1995. 19. Wu, I.; Lin, J. T.; Tao, Y. T.; Balasubramaniam, E.; Su, Y. Z.; Ko, C. W. Chem. Mater. 2001, 13, 2626. 20. (a) Thomas, J. K. R.; Lin, J. T.; Tao, Y. T.; Ko, C. W. Adv. Mater. 2000, 12, 1949. (b) Thomas, J. K. R.; Lin, J. T.; Tao, Y. T.; Ko, C. W. J. Am. Chem. Soc. 2001, 123, 9404. 21. Tao, Y. T.; Ko, C. W. Synth. Met. 2002, 126, 37. 22. Sha, C.-K.; Hsu, H.-Y.; Cheng, S.-Y.; Kuo, Y.-L. Tetrahedron 2003 , 59, 1477. 23. Noda, T.; Ogawa, N.; Shirota, Y. Adv. Mater. 1997, 9, 720. 24. Walton, R.; Paul, M. L. Synth. Commun. 1998, 28(6), 1087. 25. Corey, E. J.; Roberts, B. E. J. Am. Chem. Soc. 1997, 119, 12425. 26. Marcantoni, E.; Nobili, F.; Bartoli, G.; Bosco, M.; Sambri, L. J. Org. Chem. 1997, 62, 4183. 27. Shi, M.; Xu, B. J. Org. Chem. 2002, 67, 294. 28. Gordan, J.; Sheldon, T. J.; Bradley, D. D. C.; Burn, P. L. J. Mater. Chem. 1996, 6(8), 1253. 29. Merlic, G. A.; Motamed, S.; Quinn, B. J. Org. Chem. 1995, 60, 3365. 30. Goodbrand, H. B.; Hu, N.-X. J. Org. Chem. 1999, 64, 670. 31. Cammenga, H. K.; Epple, M. Angew. Int. Ed. Engl. 1995, 34, 1171. 32. Schmidt, H.-W.; Thelallat, M. Adv. Mater. 1998, 10, 219. 33. Koene, B. E.; Loy, D. E.; Thomposon, M. E. Chem. Mater. 1998, 10, 2235.id NH0925065080 sid 913469 cfn 0 / id NH0925065081 auc 蔡明利 tic 雙-亞硝鐵化合物(Dinitrosyl Iron Complexes):[2Fe2S] cluster降解(degradation)及修復(repair)之生化模型化合物研究 adc 廖文 adc & adc #23791; ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 47 kwc 一氧化氮 kwc 雙-亞硝鐵化合物 kwc 模型化合物 kwc 鐵硫錯合物 abc [PPN tc 目錄 Abstract 頁次 中文摘要 第一章: 緒論 1 1-1:一氧化氮在生物體內的重要性 1 1-2:一氧化氮在生物體的儲存及傳遞形式 4 1-3:一氧化氮降解[2Fe2S ]對酵素活性之改變 5 1-4:DNIC在生物體內之作用形式 9 1-4:一氮化氮鍵結在在金屬上的電子狀態多樣性 11 1-5:實驗研究方向 11 第二章:實驗部分 12 2-1:一般實驗 12 2-2:儀器 12 2-3:藥品 13 2-4:化合物的合成、鑑定與反應 14 2-5:晶體結構解析(Crystallography) 18 第三章:結果與討論 21 3-1:DNIC化合物之電子環境及反應性 21 3-2:生化模型化合物[S5Fe(μ-S)2FeS5 ]2–的降解(degradation) 及重組(Reassembly):相關於Ferredoxin [2Fe-2S ] Cluster 被一氧化氮修飾(modification)及修復(repair)機制 31 3-3:水溶性DNIC[K-18-crown-6-ether ][S5Fe(NO)2 ]之合成 及X-ray晶體結構 37 3-4:Transnitrosylation of mono-nitrosyl iron complex 43 第四章:結論 44 參考書目: 46rf 1. Koshland, D. E. Jr. Science 1992, 258, 1861. 2. Stamler, J. S. Cell 1994, 78, 931. 3. Garrett, R. H.; Grisham, C. M. Biochemistry 2nd, Harcourt college publishers, 1999; p S-31. 4. Ford, P. C.; Lorkovic, I. M. Chem. Rev. 2002, 102, 993 5. Ignarro, L. J. Angew. Chem. Int. Ed. 1999, 38, 1882 6. Saura, M.; Zaragoza, C.; McMillan, A.; Quick, R. A.; Hohenadl, C.; Lowenstein, J. M.; Lowenstein, C. J. Immunity 1999, 10, 21. 7. Lipton, S. A.; Choi, Y. B.; Pan, Z. H.; Lei, S. Z.; Chen, H-S. V.; Sucher, N. J.; Loscalzo, J.; Singel, D. J.; Stamler, J. S. Nature 1993, 364, 626. 8. Vanin, A. F.; Stukan, R.A.; Manukhina, E. B. Biochimica et Biophysica Acta 1996, 1295, 5 9. Butler, A. R.; Megson, I. L. Chem. Rev. 2002, 102, 1155. 10. Reginato, N; McCrory, C. T. C.; Pervitsky, D.; Li, L. J. Am. Chem. Soc. 1999, 121, 10217. 11. Costanzo, S.; Menage, S.; Purrello, R.; Bonomo, R. P.; Fontecave, M. Inorganica Chimica Acta 2001, 318, 1. . 12. Vanin, A. F.; Malenkova, I. V.; Serezhenkov, V. A. NITRIC OXIDE:Biology and Chemistry 1997, 1, 191. 13. Voevodskaya, N. V.; Serezhenkov, V. A.; Cooper, C. E.; Kubrina, L. N.; Vanin, A. F. Biochem. J. 2002, 368, 633. 14. Ueno, T.; Suzuki, Y.; Fujii, S.; Vanin, A. F.; Yoshimura, T. Biochemical Pharmacology 2002, 63, 485. 15. Wu, C. K.; Dailey, H. A.; Rose, J. P.; Burden, A.; Sellers, V. M.; Wang, B. C. Nature Structural Biology 2001, 8, 156. 16. Sellers, V. M.; Johnson, M. K.; Dailey, H. A. Biochemistry 1996, 35, 2699. 17. Ding, H.; Demple, B. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 5146. 18. Hidalgo, E.; Demple, B. The EMBO journal 1994, 13, 138. 19. Rogers, P. A.; Ding, H. J. Biol. Chem. 2001, 276, 30980. 20. Yang, W.; Rogers, P. A.; Ding, H. J. Biol. Chem. 2002, 277, 12868 21. Boese, M.; Mordvintcev, P. I.; Vanin, A. F.; Busse, R.; Műlsch, A. J. Biol. Chem. 1995, 270, 29244 22. Boese, M.; Keese, M. A.; Becker, K.; Busse, R.; Műlsch, A. J. Biol. Chem. 1997, 272, 21767 23. Enemark, J. H.; Feltham, R. D.; Coord. Chem. Rev. 1974, 13, 339 24. Franz, K. J.; Lippard, S. J. J. Am. Chem. Soc. 1999, 121, 10504. 25. Ileperuma, O. A.; Feltham, R. D.; Inorg. Chem. 1975, 14, 3042. 26. Xia, Y.; Zweier, J. L. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 12705. Xia, Y.; Cardounel, A. J.; Vanin, A. F.; Zweier, J. L. Free Radical Biology & Medicine 2000, 29, 793.id NH0925065081 sid 913475 cfn 0 / id NH0925065082 auc 陳靜嫻 tic 由二甲氧基酚製備雙環[3.2.1]辛酮之骨架 adc 廖俊臣教授 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 133 kwc 雙環[3.2.1] kwc 雙環[2.2.2]辛烯酮 kwc 掩飾鄰苯 kwc & kwc #37260; kwc Diels-Alder反應 kwc 三環[3.3.0.02,8]辛-3-酮 kwc 氧-雙烯-甲烷重排反應 kwc 氫化三正丁基錫 kwc 二乙醯氧基碘(III)苯 kwc 還原開環法 kwc 環丙烷開環法 abc 本實驗室致力研究多年的掩飾鄰本醌是由二甲氧基酚氧化得來,其容易與許多親雙烯劑進行Diels-Alder反應得到雙環[2.2.2 tc 摘要 I 中文摘要 II 謝誌 III 縮寫對照表 IV 目錄 V 表目 VIII 圖目 IX 第一章:緒論 1 第一節:分子間DIELS-ALDER反應 1 第二節:雙環[2.2.2 ]辛烯酮光化學反應的探討 6 第三節:環丙烷之開環反應的研究 8 第四節:研究構思 14 第二章:結果與討論 16 第一節:分子間DIELS-ALDER反應 16 2.1.1 與甲基乙烯酮的分子間Diels-Alder反應 16 2.1.2 與苯乙烯的分子間Diels-Alder反應 17 2.1.3 具4-醛基之類Diels-Alder產物的製備 18 2.1.4 結構鑑定 20 2.1.5 結論 21 第二節:照光反應 21 2.2.1 化合物56a-c、57a-c和64的ODPM重排反應 21 2.2.2 結構鑑定 23 2.2.3 結論 30 第三節:環丙烷的開環反應 31 2.3.1 化合物68a-g的開環反應 31 2.3.2 結構鑑定 36 2.3.3 結論 43 第三章:實驗部分 46 第一節:一般實驗方法 46 第二節:實驗步驟及化合物光譜資料 49 3.2.1 化合物56a的合成 49 3.2.2 化合物56b的合成 50 3.2.3 化合物56c的合成 51 3.2.4 化合物57a的合成 52 3.2.5 化合物57b的合成 53 3.2.6 化合物57c的合成 54 3.2.7 化合物63的合成 55 3.2.8 化合物64的合成 57 3.2.9 化合物68a的合成 58 3.2.10 化合物68b的合成 60 3.2.11 化合物68c的合成 61 3.2.12 化合物68d的合成 63 3.2.13 化合物68e的合成 64 3.2.14 化合物68f的合成 66 3.2.15 化合物68g的合成 68 3.2.16 化合物69a的合成 69 3.2.17 化合物69b的合成 71 3.2.18 化合物69c的合成 73 3.2.19 化合物69d的合成 75 3.2.20 化合物69e的合成 76 3.2.21 化合物69f的合成 78 3.2.22化合物 69g的合成 80 參考文獻 82 附錄 86rf 1.Diels, O,; Alder, K. Ann. 1928, 460, 98. 2.(a)Carruthers, W. Cycloaddition Reaction in Organic- Synthesis, Pergamon: Oxford; 1990. (b) Desimoni, G.; Barco, A.; Pollini, G. P. Natural Product Snythesis Through Pericyclic Reaction, ACS Monograph no.180, Americal Society, Washington, DC, 1983. (c) Fringuelli, F.; Taticchi, A. Dienes in the Diels-Alder Reaction, John-Wiley: New York, 1990. (d) Ho, T.-L. Carbocycli Ring Construction in Terpene Synthesis, VCH: Weinheim, 1988. (e) Curran, D. P., Ed.; Advances in Cycloaddition, JAI press: Greenwich, 1990, Vol. 1-3. 3.Oppolzer, W. In Comprehensive Organic Synthesis, Combining C-C π-bonds; Trost, B. M.; Flemming, I.; Paquette, L. A., Eds.; Pergamon press: Oxford, 1991; Vol. 5, Chapter 4.1. 4.Nicolaou, K. C.; Snyder, S. A.; Vassilikogiannakis, G. E.; Montagnon, T. Angew. Chem. Int. Ed. 2002, 41, 1668-1698. 5.Stocking, E. M.; Williams, R. M. Angew. Chem. Int. Ed. 2003, 42, 3078-3115. 6.Hsu, D.-S.; Hsu, P.-Y.; Liao C.-C. Org. Lett. 2001, 3, 263. 7.(a) Alder, K.; Flock, F. H.; Lessenich, H. Chem. Ber. 1957, 90, 1709. (b) Metlesics, W.; Wessely, F.; Budzikiewicz, H. Monatsh. Chem. 1958, 89, 102. (c) Yates, P.; Stevens, K. E. Tetrahedron 1981, 37, 4401. (d) Schultz, A. G.; Dittami, J. P.; Lavieri, F. P.; Salowey, C.; Sundarraraman, P., Szymula, M. B. J. Org. Chem. 1984, 49, 4429. (e) Hirao, K.; Unno, S.; Miura, H.; Yonemisu, O. Chem. Pharm. Bull. 1977, 25, 3354. 8.(a) Hwang, J.-T.; Liao, C.-C. Tetrahedron Lett. 1991, 32, 6583. (b) Lee, T.-H.; Liao, C.-C.; Liu, W.-C. Tetrahedron Lett. 1996, 37, 5897. 9.高世育,清華大學,2000年碩士論文。 10.Given, R. S.; Oettle, W. F.; Coffin, R. L.; Carlson, R. G. J. Am. Chem. Soc. 1971, 93, 3957. 11.Paquett, L. A.; Oplinger, J. A. Tetrahetron 1987, 45, 107. 12.(a) Arjona, O.; Medel, R.; Plumet, Tetrahedron Lett. 2001, 42, 1287. (b)Mehta, G.; Venkatrswaran, R. V. Tetrahedron 2000, 56, 1399. (c) Gilday, J. P.; Paquette, L. A. Tetrahedron 1990, 22, 167. 13.(a) Uyehara, T.; Osanai, K.; Sugimoto, M.; Suzuki, I.; Yamamoto, Y. J. Am. Chem. Soc. 1989, 111, 7264. (b) 朱崇玄,清華大學,1994年博士論文。 14.Meinwald, J.; Franenglass, E. J. Am. Chem. Soc. 1958, 80, 2349. 15.Liao, C.-C.; Chu, C.-S.; Lee, T.-H.; Rao, P. D.; Ko, San.; Song, L.-D.; Shiao, H.-C. J. Org. Chem. 1999, 64, 4102. 16.Gao, S.-Y.; Ko, S.; Lin, Y.-L.; Rama, K.-P.; Liao, C.-C. Tetrahedron 2001, 57, 297. 17.Dauben, W. G.; Lodder, G.; Ipatschki, J. Top. Curr. Chem. 1975, 54, 73. 18.Houk, K. N. Chem. Rev. 1976, 76, 1. 19.Schuster, D. I. in Rearrangements in Ground and Excited States; de Mayo, P. Ed.; Academic Press : New York, 1980; vol. 3, p167. 20.李宗和,清華大學,1992年碩士論文。 21.Lee, T.-H.; Rao, P. D.; Liao, C.-C. Chem. Commun. 1999, 801. 22.Castellino, A. J.; Bruice, T. C. J. Am. Chem. Soc. 1988, 110, 7512. 23.Iwata, C.; Imanishi, T.; Matsui, M.; Yamashita, M. Tetrahedron Lett. 1986, 27, 3161. 24.Uyehara, T.; Murayama, T,; Sakai, K.; Ueno, M.; Sato, T. Tetrahedron Lett. 1996, 37, 7295. 25.黃振倉,清華大學,1992年碩士論文。 26.Murphy, W. S.; Wattanasin, S. J. Chem. Soc., Perkin Trans. 1. 1986, 8, 1445. 27.Barton, D. H. R.; Gilham, P. T. J. Am. Chem. Soc. 1960, 4596. 28.Kim, Y.-H, Lee, I.-S. Heteroatom Chem. 1992, 3, 509. 29.呂學聖,清華大學,1996年博士論文。 30.Umehara, M.; Hisida, S.; Fujieda, K.; Ogura, H.; Takayanagi, H. Bull. Chem. Soc. Jpn. 1978, 51, 2449. 31.Han, Z.; Uehira, S.; Tsuritani, T.; Shinokubo, H.; Oshima, K. Tetrahedron 2001, 987. 32.Danishefsky, S. Acc. Chem. Res. 1979, 12, 66. 33.Demuth, M.; Mikhail, G. Tetrahedron 1983, 39, 991. 34.Rigby, J. H.; Senanayake, C. J. Org. Chem. 1988, 53, 440. 35.Wei, C.-P.; Liao, C.-C. Tetrahedron Lett. 1989, 30, 2255. 36.(a) Enholm, E. J.; Jia, Z. J. Tetrahedron Lett. 1995, 36, 6819. (b) Enholm, E. J.; Jia, Z. J. J. Org. Chem. 1997, 62, 174. 37.Osterhage, C.; König, G. M.; Höller, U.; Wrigh, A. D. J. Nat. Prod. 2002, 65, 306. 38.König, G. M.; Wright, A. D. Planta Med. 1996, 62, 193. 39.Pietra, F. Nat. Prod. Rep. 1997, 14, 453. 40.Hsieh, M.-F.; Rao, P. D.; Liao, C.-C., J. Chem. Soc. Chem. Commun. 1999, 1441. 41.Gao, S.-Y.; Lin, Y.-L.; Rao, P. D.; Liao, C.-C. Synlett 2000, 421. 42.林妍伶,清華大學,1999年大學專題 43.宋玲端,清華大學,1993年碩士論文。 44.Hsu, D.-S.; Rao, P. D.; Liao, C.-C. Chem. Commun. 1998, 1795.id NH0925065082 sid 913482 cfn 0 / id NH0925065083 auc 黃仕霖 tic 1,3,3-三甲基雙環[2.2.2]辛-5,7-二烯-2-酮系列化合物之光化學反應研究 adc 廖俊臣 ty 碩士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 79 kwc 雙-π-甲烷重排反應(di-π-methane rearrangement) kwc 氧-雙-π-甲烷重排反應(oxa-di-π-methane kwc DPM重排反應和ODPM重排反應的競爭性 kwc 鈀錯合物催化還原反應 kwc 雙環[2.2.2]辛二烯酮系列化合物之光化學反應 kwc 系統間跨越(intersystem crossing,ISC) kwc 光穩定狀態(photostationary state) abc 本論文主旨在研究1,3,3-三甲基雙環[2.2.2 tc 摘要 Ⅰ Abstract Ⅱ 謝誌 Ⅳ 縮寫對照表 Ⅴ 目錄 Ⅵ 表目 Ⅷ 圖目 Ⅷ 第一章 緒論 1 第一節 雙-π-甲烷重排反應 1 第二節 非環狀1,4-雙烯和環狀1,4-雙烯之光重排反應 1 第三節 取代基對雙-π-甲烷重排反應的影響 6 第四節 氧-雙-π-甲烷重排反應 7 第五節 DPM重排反應與ODPM重排反應的競爭性 8 第六節 本論文的研究構思與目的 11 第二章 結果與討論 12 第一節 光化學反應雙環[2.2.2 ]辛二烯酮系列化合物的製備 12 第二節 UV/VIS吸收光譜 13 第三節 雙環[2.2.2 ]辛二烯酮系列化合物之光化學反應 15 第四節 反應機構之探討 25 第五節 直接照光反應 28 第六節 結論 31 第三章 實驗部分 34 第一節 一般實驗方法 34 第二節 實驗步驟與光譜資料 36 1. 化合物37的合成 36 2. 化合物38a的合成 36 3. 化合物38b的合成 37 4. 化合物38c的合成 38 5. 化合物38d與38e的合成 38 6. 化合物38f的合成 39 7. 化合物35a的合成 40 8. 化合物35b的合成 40 9. 化合物35c的合成 41 10. 化合物35d的合成 42 11. 化合物35e的合成 43 12. 化合物35f的合成 43 13. 化合物35a之照光反應 44 14. 化合物35b之照光反應 45 15. 化合物35c之照光反應 47 16. 化合物35d之照光反應 48 17. 化合物35e之照光反應 48 18. 化合物35f之照光反應 50 參考文獻 52 附錄 54rf 1. Zimmerman, H. E.; Grunewald, G. L. J. Am. Chem. Soc. 1966, 88, 183. 2. Zimmerman, H. E.; Pratt, A. C. J. Am. Chem. Soc. 1970, 92, 6267. 3. Zimmerman, H. E.; Mariano, P. S.; Hixson, S. S. Chem. Rev. 1973, 73, 531. 4. Zimmerman, H. E.; Pratt, A. C. J. Am. Chem. Soc. 1970, 92, 6259. 5. Hart, H.; Love, G. M. J. Am. Chem. Soc. 1973, 95, 4592. 6. (a) Givens, R. S.; Oettle, W. F.; Coffin, R. L.; Carlson, R. G. J. Am. Chem. Soc. 1971, 93, 3957. (b) Givens, R. S.; Oettle, W. F. J. Am. Chem. Soc. 1971, 93, 3963 7. Yates, P.; Stevens, K. E. Can. J. Chem. 1982, 60, 825. 8. Becker, H. D.; Ruge, B. J. Org. Chem. 1980, 45, 2189. 9. 張仕羿,清華大學,1995年碩士論文。 10. Murov, S. L. Handbook of Photochemistry, Marcel Dekker, Inc., New York, 1973. 11. (a) Luibrand, R. T.; Fujinari, E. M. J. Org. Chem. 1980, 45, 958. (b) Paguette, L. A.; Meisinger, R. H. Tetrahedron Lett. 1970, 1479. (c) Hart, H.; Murray, R. K.; Jr. Tetrahedron Lett. 1969, 379. 12. Murray, R. K.; Jr.; Hart, H. Tetrahedron Lett. 1969, 379. 13. Huang, N. Z.; Xing, Y. D. J. Org. Chem. 1982, 47, 140. 14. Padwa, A.; Chou, C. S.; Rieker, W. F. J. Org. Chem. 1980, 45, 4555. 15. Bei, X.; Turner, H. W.; Weinberg, W. H.; Guram, A. S. J. Org. Chem. 1999, 64, 6797. 16. Hirsch, J. A.; Anzalone, L. J. Org. Chem. 1985, 50, 2128. 17. Windisch, B.; Voegtle, F.; Niegar, M.; Lahtinen, T.; Rissanen, K.; JPCHF4. 2000, 342, 642. 18. Zhang, W.; Haight, A. R.; Hsu, M. C.; Tetrahedron Lett. 2002, 6575. 19. (a) Nace, H. R. Org. Reactions 1962, 12, 57. (b) De Groot, Ae.; Evenhuis, B.; Wynberg, H. J. Org. Chem. 1968, 33, 2214. (c) Gilman, R. E.; Henion, J. D.; Shakshooki, S.; Patterson, J. I. H.; Finley, K. T.; Boganowicz, M. J.; Griffith, R. J.; Harrington, D. E.; Grandall, R. K. Can. J. Chem. 1970, 48, 970 20. Cacchi, S.; Morera, E.; Ortar, G. Tetrahedron Lett. 1984, 25, 4821. 21. (a) Paquette, L. A.; Moerck, R. E.; Harirchian, B.; Magnus, P. D. J. Am. Chem. Soc. 1978, 100, 1597. (b) De Lucchi, O.; Modena, G. Tetrahedron 1984, 25, 2585. (c) De Lucchi, O. Tetrahedron 1988, 44, 6755. 22. Nair, V.; Thomas, A.; Anilkumar, G. Tetrahedron 1996, 52, 2481. 23. Yang, M. S.; Lu, S. S.; Rao, C. P.; Tsai, Y. F.; Liao, C. C. J. Org. Chem. 2003, 68, 6543.id NH0925065083 sid 913401 cfn 0 / id NH0925065084 auc 楊子毅 tic 第一部分 天然物Ingenol之形式合成研究 第二部分 Benz[de]isoquinolinium-1-ide與碳六十的1,3-偶極環化加成反應研究 adc 沙晉康 ty 博士 sc 國立清華大學 dp 化學系 yr 92 lg 中文 pg 240 kwc 碳六十 kwc 1,3-偶極環化加成反應 abc 本論文共分為兩個部分,第一部分是敘述天然物ingenol之形式合成研究。以(+)-3-carene為起始物經數步反應獲得化合物119後,經由1,4-加成及碘化反應得到具有丙二烯支鏈的α-碘基酮化合物152,以原子轉移環化反應為關鍵步驟建立ingenol的A、C環部分得到旋酮化合物174b,再經由還原、烷基化反應以及第二代Grubbs催化劑199進行合環歧化反應,順利獲得具有inside-outside組態的四環架構化合物216,最後進行去保護及氧化反應得到Winkler教授發表ingenol全合成文獻中的化合物39,成功的完成了ingenol的形式合成研究。 tc 目錄 ••••••••••••••••••••••••••••••••••••••••••••• i 縮寫對照表 •••••••••••••••••••••••••••••••••••••• iii 第一部分:天然物Ingenol之形式合成研究 •••••••••••••••• 1 第一章:緒論 •••••••••••••••••••••••••••••••••••••• 2 § 1.1 Ingenol之發現、藥性與結構 •••••••••••••••••• 2 § 1.2 Ingenol之合成文獻回顧 ••••••••••••••••••••••••• 5 § 1.3 Ingenol之研究構想及逆合成分析 ••••••••••••••••• 24 第二章:結果與討論 •••••••••••••••••••••••••••••••• 26 § 2.1具有C、D環特徵之化合物49c,d的合成 •••••••••••••• 26 § 2.2具有丙二烯支鏈之α-碘基酮化合物152的合成 ••••••••• 28 § 2.3具有螺旋結構之化合物140a的合成 ••••••••••••••••• 37 § 2.4具inside-outside組態四環架構之化合物200的合成 •••• 44 § 2.5 Ingenol全合成之關鍵中間體39的合成 •••••••••••••• 44 第三章:結論 ••••••••••••••••••••••••••••••••••••• 48 第四章:實驗部分 ••••••••••••••••••••••••••••••••• 50 § 4.1一般實驗敘述 •••••••••••••••••••••••••••••••• 50 § 4.2實驗步驟與光譜資料 ••••••••••••••••••••••••••• 52 參考文獻 •••••••••••••••••••••••••••••••••••••••• 101 附錄目(I) ••••••••••••••••••••••••••••••••••••••• 106 第二部分:Benz[de ]isoquinolinium-1-ide與碳六十的1,3-偶極環化加成反應研究 •••••••••••••••••••••••••••••••••••• 195 第一章:緒論 •••••••••••••••••••••••••••••••••••• 196 § 1.1碳六十之簡介 •••••••••••••••••••••••••••• 196 § 1.2碳六十之[3+2 ]環化反應文獻回顧 ••••••••••••••••• 201 § 1.3 Benz[de ]isoquinolinium-1-ide之[3+2 ]環化反應文獻回顧•205 § 1.4研究構想 ••••••••••••••••••••••••••••••••••••••••••••• 208 第二章:結果與討論 ••••••••••••••••••••••••••••••• 209 第三章:結論 •••••••••••••••••••••••••••••••••••• 214 第四章:實驗部分 •••••••••••••••••••••••••••••••• 215 § 4.1一般實驗敘述 ••••••••••••••••••••••••••••••• 215 § 4.2實驗步驟與光譜資料••••••••••••••••••••••••••• 217 參考文獻 ••••••••••••••••••••••••••••••••••••••• 225 附錄目(II) •••••••••••••••••••••••••••••••••••••• 228rf 第一部分 1.Hoppe, W.; Zechmeister, K.; Röhrl, M.; Brandl, F.; Hecker, E.; Kreibich, G.; Bartsch, H. Tetrahedron Lett. 1969, 10, 667. 2.Hergenhahn, M.; Adolf, W.; Hecker, E. Tetrahedron Lett. 1975, 16, 1595. 3.Zechmeister, K.; Brandl, F.; Hoppe, W.; Hecker, E.; Opferkuch, H. J.; Adolf, W. Tetrahedron Lett. 1970, 11, 4075. 4.Hasler, C. M.; Acs, G.; Blumberg, P. M. Cancer Res. 1992, 52, 202. 5.Kupchan, S. M.; Uchida, I.; Branfnan, A. R.; Dailey, R. G., Jr.; Yu Fei, B. Science 1976, 191, 571. 6.Alder, R. W.; East, S. P. Chem. Rev. 1996, 96, 2097. 7.(a) Paquette, L. A.; Nitz, T. J.; Ross, R. J.; Springer, J. P. J. Am. Chem. Soc. 1984, 106, 1446. (b) Paquette, L. A.; Nitz, T. J.; Ross, R. J. J. Org. Chem. 1987, 52, 5497. (c) Paquette, L. A.; Ross, R. J.; Springer, J. P. J. Am. Chem. Soc. 1988, 110, 6192. 8.Mehta, G.; Pathak, V. P. J. Chem. Soc. Chem. Commun. 1987,876. 9.(a) Winkler, J. D.; Hey, J. P.; Hannon, F. J. Heterocycles 1987, 25, 55. (b) Winkler, J. D.; Henegar, K. E. J. Am. Chem. Soc. 1987, 109, 2850. (c) Winkler, J. D.; Hey, J. P.; Williard, P. G. Tetrahedron Lett. 1988, 29, 4691. (d) Winkler, J. D.; Hong, B.-C.; Hey, J. P.; Williard, P. G. J. Am. Chem. Soc. 1991, 113, 8839. (e) Winkler, J. D.; Henegar, K. E.; Hong, B.-C.; Williard, P. G. J. Am. Chem. Soc. 1994, 116, 4183. (f) Winkler, J. D.; Hong, B.-C.; Kim, S.; Lewin, N. E.; Blumberg, P. M. Synlett 1995, 533. (g) Winkler, J. D.; Hong, B.-C.; Bahador, A.; Kazanietz, M. G.; Blumberg, P. M. J. Org. Chem. 1995, 60, 1381. (h) Winkler, J. D.; Kim, S.; Harrison, S.; Lewin, N. E.; Blumberg, P. M. J. Am. Chem. Soc. 1999, 121, 296. (i) Winkler, J. D.; Rouse, M. B.; Greaney, M. F.; Harrison, S. J.; Jeon, Y. T. J. Am. Chem. Soc. 2002, 1241, 9726. 10.(a) Funk, R. L.; Olmstead, T. A.; Parvez, M. J. Am. Chem. Soc. 1988, 110, 3298. (b) Funk, R. L.; Olmstead, T. A.; Parvez, M.; Stallman, J. B. J. Org. Chem. 1993, 58, 5873. 11.(a) Rigby, J. H.; Moore, T. L.; Rege, S. J. Org. Chem. 1986, 51 2398. (b) Rigby, J. H.; Moore, T. L. J. Org. Chem. 1990, 55, 2959. (c) Rigby, J. H.; Cuisiat, S. V. J. Org. Chem. 1993, 58, 6286. (d) Rigby, J. H.; Rege, S. D.; Sandanayaka, V. P.; Kirova, M. J. Org. Chem. 1996, 61, 842. (e) Rigby, J. H.; Claire, Valérie de Sainte; Cuisiat, S. V.; Heeg, M. J. J. Org. Chem. 1996, 61, 7992. (f) Rigby, J. H.; Hu, J.; Heeg, M. J. Tetrahedron Lett. 1998, 39, 2265. (g) Rigby, J. H.; Bazin, B.; Meyer, J. H.; Mohammadi, F. Org. Lett. 2002, 4, 799. 12.Harmata, M.; Elahmad, S.; Barnes, C. L. Tetrahedron Lett. 1995, 36, 1397. 13.(a) Nakamura, T.; Matsui, T.; Tanino, K.; Kuwajima, I. J. Org. Chem. 1997, 62, 3032. (b) Tanino, K.; Onuki, K.; Asano, K.; Miyashita, M.; Nakamura, T.; Takahashi, Y.; Kuwajima, I. J. Am. Chem. Soc. 2003, 125, 1498. 14.Molander, G. A.; Bessiéres, B; Eastwood, P. R.; Noll, B. C. J. Org. Chem. 1999, 64, 4124. 15.Kigoshi, H.; Suzuki, Y.; Aoki, K.; Uemura, D. Tetrahedron Lett. 2000, 41, 3927. 16.Tang, H.; Yusuff, N.; Wood, J. L. Org. Lett. 2001, 3, 1563. 17.Mistlin, G. L.; Miesch, M. J. Org. Chem. 2003, 68, 433. 18.(a) Debono, M.; Molloy, R. M.; Bauer,D.; Iizuka, T.; Schaffner, K.; Jeger, O. J. Am. Chem. Soc. 1970, 92, 420. (b) Suginome, H.; Yabe, T.; Osawa, E. J. Chem. Soc., Perkin Trans. 1 1982, 931. 19.Mukaiyama, T.; Banno, K.; Narasaka, K. J. Am. Chem. Soc. 1974, 96, 7503. 20.(a) Crimmins, M. T. Chem. Rev. 1988, 88, 1453. (b) Winkler, J. D.; Bowen, C. M.; Liotta, F. Chem. Rev. 1995, 95, 2003. 21.(a) Funk, R. L.; Abelman, M. M.; Munger, J. D. Tetrahedron 1986, 42, 2831. (b) Funk, R. L.; Abelman, M. M. J. Org. Chem. 1986, 51, 3247. 22.(a) Garst, M. E.; Roberts, V. A.; Prussin, C. Tetrahedron 1983, 39, 581. (b) Garst, M. E.; Roberts, V. A.; Houk, K. N.; Rondan, N. G. J. Am. Chem. Soc. 1984, 106, 3882. 23.Eggert, U.; Stohrer, I.; Hoffmann, H. M. R. Tetrahedron Lett. 1992, 33, 3465. 24.Harmata, M.; Gamlath, C. B. J. Org. Chem. 1988, 53, 6156. 25.(a) Schreiber,S. L.; Sammakia, T.; Crowe, W. E. J. Am. Chem. Soc. 1986, 108, 3128. (b) Nicholas, K. M. Acc. Chem. Res. 1987, 20, 207. 26.Overman, L. E. Acc. Chem. Res. 1992, 25, 352. 27.(a) Molander G. A.; Cameron, K. O. J. Org. Chem. 1993, 58, 5931. (b) Molander, G. A.; Eastwood, P. R. J. Org. Chem. 1995, 60, 8382. 28.(a) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413. (b) Armstrong, S. K. J. Chem. Soc., Perkin Trans. 1 1988, 371. 29.(a) Schrock, R. R.; Hoveyda, A. H.; Weatherhead, G. S.; Ford, J. G.; Alexanian, E. J. J. Am. Chem. Soc. 2000, 122, 1828. (b) Morgan, J. P.; Morrill, C.; Grubbs, R. H. Org. Lett. 2002, 4, 67. 30.Franck-Neumann, M.; Miesch, M.; Gross, L. Tetrahedron Lett. 1990, 31, 5027. 31.(a) Doyle, T. W. Can. J. Chem. 1970, 48, 1629. (b) Leigh, W. J. Can. J. Chem. 1993, 71, 147. 32.何文岳,博士論文,國立清華大學,2000。 33.Sha, C.-K.; Young, J.-J.; Jean, T.-S. J. Org. Chem. 1987, 52, 3919. 34.Curran, D. P.; Chen, M.-H.; Kim, D. J. Am. Chem. Soc. 1989, 111, 6265. 35.(a) Sha, C.-K.; Jean, T.-S.; Yau, N.-T.; Uuang, S.-J.; Chiou, R.-T. J. Chin. Chem. Soc. (Taipei) 1995, 42, 637. (b) Sha, C.-K.; Chiu, R.-T.; Yang, C.-F.; Yao, N.-T.; Tseng, W.-H.; Liao, F.-L.; Wang, S.-L. J. Am. Chem. Soc. 1997, 119, 4130. (c) Sha, C.-K.; Santhosh, K. C.; Lih, S.-H. J. Org. Chem. 1998, 63, 2699. (d) Sha, C.-K.; Ho, W.-Y. Chem. Commun. 1998, 2709. (e) Sha, C.-K.; Lee, F.-K.; Chang, C.-J. J. Am. Chem. Soc. 1999, 121, 9875. (f) 程平昌,博士論文,國立清華大學,2000。 36.羅順原,碩士論文,國立清華大學,2000。 37.林賢勳,碩士論文,國立清華大學,2001。 38.Satoh, T.; Kaneko, Y.; Okuda, T.; Uwaya, S.; Yamakawa, K. Chem. Pharm. Bull. 1984, 32, 3452. 39.Johnson, E. P.; Chen, G.-P., Fales, K. R.; Lenk, B. E.; Szendroi, R. J.; Wang, X.-J.; Carison, J. A. J. Org. Chem. 1995, 60, 6595. 40.Huang, H.; Forsyth, C. J. Tetrahedron Lett. 1993, 34, 7889. 41.House, H. O.; Czuba, L. J.; Gall, M.; Olmstead H. D. J. Am. Chem. Soc. 1969, 91, 2324. 42.Baraldi, P. G.; Barco, A.; Benetti, S.; Pollini, G. P.; Zanirato, V. Tetrahedron Lett. 1984, 25, 4291. 43.Russo, J. M.; Price, W. A. J. Org. Chem. 1993, 58, 3589. 44.Sha, C.-K.; Ho, W.-Y.; Mohanakrishnan, A. K.; Lin, C.-L.; Chu, S.-Y. Chem. Commun. 2001, 439. 45.Yang, D.; Gao, Q.; Lee, O.-Y. Org. Lett. 2002, 4, 1239. 46.劉邦鴻,碩士論文,國立清華大學,2004。 47.(a) Chatterjee, A. K.; Grubbs, R. H. Org. Lett. 1999, 1, 1751. (b) Chatterjee, A. K.; Sanders, D. P.; Grubbs, R. H. Org. Lett. 2002, 4, 1939. 48.Wender, P. A.; Zhang, L. Org. Lett. 2000, 2, 2323. 第二部分 1.Kroto, H. K.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162. 2.Kräetschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354. 3.Hawkins, J. M.; Meyer, A.; Lewis, Tt. A.; Loren, S.; Hollander, F. J. Science 1991, 252, 312. 4.Kroto, H. K. Nature 1987, 329, 529. 5.Taylor, R.; Hare, J. P.; Abdul-Sada, A. K.; Kroto, H. W. J. Chem. Soc. Chem. Commun. 1990,1423. 6.Ajie, H.; Alvarez, M. M.; Anz, S. J.; Beck, R. D.; Diederich, F.; Fostiropoulos, K.; Huffman, D. R.; Kräetschmer, W.; Rubin, Y.; Schiver, K. E.; Sensharma, D.; Whetten, R. L. J. Phys. Chem. 1990, 94, 8630. 7.Scrirens, W. A.; Bedworth, P. V.; Tour, J. M. J. Am. Chem. Soc. 1992, 114, 7917. 8.Tokuyama, H.; Yamago, S.; Nakamura, E.; Shiraka, T.; Sugiura, Y. J. Am. Chem. Soc. 1993, 115, 7918. 9.(a) Friedman, S. H.; DeCamp, D. L.; Sijbesma, R. P.; Srdanov, G.; Wudl, F.; Kenyon, G. L. J. Am. Chem. Soc. 1993, 115, 6506. (b) Sijbesma, R. P.; Srdanov, G.; Wudl, F.; Castoro, J. A.; Wilkin, C.; Friedman, S. H.; DeCamp, D. L.; Kenyon, G. L. J. Am. Chem. Soc. 1993, 115, 6510. 10.An, Y. Z.; Chen, C. H. B.; Anderson, J. L.; Sigman, D. S.; Foote, C. S.; Rubin, Y. Tetrahedron 1996, 52, 5179. 11.Nalwa, H. S. Adv. Mater. 1993, 5, 341. 12.Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science 1992, 258, 1474. 13.Schick, G.; Levitus, M.; Kvetko, L. D.; Johnson, B. A.; Lamparth. I.; Lunkwitz, R.; Ma, B.; Khan, S. I.; Garcia-Garibay, M. A.; Rubin, Y. J. Am. Chem. Soc. 1999, 121, 3246. 14.Hutchison, K.; Gao, J.; Schick, G.; Rubin, Y.; Wudl, F. J. Am. Chem. Soc. 1999, 121, 5611. 15.Prato, M.; Suzuki, T.; Foroudian, H.; Li, Q.; Khemani, K.; Wudl, F.; Leonetti, J.; Little, R. D.; White, T.; Rickborn, B.; Yamago, S.; Nakamura, E. J. Am. Chem. Soc. 1993, 115, 1594. 16.Shiu, L.-L.; Lin, T.-I.; Peng, S.-M.; Her, G.-R.; Ju, D. D.; Lin, S.-K.; Hwang, J.-H.; chung, Y. M.; Luh, T.-Y.; J. Chem. Soc. Chem. Commun. 1994, 647. 17.Akasaka, T.; Ando, W.; Kobaayashi, J.; Nagase, S. J. Am. Chem. Soc. 1993, 115, 10366. 18.Meier, M. S.; Poplawska, M. J. Org. Chem. 1993, 58, 4524. 19.Maggini, M.; Scorrano, G.; Prato, M. J. Am. Chem. Soc. 1993, 115, 9798. 20.Zhang, X.; Willems, M.; Foote, C. S. Tetrahedron Lett. 1993, 34, 8187. 21.Shu, L.-H.; Wang, G.-W.; Wu, S.-H.; Wu, H.-M.; Lao, X.-F. Tetrahedron Lett. 1995, 36, 3871. 22.Ikeda, M.; Miki, Y.; Kaita, S.; Nishikawa, Y.; Tamura, Y. J. Chem. Soc., Perkin Trans. 1 1977, 44. 23.Oehlschlager, A. C.; Yim, A. S.; Akhtar, M. H. Can. J. Chem. 1978, 56, 273. 24.Sha, C.-K.; Tsou, C.-P. J. Org. Chem. 1990, 55, 2446.id NH0925065084 sid 873403 cfn 0 / id NH0925094001 auc 潘永政 tic 閱讀與摘要範文對外語(英語)寫作的影響之研究 adc 吳又熙 ty 碩士 sc 國立清華大學 dp 外國語文學系 yr 92 lg 英文 pg 58 kwc 閱讀 kwc 寫作 kwc 範文 kwc 摘要 abc 英語範文的使用在英語為母語、第二語言或外語寫作課程中,常久以來一直是一個有爭議但卻是廣為接受的教學技巧。而研究此相關領域的學者則建議,欲瞭解範文對寫作的影響,必須投入更多的調查研究,尤其是以下幾個議題:範文使用的時間點與方式、不同類型範文的效用、使用範文的數量以及範文對不同語言成熟度學生的效用。在英語為外語學習的台灣,英語範文常被老師運用來輔助培養學生的寫作能力;然而,當地並沒有很多的相關研究來佐證各種範文用途的正當性。此研究旨在為英文範文融入於英語為外語的寫作課,提供更深入的見地及須要留意的事項。 tc TABLE OF CONTENTS Abstract i Table of Contents iii List of Tables vii CHAPTETER ONE-INTRODUCTION 1 1.1 Motivation 1 1.2 Research Background 3 1.3 Purposes and Significance of the Study 4 1.4 Operational Definition of Terms 5 1.5 Organization of the Thesis 8 CHAPTER TWO-LITERATURE REVIEW 9 2.1 Effects of (Extensive) Reading Input on Writing 9 2.2 The Effects of Summarization on Reading and Writing 12 2.3 The Use of Model Essays and Writing Pedagogy 16 2.4 Purpose of Investigation 19 2.5 Research Questions 20 CHAPTER THREE-METHODOLOGY 21 3.1 Participants 22 3.2 Procedure 22 3.2.1 Background questionnaire 23 3.2.2 Pretest and evaluation 24 3.2.3 Grouping Techniques 25 3.2.4 Treatment 25 3.2.5 Feedback questionnaire 27 3.3.6 Interview 27 3.2.7 Posttest and Evaluation 28 3.2.8 Statistical Treatment 28 CHAPTER FOUR-RESULTS AND DISCUSSION 30 4.1 Results 31 4.1.1 Effects of extensive reading 32 4.1.2 Effects of summarization 33 4.1.3 Comparison between the effects of the two pre-writing assignments 34 4.1.4 Data analysis of the questionnaires and interview 35 4.1.4.1 Results of Background Questionnaire 36 4.1.4.2 Results of the Feedback Questionnaire 38 4.1.4.3 Digest of interview data 41 4.2 Discussion 43 4.2.1 Effects of reading model essays extensively on writing performance 43 4.2.2 Effects of summarizing models on writing performance 46 4.2.3 Comparison of the effects to the two pre-writing assignment tasks 48 4.2.4 Students’ attitudes towards the use of model essays 50 CHAPTER FIVE-CONCLUSION 53 5.1 Pedagogical Implications 54 5.2 Limitations of the Present Study 56 5.3 Recommendations for Future Investigations 56 REFERENCES 59 APPENDICES Appendix A Consent Form 65 Appendix B Synopsis of Experimental Design 66 Appendix C Background Questionnaire 67 Appendix D Assessing Criteria 69 Appendix E Pretest Results 71 Appendix F Grouping Results 72 Appendix G Basic Criteria for Selecting Articles 73 Appendix H Extensive Reading Checklist 74 Appendix I Sheet of Summary Writing 75 Appendix J Feedback Questionnaire 76 Appendix K Interview Questions 77 Appendix L Consent form (Tape Recording) 78 Appendix M Posttest Results 79rf Bamfrod, J., & Day, R. R. (1997). ER: What is it? Why bother? The Reading Teacher, 21, 6-12. Bean, T. W., & Steenwyk, F. L. (1984). The effect of three forms of summarization instruction on sixth graders’ summary writing and comprehension. Journal of Reading Behavior, 16(4), 297-306. Bensoussan, M., & Kreindler, I. (1990). Improving advanced reading comprehension in a foreign language: Summaries vs. short-answer questions. Journal of Research in Reading 13, 55-68. Brown, A. L., & Day, J. D. (1983). Macrorules for summarizing texts: The development of expertise. Journal of Memory and Language, 22, 1-14. Brown, J. D. (1988). Understanding research in second language learning: A teacher’s guide to statistics and research design. Cambridge University Press. Carrell, P. L., & Carson, J. G. (1997). Extensive and intensive reading in an EAP setting. English for Specific Purpose, 16, 47-60. Charney, D. H., & Carlson, R. A. (1995). Learning to write in a genre: What student writers take from model texts. Research in the Teaching English, 29(1), 88-125. Chiang Mei-chuan. (1998). The effects of model-based instruction on Chinese students’ English writing. Unpublished master’s thesis, National Taiwan Normal University, Taipei, Taiwan, R.O.C. Cohen, A. D. (1993). Assessing language ability in the classroom (2nd ed., pp. 327-328). Boston: Heinle & Heinle. Collins, A., & Gentner, D. (1980). A framework for a cognitive theory of writing. In L. W. Gregg & E. R. Steinberg (Eds.), Cognitive processes in writing (pp. 51-72). Hillsdale, NJ: Erlbaum. Corbett, E. P. J. (1965). Classical rhetoric for the modern student. New York: Oxford University Press. Corbett, E. P. J. (1971). The theory and practice of imitation in classical rhetorical. College Composition and Communication, 22, 242-250. Doctorow, M., Marks, C., & Wittrock, M. (1978). Generative processes in reading comprehension. Journal of Education Psychology, 70, 109-118. Elley, W. (1991). Acquiring literacy in a second language: The effects of book-based programs. Language Learning, 41, 375-411. Elley, W., & Mangubhai, F. (1983). The impact of reading on second language learning. Reading Research Quarterly, 19, 53-67. Eschholz, P. A. (1980). The prose models approach: Using products in the process. In T. R. Donovan & B. W. McClelland (Eds.), Eight approaches to teaching composition (pp.21-36). Urbana, IL: National Council of Teachers of English. Gay, L. R., & Airasian, P. (2000). Educational research: Competencies for analysis and application (pp. 8–9 ). Prentice-Hall, Inc. Gottschalk, K. K. (1984). Writing in the non-writing class. In F. V. Bogel & K. K. Gottschalk (Eds.), Teaching prose: A guiding for writing instructors (pp. 396). New York: W. W. Norton & Company. Gradman, H., & Hanania, E. (1991). Language learning background factors and ESL proficiency. Modern Language Journal, 75, 39-51. Green, S. (1993). Exploring the relationship between authorship and reading. In A. Penrose & B. Sitko (Eds.), Hearing ourselves think: Cognitive research in the college writing classroom (pp. 33-51). New York: Oxford University Press. Hafiz, F. M., & Tudor, I. (1989). Extensive reading and the development of language skills. ELT Journal, 43(1), 4-13. Hare, V. C. (1992). Summarizing text. In J. W. Irwin & M. A. Doyle (Eds.), Reading/writing connections: Learning from research (pp. 115). Newark, DE: International Reading Association. Hatch, E., & Lazaraton, A. (1991). The research manual: Design and statistics for applied linguistics (pp. 15). New York: Newbury House Publisher. Hidi, S., & Anderson, V. (1986). Producing written summaries: Task demands, cognitive operations, and implications for instruction. Review of Educational Research, 56, 473-493. Hillocks, G. (1986). Research on written composition: New directions for teaching. Urbana, IL: National Council of Teachers of English. Horowitz, D. (1986). What professors actually want: Academic tasks for ESL classroom. TESOL Quarterly, 20(3), 445-462. Jacobs, H. J. et al. (1981). Testing ESL composition: A practical approach. Newbury House, Rowley, MA. Janopoulous, M. (1986). The relationship of pleasure reading and second language writing proficiency. TESOL Quarterly, 20(4), 764-768. Johns, A. M. (1986). Coherence and academic writing: Some definitions and suggestions for teaching. TESOL Quarterly, 20(2), 247-263. Johns, A. M., & Mayes, P. (1990). An analysis of summary protocols of university ESL students. Applied Linguistics, 11(3), 253-271. Johnson, N. S. (1983). What do you do if you can’t tell the whole story? The development of summarization skills. In K. E. Nelson (Ed.), Children’ language (pp. 315-383). Hillsdale, NJ: Erlbaum. Kaplan, Robert. B. (1987). Cultural thought patterns revised. In Connor, B. & Kaplan, R. B. (Eds.), Writing across languages: Analysis of L2 text (pp.9-21). Reading, Massachusetts: Addison-Wesley. Kim, S. A. (2001). Characteristics of EFL readers’ summary writing: A study with Korean university students. Foreign Language Annals, 34(6), 569-581. Kirkland, M. R., & Saunders, M. A. (1991). Maximizing student performance in summary writing: Managing cognitive load. TESOL Quarterly, 25(1), 105-119. Krashen, S. D. (1982). Principles and practice in second language acquisition. Oxford: Pergamon. Krashen, S. D. (1984). Writing: Research, theory and application. Oxford: Pergamon Institute of English. Krashen, S. D. (1985). The input hypothesis: Issues and implications. Harlow: Longman. Krashen, S. S. (1989). We acquire vocabulary and spelling by reading: Additional evidence for the input hypothesis. Modern Language Journal, 73, 440-464. Krashen, S. D. (1993). The power of reading; Insights from the research. Englewood, CO: Libraries Unlimited. Lai, F. K. (1993). The effects of a summer reading course on reading and writing skills. System, 21(1), 87-100. Langan, J. (1993). Ten steps to advancing college reading skills. Townsend Press. Langer, J. A. (1992). Reading, writing, and genre development. In J. W. Irwin & M. A. Doyle (Eds.), Reading/writing connections: Learning from research (pp. 32-54). Newark, DE: International Reading Association. Leki, I. (1991). Twenty-five years of contrastive rhetoric: Text analysis and writing pedagogies. TESOL Quarterly, 25(1), 123-143. Mason, B., & Krahsen, S. (1997). Extensive reading in English as a foreign language. System 25, 91-102. Miller, C. (1984). Genre as social action. Quarterly Journal of Speech, 70, 151-167. Mikulecky, B. (1990). A short course in teaching reading skills. Reading, MA: Addison-Wesley. Oded, B., & Walters, J. (2001). Deeper processing for better EFL reading comprehension. System, 29, 357-370. Purves, A. C., & Purves, W. C. (1986). Viewpoints: Cultures, text models, and the activity of writing. Research in the Teaching of English, 20, 174-97. Radmacher, S, A., & Sawin, E. L. (1995). Summary writing: A tool to improve student comprehension and writing in Psychology. Teaching in Psychology, 22(2), 113-115. Ratteray, O. M. T. (1985). Expanding roles for summarized information. Written Communication, 2(4), 457-472. Reder, L. M., & Anderson, J. R. (1980). A comparison of texts and their summaries: Memorial consequences. Journal of Verbal Learning and Verbal Behavior, 19, 121-134. Renandya, W. A., Rajan, S., & Jacobs, G. M. (1999). Extensive reading with adult learners of English as a second language. RELC Journal, 30 (1), 39-60. Richards, J. C., Platt, J., & Platt, H. (1992). Dictionary of language teaching and applied linguistics (2nd ed.). Singapore: Longman. Shanklin, N. (1982). Relating reading and writing: Developing a transactional theory of the writing process. Bloomington. IN: Indiana University School of Education. Sagri, G. (1993). Composing a study-summary: A reading/writing encounter. In J.G. Carson & I. Leki (Eds.), Reading in the composition classroom: Second language perspectives (pp. 161-182). Boston, Massachusetts: Heinle & Heinle Publishers. Sherrard, C. (1989). Teaching students to summarize: Applying textlinguistics. System, 17(1), 1-11. Smagorinsky, P. (1992). How reading model essays affects writers. In J. W. Irwin & M. A. Doyle (Eds.), Reading/writing connections: Learning from research (pp. 166-176). Newark, DE: International Reading Association. Spack, R., & Sadow, C. (1983). Student-teacher working journals in ESL freshman composition. TESOL Quarterly, 17(4), 575-593. Spiro, R. (1980). Constructive processes in prose recall. In R. Spiro, B. Bruce & W. Brewer (Eds.), Theoretical issues in reading comprehension (pp. 245-278). Hillsdale, NJ: Erlbaum. Spivey, N. (1987). Contructruing Constructivism. Poetics, 16, 169-192. Spivey, N. (1990). Transforming texts: Constructive processes in reading and writing. Written Communication, 7, pp. 256-287. Stolarek, E. (1994). Prose modeling and metacognition: The effect of modeling on developing a metacognitive stance toward writing. Research in the Teaching of English, 28, 154-174. Taylor, K. K. (1984). The different summary skills of inexperienced and professional writers. Journal of Reading, 27, 691-699. Tsang, W. K. (1996). Comparing the effects of reading and writing on writing performance. Applied Linguistics, 17(2), 210-233. Watson, C. B. (1982). The use and abuse of models in the ESL writing class. TESOL Quarterly, 16(1), 5-13. Whol, M. (1978). Techniques for writing: Composition. Newbury House. Wu, C. C. (2002). A case study of the rhetorical analysis via expository models on Taiwanese freshmen’s English compositions. Unpublished master’s thesis of National Tsing Hua University, Hinchu, Taiwan, R. O. C. Zamel, V. (1983). The composing processing of advanced ESL students: Six case studies TESOL Quarterly, 17(2), 165-187.id NH0925094001 sid 895211 cfn 0 / id NH0925094002 auc 高郁茗 tic 以課外廣泛閱讀輔助高中英語教學之研究 adc 卓江 ty 碩士 sc 國立清華大學 dp 外國語文學系 yr 92 lg 英文 pg 124 kwc 廣泛閱讀 abc 中文摘要 tc LIST OF TABLES Table Page 1. EPER Levels for Language Learner Literature in English……………………………….25 2. Contrasts between Intensive and Extensive Reading……………………………………..32 3. Lesson Plan……………………………………………………………………………….32 4. The Average Item Facility and Item Discrimination of the Cloze Tests and Reading Comprehension Tests……………………………………………………………………..34 5. Pre-test and Post-test Results on JCEE Reading Comprehension Tests………………….39 6. Gain Score Results on JCEE Reading Comprehension Tests: Mann-Whitney U Test…...39 7. Pre- and Post-test Scores and Gain Scores on JCEE Reading Comprehension Tests…….40 8. Pre- and Post-tests and Gain Score Results on JCEE Cloze Test: Mann-Whitney U Test..40 9. Pre- and Post-test Scores and Gain Scores on JCEE Cloze Test………………………….41 10. Pre- and Post-test Scores and Gain Scores on SRA Placement Test……………………...41 11. Pre- and Post-tests and Gain Score Results: Mann-Whitney U Test……………………..42 12. Correlation between Reading Quantity and the Three Reading Test Results…………….42 13. Pre- and Post- Reading Speed and Gain Scores (WPM)…………………………………43 14. Pre-test and Post-test Results on Reading Speed…………………………………………43 15. Gain Score Results: Two Independent T-test……………………………………………..43 16. Frequency of reading books for fun in English, such as novels, children's literature, newspaper, magazine or comic books (not including textbooks, reference books and handouts from cram schools)……………………………………………………………..44 17. Number of books read in English since you started to learn English from junior high school (not including textbook, reference books and handouts from cram schools)……..45 18. Frequency of visiting bookstores or libraries for English books…………………………45 19. Frequency of current pleasure reading in Chinese………………………………………..46 20. Do you think extensive reading in English can help improve your general English ability? …………………………………………………………………………………………….46 21. Do you think reading can help you know more about the second language culture?.........47 22. Do you like reading in English?..........................................................................................47 23. Do you think being able to read English is useful?.............................................................48 24. Do you sometimes read English just because you want to?...............................................48 25. When you read, do you have confidence to continue reading while encountering difficulty?............................................................................................................................49 26. When you read, do you look up all or most of the words you don’t know in a dictionary? …………………………………………………………………………………………….49 27. Do you sometimes read faster and sometimes read slower, depending on why you are reading?...............................................................................................................................50 28. Do you know how to find reading material that suits you and that you want to read?.......50 29. Do you usually feel comfortable when reading an English book?.....................................50 30. Program Evaluation: Materials (%)………………………………………………………51 31. Program Evaluation: The Checkout Systems (%)………………………………………..52 32. Program Evaluation: Homework Assignments (%)………………………………………52 33. Program Evaluation: Class Activities (%)………………………………………………..53 34. Percentages of their Enjoyment and their Evaluation of the Program……………………54 35. Descriptive Statistics: Pre- and Post-test Results and Gain Scores……………………….57 36. Number of Books Read and Number of Pages Read……………………………………..59 37. The Distribution of Number of Books Read……………………………………………..60 38. Descriptive Statistics: Pre- and Post- Reading Rate and Gain Scores (WPM)…………..65 39. Reading Habits……………………………………………………………………………67 40. The Belief in English Reading……………………………………………………………68 41. Fondness for Reading and Confidence in Reading……………………………………….69 42. Reading Strategies Related to Extensive Reading………………………………………..70 43. Other Comments for this Program………………………………………………………..71 44. Percentages of Students’ Enjoyment and Evaluation about the Program………………..76 45. The Distribution of Subjects’ Self-Evaluations…………………………………………..76 TABLE OF CONTENTS Page 中文摘要……………………………………………………………………………..................i ABSTRACT…………………………………………………………………………………..iii ACKNOWLEDGEMENTS…………………………………………………………………...vi LIST OF TABLES……………………………………………………………………………vii TABLE OF CONTENTS……………………………………………………………………..ix CHAPTER ONE — INTRODUCTION……………………………………………………….1 CHPATER TWO — LITERATURE REVIEW………………………………………………..4 1. Overview…………………………………………………………………………….4 2. Theoretical Background……………………………………………………………..5 2.1 The Roles of the Input Hypothesis and the Affective Filter Hypothesis………..5 2.2 The Bookstrap Hypothesis, the Pleasure Hypothesis, and “Flow”……………...5 3. What Does an Extensive Reading Program Include?.................................................6 3.1 What Is Extensive Reading?.................................................................................6 3.2 What Are the Characteristics of a Successful Extensive Reading Program?...............................................................................................................7 3.3 Reading Materials……………………………………………………………….7 3.3.1 Graded Readers…………………………………………………….…..8 3.3.2 American Children’s Literature and Young Adult Literature……….….9 4. Empirical Evidence………………………………………………………………...10 4.1 Extensive Reading for Children and Secondary L2 Learners…………………………………………………..…………………….10 4.2 Extensive Reading in Tertiary Education……………………………...............15 4.2.1 Extensive Reading and Reluctant L2 Learners or L2 Learners in Preparation for Tertiary Level Study……….………………..............15 4.2.2 Extensive Reading and Writing Ability……….……………………...16 4.2.3 Reading Strategies and Extensive Reading…………………………...18 4.2.4 Extensive Reading Materials other than Graded Readers…………….19 4.3 Qualitative Evidence…………………………………………………………...20 4.4 Summary……………………………………………………………………….21 4.5 Research Questions…………………………………………………………….22 CHPATER THREE —METHODOLOGY…………………………………………………...23 1. Participants…………………………………………………………………………23 2. Research Design……………………………………………………………………23 2.1 The Extensive Reading Program……………………………………………….23 2.2 Reading Materials in the Current Study………………………………………..25 2.3 The Library Corner/the Book Exchange System…………..…………………..27 2.4 The Activities…………………………………………………………………..29 3. The Reading Instruction……………………………………………………………31 4. Measurements……………………………………………………………………...33 4.1 Reading Comprehension Tests, Cloze Test, and Reading Speed………………33 4.2 Surveys…………………………………………………………………………35 5. Data Analysis………………………………………………………………………36 CHAPTER FOUR — RESULTS AND DISCUSSION………………………………………38 1. Overview…………………………………………………………………………...38 2. Results of the Study………………………………………………………………..38 2.1 Reading Quantity and Results from the Three Reading Tests ………………...39 2.1.1 JCEE Reading Comprehension Tests…………………………………...39 2.1.2 JCEE Cloze Tests……………………………………………………….40 2.1.3 SRA Placement Tests…………………………………………………...41 2.2 Correlation between Reading Quantity and three Reading Test Results………42 2.3 Reading Quantity and Reading Speed…………………………………………42 2.4 Results of the Questionnaires…………………………………………………..43 2.5 Students’ Feedback on the Program……………………………………………51 2.5.1 Materials………………………………………………………………...51 2.5.2 The Checkout Systems (the Book Exchange Systems)………………...52 2.5.3 Homework Assignment…………………………………………………52 2.5.4 Class Activities………………………………………………………….52 2.5.5 Subjects’ General Feelings about this Program………………………...53 2.5.6 Any Changes that Subjects Experienced during this Program…………54 2.5.7 The Activities They Considered Most Difficult………………………...54 2.5.8 Their Favorite Activities…………………………………………..........55 2.5.9 Their Favorite Books…………………………………………………...55 2.5.10 Their Suggestions……………………………………………………..56 3. Discussion………………………………………………………………………….57 3.1 Extensive Reading and Reading Proficiency………………………………...57 3.1.1 The Free Reading Was Less Extensive than in Previous Studies…….58 3.1.2 Differences in the English Learning Experiences of the Two Groups Were Not So Great………………………………………............60 3.1.3 The Results May Have Been Influenced by a Shift in Students’ Focus and by the Effects of Cram School Courses……………………..62 3.1.4 Conclusion……………………………………………………………64 3.2 The Correlation between Reading Quantity and Reading Proficiency………64 3.3 Reading Speed………………………………………………………………..65 3.4 Attitude and Motivation toward English Reading…………………………...66 3.4.1 Change in Reading Habits…………………………………………..67 3.4.2 The Belief in English Reading……………………………………...68 3.4.3 Fondness for Reading and Confidence in Reading…………………68 3.4.4 Reading Strategies Related to Extensive Reading………………….69 3.4.5 Other Comments on this Program and Conclusion…………………70 3.5 The Feasibility of an Extensive Reading Program in Senior High School………………………………………………………………………..71 3.5.1 Materials……………………………………………………………72 3.5.2 The Checkout Systems (the Book Exchange Systems)…………….73 3.5.3 Homework Assignment…………………………………………….74 3.5.4 Class Activities……………………………………………………..75 3.5.5 Program evaluation, Self Evaluation and Learning Autonomy…….75 CHAPTER FIVE — CONCLUSION………………………………………………………...77 1. Overview…………………………………………………………………………….77 2. Limitations of Current Study………………………………………………………..77 3. Directions for Future Research……………………………………………………...78 4. Pedagogical Implications……………………………………………………………80 5. Conclusion…………………………………………………………………………..84 REFERENCES……………………………………………………………………………….86 APPENDIX A — Schedule for the First Semester…………………………………………..89 APPENDIX B — Schedule for the Second Semester………………………………………..89 APPENDIX C — Winter Vacation Assignment……………………………………………...90 APPENDIX D — Book Report Form…………………………………………………..……91 APPENDIX E — Book Lists of Reading Materials………………………………………….92 APPENDIX F — Reading Instruction……………………………………………………….94 APPENDIX G — 1999 JCEE Cloze-test and Reading Comprehension Test………………..95 APPENDIX H — 2000 JCEE Cloze-test and Reading Comprehension Test……………….100 APPENDIX I —SRA Placement Test 2b……………………………………………………105 APPENDIX J —SRA Placement test 2c…………………………………………………….107 APPENDIX K —Reading Speed Pre-test: The Elephant Man……………………………...109 APPENDIX L —Reading Speed Post-test: Mary Queen of Scouts…………………………113 APPENDIX M — Chinese Questionnaire…………………………………………………..116 APPENDIX N —Pre-questionnaire…………………………………………………………119 APPENDIX O —Post-questionnaire………………………………………………………..121rf References Anderson, N. (2002). Increasing reading fluency: Activities for the EFL classroom. Selected Papers from the Eleventh International Symposium on English Teaching/Fourth Pan-Asian Conference, 15-25. Taipei: Crane. Bailey, K. M. (1998). Learning about language assessment: Dilemmas, decisions, and directions. USA: Heinle & Heinle. Bamford, J., & Day, R. R. (1997). Extensive reading: What is it? Why bother? [19 paragraphs ]. The Language Teacher, 21. Retrieved May 20, 2002 from http://www.jalt-publications.org/tlt/files/97/may/extensive.html Bushman, J.H., & Bushman, K. P. (1997). Using young adult literature in the English classroom. New Jersey: Prentice-Hall. Chang, Y. L. (1998). Integrating adolescent literature with reading instruction in senior high school. Proceedings of the Fifteenth Conference on English Teaching and Leaning in R.O.C., 105-126. Taipei: Crane. Chen, Z. F. (1999). The analysis of the Joint College Entrance Examination on English, 1999. Taipei: College Entrance Examination Center. Chen, Z. F. (2000). The analysis of the Joint College Entrance Examination on English, 2000. Taipei: College Entrance Examination Center. Cheng, C. K. (2003). Extensive reading, word-guessing strategies and incidental vocabulary acquisition. Selected Papers from the Twelfth International Symposium on English Teaching, 188-198. Taipei: Crane. Cho, K. S., & Krashen, S. (1994). Acquisition of vocabulary from the Sweet Valley Kids series: Adult ESL acquisition. Journal of Reading, 37, 662-667. Constantino, R. (1995). Learning to read in a second language doesn’t have to hurt: The effect of pleasure reading. Journal of Adolescent & Adult Literacy, 39, 68-69. Constantino, R., Lee, S. Y., Cho, K. S., & Krashen, S. (1997). Free voluntary reading as a predictor of TOEFL scores. Applied Language Learning, 8, 111-118. Day, R. R., & Bamford, J. (1998). Extensive reading in the second language classroom. United Kingdom: Cambridge University Press. Dupuy, B. C. (1997). Voices from the classroom: Intermediate-level French students favor extensive reading over grammar and give their reasons. Applied Language Learning, 8, 285-293. Elley, W. B. (1991). Acquiring literacy in a second language: The effect of book-based programs. Language Learning, 41, 375-411. Elley W. B., & Mangubhai, F. (1983). The impact of reading on second language learning. Reading Research Quarterly, 19, 53-67. GEPT level description WWW user survey. (n.d.). Retrieved September 1, 2003, from http://www.lttc.ntu.edu.tw/geptintermediate1.htm#檢測程度 Grabe, W. (2002). Reading in a second language. The Oxford handbook of applied linguistics, 49-59. New York: Oxford University Press. Hafiz, F. M., & Tudor I. (1989a). Extensive reading and the development of language skills. ETL Journal, 43, 4-13. Hafiz, F. M., & Tudor I. (1989b). Extensive reading as a means of input to L2 learning. Journal of Research in Reading, 12(2), 164-178. Hafiz, F. M., & Tudor I. (1990). Graded readers as an input medium in L2 learning. System, 18, 31-42. Hayashi, K. (1999). Reading strategies and extensive reading in EFL classes. RELC Journal, 30(2), 114-132. Hill, D. R. (1997a). Graded (basal) readers—Choosing the best. [25 paragraphs ]. The Language Teacher, 21. Retrieved May 20, 2002 from http://www.jalt-publications.org/tlt/files/97/may/choosing.html Hill, D. R. (1997b). Setting up an extensive reading programme: Practical tips. [17 paragraphs ]. The Language Teacher, 21. Retrieved May 20, 2002 from http://www.jalt-publications.org/tlt/files/97/may/hill.html Hill, D. R., & Thomas, H. R. (1988). Survey review. ELT Journal, 42, 124-136. Huang, I-chun. (1996). The relationship of free reading and writing proficiency in second language acquisition. Proceedings of the 13th ROC REFL, 133-143. Janopoulos, M. (1986). The relationship of pleasure reading and second language writing proficiency. TESOL Quarterly, 20(4), 763-768. Krashen, S. (1993). The power of reading. Englewood, CO: Libraries Unlimited. Krashen, S. (1994a). The input hypothesis and its rivals. In N. C. Ellis (Ed.), Implicit and explicit learning of languages (pp. 45-77). London: Academic Press. Krashen, S. (1994b). The pleasure hypothesis. In J. Alatis (Ed.), Georgetown University Round Table on Language and Linguistics (pp. 299-322). Washington, DC: Georgetown University Press. Krashen, S. (2001). Free voluntary reading: Still a very good idea. Selected Papers from the Tenth International Symposium on English Teaching, 47-58. Taipei: Crane. Lai, F. K. (1993). The effect of a summer reading course on reading and writing skills. System, 21, 87-100. Lao, C. Y., & Krashen, W. (2000). The impact of popular literature study on literacy development in EFL: more evidence for the power of reading. System, 28, 261-270. Leung, C. Y. (2002). Extensive reading and language learning: A diary study of a beginning learner of Japanese. Reading in a Foreign Language, 14(1). Retrieved November 24, 2003 from: http://nflrc.hawaii.edu/rfl Liaw, M. L. (1998). American children’s literature: An alternative choice for EFL instruction. The Proceedings of the Seventh International Symposium on English Teaching, 683-694. Taipei: Crane. Mason, B., & Krashen, S. (1997). Extensive reading in English as a foreign language. System, 25, 91-102. McQuillan, J. (1994). Reading versus grammar: What students think is pleasurable for language acquisition. Applied Language Learning, 5, 95-100. Parker, Don H. (1996). Teacher’s handbook: SRA reading laboratory 2b. Columbus, Ohio: McGraw-Hill. Parker, Don H. (1996). Teacher’s handbook: SRA reading laboratory 2c. Columbus, Ohio: McGraw-Hill. Renandya W. A., Jajan, B. R. S., & Jacobs, G. M. (1999). Extensive reading with adult learners of English as a second language. RELC Journal, 30 (1), 39-61. Robb, T. N., & Susser, B. (1989). Extensive reading vs. skills building in an EFL context. Reading in a Foreign Language, 5(2), 239-251. Tsang, W. K. (1996). Comparing the effects of reading and writing on writing performance. Applied Linguistics, 17(2), 210-233. Walker, C. (1997). A self access extensive reading project using graded readers (with particular reference to students of English for academic purposes). Reading in a Foreign Language, 11(1), 121-149. Waring, R. (1997). Graded and extensive reading—questions and answers. [27 paragraphs ]. The Language Teacher, 21. Retrieved May 20, 2002 from http://www.jalt-publications.org/tlt/files/97/may/waring.html Yang, A. (2001). Reading and the non-academic learner: A mystery solved. System, 29, 451-466. Yang, T. H. (2002). Comparing the senior high school ESL curriculum in four Asian countries. Selected Papers from the Eleventh International Symposium on English Teaching/Fourth Pan-Asian Conference, 592-598. Taipei: The Crane Publishing. Yuan, Y. P., & Nash, T. (1992). Reading subskills and quantity reading. Selected papers from the English Conference on English Teaching and Learning in the Republic of China, 333-350. Taipei: Crane.id NH0925094002 sid 905252 cfn 0 / id NH0925094003 auc 羅家珍 tic DVD電影教學對大一學生聽力學習的成效探討 adc 柯安娜 ty 碩士 sc 國立清華大學 dp 外國語文學系 yr 92 lg 英文 pg 113 kwc DVD電影教學 kwc 英語教學 kwc 聽力教學 kwc 學習動機 kwc 聽力理解 kwc 大一英文聽力 abc 在台灣的英語教學領域中,能找到一個有效的聽力教學方法,一直是研究者的重要課題之一。近二十年來,許多著名學者對此作了深入的討論(Cooper et al, 1991; Chung, 1999; Stempleski and Tomalin, 1990; Katchen, 1996; Baltova, 1994; Chiang, 1996, 1999; Secules et al, 1992; Synder, 1988; Rubin, 1990)並指出廣泛使用錄影帶及錄音帶的視聽教學法,對於學生在聽力學習上有顯著的幫助。 tc 中文摘要………………………………………………………………………..……i ABSTRACT……………………………………………………………….………..ii ACKNOWLEDGEMENTS……………………………………………………....v TABLE OF CONTENTS………..…………...…………………………………..vi LIST OF TABLES………………………………………………………………….x LIST OF APPENDICES…………………..………………………….…………xiii CHAPTER ONE: INTRODUCTION…………………………………………..1 CHAPTER TWO: REVIEW OF THE LITERATURE………………..……..3 2.1 Overview.…………………………………………………….……………....3 2.2 Listening Comprehension- A Psycholinguistic Perspective………..………...3 2.2.1 Listening Comprehension………………………………………….……4 2.2.2 Listening Difficulties………………………………………………….…4 2.2.3 Schema……………………………………………………………….….6 2.2.4 Types of Specific Instruction in Listening…………………………….....7 2.3 Advantages of Using Video…………………………………………………..9 2.3.1 Audio-visual Aids………………………………………………….…….9 2.3.2 Authentic Materials………………………………………………...…..11 2.3.3 Motivation………………………………………………………….…..11 2.4 Discussion about DVDs………………………………………………….…14 2.4.1 Advantages of Using DVDs……………………………………………14 2.4.2 Disadvantages of Using DVDs………………………………………...15 2.4.3 Captions and Subtitles……………………………………………...…..16 2.5 Summary……………………………………….…………………………...19 CHAPTER THREE: METHODOLOGY………………………………..……20 3.1 Overview……………………………………………………………….…...20 3.2 Research Questions……………………………………………………..…..20 3.3 The Pilot Study………………………………………………………..….…22 3.3.1 The Pretest and the Posttest in the Pilot Study………………………....22 3.3.2 Three Questionnaires……………………………………………….…..23 3.3.2.1 The First Questionnaire…………………………………………..23 3.3.2.2 The Second Questionnaire……………………………………......25 3.3.2.3 The Third Questionnaire………………………………………….28 3.3.3 Conclusion………………………………………….…………………..29 3.4 The Formal Study………………………………………...…………………29 3.4.1 Participants…………………………………………..…………….…...29 3.4.2 A Qualitative and Quantitative Study…………………………………..30 3.4.2.1 The Qualitative Aspect……………………..…………………….31 3.4.2.2 The Quantitative Aspect……………………...…………………..31 3.4.3 Instrumentation………………………………………………………....32 3.4.3.1 The Pretest and the Posttest………………………………….…...32 3.4.3.2 The Posttest Questionnaire………………………………...……..33 3.4.3.3 Data Analysis Methods…………………………………………...34 3.4.4 Materials…………………………………………………………….….35 3.4.5 Instructional Activities…………..……………………………………..36 CHAPTER FOUR: RESULTS AND DISCUSSION….…………………...39 4.1 Overview………………………..…………………………………………..39 4.2 Statistical Results………………..……………………………………….…40 4.2.1 Formal Study Pretest and Posttest…………….…………………….….40 4.2.2 The Posttest Questionnaire…………………….……………………….41 4.2.2.1 The Comparison of Students’ Attitudes Before and After This School Year……………………………………………………....42 4.2.2.1.1 Question 1………...……………….……………………..42 4.2.2.1.2 Question 2……...………………….………………….….43 4.2.2.1.3 Question 3………………………….……..……………...44 4.2.2.1.4 Question 4………………………….……..……………...45 4.2.2.1.5 Question 5………………………….………..…………...46 4.2.2.1.6 Question 6………………………….……..…..………….47 4.2.2.1.7 Conclusion………………………….……..……..………48 4.2.2.2 The Correlation Between the Enjoyment and the Enhancement of Listening Comprehension of Each Movie…..………………….49 4.2.2.2.1 Movie 1……………………………….…………………49 4.2.2.2.2 Movie 2……………………………….…………………50 4.2.2.2.3 Movie 3……………………………….…………………51 4.2.2.2.4 Movie 4……………………………….…………………51 4.2.2.2.5 Movie 5……………………………….…………………52 4.2.2.2.6 Movie 6……………………………….…………………53 4.2.2.2.7 Movie 7……………………………….…………………53 4.2.2.2.8 Movie 8……………………………….…………………54 4.2.2.2.9 Movie 9……………………………….…………………55 4.2.2.2.10 Conclusion…………………………….……….……….55 4.2.3 Summary……………………………………………….………………56 4.3 Results and Discussion.……………………………………..………………56 4.3.1 Research Question 1…………………………………….……………...56 4.3.2 Research Question 2…………………………………….……………...59 4.3.3 Research Question 3…………………………………….……………...63 4.3.4 Research Question 4…………………………………….……………...65 4.3.5 Research Question 5…………………………………….……………...68 4.3.6 Summary……………...………………………………….…………….72 CHAPTER FIVE: CONCLUSIONS.…………………….…………………....74 5.1 Overview………………………………………………………..…………..74 5.2 Limitations of the Study…………………………………………..………...74 5.3 Directions for Future Research……………………………………..……….75 5.4 Pedagogical Implications……………………………………………..….…77 5.5 Conclusion……………………………………………………………..……79 REFERENCES………………………………………………………………….…80 APPENDICES……………………………………………………………………..84rf Anderson, J. R. (1995). Cognitive psychology and its implications. New York: W. H. Freeman. Baltova, I. (1994). The impact of video on the comprehension skills of core French students. The Canadian Modern Language Review, 50, 3, 507-531. Brown, H. D. (1994). Principles of language learning and teaching. New Jersey: Prentice Hall Regents. Brown, G., & Yule, G. (1983). Teaching the spoken language. Cambridge: Cambridge University Press. Chafe, W. (1994). Discourse, consciousness, and time: the flow and displacement of consciousness in speaking and writing. Chicago, IL: University of Chicago Press. Chiang, H, -L. (1996). Students introducing their favorite English movies. Papers from The 12th Conference on English Teaching and Learning in Republic of China, 154-176. The Crane Publishing Co,. Ltd. Chung, J. –M. (1999). The effects of using video texts supported with advance organizers and captions on Chinese college students’ listening comprehension: An empirical study. Foreign Language Annals, 32, No. 3, 295-308. Chung, J. –C., & Chiao, D. –Li. (1999). Processing a spoken text in a subtitled video program. In The Proceedings of the English International Symposium in English Teaching, 321-330. Taipei: The Crane Publishing. Clark, H. H. (1977). Psychology and language: An introduction to psycholinguistics. New York: Harcourt Inc. Cooper, R., Lavery, M.,& Rinvolucri, M. (1991). Video: Resource books for teachers. Oxford: Oxford University Press. Crooks, R. (2001). 托福電腦化測驗/ TOEFL-CBT: 高分托福聽力213. 台北市: 知英文化. Dornyei, Z. (1994).Motivation and motivating in the foreign language classroom. The Modern Language Journal, 78, iii, 273-284. Garza, T. (1991). Evaluating the use of captioned video materials in advanced foreign language learning. Foreign Language Annals, 24, No. 3, 239-258. Gruba, P. (1997). The role of video media in listening assessment. System, Vol. 25, No. 3, 335-345. Katchen, J. (1996). Using authentic video in English language teaching: Tips for Taiwan’s teachers. Taipei: The Crane Publishing Co. Ltd. Katchen, J. (2001). English learning through DVD films and the Internet. http://mx.nthu.edu.tw/~katchen Leung, B. (2001). Fostering students’ critical thinking in intercultural communication through films. Presentation in The Tenth International Symposium and Book Fair on English Teaching. Taipei: The Crane Publishing Co. Ltd. Lin, L. Y. (2000). Manipulating DVD technology to empower your teaching. Paper in Selected Papers from the Ninth International Symposium on English Teaching, 431-439. Taipei: The Crane Publishing Co. Ltd. Lin, L. Y. (2001). Learner-centered activities from the DVD format “Crouching Tiger, Hidden Dragon.” Selected Papers from The Tenth International Symposium on English Teaching, 534-542. Taipei: The Crane Publishing Co. Ltd. Lin, L. Y. (2002). The effects of feature films upon learners’ motivation, listening comprehension performance and speaking skills: the Learner-centered approach. Taipei: Crane Publishing Co., Ltd. Linebarger, D. L. (2001). Learning to read from television: The effects of using captions and narration. Journal of Educational Psychology, Vol. 93, No. 2, 288-298. Markham, P. L., Peter, L. A., & McCarthy T. J. (2001). The effects of native language vs. target language captions on foreign language students’ DVD video comprehension. Foreign Language Annals, Vol. 34, No. 5, 439-445. Omaggio, A. C. (1986). Teaching Language in Context. Heinle & Heinle Publishers, Inc. Richards, J. C. (1987). Listening comprehension: Approach, design, procedure. In Methodology in TESOL: A book of readings. (Eds.). M. H. Long, & J. C. Richards. 161-176. New York: Newbury House Publishers. Rost, M. (1990). Listening in language learning. London: Longman. Rost, M. (2002). Teaching and Researching Listening. Great Britain: Pearson Education. Ryan, S., & Francais, A. (1998). Using films to develop learner motivation. The Internet TESL Journal, Vol. IV, No. 11. Secules, T., Herron, C., & Tomasello, M. (1992). The effect of video context on foreign language learning. The Modern Language Journal, 76, iv, 481-490. Stempleski, S., & Tomalin, B. (2001). Film: Resource books for teachers. Oxford: Oxford University Press. Sun, K. –C. (2002). Investigation of English Listening Difficulties of Taiwan Students. In Selected Papers from the Eleventh International Symposium on English Teaching/ Fourth Pan Asian Conference, 518-525. Taipei: The Crane Publishing. Synder, H. R. (1988). Foreign language acquisition and audio-visual aids. Foreign Language Annals, 21, No. 4, 343-348. Teng, H. –C. (2002). An investigation of EFL listening difficulties for Taiwanese college students. In Selected Papers from the Eleventh International Symposium on English Teaching/ Fourth Pan Asian Conference, 526-533. Taipei: The Crane Publishing. Vogely, A. J. (1998). Listening comprehension anxiety: Students’ reported sources and solutions. Foreign Language Annals, 31, No. 1, 67-80. Weyers, J. R. (1999). The effect of authentic video on communicative competence. The Modern Language Journal, 83, iii, 339-349.id NH0925094003 sid 905256 cfn 0 / id NH0925094004 auc 何秀鑾 tic 國小兒童美語學習經驗與學生日後英語學習成果關連之研究 adc 蘇怡如 ty 碩士 sc 國立清華大學 dp 外國語文學系 yr 92 lg 英文 pg 75 kwc 兒童美語學習 kwc 兒童美語教學方式 kwc 學習年限 kwc 英語學習興趣 kwc 英語學習動機 kwc 英語學習成就 kwc 國中生 abc 近年來,英語學習在台灣已蔚為一股風潮。為使孩子日後更具國際競爭力,許多家長紛紛將其尚在就讀小學的小孩送至兒童美語補習班學習英語。然而,小學時的兒童美語學習經驗是否有助於學生日後的英語表現?這是研究者所想探究釐清的。更明確的說,本研究旨在探討國小時的兒童美語學習經驗對於學生國中時英語月考成績之影響。研究問題共有四點: tc CHAPTER ONE 1 1.1 Background 1 1.2 Motivation of the Present Study 2 1.3 Organization of the Thesis 2 CHAPTER TWO 4 2.1 Critical Period Hypothesis of Foreign Language Learning 4 2.2 Empirical Studies on the Effects of Early English Learning on Later English Achievement 4 2.2.1 Effects on Four Language Skills 4 2.2.2 Effects on Monthly English Exams 7 2.3 Research Questions of the Present Study 11 2.4 Definition of Term 11 CHAPTER THREE 14 3.1 Subjects 14 3.2 Instruments 14 3.2.1 Questionnaire 14 3.2.2 English Achievement Data 15 3.3 Procedures 16 3.4 Data Analysis 16 CHAPTER FOUR 18 4.1 Results and Discussion of Research Question 1 18 4.2 Results and Discussion of Research Question 2 23 4.3 Results and Discussion of Research Question 3 27 4.4 Results and Discussion of Research Question 4 42 CHAPTER FIVE 52 5.1 Pedagogical Implications 53 5.2 Limitations and Directions for Future Research 55 REFERENCES 58 APPENDIX A 63 APPENDIX B 69rf In English Aida, Y. (1994). Examination of Horwitz, Horwitz, and Cope’s construct of foreign language anxiety: The case of students of Japanese. Modern Language Journal, 78, 155-68. Chen, C.C. (1992). Correlate study of early English learning with English achievement in junior high school. Proceedings of the 9th Conference on English Teaching and Learning in the Republic of China, (pp.65-91). Taipei, Taiwan: Crane. Chen, S.C. (1996). The spread of English in Taiwan: A sociolinguistic study. Proceedings of the 9th Conference on English Teaching and Learning in the Republic of China, (pp.321-330). Taipei, Taiwan: Crane. Chang, V. (2002). English goals too high for children. Taipei Times, Saturday, May, 4. p. 8. Cook, V. (2000). The author responds… “ Going beyond the native speaker model” TESOL Quarterly, 34 (2), 329-332. Dorneyi, Z. (1994). Motivation and motivating in the foreign language classroom. Modern Language Journal, 78, 273-284. Dorneyi, Z. (2001). Motivational Strategies in the Language Classroom. Cambridge UP. Gardener, R.C. (1985). Social Psychology and Second Language Learning: The Role of Attitudes and Motivation. London: Edward Arnold. Horwitz, Horwitz and Cope (1986). Foreign language classroom anxiety. Modern Language Journal, 70 (2), 125-132. Hussin, S., Maarof, N., and D’Cruz, J.V. (2000). Sustaining an interest in learning English and increasing the motivation to learn English: An enrichment program. Retrieved June 6, 2003 from http://iteslj.org/Techniques/Hussin-Motivation Jie, Z. (1999). How can a Chinese teacher of English succeed in oral English class. Retrieved June 27, 2003 from http://iteslj.org/Articles/Zhou-SuccessulTeacher.html Jin, L., & Cortazzi, M. (1998). The culture the learner brings: A bridge or a barrier? In Byram, M. & Fleming, M. (Eds.), Language Learning in Intercultural Perspective (pp.98-118). Cambridge University Press. Kuo, Y. S. (2002). The effects of age on Taiwanese EFL learners’ long-term English proficiency. Selected papers from the Eleventh International Symposium on English Teaching, (pp.313-332). Taipei, Taiwan: Crane. Lenneberg, E. H. (1967). Biological Foundations of Language. New York: Willey. Lin, S. W. (2002). The effects of pre-junior high school English learning on junior high students’ English achievement and four language skills. Unpublished master’s thesis, National Kaohsiung Normal University, Kaohsiung, Taiwan.. MacIntyre, P. D., & Gardener, R. C. (1994). The subtle effects of language anxiety on cognitive processing in the second language. Language Learning, 44(2), 283-305. Prodromou, L. (1992). What culture? Which culture? Cross-cultural factors in language learning. ELT Journal, 44 (2), 39-49. Rampton, M. B. H. (1990). Displacing the “native speaker”: Expertise, affiliation, and inheritance. ELT Journal, 44(2), 97-101. In Chinese 〔1〕王萬清 (民 76)。兒童爲何闖入英語世界? 師友月刊, 第235 期,頁9-10。 〔2〕王竹坡 (民 76)。一個解不開的迷。師友月刊, 第235 期,頁19-21。 〔3〕毛連溫、湯梅英 (民 81)。兒童學習英語之時機成效及相關研究。臺北市立師院學報,第23期,頁23-36。 〔4〕石素錦 (民 87)。從認知心?婸P社會互動談兒童英語教學 - 根據皮亞杰與維高斯基理論談國小英語教學實務分析。中華民國第十五届英語文教學研討會論文集。頁 1-27。臺北:文鶴。 〔5〕余光雄(民 87)。談國小兒童英語課程實施後的問題及解决途徑。中華民國第十五届英語文教學研討會論文集。頁 149-157。臺北:文鶴。 〔6〕李臻儀 (民89)。Just listen – 談國小英語啓蒙教學。英語教學。第25卷,第1期。頁 5- 14。 〔7〕李振清(民 91)。學英文 別擔心輸在起跑點。聯合報七月十四日民意論壇。 〔8〕周中天, 徐加玲 (民78)。兒童提前學英語對其日後英語能力影響之研究。國科會輔助專題研究計劃報告,編號NSC78-0301-H003-11。民78年7月。 〔9〕施玉惠、周中天、陳淑嬌、朱惠美 (民87)。國小英語教學實施現况與未來規劃方向。第七届中華民國英語文教學國際研討會論文集。頁 759-777。臺北:文鶴。 〔10〕秦夢群(民 76)。小學生該學ABC嗎? 師友月刊, 第235 期,頁22-23。 〔11〕陳玉婕(民 76)。先跑的孩子,不一定贏 – 談兒童學英語的功效。 師友月刊, 第235 期,頁6-8。 〔12〕陳秋蘭、廖美玲 (民87)。從國小英文教學現况瞭望全面實施國小英語課程前景-以台中市爲例。第十五届中華民國英語文教學研討會論文集。頁 27-37。臺北:文鶴。 〔13〕陳淳麗 (民 87)。外文系學生任國小英語教學之評估。第七届中華民國英語文教學國際研討會論文集。頁 259-268。臺北:文鶴。 〔14〕陳淳麗 (民 88)。國小英語師資訓練課程之調查分析。第十五届中華民國英語文教學研討會論文集。頁 259-268。臺北:文鶴。 〔15〕黃自來(民 78)。年齡、動機與學習第二語言-兼談小學是否應教英語。中華民國第六届英語文教學研討會論文集。頁 37-51。臺北:文鶴。 〔16〕葉卉軒 (民 91)。學齡前寶寶 六成學過ABC。中央日報十月十五日,第九板。 〔17〕張芳杰、黃自來 (民 79)。國中學生提前學英語對其在校成績及學習能力影響之研究,載于黃自來(民 82),英語教學拓新與深化,頁113-172,臺北:文鶴。 〔18〕張湘君 (民 89)。英語教學Easy Go! 臺北市:天衛文化。 〔19〕張玉芳(民 91)。國小英語教學師資、教材選用及學童學習現况調查研究 - 以苗栗縣爲例。英語教學。 第 26期,第4卷。頁 19-37。臺北:文鶴。 〔20〕詹餘靜 、柳雅梅(民 89)。國小英語教學實施情况與探討:以國立嘉義師院實小爲例。第九届中華民國英語文教學研討會論文集,頁650-660。臺北:文鶴。 〔21〕劉顯親 (民 91)。一項國小英語教學方案之紀實 – 引進外師之「跨文化」衝擊。英語教學。第 27期,第1卷。頁 1-20。臺北:文鶴。 〔22〕廖美玲、陳秋蘭 (民 87)。對全面實施國小英語教學的幾點感想。師友月刊,第369期,24-28。 〔23〕廖柏森(民92)。 破除幼兒學英語的迷思。敦煌英語教學電子雜志。 Retrieved June 27, 2003 from http://cet.cavesbooks.com.tw/htm/m0120500.htm 〔24〕駱月娟、曹逢甫 (民 82)。小學三年英語教學追踪輔導後續實驗計畫。國科會輔助專題研究計劃報告,編號NSC81-11-01 H- 82-08-31。 〔25〕聯合報(民 91)。學習英文 未必愈早學愈好。七月十三日,十五版。 〔26〕繆敏志 (民79)。兒童英語教學之探討。現代教育, 第 19 期,頁133-142。 〔27〕戴維揚 (民 87)。國小英語教學現况調查研究。第十五届中華民國英語文教學研討會論文集,頁223-242。臺北:文鶴。 〔28〕盧秀鳳 (民 84)。國民小學開設英語課程可行途徑之研究。國立台中師範學院初等教育研究碩士論文。 〔29〕謝欽舜 (民 87)。創造全英語教學的情境-從教室英語談起。敦煌英語教學雜志。16, 23-25。 〔30〕謝一謙 (民91)。國民小學英語教學實施現况及其遭遇問題之研究-以台中市爲例。國立師範學院國民教育研究所未出版碩士論文。 〔31〕顔元叔(民 76)。兒童應該學英語嗎? 師友月刊,第235 期,頁1-3。 〔32〕龔玲慧(民86)。用英語教英語。敦煌英語教學雜志。12, 8-13。 〔33〕龔玲慧(民87)。再談用英語教英語。敦煌英語教學雜志。16, 29-31。 〔34〕蘇復興 (民 88)。國小英語教學不宜偏廢讀寫訓練。第十六届中華民國英語文教學研討會論文集,頁197-203。臺北:文鶴。id NH0925094004 sid 905257 cfn 0 / id NH0925094005 auc 郭靜蕙 tic 台灣高中英文教師對教授英文寫作的課程準備之探討 adc 鐘乃森博士 ty 碩士 sc 國立清華大學 dp 外國語文學系 yr 92 lg 英文 pg 102 kwc 作文教學 abc 對很多高中生來說,高中是大學的預備教育,而在大學裡,英文寫作扮演重要角色。不過,很少有研究有關高中英文作文教學的品質,或高中教師如何教授英文寫作。這個研究要探討台灣高中英文教師對如何教英文寫作,以及對於師資培育(teacher education)及教師培訓(teacher development) 的看法。一方面,這個研究呈現他們對英文寫作教學的看法,以便讓在職的教師分享,同時大學教授們可更了解高中英教師的想法及作法。另一方面,這個研究彙整了高中英文教師教英文寫作時所遭遇的困難及對師資培育(teacher education)和教師培訓(teacher development)的建議,希望可以提供改良師資培育程的參考。為了要收集以上問題的資料,我採取一個較質化的個案研究,在三個公立高中做問卷調查,之後還訪談四位英文教師。在資料收集之後,用老師們的回答和陳述做分類及討論。 tc TABLE OF CONTENTS Page CHINESE ABSTRACT………………………………………………………………i ENGLISH ABSTRACT…….……………………………………………………….iii ACKNOWLEDGEMENTS………………………………………………………….v TABLE OF CONTENTS……………………………………………………………vi CHAPTER 1. INTRODUCTION….…………………………………………………….1 1.1 Background…….…………………………………………………..…………1 1.2 Purpose of the Study………….………………………………………………3 1.3 Research Questions……….…………………………………………………..3 1.4 Potential Implication……………………..…………………………………...4 1.5 The Organization of the Thesis……………………………………………….5 2. LITERATURE REVIEW………………………………………………..6 2.1 Introduction…………………………………………………………………..6 2.2 EFL Writing Teachers’ Perceptions…………………………………………..7 2.3 Conclusion..…………………………………………………………..……..10 3. METHODOLOGY……………………………………………………...13 3.1 Introduction………………..………………………………………………..13 3.2 Qualitative Case Study………………..…………………………………….13 3.3 Instruments………………………………………………………………….14 3.3.1Written Questionnaire………………..……………….……………….15 3.3.2 Oral Interviews……….…………….………………………………....15 3.4 Participants……..…………………………………………………………...16 3.5 Procedures…………………………………………………………………..17 3.6 Data Analysis…………………………………………………………….....18 3.6.1 Close-ended Questions in Written Questionnaire………………..…...18 3.6.2 Open-ended Questions and Oral Interviews................……………......18 4. DATA ANALYSIS………………………………………………..…….. 20 4.1 Introduction……..…………………………………………………………...20 4.2 Questionnaires………..……………………………………………………..20 4.2.1 Closed-ended Questions………….……………………………..…….20 4.2.2 Open-ended Questions………………………………………………...25 4.3 Oral Interview Results…………….…...……………………………………36 4.4 Summary of the Findings……………………………………………………45 4.5 Conclusion…….…………………………………………………………….46 5. CONCLUSION AND IMPLICATIONS……………………………………...48 5.1 Introduction……..……………………………………………………..……48 5.2 The First Research Question………...…………………………………....…48 5.3 The Second Research Question….……………………………………….…49 5.4 The Third Research Question….…………..………………………….……55 5.5 Summary of the Discussion.………………………………………………..62 5.6 Conclusion…..………………………………………………………….…..64 5.7 Limitations………………………………………………………………....67 REFERENCES…………………………………………………………………………...68 APPENDICES…………………………………………………………………………....76 A-1 Questionnaire (Chinese Version)………………………………………….76 A-2 Questionnaire (English Version)…………………………………………..78 B-1 Interview Transcription (Daisy)……………………………………………80 B-2 Interview Transcription (Ivy)……………………………………………….84 B-3 Interview Transcription (Lisa)……………………………………………...94 B-4 Interview Transcription (Sabina)…………………………………………..97rf Airasian, P & Gay, L.R. (2000). Educational research: Competencies for analysis and application. New Jersey: Prentice-Hall, Inc. Bellamy, D. Finding my voice as an English teacher. In D. Featherstone, H. Munby, & T. Russell (Eds). Finding a voice while learning to teach. (pp. 109-119.) London: The Falmer Press. Burton, J. (1998). A cross-case analysis of teacher involvement in TESOL research. TESOL Quarterly, 32(3), 419-445. Chang, S, & Huang, Y. K. (2001). Communicative Language Teaching: Senior high school teachers’ beliefs and practices. Proceedings of the 10th International Symposium on English Teaching (pp.219-228). Taipei: Crane. Chen, D. W. (2001). The identity crisis of EFL composition instruction in Taiwan. The Proceedings of the 18th Conference on English Teaching and Learning in the ROC. (pp.41-58). Taipei: Crane. Chen, D.W. (1997). The state of college EFL composition instruction---A survey of college EFL composition instructors’ professional background and views. The proceedings of the 14th Conference on English Teaching and Learning in the ROC. (pp.355-366). Taipei: Crane. Cheng, T. Y., Shen, L. B., Chou, Y. H., & Huang, T. I. (1997). An investigation of public high school EFL teachers’ habits of reading for professional growth. The Proceedings of the 14th Conference on English Teaching and Learning in the ROC. (pp.107-117). Taipei: Crane. Clarke, M. A. & Silberstein, S. (1988). Problems, prescriptions, and paradoxes in second language teaching. TESOL Quarterly, 22(4), 685-700. Clarke, M. A. (1994). The dysfunctions of the theory/practice discourse. TESOL Quarterly, 28(1), 1994. Cohen, A. D. & Cavalcanti, M. C. (1990). Feedback on compositions: teacher and student verbal reports. In B. Kroll (Eds.). Second Language Writing: Research Insights for the Classroom. (pp. 178-190). New York: Cambridge University Press. Cross, D. (1995). A practical handbook of language teaching. Great Britain: The Bath press. Curtis, A. (1999). Changing roles for language teachers in the new era. The Proceedings of the 8th International Symposium on English Teaching, 37-46. Taipei: Crane. Day, C. (1993). The importance of learning biography in supporting teacher development: an empirical study. In C. Day, J. Calderhead, & P. Denicolo (Eds.), Research on teacher thinking: Understanding professional development (pp.221-232). Lodon: The Falmer Press. Edelsky, C. (1996). The effect of ‘theory’ on several versions of popular THEORY: Plus ca change, plus c’est la meme chose. In Carole Edelsky (Ed.), With Literary and Justice for All (pp.65-82). London: Taylor & Francis Ltd. Edge, J. & Richards, K. (1998). Why best practice is not good enough. TESOL Quarterly, 32(3), 569-575. Fanselow, J. (1992). Contrasting conversations: Activities for exploring our beliefs and teaching practices. New York: Longman. Featherstone, D, Munby, H., & Russell, T. (1997). Common themes in learning to teach. In D. Featherstone, H. Munby, & T. Russell (Eds.), Finding a voice while learning to teach (pp.15-39). London: The Falmer Press. Ferris, D. R. (1995). Student reactions to teacher response in multiple-draft composition classrooms. TESOL Quarterly, 29(1), 33-53. Ferris, D. R. (1997). The influence of teacher commentary on student revision. TESOL Quarterly, 31(2), 315-339. Freeman, D. & Johnson, K. E. (1998). Reconceptualizing the knowledge-base of language teacher education. TESOL Quarterly, 32(3), 397-417. Freeman, D. (1989). Teacher training, development, and decision-making. TESOL Quarterly, 23(1). 27-47.. Freeman, D. (1996). Redefining the relationship between research and what teachers know. In K. M. Bailey & D. Nunan (Eds.), Voices from the language classroom: Qualitative research in second language education. (pp.88-115). Cambridge: Cambridge University Press. Freeman, D. (2001). Teacher learning and student learning in TESOL. TESOL Quarterly, 35(4), 608-616. Freeman, D., & Richards, J. C. (1993). Conceptions of teaching and the education of second language teachers, TESOL Quarterly, 27(2), 193-216. Golomobek, P. R. (1998). A study of language teachers’ personal practical knowledge.TESOL Quarterly, 32(3), 447-464. Grabe, F., Stoller, D., & Tardy, E. (2001). Disciplinary knowledge as a foundation for teacher preparation. In L. K. Hall & W. G.. Eggington (Eds.), The sociopolitics of English language teaching (pp.178-194). London: Multilingual Matters Ltd. Grossman, P. L. (1992). Teaching to learn. In A. Lieberman (Ed.), The changing contexts of teaching (pp. 179-196). Chicago: University of Chicago Press. Hall, J. K. & Eggington, W. G. (2000). Introduction. In L. K. Hall & W. G. Eggington (Eds.), The sociopolitics of English language teaching (pp.1-3). London: Multilingual Matters Ltd. Huang, J. H. W. (1995). An innovative approach to high school EFL teacher education and development. Papers from the 12th Conference on English Teaching and Learning in the ROC. 114-133. Jacobs, G. M., Curtis, A., Braine, G., & Huang, S. (1998). Feedback on student writing: Taking the middle path. Journal of Second Language Writing, 7(3), 307-317. Johnson, B. (1997). Do EFL teachers have careers? TESOL Quarterly, 31(4), 681-712. Johnson, K. E. (1992). Learning to teach: Instructional actions and decision of preservice ESL teachers. TESOL Quarterly, 26(3), 507-534. Johnson, K. E. (1996). The role of theory in L2 teacher education. TESOL Quarterly, 30(4), 765-782. Johnson, K. E. (1997). The author responds…. TESOL Quarterly, 31(4), 779-782. Kaplan, R. B. (2000). Foreward. In L. K. Hall & W. G.. Eggington (Eds.), The sociopolitics of English language teaching (vii-xiv). London: Multilingual Matters Ltd. Katz, A. (1996). Teaching style: a way to understand instruction in language classrooms. In K. M. Bailey & D. Nunan (Eds.) Voices from the language classroom: Qualitative research in second language education. (pp.57-87). Cambridge: Cambridge University Press. Kelchtermans, G. (1993). Teachers and their career story: A biographical perspective on professional development. In C. Day, J. Calderhead, & P. Denicolo (Eds.), Research on teacher thinking: Understanding professional development (pp.198-220). London: The Falmer Press. Lave, J & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. New York: Cambridge University Press. Leki, I. (1991). The preference of ESL students for error correction in college-level writing classes. Foreign Language Annals, 24(3), 203-218. Li, D. (1998). “It’s always more difficult then you plan and imagine”: Teachers’ perceived difficulties in introducing the Communicative Approach in South Korea. TESOL Quarterly, 32(4), 677-702. Lin, H. L. & Gorrell, J. (2001). Exploratory analysis of pre-service teacher efficacy in Taiwan. Teaching and Teacher Education, 17, 623-635. Mcquire, P. L. (1996). Language planning and policy and the ELT profession in selected Central American countries. TESOL Quarterly, 30 (3), 606-611. Merriam, S. B. (1988). Case study research in education: A qualitative approach. San Francisco: Jossey-Bass Publishers. Mishler, E. (1990). Validation in inquiry guided research: The role of exemplars in narrative studies. Harvard Educational Review, 60(4), 415-442. Murphey, T. & Arao, H. (2001). Changing reported beliefs through near peer role modeling. TESL-EJ, 5(3), 1-15. Murphey, T. & Sasaki, T. (1998). Japanese English teachers’ increasing use of English. The Language Teacher, 22(10), 21-24, 30. Murphey, T. & Sato, K. (2000). Enhancing teacher development: What administrators can do. The Language Teacher, 24(1), 7-11. Murphey, T. (2000). Becoming contributing professionals: Nonnative English speaking teachers in an EFL environment. In K. E. Johnson (Ed.), Teacher education (pp.105-118). Alexandria VA: TESOL. Murphey, T. (1996). Experiencing and mapping in teacher education. In G. T. Sachs, M. Brock, & R. Lo (Eds), Directions in Second Language Teacher Education.(pp.202-223). Hong Kong: City University of Hong Kong. Murphey, T. (2002) The indirect to direct peer mentoring continuum: Connecting with teachers’ ZPD. The Teacher Trainer, 14,(1), 12-14. Nelson, M. H. (1993). Teachers’ stories: An analysis of the themes. In C. Day, J. Calderhead, & P. Denicolo (Eds.), Research on teacher thinking: Understanding professional development (pp.151-166). London: The Falmer Press. Nunan, D. (1991). Second language acquisition research in the language classroom. In E. Sadtono (Ed.), Language acquisition and the second/foreign language classroom (pp.1-16). Singapore: SEAMO Regional English Language Centre. Nunan, D. (1989). Investigating learner behavior in the classroom. The Language Teacher, 13(12), 11-18. Nunan, D. (1996). Hidden voices: Insiders’ perspectives on classroom interaction. In K. M. Bailey & D. Nunan (Eds.) Voices from the language classroom: Qualitative research in second language education. (pp.41-55). Cambridge: Cambridge University Press. Pennington, M. C. (1996). The “cognitive-affective filter” in teacher development: Transmission-based and interpretation-based schemas for change. System, 24(3), 337-350. Pennycook, A. (1999). The concept of method, interested knowledge, and the politics of language teaching. TESOL Quarterly, 23(4), 589-618. Prabhu, N. S. (1990). There is no best method – Why? TESOL Quarterly, 24(2), 161-176. Prabhu, N. S. (1992). The dynamics of the language lesson. TESOL Quarterly, 26(2), 225-241. Reid, J. M. (1993). Teaching ESL Writing. New Jersey: Regents/Prentice Hall. Reid, J. M. (1994). Responding to ESL students’ texts: The myths of appropriation. TESOL Quarterly, 28(2), 273-292. Richard-Amato, P., A. (1996). Making it happen: Interaction in the second language classroom. New York: Addison-Wesley Publishing Group. Richards, J. C. & Lockhart, C. (1994). Reflective teaching in second language classrooms. Cambridge: Cambridge University Press. Richards, J. C. (1990). What happened to methods? The Language Teacher, 15(6), 9-10. Richards, J. C. (1996). Teachers’ maxims in language teaching. TESOL Quarterly, 30(2), 281-297. Richards, J. C. (1998). Teacher beliefs and decision making. In J. C. Richards (Ed.), Beyond training. (pp.65-85). London: Cambridge University Press. Sato, K., & Takahashi, K. (2002). Teacher and student learning in the workplace: The impact of performance tests. Unpublished paper presented at the JALT (2002) conference. Schmidt, R. (1990). The role of consciousness raising in second language learning. Applied Linguistics, 11(2), 129-158. Semke, H. D. (1984). Effects of the red pen. Foreign Language Annals, 17 (3), 195-202. Sheppard, K. (1992). Two feedback: Do they make a difference? RELIC Journal, 23, 103-110. Smylie, M. A. (1995). Teacher learning in the workplace: Implications for school reform. In T. R. Guskey & M. Huberman (Eds.), Professional development in education: New paradigms & practices (pp.92-113). New York: Teacher College Press. Swales, J. (1988). 20 years of the TESOL Quarterly. TESOL Quarterly, 22(1), 151-163. Tai, Y. M. (200). The interaction between English teachers’ knowledge and their curricular planning. Proceedings of the Seventeenth Conference on English Teaching and Learning in the Republic of China, 78-89. Taipei: Crane. Takaki, N., & Laskowski, T. (2002). Investigating teacher thinking of Japanese teachers of English. Changing Asian Foreign Language Education, 2(1), 17-38. Truscott, J. (1996). The case against grammar correction in L2 writing classes. Language Learning, 46(2), 327-369. Ur, P. (2001). A course in language teaching. Cambridge: Cambridge University Press. Wang, H. C. (1998). Evaluation of teacher inservice training programs for high school English teachers. Proceedings of the 7th International Symposium on English Teaching, 833-837. Taipei: Crane. Williams, M. (1994). Teacher training for English language teachers. In G..Harvard, & P. Hodkinson, (Eds). Action and reflection in teacher education. (pp. 213-263). Norwood, N. J.: Ablex. Yinger, R. & Hendrick-Lee, M. (1993). Working knowledge in teaching. In C. Day, J. Calderhead, & P. Denicolo (Eds.), Research on teacher thinking: Understanding professional development (pp.100-123). London: The Falmer Press. Zamel, V. (1985). Responding to student writing. TESOL Quarterly, 19(1), 79-101. Zamel, V. (1987). Recent research on writing pedagogy. TESOL Quarterly, 21(4), 697-715.id NH0925094005 sid 905259 cfn 0 / id NH0925094006 auc 廖愛苓 tic 康寧堡電影中的科技恐懼 adc 傅思迪 ty 碩士 sc 國立清華大學 dp 外國語文學系 yr 92 lg 英文 pg 107 kwc 康寧堡 kwc 科技恐懼 abc 現今科技對人類生活的影響無孔不入,隨著歷史發展,人類越來 tc Abstract Acknowledgement Contents Chapter 1: Introduction 1 I. Are Humans Controlling or Under Control? 1 II.Why Cronenberg? 3 III. Literature Review 8 IV. Philosophical Background 13 V. Film Theory 19 VI. Conclusion 20 Chapter 2: The Director and His Films 22 I. David Cronenberg’s Philosophical Ideas 22 II. The Special Genre “Horror in Science Fiction” 26 III. David Cronenberg’s Horror Films 30 IV. David Cronenberg’s Science Fiction Elements 34 Chapter 3:Theoretical Background 38 I. The Essence of Technology 38 II. Horkheimer/Adorno and Ellul’s Ideas on Technology 40 III. The Power of Technological Rationality 42 IV. The Impact on Human Beings 45 V. An Exit from Technological Domination 50 Chapter 4:The Convergence between Humans and Technological Machines 55 I. The Inclination of Machines to Humans 55 II. The Tendency of Humans to Technology 61 Chapter 5:The Tremendous Effects on Human Beings 69 I. The Influence of Technological Rationality 69 II. The Incapacity for Thinking 77 III. The Power of Machines 81 IV. The Dissolution of Human Subjectivity 85 V. Second Nature 89 VI. An Exit from the Game 93 Conclusion 96 Works Cited 101rf Adorno, Theodor W. “Culture Industry Reconsidered.” New German Critique. 6.4 (1975): 12-19. --- and Max Horkheimer. Dialectics of Enlightenment. Trans. John Cumming. NY: Continuum, 1972. Agazzi, Evandro. “From Technique to Technology: The Role of Modern Science.” Techné: Journal of the Society for Philosophy and Technology. 4.2 (1998). 20 January 2004 . Anders, Günders. “Commandments in the Atomic Age.” Mitcham and Machay, Philosophy and Technology 130-50. Andrew, Dudley. Concepts in Film Theory. Oxford: Oxford UP, 1984. Barr, Lukas. “Long Live the New Flesh.” KGB Magazine 1998. . Beard, William. “The Canadianness of David Cronenberg.” Mosaic: a Journal for the Interdisciplinary Study of Literature. 27.2 (1994):113-119. Blackwelder. “Metaphor Man: Controversial Visionary David Cronenberg sees technology, mankind, sexuality merging in eXistenZ.” SPLICEDwire. 14 April 1999 . Breskin, David. “The Rolling Stone Interview: David Cronenberg.” Rolling Stone 6 Feb, 1992: 66-70. Buck-Morss, Susan. The Origin of Negative Dialectics. NY: Free Press, 1977. Bukatman, Scott. Terminal Identity: The Virtual Subject in Postmodern Science Fiction. Durham: Duke UP, 1993. Burden, Andrew. “Proud Flesh.” iafrica.com 3 January 2003. 2 March 2004 . Carroll, Noël. The Philosophy of Horror or Paradoxes of Heart. New York: Routledge, 1990. Costello, John. The Pocket Essential: David Cronenberg. Vermount: Trafalgar Square Publishing, 2000. Crane, Jonathan. “A Body Apart.” Grant, The Modern Fantastic 50-68. Cronenberg, David, dir. Shivers. Perf. Paul Hampton, Lynn Lowry and Joe Silver. DAL Productions Ltd with the participation of the CFDC,1975. ---. Rabid. Perf. Marilyn Chambers, Frank Moore, and Joe Silver. Cinema Entertainment Enterprises with the participation of the CFDC, 1976. ---. Scanners. Perf. Stephen Lack, Michael Ironside, and Patrick McGoohan. Filmplan International Inc with the participation of the CFDC, 1980. ---. Videodrome. Perf. James Woods, Sonja Smits, and Deborah Harry. International Ⅱ Inc with the participation of the CFDC, 1982. ---. The Fly. Perf. Jeff Goldblum, Geena Davis, and Jogn Getz. Brookfilms, 1986. ---. Dead Ringers. Perf. Jeremy Irons, and Geneviēve Bujold. Mantle Clinic Ⅱ Ltd, in association with Morgan Creek Productions Inc, with the participation of Telefilm Canada, 1988. ---. Naked Lunch. Perf. Peter Weleer, Judy Davis, and Ian Holm. Beverly Hills, 1991. ---. Crash. Perf. James Spader, Holly Hunter, and Elias Koteas. Alliance Communications Corporation, 1996. ---. eXistenZ. Perf. Jennifer Jason Leigh, Jude Law, and Willem Dafoe. Alliance Atlantis and Serendipity Point Films in association with Natural Nylon, with the participation of Telefilm Canada, 1999. D’arcy, David. Interview with David Cronenberg and Doug Saunders. “Interview: Director David Cronenberg Discusses His New Movie eXistenZ.” Morning Edition. Washington. 12 March. 1999. “Definition of SF.” The Encyclopedia of Science Fiction. Eds. Clute, John and Peter Nicholls. New York: St. Martin's Griffin, 1995. Descartes, René. “The Meditations Concerning First Philosophy.” Philosophical Essays. Trans. Laurence J. Lafleur. NY: Macmillan Publishing Company, 1964: 61-126. Ellul, Jacques. The Technological Society. Trans. John Wilkinson. NY: Vintage Books. 1964. ---. “The ‘Autonomy of the Technological Phenomenon.” Scharff, Philosophy of Technology 386-97. “Film.” New Encyclopedia of Science Fiction. Ed. James Gunn. NY: Viking, 1988. Gibson, Nigel, and Andrew Rubin, eds. Adorno: A Critical Reader. Oxford: Blackwell, 2001. Grant, Barry Keith. Film Genre Reader. Austin: Texas UP, 1986. Grant, Michael, ed. The Modern Fantastic: The films of David Cronenberg. Westport: Praeger, 2000. Haas, Robert. “Introduction: The Cronenberg Monster: Literature, Science, and Psychology in the Cinema of Horror.” Post-Script. 15.2 (1996): 3-10. Heidegger, Martin. “The Question Concerning Technology.” Krell, Martin Heidegger Basic Writings. 287-317. Horkheimer, Max and Theordor W. Adorno. Dialectic of Enlightenment. Trans. John Cumming. NY: Herder and Herder, Inc., 1972 “Horror in Science Fiction.” The Encyclopedia of Science Fiction. Eds. Clute, John and Peter Nicholls. New York: St. Martin's Griffin, 1995. Hurley, Kelly. “Reading Like an Alien: Posthuman Identity in Ridley Scott’s Alien and David Cronenberg’s Rabid.” Posthuman Bodies. Eds. Judith Halberstam, Ira Livingston. Indianapolis: Indiana UP, 1995. 203-224. Ihde, Don. “Heidegger’s Philosophy of Technology.” Scharff, Philosophy of Technology 277-92. Jameson, Fredric. The Geopolitical Aesthetic: Cinema and Space in the World System. Bloomington: Indiana UP, 1992. Kauffman, Linda S. “David Cronenberg’s Surreal Abjection.” Bad Girls and Sick Boys: Fantasies in Contemporary Art and Culture. Berkeley: California UP, 1949. 115-45. Kjolseth, Pablo. “David Cronenberg: Spider, The Fly, and Cronenberg’s Movie Habits.” Moviehabit. . Klawans, Stuart. “The Way of All Flesh.” The Nation. 268.17 (1999): 32-35. Knight, Deborah. “Aristotelians on Speed: Paradoxes of Genre in the Context of Cinema.” Film Theory and Philosophy. Eds. Richard Allen and Murray Smith. Oxford: Clarendon Press, 1997. 343-66. Krakauer, Eric L. The Disposition of the Subject: Reading Adorno’s Dialectic of Technology. Illinois: Northwestern UP, 1998. Krell, David Farrell. Martin Heidegger Basic Writings: From Being and Time (1927) to The Task of Thinking (1964). Ed. David Farrell Krell. NY: Harper & Row Publishers, 1977. Kroker, Arthur, and Michael Dorland. “Panic Cinema: Sex in the Age of the Hyperreal.” Crisis Cinema: The Apocalyptic Idea in Postmodern Narrative Film. Ed. Christopher Sharrett. Washington: Maisonneuve Press, 1993. 11-16. Krzysztof, Ziarek. “Radical Art: Reflections after Adorno and Heidegger.” Adorno: A Critical Reader. Eds. Nigel Gibson and Andrew Rubin. NY: Blackwell. 2001. 341-60 Lapsley, Robert, and Michael Westlake. Film Theory: An Introduction. Manchester: Manchester UP, 1988. Lavery, David. “From Cinespace in Cyberspace: Zionists and Agents, Realitists and Games in The Matrix and eXistenZ.” Journal of Popular Film & Television. 28.4(2001):150-157. Leigh, Danny. “Manace to Society.” The Guardian. 13 December 2002. . Li, Xueying. “Tracing Mental Images: Identity and Existence in the Postmodern Landscape of eXistenZ and I love a Man in Uniform.” Quarterly Literature Review Singapore (QLRS) 1.1 (2001). 12 December 2003 . 林文淇, <電視、身體、慾望的競技場:大衛康寧保《錄影帶謀殺案》中的後現代主體性>,《中外文學》,第二十五卷第十二期,頁82-92。 Lowenstein, Adam. “Canadian Horror Made Flesh: Contextualizing David Cronenberg.” Post-Script. 18.2 (1996): 37-51. Maslin, Janet. “In a Grisly ‘Virtual’ Game, Flesh and Blood Are Not.” Rev. of eXistenZ, dir. David Cronenberg. New York Times on the Web 23 April 1999 < http://movies2.nytimes.com/gst/movies/ >. Maslin, Janet. “In a Grisly ‘Virtual’ Game, Flesh and Blood Are Not.” Rev. of eXistenZ, dir. David Cronenberg. New York Times on the Web 23 April 1999 < http://movies2.nytimes.com/gst/movies/ >. Mitcham, Carl, and Robert Mackey, eds. Philosophy and Technology: Readings in the Philosophical Problems of Technology. NY: The Free Press, 1986. Modleski, Tania. “The Terror of Pleasure: The Contemporary Horror Film and Postmodern Theory.” Studies in Entertainment: Critical Approaches to Mass Culture. Ed. Tania Modleski. Indianapolis: Indiana UP, 155-166. Penley, Constance, and Andrew Ross. Technoculture. Minneapolis: Minnesota UP, 1991. “Philosophy of Technology.” Routledge Encyclopedia of Philosophy. Ed. Edward Craig. 9 vols. NY: Routledge, 1998. Prince, Stephen. “Dread, Taboo and The Thing: Toward a Social Theory of the Horror Film.” Wide Angle 10.3 (1998): 19-29. Porton Richard. “The Film Director as Philosopher: An Interview with David Cronenberg.” CINEASTE 24.4 (1999): 4-9. Rapp, Friedrich. Analytical Philosophy of Technology. Trans. Stanley R. Carpenter and Theodor Langenbruch Reid, Bruce. “Transcending Existence: Cronenberg’s New Meta Thiller.” The Stranger. 22 April 1999 . Rodley, Chris. Cronenberg on Cronenberg. Boston: Faber and Faber, 1993. Robbin, Helen W.. “ ‘More Human than I am alone’: Womb envy in David Cronenberg’s The Fly and Dead Ringers.” Screening the Male: Exploring Masculinities in Hollywood Cinema. Eds. Steven Cohan and Ina Rae Hark. NY: Routledge, 1993. 134-47. Ryan, Matthew. “Three Geeks, Three Films: eXistenZ, Being John Malkovich, Fight Club.” Arena Magazine, 45.2 (2000): 53-5. Sardar, Ziauddin and Jonathan Romney. “Playing the Game.” New Statesman. 26 April 1999. 35-37. Sargeant, Jay. “American Nightmare: The Baying of Pigs: Reflections on the New Ameican Horror Movie.” Senses of Cinema July 2001 . Shaviro, Steven. The Cinematic Body. Minneapolis: U of Minnesofa P, 1993. Scharff, Robert C., and Val Dusek, eds. Philosophy of Technology: The Technological Condition: An Anthology. Malden: Blackwell Publishers, 2003. Smith, Murray. “A Moral Monstrosity.” Grant: The Modern Fantastic. 69-83. Spletzer, Andy. “New Sexual Organs: An Interview with David Cronenberg.” The Stranger. 29 April 1999 . Testa, Bart. “Technology’s Body: Cronenberg, Genre, and the Canadian Ethos.” Post-Script 15.1 (1995): 38-56. Testa, Bart. “Panic Pornography: Videodrome from Production to Seduction.” Canadian Journal of Political and Social Theory 8.1-2 (1989): 56-72. Tudor, Andrew. “Why Horror? The Peculiar Pleasures of a Popular Genre.” Cultural Studies 11.3 (1997): 443-463. Wollen, Peter. “The Auteur Theory.” Film Theory and Criticism: Introductory Readings. Eds. Gerald Mast and Marshall Cohen. NY: Oxford UP, 1985. 553-62.id NH0925094006 sid 915206 cfn 0 / id NH0925094007 auc 黃虹慈 tic 英文文章分級及單字接觸次數對大學生非刻意單字學習影響之研究 adc 劉顯親博士 ty 碩士 sc 國立清華大學 dp 外國語文學系 yr 92 lg 英文 pg 122 kwc 非刻意單字習得 kwc 泛讀 kwc 可理解輸入 abc 透過英文閱讀途徑非刻意所習得的單字(Incidental vocabulary learning) 已成為成人終身學習中常見的一環;因此,我們經常鼓勵第二外語學習者培養泛讀(extensive reading)習慣以增進單字能力。然而,第二外語學習者在閱讀時卻常因為認字率不高而無法準確猜出新單字的意思,或因為新單字重複率低而難以對新單字有再次遇見及深入的瞭解和認識的機會。準備適合不同單字程度之學習者以及新單字重複率高的閱讀教材一直是英語教學界的一大挑戰。隨著字彙表相關研究以及量化語料庫分析的進步,適合不同學習者且具有i+1可理解輸入(comprehensible input)的閱讀教材可經由電腦分析以更快速準確的方式篩選出來。此研究旨在研發一線上閱讀環境,內含自動選文功能,融入種種線上單字學習工具,以提供學習者認字率高且新單字重複率高的閱讀教材。我們並測試受試者使用此教材的單字學習狀況。 tc 中文摘要 i ABSTRACT ii ACKNOWLEDGEMENTS v TABLE OF CONTENTS vi LIST OF TABLES viii LIST OF FIGURES ix Chapter One – INTRODUCTION 1 Chapter Two – REVIEW OF LITERATURE 5 2.1. Overview 5 2.2. Computerized Gloss and Incidental Vocabulary Learning 5 2.3. Vocabulary Acquisition with Word Lists 10 2.4. Vocabulary Acquisition Through Sequencing of Reading Texts 13 2.5. Amount of Exposure to a Word and Successful Vocabulary Acquisition 19 2.6. Measuring Incidental Vocabulary Acquisition 22 2.7. Summary 24 Chapter Three—METHODOLOGY 26 3.1. Overview 26 3.2. Participants 26 3.3. The Design of an Online Extensive Reading Syllabus 27 3.3.1. The Reading Material: the Sinorama Magazine 27 3.3.2. Four Word Lists 29 3.3.3. Sequencing of Reading Texts 33 3.3.4. Glossing of Reading Texts 44 3.3.5. Reading Texts Interfaces 44 3.4. Instruments 45 3.4.1. Pretest 45 3.4.2. Posttest 46 3.4.3. Questionnaires 48 3.5. Procedures 50 3.6. Data Analysis 53 Chapter Four—RESULTS AND DISCUSSION 55 4.1. Overview 55 4.2. Results 56 4.2.1. The Results of the Background Questionnaire 56 4.2.2. The Results of the Pretest 59 4.2.3. The Results of the Posttest 61 4.2.4. The Results of the Evaluation Questionnaire 66 4.3. Discussion 70 4.3.1. The Feasibility of Incorporating Online Tools to an Online Extensive Reading Syllabus for Vocabulary Learning Purposes 70 4.3.2. Learners’ Feedback towards an Online Extensive Reading Syllabus 73 4.3.3. Amount of Exposure Necessary for Incidental Vocabulary Acquisition 75 4.3.4. Summary 80 Chapter Five—CONCLUSION 82 5.1. Overview 82 5.2. Limitations of the Study 83 5.3. Directions for Future Research 84 5.4. Developmental Implications for an Online Extensive Reading Syllabus 85 5.5. Pedagogical Implications 87 References 90 Appendix A—The Background Questionnaire 96 Appendix B—The Pretest 99 Appendix C—The Posttest 101 Appendix D—An Example of the VKS Scoring 107 Appendix E—The Online Evaluation Questionnaire 109 Appendix F—The In-class Evaluation Questionnaire 110 Appendix G—The Syllabus for the Sixteen Readings 111 Appendix H—The Introductory Page on How to Use the Online Extensive Reading Syllabus 112 Appendix I—The First Reading on the Syllabus 113 Appendix J—A Search Example of the Bilingual Concordancer TotalRecall 114 Appendix K—An Example of the Comprehension Questions 115 Appendix L-- Student Reading Process Recorded by Tracker 116 Appendix M—Consent Form 117 Appendix N—The Results of the Background Questionnaire 118 Appendix O—The Results of the Online Evaluation Questionnaire 121 Appendix P—The Results of the In-class Evaluation Questionnaire 122rf Berman, R.A. (1984 ). Syntactic components of the foreign language reading process in Alderson, C. & Urquhart, A. (Eds) Reading in a Foreign Language. New York: Longman. Carter, R., & McCarthy, M. (1988). Vocabulary and Language Teaching. New York: Longman. Chen, H. J. (1998). A preliminary investigation on Taiwanese EFL learners’ vocabulary size. Proceedings of the fifteenth conference on English teaching and learning in the Republic of China. (pp. 193-211). Taipei: Crane. Chen, H. J. (2003). Developing a technology-enhanced self-access reading environment. Proceedings of 2003 International Conference on English Teaching and Learning in the Republic of China. (pp. 103-116). Department of English Language, Literature, and Linguistics, Providence University Shalu, Taichung County. Chun, D. M., & Plass, J. L. (1996). Research on text comprehension in multimedia environments. Language Learning & Technology, 1(1), 60-80. Coady, J., & Huckin, T. (1997). Second Language Vocabulary Acquisiton: A Rationale for Pedagogy. Cambridge, UK: Cambridge University Press. Cobb, T., & Horst, M. (2001). Reading academic English: Carrying learners across the lexical threshold. In J. Flowerdew & Peacock (Eds.), Research perspectives on English for academic purposes (pp. 315-329). Cambridge, UK: Cambridge University Press. Davis, J. (1989). Facilitating effects of marginal glosses on foreign language reading. The Modern Language Journal, 73(1), 41-47. Davis, N., & Lyman-Hager, M. (1997). Computers and L2 reading: Student performance, student attitudes. Foreign Language Annals, 30(1), 58-72. Day, R., & Bamford, J. (1998). Extensive reading in the second language classroom. Cambridge: Cambridge University Press. Elley, W. (1991). Acquiring literacy in a second language: The effect of book-based programs. Language Learning, 41(3), 375-411. Ellis, N. (1995). Consciousness in second language acquisition: A review of field studies and laboratory experiments. Language Awareness, 4, 123-146. Flowerdew, J. (1993). Concordancing as a tool in course design. System, 21(2), 231-244. Gass, S. (1999). Discussion: Incidental vocabulary learning. Studies in Second Language Acquisiton, 21, 319-333. Gettys, S., Imhof, L., & Kautz, J. (2001). Computer-assisted reading: the effect of glossing format on comprehension and vocabulary retention. Foreign Language Annals, 34(2), 91-101. Ghadessy, M. (1979). Frequency counts, word lists, and materials preparation: A new approach. English Teaching Forum, 17, 24-27. Ghadirian, S. (2003). Providing controlled exposure to target vocabulary through the screening and arranging of texts. Language Learning & Technology, 6(1), 147-164, Grabe, W., & Stoller, F. (1997). Reading and vocabulary development in a second language: A case study. In James Coady & Thomas Huckin (Eds) Second language vocabulary acquisition. Cambridge: Cambridge University Press. Groot, P. (2000). Computer assisted second language vocabulary acquisition. Language Learning & Technology, 4(1), 60-81. Hafiz, F., & Tudor, I. (1989). Extensive reading and the development of language skills. ELT Journal, 43(1), 4-13. Hafiz, F., & Tudor, I. (1990). Graded readers as an input medium in L2 learning. System, 18(1), 31-42. Harley, B. (1996). Introduction: Vocabulary learning and teaching in a second language. The Canadian Modern Language Review, 53(1), 3-11. Hazengerg, S., & Hulstijn, (1996). Defining a minimal receptive second-language vocabulary for non-native university students: An empirical investigation. Applied Linguistics, 17(20), 145-163. Henriksen, B. (1999). Three dimensions of vocabulary development. Studies in Second Language Learning, 21, 303-317. Holley, F. (1973). A study of vocabulary learning in context: The effect of new-word density in German reading materials. Foreign Language Annals, 6, 339-347. Horst, M., Cobb. T., & Meara, P. (1998). Beyond a clockwork orange: Acquiring second language vocabulary through reading. Reading in a Foreign Language, 11(2), 207-233. Huang, C. C. (2000). A threshold for vocabulary knowledge on reading comprehension. Proceedings of the Seventeenth Conference on English Teaching and Learning in the Republic of China. pp132-145. Huang, C. C. (2001). An investigation of ESP students’ vocabulary knowledge and reading comprehension. Selected Papers from the Tenth International Symposium on English Teaching. (pp. 436-445). Taipei: Crane. Huckin, T., & Coady, J. (1999). Incidental vocabulary acquisition in a second language: A review. Studies in Second Language Acquisition, 21, 181-193. Hulstijn, J. H. (1993). When do foreign-language readers look up the meaning of unfamiliar words? The influence of task and learner variable. The Modern Language Journal, 77(2), 139-147. Hulstijn, J. H., Hollander, M., & Greidanus, T. (1996). Incidental vocabulary learning by advanced foreign language students: The influence of marginal glosses, dictionary use, and reoccurrence of unknown words. The Modern Language Journal, 80(3), 327-339. Jacobs, G. M. (1994). What lurks in the margin: Use of vocabulary glosses as a strategy in second language reading. Issues in Applied Linguistics, 5, 115-137. Joe, A. (1995). Text-based tasks and incidental vocabulary learning. Second Language Research, 11, 149-158. Krasheh, S. (1989). We acquire vocabulary and spelling by reading: Additional evidence for the input hypothesis. The Modern Language Journal, 73(4), 440-455. Krashen, S. (1993). The case for free voluntary reading. The Canadian Modern Language Review, 50(1), 72-81. Knight, S. (1994). Dictionary use while reading: The effects on comprehension and vocabulary acquisition for students of different verbal abilities. The Modern Language Journals, 78(3), 285-299. Kost, C., Foss, P., & Lenzini, J. (1999). Textual and pictorial gloss: Effectiveness on incidental vocabulary growth when reading in a foreign language. Foreign Language Annals, 32(1), 89-113. Kyongho, H., & Nation, P. (1989). Reducing the vocabulary load and encouraging vocabulary learning through reading newspaper. Reading in a Foreign Language, 6(1), 323-335. Laufer, B. (1989). What percentage of lexis is essential for comprehension? In C. Lauren & M. Nordman (Eds.), Special Language: From humans thinking to thinking machine (pp. 69-75). Clevedon, UK: Multilingual Matters. Laufer, B (1997). The lexical plight in second language reading: Words you don’t know, words you think you know, and words you can’t guess. In J. Coady & T. Huckin (Eds.). Second Language Vocabulary Acquisition: A Rationale for Pedagogy. Cambridge, UK: Cambridge University Press. Laufer, B., & Hulstijn, J. H. (2001). Incidental vocabulary acquisition in a second language: The construct of task-induced involvement. Applied Linguistics, 22(1), 1-26. Leefa, V.J. (1992). Making foreign language texts comprehensible for beginners: An expreimnet with an electronic glossary. System, 20(1), 63-73. Liou, H. C. (2000). The electronic bilingual dictionary as a reading aid to EFL learners: Research findings and implications. Computer Assisted Language Learning, 13(5), 467-476. Lomicka, L. (1998). To Gloss or not to gloss: An investigation of reading comprehension online. Language Learning & Technology, 1(2), 41-50. Luppescu, S., & Day, R. (1993). Reading, dictionaries, and vocabulary learning. Language Learning, 43(2), 263-287. Mason, B., & Krashen, S. (1997). Extensive reading in English as a foreign language. System, 25(1), 91-102. Nagy, W.E. (1997). On the role of context in first- and second-language vocabulary learning. In N. Schmitt & M. McCarthy (Eds.), Vocabulary: Description, acquisition, pedagogy (pp. 64-83). Cambridge, UK: Cambridge University Press. Nagy, W. E., Herman, P. A., & Anderson, R. C. (1985). Learning words from context. Reading Research Quarterly, 20, 233-253. Nagy, W. E., Herman, P. A., & Anderson, R. C. (1987). Learning word meanings form context during normal reading. American Educational Research Journal, 24, 237-270. Nation, P. (1990). Teaching & learning vocabulary. Rowley, MA: Newbury House. Nation, P. (1993). Vocabulary size, growth, and use. In Robert Schreuder & Bert Welterns (Eds.), The bilingual lexicon, pp115-134. Philadelphia: John Benjamins Publishing Company. Nation, P. (2001). Learning vocabulary in anotherlLanguage. Cambridge, UK: Cambridge University Press. Nation, P., & Coady, J. (1988). Vocabulary and reading. In Ronal Carter and Michael McCarthy (Eds). Vocabulary and language teaching: 97-110. New York: Longman. Naiton, P., & Kyongho, H. (1995). Where would general service vocabulary stop and special purposes vocabulary begin? System, 23(1), 35-41. Nation, P. & Waring, R. (1997). Vocabulary size, text coverage and word lists. In N. Schmitt & M. McCarthy (Eds.), Vocabulary: Description, acquisition, pedagogy (pp. 64-83). Cambridge, UK: Cambridge University Press. Nuttall, C. (2000). Teaching reading skills in a foreign language. UK: Macmillan Education. Paribakht, T. S. & Wesche, M. B. (1993). Reading comprehension and second language development in a comprehension-based ESL program. TESL Canada Journal, 11, 9-29. Paribakht, T. S., & Wesche, M. (1997). Vocabulary enhancement activities and reading for meaning in second language vocabulary development. In Coady, J., & Huckin, T. (Eds.). Second Language Vocabulary Acquisition: A Rationale for Pedagogy (pp. 174-200). New York: Cambridge University Press. Pulido, D. (2003). Modeling the role of second language proficiency and topic familiarity in second language incidental vocabulary acquisition through reading. Language Learning, 53(2), 233-284. Qian, D. (1996). ESL vocabulary acquisition: Contextualization and decontextualization. The Canadian Modern Language Review, 53, 120-142. Raptis, H. (1997). Is second language reading vocabulary best learned by reading? The Canadian Modern Language Review, 53(3), 69-75. Read, J. (2000). Assessing Vocabulary. Cambridge, UK: Cambridge University Press. Renandya, W., & Rajan, S. (1999). Extensive reading with adult learners of English as a second language. RELC Journal, 30(1), 39-60. Robb, T. (2002). Examining self-access. Paper presented at Second National Conference on the Curriculum, Testing and New Technologies, Sultan Qaboos University, Muscat, Oman. Rott, S. (1999). The effect of exposure frequency on intermediate language learners’ incidental vocabulary acquisition and retention through reading. Studies in Second Language Acquisition, 21(4), 589-620. Saragi, T., Nation, P., & Meister, G. (1978). Vocabulary learning and reading. System, 6, 72-80. Sinclair, J. M. (1995). Collins COBUILD Dictionary (2nd edn. ). London: HarperCollins. Schmitt, N., & Schmitt, D. (1995). Vocabulary notebooks: Theoretical underpinnings and practical suggests. ELT Journal, 49, 133-143. Schnotz, W., & Grzondziel, H. (1996). Knowledge acquisition with static and animated pictures in computer-based learning. Learning and Instruction, 3, 247-249. Wesche, M., & Paribakht, T. (1996). Assessing second language vocabulary knowledge: depth versus breadth. The Canadian Modern Language Review, 53(1), 13-39. Wesche, M., & Paribakht, T S. (2000). Reading-based exercises in second language vocabulary learning: An introspective study. The Modern Language Journal, 84(4), 196-213. West, M. (1953). A General Service List of English Words. London: Longman, Green & Co. Worthington, D. & Nation, P. (1996). Using texts to sequence the introduction of new vocabulary in an EAP course. RELC Journal, 27(2), 1-11. Wu, J. C., Yeh, K. C., Chuang, T. C., Shei, W. C., & Chang, J. S. (2003). TotalRecall: A bilingual concordance for computer assisted translation and language learning. Proceedings of the 41st Association of Computational Linguistics Conference, Sappora, Japan, July 7-12. http://candle.cs.nthu.edu.tw/totalrecall/concordance/concordance.aspx Xue, G., & Nation, I. S. P. (1984). A university word list. Language Learning and Communication, 3, 215-229. Yoshii, M., & Flaitz, J. (2002). Second language incidental vocabulary retention: The effect of text and picture annotation types. CALICO Journal, 20(1), 33-58. Zahar, R., Cobb, T., & Spada, N. (2001). Acquiring vocabulary through reading: Effects of frequency and contextual richness. The Canadian Modern Language Review, 57(4), 541-572. 鄭恆雄 (2002),大學入學考試中心高中英文參考字彙表,台北:大學入學考試中心。 鄭恆雄 (2003),大學入學考試中心高中英文參考字彙表之編輯方法及原則。 Proceedings the 7t International Conference on Multimedia Language Education. (pp. 514-529). Taipei: Crane.id NH0925094007 sid 915253 cfn 0 / id NH0925094008 auc 詹敦珮 tic 電腦輔助語言教學對於大學生學習英文動詞與名詞搭配詞之效能研究 adc 劉顯親 ty 碩士 sc 國立清華大學 dp 外國語文學系 yr 92 lg 英文 pg 123 kwc 搭配詞 kwc 動詞名詞 kwc 雙語檢索系統 kwc 效能研究 kwc 歸納學習法 abc 文獻指出對於正在學習英文為其第二外語的中等程度之學生,英文動詞名詞的搭配組合是他們發現為其字彙學習上很顯著的弱點,所以給予學生明確直接的搭配詞教學是必須的。另外研究指出,電腦工具的發展,例如資料庫檢索系統,有助於單字學習。然而先前的研究較少利用電腦輔助搭配詞教學,所以本研究針對學生常犯錯之動詞名詞搭配設計了五課線上教材。該教材包含了台灣學生常犯錯的四種動詞名詞搭配組合,並結合了一個線上中英文雙語檢索系統(Totalrecall)。此五課教材分別採用了演繹及歸納教學法。32位非英文系大一學生參與此研究達五週,使用線上教材之前,受試者填寫一份背景問卷,以瞭解其單字學習的習慣及所偏好之教學方法。之後我們在正規大一英文課程中,讓受試者上線使用搭配詞教材。學生完成五課線上練習後,填寫一份評量問卷,以評估受試者對於線上搭配詞教學及雙語檢索系統的的感受。我們也利用前測,立即後測,及間隔兩個半月的後後測,檢驗學生搭配詞表現是否有顯著的不同。更進一步,學生搭配詞程度上的個別差異,學生分別在四種動詞名詞搭配上的表現,及不同教學法應用於搭配詞教學的影響皆列入考量。 tc Table of Contents Page 中文摘要……………………………………………………………………………... i ABSTRACT………………………………………………………………………….. ii ACKNOWLEDGEMENTS…………………………………………………………... iv TABLE OF CONTENTS……………………………………………………………... vi LIST OF TABLES………………………………………………………………..…... ix LIST OF FIGURES…………………………………………………………………... xii CHAPTER Ⅰ INTRODUCTION …………………………………………...... 1 CHAPTER Ⅱ LITERATURE REVIEW............................................................... 3 2.1 The new perspective in vocabulary instruction……………………………... 3 2.2 The nature of collocation……………………………………………………..4 2.2.1 Notions of collocation ……………………………………………….. 4 2.2.2 Pedagogical issues of collocation acquisition………………………... 5 2.3 Collocation analysis and instruction ………………………………………. 7 2.3.1 Empirical studies on English collocations in EFL contexts………….. 7 2.3.2 Empirical studies on collocation analysis based on Taiwan EFL students’ data……………….………………………………………... 9 2.3.3 Summary on collocation analysis of Taiwan learners’ data: four common V-N miscollocation types……………………………… 14 2.4 Collocation teaching in Taiwan…………………………………………… 17 2.5 Cognitive approaches in language learning……………………………….. 20 2.6 On-line approaches………………………………………………………… 22 2.6.1 Development of concordancers……………………………………….22 2.6.2 Empirical studies on concordancing learning…….............................. 24 2.6.3 Programs or systems developed for collocation learning…………… 27 2.7 Guidelines and activities for online English collocation teaching and learning…………………………………………………………………….. 29 2.8 Research questions………………………………………………………… 31 CHAPTER Ⅲ RESEARCH METHOD………………………………………… 33 3.1 Overall design……………………………………………………………… 33 3.2 Participants………………………………………………………………… 33 3.3 Instruments………………………………………………………………… 33 3.4 Instructional design of the six online collocation units……………………. 36 3.5 Data collocation procedures……………………………………………….. 40 3.6 Data analysis……………………………………………………………….. 42 CHAPTER Ⅳ RESEARCH RESULTS AND DISCUSSION…………………….. 44 4.1 The effects of the online practice on learners’ acquisition of verb-noun collocations and retention………………………………………………….. 45 4.1.1 The effects of collocation teaching via CALL on students’ overall collocation knowledge and their collocation awareness……………… 46 4.1.2 Collocation instruction on learning four different types of verb-noun collocation …………………………………………………………… 48 4.1.3 The effectiveness of different approaches for collocation learning….. 52 4.1.4 Students’ retention of explicit collocation instruction……………….. 54 4.2 Students’ prior collocation levels and their performance………………….. 59 4.3 Participants’ background and their attitudes toward online collocation practice.......................................................................................................... 62 4.3.1 Participants’ background about vocabulary learning and teaching styles………………………………………………………………….. 62 4.3.2 Participants’ attitudes toward online collocation instruction ………... 64 4.4 Initial analysis of the tracker’s record……………………………………… 72 4.5 General discussion…………………………………………………………. 74 CHAPTER Ⅴ CONCLUSION…………………………………………………... 78 5.1 Pedagogical implication…………………………………………………….. 79 5.2 Limitations of the study……………………………………………………... 82 5.3 Further research…………………………………………………………….. 82 REFERENCES……………………………………………………………………….. 83 APPENDICES Appendix A The Pretest……………………………………………………………. 88 Appendix B The Immediate Posttest………………………………………………. 91 Appendix C The Delayed Posttest…………………………………………………. 94 Appendix D The Background Questionnaire………………………………………. 97 Appendix E The Evaluation Questionnaire………………………………………… 99 Appendix F The Taught V-N Incidents Categorized Based on the 4 VN Types…… 103 Appendix G Introduction to the Six Units and the Concept of Collocation ………. 106 Appendix H Online Collocation Unit 1-1…………………………………………... 107 Appendix I A Sample of the Score Report for Multiple-choice Exercises…………110 Appendix J A Sample of Explicit Feedback for Translations Exercises…………... 110 Appendix K An Example Demonstrating the Way to Use the Bilingual Concordancer…………………………………………………………. 111 Appendix L The Written Instruction Manual of the Bilingual Concordancer……... 113 Appendix M Online Collocation Unit 3……………………………………………. 115 Appendix N Results of the Background Questionnaire……………………………. 118 Appendix O Results of the Evaluation Questionnaire………………………………120 List of Tables Page Table 2.1 Seven types of lexical collocations…………………………………… 6 Table 2.2 The distribution of the 233 verb pairs by frequency (Liu, 2002, p. 48)………………………………………………………………….. 13 Table 2.3 The summary of empirical collocation studies in Taiwan……………. 16 Table 3.1 The distribution of sampled items involving different teaching methods in the three collocation tests………………………………………….. 35 Table 3.2 The distribution of sampled items involving different V-N types in the three collocation tests…………………………………………………. 35 Table 3.3 Class A’s and B’s schedules for collocation units ……………………. 41 Table 3.4 Class A’s and Class B’s Data collection procedures………………...... 41 Table 4.1 The final distribution of sampled items involving different V-N types and teaching methods in three collocation tests ……………………… 46 Table 4.2 The paired t-test for comparison of pretest scores and posttest scores.. 47 Table 4.3 The paired t-test for comparison of 26 taught items in the pretest and the immediate posttest ……………………………………………….. 47 Table 4.4 The paired t-test for students’ collocation awareness in the pretest and the immediate posttest……………………………………………. 48 Table 4.5 The paired t-test for students’ collocation awareness in the immediate posttest and the delayed posttest………………………...... 48 Table 4.6 The repeated measure statistics for the subscores of the 4VN types in the pretest ………………………………………………………….. 49 Table 4.7 The Post hoc comparisons using the LSD test for 4VN subscores in the pretest …………………………………………………………. 50 Table 4.8 The repeated measure statistics for the gain scores of the 4VN types in the immediate posttest and the pretest……………………………... 51 Table 4.9 The paired t-test for the mean scores of deduction and induction in the pretest……………………………………………………………. 53 Table 4.10 The gain scores of deduction and induction in the immediate posttest and the pretest………………………………………………………… 53 Table 4.11 The paired t-test for the retention of overall collocation knowledge between the immediate posttest and the delayed posttest…………….. 55 Table 4.12 The paired t-test for the retention of overall collocation knowledge between the pretest and the delayed posttest…………………………. 55 Table 4.13 Mean changes of the 4 VN types between the immediate posttest and the delayed posttest…………………………………………………… 56 Table 4.14 Mean changes of the 4 VN types between the delayed posttest and the pretest…………………………………………………………….. 56 Table 4.15 The paired t-test for mean changes of two teaching methods between the immediate posttest and the delayed posttest……………………… 58 Table 4.16 The paired t-test for mean changes of two teaching methods between the pretest and the delayed posttest…………………………………… 58 Table 4.17 The independent sample t-test of HG and LG in total scores of the pretest…………………………………………………………………. 59 Table 4.18 The independent sample t-test of the HG’s and LG’s total scores of the immediate posttest ……………………………………………...... 60 Table 4.19 The independent sample t-test of the HG’s and LG’s mean changes between the pretest and the immediate posttest……………………..... 60 Table 4.20 The independent sample t-test of the HG’s and LG’s total scores of the delayed posttest……………………………………………………….. 60 Table 4.21 The independent sample t-test of the HG’s and LG’s mean changes between the immediate posttest and the delayed posttest……………. 61 Table 4.22 The independent sample t-test of the HG’s and LG’s mean changes between the pretest and the delayed posttest…………………………. 61 Table 4.23 Students’ vocabulary learning behaviors……………………………... 63 Table 4.24 Students’ preferences for different teaching styles ………………….. 64 Table 4.25 The Wilcoxon signed ranks test for participants’ attitudes toward different teaching styles in English learning………………………….. 65 Table 4.26 Participants’ general attitudes toward online explicit collocation instruction…………………………………………………………….. 66 Table 4.27 Students’ attitudes toward the three different teaching methods……... 67 Table 4.28 The Wilcoxon signed ranks test for participants’ attitudes toward different teaching styles in collocation learning.. ……………………. 67 Table 4.29 Students’ reasons in favor of the deductive method …………………. 68 Table 4.30 Students’ reasons in favor of the inductive method………………….. 69 Table 4.31 Students’ reasons for the combination method………………………. 70 Table 4.32 Students’ attitudes toward the design of online practice………………71 Table 4.33 Recommendations about the program design of online collocation practice………………………………………………………………... 71 Table 4.34 Recommendations about the program design of the bilingual concordancer………………………………………………………….. 72 Table 5.1 The summary on major findings of the study………………………… 79 List of Figures Page Figure 2.1 TotalRecall with display of bilingual concordances………………….. 23 Figure 2.2 Format of students’ notebook for a noun head and five of its verb collocates …………………………………………………….. 30 Figure 2.3 Semantic field analyses for the meanings of break, violate, and infringe…………………………………………………………… 30 Figure 2.4 Collocational grid exercise for break, violate, and infringe………….. 31 Figure 2.5 Sports name and the verbs that go together…………………………... 31 Figure 4.1 The tracking record of students’ use of TotalRecall………………….. 73 Figure 4.2 Details of students’ concordancing record……………………………. 73 Figure 5.1 The interface of Tango, a collocation querying tool………………….. 81rf Allerton, D. J. (1984). Three (or four) levels of concurrence restriction. Lingua, 63, 17-40. Aston, G. (1995). “Corpora in language pedagogy: Matching theory and practice”, in G. Cook & B. Seidlhofer (eds.), Principle and practice in applied linguistics: Studies in Honour of H. G. Widdowson (pp. 257-270). Oxford: Oxford University Press. Bahns, J., & Eldaw, M. (1993). Should we teach EFL students collocations? System, 21, 101-114. Benson, M., Benson, E., & Ilson, R. (1986a). Lexicographical description of English. Amsterdam: John Benjamin’s. Benson, M,, Benson, E., & Ilson, R. (1986b). The BBI combinatory dictionary of English: A guide to word combination. Amsterdam: John Benjamins. Benson, M., Benson, E., & Ilson, R. (1997). The BBI dictionary of English word combinations. Philadelphia: John Benjamins. Bolinger, D. (1975). Aspects of language. New York: Harcourt Brace Jovanovich. Inc. Bolinger, D., & Sears, D. (1981). Aspects of language. New York: Harcourt Brace Jovanovich, Inc. Chang, Y. C., Chan, T. P., & Chang J. S. (2004). An Automatic Collocation Writing Assistant for Taiwanese EFL Learners: using corpora for language teaching and learning based on NLP Technology. Paper to be presented at EUROCALL 2004 Symposium, September. Chapelle, C. A. (2001).Computer applications in second language acquisition: Foundations for teaching, testing and research. Cambridge: Cambridge University Press. Chen, P. C. (2002). A corpus-based study of the collocational errors in the writings of the EFL learners in Taiwan. Unpublished master’s thesis, National Taiwan Normal University, Taipei, Cobb, T. (1999). Breadth and depth of lexical acquisition with hands-on concordancing. Computer Assisted Language Learning, 12, 345-360. Cowie, A. P. (1988). Stable and creative aspects of vocabulary. In Carter & McCarthy, M. (Eds.), Vocabulary and language teaching (pp. 126-139). New York: Longman. Dekeyser, R. (1995). Learning second language grammar rules: an experiment with a miniature linguistic system. Studies in Second Language Acquisition, 17, 379-410. Ellis, N. C. (1996). Sequencing in SLA: Phonological memory, chunking, and points of order. Studies in Second Language Acquisition, 18, 91-126. Farghal, M. & Obiedat, H. (1995). Collocations: A neglected variables in EFL. International Review of Applied Linguistics, 33, 313-331. Firth, J. R. (1957). Idioms and idiomaticity. In Papers in linguistics, 1934-1951. London: Oxford University. Fischer, R. A. (1979). The inductive-deductive controversy revisited. The Modern Language Journal, 63, 98-105. Gairns, R., & Redman, S. (1986). Working with words: A guide to teaching and learning vocabulary. Cambridge: Cambridge University Press. Gitsaki, C. (1996). The development of ESL collocational knowledge. Unpublished Doctorial dissertation, Center of Language Teaching and Research, University of Queensland. Harmer, J., & Rossner, R. (1992). More than words: Book 2. London: Longman. Hill, J. (2000). Revising priorities: from grammatical failure to collocation success. In M. Lewis (Ed.), Teaching collocation: Further developments in the lexical approach (pp. 47-67). London: Language Teaching Publications. Johns, T. (1991a). Should you be persuaded: Two examples of data driven learning materials, ELR Journal, 4, 1-16. Johns, T. (1991b). From printout to handout: Grammar and vocabulary teaching in the context of data-driven learning. ELT Journal, 4, 27-45. Judd, E. (1978). Vocabulary teaching and TESOL: A need for reevaluation of existing assumptions. TESOL Quarterly, 12, 71-76. Lee. C. Y. (2002). A study of using web concordancing for English vocabulary learning in a Taiwan high school context. Master’s thesis, National Tsing Hwa University, Hsinchu, June. Lee, C. Y., & Liou, H. C. (2003). A study of using web concordancing for English vocabulary learning in a Taiwan high school context. English Teaching & Learning, 27, 35-56. Lewis, M. (1993). The lexical approach. London: Language Teaching Publications. Lewis, M. (1997). Implementing the lexical approach. London: Language Teaching Publications. Lewis, M. (2000). Teaching collocation: Further development in lexical approach. London: Language Teaching Publications. Lin, C. C. (2003). Learning collocations in a bilingual corpus. The Proceedings of 2003 International Conference and Workshop on TEFL & Applied Linguistics (pp. 250-256). Taipei: Crane. Lin, Y. P. (2002). The effects of collocation instruction on English vocabulary developments of senior high students in Taiwan. A Master’s Thesis Submitted to English Department of National Kaohsiung Normal University. Lin, W. Y., & Yuan, H. C., & Feng, H. P. (2003). English vocabulary knowledge of first-year university students: Vocabulary size and collocational knowledge. The Proceedings of 2003 International Conference and Workshop on TEFL & Applied Linguistics (pp. 269-77). Taipei: Crane. Liou, H. C., J. Chang, Y. Yeh, M. Liaw, C. Lin, H. Chen, G. You, C. Chuang, Z. Gao. (2003). Using corpora and computational scaffolding to construct an advanced digital English learning environment: The CANDLE project. Proceedings of APAMALL 2003 and ROCMELIA 2003 (pp. 62-77). Taipei : Crane. Liu, C. P. (1999a). A study of Chinese Culture University freshmen’s collocational competence: “Knowledge” as an example. Hwa Kang Journal of English Language & Literature, 5, 81-99. Liu, C. P. (1999b). An analysis of collocational errors in EFL writings. The proceedings of the Eighth International Symposium on English Teaching (pp. 483-494). Taipei: Crane. Liu, C. P. (2000a). An empirical study of collocation teaching. Proceedings of the seventeenth conference on English teaching and learning in the Republic of China (pp. 165-178). Liu, C. P. (2000b). A study of strategy use in producing lexical collocations. Selected Papers from the Ninth International Symposium on English Teaching (pp. 481-492). Taipei: Crane. Liu, L. E. (2002). A corpus-based lexical semantic investigation of verb-noun miscollocations in Taiwan learners’ English. Unpublished master’s thesis, Tamkang University, Taipei, January. LTP (1997). LTP Dictionary of Selected Collocations. London: Language Teaching Publications. Miller, G. A. (1995). WordNet: A Lexical Database for English. Communications of the ACM (11). Nation, I. S. P. (1990). Teaching and learning vocabulary. Boston: Heinle & Heinle. Nation, I. S. P. (2001). Learning vocabulary in another language. Cambridge: Cambridge Press. Natiinger, J. R. (1988). Some current trends in vocabulary teaching, In R. Carter and M. McCarthy (Ed.), Vocabulary and language teaching (pp. 62- 82). New York: Longman. Nattinger, J. R., & DeCarrico, J. D. (1992). Lexical phrase and language teaching. Oxford: Oxford University Press. Nesselhauf, N., & Tschichold, C. (2002). Collocations in CALL: An investigation of vocabulary-building software for EFL. Computer Assisted Language Learning, 15, 251-279. Nesselhauf, N (2003). The use of collocations by advanced learners of English and some implications for teaching. Applied Linguistics, 24, 223-242. Nagata, N. (1997). An experimental comparison of deductive and inductive feedback generated by simple parser. System, 25, 515-534. Omaggio, A. C. (1986). Teaching language in context. Boston: Heinle &Heinle. Oxford (2002). Oxford Collocations Dictionary for Students of English. New York: Oxford University Press. Partington, A. (1998). Patterns and meaning: Using corpora for English language research and teaching. Philadelphia: John Benjamins. Richards, J. C. (1976). The role o vocabulary teaching. TESOL Quarterly, 10, 77-90. Reber, A. S., Kassin, S., Lewis, S., & Cantor, G. (1980).On the relationship between implicit and explicit modes in the learning of a complex rule structure. Journal of Experimental Psychology: Human Learning and Memory, 6, 492-502. Robinson, P. (1996). Learning simple and complex second language rules under implicit, incidental, rule-search, and instructed conditions. Studies in Second Language Acquisition, 18, 27-67. Rudzka, B., Channell, J., Putseys, Y., & Ostyn, P. (1985). More words you need. London: Macmillan. Schmitt, N. (1990). The role of consciousness in second language learning. Applied Linguistics, 11, 129-158. Shaffer, C. (1989). A comparison of inductive and deductive approaches to teaching foreign language. The Modern Language Journal, 73, 395-403. Shei, C. C. (n.d.). The problems of lexical collocation in Chinese-to-English translation. Download, 12/17/2003 [on-line ] Available: http://203.71.115.14/shei/publication/collocation_translation.htm. Shei, C. C., & Pain, H. (2000). An ESL writer’s collocational aid. Computer Assisted Language Learning, 13, 167-182. Shih, H. H. (2000). The influence of synonymy over collocation learning. Selected Papers from the Ninth International Symposium on English Teaching (pp. 516-520). Taipei: Crane. Sinclair, J. (1991). Corpus, Concordance, Collocation. Hong Kong: Oxford University Press. St. John, E. (2001). A case for using a parallel corpus and concordancer for beginners of a foreign language. Language Learning & Technology, 5, 185-203. Sun, Y. C. (1999). Web-based concordancing: Challenges and opportunities for English language teaching. Proceedings for the Eighth International symposium on English Teaching (pp. 517-526). Taipei: Crane: Sun, Y. C., & Wang, L. Y. (2003). Concordancers in the EFL classroom: Cognitive approaches and collocation difficulty. Computer Assisted Language Learning, 16, 83-94. Todd, R. W. (2001). Induction from self-selected concordances and self-correction. System, 29, 91-102. Tseng. F. P (2002). A study of the effects of collocation instruction on the collocational competence of senior high school students in Taiwan. Unpublished master’s thesis, National Taiwan Normal University, Taipei. Wang, C. J. (2001). A study of the English collocational competence of English majors in Taiwan. Unpublished master’s thesis, Fu Jen Catholic University, Taipei. Wang, L. (2001). Exploring parallel concordancing in English and Chinese. Language Learning & Technology, 5, 174-184. Wilkins, D. (1972). Linguistics and language teaching. London: Edward Arnold. Woolard, G. (2000). Collocation: Encouraging learner independence. In M. Lewis (Ed.), Teaching collocation: Further developments in the lexical approach (pp. 28-46). London: Language Teaching Publications. Wu. W. S. (1996). Lexical collocations: One way to make passive vocabulary active. Paper from the eleventh conference on English Teaching and learning in the Republic of China (pp. 461-480). Taipei: Crane. Wu, J. C., Yeh, K. C., Chuang, T. C., Shei, W. C., & Chang, J. S. (2003). TotalRecall: A bilingual concordance for computer assisted translation and language learning. Proceedings of the 41st Association of Computational Linguistics Conference, Sappora, Japan, July 7-13. Yeh, Y. L. (2003). Vocabulary learning with a concordancer for EFL college students. Proceedings of 2003 International Conference on English Teaching and Learning in the Republic of China (pp. 467-476). Providence University, Department of English language, literature & linguistics, Taichung County, May.id NH0925094008 sid 915254 cfn 0 / id NH0925094009 auc 李忠剛 tic 慾求科技化身體:對大衛˙柯能堡《錄影帶謀殺案》及《X接觸:來自異世界》的德勒茲式閱讀 adc 廖炳惠 adc 蔣淑貞 ty 碩士 sc 國立清華大學 dp 外國語文學系 yr 92 lg 英文 pg 110 kwc 無器官身體 kwc 流變 kwc 德勒茲 kwc 柯能堡 abc 加拿大導演大衛˙柯能堡的電影主要描寫受科技影響而突變的人體,因而被歸類為身體驚悚。這些科技化身體的滅亡往往被評論家解讀為科技的恐懼。此外,對柯能堡的評論常分為兩派:一派側重其加拿大國籍的討論,另一派則將柯能堡的電影歸類為恐怖片的類型,採精神分析及女性主義理論分析之。秉持二元觀點的假設,諸如「壓抑/壓抑歸返」及「被閹割的男性/可怖的女性」,評論家視科技化身體為無法復原且與文明對立的怪獸,而柯能堡本人則因其呈現女性意象的方式,被視為仇恨女人者。 rf Works Cited Atwood, Margaret. Survival: A Thematic Guide to Canadian Literature. Toronto: House of Anansi Press, 1972. Baudrillard, Jean. “The Ecstasy of Communication.” The Anti-Aesthetic: Essays on Postmodern Culture. Ed. Hal Foster. Seattle: Bay Press, 1983. 126-34. ---. Simulations. Translated by Paul Foss, Paul Patton and Philip Beitchma. New York: Semiotext, 1983. ---. The Evil Demon of Images. Sydney: The Power Institute of Fine Arts, University of Sydney, 1987. Beard, William. “The Canadianness of David Cronenberg.” Mosaic 27.2 (June 1994): 114-33. Bogue, Ronald. Deleuze and Guattari. New York: Routledge, 1989. ---. “Gilles Deleuze: Postmodern Philosopher?” Criticism 32.4 (fall 1990): 401-417. ---. “Difference and repetition in Deleuze’s Proustian Sign and Time Machine.” Concentric: Studies in English Literature and Linguistics 27.1 (Jan 2001): 1-28. ---. “Nomadism, Globalism and Cultural Studies.” 第一屆文化研究國際學術研討會《全球化與文化研究》,國立台灣師範大學文學院,民國九十一年十一月三十日(2002)。頁1-27。 Bukatman, Scott. “Who Programs You? The Science Fiction of the Spectacle.” Alien Zone: Cultural Theory and Contemporary Science Fiction Cinema. Ed. Annette Kuhn. London: Verso, 1990. 196-213. ---. Terminal Identity: The Virtual Subject in Postmodern Science Fiction. London: Duke UP, 1993. Calhoun, John. “Ick of the litter.” Interiors 158.6 (June 1999): 127-8. Carroll, Noël. The Philosophy of Horror. New York: Routledge, 1990. Craven, Roberta Jill. “Ironic Empathy in Cronenberg’s Crash: the Psychodynamics of Postmodern Displacement from a Tenuous Reality.” Quarterly Review of Film and Video 17.3 (2000): 187-209. Creed, Barbara. “Gynesis, Postmodernism, and the Science Fiction Horror Film.” Alien Zone. Ed. Annette Kuhn. New York: Verso, 1990. ---. “Horror and the Monstrous-Feminine: An Imaginary Abjection.” Horror, The Film Reader. Ed. Mark Jancovich. New York: Routledge, 2002. 67-66. Cronenberg, David. Cronenberg on Cronenberg. Ed. Chris Rodley. London: Faber and Faber, 1992. (Cited as ConC) ---. “Cronenberg meets Rushdie.” Shift 3,4 (1995): 1-13. ---. “Metaphor Man: Controversial visionary David Cronenberg sees technology, mankind, sexuality merging in ‘eXistenZ.’” By Rob Blackwelder. SPLICEDwire (1999). Online. Internet. 28 Jan. 2004 . ---. “Logic, Creativity and (Critical) Misinterpretations: An Interview with David Cronenberg.” The Modern Fantastic: The Films of David Cronenberg. Ed. Michael Grant. Conducted by Xavier Mendik. Westport: Praeger Publishers, 2000. 168-185. ---. “The Existential Deal: An Interview with David Cronenberg.” By Adam Simon. Critical Quarterly 43.3 (2001): 34-56. Deleuze, Gilles. Cinema 1: The Movement Image. Translated by Hugh Tomlinson and Barbara Habberjam. Minneapolis: University of Minnesota, 1986. ---. “Plato and the Simulacrum.” The Logic of Sense. Trans. Mark Lester and Charles Stivale. New York: Columbia UP, 1990. 253-266. Deleuze, Gilles and Claire Parnet. Dialogues. Translated by Hugh Tomlinson and Barbara Habberjam. Paris: Flammarion, 1977. Deleuze, Gilles and Félix Guattari. Anti-Oedipus: Capitalism and schizophrenia. Translated by Robert Hurley, Mark Seem, and Helen R. Lane. Minneapolis: University of Minnesota, 1983. ---. A Thousand Plateaus. Translated and Foreword by Brian Massumi. Minneapolis: University of Minnesota, 1987. eXistenZ. Dir. David Cronenberg. Dimension Films, 1999. Freeland, Cynthia A. “Monstrous Flesh in David Cronenberg’s Films.” The Naked and the Undead. Oxford: Westview Press, 2000. 87-120. Goodchild, Philip. Deleuze and Guattari: An Introduction to the Politics of Desire. London: Sage, 1996. Holland, Eugene W. Deleuze and Guattari’s Anti Oedipus: Introduction to Schizoanalysis. New York: Routledge, 1999. Hotchkiss, Lia M. “‘Still in the Game’: Cybertransformations of the ‘New Flesh’ in David Cronenberg’s eXistenZ.” The Velvet Light Trap. 52 (Fall 2003): 15-32. Huang, Han-yu (黃涵榆). 〈論當前電腦龐克與塞爆文化中科技生命之曖昧性〉,中華民國第9屆英美文學會議,國立政治大學,2001年12月。頁1-21。 Jancovich, Mark. Horror, The Film Reader. New York: Routledge, 2002. Jameson, Fredric. The Geopolitical Aesthetic: Cinema and Space in the World System. London: Indiana UP, 1995. Kaufman, Linda S. “David Cronenberg’s Surreal Abjection.” Bad Girls and Sick Boys: Fantasies in Contemporary Art and Culture. London: California UP, 1998. 115-145. Lauretis, Teresa de. “Becoming Inorganic.” Critical Inquiry 29.4 (2003): 547-70. Levery, David. “From Cinespace to Cyberspace: Zionists and Agents, Realists and Gamers in The Matrix and eXistenZ.” Journal of Popular Film and Television 28.4 (Winter 2001): 150-57. 12 Feb. 2004 . Lin, Wen-chi (林文淇).〈電視、身體、慾望的競技場:大衛•康寧保《錄影帶謀殺案》中的後現代主體性〉。《中外文學》25.12 (1997) : 83-92。 Online. Internet. 28 Jan. 2004 . Massumi, Brian. A User’s Guide to Capitalism and Schizophrenia: Deviations from Deleuze and Guattari. Cambridge: MIT, 1992. McLarty, Lianne. “’Beyond the Veil of the Flesh’: Cronenberg and the Disembodiment of Horror.” The Dread of Difference: Gender and the Horror Film. Ed. Barry Keith Grant. Austin: Texas UP, 1996. 231-52. Melehy, Hassan. “Image Without: Deleuzian Becoming, Science Fiction Cinema in the Eighties.” Postmodern Culture 5.2 (January 1995): 19 pp. Online. Internet. 28 Jan. 2004 . Modleski, Tania. “The Terror of Pleasure: The Contemporary Horror Film and Postmodern Theory.” Studies in Entertainment. Ed. Tania Modleski. Bloomington: Indiana UP, 1986, 155-165. Parker, Andrew. “Grafting David Cronenberg: Monstrosity, AIDS Media, National/Sexual Difference.” Media Spectacles. Ed. Marjorie Barber, Jann Matlock and Rebecca L. Walkowitz. London: Routledge, 1993. 209-32. Pearson, Keith Ansell. Germinal Life: The Difference and repetition of Deleuze. London: Routledge, 1999. Pendakur, Manjunath. Canadian Dreams and American Control: the Political Economy of the Canadian Film Industry. Detroit: Wayne State University Press, 1990. Pike, David. L. “Canadian Cinema in the Age of Globalization.” CineAction 57(2002): 2-10. Rodley, Chris. “Game Boy.” Sight and Sound: 9.4 (April 1999): 8-11. Roth, Mark. “Videodrome and the Revenge of Representation.” CineAction 43 (July 1997): 58-61. Shaviro, Steven. The Cinematic Body. Minnesota: University of Minnesota Press, 1993. Testa, Bart. “Panic Pornography: Videodrome From Production to Seduction.” Canadian Journal of Political and Social Theory 13.1-2 (1989): 56-72. ---. “Technology’s Body: Cronenberg, Genre, and the Canadian Ethos.” Post Script (Fall 1995): 1-19. 22 Feb. 2004 . Tudor, Andrew. Monsters and Mad Scientists: A Cultural History of the Horror Movie. Oxford: Basil Blackwell, 1989. ---. “Why Horror? The Peculiar Pleasures of a Popular Genre.” Horror, The Film Reader. Ed. Mark Jancovich. New York: Routledge, 2002. 47-55. Videodrome. Dir. David Cronenberg. Universal, 1982. Williams, Linda Ruth. “The Inside-out of Masculinity: David Cronenberg’s Visceral Pleasures.” The Body’s Perilous Pleasures: Dangerous Desires and Contemporary Culture. Ed. Michele Aaron. Edinburgh: Edinburgh UP, 1999. 30-48. Wood, Robin. “An Introduction to the American Horror Film.” Movies and Methods Volume II: An Anthology. Ed. Bill Nichols. Berkeley: University of California Press, 1985. 195-220. Young, Suzie Sau Fong. The horror of Pleasure and the Pleasures of Horror in David Cronenberg’s Cinema. Diss. University of California, 1999.id NH0925094009 sid 895201 cfn 0 / id NH0925094010 auc 謝佩妏 tic 柏拉圖之愛及其不滿 adc 雷碧琦博士 ty 碩士 sc 國立清華大學 dp 外國語文學系 yr 92 lg 英文 pg 98 kwc 柏拉圖 kwc 蘇格拉底 kwc 愛西拜爾得思 kwc 拉岡 kwc 男同 kwc 愛 abc 本論文旨在討論柏拉圖論述愛的兩個對話錄、其中的內在衝突,以及歷來批評的謬誤。我試圖用精神分析談愛與性的觀點重新閱讀西方系統地談愛與昇華最早的這兩篇對話:《饗宴篇》及《斐德若斯篇》。雖然這兩篇對話表面上都強調淨化欲望,昇華激情,但其結構、語言、取景都往往脫離原本超越的主題,反而創造了一種以激情為底的知識論。兩篇中蘇格拉底都提供了愛的論述,教導什麼是真愛、崇高的愛,但那些昇華的步驟卻被語言或戲劇的場景洩漏其破綻。在兩篇對話錄裡,男同都是邁向真愛的選民,但令人不解的是,在《饗宴篇》的後段,蘇格拉底竟引用一位女祭司的話來說明真愛的實現。表面看來,蘇格拉底前衛極了,很有女權意識,但最後證明女祭司讚頌的仍是男同擁護的真愛;說到底,西方論愛的哲學首作沒有女人的位子。然而,在《饗宴篇》最後,一場跨越哲學朝向戲劇的場景發生了。Alcibiades借酒裝瘋,大發狂言,當幾乎所有人都視愛為一種真理的實踐時,Alcibiades體現的愛卻揉雜了愛與死,希望與毀滅。但蘇格拉底也不是省油的燈,經過拉岡的解讀,蘇格拉底與Alcibiades的一番對話可視為精神分析的前身。更者,就在我們以為女人在柏拉圖論愛的兩篇對話完全缺席的時候,Alcibiades的脫韁情慾跟古希臘哲學家及醫生所以為的女性情慾不謀而合。至此,古希臘文學、醫學作品裡男人(靈魂、昇華)、女人(身體、欲望綁身)的二分法破解了。蘇格拉底給了我們愛的論述,Alcibiades卻傾吐了一段戀人絮語,當批評家們傾其全力鞏固蘇格拉底的權威時,Alcibiades往往被隱沒了,我的論文以現代的欲望論述回頭去看這兩者,期望給他們一個比較平衡的關係。 tc I. Introduction A. General Introduction..........................1 B. The Erotic Dialogues..........................7 C. Critical Review...............................13 II. Socratic Erotics A. Introduction..................................22 B. Male Homosexuality............................22 C. The Master of Desire..........................35 III. The Seesaw of Sôphrosunê and Hubris A. Introduction..................................49 B. Betrayal of Moderation........................50 C. A False Sublimation...........................56 IV. Woman and Sublimation A. Introduction .................................65 B. Hermeneutics of Desire........................66 C. Does Woman Exist? ............................72 D. Alcibiades and Female Eros....................78 V. Conclusion ...................................86 Works Cited ......................................96rf Works Cited Alexander, W. M. “Philosophers Have Avoided Sex.” The Philosophy of Sex: Contemporary Reading. Ed. Alan Soble. Maryland: Rowman and Littlefield, 1991. 3-19. Barthes, Roland. A Lover’s Discourse: Fragments. Trans. Richard Howard. New York: Hill and Wang, 1978. Bergmann, Martin S. The Anatomy of Loving: The Story of Man’s Quest to Know What Love Is. New York: Columbia UP, 1987. Brümmer, Vincent. The Modal of Love: A Study in Philosophical Theology. Cambridge: Cambridge UP, 1993 Carson, Anne. “Putting Her in Her Place: Woman, Dirt, and Desire.” Before Sexuality: The Construction of Erotic Experience in the Ancient Greek World. Ed. David M. Halperin et al. Princeton: Princeton UP, 1990. 135-69. Carnes, Jeffrey S. “This Myth Which Is Not One: Contruction of Discourse in Plato’s Symposium.” Rethinking Sexuality: Foucault and Classical Antiquity. Ed. David H. J. Larmour et al. Princeton: Princeton UP, 1998. 104-21. Cobb, William S. The Symposium and the Phaedrus: Plato’s Erotic Dialogues. New York: New York State UP, 1993. Cooper, John M. Introduction. Plato: Complete Works. By Plato. Indianapolis: Hackett, 1997. Cornford, F. M. “The Doctrine of Eros in Plato’s Symposium.” Plato II: A Collection of Critical Essays: Ethics, Politics, and Philosophy of Art and Religion. Ed. Gregory Vlastos. Nortre Dame: U of Nortre Dame P, 1978. 119-43. De Rougemont, Denis. Love in the Western World. Trans. Montgomery Belgion. New York: Pantheon, 1966. Doane, Mary Ann. “Sublimation and the Psychoanalysis of the Aesthetic.” Jacques Lacan: Critical Evaluations in Cultural Theory. 4 vols. Ed. Slavoj Žižek. London: Routledge, 2003. IV: 127-46. Dover, K.J. Greek Homosexuality. Cambridge MA: Harvard UP, 1978. ---. Greek Popular Morality in the Time of Plato and Aristotle. Oxford : Blackwell, 1974. ---. Introduction. Plato: Symposium. Cambridge: Cambridge UP, 1980. 1-14. DuBois, Page. Sowing the Body: Psychoanalysis and Ancient Representations of Women. Chicago: U of Chicago P, 1988. Dunand, Anne. Reading Seminar XI. Ed. Richard Feldstein et al. Albany: State U of New York P, 1995. Ferrari, G. R. F. “Platonic Love.” The Cambridge Companion to Plato. Ed.Richard Kraut. Cambridge: Cambridge UP, 1992. 248-76. Fink, Bruce. A Clinical Introduction to Lacanian Psychoanalysis: Theory and Technique. London: Harvard UP, 1997. ---. “The Subject and the Other’s Desire.” Jacques Lacan: Critical Evaluations in Cultural Theory. 4 vols. Ed. Slavoj Žižek. I: 243-63. Foley, Helene P. “The Conception of Women in Athenian Drama.” Reflections of Women in Antiquity. Ed. Helene P. Foley. New York: Gordon and Breach Science, 1981. 127-68. Foucault, Michel. The Use of Pleasure. Trans. Robert Hurley. New York: Vintage, 1990. Freud, Sigmund. “Analysis Terminable and Interminable.” The Standard Edition of the Complete Psychological Works of Sigmund Freud. 24 vols. Ed. and Trans. James Strachey et al. London: Hogarth P, 1959. XXIII: 211- 53. ---. Beyond The Pleasure Principle. SE XVIII. 1-65. ---. Civilization and Its Discontents. SE XXI. 57-145. ---. Freud on Women: A Reader. Ed. Elisabeth Young-Bruehl. New York: Norton, 1990. ---. The Freud Reader. Ed. Peter Gay. London: Vintage, 1995. ---. Group Psychology and the Analysis of the Ego. SE XVIII. 65-143. ---. “The ‘Mystic Writing-Pad.’” SE XIX. 225-32. ---. “Observations on Transference-Love.” SE XII. 157-71. ---. “The Resistance to Psycho-Analysis.” SE XIX. 211-24. Friedländer, Paul, ed. Plato: The Dialogues. 3 vols. Trans. Hans Meyerhoff. Princeton: Princeton UP, 1969. Gill, Christopher. “Platonic Love and Individuality.” Polis and Politics: Essays in Greek Moral and Political Philosophy. Ed. Andros Loizou and Harry Lesser. Aldershot, England: Avebury, 1990. 69-88. Griswold, Charles L. Self-Knowledge in Plato’s Phaedrus.” New Haven: Yale UP, 1986. Grube, G. M. A. Plato’s Thought. Indianapolis: Hackett, 1980. Halperin, David M. One Hundred Years of Homosexuality: and Other Essays on Greek Love. New York: Routledge, 1990. ---. “Plato and the Erotics of Narrativity.” Oxford Studies in Ancient Philosophy. 19 vols. Ed. C. C. W. Taylor. Supplementary Vol. New York: Oxford UP, 1992. Harari, Roberto. Lacan’s Seminar on “Anxiety”: An Introduction. New York: Other, 2001. Hunt, Morton. The Natural History of Love. 1959. New York: Anchor, 1994. Jaeger, Werner. In Search of the Divine Centre. Trans. Gibert Highet. Oxford: Oxford UP, 1986. Vol. 2 of Paideia: The Ideals of Greek Culture. 3 vols. Keller, Evelyn Fox. Reflections on Gender and Science. New Haven: Yale UP, 1985. King, Helen. “Bound to Bleed: Artemis and Greek Women.” Images of Women in Antiquity. Ed. Averil Cameron and Amelie Kuhrt. London: Routledge, 1993. 109-27. Krell, David F. “Socrates’ Body.” Southern Journal of Philosophy 10 (1972): 443-51. Kristeva, Julia. Tales of Love. Trans. Leon S. Rudiiez. New York: Columbia. UP, 1987. Kuhn, Charles H. Plato and the Socratic Dialogue: The Philosophical Use of a Literary Form. New York: Cambridge UP, 1996. Lacan, Jacques. Écrits: A Selection. Trans. Alan Sheridan. London: Tavistock, 1977. ---. The Ethics of Psychoanalysis: 1959-1960. Trans. Dennis Porter. New York: Norton, 1992. ---. The Four Fundamental Concepts on Psycho-Analysis. Trans. Alan Sheridan. New York: Penguin, 1987. ---. Speech and Language in Psychoanalysis. Trans. Anthony Wilden. Baltimore: Johns Hopkins UP, 1968. Lefkowitz, Mary R. et al. “Influential Women.” Images of Women in Antiquity. Ed. Averil Cameron and Amelie Kuhrt. London: Routledge, 1993. 49-64. Markus, R. A. “The Dialectic of Eros in Plato’s Symposium.” Plato II: A Collection of Critical Essays: Ethics, Politics, and Philosophy of Art and Religion. Ed. Gregory Vlastos. Nortre Dame: U of Nortre Dame P, 1978. 132-43. Marini, Marcelle. Jacques Lacan: The French Context. Trans. Anne Tomiche. New Brunswick: Rutgers UP, 1992. Mieli, Paula. “Femininity and the Limits of Theory.” The Subject of Lacan: A Lacanian Reader for Psychologists. Ed. Kareen Ror Malone and Stephen R. Friedlander. Albany: State U of New York P, 2000. 265-78. Moore, John D. “The Relation between Plato’s Symposium and Phaedrus.” Patterns in Plato’s Thought: Papers Arising out of 1971 West Coast Greek Philosophy Conference. Ed. J.M.E. Moravcsk. Dodrech, Holland: D. Reidel, 1973. 52-77. Nehamas, Alexander and Paul Woodruff. Introduction. Symposium. By Plato. Indianapolis: Hackett, 1989. Neumann, Harry. “Diotima’s Concept of Love.” American Journal of Philology 86 (1965): 33-59. Nicholson, Graeme. Plato’s Phaedrus: The Philosophy of Love. West Lafayette: Purdue UP, 1999. Nietzsche, Friedrich. Beyond Good and Evil: Prelude to a Philosophy of the Future. Trans. Walter Kaufmann. New York: Vintage, 1989. Nussbaum, Martha. “The Speech of Alcibiades: A Reading of Plato’s Symposium.” Philosophy and Literature 2 & 3 (1979): 131-72. ---. “Eros and the Wise: The Stoic Response to a Cultural Dilemma.” Oxford Studies in Ancient Philosophy. 19 vols. Ed. C. C. W. Taylor. Oxford: Clarendon, 1983-. XIII: 231-67. Nygren, Anders. Agape and Eros. Philadelphia: Westminister, 1938. Osborne, Catherine. Eros Unveiled: Plato and the God of Love. Oxford: Clarendon, 1994. Padel, Ruth. “Women: Model for Possession by Greek Daemons.” Images of Women in Antiquity. Ed. Averil Cameron and Amelie Kuhrt. London: Routledge, 1993. 3-19. Parker, Holt H. “Love’s Body Anatomized: The Ancient Erotic Handbooks and the Rhetoric of Sexuality”. Pornography and Representation in Greece and Rome. Ed. Amy Richlin. Oxford: Oxford UP, 1992. 90-111. Plato. “Alcibiades.” Plato: Complete Works. Ed. & Intro. John M. Cooper. Trans. D. S. Hutchinson. Indianapolis: Hackett, 1997. 557-95. ---. Apology. Trans. G. M. A. Grube. 17-36. ---. Charmides. Trans. Rosamond Kent Sprague. 639-63. ---. Crito. Trans. G. M. A. Grube. 37-48. ---. Laws. Trans. Trevor J. Saunders. 1318-1616. ---. Lysis. Trans. Stanley Lombardo. 687-707. ---. Meno. Trans. G. M. A. Grube. 870-97. ---. Phaedo. Trans. G. M. A. Grube. 49-100. ---. Phaedrus. Trans. Alexander Hehamas and Paul Woodruff. 506-56. ---. Philebus. Trans. Dorothea Frede. 398-456. ---. Protagoras. Trans. Stanley Lombardo and Karen Bell. 746-90. ---. Republic. Trans. G. M. A. Grube. 971-1223. ---. Symposium. Trans. Alexander Hehamas and Paul Woodruff. 457-505. ---. Timaeus. Trans. Donald J. Zeyl. 1224-91. Price, S. R. F. “The Future of Dreams: from Freud to Artemidoros.” Before Sexuality: The Construction of Erotic Experience in the Ancient Greek World. Ed. David M. Halperin et al. Princeton: Princeton UP, 1990. 365-87. Ragland-Sullivan, Ellie. “Plato’s Symposium and the Lacanian Theory of Transference: Or, What Is Love?” South Atlantic Quarterly 88.4 (1989): 725-55. Rosen, Stanley. “The Role of Eros in Plato’s Republic.” Review of Metaphysics 18.3 (1965): 452-75. Rajchman, John. Truth and Eros: Foucault, Lacan, and the Question of Ethics. New York: Routledge, 1991. Rojcewicz, Richard. “Platonic Love: Dasein’s Urge toward Being.” Research in Phenomenology 27 (1997): 103-20. Rousselle, Aline. Porneia: On Desire and the Body in Antiquity. Trans. Felicia Pheasant. Oxford: Blackwell, 1988. Santas, Gerasimos. Plato and Freud: Two Theories of Love. Oxford: Basil Blackwell, 1988. Singer, Irving. The Nature of Love: The First Volume: Plato to Luther. Chicago: U of Chicago P, 1966. Taylor, A. E. Plato: The Man and his Work. New York: Meridian, 1956. Thornton, Bruce S. Eros: The Myth of Ancient Greek Sexuality. Boulder: Westview, 1997. Tuana, Nancy, ed. Feminist Interpretations of Plato. University Park: Pennsylvania State UP, 1994 Versényi, Laszlo. Socratic Humanism. New Haven: Yale UP, 1963. Vlastos, Gregory. Platonic Studies. Princeton: Princeton UP, 1981. Wender, Dorothea. “Plato: Misogynist, Paedophile, and Feminist.” Women in the Ancient World. Ed. John Peradotto and J. P Sullivan. Albany: State U of New York P, 1984. 213-28. Winkler, John J. The Constraints of Desire: the Anthropology of Sex and Gender in Ancient Greece. New York: Routledge, 1990. ---. “Laying Down the Law: The Oversight of Men’s Sexual Behavior in Classical Athens.” Before Sexuality: The Construction of Erotic Experience in the Ancient Greek World. Ed. David M. Halperin et al. Princeton: Princeton UP, 1990. 171-210. Xenophon. Symposium. Trans. C. L. Brownson. Vol. 4 of Xenophon. Cambridge MA: Harvard UP, 1979-1986. Zuckert, Catherine H. Postmodern Platos. Chicago: U of Chicago P, 1996.id NH0925094010 sid 905202 cfn 0 / id NH0925094011 auc 吳曉琪 tic 台灣英語主修學生於商用英語課程修習字彙之學習策略:個案研究 adc 鍾乃森 博士 ty 碩士 sc 國立清華大學 dp 外國語文學系 yr 92 lg 英文 pg 135 kwc 商業字彙 kwc 學習策略 kwc 英語主修學生 kwc 台灣 abc 本研究主旨在於調查與描述十九位台灣大學生學習英文商業字彙與觀念的策略。這十九位大學生中,有十八位為外國語文系之學生,其主修科目為英語;一位則為經濟學系之學生。期能藉由深入了解他們如何學習與記住英文商業字彙與觀念,進而探討教師在教授外國語文系學生商用英語課程時,如何幫助這些非商業主修的學生以語言為工具,認識與研讀另一專門領域。 tc Page 摘要…………………...……………………………………………………….. i ABSTRACT…………………………………………………………………… ii ACKNOWLEDGEMENTS…………………………………………………… iii TABLE OF CONTENTS……………………………………………………… iv LIST OF FIGURES……………………………………………………………. viii LIST OF TABLES……………………………………………………………... viii CHAPTER 1. INTRODUCTION……………………………………………………….. 1 1.1 Background………………………………………………………... 1 1.2 Purpose of the Study………………………………………………. 2 1.3 Research Questions………………………………………………... 2 1.4 Scope of the Study………………………………………………… 3 1.5 Definition of Terms……………………………………………….. 3 1.5.1 Business English…………………………………………….. 3 1.5.2 Learning Strategies…………………………………………... 4 1.5.3 Metacognitive Journal……………………………………….. 4 1.5.4 Case Study…………………………………………………… 4 1.6 Organization of the Thesis………………………………………… 5 2. LITERATURE REVIEW………………………………………………… 6 Introduction……………………………………………………………. 6 2.1 The Role of Needs Analysis in Business English…………………. 6 2.2 A Variety of Approaches in Teaching Business English…………… 8 2.2.1 The Library…………………………………………………... 8 2.2.2 The Internet and the World Wide Web………………………. 9 2.2.3 Cooperative Learning………………………………………... 9 2.2.4 Simulation Activities………………………………………… 10 2.2.5 Others………………………………………………………... 10 2.3 Research Related to Business Vocabulary…………………………. 11 2.4 A Summary of Adult Vocabulary Learning Strategies……………... 12 2.4.1 The Approach of Survey in Vocabulary Learning Strategies... 12 2.4.2 A Variety of Approaches in Studying Vocabulary Learning Strategies……………………………………………………... 14 2.5 Conclusion…………………………………………………………. 17 Page 3. RESEARCH DESIGN AND METHODOLOGY……………………….. 18 Introduction……………………………………………………………. 18 3.1 Qualitative Case Study…………………………………………….. 18 3.2 Participants………………………………………………………… 23 3.3 Description of the Business English Course………………………. 24 3.4 Training and Instruments………………………………………….. 24 3.4.1 Metacognitive Journal Demonstration and Training………… 24 3.4.2 The Administration of the ESL/EFL SILL…………………... 26 3.4.3 Writing Metacognitive Journals……………………………... 26 3.4.4 The Responses to the Questionnaire………………………… 27 3.5 Procedures of the Study…………………………………………… 28 3.5.1 The Initial Administration of the ESL/EFL SILL…………… 28 3.5.2 Demonstration and Training of a Metacognitive Journal……. 28 3.5.3 The Metacognitive Journal Assignment……………………... 29 3.5.4 The Second Administration of the ESL/EFL SILL………….. 29 3.5.5 The Questionnaire…………………………………………… 29 3.6 Data Analysis……………………………………………………… 30 3.6.1 Analyzing Participants’ ESL/EFL Version of the SILL……… 31 3.6.2 Analyzing Metacognitive Journals…………………………... 32 3.6.3 Analyzing Surveys…………………………………………… 33 3.7 Conclusion…………………………………………………………. 33 4. RESULTS OF THE STUDY……………………………………………... 35 Introduction……………………………………………………………. 35 4.1 Results of the Administration of the ESL/EFL SILL……………… 37 4.1.1 Results of the Initial Administration of the ESL/EFL SILL…. 37 4.1.2 Results of the Second Administration of the ESL/EFL SILL.. 38 4.2 Results of Metacognitive Journals………………………………… 41 4.2.1 Results of the First Metacognitive Journals…………………. 41 4.2.1.1 The Results of the First Question in the First Metacognitive Journals………………………………. 41 4.2.1.2 The Results of the Second Question in the First Metacognitive Jurnals………………………………... 43 4.2.1.3 The Results of the Third Question in the First Metacognitive Journals………………………………. 45 4.2.1.4 The Results of the Fourth Question in the First Metacognitive Journals………………………………. 45 Page 4.2.1.4.1 Memory Strategies…………………………. 49 4.2.1.4.2 Cognitive Strategies…………………….….. 50 4.2.1.4.3 Compensation Strategies…………………... 52 4.2.1.4.4 Metacognitive Strategies…………………... 53 4.2.1.5 The Results of the Fifth Question in the First Metacognitive Journals……………………………… 54 4.2.2 Results of the Second Metacognitive Journals………………. 55 4.2.2.1 The Results of the First Question in the Second Metacognitive Journals……………………………… 55 4.2.2.2 The Results of the Second Question in the Second Metacognitive Journals…………………………….. 56 4.2.2.3 The Results of the Third Question in the Second Metacognitive Journals………………………………. 57 4.2.2.4 The Results of the Fourth Question in the Second Metacognitive Journals………………………………. 57 4.2.2.4.1 Memory Strategies…………………………. 60 4.2.2.4.2 Cognitive Strategies………………………... 61 4.2.2.4.3 Compensation Strategies…………………... 61 4.2.2.4.4 Metacognitive Strategies…………………... 62 4.2.2.5 The Results of the Fifth Question in the Second Metacognitive Journals………………………………. 63 4.2.3 Results of the Third Metacognitive Journals………………… 65 4.2.3.1 The Results of the First Question in the Third Metacognitive Journals………………………………. 65 4.2.3.2 The Results of the Second Question in the Third Metacognitive Journals………………………………. 66 4.2.3.3 The Results of the Third Question in the Third Metacognitive Journals………………………………. 67 4.2.3.4 The Results of the Fourth Question in the Third Metacognitive Journals………………………………. 67 4.2.3.4.1 Memory Strategies…………………………. 71 4.2.3.4.2 Cognitive Strategies………………………... 71 4.2.3.4.3 Compensation Strategies…………………... 73 4.2.3.4.4 Metacognitive Strategies…………………... 73 4.2.3.5 The Results of the Fifth Question in the Third Metacognitive Journals………………………………. 75 4.2.4 Results of the Fourth Metacognitive Journals……………….. 76 Page 4.2.4.1 The Results of the First Question in the Fourth Metacognitive Journals………………………………. 76 4.2.4.2 The Results of the Second Question in the Fourth Metacognitive Journals………………………………. 77 4.2.4.3 The Results of the Third Question in the Fourth Metacognitive Journals………………………………. 78 4.2.4.4 The Results of the Fourth Question in the Fourth Metacognitive Journals………………………………. 78 4.2.4.4.1 Memory Strategies…………………………. 82 4.2.4.4.2 Cognitive Strategies………………………... 82 4.2.4.4.3 Compensation Strategies…………………... 83 4.2.4.4.4 Metacognitive Strategies…………………... 83 4.2.4.4.5 Affective Strategies………………………… 84 4.2.4.4.6 Social Strategies…………………………… 85 4.2.4.5 The Results of the Fifth Question in the Fourth Metacognitive Journals………………………………. 86 4.3 Results of the Final Survey………………………………………... 87 4.3.1 The Results of the First Survey Question……………………. 87 4.3.2 The Results of the Second Survey Question………………… 89 4.3.3 The Results of the Third Survey Question…………………... 90 4.3.4 The Results of the Fourth Survey Question…………………. 91 4.3.5 The Results of the Fifth Survey Question…………………… 92 5. SUMMARY, DISCUSSION, AND IMPLICATION……………………... 95 Introduction……………………………………………………………. 95 5.1 Review and Discussion of the Results…………………………….. 95 5.1.1 The First Research Question………………………………… 96 5.1.2 The Second Research Question……………………………… 97 5.1.3 The Third Research Question………………………………... 98 5.2 Pedagogical Implication…………………………………………… 115 5.3 Research Limitations and Recommendations for Future Research... 116 REFERENCES………………………………………………………………… 118 APPENDIX……………………………………………………………………. 124rf Alexander, R. (1988). Examining the spoken English of European business studies: Purposes, problems and perspectives. System, I6 (1), 8-41. Alm, C. T. (1996). Using student journals to improve the academic quality of internships. Journal of Education for Business, 72, 113-115. Chamot, A. U., and Küpper, L. (1989). Learning strategies in foreign language instruction. Foreign Language Annals, 22(1), 13-24. Chang, H. F. (2000). A study of Business English course in technology and vocational school. Selected Papers from the Ninth International Symposium on English Teaching,167-177, Taipei: Crane Publishing Co. Chen, H. J. (1998). Second language vocabulary learning strategies: A preliminary investigation of Chinese EFL learners. The Proceedings of the Seventh International Symposium on English Teaching, 219-230, Taipei: Crane Publishing Co. Chen, P. C. (1996). ESP: A holistic instructional approach for college business English teaching. Tainan: Fuh-Wen Book Co. Cohen, L., and Manion, L. (1989) Research methods in education, 3rd ed. London: Routledge. Cole, B. C., and Smith, D. L. (1993). Cooperative learning strategies for teaching adult Business English. Journal of Education for Business, 68(3), 170-173. Cothran, B. F. (1987). Languages for business means business for languages. Paper presented at the Languages and communication for World business and the Professions. (Eric Document Reproduction Service No.: ED 293312). Denzin, N. K. (1970). The Research act: A theoretical introduction to sociological methods. Chicago: Aldine. Ellis, M., and Johnson, C. (1994). Teaching Business English. Oxford University Press. Flavell, J. H. (1976). Metacognitive aspects of problem solving. In L.B. Resnick (Ed.), The Nature of intelligence, Hillsdale, NJ: Lawrence Erlbaum. Flavell, J. H. (1987). Speculations about the nature and development of metacognition. In F. Weinert and R. Klauwe (Eds.), Metacognition, motivation and understanding (pp. 21-30). Hillsdale, NJ: Lawrence Erlbaum. Gay, L. R., and Airasian, P. (2000). Educational research: Competencies for analysis and application. New Jersey: Prentice-Hall. Glaser, B. G., and Strauss, A.L. (1967). The Discovery of grounded theory. Chicago: Aldine. Goetz, J. P., and LeCompte, M. D. (1984). Ethnography and qualitative design in educational research. Orlando, Fla.: Academic Press. Guba, E. G., and Lincoln, Y. S. (1981). Effective evaluation. San Francisco: Jossey-Bass. Halatin, T. J., and Eure, J. D. (1992). Building a realistic business vocabulary: A challenge for educators. Journal of Education for Business, 67(5), 275-278. Hall, S. (1991). The effects of split information tasks on the acquisition of mathematics vocabulary. Unpublished MA thesis, Victoria University of Wellington. Hiemstra, K. M. (2002). Library-based assignments that enrich the business communication course. Business Communication Quarterly, 65(3), 55-63. Holter, N. C. (1994). Team assignments can be effective cooperative learning techniques. Journal of Education for Business, 70(2), 73-76. Huang, S. C. (2000). Needs analysis for business English—the perspective of working students. The Proceedings of the 9th International Symposium on English Teaching, 381-392. Taipei: Crane Publishing Co. Huang, S. C., Browne, P. J., and Chung, J. M. (1998). Incorporating resume writing and job search into business English class. The Proceedings of the Seventh International Symposium on English Teaching, 487-498. Taipei: Crane Publishing Co. Huang, S. C., and Chung, J. M. (2000). Learning subject matter in a whole English environment—exploring relevant factors affecting student performance. Proceedings of the 9th Conference on English Teaching and Learning in the Republic of China, 14-23. Taipei: Crane Publishing Co. Hutchinson, T., and Waters, A. (1987). English for specific purposes: A learner centered approach. Cambridge: Cambridge University Press. Joe, A. (1995). Text-based tasks and incidental vocabulary learning. Second Language Research, 11(2), 149-158. Jones, N. B. (1995). Business writing, Chinese students, and communicative language teaching. TESOL Journal, 4(3), 12-15. Kennedy, M. M. (1979). Generalizing from single case studies. Evaluation Quarterly, 3, 661-679. Kojic-Sabo, I., and Lightbown, M. P. (1999). Students’ approaches to vocabulary learning and their relationship to success. The Modern Language Journal, 83, ii, 176-192. Lesley, T. (1975). English through business and business through English. Paper presented at the annual meeting of the Teachers of English to Speakers of Other Languages. (Eric Document Reproduction Service No.: ED 122595). Lincoln, Y. S., and Guba, E. G.. (1985). Naturalistic Inquiry. Newbury Park, Calif: Sage. McCrindle, A. R., and Christensen, C. A. (1995). The impact of learning journals on metacognitive and cognitive processes and learning performance. Learning and Instruction, (5), 167-185. McGarry, R.G. (1998). Professional writing for business administration: An adjunct content-based course. TESOL Journal, 7(6), 28-31. Merriam, S. B. (1988). Case study research in education: A qualitative approach. San Francisco: Jossey-Bass. Newton. J. (1995). Task-based interaction and incidental vocabulary learning: A case study. Second Language Research, 11(2), 159-177. O’Malley, J. (1987). The effects of training in the use of learning strategies on learning English as a second language. In A. Wenden and J. Rubin (Eds.). Learner Strategies in Language Learning (pp. 133-144). Englewood Cliffs, NJ: Prentice-Hall. O’Malley, J. M., Chamot, A. U., Stewner-Manzanares, G., and Küpper, L. (1985). Learning strategy applications with students of English as a second language. TESOL Quarterly, 19(3), 557-584. Oxford, R. L. (1990). Language learning strategies: What every teacher should know. New York: Newbury House. Oxford, R. L., and Burry-Stock, J. A. (1995). Assessing the use of language learning strategies worldwide with the ESL/EFL version of the Strategy Inventory for Language Learning (SILL). System, 23(4), 1-23. Oxford, R. L., and Scarcella, R. C. (1994). Second language vocabulary learning among adults: State of the art in vocabulary instruction. System, 22(2), 231-243. Ragothaman, S., and Hoadley, D. (1997). Integrating the Internet and the World Wide Web into the business classroom: A synthesis. Journal of Education for Business, 72, 213-216. Reiss, M. A. (1985). The good language learner: Another look. Canadian Modern Language Review, 41, 511-523. Rieber, L.J. (1992). The role of cooperative writing in the business communication classroom: A research direction for the 1990s. The Bulletin of the Association for Business Communication, 60(2), 32-34. Robbins, T. L. (1994). Meaningfulness and community in the classroom: The role of teamwork in business education. Journal of Education for Business, 69(6), 312-316. Rothstein, Vandergriff, J., and Gilsor, J. T. (1988). Paper presented at the annual meeting of the Conference on College Composition and Communication, St. Louis. MO. Rubin, J. (1981). Study of cognitive processes in second language learning. Applied Linguistics, 11, 118-131. Sanaoui, R. (1990, June). Second language learners’ approaches to vocabulary lerning. Paper presented at the Annual conference of the Canadian Society for the Study of Education, Victoria, British Columbia. Sanaoui, R. (1992). Vocabulary learning and teaching in French as a second language classrooms. Unpublished doctoral dissertation, University of Toronto. Sanaoui, R. (1993, April). Vocabulary learning and instruction in French as a second language classrooms. Paper presented at the annual meeting of the American Educational Research Association, Atlanta, GA. Sanaoui, R. (1995). Adult learners’ approaches to learning vocabulary in second languages. The Modern Language Journal, (79), 15-28. Schleppegrell, M., and Royster, L. (1990). Business English: An international survey. English for Specific Purposes, 9(1), 3-16. Schmitt, N. (1997). Vocabulary learning strategies. In. Schmitt, N, & McCarthy, M. (Eds.) Vocabulary: Description, acquisition, and pedagogy. Cambridge: Cambridge University Press. Schmitt, N., and Schmitt, D. R. (1993). Identifying and assessing vocabulary learning strategies. Paper presented at the Thai TESOL Bulletin, 5(4), 27-33. (Eric Document Reproduction Service No.: 380994). Slavin, R. E. (1991). Synthesis of research on cooperative learning. Educational Leadership, 48(5), 71-82. Simcock, M. (1993). Developing productive vocabulary using the ‘ask and answer’ technique. Guidelines, 15,1-7. Smith, L. M. (1978). An evolving logic of participant observation, educational ethnography and other case studies. In L. Shulman (Ed.), Review of Research in Education. Itasca, IL: Peacock. St John, M. J. (1996). Business is booming: Business English in the 1990s. English for Specific Purposes, 15(1), 3-18. Tsai, M. J. (1998). A course design for business English. The Proceedings of the 7th International Symposium on English Teaching, 797-808. Taipei: Crane Publishing Co. Tsui, C. J. (1992). English business communication skills training needs of non-native English-speaking managers: A case in Taiwan. The Bulletin of the Association for Business Communication, 60(1), 40-41. Walker, R. (1980). The conduct of educational case studies: Ethics, theory and procedures. In W. B. Dockerell & D. Hamilton (Eds.), Rethinking educational research. London: Hodder & Stoughton. Webb, S. (1994). Strategies for expanding undergraduate course offerings in foreign language for business. Paper presented at the Annual Conference on Languages and Communication for World Business and the Professions. (Eric Document Reproduction Service No.: ED377716). Wilson, S. (1979). Explorations of the usefulness of case study evaluations. Evaluation Quarterly, 3, 446-459. Yang, A. Y. (2001). Discussion of the problems and suggestions in teaching business English. The Proceedings of 2001 International Conference on the Application of English Teaching, 176-181. Taipei: Crane Publishing Co. Yin, R. K. (1994). Case study research: Design and methods. Thousand Oaks: Sage Publications. 許蔚農. (1997).專業英文表達困境之探討。收錄於“The Proceedings of the Sixth International Symposium on English Teaching”論文集中。244-250頁。台北:文鶴出版公司。id NH0925094011 sid 895210 cfn 0 / id NH0925094012 auc 簡文珍 tic 再述王爾德美學:論《多利安.葛雷的畫像》呈現的顛覆現象 adc 蕭 嫣 嫣 ty 碩士 sc 國立清華大學 dp 外國語文學系 yr 92 lg 英文 pg 78 kwc 王爾德 kwc 美學 kwc 多利安.葛雷的畫像 kwc 顛覆 kwc 愛爾蘭 kwc 維多利亞時代 kwc 虛偽 kwc 文化主權 kwc 社會階層 kwc 語言 kwc 男同志情慾 kwc 文化殖民 kwc 佩特唯美派 abc 中文摘要 tc Introduction Chapter One Wilde’s Aestheticism Chapter Two The Male Body as the Source of Aesthetic and Erotic Pleasure Chapter Three Wilde and British Cultural Imperislism Conclusion Works Citedrf Works Cited Backus, Margot Gayle. “Homophobia and the Imperial Demon Lover: Gothic Narrativity in Irish Representations of the Great War.” CRCL 21.1 (1994): 45-63. Bhabha, Homi K.. “Of Mimicry and Man: The Ambivalence of Colonial Discourse.” The Location of Culture. London: Routledge, 1994. 65-110. Brinkley, Edward S.. “Homosexuality as (Anti)Illness: Oscar Wilde’s The Picture of Dorian Gray and Gabriele D’Annunzio’s Il Piacere.” StTCL 22.1 (1998): 61-82. Bristow, Joseph. “‘A Complex Multiform Creature’: Wilde’s Sexual Identities.” The Cambridge Companion to Oscar Wilde. Ed. Peter Raby. Cambridge: Cambridge UP, 1997. 195-218. ---. “Wilde, Dorian Gray, and Gross Indecency.” Sexual Sameness: Textual Differences in Lesbian and Gay Writing. Ed. Joseph Bristow. London: Routledge, 1992. 44-63. Butler, Judith. Excitable Speech: A Politics of the Performative. New York: Routledge, 1997. Cohen, Ed. “Writing Gone Wilde: Homoerotic Desire in the Closet of Representation.” PMLA 102 (1987): 801-13. Cohen, Philip K.. The Moral Vision of Oscar Wilde. New Jersey: Fairleigh Dickinson, 1978. 117-20. Deborah, McCollister. “Wilde’s The Picture of Dorian Gray.” Explicator 54.1 (1995): 17-20. Dollimore, Jonathan. “Different Desires: Subjectivity and Transgression is Wilde And Gide.” TexP 1 (1987): 48-67. ---. Sexual Dissidence: Augustine to Wilde, Freud to Foucault. Oxford: Clarendon, 1991. Ellmann, Richard. “The Critic as Artist as Wilde.” Modern Critical View: Oscar Wilde. Ed. Harld Bloom. New York: Chelsea, 1985. 91-106. ---. Oscar Wilde. New York: Alfred A. Knopf, 1988. Foucault, Michel. The History of Sexuality – Volume I: An Introduction. Trans. Robert Hurley. New York: Vintage, 1990. Gagnier, Regenia. “Wilde and the Victorians.” The Cambridge Companion to Oscar Wilde. Ed. Peter Raby. Cambridge: Cambridge UP, 1997. 18-33. Gillespie, Michael Patrick. “Ethics and Aesthetics in The Picture of Dorian Gray.” Rediscovering Oscar Wilde. Ed. Sandulescu George C.. England: Colin Smythe, 1994. 137-55. ---. “Picturing Dorian Gray: Resistant Readings in Wilde’s Novel.” English Literature Transition 35.1 (1992): 7-25. ---. “‘What’s in a Name?’: Representing The Picture of Dorian Gray.” Bucknell Review 38.1 (1994): 44-60. Gold, Barri J.. “The Domination of Dorian Gray.” Victorian Newsletter 91 (1997): 27-30. Hamilton, Lisa K.. “New Women and ‘Old’ Men.” Women and British Aestheticism. Eds. Talia Schaffer and Kathy Alexis Psomiades. Charlottesville: UP of Virginia, 1999. 63-79. James, Joyce. The Portrait of the Artist as A Young Man. 1916. Rpt. of Taipei: Bookman Company, 1997. Kaplan, Joel. “The Dandy and the Dowager: Oscar Wilde and Audience Resistance.” New Theatre Quarterly 15.4 (1999): 318-31. Kiberd, Declan. “Oscar Wilde—The Artist as Irishman.” Inventing Ireland: The Literature of the Modern Nation. London: Vintage, 1996. 33-50. ---. “Oscar Wilde: The Resurgence of Lying.” The Cambridge Companion to Oscar Wilde. Ed. Peter Raby. Cambridge: Cambridge UP, 1997. 276-294. Kofman, Sarah. “The Imposture of Beauty: The Uncanniness of Oscar Wilde’s The Picture of Dorian Gray.” Enigmas: Essays on Sarah Kofman. Trans. Duncan Large. NY: Cornell UP, 1999. 25-48. Kohl, Norbert. “Culture and Corruption. The Picture of Dorian Gray.” Oscar Wilde: The Works of a Conformist Rebel. Trans. David Henry Wilson. Cambridge: Cambridge UP, 1989. 138-75. Liebman, Sheldon W.. “Character Design in The Picture of Dorian Gray.” Studies in the Novel 31.3 (1999): 296-316. Mahaffey, Vicki. “Pere-version and Im-mere-sion: Idealized Corruption in A Portrait of the Artist as a Young Man and The Picture of Dorian Gray.” JJQ 31.3 (1994): 189-206. Manganiello, Dominic. “Through a Cracked Looking Glass: The Picture of Dorian Gray and A Portrait of the Artist as a Young Man.” James and Joyce and His Contemporaries. Eds. Diana A. Ben-Merre and Maureen Murphy. New York: Greenwood, 1989. 89-96. Nassaar, Christopher S.. Wilde’s The Picture of Dorian Gray. Explicator 57.4 (1999): 216-17. Nunokawa, Jeff. “Homosexual Desire and the Effacement of the Self in The Picture of Dorian Gray.” American Imago 49.3 (1992): 311-21. ---. “The Importance of Being Bored: The Dividends of Ennui in The Picture of Dorian Gray.” Novel Gazing: Queer Readings in Fiction. Ed. Sedgwick Eve Kosofsky. NC: Duke UP, 1997. 357-71. ---. “The Protestant Ethic and the Spirit of Anorexia: The Case of Oscar Wilde.” What’s Left of Theory? Eds. Judith Butler, John Guillory, and Kendall Thomas. New York: Routledge, 2000. 240-72. Pater, Walter. The Renaissance: Studies in Art and Poetry. Oxford: Oxford UP. 1986. Powell, Kerry. “A Verdict of Death: Oscar Wilde, Actresses and Victorian Women.” The Cambridge Companion to Oscar Wilde. Ed. Peter Raby. Cambridge: Cambridge UP, 1997. 181-194. Raby, Peter. Oscar Wilde. Cambridge: Cambridge UP. 1988. 67-80. Raeside, James. “The Spirit is Willing but the Flesh is Strong: Mishima Yukio’s Kinjiki and Oscar Wilde.” CLS 36.1 (1999): 1-23. Riquelme, John Paul. “Oscar Wilde’s Aesthetic Gothic: Walter Pater, Dark Enlightenment, and The Picture of Dorian Gray.” Modern Fiction Studies 46.3 (2000): 609-31. Seagroatt, Heather. “Hard Science, Soft Psychology, and Amorphous Art in The Picture of Dorian Gray.” Studies in English Literature 38.4 (1998): 741-59. Theoharis, Theoharis Constantine. “Will to Power, Poetic Justice, and Mimesis in The Picture of Dorian Gray.” Rediscovering Oscar Wilde. Ed. Sandulescu George C.. England: Colin Smythe, 1994. 397-404. Walshe, Eibhear. “Wild(e) Ireland.” Ireland in Proximity: History, Gender, Space. Eds. Scott Brewster, Virginia Crossman, Fiona Becket, and David Alderson. London: Routledge, 1999. 64-79. Wilde, Oscar. “The Critic as Artist.” Oscar Wilde: the Major Works. Ed. and Introd. Isobel Murray. Oxford: Oxford UP, 1989. 241-97. ---. The Picture of Dorian Gray. Ed. Isobel Murray. Oxford: Oxford UP, 1998. Womack, Kenneth. “’Withered, Wrinkled, and Loathsome of Visage’: Reading the Ethics of the Soul and the Late-Victorian Gothic in The Picture of Dorian Gray.” Victorian Gothic: Literary and Cultural Manifestations in the Nineteenth Century. Ed. Robbins Ruth. NY: Palgrave, 2000. 18-47.id NH0925094012 sid 895208 cfn 0 / id NH0925094013 auc 周宜美 tic 《都柏林人》中的喬伊斯與愛爾蘭的良知 adc 蕭嫣嫣 ty 碩士 sc 國立清華大學 dp 外國語文學系 yr 92 lg 英文 pg 83 kwc 愛爾蘭性 kwc 愛爾蘭文藝復興 kwc 愛爾蘭民族主義 kwc 背叛 abc 本文主要探討在愛爾蘭政治,宗教和文化情境下,如何形成喬伊斯所謂的愛爾蘭良知此一重要概念。良知一字來自《畫像》它點出喬伊斯創作《都柏林人》的兩個觀點。首先,喬依斯展現文學良知來對抗殖民論述中的愛爾蘭形象和文藝復興運動中的愛爾蘭性,他也同時批判省思在愛爾蘭民族運動中身為一個民族作家的角色與文化使命。在序言部份,首先要批判的是由葉慈和海德所領導的文藝復興運動的文化策略和論述,進而一步肯定喬氏對愛爾蘭貶抑的描述。第一章主要探討愛爾蘭在大飢荒裡所遭遇的殖民壓迫,及其伴隨而來的經濟蕭條造成愛爾蘭境內的性別與婚姻問題。然而,喬依斯也清楚愛爾蘭的矮化與苦難不能單方歸咎於英國殖民政策,也須反思愛爾蘭自身的的墮落,因為愛爾蘭自願為殖民底下的被壓迫者。第二章探討的是民族運動中的背叛以及宗教干政,我將以Seamus Deane 的論述來闡述愛爾蘭背叛和教會所扮演的政治機制。第三章是要探討死者。首先是對結局作一扼要的文獻回顧,進而分析主人翁如何藉由與三個女性的衝突達到頓悟,並思索蓋爾維的尋根之旅。最後,我再次肯定作為道德史一章的《都柏林人》一書的重要性與喬依斯的貢獻。 tc Table of Contents Introduction: Dubliners and the Gaelic Revival ……………………………….……1 Chapter One Colonial Ireland: Famine and Femininity ………………………….14 Chapter Two The Irish Unfaithfulness: Joyce’s Obsession of Betrayal in the Political Context…………………………………………………………….38 Chapter Three “The Dead”: The Journey to the West and Joyce’s imagining Mother Ireland ……………………………………………………………..59 Conclusion ……………………………………………………………………………72 Works Cited …………………………………………………………………………..79 Selected Bibliography…………………………………………………………………82rf Works Cited Arnold, Matthew. “On the Study of Celtic Literature.” Lectures and Essays in Criticism. Ed. R. H. Super. Ann Arbor: Michigan UP, 1962. 320-387. Beja, Morris. James Joyce: A Literary Life. Columbus: Ohio State UP, 1992. Brunsdale, Mitzi M. James Joyce: A Study of the Short fiction. New York: Twayne Publishers, 1993. Cairus, David and Shaun Richards. Writing Ireland: Colonialism, Nationalism and Culture. Manchester: Manchester UP, 1998. Castle, Gregory. “ ‘A Renegade from the Ranks’: Joyce’s Critique of Revivalism in the Early Fiction.” Modernism of the Celtic Revival. New York: Cambridge UP, 2001. 172-208. Cheng,Vincent J. Joyce, Race, and Empire. New York: Cambridge UP, 1995. 77-145. ---. Cheng, Vincent J. “Catching the Conscience of a Race: Joyce and Celticism.” Joyce in the Hibernian Metropolis Essay. Ed. Morris Beja and David Norris. Columbus: Ohio State UP, 1996. 23-62 Deane, Seamus. “Joyce the Irishman.” The Cambridge Companion to James Joyce. Ed. Derek Attridge. Cambridge: Cambridge UP, 1990. 31-53. ---. “Dead Ends: Joyce’s finest Moments.” Semicolonial Joyce. Ed. Derek Attridge and Marjorie Howes. New York: Cambridge UP, 2000. 21-36. ---. “Joyce and Nationalism.” James Joyce: New Perspectives. Ed. Colin MacCabe. Brighton: Harvester, 1982. 45-71. Eaggers, Tilly. “What Is a Woman . . . a Symbol Of?” Modern Critical Interpretation: James Joyce’s Dubliners. Ed. Harold Bloom. New York: Chelsea House Publisher, 1988. 23-38. Eagleton, Terry. Heathcliff and the Great Hunger. London: Verso, 1995. Ehrlich, Heyward. Gender in Joyce. Ed. Jolantaw Wawrzycka and Marlena G. Gainescille: Florida UP, 1997. 82-100. Fairhall, James. James Joyce and the Question of History. Cambridge: Cambridge UP, 1993. ---. “Big-Power Politics and Colonial Economics: The Gordon Bennett Cup Race and ‘After the Race’.” James Joyce Quarterly 28 (Winter 1991). 387-397. Fanon, Frantz. The Wretched of the Earth. Trans. Constance Farrington. New York: Grove Weidenfeld, 1968. Foster, R. F. Modern Ireland: 1600-1972. UK: The Penguin P, 1988. Fry, Peter and Fiona Sommerset. A History of Ireland. London: Rouledge, 1988. Garratt, Robert F. Modern Irish Poetry: Tradition and Continuity from Yeats to Heaney. Berkeley: California UP, 1986. Ghiselin, Brewster. “The Unity of Joyce’s Dubliners.” Dubliners: Texts, Criticism, And Notes. Ed. Robert Scholes and A. Walton Litz. New York: The Viking P. 1969. 316-332. Gifford, Don. Joyce Annotated: Notes for Dubliners and A Portrait of the Artist as a Young Man. Berkeley: California UP, 1982. Grada, Cormac O. The Great Irish Famine. Hampshire: Macmillan, 1989. Greaves, Richard. Transition, Reception, and Modernism in W. B. Yeats. New York: Palgrave, 2002. Henke, Suzette. James Joyce and the Politics of Desire. London: Routlede, 1990. Herring, Phillip f. Joyce's Uncertainty Principle. New Jessy: Princeton UP, 1987. Hoare, Quintin and Geoffrey Nowell Smith, ed. and trans. Selections from the prison notebooks of Antonio Gramsci. New York :International Publishers, 1971. Hutchinson, John. The Dynamics of Cultural Nationalism: the Gaelic Revival and the Creation of the Irish Nation State. London: Allen & Unwin, 1987. Innes, C.L. Woman and Nation in Irish Literature and Society, 1880-1935. Athens : Georgia UP, 1993 Joyce, James. A Portrait of the Artist as a Young Man: Text, Criticism, Notes. Ed. Chester G. Anderson. New York: Viking P, 1968. ---. Dubliners. New York: Viking P, 1969. ---. .Selected Letters of James Joyce. Ed. Richard Ellmann. New York: Viking P, 1975. ---. The Critical Writings of James Joyce. Ed. Ellsworth Mason and Richard Ellmann. New York: Viking P, 1964. Kiberd, Declan. Inventing Ireland: The Literature of the Modern Nation. New York:Vintage,1996. Levenson, Michael. “Living History in ‘The Dead’.” James Joyce: “The Dead”: Complete, Authoritative Text with Biographical and Historical Contexts, Critical History, and Essays from Five Contemporary Critical Perspectives. Ed. Daniel R. Shwarz. New York: St. Martin’s P, 1994. 163-176. Lyons, F.S.L. Ireland Since the Famine. London: Fontana P, 1973. Macrae, Alasdair. W. B. Yeats: A Literary Life. New York: St. Martin’s Press, 1995. Nolan, Emer. James Joyce and Nationalism. London: Routledge, 1995. Parrinder, Patrick. “Dubliners.” Modern Critical Views: James Joyce. Ed. Harold Bloom. New York: Chelsea House Publishers,1986. 245-273. Peterson, Richard F. James Joyce Revisited. New York: Twayne Publisher, 1992. Said, Edward W. Orientalism. New York: Vintage, 1979. Spivak, Gayatri Chakravorty. “Can the Subaltern Speak?” Marxism and the Interpretation of Culture. Ed. Cary Nelson and Lawrence Crossbery. Champaign: Illinois UP, 1988. 271-313. Rabaté, Jean-Michel. “Silence in Dubliners.” James Joyce: New Perspectives. Ed. Colin MacCabe. Brighton: Harvester, 1982. 45-71. Reynolds, Mary T. “The Dantean Design of Joyce’s Dubliners.” Modern Critical Interpretation: James Joyce’s Dubliners. Ed. Harold Bloom. New York: Chelsea House Publisher, 1988. 51-57. Walzl, Florence L. “A Book of Signs and Symbols: The Protagonist.” The Seventh of Joyce. Ed. Bernard Benstock. Bloomington: Indiana UP, 1982. ---. “Dubliners: Women in Irish Society.” Women in Joyce. Ed. Henk, Suzette and Elaine Unkeless. Urbana: Illinois U, 1982. 31-56. Werner, Craig Hansen. Dubliners: A Pluralistic World. New York: Twayne publishers, 1988. 73-111. Williams,Trevor L. Reading Joyce Politically. Gainesville: Florida UP, 1997. Selected Bibliography Archibald, Douglas. Yeats. New York: Syracuse UP, 1983. 77-107. Deane, Seamus. Celtic Revival: Essays in Modern Irish Literature, 1880~1985. London; Faber &Faber, 1985. 28-50. Moran, D.P. “The Battle of Two Civilizations.” The Philosophy of Irish Ireland. Dublin: James Duffy & Co., 1905. 94-114.id NH0925094013 sid 895203 cfn 0 / id NH0925094014 auc 黃維楨 tic 「什麼/誰是歐蘭朵?」:奇幻為其逾越政治 adc 王雪美 ty 碩士 sc 國立清華大學 dp 外國語文學系 yr 92 lg 英文 pg 87 kwc 奇幻 kwc 怪異 kwc 傳記 kwc 離散 kwc 女性書寫 kwc 旅行文學 kwc 翻譯 kwc 雌雄同體 abc 《歐蘭朵》一向被認為是吳爾芙之雌雄同體理想的代表,同時也是極具實驗性質的女性傳記小說。然而,書中的奇幻情節不僅符合傳統奇幻文學的定義之外,也質疑了再現真實的可能性。本論文企圖藉由Rosemary Jackson和Tzvetan Todorov的奇幻文學理論來重讀這本吳爾芙唯一的一本奇幻小說。在以奇幻作為逾越政治的前提下,《歐蘭朵》挑戰了父權社會中的二元對立的意識形態,並嘗試揉雜不同文類以作為一種另類的再現形式(mode),為歷史中被消音的弱勢族群創造各種發聲的可能性。論文也將探討數個發生在女性歐蘭朵身上「怪異」(uncanny) 的情節背後所隱藏的慾望結構及文化意涵。《歐蘭朵》在異國民俗風情的多所著墨也展現其作為另類的女性旅遊文學的特質。 tc Chapter I: Introduction……………………………………………………1-15 Chapter II: Orlando in Wonderland……………………………………….16-32 Chapter III: Growing Up Without Frontiers: Politics of Transgression in Orlando...................................................................................33-56 Chapter IV: Writing Travel/Travel Writing in Orlando…………………..57-78 Chapter V: Conclusion: A Homeless Home………………………………79-82 Works Cited………………………………………………………………83-87rf Works Cited Attebery, Brian. Strategies of Fantasy. Indiana polis: Indiana UP, 1992. Bakhtin, M. M. Problems of Dostoevsky’s Poetics. Ed. & Trans. Caryl Emerson. Intro. Wayne C. Booth. 1984. Minneapolis: U of Minnesota P, 1999. Baum, Alwin L. “Alices: Semiotics and Paradox.” Modern Critical View: Lewis Carroll. Ed. & Intro. Harold Bloom. New York: Chelsea House, 1987. 65-83. Bassnett, Susan. “Travel Writing and Gender.” The Cambridge Companion to Travel Writing. Ed. & Intro. Peter Hume and Tim Youngs. Cambridge: Cambridge UP, 2000. 225-241. Bloom, Harold, ed. Introduction. Modern Critical View: Lewis Carroll. New York: Chelsea House, 1987. 3-11. Carroll, Lewis. Alice in Wonderland and Through the Looking-Glass. Chatham: Wordsworth, 1993. Cassiday, Bruce, comp. and ed. Introduction. Modern Mystery, Fantasy and Science Fiction Writers. New York: Continuum, 1993. vii-viii. Clifford, James. Routes: Travel and Translation in the Late Twentieth Century. Cambridge: Harvard UP, 1997. “crinoline.” The Encyclopedia of Britannica. 15th ed. 1978. Cuddon, John Anthony. “blank verse.” A Dictionary of Literary Terms and Literary Theory. 3rd ed. Oxford: Blackwell, 1991. “fantasy.” The Oxford English Dictionary. 2nd ed. 1989. “fantastic.” The Oxford English Dictionary. 2nd ed. 1989. Foucault, Michel. The Archaeology of Knowledge and the Discourse on Language. Trans. M. Sheridan Smith. New York: Pantheon, 1972. ---. “We ‘Other Victorians.’” The History of Sexuality: An Introduction. Trans. Robert Hurley. 1979. New York: Vintage, 1990. 3-13. Freud, Sigmund. “Creative Writers and Daydreaming.” Critical Theory Since Plato. Ed. Hazard Adams. Orlando: HBJ, 1992. 712-716. ---. “The Uncanny.” The Standard Edition of the Complete Psychological Works of Sigmund Freud. Trans. & Ed. James Strachey. V. 17. 1918. London: Hogarth, 1953. 217-256. Gilbert, Sandra M. “Costumes of the Mind: Transvestism as Metaphor in Modern Literature.” Writing & Sexual Difference. Elizabeth Abel. Chicago: U of Chicago P, 1982. 193-219. Goddu, Teresa A. “Vampire Gothic.” American Literary History. 11.1 (1999): 125-41. Huchtcheon, Linda. A Poetics of Postmodernism: History, Theory, Fiction. London: Routledge, 1988. ---. Narcissistic Narrative: The Metafictional Paradox. 1980. Ontario: Wilfrid Laurier UP; London: Routledge, 1991. Hulme, Peter and Tim Youngs, eds. Introduction. The Cambridge Companion to Travel Writing. Cambridge: Cambridge UP, 2000. 1-12. Jackson, Rosemary. Fantasy: The Literature of Subversion. 1981. Methuen; London: Routledge, 1993. Jenkins, Keith. Re-Thinking History. London: Routledge, 1991. Love, Jean O. “Orlando and Its Genesis: Venturing and Experiencing in Art, Love, and Sex.” Virginia Woolf: Revaluation and Continuity. Ed. & Intro. Ralph Freedman. Berkeley: U of California P, 1980. 189-218. Lussier, Suzanne and Lucy Johnston. The Secret History of Corset and Crinoline. The Victoria and Albert Museum. The Fathom Study Online, 2002 . Marcus, Laura. Auto/biographical Discourses: Theory, Criticism, Practice. New York: Manchester UP, 1994. Moi, Toril. What Is A Woman? And Other Essays. New York: Oxford UP, 1999. Moore, Madeline. “Orlando: An Imaginative Answer.” The Short Season Between Two Silence: The Mystical and the Political in the Novels of Virginia Woolf. London: George Allen & Unwin, 1984. 93-115. Morris, Jan, ed. Travels with Virginia Woolf. London: Hogarth, 1993. Munslow, Alun. Deconstructing history. London: Routledge, 1997. Peach, Linda. “History and Historiography: Orlando (1928) and The Waves (1931).” Critical Issues: Virginia Woolf. London: McMillan, 2000. 137-167. Rubiés, Joan Pau. “Travel Writing and Ethnography.” The Cambridge Companion to Travel Writing. Ed. & Intro. Peter Hume and Tim Youngs. Cambridge: Cambridge UP, 2000. 242-259. Said, W. Edward. “Reflections on Exile.” Reflections on Exile and Other Essays. Massachusetts: Harvard UP, 2000. 172-189. ---. Representations of the Intellectual: The 1993 Reith Lectures. NY: Vintage Books, 1996. Schlobin, Roger C., ed. Introduction. The Aesthetics of Fantasy Literature and Art. Notre Dame: U of Notre Dame, 1982. Scholes, Robert. Foreword. The Fantastic: A Structural Approach to a Literary Genre. By Tzvetan Todorov. Trans. Richard Howard. New York: Cornell UP, 1975. Snaith, Anna. Virginia Woolf: Public and Private Negotiations. 2000. New York: Palgrave MacMillan, 2003. Todorov, Tzvetan. The Fantastic: A Structural Approach to A Literary Genre. Trans. Richard Howard. Ithaca: Cornell UP, 1975. “travel writing.” Dictionary of Human Geography. 4th ed. R. J. Johnston, Derek Gregory, Geraldine Pratt, Michael Watts, David M. Smith, Ron J. Johnston. Oxford: Blackwell, 2000. “vamp.” The Oxford English Dictionary. 2nd ed. 1989. White, Hayden. Metahistory: The Historical Imagination in Nineteenth-Century Europe. Baltimore: John Hopkins UP, 1975. Wilson, J. J. “Why Is Orlando Difficult?” New Feminist Essays on Virginia Woolf. Ed. Jane Marcus. London: MacMillan, 1987. 170-184. Wollheim, Richard. Freud. 2nd ed. 1971. London: Fontana, 1991. Woolf, Virginia. A Room of One’s Own. 1928. London: Penguin, 1945. ---. “The Art of Biography.” The Death of Moth and Other Essays. New York: HBJ, 1970. 187-197. ---. The Diary of Virginia Woolf. Ed. Anne Olivier Bell. V. III. 1980. London: Hogarth; New York: Penguin, 1982. ---. “Modern Fiction.” The Common Reader: Volume I. London: Vintage, 2003. 146-153. ---. “The New Biography.” Granite and Rainbow: Essays by Virginia Woolf. London: Hogarth, 1958. ---. Orlando: A Biography. 1928. London: Hogarth; Oxford: Oxford UP, 1998. ---. “A Sketch of the Past.” Virginia Woolf: Moments of Being. 2nd ed. Ed. & Intro. Jeanne Schulkind. San Diego: Harcourt Brace, 1985. 46-159. ---. “Women and Fiction.” The Common Reader: Volume I. London: Vintage, 2003. 76-84. Wright, Elizabeth. Speaking Desires Can Be Dangerous: The Poetics of the Unconscious. Malden: Polity, 1999.id NH0925094014 sid 895202 cfn 0 / id NH0925105001 auc 李紹禎 tic 蛇毒心臟毒蛋白與肝素作用之結合專注性與結合模式及其生物意義 adc 吳文桂 ty 博士 sc 國立清華大學 dp 生命科學系 yr 92 lg 中文 pg 173 kwc 心臟毒蛋白 kwc 肝素 kwc 結合專注性 kwc 結合模式 kwc 表面電漿共振 abc 醣胺素是具多負電性的線性聚合醣。它們是由不同化學結構及不同硫酸化修飾的雙醣所聚合而成。它們以蛋白醣的形式,藉由與不同類型蛋白質的連接,廣泛的分布在不同組織或是細胞的表面。肝素與肝素硫酸是醣胺素的一種。它們在葡萄糖胺的第二氫氧基上有特殊的硫酸化。它們的結構異質性、結合專注性、以及分佈特異性,使得它們在調節許多醣胺素結合蛋白的功能上,扮演重要的角色。許多的生物現象,像是細胞分化、增長、癌細胞轉移、以及病毒入侵都與醣胺素有關係。 tc Content ABSTRACT …………………………………………………………………… I AKOWLEDGEMENT ……………………………………………………...... V ABBREVIATION ……………………………………………………..……… VI CONTENT ……………………………………………………….……………. IX CHAPTER 1 - General introduction Part A: Cardiotoxins of snake venoms Pharmacological effect of cardiotoxins …………………………………… 1 Structure of cardiotoxins …………………………………………………. 2 Biological activities and their potential targets …………………………… 3 Part B: Structure, heterogeneity, and dynamics of glycosaminoglycans Overview of proteoglycans ………………………………………………. 8 Function and structure of heparan sulfate proteoglycans (HSPGs) ……… 9 Overview of glycosaminoglycans ………………………………………… 10 Conformation and tertiary structure of glycosaminoglycans ……………. 11 Biosynthesis of heparin / heparan sulfate ………………………………… 12 Internalization and shedding of glycosaminoglycans ………………….… 13 Biological significance of protein-GAG interaction ………………….….. 14 Part C: Introduction of surface plasmon resonance Principle of surface plasmon resonance …………………………………. 27 Application of SPR on biological molecules interaction ………………... 28 Experimentation of Biacore 1) Preparation of surface ……………………………………………… 29 2) Data acquisition ……………………………………………………. 29 3) Data analysis a) Equilibrium studies by Scatchard analysis ……………………… 29 b) Kinetic studies …………………………………………………... 30 General consideration and solution for kinetic binding 1) Analyte related problems a) Non-specific binding …………………………………………….. 31 b) Multivalent binding/avidity effect ………………………………. 31 c) Conformational change induced multivalency (linked reaction) … 31 2) Ligand/surface related problems a) Matrix effect ……………………………………………………….. 32 b) Surface heterogeneity ……………………………………………. 32 c) Steric hindrance …………………………………………………… 32 3) Diffusion related effect a) Surface density and mass transfer effect ………………………….. 32 b) Rebinding effect …………………………………………………… 32 CHAPTER 2 - Heparin derivatives as tools to study protein-heparin interaction – preparation and characterization of heparin derivatives Introduction ……………………………………………………………………. 37 Chemical degradation of heparin ………………………………………... 37 Enzymatic degradation by heparinase I, II and III ……………………… 38 Other methods to degrade heparin ……………………………………… 38 Preparation of heparin derivatives 1) Heparin derivatives in various chain lengths Kinetics of enzyme depolymerization ……………………………… 39 Large-scale depolymerization of heparin ……………………………. 39 Preparation of heparin hexasaccharides ……………………………… 39 2) Heparin derivatives in various substitution patterns Preparation of chemical modified heparin derivatives …………….... 40 3) Conjugated heparin derivatives for other purpose Biotinylation of heparin ……………………………………………. 41 Fluorescent-labeled heparin …………………………………………. 42 Characterization of heparin derivatives Carbohydrate PAGE of heparin fragments ……………………………….. 42 Strong anion exchanger (SAX) chromatography …………………………. 43 Mass spectroscopy ………………………………………………………... 43 Characterization of sulfate content by FTIR ……………………………… 43 Characterization by NMR ………………………………………………… 45 Determination the dynamic size of heparin derivatives ………………….. 45 CHAPTER 3 - Structural diversity determines heparin binding modes, affinities and specificities of CTX homologues Summary ……………………………………………………………………… 67 Introduction …………………………………………………………………… 67 Methods Materials …………………………………………………………………. 69 Cell retention test ………………………………………………………… 70 SPR binding studies ……………………………………………………… 71 Results Retention capability of CTXs on immobilized cells …………………….. 71 Surface plasmon resonance studies ………………………………………. 72 Characterization of CTX retention on immobilized heparin …………….. 73 Ligand dependency of CTXs-heparin interaction ………………………. 74 Discussion The role of charged residue at tip of loop2 ……………………………… 75 CHAPTER 4 - Molecular mechanism of CTXA3-heparin interaction (I) - Effect of venom citrate Summary …………………………………………………………… …………. 86 Introduction ………………………………………………………………...... .. 86 Overall structure of CTX A3 dimer ……………………………………… 88 Heparin hexasaccharide binding to CTX A3 monomer ………………….. 89 Methods Materials …………………………………………………………… .…. 89 Cell retention test ………………………………………………………… 89 Surface plasmon resonance binding studies …………………………..…. 90 Results Retention capability of CTX A3 on immobilized CHO cells in capillary tube ……………………………………………………… 91 Citrate-induced oligomerization of CTX A3 in heparin surface …………. 91 Sulfate specificity investigated by SPR competition ……………………. 93 Discussion …………………………………………………………………….. 93 CHAPTER 5 - Molecular mechanism of CTXA3-heparin interaction (II) – Structural determinants of chain-length and specific ligand on heparin Introduction Structural determinants for protein-GAG interactions …………………. 105 Energetic of protein-polyelectrolyte interaction ………………………….. 105 Background of CTX-heparin interaction …………………………………. 107 Methods Materials ……………………………………………………………….. .. 107 SPR binding studies ……………………………………………………. .. 107 Fluorescence studies …………………………………………………… .. 108 Hemolysis experiment …………………………………………………. .. 109 Cell culture and toxicity assay …………………………………………. .. 109 Turbidity assay …………………………………………………………… 110 Results SPR competition experiments of depolymerized heparins in various chain lengths ………………………………………………………………… 110 Heparin induced CTXA3 oligomerization investigated by fluorescence self-quenching experiments ………………………………………….. 111 Change of intrinsic tyrosine fluorescence upon heparin binding ………… 112 Energetic of CTXA3-heparin interaction …………………………………. 112 Effect of heparin chain length on inhibitory effect of CTX-induced toxicity …………………………………………….. 114 Sulfate specificity of CTXA3-heparin interaction ……………………….. 114 CHAPTER 6 - Molecular mechanism of CTXA3-heparin interaction (III) – The role of N-acetylation on heparin Summary ………………………………………………………………………. 127 Introduction …………………………………………………………………… 127 Methods Materials …………………………………………………………………. 128 SPR binding studies ……………………………………………………… 129 Preparation and characterization of CTX-protected domains on heparin ……………………………………………………………. 129 Disaccharide composition mapping of heparin disaccharides …………… 130 Fluorescence studies ……………………………………………………... 130 Aggregation kinetics …………………………………………………….. 130 Results Cooperative binding between CTX and heparin ………………………… 131 Occupancy dependent change of dissociation kinetic …………………… 131 Disaccharide mapping of CTX protected domain (CPD) ………………. 132 Characterization of CTX-protected domains …………………………… 133 The role of N-substitution on heparin for binding to CTXA3 ………….. 133 Discussion Binding cooperativity …………………………………………………… 135 Ring conformation of uronate on heparin ………………………………. 136 Implication in CTX-induced RBC hemolysis ………………………….. 136 REFERENCES……………………………………………………………… 148rf REFERENCES Chapter 1 - part A: Cardiotoxins of snake venoms 1. Wu, W. (1998) Cobra Cardiotoxin and Phospholipase A2 as GAG-binding Toxins; On the Path from Structure to Cardiotoxicity and Inflammation. Trends. Cardiovas. Med. 8, 270-278. 2. Endo, T., and Tamiya, N. (1991) in Snake Toxins, pp165-222, Pergamon Press, New Yorks. 3. Lambeau, G., Lazdunski, M. (1999) Receptors for a growing family of secreted phospholipases A2. Trends Pharmacol Sci. 20, 162-170. 4. Lee, C.Y., Lin, J.S., and Wei, J.W. (1970) in 2nd Intern. Symp. Animal and Plant Toxins, Tel-Aviv, Israel. 307-318. 5. Chen, Y.H., Hu, C.T., and Yang, J.T. (1984) Membrane disintegration and hemolysis of human erythrocytes by snake venom cardiotoxin (a membrane-disruptive polypeptide). Biochem. Int., 8, 329-338. 6. Lee, C.Y., Chang, C.C., Chiu, T.H., Chiu, P.J.S., Tseng, T.C., and Lee, S.Y. (1968) Pharmacological properties of cardiotoxin isolated from Formosan cobra venom. Arch. Pharmak. Exp. Path. 259, 360-374. 7. Tseng, L.F., Chiu, T.H., and Lee, C.Y. (1968) Absorption and distribution of 131I-labeled cobra venom and its purified toxins. Toxicol. Appl. Pharmaco., 12, 526-535. 8. Lai, M.K., Wen, C.Y., and Lee, C.Y. (1972) Local lesions caused by cardiotoxin isolated from Formosan cobra venom. J. Formosan Med. Assoc., 71, 328-332. 9. Francis, B, Seebart, C, and Kaiser, I.I. (1992) Citrate is an endogeneous inhibitor of snake venom enzymes by metal-ion chelation. Toxicon 30, 1239-1246. 10. Odell, G.V., Fenton, A.W., Ownby, C.L., Doss, M.P., and Schmidt, J.O. (1999) The role of venom citrate. Toxicon 37, 407-409. 11. Phillips, C.L., Ullman, B., Brennan, R.G., and Hill, C.P. (1999) Crystal structures of adenine phosphoribosyltransferase from Leishmania donovani. EMBO J. 18, 3533-3545. 12. Mao, Y., Nickitenko, A., Duan, X., Lloyd, T.E., Wu, M.N., Bellen, H., and Quiocho, F.A. (2000) Crystal structure of the VHS and FYVE tandem domains of Hrs, a protein involved in membrane trafficking and signal transduction. Cell 100, 447-456. 13. Schmidt, U., and Darke, P.L. (1997) Dimerization and activation of the hepes simplex virus type 1 protease. J. Biol. Chem. 272, 7732-7735. 14. Buisson, M., Valette, E., Hernandez, J.F., Baudin, F., Ebel, C., Morand, P., Seigneurin, J.M., Arlaud, G.J., and Ruigrok, R.W. (2001) Functional determinants of the Epstein-Barr virus protease. J. Mol. Biol. 311, 217-228. 15. Wang, J.P., and Teng, C.M. (1989) Roles of mast cells and PMN leukocytes in cardiotoxin-induced rat paw edema. Eur. J. Pharmacol. 161, 9-18. 16. Miller, R.A., and Tu, A.T. (1989) Factors in snake venoms that increase capillary permeability. J. Pharm. Pharmacol. 41, 792-794. 17. Hirata, A., Masuda, S., Tamura, T., Kai, K., Ojima, K., Fukase, A., Motoyoshi, K., Kamakura, K., Miyagoe-Suzuki, Y., and Takeda, S. (2003) Expression profiling of cytokines and related genes in regenerating skeletal muscle after cardiotoxin injection: a role for osteopontin. Am. J. Pathol. 163, 203-215. 18. Lo, T.B., Chen, Y.H., and Lee, C.Y. (1966) Chemical studies of Formosan cobra (Naja naja atra) venom. Part 1. chromatographic separation of crude venom on CM-sepadex and preliminary characterization of its components. J. Chinese Chem. Soc. 13, 165-177. 19. Wu, W. (1997) Diversity of cobra cardiotoxin J. Toxicol. 16, 115-134. 20. Chiang, C.M., Chang, S.L., Lin, H.J., and Wu, W.G. (1996) The role of acidic amino acid residues in the structural stability of snake cardiotoxins. Biochemistry 35, 9177-9186. 21. Lo, C.C., Hsu, J.H., Sheu, Y.C., Chiang, C.M., Wu, W., Fann, W., and Tsao, P.H. (1998) Effect of D57N mutation on membrane activity and molecular unfolding of cobra cardiotoxin. Biophys. J. 75, 2382-2388. 22. Patel, H.V., Vyas, A.A., Vyas, K.A., Liu, Y., Chiang, C., Chi, L., and Wu, W. (1997) Heparin and heparan sulfate bind to snake cardiotoxin: sulfated oligosaccharides as a potential target for cardiotoxin action.J. Biol. Chem. 272, 1484-1492. 23. Vyas, A.A., Pan, J., Patel, H.V., Vyas, K.A., Chiang, Sheu, Y. Hwang, J., and Wu, W. (1997) Analysis of binding of cobra cardiotoxins to heparin reveals a new ??-sheet heparin-binding structural motif. J. Biol. Chem. 272, 9661-9670. 24. Sue, S., Jarrell, H.C., Brisson, J.R., and Wu, W. (2001) Dynamic characterization of the water binding loop in the P-type cardiotoxin: implication for the role of the bound water molecule. Biochemistry 40, 12782-12794. 25. Chien, K., Huang, W., Jean, J., and Wu, W. (1991) Fusion of Sphingomyelin Vesicles Induced by Proteins from Taiwan Cobra (Naja naja atra) Venom- interactions of zwitterionic phospholipids with cardiotoxin analogues. J. Biol. Chem. 266, 3252-3259. 26. Chien, K.Y., Chiang, C.M., Hseu, Y.C., Vyas, A.A., Rule, G.S. and Wu, W. (1994) Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions. J. Biol. Chem. 269, 14473-14483. 27. Dementieva, D.V., Bocharov, E.V., and Arseniev, A.S. (1999) Two forms of cytotoxin II (cardiotoxin) from Naja naja oxiana in aqueous solution: spatial structures with tightly bound water molecules. Eur. J. Biochem. 263, 152-162. 28. Huang,W.N., Sue,S.C., Wang, D.S., Wu, P.L., and Wu W. (2003) Peripheral Binding Mode and Penetration Depth of Cobra Cardiotoxin on Phospholipid Membranes as Studied by a Combined FTIR and Computer Simulation Approach. Biochemistry 42, 7457-7466. 29. Forouhar,F., Huang, W.N., Lin, J.H., Chien, K.Y. Wu, W., and Hsiao, C.D. (2003) Structural basis of membrane-induced cardiotoxin A3 oligomerization. J. Biol. Chem. 278, 21980-21988. 30. Bratosin, D., Mazurier, J., Tissier, J.P., Estaquier, J., Huart, J.J., Ameisen, J.C., Aminoff, D., and Montreuil, J. (1998) Cellular and molecular mechanisms of senescent erythrocyte phagocytosis by macrophages. A review. Biochimie 80, 173-195. Chapter 1 - part B: Structure, heterogeneity, and dynamics of glycosaminoglycans 1. Ruoslahti, E. (1989) Proteoglycans in cell regulation. J. Biol. Chem. 264, 13369-13372. 2. Kjellén, L., and Lindahl, U. (1991) Proteoglycans: structures and interactions. Annu. Rev. Biochem. 60, 443-475. 3. Human Frontier Science program Workshop VI. HFSP, Strasbourg. 4. Http://www.uku.fi/laitokset/anat/PG/intro.htm 5. Ioozzo, R.V. (2001) Heparan sulfate proteoglycans: intricate molecules with intriguing functions. J. Clin. Invest. 108, 165-167. 6. Iozzo, R.V., and San Antonio, J.D. (2001) Heparan sulfate proteoglycans: heavy hitters in the angiogenesis aerna. J. Clin. Invest. 108, 349-355. 7. Park, P.W., Reizes, O., and Bernfield, M. (2000) Cell surface heparan sulfate proteoglycans:selective regulators of ligand-receptor encounters. J. Biol. Chem. 275, 29923-29926. 8. Yanagishita, M. and Hascall, V.C. (1992) Cell surface heparan sulfate proteoglycans. J. Biol. Chem. 267, 9451-9454. 9. Perrimon, N., and Bernfield, M. (2001) Cellular functions of proteoglycans - an overview. Sem. Cell Dev. Biol. 12, 65-67. 10. Bernfield, M., Götte, M., Park, P.W., Reizes, O., Fitzgerald, M.L., Lincecum, J., and Zako, M. (1999) Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729-777. 11. Tumova, S., Woods, A., and Couchman, J.R. (2000) Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions. Int. J. Biochem. Cell Biol. 32, 269-288. 12. Resenberg, R., Shworak, N.W., Liu, J., Schwartz, J.J., and Zhang, L. (1997) Cell adhesion in vascular biology. J. Clin. Invest. 99, 2062-2070. 13. Shriver, Z., Liu, D., and Sasisekharan, R. (2002) Emerging views of heparan sulfate glycosaminoglycan structure/activity relationships modulating dynamics biological functions. Trends Cardiovasc. Med. 12, 71-77. 14. Blackhall, F.H., Merry, C.L.R., Davies, E.J., and Jayson, G.C. Heparan sulfate proteoglycans and cancer. (2001) Brit. J. Cancer 85, 1094-1098. 15. Engelberg, H. (1999) Actions of heparin that may affect the malignant process. Cancer 85, 257-272. 16. Perrimon, N., and Bernfield, M. (2001) Cellular functions of proteoglycans - an overview. Sem. Cell Dev. Biol. 12, 65-67. 17. Yanagishita, M., and Hascall, V.C. (1992) Cell surface heparan sulfate proteoglycans. J. Biol. Chem. 267, 9451-9454. 18. Van Damme, M.I., Tiglias, J., Nemat, N., and Preston, B.N. (1994) Determination of the charge content at the surface of cells using a colloid titration technique. Anal. Biochem. 223, 62-70. 19. Torihara, K., Suganuma, T., Ide, S., and Morimitsu, T. (1994) Anionic sites in blood capillaries of the mouse cochlear duct. Hear Res. 77, 69-74. 20. Vorbrodt, A.W. (1989) Ultracytochemical characterization of anionic sites in the wall of brain capillaries. J. Neurocytol. 18, 359-368. 21. Williams, K.J., and Fuki, L.V. (1997) Cell-surface heparan sulfate proteoglycans: dynamic molecules mediating ligand catabolism. Curr. Opin. Lipid. 8, 253-262. 22. Carey, D.J. (1997) Syndecans: multifunctional cell-surface co-receptors. Biochem. J. 327, 1-16. 23. Woods, A., and Couchman, J.R. (1998) Syndecans: synergistic activators of cell adhesion. Trend Cell Biol. 8, 189-192. 24. Asundi, V.K., Keister, B.F., Stahl, R.C., and Carey, D.J. (1997) Developmental and cell-type-specific expression of cell surface heparan sulfate proteoglycans in the rat heart. Experimental Cell Res. 230, 145-153. 25. Prydz, K., and Dalen, K.T. (2000) Synthesis and sorting of proteoglycans. J. Cell. Sci. 113, 193-205. 26. Lever, R., and Page, C.P. (2002) Novel drug development opportunities for heparin. Nature Rev. Drug Disc. 1, 140-148. 27. Warkentin, T.E., and Greinacher, A. (2003) Heparin-induced thrombocytopenia and cardiac surgery. Ann Thorac Surg. 76, 2121-2131. 28. Warkentin TE. (2003) Management of heparin-induced thrombocytopenia: a critical comparison of lepirudin and argatroban. Thromb Res. 110, 73-82. 29. Casu, B., Petitou, M., Provasoli, M., and Sinaÿ, P. (1988) Conformational flexibility: a new concept for explaining binding and biological properties of iduronic acid-containing glycosaminoglycans. Trends Biochem. Sci. 13, 221-225. 30. Capila, I., and Linhardt, R.J. (2002) Heparin-protein interactions. Angew. Chem. Int. Ed. 41, 390-412. 31. Mulloy, B., and Forster, M. (2000) Conformation and dynamics of heparin and heparan sulfate. Glycobiology 10, 1147-1156. 32. Sanderson, P.N., Huckerby, T.N., and Nieduszynski, I.A. (1987) Conformational equilibria of alpha-L-iduronate residues in disaccharides derived from heparin. Biochem. J. 243, 175-181. 33. Mulloy, B., Forster, M.J., Jones, C., and Davie, D.B. (1993) NMR and molecular modeling studies of solution conformation of heparin. Biochem. J. 293, 849-858. 34. Mulloy, B., Forster, M.J., Jones, C., Drake, A.F., Johnson, E.A., Davies, D.B. (1994) The effect of variation of substitution on the solution conformation of heparin: a spectroscopic and molecular modelling study. Carbohydr. Res. 255, 1-26. 35. Hricovíni, M., Guerrini, M., Torri, G., Piani, S., and Ungarelli, F. (1995) Conformational analysis of heparin epoxide in aqueous solution. An NMR relaxation study. Carbohydr. Res. 277, 11-23. 36. Mikhailov, D., Linhardt, R.J., and Mayo, K.H. (1997) NMR solution conformation of heparin-derived hexasaccharides. Biochem. J. 328, 51-61. 37. Ferro, D.R., Gajdoš, J., Ragazzi, M., Ungarelli, F., Piani, S. (1995) Conformational analysis of heparin epoxide: molecular mechanics computations. Carbohydr. Res. 277, 25-38. 38. Ferro, D.R., Provasoli, A., Ragazzi, M., Casu, B., Torri, G., Bossennec, V., Perly, B., Sinaÿ, P., Petitou, M., and Choay, J. (1990) Conformer populations of L-iduronic acid residues in glycosaminoglycan sequences. Carbohydr. Res. 195, 157-167. 39. Ernst, S., Langer, R., Cooney, C.L., and Sasisekharan, R. (1995) Enzymatic degradation of glycosaminoglycans Crit. Rev. Biochem. Mol. Biol. 30, 387-444. 40. Cros, S., Petitou, M., Sizun, P., Pérez, S., and Imberty, A. (1997) Combined NMR and molecular modeling study of an iduronic acid-containing trisaccharide related to antithrombotic heparin fragments. Bioorgan. Med. Chem. 5, 1301-1309. 41. Das, S.K., Mallet, J., Esnault, J., Driguez, P., Duchaussoy, P., Sizun, P., Hérault, J., Herbert, J., Petitou, M., and Sinaÿ, P. (2001) Synthesis of Conformationally Locked Carbohydrates: A Skew-Boat Conformation of L-Iduronic Acid Governs the Antithrombotic Activity of Heparin. Angew. Chem. Int. Ed. 40, 1670-1673. 42. van Boeckel, C.A. van Aelst, S.F., Wagenaars, G.N., Mellema, J., Paulesn, H., peters, T., Pollex, A., and Sinnwell, V. (1987) Recl. Trav. Pays-Bas. 106, 19-29. 43. Faham, S., Hileman, R.E., Fromm, J.R., Linhardt, R.J., and Ree, D.C. (1996) Heparin structure and interactions with basic fibroblast growth factor. Science 271, 1116-1120. 44. Hricovíni. M., Guerrini, M., Bisio, A., Torri, G., Betitou, M., and Casu, B. (2001) Conformation of heparin pentasaccharide bound to antithrombin III. Biochem. J. 359, 265-272. 45. Chuang, W., Crist, M.D., Peng, J., and Rabenstein, D.L. (2000) An NMR and molecular modeling study of the site-specific binding of histamine by heparin, chemically modified heparin, and heparin-derived oligosaccharides. Biochemistry 39, 3542-3555. 46. Kvam, B.J., Atzori, M., Toffanin, R., Paoletti, S., and Biviano, F. (1992) 1H- and 13C-NMR studies of solutions of hyaluronic acid esters and salts in methyl sulfoxide: comparison of hydrogen-bond patterns and conformational behaviour. Carbohydr. Res. 230, 1-13. 47. Almond, A., Sheehan, J.K., and Brass, A. (1997) Molecular dynamics simulations of the two disaccharides of hyaluronan in aqueous solution. Glycobiology 7, 597-604. 48. Almond, A., Brass, A., and Sheehan, J.K. (1998) Dynamic exchange between stabilized conformations predicted for hyaluronan tetrasaccharides: comparison of molecular dynamics simulations with available NMR data. Glycobiology 8, 973-980. 49. Kaufmann, J., Mohle, K., Hofmann, H.J., and Arnold, K. (1999) Molecular dynamics of a tetrasaccharide subunit of chondroitin 4-sulfate in water. Carbohydr. Res. 318, 1-9. 50. Cael, J.J., Winter, W.T., and Arnott, S. (1978) Calcium chondroitin 4-sulfate: molecular conformation and organization of polysaccharide chains in a proteoglycan. J. Mol. Biol. 125, 21-42. 51. Staskus, P.W., and Johnson, W.C.Jr. (1988) Double-stranded structure for hyaluronic acid in ethanol-aqueous solution as revealed by circular dichroism of oligomers. Biochemistry 27, 1528-1534. 52. Scott, J.E., Heatley, F., and Wood, B. (1995) Comparison of secondary structures in water of chondroitin-4-sulfate and dermatan sulfate: implications in the formation of tertiary structures. Biochemistry 34, 15467-15474. 53. Haxaire, K., Braccini, I., Milas, M., Rinaudo, M., and Perez, S. (2000) Conformational behavior of hyaluronan in relation to its physical properties as probed by molecular modeling. Glycobiology 10, 587-594. 54. Gribbon, P., Heng, B.C., and Hardingham, T.E. (2000) The analysis of intermolecular interactions in concentrated hyaluronan solutions suggest no evidence for chain-chain association. Biochem. J. 350, 329-335. 55. Lindahl, U., Kusche-Gullberg, M, and Kjellén, L. (1998) Regulated diversity of heparan sulfate. J. Biol. Chem. 273, 24979-24982. 56. Esko, J.D., and Lindahl, U. (2001) Molecular diversity of heparan sulfate. J.Clin. Invest. 108, 169-173. 57. Esko, J.D., and Selleck, S.B. (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435-471. 58. Sugahara, K., and Kitagawa, H. (2002) Heparin and heparan sulfate biosynthesis. IUBMB Life 54, 163-175. 59. Ihrcke, N.S., and Platt, J.L. (1996) Shedding of heparan sulfate proteoglycan by stimulated endothelial cells: evidence for proteolysis of cell-surface molecules. J. Cell Physiol. 168, 625-637. 60. Fitzgerald, M.L., Wang, Z., Park, P.W., Murphy, G., and Bernfield, M. (2000) Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and mediated by a TOMP-3-sentitive metalloproteinase. J. Cell Biol. 148, 811-824. 61. Park, P.W., Pier, G.B., Preston, M.J., Goldberger, O., Fitzgerald, M.L., and Bernfield, M. (2000) Syndecan-1 shedding is enhanced by LasA, a secreted virulence factor of Pseudomonas aeruginosa. J. Biol. Chem. 275, 3057-3064. 62. Park, P.W., Pier, G.B., Hinkes, M.T., and Bernfield, M. (2001) Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature 411, 98-102. 63. Menozzi, F.D., Pethe, K., Bifani, P., Soncin, F., Brennan, M.J., and Locht, C. (2002) Enhanced bacterial virulence through exploitation of host glycosaminoglycans. Mol. Microbiol. 43, 1379-1386. 64. Lüke, H., and Prehm, P. (1999) Synthesis and shedding of hyaluronan from plasma membrane of human fibroblasts and metastatic and non-metastatic melanoma cells. Biochem. J. 343, 71-75. 65. Roseman, S. (2001) Reflections on glycobiology. J. Biol. Chem. 276, 41527-41542. 66. Turnbull, J., Powell, A., and Guimond, S. (2001) Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends Cell Biol. 11, 75-82. 67. Belting, M. (2003) Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem. Sci. 28, 145-151. 68. Gallagher, J.T. (2001) Heparan sulfate: growth control with a restricted sequence menu. J. Clin. Invest. 108, 357-361. 69. Nakato, H., and Kimata, K. (2002) Heparan sulfate fine structure and specificity of proteoglycan functions. Biochim. Biophys. Acta 1573, 312-318. 70. Pellegrini, L. (2001) Role of heparan sulfate in fibroblast growth factor signaling: a structural view. Curr. Opin. Struct. Biol. 11, 629-634. 71. Faham, S. Linhardt, R.J., and Rees, D.C. (1998) Diversity does make a difference: fibroblast growth factor-heparin interaction. Curr. Opin. Struct. Biol. 8, 578-586. 72. Hileman, R.E., Fromm, J.R., Weiler, J.M., and Linhardt, R.J. (1998) Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins. Bioessays 20, 156-167. 73. Spillmann, D., and Lindahl, U. (1994) Glycosaminoglycan-protein interactions: a question of specificity. Curr. Opin. Struct. Biol. 4, 677-682 74. Lindahl, U (2000) ‘Heparin’ – from anticoagulant drug into the new biology. Glycoconjugate J. 17, 597-605. 75. Mulloy, B., and Linhardt, R.J. (2001) Order out of complexity – protein structures that interact with heparin. Curr. Opin. Struct. Biol. 11, 623-628. 76. Linhardt, R.J. (2003) Heparin: structure and activity. J. Med. Chem. 46, 2551-2564. Chapter 1 - part C: Introduction of surface plasmon resonance 1. Schuck, P. (1997) Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu. Rev. Biophys. Biomol. Struct. 26, 541-566. 2. Nagata, K., and Handa, H. (2000) Real-time analysis of biomolecular interactions. Application of BIACORE. Springer-Verlag, Tokyo, Japan. pp13-22. 3. Green, R.J., Frazier, R.A., Shakesheff, K.M., Davies, M.C., Roberts, C.J., and Tendler, S.J.B. (2000) Surface plasmon resonance analysis of dynamic biological interactions with biomaterials. Biomaterials 21, 1823-1835. 4. Salamon, Z., Brown, M.F., and Tollin, G. (1999) Plasmon resonance spectroscopy: probing molecular interactions within membranes. Trends Biochem. Sci. 24, 213-219. 5. Rich, R.L., and Myszka, D.G. (2002) Survey of the year 2001 commercial optical biosensor literature. J. Mol. Recognit. 15, 352-376. 6. Day, Y.S., Baird, C.L., Rich, R.L., Myszka, D.G. (2002) Direct comparison of binding equilibrium, thermodynamic, and rate constants determined by surface- and solution-based biophysical methods. Protein Sci. 11, 1017-1025. 7. Myszka, D.G. (1997) Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Curr. Opin. Biotech. 8, 50-57. 8. Myszka, D.G. (1999) Impoving biosensor analysis. J. Mol. Recog. 12, 279-284. 9. Canziani, G., Zhang, W., Cines, D., Rux, A., Willis, S., Cohen, G., Eisenberg, R., and Chaiken, I. (1999) Exploring Biomolecular recognition, using optical biosensors. Methods 19, 253-269. 10. Lipschultz, C.A., Li, Y. and Smith-Gill, S. (2000) Experimental design for analysis of complex kinetics using surface plasmon resonance. Methods 20, 310-318. 11. van Regenmortel, M.H.V. (2001) Analysing structure-function relationships with biosensors. Cell. Mol. Life Sci. 58, 794-800. 12. O’Shannessy, D.J., Brigham-Burke, M., Soneson, K.K., Hensley, P., and Brooks, I. (1993) Determination of rate and equilibrium binding constants for macromolecular interactions usinf surface plasmon resonance: use of nonlinear least squares analysis methods. Anal. Biochem. 212, 457-468. 13. Roden, L.D., and Myszka, D.G. (1996) Global analysis of a macromolecular interaction measured on BIAcore. Biochem. Biophys. Res. Comm. 225, 1073-1077. 14. Quinn, J.G., and O’Kennedy, R. (2001) Biosensor-based estimation of kinetics and equilibrium constants. Anal. Biochem. 290, 36-46. 15. Karlsson, R., and Fält, A. (1997) Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J. Immunol Methods 200, 121-133. 16. Marquart, A. http://home.hccnet.nl/ja.marquart/ 17. MacKenzie, C.R., and Hirama, T., Deng, S-J., Bundle, D.R., Narang, S.A., and Young, N.M. (1996) Analysis by surface plasmon resonance of the influence of valence on the ligand binding affinity and kinetics of an anti-carbohydrate antibody. J. Biol. Chem. 271, 1527-1533. 18. Nieba, L., Neiba-Axmann, S.E., Persson, A., Hämäläinen, M., Edebratt, F., Hansson, A., Lidholm, J., Magnusson, K., Karlsson, A.F., and Plückthun, A. (1997) BIACORE analysis oh histidine-tagged proteins using a chelating NTA sensor chip. Anal. Biochem. 252, 217-228. 19. Schuck, P. (1997) Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu. Rev. Biophys. Biomol. Struct. 26, 541-566. 20. Nagata, K., and Handa, H. (2000) Real-time analysis of biomolecular interactions. Application of BIACORE. Springer-Verlag, Tokyo, Japan. pp13-22. 21. Green, R.J., Frazier, R.A., Shakesheff, K.M., Davies, M.C., Roberts, C.J., and Tendler, S.J.B. (2000) Surface plasmon resonance analysis of dynamic biological interactions with biomaterials. Biomaterials 21, 1823-1835. 22. Salamon, Z., Brown, M.F., and Tollin, G. (1999) Plasmon resonance spectroscopy: probing molecular interactions within membranes. Trends Biochem. Sci. 24, 213-219. 23. Rich, R.L., and Myszka, D.G. (2002) Survey of the year 2001 commercial optical biosensor literature. J. Mol. Recognit. 15, 352-376. 24. Day, Y.S., Baird, C.L., Rich, R.L., Myszka, D.G. (2002) Direct comparison of binding equilibrium, thermodynamic, and rate constants determined by surface- and solution-based biophysical methods. Protein Sci. 11, 1017-1025. 25. Myszka, D.G. (1997) Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Curr. Opin. Biotech. 8, 50-57. 26. Myszka, D.G. (1999) Impoving biosensor analysis. J. Mol. Recog. 12, 279-284. 27. Canziani, G., Zhang, W., Cines, D., Rux, A., Willis, S., Cohen, G., Eisenberg, R., and Chaiken, I. (1999) Exploring Biomolecular recognition, using optical biosensors. Methods 19, 253-269. 28. Lipschultz, C.A., Li, Y. and Smith-Gill, S. (2000) Experimental design for analysis of complex kinetics using surface plasmon resonance. Methods 20, 310-318. 29. van Regenmortel, M.H.V. (2001) Analysing structure-function relationships with biosensors. Cell. Mol. Life Sci. 58, 794-800. 30. O’Shannessy, D.J., Brigham-Burke, M., Soneson, K.K., Hensley, P., and Brooks, I. (1993) Determination of rate and equilibrium binding constants for macromolecular interactions usinf surface plasmon resonance: use of nonlinear least squares analysis methods. Anal. Biochem. 212, 457-468. 31. Roden, L.D., and Myszka, D.G. (1996) Global analysis of a macromolecular interaction measured on BIAcore. Biochem. Biophys. Res. Comm. 225, 1073-1077. 32. Quinn, J.G., and O’Kennedy, R. (2001) Biosensor-based estimation of kinetics and equilibrium constants. Anal. Biochem. 290, 36-46. 33. Karlsson, R., and Fält, A. (1997) Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J. Immunol Methods 200, 121-133. 34. Marquart, A. http://home.hccnet.nl/ja.marquart/ 35. MacKenzie, C.R., and Hirama, T., Deng, S-J., Bundle, D.R., Narang, S.A., and Young, N.M. (1996) Analysis by surface plasmon resonance of the influence of valence on the ligand binding affinity and kinetics of an anti-carbohydrate antibody. J. Biol. Chem. 271, 1527-1533. 36. Nieba, L., Neiba-Axmann, S.E., Persson, A., Hämäläinen, M., Edebratt, F., Hansson, A., Lidholm, J., Magnusson, K., Karlsson, A.F., and Plückthun, A. (1997) BIACORE analysis oh histidine-tagged proteins using a chelating NTA sensor chip. Anal. Biochem. 252, 217-228. Chapter 2: Heparin derivatives as tools to study protein-heparin interaction – preparation and characterization of heparin derivatives 1. Jin, L., Abrahams, J.P., Skinner, R., Petitou, M., Pike, R.N., and Carrell, R.W. (1997) The anticoagulant activation of antithrombin by heparin. Proc. Natl. Acad. Sci. U.S.A. 94, 14683-14688. 2. Conrad, H.E. (1998) in Heparin-Binding Proteins, Academic Press, San Diego, CA., pp203-238 3. Whisstock, J.C., Pike, P.N., Jin, L., Skinner, R., Pei, X.Y., Carrell, R. W., and Lesk, A. M. (2000) Conformational changes in serpins: II. The mechanism of activation of antithrombin by heparindagger. J. Mol. Biol. 301, 1287-1305. 4. Varki, A., Cummings, R., Esko, J., Freeze, H., Hart, G., and Marth, J. (1999) Essentials of glycobiology. Cold Spring Harbor, New York, NY. 397-400 and 404-408. 5. Conrad, H.E. (1998) Heparin-binding proteins. Academic Press, San Diego, CA. pp68-97, pp115-136. 6. Bienkowski, M.J., and Conrad, H.E. (1985) Structural characterization of the oligosaccharides formed by depolymerization of heparin with nitrous acid. J. Biol. Chem. 260, 356-365. 7. Shively, J.E., and Conrad, H.E. (1976) Formation of anhrdrosugars in the chemical depolymerization of heparin. Biochemistry 15, 3932-3942. 8. Lortat-Jacob, H., Turnbull, J.E., and Grimaud, J. (1995) Biochem. J. 310, 497-505. 9. Stringer, S. E., and Gallagher, J. T. (1997) Specific binding of chemokine platelet factor 4 to heparan sulfate. J. Biol. Chem. 272, 20508-20514. 10. Spillmann, D., Witt, D., and Lindahl, U. (1998) J. Biol. Chem. 273, 15487-15493. 11. Stringer, S.E., Forster, M.J., Mulloy, B., Bishop, C.R., Graham, G.J., and Gallagher, J.T. (2002) Blood 100, 1543-1550. 12. Conrad, H.E. (1998) Heparin-binding proteins. Academic Press, San Diego, CA. pp80-90. 13. Lohse, D., and Linhardt, R.J. (1992) Purification and characterization of heparin lyases from Flavobacterium heparinum. J. Biol. Chem., 267, 24347-24355. 14. Desai, U.R., Wang, H., and Linhardt, R.J. (1993) Substrate specificity of the heparin lyases from Flavobacterium heparinum. Arch. Biochem. Biophys. 306, 461-468. 15. Yamada, S., Murakami, T., Tsuda, H., Yoshida, K., and Sugahara, K. (1995) Isolation of the porcine heparin tetrasaccharides with glucuronate 2-O-sulfate. Heparinase cleaves glucuronate 2-O-sulfate-containing disaccharides in highly sulfated blocks in heparin. J. Biol. Chem. 270, 8696-8705. 16. Desai, U.R., Wang, H., Ampofo, S.A., and Linhardt, R.J. (1993) Oligosaccharide composition of heparin and low-molecular-weight heparins by capillary electrophoresis. Anal. Biochem. 213, 120-127. 17. Godavarti, R., Cooney, C.L., Langer, R., and Sasisekharan, R. (1996) Heparinase I from Flavobacterium heparinum. Identification of a critical histidine residue essential for catalysis as probed by chemical modification and site-directed mutagenesis. Biochemistry 35, 6846-6852. 18. Godavarti, R., and Sasisekharan, R. (1998) Heparinase I from Flavobacterium heparinum. Role of positive charge in enzymatic activity. J. Biol. Chem. 273, 248-255. 19. Shriver, Z., Hu, Y., and Sasisekharan, R. (1998) Heparinase II from Flavobacterium heparinum. Role of histidine residues in enzymatic activity as probed by chemical modification and site-directed mutagenesis. J. Biol. Chem. 273, 10160-10167. 20. Shriver, Z., Hu, Y., Pojasek, K., and Sasisekharan, R. (1998) Heparinase II from Flavobacterium heparinum. Role of cysteine in enzymatic activity as probed by chemical modification and site- directed mutagenesis. J. Biol. Chem. 273, 22904-22912. 21. Godavarti, R., Davis, M., Venkataraman, G., Cooney, C., Langer, R., and Sasisekharan, R. (1996) Heparinase III from Flavobacterium heparinum: cloning and recombinant expression in Escherichia coli. Biochem. Biophys. Res. Commun. 225, 751-758. 22. Metcalfe, D.D., Thompson, H.L., Klebanoff, S.J., and Henderson-Jr, W.R. (1990) Oxidative degradation of rat mast-cell heparin proteoglycan. Biochem. J. 272, 51-57. 23. Lahiri, B., Lai, P.S., Pousada, M., Stanton, D., and Danishefsky, I. (1992) Depolymerization of heparin by complexed ferrous ions. Arch. Biochem. Biophys. 293, 54-60. 24. Nagasawa, K., Uchiyama, H., Sato, N., and Hatano, A. (1992) Chemical change involved in the oxidative-reductive depolymerization of heparin. Carbohydr. Res. 236, 165-180. 25. Ratts, C.J., Bakker, M.A., van den Born, J., and Berden, J.H. (1997) Hydroxyl radicals depolymerize glomerular heparan sulfate in vitro and in experimental nephritic syndrome. J. Biol. Chem. 272, 26734-26741. 26. Jeske, W., Iqbal, O., Gonnela, S., Boveri, G., Torri, G., De Ambrosi, L., and Fareed, J. (1995) Pharmacologic profile of a low-molecular-weight heparin depolymerized by gamma-irradiation. Semin. Thromb. Hemost. 21, 201-211. 27. Larnkjaer, A., Hansen, S.H., and Østergaard, P.B. (1995) Isolation and characterization of hexasaccharides derived from heparin. Analysis by HPLC and elucidation of structure by 1H NMR. Carbohydr Res. 266, 37-52. 28. Chuang, W.L., McAllister, H., and Rabenstein, D.L. (2002) Hexasaccharides from the histamine-modified depolymerization of porcine intestinal mucosal heparin. Carbohydr Res. 337, 935-945. 29. Rice, K.G., Kim, Y.S., Grant, A.C., Merchant, Z.M., and Linhardt, R.J. (1985) High-performance liquid chromatographic separation of heparin-derived oligosaccharides. Anal. Biochem. 150, 325-331. 30. Inoue, Y., and Nagasawa, K. Selective N-desulfation of heparin with dimethyl sulfoxide containing water or methanol. (1976) Carbohydr. Res. 46, 87-95. 31. Jaseja, M., Rej, R.N., Sauriol, F., and Perlin, A.S. (1989) Novel region- and stereo-selective modifications of heparin in alkaline solution: nuclear magnetic resonance spectroscopic evidence. Can. J. Chem. 67, 1449-1456. 32. Matsuo, M., Takano, R., Kamei-Hayashi, K., and Hara, S. (1993) A novel regioselective desulfation of polysaccharide sulfates: Specific 6-O-desulfation with N,O–bis (trimethylsilyl) acetamide. Carbohydr. Res. 241, 209-215. 33. Lloyd, A.G., Embery, G., and Fowler, L.J. (1971) Studies on heparin degradation. I. Preparation of (35S) sulphamate derivatives for studies on heparin degrading enzymes of mammalian origin. Biochem. Pharmaco. 20, 637-648. 34. Uchiyama, H., and Nagasawa, K. (1991) Changes in the structure and biological property of N-O sulfate-transferred, N-resulfated heparin. J. Biol. Chem. 266, 6756-6760. 35. Casu, B., Grazioli, G., Razi, N., Guerini, M., Naggi, A., Torri, G., Oreste, P., Tursi, F., Zoppetti, G., and Lindahl, U. (1994) Heparin-like compounds prepared by chemical modification of capsular polysaccharide from E. coli K5. Carbohydr. Res. 263, 271-284. 36. Shaklee, P.N., and Conrad, H.E. (1984) Hydrazinolysis of heparin and other glycosaminoglycans. Biochem. J. 217, 187-197. 37. Höök, M., Riesenfeld, J., and Lindahl, U. (1982) N-[3H ]acetyl-labeling, a convenient method for radiolabeling of glycosaminoglycans. Anal. Biochem. 119, 236-245. 38. Taylor, R.L., and Conrad, H.E. (1972) Stoichiometric depolymerization of polyuronides and glycosaminoglycuronans to monosaccharides following reduction of their carbodiimide-activated carboxyl groups. Biochemistry 11, 1383-1388. 39. Nadkarni, V.D., Pervin, A., and Linhardt, R.J. (1994) Directional immobilization of heparin onto beaded supports. Anal. Biochem. 222, 59-67. 40. Melrose, J., Numata, Y., and Ghosh, P. (1996) Biotinylated hyaluronan: a versatile and highly sensitive probe capable of detecting nanogram levels of hyaluronan binding proteins (hyaladherins) on electroblots by a novel affinity detection procedure. Electrophoresis 17, 205-212. 41. Ridley, B.L., Spiro, M.D., Glushka, J., Albersheim, P., Darvill, A., and Mohnen, D. (1997) A method for biotin labeling of biologically active oligogalacturonides using a chemically stable hydrazide linkage. Anal. Biochem. 249, 10-19. 42. Powell, A.K., Fernig, D.G., and Turnbull, J.E. (2002) Fibroblast growth factor receptors 1 and 2 interact differently with heparin/heparan sulfate. Implications for dynamic assembly of a ternary signaling complex. J. Biol. Chem. 277, 28554-28563. 43. Zou, S., Magura, C.E., and Hurley, W.L. (1992) Heparin-binding properties of lactoferrin and lysozyme. Comp. Biochem. Physiol. B 103, 889-895. 44. Foxall, C., Holme, K.R., Liang, W., and Wei, Z. (1995) An enzyme-linked immunosorbent assay using biotinylated heparan sulfate to evaluate the interactions of heparin-like molecules and basic fibroblast growth factor. Anal. Biochem. 231, 366-373. 45. Osmond, R.I., Kett, W.C., Skett, S.E., and Coombe, D.R. (2002) Protein-heparin interactions measured by BIAcore 2000 are affected by the method of heparin immobilization. Anal. Biochem. 310, 199-207. 46. Stearns, N.A., Prigent-Richard, S., Letourneur, D., and Castellot, J.J.Jr. (1997) Synthesis and characterization of highly sensitive heparin probes for detection of heparin-binding proteins. Anal. Biochem. 247, 348-356. 47. Pankhurst, G.J., Bennett, C.A., and Easterbrook-Smith, S.B. (1998) Characterization of the heparin-binding properties of human clusterin. Biochemistry 37, 4823-4830. 48. Yang, B., Yang, B.L., and Goetinck, P.F. (1995) Biotinylated hyaluronic acid as a probe for identifying hyaluronic acid-binding proteins. Anal. Biochem. 228, 299-306. 49. Melrose, J., Little, C.B., and Ghosh, P. (1998) Detection of aggregatable proteoglycan populations by affinity blotting using biotinylated hyaluronan. Anal Biochem 256, 149-157. 50. Glabe, C.G., Harty, P.K., and Rosen, S.D. (1983) Preparation and properties of fluorescent polysaccharides. Anal. Biochem. 130, 287-294. 51. Malsch, R., Guerrini, M., Torri, G., Lohr, G., Casu, B., and Harenberg, J. (1994) Synthesis of a N'-alkylamine anticoagulant active low-molecular-mass heparin for radioactive and fluorescent labeling. Anal. Biochem. 217, 255-264. 52. Rice, K.G., Rottink, M.K., and Linhardt, R.J. (1987) Fractionation of heparin-derived oligosaccharides by gradient polyacrylamide-gel electrophoresis. Biochem. J. 244, 515-522. 53. Goger, B., Halden, Y., Rek, A., Mösl, R., Pye, D., Gallagher, J., and Kungl, A.J. (2002) Different affinity of glycosaminoglycan oligosaccharides for monomeric and dimeric interleukin-8: a model for chemokine regulation at inflammatory sites. Biochemistry 41, 1640-1646. 54. Mallis, L.M., Wang, H.M., Loganathan, D., and Linhardt, R.J. (1989) Sequence analysis of highly sulfated, heparin-derived oligosaccharides using fast atom bombardment mass spectrometry. Anal. Chem. 61, 1453-1458. 55. Oliveira, G.B., Carvalho, L.B. Jr, and Silva, M.P. (2003) Properties of carbodiimide treated heparin. Biomaterials 24, 4777-4783. 56. Potter, K., Kidder, L.H., Levin, I.W., Lewis, E.N., and Spencer, R.G. (2001) Imaging of collagen and proteoglycan in cartilage sections using Fourier transform infrared spectral imaging. Arthritis Rheum. 44, 846-855. 57. Wade, Jr., L.G. (1987) Organic chemistry. Appendix 2A, and 2B. 58. Atha, D.H., Gaigalas, A.K., and Reipa, V. (1996) Structural analysis of heparin by raman spectroscopy. J. Pharma. Sci. 85, 52-56. 59. Perlin, A.S. (1977) NMR spectroscopy of heparin. Fed. Proc. 36, 106-109. 60. Mulloy, B., Forster, M.J,, Jones, C., Drake, A.F., Johnson, E.A., and Davies, D.B. (1994) The effect of variation of substitution on the solution conformation of heparin: a spectroscopic and molecular modeling study. Carbohydr. Res. 255, 1-26. 61. Casu, B., Guerrini, M., Naggi, A., Torri, G., De-Ambrosi, L., Boveri, G., Gonella, S., Cedro, A., Ferro, L., Lanzarotti, E., Paterno, M., Attolini, M., and Valle, M.G. (1996) Characterization of sulfation patterns of beef and pig mucosal heparins by nuclear magnetic resonance spectroscopy. Arzneimittelforschung 46, 472-477. 62. Yates, E.A., Santini, F., Guerrini, M., Naggi, A., Torri, G., and Casu, B. (1996) 1H and 13C NMR spectral assignments of the major sequences of twelve systematically modified heparin derivatives. Carbohydr. Res. 294, 15-27. 63. Casu, B., and Torri, G. (1999) Structural characterization of low molecular weight heparins. Semin. Thromb. Hemost. 25 (Suppl 3), 17-25. Chapter 3: Structural diversity determines heparin binding modes, affinities and specificities of CTX homologues 1. Esko, J.D., and Selleck, S.B. (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435-471. 2. Lindahl, U., Kusche-Gullberg, M., and Kjellén, L. (1998) Regulated diversity of heparan sulfate. J. Biol. Chem. 273, 24979-24982. 3. Esko, J.D., and Lindahl, U. (2001) Molecular diversity of heparan sulfate. J. Clin. Invest. 108, 169-173. 4. Turnbull, J., Powell, A., and Guimond, S. (2001) Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends Cell Biol. 11, 75-82. 5. Conrad, H.E. in Heparin-Binding Proteins, (1998) Academic Press, San Diego, CA. pp203-238. 6. Jin, L., Abrahams, J.P., Skinner, R., Petitou, M., Pike, R.N., and Carrell, R.W. (1997) The anticoagulant activation of antithrombin by heparin. Proc. Natl. Acad. Sci. U.S.A. 94, 14683-14688. 7. Whisstock, J.C., Pike, P.N., Jin, L., Skinner, R., Pei, X.Y., Carrell, R. W., and Lesk, A. M. (2000) Conformational changes in serpins: II. The mechanism of activation of antithrombin by heparindagger. J. Mol. Biol. 301, 1287-1305. 8. Guimond, S., Maccarana, M., Olwin, B.B., Lindahl, U., and Rapraeger, A.C. (1993) Activating and inhibitory heparin sequences for FGF-2 (basic FGF). Distinct requirements for FGF-1, FGF-2, and FGF-4. J. Biol. Chem. 268, 23906-23914. 9. Rusnati, M., Coltrini, D., Caccia, P., Dell'Era, P., Zoppetti, G., Oreste, P., Valsasina, B., Presta, M. (1994) Distinct role of 2-O-, N-, and 6-O-sulfate groups of heparin in the formation of the ternary complex with basic fibroblast growth factor and soluble FGF receptor-1. Biochem Biophys Res Commun.203, 450-458. 10. Lundin, L., Larsson, H., Kreuger, J., Kanda, S., Lindahl, U., Salmivirta, M., and Claesson-Welsh, L. (2000) Selectively desulfated heparin inhibits fibroblast growth factor-induced mitogenicity and angiogenesis. J. Biol. Chem. 275, 24653-24660. 11. Kreuger, J., Salmivirta, M., Sturiale, L., Giménez-Gallego, G., and Lindahl, U. (2001) Sequence analysis of heparan sulfate epitopes with graded affinities for fibroblast growth factors 1 and 2. J. Biol. Chem. 276, 30744-30752. 12. Ishihara, M., Takano, R., Kanda, T., Hayashi, K., Hara, S., Kikuchi, H., and Yoshida, K. (1995) Importance of 6-O-sulfate groups of glucosamine residues in heparin for activation of FGF-1 and FGF-2. J. Biochem. 118, 1255-1260. 13. Pye, D.A., Vives, R.R., Hyde, P., Gallagher, J.T. (2000) Regulation of FGF-1 mitogenic activity by heparan sulfate oligosaccharides is dependent on specific structural features: differential requirements for the modulation of FGF-1 and FGF-2. Glycobiology 10, 1183-1192. 14. Kuschert, G.S.V., Coulin, F., Power, C.A., Proudfoot, A.E.I., Hubbard, R.E., Hoogewerf, A.J., and Well, T.N.C. (1999) Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry 38, 12959-12968. 15. Goger, B., Halden, Y., Rek, A., Mösl, R., Pye, D., Gallagher, J.T., and Kungl, A.J. (2002) Different Affinities of Glycosaminoglycan Oligosaccharides for Monomeric and Dimeric Interleukin-8: A Model for Chemokine Regulation at Inflammatory Sites. Biochemistry 41, 1640-1646. 16. Vivès, R.R., Sadir, R., Imberty, A., Rencurosi, A., and Lortat-Jacob, H. (2002) A kinetics and modeling study of RANTES (9-68) binding to heparin reveals a mechanism of cooperative oligomerization. Biochemistry 41, 14779-14789. 17. Proudfoot, A.E., Handel, T.M., Johnson, Z., Lau, E.K., LiWang, P., Clark-Lewis, I., Borlat, F., Wells, T.N., and Kosco-Vilbois, M.H. (2003) Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc. Natl. Acad. Sci. U.S.A. 100, 1885-1890. 18. Li, Q., Park, P.W., Wilson, C.L., and Parks, W.C. (2002) Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111, 635-646. 19. Cadigan, K.M. (2002) Regulating morphogen gradients in the Drosophila wing. Semin. Cell Dev. Biol. 13, 83-90. 20. Paine-Saunders, S., Viviano, B.L., Economides, A.N., and Saunders, S. (2002) Heparan sulfate proteoglycans retain Noggin at the cell surface. a potential mechanism for shaping bone morphogenetic protein gradients. J. Biol. Chem. 277, 2089-2096. 21. Viviano, B.L., Paine-Saunders, S., Gasiunas, N., Gallagher, J., and Saunders, S. (2004) Domain-specific modification of heparan sulfate by Qsulf1 modulates the binding of the bone morphogenetic protein antagonist Noggin. J Biol Chem. 279, 5604-5611. 22. Giráldez, A.J., Copley, R.R., Cohen, S.M. (2002) HSPG modification by the secreted enzyme Notum shapes the Wingless morphogen gradient. Dev Cell. 2, 667-676. 23. Gustafsson, M, Flood, C., Jirholt, P., and Borén, J. (2004) Retention of atherogenic lipoproteins in atherogenesis. Cell. Mol. Life Sci. 61, 4-9. 24. Belting, M. (2003) Heparan sulfate proteoglycan as a plasma membrane carrier. Trend Biochem. Sci., 28, 145-151. 25. Liu J, and Thorp SC. (2002) Cell surface heparan sulfate and its roles in assisting viral infections. Med Res Rev. 22, 1-25. 26. Spillmann, D. (2001) Heparan sulfate: anchor for viral intruders? Biochimie, 83, 811-817. 27. Mettenleiter, T.C. (2002) Brief overview on cellular virus receptors. Virus Res. 82, 3-8. 28. Wu, W. (1998) Cobra Cardiotoxin and Phospholipase A2 as GAG-binding Toxins; On the Path from Structure to Cardiotoxicity and Inflammation. Trends. Cardiovas. Med. 8, 270-278. 29. Endo, T., and Tamiya, N. (1991) in Snake Toxins, Pergamon Press, New Yorks , pp165-222. 30. Lambeau, G., and Lazdunski, M. (1999) Receptors for a growing family of secreted phospholipases A2. Trends Pharmacol Sci. 20, 162-170. 31. Lee, C.Y., Lin, J.S., and Wei, J.W. (1970) Identification of cardiotoxin with Cobramine B, DLF, Toxin ?? and cobra venom cytotoxin. 2nd Intern. Symp. Animal and Plant Toxins, Tel-Aviv, Israel. 307-318. 32. Chen, Y.H., Hu, C.T., and Yang, J.T. (1984) Membrane disintegration and hemolysis of human erythrocytes by snake venom cardiotoxin (a membrane-disruptive polypeptide). Biochem. Int., 8, 329-338. 33. Lee, C.Y., Chang, C.C., Chiu, T.H., Chiu, P.J.S., Tseng, T.C., and Lee, S.Y. (1968) Pharmacological properties of cardiotoxin isolated from Formosan cobra venom. Arch. Pharmak. Exp. Path. 259, 360-374. 34. Chien, K.Y., Chiang, C.M., Hseu, Y.C., Vyas, A.A., Rule, G.S. and Wu, W. (1994) Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions. J. Biol. Chem. 269, 14473-14483. 35. Chien, K.Y., Huang, W.N., Jean, J.H. and Wu, W. (1991) Fusion of sphingomyelin vesicles induced by proteins from Taiwan cobra (Naja naja atra) venom. Interactions of zwitterionic phospholipids with cardiotoxin analogues. J. Biol. Chem. 266, 3252-3259. 36. Vyas, A.A., Pan, J., Patel, H.V., Vyas, K.A., Chiang, Sheu, Y. Hwang, J., and Wu, W. (1997) Analysis of binding of cobra cardiotoxins to heparin reveals a new beta-sheet heparin-binding structural motif. J. Biol. Chem. 272, 9661-9670. 37. Patel, H.V., Vyas, A.A., Vyas, K.A., Liu, Y., Chiang, C., Chi, L., and Wu, W. (1997) Heparin and heparan sulfate bind to snake cardiotoxin. Sulfated oligosaccharides as a potential target for cardiotoxin action. J. Biol. Chem. 272, 1484-1492. 38. Vyas, K.A., Patel, H.V., Vyas, A.A., and Wu, W. (1998) Glycosaminoglycans bind to homologous cardiotoxins with different specificity. Biochemistry 37, 4527-4534. 39. Forouhar,F., Huang, W.N., Lin, J.H., Chien, K.Y. Wu, W., and Hsiao, C.D. (2003) Structural basis of membrane-induced cardiotoxin A3 oligomerization. J. Biol. Chem. 278, 21980-21988. 40. Huang, W.N., Sue, S.C., Wang, D.S., Wu, P.L., and Wu W. (2003) Peripheral binding mode and penetration depth of cobra cardiotoxin on phospholipid membranes as studied by a combined FTIR and computer simulation approach. Biochemistry. 42, 7457-7466. 41. Sue, S., Chien, K., Huang, W., Abraham, J.K., Chen, K., and Wu, W. (2002) Heparin binding stabilizes the membrane-bound form of cobra cardiotoxin. J. Biol. Chem. 277, 2666-2673. 42. Tseng, L.F., Chiu, T.H., and Lee, C.Y. (1968) Absorption and distribution of 131I-labeled cobra venom and its purified toxins. Toxicol. Appl. Pharmaco., 12, 526-535. 43. Lai, M.K., Wen, C.Y., and Lee, C.Y. (1972) Local lesions caused by cardiotoxin isolated from Formosan cobra venom. J. Formosan Med. Assoc., 71, 328-332. 44. Francis, B, Seebart, C, and Kaiser, I.I. (1992) Citrate is an endogeneous inhibitor of snake venom enzymes by metal-ion chelation. Toxicon 30, 1239-1246. 45. Odell, G.V., Fenton, A.W., Ownby, C.L., Doss, M.P., and Schmidt, J.O. (1999) The role of venom citrate. Toxicon 37, 407-409. 46. Phillips, C.L., Ullman, B., Brennan, R.G., and Hill, C.P. (1999) Crystal structures of adenine phosphoribosyltransferase from Leishmania donovani. EMBO J. 18, 3533-3545. 47. Mao, Y., Nickitenko, A., Duan, X., Lloyd, T.E., Wu, M.N., Bellen, H., and Quiocho, F.A. (2000) Crystal structure of the VHS and FYVE tandem domains of Hrs, a protein involved in membrane trafficking and signal transduction. Cell 100, 447-456. 48. Schmidt, U., and Darke, P.L. (1997) Dimerization and activation of the hepes simplex virus type 1 protease. J. Biol. Chem. 272, 7732-7735. 49. Buisson, M., Valette, E., Hernandez, J.F., Baudin, F., Ebel, C., Morand, P., Seigneurin, J.M., Arlaud, G.J., and Ruigrok, R.W. (2001) Functional determinants of the Epstein-Barr virus protease. J. Mol. Biol. 311, 217-228. 50. Lee, S-H., Guan, H-H., Wang, C-H., Huang, W-N., Chen, C-J. and Wu, W. (2004) Structural basis of venom citrate-dependent heparan sulfate-mediated cell surface retention of cobra cardiotoxin A3. J. Biol. Chem. (submitted) 51. Inoue, Y., and Nagasawa, K. (1976) Selective N-desulfation of heparin with dimethyl sulfoxide containing water or methanol. Carbohydr. Res. 46, 87-95. 52. Jaseja, M., Rej, R.N., Sauriol, F., and Perlin, A.S. (1989) Novel region- and stereo-selective modifications of heparin in alkaline solution: nuclear magnetic resonance spectroscopic evidence. Can. J. Chem. 67, 1449-1456. 53. Matsuo, M., Takano, R., Kamei-Hayashi, K., and Hara, S. (1993) A novel regioselective desulfation of polysaccharide sulfates: Specific 6-O-desulfation with N,O–bis (trimethylsilyl) acetamide. Carbohydr. Res. 241, 209-215. 54. Shaklee, P.N., and Conrad, H.E. (1984) Hydrazinolysis of heparin and other glycosaminoglycans. Biochem. J. 217, 187-197. 55. Esko, J.D., Elgavish, A., Prasthofer, T., Taylor, W. H., and Weinke, J.L. (1986) Sulfate transport-deficient mutants of Chinese hamster ovary cells. Sulfation of glycosaminoglycans dependent on cysteine. J. Biol. Chem. 261, 15725-15733. 56. Berkowitz, O., Wirtz, M., Wolf, A., Kuhlmann, J., and Hell, R. (2002) Use of biomolecular interaction analysis to elucidate the regulatory mechanism of the cysteine synthase complex from Arabidopsis thaliana. J. Biol. Chem. 277, 30629-30634. 57. Bilwes, A., Rees, B., Moras, D., Menez, R., and Menez, A. (1994) X-ray structure at 1.55 Å of toxin gamma, a cardiotoxin from Naja nigricollis venom. Crystal packing reveals a model for insertion into membranes. J. Mol. Biol. 239, 122-136. 58. Capila, I., Hernaiz, M.J., Mo, Y.D., Mealy, T.R., Campos, B., Dedman, J.R., Linhardt, R.J., and Seaton, B.A. (2001) Annexin V--heparin oligosaccharide complex suggests heparan sulfate--mediated assembly on cell surfaces. Structure 9, 57-64. Chapter 4: Molecular mechanism of CTXA3-heparin interaction (I) - Effect of venom citrate - 1. Francis, B, Seebart, C, and Kaiser, I.I. (1992) Citrate is an endogeneous inhibitor of snake venom enzymes by metal-ion chelation. Toxicon 30, 1239-1246. 2. Odell, G.V., Fenton, A.W., Ownby, C.L., Doss, M.P., and Schmidt, J.O. (1999) The role of venom citrate. Toxicon 37, 407-409. 3. Batra, R., Khayat, R., and Tong, L. (2001) Molecular mechanism for dimerization to regulate the catalytic activity of human cytomegalovirus protease. Nat. Struct. Biol. 8, 810-817. 4. Mao, Y., Nickitenko, A., Duan, X., Lloyd, T.E., Wu, M.N., Bellen, H., and Quiocho, F.A. (2000) Crystal structure of the VHS and FYVE tandem domains of Hrs, a protein involved in membrane trafficking and signal transduction. Cell 100, 447-456. 5. Esko, J.D., and Selleck, S.B. (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435-471. 6. Lindahl, U., Kusche-Gullberg, M., and Kjellén, L. (1998) Regulated diversity of heparan sulfate. J. Biol. Chem. 273, 24979-24982. 7. Turnbull, J., Powell, A., and Guimond, S. (2001) Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends Cell Biol. 11, 75-82. 8. Conrad, H.E. (1998) in Heparin-Binding Proteins, Academic Press, San Diego, CA, pp203-238. 9. Kreuger, J., Salmivirta, M., Sturiale, L., Giménez-Gallego, G., and Lindahl, U. (2001) Sequence analysis of heparan sulfate epitopes with graded affinities for fibroblast growth factors 1 and 2. J. Biol. Chem. 276, 30744-30752. 10. Ishihara, M., Takano, R., Kanda, T., Hayashi, K., Hara, S., Kikuchi, H., and Yoshida, K. (1995) Importance of 6-O-sulfate groups of glucosamine residues in heparin for activation of FGF-1 and FGF-2. J. Biochem. 118, 1255-1260. 11. Pellegrini, L., Burke, D.F., von Delft, F., Mulloy, B., and Blundell, T.L. (2000) Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407, 1029-1034. 12. Vivès, R.R., Sadir, R., Imberty, A., Rencurosi, A., and Lortat-Jacob, H. (2002) A kinetics and modeling study of RANTES (9-68) binding to heparin reveals a mechanism of cooperative oligomerization. Biochemistry 41, 14779-14789. 13. Proudfoot, A.E., Handel, T.M., Johnson, Z., Lau, E.K., LiWang, P., Clark-Lewis, I., Borlat, F., Wells, T.N., and Kosco-Vilbois, M.H. (2003) Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc. Natl. Acad. Sci. U.S.A. 100, 1885-1890. 14. Li, Q., Park, P.W., Wilson, C.L., and Parks, W.C. (2002) Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111, 635-646. 15. Cadigan, K.M. (2002) Regulating morphogen gradients in the Drosophila wing. Semin. Cell Dev. Biol. 13, 83-90. 16. Paine-Saunders, S., Viviano, B.L., Economides, A.N., and Saunders, S. (2002) Heparan sulfate proteoglycans retain Noggin at the cell surface. A potential mechanism for shaping bone morphogenetic protein gradients. J. Biol. Chem. 277, 2089-2096. 17. Gustafsson, M, Flood, C., Jirholt, P., and Borén, J. (2004) Retention of atherogenic lipoproteins in atherogenesis. Cell. Mol. Life Sci. 61, 4-9. 18. Belting, M. (2003) Heparan sulfate proteoglycan as a plasma membrane carrier. Trend Biochem. Sci., 28, 145-151. 19. Liu J, and Thorp S.C. (2002) Cell surface heparan sulfate and its roles in assisting viral infections. Med Res Rev. 22, 1-25. 20. Lo, T.B., Chen, Y.H., and Lee, C.Y. (1966) Chemical studies of Formosan cobra (Naja naja atra) venom. I. Chromatographic separation of crude venom on CM-sephadex and preliminary characterization of its components. J. Chinese Chem. Soc. 13, 25-37. 21. Wu, W. (1998) Cobra cardiotoxin and phospholipase A2 as GAG-binding toxins; on the path from structure to cardiotoxicity and inflammation. Trends. Cardiovas. Med. 8, 270-278. 22. Sue, S., Chien, K., Huang, W., Abraham, J.K., Chen, K., and Wu, W. (2002) Heparin binding stabilizes the membrane-bound form of cobra cardiotoxin. J. Biol. Chem. 277, 2666-2673. 23. Vyas, A.A., Pan, J., Patel, H.V., Vyas, K.A., Chiang, Sheu, Y. Hwang, J., and Wu, W. (1997) Analysis of binding of cobra cardiotoxins to heparin reveals a new beta-sheet heparin-binding structural motif. J. Biol. Chem. 272, 9661-9670. 24. Patel, H.V., Vyas, A.A., Vyas, K.A., Liu, Y., Chiang, C., Chi, L., and Wu, W. (1997) Heparin and heparan sulfate bind to snake cardiotoxin. Sulfated oligosaccharides as a potential target for cardiotoxin action. J. Biol. Chem. 272, 1484-1492. 25. Tseng, L.F., Chiu, T.H., and Lee, C.Y. (1968) Absorption and distribution of 131I-labeled cobra venom and its purified toxins. Toxicol. Appl. Pharmaco., 12, 526-535. 26. Lai, M.K., Wen, C.Y., and Lee, C.Y. (1972) Local lesions caused by cardiotoxin isolated from Formosan cobra venom. J. Formosan Med. Assoc., 71, 328-332. 27. Chien, K.Y., Chiang, C.M., Hseu, Y.C., Vyas, A.A., Rule, G.S. and Wu, W. (1994) Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions. J. Biol. Chem. 269, 14473-14483. 28. Yamada, S., Murakami, T., Tsuda, H., Yoshida, K., and Sugahara, K. (1995) Isolation of the porcine heparin tetrasaccharides with glucuronate 2-O-sulfate. Heparinase cleaves glucuronate 2-O-sulfate-containing disaccharides in highly sulfated blocks in heparin. J. Biol. Chem. 270, 8696-8705. 29. Inoue, Y., and Nagasawa, K. (1976) Selective N-desulfation of heparin with dimethyl sulfoxide containing water or methanol. Carbohydr. Res. 46, 87-95. 30. Jaseja, M., Rej, R.N., Sauriol, F., and Perlin, A.S. (1989) Novel region- and stereo-selective modifications of heparin in alkaline solution: nuclear magnetic resonance spectroscopic evidence. Can. J. Chem. 67, 1449-1456. 31. Matsuo, M., Takano, R., Kamei-Hayashi, K., and Hara, S. (1993) A novel regioselective desulfation of polysaccharide sulfates: Specific 6-O-desulfation with N,O–bis (trimethylsilyl) acetamide. Carbohydr. Res. 241, 209-215. 32. Berkowitz, O., Wirtz, M., Wolf, A., Kuhlmann, J., and Hell, R. (2002) Use of biomolecular interaction analysis to elucidate the regulatory mechanism of the cysteine synthase complex from Arabidopsis thaliana. J. Biol. Chem. 277, 30629-30634. 33. Schmidt, U., and Darke, P.L. (1997) Dimerization and activation of the herpes simplex virus type 1 protease. J. Biol. Chem. 272, 7732-7735. 34. Sue, S.C., Brisson, J.R., Chang, S.C., Huang, W.N., Lee, S.C., Jarrell, H.C., and Wu, W. (2001) Structures of heparin-derived disaccharide bound to cobra cardiotoxins: context-dependent conformational change of heparin upon binding to the rigid core of the three-fingered toxin. Biochemistry. 40, 10436-10446. 35. Bilwes, A., Rees, B., Moras, D., Menez, R., and Menez, A. (1994) X-ray structure at 1.55 Å of toxin gamma, a cardiotoxin from Naja nigricollis venom. Crystal packing reveals a model for insertion into membranes. J. Mol. Biol. 239, 122-136. 36. Satoh, A., Toida, T., Yoshida, K., Kojima, K., and Matsumoto, I. (2000) New role of glycosaminoglycans on the plasma membrane proposed by their interaction with phosphatidylcholine. FEBS Lett. 477, 249-252. Chapter 5: Molecular mechanism of CTXA3-heparin interaction (II) – Structural determinants of chain-length and specific ligand on heparin 1. Esko, J.D., and Selleck, S.B. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435-471 (2002). 2. Lindahl, U., Kusche-Gullberg, M., and Kjellén, L. Regulated diversity of heparan sulfate. J. Biol. Chem. 273, 24979-24982 (1998). 3. Turnbull, J., Powell, A., and Guimond, S. Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends Cell Biol. 11, 75-82 (2001). 4. Guimond, S., Maccarana, M., Olwin, B.B., Lindahl, U., and Rapraeger, A.C. (1993) Activating and inhibitory heparin sequences for FGF-2 (basic FGF). Distinct requirements for FGF-1, FGF-2, and FGF-4. J. Biol. Chem. 268, 23906-23914. 5. Kuschert, G.S.V., Coulin, F., Power, C.A., Proudfoot, A.E.I., Hubbard, R.E., Hoogewerf, A.J., and Well, T.N.C. (1999) Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry 38, 12959-12968. 6. Goger, B., Halden, Y., Rek, A., Mösl, R., Pye, D., Gallagher, J.T., and Kungl, A.J. (2002) Different affinities of glycosaminoglycan oligosaccharides for monomeric and dimeric interleukin-8: a model for chemokine regulation at inflammatory sites. Biochemistry 41, 1640-1646. 7. Vivès, R.R., Sadir, R., Imberty, A., Rencurosi, A., and Lortat-Jacob, H. (2002) A kinetics and modeling study of RANTES (9-68) binding to heparin reveals a mechanism of cooperative oligomerization. Biochemistry 41, 14779-14789. 8. Sadir, R., Baleux, F., Grosdidier, A., Imberty, A., and Lortat-Jacob, H. (2001) Characterization of the stromal cell-derived factor-1alpha-heparin complex. J. Biol. Chem. 276, 8288-8296. 9. Aviezer, D., Levy, E., Safran, M., Svahn, C., Buddecke, E., Schmidt, A., David, G., Vlodavsky, I., and Yayon, A. (1994) Differential structural requirements of heparin and heparan sulfate proteoglycans that promote binding of basic fibroblast growth factor to its receptor. J. Biol. Chem. 269, 114-121. 10. Petersen, F., Brandt, E., Lindahl, U., and Spillmann, D. (1999) Characterization of a neutrophil cell surface glycosaminoglycan that mediates binding of platelet factor 4. J. Biol. Chem. 274, 12376-12382. 11. Conrad, H.E. (1998) in Heparin-Binding Proteins, Academic Press, San Diego, CA, pp203-238. 12. Jin, L., Abrahams, J.P., Skinner, R., Petitou, M., Pike, R.N., and Carrell, R.W. (1997) The anticoagulant activation of antithrombin by heparin. Proc. Natl. Acad. Sci. U.S.A. 94, 14683-14688. 13. Whisstock, J.C., Pike, P.N., Jin, L., Skinner, R., Pei, X.Y., Carrell, R. W., and Lesk, A. M. (2000) Conformational changes in serpins: II. The mechanism of activation of antithrombin by heparin dagger. J. Mol. Biol. 301, 1287-1305. 14. Rusnati, M., Coltrini, D., Caccia, P., Dell'Era, P., Zoppetti, G., Oreste, P., Valsasina, B., Presta, M. (1994) Distinct role of 2-O-, N-, and 6-O-sulfate groups of heparin in the formation of the ternary complex with basic fibroblast growth factor and soluble FGF receptor-1. Biochem Biophys Res Commun.203, 450-458. 15. Lundin, L., Larsson, H., Kreuger, J., Kanda, S., Lindahl, U., Salmivirta, M., and Claesson-Welsh, L. (2000) Selectively desulfated heparin inhibits fibroblast growth factor-induced mitogenicity and angiogenesis. J. Biol. Chem. 275, 24653-24660. 16. Kreuger, J., Salmivirta, M., Sturiale, L., Giménez-Gallego, G., and Lindahl, U. (2001) Sequence analysis of heparan sulfate epitopes with graded affinities for fibroblast growth factors 1 and 2. J. Biol. Chem. 276, 30744-30752. 17. Ishihara, M., Takano, R., Kanda, T., Hayashi, K., Hara, S., Kikuchi, H., Yoshida, K. (1995) Importance of 6-O-sulfate groups of glucosamine residues in heparin for activation of FGF-1 and FGF-2. J. Biochem. 118, 1255-1260. 18. Pye, D.A., Vives, R.R., Hyde, P., Gallagher, J.T. (2000) Regulation of FGF-1 mitogenic activity by heparan sulfate oligosaccharides is dependent on specific structural features: differential requirements for the modulation of FGF-1 and FGF-2. Glycobiology 10, 1183-1192. 19. Proudfoot, A.E., Handel, T.M., Johnson, Z., Lau, E.K., LiWang, P., Clark-Lewis, I., Borlat, F., Wells, T.N., and Kosco-Vilbois, M.H. (2003) Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc. Natl. Acad. Sci. U.S.A. 100, 1885-1890. 20. Hileman, R.E., Fromm, J.R., Weiler, J.M., and Linhardt, R.J. (1998) Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins. Bioessays 20, 156-167. 21. Manning, G.S. (1978) The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q. Rev. Biophys. 11, 179-246. 22. Record, M.T., Jr, Anderson, C.F., and Lohman, T.M. (1978) Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q. Rev. Biophys. 11,103-178. 23. Olson, S.T., Halvorson, H.R., and Björk, I. (1991) Quantitative characterization of the thrombin-heparin interaction. Discrimination between specific and nonspecific binding models. J. Biol. Chem. 266, 6342-652. 24. Patel, H.V., Vyas, A.A., Vyas, K.A., Liu, Y., Chiang, C., Chi, L., and Wu, W. (1997) Heparin and heparan sulfate bind to snake cardiotoxin. Sulfated oligosaccharides as a potential target for cardiotoxin action. J. Biol. Chem. 272, 1484-1492. 25. Jelesarov, I., and Bosshard, H.R. (1999) Isothermal titration calorimetry and differential scaning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J. Mol. Recognit. 12, 2-18. 26. Cooper, A. (1999) Thermodynamic analysis of biomolecular interactions. Curr. Opin. Chem. Biol. 3, 557-563. 27. Oda, M., and Nakamura, H. (2000) Thermodynamic and kinetic analyses for understanding sequence-specific DNA recognition. Genes Cells 5, 319-326. 28. Vyas, A.A., Pan, J., Patel, H.V., Vyas, K.A., Chiang, Sheu, Y. Hwang, J., and Wu, W. (1997) Analysis of binding of cobra cardiotoxins to heparin reveals a new beta-sheet heparin-binding structural motif. J. Biol. Chem. 272, 9661-9670. 29. Chien, K., Huang, W., Jean, J., and Wu, W. (1991) Fusion of Sphingomyelin Vesicles Induced by Proteins from Taiwan Cobra (Naja naja atra) Venom- interactions of zwitterionic phospholipids with cardiotoxin analogues. J. Biol. Chem. 266, 3252-3259. 30. Hoogewerf, A.J., Kuschert, G.S., Proudfoot, A.E., Borlat, F., Clark-Lewis, I., Power, C.A., and Wells, T.N. (1997) Glycosaminoglycans mediate cell surface oligomerization of chemokines. Biochemistry 36, 13570-13578.; 31. Venkataraman, G., Shriver, Z., Davis, J.C., and Sasisekharan, R. (1999) Fibroblast growth factors 1 and 2 are distinct in oligomerization in the presence of heparin-like glycosaminoglycans. Proc. Natl. Acad. Sci. USA 96, 1892-1897. 32. Loo, B.B., Darwish, K.K., Vainikka, S.S., Saarikettu, J.J., Vihko, P.P., Hermonen, J.J., Goldman, A.A., Alitalo, K.K., and Jalkanen, M.M. (2000) Production and characterization of the extracellular domain of recombinant human fibroblast growth factor receptor 4. Int. J. Biochem. Cell Biol. 32, 489-497. 33. Ostrovsky, O., Berman, B., Gallagher, J., Mulloy, B., Fernig, D.G., Delehedde, M., and Ron, D. (2002) Differential effects of heparin saccharides on the formation of specific fibroblast growth factor (FGF) and FGF receptor complexes. J. Biol. Chem. 277, 2444-2453. 34. Kojima, S., Inui, T., Muramatsu, H., Suzuki, Y., Kadomatsu, K., Yoshizawa, M., Hirose, S., Kimura, T., Sakakibara, S., and Muramatsu, T. (1997) Dimerization of midkine by tissue transglutaminase and its functional implication. J. Biol. Chem. 272, 9410-9416. 35. Paudel H.K., and Li, W. (1999) Heparin-induced conformational change in microtubule-associated protein Tau as detected by chemical cross-linking and phosphopeptide mapping. J. Biol. Chem. 274, 8029-8038. 36. Bernard-Pierrot, I., Heroult, M., Lemaitre, G., Barritault, D., Courty, J., and Milhiet, P.E. (1999) Glycosaminoglycans promote HARP/PTN dimerization. Biochem. Biophys. Res. Commun. 266, 437-442. 37. Runnels, L.W., and Scarlata, S.F. (1995) Theory and application of fluorescence homotransfer to melittin oligomerization. Biophy. J. 69, 1569-1583. 38. Sharpe, J.C., and London, E. (1999) Diphtheria toxin forms pores of different sizes depending on its concentration in membranes: probable relationship to oligomerization. J. Membrane Biol. 171, 209-221. 39. Sun, Y., Wu, W., Chiang, C., Hsin, A., and Hsiao, C. (1997) Crystal structure of cardiotoxin V from Taiwan cobra venom: pH-dependent conformational change and a novel membrane-binding motif identified in the three-finger loops of P-type cardiotoxin. Biochemistry 26, 2403-2413. 40. Mulloy, B., Forster, M.J., Jones, C., and Davie, D.B. (1993) N.m.r. and molecular-modelling studies of the solution conformation of heparin. Biochem. J. 293, 849-858. 41. Mulloy, B., and Forster, M.J. (2000) Conformation and dynamics of heparin and heparan sulfate. Glycobiology, 10, 1147-1156. 42. Capila, I., and Linhardt, R.J. (2002) Heparin-protein interactions. Angew. Chem. Int. Ed. 41, 390-412. 43. Sue, S.C., Brisson, J.R., Chang, S.C., Huang, W.N., Lee, S.C., Jarrell, H.C., and Wu, W. (2001) Structures of heparin-derived disaccharide bound to cobra cardiotoxins: context-dependent conformational change of heparin upon binding to the rigid core of the three-fingered toxin. Biochemistry. 40, 10436-10446. 44. Liao C.H. (1999) Fluorescence spectroscopy study on the binding mode of glycosaminoglycans to catdiotoxin. Master Thesis. 45. Lee, C.Y., Lin, J.S., and Wei, J.W. (1970) Identification of cardiotoxin with cobramine B, DLF, Toxin ??, and cobra venom cytotoxin. 2nd Intern. Symp. Animal Plant Toxins, Tel-Aviv, Israel, 307-318. Chapter 6: Molecular mechanism of CTXA3-heparin interaction (III) – The role of N-acetylation on heparin 1. Wang, J.P., and Teng, C.M. (1989) Roles of mast cells and PMN leukocytes in cardiotoxin-induced rat paw edema. Eur. J. Pharmacol. 161, 9-18. 2. Miller, R.A., and Tu, A.T. (1989) Factors in snake venoms that increase capillary permeability. J. Pharm. Pharmacol. 41, 792-794. 3. Hirata, A., Masuda, S., Tamura, T., Kai, K., Ojima, K., Fukase, A., Motoyoshi, K., Kamakura, K., Miyagoe-Suzuki, Y., and Takeda, S. (2003) Expression profiling of cytokines and related genes in regenerating skeletal muscle after cardiotoxin injection: a role for osteopontin. Am. J. Pathol. 163, 203-215. 4. Hoogewerf, A.J., Kuschert, G.S., Proudfoot, A.E., Borlat, F., Clark-Lewis, I., Power, C.A., and Wells, T.N. (1997) Glycosaminoglycans mediate cell surface oligomerization of chemokines. Biochemistry 36, 13570-13578. 5. Vivès, R.R., Sadir, R., Imberty, A., Rencurosi, A., and Lortat-Jacob, H. (2002) A kinetics and modeling study of RANTES (9-68) binding to heparin reveals a mechanism of cooperative oligomerization. Biochemistry 41, 14779-14789. 6. Kuschert, G.S.V., Coulin, F., Power, C.A., Proudfoot, A.E.I., Hubbard, R.E., Hoogewerf, A.J., and Well, T.N.C. (1999) Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry 38, 12959-12968. 7. Lortat-Jacob, H., Turnbull, J.E., and Grimaud, J. (1995) Molecular organization of the interferon ??-binding domain in heparan sulfate. Biochem. J. 310, 497-505. 8. Belting, M., Havsmark, B., Jönsson, M., Persson, S., and Fransson, L. (1996) Heparan sulfate/heparin glycosaminoglycans with strong affinity for growth-promoter spermine have high antiproliferative activity. Glycobiology 6, 121-129. 9. Stringer, S. E., and Gallagher, J. T. (1997) Specific binding of chemokine platelet factor 4 to heparan sulfate. J. Biol. Chem. 272, 20508-20514. 10. Fromm, J. R., Hileman, R. E., Weiler, J. M., and Linhardt, R. J. (1997) Interaction of fibroblast growth factor-1 and related peptides with heparan sulfate and its oligosaccharides. Arch. Biochem. Biophys. 346, 252-262. 11. Spillmann, D., Witt, D., and Lindahl, U. (1998) Defining the Interleukin-8-binding domain of heparan sulfate. J. Biol. Chem. 273, 15487-15493. 12. Stringer, S.E., Forster, M.J., Mulloy, B., Bishop, C.R., Graham, G.J., and Gallagher, J.T. (2002) Characterization of the binding site on heparan sulfate for marcophage inflammatory protein 1??. Blood 100, 1543-1550. 13. Goger, B., Halden, Y., Rek, A., Mösl, R., Pye, D., Gallagher, J., and Kungl, A.J. (2002) Different affinities of glycosaminoglycan oligosaccharides for monomeric and dimeric interleukin-8: a model for chemokine regulation at inflammatory sites. Biochemistry, 41, 1640-1646. 14. Ruiz-Calero, V., Puignou, L., and Galceran, M.T. (1998) Use of reversed polarity and a pressure gradient in the analysis of disaccharide composition of heparin by capillary electrophoresis. J. Chromato. A 828, 497-508. 15. Vyas, A.A., Pan, J., Patel, H.V., Vyas, K.A., Chiang, Sheu, Y. Hwang, J., and Wu, W. (1997) Analysis of binding of cobra cardiotoxins to heparin reveals a new beta-sheet heparin-binding structural motif. J. Biol. Chem. 272, 9661-9670. 16. Patel, H.V., Vyas, A.A., Vyas, K.A., Liu, Y., Chiang, C., Chi, L., and Wu, W. (1997) Heparin and heparan sulfate bind to snake cardiotoxin. Sulfated oligosaccharides as a potential target for cardiotoxin action. J. Biol. Chem. 272, 1484-1492. 17. Kamei, K., Wu, X., Xu, X., Minami, K., Huy, N.T., Takano, R., Kato, H., and Hara, S. The analysis of heparin-protein interactions using evanescent wave biosensor with regioselectively desulfated heparins as the ligands. Anal. Biochem. 295, 203-213. 18. Sackett, D.L., and Saroff, H.A. (1996) The multiple origins of cooperativity in binding to multi-site lattices. FEBS lett. 397, 1-6. 19. Lohman, T.M., and Ferrari, M.E. (1994) Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu. Rev. Biochem. 63, 527-570. 20. Sun, Y., Wu, W., Chiang, C., Hsin, A., and Hsiao, C. (1997) Crystal structure of cardiotoxin V from Taiwan cobra venom: pH-dependent conformational change and a novel membrane-binding motif identified in the three-finger loops of P-type cardiotoxin. Biochemistry 26, 2403-2413. 21. Forouhar,F., Huang, W.N., Lin, J.H., Chien, K.Y. Wu, W., and Hsiao, C.D. (2003) Structural basis of membrane-induced cardiotoxin A3 oligomerization. J. Biol. Chem. 278, 21980-21988. 22. Rees, B., Samama, J.P., Thierry, J.C., Gilibert, M., Fischer, J., Schweitz, H., Lazdunski, M., and Moras, D. (1987) Crystal structure of a snake venom cardiotoxin. Proc. Natl. Acad. Sci. U S A. 84, 3132-3136. 23. Rees, B., Bilwes, A., Samama, J.P., and Moras, D. (1990) Cardiotoxin VII4 from Naja mossambica mossambica. The refined crystal structure. J. Mol. Biol. 214, 281-297. 24. Mulloy, B., and Forster, M.J. (2000) Glycobiology, 10, 1147-1156.; Capila, I., and Linhardt, R.J. (2002) Angew. Chem. Int. Ed. 41, 390-412. 25. van Boeckel, C.A. van Aelst, S.F., Wagenaars, G.N., Mellema, J., Paulesn, H., peters, T., Pollex, A., and Sinnwell, V. (1987) Recl. Trav. Pays-Bas. 106, 19-29. 26. Faham, S., Hileman, R.E., Fromm, J.R., Linhardt, R.J., and Ree, D.C. (1996) Heparin structure and interactions with basic fibroblast growth factor. Science 271, 1116-1120.id NH0925105001 sid 848208 cfn 0 / id NH0925105002 auc 林子暘 tic Abl藉由Abi磷酸化Cdc2並調控其在DNA損害下G2-M檢查點之功能 adc 周文剛 ty 博士 sc 國立清華大學 dp 生命科學系 yr 92 lg 英文 pg 88 kwc Abl kwc Abi kwc Cdc2 kwc Bcr-Abl kwc DNA損害 kwc G2-M 檢查點 kwc 慢性骨髓性白血症 abc Abl為一種非受體的酪氨酸蛋白激脢,通常藉由聯結蛋白而與其受質結合,進而在不同的生理刺激下調控各種功能,包括細胞骨架的重整、細胞生長、及細胞凋亡。Abi蛋白家族最早是因為此蛋白質會與Abl互相結合而被發現並分離出來,其功能可能跟調控致癌型Abl所引起的細胞轉型及癌化能力有關。在本篇論文中,我們利用酵母菌雙雜交法篩選Abi的結合蛋白,並鑑定出Cdc2是一個新穎的Abi結合蛋白。在本研究中我們想探討Abi在連結Abl和Cdc2的關係中所扮演的角色。我們發現這三者能在果蠅及哺乳類動物細胞中以複合體形式存在,在細胞中大量表現Abi時能加強Abl 與Cdc2間的結合,顯示Abi是一聯結蛋白,藉此連結來增強Abl 和Cdc2的交互作用。另外,Abi能促進Abl磷酸化Cdc2的第十五個氨基酸 (Y15),並導致Cdc2活性的減弱。我們也發現在果蠅細胞同時表現Abl 及Abi能抑制細胞生長。更進一步,在帶有Bcr-Abl (癌化型Abl) 基因的細胞中,若利用STI571抑制Bcr-Abl的激脢活性或是以RNA干擾術來降低Bcr-Abl蛋白質的生成時,這種細胞在游離輻射的處理下所引起Cdc2 Y15的磷酸化程度及G2-M細胞週期的停滯程度會降低。如此的結果指出,Bcr-Abl可能直接或間接藉由Abi蛋白質的連結來調控DNA傷害所引起Cdc2磷酸化及其活性的抑制。但是,在非Bcr-Abl的細胞中,c-Abl似乎在調控Cdc2及細胞週期上只扮演一小部分的功能。此外,由於Abl 及Abi都已知在肌動蛋白絲的重組上扮演功能,因而我們也探討Cdc2在細胞中的位置並發現Cdc2會位在富含肌動蛋白絲的lamellipodia上,並且和Abl 、Abi同時位在相類似的細胞結構上。總結來說,我們認為DNA傷害所導致Cdc2活性在Bcr-Abl細胞中受到抑制,以及Cdc2在肌動蛋白絲的重組過程中移動至lamellipodia之機制可能與Abl及Abi有關聯。 tc ABSTRACT III 中文摘要 IV INTRODUCTION 1 MATERIALS AND METHODS 5 Yeast two-hybrid 5 Cell culture 5 Establishments of stable cell lines 6 Antibodies 6 Plasmids construction 7 Transient transfection and immunoblotting 7 Small interfering RNA (siRNA) treatment 8 GST pull-downs and immunoprecipitation 9 In vitro phosphorylation assay 9 Cell cycle checkpoint assay 9 Immunostaining 10 Mass spectrometry analysis 10 Cell fractionation 11 Statistical Analysis 11 RESULTS 12 Abi is a novel Cdc2 interactor 12 Cdc2 interacts with Abi in Drosophila S2 cells 13 The amino terminal domain of Abi is essential for binding to Cdc2 13 Abi acts as a physical bridge between Abl and Cdc2 14 Cdc2 is a novel substrate of Abl 15 Disruption of Abi-Cdc2 or Abi-Abl interaction abolishes Abl-mediated phosphorylation of Cdc2 16 Abi enhances Cdc2 inactivation by Abl 17 Tyr15 of Cdc2 is a Abl phosphorylation site 17 Overexpression of Abl and Abi suppresses cell proliferation 18 The interaction between Abi and Cdc2 is evolutionarily conserved 18 Abl regulates IR-induced Cdc2 Y15 phosphorylation and G2 arrest in Bcr-Abl-positive cells 19 Both cytoplasmic and nuclear Cdc2 in K562 cells are Y15 phosphorylated in response to IR treatment 20 RNAi-mediated knockdown of Bcr-Abl impairs IR-induced Cdc2-pY15 and G2-M arrest 21 STI571 does not reduce IR-induced Cdc2 inhibition and G2-M arrest in Bcr-Abl-negative cells 22 IR-induced DNA-damage still initiates Cdc2-pY15 and G2 arrest in fibroblasts lacking c-Abl 22 No cooperative role of c-Abl and BRCA1 on DNA damage G2 checkpoint 23 Colocalization of Abl, Abi, and Cdc2 to the motile lamellipodia regions 24 DISCUSSION 27 FUTURE PROSPECTS 32 To investigate direct functional link between Bcr-Abl and Cdc2 in IR-induced G2-M arrest 32 To study the role of Abl-Abi-Cdc2 in cytoskeleton dynamics 33 REFERENCES 35 FIGURES 47 APPENDIX 87rf 1. Baskaran, R., Wood, L. D., Whitaker, L. L., Canman, C. E., Morgan, S. E., Xu, Y., Barlow, C., Baltimore, D., Wynshaw-Boris, A., Kastan, M. B., and Wang, J. Y. (1997). Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation. Nature 387, 516-519. 2. Bedi, A., Barber, J. P., Bedi, G. C., el-Deiry, W. S., Sidransky, D., Vala, M. S., Akhtar, A. J., Hilton, J., and Jones, R. J. (1995). BCR-ABL-mediated inhibition of apoptosis with delay of G2/M transition after DNA damage: a mechanism of resistance to multiple anticancer agents. Blood 86, 1148-1158. 3. Ben-Neriah, Y., Daley, G. Q., Mes-Masson, A. M., Witte, O. N., and Baltimore, D. (1986). The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 233, 212-214. 4. Bershadsky, A. D., Ivanova, O. Y., Lyass, L. A., Pletyushkina, O. Y., Vasiliev, J. M., and Gelfand, I. M. (1990). Cytoskeletal reorganizations responsible for the phorbol ester-induced formation of cytoplasmic processes: possible involvement of intermediate filaments. Proc Natl Acad Sci U S A 87, 1884-1888. 5. Bi, S., Hughes, T., Bungey, J., Chase, A., de Fabritiis, P., and Goldman, J. M. (1992). p53 in chronic myeloid leukemia cell lines. Leukemia 6, 839-842. 6. Biesova, Z., Piccoli, C., and Wong, W. T. (1997). Isolation and characterization of e3B1, an eps8 binding protein that regulates cell growth. Oncogene 14, 233-241. 7. Bogdan, S., and Klambt, C. (2003). Kette regulates actin dynamics and genetically interacts with Wave and Wasp. Development 130, 4427-4437. 8. Buchdunger, E., Zimmermann, J., Mett, H., Meyer, T., Muller, M., Druker, B. J., and Lydon, N. B. (1996). Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res 56, 100-104. 9. Burton, E. A., Plattner, R., and Pendergast, A. M. (2003). Abl tyrosine kinases are required for infection by Shigella flexneri. Embo J 22, 5471-5479. 10. Clark, S. S., McLaughlin, J., Timmons, M., Pendergast, A. M., Ben-Neriah, Y., Dow, L. W., Crist, W., Rovera, G., Smith, S. D., and Witte, O. N. (1988). Expression of a distinctive BCR-ABL oncogene in Ph1-positive acute lymphocytic leukemia (ALL). Science 239, 775-777. 11. Dai, Z., and Pendergast, A. (1995). Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity. Genes Dev. 9, 2569-2582. 12. Daley, G. Q., and Baltimore, D. (1988). Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein. Proc Natl Acad Sci U S A 85, 9312-9316. 13. Daley, G. Q., McLaughlin, J., Witte, O. N., and Baltimore, D. (1987). The CML-specific P210 bcr/abl protein, unlike v-abl, does not transform NIH/3T3 fibroblasts. Science 237, 532-535. 14. Davis, R. L., Konopka, J. B., and Witte, O. N. (1985). Activation of the c-abl oncogene by viral transduction or chromosomal translocation generates altered c-abl proteins with similar in vitro kinase properties. Mol Cell Biol 5, 204-213. 15. Deininger, M. W., Goldman, J. M., and Melo, J. V. (2000). The molecular biology of chronic myeloid leukemia. Blood 96, 3343-3356. 16. Deutsch, E., Dugray, A., AbdulKarim, B., Marangoni, E., Maggiorella, L., Vaganay, S., M'Kacher, R., Rasy, S. D., Eschwege, F., Vainchenker, W., Turhan, A. G., and Bourhis, J. (2001). BCR-ABL down-regulates the DNA repair protein DNA-PKcs. Blood 97, 2084-2090. 17. Deutsch, E., Jarrousse, S., Buet, D., Dugray, A., Bonnet, M. L., Vozenin-Brotons, M. C., Guilhot, F., Turhan, A. G., Feunteun, J., and Bourhis, J. (2003). Down-regulation of BRCA1 in BCR-ABL-expressing hematopoietic cells. Blood 101, 4583-4588. 18. Dierov, J., Dierova, R., and Carroll, M. (2004). BCR/ABL translocates to the nucleus and disrupts an ATR-dependent intra-S phase checkpoint. Cancer Cell 5, 275-285. 19. Downey, G. P., Chan, C. K., Lea, P., Takai, A., and Grinstein, S. (1992). Phorbol ester-induced actin assembly in neutrophils: role of protein kinase C. J Cell Biol 116, 695-706. 20. Echarri, A., Lai, M. J., Robinson, M. R., and Pendergast, A. M. (2004). Abl interactor 1 (Abi-1) wave-binding and SNARE domains regulate its nucleocytoplasmic shuttling, lamellipodium localization, and wave-1 levels. Mol Cell Biol 24, 4979-4993. 21. Fan, P. D., and Goff, S. P. (2000). Abl interactor 1 binds to sos and inhibits epidermal growth factor- and v-Abl-induced activation of extracellular signal-regulated kinases. Mol Cell Biol 20, 7591-7601. 22. Ferris, D. K., White, G. A., Kelvin, D. J., Copeland, T. D., Li, C. C., and Longo, D. L. (1991). p34cdc2 is physically associated with and phosphorylated by a cdc2-specific tyrosine kinase. Cell Growth Differ 2, 343-349. 23. Flynn, D. C. (2001). Adaptor proteins. Oncogene 20, 6270-6272. 24. Foray, N., Marot, D., Randrianarison, V., Venezia, N. D., Picard, D., Perricaudet, M., Favaudon, V., and Jeggo, P. (2002). Constitutive association of BRCA1 and c-Abl and its ATM-dependent disruption after irradiation. Mol Cell Biol 22, 4020-4032. 25. Frasca, F., Vigneri, P., Vella, V., Vigneri, R., and Wang, J. Y. (2001). Tyrosine kinase inhibitor STI571 enhances thyroid cancer cell motile response to Hepatocyte Growth Factor. Oncogene 20, 3845-3856. 26. Gallagher, R., Collins, S., Trujillo, J., McCredie, K., Ahearn, M., Tsai, S., Metzgar, R., Aulakh, G., Ting, R., Ruscetti, F., and Gallo, R. (1979). Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood 54, 713-733. 27. Groffen, J., Stephenson, J. R., Heisterkamp, N., Bartram, C., de Klein, A., and Grosveld, G. (1984). The human c-abl oncogene in the Philadelphia translocation. J Cell Physiol Suppl 3, 179-191. 28. Heisterkamp, N., Stam, K., Groffen, J., de Klein, A., and Grosveld, G. (1985). Structural organization of the bcr gene and its role in the Ph' translocation. Nature 315, 758-761. 29. Ichigotani, Y., Yokozaki, S., Fukuda, Y., Hamaguchi, M., and Matsuda, S. (2002). Forced expression of NESH suppresses motility and metastatic dissemination of malignant cells. Cancer Res 62, 2215-2219. 30. Ikeguchi, A., Yang, H. Y., Gao, G., and Goff, S. P. (2001). Inhibition of v-Abl transformation in 3T3 cells overexpressing different forms of the Abelson interactor protein Abi-1. Oncogene 20, 4926-4934. 31. Juang, J.-L., and Hoffmann, F. M. (1999). Drosophila Abelson interacting protein (dAbi) is a positive regulator of Abelson tyrosine kinase activity. Oncogene 18, 5138-5147. 32. Kain, K. H., and Klemke, R. L. (2001). Inhibition of cell migration by Abl family tyrosine kinases through uncoupling of Crk-CAS complexes. J Biol Chem 276, 16185-16192. 33. Kao, G. D., McKenna, W. G., and Muschel, R. J. (1999). p34(Cdc2) kinase activity is excluded from the nucleus during the radiation-induced G(2) arrest in HeLa cells. J Biol Chem 274, 34779-34784. 34. Kelliher, M. A., McLaughlin, J., Witte, O. N., and Rosenberg, N. (1990). Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL. Proc Natl Acad Sci U S A 87, 6649-6653. 35. Kharbanda, S., Ren, R., Pandey, P., Shafman, T. D., Feller, S. M., Weichselbaum, R. R., and Kufe, D. W. (1995). Activation of the c-Abl tyrosine kinase in the stress response to DNA-damaging agents. Nature 376, 785-788. 36. Kipreos, E. T., and Wang, J. Y. (1990). Differential phosphorylation of c-Abl in cell cycle determined by cdc2 kinase and phosphatase activity. Science 248, 217-220. 37. Klein, E., Ben-Bassat, H., Neumann, H., Ralph, P., Zeuthen, J., Polliack, A., and Vanky, F. (1976). Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. Int J Cancer 18, 421-431. 38. Kunda, P., Craig, G., Dominguez, V., and Baum, B. (2003). Abi, Sra1, and Kette control the stability and localization of SCAR/WAVE to regulate the formation of actin-based protrusions. Curr Biol 13, 1867-1875. 39. Law, J. C., Ritke, M. K., Yalowich, J. C., Leder, G. H., and Ferrell, R. E. (1993). Mutational inactivation of the p53 gene in the human erythroid leukemic K562 cell line. Leuk Res 17, 1045-1050. 40. Lee, D. F., Chen, C. C., Hsu, T. A., and Juang, J. L. (2000). A baculovirus superinfection system: efficient vehicle for gene transfer into Drosophila S2 cells. J Virol 74, 11873-11880. 41. Lewis, J. M., Baskaran, R., Taagepera, S., Schwartz, M. A., and Wang, J. Y. (1996). Integrin regulation of c-Abl tyrosine kinase activity and cytoplasmic-nuclear transport. Proc Natl Acad Sci U S A 93, 15174-15179. 42. Liu, F., Rothblum-Oviatt, C., Ryan, C. E., and Piwnica-Worms, H. (1999). Overproduction of human Myt1 kinase induces a G2 cell cycle delay by interfering with the intracellular trafficking of Cdc2-cyclin B1 complexes. Mol Cell Biol 19, 5113-5123. 43. Lock, R. B., and Ross, W. E. (1990). Inhibition of p34cdc2 kinase activity by etoposide or irradiation as a mechanism of G2 arrest in Chinese hamster ovary cells. Cancer Res 50, 3761-3766. 44. Lou, Z., Chini, C. C., Minter-Dykhouse, K., and Chen, J. (2003). Mediator of DNA damage checkpoint protein 1 regulates BRCA1 localization and phosphorylation in DNA damage checkpoint control. J Biol Chem 278, 13599-13602. 45. Lugo, T. G., Pendergast, A. M., Muller, A. J., and Witte, O. N. (1990). Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247, 1079-1082. 46. Lugo, T. G., and Witte, O. N. (1989). The BCR-ABL oncogene transforms Rat-1 cells and cooperates with v-myc. Mol Cell Biol 9, 1263-1270. 47. Manes, T., Zheng, D. Q., Tognin, S., Woodard, A. S., Marchisio, P. C., and Languino, L. R. (2003). Alpha(v)beta3 integrin expression up-regulates cdc2, which modulates cell migration. J Cell Biol 161, 817-826. 48. Mayer, B. J. (2001). SH3 domains: complexity in moderation. J Cell Sci 114, 1253-1263. 49. McLaughlin, J., Chianese, E., and Witte, O. N. (1987). In vitro transformation of immature hematopoietic cells by the P210 BCR/ABL oncogene product of the Philadelphia chromosome. Proc Natl Acad Sci U S A 84, 6558-6562. 50. McWhirter, J. R., and Wang, J. Y. (1993). An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. Embo J 12, 1533-1546. 51. Miyazaki, K., Matsuda, S., Ichigotani, Y., Takenouchi, Y., Hayashi, K., Fukuda, Y., Nimura, Y., and Hamaguchi, M. (2000). Isolation and characterization of a novel human gene (NESH) which encodes a putative signaling molecule similar to e3B1 protein. Biochim Biophys Acta 1493, 237-241. 52. Morgan, D. O. (1995). Principles of CDK regulation. Nature 374, 131-134. 53. Nagar, B., Hantschel, O., Young, M. A., Scheffzek, K., Veach, D., Bornmann, W., Clarkson, B., Superti-Furga, G., and Kuriyan, J. (2003). Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112, 859-871. 54. Nebreda, A. R., Gannon, J. V., and Hunt, T. (1995). Newly synthesized protein(s) must associate with p34cdc2 to activate MAP kinase and MPF during progesterone-induced maturation of Xenopus oocytes. Embo J 14, 5597-5607. 55. Nishii, K., Kabarowski, J. H., Gibbons, D. L., Griffiths, S. D., Titley, I., Wiedemann, L. M., and Greaves, M. F. (1996). ts BCR-ABL kinase activation confers increased resistance to genotoxic damage via cell cycle block. Oncogene 13, 2225-2234. 56. Nurse, P. (1997). Checkpoint pathways come of age. Cell 91, 865-867. 57. O'Connell, M. J., Raleigh, J. M., Verkade, H. M., and Nurse, P. (1997). Chk1 is a wee1 kinase in the G2 DNA damage checkpoint inhibiting cdc2 by Y15 phosphorylation. Embo J 16, 545-554. 58. O'Connell, M. J., Walworth, N. C., and Carr, A. M. (2000). The G2-phase DNA-damage checkpoint. Trends Cell Biol 10, 296-303. 59. Ogura, M., Morishima, Y., Ohno, R., Kato, Y., Hirabayashi, N., Nagura, H., and Saito, H. (1985). Establishment of a novel human megakaryoblastic leukemia cell line, MEG-01, with positive Philadelphia chromosome. Blood 66, 1384-1392. 60. Pendergast, A. M. (2002). The Abl family kinases: mechanisms of regulation and signaling. Adv Cancer Res 85, 51-100. 61. Pendergast, A. M., Muller, A. J., Havlik, M. H., Clark, R., McCormick, F., and Witte, O. N. (1991). Evidence for regulation of the human ABL tyrosine kinase by a cellular inhibitor. Proc Natl Acad Sci U S A 88, 5927-5931. 62. Pierce, A., Spooncer, E., Wooley, S., Dive, C., Francis, J. M., Miyan, J., Owen-Lynch, P. J., Dexter, T. M., and Whetton, A. D. (2000). Bcr-Abl protein tyrosine kinase activity induces a loss of p53 protein that mediates a delay in myeloid differentiation. Oncogene 19, 5487-5497. 63. Plattner, R., Kadlec, L., DeMali, K. A., Kazlauskas, A., and Pendergast, A. M. (1999). c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. Genes Dev 13, 2400-2411. 64. Plattner, R., Koleske, A. J., Kazlauskas, A., and Pendergast, A. M. (2004). Bidirectional signaling links the Abelson kinases to the platelet-derived growth factor receptor. Mol Cell Biol 24, 2573-2583. 65. Pluk, H., Dorey, K., and Superti-Furga, G. (2002). Autoinhibition of c-Abl. Cell 108, 247-259. 66. Raitano, A. B., Whang, Y. E., and Sawyers, C. L. (1997). Signal transduction by wild-type and leukemogenic Abl proteins. Biochim Biophys Acta 1333, F201-F216. 67. Raleigh, J. M., and O'Connell, M. J. (2000). The G(2) DNA damage checkpoint targets both Wee1 and Cdc25. J Cell Sci 113 ( Pt 10), 1727-1736. 68. Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B., and Ezekowitz, R. A. (2002). Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644-648. 69. Ramet, M., Pearson, A., Manfruelli, P., Li, X., Koziel, H., Gobel, V., Chung, E., Krieger, M., and Ezekowitz, R. A. (2001). Drosophila scavenger receptor CI is a pattern recognition receptor for bacteria. Immunity 15, 1027-1038. 70. Rhind, N., and Russell, P. (2001). Roles of the mitotic inhibitors Wee1 and Mik1 in the G(2) DNA damage and replication checkpoints. Mol Cell Biol 21, 1499-1508. 71. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., and Hall, A. (1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401-410. 72. Roder, K., Hung, M. S., Lee, T. L., Lin, T. Y., Xiao, H., Isobe, K. I., Juang, J. L., and Shen, C. J. (2000). Transcriptional repression by Drosophila methyl-CpG-binding proteins. Mol Cell Biol 20, 7401-7409. 73. Rogers, S. L., Rogers, G. C., Sharp, D. J., and Vale, R. D. (2002). Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J Cell Biol 158, 873-884. 74. Rogers, S. L., Wiedemann, U., Stuurman, N., and Vale, R. D. (2003). Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J Cell Biol 162, 1079-1088. 75. Rowley, J. D. (1973). Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290-293. 76. Salgia, R., Li, J. L., Ewaniuk, D. S., Pear, W., Pisick, E., Burky, S. A., Ernst, T., Sattler, M., Chen, L. B., and Griffin, J. D. (1997). BCR/ABL induces multiple abnormalities of cytoskeletal function. J Clin Invest 100, 46-57. 77. Sattler, M., and Salgia, R. (1997). Activation of hematopoietic growth factor signal transduction pathways by the human oncogene BCR/ABL. Cytokine Growth Factor Rev 8, 63-79. 78. Sattler, M., Verma, S., Shrikhande, G., Byrne, C. H., Pride, Y. B., Winkler, T., Greenfield, E. A., Salgia, R., and Griffin, J. D. (2000). The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. J Biol Chem 275, 24273-24278. 79. Scherr, M., Battmer, K., Winkler, T., Heidenreich, O., Ganser, A., and Eder, M. (2003). Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 101, 1566-1569. 80. Schneider, I. (1972). Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol 27, 353-365. 81. Scita, G., Nordstrom, J., Carbone, R., Tenca, P., Giardina, G., Gutkind, S., Bjarnegard, M., Betsholtz, C., and Di Fiore, P. P. (1999). EPS8 and E3B1 transduce signals from Ras to Rac. Nature 401, 290-293. 82. Shafman, T., Khanna, K. K., Kedar, P., Spring, K., Kozlov, S., Yen, T., Hobson, K., Gatei, M., Zhang, N., Watters, D., Egerton, M., Shiloh, Y., Kharbanda, S., Kufe, D., and Lavin, M. F. (1997). Interaction between ATM protein and c-Abl in response to DNA damage. Nature 387, 520-523. 83. Shi, Y., Alin, K., and Goff, S. (1995). Abl-interactor-1, a novel SH3 protein binding to the carboxy-terminal portion of the Abl protein, suppresses v-abl transforming activity. Genes Dev. 9, 2583-2597. 84. Slupianek, A., Hoser, G., Majsterek, I., Bronisz, A., Malecki, M., Blasiak, J., Fishel, R., and Skorski, T. (2002). Fusion tyrosine kinases induce drug resistance by stimulation of homology-dependent recombination repair, prolongation of G(2)/M phase, and protection from apoptosis. Mol Cell Biol 22, 4189-4201. 85. Small, J. V., Stradal, T., Vignal, E., and Rottner, K. (2002). The lamellipodium: where motility begins. Trends Cell Biol 12, 112-120. 86. Steffen, A., Rottner, K., Ehinger, J., Innocenti, M., Scita, G., Wehland, J., and Stradal, T. E. (2004). Sra-1 and Nap1 link Rac to actin assembly driving lamellipodia formation. Embo J. 87. Stiewe, T., Parssanedjad, K., Esche, H., Opalka, B., and Putzer, B. M. (2000). E1A overcomes the apoptosis block in BCR-ABL+ leukemia cells and renders cells susceptible to induction of apoptosis by chemotherapeutic agents. Cancer Res 60, 3957-3964. 88. Stradal, T., Courtney, K. D., Rottner, K., Hahne, P., Small, J. V., and Pendergast, A. M. (2001). The Abl interactor proteins localize to sites of actin polymerization at the tips of lamellipodia and filopodia. Curr Biol 11, 891-895. 89. Sun, X., Majumder, P., Shioya, H., Wu, F., Kumar, S., Weichselbaum, R., Kharbanda, S., and Kufe, D. (2000). Activation of the cytoplasmic c-Abl tyrosine kinase by reactive oxygen species. J Biol Chem 275, 17237-17240. 90. Tan, M., Jing, T., Lan, K. H., Neal, C. L., Li, P., Lee, S., Fang, D., Nagata, Y., Liu, J., Arlinghaus, R., Hung, M. C., and Yu, D. (2002). Phosphorylation on tyrosine-15 of p34(Cdc2) by ErbB2 inhibits p34(Cdc2) activation and is involved in resistance to taxol-induced apoptosis. Mol Cell 9, 993-1004. 91. Tani, K., Sato, S., Sukezane, T., Kojima, H., Hirose, H., Hanafusa, H., and Shishido, T. (2003). Abl interactor 1 promotes tyrosine 296 phosphorylation of mammalian enabled (Mena) by c-Abl kinase. J Biol Chem 278, 21685-21692. 92. Taylor, W. R., and Stark, G. R. (2001). Regulation of the G2/M transition by p53. Oncogene 20, 1803-1815. 93. Topaly, J., Fruehauf, S., Ho, A. D., and Zeller, W. J. (2002). Rationale for combination therapy of chronic myelogenous leukaemia with imatinib and irradiation or alkylating agents: implications for pretransplant conditioning. Br J Cancer 86, 1487-1493. 94. Trotta, R., Vignudelli, T., Candini, O., Intine, R. V., Pecorari, L., Guerzoni, C., Santilli, G., Byrom, M. W., Goldoni, S., Ford, L. P., Caligiuri, M. A., Maraia, R. J., Perrotti, D., and Calabretta, B. (2003). BCR/ABL activates mdm2 mRNA translation via the La antigen. Cancer Cell 3, 145-160. 95. Van Etten, R. A. (1999). Cycling, stressed-out and nervous: cellular functions of c-Abl. Trends Cell Biol 9, 179-186. 96. Vandenberg, C. J., Gergely, F., Ong, C. Y., Pace, P., Mallery, D. L., Hiom, K., and Patel, K. J. (2003). BRCA1-independent ubiquitination of FANCD2. Mol Cell 12, 247-254. 97. Vigneri, P., and Wang, J. Y. (2001). Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase. Nat Med 7, 228-234. 98. Wang, B., Mysliwiec, T., Krainc, D., Jensen, R. A., Sonoda, G., Testa, J. R., Golemis, E. A., and Kruh, G. D. (1996). Identification of ArgBP1, an Arg protein tyrosine kinase binding protein that is the human homologue of a CNS-specific Xenopus gene. Oncogene 12, 1921-1929. 99. Wang, J. Y. (2000). Regulation of cell death by the Abl tyrosine kinase. Oncogene 19, 5643-5650. 100. Wohlbold, L., van der Kuip, H., Miething, C., Vornlocher, H. P., Knabbe, C., Duyster, J., and Aulitzky, W. E. (2003). Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571). Blood 102, 2236-2239. 101. Woodring, P. J., Hunter, T., and Wang, J. Y. (2001). Inhibition of c-Abl tyrosine kinase activity by filamentous actin. J Biol Chem 276, 27104-27110. 102. Woodring, P. J., Hunter, T., and Wang, J. Y. (2003). Regulation of F-actin-dependent processes by the Abl family of tyrosine kinases. J Cell Sci 116, 2613-2626. 103. Xu, B., Kim, S. T., Lim, D. S., and Kastan, M. B. (2002). Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol Cell Biol 22, 1049-1059. 104. Yamane, K., Chen, J., and Kinsella, T. J. (2003). Both DNA topoisomerase II-binding protein 1 and BRCA1 regulate the G2-M cell cycle checkpoint. Cancer Res 63, 3049-3053. 105. Yarden, R. I., Pardo-Reoyo, S., Sgagias, M., Cowan, K. H., and Brody, L. C. (2002). BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet 30, 285-289. 106. Young, J. C., and Witte, O. N. (1988). Selective transformation of primitive lymphoid cells by the BCR/ABL oncogene expressed in long-term lymphoid or myeloid cultures. Mol Cell Biol 8, 4079-4087. 107. Zhu, J., and Wang, J. Y. (2004). Death by Abl: a matter of location. Curr Top Dev Biol 59, 165-192. 108. Zou, X., and Calame, K. (1999). Signaling pathways activated by oncogenic forms of Abl tyrosine kinase. J Biol Chem 274, 18141-18144. 109. Zukerberg, L. R., Patrick, G. N., Nikolic, M., Humbert, S., Wu, C. L., Lanier, L. M., Gertler, F. B., Vidal, M., Van Etten, R. A., and Tsai, L. H. (2000). Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron 26, 633-646.id NH0925105002 sid 868602 cfn 0 / id NH0925105003 auc 蕭乃文 tic 性別決定轉錄因子九之高移動區段的結構,穩定性與功能特性分析 adc 呂平江 ty 博士 sc 國立清華大學 dp 生命科學系 yr 92 lg 英文 pg 135 kwc 電泳膠移動分析法 kwc 高移動區段 kwc 不穩定指數 kwc 等電點 kwc 突變 kwc 生物資訊 abc 高移動區段(HMG: High Mobility Group)為一具八十個胺基酸的蛋白質,其認識非典型DNA結構或序列專一的DNA及一般典型雙股DNA。SOX9蛋白質是包含HMG區段的蛋白質家族,與特殊序列DNA(5’-AGAACAATGG-3’)之minor groove結合,和性別決定以及脊椎動物骨骼發育有關。SOX9 HMG區段的三級結構模型是利用已解出結構之SOX5 HMG區段模擬而來。HMG區段包含三條helix,摺疊成L形狀,helices 1和helices 2在短臂軸, helices 3在長臂軸。本篇主要利用斑馬魚的SOX9 HMG區段來研究其功能與結構的關係並提出其與DNA結合機制的模型。利用圓二色旋光儀(circular dichroism spectroscopy)偵測蛋白質的二級結構,並用熱變性實驗和化學變性實驗,研究蛋白質的穩定性。以丙胺酸取代法研究胺基酸在蛋白質中的重要性,使用電泳膠移動分析法(EMSA)來測試斑馬魚SOX9 HMG區段蛋白質結合DNA探針的親合力。實驗中分析兩個不同DNA探針“S9WT (5-TAAGAACAATGGGA-3)和COL2C1 (5-CCCACAATGCC-3)”,兩者皆能結合斑馬魚SOX9 HMG蛋白質。此研究為第一篇序列專一性結合的HMG區段丙胺酸分析報告。在多樣的突變斑馬魚SOX9 HMG蛋白質之中,F12A被發現在熱變性及化學變性上較原型蛋白質差,造成結構上較不穩定,因而使結合DNA探針的能力下降甚至到不會結合DNA,此外將F12作修飾加上一個-OH基到側基的苯環上成為Y12,將大大的減低結合DNA的能力,但其二級結構及穩定性並無改變。推測蛋白質上的F12、N10和M13的側基對結合DNA而言非常重要。以生物資訊分析其DNA結合時的結構改變,等電點(pI)高低,不穩定指數(instability index)高低及DNA結合區域的分子多寡均可解釋其生理功能與DNA專一性結合的機制。另一方面,利用結構生物資訊的分析推測出SOX9 HMG區段具有出核訊息(Nuclear Export Signal),並已利用實驗證明其功能。 rf References Ahmed, S.A., Kawasaki, H., Bauerle, R., Morita, H. and Miles, E.W. (1988) Site-directed mutagenesis of the alpha subunit of tryptophan synthase from Salmonella typhimurium. Biochem Biophys Res Commun, 151, 672-678. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J.D. Molecular Biology of THE CELL. Allain, F.H., Yen, Y.M., Masse, J.E., Schultze, P., Dieckmann, T., Johnson, R.C. and Feigon, J. (1999) Solution structure of the HMG protein NHP6A and its interaction with DNA reveals the structural determinants for non-sequence-specific binding. Embo J, 18, 2563-2579. Arango, N.A., Lovell-Badge, R. and Behringer, R.R. (1999) Targeted mutagenesis of the endogenous mouse Mis gene promoter: in vivo definition of genetic pathways of vertebrate sexual development. Cell, 99, 409-419. Arnold, F.H. and Haymore, B.L. (1991) Engineered metal-binding proteins: purification to protein folding. Science, 252, 1796-1797. Azuaga, A.I., Sepulcre, F., Padros, E. and Mateo, P.L. (1996) Scanning calorimetry and Fourier-transform infrared studies into the thermal stability of cleaved bacteriorhodopsin systems. Biochemistry, 35, 16328-16335. Bae, S.J. and Sturtevant, J.M. (1995) Thermodynamics of the thermal unfolding of eglin c in the presence and absence of guanidinium chloride. Biophys Chem, 55, 247-252. Bell, D.M., Leung, K.K., Wheatley, S.C., Ng, L.J., Zhou, S., Ling, K.W., Sham, M.H., Koopman, P., Tam, P.P. and Cheah, K.S. (1997) SOX9 directly regulates the type-II collagen gene. Nat Genet, 16, 174-178. Bernard, P., Tang, P., Liu, S., Dewing, P., Harley, V.R. and Vilain, E. (2003) Dimerization of SOX9 is required for chondrogenesis, but not for sex determination. Hum Mol Genet, 12, 1755-1765. Berta, P., Hawkins, J.R., Sinclair, A.H., Taylor, A., Griffiths, B.L., Goodfellow, P.N. and Fellous, M. (1990) Genetic evidence equating SRY and the testis-determining factor. Nature, 348, 448-450. Bianchi, M.E. (1995) DNA-protein: Structural Interactions. Bianchi, M.E. and Beltrame, M. (1998) Flexing DNA: HMG-box proteins and their partners. Am J Hum Genet, 63, 1573-1577. Bianchi, M.E., Beltrame, M. and Paonessa, G. (1989) Specific recognition of cruciform DNA by nuclear protein HMG1. Science, 243, 1056-1059. Bishop, C.E., Whitworth, D.J., Qin, Y., Agoulnik, A.I., Agoulnik, I.U., Harrison, W.R., Behringer, R.R. and Overbeek, P.A. (2000) A transgenic insertion upstream of sox9 is associated with dominant XX sex reversal in the mouse. Nat Genet, 26, 490-494. Bogerd, H.P., Fridell, R.A., Benson, R.E., Hua, J. and Cullen, B.R. (1996) Protein sequence requirements for function of the human T-cell leukemia virus type 1 Rex nuclear export signal delineated by a novel in vivo randomization-selection assay. Mol Cell Biol, 16, 4207-4214. Boice, J.A. and Fairman, R. (1996) Structural characterization of the tumor suppressor p16, an ankyrin-like repeat protein. Protein Sci, 5, 1776-1784. Bolon, D.N. and Mayo, S.L. (2001) Polar residues in the protein core of Escherichia coli thioredoxin are important for fold specificity. Biochemistry, 40, 10047-10053. Bowles, J., Schepers, G. and Koopman, P. (2000) Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol, 227, 239-255. Buehr, M., Gu, S. and McLaren, A. (1993) Mesonephric contribution to testis differentiation in the fetal mouse. Development, 117, 273-281. Burova, T.V., Bernhardt, R. and Pfeil, W. (1995) Conformational stability of bovine holo and apo adrenodoxin--a scanning calorimetric study. Protein Sci, 4, 909-916. Burova, T.V., Choiset, Y., Jankowski, C.K. and Haertle, T. (1999) Conformational stability and binding properties of porcine odorant binding protein. Biochemistry, 38, 15043-15051. Bustin, M. (2001) Revised nomenclature for high mobility group (HMG) chromosomal proteins. Trends Biochem Sci, 26, 152-153. Cambillau, C. and Claverie, J.M. (2000) Structural and genomic correlates of hyperthermostability. J Biol Chem, 275, 32383-32386. Cameron, F.J. and Sinclair, A.H. (1997) Mutations in SRY and SOX9: testis-determining genes. Hum Mutat, 9, 388-395. Cary, P.D., Read, C.M., Davis, B., Driscoll, P.C. and Crane-Robinson, C. (2001) Solution structure and backbone dynamics of the DNA-binding domain of mouse Sox-5. Protein Sci, 10, 83-98. Chakravarty, S. and Varadarajan, R. (2000) Elucidation of determinants of protein stability through genome sequence analysis. FEBS Lett, 470, 65-69. Courey, A.J. (2001) Cooperativity in transcriptional control. Curr Biol, 11, R250-252. Crane-Robinson, C., Read, C.M., Cary, P.D., Driscoll, P.C., Dragan, A.I. and Privalov, P.L. (1998) The energetics of HMG box interactions with DNA. Thermodynamic description of the box from mouse Sox-5. J Mol Biol, 281, 705-717. Culajay, J.F., Blaber, S.I., Khurana, A. and Blaber, M. (2000) Thermodynamic characterization of mutants of human fibroblast growth factor 1 with an increased physiological half-life. Biochemistry, 39, 7153-7158. Dailey, L. and Basilico, C. (2001) Coevolution of HMG domains and homeodomains and the generation of transcriptional regulation by Sox/POU complexes. J Cell Physiol, 186, 315-328. De Santa Barbara, P., Bonneaud, N., Boizet, B., Desclozeaux, M., Moniot, B., Sudbeck, P., Scherer, G., Poulat, F. and Berta, P. (1998) Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti-Mullerian hormone gene. Mol Cell Biol, 18, 6653-6665. de Santa Barbara, P., Moniot, B., Poulat, F. and Berta, P. (2000) Expression and subcellular localization of SF-1, SOX9, WT1, and AMH proteins during early human testicular development. Dev Dyn, 217, 293-298. Del Vecchio, P., Graziano, G., Granata, V., Barone, G., Mandrich, L., Manco, G. and Rossi, M. (2002) Temperature- and denaturant-induced unfolding of two thermophilic esterases. Biochemistry, 41, 1364-1371. Ellison, D., Hinton, J., Hubbard, S.J. and Beynon, R.J. (1995) Limited proteolysis of native proteins: the interaction between avidin and proteinase K. Protein Sci, 4, 1337-1345. Ferrari, S., Harley, V.R., Pontiggia, A., Goodfellow, P.N., Lovell-Badge, R. and Bianchi, M.E. (1992) SRY, like HMG1, recognizes sharp angles in DNA. Embo J, 11, 4497-4506. Fischer, U., Huber, J., Boelens, W.C., Mattaj, I.W. and Luhrmann, R. (1995) The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell, 82, 475-483. Fornerod, M., Ohno, M., Yoshida, M. and Mattaj, I.W. (1997) CRM1 is an export receptor for leucine-rich nuclear export signals. Cell, 90, 1051-1060. Foster, J.W., Dominguez-Steglich, M.A., Guioli, S., Kowk, G., Weller, P.A., Stevanovic, M., Weissenbach, J., Mansour, S., Young, I.D., Goodfellow, P.N. and et al. (1994) Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature, 372, 525-530. Fritz, C.C. and Green, M.R. (1996) HIV Rev uses a conserved cellular protein export pathway for the nucleocytoplasmic transport of viral RNAs. Curr Biol, 6, 848-854. Fukuda, M., Asano, S., Nakamura, T., Adachi, M., Yoshida, M., Yanagida, M. and Nishida, E. (1997a) CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature, 390, 308-311. Fukuda, M., Gotoh, I., Adachi, M., Gotoh, Y. and Nishida, E. (1997b) A novel regulatory mechanism in the mitogen-activated protein (MAP) kinase cascade. Role of nuclear export signal of MAP kinase kinase. J Biol Chem, 272, 32642-32648. Fukuda, M., Gotoh, I., Gotoh, Y. and Nishida, E. (1996) Cytoplasmic localization of mitogen-activated protein kinase kinase directed by its NH2-terminal, leucine-rich short amino acid sequence, which acts as a nuclear export signal. J Biol Chem, 271, 20024-20028. Gasca, S., Canizares, J., De Santa Barbara, P., Mejean, C., Poulat, F., Berta, P. and Boizet-Bonhoure, B. (2002) A nuclear export signal within the high mobility group domain regulates the nucleocytoplasmic translocation of SOX9 during sexual determination. Proc Natl Acad Sci U S A, 99, 11199-11204. Gianese, G., Bossa, F. and Pascarella, S. (2002) Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes. Proteins, 47, 236-249. Giletto, A. and Pace, C.N. (1999) Buried, charged, non-ion-paired aspartic acid 76 contributes favorably to the conformational stability of ribonuclease T1. Biochemistry, 38, 13379-13384. Giver, L., Gershenson, A., Freskgard, P.O. and Arnold, F.H. (1998) Directed evolution of a thermostable esterase. Proc Natl Acad Sci U S A, 95, 12809-12813. Grosschedl, R., Giese, K. and Pagel, J. (1994) HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet, 10, 94-100. Grosshans, D.R., Clayton, D.A., Coultrap, S.J. and Browning, M.D. (2002) LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nat Neurosci, 5, 27-33. Gubbay, J., Collignon, J., Koopman, P., Capel, B., Economou, A., Munsterberg, A., Vivian, N., Goodfellow, P. and Lovell-Badge, R. (1990) A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature, 346, 245-250. Guruprasad, K., Reddy, B.V. and Pandit, M.W. (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng, 4, 155-161. Hageman, R.M., Cameron, F.J. and Sinclair, A.H. (1998) Mutation analysis of the SOX9 gene in a patient with campomelic dysplasia. Hum Mutat, Suppl 1, S112-113. Haggiag, S., Chebath, J. and Revel, M. (1999) Induction of myelin gene expression in Schwann cell cultures by an interleukin-6 receptor-interleukin-6 chimera. FEBS Lett, 457, 200-204. Haney, P.J., Badger, J.H., Buldak, G.L., Reich, C.I., Woese, C.R. and Olsen, G.J. (1999) Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proc Natl Acad Sci U S A, 96, 3578-3583. Harrison, S.C. (1991) A structural taxonomy of DNA-binding domains. Nature, 353, 715-719. Harushima, Y. and Sugai, S. (1989) Hydrogen exchange of the tryptophan residues in bovine, goat, guinea pig, and human alpha-lactalbumin. Biochemistry, 28, 8568-8576. He, Q., Ohndorf, U.M. and Lippard, S.J. (2000) Intercalating residues determine the mode of HMG1 domains A and B binding to cisplatin-modified DNA. Biochemistry, 39, 14426-14435. Henderson, B.R. and Eleftheriou, A. (2000) A comparison of the activity, sequence specificity, and CRM1-dependence of different nuclear export signals. Exp Cell Res, 256, 213-224. Hill, D.A. and Reeves, R. (1997) Competition between HMG-I(Y), HMG-1 and histone H1 on four-way junction DNA. Nucleic Acids Res, 25, 3523-3531. Hobart, S.A., Meinhold, D.W., Osuna, R. and Colon, W. (2002) From two-state to three-state: the effect of the P61A mutation on the dynamics and stability of the factor for inversion stimulation results in an altered equilibrium denaturation mechanism. Biochemistry, 41, 13744-13754. Hollien, J. and Marqusee, S. (1999) A thermodynamic comparison of mesophilic and thermophilic ribonucleases H. Biochemistry, 38, 3831-3836. Holm, R.H., Kennepohl, P. and Solomon, E.I. (1996) Structural and Functional Aspects of Metal Sites in Biology. Chem Rev, 96, 2239-2314. Houston, C.S., Opitz, J.M., Spranger, J.W., Macpherson, R.I., Reed, M.H., Gilbert, E.F., Herrmann, J. and Schinzel, A. (1983) The campomelic syndrome: review, report of 17 cases, and follow-up on the currently 17-year-old boy first reported by Maroteaux et al in 1971. Am J Med Genet, 15, 3-28. Hsiao, N.W., Samuel, D., Liu, Y.N., Chen, L.C., Yang, T.Y., Jayaraman, G. and Lyu, P.C. (2003) Mutagenesis study on the zebra fish SOX9 high-mobility group: comparison of sequence and non-sequence specific HMG domains. Biochemistry, 42, 11183-11193. Hu, C.H., Wang, J.M. and Tseng, H.B. (1998) The first high-mobility-group box of upstream binding factor assembles across-over DNA junction by basic residues. Biochem J, 333 ( Pt 1), 51-56. Huang, B., Wang, S., Ning, Y., Lamb, A.N. and Bartley, J. (1999) Autosomal XX sex reversal caused by duplication of SOX9. Am J Med Genet, 87, 349-353. Huang, T.T., Kudo, N., Yoshida, M. and Miyamoto, S. (2000a) A nuclear export signal in the N-terminal regulatory domain of IkappaBalpha controls cytoplasmic localization of inactive NF-kappaB/IkappaBalpha complexes. Proc Natl Acad Sci U S A, 97, 1014-1019. Huang, W., Zhou, X., Lefebvre, V. and de Crombrugghe, B. (2000b) Phosphorylation of SOX9 by cyclic AMP-dependent protein kinase A enhances SOX9's ability to transactivate a Col2a1 chondrocyte-specific enhancer. Mol Cell Biol, 20, 4149-4158. Iakoucheva, L.M., Walker, R.K., van Houten, B. and Ackerman, E.J. (2002) Equilibrium and stop-flow kinetic studies of fluorescently labeled DNA substrates with DNA repair proteins XPA and replication protein A. Biochemistry, 41, 131-143. Imamura, T., Izumi, H., Nagatani, G., Ise, T., Nomoto, M., Iwamoto, Y. and Kohno, K. (2001) Interaction with p53 enhances binding of cisplatin-modified DNA by high mobility group 1 protein. J Biol Chem, 276, 7534-7540. Ishii, Y. (1994) The local and global unfolding of coiled-coil tropomyosin. Eur J Biochem, 221, 705-712. Jen-Jacobson, L., Engler, L.E. and Jacobson, L.A. (2000) Structural and thermodynamic strategies for site-specific DNA binding proteins. Structure Fold Des, 8, 1015-1023. Jimenez, R. and Burgos, M. (1998) Mammalian sex determination: joining pieces of the genetic puzzle. Bioessays, 20, 696-699. Johnson, C., Van Antwerp, D. and Hope, T.J. (1999) An N-terminal nuclear export signal is required for the nucleocytoplasmic shuttling of IkappaBalpha. Embo J, 18, 6682-6693. Johnson, C.R., Morin, P.E., Arrowsmith, C.H. and Freire, E. (1995) Thermodynamic analysis of the structural stability of the tetrameric oligomerization domain of p53 tumor suppressor. Biochemistry, 34, 5309-5316. Karantza, V., Freire, E. and Moudrianakis, E.N. (2001) Thermodynamic studies of the core histones: stability of the octamer subunits is not altered by removal of their terminal domains. Biochemistry, 40, 13114-13123. Kellis, J.T., Jr., Nyberg, K. and Fersht, A.R. (1989) Energetics of complementary side-chain packing in a protein hydrophobic core. Biochemistry, 28, 4914-4922. Kent, J., Wheatley, S.C., Andrews, J.E., Sinclair, A.H. and Koopman, P. (1996) A male-specific role for SOX9 in vertebrate sex determination. Development, 122, 2813-2822. Koopman, P. (1999) Sry and Sox9: mammalian testis-determining genes. Cell Mol Life Sci, 55, 839-856. Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P. and Lovell-Badge, R. (1991) Male development of chromosomally female mice transgenic for Sry. Nature, 351, 117-121. Kwok, C., Goodfellow, P.N. and Hawkins, J.R. (1996) Evidence to exclude SOX9 as a candidate gene for XY sex reversal without skeletal malformation. J Med Genet, 33, 800-801. Kwok, C., Weller, P.A., Guioli, S., Foster, J.W., Mansour, S., Zuffardi, O., Punnett, H.H., Dominguez-Steglich, M.A., Brook, J.D., Young, I.D. and et al. (1995) Mutations in SOX9, the gene responsible for Campomelic dysplasia and autosomal sex reversal. Am J Hum Genet, 57, 1028-1036. Laudet, V., Stehelin, D. and Clevers, H. (1993) Ancestry and diversity of the HMG box superfamily. Nucleic Acids Res, 21, 2493-2501. Lebbink, J.H., Knapp, S., van der Oost, J., Rice, D., Ladenstein, R. and de Vos, W.M. (1999) Engineering activity and stability of Thermotoga maritima glutamate dehydrogenase. II: construction of a 16-residue ion-pair network at the subunit interface. J Mol Biol, 289, 357-369. Lebrun, A., Shakked, Z. and Lavery, R. (1997) Local DNA stretching mimics the distortion caused by the TATA box-binding protein. Proc Natl Acad Sci U S A, 94, 2993-2998. Lee, Y.S. and Chuong, C.M. (1997) Activation of protein kinase A is a pivotal step involved in both BMP-2- and cyclic AMP-induced chondrogenesis. J Cell Physiol, 170, 153-165. Lefebvre, V., Huang, W., Harley, V.R., Goodfellow, P.N. and de Crombrugghe, B. (1997) SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol, 17, 2336-2346. Lefebvre, V., Li, P. and de Crombrugghe, B. (1998) A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. Embo J, 17, 5718-5733. Lentz, B.R., Zhou, C.M. and Wu, J.R. (1994) Phosphatidylserine-containing membranes alter the thermal stability of prothrombin's catalytic domain: a differential scanning calorimetric study. Biochemistry, 33, 5460-5468. Leppanen, V.M., Nummelin, H., Hansen, T., Lahti, R., Schafer, G. and Goldman, A. (1999) Sulfolobus acidocaldarius inorganic pyrophosphatase: structure, thermostability, and effect of metal ion in an archael pyrophosphatase. Protein Sci, 8, 1218-1231. Leung, K.W., Liaw, Y.C., Chan, S.C., Lo, H.Y., Musayev, F.N., Chen, J.Z., Fang, H.J. and Chen, H.M. (2001) Significance of local electrostatic interactions in staphylococcal nuclease studied by site-directed mutagenesis. J Biol Chem, 276, 46039-46045. Leveque, V.J., Stroupe, M.E., Lepock, J.R., Cabelli, D.E., Tainer, J.A., Nick, H.S. and Silverman, D.N. (2000) Multiple replacements of glutamine 143 in human manganese superoxide dismutase: effects on structure, stability, and catalysis. Biochemistry, 39, 7131-7137. Love, J.J., Li, X., Case, D.A., Giese, K., Grosschedl, R. and Wright, P.E. (1995) Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature, 376, 791-795. Luscombe, N.M., Laskowski, R.A. and Thornton, J.M. (2001) Amino acid-base interactions: a three-dimensional analysis of protein-DNA interactions at an atomic level. Nucleic Acids Res, 29, 2860-2874. Mansour, S., Hall, C.M., Pembrey, M.E. and Young, I.D. (1995) A clinical and genetic study of campomelic dysplasia. J Med Genet, 32, 415-420. Marone, M., Mozzetti, S., De Ritis, D., Pierelli, L. and Scambia, G. (2001) Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample. Biol Proced Online, 3, 19-25. Marshall, O.J. and Harley, V.R. (2000) Molecular mechanisms of SOX9 action. Mol Genet Metab, 71, 455-462. Martineau, J., Nordqvist, K., Tilmann, C., Lovell-Badge, R. and Capel, B. (1997) Male-specific cell migration into the developing gonad. Curr Biol, 7, 958-968. Masino, L., Martin, S.R. and Bayley, P.M. (2000) Ligand binding and thermodynamic stability of a multidomain protein, calmodulin. Protein Sci, 9, 1519-1529. McDowall, S., Argentaro, A., Ranganathan, S., Weller, P., Mertin, S., Mansour, S., Tolmie, J. and Harley, V. (1999) Functional and structural studies of wild type SOX9 and mutations causing campomelic dysplasia. J Biol Chem, 274, 24023-24030. Mertin, S., McDowall, S.G. and Harley, V.R. (1999) The DNA-binding specificity of SOX9 and other SOX proteins. Nucleic Acids Res, 27, 1359-1364. Meyer, J., Sudbeck, P., Held, M., Wagner, T., Schmitz, M.L., Bricarelli, F.D., Eggermont, E., Friedrich, U., Haas, O.A., Kobelt, A., Leroy, J.G., Van Maldergem, L., Michel, E., Mitulla, B., Pfeiffer, R.A., Schinzel, A., Schmidt, H. and Scherer, G. (1997) Mutational analysis of the SOX9 gene in campomelic dysplasia and autosomal sex reversal: lack of genotype/phenotype correlations. Hum Mol Genet, 6, 91-98. Mombelli, E., Shehi, E., Fusi, P. and Tortora, P. (2002) Exploring hyperthermophilic proteins under pressure: theoretical aspects and experimental findings. Biochim Biophys Acta, 1595, 392-396. Morais da Silva, S., Hacker, A., Harley, V., Goodfellow, P., Swain, A. and Lovell-Badge, R. (1996) Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet, 14, 62-68. Morii, H., Uedaira, H., Ogata, K., Ishii, S. and Sarai, A. (1999) Shape and energetics of a cavity in c-Myb probed by natural and non-natural amino acid mutations. J Mol Biol, 292, 909-920. Morris, A.L., MacArthur, M.W., Hutchinson, E.G. and Thornton, J.M. (1992) Stereochemical quality of protein structure coordinates. Proteins, 12, 345-364. Morrison, D., Woodford, N., Barrett, S.P., Sisson, P. and Cookson, B.D. (1999) DNA banding pattern polymorphism in vancomycin-resistant Enterococcus faecium and criteria for defining strains. J Clin Microbiol, 37, 1084-1091. Moutiez, M., Burova, T.V., Haertle, T. and Quemeneur, E. (1999) On the non-respect of the thermodynamic cycle by DsbA variants. Protein Sci, 8, 106-112. Mowen, K. and David, M. (2000) Regulation of STAT1 nuclear export by Jak1. Mol Cell Biol, 20, 7273-7281. Murakami, S., Lefebvre, V. and de Crombrugghe, B. (2000) Potent inhibition of the master chondrogenic factor Sox9 gene by interleukin-1 and tumor necrosis factor-alpha. J Biol Chem, 275, 3687-3692. Murphy, E.C., Zhurkin, V.B., Louis, J.M., Cornilescu, G. and Clore, G.M. (2001) Structural basis for SRY-dependent 46-X,Y sex reversal: modulation of DNA bending by a naturally occurring point mutation. J Mol Biol, 312, 481-499. Murphy, F.V.t., Sweet, R.M. and Churchill, M.E. (1999) The structure of a chromosomal high mobility group protein-DNA complex reveals sequence-neutral mechanisms important for non-sequence-specific DNA recognition. Embo J, 18, 6610-6618. Nagai, K. (2001) Molecular evolution of Sry and Sox gene. Gene, 270, 161-169. Neufeld, K.L., Nix, D.A., Bogerd, H., Kang, Y., Beckerle, M.C., Cullen, B.R. and White, R.L. (2000) Adenomatous polyposis coli protein contains two nuclear export signals and shuttles between the nucleus and cytoplasm. Proc Natl Acad Sci U S A, 97, 12085-12090. Ng, L.J., Wheatley, S., Muscat, G.E., Conway-Campbell, J., Bowles, J., Wright, E., Bell, D.M., Tam, P.P., Cheah, K.S. and Koopman, P. (1997) SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol, 183, 108-121. Ohndorf, U.M., Rould, M.A., He, Q., Pabo, C.O. and Lippard, S.J. (1999) Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins. Nature, 399, 708-712. Pace, C.N., Vajdos, F., Fee, L., Grimsley, G. and Gray, T. (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci, 4, 2411-2423. Padmanabhan, S., Laurents, D.V., Fernandez, A.M., Elias-Arnanz, M., Ruiz-Sanz, J., Mateo, P.L., Rico, M. and Filimonov, V.V. (1999) Thermodynamic analysis of the structural stability of phage 434 Cro protein. Biochemistry, 38, 15536-15547. Pakula, A.A. and Sauer, R.T. (1990) Reverse hydrophobic effects relieved by amino-acid substitutions at a protein surface. Nature, 344, 363-364. Pasheva, E.A., Ugrinova, I., Spassovska, N.C. and Pashev, I.G. (2002) The binding affinity of HMG1 protein to DNA modified by cis-platin and its analogs correlates with their antitumor activity. Int J Biochem Cell Biol, 34, 87-92. Payet, D., Hillisch, A., Lowe, N., Diekmann, S. and Travers, A. (1999) The recognition of distorted DNA structures by HMG-D: a footprinting and molecular modelling study. J Mol Biol, 294, 79-91. Pedone, E., Cannio, R., Saviano, M., Rossi, M. and Bartolucci, S. (1999) Prediction and experimental testing of Bacillus acidocaldarius thioredoxin stability. Biochem J, 339 ( Pt 2), 309-317. Peretz, D., Williamson, R.A., Kaneko, K., Vergara, J., Leclerc, E., Schmitt-Ulms, G., Mehlhorn, I.R., Legname, G., Wormald, M.R., Rudd, P.M., Dwek, R.A., Burton, D.R. and Prusiner, S.B. (2001) Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature, 412, 739-743. Peters, R., King, C.Y., Ukiyama, E., Falsafi, S., Donahoe, P.K. and Weiss, M.A. (1995) An SRY mutation causing human sex reversal resolves a general mechanism of structure-specific DNA recognition: application to the four-way DNA junction. Biochemistry, 34, 4569-4576. Pevny, L.H. and Lovell-Badge, R. (1997) Sox genes find their feet. Curr Opin Genet Dev, 7, 338-344. Pfeifer, D., Kist, R., Dewar, K., Devon, K., Lander, E.S., Birren, B., Korniszewski, L., Back, E. and Scherer, G. (1999) Campomelic dysplasia translocation breakpoints are scattered over 1 Mb proximal to SOX9: evidence for an extended control region. Am J Hum Genet, 65, 111-124. Pil, P.M. and Lippard, S.J. (1992) Specific binding of chromosomal protein HMG1 to DNA damaged by the anticancer drug cisplatin. Science, 256, 234-237. Preiss, S., Argentaro, A., Clayton, A., John, A., Jans, D.A., Ogata, T., Nagai, T., Barroso, I., Schafer, A.J. and Harley, V.R. (2001) Compound effects of point mutations causing campomelic dysplasia/autosomal sex reversal upon SOX9 structure, nuclear transport, DNA binding, and transcriptional activation. J Biol Chem, 276, 27864-27872. Prevost, M., Wodak, S.J., Tidor, B. and Karplus, M. (1991) Contribution of the hydrophobic effect to protein stability: analysis based on simulations of the Ile-96----Ala mutation in barnase. Proc Natl Acad Sci U S A, 88, 10880-10884. Rahil, J. and Pratt, R.F. (1994) Characterization of covalently bound enzyme inhibitors as transition-state analogs by protein stability measurements: phosphonate monoester inhibitors of a beta-lactamase. Biochemistry, 33, 116-125. Reddy, B.V., Datta, S. and Tiwari, S. (1998) Use of propensities of amino acids to the local structural environments to understand effect of substitution mutations on protein stability. Protein Eng, 11, 1137-1145. Regan, L. (1995) Protein design: novel metal-binding sites. Trends Biochem Sci, 20, 280-285. Remmele, R.L., Jr., Bhat, S.D., Phan, D.H. and Gombotz, W.R. (1999) Minimization of recombinant human Flt3 ligand aggregation at the Tm plateau: a matter of thermal reversibility. Biochemistry, 38, 5241-5247. Richards, F.M. (1997) Protein stability: still an unsolved problem. Cell Mol Life Sci, 53, 790-802. Roberts, V.A., Iverson, B.L., Iverson, S.A., Benkovic, S.J., Lerner, R.A., Getzoff, E.D. and Tainer, J.A. (1990) Antibody remodeling: a general solution to the design of a metal-coordination site in an antibody binding pocket. Proc Natl Acad Sci U S A, 87, 6654-6658. Rosin-Arbesfeld, R., Townsley, F. and Bienz, M. (2000) The APC tumour suppressor has a nuclear export function. Nature, 406, 1009-1012. Rudolph, R., Siebendritt, R. and Kiefhaber, T. (1992) Reversible unfolding and refolding behavior of a monomeric aldolase from Staphylococcus aureus. Protein Sci, 1, 654-666. Ruiz-Sanz, J., de Prat Gay, G., Otzen, D.E. and Fersht, A.R. (1995) Protein fragments as models for events in protein folding pathways: protein engineering analysis of the association of two complementary fragments of the barley chymotrypsin inhibitor 2 (CI-2). Biochemistry, 34, 1695-1701. Saito, K., Kikuchi, T. and Yoshida, M. (1999) The mechanism of sequence non-specific DNA binding of HMG1/2-box B in HMG1 with DNA. Protein Eng, 12, 235-242. Sanchez, R., Pieper, U., Melo, F., Eswar, N., Marti-Renom, M.A., Madhusudhan, M.S., Mirkovic, N. and Sali, A. (2000) Protein structure modeling for structural genomics. Nat Struct Biol, 7 Suppl, 986-990. Sanchez-Ruiz, J.M., Lopez-Lacomba, J.L., Mateo, P.L., Vilanova, M., Serra, M.A. and Aviles, F.X. (1988) Analysis of the thermal unfolding of porcine procarboxypeptidase A and its functional pieces by differential scanning calorimetry. Eur J Biochem, 176, 225-230. Sassoon, J., Lilie, H., Baumann, U. and Kohli, J. (2001) Biochemical characterization of the structure-specific DNA-binding protein Cmb1 from Schizosaccharomyces pombe. J Mol Biol, 309, 1101-1115. Schmahl, J., Eicher, E.M., Washburn, L.L. and Capel, B. (2000) Sry induces cell proliferation in the mouse gonad. Development, 127, 65-73. Sen, A.C., Walsh, M.T. and Chakrabarti, B. (1992) An insight into domain structures and thermal stability of gamma-crystallins. J Biol Chem, 267, 11898-11907. She, Y.M., Narindrasorasak, S., Yang, S., Spitale, N., Roberts, E.A. and Sarkar, B. (2003) Identification of Metal-binding Proteins in Human Hepatoma Lines by Immobilized Metal Affinity Chromatography and Mass Spectrometry. Mol Cell Proteomics, 2, 1306-1318. Sinclair, A.H., Berta, P., Palmer, M.S., Hawkins, J.R., Griffiths, B.L., Smith, M.J., Foster, J.W., Frischauf, A.M., Lovell-Badge, R. and Goodfellow, P.N. (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature, 346, 240-244. Soullier, S., Jay, P., Poulat, F., Vanacker, J.M., Berta, P. and Laudet, V. (1999) Diversification pattern of the HMG and SOX family members during evolution. J Mol Evol, 48, 517-527. Spector, S., Wang, M., Carp, S.A., Robblee, J., Hendsch, Z.S., Fairman, R., Tidor, B. and Raleigh, D.P. (2000) Rational modification of protein stability by the mutation of charged surface residues. Biochemistry, 39, 872-879. Staniforth, R.A., Giannini, S., Bigotti, M.G., Cutruzzola, F., Travaglini-Allocatelli, C. and Brunori, M. (2000) A new folding intermediate of apomyoglobin from Aplysia limacina: stepwise formation of a molten globule. J Mol Biol, 297, 1231-1244. Stemmer, C., Schwander, A., Bauw, G., Fojan, P. and Grasser, K.D. (2002) Protein kinase CK2 differentially phosphorylates maize chromosomal high mobility group B (HMGB) proteins modulating their stability and DNA interactions. J Biol Chem, 277, 1092-1098. Stommel, J.M., Marchenko, N.D., Jimenez, G.S., Moll, U.M., Hope, T.J. and Wahl, G.M. (1999) A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. Embo J, 18, 1660-1672. Stros, M. (2001) Two mutations of basic residues within the N-terminus of HMG-1 B domain with different effects on DNA supercoiling and binding to bent DNA. Biochemistry, 40, 4769-4779. Stros, M. and Muselikova, E. (2000) A role of basic residues and the putative intercalating phenylalanine of the HMG-1 box B in DNA supercoiling and binding to four-way DNA junctions. J Biol Chem, 275, 35699-35707. Sudbeck, P. and Scherer, G. (1997) Two independent nuclear localization signals are present in the DNA-binding high-mobility group domains of SRY and SOX9. J Biol Chem, 272, 27848-27852. Sudbeck, P., Schmitz, M.L., Baeuerle, P.A. and Scherer, G. (1996) Sex reversal by loss of the C-terminal transactivation domain of human SOX9. Nat Genet, 13, 230-232. Suh, S.S., Haymore, B.L. and Arnold, F.H. (1991) Characterization of His-X3-His sites in alpha-helices of synthetic metal-binding bovine somatotropin. Protein Eng, 4, 301-305. Suhre, K. and Claverie, J.M. (2003) Genomic correlates of hyperthermostability, an update. J Biol Chem, 278, 17198-17202. Swain, A. and Lovell-Badge, R. (1999) Mammalian sex determination: a molecular drama. Genes Dev, 13, 755-767. Szilagyi, A. and Zavodszky, P. (2000) Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure Fold Des, 8, 493-504. Tajima, T., Nakae, J., Shinohara, N. and Fujieda, K. (1994) A novel mutation localized in the 3' non-HMG box region of the SRY gene in 46,XY gonadal dysgenesis. Hum Mol Genet, 3, 1187-1189. Takami, H. and Horikoshi, K. (2000) Analysis of the genome of an alkaliphilic Bacillus strain from an industrial point of view. Extremophiles, 4, 99-108. Tang, Y. and Nilsson, L. (1999) Effect of G40R mutation on the binding of human SRY protein to DNA: a molecular dynamics view. Proteins, 35, 101-113. Taudte, S., Xin, H. and Kallenbach, N.R. (2000) Alanine mutagenesis of high-mobility-group-protein-1 box B (HMG1-B). Biochem J, 347 Pt 3, 807-814. Thomas, J.O. and Travers, A.A. (2001) HMG1 and 2, and related 'architectural' DNA-binding proteins. Trends Biochem Sci, 26, 167-174. Tilmann, C. and Capel, B. (1999) Mesonephric cell migration induces testis cord formation and Sertoli cell differentiation in the mammalian gonad. Development, 126, 2883-2890. Travers, A.A. (1993) DNA-Protein interactions. Chapman &Hall, New York. Trimmer, E.E., Zamble, D.B., Lippard, S.J. and Essigmann, J.M. (1998) Human testis-determining factor SRY binds to the major DNA adduct of cisplatin and a putative target sequence with comparable affinities. Biochemistry, 37, 352-362. van den Burg, B. (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol, 6, 213-218. van den Burg, B. and Eijsink, V.G. (2002) Selection of mutations for increased protein stability. Curr Opin Biotechnol, 13, 333-337. van Houte, L.P., Chuprina, V.P., van der Wetering, M., Boelens, R., Kaptein, R. and Clevers, H. (1995) Solution structure of the sequence-specific HMG box of the lymphocyte transcriptional activator Sox-4. J Biol Chem, 270, 30516-30524. Vanni, C., Mancini, P., Gao, Y., Ottaviano, C., Guo, F., Salani, B., Torrisi, M.R., Zheng, Y. and Eva, A. (2002) Regulation of proto-Dbl by intracellular membrane targeting and protein stability. J Biol Chem, 277, 19745-19753. Vidal, V.P., Chaboissier, M.C., de Rooij, D.G. and Schedl, A. (2001) Sox9 induces testis development in XX transgenic mice. Nat Genet, 28, 216-217. Vieille, C. and Zeikus, G.J. (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev, 65, 1-43. Vogt, G., Woell, S. and Argos, P. (1997) Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol, 269, 631-643. Wagner, T., Wirth, J., Meyer, J., Zabel, B., Held, M., Zimmer, J., Pasantes, J., Bricarelli, F.D., Keutel, J., Hustert, E. and et al. (1994) Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell, 79, 1111-1120. Wang, L. and Kallenbach, N.R. (1998) Proteolysis as a measure of the free energy difference between cytochrome c and its derivatives. Protein Sci, 7, 2460-2464. Watanabe, M., Masuyama, N., Fukuda, M. and Nishida, E. (2000) Regulation of intracellular dynamics of Smad4 by its leucine-rich nuclear export signal. EMBO Rep, 1, 176-182. Wegner, M. (1999) From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res, 27, 1409-1420. Weiss, M.A., Ukiyama, E. and King, C.Y. (1997) The SRY cantilever motif discriminates between sequence- and structure-specific DNA recognition: alanine mutagenesis of an HMG box. J Biomol Struct Dyn, 15, 177-184. Welfle, K., Misselwitz, R., Politz, O., Borriss, R. and Welfle, H. (1996) Individual amino acids in the N-terminal loop region determine the thermostability and unfolding characteristics of bacterial glucanases. Protein Sci, 5, 2255-2265. Wen, W., Meinkoth, J.L., Tsien, R.Y. and Taylor, S.S. (1995) Identification of a signal for rapid export of proteins from the nucleus. Cell, 82, 463-473. Werner, M.H., Huth, J.R., Gronenborn, A.M. and Clore, G.M. (1995) Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex. Cell, 81, 705-714. Wirth, J., Wagner, T., Meyer, J., Pfeiffer, R.A., Tietze, H.U., Schempp, W. and Scherer, G. (1996) Translocation breakpoints in three patients with campomelic dysplasia and autosomal sex reversal map more than 130 kb from SOX9. Hum Genet, 97, 186-193. Wunderle, V.M., Critcher, R., Hastie, N., Goodfellow, P.N. and Schedl, A. (1998) Deletion of long-range regulatory elements upstream of SOX9 causes campomelic dysplasia. Proc Natl Acad Sci U S A, 95, 10649-10654. Yen, Y.M., Wong, B. and Johnson, R.C. (1998) Determinants of DNA binding and bending by the Saccharomyces cerevisiae high mobility group protein NHP6A that are important for its biological activities. Role of the unique N terminus and putative intercalating methionine. J Biol Chem, 273, 4424-4435. Zaitseva, E.M., Zaitsev, E.N. and Kowalczykowski, S.C. (1999) The DNA binding properties of Saccharomyces cerevisiae Rad51 protein. J Biol Chem, 274, 2907-2915. Zavodszky, P., Kardos, J., Svingor and Petsko, G.A. (1998) Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc Natl Acad Sci U S A, 95, 7406-7411. Zehentner, B.K., Leser, U. and Burtscher, H. (2000) BMP-2 and sonic hedgehog have contrary effects on adipocyte-like differentiation of C3H10T1/2 cells. DNA Cell Biol, 19, 275-281.id NH0925105003 sid 874285 cfn 0 / id NH0925105004 auc 陳坤鍾 tic 五倍子化學成份及其生物活性之研究 adc 王成德教授 ty 碩士 sc 國立清華大學 dp 生命科學系 yr 92 lg 中文 pg 120 kwc 羅氏鹽膚木 kwc 五倍子 kwc 細胞毒殺 kwc 細胞周期 kwc 第一型DNA 拓樸異構 kwc & kwc #37238; kwc 免疫調控 abc 羅氏鹽膚木,學名Rhus semialata var. roxburghii,全台及全 tc 目 錄 頁數 英文摘要---------------------------------------------------I 中文摘要-------------------------------------------------III 謝 誌------------------------------------------------------V 縮寫及中英文對照-----------------------------------------VII 目錄------------------------------------------------------IX 圖、表目錄-----------------------------------------------XII 第一章 緒論------------------------------------------------1 第一節 前言-----------------------------------------------1 第二節 羅氏鹽膚木及五倍子---------------------------------3 一.植物與藥理活性簡介-----------------------------------3 二.文獻成份研究-----------------------------------------7 第三節 細胞凋亡及細胞周期--------------------------------10 第四節 人類第一型去氧核糖核酸異構酶----------------------14 第五節 免疫細胞簡介--------------------------------------16 第六節 研究背景與動機------------------------------------18 第二章 實驗方法與藥品材料---------------------------------19 第一節 藥品材料------------------------------------------19 一.實驗用藥品與試驗劑----------------------------------19 二.檢驗試劑配製----------------------------------------19 三.實驗儀器--------------------------------------------20 第二節 五倍子之成份純化----------------------------------22 第三節 有機合成實驗--------------------------------------24 第四節 生物活性試驗--------------------------------------27 一.細胞毒殺試驗 (MTT cytotoxicity assay)---------------27 二.細胞周期調控試驗------------------------------------30 三.催化性DNA topoisomerase I activity抑制試驗----------31 四.免疫活性調控試驗------------------------------------33 甲.人類周邊血液淋巴細胞增殖試驗----------------------33 乙.人類周邊血液白血球分泌活性氧屬 (ROS) 抑制試-------35 第三章 實驗結果-------------------------------------------37 第一節 化合物結構之證明---------------------------------37 一. 化合物1結構之證明----------------------------------37 二. 化合物2結構之證明----------------------------------43 三. 化合物3結構之證明----------------------------------49 四. 化合物4結構之證明----------------------------------54 五. 化合物5結構之證明----------------------------------57 六. 化合物6結構之證明----------------------------------61 七. 化合物7結構之證明----------------------------------64 八. 化合物8結構之證明----------------------------------68 九. 化合物9結構之證明----------------------------------72 十. 化合物10結構之證明---------------------------------77 十一.化合物11結構之證明--------------------------------80 十二.化合物12結構之證明--------------------------------83 十三.化合物13結構之證明--------------------------------87 十四.化合物14結構之證明--------------------------------90 十五.化合物15結構之證明--------------------------------93 第二節 實驗所得純化合物總整理----------------------------96 第三節 生物活性試驗--------------------------------------99 一.細胞毒殺試驗----------------------------------------99 二.細胞周期調控---------------------------------------101 三.催化性DNA topoisomerase I activity抑制試驗---------105 四.免疫活性調控試驗-----------------------------------107 第四章 討論與結論----------------------------------------110 參考文獻-------------------------------------------------112rf 1. 止戈。 民國九十年。 治療中草藥。五州出版社。初版。pp1-5。 2. 郁仁存、姜廷良、于爾辛。民國八十三年。腫瘤研究。知音出版 社。初版。pp9-20。 3. 郁仁存、姜廷良、于爾辛。民國八十三年。腫瘤研究。知音出版社。初版。pp92-110。 4. 林明定。民國九十二年。生技時代。生技時代股份有限公司。第25期。pp26-27。 5. 陳介甫。民國九十年。中醫藥開發及發展演講稿。國立中國醫藥研究所。 6. 林明定。民國九十二年。生技時代。生技時代股份有限公司。第25期。pp28-29。 7. 常敏毅。民國九十二年。實用抗癌草藥。文橋出版社。初版。pp163-166。 8. 梁文俐。民國九十一年。市售五倍子品質及抗菌活性之探討。行政院衛生署中醫藥委員會。九十一年度委託研究計畫成果報告。 9. 蕭培根。民國七十八年。中國本草圖錄 (卷一)。台灣商務印書館。p105。 10. 謝長富。民國八十一年。台灣植物誌 (卷三)。 p583。 11. 邱年永、張光雄。民國七十五年。原色藥用植物圖鑑 (5)。南天書局。 pp126-127。 12. Hsieh, T. H. (1998) FLORA of TAIWAN 3, pp583-585. 13. 張蘭昌。民國七十年。中藥大辭典第一冊。昭人出版社。pp652-657。 14. 徐鴻華。民國九十三年。中草藥彩色圖鑑 (二)。西北出版社。pp280。 15. 張蘭昌。民國七十年。中藥大辭典第五冊。昭人出版社。pp5546-5551。 16. 江蘇醫學院。西元一九九七年。中藥大辭典 (下)。人民出版社。pp2539。 17. 顏正華。民國八十三年。中藥學 (下)。知音出版社。第三版。pp882-885。 18. 林煥哲。民國八十七年六月。小本山葡萄及羅氏鹽膚木蟲癭之成份研究。台北醫學院藥學研究所 碩士論文。 19. 陳智勤。觀音山植物總表之21 (http://163.16.43.200/gim/2herb/herb/21.htm):羅氏鹽膚木。 20. 楊淑燕、陳明義、楊正澤。民國八十九年。台灣的植物癭。行政院農業委員會中華民國環境綠化協會。 21. 詹美玲。民國九十一年。用昆蟲來入藥。國立自然科學博物館。174期簡訊。 22. 行政院中醫藥委員會。認識中藥篇 (http://www.ccmp.gov.tw/index-c/1.htm) :五倍子。 23. 陳嘉芬。民國九十一年。細胞生物學。藝軒圖書出版社。pp350-374。 24. Searle, J., Kerr, J. F., Bishop, C. J. (1982) Necrosis and apoptosis: distinct modes of cell death with fundamentally different significance. Pathol. Annu. 17, 229-259. 25. Nicotera, P., Leisr, M., Ferrando-May, E. (1999) Apoptosis and necrosis: different execution of the same death. Biochem. Soc. Symp. 66, 69-73. 26. Kerr, J. F., Wyllie, A. H., Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Brit. J. Cancer 26, 239-257. 27. Kiechle, F. L., Zhang, X. (2002) Apoptosis: biochemical aspects and clinical implications. Clinica Chimica Acta. 326, 27-45. 28. Garret, R. H., Grisham, C. M. (1999) Biochemistry. Saunders College. second edition. pp1003-1004. 29. Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., Darnell, J. E. (2001) Molecular Cell Biology. W. H. Freeman and Company. fourth edition. p496; pp514-518; pp526-531; pp1057-1058. 30. 陳嘉芬。民國九十一年。細胞生物學。藝軒圖書出版社。pp25-30。 31. Wang, J. C. (1985) DNA topoisomerase. Annu. Rev. Biochem 54, 665-697. 32. Redinbo, M. R., Champoux, J. J., Hol, W. G. J. (2000) Novel insights into catalytic mechanisms from a crystal structure of human topoisomerase I in complex with DNA. Biochemistry 39, 6832-6840. 33. Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., Darnell, J. E. (2001) Molecular Cell Biology. W. H. Freeman and Company. fourth edition. pp468-471. 34. 何子樂。民國九十年。化學花絮。眾光文化事業有限公司。第一版。pp143-165。 35. Pommier, Y. (1998) Diversity of DNA topoisomerase I and inhibitors. Biochimie. 88, 255-270. 36. Kerrigan, J. E., Pilch, D. S. (2001) A structural model for ternary cleavable complex formed between human topoisomerase I, DNA, and camptothecin. Biochemistry 40, 9792-9798. 37. Fan, J., Weinstein, J. N., Kohn, K. W., Shi, L. M., Pommier, Y. (1998) Molecular modeling studies of the DNA topoisomerase I ternary cleavable complex with camptothecin. J. Med. Chem. 41, 2216-2226. 38. Liou, K. T., Shen, Y. C., Chen, C. F., Tsao, C. M., Tsai, S. K. (2003) The anit-infalmmatory effect of honokiol on neutrophils: mechanism in the inhibition of reactive oxygen species production. Europ. J. Pharmacol. 467, 61481-61490. 39. Shen, Y. C., Chiou, W. F., Chou, Y. C., Chen, C. F. (2003) Mechanisms in mediating the anti-flammatory effects of baicalin and baicalein in human leukocytes. Europ. J. Pharmacol. 465, 171-181. 40. 陳豪勇、楊志元、林智輝、劉定萍、王聖予、汪蕙蘭。 民國九十一年。免疫生物學。藝軒出版社。第一版。pp12-13。 41. 陳豪勇、楊志元、林智輝、劉定萍、王聖予、汪蕙蘭。 民國九十一年。免疫生物學。藝軒出版社。第一版。pp4-42;pp481。 42. 彭春惠。民國九十年六月。評估piperlactam S對於巨噬細胞株RAW 264.7細胞黏著、遷移等行為之影響。 國立陽明大學藥理研究所。碩士論文。 43. Yang, N. S., Chou, C. J., Lin, L. W., Tsai, W. J., Kuo, Y. C. (1999) Evaluation of Chinese herbs that affect cell-mediated immunity (III). J. Chin. Med. 10, 179-188. 44. Frydman, B., Marton, L. J., Sun, J. S., Neder, K., witak, D. T., Liu, A. A. (1997) Induction of DNA topoisomerase II-mediated DNA cleavage by β-lapachone and related naphthoquinones. Cancer Res. 57, 620-627. 45. Kang, K. H., Lee, J. H., Kim, K. C., Ham, S. W., Kim, M. Y., Choi, K. H. (2002) Induction of p73β by a naphthoquinone analog is mediated by E2F-1 and trigger apoptosis in HeLa cells. FEBS Lett. 522, 161-167. 46. FACS CaliburTM (2002 March) Operator training manual Becton Dickinson Company p6. 47. 陳怡君。民國九十二年六月。白花藤之有效成份調控人類周邊血單核細胞增生與細胞激素基因表現。國立陽明大學醫學院藥理研究所。碩士論文。 .48 沈郁強。民國八十八年六月。粉防己素及厚朴酚抑制嗜中性白血球黏著及減輕大白鼠心臟缺血再灌性商害之作用機轉。國立陽明大學生命科學院藥理研究所。博士論文。 49. Robinson, P. J., Carter, W. O., Narayanan, P. K. (1994) Oxidative product formation analysis by flow cytometry. In: Flow Cytometry Darzynkiewicz Z., Robinson J. P., Crissman HA (eds) Academic Press, San Diego. pp437-442. 50. Nishizawa, M., Yamagishi, T., Nonaka, G. I., Nashioka, I., (1983) Tannins and related compounds. part 9. isolation and characterization of pentagalloyglucoses from Chinese gallotannin. J. Chem. Soc. Perkin. Trans. 1, 961-965. 51. Nishizawa, M., Yamagishi, T., Nonaka, G. I., Nashioka, I., (1982) Tannins and related compounds. part 5. isolation and characterization of pentagalloyglucoses from Chinese callotannin. J. Chem. Soc. Perkin. Trans. 1, 2963-2968. 52. Nishizawa, M., Yamagishi, T., Nonaka, G. I., Nashioka, I., (1983) Tannin and related compounds X Rhubarb (2): isolation and structures of a glycerol gallate, gallic acid, glucoside gallates, galloylglucoses and isolindleyin. Chem. Pharm. Bull. 31, 1652. 53. Okuda, T., Yoshida, T., Hatano, T. (1993) New methods of analyzing tannins. J. Nat. Prod. 52, 1-31. 54 Beck, P. O. D., Dijoux, M.-G.., Cartier, G.., Mariotte, A. M. (1998) Quercetin 3’-sulphate from leaves of Leea guinensis. Phytochemistry 6, 1171-1173. 55. Fossen, T., FrØystein, N. Å., Andrsen, Ø. M., (1998) Myricetin 3-rhamonsyl(1→6)galactoside from Nymphaea X. marliacea. Phytochemistry 49, 1997-2000 56. Markham, K. R., Ternai, B., Stanley, R., Geiger, H., Mabry, T. J. (1978) Carbon-13 NMR Studies of Flavonoids III. Tetrahedron 34, 1389-1307. 57. Manthey, J.A., Guthris, N. (2002) Antiproliferative activities of citrus flavnoids against six human cancer cell lines. J. Agri. Food Chem. 50, 5837-5743. 58 Agrawal, P. K. (1989) Carbon-13 NMR of flavnoids. Elsevier, New York p275 59. Hatano, T., Uebay, H. Ito, H., Shiota, S., Tsuchiya, T. Yoshida, T. (1999) Phenolic constituents of Cassia seeds and antibacterial effect of some naphthalenes and anthraquinones on methicillin. Chem. Pharm. Bull. 47, 1121-1127. 60. Bagchi, A., Sahai, M., Bay, A. B. (1985) Phenolic constituents of Rhus semialata leaves. Planta Med. 51, 467-468. 61 Janssen, R. H. A. M., Lousberg, R. J. C., Wijkens, P., Kruk, C., Theuns, H. G.., (1989) Assignment of 1H and 13C NMR resonance of some isoquinoline alkaloids. Phytochemistry 28, 2833-2839. 64. Ito, J., Chang, F. R., Wang, H. K., Park, Y. K., Ikegaki, M., Kilogore, N., Lee, K. H. (2001) Anti-AIDS agents 48: anti-HIV activity of moronic acid derivatives and the new melliferone-related triterpenoid isolated from Brazilian propoils. J. Nat. Prod. 64, 1278-1281. 62. 邱中良。民國九十一年六月。羅氏鹽膚木根部之化學成份研究。國立台灣大學化學系研就所。碩士論文。 63. Yürüker, A., Orjala, J., Sticher, O., Ralli, T. (1998) Triterpenes from Rhus Taitensis. Phytochemistry. 48, 863-866. 65. 江儒源。民國八十九年六月。黃脈刺桐莖皮部之成份研究。靜宜大學應用化學研究所。碩士論文。 66. 郭祐任。民國九十二年六月。一枝香與叢花百日青化學成份及其生物活性之研究。中國文化大學應用化學研究所。碩士論文。 67 Oh, G. S., Pae, H. O., Oh, H., Hong, S G., Kim, I. K., Chai, K. Y., Yum, Y. G., Kwon, T. O., Chung, H. T. (2001) In vitro anti-proliferative effect of 1,2,3,4,6-penta-O-galloyl-beta-D-glucose on human hepatocellular carcinoma cell line, SK-HEP-1 cells. Cancer Lett. 174, 17-24. 68 Conrad J., Vogler, B., Reeb, S., Klaiber, I., Papajewski, S., Gudrun, R., Vasquez, E., Setzer, M. C., Hraus, W. (2001) Isoterchebulin and 4,6-O-isoterchebuloyl-D-glucose, novel hydrolyzable tannins from Terminalia macroptera. J. Nat. Prod. 64, 294-299. 69 Faderl, S., Estrov, Z. (2003) Commentary: effect of flavonoids on normal and leukemic cells. Leuke. Res. 27, 471-473. 70. 林仁混。民國八十九年。植多酚對癌症預防之研究。國家衛生研究院八十九年度整合性醫藥衛生科技研究計畫。id NH0925105004 sid 894275 cfn 0 / id NH0925105005 auc 江政儒 tic 新穎性細胞貼附材質的開發:重組日本腦炎病毒蛋白 adc 吳夙欽 ty 碩士 sc 國立清華大學 dp 生命科學系 yr 92 lg 中文 pg 64 kwc 醣胺素 kwc 細胞貼附 kwc 套膜蛋白 kwc 醣胺素結合區 kwc 細胞外間質 abc 細胞外間質為細胞生長的環境,聚集細胞形成組織,藉由訊號傳遞調控細胞的生長、分裂與分化,並且調節組織內不同類型細胞的功能,另一方面也提供細胞遷移的路徑。許多細胞外間質蛋白具有多重結合區域,如醣胺素結合區和間質內多醣體的結合或是細胞貼附序列和細胞表面受器的結合,使整個細胞外間質與細胞緊密的結合在一起。研究指出在日本腦炎病毒套膜蛋白的兩個區域E286-312以及E391-416可能是為醣胺素結合區,此區域可以和細胞表面的醣胺素結合,被認為是病毒感染細胞時,進行細胞貼附的關鍵。因此,以帶有醣胺素結合區的重組日本腦炎病毒套膜片段蛋白分析細胞貼附的狀況,進一步評估此蛋白發展為人工細胞外間質材料的可能性為本研究的目的。實驗中日本腦炎病毒套膜蛋白主要分成兩個片段,其中一個片段涵蓋了被推測是為醣胺素結合區的區域 (JEV E277-420/32a),並且運用點突變的方式在同一片段引入一RGD細胞貼附序列(JEV RGD/32a),另外的一個片段則不涵蓋被推測是為醣胺素結合區的區域(JEV E292-402/32a)。利用大腸桿菌表現系統生產重組蛋白,接著以再次摺疊的方式進行內涵體蛋白的純化。最後以細胞貼附分析測試不同片段的重組日本腦炎病毒套膜蛋白對於BHK-21細胞是否有幫助貼附的效果。結果顯示JEV E292-402/32a、JEV E277-420/32a以及JEV RGD/32a能夠幫助BHK-21細胞的貼附,並在蛋白進行固定濃度為10μg/ml時細胞貼附達到飽和,而肝素與細胞混合後再加入蛋白處理過的96孔培養皿,能夠產生抑制貼附的效果。在有血清的條件下,不論肝素是先與細胞混合或先與重組蛋白混合,JEV E277-420/32a以及JEV RGD/32a幫助細胞貼附的程度會增加。實驗的結果顯示血清中可能有某些成分和肝素以及JEV E277-420/32a、JEV RGD/32a重組蛋白產生未知的作用增加BHK-21細胞貼附的程度。 tc 頁次 第一章 序論 1.1 細胞外間質…………………………………..………..………1 1.2 細胞表面蛋白多醣………………………...…….……………2 1.3 日本腦炎病毒與其套膜蛋白……………..….…….…………4 1.4 醣胺素結合區與細胞貼附序列………………………………6 1.5 幫助細胞貼附的蛋白…………………………………………8 1.6 細胞黏附性蛋白的應用………………………………………9 1.7 實驗目的……………………………………………………..10 第二章 材料與方法 2.1 病毒與菌株 2.1.1 日本腦炎病毒………………………………………12 2.1.2大腸桿菌菌株…………………………………….…12 2.2 細胞株………………………………………….……………12 2.3 醱酵槽……………………………………………..……...…13 2.4 日本腦炎病毒套膜蛋白基因片段之載體構築點突變…….13 2.5 日本腦炎病毒套膜重組蛋白之表現,製備與純化 2.5.1 重組蛋白之表現……………………………………15 2.5.2 重組蛋白溶液的製備………………………………16 2.5.3 重組蛋白之純化………………………....…………17 2.6 內涵體蛋白的純化………………………………….………19 2.7 細胞貼附能力分析…………………………...………..……20 第三章 結果 3.1日本腦炎病毒套膜蛋白基因片段之載體構築與點突變…...22 3.2日本腦炎病毒套膜重組蛋白之表現,製備與純化 3.2.1 細菌生長曲線與蛋白表現情形 …………………24 3.2.2 重組蛋白之純化………………………..…………25 3.3內涵體蛋白的純化……………………………………...……26 3.4細胞貼附能力分析 3.4.1細胞貼附能力分析…………………………...……27 3.4.2肝素對細胞貼附能力的影響……………...………27 第四章 討論 4.1日本腦炎病毒套膜重組蛋白在大腸桿菌之表現情形…...…30 4.2內涵體蛋白的純化………………………………….…..……32 4.3細胞貼附能力分析………………………………….…..……34 第五章 結論………………………………………..……………..…38 參考文獻………………………………………………………………39 圖表……………………………………………………………………44 圖目次 頁次 圖1.日本腦炎套膜蛋白片段序列以及實驗的目標蛋白…………….44 圖2.pET22b以及pET32a表現載體意示圖………………………..…46 圖3.表現載體構築流程……………………………………………….47 圖4.重組蛋白表現、純化流程……………………………………….48 圖5.內涵體蛋白的純化流程示意圖………………………………….49 圖6.細胞貼附分析流程示意圖……………………………………….49 圖7. JEV E261-420/22b重組蛋白以IPTG誘導表現之結果…….….….50 圖8. JEV E292-402/22b重組蛋白以IPTG誘導表現之結果………..….50 圖9. JEV E261-420/32a重組蛋白以IPTG誘導表現之結果………..….51 圖10. JEV E292-402/32a重組蛋白以IPTG誘導表現之結果………….51 圖11.分析JEV E261-420/32a重組蛋白溶解性之結果…………………52 圖12.分析JEV E292-402/32a重組蛋白溶解性之結果…………………52 圖13. JEV E277-420/32a細菌生長曲線和IPTG誘導蛋白表現情形….53 圖14. JEV RGD/32a細菌生長曲線和IPTG誘導蛋白表現情形……54 圖15. JEV E277-420/32a和JEV RGD/32a蛋白溶解性之分析結果…...55 圖16. JEV E277-420/32a重組蛋白的純化……………………….……..55 圖17. JEV RGD/32a重組蛋白的純化……………………………..…56 圖18. JEV E292-402/32a重組蛋白的純化……………………………...56 圖19. JEV E277-420/32a和JEV RGD/32a內涵體蛋白的純化……..…57 圖20.純化後的蛋白以及西方墨點…………………………………...58 圖21.重組蛋白對細胞貼附的關係…………………………………...59 圖22.細胞貼附一個小時後的結果…………………………………...60 圖23. Heparin對細胞進行貼附所造成的影響………………………61 圖24.在有血清的條件下Heparin和細胞混合後細胞貼附的結果.…63 圖25.在有血清的條件下Heparin和蛋白混合後細胞貼附的結果….64rf Babic AM, Chen CC, Lau LF. (1999) Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol. 19(4):2958-66. Beauvais DM, Rapraeger AC. (2004) Syndecans in tumor cell adhesion and signaling. Reprod Biol Endocrinol. 2(1):3. Belting M. (2003) Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem Sci. 28(3):145-51. Review. Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M. (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 68:729-77. Review. Capila I, Linhardt RJ. (2002) Heparin-protein interactions. Angew Chem Int Ed Engl. 41(3):391-412. Review Chang HH, Kau JH, Lo SJ, Sun DS. (2003) Cell-adhesion and morphological changes are not sufficient to support anchorage-dependent cell growth via non-integrin-mediated attachment. Cell Biol Int. 27(2):123-33. Chen CC, Chen N, Lau LF. (2001) The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J Biol Chem. 276(13):10443-52. Chen N, Chen CC, Lau LF. (2000) Adhesion of human skin fibroblasts to Cyr61 is mediated through integrin alpha 6beta 1 and cell surface heparan sulfate proteoglycans. J Biol Chem. 275(32):24953-61. Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD, Linhardt RJ, Marks RM. (1997) Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med. 3(8):866-71. Clark RA, An JQ, Greiling D, Khan A, Schwarzbauer JE. (2003) Fibroblast migration on fibronectin requires three distinct functional domains. J Invest Dermatol. 121(4):695-705. Erdman R, Stahl RC, Rothblum K, Chernousov MA, Carey DJ. (2002) Schwann cell adhesion to a novel heparan sulfate binding site in the N-terminal domain of alpha 4 type V collagen is mediated by syndecan-3. J Biol Chem. 277(9):7619-25. Gillies RJ, Didier N, Denton M. (1986) Determination of cell number in monolayer cultures. Anal Biochem. 159(1):109-13. Hirosaki T, Tsubota Y, Kariya Y, Moriyama K, Mizushima H, Miyazaki K. (2002) Laminin-6 is activated by proteolytic processing and regulates cellular adhesion and migration differently from laminin-5. J Biol Chem. 277(51):49287-95. Jedsadayanmata A, Chen CC, Kireeva ML, Lau LF, Lam SC. (1999) Activation-dependent adhesion of human platelets to Cyr61 and Fisp12/mouse connective tissue growth factor is mediated through integrin alpha(IIb)beta(3). J Biol Chem. 274(34):24321-7. Kavakli K. (1999) Fibrin glue and clinical impact on haemophilia care. Haemophilia. 5(6):392-6. Review. Kireeva ML, Lam SC, Lau LF. (1998) Adhesion of human umbilical vein endothelial cells to the immediate-early gene product Cyr61 is mediated through integrin alphavbeta3. J Biol Chem. 273(5):3090-6. Kueng W, Silber E, Eppenberger U. (1989) Quantification of cells cultured on 96-well plates. Anal Biochem. 182(1):16-9. Lin CW, Wu SC. (2003) A functional epitope determinant on domain III of the Japanese encephalitis virus envelope protein interacted with neutralizing-antibody combining sites. J Virol. 77(4):2600-6. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. Molecular Cell Biology. 4th ed. Mercurius KO, Morla AO. (2001) Cell adhesion and signaling on the fibronectin 1st type III repeat; requisite roles for cell surface proteoglycans and integrins. BMC Cell Biol. 2(1):18 Pinzon-Ortiz C, Friedman J, Esko J, Sinnis P. (2001) The binding of the circumsporozoite protein to cell surface heparan sulfate proteoglycans is required for plasmodium sporozoite attachment to target cells. J Biol Chem. 276(29):26784-91. Richard C, Roghani M, Moscatelli D. (2000) Fibroblast growth factor (FGF)-2 mediates cell attachment through interactions with two FGF receptor-1 isoforms and extracellular matrix or cell-associated heparan sulfate proteoglycans. Biochem Biophys Res Commun. 276(2):399-405. Rohde LH, Julian J, Babaknia A, Carson DD. (1996) Cell surface expression of HIP, a novel heparin/heparan sulfate binding protein, of human uterine epithelial cells and cell lines. J Biol Chem. 271(20):11824-30. Scragg MA, Ferreira LR. (1991) Evaluation of different staining procedures for the quantification of fibroblasts cultured in 96-well plates. Anal Biochem. 198(1):80-5. Shikano S, Bonkobara M, Zukas PK, Ariizumi K. (2001) Molecular cloning of a dendritic cell-associated transmembrane protein, DC-HIL, that promotes RGD-dependent adhesion of endothelial cells through recognition of heparan sulfate proteoglycans. J Biol Chem. 276(11):8125-34. Simons M, Horowitz A. (2001) Syndecan-4-mediated signalling. Cell Signal. 13(12):855-62. Review. Su CM, Liao CL, Lee YL, Lin YL. (2001) Highly sulfated forms of heparin sulfate are involved in japanese encephalitis virus infection. Virology. 286(1):206-15. Wang FZ, Akula SM, Pramod NP, Zeng L, Chandran B. (2001) Human herpesvirus 8 envelope glycoprotein K8.1A interaction with the target cells involves heparan sulfate. J Virol. 75(16):7517-27. Wang FZ, Akula SM, Sharma-Walia N, Zeng L, Chandran B. (2003) Human herpesvirus 8 envelope glycoprotein B mediates cell adhesion via its RGD sequence. J Virol. 77(5):3131-47.id NH0925105005 sid 904247 cfn 0 / id NH0925105006 auc 陳仕元 tic 分子動力模擬計算研究抑癌藥物與去氧核糖核甘酸之作用辨識 adc 林志侯 ty 碩士 sc 國立清華大學 dp 生命科學系 yr 92 lg 中文 pg 58 kwc 分子動力模擬 abc 在核磁共振解析分子立體結構研究中提到由鎂二價離子配位結合的Mithramycin二聚物為與去氧核糖核甘酸被拓寬的副溝槽處結合的抑癌藥劑。由於向去氧核糖核甘酸特定之(G-C).(G-C)序列中央部位結合,導致其螺旋構形重大的扭曲以便二聚物藥物的結合,例如介於TpA 階梯的扭曲以及因此而使去氧核糖核甘酸副溝槽由B-形式拓寬至A-形式。近來光譜學研究提出此具有兩個部分重疊之(GpC)鹼基配對結合位置之去氧核糖核甘酸*, (TAGCTAGCTA)2與同屬auerolic acid群組之相似結構抑癌藥物Mithramycin, Chromomycin A3間存在不同的結合化學劑量(配體:受體 = 2:1, 1:1)乃因藥物糖基上不同取代基造成的結構柔軟度為主影響。這裡,對於不同結合化學劑量的Mithramycin2-去氧核糖核甘酸進行分子動力模擬與自由能分析,並與上述實驗的結果作比較。在此研究所預測的結合自由能為-5.26 千 tc 中文摘要 .......................Ⅰ 英文摘要 .......................Ⅱ 誌謝辭 ........................Ⅲ 前言 .........................1 方法 .........................9 結果與討論 ......................18 結論 .........................22 圖 ..........................23 表.......................... 40 參考文獻 .......................55rf 1.Sastry, M.; Fiala, R.; Patel, D. J.; Solution Structure of Mithramycin Dimers Bound to Partially Overlapping Sites on DNA; J. Mol. Biol. 1995, 251, 674-689. 2.Gao, X.; Mirau, P.; Patel, D. J.; Structure Refinement of Chromomycin Dimer – DNA Oligomer Complex in Solution; J. Mol. Biol. 1992, 223, 259-279. 3.Chakrabarti, S.; Bhattacharyya, B.; Dasgupta, D.; Interaction of Mithramycin and Chromomycin A3 with d(TAGCTAGCTA)2: Role of Sugars in Antibiotic – DNA Recognition; J. Phys. Chem. B, 2002, 106, 6947-6953. 4.United States National Library of Medicine (NLM); http://www.nlm.nih.gov/nlmhome.html 5.Gause, G. F. In Antibiotics III; Corocan, J. W., Hahn, F. E., Eds.; Springer-Verlag: Berlin and New York, 1975, p 197. 6.Chabner, B. A.; Allegra, C. J.; Curt, G. A.; Calabresi, P. In Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 9th ed.; Hardman, J. G., Limbird, L. E., Molinoff, P. B., Ruddon, R. W., Gilman, A. G., Eds.; McGraw-Hill: New York, 1996, p 1233. 7.Goldberg, I. H.; Friedman, P. A. Annu. ReV. Biochem. 1971, 40, 775. 8.Waring, M. J. Annu. ReV. Biochem. 1981, 50, 159. 9.Van Dyke, M. W.; Dervan, P. B. Biochemistry 1983, 22; 2373. 10.Stankus, A.; Goodisman, J.; Dabrowiak, J. C. Biochemistry 1992, 31; 9310. 11.Pereira, M. A.; Figueiredo de T. L.; Demicheli, C.; Spectrophotometric Study of Mithramycin Complexes With Cu(II), Fe(III), And Tb(III); Analytical Letters, 1997, 30, 2555-2563. 12.Kiang, D. T.; Loken, M. K.; Kennedy, B. J.; J. Chin. Endocrinol. Metab., 1979, 48, 341. 13.Ward, D. C.;Reich, E.;Goldberg, I. H.; Science, 1965, 149, 1259. 14.Aich, P.; Sen, R.; Dasgupta, D. Biochemistry, 1992, 31, 2988. 15.Aich, P.; Dasgupta, D. Biochemistry, 1995, 34, 1376. 16.Chakrabarti, S.; Mir, M. A.; Dasgupta, D. Biopolymers, 2001, 62, 131. 17.Banville, D. L.; Keniry, M. A.; Shafer, R. H. Biochemistry 1990, 29, 6521. 18.Xiaolian Gao, Dinshaw J. Patel. Biochemistry, 1990, 29, 10940. 19.Gao, X.; Patel, D. J. Biochemistry, 1989, 28, 751. 20.Aich, P.; Dasgupta, D. Biochem. Biophys. Res. Commun., 1990, 173, 689. 21.Aich, P.; Sen, R.; Dasgupta D. Chem.-Biol. Interact. 1992, 83, 23. 22.Fox, K. R.; Howarth, N. R. Nucleic Acids Res., 1985, 13, 8695. 23.Sastry, M.; Patel, D. J. Biochemistry, 1993, 32, 6588. 24.Andrews, D. W. Phys. Rev., 1930, 36, 544. 25.Verlet, L. Computer experiments on the Classical Fluids. I. Thermodynamical Properties of Lennard – Jones Molecules. Phys Rev. 1967, 159, 98. 26.Frank Jensen, Introduction to Computational Chemistry, JOHN WILEY & SONS, 1999, p.377. 27.Schlick, T., Rev. Comput. Chem., 1992, 3.; Schlegel, H. B., Adv. Chem. Phys., 1987, 67, 249.; Schlegel, H. B., Modern Electronic Structure Theory, PartI, ed.; Yarkony, D. World Scientific, 1995, 459-500.; Fletcher, R., Practical Methods of Optimizations, Wiley, 1980; McKee, M. L. and Page, M. Rev. Comput. Chem., 1993, 4, 35. 28.S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, S. Profeta Jr., and P. Weiner,; A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Protein, J. Am. Chem. Soc., 1984, 106, 765. 29.S. J. Weiner, P. A. Kollman, D. T. Nguyen, and D. A. Case,; An All Atom Force Field for Simulations of Proteins and Nucleic Acids. J. Comput. Chem., 1986, 7, 230. 30.B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States,; A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comput. Chem., 1983, 4, 187. 31.W. F. van Gunsteren, H. J. C. Berendsen, J. Hermans, W. G. J. Hol, and J. P. M. Postma,; Computer Simulation of the Dynamics of Hydrated Protein Crystals and Its Comparison with X-Ray Data. Proc. Natl. Acad. Sci. U.S.A., 1983, 80, 4315. 32.J. Åqvist, W. F. van Gunsteren, M. Leijonmark, and O. Tapia, A Molecular Study of the C-Terminal Fragment of the L7/L12 Ribosomal Protein. Secondary Structure Motion in a 150 Picosecond Trajectory. J. Mol. Biol., 1985, 183, 461. 33.Todd, J. A. Ewing, Shingo Makinoa, A. Geoffrey Skillmana and Irwin D. Kuntza, Journal of Computer-Aided Molecular Design, 2001, 15, 411-428. 34.Gaussian 98 (Revision A.11), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, , T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1998. 35.J. Tomasi, Quantum Theory of Chemical Reactions, R. Daudel, A. Pullman, L. Salem, and A. Veillard, Eds., Reidel, Dordrecht, On the Use of Electrostatic Molecular Potentials in Theoretical Investigations on Chemical Reactivity. 1980, Vol1, 191-228 36.P. Politzer and D. G. Truhlar, Eds., Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum Press, New York, 1981 37.Allen, F.H. et al. J. Chem. Soc. Perkins Trans. 1987 II. s1. 38.Bayly, C. I., P. et al. J. Phys. Chem. 1993, 97, 10269. 39.Cornell, W. D. et al. J. Am. Chem. Soc. 1995, 115, 9620. 40.Lifson, & Warshel, J. Phys. Chem. 1968, 49, 5116. 41.MacKerrel et al. J. Am. Chem. Soc. 1995, 117, 11946. 42.Weiner et al. J. Am. Chem. Soc. 1983, 106, 765. 43.SYBYL Molecular Modeling System (Version 6.8) from Tripos Associates Inc. 44.WebLab Viewer(Version 3.7) from MSI Accelrys Inc. 45.Guex, N. and Peitsch, M.C.; SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 1997, 18, 2714-2723. 46.W. L. Jorgensen, J. Chandrasekhar, J. F. Madura, R. W. Impey, and M. L. Klein,; Comparison of Simple Potential Functions for Simulating Liquid Water. J. Phys. Chem., 1983, 79, 926. 47.Pathiaseril A, Woods, R. J.; Relative energies of binding for antibody-carbohydrate-antigen complexes computed from free-energy simulations.; J. Am. Chem. Soc., 2000, 122, 331. 48.AMBER7 User’s Manual, Appendix C. 49.T.E. Cheatham, III, P. Cieplak & P.A. Kollman. A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat. J. Biomol. Struct. Dyn., 1999, 16, 845-862. 50.Junmei Wang, Piotr Cieplak, Peter A. Kollman, J. Comput. Chem. 2000, 21, 1049-1074. 51.C.I. Bayly, P. Cieplak, W.D. Cornell, and P.A. Kollman,; A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints For Determining Atom-Centered Charges: The RESP Model,; J. Phys. Chem., 1993, 97, 10269. 52.AMBER7 User’s Manual, Appendix D. 53.Howard, A.E., Cieplak, P., and Kollman, P.A.; A Molecular Mechanical Model that Reproduces the Relative Energies for Chair and Twist-Boat Conformations of 1,3-Dioxanes, J. Comp. Chem., 1995, 16:2, 243-261. 54.Thomas E. Cheatham, III, Matthew, A. Young, Biopolymers (Nucleic Acid Sciences), 2001, 56, 232–256 55.T. Darden, D. York, and L. Pederson, J. Chem. Phys., 1993, 98, 10089. 56.J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen,; Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. J. Comput. Phys., 1977, 23, 237. 57.Shields, G. C.; Laughton, C. A.; Orozco, M. J. Am. Chem. Soc. 1997, 119, 7463-7469. 58.H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola & J.R. Haak.; Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81, 3684-3690. 59.Sarah A. Harris, Evripidis Gavathiotis, Mark S. Searle, Modesto Orozco, Charles A. Laughton; Cooperativity in Drug – DNA Recognition: A Molecular Dynamics Study. J. Am. Chem. Soc. 2001, 123, 12658-12663. 60.V. Tsui & D.A. Case. Theory and applications of the generalized Born solvation model in macromolecular simulations. Biopolymers (Nucl. Acid. Sci.) 56, 275-291 (2001). 61. M.L. Connolly. Analytical molecular surface calculation. J. Appl. Cryst. 16, 548-558 (1983). 62. Lavery, R.; Sklenar, H. J. Biomol. Struct. Dyn. 1989, 6, 63-91.id NH0925105006 sid 904263 cfn 0 / id NH0925105007 auc 蕭義勇 tic 保留性組胺酸和精胺酸在植物液泡質子輸送焦磷酸水解酵素之功能角色探討 adc 潘榮隆 ty 博士 sc 國立清華大學 dp 生命科學系 yr 92 lg 英文 pg 102 kwc 液泡質子輸送焦磷酸水解酵素 kwc 組胺酸 kwc 精胺酸 kwc 化學修飾抑制 kwc 基因定點突變 abc 中文摘要 tc 目錄 (Contents) List of Tables..........................................iv List of Figures.........................................v List of Appendix........................................viii 誌 謝..................................................ix Abbreviations........................................... 1 中文摘要................................................ 3 Abstract................................................ 6 I. Introduction......................................... 8 II. Materials and methods...............................15 1. Preparation of vacuolar H+-PPase from mung bean seedlings...............................................15 2. Modification and labeling stoichiometry of vacuolar H+-PPase by DEPC.......................................16 3. Site-directed mutagenesis............................17 4. Microorganisms for site-directed mutagenesis.........18 5. Preparation of vacuolar H+-PPase-enriched microsomes from yeast cells........................................19 6. Enzyme assay and protein determination...............20 7. Measurement of proton translocation..................21 8. SDS/PAGE and Western analysis........................22 9. Trypsin proteolysis..................................22 10. Chemicals...........................................23 III. Results.................................................24 Section one: Role of essential histidine in H+-PPases..................................................24 1. Chemical modification of vacuolar H+-PPase...........24 1.1. Inactivation of H+-PPase by DEPC...................24 1.2. Protection against DEPC inhibition.................25 1.3. Stoichiometry of DEPC labeling.....................26 2. Site-directed mutagenesis studies....................27 2.1. Heterologus expression and characterization of H+-PPases..................................................27 2.2. Expression and H+-PPase activities for histidine mutants.................................................29 2.3. Kinetic properties of mutants......................30 2.4. Sensitivities of mutants to DEPC...................31 2.5. Ion effects on enzymatic activities of histidine mutants.................................................32 2.6. Thermal stability and proteolytic analysis of histidine mutants.......................................33 Section two: Role of essential Arginine in H+-PPases....34 1. Expression and H+-PPase activities for arginine residues................................................34 2. Kinetic properties of mutant.........................36 3. Sensitivities of mutants to phenylglyoxal and 2,3 butanedione.............................................37 4. Ion effects on enzymatic activities..................38 5. Thermal stability of mutants........................39 IV. Discussion..........................................40 1. Roles of histidine residues in vacuolar H+-PPase.....40 2. Roles of conserved arginine residues in vacuolar H+-PPase...................................................46 3. A working model for active domain of vacuolar H+-PPase...................................................50 V. References...........................................52 Tables..................................................61 Figures.................................................68 Appendix................................................98rf V. References Baltscheffsky, M., Schultz, A., and Baltscheffsky, H. H+-PPases: a tightly membrane-bound family, FEBS Lett. 457 (1999) 527-533. Barik, S. Site-directed mutagenesis by double polymerase chain reaction: megaprimer method, in: B. A. White (Ed.) Methods of Molecular Biology, vol.15, Humana Press, New Jersey, 1993, pp.277-286. Baykov, A. A., Dubnova, E. B., Bakuleva, N. P., Evtushenko, O. A., Zhen, R -G., and Rea, P. A. Differential sensitivity of membrane-associated pyrophosphatases to inhibition by diphosphonates and fluoride delineates two classes of enzyme, FEBS Lett. 327 (1993) 199-202. Belogurov, G.A., and Lahti, R. A lysine substitute for K+: A460K mutation eliminates K+ dependence in H+-pyrophosphatase of Carboxydothermus hydrogenoformans, J. Biol. Chem. 277 (2002) 49651-49654. Bienengraeber, M., Echtay, K.S., and Klingenberg, M. H+-transport by uncoupling protein (UCP-1) is dependent on a histidine pair, absent in UCP-2 and UCP-3, Biochemistry 37 (1998) 3-8. Bragg, P. D., and Hou, C. The role of conserved histidine residues in the pyridine nucleotide transhydrogenase of Escherichia coli, Eur. J. Biochem. 241 (1996) 611-618. Brandsch, M., Brandsch, C., Ganapathy, M. E., Chew, C. S., Ganapathy, V., and Leibach, F.H. Influence of proton and essential histidyl residues on the transport kinetics of the H+/peptide cotransport systems in intestine (PEPT 1) and kidney (PEPT 2), Biochim. Biophys. Acta 1324 (1997) 251-262. Buckley, J. T., Wilmsen, C., Lesieur, A., Schulze, F., Pattus, Parker, M. W., and van der Goot, F. G. Protonation of histidine-132 promotes oligomerization of the channel-forming toxin aerolysin, Biochemistry 34 (1995) 16450-16455. Chanchevalap, S., Yang, Z., Cui, N., Qu, Z., Zhu, G., Liu, C., Giwa, L. R., Abdulkadir, L., and Jiang, C. Involvement of histidine residues in proton sensing of ROMK1 channel, J. Biol. Chem. 275 (2000) 7811-7817. Claros, M.G., and Heijne, G. von TopPred II: an improved software for membrane protein structure predictions, Comput. Appl. Biosci. 10 (1994) 685-686. Cooperman, B. S., Baykov, A. A., and Lathi, R. Evolutionary conservation of the active site of the soluble inogganic pyrophosphatase, Trands Biochem. Sci. 17 (1992) 262-266. Drozdowicz, Y. M., Lu, Y. P., Patel, V., Fitz-Gibbon, S., Miller, J. H., and Rea, P. A. A thermostable vacuolar-type membrane pyrophosphatase from the archaeon Pyrobaculum aerophilum: implications for the origins of pyrophosphate-energized pumps, FEBS Lett. 460 (1999) 505-512. Drozdowicz, Y. M., Kissinger, J. C., and Rea, P. A. AVP2, a sequence-divergent, K+-insensitive H+-translocating inorganic pyrophosphatase from Arabidopsis, Plant Physiol. 123 (2000) 353-362. Drozdowicz, Y. M., and Rea, P. A. Vacuolar H+- pyrophosphatases: from the evolutionary backwaters into the mainstream, Trends Plant Sci. 6 (2001) 206-211. Fiske, C. H., and Subbarow, Y. The colorimetric determination of phosphorous, J. Biol. Chem. 66 (1925) 378-400. Gietz, R. D., Schiestl, R. H., Willems, A. R., and Woods, R. A. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure, Yeast 11 (1995) 355-360. Gordon-Weeks, R., Steele, S. H., and Leigh, R. A. The role of magnesium, pyrophosphate, and their complexes as substrates and activators of the vacuolar H+-pumping inorganic pyrophosphatase, (Studies using ligand protection from covalent inhibitors), Plant Physiol. 111 (1996) 195-202. Hsiao, Y. Y., Van, R. C., Hung, S. H., Lin, H. H., and Pan, R. L. Roles of histidine residues in plant vacuolar H+-pyrophosphatase, Biochim. Biophys. Acta 1608 (2004)190-199. Hsiao, Y. Y., Van, R. C., Hung, H. H., and Pan, R. L. Diethylpyrocarbonate inhibition of vacuolar H+-pyrophosphatase possibly involves a histidine residue, J. Protein Chem. 21 (2002) 51-58. Hoffman, K., and Stoffel, W. TMbase – A database of membrane spanning proteins segments, Biol. Chem. Hoppe-Seyler 347 (1993) 166 (abstr.). Jones, D. T., Taylor, W. R., and Thornton, J. M. A model recognition approach to the prediction of all-helical membrane protein structure and topology, Biochemistry 33 (1994) 3038-3049. Kasher, J. S., Allen, K. E., Kasamo, K., and Slayman, C. W. Characterization of an essential arginine residue in the plasma membrane H+-ATPase of Neurospora crassa, J. Biol. Chem. 261 (1986) 10808-10813. Kim, E. J., Zhen, R -G., and Rea, P. A. Site-directed mutagenesis of vacuolar H+-pyrophosphatase: necessity of Cys634 for inhibition by maleimides but not catalysis, J. Biol. Chem. 270 (1995) 2630-2635. Kim, E. J., Zhen, R -G., and Rea, P. A. Heterologous expression of plant vacuolar pyrophosphatase in yeast demonstrates sufficiency of the substrate-binding subunit for proton transport, Proc. Natl. Acad. Sci. U.S.A. (1994) 6128-6132. Kuo, S. Y., and Pan, R. L. An essential arginyl residue in the tonoplst pyrophosphatase from etiolated mung bean seedlings, Plant Physiol. 93 (1990) 1128-1133. Laemmli, U. K. Cleavage of structure proteins during the assembly of the head of bacteriophage T4, Nature (London) 222 (1970) 680-685. Larson, E., Howlett, B., and Jagendorf, A. T. Artificial reductant enhancement of the Lowry method for protein determination, Anal. Biochem. 155 (1986) 243-248. Maeshima, M. TONOPLAST TRANSPORTERS: Organization and Function Ann. Rev. Plant Physiol. Plant Mol. Biol. 52 (2001) 469-497. Maeshima, M. Vacuolar H+-pyrophosphatase, Biochim. Biophys. Acta 1465 (2000) 37-51. Maeshima, M. H+-translocating inorganic pyrophosphatase of plant vacuoles: inhibition by Ca2+, stabilization by Mg2+ and immunological comparison with other inorganic pyrophosphatases, Eur. J. Biochem. 196 (1991) 11-17. Maruyama, C., Tanaka, Y., Mitsuda, N. T., Takeyasu, K., Yoshida M., and Sato, M. H. Structural studies of the vacuolar H+-pyrophosphatase: sequence analysis and identification of the residues modified by fluorescent cyclohexylcarbodiimide and maleimide, Plant Cell Physiol. 39 (1998)1045–1053. Matile, P. Biochemistry and function of vacuoles, Ann. Rev. Plant Physiol. 29 (1978)193-213. Mattinoia, E. Transport processes in vacuolar of higher plants, Bot. Acta 105 (1992) 232-245. Martinoia, E., Massonneau, A., and Frangne, N. Transport processes of solutes across the vacuolar membrane of higher plants, Plant Cell Physio. 41 (2000)1175-86. Miles, E.W. Modification of histidyl residues in proteins by diethylpyrocarbonate, Meth. Enzymol. 47 (1977) 431-442. Nakanishi, Y., Saijo, T., Wada, Y., and Maeshima, M. Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase, J. Biol. Chem. 276 (2001) 7654-7660. Okada, A., Miura, T., and Takeuchi, H. Protonation of histidine and histidine-tryptophan interaction in the activation of the M2 ion channel from influenza A virus, Biochemistry 40 (2001) 6053-6060. Patterson, A. R., Wada, T., and Vik, S. B. His15 of subunit a of the Escherichia coli ATP synthase is important for the structure or assembly of the membrane sector Fo, Arch. Biochem. Biophys. 368 (1999) 193-197. Rajan, S., Wischmeyer, E., Liu, X. G., Preisig-Müller, R., Daut, J., Karschin, A., and Derst, C. TASK-3, a novel tandem pore domain acid-sensitive K+ channel: an extracellular histidine as pH sensor, J. Biol. Chem. 275 (2000) 16650-16657. Rea, P. A., Kim, Y., Sarafian, V., Poole, R. J., Davies, J. M., and Sanders, D. Vacuolar H+ translocating pyrophosphatases: a new category of ion translocase, Trends Biochem. Sci. 17 (1992) 348-353. Rea, P. A., and Poole, R. J. Vacuolar H+-tranclocating pyrophosphatase, Ann. Rev. Plant Physiol. Plant Mol. Biol. 44 (1993) 157-180. Rea, P. A., and Poole, R. J. Chromatographic resolution of H+-translocating pyrophosphatase from H+-translocation ATPase of higher plant tonoplast. Plant Physiol. 81 (1986) 126-129. Rea, P. A., and Sanders, D., Tonoplast energization: Two H+ pumps, one membrane, Physiol. Plantarum 71 (1987) 131-141. Reinhold, L., and Kaplan, A. Membrane transport of sugars and amino acids, Ann. Rev. Plant Physiol. 35 (1984) 45-83. Sams, C. F., and Matthews, K. S. Diethyl pyrocarbonate reaction with the lactose repressor protein affects both inducer and DNA binding, Biochemistry 27 (1988) 2277-2281. Sarsfina, V., and Poole, R. J. Purification of an H+-translocating inorganic pyrophosphatase from vacuole membranes of red beet, Plant Physol. 91 (1989) 34-38. Schmidt L. A., and Briskin, D. P. Energy transduction in tonoplast vesicles from red beet (Beta vulgaris L.) storage tissue: H+/Substrate stochiometries for the H+-ATPase and H+-PPase, Arch. Biochem. Biophys, 301(1993)165-17 Schultz, A., and Baltscheffsky, M. Properties of mutated Rhodospirillum rubrum H+-pyrophosphatase expressed in Escherichia coli, Biochim. Biophys. Acta 1607 (2003) 141-151. Sez, H. H+-translocating ATPase: advances using membranevesicles, Ann. Rev. Plant Physiol, 36 (1985)175-208. Takeshiga, K., and Hager, A. Ion effects on the H+-translocating adenosine triphosphatase and pyrophosphatase associated with the tonoplast of Chara coralline, Plant Cell Physiol. 29 (1988) 649-657. Thompson, J. D., Higgins, D. G., and Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res. 22 (1994) 4673-4680. Tzeng, C. M., Yang, C. Y., Yang, S. J., Jiang, S. S., Kuo, S. Y., Hung, S. S., Ma, J. T., and Pan, R. L. Subunit structure of vacuolar proton- pyrophosphatase as determined by radiation inactivation, Biochem. J. 316 (1996) 143-147. Walker, R. R., and Leigh, R. A. Mg2+-dependent, cation-stimulated inorganic pyrophosphatase associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.), Planta 153 (1981) 150-155. Wang, M. Y., Lin, Y. H., Chow, W. M., Chung, T. P., and Pan, R. L. Purification and characterization of tonoplast H+-ATPase from etiolated mung bean seedlings, Plant Physiol. 90 (1989) 475-481. Wanger, G. J., and Mulredy, P. Characterization and solubilization of nucleotide-specific, Mg2+-ATPase and Mg2+-pyrophosphatase of tonoplast, Biochem. Biophys. Acta 728(1983)267-280. Wikström, M. Mechanism of proton translocation by cytochrome c oxidase: a new four-stroke histidine cycle, Biochim. Biophys. Acta 1458 (2000) 188-198. Wink, M. The plant vacuolar: a multifunctional compartment, J. Exp. Bot. 44 (1993) 231-246. Yang, S. J., Jiang, S. S., Van, R. C., Hsiao, Y. Y., and Pan, R. L. A lysine residue involved in the inhibition of vacuolar H+-pyrophosphatase by fluorescein 5'-isothiocyanate, Biochim. Biophys. Acta 1460 (2000) 375-383. Yang, S. J., Jiang, S. S., Kuo, S. Y., Hung, S. H., Tam, M. F., and Pan, R. L. Localization of a carboxylic residue possibly involved in the inhibition of vacuolar H+-pyrophosphatase by N, N'-dicyclohexylcarbodi-imide, Biochem. J. 342 (1999) 641-646. Yang, S. S., Kuo, S. S., Tsai, Y. R., Yang, S. J., Jiang, S. S., Kuo, S. Y., Hung, S. H., and Pan, R. L. Subunit interaction of vacuolar H+-pyrophosphatase as determined by high hydrostatic pressure, Biochem. J. 331 (1998) 395-402. Yang, S. J., Jiang, S. S., Tzeng, C. M., Kuo, S. Y., Hung, S. H., and Pan, R. L. Involvement of tyrosine residue in the inhibition of plant vacuolar H+-pyrophosphatase by tetranitromethane, Biochim. Biophys. Acta 1294 (1996) 89-97. Zhang, Y., Pines, G., and Kanner, B. I. Histidine 326 is critical for the function of GLT-1, a (Na+/ K+)-coupled glutamate transporter from rat brain, J. Biol. Chem. 269 (1994) 19573-19577. Zhen, R -G., Kim, E. J., and Rea, P. A. Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N,N'-dicyclohexylcarbodi-imide, J. Biol. Chem. 272 (1997) 22340-22348. Zhen, R -G., Kim, E. J., and Rea, P. A. Localization of cytosolically oriented maleimide-reactive domain of vacuolar H+-pyrophosphatase, J. Biol. Chem. 269 (1994) 23342-23350.id NH0925105007 sid 878218 cfn 0 / id NH0925105008 auc 傅曉慧 tic 脯氨酸導引蛋白質激 tic & tic #37238;FA在在胰腺癌的致命性角色 adc 楊孝德 ty 博士 sc 國立清華大學 dp 生命科學系 yr 92 lg 英文 pg 88 kwc 胰腺癌 kwc 脯氨酸導引蛋白質激 kwc & kwc #37238;FA abc 中文摘要 rf REFERENCES Chung, Y.C., Chang, K.J., Yang, C.C., Lai, M.T., Hsu, C.P., Hsueh, S.F., Peng, C.C., Fu, H.H., Chang, Y.F. and Yang, S.D. (2002). Association of proline-directed protein kinase FA with tumorigenesis, invasion, and poor prognosis of human colon carcinoma. Cancer, 95, 1840-1847. Cohen, P. and Frame, S. (2001). The renaissance of GSK3. Nat Rev Mol Cell Biol, 2, 769-776. Cowgill, S.M. and Muscarella, P. (2003). The genetics of pancreatic cancer. Am J Surg, 186, 279-286. Dancey, J. and Sausville, E.A. (2003) Issues and progress with protein kinase inhibitors for cancer treatment. Nat Rev Drug Discov 2:296-313. DiMagno, E.P., Reber, H.A. and Tempero, M.A. (1999). AGA technical review on the epidemiology, diagnosis, and treatment of pancreatic ductal adenocarcinoma. American Gastroenterological Association. Gastroenterology, 117, 1464-1484. Embi, N., Rylatt, D.B. and Cohen, P. (1980) Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem, 107, 519-527. Frame, S. and Cohen, P. (2001). GSK3 takes centre stage more than 20 years after its discovery. Biochem J, 359, 1-16. Fu, H.H. and Yang, S.D. (2004) Suppression of overexpressed proline-directed protein kinase FA inhibits the malignant growth of human pancreatic ductal adenocarcinoma. Anticancer Res, in press. Gillespie, P.G. & Hudspeth, A.J. (1991). Chemiluminescence detection of proteins from single cells. Proc Natl Acad Sci U S A, 88, 2563-2567. Han, D.C. and Feliciano, D.V. (1998). The clinical complexity of splenic vein thrombosis. Am Surg, 64, 558-561. He, X., Saint-Jeannet, J.P., Woodgett, J.R., Varmus, H.E. and Dawid, I.B. (1995). Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature, 374, 617-622. Hemmings, B.A., Yellowlees, D., Kernohan, J.C. and Cohen, P. (1981) Purification of glycogen synthase kinase 3 from rabbit skeletal muscle. Copurification with the activating factor (FA) of the (Mg-ATP) dependent protein phosphatase. Eur J Biochem, 119, 443-451. Hsu, C.P., Hsueh, S.F., Yang, C.C. and Yang, S.D. (2000a). Suppression of proline-directed protein kinase FA expression inhibits the growth of human chronic myeloid leukaemia cells. Br J Cancer, 82, 1480-1484. Hsu, C.P., Yang, C.C. and Yang, S.D. (2000b). Suppression of proline-directed protein kinase FA expression potentiates erythroid differentiation of human myeloid leukemia cells. Cancer, 89, 1004-1011. Hsu, C.P., Yang, C.C., Hsueh, S.F., Peng, C.C., Fu, H.H. and Yang, S.D. (2001a). Suppression of proline-directed protein kinase FA potentiates apoptotic induction and greatly enhances chemosensitivity in human acute lymphoblastic leukemia cells. Cancer, 92, 1753-1758. Hsu, C.P., Yang, C.C. and Yang, S.D. (2001b). Suppression of proline-directed protein kinase FA systemically inhibits the growth of human acute leukemia cells. Int J Cancer, 91, 650-653. Hsueh, S.F., Lai, M.T., Yang, C.C., Chung, Y.C., Hsu, C.P., Peng, C.C., Fu, H.H., Cheng, Y.M., Chang, K.J. and Yang, S.D. (2002). Association of overexpressed proline-directed protein kinase FA with chemoresistance, invasion, and recurrence in patients with bladder carcinoma. Cancer, 95, 775-783. Ichihara, T., Nomoto, S., Takeda, S., Nagura, H., Sakamoto, J., Kondo, K., Horisawa, M. and Nakao, A. (2001). Clinical usefulness of the immunostaining of the tumor markers in pancreatic cancer. Hepatogastroenterology, 48, 939-943. Jemal, A., Tiwari, R.C., Murray, T., Ghafoor, A., Samuels, A., Ward, E., Feuer, E.J. and Thun, M.J. (2004). Cancer statistics, 2004. CA Cancer J Clin, 54, 8-29. Kelly, D.M. and Benjamin, I.S. (1995). Pancreatic carcinoma. Ann Oncol, 6, 19-28. Kollmannsberger, C., Peters, H.D. and Fink, U. (1998). Chemotherapy in advanced pancreatic adenocarcinoma. Cancer Treat Rev, 24, 133-156. Konner, J. and O'Reilly, E. (2002). Pancreatic cancer: epidemiology, genetics, and approaches to screening. Oncology (Huntingt), 16, 1615-22, 1631-1632. Kornmann, M., Beger, H.G. & Link, K.H. (2003). Chemosensitivity testing and test-directed chemotherapy in human pancreatic cancer. Recent Results Cancer Res, 161, 180-195. Kuwahara, K., Sasaki, T., Kobayashi, K., Noma, B., Serikawa, M., Iiboshi, T., Miyata, H., Kuwada, Y., Murakami, M., Yamasaki, S., Kariya, K., Morinaka, K. and Chayama, K. (2004). Gemcitabine suppresses malignant ascites of human pancreatic cancer: correlation with VEGF expression in ascites. Oncol Rep, 11, 73-80. Lau, K.F., Miller, C.C., Anderton, B.H. and Shaw, P.C. (1999a). Expression analysis of glycogen synthase kinase-3 in human tissues. J Pept Res, 54, 85-91. Lau, K.F., Miller, C.C., Anderton, B.H. and Shaw, P.C. (1999b) Molecular cloning and characterization of the human glycogen synthase kinase-3beta promoter. Genomics, 60, 121-128. Li, D. and Jiao, L. (2003). Molecular epidemiology of pancreatic cancer. Int J Gastrointest Cancer, 33, 3-14. Li, D., Xie, K., Wolff, R. and Abbruzzese, J.L. (2004). Pancreatic cancer. Lancet, 363, 1049-1057. Lillemoe, K.D., Yeo, C.J. and Cameron, J.L. (2000). Pancreatic cancer: state-of-the-art care. CA Cancer J Clin, 50, 241-268. Manoukian, A.S. and Woodgett, J.R. (2002). Role of glycogen synthase kinase-3 in cancer: regulation by Wnts and other signaling pathways. Adv Cancer Res, 84, 203-229. Martinez, A., Castro, A., Dorronsoro, I. and Alonso, M. (2002). Glycogen synthase kinase 3 (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer and inflammation. Med Res Rev, 22, 373-384. McKenna, S. and Eatock, M. (2003). The medical management of pancreatic cancer: a review. Oncologist, 8, 149-160. Mizumoto, K. and Tanaka, M. (2002). Genetic diagnosis of pancreatic cancer. J Hepatobiliary Pancreat Surg, 9, 39-44. Nakayama, T., Morishita, T. and Kamiya, T. (2003). K-ras as a genetic marker in pancreatic cancer. Acta Gastroenterol Latinoam, 33, 43-46. Neoptolemos, J.P., Dunn, J.A., Stocken, D.D., Almond, J., Link, K., Beger, H., Bassi, C., Falconi, M., Pederzoli, P., Dervenis, C., Fernandez-Cruz, L., Lacaine, F., Pap, A., Spooner, D., Kerr, D.J., Friess, H. and Buchler, M.W. (2001). Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial. Lancet, 358, 1576-1585. Okusaka, T. and Kosuge, T. (2004). Systemic chemotherapy for pancreatic cancer. Pancreas, 28, 301-304. O'Meara, A.T. (2002). Pancreatic cancer: evidence-based diagnosis and treatment. Clin Obstet Gynecol, 45, 855-865. Parkin, D.M. (2001). Global cancer statistics in the year 2000. Lancet Oncol, 2, 533-543. Plebani, M., Basso, D., Panozzo, M.P., Fogar, P., Del Favero, G. and Naccarato, R. (1995). Tumor markers in the diagnosis, monitoring and therapy of pancreatic cancer: state of the art. Int J Biol Markers, 10, 189-199. Plyte SE, Hughes K, Nikolakaki E, Pulberer, B.J. and Woodgett, J.R. (1992) Glycogen synthase kinase-3: functions in oncogenesis and development. Biochim Biophys Acta, 1114, 147-162. Reichlin, M. (1980). Use of glutaraldehyde as a coupling agent for proteins and peptides. Methods Enzymol, 70, 159-165. Rigdon, E.E. (2000). Trousseau's syndrome and acute arterial thrombosis. Cardiovasc Surg, 8, 214-218. Rizzino, A. (1987). Soft agar growth assays for transforming growth factors and mitogenic peptides. Methods Enzymol, 146, 341-352. Rocha Lima, C.M. and Centeno, B. (2002). Update on pancreatic cancer. Curr Opin Oncol, 14, 424-430. Sako, A., Kitayama, J., Yamaguchi, H., Kaisaki, S., Suzuki, H., Fukatsu, K., Fujii, S. and Nagawa, H. (2003). Vascular endothelial growth factor synthesis by human omental mesothelial cells is augmented by fibroblast growth factor-2: possible role of mesothelial cell on the development of peritoneal metastasis. J Surg Res, 115, 113-120. Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular cloning- a laboratory manual (ed second), Cold Spring Harbor Laboratory Press, New York. Schmid, R.M. (2002). Genetic basis of pancreatic cancer. Best Pract Res Clin Gastroenterol, 16, 421-433. Shaw, P.C., Davies, A.F., Lau, K.F., Garcia-Barcelo, M., Waye, M.M., Lovestone, S., Miller, C.C. and Anderton, B.H. (1998). Isolation and chromosomal mapping of human glycogen synthase kinase-3 alpha and -3 beta encoding genes. Genome, 41, 720-727. Smith, T.A. and Brand, E.J. (2001). Pancreatic cancer presenting as bleeding gastric varices. J Clin Gastroenterol, 32, 444-447. Suzuki, M. (1989). SPXX, a frequent sequence motif in gene regulatory proteins. J Mol Biol, 207, 61-84. Vandenheede, J.R., Yang, S.D., Goris, J. and Merlevede, W. (1980). ATP•Mg-dependent protein phosphatase from rabbit skeletal muscle. II. Purification of the activating factor and its characterization as a bifunctional protein also displaying synthase kinase activity. J Biol Chem, 255, 11768-11774. Warshaw, A.L. and Fernandez-del Castillo, C. (1992). Pancreatic carcinoma. N Engl J Med, 326, 455-465. Willett, C.G. and Clark, J.W. (2003). Update on combined-modality treatment options for pancreatic cancer. Oncology (Huntingt), 17, 29-36. Wolff, R.A. (2002). Exploiting molecular targets in pancreatic cancer. Hematol Oncol Clin North Am, 16, 139-157. Woodgett, J.R. (1990). Molecular cloning and expression of glycogen synthase kinase-3/factor A. Embo J, 9, 2431-2438. Woodgett, J.R. (2003). Physiological roles of glycogen synthase kinase-3: potential as a therapeutic target for diabetes and other disorders. Curr Drug Targets Immune Endocr Metabol Disord, 3, 281-290. Xiong, H.Q. and Abbruzzese, J.L. (2002). Epidermal growth factor receptor-targeted therapy for pancreatic cancer. Semin Oncol, 29, 31-37. Yang, C.C., Hsu, C.P., Sheu, J.C., Mai, X.Y. and Yang, S.D. (1998). Differential tyrosine phosphorylation/activation of oncogenic proline- directed protein kinase FA/GSK-3alpha in well and poorly differentiated human prostate carcinoma cells. J Protein Chem, 17, 329-335. Yang, C.C., Hsu, C.P. and Yang, S.D. (2000). Antisense suppression of proline-directed protein kinase FA enhances chemosensitivity in human prostate cancer cells. Clin Cancer Res, 6, 1024-1030. Yang, S.D. (1986) Identification of the ATP.Mg-dependent protein phosphatase activator (FA) as a myelin basic protein kinase in the brain. J Biol Chem, 261, 11786-11791. Yang, S.D. (1991). Characteristics and regulation of the ATP.Mg-dependent protein phosphatase activating factor (protein kinase FA). Adv Prot Phosphatase, 6, 133-157. (EMBO-FEBS Invited Review) Yang, S.D. (1994). Signal transduction and biological functions of protein phosphatase activating factor (protein kinase FA/ GSK-3 alpha). J Chin Biochem Soc, 23, 123-134. (Invited Review) Yang, S.D. (2004) PDPK FA, a potential signaling target for diagnosis and treatment of human cancers. Curr Cancer Drug Targets, 5 (Invited Review) Yang, S.D., Vandenheede, J.R., Goris, J. and Merlevede, W. (1980). ATP•Mg-dependent protein phosphatase from rabbit skeletal muscle. I. Purification of the enzyme and its regulation by the interaction with an activating protein factor. J Biol Chem, 255, 11759-11767. Yang, S.D., Song, J.S., Yu, J.S., and Shiah, S. G. (1993) Protein kinase FA/GSK-3 phosphorylates tau on Ser235-Pro and Ser404-Pro that are abnormally phosphorylated in Alzheimer's disease brain. J Neurochem 61, 1742-1747. Yang, S.D., Yu, J.S., Shiah, S.G. and Huang, J. J. (1994) Protein kinase FA/glycogen synthase kinase-3 alpha after heparin potentiation phosphorylates tau on sites abnormally phosphorylated in Alzheimer's disease brain. J Neurochem 63, 1416-25. Yang, S.D., Huang, J.J. and Huang, T.J. (1995a) Protein kinase FA/glycogen synthase kinase 3 alpha predominantly phosphorylates the in vivo sites of Ser502, Ser506, Ser603, and Ser666 in neurofilament. J Neurochem 64, 1848-54. Yang, S.D., Yu, J.S., Lee, T.T., Ni, M.H., Yang, C.C., Ho, Y.S. and Tsen, T.Z. (1995b) Association of protein kinase FA/GSK-3alpha (a proline-directed kinase and a regulator of protooncogenes) with human cervical carcinoma dedifferentiation/progression. J Cell Biochem 59, 143-150. Yang, S.D., Yu, J.S., Yang, C.C., Lee, S.C., Lee, T.T., Ni, M.H. Kuan, C.Y. and Chen, H.C. (1996) Overexpression of protein kinase FA/GSK-3 alpha (a proline-directed protein kinase) correlates with human hepatoma dedifferentiation/progression. J Cell Biochem 61, 238-245. Yeo, T.P., Hruban, R.H., Leach, S.D., Wilentz, R.E., Sohn, T.A., Kern, S.E., Iacobuzio-Donahue, C.A., Maitra, A., Goggins, M., Canto, M.I., Abrams, R.A., Laheru, D., Jaffee, E.M., Hidalgo, M. and Yeo, C.J. (2002). Pancreatic cancer. Curr Probl Cancer, 26, 176-275.id NH0925105008 sid 874226 cfn 0 / id NH0925105009 auc 薛聖芬 tic 脊管內施予藥物治療對疼痛控制之研究 adc 呂平江 adc 楊寧正 ty 博士 sc 國立清華大學 dp 生命科學系 yr 92 lg 英文 pg 51 kwc 脊管內 kwc 疼痛控制 kwc 第二型環氧合成 kwc & kwc #37238; kwc 弗氏完全佐劑 kwc 脊髓腫瘤 abc 中文摘要 rf References 1. Arias-Negrete S., Kelley K., Chadee K., Proinflammatory cytokines regulate cyclooxygenase-2 mRNA expression in human macrophages, Biochem. Biophys. Res. Commun. 208 (1995) 582-589. 2. Beiche F., Brune K., Geisslinger G., Goppelt-Struebe M., Expression of cyclooxygenase isoforms in the rat spinal cord and their regulation during adjuvant-induced arthritis, Inflamm. Res. 47 (1998) 482-487. 3. Beiche F., Scheuerer S., Brune K., Geisslinger G., Goppelt-Struebe M., Up-regulation of cyclooxygenase-2 mRNA in the rat spinal cord following peripheral inflammation, FEBS. Lett. 390 (1996) 165-169. 4. Bergman I., Arbit E., Rosenblum M., Larson S.M., Heller G., Cheung N.K., Treatment of spinal epidural neuroblastoma xenografts in rats using anti-GD2 monoclonal antibody 3F8. Journal of Neurooncology 15 (1993) 235-242. 5. Bezzi P., Carmignoto G., Pasti L., Vesce S., Rossi D., Rizzini B.L., Pozzan T., Volterra A., 1998. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes, Nature 391(1998) 281–285. 6. Cejas P.J., Martinez M., Karmally S., McKillop M., J. McKillop J., Plunkett J.A., Oudega M., Eaton M.J., Lumbar transplant of neurons genetically modified to secrete brain-derived neurotrophic factor attenuates allodynia and hyperalgesia after sciatic nerve constriction. Pain 86 (2000) 195-210. 7. Chang T.M., Prakash S., Therapeutic uses of microencapsulated genetically engineered cells. Molecular Medicine Today 4 (1998) 221-227. 8. Chergui K., Svenningsson P., Greengard P., Cyclin-dependent kinase 5 regulates dopaminergic and glutamatergic transmission in the striatum. Proc Natl Acad Sci U S A. 101 (2004) 2191-2196. 9. Chuang I.C., Jhao C.M., Yang C.H., Chang H.C., Wang C.W., Lu C.Y., Chang Y.J., Lin S.H., Huang P.L., Yang L.C., Intramuscular electroporation with the pro-opiomelanocortin gene in rat adjuvant arthritis. Arthritis Res Ther. 6 (2004) R7-R14. 10. Colak A., Goodman J.C., Chen S.H., Woo S.L., Grossman R.G., Shine H.D., Adenovirus-mediated gene therapy for experimental spinal cord tumors: tumoricidal efficacy and functional outcome. Brain Research 691 (1995) 76-82. 11. Crystal R.G., McElvaney N.G., Rosenfeld M.A., Chu C.S., Mastrangeli A., Hay J.G., Brody S.L., Jaffe H.A., Eissa N.T., Danel C., Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nat Genet. 8 (1994) 42-51. 12. Dauty E., Behr J.P., Remy J.S. Development of plasmid and oligonucleotide nanometric particles. Gene Ther. 9 (2002) 743–748. 13. Davies N.M., McLachlan A.J., Day R.O., Williams K.M., Clinical pharmacokinetics and pharmacodynamics of celecoxib: a selective cyclo-oxygenase-2 inhibitor, Clin. Pharmacokinet. 38 (2000) 225-242. 14. Decosterd I., Buchser E., Gilliard N., Saydoff J., Zurn A.D., Aebischer P., Intrathecal implants of bovine chromaffin cells alleviate mechanical allodynia in a rat model of neuropathic pain. Pain 76 (1998) 159-166. 15. Dionne R.A., Khan A.A., Gordon S.M., Analgesia and COX-2 inhibition, Clin Exp Rheumatol. 19 (2001) 63S-70S. 16. Dirig D.M., Isakson P.C., Yaksh T.L., Effect of COX-1 and COX-2 inhibition on induction and maintenance of carrageenan-evoked thermal hyperalgesia in rats, J. Pharmacol. Exp. Ther. 285 (1998) 1031-1038. 17. Eaton M.J., Emerging cell and molecular strategies for the study and treatment of painful peripheral neuropathies. Journal of Peripheral Nervous System 5 (2000) 59-74. 18. Eaton M.J., Plunkett J.A., Martinez M.A., Lopez T., Karmally S., Cejas P., Whittemore S.R., Transplants of neuronal cells bioengineered to synthesize GABA alleviate chronic neuropathic pain. Cell Transplantation 8 (1999) 87-101. 19. Emery P., Zeidler H., Kvien T.K., Guslandi M., Naudin R., Stead H., Verburg, Isakson P.C., Hubbard R.C., Geis G.S., Celecoxib versus diclofenac in long-term management of rheumatoid arthritis: randomised double-blind comparison, Lancet 354 (1999) 2106-2111. 20. Friedman T.C., Cool D.R., Jayasvasti V., Louie D., Loh Y.P., Processing of pro-opiomelanocortin in GH3 cells: inhibition by prohormone convertase 2 (PC2) antisense mRNA. Molecular and Cellular Endocrinology 116 (1996) 89-96. 21. Gould D.J., Favorov P., Vectors for the treatment of autoimmune disease. Gene Ther. 10 (2003) 912-927. 22. Gourdji D., Tixier-Vidal A., Morin A., Pradelles P., Morgat J.L., Fromageot P., Kerdelhue B., Binding of a tritiated thyrotropin-releasing factor to a prolactin secreting clonal cell line (GH3). Experimental Cell Research 82 (1973) 39-46. 23. Hasegawa K., Grumet M., Trauma-induced tumorigenesis of cells implanted into the rat spinal cord. J Neurosurg 98 (2003) 1065-71. 24. Hawkey C., Laine L., Simon T., Beaulieu A., Maldonado-Cocco J., Acevedo E., Shahane A., Quan H., Bolognese J., Mortensen E., Comparison of the effect of rofecoxib (a cyclooxygenase 2 inhibitor), ibuprofen, and placebo on the gastroduodenal mucosa of patients with osteoarthritis: a randomized, double-blind, placebo-controlled trial. The Rofecoxib Osteoarthritis Endoscopy Multinational Study Group, Arthritis Rheum. 43 (2000) 370-377. 25. Hay C.H., Trevethick M.A., Wheeldon A., Bowers J.S., de Belleroche J.S., The potential role of spinal cord cyclooxygenase-2 in the development of Freund's complete adjuvant-induced changes in hyperalgesia and allodynia, Neuroscience 78 (1997) 843-850. 26. Herweijer H., Wolff J.A., Progress and prospects: naked DNA gene transfer and therapy. Gene Ther. 10 (2003) 453-458. 27. Ichitani Y., Shi T., Haeggstrom J.Z., Samuelsson B., Hokfelt T., Increased levels of cyclooxygenase-2 mRNA in the rat spinal cord after peripheral inflammation: an in situ hybridization study, Neuroreport. 8 (1997) 2949-2952. 28. Korkmaz H.A., Maltep F., Erbayraktar S., Yilmaz O., Guray M., Canda M.S.A., Gokmen N.. Antinociceptive and neurotoxicologic screening of chronic intrathecal administration of ketorolac tromethamine in the rat. Anesth Analg. (2004) 148-152. 29. Lacroix S., Rivest S., Effect of acute systemic inflammatory response and cytokines on the transcription of the genes encoding cyclooxygenase enzymes (COX-1 and COX-2) in the rat brain, J. Neurochem. 70 (1998) 452-466. 30. Lee E.J., Anderson L.M., Thimmapaya B., Jameson J.L., Targeted expression of toxic genes directed by pituitary hormone promoters: a potential strategy for adenovirus-mediated gene therapy of pituitary tumor. Journal of Clinical Endocrinology and Metababolism 84 (1999) 786-794. 31. Li B.S., Sun M.K., Zhang L., Takahashi S., Ma W., Vinade L., Kulkarni A.B., Brady R.O., Pant H.C., Regulation of NMDA receptors by cyclin-dependent kinase-5. Proc Natl Acad Sci U S A. 98 (2001) 12742-12747. 32. Lin C.R., Wang C.H., Wu P., Wen Z.H., Buerkle H., Yang L.C., Apraclonidine attenuates the increases in spinal excitatory amino acid release in rats with adjuvant-induced inflammation. Anesth. Analg. 94 (2002) 701-705. 33. Liu Q., Muruve D.A., Molecular basis of the inflammatory response to adenovirus vectors. Gene Ther. 10 (2003) 935–940. 34. Lu C.Y., Chou A.K., Wu C.L., Yang C.H., Chen J.T., Wu P.C., Lin S.H., Muhammad R., Yang L.C.. Gene-gun particle with pro-opiomelanocortin cDNA produces analgesia against formalin-induced pain in rats. Gene Ther. 9 (2002) 1008-1014. 35. Lyerly H.K., DiMaio J.M., Gene delivery systems in surgery. Arch Surg. 128 (1993) 1197-1206. 36. Ma W., Du W., Eisenach J.C., Role for both spinal cord COX-1 and COX-2 in maintenance of mechanical hypersensitivity following peripheral nerve injury, Brain Res. 937 (2002) 94-99. 37. Maihofner C., Tegeder I., Euchenhofer C., deWitt D., Brune K., Bang R., Neuhuber W., Geisslinger G., Localization and regulation of cyclo-oxygenase-1 and -2 and neuronal nitric oxide synthase in mouse spinal cord, Neuroscience 101 (2000) 1093-1108. 38. Malmberg A.B., Yaksh T.L., Hyperalgesia mediated by spinal glutamate or substance P receptor blocked by spinal cyclooxygenase inhibition. Science, 257 (1992) 1276-1279. 39. Mazario J., Gaitan G., Herrero J.F., Cyclooxygenase-1 vs. cyclooxygenase-2 inhibitors in the induction of antinociception in rodent withdrawal reflexes Neuropharmacology 40 (2001) 937–946. 40. McCormack K., Non-steroidal anti-inflammatory drugs and spinal nociceptive processing, Pain 59 (1994) 9-43. 41. Muir D., Johnson J., Rojiani M., Inglis B.A., Rojiani A., Maria B.L., Assessment of laminin-mediated glioma invasion in vitro and by glioma tumors engrafted within rat spinal cord. Journal of Neurooncology 30 (1996) 199-211. 42. Mulligan R.C., The basic science of gene therapy. Science. 260 (1993) 926-932. 43. Nakayama M., Uchimura K., Zhu R.L., Nagayama T., Rose M.E., Stetler R.A., Isakson P.C., Chen J., Graham S.H., Cyclooxygenase-2 inhibition prevents delayed death of CA1 hippocampal neurons following global ischemia, Proc Natl Acad Sci U S A. 95 (1998) 10954-10959. 44. Resnick D.K., Graham S.H., Dixon C.E., Marion D.W., Role of cyclooxygenasee 2 in acute spinal cord injury, J Neurotrauma. 15 (1998) 1005-1013. 45. Runge V.M., Lee C., Iten A.L., Williams N.M., Contrast-enhanced magnetic resonance imaging in a spinal epidural tumor model. Invest Radiol 32 (1997) 589-595. 46. Salcman M., Botero E., Rao K.C., Broadwell R.D., Scott E., Intrmedullary canin spinal cord tumor model. Journal of Neurosurgery 61 (1984) 761-766. 47. Samad T.A., Moore K.A., Sapirstein A., Billet S., Allchorne A., Poole S., Bonventre J.V., Woolf C.J., Interleukin-1beta-mediated induction of COX-2 in the CNS contributes to inflammatory pain hypersensitivity, Nature. 410 (2001) 471-475. 48. Smith O. Nota bene: biomedicine. Pain-killer genes. Science 284 (1999) 1634. 49. Vane J.R., Botting R.M., New insights into the mode of action of anti-inflammatory drugs. Inflamm. Res. 44 (1995) 1-10. 50. Vane J.R., Towards a better aspirin. Nature 367 (1994) 243-249. 51. Vanegas H., Schaible H.G., Prostaglandins and cyclooxygenases in the spinal cord, Prog. Neurobiol. 64 (2001) 327-363. 52. Vetter G., Geisslinger G., Tegeder I., Release of glutamate, nitric oxide and prostaglandin E2 and metabolic activity in the spinal cord of rats following peripheral nociceptive stimulation, Pain 92 (2001) 213-218. 53. Warner T.D., Giuliano F., Vojnovic I., Bukasa A., Mitchell J.A., Vane J.R., Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis, Proc Natl Acad Sci U S A. 96 (1995) 7563-7568. 54. Wen Z.H., Wong C.S., Lin C.R., Chou A.K., Tan P.H., Chang Y.C., Kao C.H., Cheng T.J., Yang L.C., Changes in the levels of nitric oxide synthase and protein kinase C gamma following kainic acid receptor activation in the rat spinal cord. Neurosci. Lett. 309 (2001) 25-28. 55. Whittemore S.R., White L.A., Target regulation of neuronal differentiation in a temperature-sensitive cell line derived from medullary raphe. Brain Research 615 (1993) 27-40. 56. Yaksh T.L., Dirig D.M., Conway C.M., Svensson C., Luo Z.D., Isakson P.C., The acute antihyperalgesic action of nonsteroidal, anti-inflammatory drugs and release of spinal prostaglandin E2 is mediated by the inhibition of constitutive spinal cyclooxygenase-2 (COX-2) but not COX-1, J. Neurosci. 21 (2001) 5847-5853. 57. Yamamoto T., Sakashita Y., COX-2 inhibitor prevents the development of hyperalgesia induced by intrathecal NMDA or AMPA. Neuroreport 9 (1998) 3869-3873. 58. Yang C.H., Shen S.C., Lee J.C., Wu P.C., Hsueh S.F., Lu C.Y., Meng C.T., Hong H.S., Yang L.C., Seeing the gene therapy: application of gene gun technique to transfect and decolour pigmented rat skin with human agouti signalling protein cDNA. Gene Ther. 2004 (in press) 59. Yang L.C., Marsala M., Yaksh T.L., Characterization of time course of spinal amino acids, citrulline and PGE2 release after carrageenan/kaolin-induced knee joint inflammation: a chronic microdialysis study. Pain 67 (1996) 345-354. 60. Yang L.C., Marsala M., Yaksh T.L., Effect of spinal kainic acid receptor activation on spinal amino acid and prostaglandin E2 release in rat, Neuroscience 75 (1996) 453-461. 61. Zimmermann M., Ethical guideline for investigations of experimental pain in conscious animals, Pain 16 (1983) 109-110.id NH0925105009 sid 868202 cfn 0 / id NH0925105010 auc 魏淑宜 tic 細胞粘著分子Echinoid在果蠅發育過程多重功能之研究 adc 徐瑞洲 ty 博士 sc 國立清華大學 dp 生命科學系 yr 92 lg 英文 pg 114 kwc 細胞粘著分子 kwc EGFR訊號傳遞 kwc Notch訊號傳遞 abc Echinoid (Ed) 是一類似於細胞黏著分子(CAM)的蛋白,具有7個immunoglobulin (Ig) domains、2個fibronectin type III (Fn III) domains、一個transmembrane (TM) domain以及C端315個胺基酸和其他分子在結構上及功能上無相似性的區域,其最後四個胺基酸(EIIV)為非典型的PDZ-binding motif。 tc Contents 1 Publication List 4 Abbreviations 5 中文摘要 7 Abstract 9 Chapter 1 Background 1.1 Cellullar junctions 11 1.2 Cell-adhesion molecules 13 1.3 Echinoid 14 1.4 Friend of Echinoid 15 1.5 Neuronglian 16 1.6 Drosophila eye development 16 1.7 Drosophila mesothoracic bristle development 21 1.8 EGF receptor pathway 25 1.9 Notch pathway 29 1.10 Specific Aims 31 Chapter 2 Echinoid, an essential component of adherens junction, cooperates with DE- cadherin to mediate cell-cell adhesion 2.1 Abstract 32 2.2 Introduction 33 2.3 Materials and Methods Drosophila stocks and Mosaic analysis 35 Histochemistry 35 Molecular biology 36 Protein interaction assays 36 2.4 Results Echinoid and Bazooka are co-localized to adherens junctions of Drosophila wing imaginal disc 37 ed1x5 mosaic clones exhibit round and smooth contours and highly accumulation of DE-cadherin, Armadillo and associated actin 37 Loss of Ed mainly affects levels of AJs molecules and the reduced apical surface continues to Gap junctions 39 loss-of- function of DE-cadherin causes silimar phenotypes as ed clones 40 Bazooka binds with Ed and Arm 40 2.5 Discussion Ed co-operates with DE-cadherin to meditate cell-cell adhesion 41 The reduced apical surface continues to Gap junctions in Ed- cells 42 Does DE-cadherin/Arm signals increase in Ed- cells? 42 2.6 Figures 44 Chapter 3 Neuroglian activates Echinoid to antagonize the Drosophila EGF receptor signaling pathway 3.1 Abstract 49 3.2 Introduction 50 3.3 Materials and Methods Drosophila stocks 51 Molecular Biology 52 Histology 52 Transfection and maintenance of S2 cells 52 Cell aggregation assays 53 SDS-polyacrylamide gel electrophoresis and Western blot analysis 53 Co-immunoprecipitation procedure 53 3.4 Results Over-expression of ed and nrg results in a loss of photoreceptor and cone cellsin the developing Drosophila imaginal eye disc 54 Ed is co-localized with Nrg 55 Ed acts as a homophilic adhesion protein 55 Ed and Nrg engage in a robust heterophilic trans-interaction 56 Ed is co-immunoprecipitated with Nrg 56 Ed acts as receptor in the signal-receiving cells 57 3.5 Discussion Nrg is a heterologous ligand of Ed 58 Nrg is an autonomous activator of RTK 59 Autonomous vs. non-autonomous effects of ed on EGFR signaling 59 3.6 Tables 60 3.7 Figures 62 Chapter 4 Echinoid synergizes with the Notch signaling pathway in Drosophila mesothorax bristle patterning 4.1 Abstract 70 4.2 Introduction 71 4.3 Materials and Methods Drosophila stocks 73 Molecular biology 73 Mosaic analysis 73 Histochemistry 74 4.4 Results LOF mutations at the ed locus promote development of extra bristles 74 Overexpression of ed 76 Generation of a dominant negative form of Ed 76 Effects on ac/sc and E(spl)m8 expression 77 Interactions between ed and N signaling in bristle development 77 Ed colocalizes with N at the zonula adherens of wing imaginal disc cells 80 ed produces a moderate neurogenic phenotype in the embryo 80 Antagonistic activities between Ed and EGFR pathway 81 4.5 Discussion ed facilitates N signaling 81 Interaction of ed with the N signaling pathway 82 Ed and EGFR signaling 84 ed and fred 85 4.6 Tables 87 4.7 Figures 88 Chapter 5 Conclusion 5.1 Conclusions 96 5.2 References 98rf Ahmed, A., Chandra, S., Magarinos, M. and Vaessin, H. (2003). echinoid mutants exhibit neurogenic phenotypes and show synergistic interactions with the Notch signaling pathway. Development 130, 6295-6304. Anderson, D. J. and Blobel, G. (1983). Immunoprecipitation of proteins from cell-free translations. Methods Enzymol. 96, 111-20. Artavanis-Tsakonas, S., Matsuno, K. and Fortini, M. E. (1995). Notch signaling. Science 268, 225-232. Artavanis-Tsakonas, S., Rand, M. D. and Lake, R. J. (1999). Notch signaling: cell fate control and signal integration in development. Science 284, 770-776. Artero, R. D., Castanon, I. and Baylies, M. K. (2001). The immunoglobulin-like protein Hibris functions as a dose-dependent regulator of myoblast fusion and is differentially controlled by Ras and Notch signaling. Development 128, 4251-4264. Bachmann, A., Schneider, M., Theilenberg, E., Grawe, F. and Knust, E. (2001). Drosophila Stardust is a partner of Crumbs in the control of epithelial cell polarity. Nature 414, 638-643. Bai, J., Chiu, W., Wang, J., Tzeng, T., Perrimon, N and Hsu J.(2001). The cell adhesion molecule Echinoid defines a new pathway that antagonizes the Drosophila EGF receptor signaling pathway. Development 128, 591-601. Bailey, A. M. and Posakony, J. W. (1995). Suppressor of Hairless directly activates transcription of Enhancer of split Complex genes in response to Notch receptor activity. Genes Dev. 9, 2609-2622. Baker, N. E. and Yu, S. Y. (1997). Proneural function of neurogenic genes in the developing Drosophila eye. Curr. Biol. 7, 122-132. Baker, N. E. and Yu, S. Y. (2001). The Egf receptor defines domains of cell cycle progression and survival to regulate cell number in the developing Drosophila eye. Cell 104, 699-708. Banerjee, U., Renfranz, P. J., Hinton, D. R., Rabin, B. A. and Benzer, S. (1987). The sevenless+ protein is expressed apically in cell membranes of developing Drosophila retina; it is not restricted to cell R7. Cell 51, 151-158. Banerjee, U., Renfranz, P. J., Pollock, J .A. and Benzer, S. (1987a). Molecular characterization and expression of sevenless, a gene involved in neuronal pattern formation in the Drosophila eye. Cell 49, 281-291. Bang, A. G., Hartenstein, V. and Posakony, J. W. (1991). Hairless is required for the development of adult sensory organ precursor cells in Drosophila. Development 111, 89-104.id NH0925105010 sid 884201 cfn 0 / id NH0925105011 auc 簡基城 tic 利用臍血單核球細胞為底之平台方法研究靈芝的免疫調控影響 adc 張晃猷 ty 博士 sc 國立清華大學 dp 生命科學系 yr 92 lg 英文 pg 102 kwc 幹細胞 kwc 靈芝 kwc 葡萄籽 kwc 自然殺手細胞 kwc 單核球 kwc 保健食品 kwc 臍帶血 kwc 免疫 abc 在這個研究裡,我們發展出一個可以測試天然物的in vitro實驗模式。這個模式利用人類臍帶血的單核細胞作為檢測平台,來觀察在細胞培養中加入天然物,經過培養之後,不同的免疫細胞表現型呈現的改變情形。傳統的一些保健天然物,比如靈芝或葡萄子萃取物,以之加入細胞培養中七天,進行觀察並用流式細胞計數法分析。在臍帶血單核細胞之中的幹細胞/祖原細胞,被天然物中的有效成分所誘導,在培養中逐漸進行增生、成熟以及分化的情形。與對照組相比較,許多經過天然物刺激後的細胞表現型呈現的變化,顯示出統計學上有意義的差異。 tc Abstract …………………………………………………………………………… i Table of contents …………………………………………………………………. v Abbreviation ……………………………………………………………………… vi Chapter I ………………………………………………………………………….. 01 Background and significance Chapter II …………………………………………………………………………. 12 Investigation of Different Natural Products Alternating Phenotypic Expression of Immune Cells in Umbilical Cord Blood Chapter III ………………………………………………………………………... 19 Cell Phenotype Analysis Using a Cell-fluid Based Microchip with High Sensitivity and Accurate Quantitation Chapter IV …………………………………………………………………………31 How the Polysaccharides of Ganoderma lucidum Alter Cell immunophenotypic Expression and Enhance CD56+ NK-Cell Cytotoxicity in Cord blood Chapter V ………………………………………………………………………… 45 Discussion and Conclusion Chapter VI ………………………………………………………………………... 54 Perspectives. Figures and tables …………………………………………………………………59 Reference …………………………………………………………………………. 86rf REFERENCES 1. Yu LC, Wall DA, Sandler E, Chan KW, Grayson G, Kletzel M. 2001. Unrelated cord blood transplant experience by the pediatric blood and marrow transplant consortium. Pediatr Hematol Oncol. 18:235-245. 2. Barker JN, Wagner JE. 2002. Umbilical cord blood transplantation: current state of art. Curr Opin Oncol. 14:160-164. 3. Mugishima H, Takahashi T, Nagamura T, Asano S, Saito H. 2002. Umbilical cord blood for unrelated bone marrow replacement; Asia bank and Japan cord blood bank network update. Int J Hematol. 76 Suppl 2:284-286. 4. Lee TD. 2002. Marrow donor registry and cord blood bank in Taiwan. Int J Hematol. 76 Suppl 1:312-314 5. Lam AC, Li K, Zhang XB, Li CK, Fok TF, Chang AM, James AE, Tsang KS, Yuen PM. 2001. Preclinical ex vivo expansion of cord blood hematopoietic stem and progenitor cells: duration of culture; the media, serum supplements, and growth factors used; and engraftment in NOD/SCID mice. Transfusion. 41:1567-1576. 6. De Bruyn C, Delforge A, Bernier M, Bron D. 2003. Ex vivo expansion of neutrophil precursor cells from fresh and cryopreserved cord blood cells. Cytotherapy. 5:87-98. 7. Hiramatsu H, Nishikomori R, Heike T, Ito M, Kobayashi K, Katamura K, Nakahata T. 2003. Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/gammacnull mice model. Blood. 102:873-880. 8. Hou L, Cao H, Wang D, Wei G, Bai C, Zhang Y, Pei X. 2003.Induction of umbilical cord blood mesenchymal stem cells into neuron-like cells in vitro. Int J Hematol. 78:256-261. 9. Shpall EJ, Quinones R, Giller R, Zeng C, Baron AE, Jones RB, Bearman SI, Nieto Y, Freed B, Madinger N, Hogan CJ, Slat-Vasquez V, Russell P, Blunk B, Schissel D, Hild E, Malcolm J, Ward W, McNiece IK. 2002. Transplantation of ex vivo expanded cord blood. Biol Blood Marrow Transplant. 8:368-376. 10. Ueda T, Yoshida M, Yoshino H, Kobayashi K, Kawahata M, Ebihara Y, Ito M, Asano S, Nakahata T, Tsuji K. 2001. Hematopoietic capability of CD34+ cord blood cells: a comparison with CD34+ adult bone marrow cells. Int J Hematol. 73:457-462. 11. Carayol G, Robin C, Bourhis JH, Bennaceur-Griscelli A, Chouaib S, Coulombel L, Caignard A. 1998.NK cells differentiated from bone marrow, cord blood and peripheral blood stem cells exhibit similar phenotype and functions. Eur J Immunol. 28:1991-2002. 12. Perez SA, Sotiropoulou PA, Gkika DG, Mahaira LG, Niarchos DK, Gritzapis AD, Kavalakis YG, Antsaklis AI, Baxevanis CN, Papamichail M. 2003. A novel myeloid-like NK cell progenitor in human umbilical cord blood. Blood. 101:3444-3450. 13. Trinchieri. G . 1989. Biology of natural killer cells. Adv Imunol. 47:187-376. 14. Bancroft, G. 1993. The role of natural killer cells in innate resistance to infection. Curr Opin Immunol. 4:503-510. 15. Carayol G, Robin C, Bourhis JH, Bennaceur-Griscelli A, Chouaib S, Coulombel L, Caignard A. 1998. NK cells differentiated from bone marrow, cord blood and peripheral blood stem cells exhibit similar phenotype and functions. Eur J Immunol. 28:1991-2002. 16. Gaddy J, Broxmeyer HE. 1997. Cord blood CD16+56- cells with low lytic activity are possible precursors of mature nature killer cells. Cell Immunol 180:132-135. 17. Ljunggren, H.G., Karre, K. 1990. In search of the “missing self” MHC molecules and K cell recognition. Immunol Today. 11:237-244. 18. Moretta A, Bottino C, Vitale M, Pende D, Biassoni R, Mingari MC, Moretta L. 1996. Receptors for HLA class-I molecules in human natural killer cells. Annu Rev Immunol. 14: 619-648. 19. Moretta L., Bottino C., Pende D. 2002. Human natural killer cells: their origin, receptors and function. Eur J Immunol. 32:1205-1211. 20. Rolstad, B., Seaman, WE. 1998. Natural killer cells and recognition of MHC class I molecules: new perspectives and challenges in immunology. Scand J Immunol. 47:412-425. 21. Hao Q-L, Zhu J, Price MA, at al. 2001. Identification of a novel, human multilymphoid progenitor in cord blood. Blood. 97:3683-3690. 22. Bennett IM, Zatsepena O, Zamai L. 1996 Definition of a natural killer NKR-P1A+/CD56-/CD16- functionally immature human NK subset that differentiates in vitro in the presence of interleukin 12. J Exp Med. 184:1845-1856. 23. Chang G, Rondrigues A, Carretero M et al. 1995 Molecular characterization of human CD94: a type II membrane glycoprotein related to the C-type lectin superfamily. Eur J Aimmunol. 25:2433-2437. 24. Lanier LL, Chang C, Philips JH. 1994. Human NKR-P1A: a disulfide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. J Immunol. 153:2417-2428. 25. Lanier LL, Le AM, Civin Cl. 1986. The relationship of CD16(Leu-11) and Leu-19(NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol. 136:4480-4486. 26. Cooper MA, Fehniger TA,Tumer SC, et al. 2001. Human natural killer cells: a unique immuno-regulatory role for the CD56bright subset. Blood. 97:3146-3151. 27. Wasser SP, Weis AL. 1999. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol 19:65-96. 28. Shiao, M. S. 2003. Natural products of the medicinal fungus Ganoderma lucidum: occurrence, biological activities, and pharmacological functions. Chem Rec. 3:172-180. 29. van der Hem LG, van der Vliet JA, Bocken CF, Kino K, Hoitsma AJ, Tax WJ. 1995. Ling Zhi-8: studies of a new immunomodulating agent. Transplantation. 60:438-443. 30. Kino K, Yamashita A, Yamaoka K, Watanabe J, Tanaka S, Ko K, Shimizu K, Tsunoo H. 1989. Isolation and characterization of a new immunomodulatory protein, ling zhi-8 (LZ-8), from Ganoderma lucidium. J Biol Chem. 264:472-478. 31. Tanaka S, Ko K, Kino K, Tsuchiya K, Yamashita A, Murasugi A, Sakuma S, Tsunoo H. 1989. Complete amino acid sequence of an immunomodulatory protein, ling zhi-8 (LZ-8). An immunomodulator from a fungus, Ganoderma lucidium, having similarity to immunoglobulin variable regions. J Biol Chem. 264:16372-16377. 32. Wang, S-Y, Hsu, M-L, Hsu, H-C, Tzeng, C-H, Lee S-S, Shiao, M-S and Ho C-K. 1997. The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. International Journal Of Cancer. 70: 699-705. 33. Zhang, J., Wang, G., Li, H., Zhuang, C., Mizuno, T., Ito, H., Mayuzumi, H., Okamoto, H., Li, J. 1994. Antitumor active protein-containing glycans from the Chinese mushroom songshan lingzhi, Ganoderma tsugae mycelium. Bioscience Biotechnology and Biochemistry. 58: 1202-1205. 34. Lee, S.Y. and Rhee, H. M. 1990. Cardiovascular effects of mycelium extract of Ganoderma lucidum: inhibition of sympathetic outflow as a mechanism of its hypotensive action. Chemical and Pharmaceutical Bulletin. 38: 1359-1364. 35. Kabir, Y., Kimura, S. and Tamura, T. (1998) Dietary effect of Ganoderma lucidum mushroom on blood pressure and lipid levels in spontaneously hypertensive rats (SHR). Journal of Nutritional Science and Vitaminology. 43: 433-438. 36. Lien, E.-J. 1990. Progress in Drug Research. Birkhauser: Basel, Vol. 34, p 395. 37. Tao, J. and Feng, K. Y. 1990. Experimental and clinical studies on inhibitory effect of Ganoderma lucidum on platelet aggregation. Journal of Tongji Medical University. 10: 240-243. 38. Shimizu, A., Yano, T., Saito,Y. and Inada, Y. 1985. Isolation of an inhibitor of platelet aggregation from a fungus, Ganoderma lucidum. Chemical and Pharmaceutical Bulletin. 33: 3012-3015. 39. Hijikata Y, Yamada S. 1998. Effect of Ganoderma lucidum on postherpetic neuralgia. Am J Chin Med. 26:375-381. 40. El-Mekkawy, S., Meselhy, M. R., Nakamura, N., Tezuka, Y., Hattori, M., Kakiuchi, N., Shimotohno, K., Kawahata, T. and Otake, T. 1998. Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum. Phytochemistry. 49:1651-1657. 41. B4 Min BS, Nakamura N, Miyashiro H, Bae KW, Hattori M. 1998. Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease. Chem Pharm Bull. 46:1607-1612. 42. Lin LJ, Shiao MS. 1987. Separation of oxygenated triterpenoids from Ganoderma lucidum by high-performance liquid chromatography. J Chromatogr. 410:195-200. 43. Wang SY, Hsu ML, Hsu HC, Tzeng CH, Lee SS, Shiao MS, Ho CK. 1997. The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. Int J Cancer. 70:699-705. 44. Muller A, Rice PJ, Ensley HE, Coogan PS, Kalbfleish JH, Kelley JL, Love EJ, Portera CA, Ha T, Browder IW, Williams DL. 1996. Receptor binding and internalization of a water-soluble (1-->3)-beta-D-glucan biologic response modifier in two monocyte/macrophage cell lines. J Immunol. 156:3418-3425. 45. Wang, Y. Y., K. H. Khoo, S. T. Chen, C. C. Lin, C. H. Wong, and C. H. Lin. 2002. Studies on the immuno-modulating and antitumor activities of Ganoderma lucidum (Reishi) polysaccharides: functional and proteomic analyses of a fucose-containing glycoprotein fraction responsible for the activities. Bioorg Med Chem. 10:1057-1062. 46. Murota K, Terao J. 2003. Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism. Murota K, Terao J. Arch Biochem Biophys. 417:12-17. 47. Alcocer F, Whitley D, Salazar-Gonzalez JF, Jordan WD, Sellers MT, Eckhoff DE, Suzuki K, Macrae C, Bland KI. 2002. Quercetin inhibits human vascular smooth muscle cell proliferation and migration. Surgery. 131:198-204. 48. Kim SS, Oh OJ, Min HY, Park EJ, Kim Y, Park HJ, Nam Han Y, Lee SK. 2003. Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Life Sci. 73:337-348. 49. Capasso R, Pinto L, Vuotto ML, Di Carlo G. 2000. Preventive effect of eugenol on PAF and ethanol-induced gastric mucosal damage. Fitoterapia. 71 Suppl 1:131-137. 50. Yamakoshi J, Kataoka S, Koga T, Ariga T. 2002. Proanthocyanidin-rich extract from grape seeds attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Hypertens Res. 25:99-107. 51. Natella F, Belelli F, Gentili V, Ursini F, Scaccini C. 2002. Grape seed proanthocyanidins prevent plasma postprandial oxidative stress in humans. J Agric Food Chem. 50:7720-7725. 52. Matteucci E, Rizvi SI, Giampietro O. 2001. Erythrocyte sodium/hydrogen exchange inhibition by (-) epicatechin. Cell Biol Int. 25:771-776. 53. Arts IC, Jacobs DR Jr, Gross M, Harnack LJ, Folsom AR. 2002. Dietary catechins and cancer incidence among postmenopausal women: the Iowa Women's Health Study (United States). Cancer Causes Control. 13:373-82. 54. T. Horsburgh, S. Martin, A.J. Robson. 2000. The application of flow cytometry to histocompatibility testing. Transpl Immunol. 8:3-15. Review. 55. C.H. Liu, W.L. Ma, R. Shi, Q. Ouyang, W.L. Zheng. 2002. Application of Agilent Bioanalyzer in the study of differential gene expression. Di Yi Jun Yi Da Xue Xue Bao. 12: 1066. 56. R. Ohashi, J.M. Otero, A. Chwistek, J.F. Hamel. 2002. Determination of monoclonal antibody production in cell culture using novel microfluidic and traditional assays. Electropho. 20: 3623-9. 57. O.Schmut, J. Horwath-Winter, A. Zenker, G. Trummer, Graefes Arch. 2002. The effect of sample treatment on separation profiles of tear fluid proteins: qualitative and semi-quantitative protein determination by an automated analysis system. Clin Exp Ophthalmol. 240:900-905. 58. Hows JM. Status of umbilical cord blood transplantation in the year 2001. J Clin Pathol. 54:428-433. 59. E. Marshall. 1996. Clinical promise, ethical quandary. Science. 271:586-8. 60. J. Jaroscak, K. Goltry, A. Smith, B.Waters-Pick, P.L. Martin, T. Driscoll, R. Howrey, N. Chao, J. Douville, S. Burhop, P. Fu, J. Kurtzberg. 2003. Augmentation of umbilical cord blood (UCB) transplantation with ex vivo-expanded UCB cells: results of a phase 1 trial using the AastromReplicell System. Blood. 101:5061-5067. 61. Davis MM. 1990. T cell receptor gene diversity and selection. Annu Rev Biochem. 59:475-496. Review. 62. T.F. Tedder, J. Tuscano, S. Sato, J.H. Kehrl. 1997. CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Annu Rev Immunol. 15:481-504. Review. 63. Carter, R. H., Y. Wang, and S. Brooks. 2002. Role of CD19 signal transduction in B cell biology. Immunol Res. 26:45-49. 64. J. Pugin, I.D. Heumann, A. Tomasz, V.V. Kravchenko, Y. Akamatsu, M. Nishijima, M.P. Glauser, P.S. Tobias, R.J. Ulevitch. 1994. Immunity. 1:509-516. 65. R. Majeti, Z. Xu, T.G. Parslow, J.L. Olson, D.I. Daikh, N. Killeen, A. Weiss. 2000. An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Cell. 103:1059-1070. 66. Y. Jin, L. Fuller, M. Carreno, V. Esquenazi, A.G. Tzakis, J. Miller. 1998. The regulation of phenotype and function of human liver CD3+/CD56+ lymphocytes, and cells that also co-express CD8 by IL-2, IL-12 and anti-CD3 monoclonal antibody. Hum Immunol. 59:352-362. 67. L.J. Zhou and T.F. Tedder. 1995. A distinct pattern of cytokine gene expression by human CD83+ blood dendritic cells. Blood. 86:3295-3301. 68. Wang, K.H. Khoo, S.T. Chen, C.H. Wong, and C. H. Lin. 2002. Studies on the immuno-modulating and antitumor activities of Ganoderma lucidum (Reishi) polysaccharides: functional and proteomic analyses of a fucose-containing glycoprotein fraction responsible for the activities. Bioorg Med Chem. 10:1057-1062. 69. P. Decherchi, P. Cochard, P. Gauthier. 1997. Dual staining assessment of Schwann cell viability within whole peripheral nerves using calcein-AM and ethidium homodimer. J Neurosci Methods. 71:205-213. 70. Becton Dickinson Immunocytometry Systems 71. D'Arena G, Musto P, Cascavilla N, Di Giorgio G, Fusilli S, Zendoli F, Carotenuto M. 1998. Flow cytometric characterization of human umbilical cord blood lymphocytes: immunophenotypic features. Haematologica. 83:197-203. 72. C. Rabian-Herzog, S. Lesage, E. Gluckman. 1992. Characterization of lymphocyte subpopulations in cord blood. Bone Marrow Transplant. Suppl. 1:64-67. 73. D. Motley, M. P. Meyer, R. A. King, G. J, Naus.1996. Determination of lymphocyte immunophenotypic values for normal full-term cord blood. Am J Clin Pathol. 105:38-43. 74. Wasser, S. P., and A. L. Weis. 1999. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol. 19:65-96. Review. 75. Lien, E. J. 1990. Fungal metabolites and Chinese herbal medicine as immunostimulants. Prog Drug Res. 34:395-420. 76. Zhang, J., G. Wang, H. Li, C. Zhuang, T. Mizuno, H. Ito, H. Mayuzumi, H. Okamoto, and J. Li. 1994. Antitumor active protein-containing glycans from the Chinese mushroom songshan lingzhi, Ganoderma tsugae mycelium. Biosci Biotechnol Biochem 58:1202-1205. 77. Carter, R. H., Y. Wang, and S. Brooks. 2002. Role of CD19 signal transduction in B cell biology. Immunol Res. 26:45-54. Review. 78. Foley, R., R. Tozer, and Y. Wan. 2001. Genetically modified dendritic cells in cancer therapy: implications for transfusion medicine. Transfus Med Rev. 15:292-304. Review. 79. Schantz, S. P., B. W. Brown, E. Lira, D. L. Taylor, and N. Beddingfield. 1987. Evidence for the role of natural immunity in the control of metastatic spread of head and neck cancer. Cancer Immunol Immunother 25:141-148. 80. Cooper, M. A., T. A. Fehniger, and M. A. Caligiuri. 2001. The biology of human natural killer-cell subsets. Trends Immunol. 22:633-640. Review. 81. Wang, S. Y., M. L. Hsu, H. C. Hsu, C. H. Tzeng, S. S. Lee, M. S. Shiao, and C. K. Ho. 1997. The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. Int J Cancer 70:699-705. 82. Joshi, S. S., N. N. Babushkina-Patz, D. J. Verbik, T. G. Gross, S. R. Tarantolo, C. A. Kuszynski, S. J. Pirruccello, M. R. Bishop, and A. Kessinger. 1998. Antitumor activity of human umbilical cord blood cells: A comparative analysis with peripheral blood and bone marrow cells. Int J Oncol 13:791-779. 83. Schantz, S. P., B. W. Brown, E. Lira, D. L. Taylor, and N. Beddingfield. 1987. Evidence for the role of natural immunity in the control of metastatic spread of head and neck cancer. Cancer Immunol Immunother. 25:141-148. 84. Wasser, S. P., and A. L. Weis. 1999. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol. 19:65-96. Review. 85. Colucci, F., M. A. Caligiuri, and J. P. Di Santo. 2003. What does it take to make a natural killer? Nat Rev Immunol. 3:413-425. Review. 86. Warren, H. S., F. T. Christiansen, and C. S. Witt. 2003. Functional inhibitory human leucocyte antigen class I receptors on natural killer (NK) cells in patients with chronic NK lymphocytosis. Br J Haematol. 121:793-804. 87. Won, S. J., M. T. Lin, and W. L. Wu. 1992. Ganoderma tsugae mycelium enhances splenic natural killer cell activity and serum interferon production in mice. Jpn J Pharmacol. 59:171-176. 88. Nociari, M. M., A. Shalev, P. Benias, and C. Russo. 1998. A novel one-step, highly sensitive fluorometric assay to evaluate cell-mediated cytotoxicity. J Immunol Methods. 213:157-167. 89. Joshi, S. S., N. N. Babushkina-Patz, D. J. Verbik, T. G. Gross, S. R. Tarantolo, C. A. Kuszynski, S. J. Pirruccello, M. R. Bishop, and A. Kessinger. 1998. Antitumor activity of human umbilical cord blood cells: A comparative analysis with peripheral blood and bone marrow cells. Int J Oncol. 13:791-799. 90. Roehm, N. W., G. H. Rodgers, S. M. Hatfield, and A. L. Glasebrook. 1991. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods. 142:257-265. 91. Scudiero, D. A., R. H. Shoemaker, K. D. Paull, A. Monks, S. Tierney, T. H. Nofziger, M. J. Currens, D. Seniff, and M. R. Boyd. 1988. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 48:4827-4833. 92. Gritzapis, A. D., D. Dimitroulopoulos, E. Paraskevas, C. N. Baxevanis, and M. Papamichail. 2002. Large-scale expansion of CD3(+)CD56(+) lymphocytes capable of lysing autologous tumor cells with cytokine-rich supernatants. Cancer Immunol Immunother. 51:440-448. 93. Barron V, Lyons E, Stenson-Cox C, McHugh PE, Pandit A. 2003. Bioreactors for cardiovascular cell and tissue growth: a review. Ann Biomed Eng. 31:1017-1030. 94. Gerlach JC, Mutig K, Sauer IM, Schrade P, Efimova E, Mieder T, Naumann G, Grunwald A, Pless G, Mas A, Bachmann S, Neuhaus P, Zeilinger K. 2003. Use of primary human liver cells originating from discarded grafts in a bioreactor for liver support therapy and the prospects of culturing adult liver stem cells in bioreactors: a morphologic study. Transplantation. 76:781-786. 95. Ginis I, Luo Y, Miura T, Thies S, Brandenberger R, Gerecht-Nir S, Amit M, Hoke A, Carpenter MK, Itskovitz-Eldor J, Rao MS. 2004. Differences between human and mouse embryonic stem cells. Dev Biol. 269:360-380. 96. Shachar M, Cohen S. 2003. Cardiac tissue engineering, ex-vivo: design principles in biomaterials and bioreactors. Heart Fail Rev. 8:271-276. 97. Grow AE, Wood LL, Claycomb JL, Thompson PA. 2003. New biochip technology for label-free detection of pathogens and their toxins. J Microbiol Methods. 53:221-233. 98. Wagner JE, Verfaillie CM. 2004. Ex vivo expansion of umbilical cord blood hemopoietic stem and progenitor cells. Exp Hematol. 32:412-413. 99. Porter VR, Greendale GA, Schocken M, Zhu X, Effros RB. 2001. Immune effects of hormone replacement therapy in post-menopausal women. Exp Gerontol. 36:311-326. 100. Smith JA, Bluestone JA. 1997. T cell inactivation and cytokine deviation promoted by anti-CD3 mAbs. Curr Opin Immunol. 9:648-654. 101. Burns EA, Leventhal EA.2001. Aging, immunity, and cancer. Cancer Control. 8:288-290. 102. Heydarkhan-Hagvall S, Helenius G, Johansson BR, Li JY, Mattsson E, Risberg B. 2003. Co-culture of endothelial cells and smooth muscle cells affects gene expression of angiogenic factors. J Cell Biochem. 89:1250-1259.id NH0925105011 sid 878226 cfn 0 / id NH0925105012 auc 方磊 tic 微脂粒膜內外間的pH gradient對親水性藥物5-fluorouracil包覆效率以及被包覆的疏水性藥物camptothecin釋放率的影響 adc 朱一民 adc 吳文桂 ty 碩士 sc 國立清華大學 dp 生命科學系 yr 92 lg 中文 pg 50 kwc pH梯度 kwc 硫酸銨 kwc 微脂粒 kwc 5-氟 kwc & kwc #33074;嘧啶 kwc 喜樹鹼 kwc 雙十六碳鏈磷酸鹽 kwc 包覆效率 kwc 藥物釋放率 kwc 硫酸銨梯度 abc 根據文獻記載,5-FU的包覆效率無論包覆脂質的不同都不會超過6%。我們嘗試以微脂粒以及pH梯度的方式對5-FU進行包覆,以減低其副作用與細胞毒性。實驗結果發現5-FU無法以pH梯度的方式來有效提升微脂粒對它的包覆效率。因此我們想到可以從改善微脂粒膜的性質或是尋找與5-FU形成錯合物的物質等兩個方向再來著手。此外我們推測造成這種結果的原因可能跟5-FU本身的兩個2級胺結構有關。2級胺的pKa會比位於雜環中兩個環交界處的3級胺更遠離7,因此將更容易帶電而無法以pH梯度的方式送入微脂粒中。 tc 目錄 1 簡介---p1 1.1 磷脂質,膽固醇,DCP與微脂粒---p1 1.2 膜的通透與pH梯度 (ΔpH)---p7 1.3 親水性藥物5-FU與疏水性藥物CPT---p13 2 實驗目的---p19 3 實驗藥品,器材與步驟與檢測儀器的操作步驟---p20 3.1 實驗藥品或材料---p20 3.2 實驗器材或設備---p21 3.3 實驗步驟與方法---p23 3.3.1 5-FU的包覆---p23 3.3.2 被包覆CPT的釋放---p24 3.4 檢測儀器的操作步驟與方法---p25 3.4.1 雷射粒徑儀LPA (5-FU與CPT部份的粒徑)---p25 3.4.2 HPLC (5-FU部份藥物的包覆效率)---p26 3.4.3 螢光儀 (CPT部份的藥物釋放率)---p26 4 結果與討論---p29 4.1 微脂粒對5-FU的包覆---p29 4.1.1 微脂粒對5-FU的包覆效率---p29 4.1.2 5-FU包覆效率適當取樣範圍的確定---p31 4.1.3 微脂粒對5-FU包覆的探討---p31 4.2 被微脂粒包覆的CPT的藥物釋放---p35 4.2.1 脂質,DCP與CPT組成比例的決定---p35 4.2.2 水合液的選擇與藥物釋放---p35 4.2.3 pH梯度對CPT微脂粒藥物釋放率影響的進一步確定--- p36 4.2.4 被微脂粒包覆的CPT其藥物釋放的探討---p36 5 總結---p41 6 參考文獻---p42 附錄 雷射粒徑儀 (Laser particle analyzer) 原理與操作步驟的簡 介---p46 圖目錄 圖1.1 醯烴長鏈的命名方式---p1 圖1.2 磷脂質的頭基及其命名方式---p2 圖1.3 (磷)脂質自組合成聚集體的型態---p2 圖1.4 單層微脂粒的立體切面圖---p2 圖1.5 膠體態與液晶態的磷脂質的排列方式---p4 圖1.6 不同溫度下磷脂質焓 (enthalphy) 的變化---p4 圖1.7 脂雙層的膜中磷脂質與膽固醇的排列方式---p6 圖1.8 不同濃度膽固醇組成的脂雙層其熱力學性質的變化---p6 圖1.9 DCP的結構式---p6 圖1.10 各種物質對磷脂質脂雙層膜的通透與否---p8 圖1.11 粒線體與葉綠體內部構造的比較---p9 圖1.12 粒線體與葉綠體其電子傳遞鏈的示意圖---p9 圖1.13 弱鹼性藥doxorubicin以硫酸銨溶液製造的pH梯度來載送--- p11 圖1.14 弱酸性藥nalidixic acid以醋酸鈣溶液造成的 pH梯度來載送的示意圖---p12 圖1.15 5-FU的結構式---p14 圖1.16 5-FU在體內所造成相關的新代謝機制示意圖---p14 圖1.17 CPT的發現與研究進程---p16 圖1.18 拓樸異構酶I被CPT抑制的示意圖---p16 圖1.19 CPT內酯型與羧酸型的化學結構---p18 圖1.20 兩種應用在臨床的CPT衍生物---p18 圖3.1真空旋轉濃縮機裝置的示意圖---p21 圖3.2 5-FU部份的流程圖---p27 圖3.3 CPT部份的流程圖---p27 圖3.4 (A) 5-FU濃度與HPLC的UV偵檢器對其所測得的積分面積間的對 應關係 (B) CPT濃度與螢光儀對其所測得的積分面積間的對應 關係---p28 圖4.1 不同微脂粒磷脂質PC的組成與pH梯度的有無對5-FU包覆效率的 影響---p30 圖4.2 包覆有5-FU的微脂粒通過充填有Sephadex G-50的管柱分離未 包覆藥,其UV積分面積對流出管數 (每管1.5 ml) 之間的關 係---p32 圖4.3 運用pH梯度 (pHout = 7.5,pHin = 4.0) 對以EPC所形成的微 脂粒包覆各種藥物的程度與穩定性---p34 圖4.4 Codeine的結構式---p34 圖4.5 常見1級,2級與3級胺基的pKb---p34 圖4.6 以pH梯度包覆CPT與沒有pH梯度包覆CPT的微脂粒兩者進行藥物 釋放,隨時間微脂粒粒徑與藥物釋放率的變化---p37 圖4.7 藥物釋放前後同管數序號的沖提流出液中CPT的含量比---p38 圖4.8 隨著藥物釋放時間具有完整內酯環的CPT濃度的變化---p39 圖A-1 與y軸夾的散射角è以及與z軸夾的散射角f示意圖。入射光朝 著y軸的方向而電場則朝著z軸的方向---p47 圖A-2 入射光照到一群障礙物並散射到受照者的觀測。由其電場強 度集合以及d角可得總體散射強度---p47 圖A-3 光學分析光譜的示意圖---p47rf (1) Abraham, S. A., Edwards, K., Karlsson, G.., Hudon, N., Mayer, L. D., and Bally, M. B. (2004) An evaluation of transmembrane ion gradient- mediated encapsulation of topotecan within liposomes. J. Control. Release 96, 449-461. (2) Addanki, S., Cahills, R. D., and Sotos, J. F. (1968) Determination of intramitochondrial-extramitochondrial pH gradient of isolated heart mitochondria by the use of 5,5-dimethyl-2,4-oxazolidinedione. J. Biol. Chem. 243, 2337-2348. (3) Atkins, P. W. (1998) Physical chemistry. 6th ed. Oxford. (4)Burke, T. G., Mishra, A. K., Wall, M. C., and Wani, M. E. (1993) Lipid bilayer partitioning and stability of camptothecin drugs. Bioche- mistry 32, 5352-5364. (5) Cherian, M. (2003) Lyophilizate of lipid complex of water insoluble camptothecins. United States Patent: 6,548,071. Pharmacia & Upjohn Company. (6) Clerc, S. and Barenholz, Y. (1995) Loading of amphipathic weak acids into liposomes in response to transmembrane calcium acetate gradients. Biochim. Biophys. Acta 1240, 257-265. (7) Cortesi, R., Esposito, E., Maietti, A., Menegatti, E., and Nastruzzi, C. (1997) Formulation study for the antitumor drug camptothecin: liposomes, micellar solutions and a microemlsion. Inter. J. Pharm. 159, 95-103. (8) Cullis, P. R., Hope, M. J., Bally, M. B., Madden, T. D., Mayer, L. D., and Fenske, D. B. (1997) Influence of pH gradients on the transbi- layer transport of drugs, lipids, peptides and metal ions into large unilamellar vesicles. Biochim. Biophys. Acta 1331, 187-211. (9) Duschinsky, R., Pleven, E., and Heidelberger, C. (1957) The synthesis of 5-fluoropyrimidines. J. Am. Chem. Soc. 79, 4559-. (10) Elorza, B., Elorza, M. A., Frutos, G., and Chantres, J. R. (1993) Characterization of 5-fluorouracil loaded liposomes prepared by reverse-phase evaporation or freezing-thawing exclusion methods: study of drug release. Biochim. Biophys. Acta 1153, 135-142. (11) Fresta, M., Villari, A., Puglisi, G., and Cavallaro, G. (1993) 5-Fluoro- uracil: various kinds of loaded liposomes: encapsulation efficiency, storage stability, and fusogenic properties. Inter. J. Pharma. 99, 145-156. (12) Garrett, R. H. and Grisham, C. M. (1999) Biochemistry, 2nd ed., Saunders College Publishing. (13) Giovanella, B. C., Stehlin, J. S., Wall, M. E., Wani, M. C., Nicholas, A. W., Liu, L. F., Silber, R., and Potmesil, M. (1989) DNA topoiso- merase I-targeted chemotherapy of human colon cancer in xeno+ grafts. Science 246, 1046-1048. (14) Hammarström, L., Velikian, I., Karlsson, G., and Edwards, K. (1995) Cryo-TEMevidence: sonication of dihexadecyl phosphate does not produce closed bilayers with smooth curvature. Langmuir 11, 408- 410. (15) Haran, G., Cohen, R., Bar, L. K., and Barenholz, Y. (1993) Trans- membrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim. Biophys. Acta 1240, 257-265. (16) Hertzberg, R. P., Caranfa, M. J., Holden, K. G., Jakas, D. R., Gallag- her, G., Matern, M. R., Mong, S. M., Bartus, J. O., Johnson, R. K., and Kingsbury, W. D. (1989) Modification of the hydroxy lactone ring of camptothecin: inhibition of mammalian topoisomerase I and biological activity. J. Med. Chem. 32, 715-720. (17) Holland, J. F. Bast, R. C., Morton, D. L., Frei, E., Kufe, D. W., and Weichselbaum, R. R. (1997) Cancer medicine, 4th ed., Williams & Wilkins. (18) Hsiang, Y. H., Hertzberg, R., Hecht, S., and Lin, L. F. (1985) Camp- tothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem. 260, 14873-14878. (19) Janoff, A. S. (1999) Liposomes: rational design. Marcel Dekker Inc. (20) Kaiser, N., Kimpfler, A., Massing, U., Burger, A. M., Fiebig, H. H., Brandl, M., and Schubert, R. (2003) 5-Fluorouracil in vesicular phospholipid gels for anticancer treatment : entrapment and release properties. Inter. J. Pharma. 256, 123-131. (21) Kruszewski, S., and Burke, T. G., (2002) Properties of camptothecin analogues---promising topoisomerase I inhibitors determined by fluorescence spectroscopy methods. Polish J Med. Phys. & Eng. 8, 183-192. (22) Kunimoto, T., Nitta, K, Tanaka, T., Uehara, N., Baba, H., Takeuchi, M., Yokokura, T., Sawada, S., Miyasaka, T., and Mutai, M. (1987) Antitumor activity of 7-ethyl-10-[4-(1-piperidino)-1-piperidino ] carbonyloxycamptothecin, a novel water-soluble derivative of camptothecin, against murine tumors. Cancer Res. 47, 5944-5947. (23) Lasic, D. D. (1998) Novel applications of liposomes. Trends Biotechnol. 16, 307-321. (24) Lodish, H., Berk, A., Zipursky, S. L. Matsudaira, P., Baltimore, D., and Darnell, J. (2000) Molecular cell biology. W. H. Freeman and Company. (25) Mattern, M. R., Hofmann, G. A., McCabe, F. L., and Johnson, R. K. (1991) Synergistic cell killing by ionizing radiation and topoiso- merase I inhibitor topotecan (SK&F 104864) Cancer Res. 51, 5813-5816. (26) Nichols, J. W., and Deamer, D. W. (1976) Catecholamine uptake and concentration by liposomes maintaining pH gradients. Biochim. Biophys. Acta 455, 269-271. (27) New, R. R. C. (1990) Liposomes: a practical approach. 2nd ed. Oxford University Press. (28) Oberlies, N. H. and Kroll, D. J. (2004) Camptothecin and taxol: historic achieve- ments in natural products research. J. Nat. Prod. 67, 129-135. (29) Rottenberg, H., Grunwald, T., and Avron, M. (1972) Determination of DpH in chloroplasts. Eur. J. Biochem. 25, 54-63. (30) Sugarman, S. M., Zou, Y. Y., Wasan, K., Kumi, R., Reddy, S., and Perez-Soler, R. (1996) Lipid-complexed camptothecin: formulation and initial biodistribution and antitumor activity studies. Cancer Chemother. Pharmacol. 97, 531-538. (31) Tribe, M. and Whittaker, P. (1982) Chloroplasts and mitochondria, 2nd ed. Edward Arnold Ltd. (32) Wade, L. G. (1995) Organic chemistry, 3rd ed. Prentice Hall. (33) Wall, M. E., Wani, M. C., and Cook, C. E. (1966) Plant anti-tumor agents. I. The isolation and structure of camptothecin, a novel alka- loid leukemia and tumor inhibitor from Camptotheca acuminates. J. Am. Chem. Soc. 88, 3888-3890. (34) Wang, J. C. (1985) DNA Topoisomerases. Ann. Rev. Biochem. 54, 655-697. (35) 常用藥物治療手冊,陳長安編著,全國藥品年鑑雜誌社,2000。 附錄參考資料: (A) Pecora, R. (1985) Dynamic light scattering: applications of photon correlation spectroscopy. Plenum press. (B) Manual of laser particle analyzer system 3000/3100. Otsuka.id NH0925105012 sid 894277 cfn 0 / id NH0925105013 auc 陳玉佳 tic 脊索動物AMPA受器次型的基因演化分析 adc 周姽嫄 教授 ty 博士 sc 國立清華大學 dp 生命科學系 yr 92 lg 中文 pg 79 kwc 脊索動物 kwc AMPA受器次型 kwc 基因複製 kwc 後轉錄作用 abc 基因或基因體複製長久以來被認為是使得物種由簡單演化成具有複雜功能的重要機制。過去以RT-PCR的方式從軟骨魚類鯊魚腦選殖出四種AMPA受器次單元,硬骨魚類河豚和斑馬魚各選殖出七種AMPA受器次單元,吳郭魚選殖出八種AMPA受器次單元,四足類青蛙及烏龜腦選殖出四種AMPA受器次單元。本文也以相同的RT-PCR設計,從硬骨魚類演化層次較為原始的長鯙腦選殖出七種AMPA受器次單元;以RT-PCR和genomic PCR從無顎類的盲鰻選殖出兩種AMPA受器次單元;以genomic PCR從頭索動物文昌魚選殖出三種AMPA受器次單元。以哺乳動物AMPA受器次型保留性較高的氨基酸序列作同源性搜尋尾索動物海鞘基因庫,得到一種AMPA受器次單元。將以上脊索動物AMPA受器次型氨基酸序列建立系統發育樹狀圖,由樹狀圖結果推測無脊椎脊索動物至脊椎動物AMPA受器次型基因數目的演變應是源自於單一基因,其後在頭索類及無顎類時發生一至二次基因複製。除此之外,由脊索動物AMPA受器基因結構和後轉錄作用的分析結果得知脊索動物AMPA受器次型譯讀TMD1-TMD4區域的基因結構大致相同,不同的是脊椎動物AMPA受器次型基因結構含有兩個mutually exclusive exons,稱為flop和flip-coding exon,而無脊椎脊索動物卻只有一個flop/flip-coding exon。由脊索動物flop和 flip氨基酸序列建立的系統發育樹狀圖顯示脊椎動物flop與flip-coding exon是經由tandem exon duplication所產生。以Mfold程式預測無脊椎脊索動物海鞘和文昌魚AMPA受器次型基因Q/R site或是R/G site鄰近序列的二級結構,以及將此段序列與哺乳動物AMPA受器基因會進行editing的序列進行比對,結果顯示無脊椎脊索動物AMPA受器次型不會形成editing所需的二級結構,因此無法進行RNA editing。由此推測AMPA受器次型的RNA editing機制只存在脊椎動物中。 tc 中文摘要………………………………………………I 英文摘要………………………………………………II 前言……………………………………………………1 材料與方法……………………………………………16 結果……………………………………………………26 討論……………………………………………………36 參考文獻………………………………………………45 圖表及附錄……………………………………………56rf Abele, R., Svergun, D., Keinanen, K., Koch, M. H., and Madden, D. R. (1999). A molecular envelope of the ligand-binding domain of a glutamate receptor in the presence and absence of agonist. Biochemistry 38, 10949-10957. Ackerman, W. E., 3rd, Molnar, J. M., and Juneja, M. M. (1993). Beneficial effect of epidural anesthesia on oxygen consumption in a parturient with adult respiratory distress syndrome. South Med J 86, 361-364. Altschul, S. F., and Lipman, D. J. (1990). Protein database searches for multiple alignments. Proc Natl Acad Sci U S A 87, 5509-5513. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402. Amores, A., Force, A., Yan, Y. L., Joly, L., Amemiya, C., Fritz, A., Ho, R. K., Langeland, J., Prince, V., Wang, Y. L., et al. (1998). Zebrafish hox clusters and vertebrate genome evolution. Science 282, 1711-1714. Andersson, O., Stenqvist, A., Attersand, A., and von Euler, G. (2001). Nucleotide sequence, genomic organization, and chromosomal localization of genes encoding the human NMDA receptor subunits NR3A and NR3B. Genomics 78, 178-184. Aparicio, S. (2000). Vertebrate evolution: recent perspectives from fish. Trends Genet 16, 54-56. Armstrong, N., Sun, Y., Chen, G. Q., and Gouaux, E. (1998). Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395, 913-917. Aruscavage, P. J., and Bass, B. L. (2000). A phylogenetic analysis reveals an unusual sequence conservation within introns involved in RNA editing. Rna 6, 257-269. Ascher, P., Bregestovski, P., and Nowak, L. (1988). N-methyl-D-aspartate-activated channels of mouse central neurones in magnesium-free solutions. J Physiol 399, 207-226. Barbon, A., and Barlati, S. (2000). Genomic organization, proposed alternative splicing mechanisms, and RNA editing structure of GRIK1. Cytogenet Cell Genet 88, 236-239. Barbon, A., Vallini, I., and Barlati, S. (2001). Genomic organization of the human GRIK2 gene and evidence for multiple splicing variants. Gene 274, 187-197. Bargmann, C. I. (1998). Neurobiology of the Caenorhabditis elegans genome. Science 282, 2028-2033. Bass, B. L. (1997). RNA editing and hypermutation by adenosine deamination. Trends Biochem Sci 22, 157-162. Bass, B. L. (2002). RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71, 817-846. Battaglia, A. A., Nardi, G., Steinhardt, A., Novakovic, A., Gentile, S., Iaccarino Idelson, P., Gilly, W. F., and Santis, A. D. (2003). Cloning and characterization of an ionotropic glutamate receptor subunit expressed in the squid nervous system. Eur J Neurosci 17, 2256-2266. Baude, A., Molnar, E., Latawiec, D., McIlhinney, R. A., and Somogyi, P. (1994). Synaptic and nonsynaptic localization of the GluR1 subunit of the AMPA-type excitatory amino acid receptor in the rat cerebellum. J Neurosci 14, 2830-2843. Beal, M. F., Brouillet, E., Jenkins, B., Henshaw, R., Rosen, B., and Hyman, B. T. (1993). Age-dependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate. J Neurochem 61, 1147-1150. Bear, J., Fountain, N. B., and Lothman, E. W. (1996). Responses of the superficial entorhinal cortex in vitro in slices from naive and chronically epileptic rats. J Neurophysiol 76, 2928-2940. Bennett, M. V., Pellegrini-Giampietro, D. E., Gorter, J. A., Aronica, E., Connor, J. A., and Zukin, R. S. (1996). The GluR2 hypothesis: Ca(++)-permeable AMPA receptors in delayed neurodegeneration. Cold Spring Harb Symp Quant Biol 61, 373-384. Bettler, B., Boulter, J., Hermans-Borgmeyer, I., O'Shea-Greenfield, A., Deneris, E. S., Moll, C., Borgmeyer, U., Hollmann, M., and Heinemann, S. (1990). Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development. Neuron 5, 583-595. Bettler, B., Egebjerg, J., Sharma, G., Pecht, G., Hermans-Borgmeyer, I., Moll, C., Stevens, C. F., and Heinemann, S. (1992). Cloning of a putative glutamate receptor: a low affinity kainate-binding subunit. Neuron 8, 257-265. Bianchi, R., and Wong, R. K. (1995). Excitatory synaptic potentials dependent on metabotropic glutamate receptor activation in guinea-pig hippocampal pyramidal cells. J Physiol 487 ( Pt 3), 663-676. Birnboim, H. C., and Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid9-129. Alexiadou, Artemis, et al. (2000) “Introduction”, in Artemis Alexiadou et al. (eds.) The Syntax of Relative Clauses, 1-51. Amsterdam: John Benjamins Publishing Company. Baker, C. L. (1995) English Syntax. Cambridge, Massachusetts: The MIT Press. Basilico, David (1996) “Head Position and Internally Headed Relative Clauses”, Language 72.3, 498-532. Bianchi, Valentina (2000) “The Raising Analysis of Relative Clauses: A Reply to Borsley”, Linguistic Inquiry 31.1, 123-140. Biber, Douglas et al. (2000) Longman Grammar of Spoken and Written English. Beijing: Foreign Language Teaching and Research Press. Borer, Hagit (1984) “Restrictive Relatives in Modern Hebrew”, Natural Language and Linguistic Theory 2, 219-260. Borsley, Robert D. (1997) “Relative Clauses and the Theory of Phrase Structure”, Linguistic Inquiry 28.4, 629-647. Chang, Melody Ya-yin (1998) Wh-Constuctions And the Problem of Wh-Movement in Tsou, MA Thesis in National Tsing Hua University, Taiwan. Chang, Melody Ya-yin (2004) Subjecthood in Tsou Grammar, PhD dissertation in National Tsing Hua University, Taiwan. Chang, Yung-li (1997) Voice, Case and Agreement in Seediq and Kavalan, PhD dissertation in National Tsing Hua University, Taiwan. Chang, Yung-li (2003a) “Meaning and Grammar: Perspectives from Formosan Languages”, handout presented in the course “Grammar, Semantics and Pragmatics” held by the Linguistic Society of Taiwan, 1-14. Chang, Yung-li (2003b) “AF verbs: transitive, intransitive, or both?”, paper presented in the 2nd Workshop on Formosan Languages: One the Notion of “Verb” in Formosan Languages. Taipei, Academia Sinica. Cheng, Lisa Lai-Shen (1989) “Aspectual Licensing of pro in Mandarin Chinese”, manuscript in MIT. Chomsky, Noam (1977) “On Wh-Movement”, in Peter Culicover, Thomas Wasow and Adrian Akmajian (eds.) Formal Syntax, 71-132. New York: Academic Press. Chomsky, Noam (1982) Some Concepts and Consequences of the Thoery of Government and Binding. Cambridge, Massachusetts: The MIT Press. Chomsky, Noam (1986a) Barriers. Cambridge, Massachusetts: The MIT Press. Chomsky, Noam (1986b) Knowledge of Language. New York: Praeger. Chomsky, Noam (1995) The Minimalist Program. Cambridge, Massachusetts: The MIT Press. Cole, Peter (1987) “The Structure of Internally Headed Relative Clauses”, Natural Language and Linguistic Theory 5, 277-302. Cole, Peter, Wayne Harbert, and Gabriella Hermon (1982) “Headless Relative Clauses in Quechua”, International Journal of American Linguistics 48.2, 113-124. Comrie, Bernard (1976) Aspect. Cambridge: Cambridge University Press. Comrie, Bernard (1981) Language Universals and Linguistic Typology—Syntax and Morphology. USA: University of Chicago Press. Culy, Christopher Douglas (1990) The Syntax and Semantics of Internally Headed Relative Clauses, PhD dissertation in Stanford University. Egerod, Søren (1965) “Verb Inflexion in Atayal”, Lingua 15, 251-282. Egerod, Søren (1966) “Word Order and Word Classes in Atayal”, Language 42.2, 346-369. Egerod, Søren (1980) Atayal-English Dictionary (1st edition). London: Curzon Press Ltd. Egerod, Søren (1999) Atayal-English Dictionary (2nd edition). Copenhagen: The Royal Danish Academy of Sciences and Letters. Finegan, Edward (1999) Language: Its Structure and Use (3rd edition). Fort Worth: Harcourt Brace College Publishers. Georgopoulos, Carol (1991) Syntactic Variables. Dordrecht: Kluwer Academic Publishers. Givón, Talmy (1990) Syntax: A Functional-typological Introduction Volume II. Amsterdam: John Benjamins. Haegeman, Liliane (1994) Introduction to Government & Binding Theory (2nd edition). Oxford, UK: Blackwell Publishers Ltd. Hatakeyama, Yuji (1998) “Topic- and focus-topicalizations”, The Linguistic Review 15, 341-359. Hayashi, Yuli and Taisuke Nishigauchi (2003) “Head-internal Relative Clauses and the Mapping Hypothesis”, Theoretical and Applied Linguistics at Kobe Shoin 6, 65-85. Higginbotham, James (1985) “On Semantics”, Linguistic Inquiry 16.4, 547-593. Hoshi, Koji (1996) “The Head-Internal Relative Clause in Japanese: An Empty Head Noun Approach”, in Noriko Akatsuka, Shoichi Iwasaki and Susan Strauss (eds.) Japanese/Korean Linguistics vol. 5, 253-268. Hsin, Aili (1996) “Noun Phrase Structure and Focus Marking in Kavalan”, The Tsing Hua Journal of Chinese Studies, New Series 26.3, 323-364. Huang, C. –T. James (1982a) Logical Relations in Chinese and the Theory of Grammar, PhD dissertation in Massachusetts Institute of Technology, USA.. Huang, C. –T. James (1982b) “On the Representation of Scope”, Journal of Chinese Linguistics 11.1, 36-91. Huang, C. –T. James (1984) “On the Distribution and Reference of Empty Pronouns”, Linguistic Inquiry 15.4, 531-574. Huang, C. –T. James (1989) “Pro-drop in Chinese: A Generalized Control Theory”, in Osvalda Jaeggli and Kenneth J. Safir (eds.) The Null Subject Parameter, 185-214. Dordrecht: Kluwer Academic Publishers. Huang, C. –T. James (1994) “More on Chinese Word Order and Parametric Theory”, in Barbara Lust et al. (eds.) Syntactic Theory and First Language Acquisition: Cross-Linguistic Perspectives Volume One: Heads, Projections, and Learnability, 15-35. Hillsdate, NJ: Lawrence Erlbaum Associates Publishers. Huang, Lillian M. -C. (1989) “The Pronominal System in Atayal”, Studies in English Literature and Linguistics 15, 115-133. Huang, Lillian M. -C. (1991) “The Semantics of s- in Atayal”, Studies in English Literature and Linguistics 17, 37-50. Huang, Lillian M.-C. (1993) A Study of Atayal Syntax. Taipei: Crane Publishing Co. Huang, Lillian M.-C. (1994) “Ergativity in Atayal”, Oceanic Linguistics 33.1, 129-143. Huang, Lillian M.-C. (1995a) A Study of Mayrinax Syntax. Taipei: Crane Publishing Co. Huang, Lillian M.-C. (1995b) “The Voice System in Atayal”, in Feng-fu Tsao and Mei-hue Tsai (eds.) Papers from the First International Symposium on Languages in Taiwan, 73-98. Taipei: Crane Publishing Co. Huang, Lillian M.-C. (1996a) “Taiwan nantao yuyan wenfa guanxi xingtai zhi tanjiu (I) (A Typological Study of Grammatical Relations in Some Formosan Languages (I))”, in Chiu-yu Tseng and Dah-an Ho (eds.) Yuyan xuemen zhuanti jihua chengguo fabiaofhei lunwenji (The Proceedings of the Conference of Linguistic Research Projects), 25.1-25.15. Taipei: Academia Sinica & the National Science Council. [In Chinese ] Huang, Lillian M.-C. (1996b) “A Syntactic and Semantic Study of –ay, -aw and –anay in Mayrinax Atayal”, Studies in English Literature and Linguistics 22, 15-36. Huang, Lillian M.-C. (2000a) Atayal cankao yufa (An Atayal Reference Grammar). Series on Formosan Languages, 1. Taipei: Yuanliou Publishing Co. [In Chinese ] Huang, Lillian M.-C. (2000b) “Verb Classification in Mayrinax Atayal”, Oceanic Linguistics 39.2, 364-390. Huang, Lillian M.-C. (2001) “Grammaticalization in Atayal: A Case Study”, paper presented at the International Symposium on Austronesian Cultures: Issues Relating to Taiwan, Taipei. Huang, Lillian M.-C. (2003) “Verb Classification in Atayal”, handout presented in the 2nd Workshop on Formosan Languages: One the Notion of “Verb” in Formosan Languages. Taipei, Academia Sinica. Huang, Lillian M.-C. et al (1998) “A Typological Overview of Nominal Case Marking Systems of Some Formosan Languages”, in Shuanfan Huang (ed.) Selected Papers from the Second International Symposium on Languages in Taiwan. Taipei: Crane Publishing Co. Huang, Lillian M. -C. et al. (1999) “A Typological Overview of Pronominal System of Some Formosan Languages”, Selected Papers from the Fifth International Conference on Chinese Linguistics. Taipei: The Crane Publishing Co. Jackendoff, Ray (1977) X-bar Syntax: A Study of Phrase Structure. Cambridge, USA: The MIT Press. Kayne, Richard S. (1981) “ECP Extensions”, Linguistic Inquiry 12.1, 93-133. Kayne, Richard S. (1994) The Antisymmetry of Syntax. Cambridge, Massachusetts: The MIT Press. Keenan, Edward L. (1985) “Relative Clauses”, in Timothy Shopen (ed.) Language Typology and Syntactic Description (Volume II): Complex Construction. Cambridge: Cambridge University Press. Keenan, Edward L. 本論文從田調語言學和衍生句法學的角度,研究尖石地區賽考利克泰雅語的關係子句。帶有連繫詞ka?祖疑鰜Y子句和不帶有連繫詞ka?祖疑鰜Y子句,證明為兩種不同的關係子句。前者結構上為「外在型關係子句」,語意上為「限制性關係子句」;而後者結構上為「內在型關係子句」,語意上為「非限制性關係子句」。這項區別可以由詞序、接應代詞、時間狀語和專有名詞等證據支持。連繫詞ka?砟 ]證明為補語標記,並非關係代名詞或是格位標記。 基於泰雅語的外在型關係子句,我們主張傳統的「標準分析法」較優於Kayne(1994)所提出的「非對稱分析法」。雖然非對稱分析法可以衍生各種線性次序,但是這種分析不僅會造成過度衍生的現象,更無法解釋賽考利克泰雅語中補語標記的省略。相反地,標準分析法不但沒有這些問題,還能一致性地解釋泰雅語、漢語和英語中外在型關係子句的詞組結構。此外,泰雅語的外在型關係子句呈現出孤島效應上的「論元-附加語不對稱」,以及關係化上的「主賓語不對稱」,這些現象更加支持標準分析法的分析。 至於泰雅語的內在型關係子句,因為句法上的分佈不相同,所以並不能分析為狀語子句。就孤島效應而論,名前內在型關係子句和名後內在型關係子句在句法上有其不同:前者的中心名詞移位至補語詞組的指示語位置,檢驗時間屬性和關係化屬性;後者的中心名詞則基底衍生在補語詞組的指示語位置。然而,不論名前名後,內在型關係子句都是非限制性關係子句。id NH0925105013 sid 868604 cfn 0 / id NH0925105014 auc 吳嘉茂 tic 人類嗜伊紅血球陽離子蛋白進入細胞及毒性機制 adc 張大慈 ty 博士 sc 國立清華大學 dp 生命科學系 yr 92 lg 英文 pg 101 kwc 嗜伊紅血球 kwc 嗜伊紅血球陽離子蛋白 kwc 生長抑制 kwc 細胞毒性 kwc 訊號序列 kwc 蛋白質水解脢 kwc 訊號序列水解酵素 abc 人類嗜伊紅血球陽離子蛋白是嗜伊紅血球顆粒中蛋白之主要組成之一,它通常被當作氣喘或過敏性疾病之臨床生物診斷指標。文獻指出嗜伊紅血球陽離子蛋白是由活化的嗜伊紅血球中所分泌的一個毒性蛋白。嗜伊紅血球陽離子蛋白已經被證實可以損害許多不同組織的細胞膜,但目前造成這種損害的機制並不清楚。在此論文中我們利用蛋白質重組技術融合嗜伊紅血球陽離子蛋白、綠色螢光蛋白及組胺酸標示,並成功利用大腸桿菌表現此一融合蛋白(mECP-eGFP-6H)。經由組胺酸標示親和性管柱層析純化過後之融合蛋白加入大白鼠神經內分泌細胞株(GH3)中,並藉此觀察嗜伊紅血球陽離子蛋白進入神經內分泌細胞的能力。我們發現嗜伊紅血球陽離子蛋白融合蛋白不僅可進入神經內分泌細胞中還可以抑制細胞的生長,其IC50為0.8微莫爾濃度。此外,我們利用酵母菌雙雜和及免疫沈澱的實驗方法篩選出一個蛋白質C端水解脢(CPE),並證實它和嗜伊紅血球陽離子蛋白間有直接的蛋白質-蛋白質交互作用。我們更進一步證實在CPE胺基酸序列中第318到387的胺基酸序列片段在此蛋白質-蛋白質作用中扮演不可或缺的角色,此一胺基酸序列片段在CPE中的功能目前並不明。除此之外,我們利用大量表現CPE突變蛋白(preproHA-CPES471A,E472A)的方法阻止其由細胞膜上回收的步驟,藉此可抑制嗜伊紅血球陽離子蛋白融合蛋白進入細胞的能力。由此可證,嗜伊紅血球陽離子蛋白進入細胞的機制與CPE在細胞中的回收過程有關。另一方面,過去已經有許多文獻針對成熟嗜伊紅血球陽離子蛋白特性的研究被發表,然而目前並沒有對嗜伊紅血球陽離子蛋白的前導序列(signal peptide)的研究。我們利用在大腸桿菌、嗜甲醇酵母菌及人類上皮腫瘤細胞中表現數個在胺基端含有嗜伊紅血球陽離子蛋白前導序列的融合蛋白來研究嗜伊紅血球陽離子蛋白的前導序列的功能。我們發現到表現數嗜伊紅血球陽離子蛋白前導序列融合蛋白會造成大腸桿菌及嗜甲醇酵母菌的生長抑制,然而對人類上皮腫瘤細胞卻沒有此一影響。藉由分析嗜伊紅血球陽離子蛋白前導序列的氨基酸序列及利用試管內轉錄/轉譯的實驗方式,我們也發現到嗜伊紅血球陽離子蛋白前導序列可能是人類蛋白質前導序列水解脢(human signal peptide peptidase)的受質,它是一個位於內質網膜上的蛋白質水解脢。此外,以小型干擾核醣核酸(siRNA)的方式壓制人類蛋白質前導序列水解脢的表現後,表現嗜伊紅血球陽離子蛋白前導序列融合蛋白的人類上皮腫瘤細胞也出現生長抑制的情形。另一方面,在表現嗜伊紅血球陽離子蛋白前導序列融合蛋白的嗜甲醇酵母菌中同時表現人類蛋白質前導序列水解脢可以讓酵母菌的生長恢復。總而言之,此論文中我們發現了CPE協助嗜伊紅血球陽離子蛋白進入神經內分泌細胞的新功能,經由此胞飲作用進入細胞中的嗜伊紅血球陽離子蛋白因此可抑制細胞的生長。此外,我們亦發現嗜伊紅血球陽離子蛋白前導序列是一個毒性氨基酸序列,而細胞中表現的蛋白質前導序列水解脢可以保護細胞不被嗜伊紅血球陽離子蛋白前導序列的毒性影響。 tc 中文摘要………………………………………………………………………………………1 Abstract ……………………………………………………………………………..............3 Abbreviations……………………………………………………………………………….5 Chapter 1 Background…………………………………………………………………….7 1-1. Human ribonuclease A superfamily…………………………………………………7 1-2. Eosinophils………………………………….……………………………………….7 1-2-1. Biological function of eosinophil…………………………………………………8 1-2-2. Component of eosinophils granule protein………………………………….…….8 1-2-3. Eosinophil granule ribonucleases………………………………………………....9 Chapter 2 The Cell entry of Eosinophil Cationic Protein………………..…………...…..11 2-1. Introduction………………………………………………………………………...11 2-2. Materials and Methods…………………………………………………….………14 2-2-1. Cell culture and transfection…………………………………………………….14 2-2-2. Preparation of recombinant mECP-eGFP-6H and eGFP-6H fusion proteins…..14 2-2-3. MTT assay for GH3 cell growth………………………………………………..15 2-2-4. Uptake of mECP-eGFP6H into GH3 cells……………………………………...16 2-2-5. Yeast two-hybrid assay………………………………………………………….16 2-2-6. Constructions of CPE deletion mutants……………………………………….....18 2-2-7. Immunoprecipitation and Western blot analysis………………………………...18 2-2-8. Construction of preproHA-CPES471A,E472A mutation……………………………..19 2-3. Results……………………………………………………………………………...20 2-3-1. Preparation of Recombinant mECP-eGFP-6H and eGFP-6H…………………...20 2-3-2. mECP-eGFP-6H inhibits the growth of neuroendocrine cells…………………..20 2-3-3. Secretagogues and lysosomotrophic agents affect mECP-eGFP-6H uptake into cells……………………………………………………………………………..21 2-3-4. CPE interacts with mature ECP in yeast cells…………………………………...22 2-3-5. mECP is associated with CPE in vitro…………………………………………..22 2-3-6. The region from 318 to 387 of mature CPE is indispensable for association with mECP in yeast…………………………………………………………………..23 2-3-7. The uptake of mECP-eGFP-6H fusion protein is blocked by dominant-negative expression of the preproHA-CPES471A,E472A in GH3 cells………………………24 2-4. Discussion……………………………………………………………………….…26 Chapter 3 The Toxicity of Eosinophil Cationic Protein Signal Peptide……………….41 3-1. Introduction…………………………………………………………………….….41 3-2. Materials and Methods……………………………………………………………44 3-2-1. Cell culture………………………………………………………………………44 3-2-2. RNA isolation, RT-PCR and Northern blotting…………………………………44 3-2-3. Plasmids preparation for E. coli, P. pastori and mammalian expression systems………………………………………………………………………….46 3-2-4. Construction of recombinant pSilencer expressing siRNA205 specific to hSPP......................................................................................................................47 3-2-5. Transfection……………………………………………………………………...48 3-2-6. In vitro transcription and translation…………………………………………….48 3-2-7. Monitoring the cell proliferation by MTT assay…………………………..…….49 3-2-8. eGFP detection by fluorescence microscopy and Western blotting……………..50 3-2-9. De novo protein synthesis in P. pastoris……………………………………..….50 3-3. Result………………………………………………………………………………52 3-3-1. Expression of ECPsp chimeric proteins causes the growth inhibitory effect on E. coli and P. pastoris cells………………………………………………………….52 3-3-2. Expression of ECPsp chimeric proteins in mammalian cell line A431 do not cause the growth inhibitory effect………………………………………………….….53 3-3-3. ECPsp is a potential substrate for signal peptide peptidase in vitro……………..54 3-3-4. Human SPP mRNA was expressed in ECPsp-eGFP/A431 stable clone and HL60 clone- 15………………………………………………………………………..55 3-3-5. Knockdown of the hSPP mRNA level in ECPsp-eGFP/A431 stable clone decreased the proliferation rate………………………………………………....55 3-3-6. Complementary expression of human SPP restores the growth of ECPsp-eGFP/GS115…………………………………………………………….56 3-4. Discussion………………………………………………………………………….57 Chapter 4 Conclusion……………………………………………………………………….72 References……………………………………………………………………………...……75 Appendix…………………………………………………………………………………….85 Supplement figures………………………………………………………………………..89rf [1 ] G. J. Gleich, and C. R. Adolphson, The eosinophilic leukocyte: structure and function, Adv Immunol 39 (1986) 177-253. [2 ] C. Kroegel, J. A. Warner, J. C. Virchow, Jr., and H. Matthys, Pulmonary immune cells in health and disease: the eosinophil leucocyte (Part II), Eur Respir J 7 (1994) 743-760. [3 ] M. A. Giembycz, and M. A. Lindsay, Pharmacology of the eosinophil, Pharmacol Rev 51 (1999) 213-340. [4 ] A. J. Wardlaw, R. Moqbel, and A. B. Kay, Eosinophils: biology and role in disease, Adv Immunol 60 (1995) 151-266. [5 ] J. Bousquet, P. Chanez, A. M. Campbell, A. M. Vignola, and P. Godard, Cellular inflammation in asthma, Clin Exp Allergy 25 Suppl 2 (1995) 39-42. [6 ] S. J. Ackerman, D. A. Loegering, P. Venge, I. Olsson, J. B. Harley, A. S. Fauci, and G. J. Gleich, Distinctive cationic proteins of the human eosinophil granule: major basic protein, eosinophil cationic protein, and eosinophil-derived neurotoxin, J Immunol 131 (1983) 2977-2982. [7 ] M. S. Peters, M. Rodriguez, and G. J. Gleich, Localization of human eosinophil granule major basic protein, eosinophil cationic protein, and eosinophil-derived neurotoxin by immunoelectron microscopy, Lab Invest 54 (1986) 656-662. [8 ] J. G. Grantham, J. A. Meadows, 3rd, and G. J. Gleich, Chronic eosinophilic pneumonia. Evidence for eosinophil degranulation and release of major basic protein, Am J Med 80 (1986) 89-94. [9 ] J. Bousquet, P. Chanez, J. Y. Lacoste, G. Barneon, N. Ghavanian, I. Enander, P. Venge, S. Ahlstedt, J. Simony-Lafontaine, P. Godard, and et al., Eosinophilic inflammation in asthma, N Engl J Med 323 (1990) 1033-1039. [10 ] D. T. Durack, S. J. Ackerman, D. A. Loegering, and G. J. Gleich, Purification of human eosinophil-derived neurotoxin, Proc Natl Acad Sci U S A 78 (1981) 5165-5169. [11 ] K. Fredens, R. Dahl, and P. Venge, The Gordon phenomenon induced by the eosinophil cationic protein and eosinophil protein X, J Allergy Clin Immunol 70 (1982) 361-366. [12 ] U. Gullberg, B. Widegren, U. Arnason, A. Egesten, and I. Olsson, The cytotoxic eosinophil cationic protein (ECP) has ribonuclease activity, Biochem Biophys Res Commun 139 (1986) 1239-1242. [13 ] G. J. Gleich, D. A. Loegering, M. P. Bell, J. L. Checkel, S. J. Ackerman, and D. J. McKean, Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease, Proc Natl Acad Sci U S A 83 (1986) 3146-3150. [14 ] H. F. Rosenberg, Recombinant human eosinophil cationic protein. Ribonuclease activity is not essential for cytotoxicity, J. Biol. Chem. 270 (1995) 7876-7881. [15 ] T. Maeda, K. Mahara, M. Kitazoe, J. Futami, A. Takidani, M. Kosaka, H. Tada, M. Seno, and H. Yamada, RNase 3 (ECP) is an extraordinarily stable protein among human pancreatic-type RNases, J. Biochem. (Tokyo) 132 (2002) 737-742. [16 ] H. F. Rosenberg, The eosinophil ribonucleases, Cell Mol Life Sci 54 (1998) 795-803. [17 ] R. I. Lehrer, D. Szklarek, A. Barton, T. Ganz, K. J. Hamann, and G. J. Gleich, Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein, J Immunol 142 (1989) 4428-4434. [18 ] K. J. Hamann, G. J. Gleich, J. L. Checkel, D. A. Loegering, J. W. McCall, and R. L. Barker, In vitro killing of microfilariae of Brugia pahangi and Brugia malayi by eosinophil granule proteins, J Immunol 144 (1990) 3166-3173. [19 ] K. J. Hamann, R. L. Barker, D. A. Loegering, and G. J. Gleich, Comparative toxicity of purified human eosinophil granule proteins for newborn larvae of Trichinella spiralis, J Parasitol 73 (1987) 523-529. [20 ] S. Motojima, E. Frigas, D. A. Loegering, and G. J. Gleich, Toxicity of eosinophil cationic proteins for guinea pig tracheal epithelium in vitro, Am Rev Respir Dis 139 (1989) 801-805. [21 ] K. Fredens, H. Dybdahl, R. Dahl, and U. Baandrup, Extracellular deposit of the cationic proteins ECP and EPX in tissue infiltrations of eosinophils related to tissue damage, Apmis 96 (1988) 711-719. [22 ] D. T. Durack, S. M. Sumi, and S. J. Klebanoff, Neurotoxicity of human eosinophils, Proc Natl Acad Sci U S A 76 (1979) 1443-1447. [23 ] J. D. Young, C. G. Peterson, P. Venge, and Z. A. Cohn, Mechanism of membrane damage mediated by human eosinophil cationic protein, Nature 321 (1986) 613-616. [24 ] H. F. Rosenberg, Recombinant human eosinophil cationic protein. Ribonuclease activity is not essential for cytotoxicity, J Biol Chem 270 (1995) 7876-7881. [25 ] R. L. Barker, D. A. Loegering, R. M. Ten, K. J. Hamann, L. R. Pease, and G. J. Gleich, Eosinophil cationic protein cDNA. Comparison with other toxic cationic proteins and ribonucleases, J Immunol 143 (1989) 952-955. [26 ] T. Maeda, M. Kitazoe, H. Tada, R. de Llorens, D. S. Salomon, M. Ueda, H. Yamada, and M. Seno, Growth inhibition of mammalian cells by eosinophil cationic protein, Eur J Biochem 269 (2002) 307-316. [27 ] T. Maeda, K. Mahara, M. Kitazoe, J. Futami, A. Takidani, M. Kosaka, H. Tada, M. Seno, and H. Yamada, RNase 3 (ECP) Is an Extraordinarily Stable Protein among Human Pancreatic-Type RNases, J Biochem (Tokyo) 132 (2002) 737-742. [28 ] G. Mallorqui-Fernandez, J. Pous, R. Peracaula, J. Aymami, T. Maeda, H. Tada, H. Yamada, M. Seno, R. de Llorens, F. X. Gomis-Ruth, and M. Coll, Three-dimensional crystal structure of human eosinophil cationic protein (RNase 3) at 1.75 A resolution, J Mol Biol 300 (2000) 1297-1307. [29 ] T. Hiratsuka, Selective fluorescent labeling of the 50-, 26-, and 20-kilodalton heavy chain segments of myosin ATPase, J Biochem (Tokyo) 101 (1987) 1457-1462. [30 ] J. Futami, M. Seno, M. Kosaka, H. Tada, S. Seno, and H. Yamada, Recombinant human pancreatic ribonuclease produced in E. coli: importance of the amino-terminal sequence, Biochem Biophys Res Commun 216 (1995) 406-413. [31 ] E. Manser, D. Fernandez, L. Loo, P. Y. Goh, C. Monfries, C. Hall, and L. Lim, Human carboxypeptidase E. Isolation and characterization of the cDNA, sequence conservation, expression and processing in vitro, Biochem J 267 (1990) 517-525. [32 ] J. Du, B. P. Keegan, and W. G. North, Key peptide processing enzymes are expressed by breast cancer cells, Cancer Lett 165 (2001) 211-218. [33 ] W. G. North, and J. Du, Key peptide processing enzymes are expressed by a variant form of small-cell carcinoma of the lung, Peptides 19 (1998) 1743-1747. [34 ] F. J. Eng, O. Varlamov, and L. D. Fricker, Sequences within the cytoplasmic domain of gp180/carboxypeptidase D mediate localization to the trans-Golgi network, Mol Biol Cell 10 (1999) 35-46. [35 ] W. Li, M. J. Moore, N. Vasilieva, J. Sui, S. K. Wong, M. A. Berne, M. Somasundaran, J. L. Sullivan, K. Luzuriaga, T. C. Greenough, H. Choe, and M. Farzan, Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature 426 (2003) 450-454. [36 ] O. Varlamov, F. Wu, D. Shields, and L. D. Fricker, Biosynthesis and packaging of carboxypeptidase D into nascent secretory vesicles in pituitary cell lines, J Biol Chem 274 (1999) 14040-14045. [37 ] O. Varlamov, F. J. Eng, E. G. Novikova, and L. D. Fricker, Localization of metallocarboxypeptidase D in AtT-20 cells. Potential role in prohormone processing, J Biol Chem 274 (1999) 14759-14767. [38 ] S. M. Rybak, and D. L. Newton, Natural and engineered cytotoxic ribonucleases: therapeutic potential, Exp Cell Res 253 (1999) 325-335. [39 ] J. S. Kim, J. Soucek, J. Matousek, and R. T. Raines, Mechanism of ribonuclease cytotoxicity, J Biol Chem 270 (1995) 31097-31102. [40 ] A. Bracale, D. Spalletti-Cernia, M. Mastronicola, F. Castaldi, R. Mannucci, L. Nitsch, and G. D'Alessio, Essential stations in the intracellular pathway of cytotoxic bovine seminal ribonuclease, Biochem J 362 (2002) 553-560. [41 ] P. A. Leland, and R. T. Raines, Cancer chemotherapy--ribonucleases to the rescue, Chem Biol 8 (2001) 405-413. [42 ] N. Olmo, J. Turnay, G. Gonzalez de Buitrago, I. Lopez de Silanes, J. G. Gavilanes, and M. A. Lizarbe, Cytotoxic mechanism of the ribotoxin alpha-sarcin. Induction of cell death via apoptosis, Eur J Biochem 268 (2001) 2113-2123. [43 ] M. C. Haigis, E. L. Kurten, R. L. Abel, and R. T. Raines, KFERQ sequence in ribonuclease A-mediated cytotoxicity, J Biol Chem 277 (2002) 11576-11581. [44 ] O. Varlamov, and L. D. Fricker, The C-terminal region of carboxypeptidase E involved in membrane binding is distinct from the region involved with intracellular routing, J Biol Chem 271 (1996) 6077-6083. [45 ] I. Arnaoutova, C. L. Jackson, O. S. Al-Awar, J. G. Donaldson, and Y. P. Loh, Recycling of Raft-associated prohormone sorting receptor carboxypeptidase E requires interaction with ARF6, Mol Biol Cell 14 (2003) 4448-4457. [46 ] T. Maeda, M. Kitazoe, H. Tada, R. de Llorens, D. S. Salomon, M. Ueda, H. Yamada, and M. Seno, Growth inhibition of mammalian cells by eosinophil cationic protein, Eur. J. Biochem. 269 (2002) 307-316. [47 ] G. Mallorqui-Fernandez, J. Pous, R. Peracaula, J. Aymami, T. Maeda, H. Tada, H. Yamada, M. Seno, R. de Llorens, F. X. Gomis-Ruth, and M. Coll, Three-dimensional crystal structure of human eosinophil cationic protein (RNase 3) at 1.75 A resolution, J. Mol. Biol. 300 (2000) 1297-1307. [48 ] C. M. Wu, H. T. Chang, and M. D. Chang, Membrane-bound carboxypeptidase E facilitates the entry eosinophil cationic protein to neuroendocrine cell, Biochem. J. Pt (2004). [49 ] T. A. Rapoport, B. Jungnickel, and U. Kutay, Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes, Annu. Rev. Biochem. 65 (1996) 271-303. [50 ] G. Blobel, and B. Dobberstein, Transfer to proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components, J. Cell Biol. 67 (1975) 852-862. [51 ] B. Martoglio, R. Graf, and B. Dobberstein, Signal peptide fragments of preprolactin and HIV-1 p-gp160 interact with calmodulin, EMBO. J. 16 (1997) 6636-6645. [52 ] J. McLauchlan, M. K. Lemberg, G. Hope, and B. Martoglio, Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets, EMBO. J. 21 (2002) 3980-3988. [53 ] M. K. Lemberg, F. A. Bland, A. Weihofen, V. M. Braud, and B. Martoglio, Intramembrane proteolysis of signal peptides: an essential step in the generation of HLA-E epitopes, J. Immunol. 167 (2001) 6441-6446. [54 ] F. Lyko, B. Martoglio, B. Jungnickel, T. A. Rapoport, and B. Dobberstein, Signal sequence processing in rough microsomes, J. Biol. Chem. 270 (1995) 19873-19878. [55 ] M. K. Lemberg, and B. Martoglio, Requirements for signal peptide peptidase-catalyzed intramembrane proteolysis, Mol. Cell. 10 (2002) 735-744. [56 ] A. Weihofen, K. Binns, M. K. Lemberg, K. Ashman, and B. Martoglio, Identification of signal peptide peptidase, a presenilin-type aspartic protease, Science 296 (2002) 2215-2218. [57 ] S. A. Fischkoff, Graded increase in probability of eosinophilic differentiation of HL-60 promyelocytic leukemia cells induced by culture under alkaline conditions, Leuk. Res. 12 (1988) 679-686. [58 ] H. L. Tiffany, F. Li, and H. F. Rosenberg, Hyperglycosylation of eosinophil ribonucleases in a promyelocytic leukemia cell line and in differentiated peripheral blood progenitor cells, J. Leukoc. Biol. 58 (1995) 49-54. [59 ] K. B. Wicher, M. Abou-Hachem, S. Halldorsdottir, S. H. Thorbjarnadottir, G. Eggertsson, G. O. Hreggvidsson, E. Nordberg Karlsson, and O. Holst, Deletion of a cytotoxic, N-terminal putatitive signal peptide results in a significant increase in production yields in Escherichia coli and improved specific activity of Cel12A from Rhodothermus marinus, Appl. Microbiol. Biotechnol. 55 (2001) 578-584. [60 ] J. C. Fenno, K. H. Muller, and B. C. McBride, Sequence analysis, expression, and binding activity of recombinant major outer sheath protein (Msp) of Treponema denticola, J. Bacteriol. 178 (1996) 2489-2497. [61 ] S. Huppert, and R. Kopan, Regulated intramembrane proteolysis takes another twist, Dev. Cell. 1 (2001) 590-592. [62 ] A. Weihofen, and B. Martoglio, Intramembrane-cleaving proteases: controlled liberation of proteins and bioactive peptides, Trends Cell Biol 13 (2003) 71-78. [63 ] B. Martoglio, and T. E. Golde, Intramembrane-cleaving aspartic proteases and disease: presenilins, signal peptide peptidase and their homologs, Hum Mol Genet 12 Spec No 2 (2003) R201-206.id NH0925105014 sid 888216 cfn 0 / id NH0925105015 auc 瞿立威 tic DNA末端特性影響Ku蛋白直接移轉能力之研究 adc 周文剛 ty 碩士 sc 國立清華大學 dp 生命科學系 yr 92 lg 中文 pg 69 kwc Ku蛋白 kwc 非同源性末端連結 kwc DNA雙股斷裂 abc 在哺乳動物細胞中,存在著兩種主要的DNA雙股斷裂修補機制,一種是同源性重組作用(homologous recombination),另一種則是非同源性末端連結作用(non-homologous end joining)。而在整個細胞週期的運行中又以非同源性末端連結作用最常被使用來進行DNA雙股斷裂的修補。在非同源性末端連結的修補機制中,DNA依存性蛋白質激脢(DNA-PK)擔負著非常重要的責任,而Ku蛋白則是這個蛋白質激脢聚合體中必要的單體。Ku蛋白是由Ku70及Ku80兩個次單元所構成的雜二次體,能夠與DNA末端結合促使DNA依存性蛋白質激脢催化單元(DNA-PKcs)的活化,進而徵集ligase Ⅳ與XRCC4 (X-ray repair cross complementing protein 4)對DNA雙股斷裂進行修補。故對於哺乳動物細胞而言,Ku蛋白及DNA-PKcs的變異或缺失往往是導致DNA雙股斷裂修補失敗以及輻射敏感作用的主因。 tc 目錄 …………………………………………………… Ⅰ 中文摘要 …………………………………………………… Ⅱ 英文摘要 …………………………………………………… Ⅳ 引言 …………………………………………………… 1 材料與方法 …………………………………………………… 13 結果 …………………………………………………… 21 討論 …………………………………………………… 37 參考文獻 …………………………………………………… 47 圖表 …………………………………………………… 52rf Astrom, S. U., Okamura, S. M. & Rine, J. (1999). Yeast cell-type regulation of DNA repair. Nature 397, 310. Bliss, T. M. & Lane, D. P. (1997). Ku selectively transfers between DNA molecules with homologous ends. J Biol Chem 272, 5765-73. Bodnarchuk, I. A. (2003). [Analysis of the role of DNA repair, regulation of cell cycle and apoptosis in the radiation-induced adaptive response of mammalian cells ]. Radiats Biol Radioecol 43, 19-28. Brady, N., Gaymes, T. J., Cheung, M., Mufti, G. J. & Rassool, F. V. (2003). Increased error-prone NHEJ activity in myeloid leukemias is associated with DNA damage at sites that recruit key nonhomologous end-joining proteins. Cancer Res 63, 1798-805. Calsou, P., Delteil, C., Frit, P., Drouet, J. & Salles, B. (2003). Coordinated assembly of Ku and p460 subunits of the DNA-dependent protein kinase on DNA ends is necessary for XRCC4-ligase IV recruitment. J Mol Biol 326, 93-103. Chan, D. W., Chen, B. P., Prithivirajsingh, S., Kurimasa, A., Story, M. D., Qin, J. & Chen, D. J. (2002). Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks. Genes Dev 16, 2333-8. Chiu, C. F., Lin, T. Y. & Chou, W. G. (2001). Direct transfer of Ku between DNA molecules with nonhomologous ends. Mutat Res 486, 185-94. Cooper, M. P., Machwe, A., Orren, D. K., Brosh, R. M., Ramsden, D. & Bohr, V. A. (2000). Ku complex interacts with and stimulates the Werner protein. Genes Dev 14, 907-12. d'Adda di Fagagna, F., Hande, M. P., Tong, W. M., Roth, D., Lansdorp, P. M., Wang, Z. Q. & Jackson, S. P. (2001). Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr Biol 11, 1192-6. Dai, Y., Kysela, B., Hanakahi, L. A., Manolis, K., Riballo, E., Stumm, M., Harville, T. O., West, S. C., Oettinger, M. A. & Jeggo, P. A. (2003). Nonhomologous end joining and V(D)J recombination require an additional factor. Proc Natl Acad Sci U S A 100, 2462-7. DiBiase, S. J., Zeng, Z. C., Chen, R., Hyslop, T., Curran, W. J., Jr. & Iliakis, G. (2000). DNA-dependent protein kinase stimulates an independently active, nonhomologous, end-joining apparatus. Cancer Res 60, 1245-53. Ding, Q., Reddy, Y. V., Wang, W., Woods, T., Douglas, P., Ramsden, D. A., Lees-Miller, S. P. & Meek, K. (2003). Autophosphorylation of the catalytic subunit of the DNA-dependent protein kinase is required for efficient end processing during DNA double-strand break repair. Mol Cell Biol 23, 5836-48. Douglas, P., Sapkota, G. P., Morrice, N., Yu, Y., Goodarzi, A. A., Merkle, D., Meek, K., Alessi, D. R. & Lees-Miller, S. P. (2002). Identification of in vitro and in vivo phosphorylation sites in the catalytic subunit of the DNA-dependent protein kinase. Biochem J 368, 243-51. Dynan, W. S. & Yoo, S. (1998). Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res 26, 1551-9. Featherstone, C. & Jackson, S. P. (1999). Ku, a DNA repair protein with multiple cellular functions? Mutat Res 434, 3-15. Gaymes, T. J., North, P. S., Brady, N., Hickson, I. D., Mufti, G. J. & Rassool, F. V. (2002). Increased error-prone non homologous DNA end-joining--a proposed mechanism of chromosomal instability in Bloom's syndrome. Oncogene 21, 2525-33. Goedecke, W., Eijpe, M., Offenberg, H. H., van Aalderen, M. & Heyting, C. (1999). Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis. Nat Genet 23, 194-8. Goudelock, D. M., Jiang, K., Pereira, E., Russell, B. & Sanchez, Y. (2003). Regulatory Interactions between the Checkpoint Kinase Chk1 and the Proteins of the DNA-dependent Protein Kinase Complex. J Biol Chem 278, 29940-7. Goytisolo, F. A., Samper, E., Edmonson, S., Taccioli, G. E. & Blasco, M. A. (2001). The absence of the dna-dependent protein kinase catalytic subunit in mice results in anaphase bridges and in increased telomeric fusions with normal telomere length and G-strand overhang. Mol Cell Biol 21, 3642-51. Haber, J. E. (2000). Partners and pathwaysrepairing a double-strand break. Trends Genet 16, 259-64. Hoeijmakers, J. H. (2001). Genome maintenance mechanisms for preventing cancer. Nature 411, 366-74. Hsu, H. L., Gilley, D., Galande, S. A., Hande, M. P., Allen, B., Kim, S. H., Li, G. C., Campisi, J., Kohwi-Shigematsu, T. & Chen, D. J. (2000). Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev 14, 2807-12. Hsu, H. L., Yannone, S. M. & Chen, D. J. (2002). Defining interactions between DNA-PK and ligase IV/XRCC4. DNA Repair (Amst) 1, 225-35. Karmakar, P., Snowden, C. M., Ramsden, D. A. & Bohr, V. A. (2002). Ku heterodimer binds to both ends of the Werner protein and functional interaction occurs at the Werner N-terminus. Nucleic Acids Res 30, 3583-91. Karran, P. (2000). DNA double strand break repair in mammalian cells. Curr Opin Genet Dev 10, 144-50. Khanna, K. K. & Jackson, S. P. (2001). DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27, 247-54. Koike, M. (2002). Dimerization, translocation and localization of Ku70 and Ku80 proteins. J Radiat Res (Tokyo) 43, 223-36. Koike, M., Shiomi, T. & Koike, A. (2001). Dimerization and nuclear localization of ku proteins. J Biol Chem 276, 11167-73. Lindahl, T. & Wood, R. D. (1999). Quality control by DNA repair. Science 286, 1897-905. Merel, P., Prieur, A., Pfeiffer, P. & Delattre, O. (2002). Absence of major defects in non-homologous DNA end joining in human breast cancer cell lines. Oncogene 21, 5654-9. Merkle, D., Douglas, P., Moorhead, G. B., Leonenko, Z., Yu, Y., Cramb, D., Bazett-Jones, D. P. & Lees-Miller, S. P. (2002). The DNA-dependent protein kinase interacts with DNA to form a protein-DNA complex that is disrupted by phosphorylation. Biochemistry 41, 12706-14. Mimori, T., Akizuki, M., Yamagata, H., Inada, S., Yoshida, S. & Homma, M. (1981). Characterization of a high molecular weight acidic nuclear protein recognized by autoantibodies in sera from patients with polymyositis-scleroderma overlap. J Clin Invest 68, 611-20. Mimori, T. & Hardin, J. A. (1986). Mechanism of interaction between Ku protein and DNA. J Biol Chem 261, 10375-9. Muller, C., Calsou, P., Frit, P. & Salles, B. (1999). Regulation of the DNA-dependent protein kinase (DNA-PK) activity in eukaryotic cells. Biochimie 81, 117-25. Nick McElhinny, S. A., Snowden, C. M., McCarville, J. & Ramsden, D. A. (2000). Ku recruits the XRCC4-ligase IV complex to DNA ends. Mol Cell Biol 20, 2996-3003. Peterson, S. E., Stellwagen, A. E., Diede, S. J., Singer, M. S., Haimberger, Z. W., Johnson, C. O., Tzoneva, M. & Gottschling, D. E. (2001). The function of a stem-loop in telomerase RNA is linked to the DNA repair protein Ku. Nat Genet 27, 64-7. Pierce, A. J. & Jasin, M. (2001). NHEJ deficiency and disease. Mol Cell 8, 1160-1. Rassool, F. V. (2003). DNA double strand breaks (DSB) and non-homologous end joining (NHEJ) pathways in human leukemia. Cancer Lett 193, 1-9. Rich, T., Allen, R. L. & Wyllie, A. H. (2000). Defying death after DNA damage. Nature 407, 777-83. Richardson, C. & Jasin, M. (2000). Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405, 697-700. Riha, K. & Shippen, D. E. (2003). Ku is required for telomeric C-rich strand maintenance but not for end-to-end chromosome fusions in Arabidopsis. Proc Natl Acad Sci U S A 100, 611-5. Rothkamm, K., Kruger, I., Thompson, L. H. & Lobrich, M. (2003). Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23, 5706-15. Samper, E., Goytisolo, F. A., Slijepcevic, P., van Buul, P. P. & Blasco, M. A. (2000). Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep 1, 244-52. Sawada, M., Hayes, P. & Matsuyama, S. (2003a). Cytoprotective membrane-permeable peptides designed from the Bax-binding domain of Ku70. Nat Cell Biol 5, 352-7. Sawada, M., Sun, W., Hayes, P., Leskov, K., Boothman, D. A. & Matsuyama, S. (2003b). Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat Cell Biol 5, 320-9. Schild-Poulter, C., Pope, L., Giffin, W., Kochan, J. C., Ngsee, J. K., Traykova-Andonova, M. & Hache, R. J. (2001). The binding of Ku antigen to homeodomain proteins promotes their phosphorylation by DNA-dependent protein kinase. J Biol Chem 276, 16848-56. Smith, J., Baldeyron, C., De Oliveira, I., Sala-Trepat, M. & Papadopoulo, D. (2001). The influence of DNA double-strand break structure on end-joining in human cells. Nucleic Acids Res 29, 4783-92. Song, K., Jung, D., Jung, Y., Lee, S. G. & Lee, I. (2000). Interaction of human Ku70 with TRF2. FEBS Lett 481, 81-5. Tamura, K., Adachi, Y., Chiba, K., Oguchi, K. & Takahashi, H. (2002). Identification of Ku70 and Ku80 homologues in Arabidopsis thaliana: evidence for a role in the repair of DNA double-strand breaks. Plant J 29, 771-81. Tong, W. M., Cortes, U., Hande, M. P., Ohgaki, H., Cavalli, L. R., Lansdorp, P. M., Haddad, B. R. & Wang, Z. Q. (2002). Synergistic role of Ku80 and poly(ADP-ribose) polymerase in suppressing chromosomal aberrations and liver cancer formation. Cancer Res 62, 6990-6. van Gent, D. C., Hoeijmakers, J. H. & Kanaar, R. (2001). Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2, 196-206. Walker, J. R., Corpina, R. A. & Goldberg, J. (2001). Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412, 607-14. Wang, H., Wang, X., Zhou, X. Y., Chen, D. J., Li, G. C., Iliakis, G. & Wang, Y. (2002). Ku affects the ataxia and Rad 3-related/CHK1-dependent S phase checkpoint response after camptothecin treatment. Cancer Res 62, 2483-7. Wei, C., Skopp, R., Takata, M., Takeda, S. & Price, C. M. (2002). Effects of double-strand break repair proteins on vertebrate telomere structure. Nucleic Acids Res 30, 2862-70. Weller, G. R., Kysela, B., Roy, R., Tonkin, L. M., Scanlan, E., Della, M., Devine, S. K., Day, J. P., Wilkinson, A., di Fagagna, F., Devine, K. M., Bowater, R. P., Jeggo, P. A., Jackson, S. P. & Doherty, A. J. (2002). Identification of a DNA nonhomologous end-joining complex in bacteria. Science 297, 1686-9. West, C. E., Waterworth, W. M., Story, G. W., Sunderland, P. A., Jiang, Q. & Bray, C. M. (2002). Disruption of the Arabidopsis AtKu80 gene demonstrates an essential role for AtKu80 protein in efficient repair of DNA double-strand breaks in vivo. Plant J 31, 517-28. Williams, B. & Lustig, A. J. (2003). The paradoxical relationship between NHEJ and telomeric fusion. Mol Cell 11, 1125-6. Wilson, T. E., Topper, L. M. & Palmbos, P. L. (2003). Non-homologous end-joining: bacteria join the chromosome breakdance. Trends Biochem Sci 28, 62-6. Zhang, W. W. & Yaneva, M. (1992). On the mechanisms of Ku protein binding to DNA. Biochem Biophys Res Commun 186, 574-9. Zhou, B. B. & Elledge, S. J. (2000). The DNA damage response: putting checkpoints in perspective. Nature 408, 433-9. Zhou, X. Y., Wang, X., Wang, H., Chen, D. J., Li, G. C., Iliakis, G. & Wang, Y. (2002). Ku affects the ATM-dependent S phase checkpoint following ionizing radiation. Oncogene 21, 6377-81.id NH0925105015 sid 904249 cfn 0 / id NH0925108001 auc 呂政鴻 tic 絲胺酸蛋白 tic & tic #37238;抑制劑基因SERPINB13對攝護腺癌細胞之影響 adc 徐邦達 ty 碩士 sc 國立清華大學 dp 生物技術研究所 yr 92 lg 中文 pg 58 kwc 絲胺酸蛋白 kwc & kwc #37238;抑制劑 kwc 攝護腺癌 kwc SERPINB13 kwc PC-3 kwc 癌轉移 kwc 活體外癌細胞侵襲實驗 abc 過去十年來在國人罹患攝護腺癌 (prostate cancer) 的比例與死亡率逐年增加,目前已高居台灣地區第八大癌症死因,攝護腺癌早期發現,其存活率可高達 90% 以上,但若發生癌轉移則存活率將降至30%左右,如能有效抑制攝護腺癌的侵襲與轉移,將有助於罹癌病患存活率的提升。骨頭是攝護腺癌中僅次於淋巴結最常發生轉移的部位,攝護腺癌會加快骨生成與骨喪失作用,骨喪失作用的增加會使細胞外間質釋放某些因子促使癌生成,蛋白酶Cathepsin K在骨蝕作用中會分解細胞外間質,而已被證實是絲胺酸蛋白酶抑制劑SERPINB13 的目標蛋白酶,而絲胺酸蛋白酶抑制劑SERPINB13基因是SerpinB 家族中的新成員,該家族中有十個成員均位於人類染色體18q21.3的位置,與它相鄰的SERPINB5已被證明是抑癌基因。再者第十八條染色體發生異質性消失的情形與許多癌症具有關連性,基於相同基因cluster的基因組可能具有相似的功能,所以推測SERPINB13在攝護腺癌可能具有類似的功能。SERPINB13基因具有三種不同的截接型態,其差異發生在位於helix C與helix D之間的interhelical loop,依據interhelical loop 長度的減少我們將它們稱之為SERPINB13(0)、SERPINB13(-9)、SERPINB13(-10)。 tc 一、 中文摘要………………………………… 1 二、 英文摘要………………………………… 3 三、 前言……………………………………… 5 四、 材料與方法……………………………… 14 五、 結果……………………………………… 28 六、 討論……………………………………… 33 七、 參考文獻………………………………… 37 八、 圖表……………………………………… 43 九、 附錄……………………………………… 60rf 行政院衛生署(2004),九十二年台灣地區癌症主要死亡原因. Abraham, S., Zhang, W., Greenberg, N., and Zhang, M. (2003). Maspin functions as tumor suppressor by increasing cell adhesion to extracellular matrix in prostate tumor cells. J Urol 169, 1157-1161. Abts, H. F., Welss, T., Mirmohammadsadegh, A., Kohrer, K., Michel, G., and Ruzicka, T. (1999). Cloning and characterization of hurpin (protease inhibitor 13): A new skin-specific, UV-repressible serine proteinase inhibitor of the ovalbumin serpin family. J Mol Biol 293, 29-39. Abts, H. F., Welss, T., Scheuring, S., Scott, F. L., Irving, J. A., Michel, G., Bird, P. I., and Ruzicka, T. (2001). Sequence, organization, chromosomal localization, and alternative splicing of the human serine protease inhibitor gene hurpin (PI13) which is upregulated in psoriasis. DNA Cell Biol 20, 123-131. Andreasen, P. A., Egelund, R., and Petersen, H. H. (2000). The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci 57, 25-40. Andreasen, P. A., Kjoller, L., Christensen, L., and Duffy, M. J. (1997). The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 72, 1-22. Benarafa, C., Cooley, J., Zeng, W., Bird, P. I., and Remold-O'Donnell, E. (2002). Characterization of four murine homologs of the human ov-serpin monocyte neutrophil elastase inhibitor MNEI (SERPINB1). J Biol Chem 277, 42028-42033. Carrell, R. W., and Owen, M. C. (1985). Plakalbumin, alpha 1-antitrypsin, antithrombin and the mechanism of inflammatory thrombosis. Nature 317, 730-732. Cattley, R. C., and Radinsky, R. R. (2004). Cancer Therapeutics: Understanding the Mechanism of Action. Toxicol Pathol 32, 116-121. Cher, M. L., Biliran, H. R., Jr., Bhagat, S., Meng, Y., Che, M., Lockett, J., Abrams, J., Fridman, R., Zachareas, M., and Sheng, S. (2003). Maspin expression inhibits osteolysis, tumor growth, and angiogenesis in a model of prostate cancer bone metastasis. Proc Natl Acad Sci U S A 100, 7847-7852. Chu, Y. W., Yang, P. C., Yang, S. C., Shyu, Y. C., Hendrix, M. J., Wu, R., and Wu, C. W. (1997). Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 17, 353-360. Chuang, T. L., and Schleef, R. R. (1999). Identification of a nuclear targeting domain in the insertion between helices C and D in protease inhibitor-10. J Biol Chem 274, 11194-11198. Dickinson, J. L., Norris, B. J., Jensen, P. H., and Antalis, T. M. (1998). The C-D interhelical domain of the serpin plasminogen activator inhibitor-type 2 is required for protection from TNF-alpha induced apoptosis. Cell Death Differ 5, 163-171. Gettins, P. G. (2000). Keeping the serpin machine running smoothly. Genome Res 10, 1833-1835. Hunt, L. T., and Dayhoff, M. O. (1980). A surprising new protein superfamily containing ovalbumin, antithrombin-III, and alpha 1-proteinase inhibitor. Biochem Biophys Res Commun 95, 864-871. Irving, J. A., Pike, R. N., Lesk, A. M., and Whisstock, J. C. (2000). Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function. Genome Res 10, 1845-1864. Irving, J. A., Steenbakkers, P. J., Lesk, A. M., Op den Camp, H. J., Pike, R. N., and Whisstock, J. C. (2002). Serpins in prokaryotes. Mol Biol Evol 19, 1881-1890. Jayakumar, A., Kang, Y., Frederick, M. J., Pak, S. C., Henderson, Y., Holton, P. R., Mitsudo, K., Silverman, G. A., AK, E. L.-N., Bromme, D., and Clayman, G. L. (2003). Inhibition of the cysteine proteinases cathepsins K and L by the serpin headpin (SERPINB13): a kinetic analysis. Arch Biochem Biophys 409, 367-374. Jemal, A., Tiwari, R. C., Murray, T., Ghafoor, A., Samuels, A., Ward, E., Feuer, E. J., and Thun, M. J. (2004). Cancer statistics, 2004. CA Cancer J Clin 54, 8-29. Jensen, P. H., Schuler, E., Woodrow, G., Richardson, M., Goss, N., Hojrup, P., Petersen, T. E., and Rasmussen, L. K. (1994). A unique interhelical insertion in plasminogen activator inhibitor-2 contains three glutamines, Gln83, Gln84, Gln86, essential for transglutaminase-mediated cross-linking. J Biol Chem 269, 15394-15398. Knoop, A., Andreasen, P. A., Andersen, J. A., Hansen, S., Laenkholm, A. V., Simonsen, A. C., Andersen, J., Overgaard, J., and Rose, C. (1998). Prognostic significance of urokinase-type plasminogen activator and plasminogen activator inhibitor-1 in primary breast cancer. Br J Cancer 77, 932-940. Liu, G., Shuman, M. A., and Cohen, R. L. (1995). Co-expression of urokinase, urokinase receptor and PAI-1 is necessary for optimum invasiveness of cultured lung cancer cells. Int J Cancer 60, 501-506. Ogunbiyi, O. A., Goodfellow, P. J., Herfarth, K., Gagliardi, G., Swanson, P. E., Birnbaum, E. H., Read, T. E., Fleshman, J. W., Kodner, I. J., and Moley, J. F. (1998). Confirmation that chromosome 18q allelic loss in colon cancer is a prognostic indicator. J Clin Oncol 16, 427-433. Palmieri, D., Lee, J. W., Juliano, R. L., and Church, F. C. (2002). Plasminogen activator inhibitor-1 and -3 increase cell adhesion and motility of MDA-MB-435 breast cancer cells. J Biol Chem 277, 40950-40957. Potempa, J., Korzus, E., and Travis, J. (1994). The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J Biol Chem 269, 15957-15960. Remold-O'Donnell, E. (1993). The ovalbumin family of serpin proteins. FEBS Lett 315, 105-108. Riewald, M., and Schleef, R. R. (1996). Human cytoplasmic antiproteinase neutralizes rapidly and efficiently chymotrypsin and trypsin-like proteases utilizing distinct reactive site residues. J Biol Chem 271, 14526-14532. Scott, F. L., Eyre, H. J., Lioumi, M., Ragoussis, J., Irving, J. A., Sutherland, G. A., and Bird, P. I. (1999). Human ovalbumin serpin evolution: phylogenic analysis, gene organization, and identification of new PI8-related genes suggest that two interchromosomal and several intrachromosomal duplications generated the gene clusters at 18q21-q23 and 6p25. Genomics 62, 490-499. Silverman, G. A., Bird, P. I., Carrell, R. W., Church, F. C., Coughlin, P. B., Gettins, P. G., Irving, J. A., Lomas, D. A., Luke, C. J., Moyer, R. W., et al. (2001). The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 276, 33293-33296. Spring, P., Nakashima, T., Frederick, M., Henderson, Y., and Clayman, G. (1999). Identification and cDNA cloning of headpin, a novel differentially expressed serpin that maps to chromosome 18q. Biochem Biophys Res Commun 264, 299-304. Stewart, D. A., Cooper, C. R., and Sikes, R. A. (2004). Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. Reprod Biol Endocrinol 2, 2. Takei, K., Kohno, T., Hamada, K., Takita, J., Noguchi, M., Matsuno, Y., Hirohashi, S., Uezato, H., and Yokota, J. (1998). A novel tumor suppressor locus on chromosome 18q involved in the development of human lung cancer. Cancer Res 58, 3700-3705. Torres, J. M., Gomez-Capilla, J. A., Ruiz, E., and Ortega, E. (2003). Semiquantitative RT-PCR method coupled to capillary electrophoresis to study 5alpha-reductase mRNA isozymes in rat ventral prostate in different androgen status. Mol Cell Biochem 250, 125-130. Tsujimoto, M., Tsuruoka, N., Ishida, N., Kurihara, T., Iwasa, F., Yamashiro, K., Rogi, T., Kodama, S., Katsuragi, N., Adachi, M., et al. (1997). Purification, cDNA cloning, and characterization of a new serpin with megakaryocyte maturation activity. J Biol Chem 272, 15373-15380. Ueda, T., Komiya, A., Emi, M., Suzuki, H., Shiraishi, T., Yatani, R., Masai, M., Yasuda, K., and Ito, H. (1997). Allelic losses on 18q21 are associated with progression and metastasis in human prostate cancer. Genes Chromosomes Cancer 20, 140-147. Zhang, M., Volpert, O., Shi, Y. H., and Bouck, N. (2000). Maspin is an angiogenesis inhibitor. Nat Med 6, 196-199. Zou, Z., Anisowicz, A., Hendrix, M. J., Thor, A., Neveu, M., Sheng, S., Rafidi, K., Seftor, E., and Sager, R. (1994). Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science 263, 526-529. Wun-Shaing W. Chang, Sheng-Chieh Lin, Kai-Chun Lin, Yu-Rung Kao, Ruey-Hwang Chou, Chia-Yi Chi and Cheng-Wen Wu. (2003) The Retrospect and Prospect of in vitro Tumor Invasion Assay Techniques. Instruments Today. 24(6):42-50.id NH0925108001 sid 905413 cfn 0 / id NH0925108002 auc 林文煜 tic 利用核醣體內轉錄區間序列之種間特異性寡核 tic & tic #33527;酸探針快速檢測方法鑑定三種柴胡 adc 林彩雲 博士 ty 碩士 sc 國立清華大學 dp 生物技術研究所 yr 92 lg 中文 pg 91 kwc 柴胡 kwc 核醣體內轉錄區間序列 kwc 種間特異性寡核 kwc & kwc #33527;酸探針 kwc 中草藥基源鑑定 kwc 親源關係 kwc 轉漬膜 abc 囿於有限的外觀型態特徵及採收後多經加工與炮製等手續,實增添中草藥基源鑑定的困難性,因此本研究尋求並發展出一套利用分子生物技術於中草藥基源鑑定的快速檢測技術。柴胡為我國傳統醫藥中極為重要的肝膽保健及疾病治療之常用生藥,亦屬市售常誤用或混用中藥材之一。本論文含兩大部分,首先進行柴胡樣品親源關係的分析,使用的遺傳標記為細胞核核醣體DNA內轉錄區間序列,結果發現樣品間序列相似度很高、特異鹼基位置不多等特性。第二部分係以生物晶片原理為基礎,根據序列資料設計多組種間特異性寡核苷酸探針後,將探針固定於標準化轉漬膜上,鑑定高氏柴胡、三島柴胡及北柴胡。每個探針長度約15-20個鹼基,均含有一至三個種間特異鹼基。接著用Dig-11-dUTP分子標定以聚合脢連鎖反應擴增之核醣體DNA內轉錄區間片段,再與轉漬膜上種間特異性寡核苷酸探針進行雜交反應。偵測螢光訊號強、弱、有、無,可瞭解標的片段與探針黏合情形,進而鑑定待測樣品為何種柴胡,達到快速、精確、平價鑑定柴胡種原 的目的。本文實驗發現最佳雜交溫度約低於探針Tm 值10-13ºC間,在固定雜交溫度40ºC時,可一次獲得八組SSOP檢測結果 (即八處種間特異鹼基位置之鹼基資訊),在六個柴胡乾品之四十八組SSOP訊號結果顯示,正確率達九成以上。日後若能以此檢測方法為基礎最佳化各項影響因素,將數種國內常見且外觀型態相似之中草藥乾品,或各種易混用、誤用中草藥SSOP同時整合固定於一標準化轉漬膜上,將可大大提高其實用性。 tc 目錄 中文摘要.....................................................................................................i 英文摘要...................................................................................................iii 謝誌………………………………………………………………………v 目錄...........................................................................................................vi 表目錄.....................................................................................................viii 圖目錄.......................................................................................................xi 名詞縮寫..................................................................................................xii 緒論............................................................................................................1 一、 前言……………………………………………………………..1 二、 柴胡分類與外形特徵…………………………………………..2 三、 以內轉錄區間核酸序列為遺傳標記…………………………..5 四、 寡核苷酸微陣列之轉漬膜檢測平台…………………………..7 材料與方法..............................................................................................11 一、 植物材料與維持………………………………………………11 二、 根尖細胞染色體觀察…………………………………………12 三、 基因組DNA抽取……………………………………………..13 四、 核糖體核酸的複製……………………………………………15 五、 核酸接合反應…………………………………………………16 六、 製備勝任細胞…………………………………………………16 七、 質體轉送至大腸桿菌…………………………………………17 八、 小量製備質體DNA…………………………………………...17 九、 雙股核酸自動序列定序………………………………………19 十、 親源關係樹的建立……………………………………………20 十一、 特異性寡核苷酸探針的製備…………………………..…21 十二、 探針固定於轉漬膜上………………………………….….22 十三、 PCR反應標定標的片段…………………………….….…23 十四、 雜交反應及訊號偵測……………………………………..23 結果..........................................................................................................26 一、 柴胡染色體數目觀察及基因組大小測量……………………26 二、 柴胡核醣體核酸的複製與構築………………………………26 三、 不同柴胡樣品核醣體核酸序列組成與特性比較……………26 四、 不同柴胡樣品ITS序列之遺傳歧異度分析…………………28 五、 三種柴胡序列與NCBI資料庫內其他柴胡屬物種序列分析.29 六、 以晉耆及北耆測試特異性寡核苷酸探針檢測方法…………30 七、 柴胡SSOP檢測方法初步試驗結果………………………….31 八、 建立檢測三種柴胡之標準化轉漬膜…………………………33 九、 柴胡乾品以標準化轉漬膜檢測結果…………………………34 討論..........................................................................................................37 參考資料..................................................................................................43 附錄一......................................................................................................91 表目錄 表一、三種柴胡型態特徵及特性比較....................................................47 表二、所設計的複製柴胡核醣體核酸之引子序列................................48 表三、標的片段 (PCR Dig-labeled target) 所使用之PCR標定反應液組成分及溫度程式…………………………………..................49 表四、八個柴胡樣品內轉錄區間核酸序列特性比較............................50 表五、於晉耆及北耆ITS1區域所設計SSOP序列.................................51 表六、複製晉耆及北耆基因組核酸ITS1片段所設計之引子序列.......51 表七、複製三種柴胡ITS1及ITS2片段之兩引子對序列......................52 表八、初步設計辨識三種柴胡之多組SSOP序列..................................53 表九、測試辨識三種柴胡之SSOP與標的片段雜交反應之最適溫度..54 表十、十二組SSOP序列組成情形....................................................…57 圖目錄 圖一、柴胡植株與癒傷組織。………………………………...……….58 圖二、柴胡乾品部分之外形和細部近拍。……….………….………..59 圖三、核醣體DNA結構。………………………………………...…….61圖四、北耆與晉耆內轉錄區間核酸序列排序情形。………...………...62 圖五、高氏柴胡(B. kaoi)、北柴胡(B. chinense)及三島柴胡(B. falcatum)內轉錄區間核酸序列排序情形。……………………64 圖六、高氏柴胡根尖細胞經染色後,於顯微鏡下觀察結果。…………66 圖七、以TCM1與TCM2引子進行PCR反應,複製柴胡核醣體核酸 所得產物之電泳圖。……………………………………………67 圖八、八個柴胡樣品內轉錄區間核酸序列排序情形。…………….….68 圖九、柴胡樣品間ITS序列相似度與相異度分析。…………………70 圖十、柴胡樣品及外群之ITS序列依Kimura-2-parameter鹼基取代模式計算所得之距離矩陣。………………………………………70 圖十一、柴胡樣品及外群之ITS序列利用neighber-joining(NJ)法所得到之樹形圖。………………………………………………71 圖十二、柴胡樣品及外群之ITS序列利用maximun parsimony(MP) 法所得到之樹形圖。…………………………………………72 圖十三、本文三種柴胡與自NCBI資料庫擷取之其他柴胡屬物種ITS 區域序列(連同三個外群序列)以neighber-joining法所繪得之樹形圖。………………………………………..…………..73 圖十四、晉耆及北耆基因組核酸ITS1片段以TCM3與Chi ITS1r引子進行PCR所得產物之電泳圖。……………..…………….74 圖十五、晉耆及北耆測試SSOP檢測方法所得結果。……..………….75 圖十六、以設計之兩引子對進行PCR反應複製三種柴胡基因組核酸ITS1及ITS2片段產物之電泳圖。……………..…………….76 圖十七、寡核苷酸探針ITS2_7 Bck以三種濃度固定於轉漬膜上與北柴胡標的片段雜交反應後所得訊號結果。…………………77 圖十八、初步設計辨識三種柴胡之SSOP與標的片段雜交反應結果。…………………………………………………….…..….78 圖十九、十二組SSOP分別與三種柴胡標的片段進行雜交反應之訊號結果。……………………………...………………………….79 圖二十、標準化轉漬膜上各組 SSOP探針設計情形。……….…….....81 圖二十一、設計之轉漬膜與三種柴胡標的片段進行雜交反應之預期訊號呈現態樣。…………………………..…………………..82 圖二十二、使用黃耆ITS區域標的片段與專為柴胡設計之轉漬膜進行雜交反應訊號結果。………………………………………83 圖二十三、以TCM3、TCM2引子進行PCR反應複製柴胡乾品核 醣體核酸產物之電泳圖。………………………..………..84 圖二十四、高氏柴胡【dried】標的片段與標準化轉漬膜雜交結果…..85 圖二十五、北柴胡【dried】標的片段與標準化轉漬膜雜交結果。……86 圖二十六、北柴胡【大陸湖北】標的片段與標準化轉漬膜雜交結果。..87 圖二十七、北柴胡【大陸深圳】標的片段與標準化轉漬膜雜交結果。…………………………………………………………88 圖二十八、北柴胡【台中-1】標的片段與標準化轉漬膜雜交結果。…...89 圖二十九、北柴胡【台中-2】標的片段與標準化轉漬膜雜交結果。…90rf 王升陽、徐麗芬、楊寧蓀,2003。傳統與科技結合─藥用及保健植物新發展。科學發展第364期。第50-55頁。 孔憲鐸,2000。中藥現代化。科學知識51期。第53-65頁。 沈連生,1996。常用中藥彩色圖譜。北京:中國中醫藥出版社。第27、35、44頁。 劉新裕、林俊義、張成國,2002 。藥用植物專輯。第129-133頁。 潘勝利、順慶生、柏巧明、包雪聲,2002。中國藥用柴胡原色圖志。第6頁。 顏銘宏,1991。臺灣產生藥高氏柴胡的品質評價基礎研究。高雄醫學院藥學研究所博士論文。 傅堅祐,2002。台灣產生藥高氏柴胡對大白鼠慢性酒精性肝炎之保肝作用機轉研究。高雄醫學大學天然藥物研究所碩士論文。 黃原,1996。分子系統學—原理、方法及應用。第231-233頁。 Baldwin, B.G.. 1993. Molecular Phylogenetics of Calycadenia(Compositae) based on ITS sequences of nuclear ribosomal DNA: Chromosomal and morphological evolution reexamined. Am. J. Bot. 80, 222-238. Barker, R.F., N.P. Harberd, M.G. Jarvis and R. B. Flavell. 1988. Genetics and evolutionary consequences of small population size in plants: Implications for conservation. In D. Folk and K. E. Holsinger (eds), Genetics and conservaton of rare plants. Oxford Univ. Press. pp.587-582. Dapeng Z., M. Ghislain, Z. Huaman, A. Golmirzaie and R. Hijmans. 1998. RAPD variation in sweetpotato (Lpomoea batatas (L.) Lam) cultivars from South America and Papua New Guinea. Genet. Resour. Crop Evol. 45, 271-277. D’Ovidio, R. 1992. Nucleotide sequence of a 5.8S rDNA gene and of the Australian cycad, Macrozamia communis(Zamiaceae). Amer. J. Bot. 77, 677-681. Eggers, M. 2000. High-throughput microarray technology. Innov. Pharm. Technol. 6, 36-44. Felsentein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791. Fitch, W.M. 1977. On the problem of discovering the most parsimonious tree. Am. Nat. 111, 223-257. Fritz, G.N., J. Conn, A. Cockburn, and J. Seawright. 1994. Sequence analysis of ribosomal DNA internal transcribed spacer 2 from population of Anopheles nuneztovari (Diptera: Culicidae). Mol. Biol. Evol. 11, 406-416. Gerbi, S.A. 1985. Evolution of ribosomal DNA. In: Molecular Evolutionary Genetics. Maclntype R. J. (ed.), Plenum, New York. pp. 419-517. Goh, S.H., S. Potter, J.O. Wood, S.M. Hemmingsen, R.P. Reynolds and A.W. Chow. 1996. HSP60 gene sequence as universal target for microbial species identification: studies with coagulase-nagative Staphylococci. J. Clin. Microbiol. 34(4), 818-823. Guo, Z., M.S. Gatterman, L. Hood, J.A. Hansen and E.W. Peterdorf. 2001. Oligonucleotide arrays for high-throughput SNPs detection in the MHC class I genes: HLA-B as a model system. Genome Res. 12, 447-457. Hacia, J.G. 1999. Resequencing and mutational analysis using oligonucleotide microarrays. Nat. Genet. Supplement 21, 42-47. Hayden, M. J. and P. J. Sharp. 2001. Targeted development of informative microsatellite (SSR) markers. Nucleic Acids Res. 29, e44. Hisashi, M., M. Toshiyuki, N. Kiyofumi, I. Masahiro and Y. Masayuki. 1997. New hepatoprotective saponins, bupleurosides III, VI, IX, and XIII, from Chinese Bupleuri Radix: Structure-requirements for the cytoprotective activity in primary cultured rat hepatocytes. Bioorg. Med. Chem. Lett. 7, 2193-2198. Jaccoud, D., K. Peng, D. Feinstein and A. Kilian. 2001. Diversity Arrays: a solid state technology for sequence information independent genotyping. Nucleic Acid Res. 29, e25. Kimura, M.,1980. A simple method for estimating evolution rate of base substitution through comparative studies of nucleotide sequence. J. Mol. Evol. 16, 111-120. Kumar, S., K. Tamura and M. Nei. 1993. MEGA: molecular evolution genetics analysis version 1.01. The Pennsylvania State University Park, PA16802. Lee, H., H.E. Bang, G.H. Bai and S.N. Cho. 2003. Novel polymorphic region of the rpoB gene containing Mycobacterium species-specific sequence and its use in identification of mycobacteria. J. Clin. Microbiol. 41, 2213-2218. Liston, A., W.A. Robinson, D. Pinero and E.R. Alvarez-Buylla. 1999. Phylogenetics of Pinus (Pinaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. Mol. Phylogenet. Evol. 11, 95-109. Moritz, C., T.E. Dowling and W.M. Brown. 1987. Evolution of animal mitochondrial DNA: Relevance for population biology and systematics. Annu. Rev. Ecol. Syst. 18, 269-292. Murray, A.E., D. Lies, G. Li, K.Nealson, J. Zhou and J.M. Tiedje. 2001. DNA/DNA hybridization to microarrays reveals gene-specific differences between closely related microbial genomes. Proc. Natl. Acad. Sci. U.S.A. 98, 9853-9858. Neves, S.E. and M.F. Watson. 2004. Phylogenetic relationship in Bupleurum (Apiaceae) based on nuclear ribosomal DNA ITS sequence data. Ann. Bot. 93, 379-398. Ngan, F., P. Shaw, P. But and J. Wang. 1998. Molecular authentication of Panax species. Phytochemistry 50, 787-791. Oh, S., D.P. Kamdem, D.E. Keathley and K.H. Han. 2003. Detection and species identification of wood-decaying fungi by hybridization of immobilized sequence-specific oligonucleotide probe with PCR-amplified fungal ribosomal DNA internal transcribed spacers. Holzforschung 57, 346-352. Rogers, S.O. and A.J. Bendich. 1988. Extraction of DNA from plant tissues. In: Gelvin SB, Schilperoot RA and Verma DPS.(eds) Plant Molecular Biology Manual A6: 1-10. Kluwer Academic Publishers, Dordrecht. Roger S.O., H. Smith. and B.A. Johnton. 1986. Variation in the ribosomal RNA genes among individuals of Vicia faba. Plant Mol. Biol. 6, 339-345. Saitou, U. and N. Mei, 1987. The neighbor-joining methods: a new method for reconstruction phylogenetics tree. Mol. Evol. Biol. 4, 406-425. Schmidt, O. and U. Moreth. 1999. Identification of the dry rot fungus, Serpula lacrymans and the wild Merulius, S. himantiodes, by amplified ribosomal DNA restriction analysis (ARDRA). Holzforschung 53, 123-138. Sutcharitchan, P., R. Saiki, T.H.J. Huisman, A. Kutlar, V. Mckie, H. Erlich and S.H. Embury. 1995. Reverse dot-blot detection of the African-American β–Thalassemia mutations. Blood 86, 1580-1585. Taberlet, P., L. Gielly, G. Pautou and J. Bouvet. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol. 17, 1105-1109. Takaiwa, F., S. Kikuchi, K. Oono and M. Sugiura. 1985. Nucleotide sequence of the 17-25S spacer region from rice rDNA. Plant Mol. Biol. 4, 355-364. Vogler, A.P. and R. DeSalle. 1994. Evolution and phylogenetic information content of the ITS-1 region in the tiger beetle Cicindela dorsalis. Mol. Biol. Evol. 11, 393-405. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Lee, M. Hornes, A. Frijters, J. Peleman, M. Kuiper and M. Zabeau. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407-4414.id NH0925108002 sid 905414 cfn 0 / id NH0925111001 auc 張敏良 tic 醋酸鉛誘發ERK1/2激 tic & tic #37238;訊號調控抗氧化酵素之表現 adc 楊嘉鈴 ty 碩士 sc 國立清華大學 dp 生物科技研究所 yr 92 lg 中文 pg 60 kwc 麩氨基硫 kwc 人類肺癌細胞株 kwc 細胞分裂原活化蛋白激 kwc & kwc #37238; kwc 非小細胞肺癌 kwc 含氧自由基 kwc 超氧自由基歧化酵素 kwc 過氧化氫酵素 kwc 麩氨基硫過氧酵素 kwc 單線態氧 kwc 超氧自由基 kwc 氫氧自由基 kwc 過氧化氫 abc 鉛化物為人類致癌的可能物質,鉛暴露與腎臟癌、肺癌,以及腦癌的發生率有高度關聯。鉛會誘發含氧自由基的產生進而使得核酸斷裂及傷害細胞。在人類非小型肺癌細胞株CL3細胞中,醋酸鉛會持久性活化ERK1/2訊號分子,因而加強核酸切除修補能力並降低了鉛之細胞毒性及突變性。一些研究指出改變細胞中含氧自由基的量會影響訊號傳遞及基因的表現,另外藉由調控抗氧化酵素的表現可以抗衡細胞中含氧自由基的含量,然而有關訊號傳遞分子影響抗氧化酵素的表現仍有待研究。本論文探討鉛誘發持久性的ERK1/2活性,影響CL3細胞中三個重要的含氧自由基清除酵素的表現,即超氧自由基轉化酵素(SOD2),過氧化氫酵素(CAT)及麩氨基硫過氧酵素(GPX1)。利用ERK1/2上游分子MKK1/2之抑制劑,我們發現醋酸鉛誘發的ERK1/2訊號途徑會增加超氧自由基轉化酵素蛋白質含量,降低過氧化氫酵素蛋白質含量,並會引導ubiquitin-26S蛋白質分解體途徑來分解麩氨基硫過氧酵素蛋白質。此外,大量表現MKK1基因於H293細胞也發現會增加超氧自由基轉化酵素蛋白質含量,及降低麩氨基硫過氧酵素蛋白質含量。由本研究提出ERK1/2訊號途徑參與調控抗氧化酵素的表現,可能進而影響細胞中含氧自由基的含量,為抗氧化酵素的研究提供了一個新思維。 rf Angkeow, P., Deshpande, S.S., Qi, B., Liu, Y.X., Park, Y.C., Jeon, B.H., Ozaki, M. and Irani, K. (2002) Redox factor-1: an extra-nuclear role in the regulation of endothelial oxidative stress and apoptosis. Cell Death Differ, 9, 717-725. Anttila, A., Heikkila, P., Nykyri, E., Kauppinen, T., Pukkala, E., Hernberg, S. and Hemminki, K. (1996) Risk of nervous system cancer among workers exposed to lead. J Occup Environ Med, 38, 131-136. Anttila, A., Heikkila, P., Pukkala, E., Nykyri, E., Kauppinen, T., Hernberg, S. and Hemminki, K. (1995) Excess lung cancer among workers exposed to lead. Scand J Work Environ Health, 21, 460-469. Arthur, J.R. (2000) The glutathione peroxidases. Cell Mol Life Sci, 57, 1825-1835. Bae, Y.S., Kang, S.W., Seo, M.S., Baines, I.C., Tekle, E., Chock, P.B. and Rhee, S.G. (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem, 272, 217-221. Brigelius-Flohe, R. (1999) Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med, 27, 951-965. Burdon, R.H. (1995) Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med, 18, 775-794. Burdon, R.H., Gill, V. and Rice-Evans, C. (1990) Oxidative stress and tumour cell proliferation. Free Radic Res Commun, 11, 65-76. Chelikani, P., Fita, I. and Loewen, P.C. (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci, 61, 192-208. Davis, R.J. (1993) The mitogen-activated protein kinase signal transduction pathway. J Biol Chem, 268, 14553-14556. Denhardt, D.T. (1996) Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling. Biochem J, 318 ( Pt 3), 729-747. Derijard, B., Raingeaud, J., Barrett, T., Wu, I.H., Han, J., Ulevitch, R.J. and Davis, R.J. (1995) Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science, 267, 682-685. Dizdaroglu, M. (1992) Oxidative damage to DNA in mammalian chromatin. Mutat Res, 275, 331-342. Fracasso, M.E., Perbellini, L., Solda, S., Talamini, G. and Franceschetti, P. (2002) Lead induced DNA strand breaks in lymphocytes of exposed workers: role of reactive oxygen species and protein kinase C. Mutat Res, 515, 159-169. Fridovich, I. (1997) Superoxide anion radical (O2-●), superoxide dismutases, and related matters. J Biol Chem, 272, 18515-18517. Garrington, T.P. and Johnson, G.L. (1999) Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol, 11, 211-218. Gill, G. and Tjian, R. (1992) Eukaryotic coactivators associated with the TATA box binding protein. Curr Opin Genet Dev, 2, 236-242. Gladyshev, V.N. and Hatfield, D.L. (1999) Selenocysteine-containing proteins in mammals. J Biomed Sci, 6, 151-160. Glotzer, M., Murray, A.W. and Kirschner, M.W. (1991) Cyclin is degraded by the ubiquitin pathway. Nature, 349, 132-138. Gupta, A., Rosenberger, S.F. and Bowden, G.T. (1999) Increased ROS levels contribute to elevated transcription factor and MAP kinase activities in malignantly progressed mouse keratinocyte cell lines. Carcinogenesis, 20, 2063-2073. Halliwell, B. and Aruoma, O.I. (1991) DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett, 281, 9-19. Hasegawa, Y., Takano, T., Miyauchi, A., Matsuzuka, F., Yoshida, H., Kuma, K. and Amino, N. (2002) Decreased expression of glutathione peroxidase mRNA in thyroid anaplastic carcinoma. Cancer Lett, 182, 69-74. Hasegawa, Y., Takano, T., Miyauchi, A., Matsuzuka, F., Yoshida, H., Kuma, K. and Amino, N. (2003) Decreased expression of catalase mRNA in thyroid anaplastic carcinoma. Jpn J Clin Oncol, 33, 6-9. Hsu, P.C., Liu, M.Y., Hsu, C.C., Chen, L.Y. and Guo, Y.L. (1998) Effects of vitamin E and/or C on reactive oxygen species-related lead toxicity in the rat sperm. Toxicology, 128, 169-179. Hsu, P.C., Liu, M.Y., Hsu, C.C., Chen, L.Y. and Leon Guo, Y. (1997) Lead exposure causes generation of reactive oxygen species and functional impairment in rat sperm. Toxicology, 122, 133-143. Ihle, J.N. (1996) STATs and MAPKs: obligate or opportunistic partners in signaling. Bioessays, 18, 95-98. Imlay, J.A., Chin, S.M. and Linn, S. (1988) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science, 240, 640-642. Jacobs, D., Glossip, D., Xing, H., Muslin, A.J. and Kornfeld, K. (1999) Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev, 13, 163-175. Janknecht, R. and Nordheim, A. (1992) Elk-1 protein domains required for direct and SRF-assisted DNA-binding. Nucleic Acids Res, 20, 3317-3324. Kato, S., Endoh, H., Masuhiro, Y., Kitamoto, T., Uchiyama, S., Sasaki, H., Masushige, S., Gotoh, Y., Nishida, E., Kawashima, H. and et al. (1995) Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science, 270, 1491-1494. Khan, A.U. and Kasha, M. (1994) Singlet molecular oxygen in the Haber-Weiss reaction. Proc Natl Acad Sci U S A, 91, 12365-12367. Klotz, L.O., Pellieux, C., Briviba, K., Pierlot, C., Aubry, J.M. and Sies, H. (1999) Mitogen-activated protein kinase (p38-, JNK-, ERK-) activation pattern induced by extracellular and intracellular singlet oxygen and UVA. Eur J Biochem, 260, 917-922. Knebel, A., Rahmsdorf, H.J., Ullrich, A. and Herrlich, P. (1996) Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. Embo J, 15, 5314-5325. Kolch, W. (2000) Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J, 351 Pt 2, 289-305. Kuhn, H. and Borchert, A. (2002) Regulation of enzymatic lipid peroxidation: the interplay of peroxidizing and peroxide reducing enzymes. Free Radic Biol Med, 33, 154-172. Kyriakis, J.M. and Avruch, J. (1996) Protein kinase cascades activated by stress and inflammatory cytokines. Bioessays, 18, 567-577. Kyriakis, J.M. and Avruch, J. (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev, 81, 807-869. Leal, R.B., Cordova, F.M., Herd, L., Bobrovskaya, L. and Dunkley, P.R. (2002) Lead-stimulated p38MAPK-dependent Hsp27 phosphorylation. Toxicol Appl Pharmacol, 178, 44-51. Lee, S.R., Kwon, K.S., Kim, S.R. and Rhee, S.G. (1998) Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem, 273, 15366-15372. Lee, T., Hoofnagle, A.N., Kabuyama, Y., Stroud, J., Min, X., Goldsmith, E.J., Chen, L., Resing, K.A. and Ahn, N.G. (2004) Docking motif interactions in MAP kinases revealed by hydrogen exchange mass spectrometry. Mol Cell, 14, 43-55. Lewis, T.S., Shapiro, P.S. and Ahn, N.G. (1998) Signal transduction through MAP kinase cascades. Adv Cancer Res, 74, 49-139. Li, N., Oberley, T.D., Oberley, L.W. and Zhong, W. (1998) Inhibition of cell growth in NIH/3T3 fibroblasts by overexpression of manganese superoxide dismutase: mechanistic studies. J Cell Physiol, 175, 359-369. Lin, Y.W., Chuang, S.M. and Yang, J.L. (2003a) ERK1/2 achieves sustained activation by stimulating MAPK phosphatase-1 degradation via the ubiquitin-proteasome pathway. J Biol Chem, 278, 21534-21541. Lin, Y.W., Chuang, S.M. and Yang, J.L. (2003b) Persistent activation of ERK1/2 by lead acetate increases nucleotide excision repair synthesis and confers anti-cytotoxicity and anti-mutagenicity. Carcinogenesis, 24, 53-61. Liu, S.L., Lin, X., Shi, D.Y., Cheng, J., Wu, C.Q. and Zhang, Y.D. (2002) Reactive oxygen species stimulated human hepatoma cell proliferation via cross-talk between PI3-K/PKB and JNK signaling pathways. Arch Biochem Biophys, 406, 173-182. Liu, S.L., Shi, D.Y., Pan, X.H. and Shen, Z.H. (2001) Inhibition of Proliferation and Expression of N-ras in Hepatoma Cells by Antioxidation Treatment. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai), 33, 463-466. Lu, H., Guizzetti, M. and Costa, L.G. (2002) Inorganic lead activates the mitogen-activated protein kinase kinase-mitogen-activated protein kinase-p90(RSK) signaling pathway in human astrocytoma cells via a protein kinase C-dependent mechanism. J Pharmacol Exp Ther, 300, 818-823. Maehara, K., Oh-Hashi, K. and Isobe, K.I. (2001) Early growth-responsive-1-dependent manganese superoxide dismutase gene transcription mediated by platelet-derived growth factor. Faseb J, 15, 2025-2026. Manna, S.K., Zhang, H.J., Yan, T., Oberley, L.W. and Aggarwal, B.B. (1998) Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-kappaB and activated protein-1. J Biol Chem, 273, 13245-13254. Martindale, J.L. and Holbrook, N.J. (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol, 192, 1-15. Merante, F., Altamentova, S.M., Mickle, D.A., Weisel, R.D., Thatcher, B.J., Martin, B.M., Marshall, J.G., Tumiati, L.C., Cowan, D.B. and Li, R.K. (2002) The characterization and purification of a human transcription factor modulating the glutathione peroxidase gene in response to oxygen tension. Mol Cell Biochem, 229, 73-83. Meves, A., Stock, S.N., Beyerle, A., Pittelkow, M.R. and Peus, D. (2001) H(2)O(2) mediates oxidative stress-induced epidermal growth factor receptor phosphorylation. Toxicol Lett, 122, 205-214. Nebreda, A.R. and Porras, A. (2000) p38 MAP kinases: beyond the stress response. Trends Biochem Sci, 25, 257-260. Nenoi, M., Ichimura, S., Mita, K., Yukawa, O. and Cartwright, I.L. (2001) Regulation of the catalase gene promoter by Sp1, CCAAT-recognizing factors, and a WT1/Egr-related factor in hydrogen peroxide-resistant HP100 cells. Cancer Res, 61, 5885-5894. Pfleger, C.M. and Kirschner, M.W. (2000) The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev, 14, 655-665. Ramesh, G.T., Manna, S.K., Aggarwal, B.B. and Jadhav, A.L. (1999) Lead activates nuclear transcription factor-kappaB, activator protein-1, and amino-terminal c-Jun kinase in pheochromocytoma cells. Toxicol Appl Pharmacol, 155, 280-286. Ranganathan, A.C., Nelson, K.K., Rodriguez, A.M., Kim, K.H., Tower, G.B., Rutter, J.L., Brinckerhoff, C.E., Huang, T.T., Epstein, C.J., Jeffrey, J.J. and Melendez, J.A. (2001) Manganese superoxide dismutase signals matrix metalloproteinase expression via H2O2-dependent ERK1/2 activation. J Biol Chem, 276, 14264-14270. Robbins, D.J., Cheng, M., Zhen, E., Vanderbilt, C.A., Feig, L.A. and Cobb, M.H. (1992) Evidence for a Ras-dependent extracellular signal-regulated protein kinase (ERK) cascade. Proc Natl Acad Sci U S A, 89, 6924-6928. Royall, J.A. and Ischiropoulos, H. (1993) Evaluation of 2',7'-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys, 302, 348-355. Rutault, K., Alderman, C., Chain, B.M. and Katz, D.R. (1999) Reactive oxygen species activate human peripheral blood dendritic cells. Free Radic Biol Med, 26, 232-238. Schaeffer, H.J. and Weber, M.J. (1999) Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol, 19, 2435-2444. Schreck, R. and Baeuerle, P.A. (1991) A role for oxygen radicals as second messengers. Trends Cell Biol, 1, 39-42. Sharrocks, A.D., Yang, S.H. and Galanis, A. (2000) Docking domains and substrate-specificity determination for MAP kinases. Trends Biochem Sci, 25, 448-453. Song, J.J. and Lee, Y.J. (2003) Catalase, but not MnSOD, inhibits glucose deprivation-activated ASK1-MEK-MAPK signal transduction pathway and prevents relocalization of Daxx: hydrogen peroxide as a major second messenger of metabolic oxidative stress. J Cell Biochem, 90, 304-314. Steenland, K., Selevan, S. and Landrigan, P. (1992) The mortality of lead smelter workers: an update. Am J Public Health, 82, 1641-1644. Sundaresan, M., Yu, Z.X., Ferrans, V.J., Irani, K. and Finkel, T. (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science, 270, 296-299. Tanoue, T., Adachi, M., Moriguchi, T. and Nishida, E. (2000) A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat Cell Biol, 2, 110-116. Tanoue, T. and Nishida, E. (2002) Docking interactions in the mitogen-activated protein kinase cascades. Pharmacol Ther, 93, 193-202. Thannickal, V.J. and Fanburg, B.L. (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol, 279, L1005-1028. Treisman, R. (1996) Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol, 8, 205-215. Ushio-Fukai, M., Alexander, R.W., Akers, M., Yin, Q., Fujio, Y., Walsh, K. and Griendling, K.K. (1999) Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem, 274, 22699-22704. Wenk, J., Brenneisen, P., Wlaschek, M., Poswig, A., Briviba, K., Oberley, T.D. and Scharffetter-Kochanek, K. (1999) Stable overexpression of manganese superoxide dismutase in mitochondria identifies hydrogen peroxide as a major oxidant in the AP-1-mediated induction of matrix-degrading metalloprotease-1. J Biol Chem, 274, 25869-25876. Whitmarsh, A.J. and Davis, R.J. (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med, 74, 589-607. Xu, Y., Porntadavity, S. and St Clair, D.K. (2002) Transcriptional regulation of the human manganese superoxide dismutase gene: the role of specificity protein 1 (Sp1) and activating protein-2 (AP-2). Biochem J, 362, 401-412. Yang, J.L., Wang, L.C., Chang, C.Y. and Liu, T.Y. (1999) Singlet oxygen is the major species participating in the induction of DNA strand breakage and 8-hydroxydeoxyguanosine adduct by lead acetate. Environ Mol Mutagen, 33, 194-201. Yang, P.C., Luh, K.T., Wu, R. and Wu, C.W. (1992) Characterization of the mucin differentiation in human lung adenocarcinoma cell lines. Am J Respir Cell Mol Biol, 7, 161-171. Zachara, B.A. (1992) Mammalian selenoproteins. J Trace Elem Electrolytes Health Dis, 6, 137-151. Zelko, I.N., Mariani, T.J. and Folz, R.J. (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med, 33, 337-349. Zhou, B., Wu, L., Shen, K., Zhang, J., Lawrence, D.S. and Zhang, Z.Y. (2001) Multiple regions of MAP kinase phosphatase 3 are involved in its recognition and activation by ERK2. J Biol Chem, 276, 6506-6515. 林芸薇. (2003) Investigation of molecular and cellular effect in response to sustained ERK1/2 activation induced by lead acetate. National Tsing Hua University Ph.D thesis.id NH0925111001 sid g914211 cfn 0 / id NH0925111002 auc 陳林琤 tic 利用Clonostachy compactiuscula生產羅瓦斯達汀酯化 tic & tic #37238;以轉化莫那克林K(羅瓦斯達汀)成為莫那克林J adc 黎耀基 ty 碩士 sc 國立清華大學 dp 生物科技研究所 yr 92 lg 英文 pg 42 kwc 高膽固醇血症 kwc 莫那可林 kwc 反應曲面法 kwc 酵素純化 kwc 核磁共振 abc 斯達汀系列 (Statins series) 為控制高膽固醇血症之處方用藥,其中,羅瓦斯達汀(lovastatin;又稱為莫那可林K;monacolin K;也稱為美芬諾林;mevinolin)是這類斯達汀系列的一種。羅瓦斯達汀能夠被一個叫羅瓦斯達汀酯化酶的酵素水解,切去其側鏈,轉化成莫那可林J (又稱為三酸醇;triol acid),莫那可林J 是這類斯達汀的核心結構,因此具有合成其他斯達汀的潛力與價值。本實驗結果顯示,Clonostachys compactiuscula可以讓羅瓦斯達汀轉化生成莫那可林J,因此進一步使用二階多項式模型 (second-order polynomial model) 實驗設計的反應曲面方法,以五個變因當成轉化作用的影響因子,探討轉化作用的最適條件。實驗結果顯示,使用C. compactiuscula菌絲抽出液將羅瓦斯達汀完全轉化成為莫那可林J的最適條件為:培養基葡萄糖含量0.59 %、培養基最初pH 8.5、菌絲培養時間4天、與轉化作用反應時間15小時,在這樣的條件下,最適的受質羅瓦斯達汀的濃度為1 mg/ml。本實驗也從C. compactiuscula的菌絲將羅瓦斯達汀酯化酶以硫酸銨沉澱法、分子篩濾層析法及離子交換層析法進行分離與純化,而這局部純化的酵素經由SDS-PAGE分析,顯示為均一聚合胜肽鏈,其分子量約為28-kDa。此外,經轉化形成的莫那可林J亦被分離與純化,並藉由核磁共振光譜儀的分析,進行產物莫那可林J結構之確認。 rf 1. Alberts, A. W., J. Chen, G. Kuron, V. Hunt, J. Huff, C. Hoffman, J. Rothrock, M. Lopez, H. Joshua, E. Harris, A. Patchett, R. Monaghan, S. Currie, E. Stapley, G. Albers-Schonberg, O. Hensens, J. Hirshfield, K. Hoogsteen, J. Liesch, and J. Springer. July 1980. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Natl Acad Sci USA. 77(7): 3957-61. 2. Tobert, J. A., 1987. New developments in lipid-lowering therapy: the role of inhibitors of hydroxymethylglutaryl-coenzyme A reductase. Circulation 76: 534-538. 3. Endo, A. 1981. 3-Hydroxy-3-methylglutaryl-CoA reductase inhibitors. Methods Enzymol. 72: 684-9. 4. Van Berkel, T. J., K. Fluiter, A. G. van Velzen, C. J. Vogelezang, and G. J. Ziere. December 1995. LDL receptor-independent and -dependent uptake of lipoproteins. Atherosclerosis. 118 Suppl:S43-50. Review. 5. Hayashi, H., C. Naito, H. Ito, M. Kawamura, and S. Miyazaki.1990. The effect of pravastatin in relation to low density lipoprotein receptor activity. Curr Med Res Opin. 12(2): 100-7. 6. Istvan, E. S.,and J. Deisenhofer. 11 May 2001. Structural mechanism for statin inhibition of HMG-CoA reductase. Science. 292(5519): 1160-4. 7. Rosenson, R.S., and C.C., Tangney. 1998. Antiatherothrombotic properties of statins: implications for cardiovascular event reduction. JAMA 279: 1643-1650. 8. Singh, N. V., S. Azmi, S. Maurya, U. P. Singh, R. N. Jha,and V. B. Pandey. 2003.Two plant alkaloids isolated from Corydalis longipes as potential antifungal agents.Folia Microbiol (Praha). 48(5): 605-9. 9. Kris-Etherton, P. M., and I. D. Frantz Jr. November 1979. Inhibition of cholesterol synthesis in mammary tissue, lung, and kidney following cholesterol feeding in the lactating rat. Lipids. 14(11): 907-12. 10. Porpjak, G. and J. W. Cornforth. 1960. The biosynthesis of cholesterol. Adv Enzyme Regul. 22: 281-335. 11. Ciaravino, V., M. L. Kropko, C. E. Rothwell, C. A. Hovey, and J. C. Theiss.June 1995. The genotoxicity profile of atorvastatin, a new drug in the treatment of hypercholesterolemia. Mutat Res. 343(2-3): 95-107. 12. Leitersdorf, E., S. Eisenberg, O. Eliav, N. Berkman, E. J. Dann, D. Landsberger, E. Sehayek, V. Meiner, T. K. Peters, E. N. Muratti, et al.1993. Efficacy and safety of high dose fluvastatin in patients with familial hypercholesterolaemia. Eur J Clin Pharmacol. 45(6): 513-8. 13. Alberts, A. W., J. Chen, G. Kuron, V. Hunt, J. Huff, C. Hoffman, J. Rothrock, M. Lopez, H. Joshua, E. Harris, A. Patchett, R. Monaghan, S. Currie, E. Stapley, G. Albers-Schonberg, O. Hensens, J. Hirshfield, K. Hoogsteen, J. Liesch, and J. Springer. July 1980. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci U S A. 77(7): 3957-61. 14. Laws, P. E., J. I. Spark,P. A. Cowled, and R. A. Fitridge. January 2004. The role of statins in vascular disease. Eur J Vasc Endovasc Surg. 27(1): 6-16. Review. 15. Bischoff, K. M., and V. W. Rodwell. October 1992 Biosynthesis and characterization of (S)-and (R)-3-hydroxy-3-methylglutaryl coenzyme A. Biochem Med Metab Biol. 48(2): 149-58. 16. McAlpine, J. 1998. Unnatural natural products by genetic manipulation. In: Sapienza, D. M., Savage, L. M. (eds) Natural products II: New technologies to increase efficiency and speed. International Business Communications, Southborough, Mass, pp.251-278. 17. Nixon JV. Winter 2004. Cholesterol management and the reduction of cardiovascular risk. Prev Cardiol. 7(1): 34-9; quiz 40-1. Review. 18. Tolman, K. G.O. 2002. The Liver and Lovastatin. Am J Cardiol. 89: 1374-1380. 19. MacDonald, J. S., R. J. Gerson, D. J. Kombrust, M. W. Kloss, S. Prahalada, P. H. Berry, A. Q. Alberts, and D. L. Bokelman. 1988. Preclinical evaluation of lovastatin. Am J Cardiol. 62: 16J-27J. 20. Serajuddin, A.T., S.A. Ranadive, and E.M. Mahoney. September 1991. Relative lipophilicities, solubilities, and structure-pharmacological considerations of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors pravastatin, lovastatin, mevastatin, and simvastatin. J Pharm Sci. 80(9): 830-4. 21. Van Vliet, A. K., van Thiel, G. C., R. H. Huisman, H. Moshage, S. H. Yap, and L. H. Cohen. 3 January 1995. Different effects of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors on sterol synthesis in various human cell types. Biochim Biophys Acta. 1254(1): 105-11. 22. Bang, L. M. and K. L. Goa. 2003. Pravastatin: a review of its use in elderly patients. Drugs Aging. 20(14): 1061-82. Review. 23. Henwood, J.M., and R.C. Heel. October 1988. Lovastatin. A preliminary review of its pharmacodynamic properties and therapeutic use in hyperlipidaemia. Drugs. 36(4): 429-54. Review. 24. Brown, M. S., and J. L. Goldstein. 27 August 1981. Lowering plasma cholesterol by raising LDL receptors. N Engl J Med. 305(9): 515-7. 25. Filipovic, I., and B. Menzel. 15 May1981. Action of low-density lipoprotein and compactin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase, on the synthesis of dolichol-linked oligosaccharides and low-density-lipoprotein receptor in human skin fibroblasts. Biochem J. 196(2): 625-8. 26. Duane, W. C., D. B. Hunninghake, M. L. Freeman, P. A. Pooler, L.A. Schlasner, and R.L. Gebhard. September-October1988. Simvastatin, a competitive inhibitor of HMG-CoA reductase, lowers cholesterol saturation index of gallbladder bile. Hepatology. 8(5): 1147-50. 27. Plosker, G. L., and D. McTavsh. 1995. Simvastatin: a reappraisal of its pharmacology and therapetic efficacy in hypercholesterolaemia. Drugs 50: 334-363. 28. Molgaard, J., H. von Schenck, and A. G. Olsson. 1989. Comparative effects of simvastatin and cholestyramine in treatment of patients with hypercholesterolaemia.Eur J Clin Pharmacol. 36(5): 455-60. 29. Schimmel, T. G., W. S. Borneman, and M. J. Conder. April 1997. Purification and characterization of a lovastatin esterase from clonostachys compactiuscula. Appl. Environ. Microbiol. 63: 1307-1311. 30. Haitao, Y., Y. Feng, and Y. Luan. 2003. Determination of simvastatin in human plasma by liquid chromatography-mass spectrometry. J. Chrmatography B.785: 369-375. 31. Sleteinger, M., T. Verhoeven, and R. Volant. April 1986.One step process for C-methylation of 2-methylbutyrates. U. S. patent 4,582,915. 32. Ertürk S., A. Önal, and S. Müge otin. 2003. Analytical methods for the quantitative determination of 3-hydroxy-3-methylgutaryl coenzyme A reductase in hibitors in biological samples. J. Chrmatography B. 793: 193-20. 33. Marcin, C., R. Whte, C. Hirsch, F. Ferris, R. Sykes, D. Houck, R. Greasham and M. Chartrain. 1991. Bioconversion of the sodium salt of Simvstatin (MK-733) to 6-desmethyl-6-α-hydroxymethyl simvastatin. J.Industrial Microbiology. 8: 157-164. 34. Komagata, D., H. Yamashita, and A.Endo. November 1986. Microbial conversion of compactin (ML-236B) to ML-236A. J Antibiot (Tokyo). 39(11):1574-7. 35. Endo, A., D. Komagata, and H.Shimada. December1986. Monacolin M, a new inhibitor of cholesterol biosynthesis. J Antibiot (Tokyo). 39 (12): 1670-3. 36. Endo, A., K. Hasumi, and S. Negishi. March 1985. Monacolins J and L, new inhibitors of cholesterol biosynthesis produced by Monascus ruber. J Antibiot (Tokyo). 38(3): 420-2. 37. Komagata, D., H. Shimada, S. Murakawa, and A. Endo. March 1989 Biosynthesis of monacolins: conversion of monacolin L to monacolin J by a monooxygenase of Monascus ruber. J Antibiot (Tokyo). 42(3): 407-12. 38. Kimura, K., D. Komagata, S. Murakawa, and A. Endo. December 1990. Biosynthesis of monacolins: conversion of monacolin J to monacolin K (mevinolin). J Antibiot (Tokyo). 43(12): 1621-2. 39. Cover, W. H., R. L. Dabora, A. Hong, C. Reeves, R. W. Stieber, and V. A. Vinci. October 1993. Mutant strains of Aspergillus terreus for producing 7-[1, 2, 6, 7, 8, 8A(R)-hexa-hydro- 2(S), 6(R)-dimethyl-8(S)-hydroxy-1(S)-aph-thyl ]-3(R)-dihydroxyheptanoic acid (triol acid). U. S. patent 5250435. 40. Nesterenko MV, Tilley M, Upton SJ. April 1994. A simple modification of Blum's silver stain method allows for 30 minute detection of proteins in polyacrylamide gels. J Biochem Biophys Methods. 28(3): 239-42.id NH0925111002 sid 914234 cfn 0 / id NH0925111003 auc 鄭浩明 tic APE/Ref-1在亞砷酸鈉對G2期CL3肺癌細胞誘發之細胞週期暫停及毒性之功能 adc 楊嘉鈴 ty 碩士 sc 國立清華大學 dp 生物科技研究所 yr 92 lg 中文 pg 52 kwc 缺鹼基位 kwc 缺鹼基位內切 kwc & kwc #37238; kwc 細胞程式死亡 kwc 鹼基切除修補 kwc 細胞週期 kwc 監控點 kwc 細胞群落形成能力 kwc 細胞毒性 kwc 流式細胞分析儀 kwc 免疫沉澱 kwc 有絲分裂期細胞率 kwc 非小細胞肺癌 kwc 含氧自由基 kwc 亞砷酸鈉 abc 缺鹼基位內切酶 (APE),又稱Ref-1,為一個具有多功能的蛋白質,然而其參與細胞週期以及訊號傳遞路徑的調控仍尚未了解。表現APE反義基因的APEas-CL3細胞較對照細胞Babe-CL3容易由G2期進入M期,並且有較高的Cdc25C蛋白質。以砷處理在G2之兩細胞株發現,APEas-CL3細胞對砷之細胞毒性較敏感,並且比較容易跳脫砷誘發之G2期停頓。砷對此兩細胞株造成之G2期停頓與Cdc25C蛋白的降解呈正相關。然而,砷移除2 - 3小時,APEas-CL3細胞中Cdc25C含量皆高於Babe-CL3細胞,且APEas-CL3細胞中, p53 Ser15以及ERK訊號無法被活化,而Babe-CL3則可以。進一步檢測APE與ERK分子的關係,經由細胞外或細胞內的蛋白結合實驗,證明APE會與ERK分子進行結合,且在細胞外結合實驗中發現在還原態條件越強越利於兩蛋白之結合。綜合上述推測, APE蛋白可能參與正常細胞G2/M期監控點,在砷的傷害下, APE可能藉由幫助p53 Ser15及ERK訊號受到上游激酶磷酸化,參與細胞G2/M期監控點以及保護細胞毒性。 rf Abraham, R.T. (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev, 15, 2177-2196. Banin, S., Moyal, L., Shieh, S., Taya, Y., Anderson, C.W., Chessa, L., Smorodinsky, N.I., Prives, C., Reiss, Y., Shiloh, Y. and Ziv, Y. (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science, 281, 1674-1677. Bartek, J., Falck, J. and Lukas, J. (2001) CHK2 kinase--a busy messenger. Nat Rev Mol Cell Biol, 2, 877-886. Barzilay, G., Mol, C.D., Robson, C.N., Walker, L.J., Cunningham, R.P., Tainer, J.A. and Hickson, I.D. (1995) Identification of critical active-site residues in the multifunctional human DNA repair enzyme HAP1. Nat Struct Biol, 2, 561-568. Bates, S. and Vousden, K.H. (1996) p53 in signaling checkpoint arrest or apoptosis. Curr Opin Genet Dev, 6, 12-18. Bau, D.T., Wang, T.S., Chung, C.H., Wang, A.S. and Jan, K.Y. (2002) Oxidative DNA adducts and DNA-protein cross-links are the major DNA lesions induced by arsenite. Environ Health Perspect, 110 Suppl 5, 753-756. Canman, C.E., Lim, D.S., Cimprich, K.A., Taya, Y., Tamai, K., Sakaguchi, K., Appella, E., Kastan, M.B. and Siliciano, J.D. (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science, 281, 1677-1679. Chen, C.J., Chen, C.W., Wu, M.M. and Kuo, T.L. (1992) Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br J Cancer, 66, 888-892. Chen, C.J., Hsueh, Y.M., Lai, M.S., Shyu, M.P., Chen, S.Y., Wu, M.M., Kuo, T.L. and Tai, T.Y. (1995) Increased prevalence of hypertension and long-term arsenic exposure. Hypertension, 25, 53-60. Chen, F., Zhang, Z., Bower, J., Lu, Y., Leonard, S.S., Ding, M., Castranova, V., Piwnica-Worms, H. and Shi, X. (2002) Arsenite-induced Cdc25C degradation is through the KEN-box and ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A, 99, 1990-1995. Chou, K.M. and Cheng, Y.C. (2002) An exonucleolytic activity of human apurinic/apyrimidinic endonuclease on 3' mispaired DNA. Nature, 415, 655-659. Davis, R.J. (1993) The mitogen-activated protein kinase signal transduction pathway. J Biol Chem, 268, 14553-14556. Davis, R.J. (1994) MAPKs: new JNK expands the group. Trends Biochem Sci, 19, 470-473. Demple, B. and Harrison, L. (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem, 63, 915-948. Doetsch, P.W. and Cunningham, R.P. (1990) The enzymology of apurinic/apyrimidinic endonucleases. Mutat Res, 236, 173-201. Durocher, D. and Jackson, S.P. (2001) DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr Opin Cell Biol, 13, 225-231. Erzberger, J.P. and Wilson, D.M., 3rd. (1999) The role of Mg2+ and specific amino acid residues in the catalytic reaction of the major human abasic endonuclease: new insights from EDTA-resistant incision of acyclic abasic site analogs and site-directed mutagenesis. J Mol Biol, 290, 447-457. Evans, A.R., Limp-Foster, M. and Kelley, M.R. (2000) Going APE over ref-1. Mutat Res, 461, 83-108. Fritz, G., Grosch, S., Tomicic, M. and Kaina, B. (2003) APE/Ref-1 and the mammalian response to genotoxic stress. Toxicology, 193, 67-78. Fritz, G. and Kaina, B. (1999) Phosphorylation of the DNA repair protein APE/REF-1 by CKII affects redox regulation of AP-1. Oncogene, 18, 1033-1040. Frosina, G., Fortini, P., Rossi, O., Carrozzino, F., Raspaglio, G., Cox, L.S., Lane, D.P., Abbondandolo, A. and Dogliotti, E. (1996) Two pathways for base excision repair in mammalian cells. J Biol Chem, 271, 9573-9578. Fung, H., Bennett, R.A. and Demple, B. (2001) Key role of a downstream specificity protein 1 site in cell cycle-regulated transcription of the AP endonuclease gene APE1/APEX in NIH3T3 cells. J Biol Chem, 276, 42011-42017. Gaiddon, C., Moorthy, N.C. and Prives, C. (1999) Ref-1 regulates the transactivation and pro-apoptotic functions of p53 in vivo. Embo J, 18, 5609-5621. Grosch, S., Fritz, G. and Kaina, B. (1998) Apurinic endonuclease (Ref-1) is induced in mammalian cells by oxidative stress and involved in clastogenic adaptation. Cancer Res, 58, 4410-4416. Hansen, R. and Oren, M. (1997) p53; from inductive signal to cellular effect. Curr Opin Genet Dev, 7, 46-51. Hartwell, L.H. and Weinert, T.A. (1989) Checkpoints: controls that ensure the order of cell cycle events. Science, 246, 629-634. Hirota, K., Matsui, M., Iwata, S., Nishiyama, A., Mori, K. and Yodoi, J. (1997) AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci U S A, 94, 3633-3638. Hsieh, M.M., Hegde, V., Kelley, M.R. and Deutsch, W.A. (2001) Activation of APE/Ref-1 redox activity is mediated by reactive oxygen species and PKC phosphorylation. Nucleic Acids Res, 29, 3116-3122. Huang, R.P. and Adamson, E.D. (1993) Characterization of the DNA-binding properties of the early growth response-1 (Egr-1) transcription factor: evidence for modulation by a redox mechanism. DNA Cell Biol, 12, 265-273. Izumi, T. and Mitra, S. (1998) Deletion analysis of human AP-endonuclease: minimum sequence required for the endonuclease activity. Carcinogenesis, 19, 525-527. Jacobs, D., Glossip, D., Xing, H., Muslin, A.J. and Kornfeld, K. (1999) Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev, 13, 163-175. Jayaraman, L., Murthy, K.G., Zhu, C., Curran, T., Xanthoudakis, S. and Prives, C. (1997) Identification of redox/repair protein Ref-1 as a potent activator of p53. Genes Dev, 11, 558-570. Jimenez, G.S., Khan, S.H., Stommel, J.M. and Wahl, G.M. (1999) p53 regulation by post-translational modification and nuclear retention in response to diverse stresses. Oncogene, 18, 7656-7665. Kastan, M.B., Zhan, Q., el-Deiry, W.S., Carrier, F., Jacks, T., Walsh, W.V., Plunkett, B.S., Vogelstein, B. and Fornace, A.J., Jr. (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell, 71, 587-597. Klungland, A. and Lindahl, T. (1997) Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). Embo J, 16, 3341-3348. Ko, J.C., Wang, Y.T. and Yang, J.L. (2004) Dual and opposing roles of ERK in regulating G1 and S-G2/M delays in A549 cells caused by hyperoxia. Article in press. Kolch, W. (2000) Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J, 351 Pt 2, 289-305. Lai, M.S., Hsueh, Y.M., Chen, C.J., Shyu, M.P., Chen, S.Y., Kuo, T.L., Wu, M.M. and Tai, T.Y. (1994) Ingested inorganic arsenic and prevalence of diabetes mellitus. Am J Epidemiol, 139, 484-492. Lew, D.J. and Kornbluth, S. (1996) Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control. Curr Opin Cell Biol, 8, 795-804. Lin, Y.W., Chuang, S.M. and Yang, J.L. (2003a) ERK1/2 achieves sustained activation by stimulating MAPK phosphatase-1 degradation via the ubiquitin-proteasome pathway. J Biol Chem, 278, 21534-21541. Lin, Y.W., Chuang, S.M. and Yang, J.L. (2003b) Persistent activation of ERK1/2 by lead acetate increases nucleotide excision repair synthesis and confers anti-cytotoxicity and anti-mutagenicity. Carcinogenesis, 24, 53-61. Lindahl, T. and Nyberg, B. (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry, 11, 3610-3618. Loeb, L.A. and Preston, B.D. (1986) Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet, 20, 201-230. Lucas, J.A., Masuda, Y., Bennett, R.A., Strauss, N.S. and Strauss, P.R. (1999) Single-turnover analysis of mutant human apurinic/apyrimidinic endonuclease. Biochemistry, 38, 4958-4964. Makino, Y., Okamoto, K., Yoshikawa, N., Aoshima, M., Hirota, K., Yodoi, J., Umesono, K., Makino, I. and Tanaka, H. (1996) Thioredoxin: a redox-regulating cellular cofactor for glucocorticoid hormone action. Cross talk between endocrine control of stress response and cellular antioxidant defense system. J Clin Invest, 98, 2469-2477. Mansour, S.J., Candia, J.M., Gloor, K.K. and Ahn, N.G. (1996) Constitutively active mitogen-activated protein kinase kinase 1 (MAPKK1) and MAPKK2 mediate similar transcriptional and morphological responses. Cell Growth Differ, 7, 243-250. Marshall, C.J. (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell, 80, 179-185. Martin-Lluesma, S., Stucke, V.M. and Nigg, E.A. (2002) Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science, 297, 2267-2270. Masuda, Y., Bennett, R.A. and Demple, B. (1998a) Dynamics of the interaction of human apurinic endonuclease (Ape1) with its substrate and product. J Biol Chem, 273, 30352-30359. Masuda, Y., Bennett, R.A. and Demple, B. (1998b) Rapid dissociation of human apurinic endonuclease (Ape1) from incised DNA induced by magnesium. J Biol Chem, 273, 30360-30365. Masutani, H., Hirota, K., Sasada, T., Ueda-Taniguchi, Y., Taniguchi, Y., Sono, H. and Yodoi, J. (1996) Transactivation of an inducible anti-oxidative stress protein, human thioredoxin by HTLV-I Tax. Immunol Lett, 54, 67-71. Matsumoto, Y. and Kim, K. (1995) Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science, 269, 699-702. Matsuoka, S., Huang, M. and Elledge, S.J. (1998) Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science, 282, 1893-1897. McCabe, M.J., Jr., Singh, K.P., Reddy, S.A., Chelladurai, B., Pounds, J.G., Reiners, J.J., Jr. and States, J.C. (2000) Sensitivity of myelomonocytic leukemia cells to arsenite-induced cell cycle disruption, apoptosis, and enhanced differentiation is dependent on the inter-relationship between arsenic concentration, duration of treatment, and cell cycle phase. J Pharmacol Exp Ther, 295, 724-733. Meira, L.B., Devaraj, S., Kisby, G.E., Burns, D.K., Daniel, R.L., Hammer, R.E., Grundy, S., Jialal, I. and Friedberg, E.C. (2001) Heterozygosity for the mouse Apex gene results in phenotypes associated with oxidative stress. Cancer Res, 61, 5552-5557. Mitomo, K., Nakayama, K., Fujimoto, K., Sun, X., Seki, S. and Yamamoto, K. (1994) Two different cellular redox systems regulate the DNA-binding activity of the p50 subunit of NF-kappa B in vitro. Gene, 145, 197-203. Mitra, S., Hazra, T.K., Roy, R., Ikeda, S., Biswas, T., Lock, J., Boldogh, I. and Izumi, T. (1997) Complexities of DNA base excision repair in mammalian cells. Mol Cells, 7, 305-312. Mol, C.D., Izumi, T., Mitra, S. and Tainer, J.A. (2000) DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination [corrected ]. Nature, 403, 451-456. Mol, C.D., Kuo, C.F., Thayer, M.M., Cunningham, R.P. and Tainer, J.A. (1995) Structure and function of the multifunctional DNA-repair enzyme exonuclease III. Nature, 374, 381-386. Nakamura, J., Walker, V.E., Upton, P.B., Chiang, S.Y., Kow, Y.W. and Swenberg, J.A. (1998) Highly sensitive apurinic/apyrimidinic site assay can detect spontaneous and chemically induced depurination under physiological conditions. Cancer Res, 58, 222-225. Nakshatri, H., Bhat-Nakshatri, P. and Currie, R.A. (1996) Subunit association and DNA binding activity of the heterotrimeric transcription factor NF-Y is regulated by cellular redox. J Biol Chem, 271, 28784-28791. Ng, J.C., Wang, J. and Shraim, A. (2003) A global health problem caused by arsenic from natural sources. Chemosphere, 52, 1353-1359. Ono, Y., Furuta, T., Ohmoto, T., Akiyama, K. and Seki, S. (1994) Stable expression in rat glioma cells of sense and antisense nucleic acids to a human multifunctional DNA repair enzyme, APEX nuclease. Mutat Res, 315, 55-63. Ozaki, M., Suzuki, S. and Irani, K. (2002) Redox factor-1/APE suppresses oxidative stress by inhibiting the rac1 GTPase. Faseb J, 16, 889-890. Peng, C.Y., Graves, P.R., Thoma, R.S., Wu, Z., Shaw, A.S. and Piwnica-Worms, H. (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science, 277, 1501-1505. Qin, J., Clore, G.M., Kennedy, W.P., Kuszewski, J. and Gronenborn, A.M. (1996) The solution structure of human thioredoxin complexed with its target from Ref-1 reveals peptide chain reversal. Structure, 4, 613-620. Ramana, C.V., Boldogh, I., Izumi, T. and Mitra, S. (1998) Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals. Proc Natl Acad Sci U S A, 95, 5061-5066. Roovers, K. and Assoian, R.K. (2000) Integrating the MAP kinase signal into the G1 phase cell cycle machinery. Bioessays, 22, 818-826. Rothwell, D.G. and Hickson, I.D. (1996) Asparagine 212 is essential for abasic site recognition by the human DNA repair endonuclease HAP1. Nucleic Acids Res, 24, 4217-4221. Sanchez, Y., Wong, C., Thoma, R.S., Richman, R., Wu, Z., Piwnica-Worms, H. and Elledge, S.J. (1997) Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science, 277, 1497-1501. Savitsky, P.A. and Finkel, T. (2002) Redox regulation of Cdc25C. J Biol Chem, 277, 20535-20540. Schaaper, R.M., Kunkel, T.A. and Loeb, L.A. (1983) Infidelity of DNA synthesis associated with bypass of apurinic sites. Proc Natl Acad Sci U S A, 80, 487-491. Seo, Y.R., Kelley, M.R. and Smith, M.L. (2002) Selenomethionine regulation of p53 by a ref1-dependent redox mechanism. Proc Natl Acad Sci U S A, 99, 14548-14553. Sharrocks, A.D., Yang, S.H. and Galanis, A. (2000) Docking domains and substrate-specificity determination for MAP kinases. Trends Biochem Sci, 25, 448-453. Shieh, S.Y., Taya, Y. and Prives, C. (1999) DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization. Embo J, 18, 1815-1823. Tanoue, T., Adachi, M., Moriguchi, T. and Nishida, E. (2000) A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat Cell Biol, 2, 110-116. Tanoue, T. and Nishida, E. (2002) Docking interactions in the mitogen-activated protein kinase cascades. Pharmacol Ther, 93, 193-202. Taylor, S.S. and McKeon, F. (1997) Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell, 89, 727-735. Tseng, W.P. (1989) Blackfoot disease in Taiwan: a 30-year follow-up study. Angiology, 40, 547-558. Ueno, M., Masutani, H., Arai, R.J., Yamauchi, A., Hirota, K., Sakai, T., Inamoto, T., Yamaoka, Y., Yodoi, J. and Nikaido, T. (1999) Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J Biol Chem, 274, 35809-35815. Unger, T., Juven-Gershon, T., Moallem, E., Berger, M., Vogt Sionov, R., Lozano, G., Oren, M. and Haupt, Y. (1999) Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. Embo J, 18, 1805-1814. Vogelstein, B., Lane, D. and Levine, A.J. (2000) Surfing the p53 network. Nature, 408, 307-310. Walker, L.J., Craig, R.B., Harris, A.L. and Hickson, I.D. (1994) A role for the human DNA repair enzyme HAP1 in cellular protection against DNA damaging agents and hypoxic stress. Nucleic Acids Res, 22, 4884-4889. Walker, L.J., Robson, C.N., Black, E., Gillespie, D. and Hickson, I.D. (1993) Identification of residues in the human DNA repair enzyme HAP1 (Ref-1) that are essential for redox regulation of Jun DNA binding. Mol Cell Biol, 13, 5370-5376. Wallace, S.S. (1998) Enzymatic processing of radiation-induced free radical damage in DNA. Radiat Res, 150, S60-79. Waskiewicz, A.J. and Cooper, J.A. (1995) Mitogen and stress response pathways: MAP kinase cascades and phosphatase regulation in mammals and yeast. Curr Opin Cell Biol, 7, 798-805. Xanthoudakis, S. and Curran, T. (1992) Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity. Embo J, 11, 653-665. Yacoub, A., Kelley, M.R. and Deutsch, W.A. (1997) The DNA repair activity of human redox/repair protein APE/Ref-1 is inactivated by phosphorylation. Cancer Res, 57, 5457-5459. Yang, P.C., Luh, K.T., Wu, R. and Wu, C.W. (1992) Characterization of the mucin differentiation in human lung adenocarcinoma cell lines. Am J Respir Cell Mol Biol, 7, 161-171. Yih, L.H. and Lee, T.C. (2000) Arsenite induces p53 accumulation through an ATM-dependent pathway in human fibroblasts. Cancer Res, 60, 6346-6352. 林芸薇. (2003) Investigation of molecular and cellular effects in response to sustained ERK1/2 activation induced by lead acetate. National Tsing Hua University Ph.D thesis. 嚴愛鑫. (2000) Mechanism of anti-sense APE/Ref-1 overexpression enhances Cd-induced apoptosis. National Tsing Hua University master thesis.id NH0925111003 sid 914242 cfn 0 / id NH0925111004 auc 陳嘉琪 tic 順雙氨雙氯鉑、輻射線、及亞砷酸鈉在非小細胞肺癌H1299細胞的細胞毒性機制研究 adc 黃海美 ty 碩士 sc 國立清華大學 dp 生物科技研究所 yr 92 lg 中文 pg 57 kwc 順雙氨雙氯鉑 kwc 亞砷酸鈉 kwc 非小細胞肺癌 abc 在近年報導中指出,以transient方式轉殖正常p53基因可以提高細胞對藥物的反應。 本研究則採用轉殖正常p53方式選出穩定表現p53的細胞,再作細胞對藥物反應的研究。 tc 中文摘要 1 Abstract 3 Introduction 5 The purpose of this study 14 Materials and methods 15 Results 23 Discussion 30 References 35 Figures 39 Appendix 1 56 Appendix 2 57rf Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B (1990): Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249:912-5. Bradford CR, Zhu S, Ogawa H, Ogawa T, Ubell M, Narayan A, Johnson G, Wolf GT, Fisher SG, Carey TE (2003): P53 mutation correlates with cisplatin sensitivity in head and neck squamous cell carcinoma lines. Head Neck 25:654-61. Brognard J, Dennis PA (2002): Variable apoptotic response of NSCLC cells to inhibition of the MEK/ERK pathway by small molecules or dominant negative mutants. Cell Death Differ 9:893-904. Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, Williams J, Lengauer C, Kinzler KW, Vogelstein B (1999): Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 104:263-9. Canman CE, Gilmer TM, Coutts SB, Kastan MB (1995): Growth factor modulation of p53-mediated growth arrest versus apoptosis. Genes Dev 9:600-11. Choi JH, Ahn KS, Kim J, Hong YS (2000): Enhanced induction of Bax gene expression in H460 and H1299 cells with the combined treatment of cisplatin and adenovirus mediated wt-p53 gene transfer. Exp Mol Med 32:23-8. Chou RH, Huang H (2002): Restoration of p53 tumor suppressor pathway in human cervical carcinoma cells by sodium arsenite. Biochem Biophys Res Commun 293:298-306. Cohen SM, Lippard SJ (2001): Cisplatin: from DNA damage to cancer chemotherapy. Prog Nucleic Acid Res Mol Biol 67:93-130. Degenhardt K, Chen G, Lindsten T, White E (2002): BAX and BAK mediate p53-independent suppression of tumorigenesis. Cancer Cell 2:193-203. Fan S, el-Deiry WS, Bae I, Freeman J, Jondle D, Bhatia K, Fornace AJ, Jr., Magrath I, Kohn KW, O'Connor PM (1994): p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. Cancer Res 54:5824-30. Filippova M, Duerksen-Hughes PJ (2003): Inorganic and dimethylated arsenic species induce cellular p53. Chem Res Toxicol 16:423-31. Friedlander P, Legros Y, Soussi T, Prives C (1996): Regulation of mutant p53 temperature-sensitive DNA binding. J Biol Chem 271:25468-78. Fujita T, Kiyama M, Tomizawa Y, Kohno T, Yokota J (1999): Comprehensive analysis of p53 gene mutation characteristics in lung carcinoma with special reference to histological subtypes. Int J Oncol 15:927-34. Fukazawa T, Walter B, Owen-Schaub LB (2003): Adenoviral Bid overexpression induces caspase-dependent cleavage of truncated Bid and p53-independent apoptosis in human non-small cell lung cancers. J Biol Chem 278:25428-34. Gebel T (1997): Arsenic and antimony: comparative approach on mechanistic toxicology. Chem Biol Interact 107:131-44. Gjerset RA, Lebedeva S, Haghighi A, Turla ST, Mercola D (1999): Inhibition of the Jun kinase pathway blocks DNA repair, enhances p53-mediated apoptosis and promotes gene amplification. Cell Growth Differ 10:545-54. Herr I, Debatin KM (2001): Cellular stress response and apoptosis in cancer therapy. Blood 98:2603-14. Huang H, Huang CF, Wu DR, Jinn CM, Jan KY (1993): Glutathione as a cellular defence against arsenite toxicity in cultured Chinese hamster ovary cells. Toxicology 79:195-204. Huang H, Huang SY, Chen TT, Chen JC, Chiou CL, Huang TM (2004): Cisplatin restores p53 function and enhances the radiosensitivity in HPV16 E6 containing SiHa cells. J Cell Biochem 91:756-65. Jing Y, Dai J, Chalmers-Redman RM, Tatton WG, Waxman S (1999): Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 94:2102-11. Johnstone RW, Ruefli AA, Lowe SW (2002): Apoptosis: a link between cancer genetics and chemotherapy. Cell 108:153-64. Kapahi P, Takahashi T, Natoli G, Adams SR, Chen Y, Tsien RY, Karin M (2000): Inhibition of NF-kappa B activation by arsenite through reaction with a critical cysteine in the activation loop of Ikappa B kinase. J Biol Chem 275:36062-6. Karasuyama H, Tohyama N, Tada T (1989): Autocrine growth and tumorigenicity of interleukin 2-dependent helper T cells transfected with IL-2 gene. J Exp Med 169:13-25. Kawasaki M, Nakanishi Y, Kuwano K, Yatsunami J, Takayama K, Hara N (1997): The utility of p53 immunostaining of transbronchial biopsy specimens of lung cancer: p53 overexpression predicts poor prognosis and chemoresistance in advanced non-small cell lung cancer. Clin Cancer Res 3:1195-200. Kim SO, Ono K, Han J (2001): Apoptosis by pan-caspase inhibitors in lipopolysaccharide-activated macrophages. Am J Physiol Lung Cell Mol Physiol 281:L1095-105. Koivusalo R, Krausz E, Ruotsalainen P, Helenius H, Hietanen S (2002): Chemoradiation of cervical cancer cells: targeting human papillomavirus E6 and p53 leads to either augmented or attenuated apoptosis depending on the platinum carrier ligand. Cancer Res 62:7364-71. Lai SL, Perng RP, Hwang J (2000): p53 gene status modulates the chemosensitivity of non-small cell lung cancer cells. J Biomed Sci 7:64-70. Lee TC, Wei ML, Chang WJ, Ho IC, Lo JF, Jan KY, Huang H (1989): Elevation of glutathione levels and glutathione S-transferase activity in arsenic-resistant Chinese hamster ovary cells. In Vitro Cell Dev Biol 25:442-8. Levine AJ (1997): p53, the cellular gatekeeper for growth and division. Cell 88:323-31. Lowe SW (1995): Cancer therapy and p53. Curr Opin Oncol 7:547-53. Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, Housman DE, Jacks T (1994): p53 status and the efficacy of cancer therapy in vivo. Science 266:807-10. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T (1993): p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362:847-9. Maeda H, Hori S, Nishitoh H, Ichijo H, Ogawa O, Kakehi Y, Kakizuka A (2001): Tumor growth inhibition by arsenic trioxide (As2O3) in the orthotopic metastasis model of androgen-independent prostate cancer. Cancer Res 61:5432-40. Maltzman W, Czyzyk L (1984): UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol 4:1689-94. Mello JA, Acharya S, Fishel R, Essigmann JM (1996): The mismatch-repair protein hMSH2 binds selectively to DNA adducts of the anticancer drug cisplatin. Chem Biol 3:579-89. Michael D, Oren M (2003): The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol 13:49-58. Nemunaitis J, Swisher SG, Timmons T, Connors D, Mack M, Doerksen L, Weill D, Wait J, Lawrence DD, Kemp BL, Fossella F, Glisson BS, Hong WK, Khuri FR, Kurie JM, Lee JJ, Lee JS, Nguyen DM, Nesbitt JC, Perez-Soler R, Pisters KM, Putnam JB, Richli WR, Shin DM, Walsh GL, Merritt J, Roth J (2000): Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer. J Clin Oncol 18:609-22. Nishio K, Nakamura T, Koh Y, Suzuki T, Fukumoto H, Saijo N (1999): Drug resistance in lung cancer. Curr Opin Oncol 11:109-15. Oren M (1999): Regulation of the p53 tumor suppressor protein. J Biol Chem 274:36031-4. Osaki S, Nakanishi Y, Takayama K, Pei XH, Ueno H, Hara N (2000): Alteration of drug chemosensitivity caused by the adenovirus-mediated transfer of the wild-type p53 gene in human lung cancer cells. Cancer Gene Ther 7:300-7. Pataer A, Fang B, Yu R, Kagawa S, Hunt KK, McDonnell TJ, Roth JA, Swisher SG (2000): Adenoviral Bak overexpression mediates caspase-dependent tumor killing. Cancer Res 60:788-92. Pearson AS, Spitz FR, Swisher SG, Kataoka M, Sarkiss MG, Meyn RE, McDonnell TJ, Cristiano RJ, Roth JA (2000): Up-regulation of the proapoptotic mediators Bax and Bak after adenovirus-mediated p53 gene transfer in lung cancer cells. Clin Cancer Res 6:887-90. Reed JC (1994): Bcl-2 and the regulation of programmed cell death. J Cell Biol 124:1-6. Roth JA, Swisher SG, Merritt JA, Lawrence DD, Kemp BL, Carrasco CH, El-Naggar AK, Fossella FV, Glisson BS, Hong WK, Khurl FR, Kurie JM, Nesbitt JC, Pisters K, Putnam JB, Schrump DS, Shin DM, Walsh GL (1998): Gene therapy for non-small cell lung cancer: a preliminary report of a phase I trial of adenoviral p53 gene replacement. Semin Oncol 25:33-7. Shieh SY, Ikeda M, Taya Y, Prives C (1997): DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325-34. Spitz FR, Nguyen D, Skibber JM, Meyn RE, Cristiano RJ, Roth JA (1996): Adenoviral-mediated wild-type p53 gene expression sensitizes colorectal cancer cells to ionizing radiation. Clin Cancer Res 2:1665-71. Swisher SG, Roth JA (2002): Clinical update of Ad-p53 gene therapy for lung cancer. Surg Oncol Clin N Am 11:521-35. Ullman KS, Powers MA, Forbes DJ (1997): Nuclear export receptors: from importin to exportin. Cell 90:967-70. Viksman MY, Liu MC, Schleimer RP, Bochner BS (1994): Application of a flow cytometric method using autofluorescence and a tandem fluorescent dye to analyze human alveolar macrophage surface markers. J Immunol Methods 172:17-24. Vogelstein B, Kinzler KW (1992): p53 function and dysfunction. Cell 70:523-6. Vogt U, Striehn E, Bosse U, Klinke F, Falkiewicz B (1999): Lack of squamous cell lung carcinoma in vitro chemosensitivity to various drug regimens in the adenosine triphosphate cell viability chemosensitivity assay. Acta Biochim Pol 46:299-302. Vogt U, Zaczek A, Klinke F, Granetzny A, Bielawski K, Falkiewicz B (2002): p53 Gene status in relation to ex vivo chemosensitivity of non-small cell lung cancer. J Cancer Res Clin Oncol 128:141-7. Weinrib L, Li JH, Donovan J, Huang D, Liu FF (2001): Cisplatin chemotherapy plus adenoviral p53 gene therapy in EBV-positive and -negative nasopharyngeal carcinoma. Cancer Gene Ther 8:352-60. Zhang WW, Fang X, Mazur W, French BA, Georges RN, Roth JA (1994): High-efficiency gene transfer and high-level expression of wild-type p53 in human lung cancer cells mediated by recombinant adenovirus. Cancer Gene Ther 1:5-13.id NH0925111004 sid 914265 cfn 0 / id NH0925111005 auc 張仲杰 tic S-layer功能化表面之研究 adc 譚世特 ty 碩士 sc 國立清華大學 dp 生物科技研究所 yr 92 lg 中文 pg 28 kwc 表層結晶蛋白 kwc 表面功能化 kwc 耐輻射奇異球菌 abc 耐輻射奇異球菌Deinococcus radiodurans細胞表面結晶蛋白(S-layer protein, SLP)已知為126 kDa具自我組合能力的蛋白質分子。本研究中,我們以另一耐輻射奇異球菌野生型菌株Deinococcus radiodurans IR (輻射抗性與生長速率均較R1為高)為材料,對D. radiodurans IR SLP作自組合性質分析及應用層面的開發。 rf 1. Sleytr, U. B., and P. Messner. 1983. Crystalline surface layers on bacteria. Annu. Rev. Microbiol. 37: 311-339. 2. Thornley, M. J., A. M. Glauert, and U. B. Sleytr. 1974. Structure and assembly of bacterial surface layers composed of regular arrays of subunits. Phil. Trans. R. Soc. Lond. B. 268: 147-153. 3. Glauert, A. M., and M. J. Thornley. 1969. The topography of the bacterial cell wall. A. Rev. Microbiol. 23: 159-198. 4. Holt, S. C., and E. R. Leadbetter. 1969. Comparative ultrastructure of selected aerobic spore-forming bacteria: a freeze-etching study. Bact. Rev. 33: 346-378. 5. Mesnage, S., E. Tosi-couture, P. Gounon, M. Mock, and A. Fouet. 1998. The capsule and S-layer: Two independent and yet compatible macromolecular structures in Bacillus anthracis. J. Bacteriol. 180: 1488-1495. 6. Müller, D. J., W. Maumeister, and A. Engel. 1996. Conformation change of the hexagonally packed intermediate layer of Deinococcus radiodurans Monitored by atomic force microscopy. J. Bacteriol. 178: 3025-3030. 7. Sleytr, U. B., S. Margit, P. Dietmar, and S. Bernhard. 2001. Characterization and use of crystalline bacterial cell surface layers. Progress in Surface Science. 68: 231-278. 8. Pum, D., A. Neubauer, E. Gyoervary, M. Sára, Sleytr. U. B. 2000. S-layer proteins as basic building blocks in a biomolecular construction kit. Nanotechnology. 11: 100-107. 9. Glauert, A. M., and M. J. Thornley. 1973. Self-assembly of a surface component of a bacterial outer membrane. John Innes Symp. 1: 297-305. 10. Sleytr, U. B. 1976. Self-assembly of the hexagonally and tetragonally arranged subunits of bacterial surface layers and their reattachment to cell walls. J. Ultrastruct. Res. 55: 360-377. 11. Scholz, H. C., E. Riedmann, A. Witte, W. Lubitz, and B. Kuen. 2001. S-layer variation in Bacillus stearothermophilus PV72 is based on DNA rearrangement between the chromosome and the naturally occurring megaplasmids. J. Bacteriol. 183: 1672-1679. 12. Thornley, M. J., R. W. Horne, and A. M. Glauert. 1965. The fine structure of Micrococcus radiodurans. Arch. Mikrobiol. 51: 267-289. 13. Work, E., and H. Griffiths. 1968. Morphology and chemistry of cell walls of Micrococcus radiodurans. J. Bacteriol. 95: 641-657. 14. Sleytr, U. B., M. Kocur, A. M. Glauert, and M. J. Thornley. 1973. A study of freeze-etching of the fine structure of Micrococcus radiodurans. Arch. Mikrobiol. 94: 77-87. 15. Lancy, JR., P., and R. G. E. Murray. 1978. The envelope of Micrococcus radiodurans: isolation, purification, and preliminary analysis of the cell wall layers. Can. J. Microbiol. 24: 162-176. 16. Baumeister, W., and O. Kübler. 1978. Topographic study of the cell surface of Micrococcus radiodurans. PNAS. U.S.A. 75(11): 5525-5528. 17. Thompson, B. G., and R. G. E. Murray. 1982. The association of the surface array and the outer membrane of Deinococcus radiodurans. Can. J. Microbiol. 28: 1081-1088. 18. Karrasch, S., R. Hegerl, J. H. Hoh, W. Baumeister, and A. Engel. 1994. Atomic force microscopy produces faithful high-resolution images of protein surfaces in an aqueous environment. PNAS. USA. 91: 836-838. 19. Müller, D. J., D. Fotiadis, S. Scheuring, C. Möller, and A. Engel. 2000. Comformation changes, flexibilities and intramolecular forces observed on individual proteins using AFM. Single Mol. 1: 115-118. 20. Müller, D. J., and A. Engel. 1999. Voltage and pH-induced channel closure of porin OmpF visualized by atomic force microscopy. J. Mol. Biol. 285: 1347-1351. 21. Reinhoudt, D. N., and M. Crego-Calama. 2002. Synthesis beyond the molecule. Science. 295: 2403-2407. 22. Beveridge, T. J. 1994. Bacterial S-layers. Curr. Opin. Struct. Biol. 4: 204-212. 23. Chu, S., S. Cavaignac, J. Feutrier, B. M. Phipps, M. Kostrzynska,, W. W. Kay, and T. J. Trust. 1991. Structure of the tetragonal surface virulence array protein and gene of Aeromonas salmonicida. J. Biol. Chem. 266: 15258-15265. 24. Sara, M., and Sleytr. U. B. 1987. Molecular sieving through S-layers of Bacillus stearothermophilus strains. J. Bacteriol. 169: 4092-4098. 25. Engelhardt, H., and J. Peters. 1998. Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer-cell wall interactions. J. Struct. Biol. 124: 276-302. 26. Brechtel, E., M. Matuschek, A. Hellberg, E. M. Egelseer, R. Schmid, and H. Bahl. 1999. Cell wall of Thermoanaerobacterium thermosulfurigenes EM1: isolation of its components and attachment of the xylanase XynA. Arch. Microbiol. 171: 159-165. 27. Pum D., and Sleytr. U. B. 1999. The application of bacterial S-layers in molecular nanotechnology. Nanotechnology. 17: 8-12. 28. Pum D., G. Stangl, C. Sponer, K. Riedling, P. Hudek, W. Fallmann, and Sleytr. U. B. 1997. Patterning of monolayers of crystalline S-layer proteins on a silicon surface by deep ultraviolet radiation. Microelectronic Engineering. 35: 297-300. 29. Müller, D. J., W. Maumeister, and A. Engel. 1999. Controlled unzipping of a bacterial surface layer with atomic force microscopy. PNAS. 96: 13170-13174. 30. Küpcü, S., Sára, M., and Sleytr. U. B. 1995. Liposomes coated with crystalline bacterial cells surface protein (S-layer) as immobilization structures for macromolecules. Biochim Biophys Acta. 1235(2):263-269. 31. Mader, C., Küpcü, S., Sára, M., and Sleytr. U. B. 1999. Stabilizing effect of an S-layer on liposomes towards thermal or mechanical stress. Biochim Biophys Acta. 1418(1):106-16. 32. Mader, C., Küpcü, S., Sleytr. U. B., and Sára, M. 2000. S-layer-coated liposomes as a versatile system for entrapping and binding target molecules. Biochim Biophys Acta. 1463(1):142-50. 33. Moll, D., Huber, C., Schlegel, B., Pum D, Sleytr. U. B., and Sára, M. 2002. S-layer-streptavidin fusion proteins as template for nanopatterned molecular arrays. PNAS. 99:14646-51. 34. Neubauer, A., Pum D., Sleytr. U. B., Klimant, I., and O. S. Wolfbeis. 1996. Fibre-optic glucose biosensor using enzyme membranes with 2-D crystalline structure. Bioscensor & Bioelectronics. 11:317-325. 35. Shenton, W., Pum D., Sleytr. U. B., and Mann S. 1997. Synthesis of cadmiumsulphide superlattices using self-assembled bacterial S-layers. Nature. 389:585-587. 36. Pum, D., and Sleytr. U. B. 1995. Monomolecular reassembly of a crystalline bacterial cell surface layer (S-layer) on untreated and modified silicon surface. Supramolecular science. 2:193-197 37. Pum, D., and Sleytr. U. B. 1994. Large-scale reconstitution of crystalline bacterial surface layer proteins at the air-water interface and on lipid films. Thin solid films. 244:882-886id NH0925111005 sid 914276 cfn 0 / id NH0925111006 auc 張耿豪 tic 耐輻射奇異球菌S-layer包覆微脂體之研究 adc 譚世特 ty 碩士 sc 國立清華大學 dp 生物科技研究所 yr 92 lg 中文 pg 24 kwc 微脂體 kwc 細菌表面結晶蛋白 kwc 耐輻射奇異球菌 abc 先前本實驗室針對Deinococcus radiodurans IR表面two-dimensional crystalline surface layers結構及自組合特性作深入的研究,並開發出簡單可大量快速獲得S-layer fraction (SLF) 的方法。本實驗基於改善微脂體穩定性不足方面的缺點,利用SLF與lipid membrane的interaction,可以簡單且快速在微脂體表面貼覆細菌的表層結晶蛋白,形成SLF coated liposome (SLL)。利用螢光顯微鏡發現SLL具有獨特的發光特性,因此可藉由共軛焦雷射掃描式顯微鏡觀察SLF coated liposome的完整性,以及使用原子力電子顯微鏡觀察奈米級SLL的形態。穩定性實驗方面,SLL與微脂體分別經過酸 (pH 1.5 solution) 處理一段時間,利用庫爾特粒徑分析儀(COULTER Multisizer Ⅱ) 來測量其體積與顆粒數變化,結果顯示SLL具有較佳的耐酸性。另外微脂體面對高張和低張溶液,其體積及顆粒數變化相當大。反觀經過SLF修飾的微脂體具有較佳的穩定性。SLL表面的結晶蛋白構造提供了完整的基質可以連接其他功能性分子,提升藥物輸送的專一性。SLL表面的特殊發光特性亦可當作生物感應器或是診斷用的定量標記(quantitative markers),增添了微脂粒的應用價值。此外SLL的構造也類似簡單的細菌型態,建立了一個研究細菌membrane protein、ion channel 及演化學方面的model system 。 rf 1. Thornley, M. J., Horne, R.W. & Glauert, A. M. 1965. The fine structure of Micrococcus radiodurans. Arch. Mikrobiol. 51: 267-289. 2. Sleytr, U.B., Kocur, M., Glauert, A. M. & Thornley M.J. 1973. A study by freeze-etching of the fine structure of Micrococcus radiodurans. Arch. Mikrobiol. 94: 77-87. 3. Baumeister, W. & Barth, M., Hegerl, R. 1986. Three-dimensional structure of the regular surface layer (HPI Layer) of Deinococcus radiodurans. J. Mol. Biol. 187: 241-253. 4. Pum, D., Neubauer, A., Gyoervary, E. & Sara, M. 2000. S-layer proteins as basic building blocks in a biomolecular construction kit. Nanotechnology. 11:100-107. 5. Baumeister, W. & Kubler, O. 1978. Topographic study of the cell surface of Micrococcus radiodurans. Proc. Natl. Acad. Sci. 75:5525-5528. 6. Baumeister, W., Karrenberg, F. & Rachel, R. 1982. The major cell envelope protein of Micrococcus radiodurans (R1) structure and chemical characterization. Eur. J. Biochem. 125: 535-544. 7. Dietmar, P. & Sleytr, U. B. 1999. The application of bacterial S-layers in molecular nanotechnology. Nanotechnology. 17:8-12. 8. Sleytr, U.B., Györvary E. & Pum, D. 2003. Crystallization of S-layer protein lattices on surfaces and interfaces. Prog. Organ. Coat. 47:279-287. 9. Lancy, P. & Murray, R.G. 1977.The envelope of Micrococcus radiodurans: isolation, purification, and preliminary analysis of the wall layes. Can J Microbiol. 24:162-176. 10. Elizabeth, W. & Hilary G. 1968. Morphology and chemistry of cell walls of Micrococcus radiodurans. J. Bacteriol. 95: 641-657. 11. Thompson, B. G. & Murray, R. G. 1981. Isolation and characterization of the plasma membrane and the outer membrane of Deinococcus radiodurans strain Sark. Can J Microbiol. 27:729-734. 12. Thompson, B. G. & Murray, R. G. 1982. The association of the surface array and the outer membrane of Deinococcus radiodurans. Can J Microbiol. 28:1081-1088. 13. Huang, Y. & Anderson, R. 2002. Enhanced immune protection by a liposome-encapsulated recombinant respiratory syncytial virus (RSV) vaccine using immunogenic lipids from Deinococcus radiodurans. Vaccine. 20:1586-1592. 14. Barenholz, Y. 2001. Liposome application: problems and prospects. Curr. Opin. Colloid Interfacial Sci. 6:66-77. 15. Vemuri, S. & Rhodes, C. T. 1995. Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm. Acta Helv. 70:95-111. 16. Allen, T. M. & Cullis, P. R. 2004. Drug delivery systems: entering the mainstream. Science. 303:1818-1822. 17. Chen, H., Torchilin, V. & Langer, R. 1996. Polymerized liposomes as potential oral vaccine carriers: stability and bioavailability. J. Control. Release. 42:263-272. 18. Graff, A., Winterhalter, M. & Meier, W. 2001. Nanoreactors from polymer-stabilized liposomes. Langmuir. 17: 919-923 19. Kupcu, S., Sara, M. & Sleytr, U. B. 1995.Liposomes coated with crystalline bacterial cells surface protein (S-layer) as immobilization structures for macromolecules. Biochim Biophys Acta. 1235:263-269. 20. Mader, C., Kupcu, S., Sleytr, U.B. & Sara, M. 2000. S-layer-coated liposomes as a versatile system for entrapping and binding target molecules. Biochim Biophys Acta. 1463:142-150. 21. Mader, C., Kupcu, S., Sara, M. & Sleytr, U.B. 1999. Stabilizing effect of an S-layer on liposomes towards thermal or mechanical stress. Biochim Biophys Acta. 1418:106-116. 22. Moll, D., Huber, C., Schlegel, B., Pum, D., Sleytr, U.B. & Sara, M. 2002. S-layer-streptavidin fusion proteins as template for nanopatterned molecular arrays. Proc Natl Acad Sci U S A. 99:14646-14651. 23. Nacka, F., Cansell, M. & Gouygou, J. P. 2001. Physical and chemical stability of marine lipid-based liposome under acid conditions. Coll. Surf. B: Biointerf. 20:257-266. 24. Venkatesan, N. & Vyas, S. P. 2000. Polysaccharide coated liposomes for oral immunization development and characterization. Int. J. Pharmaceutics. 203:169-177. 25. Romanowski, S. A., Chiaramoni, N. S & Lioy, V. S. 2003. Characterization of diacetylenic liposomes as carriers for oral vaccines. Chem Phys Lipids. 122:191-203. 26. Schuster, B. P., Gufler, C., Pum, D. & Sleytr, U. B. 2004. S-Layer Proteins as Supporting Scaffoldings for Functional Lipid Membranes. IEEE Trans. Nanobio. 3:16-21. 27. Sprott, G. D., Dicaire, C. J., Gurnani, K. & Deschatelets, L. A. 2004. Liposome adjuvants prepared from the total polar lipids of Haloferax volcanii, Planococcus spp. and Bacillus firmus differ in ability to elicit and sustain immune responses. Vaccine. 22:2154-2162. 28. Thomson, N. H., Collin, I. & Martyn, C. D. 2000. Atomic force microscopy of cationic liposomes. Langmuir. 16: 4813-4818. 29. Ishihara, K., Tsujino, R. & Hamada, M. 2002. Stabilized liposomes with phospholipid polymers and their interactions with blood cells. Coll. Surf. B: Biointerf. 25:325-333. 30. Moussaoui, N., Cansell, M. & Denizot, A. 2002.Marinosomes®, marine lipid-based liposomes: physical characterization and potential application in cosmetics. Int. J. Pharmaceutics. 242: 361-365. 31. Hui, S.W., Kuhl, T.L. & Guo, Y. Q. & Israelachvili, J. 1999.Use of poly(ethylene glycol) to control cell aggregation and fusion. Coll. Surf. B: Biointerf. 14:213-222. 32. Manuel, A., Coelho, N., Alessandra, G. & Helmuth Mohwald. 2004. Nanocapsules with functionalized surfaces and walls. IEEE Trans. Nanobio. 3:3-5. 33. Manuela, V. & Maya, S. 2002. Designing of ‘intelligent’ liposomes. J. Cell. Mol. Med. 6:465-474. 34. Nicola, I., Seta, K., Gerald, M. & Sigrid, K. 2004. A functional cheimaeric S-layer-enchanced green fluorescenct protein to follow the uptake of S-layer-coated liposomes into eukaryotic cells. Biochem. J. 379: 441-448. 35. Ji, E. K., Ahn, D. J. & Kim, J. M. 2003.The fluorescent polydiacetylene liposome. Bull. Korean Chem. Soc. 24:667-670. 36. Sleytr, U.B. & Messner, P., Pum, D. 1999. Crystalline bacterial cell surface layers(S Layers): From supramolecular cell structure to biomimetics and nanotechnology. Angew. Chem. Int. Ed. 38:1034-1054. 37. Ruysschaert, T. & Germain, M. 2004. Liposome-based nanocapsules. IEEE Trans. Nanobio. 3:49-55.id NH0925111006 sid 914248 cfn 0 / id NH0925111007 auc 陳俊憲 tic 新穎S-layer為基礎的中空球體之研究 adc 譚世特 ty 碩士 sc 國立清華大學 dp 生物科技研究所 yr 92 lg 中文 pg 20 kwc 表層結晶蛋白 kwc 球 abc 細菌表層蛋白(S-layers)為許多細菌及古生菌細胞最外層的組成結構。Deinococcus radiodurans具有複雜的細胞壁組成結構,其中包含S-layers。傳統上,製備方面通常都是利用化學藥劑處理方式將D. radiodurans的S-layers分離,效率不彰;應用性方面,S-layers通常以二維平面層次來利用。本篇論文想開發一種新的製程取得S-layers,並且探討S-layers在三維層次變化上的發展性。而我們成功的提供一種新穎簡單且自然的方法從D. radiodurans分離S-layers,我們稱為S-layers fraction (SLF)。更進一步,首先我們利用一種物理性力量使SLF形成許多中空顆粒 (SLFP),直徑約100 – 200 nm。另外,我們在中性環境下將Ag+加至SLF溶液中。我們意外的發現一種中空球體結構,稱SLF-Ag,直徑約1 – 30 mm。這些結果顯示新的製程方式可有效的從D. radiodurans分離S-layers,此SLF能形成三維中空球體結構而具有利用性、可塑性、並且保有其原本在細胞上所扮演的生理角色。此外,SLF-Ag可能含有biogenic minerals,polarity,和evolution等意涵。 rf 1. Sleytr, U. B., and P. Messner. 1983. Crystalline surface layers on bacteria. Annu. Rev. Microbiol. 37: 311-339. 2. Thornley, M. J., A. M. Glauert, and U. B. Sleytr. 1974. Structure and assembly of bacteria surface layers composed of regular arrays of subunits. Phil. Trans. R. Soc. Lond. B. 268: 147-153. 3. Glauert, A. M., and M. J. Thornley. 1969. The topography of the bacterial cell wall. A. Rev. Microbiol. 23: 159-198. 4. Holt, S. C., and E. R. Leadbetter. 1969. Comparative ultrastructure of selected aerobic spore-forming bacteria: a freeze-etching study. Bact. Rev. 33: 346-378. 5. Mesnage, S., E. Tosi-couture, P. Gounon, M. Mock, and A. Fouet. 1998. The capsule and S-layer: Two independent and yet compatible macromolecular structures in Bacillus anthracis. J. Bacteriol. 180: 1488-1495. 6. Müller, D. J., W. Maumeister, and A. Engel. 1996. Comformation change of the hexagonally packed intermediate layer of Deinococcus radiodurans monitored by atomic force microscopy. J. Bacteriol. 178: 3025-3030. 7. Sleytr, U. B., S. Margit, P. Dietmar, and S. Bernhard. 2001. Characterization and use of crystalline bacterial cell surface layers. Progress in Surface Science. 68: 231-278. 8. Pum, D., A. Neubauer, E. Gyoervary, M. Sára, U. B. Sleytr. 2000. S-layer proteins as basic building blocks in a biomolecular construction kit. Nanotechnology. 11: 100-107. 9. Glauert, A. M., and M. J. Thornley. 1973. Self-assembly of a surface component of a bacterial outer membrane. John Innes Symp. 1: 297-305. 10. Sleytr, U. B. 1976. Self-assembly of the hexagonally and tetragonally arranged subunits of bacterial surface layers and their reattachment to cell walls. J. Ultrastruct. Res. 55: 360-377. 11. Reinhoudt, D. N., and M. Crego-Calama. 2002. Synthesis beyond the molecule. Science. 295: 2403-2407. 12. Chu, S., S. Cavaignac, J. Feutrier, B. M. Phipps, M. Kostrzynska, W. W. Kay, and T. J. Trust. 1991. Structure of the tetragonal suface virulence array protein and gene of Aeromonas salmonicida. J. Biol. Chem. 266: 15258-15265. 13. Sára, M., and U. B. Sleytr. 1987. Molecular sieving through S-layers of Bacillus stearothermophilus strains. J. Bacteriol. 169: 4092-4098. 14. Brechtel, E., M. Matuschek, A. Hellberg, E. M. Egelseer, R. Schmid, and H. Bahl. 1999. Cell wall of Thermoanaerobacterium thermosulfurigenes EM1: isolation of its components and attachment of the xylanase XynA. Arch. Microbiol. 171: 159-165. 15. Engelhardt, H., and J. Peters. 1998. Structure research on surface layers: a focus on stability, surface layer homology domains, and surface layer-cell wall interaction. J. Struct. Biol. 124: 276-302. 16. Dietmar, P., and U. B. Sleytr. 1999. The application of bacterial S-layers in molecular nanotechnology. Nanotechnology. 17: 8-12. 17. Work, E., and H. Griffiths. 1968. Morphology and chemistry of cell walls of Micrococcus radiodurans. J. Bacteriol. 95: 641-657. 18. Sleytr, U. B., M. Kocur, A. M. Gluert, and M. J. Thornley. 1973. A study of freeze-etching of the fine structure of Micrococcus radiodurans. Arch. Mikrobiol. 94: 77-87. 19. Lancy, JR., P., and R. G. E. Murray. 1978. The envelope of Micrococcus radiodurans: isolation, purification, and preliminary analysis of the cell wall layers. Can. J. Microbiol. 24: 162-176. 20. Baumeister, W., and O. Kübler. 1978. Topographic study of the cell surface of Micrococcus radiodurans. Proc. Natl. Acad. Sci. USA 75: 5525-5528. 21. Thompson, B. G., and R. G. E. Murray. 1982. The association of the surface array and the outer membrane of Deinococcus radiodurans. Can. J. Microbiol. 28: 1081-1088. 22. Karrasch, S., R. Hegerl, J. H. Hoh, W. Baumeister, and A. Engel. 1994. Atomic force microscopy produces faithful high-resolution images of protein surfaces in an aqueous environment. Proc. Natl. Acad. Sci. USA 91: 836-838. 23. W. Baumeister, F. Karrenberg, R. Rachel, A. Engel, B. T. Heggeler, and W. O. Saxton. 1982. The major cell envelope protein of Micrococcus radiodurans (R1) structural and chemical characterization. J. Biochem. 125: 535-544. 24. B. G. Thompson, and R. G. E. Murray. 1981. Isolation and characterization of the plasma membrane and the outer membrane of Deinococcus radiodurans strain Sark. Can. J. Microbiol. 27: 729-734. 25. F. I. Chou, and S. T. Tan. 1991. Salt-mediated multicell formation in Deinococcus radiodurans. J. Bacteriol. 173: 3184-3190. 26. 潘龍德,譚世特;銀奈米顆粒/S層複合材料之研究;國立清華大學生物科技所碩士論文;2004。 27. U. B. Sleytr, E. Györvary, and D. Pum. 2003. Crystallization of S-layer protein lattices on surface and interfaces. Progress in Organic Coatings. 47: 279-287. 28. A. S. Blawas, and W. M. Reichert. 1998. Protein pattening. Biomaterials. 19: 595-609. 29. S. Dieluweit, D. Pum, and U. B. Sleytr. 1997. Formation of a gold superlattice on an S-layer with square lattice symmetry. Supramolecular Science. 5: 15-19. 30. M. Sára, and U. B. Sleytr. 1996. Biotechnology and biomimetic with crystalline bacterial cell surface layers (S-layers). Micron. 27: 141-156. 31. Y. Wang, Z. Tang, M. A. Correa-Duarte, L. M. Liz-Marzán, and Nicholas, A. K. 2003. Multicolor luminescence patterning by photoactivation of semiconductor nanoparticle films. J. Am. Chem. Soc. 125: 2830-2831. 32. W. Wang, and Sanford, A. A. 2001. Photochemical incorporation of silver quantum dots in monodisperse silica colloids for photonic crystal applications. J. Am. Chem. Soc. 123: 12528-12535. 33. J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg. 2003. Surface plasmon micro- and nano-optics. Journal of Microscopy. 209:167-172. 34. 張耿豪,譚世特;耐輻射奇異球菌S-layer包覆微脂體之研究;國立清華大學生物科技所碩士論文;2004。 35. S. Rasmussen, L. Chen, D. Deamer, D. C. Krakauer, N. H. Packard, P. F. Stadler, and M. A. Bedau. 2004. Transitions from nonliving to living matter. Science. 303:963-965. 36. E. Work. 1964. Amino acids of walls of Micrococcus radiodurans. Nature. 201:1107-1109. 37. L. Jean-Marie. 2002. Toward complex matter: supramolecular chemistry and self-organization. Proc. Natl. Acad. Sci. USA 99:4763-4768. 38. J. Whitfield. 2004. Born in a watery commune. Nature. 427:674-676. 39. E. A. Gaucher, J. M. Thomson, M. F. Burgan, and S. A. Benner. 2003. Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. Nature. 425:285-288. 40. M. M. Hanczyz, S. M. Fujikawa, and J. W. Szostak. 2003. Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science. 302:618-622. 41. D. Fortin. 2004. What biogenic minerals tell us. Science. 303:1618-1619. 42. L. Shapiro, H. H. McAdams, and R. Losick. 2002. Generating and exploiting polarity in bacteria. Science. 298:1942-1946.id NH0925111007 sid 914262 cfn 0 / id NH0925111008 auc 李皓剛 tic 耐輻射奇異球菌與金屬奈米尺寸材料 adc 譚世特 ty 碩士 sc 國立清華大學 dp 生物科技研究所 yr 92 lg 中文 pg 28 kwc 耐輻射奇異球菌 kwc 靜止期 kwc 固定化 kwc 銀奈米材料 kwc 菌液 abc 本篇論文主要在報告利用耐輻射奇異球菌Deinococcus radiodurans IR產生金屬銀奈米材料並推測可能的生成機制。在整個實驗過程中,我們發現在靜止期的D. radiodurans IR菌液加入硝酸銀反應數小時後可以在光學顯微鏡下觀察到有黑色線狀物質及黑色顆粒產生附著在細胞聚集成的團塊上,該線狀物質經過X光能譜儀(Energy dispersive X-ray spectrometer, EDS)分析確認成份為元素銀,且這些線狀物質在紫外光/可見光光譜中約350 nm附近具有特性吸收。這些銀奈米線的平均寬度約60到100 nm,最長長度可以超過100 ?慆。在實驗過程中我們也嘗試了一些還原電位頗高的金屬離子,如金(III)和銅(II)試圖了解細胞聚集現象與金屬離子還原電位的關係及相同的反應條件是否適用於其他金屬離子。若將細菌固定在晶圓表面後,利用類似的反應條件可使部分細胞之間被銀線連結甚至形成網絡。這些在細胞之間的奈米銀線(silver nanowires)生長可以受到兩側的細胞影響而產生彎曲,透過這樣的方式可以間接了解在菌液中細胞團塊上銀線可能的生長方式,以及知道D. radiodurans IR在懸浮反應系統中奈米銀線如何從細菌細胞上起頭。 rf 1. Brust, M. & Kiely, C. J. Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids and Surfaces A 202, 175-186 (2002). 2. Liely, C. J., Fink, J., Brust, M., Bethell, D. & Schiffrin, D. J. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 396, 444-446 (1998). 3. Korgel, B. A., Fullam, S., Connolly, S. & Fitzmaurice, D. Assembly and self-organization of silver nanocrystal superlattices: ordered “soft spheres”. J. Phys. Chem. B 102, 8379-8388 (1998). 4. Wang, Y. et al. Multicolor luminescence patterning by photoactivation of semiconductor nanoparticles films. J. Am. Chem. Soc. 125, 2830-2831 (2003). 5. Ras, R. H. A. et al. Polarized infrared study of hybrid Langmuir-Blodgett monolayers containing clay mineral nanoparticles. Langmuir 19, 4295-5302 (2003). 6. Sun, Y. et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 14, 4736-4745 (2003). 7. Caswell, K. K., Bender, C. M. & Murphy, C. J. Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett. 3, 667-669 (2003). 8. Sauer, G.., Brehm, G. & Schneider, S. Highly ordered monocrystalline silver nanowire arrays. J. Appl. Phys. 91, 3243-3247 (2002). 9. Sun, Y., Mayers, B. & Xia, Y. Transformation of silver nanospheres into nanobelts and triangular nanoplates through thermal process. Nano Lett. 3, 675-679 (2003). 10. Choi, J. et al. Monodisperse metal nanowire arrays on Si by integration of template synthesis with silicon technology. J. Mater. Chem. 13, 1-4 (2003). 11. Hsia, C.-H. et al. In situ generation of the silica shell layer-key factor to the simple high yield synthesis of silver nanowires. J. Am. Chem. Soc. 125, 9940-9941 (2003). 12. Wang, C., Chen, M., Zhu, G. & Lin, Z. A novel soft-template technique to synthesize metal Ag nanowire. J. Colloid Interface Sci. 243, 362-364 (2001). 13. García, N., Przeslawski, J. & Sharonov, M. Giant conductance response to light pulses in metallic nanowires. Surface Science 407, L665-L669 (1998). 14. Costa-Krämer, J. L. & García, N. Conductance quantization histograms of gold nanowires at 4 K. Phys. Rev. B Condens. Matter 55, 12910-12913 (1997). 15. Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625-627 (2003). 16. Braun, E., Eichen, Y., Sivan, U. & Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775-778 (1998). 17. Scheibel, T. et al. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc. Natl. Acad. Soc. USA 100, 4527-4532 (2003). 18. Mertig, M., Kirsch, R., Pompe, W. & Engelhardt, H. Fabrication of highly oriented nanocluster arrays by biomolecular templating. Eur. Phys. J. D 9, 45-48 (1999). 19. Mertig, M. et al. Formation and manipulation of regular metallic nanoparticles arrays on bacterial surface layers: an advanced TEM study. Eur. Phys. J. D 16, 317-320 (2001). 20. Klause, T., Joerger, R., Olsson, E. & Granqvist, C. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Soc. USA 96, 13611-13614 (1999). 21. Fredrickson, J. K. et al. Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1. Appl. Environ. Micobiol. 66, 2006-2011 (2000). 22. Chou, F. I. & Tan, S. T. Salt-mediated multicell formation in Deinococcus radiodurans. J. Bacteriol. 173, 3184-3190 (1991). 23. Chou, F. I. & Tan, S. T. Manganese(II) induces cell division and increases in superoxide dismutase and catalase activities in an aging deinococcal culture. J. Bacteriol. 172, 3184-3190 (1990). 24. Peyser, L. A., Vinson, A. E., Bartko, A. P. & Dickson, R. M. Photoactivated fluorescence from individual silver nanoclusters. Science 291, 103-106 (2001). 25. Mock, J. J. et al. Composite plasmon resonant nanowires. Nano Lett. 2, 465-469 (2002). 26. Dickson, R. M. & Lyon, L. A. Unidirectional plasmon propagation in metallic nanowires. J. Phys. Chem. B 104, 6095-6098 (2000). 27. Tao, A. et al. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 3, 1229-1233 (2003). 28. Kovtyukhova, N. I. et al. Layer-by-layer assembly of rectifying junctions in and on metal nanowires. J. Phys. Chem. B 105, 8762-8769 (2001). 29. Pang, Y. T., Meng, G. W., Fang, Q. & Zhang, L. D. Silver nanowire array infrared polarizers. Nanotechnology 14, 20-24 (2003). 30. Liu, S., Yue, J., Cai, T. & Anderson, K. Silver nanowires as templates for preparation of amorphous carbon nanotubes. J. Colloid. Interface Sci. 225, 254-256 (2000). 31. Dunny, G. M. Cell-cell communication in Gram-positive bacteria. Annu. Rev. Microbiol. 51, 527-564 (1997). 32. Parsek, M. R. & Greenberg, E. P. Acyl-homoserine lactone quorum sensing in Gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc. Natl. Acad. Soc. USA 97, 8789-8793 (2000). 33. Hardman, A. M., Stewart, G. S. A. B. & Williams, P. Quorum sensing and the cell-cell communication dependent regulation of gene expression in pathogenic and non-pathogenic bacteria. Antonie Van Leeuwenhoek 74, 199-210 (1998). 34. Link, S., Mohamed, M. B. & El-Sayed, M. A. Simulation of the absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B 103, 3073-3077 (1999). 35. Ah, C. S., Hong, S. D. & Jang, D.-J. Preparation of AucoreAgshell nanorods and characterization of their surface plasmon resonances. J. Phys. Chem. B 105, 7871-7873 (2001). 36. Zhang, D.-B., Qi, L.-M., Ma, J.-M. & Cheng, H.-M. Formation of silver nanowires in aqueous solution s of double-hydrophilic block copolymer. Chem. Mater. 13, 2753-2755 (2001). 37. Kreibig, U. & Genzel, L. Surf. Sci. 156, 678- (1985). 38. Granqvist, C. G. & Buhrman, R. A. J. Appl. Phys. 47, 2200- (1976).id NH0925111008 sid 914273 cfn 0 / id NH0925111009 auc 施志學 tic 研究薏苡仁誘發排卵之效應 adc 譚世特 ty 碩士 sc 國立清華大學 dp 生物科技研究所 yr 92 lg 中文 pg 31 kwc 薏苡仁 kwc 排卵 abc 薏苡(Coix lacryma- jobi L.)自古以來便是中藥與食材兼具的草本,傳統醫學上薏苡一直被認為具有調節女性荷爾蒙的功效。在日本有研究顯示薏苡仁萃取物在老鼠的實驗中可以有效誘發其排卵,而其他研究也顯示薏苡仁對於女性排卵障礙有其治療的效果。本研究主要目的為探討薏苡仁誘發生物體排卵之確切效應。而我們嘗試以果蠅(Drosophila melanogaster)為模式系統來研究薏苡仁萃取物之誘發排卵的功效。實驗的結果顯示在薏苡仁的萃取物中,以正己烷萃取物(HE)之誘發排卵的效果較好,其結果約比對照組增加84%左右,而甲醇萃取物(ME)的效果並沒有正己烷萃取物(HE)來得顯著。實驗所用正己烷萃取物(HE)的劑量約100~200 (?尳/vial)時會有較好的效果,且餵食5天左右的效果較好。而在果蠅的卵巢解剖圖中顯示薏苡仁正己烷萃取物(HE)可以有效促進其卵的發育與成熟。另外我們並比較餵食正己烷萃取物(HE)所產生子代果蠅與對照組的差異,結果顯示其子代不論在生殖或熱壓力的抗性都與對照組果蠅並沒有太大的差異。 rf 1. Nagao, T.; Otsuka, H.; Kohda, H.; Sato, T.; Yamasaki, K. (1985) Benzoxazinones from Coix lachrymal-jobi L var. ma-yuen. Phytochemistry. 24:2959-2962. 2. Takahashi, M.; Konno, C.; Hikino, H. (1986) Isolation and hypoglycemic activity of coixan A, B, C, glycans of Coix lachrymajobi var. ma-yuen seeds. Planta Med. 52:64-65. 3. Hidaka, Y.; Kaneda, T.; Amino, N.; Miyai, K. (1992) Chinese medicine, coix seeds increase peripheral cytotoxic T and NK cells. Biotherapy. 5:201-203. 4. Ishiguro, Y.; Okamoto, K.; Sakamoto, H.; Sonoda, Y. (1993) Antimicrobial substances coixindens A and B in etiolated seedlings of adlay. Nippon Nogei Kagaku Kaish. 67:1405-1410. 5. Yang, L. J.; Tsai, C. E. (1998) Effect of adlay on plasma lipids in hamsters. Food Sci. 25:638-650. 6. Kuo, C. C.; Shih, M. C.; Kuo, Y. H. and Chiang, W. (2001) Antagonism of free-radical-induced damage of adlay seed and its antiproliferative effect in human histolytic lymphoma U937 monocytic cells. J. Agric. Food Chem. 49:1564-1570.id NH0925111009 sid 914278 cfn 0 / id NH0925111010 auc 潘龍德 tic 銀奈米顆粒/S層複合材料之研究 adc 譚世特 ty 碩士 sc 國立清華大學 dp 生物科技研究所 yr 92 lg 中文 pg - kwc 耐輻射奇異球菌 kwc 奈米銀顆粒 abc 本研究藉由化學的沉澱法將銀放置於2D的生物模板上以形成銀薄膜。而我們所使用的生物模板是Deinococcus radiodurans的SLFF (S-layer fraction film),是Deinococcus radiodurans與外界接觸的最外兩層生物膜,其具有特殊的物理和化學性質。利用SLF (S-layer fraction)表面上的化學還原力還原奈米銀顆粒,促使奈米銀顆粒聚集並還原於SLF上,形成2D結構的奈米銀膜。我們藉由UV/VIS spectrometry來檢查在SLF上奈米銀顆粒形成的過程。且利用TEM來展現出在SLF上分散的奈米銀顆粒其外觀型態,並發現可以利用反應時間的長短控制其平均粒徑大小。同時,我們藉由fluorescent microscope、confocal microscope以及 Photoluminescence來觀察奈米銀膜本身的多樣性的發光性質。 rf 參 考 資 料 1. Barthlott, W., and C. Purity of the scared lotus, or escape from contamination in biological surface Neinhuis. Planta. 202 (1997) 1-8 2. U. B. Sleytr and P. Messner. Crystalline surface layers on bacteria Annu.Rev.Microbiol.(1983) 37 311-339 3. Thormey, M. J., A. M. Glauert, and U. B. Sleytr. Structure and assembly of bacterial surface layers composed of regular arrays of subunits. Phil.Trans.R.Soc.Lond.B. 268 (1974) 147-153 4. Glauert, A. M., and M. J. Thornely. The topography of the bacterial cell well A. Rev. Microbiol. 23 (1969)159-198 5. Pum, D., A. Neubauer, E. Gyoervary, M. Sára, U. B. Sleytr. S-layer protein as basic building block in a biomolecular construction kit. Nanotechnology 11 (2000) 100-107 6. Glauert, A. M., and M. J. Thornely. Self-assembly of a surface component of a bacterial outer membrane John Innes Symp. 1 (2001) 297-305 7. Sára M., and U. B. Sleytr. Molecular sieving through S-layer of Bacillus stearothermophilus strains J. Bacteriol. 169 (1987) 4092-4098 8. Engelhardt, H., and J. Peters. Structural research on surface layer: a focus on stability, surface layer homology domains, and surface layer-cell wall interaction J. Struct. Biol. 124 (1998) 276-302 9. Brechtel, E., M. Matuschek, A. Hellberg, E. M. Egelseer, R. Schmid, and H. Bahi. Cell wall of Thermoanaerobacterium thermosulfurigenes EM1: isolation of its components and attachment of the xylanase XynA Arch. Microbiol. 171 (1999) 159-165 10. Uwe B. Sleytr , Margit Sára , Dietmar Pum , Bernhard Schuster. Characterization and use of crystalline bacterial cell surface layers Progress in Surface Science 68 (2001) 231-278 11. Simon R. Hall, Wayne Shenton, Harald Engelhardt, and Stephen Mann Site-Specific Organization of Gold Nanoparticles by Biomolecular Templating CHEMPHYSCHEM 2001, No. 3 pp184-186 12. J.C. Chen, Z.H. Lin and X.X. Ma Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate Letters in Applied Microbiology 2003, 37, 105–108 13. Ya-Ping Sun,* Radhakishan Guduru, Feng Lin, and Tad Whiteside Preparation of Nanoscale Semiconductors through the Rapid Expansion of Supercritical Solution (RESS) into Liquid Solution Ind. Eng. Chem. Res. 2000, 39, 4663-4669 14. Ya-Ping Sun, Pornpen Atorngitjawat, and Mohammed J. Meziani Preparation of Silver Nanoparticles via Rapid Expansion of Water in Carbon Dioxide Microemulsion into Reductant Solution Langmuir 2001, 17, 5707-5710 15. Mohammed J. Meziani and Ya-Ping Sun* Protein-Conjugated Nanoparticles from Rapid Expansion of Supercritical Fluid Solution into Aqueous Solution(AFM) J. AM. CHEM. SOC. 2003, 125, 8015-8018 16. Wayne Shenton , Dietmar Pum , Uwe B. Sleytr & Stephen Mann Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers NATURE VOL 389 9 OCTOBER 1997 585-587 17. Rongchao Jin, Y. Charles Cao, Encai Hao, Gabriella S. Me´ traux, George C. Schatz & Chad A. Mirkin, Controlling anisotropic nanoparticle growth through plasmon excitation NATURE .VOL 425 , 2 ,2003 487-490 18. Fred Hunt, Hiroyuki Ohde,a) and C.M. Wai A high pressure fiber-optic reactor with charge-coupled device array ultraviolet-visible spectrometer for monitoring chemical processes in supercritical fluids Rev. Sci. Instrum., Vol. 70, No. 12, December 1999 4661-4667 19. Shiego Shionoya and William M. Yen , CRC Press LLC, Boca Raton, “Phosphor Handbook”FL,U.S.A.(1999), 20. Hari Singh Nalwa, vol 4, Acadamic ”Handbook of nanostructed Material and Nanotechnology”Press, New York, U.S.A.(2000) 21. Brus L, Nature, 351, 301(1991) 22. Tabagi H, Ogawa H, Appl. Phys. Lett., 56(24), 2379(1991) 23. Ying Wang, Zhiyong Tang, Miguel A. Correa-Duarte, Luis M. Liz-Marza´ n, and Nicholas A. Kotov, Multicolor Luminescence Patterning by Photoactivation of Semiconductor Nanoparticle Films J. AM. CHEM. SOC. VOL. 125, NO.10, 2003 2830-2831 24. Wei Wang and Sanford A. Asher* Photochemical Incorporation of Silver Quantum Dots in Monodisperse Silica Colloids for Photonic Crystal Applications J. Am. Chem. Soc. 2001, 123, 12528-12535 25. J. R. KRENN, H. DITLBACHER, G. SCHIDER, A. HOHENAU, A. LEITNER & F. R. AUSSENEGG Surface plasmon micro- and nano-optics Journal of Microscopy, Vol. 209, Pt 3 March 2003, pp. 167–172 26. JOANNA MALICKA,1 IGNACY GRYCZYNSKI,2 BADRI P. MALIWAL,2 JIYU FANG,3 JOSEPH R. LAKOWICZ2 Fluorescence Spectral Properties of Cyanine Dye Labeled DNA Near Metallic Silver Particles Received 10 June 2002; revised 26 August 2002; accepted 4 September 2002 27. Novotny R, Schaffer C, Strauss J, Messner P. S-layer glycan-specific loci on the chromosome of Geobacillus stearothermophilus NRS 2004/3a and dTDP-L-rhamnose biosynthesis potential of G. stearothermophilus strains. Microbiology. 2004 Apr;150(Pt 4):953-65 28. Schaffer C, Wugeditsch T, Kahlig H, Scheberl A, Zayni S, Messner P. The surface layer (S-layer) glycoprotein of Geobacillus stearothermophilus NRS 2004/3a. Analysis of its glycosylation. J Biol Chem. 2002 Feb 22;277(8):6230-9. Epub 2001 Dec 10. 29.Waller LN, Fox N, Fox KF, Fox A, Price RL. Ruthenium red staining for ultrastructural visualization of a glycoprotein layer surrounding the spore of Bacillus anthracis and Bacillus subtilis. J Microbiol Methods. 2004 Jul;58(1):23-30. 30. Simon P, Lichte H, Wahl R, Mertig M, Pompe W. Electron holography of non-stained bacterial surface layer proteins. Biochim Biophys Acta. 2004 May 27;1663(1-2):178-87. 31. Schaffer C, Messner P. Surface-layer glycoproteins: an example for the diversity of bacterial glycosylation with promising impacts on nanobiotechnology. Glycobiology. 2004 Aug;14(8):31R-42R. Epub 2004 Mar 24. 32. Ranatunga W, Hill EE, Mooster JL, Holbrook EL, Schulze-Gahmen U, Xu W, Bessman MJ, Brenner SE, Holbrook SR. Structural studies of the Nudix hydrolase DR1025 from Deinococcus radiodurans and its ligand complexes. J Mol Biol. 2004 May 21;339(1):103-16. 33. Meunier-Jamin C, Kapp U, Leonard G, McSweeney S. Expression, purification, crystallization and preliminary crystal structure analysis of the Deinococcus radiodurans organic hydroperoxide-resistance protein. Acta Crystallogr D Biol Crystallogr. 2004 May;60(Pt 5):920-2. 34. Oleshko VP, Gijbels RH, Jacob WA. Analytical electron microscopy of silver halide photographic systems. Micron. 2000 Jan;31(1):55-95. 35. Oleshko VP, Gijbels RH, Van Daele AJ, Jacob WA, Xu YE, Wang SE, Park IY, Kang TS. Combined characterization of composite tabular silver halide microcrystals by cryo-EFTEM/EELS and cryo-STEM/EDX techniques. Microsc Res Tech. 1998 Jul 15;42(2):108-22. 36. McCarthy D, Rehman A, Batchelder DN, Bubel M, Bainbridge D. Quantitation of solid-phase immunoassays using a fibre-optic reflectance spectrophotometer. J Immunol Methods. 1991 Oct 25;143(2):167-73. 37. Perera WN, Senanayake G. The ammine, thiosulfato, and mixed ammine/thiosulfato complexes of silver(I) and gold(I). Inorg Chem. 2004 May 17;43(10):3048-56. 38. Palacios O, Polec-Pawlak K, Lobinski R, Capdevila M, Gonzalez-Duarte P. Is Ag(I) an adequate probe for Cu(I) in structural copper-metallothionein studies? The binding features of Ag(I) to mammalian metallothionein 1. J Biol Inorg Chem. 2003 Nov;8(8):831-42. Epub 2003 Sep 20.id NH0925111010 sid 914249 cfn 0 / id NH0925111011 auc 陳婷婷 tic 輻射線、順-雙氨雙氯鉑及亞砷酸鈉在含E7致癌基因之人類細胞的細胞毒性機制研究 adc 黃海美 ty 碩士 sc 國立清華大學 dp 生物科技研究所 yr 92 lg 英文 pg - kwc 轉殖 kwc 程序性細胞死亡 kwc 細胞毒性 kwc 亞砷酸鈉 kwc 順雙氨雙氯鉑 abc 摘要 tc Contents 謝誌 Englishabstract Chinese abstract 正文 Introduction……………………………………………………………………...…1-5 1. Human Papilloma Virus 2. HPV Type 16 E7 Protein 3. Cervical Cancer and HPV-E7 Protein 4. The E7 Protein Effect to Apoptosis 5. Retinoblastoma Protein (Rb) 6. Rb Dependent G1 Arrest and Apoptosis The Purpose of This Study……………………………………………………….…..6 Materials and Methods………………………………………………………...…7-12 1. Materials 2. Cells and Culture Conditions 3. Transfection of HPV-16 E6/E7 Gene 4. Immuno-fluorescence Staining 5. Western Blotting 6. Genomic DNA Extraction and PCR 7. DNA Analysis by Flow Cytometry 8. Sulforhodomine B Assay 9. RNA Extraction and Reverse Transcription Polymerase Chain Reaction (RT-PCR) Results……………………………………………………………………………13-18 1. Selection of Neo and HPV-16 E7 Transfected SiHa Clones 2. The E7 and p53 Protein Localization in HPV16 E7 Transformed SiHa Cells 3. The E7 protein Effects on Sub-G1 Apoptosis and SRB Cytotoxicity in Cells 4. Synergistic Effects of X-ray and Cisplatin in Cells After Treatments 5. Alteration of mRNA and Protein Levels in Cells After X-ray Treatment 6. Alteration of Protein Levels in Cells After Cisplatin Treatment. 7. Selection of Neo and E6/E7 Transfected Human Fibroblast (HF) Clones 8. Expression of E7 Protein Sensitized HF to Apoptosis Induced by X-ray, Cisplatin and SA 9. E7 Induced P53 Protein Expression in E7-transfected HF Cells After X-ray and Cisplatin Treatment Discussion……………………………………………………………………...…19-23 1. E7 Protein Increased HF-E7 Cells Sensitivity to SA but Not SiHa-E7 Cells 2. E7 Protein Over-expression Could Increase SiHa and HF Cells Sensitivity to X-ray and Cisplatin 3. E7 Protein Affected the Diversity to P53 Protein Expression Between SiHa and HF Cells 4. E7 Protein Induced SiHa-E7 Cells to Apoptosis via Binding with Rb Protein 5. E7 Protein Induced Apoptosis via Activating E2F1 to Improve P53 Protein Phosphorylation 6. Cathepsin B May Be a Possible Factor to E7 Induced Apoptosis in SiHa Cells 7. E7-transfected HF Cells Were Senescence 參考資料 圖檔附錄rf References Almasan, A., Y. Yin, R.E. Kelly, E.Y. Lee, A. Bradley, W. Li, J.R. Bertino, and G.M. Wahl. 1995. Deficiency of retinoblastoma protein leads to inappropriate S-phase entry, activation of E2F-responsive genes, and apoptosis. Proc Natl Acad Sci U S A. 92:5436-40. Alonso, L.G., M.M. Garcia-Alai, A.D. Nadra, A.N. Lapena, F.L. Almeida, P. Gualfetti, and G.D. Prat-Gay. 2002. High-risk (HPV16) human papillomavirus E7 oncoprotein is highly stable and extended, with conformational transitions that could explain its multiple cellular binding partners. Biochemistry. 41:10510-8. Arbeit, J.M., K. Munger, P.M. Howley, and D. Hanahan. 1994. Progressive squamous epithelial neoplasia in K14-human papillomavirus type 16 transgenic mice. J Virol. 68:4358-68. Chou, R.H., and H. Huang. 2002a. Restoration of p53 tumor suppressor pathway in human cervical carcinoma cells by sodium arsenite. Biochem Biophys Res Commun. 293:298-306. Chou, R.H., and H. Huang. 2002b. Sodium arsenite suppresses human papillomavirus-16 E6 gene and enhances apoptosis in E6-transfected human lymphoblastoid cells. J Cell Biochem. 84:615-24. Cordon-Cardo, C. 1995. Mutations of cell cycle regulators. Biological and clinical implications for human neoplasia. Am J Pathol. 147:545-60. Debbas, M., and E. White. 1993. Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev. 7:546-54. DeGregori, J., T. Kowalik, and J.R. Nevins. 1995. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol Cell Biol. 15:4215-24. Demers, G.W., S.A. Foster, C.L. Halbert, and D.A. Galloway. 1994a. Growth arrest by induction of p53 in DNA damaged keratinocytes is bypassed by human papillomavirus 16 E7. Proc Natl Acad Sci U S A. 91:4382-6. Demers, G.W., C.L. Halbert, and D.A. Galloway. 1994b. Elevated wild-type p53 protein levels in human epithelial cell lines immortalized by the human papillomavirus type 16 E7 gene. Virology. 198:169-74. Dimri, G.P., M. Nakanishi, P.Y. Desprez, J.R. Smith, and J. Campisi. 1996. Inhibition of E2F activity by the cyclin-dependent protein kinase inhibitor p21 in cells expressing or lacking a functional retinoblastoma protein. Mol Cell Biol. 16:2987-97. Du, J., G.G. Chen, A.C. Vlantis, P.K. Chan, R.K. Tsang, and C.A. van Hasselt. 2004. Resistance to apoptosis of HPV 16-infected laryngeal cancer cells is associated with decreased Bak and increased Bcl-2 expression. Cancer Lett. 205:81-8. Eck-Enriquez, K., T.L. Kiefer, L.L. Spriggs, and S.M. Hill. 2000. Pathways through which a regimen of melatonin and retinoic acid induces apoptosis in MCF-7 human breast cancer cells. Breast Cancer Res Treat. 61:229-39. Eichten, A., M. Westfall, J.A. Pietenpol, and K. Munger. 2002. Stabilization and functional impairment of the tumor suppressor p53 by the human papillomavirus type 16 E7 oncoprotein. Virology. 295:74-85. Germolec, D.R., J. Spalding, H.S. Yu, G.S. Chen, P.P. Simeonova, M.C. Humble, A. Bruccoleri, G.A. Boorman, J.F. Foley, T. Yoshida, and M.I. Luster. 1998. Arsenic enhancement of skin neoplasia by chronic stimulation of growth factors. Am J Pathol. 153:1775-85. Gorospe, M., C. Cirielli, X. Wang, P. Seth, M.C. Capogrossi, and N.J. Holbrook. 1997. p21(Waf1/Cip1) protects against p53-mediated apoptosis of human melanoma cells. Oncogene. 14:929-35. Harper, J.W., G.R. Adami, N. Wei, K. Keyomarsi, and S.J. Elledge. 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 75:805-16. Hatakeyama, M., and R.A. Weinberg. 1995. The role of RB in cell cycle control. Prog Cell Cycle Res. 1:9-19. Helt, A.M., J.O. Funk, and D.A. Galloway. 2002. Inactivation of both the retinoblastoma tumor suppressor and p21 by the human papillomavirus type 16 E7 oncoprotein is necessary to inhibit cell cycle arrest in human epithelial cells. J Virol. 76:10559-68. Huang, H., S.Y. Huang, T.T. Chen, J.C. Chen, C.L. Chiou, and T.M. Huang. 2004. Cisplatin restores p53 function and enhances the radiosensitivity in HPV16 E6 containing SiHa cells. J Cell Biochem. 91:756-65. Huang, H., C.Y. Li, and J.B. Little. 1996. Abrogation of P53 function by transfection of HPV16 E6 gene does not enhance resistance of human tumour cells to ionizing radiation. Int J Radiat Biol. 70:151-60. Hwang, S.G., D. Lee, J. Kim, T. Seo, and J. Choe. 2002. Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J Biol Chem. 277:2923-30. Jaattela, M., H. Mouritzen, F. Elling, and L. Bastholm. 1996. A20 zinc finger protein inhibits TNF and IL-1 signaling. J Immunol. 156:1166-73. Jones, D.L., R.M. Alani, and K. Munger. 1997a. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev. 11:2101-11. Jones, D.L., and K. Munger. 1997. Analysis of the p53-mediated G1 growth arrest pathway in cells expressing the human papillomavirus type 16 E7 oncoprotein. J Virol. 71:2905-12. Jones, D.L., D.A. Thompson, and K. Munger. 1997b. Destabilization of the RB tumor suppressor protein and stabilization of p53 contribute to HPV type 16 E7-induced apoptosis. Virology. 239:97-107. Kaznelson, D.W., S. Bruun, A. Monrad, S. Gjerlov, J. Birk, C. Ropke, and B. Norrild. 2004. Simultaneous human papilloma virus type 16 E7 and cdk inhibitor p21 expression induces apoptosis and cathepsin B activation. Virology. 320:301-12. Lambert, P.F., H. Pan, H.C. Pitot, A. Liem, M. Jackson, and A.E. Griep. 1993. Epidermal cancer associated with expression of human papillomavirus type 16 E6 and E7 oncogenes in the skin of transgenic mice. Proc Natl Acad Sci U S A. 90:5583-7. Liang, P., and A.B. Pardee. 2003. Analysing differential gene expression in cancer. Nat Rev Cancer. 3:869-76. Liang, Y., C. Yan, and N.F. Schor. 2001. Apoptosis in the absence of caspase 3. Oncogene. 20:6570-8. Liu, Y., A. McKalip, and B. Herman. 2000. Human papillomavirus type 16 E6 and HPV-16 E6/E7 sensitize human keratinocytes to apoptosis induced by chemotherapeutic agents: roles of p53 and caspase activation. J Cell Biochem. 78:334-49. Lowe, S.W., and H.E. Ruley. 1993. Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev. 7:535-45. Lowe, S.W., H.E. Ruley, T. Jacks, and D.E. Housman. 1993. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell. 74:957-67. Mantovani, F., and L. Banks. 2001. The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene. 20:7874-87. Mantovani, F., P. Massimi, and L. Banks. 2001. Proteasome-mediated regulation of the hDlg tumour suppressor protein. J Cell Sci. 114:4285-92. Morgenbesser, S.D., B.O. Williams, T. Jacks, and R.A. DePinho. 1994. p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature. 371:72-4. Ohtani, K., J. DeGregori, and J.R. Nevins. 1995. Regulation of the cyclin E gene by transcription factor E2F1. Proc Natl Acad Sci U S A. 92:12146-50. Pan, H., and A.E. Griep. 1994. Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: implications for tumor suppressor gene function in development. Genes Dev. 8:1285-99. Polyak, K., T. Waldman, T.C. He, K.W. Kinzler, and B. Vogelstein. 1996. Genetic determinants of p53-induced apoptosis and growth arrest. Genes Dev. 10:1945-52. Pomerantz, J., N. Schreiber-Agus, N.J. Liegeois, A. Silverman, L. Alland, L. Chin, J. Potes, K. Chen, I. Orlow, H.W. Lee, C. Cordon-Cardo, and R.A. DePinho. 1998. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell. 92:713-23. Powers, J.T., S. Hong, C.N. Mayhew, P.M. Rogers, E.S. Knudsen, and D.G. Johnson. 2004. E2F1 uses the ATM signaling pathway to induce p53 and Chk2 phosphorylation and apoptosis. Mol Cancer Res. 2:203-14. Qin, X.Q., D.M. Livingston, W.G. Kaelin, Jr., and P.D. Adams. 1994. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc Natl Acad Sci U S A. 91:10918-22. Rogoff, H.A., M.T. Pickering, M.E. Debatis, S. Jones, and T.F. Kowalik. 2002. E2F1 induces phosphorylation of p53 that is coincident with p53 accumulation and apoptosis. Mol Cell Biol. 22:5308-18. Rogoff, H.A., M.T. Pickering, F.M. Frame, M.E. Debatis, Y. Sanchez, S. Jones, and T.F. Kowalik. 2004. Apoptosis associated with deregulated E2F activity is dependent on E2F1 and Atm/Nbs1/Chk2. Mol Cell Biol. 24:2968-77. Shiyanov, P., S. Bagchi, G. Adami, J. Kokontis, N. Hay, M. Arroyo, A. Morozov, and P. Raychaudhuri. 1996. p21 Disrupts the interaction between cdk2 and the E2F-p130 complex. Mol Cell Biol. 16:737-44. Slebos, R.J., M.H. Lee, B.S. Plunkett, T.D. Kessis, B.O. Williams, T. Jacks, L. Hedrick, M.B. Kastan, and K.R. Cho. 1994. p53-dependent G1 arrest involves pRB-related proteins and is disrupted by the human papillomavirus 16 E7 oncoprotein. Proc Natl Acad Sci U S A. 91:5320-4. Stoppler, H., M.C. Stoppler, E. Johnson, C.M. Simbulan-Rosenthal, M.E. Smulson, S. Iyer, D.S. Rosenthal, and R. Schlegel. 1998. The E7 protein of human papillomavirus type 16 sensitizes primary human keratinocytes to apoptosis. Oncogene. 17:1207-14. Wang, Y., I. Okan, K. Pokrovskaja, and K.G. Wiman. 1996. Abrogation of p53-induced G1 arrest by the HPV 16 E7 protein does not inhibit p53-induced apoptosis. Oncogene. 12:2731-5. Weinberg, R.A. 1995. The retinoblastoma protein and cell cycle control. Cell. 81:323-30. Wu, E.W., K.E. Clemens, D.V. Heck, and K. Munger. 1993. The human papillomavirus E7 oncoprotein and the cellular transcription factor E2F bind to separate sites on the retinoblastoma tumor suppressor protein. J Virol. 67:2402-7. Wu, X., and A.J. Levine. 1994. p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci U S A. 91:3602-6. zur Hausen, H. 1996. Papillomavirus infections--a major cause of human cancers. Biochim Biophys Acta. 1288:F55-78. zur Hausen, H. 2000. Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J Natl Cancer Inst. 92:690-8.id NH0925111011 sid 914230 cfn 0 / id NH0925111012 auc 郭廷威 tic 日本腦炎病毒封套蛋白第三區塊與單株抗體和肝素鍵結的結構研究 adc 程家維 ty 碩士 sc 國立清華大學 dp 生物科技研究所 yr 92 lg 中文 pg 59 kwc 日本腦炎病毒 kwc 封套蛋白 kwc 單株抗體 kwc 肝素 abc 日本腦炎病毒分佈於整個亞洲,東至日本,西到印度。日本腦炎病毒封套蛋白在與細胞受體鍵結、免疫反應、病毒附著和低pH值融合進細胞的活姓中扮演重要的角色。 rf 1. Burke, D. S., and Monath, T. P. (2001) Fields Virology, 4th Ed., 1043–1125. 2. Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. (1995) Nature 375, 291-298. 3. Kuhn, R. J., Zhang, W., Rossmann, M. G., Pletnev, S. V., Corver, J., Lenches, E.,Jones, C. T., Mukhopadhyay, S., Chipman, P. R., Strauss, E. G., Baker, T. S. & Strauss, J. H. (2002) Cell 108, 717-25. 4. Kolaskar1, A. S. and Urmila K. K., (1999) Virology 261, 31-42. 5. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. (2004) Nature 427(22), 313-319. 6. Cecilia, D., and Gould, E. A. (1991) Virology 181, 70–77. 7. Seif, S. A., Morita, K., Matsuo, S., Hasebe, M. F., and Igarashi, A. (1995) Vaccine 13, 1515–1521 8. Wu, S. C., Lian, W. C., Hsu, L. C., and Liau, M. Y. (1997) Virus Res. 51,173–181 9. Lin, C. W., and Wu, S. C. (2003) J. Virol. 77, 2600–2606 10. Liu, H., Chiou, S. S., and Chen, W. J., (2004) Journal of Medical Virology 72, 618–624. 11. (1997) Nature Medicine 3(8), 866-871 12. Su, C. M., Liao, C. L., Lee, Y. L., and Lin, Y. L., (2001) Virology 286, 206-215. 13. Konishi, E., Ajiro, N., Nukuzuma, C., Masonb, P. W., Kurane I., (2003) Vaccine 21 3675–3683 14. Butrapet, S., Junko, K. K., Zhou, D. S. and Yasui, Z., (1998) Am. J. Trop. Med. Hyg.,58(4), 389–398. 15. Lin, C. W., Wu, S. C., (2003) Journal of Virology, Fed, 2600–2606. 16. Wu, K. P., Wu, C. W., Tsao, Y. P., Kuo, T. W., Lou, Y.C., Lin, C. W., Wu, S. C. and Cheng, J.W., (2003) JBC 278(46), 46007–46013. 17. Wu, S. W., Chiang, J. R., Lin, C.W., (2004) revised to Biomacromolecules. 18. Ilkka, K.I., Kaksonen, M., Kinnunen, T., Avikainen, H., Fath, M., Linhardt, R.J., Raulo, E. and Rauvala, H., (2000) JBC 275(18), 13564–13570 19. Derome, A. E., (1987) Modern NMR techniques for chemistry research, Pergamon press. 20. Wuthrich, K. (1986) NMR of Proteins and Nucleic Acids, John Wiley and Sons. 21. Sanders, J. K. M. and Hunter, B. K., (1993) Modern NMR spectroscopy, a guide for Chemists, Oxford University Press. 22. Ernst, R. R., (1992) Angew Chemie 31, 805. 23. Ernst, R. R., Bodenhansen, G. and Wokann, A., (1987) Principles of Nuclear Magnetic Resonance in one and two dimensions, Oxford University Press. 24. Hung, J. J., Hsieh, M. T., Young, M. J., Kao, C. L., King, C. C. and Chang, W., (2004) Journal of Virology 78(1), 378–388 25. Yu, S., Wuu, A., Basu, R., Holbrook, M. R., Barrett, A. D. T. and Lee, J. C., (2004) Biochemistry 43, 9168-9176id NH0925111012 sid 914283 cfn 0 / id NH0925111013 auc 樊書傑 tic 幽門螺旋桿菌之HP1492結構及功能探討 adc 程家維 ty 碩士 sc 國立清華大學 dp 生物科技研究所 yr 92 lg 中文 pg 54 kwc 幽門螺旋桿菌 abc 幽門螺旋菌是一種微需氧的革蘭氏陰性桿菌,其具有4~6根鞭毛,使得細菌具有高度的移動能力。全世界大約有五成人口受到幽門螺旋菌的感染,一般認為幽門螺旋菌和胃潰瘍、十二指腸潰瘍、胃癌等消化道疾病的發生有關。為了解人類重大疾病之致病菌,我們選擇了幽門螺旋桿菌作為整個結構基因體計畫的主角,而本篇論文主要探討基因HP1492結構及功能性。 rf 1. Marshall, B.J. and J.R. Warren, Unidentified cured bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet, 1984. 1(8390): p.1311-5. 2. Goodwin, C.S., et al., Celluar fatty acid composition of Campylobacter pylori from primates and ferrets compared with those of other campylobacters. J Clin Microbiol, 1989. 27(5): p. 938-43 3. Goodwin, C.S. and J.A. Armstrong, Microbiological aspects of Helicobacter pylori(Campylobacter pylori). Eur J Clin Microbiol Infect Dis, 1990. 9(1): p.1-13 4. Eaton, K.A., D.R. Morgan, and S. Krakowka, Motility as a factor in the colonization of gnotobiotic piglets by Helicobacter pylori. J Med Microbiol, 1992. 37(2): p.123-7 5. Lin, J.T., et al., Seroprevalence study of Helicobacter pylori infection in patients with gastroduodenal diseases. J Formos Med Assoc, 1994. 93(2): p.122-7 6. Blaser, M.J., Helicobacter pylori : its role in disease. Clin Infect Dis, 1992. 15(3): p.386-91 7. Blaser, M.J., Helicobacter pylori and the pathogenesis of gastroduodenal inflammation. J Infect Dis, 1990. 161(4): p.626-33 8. Peek, R.M., Jr. and M.J. Blaser, Pathophysiology of Helicobacter pylori-induced gastritis and peptic ulcer disease. Am J Med, 1997. 102(2): p.200-7 9. Eaton, K.A. and S. Krakowka, Effect of gastric pH on urease-dependent colonization of gnotobiotic piglets by Helicobacter pylori. Infect Immun, 1994. 62(9): p.3604-7 10. Eaton, K.A., et al., Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect Immun, 1996. 64(7): p.2445-8 11. Ilver, D., et al., Helicobacter pylori adhesion binding fucosylated histo-blood group antigens revealed by retagging. Science, 1998. 279(5349): p.373-7 12. de Boer, W.A., et al., Quadruple therapy compared with dual therapy for eradication of Helicobacter pylori in ulcer patients: results of a randomized prospective single-centre study. Eur J Gastroenterol Hepatol, 1995. 7(12): p.1189-94 13. Dos Santos P.C., et al., Iron-sulfur cluster assembly: NifU-directed activation of the nitrogenase Fe protein. J Biol Chem. 2004. 279(19): p.19705-11 14. Ali V., et al., An intestinal parasitic protist, Entamoeba histolytica, possesses a non-redundant nitrogen fixation-like system for iron-sulfur cluster assembly under anaerobic conditions. J Biol Chem. 2004. 279(16): p.16863-74 15. Krebs C., et al., IscA, an alternate scaffold for Fe-S cluster biosynthesis. Biochemistry. 2001. 40(46): p.14069-80 16. Fomenko D.E. and Gladyshev V.N., Identity and functions of CxxC-derived motifs. Biochemistry. 2003. 42(38): p.11214-25 17. Mcintosh, L. P., Griffey, R. H., Muchmore, D. C., Nielson, C. P., Redfield, A. G., and Dahlquist, F. W. Proc. Natl. Acad. Sci. USA, 84, 1244-1248. (1987) 18. Chang, C. T., Wu, C. C., Yang, J. T. Analytical Biochemistry 91, 13. (1978). 19. Pace, C. N. Biochemistry, 31, 43. (1975). 20. Wuthrich, K. NMR of Proteins and Nucleic Acids, John Wiley and Sons. (1986).id NH0925111013 sid 914290 cfn 0 / id NH0925111014 auc 王信元 tic 胃幽門螺旋桿菌酸誘導HP0232蛋白質功能的研究 adc 黃海美 ty 碩士 sc 國立清華大學 dp 生物科技研究所 yr 92 lg 英文 pg 44 kwc Helicobacter pylori kwc HP0232 kwc Acid-inducible protein kwc Motility kwc Adhesion abc 胃幽門螺旋桿菌是一種人類社會中普遍存在的病原菌,它能適應在酸性的環境中且能生存在人類的胃裡。HP0232,是胃幽門螺旋桿菌其中的一個基因,被The Institute for Genomic Research (TIGR) 預測該基因的產物是一可能參與鞭毛運動的分泌性蛋白質。以DNA microarray為研究方法的實驗中指出HP0232基因可在pH 5.5的洋菜培養基所培養的菌中被酸誘導而表現。此外,功能性基因的研究顯示HP0232也是幽門螺旋桿菌在胃中形成菌落時所需的基因。當本實驗室成功地建構並表現HP0232基因在大腸桿菌株時,而且拮抗HP0232蛋白質的多抗血清也被成功地製造之後,針對重組性HP0232蛋白質的功能性研究在本實驗中持續地進行。 tc 摘要......................................................1 Abstract..................................................3 Introduction..............................................5 Materials and Methods....................................12 Results..................................................19 Discussion...............................................27 Figures..................................................32 References...............................................42rf Akerley, B.J., E.J. Rubin, V.L. Novick, K. Amaya, N. Judson, and J.J. Mekalanos. 2002. A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc Natl Acad Sci U S A. 99:966-71. Ang, S., C.Z. Lee, K. Peck, M. Sindici, U. Matrubutham, M.A. Gleeson, and J.T. Wang. 2001. Acid-induced gene expression in Helicobacter pylori: study in genomic scale by microarray. Infect Immun. 69:1679-86. Bijlsma, J.J., M.M. Gerrits, R. Imamdi, C.M. Vandenbroucke-Grauls, and J.G. Kusters. 1998. Urease-positive, acid-sensitive mutants of Helicobacter pylori: urease-independent acid resistance involved in growth at low pH. FEMS Microbiol Lett. 167:309-13. Chou. 2003. Molecular cloning and functional characterization of HP0232 gene from Helicobacter pylori. In Bio-technology. National Tsing Hua University, Hsinchu. Covacci, A., J.L. Telford, G. Del Giudice, J. Parsonnet, and R. Rappuoli. 1999. Helicobacter pylori virulence and genetic geography. Science. 284:1328-33. Crabtree, J.E. 1996. Immune and inflammatory responses to Helicobacter pylori infection. Scand J Gastroenterol Suppl. 215:3-10. Dixon, M.F. 1994. Pathophysiology of Helicobacter pylori infection. Scand J Gastroenterol Suppl. 201:7-10. Ernst, P. 1999. Review article: the role of inflammation in the pathogenesis of gastric cancer. Aliment Pharmacol Ther. 13 Suppl 1:13-8. Hazell, S.L., T.J. Borody, A. Gal, and A. Lee. 1987. Campylobacter pyloridis gastritis I: Detection of urease as a marker of bacterial colonization and gastritis. Am J Gastroenterol. 82:292-6. Hutchison, C.A., S.N. Peterson, S.R. Gill, R.T. Cline, O. White, C.M. Fraser, H.O. Smith, and J.C. Venter. 1999. Global transposon mutagenesis and a minimal Mycoplasma genome. Science. 286:2165-9. Kavermann, H., B.P. Burns, K. Angermuller, S. Odenbreit, W. Fischer, K. Melchers, and R. Haas. 2003. Identification and characterization of Helicobacter pylori genes essential for gastric colonization. J Exp Med. 197:813-22. Koul, A., A. Choidas, M. Treder, A.K. Tyagi, K. Drlica, Y. Singh, and A. Ullrich. 2000. Cloning and characterization of secretory tyrosine phosphatases of Mycobacterium tuberculosis. J Bacteriol. 182:5425-32. Kuck, D., B. Kolmerer, C. Iking-Konert, P.H. Krammer, W. Stremmel, and J. Rudi. 2001. Vacuolating cytotoxin of Helicobacter pylori induces apoptosis in the human gastric epithelial cell line AGS. Infect Immun. 69:5080-7. Mahan, M.J., J.M. Slauch, P.C. Hanna, A. Camilli, J.W. Tobias, M.K. Waldor, and J.J. Mekalanos. 1993. Selection for bacterial genes that are specifically induced in host tissues: the hunt for virulence factors. Infect Agents Dis. 2:263-8. Merrell, D.S., M.L. Goodrich, G. Otto, L.S. Tompkins, and S. Falkow. 2003. pH-regulated gene expression of the gastric pathogen Helicobacter pylori. Infect Immun. 71:3529-39. Meyer-Rosberg, K., D.R. Scott, D. Rex, K. Melchers, and G. Sachs. 1996. The effect of environmental pH on the proton motive force of Helicobacter pylori. Gastroenterology. 111:886-900. Mobley, H.L., M.D. Island, and R.P. Hausinger. 1995. Molecular biology of microbial ureases. Microbiol Rev. 59:451-80. Montecucco, C., E. Papini, M. de Bernard, and M. Zoratti. 1999. Molecular and cellular activities of Helicobacter pylori pathogenic factors. FEBS Lett. 452:16-21. Mukhija, R., and L.C. Garg. 1999. N-terminus of mature heat-labile enterotoxin chain B is critical for its extracellular secretion in Vibrio cholerae. FEBS Lett. 463:336-40. Newell, D.G. 1991. Virulence factors of Helicobacter pylori. Scand J Gastroenterol Suppl. 187:31-8. Nilius, M., A. Strohle, G. Bode, and P. Malfertheiner. 1993. Coccoid like forms (CLF) of Helicobacter pylori. Enzyme activity and antigenicity. Zentralbl Bakteriol. 280:259-72. Ottemann, K.M., and A.C. Lowenthal. 2002. Helicobacter pylori uses motility for initial colonization and to attain robust infection. Infect Immun. 70:1984-90. Ramarao, N., S.D. Gray-Owen, and T.F. Meyer. 2000. Helicobacter pylori induces but survives the extracellular release of oxygen radicals from professional phagocytes using its catalase activity. Mol Microbiol. 38:103-13. Sachs, G., D.L. Weeks, K. Melchers, and D.R. Scott. 2003. The gastric biology of Helicobacter pylori. Annu Rev Physiol. 65:349-69. Scott, D.R., D. Weeks, C. Hong, S. Postius, K. Melchers, and G. Sachs. 1998. The role of internal urease in acid resistance of Helicobacter pylori. Gastroenterology. 114:58-70. Sobala, G.M., J.E. Crabtree, M.F. Dixon, C.J. Schorah, J.D. Taylor, B.J. Rathbone, R.V. Heatley, and A.T. Axon. 1991. Acute Helicobacter pylori infection: clinical features, local and systemic immune response, gastric mucosal histology, and gastric juice ascorbic acid concentrations. Gut. 32:1415-8. Suerbaum, S. 1995. The complex flagella of gastric Helicobacter species. Trends Microbiol. 3:168-70; discussion 170-1. Thomsen, L.L., J.B. Gavin, and C. Tasman-Jones. 1990. Relation of Helicobacter pylori to the human gastric mucosa in chronic gastritis of the antrum. Gut. 31:1230-6. Tomb, J.F., O. White, A.R. Kerlavage, R.A. Clayton, G.G. Sutton, R.D. Fleischmann, K.A. Ketchum, H.P. Klenk, S. Gill, B.A. Dougherty, K. Nelson, J. Quackenbush, L. Zhou, E.F. Kirkness, S. Peterson, B. Loftus, D. Richardson, R. Dodson, H.G. Khalak, A. Glodek, K. McKenney, L.M. Fitzegerald, N. Lee, M.D. Adams, J.C. Venter, and et al. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 388:539-47. Warren, J.R., and B. Marshall. 1983. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet. 1:1273-5.id NH0925111014 sid 904260 cfn 0 / id NH0925111015 auc 黃仲德 tic 胃幽門螺旋桿菌之核糖核酸 tic & tic #37238;P基因的蛋白質表現,純化與功能鑑定 adc 黃海美 ty 碩士 sc 國立清華大學 dp 生物科技研究所 yr 92 lg 英文 pg 51 kwc 胃幽門螺旋桿菌 kwc 酸誘導 kwc 核糖核酸 kwc & kwc #37238; abc 首先利用資料庫進行基因序列的比對與搜尋,鎖定的範圍為相似度(homology)小於30%的基因; 另外,我又從Ang et al所著的文獻中得知,胃幽門螺旋桿菌在酸性環境下會誘導或抑制某些基因的mRNA的表現量,所以從中挑選另外6個基因來進行研究,因此HP0270, HP0555, HP0746, HP1493, HP1074. HP1209 與 HP1448為研究的目標基因。首先將這7個基因分別建構入在5’含有6個Histidine的pQE30載體中。接下來將建構好的載體轉形(transformation)至SG13009菌株中,並使用相對應的引子做PCR分析與使用IPTG去誘導細菌在37℃,3個小時環境下表現蛋白質。之後發現所選擇的7個基因中,帶有HP1448基因的質體,編號為10號的菌株,能成功表現出可溶性的蛋白質,所以接下來便以HP1448基因為我研究的目標基因。 tc 謝誌 English abstract Chinese abstract Introduction 1 Materials and methods 7 Results 20 Discussion 26 Reference 30 Tables 32 Figures 36 Appendix 48rf Ang, S., C.Z. Lee, K. Peck, M. Sindici, U. Matrubutham, M.A. Gleeson, and J.T. Wang. 2001. Acid-induced gene expression in Helicobacter pylori: study in genomic scale by microarray. Infect Immun. 69:1679-86. Beebe, J.A., and C.A. Fierke. 1994. A kinetic mechanism for cleavage of precursor tRNA(Asp) catalyzed by the RNA component of Bacillus subtilis ribonuclease P. Biochemistry. 33:10294-304. Blaser, M.J., G.I. Perez-Perez, H. Kleanthous, T.L. Cover, R.M. Peek, P.H. Chyou, G.N. Stemmermann, and A. Nomura. 1995. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res. 55:2111-5. Dunn, B.E., H. Cohen, and M.J. Blaser. 1997. Helicobacter pylori. Clin Microbiol Rev. 10:720-41. Guerrier-Takada, C., K. Gardiner, T. Marsh, N. Pace, and S. Altman. 1983. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell. 35:849-57. Harris, M.E., and E.L. Christian. 2003. Recent insights into the structure and function of the ribonucleoprotein enzyme ribonuclease P. Curr Opin Struct Biol. 13:325-33. Kazantsev, A.V., A.A. Krivenko, D.J. Harrington, R.J. Carter, S.R. Holbrook, P.D. Adams, and N.R. Pace. 2003. High-resolution structure of RNase P protein from Thermotoga maritima. Proc Natl Acad Sci U S A. 100:7497-502. Kraus, G., R. Geffin, G. Spruill, A.K. Young, R. Seivright, D. Cardona, J. Burzawa, and H.J. Hnatyszyn. 2002. Cross-clade inhibition of HIV-1 replication and cytopathology by using RNase P-associated external guide sequences. Proc Natl Acad Sci U S A. 99:3406-11. Kurz, J.C., S. Niranjanakumari, and C.A. Fierke. 1998. Protein component of Bacillus subtilis RNase P specifically enhances the affinity for precursor-tRNAAsp. Biochemistry. 37:2393-400. Lage, A.P., E. Godfroid, A. Fauconnier, A. Burette, J.P. Butzler, A. Bollen, and Y. Glupczynski. 1995. Diagnosis of Helicobacter pylori infection by PCR: comparison with other invasive techniques and detection of cagA gene in gastric biopsy specimens. J Clin Microbiol. 33:2752-6. Lock, R.A., G.W. Coombs, T.M. McWilliams, J.W. Pearman, W.B. Grubb, G.J. Melrose, and G.M. Forbes. 2002. Proteome analysis of highly immunoreactive proteins of Helicobacter pylori. Helicobacter. 7:175-82. Marshall, B.J., and J.R. Warren. 1984. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1:1311-5. Megraud, F. 1997. How should Helicobacter pylori infection be diagnosed? Gastroenterology. 113:S93-8. Niranjanakumari, S., J.C. Kurz, and C.A. Fierke. 1998. Expression, purification and characterization of the recombinant ribonuclease P protein component from Bacillus subtilis. Nucleic Acids Res. 26:3090-6. Raj, S.M., and F. Liu. 2003. Engineering of RNase P ribozyme for gene-targeting applications. Gene. 313:59-69. Spitzfaden, C., N. Nicholson, J.J. Jones, S. Guth, R. Lehr, C.D. Prescott, L.A. Hegg, and D.S. Eggleston. 2000. The structure of ribonuclease P protein from Staphylococcus aureus reveals a unique binding site for single-stranded RNA. J Mol Biol. 295:105-15. Stams, T., S. Niranjanakumari, C.A. Fierke, and D.W. Christianson. 1998. Ribonuclease P protein structure: evolutionary origins in the translational apparatus. Science. 280:752-5. Tomb, J.F., O. White, A.R. Kerlavage, R.A. Clayton, G.G. Sutton, R.D. Fleischmann, K.A. Ketchum, H.P. Klenk, S. Gill, B.A. Dougherty, K. Nelson, J. Quackenbush, L. Zhou, E.F. Kirkness, S. Peterson, B. Loftus, D. Richardson, R. Dodson, H.G. Khalak, A. Glodek, K. McKenney, L.M. Fitzegerald, N. Lee, M.D. Adams, J.C. Venter, and et al. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 388:539-47. Wen, Y., E.A. Marcus, U. Matrubutham, M.A. Gleeson, D.R. Scott, and G. Sachs. 2003. Acid-adaptive genes of Helicobacter pylori. Infect Immun. 71:5921-39. Xiao, S., F. Scott, C.A. Fierke, and D.R. Engelke. 2002. Eukaryotic ribonuclease P: a plurality of ribonucleoprotein enzymes. Annu Rev Biochem. 71:165-89.id NH0925111015 sid 914275 cfn 0 / id NH0925111016 auc 翁彩娟 tic 利用基因微陣列系統分析極低頻電磁場對人類表皮細胞的影響 adc 許宗雄 adc 許志 adc � adc � ty 碩士 sc 國立清華大學 dp 生物科技研究所 yr 92 lg 中文 pg 70 kwc 極低頻電磁場 kwc 伽傌射線 kwc 細胞週期 kwc 細胞凋亡 kwc DNA複製 abc 本研究目的旨在利用細胞群落分析、基因微陣列系統與流式細胞儀研究細胞生存率、基因表現、細胞週期與細胞凋亡的改變,以了解極低頻電磁場對生物體的影響。基因微陣列晶片上共點印7334個經確定序列的人類基因,其中的每一個基因在每片晶片上皆點印四次重複。人類表皮細胞為人類面對環境壓力的第一道防線,所以選用此細胞研究極低頻電磁場的生物效應。一組實驗組的細胞先經過2 Gy伽傌射線照射後,再接受3小時極低頻電磁場(60 Hz,5 gauss)照射﹔另一組實驗組的細胞則是只接受極低頻電磁場的照射。細胞群落分析顯示不論細胞是否先經過伽傌射線的照射,極低頻電磁場照射皆並未對細胞的存活率造成明顯改變。基因分析的結果發現,細胞只接受極低頻電磁場的照射時,相關於DNA解螺旋與DNA複製的基因有下調的現象,其他與細胞週期、細胞凋亡相關的基因亦有受到調控。細胞先接受伽傌射線照射再加以極低頻電磁場干擾時,相關於DNA解螺旋及DNA複製的基因下調有累加的現象,然其他細胞週期與細胞凋亡的基因則沒有觀察到此現象。細胞週期分析中,依不同的細胞密度下進行實驗之結果不同,無法做出肯定之結論。細胞凋亡分析發現極低頻電磁場的照射並未能造成細胞凋亡的顯著改變。總結而言,利用基因微陣列系統研究極低頻電磁場的生物效應,本研究為第一個發現極低頻電磁場可影響細胞部分功能基因群的調控,這些基因包括細胞生存、細胞週期調控、細胞凋亡調控與DNA解螺旋相關之基因。雖然在細胞群落分析與流式細胞儀分析結果中,並沒有發現極低頻電磁場對細胞生存率、細胞週期與細胞凋亡造成明顯影響,然而這樣的結果可能意味著研究極低頻電磁場所造成的微弱生物效應,使用基因微陣列系統為敏感度較高的檢測工具。 tc 誌謝 中文摘要 英文摘要 目錄 緒言---------------------------1 研究假設、目的及實驗原理-------4 實驗系統----------------------10 實驗流程與設計----------------16 實驗結果----------------------27 討論與結論--------------------45 參考文獻----------------------53 附錄--------------------------57rf 1. Wertheimer, N. and E. Leeper, Electrical wiring configurations and childhood cancer. Am J Epidemiol, 1979. 109(3): p. 273-84. 2. Savitz, D.A., et al., Case-control study of childhood cancer and exposure to 60-Hz magnetic fields. Am J Epidemiol, 1988. 128(1): p. 21-38. 3. Feychting, M., U. Forssen, and B. Floderus, Occupational and residential magnetic field exposure and leukemia and central nervous system tumors. Epidemiology, 1997. 8(4): p. 384-9. 4. Li, C.Y., G. Theriault, and R.S. Lin, Residential exposure to 60-Hertz magnetic fields and adult cancers in Taiwan. Epidemiology, 1997. 8(1): p. 25-30. 5. Ivancsits, S., et al., Induction of DNA strand breaks by intermittent exposure to extremely- low-frequency electromagnetic fields in human diploid fibroblasts. Mutat Res, 2002. 519(1-2): p. 1-13. 6. Ivancsits, S., et al., Age-related effects on induction of DNA strand breaks by intermittent exposure to electromagnetic fields. Mech Ageing Dev, 2003. 124(7): p. 847-50. 7. Cho, Y.H. and H.W. Chung, The effect of extremely low frequency electromagnetic fields (ELF-EMF) on the frequency of micronuclei and sister chromatid exchange in human lymphocytes induced by benzo(a)pyrene. Toxicol Lett, 2003. 143(1): p. 37-44. 8. Robison, J.G., et al., Decreased DNA repair rates and protection from heat induced apoptosis mediated by electromagnetic field exposure. Bioelectromagnetics, 2002. 23(2): p. 106-12. 9. Manni, V., et al., Effects of extremely low frequency (50 Hz) magnetic field on morphological and biochemical properties of human keratinocytes. Bioelectromagnetics, 2002. 23(4): p. 298-305. 10. Zhou, J., et al., CREB DNA binding activation by a 50-Hz magnetic field in HL60 cells is dependent on extra- and intracellular Ca(2+) but not PKA, PKC, ERK, or p38 MAPK. Biochem Biophys Res Commun, 2002. 296(4): p. 1013-8. 11. Nakasono, S., et al., Effect of power-frequency magnetic fields on genome-scale gene expression in Saccharomyces cerevisiae. Radiat Res, 2003. 160(1): p. 25-37. 12. Loberg, L.I., et al., Expression of cancer-related genes in human cells exposed to 60 Hz magnetic fields. Radiat Res, 2000. 153(5 Pt 2): p. 679-84. 13. Harada, S., et al., Effects of high ELF magnetic fields on enzyme-catalyzed DNA and RNA synthesis in vitro and on a cell-free DNA mismatch repair. Bioelectromagnetics, 2001. 22(4): p. 260-6. 14. Fam, W.Z. and E.L. Mikhail, Lymphoma induced in mice chronically exposed to very strong low-frequency electromagnetic field. Cancer Lett, 1996. 105(2): p. 257-69. 15. Yasui, M., et al., Carcinogenicity test of 50 Hz sinusoidal magnetic fields in rats. Bioelectromagnetics, 1997. 18(8): p. 531-40. 16. Rannug, A., et al., A study on skin tumour formation in mice with 50 Hz magnetic field exposure. Carcinogenesis, 1993. 14(4): p. 573-8. 17. Stuchly, M.A., et al., Modification of tumor promotion in the mouse skin by exposure to an alternating magnetic field. Cancer Lett, 1992. 65(1): p. 1-7. 18. Graham, C., et al., Nocturnal melatonin levels in human volunteers exposed to intermittent 60 Hz magnetic fields. Bioelectromagnetics, 1996. 17(4): p. 263-73. 19. Stevens, R.G., et al., Electric power, pineal function, and the risk of breast cancer. Faseb J, 1992. 6(3): p. 853-60. 20. Lai, H. and N.P. Singh, Acute exposure to a 60 Hz magnetic field increases DNA strand breaks in rat brain cells. Bioelectromagnetics, 1997. 18(2): p. 156-65. 21. McLean, J.R., et al., The effect of 60-Hz magnetic fields on co-promotion of chemically induced skin tumors on SENCAR mice: a discussion of three studies. Environ Health Perspect, 1997. 105(1): p. 94-6. 22. McNamee, J.P., et al., DNA damage and apoptosis in the immature mouse cerebellum after acute exposure to a 1 mT, 60 Hz magnetic field. Mutat Res, 2002. 513(1-2): p. 121-33. 23. Kurokawa, Y., et al., Acute exposure to 50 Hz magnetic fields with harmonics and transient components: lack of effects on nighttime hormonal secretion in men. Bioelectromagnetics, 2003. 24(1): p. 12-20. 24. Loscher, W. and R.P. Liburdy, Animal and cellular studies on carcinogenic effects of low frequency (50/60-Hz) magnetic fields. Mutat Res, 1998. 410(2): p. 185-220. 25. McCann, J., F. Dietrich, and C. Rafferty, The genotoxic potential of electric and magnetic fields: an update. Mutat Res, 1998. 411(1): p. 45-86. 26. Tubiana, M., J. Dutreix, and A. Wambersie, Introduction to radiobiology. 1990: Taylor & Francis. 27. Duggan, D.J., et al., Expression profiling using cDNA microarrays. Nat Genet, 1999. 21(1 Suppl): p. 10-4. 28. Yang, Y.H. and T. Speed, Design issues for cDNA microarray experiments. Nat Rev Genet, 2002. 3(8): p. 579-88. 29. Mendonca, M.S., et al., The radiosensitivity of human keratinocytes: influence of activated c-H-ras oncogene expression and tumorigenicity. Int J Radiat Biol, 1991. 59(5): p. 1195-206. 30. Sakamoto-Hojo, E.T., et al., Gene expression profiles in human cells submitted to genotoxic stress. Mutat Res, 2003. 544(2-3): p. 403-13. 31. Stojic, L., R. Brun, and J. Jiricny, Mismatch repair and DNA damage signalling. DNA Repair (Amst), 2004. 3(8-9): p. 1091-101. 32. Sahai, E., p53 Moves Into Control of Cell Morphology. Mol Intervent, 2002. 2(5): p. 286-9. 33. Hermeking, H., et al., 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell, 1997. 1(1): p. 3-11. 34. Wang, T., et al., hADA3 is required for p53 activity. Embo J, 2001. 20(22): p. 6404-13. 35. Shao, R.G., et al., Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-PK complexes. Embo J, 1999. 18(5): p. 1397-406. 36. Ding, H., et al., Functional interactions between Sp1 or Sp3 and the helicase-like transcription factor mediate basal expression from the human plasminogen activator inhibitor-1 gene. J Biol Chem, 1999. 274(28): p. 19573-80. 37. Kim, J., et al., The novel human DNA helicase hFBH1 is an F-box protein. J Biol Chem, 2002. 277(27): p. 24530-7. 38. Takei, Y., et al., MCM3AP, a novel acetyltransferase that acetylates replication protein MCM3. EMBO Rep, 2001. 2(2): p. 119-23. 39. Wang, B., et al., Molecular cloning and characterization of rat karyopherin alpha 1 gene: structure and expression. Gene, 2004. 331: p. 149-57. 40. Ross, A.E., M. Vuica, and S. Desiderio, Overlapping signals for protein degradation and nuclear localization define a role for intrinsic RAG-2 nuclear uptake in dividing cells. Mol Cell Biol, 2003. 23(15): p. 5308-19. 41. Petersen-Mahrt, S.K. and M.S. Neuberger, In vitro deamination of cytosine to uracil in single-stranded DNA by apolipoprotein B editing complex catalytic subunit 1 (APOBEC1). J Biol Chem, 2003. 278(22): p. 19583-6. 42. Hirota, T., et al., Zyxin, a regulator of actin filament assembly, targets the mitotic apparatus by interacting with h-warts/LATS1 tumor suppressor. J Cell Biol, 2000. 149(5): p. 1073-86. 43. Noben-Trauth, K., et al., Mybl2 (Bmyb) maps to mouse chromosome 2 and human chromosome 20q 13.1. Genomics, 1996. 35(3): p. 610-2. 44. Greene, L.S., Asthma and oxidant stress: nutritional, environmental, and genetic risk factors. J Am Coll Nutr, 1995. 14(4): p. 317-24. 45. Fjeld, C.C., et al., Mechanistic basis for catalytic activation of mitogen-activated protein kinase phosphatase 3 by extracellular signal-regulated kinase. J Biol Chem, 2000. 275(10): p. 6749-57. 46. Han, S., et al., TNF-related weak inducer of apoptosis receptor, a TNF receptor superfamily member, activates NF-kappa B through TNF receptor-associated factors. Biochem Biophys Res Commun, 2003. 305(4): p. 789-96. 47. Tian, Q., et al., Fas-activated serine/threonine kinase (FAST) phosphorylates TIA-1 during Fas-mediated apoptosis. J Exp Med, 1995. 182(3): p. 865-74. 48. Manes, S., et al., Identification of insulin-like growth factor-binding protein-1 as a potential physiological substrate for human stromelysin-3. J Biol Chem, 1997. 272(41): p. 25706-12. 49. Kari, C., et al., Targeting the epidermal growth factor receptor in cancer: apoptosis takes center stage. Cancer Res, 2003. 63(1): p. 1-5. 50. Sarray, S., et al., Lebectin, a novel C-type lectin from Macrovipera lebetina venom, inhibits integrin-mediated adhesion, migration and invasion of human tumour cells. Lab Invest, 2004. 84(5): p. 573-81. 51. Levy, Y., et al., Sustained induction of ERK, protein kinase B, and p70 S6 kinase regulates cell spreading and formation of F-actin microspikes upon ligation of integrins by galectin-8, a mammalian lectin. J Biol Chem, 2003. 278(16): p. 14533-42. 52. Wang, H., et al., Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science, 2001. 293(5531): p. 853-7. 53. Van Aelst, L. and C. D'Souza-Schorey, Rho GTPases and signaling networks. Genes Dev, 1997. 11(18): p. 2295-322. 54. Sahai, E. and C.J. Marshall, RHO-GTPases and cancer. Nat Rev Cancer, 2002. 2(2): p. 133-42. 55. Harris, P.A., et al., Possible attenuation of the G2 DNA damage cell cycle checkpoint in HeLa cells by extremely low frequency (ELF) electromagnetic field. Cancer Cell International, 2002. 2(1): p. 1-11. 56. Tian, F., et al., Exposure to power frequency magnetic fields suppresses X-ray-induced apoptosis transiently in Ku80-deficient xrs5 cells. Biochem Biophys Res Commun, 2002. 292(2): p. 355-61. 57. Ding, G.R., et al., Transient suppression of X-ray-induced apoptosis by exposure to power frequency magnetic fields in MCF-7 cells. Biochem Biophys Res Commun, 2001. 286(5): p. 953-7. 58. Goldberg, R.B. and W.A. Creasey, A review of cancer induction by extremely low frequency electromagnetic fields. Is there a plausible mechanism? Med Hypotheses, 1991. 35(3): p. 265-74. 59. Rosner, B., Fundamental of Biostatistics. 4th ed. 1995, Belmont, California: Wadsworth.id NH0925111016 sid g914245 cfn 0 / id NH0925111017 auc 林冠勳 tic 利用噬菌體表達技術研究日本腦炎病毒與神經細胞因子之交互作用 adc 呂平江 adc 林振文 ty 碩士 sc 國立清華大學 dp 生物科技研究所 yr 92 lg 中文 pg 100 kwc 噬菌體表達技術 kwc 日本腦炎病毒 kwc 神經細胞 kwc 套膜蛋白 kwc 蛋白 kwc & kwc #37238; abc 日本腦炎病毒(Japanese encephalitis virus, JEV)是一種藉蚊子傳染的黃質屬病毒。日本腦炎病毒套膜蛋白(envelope protein)的第三區域(ED3),在病毒感染宿主細胞時,可能與宿主細胞表面蛋白質接受器結合有關。蛋白酶(NS2b3)其病毒第三非結構性蛋白除有蛋白酶作用功能,在登革熱病毒研究還被發現與細胞凋亡(apoptosis)有關。本論文的研究利用噬菌體表達技術來篩選能對這兩種日本腦炎病毒蛋白相互作用結合的神經細胞蛋白質,之後利用ELISA及共同免疫沈澱來做進一步確認蛋白質之間的交互作用。篩選結果與ED3蛋白質相互作用的噬菌體表現人腦細胞cDNA的蛋白質,rED3-46 蛋白質是與粒腺體核糖蛋白(mitochondrial ribosomal protein L34)有將近100%的相似性。另一個rED3-17 蛋白質具有 GPP的motif,此motif也存在於膠原蛋白(collagen)之中。之後,利用噬菌體、重組人腦細胞蛋白以來進行日本腦炎病毒蝕斑減降試驗。實驗結果發現確實會有抑制病毒感染細胞的現象。利用重組人腦細胞蛋白對bal b/c小鼠進行腹腔注射免疫,取得血清後對神經細胞進行免疫螢光染色,發現確實在施打重組人腦細胞蛋白rED3-17小鼠免疫血清,使神經細胞外部周圍會有均勻的螢光。而施打重組人腦細胞蛋白rED3-46則在細胞中刻意觀察到一點一點的顆粒狀螢光。NS2b3蛋白質相對應的噬菌體所表現的蛋白質經比對,含帶有與神經退化疾病蛋白質(DRPLA)相關的motif。此蛋白質可能為細胞凋亡途徑中被caspase所活化的蛋白質,導致細胞凋亡發生,因此也將神經細胞轉染蛋白酶質體後進行免疫染色及西方墨點法,發現確實有細胞凋亡途徑的蛋白質active-caspase-3的存在。鑑定是何種神經細胞蛋白質與日本腦炎病毒蛋白質的相互作用都將有助瞭解日本腦炎病毒感染細胞時的分子致病作用機制。 rf 參考文獻 林振文.(2003).日本腦炎病毒套膜蛋白之第三區域中和抗原決定位. [博士論文 ]新竹. 國立清華大學. 生命科學研究所. 楊文仁、楊子璿、曹雯珊及宣大衛 (2003) 噬菌體呈現技術及其在生物科技上之應用。生物科學,Submitted Agnello V, Abel G, Elfahal M, Knight GB, Zhang QX.( 1999) Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Natl Acad Sci U S A. Oct 26;96(22):12766-71. Azzazy, H. M., Highsmith, W. E. Jr. (2002). Phage display technology: clinical applications and recent innovations. Clin Biochem. 5, 425-445. Barbas, C. F. III, Kang, A. S., Lerner, R. A., Benkovic, S. J. (1991). Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A. 88, 7978-7982. Barbas, C. F. III. (1993). Recent advances in phage display. Curr Opin Biotechnol. 4, 526-530. Burke, D. S., and Monath, T. P. (2001). Flaviviruses. In FieldsVirology, 4th edn, pp.1043-1125. Edited by D. M. Knipe, & P. M. Howley, Philadephia: Lippincott-Raven. Burton, D . R., Barbas, C. F. III. (1994). Human antibodies from combinatorial libraries.; Adv Immunol. 57, 191-280. Burton, D. R., Williamson, R. A., and Parren, P. W. (2000). Antibody and virus: binding and neutralization. Virology. 270, 1-3. Chen, H. W., Pan, C. H., Liau, M. Y., Jou, R., Tsai, C. J., Wu, H. J., Lin, Y. L., Tao, M. H. (1999). Screening of protective antigens of Japanese encephalitis virus by DNA immunization: a comparative study with conventional viral vaccines. J Virol. 73, 10137-10145. Chen,Y., T.Maguire. ,R.E.Haileman, J .R.Fromm, J.D.Esko, R.J.Linhardt,and R.M.Marks. (1997)Dengue virus infectivity depends on envelope protein binding target cell heparin sulfate.Nat.Med.3:866-871. Chia, S. C., Leung, P. S., Liao, C. P., Huang, J. H., Lee, S.T. (2001).Fragment of Japanese encephalitis virus envelope protein produced in Escherichia coli protects mice from virus challenge. Microb Pathog. 31, 9-19. Crill, W.D.& Roehrig ,J.T(2001).Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells.J.Virol.75,7769-7773. Crameri, A., Cwirla, S., Stemmer, W. P. (1996). Construction and evolution of antibody-phage libraries by DNA shuffling. Nat Med. 2, 100-102. Grigori G. Prikhod’ko,Elena A. Prikhod’ko,Alexander G.Pletnev, and Jeffrey I.Cohen. (2002) J Virol. 76, 5701-5710. Guerrero CA, Mendez E, Zarate S, Isa P, Lopez S, Arias CF. (2000 )Integrin alpha(v)beta(3) mediates rotavirus cell entry. Proc Natl Acad Sci U S A. Dec 19;97(26):14644-9. Guirakhoo, F., Heinz, F. X., Kunz, C. (1989). Epitopes model of tick-borne encephalitis virus envelope glycoprotein E: analysis of structural properties, role of carbohydrate side chain, and conformational changes occurring at acidic pH. Virology. 169, 90-99. Hoogenboom HR, de Bruine AP, Hufton SE, Hoet RM, Arends JW, Roovers RC. (1998) Antibody phage display technology and its applications. Immunotechnology. Jun;4(1):1-20. Duval R, Bellet V, Delebassee S, Bosgiraud C. (2002) Implication of caspases during maedi-visna virus-induced apoptosis. J Gen Virol. Dec;83(Pt 12):3153-61. Jung, S., Honegger, A., and Plückthun, A. (1999). Selection for improved protein stability by phage display. J. Mol. Biol. 294, 163-180 Kimura, T., J. Kimura-Kuroda, K. Nagashima, and K. Yasui. (1994.) Analysis of virus-cell binding characteristics on the determination of Japanese encephalitis virus susceptibility. Arch. Virol. 139:239-251 Klasse, P. J., Sattentau, Q. J. (2002). Occupancy and mechanism in antibody-mediated neutralization of animal viruses. J Gen Virol. 83, 2091-2108. Konishi, E., Pincus, S., Paoletti, E., Shope, R. E., Wason, P. W. (1994). Avipox virus-vectored Japanese encephalitis virus vaccines: use as vaccine candidates in combination with purified subunit immunogens. Vaccine. 12, 633-638. Kopecky, J., L. Grubhoffer, V. Kovar, L. Jindrak, and D. Vokurkova. (1999). A putative host cell receptor for tick-borne encephalitis virus identified by anti-idiotypic antibodies and virus affinoblotting. Intervirology 42:9-16 Kuhn,R.J.et al.(2002) Structure of dengue virus: implications of flavivirus organization,maturation,and fusion.Cell 108,717-725 Kurane, I. (2002). Immune responses to Japanese encephalitis virus. Curr Top Microbiol Immunol. 267, 91-103. Lee E, Lobigs M. (2002) Mechanism of virulence attenuation of glycosaminoglycan-binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus. J Virol. 76(10) 4901-11. Lin, C. W., Wu, S. C. (2003). A functional epitopes determinant on domain III of the Japanese encephalitis virus envelope protein interacted with neutralizing-antibody combining sites. J Virol. 77, 2600-2606. Lindenbach, B. D., and Rice, C. M. (2001). Flaviridae: the virus and their replication. In Fields Virology, 4th edn, pp. 991-1041. Edited by D. M. Knipe, & P. M.Howley. Philadephia: Lippincott-Raven. Lobigs,M .et al.(1990)Host cell selection of Murray Valley encephalitis virus variants altered at an RGD sequence in the envelope protein and in mouse virulence.Virology 176,587-595. Markoff, L. (2000). Points to consider in the development of a surrogate for efficacy of novel Japanese encephalitis virus vaccines. 18, 26-32. Marks, J. D., Hoogenboom, H. R., Griffiths, A. D., Winter, G. (1992). Molecular evolution of proteins on filamentous phage. Mimicking the strategy of the immune system. J Biol Chem. 267, 16007-16010. Mason, P. W., Dalrymple, J. M., Gentry, M. K., McCown, J. M., Hoke, C. H., Burke, D. S., Fournier, M. J., Mason, T. L. (1989). Molecular characterization of a neutralizing domain of the Japanese encephalitis virus structural glycoprotein. J Gen Virol. 70 , 2037-2049. McMinn,P.C.,1997.The molecular basis of virulence of the encephalitogenic flaviviruses. J.Gen.Virol.78,2711-2722. McCown, J., Cochran, M., Putnak, R., Feighny, R., Burrous, J., Henchal, E., Hoke, C. (1990). Protection of mice against lethal Japanese encephalitis with a recombinant baculovirus vaccine. Am J Trop Med Hyg. 42, 491-499. Miyashita T, Nagao K, Ohmi K, Yanagisawa H, Okamura-Oho Y, Yamada M. (1998)Intracellular aggregate formation of dentatorubral-pallidoluysian atrophy (DRPLA) protein with the extended polyglutamine. Biochem Biophys Res Commun. Aug 10;249(1):96-102. Modis, Y., Ogata, S., Clements, D., Harrison, S. C. (2003). A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A. 100, 6986-6991. Monath, T. P., and Heinz, F. X.(1996). Flaviviruses. In Fields Virology, 3rd edn, pp961-1034. Edited by B. N. Fields, D. M. Knipe, & P. M. Howley. Philadephia: Lippincott-Raven. Monath, T. P. (2002). Japanese encephalitis vaccines: current vaccines and future prospects. Curr Top Microbiol Immunol. 267, 105-138. Nimni,M.E.,Collagen ,Vol I,CRCC press Inc .,1988 Pan, C. H., Chen, H. W., Huang, H. W., Tao, M. H. (2001). Protective mechanisms induced by a Japanese encephalitis virus DNA vaccine: requirement for antibody but not CD8(+) cytotoxic T-cell responses. J Virol. 75, 11457-11463. Proba, K., Worn, A., Honegger, A., Pluckthun, A. (1998). Antibody scFv fragments without disulfide bonds made by molecular evolution. J Mol Biol. 275, 245-253. Proulx, C., Boyer, L., St Amour, I., Bazin, R., and Lemieux, R. (2002). Higher affinity human D MoAb prepared by light chain shuffling and selected by phage display. Transfusion 42, 59-65 Rader, C., Barbas, C. F. III. (1997). Phage display of combinatorial antibody libraries. Curr Opin Biotechnol. 8, 503-508. Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C., and Harrison, S. C. (1995). The envelope glycoprotein from tick brone encephalitis virus at 2 A resolution. Nature. 375, 291-298 Roehrig, J. T., Bolin, R. A., Kelly, R. G. (1998). Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Virology. 246, 317-328. Romanov VI. (2003) Phage display selection and evaluation of cancer drug targets. Curr Cancer Drug Targets. Apr;3(2):119-29. Salas-Benito JS, del Angel RM. (1997) Identification of two surface proteins from C6/36 cells that bind dengue type 4 virus. J Virol. Oct;71(10):7246-52. Seif , S. A., Morita, K., Matsuo, S., Hasebe, F., Igarashi, A. (1995). Finer mapping of neutralizing epitopes on the C-terminal of Japanese encephalitis virus E-protein expressed in recombinant Escherichia coli system. Vaccine. 13, 1515-1521. Shafee N, AbuBakar S. (2003) Dengue virus type 2 NS3 protease and NS2B-NS3 protease precursor induce apoptosis. J Gen Virol. Aug;84(Pt 8):2191-5. Sidhu SS. (2000)Phage display in pharmaceutical biotechnology. Curr Opin Biotechnol. Dec;11(6):610-6. Smith GP.(1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. Jun 14;228(4705):1315-7. Stoop, A. A., Jespers, L., Lasters, I., Eldering, E., and Pannekoek, H. (2000). High-density mutagenesis by combined DNA shuffling and phage display to assign essential amino acid residues in protein-protein interactions: application to study structure-function of plasminogen activation inhibitor 1 (PAI-I). J Mol Biol. 301, 1135-1147. Thomas Waerner,Paola Gardellin,Klaus Pfizenmaier,Andreas Weith ,and Norbert Kraut (2001) Human RERE is localized to nuclear promyelocytic leukemia oncogenic domains and enhances apoptosis. Cell Growth & Differentiation vol,12 201-210. Wu, S. C., Lian, W. C., Hsu, L. C., and Liau M. Y. (1997). Japanese encephalitis virus antigenic variants with characteristic differences in neutralization resistance and mouse virulence. Virus Res. 51, 173-181. Wu, S. C., Yu, C.H., Lin, C. W., Chu, I. M. (2003). The domain III fragment of Japanese encephalitis virus envelope protein: mouse immunogenicity and liposome adjuvanticity. Vaccine. 21, 2516-2522. Xing L.,et al. (2004) Structural and functional analysis of integrin alpha2I domain interaction with echovirus 1. J Biol Chem. Mar 19;279(12):11632-8. Yanagisawa H, Bundo M, Miyashita T, Okamura-Oho Y, Tadokoro K, Tokunaga K, Yamada M. (2000) Protein binding of a DRPLA family through arginine-glutamic acid dipeptide repeats is enhanced by extended polyglutamine. Hum Mol Genet. May 22;9(9):1433-42. Yorgo Modis,Stevem Ogata ,David Clements & Stephen C. Harrison (2004).Structure of the dengue virus envelope protein after membrane fusion. Nature 427,313-319id NH0925111017 sid 914253 cfn 0 / id NH0925111018 auc 黃中瑜 tic 胃幽門螺旋桿菌之焦磷酸水解脢蛋白質的表現質體建構,純化,以及功能分析 adc 黃海美 ty 碩士 sc 國立清華大學 dp 生物科技研究所 yr 92 lg 英文 pg 73 kwc 幽門螺旋桿菌 kwc 焦磷酸水解 kwc & kwc #37238; kwc 酵素動力學 kwc 酸誘導 kwc 焦磷酸根 kwc 蛋白質純化 abc 在本論文中,根據TIGR以及DNA 微陣列的資料庫,挑選一些特定的胃幽門螺旋桿菌基因,做為功能性以及蛋白質結構分析. 將這些目標基因(HPXXXX)分別建構至5端含有六個Histine的表現質體pQE-30,接著將完成建構的質體轉形(transformation)至 SG13009菌株.在這些目標基因之中,菌株帶有HP0620基因的表現質體在IPTG的誘導下可以表現大量可溶性蛋白質. 所以選擇此基因做為研究的方向. tc 中文摘要 1 Abstract 3 Introduction 6 Materials and methods 12 Results 24 Discussion 32 References 40 Figures 46 Appendix 65rf Abshire KZ, Neidhardt FC (1993): Analysis of proteins synthesized by Salmonella typhimurium during growth within a host macrophage. J Bacteriol 175:3734-43. Abu Kwaik Y (1998): Induced expression of the Legionella pneumophila gene encoding a 20-kilodalton protein during intracellular infection. Infect Immun 66:203-12. Ang S, Lee CZ, Peck K, Sindici M, Matrubutham U, Gleeson MA, Wang JT (2001): Acid-induced gene expression in Helicobacter pylori: study in genomic scale by microarray. Infect Immun 69:1679-86. Aoki M, Uchiumi T, Tsuji E, Hachimori A (1998): Effect of replacement of His-118, His-125 and Trp-143 by alanine on the catalytic activity and subunit assembly of inorganic pyrophosphatase from thermophilic bacterium PS-3. Biochem J 331 ( Pt 1):143-8. Avaeva SM (2000): Active site interactions in oligomeric structures of inorganic pyrophosphatases. Biochemistry (Mosc) 65:361-72. Avaeva SM, Rodina EV, Vorobyeva NN, Kurilova SA, Nazarova TI, Sklyankina VA, Oganessyan VY, Harutyunyan EH (1998): Changes in E. coli inorganic pyrophosphatase structure induced by binding of metal activators. Biochemistry (Mosc) 63:592-9. Baykov AA, Hyytia T, Volk SE, Kasho VN, Vener AV, Goldman A, Lahti R, Cooperman BS (1996): Catalysis by Escherichia coli inorganic pyrophosphatase: pH and Mg2+ dependence. Biochemistry 35:4655-61. Bumann D, Aksu S, Wendland M, Janek K, Zimny-Arndt U, Sabarth N, Meyer TF, Jungblut PR (2002): Proteome analysis of secreted proteins of the gastric pathogen Helicobacter pylori. Infect Immun 70:3396-403. Carystinos GD, MacDonald HR, Monroy AF, Dhindsa RS, Poole RJ (1995): Vacuolar H(+)-translocating pyrophosphatase is induced by anoxia or chilling in seedlings of rice. Plant Physiol 108:641-9. Celis H, Franco B, Escobedo S, Romero I (2003): Rhodobacter sphaeroides has a family II pyrophosphatase: comparison with other species of photosynthetic bacteria. Arch Microbiol 179:368-76. Celis H, Romero I (1987): The phosphate-pyrophosphate exchange and hydrolytic reactions of the membrane-bound pyrophosphatase of Rhodospirillum rubrum: effects of pH and divalent cations. J Bioenerg Biomembr 19:255-72. Chen J, Brevet A, Fromant M, Leveque F, Schmitter JM, Blanquet S, Plateau P (1990): Pyrophosphatase is essential for growth of Escherichia coli. J Bacteriol 172:5686-9. Dubnova EB, Baikov AA (1991): [Catalytic properties of inorganic pyrophosphatase in rat liver mitochondria ]. Biokhimiia 56:2181-7. Fraichard A, Trossat C, Perotti E, Pugin A (1996): Allosteric regulation by Mg2+ of the vacuolar H(+)-PPase from Acer pseudoplatanus cells. Ca2+/Mg2+ interactions. Biochimie 78:259-66. Gomez-Garcia MR, Losada M, Serrano A (2003): Concurrent transcriptional activation of ppa and ppx genes by phosphate deprivation in the cyanobacterium Synechocystis sp. strain PCC 6803. Biochem Biophys Res Commun 302:601-9. Hachimori A, Shiroya Y, Hirato A, Miyahara T, Samejima T (1979): Effects of divalent cations on thermophilic inorganic pyrophosphatase. J Biochem (Tokyo) 86:121-30. Hachimori A, Takeda A, Kaibuchi M, Ohkawara N, Samejima T (1975): Purification and characterization of inorganic pyrophosphatase from Bacillus stearothermophilus. J Biochem (Tokyo) 77:1177-83. Hoe HS, Kim HK, Kwon ST (2002): Cloning, analysis, and expression of the gene for inorganic pyrophosphatase of Aquifex pyrophilus and properties of the enzyme. Mol Cells 13:296-301. Hornick RB (1987): Peptic ulcer disease: a bacterial infection? N Engl J Med 316:1598-600. Howard A, Lundgren DG (1970): Inorganic pyrophosphatase from Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Can J Biochem 48:1302-7. Islam KM, Miyoshi T, Isobe T, Kasuga-Aoki H, Arakawa T, Matsumoto Y, Yokomizo Y, Tsuji N (2004): Temperature and metal ions-dependent activity of the family I inorganic pyrophosphatase from the swine roundworm Ascaris suum. J Vet Med Sci 66:221-3. Islam MK, Miyoshi T, Kasuga-Aoki H, Isobe T, Arakawa T, Matsumoto Y, Tsuji N (2003): Inorganic pyrophosphatase in the roundworm Ascaris and its role in the development and molting process of the larval stage parasites. Eur J Biochem 270:2814-26. Josse J (1966): Constitutive inorganic pyrophosphatase of Escherichia coli. 1. Purification and catalytic properties. J Biol Chem 241:1938-47. Kim EJ, Zhen RG, Rea PA (1995): Site-directed mutagenesis of vacuolar H(+)-pyrophosphatase. Necessity of Cys634 for inhibition by maleimides but not catalysis. J Biol Chem 270:2630-5. Klemme JH, Gest H (1971a): Regulation of the cytoplasmic inorganic pyrophosphatase of Rhodospirillum rubrum. Eur J Biochem 22:529-37. Klemme JH, Gest H (1971b): Regulatory properties of an inorganic pyrophosphatase from the photosynthic bacterium Rhodospirillum rubrum. Proc Natl Acad Sci U S A 68:721-5. Klemme JH, Klemme B, Gest H (1971): Catalytic properties and regulatory diversity of inorganic pyrophosphatases from photosynthetic bacteria. J Bacteriol 108:1122-8. Kondrashin AA, Remennikov VG, Samuilov VD, Skulachev VP (1980): Reconstitution of biological molecular generators of electric current. Inorganic pyrophosphatase. Eur J Biochem 113:219-22. Konturek PC, Pierzchalski P, Konturek SJ, Meixner H, Faller G, Kirchner T, Hahn EG (1999): Helicobacter pylori induces apoptosis in gastric mucosa through an upregulation of Bax expression in humans. Scand J Gastroenterol 34:375-83. Kuhn NJ, Wadeson A, Ward S, Young TW (2000): Methanococcus jannaschii ORF mj0608 codes for a class C inorganic pyrophosphatase protected by Co(2+) or Mn(2+) ions against fluoride inhibition. Arch Biochem Biophys 379:292-8. Kuhn NJ, Ward S (1998): Purification, properties, and multiple forms of a manganese-activated inorganic pyrophosphatase from Bacillus subtilis. Arch Biochem Biophys 354:47-56. Lahti R (1983): Microbial inorganic pyrophosphatases. Microbiol Rev 47:169-78. Lahti R, Hannukainen R, Lonnberg H (1989): Effects of spermine and spermidine on the inorganic pyrophosphatase of Streptococcus faecalis. Interactions between polyamines and inorganic pyrophosphate. Biochem J 259:55-9. Lahti R, Heinonen J (1981): Reversible changes in the activity of inorganic pyrophosphatase of Streptococcus faecalis. The effect of compounds containing SH-groups. Acta Chem Scand B 35:33-8. Lahti R, Lonnberg H (1985): Comparative kinetic studies on the two interconvertible forms of Streptococcus faecalis inorganic pyrophosphatase. Biochem J 231:485-8. Lahti R, Niemi T (1981): Purification and some properties of inorganic pyrophosphatase from Streptococcus faecalis. J Biochem (Tokyo) 90:79-85. Liu B, Bartlam M, Gao R, Zhou W, Pang H, Liu Y, Feng Y, Rao Z (2004): Crystal structure of the hyperthermophilic inorganic pyrophosphatase from the archaeon Pyrococcus horikoshii. Biophys J 86:420-7. Logan RP (1994): Helicobacter pylori and gastric cancer. Lancet 344:1078-9. Marchesini N, Luo S, Rodrigues CO, Moreno SN, Docampo R (2000): Acidocalcisomes and a vacuolar H+-pyrophosphatase in malaria parasites. Biochem J 347 Pt 1:243-53. Marshall BJ, Warren JR (1984): Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1:1311-5. Mendall MA, Goggin PM, Molineaux N, Levy J, Toosy T, Strachan D, Camm AJ, Northfield TC (1994): Relation of Helicobacter pylori infection and coronary heart disease. Br Heart J 71:437-9. Merrell DS, Goodrich ML, Otto G, Tompkins LS, Falkow S (2003): pH-regulated gene expression of the gastric pathogen Helicobacter pylori. Infect Immun 71:3529-39. Mitchell SJ, Minnick MF (1997): Cloning, functional expression, and complementation analysis of an inorganic pyrophosphatase from Bartonella bacilliformis. Can J Microbiol 43:734-43. Morita JI, Yasui T (1978): Purification and some properties of a neutral muscle pyrophosphatase. J Biochem (Tokyo) 83:719-26. Oliva G, Romero I, Ayala G, Barrios-Jacobo I, Celis H (2000): Characterization of the inorganic pyrophosphatase from the pathogenic bacterium Helicobacter pylori. Arch Microbiol 174:104-10. Parfenyev AN, Salminen A, Halonen P, Hachimori A, Baykov AA, Lahti R (2001): Quaternary structure and metal ion requirement of family II pyrophosphatases from Bacillus subtilis, Streptococcus gordonii, and Streptococcus mutans. J Biol Chem 276:24511-8. Plaxton WC (1996): The Organization and Regulation of Plant Glycolysis. Annu Rev Plant Physiol Plant Mol Biol 47:185-214. Rapoport S, Scheuch D (1960): Glutathione stability and pyrophosphatase activity in reticulocytes; direct evidence for the importance of glutathione for the enzyme status in intact cells. Nature 186:967-8. Rodrigues CO, Scott DA, Bailey BN, De Souza W, Benchimol M, Moreno B, Urbina JA, Oldfield E, Moreno SN (2000): Vacuolar proton pyrophosphatase activity and pyrophosphate (PPi) in Toxoplasma gondii as possible chemotherapeutic targets. Biochem J 349 Pt 3:737-45. Romero I, Garcia-Contreras R, Celis H (2003): Rhodospirillum rubrum has a family I pyrophosphatase: purification, cloning, and sequencing. Arch Microbiol 179:377-80. Routzahn KM, Waugh DS (2002): Differential effects of supplementary affinity tags on the solubility of MBP fusion proteins. J Struct Funct Genomics 2:83-92. Salminen T, Kapyla J, Heikinheimo P, Kankare J, Goldman A, Heinonen J, Baykov AA, Cooperman BS, Lahti R (1995): Structure and function analysis of Escherichia coli inorganic pyrophosphatase: is a hydroxide ion the key to catalysis? Biochemistry 34:782-91. Samygina VR, Popov AN, Rodina EV, Vorobyeva NN, Lamzin VS, Polyakov KM, Kurilova SA, Nazarova TI, Avaeva SM (2001): The structures of Escherichia coli inorganic pyrophosphatase complexed with Ca(2+) or CaPP(i) at atomic resolution and their mechanistic implications. J Mol Biol 314:633-45. Schwarm HM, Vigenschow H, Knobloch K (1986): Kinetic characterization and partial purification of the membrane-bound inorganic pyrophosphatase from Rhodopseudomonas palustris. Biol Chem Hoppe Seyler 367:127-33. Scott DR, Marcus EA, Weeks DL, Lee A, Melchers K, Sachs G (2000): Expression of the Helicobacter pylori ureI gene is required for acidic pH activation of cytoplasmic urease. Infect Immun 68:470-7. Scott DR, Weeks D, Hong C, Postius S, Melchers K, Sachs G (1998): The role of internal urease in acid resistance of Helicobacter pylori. Gastroenterology 114:58-70. Seufferheld M, Vieira MC, Ruiz FA, Rodrigues CO, Moreno SN, Docampo R (2003): Identification of organelles in bacteria similar to acidocalcisomes of unicellular eukaryotes. J Biol Chem 278:29971-8. Sosa A, Ordaz H, Romero I, Celis H (1992): Mg2+ is an essential activator of hydrolytic activity of membrane-bound pyrophosphatase of Rhodospirillum rubrum. Biochem J 283 ( Pt 2):561-6. Tominaga N, Mori T (1977): Purificantion and characterization of inorganic pyrophosphatase from Thiobacillus thiooxidans. J Biochem (Tokyo) 81:477-83. Triccas JA, Gicquel B (2001): Analysis of stress- and host cell-induced expression of the Mycobacterium tuberculosis inorganic pyrophosphatase. BMC Microbiol 1:3. Urbina JA, Moreno B, Vierkotter S, Oldfield E, Payares G, Sanoja C, Bailey BN, Yan W, Scott DA, Moreno SN, Docampo R (1999): Trypanosoma cruzi contains major pyrophosphate stores, and its growth in vitro and in vivo is blocked by pyrophosphate analogs. J Biol Chem 274:33609-15. Verhoeven JA, Schenck KM, Meyer RR, Trela JM (1986): Purification and characterization of an inorganic pyrophosphatase from the extreme thermophile Thermus aquaticus. J Bacteriol 168:318-21. Ware D, Postgate JR (1970): Reductant-activation of inorganic pyrophosphatase: an ATP-conserving mechanism in anaerobic bacteria. Nature 226:1250-1. Ware DA, Postgate JR (1971): Physiological and chemical properties of a reductant-activated inorganic pyrophosphatase from Desulfovibrio desulfuricans. J Gen Microbiol 67:145-60. Wen Y, Marcus EA, Matrubutham U, Gleeson MA, Scott DR, Sachs G (2003): Acid-adaptive genes of Helicobacter pylori. Infect Immun 71:5921-39. Wood HG (1977): Some reactions in which inorganic pyrophosphate replaces ATP and serves as a source of energy. Fed Proc 36:2197-206. Young TW, Kuhn NJ, Wadeson A, Ward S, Burges D, Cooke GD (1998): Bacillus subtilis ORF yybQ encodes a manganese-dependent inorganic pyrophosphatase with distinctive properties: the first of a new class of soluble pyrophosphatase? Microbiology 144 ( Pt 9):2563-71.id NH0925111018 sid 914263 cfn 0 / id NH0925112001 auc 陳心怡 tic 胃幽門桿菌菌種26695之HP0291蛋白質結構似AroQ型chorismate變位酵素功能性鑑定與分析 adc 呂平江 博士 ty 碩士 sc 國立清華大學 dp 生物資訊與結構生物研究所 yr 92 lg 英文 pg 68 kwc 胃幽門桿菌 蛋白質 酵素 abc 胃幽門桿菌菌種26695,是一種微厭氧菌,分類上屬於革蘭氏陰性的螺旋狀桿菌。它是胃潰瘍的主要病因以及胃癌的一個早期病徴,現今是存在於人類中最普遍的一種由細菌傳染而造成的慢性疾病。自從1997年Tomb, J. F 發表了此菌的整個基因體序列後。我們根據基因序列,資料庫搜查,基因註解,序列預測和比對的方法,致力於胃幽門桿菌結構基因體的研究。在本文中,胃幽門桿菌基因體內我們所選的基因之一 (HP0291),己成功地確認了它的功能:胃幽門桿菌菌種26695的chorismate變位酵素。 rf REFERENCE 1. Boneca, I.G. et al. A revised annotation and comparative analysis of Helicobacter pylori genomes. Nucleic Acids Res 31, 1704-14 (2003). 2. Tomb, J.F. et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539-47 (1997). 3. Ulrich, H.D. et al. The interplay between binding energy and catalysis in the evolution of a catalytic antibody. Nature 389, 271-5 (1997). 4. Andrews, P.R., Smith, G.D. & Young, I.G. Transition-state stabilization and enzymic catalysis. Kinetic and molecular orbital studies of the rearrangement of chorismate to prephenate. Biochemistry 12, 3492-8 (1973). 5. Gorisch, H. On the mechanism of the chorismate mutase reaction. Biochemistry 17, 3700-5 (1978). 6. Helmstaedt, K., Krappmann, S. & Braus, G.H. Allosteric regulation of catalytic activity: Escherichia coli aspartate transcarbamoylase versus yeast chorismate mutase. Microbiol Mol Biol Rev 65, 404-21, table of contents (2001). 7. Romero, R.M.R., M. F.; Phillipson, J. D. Chorismate mutase in microorganisms and plants. Phytochemistry 40, 1015-1025 (1995). 8. Haynes, M.R., Stura, E.A., Hilvert, D. & Wilson, I.A. Routes to catalysis: structure of a catalytic antibody and comparison with its natural counterpart. Science 263, 646-52 (1994). 9. Chook, Y.M., Gray, J.V & Lipscomb, W.N. The monofunctional chorismate mutase from Bacillus subtilis. Structure determination of chorismate mutase and its complexes with a transition state analog and prephenate, and implications for the mechanism of the enzymatic reaction. J Mol Biol 240, 476-500 (1994). 10. Strater, N., Schnappauf, G., Braus, G. & Lipscomb, W.N. Mechanisms of catalysis and allosteric regulation of yeast chorismate mutase from crystal structures. Structure 5, 1437-52 (1997). 11. Helmstaedt, K., Heinrich, G., Merkl, R. & Braus, G.H. Chorismate mutase of Thermus thermophilus is a monofunctional AroH class enzyme inhibited by tyrosine. Arch Microbiol 181, 195-203 (2004). 12. Lee, A.Y., Stewart, J.D., Clardy, J. & Ganem, B. New insight into the catalytic mechanism of chorismate mutases from structural studies. Chem Biol 2, 195-203 (1995). 13. Xue, Y. & Lipscomb, W.N. Location of the active site of allosteric chorismate mutase from Saccharomyces cerevisiae, and comments on the catalytic and regulatory mechanisms. Proc Natl Acad Sci U S A 92, 10595-8 (1995). 14. Zhang, S. et al. Chorismate mutase-prephenate dehydratase from Escherichia coli. Study of catalytic and regulatory domains using genetically engineered proteins. J Biol Chem 273, 6248-53 (1998). 15. Gray, J.V & Knowles, J.R. Monofunctional chorismate mutase from Bacillus subtilis: kinetic and 13C NMR studies on the interactions of the enzyme with its ligands. Biochemistry 29, 8872-8 (1990). 16. MacBeath, G., Kast, P. & Hilvert, D. A small, thermostable, and monofunctional chorismate mutase from the archaeon Methanococcus jannaschii. Biochemistry 37, 10062-73 (1998). 17. Turnbull, J., Morrison, J.F. & Cleland, W.W. Kinetic studies on chorismate mutase-prephenate dehydrogenase from Escherichia coli: models for the feedback inhibition of prephenate dehydrogenase by L-tyrosine. Biochemistry 30, 7783-8 (1991). 18. Krappmann, S. et al. The aroC gene of Aspergillus nidulans codes for a monofunctional, allosterically regulated chorismate mutase. J Biol Chem 274, 22275-82 (1999). 19. Krappmann, S., Lipscomb, W.N. & Braus, G.H. Coevolution of transcriptional and allosteric regulation at the chorismate metabolic branch point of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 97, 13585-90 (2000). 20. Mobley, E.M., Kunkel, B.N. & Keith, B. Identification, characterization and comparative analysis of a novel chorismate mutase gene in Arabidopsis thaliana. Gene 240, 115-23 (1999). 21. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-80 (1994). 22. Zhang, S., Kongsaeree, P., Clardy, J., Wilson, D.B. & Ganem, B. Site-directed mutagenesis of monofunctional chorismate mutase .ed from the E. coli P-protein. Bioorg Med Chem 4, 1015-20 (1996). 23. Davidson, B.E. & Hudson, G.S. Chorismate mutase-prephenate dehydrogenase from Escherichia coli. Methods Enzymol 142, 440-50 (1987). 24. Kuroki, G.W. & Conn, E.E. Purification and characterization of an inducible aromatic amino acid-sensitive form of chorismate mutase from Solanum tuberosum L. tubers. Arch Biochem Biophys 260, 616-21 (1988). 25. Calhoun, D.H., Bonner, C.A., Gu, W., Xie, G. & Jensen, R.A. The emerging periplasm-localized subclass of AroQ chorismate mutases, exemplified by those from Salmonella typhimurium and Pseudomonas aeruginosa. Genome Biol 2, RESEARCH0030 (2001). 26. Gray, J.V., Golinelli-Pimpaneau, B. & Knowles, J.R. Monofunctional chorismate mutase from Bacillus subtilis: purification of the protein, molecular cloning of the gene, and overexpression of the gene product in Escherichia coli. Biochemistry 29, 376-83 (1990). 27. Gorisch, H. & Lingens, F. Properties of chorismate mutase of Streptomyces venezuelae. Arch Mikrobiol 82, 147-54 (1972). 28. Schnappauf, G., Lipscomb, W.N. & Braus, G.H. Separation of inhibition and activation of the allosteric yeast chorismate mutase. Proc Natl Acad Sci U S A 95, 2868-73 (1998). 29. Zurawski, G. & Brown, K.D. Chorismate mutase of Chlamydomonas reinhardi. Partial purification and some properties. Biochim Biophys Acta 377, 473-81 (1975). 30. Gorisch, H. & Lingens, F. Chorismate mutase from Streptomyces. Purification, properties, and subunit structure of the enzyme from Streptomyces aureofaciens Tu 24. Biochemistry 13, 3790-4 (1974). 31. Gorisch, H. Chorismate mutase from Streptomyces aureofaciens. Methods Enzymol 142, 463-72 (1987). 32. Gorisch, H. & Lingens, F. Chorismate mutase from Streptomyces aureofaciens: a heat-stable enzyme. J Bacteriol 114, 645-51 (1973). 33. Ahmad, S., Wilson, A.T. & Jensen, R.A. Chorismate mutase:prephenate dehydratase from Acinetobacter calcoaceticus. Purification, properties and immunological cross-reactivity. Eur J Biochem 176, 69-79 (1988). 34. Lorence, J.H. Multiple molecular forms of chorismate mutase in Bacillus subtillis. Biochemistry 6, 1541-53 (1967). 35. Singh, B.K., Connelly, J.A. & Conn, E.E. Chorismate mutase isoenzymes from Sorghum bicolor: purification and properties. Arch Biochem Biophys 243, 374-84 (1985). 36. Gilchrist, D.G.C., J.A. (ed.) Chorismate mutase from mung bean and Sorghum, 450-463 (1987). 37. Sprossler, B. & Lingens, F. [Chorismate mutase from Claviceps. I. Properties of chorismate mutase from different strains of Claviceps ]. Hoppe Seylers Z Physiol Chem 351, 448-58 (1970). 38. Cotton, R.G. & Gibson, F. The Biosynthesis of Phenylalanine and Tyrosine; Enzymes Converting Chorismic Acid into Prephenic Acid and Their Relationships to Prephenate Dehydratase and Prephenate Dehydrogenase. Biochim Biophys Acta 100, 76-88 (1965). 39. Schmidheini, T., Mosch, H.U., Evans, J.N. & Braus, G. Yeast allosteric chorismate mutase is locked in the activated state by a single amino acid substitution. Biochemistry 29, 3660-8 (1990). 40. Ma, K.H. & Davidson, B.E. The reactivity of the sulphydryl groups of chorismate mutase/prephenate dehydratase--a bifunctional enzyme of phenylalanine biosynthesis in Escherichia coli K12. Biochim Biophys Acta 827, 1-7 (1985). 41. Gething, M.J. & Davidson, B.E. Chorismate mutase/prephenate dehydratase from Escherichia coli K12. Effect of phenylalanine, NaCl and pH on the protein conformation. Eur J Biochem 86, 159-64 (1978). 42. Xia, T., Song, J., Zhao, G., Aldrich, H. & Jensen, R.A. The aroQ-encoded monofunctional chorismate mutase (CM-F) protein is a periplasmic enzyme in Erwinia herbicola. J Bacteriol 175, 4729-37 (1993). 43. Xia, T., Zhao, G., Fischer, R.S. & Jensen, R.A. A monofunctional prephenate dehydrogenase created by cleavage of the 5' 109 bp of the tyrA gene from Erwinia herbicola. J Gen Microbiol 138 ( Pt 7), 1309-16 (1992). 44. Heyde, E. & Morrison, J.F. Kinetic studies on the reactions catalyzed by chorismate mutase-prephenate dehydrogenase from Aerobacter aerogenes. Biochemistry 17, 1573-80 (1978). 45. Friedrich, B., Friedrich, C.G. & Schlegel, H.G. Purification and properties of chorismate mutase-prephenate dehydratase and prephenate dehydrogenase from Alcaligenes eutrophus. J Bacteriol 126, 712-22 (1976). 46. Baldwin, G.S. & Davidson, B.E. A kinetic and structural comparison of chorismate mutase/prephenate dehydratase from mutant strains of Escherichia coli K 12 defective in the PheA gene. Arch Biochem Biophys 211, 66-75 (1981). 47. Rain, J.C. et al. The protein-protein interaction map of Helicobacter pylori. Nature 409, 211-5 (2001).id NH0925112001 sid 914201 cfn 0 / id NH0925112002 auc 潘羿娟 tic 丙氨酸掃描式突變分析綠豆液泡焦磷酸水解 tic & tic #37238;之第六穿膜區 adc 潘榮隆 ty 碩士 sc 國立清華大學 dp 生物資訊與結構生物研究所 yr 92 lg 英文 pg 45 kwc 焦磷酸水解 kwc & kwc #37238; kwc 穿膜區 kwc 丙氨酸掃描式突變分析 kwc 螺旋環柱 kwc 偶合效應 kwc 質子傳送 abc 已知植物液泡膜上焦磷酸水解酶(簡稱V-PPase)在維持細胞質的中性酸鹼度扮演很重要的角色:V-PPase 藉由水解焦磷酸驅動質子由細胞質輸入液泡中,以維持細胞質的中性酸鹼度。由於對於焦磷酸水解酶的結構尚未清楚,因此根據TopPred Ⅱ軟體所預測的地誌模式,受質水解的催化位置被認為是位在第五與第六穿膜區之間的環區且面向在細胞質中。目前吾人還不清楚是否此催化區會與相鄰的穿膜區互相影響,或是與穿膜區上個別的胺基酸有相互關係。第六穿膜區在不同物種間有高度相似性,並且可能參與催化功能或維持結構的穩定性。在此篇論文,我們利用點突變的方法,分別將21個胺基酸置換成丙氨酸,在酵母菌內異體表現綠豆的焦磷酸水解酶,並測其活性與質子傳送作用以觀察第六穿膜區的重要性。結果發現Y299A, E301A,A306S, L307A, L317A 與N318A突變株不論水解活性或是偶合效率均嚴重受損。這些突變株在第六穿膜區的位置恰巧分布在兩端與中間,且其在整各螺旋環柱的分佈均分三區。由此猜測,這三區具有維持穩定結構的功能。A305S, V308A, A310S, G316A與H319A仍保有活性但降低了偶合效率,且位在螺旋環柱的同一面,暗示這些胺基酸可能與質子運送有關。另外,藉由離子效應的研究,我們也發現Y299A, C304A, L307A, V308A, L317A與N318A突變株對於鉀離子、鈣離子、鈉離子與氟離子均不敏感,暗示可能參與這些離子的結合。而E301突變株在離子效應除了氟離子以外也有同樣的情形。在酵素酶切實驗中,A305S, A306S, L307A, 與N318A突變株較能抵抗酵素的酶切反應;其中除了A305S 以外的突變株水解活性都很低。因此,我們認為這些突變株的低水解活性是由於其蛋白構型改變所導致。 tc Introduction----------------------------------------------1 Materials and Methods-------------------------------------6 Results--------------------------------------------------15 Discussion-----------------------------------------------22 References-----------------------------------------------29 Figures and Tables---------------------------------------33rf Ausubel, F. M., Brent, R., Kingston, R., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1999) Short Protocols in Molecular Biology, Unit: 13.7 pp. 31-35. 4th Ed, John Wiley & Sons Inc., Canada. Barik, S. (1997) PCR Cloning Protocols: From Molecular Cloning to Genetic Engineering (White, B. A. eds) pp.173-182, Humana Press Inc., New Jersey, USA. Baykov, A. A., Dubnova, E. B., Bakuleva, N. P., Evtushenko, O. A., Zhen, R. G., and Rea, P. A. (1993) Differential sensitivity of membrane-associated pyrophosphatases to inhibition by diphosphonates and fluoride delineates two classes of enzyme. FEBS Lett. 327:199-202 Belogurov, G. A., and Lahti, R. (2002) A lysine substitute for K+. A460K mutation eliminates K+ dependence in H+-pyrophosphatase of Carboxydothermus hydrogenoformans. J. Biol. Chem. 277:49651-49654 Drozdowicz, Y. M., and Rea, P. A. (2001) Vacuolar H+ pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci. 6:206-211 Hsiao, Y. Y., Van, R. C., Hung, H. H., and Pan, R. L. (2002) Diethylpyrocarbonate inhibition of vacuolar H+-pyrophosphatase possibly involves a histidine residue. J. Protein Chem. 21:51-58 Hung, S. H., Chiu, S. J., Lin, L. Y., and Pan, R. L. (1995) Vacuolar H+-pyrophosphatase cDNA (Accession No. U31467) (PGR 95-082) from etiolated mung bean seedlings. Plant Physiol. 109:1-125 Kim, Y., Kim, E. J, and Rea, P. A. (1994) Isolation and characterization of cDNA encoding the vacuolar H+-pyrophosphatase of Beta vulgaris. Plant Physiol. 106:375-382 Kim, E. J, Zhen, R. G., and Rea, P. A. (1994) Heterologous expression of plant vacuolar pyrophosphatase in yeast demonstrates sufficiency of the substrate-binding subunit for proton transport. Proc. Natl. Acad. Sci. USA. 91:6128-6132 Kim, E. J, Zhen, R. G., and Rea, P. A. (1995) Site-directed mutagenesis of vacuolar H+-pyrophosphatase. Necessity of Cys634 for inhibition by maleimides but not catalysis. J. Biol. Chem. 270:2630-2635 Kuo, S. Y., and Pan, R. L. (1990) An essential arginyl residue in the tonoplast pyrophosphatase from etiolated mung bean seedings. Plant Physiol. 93:1128-1133 Laemmli, U. K. (1970) Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature (London) 222:680-685 Larson, E., Howlett, B., and Jagendorf, A. T. (1986) Artificial reductant enhancement of the Lowry method for protein determination. Anal. Biochem. 155:243-248 Maeshima, M. (1991) H+-translocating inorganic pyrophosphatase of plant vacuoles. Inhibition by Ca2+, stabilization by Mg2+ and immunological comparison with other inorganic pyrophosphatases. Eur. J. Biochem. 196:11-17 Maeshima, M. (2000) Vacuolar H+-pyrophosphatase. Biochim. Biophys. Acta 1465:37-51 Maeshima, M. (2001) Tonoplast transporters: organization and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:469-497 Maruyama, C., Tanaka, Y., Takeyasu, K., Yoshida, M., and Sato, M. H. (1998) Structural studies of the vacuolar H+-pyrophosphatase: sequence analysis and identification of the residues modified by fluorescent cyclohexylcarbodiimide and maleimide. Plant Cell Physiol. 39:1045-1053 Nakanishi, Y., Saijo, T., Wada, Y., and Maeshima, M. (2001) Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase. J. Biol. Chem. 276:7654-7660 Nishi, T., and Forgac, M. (2002) The vacuolar (H+)-ATPases--nature's most versatile proton pumps. Nat. Rev. Mol. Cell Biol. 3:94-103 Rea, P. A., Britten, C. J., Jennings, I. R., Calvert, C. M., Skiera, L. A., Leigh, R.A., and Sanders, D. (1992) Regulation of vacuolar H+-pyrophosphatase by free calcium. Plant Physiol. 100:1706-1715 Salisbury, F. B., and Ross, C.W. (1992) Plant Physiology, pp. 24-25.4th edition, Wadsworth Inc., California, USA. Tzeng, C.M., Yang, C.Y., Yang, S.J., Jiang, S.S., Kuo, S.Y., Hung, S.S., Ma, J.T., Pan, R.L., (1996) Subunit structure of vacuolar proton-pyrophosphatase as determined by radiation inactivation, Biochem. J. 316:143–147 Walker, R. R., and Leigh, R. A. (1981) Mg2+-dependent, cation-stimulated inorganic pyrophosphatase associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.). Planta 153:150-155 Wu, J. J., Ma, J. T., and Pan, R. L. (1991) Functional size analysis of pyrophosphatase from Rhodospirillum rubrum determined by radiation inactivation. FEBS Lett. 283:57-60 Yang, S. J., Jiang, S. S., Tzeng, C. M., Kuo, S. Y., and Pan, R. L. (1996) Involvement of tyrosine residues in the inhibition of plant vacuolar H+-pyrophosphatase by tetranitromethane. Biochim Biophy. Acta 1294:89-97 Yang, S. J., Jiang, S. S., Van, R. C., Hsiao, Y. Y., and Pan, R. L. (2000) A lysine residue involved in the inhibition of vacuolar H+-pyrophosphatase by fluorescein 5'-isothiocyanate. Biochim. Biophys. Acta 1460:375-383 Zhen, R. G., Kim, E. J., and Rea, P. A. (1997) Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N,N'-dicyclohexylcarbodiimide. J. Biol. Chem. 272:22340-22348id NH0925112002 sid 914222 cfn 0 / id NH0925112003 auc 蔡玉芳 tic 植物荷爾蒙對阿拉伯芥Ku基因表現影響之分析 adc 潘榮隆 ty 碩士 sc 國立清華大學 dp 生物資訊與結構生物研究所 yr 92 lg 英文 pg 53 kwc 2,4-D kwc ABA kwc GA kwc IAA kwc IBA kwc NHEJ abc Ku蛋白是在1981年發現於自體免疫缺失病人血清中的一種自體抗原,它是由兩個次單元以非共價結合的方式形成的異分子雙體蛋白,其次單元分子量分別為70千道耳吞和80千道耳吞。現在已知當DNA在紫外光或自由基反應下產生末端的斷裂,Ku蛋白可以和雙股斷裂的DNA末端結合,並參與DNA雙股斷裂的修補。最近的研究發現在高等植物阿拉伯芥中也發現Ku70和Ku80的同源基因,而且它們的功能與哺乳動物中的Ku相類似。比較不同的地方在於動物細胞中Ku基因是持續性的表現,而且表現量很高,而在阿拉伯芥中Ku基因雖然在很多組織都有表現,但普遍表現量卻非常低。另外也有研究指出在植物發育的時候,Ku基因的表現會有增高的現象。 tc Abbreviation……………………………………………………1 中文摘要…………………………………………………………2 Abstract…………………………………………………………4 Introduction……………………………………………………5 Materials and methods……………………………………… 9 Results…………………………………………………………14 Discussion…………………………………………………… 19 Reference………………………………………………………23rf Bertuch, A. and Lundblad, V. (1998). Telomeres and double strand breaks: trying to make ends meet. Trends Cell Biol., 8, 339-342. Bundock, P., Attikum, H. V. and Hooykaas, P. (2002). Increased telomere length and hypersensitivity to DNA damaging agents in an Arabidopsis KU70 mutant. Nucleic Acids Res., 30, 3395-3400. Baker, S. S., Wilhelm, K. S. and Thomashow M. F. (1994). The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol. Biol., 24, 701-713. Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res., 27, 578-580. Cai, Q. Q., Plet, A., Imbert, J., Lafage-Pochitaloff, M., Cerdan, C. and Blanchard, J. M. (1994). Chromosomal location and expression of the genes coding for Ku p70 and p80 in human cell lines and normal tissues. Cytogenet. Cell Genet., 65, 221-227. de Vries, E., Driel, W. V., Bergsma, W. G., Arnberg, A. C., and van der Vliet, P. C. (1989). HeLa nuclear protein recognizing DNA termini and translocating on DNA forming a regular DNA multimeric protein complex. J. Mol. Biol., 208, 65-78. Dunn, M. A., White, A. J., Vural, S. and Hughes, M. A. (1998). Identification of promoter elements in a low-trmperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.). Plant Mol Biol., 38, 551-564. Francouer, A-M., Peebles, C. L., Compper, P. T. and Tan, E. M. (1986). Identification of Ki (Ku, p70/p80) autoantigenes and analysis of anti-Ki autoantibody reactivity. J. Immunol., 136, 1648-1653. Griffith, A. J., Blier, P. R., Mimori, T. and Hardin, J. A. (1992). Ku polypeptides synthesized in vitro assemble into complexes which recognize ends of double-stranded DNA. J. Biol. Chem., 267, 331-338. Giffin, W., Torrance, H., Rodda, D. J., Prefontaine, G. G., Pope, L. and Hache, R. J. G. (1996). Sequence-specific DNA binding by Ku autoantigen and its effects on transcription. Nature, 380, 265-268. Gu, Y., Jin, S., Gao, Y., Weaver, D. T. and Alt, F. W. (1997). Ku70-deficient embryonic stem cells have increased ionizing radition sensitivity, defective DNA end-binding activity and inability to support V(D)J recombination. Proc. Natl Acad. Sci. USA, 94, 8076-8081. Gallego, M. E., Jalut, N. and White, C. I. (2003). Telomerase dependence of telomere lengthening in ku80 mutant Arabidopsis. Plant Cell, 15, 782-789. Gallagher, Sean R. (1992). GUS protocols: Using the GUS gene as a reporter of gene expression. 47-59. Gubler, F., Raventos, D., Keys, M., Watts, R., Mundy, J. and Jacobsem, J. V. (1999). Target genes and regulatory domains of the GAMYB transcriptional activator in cereal aleurone. Plant J., 17, 1-9. Grotewold, E., Drummond, B. J., Bowen, B. and Peterson, T. (1994). The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell, 76, 543-553. Hajdukiewicz, P., Svab, Z. and Maliga, P. (1994). The small, versatile pPZP family of Agrobacterium binary vecctors for plant transformation. Plant Mol. Biol., 25, 989-994. Huang, J., Nueda, A., Yoo, S. and Dynan, W. S. (1997). Heat shock transcription factor 1 binds selectively in vitro to Ku protein and the catalytic subunit of the DNA-dependent protein kinase. J. Biol. Chem., 272, 26009-26016. Itzhaki, H., Maxson, J. M. and Woodson WR. (1994). An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene. Proc. Natl Acad. Sci. USA, 91, 8925-8929. Jefferson, R. A., Kavanagh, T. A. and Bevan, M. W. (1987). GUS fusions: β-glucuronidase as a sensitive and versatile gene. EMBO J., 6, 3901-3907. Klotz, K. L. and Lagrimini, L. M. (1996). Phytohormone control of the tobacco anionic peroxidase promoter. Plant Mol. Biol., 31, 565-573. Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., de Peer, Y. V., Rouzé, P. and Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res., 30, 325-327. Lawton, M. A., Dean, S. M., Dron, M., Kooter, J. M., Kragh, K. M., Harrison, M. J., Yu, L., Tanguay, L., Dixon, R. A. and Lamb, C. J. (1991). Silencer region of a chalcone synthase promoter contains multiple binding sites for a factor, SBF-1, closely related to GT-1. Plant Mol. Biol., 16, 235-249. Ludwig, D. L., Chen, F., Peterson, S. R., Nussenzweig, A., Li, G. C. (1997). Ku80 gene expression is Sp1-dependent and sensitive to CpG methylation within a novel cis element. Gene, 199, 181-194. Mimori, T., Akizuki, M., Yamagata, H., Irada, S., Yoshida, S. and Homma, M. (1981). Characterization of a high molecular weight acdic nuclear protein recognised by autoantibodies from patients with polymyositis-schleroderma overlap. J. Clin. Invest., 68, 611-620. Mimori, T. and Hardin, J. A. (1986). Mechanism of interaction between Ku protein and DNA. J. Biol. Chem., 261, 10375-10379. Manjunath, S. and Sachs, M. M. (1997). Molecular characterization and promoter analysis of the maize cytosolic glyceraldehyde 3-phosphate dehydrogenase gene family and its expression during anoxia. Plant Mol. Biol., 33, 97-112. Nussenzwieg, A., Chen, C., da Costa Soares, V. Sanchez, M., Sokol, K., Nussenzwieg, M. C. and Li, G. C. (1996). Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature, 382, 551-554. Nussenzwieg, A., Sokol, K., Burgman, P., Li, L. and Li, G. C. (1997). Hypersensitivity of Ku80-deficient cell lines and mice to DNA damage: the effects of ionizing radiation on growth, survival and development. Proc. Natl Acad. Sci. USA, 94, 13588-13593. Okumura, K., Sakaguchi, G., Takagi, S., Naito, K., Mimori, T. and Igarashi, H. (1996). Sp1 family proteins recognize the U5 repressive element of the long terminal repeat of human T cell leukemia virus type Ⅰ through binding to the CACCC core motif. J. Biol. Chem., 271, 12944-12950. Pastuglia, M., Roby, D., Dumas, C. and Cock, J. M. (1997). Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea. Plant Cell, 9, 49-60. Pastuglia, M., Roby, D., Dumas, C. and Cock, J. M. (1997). Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea. Plant Cell, 9, 49-60. Riha, K., Watson, J. M., Parkey, J. and Shippen, D. E. (2002). Telomere length deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis mutants deficient in Ku70. EMBO J., 21, 2819-2826. Rouse, D. T., Marotta, R. and Parish, R. W. (1996). Promoter and expression studies on an Arabidopsis thaliana dehydrin. FEBS Lett., 213, 770-780. Roberts, M. R., Han, Y., Feinberg, A., Hunihan, L. and Ruddle, F. H. (1994). A DNA-binding activity, TRAC, specific for the TRA element of the transferrin receptor gene copurifies with the Ku autoantigen. Proc. Natl. Acad. Sci. USA, 91, 6354-6358. Stockinger, E. J., Gilmour, S. J. and Thomashow, M. F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl Acad. Sci. USA, 94, 1035-1040. Sessa, G., Morelli. G. and Ruberti I. (1993). The Athb-1 and -2 HD-Zip domains homodimerize forming complexes of different DNA binding specificities. EMBO J., 12, 3507-3517. Solano, R., Nieto, C., Avila, J., Canas, L., Diaz, I. and Paz-Ares J. (1995). Dual DNA binding specificity of a petal epidermis-specific MYB transcription factor (MYB.Ph3) from Petunia hybrida. ENBO J., 14, 1773-1784. Skriver, K. and Mundy, J. (1990). Gene expression in response to abscisic acid and osmotic stress. Plant Cell, 2, 503-512. Tuteja, N., Tuteja, R., Ochem, A., Taneja, P., Huang, N. W. Simoncsits, A., Susic, S., Rahman, K., Marusic, L., Chen, J., Zhang, J., Wang, S., Pongor, S. and Falaschi, A. (1994). Human DNA helicase Ⅱ -- a novel DNA unwinding enzyme identified as the Ku autoantigen. EMBO J., 13, 4991-5001. Tamura, K., Adachi, Y., Chiba, K., Oguchi, K. and Takahashi, H. (2002). Identification of Ku70 and Ku80 homologues in Arabidopsis thaliana: evidence for a role in the repair of DNA double-strand breaks. Plant J., 29, 771-781. West, C. E., Waterworth, W. M., Story, G. W., Sunderland, P. A., Jiang, Q. and Bray, C. M. (2002). Disruption of the Arabidopsis AtKu80 gene demonstrates an essential role for AtKu80 protein in efficient repair of DNA double-strand breaks in vivo. Plant J., 31, 517-528. Washida, H., Wu, C. Y., Suzuki, A., Yamanouchi, U., Akihama, T., Harada, K. and Takaiwa F. (1999). Identification of cis-regulatory elements required for endosperm expression of the rice storage protein glutelin gene GluB-1. Plant Mol. Biol., 40, 1-12. Yoo, S. and Dynan, W. S. (1998). Characterization of the RNA binding properties of Ku protein. Biochemistry, 37, 1336-1343. Yamaguchi-Shinozaki K. and Shinozaki K. (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 6, 251-264. Yanagisawa, S. and Schmidt, R. J. (1999). Diversity and similarity among recognition sequences of Dof transcription factors. Plant J., 17, 209-214. Yaneva, M. and Jhang, S. (1991). Expression of the Ku protein during cell proliferation. Biochim. Biophys. Acta., 1090, 181-187.id NH0925112003 sid 914247 cfn 0 / id NH0925112004 auc 賴思明 tic 微生物全基因體特性資料庫之建立與應用 adc 呂平江 ty 碩士 sc 國立清華大學 dp 生物資訊與結構生物研究所 yr 92 lg 中文 pg 120 kwc 比較基因體 kwc 基因體特性 kwc 生物資訊 kwc 微生物基因體 kwc 全基因體比較 kwc 虛擬二維電泳 abc 中文摘要 rf Akman, L., A. Yamashita, H. Watanabe, K. Oshima, T. Shiba, M. Hattori, and S. Aksoy. 2002. Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat Genet 32: 402-407. Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389-3402. Andreeva, A., D. Howorth, S.E. Brenner, T.J. Hubbard, C. Chothia, and A.G. Murzin. 2004. SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res 32 Database issue: D226-229. Bocs, S., S. Cruveiller, D. Vallenet, G. Nuel, and C. Medigue. 2003. AMIGene: Annotation of MIcrobial Genes. Nucleic Acids Res 31: 3723-3726. Bocs, S., A. Danchin, and C. Medigue. 2002. Re-annotation of genome microbial coding-sequences: finding new genes and inaccurately annotated genes. BMC Bioinformatics 3: 5. Brendel, V., P. Bucher, I.R. Nourbakhsh, B.E. Blaisdell, and S. Karlin. 1992. Methods and algorithms for statistical analysis of protein sequences. Proc Natl Acad Sci U S A 89: 2002-2006. Check, E. 2002. Venter aims for maximum impact with minimal genome. Nature 420: 350. Cole, J.R., B. Chai, T.L. Marsh, R.J. Farris, Q. Wang, S.A. Kulam, S. Chandra, D.M. McGarrell, T.M. Schmidt, G.M. Garrity, and J.M. Tiedje. 2003. The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31: 442-443. Daubin, V., N.A. Moran, and H. Ochman. 2003. Phylogenetics and the cohesion of bacterial genomes. Science 301: 829-832. de Bakker, P.I., A. Bateman, D.F. Burke, R.N. Miguel, K. Mizuguchi, J. Shi, H. Shirai, and T.L. Blundell. 2001. HOMSTRAD: adding sequence information to structure-based alignments of homologous protein families. Bioinformatics 17: 748-749. Delcher, A.L., D. Harmon, S. Kasif, O. White, and S.L. Salzberg. 1999. Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27: 4636-4641. Devereux, J., P. Haeberli, and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12: 387-395. dos Reis, M., L. Wernisch, and R. Savva. 2003. Unexpected correlations between gene expression and codon usage bias from microarray data for the whole Escherichia coli K-12 genome. Nucleic Acids Res 31: 6976-6985. Fleischmann, R.D., M.D. Adams, O. White, R.A. Clayton, E.F. Kirkness, A.R. Kerlavage, C.J. Bult, J.F. Tomb, B.A. Dougherty, J.M. Merrick, and et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496-512. Forsdyke, D.R. and J.R. Mortimer. 2000. Chargaff's legacy. Gene 261: 127-137. Fraser, C.M., J.A. Eisen, and S.L. Salzberg. 2000. Microbial genome sequencing. Nature 406: 799-803. Frishman, D., K. Albermann, J. Hani, K. Heumann, A. Metanomski, A. Zollner, and H.W. Mewes. 2001. Functional and structural genomics using PEDANT. Bioinformatics 17: 44-57. Frishman, D., M. Mokrejs, D. Kosykh, G. Kastenmuller, G. Kolesov, I. Zubrzycki, C. Gruber, B. Geier, A. Kaps, K. Albermann, A. Volz, C. Wagner, M. Fellenberg, K. Heumann, and H.W. Mewes. 2003. The PEDANT genome database. Nucleic Acids Res 31: 207-211. Fukuchi, S., K. Yoshimune, M. Wakayama, M. Moriguchi, and K. Nishikawa. 2003. Unique amino acid composition of proteins in halophilic bacteria. J Mol Biol 327: 347-357. Gee, H. 2003. Evolution: ending incongruence. Nature 425: 782. Gray, S.A. and M.E. Konkel. 1999. Codon usage in the A/T-rich bacterium Campylobacter jejuni. Adv Exp Med Biol 473: 231-235. Green, E.D. 2001. Strategies for the systematic sequencing of complex genomes. Nat Rev Genet 2: 573-583. Gupta, R.S. 1998. Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62: 1435-1491. Heymans, M. and A.K. Singh. 2003. Deriving phylogenetic trees from the similarity analysis of metabolic pathways. Bioinformatics 19 Suppl 1: i138-146. Hiller, K., M. Schobert, C. Hundertmark, D. Jahn, and R. Munch. 2003. JVirGel: Calculation of virtual two-dimensional protein gels. Nucleic Acids Res 31: 3862-3865. Hiscock, D. and C. Upton. 2000. Viral Genome DataBase: storing and analyzing genes and proteins from complete viral genomes. Bioinformatics 16: 484-485. Hoersch, S., C. Leroy, N.P. Brown, M.A. Andrade, and C. Sander. 2000. The GeneQuiz web server: protein functional analysis through the Web. Trends Biochem Sci 25: 33-35. Hubbard, T.J., B. Ailey, S.E. Brenner, A.G. Murzin, and C. Chothia. 1999. SCOP: a Structural Classification of Proteins database. Nucleic Acids Res 27: 254-256. Karlin, S. and L.R. Cardon. 1994. Computational DNA sequence analysis. Annu Rev Microbiol 48: 619-654. Karlin, S., J. Mrazek, and A.M. Campbell. 1997. Compositional biases of bacterial genomes and evolutionary implications. J Bacteriol 179: 3899-3913. Kawabata, T., S. Fukuchi, K. Homma, M. Ota, J. Araki, T. Ito, N. Ichiyoshi, and K. Nishikawa. 2002. GTOP: a database of protein structures predicted from genome sequences. Nucleic Acids Res 30: 294-298. Kennedy, S.P., W.V. Ng, S.L. Salzberg, L. Hood, and S. DasSarma. 2001. Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. Genome Res 11: 1641-1650. Koonin, E.V. 2003. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1: 127-136. Kreil, D.P. and C.A. Ouzounis. 2001. Identification of thermophilic species by the amino acid compositions deduced from their genomes. Nucleic Acids Res 29: 1608-1615. Krogh, A., B. Larsson, G. von Heijne, and E.L. Sonnhammer. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305: 567-580. Kunst, F., N. Ogasawara, I. Moszer, A.M. Albertini, G. Alloni, V. Azevedo, M.G. Bertero, P. Bessieres, A. Bolotin, S. Borchert, R. Borriss, L. Boursier, A. Brans, M. Braun, S.C. Brignell, S. Bron, S. Brouillet, C.V. Bruschi, B. Caldwell, V. Capuano, N.M. Carter, S.K. Choi, J.J. Codani, I.F. Connerton, A. Danchin, and et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249-256. Lafay, B., J.C. Atherton, and P.M. Sharp. 2000. Absence of translationally selected synonymous codon usage bias in Helicobacter pylori. Microbiology 146 ( Pt 4): 851-860. Lander, E.S. L.M. Linton B. Birren C. Nusbaum M.C. Zody J. Baldwin K. Devon K. Dewar M. Doyle W. FitzHugh R. Funke D. Gage K. Harris A. Heaford J. Howland L. Kann J. Lehoczky R. LeVine P. McEwan K. McKernan J. Meldrim J.P. Mesirov C. Miranda W. Morris J. Naylor C. Raymond M. Rosetti R. Santos A. Sheridan C. Sougnez N. Stange-Thomann N. Stojanovic A. Subramanian D. Wyman J. Rogers J. Sulston R. Ainscough S. Beck D. Bentley J. Burton C. Clee N. Carter A. Coulson R. Deadman P. Deloukas A. Dunham I. Dunham R. Durbin L. French D. Grafham S. Gregory T. Hubbard S. Humphray A. Hunt M. Jones C. Lloyd A. McMurray L. Matthews S. Mercer S. Milne J.C. Mullikin A. Mungall R. Plumb M. Ross R. Shownkeen S. Sims R.H. Waterston R.K. Wilson L.W. Hillier J.D. McPherson M.A. Marra E.R. Mardis L.A. Fulton A.T. Chinwalla K.H. Pepin W.R. Gish S.L. Chissoe M.C. Wendl K.D. Delehaunty T.L. Miner A. Delehaunty J.B. Kramer L.L. Cook R.S. Fulton D.L. Johnson P.J. Minx S.W. Clifton T. Hawkins E. Branscomb P. Predki P. Richardson S. Wenning T. Slezak N. Doggett J.F. Cheng A. Olsen S. Lucas C. Elkin E. Uberbacher M. Frazier R.A. Gibbs D.M. Muzny S.E. Scherer J.B. Bouck E.J. Sodergren K.C. Worley C.M. Rives J.H. Gorrell M.L. Metzker S.L. Naylor R.S. Kucherlapati D.L. Nelson G.M. Weinstock Y. Sakaki A. Fujiyama M. Hattori T. Yada A. Toyoda T. Itoh C. Kawagoe H. Watanabe Y. Totoki T. Taylor J. Weissenbach R. Heilig W. Saurin F. Artiguenave P. Brottier T. Bruls E. Pelletier C. Robert P. Wincker D.R. Smith L. Doucette-Stamm M. Rubenfield K. Weinstock H.M. Lee J. Dubois A. Rosenthal M. Platzer G. Nyakatura S. Taudien A. Rump H. Yang J. Yu J. Wang G. Huang J. Gu L. Hood L. Rowen A. Madan S. Qin R.W. Davis N.A. Federspiel A.P. Abola M.J. Proctor R.M. Myers J. Schmutz M. Dickson J. Grimwood D.R. Cox M.V. Olson R. Kaul N. Shimizu K. Kawasaki S. Minoshima G.A. Evans M. Athanasiou R. Schultz B.A. Roe F. Chen H. Pan J. Ramser H. Lehrach R. Reinhardt W.R. McCombie M. de la Bastide N. Dedhia H. Blocker K. Hornischer G. Nordsiek R. Agarwala L. Aravind J.A. Bailey A. Bateman S. Batzoglou E. Birney P. Bork D.G. Brown C.B. Burge L. Cerutti H.C. Chen D. Church M. Clamp R.R. Copley T. Doerks S.R. Eddy E.E. Eichler T.S. Furey J. Galagan J.G. Gilbert C. Harmon Y. Hayashizaki D. Haussler H. Hermjakob K. Hokamp W. Jang L.S. Johnson T.A. Jones S. Kasif A. Kaspryzk S. Kennedy W.J. Kent P. Kitts E.V. Koonin I. Korf D. Kulp D. Lancet T.M. Lowe A. McLysaght T. Mikkelsen J.V. Moran N. Mulder V.J. Pollara C.P. Ponting G. Schuler J. Schultz G. Slater A.F. Smit E. Stupka J. Szustakowski D. Thierry-Mieg J. Thierry-Mieg L. Wagner J. Wallis R. Wheeler A. Williams Y.I. Wolf K.H. Wolfe S.P. Yang R.F. Yeh F. Collins M.S. Guyer J. Peterson A. Felsenfeld K.A. Wetterstrand A. Patrinos M.J. Morgan J. Szustakowki P. de Jong J.J. Catanese K. Osoegawa H. Shizuya S. Choi and Y.J. Chen. 2001. Initial sequencing and analysis of the human genome. Nature 409: 860-921. Larsen, H. 1969. Extremely halphilic bacteria. J Gen Microbiol 55: 22-23. Lee, D., A. Grant, D. Buchan, and C. Orengo. 2003. A structural perspective on genome evolution. Curr Opin Struct Biol 13: 359-369. Lin, J. and M. Gerstein. 2000. Whole-genome trees based on the occurrence of folds and orthologs: implications for comparing genomes on different levels. Genome Res 10: 808-818. Lo Conte, L., B. Ailey, T.J. Hubbard, S.E. Brenner, A.G. Murzin, and C. Chothia. 2000. SCOP: a structural classification of proteins database. Nucleic Acids Res 28: 257-259. Lo Conte, L., S.E. Brenner, T.J. Hubbard, C. Chothia, and A.G. Murzin. 2002. SCOP database in 2002: refinements accommodate structural genomics. Nucleic Acids Res 30: 264-267. Lukashin, A.V. and M. Borodovsky. 1998. GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26: 1107-1115. Madern, D., C. Ebel, and G. Zaccai. 2000. Halophilic adaptation of enzymes. Extremophiles 4: 91-98. Medjahed, D., G.W. Smythers, D.A. Powell, R.M. Stephens, P.F. Lemkin, and D.J. Munroe. 2003. VIRTUAL2D: A web-accessible predictive database for proteomics analysis. Proteomics 3: 129-138. Meyer, F., A. Goesmann, A.C. McHardy, D. Bartels, T. Bekel, J. Clausen, J. Kalinowski, B. Linke, O. Rupp, R. Giegerich, and A. Puhler. 2003. GenDB--an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 31: 2187-2195. Mizuguchi, K., C.M. Deane, T.L. Blundell, and J.P. Overington. 1998. HOMSTRAD: a database of protein structure alignments for homologous families. Protein Sci 7: 2469-2471. Moller, S., M.D. Croning, and R. Apweiler. 2001. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17: 646-653. Mushegian, A. 1999. The minimal genome concept. Curr Opin Genet Dev 9: 709-714. Mushegian, A.R. and E.V. Koonin. 1996. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci U S A 93: 10268-10273. Nakamura, Y., T. Gojobori, and T. Ikemura. 2000. Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28: 292. Ng, W.V., S.P. Kennedy, G.G. Mahairas, B. Berquist, M. Pan, H.D. Shukla, S.R. Lasky, N.S. Baliga, V. Thorsson, J. Sbrogna, S. Swartzell, D. Weir, J. Hall, T.A. Dahl, R. Welti, Y.A. Goo, B. Leithauser, K. Keller, R. Cruz, M.J. Danson, D.W. Hough, D.G. Maddocks, P.E. Jablonski, M.P. Krebs, C.M. Angevine, H. Dale, T.A. Isenbarger, R.F. Peck, M. Pohlschroder, J.L. Spudich, K.W. Jung, M. Alam, T. Freitas, S. Hou, C.J. Daniels, P.P. Dennis, A.D. Omer, H. Ebhardt, T.M. Lowe, P. Liang, M. Riley, L. Hood, and S. DasSarma. 2000. Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci U S A 97: 12176-12181. Novembre, J.A. 2002. Accounting for background nucleotide composition when measuring codon usage bias. Mol Biol Evol 19: 1390-1394. Ouzounis, C.A. and P.D. Karp. 2002. The past, present and future of genome-wide re-annotation. Genome Biol 3: COMMENT2001. Pace, N.R. 1997. A molecular view of microbial diversity and the biosphere. Science 276: 734-740. Pennisi, E. 2003. Molecular biology. Venter cooks up a synthetic genome in record time. Science 302: 1307. Philippe, H. and C.J. Douady. 2003. Horizontal gene transfer and phylogenetics. Curr Opin Microbiol 6: 498-505. Pieper, U., N. Eswar, H. Braberg, M.S. Madhusudhan, F.P. Davis, A.C. Stuart, N. Mirkovic, A. Rossi, M.A. Marti-Renom, A. Fiser, B. Webb, D. Greenblatt, C.C. Huang, T.E. Ferrin, and A. Sali. 2004. MODBASE, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res 32 Database issue: D217-222. Pieper, U., N. Eswar, A.C. Stuart, V.A. Ilyin, and A. Sali. 2002. MODBASE, a database of annotated comparative protein structure models. Nucleic Acids Res 30: 255-259. Pruess, M., W. Fleischmann, A. Kanapin, Y. Karavidopoulou, P. Kersey, E. Kriventseva, V. Mittard, N. Mulder, I. Phan, F. Servant, and R. Apweiler. 2003. The Proteome Analysis database: a tool for the in silico analysis of whole proteomes. Nucleic Acids Res 31: 414-417. Reedy, B.V. and P.E. Bourne. 2003. Protein structure evolution and the SCOP database. Methods Biochem Anal 44: 239-248. Richard, S.B., D. Madern, E. Garcin, and G. Zaccai. 2000. Halophilic adaptation: novel solvent protein interactions observed in the 2.9 and 2.6 A resolution structures of the wild type and a mutant of malate dehydrogenase from Haloarcula marismortui. Biochemistry 39: 992-1000. Rokas, A., B.L. Williams, N. King, and S.B. Carroll. 2003. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425: 798-804. Saccone, C. 2003. Handbook of comparative genomics: Principles and methodology. John Wiley & Sons, Inc. Salzberg, S.L., A.L. Delcher, S. Kasif, and O. White. 1998. Microbial gene identification using interpolated Markov models. Nucleic Acids Res 26: 544-548. Sanchez, R., U. Pieper, N. Mirkovic, P.I. de Bakker, E. Wittenstein, and A. Sali. 2000. MODBASE, a database of annotated comparative protein structure models. Nucleic Acids Res 28: 250-253. Scharf, M., R. Schneider, G. Casari, P. Bork, A. Valencia, C. Ouzounis, and C. Sander. 1994. GeneQuiz: a workbench for sequence analysis. Proc Int Conf Intell Syst Mol Biol 2: 348-353. Service, R.F. 2001. Proteomics. High-speed biologists search for gold in proteins. Science 294: 2074-2077. Shigenobu, S., H. Watanabe, M. Hattori, Y. Sakaki, and H. Ishikawa. 2000. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407: 81-86. Singer, G.A. and D.A. Hickey. 2003. Thermophilic prokaryotes have characteristic patterns of codon usage, amino acid composition and nucleotide content. Gene 317: 39-47. Sonnhammer, E.L., G. von Heijne, and A. Krogh. 1998. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6: 175-182. Stebbings, L.A. and K. Mizuguchi. 2004. HOMSTRAD: recent developments of the Homologous Protein Structure Alignment Database. Nucleic Acids Res 32 Database issue: D203-207. Stuart, G.W., K. Moffett, and S. Baker. 2002. Integrated gene and species phylogenies from unaligned whole genome protein sequences. Bioinformatics 18: 100-108. Tatusov, R.L., N.D. Fedorova, J.D. Jackson, A.R. Jacobs, B. Kiryutin, E.V. Koonin, D.M. Krylov, R. Mazumder, S.L. Mekhedov, A.N. Nikolskaya, B.S. Rao, S. Smirnov, A.V. Sverdlov, S. Vasudevan, Y.I. Wolf, J.J. Yin, and D.A. Natale. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4: 41. Tatusov, R.L., M.Y. Galperin, D.A. Natale, and E.V. Koonin. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28: 33-36. Tatusov, R.L., D.A. Natale, I.V. Garkavtsev, T.A. Tatusova, U.T. Shankavaram, B.S. Rao, B. Kiryutin, M.Y. Galperin, N.D. Fedorova, and E.V. Koonin. 2001. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29: 22-28. Tsujimoto, K., M. Semadeni, M. Huflejt, and L. Packer. 1988. Intracellular pH of halobacteria can be determined by the fluorescent dye 2', 7'-bis(carboxyethyl)-5(6)-carboxyfluorescein. Biochem Biophys Res Commun 155: 123-129. Tyson, G.W., J. Chapman, P. Hugenholtz, E.E. Allen, R.J. Ram, P.M. Richardson, V.V. Solovyev, E.M. Rubin, D.S. Rokhsar, and J.F. Banfield. 2004. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428: 37-43. Venter, J.C., K. Remington, J.F. Heidelberg, A.L. Halpern, D. Rusch, J.A. Eisen, D. Wu, I. Paulsen, K.E. Nelson, W. Nelson, D.E. Fouts, S. Levy, A.H. Knap, M.W. Lomas, K. Nealson, O. White, J. Peterson, J. Hoffman, R. Parsons, H. Baden-Tillson, C. Pfannkoch, Y.H. Rogers, and H.O. Smith. 2004. Environmental Genome Shotgun Sequencing of the Sargasso Sea. Science. Westphal, S.P. 2002. Your very own sequence. Last month, entrepreneur Craig Venter announced a bold new target: for anyone to be able to get their genome sequenced for under $1000. So can it be done? And what use would it be knowing your genome sequence anyway? New Sci 176: 12-13. Wolf, Y.I., I.B. Rogozin, N.V. Grishin, R.L. Tatusov, and E.V. Koonin. 2001. Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol Biol 1: 8. Xia, X., T. Wei, Z. Xie, and A. Danchin. 2002. Genomic changes in nucleotide and dinucleotide frequencies in Pasteurella multocida cultured under high temperature. Genetics 161: 1385-1394. Zimmer, C. 2003. Genomics. Tinker, tailor: can Venter stitch together a genome from scratch? Science 299: 1006-1007.id NH0925112004 sid 914268 cfn 0 / id NH0925112005 auc 徐慎行 tic 酵母菌表達綠豆質子運輸無機焦磷酸水解酵素之純化與定性分析 adc 潘榮隆 ty 碩士 sc 國立清華大學 dp 生物資訊與結構生物研究所 yr 92 lg 中文 pg 46 kwc 液泡質子無機焦磷酸水解 kwc & kwc #37238; kwc 蛋白質純化 kwc 組胺酸標記 kwc 自體吸收光譜 kwc 自體螢光光譜 abc 液泡質子傳遞無機焦磷酸水解酵素是一個位於植物液泡膜上的蛋白質,主要存在於高等植物和一些細菌中,主要的功能是利用焦磷酸水解產生的能量來將質子由細胞質傳送到液泡中,以產生質子梯度,使液泡維持在酸性的環境中。將蛋白質融合六個連續的組胺酸,使蛋白質可以方便的利用金屬親合性管柱來進行純化,而且利用這個方法可以得到更多且更純的蛋白質,以利蛋白質特性的分析以及結構的探討。在本研究中,我們利用酵母菌將蛋白質表達出來,使用金屬親合性層析管柱(Ni2+-NTA)以及高效率液相層析儀(FPLC)將蛋白質純化出來。利用十二月旨鈉-聚丙烯醯胺凝膠電泳法(SPDS-PAGE)和西方轉漬(Western blot)的分析,知道可以得到純度高、均質的液泡無機焦磷酸水解蛋白,並測得其分子量約為73 kDa. tc Introduction……………………………………………………………….…...1 Materials and Methods………………………………..…….……….…….…..8 Results……………………………..……………………….………….…..….14 Discussion……………………………..………………...…..……….……….18 References……………………………….………………….….………….….21 Figures and Tables……………………………………………..…………..….27rf Baykov, A. A., Dubnova, E. B., Bakuleva, N. P., Evtushenko, O. A., Zhen, R. G., and Rea, P. A. (1993) Differential sensitivity of membrane-associated pyrophosphatases to inhibition by diphosphonates and fluoride delineates two classes of enzyme. FEBS Lett. 327:199-202 Belogurov, G. A., and Lahti, R. (2002) A lysine substitute for K+. A460K mutation eliminates K+ dependence in H+-pyrophosphatase of carboxydothermus hydrogenoformans. J. Biol. Chem. 277:49651-49654 Drozdowicz, Y. M., and Rea, P. A. (2001) Vacuolar H+ pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci. 6:206-211 Belogurov, G. A., Turkina M. V., Penttinen A., Huopalahti, S., Baykov A. A., and Lahti, R. (2002) H+-Pyrophosphatase of Rhodospirillum rubrum. High yield expression in Escherichia Coli and idenfication of the Cys residues responsible for inactivation by mersalyl. J. Biol. Chem. 277:22209-22214 Gietz, R. D., Schiestl, R. H., Willems, A. R. and Woods, R. A. (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355-360 Hsiao, Y. Y., Van, R. C., Hung, S. H., Lin, H. H., and Pan, R. L. (2004) Roles of histidine residues in plant vacuolar H+-pyrophosphatase. Biochim. Biophys. Acta 1608:190-199 Hsiao, Y. Y., Van, R. C., Hung, H. H., and Pan, R. L. (2002) Diethylpyrocarbonate inhibition of vacuolar H+-pyrophosphatase possibly involves a histidine residue. J. Protein Chem. 21:51-58 Kim, E. J, Zhen, R. G., and Rea, P. A. (1995) Site-directed mutagenesis of vacuolar H+-pyrophosphatase. Necessity of Cys634 for inhibition by maleimides but not catalysis. J. Biol. Chem. 270:2630-2635 Kuo, S. Y., and Pan, R. L. (1990) An essential arginyl residue in the tonoplast pyrophosphatase from etiolated mung bean seedings. Plant Physiol. 93:1128-1133 Laemmli, U. K. (1970) Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature (London) 222:680-685 Lakowicz, J. R. (1999) Principles of fluorescence spectroscopy. 2nd edition. Kiuwer Academic/Plenum Publishers, New York, pp.15-63 Lanfermeijer, F. C., Venema, K., and Palmgren, M. G. (1998) Purification of histidine-tagged pkant plasma membrane H+-ATPase expressed in yeast. Protein Expr. Purif. 12:29-37 Larson, E., Howlett, B., and Jagendorf, A. T. (1986) Artificial reductant enhancement of the Lowry method for protein determination. Anal. Biochem. 155:243-248 Leng, X. H., Manolson, M. F., and Forgac, M. (1998) Function of the COOH-terminal domain of Vph1p in activity and assembly of the yeast V-ATPase. J. Biol. Chem. 273:6717-6723 Maeshima, M. (1991) H+-translocating inorganic pyrophosphatase of plant vacuoles. Inhibition by Ca2+, stabilization by Mg2+ and immunological comparison with other inorganic pyrophosphatases. Eur. J. Biochem. 196:11-17 Maeshima, M. (2000) Vacuolar H+-pyrophosphatase. Biochim. Biophys. Acta 1465:37-51 Maeshima, M. (2001) Tonoplast transporters: organization and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:469-497 Maruyama, C., Tanaka, Y., Takeyasu, K., Yoshida, M., and Sato, M. H. (1998) Structural studies of the vacuolar H+-pyrophosphatase: sequence analysis and identification of the residues modified by fluorescent cyclohexylcarbodiimide and maleimide. Plant Cell Physiol. 39:1045-1053 Nakanishi, Y., Saijo, T., Wada, Y., and Maeshima, M. (2001) Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase. J. Biol. Chem. 276:7654-7660 Nishi, T., and Forgac, M. (2002) The vacuolar (H+)-ATPases--nature's most versatile proton pumps. Nat. Rev. Mol. Cell Biol. 3:94-103 Palmgren, M. G., Larsson, C., and Sommarin, M. (1990) Proteolytic activation of the plant plasma membrane H+-ATPase by removal of a terminal segment. J. Biol. Chem. 265:13423-13426 Palmgren, M. G., Sommarin, M., Serrano, R., and Larsson, C. (1991) Identification of an autoinhibitory domain in the C-terminal region of the plant plasma membrane H+-ATPase. J. Biol. Chem. 266:20470-20475 Palmgren, M. G., and Christensen, G. (1993) Complementation in situ of the yeast plasma membrane H+-ATPase gene pma1 by an H+-ATPase gene from a heterologous species. FEBS Lett. 317:216-222 Rea, P. A., Britten, C. J., Jennings, I. R., Calvert, C. M., Skiera, L. A., Leigh, R.A., and Sanders, D. (1992) Regulation of vacuolar H+-pyrophosphatase by free calcium. Plant Physiol. 100:1706-1715 Regenberg, B., Villalba, J. M., Lanfermeijer, F. C., and Palmgren, M. G. (1995) C-terminal deletion analysis of plant plasma membrane H+-ATPase: yeast as a model system for solute transport across the plant plasma membrane. Plant Cell 7:1655-1666 Takasu, A., Nakanishi, Y., Yamauchi, T., and Maeshima, M. (1997) Analysis of the substrate binding site and carboxyl terminal region of vacuolar H+-pyrophosphatase of mung bean with peptide antibodies. J. Biochem. 122:883-889 Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680 Walker, R. R., and Leigh, R. A. (1981) Mg2+-dependent, cation-stimulated inorganic pyrophosphatase associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.). Planta 153:150-155 Wu, J. J., Ma, J. T., and Pan, R. L. (1991) Functional size analysis of pyrophosphatase from Rhodospirillum rubrum determined by radiation inactivation. FEBS Lett. 283:57-60 Yang, S. J., Jiang, S. S., Van, R. C., Hsiao, Y. Y., and Pan, R. L. (2000) A lysine residue involved in the inhibition of vacuolar H+-pyrophosphatase by fluorescein 5'-isothiocyanate. Biochim. Biophys. Acta 1460:375-383 Zhen, R. G., Kim, E. J., and Rea, P. A. (1994) Localization of cytosolically oriented maleimide-reactive domain of vacuolar H+-pyrophosphatase. J. Biol. Chem. 269:23342-23350 Zhen, R. G., Kim, E. J., and Rea, P. A. (1997) Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N,N'-dicyclohexylcarbodiimide. J. Biol. Chem. 272:22340-22348id NH0925112005 sid 914279 cfn 0 / id NH0925112006 auc 趙悌均 tic 幽門螺旋桿菌無機焦磷酸水解 tic & tic #37238;晶體結構與功能之研究 adc 孫玉珠 ty 碩士 sc 國立清華大學 dp 生物資訊與結構生物研究所 yr 92 lg 英文 pg 50 kwc 幽門螺旋桿菌 kwc 無機焦磷酸水解 kwc & kwc #37238; kwc 晶體結構 abc 幽門螺旋桿菌是屬於革蘭氏陰性的微好氧細菌, 目前已被證實與胃潰瘍、胃癌及慢性胃炎的引發有相當的關聯性。無機焦磷酸水解酶是細胞內能量代謝的重要酵素之一;此酵素會將在生物聚合物聚成過程中所產生的焦磷酸水解成磷酸,這個反應在熱力學上提供了聚合物形成的趨動力。幽門螺旋桿菌的無機焦磷酸水解酶的分子量大約20 kDa,在分類上是屬於第一族的焦磷酸水解酶,並且他的活化高度仰賴與二價金屬的鍵結。我們藉由膠體過濾層析法和分析型超高速離心機來測定蛋白質在溶液中的四級結構狀態,結果傾向於六元體;在晶體結構分析上也觀察到同樣的結果。 本篇解出了無機焦磷酸水解酶以及與受質焦磷酸鍵結的結構,整個蛋白質結構是由兩個 α螺旋和八個β摺板所組成。一方面分析活化位置的結構與特性,另一方面我們也將大腸桿菌和幽門螺旋桿菌的焦磷酸水解酶作比較,分析他們的不同處。. tc Contents Chapter1 Introduciton 1.1 Preface --------------------------------------- 1 1.2 Inorganic pyrophosphatase --------------------- 2 Chapter2 Material and Methods 2.1 Protein Preparation --------------------------- 5 2.2 Protein Purity Recognition -------------------- 5 2.3 Gel filtration -------------------------------- 5 2.4 Analytical Ultracentrifugation ---------------- 6 2.5 Crystallization of PPase ---------------------- 6 2.6 Crystallization of PPi-PPase Complex -------- 7 2.7 X-ray Diffraction Data Collection ------------- 7 2.8 Molecular Replacement ------------------------- 8 2.9 Model Building and Refinement ----------------- 9 Chapter 3 Results 3.1 Sequence alignment --------------------------- 11 3.2 Characterization ------------------------------ 11 3.3 Space Group Determination --------------------- 12 3.4 Phase determination of PPase ------------------ 13 3.5 Phase determination of PPi-PPase complex ------ 14 3.6 Quality of the PPase model -------------------- 14 3.7 Quality of the PPi-PPase complex model ------- 15 3.8 PPi identification ---------------------------- 15 3.9 Overall structure of PPase -------------------- 16 3.10 Oligomeric structure of PPase ---------------- 16 Chapter 4 Discussion 4.1 The active site ------------------------------- 18 4.2 Comparison between H. pylori PPase and EPPase 19 4.3 Metal binding --------------------------------- 19 4.4 Pyrophosphate binding ------------------------- 20 Figures and Figure Legends -------------------------- 22 Tables ---------------------------------------------- 41 References ------------------------------------------ 48rf Reference 1. Marshall, B. J. & Warren, J. R. (1984). Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1, 1311-1315. 2. Wong, B. C. Y. & Lam, S. K. (1998). Epidemiology of gastric cancer in relation to diet and Helicobacter pylori infection. Journal of Gastroenterology and Hepatology 13, S166-S172. 3. Bayerdorffer, E., Miehlke, S., Neubauer, A., & Stolte, M. (1997). Gastric MALT-lymphoma and Helicobacter pylori infection. Alimentary Pharmacology & Therapeutics 11, 89-94. 4. Tomb, J. F., White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G., Fleischmann, R. D., Ketchum, K. A., Klenk, H. P., Gill, S., Dougherty, B. A., Nelson, K., Quackenbush, J., Zhou, L., Kirkness, E. F., Peterson, S., Loftus, B., Richardson, D., Dodson, R., Khalak, H. G., Glodek, A., McKenney, K., Fitzegerald, L. M., Lee, N., Adams, M. D., Venter, J. C., & . (1997). The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539-547. 5. Oliva, G., Romero, I., Ayala, G., Barrios-Jacobo, I., & Celis, H. (2000). Characterization of the inorganic pyrophosphatase from the pathogenic bacterium Helicobacter pylori. Archives of Microbiology 174, 104-110. 6. Schilling, C. H., Covert, M. W., Famili, I., Church, G. M., Edwards, J. S., & Palsson, B. O. (2002). Genome-scale metabolic model of Helicobacter pylori 26695. Journal of Bacteriology 184, 4582-4593. 7. Melchers, K., Weitzenegger, T., Buhmann, A., Steinhilber, W., Sachs, G., & Schafer, K. P. (1996). Cloning and membrane topology of a P type ATPase from Helicobacter pylori. J. Biol. Chem. 271, 446-457. 8. Vainonen, Y. P., Vorobyeva, N. N., Kurilova, S. A., Nazarova, T. I., Rodina, E. V., & Avaeva, S. M. (2003). Active dimeric form of inorganic pyrophosphatase from Escherichia coli. Biochemistry-Moscow 68, 1195-1199. 9. Harutyunyan, E. H., Oganessyan, V. Y., Oganessyan, N. N., Avaeva, S. M., Nazarova, T. I., Vorobyeva, N. N., Kurilova, S. A., Huber, R., & Mather, T. (1997). Crystal structure of holo inorganic pyrophosphatase from Escherichia coli at 1.9 A resolution. Mechanism of hydrolysis. Biochemistry 36, 7754-7760. 10. Teplyakov, A., Obmolova, G., Wilson, K. S., Ishii, K., Kaji, H., Samejima, T., & Kuranova, I. (1994). Crystal-Structure of Inorganic Pyrophosphatase from Thermus-Thermophilus. Protein Science 3, 1098-1107. 11. Leppanen, V. M., Nummelin, H., Hansen, T., Lahti, R., Schafer, G., & Goldman, A. (1999). Sulfolobus acidocaldarius inorganic pyrophosphatase: Structure, thermostability, and effect of metal ion in an archael pyrophosphatase. Protein Science 8, 1218-1231. 12. Avaeva, S. M. (2000). Active site interactions in oligomeric structures of inorganic pyrophosphatases. Biochemistry (Mosc. ) 65, 361-372. 13. Ahn, S., Milner, A. J., Futterer, K., Konopka, M., Ilias, M., Young, T. W., & White, S. A. (2001). The "Open" and "Closed" structures of the type-C inorganic pyrophosphatases from Bacillus subtilis and Streptococcus gordonii. Journal of Molecular Biology 313, 797-811. 14. Shintani, T., Uchiumi, T., Yonezawa, T., Salminen, A., Baykov, A. A., Lahti, R., & Hachimori, A. (1998). Cloning and expression of a unique inorganic pyrophosphatase from Bacillus subtilis: evidence for a new family of enzymes. FEBS Lett. 439, 263-266. 15. Schuck, P., Perugini, M. A., Gonzales, N. R., Howlett, G. J., & Schubert, D. (2002). Size-distribution analysis of proteins by analytical ultracentrifugation: Strategies and application to model systems. Biophysical Journal 82, 1096-1111. 16. Otwinowski, Z. & Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Macromolecular Crystallography, Pt A 276, 307-326. 17. Navaza, J. (1994). Amore - An Automated Package for Molecular Replacement. Acta Crystallographica Section A 50, 157-163. 18. Brunger, A. T., Adams, P. D., Clore, G. M., Delano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., & Warren, G. L. (1998). Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallographica Section D-Biological Crystallography 54, 905-921. 19. Mcree, D. E. (1999). XtalView Xfit - A versatile program for manipulating atomic coordinates and electron density. Journal of Structural Biology 125, 156-165. 20. Perrakis, A., Morris, R., & Lamzin, V. S. (1999). Automated protein model building combined with iterative structure refinement. Nature Structural Biology 6, 458-463. 21. Murshudov, G. N., Vagin, A. A., & Dodson, E. J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallographica Section D-Biological Crystallography 53, 240-255. 22. Bailey, S. (1994). The Ccp4 Suite - Programs for Protein Crystallography. Acta Crystallographica Section D-Biological Crystallography 50, 760-763. 23. Tong, L. & Rossmann, M. G. (1997). Rotation function calculations with GLRF program. Macromolecular Crystallography, Pt A 276, 594-611. 24. Matthews, B. W. (1968). Solvent content of protein crystals. J. Mol. Biol. 33, 491-497. 25. Laskowski, R. A., Macarthur, M. W., Moss, D. S., & Thornton, J. M. (1993). Procheck - A Program to Check the Stereochemical Quality of Protein Structures. Journal of Applied Crystallography 26, 283-291.id NH0925112006 sid 914225 cfn 0 / id NH0925112007 auc 簡湘誼 tic 幽門螺旋桿菌亞精胺合成 tic & tic #37238;晶體結構與功能之研究 adc 孫玉珠 ty 碩士 sc 國立清華大學 dp 生物資訊與結構生物研究所 yr 92 lg 英文 pg 55 kwc 幽門螺旋桿菌 kwc 亞精胺合成 kwc & kwc #37238; kwc 晶體結構 abc 在生物體內普遍存在著各種多胺分子(polyamines),例如腐胺(putrescine)、亞精胺(spermidine)與精胺(spermine)等。這些多胺分子帶正電的特性能平衡細胞內巨分子的電荷,包括DNA、RNA以及蛋白質分子都深受其影響。因此,當細胞進行分裂或分化時,多胺分子的調節是重要的關鍵。多胺分子的合成過程主要由三個酵素來調控;亞精胺合成酶是其中之一。該酵素的作用即是將decarboxylated S-adenosylmethionine的丙胺基(aminopropyl group)轉移到腐胺上,形成亞精胺分子。幽門螺旋桿菌的亞精胺合成酶具有262個氨基酸,其分子量約為30.5 kDa。我們利用X光晶體繞射實驗來決定幽門螺旋桿菌亞精胺合成酶的立體結構,以進一步瞭解它的生物功能。我們純化並結晶出含重金屬硒(selenium)的甲硫酸胺衍生物晶體,並透過多波長異常色散法(multiwavelength anomalous dispersion, MAD)來解決相位問題。經過分子模型的建立與修正後,於解析度為2.0 Å的情況下得到的R與Rfree值分別為23.6%和29.5%。仔細分析幽門螺旋桿菌亞精胺合成酶的立體結構,我們發現該酵素的四級結構為二元體(dimer)。每個結構單元(monomer)分成兩個區域:C端的Rossmann-like折疊結構,以及N端6股摺板區。其中,較大的C端區域是受質(substrates)進行催化、反應的空間;N端則扮演維持二元體結構的角色。 tc Chapter 1 Introduction.....1 1-1 Helicobacter pylori 1-2 The Genome of Helicobacter pylori Strain 26695 1-3 The Target Gene HP0832 in Helicobacter pylori Strain 26695 1-4 Polyamine Functions and Biosynthesis 1-5 Spermidine Synthase Chapter 2 Materials and Methods.....6 2-1 Cloning 2-2 Protein Expression and Purification 2-3 Gel Filtration Chromatography 2-4 Analytical Ultracentrifugation 2-5 Crystallization 2-6 X-ray Data Collection 2-7 Self-Rotation Functions 2-8 Phasing 2-9 Model Building and Refinement Chapter 3 Results.....12 3-1 Protein Characteristics 3-2 Crystallization 3-3 Data Collection and Space Group Determination 3-4 Non-Crystallography Symmetry 3-5 Structure Determination 3-6 Model Building and Refinement 3-7 Overall Structure of H. pylori PAPT Chapter 4 Discussion.....20 4-1 Amino Acids Sequence Alignment 4-2 Comparison of the TmPAPT and H. pylori PAPT Structures 4-3 Possible Catalytic Mechanism Appendix Figures and Tables.....23 References.....53rf References 1. Warren, J. R. (1983). Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1, 1273. 2. Cover, T. L. & Blaser, M. J. (1992). Helicobacter pylori and gastroduodenal disease. Annu. Rev. Med. 43, 135-145. 3. Montecucco, C. & Rappuoli, R. (2001). Living dangerously: how Helicobacter pylori survives in the human stomach. Nat. Rev. Mol. Cell Biol. 2, 457-466. 4. Tomb, J. F., White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G. et al. (1997). The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539-547. 5. Alm, R. A., Ling, L. S., Moir, D. T., King, B. L., Brown, E. D. et al. (1999). Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176-180. 6. Wallace, H. M., Fraser, A. V., & Hughes, A. (2003). A perspective of polyamine metabolism. Biochemical Journal 376, 1-14. 7. Schipper, R. G., Penning, L. C., & Verhofstad, A. A. (2000). Involvement of polyamines in apoptosis. Facts and controversies: effectors or protectors? Semin. Cancer Biol. 10, 55-68. 8. Nitta, T., Igarashi, K., & Yamamoto, N. (2002). Polyamine depletion induces apoptosis through mitochondria-mediated pathway. Exp. Cell Res. 276, 120-128. 9. Marton, L. J. & Pegg, A. E. (1995). Polyamines as targets for therapeutic intervention. Annu. Rev. Pharmacol. Toxicol. 35, 55-91. 10.Casero, R. A., Jr. & Pegg, A. E. (1993). Spermidine/spermine N1-acetyltransferasethe − turning point in polyamine metabolism. FASEB J. 7, 653-661. 11.Takaji, S., Hibasami, H., Imoto, I., Hashimoto, Y., Nakao, K. et al. (1997). Growth inhibition of Helicobacter pylori by a polyamine synthesis inhibitor, methylglyoxal bis(cyclopentylamidinohydrazone). Letters in Applied Microbiology 25, 177-180. 12.Ito, H., Hibasami, H., Shimura, K., Nagai, J., & Hidaka, H. (1982). Anti-tumor effect of Dicyclohexylammonium Sulfate, A potent inhibitor of spermidine synthase against P388 Leukemia. Cancer Letters 15, 229-235. 13.Heby, O., Roberts, S. C., & Ullman, B. (2003). Polyamine biosynthetic enzymes as drug targets in parasitic protozoa. Biochem. Soc. Trans. 31, 415-419. 14.Tabor, H., Rosenthal, S. M., & Tabor, C. W. (1958). The biosynthesis of spermidine and spermine from putrescine and methionine. J. Biol. Chem. 233, 907-914. 15.Bowman, W. H., Tabor, C. W., & Tabor, H. (1973). Spermidine biosynthesis. Purification and properties of propylamine transferase from Escherichia coli. J. Biol. Chem. 248, 2480-2486. 16.Lakanen, J. R., Pegg, A. E., & Coward, J. K. (1995). Synthesis and biochemical evaluation of adenosylspermidine, a nucleoside-polyamine adduct inhibitor of spermidine synthase. J. Med. Chem. 38, 2714-2727. 17.Yoon, S. O., Lee, Y. S., Lee, S. H., & Cho, Y. D. (2000). Polyamine synthesis in plants: isolation and characterization of spermidine synthase from soybean (Glycine max) axes. Biochim. Biophys. Acta 1475, 17-26. 18.Korolev, S., Ikeguchi, Y., Skarina, T., Beasley, S., Arrowsmith, C. et al. (2002). The crystal structure of spermidine synthase with a multisubstrate adduct inhibitor. Nat. Struct. Biol. 9, 27-31. 19.LeMaster, D. M. & Richards, F. M. (1985). 1H-15N heteronuclear NMR studies of Escherichia coli thioredoxin in samples isotopically labeled by residue type. Biochemistry 24, 7263-7268. 20.Schuck, P., Perugini, M. A., Gonzales, N. R., Howlett, G. J., & Schubert, D. (2002). Size-distribution analysis of proteins by analytical ultracentrifugation: Strategies and application to model systems. Biophysical Journal 82, 1096-1111. 21.Otwinowski, Z. & Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Macromolecular Crystallography, Pt A 276, 307-326. 22.Tong, L. & Rossmann, M. G. (1990). The Locked Rotation Function. Acta Crystallographica Section A 46, 783-792. 23.Terwilliger, T. C. & Berendzen, J. (1999). Evaluation of macromolecular electron-density map quality using the correlation of local r.m.s. density. Acta Crystallographica Section D-Biological Crystallography 55, 1872-1877. 24.Terwilliger, T. C. (2000). Maximum-likelihood density modification. Acta Crystallographica Section D-Biological Crystallography 56, 965-972. 25.Matthews, B. W. (1968). Solvent content of protein crystals. J. Mol. Biol. 33, 491-497. 26.Murshudov, G. N., Vagin, A. A., & Dodson, E. J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallographica Section D-Biological Crystallography 53, 240-255. 27.McRee, D. E. (1999). XtalView Xfit − A versatile program for manipulating atomic coordinates and electron density. Journal of Structural Biology 125, 156-165. 28.Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P. et al. (1998). Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D. Biol. Crystallogr. 54 ( Pt 5), 905-921. 29.Laskowski, R. A., Macarthur, M. W., Moss, D. S., & Thornton, J. M. (1993). Procheck − A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography 26, 283-291. 30.Bailey, S. (1994). The CCP4 Suite − Programs for protein crystallography. Acta Crystallographica Section D-Biological Crystallography 50, 760-763. 31.Zappia, V., Cacciapuoti, G., Pontoni, G., & Oliva, A. (1980). Mechanism of propylamine-transfer reactions − Kinetic and inhibition studies on spermidine synthase from Escherichia coli. Journal of Biological Chemistry 255, 7276-7280. 32.Evans, G. & Pettifer, R. F. (2001). CHOOCH: A program for deriving anomalous-scattering factors from X-ray fluorescence spectra. Journal of Applied Crystallography 34, 82-86. 33.Kraulis, P. J. (1991). Molscript − A program to produce both detailed and schematic plots of protein structures. Journal of Applied Crystallography 24, 946-950. 34.Merritt, E. A. & Bacon, D. J. (1997). Raster3D: Photorealistic molecular graphics. Macromolecular Crystallography, Pt B 277, 505-524. 35.Phillippsen, A. DINO: Visualizing structural biology. 1999. 36.Pazel, D. P. (1989). Ds-Viewer − An interactive graphical data structure presentation facility. Ibm Systems Journal 28, 307-323. 37.Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Clustal-W − Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673-4680.id NH0925112007 sid 914215 cfn 0 / id NH0925112008 auc 陳膺任 tic 由形態探討熱處理後小球藻的程序化細胞死亡 adc 徐邦達 ty 碩士 sc 國立清華大學 dp 生物資訊與結構生物研究所 yr 92 lg 中文 pg 81 kwc 程序化細胞死亡 kwc 小球藻 abc 植物在季節轉換、老化、果實成熟和遭受環境逆境都會照成細胞內的葉綠素分解,導致綠色消失。。植物葉綠素分解途徑有pheophorbide a氧化酶路徑和過氧化酶路徑二種。其中以Pheophorbide a氧化酶路徑路徑較常見於大部分植物包括藻類上。植物在進行程序化細胞死亡時常伴隨葉綠素的分解,兩種葉綠素分解在程序化細胞死亡都有被使用。Pheophorbide a氧化酶路徑主要在老化造成的程序化細胞死亡 ; 過氧化酶路徑主要出現在細胞壞死、病原感染和環境逆境引發的高敏感反應所造成的程序化細胞死亡造成之葉綠素褪色。不同類型植物的程序化細胞死亡的有不同的形態特色。本研究是探討熱處理的小球藻照光培養後,會導致程序化細胞死亡。我們以高效能液層析儀發現葉綠素的分解是經由過氧化酶路徑。穿透式電子顯微鏡和核酸螢光染色﹙DAPI和Acrindine orange) 型態上非常類似於植物高敏感反應引發的程序化細胞死亡。葉綠體在整個熱處理後光照引發的程序化細胞死亡是扮演協助粒腺體的角色。 tc 摘要…………………………………1 前言…………………………………3 材料與方法……………………… 20 結果……………………………… 26 討論……………………………… 36 圖表……………………………… 43 附表……………………………… 66 參考文獻………………………… 69rf 1. Rodriguez M., Gonzalea M., Linare J.(1987) Degradation of chlorophyll and chlorophyllase activaty in senescing barley leaves. J. Plant Physiol. 129:369-374. 2. Roca M. , Minguez M. M. (2001) Changes in chloroplast pigments of olive varieties during fruit ripening. J.Agric. Food Chem. 49:832-839. 3. Atkinson B. G. , Walden D. B. (1985) Changes in eukaryotic gene expression in response to environment stress. Academic Press Orlando. 50:379-382. 4. Robert L. H.(1988) Alteration of chlorophyll in plants upon air pollutant exposure. J.Plant Physiol. 131:379-384 5. Nover L. , Hellmund D. , Neumann D. , Scharf K. , Serfling E.(1984) The heat shock response of eukaryotic cell. Biol Zentralbl. 103:357-435 6. Lindquist S.(1986) The heat shock response. Ann. Rev.Biochem. 45:37-39. 7. Garty J. , Kloog N. , Cohen Y. , Wolfson R., Karmieli A.(1997) The effect of air pollution on the integrity of chlorophyll spectral reflectance response and on concerntrations of nick ,vanadium and sulfur in lichen Ramalina duriaei(De Not) Bagl. Environmental Res. 74:174-187. 8. Gonzalez C. M. , Pignata M. L.(1994) The influence of air pollution on soluble protein,chlorophyll degration,MDA,sulphur and heavy metal in transplanted lichen. Chiem.&Ecology 9:105-113 9. Shan Y.(1998) Effect of stimulated acid rain on Pinus desiflora: Inhibition of net photosynthesis oh chlorophyll. Wate ,Air&Soil Pollution. 103:121-127. 10. Amir S. D. , Goldschmidt E. , Altman A.(1986) Autolysis of chlorophyll in aqueous and detergent suspensions of chloroplast fragments. Plant Sci. 43:201-206 11. Janave M.(1997) Enzymic degradation chlorophyll in Cavendish bananas : in vitro evidence for two independent degradative pathways. Plant Physiol. Biochem. 35:837-846 12. Riper D. , Owens T., Falkowski P.(1979) Chlorophyll turnover in Skeletonema costatum , a marine plankton diatom. Plant Physiol. 64:49-54. 13. Thomas H. , Bortlik K. , Rentsch D. , Schellehberg M. , Matile P.(1989) Catabolish of chlorophyll in vivo : significance of polar chlorophyll catabolites in non-yellowing senescence mutant of Festuca pratensis huds. Ne Phytol. 111:3-8 14. Johnson H. , Spencer M.(1996) Chlorophyllase and peroxidase activity during degreening of maturing canola (Brassica napus) and mustard (Brassica juncea) seed. Plant Physiol 97:353-359. 15. Yamauchi N. , Xia X. , Hashinaga F.(1997) Involvement of flavonoid oxidation with chlorophyll degration by peroxidase in Wase satsama mandarin fruit. J.Jpn. Soc. Hortic Sci. 66:283-288. 16. Engl N. , Jenny T. , Mooser V. , Gossauer A.(1991) Chlorophyll catabolism in Chlorella protothecoides : isolation and structural elucidation of a red billin derivative. FEBS Lett. 293:131-133. 17. Iturraspe J. , Engel N. , Gossauer A.(1994) Chlorophyll catabolism-- isolation and structural elucidation of chlorophyll b catabolites in Chlorella protothecoides. Phytochem. 35:1387-1390. 18. Shimokawa K. , Shimada S. , Yaeo K.(1978) Ethylene-enhanced chlorophyllase activity during degreening of Citrus unshiu marc. Sci Hort. 8:129-135. 19. Tarasenko L. , Khodasevich E. , Orlovskaya K.(1986) Location of chlorophyllase in chloroplast membranes. Photobiochem&. Photobiophys.12:119-121. 20. Tsuchiya T. , Ohta H. , Masuda T. , Mikami B.,Kita N.(1997) Purification and characterization of two isoenzymes of chlorophyllase from mature leaves of Chenopodium album. Plant Cell Physiol. 38:1026-1031. 21. Tsuchiya T. , Ohta H. , Masuda T.(1999) Cloning a chlorophyllase, the key enzyme in chlorophyll degradation : finding of a lipase motif and the induction by methyl jasmonate. PNAS 96:15362-15367. 22. Owens T. , Falkowski P.(1982) Enzymatic degradation of chlorophyll a by marine phytoplankton in vitro. Phytochem. 21:979-984. 23. Shioi Y. , Tatsumi Y. , Shimokawa K.(1991) Enzymatic degradation of chlorophyll in Chenopodium album. Plant Cell Physiol. 32:87-93. 24. Duggelin T. , Bortlik K. , Gut H. , Matile P. , Thomas H.(1988) Leaf senescence in non yellowing mutant of Festaca pratensis : accumulation of lipofuscin-like compounds. Physiol Plant. 74:131-136. 25. Matile P. , Ginsburg S , Schellenberg M. , Thomas H.(1987) Catabolites of chlorophyll in senescent leaves. J. Plant Physiol. 129:219-228. 26. Merzlyak M. , Rumyantseva V. , Shevyryoya V. ,Gusev M.(1983) Further investigations of liposoluble fluorescent compounds in senescing plant cells. J. Exp. Bot. 34:604-609. 27. Reddy P. , Veeranjaneyulu K.(1991) Proline metabolism in senescing leaves of horsegram.. J. Plant Physiol. 137:381-383. 28. Schellenberg M. , Matile P. , Thomas H.(1993) Production of a presumptive cholorophyll catobolite in vitro : requirement of reduced ferredoxin. Planta :191:417-420. 29. Kato M. , Shimizu S.(1987) Chlorophyll metabolism in higher plants Ⅶ bacco leaves ; phenolic-dependant peroxidation. Can. J. Bot. 65:729-735. 30. Shibata H. , Kono Y. , Yamashita S. , Sawa Y. , Ochiai H. , Tanaka K. (1995) Degradation of chlorophyll by nitriogen-dioxide generated from nitrite by peroxidase reaction. Biochem.& Biophys Acta . 1230:45-50. 31. Shimokawa K. , Uchida Y.(1992) A chloropyllide adegrading enzyme (hydrogen peroxide -2,4 dichlorophenol requiring) of Citrus unshiu fruits. J. Jpn Soc Hortic. Sci. 61:175-181. 32. Kockritz A. , Schewe T. , Hieke B. , Hass W.(1985) The effects of soybean lipoxygenase-1 on chloroplast from wheat. Photochem. 24:381-384. 33. Luthy B., Martinoia E. , Matile P. , Thomas H.(1984) Thylakoid-associated “chlorophyll oxidase”: distinction from lipoxygenase. Z. Pflanzenphysiol. 113:423-434. 34. Luthy B.. , Matile P. , Thomas H.(1986) Linolenic aci-dependent “chlorophyll oxidase”: activity a property of photosystems ⅠandⅡ. Plant Physiol. 123:203-209. 35. Kuroda M. , Ozawa T. , Imagawa H.(1990) Changes in chloroplast peroxidase activities in relation to chlorophyll lose in barley leaf egment. Physiol. Plant 80:555-560. 36. Minguez M. M. , Gallardo L.(1996) Role of chlorophyllase in chlorophyll metabolism in Olives CV. Gordal. Phytochem. 41:691-697. 37. Maria R. , Minguez M. M.(2003) Involventment of chlorophyllase in chlorophyll metabolism in olive varieties with hight and low chlorophyll content. Plant Physiol. 117:459-466. 38. Maunders M. J. , Brown S.B.(1996) The appearance of chlorophyll derivative in senescing tissue. Phytochem. 22:2443-2446. 39. Naoki Y. , Akiyama Y. , Shunji K.(1997) Chlorophyll degradation in Wase satuma mandarin frait with on-tree maturation and ethylene treatment. Sci. Horticulturae 71:35-42. 40. Windhoevel U. , Sandmann G.(1997) Genetic eneineering of resistance to bleaching in cyanbacterial curotenogenesis. Pesticide Biochem.&Physiol. 57:68-78. 41. Nelson J. R.(1993) Rates and possible mechanism of light dependent degradation of pigment. J. Marine Res. 51:155-179. 42. Merzlyak M. N. , Gitelson A.(1998) Light induced pigment degradation in leaves and ripening fruits studied in situ. Plant Physiol. 140:661-667. 43. Merzlyak M. N.,Hendry G. A.(1994) Free radical metabolism pigment degradation and lipid peroxidation in leaves during senescence. Proc. Royal Soc. Edinburgh 120:459-471. 44. Plilippe M. , Stefan H.(1999) Chlorophyll degradation. Annu.Rev. Plant Physiol. Plant Mol. Biol 50:67-95. 45. Choudhury N. K. , Behera R. K.(2001) Photoinhibition of photosynthesis : Role of carotenoids in photoprotection of chloroplast constituents. Photosynthetica 39:481-488. 46. Niyogi K. K.(1999) Photoprotection revisted:Genetic and molecular approaches. Annu.Rev. Plant Physiol. Plant Mol. Biol 50:333-359. 47. Ellis H. M. , Horvitz R. H.(1986) Genetic control of programmed cell death in the nematode C. elegans. Cell , 77:565-577. 48. Raff C. M.(1992) Social control on cell survival and cell death. Nature. 356:397-400. 49. Schwazz L.M. , Smith S. W. , Jones M.E. , Oshorne B. A.(1993) Do all programmed cell death occur via apoptosis ? PNAS 90:980-984. 50. Martin S. , Green D. ,Gotter T.(1994) Dicing with death : dissecting the components of the apoptosis machinery. Trends in Biochem. Scien. 19:26-30. 51. Zanger H. , Mottram J. , Fasel N.(2002) Cell death in Leishmania induced by stress and differentiation : programmed cell death or necrosis ? Cell Death and Differentiation. 9:1126-1139. 52. Sabina S. , Belle I. , Bredesen D.E.(2002) An alternative nonapoptotic form of programmed cell death. PNAS 97:14376-14381. 53. Jacobson M. , Weil M. , Raff M.(1997) Programmed cell death in animal development. Cell. 88:347-354. 54. Evan G. , Littlewood T.(1998) A matter of life and cell death. Science 281:1317-1322. 55. Ameisen J.(1996) The origin of programmed cell death. Science 272:1278-1279. 56. Majno G. , Joris I.(1995) Apotosis , oncosis and necrosis : an overview of cell death. Am. J. Pathol. 146:3-15. 57. Mariko Y. , Takashi U. , Takahiko C.(2001) Cell death with predominant apoptosic feature in Saccharomyces cerevisiae mediated by deletion of histone chaperone ASF1/CIA1. Genes to Cell 6:1043-1054. 58. Bai F. , Fang F. , Jiang Z. , Dong C.(2003) Staurosporine induces apoptosis in NG108-15 cells. Acta Pharmacol Sin. 24:663-669. 59. Xiaodong W.(2001) The expanding role of mitochondria in apoptosis. Gene&Development. 15:2922-2933. 60. Miller J. L. , Marx J.(1998) Apoptosis. Science 281:5381. 61. Bernardi P. , Scorrano L. , Raffaele C.(1999) Mitochondria and cell death – mechanistic aspects and methodological issues. Eur. J. Biochem. 264:687-701. 62. Mootha V. K. , Buttle F. B. , Scorrano L.(2001) A reversible component of mitochondrial respiratory dysfunction in apoptosis can be release by exogenous cytochrome C. J.EMBO 20(4):661-671. 63. Hengartner M.(1998) Death by crowd control. Science 281:1298. 64. Adams J. M. , Cory S.(1998) The Bcl-2 protein family : arbiters of cell survival. Science 281:1312-1325. 65. Lassus P. , Ximena O. A. , Lazebnilc Y.(2002) Requirement for caspase-2 in stress-induced Apoptosis before mitochondrial permeabilization. Science 297:1352-1354. 66. Young T. , Gallie D.(1999) Analysis of programmed cell death in wheat endosperms reveals differences in endosperm development between cereals. Plant Molecular Biology 39:915-926. 67. Kuriyama H. , Fukuda H.(2002) Developmental programmed cell death in plant. Plant Biology 5568-573. 68. Groover A. , Jones A. M.(1999) Tracheary element differentiation uses a novel mechanism coordinating programmed cell death and secondary cell wall synthesis. Plant Physiol. 119:375-384. 69. Mitter R. , Simon L. , Lam E.(1997) Pathogen-induced programmed cell death in tobacco. J. Cell Science. 110:1333-1344. 70. Gvo A. , Reimers P. J. , Leach J. E.(1993) Effect of light on incompatible interactions between Xanthomonas oryzae pv oryzae and rice. Physiol.&Mol. Plant Pathology 42:413-425. 71. Levine A. , Pennel R. I. , Alvarez M. E.(1996) Ca2+-induced apoptosis in a plant hypersensitive disease resistance response. Current Biology 6:427-437. 72. Lee R. H. , Chang S.(2002) programmed cell death during rice-leaf senescence is nonapoptotic. New Phytologist 155:25-32. 73. Greenberg J. T. , Yao N.(2004) The role and regulation of programmed cell death in plant- pathogen interactions. Cellular Microbiology 6(3):201-211. 74. Greenberg J. T.(1997) Programmed cell death in plant- pathogen interactions. Anna. Rev. Plant Physiol. Plant Mol. Biol. 48:525-545. 75. Kim M. , Woo J. A. , Un H. J.(2003) Activation of the programmed cell death ipathway by inhibition of proteasome function in plant. J. Biochem. 278(21):19406-19415. 76. Virolainen E. , Blokhina O. , Fagerstedt K.(2002) Ca2+-induced high amplitude swelling and cytochrome c release from wheat mitochondria under anoxic stress. Ann. Of Botany. 90:509-516. 77. Kratsch H. A. , Wise R. R.(2000) The ultrastucture of chilling stress. Plant Cell and Environment. 23:337-350. 78. Krishnamarthy K. V. , Krishnaraj R. , Chozhavendan R.(2000) The programmed cell death in plant and animals. Current Science 78(9):1169-1181. 79. Lewis K.(2000) Programmed cell death in bacteria. Microbiol. And Molecular Biol. Rev. 64:503-512. 80. Vardi A. , Berman F. I. , Rozenberg T.(1999) Programmed cell death of dinoflagellate Perdinium gatunense is mediated by CO2 limitation and oxidative stress. Current Biology 9:1061-1064. 81. Madeo F. , Frohlich E. , Ligr M. , Grey M. , Sigrist S. J.(1999) Oxygen stress: A regulator of apoptosis in yeast. J. Cell Biol. 145:757-767. 82. Johnston S. T. , Bennett M. D. , Rayburn A. L. , Galbraith D. W. , Price H. J.(1999) Reference standards for determination of DNA content of plant nuclei. Amer. J. Of Botany. 86(5):609-613. 83. Dellinger M. , Geze M.(2001) Detection of mitochondrial DNA in living animal cells with fluorescence microscopy. J.Microscopy 204:196-202. 84. Dolan M. F.(2000) DNA fluorescent stain accumulates in the Golgi but in the kinetosomes of a mitochondriate protein. Internal Microbiol. 3:45-49. 85. Larsen T. , Goodsel D. , Cascio D. , Grzeskowiak K. , Dickerson R.(1989) The structure of DAPI bound to DNA. Biolmol. Struct. Dyn. 7(3):477-491. 86. Jaques G. A. , Bortlik K. H. , Fay L. B.(2001) Improved method to track chlorophyll degration. J. Agric Food Chem. 49:1117-1122. 87. Gillmore A. M. , Yamamoto H. Y.(1991) Resolution of lutein and zeaxanthin using a nonendacupped , lightly carbon-loaded C-18 high-performance liquid chromatographic column. J.Chromatogr. 543:137-145. 88. Walker J. S. , Squier A.H. , Hodgson D. A. , Keely B. J.(2002) Origin and Significance of 132-hydroxychlorophyll derivatives in sediments. Organic Geochemistry 33:1667-1674. 89. Buckner B. , Johal G. S.(2000) Cell death in maize. Physiol. Plantarum 108:231-239. 90. Martienssen R.(1997) Cell death : Fatal induction in plants. Current Biology 7:534-537. 91. Zuppini A. , Baldan B. , Millioni R.(2003) Chitosan induces Ca2+-mediate programmed cell death in soybean cells. New Phytol. 161:557-568.id NH0925112008 sid 914258 cfn 0 / id NH0925112009 auc 許湞陽 tic 大腸桿菌PriB蛋白分子與單股DNA複合體的結晶學結構研究 adc 孫玉珠 adc 蕭傳鐙 ty 碩士 sc 國立清華大學 dp 生物資訊與結構生物研究所 yr 92 lg 中文 pg 47 kwc PriB kwc 引子合成體 kwc 許湞陽 kwc ΦX174型態 abc 在大腸桿菌 (Escherichia coli)中的DNA複製需要引子合成體 (Primosome)、RNA引子 (RNA primer)、單股DNA結合蛋白質 (Single-stranded DNA-binding protein,後稱SSB)以及DNA聚合酶 (DNA polymerase)I,III參與。引子合成體作用在延遲股 (Lagging strand),它負責確認DNA複製的起始點並解開雙股螺旋,以及合成RNA引子 (Primer)。大腸桿菌裡至少有兩種引子合成體已經被確認了,分別是OriC型態和ΦX174型態 (又稱PriA-dependent primosome)。當大腸桿菌的複製叉受損時,需要進行修復才能在重新啟動DNA的複製,這時PriA引子合成體的複製系統扮演非常重要的角色。引子合成體是由七個蛋白質組成的: PriA、PriB、PriC、DnaB、DnaC、DnaT and DnaG (Primase)。而PriB在引子合成體中所扮演的角色為 (1)穩定PriA與DNA-PAS (Primosome assembly site)的結合和 (2) 促進PriA-DnaT之間複合體的合成。在本研究中我們嘗試利用單股DNA與PriB結合進行結晶,並利用X光繞射方法解出PriB與DNA複合體的三級結構。 tc 目 錄 中文摘要 I 英文摘要 II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 第一章 序論 1~7 1-1 Primosomes的簡介 1-2 PriB的功能 1-3 PriB的結構 1-4 X-ray決定蛋白質的結構 1-5 研究動機與內容簡介 第二章 材料與方法 8~18 2-1 PriB的DNA製備與表現 2-1.1 宿主菌體 (Host Bacterial) 2-1.2 質體的轉型作用 2-2 PriB蛋白質在大腸桿菌的表現與纯化 2-2.1 蛋白質的培養與誘導 (induction) 2-2.2 蛋白質的製備 2-2.3 以固定化金屬親和層析法纯化PriB (IMAC,immobilized metal-affinity chromatography) 2-2.4 以膠體層析法純化PriB蛋白質 (Gel filtration) 2-3 PriB蛋白質的結晶過程 2-3.1 長晶方法 (Crystallization) 2-3.2 蛋白質PriB與單股DNA的混和步驟 2-3.3 結晶條件的篩選 2-3.4同晶置換法 (Multiple Isomorphous Replacement MIR) 2-4 利用X-ray決定PriB與dA5mer的三級結構的結構 2-4.1 繞射數據之收集與處理 2-4.2 Matthews coefficient (Vm)的估計 2-4.3溶劑比例 (Solvent content)的估計 2-4.4晶體之相位決定 2-4.5 分子模型的建立與修飾 (model building and refinement) 第三章 實驗結果 19~23 3-1 蛋白質PriB的純化 3-2 PriB-DNA複合體晶體 3-3 PriB-DNA複合體的三級結構 第四章 討論 24~27 4-1 PriB-dA5mer複合體的繞射數據 4-2 PriB-dA5mer複合體三級結構中dA5mer的位置 4-3 PriB alone與PriB-dA5mer複合體在三級結構上的差別 4-4 PriB-dA5mer與SSB-dC35mer結構上的比對 4-5 PriB-dA5mer複合體結構上的待改進的地方 第五章 結論 28 參考文獻 29~30 表 31~34 圖 35~47 表目錄 表一. 大腸桿菌兩種引子合成體的蛋白質成分比較 31 表二. 單股DNA的序列 31 表三. PriB蛋白質與DNA混和後的濃度 32 表四. Crystalliztion Screen Kit 32 表五.可以適用PriB-dA5mer複合體的重金屬種類與濃度 32 表六. PriB alone與PriB-dA5mer比較 33 表七. PriB-dA5mer與SSB-dC35mer在結構上的差異 34 圖目錄 圖1. Primosome Assemble Site (PAS)的二級結構 35 圖2. Primosome在ΦX174的DNA複製過程 35 圖3. PriB (Protein n)的萃取 36 圖4. OB-fold的三級結構 36 圖5. PriB的蛋白質表現 37 圖6. PriB的親和層析法纯化 37 圖7. PriB蛋白質的濃度 (20% SDS PAGE) 37 圖8. PriB的Gel filtration純化 38 圖9. PriB蛋白質的質譜儀分析圖 39 圖10. PriB經過Gel filtration純化後的電泳圖 39 圖11. PriB與不同片段的DNA混和後的電泳圖 39 圖12. PriB與dA5mer複合體的晶體 40 圖13. PriB與dA10mer複合體的晶體 40 圖14. PriB與dA15mer複合體的晶體 40 圖15. PriB與PAS30複合體的晶體 (偏光) 41 圖16. PriB-dA5mer的三級結構 42 圖17. PriB-dA5mer與不含DNA的PriB做三級結構的比對 (立體圖) 43 圖18. PriB-dA5mer的三級結構中,與DNA距離最近的氨基酸 44 圖19. PriB-dA5mer複合體的potential surface圖 44 圖20. SSB-dC35mer與不含DNA的SSB做三級結構上的比較 (立體圖) 45 圖21. PriB-dA5mer與SSB-dC35mer做三級結構的比較 (立體圖) 45 圖22. PriB與不同種類的PriB和SSB蛋白質做氨基酸序列上的比對 46 圖23. 比較PriB-dA5mer (水藍色)與SSB-dC35mer (紅色)的DNA結合位置 47 圖24. PriB-dA5mer的Ramachandran Plot 47rf Reference List 1. Lovett, S. T. (2003) Mol.Cell 11, 554-556 2. Masai, H. and Arai, K. I. (1996) Front Biosci. 1, d48-d58 3. Marians, K. J. (2000) Trends Biochem.Sci. 25, 185-189 4. Masai, H. and Arai, K. I. (1995) Eur.J.Biochem. 230, 384-395 5. Arai, K. and Kornberg, A. (1981) Proc.Natl.Acad.Sci.U.S.A 78, 69-73 6. Mok, M. and Marians, K. J. (1987) J.Biol.Chem. 262, 2304-2309 7. Shlomai, J. and Kornberg, A. (1980) Proc.Natl.Acad.Sci.U.S.A 77, 799-803 8. Marians, K. J. (1999) Prog.Nucleic Acid Res.Mol.Biol. 63, 39-67 9. Jaktaji, R. P. and Lloyd, R. G. (2003) Mol.Microbiol. 47, 1091-1100 10. Liu, J. and Marians, K. J. (1999) J.Biol.Chem. 274, 25033-25041 11. Rangarajan, S., Woodgate, R., and Goodman, M. F. (2002) Mol.Microbiol. 43, 617-628 12. Polard, P., Marsin, S., McGovern, S., Velten, M., Wigley, D. B., Ehrlich, S. D., and Bruand, C. (2002) Nucleic Acids Res. 30, 1593-1605 13. McGlynn, P., Al Deib, A. A., Liu, J., Marians, K. J., and Lloyd, R. G. (1997) J.Mol.Biol. 270, 212-221 14. Nurse, P., Liu, J., and Marians, K. J. (1999) J.Biol.Chem. 274, 25026-25032 15. Sandler, S. J. (2000) Genetics 155, 487-497 16. Sandler, S. J., McCool, J. D., Do, T. T., and Johansen, R. U. (2001) Mol.Microbiol. 41, 697-704 17. Allen, G. C., Jr. and Kornberg, A. (1993) J.Biol.Chem. 268, 19204-19209 18. Greenbaum, J. H. and Marians, K. J. (1984) J.Biol.Chem. 259, 2594-2601 19. Ng, J. Y. and Marians, K. J. (1996) J.Biol.Chem. 271, 15642-15648 20. Ng, J. Y. and Marians, K. J. (1996) J.Biol.Chem. 271, 15649-15655 21. Liu, J., Nurse, P., and Marians, K. J. (1996) J.Biol.Chem. 271, 15656-15661 22. Sandler, S. J. and Marians, K. J. (2000) J.Bacteriol. 182, 9-13 23. Sandler, S. J., Marians, K. J., Zavitz, K. H., Coutu, J., Parent, M. A., and Clark, A. J. (1999) Mol.Microbiol. 34, 91-101 24. Low, R. L., Shlomai, J., and Kornberg, A. (1982) J.Biol.Chem. 257, 6242-6250 25. Allen, G. C., Jr. and Kornberg, A. (1991) J.Biol.Chem. 266, 11610-11613 26. Schekman, R., Weiner, A., and Kornberg, A. (1974) Science 186, 987-993 27. Schekman, R., Weiner, J. H., Weiner, A., and Kornberg, A. (1975) J.Biol.Chem. 250, 5859-5865 28. Murzin, A. G. (1993) EMBO J. 12, 861-867 29. Kerr, I. D., Wadsworth, R. I., Cubeddu, L., Blankenfeldt, W., Naismith, J. H., and White, M. F. (2003) EMBO J. 22, 2561-2570 30. Bochkarev, A. and Bochkareva, E. (2004) Curr.Opin.Struct.Biol. 14, 36-42 31. Suck, D. (1997) Nat.Struct.Biol. 4, 161-165 32. Curth, U., Genschel, J., Urbanke, C., and Greipel, J. (1996) Nucleic Acids Res. 24, 2706-2711 33. Yang, C., Curth, U., Urbanke, C., and Kang, C. (1997) Nat.Struct.Biol. 4, 153-157 34. Saikrishnan, K., Jeyakanthan, J., Venkatesh, J., Acharya, N., Sekar, K., Varshney, U., and Vijayan, M. (2003) J.Mol.Biol. 331, 385-393 35. Raghunathan, S., Kozlov, A. G., Lohman, T. M., and Waksman, G. (2000) Nat.Struct.Biol. 7, 648-652 36. Webster, G., Genschel, J., Curth, U., Urbanke, C., Kang, C., and Hilgenfeld, R. (1997) FEBS Lett. 411, 313-316id NH0925112009 sid 914289 cfn 0 / id NH0925112010 auc 顏德民 tic 利用分析級超高速離心機研究蛇毒毒蛋白之分子結合作用 adc 吳文桂 ty 碩士 sc 國立清華大學 dp 生物資訊與結構生物研究所 yr 92 lg 中文 pg 70 kwc 分析級超高速離心機 kwc 磷脂水解酵素A2 kwc 寡聚體 kwc 四級結構 kwc 沈降速率法 kwc 鈣 abc 近年的研究顯示磷脂水解酵素A2 (PLA2),具有功能的多樣性。而純化自毒蛇Naja nigricollis毒液中的鹼性PLA2(N-PLA2),同時具有水解磷脂質、溶血、抗凝聚、心臟毒性以及肌肉毒性等藥理作用。由以往對於蛇毒PLA2的觀察之中,被認為在缺乏鈣離子情況下,會產生寡聚體(oligomer)的四級結構。而在本篇論文第一部份裡,運用了分析級超高速離心機,於水溶液條件下,來對鹼性N-PLA2蛋白自體結合(self-association)模式和鈣離子濃度的關連性進行研究,直接證實了鈣離子確實擁有著調控蛇毒N-PLA2四級結構的能力。此外,由過去多項不同的研究及已得晶體結構中,蛇毒PLA2分子被推測具有兩個鈣離子結合位置。在本文中,對於其他二價陽離子所造成N-PLA2的不同四級結構變化,進行了系列的實驗,並進而得知二價陽離子結合於N-PLA2的本質結合位置(essential site),極為可能扮演著調控N-PLA2四級結構的功能。 tc Ⅰ.緒論…………………………………………………………1 1.1蛇毒磷脂水解酵素………………………………………1 1.1.1蛇毒…………………………………………………1 1.1.2磷脂水解酵素A2……………………………………2 1.1.3鈣離子在磷脂水解酵素A2的結合位置和功能……3 1.2心臟毒素…………………………………………………4 1.2.1心臟毒素……………………………………………4 1.2.2心臟毒素的生理特性和可能機制…………………5 1.3醣胺素……………………………………………………6 1.3.1關於醣胺素…………………………………………6 1.3.2醣胺素與蛋白的相互作用…………………………7 1.4研究目的…………………………………………………9 圖表…………………………………………………………….12 Ⅱ.實驗材料及方法……………………………………………22 2.1實驗材料…………………………………………………22 2.1.1蛇毒磷脂水解酵素A2及心臟毒素的製備…………22 2.1.2不同片段醣類分子的製備…………………………23 2.1.3蛋白質與醣類分子濃度之測定…………………………23 2.2分析級超高速離心機……………………………………24 2.2.1實驗裝置……………………………………………24 2.2.2沉降速率方法與原理………………………………25 2.2.3沉降平衡方法與原理………..................26 2.2.4連續尺寸分布分析法的應用及原理………………27 2.3酵素活性方法所得PLA2與不同二價陽離子的關連性…28 圖表…………………………………………………………….31 Ⅲ.實驗結果……………………………………………………38 3.1磷脂水解酵素A2的自體結合作用………………………38 3.1.1鈣離子對N-PLA2四級結構的影響…………………38 3.1.2不同二價陽離子對N-PLA2四級結構的影響…………..41 3.2肝素與心臟毒素的結合模式……………………………42 3.2.1不同長度肝素片段與心臟毒素A3的結合模式………..42 3.2.2完全硫酸化肝素與心臟毒素A3的結合模式………44 3.2.3檸檬酸對心臟毒素-肝素複合體結合模式的影響.44 圖表…………………………………………………………….46 Ⅳ.討論…………………………………………………………59 圖表…………………………………………………………….61 Ⅴ.參考資料……………………………………………………63 Ⅵ.附錄…………………………………………………………69rf Behlke J, Labudde D, Ristau O.(2001) Self-association studies on the EphB2 receptor SAM domain using analytical ultracentrifugation. Eur. Biophys. J., 30(6):411-5 Bilwes, A., Rees, B., and Moras, D. (1994) X-ray structure at 1.55 A of toxin gamma, a cardiotoxin from Naja nigricollis venom. Crystal packing reveals a model for insertion into membranes.J. Mol. Biol., 239, 122-136 Chang LS, Lin SR, Chang CC.(1998) Identification of arg-30 as the essential residue for the enzymatic activity of Taiwan cobra phospholipase A2. J. Biochem. (Tokyo).,124(4):764-8. Chang LS, Lin SR, Chang CC.(1997) Probing calcium ion-induced conformational changes of Taiwan cobra phospholipase A2 by trinitrophenylation of lysine residues. J. Protein Chem., 16(1): 51-7. Chang LS, Lin SR, Chang CC.(1996) The essentiality of calcium ion in the enzymatic activity of Taiwan cobra phospholipase A2. J. Protein Chem.,15(8):701-7. Chiang CM, Chien KY, Lin HJ, Lin JF, Yeh HC, Ho PL, Wu WG.(1996) Conformational change and inactivation of membrane phospholipid-related activity of cardiotoxin V from Taiwan cobra venom at acidic pH. Biochemistry. ,35(28): 9167-76 Chwetzoff S, Tsunasawa S, Sakiyama F, Menez A.(1989) Nigexine, a phospholipase A2 from cobra venom with cytotoxic properties not related to esterase activity. Purification, amino acid sequence, and biological properties. J. Biol .Chem., 264(22):13289-97. Condrea E, Rapuano BE, Soons KR, Yang CC, Rosenberg P.(1983) Effect of methylation of histidine-48 on some enzymatic and pharmacological activities of snake venom phospholipases A2. Life Sci., 32(13):1455-61. Correia JJ, Chacko BM, Lam SS, Lin K.(2001) Sedimentation studies reveal a direct role of phosphorylation in Smad3:Smad4 homo- and hetero-trimerization. Biochemistry., 40(5):1473-82 Dijkstra BW, Kalk KH, Hol WG, Drenth J.(1981) Structure of bovine pancreatic phospholipase A2 at 1.7A resolution. J. Mol. Biol., 147(1):97-123 Demaret JP, Chwetzoff S, Brunie S.(1990) Dimeric character of a basic phospholipase A2 from cobra venom: experimental and modelling study. Protein Eng., 4(2):171-6 Evans HJ, Franson R, Qureshi GD, Moo-Penn WF.(1980) Isolation of anticoagulant proteins from cobra venom (Naja nigricollis). Identity with phospholipases A2. J. Biol. Chem.,255(8):3793-7. Ferreira JP, Sasisekharan R, Louie O, Langer R.(1994) A study on the functional subunits of phospholipases A2 by enzyme immobilization. Biochem. J., 303 (2):527-30 Fless GM, Kirk EW, Klezovitch O, Santiago JY, Edelstein C, Hoover-Plow J, Scanu AM.(1999) Effect of phospholipase A2 digestion on the conformation and lysine/fibrinogen binding properties of human lipoprotein[a ]. J. Lipid Res.,40(4):583-92. Fletcher JE, Yang CC, Rosenberg P.(1982) Basic phospholipase A2 from Naja nigricollis snake venom: phospholipid hydrolysis and effects on electrical and contractile activity of the rat heart. Toxicol Appl. Pharmacol.,66(1):39-54. Fremont DH, Anderson DH, Wilson IA, Dennis EA, Xuong NH.(1993) Crystal structure of phospholipase A2 from Indian cobra reveals a trimeric association. Proc. Natl. Acad. Sci. U S A. , 90(1):342-6 Haroniti A, Till R, Smith MC, Soultanas P.(2003) Clamp–loader– helicase interaction in Bacillus. Leucine 381 is critical for pentamerization and helicase binding of the Bacillus tau protein. Biochemistry.,42(37):10955-64. Hazlett TL, Dennis EA.(1988) Lipid-induced aggregation of phospholipase A2: sucrose density gradient ultracentrifugation and crosslinking studies. Biochim. Biophys. Acta., 961(1):22-9. Lebowitz J, Lewis MS, Schuck P. (2002) Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci., 11(9):2067-79 Lee SP, Fuior E, Lewis MS, Han MK.(2001) Analytical ultracentrifugation studies of translin: analysis of protein-DNA interactions using a single-stranded fluorogenic oligonucleotide. Biochemistry. ,40(46):14081-8 Lin YH, Lee SC, Chang PY, Rajan PK, Sue SC, Wu WG.(1999) Heparin binding to cobra basic phospholipase A2 depends on heparin chain length and amino acid specificity. FEBS .Lett. , 453(3):395-9 Maluf NK, Lohman TM.(2003) Self-association equilibria of Escherichia coli UvrD helicase studied by analytical ultracentrifugation. J. Mol .Biol., 325(5):889-912 Mezna M, Ahmad T, Chettibi S, Drainas D, Lawrence AJ.(1994) Zinc and barium inhibit the phospholipase A2 from Naja naja atra by different mechanisms. Biochem. J., 301(Pt 2):503-8. Nourse A, Trabi M, Daly NL, Craik DJ.(2004) A comparison of the self-association behavior of the plant cyclotides kalata B1 and kalata B2 via analytical ultracentrifugation. J. Biol. Chem. , 279(1):562-70. Patel HV, Vyas AA, Vyas KA, Chiang C-M, Chi L-M, Wu WG. (1997) Analysis of binding of cobra cardiotoxins to heparin reveals a new β-sheet heparin-binding structural motif. J. Biol. Chem., 272, 1484-1493 Pavlov G, Finet S, Tatarenko K, Korneeva E, Ebel C.(2003) Conformation of heparin studied with macromolecular hydrodynamic methods and X-ray scattering. Eur. Biophys. J. , 32(5):437-49. Pluckthun A, Dennis EA.(1985) Activation, aggregation, and product inhibition of cobra venom phospholipase A2 and comparison with other phospholipases. J. Biol .Chem., 260(20):11099-106. Renetseder R, Brunie S, Dijkstra BW, Drenth J, Sigler PB.(1985) A comparison of the crystal structures of phospholipase A2 from bovine pancreas and Crotalus atrox venom. J. Biol. Chem. , 260(21):11627-34 Rivas G, Minton AP.(2003) Tracer sedimentation equilibrium: a powerful tool for the quantitative characterization of macromolecular self- and hetero-associations in solution. Biochem .Soc. Trans., 31(Pt 5):1015-9. Roberts MF, Deems RA, Dennis EA.(1977) Spectral perturbations of the histidine and tryptophan in cobra venom phospholipase A2 upon metal ion and mixed micelle binding. J. Biol .Chem. , 252(17):6011-7. Rouault M, Bollinger JG, Lazdunski M, Gelb MH, Lambeau G.(2003) Novel mammalian group XII secreted phospholipase A2 lacking enzymatic activity. Biochemistry.,42(39):11494-503. Schuck P.(2003) On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Anal. Biochem. ,320(1):104-24 Schuck P, Perugini MA, Gonzales NR, Howlett GJ, Schubert D.(2002) Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophys. J. ,82(2):1096-111 Schuck P.(2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. ,78(3):1606-19 Schuck P.(1998) Sedimentation analysis of noninteracting and self-associating solutes using numerical solutions to the Lamm equation. Biophys. J., 75(3):1503-12. Scott DL, White SP, Otwinowski Z, Yuan W, Gelb MH, Sigler PB. (1990) Interfacial catalysis: the mechanism of phospholipase A2. Science. ,250(4987):1541-6. Segelke BW, Nguyen D, Chee R, Xuong NH, Dennis EA.(1998) Structures of two novel crystal forms of Naja naja naja phospholipase A2 lacking Ca2+ reveal trimeric packing. J. Mol .Biol. , 279(1):223-32 Sharkia R, Bonshtien AL, Mizrahi I, Weiss C, Niv A, Lustig A, Viitanen PV, Azem A.(2003) On the oligomeric state of chloroplast chaperonin 10 and chaperonin 20. Biochim Biophys . Acta., 1651(1-2):76-84 Sue SC, Jarrell HC, Brisson JR, Wu WG.(2001) Dynamic characterization of the water binding loop in the P-type cardiotoxin: implication for the role of the bound water molecule. Biochemistry. , 40(43):12782-94. Swaminathan GJ, Holloway DE, Colvin RA, Campanella GK, Papageorgiou AC, Luster AD, Acharya KR.(2003) Crystal structures of oligomeric forms of the IP-10/CXCL10 chemokine. Structure (Camb). ,11(5):521-32 van der Weyden L, Hains P, Morris M, Broady K.(1997) Acanthoxin, a toxic phospholipase A2 from the venom of the common death adder (Acanthophis antarcticus). Toxicon.,35(8):1315-25. Vyas KA, Patel HV, Vyas AA, Wu WG.(1998) Glycosamino-glycans bind to homologous cardiotoxins with different specificity. Biochemistry., 37, 4527-4534 Zimmermann J, Labudde D, Jarchau T, Walter U, Oschkinat H, Ball LJ.(2002) Relaxation, equilibrium oligomerization, and molecular symmetry of the VASP (336-380) EVH2 tetramer. Biochemistry., 41(37):11143-51id NH0925112010 sid 904276 cfn 0 / id NH0925112011 auc 薛光隆 tic 以核磁共振光譜探討臺灣眼鏡蛇心臟毒素V與肝素衍生雙醣的交互作用 adc 吳文桂 ty 碩士 sc 國立清華大學 dp 生物資訊與結構生物研究所 yr 92 lg 中文 pg 114 kwc 心臟毒素 kwc 肝素 kwc 選擇激發 kwc 擴散係數 kwc 硫化 abc 在此論文中將討論臺灣眼鏡蛇毒素V與醣胺素衍生雙醣的交互作用。心臟毒素有毒殺細胞的作用,且能造成大範圍的發炎反應與組織壞死。而醣胺素是心臟蛇毒的可能目標以標定欲攻擊的特定細胞。 tc 1.緒論.....1 1.1心臟毒素簡介 1.2心臟毒素的作用模式 1.3醣胺素簡介 1.4研究目的 2.核磁共振探討蛋白與醣胺素的交互作用方法簡介.....13 2.1化學位移 2.2選擇激發實驗 2.3核磁共振在蛋白與醣胺素的研究 3.材料與方法.....17 3.1純化 3.2核磁共振樣品準備與儀器 3.3光譜處理與化學位移的分析 3.4一維選擇激發實驗 3.5模擬-自動嵌入 3.6擴散係數譜 4.結果.....25 4.1心臟毒素A5的性質 4.2結晶的條件 4.3心臟毒素A5與肝素結合的實驗 4.4不同硫化的雙醣 4.5選擇激發的實驗 4.6擴散係數譜 4.7遠紅外光光譜 4.8自動嵌入與結合位置 5.討論.....31 5.1pH值的對心臟毒素的作用 5.2pH對全硫化雙醣與蛋白結合模式的影響 5.3全硫化肝素雙醣的滴定 5.4不同的肝素雙醣對心臟毒素A5的親合力的改變 5.5局部構形的改變 5.6選擇激發的實驗 5.7自動嵌入與晶體的結構比較 6.結論.....41 7.附錄.....97 7.1中英對照表 7.2英文縮寫表 7.3胺基酸縮寫表 7.4溶液的作用 7.5心臟毒素A5的初步結構 參考文獻.....105rf [1 ] Wen-guey Wu. Cobra Cardiotoxin and Phospholipase A2 as GAGbinding Toxins:On the Path from Structure to Cardiotoxicity and Inflammation. TCM, 1998, 8, 270–278. [2 ] Zhang, L. ; Rozek, A. ; Hancock, R. E. Interaction of Cationic Antimicrobial Peptides with Model Membranes.J. Biol. Chem. 2001, 276, 25714–35722. [3 ] Chien-Min Chiang, Shou-Lin Chang, Hai-jui Lin, and Wen-guey Wu. The Role of Acidic Amino Acid Residues in the Structural Stability of Snake Cardiotoxins. Biochemistry, 1996, 35, 9177–9186. [4 ] Yuh-Ju Sun; Wen-guey Wu; Chien-Min Chiang; A-Yen Hsin; and Chwan-Deng Hsiao. Crystal Structure of Cardiotoxin V from Taiwan Cobra Venom: pH-Dependent Conformational Change and a Novel Membrane-Binding Motif Identified in the Three-Finger Loops of P-Type Cardiotoxin. Biochemistry, 1997, 36, 2403–2413. [5 ] Rex S. and Schwarz, G. Quantitative Studies on the Melittin- Induced Leakage Mechanism of Lipid Vesicles. Biochemistry, 1998, 37, 2336–2345. [6 ] Markin, V. and Albanes, J. P. Membrane Fusion: stalk model revisited.Biophys. J. 2002, 82, 639–712. [7 ] Souhei Mizuguchi; Toru Uyama; Hiroshi Kitagawa; Kazuko H. Nomura; Katsufumi Dejima; Keiko Gengyo-Ando; Shohei Mitani; Kazuyuki Sugahara; Kazuya Nomura. Chondroitin Proteoglycans Are Involved in Cell Division of Caenorhabditis Elegans. Nature 2003, 423, 443–448. [8 ] Peter Teriete; Suneale Banerji; Martin Noble; Charles D. Blundell;; Alan J. Wright; Andrew R. Pickford; Edward Lowe; David J. Mahoney; Markku I. Tammi Jan D. Kahmann; Iain D. Campbell; Anthony J. Day;; and David G. Jackson. Structure of the Regulatory Hyaluronan Binding Domain in the Inflammatory Leukocyte Homing Receptor CD44. Molecular Cell, 2004, 13, 483–496. [9 ] V. S. Raghavendra Rao et al. “Conformation of Carbohydrates.” Published by harwood academic publishers. Available at Library of Academia Sinica, Taiwan. 105 [10 ] Himatkumar V. Patel; Alka A. Vyas; Kavita A. Vyas; Yi-Shiuan Liu; Chien-Min Chiang; Lang-Ming Chi; and Wen-guey Wu. Heparin and Heparan Sulfate Bind to Snake Cardiotoxin. J. Biol. Chem. 1997, 272, 1484–1492. [11 ] Shih-Che Sue; Jean-Robert Brisson; Siu-Cin Chang; Wei-Ning Huang; Shao-Chen Lee; Harold C. Jarrell; and Wen-guey Wu. Structures of Heparin-Derived Disaccharide Bound to Cobra Cardiotoxins: Context-Dependent Conformational Change of Heparin upon Binding to the Rigid Core of the Three-Fingered Toxin. Biochemistry, 2001, 40, 10436–10446. [12 ] Dirk Henrichsen; Beat Ernst; John L. Magnani; Wei-Tong Wang; Bernd Meyer; Thomas Peters. Bioaffinity NMR Spectroscopy: Identification of an E-Selectin Antagonist in a Substance Mixture by Transfer NOE. Angew. Chem. Int. Ed. 1999, 38, 98–102. [13 ] Moriz Mayer; Bernd Meyer. Characterization of Ligand Binding by Saturation Transfer Difference NMR Spectroscopy. Angew. Chem. Int. Ed. 1999, 38, 1784–1788. [14 ] Diaz, M. Dolores ; Berger, Stefan. Studies of the Complexation of Sugars by Diffusion-ordered NMR Spectroscopy. Carbohydra. Res. 2000, 329, 1–5. [15 ] Tomati, Umberto; Belardinelli, Monica; Galli, Emanuela; Iori, Valentina; Capitani, Donatella; et. al. NMR Characterization of the Polysaccharidic Fraction from Lentinula edodes Grown on Olive Mill Waste Waters. Carbohydra. Res. 2004, 339, 1129–1134. [16 ] Amanda S. Altieri, Denise P. Hinton, R. Andrew Byrd. Association of Biomolecular Systems via Pulsed Field Gradient NMR Self-Diffusion Measurements. J. Am. Chem. Soc. 1995, 117, 7566– 7567. [17 ] Eads, C. D. ; Noda, I. Generalized Correlation NMR Spectroscopy. J. Am. Chem. Soc. 2002, 124, 1111–1118. [18 ] Hiroyuki Saito; Padmaja Dhanasekaran; David Nguyen; Faye Baldwin; Karl H.Weisgraber; SuzanneWehrli; Michael C. Phillips; and Sissel Lund-Katz. Characterization of the Heparin Binding Sites in Human Apolipoprotein E. J. Biol. Chem. 2003, 278, 14782–14787. [19 ] Sachchidanand; Olivier Lequin; David Staunton; Barbara Mulloy; Mark J. Forster; Keiichi Yoshida; and Iain D. Campbell. Mapping the Heparin-binding Site on the 13-14F3 Fragment of Fibronectin. J. Biol. Chem. 2003, 277, 50629–50635. [20 ] Barjat; Herve; Morris; Gareth A. ; Swanson; Alistair G. A Three- Dimensional DOSY–HMQC Experiment for the High-Resolution Analysis of Complex Mixtures. J. Magn. Reson. 1998, 131, 131– 138. 106 [21 ] Loening, Nikolaus M. ; Keeler, James; Morris, Gareth A. One- Dimensional DOSY. J. Magn. Reson. 2001, 153, 103–112. [22 ] Lucas, Laura H. ; Otto, William H. ; Larive, Cynthia K. The 2D-JDOSY Experiment: Resolving Diffusion Coefficients in Mixtures. J. Magn. Reson. 2002, 156, 138–145. [23 ] Jayalakshmi, V. ; Rama Krishna, N. CORCEMA refinement of the bound ligand conformation within the protein binding pocket in reversibly forming weak complexes using STD-NMR intensities. J. Magn. Reson. 2004, 168, 36–45. [24 ] Gozansky, Elliott K. ; Gorenstein, David G. DOSY-NOESY: Diffusion-Ordered NOESY. J. Magn. Reson. 1996, 111, 94–96. [25 ] Akiko Hori; Kazuhisa Kumazawa; Takahiro Kusukawa; Dillip Kumar Chand; Makoto Fujita; Shigeru Sakamoto; and Kentaro Yamaguchi. DOSY Study on Dynamic Catenation: Self-Assembly of a Catenane as a Meta-Stable Compound from Twelve Simple Components. Chem. Eur. J. 2001, 7, 4142–4149. [26 ] Patrick Groves; Martin Ohsten Rasmussen; M. Dolores Molero; Eric Samain; F. Javier Ca˜nada ; Hugues Driguez and Jes´us Jim´enez-Barbero; Diffusion Ordered Spectroscopy as a Complement to Size Exclusion Chromatography in Oligosaccharide Analysis. Glycobiology 2004, 14, 451–456. [27 ] Antonio H. Daranas; Jos´e J. Ferna´ndez; Ezequiel Q. Morales; Manuel Norte; and Jos´e A. Gavy´n. Self-Association of Okadaic Acid upon Complexation with Potassium Ion. J. Med. Chem. 2004, 47, 10–13. [28 ] Fioroni, M. ; Diaz, M. D. ; Burger, K. ; Berger, S. Solvation Phenomena of a Tetrapeptide in Water/Trifluoroethanol and Water/ Ethanol Mixtures: A Diffusion NMR, Intermolecular NOE, and Molecular Dynamics Study. J. Am. Chem. Soc. 2002, 124, 7737–7744. [29 ] Rebecca Lever; Clive P. Page. Novel Drug Development Opportunities for Heparin. Nature Reviews Drug Discovery 2002, 1, 140– 148. [30 ] Maurizio Pellecchia; Daniel S. Sem; Kurt W¨uthrich. NMR in Drug Discovery. Nature Reviews Drug Discovery 2002, 1, 211–219. [31 ] Jocelyne Fiaux; Eric B. Bertelsen; Arthur L. Horwich; Kurt W¨uthrich. NMR Analysis of A 900K GroEL-GroES Complex. Nature 2002, 418, 207–211. [32 ] Sarah Tomlin Nuclear Polarization: More Spins for Protons. Nature 2000, 403, 151. 107 [33 ] Bernd Meyer and Thomas Peters. NMR Spectroscopy Techniques for Screening and Identifying Ligand Binding to Protein Receptors. Angew. Chem. Int. Ed. 2003, 42, 864–890. [34 ] Ishan Capila; Robert J. Linhardt. Heparin-Protein Interactions. Angew. Chem. Int. Ed. 2002, 41, 390–412. [35 ] Mine, S. ; Yamazaki, T. ; Miyata, T. ; Hara, S. ; Kato, H. Structural Mechanism for Heparin-Binding of the Third Kunitz Domain of Human Tissue Factor Pathway Inhibitor. Biochemistry 2002, 41, 78–85. [36 ] Johnson, M. A. ; Rotondo, A. ; Pinto, B. M. NMR Studies of the Antibody-Bound Conformation of a Carbohydrate-Mimetic Peptide. Biochemistry 2002, 41, 2149–2157. [37 ] Johnson, Margaret A. ; Pinto, B. Mario. NMR Spectroscopic and Molecular Modeling Studies of Protein-Carbohydrate and Protein- Peptide Interactions. Carbohydra. Res. 2004, 339, 907–928. [38 ] Chevalier, Franck; Lucas, Ricardo; Angulo, Jesus; Martin-Lomas, Manuel; Nieto, Pedro M. The Heparin–Ca2+ Interaction: the In- fluence of the O-sulfation Pattern on Binding. Carbohydra. Res. 2004, 339, 975–983. [39 ] Colombo, Giorgio; Meli, Massimiliano; Canada, Javier; Asensio, Juan Luis; Jimenez-Barbero, Jes´us Toward the Understanding of the Structure and Dynamics of Protein-carbohydrate Interactions: Molecular Dynamics Studies of the Complexes Between Hevein and Oligosaccharidic Ligands. Carbohydra. Res. 2004, 339, 985–994. [40 ] Medek, A. ; Hajduk, P. J. ; Mack, J. ; Fesik, S. W. The Use of Differential Chemical Shifts for Determining the Binding Site Location and Orientation of Protein-Bound Ligands. J. Am. Chem. Soc. 2000, 122, 1241–1242. [41 ] Kuhn LA; Griffin JH; Fisher CL; Greengard JS; Bouma BN; Espana F; Tainer JA. Elucidating the Structural Chemistry of Glycosaminoglycan Recognition by Protein C Inhibitor. Proc. Natl. Acad. Sci. , 199, 21, 8506–8510. [42 ] Liu S; Zhou F; Hook M; Carson DD. A Heparin-Binding Synthetic Peptide of Heparin/Heparan Sulfate-Interacting Protein Modulates Blood Coagulation Activities. Proc. Natl. Acad. Sci. , 1997, 94, 1739–1744. [43 ] Michael Gottschalk; Kandadai Venu; and Bertil Halle. Protein Self-Association in Solution: The Bovine Pancreatic Trypsin Inhibitor Decamer. Biophysical Journal 2003, 84, 3941–3958. 108 [44 ] Zuccaccia, C. ; Stahl, N. G. ; Macchioni, A. ; Chen, M. -C. ; Roberts, J. A. ; Marks, T. J. NOE and PGSE NMR Spectroscopic Studies of Solution Structure and Aggregation in Metallocenium Ion-Pairs. J. Am. Chem. Soc. 2004, 126, 1448–1464. [45 ] Hajduk, P. J. ; Mack, J. C. ; Olejniczak, E. T. ; Park, C. ; Dandliker, P. J. ; Beutel, B. A. SOS-NMR: A Saturation TransferNMRBased Method for Determining the Structures of Protein-Ligand Complexes. J. Am. Chem. Soc. 2004, 126, 2390–2398. [46 ] Markley, John L. ; Bax, Ad; Arata, Yoji; Hilbers, C. W. ; Kaptein, Robert; Sykes, Brian D. ; Wright, Peter E. and Kurt W¨uthrich. Recommendations for the Presentation of NMR Structures of Proteins and Nucleic Acids. [47 ] Ê CÉiŸƒ-DƒÖ A3Dòv“ý"Öµ‾Ó X-ray 3D !Z ÀM×çî=d, 2004. [48 ] Huang, C. C. , Couch, G. S. , Pettersen, E. F. , and Ferrin, T. E.`‘Chimera: An Extensible Molecular Modeling Application Constructed Using StandardComponents.“ Pacific Symposium on Biocomputing1996, 1:724 . http://www.cgl.ucsf.edu/chimera. [49 ] T. D. Goddard and D. G. Kneller, SPARKY 3, University of California, San Francisco. [50 ] Peter G¨untert, Christian Mumenthaler and Torsten Herrmann. DYANA Manual. Available at web site: http://gwagner.med.harvard.edu/nmr/wwwsoftlib/cyana/DyanaManual.pdf [51 ] Using ”Sparky” to evaluate volumes of peaks in 2-D spectra. http://www.cm.utexas.edu/hoffman/sparkyintegrate.pdf. http://www.cm.utexas.edu/hoffman [52 ] Herrmann, Torsten; G¨untert, Peter; W¨uthrich. Protein NMR Structure Determination with Automated NOE Assignment Using the New Software CANDID and the Torsion Angle Dynamics Algorithm DYANA. J. Mol. Biol. 2002, 319, 209–227. [53 ] Enrico Morelli. 2004. http://www.cerm.unifi.it/Sparky/extension.html. [54 ] ÏÏf ]t, www.wjxy.edu.cn/ jpkc/wl/sy/part0/sect03.doc. [55 ] ˝2p, 2004, ÀMÞ·çÍÛ±4õð [56 ] ±¬ |4°!|Ê-DƒÖ!Z£º4Š?,5iH ÀM×ç² =d, 1996. [57 ] Chien-Min Chian, Kun-Yi Chien, Hai-jui Lin, Ji-Fu Lin, Hsien- Chi Yeh, Pei-li Ho, and Wen-gueyWu Conformational Change and Inactivation of Membrane Phospholipid-Related Activity of Cardiotoxin V from Taiwan Cobra Venom at Acidic pH. Biochemistry , 1996, 35, 9167–9176 109 [58 ] Chien-Min Chiang; Kun-Yi Chien; Hai-jui Lin; Ji-Fu Lin; Hsien-Chi Yeh; Pei-li Ho; and Wen-guey Wu. Conformational Change and Inactivation of Membrane Phospholipid-Related Activity of Cardiotoxin V from Taiwan Cobra Venom at Acidic pH.Biochemistry, 1996,35, 9167–9176. [59 ] Arun K. Singhal; Kun-Yi Chien; Wen-guey Wu ; and Gordon S . Rule. Solution Structure of Cardiotoxin V from Naja naja atra. Biochemistry, 1993, 32, 8036–8044. [60 ] Kuschert; G. S. V. ; Coulin, F. ; Power, C. A. ; Proudfoot, A. E. I. ; Hubbard, R. E. ; Hoogewerf,A. J. ; Wells, T. N. C. .Glycosaminoglycans Interact Selectively with Chemokines and Modulate Receptor Binding and Cellular Responses. Biochemistry 1999, 38, 12959–12968. [61 ] Hakansson, S. ; Caffrey, M. Structural and Dynamic Properties of the HIV-1 Tat Transduction Domain in the Free and Heparin- Bound States. Biochemistry 2003, 42, 8999–9006. [62 ] Kumar, R. ; Bose, P. Development and Experimental Validation of the Model of a Continuous-Flow Countercurrent Ozone Contactor. Biochemistry 2004, 43, 1418–1429. [63 ] Giragossian, C. ; Schaschke, N. ; Moroder, L. ; Mierke, D. F. Conformational and Molecular Modeling Studies of β-Cyclodextrin- Heptagastrin and the Third Extracellular Loopof the Cholecystokinin 2 Receptor. Biochemistry 2004, 43, 2724–2731. [64 ] Bhunia, Anirban; Jayalakshmi, V. ; Benie, Andrew J. ; Schuster, Oliver; Kelm, Sorge; Rama Krishna, N. Carbohydra. Res. 2004, 339, 259–267. [65 ] Johnson, M. A. ; Jensen, M. T. ; Svensson, B. ; Pinto, B. M. Selection of a High-Energy Bioactive Conformation of a Sulfonium- Ion Glycosidase Inhibitor by the Enzyme Glucoamylase G2. J. Am. Chem. Soc. 2003, 125, 5663–5670. [66 ] Francis C. Peterson; E. Sonay Elgin; Timothy J. Nelson; Fuming Zhang; Theresa J. Hoeger; Robert J. Linhardt; and Brian F. Volkman. Identification and Characterization of a Glycosaminoglycan Recognition Element of the C Chemokine Lymphotactin. J. Biol. Chem. 2004, 279, 12598–12604. [67 ] Farhad Forouhar; Wei-Ning Huang; Jyung-Hurng Liu; Kun-Yi Chien; Wen-guey Wu; and Chwan-Deng Hsiao. Structural Basis of Membrane-induced Cardiotoxin A3 Oligomerization. J. Biol. Chem. 2003, 278, 21980–21988. J. Mol. Biol. 1998, 280, 933–52. [68 ] Doreleijers, Jurgen F. ; Rullmann, Johan A. C. ; Kaptein, Robert. Quality Assessment of NMR Structures: A Statistical Survey. J. Mol. Biol. 1998, 281, 149–164. 110 [69 ] Scheuermann, Thomas H. ; Lolis, Elias; Hodsdon, Michael E. Tertiary Structure of Thiopurine Methyltransferase from Pseudomonas syringae, a Bacterial Orthologue of a Polymorphic, Drug- Metabolizing Enzyme. J. Mol. Biol. 2003, 333, 573–585. [70 ] London, Robert E. Theoretical Analysis of the Inter-Ligand Overhauser Effect: A New Approach for Mapping Structural Relationships of Macromolecular Ligands. J. Magn. Reson. 1999, 141, 301– 311. [71 ] Dixon, Ann M. ; Widmalm, Goran; Bull, T. E. Modified GOESY in the Analysis of Disaccharide Conformation. J. Magn. Reson. 2000, 147, 266–272. [72 ] Guido Serini; Donatella Valdembri; Sara Zanivan; GiuliaMorterra; Constanze Burkhardt;Francesca Caccavari; Luca Zammataro; Luca Primo; Luca Tamagnone; Malcolm Logan; Marc Tessier- Lavigne;Masahiko Taniguchi; Andreas W. Pchel; Federico Bussolino. Class 3 Semaphorins Control Vascular Morphogenesis by Inhibiting Integrin Function. Nature 2003, 424, 391–397. [73 ] Kevin Pethe; Sylvie Alonso; Franck Biet; Giovanni Delogu; Michael J. Brennan; Camille Locht; Franco D. Menozzi. The Heparin-Binding Haemagglutinin of M. Tuberculosis Is Required for Extrapulmonary Dissemination. Nature 2001, 412, 190–194. [74 ] Federica Castellani; Barth van Rossum; Annette Diehl; Mario Schubert; Kristina Rehbein; Hartmut Oschkinat. Structure of A Protein Determined by Solid-State Magic-Angle-Spinning NMR Spectroscopy. Nature 2002, 420, 98–102. [75 ] David G. Morris; Xiaozhu Huang; Naftali Kaminski; Yanli Wang; Steven D. Shapiro; Gregory Dolganov;Adam Glick; Dean Sheppard. Loss of Integrin αvβ6-Mediated TGF-β Activation Causes Mmp12-Dependent Emphysema. Nature 2003, 422, 169–173. [76 ] Mario Halic; Thomas Becker; Martin R. Pool; Christian M. T. Spahn; Robert A. Grassucci; Joachim Frank; Roland Beckmann. Structure of the Signal Recognition Particle Interacting with the Elongation-Arrested Ribosome. Nature 2004, 427, 808–814. [77 ] Robert Langer; David A. Tirrell. Designing Materials for Biology and Medicine. Nature 2004, 428, 487–492. [78 ] Jamie Rossjohn; Roberto Cappai; Susanne C. Feil; Anna Henry; William J. McKinstry;Denise Galatis; Lars Hesse; Gerd Multhaup; Konrad Beyreuther; Colin L. Masters; Michael W. Parker. Crystal Structure of the N-terminal, Growth Factor-Like Domain of Alzheimer Amyloid Precursor Protein. Nature Structural Biology 1999, 6, 327–331. 111 [79 ] JianFeng Chen; Azucena Salas; Timothy A Springer. Bistable Regulation of Integrin Adhesiveness by Bipolar Metal Ion Cluster. Nature Structural Biology 2003, 10, 995–1001. [80 ] Natalia Beglova; Stephen C. Blacklow; Junichi Takagi; Timothy A. Springer. Cysteine-Rich Module Structure Reveals a Fulcrum for Integrin Rearrangement upon Activation. Nature Structural Biology 2003, 9, 282–287. [81 ] Wei-Lien Chuang; Marie Dvorak Christ; and Dallas L. Rabenstein. Determination of the Primary Structures of Heparin- and Heparan Sulfate-Derived Oligosaccharides Using Band-Selective Homonuclear-Decoupled Two-Dimensional 1H NMR Experiments. Anal. Chem. 2001, 73, 2310–2316 [82 ] Jonathan A. Lukin and Chien Ho. The Structure-Function Relationship of Hemoglobin in Solution at Atomic Resolution. Chem. Rev. 2004, 104, 1219–1230. [83 ] Katsuhiko Minoura; Tian-Ming Yao; Koji Tomoo; Miho Sumida; Masahiro Sasaki; Taizo Taniguchi; and Toshimasa Ishida. Different Associational and Conformational Behaviors between the Second and Third Repeat Fragments in the Tau Microtubule-Binding Domain. Eur. J. Biochem. 2004, 271, 545–552. [84 ] Maurizio Pellecchia. ; David Meininger; Qing Dong; Edcon Chang; Rick Jack & Daniel S. Sem. NMR-Based Structural Characterization of Large Protein-Ligand Interactions. Journal of Biomolecular NMR, 2002, 22, 165–173. [85 ] Jong W. Yu; Jeannine M. Mendrola; Anjon Audhya; Shaneen Singh; David Keleti; Daryll B. DeWald; Diana Murray; Scott D. Emr; and Mark A. Lemmon. Genome-Wide Analysis of Membrane Targeting by S. cerevisiae Pleckstrin Homology Domains. Molecular Cell, 2004, 14, 677–688,. [86 ] Peter G¨untert. Automatic NMR Structure Calculation. NMR Workshop, 2004 in Academia Sinica, Taiwan ,powerpoint to pdf file. [87 ] Chi-Fon Chang. Overview of Facility Software for BiomolecularNMR. NMR Workshop, 2004 in Academia Sinica, Taiwan ,powerpoint to pdf file. [88 ] Christian Blouin; Davin Butt; Andrew James Roger. Rapid Evolution in Conformational Space: A Study of Loop Regions in A Ubiquitous GTP Binding Domain. Protein Science, 2004, 13, 608– 616. [89 ] Suzanne B. Shuker; Philip J. Hajduk; Robert P. Meadows; Stephen W. Fesik. Discovering High-Affinity Ligands for Proteins: SAR by NMR. Science, 274, 1531–1534. 112 [90 ] Luigi Calzolai; Dominikus A. Lysek; Peter G¨untert; Christine von Schroetter; Roland Riek; Ralph Zahn; and Kurt W¨uthrich. NMR Structures of Three Single-Residue Variants of the Human Prion Protein. Proc. Natl. Acad. Sci. , 2000, 97, 8340–8345. [91 ] Lixin Ma; Christopher T. Jones; Teresa D. Groesch; Richard J. Kuhn; and Carol Beth Post. Solution Structure of Dengue Virus Capsid Protein Reveals Another Fold. Proc. Natl. Acad. Sci. , 2004, 101, 3414–3419. [92 ] S´ebastien J. F. Vincent; Catherine Zwahlen; Carol Beth Post; John W. Burgner; and Geoffrey Bodenhausen. The Conformation of NAD+ Bound to Lactate Dehydrogenase Determined by Nuclear Magnetic Resonance with Suppression of Spin Diffusion. Proc. Natl. Acad. Sci. , 1997, 94, 4383–4388. [93 ] Robert McDermott;; Andreas H. Trabesinger; Michael M¨uck; Erwin L. Hahn; Alexander Pines; John Clarke. Liquid-State NMR and Scalar Couplings in Microtesla Magnetic Fields. Science, 2002, 295, 2247–2249. [94 ] John Cavanagh et al. “Protein NMR Spectroscopy” Published by Academic Press. Available at NTHU Library. [95 ] Kurt W¨uthrich. “NMR of Proteins and Nucleic Acids” Published by Wiley-Interscience. Available at NTHU Library. [96 ] Ray Freeman. “A Handbook of Nuclear Magnetic Resonance” 2nd Edition. Published by Longman. Available at NTHU Library. [97 ] Peter G¨untert et al. “Workshop oh High Troughput NMR Structure Determination of Proteins in the Post-Genomic Era” Workshop data & files. Available at IBMS of Academia Sinica, Taiwan. [98 ] Chien-Min Chiang; Shou-Lin Chang; Hai-jui Lin; and Wen-guey Wu.The Role of Acidic Amino Acid Residues in the Structural Stability of Snake Cardiotoxins.Biochemistry, 1996, 35, 9177–9186. [99 ] Shih-Che Sue; P. K. Rajan; Ting-Shou Chen; Chang-Huain Hsieh; and Wen-guey Wu. Action of Taiwan Cobra Cardiotoxin on Membranes: Binding Modes of a β-Sheet Polypeptide with Phosphatidylcholine Bilayers. Biochemistry, 1997, 36, 9826–9836. [100 ] Kavita A. Vyas; Himatkumar V. Patel; Alka A. Vyas; and Wenguey Wu. Glycosaminoglycans Bind to Homologous Cardiotoxins with Different Specificity. Biochemistry, 1998, 37, 4527–4534. [101 ] Shih-Che Sue; Harold C. Jarrell; Jean-Robert Brisson; and Wenguey Wu. Dynamic Characterization of the Water Binding Loop in the P-Type Cardiotoxin: Implication for the Role of the Bound Water Molecule. Biochemistry, 2001, 40, 12782–12794. 113 [102 ] Chung-Chuan Lo; Jui-Hung Hsu; You-Cheng Sheu; Chein-Min Chiang; Wen-guey Wu; Wunshain Fann; and Pei-Hsi Tsao. Effect of D57N Mutation on Membrane Activity and Molecular Unfolding of Cobra Cardiotoxin. Biophysical Journal, 1998, 75, 2382–2388. [103 ] Yi-Hung Lin; Shao-Chen Lee; Payne Y. Chang; P. K. Rajan; Shih- Che Sue; Wen-guey Wu. Heparin Binding to Cobra Basic Phospholipase A2 Depends on Heparin Chain Length and Amino Acid Specificity. FEBS Letters, 1999, 453, 395–399. [104 ] Kun-Yi Chien; Wai-Ning Huang; Jau-Hua Jean; and Wen-guey Wu. Fusion of Sphingomyelin Vesicles Induced by Proteins from Taiwan Cobra (Naja naja atra) Venom. J. Biol. Chem. , 1991, 266, 3252–3259. [105 ] Kun-Yi Chien; Chien-Min Chian; You-Cheng Hseu; Alka A. Vyas; Gordon S . Rule; and Wen-guey Wu.Two Distinct Types of Cardiotoxin as Revealed by the Structure and Activity Relationship of Their Interaction with Zwitterionic Phospholipid Dispersions. J. Biol. Chem. , 1994, 269, 14473–14483. [106 ] Alka A. Vyas; Jiann-Jong Pan; Himatkumar V. Patel; Kavita A. Vyas; Chien-Min Chiang; You-Cheng Sheu; Jenn-Kang Hwang; and Wen-guey Wu. Analysis of Binding of Cobra Cardiotoxins to Heparin Reveals a New b-Sheet Heparin-binding Structural Motif. J. Biol. Chem. , 1997, 272, 9661–9670. [107 ] Shih-Che Sue; Kun-Yi Chien; Wei-Ning Huang; Joseph K. Abraham; Kuan-Ming Chen; and Wen-guey Wu. Heparin Binding Stabilizes the Membrane-bound Form of Cobra Cardiotoxin. J. Biol. Chem. , 2002, 277, 2666–2673.id NH0925112011 sid 914291 cfn 0 / id NH0925112012 auc 謝怡慧 tic 結合傅氏紅外線光譜儀及電腦模擬計算研究眼鏡蛇磷脂水解酵素A2與細胞膜之間的作用 adc 吳文桂 ty 碩士 sc 國立清華大學 dp 生物資訊與結構生物研究所 yr 92 lg 中文 pg 66 kwc 衰減全反射 kwc 磷脂水解酵素A2 kwc 傅氏轉換紅外線光譜 kwc 多層膜 kwc 二級結構 abc 台灣眼鏡蛇分泌的毒素主要可以分成三大種;神經毒素(Neurotoxin)、磷脂水解酵素A2(Phospholipase A2)、心臟毒素(Cardiotoxin)。此三種毒液除了神經毒素具有特殊蛋白質受體外,磷脂水解酵素A2及心臟毒素被認為毒性來源及主要的作用位置是細胞膜磷脂質。本論文主要針對磷脂水解酵素A2與細胞膜作用為主要研究目標。 tc 第一篇 緒論…………………………………… 1 第一節 蛇毒簡介……………………………………………………… 1 第二節 PLA2的介紹…………………………………………………… 5 第三節 細胞膜簡介…………………………………………………… 10 附圖……………………………………………………………………… 13 第二篇 核心實驗技術簡介…………………… 20 第一節 何謂傅氏轉換紅外線光譜…………………………………… 20 第二節 生物分子之紅外線吸收光譜帶……………………………… 21 第三節 霍氏自我去迴旋……………………………………………… 23 第四節 衰減全反射(ATR)………………………………………… 25 附圖……………………………………………………………………… 30 第三篇 實驗結果……………………………… 42 第一節 前言…………………………………………………………… 42 第二節 實驗材料及技術……………………………………………… 43 第三節 結果…………………………………………………………… 47 第四節 討論…………………………………………………………… 50 附圖……………………………………………………………………… 52 第四篇 參考資料……………………………… 60rf 1. Ying Lin, Robert Nielsen, Diana Murray, Wayne L. Hubbell,Colin Mailer, Bruce H. Robinson,Michael H. Gelb(1998) . Docking Phospholipase A2 on Membranes Using Electrostatic Potential–Modulated Spin Relaxation Magnetic Resonance. Science 279 , 1925-1929 2. Yi-Hung Lin, Wei-Ning Huang, Shao-Chen Lee, Wen-guey Wu(2000) . Heparin reduces the a-helical content of cobra basic phospholipase A2 and promotes its complex formation. International Journal of Biological Macromolecules 27, 171–176 3. Wei-Ning Huang, Shih-Che Sue, Da-Shin Wang, Po-Long Wu, and Wen-guey Wu(2003). Peripheral Binding Mode and Penetration Depth of Cobra Cardiotoxin on Phospholipid Membranes as Studied by a Combined FTIR and Computer Simulation Approach. Biochemistry 42, 7457-7466 4. Farhad Forouhar, Wei-Ning Huang, Jyung-Hurng Liu_, Kun-Yi Chien, Wen-guey Wu,and Chwan-Deng Hsiao(2003). Structural Basis of Membrane-induced Cardiotoxin A3 Oligomerization. J.Biol.Chem. 278, No. 24, 21980–21988 5. Suren A. Tatulian1, Rodney L. Biltonen2 and Lukas K. Tamm1(1997). Structural Changes in a Secretory Phospholipase A2 Induced by Membrane Binding: a Clue to Interfacial Activation. J. Mol. Biol. 268, 809-815 6. R. Manjunatha Kini(2003). Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon 42 , 827–840 7. Motonori Ohnoa,, Takahito Chijiwaa, Naoko da-Uedaa,Tomohisa Ogawab, Shosaku Hattoric(2003). Molecular evolution of myotoxic phospholipases A2 from snake venom. Toxicon 42 ,841–854 8. Lucimara Chioatoa, Richard J. Wardb(2003). Mapping structural determinants of biological activities in snake venom phospholipases A2 by sequence analysis and site directed mutagenesis. Toxicon 42 , 869–883 9. Robert V. Stahelin and Wonhwa Cho(2001). Differential Roles of Ionic, Aliphatic, and Aromatic Residues in Membrane-Protein Interactions: A Surface Plasmon Resonance Study on Phospholipases A2. Biochemistry 40, 4672-4678 10. Marius Sumandea, Sudipto Das, Claudia Sumandea, and Wonhwa Cho(1998). Roles of Aromatic Residues in High Interfacial Activity of naja atra Phospholipase A2. Biochemistry 38, 16290-16297 11. Ruth M. KramerS, Catherine Hession, Berit Johansens, Gretchen Hayes, Paula McGray,E. Pingchang Chow, Richard Tizard, and R. Blake Pepinsky(1989). Structure and Properties of a Human Non-pancreatic Phospholipase A2. J.Biol.Chem 264, 5768-5775 12. Yana Snitko, Rao S. Koduri,§ Sang K. Han, Roohaida Othman,| Sharon F. Baker,| Barbara J. Molini,§ David C. Wilton,| Michael H. Gelb,,§and Wonhwa Cho. Mapping the Interfacial Binding Surface of Human Secretory Group IIaPhospholipase A2. Biochemistry 36, 14325-14333 13. William J. Brown, Kimberly Chambers and Anne Doody(1997). Phospholipase A2 (PLA2) Enzymes in Membrane Trafficking: Mediators of Membrane Shape and Function. TRAFFIC 4, 214–221 14. 李遠鵬 (1975) 科儀產品新知. 72, 29~35. 15. Tamm L.K. and Tatulian S.A. (1997) Infrared spectroscopy of proteins and peptides in lipid bilayers. Quart. Rev.Biophy. 30, 365-429. 16. Krimm, S. and Bandekar, J. (1986) Vibrational spectroscopy and conformation of peptides, polypeptides, and protein. Adv. Protein Chem. 38, 181-365. 17. Surewicz, W. K. Mantsch, H. H. and Chapman, D. (1993) Determination of protein sccondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry 32, 389-394. 18. de Jongh, H. H. J., Goormaghtigh, E. and Ruysschaert, J.-M. (1997) Amide-protein exchange of water-soluble proteins of different structural classes studied at the submolecular level by infrared spectroscopy. Biochemistry 36, 13603-13610. 19. Raussens, V., Narayanaswami, V., Gooemaghtigh, E., Ryan, R. O. and Ruysschaert, J.-M. (1996) Hydrogen/Deuterium exchange kinetics of apolipophorin-III in lipid-free and phospholipid-bound states. J. Biol. Chem. 271, 23089-23095. 20. Rahmelow, K., Hubner, W. and Ackermann, T. (1998) Infrared absorbances of protein side chains. Analy. Biochem. 257, 1-11. 21. Dong, A., Huang, P. and Caughey, W.S. (1990) Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry29, 3303-3308. 22. Susi, H. and Byler, D. M. (1986) Resolution-enhanced Fourier transform infrared spectroscopy of enzymes. Methods Enzymol. 130, 290-311. 23. James, D. I., Maddams, W. F. and Tooke, P. B. (1987) The use of Fourier deconvolution in infrared spectroscopy. Part I: studies with synthetic single-peak system. Appl. Spectrosc. 41, 1362-1370. 24. Moffatt, D. J. and Mantsch, H. H. (1992) Fourier resolution enhancement of infrared spectral data. Methods Enzymol. 210, 192-200. 25. Goormaghtigh, E., Raussens, V. and Ruysschaert, J.-M. (1999) Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim. Biophys. Acta. 1422, 105-185. 26. Harrick N. J. (1979) Internal reflection spectroscopy. Ossining, New York. 27. Marsh, D., Muller, M. and Schmitt, F.J. (2000) Orientation of the infrared transition moments for an alpha-helix. Biophys J. 78, 2499-510. 28. Marsh, D. (1997) Dichroic ratios in polarized Fourier transform infrared for nonaxial symmetry of beta-sheet structures. Biophys. J. 72, 2710-2718. 29. Lafrance, C.-P., Nabet, A., Prud’homme, R. E. and Pezolet, M. (1995) On the relationship between the order parameter and the shape of orientation distributions. Can. J. Chem. 73, 1497-1505. 30. Picard, F., Buffeteau, T., Desbat, B., Auger, M. and Pezolet, M. (1999) Quantitative orientation measurements in thin lipid films by attenuated total reflection infrared spectroscopy. Biophys. J. 76, 539-551. 31. Ter-Minassian-Saraga, L., Okamura, E., Umemura, J. and Takenaka, T. (1988) Fourier transform infrared-attenuated total reflection spectroscopy of hydration of dimyristoylphosphatidylcholine multibilayers. Biochim. Biophys. Acta. 946, 417-423. 32. Okamura, E., Umemura, J. and Takenaka, T. (1985) Fourier transform-infrared-attenuated-total-reflection-spectr-ofdipalmitoylphosphatidylcholine monomolecular films. Biochim. Biophys. Acta. 812, 139-146. 33. Hubner, W. and Mantsch, H.H. (1991) Orientation of specifically 13C=O labeled phosphatidylcholine multilayers from polarized attenuated total reflection FT-IR spectroscopy. Biophys. J. 59, 1261-72. 34. Okamura, E., Umemura, J. and Takenaka, T. (1986) Orientation of gramicidin D incorporated into phospholipid multibilayers: a Fourier transform infrared-attenuated total reflection spectroscopic study. Biochim. Biophys. Acta. 856, 68-75. 35. Frey, S., Tamm, L.K. (1991) Orientation of melittin in phospholipid bilayers. A polarized attenuated total reflection infrared study. Biophys. J. 60, 922-930. 36. Marsh, D. (1998) Nonaxiality in infrared dichroic ratios of polytopic transmembrane proteins. Biophys. J. 75, 354-358. 37. 洪水根,汪德耀 (1997)膜分子生物學, 水產出版社. 38. Petty, M. C. (1996) Langmuir-Blodgett films. An introduction. Cambridge University press. 39. Jeanne F’rigent-Dachary . Marie Claire Boffa . Michel R. Boisseau . Jean Dufourcql(1980) . Snake Venom Phospholipases A . J.Biol.Chem 255,7734-7739 40. Verheij HM,Slotboom AJ and de HAAs GH. (1981) Structure and function of phospholipase A2.Rev Physiol Biochem Pharmac 91, 91-203 41. Dreher ML and Hanley MR.(1998) Multiple modes of protein kinase C regulation and their significance in signaling . Trends Pharmac Sci 9, 114-115 42. Oishi K, Raynor RL,Charp PA and Kuo JF.(1988) Regulation of protein kinase C by lysophospholipids . Potenrial role in signal transduction . J Biol Chem 263, 6865-6871 43. Jain MK and Berg OG. (1989) The kinetics of interfacial catalysis by phospholipase A2 and regulation of interfacial activation: hopping versus scooting. Biochim. Biophys. Acta.1002, 127-156 44. Sevanian A, Wratten ML , Mcleod LL and Kim E (1988) Lipid peroxidation and phospholipase A2 activity in liposomes compose composed of unsaturated phospholipids : a structure basis for enzyme activation Biochim. Biophys. Acta.961, 316-327 45. Chang J ,Musser JH and McGregor H.(1987) Phospholipase A2 :fuction and Pharmacological regulation . Biochem Pharmac 36, 2429-2436 46. Scheuer W.(1989) Phospholipase A2-regulation and inhibition. Klin Woch 67, 153-159 47. Renetseder R, Brunie S, Dukstra BW, Drenth J and Sigler PB.(1985) A comparison of the crystal structures of phospholipase A2 from bovine pancrease and Crotalus atrox venom J.Biol.Chem 260, 11627-11634 48. Teixeira CF, Landucci EC, Antunes E, Chacur M, Cury Y(2003). Inflammatory effects of snake venom myotoxic phospholipases A2 Toxicon 42(8), 947-62 49. Lomonte B, Angulo Y, Calderon L(2003). An overview of lysine-49 phospholipase A2 myotoxins from crotalid snake venoms and their structural determinants of myotoxic action Toxicon. 42(8), 885-901 50. Kini RM(2003). Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon. 42(8), 827-40 51. Wang N, Liu Y, Xie MX, Cui ZJ(2003). Changes in plasma membrane protein structure after photodynamic action in freshly isolated rat pancreatic acini. An FTIR study. J Photochem Photobiol B. 71(1-3), 27-34. 52. Tatulian SA(2001). Toward understanding interfacial activation of secretory phospholipase A2 (PLA2): membrane surface properties and membrane-induced structural changes in the enzyme contribute synergistically to PLA2 activation. Biophys J. 80(2) ,789-800 53. Grandbois M, Desbat B, Salesse C(2000). Monitoring of phospholipid monolayer hydrolysis by phospholipase A2 by use of polarization-modulated Fourier transform infrared spectroscopy. Biophys Chem. 88(1-3) ,127-35. 54. Yu L, Ternansky RJ, Crisologo JF, Chang J, Baker BL, Coutts SM(1998). Carbonothioate phospholipids as substrate for a spectrophotometric assay of phospholipase A2. Anal Biochem. 265(1), 35-41. 55. Carrier D, Bou Khalil M, Kealey A(1998). Modulation of phospholipase A2 activity by aminoglycosides and daptomycin: a Fourier transform infrared spectroscopic study. Biochemistry. 37(20), 7589-97. 56. Kennedy DF, Slotboom AJ, de Haas GH, Chapman D(1990). A Fourier transform infrared spectroscopic (FTIR) study of porcine and bovine pancreatic phospholipase A2 and their interaction with substrate analogues and a transition-state inhibitor. Biochim Biophys Acta. 1040(3), 317-26. 57. de Jongh HH, Goormaghtigh E, Ruysschaert JM(1997). Amide-proton exchange of water-soluble proteins of different structural classes studied at the submolecular level by infrared spectroscopy. Biochemistry. 36(44), 13603-10. 58. Stahelin RV, Cho W(2001). Differential roles of ionic, aliphatic, and aromatic residues in membrane-protein interactions: a surface plasmon resonance study on phospholipases A2. Biochemistry. 40(15), 4672-8. 59. Ahmed T, Kelly SM, Price NC, Lawrence AJ. Activation of phospholipase A(2) by long chain fatty acyl groups involves a novel unstable linkage. J Biochem (Tokyo). 127(5), 871-5. 60. Sumandea M, Das S, Sumandea C, Cho W(1999). Roles of aromatic residues in high interfacial activity of Naja naja atra phospholipase A2. Biochemistry. 38(49) 16290-7. 61. Fletcher JE, Jiang MS(1998). LYS49 phospholipase A2 myotoxins lyse cell cultures by two distinct mechanisms. Toxicon. 36(11), 1549-55 62. Thwin MM, Gopalakrishnakone P(1998). Snake envenomation and protective natural endogenous proteins: a mini review of the recent developments (1991-1997). Toxicon 36(11), 1471-82. 63. Pan FM, Chao SC, Wu SH, Chang WC, Chiou SH(1998). Characterization of phospholipase A2 (PLA2) from Taiwan Cobra: isoenzymes and their site-directed mutants. Biochem Biophys Res Commun. 250(1), 154-60. 64. Chang LS, Chou L, Lin SR, Chang CC(1996). The interaction of 8-anilinonaphthalene-1-sulfonate with His-47 of Taiwan cobra phospholipase A2 perturbing by the binding of calcium ion. Biochem Mol Biol Int. 39(2), 335-42. 65. Chang LS, Wen EY, Chang CC(1996). The essentiality of His-47 and the N-terminal region for the binding of 8-anilinonaphthalene-1-sulfonate with Taiwan cobra phospholipase A2. J Protein Chem. 15(3), 255-60 66. Fletcher JE, Jiang MS(1995). Presynaptically acting snake venom phospholipase A2 enzymes attack unique substrates. Toxicon. 33(12). 1565-76. 67. Rodrigues-Simioni L, Prado-Franceschi J, Cintra AC, Giglio JR, Jiang MS, Fletcher JE(1995). No role for enzymatic activity or dantrolene-sensitive Ca2+ stores in the muscular effects of bothropstoxin, a Lys49 phospholipase A2 myotoxin. Toxicon. 33(11), 1479-89. 68. Tani T, Fujii S, Inoue S, Ikeda K, Iwama S, Matsuda T, Katsumura S, Samejima Y, Hayashi K(1995). Binding mode of phospholipase A2 with a new type of phospholipid analog having an oxazolidinone ring. J Biochem (Tokyo). 117(1), 176-82 69. Fujii S, Tani T, Hada S, Inoue S, Ikeda K, Iwama S, Katsumura S, Samejima Y, Omori-Satoh T, Takasaki C, et al(1994). Role of Ca2+ in the binding of phospholipase A2 with a monomeric substrate and with its amide-type analog. J Biochem (Tokyo). 116(4), 870-6. 70. Chang LS, Kuo KW, Chang CC(1993). Identification of functional involvement of tryptophan residues in phospholipase A2 from Naja naja atra (Taiwan cobra) snake venom. Biochim Biophys Acta. 1202(2), 216-20. 71. Chang LS, Yang CC(1993). Structural determinants of the intrinsic fluorescence emission in notexin and phospholipase A2 enzymes. J Protein Chem. 12(5), 579-83. 72. Ownby CL, Fletcher JE, Colberg TR(1993). Cardiotoxin 1 from cobra (Naja naja atra) venom causes necrosis of skeletal muscle in vivo. Toxicon. 31(6) 697-709. 73. Hada S, Fujii S, Inoue S, Ikeda K, Teshima K(1993). Hydrolysis of micellar diheptanoylphosphatidylcholine catalyzed by bovine pancreatic phospholipase A2: kinetic characterization of group I and II enzymes. J Biochem (Tokyo). 113(1), 13-8. 74. Ghassemi A, Rosenberg P(1993). Effects of snake venom phospholipase A2 toxins (beta-bungarotoxin, notexin) and enzymes (Naja naja atra, Naja nigricollis) on aminophospholipid asymmetry in rat cerebrocortical synaptosomes. Biochem Pharmacol. 44(6), 1073-83. 75. Yang CC, Chang LS, Ong PL, Tung TH(1991). Immunochemical properties of Naja naja atra (Taiwan cobra) phospholipase A2 using polyclonal and monoclonal antibodies. Toxicon. 30(2), 151-9. 76. Chiou SH, Lee BS, Chang CC, Yu NT(1991). Structural analysis of phospholipase A2 by near-IR Fourier transform Raman spectroscopy. Biochem Int. 25(2), 387-95. 77. Wang JP, Teng CM(1990). Effects of anti-inflammatory drugs on rat hind-paw swelling caused by phospholipase A2 from Naja naja atra venom. Naunyn Schmiedebergs Arch Pharmacol. 344(3), 377-81. 78. White SP, Scott DL, Otwinowski Z, Gelb MH, Sigler PB(1990). Crystal structure of cobra-venom phospholipase A2 in a complex with a transition-state analogue. Science. 250(4987), 1560-3. 79. Scott DL, White SP, Otwinowski Z, Yuan W, Gelb MH, Sigler PB(1990). Interfacial catalysis: the mechanism of phospholipase A2. Science. 250(4987), 1541-6. 80. Shina R, Yates SL, Ghassemi A, Rosenberg P, Condrea E(1989). Inhibitory effect of EDTA.Ca2+ on the hydrolysis of synaptosomal phospholipids by phospholipase A2 toxins and enzymes. Biochem Pharmacol. 40(10), 2233-9. 81. Yang CC, Chang LS(1989). Studies on the status of lysine residues in phospholipase A2 from Naja naja atra (Taiwan cobra) snake venom. Biochem J. 262(3), 855-60. 82. Teshima K, Kitagawa Y, Samejima Y, Kawauchi S, Fujii S, Ikeda K, Hayashi K, Omori-Satoh T(1989). Role of Ca2+ in the substrate binding and catalytic functions of snake venom phospholipases A2. J Biochem (Tokyo). 106(3), 518-27. 83. Teng CM, Kuo YP, Lee LG, Ouyang CH(1987). Characterization of the anticoagulants from Taiwan cobra (Naja naja atra) snake venom. Toxicon. 25(2), 201-10id NH0925112012 sid 914266 cfn 0 / id NH0925112013 auc 鄭惠春 tic 稻米非專一性脂質運輸蛋白質與脂質的複和物晶體結構之研究 adc 孫玉珠 ty 碩士 sc 國立清華大學 dp 生物資訊與結構生物研究所 yr 92 lg 英文 pg 35 kwc 脂質運輸蛋白質 abc 非專一性脂質運輸蛋白可以協助磷脂質、醣脂類、脂肪酸以及類固醇在細胞膜間的運輸,此蛋白質與脂質的結合具有廣泛的親和力。非專一性脂質運輸蛋白是植物中主要的脂質結合蛋白質,目前已從稻米、小麥、大麥、玉米、桃子以及杏仁中純化而出。本實驗決定了三種稻米非專一性脂質運輸蛋白複和物晶體結構,受質分別為荳蔻酸、棕櫚酸與硬脂酸。稻米非專一性脂質運輸蛋白複和物的整體結構是由四束螺旋折疊和一段長的羧基端loop組成,並在蛋白質的中央形成一疏水性空洞,此空洞提供了脂質結合的空間。稻米非專一性脂質運輸蛋白荳蔻酸與硬脂酸複和物中各含有一脂肪酸,但是稻米非專一性脂質運輸蛋白棕櫚酸複和物中含二條脂肪酸分子。第二條脂肪酸分子的結合與否可能是由脂肪酸分子與蛋白質分子的比例決定,當有足夠的脂肪酸分子時,疏水性空洞即可再容納第二條脂肪酸分子。羧基端loop具有相當的彈性使此蛋白質可以容納各式各樣的脂質分子。脂質分子主要藉由疏水性作用力和稻米非專一性脂質運輸蛋白的結合空洞結合;此外,脂質分子和蛋白質間的親水性作用力也可穩定蛋白質複和物。與脂質分子結合後,此蛋白質的結合空洞和羧基端loop有顯著的構象改變;然而,含一條和二條脂肪酸分子的蛋白質複和物間,構象差異並不大。 tc Contents Abstract Chinese…………………………...……...…………………………………….……..1 English…………………..………..…………………………………………………2 1. Introduction……………………….…………………………………...……...…3 2. Results and Discussion 2.1 Overall structures of the rice nsLTP1 complexes…………………..…………………5 2.2 Lipid binding of the rice nsLTP1 complexes………………………..................………5 2.3 Two lipid-binding sites of the rice nsLTP1-PAL complex……………..……….…...…7 2.4 Unliganded and liganded rice nsLTP1s………………………..................................…7 2.5 The hydrophobic cavity of rice nsLTP1………………………………...………...…10 2.6 Comparisons with other plant nsLTP1s………………….........……….………...…11 2.7 Dual lipid biding in rice and wheat nsLTP1 complexes…………………………...…12 3. Conclusion………………………….………………………………………...…14 4. Materials and Methods 4.1 Isolation and purification of rice nsLTP1……………………..…..…….………….15 4.2 Crystallization of rice nsLTP1 complexes………………………….……………….15 4.3 Data collection for rice nsLTP1 complexes……………..………………….……….15 4.4 Structural determination and refinement of rice nsLTP1 complexes……...…….……...16 5. Protein Data Bank accession numbers…………………...……………...…18 6. Tables and Figures…………………………………………...……………...…19 7. References...……………………………………...……………...……………….30rf 1. Rueckert, D. G. & Schmidt, K. (1990). Lipid transfer proteins. Chem. Phys. Lipids, 56, 1-20. 2. Kader, J.-C. (1996). Lipid-transfer protein in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 627-654. 3. Han, G. W., Lee, J. Y., Song, H. K., Chang, C., Min, K., Moon, J., Shin, D. H., Kopka, M. L., Sawaya, M. R., Yuan, H. S., Kim, T. D., Choe, J., Lim, D., Moon, H. J. & Suh, S. W. (2001). Structure basis of non-specific lipid binding in maize lipid-transfer protein complexes revealed by high-resolution x-ray crystallography. J. Mol. Biol. 308, 263-278. 4. Lerche, M. H., Kragelund, B. B., Bech, L. M. & Poulsen, F. M. (1997). Barley lipid-transfer protein complexed with palmitoyl CoA: the structure reveals a hydrophobic binding site that can expand to fit both large and small lipid-like ligands. Structure, 5, 291-306. 5. Charvolin, D., Douliez, J.-P., Marion, D., Cohen-Addad, C. & Pebay-Peyroula, E. (1999). The crystal structure of a wheat nonspecific lipid transfer protein (ns-LTP1) complexed with two molecules of phospholipid at 2.1 Å resolution. Eur. J. Biochem. 264, 562-568. 6. Sodano, P., Caille, A., Sy, D., de Person, G., Marion, D. & Ptak, M. (1997). 1H NMR and fluorescence studies of the complexation of DMPG by wheat non-specific lipid transfer protein. Global fold of the complex. FEBS Lett. 416, 130-134. 7. Poznanski, J., Sodano, P., Suh, S. W., Lee, J. Y., Ptak, M. & Vovelle, F. (1999). Solution structure of a lipid transfer protein extracted from rice seeds comparison with homologous proteins. Eur. J. Biochem. 259, 692-708. 8. Kolattukudy, P. E. (1981). Structure, biosynthesis and biodegradation of cutin and suberin. Annual Review of Plant Physiology, 32, 539-568. 9. Trevino, M. B. & O'Connell, M. A. (1998). Three drought-responsive members of the nonspecific lipid-transfer protein gene family in Lycopersicon pennellii show different developmental patterns of expression. Plant Physiol. 116, 1461-1468. 10. Douliez, J.-P., Michon, T., Elmorjani, K. & Marion, D. (2000a). Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. Journal of Cereal Science, 32, 1-20. 11. Ge, X., Chen, J., Sun, C. & Cao, K. (2003). Preliminary study on the structural basis of the antifungal activity of a rice lipid transfer protein. Protein Engineering, 16, 387-390. 12. Breu, V., Guerbette, F., Kader, J. C., Kannangara, C. G., Svensson, B. & Wettstein-Knowles, P. (1989). A 10 kDa barley basic protein transfers phosphatidylcholine from liposomes to mitochondria. Carlsberg Res. Commun. 54, 81-84. 13. Tsuboi, S., Osafune, T., Nishimura, M. & Yamada, M. (1992). Nonspecific lipid transfer protein in castor bean cotyledon cells: subcellular localization and a possible role in lipid metabolism. J. Biochem. (Tokyo), 111, 500-508. 14. Blein, J.-P., Coutos-Thevenot, P., Marion, D. & Ponchet, M. (2002). From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defense mechanisms. TRENDS in Plant Science, 7, 293-296. 15. Maldonado, A. M., Dixon, P. A., Lamb, C. J. & Cameron, R. K. (2002). A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature, 419, 399-403. 16. Wolf, F. A. D. & Brett, G. M. (2000). Ligand-binding proteins: their potential for application in systems for controlled delivery and uptake of ligands. Pharmacological Reviews, 52, 207-236. 17. Pato, C., Borgne, M. L., Baut, G. L., Pape, P. L., Marion, D. & Douliez, J.-P. (2001). Potential application of plant lipid transfer proteins for drug delivery. Biochemical Pharmacology, 62, 555-560. 18. Douliez, J.-P., Michon, T. & Marion, D. (2000b). Stead-state tyrosine fluorescence to study the lipid-binding properties of a wheat non-specific lipid-transfer protein (ns-LTP1). Biochimica et Biophysica Acta, 1467, 65-72. 19. Shin, D. H., Lee, J. Y., Hwang, K. Y., Kim, K. K. & Suh, S. W. (1995). High-resolution crystal structure of the non-specific lipid-transfer protein from maize seedings. Structure, 3, 189-199. 20. Lee, J. Y., Min, K., Cha, H., Shin, D. H., Hwang, K. Y. & Suh, S. W. (1998). Rice non-specific lipid transfer protein: the 1.6 Å crystal structure in the unliganded state reveals a small hydrophobic cavity. J. Mol. Biol. 276, 437-448. 21. Lerche, M. H. & Poulsen, F. M. (1998). Solution structure of barley lipid transfer protein complexed with palmitate. Two different binding modes of palmitate in the homologous maize and barley nonspecific lipid transfer proteins. Protein Science, 7, 2490-2498. 22. Wallace, A. C., Laskowski, R. A. & Thornton, J. M. (1995). LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Prot. Eng. 8, 127-134. 23. Liang, J., Edelsbrunner, H. & Woodward, C. (1998). Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Science, 7, 1884-1897. 24. Liu, Y.-J., Samuel, D., Liu, C.-H. & Lyu, P.-C. (2002). Purification and characterization of a novel 7-kDa non-specific lipid transfer protein-2 from rice. Biochemical and Biophsical Research Communications, 294, 535-540. 25. Otwinowski, Z. & Minor, W. (1997). Processing of x-ray diffraction data collected in oscillation mode. Academic, New York, 276, 307. 26. Matthews, B. W. (1968). Solvent content of protein crystals. J. Mol. Biol. 33, 491-497. 27. Navaza, J. (1994). AMoRe: an automated package for molecular replacement. Acta Cryst. A50, 157-163. 28. McRee, D. E. (1999). XtalView/Xfit-a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156-165. 29. Brunger, A. T. (1998). Crystallography & NMR system (CNS): a new software suite for macromolecular structure determination. Acta Cryst. D54, 905-921. 30. Gincel, E., Simorre, J. P., Caille, A., Marion, D., Ptak, M. & Vovelle, F. (1994). Three-Dimensional Structure in Solution of a Wheat Lipid-Transfer Protein from Multidimensional 1H-NMR Data. A New Folding for Lipid Carriers. Eur. J. Biochem. 226, 413-422. 31. CrystalClear. (2002). An integrated program for the collection and processing of area detector data. Rigaku Corporation.id NH0925112013 sid 914214 cfn 0 / id NH0925112014 auc 劉昌昇 tic 幽門螺旋桿菌26695結構基因體-HP0242的分子功能探討 adc 呂平江 ty 碩士 sc 國立清華大學 dp 生物資訊與結構生物研究所 yr 92 lg 中文 pg 99 kwc 幽門螺旋桿菌 kwc 結構基因體 abc 幽門螺旋桿菌(Helicobacter pylori),為一個革蘭氏陰性螺旋狀桿菌,被認為引起胃炎和胃潰瘍,胃癌風險的主要原因。全球大約有50%以上的人口都曾經感染過。自1997年,Tomb, J. F在「Nature」雜誌中發表了H. pylori的完整genome的序列。而對於該些序列中未知蛋白質的功能資訊了解甚少,因此我們可以利用結構基因體學的方式來了解該些未知蛋白質的結構與功能。 rf 1. JRM Warren, B.: Unidentified curved bacilli on gastric epothelium in active chronic gastritis. Lancet 1983, 1:1273-1275. 2. BE Dunn, Cohen, H,, and Blaser, M. J.: Clin. Microbiol. Rev. 1997, 10:720-741. 3. CMaR Rappuoli: Living Dagerously:How helicobacter pylori survives in the human stomach. Nature review molecular cell biology 2001, 2:457-466. 4. EMM Quigley, and Turnberg, L. A.: Gastroneterology 1987, 92:1876-1883. 5. JVS Solnick, D. B.: Emergence of diverse Helicobacter species in the pathogenesis of gastric and enterohepatic diseases. Clin. Microbiol. Rev. 2001, 14:59-97. 6. M Clyne, Labigne, A., and Drumm, B.: infect. Immun. 1995, 63:1669-1673. 7. RV Manuel R. Amieva, Antonello Covacci, Lucy S. Tompkins, W. James Nelson, Stanley Falkow: Disruption of the Epithelial Apical-Junctional Complex by Helicobacter pylori CagA. Science 2003, 300:1430-1434. 8. JE Everhart: Recent developments in the epidemiology of Helicobacter pylori. Gastroenterol. Clin. N. Am. 2000, 29:559-578. 9. CS Goodwin: Helicobacter pylori gastritis, peptic ulcer, and gastric cancer:clinical and molecular aspects. Clin. Infect. Dis. 1997, 25:1017-1019. 10. PJaMJB Richard M.: Helicobscter pylori and gastrointestinal tract adenocarcinomas. Nature review cancer 2002, 2:28-37. 11. OW Jean-F. Tomb, Anthony R. Kerlavage, Rebecca A. Clayton, Granger G. Sutton, Robert D. Fleischmann, Karen A. Ketchum, Hans Peter Klenk, Steven Gill, Brian A. Dougherty, Karen Nelson, John Quackenbush, Lixin Zhou, Ewen F. Kirkness, Scott Peterson, Brendan Loftus, Delwood Richardson, Robert Dodson, Hanif G. Khalak, Anna Glodek, Keith McKenney, Lisa M. Fitzegerald, Norman Lee, Mark D. Adams, Erin K. Hickey, Douglas E. Berg, Jeanine D. Gocayne, Teresa R. Utterback, Jeremy D. Peterson, Jenny M. Kelley, Matthew D. Cotton, Janice M. Weidman, Claire Fujii, Cheryl Bowman, Larry Watthey, Erik Wallin, William S. Hayes, Mark Borodovsky, Peter D. Karp, Hamilton O. Smith, Claire M. Fraser & J. Craig Venter: The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 1997, 388:539-547. 12. IG Boneca, H de Reuse, JC Epinat, M Pupin, A Labigne, I Moszer: A revised annotation and comparative analysis of Helicobacter pylori genomes. Nucleic Acids Res 2003, 31:1704-14. 13. PZ Eleonora Marsich, Sonia Rizzi, Amedeo Vetere,Enrico Tonin, and Sergio Paoletti: Helicobacter pylori Express an Autolytic Enzyme:Gene Identifiction, Cloning, and Theoretical Protein Structure. Journal of Bacteriology. 2002, 184:6270-6279. 14. C-ZL SUNNY ANG, KONAN PECK, MICHELLE SINDICI,UDAYAKUMAR MATRUBUTHAM, MARTIN A. GLEESON, AND JIN-TOWN WANG: Acid-Induced Gene Expression in Helicobacter pylori: Study in Genomic Scale by Microarray. INFECTION AND IMMUNITY 2001, 69:1679-1686. 15. W-MK YAN-PING SHIH, 1 JUI-CHUAN CHEN, CHIA-HUI YEH,ANDREW H.-J. WANG, AND TING-FANG WANG: High-throughput screening of soluble recombinant proteins. Protein Science 2002, 11:1714-1719. 16. LPC Gans P. J., Manning, M.C. ,Woody R. W.,Kallenbach N. R.: The helix-coil transition in heterogenour peptides with specific side-chain interations:theory and comparison with CD sepctral data. Biopolymers 1991, 31:1605-1614. 17. RR Ernst, Bodenhansen, G. and Wokann, A.: Principles of Nuclear Magnetic Resonance in one and two dimensions. Oxford University press. 1987. 18. RR Ernst: Angew Chemie 1992, 31:805. 19. JKMaH Sanders, B. K.: Modern NMR spectrospcopy, a guide for Chemists. Oxford University press. 1993. 20. K Wuthrich: NMR of proteins and Nucleic Acids. John Wiley and Sons. 1986. 21. AE Derome: Modern NMR techniques for chemistry research. Pergamon press. 1987. 22. U Piantini, Sorensen, O. W. and Ernst, R. R.: J. Am Chem Soc. 1982, 104:6800. 23. RP Hicks, Young, J. K.: Conep. in Magnet. Resin 1994, 6:115. 24. AaD Bax, D. G.: J. Magn. Reson 1985, 65:207. 25. J Jeener, Meier, B. H., Bachmann, P. and Ernst, R. R.: J. Chem. Phys. 1979, 71:4546. 26. LS Jean-Christophe Rain*, Hilde De Reuse,, ClR VeAronique Battaglia*, \SteAphane Simon*, Gerlinde Lenzen*, Fabien Petel*, JeAroAme Wojcik*, Vincent SchaE chter*, Y. Chemama*, AgneAs Labigne & Pierre Legrain*: The protein-protein interaction map of Helicobacter pylori. Nature 2001, 409:211-215. 27. GM-HaJ Collado-Vides: A powerful non-homology method for the prediction of operons in prokaryotes. Bioinformatics 2002, 18:329S-336S. 28. LJT D. Scott Merrell, Charles C. Kim, Hazel Mitchell, Lucy S. Tompkins, Adrian Lee, and Stanley Falkow: Growth Phase-Dependent Response of Helicobacter pylori to Iron Starvation. infect. Immun. 2003, 71:6510-6525. 29. DSM Lucinda J. Thompson, Brett A. Neilan, Hazel Mitchell, Adrian Lee, and Stanley Falkow: Gene Expression Profiling of Helicobacter pylori Reveals a Growth-Phase-Dependent Switch in Virulence Gene Expression. INFECTION AND IMMUNITY 2003, 71:2643-2655.id NH0925112014 sid 914210 cfn 0 / id NH0925112015 auc 管泓翔 tic 臺灣眼鏡蛇蛇毒心臟毒素A3與高硫化六醣肝素複合物X-ray 3D結構 adc 吳文桂老師 adc 陳俊榮老師 ty 碩士 sc 國立清華大學 dp 生物資訊與結構生物研究所 yr 92 lg 中文 pg 94 kwc 台灣眼鏡蛇 kwc 心臟毒素 kwc 醣肝素 kwc 肝素硫酸 kwc 肝素 kwc x光結構 abc 心臟毒素是眼鏡蛇毒液中的主要成分,眼鏡蛇心臟毒素在生理條件下是個鹼性蛋白,由60~62個胺基酸所組成。它是一個由β摺疊形成的三指環蛋白結構。當眼鏡蛇咬到動物或是人時,在組織表面心臟毒素會造成發炎。然而心臟毒素的主要作用目標至今仍然不清楚。經由之前的研究發現,細胞膜表面的肝素硫酸是心臟毒素最有可能的作用標地。我們已經成功的解出心臟毒素A3和高硫酸化六醣肝素複合物的晶體結構 (解析度3.4Å)。由這個複合物結構,我們發現了檸檬酸在幫助心臟毒素A3形成二元體上扮演了重要的角色。檸檬酸主要是與心臟毒素A3的Lys23和Lys31形成作用,進而穩固了心臟毒素A3的二元體。這個發現的重要性在於天然的蛇毒中含有大約50mM的檸檬酸。除此之外六醣肝素主要是藉著與Lys12、 Lys18和 Lys35作用來和心臟毒素A3結合。在之前實驗室利用核磁共振技術解出的心臟毒素A3和二醣肝素複合物結構,顯示二醣肝素的結合位置是和X光技術解出的六醣肝素結合位置是相同的。另外一個值得討論的地方是在心臟毒素A3所形成的二元體中,一個有和六醣肝素結合,但是另一個卻是沒有。這個研究提供了一個天然蛇毒中檸檬酸的可能生物活性,並且模擬出細胞表面的肝素硫酸與心臟毒素A3的可能作用模式。 tc 壹、 緒論 1-1 蛇毒簡介 ----------------------------------------------------------------1 1-2眼鏡蛇蛇毒介紹-------------------------------------------------------- 2 1-3 醣胺素的簡介 --------------------------------------------------------- 5 1-4 醣胺素在身體中的分布 ----------------------------------------------7 1-5 為何要做心臟蛇毒蛋白和醣胺素複合物的結構----------------- 8 貳、 材料與方法 2-1 心臟蛇毒蛋白的純化 ------------------------------------------------ 13 2-2 高硫酸化六醣肝素的純化--------------------------------------------15 2-3 晶體培養 ----------------------------------------------------------------17 2-4 晶體繞射數據的收集與處理-----------------------------------------18 2-5 心臟毒素A3和高硫酸化六醣肝素複合物結構的決定 ------- 20 參、 結果 3-1 心臟毒素A3 的分子結構 -------------------------------------------27 3-2 心臟毒素A3和高硫酸化六醣肝素的晶體堆疊 -----------------27 3-3 Lys23-31所形成的陰離子結合口袋區(anionic pocket) ---------28 3-4高硫酸化六醣肝素和心臟毒素A3的結合位置 ------------------28 肆、 討論 4-1 心臟毒素A3和高硫酸化六醣肝素結合位置的探討 ----------30 4-2 檸檬酸幫助心臟毒素A3形成二元體的探討 -------------------31 4-3 心臟毒素A3形成二元體的個別構型探討-----------------------33 伍、 附錄 5-1 心臟毒素A5和二醣肝素的結構探討-----------------------------37 5-2 心臟毒素A5的結構比較-----------------------------39 5-3 心臟毒素A5和六醣肝素的晶體-----------------------------------40 陸、 附圖表------------------------------------------------------------------42 柒、 參考資料--------------------------------------------------------------84rf 柒、參考資料 [1 ] Vincent,J.P.,Schweitz,H., Chicheportiche, R., Fosset., M., Balerna,M., Lenoir,M.C., and Lazdunski, M.(1976) Molecular Mechanism of Cardiotoxins Isolated from Cobra Action on Axonal Membranes. Biochem. J. ,15(15),3171-3175 [2 ] Sarker,N.K.(1947) Isolation of cardixtoxin from Corbra venom(Naja tripudians,monocelate vareity). J.Indian.Chem.Soc.,24,227-232 [3 ] Jiang,M.S.,Fletcher J.E.,Smith L.A.(1989) Factors influencing the hemolysis of human erythrocytes by cardiotoxins from Naja naja kaouthia and Naja naja atra venoms and a phospholipase A2 with cardiotoxin-like activities from Bungrus fasciatus venom.Toxicon 27(2),247-257 [4 ] Patel,H.V.,Vyas,A.A.,Vyas,K.A.,Chiang,C.M.,Chi,L.M.,and Wu,W. (1997)Heparin and heparin sulfate bind to snake cardiotoxin:sulfated oligosaccharides as a potential target for cardiotoxin action.J.Biol.Chem., 272,1484-1493 [5 ] Vyas,A.A.,Pan,J.J.,Patel,H.V.,Vyas,K.A.,Chiang,C.M.,Sheu,Y.C., Huang,J.A.,and Wu,W.(1997)Analysis of binding of cobra cardiotoxins to heparin reveals a new β-sheet heparin-binding structural motif.J.Biol.Chem.,272,9661-9670 [6 ] Vyas,K.A.,Patel,H.V.,Vyas,A.A.,and Wu,W.(1998)Glycosamino- glycans bind to homologous cardiotoxins with different specificity. J.Biol.Chem. ,37(13), 4527-4534 [7 ] Hodges, S. J., Agbaji, A. S., Harvey, A. L.,and Hider, R. C. (1987) Cobra cardiotoxins: Purification,effects on skeletal muscle and structure/activity relationships. Eur. J. Biochem. , 165 , 373-383. [8 ] Teng, C. M.,Jy. W and Ouyang, C. (1984) Cardiotoxin from Naja naja atra snake venom: A potentiator of platelet affregation. Toxicon , 22 , 463-470. [9 ] Jiang, X. L. and Hinman, C. L. (1990) Ablation of natural killer cell function by solution cardiotoxin. Int. J. Immunopharmac. , 12 , 247-254. [10 ] Kini, R. M., Har, N. C. and Evans, H. J. (1988) Non-enzymatic inhibitors of coagulation and platelet aggregation from Naja nigricollis venom are cardiotoxins. Biochem. Biophys. Res. Commun., 150 , 1012-1016. [11 ] Harvey, A. L., Marshall, R. J. and Karlsson, E. (1982) Effects of purified cardiotoxins from the Thailand cobra (Naja naja siamensis) on isolated skeletal and cardiac muscle preparations. Toxicon, 20 , 379-396. [12 ] Harvey A.L.,and Hayashi K. (1987)Depolarization of skeletal muscle cells in culture by a cardiotoxin-like basic polypeptide from the venom of the Taiwan cobra (naja naja atra). Toxicon,25(6),681-684. [13 ]Chang, C. C., Chung S. T., Lee,C. Y. and Wei ,J. W. (1972)Roleofcardiotoxin and phospholipase A in the blockade of nerve conduction and depolarization of skeletal muscle induced by cobra venom. Br. J. Pharmac. , 44 , 752-764. [14 ]WalkinshawM.D.,SaengerW., Maelicke A. (1980)Three-dimensional structure of the 'long' neurotoxin from cobra venom.";. Proc. Natl. Acad. Sci. USA 77,2400-2404. [15 ] Negrerie,M.,Grof,P.,Bouet,F.,Menez,A.and Aslanian,D.(1990) Structure and Chemical Modifications of Neurotoxin from Natra Nigricollis studied by Raman spectroscopy.Biochemistry, 29, 8258-8265 [16 ] Rees,B.,Sanana,J.P., Thierry,J.C., Gilibert,M., Fischer,J.,S chweitz,H. Lazdniski,M., and Moras, D.(1987) Crystal structu of a snake venom cardiotoxin. Proc.Natl.Acad.Sci.USA, 84,3132-3136 [17 ] Negrerie,M., Aslanian,D.,Bouet,F.,Menez,A.,Nghiem,H.O.and Changeux,J.P.(1991) Interaction of Modified Neurotoxins from Naja nigricollis with the Nicotinic Acetylcholine Receptor from Torpedo marmorata FEBES Lett.292(1,2),249-253 [18 ] Menez,A., Boulain,J.C., Faure,G., Couderc,J., Liacopoulos,P., Tamiya,N. and Fromageot,P.(1982) Comparison of the “Toxic” and Antigenic Regions in Toxin a Isolated from Naja nigricollis Venom.Toxicon 20(1),95-102 [19 ] Boulain,J.C., Menez, A., Couderc,J., Faure,C.,Liacopoulos,P., and Fromageot,P.(1982) Neutralizing Monoclonal Antibody Specific for Naja nigricollis Toxin α:Preparation, Characterization, and Localization of the Antigenic Binding. Biochem. J. 21(12),2910-2915 [20 ] Iozzo, R. V., and Murdoch, A. D. (1996)Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J. 10:598-614 [21 ] Turnbull, J., Powell, A., & Guimond, S. (2001)Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends Cell Biol. 11, 75-82. [22 ] Kjellen,L.,and Lindahl,U.(1991) Proteoglycans:Structures and interactions.Annu.Rev.Biochem,60,443-475 [23 ] Capila, I., and Linhardt,R.J., (2002) Angew. Chem. Int. Ed. 41,390-412 [24 ] Conrad, H.E. (1998)in Heparin-Binding Proteins, pp203-238, Academic Press, San Diego, CA. [25 ] Benito,C.(1991) Structrue features and binding properties of chondrotin sulfates,dematan sulfate,and heparin sulfate.Semin. Threm. Hemo. 17,suppl.1,9-14 [26 ] Laurent, T., and Gergely, J.(1955)Light scattering studies on Hyaluronic Acid, Biochem. J 212-325 [27 ] Michaelson,D.M., Bratrai, G. and Barenholz, Y. (1983) Asymmerry of lipid organization in cholinergic synaptic vesicle membranes. Biochem. J. 211,155-162 [28 ] Chen,Y.H., Liou,R.F., Hu,C.T., Juan,C.C. and Yang,J.T.(1987) Interation of snake venom cardiotoxin(a membrane-disruptive polypeptide) with human erythrocytes. Mol. Cell. Biochem,73, 69-76 [29 ] Vyas,A.A.(1997)Study on the interaction of glycosaminoglycans with Cardiotoxin,博士論文,清華大學 [30 ] Negrerie,A.,Grof,P., Bouet,F., Menez,A.,and Aslanian,D.(1990) Structure and chemical modifications of neurotoxin from Naja nigricollis studied by raman spectroscopy. Biochem. J.,29, 8258-8265 [31 ] Dubovskii, P.V.,Dementieva,D.V., Bocharov,E.V., Utkin,Y.N. and Arseniev,A.S.(2001)Membrane binding motif of the P-type Cardiotoxin. J.Mol.Biol. 305,137-149 [32 ] Otto, A.(1968)A new method for exciting non-radioactive surface plasma oscillations.; Phys.Stat.Sol ,26: K99-K101; [33 ] Akimoto, T. (2000) Effect of incident angle of light on sensitivity and detection limit for layers of antibody with surface plasmon resonance spectroscopy; Biosens.Bioelectron. ,15: 355-362; [34 ] Quinn, J. G. (2000) Development and application of surface plasmon resonance-based biosensors for the detection of cell-ligand interactions.; Analytical Biochemistry ,281,135-143; [35 ]Pellegrini,L.,Burke,D.F.,Delft,F.V.,Mulloy,B.,and Blundell,T.L..(2000) Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin.Nature,407,1029-1034 [36 ] Digabriele, A. D., Lax,I.,Denis.,I.C., Svahn,C.M., Jaye,M., Schlessinger,J.andHendrickson,W.A. (1998) Structure of a heparin-linked biologically active dimmer of fibroblast growth factor. Nature,393,812-817 [37 ] Lei,J.,.,Jan,Abrahams,J.P., Skinner,R., Petitou,M.,Pike,R.N. and Carrell,R.W.(1997)The anticoagulant activation of antithrombin by heparin.Proc.Natl.Acad.Sci.USA,94,14683-14688 [38 ]Lietha D.,Chirgadze D.Y.,Mulloy,B.,Blundell,T.L.,and Gherardi,E. (2001)Crystal structure of NK1-heparin complexes reveal the basis for NK1 activite and enable engineering of potent agonists of the MET receptor.EMBO J.,20(20),5543-5555 [39 ]Chien,K.Y.,Chiang,C.M.,Hseu,Y.C.Vyas,A.A.,Rule,G.S. (1994) Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions. Biochem. J. 269, 14473-14483. [40 ]Joubert,F.J.(1977) Naja mossambica mossambica venom: purification, some properties and the amino acid sequence of the three phospholipase A (CM-I , CM-II and CM-III). Biochim. Biophys. Acta. , 493 , 216-227 [41 ] Yamada, S., Murakami, T., Tsuda, H., Yoshida, K., and Sugahara, K. (1995) Isolation of the porcine heparin tetrasaccharides with glucuronate 2-O-sulfate. Heparinase cleaves glucuronate 2-O-sulfate-containing disaccharides in highly sulfated blocks in heparin. Biochem. J 270, 8696-8705. [42 ] Luft,J.R. and DeTitta ,G.T.(1992). HANGMAN: A macromolecular hanging drop vapor diffusion technique. J. Appl. Cryst., 25, 324-325. [43 ] Luft,J.R., Cody,V. and DeTitta,G.T. (1992). Experiences with HANGMAN: A macromolecular hanging drop vapor diffusion technique, J. Cryst. Growth, 122, 181-185. [44 ] Blundell, T. L. and Johnson, L. N. (1976) in Protein Crystallography, Academic Press. [45 ] Eisenberg, D. and Hill, C. P. (1989) Protein crystallography : more surprises ahead. Trends Biochem. Sci., 14 , 260-264 [46 ] Gluster, J. P. and Trueblood, K. N. (1985) in Crystal Structure Analysis : A Primer, Oxford University Press. [47 ] Ladd, M. F. C. and Palmer, R. A. (1985) in Structure determination by X-ray crystallography. Plenum press, New York. [48 ] Howard, A.J.(1993) XENGEN and POLYDET: Crystallographic data processing software for the Mid-90's. Amer. Crystallogr. Assoc. Ann. Meeting, Abstr. C001, [49 ] Rossmann, M. G.(1998) X-ray diffraction data collection.Rigaku J.,15(2),1-3 [50 ]Otwinowski, Z. and Minor,W. (1997) Processing of X-ray Diffraction Data Collected in Oscillation Mode Methods in Enzymology. Macromolecular Crystallography, part A , 276 , 307-326. [51 ] Duncane E.M.(1993) Practical protein crystallography.Academic press,inc.,pp145-154. [52 ] Rose N. P., Wu C.K., Liu Z.J., Newton M. G., and Wang B.C.(2001) Using single wavelength anamolous scattering data gor in-house protein structure determination.,Rigaku J.,18(2),1-12 [53 ] Pahler, A., Smith J.L. and Hendrickson W.A. (1990). A Probability Representation for Phase Information from Multiwavelength Anomalous Dispersion". Acta Cryst. A46, 537-540. [54 ] Johperutz,M.F.(1956) Isomorphous replacement and phase detrmination in noncentrosymmetric space groups. Acta Cryst., 9, 867-873. [55 ] Mcpherson,A.(1982) in The preparation and analysis of protein crystals.,John Wiley and Sons. [56 ] Rao, S. N., Jih, J. H. and Hartsuck, J. A. (1980) Rotation-function and space groups. Acta cryst. , A36 , 878-884. [57 ] Tollin, P., Main, P. and Rossmann, M. G. (1966) The symmetry of the rotation function., Acta Cryst. , 20 ,404-407 [58 ] Crowther, R. A. and Blow, D. M. (1967) A method of positioning a known molecule in an unknown crystal structure. Acta. Cryst. , 23 , 544-548. [59 ] Brunger ,A.T.(1992) Free R value:a novel statistical quantity for assessing the accuracy of crystal structures.,Nature,355,472-475 [60 ] Forouhar, F.,Huang,W.L., Liu,J.H., Chien,K.Y. Wu.W.G. Hsiao,C.D., (2003)Structural basis of membrane-induced cardiotoxin A3 oligomerization.J Biol Chem. ;278(24):21980-8.. [61 ] Brunger,A. T., Adams,P. D., Clore,G. M., W. L., Delano,P., Gros, J.M.,Pannu,N.S.,Read,R.J.,Rice,L.M. (1998) Crystallography and NMR System(CNS):A new software system for macromolecular structure determination.Acta.Cryst.,D54,905-921 [62 ] Mattews,B.W.(1968) Solvent content of protein crystals. Biochem. J,33,491-497 [63 ] Prenth,J.,(1994)Principals of protein X-ray crystallography,p71 [64 ] Brunger ,A. T. (1992) The Free R Value: a Novel Statistical Quantity for Assessing the Accuracy of Crystal Structures, Nature , 355, 472-474. [65 ] Adams, P. D., Pannu ,N. S., Read R. J. and Brunger ,A. T. (1997) Cross-validated Maximum Likelihood Enhances Crystallographic Simulated Annealing Refinement., Proc. Natl. Acad. Sci., USA 94, 5018-5023. [66 ] Pannu, N. S. and Read, R. J. (1996) Improved structure refinement through maximum likelihood, Acta Cryst. A52 , 659-668. [67 ] Brunger ,A. T., Kuriyan ,J. and Karplus, M. (1987) Crystallographic R factor Refinement by Molecular Dynamics, Science, 235, 458-460. [68 ] Brunger, A. T., Krukowski,A. and Erickson ,J. (1990) Slow-Cooling Protocols for Crystallographic Refinement by Simulated Annealing, Acta Cryst., A46, 585-593. [69 ] Rice,L. M. and Brunger,A. T. (1994) Torsion Angle Dynamics: Reduced Variable Conformational Sampling Enhances Crystallographic Structure Refinement, Proteins: Structure, Function, and Genetics, 19, 277-290. [70 ] Pannu,N. S. and Read ,R. J. (1996) Improved structure refinement through maximum likelihood, Acta Cryst. A52 , 659-668. [71 ] Adams, P. D., Pannu ,N. S., Read ,R. J. and Brunger, A. T. (1997) Cross -validated Maximum Likelihood Enhances Crystallographic Simulated Annealing Refinement, Proc. Natl. Acad. Sci. USA 94, 5018-5023 [72 ] Korostelev,A., Bertram,R. and Chapman,M.S. (2002) Simulated- annealing real-space refinement as a tool in model building., Acta Cryst. D58, 761-767 [73 ] Read,R.J.,(1986)Improved Fourier coefficiens for maps using phases from partial structures with errors,Acta Cryst.,A42,140-149 [74 ] Kleywegt,J.and BrungerA.T.,(1996)Checking your imagination :Applications of the free R value,Structure 4,897-904 [75 ] BrungerA.T.,Adms and Rice L.M.,(1997)New application of simulated annealing in X-ray crystallography and solution NMR,Structure 5,325-336 [76 ] Jones, T. A., Zou, J. Y., Cowan, S. W., and Kjeldgaard, M. (1991) Improved methods for building protein models in electron density maps and the location errors in these models. Acta Crystallogr. A47, 110-119 [77 ] Faham,S.,Hileman,R.E.,Fromm,J.R.,Linhardt,R.J. and Rees,D.C. (1996) Heparin structure and interactions with basic fibroblast growth factor. Science 271,1116 [78 ] Henderson ,R. and Moffat, J. K. (1971)The difference Fourier technique in protein crystallography: errors and their treatment. Acta Cryst. B27, 1414-1420 [79 ] Goldberg K.A., and Bokor J.(2001) Fourier-transform method of phase-shift determination. Applied Optics , 40(17),2886-2894 [80 ] Read,R. J. (1986) Improved Fourier coefficients for maps using phases from partial structures with errors., Acta Cryst., A42 , 140-149. [81 ] Bhat,T. N. (1988) Calculation of an OMIT map. J Appl Crystallogr 21, 279-281. [82 ] Hodel,A., Kim,S.-H. and Brunger,A.T. (1992) Model Bias in Macromolecular Crystal Structures., Acta Cryst., A48 , 851-859. [83 ] Rice,L. M. and Brunger,A. T. (1994) Torsion Angle Dynamics: Reduced Variable Conformational Sampling Enhances Crystallographic Structure Refinement, Proteins: Structure, Function, and Genetics, 19, 277-290. [84 ] Brunger,A. T., Adams ,P. D. and Rice,L.M. (1997) New applications of simulated annealing in X-ray crystallography and solution NMR. Structure 5 , 325-336. [85 ] Kleywegt ,G. J. and Brunger,A. T. (1996) Checking your imagination: Applications of the free R value. , Structure 4, 897-904. [86 ] Yeates,T.O.(1997)Detecting and overcoming crystal twinning. Method in Enzymology,276,344-358 [87 ] Laskowski, R. A., MacArthur, M. W., Moss, D. S. and Thornton, J. M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst., 26, 283-291. [88 ] Ramachandran, G. N. and Sasisekharan, V. (1968)Conformation of polypeptides and proteins. Adv. Protein Chem. 23, 283-437. [89 ] Sue,S.C., Harold,J., Brisson,J.R., Wu,W.G. (2001) Dynamic Characterization of the Water Binding Loop in the P-Type Cardiotoxin: Implication for the Role of the Bound Water Molecule. Biochemistry J.,40 ,12782-12794 [90 ] R. Bhaskaran, C. C. Huang, K. D. Chang, C. Yu(1994)Cardiotoxin III from Taiwan Cobra (Naja Naja Atra) determination of structure in solution and comparison with short neurotoxins. J.Mol.Biol. 235, 1291-1301 [91 ] Forouhar, F., Huang, W.N., Liu, J.H., Chien, K.Y., Wu, W.G., Hsiao, C.D.(2003) Structural basis of the membrane-induced cardiotoxin A3 oligomerization. Biochemistry J. ,13,278(24),21980-21988 [92 ] Homans, S.W. A (1990) Molecular mechanical force field for the conformational analysis of oligosaccharides: comparison of theoretical and crystal structures of Man alpha 1-3Man beta 1-4GlcNAc. Biochemistry 29, 9110-9118. [93 ] Francis, B, Seebart, C, and Kaiser, I.I. (1992) Citrate is an endogeneous inhibitor of snake venom enzymes by metal-ion chelation. Toxicon 30, 1239-1246 [94 ] Odell, G.V., Fenton, A.W., Ownby, C.L., Doss, M.P., and Schmidt, J.O. (1999) The role of venom citrate. Toxicon 37, 407-409. [95 ]Sue, S.C.,Chien K.Y.,Huang,W.H.,Abraham J.K.Chen, K.M.and Wu,W.G.(2002)Heparin binding stablizes the membrance-bound form of cobra cardiotoxin ., Biochemistry,277,2666-2673 [96 ] Sue, S.-C.; Brisson, J.-R.; Chang, S.-C.; Huang, W.-N.; Lee, S.-C.; Jarrell, H. C.; Wu, W.-g. (2001) Structures of Heparin-derived disaccharide bound to cobra cardiotoxins: context-dependent conformational Change of heparin upon binding to the rigid Core of the three-fingered toxin. Biochemistry,40, 10436-10446 [97 ] Mao Y., Nickitenko A., Duan X., Lloyd T. E.,Mark N. Wu,§Bellen H.and Quiocho F. A. (2000)Crystal structure of the VHS and FYVE tandem domains of Hrs, a protein involved in membrane trafficking and signal transduction.,Cell,100,447-456 [98 ] Wong, C. H., Chen, Y. H., Hung, M. C., Wang, K. T., Ho, C. L. and Lo, T. B. (1978) Renaturation of a reduced Taiwan cobra cardiotoxin. Biochim. Biophys. Acta, 533 , 105-111. [99 ] Bilwes, A., Rees, B. and D. Moras (1994) X-ray structure at 1.55 Å of Toxin γ , a Cardiotoxin from Naja nigricollis Venom. J. Mol. Biol., 239 , 122-136. [100 ] Sun, Y. J., Wu, W. G., Chiang, C. M., Hsin, A. Y. and Hsiao, C. D. (1997) Crystal structure of Cardiotoxin V from Taiwan Cobra Venom: pH-Dependent conformational change and a novel membrane-binding motif identified in the Three-Finger Loops of P-type Cardiotoxin. Biochemistry, 36 , 2403-2413.id NH0925112015 sid 914246 cfn 0 / id NH0925112016 auc 楊螢蓁 tic 酵母菌中七萬道爾吞熱休克蛋白Ssa1p和Ssa2p甲基化之研究 adc 王群 adc 林彩雲 ty 碩士 sc 國立清華大學 dp 生物資訊與結構生物研究所 yr 92 lg 英文 pg 41 kwc 熱休克蛋白 kwc 酵母菌 kwc 甲基化 abc 蛋白質的後修飾作用(post-translational modification)包含了甲基化(methylation)、磷酸化(phosphorylation)…等。在生物體內某些蛋白分子之胺基酸在合成過程中可以被甲基化,如:組織胺酸(histidine)、離胺酸(lysine)和精胺酸(arginine),這些甲基化反應多半是不可逆的,但有可能是可被調控的,且往往在某些生理反應上扮演著重要的作用。在本論文中,我的實驗目的,是為了想去了解酵母菌(Saccharomyces cerevisiae)內分子量約略為七萬的熱休克蛋白(Ssa1p及Ssa2p)甲基化之狀況。我發現在正常的生長狀況下,熱休克蛋白(Ssa1p及Ssa2p)中某些離胺酸(lysine)和精胺酸(arginine)可以被甲基化。因此我試著想找出其甲基化的酵素(AdoMet-dependent methyltransferases),在一些實驗後,發現Ynl092wp可能是Ssa1p或Ssa2p的甲基化酵素(methyltransferases)。接著我利用雙突變菌種(double deletion strain)來探討這一課題。結果發現Ynl092wp並非Ssa1p的甲基化酵素。很不幸的,我們並沒有得到 ssa1Δynl092wΔ的雙突變種(double deletion strain),因此Ynl092wp是否為Ssa2p的甲基化酵素(methyltransferases)則不得而之。而Ssa1p和Ssa2p甲基化所扮演的作用亦不得而知,推測Ssa1p和Ssa2p的甲基化可能與生物體內的調節或是和反應基質(substrate)之間的相互作用力有著重要的關係。 tc 中文摘要 ………………………………..……………… i 謝誌 …………………………………....….………… ii Abstract ………………………………....………… iii Abbreviations …………………………………………… 1 Introduction ……….…………………….…………… 2 Materials and methods ………………………………. 7 Results ………..….…….……………………………. 12 Discussion ………....………………………………. 18 Tables …………….…………………….…………... 21 Figures ………….,…………………..…………….… 24 References ……………..………………………………. 37rf 1. Craig, E. A. (1985) Rev. Biochem. 18, 239-280 2. Lindquist, S (1986) Annu. Rev. Biochem. 55, 1151-1191. 3. Chappell, T.G., Konforti, B.B., Schmid, S.L., Rothman, J.E. (1987). J. Biol. Chem 262, 746-751 4. Flaherty, K.M., DeLuca-Flaherty, C., McKay, D.B. (1990). Nature 346, 623-628 5. Bukau, B. and A. L. Horwich, (1998) Cell 92, 351. 6. McCarty, J., A. Buchberger, J. Reinstein, and B. Bukau. (1995) J. Mol. Biol.249,126–137. 7. Schmid, D., A. Baici, H. Gehring, and P. Christen. (1994) Science 263,971–973. 8. Theyssen, H., Schuster, H. P., Packschies, L., Bukau, B., & Reinstein, J. (1996). J. Mol. Biol. 263, 657 670 9. Lindquist, S., and Craig, E. A. (1988). Annu. Rev.Genet. 22, 631–677. 10. Mukai, H., T. Kuno, H. Tanaka, D. Hirata, T. Miyakawa, and C. Tanaka. (1993). Gene 132, 57–66. 11. Boorstein, W. R., Ziegelhoffer, T., and Craig, E. A. (1994) J. Mol. Evol. 38,1–17. 12. James P, Pfund C, Craig EA. (1997) Science. 275(5298), 387-9. 13. Pfund, C., Hoyo-Lopez, N., Ziegelhoffer, T., Schilke, B. A., Lopez-Buesa, P.,Walter, W. A., Wiedmann, M., and Craig, E. A. (1998) EMBO J. 17,3981–3989 14. Nelson, R. J., Zeigelhoffer, T., Nicloet, C., Werner-Washburne, M., and Craig, E. A. (1992) Cell. 71, 97–105 15. Werner-Washburne, M., Stone, D. E., and Craig, E. A. (1987) Mol. Cell. Biol. 7, 2568–2577 16. Mayer, M. P., and Bukau, B. (1998) Biol. Chem. 379, 261–268 17. Kim, S., Schilke, B., Craig, E. A., and Horwich, A. L. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 12860–12865 18. Shulga, N., Roberts, P., Gu, S., Spitz, L., Tabb, M. M., Nomura, M., and Goldfarb. D. S. (1996) J. Cell Biol. 135, 329–339 19. Oka, M., Nakai, M., Endo, T., Lim, C. R., Kimata, Y., and Kohno, K. (1998) J. Biol. Chem. 273, 29727–29737 20. Stone, D. E., and Craig, E. A. (1990) Mol. Cell. Biol. 10, 1622–1632 21. Johnson, B. A., Najbauer, J., and Aswad, D. W. (1993) J. Biol. Chem. 268, 6174–6181. 22. Chuan Li, Li-Shuang Ai, Chia-Hui Lin, Mingli Hsieh, Yueh-Chun Li, and Shuan-Yow Li (1998) Arch Biochem Biophys. 351, 53-59 23. Springer, M. S., Goy, M. F. and Adler, J. (1979) Nature 280, 279-284. 24. Koshland, D. E. Jr. (1981) Ann. Rev. Biochem. 50, 765-782. 25. Springer, M.S. Zanolari, B. and Pierzchala, P. A. (1992) J. Biol. Chem.257, 6861-6866. 26. Szurmant H, Ordal GW. (2004) Microbiol Mol Biol Rev. 68(2), 301-19. 27. DeLange, R. J., Glazer, A. N., and Smith, E. L. (1970) J. Biol. Chem. 245, 3325–3327 28. Bogdan Polevoda, Mark R. Martzen, Biswadip Das, Eric M. Phizicky, and Fred Sherman (2000) J. Biol. Chem. 275, 20508–20513. 29. Van Holde, K.E. (1989). In Chromatin (ed. A. Rich), pp. 169-180. Springer-Verlag, New York, NY. 30. Strahl, B.D., Ohba, R., Cook, R.G., and Allis, C.D. (1999). Proc. Natl. Acad. Sci. 96, 14967-14972 31. Briggs, S.D., Bryk, M., Strahl, B.D., Cheung, W.L., Davie, J.K., Dent, S.Y., Winston, F., and Allis, C.D. (2001). Genes & Dev. 15, 3286–3295. 32. Rice JC, Allis CD. (2001) Curr Opin Cell Biol. 13(3), 263-73. 33. Wang, C.,Gomer,R H., and Lazarides, E. (1981) Proc. Natl. Acad. Sci. U. S. A. 78,3531-3535. 34. Wang, C., and Lazarides, E., O’Connor, C.M., and Clarke, S. (1982) J. Biol. Chem.257, 8356-8362. 35. Wang C, Lin JM, Lazarides E. (1992) Arch Biochem Biophys. 297(1), 169-75. 36. Pamela Zobel-Thropp, Jonathan D. Gary, and Clarke, S. (1998) J. Biol. Chem. 273, 29283–29286. 37. Moore, S. (1968) J. Biol. Chem.243, 6281-628. 38. Zobel-Thropp, P., Yang, M. C., Machado, L., and Clarke, S. (2000) J. Biol. Chem. 275, 37150–37158. 39. Hrycyna, C. A., Yang, M. C., and Clarke, S. (1994) Biochemistry 33, 9806–9812. 40. Niewmierzycka, A., and Clarke, S. (1999) J. Biol. Chem. 274, 814-824. 41. Schubert H.L., Blumenthal R.M., Cheng X. (2003) Trends Biochem Sci. 28(6), 329-35 42. Holzschu, D., Principio, L., Taylor, K., Hickey, D. R., Short, J., Rao, R., McLendon, G., and Sherman, F. (1987) J. Biol. Chem. 262, 7125–7131 43. Takakura, H., Yamamoto, T., and Sherman, F. (1997) Biochemistry 36,2642–2648 44. Rieder, R., and Bosshard, H. R. (1978) J. Biol. Chem. 253, 6045–6053 45. Rieder, R., and Bosshard, H. R. (1980) J. Biol. Chem. 255, 4732–4739 46. Speck, S. H., Ferguson-Miller, S., Osheroff, N., and Margoliash, E. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 155–159 47. Ferguson-Miller, S., Brautigan, D. L., and Margoliash, E. (1978) J. Biol. Chem. 253, 149–159id NH0925112016 sid 914259 cfn 0 / id NH0925112017 auc 林英博 tic 東、西部台灣眼鏡蛇蛇毒蛋白 之細胞毒性與肌肉毒性分析 adc 吳文桂 ty 碩士 sc 國立清華大學 dp 生物資訊與結構生物研究所 yr 92 lg 中文 pg 60 kwc 台灣眼鏡蛇 kwc 心臟毒素 kwc 肌肉毒性 kwc 肌肉壞死 abc 雖然一般觀念中把眼鏡蛇歸類於神經性毒性,但是台灣眼鏡蛇咬傷主要產生局部紅腫及肢體壞死,且壞死組織容易造成革蘭氏陰性細菌的感染,而神經毒性的表現:神經—肌肉傳導阻斷及呼吸困難的症狀,約佔5%而已。有研究指出,局部組織的壞死並非因為細菌感染傷口造成,而是來自於蛇毒中的心臟毒素。我們發現在東、西部的台灣眼鏡蛇毒液中,不僅其毒力強弱明顯不同,且心臟毒素的表現也有不同的模式,我們懷疑這可能在傷口造成程度不等的傷害,所以針對東、西部台灣眼鏡蛇毒液中的不同的毒蛋白做了毒性的比較。因為心臟毒素的作用機制,是屬於細胞膜毒素的一種,而且有證據顯示心臟毒素會造成骨骼肌細胞的壞死,故在實驗中我們以蛇毒對細胞及肌肉組織的毒性表現來做觀察。結果顯示,蛇毒中的毒蛋白彼此之間明顯存在著協同的作用,且東、西部的眼鏡蛇毒確實有不同的生理毒性差異。根據細胞及動物實驗的觀察推測,相同劑量的蛇毒,西部(白腹1型)眼鏡蛇的細胞與肌肉毒性最高;東部(黑腹)眼鏡蛇與另一型的西部(白腹2型)眼鏡蛇則互有不同。而這個差異顯然是來自於心臟毒素的不同表現,在進一步比較不同的毒蛋白後,發現西部(白腹1型)眼鏡蛇含量最多的心臟毒素A3有最強的細胞與肌肉毒性;西部(白腹2型)眼鏡蛇含量較高的心臟毒素A2、A4有較強的細胞毒性,而東部(黑腹)眼鏡蛇含量較高的心臟毒素A1、A6則有較強的肌肉毒性。若再考慮蛇咬的單次排毒量,則東部(黑腹)眼鏡蛇的肌肉毒性應超過西部(白腹)眼鏡蛇4倍以上。 tc 摘要------------------------------------------0 第一章 緒論 1-1 台灣眼鏡蛇--------------------------------1 1-2 眼鏡蛇蛇毒簡介----------------------------4 1-3 東、西部台灣眼鏡蛇的差異-----------------13 1-4 研究目的---------------------------------16 第二章 材料與方法 2-1材料準備----------------------------------17 2-1-1 粗蛇毒的製備與分群 2-1-2 蛇毒蛋白的純化與鑑定 2-1-3 蛋白質濃度的定量 2-1-4 細胞的培養與繼代 2-1-5 動物的品系與飼養 2-2檢測原理---------------------------------22 2-2-1 細胞毒性檢測原理 2-2-2 動物毒性檢測原理 2-2-3 組織切片與染色原理 2-3實驗方法----------------------------------26 2-3-1 細胞毒性檢測 2-3-2 動物毒性檢測 2-3-3 組織切片與染色 第三章 結果 3-1 粗蛇毒的細胞毒性-------------------------30 3-2 蛇毒蛋白的細胞毒性-----------------------30 3-3 粗蛇毒的肌肉毒性-------------------------32 3-4 蛇毒蛋白的肌肉毒性-----------------------38 第四章 討論 4-1 眼鏡蛇蛇毒蛋白的毒性比較-----------------45 4-2 東、西部台灣眼鏡蛇粗蛇毒的毒性比較-------48 4-3 結論-------------------------------------51 參考文獻-------------------------------------52 附錄-----------------------------------------57rf Agarwal MM, Ankra-Badu George A. Serum creatine kinase: A marker for muscle damage in sickle cell painful crisis Annals of Saudi Medicine, Vol 19, No 3, 1999 Berry David, Shriver Zachary, Natke Barbara, Kwan Chi-Pong, Venkataraman Ganesh, and Sasisekharan Ram Heparan sulfate glycosaminoglycans derived from endothelial cells and smooth muscle cells differentially modulate Fibroblast Growth Factor-2 biological activity through Fibroblast Growth Factor Receptor-1. Biochemical Journal Immediate Publication,Mar 2003,manuscript BJ20021760 Bougis P, Rochat H, Pieroni G, Verger R. Penetration of phospholipid monolayers by cardiotoxins. Biochemistry 1981; 20: 4915–20. Bougis P, Tessier M, Van Rietschoten J, Rochat H, Faucon JF, Dufourcq J. Are interactions with phospholipids responsible for pharmacological activities of cardiotoxins? Mol Cell Biochem. 1983;55(1):49-64. Calil-Elias S., Thattassery E., Martinez A.M.B., Melo, P.A. Effect of perimuscular injection of Bothrops jararacussu venom on plasma creatine kinase levels in mice: influence of dose and volume. Brazilian Journal of Medican and Biological Research, 2002, 35, 1233-1235. Chang CC. The action of snake venoms on nerve and muscle. In:Lee CY (ed.). Snake Venoms. Springer, Berlin. 1979; 309–58. Chen YH, Hu CT, Young JT. Membrane disintegration and hemolysis of human erythrocytes by snake venom cardiotoxin (a membranedisruptive polypeptide). Biochem. Int. 1984; 8: 329–38. Chen YH, Liou RF, Hu CT, Juan CC, Yang JT. Interaction of snake venom cardiotoxin (a membrane-disruptive polypeptide) with human erythrocytes. Mol. Cell. Biochem. 1987; 73: 69–76. Chien K.Y., Chiang C.M., Hseu Y.C., Vyas A. A., Rule G.S., and Wu W.G. Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions. J. of Biol. Chem., 1994, 269, 14473-14483. Chippaux JP, Williams V, White J Snake venom variability:methods of study, results and interpretation. Toxicon (1991)29:1279–1303 Condera E. Hemolytic effects of snake venoms. In: Lee CY (ed.). Snake Venoms. Springer, Berlin. 1979, 448–79. Condera E. Membrane-active polypeptides from snake venom: Cardiotoxin and haemocytotoxin. Experimentia 1974; 30: 121–9. Couteaux R, Mira JC, d’Albis A. Regeneration of muscles after cardiotoxin injury. I. Cytological aspects. Biol. Cell 1988; 62: 171–82. Creer Simon, Malhotra Anita, Thorpe Roger S., Stocklin Reto, Favreau Philippe, Chou Wen Hao Genetic and Ecological Correlates of Intraspecific Variation in Pitviper Venom Composition Detected Using Matrix-Assisted Laser Desorption Time-of-Flight Mass Spectrometry (MALDI-TOF-MS) and Isoelectric Focusing J Mol Evol ,2003, 56:317–329 Daltry JC, Wuster W, and Thorpe RS Diet and snake venom evolution. Nature, February 8, 1996; 379(6565): 537-40. Dennis EA Diversity of group types, regulation, and function of phospholipase A2 J. Biol. Chem., May 1994; 269: 13057 - 13060. Dubovskii Peter V., Lesovoy Dmitry M., Dubinnyi Maxim A., Utkin Yuri N.,Arseniev Alexander S. Interaction of the P-type cardiotoxin with phospholipid membranes Eur. J. Biochem.,2003, 270, 2038–2046 Duncan CJ Role of intracellular calcium in promoting muscle damage: a strategy for controlling the dystrophic condition. Experientia, Dec 1978; 34(12): 1531-5. Efremov Roman G.,Volynsky Pavel E.,Nolde Dmitry E.,Dubovskii Peter V.,Arseniev Alexander S. Interaction of Cardiotoxins with Membranes: A Molecular Modeling Study Biophysical Journal Volume 83 July 2002 144–153 Fletcher Jefrey E.and Jiang Ming-Shi Lys49 phospholipase A2 myotoxins lyse cell cultures by two distinct mechanisms Toxicon,1998,36,1549-1555 Forouhar F, Huang WN, Liu JH, Chien KY, Wu WG, Hsiao CD. Structural basis of membrane-induced cardiotoxin A3 oligomerization. J Biol Chem. 2003 Jun 13;278(24):21980-8. Epub 2003 Mar 26. Fry BG, Wuster W, Kini RM, Brusic V, Khan A, Venkataraman D, and Rooney AP Molecular evolution and phylogeny of elapid snake venom three-finger toxins. J Mol Evol, Jul 2003; 57(1): 110-29. Gutierrez J.M., Ownby C.L. Skeletal muscle degeneration induced by venom phospholipases A2: insights into the mechanisms of local and systemic myotoxicity. Toxicon, 2003, 42, 915-931. Gutierrez JM, Rojas G, Da Silva Junior NJ, and Nunez J Experimental myonecrosis induced by the venoms of South American Micrurus (coral snakes). Toxicon, Oct 1992; 30(10): 1299-302. Gutierrez Jose Maria, Arroyo Olga, Chaves Fernando, Lomonte Bruno, Cerdas Luis. Pathogenesis of myonecrosis induced by coral snake (Micrurus nigrocinctus ) venom in mice. Br. J. exp. Path, 1986, 67, 1-12 Harris J.B. Myotoxic phospholipases A2 and the regeneration of skeletal muscles. Toxicon, 2003, 42, 933-945. Huang WN, Sue SC, Wang DS, Wu PL, Wu WG. Peripheral binding mode and penetration depth of cobra cardiotoxin on phospholipid membranes as studied by a combined FTIR and computer simulation approach. Biochemistry. 2003 Jun 24;42(24):7457-66. Hung Dong-Zong, Liau Ming-Yi, Lin-Shiau Shoei-Yn The clinical significance of venom detection in patients of cobra snakebite Toxicon ,2003,41, 409–415 Karev Georgy P, Wolf Yuri I,Rzhetsky Andrey Y, Berezovskaya Faina S, Koonin Eugene V. Bitrh and death of protein domains: A simple model of evolution explains power law behavior. BMC Evolutionary Biology, 2002, 2:18 1-26. Kwan C.Y., Kwan T.K., Huang, S.J. Effect of calcium on the vascular contraction induced by cobra venom cardiotoxin. Clinical and Experimental Pharmacology and Physiology, 2002, 29, 823-828. Lai M.K., Wen C.Y., Lee C.Y. Local lesions caused by cardiotoxin isolated from Formosan cobra venom. J. Formosan Med. Assoc.,1972, 71, 328–332. Lee CY, Chang CC, Chiu TH, Chiu PJ, Tseng TC, and Lee SY Pharmacological properties of cardiotoxin isolated from Formosan cobra venom. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol, Jan 1968; 259(4): 360-74. Lewis Richard J. and Garcia Maria L. Therapeutic potential of venom peptides NATURE REVIEWS,DRUG DISCOVERY, VOLUME 2 ,OCTOBER 2003,790-802 Liau M.Y., Huang R.-J. Toxoids and antivenoms of venomous snakes in Taiwan. Toxicolo.-Toxin Reviews, 1997, 16, 163-175. Lomonte B., Gutierrez J. M., Romero M., Nunez J., Tarkowski A., Hanson L. A. An MTT-based method for the in vivo quantification of myotoxic activity of snake venoms and its neutralization by antibodies. Journal of Immunological Methods, 1993, 161, 231-237 Lopes-Ferreira M, Nunez J, Rucavado A, Farsky SH, Lomonte B, Angulo Y, Moura Da Silva AM, and Gutierrez JM Skeletal muscle necrosis and regeneration after injection of Thalassophryne nattereri (niquim) fish venom in mice. Int J Exp Pathol, Feb 2001; 82(1): 55-64. NEI MASATOSHI, GU XUN, SITNIKOVA TATYANA Evolution by the birth-and=death process in multigene families of the vertebrate immune system. Proc. Natl. Acad. Sci. USA,Jul 1997, 94: 7799-7806. Ouyang C, Teng CM. The action mechanism of the purified platelet aggregation principle of Trimeresurus mucrosauamatus venom. Thromb.Haemost. 1979; 41: 475–90. Ownby Charlotte L., Selistre de Araujo Heloisa S., White Steven P., Fletcher Jefrey E. Lysine 49 phospholipase A2 proteins Toxicon 37 (1999) 411-445 Ownby CL, Fletcher JE, and Colberg TR Cardiotoxin 1 from cobra (Naja naja atra) venom causes necrosis of skeletal muscle in vivo. Toxicon, Jun 1993; 31(6): 697-709. Rosenberg P. Lethal potency of snake venom phospholipase A2 enzymes In Venom Phospholipase A2 Enzymes:STRUCTURE,FUNCTION AND MECHANASM MANJUNATHA KINI R. (ed.) JOHN WILEY & SONS Ltd, 1997 Shiau SY, Huang MC, Lee CY. Mechanism of action of cobra cardiotoxin in the skeletal muscle. J. Pharmacol. Exp. Ther. 1976; 196:758–70. Slowinski JB, Knight A, and Rooney AP Inferring species trees from gene trees: a phylogenetic analysis of the Elapidae (Serpentes) based on the amino acid sequences of venom proteins. Mol Phylogenet Evol, Dec 1997; 8(3): 349-62. Sun JJ, Walker MJA. Actions of cardiotoxin from the southern Chinese cobra (Naja naja atra) on rat cardiac tissue. Toxicon 1986;24: 233–45. Teixeira CF, Landucci EC, Antunes E, Chacur M, and Cury Y Inflammatory effects of snake venom myotoxic phospholipases A2. Toxicon, Dec 2003; 42(8): 947-62. Trump BF, Berezesky IK, Cowley RA. The cellular and subcellular characteristics of acute and chronic injury with emphasis on the role of calcium. Pathophysiology of Shock, Anoxia, and Ischemia. Baltimore/London: Williams and Wilkins, 1982, pp 6–46. Tseng L.F., Chiu T.H.,Lee C.Y. Absorption and distribution of 131I-labeled cobra venom and its purified toxins. Toxicology and Applied Pharmacology 1968, 12, 526-535 Tsetlin V.I., Hucho F. Snake and snail toxins acting on nicotinic acetylcholine receptors:fundamental aspects and medical applications FEBS Letters ,557 ,2004, 9-13 Tu A. Venoms: Chemistry and Molecular Biology. John Wiley and Sons,New York. 1977. Wrogeman K and Pena SDJ. Mitochondrial calcium overload: a general mechanism for cell necrosis in muscle diseases. Lancet ,1976,27: 672–673 Wu W G. Cobra Cardiotoxin and Phospholipase A(2) as GAG-binding Toxins; On the Path from Structure to Cardiotoxicity and Inflammation. Trends Cardiovasc Med. 1998 Aug;8(6):270-8. 李紹禎 Binding specificity and binding mode of cobra cardiotoxin-heparin interaction and their biological implication 國立清華大學/生命科學系/2004/博士/ 吳欽翔 Comparison and Identification of venomous components between Eastern and Western Taiwan Cobra (Naja atra) by Two Dimensional High Performance Liquid Chromatography (2D-HPLC) and Electrospray Ionization Mass Spectrometry (ESI-MS) 國立清華大學/生命科學系/2003/碩士/ 洪東榮 Studies on the Diagnosis、Treatment and Toxic Mechanism of Taiwan Venomous Snakebites 國立臺灣大學/毒理學研究所/2002/博士 陳淑惠,王端禎,陳村光,廖明一 臺灣東部及西部地區飯匙倩蛇毒毒力之比較. 中華醫誌,1984, 34, 644-649. 黃維寧 The study of pore formation mechanism of the cobra cardiotoxin on membranes 國立清華大學/生命科學系/2003/博士/ 覃公平 主編 中國毒蛇學(CHINA POISONOUS SNAKE RESEARCH) 廣西科學技術出版社出版 1999年 第三版id NH0925112017 sid 914264 cfn 0 / id NH0925112018 auc 林盈伸 tic 蝴蝶蘭低溫逆境篩選基因表現之研究 adc 林彩雲 ty 碩士 sc 國立清華大學 dp 生物資訊與結構生物研究所 yr 92 lg 中文 pg 52 kwc 蝴蝶蘭 abc 植物的生長和發育與外界的環境變化有極大的密切關係,像是乾旱、鹽害和低溫逆境。而低溫逆境影響蝴蝶蘭生長,降低產值,因此我們希望利用台灣原生種蝴蝶蘭Phalaenopsis aphrodite subsp. formosana對寒冷的高耐受度,分析低溫誘發基因的可能功能。從實驗室以PCR-select subtraction的方法構築之EST基因庫,選殖分析132個可能受低溫逆境誘發的基因片段。其預測蛋白質功能可分類為抗病蟲害/防禦、能量調節、代謝調節、蛋白質運送及儲存、蛋白質修飾、蛋白質合成、訊息傳遞、蛋白質結構、轉錄調控、運送等。以DNA墨點法篩選低溫誘導和低溫抑制的基因,選11個EST進行北方印跡法來分析這些基因的表現,探討其生理意義。我們認為WRKY、DAD1和MYB可能和低溫逆境有密切關係,分析這些基因間的作用或許可提供我們了解低溫逆境訊息傳遞路徑下的重要訊息。 tc 中文摘要------------------------------------------i 英文摘要-----------------------------------------ii 名詞縮寫----------------------------------------iii 前言----------------------------------------------1 材料與方法----------------------------------------5 結果---------------------------------------------15 討論---------------------------------------------21 參考文獻-----------------------------------------26 表-----------------------------------------------39 圖-----------------------------------------------42rf 林讚標,1988。台灣蘭科植物,南天出版社。 Alonso, A., C. S. Queiroz and A. C. Magalhaes. 1997. Chilling stress leads to increased cell membrane rigidity in roots of coffee (Coffea arabica L.) seedlings. Biochim. Biophys. Acta 1323: 75-84. Anderson, J. V. and C. L. Guy. 1995. Spinach leaf 70-kilodalton heat-shock cognate stabilizes bovine adrenal glucose-6-phosphate dehydrogenase in vitro without apparent stable binding. Planta 196: 303-310. Apte, S. S., M. G. Mattei, M. F Seldin, and B. R. Olsen. 1995. The highly conserved defender against the death (DAD1) gene maps to human chromosome 14q11-q12 and mouse chromosome 14 and has plant and nematode homologs. FEBS Lett. 363: 304-306. Bolger, T.P., D.R. Upchurch and B.L. McMichael. 1992. Temperature effects on cotton root hydraulic conductance. Env. And Exp. Bot. 32:49-54. Chang. H. G., H. G. Nam and S. P. YU. 2003. Stress memory in plants: a negative regulation of stomatal response and transient induction of rd22 gene to light in abscisic acid-entrained Arabidopsis plants. Plant J. 36:240-255. Chen, W. H. and Y. T. Wang. 1996. Phalaenopsis orchid culture. Taiwan Sugar Res. Instit. 43: 11-16. Chen, W.H., N. J. Provart, J. Glazebrook, F. Katagiri, H. S. Chang, T. Eulgem, F. Mauch, S. Luan, G. Zou and S. A. Whitham. 2002. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14: 559-574. Dong, Yu, Sung, Fatma Kaplan, L. Kil-Jae and L. Guy Charles. 2003. Acquired tolerance to temperature extremes. Trends Plant Sci. 8: 179-187. Droge-Laser, W. Kaiser, A. Lindsay, W. P. Halkier, B. A., Loake, G.J. Doerner, P. Dixon, R. A. and C. Lamb. 1997. Rapid stimulation of a soybean protein-serine kinase that phosphorylates a novel bZIP DNA-binding protein, G/HBF-1, during the induction of early transcription-dependent defenses. EMBO J. 16: 726-738. Fowler, S., and M. F. Thomashow. 2002. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690 Fridovich, I. 1986. Superoxide dismutases. Adv. Enzymol. 58: 62-97. Frydman, J, E. Nimmesgern, K. Ohtsuka and U. Hartl. 1994. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370: 111-117. Gallois, P., T. Makishima, V. Hechtt, B. Despres, M. Laudie, T. ishimoto, and R. Cooke. 1997. An Arabidopsis thaliana cDNA complementing a hamster apoptosis suppressor mutant. Plant J. 11: 1325-1331. Guy, M. G. 1989. Phospholipid, sterol composition and ethylene production in relation to choline-induced chill-tolerance in mung bean (Vigan radiata L. Wilcz) during a chilling-warm cycle. J. Exp. Bot. 40: 369-374. Hiroshi, A., Urao T., Ito T., Seki M., Shinozaki K. and Yamaguchi-Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic aid signaling. Plant Cell 15: 63-78. Holmberg, N., J. Farres, J.E. Bailey, P.T. Kallio. 2001. Targeted expression of a synthetic codon optimized gene, encoding the spruce budworm antifreeze protein, leads to accumulation of antifreeze activity in the apoplasts of transgenic tobacco. Gene. 275:115-24. Kim, T. E., S. K. Kim, T. J. Han, J. S. Lee and S. C. Chang. 2002. ABA and polyamines act independently in primary leaves of cold-stressed tomato (Lycopersicon esculentum). Physiol. Plant 115: 370-376. Kitaya Y, T. Okayama, K. Murakami, T. Takeuchi. 2003. Effects of CO2 concentration and light intensity on photosynthesis of a rootless submerged plant, Ceratophyllum demersum L., used for aquatic food production in bioregenerative life support systems. Adv. Space Res. 7:1743-1749. Knight, H. and M. R. Knight. 2001. Abiotic stress signaling pathway: specific and cross-talk. Trends Plant Sci. 6:262-267. Kranz, H. D., M. Denekamp, R. Greco, R. Jin, A. Leyva, R. C. Meissner, K. Petroni, A. Urzainqui, M. Bevan, C. Martin, S. Smeekens, C. Tonelli, J. Paz-Ares and B. Weisshaar. 1998. Towards functional characterization of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J. 16: 263-276. Kreps J. A.,Y. Wu, H. S. Chang , T. Zhu, X. Wang, J. F. Harper. 2002. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130:2129–2141 Maleck, K., A. Levine, T. Eulgem, A. Morgan, J. Schmid, Lawton, K. A. Dangl and R. A. Dietrich. 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genet. 26: 403-410. Martin, C. and Paz-Ares. 1997. MYB transcription factors in plants. Trends Genet. 13:67-73. Nakashima, T., T. Sekiguchi, A. Kuraoka, K. Fukushima, Y. Shibata, S. Komiyama and T. Nishimoto. 1993. Molecular cloning of a human cDNA encoding a novel protein, DAD1, whose defect causes apoptotic cell death in hamster BHK21 cells. Mol. Cell Biol. 13: 6367-6374. Perez-Tello, G. O., B. A. Silva-Espinoza, I. Vargas-Arispuro, B. O. Briceno Torres and M. A. Martinez-Tellez. 2001. Effect of temperature on enzymatic and physiological factors related to chilling injury in carambola fruit (Averrhoa carambola L.). Biochem. Biophys. Res. Commun. 287: 846-851. Purvis, A. C. and R. L. Shewfelt. 1993. Does the alternative pathway ameliorate chilling injury in sensitive plants tissues? Physiol. Plant 88: 712-718. Raison, J. K. and E. A. Chapman. 1976. Membrane phase changes in chilling-sensitive Vigna radiata and their significance to growth. Aust. J. Plant Physiol. 3: 291-299. Robatzek, S. and I. E. Somssich. 2001. A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defense-related processes. Plant J. 28: 123-133. Robatzek, S. and I. E. Somssich. 2002. Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev. 16: 1139-1149. Rushton, P. J. and I. E. Somssich. 1998. Transcriptional control of plant genes responsive to pathogens. Curr. Opin. Plant Biol. 1: 311-315. Sanchez-Ballesta, M. T., Y. Lluch, M. J.Gosalbes, L. Zacarias, A. Granell, and M. T. Lafuente. 2003. A survey of genes differentially expressed during long-term heat-induced chilling tolerance in citrus fruit. Planta 218:65-70. Sanjay A, J. Fu, G. Kreibich. 1998. DAD1 is required for the function and the structural integrity of the oligosaccharyltransferase complex. J. Biol. Chem. 273:26094-16099. Shen, Y. G., W. k. Zhang, S. J. He, J. S. Zhang, Q. Liu and S. Y. Chen. 2003. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor. Appl. Genet. 106: 923-930. Sharom, M., C. Willemot and J. E. Thompson. 1994. Chilling injury induces lipid phase changes in membranes of tomato fruit. Plant Physiol. 105: 305-308. Sik L.K., C. E. Hwa, J. H. Hung, H. D. Sohn, J. B. Rae. 2003. cDNA cloning of a defender against apoptotic cell death 1 (DAD1) homologue, responsive to external temperature stimulus from the spider, Araneus ventricosus. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 135:117-123. Silberstein, S., P. G. Collins, D. J. Kelleher, and R. Gilmore. 1995. The essential OST2 gene encodes the 16-kD subunit of the yeast oligosaccharyltransferase, a highly conserved protein expressed in diverse eukaryotic organisms. J. Cell Biol. 131: 371-383. Steponkus, P. L., M. Uemura, R. A. Joseph, S. J. Gilmour, M. F. Thomashow. 1998. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc. Natl. Acad. Sci. U S A. 95:14570-14575. Sugimoto, A., R. R. Hozak, T. Nakashima, Nishimoto and J. H. Rothman. 1995. DAD1, an endogenous programmed cell death suppressor in Caenorhabditis elegans and vertebrates. EMBO J. 14:4434-4441. Sung D. Y., K. Fatma, L. Kil-Jee and G. L. Charles. 2003. Acquired tolerance to temperature extremes. Trends Plant Sci. 8:179-187. Takahashi, R., N. Joshee, Y. Kitagawa. 1994. Induction of chilling resistance by water stress, and cDNA sequence analysis and expression of water stress-regulated genes in rice. Plant Mol. Biol. 26: 339-52. Tanaka, Y., T. Makishima, M. Sasabe, Ichinose, Y. Shiraishi, T. Nishimoto, and A. O. Taylor, and A. S. Craig. 1971. Plants under climatic stress. Low temperature, high light effects on chloroplast ultrastructure. Plant Physiol. 47: 719-725. Thomashow, M. F. 1999. Plant cold acclimation, freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 571-599. Uemura, M. and S. Yashida. 1984. Involvement of plasma membrane alterations in cold acclimation of winter rye seedlings (Secale cereale L. cv. puma). Plant Physiol. 75: 818-826. Urao, T., K. Yamaguchi-Shinozaki, S. Urao and K. Shinozaki. 1993. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5: 1529-1539. Xiong, L. and Y. Yang. 2003. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745-759. Wu, G, A. J. Robertson, X. Liu, P. Zheng, R. W. Wilen, N. T. Nesbitt and L. V. Gusta. 2004. A lipid transfer protein gene BG-14 is differentially regulated by abiotic stress, ABA, anisomycin, and sphingosine in bromegrass (Bromus inermis). J. Plant Physiol. 161: 449-458. Yamada, T. 1997. DAD-1, A putative programmed cell death suppressor gene in rice. Plant Cell Physiol. 38: 379-383. Yamaguchi-Shinozaki K. and K. Shinozaki. 1993. The plant hormone abscisic acuid mediate the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol. Gen. Genet. 138:17-25 Yubero-Serrano, E. Moyano, N. Medina-Escobar, J. Munoz-Blanco and J.L. Caballero. 2003. Identification of a strawberry gene encoding a non-specific lipid transfer protein that responds to ABA, wounding and cold stress. J. Exp. Bot. 54: 1865-1877. Zhang, Z.L., Z. Xie, X. Zou, J. Casaretto, T. D. Ho and Q. J. Shen. 2004. A Rice WRKY Gene Encodes a Transcriptional Repressor of the Gibberellin Signaling Pathway in Aleurone Cells. Plant Physiol. 134: 1500-1513.id NH0925112018 sid 914235 cfn 0 / id NH0925112019 auc 黃靜鈴 tic 蝴蝶蘭高溫逆境篩選基因之研究 adc 林彩雲博士 ty 碩士 sc 國立清華大學 dp 生物資訊與結構生物研究所 yr 92 lg 中文 pg 67 kwc 蝴蝶蘭 kwc 高溫逆境 abc 蝴蝶蘭雖原產於熱帶或亞熱帶,比一般植物具有較高的耐熱性,但高溫時間過久,仍會導致休眠,生長遲滯,如再遭遇通風不良,或溼度太高,則容易遭致軟腐病以及其他病害的發生。因此,我們利用PCR篩選扣減式基因庫的技術,選取蝴蝶蘭在高溫逆境下的基因並探討其表現。分析篩選基因的結果,我們找到一些EST,其產物可能是植物面對高溫逆境時所產生的保護蛋白,如熱休克轉錄調節因子 (heat shock transcription factor) 和低分子量的熱休克蛋白 (small heat shock protein) 等。另外我們也找到一些與auxin訊息傳導相關的EST,如AUX1 permease和ChaC-like protein (cation transporter)。而北方墨點分析 (Northern blot) 結果意外發現,這些EST的表現似乎受生理時鐘所調控。由北方墨點分析的結果,啟動子的分析,以及相關的文獻研究,我們推測auxin訊息傳導途徑和蝴蝶蘭高溫逆境的反應可能有關。 tc 目錄 中文摘要-------------------------------------------------------------------- ii 英文摘要-------------------------------------------------------------------- iii 名詞縮寫-------------------------------------------------------------------- iv 一、前言 ------------------------------------------------------------------- p. 1 二、材料與方法 1. PCR篩選扣減式基因庫的構築 ---------------------------------- p. 8 2. 點墨點法 ------------------------------------------------------------- p. 13 3. 北方式墨點法 ------------------------------------------------------- p. 18 4. 啟動子區域的分析 ------------------------------------------------- p. 23 三、結果 -------------------------------------------------------------------- p. 24 四、討論 -------------------------------------------------------------------- p. 33 參考文獻 -------------------------------------------------------------------- p. 38 表 ----------------------------------------------------------------------------- p. 42 圖 ----------------------------------------------------------------------------- p. 47 附錄 -------------------------------------------------------------------------- p. 57rf 參考文獻 陳文輝 (2002) 科學發展,351期,專題報導。 Bouche N., Fait A., Bouchez D., Moller S. G., and Fromm H. (2003) Mitochondrial succinic-semialdehyde dehydrogenase of the -amino- butyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc. Natl. Acad. Sci. USA 100: 6843-8. Chang S., Jeff P., and John C. (1993) A simple and efficient method for isolating RNA from pine tree. Plant Mol. Biol. Reporter 11: 113-116. Caplan A. J. (1999) Hsp90's secrets unfold: new insights from structural and functional studies. Trends Cell Biol. 9: 262-268. Escobar M. L. G., Salla M., Gunilla H., Jens F., and Carina K. (2001) Heat Stress Response in Pea Involves Interaction of Mitochondrial Nucleoside Diphosphate Kinase with a Novel 86-Kilodalton Protein. Plant Physiol. 126: 69-77. Ferguson I. B., Susa L., and Judith H. B. (1994) Protein synthesis and beakdown during heat shock of cultured pea (Pyrus communis L.) cells. Plant Physiol. 104: 1429-1437. Finley D., Ozkaynak E., and Varshavsky A. (1987) The yeast polyubiquitin gene is essential for resistance to high temperature, starvation, and other stresses. Cell 48: 1035-1046. Glover J. R. and Lindquist S. (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94: 73-82. Harmer S. L., Hogenesch J. B., Straume M., Chang H. S., Han B., Zhu T., Wang X., Kreps J. A., and Kay S.A. (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290: 2110-2113. Harmer S. L., Panda S., and Kay S. A. (2001) Molecular bases of circadian rhythms. Annu. Rev. Cell Dev. Biol. 17: 215-253. Heckathorn S.A., Downs C.A., Sharkey T.D., Coleman J.S. (1998) The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress. Plant Physiol. 116: 439-444. Iba Koh (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Biol. 53: 225-245. Kotak Sachin, Markus Port, Arnab Ganguli, Frank Bicker, and Pascal von Koskull-Döring (2004) Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. The Plant J. 39: 98-112. Miller A. J. (2000) Clock proteins: turned over after hours? Curr. Biol. 10: R529-R531. Moon H., Boyoung L., Giltsu C., Dongjin S., D. Theertha P., Oksun L., Sang-Soo K., Doh H. K., Jaesung N., Jeongdong B., Jong C. H., Sang Y. L., Moo J. C., Chae O. L., and Dae-Jin Y. (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc. Natl. Acad. Sci. USA 100: 358-363. Oberschmidt O., Grundler F.M.W., and Kleine,M. (2003) Identification of a novel cation transporter gene from sugar beet (Beta vulgaris L.) by DDRT-PCR closely linked to the beet cyst nematode resistance gene Hs1pro-1. Unpublished. Parsell D. A. and Lindquist S. (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27: 437-496. Parsell D. A., Kowal A. S., Singer M. A., and Lindquist S. (1994) Protein disaggregation mediated by heat-chock protein Hsp104. Nature 372: 475-478. Reindl A, Fritz S., Jeff S., Csaba K., and László B. (1997) Phosphorylation by a cyclin-dependent kinase modulates DNA binding of the Arabidopsis heat-shock transcription factor HSF1 in vitro. Plant Physiol. 115: 93-100. Rensing L. and Monnerjahn C. (1996) Heat shock proteins and circadian rhythms. Chronobiol. Int. 13: 239-250. Riezman H. (2004) Why do cells require heat shock protein to survive heat stress? Cell Cycle 3: 61-63. Rikin A. (1992) Circadian rhythm of heat resistance in cotton seedlings: synthesis of heat-shock proteins. Eur. J. Cell Biol. 59: 160-5. Rothman J. E. (1989) Polypeptide chain binding proteins: catalysts of protein folding and related processes in cells. Cell 59: 591-601. Schaffer R., Landgraf J., Monica A., Simon B., Larson M., and Wisman E. (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. The Plant Cell 13: 113-123. Sun W., Marc V. M., and Nathalie V. (2002) Small heat shock protein and stress tolerance in plants. Biochem. Biophys. Acta 1577: 1-9. Sweet H.R. (1980) The genus Phalaenopsis. Day Printing Corp., Calif.. Taiz L. and Zeiger Z. (2002) Stress Physiology. In: Plant Physilology 3rd ed, pp 454-457& pp. 602-607. Sinauer Associates, Inc.. Vierling E. (1991) The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 579-620. Young M.W. and Kay S. A. (2001) Time zones: a comparative genetics of circadian clocks. Nat. Rev. Genet. 2: 702-715. Young T. E., Jun L., C. Jane G. L., Robert L. T., Christian C., and Daniel R. G.. (2001) Developmental and Thermal Regulation of the Maize Heat Shock Protein, HSP101. Plant Physiol. 127: 777-791.id NH0925112019 sid 914238 cfn 0 / id NH0925112020 auc 鄭玉珮 tic 脂筏在非洲眼鏡蛇心臟毒蛋白作用於人類嗜中性白血球之角色 adc 吳文桂 ty 碩士 sc 國立清華大學 dp 生物資訊與結構生物研究所 yr 92 lg 中文 pg 70 kwc 脂筏 kwc 中東非眼鏡蛇 kwc 嗜中性白血球 abc 本實驗室過去的研究發現,嗜中性白血球對於中東非眼鏡蛇之心臟毒素Toxin γ (Tγ)具有很強的耐受性,但是在短時間內受到Tγ的刺激下,嗜中性白血球的肌動蛋白會聚集成聚合體,造成嗜中性白血球的形變;前述Tγ對嗜中性白血球所造成之影響,並非一種趨化性作用 (從趨化盤的實驗證明Tγ不會引起嗜中性白血球形變而穿透分隔膜),顯然地,Tγ是以不同於fMLP(化學趨化物)之路徑,來引發細胞的肌動蛋白產生聚集化。為探討Tγ在嗜中性白血球膜上的作用機制,我們用介面活性劑(detergent)將細胞膜加以切割後,以蔗糖梯度(sucrose gradient)加以區分為九個部分(DRM extraction),並用免疫染色法鑑定每個部分的特定蛋白含量,再以薄膜層析碘染法鑑定每個部分的脂質成分;結果發現Tγ在細胞膜上所分佈的位置和磷化脂質(sulfatide)的位置相似,位於脂筏區域(raft),且分布在蔗糖梯度分離部分的前端,而受到刺激的嗜中性白血球之肌動蛋白分布和控制組(僅以緩衝液處理)及對照組(100nM fMLP)明顯不同,因此我們可以推論Tγ會作用在嗜中性白血球之脂筏區域,和磷化硫脂分佈在同一區域,並因此造成細胞肌動蛋白分佈的變動,由於在免疫染色法上同時觀測到:受到Tγ刺激的的嗜中性白血球會有Rac/Cdc42 family的蛋白表現,因此進一步推論造成肌動蛋白聚集化之過程可能是透過Rac/Cdc42之訊號傳遞,所造成細胞骨架之變動。至於Tγ和脂筏的結合,我們則是藉由免疫覆蓋技術(immunooverlay)發現Tγ和磷化硫脂在體外(in vitro)會有鍵結之現象,且經由免疫遮蔽效應證實:若將細胞表面上的磷化硫脂以其專一抗體鍵結以遮蔽其效應,則由Tγ所引起的細胞毒殺率將隨所加之磷化硫脂抗體濃度增加而遞減。這可以解釋為何Tγ分佈的位置恰與磷化硫脂相似及其生理作用。總結而言,Tγ可能是藉由和磷化硫脂的鍵結和牽引,而坐落到嗜中性白血球的脂筏端上作用,進行毒殺細胞之後續動作,而在坐落到脂筏區之前後的時間點(兩者皆有可能),引發Rac/Cdc42之訊號傳遞,造成胞內肌動蛋白之單體聚集(actin polymerization)造成嗜中性白血球之形變。 tc 一、序論 1.蛇毒---------------------------------------------------7 2.心臟毒素 ----------------------------------------------9 2.1.心臟毒素簡介-----------------------------------------9 2.2.Tγ簡介-----------------------------------------------11 3.嗜中性白血球簡介---------------------------------------12 3.1.嗜中性白血球-----------------------------------------16 3.2.化學趨化作用-----------------------------------------16 3.3.肌動蛋白---------------------------------------------19 4.脂質(lipid)介紹----------------------------------------22 4.1.細胞膜上之脂質分佈---------------------------------- 22 4.1.1.脂質脂筏之定義與脂筏端(raft domain)介紹----------23 4.1.2.磷化硫脂(sulfatide)介紹--------------------------25 4.2.脂質端(lipid domain)之簡介-------------------------27 4.3.脂質脂筏(lipid raft)之簡介-------------------------28 4.3.1.脂質脂筏之定義與脂筏端(raft domain)介紹----------28 4.3.2.磷化硫脂(sulfatide)介紹--------------------------32 4.3.3.Rac、Rho在脂筏上傳遞訊號造成肌動蛋白之變動---------34 二、實驗材料及方法---------------------------------------37 1.材料---------------------------------------------------37 2.方法---------------------------------------------------38 2.1.蛇毒的製備-------------------------------------------38 2.2.嗜中性白血球之分離---------------------------------- 38 2.3.細胞毒性測定-----------------------------------------40 2.4.Detergent-resistant membrane domain萃取--------------41 2.5.SDS-PAGE及西方點墨法鑑定-----------------------------42 2.5.1.聚丙烯醯胺膠體(SDS-PAGE--------------------------- 42 2.5.2.西方點墨法(Western Blotting)---------------------- 44 2.6.用薄膜層析法鑑定脂質成分---------------------------- 45 2.6.1.展開式薄墨層析法---------------------------------- 45 2.6.2.點墨法(Dot-Plot) ----------------------------------46 2.7.共軛焦顯微鏡之免疫染色鑑定-------------------------- 46 三、結果-------------------------------------------------48 1.Tγ對嗜中性白血球的肌動蛋白之分佈和Raft間之關係-------- 48 1.1.BCA assay分析----------------------------------------48 1.2.西方點墨法分析---------------------------------------48 1.3.薄膜層析法分析---------------------------------------50 1.4.共軛焦顯微鏡分析-------------------------------------51 2.Sulfatide的角色----------------------------------------53 2.1.免疫覆蓋技術鑑定硫化磷脂和Tγ間之結合作用------------ 53 2.2.以抗體遮蔽效應探討硫化磷脂對Tγ之毒理影響------------ 54 四、討論-------------------------------------------------55 五、參考文獻---------------------------------------------65rf 1. Lee, C.Y., Lee, S.Y. (1979) Cardiovascular effect of snake venoms. Handbook of Experimental Pharmacology, Vol.52, 546-590 ( Lee, C.Y. Ed) Berlin; Springer-Verlag. 2. Chang, C.C. (1979) The action of snake venoms on nerve and muscle. Handbook of Experimental Pharmacology, Vol.52, 309-375 ( Lee, C.Y. Ed) Berlin; Springer-Verlag. 3. Wu, W. (1997) Diversity of Cobra Cardiotoxin. J. Toxincol- Toxin Review, 16(3), 115-134 4. Harvey, A.L. (1991) Cardiotoxins from cobra venoms. Reptile Venoms and Toxins, 85-106(Tu, A.T., Ed) New York; Marcel Dekker. 5. Changeux, J.P, Kasai M, Lee C.Y.(1970) Use of a snake venom toxin to characterize the cholinergic receptor protein. Proc Natl Acad Sci USA. 67(3), 1241-1247. 6. Mebs D, Narita K, Iwanaga S, Samejima Y, Lee CY.(1972) Purification, properties and amino acid sequence of α-bungarotoxin from the venom of Bungarus multicinctus. Hoppe Seylers Z Physiol Chem.Feb. 353, 243-262. 7. Gould, R.J, Polokoff, M.A, Friedman, P.A, Huang T.F, Holt, J.C, Cook ,J.J, Niewiarowski, S.(1990) Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proc Soc Exp Biol Med. 195, 168-171. 8. Rossenburg, P. (1988) Phospholipase A2 toxins. Snake Toxins in Neurochemistry, 27-46. Halsted Press, New York. 9. Hseu, Y.C., Wu, W.G. (1995) Interaction between cardiotoxins and phospholipase A2 in membranes as related by the synergistic effect of their in vitro activity. FASRB J. A1371. 10. Chien, K.-Y., Huang, W.-N., Jean, J.-H., and Wu, W. (1991) Fusion of sphingomyelin vesicles induced by proteins from Taiwan cobra (Naja naja atra) venom. J. Biol. Chem. 266, 3252-3259. 11. Rees, B., and Bilwes, A. (1993) Three dimensional structures of neurotoxin and cardiotoxin. Chem. Res. Toxicol. 6, 385-406. 12. Dufton, M.J., and Hider, R.C. (1991) Snake Toxins (Harvey, A.L., Ed.) 259-302,; Pergamon Press, New York. 13. Gilquin, B., Roumestand, C., Zinn-Justin, S., Menez, A., and Toma, F. (1993) Refined three-dimensional solution structure of snake cardiotoxin: analysis the side chain organization suggests the existence of a possible phospholipids binding site. Biopolymers 33, 1659-1675. 14. Lin, S. R., Chang, K. L., and Chang, C. C. (1993) Chemical modification of amino groups in cardiotoxin III from Taiwan Cobra (Naja naja atra) venom. Biochem Mol Biol Int. 31, 175-184. 15. Lin,S. R., Chang, L. S. ,and Chang L. K. (2002) Separation and Structure-Function Studies of Taiwan Cobra Cardiotoxins. J.Pro.Chem. 21, 81-86. 16. Chien, K. Y., Chiang, C. M., Hseu, Y. C., Vyas, A. A., Rule, G. S. and Wu, W. (1994) Two distinct types of cardiotoxin as revealed by the structure and activity relationship of the interaction with 2 witterionic phospholipid dispersion. J. Biol. Chem. 269, 14473-14483. 17. Dufton, M. J., and Hidder, R. C. (1983) Conformational Properties of the neurotoxins and cytotoxins isolated from Elapid snake venom. Crit. Rev. Biochem. 14, 113-171. 18. Dufton, M. J., and Hidder, R. C. (1988) Structure and pharmacology of elapid cytotoxins. Pharmacol. Ther. 36, 1-40. 19. Harvey, A. L. (1985) J. Toxical. Toxin Rev. 4, 41-69. 20. Ho, C. L., Lee, C. Y., and Lu, H. H. (1975) Electrophysiological effects of cobra cardiotoxin on rabbit heart cells. Toxicon. 3, 437-446. 21. Chang, C. C., Lee, C. Y. (1966) Electrophysical study of neuromuscular blocking action of cobra neurotoxin. Br. J. Pharmacol. Chemother. 28, 172-181. 22. Hider, R. C., Khader, F. (1982) Biochemical and pharmacological properties of cardiotoxins isolated from cobra venom. Toxicon. 13, 437-446. 23. Chen, Y. H., Hu, C. T., Ynag, J. T. (1984) Membrane disintergration and hemolysis of human erythrocytes by snake venom cardiotoxin (a membrane-disruptive polypeptide) Biochem. Int. 8, 329-338. 24. Zaheer A, Noronha SH, Hospattankar AV, Braganca BM. (1975) Inactivation of [Na+-K+ ]-stimulated ATPase by a cytotoxic protein from cobra venom in relation to its lytic effects on cells. Biochim Biophys Acta. 394, 293-303. 25. Bougis, P. E., Khelif, A. A., Rochat, H. (1989) On the inhibition of [Na+,K+ ]-ATPase by the components of Naja mossambica mossambica venom; Evidence for two distinct rat brain [Na+,K+ ]-ATPase activities. Biochemistry. 28, 3037-3043. 26. Tzeng, W. F. amd Chen, Y. H. (1988) Suppression of snake venom cardiotoxin-induced cardiomyocyte degradation by blockage of Ca2+ influx or inhibition of non-lysosomal proteinases. Biochem. J. 256, 89-95. 27. Fourie, A. M., Meltzer, S., Berman, M. C. and Louw, A. I. (1983) The effect of cardiotoxin on [Ca+,Mg2+ ]-ATPase of the erythrocyte and sarcoplasmic reticulum. Biochem. Int. 6, 581-591. 28. Hallett, M. B.,ed. (1989) The Neutriphil: Cellular Biochemistry and Physiology. CRC Press, Boca Ration, Fla. 29. Galvani, D. W., Cawley, J. C. (1992) Cytokine Therapy. Cambridge University Press, U.K. 30. Gallin, J. I., Goldstein, I. M., Snyderman, R. (1988) Inflammation : Basic Principles and Clinical Correlates. Raven Press, Mew York. 31. Rollins B. J. (1997) Chemokines. Blood. 90, 909-928. 32. Mantovani A.(1999) Chemokines: Introduction and overview. Chem Immunol. 72, 1-6. 33. Katanaev, VL. (2001) Signal transduction in neutrophil chemotaxis. Biochemistry (Mosc). 66, 351-368. 34. Worthen, GS. , Schwab, B. 3rd, Elson, EL., Downey, GP. (1989) Mechanics of stimulated neutrophils: cell stiffening induces retention in capillaries. Science. 245, 183-186. 35. Firtel, RA., Chung, C. Y. (2000) The molecular genetics of chemotaxis: sensing and responding to chemoattractant gradients. Bioessays. 22, 603-615. 36. Rickert, P., Weiner, OD., Wang, F., Bourne, HR., Servant, G. (2000) Leukocytes navigate by compass: roles of PI3Kgamma and its lipid products. Trends. Cell Biol. 10, 466-473. 37. Stephens, L., Ellson, C., Hawkins, P. (2002) Roles of PI3Ks in leukocyte chemotaxis and phagocytosis. Curr. Opin. Cell. Biol. 14, 203-213. 38. Chodniewicz, D., Zhelev D. V.(2003) Chemoattractant receptor–stimulated F-actin polymerization in the human neutrophil is signaled by 2 distinct pathways. Blood. 101, 1181-1184 39. Chodniewicz, D., Zhelev D. V.(2003) Novel pathways of F-actin polymerization in the human neutrophil. Blood. 102, 2251-2258 40. Panaro, MA. , Mitolo, V. (1999) Cellular responses to fMLP challenging: a mini-review. Immunopharmacol Immunotoxicol. 21, 397-419. 41. Arai , H., Koizumi, H., Aoki, J., Inoue, K. (2002) Platelet-activating factor acetylhydrolase (PAF-AH). J. Biochem (Tokyo). 131, 635-640. 42. Crooks, SW. , Stockley, RA. (1998) Leukotriene B4. Int J Biochem Cell Biol. 30, 173-178. 43. Gerard, C., Gerard, NP. (1994) C5A anaphylatoxin and its seven transmembrane-segment receptor. Annu Rev Immunol. 12, 775-808. 44. Baggiolini, M. (1998) Chemokines and leukocyte traffic. Nature. 392, 565-568. 45. Menegazzi, R., Cramer, R., Patriarca, P., Scheurich, P., Dri, P. (1994) Evidence that tumor necrosis factor alpha (TNF)-induced activation of neutrophil respiratory burst on biologic surfaces is mediated by the p55 TNF receptor. Blood. 84, 287-293. 46. Thelen, M., Uguccioni, M., Bosiger, J. (1995) PI 3-kinase-dependent and independent chemotaxis of human neutrophil leukocytes. Biochem Biophys Res Commun. 217, 1255-62. 47. Oldenborg, PA., Sehlin, J. (1998) Insulin-stimulated chemokinesis in normal human neutrophils is dependent on D-glucose concentration and sensitive to inhibitors of tyrosine kinase and phosphatidylinositol 3-kinase. J Leukoc Biol. 63, 203-208. 48. Reibman, J., Meixler, S., Lee, T. C., Gold, LI., Cronstein, BN., Haines, KA., Kolasinski, SL., Weissmann, G.(1991) Transforming growth factor beta 1, a potent chemoattractant for human neutrophils, bypasses classic signal-transduction pathways. Proc Natl Acad Sci U S A. 88, 6805-6809. 49. Hannigan, M., Zhan, L., Ai, Y., Huang, C. K. (1998) The role of p38 MAP kinase in TGF-beta1-induced signal transduction in human neutrophils. Biochem Biophys Res Commun. 246, 55-58. 50. Mitchison, T.J., Cramer, L.P. (1996) Actin-based cell motility and cell locomotion. Cell. 84, 371-379. 51. Torres, M., Thomas, D. (1999) Function of cytoskeleton in human neutrophils and methods for evaluation. J. of Immunol. Med. 232, 89-109. 52. Stossel, T. (1993) On the Crawling of Animal Cells. Science. 260, 1086-1094. 53. Vance, D. E., and Vance, J. E. (2002) Founctional roles of lipids in membranes. Biochemistry of lipids, Lipoproteins and Membranes.1-35 ( Bernardi, G. Ed) Paris; Elsevier. 54. Simons1, K., Ikonen, E. (2000) How Cells Handle Cholesterol. 290,1721-1726 55. Harder, T., Scheiffele, P., Verkade, P., Simons, K. (1998) J. Cell Biol. 141, 929. 56. Nebl, T., Pestonjamasp, K. N., Leszyk, J. D., Crowley, J. L., Oh, S. W., Luna, E. J. (2002) Proteomic analysis of a detergent-resistant membrane skeleton from neutrophil plasma membranes. J. Bio. Chem. 277, 43399-43409. 57. Brown, D. A., London, E. (1997) Structure of detergent-resistant membrane domains: Does phase separation occur in biological membranes? Biochemical and biophysical research communications. 240, 1-7. 58. London, E. (2002) Insights into lipid raft structure and formation from experiments in model membranes. Current Opinion in Structural Biology. 12, 480-486. 59. Janes, P. W., Ley, S. C., Magee, A. I. (1999) Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. The Journal of Cell Biology. 147, 447-461 60. Nagafuku, M. Kabayama, K., Oka, D., Kato, A., Tani-ichi, S., Shimada, Y., Ohno-Iwashita, Y., Yamasaki, S., Saito, T., Iwabuchi, K., Hamaoka, T., Inokuchi, J. I., Kosugi, A. (2003) Reduction of glycosphingolipid levels in lipid rafts affects the expression state and function of glycosylphosphatidylinositol-anchored protein, but does not impair signal transduction via the T cell receptor. Journal of Biological Chemistry. 278, 51920-51927. 61. Harder, T., Scheiffele, P., Verkade, P., Simons, K.(1998) Lipid Domain Structure of the Plasma Membrane Revealed by Patching of Membrane Components. The Journal of Cell Biology. 141, 929–942. 62. Konno,A., Nunogami, K., Wada, T., Yachie, A., Suzuki, Y., Takahashi, N., Suzuki, T., Miyawaki, T. (1996) Inhibitory action of sulfatide, a putative ligand for L-selectin, on B cell proliferation and Ig production. Int. Immunol. 8, 1905-1913. 63. Sikorski, J. N., Lindén, L., Eierman, D., Franzen , L., Molony , L., Andersson, T. (1996) Engagement of L-selectin impairs the actin polymerizing capacity of b2-integrins on neutrophils. Journal of Cell Science. 109, 2361-2369. 64. Mamoru Kyogashima, M. (2004) The role of sulfatide in thrombogenesis and haemostasis. Archives of Biochemistry and Biophysics. 426, 157–162. 65. PrasadaraoS, N. V., Was, C. A., Hackerg, J., Jannll, K., Kim, K. S. (1993) Adhesion of S-fimbriated Escherichia coli to Brain Glycolipids Mediated by sfaA Gene-encoded Protein of S-Fimbriae. The Journal OF Biological Chemistry. 268, 10356-10363. 66.(2003) Sulfatides inhibit platelet adhesion to von Willebrand factor in flowing blood. J Thromb Haemost. 1, 1288-1295. 67. Bengtsson T, Grenegard M, Olsson A, Sjogren F, Stendahl O, Zalavary S. (1996) Sulfatide-induced L-selectin activation generates intracellular oxygen radicals in human neutrophils: modulation by extracellular adenosine. Biochim Biophys Acta. 1313, 119-129. 68. Chodniewicz, D., Zhelev, D. V. (2003) Chemoattractant receptor-stimulated F-actin polymerization in the human neutrophil is signaled by 2 distinct pathways. Blood. 101, 1181-1184. 69. Pozo, M. A. d., Alderson, N. B., Kiosses, W. B., Chiang, H. H., Anderson, R. G.W., Schwartz, M. A. (2004) Integrins regulate rac targeting by internalization of membrane domains. Science. 303, 839-842. 70. Guan, J. L. (2004) Integrins, rafts, Rac and Rho. Science. 303, 773-774. 71. Boyum, A. (1984) Separation of lymphocyte, granulocyte, and monocyte from blood using iodinated density gradient media. Methods in Enzymology. 108, 88-102. 72. Subasinghe, S., Unabia, S., Barrow, C. J., Mok, S. S., Aguilar, M. I., Small, D. H. (2003) Cholesterol is necessary both for the toxic effect of A?? peptides on vascular smooth muscle cells and for A?? binding to vascular smooth muscle cell membranes. Journal of Neurochemistry. 84, 471-479. 73. Chamberlain, L. H., Gould, G. W. (2002) The Vesicle- and Target-SNARE Proteins That Mediate Glut4 Vesicle Fusion Are Localized in Detergent-insoluble Lipid Rafts Present on Distinct Intracellular Membranes. The Journal of Biological Chemistry. 277, 49750-49754. 74. Hildebrand, J., Marique, D., Vanhouche, J. (1975) Lipid composition of plasma membranes from human leukemic lymphocytes. Journal of Lipid Research. 16, 195-199. 75. Muthing, J., Cacic, M. (1997) Glycosphingolipid expression in human skeletal and heart muscle assessed by immunostaining thin-layer chromatography. Glycoconjugate Journal. 14, 19-28. 76. Farrer, R. G., Quarles, R. H. (1997) Expression of sulfated gangliosides in the central nervous system. Journal of Neurochemistry. 68, 878-881. 77. Huang, Y. H., Chu, S. T., Chen, Y. H. (1999) Seminal vesicle autoantigen, a novel phospholipid-binding protein secreted from luminal epithelium of mouse seminal vesicle, exhibits the ability to suppress mouse sperm motility. Biochem. J. 343, 241-248. 78. Kushi, Y., Arita, M., Ishizuka, I., Kasama, T., Fredman, P., Handa, S. (1996) Sulfatide is expressed in both erythrocytes and platelets of bovine orgin. Biochemica et Biophysica Acta. 1304, 254-262. 79. Deguchi, H., Fernandez, J. A., Hackeng, T. M., Banka, C. L., Griffin, J. H. (2000) Cardiolpin is a normal component of human plasma lipoproteins. PNAS. 97, 1743-1748. 80. Corcelli, A., Colella, M., Mascolo, G., Fanizzi, F. P., Kates, M. (2000) A novel glycolipid and phospholipids in the purple membrane. Biochemistry. 39, 3318-3326. 81. Stapleton A. E., Stroud, M. R., Hakomori, S. I., Stamm, W. E. (1998) The globoseries glycosphingolipid sialosyl glactosyl globoside is found in urinary tract tissues and is a preferred binding receptor in vitro for uropathogenic Escherichia coli expressing pap-encoded adhesins. Infection and Immunity. 66, 3856-3861. 82. Mylvaganam, M., Lingwood, C. A. (1999) A convenient oxidation of natural glycosphingolipids to their “Ceramide acids” for neoglycoconjugation. The Journal of Biological Chemistry. 274, 20725-20732. 83. Roberts, D. D., Rao, C. N., Liotta, L. A., Gralnick, H. R., Ginsburg, V. (1966) Comparison of the specificities of laminin, thrombospondin and von Willebrand factor for binding to sulfated glycolipids. The Journal of Biological Chemistry. 261, 6872-6877. 84. Hartmann, E., Lingwood, C. A., Reidl, J. (2001) Heat-inducible surface stress protein (Hsp70) mediates sulfatide recognition of the respiratory pathogen Haemophilus influenzae. Infection and immunity. 69, 3438-3441. 85. Macala, L. J., Yu, R. K., Ando, S. (1988) Analysis of brain lipids by high performance thin-layer chromatography and densitometry. Journal of Lipid Research. 24, 1243-1250. 86. Babiychuk, E. B., Draeger, A. (2000) Annexins in cell membrane dynamics: Ca2+-regulated association of lipid microdomains. The Journal of Cell Biology. 150, 1113-1123. 87. Murphy-Ullrich, J. E., Westrick, L. G., Esko, J. D., Mosher, D. F. (1988) Altered metabolism of thrombospondin by Chinese hamster ovary cells defective in glycosaminoglycan synthesis. The Journal of Biological Chemistry. 263, 6400-6406. 88. Fukuda, S., Schmid-Schonbein, G. W. (2003) Regulation of CD18 expression on neutrophils in response to fluid shear stress. PNAS. 100, 13152-13157. 89. Yates-Siilata, K. E., Dahms, T. E., Webster, R. O., Heuertz, R. M. (2004) C-reactive protein increases F-actin assembly and cortical distribution with resultant loss of lamellipod formation in human neutrophils. Cell Biology International. 28, 33-39. 90. Watanabe, J., Marathe, G. K., Neilsen, P. O., Weyrich, A. S., Harrison, K. A., Murphy, R. C., Zimmerman, G. A., McIntyre, T. M. (2003) Endotoxins stimulate neutrophil adhesion followed by synthesis and release of platelet-activating factor in microparticles. The journal of Biological Chemistry. 278, 33161-33168. 91. Bird, M. M., Lopez-Lluch, G., Ridley, A. J., Segal, A. W. (2003) Effects of microinjected small GTPases on the actin cytoskeleton of human neutrophils. J. Anat. 203, 379-389. 92. Ayub, K., Hallett, M. B. (2004) Ca2+ influx shutdown during neutrophil apoptosis: importance and possible mechanism. Immunology. 111, 8-12.id NH0925112020 sid 914277 cfn 0 / id NH0925159001 auc 朱英豪 tic Ba(Mg1/3Ta2/3)O3緩衝層利用於低溫成長Pb(Zr1-xTix)O3薄膜之研究 adc 劉國雄 adc 林諭男 adc 林樹均 ty 博士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 288 kwc 雷射製程 kwc PZT kwc BMT kwc 薄膜體聲波元件 kwc 鐵電 kwc 微波介電 kwc 光學特性 abc Pb(Zr1-xTix)O3 (PZT)材料具有多項優異特性,適合發展很多功能性之元件。但是要將PZT材料開發於元件應用時,會遭遇許多材料問題,比如與Si基板擴散問題、與金屬電極之接面問題,還有最重要之製程溫度問題,如果沒有辦法同時解決目前存在之這些問題,這將使得PZT元件於開發上受到很大之限制,而無法實用化。本研究以材料製程為開發重點,利用BMT材料結構與晶格常數與PZT匹配以及可於低溫合成之優點,積極開發BMT為PZT材料緩衝層。同時由於BMT本身為最優良之微波介電薄膜,開發過程同時利用微波探針系統(EMP),量測(100)優選BMT薄膜之微波介電特性(K=22.0 & tanδ=0.0043)。 tc 摘要……………………………………………………..I 目錄……………………………………………………III 表目錄………………………………………………...VII 圖目錄………………………………………………..VIII 第一章 緒論……………………………………………1 1.1 前言……………………………………………………….1 1.2 Pb(Zr,Ti)O3(PZT)材料之簡介……………………………2 1.2.1 PZT材料之特性與應用………………………………………...2 1.2.2 PZT材料應於元件之材料問題…………….…………………..4 1.3 Ba(Mg1/3Ta2/3)O3(BMT)緩衝材料之簡介………………18 1.4 準分子雷射製程………………………………………21 1.4.1 雷射剝鍍製程…………………………………………………22 1.4.2 雷射剝離製程…………………………………………………25 1.4.3 雷射退火製程…………………………………………………29 1.5 高頻聲波元件之簡介…………………………………31 1.5.1 薄膜體聲波共振元件…………………………………………33 1.5.2 薄膜表面聲波共振元件………………………………………38 1.5.3 薄膜聲波共振元件之電路響應與量測方法…………………40 1.5.4 薄膜聲波共振濾波器之操作原理……………………………40 1.5.5 應用實例 --- 雙工器與濾波器………………………………42 1.5.6 PZT材料於高頻聲波元件之應用…………………………….46 第二章 實驗方法…………………………………...107 2.1 靶材之製備…………………………………………….107 2.1.1 Ba(Mg1/3Ta2/3)O3靶材之製備………………………………107 2.1.2 Pb(Zr,Ti) O3靶材之製備……………………………………107 2.2 準分子雷射製程……………………………………….108 2.2.1 雷射剝鍍製程………………………………………………..108 2.2.2 雷射剝離製程………………………………………………..109 2.2.3 雷射退火製程………………………………………………..110 2.3 材料晶體結構分析與微結構之觀察…………………110 2.3.1 材料晶體結構之分析(XRD)………………………………..110 2.3.2 材料微結構之觀察(SEM)…………………………………110 2.3.3 原子力顯微鏡之觀察與分析(AFM)………………………111 2.3.4 材料細微結構之觀察(TEM)………………………………111 2.3.5 二次離子縱深成分分析(SIMS)……………………………111 2.4 材料特性之量測……………………………………….111 2.4.1 塊材微波特性之量測………………………………………..111 2.4.2 薄膜介電特性之量測………………………………………..112 2.4.3 薄膜微波介電特性之量測…………………………………113 2.4.4 拉曼光譜之量測……………………………………………..113 2.4.5 光學特性之量測……………………………………………..113 2.4.6 電容-電壓曲線之量測 (C-V)……………………………….113 2.4.7 鐵電特性之量測 (P-E)……………………………………114 第三章 PZT材料開發結果與討論………………121 3.1 BMT薄膜之製備與其微波介電特性之研究…………121 3.1.1 研究動機……………………………………………………..121 3.1.2 微波介電薄膜元件之模擬…………………………………..121 3.1.3 BMT塊材製作實驗結果與討論……………………………..122 3.1.4 BMT薄膜製作實驗結果與討論……………………………..123 3.1.5 結語…………………………………………………………..131 3.2利用BMT緩衝層製備PZT薄膜於Si基板及其特性之研究…………………………….………………………132 3.2.1 研究動機……………………………………………………..132 3.2.2 結果與討論…………………………………………………132 3.2.3 結語…………………………………………………………..141 3.3 利用BMT緩衝層製備PZT薄膜於Si基板及其特性之研究…………………………….………………………142 3.3.1 研究動機……………………………………………………..142 3.3.2 結果與討論…………………………………………………142 3.3.3 結語…………………………………………………………..149 3.4 利用BMT緩衝層製備PZT薄膜於Sapphire基板與其光學與微波特性之研究…………………………………150 3.4.1 研究動機……………………………………………………..150 3.4.2 結果與討論…………………………………………………..150 3.4.3 結語…………………………………………………………154 3.5 利用雷射剝離技術轉移高品質PZT薄膜於Si基板之研究………………………………………………………155 3.5.1 研究動機……………………………………………………..155 3.5.2 結果與討論…………………………………………………..155 3.5.3 結語…………………………………………………………..160 3.6 利用雷射剝鍍法製作奈米結構之PZT材料…………161 3.6.1 研究動機……………………………………………………..161 3.6.2 結果與討論…………………………………………………..161 3.6.3 結語…………………………………………………………..164 第四章 PZT高頻聲波元件之製作………………...240 4.1 薄膜體聲波元件計算之結果...………………………………..240 4.2 薄膜體聲波元件製作與量測之結果.....………………………249 第五章 總結………………………………………...268 參考文獻…………………………………………….271 作者簡介..................................284rf 1. http://www.agilent.com 2. H. Morkner, R. Ruby, M. Frank, and D. Figueredo: 1999 IEEE MIT-S Digest, 1393 (1999). 3. C. T. C. Nguyen, L. P. B. Katehi, and G. M. Rebeiz: Proceeding of the IEEE 86, 1756 (1998). 4. http://www.murata.com 5. http://www.kyocery.com 6. S. Fujishima: “The history of ceramic filters”, IEEE Trans. Ultra. Ferroelectr. Freq. Contr. 47, 1 (2000). 7. A. J. Moulson and J. M. Herbert: “Electroceramics”, Chapman & Hall (1990). 8. Y. M. Chiang, D. Birnie III and W. D. Kingery: “Physical Ceramics”, Wiley (1997). 9. R. Ramesh: “Thin film ferroelectric materials and devices”, Kluwer Academic Publishers (1997). 10. B. Willing, M. Kohli, P. Muralt, N. Setter, and O. Oehler: “Gas spectrometry based on pyroelectric thin-film arrays integrated on silicon”, Sens. & Actuat. 66, 109 (1998). 11. P. Muralt: “PZT thin films for microsensors and actuators: Where do we stand ?”, IEEE Trans. Ultra. Ferroelectr. Freq. Contr. 47, 903 (2000). 12. D. Dimos, and C. H. Mueller: “Perovskite thin films for high-frequency capacitor applications”, Annu. Rev. Mater. Sci. 28, 397 (1998). 13. K. Nashimoto, S. Nakamura, T. Morikawa, H. Moriyama, M. Watanabe, and E. Osakabe: “Fabrication of electro-optic Pb(Zr,Ti)O3 heterostructure waveguides on Nb-doped SrTiO3 by solid-phase epitaxy”, Appl. Phys. Lett. 74, 2761 (1999). 14. R. Ramesh, S. Aggarwal and O. Auciello: “Science and Technology of Ferroelectric Thin Films and Heterostructures for Non-volatile Ferroelectric Memory”, Mat. Sci. Eng. R. 32, 191 (2001). 15. http://www.rhom.com.tw 16. Auciello, J. F. Scott, and R. Ramesh: Phys. Today 51, 22 (1998). 17. J. F. Scott and C. A. P. Dearaujo: “Ferroelectric Memories”, Science 246, 1400 (1989). 18. J. F. Scott, C. A. Araujo, B. M. Meinick, L. D. McMillan and R. Zuleeg: “Quantitative Measurement of Space-Charge Effects in Lead Zirconate- Titanate Memories”, J. Appl. Phys. 70, 382 (1991). 19. C. Sudhama, A. C. Campbell, P. D. Maniar, R. E. Jones, R. Moazzami, C. J. Mogab and J. C. Lee: “A Model for Electrical Conduction in Metal-Ferroelectric-Metal Thin Film Capacitor“, J. Appl. Phys. 75, 1014 (1994). 20. L. A. Bursill, I. M. Reaney, D. P. Vijay and S. B. Desu: “Comparison of Lead Zirconate Titanate Thin Films on Ruthenium Oxide and Platinum Electrodes”, J. Appl. Phys. 75, 1521 (1994). 21. J. J. Lee, C. L. Thio, and S. B. Desu: “Electrode Contacts on Ferroelectric Pb(ZrxTi1-x)O3 and SrBi2Ta2O9 Thin Films and Their Influence on Fatigue Properties”, J. Appl. Phys 78, 5073 (1995). 22. I. Stolichnov, and A. Tagantsev: “Space-charge Influenced-injection Model for Conduction in Pb(ZrxTi1-x)O3 Thin FIlms”, J. Appl. Phys. 84, 3216 (1998). 23. B. Nagaraj, S. Aggarwal, T. K. Song, T. Sawhney and R. Ramesh: “Leakage Current Mechanisms in Lead-based Thin-Film Ferroelectric Capacitors”, Physical Review B 59, 16 022 (1999). 24. I. Stolichnov, A. Tagantsev, N. Setter, J. S. Cross and M. Tsukada: “Top-interface-controlled Switching and Fatigue Endurance of (Pb,La)(Zr,Ti)O3 Ferroelectric Capacitors”, Appl. Phys. Lett. 74, 3552 (1999). 25. J. F. Scott: “Device Physics of Ferroelectric Thin-Film Memories”, Jpn. J. Appl. Phys. 38, 2272 (1999). 26. C. H. Lin, P. A. Friddle, C. H. Ma, A. Daga and H. Chen: “Effect of thickness on the electrical properties of metalorganic chemical vapor deposited Pb(Zr, Ti)O3 (25-100 nm) thin films on LaNiO3 buffered Si”, J. Appl. Phys 90, 1509 (2001). 27. Y. Masuda and T. Nozaka: “The influence of various upper electrodes on fatigue properties of perovskite Pb(Zr,Ti)O3 thin films”, Jpn. J. Appl. Phys. 42, 5941 (2003). 28. W. L. Warren, D. Dimos, B. A. Turtle, R. D. Nasby and G. E. Pike: “Electronic Domain Pining in Pb(Zr,Ti)O3 Thin Films and Its Role in Fatigue”, Appl. Phys. Lett. 65, 1018 (1994). 29. W. L. Warren, D. Dimos, B. A. Turtle, G. E. Pike, R. W. Schwartz, P. J. Clews and D. C. Mclntyre: “Polarization Suppression in Pb(Zr,Ti)O3 Thin Films”. J. Appl. Phys. 77: 6695 (1995). 30. P. L. Larsen, G. J. M. Dormans, D. J. Taylor, and P. J. Veldhoven: “Ferroelectric Properties and Fatigue of PbZr0.51Ti0.49O3 Thin-Films of Varying Thickness - Blocking Layer Model”, J. Appl. Phys. 74, 2405 (1994). 31. J. F. M. Cillessen, M. W. J. Prins and R. M. Wolf: “Thickness Dependence of The Switching Voltage in All-Oxide Ferroelectric Thin-Film Capacitors Prepared by Pulsed Laser Deposition”, J. Appl. Phys. 81, 2777 (1997). 32. E. L. Colla, D. V. Taylor, A. K. Tagantsev, and N. Setter: “Discrimination between bulk and interface scenarios for the suppression of the switchable polarization (fatigue) in Pb(Zr,Ti)O3 thin films capacitors with Pt electrodes”, Appl. Phys. Lett. 72, 2478 (1998). 33. F. Yang, P. Bao, H. L. W. Chan, C. L. Choy and Y. Wan: “The Grain Size Effect of Pb(Zr0.3Ti0.7)O3 Thin Films”, Thin Solid Films 406, 282 (2002). 34. R. Ramesh, W. K. Chan, B. Wilkens, H. Gilchrist, T. Sands, J. M. Tarascon, V. G. Keramidas, D. K. Fork, J. Lee and A. Safari: “Fatigue and Retention in Ferroelectric Y-Ba-Cu-O/Pb-Zr-Ti-O/Y-Ba-Cu-O Heterostructures”, Appl. Phys. Lett. 61, 1537 (1992). 35. J. Lee, L. Johnson, A. Safari, R. Ramesh, T. Sands, H. Gilchrist and V. G. Keramidas: “Effects of Crystalline Quality and Electrode Material on Fatigue in Pb(Zr,Ti)O3 Thin Film Capacitors”, Appl. Phys. Lett. 63, 27 (1993). 36. C. B. Eom, R. B. V. Dover, J. M. Phillips, D. J. Werder, J. H. Marshall, C. H. Chen and D. K. Fork: “Fabrication and Properties of Epitaxial Ferroelectric Heterostructures with (SrRuO3) Isotropic Metallic Oxide Electrodes”, Appl. Phys. Lett. 63, 2570 (1993). 37. R. Ramesh, H. Gilchrist, T. Sands, V. G. Keramidas, R. Haakenaasen and D. K. Fork: “Ferroelectric La-Sr-Co-O/Pb-Zr-Ti-O/La-Sr-Co-O Heterostructures on Silicon Via Template Growth”, Appl. Phys. Lett. 63, 3592 (1993). 38. R. Dat, D. J. Lichtenwalner, O. Auciello and I. Kingon: “Polycrystalline La0.5Sr0.5CoO3/PbZr0.53Ti0.47O3/ La0.5Sr0.5CoO3 Ferroelectric Capacitors on Platinized Silicon with No Polarization Fatigue“, Appl. Phys. Lett. 64, 2673 (1994). 39. R. Ramesh, J. Lee, T. Sands, V. G. Keramidas and O. Auciello: “Oriented Ferroelectric La-Sr-Co-O/Pb-Zr-Ti-O/La-Sr-Co-O Heterostructures on [100 ] Pt/SiO2 Si Substrates Using a Bismuth Titanate Template Layer”, Appl. Phys. Lett. 64, 2511 (1994). 40. G. S. Wang, X. J. Meng, J. L. Sun, Z. Q. Lai, J. Yu, S. L. Guo, J. G. Cheng, J. Tang and J. H. Chu: “PbZr0.5Ti0.5O3/La0.5Sr0.5CoO3 Heterostructures Prepared by Chemical Solution Routes on Silicon with No Fatigue Polarization”, Appl. Phys. Lett. 79, 3476 (2001). 41. F. Wang, and S. Leppavuori: “Properties of Epitaxial Ferroelectric PbZr0.56Ti0.44O3 Heterostructures with La0.5Sr0.5CoO3 Metallic Oxide Electrodes”, J. Appl. Phys. 82, 1293 (1997). 42. Q. Li, J. Yin, C. Xiao and Z. Liu: “Enhanced Ferroelectric Properties of Pb(Ta0.05Zr0.48Ti0.47)O3 Thin Films on Pt/TiO2/SiO2/Si Substrates Using La0.67Sr0.33MnO3 Buffer Layers”, J. Phys. D: Appl. Phys. 33, 107 (2000). 43. W. Wu, K. H. Wong, C. L. Choy and Y. H. Zhang: “Top-interface-controlled Fatigue of Epitaxial Pb(Zr0.52Ti0.48)O3 Ferroelectric Thin Films on La0.7Sr0.3MnO3 Electrodes”, Appl. Phys. Lett. 77, 3441 (2000). 44. T. Nakamura, Y. Nakao, A. Kamisawa and H. Takasu: “Preparation of Pb(Zr,Ti)O3 Thin Films on Electrodes Including IrO2”, Appl. Phys. Lett. 65, 1522 (1994). 45. T. Nakamura, Y. Nakao, A. Kamisawa, and H. Takasu: “Preparation of Pb(Zr,Ti)O3 Thin Films on Ir and IrO2 Electrodes”, Jpn. J. Appl. Phys. 33, 5207 (1994). 46. H. N. Al-Shareef, O. Auciello, and A. I. Kingon: “Electrical-Properties of Ferroelectric Thin-Film Capacitors with Hybrid (Pt, RuO2) Electrodes for Nonvolatile Memory Applications”, J. Appl. Phys. 77, 2146 (1995). 47. K. B. Lee, S. Tirumaia and S. B. Desu: “Highly c-axis Oriented Pb(Zr,Ti)O3 Thin Films Grown on Ir Electrode Barrier and Their Electrical Properties”, Appl. Phys. Lett. 74, 1484 (1999). 48. W. Wang, T. Fujii, T. Karaki and M. Adachi: “Preparation and Electrical Properties of Rhombohedral Pb(ZrxTi1-x)O3 Thin Films by RF Magnetron Sputtering Method”, Jpn. J. Appl. Phys. 38, 6807 (1999). 49. M. S. Chen, T. B. Wu and J. M. Wu: “Effect of Textured LaNiO3 Electrode on The Fatigue Improvement of Pb(Zr0.53Ti0.47)O3 Thin Films“, Appl. Phys. Lett. 68, 1430 (1996). 50. G. C. Chao and J. M. Wu: “Effect of LaNiO3 Electrode on Electrical Properties of RF-Magnetron-Sputtered Pb(Zr,Ti)O3 Ferroelectric Thin Films”, Jpn. J. Appl. Phys. 40, 1306 (2001). 51. K. Lee, B. R. Rhee and C. Lee: “Characteristics of Ferroelectric Pb(Zr,Ti)O3 Thin Films Having Pt/PtOX Electrode Barriers”, Appl. Phys. Lett. 79, 821 (2001). 52. C. L. Liu, Z. Y. Lee, T. B. Wu, S. L. Lung and R. Liu: “Polarization Switching Characteristics of Pb(Zr0.5Ti0.5)O3 Thin Films Deposited on Vacuum-Annealed PtOX/Pt Electrode”, Jpn. J. Appl. Phys. 41, 6054 (2002). 53. C. S. Liang, J. M. Wu and M. C. Chang: “Ferroelectric BaPbO3/PbZr0.53Ti0.47O3/BaPbO3 Heterostructures”, Appl. Phys. Lett. 81, 3624 (2002). 54. F. Yan, Y. Wang, H. L. W. Chan and C. L. Choy: “Ferroelectric Properties of (Ba0.5Sr0.5)TiO3/Pb(Zr0.52Ti0.48)O3/(Ba0.5Sr0.5)TiO3 Thin Films with Platinum Electrodes”, Appl. Phys. Lett. 82, 4325 (2003). 55. S. Y. Wu: IEEE Trans. Electron Devices ED-21, 499 (1974). 56. K. Sugibuchi, Y. Kurogi, and N. Endo: J. Appl. Phys. 46, 2877 (1975). 57. S. Y. Wu: Ferroelectrics 11, 379 (1976). 58. S. L. Miller and P. J. McWhorter: “Physics of The Ferroelectric Nonvolatile Memory Field Effect Transistor”, J. Appl. Phys. 72, 5999 (1992). 59. Y. Shichi, S. Tanimoto, T. Goto, K. Kuroiwa, and Y. Tarui: “Interaction of PbTiO3 Films with Si Substrate”, Jpn. J. Appl. Phys. 33, 5172 (1994). 60. E. Tokumitsu, K. Itani, B. K. Moon, H. Ishiwara: Mater. Res. Soc. Symp. Proc. 361, 427 (1995). 61. D. S. Shin, H. N. Lee, Y. T. Kim, I. H. Choi and B. H. Kim: “Electrical Properties of Pt/SrBi2Ta2O9/CeO2/SiO2/Si Structure for Nondestructive Readout Memory”, Jpn. J. Appl. Phys. 37, 4373 (1998). 62. S. K. Lee, Y. T. Kim, S. Kim and C. E. Lee: “Effects of Coercive Voltage and Charge Injection on Memory Windows of Metal-Ferroelectric- Semiconductor and Metal-Ferroelectric-Insulator-Semiconductor Gate Structures”, J. Appl. Phys. 91, 9303 (2002). 63. T. Yamaguchi, M. Koyama, A. Takashima, and S. Takagi: “Improvement of Memory Characteristics of Metal-Ferroelectric/Insulating Buffer Layer/Semiconductor Structure by Combination of Pulsed Laser Deposited SrBi2Ta2O9 Films and Ultra-Thin SiN Buffer Layer”, Jpn. J. Appl. Phys. 39, 2058 (2000). 64. Y. Fujisaki, T. Kijima and H. Ishiwara: “High-Performance Metal- Ferroelectric-Insulator-Semiconductor Structures with a Damage-Free and Hydrogen-Free Silicon-Nitride Buffer Layer”, Appl. Phys. Lett. 78, 1285 (2001). 65. C. L. Sun, S. Y. Chen, S. B. Chen and A. Chin: “Effect of Annealing Temperature on Physical and Electrical Properties of Bi3.25La0.75Ti3O12 Thin Films on Al2O3 Buffered Si”, Appl. Phys. Lett. 80, 1984 (2002). 66. T. Hirai, K. Teramoto, T. Nishi, T. Goto and Y. Tarui: “Formation of Metal/Ferroelectric/Insulator/Semiconductor Structure with a CeO2 Buffer Layer”, Jpn. J. Appl. Phys. 33, 5219 (1994). 67. T. Hirai, K. Teramoto, K. Nagashima, H. Koike and Y. Tarui: “Characterization of Metal/Ferroelectric/Insulator/Semiconductor Structures with CeO2 Buffer Layer”, Jpn. J. Appl. Phys. 34, 4163 (1995). 68. I. Sakai, E. Tokumitu and H. Ishiwara: “Preparation and Characterization of PZT Thin Films on CeO2(111)/Si(111) Structures”, Jpn. J. Appl. Phys. 35, 4987 (1995). 69. N. A. Basit, H. K. Kim, and J. Blachere: “Growth of highly oriented Pb(Zr,Ti)O3 films on MgO-buffered oxidized Si substrates and its application to ferroelectric nonvolatile memory field-effect transistors”, Appl. Phys. Lett. 73, 3941 (1998). 70. M. Liu, H. K. Kim, and J. Blachere: “Lead-zirconate-titanate-based metal/ferroelectric/insulator/semiconductor structure for nonvolatile memories”, J. Appl. Phys. 91, 5985 (2002). 71. E. Tokumitsu, K. Itani, B. K. Moon, and H. Ishiwara: “Crystalline Quality and Electric-Properties of PbZrXTi1-XO3 Thin-Films Prepared on SrTiO3-Covered Si Substrates”, Jpn. J. Appl. Phys. 34, 5202 (1995). 72. E. Tokumitsu, R. Nakamura, and H. Ishiwara: “Nonvolatile memory operations of metal-ferroelectric-insulator-semiconductor (MFIS) FET's using PLZT/STO/Si(100) structures”, IEEE Electron Device Lett. 18, 160 (1997). 73. Y. P. Wang, L. Zhou, X. B. Lu, and Z. G. Liu: “C-V characteristics of Pt/PbZr0.53Ti0.47O3/LaAlO3/Si and Pt/PbZr0.53Ti0.47O3/La0.85Sr0.15CoO3/LaAlO3/Si”, Appl. Surf. Sci. 205, 176 (2003). 74. R. Ramesh, S. Aggarwal and O. Auciello: “Science and Technology of Ferroelectric Thin Films and Heterostructures for Non-volatile Ferroelectric Memory”, Mat. Sci. Eng. R. 32, 191 (2001). 75. K. Sreenivas, M. Sayer, and P. Garrett: “Properties of DC magnetron-sputtered lead zirconate titanate thin-films”, Thin Solid Films 172, 251 (1989). 76. O. Auciello, R. Dat, and R. Ramesh, in: C. A. Paz de Araujo, J. F. Scott, G. W. Tayor (Eds.), “Ferroelectric Thin Films: Synthesis and Basic Properties” (1996). 77. C. M. Foster, Z. Li, M. Buckett, D. Miller, P. M. Baldo, L. E. Rehn, G. R. Bai, D. Guo, H. You, K. L. Merkle: “Substrate effects on the structure of epitaxial PbTiO3 thin-films prepared on MgO, LaAlO3, and SrTiO3 by metalorganic chemical-vapor-deposition”, J. Appl. Phys. 78, 2607 (1995). 78. J. S. Speck, A. C. Daykin, A. Seifert, A. E. Romanov, and W. Pompe: “Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin-films 3. interfacial defects and domain misorientation”, J. Appl. Phys. 78, 1696 (1995). 79. M. L. Green, M. E. Gross, L. E. Papa, K. J. Schnoes, and D. Brasen: “Chemical Vapor-Deposition of Ruthenium and Ruthenium Dioxide Films”, J. Electrochem. Soc. 132, 2677 (1985). 80. J. Si and S. B. Desu: “RuO2 Films by Metal-Organic Chemical-Vapor-Deposition”, J. Mater. Res. 8, 2644 (1993). 81. G. R. Bai, A. Wang, C. M. Foster, and J. Vetrone: “Low-temperature growth and orientational control in RuO2 thin films by metal-organic chemical vapor deposition”, Thin Solid Films 310, 75 (1997). 82. G. R. Bai, A. Wang, I. F. Tsu, C. M. Foster, and O. Auciello: “In-situ low temperature growth and orientation control in MOCVD PZT/RuO2 thin film heterostructures on SiO2/Si substrates”, Inter. Ferroelectr. 21, 291 (1998). 83. C. C. Hsueh and M. L. Mecartney: “Microstructure development and electrical properties of sol-gel prepared lead zirconate-titanate thin films”, J. Mater. Res. 6, 2208 (1991) 84. B. A. Tuttle, T. J. Headley, B. C. Bunker, R. W. Schwartz, T. J. Zender, C. L. Hernandez, D. C. Goodnow, R. T. Tissot, and J. Michael: “ Microstructure evolution of Pb(Zr,Ti)O3 thin films prepared by hybrid metallo-organic decomposition”, J. Mater. Res. 7, 1876 (1992). 85. C. K. Kwok, and S. B. Desu: “Formation kinetics of PbZrxTi1-xO3 thin films”, J. Mater. Res. 9, 1728 (1194). 86. K. G. Brook, I. M. Reaney, R. Klissurska, Y. Huang, L. Bursill, and N. Setter: “Orientation of rapid thermally annealed lead zirconate titanate thin films on (111) Pt substrates”, J. Mater. Res. 9, 2540 (1994). 87. Y. Liu and P. P. Phule: “Nucleation- or Growth-Controlled Oreientation Development in Chemically Derived Ferroelectric Lead Zirconate Titanate (Pb(ZrxTi1-x)O3, x=0.4) Thin FIlms”, J. Am. Ceram. Soc. 79, 495 (1996). 88. S. Hirano, T. Yogo, K. Kikuta, Y. Araki, M. Saitoh, and S. Ogasahara: “Synthesis of Highly Oriented Lead Zirconate-Lead Titanate Film Using Metallo-organics”, J. Am. Ceram. Soc. 75, 2785 (1992). 89. H. Suzuki, M. B. Othman, K. Murakami, S. Kaneko, and T. Hayashi: “Low-Temperature Processing of Ferroelectric Pb(Zr0.53Ti0.47)O3 Thin Film form Molecular-Designed Alkoxide Precursor Solution”, Jpn. J. Appl. Phys. 35, 4896 (1996). 90. H. Suzuki, T. Koizumi, Y. Kondo, and S. Kaneko: “Low-temperature Processing of Pb(Zr0.53Ti0.47)O3 Thin Film from Stable Precursor Sol”, J. Eur. Ceram. Soc. 19, 1397 (1999). 91. K. Maki, N. Soyama, K. Nagamine, S. Mori, and K. Ogi: “Low-Temperature Crystallization of Sol-Gel Derived Pb(Zr0.4Ti0.6)O3 Thin Films”, Jpn. J. Appl. Phys. 40, 5533 (2001). 92. Z. Huang, Q. Zhang, and R. W. Whatmore: “Low temperature crystallization of lead zirconate titanate thin films by a sol-gel method”, J. Appl. Phys. 85, 7355 (1999). 93. Z. Huang, Q. Zhang, and R. W. Whatmore: “Structural development in the early stages of annealing of sol-gel prepared lead zirconate titanate thin films”, J. Appl. Phys. 86, 1662 (1999). 94. B. T. Liu, K. Maki, S. Aggarwal, B. Nagaraj, V. Nagarajan, L. Salamanca-Riba, R. Ramesh, A. M. Dhote, and O. Auciello: “Low-temperature integration of lead-based ferroelectric capacitors on Si with diffusion barrier layer”, Appl. Phys. Lett. 80, 3599 (2002). 95. B. T. Liu, K. Maki, Y. So, V. Nagarajan, R. Ramesh, J. Lettieri, J. H. Haeni, D. C. Schlom, W. Tian, X. Q. Pan, F. J. Walker, and R. A. Mckee: “Epitaxial La-doped SrTiO3 on silicon: A conductive template for epitaxial ferroelectrics on silicon”, Appl. Phys. Lett. 80, 4801 (2002). 96. K. Maki, B. T. Liu, H. Vu, V. Nagarajan, R. Ramesh, Y. Fujimori, T. Nakamura, and H. Takasu: “Controlling crystallization of Pb(Zr,Ti)O3 thin films on IrO2 electrodes at low temperature through interface engineering”, Appl. Phys. Lett. 82, 1263 (2003). 97. K. Amanuma, S. Kobayashi, T. Tatsumi, Y. Maejima, H. Hada, J. Yamada, T. Miwa, H. Koike, H. Toyoshima, and T. Kunio: “Characteristics of 0.25μm Ferroelectric Nonvolatile Memory with a Pb(Zr,Ti)O3 Capacitor on a Metal/Via-Stacked Plug”, Jpn. J. Appl. Phys. 39, 2098 (2000). 98. H. C. Lee and W. J. Lee: “Preparation and Characterization of Pb(Zr,Ti)O3 Films Deposited on Pt/RuO2 Hybrid Electrode for Ferroelectric Random Access Memory Devices”, Jpn. J. Appl. Phys. 40, 6566 (2001). 99. H. Fujisawa, K. Kita, M. Shimizu, and H. Niu: “Low-temperature Fabrication of Ir/Pb(Zr,Ti)O3/Ir Capacitors Solely by Metalorganic Chemical Vapor Deposition”, Jpn. J. Appl. Phys. 40, 5551 (2001). 100. M. Aratani, T. Oikawa, T. Ozeki, and H. Funakubo: “Epitaxial-grade polycrystalline Pb(Zr,Ti)O3 film deposited at low temperature by pulsed-metalorganic chemical vapor deposition”, Appl. Phys. Lett. 79, 1000 (2001). 101. K. Tokita, M. Aratani, and H. Funakubo: “Effect of atmosphere during heating of substrate on the low temperature deposition of metalorganic chemical vapor deposited Pb(Zrx,Ti1-x)O3 thin films”, Appl. Phys. Lett. 81, 898 (2002). 102. G. Asano, T. Oikawa, and H. Funakubo: “Highly-Reproducible Preparation of Pb(Zr,Ti)O3 Films at Low Deposition Temperature by Metal Organic Chemical Vapor Deposition”, Jpn. J. Appl. Phys. 42, 2801 (2003). 103. K. Tokita, M. Aratani, and H. Funakubo: “Substrate effect on the crystal structure and ferroelectricity of low-temperature-deposited Pb(Zr,Ti)O3 thin films by metalorganic chemical vapor deposition”, Appl. Phys. Lett. 82, 4122 (2003). 104. G. Asano, H. Morioka, H. Funakubo, T. Shibutami, and N. Oshima: “Fatigue-free RuO2/Pb(Zr,Ti)O3/RuO2 capacitor prepared by metalorganic chemical vapor deposition at 395oC”, Appl. Phys. Lett. 83, 5506 (2003). 105. 賴昇志: “以LaNiO3下電極開發PZT鐵電記憶體低溫製程之研究”, 國立清華大學碩士論文 (2001). 106. S. L. Lung, S. S. Chen, C. W. Tasi, T. T. Sheng, S. C. Lai, C. L. Liu, T. B. Wu, and R. Liu: “A low temperature LNO/PZT/LNO ferroelectric capacitor-over interconnect (COI) FeRAM module for modular SOC”, Inter. Ferroelectr. 48, 149 (2002). 107. 藍文安:”添加劑對鋇鎂鉭微波介電陶瓷之影響”,國立清華大學碩士論文(2001). 108. F. Galasso et al.: J. Am. Chem. Soc. 83, 2830 (1960). 109. S.Nomura et al.: Jpn. J. Appl. Phys. 21, 624 (1982). 110. F. Nomura et al.: Inorg. Chem. 2, 482 (1963). 111. P. C. Joshi and S. B. Desu : “Properties of Ba(Mg1/3Ta2/3)O3 Thin Films Prepared by Metalorganic Solution Deposition Technique for Microwave Applications”, Appl. Phys. Lett. 73, 1080 (1998). 112. D. B. Chirsey: “Pulsed Laser Deposition of Thin Film”, Ch. 1~ Ch.13, (1994). 113. M. Ohring: “The Materials Science of Thin Films”, Ch. 3 & Ch. 5, Academic Press Inc. (1992). 114. J. C. Miller: “Laser Ablation and Deposition”, Ch. 11, (1998). 115. A. Grill: “Cold Plasma in Materials Fabrication”, Ch. 1 & Ch. 3, (1998). 116. W. S. Wong, A. B. Wengrow, Y. Cho, A. Salleo, N. J. Quitoriano, N. W. Cheung and T. Sands: “Integration of GaN thin films with dissimilar substrate materials by Pd-In metal bonding and laser lift-off”, J. Electr. Mater. 28,1409 (1999). 117. W. S. Wong, Y. Cho, E. R. Weber and T. Sands: “Structural and optical quality of GaN/metal/Si heterostructures fabricated by excimer laser lift-off”, Appl. Phys. Lett.75,1887 (1999). 118. T. Sands, E. D. Marshall, and L.C. Wang: “Solid-Phase Regrowth of Compound Semiconductors by Reaction-Driven Decompostion of intermediate Phases”, J. Mater. Res. 3, 914 (1988). 119. L. H. Allen, L. S. Hung, K. L. Kavanagh, J. R. Phillips, A. J. Yu, and J. W. Mayer: “Ohmic Contacts to N-Gaas Using In/Pd Metallization”, Appl. Phys. Lett. 51, 326 (1987). 120. F. P. Incropera and D. P. DeWitt: ”Fundamentals of Heat and Mass Transfer”, John Wiley & Sons, 43-47 (1985). 121. L. Tsakalakos and T. Sands: Mater. Res. Soc. Symp. Proc. 596, 549 (2000). 122. L. Tsakalakos and T. Sands: “Epitaxial Ferroelectric (Pb,La)(Zr,Ti)O3 Thin Films on Stainless Steel by Excimer Laser Liftoff”, Appl. Phys. Lett. 76, 227 (2000). 123. L. Tsakalakos, T. Sands, E. Carleton and K. M. Yu: “Modification of (Pb,La)(Zr,Ti)O3 Thin Films During Pulsed Laser Liftoff from MgO Substrates”, J. Appl. Phys. 94, 4047 (2003). 124. X. M. Lu, J. S. Zhu, X. F. Huang, C. Y. Lin and Y. N. Wang: “Laser-induced Phase Transformation from Amorphous to Perovskite in PbZr0.44Ti0.56O3 Films with The Substrate at Room Temperature”, Appl. Phys. Lett. 65, 2015 (1994). 125. X. M. Lu, J. S. Zhu, W. S. Hu, Z. G. Liu and Y. N. Wang: “Pulsed Excimer (KrF) Laser Induced Crystallization of PbZr0.44Ti0.56O3 amorphosu Films”, Appl. Phys. Lett. 66, 2481 (1995). 126. Y. Zhu, J. Zhu, Y. J. Song and S. B. Desu: “Laser-assisted Low Temperature Processing of Pb(Zr,Ti)O3 Thin Film”, Appl. Phys. Lett. 73, 1958 (1998). 127. C. F. Chou, H. C. Pan and C. C. Chou: “Electric Properties and Microstructures of PbZrTiO3 Thin Films Prepared by Laser Annealing Techniques”, Jpn. J. Appl. Phys. 41, 6679 (2002). 128. D. M. Pozar: “Microwave Engineering”, Ch. 1~ Ch. 4, (1995). 129. G. Fischerauer, T. Ebner, P. Kruck, K. Monozumi, R. Thomas, M. Pitschi: 2001 IEEE MTT-S Digest, 351 (2001). 130. R. Ruby, and P. Merchant: IEEE Frequency Control Symposium, 135 (1994). 131. J. F. Rosenbaum: “Bulk Acoustic Wave Theory and Devices”, Artech House (1988). 132. K. Hashimoto: “Surface Acoustic Wave Devices in Telecommunications”, Springer (2000). 133. US Patent 5910756. 134. K. M. Lakin, G. R. Kline, K. T. McCarron: “Development of miniature filters for wireless applications”, IEEE Trans. Micro. Theory and Technique 43, 2933 (1995). 135. C. K. Campbell: “Surface Acoustic Wave Devices for Mobile and Wireless Communication”, Academic Press (1998). 136. http://www.sumitomo.com 137. http://www.cascade.com 138. R. Ruby, P. Bradley, J. D. Larson III, and Y. Oshmyansky: “PCS 1900MHz duplexer using thin film bulk acoustic resonators (FBARs)”, Electronics Lett. 35, 794 (1999). 139. US 6262637 Patent. 140. http://www.airprime.com 141. http://www.samsung.com 142. Q. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang, and R. Whatmore: “Thin-Film Bulk Acoustic Resonators and Filters Using ZnO and Lead-Zirconium-Titanate Thin Films”, IEEE T. Microw. Theory 49, 769 (2001). 143. A. Yamada, C. Maeda, T. Umemura, F. Uchikawa, K. Misu, S. Wadaka, and T. Ishikawa: “Preparation and piezoelectric property of lead titanate thin films for GHz-band resonators”, Jpn. J. Appl. Phys. 36, 6073 (1997). 144. A. Yamada, C. Maeda, F. Uchikawa, K. Misu, and T. Honma: “Piezoelectric properties of La-doped PbTiO3 films for RF resonators”, Jpn. J. Appl. Phys. 38, 5520 (1999). 145. S. Arscott, R. E. Miles, and S. J. Milne: “Lead zirconate titanate thin films for microwave device applications”, IEE Proc.-Circuits Devices Syst. 145, 373 (1998). 146. M. Schreiter, R. Gabl, D. Pitzer, R. Primig, and W. Wersing: “Electro-acoustic hysteresis behaviour of PZT thin film bulk acoustic resonators”, J. Eur. Ceram. Soc. 24, 1589 (2004). 147. 李雨龍:”PZT 梯度鐵電薄膜之低溫製程與特性研究”,國立清華大學碩士論文(2000). 148. 梁振偉:”雷射剝鍍法製作BMT緩衝層及其對PZT薄膜之影響研究”,國立清華大學碩士論文(2003). 149. 李昆育:”以雷射剝離技術製備PNN-PZT鐵電厚膜於矽基板”,國立清華大學碩士論文(2003). 150. 李秀娟,國立清華大學碩士論文(2004). 151. 陳宜君:”利用全頻譜與掃描微探顯微術研究微波材料的介電機制”,國立師範大學博士論文(2003). 152. Y. Lu, T. Wei, F. Duewer, Y. Lu, N. B. Ming, P. G. Schultz and X. D. Xiang: “Nondestructive imaging of dielectric-constant profiles and ferroelectric domains with a scanning-tip microwave near-field microscope”, Science 276, 2004 (1997). 153. 高建綱:“光通訊平面光波導元件之設計與製程研究”,國立清華大學博士論文(2003). 154. B. H. Hoerman, G. M. Ford, L. D. Kaufmann and B. W. Wessels: “Dielectric properties of epitaxial BaTiO3 thin films”, Appl. Phys. Lett. 73, 2248 (1998). 155. P. Kr. Petrov, E. F. Carlsson, P. Larsson, M. Friesel and Z. G. Ivanov: “Improved SrTiO3 multilayers for microwave application: Growth and properties”, J. Appl. Phys. 84, 3134 (1998). 156. Y. A. Boikov and T. Claeson: “High tunability of the permittivity of YBa2Cu3O7-δ /SrTiO3 heterostructures on sapphire substrates”, J. Appl. Phys. 81, 3232 (1997). 157. X. Wang, U. F. Helmersson, S. Olafsson, S. Rudner, L. Wernlund and S. Gevorgian: “Growth and field dependent dielectric properties of epitaxial Na0.5K0.5NbO3 thin films”, Appl. Phys. Lett. 73, 927 (1998). 158. C. C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch and S. Trivedi: “Signal strength enhancement and bandwidth tuning in moving space charge field photodetectors using alternating bias field”, Appl. Phys. Lett. 72, 100 (1998). 159. E. Carlsson and S. Gevorgian: “Effect of enhanced current crowding in a CPW with a thin ferroelectric film”, Electron. Lett. 33, 145 (1997). 160. Y. K. Kim, K. M. Lee and H. M. Jang: “ 1:2 Long-range ordering and defect mechanism of WO3-doped perovskite Ba(Mg1/3Ta2/3)O3“, J. Mater. Sci. 35, 4885 (2000). 161. T. F.Tseng, K. S. Liu, T. B. Wu and I N. Lin: “ Effect of LaNiO3/Pt double layers on the characteristics of (PbxLa1-x)(ZryTi1-y)O3 thin films“, Appl. Phys. Lett. 68, 2505 (1996). 162. F. Duewer, C. Gao, I. Takeuchi and X. D. Xiang: “Tip-sample distance feedback control in a scanning evanescent microwave microscope”, Appl. Phys. Lett. 74, 2696 (1999). 163. C. T. Chia, Y. C. Chen and H. F. Cheng: “Correlation of microwave dielectric properties and normal vibration modes of x Ba(Mg1/3Ta2/3)O3–(1-x) Ba(Mg1/3Nb2/3)O3 ceramics: I. Raman spectroscopy”, J. Appl. Phys. 94, 3360 (2003). 164. K. S. Seol, S. Tomita, K. Takeuchi, T. Miyagawa, T. Katagiri, and Y. Ohki: “Gas-phase production of monodisperse lead zirconate titanate nanoparticles”, Appl. Phys. Lett. 81, 1893 (2002). 165. S. J. Limmer, S. Seraji, M. J. Forbess, Y. Wu, T. P. Chou, C. Nguyen, and G. Cao: “Electrophoretic Growth of Lead Zirconate Titanate Nanorods”, Adv. Mater. 13, 1296 (1999).id NH0925159001 sid 883546 cfn 0 / id NH0925159002 auc 陳祖望 tic 藉微波電漿輔助化學氣相沉積法合成氧化錫一維奈米結構之研究 adc 施漢章 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 92 kwc 氧化錫 kwc 奈米線 kwc 奈米大頭針 kwc 微波電漿輔助化學氣相沉積法 abc 由於奈米材料的尺寸因素,使其與一般結晶或非晶質相原子結構具有特別不同之光、電、磁、熱、聲等物理及化學性質。目前已成為新材料及新光、電、磁元件之建構基石,也是目前國際上重點發展之前瞻性應用研究項目之一。氧化錫的奈米材料在電晶體、太陽能電池、透明導電電極、紫外光或氣體感測器等方面都有非常優越的應用。在本研究中發現,利用微波電漿輔助化學氣相沈積法,以金為觸媒,在矽基板上可合成出氧化錫的「奈米大頭針」(nanopins),因為其特殊的形狀引起了我們的興趣,經過了一番努力,佐以各方面的證據,我們推論其成長機制為「自催化的汽液固機制」(Self-catalytic VLS mechanism)。另外,在無觸媒的氧化鋁基板上也可成功製備出氧化錫之一維奈米結構。在掃瞄式電子顯微鏡(SEM)的觀察下,這些奈米大頭針外型具有一個大頭,以及細而均勻的身體,長度約數微米(micrometer),頭的直徑約50到60奈米(nanometer),身體的部分則約10到20奈米。進一步的分析則利用穿透式電子顯微鏡(TEM)觀察單一奈米線的外觀,並藉由能量散佈X射線光譜(EDX)確定其內含元素種類,再以選區電子繞射圖譜(SAD)配合低掠角X射線結晶繞射(XRD)確定其結晶型為四方晶(tetragonal)的氧化錫金紅石(rutile)結構。 rf 1. http://www.zyvex.com/nanotech/feynman.html 2. 陳家俊, 半導體科技, 23期, 2001年12月 3. http://www.newnano.com.tw/index4/data02/whatnano_3.htm 4. R. Kubo, J. Phys. Soc. Jpn. 17, 975 (1962) 5. Y. Wang, N. Herron, J. Phys. Chem. 95, 525 (1991) 6. M. W. Lee, H. Z. Twu, C. C. Chen, C. H. Chen, Appl. Phys. Lett. 79, 3693 (2001) 7. 尹邦耀, 奈米時代, 五南圖書出版股份有限公司, 台北, 2002 8. http://www.dwu.edu.tw/~ce/ycc/forStudent/Tech&Life/Content/NanoTech.htm 9. http://www.angsnanotek.com.tw/ch/ch_nano_intro.htm 10. S. Iijima, Nature 354, 56(1991) 11. 牟中原, 張志玲, 科學發展, 373期, 2004年1月, 44-49頁 12. http://taiwan.cnet.com/news/special/0,2000064597,20086663,00.htm 13. http://www.nano.com.tw/Nano_Intro/ 14. Y. Xia, P. Yang, Y. Sun, Y, Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, No. 5, 353 (2003) 15. J. Hu, Y. Bando, Q. Liu, D. Golberg, Adv. Funct. Mater. 13, No. 6, 493 (2003) 16. Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, C. Zhou, Adv. Mater. 15, No. 20, 1754 (2003) 17. Z. L. Wang, Adv. Mater. 15, No. 5, 432 (2003) 18. S. H. Sun, G. W. Meng, Y. W. Wang, T. Gao, M. G. Zhang, Y. T. Tian, X. S. Peng, L. D. Zhang, Appl. Phys. A 76, 287 (2003) 19. Z. W. Pan, Z. R. Dai, Z. L. Wang, Science 291, 1947 (2001) 20. J. K. Jian, X. L. Chen, W. J. Wang, L. Dai, Y. P. Xu, Appl. Phys. A 76, 291 (2003) 21. P. Nguyen, H. T. Ng, J. Kong, A. M. Cassell, R. Quinn, J. Li, J. Han, M. McNeil, M. Meyyappan, Nano Lett. 3, No. 7, 925 (2003) 22. L. B. Fraigi, D. G.. Lamas, N. E. W. de Reca, Mater. Lett. 47, 262 (2001) 23. T. Minami, H. Nanto, S. Takata, Jpn. J. Appl. Phys. 27, L287 (1988) 24. Y. Liu, C. Zheng, W. Wang, C. Yin, G. Wang, Adv. Mater. 13, No. 24, (2001) 25. K. C. Song, Y. Kang, Mater. Lett. 42, 283 (2000) 26. Z. H. Han, N. Guo, F. Q. Li, W. Q. Zhang, H. Q. Zhao, Y. T. Qian, Mater. Lett. 48, 99 (2001) 27. A. C. Bose, D. Kalpana, P. Thangadurai, S. Ramasany, J. Power Sources 107, 138 (2002) 28. E. R. Leite, I. T. Weber, E. Longo, J. A. Varela, Adv. Mater. 12, 965 (2002) 29. G. S. Pang, S. G. Chen, Y. Koltypin, A. Zaban, S. H. Peng, A. Gedanken, Nano Lett. 1, 723 (2001) 30. A. Maddalena, R. Del Maschio, S. Dire, A. Raccanelli, J. Non-Cryst. Solids 121, 365 (1990) 31. D. Wang, S. Wen, J. Chen, S. Zhang, F. Li, Phys. Rev. B 49, 14282 (1994) 32. C. H. Shek, J. K. C. Lai, G. M. Lin, Nanostruct. Mater. 11, 887 (1999) 33. D. F. Zhang, L. D. Sun, J. L. Yin, C. H. Yan, Adv. Mater. 15, No, 12, 1022 (2003) 34. S. M. Arnold, S. E. Kounce, J. Appl. Phys. 27, 964 (1956) 35. Z. R. Dai, Z. W. Pan, Z. L. Wang, Adv. Funct. Mater. 13, No. 1, 9 (2003) 36. B. Lewis, in Crystal Growth(Ed: B. R. Pamplin), Pergamon, Oxford, pp.23-63 (1980) 37. R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964) 38. J. D. Holmes, K. P. Johnston, R. C. Doty, B. A. Korgel, Science 287, 1471 (2000) 39. T. J. Trentler, K. M. Kickman, S. C. Geol, A. M. Viano, P. C. Gibbons, W. E. Buhro, Science 270, 1791 (1995) 40. Y. Wu, H. Yan, M. Huang, B. Messer, J. Song, P. Yang, Chem. Eur. J. 8, 1260 (2002) 41. X. Lu, T. Hanrath, K. P. Johnston, B. A. Korgel, Nano. Lett. 3, 93 (2003) 42. J. D. Holmes, K. P. Johnston, R. C. Doty, B. A. Korgel, Science 287, 1471 (2000) 43. N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, S. T. Lee, Chem. Phys. Lett. 299, 237 (1999) 44. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001) 45. B. Zhank, Y. Wu, P. Yang, J. Liu, Adv. Mater. 14, 122 (2002) 46. G. S. Park, W. B. Choi, J. M. Kim, Y. C. Choi, Y. H. Lee, C. B. Lim, J. Cryst. Growth 220, 494 (2002) 47. C. Liang, G. Meng, Y. Lei, F. Phillipp, L. Zhang, Adv. Mater. 13, 1330 (2001) 48. R. Q. Zhang, Y. Lifshitz, S.T. Lee, Adv. Mater. 15, No. 7-8, 635 (2003) 49. 曹?琤?, 連大成, 物理雙月刊(廿三卷四期), 2001年8月 50. J. C. Hulteen, C. R. Martin, J. Mater. Chem. 7, 1075 (1997) 51. R. L. Fleisher, P. B. Price, R. M. Walker, Nuclear Tracks in Solids, University of California press. Berkeley, CA (1975) 52. A. Despic, V. P. Parkhutik, in Modern Aspects of Electrochemistry (Eds: J. O. Bockris, R. E. White, B. E. Conway). Vol. 20. Plenum Press. New York, Ch. 6 (1989) 53. A. Kolmakov, Y. Zhang, M. Moskovits, Nano Lett. 3, No.8, 1125 (2003) 54. B. Gates, B. Mayers, A. Grossman, Y. Xia, Adv. Mater. 14, 1749 (2002) 55. J. J. Zhu, Z. H. Lu, S. T. Aruna, D. Aurbach, A. Gedanken, Chem. Mater. 12, 2557 (2000) 56. E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan, Z. L. Wang, Appl. Phys. Lett. 81, 1869 (2002) 57. M. Law, H. Kind, B. Messer, F. Kim, P. Yang, Angew. Chem. Int. Ed. 41, No. 13, 2405 (2002) 58. J. Chrzanowski, H. Teterycz, R. Klimkiewicz, J. Electrochem. Soc. 150 (6), H140 (2003) 59. J. Watson, Sens. Actuators 5, 29 (1984) 60. A. Kolmakov, Y. Zhang, G. Cheng, M. Moskovits, Adv. Mater. 15, No. 12, 997 (2003) 61. A. Maiti, J. A. Rodriquez, M. Law, P. Kung, J. R. McKinney, P. Yang, Nano Lett. 3, No. 8, 1025 (2003) 62. M. S. Arnold, P. Avouris, Z. W. Pan, Z. L. Wang, J. Phys. Chem. B 107, 659 (2003) 63. G. Sberveglieri, Sens. Actuators B 6, 64 (1992) 64. S. Ferrere, A. Zaban, B. A. Gregg, J. Phys, Chem. B 101, 4490 (1997) 65. C. M. Lampert, Sol. Energy Mater. 6, 1 (1991) 66. G. Sberveglieri, Sens. Actuators B 6, 239 (1992) 67. A, Dieguez, Sens. Actuators B 31, 1 (1996) 68. G. J. Li, X. H. Zhang, S. Kawi, Sens. Actuators B 60, 64 (1999) 69. Y. Chen, X. Cui, K. Zhang, D. Pan, S. Zhang, B. Wang, J. G. Hou, Chem. Phys. Lett. 369, 16 (2003) 70. J. Q. Hu, X. L. Ma, N. G.. Shang, Z. Y. Xie, N. B. Wong, C. S. Lee, S. T. Lee, J. Phys. Chem. B 106, 3823 (2002) 71. F. Gu, S. F. Wang, C. F. Song, M. K. Lü, Y. X. Qi, G. J. Zhou, D. Xu, D. R. Yuan, Chem. Phys. Lett. 372, 451 (2003)id NH0925159002 sid 893542 cfn 0 / id NH0925159003 auc 陳宗漢 tic 奈米碳管之有機金屬催化製成研究 adc 張士欽 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 58 kwc 奈米碳管 kwc 場發射 abc 本論文研究以有機金屬溶液(有機鐵和有機鎳),旋鍍於矽基板上作為成長奈米碳管的催化劑來源,以微波加熱的系統來達到快速升溫的效果。研究中改變不同參數來研究前處理對催化劑表面型態的影響,各種不同成長參數對於成長碳管的外觀和性質的影響。成長的碳管膜以掃瞄式電子顯微鏡觀察其表面狀態,穿透式電子顯微鏡作結構分析,拉曼光譜分析奈米碳管的結晶性,並以二極方式量測其場發射性質。 tc Abstract i Contents iii I. Introduction 1 II. Literature review 3 II-1 The synthesis of carbon nanotubes 3 II-2 Catalyst for growth of carbon nanotubes 4 II-3 Catalyst formed from solutions 5 II-4 The models of carbon nanotube growth 6 II-5 Field emission from carbon nanotubes 7 III. Experimental procedures 10 IV. Results and discussions 15 IV-1 Organic iron catalyst 15 IV-2 Organic nickel catalyst 16 IV-3 The comparison between organic iron and nickel 19 IV-4 Field emission measurement and Raman spectroscopy 20 V. Figures of Results and discussions 24 VI. Conclusions 51 VII. Reference 53rf [1 ] S. Iijima, Nature 354 (1991) 56, “Helical microtubules of graphitic carbon” [2 ] B. I. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett. 76 (1996) 2511, “Nanomechanics of carbon tubes: instabilities beyond linear response” [3 ] A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, R. E. Smalley, Science 269 (1995) 1550, “Unraveling nanotubes: field emission from an atomic wire” [4 ] T. W. Ebbesen and P. M. Ajayan, Nature 358 (1992) 220, “Large scale synthesis of carbon nanotubes” [5 ] S. Iijima, and T. Ichihashi, Nature 363 (1993) 603, “Single-shell carbon nanotubes of 1-nm diameter” [6 ] D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature 363 (1993) 605. “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls” [7 ] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robalt, X. Chunhui, L. Y. Hee, K. S. Gon, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science 273 (1996) 483, “Crystalline ropes of metallic carbon nanotubes” [8 ] A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. R. Macias, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J .E. Fischer, A. M. Rao, P. C. Eklund, and R. E Smalley, Appl. Phys. A, 67 (1998) 29, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization” [9 ] H. J. Jeong, Y. M. Shin, S. Y. Jeong, Y. C. Choi, Y. S. Park, S. C. Lim, G. S. Park, I. T. Han, J. M. Kim, and Y. H. Lee, Chem. Vapor Deposition, 8 (2002) 11, “Anomalies in the growth temperature and time dependence of carbon nanotube growth” [10 ] C. J. Lee, D. W. Kim, and T. J. Lee, Appl. Phys. Lett. 75 (1999) 1721, “Synthesis of uniformly distributed carbon nanotubes on a large area of Si substrates by thermal vapor deposition” [11 ] Z. W. Pan, S. S. Xie, B. H. Chang, L. F. Sun, W. Y. Zhou and G. Wang, Chem. Phys. Lett. 299 (1999) 97, “Direct growth of aligned open carbon nanotubes by chemical vapor deposition” [12 ] L. C. Qin, D. Zhou, A. R. Krauss, and D. M. Gruen, Appl. Phys. Lett. 72 (1998) 3437, “Growing carbon nanotubes by microwave plasma enhanced chemical vapor deposition” [13 ] Christian Klinke, Jean-Marc Bonard, and Klaus Kern, Surface Scinece 492 (2001) 195, “Comparative study of the catalytic growth of patterned carbon nanotubes films” [14 ] 卓言, 2001年國立清華大學碩士論文 [15 ] X. H. Chen, S. Q. Feng, Y. Ding, J. C. Peng, and Z. Z. Chen, Thin Solid Films 339 (1999), “The formation conditions of carbon nanotubes array based on FeNi alloy island films” [16 ] W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, and W. Y. Zho, Science 274 (1996) 1701, “ Large-scale synthesis of aligned carbon nanotubes” [17 ] Y. C. Choi, D. J. Bae, Y. H. Lee, B. S. Lee, I. T. Han, W. B. Choi, N. S. Lee, and J. M. Kim, Synthetic Metals 108 (2000) 159, “Low temperature synthesis of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition” [18 ] H. Murakai, M. Hirakawa, C. Tanaka, and H. Tamakawa, Appl. Phys. Lett. 76 (2000) 1776, “Field emission from well-aligned, patterned, carbon nanotubes emitters” [19 ] G. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park, K. H. Son, and D. J. Kim, J. Appl. Phys. 91 (2002) 3847, “Carbon nanotubes synthesized by Ni-assisted atmospheric pressure thermal chemical vapor deposition” [20 ] M. P. Siegal, D. L .Overmyer, and P. P. Provencio, Appl. Phys. Lett. 80 (2002) 2171, “Precise control of multiwall carbon nanotubes diameters using thermal chemical vapor deposition” [21 ] Chris Bower and Otto Zhou, Appl. Phys. Lett. 77 (2000) 2767, “Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition” [22 ] Masako Yudasaka, Rie Kikuchi, Takeo Matsui, Yoshimasa Ohki, and Susumu Yoshimura, Appl. Phys. Lett. 67 (1995) 2477, “Specific conditions for Ni catalyzed carbon nanotubes growth by chemical vapor deposition” [23 ] L. F. Sun, J. M. Mao, Z. W. Pan, B. H. Chang, W. Y. Zhou, G. Wang, L. X. Qian, Appl. Phys. Lett. 74 (1999) 644, “Growth of straight nanotubes with a cobalt-nickel catalyst by chemical vapor deposition” [24 ] S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, F. Derbyshire, Chem. Phys. Lett. 315 (1999) 25, “Model of carbon nanotubes growth through chemical vapor deposition” [25 ] W. A. De Heer, A. Chatelain, D. Ugarte, Science 270 (1995) 1179, “A carbon nanotubes field-emission electron source” [26 ] P. G. Collins, A. Zettl, Appl. Phys. Lett. 69 (1999) 1969, “A simple and robust electron beam source from carbon nanotubes” [27 ] J. M. Bonard, H. Kind, T. Stockli, and L. Nilsson, Solid-State Elect. 45 (2001) 893, “Field emission from carbon nanotubes: the first five years” [28 ] P. J. de Pablo, S. Howell, S. Crittenden, B. Walsh, E. Grangnard, and R. Reifenberger, Appl. Phys. Lett. 62 (1999) 3941, “Correlating the location of structural defects with the electrical failure of multiwalled carbon nanotubes” [29 ] S. Dimitrijevic, J. C. Withers, V. P. Mammana, O. R. Monteir, J. W. Ager, and I. G. Brown, Appl. Phys. Lett. 75 (1999) 5680, “Electron emission from films of carbon nanotubes and ta-C coated nanotubes” [30 ] Yahachi Saito, Sashiro Uemure, Carbon 38 (2000) 169, “Field emission from carbon nanotubes and its application to electron sources” [31 ] Encyclopedia of physical science and technology, vol. 2, 545 [32 ] Encyclopedia of chemical technology, vol. 3, 246id NH0925159003 sid 893567 cfn 0 / id NH0925159004 auc 王嘉靖 tic 中介金屬鎢和鉭對鎳矽化物形成之影響 adc 蔡哲正 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 78 kwc 鎳矽化物 kwc 磊晶NiSi2 abc 在Ni/W/Si與Ni/Ta/Si系統實驗中,希望藉著中間鍍附一層鎢或是鉭金屬薄膜擴散阻礙層,來探討其對於增加鎳矽化物NiSi相的熱穩定性效果。而實驗結果顯示在Ni/W/Si與Ni/Ta/Si系統中明顯地延遲了鎳矽化物Ni2Si與NiSi相的生成溫度,但隨著鎳矽化物Ni2Si相生成的同時,中間金屬層W或Ta此時亦被排擠往上方界面處抬升,達不到延遲NiSi2相生成的效果,以致於結果也不如預期所希望地能延長NiSi相的溫度區間。 tc 總 目 錄 致謝…………...………...……………..…I 摘要...…………………...……………..…Ⅱ Abstract…...…………..………...………Ⅲ 內文目錄 第一章 緒論………...…....…………….………..…1 1-1 前言…………………………………….………...…….1 1-2 矽化物製程技術………………………….…...……….1 1-2-1 Polycide...........................……....2 1-2-2 Salicide…………….…………...…….……….2 第二章 金屬矽化物…………...………………………….3 2-2 矽化物選用條件………………………....………………………………..4 2-3 金屬矽化物的生成方式…………...………...…………………………..5 2-3-1 金屬薄膜沈積……………………….……..….……………………..6 2-3-2 金屬矽化物薄膜沈積………………………….………….………..6 2-3-3 離子束方式…………………6 2-4 金屬矽化物成長機制……………6 2-5磊晶成長矽化物………………………………6 2-5-1 簡介…………6 2-5-2 成長方法……………………………………….……………………..7 2-6 矽化鈦(TiSi2)、矽化鈷(CoSi2) 矽化鎳(NiSi) …………8 2-6-1 矽化鈦(TiSi2).………………………8 2-6-2 矽化鈷(CoSi2)…………………………9 2-6-3 矽化鎳(NiSi)..………10 第三章 薄膜應力..……………11 3-1 薄膜應力來源..……………11 3-1-1 內應力(Intrinsic Stress)……11 3-1-2 外應力(Extrinsic Stress)………11 3-2 薄膜應力量測……………………12 3-2-1 內部晶格改變……………………12 3-2-2 外部試片彎曲…………………12 3-3 薄膜應力方程式…………………….13 3-3-1 Stoney方程式…………13 3-3-2 靜作用力/薄膜單位寬度…………14 3-3-3 熱應力………….………………14 第四章 實驗方法………….……………15 4-1 試片的製作…………15 4-1-1 製作流程………15 4-1-2 Cross Section TEM試片製作…………16 4-2 分析儀器試片尺寸….………………………17 4-3 實驗流程.………………………………………18 第五章 分析儀器…………………………19 5-1 臨場雷射掃瞄曲率量測系統 (In-situ Curvature System).19 5-2 X光繞射儀 (X-Ray Diffracteometer)……………………20 5-3 歐傑電子能譜儀 (Auger electron spectrometer;AES)……21 5-4 穿透式電子顯微鏡 (Transmission Electron Mircoscopy,HRTEM)……………………………………………………………22 5-5 四點探針 (Four Point Probe)……………………23 第六章 結果與討論……..……………………………….24 6-1 In-situ Curvature的F/W曲線…………………….……..….….25 6-2 矽化物生成相判定……….…...……………………..…….……..….….25 6-2-1 Ni(1000Å)/W(100Å)/Si(100).………26 6-2-2 Ni(1000Å)/W(50Å)/Si(100)…………27 6-2-3 Ni(1000Å)/W(10Å)/Si(100)…………28 6-2-4 Ni(1000Å)/Ta(100Å)/Si(100).………30 6-2-5 Ni(1000Å)/Ta(50Å)/Si(100)…………31 6-2-6 Ni(1000 Å)/Ta(10Å)/Si(100)…………32 6-3 四點探針……………………………………33 6-4 應力曲線與相鑑定…………………………34 6-4-1 Ni/W/Si系統……………………………34 6-4-2 Ni/Ta/Si系統……………………………36 6-5 磊晶成長的NiSi2………………………37 第七章 結論……………………………40 圖表目錄 圖1-1 Polycide製程 & Salicide製程…………………………………….....41 圖1-2各時期矽化物材料………………………….…………………………...42 表2-1 矽化物週期表………………………………….…………………….….43 表2-2 Result of the Growth of Kinetics Silicides…………..………...…..44 圖2-3 細導線寬效應(narrow linewidth effect) …………….……...…..45 表2-3 Crystallographic Structures and Density of Various Transition Metal Silicides………………....………………………………………..46 圖5-1雷射曲率量測簡圖……………………………….……………………...48 圖6-1 Ni/Si系統鎳矽化物生成溫度區間………….…..…………………...49 圖6-2 Ni/W/Si & Ni/W/Si之In-situ Curvature量測單位應力對單位寬度比(F/W)之曲線……………………….…………...……………...50 圖6-3 Ni(1000Å)/W(100Å)/Si(100) X-Ray繞射峰圖形…………….…..51 圖6-4 AES Ni/W(100Å)/Si縱深分析………………………..…....…………52 圖6-5 Cross Section TEM Ni/W(100Å)/Si & Ni/Ta(100Å)/Si……...….53 圖6-6 Ni(1000Å)/W(50Å)/Si(100) X-Ray繞射峰圖形…………..………54 圖6-7 AES Ni/W(50Å)/Si & Ni/W(10Å)/Si縱深分析.................………..55 圖6-8 Cross Section TEM Ni/W(50Å)/Si & Ni/Ta(100Å)/Si………..…56 圖6-9 Ni(1000Å)/W(10Å)/Si(100) X-Ray繞射峰圖形…………..………57 圖6-10 Ni(1000Å)/Ta(100Å)/Si(100) X-Ray繞射峰圖形…………...…..58 圖6-11 AES Ni(1000Å)/Ta(100Å)/Si縱深分析....……….………………...59 圖6-12 Ni(1000Å)/Ta(50Å)/Si(100) X-Ray繞射峰圖形……...…………60 圖6-13 AES Ni/Ta(50Å)/Si & Ni/Ta(10Å)/Si縱深分析………..………..61 圖6-14 Ni(1000Å)/Ta(10Å)/Si(100) X-Ray繞射峰圖形…………...……62 圖6-15 Ni/W/Si之片電阻值………….......................................................……63 圖6-16 Ni/Ta/Si之片電阻值…………......................................................……64 圖6-17 Ni/W/Si In-situ Curvature F/W曲線與相鑑定結果..........……65 圖6-18 Ni/Ta/Si In-situ Curvature F/W曲線與相鑑定結果..........……66 圖6-19 Cross Section TEM Ni/W&Ta(50Å)/Si (As-Deposited) ..….…67 圖6-20 Ni/W/Si系統之NiSi2 (200) X-Ray繞射峰 (900℃) ..…..…..…68 圖6-21 Ni/Ta/Si系統之NiSi2 (200) X-Ray繞射峰 (900℃) …....…..…69 圖6-22 Ni/W/Si系統之X-Ray NiSi2 (200) & NiSi2 (400) ….........…...…70 圖6-23 Ni/Ta/Si系統之X-Ray NiSi2 (200) & NiSi2 (400) …....…………71 圖6-24 HRTEM Ni/W(100Å)/Si & Ni/Ta(100Å)/Si (900℃) .…………72 圖6-25 HRTEM Ni/W(100Å)/Si & Ni/Ta(100Å)/Si (111)面54.74∘ ………………………………………………………………...……………73 圖6-26 Si(100)&(110)&(111)晶面…………..…………74 參考文獻及書目…………………………………….…75rf 參考文獻及書目 1.Eliane Maillard-Schaller, B. I. Boyanov, S. English, and R. J. Nemanich, “Role of substrate strain in the sheet resistance stability of NiSi deposited on Si(100),” Journal Of Applied Physics, Vol. 85, N0. 7, 3614-3618 (1999). 2.郭昇鑫, 蔡哲正, “在鈷/鈦/矽與鈷/鎳/矽系統不同中間層對鈷矽化物生成的影響,” 興大工程學刊第十一卷第一期 (2000)。 3.C. Y. Chang,S. M. Sze, “ULSI Technology,” McGraw-Hill (1996). 4.鍾秉霖, “鎳/鈀/矽之生成相與應力變化,” 中興大學材料工程研究所碩士論文 (1999)。 5.Hiroshi Iwai, Tatsuya Ohguro, Shun-ichiro Ohmi, “NiSi salicide technology for scaled CMOS,” Mircoelectronic Engineering, 60, 157-169 (2002). 6.Stanley Wolf Ph.D. Professor, “Silicon Process For The VLSI ERA,” Vol. 2: Process Integration (1990). 7.S. P. Murarka, “Silicide For VLSI Applications,” Academic Press New York (1983). 8.陳力俊, “微電子材料與製程,” 中國材料學會 (2000)。 9.李雅明, “固態電子學,” 全華科技圖書 (1995)。 10.Wein-Town Sun, Ming-Chi Liaw, and Charles Ching-Hsiang Hsu, “Suppression of Cobalt Silicide Agglomeration Using Nitrogen (N2+) Implantation,” IEEE Electron Device Letters, Vol. 19, No. 5 (1998). 11.D. Mangelinck, J. Ding, A. T. S. Wee, L. Chan, “Improved NiSi Salicide Process Using Presilicide N2+ Implant for MOSFETs,” IEEE Electron Device Letters,” Vol. 21, No 12 (2000). 12.A.Lauwes, P .Besser, T. Gutt, A. Satta, M. de Potter, R. Lindsay, N. Roelandts, F. Loosen, S. Jin, H. Bender, M. Stucchi, C. Vrancken, B. Deweerdt, K, Maex, “Comparative study of Ni-silicide and Co-silicide for sub 0.25-μm technologies,” Microelectronic Engineering, 103-116 (2000). 13.F. Deng, R. A. Johnson, P. M. Asbeck, S. S. Lau, W. B. Dubbelday, T. Hsiao, J. Woo, “Salicidation Process using NiSi and its device application,” J. Appl. Phys., 8047-8051 (1997). 14.吳文發, “金屬矽化物的研製,” 毫微米通訊第五卷第二期 (1998)。 15.J. Y Dai, D. Mangelinck, and S. K. Lahiri, “Coexistence of hexagonal and orthorhombic structure in NiSi films containing Pt,” Appied Physics Letters, Vol. 75, No 15 (1999). 16.L. W. Cheng, S. L. Cheng, L. J. Chen, H. C. Chien, H. L. Lee, F. M. Pan, “Formation of Ni Silicide on (001) Si with a thin interposing Pt layer,” American Vacuum Society, 1176-1179 (2000). 17.S. P. Murarka, “In Properties And Application Of Silicides,” Kluwer Academic Publishers (1989). 18.Rene Pretorius, Christiaan C. Theron, “Critical Review in Solid State and Material Science,” (1999). 19.B.Y. Tsaur, S. S. Lau, J. W. Mayer, M. A. Nicolet, J. Appl. Lett., 38, 1 (1981). 20.張碩峰, “Study of Silicide Formation,” 國立中興大學材料工程學研究所碩士論文 (2000)。 21.B. A. Julies, D. Knoesen, R. Pretorius, D. Adams, “A study of the NiSi to NiSi2 transition in the Ni-Si binary system,” Thin Solid Films, 201-207 (1999). 22.A. H.Reader, A. H. Van Ommen, P. J. W. Weijs, R. A. M. Wolters, D. J. Oostra, Rep. Prog. Phys. 56, P1397 (1992). 23.K. Maex, Mater. Sci. Eng., R11, P53 (1993). 24.L. S. Hung, J. Gyulai, J. W. Mayer, S. S. Lau, M. A. Nicolet, J. Appl. Phys., 54, P5076 (1983). 25.V. Teodorescu, L. Nistor, H. Bender, A. Steegen, A. Lauwers, K. Maex, J. Van Landuyt, “In Situ transmission electron microscopy study of Ni silicide phases formed on (001) Si active lines,” J. Appl. Phys., Vol. 90, No. 1, 167-174 (2001). 26.C. A. Crider, J. M. Poate, Appl. Phys. Lett., 36, P417 (1980). 27.Karen Maex, Marc Van Rossum, Imec, Leuven, Belgium, “Properties Of Metal Silicide,” Printed in England by Short Run Press Ltd. (1995). 28.C. H. Olk, O. P. Karpenko, S. M. Yalisove, “Growth of epitaxial β–FeSi2 thin films by pulsed laser deposition on silicon (111),” Journal of Materials Research, 2733 (1994). 29.D. Mangelinck, P. Gas, J. M. Gay, B. Pichaud, O. Thomas, “Effect of Co, Pt, and Au additions on the stability and epitaxy of NiSi2 films on (111) Si,” J. Appl. Phys., Vol. 84, No. 5, 2583-2590 (1998). 30.陳明義, TiSi2相的形成及其應力變化, “國立中興大學材料工程學研究所碩士論文,” (1998)。 31.張恕銘, “Interfacial Reaction of Titanium and Cobalt Metal Thin Films on Silicon,” 國立清華大學材料科學工程學系博士論文 (2000)。 32.K.Fujii, K.Kikuta,and T.Kikkawa,“Sub-Quarter Micron Titanium Salicide Technology with In-Situ Silicidation Using High - Temperature Sputtering and In-Situ Vacuum Annealing”, VLSI Tech. Dig., p. 57 (1995). 33.Wein-Town Sun, Ming-Chi Liaw, Charles Ching-Hsiang Hsu, “Supppression of Cobalt Silicide Agglomeration Using Nitrogen (N2+) Implantation,” IEEE Electron device Letters,” Vol. 19, No. 5, 163-166 (1998). 34.游坤和, “Study of Nickel-Silicon Reaction by In Situ Stress Measurement,” 國立中興大學材料工程學研究所碩士論文 (1998)。 35.楊然翔, “Stress Evolution of Ni/Ti/Si and Ni/Mo/Si Reaction System,” 國立中興大學材料工程學研究所碩士論文 (2000)。 36.行政院國家科學委員會國家毫微米實驗室, “元件基礎製程訓練課班講義III,” (1998)。 37.李奇澤, “銅薄膜應力疏散機制之探討,” 國立清華大學材料工程學研究所碩士論文 (2002)。 38.莊達人, “VLSI製造技術,” 高立圖書公司 (1995)。 39.吳泰伯, 許樹恩, “X光繞射原理與材料結構分析,” 中國材料科學學會 (1992)。 40.汪建民, “材料分析,” 中國材料科學學會 (1998)。 41.陳力俊, “材料電子顯微鏡學,” 行政院國家科學委員會精密儀器發展中心 (1990)。 42.M. M. SZE, “Semiconductor Device Physics and Technology,” Wiley, John & Sons, Incorporated (1985). 43.E. K. Broadbent, A. E. Morgan, J. M. Flanner, B. Coulman, D. K. Sadana, B. J. Burrow, R. C. Eliwanger, “The high-temperature stability of chemically Vapor-deposited tungsten-silicon couples rapid thermal annealed in ammonia and argon,” J. Appl. Phys., Vol.64, No. 12, 6721-6726 (1988). 44.Atsushi Noya, Mayumi Takeyama, Katsutaka Sasaki, Taichi Nakanishi, “Frist phase nucleation of metal-rich silicide in Ta/Si system,” J. Appl. Phys., Vol.73, No. 6, 3893-3895 (1994). 45.J. P. Sullivan, R. t. Tung, and F. Schrey, AT&T Bell Laboratories, Murray Hill, New Jersey 07974, “Control of interfacial morphology: NiSi2/Si(100),” J.Appl. Phys. Vol.72, No.2, (1992) 46.L.J. Chen, “Solid state amorphization in metal/Si systems,” Materials Science Engineering, R29, 115-152 (2000) 47.Luming Shen and Zhen Chen, “An investigation of the effect of interfacial atomic,” Modeling Simul. Mater. Sci. Eng. 12, S347-S369 (2004) 48.Milton Ohring, “The Materials Science of Thin Films,” Academic Press, P132 (1992) 49.S.L. Chiu, Y.C. Chu, and C.J. Tsai, ”Effects of Ti Interlayer on the Ni/Si Reaction System,” (2003) 50.郭政彰, ”鍺或銥中間層薄膜對鎳矽化物之生成與熱穩定性之研究,” 國立清華大學材料科學與工程學系碩士論文 (2002)。id NH0925159004 sid 895509 cfn 0 / id NH0925159005 auc 梁元彰 tic 磊晶BaTiO3/LaNiO3人工超晶格特性之研究 adc 吳泰伯 adc 李信義 ty 博士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 英文 pg 158 kwc 人工超晶格 kwc X光反射率 kwc 界面粗糙度 kwc 成長機制 abc 本實驗成功的利用磁控濺鍍法製造出磊晶BaTiO3/LaNiO3(BTO/LNO)人工超晶格薄膜於單晶SrTiO3 基板上。藉由X光反射率以及X光繞射的量測證實了超晶格結構的形成。由 X光繞射分析顯示在超晶格中的BTO層其c軸的晶格常數會因為界面處的應變而拉長,並造成介電常數的顯著提升。另外,in-plane X光繞射分析亦顯示當BTO/LNO人工超晶格薄膜的周期小於20奈米時,超晶格中的BTO層會有相同程度的應變鬆弛。藉由X光反射率以及X光繞射的量測可發現幾乎固定的界面粗糙度存在於BTO與LNO層之間。因此人工超晶格薄膜具有相同程度的介電常數提升此外BTO/LNO 的界面具有高導電的特性。利用in-situ 鍍膜方式配和同步輻射光源成功的以實驗方式得到了周期為6奈米的人工超晶格薄膜其有效的臨界厚度約為60-66奈米,此實驗值亦相當接近理論估計值。當整體的超晶格薄膜厚度大於此臨界值,晶格會有應變鬆弛產生。此外in-situ的實驗觀察亦顯示出存在於超晶格內的應變會對於超晶格薄膜的顯微結構演化有著重大的影響。 tc Contents Abstract (in Chinese)…………………………………………………………….IV Abstract (in English)……………………………………………………………...V Table Captions…………………………………………………………………….VI Figure Captions…………………………………………………………………..VII Chapter 1 Introduction 1.1 BaTiO3 thin film material…………………………………………………………..1 1.2 LaNiO3 thin film material…………………………………………………………..4 1.3 Strained superlattice materials ……………………………………………………..6 1.4 Introduction to x-ray reflectivity………………………………………………….14 1.5 Concept of roughness scaling……………………………………………………..20 Chapter 2 Experimental procedures 2.1 Sample preparation………………………………………………………………..38 2.2 Measurements of x-ray reflectivity (in-house)……………………………………38 2.3 Measurements of x-ray diffraction and reflectivity with synchrotron radiation…..40 2.4 Measurements of atomic force microscopy……………………………………….40 2.5 Measurements of electric properties………………………………………………40 Chapter 3 X-ray reflectivity and atomic force microscopy study of the structural characteristics of BaTiO3/LaNiO3 superlattices 3.1 Introduction…………………………………………………………………..........45 3.2 Experimental………………………………………………………………............45 3.3 Results and Discussions…………………………………………………………...46 3.4 Conclusion…………………………………………………...................................54 Chapter 4 Characterization of BaTiO3/LaNiO3 superlattices from x-ray diffraction and dielectric measurement 4.1 Introduction………………………………………………………………..............69 4.2 Experimental………………………………………………………………………70 4.3 Results and Discussions…………………………………………………………...70 4.4 Conclusion………………………………………………………………...............84 Chapter 5 Real-time characterization of lattice strain relaxation in the growth of an epitaxial BaTiO3/LaNiO3 superlattice 5.1 Introduction………………………………………………………………............102 5.2 Experimental……………………………………………………………..............103 5.3 Results and Discussions………………………………………………………….104 5.4 Conclusion……………………………………………………………………….109 Chapter 6 Roughness scaling in the initial growth of epitaxial BaTiO3/LaNiO3 superlattices 6.1 Introduction………………………………………………………………………117 6.2 Experimental………………………………………………………………..........119 6.3 Results and Discussions………………………………………………………….119 6.4 Conclusion……………………………………………………………….............127 Chapter 7 Conclusions and prospects 7.1 Conclusions………………………………………………………………............136 7.2 Prospects…………………………………………………………………............138 References…………………………………………………………………………139rf References 1. J. Zhang, D. Cui, H. Lu, Z. Chen, Y. Zhou, L. Li, G. Yang, S. Martin and P. Hess ”Structural Behavior of Thin BaTiO3 Film Grown at Different Conditions by Pulsed Laser Deposition” Jpn. J. Appl. Phys. 362, 76 (1997). . 2. C. S. Hsi, F.-Y. Hsiao, N.-C. Wu and M. C. Wang “Dielectric Properties of Nanocrystalline Barium Titanate Thin Films Deposited by RF Magnetron Sputtering” Jpn. J. Appl. Phys. 42, 544 (2003). 3. C. A. T. Salama, and E. Siciunas, “Characteristics of rf Sputtered Barium Titanate Films on Silicon” J. Vac. Sci. Technol. 9, 91(1972). 4. I. H. Pratt, and S. Firestone, “Fabrication of rf-Sputtered Barium Titanate Thin Films” J. Vac. Sci. Technol. 8, 256 (1971). 5. H. K. awano, K. Morii, and Y. Nakayama, “Microstructural and dielectric properties of BaTiO3 thin films prepared by atom beam sputtering”Mater. Lett. 12, 252(1991). 6. Q. X. Jia, L.H. Chang, and W. A. Anderson, “Surface and interface properties of ferroelectric BaTiO3 thin films on Si using RuO2 as an electrode” J. Mater. Res. 9, 2561(1994). 7. Q. X. Jia, Z. Q. Shi and W. A. Anderson, “BaTiO3 thin film capacitors deposited by r.f. magnetron sputtering” Thin Solid Films 209, 230(1991). 8. H. Nakazawa, H. Yamane,and T. Hirai, “Metalorganic Chemical Vapor Deposition of BaTiO3 Films on MgO(100)” Jpn. J. Appl. Phys. 30, 2200(1991). 9. Y. S. Yoon, W. N. Kang, H. S. Shin, and S. S. Yom, “Structural properties of BaTiO3 thin films on Si grown by metalorganic chemical vapor deposition” J. Appl. Phys. 73,1547(1993). 10. K. Iijima, T. Tersahima, K. Yamamoto, K. Hirata, and Y. Bando, “Preparation of ferroelectric BaTiO3 thin films by activated reactive evaporation” Appl. Phys. Lett. 56, 527(1990). 11. M. Kuwabara, S. Takahashi, and T. Kuroda, “Preparation of ferroelectric BaTiO3 thin films on polycrystalline BaPbO3 substrates by sol-gel processing and their electrical properties” Appl. Phys. Lett. 62, 3372(1993). 12. G. M. Davis, and M. C. Gower, “Epitaxial growth of thin films of BaTiO3 using excimer laser ablation” Appl. Phys. Lett. 55, 112(1989). 13. M. G. Norton, and C.B. Carter, “Observation of the early stages of heteroepitactic growth of BaTiO 3 thin-films” J. Mater. Res. 5, 2762(1990). 14. K. Nashimoto, D. K. Fork, F. A. Ponce, and J.C. Tramontana, “Characteristics of BaTiO3 Films Prepared by Pulsed Laser Deposition” Jpn. J.Appl. Phys. 32,5656(1993). 15. J. Zhang, Z. H. Chen, D. F. Cui, H. B. Lu, Y. L. Zhou, L. Lin, G. Z. Yong, N. Jiang, and J. M. Hao, “Heteroepitaxial growth of a c-axis-oriented BaTiO3/YBa2Cu3O7 bilayer structure by pulsed laser ablation” Appl. Phys. Lett. 66, 2069(1995). 16. W. J. Lin, T. Y. Tseng, H. B. Lu, S. L. Tu, S. J. Yang, and I. N. Lin, “Growth and ferroelectricity of epitaxial-like BaTiO3 films on single-crystal MgO, SrTiO3, and silicon substrates synthesized by pulsed laser deposition” J. Appl. Phys. 77, 6466(1995). 17. J. Zhang, D. Cui, H. Lu, Z. Chen, Y. Zhou, L. Li, G. Yang, S. Martine, and P. Hess, “Structural Behavior of Thin BaTiO3 Film Grown at Different Conditions by Pulsed Laser Deposition” Jpn. J. Appl. Phys. 36, 276(1997). 18. H. B. Lu, N.Wang, W. Z. Chen, F. Chen, T. Zhao, H. Y. Peng, S. T. Lee, and G. Z. Yang, “Laser molecular beam epitaxy of BaTiO3 and SrTiO3 ultra thin films” J. Cryst. Growth. 212, 173(2000). 19. G. H. Lee, M. Yoshimoto, T. Ohnishi, K. Sasaki, and H. Koinuma, “Epitaxial BaTiO3 thin films grown in unit-cell layer-by-layer mode by laser molecular beam epitaxy” Materials Sci. and Eng. B 56, 213 (1998). 20. T. Terashima, Y.Bando, K. Iijima, K. Hirata, K. Hayashi, K.Kamigaki, and H. Terauchi, “Reflection high-energy electron diffraction oscillations during epitaxial growth of high-temperature superconducting oxides” Phys. Rev. Lett. 65, 2684(1990). 21. Y. Watanaabe, Y. Matsumoto, H. Kunitomo, M. Tanamura, and E.Nishimoto, “Crystallographic and Electrical Properties of Epitaxial BaTiO3 Film Grown on Conductive and Insulating Perovskite Oxides” Jpn. J. Appl. Phys. 33, 5182(1994). 22. H. Terauchi, Y. watanabe, H. Kasatani, K. Kamigasaki, Y.Yano,T.Terashima, and Y. Bando, J. Phys. Soc. Jpn. 61, 2194(1992). 23. K. Wasa, and S. Hayakawa, “Some features of magnetron sputtering” Thin Solid Films 52, 31 (1978). 24. K. Fujimoto, Y. Kobayashi, and K. Kubota, “Growth of BaTiO3---SrTiO3 thin films by r.f. magnetron sputtering” Thin Solid Films 169, 249 (1989). 25. T. Yasumoto, N. Yanase, K. Abe, and T. Kawakubo, “Epitaxial Growth of BaTiO3 Thin Films by High Gas Pressure Sputtering” Jpn. J. Appl. Phys. 39, 5369(2000). 26. M. Matsuoka, K. Hoshino, and K. Ono, “Low-temperature epitaxial growth of BaTiO3 films by radio-frequency-mode electron cyclotron resonance sputtering” J. Appl. Phys. 76, 1768(1994). 27. A.Word, B. Post, and E. Banks, J.Am.Chem.Soc.70, 4911(1957). 28. R. Ramesh, W. K. Chan, H. Gilchrist, T. Sands, J. M. Tarascon, and V. G. Keramidas, “Fatigue and retention in ferroelectric Y-Ba-Cu-O/Pb-Zr-Ti-O/Y-Ba-Cu-O heterostructures” Appl. Phys. Lett. 61, 1537(1992). 29. R. Ramesh, H. Gilchrist, T. Sands, J. M. Tarascon, and V. G. Keramidas, “Ferroelectric La-Sr-Co-O/Pb-Zr-Ti-O/La-Sr-Co-O heterostructures on silicon via template growth” Appl. Phys. Lett. 63, 3592(1993). 30. Q. Gan, R. A. Rao, and C. B. Eom, “Direct measurement of strain effects on magnetic and electrical properties of epitaxial SrRuO3 thin films” Appl. Phys. Lett.72, 978(1998). 31. M. S. Chen, T. B. Wu, and J. M. Wu, “Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films” Appl. Phys. Lett. 68, 1430(1996). 32. C. Guerrero, F. Sanchez, C. Ferrater, J. Rddan, M. V.Garcia, and M. Varela, “Pulsed laser deposition of epitaxial PbZrxTi1−xO3 ferroelectric capacitors with LaNiO3 and SrRuO3 electrodes” Appl. Surf. Sci.168, 219(2000). 33. M. S. Chen, J. M. Wu, and T. B. Wu, “Effects of (100)-Textured LaNiO3 Electrode on Crystallization and Properties of Sol-Gel-Derived Pb(Zr0.53Ti0.47)O3 Thin Films” Jpn. J. Appl. Phys. 34, 4870(1995). 34. C. M. Wu, and T. B. Wu, “Effects of LaNiO3 Conductive Buffer Layer on The Structural and Electrical Characteristics of Ba0.4Sr0.6TiO3 Thin Films Prepared by RF Magnetron Sputtering” Jpn. J. Appl. Phys. 36, 1164(1997). 35. T. F. Tseng, K. S. Lin, T. B. Wu, and I. N. Lin, “Effect of LaNiO3/Pt double layers on the characteristics of (PbxLa1 – x)(ZryTi1 – y)O3 thin films” Appl. Phys. Lett. 68, 2505 (1996). 36. A. Li, C. Ge, P. Lu, D. Wu, and S. Xiong, “Fabrication and electrical properties of sol-gel derived BaTiO3 films with metallic LaNiO3 electrode”Appl. Phys. Lett. 70, 1616 (1997). 37. K. M. Satyalaskshmi, and R. M. Mallya, “Epitaxial metallic LaNiO3 thin films grown by pulsed laser deposition” Appl. Phys. Lett. 62, 1233 (1993). 38. C. C. Yang, M. S. Chen, T. J. Hong, C. M. Wu, and T. B. Wu, “Preparation of (100)-oriented metallic LaNiO3 thin films on Si substrates by radio frequency magnetron sputtering for the growth of textured Pb(Zr0.53Ti0.47)O3” Appl. Phys. Lett. 66, 2643(1995). 39. K. V. R. Prasad, K. B. R.Varma, and A. R. Raju, “Growth and ferroelectric properties of Bi2VO5.5 thin films with metallic LaNiO3 electrodes” Appl. Phys. Lett. 63, 1898(1993). 40. P. Chen, S. Y. Xu, W. Z. Zhou, C. K. Ong, and D. F. Cui, “In situ reflection high-energy electron diffraction observation of epitaxial LaNiO3 thin films” J. Appl. Phys. 85, 3000 (1995). 41. W. B. Wu, K. H. Wong, and P. W. Chan, “Epitaxial growth of a-axis oriented YBa2Cu3O7−y/LaNiO3 heterostructures on (100) SrTiO3 by pulsed laser deposition” Physica C 297, 247(1998). 42. N. Wakiya, T. Azuma, K. Shinozaki, N. Mizutani, “Low-temperature epitaxial growth of conductive LaNiO3 thin films by RF magnetron sputtering” Thin Solid Films 410, 114 (2002). 43. R. A. Mckee, F. J. Walker, and M. F. Chisholm, “Crystalline Oxides on Silicon: The First Five Monolayers” Phys. Rev. Lett. 81, 3014(1998). 44. J. Im, O. Auciello, P. K. Baumann, S. K. treiffer, D. Y. Kaufman, and A. R. Krauss, “Composition-control of magnetron-sputter-deposited (BaxSr1–x)Ti1 + yO3 + z thin films for voltage tunable devices” Appl. Phys. Lett. 76, 625(2000). 45. B. H. Park, Y. Gim, Y. Fan, Q. X. Jia, and P. Lu, “High nonlinearity of Ba0.6Sr0.4TiO3 films heteroepitaxially grown on MgO substrates” Appl. Phys. Lett. 77, 2587(2000). 46. W. J. Kim, W. Chang, S. B. Qadri, J. M. Pond, S. W. Kirchefer, D. B. Chrisey, and J. S. Horwitz, “Microwave properties of tetragonally distorted (Ba0.5Sr0.5)TiO3 thin films” Appl. Phys. Lett. 76, 1185(2000). 47. L. A. Knauss, J. M. Pond, J. S. Horwitz, D. B. Chrisey, C. H. Mueller, and R. Treece, “The effect of annealing on the structure and dielectric properties of BaxSr1 – xTiO3 ferroelectric thin films” Appl. Phys. Lett. 69, 25 (1996). 48. W. Chang, J. S. Horwitz, A. C. Carter, J. M. Pond, S. W. Kirchefer, C. M. Gilmore, and D. B. Chrisey, “The effect of annealing on the microwave properties of Ba0.5Sr0.5TiO3 thin films” Appl. Phys. Lett. 74, 1033 (1999). 49. B. H. Park, E. J. Peterson, Q. X. Jia, J. Lee, X. Zeng, W. Si, and X. X. Xi, “Effects of very thin strain layers on dielectric properties of epitaxial Ba0.6Sr0.4TiO3 films” Appl. Phys. Lett. 78, 533 (2001). 50. K. C. Li, W. Si, P. L. Wang, Y. Xuan, B. T. Liu, and X. X. Xi, “Dielectric properties of SrTiO3 thin films grown on various perovskite electrodes by pulsed laser deposition” Mater. Sci. Eng. B 56, 218(2002). 51. D. P. Vijay, S. B. Desu, M. Nagata, X. Zhang, T. C. Chen, Mater. Rec. Soc. Symp. Proc. 361, 3(1995). 52. H. Tabata, H. Tanaka, T. Kawai, and M. Okuyama, “Strained SrTiO3/BaTiO3 Superlattices Formed by Laser Ablation Technique and Their High Dielectric Properties” Jpn. J. Appl. Phys. 34, 544(1995). 53. H. Tabata, H. Tanaka, and T. Kawai, “Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties” Appl. Phys. Lett. 65,1970(1994). 54. J. Kim, Y. Kim, Y. S. Kim, J. Lee, L. Kim, and D. Jung, “Large nonlinear dielectric properties of artificial BaTiO3/SrTiO3 superlattices” Appl. Phys. Lett. 80, 3581(2002). 55. L. Kim, D. Jung, J. Kim, Y. S. Kim, and J. Lee, “Strain manipulation in BaTiO3/SrTiO3 artificial lattice toward high dielectric constant and its nonlinearity”Appl. Phys. Lett. 82, 2118(2003). 56. Z. Wang, T. Y. asuda, S. Hatatani, and S. Oda, “Enhanced Dielectric Properties in SrTiO3/BaTiO3 Strained Superlattice Structures Prepared by Atomic-Layer Metalorganic Chemical Vapor Deposition” Jpn. J. Appl. Phys. 38, 6817(1999). 57. Z. Wang, and S. Oda, “Electrical Properties of SrTiO[sub 3 ]/BaTiO[sub 3 ] Strained Superlattice Films Prepared by Atomic Layer Metallorganic Chemical Vapor Deposition”J. Electrochem. Society 147, 4615(2000). 58. T.Tsurumi, T.Ichikawa, T.Harigai, H.Kakemoto, and S.Wada, “Dielectric and optical properties of BaTiO3/SrTiO3 and BaTiO3/BaZrO3 superlattices” J.Appl.Phys. 91, 2284 (2002). 59. J. Kim, L. Kim, D. Jung, Y. S. Kim, I. W. Kim, J. H. J, and J. Lee, “Thickness Dependent Dielectric Property of BaTiO3/SrTiO3 Artificial Lattice” Jpn. J. Appl. Phys. 42, 5901(2003). 60. G. Koebernik, W. Haessler, R. Pantou, and F. Weiss, “Thickness dependence on the dielectric properties of BaTiO3/SrTiO3-multilayers” Thin Solid Films 449, 80 (2004). 61. T. Shimuta, O. Nakagawara, T. Makino, S. Arai, H. Tabata, and T. Kawai, “Enhancement of remanent polarization in epitaxial BaTiO3/SrTiO3 superlattices with "asymmetric" structure” J. Appl. Phys. 91, 2290 (2002). 62. O. Nakagawara, T. Shimuta, T. Makino, S. Arai, H. Tabata, and T. Kawai, “Epitaxial growth and dielectric properties of (111) oriented BaTiO3/SrTiO3 superlattices by pulsed-laser deposition”Appl. Phys. Lett. 77, 3257 (2000). 63. J. B. Neaton, and K. M. Rabe, “Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices” Appl. Phys. Lett. 82, 1586 (2003). 64. F. Q. Tong, W. X. Yu, F. Liu, Y. Zuo, and X. Ge, “Microstructural study of BaTiO3/SrTiO3 superlattice” Mater. Sci. Eng. B 98, 6 (2003). 65. V. Wang, H. B. Lu, W. Z. Chen, T. Zhao, F. Chen, H. Y. Peng, S. T. Lee, and G. Z. Yang, “Morphology and microstructure of BaTiO3/SrTiO3 superlattices grown on SrTiO3 by laser molecular-beam epitaxy” Appl. Phys. Lett. 75, 3464 (1999). 66. A. Visinoiu, M. Alexe, H. N. Lee, D. N. Zakharov, A. Pignolet, D. Hesse, and U. Gosele, “Initial growth stages of epitaxial BaTiO3 films on vicinal SrTiO3 (001) substrate surfaces” J. Appl. Phys. 91, 10157 (2002). 67. H. Tabata, and T. Kawai,“Dielectric properties of strained (Sr,Ca)TiO3/(Ba,Sr)TiO3 artificial lattices” Appl. Phys. Lett. 70, 321(1997). 68. A. Shibuya, M. Noda, M. Okuyama, H. Fujisawa, and M. Shimizu, “Natural-superlattice-structured Bi4Ti3O12–SrBi4Ti4O15 ferroelectric thin films” Appl. Phys. Lett. 82, 784(2003). 69. I. Kanno, S. Hayashi, R. Takayama, and T. Hirao, “Superlattices of PbZrO3 and PbTiO3 prepared by multi-ion-beam sputtering” Appl. Phys. Lett. 68, 328 (1996). 70. A. Erbil, Y. Kim, and R. A. Gerjardt, “Giant Permittivity in Epitaxial Ferroelectric Heterostructures” Phys. Rev. Lett. 77, 1628(1996). 71. K. H. Yoo, J. H. Shin, J. H. Park, an D. H. Kang, “Stacking effects on dielectric properties of sol-gel derived Pb(Zr0.53Ti0.47)O3/PbTiO3 thin films” J. Appl. Phys. 83, 3626(1998). 72. B. D. Qu, M. Evstigneev, D. J. Johnson, and R. H. Prince, “Dielectric properties of BaTiO3/SrTiO3 multilayered thin films prepared by pulsed laser deposition” Appl. Phys. Lett. 72, 1394(1998). 73. M. H. Corbett, R. M. Bowman, and J.M. Gregg, “Enhancement of dielectric constant and associated coupling of polarization behavior in thin film relaxor superlattices” Appl. Phys. Lett. 79, 815(2001). 74. C. Wang, Q. F. Fang, Z. G. Zhu, A. Q. Jiang, S. Y. Wang, B. L. Cheng, and Z. H. Chen, “Dielectric properties of Pb(Zr20Ti80)O3/Pb(Zr80Ti20)O3 multilayered thin films prepared by rf magnetron sputtering”Appl. Phys. Lett. 82, 2880(2003). 75. D. Fuchs, M. Adam, P. Schweiss, and R. Schneider, “Dielectric tunability of coherently strained LaAlO3/SrTiO3 superlattices” J. Appl. Phys. 91, 5288(2002). 76. E. D. Specht, H. M. Christen, D. P. Norton, and L. A. Boatner, “X-Ray Diffraction Measurement of the Effect of Layer Thickness on the Ferroelectric Transition in Epitaxial KTaO3/KNbO3 Multilayers” Phys. Rev. Lett.80, 4317(1998). 77. H. M. Christen, E. D. Specht, D. P. Norton, M. F. Chisholm, and L. A. Boatner, “Long-range ferroelectric interactions in KTaO3/KNbO3 superlattice structures” Appl. Phys. Lett.72, 2535(1998). 78. H.You, R. P. Chiarello, H. K. Kim, and K. G. Vandervoort, “X-ray reflectivity and scanning-tunneling-microscope study of kinetic roughening of sputter-deposited gold films during growth” Phy. Rev. Lett. 70, 2900 (1993). 79. S. K. Sinha, E. B. Sirota, S. Garoff, H. B. Stanley, “X-ray and neutron scattering from rough surfaces” Phys. Rev. B 38, 2297(1988). 80. M. Alvisi, A. Rizzo, L. Tapfer, L. Vasanelli, “X-ray reflectivity analysis of thin TiN and TiOxNy films deposited by dual-ion-beam sputtering on (100)Si substrates” Thin Solid Films 298, 130(1997). 81. T. V. C. Rao, and M. K. Sanyal, “The effect of growth defects on the X-ray reflectivity of multilayer systems” Appl. Suf. Sci. 74, 315(1994). 82. A. Logothetidis, S. Stergioudis, and G. Patsalas, “Oxidation and structural changes in fcc TiNx thin films studied with X-ray reflectivity” Surf. Coat. Technol. 100, 295 (1998). 83. J. D. Shindler, and R. M. Suter, Rev. Sci. Instrum.63, 5343(1992). 84. L. G. Parratt, “ Surface of solids by total reflection of X-rays” Phys. Rev. 95, 359(1954). 85. D. H. Bilderback, Proc. SPIE. 315, 90(1981). 86. H. Chen , and S. M. Heald, “Concentration profiling using x-ray reflectivity: Application to Cu-Al interfaces” J. Appl. Phys. 66, 1793(1989). 87. C. A. Lucas, P. D. Hatton, S. Bates, T. W. Ryan, S. Miles, and B. K. Tanner, “Characterization of nanometer-scale epitaxial structures by grazing-incidence x-ray diffraction and specular reflectivity” J. Appl. Phys. 63, 1936(1988). 88. S. F. Yoon, P. Y. Lui, and H. Q. Zhang, “Characterization of solid source MBE-grown In0.48Ga0.52P/In0.2Ga0.8As/GaAs structures using X-ray reflectivity technique” J. Cryst. Growth. 197, 59(1999). 89. A. Gibaud, and S. Hazra, Current Sci. 78,1467(2000). 90. F. Family, and T. Vicsek, J. Phys. A 18,75(1985). 91. W. M. Tong, “Atomic force microscope study of growth kinetics: Scaling in the heteroepitaxy of CuCl on CaF2(111)” Phys. Rev. Lett. 72, 3374(1994). 92. A. L .Barabasi, and H. E. Stanely, “Fractal Concepts in Surface Growth” Chp2, 4 and 5. (Cambridge University Press, Cambridge, 1995). 93. J. Wook, S. J. Chung, W. J. Cho, T. S. Hahn, and S. S. Choi, “Thickness dependence of room temperature permittivity of polycrystalline BaTiO3 thin films by radio-frequency magnetron sputtering” J. Appl. Phys. 81, 6322 (1997). 94. N. Wang, H. B. Lu,W. Z. Chen, T. Zhao, F. Chen, H. Y. Peng, S. T. Lee, and G. Z. Yang, “Morphology and microstructure of BaTiO3/SrTiO3 superlattices grown on SrTiO3 by laser molecular-beam epitaxy” Appl. Phys. Lett. 75, 3464(1999). 95. T. Tasrumi, T. Suzuki, M. Yamane, and M. Daimon, “J Fabrication of Barium Titanate/Strontium Titanate Artificial Superlattice by Atomic Layer Epitaxy” Jpn. J. Appl. Phys. 33, 5192(1994). 96. Y. Yoneda, K. Sakaue, and H. Terauchi, “Dielectric Investigation of [(SrTiO3)6(BaTiO3)6 ]2 Multilayer Capacitor” Jpn. J. Appl. Phys. 40, 6888(2001). 97. K. Shimoyama, M. Kiyohara, K. Kubo, A. Uedono, and Y. Yamabe, “Epitaxial growth of BaTiO3/SrTiO3 structures on SrTiO3 substrate with automatic feeding of oxygen from the substrate” J. Appl. Phys. 92, 4625(2002). 98. T. Harigai, D. Tanaka, H. Kakemoto, S.Wada, and T. Tsurumi, “Dielectric properties of BaTiO3/SrTiO3 superlattices measured with interdigital electrodes and electromagnetic field analysis” J. Appl. Phys. 94, 7923(2003). 99. K. Iijima, T. Terashima, Y. Bando, K. Kamigaki, and H. Terauchi, “Atomic layer growth of oxide thin films with perovskite-type structure by reactive evaporation” J. Appl. Phys. 72, 2840(1992). 100. T. M. Shaw, A. Gupta, M. Y. Chen, P. E. Batson, R. B. Laibowitz, and B. A. Scott, “Atomic scale oxide superlattices grown by RHEED controlled pulsed laser deposition” J. Mater. Res. 9, 2566(1994). 101. A. van der Lee, “Gracing incident specular reflectivity: theory, experiment, and applications” Solid State Science 2, 257 (2000). 102. A. Takase, M. Kuribayashi, K. Ishida, K. Kimura, L. H. Kuo, T. Yakas, S. Miwa, T. Yao, H. Tomita, and S. Komiya, “Characterization of ZnSe/GaAs(001) Heteroepitaxial Interfaces by X-Ray Reflectivity Measurement” Jpn. J. Appl. Phys. 37, 3475(1998). 103. J. C. Jiang, X. Q. Pan, W. Tian, C. D. Theis and D. G. Schlom, “Abrupt PbTiO3/SrTiO3 superlattices grown by reactive molecular beam epitaxy”Appl. Phys. Lett.74, 2851(1999). 104. T. Tsurumi, T. Ichikawa, T. Harigai, H. Kakemoto and S. Wada, “Dielectric and optical properties of BaTiO3/SrTiO3 and BaTiO3/BaZrO3 superlattices” J. Appl. Phys. 91 ,4, 2284(2002). 105. H. Y. Lee, K. S. Liang, C. H. Lee and T. B. Wu, “Real-time x-ray scattering study of growth behavior of sputter deposited LaNiO3 thin films on Si sbstrates” J. Mater. Res. Vol. 15, 2606 (1997). 106. H. Y. Lee, W. D. Chang, C. H. Hsu, J. Y. Lee, J. Y. Juang, K. H. Wu, T. M. Uen and Y. S. Gou, “X-Ray scattering study of crystallization behavior in homoepitaxial growth of SrTiO3 films” Thin Solid Films 418, 163(2002). 107. H. Y. Lee and T. B. Wu, “Structural characterization of sputter-deposited LaNiO3 thin films on Si substrate by x-ray reflectivity and diffraction” J. Mater. Res. Vol. 12, 3165 (1997). 108. H. J. Shy and T. B. Wu, “Effects of Bottom Electrode on the Structural and Electrical Characteristics of Barium Titanate Thin Films” Jpn. J. Appl. Phys. 37 ,4049 (1998). 109. S. K. Sinha, E. B. Sirota, S. Garoff and H.B. Staniey, “X-ray and neutron scattering from rough surfaces” Phys. Rev. B 38, 2297 (1988). 110. S. K. Sinha, M. K. Sanyal, S. K. Satija, C. F. Majkrzak, D. A. Neumann, H. Homma, S. Szpala, A. Gibaud and H. Morkoc, “X-ray scattering studies of surface roughness of GaAs/A1As multilayers” Physica B 198, 72 (1994). 111. D. K. Bowen and B. K. Tanner, “Characterization of engineering surfaces by grazing incident x-ray reflectivity” Nanotechnology 4, 175 (1993). 112. A. van der Lee, “Gracing incident specular reflectivity: theory, experiment, and applications” Solid State Science, 2, 257 (2000). 113. C. A. Lucas, P. D.Hatton, S. Bates, T. W. Ryan, S. Miles and B. K. Tanner, “Characterization of nanometer-scale epitaxial structures by grazing-incidence x-ray diffraction and specular reflectivity” J. Appl. Phys. 63, 1936 (1988). 114. H. Chen and S. M. Heald, “Concentration profiling using x-ray reflectivity: Application to Cu-Al interfaces” J. Appl. Phys. 66, 1793 (1989). 115. M. Sugawara, M. Kondo, S. Yamazaki and K. Nakajima, “Exact determination of superlattice structures by small-angle x-ray diffraction method” Appl. Phys. Lett. 52, 742 (1988). 116. A. Visinoiu, M. Alexe, H. N. Lee, D. N. Zakharov, A. Pignolet, D. Hesse and U. Gosele., “Initial growth stages of epitaxial BaTiO3 films on vicinal SrTiO3 (001) substrate surfaces” J. Appl. Phys. 91, 10157(2002). 117. W. C. Goh, S. Y. Xu, S. J. Wang and C. K. Ong., “Microstructure and growth mode at early growth stage of laser-ablated epitaxial Pb(Zr0.52Ti0.48)O3 films on a SrTiO3 substrate” J. Appl. Phys. 89, 4497(2001). 118. N. Wakiya, K. Kuroyanagi, Y. Xuan, K. Shinozaki and N. Mizutani, “Nucleation and growth behavior of epitaxial Pb(Zr,Ti)O3/MgO(100) observed by atomic force microscopy” Thin Solid Films. 357, 166(1999). 119. S. K. Sinha, “Reflectivity using neutrons or X-rays? A critical comparison” Physica B 173, 25(1991). 120. J. Eymery, J. M. Hartmann and G. T. Baumbach, “Interface dilution and morphology of CdTe/MnTe superlattices studied by small angle X-ray scattering” J. Crystal Growth 184, 109 (1998). 121. L. He and D. Vanderbilt, “First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3” Phys. Rev. B 68, 134103 (2003). 122. K. Szot, W. Speier, R. Carius, U. Zastrow and W. Beyer, “Localized Metallic Conductivity and Self-Healing during Thermal Reduction of SrTiO3” Phys. Rev. Lett. 88, 075508 (2002). 123. D. O’Neill, R. M. Bowman and J. M. Gregg, “Dielectric enhancement and Maxwell–Wagner effects in ferroelectric superlattice structures” Appl. Phys Lett. 77, 1520 (2000). 124. P. Lunkenheimer, V. Bobnar, A. V. Pronin, A. I. Ritus, A. A. Volkov and A Loidl, “Origin of apparent colossal dielectric constants” Phys. Rev. B 66, 052105 (2002). 125. C. L. Canedy, H. Li, S. P. Alpay, L. S. Riba, A. L. Roytburd, and R. Ramesh, “Dielectric properties in heteroepitaxial Ba0.6Sr0.4TiO3 thin films: Effect of internal stresses and dislocation-type defects”Appl. Phys. Lett. 77, 1695 (2000). 126. W. J. Kim, W. Chang, S. B. Qadri, J. M. Pond, S. W. Kirchoefer, D. B. Chrisey, and J. S. Horwitz, “Microwave properties of tetragonally distorted (Ba0.5Sr0.5)TiO3 thin films” Appl. Phys. Lett. 76, 1185 (2000). 127. K. Ueda, H. Tabata, and T. Kawai, “Ferromagnetism in LaFeO3-LaCrO3 Superlattices” Science 280, 1064 (1998). 128. Z. Wang, T. Yasuda, S. Hatatani, and S. Oda, “Enhanced Dielectric Properties in SrTiO3/BaTiO3 Strained Superlattice Structures Prepared by Atomic-Layer Metalorganic Chemical Vapor Deposition” Jpn. J. Appl. Phys. 38, 6817 (1999). 129. H. J. Shy and T. B. Wu, “Effects of Bottom Electrode on the Structural and Electrical Characteristics of Barium Titanate Thin Films” Jpn. J. Appl. Phys. 37, 4049 (1998). 130. C. M. Wu and T. B. Wu, “Low temperature deposition of Ba0.4Sr0.6TiO3 thin films on LaNiO3-buffered electrode by rf magnetron sputtering” Mater. Lett. 33, 97 (1997). 131. O. I. Lebedev, J. F. Hamet, G. Van Tendeloo, V. Beaumont and B. Raveau, “Structure and properties of the YBa2Cu3O7–x/LaAlO3 superlattices” J. Appl. Phys. 90, 5261 (2001). 132. W. Matthews, and A. E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations” J. Cryst. Growth, 27, 118 (1974). 133. C. R. Li, B. K. Tanner, D. E. Ashenford, J. H. C. Hogg, and B. Lunn, “High resolution x-ray diffraction and scattering measurement of the interfacial structure of ZnTe/GaSb epilayers” J. Appl. Phys. 82, 2281 (1997). 134. J. S. Speck, A. Seifert, W. Pompe, and R. Ramesh, “Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. II. Experimental verification and implications” J. Appl. Phys. 76, 477 (1994). 135. J. S. Wu, C. L. Jia, K. Urban, J. H. Hao, and X. X. Xi, “Microstructure and misfit relaxation in SrTiO3/SrRuO3 bilayer films on LaAlO3(100) substrates” J. Mater. Res. 16, 3443 (2001). 136. P. R. Berger, K. Chang, P. Bhattacharya, and J. Singh, “Role of strain and growth conditions on the growth front profile of InxGa1–xAs on GaAs during the pseudomorphic growth regime” Appl. Phys. Lett. 53, 684 (1988). 137. D. Rose, U. Pietsch, A. Forster, and H.Metzger, “Depth resolved investigation of the relaxation behaviour in strained GaInAs/GaAs superlattices” Physica B, 198, 256 (1994). 138. H. H. Lee, M. S. Yi, H. W. Jang, Y.-T. Moon, S.-J. Park, O. Y. Noh, M. Tang, and K. S. Liang, “Determination of absolute indium content in InGaN/GaN multiple quantum wells using anomalous x-ray scattering” Appl. Phys. Lett. 81, 5120 (2002). 139. S. D. Wang, “Energy of an array of dislocations in a strained epitaxial layer deposited on a finite substrate” J. Appl. Phys. 88, 7089 (2000). 140. L. S.-J. Peng, X. X. Xi, B. H. Moeckly, and S. P. Alpay, “Strain relaxation during in situ growth of SrTiO3 thin films” Appl. Phys. Lett. 83, 4592 (2003). 141. Y. Yoneda, T. Okabe, K. K. Sakaue, H. Terauchi, and K. Deguchi, “Structural characterization of BaTiO3 thin films grown by molecular beam epitaxy” J. Appl. Phys. 83, 2458 (1998). 142. Y. Yano, K. Iijima, Y. Daitoh, Y. Bando, Y. Watanabe, H. Kasatani, and H. Tarauchi, “Epitaxial growth and dielectric properties of BaTiO3 films on Pt electrodes by reactive evaporation” J. Appl. Phys. 76, 7833 (1994). 143. S. K. Streiffer, C.Basceri, C.B. Parker, S.E.Lash, and A.I. Kingon, “Ferroelectricity in thin films: The dielectric response of fiber-textured (BaxSr1–x)Ti1+yO3+z thin films grown by chemical vapor deposition” J. Appl. Phys. 86, 4565 (1999). 144. S. Hyun, and K. Char, “Effects of strain on the dielectric properties of tunable dielectric SrTiO3 thin films”Appl. Phys Lett. 79, 254 (2001). 145. A.R. James, and X. X. Xi, “Effects of buffer layer thickness and strain on the dielectric properties of epitaxial SrTiO3 thin films” J. Appl. Phys. 92, 6149 (2002). 146. G. Catalan, D. O’Neill, and J. M. Gregg, “Relaxor features in ferroelectric superlattices: A Maxwell–Wagner approach” Appl. Phys Lett. 77, 3078 (2000). 147. J.C. Shin, J. Park, C.S. Hwang, and H.J. Kim, “Dielectric and electrical properties of sputter grown (Ba,Sr)TiO3 thin films” J. Appl. Phys. 86, 506 (1999). 148. C. Basceri, S.K. Streiffer, A.I. Kingon and R. Waser, “The dielectric response as a function of temperature and film thickness of fiber-textured (Ba,Sr)TiO3 thin films grown by chemical vapor deposition” J. Appl. Phys. 82, 2497 (1997). 149. Y. C. Liang, T. B. Wu, H. Y. Lee, and Y. W. Hsieh, “Structural characteristics of epitaxial BaTiO3/LaNiO3 superlattice” J. Appl. Phys. 96, 584 (2004). 150. R. Grey, J. P. R. Dsvid, P. A. Claxton, F. Gonzalez Sanz, and J. Woodhead, “Relaxation of strain within multilayer InGaAs/GaAs pseudomorphic structures” J. Appl. Phys. 66, 975 (1989). 151. P. L. Gourley, I. J. Fritz, and L. R. Dawson, “Controversy of critical layer thickness for InGaAs/GaAs strained-layer epitaxy” Appl. Phys. Lett. 52, 377(1988). 152. M. Hovinen, A. Salokatve, and H. Asonen, “Properties of strained In0.2Ga0.8As/GaAs superlattices with various barrier thicknesses” J. Appl. Phys. 69, 3378(1991). 153. U. Pietsch, H. Metzger, S. Rugel, B. Jenichen, and I. K. Robinson, “Depth-resolved measurement of lattice relaxation in Ga1–xInxAs/GaAs strained layer superlattices by means of grazing-incidence x-ray diffraction” J. Appl. Phys. 74, 2381(1993). 154. G. L. Price, “Growth of highly strained InGaAs on GaAs” Appl. Phys. Lett. 53, 1288(1988). 155. I. J. Fritz, P. L. Gourley, and L. R. Dawson, “Critical layer thickness in In0.2Ga0.8As/GaAs single strained quantum well structures” Appl. Phys. Lett. 51, 1004(1987). 156. P. J. Orders, and B. Usher, “Determination of critical layer thickness in InxGa1–xAs/GaAs heterostructures by x-ray diffraction” Appl. Phys. Lett. 50, 980(1987). 157. U. Zimmermann, J.-P. Schlomka, M. Tolan, J. Stettner, W. Press, M. Hacke, and S. Mantl, “X-ray characterization of buried allotaxially grown CoSi2 layers in Si(100)” J. Appl. Phys. 83, 5823(1998). 158. T. S. Kang, and J. H. Je, “Real-time x-ray scattering study on the thermal evolution of interface roughness in CoSi2 formation” Appl. Phys. Lett. 80, 1361(2002). 159. J. H. Je, D.Y. Noh, H. K. Kim, and K. S. Liang, “Preferred orientation of TiN films studied by a real time synchrotron x-ray scattering” J. Appl. Phys. 81, 6126(1997). 160. G. B. Stephenson, J. A. Eastman, O. Auciello, A. Munkholm, C.Thompson, P. H. Fuoss, P. Fini, S. P. DenBaars, and J. S. Speck, MRS Bulletin, 24,21 (1999). 161. E. J. Tarsa, E. A. Hachfeld, F. T. Quinlan, J. S. Specka,and M. Eddy, “Raman spectroscopic study on the wirelike incorporation of Si dopant atoms on GaAs(001) vicinal surfaces” Appl. Phys. Lett. 64, 490 (1996). 162. H. Kano, K. Kagawa, A. Suzuki, A. Okabe, K. Hayashi, and K. Aso, “Substrate temperature effect on giant magnetoresistance of sputtered Co/Cu multilayers” Appl. Phys. Lett. 63, 2839 (1993). 163. N. K. Flevaris, D. Baral, J. E. Hilliard, and J. B. Ketterson, “A note on compositionally modulated Cu-Ni films with lattice-commensurate wavelengths” Appl. Phys. Lett. 38, 992(1981). 164. M. A. G. Halliwell, “X-ray diffraction solutions to heteroepitaxial growth problems” J. Cryst. Growth, 170, 47(1997). 165. D. Y. Noh, Y. Hwu, H. K. Kim, and M. Hong, “X-ray-scattering studies of the interfacial structure of Au/GaAs” Phys. Rev. B 51,4441(1995). 166. T. Terashima, Y. Bando, K. Ijima, K.Yamamoto, K. Hirata, K. Hayashi, K. Kamigaki, and H. Terauchi, “Reflection high-energy electron diffraction oscillations during epitaxial growth of high-temperature superconducting oxides” Phys. Rev. Lett. 65,2684(1990). 167. E. E. Fullerton, D. M. Kelly, J. Guimpel, and I. Schuller, “Roughness and giant magnetoresistance in Fe/Cr superlattices” Phys. Rev. Lett. 68, 859(1992). 168. E. E. Fullerton, J. Pearsion, C. H. Sowers, and S. D. Bader, “Interfacial roughness of sputtered multilayers: Nb/Si” Phys. Rev. B 48,17432(1993). 169. D. J. Eaglesham, and M. Cerullo, “Dislocation-free Stranski-Krastanow growth of Ge on Si(100)” Phys. Rev. Lett. 64,1943(1990). 170. A. Sakai, and T. Tatsumi, “Defect-mediated island formation in Stranski-Krastanov growth of Ge on Si(001)” Phys. Rev. Lett. 71, 4007(1993). 171. Y. H. Xie, G. H. Gilmer, C. Roland, P. J. Silverman, S. K. Buratto, J. Y. Cheng, E. A. Fitzgerald, A. R. Kortan, S. Schuppler, M. A. Marcus, and P. H. Citrin, “Semiconductor Surface Roughness: Dependence on Sign and Magnitude of Bulk Strain” Phys. Rev. Lett. 73,3006(1994). 172. J. Y. Tsao, B. W. Dodson, S. T. Picraux, and D. M. Cornelison, “Critical Stresses for SixGe1-x Strained-Layer Plasticity” Phys. Rev. Lett. 59, 2455(1987). 173. B. W. Dodson, and J. Y. Tsao, “Relaxation of strained-layer semiconductor structures via plastic flow” Appl. Phys. Lett. 51, 1325(1987). 174. I. J. Fritz, “Role of experimental resolution in measurements of critical layer thickness for strained-layer epitaxy” Appl. Phys. Lett. 51, 1080(1987). 175. G. H. Lee, B. C. Shin, and I. S. Kim, “Critical thickness of BaTiO3 film on SrTiO3 (001) evaluated by reflection high-energy electron diffraction” Mater. Lett. 50, 134(2001). 176. H. Yan, “Kinetic growth with surface diffusion: The scaling aspect” Phys. Rev. Lett. 68, 3048 (1992). 177. F. Family, “Dynamic scaling and phase transitions in interface growth” Physica A 168, 561 (1990). 178. Y. L. He, N. H. Yang, T. M. Lu, and G. C. Wang, “Measurements of dynamic scaling from epitaxial growth front: Fe film on Fe(001)” Phys. Rev. Lett. 69, 3770 (1992). 179. H. You, R. P. Chiarello, H. K. Kim, and K. G. Vandervoort, “X-ray reflectivity and scanning-tunneling-microscope study of kinetic roughening of sputter-deposited gold films during growth” Phys. Rev. Lett. 70, 2900 (1993). 180. E. J. Ernst, F. Fabre, R. Folkerts, and J. Lapujoulade, “Observation of a growth instability during low temperature molecular beam epitaxy” Phys. Rev. Lett. 72, 112 (1994). 181. J. Krug, M. Plischke, and M. Siegert, “Surface diffusion currents and the universality classes of growth” Phys. Rev. Lett. 70, 3271 (1993). 182. A. Paul, and G. S. Lodha, “Interface roughness correlation due to changing layer period in Pt/C multilayers” Phys. Rev. B 65, 245416 (2002). 183. D. Y. Noh, Y. Hwu, H. K. Kim, and M. Hong, “X-ray-scattering studies of the interfacial structure of Au/GaAs” Phys. Rev. B 51, 4441 (1995). 184. H. P. Sun, W. Tian, X. Q. Pan, J. H. Haeni, and D. G. Schlom, “Evolution of dislocation arrays in epitaxial BaTiO3 thin films grown on (100) SrTiO3” Appl. Phys. Lett. 84, 3298(2004). 185. J. W. Matthews, “Defects associated with the accommodation of misfit between crystals” J. Vac. Sci.Technol. 12,126(1975). 186. B. P. Rodriguez, and J. M. Millunchick, “The role of morphology in the relaxation of strain in InGaAs/GaAs” J. Cryst. Growth, 264, 64(2004). 187. T. Hasegawa, M. Kohno, S. Hosaka, and S. Hosoki, “Dynamic observation of Si crystal growth on a Si(111)7 x 7 surface by high-temperature scanning tunneling microscopy” Phys. Rev. B 48, 1943 (1993). 188. I. J. Lee, J. W. Kim, T. B. Hur, Y. H. Hwang, and H. K. Kim, “Synchrotron x-ray scattering study on the evolution of surface morphology of the InN/Al2O3(0001) system” Appl. Phys. Lett. 81, 475(2002). 189. H. J. Kim, D. Y. Doh, J. H. Je, and Y. Hwu, “Evolution of surface morphology during Fe/Si(111) and Fe/Si(001) heteroepitaxy” Phys. Rev. B 59, 4650 (1999). 190. Z. J. Liu, Y. G. Shen, L. P. He, and T. Fu, “Surface evolution and dynamic scaling of sputter-deposited Al thin films on Ti(1 0 0) substrates” Appl. Surf. Sci. 226, 371(2004). 191. R. L. Schwoebel, “Step Motion on Crystal Surfaces. II” J. Appl. Phys. 40, 614 (1969). 192. M. Siegert, and M. Plischke, “Slope Selection and Coarsening in Molecular Beam Epitaxy” Phys. Rev. Lett. 73, 1517(1994). 193. I. K. Zuo, J. F. Wendelken, and J. Lapujoulade, “Evolution of Mound Morphology in Reversible Homoepitaxy on Cu(100)” Phys. Rev. Lett. 78, 2791(1997). 194. Z. H. Ming, S. Huang, Y. L.Soo, Y. H. Kao, T. Carns, and K. L.Wang, “Interfacial roughness scaling and strain in lattice mismatched Si0.4Ge0.6 thin films on Si” Appl. Phys. Lett. 67, 629(1995). 195. M. Kardar, G. Parisi, and Y. Zhang, “Dynamic Scaling of Growing Interfaces” Phys. Rev. Lett. 56, 889(1986). 196. J. Cherrier, V. L. Thanh, R. Buys, and J. Derrien, Europhys. Lett. 16, 737(1991). 197. S. D. Sarma, and P. Tamborenea, “A new universality class for kinetic growth: One-dimensional molecular-beam epitaxy” Phys. Rev. Lett. 66, 325(1991). 198. J. M. Freitag, and B. M. Clemens, “Nonspecular x-ray reflectivity study of roughness scaling in Si/Mo multilayers” J. Appl. Phys. 89, 1101 (2001). 199. D. E. Savage, N. Schimke, Y. H.Phang, and M. G.Lagally, “Interfacial roughness correlation in multilayer films: Influence of total film and individual layer thicknesses” J. Appl. Phys. 71, 3283 (1992). 200. P. Houdy, P. Boher, C. Schiller, P. Luzeau, R. Barchewitz, N. Alehyane, and M. Quahabi, Proc. SPIE 984, 95(1988). 201. A. Ballestad, B. J. Ruck, M. Admcyk, T. Pinnimgton, T. Tiejie, “Evidence from the Surface Morphology for Nonlinear Growth of Epitaxial GaAs Films” Phys. Rev. Lett. 86, 2377 (2001). 202. M. F. Gyure, J. J. Zinck, C. Ratsch, D. D. Vvedensky, “Unstable Growth on Rough Surfaces” Phys. Rev. Lett. 81, 4931 (1998).id NH0925159005 sid 897501 cfn 0 / id NH0925159006 auc 賴識翔 tic 奈米碳化合物之合成、結構鑑定與其電子場發射及低介電常數性質之研究 adc 施漢章 ty 博士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 英文 pg 119 kwc 奈米碳化物 kwc 電子場發射 kwc 低介電常數 kwc 電子迴旋共振化學氣相沈積 kwc 鋁陽極膜 abc 本論文主要是以電子迴旋共振電漿輔助化學氣相沉積 (ECR- tc 摘要………………………………………………………………………i Abstract………………………………………………………………….iii Contents…………………………………………………………………..v Table Lists……………………………………………………………...viii Figure Captions………………………………………………………….ix Chapter 1 - Background Review 1.1. Introduction to carbon element………………………………………1 1.2. Forms of carbon……………………………………………………...3 1.2.1. Ideal Graphite……………………………..………………….3 1.2.2. Graphite Whiskers……………………….……………...……3 1.2.3. Carbon Fiber…….……………………………………………6 1.2.4. Carbon Blacks and Carbon Onions………………………..…8 1.2.5. Diamond………………………………………………….....10 1.2.6. Amorphous Carbon…………………………………………10 References…………………………………………………..……..12 Chapter 2 - Literature Review 2.1. Introduction to Carbon Nanostructures…………………………….13 2.1.1. Structure of Carbon Nanotubes……………………………..13 2.1.2. Synthesis processes of Carbon Nanotubes………………….18 2.1.3. Fluorination of carbon nanotubes…………………………..19 2.1.4. Field emission phenomenon………………………………...21 2.2. Introduction to low dielectric constant materials…………………..24 References…………………………………………………………26 Chapter 3 - Experimental and Characterization 3.1. Deposition System – ECRCVD…………………………………….31 3.2. Characterization…………………………………………………….36 3.2.1. Optical Emission Spectroscopy (OES)……………………...36 3.2.2. Atomic Force Microscope (AFM)…………………………..37 3.2.3. Field Emission Scanning Electron Microscopy (FESEM)….37 3.2.4. High-resolution Transmission Electron Microscopy (TEM)..37 3.2.5. Raman Spectroscopy………………………………………..38 3.2.6. Fourier Transform Infrared Spectroscopy (FTIR)…………..38 3.2.7. X-ray Photoelectron Spectroscopy (XPS)…………………..39 3.2.8. Electron Field Emission Measurement…..………………….39 3.2.9. Capacitance-Voltage Characteristics………………………..40 References…………………………………………………………40 Chapter 4 - Results and Discussion 4.1. Synthesis of the template – Anodic alumina……………………….41 References…………………………………………………………45 4.2. Bonding configuration of Carbon Nitride Nanotubes…………..…46 References…………………………………………………………61 4.3. Electron field emission from fluorinated amorphous carbon nano- particles on porous alumina ………………………………………63 References…………………………………………………………75 4.4. Bonding configurations and electron field emission properties of fluorinated carbon nanowires…………………………………..77 References…………………………………………………………89 4.5. Electron field emission from various morphologies of fluorinated amorphous carbon nanostructures…………………………………91 References………………………………………………………..103 4.6. Nitrogen doped a-C:F films for the use as low-dielectric-constant interlayer dielectrics……………………………….……………..105 References……………………….………………….……………118 Chapter 5. Summary…………………………………………………...119 Publications……………………………………………………………120 Vita…………………………………………………………………….126rf Ch.1 1. J. E. Field, in Properties of Diamond, Field, Ed. Academic Press, London, 281 (1979). 2. Thomas W. Ebbesen, Carbon nanotubes: preparation and properties (1997). 3. F. Banhart, T. F?刜ler, Ph. Redlich and P.M. Ajayan, Chem. Phys. Lett. 269, 349 (1997). Ch.2 1. H. W. Kroto, J. R. Heath, S. C. OBrien, R. F. Curl, and R. E. Smalley, Nature (London) 318, 162 (1985). 2. S. Iijima, Nature (London) 354, 56 (1991). 3. D. Qian, E. C. Dickey, Appl. Phys. Lett. 76, 2868 (2000). 4. O. Zhou, R. M. Fleming, D. W. Murphy, C. T. Chen, R. C. Haddon, A. P. Ramirez, S. H. Glarum, Science, 263, 1744 (1994). 5. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben, Nature, 386, 377 (1997). 6. J. Kong, N R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, Science, 287, 622 (2000). 7. W. A. de Heer, A. Chatelaine, D. Ugarte, Science 270, 1179 (1995). 8. K. A. Dean, B. R. Chalamala, Appl. Phys. Lett. 75, 3017 (1999). 9. S. M. Lee, Y. H. Lee, Appl. Phys. Lett. 76, 2877 (2000). 10. M. Bockrath, D. H. Cobden, P. L. Mceuen, N. G. Chopra, A. Zettle, Science, 275, 1992 (1997). 11. S. J. Trans, A. R. M. Verschueuren, C. Dekker, Nature, 393, 49 (1998). 12. A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Science 294, 1317 (2001). 13. H. Dai, N. Franklin, J. Han, Appl. Phys. Lett. 73, 1508 (1998). 14. R. H. Baughman, A. A. Zakhidov, W. A. de Hee, Science, 297, 787 (2002). 15. T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, Nature, 391, 62 (1998). 16. J. W. G. Wild?仨r, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature, 391, 59 (1998). 17. E. Bekyarova, K. Kaneko, M. Yudasaka, K. Murata , D. Kasuya, S. Iijima, Adv. Mater. 14, 973 (2002). 18. T. W. Ebbesen, P. M. Ajayan, Nature, 358, 200 (1996). 19. S. Seraphin, D. Zhou, Appl. Phys. Lett. 64, 2087, (1994). 20. A. Thess, R. Lee, P. Nikoleav, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Science, 273, 433 (1998). 21. T. Guo, P. Nikoleav, A. Thess, D. T. Colbert, R.E. Smalley, Chem. Phys. Lett. 243, 49, (1995). 22. Y. C. Choi, Y. M. Shin, Y. H. Lee, B. S. Lee, Appl. Phys. Lett., 76, 2367 (2000). 23. Y. C. Choi, D. J. Bae, Y. H. Lee, B. S. Lee, J. Vac. Sci. Technol. A. 18, 1864 (2000). 24. A. Thess, R. Lee, P. Nikoleav, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Science, 273, 433 (1998). 25. S. S. Wong, E. Joselevich, A. T. Wooley, C. L. Cheung, and C. M. Lieber, Nature (London) 394, 52 (1998). 26. J. Liu, A. G. Rinzler, H. Dai, J. Hafner, R. K. Bradley, P. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, and R. E. Smalley, Science 280, 1253 (1998). 27. E. T. Mickelson, C. B. Huffman, A. G. Rinzler, R. E. Smalley, R. H. Hauge, and J. L. Margrave, Chem. Phys. Lett. 296, 188 (1998). 28. E. T. Mickelson, I. W. Chiang, J. L. Zimmerman, P. J. Boul, J. Lozano, J. Liu, R. E. Smalley, R. H. Hauge, and J. L. Margrave, J. Phys. Chem. B 103, 4318 (1999). 29. K. N. Kudin, H. F. Bettinger, and G. E. Scuseria, Phys. Rev. B 63, 045413 (2001) 30. G. Seifert, T. kohler, and T. Frauenheim, Appl. Phys. Lett 77, 1313 (2000). 31. K. F. Kelly, I. W. Chiang, E. T. Mickelson, R. H. Hauge, J. L. Margrave, X. Wang, G. E. Scuseria, C. Radloff, and N. J. Halas, Chem. Phys. Lett. 313, 445 (1999). 32. K. H. An, J. G. Heo, K. G. Jeon, D. J. Bae, C. Jo, C. W. Yang, C. Y. Park, and Y. H. Lee, Appl. Phys. Lett. 80, 4235 (2002). 33. D. Temple, Mater. Sci. Engin. R24, 185 (1999). 34. R. H. Fowler and L. Nordheim, Proc. R. Soc. (London), A119, 173 (1928). 35. A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, R. E. Smalley, Science 269, 1550 (1995). 36. T. Homma, R. Yamaguchi, Y. Murao, J. Electrochem. Soc. 140, 687 (1993). 37. T. Usami, K. Shimokawa, M. Yoshimoru, Jpn, J. Appl. Phys. 33, 408 (1994). 38. P. R. Resnick, Polymer, 31, 312 (1990). 39. A. E. Fering, B. C. Auman, and E. R. Wonchoba, Macromolecules 26, 2779 (1993). 40. S. F. Hahn, S. J. Martin, M. L. Mckelvy, and D. W. Partick, Macromolecules 26, 3870 (1993). 41. J. A. Theil, J. Vac. Sci. Technol. B. 17, 2397 (1999). 42. W. W. Lee, P. S. Ho, Mater. Res. Soc. Bull. 10, 19 (1997). 43. H.Yokomichi, T. Hayashi, A. Masuda, Appl. Phys. Lett. 72, 2704 (1998). 44. K. Endo, T. Tatsumi, Jpn. J. Appl. Phys. 36, L1531 (1997). 45. K. Endo, T. Tatsumi, J. Appl. Phys. 78, 1370 (1995). 46. K. Endo, T. Tatsumi, Appl. Phys. Lett. 68, 3656 (1996). 47. H. Yang, D. J. Tweet, Y. Ma, T. Nguyen, Appl. Phys. Lett. 73, 1514 (1998). 48. K. Endo, K. Shinoda, T. Tatsumi, J. Appl. Phys. 86, 2739 (1999). Ch.3 1. C.D. Wagner, L.E. Davis, M.V. Zeller, J.A. Taylor, R.H. Raymond, L.H. Gale, Surf. Interface Anal. 3, 211 (1981). Ch. 4-1 1. F. Keller, M. S. Hunter, and D. L. Robinson, J. Electrochem. Soc., 100, 411 (1953). 2. R. J. Tonucci, B. L. Justus, A. J. Campillo, and C. E. Ford, Science 258, 783 (1992). 3. T. W. Whitney, J. S. Jiang, P. C. Searson, and C. L. Chien, Science 261, 1316 (1993). 4. C. A. Huber, T. E. Huber, M. Sadoqi, J. A. Lubin, S. Manalis, C. B. Prater, Science 263, 800 (1994). 5. J. Li, P. C. papadopoulos, J. Xu, Nature 402, 253 (1999). 6. O. Jessensky, F. M?刜ler, and U. G?宄ele, Appl. Phys. Lett. 72, 1173 (1998). Ch. 4-2 1. C.D. Wagner, L.E. Davis, M.V. Zeller, J.A. Taylor, R.H. Raymond, L.H. Gale, Surf. Interface Anal. 3, 211 (1981). 2. J. S. Suh and J. S. Lee, Appl. Phys. Lett. 75, 2047 (1999). 3. S. L. Sung, S.H. Tsai, C. H. Tseng, F. K. Chiang, X. W. Liu, and H.C. Shih, Appl. Phys. Lett. 74, 197 (1999). 4. S. Iijima, Nature (London) 354, 56 (1991). 5. S.H. Tsai, F.K. Chiang, T.G. Tsai, F.S. Shieu, H.C. Shih, Thin Solid Films 366, 11 (2000). 6. S. L. Sung, S.H. Tsai, X. W. Liu, and H.C. Shih, J. Mater. Res. 15, 502 (2000). 7. J. H. Kaufman, S. Metin, and D. D. Saperstein, Phys. Rev. B 39, 13053 (1989). 8. D. L. Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic, Boston, 1991). 9. A. Heilmann, P. Jutzi, A. Klipp, U. Kreibig, R. Neuendorf, T. Sawitowski, and G. Schmid, Adv. Mater. 10, 398 (1998). 10. D. Marton, K.J. Boyd, A.H. Al-Bayati, S.S. Todorov, J.W. Rabalais, Phys. Rev. B 73, 118 (1994). 11. G. Zhang, W. Duan, G. Zhou, and B. Gu, Solid Communications 122, 121 (2002). 12. M. Barber, J.A. Connor, M.F. Guest, I.H. Hillier, M. Schwarz, M. Stacey, J. Chem. Soc. Faraday Trans. II 69, 551 (1973). 13. U. Gelius, R.F. Heden, J. Hedman, B.J. Lindberg, R. Manne, R. Nordberg, R. Nordling, K. Siegbahn, Phys. Scr. 2, 70 (1970). 14. J. Casanovas, J. M. Ricart, J. Rubio, F. Illas, J. M. Jimenez-Mateos, J. Am. Chem. Soc. 118, 8071 (1996). 15. F. Tuinstra and J. L. Koenig, J. Chem. Phys. 53, 1126 (1970). 16. R. J. Nemanich and S. A. Solin, Phys. Rev. B 20, 392 (1979). Ch. 4-3 1. S.H. Tsai, F.K. Chiang, T.G. Tsai, F.S. Shieu, H.C. Shih, Thin Solid Films 366, 11 (2000). 2. X. W. Liu, S. H. Tsai, L. H. Lee, M. X. Yang, A. C. M. Yang, I . N. Lin and H. C. Shih, J. Vac. Sci. Technol B 18, 1840 (2000). 3. F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126 (1970). 4. D.S. Knight, W.B. White, J. Mater. Res. 4, 385 (1989). 5. G. A. J. Amaratunga and S. R. P. Silva, Appl. Phys. Lett. 68, 2529 (1996). 6. S. R. P. Silva, G. A. J. Amaratunga and J. R. Barnes , Appl. Phys. Lett. 71, 1477 (1997). 7. P. G. Collins and A. Zettl, Appl. Phys. Lett. 69, 1969 (1996). 8. X. Xu, and G. R. Brandes, Appl. Phys. Lett. 74, 2549 (1999). 9. J. Yu, E. G. Wang, X. D. Bai, Appl. Phys. Lett. 78, 2226 (2001). 10. S. R. P. Silva and G. A. J. Amaratunga, Thin Solid Films 270, 194 (1995). 11. S. Han and J. Ihm, Phy. Rev. B 61, 9986 (2000). 12. J. Robertson, Proc. IVMC’98 (1998), p.162. 13. W. Schwarzenbach, G. Cunge, J. P. Booth, J. Appl. Phys. 85, 7562 (1999). 14. K.Teii, M. Hori, T. Goto, N. Ishii, J. Vac. Sci. Technol A 18, 1 (2000). Ch. 4-4 1. S.H. Tsai, F.K. Chiang, T.G. Tsai, F.S. Shieu, H.C. Shih, Thin Solid Films 366, 11 (2000). 2. X. W. Liu, S. H. Tsai, L. H. Lee, M. X. Yang, ACM Yang, I. N. Lin, H. C. Shih, J. Vac. Sci. Technol. B 18, 1840 (2000). 3. S. L. Sung, S.H. Tsai, C. H. Tseng, F. K. Chiang, X. W. Liu, and H.C. Shih, Appl. Phys. Lett. 74, 197 (1999). 4. C.D. Wagner, L.E. Davis, M.V. Zeller, J.A. Taylor, R.H. Raymond, L.H. Gale, Surf. Interface Anal. 3, 211 (1981). 5. S. Han and J. Ihm, Phy. Rev. B 61, 9986 (2000). 6. W. Schwarzenbach, G. Cunge, J. P. Booth, J. Appl. Phys. 85, 7562 (1999). 7. K.Teii, M. Hori, T. Goto, N. Ishii, J. Vac. Sci. Technol A 18, 1 (2000). Ch. 4-5 1. S.H. Tsai, F.K. Chiang, T.G. Tsai, F.S. Shieu, and H.C. Shih, Thin Solid Films 366, 11 (2000). 2. S. L. Sung, S.H. Tsai, C. H. Tseng, F. K. Chiang, X. W. Liu, and H.C. Shih, Appl. Phys. Lett. 74, 197 (1999). 3. S. H. Lai, K. P. Huang, Y. M. Pan, Y. L. Chen , L. H. Chan, P. Lin and H. C. Shih, Chem. Phys. Lett. 382, 567 (2003). 4. J. S. Suh, K. S. Jeong, J. S. Lee, and I. Han, Appl. Phys. Lett., 80, 2392 (2002). 5. D. N. Davydov, P. A. sattari, D. Almawlawi, A. Osika, T. L. Haslett, and M. Moskovits, J. Appl. Phys. 86, 3983 (1999). 6. R. H. Fowler and L. Nordheim, Proc. R. Soc. (London), A119, 173 (1928). 7. O. M. K?厎tel, O. Groening, C. Emmenegger, L. Schlaobach, Appl. Phys. Lett. 73, 2113 (1998). 8. C. T. Hsieh, J. M. Chen, H. H. Lin and H. C. Shih, Appl. Phys. Lett., 83, 3383 (2003). 9. L. H. Chan, K. H. Hong, D. Q. Xiao, W. J. Hsieh, S. H. Lai, H. C. Shih, T. C. Lin, F. S. Shieu, K. J. Chen and H. C. Cheng, Appl. Phys. Lett., 82, 4334 (2003). 10. J.-M. Bonard, J.-P. Salvetat, T. St?丱kli, L. Forr??, and A. Ch?繑elain, Appl. Phys. A 69, 245 (1999). 11. Y. C. Choi, Y. M. Shin, D. J. Bae, S. C. Lim, Y. H. Lee, and B. S. Lee, Diamond Relat. Mater. 10, 1457 (2001). 12. M. Sveningsson, R. E. Morjan, O. A. Nerushev, Y. Sato, J. B?鬣kstr?卌, E. E. B. Campbell and F. Rohmund, Appl. Phys. A 73, 409 (2001). 13. S. Dimitrijevic, J. C. Withers, V. P. Mammana, O. R. Monteiro, J. W. Ager, and I. G. Brown, Appl. Phys. Lett. 75, 2680 (1999). 14. J.-M. Bonard, J.-P. Salvetat, T. Stochli, W. A. de Heer, L. Forro, and A. Chatelain, Appl. Phys. Lett. 73, 918 (1998). 15. P. G. Collins and A. Zettl, Phys. Rev. B 55, 9391 (1997). 16. K. A. Dean, B. R. Chalamala, Appl. Phys. Lett. 76, 375 (2000). 17. K. Hata, A. Takakura, and Y. Saito, Surf. Sci. 490, 296 (2001). 18. C. Kim, Y. S. Choi, S. M. Lee, J. T. Park, B. Kim, and Y. H. Lee, J. Am. Chem. Soc. 124, 9906 (2002). 19. S. C. Lim, Y. C. Choi, H. J. Jeong, Y. M. Shin, H. H. An, D. J. Bae, Y. H. Lee, and N. S. Lee, J. M. Kim, Adv. Mater. 13, 1563 (2001). 20. S. Han and J. Ihm, Phy. Rev. B 61, 9986 (2000). Ch. 4-6 1. S. H. Tsai, F. K. Chiang, T. G. Tsai, F. S. Shieu, H. C. Shih, Thin Solid Films 366, 11 (2000). 2. X. W. Liu, S. H. Tsai, L. H. Lee, M. X. Yang, A. C. M. Yang, I. N. Lin, H. C. Shih, J Vac Sci Technol B 18, 1840 (2000). 3. X. W. Liu, J. H. Lin, W. J. Jong, H. C. Shih, Thin Solid Films 409, 178 (2002). 4. H. Yokomichi, A. Masuda, J Non-Cryst Solids 271,147 (2000). 5. F. L. Freire Jr., J Non-Cryst Solids 304, 251 (2002). 6. K. Endo, T. Tatsumi, Appl Phys Lett 68, 3656 (1996).id NH0925159006 sid 897502 cfn 0 / id NH0925159007 auc 楊姍意 tic 奈米氧化層巨磁阻自旋閥中正交耦合效應之性質研究 adc 賴志煌 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 94 kwc 奈米氧化層 kwc 自旋閥 kwc 正交耦合 kwc 磁記錄 abc 巨磁阻薄膜因其在記憶儲存設備上的應用,近來已被廣泛的研究。本篇論文主要著重於當引入奈米氧化層於巨磁阻薄膜結構時,因著氧化層之介入,對於磁性膜層間之耦合作用力與自旋傳輸現象之影響。 tc 目錄 第一章 簡介 第二章 理論基礎與文獻回顧 第三章 實驗方法及分析儀器 第四章 實驗結果與討論 第五章 結論 第一章 簡介 1.1 前言……………………………………………………………………………1 1.2 磁阻元件之演進………………………………………………………………2 1.3 巨磁阻效應……………………………………………………………………5 1.4 自旋閥簡介及應用……………………………………………………………7 1.4.1 自旋閥之簡介…………………………………………………………………7 1.4.2 自旋閥之應用…………………………………………………………………8 1.5 奈米氧化層在自旋閥中的應用………………………………………………9 第二章 理論基礎與文獻回顧 2.1 GMR以及自旋閥系統之演進………………………………………………… 11 2.2 自旋閥理論基礎………………………………………………………………12 2.3 奈米氧化層於自旋閥中之發展………………………………………………19 2.4 奈米氧化層對自旋閥之性質影響……………………………………………20 2.5 奈米氧化層於自旋閥中之特性………………………………………………22 2.6 奈米氧化層之材料鑑定………………………………………………………26 2.7 NOL自旋閥結構中之九十度耦合……………………………………………27 第三章 實驗方法及分析儀器 3.1 實驗流程………………………………………………………………………31 3.2 樣品製備方法…………………………………………………………………31 3.3 分析與量測方法………………………………………………………………35 第四章 實驗結果與討論 4.1 觀察自旋閥中各層對90度耦合之貢獻…………………………………… 39 4.2 不同underlayer對90度耦合自旋閥表現之影響…………………………46 4.2.1 Cu v.s. NiFe underlayer…………………………………………………46 4.2.2 加偏壓於Py underlayer對性質之影響…………………………………47 4.3 NiFeOx-NOL之正交耦合自旋閥…………………………………………… 47 4.3.1 自然氧化法v.s. 電漿氧化法……………………………………………48 4.3.1.1自然氧化法……………………………………………………………… 48 4.3.1.2電漿氧化法……………………………………………………………… 49 4.3.1.3 TEM影像……………………………………………………………………50 4.3.2 NiFeOx之改變角度量測………………………………………………… 52 4.3.2.1 改變量測角度……………………………………………………………52 4.3.2.2 改變退火場方向…………………………………………………………54 4.3.3 改變各層厚度對正交耦合性質之影響……………………………………55 4.3.3.1 反鐵磁層…………………………………………………………………55 4.3.3.2 bottom-pinned CoFe……………………………………………………62 4.3.3.3 NiFeOx層……………………………………………………………… 64 4.3.3.4 top-pinned CoFe……………………………………………………… 65 4.3.4 改變退火溫度對正交耦合之影響…………………………………………67 4.3.4.1 normal v.s biquadratic自旋閥………………………………………67 4.3.4.2 退火溫度對90度耦合自旋閥之影響………………………………… 68 4.3.4.3 退火溫度 v.s 退火時間……………………………………………… 71 4.3.5 即時變溫量測………………………………………………………………73 4.4 FeOx-NOL之正交耦合自旋閥……………………………………………… 80 4.4.1 自然氧化法 v.s 電漿氧化法…………………………………………… 80 4.4.1.1 自然氧化法………………………………………………………………80 4.4.1.2 電漿氧化法………………………………………………………………81 4.4.2 改變量測角度………………………………………………………………82 4.4.3 改變退火溫度………………………………………………………………83 4.5 Composited-NOL之正交耦合自旋閥……………………………………… 86 4.5.1 自然氧化法v.s 電漿氧化法…………………………………………… 86 4.5.1.1 自然氧化法……………………………………………………………… 86 4.5.1.2 電漿氧化法……………………………………………………………… 86 第五章 結論………………………………………………92 參考資料rf 1. R. Hunt, IEEE Trans. Magn. MAG-7, p150 (1971). 2. M. N. Baibich, Phys. Rev. Lett. 61, p2472 (1988). 3. Dieny, J. Magn. Mag. Mater. 93, p101 (1991). 4. Bruce A. Gurney,Phys.Rev.Lett.71, 4023 (1993) 5. Kojiro Yagami, J. Appl. Phys. 89, 6609 (2001) 6. S. S. Parkin, Phys. Rev. Lett.72, p3718 (1994) 7. W. E. Egelhoff, J. Appl. Phys. 82, p6142 (1997). 8. H. J. M. Swagten , IEEE Trans. Magn. 34, p948 (1998) 9. Y. Kamiguchi, 1999IEEE conference, DB01 10. H. Sakakima, J. Magn. Magn. Mat. L20-24, p210 (2000). 11. Ming Mao J. Appl. Phys. Lett. 91, p8560 (2002). 12. Tetsuya Mizuguchi, IEEE Trans. Magn. 37, p1742 (2001). 13. M.F.Gillies, J. Appl. Phys. 89, p6922 (2001). 14. J.C.S.Kools, IEEE Trans. Magn. 37, p1783 (2001). 15. H.Fukuzawa, J. Magn. Magn. Mat. 235, 208 (2001) 16. Masafumi Takiguchi, J. Appl. Phys. 87, p2469 (2000) 17. S. H. Jang and T. Kang, Appl. Phys. Lett. 81, p105 (2002) 18. Y. Huai, Z. T. Diao, IEEE Trans. Magn. 38, 20 (2002) 19. M.F.Gillies, J. Appl. Phys. 88, p5894 (2000). 20. A.Veloso, Appl. Phys. Lett. 77, p1020 (2000). 21. Fukuzawa, Hideaki, US patent Application 20020048127, 2002 22. Hideaki Fukuzawa, J. Appl. Phys. 91, p6684 (2002) 23. S. Maat and B.A. Gurney, (2003)id NH0925159007 sid 903549 cfn 0 / id NH0925159008 auc 郭世偉 tic Bi/Te複合薄膜濺鍍製程暨其熱電性質研究 adc 廖建能 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 79 kwc 熱電材料 kwc 薄膜 kwc 濺鍍法 abc 隨著製程技術的提昇積體電路(IC)之元件密度亦大幅度的增加,而與元件效能及可靠度(Reliability)息息相關的散熱問題則成為一極重要的課題。近年來熱電冷凍(Thermoelectric refrigeration)具有易微型化與高可靠度之優點,因此逐漸受到學界與產業界的矚目,而熱電冷凍之效能與熱電材料之熱電優質(ZT值)有極密切之關係,Bi2Te3化合物半導體是目前室溫下所知最佳之熱電材料。本研究係利用磁控濺鍍法(Sputtering)來製備Bi2Te3化合物半導體薄膜,將Bi/Te雙層複合薄膜依序鍍在長有氧化層之矽基材上,並利用高溫熱處理的方法,藉由固態擴散反應生成Bi-Te化合物薄膜,探討Bi及Te薄膜厚度比對於Bi-Te化合物之成份比、電性及熱電性質之影響。研究結果顯示Bi-Te複合薄膜經熱處理(200℃,24小時)後,Seebeck係數由-38.3 μV/K增加至-201.3 μV/K,電阻率由2.02?e10-3 μΩ-cm微幅增加到2.33?e10-3 μΩ-cm,而熱導係數則由2.56 W/m?枝降至0.71 W/m?枝,可得到室溫下(T=300K)最大熱電優值ZT值為0.735。此外利用XRD分析薄膜微結構及其成份,並透過SEM來觀察薄膜表面微結構與兩層薄膜間互相擴散之情形。 tc 摘要……………………………………………………………..…........Ⅰ 英文摘要………………………………………………………………..Ⅱ 目錄……………………………………………………………..………Ⅳ 圖目錄..…………………………………………………………………Ⅶ 表目錄……………………………………………………………..…ⅩⅠ 第一章 緒論…………………………………………………...………...1 1-1 動機……………………………………………………………….1 1-2 熱電致冷器及熱電產生器之原理……………………………….2 1-3 致冷器的效能…………………………………………………….4 1-4 提升熱電材料之ZT值的方法…………………………………...5 1-5熱電材料薄膜化的優點……………..............................................6 1-6本研究將進行之方式……………………………………………..7 第二章 文獻回顧…………………………………………….………….9 2-1 薄膜製備方法…………………………………………………….9 2-2 以濺鍍法沉積薄膜的優點……………………………………...10 第三章 實驗方法與步驟………………………………….…………...12 3-1 基材準備及儀器架構………………………………….………..13 3-2 分析儀器及原理………………………………….……………..15 3-3 實驗步驟………………………………….……………………..19 3-3.1 濺鍍時Ar製程壓力與溫度對薄膜表面結構之影響……..19 3-3.2 熱處理對薄膜金屬相互擴散與合金相生成之分析………21 3-3.2.1 微結構分析…………………………………………….21 3-3.2.2 電性分析……………………………………………….22 3-3.2.3 薄膜電阻隨溫度變化之分析………………………….22 3-3.2.4 熱處理對Seebeck係數之影響分析…………………..22 3-3.2.5 熱導係數之量測……………………………………….24 第四章 結果與討論………………………………….………..……….26 4-1 濺鍍時Ar製程壓力及基材溫度對於單層薄膜的影響……….26 4-1.1 不同Ar製程壓力及基材溫度對碲(Te)薄膜特性之影響…26 4-1.1.1 對表面微結構的影響………………………………….26 4-1.1.2 對Seebeck係數及電阻率的影響……………………..36 4-1.2 不同Ar製程壓力及基材溫度對鉍(Bi)薄膜特性之影響…40 4-1.2.1 對表面微結構的影響………………………………….40 4-1.2.2 對Seebeck係數及電阻率的影響……………………..47 4-2 熱處理對薄膜金屬互相擴散與合金相生成之分析…………...51 4-2.1 試片(一)Bi (1.3mTorr_175℃)/Te(3.0mTorr_125℃) ,厚度600Å/ 4500Å………………………………………52 4-2.1.1 電阻隨溫度變化之分析……………………………….52 4-2.1.2 微結構分析………………………………………….....55 4-2.1.3 熱電性質分析……………………………………….....57 4-2.2 試片(二)Bi(1.3mTorr_175℃)/Te(1.3mTorr_150℃) ,厚度850Å/1600Å……………………………………….61 4-2.2.1 電阻隨溫度變化之分析……………………………...61 4-2.2.2 微結構分析…………………………………………...63 4-2.2.3 剖面微結構分析………………………………….......65 4-2.2.4 熱電性質分析………………………………………...68 第五章 結論………………………………….………………………...74 第六章 參考文獻………………………………….…………………...76rf [1 ] John. E. Bowers, etc, “Experimental investigation of thin film InGaAsP coolers”, ThermoelectricMaterials 2000 [2 ] John. E. Bowers, etc, “Integrated cooling for optoelectronic devices”, Photons West SPIE)Conference Proceedings, 2000 [3 ] N. K. Dutta, etc, “Tunable InGaAs/GaAs/InGaP laser”, APL, 1997, 1219~1220 [4 ] Francis J. DiSalvo, Science. Vol. 285, 703 (1999) [5 ] H.J.Goldsmid, in CRC Handbook of Thermoelectrics, D.M.Rowe Ed.,Boca Raton,Florida, 1995 Chap.3 [6 ] H.J.Goldsmid, in CRC Handbook of Thermoelectrics, D.M.Rowe Ed.,Boca Raton,Florida, 1995, P443 [7 ] L.D.Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit”, Phys. Rev. B 47, 12727(1993) [8 ] X. Sun, “The effect of quantum confinement of the thermoelectric figure of Merit”, Ph.D. Thesis,Massachusetts Institute of Technology, Department of Physics, June 1999. [9 ] Z. Zhang, J. Y. Ying, and M. S. Dresselhaus, “Bismuth quantum-wire arrays fabricated by a vacuum melting and pressure injection process” J. Mater. Res., 13, 1745 (1998). [10 ] X. Y. Zheng, S. Z. Li, M. Chen, and K. L. Wang, Proceedings of the International Mechanical Engineering Congress and Exposition, Dynamic Systems and Control, 59, p. 93 (1996). [11 ] Y. H. Shing, Y. Chang, A. Mirshafii, L. Hayashi, S. S. Roberts, J. Y. Josefowicz and N. Tran, “Sputtered Bi2Te3 and PbTe thin films”, J. Vac. Sci. Technol. A. 1, 503 (1983). [12 ] A.Dauscher, A.Thomy, H.Scherrer ” Pulsed laser deposition of Bi2Te3” Thin Solid Films 280(1996)61-66 [13 ] R.Venkatasubramanian, T.Colpitts, E.Watko, M.Lamvik, N.El- Masry “MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications” Journal of Crystal Growth 170(1997)817-821 [14 ] A.Giani, A.Boulouz, F.Pascal-Delannoy, A.Foucaran, E.Charles, A.Boyer” Growth of Bi2Te3 and Sb2Te3 thin-films by MOCVD” Materials Science and Engineering B64 (1999)19-24 [15 ] Y. Miyazaki and T. Kajitani, “Preparation of Bi2Te3 films by electrodeposition”, J. Crystal Growth, 229, 542 (2001). [16 ] M.Takahashi, Y. Katou and K. Nagata and S. Furuta, “The composition and conductivity of electrodeposited Bi-Te alloy films”, Thin Solid Films, 240, 70 [17 ] A. J. yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xu, “Fabrication of highly ordered metallic nanowire arrays by electrodeposition”, Appl. Phys. Lett., 79, 1039 (2001). [18 ] A. L. Prieto, M. S. Sander, M. S. Martin-Gonzalez, R. Gronsky, T. Sands and A. M. Stacy, “Electrodeposition of ordered Bi2Te3 nanowire arrays”, J. am. Chem. Soc., 123, 7160 (2001). [19 ] A. L. Prieto, M. S. Sander, M. S. Martin-Gonzalez, R. Gronsky, T. Sands and A. M. Stacy, “Electrodeposition of ordered Bi2Te3 nanowire arrays”, J. am. Chem. Soc., 123, 7160 (2001). [20 ] J.George and B. Pradeep, “Preparation and properties of co- evaporated bismuth telluride (Bi2Te3) thin films”, Solid State Commun., 56, 117 (1985). [21 ] VLSI製造技術. 莊達人 1995年 高立出版 [22 ] D.G.Cahill, Rev.Sci.Instrum.61,802(1990) [23 ]Standard Test Methods for Measuring Resistivity and Hall Coefficient and Determining Hall Mobility in Single-Crystal Semiconductors, ASTM Designation F76,Annual Book of ASTM Standards, Vol. 10.05 (2000). [24 ]Binary Alloy Phase Diagrams. H.Okamoto and L.E.Tanner, submitted to the APD Program. p.800 [25 ] H.S.Carslaw and J.C.Jaeger,Conduction of Heat in Solids, [26 ] VLSI製造技術.p150-161 莊達人 2002年 高立出版 [27 ]http://www.webelements.com/webelements/elements/text/Te/xtal. html [28 ]http://www.webelements.com/webelements/elements/text/Bi/xtal. html [29 ] H.J.Goldsmid, in CRC Handbook of Thermoelectrics, D.M.Rowe Ed.,Boca Raton,Florida, 1995, P215 [30 ] K.Arshak and O.Korostynska “Effect of gamma radiation onto the properties of TeO2 thin films” Microelectronics International 19/3 (2002) p.30-34 [31 ] R.A.Horne “Effect of Oxide Impurities on the Thermoelectric Powers and Electrical Resistivities of Bismuth, Antimony, Tellurium, and Bismuth-tellurium Alloys”, J. Applied Phys, March 1959, V.30, Number 3id NH0925159008 sid 903583 cfn 0 / id NH0925159009 auc 劉哲宏 tic Ca / Alq3介面的同步輻射光電子激發研究 adc 黃振昌 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 68 kwc 同步輻射 abc 有機發光二極體 (OLED)具備自發光性以及零視角的優點,使得在OLED方面的研究越趨熱烈。於OLED的有機發光層中,Alq3為最被廣泛使用的有機發光物,其組成為三個quinoline分子與Al原子結合而成,於電子結構中,Alq3分子有最高電子佔據態 (HOMO)與電子最低未佔據態 (LUMO)分別位於phenoxide與pyridrl上。Alq3與陰極金屬間接面中的位能障,影響著電子由金屬躍遷至有機發光物的主要因素。本實驗利用同步輻射光來探討不同Ca厚度對Alq3的反應,主要觀測其化學反應與能帶接面。 tc 目錄 摘要………………………………………………………………..……Ⅰ 誌謝…………………………………………………………………..…Ⅱ 第一章 簡介……………………………………………………………1 1.1 OLED簡介………………………………………………..1 1.2 Alq3分子結構與電子構造………………………………..8 1.3 Ca / Alq3 文獻回顧 ……………………………………15 1.4 研究動機…………………………………..……………21 第二章 實驗…………………………………………………………22 2.1實驗原理…………………………………………………22 2.1.1光電子能譜介紹………………………………..22 2.1.2核層能譜………………………………………..28 2.1.3價帶能譜………………………………………..28 2.2實驗儀器…………………………………………………29 2.2.1同步輻射光束線………………………………..29 2.2.2真空腔與抽氣系統……………………………..36 2.3實驗過程…………………………………………………40 2.3.1試片準備………………………………………..40 2.3.2抽真空過程……………………………………..41 2.3.3清潔試片……………………………………….43 2.3.4蒸鍍Alq3及Ca………………………………..43 第三章 Ca / Alq3的相關價帶能譜………………………………….45 3.1 價帶能譜………………………………………………..45 3.2 能帶分布………………………………………………..45 第四章 Ca / Alq3的相關核層能譜………...………………………..48 4.1 C 1s、N 1s、O1s、Ca 3p、Al 2p 等核層電子能譜…48 4.2 O、N、Al的curve fitting………………………….……56 4.3 Ca / Alq3反應機制……………………………………...56 第五章 結論…………………..……………………………………….64 參考文獻……………………………………………………………….65rf 參考文獻 1. C. W. Tang, and S. A. Van Slyke, Appl. Phys. Lett. 51, 913 (1987) 2. C. W. Tang, S. A. Van Slyke, and C. H. Chen, J. appl. Phys. 65, 3610 (1989) 3. A. Curioni, W. Andreoni, R. Treusch, F. J. Himpsel, E. Haskal, P. Seidler, C. Heske, S. Kakar, T. van Buuren, and L. J. Terminello, Appl. Phys. Lett. 72, 1575 (1998) 4. P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCatry, S. R. Forrest, J. A. Cronin, and M. E. Thompson, J. Appl. Phys. 79, 7991 (1996) 5. G. Gu, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, Appl. Phys. Lett. 65, 2922 (1994) 6. K. M. Vaeth and K. F. Jensen, Appl. Phys. Lett. 71, 2091(1997) 7. K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi, and K. Seki, J. Appl. Phys. 83, 4928 (1998) 8. L. S. Hung and C. H. Chen, Mater. Sci. Eng., R. 39, 143 (2002) 9. 顧鴻壽,光電有機電激發光顯示器技術及應用, 新文京開發出版有限公司出版, 2001年9月. 10. M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi, and A. Sironi, J. Am. Chem. Soc. 122, 5147 (2000) 11. P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forest, J. A. Cronin, and M. E. Thompson, J. Appl. Phys. 79, 7991 (1996) 12. Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, and K. Yoshino, Appl. Phys. Lett. 63, 1871 (1993) 13. C. H. Chen and Jianmin Shi, Coor. Che. Rev. 171, 161(1998) 14. K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, G. Johansson, T. Bergmark, S. E. Karlsson, I. Kindgren, and B. Lindberg, Nova Acta Regiae Societatis Scientiarum Upealiensis, Ser. IV 20, 5 (1967) 15. K. Siegbahn, Science 217, 111 (1982) 16. Y. Park, V. -E. Choong, B. R. Hsieh, C. W. Tang, T. Wehrmeister, K. Mullen, and Y. Gao, J. Vac. Sci. Technol. A15, 2574 (1997) 17. M. Probst and R. Haight, Appl. Phys. Lett. 70, 1420 (1997) 18. V. -E. Choong, M. G. Mason, C. W. Tang, and Yi. Gao, Appl. Phys. Lett 72, 2689 (1998) 19. Q. T. Le, L. Yan, V. -E. Choong, E. W. Forythe, M. G. Mason, C. W. Tang, and Y. Gao, Synth. Met. 102, 1014 (1999) 20. I. G. Hill, A. J. Makinen, and Z. H. Kafai, Appl. Phys. Lett. 77, 1825 (2000) 21. 汪建明主編, 材料分析Material Analysis, 中國材料科學學會出版, 1998年10月. 22. C. R. Brundle, Sur. Sci. 48, 99 (1975) 23. L. J. Lai, P. C. Tseng, Y. W. Yang, S. C. Chung, Y. F. Song, N. F. Cheng, C. C. Chen, C. T. Chen, and K. L. Tsang, Nucl. Instr. and Meth. A 467-468, 586 (2001) 24. A. Ishizaka and Y. Shiraki, J. Electrochem. Soc. 133, 666(1986) 25. A. Fujimori, J. H. Weaver, and A. Franciosi, Phys. Rev. B 31, 3549 (1985) 26. A. Rajagopal, C. I. Wu, and A. Kahn, J. Appl. Phys. 83, 2649 (1998) 27. A. Rajagopal and A. Kahn, J. Appl. Phys. 84, 355 (1998) 28. Q. T. Le, M. G. Mason, L. Yan, V. -E. Choong, E. W. Forythe, C. W. Tang, Y. Gao, Proc. SPIE 3628, 64 (1999) 29. C. Shen and A. Kahn, J. Appl. Phys. 89, 449 (2001) 30. N. Johansson, T. Osada, S. Stafatrom, W. R. Salaneck, V. Parente, D. A. dos Santos, X. Crispin, and J. L. Brédas, J. Chem. Phys. 111, 2157 (1999) 31. H. Ishii, K. Sugiyama, Eisuke Ito, and Kazuhiko Seki, Adv. Mater. 11, 605 (1999) 32. M. G. Mason, C. W. Tang, L. -S. Hung, P. Raychaudhuri, J. Madathil, D. J. Giesen, L. Yan, Q. T. Le, Y. Gao, S. -t. Lee, L. S. Liao, L. F. Cheng, W. R. Salaneck, D. A. dos Santos, and J. L. Brédas, J. Appl. Phys. 89, 2756 (2001)id NH0925159009 sid 903585 cfn 0 / id NH0925159010 auc 張家維 tic 十元奈米高熵合金鑄造微結構及特性分析 adc 陳瑞凱 adc 徐統 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 107 kwc 奈米 kwc 高熵 kwc 電阻 kwc 硬度 kwc 微結構 abc 本研究首度針對AlCoCrCuFeMoxNiTiVZr (x = 0.2~1)十元等莫耳及非等莫耳高熵合金鑄造態之微結構硬度與凝固動力學進行探討。為了瞭解Ti與V對合金硬度的影響也進行了分別不含Mo與Cu的九元等莫耳高熵合金及不含Mo、Ti八元及不含Mo、Ti、V七元等莫耳高熵合金的相關研究。同時,為了瞭解電子在十元等莫耳高熵合金中與晶格的相互作用,也做了6.6 K至室溫的電阻量測實驗。 rf 1. A. Inoue, K. Kita, T. Masumoto, K. Ohtera, Japanese Journal of Applied Physics Part 2-Letters, 27, 1796-1799 (1998). 2. A. Inoue, K. Kita, T. Masumoto, T. Zhang, Materials Transactions, JIM, 30, 722-725 (1989). 3. A. Inoue-A, T. Zhang, T. Masumoto, Materials Transactions, JIM, 31, 177-183 (1999). 4. A. Inoue, T. Masumoto, U.S. Patent No. 5,032,196, Japanese Patent 07-122120. 5. A. Peker, W. L. Johnson, Applied Physics Letters, 63, 2342-2344 (1993). 6. A. Inoue, T. Zhang, K. Ohba, T. Shibata, Materials Transactions, JIM, 36, 876-878 (1995). 7. A. Inoue, J. S. Gook, Materials Transactions, JIM, 36, 1282-1285 (1995). 8. A. Inoue, N. Nishiyama, T. Matsuda, Materials Transactions, JIM, 37, 181-184 (1996). 9. Y. He, T. D. Shen, R. B. Schwarz, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 29, 1795-1804 (1998). 10. T. Zhang, A. Inoue, Materials Transactions, JIM, 39, 1001-1006 (1998). 11. A. Inoue, T. Zhang, Materials Transactions, JIM, 31, 177-183 (1999). 12. A. Inoue, T. Zhang, A. Takeuchi, Applied Physics Letters, 71, 464-466 (1997). 13. A. Inoue, T. Nakamura, N. Nishiyama, T. Masumoto, Materials Transactions, JIM, 33, 937-945 (1992). 14. A. Inoue, T. Nakamura, T. Sugita, T. Zhang, T. Masumoto, Materials Transactions, JIM, 34, 351-358 (1993). 15. A. Inoue, T. Zhang, Materials Transactions, JIM, 37, 185-187 (1996). 16. A. Inoue, N. Nishiyama, H. Kimura, Materials Transactions, JIM, 38, 179-183 (1997). 17. A. Inoue, Bulk Amorphous Alloys, 2, Trans. Tech. Publications, Zurich, 28 (1999). 18. A. Inoue, N. Nishiyama, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 226, Jun., 401-405 (1997). 19. D. V. Louzguine, A. Inoue, Materials Letters, 39, 211-214 (1999). 20. L. Q. Xing, C. Bertrand, J. P. Dallas, M. Cornet, Materials Science and Engineering, A214, 216-225 (1998). 21. 黃國雄,“等莫耳比多元合金系統之研究”, 國立清華大學碩士論文 (1996)。 22. 賴高廷,“高亂度合金微結構及性質探討”, 國立清華大學碩士論文 (1998)。 23. 許雲翔,“以FCC及BCC元素為劃分配製等莫耳多元合金系統之研究”, 國立清華大學碩士論文 (2000)。 24. 洪育德,“Cu-Ni-Al-Co-Cr-Fe-Si-Ti高亂度合金之探討”, 國立清華大學碩士論文 (2001)。 25. P. Duwes, Trans. Am. Soc. Metals, 60, 607 (1967). 26. 程天一,快速凝固技術與新型合金,宇航出版社,北京 (1990)。 27. H. S. Chen, H. J. Leamy and C. E. Miller, Annual Review of Materials Science, 10, 363-391 (1980). 28. B. B. Prasad, T. R. Anantharaman, A. K. Bhatnagar, D. Ganesan and R. Jagannathan, Journal of Non-crystalline Solids, 61-2, Jan., 391-395 (1984). 29. R. Carlisle and H. Ben, Standard Handbook of Machine Design, 58, 24-30 (1986). 30. H. Jones, Rapid Solidification of Metals and Alloys, Institute of Metallurgists, London (1982). 31. F. G. Yost, Journal of Materials Science, 16, 3039-3044 (1981). 32. P. Haasen, Metallic Glasses, Journal of Non-Crystalline Solids, 56, 1-3, 191-199 (1983). 33. 川合 知二,圖解奈米科技,工業技術研究院奈米科技研發中心,新竹 (2002)。 34. T. Lyman, Editor, ASM Metals Handbook, 8th ed., Vol. 8, Metallography Structures and Phase Diagrams, Metals Park, Ohio (1973). 35. 徐統,未發表的研究。 36. L. Samuel, ASME Handbook of Metals Properties, McGraw-Hill, New York (1980). 37. H. Lawrence, Elements of Materials Science and Engineering, Addison-Wesley, Reading, Massachusetts, pp. 481-489 (1996). 38. J. Kondo, Solid State Physics, 23, 184 (1969). 39. C. Kittel, Introduction to Solid State Physics, 682 (1997). 40. C. Kittel, Introduction to Solid State Physics, 39 (1997). 41. P. K. Huang, J. W. Yeh, T. T. Shun, S. K. Chen, Advanced Engineering Materials, 6, 74-78 (2004). 42. C. Y. Hsu, J. W. Yeh, S. K. Chen, T. T. Shun, Metallurical and Materials Transations, A35, 1465-1469 (2004).id NH0925159010 sid 905512 cfn 0 / id NH0925159011 auc 魏琮修 tic 以溶膠-凝膠法製備鈦酸鋇薄膜作為氫離子感應場效電晶體之研究 adc 陳建瑞 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 90 kwc 氫離子感應場效電晶體 kwc 鈦酸鋇 kwc 溶膠凝膠法 kwc 旋轉塗佈法 abc 離子感應場效應電晶體(Ion-sensitive field effect transistor ,ISFET)與傳統離子感測電極比較有許多優點。例如,尺寸小、外型堅固、響應快速、感測度高、低輸出阻抗、只需微量的待測容液即可量測、可以匹量生產、成本低以及應用面廣等等。其原理主要是以金屬-氧化物-半導體場效應電晶體(MOSFET)為基礎,將其金屬閘極去除後,使感測絕緣層直接與緩衝溶液接觸,藉由緩衝溶液中的待測離子與感測膜吸附產生界面電位,隨之發現界面電位會隨著溶液中的待測離子濃度產生變化,進而達到偵測溶液中待測離子濃度的目的。本論文係以溶膠-凝膠(Sol-Gel)法製備非晶形鈦酸鋇(BaTiO3)薄膜作為氫離子感應場效電晶體之感測閘極;將鈦酸鋇薄膜披覆在SiO2/p-Si(100)基板上以形成EIS結構,其中氧化層SiO2厚度為1000Å,並利用電容-電壓(C-V)量測以獲得平能帶電位(Flat band)偏移的現象。實驗結果發現,先驅液回流溫度為110℃,回流時間為4.5小時,而鈦酸鋇薄膜燒結溫度約340℃與厚度約1μm時可得到較佳感測特性,於pH=1∼11的範圍內其感測度為55.8 mV/pH。 rf [1 ] P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements”, IEEE Transactions on Bio- Medical Engineering, (1970) 70-71. [2 ] 吳朗,感測與轉換原理、元件與應用,三版,全欣資訊,民國82年 385-387 [3 ] 武世香、虞惇、王貴華,”化學量感測器,感測器技術”,第1期(1990) 57∼62。 [4 ] 眭曉林,固態化學感測元件之積體化設計,材料與社會,第60期 (1991) 56~61 [5 ] B. D. Liu, Y. K. Su and S. C. Chen, “Ion-sensitive field-effect transistor with silicon nitride gate for pH sensing”, Int. J. Electronic, vol. 67, NO1, (1989) 59-63. [6 ] L.Bousse, H. H van der Vlekkert and N. F. de Rooij, Hysteresis in Al2O3-gate ISFETs, Sensors and Actuators B, 2 (1990) 103-110. [7 ] H. Van Den Vlekkert, L. Bousse and N. de Rooij, The Temperature dependence of the durface potential at the Al2O3/electrolyte interface, J. Colloid Interface Sci., vol. 122 (1988) 336-345. [8 ] L.Bousse, S. Mostarshed, B. van der Schoot and N. F. de Rooij, Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators, Sensors and Actuators B, 17 (1994) 157-164. [9 ] D. L. Harame, L. J. Bousse, J. D. Shott and J. D. Meindl, Ionsensing devices with silicon nitride and borosilicate glass insulators, IEEE Trans. Electron Devices, vol. ED-34 (1987) 1700-1707. [10 ] P.Gimmel, B. Gompf, D. Schmeisser, H.D. Wiemhofer, W. Gopel and M. Klein, Ta2O5-gates of pH-sensitive devices: comparative spectroscopic and electrical studies, Sensors and Actuators, 17(1989) 195-202. [11 ] D. H. Kwon, B. W. Cho, C. S. Kim and B. K. Sohn, Effect of heat treatment on Ta2O5 sensing membrane for low drift and high sensitivity pH-ISFET, Sensors and Actuators B 34 (1996) 441-445. [12 ] D. E. Yates, S. Levine and T. W. Healy, Site-binding model of the electrical double layer at the oxide/water interface, J. Chem. Soc. Faraday Trans. I, 70 (1974) 1807-1818. [13 ] Koch S, Woias P, Meixner LK, Drost S, Wolf H. Protein detection with a novel ISFET-based zeta potential analyzer. Biosens Bioelectron 1999;14:417– 25. [14 ] Baumann WH, Lehmann M, Schwinde A, Ehret R, Brischwein M, Wolf B. Microelectronic sensor system for microphysiological application on living cells. Sens Actuators, B 1999;55:77 – 89. [15 ] Offenha¨usser A, Knoll W. Cell-transistor hybrid systems and their potential applications. Trends Biotech 2001;19(2):62 – 5. [16 ] Poghossian A, Lu¨th H, Schultze JW, Scho¨ning MJ. (Bio-)chemical and physical microsensor arrays using an identical transducer principle. Electrochimica 2001;47:243– 9. [17 ] Sprenkels A, Pijanowska D, van der Linden H, Olthuis W, Bergveld P. The comprehensive integration of microdialysis membranes with silicon sensors. http://www.bios.el.utwente.nl, 2003. [18 ] Poghossian A, Lu¨th H, Schultze JW, Scho¨ning MJ. (Bio-)chemical and physical microsensor arrays using an identical transducer principle. Electrochimica 2001;47:243– 9. [19 ] Journal of Biotechnology in Berlin-Brandenburg,15(2002) [20 ] Vianello F, Stefani A, Dipaolo ML, Rigo A, Lui A, Margesin B, et al. Potentiometric detection of formaldehyde in air by an aldehyde dehydrogenase FET. Sens Actuators, B 1996;37:49 – 54. (酵素) [21 ] Dzyadevich SV, Korpan YI, Arkhipova VN, Alesina MY, Martelet C, El’Skaya AV, et al. Application of enzyme field-effect transistors for determination of glucose concentrations in blood serum. Biosens Bioelectron 1999;14:183–7.(血液中ㄉ葡萄糖) [22 ] Senillou A, Jaffrezic-Renault N, Martelet C, Cosnier S. A miniaturized urea sensor based on the integration of both ammonium based urea ENFET and a reference FET in a single chip. Talanta 1999;50(1):219– 26. [23 ] Sibbald A. Recent advances in field-effect chemical microsensors. J Mol Electron 1986;2:51– 83. [24 ] Kharitonov AB, Zayats M, Lichtenstein A, Katz E, Willner I. Enzyme monolayer-functionalized field-effect transistors for biosensor applications. Sens Actuators, B 2000;70:222– 31.(酵素) [25 ] Koch S, Woias P, Meixner LK, Drost S, Wolf H. Protein detection with a novel ISFET-based zeta potential analyzer. Biosens Bioelectron 1999;14:417– 25 [26 ] Van Kerkhof JC, Bergveld P, Schasfoort RBM. The ISFET based heparin sensor with a monolayer of protamine as affinity ligand. Biosens Bioelectron 1995;10:269–82. [27 ] Guo L, Krauss PR, Chou SY. Nanoscale silicon field effect transistors fabricated using imprint lithography. Appl Phys Lett 1997;71(13):1881– 3. [28 ] Hong Xiao, Introduction to Semiconductor Manufacturing Technology ,69~71 [29 ] S. M. SZE, Physics of Semiconductor Devices, Chapter 7, 2nd Edition, Central Book Company, Taipei, Taiwan (1985). [30 ] Thomas J. Mego, Guidelines for Interpreting CV Data, Solid State Technology, May, (1990) 159-163. [31 ] 電化學原理與方法/胡啟章編著 五南圖書出版股份有限公司 2002 [32 ] Clifford D. Fung, Peter W. Cheung, and Wen H. Ko, A Generalized theory of an electrolyte-insulator-semiconductor field-effect transistor, IEEE Transactions on Electron Devices, Vol. ED-33, No.1 (1986) 8~18. [33 ] Van den Berg A, Bergveld P, Reinhoudt DN, Sudholter EJR. Sensitivity control of ISFETs by chemical surface modification. Sens Actuators 1985; 8:129–35. [34 ] P. Bergveld and A. Sibbald, Analytical and biomedical application of ion-selective field-effect transistors, chapter 2. 3, Elsevier Science Publishing Company Inc., New York, America (1988). [35 ] Wong, Anthony Sai-Hung, Theoretical and experimental studies of CVD aluminum oxide as A pH sensitive dielectric for the back contacts ISFET, ph.D. Dissertation, Department of Biomedical Engineering, Case Western Reserve University, May (1985) [36 ] J. J. Ebelmen, Amm., Vol. 57, p. 331, (1846). [37 ] T. Graham, Journal of Chemistry Society, Vol. 17, p. 318-327, (1864). [38 ] 周禮君,田珮,「有機矽烷氧基物前驅物衍生的有機-無機混合成溶凝膠材料」,化工技術,第八卷第五期,152-164頁,2000年五月 [39 ] 丁原傑,無機有機混合成溶凝膠配製與應用,化工,第46卷第五期,63-71頁,1999年10月 [40 ] 〔1〕 L. Royleigh, Philos. Mag.,38,738, (1919). [41 ] W. Geffcken and E. Berger, German Patent, 736411, (1939). [42 ] 〔2〕 M. Vandenoever, T. Peijs, “Continuous-Glass-Fiber- Reinforced Polypropylene Composites - II - Influence of Maleic-Anhydride Modified Polypropylene on Fatigue Behavior”, Composites Part A - Applied Science and Manufacturing, 29,. 3, p. 227-239, (1998). [43 ] C. B. Hurd, “Theories for the Mechanism of the Setting of Silicic Acid Gels”, Chemistry Review, Vol. 22, p. 403-422, (1938). [44 ] 〔3〕 R. Roy, J. Am. Ceram. Soc., 52,334 (1969). [45 ] R. K. Iler, The Chemistry of Silica, Wiley-Inter Science, (1955). [46 ] L. Levene and I. M. Thomas, U. S. Patent 3,640,093, (1972). [47 ] 〔4〕 H. Dislich, “New Routes to Multicomponent Oxide Glasses”, Angewandt Chemie, 10, 6, p. 363-370, (1971). [48 ] 〔5〕 B. E. Yoldas, “Preparation of Glasses and Ceramics from Metal-organic Compounds”, J. Mater. Sci., Vol. 12, p. 1203-1208, (1977). [49 ] R.D.Klissurska,T.Maeder, K.G.Brooks and N.Setter, “Microstructure of PZT sol-gel films on Pt substrates with different adhesion layers”, Microelectronic Engineering ,vol.29,pp.297-300,(1995) [50 ] 〔6〕 S.Wallington,T.Labayen,A.Poppe,N.Sommerdijk and J.D.Wright, “Sol-gel entrapped materials for optical sensing of solvents and metal ions”,Sensors and Actuators B,vol.38-39,pp.48-52,(1997) [51 ] T.Ishiwaki,H.Inoue, and A.Makishima, “Optical properties of 1,4-dihydroxyanthraquinone covalently bonded to SiO2-AlO3/2 gel”,J.Non-Cryst.Solids,vol.203,pp.43-48,(1996) [52 ] A.K.Mcevoy,C.Mcdonagh and B.D.MacCraith, “Optimisation of sol-gel-derived silica films for optical oxygen sensing”,J.Sol-Gel Sce.&Tech.,vol.8,pp.1121-1125,(1997) [53 ] K.Matsuura,S.Machida and K.Horie, “High-temperature spectral hole burning for organic-inorganic hybrid systems : porphyrin derivative-doped alumina gels prepared by a sol-gel method” J.Non-Cryst.Solids,vol.217,pp.136-142,(1997) [54 ] L.Sieminska,M.Ferguson,T.W.Zerda and E.Couch, “Diffusion of steroids in porous sol-gel glass : application in slow drug delivery” ,J.Sol-Gel Sce& Tech.,vol.8,pp.1105-1109,(1997) [55 ] S.A.Grant and R.S. Glass, “A sol-gel based fiber optic sensor for local blood pH measurements” ,Sensors and Actuators B, vol.45,pp. 35-42,(1977) [56 ] C. J. Brinker and G. W. Scherer, “Sol-gel Science, The Physics and Chemistry of Sol-gel Processing”, Published by Academic Press, Inc., p. 2-8, (1990). [57 ] B. Jirgensons and M. E. Straumanis:Coloid Chemistry, MvMillan Co., New York, 1962.id NH0925159011 sid 905513 cfn 0 / id NH0925159012 auc 方彥傑 tic 薄膜電感被動元件之製備與模擬分析 adc 廖建能 博士 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 79 kwc 品質因子 kwc 電感值 kwc 共振頻率 kwc 電磁模擬 kwc 薄膜電感 kwc 底層金屬遮蔽 abc 隨著無線通訊與可攜式通訊產品朝著高頻化、體積小、功能強、高穩定性的趨勢持續發展,其零組件必須採積體電路化方式完成,當前國內主動元件的體積縮小能力遠超過被動元件,如要將兩者整合,被動元件的薄膜化製程將是未來急需發展的關鍵技術。 tc 摘 要..................................................................................................Ⅰ 目 錄…………………………………………………...………….. Ⅳ 圖目錄………………………………………………………………..Ⅷ 表目錄………………………………………………………………..XI 第一章、 簡介 1.1研究背景……………………..……………………………...…..1 1.2矽半導體製程…………………………………...………………1 1.3被動元件的薄膜化與積體化…………………………………...2 1.4論文架構………………………………………………………...3 第二章、文獻回顧 2.1矽製程與薄膜製程技術(重要性、發展性、限制性、功能與高頻特性、改進方向)……………………………………….4 2.1.1矽製程技術………………………………………………4 2.1.2薄膜化製程技術…………………………………………6 2.2電感理論計算…………………………………………......…….9 2.2.1自感…………………………………………………..…10 2.2.2互感…………………………………………………......11 2.3矽基平面螺旋電感…………………………………………….15 2.3.1等效電路模型…………………………………………..15 2.3.2寄生效應與基材損耗…………………………………..18 2.3.3品質因數………………………………………………..19 第三章、實驗原理與步驟 3.1試片製備……………………………………………………….20 3.1.1光罩圖案………………………………………………..20 3.1.2爐管前清洗……………………………………………..22 3.1.3絕緣層沉積……………………………………………..22 3.1.4金屬薄膜沉積………………………………………..…22 3.1.5黃光製程………………………………………………..24 3.1.6金屬薄膜蝕刻…………………………………………..25 3.1.7沉積介電層……………………………………………..26 3.1.8引洞……………………………………………………..26 3.1.9元件製作流程………………………………………......26 3.2 實驗原理……………………………………………….……..28 3.2.1高頻量測……………………………….……………28 3.2.2晶圓級量測法……………………………………...28 3.2.3量測校正……………………………..…………….30 3.2.3.1儀器校正(SLOT calibration)………………….30 3.2.3.2去嵌入(de-embedding)法……………………..30 3.2.4散射參數(Scattering Parameter)………………...31 3.2.5參數萃取………………………………………………34 第四章、實驗結果與討論………………………………………………35 4.1製程參數…………………………………………………..…...37 4.1.1濕蝕刻參數……………………………………….….....37 4.1.2接觸點………………………………………….…….....44 4.1.3等效電路模型的參數計算…………………………......45 4.2平面螺旋電感………………………………………………….49 4.2.1正方形螺旋電感………………………………………..49 4.2.1.1高頻量测………………………………………...…49 4.2.1.2參數萃取…………………………………………...58 4.2.2長方形螺旋電感………………………………………..67 4.3底層金屬遮蔽圖案的效應…………………………………….70 第五章、結論……………………………………………………………76 參考文獻……………………………………………………..…..……..78 圖目錄 圖2-1 兩條相互耦合、尺寸相同的金屬平行線…………………...…9 圖2-2 自感與金屬導線截面的關係…………………..………………11 圖2-3 自感與金屬導線長度的關係…………………………………..11 圖2-4 間距s相對於互感、互偶係數的關係…………………………13 圖2-5 中心距d相對於互感、互耦係數的關係……………………..14 圖2-6 正負互感示意圖………………………………………………..15 圖2-7 矽基材平面螺旋電感剖面圖…………………………………..17 圖2-8 矽基材平面螺旋電感等效電路模型………………….……….17 圖2-9 等效電路模型與頻率有關的形式…………………..…………18 圖3-1 (A) 正方形電感光罩圖形………………………………...…….21 圖3-1 (B) 長方形電感光罩圖形…………………………….……...…21 圖3-2電感結構剖面示意圖……………...……………………………23 圖3-3 電感結構製作流程......................................................................28 圖3-4 (a)G-S-G (b)G-S型式的微波探針………….…………………31 圖3-5 (A)OPEN. (B)SHORT. (C)THRU校正式意圖………..……..…32 圖3-6雙埠網路S參數基本定義………………….…………………..35 圖4-1光阻剝落示意圖…………………………………………………40 圖4-2側蝕與底切………………................……………………………40 圖4-3金屬層重疊處斷線示意圖………………………………..…..…41 圖4-4側蝕改善示意圖……………………….…………….…………..41 圖4-5正方形螺旋電感結構(NGS)……………...………….…………42 圖4-6長方形螺旋電感結構…...……………….………………………42 圖4-7具MGS之螺旋電感結構……………….…..……..…………….43 圖4-8具PGS1之螺旋電感結構………….………………...……..…...43 圖4-9具PGS2之螺旋電感結構………….……………………………43 圖4-10金屬繞線剖面示意圖..................................................................44 圖4-11金屬繞線的局部側蝕..................................................................44 圖4-12金屬與介電層堆疊剖面圖…...………………………………...45 圖4-13空結構示意圖………………………..……………..…………..53 圖4-14品質因數的去嵌入效應……………………….…...…………..53 圖4-15電感的去嵌入效應……..………………………………………54 圖4-16實部阻抗的去嵌入效應………………..………………………54 圖4-17正方形螺旋電感之品質因數模擬與量測…...……..……….....55 圖4-18正方形螺旋電感之電感值模擬與量測………….…………….55 圖4-19正方形螺旋電感之實部阻抗模擬與量測….……………….…56 圖4-20不同線寬的Q值比較……….…………………………….……56 圖4-21不同線寬的L值比較……….…………………………….……57 圖4-22模擬不同線寬的Q值比較……….……………………….……57 圖4-23模擬不同線寬的L值比較……………………………………..58 圖4-24 ADS工作平台與等效電路模型示意圖…………………….....64 圖4-25 ADS工作平台與等效電路模型接地示意圖………………….64 圖4-26 Qideal與Qreal偏差值示意圖…………..…………………………65 圖4-27 Cox值萃取隨頻率變化關係圖…………………………………65 圖4-28量測、等效電路模型、參數萃取之Q……………...…………...66 圖4-29量測、等效電路模型、參數萃取之L值…………….………….66 圖4-30量測、等效電路模型、參數萃取之實部阻抗值……………..…67 圖4-31正方形、長方形螺旋電感的品質因數………..………………..69 圖4-32正方形、長方形螺旋電感的電感值…………..………………..70 圖4-33量測不同底層金屬遮蔽圖案對品質因數的影響…..…………73 圖4-34量測不同底層金屬遮蔽圖案對電感值的影響….….…………73 圖4-35模擬不同底層金屬遮蔽圖案對品質因數的影響………..……74 圖4-36模擬不同底層金屬遮蔽圖案對電感值的影響………………..74 圖4-37模擬不同底層金屬遮蔽厚度對品質因數的影響….………….75 圖4-38模擬不同電感尺寸對品質因數的影響…………….………….75 圖4-39模擬不同尺寸、製程條件對品質因數的影響…………………76 表目錄 表2-1厚膜與薄膜製程的比較……………………………………..…....7 表4-1各項製程條件……………………………………………..……..48 表4-2鉭-銅-鉭金屬薄膜電阻率……………..………………….……..49 表4-3正方形螺旋電感模擬與量測QMax、LMax、fsr的比較………….…57 表4-4不同線寬QMax、LMax、fsr的比較………………………………….58 表4-5電感等效電路模型之計算與萃取值……………………………66 表4-6量測、等效電路模型、參數萃取之QMax、LMax、fsr比較….………67 表4-7正方形、長方形螺旋電感QMax、LMax、fsr的比較………………...69 表4-8不同結構間QMax、LMax、fsr的比較…….…………………………75rf [1 ] P. R. Gray and R. G. Meyer,"Future directions in silicon IC's for RF personal communications," in Proc. IEEE 1995 Custom Integrated Circuits Con., May 1995, pp. 83-90. [2 ] N. Camiller, J. Costa, D. Lovelace, and D. Ngo,"Silicon MOSFET's, the microwave device technology for the 90s," IEEE MTT-S Int. Microwave Symp. Dig., June 1993, pp. 545-548. [3 ] F.W. Grover, Inductance Calculations, Princeton, New Jersey: Van Nostrand,1946. Reprinted by New York, New York: Dover Publications, 1962. [4 ] H.M. Greenhouse, "Design of Planar Rectangular Microelectronic Inductors, "IEEE Transactions On Parts, Hybrids, and Packaging, vol. PHP-10, No. 2,pp.101-109, June.1974. [5 ] C. P. Yue, "On-Chip Spiral Inductors for Silicon-Based Radio-Frequency Integrated Circuits, " Technical Report No. ICL98-087, Department of Electrical Engineering, Stanford University, July 1998. [6 ] J. N. Burghartz, M. Soyuer, and K. A. Jenkins,"Microwave Inductors and Capacitors in Standard Multilevel Interconnect Silicon Technology," IEEE Trans. Microwave Theory Tech., Vol. MTT-44, pp. 100-104, Jan. 1996. [7 ] J. N. Burghartz, M. Soyuer, and K. A. Jenkins,"Integrated RF and microwave components in BiCMOS technology," IEEE Trans. Electron Devices, Vol. 43, pp. 1559-1570, Sept. 1996. [8 ] M. Park, S. Lee, H. K. Yu, J. G. Koo, and K. S. Nam,"High Q CMOS-compatible microwave inductors using double-metal interconnection silicon technology," IEEE Microwave and Guided Wave Lett., Vol. 7, No. 2, pp. 45-47, Feb. 1997. [9 ] C. H. Chen and M. J. Deen, "A general procedure for high-frequency noise parameter de-embedding of MOSFETs by taking the capacitive effects of metal interconnections into account, "2001 IEEE Int. “Conf. Microelectronic Test Structure Dig,pp.109-114,March 2001. [10 ] C. H. Chen and M. J. Deen, "A general noise and S-parameter de-embedding procedure for on-wafer high-frequency noise measurements of MOSFETs, "IEEE Tran. Microwave Theory and Tech.,vol.MTT-49,no.5,pp. 1004-1005,May 2001. [11 ] E. P. Vandarnme, D. M. M.-P. Schreurs,and C. V. Dinther, "Improved three-step de-embedding method to accurately account for the influence of pad parasitics in silicon on-wafer RF test structures, "IEEE Trans.Electron Devices,vol. ED-48,no. 4,pp. 737-742 April 2001. [12 ] 陳良波博士、蘇嘉禕、林大中、曾博民、黃國威博士 奈米通訊。第六卷第三期 24_矽基電感等效電路模型參數之自動化萃取法。 [13 ] J. A. Power, S. C. Kelly, E. C. Griffith, and M. O,Neill, "An Investigation of On-Chip Spiral Inductors on a 0.6μm BiCMOS Technology for RF Applications, "Proc.IEEE 1999 Int. Conf. on Microelectronic Test Structures, Vol 12, March 1999. [14 ] J. N. Burghartz, M. Soyuer, K. A. Jenkins, M. Kies, P. Dolan, K. Stein, J. Malinowski, and D. L. Harame, “RF components implemented in an analog SiGe bipolar technology,” in Proc. BCTM, 1996, pp. 138–141. [15 ] J. N.Burghartz, "Progress in RF Inductors on Silicon-Understanding Substrate Losses, "IBM Research Division, T.J. Watson Research Center, P.O.BOX 218, Yorktown Heights, New York 10598,USA.id NH0925159012 sid 905516 cfn 0 / id NH0925159013 auc 呂正傑 tic 黏著層對鉭酸鍶鉍鐵電記憶體顯微結構與特性之影響 adc 胡塵滌 ty 博士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 英文 pg 105 kwc 鉭酸鍶鉍 kwc 鐵電材料 kwc 掃描式電容顯微鏡 abc 本論文第一部份之內容,在於探討鈦(Ti)以及鉭(Ta)黏著層,對以有機金屬法鍍製之鉭酸鍶鉍(SrBi2Ta2O9, SBT)薄膜的鐵電特性及微結構的影響;結果發現,黏著層對於鉭酸鍶鉍薄膜的最終微結構與物理特性,扮演著重要的角色。黏著層原子(包括鈦及鉭)在750℃、1分鐘熱處理條件下,皆會往外擴散至鉑(Pt)下電極的表面,且鈦原子的擴散速率大於鉭原子。由表面分析以及極化-電場(P-E)量測結果得知,擴散至下電極表面之鈦及鉭原子,造成了位於下電極上方之鉭酸鍶鉍薄膜顯微結構和極化特性的差異。此外,利用穿透式電子顯微鏡分析,觀察到一層薄且具奈米尺寸晶粒的鉑金屬介面層,形成於鉭酸鍶鉍與鉑下電極之間。能量散佈光譜儀的分析結果指出,有大量的氧化鈦形成於這層奈米晶粒鉑金屬層的晶界,這個現象與試片在氧氣氛下熱處理,促使鈦、氧沿晶界擴散有關。鉑電極結構的改變,據推論與氧化鈦的形成有關;氧化鈦形成會造成大量的體積膨脹,並使鉑電極承受應力,這應力即是奈米晶粒鉑金屬層產生的推力。此外,形成於奈米晶粒鉑層與鉑下電極介面的氧化鈦,會導致鉑電極結構的劣化,它可能造成鉭酸鍶鉍薄膜的剝落,進而影響鐵電電容特性。因此,以鉭金屬作為鉭酸鍶鉍電容的黏著層,應是較佳的選擇。 tc Abstract i Acknowledgement iii Table of contents iv Table captions vii Figure captions viii Abbreviations xvi 1. Introduction 1 1.1 Effects of Ti and Ta adhesion layers on the properties of ferroelectric memories 1 1.1.1 General background 1 1.1.2 Motivation of this study 2 1.2 Investigation of local characteristics and domain structures in ferroelectric thin films 2 1.2.1 General background 2 1.2.2 Motivation of this study 3 1.3 Organization of this thesis 3 2. Literature review 5 2.1 Strontium Bismuth Tantalate (SBT) thin film. 5 2.1.1 Why SBT? 5 2.1.2 Crystal structure and macroscopic properties of SBT. 7 2.1.3 Ferroelectric domains 9 2.2 Titanium adhesion layer for ferroelectric memory 10 2.3 Ferroelectric domain visualization methods 13 3. Effects of Ti and Ta adhesion layers on the properties of ferroelectric memories 29 3.1 Experimental 29 3.1.1 Film preparation 29 3.1.2 Film characterization 30 3.2 Result and discussion 30 3.2.1 Microstructures and ferroelectric properties of SBT capacitors with Ti and Ta adhesion layers 30 3.2.1.1 Characteristics of Pt/Ti and Pt/Ta bottom electrodes 30 3.2.1.2 Crystallization structure and surface morphology of SBT thin films 32 3.2.1.3 Ferroelectric properties 34 3.2.1.4 The effects of out-diffused Ti and Ta atoms 35 3.2.1.5 Summary 37 3.2.2 TEM analysis of SBT capacitors 38 3.2.2.1 SBT capacitors 38 3.2.2.2 The microstructure of SBT film 39 3.2.2.3 SBT/Pt interface 40 3.2.2.4 The structure of Pt layer 41 3.2.2.5 Nano-crystalline Pt layer 42 3.2.2.6 Stress induced formation of the nano-Pt layer 44 3.2.2.7 Summary 48 3.3 Summary 48 4. Investigation of local characteristics and domain structures in ferroelectric thin films 72 4.1 Experimental 72 4.2 Result and discussion 73 4.2.1 Domain structure study of SBT by scanning capacitance microscopy (SCM) 73 4.2.1.1 Macroscopic CV curve of SBT 73 4.2.1.2 Voltage-induced domain patterns 73 4.2.1.3 Domain structure acquired under bias 75 4.2.1.4 Summary 76 4.2.2 Contrast mechanism of ferroelectric domains in SCM 77 4.2.2.1 Domain structure in virgin SBT 77 4.2.2.2 local characteristics in SBT 78 4.2.2.3 Nano-size domain 81 4.2.2.4 Summary 83 4.2.3 Photoperturbation-induced differential capacitance variations in SBT thin films 83 4.2.3.1 The effect of AFM laser on SCM 83 4.2.3.2 The effect of green laser on SCM 84 4.2.3.3 The laser effect on switching properties of SBT 85 4.2.3.4 Summary 86 4.3 Summary 86 5. Conclusions 101 6. Suggests for future work 103 Appendix: A mechanism for the reconstruction of nano-Pt layer in SBT/Pt/Ti/SiO2/Si A1 References R1rf 1C. A. Paz de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, and J. F. Scott, Nature (London) 374, 627 (1995). 2H. N. Al-Shareef, K. D. Gifford, S. H. Rou, P. D. Hren, O. Auciello, and A. I. Kingon, Integrated Ferroelectrics 3, 321 (1993). 3S. T. Kim, H. H. Kim, M. Y. Lee, and W. J. Lee, Jpn. J. Appl. Phps. Part 1 36, 294 (1997). 4H. J. Nam, H. H. Kim, and W. J. Lee, Jpn. J. Appl. Phps. Part 1 37, 3462 (1998). 5H. J. Nam, D. K. Choi, and W. J. Lee, Thin Solid Films 371, 264 (2000). 6S. H. Kim, D. J. Kim, J. P. Maria, A. I. Kingon, S. K. Streiffer, J. Im, O. Auciello, and A. R. Krauss, Appl. Phys. Ltter. 76, 496 (2000). 7N. J. Seong, C. H. Yang, W. C. Shin, and S. G. Yoon, Appl. Phys. Ltter. 72, 1374 (1998). 8C. H. Lu, and B. K. Fang, J. Mater. Res. 12, 2104 (1997). 9C. H. Lu, B. K. Fang, and C. Y. Wen, Jpn. J. Appl. Phys. Part 1 39, 5573 (2000). 10K. Hholloway, P. M. Fryer, C. Cabral, Jr., J. M. E. Harper, P. J. Bailey, and K. H. Kelleher, J. Appl. Phys. 71, 5433 (1992). 11A. Grill, W. Kane, J. Viggiano, M. Brady, and R. Laibowitz, J. Mater. Res., 7, 3260 (1992). 12D. S. Yoon, H. K. Baik, S. M. Lee, S. I. Lee H. Ryu, and H. J. Lee, J. Vac. Sci. Technol. B, 16, 1137 (1998). 13W. J. Merz, Phys. Rev. 95, 690 (1954). 14F. Gilletta, Phys. Status Solidi 11, 721 (1955). 15V. P. Konstantinova, N. A. Tichomirova, and M. Glogarova, Ferroelectrics 20, 259 (1978). 16S. Zhu and W. Cao, Phys. Rev. Lett. 79, 2558 (1997). 17F. Saurenbach and B. D. Terris, Appl. Phys. Lett. 56, 1703 (1990). 18T. Yamatomo, J. Sakamoto, E. Matuzaki and R. Takayama, Jpn. J. Appl. Phys. 38, 5332 (1999). 19Y. Cho, S. Atsumi and K. Nakamura, Jpn. J. Appl. Phys. 36, 3152, (1997). 20A. Gruverman, O. Auciello, H. Tokumoto, J. Vac. Sci. Technol. B 14, 602 (1996). 21M. N. Chang, C. Y. Chen, F. M. Pan, T. Y. Chang, and T. F. Lei, Electrochem Solid-State Lett., 5, G69 (2002). 22P. J. Hansen, Y. E. Strausser, A. N. Erickson, E. J. Tarsa, P. Kozodoy, E. G. Brazel, J. P. Ibbetson, U. Mishra, V. Narayanamurti, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 72, 2247 (1998). 23J.F. Scott and C.A. Paz de Araujo, Science 246, 1400 (1989). 24E.L. Colla, A.K. Tagantsev, D.V. Taylor, and A.L. Kholkin, Integr. Ferroel. 18, 19 (1997). 25M. Grossmann, D. Bolten, O. Lohse, U. Boettger, R. Waser, and S. Tiedke, Appl. Phys Lett. 77, 1894 (2000). 26J.M. Bell, P.C. Knight, and G.R. Johnston, page 93 in: Ferroelectricity and related phenomena,Vol. 10 (Integrated ferroelectric devices and technologies). Part 1: Ferroelectric thin films: synthesis and basic properties. Eds. C. Paz de Araujo, J. F. Scott, and G.W. Taylor. Gordon and Breach, Amsterdam 1996. 27C.A. Paz de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, and J.F. Scott, Nature 374, 627 (1995). 28P.C. Fazan, Integr. Ferroelectr. 4, 247 (1994). 29H.N. Lee, Y.T. Kim, and S.H. Choh, Ferroelectr. 197, 733 (1997). 30R. Ramesh, A. Inam, W.K. Chan, B. Wilkens, K. Myers, K. Remschnig, D.L. Hart, and J.M. Tarascon, Science 252, 944 (1991). 31H. S. Nalwa, Handbook of Thin Film Materials 3: Ferroelectric and Dielectric Thin Films (Academic, San Diego, 2002). 32O. Auciello, Integ. Ferroelec. 15, 211 (1997). 33V. Ya. Shur, N. Yu. Ponomarev, N.A. Tonkacheva, S.D. Makarov, E.V. Nikolaeva, E.I. Shishkin, L.A. Suslov, N.N. Salashchenko, and E.B. Klyuenkov, Phys. Solid State 39, 609 (1997). 34Q.Y. Jiang, E.C. Subbarao, and L.E. Cross, J. Appl. Phys. 75, 7433 (1994). 35J. J. Lee, C.L. Thio, and S.B. Desu, Physica Status Solidi A 151, 171 (1995). 36B. Aurivillius, Arkiv Kemi 1, 463 (1949) 37G. A. Smolenskii, V.A. Isupov, A. I. Agranovskaya, Sov. Phys. Solid State 3, 651 (1961). 38E. C. Subbarao, J. Phys. Chem. Solids 23, 665 (1962). 39E.C. Subbarao, Phys. Rev. 122, 804 (1961). 40L.G. Van Uitert and L. Egerton, J. Appl. Phys. 32, 959 (1961). 41R.E. Newnham, R.W. Wolfe, R.S. Horsey, F.A. Diaz-Colon, and M.I. Kay, Mater. Res. Bull. 8, 1183 (1973). 42Y. Shimakawa, Y. Kubo, Y. Nakagawa, T. Kamiyama, H. Asano, and F. Izumi, Appl. Phys. Lett. 74, 1904 (1999). 43O. Auciello, J. F. Scott and R. Ramesh, Physics Today July, 32 (1998). 44H. Tabata, T. Yanagita, and T. Kawai, IEICE Trans. Electron. E81-C, 566 (1998). 45S.K. Kim , M. Miyayama, and H. Yanagida, J. Ceram. Soc. Japan 102, 722 (1994). 46M. Tachiki, K. Yamamuro, and T. Kobayashi, Mater. Sci. Eng. B 41, 131 (1996). 47T. Takenaka, K. Sakata, and K. Toda, Jpn. J. Appl. Phys. 24, 730 (1985). 48J. Fousek and V. Janovec, J. Appl. Phys. 40, 135 (1969). 49C. Harnagea, Ph.D. thesis: local piezoelectric response and domain structures in ferroelectric thin films investigated by voltage-modulated force microscopy (2000). 50C. A. Araujo, L. D. McMillan, B. M. Melnick, J. D. Cuchiaro and J. F. Scott, Ferroelectrics 104, 241 (1990). 51T. Sakuma, S. Yamamichi, S. Matsubara, H. Yamaguchi and Y. Miyasaka, Appl. Phys. Lett. 57, 2431 (1990). 52R. E. Jones, P. D. Maniar, J. O. Olowolafe, Jr., A. C. Campbell and C. J. Mogab, Appl. Phys. Lett. 60, 1022 (1992). 53K. H. Park, C. Y. Kim, Y. W. Jeong, H. J. Kwon and K. Y. Kim, J. Mater. Res. 10, 1790 (1995). 54K. Sreenivas, J. Reaney, T. Maeder, N. Setter, C. Jagadish and R. G. Elliman, J. Appl. Phys. 75, 232 (1994). 55R. M. Walton, H. Liu, J. L. Gland and J. W. Schwank, Actuators B 41, 143 (1997). 56S. L. Firebaugh, K. F. Jensen and M. A. Schmidt, J. Microelectromechanical systems 7, 128 (1998). 57C. Pliangos, I. V. Yentekakis, S. Ladas and C. G. Vayenas, J. Catal. 159, 189 (1996). 58J. O. Olowolafe, R. E. Jones, Jr., A. C. Campbell, R. I. Hegde and C. J. Mogab, J. Appl. Phys. 73, 1764 (1993). 59S. Y. Kweon, S. K. Choi, S. J. Yeon and J. S. Roh, Jpn. J. Appl. Phps. 40, 5850, (2001). 60W. W. Jung, S. K. Choi, S. Y. Kweon and S. J. Yeom, Appl. Phys. Ltter. 83, 2160 (2003). 61G. K. H. Pang and K. Z. B. Kishi, J. Phys. D: Appl. Phys. 31, 2846 (1998). 62J. L. Giocondi and G. S. Rohrer, Mat. Res. Soc. Symp. Proc. 654, AA7.4.1 (2001). 63S. B. Ren, C. J. Lu, H. M. Shen, and Y. N. Wang, Phys. Rev. B 54, R14 337 (1996). 64J. W. Hong, K. H. Noh, S.I. Park, S. I. Kwun and Z. G. Khim, Phys. Rev. B 58, R15 5078 (1998). 65Y. Cho, S. Kazuta and K. Matsuura, Appl. Phys. Ltter. 75, 2833 (1999). 66C. Harnagea, A. Pignolet, M. Alexe, D. Hesse and U. Gosele, Appl. Phys. A 70, 261 (2000). 67D. Damjanovic, Rep. Prog. Phys. 61, 1267 (1998). 68S. S. Park, C. H. Yang, and S. G. Yoon, J. Electrochem. Soc. 144, 2855 (1997). 69K. Aoki, Y. Fukuda, K. Numata, A. Nishimura, Jpn. J. Appl. Phys., Part 1 34, 192 (1995). 70I. Koiwa, T. Kanehara, J. Mita, T. Iwabuchi, T. Osaka, S. Ono, and M. Maeda, Jpn. J. Appl. Phys. Part 1 35, 4946 (1996). 71T. Osaka, A. Sakakibara, T. Seki, S. Ono, I. Koiwa, and A. Hashimoto, Jpn. J. Appl. Phys. Part 1 37, 597 (1998). 72P. Tejedor, C. Ocal, E. Barrena, R. Jimenez, C. Alemany, and J. Mendiola, Appl. Surf. Sci. 175,759 (2001). 73S. T. Tay, H. Jiang, C. H. A. Huan, A. T. S. Wee, and R. Liu, J. Appl. Phys. 88, 5928 (2000). 74S. B. Desu, D. P. Vijay, X. Zhang, and B. P. He, Appl. Phys. Lett. 69, 1719 (1996). 75G. Schindler, W. Hartner, V. Joshi, N. Solayappan, G. Derbenwick, and C. Mazure, Integrated Ferroelectrics 17, 421 (1997). 76R. Bruchhaus, D. Pitzer, O. Eibl, U. Scheithauer, and W. Hoseler, Mater. Res. Soc. Symp. Proc. 243, 123 (1992). 77O. Auciello, A. R. Krauss, J. Im, and J. A. Schultz, Annu. Rev. Mater. Sci. 28, 375 (1998). 78S. B. Ren, C. J. Lu, H. M. Shen, and Y. N. Wang, Phys. Rev. B 55, 3485 (1997). 79T. J. Boyle, C. D. Buchheit, M. A. Rodriguez, H. N. Al-shareef, B. Scott and J. W. Ziller, J. Mater. Res. 11, 2274 (1996). 80M. A. Rodriguez, T. J. Boyle, B. A. Hernandez, C. D. Buchheit, M. O. Eatough, J. Mater. Res. 11, 2282 (1996). 81J. S. Lee, H. J. Kwon, Y. W. Jeong, H. H. Kim, S. J. Hyun and T. W. Noh, Appl. Phys. Lett. 74, 2690 (1999). 82Metal Handbook, Alloy Phase Diagram Vol. 3, pp. 2-348 (ASM International, USA, 1992). 83Robert E. Reed-Hill, Physical Metallurgy Principles (PWS-KENT Publishing Company, Boston, 1992). 84S. Y. Kweon, S. J. Yeon, H. J. Sun, N. K. Kim, Y. S. Yu and S. K. Lee, Integr. Ferroelectr. 25, 299 (1999). 85 B. S. Kwak, A. Erbil, J. D. Budai, M. F. Chisholm and L. A. Boatner, Phys. Rev. B 49, 14865 (1994). 86H. M. Choi, S. K. Choi, J. Vac. Sci. & Technol. A. 13, 2823 (1995). 87S. Y. Kweon, S. H. Yi, S. K. Choi, J. Vac. Sci. & Technol. A. 13, 57 (1997). 88S. Zafar, V. Kaushik, P. Laberge, P. Chu, R. E. Jones, R. L. Hance, P. Zurcher, B. E. White, D. Taylor, B. Melnick and S. Gillespie, J. Appl. Phys., 82, 4469 (1997). 89Charlie R. Brook, Heat treatment, structure and properties of nonferrous alloys (American Society for Metals, USA, 1982). 90G. A. C. M. Spierings, M. J. E. Ulenaers, G. L. M. Kampchoer, H. A. M. van Hal and P. K. Larsen, J. Appl. Phys. 70, 2290 (1991). 91C. Paz de Araujo, J. F. Scott and G. W. Taylor, Ferroelectric Thin Films: synthesis and basic properties (Golden and Breach Publishers, The Netherlands, 1996). 92A. Gruverman, O. Auciello, H. Tokumoto, J. Vac. Sci. Technol. B 14, 602 (1996). 93A. Gruverman, and Y. Ikeda, Jpn. J. Appl. Phys. 37, L939, (1998). 94T. Yamamoto, Y. Suzuki, M. Miyashita, H. Sugimura, N. Nakagiri, J. Vac. Sci. Technol. B 15, 1547 (1997). 95 J. F. Scott, Ferroelectric Memories (Springer, Berlin, 2000). 96M. N. Chang, C. Y. Chen, and F. M. Pan, J. H. Lai, W. W. Wan, and J. H. Liang, Appl. Phys. Lett. 82, 3955 (2003). 97G. H. Buh, J. J. Kopanski, J. F. Marchiando, A. G. Birdwell and Y. Kuk, J. Appl. Phys. 94, 2680 (2003). 98R. Wolfe, Applied Solid State Science 4: Advanced in materials and device research (Academic, New York, 1974). 99A. S. Bhalla, E. M. Vogel, and K. M. Nair, Ceramic Transactions 14: Electro-Optics and Nonlinear Optic Materials (The American Ceramic Society, USA, 1990). 100D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Tuttle, and R. W. Schwartz, J. Appl. Phys. 76, 4305, (1994). 101H. N. Al-Shareef, D. Dimos, T. J. Boyle, W. L. Warren, and B. A. Tuttle, Appl. Phys. Lett. 68, 690 (1996). 102L. Pintilie, M. Alexe, I. Pintilie, and T. Botila, Appl. Phys. Lett. 69, 1571 (1996). 103H. S. Nalwa, Handbook of Thin Film Materials 3: Ferroelectric and Dielectric Thin Films (Academic, San Diego, 2002). 104P. Lehnen, J. Dec, and W. Kleemann, J. Phy. D: Appl. Phys 33, 1932 (2000). 105M. Muller, E. Soergel, and K. Buse, Appl. Phys. Lett. 83, 1824 (2003).id NH0925159013 sid 907525 cfn 0 / id NH0925159014 auc 戴大閔 tic 擴散層與種晶層對CoCr-base 垂直式記錄媒體織構與磁性質的影響 adc 金重勳 adc 賴志煌 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 英文 pg 79 kwc 垂直式記錄 kwc 熱穩定度 abc 本論文主要在探討CoCr-base 垂直式紀錄材料的磁性質與微結構的關係。首先藉由白金片來調整CoCrPt三元合金靶的計量比,並從XRD與磁滯曲線來判別白金的添加對CoCrPt織構與磁性質的影響。從實驗中發現白金含量的增加有助於垂直異向性的提升。 tc Chapter 1 Introductions Chapter 2 The theory of perpendicular media and literature review Chapter 3 Experimental Methods Chapter 4 Experimental Results and Discussions Chapter 5 Conclusions Referencerf [1.1 ] S.Iwasaki and K.Takemura,"An analysis for the circular mode magnetization in short wave length recording," IEEE Trans. Magn. Vol.11, pp.1173-1175,Sept. 1975 [1.2 ] Fullerton EE, Margulies DT,” Antiferromagnetically coupled magnetic media layers for thermally stable high-density recording” APPLIED PHYSICS LETTERS 77 (23) P3806 DEC 4 2000 [1.3 ] Atsushi Kikukawa, Yukio Honda, Yoshiyuki Hirayama, and Masaaki Futamoto, “Noise Characteristic of double-layered Perpendicular Media Using Soft Magnetic Underlayer Materials,” IEEE Trans. Magn., vol. 36, no. 5, 2000 [1.4 ] S. Yanase, N. Honda, J. Ariake, and K. Ouchi, “High density magnetic recording using perpendicular recording media with a thin backlayer,” Tech. Rep. IEICE, vol. 98-620, 1999. [1.5 ] L. Wu, N. Honda, and K. Ouchi, “Low noise Co/Pd multilayer media for perpendicular magnetic recording,” IEEE Trans. Magn., vol. 35, pp. 2775–2777, Sept. 1999. [1.6 ] C. P. Luo, S. H. Liou, and D. J.Sellmyer, “FePt:SiO2 granular thin film for high density magnetic recording”, J. Appl. Phys. 87(9) 2000 P6941-6943. [1.7 ] Kazuhiro Ouchi, Naoki Honda, “Overview of Latest Work on Perpendicular Recording Media” IEEE Trans. Magn.,vol. 36, NO. 1, Jan 2000 [2.1 ] Bin Lu, Dieter Weller, Ganping Ju, Ashein Sunder, ”Development of Co-alloys for perpendicular Magnetic Recording Media” IEEE Trans. Magn. Vol39 no.4 P1908 July 2003. [2.2 ] K.W. Wierman,T.J. Klemmer, B.Lu, G.Ju ”RuxCr1-x/Ta underlayer for Co-alloy perpendicular magnetic recording” JAP vol. 91 No.10 P8031 May 2002 [2.3 ] Bin Lu, Timothy Klemmer, Anup G. Roy, Chunghee Chang” Study of stacking faults in Co-alloy perpendicular media, ”JAP vol. 91, No10 P 8025 MAY 2002 [2.4 ] R. Lawrence Comstock, “Introduction to Magnetism and Magnetic Recording”, Ch. 6 & Ch.8, J. Wiley & Sons, Inc., 1999. [2.5 ] Anup G. Roy, David E. Laughlin ”Effect of seed layers in improving the crystallographic texture of CoCrPt perpendicular recording media” JAP vol.91 No.10 P8076 May 2002 [2.6 ] I. S Lee,H. Ryu and H. J. Lee, ”Role of a paramagnetic amorphous CoZr seed layer in CoCrPt/Ti perpendicular media” JAP vol.85 No.8 P 6133 April 1999 [2.7 ] C.L. Platt, K.W. Wierman, E.B. Svedberg, “Structural and magnetic properties of CoCrPt perpendicular media grown on different buffer layers” JMMM 247 P153-158 Jan. 2002 [2.8 ] K.Tanahashi, N. Shimizu, A.Kikukawa, Y. Takahashi, “low-noise CoCrPt/FeTaC double layer media with NiTaZr intermediate layer” JMMM 235 (2001) 59-63 [2.9 ] J. Ariake, N. Honda, and K. Ouchi ” Pt/C Intermediate Layer for Co–Cr Perpendicular Magnetic Recording Media With Extremely High Resolution” IEEE Trans. Magn. , VOL. 39, NO. 5, Sept. 2003 P2294 [2.10 ] J.Ariake, N. Honda , K. Ouchi “Pt and Pd intermediate layers for controlling CoCrNbPt layer growth in double layered perpendicular magnetic recording” JMMM 242-245 (2002) 311-316 [2.11 ]Yoshiki Hirayama, I. Tamai, Y.Hosoe, “Ultrathin Intermediate Layer for Perpendicular Recording Media”, IEEE Trans. Magn. Vol.39, No.5, Sept. 2003 [2.12 ] Shin Saito, Fumikazu Hoshi, and Migaku Takahashi, “Effects of Very Thin Carbon Seedlayer on Formation of hcp Phase for CoCrPtB/Co60Cr40 Perpendicular Magnetic Recording Media”, IEEE Trans. Magn. VOL. 38, NO. 5, Sept. 2002 P1985 [2.13 ] Min Zheng, Geon Choe, ”Seedlayer and preheating effects on crystallography and recording performance of CoCrPtB perpendicular media” IEEE trans. Magn. VoL. 38, No. 5, Sept. 2002 P1979 [2.14 ] E.W. Soo, J.P. Wang, C.J Sun“The effects of NiP seed layer in Co-alloy perpendicular thin film media” JMMM 235 (2001) 93-97 [2.15 ] Bin Lu, Dieter Weller, Ashwin Sunder, Ganping Ju, and Xiaowei Wu, Richard Brockie, Tom Nolan, Charles Brucker, and Rajiv Ranjan, “High anisotropy CoCrPt(B) media for perpendicular magnetic recording”JOURNAL OF APPLIED PHYSICS VOLUME 93, NUMBER 10 15 MAY 2003 P6751 [2.16 ] Pyungwoo Jang, Sooyoul Hong, J. Kim “Role of Ag seed layer for CoCrPt/Ti perpendicular recording media” J.A.P. Vol.93, No. 10 May 2003, P7741 [2.17 ] Y. Hirayama, A. Kikukawa, Y. Honda, M. Futamoto, “Low Noise Performance of CoCrPt Single-Layer Perpendicular Magnetic Recording Media” IEEE Trans. Magn. Vol.36, No.5 Sept. 2000, P2396 [2.18 ] Y.Honda, Y.Hirayama, A Kikukawa,“Effects of Carbon Intermediate Layer on Structure and Magnetic Properties of Double-Layer Perpendicular Magnetic Recording Media” IEICE Trans. Electron. Vol.E85-C, No.10 Oct. 2002 P1745 [2.19 ] Y. Ikeda, Y. Sonobe, G. Zeltzer “Microstructure study of CoCrPt/Ti/NiAl perpendicular media” JMMM 235 (2001) 104-109 [2.20 ] E. M. T. Velu Member, IEEE, Sudhir Malhotr, Member, IEEE, Gerardo Bertero, Member, IEEE, and David Wachenschwanz, Senior Member, IEEE “Low-Noise CoCrPtO Perpendicular Media With Improved Resolution” IEEE Trans Magn, Vol. 39, No. 2, March 2003 P668 [2.21 ] Hiroyuki Uwazumi, Kazuo Enomoto, Yasushi Sakai, Shunji Takenoiri.etc., “CoPtCr–SiO2 Granular Media for High-Density Perpendicular Recording” IEEE Trans. Magn., VOL. 39, NO. 4, P1914 JULY 2003 [2.22 ] W. Peng, etc,”Co/Pd and Co/Pt Multilayers with Indium Tin Oxide Seed Layers and NiFe Soft Underlayers for Perpendicular Magnetic Recording Media”, IEEE, 2001 [2.23 ] W. Peng, etc, “CoB/Pd multilayers with indium tin oxide seedlayer on NiFe underlayer for perpendicular magnetic recording”, J.A.P., 2002 [2.24 ] H. Domon, M. Takahasi, “Reduction of magnetic interaction in CoB/Pd multiplayer perpendicular media using a phase-separated Pd-SiO underlayer” J.A.P. vol. 93 No.10 May 2003 P8164 [2.25 ] Y. Sonobe, H. Muraoka, K. Miura, Y. Nakamura, ”Thermally Stable CGC Perpendicular Recording Media With Pt-Rich CoPtCr and Thin Pt Layers”, IEEE Trans. Magn. Sep 2002 P2006 [2.26 ] Y. Snobe, H. Muraoka, K. Miura, K. Takano,“Coupled granular/continuous perpendicular recording media with soft magnetic underlayer” J.A.P. Vol. 91, No.10 May 2002 P8055 [2.27 ] Naoki Honda, Member, IEEE, Kazuhiro Ouchi, Fellow, IEEE, and Shun-ichi Iwasaki, Life Fellow, IEEE, “Design Consideration of Ultrahigh-Density Perpendicular Magnetic Recording Media” IEEE TRANSACTIONS ON MAGNETICS, VOL. 38, NO. 4, JULY 2002, P1615 [2.28 ] P. E. Kelly, K. O’ Grady, P. I. Mayo, “Switching Mechanism in Cobalt-Phosphorus Thin Films” IEEE Trans. Magn. Vol. 25, No. 5, Sept. 1989 P3881 [2.29 ] J. Schoenmaker, I.C. Oppenheim, “Magnetic and Structural Characterization of CoCrPt and CoCr Thin Films Deposited by Magnetron Sputtering” JMMM 226-230 (2001) 1653-1655 [2.30 ] X. W. Wu, R. J. M. van de Veerdonk, R. W. Chantrell, and D. Weller“△M study of perpendicular recording media” JOURNAL OF APPLIED PHYSICS VOLUME 93, NUMBER 10 15 MAY 2003 P6760. [2.31 ] René J. M. van de Veerdonk, Xiaowei Wu, and Dieter Weller “Determination of Switching Field Distributions for Perpendicular Recording Media” IEEE Trans. on Magn., VOL. 39, NO. 1, JANUARY 2003 P590 [4.1 ] DINA S, GEYER U, VANMINNIGERODE G “Macroscopic Intrinsic Stress Formation in Amorphous CuTi Films” ANNALEN DER PHYSIK Vol.4 No.7: 1955 P623id NH0925159014 sid 913501 cfn 0 / id NH0925159015 auc 張耀中 tic 高儲氫量鎂基複合材料之研究 adc 陳建瑞 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 83 kwc 鎂基複合材 kwc 儲氫材料 kwc 金屬氫化物 abc 摘 要 rf [1 ] 工業材料142期, 1998, P. 86. [2 ] C.P. Chen, B.H. Liu, Z.P. Li, J. Wu, Q.D. Wang, Z. Phys. Chem. 181 (1993) 259. [3 ] G. Liang, E. Wang, S. Fang, J. Alloys and Compounds, 223 (1) (1995) 111. [4 ] G. Liang, S. Boily, J. Huot, A. Van Neste, R. Schulz, J. Alloys and Compounds, 297 (2000) 261. [5 ] G. Liang, E. Wang, S. Fang, J. Alloys and Compounds, 223 (1995) 111. [6 ] Y.Q. Hu, H.F. Zhang, A.M. Wang, B.Z. Ding, Z.Q. Hu, J. Alloys and Compounds, 354 (2003) 296. [7 ] T. Gramham, Phil. Trans. Roy. Soc. London, 156 (1866) 399. [8 ] K.C. Hoffman, W.E. Winsche, R.H. Wiswall, J.J. Reilly, T.V. Sheehan, and C.H. Waide, International Automotive Engineering congress, Detroit 1969. [9 ] F.A. Kuijpers,“Hydrogen Sorption Properties of The La1-XCaXNi5 and La(Ni1-XCuX)5 Systems,”Philips Res. Rep. 28 (1973) 1. [10 ] J.J. Reilly, R.H. Wiswall, Inorg. Chem. 13 (1974) 218. [11 ] 林美姿, “材料與社會” , 1991, P. 27. [12 ] 朱志堯,李玉興,“金屬新秀”,凡異出版社 民國89年6月初版 [13 ] 大角泰章, 水素吸藏合金, 1993. [14 ] A. Zaluska, L. Zaluski, J.O. Strom-Olsen, J. Alloys and Compounds, 288 (1999) 217. [15 ] F.D. Manchester, D. Khatamian, Materials Science Forum, 31 (1988) 261. [16 ] L. Schlapbach, Hydrogen in intermetallic Compounds II, ch. Surface properties and activation. Topics in Applied Physics, 1992. [17 ] A. Krozer, B. Kasemo, J. Phys. Condens. Matter 1 (1989) 1533. [18 ] F. Stillesjo, S. Olafsson, B. Hjorvasson, E. Karlsson, Zeit. Phys. Chem. 181 (1993) 353. [19 ] B. Vigeholm, K. Jensen, B. Larsen, A.S. Pedersen, J. Less-Common Met. 131 (1987) 133. [20 ] B. Vigeholm, J. Kjoller, B. Larsen, A.S. Pedersen, J. Less-Common Met. 89 (1983) 135. [21 ] C. Stander, Z.Phys. Chem. N.F. 104 (1977) 229. [22 ] M. Stioui, A. Grayevski, A. Resnik, D. Shaltiel, N. Kaplan, J. Less-Common Met. 123 (1986) 9. [23 ] I. Hiraca, T. Matsnmoto, M. Amano, Y. Sasaki, J. Less-Common Metals, 85(1983)89. [24 ] L. Zaluski, A. Zaluska, J. O. Ström-Olsen, J. Alloys and Compounds, 217(1995) 245. [25 ] B. Bogdanovic, European Patent 3562 4979; US. Patent 4,554,153 (1985), p.267, Marcel Dekker, Inc. NewYork and Basel. [26 ] S. Nohara, H. Inoue, Y. Fukumoto, C. Iwakura, J. Alloys and Compounds, 259(1997)183. [27 ] Tatsuoki Kohno, Motoya Kanda, J. Electrochem. Soc. 144 (1997) 2384. [28 ] S. Orimo, K. Ikeda, H. Fujii, K.Yamamoto, J. Alloys and Compounds, 260 (1997) 143. [29 ] W. E. Wallace, R. F. Karlicek, Jr. H. Imamura, J. Phys. Chem. 83 (1979) 1708. [30 ] F. J. Lin, G. Sandrock, S. Suda, J. Alloys and Compounds, 190 (1992) 57. [31 ] R. Ferro and A. Saccone, Material Science and Technology, Vol.1. structure of Solid, V. Geroldcedl, VCH, Weinheim, Germany, p.182. [32 ] 工業材料研究所,“小型二次電池市場與技術專輯”,1996 [33 ] Andreas Zuttel, “ Materials for hydrogen storage “, Materialstoday September 2003, p. 24. [34 ] G. E. Fernandes, D. Rodriguez, and G. Meyer, Int. J. HydrogenEnergy, 23 (1998) 1193. [35 ] M. Martin, C. Gommel. C. Borkhart, E. Fromm. J. Alloys comp. , 238 (1996 ) 193. [36 ] T. Haraki, N. Inomata, H. Uchida, J. Alloys and Compounds, 407 (1999) 293. [37 ] M. Martin, C.gommel, C. BorkHart, E.Fromm, J. Alloys and Compounds, 238 (1996) 193. [38 ] L.Schlapbach, in: L. Schlapbach (Ed. ), Topics in Applied Physics, Hydrogen in Intermetallic Compounds I , Springer, Berlin, 63 (1998) 2. [39 ] G. Sandrock, J. Alloys and Compounds, 877 (1999) 293. [40 ] 朱啟寶, 國立清華大學, 碩士論文, 1998. [41 ] G. D. Sandrock, “ The Metallurgy and Production of Rechargeable Hydrides ”. [42 ] Q. A. Zhang, Y. Q. Lei, X. G. Yang, Y. L. Du, Q. D. Wang, J. Alloys and Compounds, 305 (2000) 125. [43 ] T. B. Flanagan, W. A. Oates, J. Less-Common Met. 100 (1984) 299. [44 ] V. T. Venkatesan, W. E. Wallacwe ,J. Less-Common Met. 91 (1983) 239. [45 ] T. B. Flanagan, H. S. Chung, J. Less-Common Met. 125 (1986) 247. [46 ] B. Baranowski, J. Alloy and Compound, 200 (1993) 87. [47 ] T. Saito, K. Suwa, T. Kwamura, J. Alloys and Compounds, 253 (1997) 682. [48 ] A. Anani, A. Visintin, K. Petrov, S. Srinvasan, J. of Power Source, 47 (1994) 267. [49 ] M. E. Unates, M. E. Folquer, J. R. Vilche, A. J.Arvia, “ The influence of foreign cations on the electrochemical behavior of the nickel hydroxide ”, J. Electrochem. Soc. 139 (1992) 2697. [50 ] J. S. Benjamin, Sci. Amer. 234 (1976) 40. [51 ] C. C. Koch, J. D. Whittenbenberger, Elsevier (1995)339-356.id NH0925159015 sid 913507 cfn 0 / id NH0925159016 auc 吳美慧 tic 電場調諧鋯酸鉛鋇薄膜 adc 吳振名 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 87 kwc 微波 kwc 調諧 kwc 鋯酸鉛鋇 kwc 鐵電薄膜 abc 本實驗利用化學液相沈積法(chemical solution deposition,CSD)在Pt/Ti/SiO2/Si基板上鍍製鋯酸鉛鋇(Pb1-xBaxZrO3,PBZ)順電相薄膜,就以下幾種參數去探討其對薄膜電性的影響:(1)改變鉛鋇比例:以x = 0.8、0.6、0.4成分去探討不同鉛鋇比例對電性有何影響,由結果得知其介電常數、調變值和優異值(FoM)隨著Ba含量的增加而降低,而x = 0.4 的PBZ薄膜,在熱處理溫度750℃有最佳的電性:在頻率100kHz下,介電常數約150,在頻率1MHz、外加電場475kV/cm下,調變值約45%, FoM值約60;(2)熱處理溫度:以x=0.4成分的PBZ薄膜,探討熱處理溫度從650~750℃對電性有何影響,由結果得知其介電常數、調變值和FoM值隨著熱處理溫度增加而增加,顯示薄膜結晶性越好,其電性也越佳;(3)不同膜厚:以鍍覆2、4、6、8層來改變薄膜厚度來探討其對介電常數和調變值有何影響,其薄膜厚度分別為0.12、0.21、0.3、0.4μm,由結果得知其介電常數和調變值大致上隨著膜厚增加而增加,FoM值卻降低,;(4)改變熱處理方式:以分層RTA,之後再進行爐管熱處理,探討不同的熱處理方式對介電常數和調變值有何影響,由結果得知其介電常數、調變值和FoM值隨著爐管熱處理溫度增加而增加,但其幅度比一般熱處理方式來得小,顯示影響電性的主要因素為RTA的溫度。 rf 1. Y. A. Jeon, T. S. Seo, and S. G. Yoon, “Effect of Ni Doping on Improvement of the Tunability and Dielectric Loss of Ba0.5Sr0.5TiO3 Thin Films for Microwave Tunable Devices”, Jpn. J. Appl. Phys. 40, 6496 (2001). 2. C. W.ang, B. L. Cheng, S. Y. Wang, H. B. Lu, Y. L. Zhou, Z. H. Chen, and G. Z. Yang, “Improved Dielectric properties and Tunability of Multilayered Thin Films of (Ba0.8Sr0.2)(Ti1-xZrx)O3 with Compositionally Graded Layer”, Appl. Phys. Lett. 84(5), 765 (2004). 3. M. W. Cole, P. C. Joshi, and M. H. Ervin, “La Doped Ba1-xSrxTiO3 Thin Films for Tunable Device Applications”, J. Appl. Phys. 89, 6336 (2001). 4. X. Zhu, W. Peng, J. miao, and D. Zheng, “Fabrication and Characterization of Tunable Dielectric Ba0.5Sr0.5TiO3 Thin Films by Pulsed Laser Deposition”, Mater. Lett. 58, 2045 (2004). 5. M. W. Cole, W. D. Nothwang, C. Hubbard, and M. Ervin, “Low Dielectric Loss and Enhanced Tunability of Ba0.6Sr0.4TiO3 Based Thin Films via Material Compositional Design and Optimized Film Processing Methods”, J. Appl. Phys. 93(11), 9218 (2003). 6. S. S. Toncich, “Potential Impact of Ferroelectric Technology For PCS and Cellular Communications”, Integrated Ferroelectrics 28(1-4), 37 (2000). 7. 陳銘森, “鎳酸鑭電極對鋯鈦酸鉛溶凝膠薄膜製作與特性影響之研究”, 清華大學, 博士論文, (1996). 8. G. Lu, A. Linsebigler, and T.Y. Jr., “Ti+3 Defect Sites on TiO2 (110): Production and Chemical Detection of Active Sites”, J. Phys. Chem. 98(45), 11733 (1994). 9. G. Balducci, J. Kaspar, P. Forasiero, and M. Graziani, “Surface and Reduction Enerdeties of the CeO2-ZrO2 Catalyst”, J. Phys. Chem. B 102(3), 557 (1998). 10. Y. Xu,“Ferroelectric Materials and Their Applications”, North-Holland, Netherlands, (1998). 11. 葉明華, “脈衝雷射鍍膜法製備鈣鈦礦型鐵電薄膜之研究”, 清華大學,博士論文, (1993). 12. 李雅明, 固態電子學,全華科技, (1995). 13. M. Sayer and K. Sreenivas, “Ceramic Thin films: Fabrication and Applications”, Science 247, 1056 (1990). 14. G. H. Haerting, “Ferroelectric Thin film for Electronic Applications”, J. Vac. Sci. Tech. 9A (3), 414 (1991). 15. J. F. Scott, C. A. P. de Araujo, L. D. MzMillan, H. Yoshimori, H. Watanbe, T. Mihara, M. Azuma, T. Ueda, D. Ueda, and G. Kano, “Ferroelectric Thin Films in Integrated Microelectronic Devices”, Ferroelectrics 133, 47 (1992). 16. 林諭南, “強介電陶瓷薄膜的應用”, 工業材料 107, 49 (1995). 17. L. M. Sheppard, “Advances in Processing of ferroelectric Thin Films”, Ceram. Bull. 71, 85 (1992). 18. G.H. Yi and M.Sayer, “Sol-Gel Processing of Complex Oxide-Films”, Ceram. Bull. 70(7), 1173 (1990). 19. O.Auciello and R. Ramesh, “Electroceramic Thin Films Part Ι: Processing”, Mater. Res. Bull. 20, 21 (1996). 20. K. Sweetser, “Infrared Imaging with Ferroelectrics”, Integrated Ferroelectrics 17, 349 (1997). 21. A. T. Findikoglu, Q. X. Jia, D. W. Reagor, and X. D. Wu, “Tunable Microwave Mixing in Nonlinear Dielectric Thin Films of SrTiO3 and Sr0.5Ba0.5TiO3”, Electronics Letters, 12th Oct. 31(21), 1814 (1995). 22. A. T. Findikoglu, Q. X. Jia, and D. W. reagor, “Superconductor / Nonlinear Dielectric Bilayers for Tunable and Adaptive Microwave Devices”, IEEE Transactions on Applied Superconductivity 7(2), 2925 (1997). 23. S. G. Lu, X. H. Zhu, C. L. Mak, K. H. Wong, H. L. W. Chan, and L. Choy, “High Tunability in Compositionally Grader Epitaxial Barium Strontium Titanate Thin Films by Pulsed-Laser Deposition”, Appl. Phys. Lett. 82, 2877 (2003). 24. H. S. Kim, M. H. Lim, H. G. Kim, I. D. Kim, “Characterization of Ni-doped BST Thin Films on LSCO Buffer Layers Prepared by Pulsed Laser Deposition”, Electrochemical and Solid state Letters 7(2), J1 (2004). 25. Y. N. Oh, E. S. Choi, and S. G. Yoon, “Microwave Tunable Properties of Ni-doped (Ba0.5Sr0.5)TiO3 Thin Films Grown by Pulsed Laser Deposition”, Integrated Ferroelectrics 55, 877 (2003). 26. D. M. Bubb, J. S. Horwitz, S. B. Qadri, S. W. Kirchoefer, C. Hubert, and J. Levy, “(Ba, Sr)TiO3 Thin Films Grown by Pulsed Laser Deposition with Low Dielectric Loss at Microwave Frequencies”, Appl. Phys. A 79, 99 (2004). 27. K. B. Chong, L. B. Kong, L. F. Chen, L. Yan, C. Y. Tan, T. Yang, C. K. Ong, T. Osipowicz, “Improvement of Dielectric Loss Tangent of Al2O3 Doped Ba0.5Sr0.5TiO3 Thin Films for Tunable Microwave Devices”, J. Appl. Phys. 95(3), 1416 (2004). 28. Phase Diagram for Ceramists, Fig. 862. 29. K. Yamakawa, K. W. Gachigi, S. T. McKinstry, and J. P. Dougherty, “Structural and Electrical properties of Antiferroelectric Lead Zirconate Thin Films Prepared by Reactive Magnetron Co-Sputtering”, J. Mater. Sci. 32, 5169 (1997). 30. E. Sawaguchi, H. Maniwa, and S. Hoshino, “Antiferroelectric Structure of Lead Zirconate”, Phys. Rev. 83, 1078 (1951). 31. G. Shirane, and S. Hoshino, “X-ray Study of Phase Transition in PbZrO3 Containing Barium or Strontium”, Anta Cryat. 7, 203 (1954). 32. S. Roberts, “Dielectric properties of Lead Zirconate and Barium-Lead zirconate”, J. Am. Ceram. Soc. 33, 63 (1950). 33. E. Swaguchi, “Ferroelectricity vs. Antiferroelectricity in Solutions of PbZrO3 and PbTiO3”, J. Phys. Soc. Jpn. 8, 615 (1953). 34. O. Auciello, A. I. Kingon and S.B. Krupanidhi, “Sputter Synthesis of Ferroelectric Films and Heterostructures”, Mater. Res. Bull. 21, 25 (1996). 35. 陳三元, “強介電薄膜之液相化學法製作”, 工業材料 108, 100 (1995). 36. B. A. Tuttle, and R. W. Schwartz, “Solution Deposition of Ferroelectric Thin Films”, Mater. Res. Bull. 20, 49 (1996). 37. A. J. Moulson and J. M. Herbert, “Electroceramics, Materials, Properties and Applications”, 52 (1990). 38. 吳朗, 電子陶瓷-介電, 全新資訊圖書 (1994). 39. A. C. Carter, J. S. Horwitz, D. B. Chrisey, J. M. Pond, S. W. kirchoefer, W. Chang and P. Loferski, “The Effects of High Temperature Annealing and Composition on the Dielectric Properties of Thin Films of BaXSrZTiO3”, Mat. Res. Soc. Symp. Proc. 493, 347 (1998). 40. D. Galt, t. Rivkina, and M.W. Cromar, “Microwave Tuning Quality and Power handing of Voltage-Tunable Capacitor: Semiconductor Versus Ba1-XsrXTiO3 Film”, Mat. Res. Soc. Symp. Proc. 493, 341 (1998). 41. D. Galt, J. C. Price, J. A. beall, and R. H. ono, “Characterization of a Tunable thin Film Microwave YBa2Cu3O7-x/SrTiO3 Coplanar Capacitor”, Appl. Phys. Lett. 63(22), 3078 (1993). 42. S. S. Gevorgian, and E. L. Kollberg, “Do We Really Need Ferroelectrics in Paraelectric Phase Only in Electrically Controlled Microwave Devices”, IEEE Tran. Micro. Theory Tech. 49(11), 2117 (2001). 43. 曾嘉宏, “以射頻磁控濺鍍法製作鋯酸鉛鋇薄膜之研究”,清華大學, 碩士論文, (1999). 44. 劉恆睿, “利用磁控濺鍍法在鎳酸鑭底電極上沈積鋯鈦酸鋇薄膜作為微波變容器之研究”, 清華大學, 碩士論文, (2003). 45. A. Dixit, and S. B. Majumder, “Investigations on the Sol-Gel-Derived Barium Zirconate Titanate Thin Films”, Mater. Lett. 56, 933 (2003). 46. C. Chen, W. Zhu, and T. Yu, “FT-IR Structure and Dielectric Property Investigation of Strontium Circonate Thin Films Prepared by MOD Technique”, Sur. Coat. Tech. 167, 245 (2003). 47. 汪建民主編, 材料分析,民全書局, (1999). 48. K. D. Sandwip, B. Robert, M. Prashant, and C. G. Wang, “Microstructural and Dielectric Properties of High Permittivity (Pb,Ba)ZrO3 Thin Films by Sol-Gel Processing”, Jpn. J. Appl. Phys. 39, L921 (2000). 49. J. Zhai, X. Yao, J. Shen, L. Zhand, and H. Chen, “Structural and Dielectric Properties of Ba(ZrxTi1-x)O3 Thin Films Prepared by The Sol-Gel Process”, J. Phys. D: Appl. Phys. 37, 748 (2004).id NH0925159016 sid 913508 cfn 0 / id NH0925159017 auc 王賢軍 tic 碳氧化矽與氮氧化矽薄膜應用於離子感測膜之研究 adc 陳建瑞 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 83 kwc 離子感應場效電晶體 kwc 高密度電漿化學氣相沉積 kwc 感應耦合型電漿 kwc 碳氧化矽 kwc 氮氧化矽 abc 本實驗以感應耦合電漿源(Inductively Coupled Plasma, ICP)沈積離子感測薄膜,以探討製程溫度與不同氣體流量比對感測膜之敏感度之影響。在沉積完感測薄膜後,利用原子力顯微鏡量測表面的粗糙度、傅利葉紅外光譜儀量測薄膜之化學鍵結、膜厚測厚儀量測薄膜厚度與折射率、低掠角X光繞射分析感測膜結晶情形與敏感度之關係、能量散佈分析儀可分析感測膜之成份與敏感度之關係、C-V曲線量測感測膜之界面陷阱電荷對感測敏感度之影響及I-V曲線量測感測膜之漏電流之情形。 rf 參考文獻 [ 1 ] S. Zhang, G. Wright, Y. Yang, “ Materials and techniques for electrochemical biosensor design and construction”, Biosensors and Bioelectronics 15, 2000, 273-282. [ 2 ] 萬其超, "電化學之原理與應用", 徐氏基金會,1975, 19-21. [ 3 ] 田福助, "電化學:基本原理與應用", 五洲出版社,1987, 57-59. [ 4 ] 田中正三郎, "電化學實驗", 復漢出版社,1982, 71-75. [ 5 ] 田蔚城, “生物技術”, 九州圖書文物有限公司,1996, 247-262. [ 6 ] 江晃榮, 李必楚, “生物感測器-電子學與生物工業的結合”,科學月刊, 第17卷第5期, 1986, 350-355. [ 7 ] F. Scheller, F. Schubert, D. Pfeiffer, R. Hintsche, I. Dransfeld, R. Remmeberg, U. Wollenber, K.Riedel, M. Pavlova, M. Kuhn, M. Muller, P. M. Tan, W. Moritz, "Research and development of biosensors : a review",Analyst 114, 1989 ,653-662. [ 8 ] 王柯敏,蕭丹,沒有生命的感官—化學傳感器揭密,2001,曉園出版社 [ 9 ] P. Bergveld, “Development of an Ion Sensitive Solid-State Device for Neurophysiological Measurement”, IEEE Trans.Biomed.Eng.,vol.17,1970, 70-71 [10 ] 武世香、虞惇、王貴華,”化學量感測器,感測器技術”,第1期,1990, 57-62。 [11 ] B. D. Liu, Y. K. Su and S. C. Chen, “Ion-sensitive field-effect transistor with silicon nitride gate for pH sensing”, Int. J. Electronic, vol. 67, NO1, 1989, 59-63. [12 ] 武世香、虞惇、王貴華,”化學量感測器,感測器技術”,第2期,1992, 51-55。 [13 ] P. Bergveld and A.Sibbald , “Analytical and biomedical applications of ion selective field-effect transistors”, Elsevier Science Publishing Company Inc., New York, ,1988,. [14 ] G. J. Mohr, I. Murkovic, F. Lehmann, C. Haider, and O. S. Wolfbeis, “Application of potential-sensitive fluorescent dyes in anion- and cation -sensitive polymer membranes”, Sensors and Actuators B, 38-39 , 1997, 239-245. [15 ] H. Seo, C. S. Kim, B. K. Sohn, T. Yeow, M. T. Son, and M. Haskard, “ISFET glucose sensor based on a new principle using the electrolysis of hydrogen peroxide”, Sensors and Actuators B, 40,1997, 1-5. [16 ] J. W. Fergus, “ The application of solid fluoride electrolytes in chemical sensors”, Sensors and Actuators B, 42,1997, 119-130. [17 ] A. S. Wong, “Theoretical and Experiment Studies of CVD Aluminum Oxide As a pH Sensitive Delectric for The Back Contacts ISFET Sensor”, Ph.D. Thesis, Case Western Reserve University, 1985. [18 ] R. E. G. Van, P, Bergveld, “Characterization and Testing of Polymer-Oxide Adhesion to Improve The Packaging Reliability of ISFETs”,J. F. J. Engbersen and D. N. Reinhoudt, Sensors and Actuators B, 23, 1995, 17-26. [19 ] B. H. Van Der Schoot,H. H. Van Den Vlekkert,and N. F. De Rooij, “A Flow Injection Analysis System with Glass-Bonded ISFETs for the Simultaneous Detection of Calcium and Potassium Ions and pH”, Sensors and Actuators B, 4, 1994, 239-241. [20 ] C. D. Fung , P. W. Cheung, W. H. Ko, “A Generalized Theory of An Electrolyte-Insulator-Semiconductor Field-Effect Transistor”, IEEE Trans. Electron Devices, vol.ED-33,NO.1,1986, 8-18. [21 ] L. Bousse , J. Shott and J. D. Meindl, “A Preocess for Combined fabricaton of Ion Sensors and COMS Circuit” , IEE Electron Devices Letters,vol 9. NO. 1. January 1988, 44-46. [22 ] C. Dumschat, H. Muller, H. Rautschek, H. J. Timpe, W. Hoffmann, M. P. Pham and J. Huller, “Encapsulation of Chemically Sensitive Field-Effect Transistors With Photocurable Epoxy Resins”, Sensors and Actuators B, 38-39 , 1990, 271-276. [23 ] D. Yu, G. H. Wang, and S. X. Wu, “ Chemical Sensors”, J. Sensor & Transducer Tech., No.3 , 53-57,1991. [24 ] 謝博生,”臨床內科學(二)檢驗篇” ,金名出版社, 847-900,1990. [25 ] 電化學原理與方法/胡啟章編著 五南圖書出版股份有限公司 2002 [26 ] D. E. Yates, S. Levine and T. W. Healy, Site-binding model of the electrical double layer at the oxide/water interface, J. Chem. Soc. Faraday Trans., 70,1974,1807-1818 [27 ] L. Bouss, N. F. Rooij and P. Bergveld, Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface, IEEE Trans. Electron Device, ED-30,1983, 1263-1270 [28 ] S. Levine and A. L. Smith,Theory of the differential capacity of the oxide/aqueous electrolyte interface , Disc. Faraday Soc., 52, 1971,290-301 [29 ] J. A. Davis, R. O. James and J. O. Leckie, Surface ionization and complexation at the oxide/water interface, J. Colloid Interface Sci.,63,1978,480-499 [30 ] T. Hiemstra,J. C. M. De Wit and W. H. Van Riemsdijk, Multisite proton adsorption modeling at the solid/solution interface of (hydr) oxide : A new approach , J. Colloid Interface Sci.,133,1989,105-117 [31 ] R. E. G. van Hal, J. C. T. Eijkel and P. Bergveld, A novel description of ISFET sensitivity with the buffer capacity and double-layer capacity as key parameters, Sensors and Actuators B, 24-25,1995, 201-205. [32 ] Duncan J. Shaw著,張有義,郭蘭生編譯,膠體及界面化學入門,高立圖書有限公司,1997 [33 ] D.R.Crow著,黃進益譯,電化學的原理及應用,高立圖書有限公司,1998 [34 ] L. Bouss, S. Mostarshed, B. van der Schoot, N. F. de Rooij, P. Gimmei and W. Gopel, Zeta potential measurement of Ta2O ,and SiO2 thin film, J. Colloid Interface Sci., 147,1991,91-104 [35 ] D. E. Yate, S. Levine and T.W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface”, J. Chem. Soc. Faraday Trans. I, 70 ,1974, 1807-1818. [36 ] E. Gileadi, E. Kirowa-Eisner and J. Penciner, “Interfacial electrochemistry, an experimental approach”, Addison-Wesley Publish Company, INC., (1975) 4-6. [37 ] P. f, “Development of an Ion Sensitive Solid-State Device for Neurophysiological Measurement”, IEEE Trans.Biomed.Eng.,vol.17,1970, 70-71 [38 ] S.M. Sze, Semiconductor devices, physics and technology ,Wiley, 2002. [39 ] Ben G. Streetman and Sanjay Banerjee ,Solid state electronic devices , Prentice Hall,2000. [40 ] D. K. Schroder, Semiconductor material and device characterization , Wiley,1998 [41 ] Y. Ma, T. Yasuda, and G. Lucovsky, “Fixed and Trapped Charges at Oxide-Nitride-Oxide Heterostructure Interfaces Formed by Remote Plasma Enhanced Chemical Vapor Deposition”, J. Vac.Sci. Technol. B 11(4), 1533-1540(1993) [42 ] Y. Ma, T. Yasuda, and G. Lucovsky, “Formation of Device-Quality Metal-Insulator-Semiconductor Structures with Oxide-Nitride-Oxide Dielectric by Low-Temperature Plasma-Assisted Processing”, Combined with High-Temperature Rapid Thermal Annealing, J. Vac. Sci. Technol. A 11(4), 952-958(1993) [43 ] J. W. Lee, K. D. Mackenzie, D. Johnson, J. N. Sasserath, S.J. Pearton and F. Ren, “Low Temperature Silicon Nitride and Silicon Dioxide Film Processing by Inductively Coupled Plasma Chemical Vapor Deposition”, J. of the Elect. Sci. 147(4), 1481-1486(2000) [44 ] J. Yota, J. Hander, A. A. Saleh, “A Comparative Study on Inductively-Coupled Plasma High-Density Plasma, Plasma-Enhanced, and Low Pressure Chemical Vapor Deposition Silicon Nitride Films”, J. Vac. Sci. Technol. A 18(2),372-375(2000) [45 ] J. Yota, M. Janani, L. E. Camilletti, A. Kar-Roy, Q. Z. Liu, C. Nguyen and M. D. Woo, “Comparison Between HDPCVD and PECVD Silicon Nitride for Advanced Interconnect Applications”, IEEE, 76-78(2000) [46 ] R. K. Pandey, L. S. Patil, J. P. Bange, D. R. Patil, A. M. Mahajan, D. S. Patil, D. K. Gautam, “Growth and characterization of SiON thin films by using thermal-CVD machine”, Optical materials 25,2004,1-7 [47 ] D. Criado, I. Pereyra, M. I. Alayo, “Study of nitrogen-rich silicon oxynitride films obtained by PECVD’’, Materials Characterization 50,2003,167-171 [48 ] Yong Sun ,Tatsuro Miyasato,J. Keith Wigmore, “Characterization of excess carbon in cubic SiC film by infrared absorption’’, J. of applied physics 85,1999,3377-3379 [49 ] M. Lattemann, E. Nold, S. Ulrich, H. Leiste, H. Holleck, “Investigation and characterization of silicon nitride and silicon carbide thin film’’, Surface and coatings technology 174-175,2003,365-369 [50 ] N. J. Renault, A. De, P. Clechet and A. Maaref, "Study of the Nitride/Aqueous Electrolyte Interface on Collidal Aqueous Suspensions and on Electrolyte/Insulator/Semiconductor Structure", Colloids and Surfaces ,36,1989,59-68id NH0925159017 sid 913509 cfn 0 / id NH0925159018 auc 李秀娟 tic KrF準分子雷射臨場退火製備PZT薄膜與奈米微粉添加影響之研究 adc 黃金花 教授 adc 林諭男 教授 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 96 kwc 鋯鈦酸鉛 kwc 雷射退火 kwc 奈米微粉添加 abc 本論文以有機金屬裂解法(MOD)鍍製鋯鈦酸鉛(PbZr0.52Ti0.48O3)薄膜,利用KrF準分子雷射臨場(in-situ)退火,並輔以與薄膜同組成之PZT奈米微粉之添加,造成異質成核的效應,成功降低了PZT鈣鈦礦相形成之製程溫度。整個薄膜製程溫度降至400℃。實驗中以未添加微粉及利用鈦酸鋇(BaTiO3)奈米微粉作為孕核層之PZT薄膜作為對照。 rf 參考文獻 1. G. H. Haertling, “Ferroelectric Ceramics: History and Technology”, J. Am. Ceram. Soc., 82(4), pp. 797-818 (1999). 2. Y. Xu, “Ferroelectric Materials and Their Applications”, North-Holland: Elsevier Sci. Pub., New York, p.10 (1991). 3. S. –M. Koo, “Ferroelectric Thin Film Multilayers by Pulsed Laser Deposition”, Licentiate Thesis, Royal Institute of Technology, Stockholm (1999). 4. William D. Callister, Jr., “Materials Science and Engineering”, John Wiley & Sons Inc., 3th, Canada (1994). 5. 林諭男, “鐵電薄膜電容特性與機制”,材料會訊,第4卷,第3期,pp.50-54 (1996)。 6. B. Jaffe, W. R. C. Jr and H. Jaffe, “Piezoelectric Ceramics”, Academic Press Inc., London (1971). 7. B. Jaffe, R. S. Roth, and S. Marzullo, “Piezpelectric Properties of Lead Zirconate-Lead Titanate Solid-Solution Ceramics”, J. Appl. Phys., 25(6), pp.809-810 (1954). 8. A. Wu, P. M. Vilarinho, I. M. Miranda Salvado, and J. L. Baptista, “Seeding Studies in PZT Thin Films”, Mater. Res. Bulletin, 33(1), pp. 59-68 (1998). 9. D. A. Barrow, T. E. Petroff, R.P. Tandon, and M. sayer, “Characterization of Thick Lead Zirconate Titanate Films Fabricated Using a New Sol-gel Based Process”, J. Appl. Phys., 81(2), p.876 (1997). 10. C. Jeffrey Brinker and George W. Scherer, “Sol-Gel Science” Academic Press Inc., pp. 2-18 (1990). 11. C. Sanchez, J. Livage, M. Henry and F. Babonneau, J. “Chemical Modification of Alkoxide Precursors” Non-Cryst. Solids, 100, p.65 (1988). 12. E. A. Barringer and H. K. Bowen, “Formation, Packing and Sintering of Monodisperse TiO2 Powders”, J. Am. Ceram. Soc., 11(12), pp.199-201 (1982). 13. J. H. Jean and T. A. Ring, “Processing Monosized TiO2 Powders Generated with HPC Dispersant”, Ceramic Bulletin, 65(12), p.1574 (1986). 14. A. B. Hardy, G. Gowda, T. J. McMahon, R. E. Neman, H. K. Bowen, “Ultrastructure Processing of Advanced Ceramics”, Wiley, pp.407-428, New York (1987). 15. Ogiwara, H. Kanako, N. Mizutani and M. kato, J. Mater. Sci. Lett. 7, p.867 (1988). 16. G. M. Vest and S. Singaram, “Synthesis of Metallo-Organic Compounds for MOD Powders and Films”, Mat. Res. Soc. Symp. Proc., 50, p.35 (1986) 17. G. A. C. M. Spierings, M. J. E. Ulenaers, G. L. M. Kampschoer, H. A. M. van Hal and P. K. Larsen, “Preparation and Ferroelectric Properties of PbZr0.53Ti0.47O3 Thin Films by Spin Coating and Matalorganic Decomposition”, J. Appl. Phys., 70, p.2290 (1991) 18. E. I. Shtyrkov, I. B. Khaibullin, M. M. Zaripov, M. F. Galyatudinov, and R. M. Bayazitv, “ Local Laser Annealing of Implantation Doped Semiconductor Layers”, Sov. Phys. Semicond., 19(10), pp. 1309-1310 (1976). 19. I. B. Khaibullin, E. I. Shtyrkov, M. M. Zaripov, M. F. Galyautdinov, and G. G. Zakirov, “Utilization Coefficient of Implanted Impurities in Silicon Layers Subjected to Subsequent Laser Annealing”, Sov. Phys. Semicond., 11(2), pp.190-192 (1977). 20. M. Poate and James W. Mayer, “Laser Annealing of Semiconductors” Academic, New York, p.1 (1982). 21. 周嘉峰, “雷射退火低溫製備鈦鋯酸鉛薄膜之研究”,國立台灣科技大學碩士論文,中華民國九十年。 22. 許獻文, “準分子雷射退火之低溫高介電常數鈦酸鍶鋇薄膜BaxSr1-xTiO3於動態隨機存取記憶體電容器之研究”,交通大學碩士論文,中華民國八十九年六月。 23. H. Kuriyame, S. Kiyama, S. Nogchi, and Y. Kuwano, “Enlargement of Poly-Si Film Grain Size by Excimer Laser Annealing and Its Application to High Perfermance Poly-Si Thin Film Transistor”, Jpn. J. Appl. Phys., 30, pp.3700-3703 (1991). 24. B. G. Bagley, and H. S. Chen, “Laser-Solid Interactions and Laser Processing”, Am. Inst. Phys., New York, p.97 (1979). 25. M. Bertolotti, “Physical Processes in Laser-Materials Interactions”, Plenum Press, New York, p.190 (1983). 26. D. Turnbull (H. Ehrenreich, F. Seitz, and D. Turnbull, eds.), “Solid state physics” Academic, New York, 3, p.225 (1956). 27. D. Turnbull and B. Chalmers, “Progress in materials science”, Pergamon Press, p.269 (1981). 28. N. H. Nickel et al., “ Grain-Boundary defects in Laser Crystallized Polycrystalline Silicon”, Phys. Rev. B, 56(9), pp. 65-68 (1997). 29. H. Watanabe, H. Miki, S. Sugai, K. Kawasaki, and T. Kioka, “Crystallization Process of Polycrystalline Silicon by KrF Excimer Laser Annealing”, Jpn. J. Appl. Phys., 33(8), Part 1, pp. 4491-4498 (1994). 30. H. Kuriyame, S. Kiyama, S. Nogchi, and Y. Kuwano, “Enlargement of Poly-Si Film Grain Size by Excimer Laser Annealing and Its Application to High-Performance Poly-Si Thin Film Transistor”, Jpn. J. Appl. Phys., 30(12B), pp. 3700-3703 (1991). 31. H. Kuriyama, T. Nohda, S. Ishida, T. Kuwahara, S. Noguchi, S. Kiyama, S. T. and S. Nakano, “Lateral Grain Growth of Poly-Si Films with a Specific Orientation by an Excimer Laser Annealing Method”, Jpn. J. Appl. Phys., 32(12B), part1, pp. 6190-6195 (1993). 32. 張所鋐, “微機電壓電薄膜製程與應用”,機械月刊,第292期(2000)。 33. 林諭男, “強介電陶瓷薄膜的應用”,工業材料107,p.49 (1995)。 34. L. H. Parker and A. F. Tasch, IEEE Circuit and Device Magazine p.17 (1990). 35. J. F. Scott, C. A. P. de Araujo, L. D. McMillan, H. Yoshimori, H. Watanabe, T. Mihara, M. Azuma, T. Ueda, D. Ueda, and G. Kano, “Ferroelectric Thin Films in Integrated Microelectronic Devices”, Ferroelectrics, 133, p.47 (1992). 36. A. J. Moulson and J. M. Herbert, “Electroceramics Materials Properties Applications”, Chapman & Hall, New York (1990). 37. R. W. Vest, “Metallo-Organic Decomposition (MOD) Processing of Ferroelectric and Electrooptic Films: A Review”, Ferroelectrics, 102, pp.53-68 (1990). 38. M. Liu, H. K. Kim and J. Blachere, “ Lead-Zirconate-Titanate-based Metal/ Ferroelectric/ Insulator/ Semiconductor Structure for Nonvolatile Memories”, J. Appl. Phys. 91(9), p.5985 (2002). 39. K. W. Lee and W. J. Lee, “Relaxation of Remanent Polarization in Pb(Zr,Ti)O3 Thin Film Capacitors”, Jpn. J. Appl. Phys., Part1, 41(11B), pp.6718-6723 (2002). 40. X. M. Lu, J. S. Zhu, X. F. Huang, C. Y. Lin and Y. N. Wang, “Laser-Induced Phase Transformation from Amorphous to Perovskite in PbZr0.44Ti0.56O3 Films With the Substrate at Room Temperature”, Appl. Phys. Lett. 65(16), pp.2015 (1994). 41. X. M. Lu, J. S. Zhu, W. S. Hu, Z. G. Liu and Y. N. Wang, “Pulsed Excimer (KrF) Laser Induced Crystallization of PbZr0.44Ti0.56O3 Amorphous Films”, Appl. Phys. Lett. 66(19), pp. 2481 (1995). 42. S. B. Xiong, Z. M. Ye, J. M. Liu, A. D. Li, C. Y. Lin, X. Y. Chen, X. L. Guo and Z. G. Liu, “Crystallization of Amorphous Lead Titanate Thin Films by the Irradiation of KrF Excimer Laser”, Applied Surface Science, 109/110, pp.124-127 (1997). 43. M. Knite, G. Mezinskis, L. Shebanovs, I. Pedaja and A. Sternbergs, “CO2 Laser-induced Structure Changes in Lead Zirconate Titanate Pb(Zr0.52Ti0.48)O3 Sol-gel Films”, Applied Surface Science, 208-209, pp.378-381 (2003). 44. H. Fujita, S. Goto, M. Sakashita, H. Ikesa, A. Sakai, S. Zaima and Y. Yasuda, “Control of Crystal Structure and Ferroelectric Properties of Pb(ZrxTi1-x)O3 Films Formed by Pulsed Laser Deposition”, Jpn. J. Appl. Phys. Part1, 39(12B), pp.7035-7039 (2000). 45. T. L. Ren, T. Q. Shao, W. Q. Zhang, C. X. Li, J. S. Liu, L. T. Liu, J. Zue and Z. J. Li, “Fabrication and Properties of Silicon-based PZT Thin Films for MFSFET Applications”, Microelectronic Engineering, 66, pp.554-560 (2003). 46. Y. Zhu, J. Zhu, Y. J. Song and S. B. Desu, “Laser Assisted Low Temperature Processing of Pb(Zr,Ti)O3 Thin Film”, Appl. Phys. Lett. 73(14), pp.1958-1960 (1998). 47. H. C. Lee and W. J. Lee, “Characterization of Pb(Zr,Ti)O3 Thin Films Fabricated by Plasma Enhanced Chemical Vapor Deposition on Ir-based Electrodes”, J. Vac. Sci. Technol. A, 20(6), pp.1939-1947 (2002). 48. Y. Wang, H. Lai, W. Chan and C. L. Choy, “Ferroelectric Properties of Pb(Zr,Ti)O3 Thin Films Integrated at Low Temperatures on LaNiO3-buffered Glass”, Jpn. J. Appl. Phys. Part1, 42(11), pp. 6988-6989 (2003). 49. S. –M. Koo, S. I. Khartsev, C. –M. Zetterling, A. M. Grishin and M. Őstling, “Ferroelectric Pb(Zr,Ti)O3/Al2O3/4H-SiC Diode Structures”, Appl. Phys. Lett., 81(5), pp.895-897 (2002). 50. V. Lingwal and N. S. Panwar, “Capacitance-Voltage Characteristics of NaNbO3 Thin Films”, J. Appl. Phys., 94(7), pp. 4571-4576 (2003). 51. M. Tsukada, H. Yamawaki and M. Kondo, “Crystal Structure and Polarization Phenomena of Epitaxially Grown Pb(Zr,Ti)O3 Thin Film Capacitors”, Appl. Phys. Lett., 83(21), pp.4393-4395 (2003). 52. T. Kiguchi, N. Wakiya, K. Shinozaki, N. Mizutani, “HRTEM Investigation of the 90° Domain Structure and Ferroelectric Properties of Multi-Layered PZT Thin Films”, Microelectronic Engineering, 66, pp.708-712 (2003). 53. R. Gupta, M. P. Srivastava, V. R. Balakrishnan, R. Kodama and M. C. Peterson, “Deposition of Nanosized Grains of Ferroelectric Lead Zirconate Titanate on Thin Films Using Dense Plasma Focus”, J. Phys. D: Appl. Phys. 37, pp.1091-1094 (2004).id NH0925159018 sid 913510 cfn 0 / id NH0925159019 auc 胡雅惠 tic 以機械合金法製備Cu-Ni-Al-Co-Cr-Fe-Ti-Mo合金粉末微結構及性質之研究 adc 葉均蔚 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 125 kwc 機械合金 kwc 高熵合金 kwc 非晶質 abc 為了解高熵合金機械合金化後的行為及特性並與傳統合金的機械合金法作一關聯,本研究首度嚐試利用機械合金法來製備二至八元主要元素的合金粉末,由二元Cu0.5Ni開始,依序加入不同原子大小的Al、Co、Cr、Fe、Ti、Mo的純金屬元素粉末,施以不同時間球磨並作XRD、SEM、元素Mapping、DTA等分析,以探討不同元素間的相互競爭、形成均質相時間長短、非晶質相的傾向及非晶質相的熱穩定性,並與塊材特性做比較以了解其差異及機制。 rf 1. 黃國雄,“等莫耳比多元合金系統之研究”, 國立清華大學材料科學工程研究所碩士論文, 1996. 2. 賴高廷,“高亂度合金微結構及性質探討”, 國立清華大學材料科學工程研究所碩士論文, 1998. 3. 許雲翔,“以FCC及BCC元素為劃分配置等莫耳多元合金系統之研究”, 國立清華大學材料科學工程研究所碩士論文, 2000. 4. 洪育德,“Cu-Ni-Al-Co-Cr-Fe-Si-Ti 高亂度合金之探討”, 國立清華大學材料科學工程研究所碩士論文, 2001. 5. 童重縉,“Cu-Co-Ni-Cr-Al-Fe 高熵合金變形結構與高溫特性之研究”, 國立清華大學材料科學工程研究所碩士論文, 2002. 6. 陳家裕,“塗層用多元高熵合金之開發”, 國立清華大學材料科學工程研究所碩士論文, 2002. 7. 蔡銘洪,“多元高熵合金薄膜微結構及電性演變之研究”, 國立清華大學材料科學工程研究所碩士論文, 2003. 8. 黃炳剛,“多元高熵合金於熱熔射塗層之研究”, 國立清華大學材料科學工程研究所碩士論文, 2003. 9. 蔡哲瑋,“CuCoNiCrAlxFe高熵合金加工變形及微結構之探討”, 國立清華大學材料科學工程研究所碩士論文, 2003. 10. 林佩君,“高頻軟磁高熵合金濺鍍薄膜之開發研究”, 國立清華大學材料科學工程研究所碩士論文, 2003. 11. 陳敏睿,“添加V, Si, Ti對Al0.5CrCuFeCoNi高熵合金微結構與磨耗性質之影響”, 國立清華大學材料科學工程研究所碩士論文, 2003. 12. P. K. Huang, J. W. Yeh, T. T. Shun, S. K. Chen, Advance Engineering Materials, 6 (2004), pp 74. 13. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, Advance Engineering Materials, 5 (2004), pp 299. 14. M. Seidel, J. Eckert, I. Bacher, M. Reibold and L. Schultz, Acta Materialia, 48 (2000), pp 3657. 15. M. Sherif El-Eskandarany, J. Saida and A.Inoue, Acta Materialia, 51 (2003), pp 4519. 16. M. Sherif El-Eskandarany, M. Matsushita and A.Inoue, Journal of Alloys and Compounds, 329 (2001), pp 239. 17. C. K. Lin, Y. B. Feng, P. Y. Lee, L. Y. Wang, H. M. Lin and G. S. Chen, Intermetallics, 10 (2002), pp 1149. 18. B. Yao, S. E. Liu, L. Liu, L. Si, W. H. Su and Y. Li, Journal of Applied Physics, 90 (2001), pp 1650. 19. I. K. Jeng, P. Y. Lee, J. S. Chen, R. R. Jeng, C. H. Yeh and C. K. Lin, Intermetallics, 10 (2002), pp 1271. 20. M. S. El-Eskandarany, W. Zhang and A.Inoue, Journal of Alloys and Compounds, 350 (2003), pp 222. 21. J. Kramer, Z. Phys., Vol 106, 1937, pp 639. 22. J. Kramer, Annln Phys., Vol 37, 1934, pp 19. 23. A. Bremer, D. E. Couch and E. K. Williams, J. Res. Natn. Bur. Stand, Vol 44, 1950, pp 109. 24. P. Duwes, Trans. Am. Soc. Metals, Vol 60, 1967, pp 607. 25. H. W. Kui, A. L. Greer and D. Turnbull, Applied Physics Letters, Vol 45, Iss 6, 1984, pp 615-616. 26. A. Inoue, K. Kita, T. Masumoto and K. Ohtera, Japanese Journal of Applied Physics Part 2-Letters, Vol 27, Iss 10, 1998, pp 1796-1799. 27. A. Inoue, K. Kita, T. Masumoto and T. Zhang, Materials Transactions JIM, Vol 30, 1989, pp 722-725. 28. A. Inoue, T. Zhang and T. Masumoto, Materials Transactions JIM, Vol 31, 1990, pp 177-183. 29. A. Inoue and T. Masumoto, U.S. Patent No. 5032196, Japanese Patent 07-122120. 30. A. Peker and W. L. Johnson, Applied Physics Letters, Vol 63, Iss 17, 1993, pp 2342-2344. 31. A. Inoue, T. Zhang, K. Ohba and T. Shibata, Materials Transactions JIM, Vol 36, Iss 7, 1995, pp 876-878. 32. A. Inoue and J. S. Gook, Materials Transactions JIM, Vol 36, Iss 10, 1995, pp 1282-1285. 33. A. Inoue, N. Nishiyama and T. Matsuda, Materials Transactions JIM, Vol 37, Iss 2, 1996, pp 181-184. 34. Y. He, T. D. Shen and R. B. Schwarz, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, Vol 29, Iss 7, 1998, pp 1795-1804. 35. T. Zhang and A. Inoue, Materials Transactions JIM, Vol 39, Iss 10, 1998, pp 1001-1006. 36. A. Inoue and T. Zhang, Materials Transactions JIM, Vol 40, 1999, pp 301. 37. A. Inoue, T. Zhang and A. Takeuchi, Applied Physics Letters, Vol 71, Iss 4, 1997, pp 464-466. 38. A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, Materials Transactions JIM, Vol 33, Iss 10, 1992, pp 937-945. 39. A. Inoue, T. Nakamura, T. Sugita, T. Zhang and T. Masumoto, Materials Transactions JIM, Vol 34, Iss 4, 1993, pp 351-358. 40. A. Inoue and T. Zhang, Materials Transactions JIM, Vol 37, Iss 2, 1996, pp 185-187. 41. A. Inoue, N. Nishiyama and H. Kimura, Materials Transactions JIM, Vol 38, Iss 2, 1997, pp 179-183. 42. A. Inoue, Bulk Amorphous Alloys, Vol 2, Trans Tech Publications, Zurich, 1999, pp 28. 43. A. Inoue and N. Nishiyama, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, Vol 226, Iss JUN, 1997, pp 401-405. 44. H. S. Chen, H. J. Leamy and C. E. Miller, Annual Review of Materials Science, Vol 10, 1980, pp 363-391. 45. B. B. Prasad, T. R. Anantharaman, A. K. Bhatnagar, D. Ganesan and R. Jagannathan, Journal of Non-crystalline Solids, Vol 61-2, Iss Jan., 1984, pp 391-395. 46. Carlisle and H. Ben, Machine Design, Vol 58, No 1, 1986, pp 24-30. 47. H. Jones, Rapid Solidification of Metals and Alloys, Inst. of Metallurgists, London, 1982. 48. F. G. Yost, Journal of Materials Science, Vol 16, Iss 11, 1981, pp 3039-3044. 49. P. Haasen, "Metallic Glasses", Journal of Non-Crystalline Solids, Vol 56, Iss 1-3, 1983, pp 191-199. 50. A. Inoue, T. Zhang and T. Masumoto, Journal of Non-Crystalline Solids, Vol 156, Iss MAY, 1993, pp 473- 480. 51. A. E. Ermakov, E. E. Yurchikov, and V.A. Barinov, Phys Met Metallogr, 52 (1981), pp 50. 52. C. C. Koch, O. B. Cavin, C. G. Mckamey and J. O. Scarbrough, Appl. Phys. Lett., 43 (1983), pp 1017. 53. G. Heinicke and B. Tribochemistry, Germany: Akademie Verlag, (1984). 54. P. G. McCormick, Mater Trans Japan Inst Metals, 36 (1995), pp 161-169. 55. C. Suryanarayana, Progress in Materials Science, 46 (2001), pp 1-184. 56. R. M. Davis and C. C. Koch, Scripta Metall, 21 (1987), pp 305-310. 57. R.M. Davis, B. Mcdermott, and C.C. Koch, Metall Trans, A19 (1988), pp 2867-2874. 58. P. Y. Lee, and C. C. Koch, Appl. Phys. Lett., 50 (1987), pp 1578-1580. 59. A. W. Weeber and H. Bakker, Physica B, 153 (1988), pp 93-135. 60. C. Politis, Physica B, 135 (1985), pp 286. 61. R. B. Schwarz, R. R. Petrich, and C. K. Saw, J. Non Cryst. Solids, 76 (1985), pp 281. 62. E. Hellstern and L. Schultz, Appl. Phys. Lett., 48 (1986), pp 124. 63. A. W. Weeber, K. van der Meer, H. Bakker, F. R. de Boer, B. J. Thijsse, and J. F. Jongste, J. Phys. F, 16 (1986), pp 1897. 64. A. W. Weeber, A. J. H. Wester, W. J. Haag, and H. Bakker, Physica B, 145 (1987), pp 349. 65. F. Petzoldt, Proc. Conf. Solid State Amorphizing Transformations, Los Alamos 1987, in print. 66. T. Egami, Journal of Non-Crystalline Solids, 205-207 (1996), pp 575. 67. T. Egami, Material Science and Engineering A, 226-228 (1997), pp 261. 68. F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals, 1988id NH0925159019 sid 913511 cfn 0 / id NH0925159020 auc 黃尚峰 tic 不同熱處理對鐵離子佈植矽基板微結構的影響 adc 蔡哲正 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 80 kwc 離子佈植 kwc 鐵矽化物 kwc 共鍍 abc 具有半導體性質的鐵矽化物(β-FeSi2)在近十年獲得了很大的注意,因為有研究顯示,它具有0.8eV的直接能隙,可以發出波長約1.55μm的光。利用這個性質,我們便可以合成矽基材料的紅外線發光元件(IR-Light emitting device, IR-LED)或紅外線感測器(IR Sensor)。但是有關其發光性質仍然有許多爭議,M. G. Grimaldi et al.認為β-FeSi2析出物的發光性質與它的形成位置有很大的關係,因此本實驗的目的即是利用各種不同的熱處理方法,看是否可以在不同的位置上形成β-FeSi2析出物。 tc 總目錄 摘要……………………………………………………………………..Ⅰ Abstract…...……………………………………………………………..Ⅱ 致謝……………………………………………………………………..Ⅲ 總目錄…………………………………………………………………..Ⅳ 表目錄………………………………………………..…………………Ⅶ 圖目錄……………………………………………………………..……Ⅷ 第一章?序論.………………………………..……….1 ? ? 1.1金屬矽化物的發展…………………………………………1 ? ? 1.2鐵矽化物的發展……………………………………………2 ? ? 1.3鐵矽化物析出物的製程技術………………………………3 ? ? ? 1.3.1 IBS製程………………………………………………3 ? ? ? 1.3.2 RDE製程……………………………………………..4 ? ? ? 1.3.3其他形成FeSi2磊晶的方法………………………….6 ? ? ? ? 1.3.3.1化學束磊晶方法………………………………..6 ? ? ? ? 1.3.3.2金屬有機化學氣相沈積法……………………..7 ? ? ? ? 1.3.3.3脈衝雷射沈積…………………………………..7 ? ? 1.4塊材β-FeSi2和薄膜及析出物β-FeSi2之不同的發光行為.8 ? ? ? 1.4.1晶格不對稱…………………………………………....8 ? ? ? 1.4.2體積縮減……………………………………………….9 ? ? ? 1.4.3熱效應………………………………………………….9 ? ? 1.5實驗動機…………………………………………………….10 第二章?實驗流程………………………………...….11 ? ? 2.0引言………………………………………………………….11 ? ? 2.1試片準備…………………………………………………….11 ? ? ? 2.1.1試片切割………………………………………………11 ? ? ? 2.1.2試片清洗………………………………………………11 ? ? 2.2離子佈植…………………………………………………….12 ? ? ? 2.2.1 SNICS…………………………………………………13 ? ? ? 2.2.2加速器…………………………………………………13 ? ? 2.3真空退火…………………………………………………….14 ? ? 2.4拉曼光譜測量……………………………………………….14 ? ? ? 2.4.1拉曼光譜的應用………………………………………14 ? ? ? 2.4.2拉曼光譜的原理………………………………………15 ? ? 2.5二次離子質譜儀…………………………………………….16 ? ? 2.6橫截面電子顯微鏡試片準備與觀察……………………….17 ? ? ? 2.6.1橫截面電子顯微鏡試片準備…………………………17 ? ? ? 2.6.2穿透式電子顯微鏡原理………………………………18 第三章?實驗結果與討論…………………………....20 ? ? 3.0離子佈植……………………………………………………20 ? ? 3.1直接在高溫830oC退火的試片……………………………21 ? ? 3.2前段溫度退火的試片………………………………………23 ? ? 3.3前段溫度400oC的二階段退火試片………………………27 ? ? 3.4前段溫度500oC的二階段退火試片………………………30 ? ? 3.5前段溫度530oC的二階段退火試片………………………31 ? ? 3.6前段溫度550oC的二階段退火試片………………………32 ? ? 3.7表面鉭矽化物的形成………………………………………32 ? ? 3.8前段實行RTA 900oC 5min…………………………………34 ? ? 3.9共鍍系統…………………………………………………….36 ? ? 3.10(As-deposited)及在830oC持溫18小時後的結果………..37 3.11快速退火後的試片及在後面830oC持溫4小時的影響….39 3.12歐傑電子能譜儀(Auger electron spectrometer, AES)…….41 第四章?結論…………………………………..……..44 參考文獻……………………………………………....75 表目錄 表1.1 各種半導體矽化物……………………………………………...46表1.2 鍍膜方式的比較…………………………………………...........47 表3.1 離子佈植實驗條件……………………………………………...48 圖目錄 圖1.1鐵-矽相圖………………………………………………………...49 圖1.2 高劑量與低劑量的差別………………………………………...50 圖1.3 RDE技術製作LED……………………………………………...51 圖2.1實驗流程圖………………………………………………………52 圖2.2離子佈植…………………………………………………………53 圖2.3真空退火…………………………………………………………53 圖2.4拉曼光譜分析……………………………………………………54 圖3.1 As-implantd試片TEM、TRIM、SIMS分析…………………..55 圖3.2 A1試片的TEM影像及拉曼光譜分析…………………………56 圖3.3 A2試片的TEM影像及拉曼光譜分析…………………………57 圖3.4 400oC及500oC退火兩小時的TEM影像……………………..58 圖3.5 530oC及550oC退火兩小時的TEM影像……………………..59 圖3.6 圖3.5(c)中a點及b點的EDX分析結果……………………..60 圖3.7各溫度SIMS的分析結果………………………………………61 圖3.8各濃度SIMS的分析結果………………………………………62 圖3.9 B2片的TEM影像及拉曼光譜分析結果………………………63 圖3.10 C2試片的TEM影像及拉曼光譜分析結果…………………..64 圖3.11 D2試片的TEM影像及拉曼光譜分析結G………………….65 圖3.12 E2試片的TEM影像及拉曼光譜分析結果………………….66 圖3.13前嵷騆m試片的方法………………………………………….67 圖3.14放置試片方法前後的差異……………………………………..67 圖3.15在900oC快速退火的結果……………………………………..68 圖3.16快速退火加830oC持溫18小時的結果………………………69 圖3.17共鍍鐵-矽的方法…………K………………………………….70 圖3.18 As-deposited試片………………………………………………70 圖3.19共鍍鐵-矽試片在830oC18小時後的結果…………………….71 圖3.20 GIXRD的結果…………………………………………………71 圖3.21 RTA後GIXRD的結果……………………………………….72 圖3.22 RTA及830oC4小時後GIXRD的結果………………………72 圖3.23 As-deposited試片歐傑電子縱深分析…………………………73 圖3.24 830o4小時退火後試片的歐傑電子縱深分析…………………73 圖3.25 RTA700oC試片的歐傑電子縱深分析…………………………74 圖3.26 RTA900oC試片的歐傑電子縱深分析…………………………74 圖3.27 RTA1000oC試片的歐傑電子縱深分析………………………..74rf 【1】S. Santucci, L. Lozzi, M. Passacantando, P. Picozzi, P. Petricola, G. Moccia, R. Alfonsetti, and R. Diamanti, J. Vac. Sci. Technol. A 16, 1207 (1998). 【2】Jun Amano, P. Merchant, T. R. Cass, J. N. Miller, and Tim Koch, J. Appl. Phys. 59, 2689 (1986). 【3】K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, and G. Ulm, Appl. Phys. Lett. 69, 3662 (1996). 【4】S. Papatzika, N. A. Hastas, C. T. Angelis, C. A. Dimitriadis, G. Kamarinos, and J. I. Lee, Appl. Phys. Lett. 80, 1468 (2002). 【5】P. Giordano, J. P. Gonchond, J. C. Oberlin, P. Normandon, R. Basset, and A. Chantre, Appl. Phys. Lett. 54, 2429 (1989). 【6】V. Bellani, G. Guizzetti, F. Marabelli, A. Piaggi, A. Borghesi, F. Nava, V. N. Antonov, Vl. N. Antonov, O. Jepsen, O. K. Andersen, and V. V. Nemoshkalenko, Phys. Rev. B 46, 9380 (1992). 【7】V. K. Zatsev, S. V. Ordin, V. I. Tarasov, and M. I. Fedorov, Sov. Phys. Solid State 21, 1454 (1979). 【8】M. Rebien, W. Henrion, H. Angermann, and S. Teichert, Appl. Phys. Lett. 81, 649 (2002). 【9】Lianwei Wang, Linhong Qin, Yuxiang Zheng, Wenzhong Shen, Xiangdong Chen, Xian Lin, Chenglu Lin, and Shichang Zou, Appl. Phys. Lett. 65, 3105 (1994). 【10】Castor Fu, M. P. C. M. Krijn, and S. Doniach, Phys. Rev. B 49, 2219 (1994). 【11】Y. Dusausoy, J. Protas, R. Wandji, and B. Roques, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 27, 1209 (1971). 【12】M. E. Schlesinger, Chem. Rev. 90, 607 (1990). 【13】V. Darakchieva, M. Baleva, M. Surtchev, and E. Goranova, Phys. Rev. B 62, 13 057 (2000). 【14】L. Wang, L. Qin, Y. Zheng, S. Shen, X. Chen, X. Lin, C. Lin, and S. Zou, Appl. Phys. Lett. 65, 3105 (1994). 【15】Z. Yang and K. P. Homewood, J. Appl. Phys. 79 (8), 15 April 1996 【16】K. Lefki, P. Muret, N. Cherief, and R.C. Cinti, J. Appl. Phys. 69, 352 (1991). 【17】L.Wang, M. Ostling, K. Yang, L. Qin, C. Lin, X. Chen, S. Zou, Y. Zheng, and Y. Qian, Phys. Rev. B 54, R11 126 (1996). 【18】M. Rebien, W. Henrion, U. Mu¨ller, and S. Gramlich, Appl. Phys. Lett. 74, 970 (1999). 【19】E. Arushanov, E. Bucher, C. Kloc, O. Kulikova, L. Kulyuk, and A. Siminel, Phys. Rev. B 52, 20 (1995). 【20】A.B. Filonov, D.B. Migas, V.L. Shaposhnikov, N.N. Dorozhkin, G.V. Petrov, V.E. Borisenko, W. Henrion, and H. Lange, J. Appl. Phys. 79, 7708 (1996). 【21】K. Rademacher, R. Cariusm, and S. Mantl, Nucl. Instrum. Methods Phys. Res. B 84, 163 (1994). 【22】C. Giannini, S. Lagomarsino, F. Scarinci, and P. Castrucci, Phys. Rev. B 45, 8822 (1992). 【23】D. N. Leong, M. A. Harry, K. J. Reeson, and K. P. Homewood, Nature (London) 387, 686 (1997). 【24】M. G. Grimaldi, S. Coffa, C. Spinella, F. Marabelli, M. Galli, L. Miglio, V. Meregali, J. Lumin. 80, 467(1999). 【25】K. Oyoshi, D. Lessen, R. Carius, S. Mantl, Thin Solid Films, 381, 202(2001). 【26】B. Schuller, R. Carius, S. Lenk, S. Mantl, Microelectronic Engineering, 60, 205(2002). 【27】C. Spinella, S. Coffa, C. Bongiorno, S. Pannitteri, M. G. Grimaldi, Appl. Phys. Lett. 76, 173(2000). 【28】K. P. Homewood, K. J. Reeson, R. M. Gwilliam, A. K. Kwell, M. A. Lourenco, G. Shao, Y. L. Chen, J. S. Sharpe, C. N. McKinty, T. Butler, Thin Solid Films 381, 188(2001). 【29】M. A. Lourenco, T. M. Butler, A. K. Kewell, R. M. Gwilliam, K. J. Kirkby, K. P. Homewood, Nucl. Instrum. Meth. Phys. Res. B 175-177, 159(2001). 【30】T. Suemsdu, Y. Negishi, K. Takakura, and F. Hasegawa, Jpn. J. Appl. Phys., part 2 39, L1013 (2000). 【31】T. Suemasu, Y. Iikura, K. Takakura, F. Hasegawa, J. Lumin. 87-89, 528(2000). 【32】T. Suemasu, Y. Iikura, T. Fujii, K. Takakura, N. Hiroi and F. Hasegawa, Jpn. J. Appl. Phys. 38, L60(1999). 【33】T. Suemasu, M. Tanaka, T. Fujii, S. Hashimoto, Y. Kumagai and F. Hasegawa, Jpn. J. Appl. Phys. 38, L1225(1995). 【34】T. Suemasu, T. Fujii, Y. Iikura, K. Takakura and F. Hasegawa, Jpn. J. Appl. Phys. 37, L1513(1998). 【35】張俊彥, “積體電路製程及設備技術手冊”, 經濟部技術處, P275, 1997年7月. 【36】J. Y. Natoli, I. Berbezier, A. Ronda, J. Derrien, J. Crystal Growth, 146, 444 (1995). 【37】Christian Erich Zybill, Wei Huang, Inorganica Chemica Acta, 291, 380 (1999). 【38】Zhengxin Liu, Motoki Watanabe, Mitsugu Hanabusa, Thin Solid Films, 381, 262 (2001). 【39】A. G. Birdwell, R. Glosser, D. N. Leong, and K. P. Homewood, J. Appl. Phys., 89, No. 2, 965 (2001). 【40】N. E. Christensen, Phys. Rev. B 42, 7148 (1990). 【41】M. G. Grimaldi, C. Bongiorno, C. Spinella, E. Grilli, L. Martinelli, M. Gemelli, D. B. Migas, and Leo Miglio, Phys. Rev. B 66, 085319 (2002). 【42】D. Sander, A. Enders, and J. Kirschner, Appl. Phys. Lett. 67, 1833 (1995). 【43】K. Herz, M. Powalla, and A. Eicke, Phys. Status Solidi A 156, 3(1997). 【44】L. Martinelli, E. Grilli, D. B. Migas, Leo Miglio, F. Marabelli, C. Soci, M. Geddo, M. G. Grimaldi, and C. Spinella, Phys. Rev. B 66, 085320 (2002). 【45】S. J. Clark, H. M. Al-Allak, S. Brand, and R. A. Abram, Phys. Rev. B 58, 10389 (1998). 【46】T. SuemasuU, T. Fujii, K. Takakura, F. Hasegawa, Thin Solid Films, 381, 209 (2001). 【47】A. G. Birdwell, R. Glosser, D. N. Leong, and K. P. Homewood, J. Appl. Phys. 89, 965 (2001). 【48】Aiko Narazaki, Tadatake Sato, Yoshizo Kawaguchi, and Hiroyuki Niino, Appl. Phys. Lett. 83, 3078 (2003). 【49】Yoshihito Maeda, Kenji Umezawa, Yoshikazu Hayashi, Kiyoshi Miyake, Thin Solid Films, 381, 219 (2001). 【50】B. Schuller, R. Carius, and S. Mantl, J. Appl. Phys. 94, 207 (2003). 【51】J. P. de Souza, L. Amaral, and P. F. P. Fichtner, J. Appl. Phys. 71, 5423 (1992). 【52】W. Snetake and J. T. Yates. Jr., Surface Infrared and Raman Spectroscopy: Methods and Applications, Plenum, New York, (1995). 【53】R. G. Wilson, F. A. Stecie, V. W. Magee, Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, Wiley, New York (1989). 【54】G. Thomas and M. J. Goringe, Transmission Electron Microscopy of Materials, Wiley, New York (1979). 【55】J. Narayan, C. W. White, O. W. Holland, and M. J. Aziz, J. Appl. Phys. 56, 1821 (1984). 【56】 J. Narayan, C. W. White, M. J. Aziz, B. Stritzker, and A. Walthuis, J. Appl. Phys. 57, 564 (1985). 【57】 P. W. Wang, H. S. Cheng, W. M. Gibson, and J. W. Corbett, J. Appl. Phys. 60, 1336 (1986). 【58】H. C. Cheng, T. R. Yew, and L. J. Chen, J. Appl. Phys. 57, 5246 (1985). 【59】S. S. Lau, J. S. Y. Feng, and J. O. Olowolafe, M. A. Nicolet, Thin Solid Films 25, 415 (1975). 【60】 H. C. Cheng, L. J. Chen, and T. R. Your, Mater. Res. Soc. Symp. Proc. 25, 441 (1984). 【61】V. E. Borisenko, Semiconducting silicides, Chap. 4, Springer (2000). 【62】T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak (Ed.) Binary Alloy Phase Diagrams, Second Edition (American Society for Metals. Metals Park, OH, 1990), vols. 1-2.id NH0925159020 sid 913514 cfn 0 / id NH0925159021 auc 林永振 tic C-軸優選氮化鋁薄膜成長及其體聲波元件(FBARs)之研究 adc 戴念華 adc 林諭男 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 86 kwc 聲波元件 kwc 氮化鋁 abc 高頻聲波元件(FBAR)是未來無線通訊領域中很重要的技術,由於體聲波元件的開發使的濾波器及共振器的尺寸大幅的下降,在厚度上也進入了薄膜的尺寸,除此之外,體聲波元件有非常好的聲波特性,如:在高頻損耗低、整合性佳、功率忍受度高…等特性,所以這是一個非常有研究潛力的技術。 tc 第一章 簡介……………………………………………… 1 第二章 文獻回顧………………………………………… 4 2-1 氮化鋁的結構與特性…………………………………… 4 2-1-1氮化鋁的結構……………………………………. 4 2-1-2氮化鋁的特性……………………………………. 5 2-2 氮化鋁薄膜的成長……………………………………… 6 2-2-1物理氣相沉積……………………………………. 7 2-2-2化學氣相沉積……………………………………. 8 2-3 高頻聲波元件的發展…………………………………… 9 2-3-1 高頻聲波元件的基本結構……………………… 10 2-3-2 高頻聲波元件的基本原理……………………… 12 2-3-2.1 壓電效應………………………………… 12 2-3-2.2 聲波的基本特性………………………… 13 2-3-2.3 One-Dimensional Mason’s Model…… 17 2-3-2.4 共振器頻率響應……………………………… 18 2-3-2.5 BUTTERWORTH-VAN DYKE Equivalent Circuit 20 第三章 實驗製程………………………………………… 22 3-1 氮化鋁薄膜製程簡介…………………………………… 22 3-1-1 鍍膜設備………………………………………… 22 3-1-2 鍍膜步驟………………………………………… 24 3-2 體聲波元件的製程……………………………………… 25 3-2-1 元件製程步驟…………………………………… 26 3-2-2元件完成圖(OM)………………………………… 31 第四章 結果與討論…………………………………… 36 4-1 氮化鋁薄膜在白金及Si(100)基板成長情形………… 36 4-2 可幫助氮化鋁(002)優選的電極材料或緩衝層……… 43 4-3 金屬電極的結構特性………………………………… 46 4-4 氮化鈦緩衝層的成長………………………………… 49 4-5 成長氮化鋁在金屬電極上…………………………… 52 4-6 體聲波元件的電性分析……………………………… 58 4-6-1 元件頻率響應的模擬………………………… 58 4-6-2 FBAR元件的電性分析………………………… 68 4-6-3 有效機電耦合係數(kt2)的計算……………… 75 4-6-4 利用BVD Model探討電極面積影響…………… 76 第五章 結論……………………………………………… 79 參考文獻…………………………………………………… 82 附錄一……………………………………………………… 85 附錄二……………………………………………………… 86rf References: [1 ] R. C. Ruby, P. Bradley, Y. Oshmyansky, A. Chien, J. D. Larson III, “ Thin film bulk wave acoustic resonators (FBAR) for wireless applications”, Ultrasonics Symposium, 2001 IEEE ,Vol. 1, 2001. [2 ] J. D. Larson III, P. D. Bradley, S. Wartenberg, R. C. Ruby, “Modified Butterworth-Van Dyke Circuit for FBAR Resonators and Automated Measurement System”, IEEE Ultrasonics Symposium, Vol. 1, pp. 863-868, 2000. [3 ] R. Ruby, P. Bradley, J. D. Larson III, Y. Oshmyansky, “PCS 1900 MHz duplexers using thin film bulk acoustic resonators”, Electronic Letters, Vol. 35, 1999. [4 ] K. M. Lakin, “Thin-film resonators and filters”, Ultrasonics Symposium, 1999. Proceedings. 1999 IEEE ,Vol. 2 , 1999. [5 ] L. Mang, F. Hickernell, R. Pennel, “Thin-Film Resonator ladder filter”, in IEEE MTT-S Int. Microwave Symp. Dig., (2), pp. 887-890, 1995. [6 ] Qing-Xin Su, Paul Kirby, IEEE TRANSATIONS ON MICROWAVE THEORY AND TECHNIQUES, (49), PP. 769, 2001. [7 ] M. Clement, E. Iborra, J. Sangrador, J. APPL. PHYS., 94 (3), 1495-1500, 2003. [8 ] J. B. Lee, J. P. Jung, “Effects of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AlN-based FBARs”, THIN SOLID FILMS, 447, 610-614, 2004. [9 ] C. Caliendo, “Gigahertz-band electroacoustic devices based on AlN thick films sputtered on Al2O3 at low temperature”, Appl. Phys. Lett., 83, pp. 4851-4853, 2003. [11 ] K. Lorenz, M. Gonsalves, “Comparative study of GaN and AlN nucleation layers and their role in growth of GaN on sapphire by metalorganic chemical vapor deposition”, Appl. Phys. Lett., 77, pp. 3391, 2000. [12 ] J. W. Soh, S. S. Jang, I. S. Jeong, “C-axis orientation of AIN films prepared by ECR PECVD “, Thin Solid Films, 279, pp. 17, 1996. [13 ] K. S. Stevens, A. Ohtani, M. Kinniburgh, Appl. Phys. Lett., 65, pp. 321, 1994. [14 ] S. Tanaka, R. Scott Kern, ” Initial stage of aluminum nitride film growth on 6H-silicon carbide by plasma-assisted, gas-source molecular beam epitaxy”, Appl. Phys. Lett., 66, pp. 37, 1995. [15 ] S. A. Nikishin, V. G. Antipov, S. Francoeur, N. N. Faleev, “High-quality AlN grown on Si(111) by gas-source molecular-beam epitaxy with ammonia”, Appl. Phys. Lett., 75, pp. 484, 1999. [16 ] D. Sugihara et al., Jpn. J. Appl. Phys., Part 2, 39, pL 197, 2000. [17 ] G. A. Jeffrey and G. S. Parry, J. Chem. Phys., 23, pp. 406, 1953. [18 ] Q. Xia, H. Xia, “Pressure-induced rocksalt phase of aluminum nitride: A metastable structure at ambient condition“ J. Appl. Phys., 73, pp. 8198, 1993. [19 ] M. Setoyama., A. Nakayama, “Formation of cubic-AlN in TiN/AlN superlattice “, Surf. Coatings Technal., 86/87, pp. 225, 1996. [20 ] A. Madan et al., phys. Rev. Lett., Vol. 78, pp. 1743, 1997 [21 ] I. W. Kim, Quan Li, L. D. Marks, “Critical thickness for transformation of epitaxially stabilized cubic AlN in superlattices”, Appl. Phys. Lett., Vol. 78, pp. 892, 2001 [22 ] D. Chandrasekhar, M. E. Lin, “Characterization of group III-nitride semiconductors by high-resolution electron microscopy“, J. Crystal Growth, Vol. 152, pp. 135, 1995. [23 ] R. D. Vispute, H. Wu, “High quality epitaxial aluminum nitride layers on sapphire by pulsed laser deposition”, Appl. Phys. Lett., Vol. 67, pp. 1549, 1995. [24 ] R. D. Vispute, J. Narayan, Thin Solid Films, 299, pp. 94-103, 1997. [25 ] S. Ito, H. Fujioka, Thin Solid Films, 435, pp. 215-217, 2003. [26 ] I. Ivanov, L. Hultman, K. Järrendahl, “Growth of epitaxial AlN(0001) on Si(111) by reactive magnetron sputter deposition“, J. Appl. Phys., 78, pp. 5721, 1995. [27 ] H. Okano, N. Tanaka, Y. Takahashi, “Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz-band surface acoustic wave devices”, Appl. Phys. Lett. 64, pp. 166, 1994. [28 ] V. Lebedev, B. SchroK ter, Journal of Crystal Growth, 207, pp. 266, 1999. [29 ] A. Nakajima, Y. Furukawa, Journal of Crystal Growth, 265, pp. 351, 2004. [30 ] R. L. Puurunen, M. Lindblad, Physical Chemistry Physics,3 , pp. 1093, 2001. [31 ] K. Wongchotigul, S. Wilson, SILICON CARBIDE, III-NITRIDES AND RELATED MATERIALS, PTS 1 AND 2 MATERIALS SCIENCE FORUM, 264-2, pp. 1137-1140, 1998. [32 ] G. Y. Meng, S. Xie, Thin Solid Films, 334 (1-2), pp. 145-150, 1998. [33 ] W. Zhang , R. Vargas, Appl. Phys. Lett., 64, pp. 1359-1361, 1994. [34 ] K. Yasui, S. Hoshino, Applied Surface Science, 159–160, pp. 462–467, 2000. [35 ] R. Ruby, P. Merchant, 1994 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM [36 ] J. D. Larson III, Y. Oshrnyansky, “Measurement of effective k/sub t//sup 2/, q, R/sub p/, R/sub s/ vs. Temperature for Mo/AlN FBAR resonators”, Ultrasonics Symposium, 2002. Proceedings. 2002 IEEE, Vol. 1 , 2002. [37 ] S. H. Lee, J. H. Kim, IEEE International Frequency Control Symposium, pp. 45, 2002. [38 ] J. D. Larson III, R. C. Ruby, P. Bradley, “Power handling and temperature coefficient studies in FBAR duplexers for the 1900 MHz PCS band”, Ultrasonics Symposium, 2000 IEEE ,Vol. 1 , 22-25, 2000. [39 ] S. H. Kim, J. H. Kim, JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 19, pp. 1164-1168, 2001. [40 ] Electronic ceramics :/properties, devices, and applications, Lionel M. Levinson, 1988. [41 ] Bulk Acoustic Wave theory and Devices, Joel F. Rosenbaum. [42 ] J. D. Larson III, P. D. Bradley, S. Wartenberg, R. C. Ruby, “Modified Butterworth-Van Dyke Circuit for FBAR Resonators and Automated Measurement System”, IEEE Ultrasonics Symposium, Vol. 1, pp. 863-868, 2000. [43 ] S. H. Lee, J. H. Kim, IEEE International Frequency Control Symposium and PDA Exhibition, pp. 45-49, 2002.id NH0925159021 sid 913518 cfn 0 / id NH0925159022 auc 薛森鴻 tic 藉微波電漿輔助化學氣相沉積系統探究氧化鎢 adc 施漢章 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 97 kwc 氧化鎢 kwc 奈米 kwc 薛森鴻 kwc 施漢章 kwc 奈米棒 kwc 奈米板 kwc 化學氣相沉積 kwc 電漿 kwc 拉曼 kwc 陰極發光 kwc 材料 kwc 微波 abc 在此研究中不需要任何的觸媒,吾人已能利用微波電漿輔助化學氣相沉積系統成功合成出氧化鎢奈米材料於矽晶圓上。由於電漿系統具有「局部高溫」的特性,故氧化鎢奈米材料能夠在短短數分鐘(三到五分鐘)之內被合成,這樣的製程將可以節省許多時間與成本。在此實驗過程中,氧化鎢以不同的形貌呈現,一為奈米棒(20—100 奈米),另一為奈米板(厚度30—100奈米;寬度100—500奈米;長度1至2微米。)。雖然造成不同形貌的原因仍然不是十分清楚,但是根據我們初步的觀察與討論,系統溫度與通入的氧氣流量對於氧化鎢成長過程中的影響必定是扮演一個重要的關鍵因素。 rf [01 ] http://www.casys.com.tw/news/ReadNews.asp?NewsID=13 [02 ] 王崇人, 科學發展 2002年6月, 354期 [03 ] http://scienceworld.wolfram.com/physics/Tunneling.html [04 ] Avouris et al., Nature Nov 1995. Vol. 39, Iss. 6; p. 603 [05 ] http://www.casnano.net.cn/gb/kepu/cailiao/cl023.html [06 ] N. J. Curson, R. Nemutudi, N. J. Appleyard, M. Pepper, D. A. Ritchie, and G. A. C. Jones, Appl. Phys. Lett. Vol. 78. pp. 3466—3468. May 28, 2001 [07 ] Kubo, J. Phys. Soc. Japan, 17, (1962) 975 [08 ] http://www.mtmi.vu.lt/pfk/funkc_dariniai/nanostructures/super- lattice.htm [09 ] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee. J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, Appl. Phys. Lett. 75, 3129 (1999) [10 ] W. A. de Heer, A. Chatelaine, D. Ugarte, Science 270, 1179 (1995) [11 ] K. A. Dean, B. R. Chalamala, Appl. Phys. Lett. 75, 3017 (1999) [12 ] K.L. Wang et al., J. Crystal Growth 237–239 (2002) 1892–1897 [13 ] R. Defay, I. Prigogine, A. Bellemans, and D. H. Everett, Surface Tension and Adsorption, John Wiley and Sons. Inc., New York, 1966. [14 ] http://www.aip.org/enews/physnews/2004/split/678-1.html [15 ] W. Barthlott, C. Neinhuis, Planta (1997) 202: 1-8 [16 ] S. Iijima, Nature, 354, 56-58 (1991). [17 ] http://www.itri.org.tw/weo/05-06-2002/news/20.htm [18 ] K. Matsumoto, M. Ishii, K. Segawa, and Y. Oka, Appl. Phys. Lett. 68 (1), 1 January 1996 [19 ] G. P. Berman, G. D. Doolen, Superlattices and Microstructures, Vol. 27, No. 2/3, 2000 [20 ] XiangFeng Duan, Yu Huang, Ritesh Agarwal, Charles M. Lieber, Nature 421, 241—245 (2003) [21 ] http://news.semi.ac.cn/library/ele4.pdf [22 ] S. Banerjee, J. Mater. Sci. 37 (2002) 4261 – 4271 [23 ] http://www.casnano.ac.cn/gb/kepu/cailiao/cl001_03.html [24 ] Peng et al., J. Appl. Phys., Vol. 89, No. 1, 1 Jan 2001 [25 ] K.-H. Lee et al., Chem. Phys. Lett. 376 (2003) 498–503 [26 ] Lee et al., Appl. Phys. Lett., Vol. 81, No. 4, 22 Jul 2002 [27 ] Yan. et al., J. Appl. Phys., Vol. 93, No. 8, 15 Apr 2003 [28 ] X. Xiang et al., Chem. Phys. Lett. 378 (2003) 660-664 [29 ] L. H. Chan, K. H. Homg, S. H. Lai, X. W. Liu, H. C. Shih, Thin Solid Film, 423, pp. 27-32 (2003) [30 ] X. B. Zeng et al., J. Crystal Growth 247 (2003) 13-16 [31 ] J.M. Ting, R.M. Liu, Carbon 41 (2003) 579– 625 [32 ] S. H. Tasi, C. W. Chao, C. L. Lee, X. W. Liu, I. N. Lin, H. C. Shih, Eletrochem. Solid-State Lett. 2, 247 (1999) [33 ] M. J. Alam, D. C. Cameron, J. Sol-Gel Sci. Tech. 25, 137—145, 2002 [34 ] D. F. Zhang, L. D. Sun, J. L. Yin, and C. H. Yan, Adv. Mater. 2003, 15, No. 12, June 17 [35 ] D. Xu, X. Shi, G. Guo, L. Gui and Y. Tang, J. Phys. Chem. B 104 (2000) 5061. [36 ] B.P. Jelle, G. Hagen, Sol. Energy Mat. Sol. Cells 58 (1999) 277. [37 ] J.D. Guo, Y.J.J. Li, M.S. Whittingham, J. Power Sources 54 (1995) 461. [38 ] C.G. Granqvist, Sol. Energy Mat. Sol. Cells 60 (2000) 201. [39 ] W.M. Qu, W. Wlodarski, Sens. Actuators, B 64 (2000) 42. [40 ] M. Akiyama, J.Tamaki, M. Miura, and N. Yamazoe, Chem. Lett., 1, 1611 (1991). [41 ] J. Tamaki, Z. Zhang, K. Fujimori, M. Akiyama, T. Harada, N. Miura, and N. Yamazoe, J. Electrochem. Soc., 141, 2207 (1994). [42 ] C. W. Chu, M. J. Deen, and R. H. Hill, J. Electrochem. Soc., 145, 4219 (1998). [43 ] H. M. Lin, C. M. Hsu, H. Y. Yang, P. Y. Lee, and C. C. Yang, Sens. Actuators B, 22, 63 (1994). [44 ] K.H. Lee, Y.K. Fang, W.J. Lee, J.J. Ho, K.H. Chen, K.S. Liao, Sens. Actuators, B 69 (2000) 96. [45 ] E. Washizu et al. Solid State Ionics 165 (2003) 175–180 [46 ] http://www.kepu.gov.cn/kjsh/cd90n.htm [47 ] A. Aird, E.K.H. Salje, J. Phys. Condens. Matter 10 (1998) L377. [48 ] I. Turyan et al. Adv. Mater. 2000, 12, No. 5 [49 ] S. L. Sung, S. H. Tasi, C. H. Tseng, F. K. Chiang, X. W. Liu, H. C. Shih, Appl. Phys. Lett. 74, 197 (1999) [50 ] S. H. Tasi, C. W. Chao, C. L. Lee, H. C. Shih, Appl. Phys. Lett. 74, 3462 (1999) [51 ] S. H. Tsai, F. K. Chiang, T. G. Tsai, F. S. Shieu, H. C. Shih, Thin Solid Film 366, 11 (2000) [52 ] L. H. Chan, K. H. Homg, D. Q. Xian, W. J. Hsieh, S. H, Lai, T. C. Lin, F. S. Shieu, K. J. Chen, H. C. Cheng, H. C. Shih, Appl. Phys. Lett. 82, pp. 4334—4336 (2003) [53 ] http://www.sciencedaily.com/releases/2004/04/040407081930.htmid NH0925159022 sid 913520 cfn 0 / id NH0925159023 auc 閔仲強 tic 以過濾式陰極電弧電漿系統合成氮化鋁薄膜結構及特性研究 adc 施漢章教授 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 88 kwc 過濾式陰極電弧 kwc 氮化鋁 abc 本論文利用過濾式陰極電弧沉積系統(Filtered Cathodic Arc Deposition System,FCAP)合成氮化鋁(aluminum nitride)薄膜,以作為高頻表面聲波元件與光學方面的應用。經由調整製程參數,如壓力、氣體比例、基板溫度及偏壓等參數,成功地合成氮化鋁薄膜的最佳參數。 rf [1 ] W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, J. Appl. Phys., Vol. 44, p292, 1973. [2 ] S. Strite and H. Morkoc, J. Vac. Sci. Technol. B, Vol.10, p1237, 1992. [3 ] Chang-Woo Nam, and Kyu-Chul Lee, IEEE Electronics and Electrotechnology.p206,2001. [4 ] J. Meinschien, G. Behme, F. Falk, and H. Stafast, Applied Physics A69, S683, 1999. [5 ] Marc-Alexandre Dubois and Paul Muralt, Appl. Phys. Lett, Vol.74, p3032, 1999. [6 ] F. A. Ponce, J. S. Major, Jr, W. E. Plano, D. F. Welch, Appl. Phys. Lett, Vol.65, p2302, 1994. [7 ] Shigeo Yamaguchi, Yasuo Iwamura, Yasuhiro Watanabe, Masayoshi Kosaki, Yohei Yukawa, and Shugo Nitta et al., Appl. Phys. Lett, Vol.80, p802, 2002. [8 ] T. P. Chow et al., Mat. Res. Soc. Symp. Proc , Vol.483, p89, 1998. [9 ] Eliseo Ruiz, Santigo Alemany, Phys. Rev. B, Vol.49, p7115, 1994. [10 ] JCPDS Card, NO.25-1133. [11 ] Q. Xia et al., J. Appl. Phys., Vol.73, p8198, 1993. [12 ] L. Liu and J. H. Edgar, Mat. Sci. Eng. R, Vol.37, p61, 2002. [13 ] Ichiro Yonenaga, Toshiyuki Shima and Marcel H. F. Sluiter, Jpn. J. Appl. phys. part1, Vol.41, p4620, 2002 [14 ] H .Cheng, Y. Sun, J. X. Zhang, Y. B. Zhang, S. Yuan, P. Hing, J. Cryst. Growth, Vol.254, p46, 2003. [15 ] D. Chandrasekhar et al., J. Cryst. Growth, Vol.152, p135, 1995. [16 ] M. Morita et al.,Jpn. J. Appl. Phys., part1, Vol.20, p17, 1981. [17 ] J. A. Kovacich et al., J. Appl. Phys., Vol.55, p2935, 1984. [18 ] T. hiosaki et al., Appl. Phys. Lett., Vol.36, p643, 1980. [19 ] M. Kasu and N. Kobayashi, Appl. Phys. Lett., Vol.79, p3642, 2001. [20 ] Lu F, Carius R, Alam A, et al., J. Appl. Phys., Vol.92, p2457, 2002. [21 ] Liu QL, Tanaka T, Hu JQ, et al., Appl. Phys. lett., Vol.83, p4939, 2003. [22 ] Shibata, Tomohiko, Asai, Keiichiro, Nakamura, Yukinori, Tanaka, Mitsuhiro, Kaigawa, Kazuyuki; et Al., J. Cryst. Growth, Vol.229, p63, 2001. [23 ] J. N. Kidder Jr. et al., J. Vac. Sci. Technol. A, Vol.13, p711, 1995. [24 ] A. Dollet et al., Thin Solid Film, Vol.406, p1, 2002. [25 ] G. Y. Meng et al., Thin Solid Film, Vol.334, p145, 1998 [26 ] K. Yasui et al., Appl. Surf. Sci., Vol.159-160, p462, 2000. [27 ] S. A. Nikishin et al., Appl. Phys. Lett., Vol.75, p484, 1999. [28 ] X. I. Ma et al., J. Mater. Res., Vol.14, p4685, 1999. [29 ] J. Keckes et al., J. Cryst. Growth, Vol.240, p80, 2002. [30 ] K. Seki et al., Appl. Phys. Lett., Vol.60, p2234, 1992. [31 ] T. Ogawa et al., Appl. Surf. Sci., Vol.113/114, p57, 1997. [32 ] R. D. Vispute et al., Appl. Phys. Lett., Vol.67, p1549, 1995. [33 ] M. Ishihara, S. J. Li, H. Yumoto, K. Akashi, Y. Ide, Thin Solid Film, Vol.316, p152, 1998. [34 ] Xiao-Hong Xu, Hai-shun Wu, Cong-Jie Zhang, Zhi-Hao Jin, Thin Solid Film, Vol.388, p62, 2001. [35 ] Hao Cheng, Yong Sun, Peter Hing, Surf. Coat. Technol., Vol.166, p231, 2003. [36 ] A. Sanz-Hervas, E. Iborra, M. Clement, J. Sangrador, M. Aguilar, Diamond and Related Materials, Vol.12, p1186, 2003. [37 ] Hirofumi Takikawa, Naoya Kawakami, Tateki Sakakibara, Surf. Coat. Technol., Vol.120-121, p383, 1999. [38 ] Hirofumi Takikawa, et al., Thin Solid Film, Vol.386, p276, 2001. [39 ] S. J. Dixit, A. K. Rai, R.S. Bhattacharya, S. Guha, T. Wittberg, Thin Solid Film, Vol.398-399, p17, 2001. [40 ] 賴冠仁,科儀新知,第十六卷五期,p83. [41 ] A. E. Guile and B. Juttner, IEEE Trans. on Plasma Science PS-8(3), p259,1980. [42 ] I. I. Aksenov, V. A. Belous, V. G. Padalka, V. M. Koroshhikh, Sov. J. plasma Phys. Vol.4, p425, 1978. [43 ] E. Erturk, H.-J. Heuvel and H.-G. Dedrich, Surf. Coat. Technol., Vol.39, p455, 1989. [44 ] H.-D. Steffens, M. Mack, K. Moehwald and K. Reichel, Surf. Coat. Technol., Vol.46, p65, 1991. [45 ] J. S. Yoon, J. G. Han, Surf. Coat. Technol., Vol.94, p201, 1997. [46 ] A. Anders, R. A. Macgill, Surf. Coat. Technol., Vol.133-134, p96, 2000. [47 ] S. Anders, A. Anders, M. R. Dickenson, R. Macgill, and I. G. Brown, IEEE. Trans. Plasma Sci., Vol.25, p670, 1997. [48 ] 汪建民,材料分析,中國材料科學學會,1998. [49 ] 謝志德,國立清華大學材料科學工程學系碩士論文,2001. [50 ] Kenji Hinode and Yoshio Homma, J. Vac. Sci. Technol. A, Vol.14, p2570, 1996. [51 ] 黃思嘉,國立清華大學材料科學工程學系碩士論文,2003. [52 ] Hsyi-En Cheng, Tien-chai Lin, Wen-chien Chen, Thin Solid Film, Vol.425, p85, 2003. [53 ] W. Osterle, I. Dorfel, I. Urban, T. Reier, J. W. Schultze, Surf. Coat. Technol., Vol.102, p168, 1998. [54 ] A. Mahmood, R. Machorro, S. Muhl, J. Heiras, F. F. Castillon, M. H. Farias, E. Andrade, Diamond and Related Materials, Vol.12, p1315, 2003. [55 ] B. Wang, Y. N. Zhao, and Z. He, Vacuum, Vol.48, p427, 1997. [56 ] M. Clement, E. Iborra, J. Sangrador, A. Sanz-Hervas, L. Vergara, and M. Aguilar, J. Appl. Phys., Vol. 94, p1495, 2003. [57 ] C. Carlone, K. M. Lakin, and H.R. Shanks, J. Appl. Phys., Vol. 55, p4010, 1984. [58 ] Si-Hyung Lee, Ki Hyun Yoon, Deok-Soo Cheong, Jeon-Kook Lee, Thin Solid Film, Vol.435, p193, 2003.id NH0925159023 sid 913521 cfn 0 / id NH0925159024 auc 陳俊宇 tic 利用反應式射頻磁控濺鍍法鍍製二氧化釕薄膜之分析 adc 甘炯耀 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 英文 pg 75 kwc 二氧化釕 kwc 射頻磁控濺鍍 kwc X光光電子能譜儀 abc 本研究主要是著重在利用反應式射頻磁控濺鍍法鍍製二氧化釕薄膜之指向控制與分析。 tc List of Contents Abstract Ⅰ Acknowledgements Ⅱ List of Contents Ⅳ List of Tables Ⅵ List of Fugures Ⅶ Chapter 1. Introduction 1 Chapter 2. Literature Review 3 2-1. Physical properties of RuO2 3 2-2. Application of RuO2 4 2-3. Control of RuO2 Orientation 7 Chapter 3. Experimental 15 3-1. Prepare of RuO2 thin films 15 3-1-1. Prepare and clean procedures of SiO2/Si substrates 15 3-1-2. Prepare of RuO2 on Ru/SiO2/Si substrates 16 3-1-3. Preparation of RuO2 thin film on Pt/MgO substrates 16 3-1-4. Preparation of RuO2 thin films on SiO2/Si substrates 17 3-2. Characterization of RuO2 thin films 17 Chapter 4 Results and Discussion 24 4-1. Orientations of deposited RuO2 thin films 24 4-2. Surface morphology of textured RuO2 thin films 27 4-3. Quantitative chemical analysis of RuO2 thin films 30 4-4. Discussion 34 Chapter 5 Conclusions 67 Reference 68 List of Tables Table 3-1 The parameters of Ru/RuO2 multi-layer deposition (a)Ru (b) RuO2 19 Table 3-2 The parameters of RuO2 thin films deposited on Pt/MgO substrates 20 Table 3-3 The parameters of RuO2 thin films deposited on SiO2/Si substrates 20 Table 4-1 The binding energy of ruthenium oxide thin films as obtained from a least-square curve fitting procedure of experimental XPS data 40 Table 4-2 The area ratio of XPS peak for RuO2 thin films deposited under different O2 flow ratio. The substrate temperature is fixed at 300℃. 40 Table 4-3 The area ratio of XPS peak for RuO2 thin films deposited under different substrate temperature. The O2 flow ratio is fixed at 50% 41 Table 4-4 The area ratio of XPS peak for RuO2 thin films depos- ited on Pt/MgO substrates under different O2 flow ratio. The substrate temperature is fixed at 450℃. 41 List of Figures Figure 2-1 The rutile structure unit cell 9 Figure 2-2 Density of states for the valence (oxygen p levels) and conduction (metal d level) band of RuO2 9 Figure 2-3 The effect of fatigue on P-E curve 10 Figure 2-4 Fatigue properties of (a) RuO2 /PZT/Pt/RuO2 capacitor (b) Pt/PZT/Pt capacitor fabricated using PZT films deposited at 395℃ 10 Figure 2-5 Schematic diagrams of supposed lattice matching image 11 Figure 2-6 XRD curves of the (Bi3.5Nd0.5)Ti3O12 films deposited on (a) (101)RuO2//(012)Al2O3 and (b) (001)RuO2 // (001)TiO2 substrates 11 Figure 2-7 XRD spectra of as-deposited RuO2 films deposited at a relative O2 partial pressure of 20% and 50%; sputtering power was 0.2 kW at 12 mTorr. No intentional substrate heating was applied during the deposition 12 Figure 2-8 XRD patterns of RuO2 films prepared at various substrate temperatures (a) 25℃ (b) 100℃ (c) 200℃ (d) 300℃ (e) 400℃ (f) 500℃. The films were deposited for 1h at gas flow ratio of 70/30, the working pressure of 0.66Pa, and the RF power of 80W 12 Figure 2-9 XRD patterns of RuO2 films deposited at various O2 content of the working gas (a) 10% (b) 20% (c) 30% (d) 40%. The films deposited for 1h at the substrate temperature of 500℃, the working pressure of 0.66Pa, and the RF power of 80W 13 Figure 2-10 XRD pattern of a PZT thin film grown on a RuO2/MgO substrate 13 Figure 2-11 XRD patterns of RuO2/Ru multilayers deposited on SiO2/Si substrates 14 Figure 2-12 XRD patterns of RuO2 films on Pt(111), Ru(001), and TiO2 14 Figure 3-1 The diagram of the RF magnetron sputter system 21 Figure 3-2 RuO2 thin films deposition and characterization 22 Figure 3-3 (a) The structure of RuO2/Ru/SiO2/Si substrate 23 Figure 3-3 (b) The structure of the RuO2/Pt/Mgo substrate 23 Figure 3-3 (c) The RuO2/ SiO2/Si structure 23 Figure 4-1 The XRD patterns of RuO2 films deposited on SiO2 with O2 flow ratio = (a) 15% (b) 20% (c) 25% (d) 30% (e) 50%. The Ts = 300℃, working pressure = 10 mTorr, and the RF power = 20W 42 Figure 4-2 The XRD patterns of RuO2 films deposited on SiO2 with O2 flow ratio = (a) 15% (b) 30% (c) 40% (d) 50%. The Ts = 450℃, working pressure = 10 mTorr, and the RF power = 20W 43 Figure 4-3 The XRD patterns of RuO2 films deposited on SiO2 with O2 flow ratio = (a) 15% (b) 20% (c) 30% (d) 50%. The Ts = 300℃, working pressure = 5 mTorr, and the RF power = 20W 44 Figure 4-4 The XRD patterns of RuO2 films deposited on SiO2 with O2 flow ratio = (a) 15% (b) 30% (c) 40% (d) 50%. The Ts = 450℃, working pressure = 5 mTorr, and the RF power = 20W 45 Figure 4-5 The effect of RF power density on the crystallization of (200)-oriented RuO2 films 46 Figure 4-6 The XRD curve of RuO2 films deposited on Ru at Ts = (a) 200℃ (b) 100℃. The O2 flow ratio = 30%, working pressure = 5 mTorr, RF power = 20W 47 Figure 4-7 The XRD curves of RuO2 films deposited on Pt/MgO with O2 flow ratio = (a) 15% (b) 30% (c) 40%. The Ts = 450℃, working pressure = 5 mTorr, RF power = 20W 48 Figure 4-8 The SEM images of (110)-orientation preferred RuO2 films deposited on SiO2 with O2 flow ratio = (a) 25% (b) 30%. The Ts = 300℃, working pressure = 10 mTorr, and the RF power = 20W 49 Figure 4-9 The AFM images of (110)-orientation preferred RuO2 films deposited on SiO2 with O2 flow ratio = (a) 25% (b) 30%. The Ts = 300℃, working pressure = 10 mTorr, and the RF power = 20W 50 Figure 4-10 The SEM images of (101)-orientation preferred RuO2 films deposited on SiO2 with O2 flow ratio = (a) 40% (b) 50%. The Ts = 450℃, working pressure = 10 mTorr, and the RF power = 20W 51 Figure 4-11 The AFM images of (101)-orientation preferred RuO2 films deposited on SiO2 with O2 flow ratio = (a) 40% (b) 50%. The Ts = 450℃, working pressure = 10 mTorr, and the RF power = 20W 52 Figure 4-12 The (a) SEM (b) AFM images of RuO2 films deposited on Ru at Ts = 200℃, O2 flow ratio = 30%, working pressure = 5 mTorr, RF power = 20W 53 Figure 4-13 The GIXD patterns of RuO2 films deposited on Ru at Ts = 200℃, O2 flow ratio = 30%, working pressure = 5 mTorr, RF power = 20W 54 Figure 4-14 The (a) SEM (b) AFM images of RuO2 films deposited on Pt/MgO at Ts = 450℃, O2 flow ratio = 40%, working pressure = 5 mTorr, and the RF power = 20W 55 Figure 4-15 The XPS spectra (a) Ru 3d (b) O1s peaks of RuO2 films deposited on SiO2 with O2 flow ratio = 15%, Ts = 300℃, working pressure = 10 mTorr, and the RF power = 20W 56 Figure 4-16 The XPS spectra (a) Ru 3d (b) O1s peaks of RuO2 films deposited on SiO2 with O2 flow ratio = 25%, Ts = 300℃, working pressure = 10 mTorr, and the RF power = 20W 57 Figure 4-17 The XPS spectra (a) Ru 3d (b) O1s peaks of RuO2 films deposited on SiO2 with O2 flow ratio = 30%, Ts = 300℃, working pressure = 10 mTorr, and the RF power = 20W 58 Figure 4-18 The XPS spectra (a) Ru 3d (b) O1s peaks of RuO2 films deposited on SiO2 with O2 flow ratio = 50%, Ts = 300℃, working pressure = 10 mTorr, and the RF power = 20W 59 Figure 4-19 The XPS spectra (a) Ru 3d (b) O1s peaks of RuO2 films deposited on SiO2 with O2 flow ratio = 50%, Ts = 400℃, working pressure = 10 mTorr, and the RF power = 20W 60 Figure 4-20 The XPS spectra (a) Ru 3d (b) O1s peaks of RuO2 films deposited on SiO2 with O2 flow ratio = 50%, Ts = 450℃, working pressure = 10 mTorr, and the RF power = 20W 61 Figure 4-21 The XPS spectra (a) Ru 3d (b) O1s peaks of RuO2 films deposited on Pt/MgO substrates with O2 flow ratio = 15%, Ts = 450℃, working pressure = 5 mTorr, and the RF power = 20W 62 Figure 4-22 The XPS spectra (a) Ru 3d (b) O1s peaks of RuO2 films deposited on Pt/MgO substrates with O2 flow ratio = 40%, Ts = 450℃, working pressure = 5 mTorr, and the RF power = 20W 63 Figure 4-23 The reaction process models of the RuO2 films growth by reactive sputtering under (a) low O2/Ar (b) mediate O2/Ar (c) high O2/Ar ratio 64 Figure 4-24 Two-dimensional atomic configurations of Ru and RuO2: (a) Ru (001) p plane (b) RuO2 (100) plane (c) epitaxial relationship between 5×4 Ru (001) and 3 × 3 RuO2 (100) planes 65 Figure 4-25 Probable epitaxial relationships of rutile on Pt 65 Figure 4-26 The 1-D growth of bar-like grains for (101)-oriented RuO2 films 66rf Chapter 1 [1 ] Y. M. Sun and J. Y. Gan, “Synthesis and Characterization of Lanthanoid (La, Sm)-substituted Bismuth Titanate Thin Films for Non-volatile Memory Applications”, doctoral thesis, Dept. MSE., National Tsing Hua University, Taiwan (2003) [2 ] X. J. Zhang, S. T. Zhang, Y. F. Chen, Z. G. Liu, N. B. Ming, “Completely (001)-textured growth and electrical properties of Bi4Ti3O12/LaNiO3 heterostructures prepared by pulsed laser deposition on LaAlO3 single crystal substrates”, Microelectronic Engineering, Vol. 66, pp.719-725 (2003) [3 ] C. P. Lin and J. Y. Gan, “摻雜釹(Nd)之鈦酸鉍(BIT)鐵電薄膜優選指向控制”, master thesis, Dept. MSE., National Tsing Hua University, Taiwan (2003) [4 ] B. H. Park, S. J. Hyun, S. D. Bu, and T. W. Noh, “Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12”, Appl. Phys. Lett. Vol. 74, No. 13, pp. 1907-1909 (1999) [5 ] B. H. Park, B.S. Kang, T. W. Noh, J. Lee, and W. Jo , “Lanthanum-substituted bismuth titanate for use in non-volatile memories”, Nature, Vol. 401, pp. 682-684 (1999) [6 ] T. Watanabe, H. Funakubo, K. Saito, T. Suzuki, M. Fujimoto, M. Osada, Y. Noguchi, and M. Miyayama, “Preparation and characterization of a- and b-axis-oriented epitaxially grown Bi4Ti3O12-based thin films with long-range lattice matching”, Appl. Phys. Lett., Vol. 81, No. 9, pp. 1660-1662 (2002) Chapter 2 [1 ] K. Y. Shih and T. Y. Tseng, “ Properties and Fabrication of Reactively Magnetron Sputtered Ruthenium Dioxide Thin Films”, Master Thesis, Nation Chiao Tung University, Taiwan (1997) [2 ] A. K. Goel, G.. Skorinko, and F. H. Pollak, “Optical Properties of Single-crystal Rutile RuO2 and IrO2”, Phys. Rev. B, Vol. 24, No. 12, pp. 7342-7350 (1981) [3 ] Y. M. Sun, J. Y. Gan, “Synthesis and Characterization of Lanthanoid (La, Sm)-substituted Bismuth Titanate Thin Films for Non-volatile Memory Applications”, Doctoral Thesis, National Tsing-Hua University, Taiwan (2003) [4 ] M. L. Green, M. E. Gross, L. E. Papa, K. J. Schnoes, and D. Brasen, “Chemical Vapor Deposition of Ruthenium and Ruthenium Dioxide Films”, J. Electrochem. Soc., Vol. 132, No. 11, pp 2677-2685 (1985) [5 ] L. Krusin-Elbaum, M. Wittmer, and D. S. Yee, “Characterization of Reactively Sputtered Ruthenium Dioxide for Very Large Scale Integrated Metallization”, Appl. Phys. Lett., Vol. 50, No. 26, pp. 1879-1881 (1987) [6 ] H. N. Al-Shareef, A. I. Kingon, X. Chen, K. B. Bellur, and O. Auciello, “Contribution of Electrodes and Microstructure to the Electrical Properties of Pb(Zr0.53Ti0.47)O3 Thin Film Capacitors”, J. Mater. Res., Vol. 9, pp. 2968-2975, No. 11 (1994) [7 ] T. Watanabe, H. Funakubo, K. Saito, T. Suzuki, M. Fujimoto, M. Osada, Y. Noguchi, and M. Miyayama, “Preparation and characterization of a- and b-axis-oriented epitaxially grown Bi4Ti3O12-based thin films with long-range lattice matching”, Appl. Phys. Lett., Vol. 81, No. 9, pp. 1660-1662 (2002) [8 ] T. Watanabe, T. Kojima, H. Uchida, I. Okada, and H. Funakubo, “Spontaneous Polarization of Neodymium-Substituted Bi4Ti3O12 Estimated from Epitaxially Grown Thin Films with in-Plane c-Axis Orientations”, Jpn. J. Appl. Phys., Vol. 43, No. 2B, pp L309-L311 (2004) [9 ] T. Watanabe, T. Sasaki, H. Funakubo, K. Saito, M,Osada, M. Yoshimoto, A. Sasaki, J. Liu, and M. Kakihana, “Ferroelectric Property of a-/b-Axis-Oriented Epitaxial Sr0.8Bi2.2Ta2O9 Thin Films Grown by Metalorganic Chemical Vapor Deposition”, Jpn. J. Appl. Phys. Vol. 41, No. 12B, pp. L 1478–L 1481 (2002) [10 ] X.J. Zhang, S.T. Zhang, Y.F. Chen , Z.G. Liu, N.B. Ming, “C ompletely (001)-textured growth and electrical properties of Bi4Ti3O12/LaNiO3 heterostructures prepared by pulsed laser deposition on LaAlO3 single crystal substrates”, Microelectronic Engineering, Vol. 66, pp. 719-725 (2003) [11 ] J. Zhai and H. Chen, “Ferroelectric properties of Bi3.25La0.75Ti3O12 thin films grown on the highly oriented LaNiO3 buffered Pt/Ti/SiO2 ’Si substrates”, Appl. Phys. Lett., Vol. 82, No. 3, pp.442-444 (2003) [12 ] T. Maeder, P. Muralt, and L. Sagalowicz, “Growth of (111)-oriented PZT on RuO2 (100) / Pt (111) electrodes by in-situ sputtering”, Thin Solid Films, Vol. 345, pp. 300-306 (1999) [13 ] H. N. Al-Shareef, K.R. Bellur, A. L. Kingon, “Influence of Platinum Interlayers on the Electrical Properties of RuO2/Pb(Zr0.53Ti0.47)O3/RuO2 capacitor hetero- structures”, Appl. Phys. Lett., Vol. 66, No. 2, pp. 239-241 (1995) [14 ] H. N. Al-Shareef, O. Auciello, A. I. Kingon, “Electrical Properties of Ferroelectric Thin-film Capacitors with Hybrid (Pt, RuO2) Electrodes for Nonvolatile Memory Applications”, J. Appl. Phys., Vol. 77, No. 5, pp. 2146-2154 (1995) [15 ] G. Asano, H. Morioka, H. Funakubo, T. Shibutami, N. Oshima, “Fatigue-free RuO2/Pb(Zr, Ti)O3/RuO2 Capacitor Prepared by Metalorganic Chemical Vapor Deposition at 395℃”, Appl. Phys. Lett., Vol. 83, No. 26, pp. 5506-5508 (2003) [16 ] H. Irie, M. Miyayama, and T. Kudo, “Structure dependence of ferroelectric properties of bismuth layer-structured ferroelectric single crystals”, J. Appl. Phys., Vol. 90, No. 8, pp. 4089-4094 (2001) [17 ] B. H. Park, B.S Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, “Lanthanum-substituted Bismuth Titanate for Use in Non-volatile Memories”, Nature, Vol. 401, pp. 682-684 (1999) [18 ] J. F. Scott, “Quantitative measurement of space-charge effects in lead zirconate-titanate memories”, J. Appl. Phys., Vol. 70, No. 1, pp. 382-388 (1991) [19 ] R. Dat, D. J. Lichtenwalner, O. Auciello, and A. I. Kingon, “Polycrystalline La0.5Sr0.5CoO3/PbZr0.53Ti0.47O3/ La0.5Sr0.5CoO3 ferroelectric capacitors on platinized silicon with no polarization fatigue”, Appl. Phys. Lett., Vol. 64, No. 20, pp. 2673-2675 (1994) [20 ] R. Ramesh, W. K. Chan, B. Wilkens, H. Gilchrist, T. Sands, J. M. Tarascon, V. G. Keramidas, D. K. Fork, J. Lee, and A. Safari, “Fatigue and Retention in Ferroelectric Y-Ba-Cu-O/Pb-Zr-Ti-O/Y-Ba-Cu-O Heterostructures”, App. Phys. Lett., Vol. 61, No, 13, pp. 1537-1539 (1992) [21 ] C. B. Eom, R. B. Van Dover, Julia M. Phillips, D. J. Werder, J. H. Marshall, C. H. Chen, R. J. Cava, R. M. Fleming, and D. K. Fork, “Fabrication and properties of epitaxial ferroelectric heterostructures with (SrRuO3) isotropic metallic oxide electrodes”, Appl. Phys. Lett., Vol. 63, No. 18, pp.2570-2572 (1993) [22 ] M. S. Chen, T. B. Wu, and J. M. Wu, “Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films”, Appl. Phys. Lett., Vol. 68, No. 10, pp. 1430-1432 (1996) [23 ] X. Fang, M. Tachiki, and T. Kobayashi, “Growth of RuO2 Thin Films on a MgO Substrate by Pulsed Laser Deposition Method”, Jpn. J. Appl. Phys., Vol. 36, Part 2, No. 4B, pp. L511-514 (1997) [24 ] J. F. Tressler, K. Watanabe, and M. Tanaka, “Synthesis of Ruthenium Dioxide Thin Film by a Solution Chemistry Technique”, J. Am. Ceram. Soc., Vol. 79, No. 2, pp. 525-529 (1996) [25 ] S. Bhaskar, P. S. Dobal, S. B. Majumder, and R. S. Katiyar, “X-Ray Photoelectron Spectroscopy and Micro-Raman Analysis of Conductive RuO2 thin Films”, J. Appl. Phys., Vol. 89, No. 5, pp. 2987-2992 (2001) [26 ] W. T. Lim, K. R. Cho, and C. H. Lee, “Structural and Electrical Properties of RF-sputtered RuO2 Films Having Different Conditions of Preparation”, Thin Solid Films, Vol. 348, No. 1, pp. 56-62 (1999) [27 ] J. G. Lee, Y. T. Kim, and S. K Min and S. H. Choh, “Effects of excess oxygen on the properties of reactively sputtered RuOx thin films”, J. Appl. Phys. Vol. 77, No. 10, pp.5473-5475 (1995) [28 ] Y. Kaga, Y. Abe, H. Yanagisawa, K. Sasaki, “Formation Process and Electrical Property of RuO2 Thin Films Prepared by Reactive Sputtering”, Jpn. J. Appl. Phys. Vol. 37, Part 1, No. 6A , pp. 3457-3461 (1998) [29 ] Y. Abe., M. Kawamura and K. Sasaki, “Highly Textured (100) RuO2/(001) Ru Multilayers Prepared by Sputtering”, Jpn. J. Appl. Phys. Vol. 41 , Part 1, No. 11B, pp. 6857–6861 (2002) Chapter 4 [1 ] Y. Abe., M. Kawamura and K. Sasaki, “Highly Textured (100) RuO2/(001) Ru Multilayers Prepared by Sputtering”, Jpn. J. Appl. Phys. Vol. 41 , Part 1, No. 11B, pp. 6857–6861 (2002) [2 ] W. T. Lim, K. R. Cho, C. H. Lee, “Structural and Electrical Properties of RF-sputtered RuO2 films having different conditions of preparation”, Thin Solid Films, Vol. 348, pp. 56-62 (1999) [3 ] Y. Kaga, Y. Abe, H. Yanagisawa, K. Sasaki, “Formation Process and Electrical Property of RuO2 Thin Films Prepared by Reactive Sputtering”, Jpn. J. Appl. Phys. Vol. 37, Part 1, No. 6A , pp. 3457-3461 (1998) [4 ] J. G. Lee, Y. T. Kim, and S. K Min and S. H. Choh, “Effects of excess oxygen on the properties of reactively sputtered RuOx thin films”, J. Appl. Phys. Vol. 77, No. 10, pp.5473-5475 (1995) [5 ] S. Bhaskar, P. S. Dobal, S. B. Majumder, and R. S. Katiyar, “X-Ray Photoelectron Spectroscopy and Micro-Raman Analysis of Conductive RuO2 thin Films”, J. Appl. Phys., Vol. 89, No. 5, pp. 2987-2992 (2001) [6 ] J. F. Moulder et al., “Handbook of X-Ray Photoelectron Spectroscopy”, Perkin-Elmer Corporation (1992) [7 ] T. Maeder, P. Muralt, and L. Sagalowicz, “Growth of (111)-oriented PZT on RuO2 (100) / Pt (111) electrodes by in-situ sputtering”, Thin Solid Films, Vol. 345, pp. 300-306 (1999)id NH0925159024 sid 913529 cfn 0 / id NH0925159025 auc 陳俐君 tic 以溶液鑄型法製備Nafion膜層及其梯度電極製備之研究 adc 金重勳 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 90 kwc Nafion kwc 溶液鑄型法 kwc 梯度電極 kwc IPMC abc IPMC 是一種由離子交換樹脂與金屬所組成的複合材料,其主要結構是由離子高分子及上下金屬電極所組成。當外界施加電場時,IPMC可藉由離子移位而產生形變。目前IPMC在應用上遭遇最大的困難為,其電極表面水分的流失及金屬電極會由離子高分子上剝離分開,使其形變效能劣化。 rf 參考文獻 1. 謝明發, “智慧型生醫材料簡介”,化工資訊, 2, 36, 2003。 2. Y. Ito, M. Casolaro, K. Kono, I. Yukio, “AN INSULIN-RELEASING SYSTEM THAT IS RESPONSIVE TO GLUCOSE”, J. Controlled Release, 10, 195, 1989. 3. Kim KJ and Shahinpoor M,” A novel method of manufacturing three-dimensional ionic polymer-metal composites (IPMCs) biomimetic sensors, actuators and artificial muscles”, Polymers, 43, 797, 2002. 4. Li JY and Nemat-Nasser S, “Micromechanical analysis of ionic clustering in Nafion perfluorinated membrane”, Mechanics of Materials, 32, 303, 2000. 5. Idla K, Inganas O and Strandberg, ” Good adhesion between chemically oxidised titanium and electrochemically deposited polypyrrole”, Electrocimica Acta, 45, 2121, 2000. 6. Oguro K, Kawami Y and Takenaka H, “Bending of an Ion-Conducting Polymer Film-Electrode Composite by an Electric Stimulus at Low Voltage”, Trans. Journal of Micromachine Society, 5, 27, 1992. 7. Shahinpoor M,” Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles”, Smart Materials and Structures, 1, 91, 1992. 8. K. Onishi, S. Sewa, K. Asaka, N. Fujiwara, K. Oguro, “Morphology of electrodes and bending response of the polymer electrolyte actuator”, Electrochimica Acta, 46, 737, 2000. 9. M. Shahinpoor, K.J. Kim, “Proceedings of SPIE”, Smart Structures and Materials, 2000, 110, 2000. 10. Sadeghipour K, Salomon R, Neogi S, “Development of a novel electrochemically active membrane and 'smart' material based vibration sensor/damper”, Smart Materials and Structures, 2, 172, 1992. 11. Gousse AE, Madjar S, Lambert MM, Fishman IJ, “Artificial urinary sphincter for post-radical prostatectomy urinary incontinence: Long-term subjective results”, J. UROLOGY, 166, 1755, 2001. 12. Rivers TJ, Hudson TW, Schmidt CE, “Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications”, Adv. Funct. Mater., 12, 33, 2002. 13. 謝明發,“電致動高分子材料及生物醫學用途”,化工科技與商情,35,23,2002。 14. Rust C., Whiteley G., Wilson A., “Using practice led design research to develop an articulated mechanical analogy of the human hand”, J. Med. Engr. Techn., 22, 226, 1998. 15. M Shahinpoor, Y Bar-Cohen, J O Simpson, J Smith, “Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review”, Smart Mater. Struct., 7, R15, 1998. 16. M Shahinpoor, K J Kim, “Ionic polymer-metal composites:I. Fundamentals”, Smart Mater. Struct., 10, 819, 2001. 17. Sia Nemat-Nasser, “Micromechanics of actuation of ionic polymer-metal composites”, J. Appl. Phys., 92, 5, 2889, 2002. 18. K J Kim, M Shahinpoor, “A novel method of manufacturing three-dimensional ionic polymer-metal composites (IPMCs) biomimetic sensors, actuators and artificial muscles”, Polymer, 43, 787, 2002. 19. Sia Nemat-Nasser, Y Wu, “Comparative experimental study of ionic polymer-metal composites with different backbone ionomers and in various cation forms”, J. Appl. Phys., 93, 9, 5255, 2003. 20. K J Kim, M Shahinpoor, “Effective diffusivity of nanoscale ion-water clusters within ion-exchange membranes determined by a novel mechano-electrical technique”, International Journal of Hydrogen Energy, 28, 99, 2003. 21. Kwang J. Kim, “Fabrication and Development of Electroactive Ionic Polymer-Metal Composites and Their Applications as Smart Materials”, Materials Science Forum Vols., 426-432, 2249, 2003. 22. Kwang J. Kim, Mohsen Shainpoor, “Ionic polymer-metal composites:II. Manufacturing techniques”, Smart Mater. Struct., 12, 65, 2003. 23. Yu-Chuan Liu, Bing-Joe Hwang, Iou-Jeng Tzeng, “Improvements in sensitivity and in anti-aging of Pt/C/Nafion gases sensors modified by chromium”, J. Electroanalytical Chemistry, 533, 85, 2002. 24. T. G. Noh, Y. Tak, J. D. Nam, H. Choi, “Electrochemical characterization of polymer actuator with large interfacial area”, Electrochimica Acta, 47, 2341, 2002. 25. Bo Gao, Guozhen Z. Yue, Qi Qiu, Yuan Cheng, Hideo Shimoda, Les Fleming, Otto Zhou, “Fabrication and Electron Field Emission Properties of Carbon Nanotube Films by Electrophoretic Deposition”, Adv. Mater., 13, 1770, 2001. 26. N. Fujiwara, K. Asaka, Y. Nishmura, K. Oguro, E. Torikai, “Preparation of Gold-Solid Polymer Electrolyte Composites As Electric Stimuli-Responsive Materials”, Chem. Mater., 12, 1750, 2000. 27. M. Shahinpoor, K. Jim, “The effect of surface-electrode resistance on the performance of ionic polymer-metal composite(IPMC) artificial muscles”, Smart Mater. Struct., 9, 543, 2000. 28. Fujita Y., Muto T., JP Patent: 61, 295, 387, 1986. 29. Belloni J, Mostafavi M, Remita H, Marignier J.L., Delcourt M.O.,“Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids”, New J. Chem., 22, 1239, 1998. 30. Shahinpoor M, Bar-Cohen Y., Simpson J.O., Smith J., “Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles - a review”, Smart Mater. Struct., 7, R15, 1998. 31. Robin F.B. Turner, D. Jed Harrison and Ray V. Rajotte, “Preliminary in vivo biocompatibility studies on perfluorosulphonic acid polymer membranes for biosensor applications”, Biomaterials, 12, 361, 1991. 32. C. Zaluski and G. Xu, “Blends of Nation and Dow Perfluorosulfonated Ionomer Membranes”, Macromolecules, 27, 6750, 1994. 33. H. G. Haubold, Th. Vad, H. Jungbluth and P. Hiller, “Nano structure of NAFION:a SAXS study”, Electrochimica Acta, 46, 1559, 2001. 34. Min Wei, Meixian Li, Nanqiang Li, Zhennan Gu and Xihuang Zhou, “Electrocatalytic Oxidation of Ascorbic Acid at a Reduced C60-〔dimethyl-(β-cyclodextrin)〕2 and Nafion Chemically Modified Electrode”, Electroanalysis, 14, 2, 135, 2002. 35. Anne-Laure Rollet, Olivier Diat and Gerard Gebel, “A New Insight into Nafion Structure”, The Journal of Physical Chemistry B, 106, 12, 3033, 2002. 36. Wafa Essafi, Gerard Gebel and Regis Mercier, “Sulfonated Polyimide Ionomers:A Structural Study”, Macromolecules, 37, 1431, 2004. 37. Veroni Barbi, Sergio S. Funari, Rainer Gehrke, Nico Scharnagl and Norbert Stibeck, “Nanostructure of Nafion membrane material as a function of mechanical load studied by SAXS”, Polymer, 44, 4853, 2003. 38. Mikael Ludvigsson, “Materials for Future Power Sources”, 2000. 39. Gebel G., Lambard J., “Small-angle scattering study of water-swollen perfluorinated ionomer membranes”, Macromolecules, 30, 25, 7914, 1997. 40. Martin C. R., Rhoades T. A., Fergusson J. A., “DISSOLUTION OF PERFLUORINATED ION CONTAINING POLYMERS”, Anal. Chem., 54, 1641, 1982. 41. Grot W. G., Chadds F., European Patent 0 066 369, 1982. 42. Moore R. B., Martin C. R., “PROCEDURE FOR PREPARING SOLUTION-CAST PERFLUOROSULFONATE IONOMER FILMS AND MEMBRANES”, Anal. Chem., 58, 2570, 1986. 43. S. C. Yeo, A. Eisenberg, “Physical properties and supermolecular structure of perfluorinated ion-containing (Nafion) polymer”, J. Appl. Polym. Sci., 21, 875, 1977. 44. Gerard Gebel, Pierre Aldebert and Michel Pineri, “Structure and Related Properties of Solution-Cast Perfluorosulfonated Ionomer Films”, Macromolecules, 20, 1425, 1987. 45. Hideto M., Yoshiro K., Yuji D., Shigeru O., Yorishige M., Takumi O., “Facilitated Transport of Ethyl Docosahexaenoate Through Solution-Cast Perfluorosulfonated Ionomer Membranes”, Journal of Applied Polymer Science, 73, 961, 1999. 46. H. Matsuyama, K. Matdui, Y. Kitamura, T. Maki, M. Teramoto, “Effects of membrane thickness and membrane preparation condition on facilitated transport of CO2 through ionomer membrane”, Separation and Purification Technology, 17, 235, 1999. 47. Z. Siroma, N. Fujiwara, T. Ioroi, S. Yamazaki, K. Yasuda, Y. Miyazaki, “Disslution of Nafion membrane and recast Nafion film in mixtures of methanol and water”, Journal of Power Sources, 126, 41, 2004. 48. Feigin L.A., Svergum DD. I., “Structure Analysis by Small-angle X-ray and neutron scattering”, Plenum Press, New York, 1987. 49. Higgind J. S., Benoit H.C., “Polymers and Neutron Scattering”, Clarendon Press, Oxford, 1994. 50. Roe R. J., “Methods of X-ray and Neutron scattering in Polymer science”, Oxford University Press, New York Oxford, 2000. 51. 林滄浪,”中子與X光散射教材”,國立清華大學工程科學系。 52. Debye P., Bueche A. M., “Scattering by an Inhomogeneous Solid”, J. Appl. Phys., 20, 518, 1949. 53. Tsvankin D. Y., ” On the effect of thermal expansion on the intensity of diffraction from molecules”, Acta Cryst., A38, 304, 1982. 54. Vonk C. G., “A procedure for desmearing X-ray small-angle scattering curves”, J. Appl. Crystallogr., 4, 340, 1971. 55. Strobel GR, Schneider M., “DIRECT EVALUATION OF THE ELECTRON-DENSITY CORRELATION - FUNCTION OF PARTIALLY CRYSTALLINE POLYMERS”, J. Polym. Sci. Polym. Phys. Ed., 18, 1343, 1980. 56. Debye P., Anderson J., Brumberger H., “Scattering by an Inhomogeneous Solid. II. The Correlation Function and Its Application”, J. Appl. Phys., 28, 679, 1957. 57. Porod G., “Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen. I. Teil”, Kolloid-Z., 124, 83, 1951. 58. Ruland W., “Small-angle scattering of two-phase systems: Determination and significance of systematid deviations from Porod’s law”, J. Appl. Crystallogr., 4, 70, 1971. 59. Santa Cruz C. S., Strbeck N., Zachmann H. G., Batlta Calleja F. J., “Novel aspects in the structure of poly(ethylene terephthalate) as revealed by means of small angle x-ray scattering”, Macromolecules, 24, 5980, 1991. 60. Albrecht T., Strobl G., “Observation of the Early Stages of Crystallization in Polyethylene by Time-Dependent SAXS: Transition from Individual Crystals to Stacks of Lamellae”, Macromolecules, 29, 783, 1996. 61. Y Abe, A Mochizuki, T Kawashima, S Yamashita, K Asaka, K Oguro, “Effect on Bending Behavior of Counter Cation Species in Perfluorinated Sulfonate Membrane-Platinum Composite”, Polym. Adv. Technol., 9, 520, 1998. 62. 邱秀榮,”結晶性高分子的X-光小角度散射分析技術”,化工資訊,01,40,2003。 63. Kenji T., Eisaku H., Hitoshi Y., Shinichi Y., “Order-Disorder Transition of Ionic Clusters in Ionomers”, Macromolecules, 22, 226, 1989. 64. M. Laporta, M. Pegoraro, L. Zanderighi, “Perfluorosulfonated membrane (Nafion): FT-IR study of the state of water with increasing humidity”, Phys. Chem. Chem. Phys. 1, 4619, 1999. 65. Mineo F., Takeji H., Hiromichi K., “Small-Angle X-ray Scattering of Perfluorinated Ionomer Membranes. 1. Origin of Two Scattering Maxima”, Macromolecules, 14. 1309, 1981. 66. Roche E. J., Pineri M., Duplessix R., Levelut A. M., “SMALL-ANGLE SCATTERING STUDIES OF NAFION MEMBRANES”, J. POLYM. SCI. POL. PHYS.,19, 1, 1981. 67. Marx C. L., Caulfield D. F., Cooper S. L., “Morphology of Ionomers”, Macromolecules, 6, 344, 1973. 68. Gérard Gebel, Jacques Lambard, “Small-Angle Scattering Study of Water-Swollen Perfluorinated Ionomer Membranes”, Macromolecules, 30, 7914, 1997. 69. Kenji T., Eisaku H., Hitoshi Y., Shinichi Y., “Order-Disorder Transition of Ionic Clusters in Ionomers”, Macromolecules, 22, 226, 1989. 70. S. H. de Almeida, Y. Kawano, “Thermal Behavior of Nafion Membranes”, Journal of Thermal Analysis and Calorimetry, 58, 569,1999. 71. Eisaku H., Yasufumi Y. Kenji T., Shinichi Y., “Formation of Ionic Crystallites and Its Effect on the Modulus of Ethylene Ionomers”, Macromolecules, 22, 2776, 1989. 72. 黃振宏,”NafionTM溶液成膜的物理性質與形態學研究”,元智大學化學工程研究所碩士論文,2003。 73. Claudine E. W., Thomas P. R., Robert J., Jacques H., “Ionic Aggregation in Model Ionomers”, Macromolecules, 19, 2877, 1986.id NH0925159025 sid 913530 cfn 0 / id NH0925159026 auc 楊宗翰 tic ZrTaTiNbSi非晶質合金薄膜之結構演變及其機性電性研究 adc 甘炯耀博士 adc 葉均蔚博士 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 81 kwc ZrTaTiNbSi kwc 高熵合金 kwc 全約化徑向分布函數 kwc 非晶質合金 abc 近幾十年來,多元金屬玻璃(multi-component glassy metal)由於具有一些優越獨特的物理特性及化學特性,已引起世界眾多學者的廣大興趣。在熱力學上,非晶質相一直被認為是一個不穩定相(unstable phase),因此在高溫熱處理下,其微結構將會逐漸改變為較穩定的結晶相。由於材料之結構和其物理性質息息相關,了解金屬玻璃結構改變機制以及其對材料物理性質的影響,是一有趣且重要問題。本論文即對這方面做了一系列的研究。 tc 目 錄 誌謝----------------------------------------------------------------------------------Ι 摘要------------------------------------------------------------------------------- III 目錄-------------------------------------------------------------------------------- V 圖目錄--------------------------------------------------------------------------VIII 表目錄----------------------------------------------------------------------------XI Chapter 1 前言------------------------------------------------------------------1 Chapter 2 文獻回顧 2.1非晶質合金--------------------------------------------------------------4 2.2 非晶質結構分析-------------------------------------------------------7 2.3高熵合金的發展 ------------------------------------------------------9 Chapter 3 實驗步驟與分析技術 3.1實驗步驟 --------------------------------------------------------------14 3.1.1實驗流程 -------------------------------------------------------14 3.1.2合金組成與靶材製備 ----------------------------------------14 3.1.3薄膜製備 -------------------------------------------------------16 3.1.4薄膜成份分析 -------------------------------------------------16 3.1.5 X-ray 繞射分析 ----------------------------------------------16 3.1.5.1鑄錠微結構 -------------------------------------------17 3.1.5.2薄膜微結構 -------------------------------------------17 3.1.6 薄膜厚度分析 ------------------------------------------------17 3.1.7 電阻率分析-----------------------------------------------------17 3.1.8 硬度分析--------------------------------------------------------18 3.1.9 HR-TEM分析--------------------------------------------------18 3.2 薄膜製程及分析技術 ----------------------------------------------19 3.2.1 直流磁控濺鍍 ------------------------------------------------19 3.2.1.1濺鍍原理 -----------------------------------------------19 3.2.1.2 直流輝光放電 ----------------------------------------20 3.2.1.3薄膜成長特性與製程參數之關係 -----------------22 3.2.2 儀器分析原理 ------------------------------------------------23 3.2.2.1 低掠角X光繞射分析 -------------------------------23 3.2.2.2 四點探針 ----------------------------------------------24 3.2.2.3 奈米壓痕法 -------------------------------------------26 3.2.2.4 全約化徑向分布函數理論分析--------------------28 3.2.2.4.1 單原子繞射理論 -------------------------28 3.2.2.4.2 多原子繞射理論 -------------------------30 Chapter 4 實驗結果 4.1高熵合金靶材與初鍍膜狀態微結構與成份分析---------------43 4.2高熵合金薄膜經短時間退火後之研究---------------------------44 4.2.1XRD分析--------------------------------------------------------44 4.2.2薄膜電阻率之分析---------------------------------------------44 4.2.3薄膜硬度之分析------------------------------------------------44 4.2.4 HR-TEM分析 -------------------------------------------------46 Chapter 5全約化徑向分布函數模擬分析與討論 5.1 全約化徑向分布函數模擬分析 ----------------------------------54 5.2 結果與討論 ----------------------------------------------------------58 5.2.1 ZrTaTiNbSi非晶質合金轉變之模型-----------------------58 5.2.2 相轉變模型與物理性質之關係-----------------------------58 5.3 熱、動力學解釋及高熵效應---------------------------------------59 Chapter 6結論 ------------------------------------------------------------------74 參考資料--------------------------------------------------------------------------76 圖 目 錄 圖2-1 Zr41Ti14Cu12.5Ni10Be22.5之全約化徑向分佈圖----------------------12 圖2-2 Zr31Cu13Al9Ni之不同退火溫度TEM照片圖-----------------------12 圖2-3 Zr31Cu13Al9Ni之DSC、薄膜硬度及電阻率量測-------------------13 圖3-1實驗流程圖---------------------------------------------------------------33 圖3-2真空電弧熔煉示意圖---------------------------------------------------35 圖3-3直流磁控濺鍍系統示意圖---------------------------------------------35 圖3-4濺鍍原理示意圖---------------------------------------------------------36 圖3-5濺鍍沈積過程示意圖---------------------------------------------------36 圖3-6直流電漿放電示意圖---------------------------------------------------37 圖3-7陰極暗區電壓分佈示意圖---------------------------------------------38 圖3-8濺鍍薄膜之微結構區域示意圖---------------------------------------38 圖3-9低掠角X光繞射法的幾何關係示意圖-----------------------------39 圖3-10低掠角X光繞射法之西蒙-鮑林繞射裝置------------------------39 圖3-11四點探針裝置圖-------------------------------------------------------40 圖3-12薄膜受壓痕器施壓過程----------------------------------------------40 圖3-13荷重對位移曲線的關係----------------------------------------------41 圖3-14 電子束與原子繞射的關係圖 --------------------------------------41 圖3-15 原子週圍原子密度示意圖 -----------------------------------------42 圖4-1 ZrTaTiNbSi合金靶材與初鍍膜狀態合金薄膜之XRD分析---49 圖4-2 ZrTaTiNbSi高熵合金薄膜經短時間退火後之XRD分析------49 圖4-3 ZrTaTiNbSi高熵合金薄膜FE-SEM之薄膜厚度示意圖(a)300 K(b)673 K(c) 1173 K-------------------------------------------------50 圖4-4 高熵合金薄膜經熱處理後之電阻率變化曲線圖-----------------50 圖4-5 施壓力與壓痕深度之對應關係圖,在673 K下退火十分鐘--51 圖4-6 經奈米壓痕法量測後之表面形貌,在673 K下退火十分鐘 -51 圖4-7經奈米壓痕法量測後之側面3-D圖,在1173 K下退火十分鐘-52 圖4-8高熵合金薄膜經熱處理後之薄膜硬度變化曲線圖---------------52 圖4-9 ZrTaTiNbSi高熵合金薄膜經熱處理後之HR-TEM之明視野與繞射圖形(a)300 K(b)673 K(c) 1173 K----------------------------------53 圖5-1經Digital-Micrograph處理過之電子繞射圖(a)300K (b)673K (c)1173K-----------------------------------------------------------------67 圖5-2經Digital-Micrograph裁出欲做Guassian 模擬的圖形(a)300K (b)673K (c)1173K------------------------------------------------------68 圖5-3經Matlab 6.5選出欲Guassian 模擬的部份與實際圖形(a)300K (b)673K (c)1173K------------------------------------------------------69 圖5-4經Matlab 6.5所作的Guassian 模擬結果圖形(a)300 K (b)673 K (c)1173 K----------------------------------------------------------------70 圖5-5利用Guassian 模擬將中心光束強度還原-------------------------71 圖5-6各元素的原子散射原子對倒空間向量作圖------------------------71 圖5-7利用Matlab所求得的全約化強度函數------------------------------72 圖5-8利用Matlab所求得的全約化徑向分布函數-----------------------72 圖5-9 各退火溫度下的全約化徑向分布函數-----------------------------73 圖5-10薄膜經高溫退火後之微結構示意圖-------------------------------73 表 目 錄 表3-1本實驗中各元素的基本性質------------------------------------------34 表3-2本實驗中各元素間的化學鍵結能------------------------------------34 表4-1高熵合金靶材與薄膜之成份分析------------------------------------48 表4-2經熱處理10分鐘後各溫度之薄膜厚度與室溫電阻率-----------48 表4-3經熱處理10分鐘後各溫度之薄膜硬度----------------------------48 表5-1各溫度下所做Guassian 模擬結果-----------------------------------62 表5-2 ZrTaTiNbSi各元素原子散射因子中的參數值---------------------63 表5-3計算全約化強度函數所會用到各溫度的參數值------------------62 表5-4各退火溫度下原子排列位置與原子數------------------------------64 表5-5固溶相中原子對的鍵結長度------------------------------------------64 表5-6各原子間共價鍵的長度------------------------------------------------65 表5-7合金中各原子半徑及半徑差異(相對於矽原子)-------------------65 表5-8合金中各原子對金屬鍵之鍵結能------------------------------------66 表5-9合金中各原子對共價鍵之鍵結能------------------------------------66rf 1. H. S. Chen, H. J. Leamy and C. E. Miller, Annual Review of Materials Science, 10, 363, (1980) 2. B. B. Prasad, T. R.Anantharaman, A. K. Bhatnagar, D. Ganesan and R. Jagannathan, Journal of Non-crystalline Sloids, 61, 391, (1984) 3. Carlisle and H. Ben, Machine Design, 58, 1,24,(1986) 4. H. Jones, Rapid Solidification of Metals and Alloys, Ins. of Metallurgists, London, 1982 5. F. G. Yost, Journal of Materials Science, 16, 11, 3039, (1981) 6. P. Hassen, “Metallic Glasses”, Journal of Non-crystalline Solids, 56, 191, (1983) 7. J. Kramer, Z. Phys., 37, 19, (1934) 8. J. Kramer, Annln Phys., 37, 19, (1934) 9. A. Brener, D. E. Couch and E. K. Williams, J. Res. Natn. Bur. Stand., 44, 109, (1950) 10. P. Duwes, Trans. Am. Soc. Metals, 60, 607, (1967) 11. H. W. Kui, A. L. Greer and D. Turnbull, Applied Physics Letters, 45, 6, 615, (1984) 12. 程天一, 張守華編著, 快速凝固技術與新型合金, 宇航出版, 1990 13. A. Inoue, K. Kita, T. Masumoto and K. Ohtera, Japanese Journal of Applied Physics Part 2-Letters, 27, 10, 1796, (1998) 14. A. Inoue, K. Kita, T. Masumoto and T. Zhang, Materials Transactions, JIM, 30, 9, 722, (1998) 15. A. Inoue, T. Masumoto and T. Zhang, Materials Transactions, JIM, 31, 3, 177, (1999) 16. A. Inoue, T. Masumoto, U.S. Patent No. 5032196, Japanese Patent 07-122120. 17. A. Greer:Nature, 366, 303, (1993) 18. A. Inoue, Bulk Amorphous Alloys, 2, Trans. Tech. Publication, Zurich, 28, (1999) 19. A. Inoue, N. Nishiyama and H. Kimura, Materials Transactions, JIM, 38, 179, (1997) 20. A. Peker and W. L. Johnson, Applied Physics Letters, 63, 17, 2342, (1993) 21. A. Inoue, T. Zhang, K. Ohba, Materials Transaction, JIM, 36, 7, 876,(1995) 22. A. Inoue and J. S. Gook, Materials Transaction, JIM, 36, 7, 1282,(1995) 23. Y. He, T. D. Shen, and R. B. Schwarz, Metallurgical and Materials Transactions A-Physical Metallurgical and Materials Science, 29, 7, 1795, (1998) 24. T. Zhang and A. Inoue, Materials Transaction, JIM, 39, 10, 1001,(1998) 25. A. Inoue, T. Zhang, Materials Transaction, JIM, 40, 301,(1999) 26. F. E. Luborsky, “Amorphous Metallic Alloy”, Butterworth Monograph in Materials, London, UK, 1983, 19 27. A. Inoue, Mater. Trans. Japan. Inst. Metals, 36, 886(1995) 28. A. Inoue, Mater. Sci. Eng., A226, 357, (1997) 29. A. Inoue, A. Takeuchi and T. Zhang, Metall. Mater. Trans., 29A, 1779, (1998) 30. A. Inoue, “Bulk Amorphous Alloys”, Trans Tech Publication, Zurich, (1999) 31. A. Inoue and Rae Eun Park, Materials Transactions, JIM, 37, 11, 1715, (1996) 32. 黃國雄, “等莫耳比多元合金系統之研究”, 國立清華大學材料工程研究所碩士論文, 1996 33. 賴高廷, “高亂度合金微結構及性質探討”, 國立清華大學材料工程研究所碩士論文, 1998 34. 許雲翔, “以FCC及BCC元素為劃分配製等莫耳多元合金系統之研究”, 國立清華大學材料工程研究所碩士論文, 2000 35. 洪育德, ”Cu-Ni-Al-Co-Cr-Fe-Si-Ti高亂度合金之探討”, 國立清華大學材料工程研究所碩士論文, 2001 36. 陳家裕, “塗層用多元高熵合金之探討”, 國立清華大學材料工程研究所碩士論文, 2002 37. 童重縉, “Cu-Co-Ni-Cr-Al-Fe高熵合金變形結構與高溫特性之研究”, 國立清華大學材料工程研究所碩士論文, 2002 38. 陳敏睿, “添加V、Si、Ti對Al0.5CrCuFeCoNi高熵合金微結構與磨耗性質之影響”, 國立清華大學材料工程研究所碩士論文, 2003 39. 林佩君, “高頻軟磁高熵合金濺鍍薄膜之開發研究”, 國立清華大學材料工程研究所碩士論文, 2003 40. D. J. H. Cockayne, and D. R. Mckenzie, Acta Cryst. (1988), A44, 870 41. Wei-Hua Wang, Q Wei and S. Friedrich, Appl. Phys. Lett., (1997), 71, 1053 42. Warren, B. E. X-ray Diffraction Reading, MA: Addison Wesley. 43. Wei-Hua Wang, Q Wei and S. Friedrich, Physical Review B, 1998, 57, 8211 44. 王蓉, “電子衍射物理教程”, 北京冶金工業出版社, 2002 45. 許華偉, ” 碳化鈦及氮化鈦薄膜在Si(100)基板之磊晶成長”, 國立清華大學材料科學與工程學系,博士論文(1998) 46. Gang Xiao, and C. L. Chien, Appl.. Phys. Lett. 51 (16), p.1280, 1987. 47. 王起明, ”氮化鈦薄膜濺鍍之研究”, 國立清華大學材料科學與工程學系,碩士論文(1996) 48. C. L. Chien et al., J. Appl. Phys. 61(8), p.3311, 1987. 49. A. M. Howwastson, “An Introduction to Gas Discharge”Pergamon Press, Chapter. 4, 84 (1976) 50. Thin Film Deposition, (Principles & Practice), Donald L. Smith, 1995 51. Glow Discharge Processes, B. Chapman, John Willwy & Son, Inc. N. Y., Chapter. 6, 178 (1980) 52. S. H. Liou and C. L. Chien, J. Appl. Phys. 63(8), p.3311, 1987 53. Milton Oring, “The Materials Science of Thin Films”, Academic Press, 1992 54. 汪建民, “材料分析”, 民全書局, 1998 55. Dieter K. Schroder, “Semiconductor Material and Device Characterization”, Wiley, 1998 56. 郭正次, “交大材料奈米壓痕法操作手冊” 57. F. R. de Boer, R. Boom, “Cohesion In Metals, Transition Metal alloys”, Elsevier Science, 1988 58. David B. Williams and C. Barry Carter, “Transmission Electron Microscope”, Plenum Press, 1996 59. 吳泰伯, “X光繞射原理與材料結構分析”, 民全書局, 1996 60. Earl J. Kirkland, “Advanced Computing in Electron Microscopy”, Plenum Press, 1998 61. N. Mori, T. Oikawa and T. Katoh, Ultramicroscopy, 25, 195, (1988) 62. http://web.mit.edu/3.091 63. N. Mattern and S. Roth, Materials Science and Engineering A304–306, (2001), p311–p314 64. N. Wanderka and U. Czubayko, Materials Science and Engineering A270, (1999), p44–p47 65. Qiong Li and R. N. Shenoy, Journal of Materials Science, 32, (1997), p3401–p 3406 66. L. Q. Xing, C. Bertrand, J. P. Dallas, M. Cornet, Mat. Sci. Engng. A241, (1998), pp. 216-225. 67. F. Szuecs, C. P. Kim, W. L. Johnson, Acta mater., 49, (2001), p 1507–1513 68. Akihisa Inoue and Akihiro Makino, Journal of Magnetism and Magnetic Materials, 215-216, (2000), P246 69. J. P. Chu, Physical Review B 69, (2004), p113410 70. C. L. Chien et al., J. Appl. Phys. 61(8), p.3311, 1987 71. S. R. Elliott, Physics of amorphous materials, Longman, 1983 72. P. K. Huang, J. W. Yeh, Advanced Engineering Materials. 6, (1-2), (2004), pp.74-78. 73. C. Y. Hsu, J. W. Yeh, Metallurgical and Materials Transactions A, 31A, (2004), pp. 1465-1469. 74. J. W. Yeh, S. K. Chen, Advanced Engineering Materials, 6, (5), (2004), pp. 299-303. 75. L. yang, Applied Physical Letters, 84, (2004), 4998id NH0925159026 sid 913531 cfn 0 / id NH0925159027 auc 蔡名詔 tic 二氧化鈦一維奈米帶之合成與分析 adc 施漢章 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 58 kwc 二氧化鈦 kwc 奈米帶 kwc 場發射 kwc 金紅石 abc 在此研究中,我們以金做為催化劑,利用兩階段式氣氛熱處理的方式對鍍有鈦膜之矽基板進行熱處理以成長二氧化鈦奈米帶。在微觀之結構分析方面,我們以穿透式電子顯微鏡選區繞射鑑定所成長之二氧化鈦奈米帶為金紅石相之單晶結構,在巨觀的結構鑑定方面我們也以拉曼光譜分析確定其結構與奈米帶在基板上分佈之均勻性。此外我們也以Photoluminescence Spectrum分析奈米帶之band structure,確定其價帶與傳導帶間之能隙為3.0eV。利用真空二極體之結構,我們測量出二氧化鈦奈米帶在矽基板上之場發射性質,並認為二氧化鈦奈米帶具有開發成場發射電子元件之潛力。另外我們依據數種不同條件下成長奈米帶之結果,以及穿透式電子顯微鏡與能量分散式光譜儀分析之結果推論其成長機制為VLS成長機制(Vapor-Liquid-Solid growth mechanism)。 tc 第一章 緒論…………………………………………………………1 1-1 奈米材料之特性與應用…………………………………………1 1-2 二氧化鈦結晶結構與缺陷………………………………………2 1-3 二氧化鈦之運用…………………………………………………5 1-4 研究動機…………………………………………………………6 第二章 實驗方法及原理……………………………………………10 2-1 實驗流程…………………………………………………………10 2-2 實驗儀器…………………………………………………………11 2-2-1水平爐管系統…………………………………………………11 2-2-2水平爐管氣體路線配置圖……………………………………11 2-3 實驗方法…………………………………………………………12 2-3-1成長二氧化鈦奈米帶之實驗步驟……………………………13 2-3-2 TEM試片之備製………………………………………………13 2-3-3 場發射性質量測………………………………………………14 2-4 實驗分析原理……………………………………………………16 第三章 二氧化鈦奈米帶之特性分析………………………………19 3-1 掃描式電子顯微鏡下之形貌……………………………………19 3-2 穿透式電子顯微鏡分析…………………………………………20 3-3 拉曼光譜分析……………………………………………………22 3-4 場發射特性分析…………………………………………………23 3-5 Photoluminescene光譜分析……………………………………27 第四章 成長機制推論………………………………………………38 4-1一維奈米材料之成長機制………………………………………38 4-2 二氧化鈦奈米帶之成長機制……………………………………40 第五章 結論…………………………………………………………50 第六章 未來工作……………………………………………………51 Reference………………………………………………………………54rf [1 ] YM. Chiang, D. Birnie III, and W.D. Kingery, Physical Ceramics, Wiley, New York, Chapter 1 (1997) [2 ] R.Könenkamp, Photoelectric Properties and Applications of Low-Mobility Semiconductors, Springer, Germany, Chapter 4 (2000) [3 ] YM. Chiang, D. Birnie III, and W.D. Kingery, Physical Ceramics, Wiley, New York, p142 (1997) [4 ] V. Subramanian, E. E. Wolf, and P. V. Kamat, J. Am. Chem. Soc. 126, 4943 (2004) [5 ] D. Wicaksana, A. Kobayashi, and A. Kinbara, J. Vac. Sci. Techno. A, 10, 1479 (1990) [6 ] LJ. Meng, C. P. Moreira, and M. P. Santos, Thin Solid Films 239, 117 (1994) [7 ] M. Cevro and G. Carter, J. Phys. D: Appl. Phys. 28, 962 (1995) [8 ] JP. Liu, J. Wang and R Raj, Thin Solid Film 204, 113 (1991) [9 ] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, J. Appl. Phys. 75, 2040 (1994) [10 ] Z. Dai, H. Naramoto, K. Narumi, and S. Yamaoto, J. Phys. Condens. Matter 11, 8511 (1999) [11 ] Y. Lin, GS. Wu, XY. Yuan, T Xie, and LD. Zhang, J. Phys. Condens. Matter, 15, 2917 (2003). [12 ] YH. Zhang, CK. Chan, J. F. Porter, and W. Guo, J. Mater. Res. 13, 9 (1998) [13 ] A. Chaves, K. S. Katiyan, and S. P. S. Porto, Phys, Rev. 10, 3522 (1974) [14 ] TC. Lu, L. B. Lin, S. Y. Wu, X. C. Xu, and G. Chen, Surf. Coat. Techno. 158-159, 431 (2002) [15 ] TC. Lu, L. Lin, X. Zu, S. Zhu, and L. Wang, Nucl. Instr. and Meth. in Phys. Res. B 218, 111 (2004). [16 ] T. Ohsaka, F. Izumi, and Y. Fujiki, J. Raman Spectrosc, 7, 321 (1978) [17 ] G. A. Tompsett, G. A. Bowmaker, B. P. Cooney, J. B. Metson, K. A. Rodgers, and J. M. Seakins, J. Raman Spectrosc. 26, 57 (1995) [18 ] R. H. Fowler and L. Nordheim, Proc. R. Soc. London, Ser. A 119, 173 (1928) [19 ] J. Chen, SZ. Deng, NS. Xu, S. Wang, X. Wen, S. Yang, C. Yang, J. Wang, and W. Ge, Appl. Phys. Lett. 80, 3620 (2002) [20 ] A. Wadhawan, R. E. Stallcup II, and J. M. Perez, Appl. Phys. Lett. 78, 108 (2001) [21 ] A. Wadhawan, R. E. Stallcup II, K. F. Stephens II, J. M. Perez, and I. A. Akwani, Appl. Phys. Lett. 79, 1867 (2001). [22 ] RS. Chen, YS. Huang, YM. Liang, CS. Hsieh, DS. Tsai, and KK. Tiong, Appl. Phys. Lett. 84, 9 (2004) [23 ] CT. Hsieh, JM. Chen, HH. Lin, and HC. Shih, Appl. Phys. Lett. 83, 16 (2003). [24 ] Y. B. Li, Y. Bando, T. Sato, and K. Kurashima, Appl. Phys. Lett. 81, 144 (2002) [25 ] S. Iijima, Nature 345, 56, (1991). [26 ] M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature 381, 678 (1996) [27 ] M. R. Falvo, G. J. Clary, R. M. Taylor II, V. Chi, F. P. Brooks Jr. S. Washburn et al, Nature 289, 582 (1997) [28 ] D. A. Walter, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith, and R. E. Smalley, Appl. Phys. Lett. 74, 873 (1999) [29 ] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, Science 283, 512 (1999) [30 ] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han et al, Appl. Phys. Lett. 75, 3129 (1999) [31 ] W. A. deHeer, A. Châtelain, and D. Ugarte, Science 270, 1179 (1995) [32 ] C.R. Martin, Science 266, 1961 (1994) [33 ] B.R. Martin, D.J. Dermody, B.D. Reiss, M. Fang, L.A. Lyon, M.J. Natan, T.E. Mallouk, Adv. Mater. 11, 1021 (1999) [34 ] Z. Zhang, D. Gekhtman, M.S. Dresselhaus, J.Y. Ying, Chem. Mater. 11,1659 (1999) [35 ] G. Sauer, G. Brehm, S. Schneider, J. Appl. Phys. 91, 3243 (2002) [36 ] A. M. Morales and C. M. Lieber, Science 279, 208 (1998) [37 ].D. P. Yu, C. S. Lee, I. Bello, X. S. Sun, Y. H. Tang, G. W. Zhou, Z. G. Bai, Z. Zhang, and S. Q. Feng, Solid State Commun. 105, 403 (1998) [38 ] Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, and S. T. Lee, Appl. Phys. Lett. 72, 1835 (1998) [39 ] D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, and S. Q. Feng, Appl. Phys. Lett. 72, 3458 (1998) [40 ] G. W. Zhou, Z. Zhang, Z. G. Bai, S. Q. Feng, and D. P. Yu, Appl. Phys. Lett. 73, 677 (1998) [41 ] Q. Gu, H. Dang, J. Cao, J. Zhao, and S. Fan, Appl. Phys. Lett. 76, 21 (2000) [42 ] Y.B. Li, Y. Bamdo, T. Sato, and K. Kurashima, Appl. Phys. Lett. 81, 1, (2002) [43 ] JJ. Wu and SC. Lui, J. Phys. Chem. B, 106, 9546 (2002) [44 ] P.X. Gau and ZL. Wang, Appl. Phys. Lett. 84, 15, (2004) [45 ] J. Zhang and L. Zhang, Solid State. Commun. 122, 493 (2002) [46 ] JJ. Wu and CC. Yu, J. Phys. Chem. B 108, 11 (2004) [47 ] R. S. Wanger and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964) [48 ] T. J Trentler; K.M. Hickman, S. C. Goel; A.M. Viano; P. C. Gibbons; and W. E. Buhro Science 270, 1791 (1995) [49 ] SH. Tsai, FK. Chiang, TG. Tsai, FS. Shieu, and HC. Shin, Thin Solid Films 366, 11 (2000) [50 ] SL. Sung, SH. Tsai, XW. Liu, and HC. Shih, J. Mater. Res. Soc. 15, 2 (2000) [51 ] HC. Lo, D. Das, JS. Hwang, KH. Chen, CH. Hsu, CF. Chen, and LC. Chen, Appl. Phys. Lett. 83, 7 (2003) [52 ] J. L. Murray (editor), Phase Diagrams of Binary Titanium Alloys, ASM International (1987) [53 ] YM. Gao, W. Lee, R. Trehan, R. Kershaw, K. Dwight, and A. Wold, Mater. Res. Bull. 26. 1247 (1991) [54 ] W. lee, HS. Shen, K. Dwight, and A. Wold, J. Solid State. Chem. 106, 288 (1993) [55 ] CM.Wang, A. Heller, H. Gerischer, J. Am. Chem. Soc. 114, 5230 (1992)id NH0925159027 sid 913532 cfn 0 / id NH0925159028 auc 吳念芳 tic 利用高熵合金粉末製備奈米線之研究 adc 林樹均 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 90 kwc 奈米線 kwc 高熵合金 abc 本研究是以熱蒸發法成長奈米線,創新利用多元高熵合金成長奈米線。先將AlCrFeNiSiTiZr七元高熵合金塊材製備成粉末狀,置於管式爐中加熱,並通入Ar + 10 % H2的催化氣體以利於成長。 tc 摘要………………………………………………………………………Ⅰ目錄………………………………………………………………………Ⅱ 圖目錄……………………………………………………………………Ⅴ 表目錄……………………………………………………………………Ⅹ 一、前言………………………………………………………………….1 二、文獻回顧…………………………………………………………….3 2.1奈米科技………………………………………………………………3 2.2一維(one dimensional, 1-D)奈米材料……………………………4 2.3奈米線的製備…………………………………………………………5 2.3.1氣-液-固機制(VLS機制) …………………………………………6 2.3.2氧化物輔助成長……………………………………………………8 2.3.3氣-固機構(VS機構) …………………………………………….11 2.4氧化鋁奈米線……………………………………………………….12 2.5高熵合金…………………………………………………………….14 2.5.1開發背景………………………………………………………….14 2.5.2高熵合金的特點………………………………………………….15 2.6光激發螢光( photoluminescence, PL )原理……………………18 2.7電子場發射原理…………………………………………………….20 三、實驗步驟……………………………………………………………34 3.1合金組成及實驗流程……………………………………………….34 3.2合金配製、熔煉…………………………………………………….34 3.3合金粉末配製……………………………………………………….35 3.4奈米線的製備……………………………………………………….35 3.5微結構分析………………………………………………………….36 3.5.1掃描式電子顯微鏡……………………………………………….36 3.5.2穿透式電子顯微鏡……………………………………………….36 3.6成份分析…………………………………………………………….37 3.7性質量測…………………………………………………………….37 3.7.1光激發螢光性質量測…………………………………………….37 3.7.2場發射性質量測………………………………………………….38 四、結果與討論…………………………………………………………48 4.1合金組成…………………………………………………………….48 4.2實驗參數之結果…………………………………………………….49 4.2.1溫度參數………………………………………………………….49 4.2.2流量參數………………………………………………………….50 4.3奈米線的微結構…………………………………………………….52 4.3.1 SEM分析………………………………………………………….52 4.3.2 TEM分析………………………………………………………….53 4.4奈米線的成份……………………………………………………….54 4.5成長機制…………………………………………………………….57 4.6 PL性質………………………………………………………………58 4.7場發射性質………………………………………………………….59 五、結論…………………………………………………………………85 六、未來研究方向………………………………………………………86 七、參考文獻……………………………………………………………87 圖 目 錄 圖2-1 (a) VLS奈米線成長機制,包含三個階段(Ⅰ)合金化、(Ⅱ)成核、(Ⅲ)軸向成長。將這三個成長階段對應至金-鍺二元相圖(b),顯示成份及相的變化。………………………………………….24 圖2-2 鍺奈米線成長過程所記錄的TEM影像。(a) 500 ℃時固態顆粒;(b) 800 ℃時合金化開始,在這個階段金仍然是固態;(c)金/鍺液相合金;(d)鍺奈米晶開始在合金表面成核;(e)隨著更多的鍺凝結,鍺的奈米晶開始延長最後形成奈米線(f)。…………………….25 圖2-3 氧化物輔助成長矽奈米線的成核及成長機制,圖中的平行線為<112>指向。………………………………………………………….26 圖2-4 氧化物輔助奈米線成長過程的TEM影像,(a)-(c)為矽奈米線 的成核階段。……………………………………………………………27 圖 2-5 直接能隙與間接能隙之能帶示意圖,( a )、( c )直接能隙能帶圖;( b )、( d )間接能隙能帶圖。其中( a )、( b )表示吸收現象; ( c )、( d )表示發光現象。……………………………….31 圖 2-6 ( a ) GaAs之能帶圖與( b ) Si之能帶圖。………………32 圖 2-7 雜質存在造成能帶結構改變。………………………………32 圖 2-8 金屬-真空系統場發射示意圖。…………………………….33 圖3-1 實驗流程圖。………………………………………………….41 圖3-2 真空電弧熔煉爐示意圖。…………………………………….42 圖3-3 真空高溫熱處理爐之示意圖。……………………………….43 圖3-4 樣品位置示意圖。…………………………………………….44 圖3-5 兩階段升溫曲線。…………………………………………….44 圖3-6 光激發螢光光譜儀裝置示意圖。…………………………….45 圖 3-7 網印之圖形。…………………………………………………46 圖 3-8 場發射量測流程圖。…………………………………………46 圖3-9 場發射量測裝置示意圖。…………………………………….47 圖4-1 原始的AlCrFeNiSiTiZr塊狀合金的XRD圖。…………………61 圖4-2 原始的AlCrFeNiSiTiZr塊狀合金的微結構(a)低倍率 (b)高倍 率。………………………………………………………………61 圖4-3 原始的AlCrFeNiSiTiZr七元高熵粉末的SEM圖(a)低倍率 (b)高倍率。…………………………………………………………………62 圖4-4 樣品位置示意圖( 一 )。…………………………………….63 圖4-5 ㄧ階段升溫曲線。…………………………………………….63 圖4-6 大氣氣氛下且爐內壓力維持在1.1 torr,Si基板上成長情況。 ( a )、( b )為850 ℃;( c )、( d )為900 ℃;( e )、( f )為950 ℃的製程溫度。………………………………………….64 圖4-7 大氣氣氛下且爐內壓力維持在1.1 torr,製程溫度為1000 ℃ 時Si基板上成長情況。…………………………………………….65 圖4-8 大氣氣氛下且爐內壓力維持在1.1 torr,製程溫度為1050 ℃時Si基板上成長情況。…………………………………………………66 圖4-9 1000 ℃、流量30 sccm製程條件下,Si基板上奈米線的成長情況。( a )、( b )上視圖,( c )、( d )、( e )側視圖。…….67 圖4-10 1100 ℃、流量30 sccm 製程條件下,Si基板上奈米線的成長情況。( a )、( b )上視圖;( c )、( d )側視圖。……………68 圖4-11 樣品位置示意圖( 二 )。………………………… ……….69 圖4-13 1150 ℃、流量100 sccm製程條件下,粉末上成長之奈米線的SEM圖。……………………………………………………………….70 圖4-14 1200 ℃、流量100 sccm製程條件下,( a ) - ( d )氧化鋁薄板上成長之奈米線的SEM圖;( e )粉末上成長之奈米線的 SEM圖。………………………………………………………………………71 圖4-15 1250 ℃、流量100 sccm製程條件下,氧化鋁薄板上成長之奈米線的SEM圖。……………………………………………………….72 圖4-16 1300 ℃、流量100 sccm製程條件下,粉末上成長之奈米線的SEM圖。……………………………………………………………….73 圖4-17 1300 ℃、流量100 sccm製程條件下,粉末上成長之奈米線的TEM圖。……………………………………………………………….74 圖4-18 經1350 ℃、流量100 sccm 、持溫1小時成長之奈米線的 SEM圖,( a )低倍率 ( b )高倍率。…………………………………75 圖4-18 經1350 ℃、流量100 sccm 、持溫1小時成長之奈米線的SEM圖,( c )、( d )更高倍率。…………………………………………76 圖4-19 經1350 ℃、流量100 sccm 、持溫1小時成長之奈米線的TEM 影像。( a )倍率150K ( b )倍率200K ( c )為( b )所對應的選區繞射圖。………………………………………………………………77 圖4-20 經1350 ℃、流量100 sccm、持溫1小時成長之奈米線的 HRTEM影像,( b )為( a )圖中正方形區域的放大圖。…………….78 圖4-21 經1350 ℃、流量100 sccm 、持溫1小時成長之奈米線的雙晶影像,( b )為( a )圖中正方形區域的放大圖。…………………79 圖4-22 經1350 ℃、流量100 sccm 、持溫1小時成長之奈米線的EDS結果。表中為兩根不同的奈米線成份的原子百分比。………………80 圖4-23 Al2O3/SiOX奈米線的線掃描結果( a )橫向掃描 ( b )縱向掃描 成長條件: 1350 ℃、流量100 sccm、持溫1小時。…………81 圖4-24 ( a )六方最密堆積結構( b )α-Al2O3 的單位晶胞( c )α-Al2O3沿著Z軸的原子層順序( d )α-Al2O3的原形晶胞。………….82 圖4-25 Al2O3/SiOX奈米線的PL圖。成長條件: 1350 ℃、流量100 sccm 、 持溫1小時。………………………………………………….83 圖4-26 Al2O3/SiOX奈米線的field emission結果。( a ) J vs. E作圖 ( b ) ln( I/V2 ) vs. 1/V作圖。……………………………84 表 目 錄 表2-1 無機奈米線系統和其製備方法。…………………………….28 表2-1 無機奈米線系統和其製備方法(續頁)。…………………….29 表2-2 目前α-Al2O3ㄧ維奈米結構的研究。……………………….30 表3-1 合金元素特性列表。………………………………………….40rf 1.蔡健民, “以奈米粉體強化之高性能高分子PEEK製程與機械性質分析”, 國立中山大學材料科學研究所碩士論文, 2003. 2.S. Iijima, Nature, 354, 56, 1991. 3.R. Tenne, L. Margulis, M. Genut, G. Hodes, Nature, 360, 444, 1992. 4.Y. Feldman, E. Wasserman, D. J. Srolovitz, R. Tenne, Science, 267, 222, 1995. 5.N. G. Chopra, R. J. Luyken, K. Cherry, V. H. Crespi, M. L. Cohen, S. G. Louie, A. Zettl, Science, 269, 966, 1995. 6.P. Yang, Y. Wu and R. Fan, Int. J. Nanoscience, 1, 1, 2002. 7.R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., 4, 89, 1964. 8.Y. Wu and P. Yang, J. Am. Chem. Soc., 123, 3165, 2001. 9.S. T. Lee, N. Wang, Y. F. Zhang, and Y. H. Tang, MRS Bulletin, 24, 36, 1999. 10.W. S. Shi, H. Y. Peng, N. Wang, C. P. Li, L. Xu, C. S. Lee, R. Kalish, and S. T. Lee, J. Am. Chem. Soc., 123, 11095, 2001. 11.S. T. Lee, N. Wang, and C. S. Lee, Mater. Sci. Eng., A 286, 16, 2000; N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, Chem. Phys. Lett., 299, 237, 1999. 12.B. Lewis, J. Crystal Growth, 21, 29, 1974. 13.P. Yang and C. M. Lieber, J. Mater. Res., 12, 2981, 1997; P. Yang and C. M. Lieber, US Patent 5897945. 14.P. Yang and C. M. Lieber, Science, 273, 1836, 1996. 15.Z. L. Wang, R. P. Gao, Z. W. Pan, and Z. R. Dai, Adv. Eng. Mater., 3, 657, 2001. 16.Z. R. Dai, Z. W. Pan, and Z. L. Wang, Solid State Commun., 118, 351, 2001. 17.Lawrence Berkley Laboratory ( LBL ) internal report 1996. 18.V. Valc?黔cel, A. Souto, and F. Guiti?鴨, Adv. Mater., 10, 138-140,1998. 19.V. Valc?黔cel, A. P?臆ez, M. Cyrklaff, and F. Guiti?鴨, Adv. Mater., 10, 1370-1373, 1998. 20.C. C. Tang, S. S. Fan, P. Li, M. Lamy de la Chapelle, H. Y. Dang, J. Crystal Growth, 224, 117-121, 2001. 21.X. S. Peng, L. D. Zhang, G. W. Meng, X. F. Wang, Y. W. Wang, C. Z. Wang, and G. S. Wu, J. Phys. Chem., B 106, 11163-11167, 2002. 22.J. Zhou, S. Z. Deng, J. Chen, J, C. She, and N. S. Xu, Chem. Phys. Lett., 365, 505-508, 2002. 23.C. J. Deng, P. Yu, M. Y. Yau, C. S. Ku, and D. H. L. Ng, J. Am. Ceram. Soc., 86, 1385-1388, 2003. 24.Y. Z. Jin, Y. Q. Zhu, K. Brigatti, H. W. Kroto, and D. R. M. Walton, Appl. Phys., A 77, 113-115, 2003. 25.X. S. Fang, C. H. Ye, X. S. Peng, Y. H. Wang, Y. C. Wu, and L. D. Zhang, J. Mater. Chem., 13, 3040-3043, 2003. 26.F. Quintero, J. Pou, F. Lusqui?瓨s, M. Boutinguiza, R. Soto, and M. P?臆ez-Amor, Appl. Phys., A 78, 295-298, 2004. 27.P. K. Huang, J. W. Yeh, T. T. Shun, S. K. Chen, Advance Engineering Materials, 6, 74, 2004. 28.J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, Advance Engineering Materials, 5, 299 2004. 29.黃國雄, “等莫耳比多元合金系統之研究” , 國立清華大學材料科學工程研究所碩士論文, 1996. 30.賴高廷, “高亂度合金微結構及性質探討” , 國立清華大學材料科學工程研究所碩士論文, 1998. 31.許雲翔, “以FCC及BCC元素為劃分配置等莫耳多元合金系統之研究” , 國立清華大學材料科學工程研究所碩士論文, 2000. 32.洪育德, “Cu-Ni-Al-Co-Cr-Fe-Si-Ti 高亂度合金之探討” , 國立清華大學材料科學工程研究所碩士論文, 2001. 33.童重縉, “Cu-Co-Ni-Cr-Al-Fe 高熵合金變形結構與高溫特性之研究” , 國立清華大學材料科學工程研究所碩士論文, 2002. 34.陳家裕, “塗層用多元高熵合金之開發” , 國立清華大學材料科學工程研究所碩士論文, 2002. 35.蔡銘洪, “多元高熵合金薄膜微結構及電性演變之研究” , 國立清華大學材料科學工程研究所碩士論文, 2003. 36.黃炳剛, “多元高熵合金於熱熔射塗層之研究” , 國立清華大學材料科學工程研究所碩士論文, 2003. 37.蔡哲瑋, “CuCoNiCrAlxFe高熵合金加工變形及微結構之探討” , 國立清華大學材料科學工程研究所碩士論文, 2003. 38.林佩君, “高頻軟磁高熵合金濺鍍薄膜之開發研究” , 國立清華大學材料科學工程研究所碩士論文, 2003. 39.陳敏睿, “添加V, Si, Ti對Al0.5CrCuFeCoNi高熵合金微結構與磨耗性質之影響” , 國立清華大學材料科學工程研究所碩士論文, 2003. 40.C. Kittel, “Introduction to Solid State Physics”, John Willey& Sons, Inc., NY, 1996, p.218. 41.Y. J. Chen, J. B. Li, Y. S. Han, Q. M. Wei, and J. H. Dai, Appl. Phys., A 74, 433-435, 2002. 42.A. H. Carim, K. K. Lew, and J. M. Redwing, Adv. Mater., 13, 1489-1991, 2001. 43.A. M. Morales and C. M. Lieber, Science, 279, 208-211, 1998. 44.JCPDS: 46-1212 45.Y. T. Pang, G. W. Meng, L. D. Zhang, W. J. Shan, C. Zhang, X. Y. Gao, A. W. Zhao, and Y. Q. Mao, J. Solid State Electrochem., 7, 344-347, 2003. 46.J. S. Lee, M. I. Kang, S. Kim, M. S. Lee, and Y. K. Lee, J. Crys. Growth, 249, 201-207, 2003. 47.Y. Zhang, H. Ago, M. Yumura, T. Komatsu, S. Ohshima, K. Uchida, and S. Iijima, Chem. Commun., 2806-2807, 2002. 48.G. W. Meng, X. S. Peng, Y. W. Wang, C. Z. Wang, X. F. Wang, L. D. Zhang, Appl. Phys., A 76, 119-121, 2003. 49.S. T. Lee, N. Wang, C.S. Lee, Mat. Sci. Eng., A 286, 16-23, 2003. 50.Q. Wu, Z. Hu, X. Wang, Y. Lu, K. Huo, S. Deng, N. Xu, B. Shen, R. Zhang and Y. Chen, J. Mater. Chem, 13, 2024, 2003. 51.S. H. Jo, J. Y. Lao and Z. F. Ren, Appl. Phys. Lett, 83, 4821, 2003. 52.J. Zhou, S. Z. Deng, N. S. Xu, J. Chen and J. C. She, Appl. Phys. Lett, 83, 2653, 2003.id NH0925159028 sid 913537 cfn 0 / id NH0925159029 auc 蕭志郡 tic 奈米碳管表面接枝苯乙烯聚合體在聚苯乙烯薄膜內之奈米微觀機械行為研究 adc 楊長謀 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 92 kwc 奈米碳管 kwc 奈米複合材料 kwc 高分子薄膜 kwc 奈米粒子分散 kwc 高分子交纏網路 kwc 纖化區 kwc 微觀形變 kwc 超韌性高分子 kwc 奈米碳管網狀結構 abc 本論文為多壁奈米碳管(Multiwalled carbon nanotubes, MWNTs)經表面改質後,與聚苯乙烯(PS)形成多壁奈米碳管複合高分子(MWNT/PS)薄膜,並探討其奈米微觀機械性質及MWNT/PS薄膜經機械拉伸後,高分子鏈交纏網路與MWNTs網路結構彼此間的交互作用。利用FTIR及TGA分析,得知MWNTs表面確實已接枝聚苯乙烯(約80 wt%)。MWNT/PS薄膜經機械拉伸後,可拉伸至23.5%應變量,產生許多微細的纖化區(最大寬度僅約2 mm),與PS薄膜相比之下,展現相當優異的機械性質; 並引入動態與靜態形變力學計算MWNT/PS薄膜纖化區之機械性質。利用AFM、TEM及SEM觀察MWNT/PS薄膜纖化區內微纖絲的結構,發現與PS薄膜相似;輔以氧電漿蝕刻MWNT/PS薄膜後,發現MWNT/PS薄膜顯露出均勻分散之MWNTs網狀結構。由研究結果得知,MWNT/PS薄膜變形過程中,幾乎所有的變形隨著應變量的增加集中於纖化區內(與PS薄膜相似),這是由於脆性PS的本質造成高分子鏈因應外力運動傾向生成纖化區,一旦MWNT/PS 薄膜中高分子開始產生纖化區,將與PS薄膜遵循同一機制;然而MWNTs網狀結構卻抑制纖化區的成長與拓寬。整個MWNT/PS薄膜應力轉移可由分散良好的MWNTs網路和隨著應變而不斷生成的微細纖化區來承受應力,而成為具有超韌性之高分子薄膜。 rf [1 ] Iijima, S. Nature 1991, 354, 56 . [2 ] Dalton, A. B.; Collins, S.; Muñoz, E.; Razal, J. M.; Ebron, V. H.; Ferraris, J. P.; Coleman, J. N.; Kim, B. G..; Baughman, R. H. Nature 2003, 423, 703. [3 ] Cadek, M.; Coleman, J. N.; Barron, V.; Hedicke, K.; Blau, W. J. Appl. Phys. Lett. 2002, 81, 5123. [4 ] Kilbride, B. E.; Coleman, J. N.; Fournet, P.; Cadek, M.; Drury, A.; Blau, W. J. J. Appl. Phys. 2002, 92, 4024. [5 ] Sandler, J. K. W.; Kirk, J. E.; Kinloch, I. A.; Shaffer, M. S. P.; Windle, A. H. Polymer 2003, 44, 5893. [6 ] Biercuk, M. J.; Llaguno, M. C.; Radosavljevic, M.; Hyun, J. K.; Fischer, J. E.; Johnson, A. T. Appl. Phys. Lett. 2002, 80, 2767. [7 ] Wei, C.; Srivastava, K.; Cho, K. Nano. Lett. 2002, 2, 647. [8 ] D. Qian; E. C. Dickey. Appl. Phys. Lett. 2000, 76, 2686 [9 ] C. P. Watts; W. K. Hsu; D. P. Randall; H. W. Kroto; D. R. M. Walton. Phys. Chem. Chem. Phys. 2002, 4, 5655-5662. [10 ] Yang, A. C.-M.; Kunz, M. S.; Logan, J. A. Macromolecules, 1993, 26, 1767. [11 ] Peter J. F. Harris, ”Carbon nanotubes and related structures”, Cambridge. [12 ] Saito, Y.; Tani, Y.; Kasuya, A.; J. Phys. Chem. B.; 2000; 104(11); 2495-2499. [13 ] Shi, Zujin; Lian, Yongfu; Zhou, Xihuang; Gu, Zhennan; Zhang, Yaogang; Iijima, Sumio; Zhou, Lixia; Carbon 37, 1449-1453. [14 ] Hongjie Dai. Acc. Chem. Res. 2002, 35, 1035-1044 [15 ] Gong X; Liu J; Baskaran S; Voise R D; Young J. S., Chem. Mater. 2000, 12, 1049-1052. [16 ] Eitan, A.; Jiang, K.; Dukes, D.; Andrews, R.; Schadler, L. S.; Chem. Mater. 2003, 15, 3198-3201. [17 ] P C P Watts; W K Hsu, Nanotechnology 2003, 14, L7. [18 ] O’Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J. P.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Science 2002, 297, 593. [19 ] Islam, M. F.; Rojas, E.; Bergey, D. M.; Johnson, A. T.; Yodh, A. G. Nano Lett. 2003, 3, 269. [20 ] Kang, Y. J.; Taton, T. A. J. Am. Chem., 2003, 125, 5650. [21 ] O’Connell, M. J.; Boul, P. J.; Ericson, L. M.; Huffman, C. B.; Wang, Y. H.; Haroz, E. H.; Kuper, C.; Tour, J.; Ausman, K. D.; Smalley, R. E. Chem. Phys. Lett., 2001, 342, 265. [22 ] Star, A.; Stoddart, J. F. Macromolecules 2002, 35, 7516. [23 ] Star, A.; Stoddart, J. F.; Steuerman, K.; Steuerman, D.; Diehl, M.; Boukai, A.; Wong, E. W.; Yang, X.; Chung, S. W.; Choi, H.; Heath, J. R. Angew. Chem., Int. Ed. 2001, 40, 1721. [24 ] Gomez, F. J.; Chen, R. J.; Wang, D. W.; Waymouth, R. M.; Dai, H. Chem. Commun. 2003, 190. [25 ] Barraza, H. J.; Pompeo, F.; O’Rear, E. A.; Resasco, D. E. Nano Lett. 2002, 2, 797. [26 ] S. Niyogi, M. A. Hamon, D. E. Perea, C. B. Kang, B. Zhao, S. K. Pal, A. E. Wyant, M. E. Itkis, and R. C. Haddon; J. Phys. Chem. B. 2003, 107, 8799 [27 ] Viswanathan, G.; Chakrapani, N.; Yang, H.; Wei, B.; Chung, H.; Cho, K.; Ryu, C. Y.; Ajayan, P. M.; J. AM. CHEM. SOC. 2003, 125, 9258. [28 ] Qin, S.; Qin, D.; Ford, W. T.; Resasco, D. E.; Herrera, J. E.; Macromolecules; 2004, 37(3), 752-757. [29 ] Jin. L.; Bower C.; Zhou O. Appl. Phys. Lett. 1998, 73, 1197. [30 ] P. M. Ajayan, L. S. Schadler, C. Giannaris, A. Rubio; Adv. Mater. 2000, 12, 750. [31 ] Alan B. Dalton, Steve Collins, Edgar Muñoz, Joselito M. Razal, Von Howard Ebron, John P. Ferraris, Jonathan N. Coleman, Bog G. Kim, Ray H. Baughman; Nature 2003, 423, 703. [32 ] Cadek, M.; Coleman, J. N.; Ryan, K. P.; Nicolosi, V.; Bister, G.; Fonseca, A.; Nagy, J. B.; Szostak, K.; Beguin, F.; Blau, W. J.; Nano Lett. 2004, 4(2); 353-356. [33 ] David J. Williams, “Plymer Science and Engineering”, Englewood Cliffs, N.J.,Prentice-Hall(1971) [34 ] Ward, I. M. Mechanical Properties of Solid Polymers, 2nd ed.; John Wiley&Sons Press: New York(1983) [35 ]Kramer, E. J.; Berger, L. L. Adv. Polym. Sci. 1990, 91/92,1. [36 ] Lin, J.–H.; Yang, A. C.–M., Macromolecules, 2001, 34, 4865. [37 ] Kramer, E. J. Adv.polym. Sci., 1983, 52/53,1. [38 ] Gent, A. N. In The Mechanics of fracture, AMD; Erdogon, F., Ed.; ASME: New York, 1976, 19, 55. [39 ] Yang, A. C.-M; Wang, R. C.; Kunz, M. S.; Yang, I, C. J. Polym. Sci., Polym. Phys. Ed, 1996, 34,1141. [40 ] Kaush, H. H. Polymer Fracture, Spring-Verlag: Heidel-berg, Germany(1978) [41 ] Yang, A. C.-M.; Kramer, E. J. J. Polym. Sci., Polym. Phys. Ed. 1985,23,1353. [42 ] Yang, A. C.-M.; Kramer, E. J.; Kuo, C. C.; Phoenix, S. L. Macromolecules, 1986, 19, 2010. [43 ] Yang, A. C.-M.; Kramer, E. J.; Kuo, C. C.; Phoenix, S. L. Macromolecules, 1986, 19, 2020. [44 ] Yang, A. C.-M.; Kunz, M. S.; Logan, J. A. Macromolecules, 1993, 26, 1767. [45 ] Lin, J.–H.; Yang, A. C.–M., Macromolecules, 2001, 34, 3698. [46 ] Kawagoe, M.; Kitagawa, M. J. Polym. Sci., Polym. Phys. 1981, 19, 1423. [47 ] Fields R. J.; Ashby, M. F. Philos. Mag. 1976, 33, 33. [48 ] Bridgman, D. W. Stuedies in Large Plastic Flow and Fracture; Harvard University Press: Cambridge, p. 9. (1964) [49 ] G’sell, C.; Marquez-Lucero, A. Polymer, 1993, 34, 2740. [50 ] Richard Czerw, Zhixin Guo, Pulickel M. Ajayan, Ya-Ping Sun, andDavid L. Carroll; Nano lett. 2001, 1, 423. [51 ] 汪建民主編,”材料分析”,中國材料科學學會。 [52 ] Skoog,“儀器分析”,美亞書版股份有限公司。 [53 ] Multimode SPM instruction manual ver. 4.31,Digital Instruments, Veeco Metrology Group. [54 ]林鶴南,李龍正,劉克迅,”原子力顯微鏡及其在半導體研究上的應用”,科儀新知,1996, 17, 13. [55 ] Yang, A. C.-M. Mater. Chem. Phys. 1995, 41,295. [56 ] P. C. P. Watts; W. K. Hsu; G. Z. Chen; D. J. Fray; H. W. Kroto; C. R. M. Walton, J. Mater. Chem. 2001, 11, 2482. [57 ] Liu, J.; Rinzler, A. G.; Dai, H.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Macias-Rodriguez, F.; Shon, Y.-S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. Science, 1998, 280, 1253. [58 ] Kuznetsova, A.; Popova, I.; Yates, J. T.; Bronikowski, M. J.; Huffman, C. B.; Liu, J.; Smalley, R. E.; Hwu, H. H.; Chen, J. G. J. Am. Chem. Soc. 2001, 123, 10699. [59 ] Kuznetsova, A.; Mawhinney, D. B.; Naumenko, V.; Yates Jr., J. T.; Liu, J.; Smalley, R. E. Chem. Phys. Lett. 2000, 321, 292. [60 ] Jiang, K.; Eitan, A.; Schadler, L. S.; Ajayan, P. M.; Siegel, R. W.; Grobert, N.; Mayne, M.; Reyes-Reyes, M.; Terrones, H.; Terrones, M. Nano Lett. 2003, 3, 275. [61 ]C. H. Lin; A. C.-M. Yang, J. Mater. Sci. 2000, 35, 4231id NH0925159029 sid 913538 cfn 0 / id NH0925159030 auc 蘇柏健 tic 在矽(111)基板上的光罩框對氮化鋁c軸指向的成長效應 adc 黃振昌博士 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 70 kwc 濺鍍 kwc 電漿 kwc c 軸指向性 kwc 氮化鋁 kwc 光罩 abc 本論文是在矽(111)基板上,沈積各種不同尺寸的氮化矽與二氧化矽光罩。再使用射頻電感式耦合電漿化學濺鍍法(RF-ICP)來沉積氮化鋁薄膜,希望藉由此種選區成長的方式,成長出具有(0002)優選指向的氮化鋁薄膜,以作為高頻的表面聲波元件與體波共振器的壓電材料。並調整製程參數,如射頻電子槍功率、成長時間等,控制電漿來影響薄膜性質。 tc 第一章 緒論 1-1前言……………………………………………………………1 1-2實驗目的…………………………………………….…….……1 參考文獻……………………………………………………………3 第二章 文獻回顧 2-1 AlN薄膜特性………………………………………….….……5 2-2 AlN薄膜結構………………………………………….…….…6 2-3 AlN之應用………….………………………………….….……6 2-4 沈積AlN薄膜的方式………………………………………….8 2-5本實驗使用電感式耦合電漿化學濺鍍法系統之緣故.……….8 參考文獻………………………………………………………..…10 第三章 實驗原理與實驗步驟 3-1 實驗流程……………………………………………………...13 3-2 實驗原理……………………………………………….……..14 3-2.1 電漿簡介…………………………………………….....14 3-2.2 電漿產生與維持……………………………….………14 3-2.3 電漿特性簡介………………………………….………14 3-2.4 電漿的優點…………………………………….………15 3-2.5 電感式耦合電漿源…………………………….………16 3-2.6 實驗原理…………………………………….…………16 3-3 實驗步驟………………………………………….………….17 3-4 實驗分析………………………………………….………….19 參考文獻………………………………………………………….20 第四章 光罩的介紹與製作 4-1 利用光罩控制基板內應力…….…………………………….22 4-2 光罩的製作……………….……………………………….....22 4-3 光罩尺寸對矽基板應力的影響……………………………..23 參考文獻………………………………………………………….25 第五章 氮化矽光罩對成長氮化鋁薄膜的影響 5-1 XRD分析結果……………………………………………….28 5-2 SEM分析結果………………………………………………..29 5-3 Curve Fitting結果…………………………………………….29 5-4 矽的內應力與氮化鋁指向性的關係……………………..….30 參考文獻………………………………………………………….31 第六章 二氧化矽光罩對成長氮化鋁薄膜的影響 6-1 XRD分析結果…………………………………………..……45 6-2 SEM分析結果………………………………………………..46 參考文獻………………………………………………………….48 第七章 結論……………………………………………………………61 Appendix 氮化鋁薄膜成長在不同金屬/矽基版的影響 A-1 實驗目的……………………………………………………..62 A-2 下電極的選擇與鍍覆………………………………………..62 A-3 氮化鋁薄膜的沈積…………………………………………..63 A-4 XRD分析………………………………….………………….64 A-5 SEM分析………………………….………………………….65 A-6 結論與未來工作……………………………………………..65 參考文獻…………………………………………………………..65rf 第二章 [1 ] R. Rpdriguez-Clement, B. Aspar, N. Armas, C. Combescure, J.Durand and A. Figeras, J.Crystal Growth, 133 (1993) 59 [2 ] Eliseo Ruiz, Santigo Alemany, Physical Review B, 49 (1994) 7115 [3 ] H.Amano, N.Sawaki, I.Akasaki, and Y.Toyoda, Appl. Phys. Lett,48 (1986) 353 [4 ] F.A.Ponce, J.S.Major, Jr,W.E.Plano, D.F.Welch, Appl. Phys. Lett, 65 (1994) 2302 [5 ] Shigeo Yamaguchi, Yasuo Iwamura, Yasuhiro Watanabe, Masayoshi Kosaki, Yohei Yukawa, and Shugo Nitta et al. Applied Physics Letters, Vol.80 (2002) 802 [6 ] Chang - Woo Nam , and Kyu - Chul Lee . IEEE Electronics andElectrotechnology (2001) 206 [7 ] H . Ming Liaw , and Fred S . Hickernel . IEEE Transctions on ultrasonics, ferroelectrics, and frequency control, Vol42 (1995) p.404 [8 ] J.Meinschien, G.Behme, F.Falk, and H.Stafast. Applied Physics A69 (1999) S683 [9 ] Marc - Alexandre Dubois and Paul Muralt . Applied Physics LettersVol74 (1999) 3032 [10 ]R .Ruby , P . Merchant , IEEE International Frequency Control Symposium (1994) 135 [11 ]P. Osbond , C. M. Beck, C. J. Brierley , M. R. Cox, S. P. Marsh , and N.M.Shorrocks, IEEE Ultrasonic Symposium (1999) 911 [12 ]S.V. Krishnaswamy , J. Rosenbaum , S. Horwitz , C. Vale and R. A. Moore, IEEE Ultrasonics symposium (1990) 529 [13 ]Kiyoshi KAYA , Hiroshi TAKAHASHI , Yoshihiko SHIBATA , Yasuhito KANNO and ToshioHIRAI , Jpn. J. Appl. Phys. Vol.36(1997) pp.2837 [14 ]Chien-Chuan Cheng, Ying-Chung Chen, Horng-Jwo Wang, and Wen-Rong Chen, J. Vac. Sci. Technol. A14 (1996) 2238 [15 ] F.C. Stedile , I.J.R. Baumvol , W.H. Schreiner, F.L.Freire, Jr. J. Vac.Sci. Technol. A, Vol.10 (1992) 3272 [16 ] F. Engelmark , G. Fucntes , I.V. Katardjiev, A. Harsta, U. Smith, andS.Berg. J. Vac. Sci Technol A. 18(4) (2000) 1609 [17 ] E. Calleja , M. A. Samchez-Garcia , E. Monroy , F. J. Sanchez , andE.Munoz, A.Sanz-Hervas, C.Villar, and M.Aguilar. J. Appl. Phys. 82 Vol9 (1997) 4681 [18 ] S. Karmann , H. P. D. Schenk , U. Kaiser , A. Fissel , Wo. Richter.Materials Science and Engineering B.Vol.50 (1997) 228 [19 ] R.D. Vispute , Hong Wu , and J. Narayan . Appl. Phys. Lett. 67 Vol.11 (1995) 1549 [20 ] S. Strite and H. Morkoc, J. Vac. Sci. Technol.B 10 (1992) 1237 [21 ] T. Sasaki and T. Matsuoka, J. Appl. Phys. 77 (1995) 192 [22 ] A. Saxler, P. Kung, C.J. Sun, E. Bigan, and M. Razeghi, Appl. Phys. Lett. 64 (1994) 339 [23 ] F. Hasegawa, T. Takahashi, K. Kubo and Y. Nannichi, Jpn. J. Appl. Phys, Vol26, 1555 (1987) 第三章 [1 ] Brain Chapman , “Glow Discharge Processes” , ( Wiley-Interscience , 1980) p.51 [2 ] Jeffrey A.Hopwood ,Thin Films Ionized Physical Vapor Deposition, p37-66 [3 ] Brain Chapman, “Glow Discharge Processes”, (Wiley-Interscience, 1980) p.53-60 第四章 [1 ] N. Matsuda, I. Akasaki, J. Crystal Growth 45 (1978) 192-197. [2 ] S. Zamir, B.Meyler, J.Salzman, Appl. Phys. Lett.78, 3 (2001) [3 ] H.J. McSkimin, J. Appl. Phys. 24 (1953) 988. [4 ] S.P. Nikanorov, Y.A. Burenkov, A.V. Stepanov, Sov. Phys. Solid State (English Transl.) 13 (1972) 2516. [5 ] Sensors and actuators 20 (1989) 138 第五章 [1 ] S.H. Lee, K.H. Yoon, D. S. Cheong , J. K. Lee , Thin Solid Films 435 (2003) 193-198. 第六章 [1 ] S.H. Lee, K.H. Yoon, D. S. Cheong , J. K. Lee , Thin Solid Films 435 (2003) 193-198. [2 ] Milton Ohring, “The Materials Science of Thin Films”, (Copyright © 1992 by Academic Press, Inc.), P.316~319.id NH0925159030 sid 913539 cfn 0 / id NH0925159031 auc 林曉嵐 tic 射頻磁控濺鍍法製備Pb(Zr0.9Ti0.1)O3/ Pb(Zr0.1Ti0.9)O3鐵電多層膜 adc 林樹均 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 101 kwc 射頻磁控濺鍍 kwc 鐵電多層膜 kwc 鋯鈦酸鉛 abc 本實驗是利用射頻磁控濺鍍法製作PZT(10/90)/PZT(90/10)成份互補多層膜於白金基板(Pt/Ti/SiO2/Si)上。研究重點包括單層膜鉛過量和功率的選取,以及等比例與非等比例成份互補的PZT多層膜對晶體結構、微觀結構、介電性質、鐵電特性、疲勞特性以及漏電流的影響。 rf 1.S. L. Swartz and V. E. Wood, Cond. Mater. News, 1(1992)4. 2.石朗, “由MRAM/FeRAM與Flash卡應用潛力探究記憶體市場技術的新思維與新契機”, Compo Tech, 16(2000)100. 3.賴昇志,“以LaNiO3下電極,開發PZT鐵電記憶體低溫製程之研究”,國立清華大學碩士論文,(2001) 4.梁春昇,“氧化物電極上PZT薄膜之製備及特性研究”,國立清華大學碩士論文,(2001) 5.林明志,“濺鍍鋯鈦酸鉛薄膜之電漿診斷” 私立逢甲大學碩士論文,(2003) 6.陳昱丞,“異質多層鋯鈦酸鉛-白金薄膜與其電性”,國立清華大學碩士論文,(2001) 7.李振岳,“以Pt(O)製作下電極對PZT鐵電薄膜特性之影響研究”,國立清華大學碩士論文,(2001) 8.程國偉,“Pt電極與BaTiO3薄膜之介面擴散層對電性之影響”,國立成功大學碩士論文,(2001) 9.J. H. Janga and K. H. Yoona, “Electric fatigue properties of sol–gel-derived Pb(Zr, Ti)O3/PbZrO3 multilayered thin films” Appl. Phys. Lett., 75(1999)130. 10.J. H. Janga, K. H. Yoona, and K. Y. Oh, “Electrical fatigue of ferroelectric PbZr0.5Ti0.5O3 and antiferroelectric PbZrO3 thin films” Materials Research Bulletin, 35(2000)393. 11.B. Jaffe, R. S. Roth, and S. Marzullo, J. Res. Nat. Bur. Stand., 55(1955)239. 12.B. Jaffe, R. S. Roth, and S. Marzullo, J. App. Phys., 25(1954)809. 13.C. Feldman, “Formation of thin films of BaTiO3 by evaporation”, view of science instrument, 26(5), (1954)463. 14.A. E. Feuersanger, A. K. Hagenlocher and A. L. Solomln, “Preparation and properties of thin barium titanate films”, J. Electrochem. Soc. 111(1964)1387. 15.I. H. Pratt and S. Firestone, “Fabrication of RF-sputtered barium titanate”, J. Vac. Sci. Technol., 8(1971)256. 16.S. H. Kim, C. E. Kim, and Y. J. Oh, “Influence of Al2O3 diffusion barrier and PbTiO3 seed layer on microstructural and ferroelectric characteristics of PZT thin films by sol-gel spin coating method”, Thin Solid Films, 305(1997)321. 17.C. K. Kwok and S. B. Desu, “Low temperature perovskite formation of lead zirconate titanate thin films by a seeding process”, J. Mater. Res., 8(2)(1993), p.229. 18.G. Velu, T. Haccart, B. Jaber, and D. Remiens, “PbTiO3 buffer layer effects on the structural and electrical properties of Pb(Zr, Ti)O3 thin films grown by sputtering on sillicon substrates” J. Vac. Sci. Technol. A, 16(4)(1998)2442. 19.T. L. Ren, L. T. Zhang, L. T. Liu, and Z. J. Li, “Sillicon-based PbTiO3/Pb(Zr, Ti)O3/PbTiO3 sandwich structure”, Jpn. J. Appl. Phys, 40(2001)2363. 20.H. Suzuki, S. Kaneko, K. Murakami, and T. Hayashi, “Low-temperature processing of highly oriented Pb(ZrxTi1-x)O3 thin film with multi-seeding layers”, Jpn. J. Appl. Phys., 36(1997)5803. 21.S. G. Lee and Y. H. Lee, “Dielectric properties of sol-gel derived PZT(40/60)/PZT(60/40) heterolayered thin films”, Thin Solid Films, 353(1999)244. 22.S. G. Lee , K. T. Shin and Y. H. Lee, “Preparation and characterization of lead zirconate titanate heterolayered thin films on Pt/Ti/SiO2/Si substrate by sol-gel method”, Jpn. J. Appl. Phys., 38(1999)217. 23.S. G. Lee, I. G. Park, S. G. Bae, and Y. H. Lee, “Dielectric properties of Pb(Zr, Ti)O3 heterolayered films prepared by sol-gel Method”, Jpn. J. Appl. Phys., 36(1997)6880. 24.S. G. Lee, K. T. Kim and Y. H. Lee, “ Characterization of lead zirconate titanate heterolayered thin films prepared on Pt/Ti/ SiO2/Si substrate by the sol-gel method”, Thin Solid Films, 372 (2000)45. 25.楊錦章, 基本濺鍍電漿, 電子發展月刊, 68(1983)5806。 26.金原粲, 薄膜的基本技術, 日本東京大學出版會社, (1984)3。 27.B. Chapman “Glow discharge process”, Published by John Wiley & Sons, Inc.(1980). 28.D. J. Mcclure and J. R. Crowe, J. Vac. Sci. Technol., 16(1979)311. 29.G. Velu and D. Remiens “In situ deposition of sputtered PZT films: control of the growth temperature by the sputtered lead flux”, Vacuum, 56 (2000)199. 30.C. Wang, Q. F. Fang, Z. G. Zhu, A. Q. Jiang, S. Y. Wang, B. L. Cheng, and Z. H. Chen, “Dielectric properties of Pb(Zr20Ti80)O3/Pb(Zr80Ti20)O3 multilayered thin films prepared by RF magnetron sputtering”, Appl. Phys. Lett., 82(17)(2003)2880. 31.K. Amanuma, T. Hase and Y. Miyasaka, “Crystalization behavior of sol-gel derived Pb(Zr,Ti)O3 thin films and the polarization switching effect on film microstructure”, Appl. Phys. Lett., 65(24)(1994)3140. 32.K. Nagashima, M. Aratani, and H. Funakubo, “Orientation dependence of ferroelectricity of epitaxially grown Pb(ZrxTi1-x)O3 thin films prepared by metalorganic chemical vapor deposition”, J. Appl. Phys., 89(2001)4517. 33.S. Y. Chen and C. L. Sun, “Ferroelectric characteristics of oriented Pb(Zr1-xTi x)O3 films”, J. Appl. Phys., 90(2001)2970. 34.I. Kanno and H. Kotera, “Crystallographic characterization of epitaxial Pb(Zr,Ti)O3 films with different Zr/Ti ratio grown by radio-frequency-magnetron sputtering”, J. Appl. Phys., 93(2003)4091. 35.H. Funakubo, M. Aratani, T. Oikawa, and K. Tokita, “Ferroelectricity of one-axis-preferred-oriented polycrystalline Pb(Zr,Ti)O3 films prepared by pulsed-metalorganic chemical vapor deposition”, J. Appl. Phys., 92(2002)6768. 36.J. K. Yang, W. S. Kim, and H. H. Park, “Effect of grain size of Pb(Zr0.4Ti0.6)O3 sol-gel derived thin flms on the ferroelectric properties”, Appl. Sur. Sci., 69(2001)544. 37.F. Yan, P. Bao, H. L.W. Chan, C. L. Choy, and Y. Wang, “ The grain size effect of Pb(Zr0.3Ti0.7 )O3 thin films”, Thin Solid Films, 406(2002)28. 38.J. F. Scott, “Ferroelectric Memories”, Springer, (1999). 39.C.A Paz de Araujo, J. D. Cuchiaro, L. D. Mcmillan, M. C. Scoot, and J. F. Scoot, Nature, 372(1995)627. 40.G. Arlt, D. Hennings, and G. De With, J. Appl. Phys., 58(1985)1619.id NH0925159031 sid 913540 cfn 0 / id NH0925159032 auc 林嘉柏 tic 高密度電漿化學氣相沈積法成長含氧碳化矽做為氫離子感應膜之研究 adc 陳建瑞 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 102 kwc 高密度電漿 kwc 離子感應場效電晶體 kwc 含氧碳化矽 kwc 酸鹼感測器 kwc 三甲基矽烷 abc 摘要 rf 參考文獻 [1 ]P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiologoical measurement”, IEEE Transaction on Biomedical Enginnering,BME-17 (1970), pp.70-71. [2 ]W. M. Siu and R. S. C. Cobbold, “Basic properties of the e;ectrolyte-SiO2-Si system:physical and theoretical aspects”, IEEE Transaction Electron Devices, vol. ED-26, NO.11 (1979), pp. 1805-1815. [3 ]C. D. Fung,P. W. Cheung and W. H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor”, IEEE Transaction Electron Devices, vol. ED-33, NO.1 (1986), pp.8-18. [4 ]D. L. Harame, L. J. Bousse, J. D. Shott and J. D. Meindl, “Ion sensing devices with silicon nitrde and borosilicate glass insulators”, IEEE Transaction Electron Devices, vol. ED-34 (1987), pp.1700-1706. [5 ]A. Voorthuyzen and P.Bergveld, “Photoelectric effect in Ta2O5-SiO2-Si structures”, Sensors and Actuators B, vol. 1 (1990), pp. 350-353. [6 ]L. Bosse, H. H. Van Den Vlekkert and N. F. De Rooij, “Hysteresis in Al2O3-gate ISFETs”, Sensors and Actuators B, vol. 2 (1990), pp.228-233. [7 ]A. S. Poghossian, “The super-Nernstian pH sensitivity of Ta2O5-gate ISFETs”, Sensors and Actuators B, vol. 2 (1992), pp.367-370. [8 ]A. Garde, J. Alderman, W. Lane, “Development of a pH-sensitive ISFET suitable for fabrication in a volume production environment”, Sensors and Actuators B, vol. 26 (1995), pp.341-344. [9 ]H. Hara and T. Ohta, “Dynamic response of a Ta2O5-gate pH-sensitive field-effect transistor”, Sensors and Actuators B, vol. 32 (1996), pp.115-119. [10 ]D. H. Kwon, B. W. Cho, C. S. Kim and B. K. Sohn, “Effect of heat treatment on Ta2O5 sensing membrance for low drift and high sensitivity pH-ISFET”, Sensors and Actuators B, vol. 34 (1996), pp. 350-353. [11 ]M. J. Schöning, D. Tsarouchas, L. Beckers, J. Schubert, W. Zander, P. Kordo and H. Lüth, “A highly long-term stable silicon-based pH sensor fabricated by pulsed laser deposition technique”, Sensors and Actuators B, vol. 35 (1996), pp.228-233. [12 ]M. N. Niu, X. F. Ding and Q. Y. Tong, “Effect of two type of surface sites on the characteristics of Si3N4-gate pH-ISFETs”, Sensors and Actuators B, vol. 37 (1996), pp.13-17. [13 ]T. Mikolajick, R. Kuhnhold and H. Ryssel, “The pH-sensing properties of Ta2O5 films fabricated by metal organic low pressure chemical vapor deposition”, Sensors and Actuators B, vol. 44 (1997), pp.262-267. [14 ]H. K. Liao, L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, “Study on pHPZC and surface potential of tin oxide gate ISFET”, Material Chemistry and Physics, vol. 58 (1999), pp.6-11. [15 ]L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, “Study on extended gate field effect transistor with tin oxide sensing membrance”, Material Chemistry and Physics, vol. 63 (2000), pp.19-23. [16 ]B. H. Van Der Schoot, H. H. Van Den Vlekkert, N.F. De Rooij, “A Flow injection analysis system with galss-bonded ISFETs fot the simultaneous detection og calcium and potassium ions and pH value”, Sensors and Actuators B, vol. 4 (1991), pp.239-241. [17 ]L. C. Zhong and G. X. Li, “Biosensor based on ISFET for penicillin determination, Sensors and Actuators B, vol. 14 (1993), pp.507-571. [18 ]武世香、虞惇、王貴華,“化學量感測器,感測器技術”,第一期 (1990), 57~62頁。 [19 ]B. D. Liu, Y. K. Su and S. C. Chen, “Ion-Sensitive Field-effect Transistor with silicon nitride for pH sensing”,Int. J. Electronic, vol. 67,NO.1,(1989), pp.59-63. [20 ]Vianello F., Stefani A., Dipaolo M. L., Rigo A., Lui A., Margesin B., “Potentiometric detection of formaldehyde in air by an aldehyde dehydrogenase FET”, Sensors and Actuators B, vol. 37 (1996), pp.269-282. [21 ]Senillou A., Jaffrezic-Renault N., Martelet C., Cosnier S., “A miniaturized urea sensor based on the integration of both ammonium based urea ENFET and a reference FET in a single chip”, Talanta vol. 50(1) (1999), pp.219-226. [22 ]Kharitonov A. B., Zayats M., Lichtenstein A., Katz E., Willner I., “Enzyme monolayer-functionalized field-effect transistors for biosensor applications”, Sensors and Actuators B, vol. 70 (2000), pp.222-231. [23 ]K. Park, S. Choi, M. Lee, B. Sohn, S. Choi, “ISFET glucose sensor system with fast recovery characteristics by employing electrolysis”, Sensors and Actuators B, vol. 83 (2002), pp.90-97. [24 ]S. Tetsushi, N. Michihiro, K. Mototsugu, N. Keiko, H. Kaku, S. Toshiro, “Immunological Helicobacter pylori urease analyzer based on ion-sensitive field effect transistor”, Sensors and Actuators B, vol. 67 (2000), pp.265-269. [25 ]Emmanuel Selvanayagam Z., P. Neuzil, P. Gopalakrishnakone, U. Sridhar, M. Singh, L. C. Ho, “An ISFET-based immunosensor for the detection of h-bungarotoxin”, Biosens Bioelectron, vol. 17 (2002), pp.821-826. [26 ]V. M. Starodub, N. F. Starodub, “ Electrochemical immune sensors based on the ion-selective field effect transistor for the determination of the level of myoglobin”, The 13th European Conference on Solid-State Transducers, September 12–15 (1999). In: Bartek M. (Editor). (Bio)Chemical Sensors and Systems. The Hague (The Netherlands): Delft University of Technology (1999), pp.185-188. [27 ]Jun-Dar Hwang, Yean-Kuen Fang, You-Joung Song, Dun-Nian Yaung, “Epitaxial Growth and Electrical Characteristics of β -SiC on Si by Low-Pressure Rapid Thermal Chemical Vapor Deposition”, Jpn. J. Appl. Phys., vol. 34 (1995), pp.1447. [28 ]H. J. Kim and R. F. Davis, “Theoretically predicted and experimentally determined effects of the Si/(Si+C) gas phase ratio on the growth and character of monocrystalline beta silicon carbide films”, Journal of Applied Physics, vol. 60 (1986), pp. 2897. [29 ]M. Bhatnagar and B. J. Baliga, IEEE Transaction Electron Devices, vol. 40 (1979), pp.645. [30 ]V. E. Chelnokov and A. L. Svrkin, “High temperature electronics using SiC: Actual situation and unsolved problems”, Materials Science and Engineering : B, Vol. 46 (1997), pp.248. [31 ]S. M. SZE, Physics of Semiconductor Devices, Chapter 7, 2nd Edition, Central Book Company, Taipei, Taiwan (1985). [32 ]Thomas J. Mego, “Guidelines for Interpreting CV Data”, Solid State Technology, May 1990, pp.159-163. [33 ]電化學原理與方法/胡啟章編著 五南圖書出版股份有限公司 (2002) [34 ]D. E Yates, S. Levine and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface”, J. Chem. Faraday I, Vol. 70 (1974), pp. 1807-1818. [35 ]牛蒙年、丁辛芳、董勤義,“氧化物-電解溶液界面的表面吸附模型研究”,半導體學報,第六期,第17卷 (1996),458-463頁。 [36 ]周榮泉、郭文諒,“酸鹼離子感測場效電晶體ISFET元件之模擬與研究”,八十五年度國科會大專學生參與專題研究計畫成果報告,6月(1997),1-149頁。 [37 ]周榮泉,江榮隆,“以WO3為感測膜之離子感測場效電晶體之模擬與研究”,中華醫學工程學刊,Vol. 17(3) (1997),187-197頁。 [38 ]Wong, Anthony Sai-Hung, “Theoretical and experimental studies of CVD aluminum oxide as A pH sensitive dielectric for the back contacts ISFET”, ph.D. Dissertation, Department of Biomedical Engineering, Case Western Reserve University, May , (1985). [39 ]張宇能,化工技術,第三卷,民國84年,102頁。 [40 ]M. Konuma, Film Deposition by Plasma Techniques, Springer-Verlag, New York, 7 (1992). [41 ]J. O. Carlsson, Thin Solid Film (1985), pp.130,261. [42 ]S. M. Rossnagel, J. J. Cuomo and W. D. Westwood, Handbook of Plasma Processing Technology, Nayes, New Jersey (1990), pp.261-268. [43 ]F. Kaufman, Adv. Chem. Ser. (1969), pp.80. [44 ]V. Dembovsky, Plasma Metallurgy, John Wiley & Sons, New York (1985), pp.14. [45 ]Hong Xiao著,羅正忠、張鼎張譯,半導體製程技術分析,民國九十二年一月,221頁。 [46 ]Hong Xiao著,羅正忠、張鼎張譯,半導體製程技術分析,民國九十二年一月,240-242頁。 [47 ]Hong Xiao著,羅正忠、張鼎張譯,半導體製程技術分析,民國九十二年一月,250-251頁。 [48 ]N. R. Mathews, Eric L. Miller, P. J. Sebas, M. M. Hernandez, X. Mathew, S. A. Gamboa, “Electrochemical characterization of a-SiC in different electrolytes”, International Journal of Hydrogen Energy, Vol. 19, Issue 9 (2003), pp.941-944. [49 ]汪建明,材料分析,中國材料科學學會 (1980),353-358頁。 [50 ]Y. Katayama, K. Usami, T. Shimada, Phxilos. Mag. B 43(2) (1981), pp.283. [51 ]M. T. Kim, J. Lee, Thin Solid Films, 303 (1997), pp.173. [52 ]R. A. C. M. van Seaaij, A. J. M. Berntsen, W. G. J. H. M. van Sark, H. Herremans, J. Bezemer, W. F. van der Weg, J. Appl. Phys. vol. 76 (1) (1994), pp.251. [53 ]V. Chu, N. Barradas, J. C. Soares, J. P. Conde, J. Jarego, P. Brogueira, J. Rodreguez, J. Appl, Phys, vol 78(5) (1995), pp.3164. [54 ]H.Wieder, C. R. Cardona, M. Guarnieri, Phys. Stat. Sol, B92 (1979), pp.99. [55 ]A. Tabata, Y. Kuno, T. Suzuoki, Y. Mizutani, J. Non-Crystal Solids, 1043 (1993), pp.164-166,. [56 ]F. Demichelis, G. Crovini, F. Giorgis, C. F. Pirri, E. Tresso, Diamond Rel. Mater. vol. 4 (1995), pp.473,. [57 ]S. M. SZE, Physics of Semiconductor Devices, Chapter 7, 2nd Edition, Central Book Company, Taipei, Taiwan (1985). [58 ]龔道本,MIS電容器的平能帶電容計算,半導體光電,第一期,第17卷 (1996),第32-34頁。id NH0925159032 sid 913541 cfn 0 / id NH0925159033 auc 楊柏儒 tic 以掃描探針顯微術研究電致發光高分子在奈米尺度下的光電特性 adc 林鶴南 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 英文 pg 55 kwc 導電高分子 kwc 奈米 kwc 光電 kwc 掃描探針顯微術 kwc 原子力顯微術 kwc 近場光學顯微術 abc 本實驗以導電性原子力顯微術與近場光學顯微術研究奈米尺度下電致發光高分子MEH-PPV的表面形貌對光電特性的影響。其中,導電性原子力顯微術藉由施加偏壓於導電探針上來同步取得地表對電流分佈的影像,並進一步對特定區域量測定點的電壓對電流曲線,再藉由空間電荷限制電流傳輸理論與Poole-Frenkel定律將我們得到的電壓對電流的關係轉換成Poole-Frenkel圖形,並算出其零電場之遷移率與電場係數。而近場光學顯微術則用來量測表面形貌對光強度的分布。 tc Chapter 1 Conducting Polymer Nowadays 1. 1 Discovery of conducting polymer 1. 2 Polymer light emitting diode development 1. 3 Polymer transistor research 1. 4 Terminology of conducting polymer technology 1. 5 Basic optoelectronic principles of PLED 1. 6 Motivation: Enhance polymer mobility by nanoscale investigation Chapter 2 Carrier Conduction and Recombination in Polymer 2. 1 Carrier injection 2. 2 Carrier transport 2. 3 Recombination and radiation 2. 4 Inter-chain transport influences Chapter 3 Scanning Probe Microscopy on Polymer 3. 1 Overview of scanning probe microscopy technique on polymer research 3. 2 Conducting atomic force microscopy operation principle 3. 3 Near-field scanning optical microscopy operation principle Chapter 4 Experiment 4. 1 Sample preparation 4. 2 nanoscale electric measurement by CAFM 4. 3 nanoscale optical properties studied by SNOM Chapter 5 Results and Discussion 5. 1 Conduction behavior of aggregates 5. 2 Electrical annealing 5. 3 Optical behavior of aggregates Chapter 6 Conclusion Chapter 7 Future workrf 1.Nobel e-Museum web: http://www.nobel.se/chemistry/laureates/2000/ 2.J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature 347, 539 (1990). 3.H. Sirringhaus, N. Tessler, R. H. Friend, Science 280, 1741 (1998). 4.A. J. Heeger, Curr. Appl. Phys. 1, 247 (2001). 5.C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters, and D. M. de Leeuw, Appl. Phys. Lett. 73, 108 (1998). 6.B. J. Schwartz, Annu. Rev. Phys. Chem. 54, 141 (2003). 7.T.-Q. Nguyen, V. Doan, and B. J. Schwartz, J. Chem. Phys. 110, 4068 (1999). 8.T.-Q. Nguyen, I. B. Martini, J. Liu, and B. J. Schwartz, J. Phys. Chem. B 104, 237 (2000). 9.T.-Q. Nguyen, R. C. Kwong, M. E. Thompson, and B. J. Schwartz, Appl. Phys. Lett. 76, 2454 (2000). 10.T.-Q. Nguyen, B. J. Schwartz, R. D. Schaller, J. C. Johnson, L. F. Lee, L. H. Harber, and R. J. Saykally, J. Phys. Chem. B 105, 5153 (2001). 11.R. D. Schaller, J. C. Johnson, L. F. Lee, L. H. Harber, R. J. Saykally, J. Vieceli, I. Benjamin, T.-Q. Nguyen, and B. J. Schwartz, J. Phys. Chem. B 106, 9496 (2002). 12.K. L. Tzeng, H. F. Meng, M. F. Tzeng, Y. S. Chen, C. H. Liu, S. F. Horng, Y. Z. ang, S. M. Chang, C. S. Hsu, and C. C. Chi, Appl. Phys. Lett. 84, 619 (2004). 13.R. H. Fowler, and L. Nordheim, Proc. R. Soc. London Ser. A 119,173(1928). 14.G. Hadziioannou and P. F. Van Hutten, Semiconducting Polymers (2000). 15.C. R. Crowell, and S. M. Sze, Solid State Electron. 9,1035 (1966). 16.P. W. M. Blom, M. J. M. de jong, and M. G. vsn Munster, Phys. Rev. B 55, 656 (1997). 17.H. C. F. Martens, H. B. Brom, P. W. M. Blom, and H. F. M. Schoo, Phys. Stat. sol. 218, 283 (2000). 18.P. W. M. Blom, and M. C. J. M. Vissenberg, Mat. Sci. Eng. 27, 53 (2000). 19.P. W. M. Blom, H. C. F. Martens, H. E. M. Schoo, M. C. J. M. Vissenberg, and J. N. Huiberts, Synth. Met. 122, 95 (2000). 20.P. W. M. Blom, H. C. F. Martens, and J. N. Huiberts, Synth. Met. 121, 1621 (2001). 21.K. C. Kao, and W. Hwang, Electrical Transport in Solids (1981). 22.J. Frenkel, Phys. Rev. 54, 8, 647 (1938). 23.S. V. Rakhmanova, and E. M. Conwell, Appl. Phys. Lett. 76, 3822 (2000). 24.H.-N. Lin, T.-T. Hung, E.-C. Chang, and S.-A. Chen, Appl. Phys. Lett. 74, 2785 (1999). 25.H.-N. Lin, H.-L. Lin, S.-S. Wang, L.-S. Yu, G.-Y. Perng, S.-A. Chen, and S.-H. Chen, Appl. Phys. Lett. 81, 2572 (2002). 26.H.-N. Lin, S.-H. Chen, Y.-Z. Lee, and S.-A. Chen, J. Vac. Sci. Technol. 19, 308 (2001). 27.H.-N. Lin, S.-H. Chen, G.-Y. Perng, and S.-A. Chen, J. Appl. Phys. 89, 3976 (2001). 28.J. Teetsov, D. A., and V. Bout, Langmuir 18,897 (2002). 29.J. D. McNeil, and P. F. Barbara, J. Phys. Chem. B 106, 4632 (2002). 30.S. Yamamoto, M. Ejaz, Y. Tsujii, M. Matsumoto, and T. Fukuda, Macromolecule 33, 5602 (2000). 31.S. F. Alvarado, W. RieB, and P. F. Seidler, Phys. Rev. B 56, 1269 (1997). 32.H. Aoki, and S. Ito, J. Phys. Chem. B 105, 4558 (2001). 33.J. W. Blatchford, T. L. Gustafson, A. J. Epstein, D. A. Vanden Bout, J. Kerimo, D. A. Higgins, P. F. Barbara, D. K. Fu, T. M. Swager, and A. G. McDiarmid, Phys. Rev. B 54,3683 (1996). 34.A. Kiriy, G. Gorodyska, S. Minko, C. Tsitsilianis, W. Jaeger, and M. Stamm, J. Am. Chem. Soc. 125, 11202 (2003). 35.L. Burgu, H. Sirringhaus, and R. H. Friend, Appl. Phys. Lett. 80, 2913 (2002). 36.J. H. Hsu, P. K. Wei, W. Fann, K. R. Chuang, and S. A. Chen, J. Appl. Phys 83, 1782 (1998). 37.T. Huser, and M. Yan, Synth. Met.116, 333 (2001). 38.Y. Yang, J. Appl. Phys. 91, 1595 (2002).id NH0925159033 sid 913546 cfn 0 / id NH0925159034 auc 王良德 tic 利用自組裝高分子及聚苯乙烯奈米球形成規則排列的奈米結構 adc 蔡哲正 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 英文 pg 54 kwc 自組裝 kwc 二嵌段高分子 kwc 聚苯乙烯 kwc 聚甲基丙烯酸甲酯 kwc 奈米球 kwc 矽化物 abc 摘要 tc 1. Introduction 3 1.1 What is nano? 3 1.2 Reasons for Large Scale Quantum Dot Array 4 1.3 The Development of Lithography 4 1.4 Block Copolymer Lithography 5 1.4.1 Motivation 5 1.4.2 What is Block Copolymer?? 7 1.4.3 The P(S-b-MMA) System 8 1.4.4 Surface Treatment on P(S-b-MMA) Block Copolymer System 9 1.4.4.1 Introduction 9 1.4.4.2 Surface Pretreatment by P(S-r-MMA) Copolymers 9 1.4.4.3 Surface Pretreatment by Hydrogen Passivation 10 1.4.4.4 Annealing Parameters 11 1.4.5 The Recent Progress of P(S-b-MMA) Systems 11 1.4.5.1 The Virgin P(S-b-MMA) Diblock Copolymers 11 1.4.5.2 Addition of Homopolymer into Diblock Copolymer System 11 1.4.5.3 Volume Contractions Induced by Crosslinking 12 1.5 Nanosphere Lithography 14 1.5.1 Introduction 14 1.5.2 Structural Motifs and Parameters Formed by NSL 14 1.5.2.1 Characteristics of Single-Layer Periodic Particle Arrays 15 1.5.2.2 Specification of Double-Layer Periodic Particle Arrays 16 2. Experimental 21 2.1 Self-Assembled P(S-b-MMA) Diblock Copolymer System 21 2.1.1 The Manufacturing Process of Self-Assembled Diblock Copolymer 21 2.2 Polystyrene Nanosphere Lithography 22 2.2.1 The Fabrication Process of Polystyrne Monolayers 22 2.3 Introduction to Experimental Facilities 24 2.3.1 Deposition Systems 24 2.3.1.1 Electron Beam Deposition System 25 2.3.1.2 Sputtering Coating Systems 25 2.3.2 Analysis Apparatus 26 2.3.3 Annealing System 27 3. Results and Discussion 28 3.1 Block Copolymer Lithography 28 3.1.1 Results and Discussion of Polystyrene Nanoporous Template 28 3.1.2 Metal Deposition via Diblock Copolymer Template 31 3.1.3 Suggestions and Prospect of the Diblock Copolymer Systems 32 3.2 Polystyrene Nanosphere Lithography 33 3.2.1 Results of Polystyrene Nanosphere Formation 33 3.2.1.1 Single Layer Periodic Nanomasks 33 3.2.1.2 Double Layer Template 34 3.2.1.3 Influence of the Evaporation Rate on the Packing Process 35 3.2.2 Metal Deposition Using Polystyrene Nanosphere Lithography 37 3.2.2.1 The Sputtering Coatings 37 3.2.2.2 Electron Beam Evaporation Deposition 38 3.2.3 Size-Tunable Platinum Nanoparticles and Surface Cluster Arrays 40 3.2.4 Periodic Nickel Disilicide Formation by NSL 43 3.2.4.1 Silicide Formation in the Electron Beam Deposition Pattern 43 3.2.4.2 Silicide Formation in the Sputtering Coating Pattern 45 3.2.4.3 Morphology Difference during Nickel Disilicide Formation 46 4. Conclusions 48 Reference 49rf Reference 1.1.1 Sheng, H. W. ; Lu, K.; Ma, E. Nanostruct. Mater., 10, 865(1998) 1.1.2 Sambles, J. R. Proc. R. Soc. London, Ser. A, 324, 339(1971) 1.1.3 Peters, K.F.; Cohen, J. B. ; Chung, Y.-W. Phys. Rev. B, 57, 13430(1998) 1.1.4 Goldstein, A. N.; Echer, C. M.; Alivisators, A. P. Science, 256, 1425(1992) 1.1.5 Clevland, C. L.; Luedtke, W. D.; Landman, U. Phys. Rev. B, 60, 5065(1999) 1.1.6 Buffat, P.; J.-P. Phys. Rev. A, 13 2287(1976) 1.1.7 Borel, J.-P. Surf. Sci., 106, 1(1981) 1.1.8 Kimberly Dick, T. Dhanasekaran, Z. Zhang, D. Meisel, J. Amer. Chem. Soc. 124, 2312(2002) 1.1.9 H.-G. Boyen, G. Kastle, F. Weigl, B. Koslowski, Science 297, 1533(2002) 1.1.10 H. J. Niu, D. P. Hampshire, Phys. Rev. Lett. 91, 027002-1(2003) 1.3.1 L. R. Harriott, Mater. Sci. Semicond. Process. 1, 93 (1998) 1.3.2 H. C. Pfeiffer, Proc. SPIE 1997, 206(2000) 1.3.3 C. W. Gwyn, J. Vac. Sci. echnol. B 16, 3142(1998) 1.3.4 Y. Gomei, Proc. SPIE 3676, 1(1999) 1.3.5 K. W. Guarini, C. T. Black, K. R. Millkove, R. L. Sandstrom, J. Vac. Sci. Technol. B 19(6), 2784(2001) 1.3.6 John C. Hulteen, Richard P. Van Duyne, J. Vac. Sci. Technol. A 13(3), 1553(1995) 1.4.1 K. W. Guarini,a) C. T. Black, Y. Zhang, H. Kim, E. M. Sikorski, and I. V. Babich, J. Vac. Sci. Technol. B 20(6), 2788(2002) 1.4.2 J. V. Hulteen, C. R. Martin, J. Mater. Chem. 7, 1075(1997) 1.4.3 Huczko, Appl. Phys. A Mater. Sci. Proc. 70, 365(2000) 1.4.4 E. J. Bae, W. B. Choi, K. S. Jeong, Adv. Mat. 14, 277(2002) 1.4.5 H. Msuda, A. Abe, M. Nakao, A. Yokoo, Adv. Mat 15, 161(2003) 1.4.6 H. Masuda, K. Yasui, K. Nishio, Adv. Mat. 12, 1031(2000) 1.4.7 D. Routkevitch, T. Bigioni, M. Moskovits, J. M. Xu, J. Phys. Chem. 100, 14037(1996) 1.4.8 H. Zeng et al., J. Appl. Phys. 87, 4718(2000) 1.4.9 H. Masuda, K. Fukuda, Science 268, 1466(1955). 1.4.10 A. P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, J. Appl. Phys. 84, 6023(1998); Adv. Mater. 11, 483(1999) 1.4.11 H. Masuda. H. Yamada, M. Satoh, H. Asoh, Appl. Phys. Lett. 77, 2770(1997) 1.4.12 T. Thurn-Albrecht, J. Schotter, A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, T. P. Russell, Science, 290, 2126(2000) 1.4.13 T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, T. P. Russell, Science, 273, 932(1996) 1.4.14 T. Thurn-Albrecht, J. Derouchey, T.P. Russell, H. M. Jaeger, Macromolucules, 33, 3250(2000) 1.4.15 H. Masuda, H Yamada, M. Satoh, H. Asoh, M. Nakao, T. Tamamura, Appl. Phys. Lett. 71, 2770(1997) 1.4.16 O. Jessensky, F. Muller, U. Gosele, Appl. Phys. Lett. 72, 1173(1998) 1.4.17 A. P. Li, F. Muller, A. Birner, K. Nieisch, U. Gosele, J. Appl. Phys. 84, 6023(1998) 1.4.18 J. Li, C. Papadopoulos, J. M. Xu, M. Moskovits, Appl. Phys. Lett. 75, 367(1999) 1.4.19 J. Liang, H. Chik, A. Yin, J. Xu, J. Appl. Phys. 91, 2544(2002) 1.4.20 Ian W. Hamley, The Physics of Block Copolymers, Oxford University Press, New York(1998) 1.4.21 F.S. Bates, G. H. Fredrickson, Annu. Rev. Phys. Chem, 41, 525(1990) 1.4.22 Lambooy, P., Russell, t. p., Kellogg, G.J., Mayes, A. M., Gallagher, P.D. and Satija, S. K.. Phys. Rev. Lett. , 72, 2899(1994) 1.4.23 Russell, T. P., Lamboy, P., Kellogg, G. J. and Mayes, A. M.. Physica B, 213/214, 22 (1995) 1.4.24 van Dijk, M. A. and van den Berg, R. Macromolucules, 28, 6773 (1995) 1.4.25 Ausserre, D., Raghunathan, V. A. and Maaloum, M.. Journal de Physique Ⅱ, 3, 1485(1993) 1.4.26 Carvalho, B. L. and Thomas, E. L.. Physical Review Letters, 73, 3321(1994) 1.4.27 P. Mansky, C. K. Harrison, and P. M. Chaikin, Appl. Phys. Lett. 68, 2586(1996) 1.4.28 Miri Part, Christopher Harrison, Paul M. Chaikin, R. A. Register, D. H. Adamson, Science 276, 1401(1997) 1.4.29 C. Harrison, M. Part, P. M. Chaikin, R. A. Register, J. Vac. Sci. Technol. B 16(2), 544(1998) 1.4.30 Burke, J. J., Weiss, V., Eds. Block and Graft Copolymers; Syracuse University Press: New York(1973) 1.4.31 Legge, N. R.; Holden, G.; Schroeder, H. E. Thermoplastic Elastomers. A comprehensive review; Hanser: New York(1987) 1.4.32 T. Thurn-Albrecht, R. Steiner, J. DeRouchey, C. M. Stafford, E. Huang, T. P. Russell, Adv. Mater. 11, 787(2000) 1.4.33 K. W. Guarini, C. T. Black, K. R. Millkove, R. L. Sandstrom, J. Vac. Sci. Technol. B 19(6), 2784(2001) 1.4.34 Ting Xu, H. C. Kim, J. DeRouchey, C. Seney, C. Levesque, T. P. Russell, Polymer 42, 9091(2001) 1.4.35 C. T. Black, K. W. Guarini, K. R. Milkove, S. M. Baker, T. P. Russell, Appl. Phys. Lett. 79, 409(2001) 1.4.36 M. Park, P. M. Chaikin, R. A. Register, D. H. Adamson, Appl. Phys. Lett. 79, 257(2001) 1.4.37 K. Shin, K. A. Leach, J. T. Goldbach, D. H. Kim, T. P. Russell, Nano Lett. 2, 933(2002) 1.4.38 K. W. Guarini, C. T. Black, S. H. I. Yeung, Adv. Mater. 14, 1290(2002) 1.4.39 W. A. Lopes, Phys. Rev. E 65, 031606-1(2002) 1.4.40 M. J. Misner, H. S.kaff, T. Emrick, T. P. Russell, Adv. Mater. 15, 221(2003) 1.4.41 U. Jeong, H. C. Kim, R. L. Rodriguez, I. Y. Tsai, T. P. Russell, Adv. Mater. 14, 274(2002) 1.4.42 U. Jeong, D. Y. Ryu, J. K. Kim, D. H. Kim, T. P. Russell, Adv. Mater. 15, 1247(2003) 1.4.43 P. Mansky, P. M. Chaikin, E. L. Thomas, J. Mater. Sci. 30, 1987(1995); P. Mansky, P. M. Chaikin, M. Shayegan, L. J. Fetters, Bull. Am. Phys. Soc. 36, 1051(1991) 1.4.44 A. Reiser, Photoreactive Polymers, The Science and Technology of Resists, Wiley, New York(1989) 1.4.45 B. Ranby, J. F. Rabek, Photodegradation, Photo-Oxidation and Photostabilization of Polymers, Wiley, New York(1975). 1.4.46 M. Yan, M. Bartlett, Nano Lett. 2, 275(2002) 1.4.47 M. Yan. Polym. News 27, 6(2002) 1.4.48 M. Bartlett, M. Yan, Adv. Mater. 13, 1449(2001) 1.4.49 M. Bartlett, M. Yan, Polym. Mater. Sci. Eng. 83, 451(2000) 1.4.50 X. M. Yang, R. D. Peters, P. F. Nealey, H. H. Solak, F. Cerrina, Macromolecules 33, 9575(2000) 1.4.51 P. Mansky, Y. Liu, E. Huang, T. P. Russell, C. Hawker, Science 275, 1458(1997) 1.4.52 E. Huang, L. Rockford, T. P. Russell, C. J. Hawker, Nature 395, 757(1998) 1.4.53 P. Mansky, T. P. Russell, C. J. Hawker, M. Pitsikalis, I. Mays, Macromolecules 30, 6810(1997) 1.4.54 E. Huang, S. Pruzinsky, T. P. Russell, Macromolecules 32, 5299(1999) 1.4.55 C. J. Hawker, E. Elce, J. Dao, W. Volksen, T. P. Russell, G. G. Barclay, Macromolecules 29, 2686(1996) 1.4.56 M. K. Georges, R. P. N. Veregin, P. M. Kazmaier, G. K. Hamer, Macromolecules 26, 2987(1993) 1.4.57 I. Li et al., ibid. 28, 6692(1995) 1.4.58 C. J. Hawker, J. Am. Chem. Soc. 116, 11185(1994) 1.4.59 Physical Properties of Polymers Handbook, edited by J. E. Mark(American Institute of Physics, New York, 1996) 1.4.60 T. Hashimoto, H. Tanaka, H. Hasegawa, Macromolecules 23, 4378(1990) 1.4.61 H. Tanaka, H. Hasegawa, T. Hashimoto, Macromolecules 23, 240(1991) 1.4.62 A. M. Mayes, T. P. Russell, S. K. Satija, C. F. Majkrzak, Macromolecules 25, 6523(1992) 1.4.63 K. A. Orso, P. F. Green, Macromolucules 32, 1087(1999) 1.4.64 N. Torikai, N. Takabayashi, I. Noda, S. Kozumi, Y. Morii, Y. Matsushita, Macromolecules 30, 5698(1997) 1.4.65 K. I. Winey, E. L. Thomas, L. J. Fetters, J. Chem. Phys. 95, 9367(1991) 1.4.66 K. I. Winey, E. L. Thomas, L. J. Fetters, Macromolecules 25, 422(1992) 1.4.67 K. I. Winey, E. L. Thomas, L. J. Fetters, Macromolecules 25, 2645(1992) 1.4.68 T. Pan, K. Huang, A. C. Balazs, M. S. Kunz, A. M. Mayes, T. P. Russell, Macromolecules 26, 2860(1993) 1.5.1 Hulteen, J. C.; Van Duyne, R. P. J. Vac. Sci. Technol. A, 13, 1553-1558(1995). 1.5.2 Hulteen, J. C.k Treichel, D. A.; Smith, M. T.; Duval, M. L.; Jensen, T. R.; Van Duyne, R. P. J. Phys. Chem. B ,103,3854-3863(1999) 1.5.3 Micheletto, R.; Fukuda, H.; Ohtsu, M. Langmuir 11, 3333-3336(1995) 1.5.4 Christy L., Haynes; Richard P. Van Duyne, J. Phys. Chem. B,105, 5599-5611(2001) 1.5.5 Nan Li, Martin Zinke-Allmang, Jpn. J. Appl. Phys., 41, 4626(2002) 1.5.6 Xudong Wang, Christopher J. Summers, Zhong Lin Wang, Nano Lett., 4, 423(2004) 1.5.7 Z. P. Huang, D. L. Carnahan, J. Rybczynski, M. Giersig, M. Sennett, D.Z. Wand, J.G. Wen, K. Kempa, Z.F. Ren, Appl. Phys. Lett.,82, 460(2003) 1.5.8 K. Kempa, B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, Nano Lett, 3, 13(2003) 2.1K. W. Guarini,a) C. T. Black, Y. Zhang, H. Kim, E. M. Sikorski, and I. V. Babich, J. Vac. Sci. Technol. B 20(6), 2788(2002) 2.2 K. W. Guarini, C. T. Black, K. R. Millkove, R. L. Sandstrom, J. Vac. Sci. Technol. B 19(6), 2784(2001) 2.3 K. W. Guarini, C. T. Black, S. H. I. Yeung, Adv. Mater. 14, 1290(2002) 2.4 T. Thurn-Albrecht, R. Steiner, J. DeRouchey, C. M. Stafford, E. Huang, T. P. Russell, Adv. Mater. 11, 787(2000) 2.5 K. Shin, K. A. Leach, J. T. Goldbach, D. H. Kim, T. P. Russell, Nano Lett. 2, 933(2002) 2.6 Ting Xu, Jodi Stevens, JulieAnn Villa, James T. Goldbach, Kathryn W. Guarini, Charles T. Black, Craig J. Hawker Thomas P. Russell, Adv. Funct. Mater. 13, 698(2004) 2.7 Ting Xu, Jodi Stevens, JulieAnn Villa, James T. Goldbach, Kathryn W. Guarini, Charles T. Black, Craig J. Hawker Thomas P. Russell, Macromolecules 37, 2972(2004) 2.8 Heather A. Bullen, Simon J. Garrett, Nano Lett. 2, 739(2002) 2.9 Micheletto. R., Fukuda, H., Ohtsu. M., Langmuir 11, 3333(1995) 2.10 Rakers. S., Chi. L. F., Fuchs. H., Langmuir 13, 7121(1997) 2.11 Burmeister. F., Badowsky. W., Braun. T., Wieprich. S., Bonebery. J., Leiderer. P., Appl. Surf. Sci.144-145, 461(1999) 3.1.1 P. Mansky, Y. Liu, E. Huang, T. P. Russell, C. Hawker, Science 275, 1458(1997) 3.1.2 E. Huang, L. Rockford, T. P. Russell, C. J. Hawker, Nature 395, 757(1998) 3.1.3 K. W. Guarini, C. T. Black, K. R. Millkove, R. L. Sandstrom, J. Vac. Sci. Technol. B 19(6), 2784(2001) 3.1.4 K. W. Guarini, C. T. Black, S. H. I. Yeung, Adv. Mater. 14, 1290(2002) 3.1.5 E. Huang, P. Mansky, T. P. Russell, C. Harrison, P. M. Chaikin, R. A. Register, C. J. Hawker, J. Mays, Macromolecules 33, 80(2000) 3.1.6 Ting, Xu, James. Goldbach, Matthew J. Misner, Seunghyun Kim, K. W. Guarini, C. J. Hawker, T. P. Russell, Macromolecules 37, 2972(2004) 3.1.7 Ting Xu, Jodi Stevens, JulieAnn Villa, James T. Goldbach, Kathryn W. Guarini, Charles T. Black, Craig J. Hawker Thomas P. Russell, Adv. Funct. Mater. 13, 698(2004) 3.1.8 K. W. Guarini,a) C. T. Black, Y. Zhang, H. Kim, E. M. Sikorski, and I. V. Babich, J. Vac. Sci. Technol. B 20(6), 2788(2002) 3.2.1 Burmeister. F., Badowsky. W., Braun. T., Wieprich. S., Bonebery. J., Leiderer. P., Appl. Surf. Sci.144-145, 461(1999) 3.2.2 Christy L., Haynes; Richard P. Van Duyne, J. Phys. Chem. B,105, 5599-5611(2001) 3.2.3 R.D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel., T. A. Witten, Nature 389, 827(1997) 3.2.4 Rakers. S., Chi. L. F., Fuchs. H., Langmuir 13, 7121(1997) 3.2.5 Xudong Wang, Christopher J. Summers, Zhong Lin Wang, Nano Lett., 4, 423(2004) 3.2.6 Hulteen, J. C.k Treichel, D. A.; Smith, M. T.; Duval, M. L.; Jensen, T. R.; Van Duyne, R. P. J. Phys. Chem. B ,103,3854-3863(1999) 3.2.7 T. R. Jensen, M. D. Malinsky, C. L. Haynes and R. P. Van Duyne:J. Phys. Chem. B 104, 10549(2000) 3.2.8 Nan Li, Martin Zinke-Allmang, Jpn. J. Appl. Phys., 41, 4626(2002) 3.2.9 K. Kempa, B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, Nano Lett, 3, 13(2003) 3.2.10 Z. P. Huang, D. L. Carnahan, J. Rybczynski, M. Giersig, M. Sennett, D.Z. Wand, J.G. Wen, K. Kempa, Z.F. Ren, Appl. Phys. Lett.,82, 460(2003) 3.2.11 M. Liehr, H. Lefakis, F. K. LeGoues, and G. W. Rubloff, Physical Review B 33, 5517(1986)id NH0925159034 sid 913549 cfn 0 / id NH0925159035 auc 魏竟軒 tic 在Cu/Ti/Si基板上非晶質碳奈米針狀結構之成長機制與場發射現象 adc 黃振昌 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 56 kwc 非晶質碳 kwc 場發射 kwc 銅 abc 含氫非晶質碳(a-C:H)奈米針狀結構(nanotips)可以直接沉積在銅基板上。但無法在150nm Cu/Si基板上成長非晶質碳奈米針狀結構。本論文的主要目的是要研發在Cu/Ti/Si基板上成長非晶質碳奈米針狀結構的方法。研究發現在夠厚的銅層於矽基板上可以沉積成長非晶質碳奈米針狀結構,成長的過程中會伴隨著侵蝕銅膜效應。此針狀結構的成長過程可以分成兩個不同速率區域,在前半段區域速率非常的慢,侵蝕的速率約為1nm/min,而奈米針狀結構成長速率約為1.5nm/min。在後半段區域侵蝕的速率變成相當的快,達到10nm/min而奈米針狀結構成長速率也達到5nm/min。此非晶質碳奈米針狀結構的場發射性質很好,其Turn on filed為3.2V/μm(在電流密度為10μA/cm2時),而電流密度最大也可達到2 mA/cm2。 tc 第一章 緒論………………………1 1-1 碳的簡介………………………1 1-2 非晶質碳………………………2 1-2-1 非晶質碳與類鑽碳的定義……………………….2 1-2-2 非晶質碳膜的應用……………………………….2 1-3 場發射性質討論及應用………… ……………………3 1-3-1 場發射的基本理論……………………………………3 1-3-2 場發射顯示器的製作…………………………………8 1-4 研究動機…………………………………………………9 1.5 論文架構…………………………………………………9 第二章 實驗方法與原理……………………………………17 2-1 實驗流程…………………………………………………17 2-2 實驗方法…………………………………………………18 2-2-1 沈積系統………………………………………………18 2-2-2 實驗步驟………………………………………………20 2-3 實驗分析…………………………………………………23 第三章 在Cu/Ti/Si基板上非晶質碳奈米針狀結構成長機制與場發射性質…………………………………………………………………25 3-1 非晶質碳奈米針狀結構製……………………………………25 3-2 非晶質碳奈米針狀結構表面形………………………………26 3-3 非晶質碳奈米針狀結構成長機制探討………………………27 3-4 Raman 光譜特性………………………………………………28 3-5 場發射電壓電流特……………………………………………30 第四章 氮氣與偏壓對非晶質碳奈米針狀結構的製備與場發射效應之影響……………………………………………………………………43 4-1 不同氮氣流量的效應……………………………………………43 4-2 偏壓的效應……………………………………………………44 第五章 結論……………………………………………………………56rf CH1 1 Sumio lijima, Nature, 354, 56(1991). 2 J.Esteve, M.C. Polo, G. Sanchez, Vacuum, 52, 133(1999). 3 R.H. Fowler and L. Nordheim, Proc. R. Soc. London, Ser. A 119, 173 (1928). 4 N. Kumar, H. Schmidt and C. Xie, Diamond based field emission flat panel display, Solid State Techology. CH3 1 J. Robertson, Mater. Sci. Eng. R. 37, 129 (2002) 2 R.H. Fowler and L. Nordheim, Proc. R. Soc. London, Ser. A 119, 173 (1928). CH4 1. D. S. Mao, X. H. Liu, and X. Wang, Appl. Phys. Lett. 91, 3918 (2002). 2. T. Inoue and D. Ogletree, Appl. Phys. Lett. 76, 2961 (2000). 3. B. S. Satyanarayana, A. Hart, W. I. Milne, and J. Robertson, Appl. Phys. Lett. 71, 1430 (1997). 4 J. Robertson, Mater. Sci. Eng. R. 37, 129 (2002)id NH0925159035 sid 913550 cfn 0 / id NH0925159036 auc 曾子桄 tic 化學液相法(Chemical solution deposition)製備 之BaPbO3氧化物薄膜電極 adc 吳振名 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 93 kwc BaPbO3薄膜 kwc 化學液相鍍膜法 kwc Pb1.05(Zr0.53Ti0.47)O3 kwc 電阻率 kwc 氧化物電極 kwc 鐵電性 abc 摘要 tc 表目錄 圖目錄 第一章 緒論…………………………………………………………….1 1-1 簡介…………………………………………………………………1 1-2 研究動機……………………………………………………………2 第二章 文獻回顧……………………………………………………….4 2-1 電極…………………………………………………………………4 2-1-1金屬電極……………………………………………………..4 2-1-2氧化物電極…………………………………………………..6 2-2 鉛酸鋇(BaPbO3)陶瓷……………………………………………….7 2-2-1 鉛酸鋇薄膜電極…………………………………………….7 2-2-2 鉛酸鋇電極於PZT鐵電材料的應用………………………11 2-3 其他氧化物薄膜電極之應用……………………………………...12 2-4 鐵電材料…………………………………………………………...15 2-4-1 鈣鈦礦結構………………………………………………...16 2-4-2 鋯鈦酸鉛的晶體結構及性質……………………………...17 第三章 實驗程序…………………………………………………….24 3-1 基板的準備………………………………………………………24 3-1-1 Pt/Ti/SiO2/Si 基板的準備………………………………...24 3-1-2 Pt/Ta/Si3N4/Si基板的準備………………………………..24 3-2 BaPbO3薄膜的製備………………………………………………25 3-2-1 BaPbO3 溶液之製作………………………………………25 3-2-2 BaPbO3 薄膜旋鍍…………………………………………26 3-2-3 BaPbO3 薄膜的熱處理……………………………………26 3-3 Pb(Zr,Ti)O3薄膜的製備…………………………………….…….27 3-3-1 Pb1.05(Zr0.53Ti0.47)O3 溶液之製作…………………………27 3-3-2 Pb1.05(Zr0.53Ti0.47)O3 薄膜旋鍍及熱處理…………………28 3-3-3 白金上電極之製作……………………………………….28 3-4 薄膜的性質量測………………………………………………….28 3-4-1 X-ray繞射分析……………………………………………28 3-4-2 SEM微觀結構及膜厚量測……………………………….28 3-4-3 ESCA(electron spectroscopy for chemical analysis)表面元素分析………………………………………………………..29 3-4-4 歐傑電子能譜儀分析…………………………………….29 3-4-5 電阻率分析……………………………………………….30 3-4-6 P-E 電滯曲線……………………………………………31 3-4-7 介電常數及散逸因子…………………………………......31 3-4-8 疲勞特性………………………………….……………….31 第四章 結果與討論…………………………………………….……..37 4-1 決定BaPbO3的烘烤溫度…………………………………….…..37 4-2 BaPbO3薄膜於不同基板上的高溫穩定性………………….….39 4-3 BaPbO3薄膜於不同基板上的表面微結構分析…………….….42 4-4 鉛過量對BaPbO3薄膜的影響……………………………….…..45 4-5 摻雜Zn對BaPbO3薄膜的影響…………………………….……48 4-6 添加Bi對BaPbO3薄膜的影響…………………………….…....49 4-7 BaPbO3薄膜電阻率………………………………………….….49 4-8 BaPbO3薄膜經過重複旋鍍的穩定性…………………….….....50 4-9 PZT薄膜以BaPbO3為底電極之應用…….……………….…...51 結論……………………………………………………………….……56 參考資料……………………………………………………….………58rf 參考資料 1. J.F. Scott, C.A.P.de Araujo, L.D. McMillan, H. Yoshimori, H. Watanabe, T. Mihara, M. Azuma, T. Ueda, Tetsuk Ueda, D. Ueda, and G. Kano, “Ferroelectric Thin Film in Integrated Microelectronic Devices”, Ferroelectrics , 133(1992), p.47 2. G. H.Haerting, “Ferroelectric Thin Film for Electronic Applications”, J. Vac. Sci. Technol., A9 (3)(1991), p.414 3. L.M. “Advances in Processing of Ferroelectric Thin Film”, Sheppard, Ceramic Bulletin, 71(1) (1992), p.85 4. M. Sayer and K. Sreenivas, “Ceramic Thin Film:Fabrication and Applications”, Science 247(1990), p. 1056 5. 林諭男, “強介電陶磁薄膜的應用”,工業材料,107(1995), p.49 6. T. Mihara, H .Watanabe, and C. A. P. de Araujo, “Evaluation of Imprint Properties in Sol-Gel Ferroelectric Pb(ZrTi)O3 Thin-Film Capacitors”, Jpn. J. Appl. Phys.,32(9B)(1993), p. 4168 7. I. K. Yoo, S. B. Desu, and J. Xing, ”Correlations among Degradations Lead Zirconate Titanate Thin Film Capacitors “, Mater. Res. Soc. Symp. Proc. Vol. 310 (1993), p. 165. 8. Y. T. Kim and C. W. Lee, “Advantages of RuOx Bottom Electrode in the Dielectric and Leakage Characteristics of (Ba,Sr)TiO 3 Capacitor”, Jpn. J. Appl. Phys., 35 (1996), p. 6153 9. H. N. A. Shareef, K. D. Gifford, S. H. Rou, P. D. Hren, O. Auciello and A. I. Kingon,“Electrodes for Ferroelectric thin films ” Integrated Ferroelectrics, 5(1993) , p.321 10.Carlos Paz De Araujo, James F. Scott and George W. Taylor, “Ferroelectric Thin Films: Synthesis and Basic Properties ” ,(Gordon and Breach Publishers, 1996) p.193-194 11. E. A. Kneer , D. P. Birnie , R. D. Schrimpf , J. C. Podlesny , and G. Teowee , “Investigation of surface-roughness and hillock formation on platinized substrates used for Pt/PZT/Pt capacitor Fabrication”, Integrated Ferroelectrics ,7(1995) ,p.61 12. K. Sreenivas , I. Reaney , T. Maeder , and N. Setter , “ Investigation of Pt/Ti bilayer metallization on silicon for ferroelectric thin film integration”, J. Appl. Phys., 75(1)(1994) , p.232 13. R. Bruchhaus , D. Pitzer, O. Eibl,U. Scheithauer, and W. Hoesler, Mater. Res. Soc. Symp. Proc. , 243(1992), p. 123 14. T. Ogawa, S. Shindou, A. Senda and T. Kasanami, Mater. Res. Soc. Symp. Proc., 243(1992), p. 93 15. K. B. Lee, B. R. Rhee and S. K. Cho, Mater. Res. Soc. Symp. Proc., 433 (1996), p. 181 16 .P. Revesz, J. Li, N. Szabo Jr., J. W. Mayer, D. Caudillo and E. R. Mayers, Mater. Res. Soc. Symp. Proc., 243 (1992), p. 101 17. D. Barrow, C. V. R. V. Kumar, R. Pasual and M. Sayer, Mater. Res. Soc. Symp. Proc., 243 (1992), p. 113 18. W. J. D. Bonte, J. M. Poate, C. M. Smith and R. A. Levesque, “Thin-film interdiffusion. II. Ti-Rh, Ti-Pt, Ti-Rh-Au, and Ti-Au-Rh”, J. Appl. Phys., 46 (1975), p. 4284 19. R. N. Singh and E. F. Koch, “TEM study of interdiffusion and interfaces in molybdenum/palladium/silicon thin films”, J. Electrochem. Soc., 133(1986), p. 1191 20. T. E. Clark, “Response surface modeling of high pressure chemical vapor deposited blanket tungsten”, J. Vac. Sci. & Tech., B9(1991), p. 1478 21. R. Hoppe and K. Blinne, Z. Anorg. Allg. Chem., 293 (1958), p. 251 22. G. Wagner and H. Binder, Z. Anorg. Allg. Chem., 297,(1958), p. 328 23. G. Wagner and H. Binder, Z. Anorg. Allg. Chem., 298(1959), p. 12 24. R. Weiss, C. R. Acad. Sci., 246 (1958), p. 3073 25. T. Nitta, K. Nagase, S. Hayakawa and Y. Iida, J. Am. Ceram. Soc., 48(1965), p. 642 26. H. Ikushima and S. Hayakawa, Solid-State Electron., 9 (1966), p. 921 27. R. D. Shannon and P. E. Bierstedt, J. Am. Ceram. Soc., 53(1970), p. 635 . 28. A. W. Sleight, J. L. Gillson and P. E. Bierstedt,” High-temperature superconductivity in the barium plumbate bismuthate (BaPb1-xBixO3) systems.”, Solid State Commun., 17 (1975), p. 27 29. M. Kuwabara , S. Takahashi, ”Preparation of ferroelectric BaTiO3 Thin Film on Polycrystalline BaPbO3 Substrate by Sol-Gel Processing and Their Electric Properties”, Appl. Phys. Lett , 62(1993),p.3372 30. T. Azuma, Y. Sakamoto, M. Kuwabara ,”Preparation and Basic of BaTiO3-BaPbO3 Multilayer Thin films by Metal-Alkoxide Method ”, Jpn. J. phys., 32(1993), p.4089 31.T. Azuma, Y. Sakamoto, K. Mitani, S. Takahashi and M. Kuwabara, ”Preparation and Electric Conductivity of Metallic Conductive BaPbO3 Thin films by Metal-Alkoxide Method ”, J. Ceram. Soc. Jpn., 103(1995), p.809 32. F. Wang , H. Zhang , ”Preparation of Conductive Barium Metaplumbate Thin Film Using Solution Method ”, Mater. Res. Bulletin, 31(1996), p.37 33. M.C. Chang, J.M. Wu, S.Y. Cheng, S.Y.Chen ,” Reaction kinetics and mechanism of BaPbO3 formation”, Mater. Chem. Phys., 65 (2000), p.57 34. M. C. Chang, J.M. Wu, S.Y. Cheng ,S.Y. Chen “The effect of ball-millimg solvent on the decomposition properties of Ba(Pb1-xBix)O3”, Mater. Chem. Phys., 69(2001), p.226 35. C.L. Sun, H .W. Wang, M.C. Chang, M.S. Lin, S.Y. Chen, ” Charaterization of BaPbO3 and Ba(Pb1-xBix)O3 thin films”, Mater. Chem. Phys.,78 (2002), p.507 36. Y. R. Luo , J. M. Wu, ”RF-Magnetron Sputtered Conductive Perovskite BaPbO3 films,Jpn. J. Appl. Phys. ,42(2003), p. 242 37. A.I. Mardare, C.C. Madare, J.R.A. Fernandes ,P.M. Vilarinho, and E. Joanni, “Plused laser deposition of barium metaplumbate thin films for ferroelectric capacitors” ,Euro. Phys. J., AP 23(2003), p.89 38. Y.R. Luo , J.M. Wu , ”BaPbO3 perovskite electrode for lead zirconate titanate ferroelectric thin films”, Appl. Phys. Lett . ,79(2001), p.3699 39. C.S. Liang, J.M. Wu, and M.C. Chang,” Ferroelectric BaPbO3 / PbZr0.53Ti0.47 /BaPbO3 heterostructures ”, Appl. Phys. Lett. 81(2002), p.3624 40. L. A. Bursill, I. M. Reaney, D. P. Vijay and S. B. Desu, “Comparison of lead zirconate titanate thin films on ruthenium oxide and platinum electrodes”, J. Appl. Phys., 75 (1994), p. 1521 41. H. N. Al-Shareef, B. A. Tuttle, W. L. Warren, T. J .Headly, D. Dimos, J. A. Voigt and R. D. Nasby, ”Effect of B-Site Cation Stoichiometry on Electrical Fatigue of RuO2/Pb(ZrxTi1-x)O3/RuO2 Capacitors ”, J. Appl. Phys., 79 (1996) ,p.1013 42. Y. Park, S. M. Jeong, S. I. Moon, K. W. Jeong, S. H. Kim, J. T. Song and J. Yi, “Pt and RuO2 Bottom Electrode Effects on Pb(Zr,Ti)O3 Memory Capacitors”, Jpn. J. Appl. Phys., 38 (1999), p. 6801 43. H. N. Al-Shareef, A. I. Kingon and O. Auciello, “Influence of platinum interlayers on the electrical properties of RuO2/Pb(Zr0.53Ti0.47)O3/RuO2 capacitor heterostructures”, Appl. Phys. Lett., 66 (1995) , p.239 44. K. Sreenivas, M. Sayer, T. Laursen, J. L. Whitton, R. Pascual, D. J. Johnson, D. T. Amm, G. I. Sproule, D. F. Mitchell, M. J. Graham, S. C. Gujrathi and K. Oxorn, ”Character of Lead Zirconate Titanate (PZT)-Indium Tin Oxide(ITO) Thin Film Interface ” , Mater. Res. Soc. Symp. Proc., 200 (1990), p.255 45. A. V. Rao, S. A. Mansour and A. L.Bement, ” Fabrication of Ferro- electric PZT Thin Film Capacitors with Indium Tin Oxide (ITO) Electrodes”, Mater. Lett., 29 (1996), p. 255 46. R. Ramesh, W. K. Chan, B. Wilkens, H. Gilchrist, T. Sands, J. M. Tarascon, V. G. Keramidas, D. K. Fork, J. Lee and A. Safari, “Fatigue and Retention in Ferroelectric Y-Ba-Cu-O / Pb-Zr-Ti-O / Y-Ba-Cu-O Heterostructures” , Appl. Phys. Lett., 61 (1992), p. 1537 47. J. Lee, L. Johnson, A. Safari, R. Ramesh, T. Sands, H. Gilchrist and V. G. Keeramidas, “Effects of crystalline quality and electrode material on fatigue in Pb(Zr,Ti)O3 thin film capacitors” Appl. Phys. Lett., 63 (1993), p.27 48. T. J. Cheung, P. E. D. Morgan, D. H. Lowndes, X. Y. Zheng and J. Breen, “Structural and electrical properties of La0.5Sr0.5CoO3 epitaxial films” Appl. Phys. Lett., 62 (1993), p. 2045 49. R. Dat. D. J. Lichtenwalner, O. Auciello and A. I. Kingon , ” poly- crystalline La0.5 Sr0.5CoO3/PbZr0.53Ti0.47/ La0.5 Sr0.5CoO3 Ferroelectric Capacitors on Platinized Silicon with No Polarization Fatigue ”, Appl. Phys. Lett., 64 (1994), p. 2673 50. C. C. Yang, M. S. Chen, T. J. Hong, C. M. Wu, J. M. Wu and T. B. Wu, “Preparation of (100)-oriented metallic LaNiO3 thin films on Si substrates by radio frequency magnetron sputtering for the growth of textured Pb(Zr0.53Ti0.47)O3” , Appl. Phys. Lett., 66 (1995), p. 2643 51. M. S. Chen, T. B. Wu and J. M. Wu, ” Effect of Textured LaNiO3 Electrodes on the Fatigue Improvement of Pb(Zr0.53Ti0.47)O3 Thin Films ”,Appl. Phys. Lett., 68 (1996), p. 1430 52. K. A. Keiko and Y. Fujisaki, “IrO2/Pb(ZrxTi1-x)O3(PZT)/Pt Ferroelectric Thin-Film Capacitors Resistant to an Interlayer-Dielectric-Deposition Process”, Jpn. J. Appl. Phys., 37 (1998), p. L804 53. F. Zhang, S. T. Hsu, T. Li, Y. Ono, J. S. Maa, H. Ying and L. Stecker, Mater. Res. Soc. Symp. Proc., 596 (2000), p. 67 54. 陳銘森, “鎳酸鑭電極對鋯鈦酸鉛溶凝膠製作與特性影響之研究”,清華大學, 博士論文, (1996) 55. 吳啟明, “利用濺鍍法及鎳酸鑭為電極製作動態記憶體之鈦酸鍶鋇薄膜的研究”,清華大學, 博士論文, (1997) 56. Y. Xu, “Ferroelectric Materials and Their Applications”, North-Holland, Netherlands, (1991) 57. 葉明華, “脈衝雷射鍍膜法製備鈣鈦礦型鐵電薄膜之研究”,清華大學, 博士論文, (1994) 58. 李雅明, 固態電子學, 全華科技, (1995) 59. T. Azuma, K. Yumoto, S. Takahashi and M. Kuwabara, “Preparation of Dense BaPbO3 Ceramic Electrode Materials for Ferroelectric Thin Films and Their Electric and Thermal Properties ” J. Ceram. soc. Jpn., 102(1994), p.847 60. 梁春昇, “氧化物電極上PZT薄膜之製備及特性研究” 清華大學, 碩士論文,(2001) 61. G. Teowee, J.M. Boulton, K. McCarthy, E.K. Franke, T.P. Alexander, T.J. Bukowski and D.R. Uhlmann, “ Effect of PbO Content on the Properties of Sol- Gel Derived PZT Films”,Integrated Ferrlelectrics,14(1997), p.265id NH0925159036 sid 913551 cfn 0 / id NH0925159037 auc 張郁□ tic 以原子力顯微術製作氧化鎳奈米結構並應用於奈米材料選區成長 adc 林鶴南 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 63 kwc 原子力顯微術 kwc 奈米氧化 kwc 奈米碳管 kwc 氧化矽奈米線 abc 原子力顯微術近年來在奈米微影技術方面具有相當大的潛力。尤其,以原子力顯微術的奈米氧化基於適用樣品廣泛、可於大氣環境下操作、具有奈米級解析度等優點,對於製作奈米結構及奈米元件已經建立了一套具重複性且可靠的技術。 rf 參考文獻 1. M. T. Browne, P. Charalambous, and V. A. Kudryashov, Microelectron. Eng. 13, 221 (1991). 2. F. Cerrina, Jpn. J. Appl. Phys. 31, 4178 (1992). 3. S. Iijima, Nature, 354, 56 (1991). 4. G. Pirio, P. Legagneux, D. Pribat, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, and W. I. Milne, Nanotechnology, 13. 1 (2002). 5. Y. Homma, Y. Kobayashi, T. Ogino, and T. Yamashita, Appl. Phys. Lett. 81, 2261 (2001). 6. Z. Pan, S. Dai, D. B. Beach, and D. H. Lowndes, Nano. Lett. 3. 1279 (2003). 7. N. Cabrera and N. F. Mott, Rep. Prog. Phys. 12, 163 (1948). 8. A. E. Gordon, R. T. Fayfield, D. D. Litfin, and T. K. Higman, J. Vac. Sci. Technol. B 13, 2805 (1995). 9. D. Stievenard, P. A. Fontaine, and E. Dubois, Appl. Phys. Lett. 70, 3272 (1997). 10. M. Yasutake, Y. Y. Ejiri, and T. Hattori, Jpn. J. Appl. Phys. 1 32, L1021 (1993). 11. T. Hattori, Y. Ejiri, and K. Saito, J. Vac. Sci. Technol. A 12, 2586 (1994). 12. P. Avouris, T. Hertel, and R. Martel, Appl. Phys. Lett. 71, 285 (1997). 13. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982). 14. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, Appl. Phys. Lett. 56, 2001 (1990). 15. H. C. Day, and D. R. Allee, Appl. Phys. Lett. 62, 2691 (1993). 16. D. Wang, L. Tsau, and K. L. Wang, Appl. Phys. Lett. 65, 1415 (1994). 17. E. S. Snow and P. M. Campbell, Appl. Phys. Lett. 64, 1932 (1994). 18. L. Tsau, D. Wang, and K. L. Wang, Appl. Phys. Lett. 64, 2133 (1994). 19. E. S. Snow, D. Park, and P. M. Campbell, Appl. Phys. Lett. 69, 269 (1995). 20. E. S. Snow, and P. M. Campbell, Science, 270, 1639 (1995). 21. D. Wang, L. Tsau, K. L. Wang, and P. Chow, Appl. Phys. Lett. 67, 1295 (1995). 22. M. Rolandi, C. F. Quate, and H. Dai, Adv. Mater. 14, 191 (2002). 23. E. S. Snow, W. H. Juan, S. W. Pang, and P. M. Campbell, Appl. Phys. Lett. 66, 1729 (1995). 24. N. Kramer, H. Birk, J. Jorritsma, and C. Schönenberger, Appl. Phys. Lett. 66, 1325 (1995). 25. S. C. Minne, H. T. Soh, Ph. Flueckiger, and C. F. Quate, Appl. Phys. Lett. 66, 703 (1995). 26. K. Matsumoto, M. Ishii, K. Segawa, Y. Oka, B. J. Vartanian, and J. S. Harris, Appl. Phys. Lett. 68, 34 (1996). 27. P. M. Campbell, E. S. Snow, and P. J. McMarr, Appl. Phys. Lett. 66, 1388 (1995). 28. R. García, M. Calleja, and H. Rohrer, J. Appl. Phys. 86, 1898 (1999). 29. H. Sugimura, T. Uchida, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 63, 1288 (1993). 30. M. Tello and Ricardo Garcia, Appl. Phys. Lett. 79, 424 (2001). 31. J. Israelachvili, Intermolecular and Surface Forces (Academic, London, 1992). 32. J. Servat, P. Gorostiza, and F. Sanz, F. P´erez-Murano, N. Barniol, G. Abadal, and X. Aymerich, J. Vac. Sci. Technol. A, 14, 1208 (1996). 33. F. Pe´rez-Murano, G. Abadal, N. Barniol, X. Aymerich, J. Servat, P. Gorostiza, and F. Sanz, J. Appl. Phys. 78, 6797 (1995). 34. M. Calleja and R. García, Appl. Phys. Lett. 76, 3427 (2000). 35. E. Dubois and J. L. Bubendorff, J. Appl. Phys. 87, 8148 (2000). 36. J. A. Dagata, T. Inoue, J. Itoh, K. Matsumoto, and H. Yokoyama, J. Appl. Phys. 84, 6891 (1998). 37. M. Calleja, J. Anguita, R Garcia, K. Birkelund, F. Pérez-Murano and J. A. Dagata, Nanotechnology, 10, 34 (1999). 38. C. Huh and S. J. Park, J. Vac. Sci. Technol. B, 18, 55 (2000). 39. A. F. Benton, and P. H. Emmett, J. Am. Chem. Soc. 46, 2728 (1924). 40. J. A. Rodriguez, J. C. Hanson, A. I. Frenkel, J. Y. Kim, and M. Perez, J. Am. Chem. Soc. 124, 346 (2002). 41. S. Helveg, C. Lopez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, and J. K. Norskov, Nature, 427, 426 (2004). 42. J. T. Richardson, R. Scates, and M. V. Twigg, Applied Catalysis A: General, 246, 137 (2003). 43. Y. Y. Wei, and G. Eres, Nanotechnology, 11, 61 (2000). 44. K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, and D. Pribat, Appl. Phys. Lett. 79, 1534 (2001). 45. J. Q. Hu, Y. Jiang, X. M. Meng, C. S. Lee, and S. T. Lee, Chemical Physics Letters, 367, 339 (2003). 46. D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, Appl. Phys. Lett. 73, 3076 (1998). 47. Y. J. Xing, D.P. Yu, Z.H. Xi, and Z.Q. Xue, Appl. Phys. A, 76, 551 (2003). 48. R. S. Wager, and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964). 49. E. I. Givargizov, J. Crystal Growth, 31, 20 (1975). 50. G. W. Meng, X. S. Peng, Y. W. Wang, C. Z. Wang, X. F. Wang, and L. D. Zhang, Appl. Phys. A , 76, 119 (2003). 51. B. Zheng, Y. Y. Wu, P. D. Yang, and J. Liu, Adv. Mater. 14, 122 (2002). 52. Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, J. Am. Chem. Soc. 124, 1817 (2002). 53. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982). 54. G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986). 55. B. Capella and G. Dietler, Surf. Sci. Rep. 34, 1 (1999). 56. B. Legrand and D. Stie´venard, Appl. Phys. Lett. 76, 1018 (2000). 57. J. H. Yen, I. C. Leu, C. C. Lin, and M. H. Hon, Appl. Phys. A, in press. 58. H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett. 260, 471 (1996). 59. J. H. Choi, T. Y. Lee, S. H. Choi, J.-H. Han, J.-B. Yoo, C.-Y. Park, T. Jung, S. G. Yu, W. Yi, I.-T. Han, and J. M. Kim, Diamond and Related Materials, 12, 794 (2003). 60. 賴信文, ”以原子力顯微術奈米氧化製作氧化鎳結構及其於奈米碳管選區成長的應用”, 清華大學材料科學工程學系碩士論文,民國九十二年六月。 61. V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, G. Eres, and E. Voelkl, Appl. Phys. Lett. 76, 3555 (2000). 62. Y.-J. Xing, Z.-H. Xi, D.-P. Yu, Q.-L. Hang, H.-F. Yan, S.-Q. Feng, and Z.-Q. Xue, Chin. Phys. Lett. 19, 240 (2002). 63. X. Chen, Y. Xing, J. Xu, J. Xiang, and D. Yu, Chem. Phys. Lett. 374, 626 (2003).id NH0925159037 sid 913553 cfn 0 / id NH0925159038 auc 熊昌鉑 tic 應用於金屬/鐵電層/絕緣層/半導體場效電晶體之氧化釔(Y2O3)絕緣層薄膜特性 adc 甘炯耀 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 71 kwc 氧化釔 kwc 高介電材料 kwc 錳酸釔 kwc 鐵電材料 kwc 非揮發性記憶體 kwc 金屬/鐵電層/絕緣層/半導體場效電晶體 abc 由於金屬/鐵電層/絕緣層/半導體場效電晶體(MFIS-FETs)為結構所製作的鐵電記憶體,具有非破壞式讀取、高積集度等許多優點,因此受到研究上的興趣。結構中所選用的鐵電材料又以錳酸釔(YMnO3, YMO)具低介電係數的特性,最引人興趣。然而,製作以YMO為主之MFIS-FET存在的問題,有中間介電層材料的選用及匹配性等課題。本研究即以射頻磁控濺鍍的方式鍍製YMO為鐵電層,探討YMO的薄膜結構特性。並以氧化釔(Y2O3)做為絕緣層,討論其做為MFIS之絕緣層的適當性,並探討該絕緣層的結構性質與電性表現。 tc 第一章 緒論 1 1.1簡介…………………………………………………………...1 1.2研究動機……………………………………………………...2 第二章 文獻回顧 4 2-1 鐵電材料及其物理機制…………………………………….4 2-2 鐵電記憶體的種類………………………………………….5 2-2.1 破壞式讀取(DRO)…………………………………...5 2-2.2 非破壞式讀取(NDRO)………………………………6 2-3 介電性質.................................................................................8 2-4 YMO之基本材料特性……………………………………..10 2-4.1基本材料特性.............................................................10 2-4.2 YMO薄膜製作...........................................................10 2-5 絕緣層在MFIS應用中的特性考量………………………12 2-4.1 絕緣層鍍製在矽基板上的熱穩定性………………13 2-4.2 絕緣層/矽基板之界面特性………………………...14 2-4.3 絕緣層的介電常數…………………………………15 2-4.4 絕緣層的厚度效應…………………………………15 2-6 Y2O3 絕緣層的性質..............................................................16 圖表………………………………………………………..18 第三章 實驗方法與流程 26 3-1 YMO薄膜的鍍製…………………………………………..26 3-1.1 YMO靶材(Target)的製備…………………………..26 3-1.2 YMO薄膜鍍製……………………………………27 3-2 Y2O3之MIS結構製作……………………………………..28 3-2.1 Y2O3靶材的製備……………………………………28 3-2.2 矽基板的處理………………………………………28 3-2.3 Y2O3薄膜鍍製………………………………………29 3-2.4 上電極(Top electrode)的製作……………………...30 3-3 Y2O3之MIM結構製作……………………………………..30 3-3.1 下電極(Bottom electrode)基板的製作……………..31 3-4 薄膜特性分析……………………………………………...32 3-4.1 薄膜晶體結構鑑定…………………………………32 3-4.2 薄膜表面型態觀察…………………………………32 3-4.3 表面粗糙度分析……………………………………33 3-5 薄膜電性分析……………………………………………...33 3-5.1 介電常數與散逸因子量測…………………………33 3-5.2 高頻率(1MHz)電容-電壓量測……………………..34 3-5.3 漏電流特性量測……………………………………34 圖表………………………………………………………..35 第四章 實驗結果與討論 41 4-1 錳酸釔(YMO)之結構特性………………………………...41 4-1-1 白金基板上成長YMO之特性…………………….41 4-1-2 矽基板上成長YMO之特性……………………….42 4-2 Y2O3之結構、電性分析……………………………………43 4-2-1薄膜結構特性……………………………………….43 4-2-1.1 晶體結構………………………………………43 4-2-1.2 表面型態………………………………………44 4-2-1.3 表面粗糙度……………………………………45 4-2-2 電性量測…………………………………………...45 4-2-2.1 介電常數………………………………………45 4-2-2.2 高頻(1MHz) C-V量測………………………...46 4-2-2.2.1 CFB及VFB之估算與定義……………….48 4-2-2.2.2 平帶電壓飄移之探討………………….50 4-2-2.2.3 C-V曲線hysterisis效應及物理機制…..52 4-2-2.3 漏電流量測……………………………………53 4-3 綜合討論…………………………………………...............54 圖表………………………………………………………..55 第五章 結論 68 參考文獻..................................................................................................70 圖表目錄 Table2-1 RMnO3(R:稀土金屬元素)系列鐵電材料的基本特性……...18 Table 2-2各種高介電材料特性..............................................................18 Fig.2-1 鐵電材料電滯曲線圖 (Hysteresis Loop)..................................19 Fig.2-2 8T-2C記憶體示意圖...................................................................19 Fig.2-3 2T-2C及1T-1C記憶體示意圖...................................................20 Fig.2-4 非破壞式讀取(NDRO)操作示意圖..........................................20 Fig.2-5 非破壞式讀取(NDRO)記憶胞之一種設計剖面示意圖..........21 Fig.2-6 四種極化機構示意圖................................................................21 Fig.2-7 頻率變化對極化機構的影響....................................................22 Fig.2-8 YMnO3晶體結構式意圖............................................................22 Fig.2-9 以PLD方式於不同氧分壓下鍍製YMO於Si(111)基板上的XRD圖及成長機制示意圖.....................................................................23 Fig.2-10 以CSD方式鍍製YMO於Pt/Al2O3基板上進行800℃熱處理的XRD圖.................................................................................................23 Fig.2-11 Ta2O5 /Si之界面反應……………………………………….....24 Fig.2-12 金屬/鐵電層/N型半導體系統能帶式意圖……………….....24 Fig.2-13 Y2O3的晶格結構示意圖...........................................................25 Fig.3-1 磁控式雙槍濺鍍系統................................................................35 Fig.3-2(a) MIS 結構……………………………………………………36 Fig.3-2(b) MIM 結構…………………………………………………..36 Fig.3-3 YMO靶材製備流程…………………………………………...37 Fig.3-4 Y2O3靶材製備流程………………………………………….....38 Fig.3-5 鍍製下電極流程圖....................................................................39 Fig.3-6(a) MIM量測示意圖…………………………………………...40 Fig.3-6(b) MIS量測示意圖…………………………………………....40 Fig.4-1 YMO薄膜在各種退火氣氛下於800℃退火10分鐘的XRD圖………………………………………………….…………………….55 Fig.4-2 YMO薄膜在Ar氣氛不同壓力下於800℃退火10分鐘的XRD圖……………………………………………………….……………….55 Fig.4-3 YMO薄膜在真空下於800℃退火10分鐘的SEM照片........56 Fig.4-4 YMO薄膜的漏電流曲線圖…………………………......……..56 Fig.4-5 YMO薄膜分別鍍製在白金基板、矽基板上通入Ar 1torr於800℃退火10分鐘的XRD圖…….....................................…………….57 Fig.4-6 YMO薄膜鍍製在Y2O3 / Si基板上通入Ar 1torr於800℃退火10分鐘的XRD圖………………………………….......……………….57 Fig.4-7 YMO鍍於Y2O3 / Si 基板上通入Ar 1 torr於800℃退火10分鐘的SEM圖.............................................................................................58 Fig.4-8(a) Y2O3薄膜於室溫下鍍製於Si基板上與經600℃∼850℃退火15分鐘之XRD圖.............................................................……………..59 Fig.4-8(b) Y2O3薄膜於450℃鍍製於Si基板上與經600℃∼850℃退火15分鐘之XRD圖.............................................................……………..59 Fig.4-8(c) Y2O3薄膜於450℃鍍製於Pt電極上與經600℃∼850℃退火15分鐘之XRD圖...............................………….......…...……………..60 Fig.4-8(d) Y2O3薄膜於450℃鍍製於Pt電極上之低掠角XRD圖......60 Fig.4-9經750℃退火處理Y2O3薄膜之(a)表面 及(b)截面型態的SEM圖…………………………………………………………………..........61 Fig.4-10 (a) Y2O3於基板溫度450℃鍍製之AFM 3D圖及粗糙度分析……......................................................................................................62 Fig.4-10 (b) Y2O3薄膜於600℃退火15分鐘之AFM 3D圖及粗糙度分析…..........................................................................................................62 Fig.4-10 (c) Y2O3薄膜於750℃退火15分鐘之AFM 3D圖及粗糙度分析..............................................................................................................63 Fig.4-10 (d) Y2O3薄膜於850℃退火15分鐘之AFM 3D圖及粗糙度分析..............................................................................................................63 Fig.4-11相對介電常數、介電損失因子(tanδ)隨頻率響應關係圖……64 Fig.4-12以高頻(1MHz)量測電容-電壓曲線圖……..............................64 Fig.4-13(a) 450℃鍍製試片受正偏壓量測的情形.................................65 Fig.4-13(b) 450℃鍍製試片受負偏壓量測的情形.................................65 Fig.4-14(a)受負偏壓施加時,電洞於界面處陷住的能帶示意圖…….66 Fig.4-14(b)受正偏壓施加時,電子於界面處陷住的能帶示意圖…….66 Fig.4-15 Y2O3之MIS結構的漏電流與電場曲線圖…………………..67rf 【1】D. Ito, N. Fujimura, T. Yoshimura, and T. Ito, J. Appl. Phys, 93, 5563 (2003) 【2】Y. Fukuda, K. Aoki, K. Numata, and A. Nishimura, Jpn. J. Appl. Phys. 33, 5255(1994). 【3】E. F. Bertaut, F. Forrat, and P. H. Fang, C. Rend. 256, 1958(1963). 【4】H. L. Yakel, W. C. Koehler, E. F. Bertaut, and F. Forrat, Acta Crystallogr. 16, 957(1963). 【5】I. G. Ismailzade and S. A. Kizhaev, Fiz. Tverd. Tela 7, 298(1965) 「Sov. Phys. Solid State 7, 236(1965)」. 【6】G. A. Smolenskii and V. A. Bokov, J. Appl. Phys. 35, 915 (1964). 【7】N. Fujimura, S. I. Azuma, N. Aoki, T. Yoshimura, and T. Ito, J. Appl. Phys. 80 (12), 7084(1996) 【8】T. Yoshimura, N. Fujimura, and T. Ito, Appl. Phys. Lett, 73, 414 (1998) 【9】E. Rokuta, Y. Hotta, H. Kobayashi, and T. Kawai, J. Appl. Phys. 88, 6598 (2000) 【10】D. Ito, N. Fujimura, and T. Ito, Jpn. J. Appl. Phys. 39, 5525(2000) 【11】H. Kitahata, K. Tadanaga, T. Minami, N. Fujimura, and T. Ito, Appl. Phys. Lett. 75, 719 (1999) 【12】K. Suzuki, K. Nishizawa, T. Miki, and K. Kato, J. Crys. Growth, 237-239, 482 (2002) 【13】N. Aoki, N. Fujimura, T. Yoshimura, and T. Ito, J. Crys. Growth, 174, 796 (1997) 【14】T. Yoshimura, N. Fujimura, N. Aoki, K. Hokayama, and S. Tsukui, Journal of the Korean Physical Society, 32, S1632 (1998) 【15】D. Ito, N. Fujimura, T. Yoshimura, and T. Ito, J. Appl. Phys. 93, 5563 (2003) 【16】T. Yoshimura, N. Fujimura, N. Aoki, K. Hokayama, S. Tsukui, K. Kawabata, and T. Ito, Jpn. J. Appl. Phys. 36, 5921 (1997) 【17】IL Cheon C, Yun KY, Kim JS, and Kim JH, Integrated Ferroelectrics, 34, 1513 (2001) 【18】J. F. Scott, 「Ferroelectric Memories」, chap.12 【19】B-E. Park, S. Shouriki, E. Tokumitsu and H. Ishiwara, Jpn. J. Appl. Phys. 37, pp.5145 (1998) 【20】W- C. Shin, J- H. Yang, K- J. Choi, Y- A. Jeon, and S- G. Yoon, J. Vac. Sci. Technol. B 19(1), 239 (2001) 【21】C- H. Chien, D- Y. Wang, M- J. Yang, P. Lehnen, C- C. Leu, S- H. Chuang, T- Y. Huang, and C- Y. Chang, IEEE electron device letters, 24, 553 (2003) 【22】J. Senzaki, K. Kurihara, N. Nomura, O. Mitsunaga, Y. Iwasaki, and T. Ueno, Jpn. J. Appl. Phys. 37, 5150 (1998) 【23】I. Sakai, E. Tokumitu, and H. Ishiwara, Jpn. J. Appl. Phys. 35, 4987 (1996) 【24】T. Yamaguchi, M. Koyama, A. Takashima, and S- I. Takagi, Jpn. J. Appl. Phys. 39, 2058 (2000) 【25】G. B. Alers, D. J. Werder, Y. Chabal, H. C. Lu, E. P. Gusev, E. Garfunkel, T. Gustafsson, and R. S. Urdahl, Appl. Phys. Lett. 73, 1517(1998) 【26】S. K. Lee, Y. T. Kim, Seong-II Kim, and C. E. Lee, J. Appl. Phys. 91, 9303(2002) 【27】K. Sugibuchi, Y. Kurogi, and N. Endo, J. Appl. Phys. 46, 2877 (1975) 【28】R. R. Mehta, B. D. Silverman and J. T. Jacobs, J. Appl. Phys. 44, 3379(1973) 【29】D. Ito, N. Fujimura, T. Yoshimura, and T. Ito, J. Appl. Phys. 93, 5563 (2003) 【30】M. H. Cho, D. H. Ko, Y. K. Choi, I.W. Lyo, K. Jeong, and C. N. Whang, Thin solid film, 402, 38-42 (2002) 【31】H. Fukumoto, T. Imura, and Y. Osaka, Appl. Phys. Lett. 55, 360(1989) 【32】B. G. Streetman, S. Banerjee,「Solid State Electronic Devices,5th edition」 【33】H. Fufumoto, T. Imura, and Y. Osaka, Appl. Phys. Lett. 55, 360 (1989) 【34】K. Harada, H. Nakanishi, H. Sharma, J. Appl. Phys. 71, 5041 (1992) 【35】S. C. Choi, M. H. Cho, S. W. Whangbo, and C. N. Whang, Appl. Phys. Lett. 71, 903 (1997) 【36】J. J. Chambers, and G. N. Parsons, J. Appl. Phys. 90, 918(2001) 【37】Dieter K. Schroder, 「Semiconductor Material and Device Characterization, 2nd edition」 【38】N. Fujimura, T. Ishida, T. Yoshimura, and T. Ito, Appl. Phys. Lett, 69, 1011 (1996) 【39】A. Filippetti, N. Hill, Journal of Magnetism and Magnetic Materials 236, 176 (2001) 【40】K. Sugibuchi, Y. Kurogi, and N. Endo, J. Appl. Phys. 46, 2877 (1975) 【41】G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001)id NH0925159038 sid 913555 cfn 0 / id NH0925159039 auc 王品然 tic 晶圓接合技術應用於絕緣層上矽結構之研究 adc 胡塵滌 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 117 kwc 絕緣層上矽結構 kwc 殘留應力 kwc 殘餘電荷 kwc 漏電流 abc 論 文 摘 要 tc 目 錄 論文摘要…………………………………………………………… Ⅰ 目錄………………………………………………………………… Ⅱ 表目錄……………………………………………………………… Ⅴ 圖目錄……………………………………………………………… Ⅵ 第一章 前言……………………………………………………… 1 第二章 文獻回顧………………………………………………… 3 2-1. WB之簡介與機制……………………………………… 3 2-2. WB之應用……………………………………………… 3 2-2-1. 微積電(MEMS)上的應用………………………… 4 2-2-2. 積體電路(IC)上的應用………………………… 4 2-2-3. PN-junction的應用…………………………… 7 2-2-4. 異質接合上的應用……………………………… 8 2-2-5. 其他方面的應用-保護表面…………………… 9 2-3. WB的歷史回顧………………………………………… 9 2-4. 晶圓參數……………………………………………… 10 2-5. 晶圓鍵結之分類……………………………………… 11 2-5-1. 親水性鍵結(HL)………………………………… 11 2-5-2. 斥水性鍵結(HL)………………………………… 12 2-6. 晶圓殘留應力的種類………………………………… 12 2-7. Schottky Barrier原理……………………………… 13 第三章 實驗程序 ……………………………………………… 29 3-1. 晶圓直接接合 ……………………………………… 29 3-1-1. 氧化層成長……………………………………… 29 3-1-2. 晶圓表面清洗步驟……………………………… 29 3-1-3. 預接合步驟……………………………………… 31 3-1-4. 退火步驟………………………………………… 32 3-2. 元件製作……………………………………………… 32 3-2-1. 薄化步驟………………………………………… 32 3-2-2. SOI MOSFET製作………………………………… 32 3-2-3. Schorrky Barrier Diode製作………………… 33 3-3. 實驗方法與儀器介紹………………………………… 34 3-3-1. 陽極接合機……………………………………… 34 3-3-2. 紅外線照相術…………………………………… 34 3-3-3. 截面OM、SEM觀測………………………………… 35 3-3-4. 強度測試………………………………………… 36 3-3-4-1. 拉伸試驗……………………………… 36 3-3-4-2. 刀刃插入測試………………………… 36 3-3-5. 熱癒合實驗……………………………………… 37 3-3-6. SOI晶圓應力量測……………………………… 38 3-3-6-1. 應力量測原理………………………… 38 3-3-6-2. 雷射掃描理論………………………… 38 3-3-6-3. Stony’s Equation …………………… 39 3-3-6-4. 光學系統……………………………… 39 3-3-6-5. 殘留應力量測條件…………………… 40 3-3-7. 元件電性量測…………………………………… 41 3-3-7-1. SOI MOSFET……………………………… 41 3-3-7-2. SOI Schottky Barrier Diodes………… 41 第四章 結果與討論 …………………………………………… 58 4-1. 紅外線照相術 ………………………………………… 58 4-2. 截面觀察……………………………………………… 58 4-3. 強度測試 ……………………………………………… 60 4-3-1. 拉伸測試………………………………………… 60 4-3-2. 刀刃插入測試…………………………………… 61 4-3-3. 各種測試法之優缺點比較……………………… 65 4-4. 熱癒合實驗…………………………………………… 66 4-5. 應力量測 …………………………………………… 69 4-6. MOSFET元件電性量測………………………………… 70 4-6-1. 電流電壓量測…………………………………… 70 4-6-2. 電容電壓量測…………………………………… 72 4-7. Schottky Barrier Diodes元件電性量測…………… 72 第五章 結論……………………………………………………… 111 參考文獻…………………………………………………………… 113 表 目 錄 表4-1 退火前後,IR Photography之照片……………………… 75 表4-2 各種試片(111)Facet效應所得到的底邊、高和底角值………………………………………………………… 76 表4-3 WDB試片拉伸強度、應力-應變曲線與斷面觀察………… 77 表4-4 刀刃法測試表面能及IR Photography………………… 79 表4-5 以往文獻中刀刃法所得到WDB晶圓對表面能值………… 81 圖 目 錄 圖2-1 平面間的各種接合力…………………………………… 15 圖2-2 晶圓接合區域擴展圖,(a)由中心點施壓並開始接合,(b)接合區域向外擴展,(c)完全接合完成……………… 15 圖2-3 WB技術應用圖…………………………………………… 16 圖2-4 感應器(Sensor)或微幫浦(Micro-pump)需要中空腔體之示意圖……………………………………………… 16 圖2-5 SOI可增加CMOS對α粒子導致軟錯的抵抗能力……… 17 圖2-6 (a) CMOS之寄生雙載子現象示意 ……………………… 18 (b)左圖為圖2-1(a)中所標示之pnpn結構,右圖為此 pnpn二極體之I-V曲線圖 ……………………………… 18 圖2-7 SIMOX示意圖…………………………………………… 19 圖2-8 BESOI示意圖…………………………………………… 19 圖2-9 ELTRAN示意圖…………………………………………… 20 圖2-10 Smart Cut示意圖………………………………………… 21 圖2-11 DeleCut示意圖………………………………………… 21 圖2-12 未經過Layer Transfer之PZT層長於Si晶圓上,與經過Layer Transfer之PZT於Si晶圓之截面圖,兩者變質層區域之差異………………………………………… 22 圖2-13 PZT Layer Transfer之流程示意圖…………………… 22 圖2-14 K-Y. Ahn, R. Stengl et al. 提出相接界面形成disintegrated amorphous layer……………………… 23 圖2-15 (a)TTV,(b)TIR,(c)Bow,(d)Warp………………… 24 圖2-16 (a)親水性鍵結(HL)鍵結機制…………………………… 25 (b)斥水性鍵結(HB)鍵結機制…………………………… 25 圖2-17 SOI截面殘留應力圖…………………………………… 26 圖2-18 (a)Schottky Barrier示意圖(接合前)………………… 27 (b)Schottky Barrier示意圖(接合後)………………… 27 圖2-19 (a)Schottky Barrier 順向偏壓示意圖……………… 28 (b)Schottky Barrier反向偏壓示意圖………………… 28 圖3-1 實驗流程………………………………………………… 42 圖3-2 預接合示意圖…………………………………………… 43 圖3-3 SOI MOSFET製作流程示意圖…………………………… 44 圖3-4 MOSFET 光罩圖…………………………………………… 48 圖3-5 Schottky Barrier Diodes製作流程示意圖…………… 49 圖3-6 Schottky Barrier Diodes光罩圖……………………… 51 圖3-7 陽極接合機示意圖……………………………………… 51 圖3-8 IR Photography 儀器示意圖 ………………………… 52 圖3-9 WDB拉伸測試量測法…………………………………… 53 圖3-10 刀刃插入WDB表面能量測法…………………………… 53 圖3-11 熱癒合實驗細部流程…………………………………… 54 圖3-12 曲率量測光學原理示意圖……………………………… 55 圖3-13 試片彎曲受力情形,(a)上層試片受壓應力,(b)上層試片受張應力……………………………………………… 55 圖3-14 光學系統示意圖………………………………………… 56 圖3-15 SOI MOSFET電流電壓量測示意圖……………………… 56 圖3-16 SOI MOSFET電容電壓量測示意圖,(a)方法一,(b)方法二…………………………………………………… 57 圖3-17 SOI Schotttky Barrier Diode電流電壓量測示意圖… 57 圖4-1 (100)矽晶圓之截面方位示意圖………………………… 82 圖4-2 截面200X之Nomarsky Phase Contract OM觀察……… (a)SPM-M1,ox.=1000Å,(b)SPM-M1,ox.=3500Å, (c)SPM-M2,ox.=1000Å,(d)SPM-M2,ox.=3500Å 83 圖4-3 截面500X之Nomarsky Phase Contract OM觀察……… (a) SPM-M1,No Oxide,(b)SPM-M2,No Oxide 83 圖4-4 截面2500X之SEM觀察…………………………………… (a)SPM-M1,ox.=1000Å,(b)SPM-M1,ox.=3500Å,(c)SPM-M2,ox.=1000Å,(d)SPM-M1,ox.=3500 84 圖4-5 截面3-DAFM影像………………………………………… (a)SPM-M1, No Oxide,(b)SPM-M2, No Oxide 84 圖4-6 Bonding Interface之示意圖…………………………… 85 圖4-7 截面50,000X之FESEM觀察……………………………… (a)SPM-M1,ox.=1000Å,(b)SPM-M1,ox.=3500Å, (c)SPM-M2,ox.=1000Å,(d)SPM-M2,ox.=3500Å 86 圖4-8 拉伸強度比較圖………………………………………… 87 圖4-9 刀刃插入晶圓對之連續IR Photography觀察………… (a) 0秒,(b)60秒,(c)120秒,(d)180秒,(e)240秒,(f)300秒,(g)360秒,(h)420秒,(i)450秒。 88 圖4-10 刀刃法中裂口長度對刀刃插入時間之關係圖………… 89 圖4-11 刀刃法量測表面能強度分佈圖………………………… 89 圖4-12 (a)親水性界面低溫結合示意圖………………………… (b)親水性界面高溫接合示意圖 90 圖4-13 (a)斥水性界面低溫接合示意圖………………………… (b)斥水性界面高溫接合示意圖 90 圖4-14 700℃熱處理,刀刃法裂口長度對刀刃插入時間關係圖,(a)第一次插刀,(b)第二次插刀…………………… 91 圖4-15 700℃熱處理前後IR觀察圖…………………………… (a)第一次熱處理前,(b)第一次熱處理後,(c)第二次熱處理前,(d)第二次熱處理後 92 圖4-16 900℃熱處理,刀刃法裂口長度對刀刃插入時間關係圖,(a)第一刀插刀,(b)第二刀插刀,(c)第三刀插刀………………………………………………………… 93 圖4-17 900℃熱處理前後IR觀察圖…………………………… (a)第一次熱處理前,(b)第一次熱處理後,(c)第二次熱處理前,(d)第二次熱處理後 94 圖4-18 1000℃熱處理,刀刃法裂口長度對刀刃插入時間關係圖,(a)第一刀插刀,(b)第二刀插刀,(c)第三刀插刀………………………………………………………… 95 圖4-19 1000℃熱處理前後IR觀察圖…………………………… (a)第一次熱處理前,(b)第一次熱處理後,(c)第二次熱處理前,(d)第二次熱處理後 96 圖4-20 WB試片二次退火,應力-溫度關係圖…………………… (a)SPM-M1,ox.=1000Å, (b)SPM-M1,ox.=3500Å, (c)SPM-M2,ox.=1000Å ,(d)SPM-M2,ox.=3500Å。 97 圖4-21 WDB試片應力變化示意圖……………………………… (a)第一次退火後,(b)上層矽晶圓薄化後,(c)900℃第二次退火後,(d)第二次退火降為室溫後 98 圖4-22 MOSFET Id-Vg關係圖……………………………………… (a)P Bulk,(b)SPM-M1,ox.=1000Å,(c)SPM-M1,ox.=3500Å,(d)SPM-M2,ox.=1000Å,(e)SPM-M2,ox.=3500Å 99 圖4-23 各種MOSFET試片Id-Vg關係圖…………………………… 100 圖4-24 MOSFET漏電流示意圖…………………………………… (a)Bulk MOSFET,(b)SOI MOSFET 101 圖4-25 電子流通於MOSFET結構示意圖………………………… 102 圖4-26 方法一量得之MOSFET元件電容電壓關係圖…………… (a)P Bulk,(b)SPM-M1, ox.=1000Å,(c)SPM-M1,ox.=3500Å,(d)SPM-M2,ox.=1000Å,(e)SPM-M2,ox.=3500Å。 103 圖4-27 方法一量得到各種MOSFET元件電容與電壓關係圖…… 104 圖4-28 方法二量得之MOSFET元件電容電壓關係圖…………… (a)P Bulk,(b)SPM-M1, ox.=1000Å,(c)SPM-M1,ox.=3500Å,(d)SPM-M2,ox.=1000Å,(e)SPM-M2,ox.=3500Å。 105 圖4-29 以方法二量得到各種MOSFET元件電容與電壓關係圖… 106 圖4-30 電容示意圖……………………………………………… (a)電容存在閘極與源極間,(b)反轉層形成,電容消失 107 圖4-31 Schottky Barrier Diode 元件電流電壓關係圖……… (a)N+ Bulk,(b)SPM-M1, ox.=1000Å,(c)SPM-M1,ox.=3500Å,(d)SPM-M2, ox.=1000Å,(e)SPM-M2,ox.=3500Å 108 圖4-32 各蕭特基元件電流電壓關係圖………………………… 109 圖4-33 金屬半導體接面存在表面能態………………………… (a)Φ0與費米能階未達平衡,(b)Φ0與費米能階達平衡 110 圖4-34 氧化層存在於金屬半導體接面之能階示意圖………… (a)厚氧化層,(b)薄氧化層 110rf 參考文獻 1. 1. Jan Haisma and G.A.C.M. Spierings, “Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry. Historical review in a broader scope and comparative outlook”, Materials Science and Engineering , R37, p.1~60, (2000). 2. Martin A. Schmidt, “Wafer-to-Wafer Bonding for Microstructure Formation”, Proceedings of the IEEE, 86. No.8, p.1575, (1998). 3. James B. Kuo and Ker-Wei Su, CMOS VLSI ENGINEERING:Silicon-on-Insulator (SOI), Kluwer Academic Publishers, p.1~11, (1998). 4. Andreas Plößl and Gertrud Kräuter, “Wafer Direct Bonding : tailoring adhesion between brittle materials”, Materials Science and Engineering, R25, p.1~88, (1999). 5. V.P.Popov, I.V.Antonova, A.A.Frantsuzov, “DeleCut: Producing High-Quality SOI Structures by Hydrogen Ion Implantation”, Russian Microelectronics, 31, p.232, (2002). 6. Niclas Keskitalo, Stefan Tiensuu, Anders Hallen, “Characterization of hydrophobic bonded silicon wafers”, Nuclear Instruments and Methods in Physics Reserch B, 186, p.66, (2002). 7. T. R. Chung, L. Yang, N. Hosoda, B. Takagi, T. Suga, “Wafer direct bonding of compound semiconductors and silicon at room temperature by the surface activated bonding method”, Appl. Surf. Sci., 117-118, p. 808, (1997). 8. T. R. Chung, L. Yang, N. Hosoda, T. Suga, “Room temperature GaAs-Si and InP-Si wafer direct bonding by the surface activated bonding method”, Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At., 121, p. 203, (1997). 9. F. A. Kish, F. M. Steranka, D.C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1–x)0.5In0.5P/GaP light-emitting diodes”, Appl. Phys. Lett., 64, p.2839, (1994). 10. J. H. Wang, M. S. Jin, V. H. Ozguz, S. H. Lee, “N-channel metal-oxide-semiconductor transistors fabricated in a silicon film bonded onto sapphire”, Appl. Phys. Lett., 64, p. 724, (1994). 11. K. Eda, M. Sugimoto, Y. Tomita, “Direct heterobonding of lithium niobate onto lithium tantalite”, Appl. Phys. Lett., 66, p.827, (1995). 12. Marin Alexe, Gerhard Kästner, Dietrich Hesse, and Ulrich Gösele, “Ferroelectric-semiconductor heterostructures obtained by direct wafer bonding”, Appl. Phys. Lett., 70, p.3416, (1997). 13. Q. –Y. Tong, R. Gafiteanu, U. M. Gösele, “Reversible Silicon Wafer Bonding for Surface Protection : Water-Enhanced Debonding”, J. Electrochem. Soc., 139, L.101 (1992). 14. R.G.Horn, J. Am. Ceram. Soc., 73, p.1117, (1990). 15. K.-T.Wan, D.T.Amith, B.R.Lawn, J. Am. Ceram. Soc., 75, p.667, (1992). 16. J. B. Lasky, S.R. Stiffler, F. R. White, and J. R. Abernathey, IEDM Tech. Dig., p. 648 (IEEE, New York, 1985). 17. J. B. Lasky, “Reversible Silicon Wafer Bonding for Surface Protection : Water-Enhanced Debonding”, Appl. Phys. Lett., 48, p.78, (1986). 18. M. Shimbo, K. Furukawa, K. Furuda, K. Tanzawa, “silicon-to-silicon direct bonding method”, J. Appl. Phys., 60(8), p.2987, (1986). 19. Q. –Y. Tong, X. -L. Xu, and H. Shen, “Diffusion and oxide viscous flow mechanism in SDB process and silicon wafer rapid thermal bonding”, Electronics Letters, 26, p.697, (1990). 20. K. –Y. Ahn, R. Stengl, T. Y. Tan, U. Gösele, “Stability of interfacial oxide layers during silicon wafer bonding”, J. Appl. Phys., 65, p.561, (1989). 21. H. Takagi, R. Maeda, T. R. Chung, and T. Suga, “Low-temperature direct bonding of silicon and silicon dioxide by surface activation method”, Sensors and Actuators, Sensors and Actuators, A70, p.164, (1998). 22. Q.-Y. Tong, U.Gösele, John Wiley & Sons, Inc. Publishers, p.178, (1999). 23. T. Iida, T. Itoh, D. Noguchi, Y. Takano, “Residual lattice strain in thin silicon-on-insulator bonded wafers: Thermal behavior and formation mechanisms”, J. Appl. Phys., 87, p.675-681, (2000). 24. James B. Kuo, Ker-Wei Su, CMOS VLSI ENGINEERING Silicon-on-insulator, p.121-131, (1998). 25. W.P. Masara, G. Goetz, A. Caviglia, and J.B. McKitterick, “Bonding of silicon wafers for silicon-on-insulator”, J. Appl. Phys., 64(10), p.4943-4950, (1988). 26. E. Kobeda, E.A. Irene,“A measurement of intrinsic SiO2 film stress resulting from low temperature thermal oxidation of Si”, J. Vac. Sci. Technol., B4(3), p.720-722, (1986). 27. Kiyoshi Mitani, Diego Feijoo, Giho Cha and Uirich Gösele, “A new evaluation method of silicon wafer direct bonding interfaces and bonding strength by KOH etching”, Jpn. J. App. Phys., 31, p.969, (1992). 28. 賴欣怡, 國立清華大學清材料所碩士論文, “晶圓直接接合製成物理及化學機制討論”, 民國九十二年六月 29. B. K. Ju, Y. H. Lee, K. H. Tchah, and M. H. Oh , “On the anisotropically etched bonding interface of directly bonded (100) silicon wafer pairs”, Microeletronics Journal, 142, p.547, (1995). 30. H. Camon, and Z. Moktadir, “Simulation of silicon etching with KOH”, J. Electrochem. Soc., 28, p. 509, (1997). 31. T. Suni, K. Henttinen, I. Suni, and J. Mäkinen, “Effects of Plasma Activation on Hydrophilic Bonding of Si and SiO2”, J. Electrochem. Soc., 149(6), p.G348-G351, (2002). 32. Johann Steinkirchner, Torsten Martini, Manfred Reiche, Gerhard Kästner, and Ulrich Gösele, “Silicon Wafer Bonding via Designed Monolayers”, Adv. Mater. 7, p.662-665, (1995). 33. M. Wiegand, M. Reiche, U. Gosele, K. Gutjahr, D. Stolze, R. Longwitz, E. Hiller , “ Wafer bonding of silicon wafers covered with various surface layers”, Sensors and Actuators A, 86, p91, (2000). 34. E.P. EerNisse,“Viscous flow of thermal SiO2”, Appl. Phys. Lett., 7(6), p.290-293, (1997). 35. E.P. EerNisse, G.F. Derbenwick,“Viscous Shear Flow Model For MOS Device Radiation Sensitivity”, IEEE Transactions on Nuclear Science, NS-23(6), p.1534-1539, (1976). 36. Q.-Y. Tong, U.Gösele,“Semiconductor Wafer Bonding Science and Technology”, John Wiley & Sons, Inc. Publishers, p.138, (1999). 37. E.H.Rhoderick, and R.H.Williams, “Metal-Semiconductor contacts” 2nd, Oxford Science Publications, p.11, (1988).id NH0925159039 sid 913561 cfn 0 / id NH0925159040 auc 陳宜騰 tic 銅薄膜之低溫氧化特性研究 adc 廖建能 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 56 kwc 銅薄膜 kwc 低溫氧化 kwc 動力學機制 abc 在積體電路製程技術不斷進步之下,電子元件的積集度大幅增加,而尺寸則越做越小,此時線路訊號之傳導遲滯(RC Delay)效應將越來越明顯而限制了製程技術的發展,故傳統的鋁導線製程已不符時代需求。銅導線因具有較低的電阻係數(Resistivity)及良好的抗電遷移(Electromigration)能力等優點而成為下一世代製程導線的主流,然而其容易氧化的特性卻會嚴重影響到製程的可靠度(Reliability),故銅導線的氧化效應是目前發展銅製程所需面對的一大課題。 rf [1 ] N. Cabrera and N. F. Mott, Rep. Prog. Phys. 12, 163 (1948). [2 ] J. Bardeen, Phys. Rev. 71, 374 (1947). [3 ] D. R. Bates and H. S. W. Massey, Phil. Trans. 239, 269 (1943). [4 ] U. R. Evans, Metallic Corrosion 2nd ed. p. 65, (1948). [5 ] N. Cabrera and J. Hamon, C. R. Acad. Sci. 224, 1713 (1947). [6 ] J. C. Yang, M. Yeadon, B. Kolasa, and J. M. Gibson, Scr. Mater. 38, 1237 (1998). [7 ] G. W. Zhou and J. C. Yang, Surf. Sci. 531, 359 (2003). [8 ] J. C. Yang, B. Kolasa, J. M. Gibson, and M. Yeadon, Appl. Phys. Lett. 73, 2841 (1998). [9 ] M. Hansen, Constitution of Binary Alloys (McGraw-Hill, New York, 1958). [10 ] H. K. Liou, J. S. Huang, and K. N. Tu, J. Appl. Phys. 77, 5443 (1995). [11 ] J. Y. Shin, Ph.D. dissertation, Cornell University, 1966. [12 ] Y. Z. Hu, R. Sharangpani, and S. P. Tay, J. Electrochem. Soc. 148, 669 (2001). [13 ] J. C. Yang, M. D. Bharadwaj, G. W. Zhou, and L. Tropia, Microsc. Microanal. 7, 486 (2001). [14 ] T. Mahalingam, J. S. P. Chitra, S. Rajendran, and P. J. Sebastian, Semicond. Sci. Technol. 17, 565 (2002). [15 ] Y. Z. Hu, R. Sharangpani, and S. P. Tay, J. Vac. Sci. Technol. A, 18, 2527 (2000).id NH0925159040 sid 913564 cfn 0 / id NH0925159041 auc 羅玉鄰 tic 雷射鍍膜法製作PCMO緩衝層與其對PZT鐵電薄膜之影響研究 adc 林樹均教授 adc 林諭男教授 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 88 kwc 雷射鍍膜 abc 本實驗以脈衝雷射鍍膜(PLD)鍍製(Pr0.67Ca0.33)MnO3,PCMO作為緩衝層,而Pb(Zr0.52Ti0.48)O3,PZT鐵電薄膜以有機金屬鹽裂解法鍍在有PCMO作為緩衝層之基板上。由於PCMO與PZT有相同鈣鈦礦結構,且晶格常數匹配,使得PZT材料得以在不嚴苛的條件下,在矽基板與白金基板上順利成長品質良好之薄膜。本文將探討製程參數對PCMO緩衝層結晶性質影響,以及使用PCMO作為緩衝層對PZT鐵電薄膜結晶性質與特性影響研究。 tc 目錄………………………………………………………………………i 圖目錄……………………………………………………………………v 第一章 前言……………………………………………………………1 第二章 文獻回顧………………………………………………………3 2-1(R1-xAx)MnO3材料…………………………………………………3 2-1-1鈣鈦礦結構……………………………………………………3 2-1-2磁阻現象與類別………………………………………………4 2-1-3超巨磁阻材料之發展…………………………………………6 2-2脈衝雷射鍍膜法(pulsed laser deposition,PLD) …………………7 2-2-1雷射本身的影響………………………………………………7 2-2-2靶材的影響……………………………………………………8 2-2-3環境氣氛(ambient gas)的影響…………………………………9 2-2-4基板的影響……………………………………………………9 2-3 Pb(Zrx,Ti1-x)O3,PZT鐵電材料……………………………………10 2-3-1鐵電性質………………………………………………………10 2-3-2鈣鈦礦型(perovskite)鐵電材料………………………………13 2-4鐵電薄膜之發展……………………………………………………14 2-4-1鐵電薄膜製作方法……………………………………………15 2-4-2有機金屬鹽裂解法……………………………………………16 2-4-3薄膜的製程……………………………………………………19 2-5鐵電薄膜在微機電系統上之應用…………………………………21 2-5-1 微機電系統簡介……………………………………………21 2-5-2 記憶元件……………………………………………………22 2-5-3 積體光學元件………………………………………………23 2-5-4 感測元件……………………………………………………25 第三章 實驗方法………………………………………………………38 3-1基板製備……………………………………………………………38 3-2 PCMO薄膜製備……………………………………………………38 3-2-1 PCMO靶材製備……………………………………………39 3-2-2 脈衝雷射鍍膜設備…………………………………………39 3-2-3 脈衝雷射剝鍍步驟…………………………………………40 3-3 鋯鈦酸鉛鐵電薄膜之製備………………………………………41 3-3-1有機金屬化合物之金屬成份定量……………………………41 3-3-2鋯鈦酸鉛薄膜製程……………………………………………41 3-4 特性量測…………………………………………………………43 3-4-1 X光繞射分析(XRD) …………………………………………43 3-4-2掃描式電子顯微鏡(SEM)…………………………………43 3-4-3AFM原子力顯微鏡分析……………………………………43 3-4-4極化強度-電場量測 ( P-E ) …………………………………43 3-4-5電流-電壓的量測 ( I-V ) ……………………………………43 3-4-6疲勞測試(Fatigue) ……………………………………………44 第四章 結果與討論……………………………………………………47 4-1 脈衝雷射鍍膜法鍍製PCMO薄膜………………………………47 4-1-1 基板溫度對薄膜成長之影響……………………………47 4-1-2 氣體種類與壓力對薄膜結構之影響……………………48 4-1-3 雷射輸出功率對薄膜結晶構造之影響…………………49 4-1-4 脈衝重複率對薄膜結晶行為之影響……………………49 4-1-5 鍍膜時間對薄膜結晶行為之影響………………………50 4-2 PCMO薄膜的特性…………………………………………………52 4-2-1 熱處理對PCMO薄膜表面形貌影響……………………52 4-2-2 PCMO薄膜漏電流特性……………………………………53 4-3 PCMO薄膜對PZT鐵電層之緩衝層效應…………………………53 4-3-1 降低PZT薄膜製程溫度…………………………………53 4-3-2 指導PZT成長晶向………………………………………54 4-3-3 使PZT薄膜表面均勻化…………………………………55 4-3-4 降低PZT薄膜漏電流……………………………………55 4-3-5 提高PZT薄膜耐疲勞程度………………………………55 第五章 結論……………………………………………………………82 參考文獻………………………………………………………………83rf 1. C. P. de Araujo, J. F. Scott and G. W. Taylor, “Ferroelectric Thin Films: Synthesis and Basic Properties”, Gordon and Breach publishers, (1996). 2. Z. Jirak, S. Krupicka, Z. Simsa, M. Dlouha and S. Vratislav, “Neutron-Diffraction Study of Pr1-xCaxMnO3 Perovskites”, J. Magn. Magn. Mater., Vol. 1-2, pp. 153-166 (1985). 3. Y. Tomioka, A. Asamitsu, H. Kuwahara, Y. Moritomo and Y. Tokura, “Magnetic-field-induced metal-insulator phenomena in Pr1-xCaxMnO3 with controlled charge-ordering instability”, Phys. Rev. B, Vol. 53, pR1689 (1996). 4. R. Von Helmolt, J. Wecker, B. Holzapfel, L. Schultz and K. Samwer, “Giant Negative Magnetoresistance in Perovskitelike La2/3Ba1/3MnOx”, Phys. Lett., Vol. 71, pp. 2331 (1993). 5. S. Jin, T.H. Tiefl, M. Mc. Cormack, R. A. Fastnacht, R. Ramesh and L. H. Chen, “Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films”, Science, Vol. 264, pp. 413 (1994). 6. R. K. Singh, O. W. Holland and J. Narajan, “Theoretical model for deposition of superconducting thin films using pulsed laser evaporation technique”, J. Appl. Phys., Vol. 68(1), pp. 275 (1990). 7. A. Richter, “Characteristic features of laser-produced plasmas for thin film deposition”, Thin Solid Films, Vol. 188, pp. 275 (1990). 8. H.J. Scheibe, A. A. Gorbunov, G. K. Baranova, N. V. Klassen, and V. I. Konov, “Thin film deposition by excimer laser evaporation”, Thin Solid Films, Vol. 189, pp. 283 (1990). 9. A. D. Zweig, “A thermo-mechanical model for laser ablation”, J. Appl. Phys., Vol. 70(3), pp. 1684 (1991). 10. R. K. Singh, D. Bhattacharya and j. Narajan, “Laser-target interations and its effect on suface morphology of laser deposited thin films”, Mat. Tes. Sox. Symp. Proc., Vol. 201, pp. 437 (1991). 11. A. Okano and A. Y. Matsuura, “A model of laser ablation in nonmetallic inorganic solids”, J. Appl. Phys., Vol. 73(7), pp. 3158 (1993). 12. M. A. Kadar-Kallen and K. D. bonin, “Focusing of particle beams using two stage laser ablation”, Appl. Phys. Lett., Vol. 54(23), pp. 2296 (1989). 13. S. A. Darke and K. F. Tyson, “Interaction of laser radiation with solid materials and its significance to analytical spectrometry- A review”, J. Analy. Atom. Spect., Vol.8, pp. 145 (1993). 14. X. D. Wu, A. Inam, “Pulsed laser deposition of high Tc superconduction thin films-present and future”, Mat. Res. Soc Symp. Proc., Vol. 191, pp. 129 (1990). 15. L. Lynds and B. R. Weinberger, “Pulsed laser ablation as a source of energetic reactants: Synthesis of superconductin high to thin films”, Mat. Res. Soc. Symp. Proc., Vol 191, pp. 3 (1990). 16. U. J. Gibson, “Nd:YAG laser ablation of BaTiO3 thin films”, Mat. Res. Soc Symp. Proc., Vol. 191, pp.19 (1990). 17. R. K. Singh, D. Bhattacharya and J. Narayan, “Control of surface particle density in pulsed laser deposition of superconducting TBCO and diamond-like carbon thin films”, Appl. Phys. Lett., Vol. 61(4), pp.843 (1992). 18. K. Murakami, “Dynamics of laser ablation of high Tc superconductors and semiconductors, and a new method for growth of films”, European Mat. Res. Soc. Mono., Vol. 4, pp.125 (1992). 19. K. Nashimoto and D. K.Fork, “Epitaxial growth of MgO on GaAs(001) for growing BaTiO3 thin films by pulsed laser deposition”, Appll. Phys. Lett., Vol. 60(10), pp.1199 (1992). 20. J. Lee and L. Jonson, “Effects of crystalline quality and electrode material on fatigue in PZT thin film capacitors”, Appl. Phys. Lett., Vol. 63(1), pp. 27 (1993). 21. C. Feldman, “BaTiO3 Piezoelectric Thin Film by Flash Evaporation method”, Rev. Sci, Instr., Vol. 26, pp. 463 (1955). 22. R. W. Vest,“Metallo-Organic Decomposition (MOD) Processing of Ferroelectric and Electroptic Films: A Review”, Ferroelectrics, Vol. 102, pp. 53-68 (1990). 23. S. H. Kim, Y. S. Choi and C. E. Kim, “Preparation of Pb(Zr0.52Ti0.48)O3 thin films on Pt/RuO2 double electrode by a new sol-gel route”, J. Mater. Res., Vol. 12(6), pp. 1576-1581 (1997). 24. 陳三元,“強介電薄膜之液相化學法製作”,工業材料 108 期,p.100。 25. Y. Xu, “Ferroelectric Materials and Their Appllications”, North Holland, Netherlands, pp. 1-36. (1991). 26. S. K. Singh, S. B. Palmer, D. McK Paul and M. R. Lee, “Pr0.67Ca0.33MnO3/YBa2Cu3O7 thin film bilayers grown by pulsed laser ablation deposition”, J. Phys. D: Appl. Phys., Vol. 29, pp. 2522-2524 (1996). 27. D. Kumar, Rajiv K. Singh and C. B. Lee, “Magnetoresistance in Pr0.65Ba0.05Ca0.3Mn3-?? thin films”, Phys. Rev. B, Vol. 56, 13666 (1997). 28. J. Sakai, J. Hioki, T. Ohnishi, T. Yamaguchi and S. Imai, “YBa2Cu3O7-z/Pr0.5Ca0.5MnO3-y/YBa2Cu3O7-zSandwich Type Josephson Junctions”, Jpn. J. Appl. Phys., Vol. 37, pp. 3286-3289 (1998). 29. A. Masuno, T. Terashima and M. Takano, ”Transport and magnetic properties of the micro-fabricated perovskite-type manganese oxides”, Physica B, Vol. 329-333, pp. 920 (2003). 30. Y. P. Lee, V. G. Prokhorov, J. Y. Rhee, K. W. Kim, G. G. Kaminsky and V. S. Flis, “The controlled charge ordering and evidence of the metallic state in Pr0.65Ca0.35MnO3 films”, J. Phys.: Condens. Matter, Vol. 12, L133-L138 (2000). 31. H. Oshima, K. Miyano, Y. Konishi, M. Kawasaki and Y. Tokura, “Switching cehavior of epitaxial perovskite manganite thin films”, Appl. Phys. Lett., Vol. 75(10), pp.1473 (1999). 32. M. Terakago, S. Mine, T. Sakatani, S. Hontsu, H. Nishikawa, M. Nakamori, H. Tabata and T. Kawai, “Superconducting magnetostatic wave devices using HTS/perovskite-type manganite PCMO heterostructure”, Supercond. Sci. Technol., Vol. 14, pp. 1140 (2001). 33. A. M. Haghiri-Gosnet, M. Hervieu, Ch. Simon, B. Mercey and B. Raveau, “Charge ordering in Pr0.5Ca0. 5MnO3 thin films: A new form initiated by strain effects if LaAlO3 substrate”, J. Appl. Phys., Vol. 88(6), pp. 3545 (2000). 34. W. Prellier, A. M. Haghiri-Gosnet, B. Mercey, Ph. Lecoeur, M. Hervieu, Ch. Simon and B. Raveau, “Spectacular decrease of the melting magnetic field in the charge-ordered state of Pr0.5Ca0. 5MnO3 films under tensile strain”, Appl. Phys. Lett., Vol. 77(7), pp.1023 (2000). 35. W. Prellier, Ch. Simon, A. M. Haghiri-Gosnet, B. Mercey, and B. Raveau, “Thickness dependence of the stability of the charge-ordered state in Pr0.5Ca0. 5MnO3 thin films”, Phys. Rev. B, Vol. 62, R16337 (2000). 36. W. Prellier, E. Rauwel Buzin, Ch. Simon, B. Mercey, M. Hervieu, S. de Brion and G. Chouteau, “High magnetic field transport measurements of charge-ordered Pr0.5Ca0. 5MnO3 strained thin films”, Phys. Rev. B, Vol. 66, 024432-1 (2002). 37. W. Prellier, E. Rauwel Buzin, B. Mercey, Ch. Simon, M. Hervieu and B. Raveau, “Strain effects in charge-ordered Pr0.5Ca0. 5MnO3 manganite thin films”, J. Phys. and Chem. of Solids, Vol. 64, pp. 1665-1669 (2003). 38. S. K. Singh, S. B. Palmer, D. McK Paul and M. R. Lee, “Growth, transport, and magnetic properties of Pr0.67Ca0.33MnO3 thin film”, Appl. Phys. Lett., Vol. 69(2), pp. 263-265 (1996). 39. W. Wu, K. H. Wong, C. L. Choy and Y. H. Zhang, “Top-interface-controlled fatigue of epitaxial Pb(Zr0.52Ti0.48)O3 ferroelectric thin films on La0.7Sr0.3MnO3 electrodes”, Appl. Phys. Lett., Vol. 77(21), pp. 3441-3443 (2000). 40. M. G. Norton, C. B. Carter, B. H. Moeckly, S. E. Russek and R. A. Buhrman, “Optimizing process parameters for the growth of YBa2Cu3O7-?? thin films”, Mater. Res. Soc. Symp. Proc. 191, pp 141-146 (1990).id NH0925159041 sid 913566 cfn 0 / id NH0925159042 auc 徐昱櫸 tic TiO2添加對鋰鋁矽酸鹽系玻璃陶瓷結晶機制之研究 adc 胡塵滌 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 92 kwc 玻璃陶瓷 kwc 鋰鋁矽酸鹽系玻璃陶瓷 kwc 結晶機制 kwc 孕核劑 kwc 透光性 abc 鋰鋁矽酸鹽系玻璃陶瓷為一具備超低甚至為負熱膨脹係數的材料,本研究是以氧化鋰、氧化鋁、氧化矽粉末為基材,添加氧化硼降低玻璃熔點,並添加氧化鈦(TiO2)作為孕核劑,探討降低製備溫度後鋰鋁矽酸鹽系玻璃陶瓷的結晶機制;添加TiO2孕核劑會使鋰鋁矽酸鹽系玻璃陶瓷的結晶機制由表面成核轉變為體成核,添加量須大於7wt%才有較明顯的效果,利用適當的兩階段熱處理可以達到細化晶粒的目的。 tc 目 錄 摘要----------------------------------------------------------------------------Ⅰ 目錄----------------------------------------------------------------------------Ⅱ 表目錄----------------------------------------------------------------------------Ⅳ 圖目錄----------------------------------------------------------------------------Ⅴ 第一章 前言---------------------------------------------------------------01 第二章 文獻回顧-------------------------------------------------------03 2.1 玻璃形成系統的基本介紹-----------------------------------------------03 2.1.1 導論--------------------------------------------------------------------03 2.1.2 體結晶-----------------------------------------------------------------04 2.1.3 晶體成長---------------------------------------------------------------04 2.1.4 成核劑-----------------------------------------------------------------05 2.2 鋰鋁矽酸鹽系玻璃陶瓷之介紹-----------------------------------05 2.3 鋰鋁矽酸鹽系玻璃陶瓷之結晶相變化--------------------------------07 2.4 孕核機制--------------------------------------------------------------------08 2.4.1 導論---------------------------------------------------------------------08 2.4.2 公式與推導------------------------------------------------------------09 2.4.3 相似孕核曲線---------------------------------------------------------10 2.4.3 孕核時間之影響-----------------------------------------------------10 2.5 結晶機制--------------------------------------------------------------------11 2.5.1 導論---------------------------------------------------------------------11 2.5.2 JMA(Johnson-Mehl-Avrami) equation----------------------------12 2.5.3 Ozawa equation---------------------------------------------------------13 2.5.4 Yinnon & Uhlmann equation-----------------------------------------13 2.5.5 Kissinger equation------------------------------------------------------13 2.5.6 modified Ozawa equation---------------------------------------------14 2.5.7 modified Kissinger equation------------------------------------------15 2.6 X-Ray繞射分析晶粒尺寸------------------------------------------------15 2.7 碎形--------------------------------------------------------------------------16 第三章 實驗設計-----------------------------------------------------------------------29 3.1 試片製備--------------------------------------------------------------------29 3.2 熱差分析量測(DTA)-------------------------------------------------------30 3.2.1 非等溫條件------------------------------------------------------------30 3.2.2 不同升溫速率之非等溫條件--------------------------------------30 3.2.3 等溫條件---------------------------------------------------------------30 3.2.4 不同持溫時間之等溫條件------------------------------------------30 3.3 熱處理-----------------------------------------------------------------------31 3.4 X-ray結晶繞射分析(XRD)-----------------------------------------------32 3.5 顯微結構(FESEM)----------------------------------------------------------32 3.6 UV穿透光譜量測-----------------------------------------------------------32 3.7 實驗步驟--------------------------------------------------------------------33 第四章 結果與討論--------------------------------------------------------------------36 4.1添加TiO2對鋰鋁矽酸鹽系玻璃陶瓷結晶機制之影響---------------36 4.1.1 結晶相鑑定------------------------------------------------------------36 4.1.1.1 未添加TiO2玻璃陶瓷之結晶相-------------------------------36 4.1.1.2 不同TiO2添加量玻璃陶瓷之結晶相-------------------------36 4.1.2 不同TiO2添加量對DTA玻璃結晶放熱峰之影響----------------37 4.1.3 TiO2添加量為7 wt%時玻璃之孕核曲線----------------------------39 4.1.4 TiO2孕核時間對7 wt%TiO2添加量玻璃之影響-------------------40 4.1.5 不同的DTA升溫速率對7 wt%TiO2添加量玻璃的影響----------41 4.1.6 TiO2添加量7 wt%的玻璃結晶機制----------------------------------42 4.1.6.1 7 wt%TiO2添加量玻璃n值的計算及結晶機制的確定-----42 4.1.6.2 TiO2添加量為7 wt%之玻璃再結晶活化能(E)值的計算---43 4.1.7 不同的DTA升溫速率對含10 wt% TiO2添加量玻璃的影響----45 4.1.8 10 wt% TiO2添加量玻璃的結晶機制--------------------------------45 4.1.8.1 10 wt% TiO2添加量玻璃n值的計算及結晶機制的確定---45 4.1.8.2 10 wt% TiO2添加量玻璃活化能(E)值的計算----------------46 4.1.9 TiO2添加量為7 wt%與10 wt%之玻璃結晶機制的比較----------50 4.2 晶粒尺寸與透光性之關係-----------------------------------------------51 4.2.1 第二階段在不同溫度持溫,具相同持溫時間0.5小時---------51 4.2.2 第二階段在不同溫度持溫,具相同持溫時間1小時------------53 4.2.3 第二階段在550℃持溫,具不同的持溫時間---------------------54 4.2.4 兩階段熱處理所有條件之比較------------------------------------54 4.2.5散射強度與入射波長的關係----------------------------------------55 第五章 結論-----------------------------------------------------------------------------86 參考文獻---------------------------------------------------------------------------------87 表目錄 表2-1 n、m等結晶參數與孕核及晶粒成長形式之關係-----------------17 表4-1 1T0~1T10之玻璃轉化溫度Tg,TiO2二次析出溫度TP2、結晶溫度TC,最後生成相之熔點Tm ---------------------------------------------------57 表4-2 1T7在不同孕核溫度Tn持溫一小時之TC----------------------------57 表4-3 1T7在孕核溫度500℃持溫不同時間的TP2、TC值------------------57 表4-4 1T7不同升溫速率之TC值----------------------------------------------57 表4-5 1T10不同升溫速率之TP2與TC值--------------------------------------58 表4-6 1T7玻璃與1T10玻璃之n值-------------------------------------------58 表4-7 1T7玻璃與1T10玻璃之E值-------------------------------------------58 表4-8 1T7玻璃兩階段熱處理條件利用X-Ray繞射分析計算半高寬並利用施瑞爾關係式計算晶粒尺寸--------------------------------------------59 表4.9 1T7玻璃兩階段熱處理試片以(4-1)式計算所得之b值---------59 圖目錄 圖2-1 玻璃的網狀結構--------------------------------------------------------18 圖2-2 含網狀修飾劑之玻璃結構--------------------------------------------18 圖2-3 鋰鋁矽酸鹽系玻璃陶瓷系統之玻璃化形成區--------------------19 圖2-4鋰鋁矽酸鹽系玻璃陶瓷之平衡相圖--------------------------------20 圖2-5 鋰鋁矽酸鹽系玻璃陶瓷中各結晶相的熱膨脹係數--------------21 圖2-6 β-鋰霞石之晶體結構------------------------------------------------21 圖2-7 鋰離子調節體積變化之情形-----------------------------------------22 圖2-8 β-eucryptite在a軸與c軸之熱膨脹係數----------------------22 圖2-9 β-石英固溶體之熱膨脹係數與氧化矽含量之關係-------------23 圖2-10 晶核自由能與其半徑函數關係------------------------------------23 圖2-11 異質孕核時晶核與異質物的接觸角------------------------------24 圖2-12 孕核曲線---------------------------------------------------------------24 圖2-13 似孕核曲線之一------------------------------------------------------25 圖2-14 似孕核曲線之二------------------------------------------------------25 圖2-15 似孕核曲線之三------------------------------------------------------26 圖2-16 晶核數目對孕核時間之關係---------------------------------------26 圖2-17 單成分的原子藉著簡單的轉換,使新相由另外一相產生的成 長的能障變化情形--------------------------------------------------------------27 圖2-18 (a) 析出物在擴散控制下的成長---------------------------------27 圖2-18 (b) 顯示組成隨距離變化的情形---------------------------------27 圖2-19 受界面控制的成長---------------------------------------------------28 圖2-20 m值代表之成長情形--------------------------------------------------28 圖3-1 30wt%B2O3下鋰鋁矽酸鹽系玻璃陶瓷之三元平衡相圖-----------34 圖3-2 控制結晶熱處理之不同程序-----------------------------------------34 圖3-3 實驗步驟-----------------------------------------------------------------35 圖4-1 1T0玻璃不同熱處理條件之X光繞射圖----------------------------60 圖4-2 不同TiO2添加量在530℃持溫10小時的XRD繞射圖------------61 圖4-3 不同TiO2添加量在530℃持溫30小時的XRD繞射圖------------62 圖4-4 不同孕核劑(TiO2)添加量在5k/min升溫速率下之DTA曲線- 63 圖4-5 1T7之TiO2孕核曲線----------------------------------------------------64 圖4-6 1T7在不同孕核溫度持溫一小時之DTA曲線----------------------64 圖4-7 1T7在孕核溫度500℃持溫不同時間的DTA曲線-----------------65 圖4-8 1T7在孕核溫度500℃持溫不同時間的孕核曲線-----------------65 圖4-9 1T7不同升溫速率[K/min ]之DTA曲線------------------------------66 圖4-10 1T7玻璃在700℃下以ln[-ln(1-x) ]對lnα作圖--------------67 圖4-11 (a) 1T7-515-30-surface的顯微結構---------------------------68 圖4-11 (b) 1T7-515-30-bulk的顯微結構-------------------------------68 圖4-12 1T7玻璃在不同的升溫速率下以ln[-ln(1-X) ]對1000/T作圖--------------------------------------------------------------------------------------69 圖4-13 1T7玻璃在不同的結晶率x下,以1000/T對lnα作圖---------70 圖4-14 1T10玻璃不同升溫速率之DTA曲線-------------------------------71 圖4-15 1T10玻璃在595℃下以ln[-ln(1-x) ]對lnα作圖-------------72 圖4-16 1T10玻璃在635℃下以ln[-ln(1-x) ]對lnα作圖-------------73 圖4-17 1T10玻璃DTA曲線的第一根放熱峰TP2在不同的升溫速率下以ln[-ln(1-X) ]對1000/T作圖-------------------------------------------------74 圖4-18 1T10玻璃DTA曲線的第二根放熱峰TC在不同的升溫速率下以ln[-ln(1-X) ]對1000/T作圖-------------------------------------------------75 圖4-19 1T10玻璃在DTA曲線的第一根放熱峰TP2中,在不同的結晶率x下,以1000/T對lnα作圖---------------------------------------------------76 圖4-20 1T10玻璃在DTA曲線的第二根放熱峰TC中,在不同的結晶率x下,以1000/T對lnα作圖-------------------------------------------------- 77 圖4-21 (a) 1T10-500-30-surface之顯微結構------------------------- 78 圖4-21 (b) 1T10-500-30-bulk之顯微結構----------------------------- 78 圖4-22 (a) 1T10-515-30-surface的顯微結構------------------------- 79 圖4-22 (b) 1T10-515-30-bulk的顯微結構----------------------------- 79 圖4-23 1T7玻璃在500℃孕核30小時,升至不同溫度晶粒成長0.5小時之穿透光譜-----------------------------------------------------------------80 圖4-24 1T7-500-30-550-0.5-surface之顯微結構----------------------81 圖4-25 1T7-500-30-570-0.5-surface之顯微結構----------------------81 圖4-26 1T7-500-30-600-0.5-surface之顯微結構----------------------82 圖4-27 1T7玻璃在500℃孕核30小時,升至不同溫度晶粒成長1小時之穿透光譜--------------------------------------------------------------------83 圖4-28 1T7-500-30-540-1-surface之顯微結構-------------------------84 圖4-29 1T7-500-30-550-1-surface之顯微結構-------------------------84 圖4-30 1T7玻璃在500℃孕核30小時,升至550℃晶粒成長不同時間之穿透光譜-----------------------------------------------------------------------85 圖4-31 1T7玻璃兩階段熱處理之穿透光譜--------------------------------86 圖4.32 1T7玻璃兩階段熱處理試片散射強度與入射波長的關係-----87rf 參考文獻 1. “陶瓷技術手冊 下 第二十六章 玻璃之結構與特性”謝世豪, 民國83年. 2. “含奈米尖晶石固溶體之透光玻璃陶瓷” 黎俊朋 (徐錦志) 民國90年 大同大學材料所碩士論文 3. “Li2O-Al2O3-SiO2 Glass-Ceramics”, H. Sxhwislwe, E. Rodek, Am. Ceram. Soc. Bull., 68[11 ], 1926~1930 (1989) 4. “陶瓷技術手冊 下 第二十八章 玻璃陶瓷”吳振名, 民國83年 5. “Physical Metallurgy Principles”, 3rd edition, Robert E. Reed-Hill 6. “Crystallization of Li2O-Al2O3-6SiO2 Glasses Containing Niobium Pentoxide as Nucleating Dopant”, J. Y. Hsu, Robert F. Speyer, J. Am. Ceram. Soc., 74[2 ], 395~99 (1991) 7. “Sintering and Phase Transformation in B2O3/P2O5-Doped Li2O-Al2O3-4SiO2 Glass-Ceramics”, J. J. Hsu, M. T. Chiang, J. Am. Ceram. Soc., 83[3 ], 635~39 (2000) 8. “Effect of Y2O3 and La2O3 Addition on the Crystallization of Li2O-Al2O3-4SiO2 Glass-Ceramic”, J. J. Hsu, C. S. Hwang, J. Mater. Sci. 31(1996), 2631~2639 9. “Direct Observation of the Crystallization of Li2O-Al2O3- 4SiO2 Glasses Containing TiO2”, P. E. Doherty, D. W. Lee, R. S. Davis, J. Am. Ceram. Soc., 50[2 ], 77~81, (2000) 10. “Thermal Expansion Properties of Some Synthetic Lithia Minerals”, F. A. Hummel, J. Am. Ceram. Soc., 34(1951), 235-239 11. “Crystallization of Glasses”; pp. 212-253 in Chemistry of Glass. Edited by the American Ceramic Society, Ohio, 1985. 12. “Structural Mechanisms Underlying Near-zero Thermal Expansion in β-eucryptite : A Combined Synchrotron X-ray and Neutron Rietveld Analysis”, H. Xu, P. J. Heaney, D. M. Yates, J. Mater. Res., 14(1999), 3138-3151. 13. “Thermal Contraction of β-Eucryptite (Li2O-Al2O3-2SiO2) by X-Ray and Dilatometer Methods”, F. H. Gillery, E. A. Bush, J. Am. Ceram. Soc., 42(1959), 175-177. 14. “Thermal Expansion of Synthetic β-spodumene and β- spodumene – Silica Solid Solutions”, W. Ostertag, G. R. Fischer, J. P. Williams, J. Am. Ceram. Soc., 51[11 ], 175-177, (1968) 15. “Nucleation in Glasses and Differential Thermal Analysis”, A. Marotta, A. Buri, F. Branda, J. Mater. Sci., 16(1981), 341-344. 16. “Evaluation of Glasses Stability from Non-isothermal kinetic data”, F. Branda, A. Marotta, A. Buri, J. Non-Cryst. Solids, 134(1991), 123-128. 17. “Nucleation and Growth of a Lithium Aluminium Silicate Glass Studied by Differential Thermal Analysis”, J. Rocherulle, Mater. Res. Bull., 35(2000), 2353-2361 18. “Nonisothermal Devitrification Study of an Aluminosilicate Glass Matrix”, J. Rocherulle, T. Marchand, Mater. Res. Bull., 35(2000), 9-14 19. “Carbon Effects on Crystallization Kinetics of Li2O-Al2O3-SiO2 Glasses”, K. Cheng, J. Non-Cryst. Solids, 238(1998), 152-157 20. “Surface and Internal Crystallization in Glasses as Determined by Differential Thermal Analysis”, C. S. Ray, Q. Yang, W. H. Huang, D. E. Day, J. Am. Ceram. Soc., 79[12 ], 3155-60, (1991). 21. “Kinetics of Non-isothermal Crystallization Process and Activation Energy for Crystal Growth in Amorphous Materials”, K. Matussita, T. Komatsu, R. Yokota, J. Mater. Sci., 19(1984), 291-296 22. “Kinetic Study on Crystallization of Glass by Differential Thermal Analysis – Criterion on Application of Kissinger Plot”, K. Matussita, S. Sakka, J. Non-Cryst. Solids., 38 & 39 (1980), 741-746 23. “X光繞射原理與材料結構分析 第十五章”, 許樹恩, 吳泰伯, 中國材料科學協會, 民國85年. 24. “Phase Diagrams for Ceramics”, Volume I, p.276~p.277, Levin Robbin McMardie, American Ceramic Society. 25. “Crystallization of Some Aluminosilicate Glasses”, A. W. A. El-Shennawi, E. M. A. Hamzawy, G. A. Khater, A. A. Omar, Ceram. Int., 27(2001), p.725~730 26. “Effect of Heat-Treatment Temperature on the Properties of a Lithium Aluminosilicate Glass”, J. M. Jewell, M. S. Spess, R. L. Ortolano, J. E. Shelby, J. Am. Ceram. Soc., 74[1 ], 92-97, (1991) 27. “Crystallization Kinetics and Mechanism of Low-Expansion Lithium Aluminosilicate Glass-Ceramics by Dilatometry”, B. Karmakar, P. Kundu, S. Jana, R. N. Dwivedi, J. Am. Ceram. Soc., 85[10 ], 2572-74, (1991) 28. “The Devitrification of a LAS Glass Matrix Studied by X-ray Powder Diffraction”, J. Rocherulle, P. Benard-Rocherulle, Solid State Science, 4(2002), 999-1004 29. “Nanophase Glass-Ceramics”, G. H. Beall, L. R. Pinckney, J. Am. Ceram. Soc., 82[1 ], 5-16, (1991) 30. “Nucleation and Crystallization Behavior of Glass-Ceramic Materials in the Li2O-Al2O3-SiO2 System of Interest for Their Transparency Properties”, P. Riello, P. Canton, N. Comelato, S. Polizzi, M. Verita, G. Fagherazzi, H. Hofmeister, S. Hopfe, J. Non-Cryst. Solids, 288(2001), 127-139 31. “Glass Ceramic Technology” The American Ceramic Society 32. “Low Thermal Expansion Glass Ceramics”, Dr. Hans Bach, Springer-Verlag Berlin Heidelberg 1995. 33. “鹽類與加馬輻射對溶劑在高分子材料中質傳行為的影響及相關的光學現象”, 鄒國鳳 (李三保、韓志超) 民國八十八年, 國立清華大學材料科學工程研究所 博士論文.id NH0925159042 sid 913567 cfn 0 / id NH0925159043 auc 魏仲廷 tic 錫/銅薄膜介面反應之動力學研究 adc 廖建能 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 75 kwc 覆晶 kwc 薄膜電阻 kwc 球下金屬層 kwc 掃描式電子顯微鏡 kwc 四點探針法 kwc 介金屬化合物 abc 覆晶(Flip-Chip)技術由於具有封裝密度、功能、及成本之優勢,漸成為微電子構裝技術之主流。在覆晶結構中銲球與球下金屬層(Under Ball Metallurgy,簡稱UBM)之可靠度(Reliability)問題則居此技術之關鍵地位。本實驗擬針對無鉛銲料中最主要之錫成分與銅膜之界面反應做一系統性探討。主要研究主題為錫/銅金屬薄膜界面反應對薄膜電阻之影響與介金屬化合物成長動力機制探討。 tc 摘 要2 英文摘要3 目 錄5 圖 目錄7 表 目錄10 第 一 章 緒論11 1.1 研究背景11 1.1.1微電子構裝四層次13 1.1.2 BGA封裝16 1.1.3 UBM金屬層反應19 1.2 研究目的21 第 二 章 文獻回顧與實驗規劃23 2.1 Sn-Cu二元相圖23 2.2 Sn/Cu薄膜介面反應24 2.2.1 Sn/Cu液固反應24 2.2.2 Sn/Cu固態反應26 2.3臨場電阻量測與薄膜介面反應研究27 2.3.1 Van der Pauw 四點探針法27 2.3.2 Sn/Cu薄膜反應偶電阻特性模擬27 2.4薄膜反應動力機制33 2.4.1 擴散控制機制33 2.4.2 反應控制機制33 2.5 實驗規劃34 2.5.1試片製備34 2.5.2臨場電阻量測系統36 2.5.3實驗步驟38 第三章 結果與討論39 3.1 Sn(2µm)/Cu(0.6µm)厚膜試片39 3.2 錫/銅薄膜厚度對介金屬相生成之影響44 3.2.1 Sn(0.19µm)/Cu(0.2µm)試片電阻溫度變化特性44 3.2.2 Sn(0.4 or 0.6µm)/Cu(0.2µm)試片電阻溫度變化特性51 3.2.3 Cu6Sn5生成活化能計算60 3.2.4錫/銅薄膜厚度對薄膜電阻變化特性之影響61 3.2.5歐杰電子能譜儀縱深分析63 第四章 結論69 第五章 參考文獻71 圖1-1電子構裝的功能14 圖1-2電子構裝層級示意圖15 圖1-3第一層次電子構裝的各種接合方法15 圖1-4電子構裝演進圖17 圖1-5以打金線(Gold-Wire Bonding)方式連接晶片的BGA 封裝18 圖1-6以覆晶(Flip-Chip)方式連接晶片的BGA 封裝18 圖1-7基板、銅墊層與銲錫球相對位置圖。20 圖1-8介金屬層厚度與抗拉強度的關係20 圖2-1 錫-銅二元相圖23 圖2-2 介金屬相ripening反應通量示意圖25 圖2-3 Van der Pauw四點探針法27 圖2-4 第一階段錫銅反應偶側視圖與其等效並聯電路圖28 圖2-5 錫/銅反應偶之第一階段電阻隨時間變化關係圖29 圖2-6 第二階段錫銅反應偶側視圖與其等效並聯電路圖31 圖2-7 錫/銅反應偶之第二階段電阻隨時間變化關係圖32 圖2-8 錫銅薄膜反應偶結構示意圖34 圖2-9 α-step平均厚度量測35 圖2 -10 可程式溫控高溫爐、尾蓋與載具台37 圖2-11 臨場電阻量測系統示意圖37 圖3-1 Sn(2µm)/Cu(0.6µm)試片在不同升溫速率下電阻隨溫度變化圖40 圖3-2 Sn(2µm)/Cu(0.6µm)經過1oC/min升溫速率升溫至220oC與未退火試片之XRD結果比較41 圖3-3 未退火Sn(2µm)/Cu(0.6µm)試片之SEM觀測43 圖3-4 Sn(2µm)/Cu(0.6µm) 試片經2oC/min升溫至220oC後之SEM觀測43 圖3-5 Sn(0.19µm)/Cu(0.2µm)試片在不同升溫速率下電阻隨溫度變化圖45 圖3-6 Sn(0.19µm)/Cu(0.2µm)未退火試片與以2oC/min昇溫分別於113oC、128oC、184oC及206oC取出試片的X光繞射結果47 圖3-7 Sn(0.19µm)/Cu(0.2µm)試片經不同升溫速率(1oC/min、2oC/min及5oC/min)升溫至215oC的X光繞射結果48 圖3-8 未退火Sn(0.19µm)/Cu(0.2µm)試片之SEM-BEI觀測50 圖3-9 Sn(0.19µm)/Cu(0.2µm)試片以5oC/min升溫過程中分別於107oC,141oC,188oC及215oC下取出後之SEM-BEI觀測50 圖3-10 Sn(0.6µm)/Cu(0.2µm)試片在不同升溫速率下電阻隨溫度變化圖52 圖3-11 Sn(0.4µm)/Cu(0.2µm)試片在不同升溫速率下電阻隨溫度變化圖53 圖3-12 Sn(0.6µm)/Cu(0.2µm)試片經不同升溫速率升溫至200oC 後之X光繞射結果55 圖3-13 Sn(0.4µm)/Cu(0.2µm)試片經不同升溫速率升溫至200oC 後之X光繞射結果56 圖3-14 Sn(0.6µm)/Cu(0.2µm)未退火試片與以0.5oC/min昇溫分別於125oC、157oC、172oC及206oC取出試片的X光繞射結果57 圖3-15 未退火Sn(0.4µm)/Cu(0.2µm)試片之SEM-BEI影像圖58 圖3-16 Sn(0.4µm)/Cu(0.2µm) 試片經1oC/min昇溫至220oC後之SEM-BEI影像圖59 圖3-17 Sn(0.6µm)/Cu(0.2µm)試片在常溫下保持約3個月之 SEM影像圖59 圖3-18錫/銅介金屬化合物生成活化能比較圖60 圖3-19未退火Sn(0.19µm)/Cu(0.2µm) 試片之歐杰電子縱深分析圖65 圖3-20 Sn(0.19µm)/Cu(0.2µm)試片經2oC/min升溫至120oC歐杰電子縱深分析圖66 圖3-21 Sn(0.19µm)/Cu(0.2µm)試片經2oC/min升溫至175oC歐杰電子縱深分析圖67 圖3-22 Sn(0.19µm)/Cu(0.2µm)試片經2oC/min升溫至220oC歐杰電子縱深分析圖68 表2-1 Sn-Cu二元相圖中平衡相之晶體結構與成份24 表2-2 Cu/Sn/Cu6Sn5之比重、原子量與原子密度比28 表2-3 Cu/Cu3Sn/Cu6Sn5之比重、原子量與原子密度比31rf [1 ]張俊彥,鄭晃忠,”積體電路製程及設備技術手冊”,中華民國電子材料與元件協會等出版 (1998)。 [2 ]M. L. Minges et al., “Packaging”, Electronic Materials Handbook, Vol. 1, ASM International, Materials Park, Ohio (1989). [3 ]D. P. Seraphim, R. C. Lasky and C-Y. Li, “Principle of Electronic Package”,McGraw-Hill, New York (1993). [4 ]R. R. Tummala, E. J. Rymaszewski and A. G. Klopfenstein, “Microelectronics Packaging Handbook”, Chapman, New York (1997). [5 ]呂宗興,“電子構裝技術的發展歷程”,工業材料115 期 (1996)。 [6 ]孔令臣,“覆晶凸塊技術”,工業材料,(1998)。 [7 ]R. J. Wassink, “Soldering in Eelectronics”, Electrochemical Pub. Ltd. (1984). [8 ]李明勳碩士論文,“鎳與鉍相平衡及界面反應之研究在微電子用無鉛銲料的應用”,國立中央大學化工所 (1998)。 [9 ]E. Rideout, 1994 IEEE/CPMT Int. Elect. Manufact. Tech. Symp. (1994). [10 ]A. Rahn, “The Basics of Soldering”, John Wiely & Sons, New York (1993). [11 ]C. E. Ho, Y. M. Chen, and C. R. Kao, “Reaction kinetics of solder-balls with pads in BGA during reflow soldering” , J. Electron. Mater., 28 (1999). [12 ]S. K. Kang and V. Ramachandran, Scripta Metall., 14, p421 (1980). [13 ] C. R. Kao, “Microstructures developed in solid-liquid reactions: using Cu-Sn reaction, Ni-Bi reaction, and Cu-In reaction as examples” , Materials Science & Engineering, A238 (1997). [14 ]M. S. Lee, C. M. Liu and C. R. Kao, “Interfacial reactions between Ni substrate and the component Bi in solders ” ,J. Electron. Mater., 28 (1999). [15 ]S. K. Kang, R. S. Rai and S. Purushothaman, “Interfacial Reactions During Soldering with Lead-Tin Eutectic and Lead (Pb)-Free, Tin-Rich Solders ” , J. Electron. Mater., 25 (1996). [16 ]F. Stepniak, “Conversion of the under bump metallurgy into intermetallics: the impact on flip chip reliability”, Microelectronics Reliability, 41 (2001). [17 ]C. Y. Liu, Chih Chen, K. Mal, and K. N. Tu, “Direct correlation of mechanical failure and metallurgical reaction in flip chip solder joints”, J. Appl. Phys. 85 (1999). [18 ]C. Y. Liu, K. H. Kim, K. N. Tu, and P. A. Totta, “Dewetting of molten Sn on Au/Cu/Cr thin film metallization”, Appl. Phys. Lett., 69 (1996). [19 ]J. H. Lee, J. H. Park, D. H. Shin, Y. H. Lee, T. S. Kim, “Kinetics of Au-containing ternary intermetallic redeposition at solder/UBM interface”, J. Electron. Mater. 30 (2001). [20 ]W. W. So, S. Choe, R. Chuang, C. C. Lee, “An effective diffusion barrier metallization process on copper”, Thin Solid Films, 376 (2000). [21 ]C. Y. Lee and K. L. Lin, “Ni-Cu-P and Ni-Co-P As a diffusion barrier between an Al pad and a solder bump”, Thin Solid Films, 239 (1994). [22 ]D. R. Frear, S. N. Burchett, H. S. Morgan, and J. H. Lau, eds., “The Mechanics of Solder Alloy Interconnects”, Van Nostrand Reinhold, New York (1994). [23 ]K. N. Tu, K. P. Rodbell, W. A. Lanford, X. S. Go, “Fine-line interactions in Al/Hf/Al thin films”, Physical Review B ,43 (1991). [24 ]K. N. Tu, R. D. Thompson, “Kinetics of Interfacial reaction in bimetallic Cu-Sn thin films”, Acta Metall, 30 (1982). [25 ]K. N. Tu, “Interdiffusion and Reaction in Bimetallic Cu-Sn Thin Films”, Acta Metall., 21 (1973). [26 ]K. N. Tu, “Cu/Sn Interfacial Reactions: Thin-Film Case Versus Bulk Case”, Mat. Chem. and Phys., 46 (1996). [27 ]N. Saunders and A. P. Miodownik, “ASE Handbook Vol.3 Alloy PhaseDiagrams”, ed. by H. Baker, ASE International, Materials Park, Ohio (1992). [28 ]N. Saunders and A. P. Miodownik, “Binary Alloy Phase Diagrams”, ed.by Thaddeus B. Massalski, ASE International, Materials Park, Ohio, Vol.2 (1990). [29 ]E. Bradley, K. Snowdon and R. Gedney, “Lead-Free Update”, CircuitsAssembly, Dec. (1999). [30 ]H. K. Kim and K. N. Tu, “Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening”, Physical Review B, P.16027, vol.53 (1996). [31 ]Y. C. Chan, Alex C. K. So, J. K. L. Lai, “Growth kinetic studies of Cu-Sn intermetallic compound and its effect on shear strength of LCCC SMT solder joints”, Material Science and Engineering, B55 (1998). [32 ]E. A. Brandes, “Smithells Metals Reference Book”, 6thed [33 ]C. R. Kao, “Microstructures developed in solid-liquid reactions: using Cu-Sn reaction, Ni-Sn reaction, and Cu-In reaction as examples”, Material Science and Engineering, A238 (1997). [34 ]D. R. Flanders, E. G. Jacobs, and R. F. Pinizzotto, “Activation Energies of Intermetallic Growth of Sn-Ag Eutectic Solder on Copper Substrates”, J. Electron. Mater. 26 (1997).id NH0925159043 sid 913569 cfn 0 / id NH0925159044 auc 王威超 tic 二氧化鈦延伸式閘極離子感測場效電晶體之研究 adc 陳建瑞 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 77 kwc 延伸式閘極離子感測場效電晶體 kwc 離子感測場效電晶體 kwc 二氧化鈦 abc 中文摘要 tc 目錄 摘要………………………………………………………………… 1 誌謝………………………………………………………………… 2 目錄………………………………………………………………… 3 圖目錄…………………………………………………………………4 第一章 諸論 ……………………………………………………… 6 第二章 實驗原理……………………………………………………13 2-1 ISFET理論………………….……….………………………………..13 2-2 延伸式閘極離子感測場效電晶體之原理…..……………………….20 2-3 TiO2特性探討…………………………………………..…………….24 第三章 元件製作與薄膜特性分析…………………………………34 3-1 EGFET元件製作……………………………………………………...35 3-2 TiO2 thin film 特性分析………………………………………………40 第四章 結果與討論…………………………………………………51 4-1 H+離子感測靈敏度量測結果…………………………………………51 4-2 TiO2薄膜介電常數量測結果…………………………..………….….57 4-3 TiO2薄膜電阻量測結果………………………………………………59 4-4 TiO2薄膜ESCA分析結果……………………………………………61 4-5 TiO2薄膜AFM分析結果…………………………………….....….....66 4-6 TiO2薄膜X ray繞射分析結果………………………………….…….70 第五章 結論…………………………………………………………72 第六章 參考文獻……………………………………………………73rf 第六章 參考文獻 [1 ] MD NEWS No.42 [2 ] 科學月刊專欄:生物晶片專輯 標題:酵素晶片 作者:袁俊傑 楊裕雄 [3 ] Clark L.C. ,C. Lyois , “Electrode system for continuous monitoring in cardiovascular surgery”, Annals of the New York Academy of Sciences 102, 1962,pp29-33. [4 ] B. H. Van Der Schoot, H. H. Van Den Vlekkert, N.F. De Rooij, “A Flow injection analysis system with galss-bonded ISFETs fot the simultaneous detection og calcium and potassium ions and pH value”, Sensors and Actuators B, vol. 4 (1991) 239-241. [5 ] L. C. Zhong and G. X. Li, “Biosensor based on ISFET for penicillin determination, Sensors and Actuators B, vol. 14 (1993) 507-571. [6 ] 武世香、虞惇、王貴華,“化學量感測器,感測器技術”,第一期 (1990) 57~62。 [7 ] B. D. Liu, Y. K. Su and S. C. Chen, “Ion-Sensitive Field-effect Transistor with silicon nitride for pH sensing”,Int. J. Electronic, vol. 67,NO.1,(1989) 59-63. [8 ] 陳國誠. “ 生物固定化技術與產業應用 ”.2000. [9 ] 孫銘偉. “ 利用微波電漿活化聚丙烯不織布纖維表面以固定 蛋白質 ”.1999. [10 ] E. Delamarche,G. Sundarababu,H. Biebuyck,B. Michel,Ch.Gerber, H. Sigrist,H. Wolf,H. Ringsdorf,N. Xanthopoulos,and H. J. Mathieu. “ Immobilization of Antibodies on a Photoactive Self-Assembled Monolayer on Gold ”.Langmuir1996;12;1997-2006. [11 ] S. Caras, J. Janata, "Field effect transistor sensitive to penicillin", Analytical Chemistry 52, 1980, pp.1935-1937. [12 ] C. D. Fung, P. W. Cheung and W. H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor”, IEEE Trans. Electron Devices, vol. ED-33, NO.1, (1986), 8-18. [13 ] P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements”, IEEE Trans. on Bio-Med. Eng. (1970) 70-71. [14 ] D.E. Yate, S. Levine and T.W. Healy, "Site-binding model of the electrical double layer at the oxide/water interface", Journal of the Chemical Society Faraday Transactions I 70, 1974, pp.1807-1818. [15 ] D. Yu, G.H. Wang and S. X. Wu, Chemical Sensors, J. Sensors & Transducer Tech.,No.3,pp.55~60 (1990) [16 ] J. Van Der Spiegel, I. Lauks, P. Chan, and D. Babic, “The extended gate chemical sensitive field effect transistor as multi-species microprobe”, Sensors and Actuators, 4 (1983) 291-298. [17 ] T. Katsube, T. Araki, M. Hara, T. Yaji, Si Kobayashi and K. Suzuki, "A multi-species biosensor with extended-gate field effect transistors", Proceeding of 6 th Sensor Symposium, Tsukuba Japan, 1986, pp.211-214. [18 ] P. Bergveld and A. Sibbald, “Analytical and biomedical application of ion-sensitive field effect transistor”, Elsevier Science Publishing Company Inc., New York, p.p.2-60, 1988. [19 ] Li-Lun Chi, Jung-Chuan Chou, Wen-Yaw Chung, Tai-Ping Sun and Shen-Kan Hsiung, “New structure of ion sensitive field effect transistor”, Proceedings of the biomedical Engineering Society 1988 Annual Symposium, Taiwan, pp. 328-331, December 1998. [20 ] L.L. Chi, J.C. Chou, W.Y. Chung, T.P. Sun and S.K. Hsiung, “Study on extended gate field effect transistor with tin oxide sensing membrane”, Material Chemistry and Physics, 63 (2000) 19-23. [21 ] L.L. Chi, L.T. Yin, J.C. Chou, W.Y. Chung, T.P. Sun, K.P. Hsiung and S.K. Hsiung, “Study on separative structure of EnFET to detect acetylcholine”, Sensors and Actuators B, 71 (2000) 68-72. [22 ] J. Janata, "Electrochemistry of chemically sensitive field effect transistors", Sensors and Actuators 4, 1983, pp.255-265. [23 ] V.V.Yakovlev,G.Scarel and C.R.Aita,Appl.Phys.Lett.,76(9),pp 1107-1109 (2000) [24 ] C.C.Ting and S.Y.Chen,J.Appl.Phys.,88(8),pp 4628-4633(2000) [25 ] Mills A.and S.L.Hunte,“An overview of semiconductor photocatalysis ”,J.Photochem.&Photobio.A:Chemistry,108,pp1-35 (1997) [26 ] B.R.Weinberger and R.B.Garber,Appl.Phys.Lett.,66(18),pp 2409-2411 (1995) [27 ] J.D.DeLoach and C.R.Aita,J.Vac.Sci.Technol.A,16(3),pp 1963-1968 (1998) [28 ] R.B.van Dover,Appl.Phys.Lett.,74(20),pp 3041-3043 (1999) [29 ] W.D.Brown,W.W.Grannemann,Thin Solid Films,51,pp 119-132 (1978) [30 ] M.Takeuchi,T.Itoh and H.Nagasaka,Thin Solid Film,51 ,pp 83-88 (1978). [31 ] S.K.Tiku and G.C.Smith,Journal of Electronic Materials,13(2), pp 273-279 (1984) [32 ] J. O. Carlsson, Thin Solid Film, p.130, 261, (1985). [33 ] O.Treichel,V.Kirchhoff,Surface and Coating Technol.,123,pp 268-272 (2000) [34 ] H.K.Jang,S.W.Whangbo,H.B.Kim,K.Y.Im,Y.S.Lee,I.W.Lyo,and C.N.Whang,J.Vac.Sci.Technol.A,18(3),pp 917-921(2000) [35 ] K.Yokota,T.Yamada,F.Miyashita,K.Hirai,H.Takano and M.Kumagai,Thin Solid Films,334,pp109-112 (1998) [36 ] J.V.Grahn,and M.Linder,J.Vac.Sci.Technol.A,16(4),pp 2495-2500 (1998) [37 ] G.P.Burns,J.Appl.Phys.65(5),pp2095-2097 (1989) [38 ] G.P.Burns,I.S.Baldwin,M.P.Hastings,and J.G.Wilkes, J. Appl.Phys.66(6),pp 2320-2324 (1989) [39 ] P.K. shin , “The pH-sensing and light-induced drift properties of TiO2 thin films deposited by MOCVD” 2-39-1 Kurokami, Kumamota 860-8555, Japan (2003) [40 ] W. Torbicz, Z. Sypniewska, Sens. Actuator B 7 (1992) 565. [41 ] 徐清彬、翁明壽,二氧化鈦薄膜的性質和結構分析與其光觸媒行為 國立東華大學材料科學與工程研究所碩士論文 [42 ] Y. H. Lee, K. K. Chan, and M. J. Brady, J. Vac. Sci. Technol. A,13(3), pp 596-601 (1995) [43 ] A. Watanabe, Y. Imai, Thin Solid Films, 348, pp 63-68 (1999) [44 ] C. C. Ting and S. Y. Chen, J. Appl. Phys., 88(8), pp 4628-4633 (2000)id NH0925159044 sid 913572 cfn 0 / id NH0925159045 auc 魏百駿 tic 低溫成長砷化鎵輔助之砷化鋁層濕式氧化 adc 黃金花 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 英文 pg 90 kwc 濕式氧化 abc 在1990年,Holonyak的實驗室團隊展示了以濕式熱氧化方法所形成的穩定AlAs氧化層。由於此氧化層的物理性質以及元件上的應用特性,Al(Ga)As/GaAs的濕式氧化便廣泛引起各界的關注。在過去幾年中, Al(Ga)As的濕式氧化已經被成功地應用在垂直共振腔雷射(VCSEL)。然而,為了得到更好的金屬-絕緣體-半導體元件,我們追求良好絕緣層以達成GaAs 的CMOS科技,而這樣的需求卻尚未被滿足。 tc TABLE OF CONTENTS English Acknowledgments………………………………………………..…i English Abstract……………………………………………………………..ii Chinese Abstract………………………………………………………….....iii Contents…………………………………………………………..…iv List of Figures……………………………………………………………...v List of Tables……………………………………………………………....vi Chapter 1 Introduction 1.1 The develop of wet thermal Oxidation of AlAs Chapter 2 Sample Preparation and Material Characterization 2.1 Oxidation Chemistry and LT GaAs 2.2 Growth of the Epitaxial Structure (by MBE) 2.3 Hall Measurement 2.4 X-ray Analysis of Superlattice Structure 2.5 Transmission Line Method (TLM) 2.5 X-ray Photoelectron Spectrum (XPS) 2.7 Photoluminescence (PL) Chapter 3 Oxidation Processes and Oxidation Kinetics 3.1 Photolithography 3.2 Oxidation Processes 3.3 Sealing of AlAs against wet oxidation 3.4 Oxidation Kinetics in Strips 3.5 Oxidation Kinetics in Cylindrical Geometry Chapter 4 Results and Discussion 4.1 X-ray Analysis of Superlattice Structure 4.2 Hall Measurement 4.3 Transmission Line Methods 4.4 Oxidation Morphology 4.5 Oxidation Rate Enhanced by LT GaAs and Kinetics 4.6 Delamination after Annealing 4.7 Sealing of AlAs Against Wet Oxidation 4.8 X-Ray Photoelectron Spectrum 4.9 Photoluminescence and Raman Chapter 5 Conclusionrf Chap1 Reference [1 ] Dalessase J. M., Holonyak Jr. N., Sugg A. R. and Richard T. A., Appl. Phys. Lett. 57 2844 (1990) [2 ] Sugg A. R., Holonyak Jr. N., Baker J. E., Kish F. A., and Dallesasse J. M., Appl. Phys. Lett. 58 1199 (1991) [3 ] Dallesasse J. M. and Holonyak Jr. N., Appl. Phys. Lett. 58,394(1991) [4 ] Huffaker D. L., Deppe D. G., Kumar K., and, Rogers T. J., Appl. Phys. Lett. 65 97 (1994) [5 ] Dalessase J. M. and Holonyak Jr. N., Appl. Phys. Lett. 58 394 (1991) [6 ] Caracci S. A., Krames M. R., Holonyak Jr. N., Herzinger C. M., Crook A. C., DeTemple T. A. and Besse P-A., Appl. Phys. Lett. 63 2265 (1993) [7 ] Richard T. A., Holonyak Jr. N., Kish F. A., Keever M.R. and Lei C., Appl. Phys. Lett. 66 2972 (1995) [8 ] Chen E. I., Holonyak Jr. N. and Maranowski S. A. Appl. Phys. Lett. 66 2688 (1995) [9 ] MacDougal M. H., Dapkus P. D., Pudikov V., Zhao H. and Yang G. M., IEEE Photon. Technol. Lett., vol. 7, 229 (1995) [10 ] Huffaker D. L., Deppe D. G., Kumar K., and Rogers T. J., Appl. Phys. Lett. 65, 97 (1994) [11 ] Choquette K. D., Scheinder R. P., Lear K. L., and Geib K. M., Electron. Lett. 30 2043 (1994) [12 ] Huffaker D. L., Shin J., and Deppe D. G., Electron. Lett. 30 1946(1994) [13 ] Lear K. L., Schneider R. P., Choquette K. D., Kilciyne S. P., Figiel J. J., and Zolper J. C., IEEE Photon. Technol. Lett. 6 1053 (1994) [14 ] See, DeMelo C. B., Hall D. C., Snider G. L., Xu D., Kramer G., and El-Zein N., Electron. Lett. 36 84 (2000), and references therein. [15 ] Choquette K. D., Lear K. L., Schneider R. P. Jr., Geib K. M., Figiel J. and Hull R. IEEE Photon. Technol. Lett. 7 123 (1995) [16 ] Blum O., Ashby C. I. H., and Hou H. Q., Appl. Phys. Lett. 70, 2870 (1997) [17 ] Reese H., Chiu Y. J., and Hu E., Appl. Phys. Lett. 73, 2624 (1998) [18 ] Mahalingam K., Otsuka N., Melloch M., Woodall J., and Warren A., J. Vac. Sci. Technol. B 9, 2328 (1991) Chap2 reference [1 ] Ashby C. I. H., Sullivan J. P., Newcomer P. P., Missert N. A., Hou H. Q., Hammons B. E., Hafich M. J., and Baca A. G., Appl. Phys. Lett., 70 2443 (1997) [2 ] Ashby C. I. H., Sullivan J. P., Choquette K. D., Geib K. M., and Hou H. Q., J. Appl. Phys.82 3134 (1997). [3 ] Kubaschewski O., Alcock C. B. and Spencer P. J., Materials Thermochemistry. London, U.K.; Pergamon (1993) [4 ] Blum O., Ashby C. I. H., and Hou H. Q., Appl. Phys. Lett. 70 2870 (1997) [5 ] Reese H., Chiu Y. J., and Hu E., Appl. Phys. Lett. 73 2624 (1998) [6 ] Ferrer J. C., Liliental-Weber Z., Reese H., Chiu Y. J., and Hu E. Appl. Phys. Lett. 77 205 [7 ] Parker E. H. C., “The Technology And Physics Of Molecular Beam Epitaxy”, Plenum Press, New York, 1985. [8 ] Dieter K. Schroder. “ Semiconductor Material and Device Characterization 2nd ED., “ Schroder, Dieter k / Wiley, 1998. [9 ] Esaki L. and Tsu R., Internal Report RC 2418, IBM Research, March 26 (1969) [10 ] Dingle R., Störmer H. L., Gossard A. C., and Wiegmann W., Appl. Phys. Lett. 37 [11 ] Stern F., Phys. Rev. B 5 4891 (1972) [12 ] Swaminathan V., and Macrander A. T. “Materials Aspects of GaAs and InP Based Structures”, Prentice Hall, Englewood Cliffs, New Jersey 07632 [13 ] Speriosu V. and Vreeland T. Jr., J. Appl. Phys. 56 1591 (1984) [14 ] Dieter K. Schroder, “Semiconductor Material And Device Characterization” 2nd ed., John Wiley & Sons, INC., New York, 1998. [15 ] Murrmann H. and Widmann D., IEEE Tans. Electron Dev. 16 1022-1024, Dec. 1969 [16 ] Murrmann H., and Widmann D., Solid-State Electron. 12, 879-886, Dec. (1969) [17 ] Berger H. H., Solid-State Electron. 15,145-158, Feb. 1972; Berger H.H., J. Electrochem. Soc. 119 507-514, April. (1972) [18 ] Shockley W. in A. Goetzberger and R. M. Scarlett, ”Research and Investigation of Inverse Epitaxial UHF Power Transistors,” Rep. No. AFAL-TDR-64-207, Air Force Lab., Wright-Patterson Air Force Base, OH, Sept. 1964 [19 ] Mak L. K., Rogers C. M., and Northrop D. C., J. Phys. E: Sci. Instr. 22 317-321, May. (1989) [20 ] http://www.lasurface.com/w_xps/Ag_xps_novis.htm [21 ] http://inventors.about.com/library/inventors/blphotoluminescence.htm Chap3 reference [1 ] Sugg A. R., Holonyak N., Jr., Baker J. E., Kish J. E., and Dallesasse J. E., Appl. Phys. Lett. 58 1199 (1991) [2 ] Choquette K. D., Schineder R. P., Jr., Lear K. L., and Geib K. M., Electron. Lett. 30 2043 (1994) [3 ] Yang G. M., MacDougal M. H., and Dapkus P. D., Electron. Lett. 31 886 (1995) [4 ] Huffaker D. L., Deppe D. G., Lei C., and Hodge L. A., Appl. Phys. Lett. 68 1948 (1996) [5 ] Dae Ho Lim, Gye Mo Yang, Jong-Hee Kim, Kee Young Lim, and Hyung Jae Lee, Appl. Phys. Lett. 71 1915 (1997) [6 ] Hayashi Y., Mukaihara T., Hatori N., and Iga K., IEEE Photonics Technol. Lett. 7, 1234 (1995) [7 ] Deal B. E. and Grove A. S., J. Appl. Phys. 36 3770 (1965) [8 ] Koley B., Dagenais M., Jin R., Pham J., Simonis G., McLane G., and Stone D., J. Appl. Phys. 82 4586 (1996) [9 ] Koley B, Dagenais M, R. Jin, G. Simonis, and J. Pham, G. McLane, F. Johnson and R. Whaley, Jr. J. Appl. Phys. 84 600 (1998) [10 ] Kish F. A., Caracci S. J., Holonyak N. Jr., Hsieh K. C., Baker J. E., Maranowski S. A., Sugg A. R., and Dallesasse J. M., J. Electron. Mater. 21, 1133 (1992) [11 ] Thibeault B. J., Hegblom E. R., Floyd P. D., Naone R., Akulova Y., and Coldren L. A., IEEE Photonics Technol. Lett. 8 593 (1996) [12 ] Alonzo A. C., Cheng X. C., and McGill T. C. 2000 J. Appl. Phys. 87 4594 (1998) [13 ] Osinski M., Svimonishvili T., Smolyakov G. A., Smagley V. A., Mackowiak P., and Nakwaski W. IEEE Photon. Technol. Lett.13 687 (2001) Chap5 reference [1 ] Dalessase J. M., Holonyak Jr N, Sugg A. R., and Richard T. A., Appl. Phys. Lett. 57 2844 (1990) [2 ] Koley B. Dagenais M., Jin R., Simonis G., Pham J., McLane G., Johnson F., and Whaley R., Jr. J. Appl. Phys. 84 600 (1998) [3 ] Koley B., Dagenais M., Jin R., Pham J., and Simonis G., McLane G., Dennis Stone, J. Appl. Phys. 82 4586 (1996) [4 ] MacDougal M. H., Zhao H., Dapkus P. D., Ziari M., and Steier W. H., Electron. Lett. 30 1147 (1994) [5 ] Ashby C. I. H., Sullivan J. P., Newcomer P. P., Missert N. A., Hou H. Q., Hammons B. E., Hafich M. J., and Baca A. G., Appl. Phys. Lett. 70 2443 (1997) [6 ] Ashby C. I. H., Sullivan J. P., Choquette K. D., Geib K. M., and Hou H. Q., J. Appl. Phys. 82 3134 (1997) [7 ] Parikh P. A., Ph. D. thesis, University of California, Santa Barbara (1997) [8 ] Cheong S.-K., Bunker B. A., and Shibata T., Hall D. C., DeMelo C. B., Luo Y., and Snider G. L., Kramer G., and El-Zein N., Appl. Phys. Lett. 78 2458 (1993) [9 ] Ferrer J. C. and Liliental-Weber Z., Reese, Chiu Y. H. J., and Hu E., Appl. Phys. Lett. 77 205 (1992)id NH0925159045 sid 913574 cfn 0 / id NH0925159046 auc 施經瑋 tic 多元合金之熱電性能研究 adc 廖建能 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 64 kwc 熱電 kwc 多元 abc 通常一個好的熱電材料必須具備良好的電導係數及Seebeck係數,以及低熱導係數,這是一般傳統合金所無法具備的。相對於單一主元素之傳統合金,具多主元素之高熵合金係一嶄新的冶金概念。在目前已開發之部分高熵合金系統業已展現出極優異之機械性質與化學性質,然而高熵合金之電性質與熱電性質則尚未有詳盡之探討。本研究以half-heusler三元合金當作出發點,利用真空電弧熔煉製作合金,經由熱處理後,量測其熱電性質,找到兩個具有發展潛力的系統:ZrTiSnSiNi2、ZrTiSnGeNi2,室溫下熱電優值ZT分別為0.02與0.045。當在中高溫的範圍(250~300℃)時功率因子(S2/ρ)約可增加3~4倍,將成份改質為Zr0.9Ti0.9Nb0.2SnSiNi2,結果顯示室溫下的熱電優值ZT約為0.078。利用X光結晶繞射(XRD)、掃瞄式電子顯微鏡(SEM)與能量散佈光譜儀(EDS)鑑定出此二多元合金系統為具有半導體與金屬組成相的複合材料。 tc 目錄………………………………………………………………..……Ⅰ 圖目錄…………………………………………...…………………….. Ⅳ 表目錄………………………………...……………………….………. Ⅴ 摘要……………………………………………………………….…...VII 英文摘要……………………………………………………..………VIII 第一章、簡介…………………………………………………..…………1 1.1研究動機………………………………………..…………………….1 1.2實驗目的……………………………………………..……………….2 第二章、文獻回顧………………………………………………..………3 2.1熱電簡介……………….……………………………..………………2 2.1.1熱電現象………………………….…………….………….3 2.1.2 Seebeck效應………………………………………………3 2.1.3 Peltier效應……………………………………………...…4 2.1.4 Thomson效應…………………….…………………..……5 2.1.5 Seebeck效應、Peltier效應與Thomson效應之關聯性….6 2.1.6熱電性質…………………….…………………….……….7 2.2高熵合金簡介………………………………………………..……...10 2.3 half-Heusler結構熱電性質………………………….......................11 第三章、實驗方法與分析………………………………………………14 3.1實驗規劃……………………………………….…………………....14 3.2試片製備…………………………………………………………….17 3.2.1成分計算..…………….…….…………………………….17 3.2.2合金熔煉……………………….…………………………18 3.2.3高溫熱處理…………………………….…………………20 3.2.4研磨拋光…..……………………………………………...20 3.2.5厚膜阻絕層製作………………………………………….20 3.2.6定義熱傳導係數量測用微加熱帶……………………….21 3.3 Seebec係數量測方式…...……………………..…………...………24 3.4 電阻係數量測方式……………………………………….….…….26 3.5 載子濃度量測……………………………………………..….……29 3.6 熱傳導係數量測方式……………………………………………...30 3.6.1 加熱線上的溫度變化……………………………………33 3.6.2 數學推導…………………………………………………35 第四章、實驗結果與討論………………………………………………38 4.1實驗結果….……………………………………………………...….38 4.1.1 ZrTiSnSiNi2之熱電性質……………..…………………..38 4.1.1.1熱處理對Seebeck 係數與電阻係數的影響…….38 4.1.1.2 Seebeck係數與電阻係數隨溫度的變化…………40 4.1.1.3熱處理對ZrTiSnSiNi2晶體結構之影響………….42 4.1.2 ZrTiSnGeNi2之熱電性質…………...…………….……...48 4.1.2.1 Seebeck係數與電阻係數………………………...48 4.1.2.2 Seebeck係數與電阻係數隨溫度的變化………...49 4.1.1.3熱處理對ZrTiSnGeNi2晶體結構之影響…………51 4.3霍爾效應量測…………….…………………………………………54 4.4 熱傳導係數………………………………….……………………..54 4.5 合金定量分析-感應式耦合電漿原子發光光譜儀………………..56 4.6 添加Nb的影響…………………………………………………….58 第五章、結論……………………………………………………..……60 參考文獻……………………………………………………..…..…..…61 附錄.儀器設備………………………………………………………….64 圖目錄 圖2-1、Seebeck效應示意圖…………………………………………….4 圖2-2、Peltier效應示意圖………………………...…………………….5 圖2-3、Thomson效應示意圖…………………………………………...5 圖2-4、熱電線路圖……………………………………………….……..6 圖2-5、各類熱電材料其熱電優值(ZT)隨溫度變化……………………9 圖2-6、Heusler晶體結與half-Heusler晶體結構……………………..13 圖3-1、真空熔煉爐示意圖……………………….……………………15 圖3-2、實驗流程圖…………………………………………….………16 圖3-3、(a)真空電弧熔煉爐設備(b)水冷銅模……………...…………19 圖3-4、厚膜絕緣層製作流程.................................................................21 圖3-5、定義金屬導線流程圖…………………...……………….……23 圖3-6、熱電量測系統示意圖………………………….………………25 圖3-7、電壓差對溫度作圖決定Seebeck係數……..…………………26 圖3-8、直流式四線量測示意圖…………………………………….…27 圖3-9、Van der Pauw四點探針法………………….…………………28 圖3-10、霍爾效應量測裝置圖…..………..……………………………29 圖3-11、3ω方法所需結構示意圖………………….………..…………31 圖3-12、3ω樣本截面圖……………………………………..…………32 圖3-13、3ω樣本俯視圖…………………………..……………………32 圖3-14、ΔT2ω對ln(2ω)做圖…………..…………..……………………37 圖4-1、ZrTiSnSiNi合金Seebeck係數對溫度變化情形……...……..41 圖4-2、ZrTiSnSiNi合金電阻係數隨度溫度變化情形………………41 圖4-3、ZrTiSnSiNi合金功率因子隨溫度變化情形………………..…42 圖4-4、ZrTiSnSiNi合金熱處理前後之微結構……………………….43 圖4-5、ZrTiSnSiNi2合金能量散佈分析光譜儀(EDS)結果比較.……45 圖4-6、Zr0.5Ti0.5SiNi合金電阻係數隨溫度變化…………..……....…46 圖4-7、ZrTiSnSiNi2合金熱處理前後XRD比較…………………….47 圖4-8、ZrTiSnGeNi2合金Seebeck係數隨溫度變化情形…...………50 圖4-9、ZrTiSnGeNi2合金電阻係數隨溫度變化情形….……….……50 圖4-10、ZrTiSnGeNi2合金功率因子隨溫度變化情形..……..…..……51 圖4-11、ZrTiSnGeNi2合金相能量散佈分析光譜儀結果比較……..…52 圖4-12、ZrTiSnGeNi2合金熱處理前後XRD結果比較………..….…53 表目錄 表2-1、Half-Heusler三元合金熱電性質…………………………..…12 表3-1、多元合金之元素相關性質…………………………………….18 表4-1、ZrTiSnSiNi2熱處理前後Seebeck係數與電阻係數…….……39 表4-2、ZrTiSnGeNi2合金熱處理前後Seebeck係數與電阻係數比較..48 表4-3、具Half-Heusler結構之不同合金載子濃度...…………..…...…55 表4-4、具Half-Heusler結構之不同合金熱傳導係數……….……...…55 表4-5、多元合金與具Half-Heusler結構合金之熱電性質比較…..….56 表4-6、ZrTiSnSiNi2合金成分熱處理前後定量分析比較………..…..57 表4-7、ZrTiSnGeNi2合金成分定量分析…………………..……..…..58 表4-8、ZrTiSnSiNi2與Zr0.9Ti0.9Nb0.2SnSiNi2熱電性質比較…………59rf 1. H. J. Goldsmid, in CRC Handbook of Thermoelectrics, D. M. Rowe Ed., Boca Raton, Florida, 1995 Chap. 3 2. K. H. Huang, “A study on multicomponent alloy systems containing equal-mole elements”, Master thesis, Dept. Materials Science and Engineering, National Tsing-Hua University, June, 1996 3. K. T. Rai, “Microstructures and properties of multi component alloy system with equal-mole elements”, Master thesis, Dept. Materials Science and Engineering, National Tsing-Hua University, June, 1998 4. Y. H. Sheu, “A study on multicomponent alloy system with equal-mole FCC or BCC elements”, Master thesis, Dept. Materials Science and Engineering, National Tsing-Hua University, July, 2000 5. Jien-Wei Yeh, Swe-Kai Chen, Su-Jien Lin, Jon-Yiew Gan, Tsung-Shune Chin, Tao-Tsung Shun, Chun-Huei Tsau, and Shou-Yi Chang, “Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concept and outcomes” Adv. Eng. Mater Vol 6, p299 (2004) 6. G. S. Nolas, G. A. Slack, American Scientist, Vol. 89 (2001) 7. G. A. Slack, in CRC Handbook of Thermoelectrics, edited by D. M. Rowe(Chemical Rubber, Boca Raton, FL, 1995),Chap. 34 8. G. S. Nolas,etc. “A comparison of projected thermoelectric and thermionic refrigerators” J. Appl. Phys., 4066~4070(1999) 9. Francis J. DiSalvo,“Thermoelectric cooling and power generation” Science. Vol. 285, 703 (1999) 10. C.S. Lue, Y.-K. Kuo, “Thermoelectric properties of the semimetallic Heusler compounds Fe2-xV1+xM (M= Al, Ga)” Phys. Rev. B 66, 085121 (2002). 11. B.C. Sales, D. Mandrus, and R.K. Williams,“Filled skutterudite antimonides: A new class of thermoelectric materials” Science 272, 1325 (1996). 12. Heinrich Hohl, Art P Ramirez, Claudia Goldmann, Gabriele Ernst, Bernd W¨olfing and Ernst Bucher. J. “Efficient dopants for ZrNiSn-based thermoelectric materials”Phys.: Condens. Matter 11 1697–1709 (1999) 13. Q. Shen, L. Chen, T. Goto and T. Hirai, J. Yang and G. P. Meisner, C. Uher “Effects of partial substitution of Ni by Pd on the thermoelectric propertiesof ZrNiSn-based half-Heusler compounds” Appl. Phys. Lett., 79, p4165 (2001) 14. C. Uher, J. Yang, S. Hu, D. T. Morelli, and G. P. Meisner“ Transport properties of pure and doped MNiSn (M=Zr, Hf)” Phys. Rev. B, 59 p.8615, 1999 15. K. Mastronardi, D. Young, C.-C. Wang, P. Khalifah, A. P. Ramirez, and R. J. Cava, “Antimonides with the half-Heusler structure: New thermoelectric materials” Appl. Phys. Lett., 74, p.1415, 1999 16. Semiconductors and Semimetals, vol 70:Recent Trends in Thermoelectric Materials Research, Part Two,edited by Terry Tritt,Chap2 (2000) 17. “Standard Test Methods for Measuring Resistivity and Hall Coefficient and Determining Hall Mobility in Single-Crystal Semiconductors, ”ASTM Designation F76,Annual Book of ASTM Standards, Vol. 10.05 (2000). 18. Cahill, D. G. (1990). "Thermal conductivity measurement from 30 to 750 K:the 3ω method." Review of Scientific Instruments 61(2). 19. Cahill, D. G. (1997). "Heat transport in dielectric thin films and at solid-solid interfaces." Microscale Thermophysical Engineering 1: 85-109. 20. Cahill, S.-M. L. a. D. G. (1997). "Heat transport in thin dielectric films." Journal of Applied Physics 81(6): 2590-2595.id NH0925159046 sid 913576 cfn 0 / id NH0925159047 auc 楊仁捷 tic 以溶膠凝膠法製備鋰離子固態電解質 adc 陳建瑞 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 85 kwc 鋰離子 kwc 固態電解質 kwc 磷酸鈦鋰 abc 本實驗以醋酸鋰, (lithium acetate) ,硝酸鋁, (aluminum nitrate),異丙醇鈦, (titanium isopropoxide),磷酸二氫胺胺(ammonium dihydrogen phosphate)作為起始原料合 固態電解質。製作完成的試片,分別使用XPRD及SEM作相鑑定及表面型態觀測,以交流阻抗分析儀量測離子導電率。XPRD分析結果示, 是以 為主晶格架構,在超過800℃的退火處理後具良好的結晶性。由SEM影像可以清楚的觀察到,各個條件下觀察到的樣本,皆呈現良好的均質性。在900℃二小時的退火處理後,離子導電率可達到10 的性能水準。 rf [1 ] J. Hajek, French Patent, 8, 10, 1949. [2 ] D. W. Murphy, J. Broadhead and B. C. H. Steele (ed.), Materials for Advanced Batteries, Plenum Press, 1980. [3 ] David Linden, Handbook of Batteries, 2nd ed., McGraw-Hill Inc., 1995. [4 ] G. Pistoia (ed.), Lithium Batteries: New Materials, Developments, and Perspectives, Elsevier Science B. V., 1994. [5 ] Jürgen, O. Besenhard (ed.), Handbook of Battery Materials, WILEY-VCH, 1999. [6 ] P. J. Gellings and H. J. M. Bouwmeester (ed.), The CRC Handbook of Solid State Electrochemistry, CRC Press, Inc., 1997. [7 ] Peter G. Bruce, Solid State Electrochemistry, Cambridge University Press, 1995. [8 ] T. Kudo and K. Fueki, Solid State Ionics, Kodansha Ltd., 1990. [9 ] S. Chandra, Superionic Solids: Principles and Application, North-Holland Publishing Company, 1981. [10 ] M. Z. A. Munshi (ed.), Handbook of Solid State Batteries & Capacitor, World Scientific Publishing Co. Pte. Ltd., 1995. [11 ] Tetsuya Osaka and Madhav Datta (ed.), Energy Storage Systems for Electronics, Gordon and Breach Science Publishers, 2000. [12 ] Li Shi-Chun and Lin Zu-Xiang, Solid State Ionics 9 & 10 (1983) 835-838. [13 ] S. Hamdoune and D. Tran Qui, Solid State Ionics 18 & 19 (1986) 587-591. [14 ] V. V. Kravchenko, V. I. Michailov and S. E. Sigaryov, Solid State Ionics 50 (1992) 19-30. [15 ] Kazunori Takada, Masataka Tansho, Ikuo Yanase, Taro Inada, Akihisa Kajiyama, Masaru Kouguchi, Shigeo Kondo and Mamoru Watanabe, Solid State Ionics139 (2001) 241-247. [16 ] A. S. Best, M. Forsyth, D. R. MacFarlane, Solid State Ionics 136-137 (2000) 339-344. [17 ] H. Perthuis, G. Velasco and Ph. Colomban, Japanese Journal of Applied Physics, Vol. 23, No. 5, pp. 534~543, 1984. [18 ] O. L. Anderson and D. A. Stuart, Journal of the American Ceramic Society, Vol. 37, No. 12, pp. 573-580. [19 ] N. Bloembergen, E. M. Purcell and R. V. Pound, Physical Review, Vol. 73, No. 7, pp. 679~712, (1948). [20 ] N. Bloembergen, Nuclear Magnetic Relaxation: A Reprint Volume, W. A. Benjamin, Inc., (1961). [21 ] P. Mansfield, Progress in Nuclear Magnetic Resonance Spectroscopy, Vol. 8, Part 1, Pergamon Press Ltd., (1971). [22 ] R. A. Young, ed., the Rietveld Method, Oxford University Press, 1993. [23 ] Anthony R. West, Solid State Chemistry and its Applications, John Wiley & Sons, Ltd., 1986. [24 ] Giorgio Rizzoni, Principles and Applications of Electrical Engineering, 2nd ed., Richard D. Irwin, Inc. Company, 1996. [25 ] C. Jeffrey Brinker and George W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, Inc., 1990. [26 ] Brian Cowan, Nuclear Magnetic Resonance and Relaxation, Cambridge University Press, 1997. [27 ] Kazunori Takada, Kenjiro Fujimoto, Taro Inada, Akihisa Kajiyama, Masaru Kouguchi, Shigeo Kondo and Mamoru Watanabe, Applied Surface Science, 189, (2002) 300-306. [28 ] 陳中豪,鋰離子固態電解質的離子導電機制與薄膜製程研究,國立清華大學材料科學工程學系碩士論文,2002年7月。 [29 ] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka and G. Adachi, Journal of the Electrochemical Society, 137 (1990) 1023.id NH0925159047 sid g913582 cfn 0 / id NH0925159048 auc 許景棟 tic 超平坦薄膜之製作與分析 adc 吳信田 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 116 kwc 鋁膜 kwc 低溫製程 kwc 超薄薄膜 kwc 薄膜成長 kwc 孔洞 abc 本實驗的目標,即鍍出粗糙度很小的薄膜,並利用多項製程變數的相互比較,以釐清鋁膜生長過程,對於粗糙度的影響。 tc 摘要 I 致謝 II 目錄 III 表目錄 VI 圖目錄 V 第一章 序論……………… 1 1-1研究動機……………… 1 第二章 文獻回顧……………… 3 2-1 薄膜成長簡介 ……………………………………3 2-2 鋁膜簡介……………… 9 2-3 TiN 磊晶薄膜簡介………………………………11 第三章 實驗步驟與分析方法 21 3-1實驗設備 22 3-2薄膜濺鍍流程 24 3-2-1試片種類 24 3-2-2 TiN(111)製作過程及步驟 25 3-2-3鍍鋁膜的步驟 29 3-3試片分析部分 33 3-3-1原子力顯微鏡(Atomic Force Microscope;AFM) 33 3-3-2 X光繞射(XRD)分析 35 3-3-2-1 X光反射率(X-ray reflectivity;XRR) 35 3-3-2-2 θ-2θ scan (wide-angle scan) 39 3-3-2-3 Pole Figure 40 3-3-2-4 θ- scan (Rocking curve) 41 3-3-3掃描式電子顯微鏡(Scanning Electron Microscope; SEM) 42 第四章 結果與討論 58 4-1粗糙度的變化 58 4-1-1 不同的基板, 其粗糙度變化 59 4-1-2 不同的溫度, 其粗糙度變化……………… 62 4-1-3 不同的厚度, 其粗糙度變化……………… 64 4-1-4 不同的織構排列品質下, 其粗糙度變化 69 4-2其他 73 第五章 結論 111 參考文獻 113 表目錄 表2-1 鋁膜性質 …………………………………………13 表2-2 TiN膜物理性質……………………………… ……14 表3-1 各種掃瞄探針式顯微鏡型式…………………………43 表4-1 整個實驗試片的粗糙度方均根值 ……………………74 表4-2 膜及基板表面能……………………………………75 表4-3 室溫27℃ 鋁膜在各基板的粗糙度表…………………76 表4-4 -190℃ 鋁膜在各基板的粗糙度表……………………77 表4-5 600℃ 鋁膜在各基板的粗糙度表 ……………………78 表4-6 鋁膜在TiN(111)基板上,其粗糙度隨溫度的變化………79 表4-7 鋁膜在Sapphire(0001)基板上,其粗糙度隨溫度的變化…80 表4-8 鋁膜在Si(111)基板上,其粗糙度隨溫度的變化 ………81 表4-9 鋁膜在薄膜結構區域模型(structure zones mode)中的區域………………………………………………82 圖目錄 圖2-1 鍍膜原子沉積過程…………………………………15 圖2-2 三種成膜方式 ……………………………………16 圖2-3 晶粒沉積時的自由能變化 …………………………17 圖2-4 晶粒粗化過程 ……………………………………18 圖2-5 薄膜的界面型態 …………………………………19 圖2-6 粗糙度會隨著晶粒大小增加而變大 …………………20 圖3-1 濺鍍系統裝置 ……………………………………44 圖3-2 升溫基座…………………………………………45 圖3-3 低溫基座,兩端開口可供液態氮留入及流出……………46 圖3-4 TiN(111)基板(A)θ-2θ scan 圖,(B) Rocking curve…47 圖3-5 TiN(111)之AFM分析圖 (A)AFM 粗糙度圖 (B)立體圖 (C)橫截面圖……………………………………48 圖3-6 TiN(111)基板的Pole Figure…………………………49 圖3-7 在高溫600℃鍍膜時,真空腔裡的基座擺放方式………50 圖3-8 低溫鍍膜時,真空腔裡的基座擺放方式………………51 圖3-9 針尖大小對AFM量測的影響…………………………52 圖3-10 50nm的TiN膜鍍在Si基板上之X光反射率干涉條紋…53 圖3-11 XRR干涉條紋中重要的幾個點………………………54 圖3-12 兩膜厚不同的試片之XRR干涉條紋……………………55 圖3-13 兩膜密度不同的試片之XRR干涉條紋…………………56 圖3-14 Pole Figure,(A)晶向隨機分佈,(B)優選晶向…………57 圖4-1 600℃ AL(111)/TiN(111) AL膜厚300nm………………83 圖4-2 分別討論三個溫度時,鋁膜在三個基板上粗糙度的變化…84 圖4-3 鋁膜在三個不同溫度時,其XRD分析圖………………85 圖4-4 600℃,厚度為5nm時,在sapphire基板上,鋁膜呈很薄島嶼狀附著在基板上………………………………86 圖4-5 600℃,厚度為5nm時,鋁膜在TiN(111)基板上的AFM圖…87 圖4-6 600℃,厚度為5nm時,鋁膜在Si(111)基板上的AFM圖…88 圖4-7 在三種基板上,其粗糙度隨溫度的變化………………89 圖4-8 600℃,鋁膜厚度約1μm,基板為sapphire,SEM的橫截面圖………………………………………………90 圖4-9 500℃,鋁膜厚度約1μm,基板為sapphire,SEM的橫截面………………………………………………91 圖4-10 200℃,鋁膜厚度約1μm,基板為sapphire,SEM的橫截面………………………………………………92 圖4-11 室溫,鋁膜厚度約1μm,基板為sapphire,SEM的橫截面………………………………………………93 圖4-12 鋁膜在sapphire上於三種不同溫度時的XRD 比較圖…94 圖4-13 -190℃在TiN(111)(50nm)上鍍Al 2分鐘(10nm)的XRR曲線圖…………………………………………95 圖4-14 600℃在TiN(111)上鍍Al 5分鐘(25nm) 的XRR曲線圖…96 圖4-15 600℃在TiN(111)上鍍Al 5分鐘(25nm)的SEM plane veiw圖………………………………………………97 圖4-16 600℃時,鋁晶粒在TiN(111)基板上於不同鍍膜時間時的SEM圖……………………………………………98 圖4-17 室溫時,鋁晶粒在TiN(111)基板上於不同鍍膜時間時的SEM圖……………………………………………99 圖4-18 -190℃時,鋁晶粒在TiN(111)基板上於不同鍍膜時間時的SEM圖………………………………………100 圖4-19 圖4-19 室溫鋁膜在Sarphire上隨膜厚增加,膜表面型態的變化(AFM所掃出 1μm×1μm)……………………101 圖4-20 鋁膜在TiN基板上產生的孔洞,掃描面積10μm×10μm ………………………………………………102 圖4-21 鋁膜在TiN基板上產生的孔洞,掃描面積1μm×1μm…103 圖4-22 600℃,鋁膜厚度約300nm,基板為TiN(111)………104 圖4-23 600℃,鋁膜厚度約300nm,基板為sapphire,XRD(θ-2θ scan)………………………………………105 圖4-24 兩不同鍍膜速度的XRD(A)θ-2θ scan (wide-angle scan),(B)θ- scan (Rocking curve) ……………106 圖4-25 室溫,膜厚為10nm時,鋁晶粒在sapphire基板上分佈的情形……………………………………………107 圖4-26 室溫,膜厚為50nm時,鋁晶粒在sapphire基板上分佈的情形……………………………………………108 圖4-27 兩晶粒的表面張力及晶界拉力對凹槽(groove)角度αGB角的影響…………………………………………109 圖4-28 當凹槽(groove)角度αGB角變小後,對平坦度的影響…110rf [1 ] B.Lewis,J.C.Andersion,Nucleation and Growth of thin films,Academic Press,1978 [2 ] Milton Ohring,The Materials Science of Thin Films, 1992,chapter5 [3 ] 黃榮俊,物理雙月刊,十七卷六期1995年12月,663頁 [4 ] 李信義,科儀新知,第二十二卷,第二期,p39 [5 ] R.Groger,M.Barczewski,P.von Blanckenhagen,surf.sci. 454-456(2000)761-76 [6 ] J.Nogami,Physical Review B,Volume44,Number3,15 july,1991,1415-1418 [7 ] R.Groger,A.Berlinger,M.Barczewski,P.von Blanckenhagen, Thin Solid Films 318(1998)231 [8 ] Changxin Zhu,Shunji Misawa, Sonoko Tsukahara,surf.sci. 325(1995)279-284 [9 ] Chopra,thin film phenomena,Mcgraw-Hill,1969 [10 ] M.J.Rost,D.A.Quist,J.W.Frenken,Physical Review Letters, Volume 91,Number2,026101-1 [11 ] M.A.Palmer,M.E.Glicksman,K.Rajan,Scripta Materialia 48 (2003)1173-1178 [12 ] Aicha Elshabini-Riad & Fred D.Barlow Ⅲ ,Thin Film Techology Handbook,Mcgraw-hill,1997 [13 ] 郭曉文,碩士論文,國立清華大學材料工程與科學研究所 (2002) [14 ] 莊達人,VLSI製造技術,高立,(2002) [15 ] J.P.Zhao,X.Wang,Z.Y.Chen,S.Q.Yang,T.S.Shi,X.H.Liu, J.Phys.D:Appl.Phys.30(1997),5-12 [16 ] John F. O’Hanlon,A User’s Guide to Vacuum Technology,Second Edition,Wiley,1989 [17 ] 伍秀菁,汪若文,林美吟,真空技術與應用, 國科會精儀中心,2001 [18 ] L.He,J.E.Siewenie, surface and coatings technology,150(2002),76-79 [19 ] 陳維釧,博士論文,國立清華大學材料工程與科學研究所 (2003) [20 ] 曾文聖,林良平,科儀新知,第十九卷,第六期,p5 [21 ] 汪建民,材料分析,中國材料科學學會,p83 [22 ] 許樹恩,吳泰伯,X光繞射原理與材料結構分析,中國材料科學學會,1996 [23 ] 黃子文,碩士論文,國立清華大學工程與系統科學研究所(2002) [24 ] 薛仁宗,碩士論文,國立清華大學工程與系統科學研究所(1999) [25 ] 彭文彥,碩士論文,國立清華大學工程與系統科學研究所(2002) [26 ] 林煜修,碩士論文,國立清華大學工程與系統科學研究所(2000) [27 ] 吳泰伯,李信義,科儀新知,第十九卷,第二期,p111 [28 ] 蔡增光,林文智,卓恩宗,科儀新知,第二十四卷,第三期,p52 [29 ] 林希哲,科儀新知,第十九卷,第五期,p89 [30 ] Jean Daillant,Alain Gibaud,X-ray and Neutron Reflectivity: Principles and Application,Springer,1999 [31 ] 林鶴南,李龍正,劉克迅,科儀新知,第十七卷,第三期,p31 [32 ] N.G.Semaltianos,Applied Surface Science,183(2001), 233-229 [33 ] D.H.Bae,A.K.Ghosh,Acta Material 50(2002),511-523 [34 ] 林延儒,博士論文,國立清華大學材料工程與科學研究所 (2003) [35 ] K.L.Ekinci,J.M.Valles JR,Acta mater.Vol46,No13, 4549-4557,1998 [36 ] H. K. Pulker, Coatings on glass, 2nd, rev. ed, Amsterdam Elsevier,1999id NH0925159048 sid 913587 cfn 0 / id NH0925159049 auc 康琨杰 tic 以微波加熱化學氣相沉積法在鈉玻璃基板上成長奈米碳管 adc 黃金花 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 145 kwc 奈米碳管 kwc 化學氣相沉積法 abc 自從奈米碳管(carbon nanotubes :CNTs)在1991年被Iijima博士 發現後,奈米碳管的製造和特性即引起很大的研究興趣。因此也就衍生了許多新的應用。由於奈米碳管具低起始電場與高電流密度的特性,故目前以應用於場發射顯示器(CNTs-FED)為主。本實驗的目的是找出較佳的成長條件,以符合場發射顯示器的應用。 tc 第一章 序論 1.1 簡介 1 1.2 研究動機與目的 3 1.3 奈米碳管各項特性 5 1.4 不同材料的場發射特性 7 1.5 參考文獻 8 第二章 文獻回顧 2.1 在玻璃基板上成長奈米碳管之製程 11 2.1.1 化學氣相沉積法(CVD) 11 2.1.2 網印方法(screen printing) 15 2.2 網印方法之缺點 …19 2.2.1 網印方法之改善 19 2.3 場發射理論 21 2.3.1 何謂場發射 21 2.3.2 奈米碳管之場發射特性 22 2.4 拉曼光譜(Raman spectroscopy) 26 2.4.1 何謂拉曼光譜 26 2.4.2 拉曼光譜儀裝置 28 2.4.3 拉曼光譜的應用 ...28 2.4.4 拉曼光譜在奈米碳管上的應用 ...28 2.5 奈米碳管的應用 34 2.6 參考文獻 37 第三章 研究方法與實驗步驟 3.1 研究方法 39 3.2 實驗步驟 39 3.2.1 基板之選擇 40 3.2.2 催化劑金屬之蒸鍍 40 3.2.3 成長系統 41 3.2.4 成長奈米碳管之實驗參數 42 3.2.5 分析方法及量測儀器 44 第四章 實驗結果與討論 4.1 網印混有機鎳銀電極後的陰極玻璃為基板成長奈米碳管 47 4.1.1 在1000 W (590℃)時,成長時間對奈米碳管之影響 47 4.1.2 較佳條件之選擇 54 4.2 網印無有機鎳銀電極後的陰極玻璃為基板成長奈米碳管 63 4.2.1 在1000 W (590℃)時,成長時間對奈米碳管之影響 63 4.2.2 較佳條件之選擇 71 4.3 網印無有機鎳銀電極後的陰極玻璃再鍍上擴散阻礙層(金、鉻、鈦)為基板成長奈米碳管 82 4.3.1 在1000 W (590℃)時,成長時間對奈米碳管之影響 82 4.3.2 在900 W (570℃)時,成長時間對奈米碳管之影響 91 4.3.3 在800 W (530℃)時,成長時間對奈米碳管之影響 99 4.3.4 較佳條件之選擇 106 第五章 結論 5.1 鎳膜厚度和成長時間對成長奈米碳管的影響 143 5.2 不同基板對成長奈米碳管的影響 143 5.3 較佳的成長條件 144 5.4 參考文獻 145rf [1 ] S.Iijima, Nature 354 (1991) 56. [2 ] Ebbesen, T. W.; Ajayan, P. M. Large-scale of carbon nanotubes. Nature 1992, 358, 16. [3 ] Journet, C.; Master,W.K.; Bernier,P.; Loiseau,A.; Chapelle, M. L. d. I; Lefrant, S.; Deniard, P.; Lee, R.;Fischer, J. E. Large-scale of single wall carbon nanotubes by electric arc technique. Nature 1997, 388, 756-758. [4 ] Thess, A.;Lee, R.;Nikdaev, P.; Dai, H.;Petit, P.; Robert, J.;Xu, C.;Lee, Y. H.; Kim. S. G.; Rinzler, A. G.; Colbert, D. T. Scuseria, G. E.;Tomaken, D.;Fisher, J. E.;Smalley, R. E. Crystalline Ropes of metallic carbon nanotubes. Science 1996, 273, 483-487. [5 ] Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P.; Siegal,M. P.; Provencio, P. N. Synthesis of large Arrays of Well-Aligned Carbon Nanotubes on Glass. Science 1998, 282, 1105. [6 ] Fan, S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties . Science 1999, 283, 512-514. [7 ] Bower, C.; Zhou, O.; Zhu, W.; Werder, D. J.; Jin, S. Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl. Phys. Lett.2000, 77(17), 2767-2769. [8 ] Su, M.; Zheng, B.; Liu, J. A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity .Chem. Phys. Lett.2000, 322, 321-326. [9 ] Seraphin, S.and Zhou, D., Appl. Phys. Lett. 1994, 64, 2087. [10 ] Saito, Y., Kawabata, K., Okuda, M., J. Phys. Chem., 1995, 99, 16076. [11 ] C.J. Lee, D.W. Kim, T.J. Lee, Y.C. Choi, Y.S. Park, Y.H. Lee,W.B. Choi, N.S. Lee, K.-S. Park, J.M. Kim, Chem. Phys. Lett., tobe printed in 1999. [12 ] K. Hernadi, A. Fonseca, J.B. Nagy, D. Bernaerts, J. Riga, A. Lucas, . Synthetic Metals 77 1996 31. [13 ] L.C. Qin, D. Zhou, A.R. Krauss, D.M. Gruen, Appl. Phys. Lett. 72. 1998 3437. [14 ] S. Fan, M. Chapline, N. Franklin, T. Tombler, A. Cassell, and H. Dai,Science 283, 512 (1999). [15 ] (a)J. Kong, H. T. Soh, A. Cassell, C. F. Quate, and H. Dai, Nature (London)395, 878 (1998); (b) N. R. Franklin, Y. Li, R. J. Chen, A. Javey, and H. Dai, Appl. Phys. Lett. 79, 4571 (2001). [16 ] B. Q. Wei, R. Vajtai, Y. Jung, J. Ward, Y. Zhang, G. Ramanath, and P. M. Ajayan, Nature (London) 416, 495 (2002). [17 ] G. Gu, G. Philipp, X. Wu, M. Burghard, A. M. Bittner, and S. Roth, Adv.Functional Mater. 11, 295 (2001). [18 ] Iijima, S. and Ichihashi, T., Nature, 1993, 363, 603. [19 ] "High Resolution TEM Observations of Single-Walled Carbon Nanotubes", Tara Spires and R. Malcolm Brown, Jr. Department of Botany, The University of Texas at Austin, Austin,Tx., 78713 [1996 ] [20 ] Jeroen W. G. Wilder; Liesbeth C. Venema; Andrew G. Rinzler; Richard E. Smalley; Cees Dekker; Nature 391, 6662, 59-62 (1998) [21 ] Teri Wang Odom; Jin-Lin Huang; Philip Kim; Charles M. Lieber; Nature 391, 6662, 62-64 (1998). [22 ] "Crystalline Ropes of Metallic Carbon Nanotubes", Science 273, 483 (1996), Andreas Thess, Roland Lee, Pavel Nikolaev, Hongjie Dai, Pierre Petit, Jerome Robert, Chunhui Xu, Young Hee Lee, Seong Gon Kim, Andrew G. Rinzler, Daniel T. Colbert, Gustavo Scuseria, David Tomek, John E. Fischer, Richard E. Smalley [23 ] Energetics, Structure, Mechanical and Vibrational Properties of Single Walled Carbon Nanotubes (SWNT)", by Guanghua Gao, Tahir Cagin*, and William A. Goddard III, [1997 ] [24 ] David Tomànek [25 ] C. Dekker, "Carbon Nanotubes as Molecular Quantum Wires", Physics Today, p22, May (1999) [26 ] Energetics, Structure, Mechanical and Vibrational Properties of Single Walled Carbon Nanotubes (SWNT)", by Guanghua Gao, Tahir Cagin*, and William A. Goddard III, [1997 ] [27 ] Stefan Frank et al., Science 280 1744 (1998) [28 ] "Fractional Quantum Conductance in Carbon Nanotubes", cond-mat/9908154, Phys. Rev. Lett. 84, 1974 (2000), Stefano Sanvito, Young-Kyun Kwon, David Tomek, and Colin J. Lambert. [29 ] Stefan Frank et al., Science 280 1744 (1998) [30 ] Lecture given at Michigan State University by Phaedon Avouris, a nanotube researcher at the IBM labs. [2000 ] [31 ] "Thermal Conductivity of Carbon Nanotubes", by Jianwei Che, Tahir Cagin, and William A. Goddard III [32 ] "Nanotubes: Mechanical and Spectroscopic Properties" .5em E. Herndez1 and Angel Rubio2 [1999 ] [33 ] Min-Feng Yu, Bradley S. Files, Sivaram Arepalli, Rodney S. Ruoff, Phys. Rev. Lett. 84, 5552 (2000). [34 ] Otto Zhou, Hideo Shimoda, Bo Gao, Soojin Oh, Les Fleing, and Guozhen Yue, Acc. Chem. Res 2002, 35, 1045-1053. [1 ] Cheol Jin Lee, Jeunghee Park, Seungwu Han, Jisoon Ihm, Chem. Phys. Lett . 337 (2001) 398. [2 ] In Taek Han, Ha Jin Kim, Young-Jun Park, Naesung Lee, Jae Eun Jang, Jung Woo Kim, Jae Eun Jung, and Jong Min Kim, Appl. Phys.Lett.81 (2002) 2070. [3 ] K. B. K. Teo, M. Chhowalla, S. B. Lee, D. G. Hasko, H. Ahmed, G. A. J.Amaratunga, W. I. Milne, G. Pirio, P. Legagneux, and D. Pribat, Proceedingsof the 2001 Materials Research Society fall meeting, Boston, 2001 (in press). [4 ] Choi WB, Chung DS, Kang JH, Kim HY, Jin YW, Han IT, Lee YH, Jung JE, Lee NS, Park GS, Kim JM, Appl. Phys.Lett.75 (1999) 3129. [5 ] Juntao Li, Wei Lei, Xiaobing Zhang, Xuedong Zhou, Qilong Wang, Yuning Zhang, Baoping Wang, Applied Surface Science 220 (2003) 96. [6 ] Deuk Seok Chung, S.H. Park, H. W. Lee, J. H. Choi, S. N. Cha, J.W. Kim, J.E. Jang, K. W. Min, S. H. Cho, M. J. Yoon, J. S. Lee, C. K. Lee, J. H. Yoo, and Jong-Min Kim, Appl. Phys.Lett.81 (2002) 4045. [7 ] J.E. Jung, Y.W. Jin, J.H. Choi, Y.J. Park, T.Y. Ko, D.S. Chung, J.W. Kim, J.E. Jang, S.N. Cha, W.K. Yi, S.H. Cho, M.J. Yoon, C.G. Lee, J.H. You, N.S. Lee, J.B. Yoo, J.M. Kim, Physica B 323 (2002) 71. [8 ] T. J. Vink, M. Gillies, J. C. Kriege, and H. W. J. J. van de Laar, Appl. Phys.Lett.83 (2003) 3552. [9 ] Hiroki Ago, Kazuhiro Murata, Motoo Yumura, Junko Yotani, and Sashiro Uemura, Appl. Phys.Lett.82 (2003) 811. [10 ] J. W. Gadzuk and E. W. Plummer, Rev. Mod. Phys. 45, 487 (1973). [11 ] Chernozatonskii LA, Gulyaev YV, Kosakovskaya ZY, Sinitsyn NI, Torgashov GV, Zakharchenko YF, Fedorov EA, Valchuk VP. Chem. Phys. Lett. 233 (1995) 63. [12 ] Chernozatonskii LA, Kosakovskaya ZJ, Kiselev AN, Kiselev NA. Chem. Phys. Lett. 228 (1994)1. [13 ] De Heer WA, Chatelain A, Ugarte D. Science 270 (1995) 1179. [14 ] Wang QH, Setlur AA, Lauerhaas JM, Dai JY, Seelig EW,and an Chang RPH. A nanotube-based field-emission flat panel display. Appl Phys Lett 1998;72(22):2912–3. [15 ] Saito Y, Hamaguchi K, Uemura S, Uchida K, Tasaka Y, Ikazaki F al. Field emission from multi-walled carbon nanotubes and its application to electron tubes. Appl Phys A 1998;67(1):95–100. [16 ] Dimitrijevic S, Withers JC, Mammana VP, Monteiro OR,carbon nanotubes and Ta–C coated nanotubes. Appl Phys Lett 1999;67(1):95-100. [17 ] Jean-Marc Bonard, Mirko Croci, Christian Klinke, Ralph Kurt, Olivier Noury, Carbon 40 (2002) 1715-1728. [18 ] Douglas A, Skoog and James J. Leary, Principles of instrumental analysis, Fourth edition, Harcourt. Brace Joranovich,1992. [19 ] Hiura, H.,Ebbesen, T.W., Tanigaki, H., Chem. Phys. Lett. 202 (1993) 509. [20 ] P. C. Eklund, J. M. Holden and R. A. Jishi,Carbon ,33, 959 (1995). [1 ] Thomas W. Ebbesen, Carbon nanotubes preparation and properties, CRC press, 1997. [2 ] R. Saito and G .Dresselhaus, Physical properties of carbon nanotubes, Imperial College Press, 1998. [3 ] M. Endo, S. Iijima and M. S. Dresselhaus, Carbon nanotubes, Pergamon, 1996. [4 ] Peter J.F. Harris, Carbon nanotubes and related structure, Cambridge University Press, 1999. [5 ] M. S. Dresseliiaus, G. Dresselhaus and P. C. Eklund, Science of fullerences and carbon nanotubes, Academic Press, 1996. [6 ] M. S. Dresselhaus, Carbon nanotubes : synthesis, structure, properties, and appli- cation, Springer, 2000. [7 ] Z. F. Ren, Z. P. huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal and P. N. Pro- vencio, Science 282, 1105(1998). [8 ] J. C. Charlier, A. D. Vita, X Blasé and Roberto Car, Science 275, 647(1997). [9 ] W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao and G. Wang, Science 274, 1701(1996). [10 ] P. G. Collins, A. Zetti, H. Bando, A. Thess and R. E. Smalley, Science 278, 100(1997). [11 ] M. S. Dresselhaus, Science 292, 650(2001). [12 ] G. Che, B. B. Lakshmi, E. R. Fisher and C. R. Martin, Nature 393, 346(1998). [13 ] J. H. Hafner, C. L. Cheung and C. M. Lieber, Nature 398, 761(1999). [14 ] K. B. K. teo, M Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk and D. Pribat, Appl. Phys. Lett, 79, 1534(2001). [15 ] E. Yenilmez, Qian Wang, R. J. Cjen, D. wang and Hongjie Dai, Appl. Phys. Lett, 80, 2225(2002). [16 ] M. P. Siegal, D. L. Overmyer and P. P. Provencio, Appl. Phys. Lett, 80, 2171(20 02). [17 ] C. L. Tsai, C. F. Chen and C. L. Lin, Appl. Phys. Lett, 80, 1821(2002). [18 ] Y. Y. Wei, G. Eres, V. I. Merkulov and D. H. Lowndes, Appl. Phys. Lett, 78, 1394(2001). [19 ] L. C. Qin, D. Zhou, A. R. Krauss and D. M. Gruen, Appl. Phys. Lett, 72, 3437(19 98). [20 ] A. Cao, Xi. Zhang, C. Xu, J. Liang and D. Wu, Appl. Phys. Lett, 79, 1252(2001). [21 ] W. Hu, D. Gong, Z. Chen, L. Yuan, K. Saito and P. Kichambare, Appl. Phys. Lett, 79, 3083(2001). [22 ] Y. S. Han, J. K. Shin and S. T. Kim, J. Appl. Phys, 90, 5731(2001). [23 ] N. R. Franklin, Y. Li, R. J. Chen, A. Javey and Honglie Dai, Appl. Phys. Lett, 79, 4571(2001). [24 ] J. Y. Lao, W. Z. Li, J. G. Wen and Z. F. Ren, Appl. Phys. Lett, 80, 500(2002). [25 ] M. Yudasaka, R. Kikuchi, T. Matsui, Y. Ohki, S. Yoshimura and E. Ota, Appl. Phys. Lett, 67, 2477(1995). [26 ] Y. Avigal and R. Kalish, Appl. Phys. Lett, 78, 2291(2001). [27 ] Y. Y. Wei, G. Eres, V. I. Merkulov and D. H. Lowndes, Appl. Phys. Lett, 78, 1394(2001). [28 ] Y. C. Choi, Y. M. Shin, Y. H. Lee, B. S. Lee, G. S. Park, W. B. Choi, N. S. Lee and J. M. Kim, Appl. Phys. Lett, 76, 2367(2000). [29 ] L. F. Sun, S. S. Xie, J. M. Mao, Z. W. Pan, B. H. Chang, W. Y. Zhou, G. Wang and L. X. Qian, Appl. Phys. Lett, 76, 828(2000). [30 ] A. A. Setlur, S. P. Doherty, J. Y. Dai and R. P. H. Chang, Appl. Phys. Lett, 76, 300 8(2000). [31 ] J .M. Mao, L. F. Sun, L. X. Qian, Z. W. Pan, B. H. Chang, W. Y. Zhou and G. Wa- ng, Appl. Phys. Lett, 72, 3297(1998). [32 ] S. L. Sung, S. H. Tsai, C. H. Tseng, F. K. Chiang, X. W. Liu and H. C. Shih, Appl. Phys. Lett, 74, 197(1999). [33 ] T. Iwasaki, T. Motoi and T. Den, Appl. Phys. Lett, 75, 2044(1999). [34 ] J. S. Suh and J. S. Lee, Appl. Phys. Lett, 75, 2047(1999). [35 ] H. M. Cheng, F. Li, G. Su, X. Sun and M. S. Dresselhaus, Appl. Phys. Lett, 72, 3282(1998).id NH0925159049 sid 913589 cfn 0 / id NH0925159050 auc 張懿心 tic 利用電漿聚合法製備可分解性聚乳酸之製程及特性研究 adc 楊長謀 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 79 kwc 聚乳酸 kwc 電漿聚合法 kwc 傅立葉紅外線光譜儀 kwc 奈米壓痕試驗 kwc 水解 abc 本文主要利用電漿聚合法來製備聚乳酸的研究,主要目的在於簡化聚乳酸的製程步驟、藉由3-D網狀交聯結構強化聚乳酸機械性質;另外,還希望電漿聚合所得之聚乳酸仍可保留其生物可分解性。本文中之實驗步驟是將液態乳酸單體加熱成氣體後注入電漿環境中,進一步來進行電漿聚合反應。使用電漿種類為頻率13.56MHz之射頻電漿。本實驗所採用之電漿聚合參數為電漿功率控制在10~200 瓦特,聚合時間90分鐘,利用矽晶片作為基材。利用電漿聚合所得之電漿聚乳酸則將採用傅立葉紅外線光譜儀、電子化學能譜儀、原子力顯微鏡、奈米壓痕試驗等,進行電漿聚乳酸的物理及化學特性分析。在分析結果中顯示利用電漿聚合法可成功製備聚乳酸,而電漿聚乳酸保留了與線性聚乳酸相似的官能基,僅化學結構上有些需差異,且電漿聚乳酸之化學結構可藉由電漿參數的調整來達到。水解實驗結果則可知電漿聚乳酸具有水解性質,且其降解速度與電漿聚合參數有關,因此可藉由電漿參數的調整來控制電漿聚乳酸的水解速度。另外,電漿聚乳酸在奈米壓痕試驗的分析結果也顯示其可展現優於線性聚乳酸的機械強度,利用200瓦特電漿聚合之聚乳酸的楊氏係數及硬度可達線性聚乳酸4~5倍。因此,電漿聚乳酸除具有較佳的機械強度外,其之水解速度可進一步藉由電漿聚合參數控制。 tc 第一章 簡介.............................................1 第二章 文獻回顧.........................................4 2-1 電漿聚合法............................................4 2-1-1電漿化學.............................................4 2-1-2 電漿聚合............................................6 2-1-3 CAP Principle.......................................9 2-1-4 電漿聚合種類........................................12 2-1-5 影響電漿聚合條件參數................................13 2-2 聚乳酸特性及其生物醫學上的應用........................14 2-2-1 聚乳酸..............................................14 2-2-2 線性聚乳酸的合成....................................16 2-2-3 聚乳酸的降解........................................18 2-2-4聚乳酸生物醫學上應用.................................20 2-3 研究動機..............................................21 第三章 實驗流程........................................22 3-1 試藥..................................................22 3-2 電漿聚乳酸薄膜製備....................................22 3-2-1單體以氬氣做為推進氣體注入電漿環境反應之電漿聚合法...22 3-2-2 單體不採用氬氣推進而直接注入電漿反應之電漿聚合法....23 3-3 線性聚乳酸薄膜製備....................................24 3-4 水解實驗..............................................25 3-5 原子力顯微鏡..........................................25 3-6 電子能譜化學分析儀....................................29 3-7 傅立葉紅外線光譜儀....................................32 3-8 奈米壓痕試驗..........................................33 3-9 交聯密度量測..........................................36 第四章 結果與討論......................................38 4-1 電漿聚乳酸傅立葉紅外線光譜儀(FTIR)分析................38 4-2 電子能譜化學分析儀(ESCA)分析..........................47 4-3 電漿聚乳酸交聯密度量測................................50 4-4 電漿聚乳酸利用原子力顯微鏡(AFM)表貌觀察...............52 4-5 電漿聚乳酸水解實驗....................................57 4-6 電漿聚乳酸之奈米壓痕量測..............................67 第五章 結論............................................74 第六章 參考文獻........................................76rf 1. Y. Ikada, “Polymers and Biomaterials”, 1991, H. Feng et al. eds., 273. 2. T. Nakamura; S. Hitomi; S. Watanabe; Y. Shimizu; K. Jameshidi; S. H. Hyon; Y. Ikada,J. Biomed. Mater. Res., 1991, 2, 1. 3. J. W. Leenslag; A. J. Penning; R. R. M. Bos; F. R. Rozema; G. Boering, Biomaterials, 1987, 8, 311 4. A. E. Lehninger, “Principles of biochemistry”, 1982, S. Anderson and J. Fox eds., New York Worth Publishers, New York, USA, 435. 5. S. Li; M. Vert, “Global Chinese Symposium on Biomaterials and Controlled Release”, 1999, 333. 6. H. Yasuda, “Plasma Polymerization”, Academic Press, Orlando, FL., 1985. 7. H. Biederman and Y. Osada, “Plasma Polymerization Processes”, Elsevier, 1992. 8. J. H. Hollahan and A.T. Bell, “Techniques and Application of Plasma Chemistry”, Wiley, New York, 1974. 9. O. Tsuji and E. Hozumi, “Low-temperature Plasma Technique”, Nankodo, Tokyo, 1976. 10. 穗積啟一郎(編), “超LSI時代的電漿化學”, 工業調查會, 1983. 11. S. Motria, “Plasma Deposition, Treatment, and Etching of polymers”, 1990, ed. R. d’Agostino, Academic Press, London. 12. A. Grill, “Cold Plasma in Material Fabrication”, 1994, IEEE, Inc, New York. 13. F. F. Shi, Surf. Coat. Technol. 1996, 82, 1. 14. K. Nakamura, Thin Solid Films,1999, 345, 99. 15. Haddow, D. B.; France, R. M.; Short, R. D.; Bradley, J. W.; Barton, D.; Langmuir, 2000, 16, 5654. 16. H. Yasuda, Nuclear Instruments and Methods in Physics Reserch, 2003, 515, 15. 17. H. Yasuda; T. Yasuda, J. Poly. Sci. Chem. Part A, 2000, 38, 943. 18. Q. Yu, C. E. Moffitt, D. M. Wieliczka, H. Yasuda; J. Vac. Sci. Technol. A; 2001, 19, 2163. 19. S. Eufinger, W. J. Van Ooij, T. H. Ridgway; J. Appl. Poly. Sci.; 1996, 61, 1503. 20. S. Schiller; Chem. Mater.; 2002, 14, 235. 21. C. Tarducci, W. C. E. Schofield, J. P. S. Badyal, S. A. Brewer, C. Willis; Macomolecules; 2002, 35, 8724. 22. J. F. Friedrich, I. Retzko, G. Kuhn, W. E. S. Unger, A. Lippitz; Surf. Coat. Thchnol.; 2001, 142, 460. 23. H. Nagai, Y. Nakata, M. Suzuki, T. Okutani; J. Mater. Sci; 1998, 33, 1897. 24. M. S. Silverstein, I. Visoly-Fisher; Polymer; 2002, 43, 11. 25. G. H. Yang, Y. Zhang, E. T. Kang, K. G. Neoh, A. C. Huan, D. M. Y. Lai, J. Mater. Chem.; 2002, 12, 426. 26. 黃慧平, 台北醫學院口腔復健醫學研究所碩士論文, “聚乳酸薄膜及複合材之機械性質研究”, 1998. 27. S. Li; H. Garreau; M. Vert, J. Mater. Sci., Mater. Med., 1990, 1, 123. 28. K. Jamshidi; S. H. Hyon and Y. Ikada, Polymer, 1998, 29 ,2229. 29. M. Vert; S. Li; H. Garreau, J. Controlled Release, 1991, 16,15. 30. K. R. Huffman; D. J. Casey, J. Polym. Sci.: Polym. Chem. Ed., 1985, 23, 1939. 31. C. G. Pitt et al., Biomaterials, 1981, 2, 215. 32. 陳力俊, “電子顯微鏡學發展沿革與未來趨勢”, 科儀新知, 19, 2, 1997. 33. Digital Instrument, MultiMode Scanning Probe Microscope Instruction Manual, 1999. 34. 儀器總覽6-表面分析儀器。行政院國家科學委員會精密儀器發展中心出版。1998. 35. 汪建民主編, “材料分析”, 中國材料科學學會出版, 1998. 36. D. Briggs and M.P. Seah, “Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy”, John Wiley & Sons, New York, 1994. 37. F.K. Ghosh, “Introduction to Photoelectron Spectroscopy”, John Wiley & Sons, New York, 1983. 38. H. Windawi and F.F.-L. Ho, “Applied Electron Spectroscopy for Chemical Analysis”, John Wiley & Sons, New York, 1986. 39. B. George; P. Mclntyre; “Infrared Spetroscopy”, John Wiley & Sons, New York, 1987. 40. M. R. Vanlandingham, J. Res. Natl. Inst. Stand. Technol, 2003, 108, 249. 41. W. C. Oliver; G. M. Pharr, J. Mater. Res., 1992, 7, 1564. 42. G. J. Cruz; J. Morales; R. Olayo, Thin Solid Films, 1999, 342, 119. 43. G. J. Cruz; J. Morales; R. Olayo; M. M. Castillo-Ortega; R. Olayo, Synthetic Metals, 1997, 88, 213. 44. G. Beamson and D. Briggs, “High resolution XPS of Organic Polymers”, John Wiley and Sons,1992. 45. D. Briggs, “Surface Analysis of Polymer by XPS and Static SIMS”, Cambridge University Press, 1998. 46. Z. G. Qiu; Surf. Coat. Technol.;2000, 131, 525. 47. L. Sandri, M. S. Silverstein, E. Sacher; Polymer; 2001, 42, 3761.id NH0925159050 sid 913593 cfn 0 / id NH0925159051 auc 王怡文 tic Fe-Pd鐵磁性形狀記憶合金添加第三元素之研究 adc 胡塵滌 ty 碩士 sc 國立清華大學 dp 材料科學工程學系 yr 92 lg 中文 pg 110 kwc Fe-Pd kwc 鐵磁 kwc 形狀記憶 kwc 磁伸縮 abc 論文摘要 tc 目 錄 致謝 論文摘要 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ Ⅰ 目錄 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ Ⅱ 表目錄 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ Ⅴ 圖目錄 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ Ⅵ 第一章 緒論 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1 1-1 前言 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1 1-2 鐵磁形狀記憶合金導論 ‥‥‥‥‥‥‥‥‥‥‥‥‥ 2 1-2-1 形狀記憶效應 ‥‥‥‥‥‥‥‥‥‥‥‥‥ 2 1-2-2 磁伸縮 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4 1-2-3 鐵磁形狀記憶效應 ‥‥‥‥‥‥‥‥‥‥‥ 5 1-2-4 鐵磁形狀記憶合金之應用 ‥‥‥‥‥‥‥‥ 6 1-3 鐵鈀合金文獻回顧 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 7 1-3-1 麻田散體變態 ‥‥‥‥‥‥‥‥‥‥‥‥‥ 7 1-3-2 形狀記憶效應 ‥‥‥‥‥‥‥‥‥‥‥‥‥ 10 1-3-3 磁性質與磁伸縮 ‥‥‥‥‥‥‥‥‥‥‥‥ 11 1-3-4 添加第三元素的影響 ‥‥‥‥‥‥‥‥‥‥ 13 1-4 儀器與量測原理 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 13 1-4-1 應變規 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 13 1-4-2 振動樣品磁量儀 ‥‥‥‥‥‥‥‥‥‥‥‥ 15 1-5 研究目的 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥16 第二章 實驗方法‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 30 2-1 試片準備‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥30 2-2 快速凝固法‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥30 2-3 顯微結構觀察‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥31 2-3-1 X-ray 繞射分析 ‥‥‥‥‥‥‥‥‥‥‥‥31 2-3-2 OM顯微結構觀察‥‥‥‥‥‥‥‥‥‥‥‥ 32 2-4 DSC量測 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥32 2-5 基本磁性質量測‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥32 2-6 磁伸縮量測‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥33 2-7 形狀記憶效應測試‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥33 第三章 結果與討論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 39 3-1 各試片代號介紹‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 39 3-2 各試片之基本性質研究‥‥‥‥‥‥‥‥‥‥‥‥‥ 39 3-2-1 成分定量分析 ‥‥‥‥‥‥‥‥‥‥‥‥‥ 39 3-2-2 室溫X-ray繞射分析 ‥‥‥‥‥‥‥‥‥‥ 40 3-2-2-1 塊材X-ray繞射分析 ‥‥‥‥‥‥‥40 3-2-2-2 薄帶X-ray繞射分析 ‥‥‥‥‥‥‥41 3-2-3 OM顯微觀察結構‥‥‥‥‥‥‥‥‥‥‥‥ 43 3-2-4 磁性質量測 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 46 3-3 相變化溫度研究‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 46 3-3-1 DSC熱分析‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥47 3-3-2 低溫X-ray繞射分析‥‥‥‥‥‥‥‥‥‥‥48 3-3-3 低溫磁性質研究‥‥‥‥‥‥‥‥‥‥‥‥‥51 3-4 磁伸縮研究‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 54 3-4-1 不同微結構的FePdPt合金塊材之磁伸縮性 質研究‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥54 3-4-2 成分對磁伸縮性質的影響‥‥‥‥‥‥‥‥‥55 3-4-3 熱處理條件對磁伸縮特性的影響‥‥‥‥‥‥58 3-4-4 銅輪轉速對磁伸縮特性之影響‥‥‥‥‥‥‥59 3-5 形狀記憶效應之研究‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 60 3-5-1 熱處理前薄帶試片自然產生之雙向形狀記 憶效應‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥60 3-5-2 熱處理後薄帶試片經熱機訓練之雙向形狀 記憶效應‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥61 第四章 結論 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥106 第五章 參考文獻‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥108 表目錄 表1-1 三種鐵磁形狀記憶合金性質的比較 ‥‥‥‥‥‥‥‥‥ 17 表3-1 試片列表 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 65 表3-2 圓棒樣品ICP-AES成分測定結果 ‥‥‥‥‥‥‥‥‥‥ 66 表3-3 薄帶樣品成分測定結果 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 66 圖目錄 圖1-1 形狀記憶合金之形狀記憶效應示意圖 ‥‥‥‥‥‥‥‥ 18 圖1-2 CuAlNi 合金熱彈性型麻田散體經冷卻、加熱所致的成長 、收縮之光學顯微鏡照片‥‥‥‥‥‥‥‥‥‥‥‥‥‥18 圖1-3 記憶方式之示意圖 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 19 圖1-4 磁伸縮現象的物理起源示意圖 ‥‥‥‥‥‥‥‥‥‥‥ 19 圖1-5 磁化機制與磁伸縮的示意圖 ‥‥‥‥‥‥‥‥‥‥‥‥ 20 圖1-6 鐵磁形狀記憶效應示意圖(H1(eta,eta')ll,Bs->(eta,eta',phi)ll, 和Bc->D_{s,d}ll 稀有衰變,這些衰變是由味改變中性電流過程 所產生。在我們的分析中,我們用光前沿夸克模型和夸克組成模型計算強子形狀因子。我們期待Bd 和 B_{s,c} 的衰變可以分別在未來的B工廠和強子碰撞器中得到驗證。 tc abstract ---1 1. Introduction ---8 2. Effective Hamiltonians ---12 3. Form Factors ----20 4. Rare Exclusive B Decays ---38 5. Conclusions ---62 Appendix ---64 Bibliography ---83rf 1. Belle Collaboration, J. Kaneko {\it et al.}, Phys. Rev. Lett. {\bf 90}, 021801 (2003). 2. BABAR Collaboration, B. Aubert {\it et al.}, arXiv:hep-ex/0404006. 3. Belle Collaboration, A. Ishikawa {\it et al.}, Phys. Rev. Lett. {\bf 91}, 261601 (2003). 4. Belle Collaboration, K. Abe {\it et al.}, Phys. Rev. Lett. {\bf 88}, 021801 (2002). 5. BABAR Collaboration, B. Aubert {\it et al.}, Phys. Rev. Lett. {\bf 91}, 221802 (2003). 6. BABAR Collaboration, B. Aubert {\it et al.}, Phys. Rev. Lett. {\bf 88}, 241801 (2002). 7. A. Ali, P. Ball, L.T. Handoko, and G. Hiller, Phys. Rev. {\bf D61}, 074024 (2000); P. Colangelo, F. De Fazio, P. Santorelli, and E. Scrimieri, Phys. Rev. {\bf D53}, 3672 (1996); D. Melikhov, N. Nikitin, and S. Simula, Phys. Rev. {\bf D57}, 6814 (1998). 8. C.Q. Geng and C.P. Kao, Phys. Rev. {\bf D57}, 4479 (1998). 9. A. Ali, E. Lunghi, C. Greub, and G. Hiller, Phys. Rev. {\bf D66}, 034002 (2002); T.M. Aliev, H. Koru, A. \"{O}zpineci, and M. Savci, Phys. Lett. {\bf B400}, 194 (1997); T. M. Aliev, M. Savci, and A.\"{O}zpineci, Phys. Rev. {\bf D56}, 4260 (1997); G. Burdman ,Phys. Rev. {\bf D52}, 6400 (1995); N. G. Deshpande and J. Trampetic , Phys. Rev. Lett. {\bf 60}, 2583 (1988); C. Greub, A. Ioannissian , and D. Wyler, Phys. Lett. {\bf B346}, 149 (1995); J. L. Hewett and J. D. Wells , Phys. Rev. {\bf D55}, 5549 (1997); and references therein. 10. G. Buchalla, A.J. Buras and M.E. Lautenbacher, Rev. Mod. Phys. {\bf 68},1230 (1996). 11. C.H. Chen and C.Q. Geng, Phys. Rev. {\bf D63}, 114025 (2001); Phys. Rev. {\bf D64}, 074001 (2001). 12. CDF Collaboration, F. Abe {\it et al.}, Phys. Rev. {\bf D58}, 112004 (1998); Phys. Rev. Lett. {\bf 81}, 2432 (1998). 13. Particle Data Group, D.E. Groom {\it et al.}, Eur. Phys. Jour. C15, 1 (2000). 14. N. Isgur, M.B. Wise, Phys. Lett. {\bf B232}, 113 (1989); Phys. Lett. {\bf B237}, 527 (1990). 15. D.S. Du and Z. Wang, {\em Phys. Rev.} {\bf D39}, 1342 (1989); C.H. Chang, Y.Q. Chen, {\em Phys. Rev.} {\bf D48}, 4086 (1993); K. Cheung, {\em Phys. Rev. Lett.} {\bf 71}, 3413 (1993); E. Braaten, K. Cheung, and T. Yuan, Phys. Rev. {\bf D48}, R5049 (1993). 16. For a review, see, $e.g.$, S. Stone, hep-ph/{\bf 9709500} (1997). 17. For a recent review, see A. Ali et. al., {\em Phys. Rev. } {\bf D61}, 074024 (2000). 18. CLEO Collaboration, M. S. Alam et. al., Phys. Rev. Lett. {\bf 74}, 2885 (1995). 19. C.-H. Chang and Y.-Q. Chen, Phys. Rev. {\bf D49}, 3399 (1994); A. Abd El-Hady, J. H. Mu$\tilde{\mathrm n}$oz and J.P. Vary, Phys. Rev. {\bf D62}, 014019 (2000); A.Yu. Anisimov, P.Yu. Kulikov, I.M. Narodetskii, K.A. Ter-Martirosyan,\newline Phys. Atom. Nucl. {\bf 62}, 1739 (1999); V.V. Kiselev, A.K. Likhoded, A.I. Onishchenko, Nucl. Phys. {\bf B259}, 473 (2000); V.V. Kiselev, A.E. Kovalsky, A.K. Likhoded, hep/ph-0002127; P. Colangelo and F. De Fazio, Phys. Rev. {\bf D61}, 034012, 2000. 20. M.A. Ivanov, J.G. K$\ddot{\mathrm o}$rner, and P. Santorelli, Phys. Rev. {\bf D63}, 074010 (2001); and references therein. 21. D.S. Du, Xiu-lin Li, and Ya-dong Yang, Phys. Lett. B{\bf 380}, 193 (1996); G.R. Lu, et. al., Phys. Rev. D{\bf 54}, 5647 (1996); N. Barik, Sk. Naimuddin, S. Kar, and P.C. Dash Phys. Rev. D{\bf 63}, 014024 (2001). 22. C.C. Lih, C.Q. Geng, and W.M. Zhang Phys. Rev. D59, 114002 (1999); C.Q. Geng, C.C. Lih and T.H. Wu, Phys. Rev. D60, 054002 (1999) (hep-ph/9905203). 23. C.Q. Geng and C.C. Liu, to be submitted. 24. C.Q. Geng and C.C. Liu, J. Phys. {\bf G}: Nucl. Part. Phys. {\bf 29}, 1103 (2003). 25. C.Q. Geng, C.W. Hwang, and C.C. Liu, Phys. Rev. {\bf D65}, 094037 (2002). 26. J.M. Flynn and C.T. Sachrajda, hep-lat/9710057. 27. E. Bagan {\it et al.}, Z. Phys. {\bf C64}, 57 (1997). 28. V.V. Kiselev, A.E. Kovalsky, and A.K. Likhoded, Nucl. Phys. {\bf B 585}, 353 (2000). 29. P. Ball and V.M. Braun, Phys. Rev. {\bf D58}, 094016 (1998). 30. H.Y. Cheng, C.Y. Cheung, and C.W. Hwang, Phys. Rev. {\bf D55}, 1559 (1997). 31. C.Q. Geng, C.W. Hwang, C.C. Lih, and W.M. Zhang, Phys. Rev. {\bf D64}, 114024 (2001). 32. D. Melikhov, Phys. Rev. {\bf D53}, 2460 (1996). 33. D. Melikhov, Phys. Rev. {\bf D56}, 7089 (1997). 34. D. Melikhov, N. Nikitin, and S. Simula, Phys. Rev. {\bf D57}, 6814 (1998). 35. D. Melikhov and B. Stech, Phys. Rev. {\bf D62}, 014006 (2000). 36. P.Z. Skands, JHEP 0101:008 (2001)[arXiv:hep-ph/0010115 ]. 37. A. Deandrea and A.D. Polosa, Phys. Rev. {\bf D64}, 074012 (2001). 38. G. Erkol and G. Turan, Eur.\ Phys.\ J.\ C {\bf 25}, 575 (2002). 39. CDF Collaboration (D. Acosta {\it et al.}), Phys. Rev. {\bf D65}, 111101(R(2002). 40. See, e.g., A.J. Buras, arXiv:hep-ph/9806471. 41. T. Inami and C. S. Lim, Prog. Theor. Phys. {\bf 65}, 297 (1981). 42. G. Buchalla and A.J. Buras, Nucl. Phys. {\bf B 400},225 (1993). 43. T. Mannel, A. Ali, and T. Morozumi, Phys. Lett. {\bf B 273} 505 (1991). 44. G. Belanger and C.Q. Geng, Phys. Rev. {\bf D43}, 140 (1991). 45. M.V. Terent'ev, Sov. J. Phys. {\bf 24}, 106 (1976); V.B. Berestetsky and M.V. Terent'ev, {\sl ibid.} {\bf 24}, 547 (1976); {\bf 25}, 347 (1977). 46. P.L. Chung, F. Coester, and W.N. Polyzou, Phys. Lett. {\bf B205}, 545 (1988). 47. W.M. Zhang, Chin. J. Phys. {\bf 31}, 717 (1994); Preprint IP-ASTP-19-95 [hep-ph/9510428 ]. 48. C.Y. Cheung, C.W. Hwang, and W.M. Zhang, Z. Phys. {\bf C75}, 657 (1997); C.Q. Geng, C.C. Lih, and Wei-Min Zhang, Phys. Rev. D57, 5697 (1998); N.B. Demchuk, I.L. Grach, I.M. Narodetskii, and S. Simula, Phys. Atom. Nucl. {\bf 59}, 2152 (1996); Yad. Fiz. {\bf 59},2235 (1996); I.L. Grach, I.M. Narodetskii, and S. Simula, Phys. Lett. {\bf B385}, 317 (1996). 49. A. Dubin and A. Kaidalov, Yad. Fiz. 56, 164 (1993); Phys. Atom. Nucl. {\bf 56}, 237 (1993) ]. 50. W. Jaus, Phys. Rev. {\bf D41}, 3394 (1990); ibid. {\bf D44}, 2851 (1991); Z. Phys. {\bf C54}, 611 (1992). 51. Th. Feldmann, P. Kroll, and B. Stech, Phys. Rev. D58, 114006 (1998). 52. C.S. Kim and Y.D. Yang, Phys. Rev. {\bf D65}, 017501 (2001). 53. G. Erkol and G. Turan, Eur. Phys. J. {\bf C 28}, 243 (2003). 54. C. Breub, A. Ioannissian, and D. Wyler, Phys. Lett. {\bf B 346} 149 (1995). 55. J.L. Hewett, Phys. Rev. {\bf D 53} 4964 (1996). 56. See, {\em e.g.}, A.J. Buras, hep-ph/0109197. 57. S. Rai Choudhury, Phys. Rev. {\bf D 56}, 6028 (1997). 58. C.Q. Geng and C.P. Kao, Phys. Rev. {\bf D54}, 5636 (1996). 59. G. Burdman, Phys. Rev. {\bf D57}, 4254 (1998). 60. See, e.g., G. Eigen, arXiv: hep-ex/0112042.id NH0925198003 sid 877304 cfn 0 / id NH0925198004 auc 林佩君 tic 介觀量子點之D''yakonov Perel'' 的自旋弛豫研究 adc 牟中瑜 adc 張正宏 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 英文 pg 32 kwc 自旋 kwc 量子點 kwc 弛豫 kwc 半導體 abc 這篇論文主要探討了對相同面積下各種不同邊長比例和各種不同邊界性質的量子點的D''yakonov-Perel''自旋弛豫值。對於不同邊長比例的量子點,我們更深入探討兩種不同的邊界性質:完全光滑和完全粗糙的。而應用在論文研究的主要方法為半古典的路徑積分數值模擬法,內容概要是這樣的:在第一章中,我們探討了論文研究的緣由,並對這篇論文作了簡單初步的介紹。接著在第二章中,我們推導出一些論文相關的實用公式。作法是由一些基本的有關Rashba的自旋軌道交互作用推導,再利用半古典的路徑積分理論延伸,從而得到具有Rashba的自旋軌道交互作用的電子在二維自由空間的能量的本徵值及本徵態。在第三章,我們解釋論文中數值模擬的方法,分別使用不同的自旋軌道耦合能量來測量,並實際說明了自旋弛豫極化的過程及最後的結果。在第四章,我們將第三章的光滑面改為完全粗糙面,用第三章同樣的方法來操作。在第五章,我們分別探討了單顆電子不同軌跡的自旋演化結果,這樣的結果有助於我們瞭解在第三章和第四章所得到的終結自旋極化值為正的原因。在第六章,我們則對論文的結果作了一番討論並導引出一些結論。主要有:我們發現具有完全光滑邊界的量子點有較慢的自旋弛豫。除此之外,在所有的同樣邊界性質的量子點中,正方形的量子點具有最大的終結自旋極化值。因此我們可以說明,在本文所提到的所有量子點系統中,正方形的量子點是最佳的自旋資訊儲存系統。 rf [1 ] Igor Zuti´c, Jaroslav Fabian and S.Das. Sarma, Review of modern physics, 76, 323 (2004). [2 ] S. A. Wolf, et al., Science 294, 1488 (2001). [3 ] P. Ball, Nature 404, 918 (2000). [4 ] J.B. Miller, D.M. Zumbhl, C.M. Marcus, Y.B. Lyanda-Geller, D. Goldhaber-Gordon, K. Campman, and A.C. Gossard, Phys. Rev. Lett. 90, 076807 (2003); J.-H. Cremers, P. W. Brouwer, and V. I. Fal’ko, Phys. Rev. B 68, 125329 (2003); D. M. Zumbhl, J. B. Miller, C. M. Marcus, K. Campman, and A. C. Gossard, Phys. Rev. Lett. 89, 276803 (2002); I.L. Aleiner and V.I. Fal’ko, Phys. Rev. Lett. 87, 256801 (2001). [5 ] C. H. Chang, A. G. Mal’shukov, and K. A. Chao, cond-mat/0405212. [6 ] O. Zeitsev, D. Frustaglia, and K. Richter, cond-mat /0405266 (2004). [7 ] Yu. L. Bychkov and E.I. Rashba, J. Phys. C 17,6093(1984). [8 ] L. W. Molenkamp, G. Schmidt V. Shlyapin, and G. E. W. Bauer, Phy. Rev. B 64, 121202(R)(2001). [9 ] J. Sinova, Dmitrie Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, cond-mat/0307663 v2.(2004).id NH0925198004 sid 893349 cfn 0 / id NH0925198005 auc 劉春福 tic 應用薄膜橋製作奈米尺寸電晶體極其相關研究 adc 周亞謙 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 69 kwc 薄膜橋 kwc 分子電晶體 kwc 三電極 kwc SOI晶圓 kwc 微影 kwc 蝕刻 kwc 蒸鍍 kwc 非定域軌域 kwc 自組分子 kwc 位障 kwc 導電機制 kwc 整流元件 abc 摘 要 tc 目 錄 誌謝 ……………………………………………………………I 圖片索引 ………………………………………………………II 表格索引 ……………………………………………………VII 第一章:緒論 …………………………………………………1 1-1 簡介 ……………………………………………………1 1-2 光阻 ……………………………………………………1 1-3 光阻塗佈 ………………………………………………2 1-4 光學微影 ………………………………………………3 1-5 電子束微影 ……………………………………………7 1-6 乾式蝕刻 ………………………………………………9 1-7 濕式蝕刻 ………………………………………………13 1-8 熱氧化 …………………………………………………17 1-9 金屬薄膜蒸鍍 …………………………………………18 1-10 量測 …………………………………………………20 第二章:元件製作 ……………………………………………21 2-1 晶圓的準備 ……………………………………………21 2-2 元件製作流程 …………………………………………21 2-3 元件製作結果 …………………………………………24 第三章:分子電子學簡介 ……………………………………27 3-1 前言 ……………………………………………………27 3-2 分子導電原理 …………………………………………27 3-3 σ鍵與π鍵 ………………………………………………28 3-4 碳原子的混成軌域 ……………………………………29 3-5 苯環的非定域π鍵 ……………………………………31 3-6 自組單層分子層 ………………………………………32 3-7 『整流』分子 …………………………………………34 3-8 電子傳導機制 …………………………………………37 3-9 Simmons 模型 ………………………………………38 3-10 分子電晶體 …………………………………………39 第四章:量測數據分析與討論 ………………………………43 4-1 樣品良率 ………………………………………………43 4-2 M-I-M系統電子傳導機制分析…………………………43 4-3 自組分子電晶體的特性 ………………………………48 4-4閘極電壓對傳導機制的影響……………………………55 4-5 溫度阻斷效應 …………………………………………61 4-6 自組分子電晶體特性的定性解釋 ……………………64 4-7 結論 ……………………………………………………65 4-8 未來展望 ………………………………………………65 參考文獻 ………………………………………………………66rf 參 考 文 獻 [1 ] J. Chen, T. Lee, J. Su, W. Wang, M. A. Reed, A. M. Rawlett, M. Kozaki, Y. Yao, R. C. Jagessar, S. M. Dirk, D. W. Price, J. M. Tour, D. S. Grubisha, and D. W. Bennett, " Molecular Electronic Devices " in “ Molecular Nanoelectronics ”, edited by M. A. Reed and Takhee Lee, American Scientific Publishers. [2 ] J. Chen, T. Lee, J. Su, W. Wang, and M. A. Reed, H. S. Nalwa, " Molecular Electronic Devices " in“ Encyclopedia of Nanoscience and Nanotechnology ”, American Scientific Publishers. [3 ] N. N. Gribov, S. J. C. H. Theeuwen, J. Caro, and S. Radelaar,“ A new fabrication process for metallic point contacts ”, Microelectronic Engineering 35, 317-320, 1997. [4 ] N. N. Gribov, S. J. C. H. Theeuwen, J. Caro, E. van der Drift, F. D. Tichelaar, T. R. de Kruijff, and B. J. Hickey,“ Fabrication of metallic point contacts: A new approach for devices with a multiplayer or a heterointerface ”, J. Vac. Sci. Technol. B 16(6), Nov/Dec, 1998. [5 ] D. J. Elliot, “ Integrated Circuit Fabrication Technology, 2nd ed. ”, McGraw Hill, 1989. [6 ] 陳偉德, “ 電子束微影系統的裝設及電子元件的製作 ”, 國立台灣大學物理研究所碩士論文, 1998. [7 ] 顏培峻, “ 利用電子束微影技術製作間隔小於10nm的電極 ”, 國立清華大學物理研究所碩士論文, 2002. [8 ] Hong Xia著, 羅正中, 張鼎張 譯, ” 半導體製程技術導論 ”, 台灣培生教育出版股份有限公司, 2002. [9 ] C. Reyes-Betanzo, S. A. Moshkalyov, J. W. Swart and A. C. Ramos, “ Silicon nitride etching in high- and low-density plasmas using SF6/O2/N2 mixtures ”, J. Vac. Sci. Technol. A 21(2), Mar/Apr, 2003. [10 ] 孫介偉, “ 奈米尺寸單層自組分子元件的製作 ”, 國立清華大學物理研究所碩士論文, 2003. [11 ] 陳德修, ” 薄膜金屬奈米橋的製作 ”, 國立清華大學碩士論文, 2003. [12 ] James D. Plummer著, 羅正忠等 譯, “ 半導體工程-先進製程與模擬”, 台灣培生教育出版股份有限公司. [13 ] 陳碧媛, ” 懸浮橋奈米結構的製作 ”, 國立清華大學碩士論文, 2002. [14 ] S. A. Campbell, “ Inhibition of pyramid formation in the etching of Si p<100> in aqueous potassium hydroxide-isopopanol ”, J. Micromech. Microeng. 5, 1995, p209. [15 ] K. R. Williams, ” Silicon wet orientation-dependent etch rates ”, Properties of Crystalline Silicon, London, 1999. [16 ] S. M. Sze, “ Semiconductor Devices, Physics and Technology ”, John Wiley, New York, 1996. [17 ] 黃國貞, “ 三電極矽電容式壓力感測器及光纖反射式測微器 ”, 國立交通大學電子工程研究所博士論文, 1997. [18 ] Sorab K. Ghandhi, ” VLSI Fabrication Principle, 2nd ed. ”, John Wiley, New York, 1994. [19 ] E. A. Irene and D. W. Dong, ” Silicon Oxidation Studies : The Oxidation of Heavily B- and P-Doped Single Crystal Silicon ”, J. Electrochem. Soc. 125 (1978) 1146. [20 ] C. P. Ho, J. D. Plummer, and J. d. Mindl, “ Thermal Oxidation of Heavily Phosphorus-Doped Silicon ”, J. Electrochem. Soc. 125 (1978) 665. [21 ] Brent A. Mantooth, Paul S. Weiss, “ Fabrication, Assembly, and Characterization of Molecular Electronic Components ”, Proceedings of the IEEE, Vol. 91, No. 11, November 2003. [22 ] 黃昆 原著, 韓汝琦 改編, “ 固體物理學 ”, 高等教育出版社, 北京, 1997. [23 ] 陸果, “ 基礎物理學, 下冊 ”, 高等教育出版社, 北京, 1997. [24 ] Kenneth Krane, “ Modern Physics, 2nd ed. ”, John Wiley, New York, 1986. [25 ] Steven S. Zumdahl, “ Chemical Principles, 4th ed. ”, Houghton Mifflin, Boston, 2002. [26 ] Y.-T. Tao, C.-C. Wu, J.-Y. Eu, W.-L. Lin, K.-C. Wu, C.-H.Chen, “ Structure Evolution of Aromatic-Derivatized Thiol Monolayers on Evaporated Gold ”, Langmuir, 13, 4018-4023, 1997. [27 ] Robert M. Metzger, “ All about (N-hexadecylquinolin-4-ium-1-yl) methylidenetricyano – quinodimethanide, a unimolecular rectifer of electrical current ”, J. Mater. Chem., 10, 55-62, 2000. [28 ] J. G. Simmons, “ Conduction in thin dielectric films ”, J. Phys. D: Appl. Phys., Vol. 4., 613, 1971. [29 ] Philip R. Bevington, D. Keith Robinson, “ Data Reduction and Error Analysis for the Physical Sciences, 2nd. ”, McGraw-Hill, Singapore, 1994. [30 ] F. Jäckel, M. D. Watson, K. Müllen, J. P. Rabe, “ Prototypical Single-Molecule Chemical-Field-Effect Transistor with Nanometer-Sized Gates ”, Phy. Rev. Lett., Vol. 92, 188303, 2004. [31 ] Hongkun Park, Jiwoong Park, Andrew K. L. Lim, Erik H. Anderson, A. Paul Alivisator, Paul L. McEuen, “ Nanomechanical oscillations in a single-C60 transistor ”, Nature, Vol. 407, 57-60, 2000. [32 ] Sander J. Tans, A. R. M. Verschueren, C. Dekker, “ Room-temperature transistor based on a single carbon nanotube ”, Nature, Vol. 393, 49, 1998. [33 ] J. A. Misewich, R. Martel, Ph. Avouris, J. C. Tsang, S. Heinze, J. Tersoff, “ Electrically Induced Optical Emission from a Carbon Nanotube FET ”, Science, Vol. 300, 783-786, 2003. [34 ] Wenjie Liang, Matthew P. Shores, Marc Bockrath, Jeffrey R. Long, Hongkun Park, “ Kondo resonance in a single-molecule transistor ”, Nature, 417, 725–729, 2002. [35 ] H. Grabert, M. H. Devoret, “ Single Charge Tunneling ”, Plenum, New York, 1992. [36 ] W. Wang, T. Lee, M. Kamdar, M. A. Reed, M. P. Stewart, J.-J. Hwang, J. M. Tour, “ Electrical characterization of metal-molecule-silicon junction ”, Superlattices and Microstructures, 33, 217-226, 2003.id NH0925198005 sid 913301 cfn 0 / id NH0925198006 auc 陳尚文 tic 金(111)面的氧化探討 adc 羅榮立 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 54 kwc 金 kwc (111) kwc 氧化 abc 在大氣環境下以STM觀察金的(111)面,會看到表面佈滿單原子層深度的深色斑點,與其他金(111)面的氧化還原實驗的結果相當類似,我們的實驗確定了這些深色斑點的生成與大氣環境有關,如果這些深色斑點的產生確實與氧化還原的過程有關,則大氣下有尚未明白的金表面氧化機制,但我們也提出深色斑點的形成可能與其他污染物有關。 tc 摘要 誌謝辭 第一章 序論 1 1-1 研究動機 1 1-2 氧化金背景介紹 4 1-3 金(111)面背景介紹 7 第二章 儀器工作原理 9 2-1 掃描式穿隧電子顯微鏡 (Scanning Tunneling Microscope, STM) 9 2-2 低能量電子繞射 (Low Energy Electron Diffraction, LEED) 14 2-3 歐傑電子能譜 (Auger Electron Spectroscopy, AES) 20 第三章 儀器介紹與實驗操作 26 3-1 儀器介紹 26 3-1.1 實驗環境 26 3-1.2 樣品處理 26 3-1.3 實驗儀器 28 3-2 實驗操作 29 3-2.1 STM探針製備 29 3-2.2 實驗過程 30 第四章 結果與討論 33 4-1 大氣環境對金(111)面的影響 33 4-2 氧離子撞擊法氧化 35 4-3 探針引起的擴散效應 45 第五章 結論 52 參考文獻 53rf [1 ] J. Wintterlin, Science 278 (1997) 1931. [2 ] K. Tanaka, L. Tamaru, J. Catal. 2 (1963) 366. [3 ] G.C. Bond, Catal. Today 72 (2002) 5. [4 ] Andrew Zangwill, Physics at surfaces, 1988. [5 ] R.C. Jaklevic, L. Elie, Phys. Rev. Lett. 60 (1988) 120. [6 ] H.Ron, S.Matlis, I.Rubinstein, Langmuir 14 (1998) 1116. [7 ] N.D. Lang, Phys. Rev. Lett. 55 (1985) 230. [8 ] N.D. Lang, Phys. Rev. Lett. 56 (1986) 1164. [9 ] J.R. Hahn, W. Ho, Rhys. Rev Lett. 87 (2001) 166102. [10 ] W. Ho, J. of Chem. Phys. 117 (2002) 11033. [11 ] C. Levreton, Z.Z. Wang, Appl. Phys. A. 66 (1998) S777. [12 ] C.M. Vitus, A.J. Davenport, J. Electrochem. Soc. 141 (1994) 1291. [13 ] D.W. Goodman, X. Lai, M. Valden, Science 281 (1998) 1647. [14 ] J.M. Gottfried, N. Elghobashi, S.L.M. Schroeder, K. Christmann, Surf. Sci. 523 (2003) 89. [15 ] B. Koslowski, H.G. Boyen, C. Wilderotter, G. Kastle, P. Ziemann, R. Wahrenberg, P. Oelhafen, Surf. Sci. 475 (2001) 1. [16 ] H. Tsai, E. Hu, K. Perng, M. Chen, J. Wu, Y. Chang, Sur. Sci. 537 (2003) L447. [17 ] J.J. Pireaux, M. Liehr, P.A. Thiry, J.P. Delrue, R. Caudano, Surf. Sci 141 (1984) 221. [18 ] J.M. Gottfried, K.J. Schmidt, S.L.M. Schroeder, K. Christmann, Surf. Sci. 525 (2003) 184. [19 ] J.M. Gottfried, K.J. Schmidt, S.L.M. Schroeder, K. Christmann, Surf. Sci. 525 (2003) 197. [20 ] L. Huang, J. Chevrier, P. Zeppenfeld, G. Cosma, Appl. Phys. Lett. 66 (1995) 935. [21 ] A. Krozer, M. Rodahl, J. Vac. Sci. Technol. A 15 (1997) 1704. [22 ] V. Repain, J.M. Berroir, S. Rousset, J. Lecoeur, Appl. Sur. Sci. 162-163 (2000) 30. [23 ] J.V. Barth, H. Brune, G. Ertl, R.J. Behm, Rhys. Rev. B 42 (1990) 9307. [24 ] M. Mansfield, R.J. Need, J. Phys.: Condens. Matter 2 (1990) 2361. [25 ] J.C. Vickerman, Suface Analysis, 1998. [26 ] H. Honbo, S. Sugawara, K. Itaya, Anal. Chem. 62 (1990) 2424. [27 ] F.J. Rodriguez Nieto, G. Andreasen, M.E. Martins, F. Castez, R.C. Salvarezza, A.J. Arvia, J. Phys. Chem. B 107 (2003) 11452. [28 ] T.T. Tsong, Phys. Rev. B 44 (1991) 13703. [29 ] J.E. Freund, M. Edelwirth, J. Grimminger, R. Schloderer, W.M. Heckl, Appl. Phys. A 66 (1998) S787 [30 ] 羅榮立, 科儀新知, 第23卷, 第6期, 第64頁, 2002 [31 ] M. Haruta, Catal. Today 36 (1997) 153 [32 ] G. E. Poirier, Langmuir 13 (1997) 2019id NH0925198006 sid 913304 cfn 0 / id NH0925198007 auc 翁小晴 tic 以粒子誘發X射線進行北投石成份研究 adc 吳秀錦 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 63 kwc 北投石 kwc 粒子誘發X射線 abc 摘要 tc 目 錄 摘要……………………………………………………………………I 謝誌…………………………………………………………………III 目錄……………………………………………………………………IV 圖目錄…………………………………………………………………VI 表目錄…………………………………………………………VIII 第一章 緒論……………………………………………………1 第二章 粒子誘發X射線基本原理………………………………9 2.1 PIXE原理…………………………………………………9 2.2 PIXE產生機制……………………………………………9 2.3 PIXE命名…………………………………………………9 2.4 PIXE特點…………………………………………………11 2.5 PIXE應用…………………………………………………11 第三章 PIXE實驗設備與方法……………………………………15 3.1 加速器…………………………………………………15 3.2 其他設備………………………………………………16 3.3 實驗方法………………………………………………18 第四章 結果與討論………………………………………………23 4.1數據分析法………………………………………………23 4.2 空氣對能譜造成的貢獻…………………………………25 4.3 樣品能譜之初步分析結果………………………………25 4.4 樣品能譜之細部分析結果………………………………26 第五章 結論………………………………………………………45 5.1 使用PIXE研究北投石的特點……… …………………45 5.2 推測沈積速率的模型………… …………………………45 5.3 未來的研究………………………………………………47 附錄A 核種衰變介紹與實驗量測之數據…………………………49 A.1 定義………………………………………………………49 A.2 公式推導…………………………………………………49 A.3 觀念介紹…………………………………………………50 A.4 實驗方法…………………………………………………51 A.5 實驗步驟…………………………………………………52 A.6 實驗結果與討論…………………………………………52 附錄B GUPIX介紹…………………………………………………60 參考文獻……………………………………………………………63 圖目錄 圖1-1 北投石郵票……………………………………………………………………4 圖1-2 北台灣地圖……………………………………………………………………4 圖1-3 台北地圖………………………………………………………………………5 圖1-4 台北北投溫泉地圖……………………………………………………………5 圖1-5 地熱谷與北投溪平面圖………………………………………………………6 圖1-6 天然北投石…………………………………………………………………..7 圖1-7 天然安山岩…………………………………………………………………..7 圖1-8 人為北投石…………………………………………………………………..8 圖2-1 內層電子游離產生X射線或歐傑電子示意圖……………………………13 圖2-2 X射線命名關係圖………………………………………………………….14 圖3-1 中央研究院加速器平面示意圖……………………………………………19 圖3-2 SNICS 離子源……………………………………………………………...19 圖3-3 分析磁鐵……………………………………………………………………20 圖3-4 External Beam照片…………………………………………………………20 圖3-5 PIXE測量極限圖………………………………………………………..…21 圖3-6 電子儀器裝置方塊圖………………………………..…………………..…21 圖4-1 束射線轟擊空氣所造成的能譜圖……………………..……………………29 圖4-2 束射線轟擊天然北投石所造成的能譜圖……………..……………………30 圖4-3 束射線轟擊天然安山岩所造成的能譜圖……………..……………………31 圖4-4 束射線轟擊人為北投石所造成的能譜圖……………..……………………32 圖4-5 束射線轟擊2號標準品所造成的能譜圖……………..……………………33 圖4-6 Ba/Pb能峰面積比與理論上Ba/Pb 重量比作圖……..……………………34 圖4-7 天然北投石,人為北投石,天然安山岩之Ba/Pb重量比分布圖…………35 圖4-8 天然北投石,人為北投石,天然安山岩之Ba/Pb重量比分布柱狀圖……35 圖4-9 束射線轟擊天然北投石所造成的能譜圖……………..……………………36 圖4-10 束射線轟擊天然安山岩所造成的能譜圖…………..……………………..37 圖4-11 束射線轟擊人為北投石所造成的能譜圖…………..……………………..38 圖4-12 束射線轟擊2號標準品所造成的能譜圖…………..……………………..39 圖4-13 鋇與鍶的能峰面積作圖……….. …………. …………. ………………….41 圖4-14 鉛與鍶的能峰面積作圖……….. …………. …………. ………………….41 圖4-15 以鉛與鍶的能峰面積作圖(放大圖) ………. …………. …………………42 圖4-16 以鋇加鉛與鍶的能峰面積作圖………. …………. ………. .……………42 圖4-17 Ba/Pb能峰面積比與理論上Ba/Pb 重量比作圖. ………. .…………….43 圖4-18 天然北投石,人為北投石,天然安山岩之 Ba/Pb 重量比分布圖……..44 圖4-19 天然北投石,人為北投石,天然安山岩之Ba/Pb重量比分布柱狀圖….44 圖5-1 使用Trim軟體,模擬3MeV質子打在安山岩的穿透深度…. .…………48 圖5-2 人為北投石側面示意圖………………. .…………….……. .…………….48 圖A-1 核種衰變隨時間作圖………………. .…………….……. .……………....54 圖A-2 過渡平衡時,活度與時間作圖……. .…………….……. .……………....54 圖A-3 永續平衡時,子核種隨時間作圖…. .…………….……. .……………....55 圖A-4 釷系元素自然放射衰變表…. .…………….……. .……………………....55 圖A-5 活度Q與時間T關係圖…. .…………….……. .…………………….......56 圖A-6 地熱谷源頭取水,得224 Ra與228 Ra活度作圖. .…………………….......56 圖A-7 沿北投溪取水,得224 Ra與228 Ra活度. .…………………….................57 圖A-8 竹子湖氣象觀測站所得逐日雨量作圖. .……………………....................57 表目錄 表3-1 BaSO4 與PbSO4 混合之標準品成份表……………..….………………..22 表3-2 天然北投石樣品取點數目表…………………………..…………………..22 表4-1 使用GUPIX分析空氣的成份結果…………………..……………………29 表4-2 使用GUPIX分析天然北投石的成份結果…………..……………………30 表4-3 使用GUPIX分析天然安山岩的成份結果…………..……………………31 表4-4 使用GUPIX分析人為北投石的成份結果…………..……………………32 表4-5 使用GUPIX分析2號標準品的成份結果…………..……………………33 表4-6 使用GUPIX分析北然北投的成份結果…………..………………………36 表4-7 使用GUPIX分析天然安山岩的成份結果………..………………………37 表4-8 使用GUPIX分析人為北投石的成份結果………..………………………38 表4-9 使用GUPIX分析2號標準品的成份結果………..………………………39 表4-10 標準品中硫酸鋇成份一覽表……….. …..………………………………...40 表4-11 標準品中硫酸鉛成份一覽表……….. …..………………………………...40 表5-1 安山岩主要成份……….. …..……………………..……………..………...48 表A-1 地熱谷取水,得224 Ra與228 Ra活度表…………..………….…………...58 表A-2 沿北投溪取水,得224 Ra與228 Ra活度表…………….…………………….59rf 參考文獻 [R1-1 ] http://www.aec.gov.tw [R1-2 ]中冶環境造形顧問有限公司 何其昌先生提供 [R1-3 ]Steven S. Zumdahl, Chemical Principles, Third Edition, University of Illinois, ppA26 [R1-4 ]陳培源,科學教育,第九卷,第二期 [R1-5 ]Chang, F. H. (1961) Genetic study of anglessbarite from Peitou, Taiwan, Acta Geologica, No. 9, pp7-18 [R1-6 ]Chin-Jong Chen and Shu-Cheng Yu, A Substructural Study on Hokutolite, Memoir of the Geological Society of China, No. 6, pp 229-237, 2 Figs., 4 Pls.,3 Tabs., December 1984 [R1-7 ]Noriyuki Momoshima, Junichi Nita, Yonezo Maeda, Sinji Sugihara,Isamu Shinno, Nobuaki Matsuoka and Chin-Wang Huang, Chemical Composition and Radiativity in Hokutolite (Plumbian Barite) Collected at Peito Hot Spring, Taiwan, J. Environ. Radiactivity, Vol. 37, No.1,pp. 85-99,1997 [R1-8 ]Nobuyuki Sasaki and Kunihiko Watanuki, Variation in chemical composition of naturally occurring lead-bearing barite (hokutolite) having crystallized since 1953 at Tamagawa Hot Spring , Mineralogical, Journal, Vol.Ⅱ,No.6,pp 297-302,April,1983. [R2-1 ]S. Morita and M. Kamiya, Chinese J. Phys. 15,199(1977) [R3-1 ]中央研究院,余岳仲老師,陳冠銘先生提供. [R3-2 ]Sven A. E. Johansson, John L. Campbell, Klas G. Malmqvist, Particle-Induced X-Ray Emission Spectrometry(PIXE), John Wiley& Sons,Inc.(1995),pp13-15. [R5-1 ]Joseph R. Tesmer, Michael Nastasi, Handbook of Modern Ion Beam Materials Analysis, Materials Research Society, Pittsburgh, Pennsylvania, pp401 [R5-2 ]J. B. Marion, F. C. Young, Nuclear Reaction Analysis Graphs and Tables,pp18 [RA-1 ]Cember, Introduction to Health Physics(1969), Northwestern University, pp103-104id NH0925198007 sid 913306 cfn 0 / id NH0925198008 auc 蔡雯景 tic 存在於高次模磁旋行波放大器中之對流不穩定和絕對不穩定 adc 朱國瑞 adc 張存續 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 46 kwc 絕對不穩定 kwc 對流不穩定 kwc 磁旋行波放大器 abc 對流不穩定和絶對不穩定攸關磁旋行波放大器是否能穩定操作 的關鍵。Gyro-TWT操作原理根源於前進波的不穩定性,係利用對流不穩定放大輸入訊號;因此,結構造成的反射迴路容易影響輸出訊號的品質。而絕對不穩定所引起的振盪一直是gyro-TWT難以避免的問題,這種利用內部回饋機制形成的不穩定成為阻礙放大效率最主要的原因。為了探討這兩種不穩定對系統造成的影響,本論文針對 模式,第一次諧振模之分佈式損耗磁旋行波放大器進行理論上的分析。在這個系統中,可能存在的振盪來源包括操作在前進波區間的 模式對流不穩定,在電流增大的時候將會激發在cutoff附近的絕對不穩定。另外,還包括第一次諧振模交於返波區間的較低次模振盪,以及第二次諧振模所激發的較高次模振盪。本系統採用分佈式損耗作用段,目的在抑制這些可能產生的不穩定模式。這些由波和電子束同調條件決定的振盪模式涵蓋了一系列從負值到正值的傳播常數,在由損耗段 (lossy section) 和非損耗作用段 (copper section) 組成的線路中呈現了不同的場形包跡。追蹤其中的物理特性,可以解釋不同模式的起振電流對於調變電子和線路參數的敏感度不一。另外配合實際量測結果,我們利用線路結構去模擬反射率對放大波的影響,欲診斷此系統在穩定操作下遇到輸出頻寬不佳的問題。研究發現,出口端的反射是造成飽和輸出功率對頻率響應呈現共振腔特性的原因。這些結果對於目前UC Davis之W-Band磁旋行波放大器實驗上之重要性將在最後討論。 tc 摘要 誌謝 第一章 緒論 1-1 電子迴旋脈射 (ECM) 物理機制……………………………1 1-2 磁旋行波放大器介紹 …………………………………………4 1-3 利用分佈式損耗提高不穩定起振條件 ………………………8 1-4 UC Davis之 分佈式損耗磁旋行波放大器 ………………9 第二章 不穩定類型介紹及理論模型 2-1 對流不穩定和絕對不穩定……………………………………11 2-2 理論模型………………………………………………………13 第三章 Parametric Dependence of the Oscillation Thresholds of Absolute Instability 3-1 絶對不穩定TE01、TE02、TE21和TE11模式……………19 3-2 管壁損耗量……………………………………………………23 3-3 損耗段和銅作用段之長度……………………………………24 3-4 Velocity Spread ……………………………………………26 3-5 磁場……………………………………………………………27 3-6 電壓……………………………………………………………29 3-7 Velocity Ratio ……………………………………………31 第四章 磁旋行波放大器實驗結果之對流不穩定模擬 4-1 實驗回顧 ……………………………………………………32 4-2 模擬方法 ……………………………………………………34 4-3 計算結果 ……………………………………………………36 第五章 討論 5-1 第三章總結與討論 …………………………………………38 5-2 第四章總結與討論 …………………………………………39 參考文獻 ………………………………………………………………40 附錄 ……………………………………………………………………44rf [1 ] K. R. Chu, “ Overview of research on the gyrotron traveling-wave amplifier ” IEEE Trans. Plasma Sci., vol. 30, pp. 903–908, June 2002. [2 ] V. L. Granatstein, B. Levush, B. G. Danly, and R. K. Parker, “A quarter century of gyrotron research and development,” IEEE Trans. Plasma Sci., vol. 25, pp. 1322–1335, Dec. 1997. [3 ] K. L. Felch, B. G. Danly, H. R. Jory, K. E. Kreischer, W. Lawson, B. Levush, and R. J. Temkin, “Characteristics and applications of fast-wave gyrodevices,” Proc. IEEE, vol. 87, pp. 752–781, May 1999. [4 ] J. L. Seftor, V. L. Granatstein, K. R. Chu, P. Sprangle, and M. E. Read, “The electron cyclotron maser as a high power traveling-wave amplifier of millimeter waves,” IEEE J. Quantum Electron., vol. QE-15, pp. 848–853, 1979. [5 ] J. L. Seftor, A. T. Drobot, and K. R. Chu, “An investigation of a magnetron injection gun suitable for use in cyclotron resonance masers,” IEEE Trans. Electron Devices, vol. ED-26, pp. 1609–1616, 1979. [6 ] L. R. Barnett, K. R. Chu, J. M. Baird, V. L. Granatstein, and A. T. Drobot, “Gain, saturation, and bandwidth measurements of the NRL gyrotron traveling wave amplifier,” in IEDM Tech. Dig., 1979, pp. 164–167. [7 ] R. S. Symons, H. R. Jory, and S. J. Hegji, “An experimental gyro-TWT,” in IEDM Tech. Dig., 1979, pp. 676–679. [8 ] P. E. Ferguson and R. S. Symons, “A C-band gyro-TWT,” in IEDM Tech. Dig., 1980, pp. 310–313. [9 ] R. S. Symons, H. R. Jory, S. J. Hegji, and P. E. Ferguson, “An experimental gyro-TWT,” IEEE Trans. Microwave Theory Tech., vol. MTT-29, pp. 181–184, 1981. [10 ] P. E. Ferguson, G. Valier, and R. S. Symons, “Gyrotron-TWT operating characteristics,” IEEE Trans. Microwave Theory Tech., vol. MTT-29, pp. 794–799, 1981. [11 ] H. R. Jory, private communication. [12 ] Y. Y. Lau and K. R. Chu, “Gyrotron traveling wave amplifier—A proposed wideband fast wave amplifier,” Int. J. Infrared Millim. Waves, vol.2, pp. 415–425, 1981. [13 ] K. R. Chu, Y. Y. Lau, L. R. Barnett, and V. L. Granatstein, “Theory of a wideband distributed gyrotron traveling wave amplifier,” IEEE Trans. Electron Devices, vol. ED-28, pp. 866–871, 1981. [14 ] L. R. Barnett, Y. Y. Lau, K. R. Chu, and V. L. Granatstein, “An experimental wideband gyrotron traveling-wave amplifier,” IEEE Trans. Electron Devices, vol. ED-28, pp. 872–875, 1981. [15 ] L. R. Barnett, L. H. Chang, H. Y. Chen, K. R. Chu, Y. K. Lau, and C. C. Tu, “Absolute instability competition and suppression in a millimeter-wave gyrotron traveling-wave tube,” Phys. Rev. Lett., vol. 63, pp. 1062–1065, 1989. [16 ] K. R. Chu, L. R. Barnett, W. K. Lau, L. H. Chang, and H. Y. Chen, “A wide-band millimeter-wave gyrotron traveling-wave amplifier experiment,” IEEE Trans. Electron Devices, vol. 37, pp. 1557–1560, June1990. [17 ] K. R. Chu, L. R. Barnett, W. K. Lau, L. H. Chang, and C. S. Kou, “Recent development in millimeter wave gyro-TWT research at NTHU,” in IEDM Tech. Dig., 1990, pp. 699–702. [18 ] K. R. Chu, L. R. Barnett, H. Y. Chen, S. H. Chen, Ch. Wang, Y. S. Yeh, Y. C. Tsai, T. T. Yang, and T. Y. Dawn, “Stabilizing of absolute instabilities in gyrotron traveling-wave amplifier,” Phys. Rev. Lett., vol. 74, pp. 1103–1106, 1995. [19 ] K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, and T. T. Yang, “Ultra high gain gyrotron traveling wave amplifier,” Phys. Rev. Lett., vol. 81, pp. 4760–4763, 1998. [20 ] K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, T. T. Yang, and D. Dialetis, “Theory and experiment of ultrahigh-gain gyrotron traveling-wave amplifier,” IEEE Trans. Plasma. Sci., vol. 27, pp. 391–404, Apr. 1999. [21 ] M. Garven, J. P. Calame, B. G. Danly, K. T. Nguyen, B. Levush, F. N. Wood, and D. E. Pershing, IEEE Trans. Plasma Sci. 30, 885 (2002). [22 ] Q. S. Wang, D. B. McDermott, and N. C. Luhmann, Jr., Phys. Rev. Lett. 75, 4322 (1995). [23 ] Q. S. Wang, D. B. McDermott, and N. C. Luhmann, Jr., IEEE Trans. Plasma Sci. 24, 700 (1996). [24 ] C. K. Chong, D. B. McDermott, and N. C. Luhmann, Jr., IEEE Trans. Plasma Sci. 26, 500 (1998). [25 ] H. H. Song, D. B. McDermott, Y. Hirata, L. R. Barnett, C. W. Domier, H. L. Hsu, T. H. Chang, W. C. Tsai, K. R. Chu, and N. C. Luhmann, Jr., Phys. Plasmas 11, 2935 (2004). [26 ] G. S. Park, J. J. Choi, S. Y. Park, C. M. Armstrong, A. K. Ganguly, R. H. Kyser, and R. K. Parker, Phys. Rev. Lett. 74, 2399 (1995). [27 ] H. Guo, S. H. Chen, V. L. Granatstein, J. Rogers, G. S. Nusinovich, M. Waters, B. Levush, and W. J. Chen, Phys. Rev. Lett. 79, 515 (1997). [28 ] J. Rodgers, H. Guo, G. S. Nusinovich, and V.L. Granatstein, IEEE Trans. Electron Devices 48, 2434 (2001). [29 ] K. R. Chu, H. Guo, and V. L. Granatstein, Phys. Rev. Lett. 78, 4661 (1997). [30 ] G. G. Denisov, V. L. Bratman, A. D. R. Phelps, and S. V. Samsonov, IEEE Trans. Plasma Sci. 26, 508 (1998). [31 ] G. G. Denisov, V. L. Bratman, A. W. Gross, W. He, A. D. R. Phelps, K. Ronald, S. V. Samsonov, and C. G. Whyte, Phys. Rev. Lett. 81, 5680 (1998). [32 ] V. L. Bratman, A. W. Gross, G. G. Denisov, W. He, A. D. R. Phelps, K. Ronald, S. V. Samsonov, C. G. Whyte, and A. R. Young, Phys. Rev. Lett. 84, 2746 (2000). [33 ] Sirigiri, J. R., M. A. Shapiro, and R. J. Temkin, in IVEC 2002 of the third IEEE Int. Vacuum Electronics Conf., p. 83, 2002. [34 ] J. R. Sirigiri, M. A. Shapiro, and R. J. Temkin, Phys. Rev. Lett. 90, 258302 (2003). [35 ] Y. Y. Lau, K. R. Chu, L. R. Barnett, and V. L. Granatstein, “Effects of velocity spread and wall resistivity on the gain and bandwidth of the gyrotron traveling-wave amplifier,” Int. J. Infrared Millimeter Waves, vol. 2, pp. 395–413, 1981. [36 ] K. R. Chu and A. T. Lin, “Gain and bandwidth of the gyro-TWT and CARM amplifier,” IEEE Trans. Plasma Sci., vol. 16, pp. 90–104, Feb. 1988. [37 ] R. J. Briggs, Electron-Stream Interaction with Plasmas (Cambridge, MA: MIT, 1964). [38 ] K. R. Chu and J. L. Hirshfield, Phys. of Fluids 21, 461 (1978). [39 ] K. R. Chu, Rev. Modern Phys. 76, 2004 (April issue, in press).id NH0925198008 sid 913308 cfn 0 / id NH0925198009 auc 劉佳甄 tic 高氣壓微波電漿源之研究 adc 寇崇善 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 54 kwc 微波 kwc 電漿 kwc 高氣壓 abc 高氣壓微波電漿通常被應用在UV光源、水或空氣清淨的臭氧生成、以及鑽石薄膜與奈米碳管的成長方面。在高氣壓下,微波與電漿交換能量的機制,即藉助相當之粒子碰撞作用,來達到電磁波能量耦合效果的歐姆加熱。 tc Chapter 1 簡介 1.1 高氣壓微波電漿之原理………………………………………1 1.1.2高氣壓微波電漿之應用………………………………2 1.2 電漿源設計理念………………………………………………2 1.3 研究目的………………………………………………………3 Chapter 2 實驗安排 2.1 空腔共振器……………………………………………………4 2.2 理論模擬………………………………………………………4 2.3 系統架構……………………………………………………10 2.4 高氣壓微波電漿源裝置……………………………………11 2.5 共振腔內的模式確認………………………………………13 Chapter 3 實驗量測系統 3.1 Langmuir Probe 理論………………………………………16 3.1.1 Langmuir Probe 結構……………………………17 3.1.2 Langmuir Probe 問題……………………………19 3.1.3 探針控制系統………………………………………20 3.2 I-V curve的分析……………………………………………20 3.2.1 電漿參數的計算……………………………………21 3.2.2 EEDF的比較…………………………………………25 3.3 光譜儀量測系統……………………………………………25 Chapter 4 實驗結果與討論 4.1 電漿整體性質………………………………………………27 4.2 氣體流量大小對電漿的影響………………………………28 4.3 電漿密度隨氣壓的變化……………………………………28 4.3.1 電漿密度隨功率的變化……………………………31 4.4 電漿溫度隨氣壓的變化……………………………………32 4.4.1 電漿溫度隨功率的變化……………………………34 4.5 電漿密度隨位置的變化……………………………………36 4.5.1 電漿密度沿著中央軸的縱向分佈…………………37 4.5.2 電漿密度的φ角分佈………………………………40 4.5.3 電漿密度的橫向分佈………………………………43 4.6 OES (optical emission spectroscopy)量測……………48 Chapter 5 結論 5.1 結論……………………………………………………………52 Reference………………………………………………………………53rf [1 ] Francis F. Chen, introduction to PLASMA PHYSICS AND CONTROLLED FUSION, 1974 [2 ] K. Muraoka, C. Honda, K. Uchino, T. Kajiwara, K. Matsuo, Rev. Sci. Instrum., 63, 4913, 1992. [3 ] F. Werner, D. Korzec and J. Engemann, Plasma Source Sci. Technol., 3, 473, 1994 [4 ] Michael A. Lieberman and Allan J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, (John Wiley & Sons, Inc.), 1994 [5 ] Orlando Auciello, Daniel L.Flamm, DISCHARGE PARAMETERS AND CHEMISTRE, 1988 [6 ] J.Park, I. Henins, H.W. Herrmann, G. S. Selwyn, Appl. Phys. Lett. 76, 288 , 2000 [7 ] O. A. Ivanov, J. Phys. IV 8,317 ,1998 [8 ] M. Kando, Eleventh Symposium Process and Chemical reactions of low temperature plasma (Low Tatras, Slovakia), p. 73.,1998 [9 ] M. R Talukder, D. Korzec, and M. kendo, in proceedings of the XXV International Conference on Phenomena in ionized Gases, edited by T. Goto (Nagoya University, Nagoya, Japan ), Vol. 4, p. 271.,2001 [10 ] A. L. Vikharev, J. Phys. IV 8,275,1998 [11 ] M. R. Talukder, D.Korzec, and M. Kando, Probe diagnostis of high pressure microwave discharge in helium, J. Appl. Phys., Vol 91, No. 12, 15 June 2002 [12 ] Jie Zhang, EXPERIMENTAL DEVELOPMENT OF MICROWAVE CAVITY PLASMA REACTORS FOR LARGE AREA AND HIGH RATE DIAMOND FILM DEPOSITION,1993 [13 ] David K.Cheng, Field and Wave Electromagnetics 2/e,1996 [14 ]陳皇傑碩士論文,TM01模式電子磁旋共振電漿源之研製,1999 [15 ] L.Schott,Electrical Probes In Plasma Diagnostics(W.Lochte Holtzgreven),AIP Press,New York,1995 [16 ] Noah Hershkowitz,How Langmuir Probes Work in Plasma Diagnostics,vol.1 Discharge Parameters and Chemistry(Orlando Auciello and Daniel L.Flamm)Academic Press,London,1989 [17 ] F.F.Chen, Plasma Diagnostic Techniques, edited by R.H. Huddle and S.L.Leonard(Academic,New York),Chap4 ,1995 [18 ]潘興強碩士論文,蘭牟探針量測系統發展,1997 [19 ]Swift, J.D., M.J.R.,Electric Probes for Plasma Diagnostics, Iliffe Books,London [20 ] 吳倉聚博士論文,微波激發之大面積高密度表面波電漿源之研究,2000年7月 [21 ] S.Maeda, H.Matsuo, K.Kuwahara, High-pressure non-equilibrium microwave plasma source by using carbon materials, Surface and Coatings Technology 97,404-409,1997id NH0925198009 sid 913311 cfn 0 / id NH0925198010 auc 張弘昌 tic 金/砷化鎵介面結構之X光多光繞射研究 adc 張石麟 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 70 kwc 薄膜 kwc 繞射 kwc 介面 kwc 晶格常數 kwc 應力 kwc 同步輻射 kwc 斜切 abc 本論文為Au/GaAs的介面研究,其目的在於發展一新方法,來分析介面結構的相關訊息。實驗上是利用三光複繞射技術,直接量測一階(Primary)GaAs(0 0 6)以及利用影像板擷取沿著基底與薄膜介面行進的二階(Secondary)GaAs(-1-1 3)與GaAs(1-1 3) 繞射影像。在結果方面,發現攜帶介面訊息的二階繞射影像與在一階位置的掃描圖形會有所不同,這表示介面的GaAs結構由於受到上面Au薄膜的壓迫,造成晶格扭曲,倒晶格向量長度改變,加上可能有斜切(miscut)的影響,二階繞射影像光點才會因此而變化,並有鏡面反射光的存在。影像板上所紀錄到的是倒晶格空間的強度分布,倒晶格空間與實晶格空間只差一個傅立葉轉換而已,經由向量計算的方式,可得到實驗中各道光束的向量形式(包含入射光、繞射光、反射光…等),而我們在影像板上看到的只有光點的位置變化,透過向量計算來做擬合的工作,可求出其所對應的倒晶格向量長度變化量,接著便能算出介面附近晶格常數的變化。當然,此一新的分析方法仍處於測試的階段,準確性需要經過更多次實驗才有辦法證實,加上此方法的理論模型不夠完備,無法完美地解釋部份結果,這是日後所必須加強的。在本論文的最後,提出幾點關於實驗中可以加以改進的地方,並建議可針對Au薄膜進行實驗來做比較,希望能為以後的實驗步驟提供一個參考。 tc 摘要…………………………………………………………………....I 致謝…………………………………………………………………...II 目錄…………………………………………………………………..III 圖目錄…………………………………………………………………..V 表目錄……………………………………………………………...VIII 第一章 前言………..………………………………….………….…1 第二章 X光繞射相關理論…..………………………….……………3 2-1 X光繞射條件、實晶格與倒晶格的關係…..……….…3 2-2 晶系…...……………………………………………….5 2-3 三光複繞射………………………………………………8 2-4 複繞射定碼…………………………………………….11 2-5 繞射峰形分析………………………………………….16 第三章 實驗方法與結果……………………………….……………17 3-1 樣品簡介……………………………………………….17 3-2 實驗設備……………………………………………….19 3-3 實驗方法與步驟……………………………………….25 3-4 實驗結果……………………………………………….28 第四章 數據分析……………...……………………………………46 4-1 分析方法……………………………………………….46 4-2 實驗結果分析………………………………………….53 第五章 結論………………………………………………………….65 附錄…………………………………………………………………….67 參考文獻……………………………………………………………….70rf [1 ] D. Y. Noh, Y. Hwu, H. K. Kim, M. Hong (1995).Phys. Rev. B 51, 4441-4448. [2 ] Azároff, L. V. (1968). Elements of X-ray Crystallography. Chap.5,7,9. New York: McGraw-Hill. [3 ] P.P.Ewald, Physikal. Zeit., 14, 465, 1038. (1913) [4 ] P.P.Ewald, Zeit. F. Krist., 56, 129. (1921) [5 ]余樹楨(2000).晶體之結構與性質,Chap 1,2,3,4,5,10.渤海堂文化公司 [6 ] International Tables for Crystallography [7 ] Chang, S. L. (1984). Multiple Diffraction of x-ray in Crstals. Chap. 2,4. New York : Springer-Verlag [8 ] Cole, H., Chambers, F. W. & Dunn, H. M. (1962). Acta. Cryst. 15, 138-143. [9 ]吳泰伯 & 許樹恩 (1996) .X光繞射原理與結構分析, Chap. 3,7,15. 行政院國家科學委員會精密儀器發展中心. [10 ] Warren, B. E. (1969). X-ray diffraction, pp.253. Reading, Mass. : Addison-Wesley [11 ] Jackson, J. D. (1975). Classical Electrodynamics, 2nd ed., Chap. 7,14. New Tork : John Wiley & Sons. [12 ]洪齊元 (2000). 碩士論文. 清華大學物理系. [13 ] Miyahara, J. ( October 1989). Chemistry Today. 29-36. [14 ]林聰志 (2003). 碩士論文. 清華大學物理系. [15 ] I. Kegel & T. H. Metzger & A. Lorke & J. Peisl, J. Stangl & G. Bauer, K. Nordlund, W. V. Schoenfeld & P. M. Petroff (2001). Phys. Rev. B 63, 035318, 1-13 [16 ] T. U. Schülli, J. Stangl, Z. Zhong, R. T. Lechner, M. Sztucki, T. H. Metzger, and G. Bauer (2003). Phys. Rev. Lett. 90, 066105, 1-4 [17 ] J. Stangl, A. Hesse, T. Roch, V. Holý, G. Bauer, T. Schuelli, T. H. Metzger (2003). Nucl. Instr. and Meth. in Phys. Res. B 200, 11-23id NH0925198010 sid 913314 cfn 0 / id NH0925198011 auc 饒佩宗 tic 儲存環共振腔高次模抑制衰減之研究 adc 朱國瑞 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 44 kwc 儲存環共振腔 kwc 高次模 abc 在本研究當中,首先講述的是利用HFSS頻域電磁模擬軟體的模擬方法之建立,確定Quarter Model的可用性以及Discrete Sweep Method,這是為了節省模擬所需的時間以及提高工作效率,接下來介紹的是模擬模型的建立,從只有覆蓋到taper段的ferrite材料,到包括雙脊側邊,優化出反射係數最好,即吸波效果最好的ferrite load長度,再加上考慮入ferrite與ferrite之間的gap所造成的影響,再以最後優化完成的模型進行加工冷測,實驗結果與HFSS模擬結果相當吻合,而且比現行所使用的CWCT damper有更好的吸波效果,相信在未來一定可以成為現行高次模衰減器的主流。 tc 摘要 I 誌謝 II 第一章:緒論 1 1-1 同步輻射光源簡介 1 1-2 同步輻射光源品質介紹 2 1-3 高次模效應的解決之道 3 第二章 CWCT回顧與ferrite材料的運作原理 5 2-1 CWCT的回顧與耦合方式 5 2-2 解決高次模所用ferrite材料原理 7 2-3 模擬模型的建立 10 2-3-1 波導管長度對模擬的影響 10 2-3-2 全模型,半模型與四分之一模型 11 2-3-3 Fast and Discrete Methods 12 2-3-4 模擬模型的確定 13 第三章 設計與優化陶瓷與Ferrite Material Load Damper 14 3-1 利用陶瓷材料作為吸波材料 14 3-2 將ferrite材料放在傾斜段 15 3-3 將ferrite材料覆蓋到脊側邊 16 3-4 ferrite材料加上gap對結果的影響 19 3-5 雙脊波導加上Ferrite load對TM010和高次模的影響 22 3-6 Ferrite Load Damper對基模的影響 24 3-7 接上三根衰減器的模態分析 26 3-8 設計其他Damper模型 29 第四章 實驗的量測結果與比較 34 第五章 結論與展望 40 參考文獻 41 Appendix 42rf 參考文獻 [1 ] Y.C. Tsai, “Studies of High-Order-Mode Suppression in Storage Ring RF Cavities,” Ph.D. Dissertation, National Tsing Hua University,1997. [2 ] F. Marhauser, E. Weihreter, “Impedance Measurement of A HOM-Damped Low Power Prototype Cavity for 3rd Generation SR Sources”, Proc. 8th European Part. Acc. Conference, 2002. [3 ] 陳家逸, “高頻共振腔高次模抑制方法之研究”, 碩士論文, 國立清華大學,中華民國,2003. [4 ] 楊志忠, “儲存環共振腔高次模衰減研究”, 碩士論文, 國立清華大學,中華民國,2002. [5 ] 宋 傑, “儲存環高頻共振腔高次模抑制之數值模擬研究”, 碩士論文, 國立清華大學, 中華民國,2001. [6 ] 鄭信莉, “高頻共振腔高次模濾波結構之探討”, 碩士論文, 國立清華大學, 中華民國,2000. [7 ] 孫又予, “微波電路學”, 國立編譯館, pp.367-423. [8 ] C.C Yang, Y. C. Tsai, E. Weihreter, and K. R. Chu, “HFSS Simulation of Fundamental Mode Tunneling Effect in the CWCT and Comparison with Experimental Measurements”, NTHU-004-November-2001. [9 ] C.C Yang, C. Sung, K. R. Chu, Y. C. Tsai, C. Wang, E.Weihreter, F. Marhauser, “HFSS Simulation of Fundamental Mode Evanescent Fields in a HOM Damping Waveguide and Comparison with Measurements,” Proc. 8th European Part. Acc. Conf., 2002.id NH0925198011 sid 913319 cfn 0 / id NH0925198012 auc 楊勝翃 tic 以有限差分時域法模擬二維光子晶體中的電磁波傳播 adc 呂助增 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 82 kwc 光子晶體 kwc 平面波展開法 kwc 有限差分時域法 kwc 完美耦合層 abc 建立於本實驗曾經對於一維光子晶體[1 tc 目 錄 第一章 簡介光子晶體……………………………………………1 1 – 1 光子晶體…………………………………………1 1 – 2 光子晶體中的缺陷………………………………..2 1 – 3 光子晶體的理論…………………………………..3 1 – 4 研究動機及論文導引……………………………...3 第二章 平面波展開法……………………………………………5 2 – 1 馬克斯威方程式(Maxwell’s Equation)…………...5 2 – 2 Maxwell’s Equation的平面波展開………………….7 2 – 3 二維光子晶體的結構……………………………10 第三章 有限差分時域法………………………………………...15 3 – 1 歷史發展………………………………………..15 3 – 2 有限差分時域法的理論………………………….16 3 – 3 穩定條件………………………………….…….25 3 – 4 入射波源的選擇…………………………………27 第四章 吸收邊界…………………………………………………29 4 – 1 吸收邊界………………………………….……29 4 – 2 完美耦合層的吸收邊界………………………….30 4 – 3 完美耦合層的計算………………………………33 4 – 4 PML的模擬分析及討論………………………....34 4 – 5 PML的截止頻率………………………………..36 第五章 模擬結果與討論…………………………………………37 5 – 1 平面波展開法的計算結果與討論………………….37 5 – 2 有限差分時域法的模擬結果與討論……………….41 第六章 未來研究方向…………………………………………….51 Reference…………………………………………………………...52 附錄一:TE、TM之單一通道程式……………………………...56rf [1 ] Juh-Tzeng Lue,Yenn-Shyh Hor,”Optical filters constructed from multilayers of dielectric and thin metallic films operating in the anomalous skin effect region”, Opt.Soc.Am.B 6,pp.1103-1105 (1988) [2 ] Jian.S.Sheng,Juh-Tzeng Lue,Jyh-Haur Tyan,”Design criteria for band rejection filters made from multilayers of dielectric and ultrathin metal films”, Appl.Opt.Vol 30,pp.1746-1748 (1991) [3 ] Jian-Shang Sheng,Juh-Tzeng Lue,”Ultraviolet narrow-band rejection filters composed of multiple metal and dieletric layers”,Appl.Opt.Vol 31,pp.6117-6121, (1992) [4 ] Jian.S.Sheng,Juh-Tzeng Lue”Resonat reflectance dips induced by coupled surface plasmon polaritons in thin metsl-film/dielectric structrue”, Appl.Phys. A55,537(1992) [5 ] S.John and R.Rangarjan,Phys.Rev.Lett.B,Vol 38,10101 (1988) [6 ] M.Plihal and A.A. Maradudin:Phys.Rev.Lett B,Vol 44,8569 (1991) [7 ] K.S.Yee,”Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,”IEEE Trans. Antennas and Propagation, Vol.14,pp.302-307,1966. [8 ] Jean-Pierre Berenger,”A perfectly matched layer for the absorption of electromagnetic waves”,J.Com.Physics Vol.114,pp. 185-200,1994. [9 ] Jean-Pierre Berenger,”Perfectly matched layer for the FDTD solution of wavestructrue interaction problems”,IEEE Trans. Ant. Propagation, Vol.44,no.1 ,pp.110-117,Jan. 1996. [10 ] Jean-Pierre Berenger,”Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” Journal of computational physics,Vol. 127, pp.363-379,1996. [11 ] E.Yablonovitch,”Inhibited Spontaneous Emission in Solid-State Physical and Electronics”,Phys.Rev.Lett.58,2059 (1987) [12 ] S.John,”Strong localization of photons in certain disordered dielectric superlattices” ,Phys.Rev.Lett.58,2486 (1987) [13 ] M.Koshiba,”Wavelength division multiplexing and demultiplexing with photonic crystal wave guide couplers ”,Journal of Lightwave Technology,vol.19(12), p.1970-1975,DEC 2001 [14 ] L.Adamowicz , V.Q.Nguyen,” Electromagnetic field in a slab of photonic crystal by BPM”,Optics and lasers in Enginnering ,Vol.35(2),p.67-78,FEB 2001 [15 ] P.R.Villeneuve,S.Fan and J.D. Joannopoulos,”Microcavitives in photonic crystal:Mode symmetry tumability and coupling efficiency.”,Physical Review B,Vol.54,p.7873,1996. [16 ] C.Kee,J.Kim,H.Y. Park and K.J. Chang,”Thermal properties of a photon gap in photonic crystal”,Physical Review E,Vol.58,p.7908,1998. [17 ] R.D.Meade,A.M.Rappe,K.D.Brommer and J.D. Joannopoulous,”Accurate theoretical-analysis of photonic band-gap materical”,Physcal Review B,Vol.48, p.8434,1993. [18 ] D.Felbacq,G.Tayed and D.Maystre,”Scattering by a random set of parallel cylinfders,”Journal of The Optical Society of America A-Optics Image Science And Vision,Vol.11,p.2526-2538,1994. [19 ] G.Tayeb,D.Maystre,”Rigorous theoretical study of finite-size two sdimensional photonic crystals doped by microcavities”,Journal of The Optical Socity of America A-Optics Image Science And Vision,Vol.14.pp.3323-3332,1997. [20 ] D.Hermann,Frank M. and Busch K.,”Photonic band structure computations”, Optics Express,Vol.8(3),167-172,Jan 29 2001. [21 ] [22 ] John D.Joannopoulos : Photonic Crystals,Princeton University Press,1995. [23 ] K.M.leung:Physical Review Letter,Vol 65,p.2646,Nov,1990. [24 ] Ze Zhang:Physical Review Letter,Vol 65,p2650,Nov,1990. [25 ] A.A.Maradudin:Journal of Modern Optics,Vol 41,p.275-284,1994. [26 ] J.D.Joannopolulos,R.D.Meade,and J.N.Winn,”Photonic Crystals:molding the flow of light”,(New York:Princeton University Press,1995). [27 ] N.W.Ashcroft,and N.D.Mermin,”Tunable Photonic Crystals with Semiconducting Constituents ”,Phys,Rev,Lett.85,1875(2000). [28 ] R.N.Bracewell,”The Fourier Transform and Its Applications”,2nd Ed.(New York:Mcgraw-Hill,1986). [29 ] R.Holland,”Threde: a free-field EMP coupling and scattering code,”IEEE Trans. Nuclear Science, Vol.24,pp.2416-2421,1977. [30 ] K.S.Kunz,and K. M. Lee,”A three-dimensional finite-difference solution of the external response of an aircraft to a complex transient EM environment I:The method and its implementation,”IEEE Trans.Electromagnetic Compatibility, Vol.20,pp.328- 333,1978 [31 ] G.Mur,”Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,”IEEE Trans. Electromagnetic Compatibility Vol.23,pp.377-382,1981 [32 ] D.S.Katz,E.T.Thiele, and A.Tafloove,”Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FDTD meshes,”IEEE Microwave and Guided Wave Letters,Vol.4,pp.268-270,1994. [33 ] C.E.Reuter,R.M.Joseph,E.t.Thiele,D.S.Katz,and A.Taflove,”Ultrawideband absorbing boundary condition for termination of waveguiding structures in FDTD simulation,”IEEE Microwave and Guided Wave Latter,Vol.4,pp.344-346, 1994. [34 ] B.Enguist and A. Majda,”Absorbing boundary conditions for the numerical simulation of waves,”Math.Comput.,Vol.31,pp.629-651”,1971. [35 ] A.Bayliss and E.Turkel,”Radiation boundary conditions for wavelike equations, ”Commun.Pure Appl.Math.Vol.33,pp.707-725,1980. [36 ] Z.Liao,H.L.Wong,B.Yang, and Y.Yuan,”A transmitting boundary for transient wave analyses,”Sci.Sin.Vol.27,pp.1063-1076,1984. [37 ] R.L.Higdon,”Absorbing boundary conditions for difference approximation to the multidimensional wave equation,”Math.Comput.Vol.47,pp437-459,1986. [38 ] Wenbo Sun,Qiang Fu,and Zhizhang Chen,”Finite-difference time domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition,”APPLIED OPTICS,Vol.38,No.15,pp.3141-3151,1999. [39 ] J.Xu,Z.Chen,and J.Chuang,”Numerical implementation of PML in the TLM-based finite difference time domain grids,”IEEE Trans.Microwave Theory Tech.Vol.45,pp.1263-1266,1997. [40 ] J.Xu,J.G..Ma,and Z.Chen,”Numerical validation of anonlinear PML scheme for absorption of nonlinear electromagnetic waves,”IEEE Trans.Microwave Theroy Tech.Vol.46,pp.1752-1758,1998. [41 ] E.L.Lindman,”’Free-Space’Boundary Conditions for the Time Dependent Wave Equation,”Journal of computational Physics,18,pp.66-78,1975. [42 ] R.L.Higdon,”Absorbing Boundary Conditions for Difference Approximation of the Multi-Dimensional Wave Equation,”Mathematics of Computation,47,176, pp.437- 459,1986. [43 ] Z.P.Liao,H.L.Wong,B-P.Yang and Y.-F.Yuan,”A Transmitting Boundary for Transient Wave Analysis,”Science Sinica A,27,10,pp.1063-1076,1984. [44 ] C.Rappaport and L.Bahrmasel,”An Absorbing Boundary Condition Based on Anechoic Absorber for UEM Scattering Computation,”Journal of electromagnetic Waves and Applications,6,12,pp.1621-1634,1992. [45 ] Z.S.Sackes,D.M.Kingsland ,R.lee,and J-F.Lee,”A perfectly Mateced Anisotrooic absorber for”Use an Absorbing Boundary Condition,” IEEE Trans.Antennas Propagat.,43,12.pp.1460-1463,1995. [46 ] S.D.Gedeney,”An Anisotropic Perfectly Matched Layer-Absorbing for the Truncation of FDTD Lattices,”IEEE Trans.Antennas Propagate,44,12,pp.1630- 1639,Dec.1996. [47 ] K.K.Mei and J.Fang,”Superaborption-A Method to Improve Absorbing Boundary Conditions,”IEEE Trans.Antrnnas Propagat , Vol.AP-40, 9 , pp.1001- 1010, 1992 [48 ] Aaron Vincent Morton,”Photonic band structure calculations for 2D and 3D Photonic crystal,”The Faculty of the Department of Physiscs San Jose State University.August 2002. [49 ] 許委斌,”時域有限差分方程之研究及其在光子晶體之應用,”大同大學光電工程研究所,90碩士論文. [50 ] 陳科遠,”一維與二維光子晶體之分析與模擬,”交通大學電子物理系,90碩士論文. [51 ] 林振華,”電磁場與天線分析一使用時域有限差分法(FDTD)”,全華科技圖書股份有限公司,88年11月. [52 ] 張智星,”Matlab 程式設計與應用”清蔚科技出版社,2000年11月2版.id NH0925198012 sid 913321 cfn 0 / id NH0925198013 auc 周俊穎 tic x-ray三光共振繞射於單晶薄膜CdTe/InSb之三光共振相位計算 adc 張石麟 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 41 kwc 複繞射 kwc 共振相位 kwc CdTe/InSb kwc 同步輻射 abc 由於X光繞射技術的發展與進步,在各方面的實驗上如:大分子結構、晶體表面與介面結構分析、電荷密度波研究…等應用都已有良好而成熟的理論基礎與技術發展,此次實驗即是利用X光的三光複繞射量測技術來分析CdTe/InSb薄膜在吸收邊前後的共振相位變化。 tc 第一章 緒論...............................1 第二章 結構因子與相位問題.................3 第三章 動立繞射理論......................11 第四章 實驗方法與分析....................19 第五章 結論..............................38 附錄.....................................40 參考資料.................................41rf [1 ]C.H. Chao, C.Y. Hung“Multiple diffraction data analysis for macrom ole crystals in stereoscopic multibeam imagong”Acta Crystallographica Section A58 (2002) 33-41 [2 ]張石麟.X光繞射特論講義. [3 ]Chang S. L.(1984).Multiple Diffraction of X-ray in Crystals. [4 ] Y.P. Stetsko and S.L. Chang Acta Crystallographica SectionA53(1997) 28-34 [5 ]清華大學物理系 鍾承瀚碩士論文 [6 ]S.L. Chang, Y.S. Tasi“Enhanced coherent interaction in four-beam X-ray interference in crystals”Physics Latter A177 (1993) 61-66 [7 ]Y.P. Stetsko, G.Y. Huang“Anomalous Dispersion Behavior of Multipl e-Wave X-ray Diffraction at Absorption Edge:Determination of Phase Ch ange at Resonance”Physical review letters. Volume86 (2001) 2026-2029 [8 ]清華大學物理系 劉家明碩士論文 [9 ]清華大學物理系 李彥儒博士論文id NH0925198013 sid 913322 cfn 0 / id NH0925198014 auc 廖均恆 tic 三電極單層自組分子奈米電晶體的研究與製作 adc 周亞謙 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 86 kwc 薄膜橋載台 kwc 電子束微影 kwc 分子電晶體 kwc 分子電子元件 kwc 三電極分子元件 kwc 自組分子層 kwc 矽的非等向性蝕刻 kwc 乾式蝕刻 abc 自西元1974年A. Aviram和M. A. Ratner提出可當作類似二極體整流功能的分子電子元件模型後[1~4 tc 目錄 摘要 …………………………………………………………Ⅰ 誌謝 …………………………………………………………Ⅱ 目錄 …………………………………………………………Ⅲ 圖片索引 ……………………………………………………Ⅵ 表格索引 ……………………………………………………Ⅸ 第一章:導論 ………………………………………………1 第二章:分子電子元件的導電機制 ………………………2 2-1 分子軌域模型理論…………………………… 4 2-2 單層自組分子的簡介………………………… 5 2-3 分子的電子傳導機制………………………… 7 第三章:元件的製作 ………………………………………9 3-1 簡介 …………………………………………… 9 3-2 製作流程總覽……………………………………11 3-3 光學微影 ……………………………………… 19 3-3-1 SOI晶圓的準備與清洗 …………………………20 3-3-2 光阻層的塗佈 ………………………………… 20 3-3-3 曝光 …………………………………………… 24 3-3-4 雙面對準曝光 ………………………………… 28 3-3-5 顯影 …………………………………………… 29 3-4 乾式蝕刻 ……………………………………… 30 3-4-1 乾式蝕刻原理 …………………………… 33 3-4-2 乾式蝕刻矽 …………………………………… 35 3-4-3 乾式蝕刻氮化矽 ……………………………… 36 3-4-4 乾式蝕刻二氧化矽 …………………………… 37 3-5 濕式蝕刻 ……………………………………… 38 3-5-1 矽的濕式蝕刻 ………………………………… 40 3-5-2 二氧化矽的濕式蝕刻 ………………………… 46 3-5-3 氮化矽的濕式蝕刻 …………………………… 46 3-6 電子束微影 …………………………………… 49 3-6-1 電子阻的塗佈 ………………………………… 49 3-6-2 電子束曝光系統和原理 ……………………… 51 3-7 熱氧化 ………………………………………… 53 3-8 熱蒸鍍 ………………………………………… 55 3-9 電性量測 ……………………………………… 58 第四章:元件製作的結果與討論 …………………………60 4-1 晶圓正面矽電極結構的製作 ………………… 60 4-2 KOH蝕刻晶圓背面的矽 …………………………60 4-3 H3PO4蝕刻去除晶圓正反兩面的氮化矽 ………62 4-4 RIE蝕刻二氧化矽 ………………………………63 4-5 KOH蝕刻在破片正面的矽電極 …………………64 4-6 HF蒸氣蝕刻去除二氧化矽 …………………… 65 4-7 矽孔洞的閘極氧化層成長 …………………… 67 4-8 熱蒸鍍金薄膜 ………………………………… 71 第五章:實驗數據分析 ……………………………… 76 5-1 金屬-絕緣層分子-金屬結構的電性分析 ……76 5-2 三電極電晶體的電性 ………………………… 80 5-3 結論 …………………………………………… 81 後記 ……………………………………………………… 82 參考文獻 ………………………………………………… 83rf [1 ]Brent A. Mantooth and Paul S. Weiss, “Fabrication, Assembly, and Charac- terization of Molecular Electronic Components”,proceeding of the IEEE, Vol. 91, No. 11, November 2003. [2 ]Robert M. Metzger, “All about(N-hexadecylquinolin-4-ium-1-yl) methyliden- tricyanoquinodimethanide, a unimolecular rectifier rectifier of electrical current”, J. Mater. Chem. ,2000, 10, 55-62. [3 ]Kurt Stokbro, Jeremy Taylor, and Mads Brandbyge, “Do Aviram-Ratner diodes rectify”, http://pubs.acs.org. [4 ]A. Aviram and M. A. Ratner, “Molecular Rectifiers.” Chem. Phys. Lett. 29, 277(1974). [5 ]Wenyong Wang, Takhee Lee, and M. A. Reed, “Mechanism of electron conduction in self-assembled alkanethiol monolayer devices”, Physical Review B 68, 035416 (2003). [6 ]J. Chen, T. Lee, J. Su, W. Wang, M. A. Reed, A. M. Rawlett, M. Kozaki, Y. Yao, R. C. Jagessar, S. M. Dirk, D.W. Price, J. M. Tour, D. S. Grubisha, and D. W. Bennett, “Molecular Electronic Devices” in “Molecular Nanoelectronics”, Edited by M. A. Reed and Takhee Lee, American Scinetific blishers. [7 ]David Goldhaber-Gordon,Michael S. Montemerlo, J. Chistopher Love, Gregory J. Opitteck, James C. Ellenbogen, “Overview of a noelectronic Devices” published in the proceedings of the IEEE, April 1997. [8 ]Y. G.. Krieger, “Molecular Electronics: Current State and Future Trends”, J. Structural Chem. , Vol. 34, pp.896-904, 1993. [9 ]S.V. Subbramanyam, “Molcecular Electronics,” Current Science, vol. 67, pp. 844-852, 1994. [10 ]J. Chen, M. A. Reed, “Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device,” Science, Vol 286, 1999. [11 ]C. Zhou, M. R. Deshpande, M. A. Reed, J. M. Tour, “Nanoscale metal/ self- asse -mbled monolayer/metal heterostructures”, Appied Physics Letters 71, 611 (1997 ). [12 ]S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, K. Chan, Appl. Phys. Lett. 68, 1377(1996) [13 ]R. S. Potember, T. O. Poehler, and D. O. Cowan, Appl. Phys. Lett. 34, 405 (1979). [14 ]施敏原著, 黃調元譯, “半導體元件物理與製作技術(第二版)”, 國立交通大學出版社, 2002. [15 ]Steven S. Zumdahl,化學課程教學編輯委員會譯, “化學(第三版)”, 文京圖書有限公司, 1996. [16 ]Yu-Tai Tao, Chien-Ching Wu, Ji-Yang Eu, and Wen-ling Lin, Kwang-Chen Wu and Chun-hsien Chen, “Structure Evolution of Aromatic-Derivatized Thiol Mon- olaers on Evaporated Gold”, Langmuir 1997. [17 ]J. G. Simmons, “Conduction in thin dielectric films”, J. Phys. D: Appl. Phys., 1971, Vol. 4. Printed in Great Britain. [18 ] Mark A. Reed, “Molecular-Scale Electronics”, IEEE, Vol. 87, No. 4, April 1999. [19 ]N. N. Gribov, S. J. H. Theeuuwen, J. Caro, and E. van der Drift, F. D. Tichelaar and T. R. de Kruijff, B. J. Hickey,“Fabrication of metallic point contacts : A new approach for devices with a multilayer or a heterointerface”, American Vacuum Society, 1998. [20 ]A. J. Storm, J. H. Chen, X. S. Ling, H. W. Zandbergen and C. Dekker, “Fabrication of solid-state nanopores with single-nanometre precision”,nature materials, Vol 2, 2003. [21 ]Gribov, N. N., Theeuwen, S. J. C. H.,Caro, J. & Radelaar, S. ,“A new fabricaton process for metallic point contacts”, Microelectron. Eng. 35, 317~320(1997) [22 ]Hong Xiao著,羅正中,張鼎張譯,”半導體製程技術導論”, 台灣培生教育出版股份有限公司, 2002. [23 ]S. Wolf,”Silicon Prossing for the VLSI Era” CH12, 1986. [24 ]張德智,”奈米碳管成長的起始階段”, 國立清華大學碩士論文, 2002年. [25 ]http://ceiba.cc.ntu.edu.tw/522U4510/ [26 ]http://www. silvaco.com [27 ]http://www.mse.nsysu.edu.tw/ictmc [28 ]孫介偉,”奈米尺寸單層自組分子元件的製作”, 國立清華大學碩士論文,2003年. [29 ]陳德修, ”薄膜金屬奈米橋的製作”, 國立清華大學碩士論文,2003年. [30 ]K. R. Williams, ”Silicon wet orientation-dependent etch rates”, Properties of Crystalline Silicon , London, 1999. [31 ]Bruce K. Gate, ”Wet etching and Bulk Micromachining Fundamental of Micromachining”, http://www.eng.utah.edu. [32 ]James D. Plummer著,羅正忠等譯, “半導體工程-先進製程與模擬”, 台灣培生教育出版股份有限公司. [33 ]顏培峻, “利用電子束微影技術製作間隔小於10 nm的電極”, 國立清華大學碩士論文, 2002年. [34 ]Murrae J. Bowden, C. Grant Wilsin, Larry F. Thompson, ”Introduction to Microlithography”, 1994. [35 ]Sorab K. Ghandhi, “VLSI Fabrication Principle”, CH7, 1994. [36 ]E. A. Irene and D. W. Dong,”Silicon Oxidation Studies: The Oxidatiion of Heavily B- and P-Doped Single Crystal Silicon”, J. Electrochem. Soc. , 125,1146 (1978). [37 ]C. P. Ho, J. D. Plummer, and J. D. Mindl, “Thermal Oxidation of Heavily Phosphorus-Doped Silicon”, J. Electrochem. Soc, 125,665 (1978). [38 ]W. Wang, T. Lee, M. Kamdar, M. A. Reed, M. P. Stewart, J-J. Hwang, J. M. Tour, “Electrical characterization of metal-molecule-silicon junction”, Superlattices and Microstructures 33(2003)217-226.id NH0925198014 sid 913329 cfn 0 / id NH0925198015 auc 李馨彥 tic 大分子單晶之X光雙向多光繞射實驗及反射相位之擴展可行性研究 adc 張石麟 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 64 kwc X光繞射 kwc 三重積相位 kwc 單獨相位 kwc 複繞射 kwc 雙向多光影像法 abc 所謂複繞射,是指同時有兩個以上的反射面滿足繞射條件,產生繞射光。而各反射面間互相的干涉效應,會使該反射面的強度發生變化。根據動力繞射理論,我們可以決定強度變化與三重積相位,及三重積結構因子之間的關係。 tc 摘要 致謝詞 目錄 圖表目錄 第一章 序言 1 第二章 理論部分 2 2.1 繞射 8 2.2 複繞射 9 2.3 動力繞射理論 9 2.4 實驗方法 17 第三章 實驗部分18 3.1 繞射儀幾何 18 3.2 晶體 24 3.3 同步輻射及CCD 26 3.4 實驗步驟 30 3.5 關於數據 35 第四章 數據、分析與相位擴展 4.1 數據37 4.2 相位計算48 4.3 關於相位擴展 53 4.4 總結 58 附錄一 旋轉L(110) 的方法 61 參考文獻 64rf [1 ] T.L. Blundell and L.N. Johnson, Protein Crystallography. [2 ] B.D. Cullity, Elements of X-ray Diffraction, 2nd ed. Reading, Mass.:Addison-Wesley, 1978. [3 ] S.L. Chang, Multiple Diffraction of x-ray in Crstals. New York:Springer-Verlag, 1984. [4 ] S.L.Chang and M.T.Tang, Acta Crystallogr. A44, 1065 (1988) [5 ] S. L. Chang, Y. P. Stetsko,Y. S. Huang, C.H. Chao, F. J. Liang, C. K. Chen, “Quasi-Universality and Scaling Behavior of Three-wave X-ray Interference in Crystals:A Novel Way of Quantitative Determination”, Physics Letters A27, 328 1999. [6 ] Hanging Drop Vapor Diffusion Crystallization, Hampton Research. [7 ] J.W. Pflugrath, d*TREK dtprocess, Version4.4, Molecular Structure Corporation, 1998. [8 ] Qun Shen and Jun Wang, Recursive direct phasing with reference-beam diffraction, Acta Crystallogr.D59,809 [9 ] Yu.P.Stetsko and S.L.Chang, Acta Crystallogr. A53, 28 (1997) [10 ] 趙俊雄 清華大學物理系 博士論文(2000) [11 ] 洪齊元 清華大學物理系 碩士論文(2000) [12 ]Chun-Hsiung Chao, Chi-Yuan Hung, Yi-Shan Huang, Chia-Hung Ching, Yen-Ru Lee, Yuch-Chen Jean, Shu-Ching Lai, Yuri P. Stetsko, Hanna Yuan and S.L.Chang, Multiple diffraction data analysis for macro-molecular crystals in stereoscopic multibeam imaging, Acta Crystallogr. A58, 33 (2002)id NH0925198015 sid 913333 cfn 0 / id NH0925198016 auc 劉志凱 tic 加速器高頻共振腔之尾場阻抗模擬 adc 朱國瑞 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 120 kwc 尾場 kwc 尾場阻抗 abc 本實驗室所設計HOM-damped cavity,由於HOM dampers有imperfect matching的問題造成persistent mode的存在,影響了HOM damping的效果,前人的研究主要著重於longitudinal mode,尤其是TM011-mode,以及0~1GHz這個頻段。因此本論文將針對於高頻段到3GHz的longitudinal與transverse高次模damping的效果有作深入了解。並且利用新程式GDFIDL來模擬計算高次模的阻抗與HFSS模擬計算的結果交互驗證,藉以了解其阻抗特性。 tc 第一章 緒論 1-1同步輻射光源簡介 1-2德國BESSY計畫歷史回顧 1-3論文大綱 第二章 電磁模擬理論基礎 2-1 品質因子 與阻抗的定義 2-2 頻域--縱向和橫向阻抗的定義 2-2-1縱向阻抗 2-2-2 Panofsky-Wenzel 定理 2-2-3 TM110之橫向阻抗 2-2-4 RLC等效電路 2-3 時域--尾場和尾場阻抗的定義 2-3-1 尾場函數及位能 2-3-2 尾場阻抗 2-3-3 頻域和時域的關聯 2-4 阻抗的影響與限制 2-4-1阻抗的影響 2-4-2阻抗的限制 第三章 電磁模擬軟體 3.1 HFSS程式 簡介 3-2: GDFIDL 程式簡介 3-3: HFSS模擬設定 3-3-1 :HFSS模型之建立及材料之選取 3-3-2 :如何求取品質因子 3-3-3 :如何求取阻抗 3-4:GDFIDL模擬設定與收斂測試 3-5: GDFIDL對於阻抗計算的設定 第四章 阻抗理論驗證 4-1:HFSS與GDFIDL之 eigenmode方法結果比較 4-2:HFSS與GDFIDL對於阻抗理論的基本驗證 4-3:HFSS-電磁波方法模擬與GDFIDL尾場方法模擬 4-4:GDFIDL的錯誤驗證 第五章 基模加速阻抗之三維優化 5-1:EU cavity之加速阻抗優化 5-2: 基模加速阻抗之增加 5-3:方形波導管優化橢圓形電子通道高次模 5-4:針對2.25GHz高次模衰減 第六章: 結論 參考文獻 附錄: A.GDFIDL使用手冊 B.LIUNX系統簡介及常用指令 C.AUTODESK INVENTOR簡易使用手冊-模型架構rf 參考文獻: [1 ] John David Jackson, “Classical Electrodynamics”, Wiley, Third Edition, pp.372, (8.88). [2 ] John N. Corlett, “Impedance of Accelerator Components”, 7th Beam Instrumentation Workshop (BIW 96), Argonne, IL, 6-9 May 1996. [3 ] M. Jean Browman, “Using the Panofsky-Wenzel Theorem in the Analysis of Radio-Frequency Deflectors”, Los Alamos National Laboratory, MS H825 Los Alamos, NM 87545 [4 ] 孫又予, “微波電路學”, 國立編譯館, pp.647~648. [5 ] A. Hofmann, “Beam Instability”, CERN Technical Report. [6 ] GDFIDL’s Web: http://www.gdfidl.de. [7 ] Edward L. Ginzton, “Microwave Measurements”, Mcgraw-Hill, pp.391-397.id NH0925198016 sid 913335 cfn 0 / id NH0925198017 auc 陳世宏 tic 金球上金(111)面的掃描探針顯微術研究 adc 羅榮立 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 46 kwc 金 kwc 掃描探針顯微術 abc 金是活性低的貴金屬,然而在大氣下觀察在金球上的金(111)表面,發現深色斑點在金表面形成。深色斑點三種可能的成因: 1.真實單原子層凹陷 2.金的氧化物 3.污染物。為了確認深色斑點是上述何者,用STM與AFM做了一系列的實驗。雖然這些實驗的結果仍無法確實斷定深色斑點的本質與成因,但可給出有助於判斷的實驗結果。根據目前的結果雖無法排除深色斑點為真實凹陷,但較傾向以金的氧化物解釋。 tc 目錄 摘要 第一章 緒論 (1)引言……………………………………………………………..2 (2)氧化金形成的背景介紹…………………………...........4 第二章 儀器原理 (1) 引言………………….……………………….. ………7 (2) STM工作原理………………………………….. ………7 (3) AFM工作原理………………………………….. ……..12 (4) 使用儀器………………………………………………..14 第三章 實驗操作 (1) 引言……………………………………………………..15 (2) Tip置備………………………………………. ……..15 (3) Sample 置備………………………………… ……...17 (4) 實驗過程………………………………………………..20 第四章 結果與討論 (1) 引言……………………………………………………..22 (2) 實驗一 不同環境下金表面與時間的關係……………23 (3) 實驗二 金球浸入 piranha溶液中30分鐘的變化…….34 (4) 實驗三 加熱金球(200℃,30分鐘)……….……….36 (5) 實驗四 金表面的in-situ觀察……………………….38 (6) 實驗五 金表面不同區域的I-V圖比較……………….40 (7) 關於金球(111)面形成機制的探討………………….41 第五章 總結…………………………………………..........43 參考文獻…………………………………………………………..44 附錄………………………………………………………………..45rf 參考文獻 [1 ] J. Wintterlin, Science 278 (1997) 1931. [2 ] D.W Goodman, X. Lai, M. Valden, Science 281(1998) 1647. [3 ] Andrew Zangwill, Physics at Surfaces,1988. [4 ] A. Emundts, H.P. Bonzel, P. Wynblatt, K. Thurmer, J.R. Robey, E.D. Williams Surf. Sci. 481(2001) 13. [5 ] C.Julian Chen, Introduction to Scanning Tunneling Microscopy, p282, Oxford, 1993. [6 ] M. Fujihira, Y. Okabe, Y. Tani, M. Furugori, U. Akiba, Ultramicroscopy 82 (2000) 181. [7 ] C.Levreton, Z.Z. Wang, Appl. Phys. A 66 (1998) S777. [8 ] H. Ron, S. Matlis, I. Rubinstein, Langmuir 14 (1998) 1116. [9 ] D.J. Trevor, C.E.D. Chidsey, J. Vac. Sci. Technol. B 9 (1991) 964. [10 ] D.R. Peale, B.H. cooper, J. Vac. Sci. Technol. A 10 (1992) 2210. [11 ] H. Tsai, E Hu, K. Perng, M. Chen, J. Wu, Y. Chang, Surf, Sci. 357 (2003) L447. [12 ] C.Levreton, Z.Z. Wang, Surf. Sci. 382 (1997) 193. [13 ] Y.T. Kim, A.J. Bard, Langmuir 8 (1992) 1096. [14 ] J.M. Gottfried, N, Elghobashi, S.L.M. Schroeder, K. Christmann, Surf. Sci. 423 (2003) 89. [15 ] David R.Lide, Handbook of Chemistry and Physics,(CRC Press 1997). [16 ] S. Rousset, F. Pourmir, S. Gauthier, E. Lacaze, M. Sotto, J. Klein, J. Vac. Sci. Technol. B 14 (1996) 1131. [17 ] Robert Gomer, Structure and Properties of Solid Surface,(University of Chicago Press,1953). [18 ] G.E Poirier, Langmuir 13 (1997) 2019. [19 ] K.J. Vetter, J.w. Schultze, Electroanal. Chem. Interfacial Electrochem. 34 (1972) 131. [20 ] J.H. Thomass, S.P. Sharma, J. Vac. Sci. Techmol. 13 (1976) 549. [21 ] N.D. Lang, Comments Condens. Mater Phys. 14 (1989) 253. [22 ] C.M. Vitus, A.J. Davenport, J. Electrochem. Soc. 141 (1994) 1291. [23 ] B. Koslowski, H.G. Boyen, C. Wilderotter, G. Kastle, P. Ziemann, R. Wahrenberg, P. Oelhafen Surf. Sci, 475 (2001) 1. [24 ] F.J.R. Nieto, G. Andreasen, M.E. Martins, F. Castez, R.C. Salvarezza, A.J. Arvia, J. Phys. Chem. B 107 (2003) 452.id NH0925198017 sid 913336 cfn 0 / id NH0925198018 auc 鄭智仁 tic 量測金屬奈米顆粒在微波頻段下之介電常數 adc 呂助增 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 50 kwc 奈米顆粒 kwc 銀 kwc 微波 kwc 介電常數 abc 介電常數是描敘材料性質的一個重要的物理參數,本實驗主要是在量測金屬奈米顆粒在微波頻段的介電常數,實驗中是利用介質共振腔的方式來量測其介電常數,但由於金屬奈米顆粒的凝聚效應會造成對電磁波的強大吸收而無法量測。因此,在樣品的製作過程中,加入氧化鋁粉末來分散金屬奈米顆粒。另外,亦加入石蠟來隔絕空氣中的水分,以避免對實驗所造成的誤差。 tc 第一章 緒論 1 1.1 奈米顆粒 1 1.2 微波頻段下的金屬奈米顆粒介電常數 2 1.3 實驗簡介 2 第二章 奈米介電理論簡介 3 2.1 久保理論 3 2.2 金屬奈米顆粒之光學性質 4 第三章 介質共振腔基本理論 8 3.1共振腔電磁場理論的推導 8 3.1.1 TM模態 9 3.1.2 TE 模態 14 3.2等效介質理論 17 3.2.1 Effective Medium Theory , EMT 17 3.2.2 Effective Medium Approximation , EMA 20 3.3 介電常數虛部求法 23 3.3.1 Q值定義 23 3.3.2 QL轉換成Q0 24 3.3.3 Q值與介電常數虛部的關係 27 第四章 實驗的操作 31 4.1金屬奈米顆粒的製作 32 4.2介電質樣本的製作 34 4.3耦合天線的位置 35 第五章 實驗結果與分析 38 5.1石蠟介電係數的量測結果 39 5.2 氧化鋁粉末介電係數的量測結果 40 5.3銀奈米顆粒的介電常數 41 附錄 46 參考資料 49rf 第一章 [1 ] Y.Kobayashi and M.Katoh,“Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method”,IEEE Trans.Microwave Theory Tech.,Vol.MTT-33,July(1985),pp.586-589 [2 ] B.W.Hakki and P.D.Coleman,“A dielectric resonator method of measuring inductive capacities in the millimeter range”,IEEE Trans.Microwave Theory Tech.,Vol.MTT-8,July (1960),pp.402-410 [3 ] W.E.Courtney,“Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators”,IEEE Trans.Microwave Theory Tech,Vol.MTT-18,Aug (1970),pp.476-485 第二章 [1 ] 羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕、吳育民 編著,“奈米科技導論”,全華出版社,台北市,2003,p2-11~2-15 [2 ] W.C.Huang and J.T.Lue,“Quantum size effect on the optical properties of small metallic particles”,Phys Rev B Vol.49,pp.17279-17285 [3 ]呂助增, “固態電子學”, 明文書局,台北市,1996,p.291~300 第三章 [1 ] Robert S.Elliott ,”An Introduction to Guided Waves and Microwave Circuits ”,Prentice Hall,Los Angeles,1993,p37 [2 ] Robert S.Elliott,”An Introduction to Guided Waves and Microwave Circuits ”,Prentice Hall,Los Angeles,1993,p35 [3 ] Tuck C. Choy.,“Effective Medium Theory: Principles and Applications”, Oxford University Press, New York,1999,p.1~19 [4 ] Tuck C. Choy.,“Effective Medium Theory: Principles and Applications”,Oxford University Press, New York,1999,p.12 [5 ] Tuck C. Choy., “Effective Medium Theory: Principles and Applications”,Oxford University Press, New York, 1999,p.53~56 [6 ] David K. Cheng, “Field and Wave Electromagnetics”,2nd Edition, Addison-Wesley,1989,New York, CH7、 CH 9 ~ CH10 [7 ] David M. Pozar,“Microwave Engineering”, 2nd Edition, Wiley pub. Co., New York, 1998 [8 ] 郭仁財譯, “微波工程”,第2版,高立圖書,台北縣,2003, p784 [9 ] 傅坤福,“介質共振器,儀器總覽5,材料分析儀器”,行政院國家科學發展委員會精儀中心出版,新竹市,1998 ,P82 [10 ] John. D. Jackson,“Classical Electrodynamics”, 3rd Edition, Wiley pub. Co., New York, 1999, P264~266 第四章 [1 ] 羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕、吳育民 編著“奈米科技導論”,全華出版社,台北市,2003,p3-12~3-20 第五章 [1 ] 郭仁財譯, “微波工程”,第2版,高立圖書,台北縣,2003,p.784 附錄 [1 ] 林正雄,“儀器總覽5 材料分析儀器”,行政院國家科學發展委員會精儀中心出版,新竹市,1998,P90~93 [2 ] 林正雄,“粒徑分析儀”, 科儀新知第二十二卷第二期, 行政院國家科學發展委員會精儀中心出版,新竹市,1998 ,p.9~13 [3 ] E. W. Nuffield, “X-Ray Diffraction Methods”,Wiley pub. Co,New York,1966,p.146~149id NH0925198018 sid 913340 cfn 0 / id NH0925198019 auc 呂英齊 tic 以化學沈積膠體球光子晶體之熱極化二次諧波量測 adc 呂助增 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 54 kwc 光子晶體 kwc 熱極化 kwc 非線性光學 kwc 二次諧波 abc 光子晶體被譽為光學界的半導體,如同電子在半導體中存在電子能隙一般,是一種高低折射率週期排列的結構,它具有光子能隙,在這種光子晶體能隙中,可使具有特定的波長或模態的光子無法在此晶體中傳播,形成一種光子的絕緣體。光子能帶與一般光波導相較下,不僅能於真空中傳導之外,更能夠達到低傳播損耗、高隔絕度、大角度轉折、易設計與易調整、無色散等特性,是一種最理想的光波導元件。 tc 第一章 非線性光學…………………………………1 1.1 極化率………………………………………1 1.2非線性係數張量……………………………2 1.3 二次諧波的產生……………………………5 1.4 和頻波的邊界條件…………………………9 1.5反射二次諧波的電場強度…………………10 第二章 光子晶體…………………………………16 2.1 光子晶體簡介……………………………16 2.2 以膠體球來製作光子晶體………………17 2.3 光子晶體能隙的存在……………………19 2.4 光子晶體二次非線性效應………………24 第三章 熱極化二次諧波…………………………28 3.1在矽玻璃中產生非線性效應……………28 3.1.1光場誘發………………………………28 3.1.2電場誘發………………………………29 3.2熱極化……………………………………29 3.3熱極化機制………………………………30 第四章 實驗步驟與設備…………………………32 4.1實驗樣品製備…………………………32 4.2量測及儀器設備……………………38 4.2.1熱極化儀器………………………38 4.2.2二次諧波量測設備………………39 4.3偵測系統校正方法…………………41 第五章 實驗結果與討論………………………42 5.1樣品未燒結未熱極化………………43 5.2樣品經四天1000oC燒結……………46 5.3樣品經四天1050oC燒結……………47 結論………………………………………………50 未來展望…………………………………………51 參考文獻…………………………………………52rf [1 ]T. H. Maiman, “Stimulated Optical Radiation in Ruby,” Nature 187,493(1960) [2 ]P. A. Franken, A.E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics” Phys. Rev. Lett. 7,118 (1961) [3 ]R. W. Boyd ,”Nonlinear Optics”(Academic Press, Inc,Boston 1992) [4 ]曾錦清,國立清華大學物理研究所博士論文,(國立清華大學物理研究所,1988) [5 ]李奕成、陳家俊,”光子晶體製作與應用”自然科學簡訊第十四卷第二期,民國91年5月 [6 ]K. Sakoda “Optical Properties of Photonic Crystal” (Springer 2001) [7 ]K. Sakoda and K. Ohtaka ,”Sum-frequency generation in a two-dimensional photonic lattice “Phys. Rev B 54 5742(1996) [8 ]U. Osterberg and W. Margulis,”Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber” Opt. Lett. 11,516(1986) [9 ]R. H. Stolen and W. K. Tom,”Self-organized phase-matched harmonic generation in optical fiber”Opt.Lett.12,585(1987) [10 ]R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica”Opt. Lett. 16,1732(1991) [11 ]T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermal poled silica”J. Non-Cryst. Solids 242,165(1998) [12 ] T. G. Alley, S. R. J. Brueck”Dynamics of second-order harmonic generation in fused silica”, J. Opt. Soc. Am. B 11,665(1994) [13 ]W. Stober, A. Fink, and E. Bohn, “Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range, ”J Colloid Interface Sci., 26,62-69(1968) [14 ]呂助增,曾錦清,梁繼勇,”二次諧波光譜儀在半導體表面研究上之應用”科儀新知第十四卷第五期(民國82年四月) [15 ]D. Faccio, A. Busacca, D. W. J. Harwood, G. Bonfrate, V. Pruneri, and P. G Kazansky, “Effect of core-cladding interface on thermal poling of germano-silicate optical waveguides”Opt. Commun. 196, 187(2001).id NH0925198019 sid g913342 cfn 0 / id NH0925198020 auc 白順元 tic 用掃描穿隧顯微術觀察硫醇在金(111)面上的有序結構 adc 羅榮立 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 50 kwc 掃描穿隧顯微術 kwc 金(111) kwc 硫醇 abc 我們的實驗使用Au(111)單晶與金球的Au(111)以浸泡CH3(CH2)7SH與CH3(CH2)11SH溶液的方式,吸附上CH3(CH2)7SH與CH3(CH2)11SH的自我組裝分子薄膜。使用STM觀察的結果,表面呈現很密集的約2.5?眵`的黑色坑洞與約1.0?眵`的黑色的網狀分布,且可以發現( )R30o與c(4 2)的結構,與文獻上所報導的一致。在黑色坑洞中存在有序的分子排列,因此黑色坑洞為單原子層的凹陷。隨著浸泡硫醇溶液時間的增加,黑色坑洞的密度也跟著增加,單晶與金球均可以得到同樣的結果。此外,在實驗中也發現到,我們用穿隧阻抗較大或穿隧電流較小時,可以得到解析度較好的STM影像。 tc 目錄 第一章 緒論…………………………………………………………………………1 1.1前言……………………………………………………………………..1 1.2研究動機………………………………………………………………..3 1.3 Au(111) herringbone重構………………………………………………3 1.4 自我組裝分子薄膜(SAMs)……………………………………………4 1.5 Alkanethiols on Au(111)………………………………………………...5 1.6結構……………………………………………………………………..7 1.6.1低覆蓋相(lower-coverage phase)……………………………………..7 1.6.2全覆蓋相( full-coverage phase)………………………………………9 第二章 儀器原理……………………………………………………………..……15 2.1掃描穿隧顯微術基本原理……………………………………………15 2.2掃描穿隧顯微術的取像方式…………………………………………18 第三章 儀器介紹與實驗步驟……………………………………………………..20 3.1 STM儀器架構………………………………………………………...20 3.2實驗儀器………………………………………………………………22 3.2.1大氣下……………………………………………………………….22 3.2.2真空中……………………………………………………………….23 3.3 sample與探針的製備…………………………………………………24 3.3.1 Substrate的製備……………………………………………………..24 3.3.3探針的製備……………………………………………………...…..25 3.3.4實驗中所使用到的化學藥品……………………………………….27 3.3.5實驗中所使用到的其他材料與設備……………………………….27 3.4實驗步驟……………………………………………...……………….28 3.4.1單晶與金球浸泡alkanethiols溶液後表面的吸附情形……………28 3.4.2單晶與金球依浸泡時間不同表面形貌的變化情形…………...…..28 第四章 結果與討論………………………………………………………………..30 4.1單晶與金球浸泡alkanethiols溶液後表面的吸附情形…………...….30 4.2 ( )R30o與c(4 2) superlattice的討論………………………..33 4.3單晶與金球依浸泡時間不同表面形貌的變化情形…………...…….37 4.4黑色坑洞成長機制的討論……………………………………………43 4.5 SAMs低覆蓋相的討論………………………..……………….……..45 4.6 Low tunneling current的討論…………………………………………45 第五章 結論………………………………………………………………………..48 參考文獻……………………………………………………………………………..49rf 參考文獻 [1 ] Abraham Ulman, Self-Assembled Monolayers of Thiols, Academic, New York, 1998. [2 ] F. Schreiber, Prog. Surf. Sci. 65 (2000) 151. [3 ] G. E. Poirier, Chem. Rev. 97 (1997) 1117. [4 ] O.Dannenberger, M. Buck, M. Grunze, J. Phy. Chem. B 103 (1999) 2202. [5 ] J. Bardeen, Phys. Rev. Lett. 6(2) (1961) 57. [6 ] J. Tersoff, D. R.Hamann, Phys. Rev. B 31 (1985) 805. [7 ] 黃英碩,張嘉升, 科儀新知115, 第21卷, 第5期, 第36頁 (1995). [8 ] C. Sch?圢enberger, J. A. M. Sondag-Hunthorst, J. Jorritsma, L. G. J. Fokkink, Langmuir 10 (1993) 611. [9 ] G. E. Poirie, Langmuir 13 (1997) 2019. [10 ] Yeon-Taik Kim, A. J. Bard, Langmuir 8 (1992) 1096. [11 ] K. Edinger, A. G?匜zh?黷ser, K. Demota, Ch. W?匜l, M.Grunze, Langmuir 9 (1993) 4. [12 ] N. Camillone, P. Eisenberger, T. Y. B Leung, P. Schwartz, G. Scoles, G. E. Poirier, M. J. Tarlov, J. Chem. Phys. 101 (1994) 11031. [13 ] N. Camillone, T. Y. B Leung, P. Schwartz, P. Eisenberger, G. Scoles, Langmuir 12 (1996) 2737. [14 ] E. Delamarche, B. Michel, Ch. Gerber, D. Anselmetti, H.-J. G?刡therodt, H. Wolf, H. Ringsdorf, Langmuir 10 (1994) 2869. [15 ] C. A. Widrig, C. A. Alves, M. D. Porter, J. Am. Chem. Soc. 113 (1991) 2805. [16 ] Jooyoung Kim, Hironaga Uchida, Naoto Honda, Naoki Hashizume, Yoshiaki Hashimoto, Heejoon Kim, Kazuhiro Nishimura, Mitsuteru Inoue, J. Appl. Phys. 42 (2003) 4770. [17 ] D. W. Wang, F. Tian, J. G. Lu, J. Vac. Sci. Technol. B 20 (2002) 60. [18 ] Guohua Yang, Gang-yu Liu, J. Phys. Chem. B 107 (2003) 8746. [19 ] M. D. Porter, T.B. Bright, D. L. Allara, C. E. D. Chidsey, J. Am. Chem. Soc. 109 (1987) 3559. [20 ] P. Fenter, P. Eisenberger, K. S. Liang, Phys. Rev. Lett. 70 (1993) 2447. [21 ] R. G. Nuzzo, E. M. Korenic, L. H. Dubois, J. Chem. Phys. 93 (1990) 767. [22 ] G. E. Poirier, M. J. Tarlov, Langmuir 10 (1994) 2853. [23 ] C. Sch?圢enberger, J. A. M. Sondag-Hunthorst, J. Jorritsma, L. G. J. Fokkink, J. Phys. Chem. 99 (1995) 3259. [24 ] G. E. Poirier, M. J. Tarlov, H. E. Rushmeier, Langmuir 10 (1994) 3383. [25 ] R. Staub, M. Toerker, T. Fritz, T. Schmitz-H?佒sch, F. Sellam, K. Leo, Langmuir 14 (1998) 6693. [26 ] R. G. Nuzzo, E. M. Korenic, L. H. Dubois, J. C hem. Phys, 93 (1990) 767. [27 ] N. Camillone, C. E. D. Chidsey, G.-y. Liu, G. Scoles, J. Chem. Phys. 98 (1993) 3503. [28 ] Handbook of Chemistry and Physics, CRC, 78 edition, 1997-1998.id NH0925198020 sid 913343 cfn 0 / id NH0925198021 auc 張倫瑋 tic 一維奈米碳管之電性量測 adc 呂助增 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 48 kwc 奈米碳管 kwc 一維電性量測 abc 摘要 tc 目 錄 第一章 緒論 1.1 奈米碳管簡介…………………………………………1 1.2 奈米碳管種類…………………………………………3 1.3 碳管的生長機制………………………………………6 1.4 碳管的製備方法………………………………………8 1.5 奈米碳管的電性結構…………………………………12 第二章 實驗方法 2.1實驗儀器………………………………………………15 2.1.1 熱蒸鍍系統之構造……………………………15 2.1.2 電子束微影……………………………………16 2.1.3 圖像轉移………………………………………19 2.1.4 光罩對準儀……………………………………21 2.1.5 微波電漿化學氣相沉積系統…………………23 2.1.6 電性系統………………………………………28 2.2 實驗步驟與過程……………………………………29 第三章 實驗結果與分析 3.1 一維奈米碳管的電性理論……………………………33 3.2 實驗分析及討論………………………………………46 第四章 結論與未來研究方向 4.1 結論……………………………………………………47 參考文獻……………………………………………………49 附錄一 電導率計算 (Mathematica 程式)……………… 53rf 參考文獻 [1 ] S.Iijima,Nature(London) 354, 56 (1991). [2 ]Gibson JAE.Nature.1992.359:369 [3 ]Bacon R.J Appl Phys.1960,31:283 [4 ]Wiles PG, Abrahamson J.Carbon.1978,16:341 [5 ]Ebbesen TW,Ajayan PM.Nature.1992,358:220 [6 ]Endo M,Kroto HW.J Phys Chem.1992,96:6941 [7 ]Saito R,Fujita M,Dresselhaus G,et al.Mater Sci &eng B.1993,19:185 [8 ] Y. Saito, Carbon 33, 979(1995). [9 ] T. Guo, et al., Chem. Phys. Lett. 243, 49(1995). [10 ] R. Sen, et al., Chem. Phys. Lett. 267, 276(1997). [11 ] S. Fan, et al., Science 283, 512(1999). [12 ] C. J. Lee and J. Park, Appl. Phys. Lett. 77, 3397(2000). [13 ] Z. F. Ren, et al., Science 282, 1105(1998). [14 ] C. Bower, et al., Appl. Phys. Lett. 77, 830(2000). [15 ] D. S. Bethune, et al., Nature 603, 363(1993). [16 ] R. E. Smally, et al., Chem. Phys. Lett. 243, 49(1995) [17 ] R. Sen, et al., Chem. Phys. Lett. 267, 276(1997) [18 ] Z. F. Ren, et al., Science 282, 1105(1998) [19 ] V. Ivanov, et al., Chem. Phys. Lett. 233, 329(1994) [20 ] T. Kyotani, et al., Chem. Mater. 8, 2109(1996) [21 ] B. K. Pradhan, et al., Chem. Mater. 10, 2510(1998) [22 ] Y. Y. Wei, et al., Appl. Phys. Lett. 78, 1394(2001) [23 ] F. G. Celii and J. E. Butler, Appl. Phys. Lett. 54, 1031(1989) [24 ]彭志維”清華大學 物理研究所 碩士論文” [25 ]Hamada N, Sawada SI, Oshiyama A.Phys Rev Lett.1992,68:1579 [26 ]Mintmire JW,Dunlap BI,White CT.Phys Rev Lett.1992,68:631 [27 ]Saito R,Fujita M,Dresselhaus MS.Appl Phys Lett.1992,60 :2204 [28 ] Charlier JC,Michenaud JP.Phys Rev Lett.1993,73:494 [29 ] H.Haug and Stephan W.Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, World Scientific Publ.,Singapore(1990) [30 ]Mott and Davis, wlwctronic Processes In Non-Crystalline Materials, Oxford University Press 1971,1979id NH0925198021 sid 913344 cfn 0 / id NH0925198022 auc 謝柏光 tic 矽奈米粒子之兆赫波響應 adc 齊正中 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 86 kwc 兆赫波 kwc 薄膜 kwc 奈米粒子 abc 我們用鈦:藍寶石鎖模雷射(Mode-locked Ti:Sapphire Laser),波長為800nm,經啾頻脈衝放大(Chirped Pulse Amplification)後,脈衝寬度為130fs的雷射脈衝,激發一個二階非線性晶體(ZnTe),並利用電光取樣(Electro-Optic Sampling)得到THz脈衝強度與時間分布,得到約2.5THz的電磁輻射。 rf [1 ] Zhinping Jiang, F. G. Sun, and X.-C.Zhang, “Spatio-temporal Imaging of THz Pulse,” IEEE , 1998 [2 ] G. Mourou et al., Appl. Phys. Lett., 39, 295, 1981 [3 ] Ch. Fattinger, D. Grischkowsky, Appl. Phys. Lett., 53, 1480, 1988 [4 ] Rice A., Jin Y., Zhang X.-C.,et al., Appl. Phys. Lett., 64, 1324, 1994 [5 ] Zhang X.-C.,and Auston,D. H., J. Appl. Phys., 71, 326, 1992 [6 ] X.-C. Zhang, Y. Jin, T. D. Hewitt, and T. Sangsir, Appl. Phys. Lett. 62, 2003, 1993 [7 ] N. Sarukura, H. Othtake, S. Izumida, and Z. Liu, J.Appl. phys. 84, 654, 1998 [8 ] X.-C. Zhang,Perspectives in Optoelectronics, Ed. By Sudhanshu S. Jha, Would Scientific, chapter 3, 1995 [9 ] D. Some and Arto V. Nurmikko, Phys. Rev. B 53, R 13295 [10 ] Hideyuki Ohtake, shingo Ono, Masahiro Sakai, Zhenlin Liu, Takeyo Tsukamoto, and Nobuhiko Sarikura, Appl. Phys. Lett. , 76, 1398( 2000) [11 ] J.T. Kindt , C.A. Schmuttenmaer, J. Phys Chem., 100(24), 10373(1996) [12 ] D.M. Mittleman, R.H. Jacobsen, R. Neelamani, R.G. Baraniuk and M.C. Nuss, Appl. Phys. B-Lasers and optics, 67(3), 379(1998) [13 ]徐國謙,國立清華大學碩士論文,物理研究所,民國九十二年七月 [14 ] 王薔菁,奈米矽表面效應及其光激發光之特性研究,清華大學材料科學工程學系碩士論文, 民國九十一年六月 [15 ] C. Pickering, M.I.J. Beale,D.J. Robbins, P.J. Pearson and R. Greef, J.Phys.C,17,6535(1984) [16 ] S. Furukawa and T. Miyasato, Phys.Rev.B, 38,5726(1988) [17 ] L.T.Canham, Appl.Phys.Lett. , 57(10), 1046(1990) [18 ] M. Saitoh, T. Saito, T. Inukai, and T. Hiramoto, Appl.Phys.Lett. , 79(13), 2025(2001) [19 ] I. Crupi, S. Lombardo, C. Spinella, C. Gerardi, B. Fazio, M. Vulpio, M. Melanotte, Y. Liao, and C. Bongiorno, Mater.Science and Eng.C, 15, 283(2001) [20 ] A. Richer, P. Steiner, F. Kozlowski, and W. Lang, IEEE Electron Dev.Lett. , 12,691(1991) [21 ] D. E. Aspnes, Thin Solid Films 89, 249-262(1982) [22 ] Stefano Giordano, Journal of Electrostatics, 58,59-76(2003) [23 ]曾祥仁,國立清華大學碩士論文,物理研究所,民國八十七年七月 [24 ] X.C Zhang, L. Xu and D.H. Auston, Appl.Phys.Lett. , 61,1784(1992) [25 ] R.W. Boyd, Nonlinear Optic(Academic Press,1992) [26 ] Kittle, Introduction to Solid State Physics, Wily, 7th [27 ]固態物理學導論(Kittle, Introduction to Solid State Physics 中譯本),高立, 第七版 [28 ] J. A. Osborn, Phys. Rev, 67, 351(1945) [29 ] A.Uhlir, Bell Syst. Tech. J., 35, 333(1956) [30 ] L.T. Canham, Appl. Phys. Lett. , 57(10), 1046(1990) [31 ] Y. Kanemitsu, T. Ogawa, K. Shiraishi, and K. Takeda, Phy. Rev. B, 48, 4883(1993) [32 ] Z.H. Lu, D.J. Lockwood, Nature, 378, 258(1995) [33 ] T. Takagahara and K. Takeda, Phys. Rev. B, 46, 15578(1992) [34 ] Y. Kanemitsu, Phys. Rep., 263, 1(1995) [35 ] M.V. Wolkin, J.D. Head, J. Phys. Chem. B, 104, 9981(2000) [36 ] T. Dittrich, E.A. Konstantinova, and V.Y. Timoshenko, Thim Sol. Films, 255, 238(1995) [37 ] Kwang-Su Lee, Toh-Ming Lu, and X. -C. Zhang, Microelectronics Journal, 34,63-69(2003) [38 ] D. Grischkowsky, Soren Keiding, Martin van Exter, and Ch. Fattinger, J.Opt.Soc.Am.B, 7(10), 2006-2015(1990)id NH0925198022 sid 913345 cfn 0 / id NH0925198023 auc 陳建憲 tic 對稱式交互氣流微波電漿源之研究 adc 寇崇善 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 54 kwc 電漿 kwc 乾式清潔 kwc 接觸角 abc PCB由於其物理及化學特性目前在業界被廣汎使用,而並非所有的聚合物都具有良好的附著性,因此我們以電漿處理進行表面改質。而本實驗利用電漿的擴散與PCB進行作用,表面能量從作用前的不到20dyne/cm提升至60dyne/cm以上;且利用抽氣位置控制腔體內氣流方向以交互氣流作用的方式提升處理均勻度,PCB上各點表面能量相差在5dyne/cm以下。 tc 第一章 緒論 1.1 前言 1.2 電漿處理的優勢 1.3 電漿對表面的處理 1.4 研究目的 第二章 實驗設備系統 2.1 微波電漿激發系統 2.1.1 電漿源 2.1.2 微波反應共振腔 2.2 Langmuir探針量測系統 2.2.1 Langmuir探針結構 2.2.2 探針量測的介面控制 2.3 光譜儀量測系統 2.4 接觸角 2.4.1 電漿表面處理系統 2.4.2 接觸角量測系統 第三章 量測方式及分析原理 3.1 Langmuir探針簡介 3.1.1 I-V特性曲線 3.1.2 I-V特性曲線分析 3.2 時間定序量測 3.2.1 時間定序量測方式 3.2.2 時間定序的優缺點 3.3 接觸角分析 第四章 時間結果與討論 4.1 電漿量測 4.1.1 I-V特性曲線 4.1.2 電漿密度 4.1.3 電漿溫度 4.2 O.E.S量測 4.2.1 氬氣電漿O.E.S 4.2.2 氧氣電漿O.E.S 4.3 接觸角量測 4.3.1 氬氣電漿對PCB的處理 4.3.2 氧氣電漿對PCB的處理 4.3.3 均勻度量測 第五章 結論 5.1 實驗結論 5.2 發展應用rf F.D. Egitto and L.J Matienzo, “Plasma Modification of Polymer Surfaces for Adhesion Improvement” IBM Journal or research and Development July 1994, p. 423. H.R. Yousefi, M.Ghoranneviss, A.R. Tehrani and S. Khamseh, “Investigation of glow discharge plasma for surface modification of polypropylene” Surf. interface Anal. 2003;35;1015-1017 Dr. James D. Getty, “How Plasma-Enhenced Surface Modification Improves the Production of Microelectronics and Optoelectronics” Technical Forum Y.W. Park, N. Inagaki, “Surface modification of poly(vinylidene fluride) film by remote Ar, H2 and O2 plasmas” polymer 44(2003) 1569-1575 吳倉聚博士論文,微波激發之大面積高密度表面波電漿源之研究,2000年7月 張志振博士論文,多重微波源電漿源之研究,2003年11月 David R. LIDE, “CRC Handbood of Chemisty and Physics 78TH edition” F.F. Chen, “Plasma Diagnostic Techniques, Chap4” edited by R.H. Huddle and S.L. Leonard(Academic, New York, 1995) “Maxwellian Velocity Distribution”http://jersey.uoregon.edu/vlab/Balloon J Reece Roth, “Industrial Plasma Engineering, Vol.2 Chap20.6” Yuri P. Raizer, “Gas Discharge, Chap2” Kenji Aoyagi. Itsuo Ishikawa, Yukinori Saito and Shinji Suganomata, “Mode Change of 1MHz Discharge in O2 Gas at Low Pressure” Jpn. J. Appl. Phys. Vol. 35 (1996) pp. 6248-6251id NH0925198023 sid 913347 cfn 0 / id NH0925198024 auc 林楓凱 tic 聲致發光在台灣的初期研究 adc 王子敬 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 英文 pg 49 kwc 聲致發光 abc 單氣泡聲致發光是一種當氣泡被侷限於壓力場時,因強烈周期性震盪引致內部氣體溫度升高而發光的一種現象. 此一現象對甚多參數都非常敏感. 在本篇論文中,我門試著討論亮度,液體溫度,施加壓力,溶解氣體和它的亮度變化與時間的關係. tc I. Brief history of SBSL 1 II. Bubble dynamics 3 A. Rayleigh-Plesset equation 3 B. How the bubble responses to weak and strong forces 6 C. How the bubble stops to collapse 8 D. Bjerkne force 9 III. Experiment for measuring R(t) 10 IV. Sound emission from the bubble 12 V. Interior of the bubble 14 VI. Shock wave in the bubble 16 VII. Dissipative models including water vapor 20 A. Evaporation and Condensation 21 B. Simple model 23 VIII.Parameter space of SBSL 26 A. Blake threshold 26 IX. Mechanism of light emission 28 X. The work of Oak Ridge National Laboratory 31 XI.Brief History of Development of Our Team 38 XII. Experimental setup 39 A. Prepare for water 39 B. Instrument operation 39 C. The way to sonoluminescence 39 XIII.Experimental results 41 XIV. Unanswered Questions 48 XV. Cooperator 48 XVI. Future work 48 XVII. Reference 49rf 1. Michael P.Brenner, Sascha Hilgenfeldt and Detlef Lohse, “Single-bubble sonolumunescence”, review of modern physics, volume 74, april 2002. 2. Bradley P.Barber, Robert A.Hiller, Rotva Lofstedt,Seth J.Putterman and Keith R.Weninger,1997,” Defining the unknows of sonoluminescence”, Physics Report 281,65-143. 3. R.P. Taleyarkhen, J.S. Cho,C.D. West, 2004, “Additional evidence of nuclear during acoustic cavitation”,PHYSICE REVIEW E 69,.03619. 4. Keith Weninger,Seth J.Putterman amd P. Barber,1996,”Angular correlation in sonoluminescence: Diagnostic for the sphericity of a collapse bubble”,PHYSICE REVIEW E, Vol. 54, No3. 5. Bradley P.Barber and Seth J.Putterman, 1992,”Light Scattering Measurement of the Repetitive Supersonic Implosion of a Sonoluminescencing Bubble”,PHYSICS REVIEW LETTERS, Vol 69, No.26. 6. Bradley P.Barber ,C.C. Wu and Rotva Lofstedt,1994,”Sensitivity of Sonoluminescence to Experimental Parameters”, PHYSICS REVIEW LETTERS, Vol 72, No. 9. 7. Lawrence A.Crum,”SONOLUMINESCENCE”,PHYSICS TODAY, Sept. 1994. 8. Seth J.Putterman,”Sonoluminescence: Sound into Light”,Scientific American Feb. 1995. 9. Landau,L.D. and E.M. Lifshitz,1987, ”Fluid Mechanics”(Pregamon, Oxford) 10. Hilgenfeldt,S.,S.Grossman and D.Lohse,1998,”Analysis of Rayleigh-Plessetdynamics for sonoluminescencing bubbles”, J. Fluid Mech.365,171-204.id NH0925198024 sid 913348 cfn 0 / id NH0925198025 auc 陳君豪 tic 射頻電漿與聚合物表面之作用 adc 寇崇善 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 47 kwc 電漿清潔 kwc 中空陰極效應 kwc 接觸角 kwc 表面改質 abc 本實驗為解決一般工業界中PCB板處理不均勻性的問題,因此發展了RF-HCD系統,藉中空陰極效應產生大面積且均勻之電漿,並利用氣流及擴散將電漿均勻且有效的帶至處理盒內,達成均勻且有效的處理效果。在效果方面,成功將PCB板之表面能量由原本的15 dynes/cm提升至65 dynes/cm;在均勻度方面,處理盒內PCB板之表面能量差異僅僅5 dynes/cm左右,均勻度相當良好。 tc 目錄索引 第一章 緒論 1.1 電漿在工業界之應用/1 1.1.1 聚合物(polymer)的應用/1 1.1.2 電漿對聚合物之表面處理/1 1.2 研究方向與目的/2 第二章 實驗設備與操作流程 2.1 實驗設備介紹/4 2.2 射頻能量供應系統/6 2.2.1 電漿源設計/6 2.2.2 匹配線路(Matching network)/8 2.3 量測系統介紹/8 2.3.1 電漿離子密度量測:Langmuir probe量測/8 2.3.1.1 Langmuir probe之製作方法/9 2.3.1.2 Langmuir probe量測操作步驟/11 2.3.2 表面能量量測/11 2.3.3 原子光譜量測:光譜儀量測(OES)/13 第三章 實驗方法之原理 3.1 Langmuir probe之介紹/14 3.1.1 I-V特性曲線/16 3.1.1.1 I-V特性曲線分析/16 3.1.1.2 電漿參數計算/18 3.2 中空陰極放電(Hollow Cathode Discharge, HCD)/21 3.3 接觸角(Contact angle)之定義/24 3.4 電漿與聚合物表面之作用(plasma-surface interaction)/26 第四章 實驗結果與分析 4.1 電漿離子密度量測/28 4.1.1 RF-HCD系統之電漿離子密度量測/29 4.1.2 置入PCB對電漿離子密度之影響/32 4.2 PCB板之接觸角量測/34 4.2.1接觸角隨氣壓與處理時間之變化/34 4.2.2表面能量之均勻度分析/37 4.3 電漿系統之光譜量測/41 4.3.1 峰值強度與壓力之關係/42 4.3.2 氬氣加入對峰值強度之影響/42 第五章 結論 5.1 實驗結果摘要/46 5.2 RF-HCD系統之改良與發展/47 參考文獻rf [01 ]C. M. Chan and T. M. Ko, Surface Science Report, 24, p.1, 1996 [02 ]J. Reece Roth, Industrial Plasma Engineering, 2, p.318 [03 ]呂登復, 實用真空技術, p218, 2002 [04 ]David M. Pozar, Microwave Engineering, p.252, 1990 [05 ]G Navascues, Rep. Prog. Phys., 42, p.1131, 1979 [06 ]Dongqing, Colloids Surf., 116, p.1, 1996 [07 ]David R. Lide, CRC Handbook of Chemistry and Physics, p.10-1, 1997 [08 ]M. A. Liberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, Wiley, New York, 1994 [09 ]Yuri P. Raizer, Gas Discharge [10 ]H.M. Mott-Smith and I. Langmuir, Phys. Rev., 28, p727, 1926 [11 ]A. P. Paranjpe, J. P. Mcvittie, and S. A. Self, J. Appl. Phys., 67, 11, p.6718, 1990 [12 ]R. B. Piejak, V. A. Godyak and B. M. Alexandrovich, Plasma Source Sci. Technol., 1, p.179, 1992 [13 ]I. Langmuir and H. Mott-Smith, General Electric Rev., 27, p.449, 1924 [14 ]P.F. Little and A. von Engel, Proc. Roy. Soc., 224, p.209, 1954 [15 ]C.M. Horwitz, Appl. Phys. Lett., 43, p.977, 1983 [16 ]H. Eichhorn, K.H. Schoenbach and T. Tessnow, Appl. Phys. Lett., 63, p.18, 1993 [17 ]H. Barankova and L.Bardos, Surf. Coat. Technol., 120-121, p.704, 1999 [18 ]H. Barankova and L.Bardos, Surf. Coat. Technol., 163-164, p.649, 2003 [19 ]T. Young, Philos. Trans. R. Soc. Lomd., 95, p.65, 1805 [20 ]C.N.C. Lam, R.Wu, D. Li, M.L. Hair and A.W. Neumann, Advances in Colloid and Interface Sci., 96, p.169, 2002 [21 ]M. R. Wertheimer et al., Nucl. Instr. and Meth. in Phys. Res. B, 151, p.65, 1999 [22 ]Web site:http://www.fact-index.com/id NH0925198025 sid 913349 cfn 0 / id NH0925198026 auc 張世君 tic 利用ICP系統沈積類鑽石薄膜 adc 寇崇善 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 55 kwc 類鑽石膜 abc 本實驗利用ICP系統沈積類鑽石薄膜,以C2H2與H2混合氣體選擇適當的沈積參數沈積高透光性的類鑽石薄膜。探討不同沈積時間及壓力下,對所沈積出的類鑽石薄膜其薄膜厚度、內部鍵結情況以及透光性的影響。使用掃描式電子顯微鏡觀察薄膜的表面與橫截面型態,利用原子力顯微鏡觀察類鑽膜表面粗糙度,使用拉曼光譜儀分析薄膜的鍵結情況以及使用spectrum-photometer檢測薄膜透光度。再以不同的基材上沈積類鑽石薄膜,比較其鍵結情況的差異。 tc 目錄 第一章 緒論 1-1. 碳的簡介………………………………………..............................1 1-2. 類鑽石膜…………………………………………………………..3 1-2-1. 類鑽石膜簡介………………………………………………...3 1-2-2. 類鑽石膜的結構……………………………………………...6 1-2-3. 類鑽石膜的製作……………………………………………...8 1-2-4. 類鑽石膜的性質及應用…………………………………….12 1-3. 銦錫氧化物簡介…………………………………………………14 1-4. 電漿簡介…………………………………………………………15 1-5. RF電漿CVD之反應機制………………………………………17 1-6. 研究動機…………………………………………………………18 1-7. 論文架構…………………………………………………………19 第二章 實驗方法與原理 2-1. 實驗流程…………………………………………………………20 2-2. 實驗步驟…………………………………………………………21 2-2-1. 沈積系統…………………………………………………….21 2-2-2. 沈積過程…………………………………………………….22 2-3. 類鑽石膜分析……………………………………………………24 第三章 不同時間及壓力下類鑽石膜的各種物性量測 3-1. 類鑽石膜製備參數與檢測………………………………………29 3-2. 類鑽石膜厚度與形貌……………………………………………30 3-3. 類鑽石膜的Raman光譜特性……………………………………34 3-3-1. 不同沈積時間的類鑽石膜Raman光譜特性………………37 3-3-2. 不同沈積壓力的類鑽石膜Raman光譜特性………………39 3-3-3. 類鑽石膜沈積於不同基材之Raman光譜特性……………40 3-4. 類鑽石膜的透光性………………………………………………41 3-4-1. 不同沈積時間的類鑽石膜透光特性……………………….42 3-4-2. 不同沈積時間的類鑽石膜透光特性……………………….46 第四章 不同基材上所沈積類鑽石膜的特性 4-1. 研究動機…………………………………………………………49 4-2. 類鑽石膜的Raman光譜特性……………………………………49 第五章 結論 5-1 總結………………………………………………………………52 5-2 未來展望…………………………………………………………53 參考資料………………………………………………………………..54rf 參考資料 [1 ] Sumio lijima, Nature, 354, 56(1991) [2 ] J. Esteve, M.C. Polo, G. Sanchez, Vacuum ,52, 133(1999) [3 ] Zhu W, Stoner BR, Williams BE, Glass JT. Proc. of IEEE1991;79:642 [4 ] 林玫君碩士論文,利用射頻電漿化學氣相沈積法成長類鑽石薄膜及其場發射特性之探討,1999年 [5 ] 科儀新知, Vol. 13, Iss 2, pp. 2 (1991) [6 ] Aisenberg. S. and Chabot R. , J. Appl. Phys. 42, 2953 (1971) [7 ] A. Grill, Diam. Relat. Mater, 8, 428 (1999) [8 ] “HARL E. SPEAR JOHN P. DISMUHES”, 1994 [9 ] Yves Catherrine, in:R. E. clausing, L. L. Horton, J. C. Angus, P. Koidl, (Eds.), Diamond and Diamondlike Films and Coating, NATO-ASI Series B: Physics, Plenum, NEW YORK, 1991, P. 194. [10 ] Yves Catherrine, in:R. E. clausing, L. L. Horton, J. C. Angus, P. Koidl, (Eds.), Diamond and Diamondlike Films and Coating, NATO-ASI Series B: Physics, Plenum, NEW YORK, 1991, P. 221. [11 ] A. Grill, B. Meyerson, in:K.E. Spear, J.P. Dismukes(Eds.), Synthetic Diamond:Emerging CVD Science and Technology, Wiley, New Tork, 1994, p.121 [12 ] 許國詮,科技玻璃—高性能透明導電膜玻璃,材料與社會 84期,110-119,82年12月 [13 ] Radhouane B. H. Tahar, T. Ban, Y. Ohya and Y. Takahashi, J. Appl. Phys, 83, 2631-2645(1998) [14 ] J. L. Vossen, J. Electronchem. Soc. Vol. 126, 319 (1979) [15 ] F. G. Celii, and J. E. Butler, Appl. Phys. Lett,. 54, 1031 (1989) [16 ] M. Frenklach and K. E. Spear, J. Mater. Res. , 3, 133 (1988) [17 ] S. J. Harris, Appl. Phys. Lett. 56, 2298 (1990) [18 ] “材料分析”,汪建民 主編 (1998) [19 ] R. O. Dillon. J. A. Woollam and V. Katkanant, Phys. Rev. B. 29, 3482 (1984) [20 ] J. Robertson, Mater. Sci. Eng. R. 37, 246 (2002)id NH0925198026 sid 913351 cfn 0 / id NH0925198027 auc 劉家明 tic CdTe/InSb之繞射異常精細結構 adc 張石麟 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 44 kwc x光 kwc 繞射 kwc 異常精細結構 abc 本論文的主要目的在於使用同步輻光源,利用異常繞射精細結構法研究 CdTe/InSb 的單晶薄膜系統。一般在研究材料結構會使用X光吸收光譜,但X光吸收光譜只能針對特定元素,而繞射異常精細結構 DAFS tc 1.導論...............................1 2.x光吸收光譜.......................11 3.繞射異精細結構....................17 4.實驗裝置與方法....................22 5.數據分析..........................32 6.結論..............................42 參考書目............................43rf J. O. Cross, Phd. Thesis, (1996) Depart. of Physics, University of Washington. H. Stragier, J.O. Cross, J.J. Rehr, L.B. Sorensen, C.E. Bouldin and J.C. Woicik, Phys. Rev. Lett. 69, 3064 (1992) J. J. Rehr and R. C. Albers, Reviews of Modern Physics, vol. 72, No. 3, July 2000 Gwyndaf Evans and Robert F. Pettifer, J. Appl. Cryst. (2001). 34, 82-86. Gwyndafs Evans, Chooch Calculation of Anomalous Scattering Factors from X-ray fluorescence data. Yuri P. Stetsko, C.-H. Hsu, Mau-Tsu Tang, Yen-Ru Lee, U. Jeng and K. S. Liang, Composition of self-assembled InGaAs quantum dots fine-resolved by dispersive resonant x-ray diffraction, NSRRC Hsinchu Taiwan. International tables for X-ray crystallography R. W. James, The Optical Principles of The Diffraction of X-rays. OX BOW PRESS, Woodbridge, Connecticut, 1982. S. L. Chang, Special Topics on X-rays Diffraction. Leonid V. Azaroff, Elements of X-ray Crystallography, McGraw Hill, Inc., 1968. 李彥儒, 2003, 博士論文 清華大學物理所。 翁世璋, 2003, 碩士論文 清華大學物理所。 鄭森源, 2002, 碩士論文 清華大學物理所。id NH0925198027 sid 913352 cfn 0 / id NH0925198028 auc 吳柄緯 tic 利用掃描穿隧顯微儀在金表面製造奈米結構 adc 羅榮立 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 47 kwc 金 kwc 奈米結構 kwc 掃描穿隧顯微術 abc 我們使用電子掃描穿隧顯微儀(Scanning Tunneling Microscopy, STM)在金球的表面施加脈衝以製造奈米結構。我們選擇大氣下和Si oil兩種不同的環境和Au、PtIr兩種探針,並改變不同的參數來觀察對製造結構有什麼影響。 tc 摘要 誌謝 目錄 第一章 簡介 ••••••••••••••••••••••1 第二章 原理 (1) 電子掃描穿隧顯微儀之基本原理 •••••••••3 (2) 針尖誘發之表面修飾之相關機制 ••••••••••7 第三章 實驗方法 (1) 實驗準備••••••••••••••••••••13 (2) 實驗方法及步驟•••••••••••••••••16 第四章 實驗結果與討論 •••••••••••••••18 第五章 結論 •••••••••••••••••••••43 參考文獻 •••••••••••••••••••••••44 附錄 •••••••••••••••••••••••••46rf [1 ] 白偉武,林更青 “掃描探針顯微術於表面形貌演化與動態研究之介紹”, 物理雙月刊, 二十五卷五期 (2003) 660 [2 ] G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Appl.Phys.Lett. 40, (1982) 178 [3 ] M. Ringger,H.R. Hidber, R. Schlogel, P. Oelhafen, H.J. Gntherodt, Appl.Phys.Lett. 46, (1985) 832 [4 ] R.S. Becker, J.A. Golovchenko, B.S. Swartzentruber, Nature 325, (1987) 419 [5 ] D.M. Eigler, E.K. Schweizer, Nature 344, (1990) 524 [6 ] H.J. Mamin, P.H. Guethner, and D. Rugar, Phys. Rev. Lett. 65,(1990) 2418 [7 ] H.J. Mamin, S. Chiang, H. Birk, P.H. Guethner, J. Vac. Sci. Technol. B9,(1991) 1398 [8 ] C.S.Chang, W.B.Su, and Tien T. Tsong, Phys. Rev. Lett. 72(4) (1994) 574 [9 ] Tien T. Tsong et al. , Chin. J. Phys. 32(5) (1994) 667 [10 ] 黃英碩 , 清大物理表面物理課程講義SPM (2003) [11 ] Tien T. Tsong, Phys. Rev. B 44(24) (1991) 704 [12 ] N.M. Miskovsky and Tien T. Tsong, Phys. Rev. B46(4) (1992) 2640 [13 ] N.M. Miskovsky, C.M. Wei and Tien T. Tsong, Phys. Rev. Lett. 69 (1992) 2427 [14 ] E. W. M?刜ler, Naturwissenshaften 29, (1941) 533. [15 ] R. Gomer, Field Emission and Field Ionization (Harvard U. P., Cambridge, Mass., 1961). [16 ] E. W. M?刜ler and T. T. Tsong, Field Ion Microscopy, American Elsevier Publ. Company, New York (1969). [17 ] J. I. Pascual et al. , Phys. Rev. Lett. 71(12) (1993) 1852 [18 ] Hao-Li Zhang, Hu-Lin Li, Zhong-Fan Liu, Microelectronic Engineering 63 (2002) 381 [19 ] Seiichi Kondo, Seiji Heike, Mark Lutwyche , and Yasuo Wada, J. Appl. Phys. 78(1) (1995) 155 [20 ] Hammond, G.S. J. Am. Chem. Soc. 77 (1955) 334 [21 ] K. Bessho and S. Hashimoto, Appl. Phys. Lett. 65, (1994) 2142 [22 ] Margret Giesen, Progress in Surface Science 68 (2001) 1 [23 ]T. C. Chang, C. S. Chang, H. N. Lin, and Tien. T. Tsong, Appl. Phys. Lett. 67(7), (1995) 903 [24 ] C. Lebreton, Z. Z. Wang, Appl. Phys. A 66 (1998) 777id NH0925198028 sid 913320 cfn 0 / id NH0925198029 auc 劉建成 tic 拾個化合物單晶結構之決定 adc 盧天惠 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 115 kwc 單晶 kwc 結構 kwc X光 abc 中文摘要 tc 總目錄 中文摘要 I 英文摘要 II 誌謝 III 總目錄 IV 圖目錄 V 表目錄 VIII 第一部份 一、X-ray結晶學與晶體的簡介 1 二、空間群與晶體對稱 3 三、倒晶格空間、布拉格定律與厄瓦特球 5 四、實驗儀器設備 7 五、結構因數與相位問題 9 六、初步相位決定 11 七、結構的建立與精算 14 八、流程圖 17 第二部分 解晶方法以及晶體資料一覽 18 晶體結構(I) 19 晶體結構(II) 27 晶體結構(III) 37 晶體結構(IV) 47 晶體結構(V) 55 晶體結構(VI) 64 晶體結構(VII) 74 晶體結構(VIII) 83 晶體結構(IX) 92 晶體結構(X) 101 結論與討論 110 參考文獻 113rf Burgi, H. B. & Dunitz, J. D. (1994). Structure correlation volume 1. VCH ISBN 1560817526 Burgi, H. B. & Dunitz, J. D. (1994). Structure correlation volume 2. VCH ISBN 1560817526 Jeffrey, G. A. (1997). An introduction to hydrogen bonding. Oxford University Press. ISBN 0195095499 盧天惠 (2002). X光繞射與應用 滄海書局 ISBN 957-2079-87-5 Battaglia, L. P., Corradi, A. B., & Mangia, A. (1980). Inorg Chimica Acta 39, 211-216 Byabartta, P., Dinda, J., Santra, P. K., Sinha, C., Panneerselvam, K., Liao, F. L. & Lu, T. H. (2001). J. Chem. Soc., Dalton Trans. 2825-2832 Byabartta, P., Jasimuddin, S. K., Mostafa, G., Lu, T. H. & Sinha, C. (2003). Polyhedron 22, 849-859 Byabartta, P., Jasimuddin, S. K., Mostafa, G., Lu, T. H., & Sinha, C., (2003). Polyhedron 22, 849-859 Byabartta, P., Santra, P. K., Misra, T. K., Sinha, C. & Kennard, C. H. L. (2001). Polyhedron 20, 905-913 Cabort, A., Therrien, B., Bernauer, K. & Fink, G. S., (2003). Inorganica Chimica Acta 349, 78-84 Calderazzo, F., Englert, U., Hu, C., Marchetti, F., Pampaloni, G., Passarelli, V., Romano, A. & Santi, R. (2003). Inorg Chimica Acta 344, 197-206 Choi, K.Y., Choi, S. N. & Suh, I. H. (1998). Polyhedron 17, 1415-1422 Choi, K.Y., Chun, K. M., Lee, K. C. & Kim, J. (2002). Polyhedron 21, 1913-1920 Cross, R. J., Farrugia, L. J., Newman, P. D., Peacock, R. D. & Stirling, D. (1999). Inorg. Chem. 38, 1186-1192 Das, C., Saha, A., Hung, C. H., Lee, G. H., Peng, S. M. & Goswami, S. (2003). Inorg. Chem. 42, 198-204 Davies, P. L. C., Gregory, D. H., Hanton, L. R. & Turnbull, J. M. (2002). J. Chem. Soc., Dalton Trans. 1574-1580 Dinda, J., Bag, K., Sinha, C., Mostafa, G. & Lu, T. H. (2003). Polyhedron 22, 1367-1376 Dinda, J., Ray, U., Mostafa, G., Lu, T. H., Usman, A., Razak, I. A., Chantrapromma, S., Fun, H. K., & Sinha, C. (2003). Polyhedron 22, 247-255 Escuer, A., Castro, I., Mautner, F., Fallah, M. S. E. & Vicente, R. (1997). Inorg. Chem. 36, 4633-4640 Escuer, A., Vicente, J. R., Ribas, J., Fallah, M. S. E., Solam, X. & Bardia, M. F. (1994). Inorg. Chem. 33, 1842-1847 Fujinaga, M. & Read, R. J. (1987). J. Appl. Cryst. 20, 517-521 Funahashi Y., Kato, C. & Yamauchi O. (1999). Bull. Chem. Soc. Jpn. 72, 415-424 Goher, M. A. S. & Mak, T. C. W. (1985). Inorg Chimica Acta 99, 223-229 Goher, M. A.S., Escuer, A., Mautner, F. A. & Salem, N. A. A. (2002). Polyhedron 21, 1871-1876 Holleman, S. R., Parker, O. J. & Breneman, G. L. (1994). Acta Cryst. C50, 867-869 Huang, L., Seward, K. J., Sullivan, B. P., Jones, W. E., Mecholsky, J. J. & Dressick, W. J. (2000). 310, 227-236 Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534 Ito, S., Ishikawa, Y., Nishino, S., Kobayashi, T., Ohba, S. & Nishida, Y. (1998). Polyhedron 17, 4379-4391 Kabir, M. K., Tobita, H., Matsuo, H., Nagayoshi, K., Yamada, K., Adachi, K., Sugiyama, Y., Kitagawa, S. & Kawata, S. (2003). Cryst. Growth Des. 3,791-798 Kennedy, A. R. & Waterson, F. R. N. (2003). Acta Cryst. C59, o613-o615 Kuang, S. M., Zhang, Z. Z., Xue, F. & Mak, T. C.W. (1999). Polyhedron 18, 3465-3468 Kulkarni, P., Padhye, S. & Sinn, E. (1998). Polyhedron 17, 2623-2626 Laurent, F., Plantalech, E., Donnadieu, B., Jimenez, A., Hernandez, F., Ripoll, M. M., Biner, M. & Llobet, A. (1999). Polyhedron 18, 3321-3331 Li, G., Hou, H. W., Niu, Y. Y., Fan, Y. T., Liu, Z. S., Ge, T. Z. & Xin, X. Q. (2002). Inorg Chimica Acta 332, 216-222 Li, L., Liu, Z., Turner, S. S., Liao, D., Jiang, Z. &Yan, S. (2003). New J. Chem. 27, 752-755 Lumme, P., Mutikainen, I. & Lindell, E. (1983). Inorg Chimica Acta 71, 217-226 Luo, Y., Potvin, P. G., Tse, Y. H. & Lever, A. B. P. (1996). Inorg. Chem. 35, 5445-5452 Macchia, D. J., Jr., W. F. F. & Lalancette, R. A. (1993). Acta Cryst. C49, 1706-1713 Majumdar, P., Peng, S. M. & Goswami, S., (1998). J. Chem. Soc., Dalton Trans. 1596-1574 Manikandan, P., Muthukumaran, R., Thomas, K. R. J., Varghese, B., Chandramouli, G. V. R. & Manoharan, P. T. (2001). Inorg. Chem. 40, 2378-2389. Mikuriya, M., Hatano, Y. & Asato, E. (1997). Bull. Chem. Soc. Jpn. 70, 2495-2507 Misra, T. K., Das, D., Sinha, C., Ghosh, P. & Pal, C. K. (1998). Inorg. Chem. 37, 1672-1678 Mukherjee, P. S., Dalai, S., Mostafa, G., Lu, T. H., Rentschler, E. & Chaudhuri, N. R. (2001). New J. Chem. 25, 1203-1207 Munno, G. D., Ventura, W., Viau, G., Lloret, F., Faus, J. & Julve, M. (1998). Inorg. Chem. 37, 1458-1464 Munno,G. D., Viau, G., Julve, M., Lloret, F. & Fans, J. (1997). Inorg Chimica Acta 257, 121-129 Nieuwpoort, G. & Verschoor, G. C. (1981). Inorg. Chem. 20,4079-4082 Oshio, H., Ino, E., Magi, I. & Ito, T. (1993). Inorg. Chem. 32, 5697-5703 Ray, U., Chand, B., Mostafa, G., Cheng, J., Lu, T. H. & Sinha, C. (2003). Polyhedron 22, 2587-2594 Ribas, J., Monfort, M. & Ghosh, B. K. (1996). Polyhedron 15, 1091-1095 Ribas, J., Monfort, M., Diaz, C., Bastos, C. & Solans, X. (1993). Inorg. Chem. 32, 3557-3561 Ribas, J., Monfort, M., Diaz, C., Bastos, C. & Solans, X. (1994). Inorg. Chem. 33, 484-489 Sanni, S. B. & Lenstra, A. T. H. (1985). Acta Cryst. C41, 199-200 Sarkar, B., Laye, R. H., Mondal, Chakraborty, B., S., Paul, R. L., Jeffery, J. C., Puranik, V. G., Ward, M. D. & Lahiri, G. K. (2002). J. Chem. Soc., Dalton Trans. 2097-2101 Sillanpaa, R., Kivekas, R., Escriche, L., Casabo, J. & Castello, G. S. (1994). Acta Cryst. C50, 1062-1064 Tran, K. C., Battioni, J. P., Zimmermann, J. L., Bois, C., Koolhaas, G. J. A. A., Leduc, P., Mulliez, E., Boumchita, H., Reedijk, J. & Chottard, J. C. (1994). Inorg. Chem. 33, 2808-2814 Veidis, M. V., Dockum, B., Jr., F. F. C., Reiff, W. M. & Brennan, T. F. (1981). Inorg Chimica Acta 53, L197-L199 West, D. X., Swearingen, J. K., Romack, T. J., Billeh, I. S., Jasinski, J. P., Li, Y. & Staples R. J. (2001). J. Mol. Struct. 570, 129-136 Yamahara, R., Ogo, S., Watanabe, Y., Funabiki, T., Jitsukawa, K., Masuda, H. & Einaga, H. (2000). Inorg Chimica Acta 300-302, 587-596 Zhang, Y., Li, J., Nishiura, M. & Imamoto, T. (2000). J. Mol. Struct. 520, 259-263 Zoeteman, M., Bouwman, E., Graaff, R. A. G. D., Driessen, W. L., Reedijk, J. & Zanello, P. (1990). Inorg. Chem. 29, 3487-3492id NH0925198029 sid 893331 cfn 0 / id NH0925198030 auc 楊士模 tic 鉈原子在6P1/2 到7S1/2 的光譜量測 adc 劉怡維 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 40 kwc 鉈 abc 鉈原子在基本的原子物理裡面扮演很重要的角色,例如在宇稱不守恆的理論或是電子的電偶極理論都有運用到鉈原子的研究。對於鉈原子結構的詳細了解可以增進我們對於理論和實驗結果的相互比較,因此,對於鉈原子的超精細能階結構和同位素分裂的研究,將能給許多的理論提供重要的依據。 tc 目錄 圖目錄 第1章 前言………………………………………………………………… 1 第2章 基本原理…………………………………………………………… 4 2.1 鉈原子能階………………………………………………………… 4 2.2 理論計算譜線數值………………………………………………… 5 2.2.1 譜線自然頻寬…………………………………………………… 5 2.2.2 都卜勒增寬效應………………………………………………… 6 2.2.3 減少都卜勒增寬效應的方法…………………………………… 9 2.3 不同能階之間的躍遷強度………………………………………… 12 2.4 各能階原子數分佈比例計算……………………………………… 13 2.5 光學幫浦…………………………………………………………… 14 第三章 實驗裝置…………………………………………………………… 17 3.1 實驗裝置…………………………………………………………… 17 3.2 雷射倍頻共振腔…………………………………………………… 18 3.3 真空加熱腔………………………………………………………… 22 第四章 實驗結果…………………………………………………………… 25 4.1 鉈原子 205Tl 在6P1/2(F=1)到7S1/2(F=0)的光譜圖……………… 25 4.2 205Tl 6P1/2(F=1)到7S1/2(F=1)的線寬……………………………… 27 4.3 同位素分裂………………………………………………………… 28 4.4 線寬和溫度的關係………………………………………………… 29 4.5 精確決定譜線中心位置…………………………………………… 31 第五章 結論與展望………………………………………………………… 34 附錄…………………………………………………………………………… 35 參考文獻……………………………………………………………………… 40rf [1 ] C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner, and C. E. Wieman, Science 275, 1759 (1997) [CAS ][ INSPEC ]. [2 ] P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, Phys. Rev. Lett. 74, 2658 (1995) [SPIRES ]. [3 ] S. A. Blundell, W. R. Johnson, and J. Sapirstein, Phys. Rev. Lett. 65, 1411 (1990). [4 ] V. A. Dzuba, V. V. Flambaum, P. G. Silvestrov, and O. P. Sushkov, J. Phys. B 20, 3297 (1987) [ADS ][ INSPEC ]. [5 ] S. G. Porsev (private communication). [6 ] P. K. Majumder and Leo L. Tsai, Phys. Rev. A 60, 267 (1999). [7 ] A. Lurio and A. G. Prodell, Phys. Rev. 101, 79 (1956). [8 ] D. S. Richardson, R. N. Lyman, and P. K. Majumder Phys. Rev. A, 62, 012510 [9 ] I. Sh. Muzhdabaev, O. Tukhlibaev, A. T. Tursunov, and E. E. Khalilov Opt. Spectrosc. 93 No.3 (2002) [10 ] W. Demtroder. Laser Spectroscopy. Springer. 3rd edition. (2003)id NH0925198030 sid 913328 cfn 0 / id NH0925198031 auc 夏德殷 tic 十八基三氯矽烷自組裝單分子膜在矽基板上的形成機制與局部改質方法 adc 果尚志 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 47 kwc 自組裝單分子膜 kwc 原子力顯微鏡 kwc 十八基三氯矽烷 abc 目前我們在奈米世界中掌握的知識與技術,主要可以分為兩種方法。一種是由下而上(Bottom-up)的自組裝單分子膜(Self-assembled monolayer)機制,它讓我們只利用簡單的實驗步驟,就可使有機分子們自己組裝成較大且具規則的排列結構。另一種方法是由上而下(Top-down)的奈米微影(Nanolithography),而掃描探針顯微鏡(Scanning Probe Microscopy)正是其中最有力的工具之一,它具備了在奈米尺度下製作出各種人工微細結構的能力。本篇論文嘗試結合這兩種技術,提出方法與步驟驗證其可行性。 tc 摘要 誌謝辭 第一章 緒論………………………….……………………………………………..1 第一節 簡介..………………………………………………….…………………1 第二節 文獻回顧..…………………………………………….…………………2 第二章 相關理論的回顧……………………………………………………………7 第一節 有機薄膜的歷史……………………………………...…………………7 第二節 自組裝現象的原理…………………………………...…………………7 第三節 常見的有機單分子膜的製備方法…………………...…………………8 第四節 觀測自組裝單分子膜的儀器…………………………….……………10 第五節 有機矽烷在矽表面的自組裝單分子膜………………….……………11 第六節 十八基三氯矽烷自組裝單分子膜的成長模式與影響變因…….……13 第七節 掃描探針微影術與自組裝單分子膜……………………….…………14 第三章 實驗儀器與樣品準備…………………………….………………………16 第一節 量測原理…………………………………………….…………………16 1. 原子力顯微鏡成像原理…………………………….…………………16 2. 側向摩擦力成像原理………………………………………………… 19 第二節 儀器裝置………………………….……………………………………20 1. 可變溫原子力顯微鏡裝置………………………….…………………20 第三節 樣品製備……………………………………………….………………23 1. 化學藥品……………………………………………….………………23 2. 矽基板的準備………………………………………….………………23 3. 十八基三氯矽烷溶液的準備………………………….………………23 第四節 實驗步驟…………………………………………….………………...23 第四章 實驗結果與分析……………………..…………………………………...25 第一節 十八基三氯矽烷自組裝單分子膜的成長過程觀察…………….…...25 1. 隨時間改變的成長變化……………………………………….………25 2. 不同濃度下的比較…………………………………….………………32 第二節 十八基三氯矽烷自組裝單分子膜的原子力顯微鏡氧化現象觀察…36 1. 原子力顯微鏡所造成的氧化…………………………….……………36 2. 電壓大小對氧化的影響………………………………….……………39 3. 掃描速度快慢對氧化的影響………………………….………………40 第三節 原子力顯微鏡氧化圖案之後的選擇性吸附研究…………………….41 1. 實驗步驟說明…………………………………………….……………41 2. 實驗結果討論…………………………………………….……………42 第五章 結論…………………………….…………………………………………47 參考資料rf [1 ] J. Sagiv, J. Am. Chem. Soc.102 (1980) 92. [2 ] S.R. Cohen, R. Naaman, J. Sagiv, J. Phys. Chem. 90 (1986) 3054. [3 ] I.M. Tidswell, B.M. Ocko, P.S. Pershan, S.R. Wasserman, G.M. Whitesides, J.D. Axe, Phys. Rev. B41 (1990) 1111 [4 ] S.R. Wasserman, G.M. Whitesides, I.M. Tidswell, B.M. Ocko, P.S. Pershan, J.D. Axe, J. Am.Chem. Soc. 111 (1989) 5852. [5 ] K. Bierbaum, M. Grunze, A.A. Baski, L.F. Chi, W. Schrepp, H. Fuchs, Langmuir 11 (1995) 2143. [6 ] T. Komeda, K. Namba, Y. Nishioka, J. Vac. Sci. Technol. A 16 (1998) 1680. [7 ] R. Banga, J. Yarwood, A.M. Morgan, B. Evans, J. Kells, Langmuir 11 (1995) 4393. [8 ] T. Vallant, J. Kattner, H. Brunner, U. Mayer, H. Ho?嫥ann, J. Phys. Chem. 102 (1998) 7190. [9 ] J.B. Brzoska, N. Shahidzadeh, F. Rondelez, Nature 360 (1992) 719. [10 ] A.N. Parikh, D.L. Allara, I.B. Azouz, F. Rondelez, J. Phys. Chem. 98 (1994) 7577. [11 ] A.G. Richter, M.K. Durbin, C.-J. Yu, P. Dutta, Langmuir 14 (1998) 5980. [12 ] A.G. Richter, C.-J. Yu, A. Datta, J. Kmetko, P. Dutta, Phys. Rev. E 61 (2000) 607. [13 ] Frank Schreiber, Progress in Surface Science 65 (2000) 151-256 [14 ] A. UlmanChem. Rev. 1996, 96, 1533-1554 [15 ] Rivka Maoz, Sidney R. Cohen, and Jacob Sagiv , Adv. Mater. 1999, 11, No. 1, 55 [16 ] By Rivka Maoz, Eli Frydman, Sidney R. Cohen, and Jacob Sagiv, Adv. Mater. 2000, 12, No. 6, 424 [17 ] By Rivka Maoz, Eli Frydman, Sidney R. Cohen, and Jacob Sagiv, Adv. Mater. 2000, 12, No. 10, 725 [18 ] Sugimura,H.; Nakagiri, N. Langmuir 1995,11, 3623-3625 [19 ] Sugimura, H.; Nakagiri, N. J. Vac. Sci. Technol. 1996, A14, 1223. [20 ] Sugimura,H. ; Nakagiri N. , J. Am. Chem. Soc. 1997, 119, 9226-9229 [21 ] Sugimura,H. ; Hanji, T.; Hayashi,K.; Takai,O. , Adv.Matter. 2002,14, NO. 7, 524 [22 ] Sugimura,H. , Hanji,T.; Hayashi,K ; Takai,O , Ultramicroscopy 91 (2002) 221–226 [23 ] Rachel K. Smith, Penelope A. Lewis, Paul S. Weiss, Progress in Surface Science 75 (2004) 1–68 [24 ] Stephan Kra¨mer, Ryan R. Fuierer, and Christopher B. Gorman, Chem. Rev. 2003, 103, 4367-4418 [25 ] A. Pockels, Nature 43 (1891) 437. [26 ] A. Pockels, Nature 46 (1892) 418. [27 ] I. Langmuir, J. Am. Soc. 39 (1917) 1848. [28 ] I. Langmuir, Trans. Faraday Soc. 15 (1920) 62. [29 ] W.C. Bigelow, D.L. Pickett, W.A. Zisman, J. Colloid Interface Sci. 1 (1946) 513. [30 ] L.C.F. Blackman, M.J.S. Dewar, J. Chem. Soc. 162 (1957), Part I~IV. [31 ] G.L. Gaines Jr., Insoluble Monolayers at Liquid-Gas Interfaces, Interscience, New York, 1966. [32 ] A. Ulman, An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly, Academic Press, Boston, 1991. [33 ] A. Ulman, An introduction to Ultrathin OrganicFilms from Langmuir-Blodgett to Self-Assembly (Academic, San Diego,1991) [34 ] H.J. Butt, K. Graf, M. Kappl, Physics and Chemistry of Interfaces, page180~189 [35 ] D.K. Schwartz, N.Zasadzinski, Physical Rev. Letter, volume 69,Number 23, 3354id NH0925198031 sid 903338 cfn 0 / id NH0925198032 auc 鄭麗月 tic 連續波注入鎖頻單頻Ti-Sapphire雷射 adc 劉怡維 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 英文 pg 36 kwc 注入鎖頻 kwc 注入 kwc 雷射 kwc 鈦藍寶石 kwc 連續波 abc 論文摘要 tc Contents 1 Introduction 1 1.1 Injection-Locking Technique . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Ti:Sapphire Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Fundamental Theory 3 2.1 Injection-Locking Theory . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Experiment 6 3.1 Ti:Sapphire Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 Master Laser-Extended Cavity Diode Laser . . . . . . . . . . . . . . . 15 3.3 Frequency Modulation Spectroscopy . . . . . . . . . . . . . . . . . . . 16 3.3.1 The Electro-optic Effect of Anisotropic Media . . . . . . . . . 16 3.3.2 The Lithium Niobate Crystal . . . . . . . . . . . . . . . . . . 17 3.3.3 The Pound-Drever-Hall Technique . . . . . . . . . . . . . . . . 18 3.3.4 The Resonant Circuit . . . . . . . . . . . . . . . . . . . . . . . 23 3.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.5 Frequency Shift and Linewidth Measurement . . . . . . . . . . . . . . 24 4 Results and Discussion 27 4.1 Output Power of the Injection-locked Ti:Sapphire Laser . . . . . . . . 27 4.2 Stability of the Injection-locked Ti:Sapphire Laser . . . . . . . . . . . 27 4.3 Frequency shift and Linewidth of the Injection-locked Ti:Sapphire Laser 30 I CONTENTS II 5 Conclusion 35rf References [1 ] S. HL and S. WH, Appl. Phys. Lett. 8, 91 (1996). [2 ] N. Lesage, G. Mullot, Y. Andre, and G. Bourdet, Opt. Comm. 115, 291 (1995). [3 ] P. Even, K. Ait-Ameur, and G. Stephan, Europhys. Lett. 36, 179 (1996). [4 ] T. Fishman and A. Hardy, Appl. Opt. 39, 3108 (2000). [5 ] C. N. Man and A. Brillet, Opt. Lett. 9, 333 (1984). [6 ] T. Teyo, V. Sinivasagam, M. Abdullah, and H. Ahmad, Opt. Las. Technol 31, 493 (1999). [7 ] B. Couillaud, A. Ducasse, E. Freysz, and L. Sarger, Opt. Lett. 9, 435 (1984). [8 ] M. Margalit, M. Orenstein, and G. Eisenstein, Opt. Comm. 129, 373 (1996). [9 ] J. Yu et al., OC 132, 263 (1996). [10 ] in Lasers, edited by A. Siegman (University Science Books, Mill Valley, 1986), p. 1129. [11 ] J.-C. Cotteverte, G. Ropars, A. L. Floch, and F. Bretenaker, IEEE J. Quantum Electron. 30, 2516 (1994). [12 ] in Fundamental of photonics, edited by B. E. A. Saleh and M. C. Teich (Wiley. Interscience, ADDRESS, 1944), p. 712. [13 ] in Quantum Electronics, edited by A. Yariv (Wiley, ADDRESS, 1988). [14 ] J. M. Supplee, E. A. Whittaker, and W. Lenth, Appl. Opt. 33, 6294 (1994).id NH0925198032 sid 913325 cfn 0 / id NH0925198033 auc 柯明賢 tic 銣原子5S1/2-7S1/2 雙光子躍遷 adc 劉怡維 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 英文 pg 46 kwc 雙光子躍遷 kwc 飛秒光頻梳 kwc 高密度分波多工器 kwc 頻率標準 kwc 高精密光譜 kwc 銣原子 abc 本實驗利用波長760 nm 的外腔式二極體雷射觀察了銣原子5S1/2-7S1/2雙光子躍遷,此波長恰好落在光通訊頻段的S 頻段(1460-1530 nm)的倍頻範圍內,自然線寬只有900 kHz,且躍遷頻率不受磁場影嚮,透過倍頻的機制,此雙光子躍遷是很好的光通訊頻段頻率標準,在高密度分波多工器(DWDM)光通訊系統中將有助於頻道的區分。 tc 1 Introduction 1 1.1 Optical frequency standard based on High resolution spectroscopy . . 1 1.1.1 Doppler-free spectroscopy . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Importance of frequency standards . . . . . . . . . . . . . . . 4 1.2 Two-photon transition . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 Lineshape of two-photon transitions . . . . . . . . . . . . . . . 7 1.2.2 Transition probability . . . . . . . . . . . . . . . . . . . . . . 7 1.2.3 Light shifts (AC Stark effect) . . . . . . . . . . . . . . . . . . 9 1.2.4 Unique potential using two-photon transition . . . . . . . . . . 10 1.2.5 Limitation of two-photon transition . . . . . . . . . . . . . . . 11 1.3 Optical femtosecond comb based on Mode-locked Ti:sapphire laser . . 12 1.3.1 Measurement of optical frequency using femtosecond comb . . 12 1.4 Layout of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Rubidium 5S1/2-7S1/2 two-photon transition 15 2.1 Comparison between 5S!7S and 5S-5D two-photon transitions . . . 15 2.2 Energy level diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Using 760 nm ECDL as light source . . . . . . . . . . . . . . . . . . . 17 2.3.1 Laser system . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.2 Anamorphic prism pair . . . . . . . . . . . . . . . . . . . . . . 19 2.3.3 Cell and heating system . . . . . . . . . . . . . . . . . . . . . 20 2.3.4 Detecting system . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.5 light shielding system . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 Reduction of laser linewidth . . . . . . . . . . . . . . . . . . . . . . . 22 2.6 Using light source doubled from 1520 nm ECDL by PPLN waveguide 22 3 Absolute frequency measurement using optical femtosecond comb based on mode-locked Ti:sapphire laser 32 3.1 Femtosecond comb system . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2 Method one: Stabilize the laser on the transition . . . . . . . . . . . . 34 3.3 Method two: Offset-lock the laser on the comb . . . . . . . . . . . . . 36 3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4.1 Absolute frequencies of rubidium 5S1/2-7S1/2 two-photon tran- sitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4.2 Reproducibility of the measurements . . . . . . . . . . . . . . 37 3.4.3 Systematic effects . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4.4 Hyperfine Constant of Rubidium 7S state . . . . . . . . . . . . 42 3.4.5 Isotope shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4 Conclusion 44rf [1 ] J. C. Bergquist, Symposium on Frequency Standards and Metrology, 1st ed. (World Scientific, Singapore, 1995). [2 ] J. C. Berengut, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A 68, 022502 (2003). [3 ] L. P et al., Eur. Phys. J. D. 3, 201 (1998). [4 ] H. Schnatz et al., Phys. Rev. Lett. 76, 18 (1996). [5 ] A. Arie and R. L. Byer, J. Opt. Soc. Am. B 11, 866 (1994). [6 ] D. A. Tyurikov, M. A. Gubin, A. S. Shelkovnikov, and E. V. Koval¶chuk, IEEE Trans. Instrum. Meas. 44, 166 (1995). [7 ] K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, J. Opt. Soc. Am. B 13, 2708 (1996). [8 ] Y. Millerioux et al., Opt. Comm. 108, 91 (1994). [9 ] G. Scoles, D. Bassi, U. Buck, and D. Lain¶e, Atomic and Molecular Beam Methods, 1st ed. (Oxford University Press, New York, 1998). [10 ] M. J. Snadden, A. S. Bell, R. B. M. Clarke, and E. Riis, J. Opt. Soc. Am. B 14, 544 (1997). [11 ] S. Chu and C. H. Townes, Biographical Memoirs. 83, (2003). [12 ] L. Hilico et al., Eur. Phys. J. AP. 4, 219 (1998). [13 ] T. Andreae et al., Phys. Rev. Lett. 69, 1923 (1992). [14 ] G. Grynberg and B. Cagnac, Rep. Prog. Phys. 40, 791 (1977). [15 ] B. W. Shore and D. H. Menzel, in Principles of Atomic Spectra (John Wiley and Sons, New York, 1969), p. 33. [16 ] B. W. Shore and D. H. Menzel, in Principles of Atomic Spectra (John Wiley and Sons, New York, 1969), p. 71. [17 ] G. Hagel et al., Opt. Comm. 160, 1 (1999). [18 ] M. Niering et al., Phys. Rev. Lett. 84, 5496 (2000). [19 ] F. Nez, F. Biraben, R. Felder, and Y. Millerioux, Opt. Comm. 102, 432 (1993). [20 ] S. T. Cundi®, J. Ye, and J. L. Hall, Rev. Sci. Instrum. 72, 3749 (2001). [21 ] B. I. des Poids et Mesures (BIPM), Report of the 86th meeting of the Comit¶e International des Poids et Mesures (CIPM), (Paris 1997). [22 ] M. Poulin, C. Latrasse, D. Touahri, and M. Tetu, Opt. Comm. 207, 233 (2002). [23 ] D. Touahri et al., Opt. Comm. 133, 471 (1997). [24 ] P. Otto et al., J. Chem. Phys 282, 289 (2002). [25 ] R. E. Honig, RCA Rev. 567 (1962). [26 ] B. R. Bulos, R. Gupta, and W. Happer, J. Opt. Soc. Am. 66, 426 (1976). [27 ] R. Gupta, W. Happer, L. K. Lam, and S. Svanberg, Phys. Rev. A 8, 2792 (1973). [28 ] A. Rose and I. Lindgren, Physica Scripta. 6, 109 (1972). [29 ] R. E. Ryan, L. A. Westling, and H. J. Metcalf, J. Opt. Soc. Am. B 10, 1643 (1993). [30 ] B. P. Stoicheff and E. Weinberger, Phys. Rev. Lett. 44, 733 (1980). [31 ] M. S. Ko and Y. W. Liu, Opt. Lett. 29, (2004). [32 ] B. Cagnac, G. Grynberg, and F. Biraben, Le J. Phys. 34, 845 (1973). [33 ] J. W. Farley and W. H. Wing, Phys. Rev. A 23, 2397 (1981). [34 ] E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49, 31 (1977). [35 ] M. J. Snadden, A. S. Bell, E. Riis, and A. I. Ferguson, Opt. Comm. 125, 70 (1996).id NH0925198033 sid 913326 cfn 0 / id NH0925198034 auc 何信佳 tic 典型巨磁阻材料鑭鈣錳氧電荷和自旋的暫態行為 adc 齊正中 ty 博士 sc 國立清華大學 dp 物理學系 yr 92 lg 英文 pg 60 kwc 時間解析反射率 kwc 時間解析磁光效應 kwc 激發-探測 kwc 鑭鈣錳氧 kwc 自旋弛裕 abc 以時間解析反射率和時間解析磁光效應量測系統可量測鑭鈣錳氧(La0.7Ca0.3MnO3)載子和自旋的動態行為。在這一系列的實驗中我們直接觀測到不同溫度和不同磁場下載子和自旋的暫態行為。在這類巨磁阻材料中,自旋的生命期是快於載子的生命期。自旋的弛裕過程是經由複雜的自旋、電子和晶格的熱平衡。在臨界溫度以下,自旋經過快速的弛裕以後,暫態的磁光效應訊號將與激發光的極化無關。這一訊號是由於自旋-電子的交互作用而來的,它導致晶格暫時的冷卻現象。 tc Chapter 1: Overview of Colossal Magnetoresistance and Ultrafast Magneto-optical measurements 1.1 Introduction to colossal magnetoresistance(CMR)—La1-xCaxMnO3 1 1.2 Introduction to ultrafast magneto-optical experiment 6 1.3 Introduction to magneto-optical effect 9 1.3.1 Optical transmission 9 1.3.2 Optical reflection 10 Chapter 2: Experimental Setup and Sample Preparation 2.1 Low Temperature Ultra-fast MOKE Measurement System Setup 14 2.2 The pulse-width measurement 19 2.3 Sample Preparation 20 Chapter 3: Ultrafast properties of La0.7Ca0.3MnO3 3.1 The transient photoreflectance measurements 24 3.2 The dc MOKE measurement 29 3.3 The time-resolved MOKE measurement 31 3.4 Discussions 41 Chapter 4: Conclusion 53 References 58 APPENDIX Appendix A 58 Appendix B 59rf References [1 ] P. Schiffer et al, PRL 75(18), 3336(1995) [2 ] C. N. R. Rao and A. K.Raychaudhuri, in “Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides” edited by C. N. R. Rao, B. Ravean, World Scientific. [3 ] E.O. Wollan and W. C. Koehler, PR 100(2), 545(1955) [4 ] S. Satpathy, Zoran S. Popovic’ and Filip R. Vukajlovic’, PRL 76(6), 960(1996) [5 ] C. Zener, Phys. Rev. 82, 403 (1951) [6 ] M. R. Freeman, D.D. Awschalom, J. M. Horg, and L.L. Chang, Phys. Rev. Lett. 64, 2430 (1990) [7 ] T. C. Damen, Karl Leo, Jagdeep Shah, and J. E. Cunningham, Appl. Phys. Lett. 58(17), 1902(1991) [8 ] T. C. Damen, Luis Vina, J. E. Cunningham, Jagdeep Shah, and L. J. Sham, PRL, 67(24), 3432(1991) [9 ] J. J. Baumberg et al, PRL 72(5), 717(1994) [10 ] J. J. Baumberg et al, J. Appl. Phys. 75(10), 6199(1994) [11 ] E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, PRL. 76, 4250(1996) [12 ] S. A. Crooker D. D. Awschalom, J. J. Baumberg, F. Flack, and N. Samarth, PRB 56(12), 7574(1997) [13 ] J. M. Kikkawa and D.D. Awschalom, PRL 80(19), 4313(1998) [14 ] J. M. Kikkawa, I. P. Smorchkova, N. Samarth, and D.D. Awschalom, SCIENCE 277, 1284(1997) [15 ] D.D. Awschalom and J. M. Kikkawa, Physics Today,33-38, June 1999 [16 ] J. M. Kikkawa and D.D. Awschalom, SCIENCE 287, 473(2000) [17 ] R. Akimoto et al, PRB 57(12), 7208(1998) [18 ] Y. G. Zhao et al, PRL 81(6), 1310(1998) [19 ] T. Venkatesan et al, materials science & engineering B, 63, 36-43(1999) [20 ] Ahmed I. Lobad, Richard D. Averitt, Chuhee Kwon, and Antoinette J. Taylor, APL 77(24), 4025(2000) [21 ] W. Reim and J. Schoenes in “Ferromagnetic materials” Vol. 5, edited by K. H. J. Buschow and E. P. Wohlfarth, North-Holland. [22 ] S. J. Hibble and S. P. Cooper, 1999, the data is come from “National Center for High-performance computing”. [23 ] G. Jeffrey Snyder et al, PRB 53(21), 14434(1996) [24 ] A. J. Taylor, R. D. Averitt, J. Demsar, A. I. Lobad, J. L. Sarrao, and S. A. Trugman, PHYSICA B 312-313, 640 (2002) [25 ] S. A. Crooker, D. D. Awschalom, and N. Samarth, IEEE J. Sel. Top. Quantum Electron. 1, 1082(1995) [26 ] Y. Okimoto and Y. Tokura, Journal of Superconductivity: Incorporating Novel Magnetism, 13(2), 271(2000) [27 ] Y. Okimoto, T. Katsufuji, T. Ishikawa, T. Arima, and Y. Tokura, PRB 55(7), 4206(1997) [28 ] T. Arima, Y. Tokura, and J. B. Torrance, PRB 48(23), 17006(1993) [29 ] J. Zaanen, G. A. Sawatzky, and J. W. Allen, PRL 55(4), 418(1985) [30 ] S. G. Kaplan, M. Quijada, H. D. Drew, D. B. Tanner, G. C. Xiong, R. Ramesh, C. Kwon, and T. Venkatesan, PRL 77(10), 2081(1996)id NH0925198034 sid 867303 cfn 0 / id NH0925198035 auc 吳炳琨 tic 矽化鍺/鍺介面結構之X光三光表面繞射實驗 adc 張石麟 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 56 kwc X光繞射 kwc 複繞射 kwc 量子點 kwc 動力繞射理論 kwc 表面 abc 本論文為GeSi/Ge的介面研究,目的在發展一新方法,來分析介面結構的訊息。利用三光複繞射技術,以Ge 為一階繞射,利用影像板量測沿著基底與薄膜介面行進的二階(Secondary)Ge 與Ge 繞射影像,利用此影像在入射光不同角度時的幾何形狀變化來推出介面的結構。 rf [1 ] I. Kegel , T. H. Metzger , A. Lorke, J. Peial (2001) . Phys. Rev. B. 63. 035318-1 – 035318-13 [2 ] Chang, S. L. (1984). Multiple Diffraction of x-ray in Crystals. Chap. 2,4. New York : Springer-Verlag [3 ] Kittel, C. (1996). Introduction to Solid State Physics, 7th ed., Chap. 1,2. New Tork : John Wiley & Sons. [4 ]鄭程文 (2002). 碩士論文. 清華大學物理系. [5 ]Stetsko, Y. P. & Chang, S. L. (1997). Acta. Cryst. A53, 28-34. [6 ]AzÁroff, L. V. (1968). Elements of X-ray Crystallography, Chap. 5,7,9. New York : McGraw-Hil. [7 ]吳泰伯 & 許樹恩 (1996) .X光繞射原理與結構分析, Chap. 3,7,15 . 行政院國家科學委員會精密儀器發展中心. [8 ]Jackson, J. D. (1975). Classical Electrodynamics, 2nd ed., Chap. 7,14. New Tork : John Wiley & Sons. [9 ]Jenkins, R. & Snder, R. L. (1996). Interduction to X-ray power Diffractometry, Chap. 3. New York : John Wiley & Sons. [10 ]Drude, P. (1959). The theory of optics. 274-283,358-365. New York : Dover Publicationsid NH0925198035 sid 903316 cfn 0 / id NH0925198036 auc 李奕廣 tic 單電子電晶體的製作與量測 adc 周亞謙 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 54 kwc 單電子電晶體 abc 從電晶體發明以來,元件持續縮小並進入奈米尺度,除了製作技術大幅提升以外,奈米尺度下量子效應也逐漸明顯,甚至取代古典物理的現象,如何利用這些現象的特性來幫助我們製作更小更好的裝置是許多科學家努力的目標。 tc 目錄 摘要………………………………………………………I 圖片索引…………………………………………………IV 表格索引…………………………………………………VI 第一章 簡介……………………………………………1 第二章 單電子電晶體的原理…………………………3 2-1 表面連續電荷…………………………………3 2-2 穿隧效應………………………………………3 2-3 相關穿隧及庫倫阻斷.…………………………4 2-4 偏壓的控制……………………………………6 2-5 結尾……………………………………………7 第三章 元件製作流程………………………………9 3-1 流程簡圖………………………………………9 3-2 元件製作步驟………………………………10 第四章 製程技術討論………………………………15 4-1 晶片準備 ………………………………………15 4-1-1晶片準備…………………………………15 4-1-2討論………………………………………16 4-2 光學微影……………………………………18 4-2-1 簡介 …………………………………………18 4-2-2 使用儀器……………………………………18 4-2-3 事前的手續…………………………………………19 4-2-4 塗佈光阻……………………………………………20 4-2-5 光學曝光…………………………………………22 4-2-6 顯影……………………………………………22 4-2-7討論………………………………………………23 4-3濺鍍系統………………………………………………24 4-3-1 簡介……………………………………………24 4-3-2 用儀器…………………………………………24 4-3-3 濺鍍作業………………………………………25 4-3-4 討論……………………………………………26 4-4 電子束微影…………………………………………26 4-4-1 簡介………………………………………………26 4-4-2使用儀器…………………………………………28 4-4-3 電子阻膠選擇以及塗佈……………………………29 4-4-5 曝光及顯影………………………………………30 4-4-4 討論………………………………………………31 4-5 反應離子蝕刻……………………………………………33 4-5-1簡介………………………………………………33 4-5-2 使用儀器…………………………………………34 4-5-3 蝕刻………………………………………………35 4-5-4 討論………………………………………………35 第五章 量測與分析………………………………………36 5-1 量測結果………………………………………36 5-2.結果分析………………………………………49 5-3總結……………………………………………53 參考文獻……………………………………………………54rf 01 homepage of Intel http://www.intel.com/research/silicon/mooreslaw.htm 02 C.A.Neugebauer and M.B.Webb,J.Appl.Phys.33.74(1962) 03 I.Giaecer and H.R.Zeller,Phys.Rev.Lett. 20 1504(1968) 04 J.Lambe and R.C.Jaklevic,Phys.Rev.Lett.22.1371(1969) 05 F.Hofmann,T.Heinzel,Phys.Rev.B 15May Vol 51 Number19 (1995) 06 H.Pothier,P.Lafarge, Europhys.Lett.17(3)pp.249-254(1992) 07 K.Nakazato,R.J.Blaikie, Electron.Lett(29)p384.(1993) 08 J.R. Tucker,J. of Appl. Phys.72,4339(1992) 09 李雅明譯"IC如何創新"天下文化出版社 10 Hermann Grabert and Michel H. Devoret "Single Charge Tunneling Coulomb Blockade Phenomena In Nanostructures" 11 Richard L.Liboff "Introductory Quantum Mechanics" Third Edition 12莊達人編著 "VLSI製造技術" 高立圖書有限公司 13 Larry F.Thompson ,C.Grant Willson Murrae J.Bowden "Introduction to Microthography" 14 http://www.union.co.jp/english/product-e/p-semi-e/ema-e.html 15 Yi-pin Fang〝A Simple Method to Fabricate Si-based Single Electron Device〞from“Extended abstract book of Taiwan International conference in naro science and technology(TICON 2004)”P104id NH0925198036 sid 913334 cfn 0 / id NH0925198037 auc 陳季汎 tic 以掃描探針灰階奈米微影術製作微光學透鏡陣列之研究 adc 果尚志 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 73 kwc 微透鏡 kwc 掃描探針 kwc 灰階微影 kwc 奈米微影 abc 在一般的認知上, 掃描探針顯微鏡( SPM,Scanning Probe Microscopy )主要是作為量測表面的工具, 它可以量測表面形貌、表面電位、表面電流、表面電容、表面磁區分佈、表面摩擦力等。然而, 掃描探針顯微鏡除了量測以外,亦可製作奈米級的微結構。本篇論文主要是利用掃描探針顯微術奈米灰階微影以及乾式蝕刻製作矽微透鏡。其中,使用掃描探針灰階奈米微影可製作凸透鏡、凹透鏡、繞射式透鏡、以及任意形狀的結構,且直徑可以小至2 µm。另外,亦可利用控制電壓矩陣製作微透鏡陣列。使用此方法的優勢在於可製作非常小尺寸的氧化點遮罩( 尺度可小至10 nm )以及準確的定位。且由於是利用灰階電壓陣列,故可製作任意形狀的連續氧化結構。在乾式蝕刻方面,我們使用反應性離子蝕刻機( RIE,Reactive Ion Etch ) 對矽表面進行蝕刻以做圖形轉移。其蝕刻後的結構與原先設計之結構也有很好的相依性。最後,本篇論文中也利用程式模擬所製作的微透鏡焦距。未來,期望以此方法之特色能對半導體製程及機電發展有所助益。 tc 目錄 第一章 序論 1 第二章 文獻回顧 3 2.1折射式微透鏡陣列之製程方法 3 2.1.1 Refolw 融化式製作法-------------------------------------------------------------3 2.1.2 光敏玻璃(Photosensitive glass)製作法-----------------------------------------4 2.1.3 光阻體積膨脹法-------------------------------------------------------------------4 2.1.4 液滴透鏡----------------------------------------------------------------------------6 2.1.5 雷射、x光、電子束直接寫入法------------------------------------------------7 2.1.6 壓印製作法-------------------------------------------------------------------------8 2.1.7各種透鏡製作法之比較-----------------------------------------------------------9 2.2 菲涅爾(Fresnel)透鏡的設計及製作方法 10 2.3 掃描探針顯微術微影 13 2.4 掃描探針在矽表面製作氧化物之機制與控制變因 16 2.4.1 氧化物成長機制------------------------------------------------------------------16 2.4.2 探針與樣品間距離對氧化物生成之影響------------------------------------17 2.4.3 大氣濕度對氧化物生成之影響------------------------------------------------17 2.4.4 電壓脈衝時間對氧化物生成的影響------------------------------------------18 2.4.5 電壓大小對氧化物生成的影響------------------------------------------------19 2.4.6 氧化掃描速率對氧化物生成的影響------------------------------------------20 2.4.7 酒精膜與水膜對氧化生成的差異---------------------------------------------20 第三章 儀器原理與實驗方法 22 3.1 原子力顯微鏡 ( Atomic Force Microscope )工作原理與操作模式 22 3.1.1 工作原理---------------------------------------------------------------------------22 3.1.2 操作模式—接觸模式(contact mode)------------------------------------------23 3.1.3操作模式—非接觸模式(non-contact mode)----------------------------------24 3.1.4操作模式—敲擊模式(tapping mode)------------------------------------------24 3.2 原子力顯微鏡裝置 25 3.3 軟體設計 29 3.4 樣品準備 31 3.5 掃描探針顯微術的微影製程 32 3.6 反應性離子蝕刻(RIE,Reactive Ion Etch )製程 34 3.6.1 乾式蝕刻原理---------------------------------------------------------------------35 3.6.2 蝕刻方法---------------------------------------------------------------------------36 第四章 實驗結果與分析 37 4.1 原子力顯微鏡氧化分析 37 4.1.1 氧化掃描速度對氧化物高度影響---------------------------------------------37 4.1.2 氧化電壓對氧化高度的影響---------------------------------------------------38 4.1.3 氧化線的間距---------------------------------------------------------------------41 4.1.4 三維的氧化結構------------------------------------------------------------------44 4.1.5 探針針尖幾何形狀對氧化物的影響------------------------------------------45 4.2折射式透鏡實驗結果與分析 46 4.2.1 透鏡焦距計算---------------------------------------------------------------------46 4.2.2 製作透鏡之預備工作------------------------------------------------------------47 4.2.3折射式凸微透鏡-------------------------------------------------------------------48 4.2.4 折射式凹微透鏡------------------------------------------------------------------51 4.2.5 微透鏡陣列------------------------------------------------------------------------53 4.3 繞射式透鏡 56 4.3.1 特殊結構之製作-----------------------------------------------------------------56 4.3.2 Fresnel微透鏡---------------------------------------------------------------------57 4.4模擬結果 63 第五章 結論 68 參考文獻 70rf 參考資料 [1 ] Nicholas F. Borrelli, Microoptics Technology, MARCEL DEKKER (1999) [2 ] Eisner M, Schwider J., Opt Eng, 35(10), 2979 (1996) [3 ] Erdmann L, Efferenn D., Opt Eng, 36(4),1094 (1997) [4 ] Kim YS, Kim J, Choe JS, Roh YG, Jeon H, Woo JC., IEEE Photon Technol Lett, 12(5), 507 (2000) [5 ] Strzelecka EM, Robinson GD, Peters MC, Peters FH, Coldren LA., Electron Lett, 31(9), 724 (1995) [6 ] Motamedi ME., Opt Eng, 33(11), 3505 (1994) [7 ] T. N. Oder, J. Shakya, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 82, 3692 (2003). [8 ] S.-H. Park, H. Jeon, Y.-J. Sung, and G.-Y. Yeom, Appl. Opt. 40, 3698 (2001); H. W. Choi, C. Liu, E. Gu, G. McConnell, J. M. Girkin, I. M. Watson, and M. D. Dawson, Appl. Phys. Lett. 84, 2253 (2004). [9 ] E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G.. McConnel, and A. M. Gurney, Appl. Phys. Lett. 84, 2754 (2004). [10 ] Kouchiyama A, Ichimura I, Kishima K, Nakao T, Yamamoto K, Hashimoto G, Iida A, Osato K., Jpn J Appl Phys, 40, 1792 (2001) [11 ] Heremans P, Genoe J, Kuijk M, Vounckx R, Borghs G., IEEE Photon Technol Lett, 9(10), 1367 (1997) [12 ] King CR, Lin LY, Wu MC., IEEE Photon Technol Lett, 8(10), 1349 (1996) [13 ] Okamoto T, Mori M, Karasawa T, Hayakawa S, Seo I, Sato H., Appl Opt, 38(14), 2991 (1999) [14 ] Chii-Chang Chen, Ming-Hung Li, Chih-Yang Chang, Jinn-Kong Sheu, Gou-Chung Chi, Wei-Tai Cheng, Jui-Hung Yeh, Jenq-Yang Chang, Toshiaki Ito, Opt. comm., 215, 75 (2003) [15 ] J. Shakya, K. H. Kim, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett., 85, 142 (2004) [16 ] Stefan Sinzinger, Jurgen Jahns, Microoptics, WILEY-VCH (2003) [17 ] H.-J. Woo, Y.-S. Kim, H.-W. Choi, W. Hong, S. Lee, M. Kufner, S. Kufner, Microelectronic Engineering, 57–58, 945, (2001) [18 ] M He, X-C Yuan, N Q Ngo, J Bu and S H Tao, J. Opt. A: Pure Appl. Opt., 6, 94 (2004) [19 ] W. X. Yu and X-C Yuan, Opt. Express, 11, 899 (2003) [20 ] Su-dongMoon, Namsuk Lee and Shinill Kang, J. Micromech. Microeng., 13, 98 (2003) [21 ] Seok-min Kim and Shinill Kang, J. Phys. D: Appl. Phys., 36, 2451 (2003) [22 ] K. Watanabe, T. Morita, R. Kometani, T. Hoshino, K. Kondo, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, and S. Matsui, J. Vac. Sci. Techonl. B 22, 22 (2004) [23 ] Bernard Kress, Patrick Meyrueis, Digital Diffractive Optics, Wiley, New York, 49, (2000) [24 ] 果尚志、簡世森,機械月刊,346,p.20-27,(2004) [25 ] M. A. McCord and R. F. W. Pease, J. Vac. Sci. Techonl. B, 3, 198 (1985) [26 ] Kathryn Wilder, Calvin F. Quate, Bhanwar Singh, and David F. Kyser, J. Vac. Sci. Techonl. B, 16(6), 3864 (1998) [27 ] G. Binnig, M. Despont, U. Drechsler, W. Ha berle, M. Lutwyche, P. Vettiger, H. J. Mamin, B. W. Chui and T. W. Kenny, Appl. Phys. Lett., 74, 1329, (1999) [28 ] J. A. Dagata, J, Schneir, H. H. Harary, C. J. Evans, M. T. Postek, J. Bennett, Appl. Phys. Lett., 56, 2001 (1990) [29 ] Ricardo Garcia, Montserrat Calleja, and Heinrich Rohrer, J. Appl. Phys., 86, 1898 (1999) [30 ] F. S.-S. Chien, C.-L. Wu, Y.-C. Chou, T. T. Chen, and S. Gwo, 75, 2429 (1999) [31 ] 吳宗霖、簡世森、果尚志,物理雙月刊,21(4),p.429,(1999) [32 ] Phaedon Avouris, Tobias Hertel, and Richard Martel, Appl. Phys. Lett., 71, 285 (1997) [33 ] Marta Tello and Ricardo Garcia, Appl. Phys. Lett., 79, 424 (2001) [34 ] Montserrat Calleja and Ricardo Garcýia, Appl. Phys. Lett., 76, 3427 (2000) [35 ] F. Marchi, V. Bouchiat, H. Dallaporta, V. Safarov, and D. Tonneau, P. Doppelt, J. Vac. Sci. Techonl. B 16, 2952 (1998). [36 ] T. Teuschler, K. Mahr, S. Miyazaki, M. Hundhausen, and L. Ley, Appl. Phys. Lett., 67, 3144 (1995) [37 ] Marta Tello and Ricardo Garcia, Appl. Phys. Lett, 83, 2339 (2003) [38 ] E. H. Poindexter, C. F. Young, and G. J. Girardi, in Fundamental Aspects of Ultrathin Dielectrics on Si-Based Devices, edited by E. Garfunkel, E. Gusev, and A. Vul’ (Kluwer, Dordrecht, 1998), p. 300. [39 ] 曾賢德、果尚志,電子月刊第七卷第三期,p130-144 (2001) [40 ] 陳季汎、曾賢德、果尚志,電子月刊,第102期,p.150-160 (2004) [41 ] Digital Instruments公司網站. http://www.di.com/welcome.html [42 ] Nanosensors公司網站. http://www.nanosensors.com [43 ] 莊達人,VLSI製造技術,高立出版社 (2000) [44 ] Oxford公司網站. http://www.oxinst.com [45 ] F. Marchi, V. Bouchiat, H. Dallaporta, V. Safarov, and D. Tonneau, P. Doppelt, J. Vac. Sci. Techonl. B 16, 2952 (1998). [46 ] T. N. Oder, J. Shakya, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 82, 3692 (2003) [47 ] K. Watanabe, T. Morita, R. Kometani, T. Hoshino, K. Kondo, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, and S. Matsui, J. Vac. Sci. Techonl. B 22, 22 (2004). [48 ] Eugene Hecht, Optics, Addison Wesley, (2002 4th ed.)id NH0925198037 sid 913317 cfn 0 / id NH0925198038 auc 林青燕 tic Effects of surface roughness on electronic states in quantum wells adc Chung-Yu Mou ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 英文 pg 84 kwc random kwc matrix kwc surface kwc roughness abc We make use of an e®ective Hamiltonian which succeeds in mapping surface configurations rf Bibliography [1 ] H. Sakaki, M. Tanka, and J. Yoshino, Jpn. J. Appl. Phys. 24. L417 (1983) [2 ] V.I. Fal'ko and K.B. Efetov, Phys. Rev. 50, 11267 (1995) [3 ] Y. Alhassid, Rev. Mod. Phys. 72, 895, (2000) [4 ] O. Bohigas, in Chaos in Classical and Quantum Physics, Proceedings of the Les Houches Summer School, Session LII, edited by M.J. Giannoni, A. Voros, and J.Zinn-Justin (Elsevier New York,1991) [5 ] Charles E. Porter, Statistical theories of spectra: Fluctuations (Academic Press. New York. 1965) [6 ] Moshe Carmeli, Statistical Theory And Random Matrices, (Marcel Dekker. INC. 1983) [7 ] T.A. Brody, Lett. J. Flores, J.B. French, P.A. Mello, A. Pandey, S.S. M. Wong, Ame. Phy. Soc., 53, 385 (1981) [8 ] M.L. Mehta, Random Matrices (Academic Press. New York. 1991) [9 ] Anders Andersen, Phys. A Topics in Random Matrix Theory, (The Niels Bohr Institute,The Universty of Copenhagen, 1999) [10 ] Thomas GuHR, Axel MULLER-GROELING, Hans A. WELDENMULLER T.Vetterling, Brian P. Flannery, Phys. Rep. 299 189 (1998) [11 ] Pragya Shukla, Phys. A 315, 53 (2002) [12 ] M. Robnik, Cha. Sol. Frac. 5, 1195 (1995) [13 ] E. Louis, J.A. Verges, E. Cuevas, M. Ortu~no, Z. Phys. B 103, 297 (1997) [14 ] E. Cuevas, E. Louis, and J.A. Verge s, Phys. Rev. Lett.77, 1970 (1996) [15 ] E. Cuevas, E. Louis, J.A. Verge s, M. Ortu~no. Phys. B 230-232, 803 (1997) [16 ] Chung-Yu Mou and Tzay-ming Hong, Phys. Rev. B 61,12612 (2000) [17 ] Naomichi Hatano, David R. Nelson, Phys. Rev. Lett. 77, 570(1996) [18 ] Naomichi Hatano, David R. Nelson, Phys. Rev. B 56, 8651(1997) [19 ] Naomichi Hatano, David R. Nelson, Phys. Rev. B 58, 8384 (1998) [20 ] David R. Nelson, Nadav M. Shnerb, Phys. Rev. E 58, 1383 (1998) [21 ] Felix M. IZRAILEV, Phys. Rep. 196, 299 (1990) [22 ] E. Cuevas, M Ortu~no, J Ruiz, e Louis and J A Verges, J. Phys: Cond. Matt. 10, 295 (1998) [23 ] Bernhard Kramer and Angus MacKinnon, Rep. Prog. Phys. 56, 1489, (1993) [24 ] A. Eilmes, R.A. Romer, M. Schreiber, Eur. Phy. J.B. 1, 29, (1998) [25 ] D Weaire and V Srivastava, J. Phys. C: Solid States Phys. 10, 4309, (1977) [26 ] H-J Stockmann, Quantum Chaos (Cambridge University Press. 2000) [27 ] W.P. Halperin, Rev. Mod. Phys. 58, 533 (1986) [28 ] Numerical Precipes in Fortran 77, Second Edition, Volume 1 of Fortran Numerical Recipes, William H. Press, edited by Saul A. Teukosky, Williamid NH0925198038 sid 903302 cfn 0 / id NH0925198039 auc 蔡明忠 tic 多重量子態中的代數不變量 adc 許貞雄 adc 蘇正耀 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 英文 pg 42 kwc 量子纏結 kwc 多重量子態 kwc 酉轉換 abc 在研究量子資訊的領域中,對於如何去分類、描述各種型式的量子態(quantum state),進一步地去了解何謂量子纏結(quantum entanglement),是近幾年來相當重要的課題。就數學問題的角度來看,我們必須去探討任意一個多重量子態(multipartite quantum states)系統在局域酉轉換(local unitary transformation)之下,如何藉由在這轉換之下的不變量描述這系統所表現出來的特性。因此我們在這篇論文中,提供一套明確的方法---combinatorial tracing,幫助我們找出所有所需要的不變量,並且探討這些不變量之間的關係,而這整個過程可以視為廣義的Schmidt分解。 tc Section1 Introduction.........................1 Section2 One-qubit system.....................3 Section3 Schmidt decomposition................6 Section4 Basic concept of invariant theory....8 Section5 Combnatorial Tracing................13 Section6 Hypermatrix representation..........16 Section7 Spinor representation...............21 Section8 Reduction...........................24 Section9 Conclusion..........................27 Reference....................................28 Appendix.....................................30rf P.W. Shor,Algorithms for quantum computation: discrete logarithms and factoring, in Proc. of 35$^{th}$ IEEE FOCS, 124,1994; quant-ph/9508027. L.K. Grover,A Fast Quantum Mechanical Algorithm for Database Search, Proc. 28$^th$ Annual ACM Symposium on the Theory of Computing, ACM Press, New York, 1996, pp212-219. C.H. Bennett, G. Brassard, C. Cr$\acute{e}$peau, R. Jozsa, A. Peres, W.Wootters, {\em Teleporting An Unknown Quantum State via Dual Classical and EPR Channels}, Phys. Rev. Lett., 70:1895-1899, 1993. C.H. Bennett, S.J. Wiesner, {\em Communication via One- and Two-particle Operators on Einstein-Podolsky-Rosen States}, Phys. Rev. Lett., 69:2881-2884, 1992. E. Schr\"{o}dinger, {\em Die gegenw\"{a}rtige Situation in der Quantenmechanik}, Naturwissenschaften, 23:807, 823, and 844; 1935. E.M. Rains, {\em Polynomial Invariants of Quantum Codes}, 1997; quant-ph/9704042. N. Linden and S. Popescu, {\em On Multi-particle Entanglement}, Fortsch.Phys., 46:567-578, 1997; quant-ph/9711016. N. Linden, S. Popescu, and A. Sudbery, {\em Non-local Properties of Multi-particle Density Matrices}, Phys.Rev.Lett. 83:243-247, 1998; quant-ph/9801076. M. Grassl, M. Roetteler, and T. Beth, {\em Computing Local Invariants of Qubit Systems}, Phys.Rev. A, 58:1833-1839, 1998; quant-ph/9712040. Y. Makhlin, {\em Nonlocal Properties of Two-qubit Gates and Mixed States and Optimization of Quantum Computations}Quant. Info. Proc. 1:243-252, 2002; quant-ph/0002045. H. Barnum and N. Linden, {\em Monotones and Invariants for Multi-particle Quantum States}, 2001; quant-ph/0103155. F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde, {\em Four qubits can be entangled in nine different ways}Phys. Rev. A, 65:052112, 2002; quant-ph/0109033. A. Miyake and F. Verstraete, {\em Multipartite Entanglement in $2\times2\times n$ Quantum Systems}Phys. Rev. A, 69:012101, 2004; quant-ph/0307067. A. Peres, {\em Quantum Theory: Concepts and Methods}, Kluwer, Dordrecht 1993, Chap. 5; A. Ekert and P.L. Knight, Am. J. Phys., {\bf 63}, 415, 1995. B. Sturmfels, {\em Algorithms in Invariant Theory}, Springer-Verlag, New York, 1993. P.J. Olver, {\em Classical Invariant Theory}, Cambridge University Press, 1999. Stephen H. Friedberg, Arnold J. Insel, and Lawrence E. Spence, {\em Linear Algebra}, Prentice-Hall, INC., 1997. D. Hilbert, {\em Theory of Algebraic Invariants}, English transltion, Cambridge University Press, 1993. K.O. Geddes, S.R. Czapor, and G. Labahn, {\em Algorithm for Computer Algebra}, Kluwer Academic Publishers, 1992.id NH0925198039 sid 913330 cfn 0 / id NH0925198040 auc 羅中佑 tic 準一維電荷密度波動力學之X光繞射研究 adc 張石麟 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 58 kwc 電荷密度波 kwc X光繞射 kwc 複繞射 kwc 相位滑移 kwc 關聯長度 abc 本實驗利用三光複繞射法,量測藍銅礦 $\mathrm{K_{0.3}MoO_3}$ 特定CDW繞射峰在外加電場下的結構相位變化,以觀察電荷密度波的動態變化過程。CDW原本是被材料中雜質 ``釘住(pinned)'' 不動的,需施加足夠大的電場才能驅動它,進入 ``moving'' 狀態。從實驗中我們發現CDW分數峰繞射 (13 0.748 -6.5) 在電導率變化最劇烈的區域有著明顯的結構相位變化。過此區域之後,繞射峰半高寬變窄,峰值強度增加,顯示CDW週期變得更加有序,然而複繞射峰形會回到未加電場前的模樣。我們相信利用三光繞射所觀察到的相位變化反映了在外加電場影響下,介於CDW pinned state 與 moving state 之間暫態的序參量相位變化。 tc 1. 導論..................................................1 2. 電荷密度波簡介........................................3 2.1 CDW基態的形成.....................................4 2.2 CDW電子傳輸性質..................................10 3. 相關的X光繞射理論....................................17 3.1 調變結構的結構因子...............................18 3.2 複繞射...........................................19 3.3 X光動力繞射原理..................................22 3.4 結構因子三重積相位與繞射強度分佈的關係...........23 4. 樣品簡介與實驗方法...................................24 4.1 樣品的結構與特性.................................24 4.2 實驗儀器簡介.....................................26 4.3 實驗方法與步驟...................................29 5. 實驗結果分析.........................................33 5.1 電性量測.........................................33 5.2 三光複繞射相位分析...............................37 5.3 關聯長度的各向異性...............................46 6. 結論.................................................49rf V.J. Emery et. al, in Correlated Electron Systems, World Scientific (1992) N.W. Ashcroft and N.D. Mermin, in Solid State Physics, Brooks/Cole (1976) L. Mihaly and M.C. Martin, in Solid State Physics: Problems and Solutions, Wiley (1996) H. Frohlich, Proc. R. Soc., A223, 296 (1954) G. Gruner, in Density Waves in Solid, Addison-Wesley (1994) E.J. Woll,Jr. and W. Kohn, Phys. Rev., 126, 1693 (1962) I. Tutto and A. Zawadowski, Phys. Rev. B, 32, 2449 (1985) G. Gruner, in The Dynamics of Charge Density Waves, Rev. Mod. Phys. 60, 4 (1988) M. Tinkham, in Introduction to Superconductivity, R.E. Krieger (1975) L.D. Landau and E.M. Lifschitz, in Statistical Mechanics, Pergamon (1959) J. Solyom, Adv. Phys., 28, 201 (1979) P.A. Lee, T.M. Rice and P.W. Anderson, Solid State Commun., 14, 703 (1974) H. Fukuyama, J. Phys. Soc. Jpn., 41, 513 (1976) H. Fukuyama and P.A. Lee, Phys. Rev. B, 17, 535 (1978) P.A. Lee and T.M. Rice, Phys. Rev. B, 19, 3970 (1979) R.M. Fleming and L.F. Schneemeyer, Phys. Rev. B 33, 2930 (1986) L. Balents and M.P.A. Fisher, Phys. Rev. Lett., 75, 4270 (1995) M. Karttune et. al, in http://www.lce.hut.fi/~karttune/CDW/ C. Kittel, in Introduction to Solis State Physics, 7th ed., Wiley (1996) L.V Azaroff, in Elements of X-ray Crystallography (1968) C. Giacovazzo, in Fundamentals of Crystallography, Oxford (1992) S.-L. Chang, in Multiple Diffraction of X-rays in Crystals, Springer-Verlag (1984) Y.P. Stetsko and S.-L. Chang, Acta Crystallogr., A58, 28 (1997) S.-L. Chang, Acta Crystallogr., A54, 886 (1998) H.C. Chien et. al, Acta Crystallogr., A55, 677 (1999) A. Authier, in Dynamical Theory of X-Ray Diffraction, Oxford (2001) K. Hummer and H.W. Billy, Acta Crystallogr., A42, 127 (1986) S.-L. Chang and M.T. Tang, Acta Crystallogr., A44, 1065 (1988) S.-L. Chang et. al, Phys. Lett. A, 264, 328 (1999) J. Graham and A.D. Wadsley, Acta Crystallogr., 20, 93 (1966) C. Schlenkar and J. Dumas, in Crystal Chemistry and Properties of Materials with Quasi-One-Dimensional Structures (1986) R. Kwok et. al, Phys. Rev. Lett., 65, 365 (1990) G. Mihaly et. al, Phys. Rev. B, 37, 6536 (1988) J. Schutte and J.L. De Boer, Acta Crystallogr., B49, 579 (1993) C.H. Du et. al, Acta Crystallogr., A60, 209 (2004) R. Danneau et. al, Phys. Rev. Lett., 89, 16404 (2002) R.M. Fleming and C.G. Grimes, Phys. Rev. Lett., 1423 (1979) S. Brazovskii et. al, Phys. Rev. B, 61, 10640 (2000) 李彥儒, 國立清華大學博士論文 (2003) 林聰志, 國立清華大學碩士論文 (2003) 翁世璋, 國立清華大學碩士論文 (2003) 鄭程文, 國立清華大學碩士論文 (2002) 鄭森源, 國立清華大學碩士論文 (2002)id NH0925198040 sid 913302 cfn 0 / id NH0925198041 auc 林弘偉 tic 氮化銦磊晶薄膜及量子點材料之研究 adc 果尚志 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 57 kwc 氮化銦 kwc 分子束磊晶 kwc 量子點 abc   本篇論文研究主題為利用分子束磊晶法(MBE)成長出高品質氮化銦薄膜以及氮化銦量子點,並分析其特性。在氮化銦薄膜方面,我們在Si(111)基板上成長出高品質單晶且為二維成長之氮化銦薄膜,並利用反射式高能量電子繞射系統(RHEED)在成長時做現場監控以判斷薄膜之成長好壞,成長完之樣品,我們利用原子力顯微鏡(AFM)做表面形貌之掃描,並利用X光繞射(X-ray diffraction)以及拉曼光譄(Raman spectrum)量測以確定薄膜之結構與特性與結晶品質。我們以霍爾量測(Hall measurement)決定氮化銦薄膜內的載子遷移率以及載子濃度,諸多量測均確定了我們成長出之氮化銦薄膜有良好的品質。論文內也討論利用不同緩衝層所成長出之氮化銦薄膜,並比較兩者之間的特性有何不同(表面形貌、結構特性、電性、極性等);而利用光致激發螢光光譜量測(photoluminescence spectrum)實驗則確定了氮化銦薄膜的基本能隙值應位於~0.7 eV附近,這個值與以往被認定的值(1.8-2.0 eV)有很大的出入,文中也討論造成此不同的發光波段的成因。 tc 第一章 簡介....................................1 第二章 儀器介紹及原理 2.1 電漿輔助式分子束磊晶系統................6 2.1.1 系統介紹..........................6 2.1.2 工作原理..........................8 2.2 反射式高能量電子繞射...................10 2.3 拉曼光譜...............................15 2.4 X光繞射................................17 第三章 氮化銦薄膜之研究 3.1 氮化銦薄膜之成長介紹...................19 3.1.1 基板選擇與成長結果...............19 3.1.2 成長氮化銦薄膜...................22 3.2 氮化銦薄膜之分析與討論.................24 3.2.1 表面形貌分析.....................24 3.2.2 晶體結構分析.....................27 3.2.3 光學性質分析.....................31 3.2.4傳輸特性量測與分析................35 3.2.5 極性判斷.........................37 第四章 氮化銦量子點之研究 4.1 量子點的形成...........................39 4.2 氮化銦量子點的成長介紹 4.2.1 文獻回顧.........................42 4.2.2 在Si(111)基板上利用Stranski-Krastanov模式成長氮化銦量子點..................................44 4.2.3 在GaN(0001)模板上利用熱退火模式成長氮化銦量子點............................................44 4.3 氮化銦量子點之分布統計.................47 第五章 結論...................................52 參考文獻......................................54rf [1 ] R. Juza and H. Hahn, Z. Anorg. Allg. Chem. 239, 282 (1938). [2 ] Hai Lu, William J. Schaff, Lester F. Eastman, J. Wu, Wladek Walukiewicz, Volker Cimalla and Oliver Ambacher, Appl. Phys. Lett. 83, 1136 (2003) [3 ] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett. 81, 1246 (2002). [4 ] V. Y. Davydov et al., Phys. Status Solidi B 229, R1 (2002) [5 ] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002). [6 ] T. L. Tansley and C. P. Foley, J. Appl. Phys. 59, 3241 (1986) [7 ] S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992). [8 ] V. W. L. Chin, T. L. Tansley, and T. Osotchan, J. Appl. Phys. 75, 7365 (1994). [9 ] B. E. Foutz, S. K. O’Leary, M. S. Shur, and L. F. Eastman, J. Appl. Phys. 85, 7727 (1999). [10 ] A. Yamamoto, M. Tsujino, M. Ohkubo, and A. Hashimoto, J. Cryst.Growth 137, 415 (1994). [11 ] Y. C. Pan, W. H. Lee, C. K. Shu, H. C. Lin, C. I. Chiang, H. Chang, D. S. Lin, M. C. Lee, and W. K. Chen, Jpn. J. Appl. Phys., Part 1 38, 645 (1999). [12 ] T. Tsuchiya, H. Yamano, O. Miki, A. Wakahara, and A. Yoshida, Jpn. J.Appl. Phys., Part 1 38, 1884 (1999). [13 ] A. Yamamoto, M. Tsujino, M. Ohkubo, and A. Hashimoto, Sol. Energy Mater. Sol. Cells 35, 53 (1994). [14 ] A. Yamamoto, Y. Yamauchi, T. Ogawa, M. Ohkubo, and A. Hashimoto, Inst. Phys. Conf. Ser. 142, 879 (1996). [15 ] A. Yamamoto, Y. Yamauchi, M. Ohkubo, A. Hashimoto, and T. Saitoh,Solid-State Electron. 41, 149 (1997). [16 ] T. Yodo, H. Ando, D. Nosei, and Y. Harada, Phys. Status Solidi B 228, 21 (2001). [17 ] T. Yodo, H. Yona, H. Ando, D. Nosei, and Y. Harada, Appl. Phys. Lett.80, 968 (2002). [18 ] Hai Lu, William J. Schaff, Jeonghyun Hwang, Hong Wu, Goutam Koley, and Lester F. Eastman, Appl. Phys. Lett. 79, 1489 (2001) [19 ] H. Lu, W. J. Schaff, L. F. Eastman, J. Wu, W. Walukiewicz, K. M. Yu, J.W. Auger III, E. E. Haller, and O. Ambacher, Abstract of the 44th Electronic Material Conference, Santa Barbara, CA (2002) [20 ] V. Y. Davydov et al., Phys. Status Solidi B 230, R4 (2002). [21 ] M. Hori, K. Kano, T. Yamaguchi, Y. Saito, T. Araki, Y. Nanishi, N. Teraguchi, and A. Suzuki, Phys. Status Solidi B 234, 750 (2002). [22 ] V. Y. Davydov et al., Phys. Status Solidi B 234, 787 (2002). [23 ] Saito, H. Harima, E. Kurimoto, T. Yamaguchi, N. Teraguchi, A. Suzuki,T. Araki, and Y. Nanishi, Phys. Status Solidi B 234, 796 (2002). [24 ] T. Miyajima et al., Phys. Status Solidi B 234, 801 (2002) [25 ] C. Nörenberg, R.A. Oliver, M.G. Martin, L. Allers ,M.R. Castell, and G.A.D. Briggs, phys. stat. sol. (a) 194, No. 2, 536 (2002) [26 ] Y. G. Cao, M. H. Xie, Y. Liu, Y. F. Ng, and H. S. Wu, Appl. Phys. Lett., Vol. 83, No. 25, (2003) [27 ] D. J. Eaglesham and M. Cerullo,Phys. Rev. Lett. 64, 1943 (1990) [28 ] D. Vanderbilt and L. K. Wickham, in Evolution of Thin-Film and Surface Microstructure, Vol. 202 of MRS Proceedings, edited by C. V. Thompson, J. Y. Tsao, and D. J. Srolovitz (MRS, Pittsburgh, 1991), pp. 555-560. [29 ] Masataka HIGASHIWAKI and Toshiaki MATSUI, Jpn. J. Appl. Phys. Vol. 41, L540 (2002). [30 ] C. J. Lu and L. A. Bendersky, Hai Lu and William J. Schaff, Appl. Phys. Lett., Vol. 83, No. 14, 2817 (2003) [31 ] J. W. Trainor and K. Rose, J Electron. Mater. 3, 821 (1974) [32 ] C.-L. Wu, J.-C. Wang, M.-H. Chan, T. T. Chen, and S. Gwo, Appl. Phys. Lett. 83, 4530 (2003). [33 ] H.-J. Kwon, Y.-H. Lee, O. Miki, H. Yamano, and A. Yoshida, Appl. Phys. Lett. 69, 937 (1996). [34 ] W. K. Chen, H. C. Lin, Y. C. Pan, J. Ou, C. K. Shu, W. H. Chen, and M.C. Lee, Jpn. J. Appl. Phys., Part 1 37, 4870 (1998) [35 ] J. S. Dyck, K. Kash, K. Kim, W. R. L. Lambrecht, C. C. Hayman, A. [36 ] Argoitia, M. T. Grossner, W. L. Zhou, and J. C. Angus, Mater. Res. Soc. Symp. Proc. 482, 549 (1998). [37 ] Y. C. Pan, W. H. Lee, C. K. Shu, H. C. Lin, C. I. Chiang, H. Chang, D. S. Lin, M. C. Lee, and W. K. Chen, Jpn. J. Appl. Phys., Part 1 38, 645 (1999). [38 ] T. Inushima, T. Shiraishi, V. Y. Davydov, Solid State Commun. 110, 491 (1999). [39 ] V. Y. Davydov et al., Appl. Phys. Lett. 75, 3297 (1999). [40 ] V. Y. Davydov et al., Phys. Status Solidi B 216, 779 (1999). [41 ] V. V. Mamutin et al., Phys. Status Solidi A 176, 247 (1999). [42 ] G. Kaczmarczyk et al., Appl. Phys. Lett. 76, 2122 (2000). [43 ] T. Inushima, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, T. Sakon, M. Motokawa, and S. Ohoya, J. Cryst. Growth 227–228, 481 (2001). [44 ] J. Aderhold, V. Yu. Davydov, F. Fedler, H. Klausing, D. Mistele, T. Rotter, O. Semchinova, J. Stemmer, and J. Graul, J. Cryst. Growth 222, 701 (2001). [45 ] E. Kurimoto, H. Harima, A. Hashimoto, and A. Yamamoto, Phys. Status Solidi B 228, 1 (2001). [46 ] Y. Saito, H. Harima, E. Kurimoto, T. Yamaguchi, N. Teraguchi, A. Suzuki, T. Araki, and Y. Nanishi, Phys. Status Solidi B 234, 796 (2002). [47 ] K. Xu and A. Yoshikawa, Appl. Phys. Lett. 83, (2003) [48 ] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, J. Appl. Phys. 94, 4457 (2003). [49 ] E. Kurimoto, M. Hangyo, H. Harima, M. Yoshimoto, T. Yamaguchi, T. Araki, Y. Nanishi, K. Kisoda, Appl. Phys. Lett. 84, 212 (2004) [50 ] S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang and J.-T. Hsu, Appl. Phys. Lett. 84, 3765 (2004) [51 ] Herman, Marian A. Molecular beam epitaxy : fundamentals and current status, Springer-Verlag (1989) [52 ] Braun, Wolfgang, Applied RHEED :reflection high-energy electron diffraction during crystal growth, Springer (1999)id NH0925198041 sid 913338 cfn 0 / id NH0925198042 auc 劉昱辰 tic 利用MOPA雷射系統建立的磁光陷阱 adc 余怡德 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 55 kwc 磁光陷阱 kwc 雷射 abc 本實驗的目的,是藉由提高陷阱雷射功率,增加補捉的原子團數目,進而提高OD。提高雷射功率的方法,是在原本的磁光陷阱系統之中,加入MOPA雷射系統。MOPA雷射系統是利用外腔雷射注入鎖模到光放大器(TA),保有外腔雷射的頻率及頻寬前提下,進行功率放大。最後可以獲得一個窄頻寬、易調頻、高功率的雷射源。 tc 摘要 致謝 目錄 第一章 MOPA系統介紹 § 1-1 研究動機 § 1-2 MOPA系統簡介 § 1-3 MOPA工作原理 第二章 MOPA系統設計 § 2-1 MOPA系統光學元件搭配 § 2-2 M|OPA系統結構設計概念 § 2-3 凸型平台溫控測試 第三章 MOPA系統調整 § 3-1 TA安裝方式 § 3-2 標準調整程序 § 3-3 相關接頭標示 § 3-4 注意事項 第四章 MOPA系統測試 § 4-1 「850nm LD 搭配 850nm TA」測試 § 4-2 「780nm ECDL 搭配 780nm TA」測試 § 4-3 穩定度測試 § 4-4 拍頻頻寬 § 4-5 結論 第五章 原子數測量 § 5-1 測量原理介紹 § 5-2 測量系統架設 第六章 原子數最佳化 § 6-1 140mW 原子數最佳化 § 6-2 180mW、100mW、60mW、20mW原子數最佳化 § 6-3 power of hyperfine laser versus number of atoms § 6-4 power of trapping laser versus number of atoms § 6-5 結論 第七章 總結 附錄A 自製雷射電流源 附錄B MOPA系統相關設計圖 參考資料rf 1.SDL-8630 Tunable Laser Diode, Operator’s Manual 2.Andrew C. Wilson, Johnathan C. Sharpe, Callum R. McKenzie, Peter J. Manson, and Donald M. Warrington, “Narrow-linewidth master-oscillator power amplifier based on a semiconductor tapered amplifier” Appl. Opt. 37, 4871(1998) 3.D. Voigt, E.C. Schilder, R.J.C. Spreeuw, and H.B. van Linden van den Heuvell, ”Characteristics of a high-power tapered semiconductor amplifier system”, axXiv:physics/0004043 v1 19 Apr 2000 4.許志祿, 碩士論文, “應用在玻色-愛因期坦凝結的注入放大雷射系統的製作與量測”, 清華大學物理系, (1999) 5.K. Lindquist, M. Stephens, and C. Wieman, “Experimental and theoretical study of the vapor-cell Zeeman optical trap”, Phys. Rev. A., 46, 4082(1992) 6.Ying-Cheng Chen, Wen-Bin Lin, Hsuin-Chia Hsue, Long Hsu, and Ite A. Yu, “Effect of the Trapping Laser Linewidth on the Atom Number in a Magneto-Optical Trap”, CJP, 38, 920 (2000) 7.林文彬, 碩士論文, “雷射光頻寬對磁光陷阱影響之研究”, 清華大學物理系, (1998) 8.Ying-Cheng Chen, Yean-An Liao, Long Hsu, and Ite A. Yu, “Simple technique for directly and accurately measuring the number of atoms in a magneto-optical trap” Phys. Rev. A., 64, 031401-1 (R) (2001) 9.陳應誠, 博士論文, “低溫原子之同調性導致現象”, 清華大學物理系, (2002)id NH0925198042 sid 913312 cfn 0 / id NH0925198043 auc 莊嘉平 tic 雙層超導穿遂結特性之研究 adc 齊正中 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 90 kwc 約瑟芬穿遂結 kwc 超導穿遂結 kwc 超導電晶體 kwc 三極超導元件 kwc 非平衡態准粒子效應 abc 目前為止,許多三極(3-terminal)的超導元件,包括Gray transistor、Quiteron以及Quatratran等已經陸續被製作,它們具有電晶體的一些特性,包括:大訊號與小訊號的電流增益與功率放大等。為了使元件的電流放大(current gain)、功率放大(power gain)效果更好,junction的I-V 曲線的漏電流要低(lower leakage current),且detector junction有較高的超導臨界電流密度(JC)。我們可以利用曝氧度(PO2×TO2),控制AlOx(作為穿隧障璧)的厚度以達到控制Jc的大小。 tc 目 錄 摘 要......................................................................................................I 誌 謝......................................................................................................II 目錄........................................................................................................III 圖目錄....................................................................................................VI 表目錄....................................................................................................IX 第一章 簡介...........................................................................................1 第二章 原理..........................................................................................3 2.1 准粒子穿隧(Quasi-particle Tunneling)..................................3 2.2 電子對穿隧(Josephson Effect,Pair Tunneling)...................8 2.3 超導量子衍射現象................................................................11 2.4 三極超導放大元件的工作原理...........................................13 第三章 實驗方法..................................................................................17 3.1 Junction 的製作........................................................................17 1. Base layer (Nb/Al/Nb)...........................................................17 2. Double barrier deposition.......................................................21 3. Junction definition..................................................................23 4. Wiring layer............................................................................27 3.2 樣品量測..................................................................................30 3.2-1 I-V 曲線量測.................................................................30 3.2-2 Digital I-V 量測系統..................................................31 3.2-3 大訊號量測系統............................................................33 3.2-4 小訊號量測系統............................................................34 3.3 元件資料...................................................................................37 第四章 結果與討論...............................................................................39 4.1 I-V曲線量測結果...............................................................39 4.1-1 I-V曲線特性分析...........................................................39 4.1-2 ∆A、∆B及∆C的大小.........................................................44 4.1-3 超導臨界電流(IC)與外加磁場的關係..........................46 4.2 非平衡態的准粒子效應(Non-equilibrium quasi-particle effect)........................................................................................51 4.3 大訊號分析(Large signal response).......................................57 4.4 小訊號分析(Small signal response)......................................78 第五章 結論...................................................................................81 參考資料.....................................................................................................83 附錄1...........................................................................................................85 附錄2...........................................................................................................86 附錄3...........................................................................................................88 附表1...........................................................................................................90 圖目錄 圖2.1 S1-I-S2 tunneling junction..........................................................................................3 圖2.2 T=0K,熱平衡下,兩超導體的能帶圖..............................................................4 圖2.3 (a)T=0K,外加偏壓V=(Δ1+Δ2)/e時,超導體能帶圖。(b)T=0K, 外加偏壓V=(Δ1+Δ2)/e時,I-V 曲線............................................................................5 圖2.4 (a)T≠0K,S1能隙上存在著熱激發的正常電子。(b)外加偏壓 V=(Δ1-Δ2)/e時,熱激發電子有機會穿隧至S2。.......................................................5 圖2.5 (a) (Δ1-Δ2)/e < V <(Δ1+Δ2)/e時,S2能隙上的態密度小,造成負阻現象。 (b)V=(Δ1+Δ2)/e,S1能隙底部的電子可以穿越屏障至S2。(c)SIS junction 准粒子 穿隧I-V特性曲線...............................................................................................................6 圖2.6 磁場B沿y軸方向進入SIS junction....................................................................8 圖2.7 SIS junction 之IC與Φ的Fraunhofer pattern........................................................12 圖2.8 (a)為三層300Å的Al,中間夾氧化層。(b)為injector的I-V曲線。 (c)為collector的I-V曲線..................................................................................................13 圖2.9 (a)為Quiteron結構圖 (b)為大量准粒子注入中間薄膜。 (c)detector的I-V曲線,有線性與非線性負載..............................................................14 圖2.10 (a)左圖為trap層為超導時的能量圖(b)為不同detector 偏壓下, 過量准粒子隨injector current而改變..............................................................................16 圖3.1 光阻式樣的俯視圖與剖面圖................................................................................17 圖3.2 利用AZ5214E可以得到上窄下寬的金屬薄膜.................................................18 圖3.3 三層膜的沉積結構俯視圖與剖面圖...................................................................20 圖3.4 去除光阻後, 完成三層膜的俯視圖剖面圖.......................................................21 圖3.5 微影顯影完後,光阻式樣的俯視圖剖面圖......................................................22 圖3.6 多層膜去除光阻完成後的俯視圖剖面圖..........................................................23 圖3.7 微影後的junction式樣的俯視圖剖面圖............................................................24 圖3.8 蝕刻top Nb後的結構圖的俯視圖剖面圖..........................................................25 圖3.9 鍍上SiO2絕緣層後的俯視圖剖面圖...................................................................26 圖3.10 去除光阻後,junction 定義完成的俯視圖剖面圖.........................................26 圖3.11 沉積Nb6000 Å的俯視圖剖面圖.......................................................................27 圖3.12 微影後的正光阻行成時刻的光罩的俯視圖剖面圖.......................................28 圖3.13 蝕刻未受保護的Nb部分的俯視圖剖面圖.....................................................28 圖3.14去除光阻,完成double-barrier tunnel junction製作示意圖............................29 圖3.15 3td-17-27-R 之光學照片......................................................................................29 圖3.2.1 4-Wire給I量V裝置圖......................................................................................30 圖3.2.2 I-V曲線量測系統................................................................................................30 圖3.2.3 Digital I-V & current gain 裝置圖........................................................................32 圖3.2.4 The circuit of the signal mixer box.........................................................................33 圖3.2.5 Digital I-V & current gain 裝置圖........................................................................34 圖3.2.6 小訊號量測dV的裝置圖..................................................................................35 圖3.2.7 the circuit of the signal mixer box..........................................................................36 圖3.2.8 the circuit of the DC current source........................................................................36 圖3.2.9 晶圓上,3td樣品編號與位置...........................................................................37 圖3.2.10 每一個矽晶粒上有兩個3td樣品區分為R、L............................................38 圖4.1 3td-3-7-R-AB junction的I-V圖..............................................................................40 圖4.2 3td-3-7-R-BC junction的I-V圖..............................................................................40 圖4.3 3td-12-7-R-AB junction的I-V圖............................................................................41 圖4.4 3td-12-7-R-BC junction的I-V圖............................................................................41 圖4.5 3td-14-12-L-AB junction的I-V圖..........................................................................41 圖4.6 3td-14-12-L-BC junction的I-V圖..........................................................................41 圖4.7 3td-15-17-L-AB junction的I-V圖...........................................................................42 圖4.8 3td-15-17-L-BC junction的I-V圖..........................................................................42 圖4.9 3td-16-11-R-AB junction的I-V圖..........................................................................43 圖4.10 3td-16-11-R-BC junction的I-V圖........................................................................43 圖4.11 3td-17-11-R-AB junction的I-V圖........................................................................43 圖4.12 3td-17-11-R-BC junction的I-V圖........................................................................43 圖4.13 3td-12-7-R-AB junction的I-V圖.........................................................................47 圖4.14 3td-12-7-R-BC junction的I-V圖.........................................................................47 圖4.15 3td-12-7-R-AC junction的I-V圖.........................................................................47 圖4.16 AB junction臨界電流Ic與B場關係................................................................49 圖4.17 BC junction臨界電流Ic與B場關係................................................................49 圖4.18 AC junction臨界電流IC1與B場關係................................................................49 圖4.19 AC junction臨界電流IC2與B場關係................................................................49 圖4.20 AC junction臨界電流IC1與B場的行為與AB junction的Ic vs B 行為一樣.............................................................................................................................50 圖4.21 AC junction臨界電流IC2與B場的行為與BC junction的Ic vs B 行為一樣.............................................................................................................................50 圖4.22 T=4.2 K時,不同injection current下,3td-3 樣品的I-V曲線....................52 圖4.23.熱影響下,3td-3 樣品的I-V曲線圖................................................................53 圖4.24 T=4.2 K時,不同injection current下,3td-14 樣品的I-V曲線...................54 圖4.25 .熱影響下,3td-14 樣品的I-V曲線圖.............................................................55 圖4.26 T=4.2 K時,不同injection current下,3td-15 樣品的I-V曲線...................55 圖4.27 熱影響下,3td-15 樣品的I-V曲線圖..............................................................56 圖4.28 電流放大的量測電路圖.....................................................................................57 圖4.29 無負載時,電流增益的示意圖........................................................................57 圖4.30 3td-3樣品,Idet與Iinj的關係圖(IBA=Idet, ICB=Iinj)...................................................59 圖4.31 3td-3樣品,電流增益t與Iinj的關係圖(IBA=Idet, ICB=Iinj)....................................59 圖4.32電流增益之能帶解釋圖......................................................................................60 圖4.33中間層的准粒子使中間層能隙下降,造成電流增益...................................61 圖4.34 電流放大的量測電路圖.....................................................................................61 圖4.35 3td-3樣品,Idet與Iinj的關係圖(IBC=Idet, IAB=Iinj)...................................................61 圖4.36a 3td-12-7-R-AB injection current(ICB)=0時,I-V曲線圖...................................63 圖4.36b 3td-12-7-R-AB injection current(ICB)=2mA時,I-V曲線圖.............................63 圖4.37a 3td-12-7-R-BC injection current(IAB)=0時,I-V曲線圖....................................63 圖4.37b 3td-12-7-R-BC injection current(IAB)=2mA時,I-V曲線圖..............................63 圖4.36 3td-12樣品,Idet與Iinj的關係圖.(IBA=Idet, ICB=Iinj)......................................................64 圖4.37 3td-12樣品,Idet與Iinj 的關係圖.(IBC=Idet, IAB=Iinj).....................................................64 圖4.38 3td-14樣品,Idet與Iin的關係圖.(IBA=Idet, ICB=Iinj)..................................................66 圖4.39 3td-14樣品,電流增益(△IBA/ICB)與Iinj的關係圖..............................................66 圖 4.40 3td-14樣品,Idet與Iin的關係圖.(IBC=Idet, IAB=Iinj)....................................................67 圖4.41 3td-14樣品,電流增益(△IBA/ICB)與Iinj的關係圖...............................................67 圖4.42 3td-15樣品,Idet與Iin的關係圖.(IBA=Idet, ICB=Iinj)..................................................69 圖4.43 3td-15樣品,電流增益(△IBA/ICB)與Iinj的關係圖..............................................69 圖 4.44 3td-15樣品,Idet與Iin的關係圖.(IBC=Idet, IAB=Iinj)....................................................70 圖4.45 3td-15樣品,電流增益(△IBA/ICB)與Iinj的關係圖...............................................70 圖4.46 3td-16樣品,Idet與Iin的關係圖.(IBA=Idet, ICB=Iinj)..................................................72 圖4.47 3td-16樣品,電流增益(△IBA/ICB)與Iinj的關係圖..............................................72 圖 4.48 3td-16樣品,Idet與Iin的關係圖.(IBC=Idet, IAB=Iinj)....................................................73 圖4.49 3td-16樣品,電流增益(△IBA/ICB)與Iinj的關係圖...............................................73 圖4.50 3td-17樣品,Idet與Iin的關係圖.(IBA=Idet, ICB=Iinj)..................................................74 圖4.51 3td-17樣品,電流增益(△IBA/ICB)與Iinj的關係圖..............................................75 圖 4.52 3td-17樣品,Idet與Iin的關係圖.(IBC=Idet, IAB=Iinj)....................................................75 圖4.53 3td-17樣品,電流增益(△IBA/ICB)與Iinj的關係圖...............................................76 圖4.54 Detector的電壓輸出與AC電壓源輸出電壓(與injector junction 的輸入電流成正比)關係圖..............................................................................................79 圖4.55 正常工作偏壓下,detector的輸出與AC源電壓(或injection電流) 成正比的關係.....................................................................................................................79 圖4.56 (a)-(e)對應injection current (ICB)(0-1mA),不同detector偏壓下, 小訊號的電流增益.............................................................................................................80 表目錄 表3.2.1 不同元件的製作條件與參數............................................................................38 表4.1 3td junction的特性參數..........................................................................................44 表4.2 3td-12-7 junction 的fitting參數.............................................................................48 表4.3樣品的junction參數及大訊號結果......................................................................77rf [1 ] K.E. Gray, Appl. Phys. Lett. Vol 32, No.6, 15 March 1978. [2 ] S. M. Faris, S. I. Raider, W. J. Gallagher, and R. E. Darke, “QUITERON”, IEEE Trans. Magn. Vol. Mag-19, p1293, 1983 [3 ] G. P. Pepe, G. Ammendola, G. Peluso, and A. Barone Applied Physics Letters , 77, Number 3, 447, July 2000. [4 ]S. Morohashi et al., J. Appl. Phys. 61, 4835(1987) [5 ]R. Dolata et al., Physica C 241, 25 (1995) [6 ]I. Giaever, Phys. Rev. Lett. 5, 147(1960) [7 ]J. J. Sakurai, “Modern Quantum Mechaniics”, p332 [8 ]張裕恆, 李玉芝:超導物理, 儒林, 台北(1992) [9 ]C. P. Poole, et al., “Superconductivity”, San Diego: Academic press,(1995) [10 ]B. D. Josephson, phys. Lett. 1.251(1962) [11 ]M. J. Wang, “The Technical Report of SIS Mixer Fabrication Project(1994/10~1998/10)”, Academia Sinica, Taiwan, p.11(1998) [12 ]Antonio Barone, Physics and applications of the Josephson Effect, p.161 [13 ]R. Meservey and B. B. Schwartz, in Superconductivity, p. 141 [14 ]E. P. Houwman, D. Veldhuis, J. Flokatra, and H. Rogalla, J. Appl. Phys. 67, 1992(1990). [15 ] Bindslev Hansen, J., and Lindelof, P.E., Rev. Mod. Phys. (1984) 56 431-459 [16 ]A. De Rosa, L. Parlato, G. Peluso, G. P. Pege, R. Monaco, Nuclear Physics B, 61B (1998)565-569id NH0925198043 sid 903332 cfn 0 / id NH0925198044 auc 劉佳琪 tic 磁力電子顯微儀量測鈷鎳薄膜磁區之研究 adc 呂助增 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 52 kwc 磁力顯微儀 abc 物質產生磁性是因為量子效應的物理現象,在一般應用中以鐵磁性(ferromagnetic)材料最具重要性,在週期表上106個元素中僅有Fe、Co、Ni3個元素及稀土族的Gd在室溫時具有鐵磁性之表現,而這前3個元素和稀土元素互相結合或與其他不具有鐵磁性表現之原素相結合,則可以形成各種不同特性的磁性材料。 tc 目 錄 摘要 致謝 目錄 第一章 簡介1 第二章 磁力顯微儀4 2-1 實驗裝置4 2-2 工作原理5 2-3基本架構10 2-4實驗步驟與方法17 第三章 磁性原理18 3-1磁學歷史18 3-2鐵磁性磁區的理論基礎19 3-3鐵磁性薄膜磁區理論19 3-4 stripe domains的靜磁能20 3-5 stripe domains磁區寬度的計算23 3-6磁區壁(domain wall)的結構24 3-7磁壁的種類26 3-8應生磁化機構28 3-9磁場作用下膨脹的180°磁壁28 3-10解釋迷宮型磁區29 第四章 結果與討論30 4-1磁記錄樣品的測試30 4-2鈷薄膜的表面影像及磁力影像31 4-3鎳薄膜的磁力影像37 4-4分析鈷、鎳薄膜stripe domains靜磁能38 4-5比較磁區結構single domains和stripe domains38 4-6計算stripe domains 的寬度39 4-7鈷薄膜加磁場後的磁力影像42 4-8鎳薄膜加磁場後的磁力影像 47 第五章 結論51 參考資料52rf 1. 劉建良,清華大學物理所碩士論文(1995). 2. 曾淑芬,清華大學物理所碩士班,”蜜蜂鐵沉積之磁性共振及磁力顯微鏡研究”,(2002) 3. J.Marion & S.Thorton,“Classical Mechanics of particles and Systems”,4ed, Fort worth,Sawnders College Pub. (1995). 4. C.Kittel, “Introduction to Solid State Physics Ch15” 5. C.Kittel, “Theory of the structure ferromagnetic domains in films and small particles”,Phys.Rev.70,965(1946) 6. Soshin Chikazumi著,張煦、李學養合譯,”磁性物理學”,聯經出版事業公司,p238~240 7. Soshin Chikazumi著,張煦、李學養合譯,”磁性物理學”,聯經出版事業公司,p257~260 8. 謝長村,清華大學物理所碩士論文,”磁力顯微儀觀察Co/Si薄膜磁區之研究”(1999). 9. Soshin Chikazumi著,張煦、李學養合譯,”磁性物理學”,聯經出版事業公司,p137~141 10. Soshin Chikazumi著,張煦、李學養合譯,”磁性物理學”,聯經出版事業公司,p310~311 11. Soshin Chikazumi著,張煦、李學養合譯,”磁性物理學”,聯經出版事業公司,p331~332 12.M. Demand, S. Padovani, M. Hehn, K. Ounadjela, J.P. Buchera,Magnetic field-induced instabilities and irreversible evolution in modulated ferromagnetic phases of cobalt films”, Journal of Magnetism and Magnetic Materials 247 (2002) 147–152id NH0925198044 sid 903329 cfn 0 / id NH0925198045 auc 蔡仁祥 tic 加長與壓縮對磁光陷阱之影響 adc 余怡德 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 56 kwc 磁光陷阱 kwc 壓縮 kwc 加長 kwc 外腔雷射 abc 為了提高Optical Densiy,本論文的研究採用兩種方式:一種是使探測雷射光行經原子團的長度增加,為了這個目的,設計了一組線圈,這一組線圈可以使得原子團的一個徑方向的磁場梯度變小以拉長原子團,而實驗的結果是這樣的方法可以將Optical Densiy提高為原來的兩倍。另一種方式是提高原子團密度,我們利用使磁場梯度在瞬間內提高的方式,以壓縮原子團,而且為了要避免團子團之間的輻射斥力造成壓縮受到限制,在壓縮過程中也使雷射的頻率遠離原子的躍遷頻率,這樣的方法保守估計可以提高Optical Densiy兩倍到三倍之間。 tc 摘要 誌謝 目錄 第一章 研究動機.....1 第二章 基本原理.....2 §2-1 磁光陷阱 §2-1-1 都卜勒冷卻法 §2-1-2 磁光陷阱 §2-1-3 加長型磁光陷阱 §2-2 磁光陷阱中的原子團密度極限 第三章 實驗系統的架設.....8 §3-1 線圈的製作與測試 §3-1-1 線圈的製作 §3-1-2 線圈磁場量測 §3-1-3 線圈磁場梯度量測 §3-2 實驗系統架設 §3-2-1 Rb原子能階 §3-2-2 磁光陷阱系統架設 §3-2-3 Master Laser 鎖頻系統 §3-2-4 Hyperfine Laser 鎖頻系統 §3-2-5 CCD監測原子訊號系統 §3-2-6原子訊號的穩定度以及其生成時間 第四章 實驗測量步驟與數據分析.....27 §4-1 磁光陷阱最佳化 §4-2 加長型磁光陷阱之原子數最佳化 §4-3 加長型磁光陷阱之原子團Optical Density最佳化 §4-4 壓縮式磁光陷阱之原子團密度最佳化 第五章 結果與展望.....44 參考文獻.....45 附錄:外腔半導體雷射.....46rf [1 ] E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, "Trapping of neutral sodium atoms with radiation pressure," Phys. Rev. Lett. 59, 2631 (1987). [2 ] 毛禮富 碩士論文"黑暗型磁光陷阱的發展與研究" 清華大學物理系, 民87年 [3 ] D. Sesko, T. Walker, and C. Wieman, “Behavior of neutral atoms in a spontaneous force trap,” J. Opt. Soc. Am. B 8, 946-958 (1991). [4 ] A. M. Steane, M. Chowdhury, and C. J. Food, “Radiation force in the magneto-optical trap,” J. Opt. Soc. Am. B 9, 2142 (1992). [5 ] K. Lindquist, M. Stephens, and C. Wieman, “Experimental and theoretical study of the vapor-cell Zeeman optical trap,” Phys. Rev. A. 46, 4082(1992). [6 ] Wolfgang Petrich, Michael H, Anderson, Jason R. Ensher, and Eric A. Cornell, “Behavior of atoms in a compressed magneto-optical trap,” J. Opt. Soc. Am. B 11, 1332 (1994). [7 ] C. G. Townsend, N. H. Edwards, C. J. Cooper, K. P. Zetie, C. J. Foot, A. M. Steane, P. Szriftgiser, H. Perrin, and J. Dalibard, “Phase-space density in the magneto-optical trap,”Phys. Rev. A 52, 1423 (1995). [8 ] Ying-Cheng Chen, Yean-An Liao, Long Hsu, and Ite A. Yu, “Simple technique for directly and accurately measuring the number of atoms in a magneto-optical trap,” Phys. Rev. A 64, 031401 (2001).id NH0925198045 sid 903343 cfn 0 / id NH0925198046 auc 楊致芸 tic 外腔半導體雷射的光學鎖相 adc 余怡德 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 英文 pg 78 kwc 鎖相迴路 kwc 外腔雷射 abc 本論文是利用光學鎖相迴路來進行兩台外腔雷射的光學鎖相研究. tc Acknowledgment Chapter 1 Introduction 1 Chapter 2 Fundamentals of the optical phase locked loop 3 2.1 Fundamentals of the OPLL 3 2.1.1 The basics of the HOPLL 3 2.1.2 The analog phase detector 5 2.1.3 A loop gain 6 2.1.4 Capture range and lock range 7 2.2 Important factors in the OPLL 8 Chapter 3 Experiment (1) 10 3.1 Experiment 10 3.1.1 Experimental set-up 10 3.1.2 The fastest compensation-circuit 11 3.1.3 The middle compensation-circuit 12 3.1.4 The slowest compensation-circuit 12 3.1.5 Parameters of my system 17 3.2 Operative steps 18 3.2.1 Operative steps 18 3.2.2 Summary 21 3.3 Results for phase-locked states 22 3.3.1 Experimental parameters 22 3.3.2 Phase-locked states in power scale 24 3.3.3 Phase-locked states in linear scale 25 3.3.4 Discussion 26 3.4 Results for using an integrator 26 3.4.1 Results and parameters 26 3.4.2 Discussion and summary 27 3.5 Summary 27 Chapter 4 Further discussions of experiment (1) 28 4.1 Capture range 28 4.1.1 The bandwidth of the fastest compensation-circuit 28 4.1.2 The resistor of the low pass filter of the middle compensation-circuit 31 4.1.3 Powers of the input signals 33 4.1.4 Offset frequency 35 4.1.5 Summary 37 4.2 Integrator 38 4.2.1 Time constant 39 4.2.2 Discussion and summary 39 4.3 Phase detector 40 4.3.1 Capture range 40 4.3.2 Impedance match 43 Chapter 5 Experiment (2) 46 5.1 Experimental set up 46 5.2 Results 48 5.3 Parameters 50 5.4 Discussion 50 5.5 Summary 51 Chapter 6 Conclusion 52 References 53 List of figures 55 List of abbreviations 56 Appendices A. External cavity laser 57 A.1 Grating-stabilized diode laser 57 A.2 Laser diode 58 A.3 Diffraction grating 61 A.4 External cavity laser 64 A.4.1 Structure 65 A.4.2 The steps for assembling 69 A.4.3 The steps for adjusting the wavelength of the ECL 70 A.5 Conclusion 73 B. Behaviors of the input signals 74 B.1 Behaviors of the beat signal in unlock states 74 B.2 Behaviors of the reference signal 76 B.3. Parameters 78rf References [1 ] L.Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic W. Konig and T.W. Hansch, “A compact grating-stablized diode laser system for atomic physics,” Optics Communications 117 (1995) 541-549. [2 ] G. Santarelli, A. Clairon, S.N. Lea and G.M. Tino, “Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz,” Optics Communications 104 (1994) 339-344. [3 ] Zhencan Frank Fan, Peter J.S. Hein and Mario Dagenais, “High coherent RF signal generation by heterodyne optical phase locking of external cavity semiconductor lasers,” IEEE Photonics technology letters 10(5) (1998) 719-721. [4 ] Zhencan Frank Fan and Mario Dagenais, “Optical generation of a mHz-linewidth microwave signal using semiconductor lasers and a discriminator-aided phase-locked loop,” IEEE Transactions on microwave and techniques 45(8) (1997) 1296-1300. [5 ] R.C. Steele,” Optical phase-locked loop using semiconductor laser diodes,” Electronics letters 19(2) (1983) 69-70. [6 ] R.T. Ramos and A.J. Seeds, “Fast heterodyne optical phase-lock loop using double quantum well laser diodes,” Electronics letters 28(1) (1992) 82-83. [7 ] Roland E. Best, Best Phase-Locked Loop: theory, design, and applications, McGraw-Hill (1984) [8 ] Hecht, Optics, third edition, Addison Wesley. [9 ] Horowitz and hill, The art of electronics, second edition, Cambridge. [10 ] Bob Azmoun and Susan Metz: Recipe for locking an external cavity diode laser from the group up. [11 ] M.C.R. Hoogeveen: Stabilizing a diode laser to an external reference- development of the electronic locking circuit. [12 ] 施宙聰 , 陳皙墩 “穩頻半導體雷射”,科學新知第十四卷第五期,民國82年.id NH0925198046 sid 913339 cfn 0 / id NH0925198047 auc 簡蕙君 tic 蒸發式冷卻銣87原子至次微凱氏度 adc 余怡德 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 29 kwc 玻色-愛因斯坦凝結 abc 這次實驗架設的磁陷阱是採用和1995年E. A. Cornell第一次以單一磁光陷阱(single MOT)達到87Rb BEC的架設類似,以單一磁光陷阱達成BEC的條件非常嚴苛,一個時序沒配好很可能就無法達到想要的目標。最後我們可以穩定的取到200~300nK的原子影像,相空間密度~10-3。雖然我們實驗最後沒達成BEC,但這是我們第一次使用Quadrapole-TOP這種形式的磁陷阱,這其中也學到不少經驗,也知道這套實驗架設的極限和穩定度,都可作為日後實驗架設的改良參考。 tc 動機…………………………………………………………………………………..i 摘要………………………………………………………………………………….ii 目錄 …………………………………………………………………………………iii 第一章 實驗差異說明…………………………………………………………….1 第二章 理論與原理 ……………………………………………………………….2 2-1 磁陷阱-TOP………………………………………………………… …….2 2-2 死亡圓圈(death circle)…………………………………………………… 3 2-3 三維簡諧位能 …………………………………………………………….3 2-3-1 N、no和T關係式 ……………………………………………….3 2-3-2 等位能面(Tcut)下原子數比例 ……………………………………..3 2-3-3 每個原子平均動能、平均位能 …………………………………..4 2-3-4 絶熱壓縮時,T和K關係 ………………………………………..5 2-3-5 相空間密度(ρ=noλ3dB)以N、T、K形式表示 ……………………5 2-3-6 實驗狀況假設 ……………………………………………………..6 2-4 絶熱壓縮參數比例關係 ………………………………………………….7 2-5 陷阱深度和RF關係 ……………………………………………………8 2-6 磁陷阱下原子團大小e-1高半寬擬合公式 .……………………………..9 2-7 TOF擬合公式 ……………………………………………………………..9 第三章 實驗架設 ………………………………………………………………10 3-1 外腔雷射(ECDL)區 …………………………………………………..10 3-2 雷射區 ………………………………………………………………10 3-3 MOT區架設 …………………………………………………………..13 3-4 成像系統 ……………………………………………………………13 第四章 實驗數據分析 …………………………………………………………...14 4-1 絶熱壓縮(adiabatic compression) …………………………………….14 4-2 由TOP做蒸發式降溫 ……………………………………………….15 4-2-1 RF 決定TOP磁場值 …………………………………………16 4-3 由RF做蒸發式降溫 …………………………………………………17 第五章 總結與討論 ……………………………………………………………23 附錄A:RF Switch線路 ………………………………………………………….24 附錄B:公式整理 ………………………………………………………………..26 附錄C:蒸發式降溫時原子數和溫度power-law關係 …………………………28 備註 ………………………………………………………………………………..29 參考資料 …………………………………………………………………………..29rf [1 ] W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, “Stable,Tightly Confining Magnetic Trap for Evaporative Cooling of Neutral Atoms”, Phys. Rev. Lett., 74,3352 (1995) [2 ] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, ”Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor”, Science, 269, 198 (1995) [3 ] W. Kettle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, “High Densities of Cold Atoms in a Dark Spontaneous-Force Optical Trap”, Phys. Rev. Lett., 70,2253 (1993) [4 ] Dalibard and Cohen-Tannoudji,1989;Ungar et al.,1985 [5 ]單單用TOP做蒸發式降溫會比較沒效率。B. P. Anderson, and M.A. Kasevich ”Spatial Observation of Bose-Einstein Condesation of 87Rb in a confining potential”, Phys. Rev. A,59, R938(1999) [6 ]H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell ”Simplified System for Creating a Bose-Einstein Condensation”(private publication)id NH0925198047 sid 913315 cfn 0 / id NH0925198048 auc 李弘貿 tic 高銦含量氮化銦鎵(InGaN)混晶系統之結構及光譜研究 adc 果尚志 博士 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 62 kwc 分子束磊晶成長系統 kwc 氮化銦鎵 kwc 光致激發螢光光譜 kwc 拉曼光譜 abc 本論文藉由三塊不同成長條件的氮化銦鎵樣品,以X-ray繞射、光制激發光譜與拉曼光譜等後續測量工具來分析樣品濃度並研究其樣品性質。結合三種量測工具,可以了解氮化銦鎵發光波段隨濃度變化的關係。 tc 目錄 第一章 背景簡介 1 第二章 三族氮化物薄膜的研究背景 4 2.1三族氮化物的基本介紹 4 2.2晶體結構 5 2.3基版的選擇 8 第三章 薄膜檢測方法 11 3.1 X-Ray繞射分析( X-Ray Diffraction ) 11 3.1.1 X-ray繞射分析原理 11 3.1.2 X-ray繞射實驗 12 3.2光致激發螢光光譜( Photoluminescence Spectrum ) 14 3.2.1螢光光譜原理 14 3.2.2 半導體的能隙變化以及活化能 20 3.3拉曼光譜( Raman Spectrum 22 3.3.1 拉曼散射之古典理論 ( Classic theory of Raman scattering ) 22 3.3.2 拉曼散射之量子理論簡介 (Introduction to Quantum Mechanical theory of Raman scattering ) 25 第四章 氮化銦鎵三元混晶薄膜的實驗結果及分析 29 4.1 X-Ray繞射分析 29 4.2光致激發螢光光譜分析 35 4.2.1室溫光致激發螢光光譜 35 4.2.2變溫激發螢光光譜分析 39 4.3拉曼光譜分析 48 4.3.1自由載子濃度分析 48 4.3.2氮化銦鎵峰值分析 52 4.4氮化銦鎵三元混晶薄膜濃度與能隙關係 53 4.4.1光致激發光譜與濃度的關係 53 4.4.2拉曼光譜與濃度的關係 56 第五章 總結 (Conclusion ) 59 文獻 ( Reference ) 60rf Reference [2.1 ] Porowski, S., Mater. Sci. Eng. B 44 , 407 (1997). [2.2 ]紊振瀛。GaN雷射二極體之技術。物理雙月刊,20(2) (1998)。 [2.3 ] Bernard Gil, Group Ⅲ Nitride Semiconductor Compounds, p99. [3.1 ]張石麟。材料分析,汪建民主編:中國材料科學學會 (1998)。 [3.2 ]許樹恩、吳泰伯。X光繞射原理與材料結構分析(修訂版):中國材料科學學會 (1993)。 [3.3 ] B. D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1967). [3.4 ] M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, G. Semond, J. Massies, and P. Gibart, J. Appl. Phys. 86 3721 (1999). [3.5 ]李匡邦、許東明、何東英。光譜化學分析:國立編譯館主編 (1997)。 [3.6 ] Surface Analysis-the principle techniques, edited by J. C. Vickerman (John Wiley, New York, 1997). [3.7 ] A. Pinczuk and E. Burstein, in Light Scattering in Solids, edited by M. Cardona (Springer, Berlin, 1984), p.23. [3.8 ]H. A. Kramers, W. Heisenbers, Z. Phys. Vol. 31, 681, 1925. [3.9 ] 許靜宜,拉曼散射有關的理論研究,碩士論文,NTHU PHYS (1987)。 [4.1 ] a=3.533 c=5.693 c/a=1.6114, A. Zubrulov, in Properties of advanced semiconductor materials: GaN, AIN, InN, BN, SiC, SiGe, edited by M. E. Levinshtein, S. L. Rumyantsev and M. S. Shur (John Wiley, 2001), p.50. [4.2 ] a=3.5446 c=5.7034 c/a=1.6090, F. A. Ponce, in Group III nitride semiconductor compounds: Physics and Applications, edited by B. Gil (Clarendon, Oxford, 1998), p.127. [4.3 ] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matushita, T. Mukal, MRS Internet J. Nitride Semicond. Res. 4S1, G1.1 (1999). [4.4 ] Varshni Y P, Physica 34, 149 (1967). [4.5 ] M. O. Manasreh, Phys. Rev. B. 53, 16 425 (1996). [4.6 ] Y.-H Cho, G. H. Gainer, A, J. Fischer, H. H. Song, S. Keller, U. K. Mishra, and S. P. DenBaars. Appl. Phys. Lett. 73, 1370 (1998). [4.7 ] P. G. Eliseev, Piotr Perlin, Jinhyun Lee, and Marek Osiski. Appl. Phys. Lett. 71, 569 (1997). [4.8 ] H. P. D. Schenk, M. Leroux, and P. de Mierry J. Appl. Phys. 88 1525 (2000). [4.9 ] E. Monroy, N. Gogneau, F. Enjalbert, F. Fossard, D. Jalabert, E. Bellet-Amalric, Le Si Dang, and B. Daudin, J. Appl. Phys. 94 3121 (2003). [4.10 ] T. L. Tansley and C. P. Foley, J. Appl. Phys. 59 3241 (1986). [4.11 ] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, Hai Lu, and William J. Schaff, J. Appl. Phys. 94,4457 (2003). [4.12 ] Daniel Fritsch, Heidemarie Schmidt, and Marius Grundmann PHYS. REV. B 69, 165204 (2004). [4.13 ] V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, Phys. Stat. Solidi (b) 230 (2002b), R4 [4.14 ] K. L. Teo, J. S. Colton, P. Y. Yu, E. R. Weber, M. F. Li, W. Liu, K. Uchida, H. Tokunaga, N. Akutsu, and K. Matsumoto, J. Appl. Phys. 73 1697 (1998). [4.15 ] Yong-Tae Moon, Dong-Joon Kim, Jin-Sub Park, Jeong-Tak Oh, Ji-Myon Lee,Young-Woo Ok, Hyunsoo Kim, and Seong-Ju Park, Appl. Phys. Lett. 79, 599 (2001). [4.16 ] K. P. O’Donnell, J. F. W. Mosselmans, R. W. Martin, S. Pereira, M. E. White, J. Phys. Condens. Matt. 13, 6977 (2001). [4.17 ] A. F. Wright, J. Appl. Phys. 82 2833 (1997). [4.18 ] M. Cardona, in Light Scattering in Solids, edited by M. Cardona (Springer, Berlin, 1984). [4.19 ] 王志純,氮化鎵材料薄膜之光致激發螢光光譜及拉曼光譜之研究,碩士論文,NTHU PHYS (2003)。 [4.20 ] T. Kozawa, T. Kachi, H. Kano, Y. Taga, M. Hashimoto, N. Koide, K. Manbe, J. Appl. Phys. 75 1098 (1994). [4.21 ] A. Kasic, M. Schubert, Y. Saito, Y. Nanishi, and G. Wagner, Phys. Rev. B 65, 115206 (2002). [4.22 ] J. Menendez and M. Cardona, Phys. Rev. B 31, 3696 (1985). [4.23 ] V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, A. N. Smirnov, I. N. Goncharuk, A. V. Sakharov, D. A. Kurdyukov, M. V. Baidakova, V. A. Vekshin, S. V. Ivanov, J. Aderhold, J. Graul, A. Hashimoto, A. Yamamoto, Phys. Stat. Solidi (b) 240 425 (2003). [4.24 ] H. Grille, Ch. Schnittler, and F. Bechstedt, Phys. Rev. B 61, 6091 (2000). [4.25 ] Correia MR, Pereira S, Pereira E, Frandon J, Alves E, Appl. Phys. Lett. 83, 4761 (2003). [4.26 ] V. Yu. Davydov, I. N. Goncharuk, A. N. Smirnov, A. E. Nikolaev, W. V. Lundin, A. S. Usikov, A. A. Klochikhin, J. Aderhold, J. Graul, O. Semchinova, and H. Harima, Phys. Rev. B 65, 125203 (2002). [4.27 ]K. L. Teo, J. S. Colton, P. Y. Yu, E. R. Weber, M. F. Li, W. Liu, K. Uchida, H. Tokunaga, N. Akustsu, and Matsumoto, Appl. Phys. Lett. 71, 569 (1997). [4.28 ] K. Obata, M. Yamanishi, Y. Kan, J. Hayashi, and I. Suemune, Appl. Phys. Lett. 57. 419 (1990). [4.29 ] Y. Narukawa, Y. Kawakami, S. Fujita, and S. Fujita, Phys. Rev. B 55,R1938 (1997).id NH0925198048 sid 913324 cfn 0 / id NH0925198049 auc 徐毓倫 tic 以二氧化碳分子光譜檢驗量子力學對稱假說 adc 施宙聰 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 56 kwc 對稱假說 kwc 差頻 kwc 週期平均法 kwc 準相位匹配 abc 對於量子力學而言,對稱假說(symmetrization postulate)為描述有多個等同粒子(identical particles)的系統時最基本的準則。而這些等同粒子的行為也必須遵守由對稱假說所衍生出來的統計規則,如費米-狄拉克統計(Fermi-Dirac statistics)與玻色-愛因斯坦統計(Bose-Einstein statistics)。然而在廣義場論(generalized field theory)的研究裡,卻發現系統有違反對稱假說的可能性。到目前為止,不僅違反對稱假說的理論尚未建立完備,同時,違反對稱假說的可能性也沒有實驗上的證明。 tc 目 錄 摘 要 i Abstract ii 誌 謝 iii 目 錄 iv 圖 目 錄 vi 表 目 錄 vii 第一章 導論 1 第一節 研究回顧 1 第二節 中紅外差頻雷射光源 3 第三節 論文簡介 4 第二章 對稱假說 5 第一節 理論背景 5 第二節 實驗證明 6 第三節 二氧化碳分子能階計算 8 第三章 中紅外可調差頻雷射光源 10 第一節 原理 10 第二節 中紅外可調差頻雷射 15 第三節 鈦藍寶石雷射的穩頻 22 第四章 二氧化碳分子光譜 29 第一節 分子吸收光譜 29 第二節 實驗裝置 30 第三節 multi-pass cell 33 第四節 週期平均法 37 第五節 實驗結果 42 第五章 結論與未來展望 48 附錄Ⅰ 51 附錄Ⅱ 52 附錄Ⅲ 54 參考文獻 55 圖 目 錄 圖 三 1 (a) Phase matching (b) Quasi-phase matching (c) Non-phase matching 14 圖 三 2 Verdi 10雷射的構造圖 17 圖 三 3 鈦藍寶石雷射的構造圖 18 圖 三 4 摻銣釔鋁石榴石雷射的構造圖 19 圖 三 5 PPLN晶體 20 圖 三 6 PPLN晶體的溫控裝置 21 圖 三 7 FM spectroscopy in frequency domain 23 圖 三 8 S1、S2與S3隨 R的變化 24 圖 三 9 FM spectroscopy實驗裝置 26 圖 三-10 FM飽和吸收訊號 27 圖 三 11 FM鎖頻的error signal 28 圖 四 1 二氧化碳分子光譜實驗裝置 32 圖 四 2 New Focus 5612 multi-pass cell 34 圖 四 3 往返90趟的鏡面樣式 35 圖 四-4 往返182趟的鏡面樣式 36 圖 四 5 伴隨multi-pass cell而來的干涉條紋 37 圖 四 6 週期平均法 38 圖 四 7 被干涉條紋所蓋住的訊號 40 圖 四 8 Nd:YAG雷射的頻率飄移量 42 圖 四 9 二氧化碳0221-0220 R(80)在氣壓為4.05 torr的吸收圖 44 圖 四 10 半高全寬隨氣壓的變化 44 圖 四 11 吸收係數隨氣壓的變化 45 圖 四 12 利用週期平均法消除干涉條紋後的訊號 46 圖 四 13 688張數據圖的平均結果 47 表 目 錄 表 二 1 二氧化碳0001-0000吸收帶的分子常數 8 表 四 1 New Focus 5612 multi-pass cell規格表 34 表 五 1 本論文與Mazzotti等人的實驗之比較 48rf [1 ] H.S. Green, Phys. Rev. 90, 270 (1953) [2 ] D. Mazzotti, P. Cancio, G. Giusfredi, M. Inguscio, and P. De Natale, Phys. Rev. Lett. 86, 1919 (2001) [3 ] K. Deilamian, J. D. Gillaspy, and D. E. Kelleher, Phys. Rev. Lett. 74, 4787 (1995) [4 ] A. Yu. Ignatiev, G. C. Joshi, and M. Matsuda, Mod. Phys. Lett. 11, 871 (1996) [5 ] L. Gianfrani, R. W. Fox, and L. Hollberg, J. Opt. Soc. Am. B 16, 2247 (1999) [6 ] G. Modugno, M. Inguscio, and G. M. Tino, Phys. Rev. Lett. 81, 4790 (1998) [7 ] G. M. Tino, Fortschr. Phys. 48, 537 (2000) [8 ] G. Modugno and M. Modugno, Phys. Rev. A 62, 022115 (1998) [9 ] M. de Angelis, G. Gagliardi, L. Gianfrani, and G. M. Tino, Phys. Rev. Lett. 76, 2840 (1996) [10 ] H. Naus, A. de Lange, and W. Ubachs, Phys. Rev. A 56, 4755 (1997) [11 ] G. M. Tino, Physica Scripta. T95, 62-67 (2001) [12 ] D. Bailly, J. Mol. Spectros. 166, 383 (1994) [13 ] Harvard-Smithsonian Center for Astrophysics, The Hitran Database, http://www.hitran.com [14 ] F. Cornelia, and M. W. Sigrist, Topics Appl. Phys. 89, 97 (2003) [15 ] J. A. Kozlovsky et al., Phys. Rev. 127, 1918 (1962) [16 ] S. Borri, P. Cancio, P. De Natale, G. Giusfredi, D. Mazzotti, and F. Tamassia, Appl. Phys. B 76(4), 473 (2003) [17 ] W. R. Bennt, Phys. Rev. 126, 580 (1962) [18 ] B. J. Bjorklund, Opt. Lett. 5, 15 (1980) [19 ] G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, Appl. Phys. B 32, 145 (1983) [20 ] J. L. Hall and L. Hollberg, Appl. Phys. Lett. 39, 680 (1981) [21 ] Y. Gürsel, Proc. SPIE Conference on Spaceborne Interferometry, 1947 (1993) [22 ] Y. Gürsel, Proc. SPIE Conference on Amplitude and Intensity Spatial Interferometry Ⅱ, 2200 (1994) [23 ] 林雁容,《中紅外可調差頻雷射光源與高精密氫化氦分子離子光譜》,清華大學博士論文 (2003) [24 ] 黃衍介,《非線性光學》,講義 (2004)id NH0925198049 sid 913313 cfn 0 / id NH0925198050 auc 陳建旭 tic 離子溝道效應應用在材料結構之研究 adc 吳秀錦 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 80 kwc 離子溝道效應 kwc 砷化銦量子點 kwc 鈮酸鋰 abc 砷化銦量子點是利用砷化銦與砷化鎵的晶格常數差以分子束磊晶( MBE )生長出自行組成量子點,以此法生長的量子點其內部與周圍會存有應力,其應力的分佈與大小會影響量子點的光電特性及品質。本論文係利用離子溝道效應量測量子點樣品砷化銦量子點的晶格結構,並同時量測量子點樣品基板(砷化鎵晶圓)與量子點上覆蓋層的晶格結構,發現三者的對稱軸不互相重疊,推測為應力所造成;並藉由量測對稱軸偏移的量做為估計應力方法。 tc 目錄 第一章 簡介 1 第二章 原理 3 2.1 3 2.2拉賽福回向散射分析原理 3 2.2.1 RBS 簡介 3 2.2.2 RBS 小結 8 2.3 溝道效應原理 9 2.3.1 溝道效應簡介 9 2.3.2 連續模型 9 2.3.3 橫向能量 11 2.3.4 臨界角 12 2.3.5 最小產額 15 2.3.6 Dip 曲線 16 2.3.7 溝道效應小結 17 第三章 實驗與方法 18 3.1 實驗儀器 18 3.1.1 NEC 9SDH-2 加速器 19 3.2 溝道效應系統 22 3.2.1 溝道效應系統說明 22 3.3 實驗方法 25 3.3.1 離子源 25 3.3.2 RBS 能譜 25 3.3.3 Dip 曲線 27 3.3.4 實驗流程圖 30 第四章 銦化砷量子點 31 4.1 量子點簡介 31 4.2試片 33 4.2.1 量子點的基本構造 33 4.2.2 砷化鎵、砷化銦晶體 35 4.2.3 試片來源 36 4.3 實驗條件與結果 41 4.3.1 實驗條件 41 4.3.2 實驗結果 41 4.4 結果討論 57 第五章 鐵電材料 鈮酸鋰 62 5.1 鐵電陶瓷材料簡介 62 5.1.1鈮酸鋰簡介 63 5.2試片 65 5.2.1 試片來源 65 5.2.3試片準備 66 5.3 實驗方法與結果 67 5.3.1 實驗條件 67 5.3.2 實驗結果 67 5.4 結果討論 71 第六章 總結 72 6.1 砷化銦量子點 72 6.2 鐵電陶磁材料 — 鈮酸鋰 73 6.3 結語 74 Reference 75 Index 77 圖目錄 圖 2.1 彈性碰撞示意圖。 4 圖 2.2 散射截面示意圖。 6 圖 2.3 阻止本領 7 圖 2.4 連續位能與原子位能比較圖。 9 圖 2.5 連續位能比較圖。 10 圖 2.6 入射粒子在溝道中的縱向與橫向動量;。 12 圖 2.7 最小產額。離子垂直於紙面射入。 15 圖 2.8 dip 曲線。 16 圖 3.1 9SDH-2 加速器配置圖。 18 圖 3.2 SINCS-II 原理示意圖。 19 圖 3.3 正高壓產生系統組態。 20 圖 3.4 溝道效應射束線簡圖。 22 圖 3.5 溝道效應系統狹縫與發散角關係圖。 23 圖 3.6 實驗電子方塊圖 26 圖 3.7 Stereographic projection diagram. 28 圖 3.8 Yamamoto 公式定位步驟。 29 圖 3.9 實驗流程圖。 30 圖 4.1 InAs 量子點TEM圖。 34 圖 4.2 InAs 量子點示意圖。 34 圖 4.3 試片 的GaAs晶圓。 36 圖 4.4 試片 LM4215 示意圖。 37 圖 4.5 試片 LM4215 示意圖。 38 圖 4.6 試片 N-A4021 示意圖。 39 圖 4.7 試片 A4021 示意圖。 40 圖 4.8 試片 GaAS 晶圓的 RBS 能譜圖。。 42 圖 4.9 試片 GaAs 晶圓在(001)方向的 dip 曲線。 43 圖 4.10 試片 GaAs 晶圓在(001)方向的 dip 曲線。 43 圖 4.11 試片 LM4215 的 RBS能譜圖。 44 圖 4.12 試片 LM4215 In 部分的 RBS能譜圖。 45 圖 4.13 試片 LM4215 在(001)方向的 dip 曲線。 46 圖 4.14 試片 LM4215 在(001)方向的 dip 曲線。 46 圖 4.15 試片 LM4215 在與(001)夾43度正負5度方向的 dip 曲線。 47 圖 4.16 試片 LM4215 在與(001)夾43度正負5度方向的 dip 曲線。 48 圖 4.17 試片 LM4215 在與(001)夾43度正負5度方向的 dip 曲線。 48 圖 4.18 試片 LM4215 在與(001)夾43度正負5度方向的 dip 曲線。 49 圖 4.19 試片 LM4217 的 RBS 能譜圖。 Channel 為對準晶軸的能譜。 50 圖 4.20 試片LM4217, In 部分的 RBS能譜圖。 50 圖 4.21 試片 LM4217 在(001)方向上的 dip 曲線。 52 圖 4.22 試片 LM4217 在與(001)夾負38度到負25度方向的 dip 曲線。 52 圖 4.23 試片 N-A4021 在(001)方向上的 dip 曲線。 53 圖 4.24 試片 N-A4021 在與(001)夾負40度到30度方向的 dip 曲線。 54 圖 4.25 試片 A4021 在(001)方向上的 dip 曲線。 55 圖 4.26 試片 N-A4021 在與(001)夾負40度到負34度方向的 dip 曲線。 56 圖 4.27 樣品晶格模型。 60 圖 4.28 樣品晶格模型。 60 圖 4.29 樣品晶格模型。 61 圖 4.30 LM4215樣品晶格模型俯視示意圖。 61 圖 5.1 鐵電材料電滯曲線圖。 63 圖 5.2 點群 3m stereographic 投影圖。 64 圖 5.3 以1.69 MeV 的氫離子作為入射粒子得到的 780 nm LN RBS 能譜。 68 圖 5.4 入射粒子為4.1 MeV C2+ 在780 nm 的 LN 以不同電壓下所量測到的 dip 曲線。 69 圖 5.5 780 nm 的 LN 重覆量測去除電場後的 dip 曲線。 69 圖 5.6 以1.69 MeV 的氫離子作為入射粒子得到的 LZ RBS 能譜。 70 圖 5.7 入射粒子為1.69 MeV H+ 在不同電壓下所量測到LZ 的 dip 曲線。 70 表目錄 表格 4.1 原子序、質量與其共價半徑。 35 表格 4.2 晶體結構及物理特性。 35rf Reference [R2-1 ] W.K. Chu , J.W. Mayer , M-A. Nicolet , Backscattering spectrometry, Academic press, Inc., 1978. [R2-2 ] 吳秀錦,拉賽福回向散射分析及其應用,科儀新知第十七卷三期84.12. [R2-3 ] J. B. Marion, and F. C. Young, “Nuclear Reaction Analysis, Graphs and Tables,” 1968 Wiley, New York [R2-4 ] L. C. Feldman, J. W. Mayer, and S. T. Picraux, “Materials analysis by ion channeling,” 1982., Ch. 5, Academic Press, New York. [R2-5 ] D.S. Gemmell, Rev. Mod. Phys. V46 129 1974 [R2-6 ] J. Lindhard Mat. Fys. Medd. Dan. Vid. Selsk. 34 (14),1 1965 [R2-7 ] A. Messiah “Quantum Mechanics,” J. Wiley, New York 1962 [R3-1 ] HIGH VOLTAGE Inc. [R3-2 ] National Electronic Company. [R3-4 ] Computer program, National Instrument Inc. [R3-5 ] Y. Yamamoto, Automatic beam alignment for channeling measurements in Rutherford backscattering spectrometry. Nucl. Instr. and Meth. 190(1981)171-176. [4-1 ] L.G. Wang, P. Krater, N. Moll, and M. Scheffler, Phys. Rev. B 62, 1897(2000) [4-2 ] Q.K.K Liu, N. Moll, M. Scheffler, and E Pehlke, Phys. Rev. B 60, 17008(1999) [4-3 ] A-L. Barabasi Mat. Sci. & Eng. B-Solid State Materials for Advanced Technology B 67, 23(1999) [4-4 ] C. Kittel, Introduction to Solid State Physics, Chapter 6 [4-5 ] W.R. Allen and W.K. Chu, Phys. Rev. B 39, 3954(1989) [4-6 ] C.K. Pan, D.C. Zheng, T.G. Finstad, and W.K. Chu, Phys. Rev. B 31, 1270(1985) [R5-1 ] M. K. Durbin, E. W. Jacobs, and J. C. Hicks, S.-E. Park, App. Phys. Lett. 74 Issue 19 2848(1999) [R5-2 ] W.H. Zachariasen, Skr, Norske Vid-Ada, Oslo, Mat. Naturv. No. 4 (1928) [R5-3 ] B.T. Matthias and J.P. Remeika, “Ferroelecricity in the illmenite structure”, Phys. Rev. 76 1886 (1949) [R5-4 ] A.A.Ballman, “Growth of piezoelectric and ferroelectric materials by the Czochralski technique”, J. American Ceram. Soc. 48 (1965) [R5-5 ] H.D. Megaw, “A note on the structure of lithium niobate”, Acta. Cryst. A24 583 (1968) [R5-6 ] A.M Prokhorov, Yu S. Kuz’minov, “Physics and Chemistry of Crystalline Lithium Niobate” Adam Hilger, Bristol and New York 1990 ISBN 0-85274-002-6 [R5-7 ] G. D. Miller , Poster presentation at the centor for Nonlinear Optical Materials Annual Review, August, 1994 [R5-8 ] G. G. Bentini, M. Bianconi, M. Charini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M.Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3:Planar optical waveguide formation and characterization”,J. App. Phys. 92 6477 (2002)id NH0925198050 sid 913323 cfn 0 / id NH0925198051 auc 呂寧遠 tic Fe,Co,Ni及Ni-Fe合金單原子層系統的電子結構,磁性與磁晶異向能 adc 鄭弘泰 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 96 kwc 磁晶異向能 kwc 密度泛函理論 kwc 第一原理計算 abc 摘要: tc 緒論.....3 第一部份:計算的物理原理 A 固體模型 B 定義問題 C 單電子近似與Hartree近似 D Hartree近似和變分原理 E 全同費米子與hartree-Fock近似 F X 近似 G 泛函微分 H DFT與K-S方程式 I 固體結構 J 固體的磁性 第二部分:計算的流程與方法.....17 A 計算的流程 B 計算的方法 第三部分:計算的物理系統與參數設定.....20 A 計算的物理系統 B 參數設定 第四部分:計算結果與討論.....26 A Fe-ML系統 B 單層Fe-ML加Cu基板 C Co-ML系統 D 單層Co-ML加Cu基板 E Ni-ML系統 F 單層Ni-ML加Cu基板 G Ni Fe -ML H Ni Fe -ML系統 I Ni Fe -ML系統 J 結論 第五部分:參考文獻與數據圖表.....56 A 參考文獻 B 數據圖表: 數據5-1:fcc-bulk-Fe,Co,Ni的數據 表5-1:1到5層不加LS耦合的Fe-ML系統的電荷量 表5-2:1到5層不加LS耦合的Fe-ML系統的自旋磁矩 表5-3:1層Fe-ML系統加入LS耦合選不同S軸的數據 表5-4:1到8層不加LS耦合的Co-ML系統的電荷量 表5-5:1到8層不加LS耦合的Co-ML系統的自旋磁矩 表5-6:1到8層不加LS耦合的Ni-ML系統的電荷量 表5-7:1到8層不加LS耦合的Ni-ML系統的自旋磁矩 圖5-1:Fe,Co,Ni及Cu fcc-bulk的d-PDOS圖 圖5-2:1到8層Fe-ML及加入Cu基板系統的d-PDOS圖 圖5-3:1到8層Co-ML及加入Cu基板系統的d-PDOS圖 圖5-4:1到8層Ni-ML及加入Cu基板系統的d-PDOS圖 圖5-5:1ML不同比例Ni-Fe合金的d-PDOS作圖rf 1. Quantum Physics,S. Gasiorowicz ,2ed(Wiley) 2. Solid State Physics,Ashcroft & Mermin(Brooks/Cole) 3. Local Density Theory of Polarizability,G. Mahan & K. R. Subbaswamy(Plenum Press) 4. Electronic Density Functional Theory (recent progress and new directions),John F.Dobson,G. Vignale & M. P. Das(Plenum Press) 5. Lecture Notes in Physics 187 –Density Functional Theory,J.Keller & J. L. Gazquez(Springer-Verlag) 6. Introduction to Solid State Physics,6ed,Kittel(Wiley) 7. VASP the Guide,Georg Kresse et. al.(http://cms.mpi.univie.ac.at/VASP/) 8. G. Kresse,J. Furthmuller,Phys. Rev. B54,11169(1996) 9. M. C. Payne et. al.,Rev. of Modern Physics,Vol. 64,No.4(Oct.1992) 10. David Vanderbilt,Phys. Rev. B41,7892(1990) 11. Minn-Tsong Lin et.al.,Phys. Rev. B62,14268(2000) 12. A. Dittschar et. al.,Phys. Rev. B57,R3209(1998) 13. C. C. Kuo et. al.,J. Appl. Phys.,vol.91,No10,7185 14. R. Thamankar et.al.,PRB66,134414(2002) 15. J. G. Gay & Roy Richter,PRL,vol.56,No.25,2728 16. G. Y. Guo & H. H. Wang,Chi. J. Phys,vol.38,No.5,849(Oct,2000) 17. M. Kowalewski et.al.,PRB47,8748 18. F.Huang et.al. , PRB49 , 3962 , 1994 19. B. Schulz,K.Baberschke,PRB50,13467,1994 20. Principles of Quantum Mechanics,R.Shankar (Plenum Press) 21. G.Kresse,J.Hafner,PRB49,14251,1994 22. M. P. Teler et. al.,PRB40,12255,1989 23. T. A. Arias et.al,PRL69,1077,1992 24. N.D. Mermin,PR,137,A1441,1965id NH0925198051 sid 893311 cfn 0 / id NH0925198052 auc 何佳慧 tic 飛秒光頻梳的建立與測試 adc 施宙聰 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 52 kwc 飛秒光頻梳 kwc 光梳 kwc 絕對頻率量測 abc 在精密量測與現代科技應用中,例如物理常數的定義,原子與分子結構上的研究,光通訊系統,衛星通訊系統等等。絕對頻率的量測是非常重要的。過去,在可見光的頻率標準都是利用原子或分子的吸收譜線來定義,只限於某些特定頻率,無法涵蓋整個可見光範圍。藉由飛秒雷射和光子晶體光纖的發展,科學家已經可以建立涵蓋可見光到近紅外的光頻梳,可精密測量穩頻雷射的絕對頻率。 tc 第一章、導論.....1 1.1動機 1.2光頻計量回顧 1.3論文簡介 第二章、理論.....5 2.1、光梳的重複率frep(repetition rate)和頻差??(offset frequency) 2.1-1、SELF-REFERENCE 2.1-2、?n超連續光譜?v(supercontinuum?w) 2.2、鎖模雷射 2.2-1、SELF STARTING of KERR-LENS 2.2-2、飛秒雷射 2.2-3、非線性光學效應 第三章、實驗設計與結果.....17 3.1、實驗架構 3.1-1、雷射系統 3.1-2、脈衝的重複率frep(repetition rate) 3.2、頻差??(offset frequency) 3.2-1、超連續光譜?v(supercontinuum) 3.2-2、SELF-REFERENCE 3.2-3、如何去調整二道光的光程 3.3、鎖相迴路 3.3-1、聲光調制 (Acoustooptic modulation) 3.4、實驗結果與討論 3.5、如何利用飛秒光頻梳去做頻率的測量 3.5-1、碘分子在532nm吸收的絕對頻率量測 第四章、總結.....45 4.1、結語 4.2、未來工作 4.2、應用 參考文獻.....51rf [1 ] T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, Opt. Lett., vol. 24, 881, 1999. [2 ] T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, Phys. Rev. Lett., vol. 82, 3568, 1999. [3 ] J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, Opt. Lett., vol. 21, 1547, 1996. [4 ] N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, Opt. Lett., vol. 24, 1395, 1999. [5 ] J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett., vol. 25, 25, 2000 [6 ] Schnatz,H.,et al., Phys. Rev. Lett., vol. 76,18,1996. [7 ] H. R. Telle, D. Meschede and T. W. Hänsch, Opt. Lett., 15, 532, 1990. [8 ] J. N. Eckstein, A. I. Ferguson and T. W. Hänsch, Phys. Rev. Lett. 40, 847, 1978. [9 ] D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science vol. 288, 635, 2000. [10 ] S. T. Cundiff, J. Ye, and J. L. Hall, Rev. Sci. Instrum. Vol.72, No.10, 2001. [11 ] G. P. Agrawal, “Nonlinear fiber optics” third edition, Govind P. 2001. [12 ] . Rulliere, Claude,”Femtosecond laser pulses” Springer, 1998. [13 ] U. Keller, W.H Knose, G.W. Hooft, H. Roskos, T.R. Woodward, J.E. Cunningham, D.L. Sivco, and A.Y. Cho: Adv. Sol. State Lasers 10, 115, 1991. [14 ] J. N. Eckstein, A.I. Ferguson. and T. W. Hansch, Phys. Rev. Lett. 40,847 [15 ] J-C Diels and W. Rudolph “Ultrashort laser pulse phenomena “San Diego Academic Press, 1996. [16 ] R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, Opt. Lett. 19, 201, 1994. [17 ] B.E.A. Saleh and M.C. Teich, ”Fundamental of Photonics” John Wiley & Sons [18 ] J. K. Ranka, Opt. Lett. Vol.25, No.1, 2000 [19 ] Th.Udem et al., Phys. Rev. Lett. 86, 4996, 2001 [20 ] J. Stenger, C. Tamm, N. Haverkamp, S. Weyers, and H. R. Telle, Opt. Lett. 26, 1589, 2001. [21 ] J. von Zanthier et al., Opt. Lett.. 25, 1729, 2000 [22 ] K. R. Vogel et al., Opt. Lett. 26, 102, 2001 [23 ] J. Stenger, T. Binnewies, G. Wilpers, F. Riehle, H. R. Telle, J. K. Ranka, R. S. Windeler, and A. J. Stentz, Phys. Rev. A 63, 021802, 2001 [24 ] L-S Ma, M. Zucco, S. Picard, C. Robertsson, and R. S. Windeler IEEE J. Sel. Top. Quant. Electron., Vol.9, 1066, 2003 [25 ] 張順雄、張忠誠、李榮乾譯”電子元件與電路理論(下)”。 [26 ] 丁勝懋”雷射工程導論”第四版。 [27 ] A. Arie, and R. L. Byer, J. Opt. soc. Am. B 10, 1990, 1993. [28 ] T. J. Quinn, ‘‘Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),’’ Metrologia 40, 103, (2003) [29 ] J. L. Hall and J. Ye, Opt. Photon. News, p. 45, Feb., 2001. [30 ] 林雁容,博士論文, 國立清華大學物理系 (2001) [31 ] 王信智,碩士論文, 國立清華大學物理系 (2003) [32 ] R. K. Shelton, L-S Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall and Jun Ye, Science, vol. 293, p.1286, 2001 [33 ] R. W. Schoenlein et al. , Science, vol. 274, p. 236, 1996 [34 ] R. W. Schoenlein et al. , J. Opt. Soc. Am. B17, 2086, 2000 [35 ] R. Ell et al., Opt. Lett. 26, 373, 2001 [36 ] See the websites of Crystal Fibre A/S (http://www.crystal-fibre.com/) and Blazephotonics, Inc (http://www.blazephotonics.com/)id NH0925198052 sid 913341 cfn 0 / id NH0925198053 auc 林峻立 tic YBa2Cu3O7-δ/Y0.7Ca0.3Ba2Cu3O7-δ 多層膜之傳輸性質 adc 齊正中 ty 博士 sc 國立清華大學 dp 物理學系 yr 92 lg 英文 pg 111 kwc 過摻雜 kwc 釔鋇銅氧 kwc 攙鈣釔鋇銅氧 kwc 多層膜 kwc 表面形態 kwc 霍爾效應 kwc 正負反轉 kwc 雙重正負反轉 kwc 傳輸性質 kwc 超導體 kwc 超導性 kwc 具超導性的 kwc 銅氧超導體 kwc 高溫超導體 kwc 高溫超導體 abc 我們製作了不同m, N的 [(YBa2Cu3O7-δ)m/(Y0.7Ca0.3Ba2Cu3O7-δ)m tc Table of Contents Abstract i Acknowledgements v Table of contents vi Chapter 1 Introduction 1 1-1 High-temperature superconductor 1 1-2 Ca-doped YBa2Cu3O7- 2 1-3 Artificial multilayers 3 1-4 Motivation 4 Chapter 2 Sample fabrication process 5 2-1 Pulse laser deposition system 5 2-2 Targets synthesis 6 2-3 Thin film deposition process 7 2-4 Pattern 8 Chapter 3 Effects of different deposition oxygen pressure on YBa2Cu3O7- and Y0.7Ca0.3Ba2Cu3O7- thin films 10 3-1 Features of pulse laser deposition 10 3-2 Effects of the oxygen pressure during deposition on the morphology 11 3-2-1 Surface morphology of YBa2Cu3O7- films deposited under different O2 pressure 13 3-2-2 Surface morphology of Y0.7Ca0.3Ba2Cu3O7- films deposited under different O2 pressure 23 3-3 The effects of oxygen pressure on R-T 37 3-4 The effects of oxygen pressure on the crystal structure 41 3-4-1 The X-ray θ-2θ measurement of epitaxial thin films 41 3-4-2 Structure variation due to deposition ambient 42 3-5 Discussion and summary 46 Chapter 4 Fundamental properties of YBa2Cu3O7-δ/Y0.7Ca0.3Ba2Cu3O7-δ multilayers 48 4-1 The YBa2Cu3O7- /Y0.7Ca0.3Ba2Cu3O7- multilayers structure 48 4-2 The effect of etching with C10H16N2O8 solution 50 4-3 Transport measurement 52 4-4 The current distribution in the layer structure 54 4-5 The resistive transition broadening 56 4-6 Derivation of Hc2(T) and other anisotropic parameters 59 4-7 Thermal activation energy 62 4-8 Summary 80 Chapter 5 Hall effect at normal and mixed state 82 5-1 Hall measurement 82 5-2 The Hall coefficient and charge carrier concentration 84 5-3 The temperature dependence of Hall angle 86 5-4 Sign reversal of Hall effect 91 5-5 Double sign reversal Hall effect 98 5-6 Summary 101 Chapter 6 Conclusions 105 References 107rf References Chapter 1 1J. G. Bednorz and K. A. Müller, Z. Phys. B, 64, 189 (1986). 2M. K. Wu et al., Phys. Rev. Lett. 58, 908 (1987). 3A. Junod, in “Physical Properties of High Temperature Superconductors”(D. M. Ginsberg, Ed.) Vol. 2, Chap. 2, World Scientific, Singapore, 1990. 4A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott, Nature 363, 56 (1993). 5W. E. Lawrence and S. Doniach, in E. Kanda (ed.) Proc. 12th Int. Conf. Low. Temp. Phys. (Kyoto, 1970; Keigaku, Tokyo, 1971), p. 361. 6A. Manthiram, S. J. Lee, and J. B. Goodenough, J. Solid State Chem. 73, 278 (1988). 7A. Manthiram and J. B. Goodenough, Physica C 159, 760 (1989). 8C. Greaves and P. R. Slater, Supercond. Sci. Technol. 2, 5 (1989). 9E. M. McCarron III, M. K. Crawford, and J. B. Parise, J. Solid State Chem. 78, 192 (1989). 10C. Gledel, J. F. Marucco, and B. Touzelin, Physica C 165, 437 (1990). 11J. –M. Triscone, M. G. Karkut, L. Antognazza, O. Brunner, and Ø. Fischer, Phys. Rev. Lett. 63, 1016 (1989). 12Refer to the following two review articles: I. Bozovic and J. N. Eckstein, in Physical Properties of High Temperature Superconductors V (World Scientific, Singapore, 1996), Chapter 3, p 99; J. -M. Triscone and Ø. Fischer, Rep. Prog. Phys. 60 (1997). Chapter 3 1J. B. Nelson and D. P. Riley, Proc. Phys. Soc. 57, 160 (1945). Chapter 4 1I. K. Schuller, Phys. Rev. Lett. 44, 1597 (1980). 2D. Chrzan and P. Dutta, J. Appl. Phys. 59, 1504 (1986). 3W. Sevenhans et al, Phys. Rev. B 34, 5955 (1986). 4B. M. Clemens and J. G. Gay, Pyhs. Rev. B 35, 9337 (1987). 5 J. –P. Locquet et al, Phys. Rev. B 38, 3572 (1988). Phys. Rev. B 39, 13338 (1989). 6E. E. Fullerton et al, Phys. Rev. B 45, 9292 (1992). 7E. E. Fullerton et al, Phys. Rev. Lett. 69, 2859 (1992). 8M. K. Wu et al, Phys. Rev. Lett. 58, 908 (1987). 9J. Z. Sun et al, Phys. Rev. Lett. 58, 1574 (1987). 10 Y. Iye et al, J. Appl. Phys. 26, L1057 (1987). 11M. Oda et al, Phys.Rev. B 38, 252 (1988). 12T. T. M. Palstra et al, ibid. 5102. 13J. Y. Juang et al, ibid. 7045. 14N. R. Wathamer, E. Helfand, and P. C. Hohengerg, Phys. Rev. 147, 295 (1966). 15J. Bardeen and M. J. Stephen, Phys. Rev. 140, A1197 (1965). 16Y. B. Kim and M. J. Stephen in R. D. Parks (ed.), Superconductivity, volume 2 (Marcel Dekker, Inc., New York, 1969), p1138. 17P. W. Anderson, Phys. Rev. Lett. 9, 309 (1962); P. W. Anderson and Y. B. Kim, Rev. Mod. Phys. 36, 39 (1964). 18M. Tinkham, Phys. Rev. Lett. 61, 1658 (1988). 19V. Ambegaokar and B. I. Halperin, Phys. Rev. Lett. 22, 1364 (1969). 20Y. Yeshurun and A. P. Malozemoff, Phys. Rev. Lett. 60, 2202 (1988). 21A. I. Larkin and Yu. V. Ovchinnikov, J. Low Temp. Phys. 34, 409 (1979). 22M. P. A. Fisher, Phys. Rev. Lett. 62, 1415 (1989); R. H. Koch et.al., Phys. Rev. Lett. 63, 1511 (1989); D. S. Fisher, M. P. A. Fisher and D. A. Huse, Phys.Rev. B 43, 130 (1991). 23T. T. M. Palstra, B. Batlogg, R. B. van Dover, L. F. Schneemeyer, and J. V. Waszczak, Phys.Rev. B 41, 6621 (1990). 24C. W. Hagen and R. Griessen, Phys. Rev. Lett. 62, 2857 (1989). 25O. Brunner et. al., Phys. Rev. Lett. 67, 1354 (1991). 26L. M. Wang, PHD thesis, Department of Physics, National Taiwan University, Taiwan, R.O.C. Chapter 5 1T. R. Chien, Z. Z. Wang and N. P. Ong, Phys. Rev. Lett. 67, 2088 (1991). 2T. R. Chien, D. A. Brawner, Z. Z. Wang, and N. P. Ong, Phys. Rev. B 43, 6242 (1991). 3P. W. Anderson, Phys. Rev. Lett. 67, 2092 (1991). 4B. Wuyts et. al., Phys. Rev. B 47, 5512 (1993). 5A. Carrington, D. J. C. Walker, A. P. Mackenzie, and J. R. Cooper, Phys. Rev. B 48, 13051 (1993). 6B. Wuyts, V. V. Moshchalkov, and Y. Bruynseraede, Phys. Rev. B 53, 9418 (1996). 7Ping Xiong,Gang Xiao, and X. D. Wu, Phys. Rev. B 47, 5516 (1993). 8S. J. Hagen et al., Phys. Rev. B 47, 1064 (1993). 9T. R. Chien, T. W. Jing, N. P. Ong, and Z. Z. Wang, Phys. Rev. Lett. 66, 3075 (1991); J. M. Harris et al., ibid. 73, 1711 (1994). 10D. M. Ginsberg and J. T. Manson, Phys. Rev. B 51, 515 (1995). 11 S. J. Hagen et al., Phys. Rev. B 43, 6246 (1991). 12A. V. Samoilov, Z. G. Ivanov, and L.-G. Johansson, Phys. Rev. B 49, 3667 (1994). 13T. W. Jing and N. P. Ong, Phys. Rev. B 42, 10781 (1990). 14R. R. Hake, Phys. Rev. 168, 442 (1968). 15A. G. Aronov, S. Hikami, and A. I. Larkin, Phys. Rev. B 51, 3880 (1995). 16A. W. Smith, T. W. Clinton, C. C. Tsuei, and C. J. Lobb, Phys. Rev. B 49, 12927 (1994). 17J. Bardeen and M. J. Stephen, Phys. Rev. 140, A1197 (1965). 18P. Nozieres and W. F. Vinen, Philos. Mag. 14, 667 (1966). 19R. Ferrel, Phys. Rev. Lett. 68, 2524 (1992). 20J. M. Harris, N. P. Ong, and Y. F. Yan, Phys. Rev. Lett. 71, 1455 (1993). 21Z. D. Wang and C. S. Ting, Phys. Rev. Lett. 67, 3618 (1991). 22R. C. Budhani, S. H. Liou, and Z. X. Cai, Phys. Rev. Lett. 71, 621 (1993). 23S. Ullah and A. T. Dorsey, Phys. Rev. B 44, 262 (1991). 24A. T. Dorsey, Phys. Rev. B 46, 8376 (1992). 25R. J. Troy and A. T. Dorsey, Phys. Rev. B 47, 2715 (1993) 26N. B. Kopnin, B. I. Ivlev, and V. A. Kalatsky, J. Low. Temp. Phys, 90, 1 (1993). 27J. M. Harris et al., Phys. Rev. B 51, 12053 (1995). 28J. Schoenes, E. Kaldis, and J. Karpinski, Phys. Rev. B 48, 16869 (1995). 29K. Nakao et al., Phys. Rev. B 57, 8662 (1998).id NH0925198053 sid 837304 cfn 0 / id NH0925198054 auc 梁昭賢 tic 在X-ray資料中尋找SGR 1627-41的週期性 adc 張祥光 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 英文 pg 37 kwc 波霎 kwc X射線 abc Soft gamma repeaters (SGRs) 與 Anomalous X-ray Pulsars(AXPs)目前被認為是一種超強磁場的中子星,稱之為"magnetars"。除了SGR 1627-41,所有的已確認的SGR與AXP都已經被發現自轉週期。我們使用BeppoSAX、ASCA與RXTE等人造衛星的觀測資料進行分析尋找可能的週期,並在此呈現我的結果。我們使用H-test與epoch folding兩種分析方法,以五分之一的傅立葉寬度為一個搜尋步伐,從0.01秒搜尋至100秒。我們在1998年八月BeppoSAX的觀測資料中發現五個可疑的週期,一個在0.019秒,而其餘分布在6秒至98秒之間。這些可疑的週期並未在其他的觀測資料中發現。未來若欲深入研究這些可疑的週期將需要更多的觀測資料,特別是在SGR 1627-41處於較高亮度時期的觀測資料。 tc 1 Introduction 3 1.1 SGR . . . . . . . . . . . . . . . . . . . . . 3 1.2 The magnetar model . . . . . . . . . . . . . 5 1.3 SGR 1627-41 . . . . . . . . . . . . . . . . . 7 1.4 Motivation . . . . . . . . . . . . . . . . . 9 2 Observations and data reduction 10 2.1 Observation . . . . . . . . . . . . . . . . . 10 2.1.1 BeppoSAX Observation . . . . . . . . . . . 11 2.1.2 ASCA Observation . . . . . . . . . . . . . 13 2.1.3 RXTE Observation . . . . . . . . . . . . . 15 2.2 Data Reduction . . . . . . . . . . . . . . . 17 2.2.1 Data reduction for BeppoSAX data . . . . . 18 2.2.2 Data reduction for ASCA data . . . . . . . 18 2.2.3 Data reduction for RXTE data . . . . . . . 20 3 The methods for timing analysis 22 3.1 Epoch-folding . . . . . . . . . . . . . . . . 22 3.2 H-test . . . . . . . . . . . . . . . . . . . 23 4 Results and discussion 25 4.1 The procedure of searching periods . . . . . 25 4.2 Possible signatures in the H-test . . . . . . 26 4.3 Discussion . . . . . . . .. . . . . . . . . . 31rf [1 ] Aptekar, R.L. et al., 2001, ApJS. 137, 227 [2 ] De Jager, et al. 1989, A&A, 221, 180 [3 ] Fishman, G.J., Meegan, C., 1995, A&A, 33, 415 [4 ] GÄo·gÄu»s, E. et al., 2001, ApJ, 558, 228 [5 ] GÄo·gÄu»s, E. et al., 1999, ApJ, 526, L93 [6 ] GÄo·gÄu»s, E. et al., 2002, ApJ, 577, 929 [7 ] Gotthelf, E. V. et al., 1999, ApJ, 522, L49 [8 ] Hurley, K., et al. 1999, ApJ, 510, L111 [9 ] Hurley, K., et al. 1999a, Nature, 397, 41 [10 ] Hurley, K., 2000, AIPC, 510, 515 [11 ] Hurley, K., et al. 2000, ApJ, 528, L21 [12 ] Ioka, K. 2001, MNRAS, 327, 639 [13 ] Israel, G. L. etal., 1999, ApJ, 518, L107 [14 ] Kaspi, V., et al., 1999, ApJ, 525,L33 [15 ] Kaspi, V., et al. 2003, ApJ, 588, L93 [16 ] Kouveliotou, C., et al. 1998a, Nature, 393, 235 [17 ] Kouveliotou, C., et al., 1998b, IAU Circ. 6944 [18 ] Kouveliotou, C., et al., 1999, ApJ, 510, L115 [19 ] Kouveliotou, C., et al. 2003, ApJ, 596, L79 [20 ] Kulkarni, S., et al. 2003, ApJ, 585, 948 [21 ] Leahy D. A., 1987, A&A, 180, 275 [22 ] Marsden1, D., & White, N., 2001, ApJ, 551, L155 [23 ] Mazets, E.P., et al., 1979, Nature, 282, 587V589 [24 ] Mereghetti, S. 2000, in The Neutron StarVBlack Hole Connection, ed. C. Kouveliotou, J. Ventura, E. van den Heuvel (NATO ASI Ser. C, 567; Dordrecht: Kluwer), 351 [25 ] Murakami, T., et al., 1999, ApJ, 510, L119 [26 ] Paul, B. et al., 2000, ApJ, 537, 319 [27 ] Rothschild, R.E., et al., 1994, Nature, 368, 432 [28 ] Thompson, C., Duncan, R. 1995, MNRAS, 275, 255 [29 ] Thompson, C., Duncan, R.1996, ApJ, 473, 322 [30 ] Woods, P., et al. 1999, ApJ, 519, L139 [31 ] Woods, P. M., et al., 2000, ApJ, 535, L55 [32 ] Woods, P.M., et al., 2001, ApJ, 552, 748 [33 ] Woods, P.M., et al., 2002, ApJ 576, 381 [34 ] Woods, P., 2003, AdSpR, 33, 645id NH0925198054 sid 913331 cfn 0 / id NH0925198055 auc 黃修慧 tic Geminga的X射線脈衝分析 adc 張祥光 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 英文 pg 54 kwc Geminga kwc 波霎 kwc 中子星 kwc X射線 kwc 脈衝分析 abc Geminga 是一顆沒有無線電波輻射但在X射線(X-ray)和伽馬射線(γ-ray)波段有觀測到以週期0.237秒自轉的波霎(pulsar)。我們使用ASCA和XMM人造衛星取得的數據來分析Geminga 在X射線波段的週期性行為,而我們選定探討的週期範圍為0.1秒到100秒之間。在分析過程中,我們使用H-test和epoch folding方法,以每一個間格為五分之一的傅立葉寬度(Fourier width)進行搜尋。如果我們能找到不是自轉的週期,也許能暗示中子星星震的存在或是說中子星表面存在波的傳遞。經過我們對此週期範圍的徹底搜尋,並未發現任何證據能說明星震的存在。最後,依據不同的觀測資料,對可能存在於中子星表面的波而言,我們給出3 倍標準差信心水準的能量通量(flux)上限:由1994、1999年ASCA的資料,得到3.5×10^-14 erg/cm^2/sec和1.9×10^-14 erg/cm^2/sec,分別為原來星體能量通量的12.4﹪和6.9﹪。從2002年XMM的數據,我們對不同能量範圍求得7.7×10^-13 erg/cm^2/sec(0.2-0.7 keV)和1.7×10^-14 erg/cm^2/sec(0.7-5.0keV),分別為原來波霎能量通量的1.3﹪和3.3﹪。 tc 1. Introduction 1.1 Motivation 1.2 Geminga---PSR J0633+1746 1.3 ASCA---The Advanced Satellite for Cosmology and Astrophysics 1.4 RXTE---The Rossi X-ray Time Explorer 1.5 XMM---The X-ray Multi-Mirror Observatory 2. Data Reduction 2.1 Observations 2.2 Reduction Procedures 2.2.1 ASCA Observation 2.2.2 RXTE Observation 2.2.3 XMM-Newton Observation 3. Data Analysis 3.1 Methods of Timing Analysis 3.1.1 Epoch Folding 3.1.2 The H-test 3.2 Analysis Procedures 4. Results and Discussion 4.1 Search for Other Periodicities 4.2 Discussion 5. Summaryrf Bertch, D. L. et al. 1992, Nature, 357, 306 Bignami, G. F., Caraveo, P. A., & Lamb, R. C. 1983, ApJ, 272, L9 Bignami, G. F., Caraveo, P. A., & Paul, J. A. 1988, A\&A, 202, L1 Bignami, G. F. et al. 1987, ApJ, 319, 358 Boriakoff, V. 1976, ApJ, 208, L43 Buccheri, R. et al. 1998, The Many Faces of Neutron stars, 525-537, Kluwer Academic Publishers. Caraveo, P. A. et al. 1996, ApJ, 461, L91 Caraveo, P. A. et al. 2003, Science, 301, 1345 Caraveo, P. A. et al. 2004, Mem. S.A.It. Vol. 75, 470 Carroll, B. W. & Ostlie, D. A. 1996, An Introduction to Modern Astrophysics, Addison Wesley. Cheng, K. S., Gil, J. & Zhang, L. 1998, ApJ, 493, L35 Cheng, K. S. & Zhang, L. 1999, ApJ, 515, 337 Chukwude, A. E. 2003, A&A, 406, 667 Cordes, J. M. & Greenstein, G. 1981, ApJ, 245, 1060 Crawford, F. & Demianski, M. 2003, ApJ, 595, 1052 De Jager, O.C. et al. 1989, A&A, 221,180 Dodson, R. G., McCulloch, P. M. & Lewis, D. R. 2002, ApJ, 564, L85 Fichtel, C. E. et al. 1975, ApJ, 198, 163 Goldreich, P. & Julian, W. H., 1969, ApJ, 157, 869 Halpern, J. P. & Holt, S. S., 1992, Nature, 357, 222 Halpern, J. P. & Ruderman, M., 1993, ApJ, 415, 286 Halpern, J. P. & Tytler, D. 1988, ApJ, 330, 201 Halpern, J. P. & Wang, F. Y.-H. 1997, ApJ, 477, 905 Hobbs, G. et al. 2002, Mon. Not. R. Astron. Soc. 333, L7 Jackson, M. S. et al. 2002, ApJ, 578, 935 Leahy, D. A. 1987, A&A, 180, 275 Lewis, David A., Methods of Experimental Physics, Vol. 28, 349 Lyne, A. G. & Graham-Smith, F. 1998, Pulsar Astronomy, Cambridge University Press. Lyne, A. G., Shemar, S. L. & Graham-Smith, F. 2000, Mon. Not. R. Astron. Soc. 315, 534 Malofeev, V. M. & Malov, O. I. 1997, Nature, 389, 697 Mattox, J. R., Halpern, J. P., and Caraveo, P. A. 1998, ApJ, 493, 891 Rankin, J. M., 1986, ApJ, 301, 901 Ruderman, M. A. & Sutherland, P. G. 1975, ApJ. 196, 51 Ruderman, M. A. 1970, Nature, 225, 619 Scott, D. M., Finger, M. H., and Wilson, C. A. 2003, Mon. Not. R. Astron. Soc. 344, 412 Str?er, L. et al. 2001, A&A, 365, L18 Thompson, D. J. et al. 1977, ApJ, 213, 252 Turner, M. J. L. et al. 2001, A&A, 365, L27 Wang, F. Y.-H., Ruderman, M., Halpern, J. P. & Zhu, T. 1998, ApJ, 498, 373 Wasaburo Unno et al. 1989, Nonradial Oscillations of Stars, University of Tokyo Press.id NH0925198055 sid 913318 cfn 0 / id NH0925198056 auc 陳德鴻 tic 原子透鏡 adc 余怡德教授 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 中文 pg 90 kwc 原子透鏡 abc 摘要 tc 致謝 目錄 第一章 非線性光學的重要性 1-0 非線性光學是什麼 1-1 非線性光學的發現 1-2 光強相關之非線性折射率的應用 1-2.1 光的自我聚焦和自我侷限(self-focusing & self-trapping) 1-2.2 Optical Bistablility 第二章 非線性光學的機制 2-0 折射率--實驗可觀測量 2-1 光強相關之非線性折射率 2-1.1 線性折射率(弱光時的情形) 2-1.2 非線性折射率 (Change of Refractive Index) 2-2 二能階系統非線性效應 2-2.1 非線性效應適用範圍 2-2.2 非線性效應飽和現象 2-2.3 實驗觀測 第三章 透鏡效應 3-0 緣起 3-1 透鏡效應機制 (pinhole Effect) 3-2 透鏡效應--以二能階原子為例 3-2.1 理論 3-2.2 實驗架設 3-2.3 數據分析與擬合 3-2.4 結論 3-3 透鏡效應的討論 第四章 Wscan量測線性非線性折射率 4-0 緣起 4-1 Wscan量測機制 4-2 Wscan量測折射率 4-2.1 Wscan量測線性折射率 4-2.2 Wscan量測非線性折射率 4-3 Wscan精密度探討 (斜率不連續與精密度的競爭) 4-3.1 斜率不連續性的探討 4-3.2 不連續點在頻率軸上移動的探討 4-4 Wscan量測折射率--以二能階原子為例 4-4.1 理論 4-5 Wscan量測線性非線性折射率的討論 (不一定要掃過共振) 附錄A 精確與近似折射率的差別 附錄B 對於具有Inversion Symmetry的物質而言其 、 可視為零 附錄C Lensing Effect理論 附錄D 註解為何要採如此歸一化方式 附錄E 室溫原子透鏡效應 附錄F 光與介質交互作用方程式 附錄G Wave Propagation方程式的推導(古典角度) 附錄H 雷射物理 參考資料rf 參考資料 [1 ] “ Optics ” 作者Hecht p.462 [2 ] “Simplified Modeling of Optical Absorption and Nonlinear Index Change in Semiconductors” G. Zhao etc [3 ] 潘冠錡,碩士論文,“量子干涉現象的時域分析” 清華大學物理系2003 第二章 二能階系統 [4 ]“Experimental study of nonlinear focusing in a magneto-optical trap using a Z-scan technique” M. Saffman PRA 013801 2004 July [5 ] A. E. Siegman, LASERS (University Scinece Books)id NH0925198056 sid 913309 cfn 0 / id NH0925198057 auc 林佩君 tic 介觀量子點之D'yakonov Perel' 的自旋弛豫研究 adc 牟中瑜 adc 張正宏 ty 碩士 sc 國立清華大學 dp 物理學系 yr 92 lg 英文 pg 32 kwc 自旋 kwc 量子點 kwc 弛豫 kwc 半導體 abc 這篇論文主要探討了對相同面積下各種不同邊長比例和各種不同邊界性質的量子點的D'yakonov-Perel'自旋弛豫值。對於不同邊長比例的量子點,我們更深入探討兩種不同的邊界性質:完全光滑和完全粗糙的。而應用在論文研究的主要方法為半古典的路徑積分數值模擬法,內容概要是這樣的:在第一章中,我們探討了論文研究的緣由,並對這篇論文作了簡單初步的介紹。接著在第二章中,我們推導出一些論文相關的實用公式。作法是由一些基本的有關Rashba的自旋軌道交互作用推導,再利用半古典的路徑積分理論延伸,從而得到具有Rashba的自旋軌道交互作用的電子在二維自由空間的能量的本徵值及本徵態。在第三章,我們解釋論文中數值模擬的方法,分別使用不同的自旋軌道耦合能量來測量,並實際說明了自旋弛豫極化的過程及最後的結果。在第四章,我們將第三章的光滑面改為完全粗糙面,用第三章同樣的方法來操作。在第五章,我們分別探討了單顆電子不同軌跡的自旋演化結果,這樣的結果有助於我們瞭解在第三章和第四章所得到的終結自旋極化值為正的原因。在第六章,我們則對論文的結果作了一番討論並導引出一些結論。主要有:我們發現具有完全光滑邊界的量子點有較慢的自旋弛豫。除此之外,在所有的同樣邊界性質的量子點中,正方形的量子點具有最大的終結自旋極化值。因此我們可以說明,在本文所提到的所有量子點系統中,正方形的量子點是最佳的自旋資訊儲存系統。 tc 1 Introduction 2 2 Spin dynamics induced by Rashba spin-orbit interaction 5 2.1 Classical and semiclassical spin evolution . . . . . . . . . . . . 5 2.2 Rashba Hamiltonian in 2D free space . . . . . . . . . . . . . . 9 3 Smooth quantum dots 12 3.1 Spin relaxation scenarios in smooth dots . . . . . . . . . . . . 14 3.2 Spin residual values in smooth dots . . . . . . . . . . . . . . . 16 4 Rough quantum dots 17 4.1 Spin relaxation scenarios in rough dots . . . . . . . . . . . . . 17 4.2 Spin residual values in rough dots . . . . . . . . . . . . . . . . 19 5 Spin evolution along individual trajectories 21 6 Conclusion and Outlook 31rf [1 ] Igor Zuti´c, Jaroslav Fabian and S.Das. Sarma, Review of modern physics, 76, 323 (2004). [2 ] S. A. Wolf, et al., Science 294, 1488 (2001). [3 ] P. Ball, Nature 404, 918 (2000). [4 ] J.B. Miller, D.M. Zumbhl, C.M. Marcus, Y.B. Lyanda-Geller, D. Goldhaber-Gordon, K. Campman, and A.C. Gossard, Phys. Rev. Lett. 90, 076807 (2003); J.-H. Cremers, P. W. Brouwer, and V. I. Fal’ko, Phys. Rev. B 68, 125329 (2003); D. M. Zumbhl, J. B. Miller, C. M. Marcus, K. Campman, and A. C. Gossard, Phys. Rev. Lett. 89, 276803 (2002); I.L. Aleiner and V.I. Fal’ko, Phys. Rev. Lett. 87, 256801 (2001). [5 ] C. H. Chang, A. G. Mal’shukov, and K. A. Chao, cond-mat/0405212. [6 ] O. Zeitsev, D. Frustaglia, and K. Richter, cond-mat /0405266 (2004). [7 ] Yu. L. Bychkov and E.I. Rashba, J. Phys. C 17,6093(1984). [8 ] L. W. Molenkamp, G. Schmidt V. Shlyapin, and G. E. W. Bauer, Phy. Rev. B 64, 121202(R)(2001). [9 ] J. Sinova, Dmitrie Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, cond-mat/0307663 v2.(2004).id NH0925198057 sid 893349 cfn 0 / id NH0925208001 auc 李曜安 tic 兒童與青少年的媒體使用經驗---在網路出現之後 adc 張維安 ty 碩士 sc 國立清華大學 dp 社會學研究所 yr 92 lg 中文 pg 100 kwc 兒童 kwc 青少年 kwc 媒體 kwc 網路 abc 在LaFrance兒童與親子間在電腦前的相處 的研究中,他認為在不同的世代中的兒童對於其所使用的電子媒體都會有所不同,如:1960年代的兒童所接觸的多半是電視,而到了1970年代則為錄放影機。1980年代則轉變為電視遊樂器,到了現在則恐怕是電腦與網路。對於電子媒體的使用也是社會化的一部份,當兒童在進入電視、網路中進行社會化之前,就必須要先學會操作這些電子媒體的「先備技能」然後才能進入,進行不同媒介的社會化。這是因為,無論是電視還是網路,都是一種資訊、甚至是社會化的承載媒介,在他們進入之前,必須要先有操作的技能,但是這其中還有一個更為先備的條件,就是家庭必須提供這樣的設備與環境,才有接近媒介的機會。而當環境產生了之後,兒童才能主動或是被動的接觸電視、網路等媒體。而此時媒體就不再是單純是一種工具或是技術,而是一種具有「社會性」的工具。 tc 目次: 1.前言………………………………………………………………… 3 2. Ch1 研究動機與問題意識…………………………………………4 3. Ch2文獻回顧…………………………………………………………8 4. Ch3 研究架構與研究方法…………………………………………33 5. Ch4 網咖田野研究 …………………………………………41 6. Ch.5 媒體差異與意義改變…………………………………………54 7. Ch6 結論 ………………………………………………………… 89 8. 參考書目 …………………………………………………………98rf 參考書目: Baudrillard. J(1998),《模擬物與擬像》(洪凌譯)。台北:時報文化。 Fiske, J,(1994),《傳播符號學理論》(張錦華等譯)。台北:遠流。 Jameson. F,(1989),《後現代主義與文化理論》(唐小兵譯)。台北:合志。 Neuwan. ,(2000)。《社會研究方法》(朱柔若譯)。台北:楊智。 Neil Postman,(1994)。《童年的消逝》(蕭昭君譯),台北:遠流。 Turkle. S,(1999)。《虛擬化身--網路世代的身分認同》(吳佳真譯)。台北:遠流。 Greenfield, P. M.,(1988)。《傳播媒體(電視、電腦、電動玩具)與兒童心智發展(陳秋美譯)。台北:信誼基金。 邱貴發(1998)。<網路世界中的學習:理念與發展>。《教育研究資訊》,6卷(1期), 蔡文輝(2002)。《社會學概要》,台北:巨流。 恰客.馬丁(1998)。《數位化階級時代/網際網路世界中,競爭及生存的策略》(陳曉開譯),台北:麥格羅希爾。 張基成、唐宣蔚(2000)。<一個架構於全球資訊網上的知識分散網路社群>。《遠距教育》,13期,P.18-37 張春興(1987)。《青少年的認同與迷失》。台北:東華書局。 張春興(民85)。《教育心理學:三化取向的理論與實踐》。台北:東華 Tomlinson. J(1994),《文化帝國主義》(馮建三譯),台北:時報。 吳明隆(1998)。<電腦網路學習特性及其相關問題的省思>。《教育部電子計算機簡訊》 星野克美(1990)。《符號社會的消費》(黃恆正譯),台北:遠流。 李幼蒸(1997),《文化符號學》,台北:唐山。 周健林(2001)。《網路新一代年青人-數碼年代社會化帶來的啟示》,科技發展與人文重建研討會,法鼓人文社會學院主辦。 王孝玲(1999)。流竄在女子中學的情愛漫畫:一個權力的解析。國立新竹師範學院國民教育研究所碩士論文 朱柔若(2000)。《社會研究方法》。台北:楊智。 黃少華、陳文江(2002)。《重塑自我的遊戲》。高雄:復文出版社。 黃厚銘(2002)。<網路上的身分認同>。《資訊社會研究》。No.2,226--228。 黃秋碧(1998)。漫畫閱讀之遊戲、快感經驗與社會實踐—以世新、政大學生為例。私立世新大學傳播研究所碩士論文。 廣梅芳(2001)《艾瑞克森-自我認同的建構者》。台北:張老師文化。 章五奇(1990),電視文化批判課程之研究—從批判教育學的觀點。國立台北師範學院碩士論文。 翟本瑞(2001)。《網路文化》。台北:楊智出版社。 孫立群(1999)。日本卡通對青少年消費文化影響之研究。國立政治大學新聞研究所碩士 論文。 童琬芬(2001)。青少年漫畫閱讀文化之研究—以台北都會區兩所國中為例。國立臺灣師範大學教育研究所。 許怡安(2001)。兒童網路使用與網路媒體素養之研究--以台北縣市國小高年級學童為例。政治大學廣播電視學系碩士論文,P.36。 蘇芬媛(1996)。網路虛擬社區的形成--MUD之初探性研究。國立交通大學傳播研究所碩士論文。 歐琇瑜(1997)。以幻想主題取徑探討台灣流行漫畫的價值觀。私立輔仁大學大眾傳播研究所碩士論文。 林政儀(1999)。漫畫暴力內容與國中生暴力態度之關聯性研究—以台北市國中生為例。私立文化大學新聞研究所碩士論文。 蔡州宙(1999)。台北市國小中高年級學生漫畫人物認同之研究。台北市立師範學院國民教育所碩士論文。 劉平君(1995)。解讀漫畫《城市獵人》中的女性意涵。國立政治大學新聞學系碩士論文。 蕭湘文(1997)。日本漫畫書對學齡兒童價值觀之影響之研究。國科會專題研究計畫。。 薛秀(2001)。國中學生電腦網路使用與親子互動關係之研究-以台北市國中學生為例。台灣師範大學家政教育研究所碩士論文。 英文文獻: Kroker Arthur, and Marilouise Kroker, Code warriors; bunkering in and dumbing down. Barker, M.(1993). Seeing how far you can see: On being a ‘fan’of 2000 AD . In D. Buckingham(Ed.), Reading Audience: Young people and the media. Manchester: Manchester University Press. P. 224-226. Brake, M.(1985). Comparative youth culture. London: Routledge & Kegan Paul. Brown, J. A.(1997). New heores: Gender, race fans and comic book superheroes. Buckingham, D. (Ed.).(1993). Reading audience: Young people and the media. Manchester: Manchester University. Comstock, G., & Strasburger, V. C. (1993).Media violence: Q & A.Adolescent Medicine, State of the Art Reviews, 4(3). Collins, W. A. (1979).Children’s comprehension of televisioncontent.In E. Wartella (Ed.), Children’s communicating: Media and development of hought, speech and understanding . Newbury Park, CA: Sage. Dorfman, A.(1983). The Empire’s Old Clothes. New York: Pantheon Books. Dorr, A. (1986).Television and children: A special medium for a special audience.Beverly Hills, CA: Sage. Fiske, J.(1987). Television culture. London: Routeldge. Fiske, J. (1992). The cultural economy of fandom. In Lewis, L. A.(Ed.), The adoring audience: Fan culture and popular media. New York and London: Routledge.P.39 Fiske,John.(1989).Understanding Popular Culture.New York: Unwin Hyman, Fontana, A. & Frey, J. H.(2000). The interviews: Form structured questions to negotiated text. In N. K. Denzin, & Y. S. Lincon(Eds.), Handbook of qualitative research.(2nd ed.). California: Sage.P.63 Giroux, H. A.(1992a). Border crossings: Cultural workers and the politics of education. New York and London: Routledge. Grossberg, L.(1992). Is there a fan in the house? : The affective sensibility of fandom. In Grossberg, L., Wartella, E., & D. C. Whitney(1998). Media making: Mass media in popular culture. London: Sage. Hall, S. & Whannel, P.(1964). The Popular Art. London: Hutchinson. Ledden, S. & Fejes, F.(1987). Female Gender Role Patterns in Japanese Comic Magazines. Journal of Popular Culture, 21(1), pp.155-176. Lewis, L. A.(Ed.), The adoring audience: Fan culture and popular media. New York and London: Routledge. Hall, S. & Whannel, P.(1964). The Popular Art. London: Hutchinson. Huston, A. C., & Wright, J. C. (1983).Children’s processing of television: The informative functions of formal features.In J. Bryant & D. R. Anderson (Eds.), “Children’s understanding of television”(pp.35-68).New York: Academic Press. Jenkins, H.(1992). Textual poachers. New York and London: Routledge. McQuail, D.(2000). McQuail’s Mass Communication Theory. London: Sage. Morley, D(1992). Television, audiences, and cultural studies. London:Routledge,New York. Muggleton, D.(2000). Inside subculture: The postmodern meaning of style. New York: Berg. Neuman, S. B. (1995). Literacy in the television age: The myth of the TV effect (2nd ed.).Norwood, NJ: Ablex. Press, A. L.(1990). Class, gender and the female viewer: Women’s responses to dynasty. In M. E. Brown(Ed.), Television and women’s culture: The politics of the popular. Newbury Park: Sage. Pustz, M. J.(1998). Fanboys and true believers: Comic book reading communities and the creation of culture. London:Routledge,New York. Pustz, M. J. (1999). Comic book culture: Fanboys and true believers. London:Routledge,New York. Roberts, K.(1983). Youth and leisure. London: Allen & Unwin. Taylor, L. & Willis, A.(1999). Media Studies: Texts, Institutions, and Audience. Oxford: Blackwell. Ujiie, J. and Krashen, S. D.(1996). Comic book reading, reading enjoyment, and pleasure reading among middle class and chapter 1 middle school students. Reading Improvement, 33(1), 51-54. Van Evra, J. (1998).Television and child development (2nd ed.).NJ: Erlbaum. Wertham, F.(1954). Seduction of the innocent. New York: Irwin. Willis, P.(1990). Common culture. Milton Keynes. Open University Press Willis, P.(1977). Learning to labour: How working class kids get working class jobs. Farnborough: Saxon House. Willis, P.(1990). Common culture. Milton Keynes. Open University Press. http://www.libertytimes.com.tw/2003/new/jun/5/today-so6.htm#top http://tw.news.yahoo.m/040525/19/oblq.html http://www.i-part.com.tw/index.php?Ipart_Session=d1649da5a5077f8893512b63361a01a0id NH0925208001 sid 904814 cfn 0 / id NH0925208002 auc 汪小玲 tic 從規訓權力關係看中途學校的實踐 adc 宋文里 ty 碩士 sc 國立清華大學 dp 社會學研究所 yr 92 lg 中文 pg 92 kwc 規訓權力 kwc 中途學校 kwc 中介教育措施 kwc 中途輟學 abc 摘要 rf 參考文獻書目 王雅莉,2002,〈越軌?轉位?青少年參與八家將團體之分析〉,世新大學社會發展研究所碩士論文。 王枝燦,2001,〈同儕影響與青少年偏差行為之研究〉,東吳大學社會學研究所碩士論文。 王麗雯,2000,〈國民中學中輟生復學模式之分析研究-以中途學校與高關懷班為例〉,文化大學兒童福利研究所碩士論文。 王美娟,1999,〈青少年中輟相關因素與不良社會適應關聯性之研究〉,中央警察大學犯罪防治研究所碩士論文。 王恩祥,1999,〈教育部推動多元形式中途學校專案報告〉,《福利社會》,70,1-4。王慶槐,1988,〈保護管束少年家庭、同輩與不良行為之研究〉,東海大學社會工作研究所碩士論文。 宋文里,2000,〈再現青少年〉,載於台灣師範大學《青少年人格建構研討會》。 宋文里,1995,〈「批判教育學」的問題陳顯〉,《通識教育季刊》,2:4,1-15。 宋文里,1993,〈「誰是垃圾的主人翁?—談『青少年問題論述』的問題」〉,《張老師月刊》,1993,12。 宋文里,1992,〈「迷信」與「空虛」關於大學生之超自然參與經驗之意義病理的研究〉,《中央研究院民族學研究所集刊》,73期,62-75。 朱元鴻,2000,《我們活在不同的世界:社會學框作筆記》,台北:唐山,(台灣社會研究叢刊08)。 朱森楠,2000,〈國民中學中輟復學生復原力及歷程探討之研究〉,國立師範大學教育研究所博士論文。 朱輝章,1996,〈中途輟學國中生的輔導〉,《高市文教》,56:56-60。 江菁頌,1998,〈台北版的灰姑娘童話開始在街頭上演—探討台北青少年柔性宵禁中的青少年生活〉,國立台灣大學建築與城鄉研究所碩士論文。 李崇建•甘耀明,2004,《沒有圍牆的學校—全人中學傳奇》,台北:寶瓶文化。李冠蓉,2002,〈個案管理中輟預防方案〉,台東師院教育研究所碩士論文。 吳嘉苓,2002,〈順從、偷渡、發聲與出走:「病患」的行動分析〉,《台灣社會學》,3,p.73-117。 吳美枝,2001,〈中輟學生問題與輔導之行動研究〉,國立中正大學犯罪防治研究所碩士論文。 吳芝儀,2001,《中輟生的危機與轉機》,嘉義市:濤石文化。 吳芝儀,1999,〈暴力犯罪少年學校經驗回顧〉,載於「當前青少年犯罪問題與對策」研討會論文集,嘉義:中正大學犯罪防治研究所。 吳瓊洳,2000,〈國中學生反學校文化之研究〉,國立師範大學教育研究所博士論文。 吳宗立,1998,〈國中學生中途輟學之個案分析〉,《學生輔導季刊》,55,,42-49。 林本炫、鄒川雄編,2004,《教育與權力:一個批判的分析》,嘉義:南華大學教社所。 林寶山,1991,《美國教育制度及改革動向》,台北:五南。 林秀真,2001,〈復學生的學校適應--以花東地區為例〉,慈濟大學社會工作研究所碩士論文。 林淑瓊,2000,〈台灣與日本中途輟學問題暨因應措施之比較研究〉,中國文化大學日本研究所碩士論文。 林哲寧,2000,〈中輟少年家外行蹤之研究〉,文化大學兒童福利研究所碩士論文。 林杏足,1997,〈諮商中當事人自尊改變歷程之分析研究〉,國立彰化師範大學輔導研究所博士論文。 周甫亮,2001,〈青少年在網咖中的次文化認同建構初探〉,世新大學傳播研究所碩士論文。 周愫嫻,2000,〈社會結構、中途輟學率與少年犯罪率關係之研究〉,《臺北市立師範學院學報》,31期,243-268。 周愫嫻,1999,〈中輟學生問題造成的影響與政策方向-區分社會結構、輟學率與少年犯罪率的共變與因果關係〉,台北:中輟學生的服務與輔導學術研討會,《中華民國青少年兒童福利學會》,29-63。 涂靜宜,2000,〈台北市自願中途輟學國中少年生活形態相關因素之探討研究〉,中國文化大學兒福利研究所。 柯秀薇,2003,〈規訓與叛逆:國中中輟生輔導措施之反思〉,世新大學社會發展研究所碩士論文。 姚人多,2002,〈傅柯的工具箱—權力篇〉,《當代》,175:70-83;177:84-95。范信賢,1995,〈文化霸權的運作機制:對國小教師學校生活世界的探討〉,國立清華大學社會人類所碩士論文。 黃鴻文,2003,《國民中學學生文化之民族誌研究》,台北:學富文化。 黃武雄,1996,《台灣教育的重建:面對當前教育的結構性問題》,台北:遠流。 翁士勛,2001,〈國中學生抗拒型態之質性研究〉,國立師範大學教育研究所碩士論文。 鍾佳沁,2002,〈全球化下搖頭次文化再現之研究--台北的搖頭空間〉,國立臺灣大學建築與城鄉研究所碩士論文。 曹育瑞,2001,〈「家是起點,也是終點」?--少年逃家歷程之探究〉,國立臺灣大學社會學研究所碩士論文。 鄭惠娟,2001,〈未婚懷孕青少年進入婚姻的生活經驗〉,國立臺灣大學社會學研究所碩士論文。 賴秀玉,2002,〈中輟復學生適應歷程之探討—以台北市一學園型中途學校為例〉,東吳大學社會工作學系碩士論文。 商嘉昌,1995,〈中途輟學與青少年犯罪:以新竹少年監獄為例〉,國立政治大學社會學研究所碩士論文。 路渤瀛,1993,〈國中生生活適應與逃學之研究〉,中國文化大學兒童福利研究所碩士論文。 張喬婷,2000,《馴服與抵抗:十位校園女菁英拉子的情慾壓抑》,台北:唐山。 張梅禎,2000,〈中輟復學生與一般生在生活適應之比較研究〉,中國文化大學生活應用科學所碩士論文。 張志偉,2001,〈台灣的電玩管制:文化再生產的邏輯〉,東海大學社會學系研究所碩士論文。 張淑瑩,1999,〈偏差行為國中生復學契機之研究〉,東海大學社會工作學研究所碩士論文。 張文軍,1998,《後現代教育》,台北:揚智。 張坤鄉,1997,〈原住民國中生中途輟學相關因素與形成過程之研究:以屏東縣為例〉,國立政治大學教育研究所碩士論文。 張鈿富,1994,〈高級職業學校學生中途輟學原因與輔導策略之研究〉,教育廳專案研究報告,中興新村:台灣省政府教育廳。 張勝成,1993,〈國民中小學中途離校學生暨未升學亦未就業畢業生之生活狀況及教育問題調查研究〉,彰化師範大學特殊教育系碩士論文。 張清濱,1992,《中途輟學的社會學分析及輔導策略》,中興新村:台灣省政府教育廳。 張德銳,1986,〈台北市國民中學三年級學生次級文化與違規犯過行為的關係〉,國立臺灣師範大學教育研究所碩士論文。 陳光興,1997,〈青少年文化研究:回應林益民〉,《台灣社會研究季刊》,25期,頁227-231。 陳怡璇,2001,〈溢出常軌之後~中輟生的生涯與自我認同議題〉,國立花蓮師範學院多元文化研究所碩士論文。 陳玉玫,2001,〈我是問題學生~兩位中輟學生的學校經驗與自我認同〉,國立花蓮師範學院國民教育研究所碩士論文。 陳秋霞,2001,〈青少年從事負標籤休閒活動經驗之研究〉,東海大學社會工作學研究所碩士論文。 陳彥竹,2001,〈為何不再犯?少年時期進入矯治機構者離開後生活經驗之探究〉,國立臺灣大學社會學研究所碩士論文。 陳昭華,2000,〈高雄市國中中途輟學學生家庭之探討〉,國立中山大學中山學術研究所碩士論文。 陳秋儀,1999,〈國民中學中輟復學生所知覺的問題、因應方式與學生生活適應之分析研究〉,國立彰化師範大學輔導研究所碩士論文。 陳玨君,1995,〈國民中學階段中輟生的學校經驗與生活狀況之研究〉,國立台灣師範大學教育研究所碩士論文。 陳寬政,1992,《能力與成就的社會學考察》,台北:中央研究院三民主義研究所。 徐惠媜,2001,〈三角休閒諮商模式對中輟學生團體輔導之行動研究--榮耀之役〉,高雄師範大學輔導研究所碩士論文。 梁馨方,2001,〈應用焦點解決短期諮商關鍵技術對國中中輟復學生諮商效果之研究〉,彰化師範大學輔導與諮商系碩士論文。 梁志成,1993,〈台北市高級職業學校學生中途輟學因素及預防策略調查研究〉,國立台灣師範大學工業教育研究所碩士論文。 許文耀,1999,〈影響中輟生扮演「學習者」的因素及其與犯罪的關 係〉,《教育部青少年輔導計畫論文摘要集》。 黃德祥、向天屏,1999,〈中輟學生形成原因與對策之研究〉,《訓育研究》,38(2),p.16-33。 夏曉鵑,2002,《流離尋岸—資本國際化下的「外籍新娘」現象》,台北:唐山(台灣社會研究叢刊09)。 傅柯,1990,《性意識史:第一卷導論》,尚衡譯,台北:桂冠。 傅柯,1992,《規訓與懲罰:監獄的誕生》,劉北成、楊遠嬰譯,台北:桂冠。 傅柯,1998,《古典時代瘋狂史》,林志明譯,台北:時報文化。 傅柯,2003,《不正常的人(法蘭西學院演講系列,1974∼1975)》,錢翰譯,上海:上海人民出版社。 章勝傑,2003,〈從權力構念看原住民中輟現象〉,《原住民教育季刊》,30期,5-20。 章勝傑,2003,《中輟現象的真實與建構:一些討論與反省》,台北:心理。 劉翔平,2001,《尋找生命的意義—弗蘭克的意義治療學說》,台北:貓頭鷹出版。 劉秀汶,1998,〈國民中學中輟問題及支援系統之研究-以台北縣為例〉,國立台灣師範大學教育研究所碩士論文。 鄧煌發,2001,〈國中生輟學成因及其與偏差行為相關性之研究〉,中央警察大學犯罪防治研究所博士論文。 曾玉,2001,〈國中中輟學生輟學原因、自我態度、偏差行為之相關研究〉,國立中正大學犯罪防治研究所碩士論文。 謝青屏,1994,〈貧窮文化之傳承-台中市低收入家庭生活方式的個案研究〉,東海大學社會所碩士論文。 翁慧圓,1995,〈影響國中少年中途輟學因素之探討〉,東海大學社會工作研究所碩士論文。 楊奇芬,2001,〈合作式中途學校課程與教學之個案研究〉,台北師範學院課程教學研究所碩士論文。 楊宗憲,2001,〈心理特質與環境因素對國中生中途輟學及犯罪行為之影響〉,中央警察大學犯罪防治研究所碩士論文。 楊國樞,1978,〈中學生的問題行為及學校影響因素〉,《中央研究院民族所刊》,社會變遷中的青少年問題研討會論文集,33-55。 程秋梅,2000,〈漫漫復學路-中輟生復學適應之探討〉,國立台灣大學社會學研究所應用組碩士論文。 溫怡雯,2000,〈台東縣原住民國中中輟復學生之歸因歷程研究〉,台東師範學院教育研究所碩士論文。 郭靜晃,2001,《中途輟學青少年之現況分析與輔導》,台北:洪葉文化。 郭靜晃、曾華源,2001,〈中途離校青少年的現況分析研究〉,《青少年問題研究成果發表暨研討會手冊》,行政院青年輔導委員會主辦。 蔡德輝,2001,〈籌設中途輟學學生選替教育及相關課程統整規劃報告〉,國立中正大學犯罪防治研究所承辦,教育部委託。 蔡德輝、吳芝儀,2000,〈我國實施中輟防治與選替教育芻議〉,《中輟復學生與青少年犯罪問題研討會論文集》。 蔡德輝、吳芝儀,1999,〈中輟學生的輔導與服務方式:美國選替性教育之另類觀點〉,《訓育研究》,38:2,34-47。 蔡德輝,1993,《學校教育與犯罪防治。文化變遷與教育發展》,嘉義:國立中正大學成人教育中心。 蔡德輝, 1983,〈少年犯罪相關理論之探討〉,《載於周震歐等著:青少年犯罪心理與預防》。台北:百科文化事業公司,17-35。 鄭夙芬,1988,〈國中復學學生之學校適應初探—以台北縣某國中八位復學學生為例〉,東吳大學社會學研究所碩士論文。 鄭崇趁,1997,〈中途學校的多元型態與內涵〉,《學生輔導通訊》,52,12-15。 鄭崇趁等,1998,《中途輟學問題與對策》,台北:中華兒童福利基金會。 鄭崇趁,1998,〈輔導中輟生的權責與方案〉,《學生輔導》,55,16-23。 鄭崇趁,1999,〈中途學校與中輟生輔導〉,《訓育研究》,38:2, 48-56。 鄭玉卿,1999,〈學校制度中的潛在課程-反學校教育思潮的觀點〉,《台北市立師範學院學報》,30,193-208。 趙碧華,1996,〈少年逃學、逃家行為的推力與拉力--一項抑制理論的實證研究〉,東吳大學社會工作學報,2,273-304。 葉亞寧,2000,《中輟生問題輔導》,台北:師大書苑。 彭駕騂,1994,《國民中小學中途輟學學生復學輔導手冊》,台北市教育部訓育委員會。 彭駕騂,1997,〈我們不是「壞學生」--中輟學生的內心世界〉,《師友》,86(4),358,8-10。 彭駕騂,1998,〈美國中輟學生問題的因應措施〉。中途輟學問題與對策。中華兒童福利基金會出版,126-138。 羅婉麗,2001,〈國中小學生生活適應之訪談、評量與調查研究〉,國立成功大學教育研究所碩士論文。 教育部,1982,強迫入學條例。 教育部,1994,國民中小學中途輟學學生通報要點。 教育部,1996,國民中小學中途輟學學生通報辦法。 教育部,1998,中途輟學學生通報及復學輔導方案。 教育部,1998,建立學生輔導新體制—教學、訓導、輔導三合一整合實驗方案。台北:教育部。 教育部,1999a,教育部青少年輔導計畫八十七年度執行成果專輯。教育部,台北。 教育部,1999b,國民中小學中途輟學學生通報及復學輔導辦法。 教育部,1999c,中華民國教育統計。台北:教育部。 教育部,2000,中途輟學學生通報及復學輔導專案報告。教育部,台北。 教育部,2001,教育部九十學年度各級學校概況,2001年12月下載於http://www.edu.tw/school/index.htm。 教育部訓育委會,2000,八十八學年度國民中小學中途輟學學生統計表。 教育部,2002a,中途輟學學生通報及復學輔導方案。台北:教育部。 教育部,2002b,中途輟學學生通報及復學輔導辦法。台北:教育部。 教育部,2002c,http://www.edu.tw /secretary/importance/901205-2.htm. 內政部統計處,2002,國民中小學中途輟學學生特性統計分析,http://www.moi.gov. tw/W3/stat/333/halfway.htm. Apple, M. 1983. Ideology and the curriculum. In Anthony Hartnett (ed.), Education studies and social science. London: Heinemann. Best, Steven & Kellner, Douglas,1994,《後現代理論:批判的質疑》,朱元鴻等譯,台北:巨流。 Bonnewitz , Patrice朋尼維茲,2002,《布赫迪厄社會學的第一課》,孫智綺譯,台北:麥田。 Corey, Cerald,1996,《諮商與心理治療的理論與實務》,李茂興譯,台北:揚智,406-435。 Dreyfus, Hubert L. & Rabinow, Paul,1995,《傅柯:超越結構主義與詮釋學》,錢俊譯,台北:桂冠。 Douglas, Jack D. 1977. Existential Sociology. Cambridge University Press. Foucault, Michel .1977. Discipline and Punish: the birth of the prison. London: Allan Lane. Foucault, Michel .1979. The History of Sexuality: An Introduction. London: Allan Lane. Freire , Paulo,2003,《受壓迫者教育學》,方永泉譯,台北:巨流。 Hirschman, Albert O. 1970. Exit, Voice, and Loyalty, Harvard University Press. Cambridge, Massachusetts and London, England. Illich, I.,1994,《非學校化社會》,吳康寧譯,台北:桂冠。 John Dewey,1989,《民主主義與教育》,林寶山譯,台北:五南。 McDermott, R.P. 1989. Discussant’s comments: Making dropouts. In H. T. Trueba, G. Spindler, & L. Spindler. (Eds.), What do anthropologist have to say about dropouts? New York: Falmer Press. McLaren, Peter,2003,《校園生活:批判教育學導論》,蕭昭君、陳巨擘譯,台北:巨流。 Quinney, R. 1974. Criminal justice in America. Boston: Little, Borwn. Shaw, Thomas A. 1988. Emerging persons: youth subculture, social identity and social mobility in an urban Chinese setting. Thesis (Ph.D.)--Columbia University. Smart, Barry ,1998,《傅柯》,蔡采秀譯,台北:巨流。 Willis, Paul .1977. Learning to labor. New York: Columbia University Press. Wolcott, H. F., 2001,《校長辦公室裡的那個人:一種民族誌》,白亦方等譯,台北:師大書苑。 Zonabend, F. 1992. The Monograph in Ethnology. Current Sociology 40(1): 49- 54.id NH0925208002 sid 884801 cfn 0 / id NH0925208003 auc 張菀真 tic 台灣婦運的外遇與婚姻論述---以通姦除罪化議題為例(1990-2003) adc 周碧娥 ty 碩士 sc 國立清華大學 dp 社會學研究所 yr 92 lg 中文 pg 103 kwc 外遇 kwc 權利 kwc 性解放 kwc 情感 kwc 基進派女性主義 abc   本研究以一九九O年開始發展至今的通姦除罪化議題為研究案例,藉此分析台灣婦運在此議題中所發展的外遇與婚姻論述之樣貌。 tc 目 錄 目錄………………………………………………………………………1 第一章 導論……………………………………………………………4 第一節 研究緣起與問題意識…………………………………… 4 一、 從第五五四號釋憲案談起…………………………………4 二、 婦運團體主張通姦除罪化的理由…………………………5 三、 問題意識……………………………………………………6 第二節 文獻回顧……………………………………………………7 一、 定義…………………………………………………………7 二、 文獻回顧……………………………………………………9 第三節 研究方法與策略………………………………………… 18 一、 議題相關資料收集…………………………………………18 二、 分析策略……………………………………………………23 第四節 章節安排……………………………………………………24 第二章 大家在吵什麼?……………………………………………26 第一節 Mapping the Issue………………………………………26 一、 爭議架構……………………………………………………26 二、 爭議核心……………………………………………………27 第二節 「婚外性」vs.「婚外情」──關於「通姦」的情感問題…34 第三節 閱讀爭議圖-為婦運的通姦除罪化論述定位……………35 一、 兩種婦運觀點-權利平等與性自主………………………35 二、 婦運團體與法律界人士主張的異同………………………36 三、 受侷限的性別觀點…………………………………………38 第三章 因惑與矛盾…………………………………………………39 第一節 婚姻是什麼東西?…………………………………………39 一、 「婚姻以感情為基礎」……………………………………39 二、 如何看待通姦與婚姻?……………………………………43 第二節 外遇如何發生?……………………………………………44 一、 不是第三者的問題,是婚姻本身的問題…………………44 二、 溝通與否……………………………………………………49 三、 最愛與否……………………………………………………51 四、 獨特、成長與不可替代……………………………………52 第三節 現階段婦運場域中的「第三者」論述……………………53   一、「吃殘羮剩飯」………………………………………………53 二、妻子與「第三者」身份的流動……………………………………55 三、 沒有位置的權利客體………………………………………57 第四節 小結:情感之性別分析的必要...........................59 第四章 朝向一個情感的性別分析…………………..……………61 第一節 現階段婦運的情感論述……………………………………61     一、「經濟獨立、人格獨立、感情獨立」…………………61     二、「化小愛為大愛」………………………………………63     三、「感情是私領域的事情」………………………………65 第二節 婚變之「恨」與「不幸」…………………………………67 一、 恨……………………………………………………………68 二、 不幸…………………………………………………………69 第三節 難以割捨的「母愛」………………………………………70 第四節 朝向一個情感的性別分析…………………………………71   第五節 小結………………………………………………………72第五章 研究發現與結論………………………………………………74 第一節 研究發現與結論……………………………………………74 一、 法律的權利思維與性解放觀點,無法觸及「通姦」的情感問題..74 二、 情感分析的缺乏,將使妻子、第三者無法面對男人外遇的挑戰..76 三、 期待一個感情革命的發生…………………………………76 第二節 與現階段台灣婦運團體對話………………………………77 一、 跳脫「婚姻契約」、「視感情為私領域」的婚姻觀……77 二、 反思「性愛分開」的性解放策略…………………………78 三、 差異與認同政治的婦運年代?持續對婚姻進行批判……79 第三節 發展性別觀點的情感論述…………………………………80 一、 通姦除罪與否只是一個法律上的問題……………………80 二、 發展性別觀點的情感論述…………………………………81 第四節 研究限制與未來的研究方向………………………………82 一、 研究限制……………………………………………………82 二、 未來的研究方向……………………………………………84 參考書目………………………………………………………………86 中文書目………………………………………………………………………86 英文書目………………………………………………………………………88 附錄……………………………………………………………………90 一、 通姦除罪化議題相關法律條文……………………………90 二、 司法院大法官會議第五五四號釋憲案相關文件………92 圖表   表1-1 1990-2003年「通姦除罪化」議題發展一覽表…………18 表1-2 1990-2003年各相關團體針對「通姦除罪化」議題所提之主張…..20 表1-3 受訪者的基本資料………………………………………21 圖1 第554號釋憲案「通姦罪是否違憲」之爭議架構………27rf 參考書目 中文書目 王雅各 1999 《臺灣婦女解放運動史》,台北:巨流。 王瑞琪 2002 《終於學會愛自己──一位婚姻專家的離婚手記》,台北:心靈工坊。 王蘋等 1998 〈誰的基金會、什麼樣的運動?夾在歷史和社會變革關口上的「婦女新知」〉。《當代》no.127:97-103。 田庭芳 2002 〈平權+婚姻,向劣質婚姻說再見〉。《中國時報》,2002.1.10。 司法院 2003 〈司法院釋字第五五四號解釋〉。《司法院公報》,no.45:2,pp.62-69 何春蕤 1994 《豪爽女人》,台北:皇冠。 李 昂 1992 《外遇》,台北:貿騰。 吳庶任譯 1995 《女太監》(The Female Eunuch),Greer, Germaine著,台北:正中。 周素鳯譯 2001 《親密關係的轉變》(The Transformation of Intimacy: Sexuality, Love & Eroticism in Modern Societies),Giddens, Anthony著,台北:巨流。 林芳玫 1996 〈專家公害?本土到外遇書寫症候群〉。《聯合報》,1996.5.20。 1996 〈昨日情婦,今日主婦,明日棄婦〉。《中國時報》,1996.11.1。 1998 〈當代台灣婦運的認同政治:以公娼存廢爭議為例〉。《中外文學》no.27:1,pp.56-87。 范碧玲 1990 《解析台灣婦女體制:現階段婦女運動的性格之研究》,新竹:國立清華大學社會學研究所碩士論文。 胡台麗、許木柱、葉光輝主編 2002 《情感、情緒與文化》,台北:中央研究院民族學研究所。 胡淑雯主編 1997 《騷動》no.4,台北:婦女新知基金會。 柯勝義 1994 《從法史學觀點論我國刑法上之通姦罪》。台北:國防管理學院法律學研究所碩士論文。 施寄青 1989 《走過婚姻》,台北:皇冠。 1992 《婚姻終結者》,台北:皇冠。 1999 《瀟灑闖情關》,台北:坤華。 許山木 1993 〈通姦罪應該廢除嗎?〉。《律師通訊》no.171:71-73。 黃榮堅 1994 〈論通姦罪的除罪化〉。《律師通訊》no.182:51-56。 郭玲惠 2003 〈通姦除罪化後民事法律問題之研究〉。九十二年度國科會委託研究計畫報告。 張輝潭 1995 《台灣當代婦女運動與女性主義實踐初探──一個歷史的觀點》。新竹:國立清華大學社會學研究所碩士論文。 陳靜宜 1998 〈論蕭颯外遇小說〉。《國文天地》no.143:pp.58-71。 婦女新知基金會 1995 〈女同志婦運come out?座談會〉。《婦女新知》no.161-2,台北:婦女新知。 婦女新知基金會、晚晴協會 2000 《「新晴版」夫妻財產制修法說帖》,台北:婦女新知。 劉毓秀 1995 〈男人的法律,男人的「國」「家」,及其蛻變的契機:以民法親屬編及其修正為例〉。《台灣社會研究季刊》no.20:103-150 梁惠錦 1997 〈民國二十三年婦女爭取男女平等科刑之經過-以通姦罪為例〉。《國史館館刊》復刊no.23:143-168。 傅大為 1994 〈風聲與耳語-《豪爽女人》的書評〉。《當代》,no.140:130-143。 廖輝英 1983 《不歸路》,台北:聯經。 蕭 颯 1986 《唯良的愛》,台北:九歌。 簡春安 1991 《外遇的分析與處置》,台北:張老師。 譚陽主編 2002 《天意憐幽草》,高雄:高雄市晚晴協會。 顧燕翎 1997 〈台灣婦運組織中性慾政治之轉變──受害客體抑或情慾主體〉。《思與言》no.35:1,pp.87-118。 英文書目 Jaggar, Alison M. 1983 Feminist Politics and Human Nature. Great Britain:The Harvester Press. Firestone, Shulamith 1984 The Dialectic of Sex: The Case for Feminist Revolution. New York: Bantam.id NH0925208003 sid 894809 cfn 0 / id NH0925208004 auc 冷尚書 tic 戰士與俠的自我╲文本:社會運動存有論的一種初步嘗試 adc 宋文里 ty 碩士 sc 國立清華大學 dp 社會學研究所 yr 92 lg 中文 pg 109 kwc 清水溝 kwc 社會運動 kwc 自我 kwc 運動者 kwc 存有 abc 這是一篇運動者的自我文本。 rf 中文部份: 今村仁司、三島憲一、鷲田清一、野家啟一 《馬克思、尼采、弗洛依德、胡塞爾 現代思想的源流》,卞崇一、周秀靜 合譯,石家庄:河北教育,2002年1月。 方昱 《實踐與開創:新生代觀點—災後重建實務研討會》〈重建區社區型自力照顧系統—在南投縣鹿谷鄉秀峰村的實驗〉,全國民間災後重建聯盟、台灣社區重建協會主辦,南投:中興新村,2001年9月22日,頁:96-112。 〈妹妹——社會工作與政治的處女情結〉,發表於「全國社會學研究生論文研討會」,台中:東海大學,2002年6月1日。 《清水溝的行動與敘事——我在社區中實踐社會工作的歷程與專業反思》,東吳大學社會工作研究所碩士論文,引用時尚未發表。 方昱、冷尚書 《多元化的社會議題—社工專業角色重新出發研討會論文集》〈以社區工作作為社會工作的出路—清水溝的社區自力照顧系統〉,發表於「多元的社會議題—社工專業角色重新出發」研討會,台灣社會工作專業人員協會 主辦,台北縣:縣府大樓,2004年2月21日,頁:181-211。 台灣社會研究季刊 《台灣社會研究季刊》〈邁向公共化、超克後威權〉,本文係作為機關言論文章之用,印有單行本,主要執筆者可能是東海大學社會學研究所教授趙剛,2003年十月。 冷尚書 〈論文撰寫說明〉,附加在論文撰寫綱要計劃書之前,寫於2002年四月。 〈發條兔子—魔咒:咒語〉,所提交之論文撰寫綱要計劃書,寫於2002年四月。 沈建亨 《我對社會工作的探索與再認識—與基層社會工作者的串連、集體行動與反思》,國立陽明大學衛生福利研究所碩士論文,2004年1月。 佘雲楚、梁坊遠、謝柏齊、丘延亮 《生業、職業、專業與志業——助人志業自主抗爭的行動社會學反思》,輔仁大學心理學系網站,「2004行動研究社群發展論壇」相關文章,取自:http://www.aspy.fju.edu.te/action/02022.doc 余德慧 《詮釋現象心理學》,台北市:心靈工坊文化,2001[民90 ] 。 高宣揚 《布爾迪厄—Bourdieu》,台北市:生智,2002[民91 ] 。 《後現代論》,台北市:五南,民88。 宮崎 駿 《神隱少女》,台北市:博遠家庭娛樂,資料型態:DVD,片長約124分鐘。 夏黎明 〈一刀兩刃:台灣民族主義的確立與危機〉, 2004年4月8日發表於南方電子報,取自:http://enews.url.com.tw/archiveRead.asp?scheid=26232 陳明才 〈奇怪的溫度〉,寫就年月不詳。 許赫 《在城市,沒有人赴約的晚上》,這是一本作者自行編印流傳的個人詩集,台北縣:廢紙角角的同樂會,2003年,E-mail:harsh0917@hotmail.com。 Audi, Robert(奧迪) 《劍橋哲學辭典》(The Cambridge Dictionary of Philosophy),中文版審訂召集人 林正弘,台北市:貓頭鷹,2002年7月。 Freire, Paulo(弗雷勒) 《受壓迫者的教育學》(Pedagogia do Oprimido),方永泉 譯,台北市:巨流,2003﹝民92﹞。 Heidegger, Martin (海德格) 《存在與時間》(Sein und Zeit),王慶節、陳嘉映 譯,台北:桂冠圖書,2002年2月。 《尼釆》,孫周興 譯,北京:商務印書館,2002年。 Lacan, Jacques(拉岡) 《拉岡選集》,褚孝泉譯,上海:上海三聯書店,2001年1月。 Mills, C.Wright (米爾斯) 《社會學的想像》,張君玫、劉鈐佑 譯,台北:巨流圖書,1995年。 Nancy, Jean-Luc (儂曦) 《解構共同體》(La Communautè dèsoeuvèe),蘇哲安 譯,台北:桂冠,2003年。 Nietzsche, Friedrich (尼采) 《權力意志——重估一切價值的嘗試》,張念東、凌素心 合譯,北京:商務印書館,1991年5月。 《查拉圖斯特拉如是說》,余鴻榮 譯,台北:志文,2001 年6月, Pascal, Blaise (巴斯卡) 《沈思錄》,孟祥森 譯,台北巿:水牛,民59。 Sartre, Jean-Paul (沙特) 《存在與虛無》,陳宣良等 譯,台北市:貓頭鷹,2000[民89 ]。 Zizek, Slavoj (紀傑克) 《神經質主體》(The Ticklish Subject),萬毓澤 譯,台北縣新店市:桂冠,2004[民93 ]。 英文部份: Heidegger, Martin 《Being and Time》,Translated by Joan Stambaugh. 《Nietzsche》,1979,Translated by David Farrell Krell. New York: Harper & Row. Roth, Wolff-Michael (2002, July).Auto/biography as Method: Dialectical Sociology of Everyday Life. Review Essay: Zdenek Konopasek(Ed.)(2000). Our Lives as Database--Doing a Sociology of Ourselves: Czech Social Transitions in Autobiographical Research Dialogue [53 paragraphs ]. Forum Qulitative Sozialforschung/Forum: Qualitative Social Research [On-line Journal ], 3(4). Available at: http://www.qualitative-research.net/fqs/fqs-eng-htm [Date of access: Moth Day, Year ]. Sartre, Jean-Paul 《Being and Nothingness》,1956,Translated Hazel E. Barnes. New York: Philosophical Library, Inc.id NH0925208004 sid 874813 cfn 0 / id NH0925208005 auc 林盈秀 tic 減肥的身體的我---歷史與性別的觀點 adc 雷祥麟 adc 宋文里 ty 碩士 sc 國立清華大學 dp 社會學研究所 yr 92 lg 中文 pg 118 kwc 減肥 kwc 身體 kwc 健康 kwc 美麗 kwc 女性主義 kwc 厭食 abc 一直以來,減肥就是女性主義研究中的重要研究議題。基於使女性活得更好的使命感,各家女性主義(者)無不致力於對父權控制的挖掘與試圖瓦解。但,由於差異的存在——不論是哪一個層面,漸漸有女性發現自己竟成了女性主義(者)要批判或至少是改正的對象。對筆者而言,主要關切的還不是對錯與否的問題,而是一旦女性主義對女性而言是一種無法理解的陌生、或無法親/接近的距離時,到底哪一個環節不對勁了? tc 目次 第一章 問題的開展 1 一、大家來練功 1 二、文獻回顧 3 (一)國內研究 (二)相關碩士論文 (三)國外研究 三、問題意識 12 四、研究方法 15 第二章 衝突矛盾引爆下的重新提問 18 一、本地主流女性主義圈的觀點 18 二、芭比大戰維納斯,父權擺一邊(?) 20 (一)戳到了什麼?讓人不知如何是好的《挑戰維納斯》 (二)心之所繫,女性主義:那一場演講 三、女性主義是什麼? 27 四、重新提問的必要 32 第三章 必須健康,必須美麗 35 一、必須美麗 35 (一)即使是男性 (二)美麗,可做?可說?可及? 1、對立消弭中,正當性的逐漸取得 (1)內在美與外在美的對立 (2)人工美與自然美的對立 2、可及性:模特兒與美麗女星的啟示 3、不只是skin deep 二、必須健康 50 (一)操作的日常化,以及成為生活 (二)我該有的樣子 1、清與輕 2、胖瘦的責任,節制的健康 3、節制的生產性 (三)動與吃 1、運動 (1)從娛樂到功課 (2)運動下的健康人生 2、食物 (1)重新洗牌,重新學習 (2)味覺 (3)在健康的光芒下 三、因信得救,相互為證的健康與美麗 72 (一)相信健康 (二)相互證明的健康與美麗 第四章 女性•主義 77 一、結論或起點:另一條理解路徑 77 二、性別解放與身體展演的交錯 80 (一)像個男人一樣 (二)開始被允許出現女性的樣子 (三)依附?自主? (四)不是鐵板一塊:緊縮與解放的同時出現 三、重新理解兩個常常挨打的箭靶 87 (一)台灣女人的身體自覺意識,開啟還是綁更緊? (二)“愛自己”,!or? 四、娥們——妳、娥、她——之間 91 第五章 幸福與安全的國度(?) 96 一、一定要減肥 96 二、作為整體的價值 98 三、Over & Disorder 101 四、身體打造的人生入場券/代結 109 參考書目 112rf 參考書目 中文部份 施寄青,《挑戰維納斯》,台北:布克文化,2003。 應平書,《現身說法談減肥成功》,台北:文經,1987。 顧玉珍,〈香火鼎盛的「拜物教」 談幾則「美」的廣告〉,《廣告雜誌》,1993年5月號。 林深靖,〈青春睿智卡維波〉,《左翼》,第15號,2002年1月。 ———,〈卡維波,左派裝可愛〉,《左翼》,第18號,2002年4月。 林芳玫,〈當代台灣婦運的認同政治:以公娼存廢爭議為例〉,《中外文學》,第27卷第1期,1998年6月。 孫秀蕙,〈瘦身的迷思,永遠的芭比〉,《廣告雜誌》,1997年1月號。 張輝潭,《台灣當代婦女運動與女性主義實踐初探——一個歷史的觀點》,國立清華大學社會人類學研究所碩士論文,1995。 張亦絢,《身為女性主義嫌疑犯》,台北:探索文化,1995。 張錦華,〈1982至1999台灣瘦身廣告研究——多面向的研究〉,《廣告學研究》,第15期,民89年7月。 張錦華、黃浩榮,〈還童的女性?弱智的男性?〉,中國時報時論廣場,2000/12/18。 黃宗慧,〈性不性由你?當女性主義遇上性暗示廣告〉,《廣告雜誌》,第28期,民82年8月號。 ———,〈主流標準與片面性感解放〉,中國時報論壇,民89年12月22日。 楊照,〈媚登峰挑釁女性主義?〉,《廣告雜誌》,第62期,民85年6月。 曾淑美,〈談一談我的中島美雪〉,《聯合文學》,第11卷第4期,民84年2月。 高玉芳,〈新衣裳?論美體工程、女性身體與女性主義〉,《聯合文學》,第11卷第4期,民84年2月。 卡維波,〈老化的媒體批評、弱智的女性主義〉,中國時報時論廣場,2000/12/18。 ———,〈青春睿智的左派?成年癡呆的左派,上、下〉,《左翼》,(上),第16期,2001年2月;(下),第17期,2001年4月。 ———,〈「婦權派」與「性權派」的兩條女性主義路線在台灣──為「亞洲連結會議」介紹性╱別研究室而寫〉,性╱別研究室網頁(http://sex.ncu.edu.tw)。 甯應斌,〈不完全的公民資格與反動的市民社會——台灣經驗〉,收入在陳光興編,《發現政治社會——現代性、國家暴力與後殖民民主》,台北:巨流,2000。 蕭蘋,〈或敵或友?流行文化與女性主義〉,《台灣社會學刊》,第30期,民92年6月。 李金梅,〈女性主義敗在衣服上嗎?﹣﹣從服飾的再現形式論女性化的建構〉,《中國論壇》,第32卷第7期,民81年4月。 何春蕤,〈想要飯碗就少吃飯:節食與工作倫理〉,中國時報人間副刊,1992/4/19~20。 ———,《不同國女人》,台北:自立晚報,1994。 ———,(編)《《豪爽女人》誰不爽?呼喚台灣新女性》,台北:元尊,1997。 祝平一,1999,〈女體與廣告:台灣塑身美容廣告史中的科學主義與女性美〉,「健與美的歷史」研討會論文。 陳冠宇,〈厭食症與暴食症〉,取自台北市立療養院網站。 陳燁、施寄青(編),《女人治國》,台北:圓神,1995。 龔卓軍,〈男為悅己者容——訪談卡維波〉,《張老師月刊》,第237期,1997年9月。 陳光興(編),《發現政治社會——現代性、國家暴力與後殖民民主》,台北:巨流,2000。 紀大偉,〈身體解嚴〉,《張老師月刊》,第236期,1997年8月。 隱地,〈餓〉,載於焦桐 編,《台灣飲食文選Ⅱ》,台北:二魚文化,2003。 林銓居,〈煲湯〉,載於焦桐 編,《台灣飲食文選Ⅰ》,台北:二魚文化,2003。 逯耀東,《出門訪古早》,台北:東大,1998。 林文月,《飲膳雜記》,台北:洪範,1999。 籃雅寧,〈想要小5歲,用吃的也行?!〉,《CHEERS(快樂工作人)》,第42期,2004年3月。 龍應台,《美麗的權利》,台北:圓神,1994。 薇薇夫人,《一個女人的成長》,台北:大地,1985。 楊名權,《一定瘦得成》,台北:商周文化,2002。 台北市政府「健康減重一百噸」活動網站:http://www.health.gov.tw/fitness/foodculture/indexfood.asp 《家庭月刊》,台北:台視文化。 《張老師月刊》,台北:張老師文化。 《健康世界》,台北:健康文化。 (所引用相關碩士論文研究、報章、雜誌之期號、出處等,請見正文註釋) 英文部份 Binswanger , “The Case of Ellen West”, in May , Angel & Ellenberger , Existence , 1958。 Bryan S. Turner , 1982 , “The Discourse of Diet.” , Theory, Culture & Society, Vol. 1 , p.23-32. ———————,The Body and Society :Explorations in Social Theory,《身體與社會》,馬海良、趙國新 譯,瀋陽:春風文藝出版社,2000。 Christina Hoff Sommers, How Women Have Betrayed Women, 《背叛女人的女人——誰篡奪了女性主義?》,吳庶任譯,台北:正中,1993。 David Amstrong , Political Anatomy of the Body : Medical Knowledge in Britain in the Twentieth Century. New York: Cambridge University Press, 1983. Harrison G. Pope, Katharine A. Philips, Roberto Olivardia, The Adonis Complex, 《猛男情結》,但唐謨譯,台北:性林文化,2001。 Heather Harper-Giuffre , K. Roy MacKenzie (eds). Group Psychotherapy for Eating Disorders,《飲食疾患的團體心理治療》,唐子俊、唐慧芳、孫肇玢 合譯,台北:五南,2003。 Jana Sawicki, Disciplining Foucault: Feminism, power, and The Body. New York: Routledge , 1991. Joan Jacobs Brumberg , 1989, Fasting Girls—The History of Anorexia Nervosa , New York: Penguin Books. ————————— , 1998, The Body Project—An Intimate History of American Girls , New York: Vintage Books. Joanna Kadi : “Stupidity “Deconstructed” ”, in Is Academic Feminism Dead ? edited by The Social Justice Group at The Center for Advanced Feminist Studies, University of Minnesota. New York : New York University Press, 2000. Jules R. Bemporad , “ The Psychoanalytic Approach to Psychosomatics and Eating Disorders”, The Newsletter of the Psychosomatic Discussion Group of the American Psychoanalytic Association. Jennifer Spruit , “Eating Disorders as Culture Bound.” Kathy Davis, Reshaping the female body--the dilemma of cosmetic surgery, 《重塑女體——美容手術的兩難》,張君玫譯,台北:巨流,1997。 KURIYAMA Shigehisa , “The Historical Origins of Katakori.” Michel Foucault,The History of Sexuality,《性史》,謝石 等譯,台北:結構群,1990。 Mike Featherstone , 1982 , “ The Body in Consumer Culture.” In Mike Featherstone, Mike Hepworth and Bryan S. Turner (eds). Social Process and Cultural Theory. London: Sage Publications. Nonja Peters, “The Ascetic Anorexic”,SOCIAL ANALYSIS,No. 37,April 1995。 Rene Denfeld , The New Victorians ,《誰背叛了女性主義?年輕女性主義對舊女性主義的挑戰》,劉泗翰譯,台北:智庫,1997。 Shawna Vogel , The Skinny on Fat ,《脂肪迷思》,魏淑鈴、王紹婷譯,台北:新新聞,2001。 Simona Giordano, “Lightness and moral values in Anorexia Nervosa.” 2003. Susan Bordo,Unbearable weight,University of California Press,1993。 Susan Ostrov Weisser & Jennifer Fleischer (eds.), Feminist nightmares : Women at Odds---Feminism and The Problem of Sisterhood. New York : New York University Press, 1994.id NH0925208005 sid 894803 cfn 0 / id NH0925208006 auc 游任道 tic 轉譯的政治學:論 Latour「描述」的技藝 adc 張維安 ty 碩士 sc 國立清華大學 dp 社會學研究所 yr 92 lg 中文 pg 52 kwc Latour kwc 描述 kwc 理解 kwc 解釋 kwc 轉譯 kwc 實體 kwc 空無 kwc 本體論 kwc 認識論 kwc 知識實做 kwc Bourdieu kwc 力量試煉 kwc 政治學 kwc 霍布斯 kwc 獨我論 kwc 科學人類學 abc 摘,序曲 rf 參考書目 中文: Augustine, St.,1998,《懺悔錄》,周士良 譯,台北:台灣商務。 Bourdieu, Piere, 1998,《實踐與反思》,李猛 李康 譯,北京:中央。 2003,《實踐感》,蔣梓驊 譯,南京:譯林。 Baccabe, Colin, 1999, Godard: Image, Sounds, Politics (中譯本),湖南。 Copleston, Frederick,1993,《西洋哲學史》,卷5,朱建民;李瑞全 譯,台北:黎明。 Copleston, Frederick,1993,《西洋哲學史》,卷6,陳潔明;關子尹 譯,台北:黎明。 Dilthey, W.,2004,《人文科學導論》,趙希方 譯,北京:華夏。 Heidegger, M.,2004,《尼采十講》蘇隆 編譯,北京:中華言實。 Hobbes,2002,《Leviathan利維坦》,朱敏章 譯,台北:台灣商務。 Magueijo, João,2004,《比光速還快》,郭兆林 譯,台北:大塊文化。 Smolin, Lee,2003,《量子重力》,丘宏義 譯,台北:天下文化。 王岳川;尚水編,1992,〈Foucault:什麼是作者?〉,米佳燕 譯,《後現在主義文化與美學》: 287-305,北京:北大。 李少春,2004,《社會學的發展歷程》,北京:中央編譯。 杜小真 編選, 1998,〈人死了嗎?〉,馬利紅 譯,《福柯集》:78-83,上海:遠東。 金森修,2002,《巴什拉:科學與詩》,武青豔;包國光 譯,河北教育。 恩格斯,1977,《馬克思恩格斯選集》,卷4,中共中央馬克思;恩格斯;列寧;史達林著作 編譯局編,北京:人民;台灣:結構群。 張一兵,2004,《問題式、症候閱讀與意識型態》,北京:中央編譯。 陳信行,2002,〈科學戰爭中的迷信、騙局、誤解與爭辯〉,《台灣社會研究季刊》,45:173- 207,台北:唐山。 雷祥麟,2002,〈劇變中的科技、民主與社會:STS的挑戰〉,《台灣社會研究季刊》,45: 123-171,台北:唐山。 葉啟正,2001,《社會學與本土化》,台北:巨流。 錢永祥,1992,〈從語言到生活:維根斯坦構成理論的發展與轉化〉,《台灣社會研究季刊》, 12:117-140,台北:唐山。 英文: Apel, O. Karl,1984,Explanation and understanding,trans. by G. Warnke, Massachusetts MIT Press. Bloor, David,1999,"Anti-Latour",Studies in History and Philosophy of Science,Vol.30,No.1:81-112.,Great Britain Press. Bourdieu, Piere, 1977,Outline of a Theory of Practice,trans. by Richard Nice,Cambridge University Press. 1990,“From rules to strategies”,In Other Words:Essays Toward a Reflexive Sociology,trans. by M. Adamson:59-75,Polity Press. 1991,with J-C Chamboredon & J-C Passeron,The Craft of Sociology,ed. by B. Krais,trans. by Richard Nice,Berlin,N.Y.:Walter deGruyter Press. 1992,with L.J.D.Wacquant,An Invitation to Reflexive Sociology,The University of Chicago Press. Bridget, Fowler,1997,Piere Bourdieu and Cultural Theory: Critical Investigations, Nottingham University Press. Calhoun, C.,1993,“Habits, Field, and Capital: The Question of Historical Specificity” in Bourdieu:Critical Perspectives,ed. by C. Calhoun with E.LiPuna & M. Postone: 61-88,The University of Chicago Press. de Certeau, Michel,1988,The Practice of Everyday Life,University of California Press. de Queiroz, J. M.,1987,“The Sociology of Everyday Life as a Perspective” Current Sociology,Vol.37:31-39. Epstein, Steven,1996,Impure Science: AIDS, Activism, and the Politics of Knowledge, University of California Press. John Law & John Hassard,1999,Actor Network and After,Blackwell Publishers, Oxford Press. Latour, Bruno, 1986,Laboratory Life: The Construction of Scientific Fact,Princeton University Press. 1987,Science in Action,Harvard University Press. 1988,Pasteurization of France,Harvard University Press. 1992,”Where Are the Missing Masses? The Sociology of a Few Mundane Artifacts”,Shaping Technology/Building Society:Studies in Sociotechnical Change,MIT Press. 1993,We have never been modern,trans. by Catherine Porter,Harvester Wheatsheaf Press. 1995,Conversations on Science, Culture and Time,by Michel Serres with Bruno Latour,The University of Michigan Press. 1996,Aramis or the Love of Technology,trans. by Catherine Porter,Harvard University Press. 1997,“A brief outline of the difficulties of ANT and its shortcomings”,On Recalling ANT,in Actor Network and After,ed. by John Law & John Hassard:15-25,Blackwell Publishers,Oxford Press. 1998,On Actor Network Theory: A few clarifications,trans. by Pit Schultz, http://www.nettime.org/Lists-Archives/nettime-l-9801/msg00019.html. http://www.nettime.org/Lists-Archives/nettime-l-9801/msg00020.html. 1999,a. “For David Bloor...and Beyond:A Reply to David Bloor's ‘Anti-Latour’”,Studies in History and Philosophy of Science,Vol.30,No.1:113-129, Great Britain Press. b. Pandora’s Hope,Harvard University Press. 2000,”When Things Strike Back:A Possible Contribution of Science Studies to the Social Sciences”,British Journal of Sociology,ed. by John Urry, Special Millennium Issue. Shapin, Steven and Schaffer, Simon,1985,Leviathan and the Air-pump:Hobbes, Boyle, and the Experimental Life,Princeton University Press. Stern, G. David,1998,Rhetoric, narrative and argument in Bruno Latour ’s Science in Action,http://www.umkc.edu/scistud/psa98/index.html.id NH0925208006 sid 874803 cfn 0 / id NH0925230001 auc 闕玎倚 tic 公司治理與信用評等-台灣的實證研究 adc 楊屯山 adc 王國明 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 中文 pg 111 kwc 公司治理指標 kwc 評等系統 kwc 信用評等 kwc 董事會 kwc 違約機率 abc 本文以台灣百大集團為樣本,檢驗董(監)事的監察效能、建構公司治理評等系統、和探討此系統與信用評等指標之關聯性。公司治理(Corporate Governance)這個在台灣似有若無、令人詬病的制度,每每在董(監)事改選的季節,引起討論與質疑。本文除廣納國內外文獻相關公司治理變數外,並考量台灣的企業特性,加入官股比例、交叉董監事等共計27個變數。且改良國內外公司治理評等系統過於主觀的缺點,建構一符合台灣且具客觀量化指標之公司治理指數(Corporate Governance Index; CGI)。再者,本文實證研究發現:CGI藉由影響違約機率,而與信用評等指數(Credit Rating Index, CRI)呈現負向關係。換言之,公司治理越佳(CGI值越高),使得公司之違約風險越低,進而信用評等也會越佳(CRI越低),盼能以此,而有助於台灣公司治理制度的改革;作為信用評等機構將公司治理變數納入信用評等指標中的依據;以及,更精確地警示出具財務危機的公司,以杜絕地雷股事件重演。 rf 中文文獻 ﹡田弘茂、李存修、林建甫、葉銀華和王文宇,2000年8月,「上市(櫃)公司  發生財務危機之案例分析與因應措施之研究」,台灣證券交易所所委託研究報  告。 ﹡柯承恩,2000年4月,「我國公司治理體系之問題與改進建議」,會計研究月  刊173期,頁75-81。 ﹡張勝和,1991,「概論利益輸送」,《稅務旬刊》第1436期,7-10頁。 ﹡楊文慶,1994,「集團企業間非常規交易之類型」,174期,48-54頁。 ﹡嚴信輝和鄭程鴻,2001,「我國企業使用網際網路報導財務資訊之研究」,《當  代會計》2卷2期,頁147-168。 ﹡葉銀華、邱顯比和何憲章,1997,「利益輸送代理問題與股權結構之理論與實  證研究」,《中國財務學刊》第4卷4期,47-73頁。 ﹡葉銀華、李存修和劉容慈,2002,「整合公司治理、會計資訊與總體經濟敏感  度之財務危機模型」,行政院國科會專題研究計畫成果報告,NSC90-2416-H- 030-004。 ﹡葉銀華,2002,「台灣公司治理的問題與改革之道」,《證券暨期貨管理》,即 將刊登。 ﹡葉銀華、柯承恩和李德冠,2002,「公司監理機制對於關係人交易的影響」,2002年台灣財務學術研討會,台灣財務金融學會。 ﹡葉銀華,「股權結構與董監事組成對大股東代理問題的影響:電子業與非電子  業之比較」,未發表論文。 ﹡葉銀華,2002,「從台灣上市公司網站資訊揭露看透明度」,《會計研究月刊》  200期,頁70-77。 ﹡葉銀華,2002年6月8日,「職業股東,有那麼嚴重嗎?」,《中國時報》時論  廣場15版。 ﹡葉銀華,2002年7月15日,「銀行獨立董事應過半」,《中國時報》時論廣場  15版。 ﹡葉銀華,2002年7月23日,「南韓金融改革值得借鏡」,《中國時報》時論廣  場15版。 ﹡葉銀華,2002年7月25、26日,「標準普爾低估台積電公司治理」,《經濟日  報》4版。 ﹡葉銀華,2002年8月3日,「推動公司治理須放棄粉飾太平心態」,《工商時報》  8版。 英文文獻 ﹡Agrawal, A., 1990,“Corporate Capital Structure, Agency Costs, and Ownership Control: The Case of All-Equity Firms,” Journal of Finance 45, 1325-1331. ﹡Agrawal, A., and C. R. Knoeber, 1996,“Firm Performance and Mechanisms to Control Agency Problems between Managers and Shareholders,” Journal of Finance and Quantitative Analysis 31, 377-397. ﹡Altman, E. I., 1968, “Financial Ratios, Discriminate Analysis and the Prediction of Corporate Bankruptcy,” Journal of Finance 23,589-609. ﹡Aoki, M., H. Patrick, and P. Sheard, 1994, “The Japanese Main Bank System: An Introductory Overview,” Japanese Main Bank System: Its Relevancy for Developing and Transforming Economics (Oxford University Press). ﹡Beaver, W. H., 1966.,“Financial Ratios as Predictors of Failure,” Journal of Accounting Research 4,71-102. ﹡Bhagat, S., and B. Black, 1997,“Board Composition and Firm Performance: The Uneasy Case for Majority-Independent Boards,” Working Paper, Columbia University, New York. ﹡Bhagat, S., and B. Black, 1999,“The Uncertain Relationship between Board Composition and Firm Performance,” Business Lawyer 54, 921-963. ﹡Brickley, J. A., J. L. Coles, and R. L. Terry, 1994,“Outside Directors and the Adoption of Poison Pills,” Journal of Financial Economics 35, 371-390. ﹡Business Week, 2002 January 24,“The Best and Worst Corporate Boards,” Cover Story. ﹡Carson. E., 2002,“Factors Associated with the Development of Board Subcommittees,” Corporate Governance: An International Review 10, 4-18. ﹡California Public Employee's Retirement System, April 13, 1998, “Corporate Governance Core Principles and Guidelines.” ﹡Chen, Y., and S. Y. Hu, 2002,“The Controlling Shareholder's Personal Stock Loan and Firm Performance,” 2002 NTU International Conference on Finance, Taipei, Taiwan. ﹡Claessens, S., S. Djankov, and L. Klapper, 1999,“Resolution of Corporate Distress: Evidence from East Asia's Financial Crisis. “The First Annual World Bank Group-Brookings Institution Conference, Palisades, New York. ﹡Claessens, S., S. Djankov, J. Fan, and H. P. Lang, 1999,“Expropriation oh minority shareholders: Evidence from East Asia, “Policy research working paper 2088, The World Bank. ﹡Claessens. S., S. Djankov, and L. H. P. Lang, 2000,“The Separation of Ownership and Control in East Asian Corporation.” Journal of Financial Economics 58,81-112. ﹡Claessens, S., S. Djankov, J. Fan, and H. P. Lang, 2002,“Disentangling the Incentive and Entrenchment Effects of Large Shareholdings,” Journal of Finance, forthcoming. ﹡Core, J. E., R. W. Holthausen, and D. F. Larcker, 1999,“Corporate Governance, Chief Executive Officer Compensation, and Firm Performance,” Journal of Financial Economics 51, 371-406. ﹡Cotter, J. F., A. Shivdasani, and M. Zenner, 1997,“Do Independent Directors Enhance Target Shareholder Wealth during Tender Offers?” Working Paper. ﹡Credit Lyonnais Securities Asia, April 2001,“CG Watch: Corporate Governance in Emerging Markets.” ﹡Cubbin, J., and D. Leech, 1983,“The Effect of shareholding dispersion on the degree of control in British companies: theory and measurement,” The Economic Journal 93, 351-369. ﹡DBS Holding Company, 2001 Annual Report. ﹡Dechow, P. M., and D. J. Skinner, 2000.“Earnings Management: Reconciling the Views of Accounting Academics, Practitioners, and Regulators,” Accounting Horizons 14, 235-250. ﹡Deller, D., M. Stubenrath, and C. Weber, 1999,“A Survey of the Use of the Internet for Investor Relations in the USA, UK and Germany,” European Accounting Review 8, 351-364. ﹡Dodwell Marketing Consultant, 1982, Industrial Groupings in Japan (Dodwell, Tokyo). ﹡Dowers, K.A., 1997, “Corporate Governance in the Mutual Fund Industry: Board Structure and Director Compensation”, Working paper, The State University of New York at Buffalo. ﹡Eisenberg, T., S. Sundgren, and M. T. Wells, 1998,“Larger Board Size and Decreasing Firm Value in Small Firms,” Journal of Financial Economics 48,35-54. ﹡Faccio. M., and L. H. P. Lang, 2002,“The Separation of Ownership and Control: An Analysis of Ultimate Ownership in Western European Corporations,” Journal of Financial Economics, forthcoming. ﹡Fama, E., and M. Jensen, 1983,“Separation of Ownership and Control,” Journal of Law and Economics 26, 301-325. ﹡Fan, P. H., and T. J. Wong, 2002,“Corporate Ownership Structure and the Informativeness of Accounting Earnings in East Asia,” Journal of Accounting and Economics, forthcoming. ﹡Ferris, S. P., R. Kumar, and A. Sarin, 1995. “The Role of Corporate Groupings in Controlling Agency Conflicts: The case of keiretsu,” Pacific-Basin Finance Journal 3, 319-335. ﹡Financial Accounting Standard Board, 2000,“Business Reporting Research Project: Electronic Distribution of Business Reporting Information”. ﹡Gillan. S. L., and L. T. Stark, 2000,“Corporate Governance Proposals and Shareholder Activism: The Role of Institutional Investors,” Journal of Financial Economics 57, 275-305. ﹡Gray, G. L.. and R. Debreceny. 1997. "Locking the Internet Door," Australian Accountant 67.26-28. ﹡Healy, P. M., and J. M. Wahlen, 1999,“A Review of the Earnings Management Literature and Its Implications for Standard Setting,” Accounting Horizons 13, 365-383. ﹡Hermalin, B. E., and M. Weisbach, 1991,“The Effects of Board Composition and Direct Incentives on Firm Performance,” Financial Management 20,101-112. ﹡Hermalin. B. E., and M. Weisbach, 1988,“The Determinants of Board Composition,” RAND Journal of Economics 19, 589-606. ﹡Hermalin, B. E., and M. Weisbach, 2001,“Board Directors as an Endogenously Determined Institution: A Survey of the Economic Literature,” NBER Working Paper No.8161. ﹡Hopwood, W., J. C. Mckeown, and J. F. Mutchler, 1994,“A Reexamination of Auditor versus Model Accuracy within the Context of the Going-Concern Opinion Decision,” Contemporary Accounting Research 10, 409-432. ﹡Hussey, R., J. Guilliford, and A. Lymer, 1999,“UK Corporate Financial Communications on the Internet,” Deloitte Touche Tohmatsu, UK. ﹡Jensen, M. C., and R. S. Ruback, 1983,“The market for corporate control: The scientific evidence,” Journal of Financial Economics 11, 5-50. ﹡Jensen, M. C., and W. H. Meckling, 1976,“Theory of the firm: Managerial behavior, agency cost and ownership structure,” Journal of Financial Economics 3, 305-360. ﹡Jensen, M. C., 1993,“The Modern Industrial Revolution, Exit and the Failure of Internal Control System,” Journal of Finance 48, 831-880. ﹡John, K., and L. W. Senbet, 1998, Corporate Governance and Board Effectiveness,” Journal of Banking and Finance 22, 371-403. ﹡Johnson, S., P. Boone, A. Breach, and E. Friedman, 2000,“Corporate Governance in the Asian Financial Crisis,” Journal of Financial Economics 58,141-186. ﹡Kang, J. K., and A. Shivdasani, 1995,“Firm Performance, Corporate Governance, and Top Executive Turnover In Japan,” Journal of Financial Economics 38, 29-58. ﹡Kang, J. K., and A. Shivdasani, 1999,“Alternative Mechanism for Corporate Governance in Japan: An Analysis of Independent and Bank-Affiliated Firms,” Pacific-Basin Finance Journal 7, 1-22. ﹡Kang, J. K., and R. Stuiz, 2000,“Do Banking Shocks Affect Borrowing Firm Performance? Analysis of the Japanese Experience,” Journal of Business 73, 1-23. ﹡Kaplan, S. N., and D. Reishus, 1990,“Outside Directorships and Corporate Performance,” Journal of Financial Economics 27, 389-410. ﹡Kaplan, S. N., 1994a,“Top Executives Rewards and Firm Performance: A Comparison Of Japan And The U.S.,” Journal of Political Economy 102, 510-546. ﹡Kaplan. S. N., 1994b,“Corporate Governance In Germany, Japan And The United States: A Comparison,” Research in International Business and Finance 12, 253-260. ﹡Kaplan, S. N., 1994c.“Top Executives Turnover and Firm Performance in Germany,” Journal of Law, Economics and Organization 101, 142-159. ﹡Kaplan, S. N., and B. A. Minton, 1994,“Appointments of Outsiders to Japanese Boards: Determinants and Implications for Managers.” Journal of Financial Economics 36, 225-258. ﹡Karpoff, J. M., Marr, Jr, M.W., and Danielson, M.G., 1994, “Corporate Governance and Firm Performance”, Working paper, University of Washington. ﹡Klein, A., 1998,“Firm Performance and Board Committee Structure,” Journal of Law and Economics 41, 275-303. ﹡La Porta, R., F. Lopez-de-Silanes, A. Shieiter, and R. Vishny, 1997, “Legal Determinants of External Finance,” Journal of Finance 52, 1113-1155. ﹡La Porta, R., F. Lopez-de-Silanes, A. Shieifer, and R. Vishny, 1998, “Law and Finance,” Journal of Political Economy 106, 1113-1155. ﹡La Porta, R., F. Lopez-de-Silanes, and A. Shieifer, 1999,“Corporate Ownership around the World,” Journal of Finance 54, 471-517. ﹡La Porta, R., F. Lopez-de-Silanes, A. Shieifer, and R. W. Vishny, 2000, “Investor Protection and Corporate Governance,” Journal of Financial Economics 58, 3-27. ﹡La Porta, R., F. Lopez-de-Silanes, A. Shieifer, and R. W. Vishny, 2002, “Investor Protection and Corporate Valuation,” Journal of Finance, forthcoming. ﹡Lee, T. S. and Y. H. Yeh, 2001,“Corporate Governance and Financial Distress: Evidence from Taiwan,”2001 Asia Pacific Finance Association Conference, Bangkok, Thailand. ﹡Lehn, K., J. Netter and A. Polilsen, 1990,“Consolidation Corporate Control: Dual Class Recapitalisations versus Leverage Buyout,”Journal of Financial Economics 27, 347-376. ﹡Lemmon, M. L., and K. V. Lins, 2001,“Ownership Structure, Corporate Governance, and Firm Value: Evidence from the East Asian Financial Crisis,” The Third Annual Conference on Financial Market Development in Emerging and Transition Economies, Hong Kong University of Science and Technology. ﹡Lipton. M., and J. Lorsch, 1992,“A Modest Proposal for Improved Corporate Governance,” Business Lawyer 59, 59-77. ﹡Lorsch, J. L., and E. M. MacIver, 1989, Pawns or Potentates? The Reality of American's Corporate Board (Harvard Business School Press, Boston). ﹡Lymer, A., 1997,“The Use of the Internet in Company Reporting: A Survey and Commentary on the Use of the WWW in Corporate Reporting in the UK,” the British Accounting Association Annual Conference, Belgium. ﹡Lymer, A., and A. Tallberg. 1997,“Corporate Reporting and the Internet - A Survey and Commentary on the Use of WWW in Corporate Reporting in the UK and Finland,” the 20th Annual Congress of the European Accounting Association, Graz, Austria. ﹡Lymer, A., R. Debreceny, G. L. Gray, and A. Rahman, 1999,“Business Reporting on the Internet,” IASC Research Study. ﹡Martin, K. J,. and J. J. McConnell, 1991,“Corporate Performance, Corporate Takeovers, and Management Turnover,” Journal of Finance 46, 671-687. ﹡McKinsey & Company, June 2002,“Investor Opinion Survey.” ﹡Mishkin, F. S., 1998,“The Economics of Money, Banking and Financial Markets,” Fifth Edition, p.248 , Addison-Wesley Inc. ﹡Morck, R., A. Shieifer, and R.W. Vishny, 1988,“Management ownership and market valuation: an empirical analysis,” Journal of Financial Economics 20, 293-315. * Organisation for Economic Co-operation and Development, 1999,“OECD Principles of Corporate Governance." ﹡Ohlson, J. A., 1980,“Financial Ratios and the Probabilistic Prediction of Bankruptcy,” Journal Accounting Research 18, 109. ﹡Palepu, K., 1985,“Diversification Strategy, Profit Performance and the Entropy Measure,” Strategic Management Journal 6, 239-255. ﹡Petravick, S., and J. Gillett, 1996,“Financial Reporting on the World Wide Web,” Management Accounting 78, 26-29. ﹡Petravick, B., H. Schader, and A. Wagehofer, 1999,“Financial Information on the Internet - A Survey of the Homepages of Austrian Companies,” European Accounting Review 8, 383-395. ﹡Price Waterhouse, 1995, Corporate Taxes: A Worldwide Summary (Price Waterhouse Center for International Taxation, New York). ﹡Prowse, S., 1998,“Corporate Governance: Emerging Issues and Lessons from East Asia,” Responding to the Global Financial Crisis-World Bank mimeo. ﹡Rajan, R., and L. Zingales, 1998,“Which Capitalism? Lessons from the East Asian Crisis,” Journal of Applied Corporate Finance, forthcoming. ﹡Rose, R. S., W. T. Andrews, and G. A. Giroux, 1982,“Predicting Business Failure: A Macroeconomic Perspective,” Journal of Accounting, Auditing, and Finance 6, 20-31. ﹡Rosenstein, S., and J. G. Wyatt, 1990,“Outside Directors Board Independence, and Shareholder Wealth,” Journal of Financial Economics 26, 175-192. ﹡Rosenstein. S., and J. G. Wyatt, 1997,“Inside Directors, Board Effectiveness and Shareholder Wealth,” Journal of Financial Economics 44, 229-250. ﹡Semkow, B. W., 1994,“Chinese Corporate Governance and Finance in Taiwan,” Journal of International Banking and Financial Law, December, 528-540. ﹡Shleifer, A., and R. Vishny, 1986,“Large Shareholders and Corporate Control,” Journal of Political Economy 94, 461-488. ﹡Shleifer, A., and R. Vishny, 1997,“A Survey of Corporate Governance,” Journal of Financial Economics 52, 737-783. ﹡Shivdasani, A., and D., Yermack, 1999,“CEO Involvement in the Selection of New Board Members: An Empirical Analysis,” Journal of Finance 54, 1829-1853. ﹡Schipper, K., 1989,“Commentary on Earnings Management,” Accounting Horizons 3,91-102. ﹡Standard & Poor's Company, January 2002,“Standard & Poor's Corporate Governance Scores: Criteria, Methodology and Definitions.” ﹡Standard & Poor's Company, 2001,“Standard & Poor's Company Transparency & Disclosure Survey 2001,” Asia-Pacific 100. ﹡Standard & Poor's Company, 2001,“Standard & Poor's Company Transparency & Disclosure Survey 2001,”S&P/IFC Emerging Asia. ﹡Tirapat, S., and A. Nittayagasetwat, 1999,“An Investigation of Thai Listed Firms' Financial Distress Using Macro and Micro Variables,” Multinational Finance Journal 3, 103-126. ﹡Weinstein, D., and Y. Yafeh, 1998,“On the Costs of a Bank-Centered Financial System,"Journal of Finance 53, 635-672. ﹡Whitaker, R. B., 1999,“The Early Stages of Financial Distress,” Journal of Economics and Finance 23, 123-132. ﹡World Bank, 1999,“Corporate Governance: A Framework for Implementation- Overview,”p5. ﹡Yeh, Y. U., T. S. Lee and T. Woidtke, 2001,“Family Control and Corporate Governance: Evidence for Taiwan,” International Review of Finance 2, 21-48. ﹡Yeh, Y. U., 2001,“Do the Controlling Shareholder Enhance Corporate Value?" The 14th Annual Australasian Finance and Banking Conference. Sydney, Australia. ﹡Yeh, Y. H., Y. W. Yang, and Y. L. Hsu, 2002,“Misjudgment of Controlling Shareholder: Lessens from Financial Distress,” Working Paper. ﹡Yeh, Y. H., and T. S. Lee, 2002,“Corporate Governance and Corporate Equity Investments: Evidence from Taiwan,” The 9th Global Finance Conference, Beijing, China. ﹡Yeh, Y. H., 2002 July,“Board Composition and the Separate of Ownership from Control,” The 2002 Asia Pacific Finance Association Annual Conference, Tokyo, Japan. ﹡Yermack, D., 1996,“Higher Market Variation of Companies with a Small Board of Directors,” Journal of Financial Economics 40, 185-211. ﹡Zmijewski, M. E., 1984,“Methodological issues Related to the Estimation of financial Distress Prediction Models,” Supplement Journal of Accounting Research, 59-82. 網站資料 ﹡DBS網站http://www.dbs.com.sg。 ﹡Standard & Poor's網站http://www.standardpoor.com。 ﹡財政部證期會網站http://www.sfc.gov.tw。 ﹡證券暨期貨市場發展基金會網站http://www.sfi.org.tw。 ﹡台積電網站http://www.tsmc.com.tw。id NH0925230001 sid 906404 cfn 0 / id NH0925230002 auc 宋玟萱 tic 危機管理-台灣SARS個案探討 adc 黎正中 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 中文 pg 90 kwc 嚴重急性呼吸道症候群 kwc 危機管理 kwc 行政院衛生署 kwc 台北市政府 abc 本研究之目的是要瞭解行政院衛生署以及台北市政府,在2003年春季嚴重急性呼吸道症候群(Severe Acute Respiratory Syndrome,SARS),不同時期之危機處理過程以及採取的相關因應措施作為探討,以供台灣未來醫療事件危機處理之參考。 tc 摘要 I Abstract II 誌謝詞 III 目錄 IV 表目錄 V 圖目錄 V 第一章 導論 1 第一節 研究動機 1 第二節 研究目的 2 第三節 研究流程架構 3 第二章 文獻探討 4 第一節 危機 4 第二節 危機管理 7 第三節 小結 11 第三章 研究方法 12 第一節 研究策略 12 第二節 資料來源 13 第三節 資料分析方式 15 第四章 嚴重急性呼吸道症候群(SARS) 16 第一節 SARS(Severe Acute Respiratory Syndrome)簡介 16 第二節 全球 SARS事件發展始末 22 第五章 個案探討 24 第一節 SARS危機潛伏期 24 第二節 SARS危機爆發期 29 第三節 SARS危機延續期 38 第四節 SARS危機解決期 54 第六章 結論與建議 60 參考文獻 63 中文文獻 63 英文文獻 65 附錄一:全球SARS病例統計表 67 附錄二:SARS防治紓困委員會之政策 68 附錄三:訪談紀錄 70rf 中文文獻 王一芝,2003,「慎防SARS捲土重來走在疫情之前」,經典雜誌,60期:58-69。 王為勤、李宜萍,2003,「企業與病毒」,管理雜誌,347期:33-41。 丘昌泰,2002,「危機管理」,研習論壇,23期:15-25。 石曜堂等,2003,「從SARS抗疫,談危機總動員」,國家衛生研究院簡訊,8(3):2-7。 吳迎春、陳延昇、簡大為,2003,「後SARS時代經營管理」,天下雜誌,275期:40-51。 李宗勳,1999,「危機管理與戰略思維-幾個概念的檢視與省思」,中央警察大學學報,34期:105-134。 沈西麟,2002,「危機處理的理論與實務讀後感」,研習論壇,13期:25-48。 明居正,1998,「危機管理實務 (下)」,人事月刊,27(1):12-14。 明居正,1998,「危機管理實務 (上)」,人事月刊,26(6):15-19。 邱宏仁,2003,「後SARS時代企業全球應變策略」,管理雜誌,349期:42-44。 邱志淳,2002,「危機管理與應變機制 (下)」,研習論壇,20期:16-19。 邱志淳,2002,「危機管理與應變機制 (上)」,研習論壇,19期:35-40。 邱強,2001,危機處理聖經,台北市:天下遠見。 邱毅,2001,「全面危機管理的案例分析」,經濟前瞻,73期:115-119。 邱毅,1998,「透視危機管理的內涵」,經濟前瞻,59期:114-121。 孫本初,1996,「危機管理策略之探討」,人事月刊,22(6):17-29。 翁興利,1998,「危機管理之個案研究-以豬隻口蹄疫感染為例」,理論與政策,12(2):109-123。 尉謄蛟(翻譯),1993,「危機管理的實例與教訓-耐及如何化解拒買運動的危機」,世界經理文摘,81期:36-48。(原作者:Janice E. J. and William T. S.) 許家偉,2003,「香港SARS的擴散及疫情」,科學月刊,34(5):401-407。 陳乃菁,2004,「SARS重返中國,全球防疫再拉警報」,新台灣新聞周刊,423期:90-91。 楊玉齡,2003,「SARS病毒與人類」,科學人雜誌特別企畫,pp 4-7。 詹中原、吳文雪,2003,「整合的危機管理體系-以九二一震災為例」,研習論壇,25期:20-30。 詹宇鈞等,2003,「SARS之役-一個地區醫院之感控作為」,臨床醫學,52(2): 100-106。 廖訓銓,1999,「危機管理理論及分析之概述」,立法院院聞,27(12):83-101。 編輯部,1993,「危機管理的原則」,世界經理文摘,81期:49-52。 蔡佳珊,2003,「萬年之瘟-解讀人類疫病史」,經典雜誌,60期:46-57。 蔡進雄,1998,「組織危機管理策略」,人力發展,57期:52-59。 蘇顯揚,2003,「SARS影響亞洲國家經濟成長」,經濟前瞻,88期:40-43。 英文文獻 Augustine NR. 1995. “Managing the crisis you tried to prevent”, Harvard Business Review. 73(6):147-158. Barton L.1993. Crisis in Organizations: Managing and Communicating in the Heat of Chaos. Cincinnati: South-Western Publishing Company. Bland M. 1996. “Training managers to handle a crisis”, Training & Management Development Methods, 10(1): 905-907. Buchanan D, Boddy D, McCalman, J. 1988. “Getting In, Getting On, Getting Out, Getting Back”, in Bryman, A. (ed) Doing Research in Organizations. London: Routledge. Clark J. 1995/1996. “Hope for the best, but plan for the worst - the need for disaster planning”, Employment Relations Today, 22(4): 41-53. Darling JR, 1994. “Crisis management in international business: keys to effective decision making“, Leadership & Organization Development Journal, 15(8): 3-8. Fearn-Banks K. 1996. Crisis Communication: A Casebook Approach. NJ: Lawrence Erlbaum Associates Publishers. Fink S, 1968. Crisis Management: Planning for the Inevitable. New York: American Management Association. Gigliotti R, Ronald J. 1991. Emergency Planning for Maximum Protection. New York: Butterworth-Heinemann. Hermann CF. 1963. “Some consequences of crisis which limit the viability of organizations”, Administrative Science Quarterly, 8: 61-82. Kash TJ, Darling JR. 1998. “Crisis management: a survey of property development firms”, Leadership & Organization Development Journal, 19(4): 179-186. King G III. 2002. “Crisis management & team effectiveness: a closer examination”, Journal of Business Ethics, 41(3): 235-249. Kovoor-Misra S, Nathan M. 2000. “Timing is everything: the optimal time to learn from crises”, Review of Business, 21(3/4): 31-36. Lerbinger O. 1997. The Crisis Manager Facing Risk and Responsibility. New Jersey: Lawrence Erlbaum Associates. Lurie GD, Ahearn JM. 1991. “Ten rules for successful crisis management “, Leadership & Organization Development Journal, 12(2): 1-3. McIntyre MG. 1998. The Management Team Handbook: Five Key Strategies for Maximizing Group Performance. San Francisco: Jossey-Bass. NyBlom SE, Reid J, Coy WJ, Walter F. 2003. “Understanding crisis management”, Professional Safety, 48(3): 18-24. Pearson CM, Clair JA. 1998. “Reframing crisis management”, Academy of Management Review, 23(1): 59-76. Pearson CM, Mitroff II. 1993. “From crisis prone to crisis prepared: a framework for crisis management “, The Academy of Management Executive, 7(1): 48-59. Pheng LS, Ho DKH, Ann YS. 1999. “Crisis management: a survey of property development firms”, Property Management, 17(3):231-251. Smits SJ, Ezzat N. 2003. “Thinking the unthinkable - leadership's role in creating behavioral readiness for crisis management”, Competitiveness Review, 13(1): 1-23. Stafford G, Yu L, Armoo AK. 2002. “Crisis management and recovery: how Washington, D.C., hotels responded to terrorism”, Cornell Hotel and Restaurant Administration Quarterly, 43(5): 27-40. Will P. 1996. “Crisis management”, Career Development International, 1(5): 26-28. Yin, R. A. 1994. Case Study Research: Design and Methods, 2nd edition. London: Sage.id NH0925230002 sid 906492 cfn 0 / id NH0925230003 auc 徐之昇 tic 策略聯盟與企業績效關係:美國製藥產業之實證研究 adc 林博文 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 中文 pg 58 kwc 製藥產業 kwc 策略聯盟 kwc 創新能力 kwc 企業績效 abc 本篇論文主要探討製藥產業不同的企業特性對企業績效的影響,探討企業規模、企業經費投入密度、無形資產數目以及外部資源等對企業績效關係之影響。透過整合資料庫的迴歸分析,本研究發現並獲得以下結論:一、藥廠的營運效率績效主要來自於員工人數的多寡,而藥廠資金愈雄厚並不會幫助營運效率的提升,反而有時會有反效果的情形發生。二、藥廠之研發投資密度大小對於企業的創新產出效率有顯著的正向關聯性存在,而管銷經費投資的比例愈高時,則會有較高的市場價值。三、當藥廠的專利數愈多時,代表企業的無形資產愈多,而企業的績效也相對會較好。四、藥廠之過去聯盟經驗總數量與企業績效間無明顯的關係存在;不過,進一步依照新藥研發之不同階段將研發策略聯盟數量區分為發現階段、臨床前試驗階段、人體臨床試驗階段三項階段之策略聯盟數量來做進一步分析研究時,企業之前期產品聯盟(數量)與企業的績效表現雖然較無顯著關係,但企業愈後期產品聯盟(數量)與企業之聯盟績效有正向且顯著的關係,意即後期階段產品的聯盟比早期階段產品聯盟有更好的企業績效表現。五、藥廠研發投入密度與臨床前試驗階段聯盟數量和人體臨床試驗階段聯盟數量卻有相當大程度的交互作用關係,尤以愈後期的人體臨床試驗階段聯盟數量交互作用更大,意即他們之間有互依的關係存在,也因此,研發投入密度與愈後期階段聯盟數量對於在本研究所探討之應變數的干擾效果愈大。 rf 中文文獻 1. 財團法人生物技術開發中心 (民90),「2001製藥產業年鑑」 2. 湯珮妤 (民89),「企業類型與研發之初、專利權成效遞延效果研究」, 國立中正大學會計研究所碩士論文 英文文獻 1. Aaker, D.A. (1992), “Developing Business Strategies”, 3 ed., New York: John Wiley & Sons. 2. Aboody, D. and Lev, B. (2001), “R&D Production in The Chemical Industry,” Working paper, New York University. 3. Achilladelis, B., Schwarzkopf, A. and Cines, M. (1987), “A Study of Innovation in the Pesticide Industry: Analysis of the Innovation Record of an Industrial Sector,” Research Policy, 16(2-4), pp.175-212. 4. Ahuja, G. and Katila, A. (2001), “Technological Acquisitions and the Innovation Performance of Acquiring Firms: A Longitudinal Study,” Strategy Management Journal, 22(3), pp.197-220. 5. Anand, B. and T. Khanna (2000), “Do Firms Learn to Create Value? The Case of Alliances,” Strategic Management Journal, 21, pp.295-316. 6. Balakrishnan, S. and Wernerfelt, B. (1986), “Technical Change Competition and Vertical Integration”, Strategic Management Journal, 7, pp.347-359. 7. Barney, J. B. (1997), “Gaining and Sustaining Competitive Advantage,” New York: Addition-Wesley Publishing Company. 8. Baum, J. A. C., Calabrese, T. and Silverman, B. S. (2000), “Don’t Go it Alone: Alliance Network Composition and Startups’ Performance in Canadian Biotechnology,” Strategic Management Journal, 21, pp.267-294. 9. Borys. and Jemison, D.B. (1989), “Hybrid Arrangements as Strategic Alliances: Theoretical Issues in Organizational Combinations”, Academy of Management Review, 14(2), pp.234-249. 10. Brenner, M.S. and Ruchton, B. M. (1989), “Sales Growth and R&D in the Chemical Industry”, Research Technology Management, 32, pp.8-15. 11. Burrill, G. S.and Biotech (2001), The Biotechnology Industry Annual Report, Burrill & Company 12. Calazo (1993), “Face to Face/ Strategic Alliances Keep Customers Plugged in”, Management Review 13. Carolis, D. M. and Deeds, D. L. (1999), “The Impact of Stocks and Flows of Organizational Knowledge on Firm Performance: An Empirical Investigation of the Biotechnology Industry,” Strategic Management Journal, 20, pp.953-968. 14. Chakrabarti, A. K. and Weisenfeld, U. (1991), “An Empirical Analysis of Innovation Strategies of Biotechnology Firms in The US”, Journal of Engineering and Technology Management, 8, pp.137-164. 15. Chen, H., Hu, M. and Shieh, J.(1991),“The Effect of International Joint Ventures: Thecase of U.S. investment in China,” Journal of Banking and Finance, 24, pp.1747-1765. 16. Chung, K. H. and Pruitt, S. W. (1994), “A Simple Approximation of Tobin’s q,” Financial Management, 23, pp.70-74. 17. Contractor, F.J. and Lorange, P. (1998), “Why Should Firm Cooperate?The Strategy and Economics Basis For Cooperative Ventures,” Cooperative Strategies in International Business, Lexingion Books. 18. David, B A. and Maryann, P. F. (2003), “Technology Analysis & Strategic Management.” Abingdon: 15(2), pp.273. 19. Davlin, G. and Bleackley, M. (1988), “Strategies Alliances-Guidelines for Success”, Long Range Planning, 21(5), pp.18-23. 20. Drucker, P. F. (1993), “Managing in Tmrbulent Times”, Harper & Row, New York, Reprint edition. 21. Eerden, C. and Saelens, F. H. (1991), “The Use of Science and Technology Indicators in Strategic Planning,” Long Range Planning, 24(3), pp.18-25. 22. Erica, W. and Jane, B. D. (1994), “A Shift to External Alliances for Product Development in The Pharmaceutical Industry” R&D Management, 24(3), pp.249-260. 23. Evans, H., Ashworth, G., Chellew, M., Davidson, A. and Tower, D. (1996), “Exploiting Activity-Based Information: Easy as ABC,” Management Accounting, 74, Jul-Aug., pp.24-29. 24. Franco, L. G. (1989), “Global Corporate Competition: Who’s Winning, Who’s Losing, and the R&D Factor as One Reason Why”, Strategic Management Journal, 10, pp.449-474. 25. Frank, T. R. (2001), “Complementary Assets, Strategic Alliances, and The Incumbent’s Advantage: An Empirical Study of Industry and Firm Effects in The Biopharmaceutical Industry” Research Policy, 30, pp.1235-1251. 26. Ghertman, M. & Obadia, J. (1992), “Balance of Complementary Assets and Stability Conditions of a Dynamic Transaction Theory of Alliances: The Cost of US Biotechnology”, Working Paper, Chamber de Commerce et D’industrie de Paris. 27. Glaister, K. M. and Buckley, P. J. (1996), “Strategic motives for international alliance formation”, Journal of Management Studies, 33(3), pp.301-302. 28. Grabowski, H. and Mueller, D. (1978), “Industrial Research and Development, Intangible Capital Stocks, and Firm Profit Rates,” Bell Journal of Economics, 9, pp328-343. 29. Graves, S. B. and Langowitz, N. S. (1993), “Innovative Productivity and Returns to Scale in the Pharmaceutical Industry,” Strategic Management Journal, 14, pp.593-605. 30. Griliches, Z. (1981), “Market Value, R&D, and Patents,” Economic Letters, 7(2), pp.183-187. 31. Griliches, Z. (1989), “Patents: Recent Trends and Puzzles,” Brookings Pap. Econ. Act. Microeconomics, pp.3291-3330. 32. Griliches, Z. (1990), “Patent Statistics as Economic Indicators: A Survey”, Journal of Economic Literature, 28, December, pp.1661-1707. 33. Gupta, A. and Misra, L.(2000), “The Value of Experiential Learning by Organizations: Evidence From International Joint Ventures,” Journal of Financial Research, 23, pp.77-102. 34. Harrigan, K. R. (1987), “Strategic Alliance: Their New Role in Global Competition”, Columbia Journal of World Business, 22(2), pp.67-69. 35. Higgins, J. M. (1995), “The Core Competence: Innovation,” Planning Review, 23(6), pp.32-35. 36. Hill, C. and Deeds, D. (1996), “The Importance of Industry Structure for the Determination of Firm Profitability: A Neo-Austrian Perspective,” Journal of Management Studies, 33(4), pp.429-451. 37. Hitt, M. A., Hoskisson, R. E., Johnson, R. A., and Moesel, D. D. (1996), “The Market for Corporate Control and Firm Innovation,” Academy of Management Journal, 39(5), pp.1084-1119. 38. Hirschey, M. (1982), “Intangible Capital Aspects of Advertising and R&D Expenditures,” The journal of Industrial Economics, 30, pp.375-390. 39. Hirschey, M., and Weyandt, J. (1985), “Amortization Policy for Advertising and Research and Development Expenditures,” Journal of Accounting Research, 23, pp.326-335. 40. Holt, K. (1988), “The Role of User in Product Innovation,” Technovation, 12(5), pp.53-56. 41. Hula, G. (1989), “Intangible Capital, Market Share and Corporate Strategy,” Applied Economics, l21, pp.1535-1547. 42. Jensen, E. J. (1987), “Research Expenditures and the Discovery of New Drugs,” Journal of Industrial Economics, 36, pp.83-95. 43. Joel, A. C., Baum, Tony, C. and Brian S. S. (2000), “Don’t Go It Alone: Alliance Network Composition and Startups’ Performance in Canadian Biotechnology” Strategic Management Journal, 21, pp.267-294. 44. John, H. and Schakenrad, O. (1994), “The Effect of Strategic Technology Alliances on Company Performance”, Strategic Management Journal, 15, pp.291-309. 45. Jung, J. (2000), “Creating Value Through Innovation.” IBM Institute for Business Value, December 2000 46. Killing, J. P. (1988),”Understanding Alliances: The Role of Task and Organizational Complexity”, Cooperative Strategies in International Business, in F.J. Contractor and P.Lorange, Mass. Toronto: D.C. Health & Co. Lexington. 47. Kogut, B. and Singh, H. (1985), “Entering the United States by Acquisition or Joint Venture: Country Patterns and Cultural Characteristics”, Working Paper, Jones Center, The Wharton School, Univ. of Penn. 48. Krubasik, E. and Lautenschlager, H. (1993), “Forming Successful Strategic Alliance in High-Tech Business, Chapter 4 of Joel Blecke and David Ernst (eds.), Collaborating to Compete-using Strategic Alliance and Acquisitions in the Global Marketplace”, New York: Wiley, pp.53-65. 49. Levitt, B. and March, J. G. (1988), “Organizational Learning,” Annual Review of Sociology, 14, pp.319-340. 50. Lewis, J. D. (1990), “Partnerships for profit”, N.Y.: The Free Press. 51. Lindenberg, E. B. and Ross, S. A. (1981), “Tobin’s q Ratio and Industrial Organization,” Journal of Business, (Jan), pp.1-32. 52. Lorange, P. and Roos, J. (1992), “Strategic Alliance: Formation Implementation and Evolution”, Massachusetts: Blackwell. 53. Lynch, R. P. (1989), “The Pratical Guide to Joint Venture and Corporate Alliance”, New York: John Wiley & Son. 54. Mason, J. C. (1993), “Strategic alliances: Partnering for success”, Management Review, pp.320-325. 55. Miller, D. (1982), “ The Correlated of Entrepreneurship in Three Types of Firm”, Management Science, 29, Jan, pp.770-791. 56. Mohr, J. and Spekman, R. (1994), “Characteristics of Partnership Success: Partnership Attributes, Communication Behavior, and Conflict Resolution Techniques”, Strategic Management Journal, 15, pp.135-152. 57. Monck, C. S., Porter, R. P., Quintas, P., Storey, D. J., and Wynarczyk, P. (1988), “Science Parks and the Growth of High Technology Firms.” London: Croom Helm. 58. Murray, J. E. and J. F. Mahon (1993), “Strategic Alliance: Gateway to the New Europ,” Long Range Planning, 26(4), pp.102-111. 59. Nordhaus, W. (1969), “An Economics Theory of Technological Changes.” Amer. Econ. Rev., 59(2), pp.18-28. 60. Nueno, P. and Oosterveld, J. (1988), “Management Technological Alliances”, Long Range Planning, 21(3), pp.11-17. 61. Pakes, A. and Griliches, Z. (1984), “Patents and R&D at the Firm Level: A First Look.”, J. Polit. Econ., pp.55-72. 62. Pakes, A. (1985), “On Patents, R&D and The Stock Market Rate of Returm.”, J. Polit. Econ., 93(2), pp.390-409. 63. Parkhe, A. (1991), “Interfirm Diversity, Organization Learning and Longevity in Global Strategic Alliance”, Journal of International Business Studies, Fourth Quaeter, pp.579-601. 64. Pekar, J. P. and Allio, R. (1994), “Making Alliances Work—Guidelines for Success”, Long Range Planning, 27(4), pp.54.65. 65. Perlmutter, H. V. and Heenan, D. A. (1986), “Cooperate to Compete Globally”, Harvard Business Review, Mar./Apr., pp.136-152. 66. Porter, M. E. and Fuller, M. B. (1986), “Coalitions and Global Strategy”, in M.E. Porter(ed.),Competitive in Global Industries, Boston, MA: Harvard Business School Press, pp.315-343. 67. Quinn, R. E. and Rohrbaugh, J. (1983), “A Spatial Model of Effectiveness Criteria: Towards A Competing Values Approach to Organizational Analysis”, Management Science, 29(3), March, pp.363-377. 68. Richard, M. and Steers (1975), “Problems in the Measurement of Organizational Effectiveness”, Administrative Science Quarterly, 20, pp.546-558. 69. Root, F. R. (1988), “Some Taxonomies of International Cooperative Arrangement”, in F.J. Contractor and P. Lorange, Cooperative Strategic in International Business, Mass./Toronto: D.C. Heath & Co./Lexington. 70. Rothwell, R. (1986), “Public Innovation Policy: To Have or to Have not ?” R&D Management, 16(1), pp.25-37. 71. Scherer, F. M. (1985)., “Firm Size, Market Structure, Opportunity, and The Output of Patented Inventions”, American Economic Review, 55, pp.27-34. 72. Schmookler, J. (1996), “Invention and Economics Growth.”, Cambridges: Harvard U. Press, MA. 73. Schumpeter, J.A. (1934)., “The Theory of Economic Development”, Cambridges: Harvard University Press, MA. 74. Sierra, M.C. (1995), “Managing Global Alliances—Key Steps for Successful Collaboration”, Addison-Wesley Publishing Company. 75. Souder and Nassar (1990), “Choosing and R&D Consortium”, Research Technology Management, pp.36-41. 76. Sougiannis, T. (1994), “The Accounting Based Valuation of Corporate R&D,” The Accounting Review, 69(1), pp.44-68. 77. Takac, P. F. and Singh, C. P. (1992), “Strategic in Banking”, Management Decision, 30 (1), pp.32-43. 78. Tobin, J. and Brainard, W. (1968), “Pitfalls in Financial Model Building,” American Economic Review, 59, pp.99-102. 79. Venkatraman, N. and Vasudevan, R. (1986), “Measurement of Business Performance in Strategy Research: A Comparison of Approaches”, Academy of Management Review, 11, pp.801-814. 80. Walter, W. P., Kenneth, W. K. and Laurel, S. D. (1996), “Interorganizational Collaboration and The Locus of Innovation: Networks of Learning in Biotechnology” Administrative Science Quarterly, 41, pp.116-145. 81. Willard, G. and Woo, C.Y. (1983), “Performance Representation in Business Police Research: Discussion and Recommendation”, Paper Presented at The 43rd Annual National Meetings of The Academy of Management, Dallas. 82. Williamson, O. E. (1975), “Markets and Hierachies: Analysis and Antitrust Implications”, New York: Free Press. 83. Yoshino, M. Y. and Srinivasa, R. U. (1995), “Strategic Alliances-An Entrepreneurial Approach to Globalization”, Boston.: Harvard Business School Press, MA. 84. Yuan-Chieh Chang (2003), “Benefits of Co-operation on Innovative Performance: Evidence from Integrated Circuits and Biotechnology Firms in The UK and Taiwan” R&D Management, 33(4), pp.425-437. 85. Zuckerman, H. S. and Aunno, T. A. (1990), “Hospital Alliances: Cooperative Strategy in a Competitive Environment”, Health Care Management Review,15(2), pp.21-30.id NH0925230003 sid 916401 cfn 0 / id NH0925230004 auc 蕭詠璋 tic 運用社會資本以追求企業創業 adc 洪世章 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 中文 pg 44 kwc 社會資本 kwc 創業家精神 kwc 趨勢科技 kwc 台積電 kwc 創業 abc 企業創業很關鍵的因素在於獲取資源,而對於資源的獲取必須是透過和資源有接觸的機會,才能獲得資源。獲取資源之策略很多,也各有不同的理論支持,但很多學者都強調社會資本的重要性,社會資本是獲取資源的媒介,能促進創業行動。在此,本研究擷取社會資本理論的觀點,認為創業者的社會關係會使創業者獲取機會、受到激勵及取得能力,而社會資本便來自於網絡成員間的社會關係,因此創業者可利用鑲嵌在人際交往關係之中的社會資本,以開創一個新企業,進而對於個人與社會福利有所貢獻。在實際應用上,本研究採用比較個案研究方法,探討趨勢科技和台積電二家企業個案之社會資本運用,說明他們如何透過社會資本,以取得創業所需的資源,進而開創一個新企業。本文最後討論理論、實務意涵,以及未來研究建議。 rf 參考文獻 張明正、陳怡蓁,2003,擋不住的趨勢:超國界的管理經驗,台北市:天下遠見出版股份有限公司 莊素玉、季欣麟,2000,張明正打出趨勢科技的高科技品牌,台北市:天下遠見出版股份有限公司 張明正、陳怡蓁,1999,@趨勢:全球第一Internet防毒公司創業傳奇,台北市:天下遠見出版股份有限公司 商周編輯顧問,2001,閱讀張忠謀-半導體教父的成功傳奇,台北市:商周編輯顧問股份有限公司 王志仁,2000,創造加值服務的晶圓龍頭,數位時代,12月號,164間C 張忠謀,1998,張忠謀自傳,台北市:天下遠見出版股份有限公司 楊艾俐,1998,IC教父-張忠謀的策略傳奇,台北市:天下遠見出版股份有限公司 Adler, P. S., & Kwon, S. W. 2002. Social capital: Prospects for a new concept. Academy of Management Review, 27(1): 17-40. Aldrich, H. E., & Fiol, C. M. 1994. Fools rush in? The institutional context of industry creation. Academy of Management Review, 19: 645-670. Aldrich, H., & Zimmer, C. 1986. Entrepreneurship through social networks. The Art and Science of Entrepreneurship, 3-23. Baker, W. 1990. Market networks and corporate behavior. American Journal of Sociology, 96: 589-625. Barney, W. E., & Hansen, M. H. 1994. Trustworthiness as a source of competitive advantage. Strategic Management Journal, 15: 175-190. Baron, R. A., & Markman, G. D. 2000. Beyond social capital: The role of social competence in entrepreneurs’ success. Academy of Management Executive, 14(1): 106-116. Bates, S. 1997. Race, self-employment, and upward mobility. Woodrow Wilson Center Press, Washington, DC. Baum, J. A. C., Calabrese, T., & Silverman, B. S. 2000. Don’t go it alone: Alliance network composition and startups’ performance in Canadian biotechnology. Strategic Management Journal, 21: 267-294. Birley, S. 1985. The role of networks in the entrepreneurial process. Journal of Business Venturing, 1: 107-117. Blyler, M., & Coff, R. 2003. Dynamics capabilities, social capital, and rent appropriation: Ties that split pies. Strategic Management Journal, 24: 677-686. Bourdieu, P. 1985. The forms of capital. In J. Richardson (Ed.), Handbook of theory and research for the sociology of education: 241-258. New York: Greenwood. Brass, D. J. 1984. Being in the right place: A structural analysis of individual influence in an organization. Administrative Science Quarterly, 29: 518-539. Brass, D. J. 1992. Power in organizations: A social network perspective. Research of Political Sociology, 4: 295-323. Brown, B., & Butler, J. E. 1995. Competitors as allies: A study of entrepreneurial networks in the U.S. wine industry. Journal of Small Business Management, 33(3): 57-66. Bruderl, J., & Preisendorfer, P. 1998. Network support and success of newly founded businesses. Small Business Economics, 10(3): 213-225. Burt, R. S. 1992. Structural holes: The social structure of competition. Cambridge, MA: Harvard University Press. Burt, R. S. 1997. The contingent value of social capital. Administrative Science Quarterly, 42: 339-365. Cable, D. M., & Shane, S. 1997. A prisoner’s dilemma approach to entrepreneur-venture capitalist relationships. Academy of Management Review, 22: 142-176. Cable, D. M., & Shane, S. 1999. A person’s dilemma approach to entrepreneur-venture capitalist relationships. Academy of Management Review, 22: 142-176. Calabrese, T., Baum, J. A. C., & Silverman, B. 2000. Canadian biotechnology start ups, 1991-1997: The role of incumbents’ patents and strategic alliances in controlling competition. Social Science Research, 29(4): 503-534. Coleman, J. S. 1990. Foundations of social theory. Cambridge: Harvard University Press. Das, T. K., & Teng, B. 1998. Between trust and control: Developing confidence in partner cooperation in alliances. Academy of Management Review, 23(3): 491-512. Deeds, D. L., Mang, P. Y., & Frandsen, M. 1997. The quest for legitimacy: A study of biotechnology IPO’s. Frontiers of Entrepreneurship Research, 533-543. Eisenhardt, K. M. 1989. Building theories from case study research. Academy of Management Review, 14(4): 532-550. Freeman, J. 1999. Venture capital as an economy of time. Corporate Social Capital and Liability. Kluwer Academic Publishing, Boston: 460-482. Fukuyama, F. 1995. Trust: The social virtues and the creation of prosperity. New York: Free Press. Gimeno, J., Folta, T. B., Cooper, A. C., & Woo, C. Y. 1997. Survival of the fittest? Entrepreneurial human capital and the persistence of underperforming firms. Administrative Science Quarterly, 42: 750-783. Goddard, R. D. 2003. Relational networks, social trust, and norms: A social capital perspective on students’ chances of academic success. Educational evaluation and policy analysis, 25(1): 59-74. Granovetter, M. S. 1973. The strength of weak ties. American Journal of Sociology, 6: 1360-1380. Granovetter, M. S. 1992. Problems of explanation in economic sociology. In N. Nitin, & R. Eccles(Eds.), Networks and organizations: structure, form, and action(pp.25-56). Boston, MA: Harvard Business School Press. Hansen, E. L., & Witkowski, T. H. 1995. Entrepreneur involvement in international marketing: The effects of overseas social networks and self-imposed barriers to action. Research at the Marketing/Entrepreneurship Interface, 363-367. Higgins, M. C., & Gulati, R. 2000. Getting off to a good start: The effects of top management team affiliations on prestige of investment bank and IPO success. Working paper. Hoang, H., & Young, N. 2000. Social embeddedness and entrepreneurial opportunity recognition; (More) evidence of embeddedness. Working paper. Hoang, H., & Antoncic, B. 2003. Network-based research in entrepreneurship: A critical review. Journal of Business Venturing, 18: 165-187. Human, S. E., & Provan, K. G. 1996. External resource exchange and perceptions of competitiveness within organizational networks: An organizational learning perspective. Frontier of Entrepreneurship Research, 240-252. Jacobs, J. 1961. The death and life of great American cities. New York: Random House. Johannisson, B., Alexanderson, O., Nowicki, K., & Senneseth, K. 1994. Beyond anarchy and organization: Entrepreneurs in contextual networks. Entrepreneurship and Regional Development, 6: 329-356. Jones, C., Hesterly, W. S., & Borgatti, S. P. 1997. A general theory of network governance: Exchange conditions and social mechanisms. Academy of Management Review, 22(4): 911-945. Koka, B. R., & Prescott, J. E. 2002. Strategic alliances as social capital: A multidimensional view. Strategic Management Journal, 23(9): 794-816. Kostova, T., & Roth, K. 2003. Social capital in multinational corporations and a micro-macro model of its formation. Academy of Management Review, 28(2): 297-317. Krackhardt, D. 1990. Assessing the political landscape: structure, cognition, and power in networks. Administrative Science Quarterly, 35: 342-369. Larson, A. 1992. Network dyads in entrepreneurial settings: A study of the governance of exchange relations. Administrative Science Quarterly, 37: 76-104. Liao, J., & Welsch, H. 2003. Social capital and entrepreneurial growth aspiration: A comparison of technology- and non-technology-based nascent entrepreneurs. Journal of High Technology Management Research, 14: 149-170. Light, I. 1984. Immigrant and ethnic enterprise in North American. Ethnic and Racial Studies, 7: 195-216. Lin, N. 1999. Building a network theory of social capital. Connections, 22(1): 28-51. Lipparini, A., & Lorenzoni, G. 1993. Organizational architecture, inter-firm relationships and entrepreneurial profile: Findings from a set of SMEs. Frontiers of Entrepreneurship Research, 370-384. Lorenzoni, G., & Lipparini, A. 1999. The leveraging of inter-firm relationships as a distinctive organizational capability: A longitudinal study. Strategic Management Journal, 20(4): 317-338. Manning, K., Birley, S., & Norburn, D. 1989. Developing a new ventures strategy. Entrepreneurship Theory and Practice, 14(1): 67-76. McEvily, B., & Zaheer, A. 1999. Bridging ties: A source of firm heterogeneity in competitive capabilities. Strategic Management Journal, 20: 1133-1156. Nahapiet, J., & Ghoshal, S. 1998. Social capital, intellectual capital and the organizational advantage. Academy of Management Review, 23(2): 242-266. Ostgaard, T. A., & Birley, S. 1994. Personal networks and firm competitive strategy: A strategic or coincidental match? Journal of Business Venturing, 9: 281-305. Portes, A. 1998. Social capital: Its origins and applications in modern sociology. Annual Review of Sociology, 24: 1-24. Powell, W. W. 1990. Neither market nor hierarchy: Network forms of organization. Research in Organizational Behavior, 12: 295-336. Pruitt, D. G. 1981. Negotiation Behavior. Academy Press, New York. Putnam, R. D. 1993. The prosperous community: Social capital and public life. American Prospect, 13: 35-42. Putnam, R. D. 1995. Bowling alone: America’s declining social capital. Journal of Democracy, 6: 65-78. Ragin, C. C. 1987. The comparative methods. Los Angeles: University of California Press. Raijman, R. 2001. Determinates of entrepreneurial intentions: Mexican immigrants in Chicago. The Journal of Socioeconomics, 30(5): 393-411. Seibert, S. E., Kraimer, M. L., & Liden, R. C. 2001. A social capital theory of career success. Academy of Management Journal, 44(2): 219-237. Shane & Cable. 2001. Social relationships and the financing of new ventures. Working paper. Shane, S., & Venkataraman, S. 2000. The promise of entrepreneurship as a field of research. Academy of Management Review, 25(1): 217-226. Smeltzer, L. R., Van Hook, B. L., & Hutt, R. W. 1991. Analysis and use of advisors as information sources in venture startups. Journal of Small Business Management, 29(3): 10-20. Starr, J. A., & Macmillan, I. C. 1990. Resource cooptation via social contracting: Resource acquisition strategies for new ventures. Strategic Management Journal, 11: 79-92. Stewart, W. H., Watson, W. E., Carland, J. C., & Carland, J. W. 1998. A proclivity for entrepreneurship: A comparison of entrepreneurs, small business owners, and corporate managers. Journal of Business Venturing, 14: 189-214. Stuart, T. E., Hoang, H., & Hybels, R. 1999. Interorganizational endorsements and the performance of entrepreneurial ventures. Administrative Science Quarterly, 44(2): 315-349. Thomas, C. Y. 1996. Capital markets, financial markets and social capital. Social and Economic Studies, 45(2 & 3): 1-23. Thorelli, H. B. 1986. Networks: Between markets and hierarchies. Strategic Management Journal, 7: 37-51. Tsai, W., & Ghoshal, S. 1998. Social capital and value creation: The role of intrafirm networks. Academy of Management Journal, 41(4): 464-476. Uzzi, B. 1997. Social structure and competition in interfirm networks: The paradox of embeddedness. Administrative Science Quarterly, 42: 35-47. Yin, R. K. 1994. Case study research: Design and methods. Sage, London, CA, 2nd Ed. Yin, R. K., Bateman, P. G., Moore, G. B. 1983. Case studies and organizational innovation: Strengthening the connection. Washington, DC: COSMOS Corporation. Yli-Renko, H., Autio, E., & Sapienza, H. J. 2001. Social capital, knowledge acquisition and knowledge exploitation in young technology-based firms. Strategic Management Journal, 22: 587-613. Zimmer, C., & Aldrich, H. 1987. Resource mobilization through ethnic networks: Kinship and friendship ties of shopkeepers in England. Sociological Perspectives, 30: 422-445.id NH0925230004 sid 916402 cfn 0 / id NH0925230005 auc 謝昌佑 tic 企業策略創業軌跡探討–機會辨識、資源取用、資產累積:以華邦電子、大眾電腦為例 adc 洪世章 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 中文 pg 117 kwc 創業家精神 kwc 機會辨識 kwc 資源取用 kwc 資產累積 abc 本論文依循洪世章教授(2003)國科會計畫— 策略興業如何開始?如何發 tc 目錄 第一章 序論……………………………………………………………………… 1 第二章 研究方法………………………………………………………………… 6 第一節 研究策略……………………………………………………………… 6 第二節 個案研究設計………………………………………………………… 7 第三節 研究個案選取準則……………………………………………………10 第四節 資料來源………………………………………………………………11 第五節 資料分析方式…………………………………………………………13 第三章 個案分析…………………………………………………………………15 第一節 華邦個案………………………………………………………………15 第二節 大眾電腦………………………………………………………………25 第三節 個案比較分析…………………………………………………………38 第四章 結論與建議………………………………………………………………42 第一節 個案研究結論…………………………………………………………42 第二節 研究貢獻………………………………………………………………43 第三節 建議與限制……………………………………………………………43 參考文獻……………………………………………………………………………45 附錄一 華邦電子發展編年體……………………………………………………48 附錄二 大眾電腦發展編年體……………………………………………………58 附錄三 華邦電子訪談稿…………………………………………………………66 附錄四 大眾電腦訪談稿……………………………………………………… 116 圖目錄 圖1.1 策略創業架構圖………………………………………………………… 2 圖1.2 論文觀念架構圖………………………………………………………… 4 圖2.1 研究方法………………………………………………………………… 8 圖3.1 華邦各時期之發展圖…………………………………………………… 17 圖3.2 大眾電腦各時期發展圖………………………………………………… 27 圖3.3 個案比較………………………………………………………………… 38 表目錄 表2.1 研究策略………………………………………………………………… 6 表2.2 研究檢測準則…………………………………………………………… 9 表2.3 受訪者名單……………………………………………………………… 12rf 參考文獻 中文文獻 洪世章,2002,處於社會複雜性內之策略創業精神:機會、知識力、資源、及網絡,國科會計畫提案。 蔡碧鳳,2003,企業策略創業軌跡探討 – 機會辨識、資源取用、資產累積,國立清華大學科技管理研究所碩士論文。 李旭東,2003,興業程序之探討—單一個案研究,國立清華大學科技管理研究所碩士論文。 周正賢,2000,從大眾出發:簡明仁與王雪齡的故事,聯經出版社。 張寶鸞,2002,作看雲起時—華邦電子十五週年紀念,華邦電子股份公司。 華邦電子股份有限公司年報,1995~2003,華邦電子股份有限公司。 華邦電子公開說明書,1995、1997、1998、2000、2001,華邦電子股份有限公司。 大眾電腦股份有限公司年報,1998~2003,大眾電腦股份有限公司。 大眾電腦公開說明書,1999、2000,大眾電腦股份有限公司。 證期會簡報系統,大眾編號「2319」。 證期會簡報系統,華邦編號「2344」。 聯合知識庫剪報系統網站,「大眾電腦」,http://udndata.com/。 聯合知識庫剪報系統網站,「華邦電子」,http://udndata.com/。 大眾電腦網站http://www.fic.com.tw/。 華邦電子網站http://www.winbond.com.tw。 英文文獻 Barringer, B.R. and Bluedon, A.C. 1999. The relationship between corporate entrepreneurship and strategic management. Strategic Management Journal, 20(5): 421-444. Brown, T.E., Davidson, P. and Wiklund, J. 2001. An operationalization of Stevenson’s conceptualization of entrepreneurship as opportunity-based firm behavior. Strategic Management Journal, 22: 953-968. Christensen, P.S., Madsen, O.O. and Peterson, R. 1994. Conceptualizing entrepreneurship opportunity recognition. In G.E. Hills(ed.) Marketing and Entrepreneurship: Research Ideas and Opportunities. Westport, CT:Quorum Books, 61-75. Drucker, P. 1985. Innovation and entrepreneurship. New York: Harper and Row. Granovetter, M. 1985. Economic action, social structure and embeddedness. American Journal of Sociology, 91:481-510. Gulati, R. and Gargiulo, M. 1999. Where do inter-organizational networks come from? American Journal of Sociology, 104(5):1439-1493. Gulati, R., Nohria, N. and Zaheer, A. 2000. Strategic networks. Strategic Management Journal, 21(3):203-215. Hitt, M.A., Ireland, R.D., Camp S.M., and Sexton, D.L. 2001. Guest editors' introduction to the special issue: Strategic entrepreneurship: Entrepreneurial strategies for wealth creation. Strategic Management Journal, 22(6/7):479-491. Hitt, M.A., Ireland, R.D., Camp S.M., and Sexton, D.L. 2002. Strategic entrepreneurship: Integrating entrepreneurial and strategic management perspectives. In M.A. Hitt, R. D. Ireland, S.M. Camp, and D.L. Sexton(Eds.), Strategic Entrepreneurship: Creating a New Mindset. Oxford, UK: Blackwell, 1-16. Michael,S., Storey,D. and Thomas,H. 2002. Discovery and coordination in strategic management and entrepreneurship.In M.A. Hitt,R.D. Ireland, S.M.Camp, and D.L.Sexton(Eds.). Strategic Entrepreneurship: Creating a New Mindset. Oxford, UK: Blackwell Publisher, 45-65. Morris, M. H. 1998. Entrepreneurial Intensity: Sustainable Advantage for Individuals, Organizations, a vnd Societies. Westport, CT: Quorum. Ragin, C.C. 1987. The Comparative Methods. Los Angeles: University of California Press. Schumpeter,J. 1934. Theory of Economic Development. Cambridge, MA: Harvard University Press. Scott Shane. 2000. Prior knowledge and the discovery of entrepreneurial opportunities. Organization Science, 11(4):448-469. Sharon A. Alvarez and Lowell W. Busenitz. 2001. The entrepreneurship of resource-based theory. Journal of Management, 27(6): 755-775. Stevenson, H.H. and Jarillo-Mossi, J.C. 1986. Preserving entrepreneurship as companies grow. Journal of Business Strategy, 7: 10-23. Van de Ven, A. H. 1993. The emergence of an industrial infrastructure for technological innovation. Journal of Comparative Economics, 17(2):338-365. Venkataraman,S. 1997. The distinctive domain of entrepreneurship research. In J. Katz(Eds.), Advance in Entrepreneurship, Firm Emergence and Growth. Greenwich, CT:JAI Press, 119-138. Teece, D., Pisano, G. and Shuen, A. 1997. Dynamic capabilities and strategic management. Strategic Management Journal, 18(7):509-533. Yin, R.K. 1994. Case study Research: Design and Methods, 2nd edition. London: Sage.id NH0925230005 sid 916403 cfn 0 / id NH0925230006 auc 林士文 tic 以科技專案協助企業轉型–以「研華營運總部知識基地輔導案」為個案研究對象 adc 王國明 adc 林博文 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 中文 pg 107 kwc 科技專案 kwc 研華股份有限公司 kwc 創新研發中心 abc 科技專案對於我國的科技水準、產業發展有相當重要的貢獻,而在以技術為主的科技專案被大家所熟知之後,以知識管理為主的科技專案也逐漸被重視,因此本個案研究以「研華營運總部知識基地輔導案」作為個案研究對象,藉由詳細描述整個計畫的執行過程來瞭解對企業而言,類似這樣的科技專案對一個企業的影響是什麼?在執行的時候會遇到哪些困難?需要怎樣的推動? rf 林崇熙、傅大為、崔小茹,台灣科技政策的歷史研究1949-1983,國立清華大學,1989 吳思華,產業政策與科技政策論文集,臺灣經濟研究院,1994 經濟部技術處,業界科技專案成果摘要彙編,經濟部,1997 經濟部技術處,業界科技專案成果摘要彙編,經濟部,1998 經濟部技術處,經濟部科技專案計畫執行年報1998,經濟部技術處,1999 于樹偉,千禧年產業技術白皮書特輯:科專成果回顧與前瞻,經濟部技術處,2000 行政院國家科學委員會國家科學委員會,中華民國科技白皮書:科技化國家宏圖,行政院國家科學委員會,1997 溫禎祥,日本科學技術白皮書概要:迎接二十一世紀.2000年,行政院國家科學委員會科學技術資料中心,2000 黃深勳、黃嘉韻譯,日本科學技術白皮書概要/因應國家社會的要求展開新的科技政策,行政院國家科學委員會科學技術資料中心,1999 陳井星,科技發展政策論文集.續集,台灣經濟研究院,1993 Tisdell,C.A.撰、朱樹恭編譯,科技政策的優先順序,行政院國家科學委員會科學技術資料中心,1984 行政院國家科學委員會,全國第三次科技會議,行政院國家科學委員會,1986 徐賢修,科技發展與國家建設,學海出版社,1982 行政院國家科學委員會科學技術資料中心,主要國家之科技政策,行政院國家科學委員會,1975 行政院國家科學委員會科學技術資料中心,各國科技政策,行政院國家科學委員會,1978 政大科管所,歐洲科技政策個案研究,經濟部IT IS專案辦公室,1999 Mani, Sunil、北歐國家發展科技產業之策略研究及成效分析,2001 李世傑,王惟貞,中國大陸科技發展體系概況,科資中心,2000 嵐德編輯委員會大陸小組彙編,西元2020中國大陸科技發展藍圖彙編,嵐德出版社,1994 丁錫鏞,圖解科技政策學/21世紀新科技時代贏的戰略,嵐德出版社,1992 蕭慕明,中共科技體制改革之研究,永詮出版社,1995 張登義,中國科學技術的發展,P5~7,1989 林文軒,中共科技事業發展現況,p.8,1992 中國科技部863計畫聯合辦公室,中國高技術研究發展計畫網站,http://www.863.org.cn/ 工業技術研究院IEK-ITIS,ITIS日本產業速報,工業技術研究院IEK-ITIS ,1997 行政院國家科學委員會,中華民國科學技術年鑑,行政院國家科學委員會,2002 徐作聖,政府鼓勵企業加強產業科技研發應有之作法,經濟情勢暨評論季刊-第一卷第四期,1996 尹啟銘,李國鼎科技政策與產業發展,清華大學科管所李國鼎科技政策與產業發展課程,2003 Dorothy Leonard-Barton著/王美音譯,知識創新之泉,遠流出版社,1998 蘇治華、林啟仁、張洪碩、鄭閔仁、陳羨尊、郭秉修、黃哲宏、許君瑋、林群復、林士文,研華「創新研發中心」工作會議記錄,研華股份有限公司,2004 蔡適陽,產品經理養成與管理運作實務,精營管理顧問公司,2003 研華股份有限公司,研華股份有限公司網頁 http://www.advantech.com.tw,2004id NH0925230006 sid 916410 cfn 0 / id NH0925230007 auc 郭秉修 tic 產品延伸之宣告對於公司價值的影響 adc 蕭中強 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 英文 pg 50 kwc Brand Equity kwc Brand Extension kwc Evaluation kwc Firm Value kwc Preannouncement abc Firm value is composed of two parts. One is tangible asset (e.g. equipments); the other is intangible assets (e.g. brands). Brand extension is used as a marketing strategy and its effect of brand equity is an important issue by prior researchers. The purpose of this study is to evaluate how brand extension creates firm value (financial equity). In this study, we seek to identify how the factors, that influence consumer evaluations of brand extensions, influence funds managers’ predictions of stock price at virtual scenarios of brand extensions. On the other hand, we would like to investigate whether the change of firm value is correspondent to the valence of consumers’ evaluation of brand extension. tc Contents ABSTRACT…………………………………………….……………………3 CONTENTS………………………………….……….…………………...4 1. INTRODUCTION……………………………………….……………….5 1.1 Background and Motivation………...………………………….5 1.2 Issue and Objective……………..…….………………….……6 2. LITERATURE REVIEW…………………………………….…………..7 2.1 Factors that Influence Evaluations of Brand Extension…7 2.2 How Brand Extension Influence Brand Equity……………..10 3. FRAMEWORK…………………..……………………….…………….13 3.1 Description of Model……………………………………………13 4. RESEARCH METHODOLOGY…...……...………….……..........15 4.1 Variables………………………………………………………15 4.2 Hypotheses………………….………………………..………16 4.3 Pretest…………………………………………………………17 4.4 Experimental Design………………………………………..18 4.5 Procedure………………………….………………..……….19 5. DATA COLLECTIONS…………………………….……….………….23 6. DATA ANALYSIS & RESULTS………………………………….…...24 6.1 Factor………………………………………………………………25 6.2 Company…………………………………………………………….31 7. CONCLUSIONS & CONTRIBUTIONS……………….……….........39 8. LIMITATIONS & FUTHER STUDY………………...……….......42 REFERENCE……………………………………………………………...43 APPENDIX…………………………………………………………………45rf Aaker, David A. and Kevin Lane Keller (1990), “Consumer Evaluations of Brand Extensions,” Journal of Marketing, 54 (January), 27-41. -(1990), “Brand Extensions: The Good, the Bad, and the Ugly,” MIT Sloan Management Review, (Summer), 46-56 --(1991), Managing Brand Equity. New York: The Free Press. --and George S. Day (1974), "A Dynamic Model of Relationships Among Advertising, Consumer Awareness, Attitudes, and Behavior," Journal of Applied Psychology, 39 (3), 281-86. --and Kevin Lane Keller (1990), "Consumer Evaluations of Brand Extensions," Journal of Marketing, 54 (January), 27-41. Bottomley, Parl and Stephen J.S. Holden (2001), “Do We Really Know Consumers Evaluate Brand Extensions? Empirical Generalizations Based on Secondary Analysis of Eight Studies”, Journal of Marketing Research,38 (November), 494-500 Boush, David M. (1993), "Brands as Categories," in Brand Equity and Advertising: Advertising's Role in Building Strong Brands, ed. David A. Aaker and Alexander Biel, Hillsdale, NJ: Erlbaum, 299-312. and Barbara Loken (1991), "A Process-Tracing Study of Brand Extension Evaluation," Journal of Marketing Research, 28 (February), 16-28. Broniarczyk, Susan M. and Joseph W. Alba (1994), "The Importance of the Brand in Brand Extension," Journal of Marketing Research, 31 (May), 214-228. Fama, Eugene E (1970), "Efficient Capital Markets," Journal of Finance, 25, 383-417. --(1991), "Efficient Capital Markets: II," The Journal of Finance, XLVI (December), 1575-1617. --Lawrence Fisher, Michael C. Jensen, and Richard Roll (1969), "The Adjustment of Stock Prices to New Information," International Economic Review, 10 (1), 1-21. Lane, V. and Jacobson, R. (1995), "Stock market reactions to brand extension announcements: the effects of brand attitude and familiarity", Journal of Marketing, 59 (January), 63-77. Keller, Kevin Lane, and David A. Aaker (1992), "The Effects of Sequential Introduction of Brand Extensions," Journal of Marketing Research, 29 (February), 35-50. - (1998), Strategic Brand Management: Building, Measuring, and Managing Brand Equity, Upper Saddle River, NJ: Prentice-Hall. Park, C. Whan, Sandra J. Milberg, and Robert Lawson (1991), "Evaluation of Brand Extensions: The Role of Product Feature Similarity and Brand Concept Consistency," Journal of Consumer Research, 18 (September), 185-193. Pitta, Dennis A and Lea Prevel Katsanis (1995), “Understanding Brand Equity for Successful Brand Extension”, Journal of Consumer Marketing, 12 (April), 51-64 Riel, Allard C. R., Josh Lemmink, and Hans Ouwersloot (2001), “Consumer Evaluations of Service Brand Extensions,” Journal of Service Research, 3 (Febuary), 220-231 Tauber, Edward M. (1988), “Brand Leverage: Strategy for Growth in a Cost Controlled World,” Journal of Advertising Research, 28 (August/September), 26-30. Smith, Daniel C. and Park, C. Whan (1992), “The Effects of Brand Extension on Market Share and Advertising Efficiency,” Journal of Marketing Research, 29 (August), 296-313id NH0925230007 sid 916411 cfn 0 / id NH0925230008 auc 徐凰原 tic 以技術系統的觀點來探索平面顯示器產業 adc 洪世章 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 中文 pg 67 kwc 薄膜液晶顯示器 kwc 技術系統 abc 台灣相較於日韓為平面顯示器產業的後進國,不過近年來已急起直追。本文利用Carlsson(1991)所提出的技術系統來解釋這種追趕(catch-up)的過程,並根據這個模型,探討技術系統內的制度、人員之間的互動如何影響技術系統的表現,以及提供政府政策一些參考。 tc 目錄 摘要 I 表目錄 IV 圖目錄 V 第一章 導論(INTRODUCTION) 1 第一節 研究動機(RESEARCH MOTIVATION) 1 第二節 研究目的(RESERCH OBJECTIVE) 2 第三節 研究流程(RESERCH PROCESS) 3 第二章 文獻回顧(LITERATURE REVIEW) 5 第一節 創新系統(INNOVATION SYSTEM) 5 第二節 技術系統(TECHNOLOGICAL SYSTEM) 5 第三章 研究方法(RESEARCH METHOD) 11 第四章 台灣TFT LCD工業發展動態(THE HISTORY OF TAIWAN’S TFT-LCD INDUSTRY) 15 第五章 分析與討論(ANALYSIS AND DISCUSSION) 20 第一節 經濟能耐(ECONOMIC COMPETENCE) 21 第二節 群聚效應和網路關係(CLUSTRING AND NETWORK) 25 第三節 發展群(DEVELOPMENT BLOCKS) 29 第四節 制度方面的基礎建設(INSTITUTIONAL INFRASTRUCTURE) 35 第六章 結論與意涵(CONCLUSION AND IMPLICATION) 43 參考文獻 46rf 王淑珍,2003,台灣邁向液晶王國之路,台北市汐止市:中國生產力中心。 石岱勳、李自惠(翻譯),2001,平面顯示器技術及未來趨勢2001,台北 縣新店市:成璟文化。 石岱勳、林景川、林惠儒(翻譯),2002,平面顯示器技術及未來趨勢2002,台北縣新店市:龍璟文化。 拓墣產業研究所,2002,2002年光電產業與市場巡弋,台北市:拓墣科技。 林于婷,2004,台灣薄膜液晶顯示器工業:技術、專利、制度與組織,國立清華大學科技管理研究所未出版之碩士論文。 黃欣怡,2001,以Porter的國家競爭優勢架構分析台灣的TFT LCD工業,國立清華大學工業工程與工程管理學系未出版之碩士論文。 洪世章,2002,「結構衝突與產業劣勢」,管理學報,19(2):273-302。 洪世章、黃欣怡,2002,「產業、環境與競爭力—台灣薄膜電晶體液晶顯示器工業的分析」,科技管理學刊,8(1):1-31。 洪世章,呂巧玲,2001,「台灣液晶顯示器產業之發展」,科技發展政策報導,SR9003: 173-183。 洪世章、馬玫生,2002,「創新與環境:我國TFT-LCD產業之技術優勢分析」,2002經濟部技術處學界科專非技術領域學術研討會論文集(pp. 34-57),台北市:經濟部技術處。 莊素玉,2000,許文龍與奇美實業的利潤池管理,台北市:天下遠見 紀國鐘、鄭晃忠(主編),2002,液晶顯示器技術手冊,台北市:經濟部技術處。 蔡明介,2002,競爭力的探求/IC設計、高科技產業實戰策略與觀察,台北市:財訊出版社 葉仰哲,2001,「我國液晶顯示器材料與零組件產業概況」,化工資訊,第15卷第2期,頁29-35 Autio, E., & Hameri, A. 1995. “The Structure and Dynamics of Technological Systems: a Conceptual Model”. Technology in Society, 17(4) : 365-384. Carlsson, B., & Stankiewicz, R. 1991. “On the Nature, Function, and Composition of Technological Systems”, Journal of Evolutionary Economics (1): 93-118. Carlsson, B., & Stankiewicz, R. 1995. The Nature and Importance of Economic Competence in Technological Systems and Economic Performance, edited by Carlsson B., Kluwer Academic Publishers. Carlsson, B(ed) 1997. Technological system and industrial dynamics. Kluwer, Boston Dordrecht London. Carlsson, B(ed) 1995. Technological system and Economic performance:the case of factory automation. Kluwer, Boston Dordrecht London. Carlsson, B(ed) 2002. Technological systems in the bio industries. Kluwer, Boston Dordrecht London. Edquist C, 2004. “Systems of Innovation”, in J. Fagerberg, D. Mowery and R. Nelson (eds) Handbook of Innovation, Oxford, England: Oxford University Press (in press). Hughes, T. 1989. The evolution of large technological system. MIT Press. MA, 51-82 Hung SC. 2002. “On the co-evolution of technologies and institutions”, R&D Management, 32(3): 179-190. Kyung, T., & Carlsson, B. 2003. “The evolution of a technological system: the case of CNC machine tools in Korea”. Journal of Evolutionary Economics, 13, 435-460. Langlois, R. 1989. Economic change and the boundaries of the firm. In: Carlsson B(ed) Inr dustrial dynamics. Kluwer Acadmic Publishers, Boston Lundvall, B.(ed). 1992. National System of innovation. Printer, London Lundvall, BA. 1988. National System of Innovation – Towards a Theory of Innovation and Interactive Learning, London and New York, Pinter. Nelson R. (ed) 1993. National Systems of Innovation: A Comparative Study, Oxford: Oxford University Press. Porter, ME. 1990. “The Competitive Advantage of Nation”, New York: Free Press. Reichmann, W.J. 1962. Use and abuse of statistics. NewYork:Oxford University Press. Saxenenina, A. 1994. Regional Advantage. Culture and Competition in Silicon Valley and Route 128. Harvard University Press, Cambridge, MA Steward, D. 1993. Secondary Research:Information Sources and Methods. London: Sage. Yin RK. 1984. Case Study Research: Design and Methods. London: Sage.id NH0925230008 sid 916413 cfn 0 / id NH0925230009 auc 葛智遠 tic 線上拍賣之研究:動態評價對超額出標的效果 adc 蕭中強 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 英文 pg 51 kwc 線上拍賣 kwc 動態評價 kwc 人工代理人 kwc 基因演算法 kwc 超額出標 abc 線上拍賣已經越來越盛行且廣泛地被大家所接受,因此有愈來愈多的人從事線上拍賣的機制設計,以促進線上拍賣的安全性與效率性。在線上拍賣中,我們會發現同樣的拍賣品重複的被拍賣,我們稱此種拍賣為重複拍賣,而重複拍賣中學習效果是一個非常重要的現象,另外,在動態的競標過程當中,超額出標卻是一個奇特的現象,這些現象是受到許多的因素所影響而造成的。在本研究中,吾人將探討三個參數,競標者的人數,重複拍賣的次數以及物品的市場價格作為控制變數,而其影響的結果平均報酬,超額出標的頻率和超額出標的比例。吾人利用人工代理人的機制,以基因演算法來模擬現實生活中的交易情況,加以觀察及分析拍賣的結果。吾人發現幾個有趣的現象:(1)當競標者數目增加的時候,競標者平均報酬會減少,而超額出標的頻率會增加,超額出標的比例會減少; (2)當物品市場價格增加的時候,競標者平均報酬會增加,而超額出標的頻率和比例都會減少; (3)當重複進行拍賣的次數增加的時候,競標者的平均報酬不固定,但是超額出標的頻率和比例都會增加。由於基因演算法裡面有擇優、交配和突變,讓競標者的策略更多樣化與學習效果的更全面化,因此讓吾人能在重複的線上拍賣中觀察到這些有趣的現象。 tc 摘要 3 ABSTRACT 4 1. INTRODUCTION 8 1.1 BACKGROUND 8 1.2 RESEARCH MOTIVATION 10 1.3 MAIN ISSUE 11 1.4 RESEARCH PURPOSE 12 1.5 STRUCTURE 13 2. LITERATURE REVIEW 14 2.1 INTERNET 14 2.1.1 Dynamic Pricing 14 2.1.2 Internet Exchange 15 2.2 AUCTION 16 2.2.1 Basic Auction Concepts 16 2.2.2 Private Value and Number of Bidders 17 2.3 INTERNET AUCTION 19 2.3.1 Last Minute Bidding 19 2.3.2 Reserve Price and Average Price of Product 20 2.3.3 Repeated Game and Round 20 2.4 GENETIC ALGORITHM 22 2.4.1 Adaptive Learning Effect 22 2.4.2 GA operators 22 3. RESEARCH MODEL 24 3.1 THE INTERNET AUCTION MODEL 24 3.2 PROXY-BID 27 3.3 PROPOSED MODEL 28 3.3.1 Repeated Game Auction 28 3.3.2 Strategy --- Finite automata 28 3.3.3 Example 29 4. RESEARCH METHODOLOGY 31 4.1 SIMULATION WITH ARTIFICIAL ADAPTIVE AGENT 31 4.2 THE GENETIC ALGORITHM OF BIDDING STRATEGY 33 5. RESEARCH RESULTS AND DISCUSSION 36 5.1 COMPARATIVE ANALYSIS 36 5.1.1 Number of Bidders 37 5.1.2 Market Price of the Product 38 5.1.3 Number of Blocks 39 5.2 SENSITIVE ANALYSIS 41 6. CONCLUSION AND SUGGESTION 43 6.1 CONCLUSION 43 6.2 CONTRIBUTION 45 6.2.1 To Academic 45 6.2.2 To Business 45 6.3 UNIQUENESS 47 6.4 LIMITATION 47 6.5 SUGGESTION 47 REFERENCE 49 TABLES TABLE1 THE DEFAULT VALUE AND EXAMINING VALUE OF ENDOGENOUS VARIABLE 35 TABLE2 THE DEFAULT VALUE OF EXOGENOUS VARIABLE 35 TABLE 3 COMPARATIVE STATICS OF NUMBER OF BIDDERS IN THE AUCTION 38 TABLE 4 COMPARATIVE STATICS OF MARKET PRICE OF THE PRODUCT IN THE AUCTION 39 TABLE 5 COMPARATIVE STATICS OF NUMBER OF BLOCKS IN THE AUCTION 40 TABLE 6 SENSITIVE ANALYSIS OF DISCOUNT RATE IN THE MODEL 41 TABLE 7 SENSITIVE ANALYSIS OF CROSSOVER RATE IN THE MODEL 42 TABLE 8 SENSITIVE ANALYSIS OF MUTATE RATE IN THE MODEL 42 TABLE 9 THE COORDINATION OF THE CONCLUSION 44rf Archishman Chakraborty, Nandini Gupta and Rick Harbaugh (2000), "First Impressions in a Sequential Auction," Econometric Society World Congress 2000 Contributed Papers 1705, Econometric Society. Belew, R. (1990), ”Dynamic Parameter Encoding for Genetic Algorithms,” CSE Technical Report #CS 90-175. Bichler Martin, Carrie Beam, Arie Segev and Ramayya Krishnan (1999), “On Negotiations and Deal Making in Electronic Markets,” Information Systems Frontiers, 1 (October), 241-258. Bulow, J. I. and Roberts, D. J. (1989), “The Simple Economics of Optimal Auctions,” Journal of Political Economy, 97, 1060-1090. Fishman, M. J. (1988), “A Theory of Pre-emptive Takeover Bidding,” Rand Journal of Economics, 19, 88-101. Dawid, H. (1996b). “Genetic algorithms as a model of adaptive learning in economic systems,” Central European Journal for Operations Research and Economics, 4(1), 7-23. `Holland, J. H. (1975), “Adaptation in Natural and Artificial Systems,” The University of Michigan Press, Ann-Arbor, MI. Katkar, R. and Lucking-Reiley D (2000), “Public Versus Secret Reserve Prices in eBay Auctions: Results from a Pokémon Field Experiment,” University of Arizona working paper 2000. Keenan Vernon (2000), “Internet Exchange 2000: B2X Emerges As New Industry to Service Exchange Transactions,” the Keenan Report, (April) http://www.keenanvision.com/html/content/ex2000/exchange2000.htm. Klemperer, P. (1999), “Auction Theory: A Guide to the Literature,” Journal of Economic Surveys, 13 (July), 227-286. Michael Hodgson (1993), “Natural Hazards in Puerto Rico: Attitude,Experience and Behavior,” Geographical Review, 83, 280-289. Matthews, S. A. (1987), “Comparing Auctions for Risk-Averse Buyers: A Buyer’s Point of View,” Econometrica, 55, 633-46. McAfee, R. P. and McMillan, J. (1987a), “Auctions and Bidding,” Journal of Economic Literature, 25, 699-738. Moore, E. F. (1956), “Gedanken experiments on sequential machines,” Automata Studies, 58, 187-191. Myerson, R. B. (1981), “Optimal Auction Design,” Mathematics of Operations Research, 6, 58-73. Ockenfels, A and A. E. Roth (2002), “Last-Minute Bidding and the Rules for Ending Second-Price Auctions: Evidence from eBay and Amazon Auctions on the Internet,” mimeo, 92,1093-1103. Ünver Utku, M. (2002), “Internet Auctions with Artificial Adaptive Agents: Evolution of Late and Multiple Bidding,” Journal of Economic Dynamics and Control, 25, 1039-1080. Vickrey, W. (1961), “Counterspeculation, Auctions, and Competitive Sealed Tenders,” Journal of Finance, 16, 8-37. Wenli Wang, Zoltán Hidvégi and Andrew B. Whinston (2001), “Designing Mechanisms for E-Commerce Security: An Example from Sealed-Bid Auctions,” International Journal of Electronic Commerce, 6 (December), 139-156.id NH0925230009 sid 916414 cfn 0 / id NH0925230010 auc 柳孟華 tic 網頁如何影響資訊搜尋以及產品判斷 adc 蕭中強 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 英文 pg 59 kwc 產品判斷 kwc 從眾 kwc 涉入 kwc 專家程度 kwc 時間壓力 kwc 資訊搜尋 abc 當電子商務愈趨發達,也產生愈來愈多的線上交易。但是線上消費的環境和傳統的消費方式是有所差異的:現在的消費者不僅透過網際網路來評估產品,他們更可以透過不同的管道來進行產品判斷,譬如某些知名且受歡迎的網站提供產品評估和建議,例如:「CNet」、「PC Magazine」這些網站。經由這些網站,消費者獲取更多產品的介紹和使用者的意見。我們想要檢視消費環境的改變是否會造成消費者行為的改變,因為現在的消費者可以選擇他們在線上閱讀的資訊並決定要花多少時間尋找資訊。 rf [1 ] Festinger, L. (1957). “A theory of cognitive dissonance,” Evanston, IL: Row, Peterson. [2 ] Festinger, L. (1964). “Conflict, decision, and dissonance,” Stanford, CA: Stanford University Press. [3 ] Festinger, L. (1964). “Behavioral support for opinion change.” Public Opinion Quarterly, 28, 404-417. [4 ] Mandel, Naomi. (2002, September). “When Web pages influence choice: Effects of visual primes on experts and novices,” Journal of Consumer Research, 29, 235-245. [5 ] Meyvis, Tom. (2002, March). “Consumers' beliefs about product benefits: The effect of obviously irrelevant product information,” Journal of Consumer Research, 28, 618-635. [6 ] Meloy, Margaret G. (2000, December).”Mood-driven distortion of product information,” Journal of Consumer Research, 27, 345-359. [7 ] Ariely, Dan. (2000, September). “Controlling the information flow: Effects on consumers' decision making and preferences,” Journal of Consumer Research, 27, 233-248. [8 ] Weber, Jean E. and Richard W. Hansen. (1972, August). “The Majority Effect and Brand Choice.” Journal of Marketing Research, IX, 320-323. [9 ] Coupey, Eloise, Julie R. Irwin and John W. Payne. (1998, March). “Product Category Familiarity and Preference Construction,” Journal of Consumer Research, 24, 459-468. [10 ] Bettman, James R. and Praseep Kakkar. (1977, March). “Effects of Information Presentation Format on Consumer Information Acquisition Strategies,” Journal of Consumer Research, 3, 233-240. [11 ] Bettman, James R. and C. Whan Park. (1980, December). “Effects of Prior Knowledge and Experience and Phase of the Choice Process on Consumer Decision Processes: A Protocol Analysis,” Journal of Consumer Research, 7, 234-249. [12 ] Petty, Richard E., John T. Cacioppo and David Schumann. (1983, September). “Central and Peripheral Routes to Advertising Effectiveness: The Moderating Role of Investment,” Journal of Consumer Research, 10, 135-145. [13 ] Spence, Mark T. e and Merrie Brucks. (1997 May). “The Moderating Effects of Problem Characteristics on Experts’ and Novices’ Judgments,” Journal of Marketing Research, XXXIV, 233-247. [14 ] Bettman, James R., Mary Frances Luce and John W. PAYNE. (1998, December). “Constructive Consumer Choice Processes,” Journal of Consumer Research, 25, 187-217. [15 ] Hoch, Stephen J. and Young-Won Ha. (1986, September). “Comsumer learning: Advertising and the Ambiguity of Product Experience,” Journal of Consumer Research, 13, 221-233. [16 ] Levin, Irwin P. and Gary J. Gaeth. (1988, December), “How Consumers Are Effected by the Framing of Attribute Information Before and After Consuming the product,” Journal of Consumer Research, 15, 374-378. [17 ] Schkade, David A. and Eric J. Johnson. (1989, October), “Cognitive Process in Preference Reversals,” Organization Behavior and Human Decision Process, 44, 203-231. [18 ] Kuusela, Hannu, Mark T. Spence, Antti J. Kanto. (1998), “Expertise effects on prechoice decision processes and final outcomes A protocol analysis,” European Journal of Marketing, 32, pg. 559. [19 ] Petty, Richard E., John T. Cacioppo, and Rachel Goldman .(1981, November). “Personal Involvement as a Determinant of Argument-Based persuasion,” Journal of Personality and Social Psychology, 41, 847-855. [20 ] Smith, Stephen M, Shaffer, David R. (1991, December). “Celerity and Cajolery: Rapid Speech May Promote or Inhibit Persuasion Through Its Impact on Message Elaboration,” Personality and Social Psychology Bulletin, 17, p663. [21 ] Moore, Danny L., Hausknecht, Douglas, Thamodaran, Kanchana. (1986, June). “Time Compression, Response Opportunity, and Persuasion,” Journal of Consumer Research , 13, 85-99.id NH0925230010 sid 916417 cfn 0 / id NH0925230011 auc 王雅恂 tic 高科技廠商在新竹科學工業園區之興起與發展 adc 洪世章 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 中文 pg 173 kwc 創新系統 kwc 制度 kwc 新竹科學工業園區 kwc 共演 kwc 台灣高科技廠商 abc 本論文研究目的係依循洪世章(2002a)之研究構想,繼續以厚實描述的方式對新竹科學工業園區從1978年籌設至2002年的發展過程撰寫敘事體,並加以視覺化的方式呈現其在「制度面影響」、「技術面影響」、「企業適應行為」三者之間的動態共演化發展過程,希冀彌補新竹科學工業園區在實際研究上之不足。研究方法採用強調過程的歷史性數質研究法,並訪談各界利害關係者與專家,企圖由不同角度來觀察園區發展的面貌。本文最後針對研究發現提出結論、理論貢獻與實務意涵、研究限制以及未來研究建議。 tc 摘 要 I ABSTRACT II 致謝辭(ACKNOWLEDGEMENT) III 目 錄(CONTENT) V 圖目錄(CONTENT OF FIGURES) VII 表目錄(CONTENT OF TABLES) X 第1章 緒 論(INTRODUCTION) 1 第2章 研究方法(RESEARCH METHOD) 6 2.1 研究策略(RESEARCH STRATEGY) 6 2.2 資料來源(DATA SOURCE) 8 2.3 資料分析方式(ANALYSIS STRATEGY) 11 第3章 新竹科學工業園區發展史(DEVELOPMENT OF HSIP) 13 3.1 新竹科學工業園區之現況(CURRENT STATUS OF HSIP) 14 3.2 新竹科學工業園區之緣起(ORIGINS OF HSIP) 16 3.3 萌芽期(1978~1990)(INITIAL STAGE) 18 3.4 成長期(1991~1996)(GROWING STAGE) 28 3.5 成熟期(1997~2002)(MATURE STAGE) 36 3.6 研究分析(ANALYSIS) 41 第4章 結論與建議(DISCUSSIONS AND CONCLUSIONS) 45 4.1 研究結論(CONCLUSIONS) 45 4.2 研究貢獻(CONTRIBTIONS) 46 4.3 研究限制與未來研究方向(LIMITATIONS AND FUTURE RESEARCH) 47 參考文獻(REFERENCE) 48 附錄一 新竹科學工業園區大事年表(CHRONOLOGY OF HSIP) 51 附錄二 新竹科學工業園區歷任局長(DIRECTOR GENERAL OF HSIP) 67 附錄三 竹科六大產業發展(DEVELOPMENT OF SIX INDUSTRIES) 68 附錄四 訪談記錄(RECORD OF INTERVIEWS) 86 附錄五 新竹科學工業園區整體及六大產業統計指標(STATISTICS OF HSIP) 117 一、園區整體產業統計指標(STATISTICS OF COMBINED INDUSTRIES) 118 二、園區六大產業個別統計指標(STATISTICS OF INDIVIDUAL INDUSTRIES) 123 三、園區六大產業統計指標比較(COMPARATIVE STATISTICS BY INDUSTRY) 153 四、其他(OTHERS) 169 圖目錄(Content of Figures) 圖1-1 觀念性架構(CONCEPTUAL FRAMWORK) 3 圖1-2 本研究之流程(PROCESS OF RESEARCH) 5 圖3-1 新竹科學園區資金來源(2003年底)(GROWTH OF PAY-IN CAPITAL BY SOURCE OF CAPITAL, DEC. 2003) 14 圖3-2 六大產業對園區營業額之貢獻比率(SALES RATIO BY INDUSTRY) 15 圖3-3 五大產業營業額成長率趨勢比較(GROWTH RATE OF FIVE INDUSTRY) 26 圖3-4 IC、電腦及週邊、通訊、光電產業與園區整體營業額比較(SALES OF I.C.,P.C.,TELECOM.,OPTP. AND HSIP) 29 圖3 5 台灣FABLESS IC設計公司歷年營收成長(ANNUAL SALES OF TAIWAN FABLESS IC COMPANY) 34 圖3-6 園區整體產業 研發經費/營業額比例(R&D EXPENDITURE/SALES OF HSIP) 39 圖3-7 園區專利件數(國內)(NUMBER OF DOMESTIC PATENTS) 39 附錄五圖目錄(Content of Figures for Appendix 5) FIGURE 1-A 廠商家數(NUMBER OF FIRMS) 119 FIGURE 1-B 員工人數(NUMBER OF EMPLOYEES) 119 FIGURE 1-C 資本額(CAPITALS) 120 FIGURE 1-D 營業額及成長率(CORPORATE SALES & GROWTH RATE) 120 FIGURE 1-E 研發經費支出(R&D EXPENDITURES) 121 FIGURE 1-F 研發經費/營業額比例(R&D EXPENDITURES/SALES) 121 FIGURE 1-G 專利件數(NUMBER OF PATENTS) 122 FIGURE 1-H 勞動生產力(LABOR PRODUCTIVITIES) 122 FIGURE 2-1-A 積體電路產業廠商家數(NUMBER OF FIRMS-I.C.) 124 FIGURE 2-1-B 積體電路產業員工人數(NUMBER OF EMPLOYEES-I.C.) 124 FIGURE 2-1-C 積體電路產業資本額(CAPITALS OF I.C.) 125 FIGURE 2-1-D積體電路產業營業額及成長率(CORPORATE SALES & GROWTH RATE-I.C.) 125 FIGURE 2-1-E積體電路產業研發經費支出(R&D EXPENDITURES-I.C.) 126 FIGURE 2-1-F積體電路產業研發經費/營業額比例(R&D EXPENDITURES/SALES-I.C.) 126 FIGURE 2-1-G積體電路產業專利件數(NUMBER OF PATENTS-I.C.) 127 FIGURE 2-1-H積體電路產業勞動生產力(LABOR PRODUCTIVITIES-I.C.) 127 FIGURE 2-2-A 電腦及週邊產業廠商家數(NUMBER OF FIRMS-P.C.) 129 FIGURE 2-2-B 電腦及週邊產業員工人數(NUMBER OF EMPLOYEES-P.C.) 129 FIGURE 2-2-C 電腦及週邊產業資本額(CAPITALS OF P.C.) 130 FIGURE 2-2-D 電腦及週邊產業營業額及成長率(CORPORATE SALES & GROWTH RATE-P.C.) 130 FIGURE 2-2-E 電腦及週邊產業研發經費支出(R&D EXPENDITURES-P.C.) 131 FIGURE 2-2-F 電腦及週邊產業研發經費/營業額比例(R&D EXPENDITURES/SALES-P.C.) 131 FIGURE 2-2-G 電腦及週邊產業專利件數(NUMBER OF PATENTS-P.C.) 132 FIGURE 2-2-H 電腦及週邊產業勞動生產力(LABOR PRODUCTIVITIES-P.C.) 132 FIGURE 2-3-A 通訊產業廠商家數(NUMBER OF FIRMS -TELECOM.) 134 FIGURE 2-3-B通訊產業員工人數(NUMBER OF EMPLOYEES -TELECOM.) 134 FIGURE 2-3-C通訊產業資本額(CAPITALS OF TELECOM.) 135 FIGURE 2-3-D 通訊產業營業額及成長率(CORPORATE SALES & GROWTH RATE-TELECOM.) 135 FIGURE 2-3-E通訊產業研發經費支出(R&D EXPENDITURES- TELECOM.) 136 FIGURE 2-3-F通訊產業研發經費/營業額比例(R&D EXPENDITURES/SALES- TELECOM.) 136 FIGURE 2-3-G通訊產業專利件數(NUMBER OF PATENTS-TELECOM.) 137 FIGURE 2-3-H 通訊產業勞動生產力(LABOR PRODUCTIVITIES-TELECOM.) 137 FIGURE 2-4-A 光電產業廠商家數(NUMBER OF FIRMS-OPTO.) 139 FIGURE 2-4-B 光電產業員工人數(NUMBER OF EMPLOYEES-OPTO.) 139 FIGURE 2-4-C 光電產業資本額(CAPITALS OF OPTO.) 140 FIGURE 2-4-D 光電產業營業額及成長率(CORPORATE SALES & GROWTH RATE-OPTO.) 140 FIGURE 2-4-E 光電產業研發經費支出(R&D EXPENDITURES-OPTO.) 141 FIGURE 2-4-F 光電產業研發經費/營業額比例(R&D EXPENDITURES/SALES-OPTO.) 141 FIGURE 2-4-G 光電產業專利件數(NUMBER OF PATENTS-OPTO.) 142 FIGURE 2-4-H 光電產業勞動生產力(LABOR PRODUCTIVITIES-OPTO.) 142 FIGURE 2-5-A 精密機械產業廠商家數(NUMBER OF FIRMS-PRE.MACH.) 144 FIGURE 2-5-B 精密機械產業員工人數(NUMBER OF EMPLOYEES-PRE.MACH.) 144 FIGURE 2-5-C 精密機械產業資本額(CAPITALS OF PRE.MACH.) 145 FIGURE 2-5-D 精密機械產業營業額及成長率(CORPORATE SALES & GROWTH RATE-PRE.MACH.) 145 FIGURE 2-5-E 精密機械產業研發經費支出(R&D EXPENDITURES-PRE.MACH.) 146 FIGURE 2-5-F 精密機械產業研發經費/營業額比例(R&D EXPENDITURES/SALES-PRE.MACH.) 146 FIGURE 2-5-G 精密機械產業專利件數(NUMBER OF PATENTS-PRE.MACH.) 147 FIGURE 2-5-H 精密機械產業勞動生產力(LABOR PRODUCTIVITIES-PRE.MACH.) 147 FIGURE 2-6-A 生物技術產業廠商家數(NUMBER OF FIRMS-BIOTECH.) 149 FIGURE 2-6-B 生物技術產業員工人數(NUMBER OF EMPLOYEES-BIOTECH.) 149 FIGURE 2-6-C 生物技術產業資本額(CAPITALS OF BIOTECH.) 150 FIGURE 2-6-D 生物技術產業營業額及成長率(CORPORATE SALES & GROWTH RATE-BIOTECH.) 150 FIGURE 2-6-E 生物技術產業研發經費支出(R&D EXPENDITURES-BIOTECH.) 151 FIGURE 2-6-F 生物技術產業研發經費/營業額比例(R&D EXPENDITURES/SALES-BIOTECH.) 151 FIGURE 2-6-G 生物技術產業專利件數(NUMBER OF PATENTS-BIOTECH.) 152 FIGURE 3-A 廠商家數比較(NUMBER OF FIRMS BY INDUSTRY) 154 FIGURE 3-B 員工人數比較(NUMBER OF EMPLOYEES BY INDUSTRY) 156 FIGURE 3-C 資本額比較(CAPITALS BY INDUSTRY) 158 FIGURE 3-D-1 營業額比較(CORPORATE SALES BY INDUSTRY) 160 FIGURE 3-D-2 營業額貢獻比率(SALES RATIO BY INDUSTRY) 161 FIGURE 3-E 營業額成長率(GROWTH RATE BY INDUSTRY) 162 FIGURE 3-F 研發經費支出比較(R&D EXPENDITURES BY INDUSTRY) 163 FIGURE 3-G研發經費/營業額比例之比較(R&D EXPENDITURES/SALES BY INDUSTRY) 164 FIGURE 3-H 國內專利件數比較(NUMBER OF DOMESTIC PATENTS BY INDUSTRY) 165 FIGURE 3-I 國外專利件數比較(NUMBER OF FOREIGN PATENTS BY INDUSTRY) 166 FIGURE 3-J 勞動生產力比較(LABOR PRODUCTIVITIES BY INDUSTRY) 166 FIGURE 4-1. 園區歷年實收資本額之成長-依資金來源分(GROWTH OF PAY-IN CAPITAL BY SOURCE OF CAPITAL) 170 FIGURE 4-1-1 園區2003年實收資本額-依資金來源分(GROWTH OF PAY-IN CAPITAL BY SOURCE OF CAPITAL, DEC. 2003) 170 FIGURE 4-2 園區歷年就業員工數之成長-依教育程度分,不含外勞(GROWTH OF EMPLOYEES NUMBER BY EDUCATION, NOT INCLUDING FOREIGN LABER) 172 FIGURE 4-2-1 園區從業人員教育程度-2003年底(EMPLOYEE EDUCATION BACKGROUNG, DEC. 2003) 172 FIGURE 4-3 園區歷年出/進口貿易額及成長率(ANNUAL EXPORT/IMPORT TRADE & GROWTH RATE) 173 表目錄(Content of Tables) 表2-1 受訪者資料(DATA OF INTERVIEWEES) 9 表3-1 2003年園區產業概況表(STATUS OF INDIVIDUAL INDUSTRIES, DEC. 2003) 15 表3-2 台灣九家TFT-LCD概況(STATUS OF TAIWAN TFT-LCD COMPANIES) 38 附錄五表目錄(Content of Tables for Appendix 5) TABLE1-1園區整體產業統計指標(STATISTICS OF COMBINED INDUSTRIES) 118 TABLE 2-1 積體電路產業(INTEGRATED CIRCUITS) 123 TABLE 2-2 電腦及週邊產業(COMPUTERS & PERIPHERALS) 128 TABLE 2-3 通訊產業(TELECOMMUNICATIONS) 133 TABLE 2-4 光電產業(OPTOELECTRONICS) 138 TABLE 2-5 精密機械產業(PRECISION MACHINERY) 143 TABLE 2-6 生物技術產業(BIOTECHNOLOGY) 148 TABLE 3-A 廠商家數比較(NUMBER OF FIRMS BY INDUSTRY) 153 TABLE 3-B員工人數比較(NUMBER OF EMPLOYEES BY INDUSTRY) 155 TABLE 3-C資本額比較(CAPITALS BY INDUSTRY) 157 TABLE 3-D營業額比較(COPORATE SALES BY INDUSTRY) 159 TABLE 3-E營業額成長率比較(GROWTH RATE BY INDUSTRY) 162 TABLE 3-F 研發經費支出比較(R&D EXPENDITURES BY INDUSTRY) 163 TABLE 3-G研發經費/營業額比例比較(R&D EXPENDITURES/SALES BY INDUSTRY) 164 TABLE 3-H 國內專利件數比較(NUMBER OF DOMESTIC PATENTS BY INDUSTRY) 165 TABLE 3-I 國外專利件數比較(NUMBER OF FOREIGN PATENTS BY INDUSTRY) 166 TABLE 3-J 勞動生產力比較(LABOR PRODUCTIVITIES BY INDUSTRY) 167 TABLE 4-1 園區歷年實收資本額之成長-依資金來源分(GROWTH OF PAY-IN CAPITAL BY SOURCE OF CAPITAL) 169 TABLE 4-1-1 園區2003年實收資本額-依資金來源分(GROWTH OF PAY-IN CAPITAL BY SOURCE OF CAPITAL, DEC. 2003) 170 TABLE 4-2 園區歷年就業員工數之成長-依教育程度分,不含外勞(GROWTH OF EMPLOYEES NUMBER BY EDUCATION, NOT INCLUDING FOREIGN LABER) 171 TABLE 4-3 園區歷年出/進口貿易額及成長率(ANNUAL EXPORT/IMPORT TRADE & GROWTH RATE) 173rf 洪世章,(2002a),台灣新竹科學工業園區之演化,國科會2002年研究計畫書,清華大學科技管理研究所。 洪世章,(2002b),結構衝突與產業劣勢:台灣硬碟機工業之發展,管理學報,19(2):273-302。 洪世章,黃欣怡,(2003a)「光儲存之突破與進展」,科技發展政策報導,SR9212:966-975。 洪世章、黃欣怡,(2003b),產業、環境與競爭力—台灣薄膜電晶體液晶顯示器工業的分析,科技管理學刊,8(1):1-31。 洪世章、黃怡華,(2003),研究機構利用資源加速產業發展,收錄於史欽泰編,產業科技與工研院-看得見的腦(pp. 105-135),新竹縣竹東鎮:工業技術研究院。 薛香川,(1991),高科技工業在科學園區之發展,工程,64(12),頁47-51。 馬維揚,(2000),台灣高科技產業管理與經濟專題—以科學園區為例,台中市:滄海。 陳慧瀅,(2000),科學園區主要產業的相對效率之衡量,產業論壇,1 :135-146。 楊志海、陳忠榮,(2001),創新活動的投入、產出與效率—科學園區內外高科技廠商的比較,臺大管理論叢,11(2) : 129-153。 林裕淩、蕭志同、朱博湧,(2001),新興工業化國家研發支出影響因素之研究—以臺灣科學園區為例,科技管理學刊,6(2): 71-88。 工研院產業經濟與資訊服務中心,(2004),2004半導體工業年鑑。 Carlsson, B., Jacobsson, S., Holmen, M., and Rickne, A. (2002), “Innovation systems: analytical and methodological issues”, Research Policy, 31(2): 233-245. Eisenhardt, K. M. (1989), “Building theories from case study research”, Academy of Management Review, 14(4): 532-550. Freemen, C., (1987), Technology Policy and Economic Performance: Lessons from Japan. London and New York, Pinter. Gereffi, G. (1996a), “Global commodity chains: new forms of coordination and control among nations and firms in international industries”, Competition and Change, 4: 427-439. Gereffi, G. (1996b), “Commodity chains and regional divisions of labor in East Asia”, Journal of Asian Business, 12(1): 75-112. Glaser, B. G. and Strauss, A. L. (1967), The Discovery of Grounded Theory - Strategies for Qualitative Research. London: Weidenfeld and Nicholson. Gong, G. and Keller, W. (2002), “Convergence and polarization in global income levels: A review of recent results on the role of international technology diffusion”, Research Policy, 32(6):1055-1079. Gwynne, P. (1993), “Directing technology in Asia’s ‘Dragons’”, Research Technology Management, 32(2):12-15 Hamilton, G. (1996), “The theoretical significance of Asian business networks”, in G.G. Hamilton (ed), Asian Business Networks, 283-298, Walter de Gruyter, Berlin (1996). Henderson, J. (1989), The globalisation of high technology production, London: Routledge. Langly, A. (1999), “Strategies for theorizing from process data,” Academy of Management, 24(4): 691-710 Lee, Wen-Hsiung, Yang, Wei-Tzen (2000), “The cradle of Taiwan high technology industry development - Hsinchu Science Park (HSP),” Technovation, 20:55-59. Lin, C.-Y. (1997), “Technopolis development: An assessment of the Hsinchu experience”, International Planning Studies, 2(2): 257-272. Lundvall, B.-A., (1988), National System of Innovation – Towards a Theory of Innovation and Interactive Learning. London and New York, Pinter. Mathews, J. A. (1997), “A silicon valley of the east: Creating Taiwan's semiconductor industry”, California Management Review, 39 (4): 26-54. Mowery, D.C. (2001), “Technological Innovation in a Multipolar System: Analysis and Implications for U.S. Policy”, Technological Forecasting and Social Change, 67: 143-157. Nelson, R. R., (1993), National Innovation Systems – A comparative Analysis, Oxford University Press. Oxford, N. Y. Patton, N. Q. (1990), Qualitative Evaluation and Research Methods, California: Sage Publications. Saxenian, A. and Hsu, J.-Y. (2001), “The silicon valley-Hsinchu connection: Technical communities and industrial upgrading”, Industrial and Corporate Change,10 (4): 893-920. Tilley, K. J., Williams, D. J. and Conway, P. P. (1997), “Development and R&D capability at manufacturing sites: Electronic multinationals in Singapore and Taiwan”, Production and Operations Management, 6(2): 131-152 Yin, R. K. (1984), Case Study Research: Design and Methods. London: Sage.id NH0925230011 sid 916419 cfn 0 / id NH0925230012 auc 王聰哲 tic 虛擬團隊中成員特徵、團隊特徵、信任對知識分享的影響 adc 陳鴻基 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 英文 pg 46 kwc 虛擬團隊 kwc 知識分享 kwc 信任 kwc 領導 kwc 通訊科技 abc 一團隊中成員跟成員間被地理或時間區隔開,其間的互動主要是以通訊系統/科技為媒介,具有以上特徵的團隊,稱之為虛擬團隊。在全球化趨勢以及全球分工架構之下,這種團隊結構已經成為目前公司的主流,它可以幫助公司在競爭激烈的環境中獲得特定的優勢。 tc Abstract in Chinese I Abstract II Contents III List of Tables IV List of Figures IV 1. Introduction 1 1.1 Background and Motivation 1 1.2 Objectives and Questions 3 2. Literature Review 5 2.1 Members’ characteristics 6 2.2 Team’s Characteristics 9 2.3 Trust 15 3. Research Methodology 18 3.1 Research Model and Hypotheses 18 3.3 Variables and Measures 20 3.3 Sample Selection 22 4. Data Analysis and Results 27 4.1 Statistics Method 27 4.2 Results 27 5. Conclusion 34 5.1 Summary and Discussion of Findings 34 5.2 Contributions and Implications 35 5.3 Limitations and Future Research 36 Appendix 37 附錄一 「團隊特徵、成員特徵、信任對知識分享的影響」問卷 37 References: 43rf Alavi, M., and Leidner, D. E. “Review: Knowledge management and knowledge management systems: conceptual foundations and research issues,” MIS Quarterly (25:1), 2001, pp. 107-136. Atwater, L. E. “The relative importance of situational and individual variables in predicting leader behavior,” Group and Organization Studies (13), 1988, pp. 290-310. Bazerman, M. H. “Judgment in managerial decision making,” New York: Wiley, 1994. Cummings, L. L. “Performance-evaluation systems in context of individual trust and commitment,” In F. J. Landy, S. Zedrick, & J. Cleveland (Eds.). “Performance measurement and theory,” Hillsdale, N.J.: Earlbaum, 1983, pp. 89-93. Cummings, L. L., and Bromley, P. “The organizational trust inventory (OTI): Development and validation,” in Trust in Organizations: Frontiers of theory and research, T. R. Tyler, and R. M. Kramer (eds), Sage Publications, Thousand Oaks, CA., 1996, pp. 302-330. Cummings, J. “Work groups and knowledge sharing in a global organization,” Unpublished Dissertation, 2001. Daft, R., and Lengel, R. “Organizational information requirements media richness, and structural design,” Management Science (32), 1986, pp. 544-570. Davenport, T. H., and Prusak, L. “Working Knowledge,” Boston MA, Harvard Business School Press, 1998. Dennis, A. R., and Valacich, J .S. “Towards a theory of media synchronicity,” Proceedings of the Thirty-Second Hawaii International Conference on System Science, 1999. IEEE Computer Society. Available at http:// www.hicss.hawaii.edu/hicss_32/persproce.htm DeSanctis, G., and Poole, M. S. “Transitions in teamwork in new organizational forms,” Advances in group processes (14), 1997, pp. 157-176. Earley, P. C. “Trust, perceived importance of praise and criticism, and work performance: an examination of feedback in the United States and England,” Journal of Management (12:4), 1986, pp. 457-473. Frost, T., Stimpson, D. V., and Maughan, M. R. C. “Some correlates of trust,” Journal of Psychology (99), 1978, pp. 103-108. Galegher, J., and Kraut, R. E. “Computer-mediated communication for intellectual teamwork: an experiment in group writing,” Information Systems Research (5:2), 1994, pp. 110-138. Giffin, K. “The contribution of studies of source credibility to a theory of interpersonal trust in the communication department,” Psychological Bulletin (68), 1967, pp. 104-120. Granovetter, M. “The strength of weak ties,” American Journal of Sociology (78), 1973, pp. 1360-1380. Griffith, T. L., Sawyer, J. E., and Neale, M. A. “Virtualness and knowledge in teams: managing the love triangle of organizations, individuals, and information technology,” MIS Quarterly (27:2), 2003, pp. 265-287. Gupta, A., and Govindarajan, V. “Knowledge flows within multinational corporations,” Strategic Management Journal (21), 2000, pp. 473-496. Handy, C. “Trust and the virtual organization,” Harvard Business Review (73:3), 1995, pp. 40-50. Herder, P. M., Veeneman, W. W., Buitenhuis, M. D. J., and Schaller, A. “Follow the rainbow: a knowledge management framework for new product introduction,” Journal of Knowledge Management (7:3), 2003, pp. 105-115. Hendriks, P. “Why Share Knowledge? The Influence of ICT on Motivation of Knowledge Sharing,” Knowledge and Process Management (6:2), 1999, pp. 91-100. Hiltz, S. R., Dufner, D., Holmes, M., and Poole, S. “Distributed group support systems: Social dynamics and design dilemmas,” Journal of Organizational Computing (2:1), 1991, pp. 135-159. Inkpen, A., and Dikur, I. “Knowledge management process and international joint ventures,” Organization Science (9:4), 1998, pp.454-468. Jackson, S. E., and Alvarez, E. B. “Working through diversity as a strategic imperative. In S. Jackson (Ed.),” Diversity in the workplace, 1992, pp. 13-29. Jarvenpaa, S. L., Knoll, K., and Leidner, D. E. “Is anybody out there? Antecedents of trust in global virtual teams,” Journal of Management Information Systems (14:4), 1998, pp. 29-64. Jarvenpaa, S. L., and Leidener, D.E. “Communication and trust in global virtual teams,” Organization Science (10:6), 1999, pp. 791-815. Kayworth, T. R., and Leidner, D. E. “Leadership effectiveness in global virtual teams,” Journal of Management Information Systems (18:3), 2001, pp. 7-40. Larson, C. E., and LaFasto, F. M. J. “Teamwork: What must go right/what can go wrong,” Newbury Park. CA: Sage, 1989. Lasher, D. R., Ives, B., and Jarvenpaa, S. L. “USAA-IBM partnerships in information technology: managing the image project,” MIS Quarterly (15:4), 1991, pp. 551-565. Lawler, E. “The ultimate advantage: Creating the high-involvement organization,” San Francisco: Jossey-Bass, 1992. Lee, J. N., and Kim, Y. G. “Effect of partnership quality in IS outsourcing success: conceptual framework and empirical validation,” Journal of Management Systems (15:4), 1999, pp. 29-61. Levin, D., Cross, R., and Abrams, L. “The strength of weak ties you can trust: the mediating role of trust in effective knowledge transfer,” AOM Proceedings (Denver Conference), 2002. Lewis, J. D., and Weigert, A. “Trust as a social reality,” Social Forces (63:4), 1985, pp. 967-985. Lipnack, J., and Stamps, J. “Virtual teams: Reaching across space, time, and organizations with technology,” John Wiley and Sons, Inc., New York, 1997. Lurey, J. S., and Raisinghani, M. S. “An Empirical Study of Best Practices in Virtual Teams,” Information & Management (38:8), 2001, pp. 523-544. Mayer, R. C., Davis, J. H., and Schoorman, F. D. “An integrative model of organizational trust,” The Academy of Management Review (20:3), 1995, pp. 709-734. Maznevski, M. L., and Chudoba, K. M. “Bridging space over time: Global virtual team dynamics and effectiveness,” Organization Science (11:5), 2000, pp. 473-492. Meyerson, D., Weick, K. E., and Kramer, R. M. “Swift trust and temporary groups. In R.M. Kramer and T.R. Tyler (eds),” Trust in Organizations: Frontiers of Theory and Research, Thousand Oaks, CA: Sage Publications, 1996, pp. 166-195. Mohr, J., and Spekman, R. “Characteristics of partnership success: partnership attributes, communication, behavior, and conflict resolution techniques,” Strategic Management Journal (15), 1994, pp. 135-152. Milgrom, P., and Roberts, J. “Economics, organization and management,” Englewood Cliffs. NJ: Prentice Hall, 1992. Morgan, R. M., and Hunt, S. D. “The commitment-trust theory of relationship marketing,” Journal of Marketing (58), 1994, pp. 20-38. O’Hara-Devereaux, M., and Johansen, B. “Global Work: Bridging Distance, Culture, and Time,” San Francisco: Jossey-Bass, 1994. Piccoli, G.., and Ives, B. “Trust and the unintended effects of behavior control in virtual teams,” MIS Quarterly (27:3), 2003, pp. 365-395. Powell, A., Piccoli, G., and Ives, B. “Virtual teams: A review of the current literature and directions for future research,” The DATABASE for advances in Information Systems (35:1), 2004. Schmidt, J. B., Montoya-Weiss, M. M., and Massey, A. P. “New product development decision-making effectiveness: Comparing individuals, face-to-face teams, and virtual teams,” Decision Sciences (32:4), 2001, pp. 575-600. Sitkin, S. B., and Roth, N. L. “Explaining the limited effectiveness of legalistic remedies for trust/distrust,” Organizational Science (4), 1993, pp. 367-392. Scott, D. “The casual relationship between trust and the assessed value of management by objectives,” Journal of Management (6), 1980, pp. 157-175. Senge, P. “Sharing Knowledge,” Executive Excellence (16:9), 1999, pp. 6. Taylor, R. G. “The role of trust in labor-management relations,” Organization Development Journal (7), 1989, pp. 85-89. Tissen, R., Andriessen, D. and Lekanne, Deprez, F. “Valuebased Knowledge Management: Creating the 21st century company: knowledge intensive, people rich,” Amsterdam, Addison-Wesley Longman, 1998. Townsend, A. M., DeMarie, S. M., and Hendrickson, A. R. “Virtual teams: Technology and the workplace of the future,” The Academy of Management Executive (12:3), 1998, pp. 17-29. Vogel, D., Genuchchten, M., Lou, D., Verveen, S., van Eekhout, M., and Adams, T. “Exploratory research on the role of national and professional cultures in a distributed learning project,” IEEE Transactions on Professional Communication (44:2), 2001, pp.114-125.id NH0925230012 sid 916420 cfn 0 / id NH0925230013 auc 洪瑩珊 tic 信用風險之衡量方法:Copula函數的應用 adc 張焯然 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 中文 pg 39 kwc 信用風險值 abc 本文針對債券投資人所關切的信用風險,將 copula 函數加入既有測量信用風險值的 CreditMetric 模型,以考量資產間複雜的相依結構,據此提供債券投資人評估信用風險值 (credit VaR) 的參考依據。依據債券發行公司間的資產相依結構 (dependence structure) 以及 Standard & Poor’s 發佈的信用評等移轉矩陣 (credit transition matrix),計算此投資組合於年終移轉至各個信用評等的預期價值與其對應的機率分佈圖,以估算此投資組合的信用風險值。不同於傳統常態分配的設定方法,本文利用 Archimedean copula family (以下簡稱 AC copula family) 來描述公司資產間複雜的相依程度。並依據 Genest and Rivest (1993) 所提出的無母數估計方法,估計美國上市公司所發行公司債投資組合的信用風險值。本文發現,整體來說公司間的資產相依結構並非如傳統常態分配所設定的模型一樣,而是具有厚尾 (fat tail) 的情況產生。並且針對投資者所關心的尾端風險,相較於Kendall’s tau等級相關係數則lower tail dependence更能描繪資產組合尾端的變化狀態,以幫助本文更精確且進一步的評估投資組合的信用風險值。 rf 1. Alsina, C., M Frank,. and B. Schweizer, 1998, Associative Functions on Intervals, in preparation. 2. Black, F. and M. Scholes 1973, The pricing of options and corporate liabilities. Journal of Political EcoNomy, 81, No3, 637-653. 3. Bouyé E, V. Duttlrmsn, A. Nikeghbali, G. Riboulet et T. Roncalli 2000, Copulas for finance: a reading guide and some applications, working paper. 4. Claudio, C. 2002, Applying copula function to risk management, working paper. 5. Coyle, B. 2000, Measuring credit risk, NY: AMACOM. 6. Credit Swiss First Boston products 1997, Credit Risk+ - Technical Document, Landon/New York. 7. Embrechts, P., A. McNeil, and D. Straumann 1999, correlation and dependence in risk management properties and pirfalls, To appear in Risk Management: Value at risk and Beyond, ed. By M. Dempster and H.K. Moffatt, Cambridge University Press. 8. Embrechts, P., F. Lindskog, and A. McNeil 2001, Modeling dependence with copulas and applications to risk management, working paper. 9. Fama, E. F. 1965, The Behivior of Stock Market Prices, Journal of Businesss, 38, 34-105. 10. Genest, C. and J. McKay, 1986, The joy of copulas: Bivariate distributions with uniform marginals, Amer. Statist. 40, 280-285. 11. Genest, C. L. and Rivest, 1993, Statistical inference procedures for bivariate Archimedean copulas, Journal of the American Statistical Association, 88(423): 1034-1043. 12. Guption, G. M. 1997, The new talk of town: CreditMetricsTM , a credit value at risk approach, Journal of lending & Credit risk Management , August, 44-54. 13. J.P. Morgan products 1997, CreditMetrics™ - Technical Document, New York. 14. KMV products 1995, Measuring and Managing Credit Risk: understanding the EDF - Technical Document Credit Measure for Public Firms. 15. Li, D. X. 2000, On default correlation:a copula function approach, working paper, 1-7. 16. Mandelbrot, B. 1963, The Variation of Certain Speculative Prices, Journal of Business, 36, 394-419. 17. McCulloch, J. H. 1975, The Tax-Adjusted Yield Curve, Journal of Finance, 30, 811-830. 18. McKinsey Consulting products 1998, CreditPortfolioView, Approach Documentation and User’s Documentation. 19. Merton, R. 1974, On the pricing of corporate debt:the risk structure of interest rates, Journal of Finance 29, 449-470. 20. Nelson, R. 1998, An Introduction to Copulas, Springer, New York. 21. Qin, J. and B. Zhang, 1997, A goodness-of-fit test for logistic regression models based on case-control data. Biometrika. 84, 609-18. 22. RiskMetrics Group products 2001, RiskGrades: Technical Document, New York. 23. RiskMetrics Group products 2002, CreditGrades - Technical Document. 24. Schweizer, B. and E. Wolff, 1981, On nonparametric measures of dependence for random variables, Ann. Statist. 9, 870-885. 25. Sklar, A. 1959, Functions de répartition à n dimensions et leurs marges, Publications de Inst. Statist. Univ. Paris 8, 229-231. 26. Wang, K. C. Fawson, and J. Barrett, 2000, An Exchange Rate Application of GARCH-EGB2 Models, forthcoming by Journal of Applied Econometrics.id NH0925230013 sid 916423 cfn 0 / id NH0925230014 auc 孫志誠 tic 本金提早攤提對現金卡債權證券之影響 adc 林哲群 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 中文 pg 44 kwc 現金卡 kwc 證券化 kwc 本金提早攤提 abc 本研究以信用卡債權證券發行流程及架構為基礎,為現金卡債權證券訂定合理價格。根據證券還本方式及信託架構,設計四種不同結構的證券:控制累積還本法、控制攤還法、單一信託轉付還本以及總合信託轉付還本。並利用內部信用加強,超額擔保的形式,發行優先與次順位債券,同時加入超額利差概念,進而考慮證券提早攤提本金的情形。當發生提早攤提本金,則由優先順位證券先拿回本金,其次才攤還次順位證券本金。而利率模擬採取市場觀察到的即期利率轉換成每一期的短期利率,最後以現金流量折現,計算證券的價格。透過情境分析,對於違約率以及債權總收益率,找出可能發生提前攤提本金的觸發點,並計算證券價格。 tc 中文摘要...........................................................Ⅰ 英文摘要...........................................................Ⅱ 目錄...............................................................Ⅲ 表目錄.............................................................Ⅴ 圖目錄.............................................................Ⅵ 第一章 緒論........................................................1 第一節 研究動機................................................1 第二節 研究目的................................................2 第三節 研究架構................................................3 第二章 現金卡的介紹................................................6 第一節 現金卡的發卡比較........................................6 第二節 國內現金卡的情況........................................7 第三節 現金卡與信用卡的比較....................................8 第三章 現金卡應收帳款證券評價要點.................................11 第一節 證券化流程結構.........................................11 第二節 利率模型...............................................19 第三節 訂價方法...............................................20 第四章 研究設計...................................................22 第一節 證券群組...............................................22 第二節 現金流量評估...........................................23 第三節 利率模型調整...........................................26 第五章 評價結果與分析.............................................29 第一節 參數設定...............................................29 第二節 評價結果...............................................30 第三節 變數敏感度分析.........................................33 第六章 結論與建議.................................................40 第一節 結論...................................................40 第二節 建議...................................................41 參考文獻...........................................................43rf 一、中文部分: 1. 阮富陽(2003),「結合CIR利率模型與跳躍擴散過程評價浮動利率抵押貸款證券」,長庚大學企業管理研究所碩士論文。 2. 李靜貞(2002),「國內銀行現金卡競爭策略的探討」,國立中山大學高階經營碩士班碩士論文。 3. 林育廷(1999),「信用卡當事人法律關係與風險管理」,國立政治大學風險管理與保險研究所碩士論文。 4. 郭怡伶(2003),「信用卡債權證券評價與分析」,國立交通大學管理科學研究所碩士論文。 5. 郭姿伶(2000),「住宅貸款之提前清償與逾期放款」,國立中正大學財務金融研究所碩士論文。 6. 陳昆賢(2002),「不動產抵押權證券之評價研究-選擇權調整利差法之應用」,朝陽科技大學財務金融研究所碩士論文。 7. 陳玫君(2003),「利率可調整型抵押債權證券之訂價與分析」,國立清華大學經濟學研究所碩士論文。 8. 黃至民(2002),「利率可調整之不動產抵押貸款證券之評價與分析-CIR利率模型與邏輯斯蹄提前還本模型之結合」,國立台灣大學財務金融研究所碩士論文。 9. 黃玉霜(2002),「應用蒙第卡羅模擬法評價抵押貸款證券」,國立清華大學經濟學研究所碩士論文。 二、英文部分: 1. Bhattacharya, A. K. and F. J. Fabozzi(1996), Asset-Backed Securities, Frank J. Fabozzi Frank Associates. 2. Black, F., E. Derman, and W. Toy(1990), “A One –Factor Model of Interest Rates and Its Application to Treasury Bond Options,” Financial Analysts Journal, Jan/Feb, Vol.46, Iss.1, 33-39. 3. Cox, J. C., J. E. Ingersoll, and S. A. Ross(1985), “A Theory of the Term Structure of Interest Rate,” Econometrica, Vol.53, 385-408. 4. Dean, M. R. and M. Murphy(2001), “ABCs of Credit Card ABS,” Fitch, IBCA. 5. Dean, M. R., C. Mrazek, R. C. Drason, M. Sun, K. Moon and M. Galvez(1999), “ABCs of Credit Card ABS,” The Securitization Conduit Vol.2, No.2 & 3., 26-37. 6. Ho, T. S. Y., and S. B. Lee(1986), “Term Structure Movements and Pricing Interest Rate Contingent Claims,” Journal of Finance, Vol.41, No5, 1011-1029. 7. Hull, J., and A. White(1990), “Valuing Derivative Securities Using the Explicit Finite Difference Method,” Journal of Financial and Quantitative Analysis, Vol. 25, No.1, 87-100. 8. Hull, J., and A. White(1994), “Numerical Procedures for Implementing Term Structure Models II:Two-Factor Models,” Journal of Derivative, Vol.2, No.1, 7-16. 9. Vasicek, O. A.(1977), “An Equilibrium Characterization of the Term Structure,” Journal of Financial Economics Vol. 5, 177-178.id NH0925230014 sid 916424 cfn 0 / id NH0925230015 auc 王怡靜 tic 台灣股市價格動能與流動性之整合研究 adc 蔡錦堂 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 中文 pg 65 kwc 流動性 kwc 價格動能 kwc 統計套利 kwc 動量生命循環週期假說 abc 本文目的為探討價格動能策略和流動性之間的交互作用。流動性對於資本市場的重要性,一直以來均是國內外學者所矚目的焦點。本文實証上參照Lee and Swaminathan (2000)的研究方法,搭配價格動能及流動性來建構投資策略,探討在台灣證券市場中,動量生命循環週期假說是否亦成立。 tc 目錄 中文摘要……………………………………………………………………………..Ⅰ 英文摘要……………………………………………………………………………..Ⅱ 目錄…………………………………………………………………………………..Ⅲ 第一章 緒論………………………………………………………………………....1 第一節 研究動機…………………………………………………………………….1 第二節 研究架構…………………………………………………………………….5 第二章 文獻探討…………………………………………………………………....6 第一節 動能策略…………………………………………………………………….6 第二節 報酬率與流動性………………………………………………………..…...13 第三節 動量生命週期循環假說……………………………………………..…..…...15 第四節 流動性衡量指標………..…………………………………………..…..…...17 第五節 統計套利…………..…..…………………………………………..…..…...21 第三章 研究方法…………………………………………………………………..22 第一節 變數定義……………..……………………..…………………………...…22 第二節 資料來源、研究期間及樣本選取……………………………………………..23 第三節 研究假說…………………………………………………………………...23 第四節 檢定模型…………………………………………………………………...25 第五節 估計與檢定……………………………………………………………....…29 第四章 實證結果分析……………………………………………………………..30 第一節 價格動能策略之績效分析……………………..…………………………...…30 第二節 價格動能搭配交易熱絡程度之流動性衡量指標的投資策略之績效分析...……..…31 第三節 價格動能搭配市場深度的投資策略之績效分析…...………………………....…43 第四節 以「可能遭受損失的機率(Probability of Loss)」來對運用不同流動性指標所建構之投資組合進行比較分析…...………………………………………………....…47 第五節 動量生命循環週期…………………………………...………………………....…58 第五章 結論及研究建議…………………………………………………………..61 第一節 結論……………………………………………..…………………………...…61 第二節 後續研究建議…………………………………..…………………………...…62 參考文獻……………………………………………………………………………..64 表次 表一………………………………………………………………………………..…24 表二………………………………………………………………………………..…32 表三………………………………………………………………………………..…33 表四……………………………………………………………………………..……34 表五……………………………………………………………………………..……35 表六……………………………………………………………………………..……36 表七……………………………………………………………………………..……37 表八……………………………………………………………………………..……38 表九………………………………………………………………………………..…39 表十………………………………………………………………………………..…40 表十一……………………………………………………………………………..…41 表十二……………………………………………………………………………..…42 表十三……………………………………………………………………………..…43 表十四……………………………………………………………………………..…44 表十五……………………………………………………………………………..…46 表十六……………………………………………………………………………..…50 表十七……………………………………………………………………………..…52 圖次 圖一……………………………………………………………………………………8 圖二…………………………………………………………………………………..15 圖三……………………………………………………………………………..……53 圖四…………………………………………………………………………………..54 圖五…………………………………………………………………………………..55 圖六…………………………………………………………………………………..56 圖七…………………………………………………………………………………..57 圖八…………………………………………………………………………………..59rf 參考文獻 一、國外文獻 Ahn, Hee-Joon, Kee-Hong Bae, and Kalok Chan, 2001, Limit Orders, Depth, and Volatility: Evidence from the Stock Exchange of Hong Kong, Journal of Finance,56, 767-778 Amihud, Y., and Haim Mendelson, 1986, Asset Pricing and the Bid-Ask Spread, Journal of Financial Economics17, 223-249. Bagehot, W.,1971,The Only Game in Town, Financial Analyst Journal 22 ,12-14 Barberis, Nicholas, Andrei Shleifer, and Robert Vishny, 1998, Model of Investor Sentiment, Journal of Financial Economics 49, 307-343 Biais, Bruno, Pierre Hillion, and Chester Spatt, 1995, An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse, Journal of Finance 50, 1655-1689. Blume, Lawrence, David Easley, and Maureen O’hara, 1994, Market Statistics and Technical Analysis: The role of Volume, Journal of finance, 49, 153 -181 Brockman, P. and D. Chung, 1999, Bid-Ask Spread Components in an Order-Driven Environment. Journal of Financial Research 22, 2, 227-246 Bondarenko., Oleg, 2002, Statistical Arbitrage and Securities Prices, Review of Financial Studies, Forthcoming Campbell, John Y., Sandord J. Grossman, and Jiang Wang, 1993, Trading Volume and Serial Correlation in Stock Returns, Quarterly Journal of Economics 107, 905-939. Chan, L.K., N. Jegadeesh, and J. Lakonishok, 1996, Momentum Strategies, Journal of Finance 51, 1681-1713. Chan, L.K., N. Jegadeesh, and J. Lakonishok. 1999. The Profitability of Momentum Strategies. Financial Analysts Journal, vol.55, 80-90 Conrad, Jennifer S., Allaudeen Hameed, and Cathy Niden, 1994, Volume and Autocovariances in Short-Horizon Individual Security Returns, Journal of Finance 49, 1305-1330. Daniel. Kent, David Hirshleifer, and Avanidhar Subrahmanyam,1998, Investor Psychology and Security Market Under and Overreactions, Journal of Finance 53 ,1839-1885 Daniel, Kent, and Sheridan Titman, 2000, Market Efficiency in an Irrational World. Financial Analysts Journal, vol.55, 28-40. Datar, Vinay, Narayan Naik, and Robert Radcliffe, 1998, Liquidity and Asset Returns: An alternative test, Journal of Financial Markets, 203-220. Debondt, Werner F.M., and Richard Thaler, 1985, Does the stock market overreact? Journal of Finance 40, 793 – 805 Elton, Edwin J., Martin J. Gruber, Sanjiv Das and Matthew Hlavka.,1993, Efficiency With Costly Information: A Reinterpretation Of Evidence From Managed Portfolios, Review of Financial Studies, v6(1), 1-22. Fama, Eugene F. and J. D. MacBeth, 1973, Risk, Return, and Equilibrium: Empirical Test, Journal of Political Economy, 81, 607-636. Fama, Eugene F., 1998, Market Efficiency, Long-Term Returns, and Behavior Finance, Journal of Financial Economics, 49, 283-306 Fama, Eugene F., and Kenneth R. French, 1993, Common Risk Factors in the Returns on Stocks and Bonds, Journal of Financial Economics, 49, 283-306 Handa, Puneet, and Robert A. Schwartz, 1996, Limit Order Trading, Journal of Finance 51, 1835-1861. Harris, Lawrence, and Joel Hasbrouck, 1996, Market vs. Limit orders: The SuperDOT Evidence on Order Submission Strategy, Journal of Financial and Quantitative Analysis 31, 213-231. Hogan, S., R. Jarrow, M. Teo, and M. Warachka, 2003, Testing Market Efficiency using Statistical Arbitrage with Applications to Momentum and Value Strategies, working paper Hong, Harrison, and Jeremy C. Stein, 1999, A Unified Theory of Underreaction, Momentum Trading and Overreaction in Asset Markets, Journal of Finance 54 , 2143-2184 Jegadeesh, Narasimhan, 1990, Evidence of Predictable Behavior of Security Returns, Journal of Finance 45, 881 - 898 Jegadeesh, Narasimhan, and Sheridan Titman, 1993, Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency, Journal of Finance 48, 65-91. Lehmann, Bruce N., 1990, Fads, Martingles, and Market Efficiency, Quarterly Journal of Economics 60, 1 - 28 Lakonishok, Josef, Andrei shleifer, and Robert W. Vishny, 1994, Contrarian Investment, Extrapolation, and Risk, Journal of Finance, 49, 1541-1578. Lee, C. M. C. and B. Swaminathan, 1998, Price Momentum and Trading Volume, Johnson Graduate School of Management, Working Paper, Cornell University. Lee, Charles M. C., and Bhaskaran Swminathan, 2000, Price Momentum and Trading Volume, Journal of Finance,55, 2017-2069. Moskowitz, Tobias J., and Mark Grinblatt, 1999, Do Industries Explain Momentum?, Journal of Finance 54, 1249-1290. Ross, S., 1976, The Arbitrage Theory of Capital Asset Pricing, Journal of Economic Theory, 13, 341-360 Rouwenhorst, Greet k., 1998, International Momentum Strategies, Journal of Finance 53, 267 -283 二、國內文獻 李惇鳴,民國87年,上市公司股票報酬與盈餘持續性效果之研究,政治大學企業管理研究所碩士論文 吳丕雄,民國92年,影響台灣基金報酬率因子之結構分析,國立清華大學科技管理所研究所碩士論文 林美珍,民國81年,股票價格過度反應之方向、幅度與密度,國立台灣大學財務金融研究所碩士論文 陳光華,民國89年,台灣股市動能生命週期之再探討,銘傳大學財務金融研究所碩士論文 陳鴻崑,民國89年,動量週期與成交量之研究,淡江大學財務金融研究所碩士論文 莊智有,民國89年,台灣股市元月效應成因之探討綜合實証研究,中原大學企業管理研究所碩士論文 許勝吉,民國88年,台灣股市追漲殺跌策略與反向策略之實證分析比較,輔仁大學管理學研究所碩士論文 游奕琪,民國89年,台灣股市產業與價格動能策略關聯性之實證研究,國立政治大學財務金融研究所碩士論文 詹場和胡星陽,民國89年,流動性衡量方法之綜合評論,國家科學委員會研究彙刊:人文及社會科學十一卷三期,205-221 蔡劼麟,民國88年,台灣股票市場價格動量與週轉率之循環研究,銘傳大學財務 金融研究所碩士論文 謝朝顯,民國83年,追漲殺跌投資策略之實証研究-台灣股市效率性之再檢定,國立台灣大學財務金融研究所碩士論文 羅正覺,民國92年,台股指數期貨之價格波動與市場深度實證分析, 淡江大學財務金融研究所碩士論文id NH0925230015 sid 916426 cfn 0 / id NH0925230016 auc 陳健豪 tic 台灣地區住宅抵押貸款-提前清償與違約之分析 adc 林哲群 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 中文 pg 59 kwc 房屋貸款 kwc 提前清償 kwc 違約 kwc 邏輯特迴歸模型 abc 在台灣,國人普遍有自行購屋之習慣,而房屋價格卻非人人負擔得起,因此非常依賴金融機構所提供的房屋貸款。金融機構於貸放資金後,會面臨借款人在還款行為上的不規則性,其中又以提前清償與違約影響最大,進一步探究其影響因素乃有其必要性。提前清償與違約之影響因素通常可區分為利率與非利率兩方面,以近年來市場利率波動趨於緩和之趨勢來看,非利率影響因素之分析顯得更是重要。本研究直接從貸款特性出發,分析包含貸款期間、貸款年齡、貸款償還方式等七個變數對提前清償與違約之影響,並利用邏輯特(logit)迴歸模型作實證分析,實證結果亦顯示非利率影響因素對借款人不規則還款行為存在顯著影響。 tc 摘 要...............................Ⅰ 目 錄...............................Ⅱ 圖 次...............................Ⅲ 表 次...............................Ⅳ 第一章 緒論..........................1 前言..................................1 第一節 研究動機......................3 第二節 研究目的......................6 第三節 研究架構與流程 ...............8 第二章 提前清償與違約之論述.........10 第一節 提前清償影響因素.............11 第二節 提前清償之估計方法...........14 第三節 違約影響因素.................17 第三章 文獻回顧.....................20 第四章 研究方法.....................34 第一節 變數說明與預期結果...........34 第二節 實證模型.....................39 第五章 實證結果.....................43 第一節 實證資料敘述統計.............43 第二節 提前清償結果分析.............47 第三節 違約結果分析.................50 第六章 結論與建議...................53 參考文獻.............................56rf 一、中文部分 1.王濟川、郭志剛(2003),Logistic迴歸模型方法及應用,五南文 化事業。 2.陳文達、廖咸興、李阿乙(2002),資產證券化理論與實務,智勝 文化事業。 3.郭姿伶(1999),「住宅貸款之提前清償與逾期還款」,國立中正 大學財務金融研究所碩士論文。 4.劉展宏、張金鶚(2001),「購屋貸款提前清償行為之研究」,住 宅學報,10(1),29-49。 5.謝明瑞(2002),「台灣實施不動產低押貸款債權證券化之問 題」,國家政策論壇,2(6),44-51。 二、英文部分 1.Anderson, R., and J. Vanderhoff. (1999).“Mortgage Default Rates and Borrower Race,” The Journal of Real Estate Research 18(2), 279-289. 2.Archer, W.R., and D.C. Ling.(1993). “Pricing Mortgage Backed Securities:Integrating Optimal Call and Empirical Models of Prepayment,” Journal of the American Real Estate and Urban Economics Association 21(4), 373-404. 3.Black, F., and M. Scholes. (1973).“The Pricing of Options and Corporate Liabilities, ”The Journal of Political Economy 81(3), 637-654. 4.Calhoun, C.A., and Y. Deng.(2002).“A Dynamic Analysis of Fixed and Adjustable Rate Mortgage Terminations, ” Journal of Real Estate Finance and Economics 24(1/2), 9-33. 5.Campbell, T.S., and J.K. Dietrich. (1983). “The Determinants of Default on Insured Conventional Residential Mortgage Loans,” The Journal of Finance 38(5), 1569-1581. 6.Caplin, A., C. Freeman, and J. Tracy. (1997). “Collateral Damage:Refinancing Constrains and Regional Recessions,” Journal of Money, Credit and Banking 29(4), 496-516. 7.Capozza, D.R., D. Kazarian, and T.A. Thomson.(1997). “Mortgage Default in Local Markets,” Real Estate Economics 25(4), 631-655. 8.Deng, Y., J.M. Quigley, and R. Van Order. (2000). “Mortgage Terminations, Heterogeneity and the Exercise of Mortgage Options,” Econometrica 68(2), 275-307. 9.Gordon, M.(1992).“The New Thinking on Prepayments,” Mortgage Banking 53(1), 48-56. 10.Green, J., and J.B. Shoven.(1986),“The Effects of Interest Rates on Mortgage Prepayments,” Journal of Money, Credit and Banking 18(1), 41-59. 11.Green, R.K., and M. LaCour-Little.(1999).“Some Truths about Ostriches: Who Doesn't Prepay Their Mortgages and Why They Don't,” Journal of Housing Economics 8, 233-248. 12.Hakim, S.R.(1997).“Autonomous and Financial Mortgage Prepayment,” The Journey of Real Estate Research 13(1), 1-16. 13.Hall, A.(2000).“Controlling for Burnout in Estimating Mortgage Prepayment Models,”Journal of Housing Economics 9, 215-232. 14.Kau, J.B., D.C. Keenan, W.J. Muller, and J.F. Epperson. (1990). “The Valuation and Analysis of Adjustable Rate Mortgages,”Management Science 36(12), 1417-1431. 15.Kau, J.B., D.C. Keenan, W.J. Muller, and J.F. Epperson. (1992).“A Generalized Valuation Model for Fixed-Rate Residential Mortgages,” Journal of Money, Credit and Banking 24(3), 279-299. 16.Kau, J.B., D.C. Keenan, and T. Kim. (1993). “Transaction Costs, Suboptimal Termination and Default Probabilities,”Journal of the American Real Estate and Urban Economics Association 21(3), 247-263. 17.Lekkas, V., J.M. Quigley, and R. Van Order. (1993). “Loan Loss Severity and Optimal Mortgage Default,” Journal of the American Real Estate and Urban Economics Association 21(4), 353-371. 18.McConnell, J.J., and M. Singh. (1994), “Rational Prepayment and the Valuation of Collateralized Mortgage Obligations,” The Journal of Finance 49(3), 891-921. 19.Palmeri,C., and R. Miller.(2004).“Armed and Dangerous?;Adjustable Rate Mortgages Are Pulling in New Home Buyers - But the Risks Are High,” Business Week 3878, 82. 20.Quigley,J.M.(1987).“Interest Rate Variations,Mortgage Prepayments and Household Mobility,”The Review of Economics and Statistics 69(4), 636-643. 21.Quigley, J.M., and R. Van Order.(1990).“Efficiency in the Mortgage Market:The Borrower's Perspective, ” Areuea Journal 18(3), 237-252. 22.Richard, S.F., and R. Roll.(1989).“Prepayments on Fixed Rate Mortgage Backed Securities,”Journal of Portfolio Management 15(3), 73-82. 23.Stanton, R.(1995).“Rational Prepayment and Valuation of Mortgage Backed Securities,” The Review of Financial Studies 8(3), 677-708. 24.Schwartz, E.S. and W.N. Torous.(1989). ”Prepayment and the Valuation of Mortgage Backed Securities,”The Journal of Finance 44(2), 375-392. 25.Schwartz, E.S. and W. N. Torous.(1992),“Prepayment, Default, and the Valuation of Mortgage Pass-Through Securities,” The Journal of Business 65(2), 221-239. 26.Stanton, R. and N. Wallace.(1999). “Anatomy of an ARM: The Interest Rate Risk of Adjustable Rate Mortgage,” Journal of Real Estate Finance and Economics 19(1), 49-67. 27.Vanderhoff, J.(1996).“Adjustable and Fixed Rate Mortgage Termination, Option Values and Local Market Conditions: An Empirical Analysis,” Real estate Economics 24(3), 379-406. 28.Zorn, P.M. and M.J. Lea.(1989).“Mortgage Borrower Repayment Behavior:A Microeconomic Analysis with Canadian Adjustable Rate Mortgage Data,” Real Estate Economics 17(1), 118-136.id NH0925230016 sid 916427 cfn 0 / id NH0925230017 auc 王裕翔 tic 限價單,市場深度的實證研究- 以台灣證券市場為例 adc 蔡錦堂 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 中文 pg 57 kwc 市場深度 kwc 短期報酬波動率 kwc 限價委託單 kwc 市價單 abc 摘要: tc 第一章 緒論1 第一節 研究動機與目的1 第二章 文獻回顧和探討8 第一節 限價單的相關文獻8 第二節 市場深度和報酬波動實證研究之相關文獻11 第三章 研究方法14 第一節 變數定義14 第二節 敘述統計20 第三節 實證模型23 第四章 實證結果和分析27 第一節 短期報酬波動率對於市場深度之影響分析27 第二節 短期報酬波動對於投資者下單決策影響之分析30 第三節 市場深度對於短期報酬波動率影響之分析34 第四節 額外增加的資訊對短期報酬波動影響之分析37 第五章 結論和建議38 第一節 結論38 第二節 研究限制和未來研究方向建議42 參考文獻43 圖表附錄44rf 參考文獻 Ahn, Hee-Joon, Kee-Hong Bae, and Kalok Chan, 2001, Limit orders, depth, and volatility: Evidence from the Stock Exchange of Hong Kong, Journal of Finance 56, 767-778. Biais, Bruno, Pierre Hillion, and Chester Spatt, 1995, An empirical analysis of the limit order book and the order flow in the Paris Bourse, Journal of Finance, 50, 1655-1689. Brockman, P. and D. Chung, 1999, Bid-Ask Spread Components in an Order-Driven Environment. Journal of Financial Research 22, 2, 227-246 Foucault, Thierry, 1999, Order flow composition and trading costs in a dynamic limit order market. Journal of Financial Markets 2, 99-134. Glosten, Lawrence R., 1994, Is the Electronic Open Limit Order Book Inevitable? Journal of Finance 49, 1127-1161. Handa, Puneet, and Robert A. Schwartz, 1996, Limit order trading, Journal of Finance 51, 1835-1861. Harris, Lawrence, and Joel Hasbrouck, 1996, Market vs. Limit orders: The SuperDOT Evidence on Order Submission Strategy, Journal of Financial and Quantitative Analysis 31, 213-231. Newey, Whitney K. and Kenneth D. West, 1987, a simple positive semi-definite heteroskedasticity and autocorrelation consistent covariance matrix, Econometrica 55, 703-708 Omura, Keiichi, Yasuhiko Tanigawa, and Jun Uno, 2000, Execution Probability of Limit Orders on the Tokyo Stock Exchange. Working paper.id NH0925230017 sid 916428 cfn 0 / id NH0925230018 auc 劉權興 tic 信用價差選擇權之評價 adc 張焯然 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 中文 pg 40 kwc 信用風險 kwc 信用價差 abc 在全球愈來愈開放的市場下,可供投資人選擇的投資管道變多,當然所必須承擔的風險也變得愈來愈大,其中信用風險所佔的比重更是逐年增加,也使得信用衍生商品在金融市場上扮演的角色也愈顯重要。這篇論文主要就是提供信用商品之一的信用價差選擇權,一個一般化的評價公式,只要給定的變數服從AJD的模型,我們可以求得一個只需求算傅利葉積分的評價公式,這樣的結果大大地降低了使用數值評價方法所需大量的計算時間,提供一個簡單且容易使用的封閉解。文章中也試著推導一個不考慮跳動的CIR模型,求得在此特例下CSP的評價公式,並透過比較靜態分析後發現,利率對CSP的影響相較於違約強度而言並不顯著;而其它參數的影響則以執行價差的效果來得最大。 rf 1.Altman, E. (1968), Financial ratios, discriminant analysis and the prediction of corporate bankruptcy, Journal of Finance, 23, 589-609. 2.Anderson, P., Ø. Borgan, R. Gill, and N. Keiding (1993), Statistical Model of Counting Processes, New York: Springer. 3.Anderson, R. and S. Sundaresan (1996), Design and valuation of debt contracts, Review of Financial Studies, 9, 37-68. 4.Black, F. and M. Scholes (1973), The pricing of options and corporate liabilities, Journal of Political Economy, 81, 634-54. 5.Black, F. and J. Cox (1976), Valuing corporate securities: liabilities: some effects of bond indenture provisions, Journal of Finance, 31, 351-367. 6.Duffee, G.R. (1999), Estimating the price of default risk, The Review of Financial Studies, 12, 197-226. 7.Duffie, D. and K.J. Singleton (1997), An econometric model of the term structure of interest-rate swap yield, The Journal of Finance, 52, 1287-1322. 8.Duffie, D., J. Pan and K. Singleton (1999), Transform analysis and asset pricing for affine jump-diffusions, Econometrica, 68, 1343-1376. 9.Dullmann, K., M. Uhrig-Homburg, and M. Windfuhr (2000), Risk structure of interest rates:an empirical analysis for Deutschemark-denominated bonds, European Financial Management, 6, No. 3. 10.Fischer, E., R. Heinkel, and J. Zechner (1989), Dynamic capital structure choice: theory and tests, Journal of Finance, 44, 19-40. 11.Jamshidian, F. (1996), Bond futures and option evaluation in the quadratic interest rate model, Applied Mathematical Finance, 3, 93-115. 12.Jarrow, R. and S. Turnbull (1997), When swaps are dropped, Risk, 10, 70-75. 13.Leland, H. (1994), Corporate debt value, bond covenants, and optimal capital structure models, Journal of Finance, 49, 1213-1252. 14.Madan, D. and H. Unal (1998), Pricing the risks of default, Review of Derivatives Research, 2, 121–160. 15.Mella-Barral, P. (1999), Dynamics of default and debt reorganization, Review of Financial Studies, 12, 535-578. 16.Merton, R.C. (1974), On the pricing of corporate debit: the risk structure of interest rates, Journal of Finance, 29, 449-470. 17.Schönbucher, P. J. (1996), Valuation of securities subject to credit risk, Working paper, University of Bonn, Department of Statistics. 18.Schönbucher, P. J. (1997), Modelling defaultable bond prices, Working paper, London School of Economics, Financial Markets Group. 19.Zhou, C. (1997), A jump-diffusion approach to modeling credit risk and valuing defaultable securities, Finance and Economics Discussion Paper Series 1997/15, Board of Governors of the Federal Reserve System.id NH0925230018 sid 916429 cfn 0 / id NH0925230019 auc 林偉傑 tic 新創公司之鑑價-實質選擇權法 adc 楊屯山 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 中文 pg 88 kwc 實質選擇權 kwc 新創公司 kwc 企業鑑價 kwc 創新 kwc 最小平方蒙地卡羅模擬法 abc 本計畫以實質選擇權法 (real options approach) 的概念,將新創公司 (start-ups) 所擁有的選擇權特性 (遞延選擇權、擴張選擇權與放棄選擇權) 納入公司價值的評鑑。根據這些選擇權之間的順序關係,利用最小平方蒙地卡羅模擬法 (least squares Monte Carlo simulation) 依序計算出其價值。同時,本文在定價新創公司的過程中,同時考量下列五個重要的因子:(1) 市場的競爭狀況,(2) 等待的機會成本,(3) 潛在競爭者進入的頻率,(4) 未來研發成功的機會,和 (5) 不同營運模式的影響。在考量上述選擇權與五個重要因子下,同時以實質選擇權法與傳統現金流量折現法 (DCF method) 來評價新創公司的價值。 tc 中文摘要 I 英文摘要 II 誌 謝 辭 III 目 錄 IV 表 目 錄 V 圖 目 錄 VI 壹、緒論 1 第一節、研究動機 1 第二節、研究目的 3 第三節、研究背景 5 第四節、研究流程與架構 7 第五節、實質選擇權與金融選擇權之比較 8 第六節、實質選擇權在定價上的考量 10 貳、文獻回顧 14 第一節、實質選擇權的觀念 14 第二節、傳統現金流量折現法與實質選擇權法 15 第三節、鑑價新創公司應考量的因素 18 第四節、模型上的考量 23 參、研究方法 24 第一節、模型建構與說明 25 第二節、選擇權價值的評估 28 第三節、模擬方法與參數給定 34 肆、研究結果 42 第一節、模擬結果 42 第二節、分析與比較 45 伍、結論與建議 53 參考文獻 55 一、中文文獻 55 二、英文文獻 55 附錄 61rf 一、中文文獻 王健安,1998年12月,「資本投資計畫評核術的新觀念─實質選擇權之理論與實證方法的文獻回顧」,《臺灣土地金融季刊》 第35卷第4期 (No. 138),頁 75-99。 伍忠賢,2002年8月,《公司鑑價》 初版,臺北市:三民書局。 張傳章、鍾炫城、林秋發,2001年12月,「同時考慮R&D與市場需求不確定下之高科技產業投資方案評估分析」,《管理學報》 第18卷第4期,頁 589-616。 游李興,2002年7月,《2002 半導體工業年鑑》 初版,財團法人工業技術研究院 產業經濟與資訊服務中心。 顏錫銘、吳明政,2001年4月,「創業投資公司投資案價值的評估─採用多重實質選擇權評價方法」,《科技管理學刊》 第6卷第1期,頁 103-130。 林家帆、陳威光、郭維裕,2002年7月,「高科技產業股票之評價─實質選擇權評價法」,《管理評論》 第21卷第3期,頁 97-113。 二、英文文獻 Arnold, T., and T. F. Crack, 2000, “Option pricing in the real world: a generalized binomial model with applications to real options,” Working Paper, University of Richmond. Bakshi, G., and Z. Chen, 1997, “An alternative model for contingent claims,” Journal of Financial Economics, Vol. 44, pp. 123-165. Barraquand, J., and D. Martineau, 1995, “Numerical valuation of high dimensional multivariate American securities,” Journal of Financial and Quantitative Analysis, Vol. 30, No. 3, pp. 383-405. Bares, D. S., 1996, “Jumps and stochastic volatility: exchange rate process implicit in Deutsche mark options,” Review of Financial Studies, Vol. 9, pp. 69-107. Baz, J., and R. Strong, 1997, “The bias in delta as an indicator of the actual likelihood of option exercise,” Finance Practice and Education, Vol. 7, pp. 91-94. Beaver, W. H., and G. Parker, 1995, Risk Management: Problems & Solutions, New York: McGraw-Hill, pp. 239. Berger, P. G., E. Ofek, and I. Swarv, 1996, “Investor valuation of the abandonment option,” Journal of Financial Economics, Vol. 42, pp. 257-287. Bhide, A., 1996, “The road well travelled: a note on the journeys of HBS entrepreneurs,” HBS publication. Bollen, N., 1999, “Real option and product life cycles,” Management Science, Vol. 45, No. 5, pp. 670-684. Brennan, M., and E. Schwartz, 1985, “Evaluating natural resource investments,” Journal of Business, Vol. 58, pp. 135-157. Broadie, M., and P. Glasserman, 1997, “Pricing American-style securities using simulation,” Journal of Economics Dynamics and Control, Vol. 21, pp. 1323-1352. Broadie, M., P. Glasserman, and G. Jain, 1997, “Enhanced Monte Carlo estimates for American option prices,” Journal of Derivatives. Cassiman, B., and M. Ueda, 2002, “Optimal project rejection and new firm start-ups,” CEPR Discussion Paper No. 3429. Christensen, C., 1997, “The innovator’s dilemma: when new technologies cause great firms to fail,” Harvard Business School Press. Clement, E., D. Lamberton, and P. Protter, 2001, “An analysis of the Longstaff-Schwartz algorithm for American options,” Working Paper. Constantinides, G., 1978, “Market risk adjustment in project valuation,” Journal of Finance, Vol. 33, No. 2, pp. 603-616. Cortazar, G., 2000, “Simulation and numerical methods in real options valuation,” Working Paper, Pontifical Catholic University of Chile. Cox, C., J. E. Ingersoll, and S. A. Ross, 1985, “An intertemporal general equilibrium model of asset prices,” Econometrica, Vol. 53, pp. 363-384. Dixit, A. K., and R. S. Pindyck, 1994, Investment under Uncertainty, New Jersey: Princeton University Press. Dixit, A. K., and R. S. Pindyck, 1995, “The option approach to capital investment,” Harvard Business Review, Vol. 73, pp. 105-115. Gamba, A., 2002, “Real options valuation: a Monte Carlo simulation approach,” Working Paper, University of Verona, Italy. Gamba, A., and L. Trigerogis, 2002a, “A log-transformed binomial lattice extension for multi-dimensional option problems,” The Fifth Annual Conference on Real Options, UCLA. Gamba, A., and L. Trigerogis, 2002b, “A modular approach to capital budgeting problems with many real options,” Working Paper, University of Verona, Italy. Gompers, P., and J. Lerner, 1999, The venture capital cycle, Cambridge Massachusetts: MIT Press. Gompers, P., and J. Lerner, 2000, “Money chasing deals? The impact of fund inflows on private equity valuation,” Journal of Financial Economics, Vol. 55, pp. 281-325. Grenadier, S., and A. Weiss, 1997, “Investment in technological innovations: an option pricing approach,” Journal of Financial Economics, Vol. 44, pp. 397-416. Hayes, R., and D. Garvin, 1982, “Managing as if tomorrow mattered,” Harvard Business Review, Vol. 60, pp. 71-79. He, H., and R. S. Pindyck, 1992, “Investment in flexible production capacity,” Journal of Economic Dynamic and Control, Vol. 13, No. 4, pp. 575-599. Hull, J. C., 2003, Options, Futures, and Other Derivatives, fifth edition, Prentice-Hall Press. Hull, J. C., and A. White, 1987, “The pricing of options on assets with stochastic volatilities,” Journal of Finance, Vol. 42, pp. 281-300. Hull, J. C., and A. White, 1988, “An overview of contingent claims pricing,” Canadian Journal of Administrative Sciences, pp. 55-61. Ingersoll, J., and S. Ross, 1992, “Waiting to invest: Investment and uncertainty,” Journal of Business, Vol. 65, pp. 1-29. Jansen, P., and E. Perotti, 2002, “Valuation of internet companies: a survey of the evidence,” Working Paper. Kester, C., 1984, “Today’s options for tomorrow’s growth,” Harvard Business Review, Vol. 62, pp. 105-115. Kulatilaka, N., and G. Wang, 1996, “A real option framework for evaluating infrastructure investments,” Journal of Financial Studies, Vol. 4, No. 2, pp. 1-19. Kulatilaka, N., and L. Trigeorgis, 1994, “The general flexibility to switch: real option revisited,” International Journal of Finance, Vol. 6, No. 2, pp. 778-798. Lee, T. S., H. C. Tsai, and H. D. Chen, 2002, “Pricing patents under knowledge-based economy: real option approach,” Working Paper, National Taiwan University. Lerner, J., 2002, “Boom and bust in the venture capital industry and the impact on innovation,” mimeo., Harvard University. Longstaff, F. A., and E. S. Schwartz, 2001, “Valuing American options by simulation: a simple least-squares approach,” Review of Financial Studies, Vol. 14, No. 1, pp. 113-147. Luehrman, T.A., 1995, “Capital projects as real options: an introduction,” Harvard Business School Press, 9-295-074. Luehrman, T.A., 1998, “Investment opportunities as real options: getting started on the numbers,” Harvard Business Review, Vol. 76, pp. 51-67. McDonald, R., and D. Siegel, 1984, “Option pricing when the underlying asset earns a below-equilibrium rate of return: a note,” Journal of Finance, Vol. 39, No. 1, pp. 261-265. McDonald, R., and D. Siegel, 1985, “Investment and the valuation of firms when there is an option to shut down,” International Economic Review, Vol. 26, No. 2, pp. 331-349. Merton, R. C., 1976, “Option pricing when underlying stock returns are discontinuous,” Journal of Financial Economics, Vol. 3, pp. 125-144. Milne, A., and A. E. Whalley, 2000, “Time to build, option value and investment decisions: a comment,” Journal of Financial Economics, Vol. 56, pp. 325-332. Moreno, M., and J. F. Navas, 2001, “On the robustness of least-squares Monte Carlo (LSM) for pricing American derivatives,” Working Paper, Universitat Pompeu Fabra. Moretto, M., P. Panteghini, and C. Scarpa, 2003, “Investment size and firm’s value under profit sharing regulation,” FEEM Working Paper No. 80. Moriarty, R. T., and T. J. Kosnik, 1989, “High-tech marketing: concept, continuity and change,” Sloan Management Review, Vol. 30, pp. 7-17. Mueller, H. M., and R. Inderst, 2002, “The effect of capital market characteristics on the value of start-up firms,” Working Paper, New York University. Myers, S. C., and S. Majd, 1990, “Abandonment value and project life,” Advances in Futures and Options Research, Vol. 4, pp. 1-21. Myers, S. C., 1977, “Determinants of corporate borrowing,” Journal of Financial Economics, Vol. 5, No. 2, pp. 147-176. Naik, E., and M. Lee, 1990, “General equilibrium pricing of options on the market portfolio with discontinuous returns,” Review of Financial Studies, Vol. 3, pp. 493-521. Ottoo, R., 1998, “Valuation of internal growth opportunities: the case of biotechnology company,” The Quarterly Review and Finance, Vol. 38, pp. 615-633. Palacios, F., S. Payo, and D. Camino, 2002, “Growth option valuation models: an integrated approach of human information processing methods and simulation,” European Financial Management Association, Annual Meeting. Raymar, S., and M. Zwecher, 1997, “Monte Carlo valuation of American call options on the maximum of several stocks,” Journal of Derivatives, pp. 7-23. Scherer, F. M., 1980, Industrial market structure and economic performance, second edition, Boston: Houghton Mifflin. Scherlis, D. R., and W. A. Sahlman, 1989, “A method for valuing high-risk, long-term investments,” Harvard Business School Press, 9-288-006. Schwartz, E. S., and M. Moon, 2000, “Rational pricing of internet companies,” Financial Analysts Journal, Vol. 56, pp. 62-75. Schwartz, E. S., and M. Moon, 2001, “Rational pricing of internet companies revisited,” The Fifth Annual Conference on Real Options, UCLA. Scott, L. O., 1987, “Option pricing when the variance changes randomly: theory, estimation, and an application,” Journal of Financial and Quantitative Analysis, Vol. 22, pp. 419-438. Scott, L. O., 1997, “Pricing stock options in a jump-diffusion model with stochastic volatility and interest rates: application of Fourier inversion method,” Mathematical Finance, Vol. 7, pp. 413-426. Shackleton, M. B., A. E. Tsekrekos, and R. Wojakowski, 2002, “Entry, exit and activation probability in a two-player real options game,” Working Paper, Lancaster University. Trigeorgis, L., and S. P. Mason, 1987, “Valuing managerial flexibility,” Midland Corporate Finance Journal, Vol. 5, pp. 14-21. Trigeorgis, L., 1993, “The nature of option interactions and the valuation of investments with multiple real options,” Journal of Financial and quantitative analysis, Vol. 28, No. 1, pp. 1-20. Trigeorgis, L., 1999, Real Options: Managerial Flexibility and Strategy in Resource Allocation, fourth edition, Cambridge Massachusetts: MIT Press. Wiggins, J. B., 1987, “Option values under stochastic volatility,” Journal of Financial Economics, Vol. 19, pp.id NH0925230019 sid 916430 cfn 0 / id NH0925230020 auc 簡士龍 tic 住宅抵押貸款事務性服務權之評價 adc 林哲群 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 中文 pg 43 kwc 事務性服務權 kwc 提前清償 kwc 延遲付款 abc 本研究的主要目的是嘗試利用雙變數二項式模型,模擬出固定利率住宅抵押貸款中借款人在還款期間內各時間點的利率與房價水準,配合貸款人的決策模型(繼續付款、提前清償或者違約)以及事先假定的事務性服務契約中的各種相關成本與約定,估算出預期現金流量後,利用數值方法決定資產證券化過程中相當關鍵的事務性服務權價值。並且運用情境分析法進一步探討在各種不同的經濟環境變數下,住宅抵押貸款事務性服務權所面臨的價格變動風險。藉由對事務性服務權的本質、所處的環境風險以及契約中約定事項的探討,研究事務性服務權的定價決策,以提供資產證券化中與事務性服務權利相關的政策及住宅抵押貸款債權事務性服務權機構作參考。 rf 參考文獻 中文部分 1.黃玉霜(2002),應用蒙地卡羅模擬法評價抵押貸款證券,國立清華大學經濟學系碩士論文。 2.周清佳(2003),抵押貸款違約風險:固定利率與可調整利率貸款比較分析,國立清華大學科技管理研究所碩士論文。 3.許超駿(2003),抵押貸款提前清償風險:固定利率與可調整利率貸款比較分析,國立清華大學科技管理研究所碩士論文。 外文部分 1.Aldrich, Simon P. B., William R. Greenberg and Brook S. Payner (2000), “A Capital Markets View of Mortgage Servicing Rights,” Journal of Fixed Income, Vol 11(1), 37-54. 2.Ambrose, Brent W. and Richard J. Buttimer (2000), “Embedded Options In The Mortgage Contract, ” Journal of Real Estate Finance & Economics, Vol 2 (2,Sep), 95-111. 3.Brown, Scott, Lakhbir Hayre, Kenneth Lauterbach, Richard Payne and Thomas Zimmerman (1992), “Analysis of Mortgage Servicing Portfolios,” Journal of Fixed Income, Vol 2(3), 60-76. 4.Cox, John C., Jonathan E. Ingersoll, Jr. and Stephen A. Ross (1985), “A Theory of the Term Structure of Interest Rates,” Econometrica, Vol 53(2), 385-407. 5.Hilliard, Jimmy E., Adam L. Schwartz and Alan L. Tucker (1996), “ Bivariate Binomial Options Pricing With Generalized Interest Rate Processes,” The Journal of Financial Research, Vol 19(4), 585-602. 6.Hilliard, Jimmy E., James B. Kau and V. Carlos Slawson (1998), “Valuing Prepayment and Default in a Fixed-Rate Mortgage: A Bivariate Binomial Option Pricing Technique,” Real Estate Economics, Vol 26(3), 431-468. 7.Kau, James B., Donald C. Keenan, Walter J. Muller and James F. Epperson (1990), “The Valuation and Analysis of Adjustable Rate Mortgages,” Management Science, Vol 36(12), 1417-1431. 8.Kau, James B., Donald C. Keenan, Walter J. Muller and James F. Epperson (1992), “A Generalized Valuation Model for Fixed-Rate Residential Mortgages,” Journal of Money, Credit and Banking, Vol 24(3), 279-299 9.Kau, James B., and Donald C. Keenan, Walter J. Muller III and James F. Epperson (1994), “The Value at Origination of Fixed-Rate Mortgages with Default and Prepayment,” Journal of Real Estate Finance and Economics, Vol 11(1), 5-36. 10.Lin, Che-Chun (2004), “Valuing Individual Mortgage Servicing Contracts: An Option-Adjusted Spread Approach, ”Journal of Housing Studies, forthcoming 11.McConnell, John J. (1976), “Valuation of A Mortgage Company’s Servicing Portfolio,” Journal of Financial and Quantitative Analysis, Vol 11, 433-53. 12.Nelson, Deniel B. and Krishna Ramaswamy (1990), “Simple Binomial Processes as Diffusion Approximations in Financial Models,” The Review of Financial Studies, Vol 3(3), 393-430. 13.Van Drunen, Leonard D. and John J. McConnell (1988), “Valuing Mortgage Loan Servicing,” Journal of Real Estate Finance and Economics, Vol 1(1), 5-22.id NH0925230020 sid 916431 cfn 0 / id NH0925230021 auc 吳志豪 tic 信用交換契約之評價 adc 張焯然 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 中文 pg 40 kwc 信用交換契約價差 kwc 違約強度 abc 隨著國內金融市場的逐漸開放,各種衍生性商品陸續由國外引進,使得市場參與者對於各種新興金融商品不再陌生,促使國內金融商品的多元化,提供完整的工具來協助投資者更有效地管理資產。以往管理信用風險的傳統方式僅能解決部分的問題,信用衍生性商品便應運而生。信用衍生性商品市場的日益活絡帶動了評價該商品的相關研究日漸發展,而評價信用衍生性商品的首要工作為對信用風險予以衡量及評價,因此本研究旨在採用違約強度模型評價信用風險並將其應用至信用交換契約價差(或稱為信用交換契約價格)的評價,試圖推導出契約價值在考慮跳動項的情況下之封閉解,提供信用交換契約價差的合理價值、討論影響信用交換契約價差的因素及未來研究之方向。 rf 參考文獻 1. Black, F. and J. Cox, “Valuing corporate securities : Some effects of bond indenture provisions,” Journal of Finance, Vol. 31, No. 2, 351-367, 1976. 2. Duffee, G., “The Relation between Treasury Yields and Corporate Bond Yield Spreads,” Journal of Finance 53, 2225-2242, 1998. 3. Duffie, D. and K.J. Singleton, Credit Risk Pricing, Measurement, and Management, 1997. 4. Düllmann, K., M. Uhrig and M.Windfuhr, “Risk structure of interest rates : an empirical analysis for Deutschemark-denominated bonds,” European Financial Management, 1999. 5. Geske, R., “The valuation of corporate liabilities as compound options,” Journal of Financial and Quantitative Analysis, Vol. 12, No. 4, 541-552, 1977. 6. Hull, J. and A. White “The Impact of Default Risk on the Prices of Option and Other Derivative Securities,” Journal of Banking and Finance, 19, 299-322, 1995. 7. Hull, John C., “Credit risk” and “Credit derivatives”, Chapter 26 and 27, Options, Futures and Other Derivatives, Prentice Hall(Fifth Edition). 8. Hull, J.C. and A. White, “Valuing Credit Default Swaps I: No Counterparty Default Risk,” Journal of Derivatives, 8, No.1, 29-40, Fall 2000. 9. Hull, J.C. and A. White, “Valuing Credit Default Swaps II: Modeling Default Correlations,” Journal of Derivatives, 8, No.3, 12-22, Spring 2001. 10. Jarrow, R. A. and S. M. Turnbull, “Pricing derivatives on financial securities subject to credit risk,” Journal of Finance, 50, 53-85, 1995. 11. Lando, D., “Cox Processes and Credit-Risky Securities,” Review of Derivatives Research 2, 99-120, 1998. 12. Longstaff, F. and E. Schwartz, “The pricing of credit risk derivatives,” Journal of Fixed Income, 5(1), 789-819, 1995. 13. Longstaff, F., S. Mithal and E. Neis, “Corporate Yield Spreads: Default Risk or Liquidity? New Evidence from the Credit-Default Swap Market,” Working paper, University of California, 2004. 14. Madan, D. and H. Unal, “Pricing the Risks of Default,” Review of Derivatives Research 2, 121-160, 1998. 15. Merton, R. C., “On the Pricing of Corporate Debt: The Risk Structure of Interest Rates,” Journal of Finance, 2, 449-70, 1974. 16. Schönbucher, Philipp J., “Term Structure Modelling of Defaultable Bonds,” Reviews of Derivatives Research 2, 161-192, 1998. 17. Schönbucher, Philipp J. “The Pricing of Credit Risk and Credit Risk Derivatives,” Working paper, London School of Economics, Financial Markets Group, February 2000. 18. Zhou, C., A jump-diffusion approach to modeling credit risk and valuing defaultable securities. Finance and Economics Discussion Paper Series 1997/15, Board of Governors of the Federal Reserve System, March 1997.id NH0925230021 sid 916433 cfn 0 / id NH0925230022 auc 何敬群 tic 任務複雜度與系統功能性對知識管理系統績效的影響 adc 陳鴻基 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 英文 pg 58 kwc 知識管理系統 kwc 群聚演算法 kwc 任務複雜度 kwc 科技-任務適配度 abc 本研究提出一個以群聚演算法為基礎的知識(文件)管理系統,除了用客觀的績效評估指標,如正確率、喚回率及系統處理時間來比較不同演算法間的效率及效果外,並以實驗室實驗法來比較傳統分類搜尋機制與本研究所提出之分類搜尋機制作一使用者認知的比較分析。 tc Abstract in Chinese…………………………………A Abstract…………………………………………………B 1 Introduction 1 1.1 Research Background and Motivation 1 1.2 Research Purpose 3 1.3 Research Scope 5 2 Literature Review 6 2.1 Knowledge 6 2.1.1 The definition of knowledge 7 2.1.2 The categories of knowledge 9 2.2 Knowledge Management and Knowledge Management system 10 2.2.1 The challenge of knowledge management system 11 2.3 Task complexity 13 2.4 Task-Technology Fit 16 3 Cluster-based Document Management System (Prototype) 18 3.1 Introduction to document classification 18 3.2 Proposed document clustering algorithm 20 3.2.1 Algorithm description 20 3.2.2 Similarity computation 24 3.3 Document collections 25 3.4 Evaluation of clustering algorithm 25 4 Research Methodology 27 4.1 Experimental Methodology 27 4.2 Research framework 28 4.2.1 Independent variable 29 4.2.2 Dependent variable 32 4.3 Research Hypotheses 33 4.4 Experimental Procedure 33 4.4.1 Pilot experiment 33 4.4.2 Content introduction 34 4.4.3 Pretest questionnaire 35 4.4.4 Formal experiment 35 4.4.5 Posttest questionnaire 36 4.4.6 Sample selection 36 5 Data Analysis 37 5.1 Data collection 37 5.2 Sample descriptive statistics analysis 38 5.3 Reliability and Validity 39 5.3.1 Reliability test 39 5.3.2 Content validity 40 5.4 Factor Analysis 40 5.5 Hypotheses test 41 5.5.1 Hypotheses test of main effect and interaction effect 41 6 Conclusion and future work 43 6.1 Conclusion 43 6.2 Research Limitations 44 6.3 Future work 45 References 47 Appendix 51rf Chinese: 1. Papows, J., “eNetprise.com”, 1998, “十六定位”, 大塊文化, 1999. 2. CEPD, 行政院經濟建設委員會, “知識經濟發展方案”, 2003. 3. 戴榮賦, “知識回饋機制與取得方式的結合對知識管理服務品質之影響”,國立中正大學資訊管理研究所碩士論文, 2000. 4. 呂丰君, “非同步網路學習下任務型態與困難度對合作學習績效與滿意度之研究”, 國立中正大學資訊管理研究所碩士論文, 2002. 5. 陳泳成, “以修正後的科技接受模式 探討影響「使用者自建系統接受」之因素”, 國立中山大學資訊管理研究所碩士論文, 2003. 6. 賴宏仁,”電子報個人化新聞推薦方法之研究”, 國立中山大學資訊管理研究所博士論文,2000. English: 7. Anton Leuski, ”Evaluating Document Clustering for Interactive Information Retrieval”, Conference on Information and Knowledge Management, Proceedings of the tenth international conference on Information and knowledge management, 2001. 8. Applehans, Globe, Laugero, “Managing Knowledge—A Practical Web-Based Approach”, Addison-Wesley Pub Co, 1st ed, 1998. 9. Bair, J., “Knowledge Management Technology: Beyond Document Management”, http://www.strategy-partner.com, 2002. 10. Bandura, A., “Social foundations of thought and action: A social cognitive theory”, Englewood Cliffs, Prentice-Hall, 1986. 11. Bandura, A., “Self-efficacy mechanism in physiological activation and health-promoting behavior”, Neurobiology of learning, emotion and affect, 1991, pp. 229- 270. 12. Baystrom, K. and Jarvelin K., “Task complexity affects information seeking and use”, Information Orocessing and Management, 31, 1995, pp. 191-213. 13. Blattberg, R. C., and Hoch, S. J., “Database Models and Managerial Intuition: 50% Model and 50% Manager”, Management Science, 36(8), 1990, pp. 887-899. 14. Brooking, A., “Intellectual Capital”, London: Thompson Press, 1996. 15. Brooking, A., “The Management of Intellectual Captital”, Journal of Long Range Plannig, 30(3), 1997. pp. 364-365. 16. Castells M., “The Rise of The Network Society”,1996. 17. Botkin, J., “Smart Business: How Knowledge Communities Can Revolutionize Your Compnany”, New York: Free Press, 1999. 18. Campbell, J. P., Gasser, M. B., and Oswlad, F.I., “The Substantive Nature of Job Performance Variability”, Individual Differences and Behavior in Organization, 1996. 19. Davenport, T. H.,Prusak, L., “Working knowledge: How Organizations Manage What They Know”, Harvard Business School Press, 2000. 20. Delone, W.H. and McLean, E, R., “Information Systems Success: The Quest for the Dependent Variable”, Information Systems Research, 3(1), 1992, pp. 60-95. 21. Due, Rechard T., “The Knowledge Economy”, Information Systems Management, 12(3), 1995, pp.76-78. 22. Dybkjær, L., Bernsen, N.O. and Dybkjær, H., “Different Spoken Language Dialogues for Different Tasks. A Task-Oriented Dialogue Theory”. Advances in Human-Computer Interaction. Human Comfort and Security, Springer Research Reports, 1995, pp.46-61. 23. Doll, W.J. and Torkzadeh, G., “The Measurement of End-User computing Satisfation”, MIS Quarterly, 12, 1998, pp.259-274. 24. Elias M. Awad, and Hassan M. Ghaziri, Knowledge Management, Pearson Pirntice Hall,2002. 25. Feasly, F. G. and Stuart, E. W., ”Magazine Advertising Layout and Design: 1932-1982”, Journal of Advertising, 16(2), 1987. 26. Glasser, P., “The Knowledge Factor”, CIO Magazine, 1999, pp. 1-9. 27. Gallupe, R.B., The Impact of Task Difficulty on the Use of a Group Decision Support System, Unpublished Doctoral Dissertation, University of Minnesota, 1985. 28. Hibbard, J. “Knowing What We Know”, Information Week. October 20, 1997, pp. 46. 29. Hideki Tanaka, Tadashi Kumano, Noriyoshi Uratani, Terumasa Ehara, 1999,” An Efficient Document Clustering algorithm and its application to a document browser”, Information Processing and Management,35,pp. 541-557. 30. Hersey, Ian., “Need: Net-Speed Knowledge Tools”, Electronic Engineering Times, 2000, pp. 90. 31. Huang, Kaun-Tase, Lee, Yang W., Wang R., “Quality Information and Knowledge”, Prentice Hall PTR, 1999. 32. Hoch, S. J. and Schkade, D. A., “A Psychological Approach to Decision Support Systems”, Management Science, 42(1), 1996, pp. 51-64. 33. Hoch, S. J., “Models and Experts in Combination”, the Marketing Information Revolution”, Harvard University Press, 1993. 34. Hofe A. V., Almeida V., Guibernao, and Legroux, D. , “Actual Use and Judgment of the Usability of a Search Motor on the Web”. Proceedings of the Human Centered Processes Conference, Brest, France, 1999, pp. 463-468. 35. James B. Q., Jordan J. B. and Karen A. Z., “Innovation Explosion: Using Intellect and Software to Revolutionize Growth Strategies”, 1997. 36. Jiang J. J., Gary K. and Christopher L. C., “Measuring Information System Service Quality: SERVQUAL From The Other Side”, MIS Quarterly, 26(2), 2002, pp. 146-166. 37. John H. and Peter S., “A Primer on the Knowledge Economy”, Centre for The Strategic Economic Studies at Victoria University, 2000. 38. Kerlinger, F.D.,”Human Memory: Structure and Process”, W.H. Freeman and Company, 1975. 39. Kaufman,L., and Rousseeuw P. J., 1990, “Finding Groups in Data: An Introduction to Cluster Analysis”, New York: John Wiley. 40. Kim, G., Nute, D., Rauscher, H.M., and Lofits, D.L., “appBuilder for DSSTools: an Application Development Environment of Developing Decision Support Systems in Prolog”, Computers and Electronics in Agriculture, 27, pp. 107-125. 41. Kidd,J.B., “Knowledge Creation in Japanese Manufacturing Companies in Italy”, Management Learning, 29(2),1998, pp. 131–146. 42. Koch, T., “Internet Search Service”, http://www.lub.lu.se/tk/demos/DO9603-meng.html, 1996 43. Kraund, M., “Education-Implement Knowledge”, http://www.uis.edu/haund/ntempr.htm, 2000. 44. Kwan M. M. and Balasubramanian P., “KnowledgeScope: managing knowledge in context”, Decision Support System, 35, 2003, pp. 467-486. 45. Liao, Shu-hsien, “Knowledge management technologies and applications — Literature review form 1995 to 2002”, Expert Systems with Applications, 25, 2003, pp. 155-164. 46. McGrath, J.E., Groups: Interaction and Performance, Prentice_Hall, Englewood Cliffs, NJ, 1984. 47. McAdam, R. and McCreedy S., “a Critical Review of Knowledge Management models”, The Learning Organization, 6(3), 1999, pp. 91-107. 48. Miles, I. ,KASTRINOS, N. ,FLANAGAN, K. ,BILDEBEEK, R. ,DEN HERTOG, P. ,HUNTINK, W. ,BOUMAN, M.: "Knowledge Intensive Business Services:Their Roles as Users, Carriers and Sources of Innovation". PREST, Manchester, 1994. 49. Muller, E., "Innovation Interactions Between Knowledge-Intensive Business Services and Small and Medium-sized Enterprises – Analysis in Terms of Evolution, Knowledge and Territories". Ph.D. dissertation, Faculté des Sciences Économiques et de Gestion, Université Louis Pasteur, Strasbourg, 1999. 50. Nonaka, I. and Takeuchi, H., “The Knowledge-Creating Company: How Japanese Companies Create the Dynamics of Innovation”, New York: Oxford University Press, 1995. 51. Parasuraman, A., Zeithaml, V. A., and Berry, L. L., “A Conceptual Model of Service Quality and Its Implications for Future Research”, Journal of Marketing, 49, 1985, pp. 41-50. 52. Polanyi, M., “Knowledge and Being”, The University of Chicago Press, 1974. 53. Polanyi, M., “The Tacit Dimension”, Doubleday & Company, Inc., 1983. 54. Qin H., “A Review of Clustering Algorithms as Applied in IR”, University of Illinois at Urbana – Champaign, 1996. 55. Ramesh, B. and Tiwana, A., “Supporting collaborative process knowledge management in new product development teams”, Decision Support Systems, 27, 1999, pp. 213-235. 56. Reid, J., “A task-oriented non-interactive evaluation methodology for information retrieval systems”. Information Retrieval, 2, 2000, pp. 115-129. 57. Roy Lachman, “ AI, Decision Science, and Psychological Theory in Decisions about people ~A case study in jury selection” AI Magazine, 19(1), 1998. 58. Sia Choon-Ling, Bernard C.Y. Tan, Wei Kwok-Kee, “Exploring the effects of some display and task factors on GSS user groups”, Information And Management, (30:1), pp. 35-41, 1996. 59. Shaw, M. E., “A comparison of individuals and small groups in the rational solution of complex problems”, American Journal of Psychology, 44, pp. 491-504, 1932. 60. Shifflett, S.C., “Group performance as a function of task difficulty and organiztional independence”, Organizational Behavior and Human Performance, 7, pp. 442-456, 1972. 61. Sveiby, Karl-Erik, “The New Organizational Warlth: Managing and Measuring Knowledge-Based Assets”, New York:Berrett-Kohler, 1997. 62. Taft, D., “Stopping Knowledge Overflow — Knowledge Management Tools Still in Developmental Phase”, Computer Reseller News, 2000, pp.14. 63. Tiwana, A., “The Knowledge Management Toolkit”, Upper Saddle River, NJ: Prentice Hall, 2000, pp. 55-98. 64. Turban E., King D., Lee J., Warkentin M. and Chung H. M., “Electronic Commerce ~ A Managerial Perspective”, Prentice Hall, 2002. 65. Vicki L. Sauter, ”Decision Support Systems : An Applied Managerial Approach” ,Wiley Text Books, 1996. 66. White, R.W., Jose, J. M., Ruthven, Ian, “A task-oriented study on the influencing effects of query-biased summarization in web searching”, Information Processing and Management, 39, 2003, pp. 703-733id NH0925230022 sid 916406 cfn 0 / id NH0925230023 auc 江雁翎 tic 專案團隊夥伴事前互動對人員衝突、需求不確定性和資訊系統專案績效的影響 adc 陳鴻基 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 英文 pg 48 kwc 資訊系統開發專案 kwc 專案團隊夥伴的事前互動 kwc 需求不確定性 kwc 人員衝突 kwc 資訊專案績效 abc 在固定預算與時間限制下,資訊系統開發專案的失敗率一直相當高。資訊專案團隊通常由不同利益團體的成員共同組成,因此,成功整合團隊內部分歧的目的、塑造團結的氣氛,成為影響專案最終績效的重要關鍵。在此篇研究中,我們試圖利用「專案團隊夥伴的事前互動」來打破團隊成員間的藩籬,創造團隊合作的驅動因子。使用者需求的不確定性經常出現在整個資訊系統開發的過程裡,頻繁的溝通亦相對提高了發生衝突的機會。因此,需求分析是在系統開發過程中是必要的步驟,且需要仰賴使用者與資訊部門人員一同完成。本研究將針對台灣公司做實證研究,探討資訊系統專案開發過程中,團隊夥伴事前互動、需求不確定性、人員衝突和資訊專案績效的關係。 tc Contents 摘要 I ABSTRACT II CONTENTS IV LIST OF TABLES V LIST OF FIGURES VI 1. INTRODUCTION 1 1.1 BACKGROUND AND MOTIVATION 1 1.2 OBJECTIVES AND QUESTIONS 2 2. LITERATURE REVIEW 4 2.1 PRE-PROJECT PARTNERING 4 2.2 REQUIREMENT UNCERTAINTY 9 2.3 INTERPERSONAL CONFLICT 11 3. RESEARCH METHODOLOGY 16 3.1 RESEARCH MODEL AND HYPOTHESES 16 3.2 SAMPLE SELECTION 20 3.3 VARIABLES AND MEASURES 24 4. DATA ANALYSIS AND RESULTS 28 4.1 STATISTICS METHOD 28 4.2 RESULT 28 5. CONCLUSIONS 35 5.1 DISCUSSION AND MANAGERIAL IMPLICATION 35 5.2 CONCLUSION AND LIMITATIONS 37 REFERENCES: 39 APPENDIX 43 「專案團隊夥伴事情互動對人員衝突、需求不確定和資訊系統專案績效的影響」問卷 43 List of Tables Table 1. Comparison of an ordinary partnership and partnering [Cowan, 1992 ] 5 Table 2. Profile of Respondents by Industry 21 Table 3. Profile of Respondents by Organization Size 21 Table 4. Profile of Respondents by Capital 22 Table 5. Profile of Project Leader 22 Table 6. Size of Project teams 23 Table 7. Project Duration 23 Table 8. Profile of Respondents 24 Table 9. Software Project Development Risks 26 Table 10. Overall Goodness of Fit Statistics of the proposed model 29 Table 11. Validity of the Pre-project partnering metric 30 Table 12. Validity of the Interpersonal conflict metric 31 Table 13. Validity of the Requirement Uncertainty metric 31 Table 14. Validity of the Project Performance metric 32 Table 15. Overall Goodness of Fit Statistics of Revised Model 32 Table 16. Overall Goodness of Fit SEM 33 Table 17. Path analysis results 34 List of Figures Figure 1. Project Partnering Framework [Cowan, 1992 ] 7 Figure 2. The impact of pre-project partnering on IS project outcomes [Jiang et al. 2002 ] 9 Figure 3. The impact of requirement uncertainty on residual performance risk and project performance [Nidumolu, 1996 ] 11 Figure 4. The relationship of between interpersonal conflict, conflict management style, and ISD outcomes [Barki and Hartwick, 2001 ] 15 Figure 5. Research Model 17 Figure 6. Research Model Results 34rf References: Associated General Contractors of America, Partnering: A Concept for Success, Washington, DC, 1991 Argote, L. Input Uncertainty and Organizational Coordination in Hospital Emergency Units. Administrative Science Quarterly, 27, 1982, pp. 420-434 Barki H. and Hartwick, J. User Participation, Conflict, and Conflict Resolution: The Mediating Roles of Influence. Information Systems Research, Dec 1994; Vol 5, Iss 4; pp. 422-438 Barki H. and Hartwick, J. Interpersonal Conflict and Its Management in Information System Development. MIS Quarterly, June 2001, Vol. 25 No. 2, pp. 195-228 Bentler PM and Chou CP, Practical issues in structure modeling. Sociological Methods and Research, 16 August 1987, pp78-117 Boehm, B. W. Software Risk Management. Los Alamitos, CA:IEEE Computer Society Press, 1989 Cowan, C., Gray, C. and Larson, E. Project partnering. Project Management Journal, Vol. 22, No. 4, 1992, pp. 5-11 Crowley, L. G., and Karim, M. A. Conceptual Model of Partnering. Journal of Management in Engineering, September/October, 1995 Davis, G. B. Strategies for information requirements determination. IBM Systems Journal, 21 (1), 1982, pp. 3-30 Fazlollahi, B., Tanniru, M. R. Selecting a requirement determination methodology-contingency model approach revisited. Information and Management, 21, 1991, pp. 291-303 Franz, C. R., and Robey, D. An Investigation of User-Led System Design: Rational and Political Perspectives. Communication of the ACM, (27:12), 1984, pp. 1202-1209 Gatewood, R. D. and Field, H. S., Human Resource Selection 2nd Ed., Chicago, IL, Dryden Press, 1990 Gibbs, W.W. Software’s chronic crisis. Scientific American, September 1994, pp.86-95 Glass, R.L. Software Runaways. New York:Prentice-Hall,1998 Glasser, J. Organizational Aspects of System Faiure:A Case Study at the L.A. Police Department. Proceedings of the Second International Conference on Information Systems, C.A.Ross(ed.), Cambridge, MA, 1981, pp.233-245 Goodman, P.S., Ravlin, E., and Schminke, M. (1987). Understanding groups in organizations. In Cumming, L.L. and Staw, B.M. (eds.). Reasearch in Organizational Behavior. Greenwich, CN: JAI Press, pp121-173 Gransberg, D. D., Reynolds, H. L., and Boyd J. Measuring partnered project performance. Cost Engineering, Vol. 41/No. 10, October 1999 Henderson, J.C. and Lee, S. Managing I/S design teams: A control theories perspective. Management Science, 38(6), 1992, pp. 757-777. Hocker, J. L. and Wilmot, W. W. Interpersonal Conflict (2nd ed.). William C. Brown, Dubuque, IA, 1985 Jiang, J. J., Klein, G. and Chen, H. G. The relative influence of IS project implementation policies and project leadership on eventual outcomes. Project Management Journal, Sylva; Sep 2001; Vol. 32, Iss. 3; pp. 49-55 Jiang, J. J., Chen, E. and Klein, G. The importance of building a foundation for user involvement in information system projects. Project Management Journal, Sylva; Mar 2002; Vol. 33, Iss. 1; pp. 20-26 Jiang, J. J., Klein, G. And Discenza, R. Pre-project partnering impact on an information system, project team and project manager. European Journal of Information Systems, Vol. 11, 2002, pp. 86-97 Klein, G.., Jiang, J., and Boyd, M. (1999). Building a case for consonance. Proceedings of the Third International Conference on Business Information Systems. London: Springer-Verlag Kolb, D. M. and Sheppard B. H. Do Managers Mediate, or Even Arbitrate? Negotiation Journal, 1(1985), pp. 379-388 Larson, E. Partnering on Construction Projects:A Study of the relationship between partnering Activities and Project Success. IEEE Transactions on Engineering Management, Vol. 44, No. 2, May 1997 Lewis, J. Fundamentals of Project Management. Amacom Books, 1995. Lucas, H. C. “Alternative Structures for the Management of Information Processing” in Goldberg and Lorin (Eds.), On the Economics of Information Processing, Vol.2, Wiley-InterScience, New York, 1982 Milliken, F.J. Three types of perceived uncertainty about the environment: state, effect and response uncertainty, Academy of Management Review, 12, 1(1987), pp133-143 Moore, C., Mosley, D., and Slagle, M. Partnering:Guidelines for Win-Win Project Management. Project Management Journal,23, No.1, March 1992, pp. 18-21 Nidumolu, S. R. The effect of coordination and uncertainty on software project performance:Residual Performance Risks as an Intervening Variable. Information Systems Research,September 1995, pp. 191-219 Nidumolu, S. R. A comparison of the structural contingency and risk-based perspectives on coordination in software-development projects, Journal of Management Information Systems, Fall 1996, Vol. 13, No2, pp77-113 Nidumolu, S. R. Standardization, requirements uncertainty and software project performance. Information & Management, 31 (1996), pp. 135-150 Pressman, R. S. Software Engineering:A Practitioner’s Approach (3rd Ed.), McGraw-Hill Inc., New York, 1992 Pruitt, D. G. and Rubin, J. Z. Social Conflict, Random House. New York, NY, 1986 Putnam, L. L. and Wilson, C. Communicative Strategies in Organizational Conflict:Reliability and Validity of a Measurement Scale. Communication Yearbook 6, Sage Publications, Newbury Park, CA, 1982, pp. 629-652 Robey, D., Farrow, D. L. User Involvement in Information System Development: A Conflict Model and Empirical Test. Management Science, Vol.28, No.1, January 1982 Robey, D., Farrow, D. L., Franz, C. R. Group process and conflict in system development. Management Science, 35, 10(1989), pp. 1172-1191 Robey, D., Smith, L. A., Vijayasarathy, L. R. Perceptions of Conflict and Success in Information System Development Projects. Journal of Management Information System, Summer 1993, Vol. 10, No. 1, pp. 123-139 Schmidt, S.M. and Kochan, T. A. Conflict: Toward Conceptual Clarity. Administrative Science Quarterly, 17 (1972), pp359-370 Smith, H. A. and McKeen, J. D. Computerization and Management:A Study of Conflict and Change. Information & Management, 22 (1992), pp. 53-64 Thamhain, H.J. and Wilemon, D.L. Building high performing engineering project teams. IEEE Transactions on Engineering Management, EM-34 (3), 1987 pp.130-137 Thayer, R. H. and Lehman, J. H. Software engineering project management:a survey concerning U.S. Aerospace industry management of software development projects. Software Management (Reifer, D.J., Ed.), IEEE Computer Society Press, Washington, D.C., 1979 Thomas, K. W. Conflict and Conflict Management: Reflections and Update. Journal of Organizational Behavior, (13), 1992a, pp265-274 Tjosvold D The Conflict – Positive Organization, Addison Wesley, Reading Tuner, J. A. A Comparison of the Process of Knowledge Elicitation with that of Information Requirements Determination. Challenges and Strategies fro Research in Systems Development (Cotterman, W. W. and Senn, J. A. Eds.),John Wiley & Sons Ltd., New York, 1992 Wall, J. A. Jr. and Callister, R. R. Conflict and its Management. Journal of Management (21:3), 1995, pp. 515-558 Wilson Jr., R. A., Songer, A. D., Diekmann, J. Partnering: More than a workshop, A catalyst for Change, Journal of management in Engineering, September/October, 1995 Zmud, R. W. Management of large software development efforts. MIS Quarterly, September 1980, pp. 45-55id NH0925230023 sid 916415 cfn 0 / id NH0925230024 auc 張祐菖 tic 品牌忠誠度的決定因素 adc 蕭中強 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 英文 pg 48 kwc 品牌忠誠度 kwc 使用者介面 kwc 滿意度 kwc 後悔 abc 台灣行動電話市場相當獨特,行動電話佔有率成長十分迅速,這導致幾乎每位消費者都擁有一支行動電話。何種原因會導致消費者重複購買就變成非常關鍵。考慮過行動電話消費者的特性之後,本研究探討使用者介面是否對消費者滿意度有正面影響。並且探討後悔在品牌忠誠度的模型之影響。結果顯示滿意度及後悔皆對品牌忠誠度有正面影響,使用的印象也會對滿意度產生影響。然而消費者會趕到後悔,即使不瞭解其他人的使用狀況。 tc LIST OF TABLES …………………………………………………………………...iv LIST OF FIGURES. …………………………………………………………………..v ABSTRACT …………………………………………………………………….........vi INTRODUCTION……………………………………………………………………..1 Main issues under Study………………………………………………………1 Research Motivation…………………………………………………………..1 Contribution…………………………………………….……………………..2 LITERATURE REVIEW……………………………………………………………..3 Brand Loyalty………………………………………………………………….3 Satisfaction...…………………………………………………………………..4 User Interface………………………………………………………………….5 Regret………………………………………………………………………….6 MODEL..…………………………………………………………………………….10 HYPOTHESIS……………………………………………………………………….12 Brand Loyalty………………………………………….…………………….12 Regret………………………………………………………………...………13 Valence of the Chosen Outcome……………………………………………..13 User Interface………………………………………………………………...14 METHODLOGY…….……………………………………………………………….15 STUDY 1…….……………………………………………………………………….15 Design...………………………………………………………………………15 Procedure……………………………………………………………………..15 Measures: Independent Variables……………………………………………16 Measures: Dependent Variables……………………………………………...16 Pretest and Manipulation Check……………………………………….…….16 Analysis and Results………………………………………………………....18 Reliability and Validity………………………………………………………18 RESULTS DISCUSSION………………………………………………………………………..24 STUDY 2…………………………………………………………………………….25 Design………………………………………………………………………..25 Procedure……………………………………………………………………..25 Measures: Independent Variables……………………………………………26 Measures: Dependent Variables……………………………………………..26 Analysis and Results…………………………………………………………26 Reliability…………………………………………………………………….26 ANOVA Analysis……………………………………………………………27 DISCUSSION………………………………………………………………………..30 CONCLUSION………………………………………………………………………31 CONTRIBUTIONS AND APPLICATIONS………………………………………..32 For Academic………………………………………………………………...32 For Business………………………………………………………………….32 LIMITATIONS TO THE STUDY…………………………………………………...34 REFERENCE……………………………………………………………………...…35 APPENDIEX: Questionnaires for Studies…………………………………………...37rf REFERENCE Anderson, Eugene W. and Mary W. Sullivan (1993), The Antecedents and Consequences of Customer Satisfaction for Firms, Marketing Science, 12, 125-143. Bearden, William O. and Jesse E. Teel (1983), "Selected Determinants of Consumer Satisfaction and Complaint Reports," Journal of Marketing Research, 20 , 21-28. Bell, David E. (1982), "Regret in Decision Making under Uncertainty," Operations Research, 30, 961981. Boles, Terry L. and David M. Messick (1995), "A Reverse Outcome Bias: The Influence of Multiple Reference Points on the Evaluation of Outcomes and Decisions," Organizational Behavior and Human Decision Processes, 61, 262-275. Inman, J. Jeffrey, James S. Dyer, and Jianmin Jia (1997), "A Generalized Utility Model of Disappointment and Regret Effects on Post-choice Valuation," Marketing Science, 16, 97-111. Landman, Janet (1987), "Regret: A Theoretical and Conceptual Analysis," Journal of Theory of Social Behavior, 17, 135-160. Larrick, Richard P. and Terry L. Boles (1995), "Avoiding Regret in Decisions with Feedback: A Negotiation Example," Organizational Behavior and Human Decision Processes, 63, 87-97. Loomes, Graham and Robert Sugden (1982), "Regret Theory: An Alternative Theory of Rational Choice under Uncertainty," Economic Journal, 92, 805-824. Newman, Joseph W. and Richard A. Werbel (1973), "Multivariate Analysis of Brand Loyalty for Major Household Appliances," Journal of Marketing Research, 10, 404-409. Oliver, Richard L. (1980), "A Cognitive Model of the Antecedents and Consequences of Satisfaction Decisions," Journal of Marketing Research, 17, 460-469. Tsiros, Michael (1998), "Effect of Regret on Post-choice Valuation: The Case of More than Two Alternatives," Organizational Behavior and Human Decision Processes, 76, 48-69. Tsiro, Michael and Mittal, Vikas (2000), “Regert: A Model of Its Antecedents and Consequences in Consumer Decision Making”. Journal of Marketing Research, 26, 401-417 Yi, Youjae (1990), "A Critical Review of Consumer Satisfaction," in Review of Marketing, ed. V. A. Zeithaml, Chicago: American Marketing Association. Zeelenberg, Marcel (1996), "On the Importance of What Might Have Been: Psychological Perspectives on Regret and Decision Making," Ph.D. dissertation, Department of Social Psychology, University of Amsterdam, 1018-WB Amsterdam, The Netherlands.id NH0925230024 sid 916418 cfn 0 / id NH0925230025 auc 黃宏興 tic 台灣IC設計公司之策略聯盟研究---以天時電子為例 adc 林博文教授 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 中文 pg 107 kwc 策略聯盟 kwc 天時電子 abc 摘 要 rf 參考文獻 (一) 中文文獻 [1 ]工商時報,亞洲華爾街日報:中國將出現晶圓泡沫,4/27/2002,http://www.epochtimes.com/b5/2/4/27/n186232.htm。 [2 ]丁錫鏞,產官學研四界合作研究發展之策略行動與實務案例。台北:嵐德出版社,2000。 [3 ]王仁宗,消費性IC設計產業在中國大陸的佈局及競爭策略,國立清華大學高階經營管理碩士論文,2002。 [4 ]王仕琦,阻擋矽統產品銷美聯電有可能向ITC遞訴狀,中時電子報,12/5/2000。 [5 ]王忠興,半導體通路商期末吃貨問題之探討,國立交通大學高階主管管理學程碩士論文,2002。 [6 ]王昱婷,矽統12吋晶圓廠 終於情定路竹,自由電子新聞網, 6/17/2001,http://www.libertytimes.com.tw/2001/new/jun/17/today-e3.htm。 [7 ]王仕琦,聯電二次合併案 效益大不同,工商時報,2004年3月1日,http://times.hinet.net/SpecialTopic/930301-electronic/5426637.htm。 [8 ]王國欣,兩岸IC設計業產業群聚比較與競合策略之研究,國立中山大學企業管理學系碩士論文,2002。 [9 ]王治平,NVIDIA高階產品製程轉換不順 益登 9月營收不如預期,2003年 9月25日,中央社新聞,http://tw.stock.yahoo.com/n/2003/09/25/c/416.html。 [10 ]白一平,台灣IC設計業產業分析--產業矩陣分析法之應用,國立政治大學企業管理研究所碩士論文,2002。 [11 ]伊芸,蔡燿駿,熊毅晰,台灣科技短波,e天下雜誌,2003年09月第33期 [12 ]尹啟銘,產品創新自由度企業策略與技術政策之關係 臺灣資訊電子業實證研究,國立政治大學企業管理研究所未出版碩士論文,1989年 。 [13 ]李文瑞,曹為忠,林志豪等,策略聯盟類型與績效影響因素之研究,中山管理評論,2000 年夏季號,第八卷第二期,頁273-302。 [14 ]李雅惠,半導體通路商企業資源規劃系統之研究,國立台北大學資訊管理研究所碩士論文,2002。 [15 ]李達為,IC設計產業分析,國立臺灣大學國際企業學研究所碩士論文,2003。 [16 ]呂鴻德,企業策略聯盟Q&A,商週文化,1996。 [17 ]吳青松,國際策略聯盟與經營績效評估--美國電腦製造業實例,1990 年產業科技研究發展管理研討會論文集,1990。 [18 ]吳萬益,「中美日在台企業營目組織結構及爭策略之比較研究」,台大管理論叢,第五卷第二期,頁83-111,1994。 [19 ]邱柏松,國際策略聯盟— 在國內的現況與績效,經濟情勢暨評論,第二卷第三期,1996 年11 月,頁14-21。 [20 ]邱莉燕,杜俊元重出江湖扭轉華泰乾坤,今周刊,383期,04/28/2004。 [21 ]金凡,中芯張汝京:“蓋廠高手”與台積電的宿怨,人民網,http://www.people.com.cn/BIG5/it/1066/2269771.html。 [22 ]林宏文,細數設計業的歷代拳王,今週刊,17/7/2001 ,http://taiwan.cnet.com/news/special/0,2000064597,20017981,00.htm。 [23 ]林其鋒,行銷變數和轉換成本對顧客轉換意願之影響—以壽險服務業為例,輔仁大學管理學研究所碩士論文,2002。 [24 ]林亞偉,聯電以戰逼和吃下台灣最後八吋晶圓廠,商業週刊,850頁,08/03/ 2004。 [25 ]林宏文,曹興誠找到「失落的那一塊」,今週刊,Vol. 316, 12 /1/ 2003 http://magazines.sina.com.tw/winwin/contents/316/316-006_1.html。 [26 ]林宏文,細數設計業的歷代拳王,今週刊,17/7/2001 ,http://taiwan.cnet.com/news/special/0,2000064597,20017981,00.htm。 [27 ]林采韻 and 林進龍,聯電以50億元 取得矽統3成股權,TVBS網站, 1/28/2003。 [28 ]林藎信,手機品牌競爭模式之研究-以 Nokia為例,國立交通大學高階主管管理學程碩士班,2002。 [29 ]怡富投顧,2000年IC設計產業探討(中)--台灣晶片組廠商分析,2000年11月,MoneyDJ網收錄。 [30 ]胡光耀,台灣IC通路商競爭力診斷之個案研究,淡江大學/管理科學研究所企業經營碩士在職專班碩士論文,2003。 [31 ]高飛,矽統今獲英特爾新版P4授權 威盛難逃老對手競爭,新浪網科技時代,2003年04月16日,http://china.sina.com.tw/tech/it/m/2003-04-16/1339178550.shtml。 [32 ]高逸甄,議價力對策略聯盟績效與演進之影響,國立中山大學企業管理研究所碩士論文,1998 [33 ]徐正忠,台灣IC設計公司競爭策略,淡江大學商管學院高階主管管理碩士論文,2002。 [34 ]馬建華,IC 設計公司到整合元件製造 (IDM) 公司動態策略之個案研究,國立政治大學經營管理碩士學程碩士,2001。 [35 ]孫明志,台灣高科技產業大未來-超越與創新,天下文化,2004年3月,p.71-90。 [36 ]梁燕蕙,台積電優先提供專屬客戶產能,惠普ASIC主管不表認同,電子時報, 05/14/2004 [37 ]產業動態,技術領先 才能掌握機先,工研院系晶中心發表可移轉先期技術與成果,電子時報,2004年5月14日,http://member.digitimes.com.tw/news/shownews.asp?yCategory=4023&DatePublish=2004/05/14&Pages=B7&All_Seq=105&op=f。 [38 ]許文艷,影響量販店與供應商議價因素之研究,國立成功大學企業管理學系碩士論文,2002。 [39 ]許世洲,IC設計公司的外包產能規劃,國立交通大學工業工程與管理系博士論文,2002。 [40 ]許正芳,我國IC設計產業分析及競爭力之研究,國立台灣科技大學工業管理系碩士論文,2000。 [41 ]陳弘林,我國積體電路廠商策略聯盟與績效關係之研究,銘傳大學國際企業管理研究所碩士論文,1998。 [42 ]陳慧玲,從夾縫中長出的美麗花朵-台灣IC通路業 看衰IC通路股的10個理由 V.S. 5個IC通路大不同,電子時報產業分析, 04/16/2004。 [43 ]陳慧玲,站穩台灣、手握亞太、放眼歐美、挑戰自我 世平集團要做全球 NO.1,電子時報CEO專訪,11/12/2003。 [44 ]陳偉傑,晶圓代工廠商與IC設計公司代工契約之研究,國立中興大學經濟研究所碩士論文,1997。 [45 ]郭煌常,國際化合縱連橫—技術移轉和策略聯盟,資訊傳真,1990。 [46 ]張玉標,台灣IC設計產業競爭關鍵成功因素分析,國立交通大學科技管理學程碩士論文,2002。 [47 ]張碧容,IC設計公司資本市場籌資決策探討,國立交通大學管理科學學程碩士論文,2002。 [48 ]張雅雲,威盛反控英特爾P4侵權,CNET新聞專區,10/09/2001,http://taiwan.cnet.com/news/hardware/0,2000064553,20021932,00.htm。 [49 ]張珝丹,半導體產業選擇通路商之研究─灰層級分析法之應用,大葉大學工業關係研究所碩士論文,2001。 [50 ]張殿文、邱碧玲,最有意義的事,http://energy.phys.ncku.edu.tw/~giftedsh/home1/article25.htm。 [51 ]曾美華,工業品市場顧客與供應商關係之研究 - 以電子業為例,國立臺灣大學商學研究所碩士論文,2000。 [52 ]黃慧玲,網路外部性產品預告、轉換成本與市場競爭之分析,國立高雄第一科技大學行銷與流通管理所碩士論文,2001。 [53 ]黃利而,面對消費性電子市場成長,全面提升競爭力是IC通路商生存不二法門,電子時報, 05/13/2004,http://member.digitimes.com.tw/news/shownews.asp?yCategory=4029&DatePublish=2004/05/13&Pages=AB&All_Seq=59&op=f。 [54 ]黃玉龍,管科系週四名人講座-杜俊元談如何經營慈善事業,綜合新聞,446期,10/16/2000,http://tkutimes.tku.edu.tw/news1/446/446-4.htm。 [55 ]黃同圳,人力資源管理策略化成度與組織績效關係探討。輔仁管理評論,第五卷第一期:1-18,1998。 [56 ]劉湘文,台積電入主創意電子效益,e天下,2003年03月第27期。 [57 ]葉匡時、蔡敦浩、周德光,策略聯盟的發展策略— 交易成本的觀點,管理評論,第12 卷,1993。 [58 ]趙凱期,驅動IC產能缺翻天 設計業大老急往世界先進敘舊,報價可與晶圓雙雄一般貴 世界先進擴產更積極,電子時報,05/13/2004。 [59 ]鄧海珠,掀開高科技底牌,先覺出版,2001年8月,p.165 [60 ]蔡正揚、許政郎,互惠協定與策略聯盟之探討,產業科技研究發展管理研討會,1992。 [61 ]蔡博文,台灣IC設計業者與FAB廠間技術知識連結關係之研究--以系統單晶片為例,國立政治大學科技管理研究所碩士論文,2000。 [62 ]蔡威廉。《運用策略聯盟進軍國際》。台中小企業策略聯盟彙編,經濟部中小企業處編印,1992。 [63 ]潘孝儀,商業智慧邏輯運用在IC產業通路商目標物料相關決策之研究,國立台北大學企業管理學系碩士論文,2001。 [64 ]盧智芳,陳文琦 要做亞洲英特爾,天下雜誌,第219期,1999年8月。 [65 ]盧諭緯,聯電給矽統的聖誕大禮──曹興誠和劉曉明同班同學大和解,數位時代雙週,第49期科技焦點,2003年1月。 [66 ]盧諭緯,陳文琦(威盛總經理)迎戰強敵,讓自己更強,電子時代,2002年4月,http://www.bnext.com.tw/mag/2002_04/2002_04_2080.html。 [67 ]賽魯斯•傅瑞德漢(Cyrus Freidheim)著譚天譯,聯盟企業將使全球商務改頭換面,智庫,2000。 [68 ]鍾文凱,我國IC設計公司之關鍵成功因素探討,國立臺灣大學會計學研究所碩士論文,2002。 [69 ]羅義鵬,轉置成本,信任,與資訊分享因子對供應鏈之影響研究,國立中山大學資訊管理學系研究所,2002。 [70 ]孫啟能,「我國多國籍企業內部網路連結型態與控制機制之研究」,大葉工學院事業營研究所碩士論文,1997。 [71 ]顧欣怡,未上市明星企業5:創意電子,e天下2001年04月第4期。 [72 ]熊毅晰,半導體通路類股,如何突破「美伊陰影」,2003年3月 e天下雜誌。 [73 ]Janus,率先出發--FIC P4M 800T,超頻者天堂網站,2003/10/24,http://www.oc.com.tw/article/0310/readgoodarticle.asp?id=2063。 [74 ]Michael Kanellos,威盛與英特爾官司終結, Taiwan.CNET.com,14/12/2001 http://taiwan.cnet.com/news/hardware/0,2000064553,20029481,00.htm。 [75 ]Drucker P. F. (1974), “Management:Tasks、Responsibilities、Practices,” 李田樹譯. 2002. 杜拉克-管理的責任。台北:天下雜誌股份有限公司。2月初版 (二) 英文文獻 [1 ]. Ahuja, G. (1998), “Collaboration Networks, Structural Holes and Innovation: A Longitudinal Study,” Academy of Management Best Paper Proceedings. [2 ]. Ahuja, G. (2000), “The Duality of Collaboration: Inducements and Opportunities in The Formation of Interfirm linkages,” Strategic Management Journal. [3 ]. Astley W. G. and Fombrun C. J. (1983), “Collective strategy: Social ecology of organizational environments,” The Academy of Management Review (pre-1986). 8(4), pp. 576. [4 ].Aaker and David A. (1992), “The Value of Brand Equity,” The Journal of Business Strategy, Vol. 13(4), pp. 27. [5 ]. Baum, J. A. C., Calabrese T. and B. Silverman (2000), “Don’t go it alone: Alliance network composition and startups’ performance in Canadian biotechnology,” Strategic Management Journal, 21, pp.267-294. [6 ]. Baum, J. A. C. and Oliver C. (1991), “Institutional Linkages and Organizational Mortality,” Administrative Science Quarterly, 36(2), pp.187-218. [7 ]. Balakrishnan, S. and Wernerfelt, B. (1986), “Technical Change Competition and Vertical Integration,” Strategic Management Journal, 7, pp.347-359. [8 ]. Bayus, B. L. (1997), “Speed-to-market and new product performance trade-offs,” Journal of Product Innovation Management 14:485-497. [9 ].Baranson and Jack (1990), “Transnational Strategic Alliances: Why, What, Where and How,” Multinational Business, pp. 54. [10 ].Burton, F. N., and Saelens, F. H. (1982), “Partner Choice and Linkage Characteristics of International Joint Ventures in Japan: An Exploratory Analysis of the Inorganic Chemicals Sector,” Management International Review. Vol. 22(2), pp. 20. [11 ]Borys, Bryan, Jemison, and David B. (1989), “Hybrid Arrangements as Strategic Alliances: Theoretical Iss,” The Academy of Management Review. Briarcliff Manor: Apr 1989. Vol. 14(2), pp. 234. [12 ].Brouthers, Keith D., Brouthers, Lance E., Wilkinson, and Timothy J. (1995), “Strategic alliances: Choose you partners,” Long Range Planning., Vol. 28(3), pp. 18. [13 ].Badaracco,J. (1991), “The Knowledge Link : How firms Compete through strategic Alliances,“ Mass : Harvard Business School. [14 ].Baptista, Rui, Swann, and Peter (1998), “Do firms in clusters innovate more?” Research Policy, Vol. 27(5), pp. 525. [15 ].Buckley, Peter J., Casson, and Mark (1996), “An economic model of international joint venture strategy,” Journal of International Business Studies, Vol. 27(5), pp. 849. [16 ].Birkinshaw J., Hood N., and Jonsson S. (1998), “Building firm-specific advantages in multinational corporations: The role of subsidiary initiative,” Strategic Management Journal, Vol. 19(3), pp. 221. [17 ]. Chan, S.H., Martin, J. and Kensinger, J. (1990), “Corporate research and development expenditures and share values,” Journal of Financial Economics 26:255-276. [18 ]. Chen, H., Hu, M.Y. and Shieh, J. (1991), “The wealth effect of international joint ventures: the case of US investment in China,” Financial Management, pp.31-41. [19 ]. Cockburn, I. and Griliches, Z. (1988), “Industry effects and appropriability measures in the stock market’s valuation of R&D and patents,” American Economic Review Proceedings 78:419-423. [20 ]. Crutchley, C., Guo, E. and Hansen, R. (1991), “Stockholder benefits from Japanese-US joint ventures,” Financial Management, pp.22-30. [21 ].Chakravarthy and Balaji S. (1986), “Measuring Strategic Performance,” Strategic Management Journal, Vol. 7(5), pp. 437. [22 ].Covin, Jeffrey G., Slevin, and Dennis P. (1991), “A Conceptual Model of Entrepreneurship as Firm Behavior,” Entrepreneurship Theory and Practice. Vol. 16(1), pp. 7. [23 ].Caves, Richard E., Crookell, Harold, Killing, and Peter J. (1983), “The Imperfect Market for Technology Licenses,” Oxford Bulletin of Economics and Statistics. Vol. 45(3), pp. 249. [24 ].Carpano, Claudio, Chrisman, James J., Roth, and Kendall (1994), “International strategy and environment: An assessment of the performance relationship,” Journal of International Business Studies, Vol. 25(3), pp. 639. [25 ]. Doz, Y.L. and Hamel, G. (1988), “Alliance Advantage: The Art of Creating Value through Partnering,” Harvard Business School Press, Boston, MA. [26 ]. Doukas, J. and Switzer, L. (1992), “The stock market’s valuation of R&D spending and market concentration,” Journal of Economics and Business, pp. 95-114. [27 ]. Doukas, J. and Travlos, N.G. (1988), “The effect of corporate multinationalism on shareholders’ wealth: evidence from international acquisitions,” Journal of Finance 43: 1161-1175. [28 ].Devlin, Godfrey, Bleackley, and Mark (1988), “Strategic Alliances -- Guidelines for Success,” Long Range Planning, Vol. 21(5), pp. 18. [29 ].Das T. K. and Teng B. S. (2000), “Instabilities of strategic alliances: An internal tensions perspective,” Organization Science, Vol. 11(1), pp. 77. [30 ].Das T. K. and Teng B.S. (1998), “Resource and risk management in the strategic alliance making process,” Journal of Management, Vol. 24(1), pp. 21. [31 ].Dess G. G. and Robinson R. B. (1984), “Measuring Organizational Performance in the Absence of Objective Measures: The Case of the Privately-held Firm and Conglomerate Business Unit; Summary ,” Strategic Management Journal (pre-1986). Vol. 5(3), pp. 265. [32 ].Drucker, P. F. (1974), “NEW TEMPLATES FOR TODAY'S ORGANIZATIONS,” Harvard Business Review. Vol. 52(1), pp. 45. [33 ].Evans, H.G. Ashworth, Chellew M., Davidson A. and D. Tower (1996), “Exploiting Activity-Based Information: Easy as ABC,” Management Accounting, Vol. 74, pp. 24-29. [34 ].Drucker, P.F. (1993), “Managing in Turbulent Times,” Harper & Row, New York, Reprint edition. [35 ].Drucker, P. F. (1998), “The Discipline of Innovation,” Harvard Business Review,” Vol. 76(6), pp.149-157. [36 ]. Errunza, V. and Senbet, L.W. (1982), “The effects of international operations on the market value of the firm: theory and evidence,” Journal of Finance, 36, pp. 401-417. [37 ].Eisenhardt, Kathleen M., Schoonhoven, and Claudia B. (1996), “Resource-based view of strategic alliance formation: Strategic and social effects in entrepreneurial firms,” Organization Science. Vol. 7(2), pp. 136. [38 ].Finkelstein S. (1999), “The influence of organizational acquisition experience,” Administrative Science Quarterly, Vol. 44, pp. 29-56. [39 ].Frohis, M., Keown, A., McNabb, M. and Martin, J. (1998), “Growth opportunities, corporate governmance and the market value of multinational joint ventures,” Managerial and Decision Economics, Vol. 19, pp. 13-29. [41 ].Gulati, R. and Lawrence P. (1999), “Organizing vertical networks: A design perspective,” paper presented at SMJ Special Issue Conference on Strategic Networks. [42 ].Gulati R. (1989), “Alliances and networks,” Strategic Management Journal, Vol. 19(4), pp. 293. [43 ].Gulati R. (1998), “Alliances and networks,” Strategic Management Journal, Vol. 19(4), pp. 293. [42 ].Ghemawat, P. and Ghadar, F. (2000), “The dubious logic of global megamergers,” Harvard Business Review, Vol.78, p.64. [43 ].Ghertman M. and Obadia J. (1992), “Balance of Complementary Assets and Stability Conditions of a Dynamic Transaction Theory of Alliances: The Cost of US Biotechnology”, Working Paper, Chamber de Commerce et D’industrie de Paris [45 ].Gomes-Casseres and Benjamin (1994), “Group versus group: How alliance networks compete,” Harvard Business Review, Vol. 72(4), pp. 62. [46 ].Grant Miles, Stephen B Preece, and Mark C. B. (1999), “Dangers of dependence: The impact of strategic alliance use by small technology-based firms,” Journal of Small Business Management, Vol. 37(2), pp. 20. [47 ].Geringer, and Michael J. (1988), “Selection of Partners for International Joint Ventures,” Business Quarterly, Vol. 53(2), pp. 31. [49 ].Harrigan, K.R. (1987), “Strategic Alliance: Their New Role in Global Competition,” Columbia Journal of World Business, Vol. 22(2), pp.67-69. [50 ].Harrigan and Rudie K. (1984), “Joint Ventures and Global Strategies”, Columbia Journal of World Business, Vol. 19(2), pp. 7. [51 ].Hagedoorn, J. and Schakenraad, J. (1994), “The effect of strategic technology alliances on company performance,” Strategic Management Journal, 5(4), pp.291-309. [52 ].Harianto, F. and Pennings J. (1990), “Technological innovation through interfirm linkages,” Strategic Management in High Technology Firms. JAI Press, pp. 15-41. [53 ].Hutt. M. D., Stafford E. R, Walker B. A., and Reingen P. H. (2000), “Case study: Defining the social network of a strategic alliance,” Sloan Management Review, Vol. 41(2), pp. 51. [54 ].Hamel, Gary, Doz, Yves L., and Prahalad (1989), “Collaborate with Your Competitors -- and Win,” Harvard Business Review, Vol. 67(1), pp. 133. [55 ].Hennart and Jean-Francois (1988), “A Transaction Costs Theory of Equity Joint Ventures,” Strategic Management Journal, Vol. 9(4), pp. 361. [56 ].James G. C., David J. and Ketchen Jr. (1999), “Explaining interfirm cooperation and performance: Toward a reconciliation of predictions from the resource-based view and organizational economics,” Strategic Management Journal, Vol. 20(9), pp. 867. [57 ].Killing, J.P. (1988), “Understanding Alliances: The Role of Task and Organizational Complexity,” Cooperative Strategies in International Business. [58 ].Kelm, K.M., Narayanan, V.K. and Pinches, G.E. (1995), “Shareholder value creation during R&D innovation and commercialization stages”, Academy of Management Journal, 38(3), pp. 770-786. [59 ].Kogut, B. & H. Singh (1985), “Entering the United States by Acquisition or Joint Venture: Country Patterns and Cultural Characteristics,” Working Paper, Jones Center, the Wharton School, Univ. of Penn. [60 ].Kogut, B., Shan W. and Walker, G. (1992), “The make or cooperate decision in the context of an industry network,” Harvard Business School Press, Boston, MA. [61 ].Kogut and Bruce (1988), “Joint Ventures: Theoretical and Empirical Perspectives,” Strategic Management Journal, Vol. 9(4), pp. 319. [62 ].Kale, P., Dyer J. H. and Singh, H. (2002), “Alliance capability, stock market response, and long-term alliance success: The role of the alliance function”, Strategic Management Journal, 23(8), p. 747. [63 ].Khanna T., Gulati R., and Nohria N. (2000) “The economic modeling of strategy process: 'Clean models' and 'dirty hands',” Strategic Management Journal, Vol. 21(7), pp. 781. [64 ].Kanter, and Moss R. (1990), “When Giants Learn Cooperative Strategies,” Planning Review, Vol. 18(1), pp. 15. [65 ].Lee, I. and Wyatt, S.B. (1990), “The effects on international joint ventures on stockholders wealth,” The financial Review, 25, pp.641-649. [66 ].Lewis, J.D. (1990) and Parkhe, A. (1991), “Interfirm Diversity, Organization Learning and Longevity in Global Strategic Alliance,” Journal of International Business Studies, pp.579-601. [67 ].Lummer, S.L. and McConell, J.J. (1990), “Stock Valuation Effects on International Joint Ventures,” in S.G. Rhee and R.P. Chang (eds.) Pacific-Basin Capital Markets Research, pp. 531-546. [68 ].Lorange, Peter, Roos, Johan, Bronn, and Simcic P. (1992), “Building successful strategic alliances,” Long Range Planning, Vol. 25(6), pp. 10. [69 ].Lofsten H. and Lindelof P. (2001), “Science parks in Sweden - industrial renewal and development?” R & D Management, Vol. 31(3), pp. 309. [70 ].Lynch (1989), “The practical guide to joint venture and corporate alliances,” New York: Wiley. [71 ].McConnell, J.J. and Muscarella, C. (1985), “Corporate capital expenditure decisions and the market value of the firm,” Journal of Financial Economics 14, pp. 399-422. [72 ]Merchant, H. and Schendel, D. (2000), “How do international joint ventures create shareholder value?,” Strategic Management Journal, Vol.21, pp. 723-727. [73 ].Morck, R. and Yeung, B. (1991), “Why investors value multinationality,” Journal of Business, 64(2), pp.165-187. [74 ].Mastern, S. E. (1993), “Transaction costs, mistakes, and performance: Assessing the importance of government,” Managerial and Descision Economics, 14, pp. 119-129. [75 ].Miner, A. S., Amurgey T. L. and Stearns T. M. (1990), “Interorganizational linkages and population dynamics: Buffering and transformational shields,” Administrative Science Quarterly, 35(4), pp. 689-713. [76 ].Mitchell, W. and K. Singh (1996), “Survival of businesses using collaborative relationships to commercialize complex goods,” Strategic Management Journal, 17(3), pp. 168-195. [77 ].Marta M. Vidal Suarez (2002), “Stock market response to the formation of global alliances: evidence form Spanish corporations,” European Business Review, Vol.14, pp. 407. [78 ].Miller, Paul B. W., Mosso, and David (1983), “Financial Accounting Measurement: Why Things May Not Be What They Seem to be,” Financial Executive, Vol. 51(12), pp. 28. [79 ].Miller (1982), “The Correlated of Entrepreneurship in Three Types of Firm,” Management Science, Vol. 29, pp.770-791. [80 ].Murray, Edwin A. J., Mahon, and John F. (1993), “Strategic alliances: Gateway to the new Europe?” Long Range Planning, Vol. 26(4), pp. 102. [81 ].Mohr, Jakki J., Gundlach, Gregory T., Spekman, and Robert (1994), “Legal ramifications of strategic alliances,” Marketing Management, Vol. 3(2), pp. 38. [82 ].Nueno, Pedro, and Oosterveld (1988), “Managing Technology Alliances,” Long Range Planning, Vol. 21(3), pp. 11. [83 ].Ojah, K., Seitz, N.E. and Rawashdeh, M. (1997), “Why manufacture offshore? An empirical analysis of valuation effects,” The Financial Review, Vol. 32(3), pp. 477-499. [84 ].Ojah K. and Monplaisir L. (2003), “Investors’ valuation of global product design and development`, Journal of International Business Studies, 34, pp.457-472. [85 ].Ohmae, K. (1989), “The global logic of strategic alliances,” Harvard Business Review 67, pp. 143-154. [86 ].Perlmutter, H.V. and Heenan, D.A. (1986), “Coopeare to compete globally”, Harvard Business Review, Vol.2, pp. 136-152. [87 ].Porter, M. and Fuller, M. (1986), “Coalitions and global strategy, in Porter, M. (Ed.), Competition in Global Industries,” Harvard Business School Press, Boston, MA. [88 ].Porter M. E. (1980), “Competitive strategy: techniques for analyzing industries and competitors,” Free Press, [89 ].Powell, Walter, W., Koput, Kenneth, W., Smith-Doerr, and Laurel (1996), “Interorganizational collaboration and the locus of innovation: Networks of learning in biotechnology”, Administrative Science Quarterly, Vol. 41(1), pp. 116. [90 ].Powell, W. W., Koput K. W. and L. Smith-Doerr (1996), “Interorganizational collaboration and the locus of innovation: Networks of learning in biotechnology,” Administrative Science Quarterly, 41(1), pp.116-145. [91 ].Parkhe and Arvind (1991), “Interfirm Diversity, Organizational Learning, and Longevity,” Journal of International Business Studies, Vol. 22 (4), pp. 579. [92 ].Pekar, Peter, Allio, and Robert (1994), “Making alliances work - Guidelines for success,” Long Range Planning, Vol. 27(4), pp. 54. [93 ].Provan K. G. (1984), “Technology and interorganizational activity as predictors of client referrals,” Academy of Management Journal, Vol. 27(4), pp. 811. [94 ].Quinn L. R. (1999), “Two Firms Vie to Provide Trade Group's Registry,” American Banker, Vol. 164(233), pp. 17. [95 ].Quinn, R.E. and Rohrbaugh J. (1983), “A Spatial Model of Effectiveness Criteria: Towards a Competing Values Approach to Organizational Analysis,” Management Science, Vol. 29(3), pp.363-377. [96 ].Root, F.R.(1988),”Some Taxonomies of International Cooperative rrangement” ,in F.J. Contractor & P.Lorange (eds),.Cooperative Strategic in International Business, Mass./Toronto: D.C. Heath & Co./Lexington. [97 ].Rule E. and Keown S. (1998), “Competencies of high-performing strategic alliances,” Strategy and Leadership, Vol. 26(4), pp. 36. [98 ].Rangan, Srinivasa U., Yoshino, and Michael Y. (1996), “Forging alliances: A guide to top management,” Columbia Journal of World Business, Vol. 31(3), pp. 6. [99 ].Roth, Kendall, Morrison, and Allen J. (1990) “An Empirical Analysis of the Integration-Responsiveness Framework in Global Industries,” Journal of International Business Studies, Vol. 21(4), pp. 541. [40 ]. Rothaermel T. (2001), “Incumbant's advantage through exploiting complementary assets via interfirm cooperation,” Strategic Management Journal. Chichester, 22 (6), pp. 687. [100 ].Stafford and Edwin R. (1994), “Using co-operative strategies to make alliances work,” Long Range Planning. Vol. 27(3), pp. 64. [101 ].Salancik, Gerald R., Pfeffer, and Jeffrey (1978), “A social information processing approach to job attitudes and task design,” Administrative Science Quarterly, Vol. 23(2), pp. 224. [102 ].Souder, William E., Nassar, and Suheil (1990), “Managing R&D Consortia for Success,” Research Technology Management, Vol. 33(5), pp. 44. [103 ].Sierra (1995), “Managing global alliance-key steps for successful collaboration,” New York: Wesley Publishing Company. [104 ].Segil L. (1998), “Successful alliances,” Executive Excellence, Vol. 15(8), pp. 15. [105 ].Singh, K. and W. Mitchell (1996), “Precarious collaboration: Business survival after partners shut down of form new partnerships,” Strategic Management Journal, Summer Special Issue, 17, pp99-115. [106 ].Sundaram, A.K., John, T. and John, K. (1996), “An empirical analysis of strategic competition and firm values: the case of R&D competition,” Journal of Financial Economics, 40, pp.459-486. [107 ].Takac, Paul F., and Singh C. P. (1992), “Strategic Alliances in Banking” Management Decision, Vol. 30(1), pp. 32. [108 ].Teece (1986), “Transaction Cost Economics and The Multinational Enterprise,” Journal of Economic Behavior and Organization, Vol. 3, pp.21-45. [109 ].Van de Van, Andrew H. and Diane L. Ferry (1980), “Measuring and Assessing Organization,” N.Y.: John Wiley and Sons. [110 ].Vedovello and Conceicao (1997), “Science parks and university -Industry interaction: Geographical proximity between the agents as a driving force,” Technovation, Vol. 17(9), pp. 491. [111 ].Venkatraman N., and Ramanujam V. (1986), “Measurement of Business Performance in Strategy Research: A Comparison of Approaches,” Academy of Management Review 11 (1986): 801-814. [112 ].Williamson, O.E. (1975),”Markets and Hierachies: Analysis and Antitrust Implications,” New York: Free Press. [113 ].Walker, G., Kogut B. and Shan W. (1997), “Social capital, Structural holes and the information of an industry network”, Organization Science, 8(2), pp.109-125. [114 ].Woolridge, J.R. and Snow, C.C. (1990), ”Stock market reaction to strategic investment decisions,” Strategic Management Journal, 11, pp. 353-363. [115 ].Whittaker, Erica, Bower and Jane D. (1994), “A shift to external alliances for product development in the pharmaceutical industry,” R & D Management, Vol. 24(3), pp. 249. [116 ].Willard, G. and. Woo C.Y (1983), “Performance Representation in Business Police Research: Discussion and Recommendation,” Paper Presented at the 43rd Annual National Meetings of the Academy of Management, Dallas. [117 ].Westhead, Paul, Storey, D J. (1995), “Links between higher education institutions and high technology firms,” Omega, Vol. 23(4), pp. 345. [118 ].Yoshino, M. and Rangan, S. (1995), “Strategic Alliances: An Entrepreneurial Approach to Globalization,” Harvard Business School Press, Boston, MA. [119 ].Zaheer, A. and Zaheer, S. (1997), “Catching the wave: Alertness, responsiveness, and market influence in global electronic networks,” Management Science, 43(11), pp.1493-1509. [120 ].Zaheer, S. and Zaheer, A. (1999), “The structure of global competition: A network approach,” paper presented at the SMJ Special Issue Conference on Strategic Networks. [121 ].Zuckerman, H.S. and D’Aunno, T.A. (1990), “Hospital Alliances: Cooperative Strategy in a Competitive Environment,” Health Care Management Review, 15(2), pp.21-30. (三)各廠商資料來源網站 [1 ]聯合知識庫(付費網站) http://udndata.com/ [2 ]電子時報資料庫((付費網站) http://www.digitimes.com.tw/ [3 ]e天下 http://www.techvantage.com.tw [4 ]新電子科技雜誌 http://www.acertwp.com.tw [5 ]電子工程專輯 http://www.eettaiwan.com 晶圓代工廠商: [6 ] 聯電http://www.umc.com.tw [7 ] 台積電http://www.tsmc.com.tw/ [8 ] 立生http://www.antekic.com.tw [9 ] 漢磊http://www.episil.com [10 ] 華邦電http://www.winbond.com.tw/ [11 ] 旺宏http://www.mxic.com.tw [12 ] 元隆http://www.ampi.com.tw/ [13 ] 世界http://www.vis.com.tw [14 ] 力晶http://www.psc.com.tw IC設計公司: [15 ] 矽統http://www.sis.com.tw/ [16 ] 瑞昱http://www.realtek.com.tw/ [17 ] 威盛http://www.via.com.tw [18 ] 晶豪科http://www.esmt.com.tw/ [19 ] 凌陽http://www.sunplus.com.tw [20 ] 偉詮電http://www.weltrend.com [21 ] 聯發科http://www.mtk.com.tw [22 ] 義隆電http://www.emc.com.tw [23 ] 聯詠http://www.novatek.com.tw [23 ] 智原http://www.faraday-tech.com/ [25 ] 揚智http://www.ali.com.tw [26 ] 駿億http://www.kingb.com.tw/ [27 ] 安茂http://www.ame.com.tw/ [28 ] 倚強http://www.sq.com.tw/ [29 ] 太欣http://www.syntekt.com.tw [30 ] 世紀http://www.myson.com.tw [31 ] 鈺創http://www.etron.com [32 ] 台晶http://www.tmtech.com.tw [33 ] 松翰http://www.sonix.com.tw [34 ] 矽成http://www.icsi.com.tw [35 ] 通泰http://www.tontek.com.tw/ [36 ] 合邦http://www.avid.com.tw [37 ] 創惟http://www.genesyslogic.com/ [38 ] 普誠http://www.princeton.com.tw [39 ] 亞全http://www.himark.com.tw/ [40 ] 茂達http://www.anpec.com.tw/ [41 ] 晶磊http://www.smartasic.com.tw [42 ] 旭展http://www.topshine.com.tw/ [43 ] 凌泰http://www.averlogic.com.tw [44 ] 研通http://www.vtac.com.tw [45 ] 盛群http://www.holtek.com.tw [46 ] 旺玖http://www.prolific.com.tw [47 ] 凌越 http://www.topro.com.tw [48 ] 驊訊http://www.cmedia.com.tw/ [49 ] 迅杰http://www.ene.com.tw [50 ] 沛亨 http://www.analog.com.tw/ [51 ] 立錡 http://www.richtek-ic.com.tw [52 ] 矽創 http://www.sitronix.com.tw/ 半導體通路商: [53 ] 友尚 http://www.yosun.com.tw [54 ] 鼎大http://www.protop.com.tw [55 ] 世平http://www.wpi.com.tw [56 ] 敦吉http://www.audix.com [57 ] 品佳http://WWW.SACSYS.COM.TW [58 ] 華立http://www.wahlee.com [59 ] 奇普仕http://WWW.ultra.com.tw [60 ] 增你強 http://ZENITRON.COM.TW [61 ] 威健http://www.weikeng.com.tw [62 ] 文曄 http://www.wtmec.com [63 ] 益登http://www.edom.com.tw [64 ] 全科http://www.alltek.com [65 ] 大騰http://www.ultima.com.tw [66 ] 崇越 http://www.topco.com.tw [67 ] 好德http://www.howteh.com.tw [68 ] 佶優http://www.cheiltech.com [69 ] 聯瞻http://www.actc.com.tw [70 ] 亞矽http://www.asec.com.tw  [71 ] 大傳 http://www.teconet.com.tw [72 ] 佳營http://www.siltron.com.tw/ [73 ] 富爾特http://www.fullerton.com.tw [74 ] 詮鼎http://www.aitinc.com.tw [75 ] 振遠http://www.frontek.com.tw [76 ] 宇詮http://www.epcotech.com.tw  [77 ] 豐藝http://www.promate com.tw [78 ] 百徽http://www.bullwill.com.tw [79 ] 倍微http://www.pct.com.tw [80 ] 光菱http://www.koryo.com.tw [81 ] 全達http://www.chander.com.tw 證券商 [82 ] 日盛證券http://www.jihsun.com.twid NH0925230025 sid 916421 cfn 0 / id NH0925230026 auc 陳雅伶 tic 上市策略對新產品績效之影響: 以產品創新性為干擾變數 adc 陳鴻基 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 英文 pg 44 kwc 上市策略 kwc 產品創新性 kwc 新產品績效 abc 現在的公司欲在競爭激烈的環境中生存,新產品開發扮演了舉足輕重的角色,然而,大部分的新產品都未達到公司設定的目標。因此許多研究致力於發現左右新產品績效的因素,其中,上市策略及產品創新性對新產品績效的影響被廣為討論。但是,將產品創新性視作直接影響新產品績效的因素時,過去的研究卻出現不同甚至矛盾的結果。因此,本研究在釐清上市策略對新產品績效影響之際,將產品創新性視為一干擾變數。 rf Ali, A., R. Jr. Krapfel, and D. LaBahn “Product innovativeness and entry strategy: impact on cycle time and break-even time,” Journal of Product Innovation Management 12:54-69 (1995) Atuahene-Gima, K. “Differential potency of factors affecting innovation performance in manufacturing and services firms in Australia,” Journal of Product Innovation Management 13:35-52 (1996) Beard, C. and C. Easingwood “New product launch: marketing action and launch tactics for high-technology products,” Journal of Marketing Management 25(2):87-103 (1996) Balachandra, R. and J. H. Friar “Factors for success in R&D projects and new product innovation: a contextual framework,” IEEE Transaction on Engineering Management 44(3):276-287 (1997) Biggadike, E. R. Corporate diversification: entry, strategy and performance. Cambridge, MA: Harvard University Press (1979) Calantone, R. G. and M. M. Montoya-Weiss Product launch and follow on. In: Managing New Technology Development WmE Souder and JD Sherman (eds.) 217-248 (1993) Choffray, J. M. and G. L. Lilien “Strategies behind the successful industrial product launch,” Business Marketing November: 82-95 (1984) Choffray, J. M. and G. L. Lilien “A decision-support system for evaluating sales prospects and launch strategies for new products,” Industrial Marketing Management 15:75-85 (1986) Clark, K. and T. Fujimoto Product development performance: strategy, organization and management in the world auto industry. Boston, MA: Harvard Business School Press (1991) Cooper, R. G. “The dimensions of industrial new product success and failure,” Journal of Marketing 43:93-103 (1979) Cooper, R. G. and E. J. Kleinschmidt “New products: what separates the winners from the losers?” Journal of Product Innovation Management 4:169-184 (1987) Cooper, R. G. and E. J. Kleinschmidt “Resource allocation in the new product process,” Industrial Marketing Management 17:249-262 (1988) Cooper, R.G. and U. D. Brentani “New industrial financial services: what distinguishes the winners,” Journal of Product Innovation Management 8:75-90 (1991) Crawford, C. M. “New product failure rates: a reprise,” Research Management July-August:10-24 (1987) de Brentani, U. “Success and failure in new industrial services,” Journal of Product Innovation Management 6:239-258 (1989) Garcia, Rosanna and R. Calantone “A critical look at technological innovation typology and innovativeness terminology: a literature review,” Journal of Product Innovation Management 19:110-132 (2002) Green, D. H. and A. B. Ryans “Entry strategies and market performance: causal modeling of a business simulation,” Journal of Product Innovation Management 7:45-58 (1990) Griffin, A. “Modeling and measuring product development cycle time across industries,” Marketing Science Institute Working Paper Boston: MA 95-117 (1995) Griffin, A. “PDMA research on new product development practices: updating trends, and benchmarking best practices,” Journal of Product Innovation Management 14:429-458 (1997) Hultink, E. J., A. Griffin, H. S. J. Robben and S. Hart, “In search of generic launch strategies for new product,” International Journal of Research in Marketing 15:269-285 (1998) Hultink, E. J., A. Griffin, S. Hart, and H. S. J. Robben “Industrial new product launch strategies and product development performance,” Journal of Product Innovation Management 14(4):243-257 (1997) Hultink, E. J. and H. S. J. Robben “Launch strategy and new product performance: an empirical examination in the Netherlands,” Journal of Product Innovation Management 16:545-556 (1999) Hultink, E. J., S. Hart, H. S. J. Robben, and A. Griffin “Launch decisions and new product success: an empirical comparison of consumer and industrial products,” Journal of Product Innovation Management 17(1):5-23 (2000) Koberg, C. S., D. R. Detienne, and K.A. Heppard “An empirical test of environmental, organizational, and process factors affecting incremental and radical innovation,” Journal of High Technology Management Research 14:21-45 (2003) Lambkin, M. “Order of entry and performance in new markets,” Strategic Management Journal 9:127-140 (1988) Lee, Y. and G. C. O’Connor “The impact of communication strategy on launching new products: the moderating role of product innovativeness,” Journal of Product Innovation Management 20:4-21 (2003) Maidique, M. A. and B. J. Zirger “A study of success and failure in product innovation: the case of the U.S. electronics industry,” IEEE Transaction on Engineering Management 31:192-203 (1984) McDermott C. M. and G. C. O’Connor “Managing radical innovation: an overview of emergent strategy issues,” Journal of Product Innovation Management 19:424-438 (2002) Ryder, I. K. “Is branding important in business-to-business? An IT industry view,” Journal of Brand Management 9:357-369 (1994) Sethi, R. and Smith, D.C., et al. “Cross-functional product development teams, creativity, and the innovativeness of new consumer products,” Journal of Marketing Research 38(February):73-85 (2001) Urban, G. L. and J. R. Hauser Design and marketing of new products. Prentice-Hall, Englewood Cliffs, NJ. (1993) Yoon, E. and G. L. Lilien “New industrial product performance: the effect of market characteristics and strategy,” Journal of Product Innovation Management 3:134-144 (1985) New-product troubles have firms cutting back. The Wall Street Journal Jan. 13, B1 (1992)id NH0925230026 sid 916409 cfn 0 / id NH0925230027 auc 曾舜文 tic 策略聯盟、智慧資本與企業價值創造:美國生技產業之實證研究 adc 林博文 ty 碩士 sc 國立清華大學 dp 科技管理研究所 yr 92 lg 英文 pg 81 kwc 策略聯盟 kwc 智慧資本 kwc 企業價值創造 kwc 美國生技公司 abc 策略聯盟與智慧資本在現今的生技產業中扮演著重要的角色,因此本研究檢視以上兩者之間的關係,並且進一步探討其對企業價值之影響。本研究以1990年至2000年美國188家生技公司的策略聯盟經歷做為範本,再依據策略夥伴的性質加以區分為不同的聯盟模式,驗證在生技產業內不同的聯盟夥伴對於智慧資本產出及企業價值創造的影響。透過相關性及迴歸等分析,本研究發現生技公司參與聯盟合作會減低其智慧資本產出,尤其以跨產業的策略聯盟—即生技公司與製藥公司之間的合作—影響最為顯著。就公司市場評價(market valuation)及獲利(profitability)兩方面而言,研究所得之結果顯示策略聯盟本身對於企業價值並無顯著影響;然而智慧資本卻有助於提昇其公司市場評價。從核心技術的角度來檢視策略聯盟與智慧資本對於企業價值的影響,實證結果顯示策略聯盟與公司核心技術相關之智慧資本對生技公司的市場評價會產生正面的加分效果;相反地,策略聯盟與非關於公司核心技術之智慧資本則會對生技公司在市場評價上產生負面的影響。最終,研究結果發現在涉及公司核心技術相關之智慧資本時,同業間的策略聯盟—即生技公司與生技公司之間的合作—將會對公司的市場評價造成顯著的負面影響;而跨產業的策略聯盟卻會對生技公司的市場評價形成明顯的正面影響。因此,聯盟夥伴類型及技術研發方向會影響生技公司的企業價值。 rf Aaker, D.A. (1995), Strategic Market Management. 4th ed., Wiley, New York, NY. Aaker, D.A. and Joachimsthaler, E. (2000), Brand Leadership, The Free Press, New York, NY. Acs, Z. and Audretsch, D.(1990), Innovation and Small Firms. The MIT Press, Cambridge, MA. Adler, L. (1966), “Symbiotic marketing”, Harvard Busienss Review, Vol. 44 pp. 59-71. Ahuja, G. (2000), “The duality of collaborations: Inducements and opportunities in the formation of interfirm linkages”, Strategic Management Journal, Vol. 21, No. 3, pp. 317-43. Anand, J. and Singh, H. (1997), “Asset redeployment, acquisitions and corporae strategies in decliing industries”, Strategic Management Journal, Vol. 18, (Summer special issue), pp. 99-118. Arora, A. and Gambardella, A. (1994), “The changing technology of technical change: genral and abstract knowledge and the dividiosnof innovative labor”, Research Policy, Vol. 23, No. 5, pp. 523-32. Arthur, W.B. (1994), Increasing Returns and Path Dependence in the Economy, University of Michigan Press, Ann Arbor, MI. Bailey, J., Jr., Dibner, M and Greis, N. (1991), “Barriers to success: hurdles in the biotechnology race”, BioPharm, Vol. 4 No. 3, pp. 16-20. Barney, J. (1991), “Firm resources and sustained competitive advantage”, Journal of Management, Vol. 17, No. 1, pp. 99-120. Barton, D.M. and Sherman, R. (1984), “The price and profit effects of horizontal merger: a case study”, Journal of Industrial Economics, Vol. 33, pp. 165-77. Baum, J.A., Calabrese, T. and Siverman, B.S. (2000), “Don’t go it along: alliance network composition and startups’ performance in Canadian biotechnology”, Strategic Management Journal, Vol. 21, pp. 267-94. Bell, C. and McNamara, J. (1991), High-Tech Ventures: The Guide for Entrepreneurial Success. Addison-Wesley, Reading, MA. Bereiter, C. and Scardamalia, M. (1993), Surpassing Ourselves: An Inquiry into the Nature and Implications of Expertise. Open Court, Chicago, IL. Binney, D. (2001), “The knowledge management spectrum – understanding the KM landscape”, Journal of Knowledge Management, Vol. 2, No. 3, pp. 33-42. Blair, M.M. and Wallman, S.M.H. (2001), Unseen Wealth. Brookings Institution Press, Washington, DC. Bontis, N. (1998), “Intellectual capital: an exploratory study that develops measures and models”, Management Decision, Vol. 36, No. 2, pp. 63-76. Bontis, N. (1999), “Managing organizational knowledge by diagnosing intellectual capital: framing and advancing the state of the field”, International Journal of Technology Management, Vol. 18, No. 5-8, pp. 433-62. Bontis, N. (2002), “Managing Organizational Knowledge by Diagnosing Intellectual Capital”, in: Choo, C.W. and Bontis, N. (Eds.), The Strategic Management of Intellectual Capital and organizational Knowledge. Oxford University Press., New York, NY. Bontis, N. and Fitz-enz, J. (2002), “Intellectual capital ROI: A causal map of human capital antecedents and consequents”, Journal of Intellectual Capital, Vol. 3, No. 3, pp. 223-47 Bontis, N. and Girardi, J. (2000), “Teaching knowledge management and intellectual capital lessons: an empirical examination of the TANGO simulation”, International Journal of Technology Management, Vol. 20, No. 5-8, pp. 545-55. Bontis, N. and Nikitopoulos, D. (2001), “Thought leadership on intellectual capital”, Vol. 2, No. 3, pp. 183-91. Bontis, N., Crossan, M. and Hulland, J. (2002), “Managing an organizational learning system by aligning stocks and flows”, Journal of Management Studies, Vol. 39, No. 4, pp. 437-69. Bontis, N., Dragonetti, N.C., Jacobsen, K. and Roos, G. (1999), “The knowledge toolbox: a review of the tools available to measure and manage intangible resources”, European Management Journal, Vol. 17, No. 4, pp. 391-402. Borys, B. and Jemison, D.B. (1989), “Hybrid arrangements as strategic alliances: theoretical issues in organizational combinations”, Academy of Management Review, Vol. 14, No. 2, pp. 234-50. Bose, S. and Oh, K.B. (2003), “An empirical evaluation of option pricing in intellectual capital”, Journal of Intellectual Capital, Vol. 4, No. 3, pp. 382-95. Boulton, R., Libert, B. and Samak, S. (2000), Creacking the Value Code: How Successful Businesses are Creating Wealth in the New Economy. Harper Collins, New York, NY. Bourdieu, P. and Wacquant, L. (1992), An Invitation to Feflexive Sociology. University of Chicago Press, Chicago, IL. Brennan, N. and Connell, B. (2000), “Intellectual capital: current issues and policy implications”, Journal of Intellectual Capital, Vol. 1, No. 2/3, pp. 206-40. Bucklin, L.P. and Sengupta, S. (1993), “Organizing successful co-marketing alliances”, Journal of Marketing, Vol. 57, No. 2, pp. 32-46. Burrill, G. (1989), Biotech 90: Into the Next Decade, Liebert, New York, NY. Burrill, G.S. and Lee, K.B., Jr. (1992), Biotech 93: Accelerating commercialization. Ernst and Young, San Francisco, CA. Burt, R.S. (1997), “The contingent value of social capital”, Administrative Science Quarterly, Vol. 42, pp. 339-65. Canibano, L., Garcia-Ayuso, M. and Sanchez, P. (2000), “Accounting for intangibles: A literature review”, Journal of Accounting Literature, Vol. 19, pp. 102-30. Carroll, R.F. and Tansey, R.R. (2000), “Intellectual capital in the new Internet economy – its meaning, measurement and management for enhancing quality”, Journal of Intellectual Capital, Vol. 1, No. 4, pp. 296-312. Chan, S.H., Kensigner, J.W., Keown, A.J. and Martin, J.D. (1999), “When does strategic alliances create shareholder value?”, Journal of Applied Corporate Finance, Vol. 11, No. 4, pp. 82-7. Chang, Y.C. (2003), “Benefits of co-operation on innovative performance: evidence from integrated circuits and biotechnology firms in the UK and Taiwan”, R&D Management, Vol. 33, No. 4. pp. 425-37. Chi, T. (1994), “Trading in strategic resources: necessary conditions, transaction cost problems and choices of exchange structure”, Strategic Management Journal, Vol. 15, No. 4, pp. 271-90. Choo, C.W. and Bontis, N. (Eds.), The Strategic Management of Intellectual Capital and Organizational Knowledge. Oxford University Press, New York, NY. Christensen, C. (1992), “Exploring the limits of the technology s-curve. Part1: Component technologies”, Production and Operations Management, Vol. 1, pp. 334-57. Christensen, C.M. (1993), “The rigid disk drive industry: A history of commercial technological turbulence”, Business History Review, Vol. 67, pp. 531-88. Cockburn, I. And Griliches, Z. (1988), “Industry effects and appropriability measures in the stock market’s valuation of R&D and patents”, American Economic Review (AEA Paper and Proceedings), Vol. 78, pp. 419-23. Cohen, W.M. and Levinthal, D.A. (1990), “Absorptive capacity: A new perspective on learning and innovation”, Administrative Science Quarterly, Vol. 35, pp. 128-52. Coleman, J. (1988), “Social capital in the creation of human capital”, American Journal of Sociology, Vol. 94, pp. 95-120. Collis, D.J.(1996), “Organizational capability as a source of profitin”, in B. Moingeon and A. Edondson (eds.), Organizational Learning and Competitive Advantage. Sage, London. Comanor, W.S. and Scherer, F.M. (1969), “Patent statistics as a measure of technical change”, Journal of Political Economy, Vol. 77, No. 3, pp. 392-398. Contractor, F.J. (2001), “Intangible assets and principles for their valuation”, in contractor, F.J. (Ed.), Valuation of intangible Assets in Global Operations, Quorum Books, Westport, CT, pp. 3-24. Contractor, F.J. and Lorange, P. (1988), “Competition vs cooperation: a benefit/cost framework for choosing between fully-owned investments and cooperative relationships”, Management International Review, (Special Issue), pp. 5-18. Cooke, P. and Morgan. K. (1998), The Associational Economy: Firms, Regions, an Innovation. Oxford University Press, Oxford. Crutchley, C.E. and Hansen, R.S. (1989), “A test of the agency theory of managerial ownership, corporate leverage and corporate dividends”, Financial Management, pp. 36-46. Damanpour, F. (1991), “Organizational innovation: a meta-analysis of effects of determinants and moderators”, Academy of Management Journal, Vol. 30, pp. 555-90. Das, S., Sen P.K. and Sengupta, S. (1998), “Impact of strategic alliances on firm valuation”, Academy of Management Journal, Vol. 41, No. 1, pp. 27-41. Das, S., Sen P.K. and Sengupta, S. (2003), “Strategic alliances: a valuable way to manage intellectual capital?”, Journal of Intellectual Capital, Vol. 4, No. 1, pp. 10-19. Deeds, D.L. and Hill, C.W. (1998), “An examination of opportunistic action within research alliances: Evidence from the biotechnology industry”, Journal of Business Venturing, Vol. 14, pp. 141-63. Deeds, D.L., and Hill, C.W. (1996), “Strategic alliances and the rate of new product development: An empirical study of entrepreneurial biotechnology firms”, Journal of Business Venturing, in press. Demsetz, H. and Lehn, K (1985), “The structure of corporate ownership: Cause and consequences”, Journal of Political Economy, Vol. 93, pp. 1155-77. Development Center for Biotechnology (DCB) (2002), Biotechnology Industry Almanac 2002, Development Center for Biotechnology, Taipei. Dicken, P. (1998), Global Shift: Transforming the World Economy. Guilford Press, New York, NY. Dodgson, M. (1993), “Learning, trust, and technological collaboration”, Human Relations, Vol. 46, pp. 77-95. Donaldson, T. and Preston, L.E. (1995), “The stakeholder theory of the corporation: concepts, evidence and implications”, The Academy of Management Review, Vol. 20, No. 1, pp. 65-91. Dorfman, N. (1987), Innovation and Market Structure: Lessons from the Computer and Semiconductor Industries, Ballinger, Cambridge, MA. Dosi, G. (1984), “Technological paradigms and technological nowledge es”, in Dosi, G., Freeman, C., Silverberg, G. and Soete, L. (Eds.), Technical change and Economic Theory, Printer Publishers, London, pp. 221-38. Doutriaux, J. (1992), “Emerging high-tech firms: How durable are their comparative start-up advantages?”, Journal of Business Venturing, Vol. 7, pp. 303-22. Duchesneau, D. and Gartner, W. (1990), “A profile of new venture success and failure in an emerging industry”, Journal of Business Venturing, Vol. 5, pp. 297-312. Dussauge, P., Hart, S., and Ramanantsoa, B. (1992), Strategic Technology Management, Wiley, New York, NY. Dyer, J.H. (1997), “Effective inter-firm collaboration: how firms minimize transaction costs and maximize transaction value”, Strategic Management Journal, Vol. 18, No. 7, pp. 535-56. Dyer, J.H. and Singh, H. (1998), “The relational view: cooperative strategies and sources of interorganizational competitive advantage”, Academy of Managaement Review, Vol. 23, No. 4, pp. 660-79. Easton, G. and Araujo, L. (1996), “Charaterizing nowledge es l competences: An industrial networks approach”, in Sanchez, R., Heene, A. and Thomas, H. (Eds.), Dynamics of Competence-based Competition. Elsevier Science, Kidlington. Edvinsson, L. (1997), “Developing intellectual capital at Skandia”, Long Range Planning, Vol. 30, No. 3, pp. 266-373. Edvinsson, L. and Malone, M. (1997), Intellectual Capital. Harper Business, New York, NY. Edvisson, L. (2000), “Some perspectives on intangible and intellectual capital”, Journal of Intellectual Capital, Vol. 1, pp. 12-16. Eisenhardt, K.M. and Martin, J. (2000), “Dynamic capabilities: what are they?”, Strategic Management Journal, Vol. 21, Iss. 10/11, pp. 1105-21. Fildes, R.A. (1990), “Strategic challenges in commercializing biotechnology”, California Management Review, Vol. 32 No. 3, pp. 63-72. Firer, S. and Williams, S.M. (2003), “Intellectual capital and traditional measures of corporate performance”, Journal of Intellectual Capital, Vol. 4, No. 3, pp. 348-360. Flamholtz, E.G. (1985), Human Resource Accounting, Advances in Concepts, Methods, and Applications, Jossey-Bass, San Francisco, CA. Fowler, K.L. and Schmidt, D.R. (1988), “Tender offers, acquisitions, and subsequent nowledge e in manufacturing firms”, Academy of Management Journal, Vol. 31, No. 4, pp. 962-74. Fritsch, M. and Lukas, R. (2001), “Who co-operates on R&D?”, Research Policy, Vol. 30, pp. 197-312. Friz-enz, J. (1997), The 8 Practices of Exceptional Companies, Anacom Books, Nw York, NY. Galambos, L. and Sturchio, J. (1996), “The pharmaceutical industry in the twentieth century: A reappraisal of the sources of innovation”, History and Technology, Vol. 13, No. 2, pp. 83-100. Galunic, C.D. and Anderson, E. (2000), “From security to mobility: generalized investments in human capital and agent commitment”, Organization Science, Vol. 11, No. 1, pp. 1-20. Gambardella, A. and Torrisi, S. (1998), “Does technological convergence imply convergence in markets? Evidence from the electronic industry”, Research Policy, Vol. 27, pp. 445-63. Godrey, P.C. and Hill, C.W.L. (1995), “The problem with unobservables in strategic management research”, Strategic Management Journal, Vol. 13, No. 2, pp. 135-44. Granstrand, O. and Oskarsson, C. (1994), “Technology diversification in multi-tech corporation”, IEEE Transactions on Engineering Management, Vol. 41, No. 4, pp. 355-64. Granstrand, O. and Sjolander, S. (1989), “Strategic technology management issues in Japanese manufacturing industry”, Technology Analysis and Strategic Management, Vol. 1, No. 3, pp. 259-72. Grant, R.C. (1996), “Prospecting in dynamically-competitive environments: organizational knowledge es as knowledge integration”, Organization Science, Vol. 7, pp. 375-87. Grant, R.M. (1995), Contemporary Strategy Analysis: Concept, Techniques, Applications. Blackwell Publishers, Cambridge. Greis, N.P., Dibner, M.D. and Bean, A.S. (1995), “External partnering as a response to innovation barriers and global competition in biotechnology”, Research Policy, Vol. 24, pp. 609-30. Gruca, T.S., Nath, D. and Mehra, A. (1997), “Expliting synergy for competitive advantage”, Long Range Planning, Vol. 30, No. 4, pp. 605-11. Gulati, R. (1998), “Alliances and networks”, Strategic Management Journal, Vol. 19, pp. 293-317. Gulati, R., Nohria, N. and Zaheer, A. (2000), “Strategic network”, Strategic Management Journal, Vol. 21, pp. 203-15. Gupta, O. and Roos, G. (2001), “Mergers and acquisitions through an intellectual capital perspective”, Journal of Intellectual Capital, Vol. 2 No. 3, pp. 297-309. Gupta, U. (1994), “Bio-tech firms seek novel antidotes to caital shortage”, Wall Street Journal, September, September, Vol. 29, p. B2 Guthrie, J. (2001), “The management, measurement and the reporting of intellectual capital”, Journal of Intellectual Capital, Vol. 2, pp. 27-41. Guthrie, J., Petty, R., Ferrier, F. and Wells, R. (1999), “There is no accounting for intellectual nowled in Australia: A review of annual reporting practices and the internal measurement”, OEDC (Organisation for Economic Co-operation and Development) International Symposium: Measuring and Reporting Intellectual Capital, Australia. Hagedoorn, J. (1993), “Understanding the rationale of strategic technology partnering : interorganizational modes of cooperation and sectoral differences”, Strategic Management Journal, Vol.14, pp. 371-85 Hamel, G. and Prahalad, C.K. (1989), “Strategic intent”, Harvard Business Review, Vol. 67, No. 3, pp. 63-76. Hamel, G. and Prahalad, C.K. (1994), Competing for the Future. Harvard Business School Press, Boston, MA. Hamilton, D.P. (2001), “Intel gambles it can move beyond the PC with new microprocessor”, Wall Street Journal, 29 May, P. A1. Hart, O. and Moore, J. (1990), “Property rights and the nature of the firm”, Journal of Political Economy,Vol. 98, pp. 1119-58. Haspelagh, P.C. and Farquhar, A.B. (1987), “The acquisition intergration processes: A contingent framework”, The Seventh Annual International Conference of the Strategic Management Society, Boston, MA, 14-17 October. Haspelagh, P.C. and Jemison, D.B. (1991), Managing Acquisitions: CreatingValue through Corporate Renewal. The Free Press, New York, NY. Helfat, C. (1994), “Firm specificity in corporate applied R&D”, Organizational Science, Vol. 5, pp. 173-84. Henderson, R. and Clark, K. (1990), “Architectural innovation: the reconfiguration of existing product technologies and the failure of established firms”, Administrative Science Quarterly, Vol. 35, pp. 9-30. Henderson, R. and Cockburn, I. (1994), “Measuring competence? Exploring firm effects in pharmaceutical research”, Strategic Management Journal, Vol. 15, pp. 63-84. Henderson, R., Orsenigo, L. and Pisano, G.P. (1999), “The pharmaceuticalindustry and the revolution in molecular biology: exploring the interactions between scientific institutional and organizational change”, in Mowery, D.C., Nelson, R.R. (Eds.), The Sources of Industrial Leadership. Cambridge University Press, Cambridge. Ho, M. (1998), “Biotechnology”, Institutional Investor, September, New York, NY. Housel, T. and Bell, A. (2001), Managing and Measuring Knowledge, McGraw-Hill, Boston, MA. Housel, T. and Kanevsky, V. (1995), “Reengineering business processes: A complexity theory approach to value added”, INFOR, Vol. 33, pp. 248-62. Housel, T., Sawy, O.E., Zhong, J.J. and Rodgers, W. (2001), “Measuring the return on knowledge embedded in information technology”, The 22nd Annual International Conference on Information Systems, New Orleans, LA, 16-19 December. Huizing, A. and Bouman, W. (2002), “Knowledge and learning, markets and organizations”, in Choo, C.W. and Bontis, N. (Eds.), The Strategic Management of Intellectual Capital and Organizational Knowledge, Oxford University Press, New York, NY, pp. 185-204. Hung, T.Y. (2002), A Study on the Influence of Technology Concentration Ratio, Types of Strategic Alliances on Intangible Assets, MBA thesis, Yuan-Ze University, Chungli. Inkpen, A.C. (1998), “Learning and knowledge acquisition through international strategic alliances”, Academy of Management Executive, Vol. 12, No. 4, pp. 69-80. Islam, S., Billington, N. and Oh, K.B. (2001), “Trade, finance and global economic growth: An optimal growth model and global growth prospects”, The European Trade Study Group 2001 Conference, Brussels, 14-16 September. Itami, H. (1987), Mobilizing Invisible Assets. Harvard University Press., Boston, MA. Ittner, C.D. and Larcker, D. (1977), “Measuring the impact of quality initiatives on firm financial performance”, in Fedor, D.B. and Gosh, S. (Eds.), Advances in the Mnangement of Orgnizational Quality, Vol. 1, JAI Press, Greenwich, CT, pp. 1-37. Jaffe, A.B. (1986), “Technological opportunity and spillovers of R&D: evidence from firms’ patents, profits and market value”, American Economic Review, Vol. 76, pp. 984-1001. James, D. (1992), “The troubled language of accounting gets tongue-tied over intangibles”, Business Review Weekly, October, pp. 92-94. Katz, J.S. and Martin, B.R. (1997), “What is research collaboration?” Research Policy, Vol. 26, pp. 1-18. Keeley, R. and Roure, J. (1990), “Management strategy, and industry structure as influences on the success of new firms; A structural model”, Management Science, Vol. 36, pp. 1256-67. Kerin, R.A., Varadarajan, P.R. and Peterson, R.A. (1992), “First-mover advantage: A synthesis, conceptual framework, and research propositions”, Journal of Marketing, Vol. 56, pp. 33-52. Kester, C.W. (1986), “Capital and ownership structure: a comparison of Untied States and Japanese nowledge e corporations”, Financial Management, pp. 5-16. Kim, W.S. and Sorensen, E.H. (1986), “Evidence on the impact of the agency costs of debt on corporate debt policy”, Journal of Financial and Quanittative Analysis, Vol. 22, No. 2, pp. 131-45. Klein, B., Crawford, R. and Alchian, A. (1978), “Vertical integration, appropriable rents, and the competitive contracting process”, Journal of Law and Economics,Vol. 21, pp. 297-326. Koh, J. and Venkataraman, N. (1991), “Joint veture formations and stock market reactions: an assessment in the information technology sector”, Academy of Management Journal, Vol. 34, No. 4, pp. 869-92. Koka, B.R. and Prescott, J.E. (2002), “Strategic alliances as social capital: a multidimensional view”, Strategic Management Journal, Vol. 23, No. 9, pp. 795-816. Kotabe, M. (1992) Global Sourcing Strategy. Quorum Books, New York, NY. Kotabe, M. and Swan, K.S. (1995), “The roles of strategic alliances in high-technology new product development”, Strategic Management Journal, Vol. 16, pp. 621-36. Krueger, N.F., Jr. (2000), “The cognitive infrastructure of opportunity emergence”, Entrepreneurship Theory and Practice, pp. 5-23. Leadbeater, C. (2000), New Measures for the New Economy, The Institute of Chartered Accountants, London. Leliaert, P.J.C., Candries, W. and Tilmans, R. (2003), “Identifying and managing IC: A new classification”, Journal of Intellectual Capital, Vol. 4, No. 2, pp. 202-14. Lev, B. (2001), Intangibles: Management, Measurement, and Reporting. Brookings Institution Press, Washington, DC. Lew, B. and Sougiannis, T. (1996), “The nowledge e n, nowledge e , and alue-relevance of R&D”, Jounal of Accounting Economics, Vol. 21, pp. 107-38. Lovingsson, F., Dell’Orto, S. and Baladin, P. (2000), “Navigating with new managerial tools”, Journal of Intellectual Capital, Vol. 1, No. 2., (Spring), pp. 147-54. Madhavan, R. (1996), Strategic flexibility in the steel industry: the role of interfirm linkages, Dissertation, University of Pittsburgh. Madhok, A. and Tallman, S.B. (1998), “Resoruces, transactions and rents: managing value through inter-firm collaborative relationships”, Organization Science, Vol. 9, pp. 326-39. Makhija, M. and Ganesh, U. (1997), “Control and partner learning in learning-related joint ventures”, Organization Science, Vol. 8, No. 5, pp. 508-27. McGrath, M.E. (1994), Product Strategy for High-Technology Companies: How to Achieve Growth, Competitive Advantage and Increased Profits. Irwin, Burr Ridge, IL. Miller, A. and Camp, B. (1985), “Exploring determinants of success in corporate ventures”, Journal of Business Venturing, Vol. 1, pp. 87-105. Mitchell, W., Baum, J.A.C., Banaszak-Holl, J., Berta, W.B. and Bowman, D. (2002) “Opportunity and constraints”, in Choo, C.W. and Bontis, N. (Eds.), The Strategic Management of Intellectual Capital and Organizational Knowledge. Oxford University Press, New York, NY, pp. 555-73. Morone, J. (1993), Winningin High-Tech Markets: The Role of General Management. Harvard Business School Press, Boston, MA. Mouritsen, J. (1988), “Driving growth: economic value added versus intellectual capital”, Management of Accounting Research, Vol. 8, No. 6, pp. 15-23. Mouritsen, J., Larsen, H.T. and Bukh, P.N.D. (2001), “Intellectual capital and the ‘capable firm’: narrating, nowledge e and numbering for managing knowledge”, Accounting, Organizations and Society, Vol. 26, No. 7-8, pp. 735-62. Mowery, D.C., Oxley, J.E. and Silverman, B.S. (1996), “Strategic alliances and interfirm knowledge transfer”, Strategic Management Journal, Vol. 17, (Winter Speical Issue), pp. 77-91. Ng, S.C., Pearson, A.W. and Ball, D.F. (1992), “Strategies of biotechnology companies”, Technology Analysis and Strategic Management, Vol. 4, No. 4, pp. 351-61. Nill, K.R. (2001), Glossary of Biotechnology Terms, available at: http://biotechterms.org/sourcebook/saveidretrieve.php3?id=239 O’Donnel, D., O’Regan, P., Coates, B. , Kennedy, T., and Keary, B. (2003), “Human interaction: the critical source of intangible value”, Journal of Intellectual Capital, Vol. 4, No. 1, pp. 82-99. Oh, K.B. and Islam, S. (2001), “Empirical finance of e-commerce: A quantitative study of the financial issues of the nowledge economy”, CSES Research Monograph, No. 2/2001, Victoria University Press, Melbourne. Oliver, R.W. (2000), The Coming Biotech Age: The Business of Bio-Materials. McGraw Hill, New York, NY. Orsenigo, L., Pammolli, f. and Riccaboni, M. (2001), “Technological change and network dynamics lesson from the pharmaceutical industry”, Research Policy, Vol. 30, pp. 485-508. Ostergard, R., Jr., Tubin, M and Altman, J. (2001), “Stealing from the past: globalization, strategic formation and the use of indigenous intellectual nowledg in the biotechnology industry”, Third World Quarterly, Vol. 22, No. 4, pp. 643-56. Pakes, A. (1985), “On patents, R&D and the stock market rates of return”, Journal of Political Economy, Vol. 93, pp. 390-409. Palacios-Marques, D. and Garrigos-Simon, F.J. (2003), “Validating and measuring IC in the biotechnology and telecommunication industries”, Journal of Intellectual Capital, Vol. 4, No. 3, pp. 332-47. Penrose, E.T. (1959), The Theory of the Firm, Wiley, New York, NY. Pfeffer, J. and Salancik, G. (1978), The External Control of Organizations: A Resource Dependence Perspective, Harper & Row, New York, NY. Pisano, G. (1988), “Innovation through markt hierarchies, and joint ventures: Technology, strategy and collaborative arrangements in the biotechnology industry”, Dissertation, University of California, Berkeley, CA. Porac, J.F, Wade, J.B, Fischer, H.M., Brown, J., Kanfer, A. and Bowker, G. (2004), “Human capital heterogeneity, collaborative relationships, and publication patterns in a multidisciplinary scientific alliance: a comparative case study of two scientific teams”, Research Policy, Vol. 33, pp. 662-78. Porter, M.E. (1985), Competitive Advantage, The Free Press, New York, NY. Powell, W.W., Koput, K.W. and Smith-Doerr, L. (1996), “Interorganizational collbaration and the locus of innovation: networks of learning in biotechnology”, Administrative Science Quarterly, Vol. 41, pp. 116-45. Prahalad, C.K. and Hamel, G. (1990), “The core knowledge of the corporation”, Harvard Business Review, Vol. 68, pp. 79-91. Rodgers, W. (2003), “Measurement and reporting of knowledge-based assets”, Journal of Intellectual Capital, Vol. 1, No. 2, pp. 181-90. Roos, J., Roos, G., Dragonetti, N.C. and Edvinsson, L. (1997), Intellectual Capital: Navigating the New Business Landscape. Macmillan Press, London. Rumelt, R. (1974), Strategy, Structure and Economic Performance. Harvard University Press, Cambridge, MA. Saint-Onge, H. (1996), “Tacit knowledge: the key to the strategic alignment of intellectual capital”, Strategy & Leadership, Vol. 24 No. 2, pp. 10-14. Sanchez, R. and Heene, A. (1996), “A systems view of the firm in competence-based competition”, in R. Sanchez, A. Heene and H. Thomas (Eds.), Dynamics of competence-based Competition. Elsevier Science, Kidlington. Shan, W, Walker, G. and Kogut, B. (1994), “Interfirm cooperation and starup innovation in the biotechnology industry”, Strategic Management Journal, Vol. 15, No. 5, pp. 129-39. Sheehan, P. and Tegart, G. (Eds.) (1998), Working for the Future: Technology and Employment in the Global Knowledge Economy. Victoria University Press, Melbourne. Simonin, B.L. (1999), “Ambiguity and the process of knowledge transfer in strategic alliances”, Strategic Management Journal, Vol. 20, pp. 595-623. Spender, J.C. and Grant, R.M.(Eds) (1996), “Knowledge and the firm”, Strategic Management Journal, Vol. 17, No. 2, (Special Issue) Starbuck, W.H. (1992), “Learning by knowledge-intensive firms”, Journal of Management Studies, Vol. 29, pp. 713-40. Stark, D. (2001), “Ambiguous assets for uncertain environments: heterarchy in postsocialist firms”, in P. DiMaggio, W. Powell, D. Stark and E. Westney (Eds.), The 21st Century Firm: Changing Economic Organizationin International Perspective. Princeton University Press, Princeton, NJ. Staropoli, C. (1998), “Cooperation in R&D in the pharmaceutical industry – the network as an organizational innovation governing technological innovation”, Technovation, Vol. 18, No. 1, pp. 13-23. Stewart, T.A. (1991), “Brainpower: how intellectual capital is becoming America’s most valuable asset”, Fortune, June 3, pp. 44-60. Stewart, T.A. (1997), Intellectual Capital: The New Wealth of Organizations. Currency-Doubleday, New York, NY. Sullivan, P.H. (1998), Profiting from Intellectual Capital. Extracting Value from Innovation. Wiley, New York, NY. Sveiby, K.E. (1997), The New Organizational Wealth: Mnanaging and Measuring Knowledge Based Assets. Berrett-Koehler Publishers, San Francisco, CA. Sveiby, K.E. (2001), “Methods for measuring intangible assets”, available at: http://www.sveiby.com/articles/IntangibleMethods.htm. Teece, D.J. (1987), “Profiting from technological innovation: implications for integration, collaboration, licensing and public policy”, in Teece, D.J. (Ed.), The competitive Challenge. Harper & Row, New York, NY, pp. 185-219. Teece, D.J. (2000), Managing Intellectual Capital. Oxford University Press, NewYork, NY. Tether, B.S. (2002), “Who co-operates for innovation, and why?”, Research Policy, Vol. 31, pp. 947-67. Tillquist, J. and Rodgers, W. (2002), “Valuation of knowledge-based assets in e-business”, Proceedings of the Internaitonal Conference on Advances in Infrastructure for Business, e-Education, e-Science, and e-Medicine on the internet, L’Aquila, 21-27 January. Titman, S. and Wessel, R. (1988), "The determinants of capital structure choice", Journal of Finance, Vol. 43, No. 1, pp. 1-19. U.S. Congress Office of Technology Assessment, (1991), Biotechnology in a Global Economy. OTA, Washington, DC. von Krogh, G. and Grand, S. (2002) “From economic theory toward a knowledge-based theory of the firm”, in Choo, C.W. and Bontis, N. (Eds.), The Strategic Management of Intellectual Capital and Organizational Knowledge, Oxford University Press, New York, NY, pp. 163-84. Wakeam, J.(2003), “The five factors of a strategic alliance”, Ivey Business Journal Online, University of Western Ontario, May/June, p. 1 Walker, G., Kogut, B. and Shan, W. (1997) “Social capital, structural holes and the formation of an industry network”, Organization Science, Vol. 8, No. 2, pp. 109-25. Wernerfelt, B. (1984), "A resource based view of the firm", Strategic Management Journal, Vol. 5, No. 2, pp. 171-80. White, G.I., Sondhi, A.C., and Fried, P. (1994), The Analysis and Use of Financial Statement. Wiley, New York, NY. Wiig, K. (1997), “Integrating intellectual capital and knowledge management”, Long Range Planning, Vol. 30, No. 3, pp. 399-405. Williamson, O. and Ouchi, W.G. (1981), "The markets and hierarchies and the visible hand perspective", in Van de Ven, A. and Joyce, W. (Eds.), Perspectives on Organization Design and Behavior. Wiley, New York, NY, Wingfield, N. and Merrick, A. (2001), "Amazon set deals with target, Citibank as slump hits market for e-commerce", Wall Street Journal, 6 November. Woiceshyn, J. and Hartel, D. (1996), “Strategies and performance of Canadian biotechnology firms; An empirical investigation”, Technovation, Vol. 16, No. 5, pp. 231-43. Zahra, S. (1996), “Technology strategy and financial performance: Examining the moderating role of the firm’s competitive environment”, Journal of Business Venturing, in press. Zhou, A.Z. and Fink, D. (2003), "The intellectual capital web: A systematic linking of intellectual capital and knowledge management", Journal of Intellectual Capital, Vol. 4, No. 1, pp. 34-48.id NH0925230027 sid 916408 cfn 0 / id NH0925257001 auc 陳春元 tic 多邊形內插方法在三維影像的研究與應用 adc 莊克士 ty 博士 sc 國立清華大學 dp 原子科學系 yr 92 lg 英文 pg 68 kwc 多邊形 kwc 內插 kwc 重建 abc 摘要 rf References Beier T and Neely S 1992 Feature-based image metamorphosis Comput. Graph. 26 35-42 Bloch P and Udupa J K 1983 Application of computerized tomography to radiation and surgical planning Proc. IEEE. 71 351-72 Chen S Y, Lin W C, Liang C C and Chen C T 1990 Improvement on dynamic elastic interpolation technique for reconstructing 3-D objects from serial cross-sections IEEE Trans. Med. Img. 9 71-83 Chuang K S 1993 A refined gray-level gradient for three-dimensional surface display Phys. Med. Biol. 38(4) 557-562 Chuang K S, Chen C Y, Yuan L J and Yeh C K 1999 Shape-based gray-level images interpolation Phys. Med. Biol. 44 1565-77 Christiansen H N and Sederberg T W 1978 Conversion of complex contour line description into polygon element mossaics Computer. Graphics 12 187-92 Cong G and Parvin B 1999 An algebraic solution to surface recovery from cross-sectional contours Graph. Models Image Process 61 222-243 Denham L R 1984 Seismic interpretation Proc. IEEE. 72 1255-65 Dhawan A P and Arata L 1991 Knowledge-based 3D analysis from 2D medical images IEEE Eng. Med. Biol. 10 30-37 Fuchs H, Kedem Z M, and Uselton S P 1977 Optimal surface reconstruction from planar contours Comm. ACM. 20 693-702 Gonzalez R C and Woods R E 1992 Digital Image Processing. (Reading, MA: Addison-Wesley) Grevera G J and Udupa J K 1996 Shape-based interpolation of multidimensional gray-level images IEEE Trans. Med. Img. 15 881-892 Grevera G J and Udupa J K 1998 An objective comparison of 3-D image interpolation methods IEEE Trans. Med. Img. 17 642-52 Herman G T, Zheng J S, and Bucholtz C A 1992 Shape-based interpolation IEEE Comp. Graph. & Appl. 12 69-79 Higgins W E, Morice C and Ritman E L 1993 Shape-based interpolation of tree-like structures in three-dimensional images IEEE Trans. Med. Img. 12 439-450 Hohne K H and Berstein R 1986 Shading 3D images from CT using gray-level gradients IEEE Trans. Med. Img. 5 45-47 Johnson E M and Capowski J J 1983 A system for the three-dimensional reconstruction for biological structures Comput. Biomed. Res. 16 79-87 Levin D 1986 Multidimensional reconstruction by set-valued approximation IMA J. Numerical Analysis 6 173-184 Liang C C, Chen C T and Lin W C 1991 Intensity interpolation for branching in reconstructing three-dimensional objects from serial cross sections Proc. SPIE. 1445 456-67 Lin W C, Liang C C and Chen C T 1988 Dynamic elastic interpolation for 3-D medical image reconstruction from serial cross sections IEEE Trans. Med. Img. 7 225-32 Press W H, Flannery B P, Teukolsky S A and Vetterling W T 1990 Numerical Recipes in C. Cambridge: Cambridge University 96-97 Raya S and Udupa JK 1990 Shape-based interpolation of multidimensional objects IEEE Trans. Med. Img. 9 33-42 Renner W D, Pugh N O, Ross D B, Berg R E, and Hall D C 1987 An algorithm for planning stereotactic brain implants Int. J. Radiation Oncology Biol. Phys. 13 631-637 Udupa J K and Herman G T 1991 3D Imaging in Medicine. ( Boca Raton, FL: CRC)id NH0925257001 sid 828506 cfn 0 / id NH0925257002 auc 陳浩瑋 tic 游離輻射與空氣層之核作用 adc 鍾堅 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 85 kwc 游離輻射 kwc 游離輻射與空氣層之核作用 abc 本論文首先對輻射與放射性現象、核反應物理、瞬間核爆效應及核爆衍生的電磁脈衝現象作通盤性簡介。及針對核彈彈心材料的籌獲與核武器彈心的組合詳加說明。 rf [1 ] 鍾堅,<原子科技革命>,《歷史月刊》,144期,頁66-70(歷史月刊社,台北市,民國89年1月)。 [2 ] 翁寶山,《輻射歷史憶往》,109頁(國立清華大學出版社,新竹市,民國92年12月)。 [3 ] 翁寶山,<保健物理學>,67頁(國興出版社,新竹市,民國92年2月)。 [4 ] International Atomic Energy Agency (IAEA), Radiation,People and the Environment, 81pp (IAEA), Austria, 2004). [5 ] William E. Potter, “Thermalnuclear Attack: A Presentation by Brigadier General Crawford Sams”, Operational Radiation Safety, Vol. 84(5), ppS54-S62 (The Health Physice Society, USA, May 2003). [6 ] 蔡旭煌,<台澎防衛作戰核生化防護整備研究>,《核生化防護季》,第61期,頁3-15 (陸軍化校,桃園八德,民國87年8月刊)。 [7 ] 何濤、陳維廉,<核子戰傷的分類及緊急醫療處理>,《國防醫學雜誌》,13卷2期,頁135-141(國防醫學院,台北市,民國80年8月)。 [8 ] Raymond L. Murray, Nuclear Energy: Nuclear Explosions, pp419-439 (Butterworth-Heinemann, Boston, USA, 5th ed., 2001). [9 ] 翁寶山,《台灣的輻射源與應用》,719頁(五南出版,台北市,民國88年10月)。 [10 ] Darleane Hoffman, ed., Advances in Plutonium Chemistry 1967-2000, 320pp (American Nuclear Society, USA, 2002). [11 ] K. K. S. Pillay, “ Plutonium : Requiem or Reprieve ” , RadwasteMagazine, Vol. 4(3), pp59-65 (American Nuclear Society,January 1996). [12 ] Richard Rhodes, Dark Sun: The Making of the Hydrogen Bomb, 506pp (Simon & Schuster, NYC, USA, 1995). [13 ] 楊永明,《國際安全與國際法》,540頁(元熙出版,台北市,民國92年2月)。 [14 ] C. Chung and C. Y Chen, “Cosmic-ray induced neutron intensity in Taiwan and its variation during a typhoon”,Journal of Geophysical Research Vol. 102, D25 29827-28932(1997). [15 ] C.Chung, C. Y. Chen, and C. H. Kung, “Cosmic neutron intensity at sea level near the zero geomagnetic latitude”, Applied Radiation and Isotopes 49 (4), 415-421(1998). [16 ] C. Chung, S. M. Liu, C. C. Chan, and C. N. Hsu, “ Fallout and radionuclide analysis on the Pratas Island in South China Sea”, Journal of Radioanalytical and Nuclear Chemistry, Articles 180(2), pp217-223 (1994). [17 ] C. Chung and G. U, “Rapid radiation dose determined by bubble neutron dosemetres”, Radiation Protection Dosimetry 85(1-4), pp 109-111 (1999). [18 ] C. Chung and F. Y. Lin, “Prompt gamma activation analysis using mobile reactor neutron beam”, Analytical Sciences, 17(S), pp I633-I636(2001). [19 ] M. G. McKinzie, T. B. Cochran, R. S. Norris, and W. M. Arkin, The U. S. Nuclear War Plan: A Time for Change, 196pp (National Resources Defense Council, USA, June 2001). [20 ] C. Chant and I. Hogg, The Nuclear War File, 160pp (Ebury Press, UK, 1983). [21 ] C. Wagemans, The Nuclear Fission Process, 608pp (CRC. Press, USA, 1991). [22 ] S. Glasstone and P. J. Dolan, The Effects of Nuclear Weapons, 793pp (Government Printing Office, USA, 1983). [23 ] 張桐生譯,《太空物理學》,213頁(世界書局,台北市,民國61年)。 [24 ] G. F. Knoll, Radiation Detection and Measurement, 754pp (John Wiley & Sons, USA, 1989). [25 ] R. L. Murray, Nuclear Energy: An Introduction to the Concepts, ystems, and Application of Nuclear Processes,490pp(Butterworth Heinemann, USA, 2001). [26 ] G. Friedlander, J. W. Kennedy, E. S. Macias, and J. M. Miller, uclear & Radiochemistry, 700 pp (John Wiley & Sons, USA, 1982). [27 ] S. Glasstone and A. Sesonske, Nuclear Reactor Engineering, 830pp (Krieger Publishing, USA, 1991). [28 ] 張寶樹,《醫用保健物理學》,1053頁(國立編譯館,台北市,民國90年)。 [29 ] 朱鐵吉譯,《原子、輻射與輻射防護》,782頁(民全書局,台北市,民國86年)。 [30 ] 戰略研究參考資料:“核爆的電磁脈衝效應”,中華戰略學刊,90年秋季刊,頁197-211(中華戰略學會,台北市,民國90年10月)。 [31 ] H. Semat and J. R. Albright, Introduction to Atomic & Nuclear Physics, 712pp (International Thomson Publishing, USA, 1972). [32 ] B. W. Carroll and D. A. Ostlie, An Introduction to Modern Astrophysics, 1326pp (Addison-Wesley Publishing, USA, 1995). [33 ] J. B. Seaborn, Understanding the Universe: An Introduction to Physics and Astrophysics, 316pp (Springer Verlag, The etherlands, 1997). [34 ] B. Steed, Armed Conflict: The Lessons of Modern Warfare,304pp (Presidio Press, USA, 2003). [35 ] Catherine Aver,” The 50-kT test that no one noticed ” ,Bulletin of the Atomic Scientists ,Vol. 57/2,pp6-8(MarApr 2001) [36 ] 糜福龍, “核爆電磁脈衝之防護原理”,海軍軍官,11卷9期,頁26-33(海軍官校,左營,民國81年9月16日)id NH0925257002 sid 904513 cfn 0 / id NH0925257003 auc 柯宗憲 tic 金奈米粒子光學特性及成長奈米材料上之應用研究 adc 朱鐵吉 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 118 kwc 金奈米粒子 kwc 奈米材料 kwc 光學特性 kwc 表面電漿共振 kwc 鍺量子點 abc 本研究利用橢圓測厚儀量測金奈米粒子的橢圓參數TanΨ、Cos△,先由掃描式電子顯微鏡及X光繞射儀來量測金奈米粒子厚度,再利用光學模擬軟體計算出金奈米粒子在300nm到800nm的折射係數以及消光係數,以計算出複數折射率的型式,N= n-ik。並利用此結果反推得其各個浸泡時間所得的填充率及厚度,佐證SEM及XRR的結果。 rf 參考文獻 1. T. Hyeon, S. S. Lee, J. Park, Y. Chung, H. B. Na, J. Am. Chem. Soc.2001, 123, 12798. 2. Y. Zhang, Nathan W. Franklin, Robert J. Chen, Hongjie Dai, Chem. Phys. Lett.2000, 331, 35. 3. D. G. Carlson, A. Segmuller, Phys. Rev. Lett.1971, Vol.27, pp.195. 4. A. N. Shipway, E. Katz, I. Willner, ChemPhysChem 2000, 1, 18. 5. D. Bethell, M. Brust, D. J. Schiffirin, C. Kiely, J. Electroanal. Chem. 1996, 409, 137. 6. S. M. Sze, VLSI Technology, 2d ed., McGraw-Hill Companies, Inc., New York, 1988. 7. C. A. Mirkin, Inorg. Chem.2000, 39, 2258. 8. S. Chang, C. Shih, C. Chen, W. Lai, C.R. Wang, Langmuir 1999, 15, 701. 9. G. Harsanyi, Sensors in Biomedical Applications, Pennsylvania: Technomic Publishing Co., Inc., 2000. 10. J. N. Roe, Pharm. Res. 1992, 9, 835. 11. L. A. Lyon, M. D. Musick, M. J. Natan. Anal. Chem.1998, 70, 5177. 12. L. A. Lyon, D. J. Pena, M. J. Natan, J. Phys. Chem. B 1999, 103, 5826. 13. L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, M. J. Natian, Sens. Actuator B-Chem.1999, 54, 188. 14. J. S. James, E. Robert, C. Robert, C. A. Mirkin, J. Am. Chem. Soc.1998, 122, 1959. 15. R. L. Rich, D. G. Myszka, Curr. Opin. Biotechnol.2000, Vol.11, pp.54. 16. J. Homola, S. S. Yee, G. Gauglitz, Sens. Actuator B-Chem.1999, 54, 3. 17. L. A. Lyon, W. D. Holliway, M. J. Natan, Rev. Sci. Instrum.1999, 70, 2076. 18. P. T. Leung, D. Pollardknight, G. P. Malan, M. f. Finlan, Sens. Actuator B-Chem.1994, 22, 175. 19. D. K Kambhampati, T. A. M. Jakob, J. W. Robertson, M. Cai, J. E. Pemberton, W. Knol, Langmuir 2001, 17, 1169. 20. X. M. Zhu, P. H. Lin, P. Ao, L. B. Sorensen, Sensors and Actuators B 2002, 84, 106. 21. T. S. Yeoh, C. P. Liu, R. B. Swint, A. Gaur, V. C. Elarde, J. J. Coleman, IEEE Circuits Device 2003, 19, 26. 22. A. Barski, M. Derivaz, J. L. Rouviere, D. Buttard, Appl. Phys. Lett. 2000, 77, 3541. 23. Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, Y. Masumoto, Appl. Phys. Lett. 1991, 59, 3168. 24. S. Fan, M. Chapline, N. Franklin, T. Tombler, A. Cassell, H. Dai, Science 1999, 283, 512. 25. A. M. Morales, C. M. Lieber, Science 1998, 279, 208. 26. Y. N. xia, P. D. Yang, Y. g. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, Y. Q. Yan, Adv. Mat. 2003, 15, 353. 27. K. Akamatsu, S. Deki, J. Mater. Chem.1998, 8, 637. 28. 陶雨台 著,”淺介自組裝分子薄膜”,科學月刊 2002,第三十三卷,第十期,860頁。 29. C. Sangregorio, M. Galeotti, U. Bardi, P. Baglioni, Langmuir 1996, 12, 5800. 30. M. T. Reetz, W. Helbig, J. Am. Chem. Soc. 1994, 116, 401. 31. A. Henglein, J.Phys. Chem. 1993, 97, 5457. 32. M.Azzam, N. M. Bashara, Ellipsometry and Polarized Light, North-Holland, Amsterdam, 1980. 33. Samuel S. So, Surface Science 1976, 56, 97. 34. O. S. Heavens, Optical Properties of Thin Solid Films, Dover Publications, New York, 1965. 35. G. E. Jellison, Appl. Opt.1991, 30, 3354. 36. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes, Cambridge University Press, Cambridge, 1988. 37. C. S. Mayo, R. B. Hallock, Journal of Immunological Methods 1989, 120, 105. 38. P. B. Daniels, J. K. Deacon, M. J. Eddowes and D. G. Pedley, Sensors and Actuators 1988, 15, 11. 39. 莊達人 著,VLSI製造技術,五版,頁217-231,高立圖書有限公司,台北,2002。 40. C. Demaille, M. Brust, M. Tsionsky, A. J. Bard, Anal. Chem. 1997, 69, 2323. 41. H. L. Zhang, S. D. Evans, J. R. Henderson, Adv. Mater. 2003, 15, 531. 42. 蘇青森 著,儀器學,初版,頁366-375,五南圖書出版公司,2002。 43. M. Brust, D. Bethell, C. J. Kiely, D. J. Schiffrin, Langmuir 1998, 14. 5425. 44. T. Baum, D. Bethell, M. Brust, D. J. Schiffrin, Langmuir 1999, 15, 866. 45. F. Auer, M. Scotti, A. Ulman, R. Jordan, B. Sellergren, J. Garno, G. Y. Liu, Langmuir 2000, 16, 7554. 46. D. Aspnes, J. Theeten, F. Hottier, Phys. Rev. B 1979, 20, 3292. 47. D. Landheer, J. E. Hulse, T. Quance, Thin Solid Films 1997, 293, 52. 48. F. Wooten, Optical Properties of Solids, Academic Press, London 1972. 49. E. Hutter, S. Cha, J-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, J. Phys. Chem. B 2001, 105, 8. 50. R. W. Wood, Phil. Magm.1902, 4, 396. 51. H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings, Berlin:Springer-Verlag, 1988. 52. E. Kretschmann, H. Raether, Z. Naturforsch. 1968, 23a, 2135. 53. de Bruijin, H. E.; Altenburg, B. S. F.; Kooyman, R. P. H.; Greve, G., J.Opt. Commun. 1991, pp.425. 54. E. Hutter, J. H. Fendler, D. Roy, J. Appl. Phys. 2001, Vol.90, pp.1977. 55. D. Roy, Appl. Spectrosc. 2001, 55, 1046. 56. H. Okamoto, T. B. Massalski, Binary Alloy Phase Diagrams, Vol.1, 2nd ed., ASM International, Materials Park, OH, 1990. 57. D. Wang, H. Dai, Angew. Chem. Int. Ed.2002, 123, 3165. 58. Y. Wu, P. Yang, J. Am. Chem. Soc. 2001, 123, 3165. 59. S. V. Nguyen, IBM J. Res. Develop. 1999, 43, 109. 60. N. Wang, Y. H. Tang, N. Wang, C. S. Lee, I. Bello, S. T. Lee, Phys. Rev. B 1998, 58, R16024. 61. Y. F. Zhang, Y. H. Tang, N. Wang, C. S. Lee, I. Bello, S. T. Lee, Phys. Rev. B 2000, 61, 4518. 62. R. Q. Zhang, Y. Lifshitz, S. T. Lee, Adv. Mater. 2003, 15, 635. 63. V. I. Merkulov, M. A. Guillorn, D. H. Lowndes, M. L. Simpson, Appl.Phys. Lett. 2001, 79, 1178.id NH0925257003 sid 904515 cfn 0 / id NH0925257004 auc 吳宜勳 tic 水中鄰苯二甲酸酯類採樣分析方法之研究 adc 洪益夫 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 69 kwc 固相微翠取 kwc 鄰苯二甲酸 abc 本研究主要以SPME/GC/FID的方式,來進行水中鄰苯二甲酸酯類的採樣分析。 tc 總目錄 摘 要 I 誌謝 II 總目錄 III 表目錄 VI 圖目錄 VII 第一章 前言 1 1-1 研究緣起 1 1-2 研究目的 2 第二章 文獻回顧 3 2-1 固相微萃取法(Solid Phase Microextraction ) 3 2-1-1 固相微萃取法基本原理介紹 3 2-1-2 固相微萃取之固相吸附纖維種類 5 2-1-3 固相微萃取技術(SPME)的應用 5 2.2 鄰苯二甲酸酯類(Phthalate ester) 6 2-2-1鄰苯二甲酸酯類(Phthalate ester)的特性 6 2-2-2鄰苯二甲酸酯類(Phthalate ester)的相關法規 9 2-2-3鄰苯二甲酸酯類的毒性測試 11 2-2-4鄰苯二甲酸酯類的相關分析方法 11 第三章 實驗方法與步驟 18 3-1 藥品與儀器 18 3-1-1 藥品 18 3-1-2儀器 18 3-2 鄰苯二甲酸酯類最佳化分析條件 19 3-2-1鄰苯二甲酸酯類標準品之配製 19 3-2-2 GC分析條件 19 3-2-2-1 升溫程式 19 3-2-2-2 檢量線 19 3-2-3 SPME萃取濃縮條件 20 3-2-3-1 實驗概要 20 3-2-3-2 攪拌與否 20 3-2-3-3 平衡時間影響 21 3-2-3-4 脫附溫度影響 21 3-2-3-5 脫附時間影響 22 3-2-3-6 SPME-GC-FID檢量線之製作 23 3-3樣品分析 23 3-3-1 樣品分析 23 第四章 結果與討論 25 4-1 GC最適化操作條件 25 4-1-1 注射口(Injector)與偵檢器(Detector)的溫度設定 25 4-1-2 儀器線性範圍 25 4-2 SPME最適化操作條件 27 4-2-1 攪拌與否 27 4-2-2 濃縮萃取時間測試 28 4-2-3 脫附溫度測試 32 4-2-4 脫附時間測試 36 4-2-5 SPME操作範圍與方法偵測極限 37 4-2-6萃取效率 41 4-2-7不同鄰苯二甲酸酯類化合物在固定靜相吸附纖維的分佈 42 4-2-9 SPME吸附曲線 45 4-3真實樣品分析 52 4-3-1 樣品分析 52 4-3-1-1 自來水 53 4-3-1-2蒸餾水 54 4-3-1-3 去離子水 54 4-3-1-4 瓶裝飲用水 55 4-3-1-5 咖啡壺煮過水樣 57 4-3-1-6通過奶嘴水樣、奶嘴浸泡水 59 4-3-1-7 生理食鹽水 61 4-3-1-8自來水裝在針筒中經由濾膜過濾 62 第五章 結論 64 第六章 參考文獻 66 表目錄 表 2-1 鄰苯二甲酸酯類化合物物化性質 8 表2-2 日本、美國及歐盟目前已列管之鄰苯二甲酸酯類化合物(廖氏等人,2001) 10 表2-3 水中鄰苯二甲酸酯類化合物分析方法 15 表4-2 2 ng ~40 ng鄰苯二甲酸酯類標準品結果 26 表4-3 不同平衡時間之萃取濃縮結果(ng) 31 表4-4 不同脫附溫度之萃取濃縮結果(FID-response) 32 表4-5 不同脫附溫度脫附效率 35 表4-6 不同脫附溫度脫附效率 35 表4-7 不同脫附時間之萃取濃縮結果(FID-response) 36 表4-8 SPME萃取濃縮結果(FID-response) 38 表4-9 SPME-GC-FID 線性操作範圍 38 表4-10 方法偵測極限 39 表4-11 萃取質量佔總萃取質量百分比 43 表4-10 水中添加200ng phthalate標準品於不同萃取時間之萃取結果(FID-response) 47 表4-11 水中添加80ng phthalate標準品於不同萃取時間之萃取結果(FID-response) 47 表4-12 水中添加20ng phthalate標準品於不同萃取時間之萃取結果(FID-response) 47 表4-13 樣品分析結果(表中濃度單位為μg/L) 52 圖目錄 圖2-1 SPME 構造圖 4 圖4-1 不同攪拌速度對於SPME濃縮萃取結果之關係圖 28 圖4-2 不同萃取時間與SPME濃縮萃取質量之關係圖 31 圖4-3 不同脫附溫度與積分面積之關係圖 32 圖4-4 不同脫附時間與積分面積之關係圖 37 圖4-5 不同濃度與萃取效率關係圖 41 圖4-6 不同萃取濃度各種化合物萃取百分比(﹪) 44 圖4-5 水中添加200ng phthalate標準品於不同萃取時間之萃取結果 48 圖4-6 水中添加80ng phthalate標準品於不同萃取時間之萃取結果 48 圖4-7水中添加20ng phthalate標準品於不同萃取時間之萃取結果 49 圖4-8 不同濃度之DMP於不同時間之萃取結果 50 圖4-9 不同濃度之DEP於不同時間之萃取結果 50 圖4-10 不同濃度之DnBP於不同時間之萃取結果 50 圖4-11 不同濃度之BBP於不同時間之萃取結果 51 圖4-12 不同濃度之DEHP於不同時間之萃取結果 51 圖4-13 不同濃度之DnOP於不同時間之萃取結果 51 圖4-14 經由咖啡壺煮過水樣分析圖譜 58 圖4-15 奶嘴水樣分析圖譜 60 圖4-16 生理食鹽水分析圖譜 62rf 黃敬德、謝有容,「固相微萃取法」,科儀新知第十八卷四期,86.2,P.59-67 黃敬德、謝有容,「固相微萃取技術之原理及其應用」.The chinese chem.soc., TAIPEI(1998)56: P.311-318 廖建森、張碧芬、袁紹英,「環境荷爾蒙-塑膠添加物(鄰苯二甲酸酯類)之環境流布」,環境檢驗通訊雜誌第38期,2001.09. 張碧芬、袁紹英,「鄰苯二甲酸酯類(phthalate esters)環境賀爾蒙對生物的影響」,環境檢驗通訊雜誌第31期,2000.07. 毒性化學物質管理法(中華民國九十一年六月十二日華總一義字第○九一○○一一九二三○號令修正公布) 毒性物質安全手冊(第一冊) 物質安全資料表—鄰苯二甲酸二甲酯、鄰苯二甲酸二乙酯、鄰苯二甲酸二丁酯、鄰苯二甲酸(2-乙基己基)酯 「鄰苯二甲酸酯類檢測方法-氣相層析儀/電子捕捉偵檢器法」NIEA R811.21C,91年3月5日修正。 吳家誠、石茜如,「環境中有機污染物的前處理技術」,化工技術第八卷第三期,2000年3月號。 陳佳飛、陳美蓮、毛義方,”食品容器及包裝用塑膠材質之塑化劑溶出研究”,國立陽明大學碩士論文,(民91年)。 Arthur C. L., Pawliszyn J., Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Anal. Chem.(1990)62: 2145-2148. Brossa L., Marce R.M., Borrull F., Pocurull E., Application of on-line solid-phase extraction–gas chromatography–mass spectrometry to the determination of endocrine disruptors in water samples. J. Chromatogr A, (2002)963: 287-294. Chen J. , Pawliszyn J. B., Solid Phase Microextraction Coupled to HighlPerformance Liquid Chromatography. Anal. Chem. (1995)67: 2530-2533. Cho H. J., Baek K., Lee H. H., Lee S. H., Yang J. W., C ompetitive extraction of multi-component contaminants in water by Carboxen–polydimethylsiloxane fiber during solid-phase microextraction. J. Chromatography A,(2003)988: 177–184 David W. Potted and Pawliszyn J., Rapid Determination of Polyaromatic Hydrocarbons and Polychlorinated Biphenyls in Water Using Solid-Phase Microextraction and GC/MS. Environ. Sci. Technol. (1994) 28: 298-305. Érica Silva Souza and Eduardo Carasek, A new procedure for solid-phase microextraction using aflow-through system with air segmentation. Analyst(2002)127: 603–607. Ilavský J., Hrivñák J., Barloková D., Microextraction and Analysis of phthalate acid esters in waters. Jiu Ai, Solid Phase Microextraction for Quantitative Analysis in Nonequilibrium Situations. Anal. Chem.(1997) 69: 1230-1236. Kato Kayoko , Shoda Sachiko , Takahashi Masakazu , Doi Natsuko , Yoshimura Yoshihiro , Nakazawa Hiroyuki. Determination of three phthalate metabolites in human urine using on-line solid-phase extraction–liquid chromatography–tandem mass spectrometry. J. Chromatogr. B, (2003) 788: 407. Kelly M.T., Larroque M., Trace determination of diethylphthalate in aqueous media by solidphase microextraction–liquid chromatography. J. Chromatogr. A, (1999) 841: 177-185. Koziel J., Jia M., and Pawliszyn J., Air Sampling with Porous Solid-PhaseMicroextraction Fibers. Anal. Chem.(2000)72: 5178-5186. Lompart M., Lourido M., Landin P., C. Garcia-Jares, Cela R., Optimization of a derivatization-solid—phase microextraction method for the analysis of thirty phenolic pollutants in water samples. J. Chromatography A, (2002)963: 137-148. Long G.L., Winefordner J.D., Limit of Detection. Anal. Chem. (1983) 55: 712A. Luks-Betlej K ., Popp P., Janoszka B., H. Paschke, Solid-phase microextraction of phthalates from water. J. Chromatogr. A, (2001)938: 93-101. Magdic S., Pawliszyn J. B., Analysis of organochlorine pesticides using solid-phase microextractio. J. Chromatogr. A(1996)723: P.111-122. Maria de Fátima Alpendurada, Solid-phase microextraction: a promising technique for sample preparation in environmental analysis. J. Chromatogr. A,(2000)889: 3-14. National Drinking Water Regulations, Fed. Reg., Part 12, 40 CFR Part 141,395, US Environmental Protection Agency, Washington, D.C, 1991. Pawliszyn J., New directions in sample preparation for analysis of organic compounds. Trac-trends in analytical chemistry(1995)14: 113-122. Penalver A ., Pocurrull E., Borrull F., Marce R.M., Determination of phthalate esters in water samples by solid-phase microextraction and gas chromatography with mass spectrometric detection. J. Chromatogr. A, (2000) 872: 191-201. Penalver A ., Pocurull E. , Borrull F., Marce R.M. , Comparison of different fibers for the solid-phase microextraction of phthalate esters from water. J. Chromatogr. A,(2001)922: 377-384. Petersen J.H.,Breindahl T.,Plasticizers in total diet samples, body food and infant formulae. Food Additives & Contaminants, (2000)17: 133-141. Poon, R.; Lecavalier, P.; Mueller, R.; Valli, V. E.; Procter, B. G., Subchronic Oral Toxicity of Di-n-Octyl Phthalate and Di(2-Ethylhexyl) Phthalate in the Rat, Food & Chemical Toxicology, (1997)35: 225-239 Prokupkova G ., Holadova K., Poustka J., Hajslova J., Development of a solid-phase microextraction method for the determination of phthalic acid esters in water. Anal. Chim. Acta, (2002)457: 211-223. Prosen H., Lucija Zupancic-Kralj, Solid-phase microextraction. Trac-trends in analytical chemistry, (1999)18: 272-282. Psillakis Elefteria , Nicolas Kalogerakis, Hollow-fibre liquid-phase microextraction of phthalate esters from water. J. Chromatogr. A, (2003) 999: 145-153 Santos F.J., Galceran M.T., Fraisse D., Application of solid-phase microextractio to the analysis of volatile organic compounds in water. J. Chromatogr. A(1996)742: 181-189. Solid Phase Microextraction Fiber Assemblies, SUPELCO Yasuhara, Shiraishi H., Nishikawa M., Yamamoto T., Uehiro T., Nakasugi O., Okumura T., Kenmotsu K., Fukui H., Nagase M., Ono Y., Kawagoshi Y., Baba K., Noma Y., Determination of organic compounds in leachates from hazardous waste disposal sites in Japan by gas chromatography-mass spectrometry. J. Chromatogr. A, (1997)774: 321-332.id NH0925257004 sid 904521 cfn 0 / id NH0925257005 auc 林源山 tic 核子醫學之線上體內劑量評估 adc 董傳中 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 82 kwc 核子醫學 kwc 體內劑量 kwc 線上評估 kwc 熱發光劑量計 kwc 胸腺 kwc 脾臟 abc 摘要 tc 目 錄 中文摘要 英文摘要 第一章:序言…………………………………………………………………1 1.1 前言……………………………………………………………………1 1.2 研究目的………………………………………………………………1 1.3 實驗架構………………………………………………………………2 第二章:理論基礎……………………………………………………………4 2.1 輻射劑量………………………………………………………………4 2.2 體內劑量………………………………………………………………4 2.2.1 吸收劑量…………………………………………………………6 2.2.2 等價劑量…………………………………………………………6 2.2.3 有效劑量…………………………………………………………7 2.3 NucliDose之劑量計算概念…………………………………………9 2.3.1 累積活度…………………………………………………………11 2.3.2 平均滯留時間……………………………………………………11 2.3.3 S值………………………………………………………………13 第三章:實驗器材介紹………………………………………………………14 3.1 核醫照影機……………………………………………………………14 3.2 NucliDose簡介………………………………………………………16 3.2.1 NucliDose之應用………………………………………………16 3.2.2 NucliDose之劑量計算…………………………………………17 3.3 NucliDose參數設定與介紹…………………………………………17 3.4 使用藥物簡介…………………………………………………………31 3.5 假體簡介………………………………………………………………32 3.5.1 假體資本資料……………………………………………………34 3.5.2 假體圖片…………………………………………………………35 3.6 輻射偵檢儀校正實驗室簡介…………………………………………38 3.6.1 設備………………………………………………………………38 3.6.2 測試能力範圍……………………………………………………39 3.7 熱發光劑量計…………………………………………………………40 3.7.1 發光原理…………………………………………………………40 3.7.2 輝光曲線…………………………………………………………42 3.7.3 常用熱發光劑量計………………………………………………43 第四章:實驗步驟與方法……………………………………………………45 4.1 利用熱發光劑量計之實驗……………………………………………45 4.1.1 熱發光劑量計之特性……………………………………………45 4.1.2 計讀儀之設定……………………………………………………47 4.1.3 熱發光劑量計之使用步驟………………………………………48 4.1.4 熱發光劑量計之校正……………………………………………48 4.1.4.1 靈敏度………………………………………………………48 4.1.4.2 劑量反應……………………………………………………49 4.1.5 TLD 之防水………………………………………………………50 4.2 利用NucliDose之實驗………………………………………………51 4.2.1 前置工作…………………………………………………………51 4.2.2 進行實驗…………………………………………………………53 第五章:結果與討論…………………………………………………………56 5.1 熱發光劑量計之實驗結果……………………………………………56 5.1.1 TLD之靈敏度……………………………………………………56 5.1.2 TLD之再現性……………………………………………………56 5.1.3 TLD之吸收劑量轉換……………………………………………59 5.1.4 TLD之量測結果…………………………………………………63 5.2 NucliDose之實驗結果………………………………………………65 5.3 結果比較與討論………………………………………………………68 第六章:結論…………………………………………………………………79 參考文獻………………………………………………………………………80 圖1.1 實驗流程架構圖………………………………………………………3 圖2.1 放射性物質入侵體內之示意圖………………………………………5 圖2.2 平均滯留時間…………………………………………………………12 圖3.1 E.CAM示意圖…………………………………………………………14 圖3.2 NucliDose之參數設定………………………………………………17 圖3.3 NucliDose喜好設定…………………………………………………17 圖3.4 放射性核種特性之設定………………………………………………19 圖3.5 組織或器官的相關係數之設定………………………………………21 圖3.6 影像資料之設定………………………………………………………24 圖3.7 對感興趣區域圈選之設定……………………………………………25 圖3.8 時間對活度曲線示意圖………………………………………………26 圖3.9 滯留時間之設定………………………………………………………28 圖3.10 輻射劑量計算結果之示意圖一……………………………………29 圖3.11 輻射劑量計算結果之示意圖二……………………………………30 圖3.12 Tc-99m之衰變概圖…………………………………………………32 圖3.13 假體全貌……………………………………………………………35 圖3.14 假體_肺臟……………………………………………………………35 圖3.15 假體_心臟……………………………………………………………35 圖3.16 假體_胸腺……………………………………………………………36 圖3.17 假體_脾臟……………………………………………………………37 圖3.18 照射器………………………………………………………………38 圖3.19 軌道床………………………………………………………………39 圖3.20 單位晶格能階………………………………………………………40 圖3.21 典型熱發光現象示意圖……………………………………………41 圖3.22 LiF(Mg,Cu,P)的輝光曲線…………………………………………42 圖4.1 熱發光劑量計之能量依存性…………………………………………46 圖4.2 熱發光劑量計之線性特性……………………………………………46 圖4.3 熱發劑量計計讀儀結構示意圖………………………………………47 圖4.4 放射性藥物於體內,時間對活度強度示意圖………………………53 圖4.5 假體定位示意圖………………………………………………………54 圖5.1 胸腺之TLD分佈示意圖………………………………………………63 圖5.2 脾臟切面之TLD分佈示意圖…………………………………………64 圖5.3 NucliDose實驗擷取之影像資料……………………………………66 圖5.4 NucliDose圈選有興趣之區域………………………………………66 圖5.5 去除物理半衰期,相對起始活度對時間關係圖……………………67 圖5.6 吸收劑量之實驗結果(NucliDose)…………………………………68 圖5.7 胸腺假體之內外層結構示意圖………………………………………69 圖5.8 TLD之能量依存性……………………………………………………70 圖5.9輻射經壓克力固定版衰減示意圖……………………………………71 圖5.10 壓克力固定版體積充滿放射性核種之溶液之示意圖……………72 圖5.11 TLD體積充滿放射性核種之溶液之示意圖…………………………73 圖5.12 實驗流程時間示意圖………………………………………………73 圖5.13 生物半衰期之修正趨勢圖…………………………………………74 圖5.14 MIRD Phantom與實際之器官距離示意圖…………………………77 表 目 錄 表2.1 輻射加權因子…………………………………………………………7 表2.2 組織加權因子…………………………………………………………8 表3.1 Siemens E.CAM系統可以取得的影像種類…………………………15 表3.2 TAC的數學函數與其相關資訊………………………………………27 表3.3 各種MIRD Phantom之胸腺數學參數值……………………………33 表3.4 各種MIRD Phantom之脾臟數學參數值……………………………34 表3.5 假體器官之資料………………………………………………………34 表3.3 常用之熱發光劑量計規格特性表……………………………………44 表5.1 熱發光劑量計之靈敏度實驗結果……………………………………57 表5.2 熱發光劑量計之再現性實驗結果……………………………………58 表5.3 質量衰減係數…………………………………………………………61 表5.4 本實驗所需之質量衰減係數…………………………………………61 表5.5 TLD計讀電量與曝露量關係之實驗結果……………………………62 表5.6 胸腺(源器官)之吸收劑量結果(TLD)……………………………63 表5.7 脾臟(靶器官)之吸收劑量結果(TLD)……………………………64 表5.8 實驗用射源資料………………………………………………………65 表5.9 組織或器官之相關設定………………………………………………65 表5.10 源器官與靶器官之吸收劑量實驗結果(NucliDose)………………67 表5.11 TLD與NucliDose之實驗結果比較…………………………………68 表5.12 修正後TLD與NucliDose之實驗結果比較…………………………78rf 參考文獻 1. Audrey T.S.-Stelson, Evelyn E. Watson, and Roger J. Cloutier, A History of Medical Internal Dosimetry, Health Physics, Vol.69 No.5, pp.766-782, 1995 2. Frank H. Attix, Introduction to Radiological Physics and Radiation Dosimetry, John Wiley & Sons, Inc., New York, 1986 3. William D. Erwin, and Mark W. Groch, Operator’s Notes for Northwestern Oncology Package (NucliDoseTM), 1998 4. ICRP (1987), Individual Monitoring for Intakes of Radionuclides by Workers, ICRP Publication 54, Pergamon Press, Oxford. 5. ICRP (1990), 1990 Recommendations of the International Commision on Radiological Protection, ICRP Publication 60, Pergamon Press, Oxford. 6. Primer 7. 翁寶山校閱, 蔡榮鍠編譯, 最新放射物理學, 初版, 第三章、第四章, 新竹市:黎明書店, 1984.11 8. E. Martella, Dosimetric Characteristics of LiF: Mg, Cu, P (GR-200A), Applcazioni Scientifiche Generali. 9. R.A. Tawil, M. Ramlo, N.A. Karpov, K.J. Velbeck, The Dosimetric Characteristics of The New Harshaw High Sensitivity, Copper Doped Lithium Fluoride, Harshaw/BICRON Radiation Measurement Products, USA, 2000 10. Juan Azorin, Alicia Guti?臆rez, Tadeusz Niewiadomski and Pedro Gonz?跐ez, Dosimetric Characteristics of LiF :Mg, Cu, P TL Phosphor Prepared at ININ, Mexico, Radiation Protection Dosimetry, Vol.33 N.1/4, pp.283-286, 1990 11. Michael G. Stabin and Jeffry A. Siegel, Physical Models and Dose Factors for Use in Internal Dose Assessment, Health Physics, Vol.85 No.3, pp.294-310, 2003 12. M.G. Stabin, M. Tagesson, S.R. Thomas, M. Ljungberg, and S.E. Strand, Radiation Dosimetry in Nuclear Medicine, Applied Radiation and Isotopes, Vol.50, pp.73-87, 1999 13. K.F. Eckerman, M. Cristy, and J.C. Ryman, The ORNL Mathematical Phantom Series, 1996 14. William D. Erwin, Mark W. Groch, Daniel J. Macey, Gerald L. DeNardo, and Sally J. DeNardo Sui Shen, A Radioimmunoimaging and MIRD Dosimetry Treatment Planning Program for Radioimmunotherapy, Nuclear Medicine & Biology, Vol.23, pp.525-532, 1996 15. L. Lembo, M. Pimpinella, F. Monteventi, U. De Maio, R. Poli and I. Sermenghi, Un’analisi comparative delle caratteristiche dosimetriche di alcuni materilai termoluminescenti, Proc. XXVI Congr. Naz. AIRP (Italian Association for Radiation Protection), Verona (Italy), pp. 435-446, 1989 16. G. Scarpa, M. Moscati and A. Soriani, Ulteriori Studi sulle caratteristiche radiochimiche nella rdioprotezione, Alghero (Italy), 1991 17. F. Wu, Z. Zha, J. Li and Z. Zhu, LiF(Mg,Cu,P) thin dosemeter for skin dose measurement, Rad. Prot. Dosim. Vol.33, pp.331-334, 1990 18. B. Chandra, A.R. Lakshmanan and R.C. Bhatt, K.G. Vohra, Annealing and reusability characteristics of LiF(Mg,Cu,P) TLD phosphor, Rad. Prot. Dosim. Vol.3, pp.161-167, 1982 19. Y.S. Horowitz and A. Horowitz, Characterisation of LiF:Cu,Mg,P (GR-200) for personnel thermoluminescence dosimetry, Rad. Prot. Dosim. Vol.33, pp.279-282, 1990 20. Z. Zha, S. Wang, F. Wu, G. Chen, Y. Li and J. Zhu, Measurement of extremely low level dose with LiF(Mg,Cu,P) TL Chips, Rad. Prot. Dosim., Vol.17, pp.415-418, 1986 21. Herman Cember, Introduction to Health Physics, 3rd edition, The McGraw-Hill Inc., 1997 22. Gerald L. DeNardo, Sui Shen, Sally J. DeNardo, Shu-Quinn Liao, Kathleen R. Lamborn, Daine A. DeNardo, and Aina Yuan, Quantification of iodine-131 in tumors using a threshold based on image contrast, European Journal of Nuclear Medicine, Vol.25, No.5, 1998 23. K Norrgren, S Leide Svegborn, J Areberg, S Mattsson, ACCURACY OF THE QUANTIFICATION OF ORGAN ACTIVITY FROM PLANAR GAMMA CAMERA IMAGES, Department of Radiation Physics, Malm?? University Hospital, SE-205 02 Malm??, Sweden 24. J. P. Jones and A. B. Brill, A Validity of an Equivalent Point Source (EPS) Assumption Used in Quantitative Scanning, Phys. Med. Biol., Vol.20, No.3, pp.344-464, 1975id NH0925257005 sid 904524 cfn 0 / id NH0925257006 auc 王保雄 tic 空氣中揮發性有機化合物之竹時採樣分析研究 adc 洪益夫 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 108 kwc 揮發性有機化合物 kwc 苯 kwc 甲苯 kwc 丙酮 abc 近數年來,隨著高科技時代的來臨,富裕了我們的生活,造就了經濟的發展,但是也相對影響到我們周界環境的品質。隨著高科技產業的發展,其使用的揮發性有機溶劑數量也是與日俱增,而當人類如果處於揮發性有機化合物濃度過高的場所之下,會造成感官上的不舒服,進而影響個人的健康。例如:呼吸器官上的毛病、皮膚紅腫,如果暴露於高濃度的環境之下,會造成喪失意識及死亡。 tc 目錄 第一章 緒論 ……………………………………………………...1 1-1 前言 ………………………………………………………1 1-2 研究動機與目的………………………………………..…….2 第二章 文獻探討 .4 2-1 Acetone、IPA、MEK、BETX的性質來源探討 4 2-2 Acetone、IPA、MEK、BETX對人體影響探討 5 2-3 揮發性有機化合物採樣方法 8 2-4 脫附方式 10 第三章 儀器設備及實驗方法 ………………………………..12 3-1 實驗儀器設備及化學品 …………………………….………12 3-1-1 實驗儀器設備 ……………………………………………12 3-1-2 實驗化學品 ………………………………………………12 3-2 採樣吸附劑……………………………………………... 13 3-3 實驗地點 ………………………………………………...14 3-4 採樣時間 ………………………………………………...15 3-5 空氣採樣方法…………………………………………..…...15 3-6 吸附管之填充與調適……………………………..………...16 3-7 ATD-GC儀器分析設定…………………………………….16 3-7-1 降低背景條件………………………………………………..16 3-7-2 分析條件……………………………………………………..17 第四章  結果與討論 18 4-1 採樣分析條件 18 4-1-1 偵測極限 18 4-1-2 脫附效率 18 4-1-3 添加回收率 20 4-1-4 檢量線 20 4-1-5 品保品管…………………………………………………..…21 4-2 室內逐時採樣………………………………………...……..21 4-2-1 實驗室逐時採樣……………………………………………..21 4-2-2 室內不同地點比較…………………………………………..26 4-3 環境中化學與光化學反應…….……………………………27 4-4 室外採樣分析 …………………………………………........28 第五章 結論 ……………………………………………………38 參考文獻 ………………………………………………40 表目錄 表1.Acetone、IPA、MEK和BTEX化合物之物化性質…………….44 表2.Acetone、IPA、MEK和BTEX的毒性資料……………….........45 表2(續).Acetone、IPA、MEK和BTEX的毒性資料………………..46 表3.揮發性有機化合物採樣分析方法之比較……..……..……….....47 表4.固定污染源空氣污染物排放標準…………………………….....48 表5.半導體製造業空氣污染管制及排放標準…………………….....48 表6.八種化合物容許濃度立即致危濃度與嗅覺閾值……………….49 表7.儀器偵測極限及方法偵測極限……………………………...….49 表8.脫附效率………………………………………………………….50 表9.添加回收率……………………………………………………….51 表10.實驗期間化合物滯留時間之QA/QC結果……………….……52 表11.實驗期間化合物積分面積之QA/QC結果…………………….52 表12.Acetone七次實驗室採樣濃度…..…...……..……………..……53 表13.IPA七次實驗室採樣濃度…..…...………………..…………….54 表14.MEK七次實驗室採樣濃度…..…...………………..……...…...55 表15.Benzene七次實驗室採樣濃度…..…...………………….……..56 表16.Toluene七次實驗室採樣濃度…..…...………………….……...57 表17.Ethylbenzene七次實驗室採樣濃度…..…...…………….……..58 表18.m+p-Xylene七次實驗室採樣濃度…..…...………………...….59 表19.o-Xylene七次實驗室採樣濃度…..…...………………….….…60 表20.七次實驗室採樣八種化合物濃度表…..…...………………..…61 表21.MS偵測出的化合物…..…...……………..……………...……..61 表22.實驗室空氣逐時採樣濃度………..…...…………………..……62 表23.休息室空氣逐時採樣濃度……………...………………………63 表24.辦公室空氣逐時採樣濃度...………...…………….……………64 表25.室內濃度的比較………………………………………………...65 表26.採樣地點簡述……...……………………...…………….………66 表27.周採樣氣象資料…...……………………...…………….………67 表27(續).周採樣氣象資料..…………………......…...……….………68 表28.空氣逐時採樣濃度(91年8月28日)……………………..……69 表29.空氣逐時採樣濃度(91年10月2日)…..………………..……..70 表30.空氣逐時採樣濃度(91年10月16日)……………...….….…...71 表31.空氣逐時採樣濃度(91年10月30日)…………………..….….72 表32.空氣逐時採樣濃度(91年11月4日)……………………..……73 表33.空氣逐時採樣濃度(91年11月13日)……………………...…74 表34.空氣逐時採樣濃度(91年11月25日)…………………………75 表35.空氣逐時採樣濃度(91年12月3日)……………...………..….76 表36.空氣逐時採樣濃度(92年5月7日)……………………..……..77 表37.逐時採樣之最大最小濃度值比較(91年8月28日)..……..…..78 表38.逐時採樣之最大最小濃度值比較(91年10月2日)………..…78 表39.逐時採樣之最大最小濃度值比較(91年10月16日)……..…..78 表40.逐時採樣之最大最小濃度值比較(91年10月30日)……….…79 表41.逐時採樣之最大最小濃度值比較(91年11月4日)………..…79 表42.逐時採樣之最大最小濃度值比較(91年11月13日)……..…..79 表43.逐時採樣之最大最小濃度值比較(91年11月25日)……..…..80 表44.逐時採樣之最大最小濃度值比較(91年12月3日)………..…80 表45.逐時採樣之最大最小濃度值比較(92年5月7日)………..…..80 表46.八月的八種化合物濃度比較(89、90、91年)………….………81 表47.九月的八種化合物濃度比較(89、90、91年)……………….…81 表48.十月的八種化合物濃度比較(89、90、91年)…………….……81 表49.十一月的八種化合物濃度比較(89、90、91年)………….……82 表50.十二月的八種化合物濃度比較(89、90、91年)……….………82 表51.室外濃度比較…………………………………………………...83 圖目錄 圖1.研究執行流程圖……………….……………………..…….….....84 圖2.脫附效率層析圖…………………….……………..….…….........85 圖3.標準品層析圖譜…………………….……………..….…….........85 圖4.室內採樣層析圖譜…………….……………..….….....................86 圖5.新竹科學園區室外採樣層析圖譜……………………………….86 圖6. Acetone七次實驗室採樣結果……………………..………........87 圖7.IPA七次實驗室採樣結果……………………..….…..................87 圖8.MEK七次實驗室採樣結果………………………..….……........88 圖9.Benzene七次實驗室採樣結果…………………..….…...............88 圖10.Toluene七次實驗室採樣結果……………………..….…..........89 圖11.Ethylbenzene七次實驗室採樣結果………………..….….........89 圖12.m+p-Xylene七次實驗室採樣結果………………..….…….......90 圖13.o-Xylene七次實驗室採樣結果…….……………..….…...........90 圖14.八種化合物逐時濃度趨勢圖(實驗室)…….…….…..................91 圖15.八種化合物逐時濃度趨勢圖(休息室)……...….…....................91 圖16.八種化合物逐時濃度趨勢圖(辦公室)…….….…......................92 圖17.新竹科學園區周界空氣採樣地點分佈圖………..….……........93 圖18.八種化合物逐時濃度趨勢圖(91年8月28日)…………..……94 圖19.八種化合物逐時濃度趨勢圖(91年10月2日)………….……..94 圖20.八種化合物逐時濃度趨勢圖(91年10月16日)…………..…..95 圖21.八種化合物逐時濃度趨勢圖(91年10月29日)…………..…..95 圖22.八種化合物逐時濃度趨勢圖(91年11月4日)…………..……96 圖23.八種化合物逐時濃度趨勢圖(91年11月13日)…………..…..96 圖24.八種化合物逐時濃度趨勢圖(91年11月25日)………..……..97 圖25.八種化合物逐時濃度趨勢圖(91年12月3日)…………..……97 圖26.八種化合物逐時濃度趨勢圖(92年5月7日)…………..……..98 圖27.Acetone、IPA、MEK逐時濃度趨勢圖(91年8月28日)….…...99 圖28.BTEX逐時濃度趨勢圖(91年8月28日)……………..……....99 圖29.Acetone、IPA、MEK逐時濃度趨勢圖(91年10月2日)…..…100 圖30.BTEX逐時濃度趨勢圖(91年10月2日)………………….....100 圖31.Acetone、IPA、MEK逐時濃度趨勢圖(91年10月16日)…....101 圖32.BTEX逐時濃度趨勢圖(91年10月16日)………………..….101 圖33.Acetone、IPA、MEK逐時濃度趨勢圖(91年10月29日)…....102 圖34.BTEX逐時濃度趨勢圖(91年10月29日)………………...…102 圖35.Acetone、IPA、MEK逐時濃度趨勢圖(91年11月4日)………103 圖36.BTEX逐時濃度趨勢圖(91年11月4日)………………….....103 圖37.Acetone、IPA、MEK逐時濃度趨勢圖(91年11月13日)…..…104 圖38.BTEX逐時濃度趨勢圖(91年11月13日)………………..….104 圖39.Acetone、IPA、MEK逐時濃度趨勢圖(91年11月25日)……..105 圖40.BTEX逐時濃度趨勢圖(91年11月25日)…………………....105 圖41.Acetone、IPA、MEK逐時濃度趨勢圖(91年12月3日)….......106 圖42.BTEX逐時濃度趨勢圖(91年12月3日)………………….....106 圖43.Acetone、IPA、MEK逐時濃度趨勢圖(92年5月7日)….........107 圖44.BTEX逐時濃度趨勢圖(92年5月7日)…………………..….107 圖45.Acetome九次採樣的濃度趨勢圖……….………………….....108 圖46.IPA九次採樣的濃度趨勢圖……….……………………...…..108 圖47.MEK九次採樣的濃度趨勢圖……….……………………......109 圖48.Benzene九次採樣的濃度趨勢圖………...………………...…109 圖49.Toluene九次採樣的濃度趨勢圖……….………………...…...110 圖50. Ethyl benzene九次採樣的濃度趨勢圖……….………...……110 圖51. m+p-Xylene九次採樣的濃度趨勢圖……….…………...…...111 圖52. o-Xylene九次採樣的濃度趨勢圖……….………..…...……..111rf 1. 新竹科學工業園區。http://www.sipa.gov.tw/1/in1/index-in13.htm。 2. 黃覃君,半導體工業空氣中揮發性有機化合物之分析,科儀新知第二十卷二期,1998。 3. 工研院化工所,“電子用化學品專題調查報”,ITRIUC151S204,1995。 4. 莊達人,“VLSI製造技術”,p145~p302,高立圖書有限公司,1990。 5. 物質安全資料表,勞委會,http://www.iosh.gov.tw/frame.htm。 6. M. T. Cristina, L. G. Marco, L. D. Donata, and C. O. Giorgio, "A GC Method for the Quantitative Determination of BTEX in Gasoline", Journal of Chromatographic Science, Vol. 34, P. 413 ~ 417(1996). 7. EPA-82-E4F1-08-23, "以管制燃料油品質來降低都會區大氣中苯濃度之監測" ,1993。 8. 行政院勞工委員會, "表面塗裝業混存有害物質-甲苯、二甲苯、苯乙烯、醋酸丁酯之熱脫附/氣香層析分析方法研究", 勞工安全衛生研究報告(1996)。 9. J. M. Dasch, R. L. Williams, “Benzene Exhaust from In-Use General Motors Vehicles” ,Environ.Sci.Technol,Vol.25,No5(1991). 10. Jo Dewulf, Herman Van Langenhove,“Anthropogenic volatile organic compounds in ambient air and natural water:a review on recent developments of analytical methodology,performance and interpretation of field measurements”,Journal of Chromatography A,843(1999)165. 11. Data Sheet U04914,“Tenax-TA”,Copyright 1997 Alltech Associates ,Inc. 12. 李志宏,“空氣中BTEX及Naphthalene之濃度分佈”,國立清華大學原子科學系碩士論文,新竹,1999。 13. 劉原良,“Acetone、IPA、MEK及BTEX之濃度分佈”,國立清華大學原子科學系碩士論文,新竹,2000。 14. Anna-Lena Sunesson, Carl-Axel Nilsson, Barbro Andersson, Journal Of Chromatorgraphy A,699(1995)214. 15. 行政院勞工委員會,作業環境空氣中有害物質標準分析參考方法,1992。 16. “化學分析的偵測極限(上)”科儀新之第十六卷第一期83.8,凌永健、陳秋雲。 17. “Installation and Operating Instructions for the Air Monitoring Trap for the ATD400”,Perkin Elmer,p4-32~4-36. 18. Y. S. Fung, W. Zucheng, "Determination Organic Compounds in Air Using a Dehumidified and Ventilated Diffusive Sampler, Thermal Desorption and Gas Chromatography With Flame Ionization Detection" ,Analyst, vol. 121, p. 1955 ~ 1961(1991). 19. W. U. Dwight, E. F. Chares, "Boundary Layer Effect in Diffusive Monitoring" ,Analytical Chemistry, Vol. 63, No. 10, p. 1011 ~ 1013(1991). 20. “The Determination of Volatile Organic Compounds (VOCs) In Ambient Air Using Specially Prepared Canisters With Subsequent Analysis By Gas Chromatography” (TO-14A). 21. “The Determination of Volatile Organic Compounds (VOCs) In Air Collected In Specially Prepared Canisters And Analyzed By Gas Chromatography /Mass Spectrometry(GC/MS)” (TO-15). 22. Martin Harper,“Sorbent trapping of volatile organic compounds from air”, Journal of Chromatography A,885(2000)144. 23. 空氣中毒性有機物分析方法系列,美國環保署(U.S.EPA)。 24. 有害物質測定方法系列,英國職業安全衛生署。 25. 空氣檢驗方法(NIEA A701.10T、NIEA A709.7譯、NIEA 714.10T),環保署。 26. V. Camel ,M. Caude, “Trace enrichment methods for the determination of organic pollutants in ambient air”, Journal of Chromatography A,710(1995)14. 27. “Installation and Operating Instructions for the Air Monitoring Trap for the ATD400”,Perkin Elmer,p3-4~3-9. 28. M. Clement, S. Arzel, B. Le Bot, R. Seux, M. Millet,“Adsorption/thermal desoption-GC/MS for the analysis of pesticides in the atmophere ”, Chemosphere,40(2000)52. 29. Christopher Y. Chao, George Y. Chan, “Quantification of indoor VOCs in twenty mechanically ventilated buildings in Hong Kong ”, Atmosphere Enviornment,35(2001)5895-5913. 30. Barbara Barletta, Simone Meinardi, Isobel J. Simpson, Haider A. Khwaja, Donald R. Blake, F. Sherwood Rowland, “Mixing ratios of volatile organic compounds (VOCs) in the atmosphere of Karachi, Pakistan”, Atmosphere Enviornment,36(2002)3434. 31. M. Czaplicka, K. Klejnowski, “Determination of volatile organic compounds in ambient air Comparison of methods”, Journal of Chromatography A,976(2002)374. 32. Chu-Chin Hsieh, Jiun-Horn Tsai, “VOCs concentration characteristics in Southern Taiwan”, Chemosphere,50(2003)551. 33. Stanley E. Manahan,“Environmental Chemistry 6/E”id NH0925257006 sid 904529 cfn 0 / id NH0925257007 auc 倪于晴 tic 正子乳房造影系統先期之開發研究 adc 莊克士 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 59 kwc 乳癌 kwc 正子乳房攝影 kwc MLEM重建法 abc 利用功能性影像及早偵測出異常的生理變化,使病人可以在癌症的早期獲得適當的治療,是值得發展的技術。在本論文中利用核研所物理組自製的旋轉式正子造影系統作為實驗平台來進行一系列假體實驗,希望藉此探討利用正子乳房造影來偵測乳癌的可行性。系統是使用一對相對1800且距離220mm的BGO偵檢器在不旋轉的情況下來擷取數據,並利用MLEM演算法處理三維數據完成影像重建的工作。從重建影像上可以分辨腫瘤假體的大小以及其在乳房假體中的位置,在腫瘤假體尺寸達2mm直徑的大小仍可清楚分辨。即使在腫瘤假體與背景單位體積活度比(tumor-to-background concentration ratio)為5:1時仍然可以顯現尺寸為10mm直徑的腫瘤假體。至於視野外射源(如:心臟)的干擾亦不會影響對於腫瘤假體大小及位置的判斷。乳癌偵測的目的,是正確的顯示有無腫瘤,以及腫瘤大小與位置,並且在可以接受的檢測時間和所接受的輻射劑量下達成。在本研究中估計可以在600秒下偵測尺寸2mm活度為22.2kBq(0.6 Ci)的腫瘤假體,並且僅花12秒的影像重建時間(疊代次數選為十)。 tc 目錄 中文摘要………………………………………………………………….I 英文摘要………………………………………………………………...II 誌謝……………………………………………………………………..III 目錄……………………………………………………………………..IV 圖目錄………………………………………………………………….VII 表目錄…………………………………………………………………..IX 第一章 緒論……………………………………………………………..1 1-1 引言………………………………………………………...1 1-2 研究動機…………………………………………………...3 1-3 論文架構…………………………………………………...4 第二章 文獻探討………………………………………………………..6 2-1 乳癌的形成及種類………………………………………...6 2-2 乳癌偵測的方法…………………………………………...8 2-2.1 X光乳房攝影……………………………………….8 2-2.2 乳房超音波…………………………………………9 2-2.3 閃爍乳房造影………………………………………9 2-2.4 正子斷層掃描用於乳房偵測……………………..10 2-3 正子乳房造影的研究…………………………………….10 第三章 研究方法………………………………………………………12 3-1 系統描述………………………………………………….12 3-1.1 偵檢器……………………………………………..12 3-1.2 數據擷取之硬體架構……………………………..13 3-1.3 數據成像處理……………………………………..13 3-2 影像重建………………………………………………….14 3-2.1 影像重建演算法…………………………………..15 3-2.2 校正………………………………………………..17 3-3 假體及實驗設計………………………………………….19 3-3.1 假體設計…………………………………………..19 3-3.2 實驗設計…………………………………………..20 3-4 實體設計………………………………………………….21 第四章 乳房假體影像測試結果………………………………………23 4-1 辨別不同位置及大小…………………………………….23 4-2 不同對比度……………………………………………….24 4-3 有無視野外射源的影響………………………………….25 4-4 使用一對偵檢器與兩對的差異………………………….25 第五章 討論……………………………………………………………27 5-1 疊代次數的選取………………………………………….27 5-2 腫瘤假體大小的評估…………………………………….28 5-3 劑量與數據擷取時間及影像重建時間的關係………….29 第六章 結論……………………………………………………………32 參考文獻………………………………………………………………..57rf 參考文獻 Ciatto S, Rosselli del Turco M, Catariz S, Morrone D 1994 The contribution of ultrasonography to the differential diagnosis of breast cancer Neoplasma 41 341-5 Cronin B, Marsden P K and O’Doherty M J 1999 Are restrictions to behavior of patients required following fluorine-18 fluorodeoxyglucose positron emission tomographic studies? Eur. J. Nucl. Med. 26 121-8 Gruber G J, Moses W W and Derenzo S E 1999 Monte Carlo Simulation of Breast Tumor Imaging Properties with Compact, Discrete Gamma Cameras IEEE Trans. Nucl. Sci. 46 2119-23 Huesman R H, Klein G J, Moses W W, Qi J, Reutter B W and Virador P R G 2000 List-Mode Maximum-Likelihood Reconstruction Applied to Positron Emission Mammography (PEM) with Irregular Sampling IEEE Trans. Nucl. Sci. 19 532-7 International Commission on Radiological Protection 1990 Recommendation of the International Commission on Radiological Protection Publication 60 Oxford, U.K.:Pergamon Press 4-11 Jan M L, Liang H C, Huang S W, Tang J S, Pei C C and Yeh C K 2001 Preliminary results from the AROPET IEEE Nucl. Sci. Symposium and Image conference November 4-10 Levin C S 2003 Detector design issues for compact nuclear emission cameras dedicated to breast imaging Nucl. Instr. and Meth. A 497 60-74 Love S M and Lindsay K 2002 Dr. Susan Love’s Breast Book Moore S K 2001 Better breast cancer detection IEEE Spectrum 38 50-4 Moses W W and Oi J 2003 Fundamental limits of positron emission mammography Nucl. Instr. And Meth A 497 82-9 Murthy K, Aznar M, Thompson C J, Loutfi A, Lisbona R and Gagnon J H 2000 Results of Preliminary Clinical Trials of the Positron Emission Mammography System PEM-I: A Dedicated Breast Imaging System Producing Glucose Metabolic Images Using FDG J. Nucl. Med. 41 1851-8 Qi J, Klein G J and Huesman R H 2001 Image Properties of List-mode Likelihood Reconstruction for a Rectangular Positron Emission Mammography with DOI Measurement IEEE Trans. Nucl. Sci. 48 1343-9 Qi J and Huesman R H 2002 Scatter Correction for positron emission mammography Phys. Med. Biol. 47 2759-71 Raylman R R, Majewski S, Wojcik R, Weisenberger A G, Kross B and Bishop H A 2000 The potential role of positron emission mammography for detection of breast cancer. A phantom study Med. Phys.27 1943-54 Raylman R R, Majewski S, Wojcik R, Weisenberger A G, Kross B and Popov V 2001 Corrections for the effects of Accidental Coincidences, Compton Scatter, and Object Size in Positron Emission Mammography (PEM) Imaging IEEE Trans. Nucl. Sci. 48 913-23 Raylman R R, Majewski S, Smith M F, Wojcik R, Weisenberger A G, Kross B, Popov V and Derakhshan J J 2003 Comparison of Scintillators for Positron Emission Mammography (PEM) System IEEE Trans. Nucl. Sci. 50 42-9 Schirrmeister H, Kuhn T, Guhlmann A, et al 2001 Fluorine-18 2-deoxy-2-fluoro-D-glucose PET in the preoperative staging of breast cancer: comparison with the standard imaging procedures Eur. J. Nucl. Med. 28 351-8 Scopinaro F, Schillaci O, Ussof W, Nordling K, Capoferro R, De Vincentis G, Danieli R, Ierardi M, Picardi V, Tavolaro R and Colella A C 1997 A three center study on the diagnostic accuracy of 99mTc-MIBI scintimammography Anticancer Research 17 1631-4 Scopinaro F, Mezi S, Ierardi M, De Vincentis G, Tiberio N S, David V, Maggi S, Sallusti E and Modesti M 1998 99mTc MIBI prone scintimammography in patients with suspicious breast cancer: Relationship with mammography and tumor size Int. J. Oncol. 12 661-4 Smith M F, Majewski S and Raylman R R 2002 Positron Emission Mammography with Multiple Angle Acquisition IEEE Nucl. Sci. Symposium conference 3 1892-6 Smith M F, Majewski S, Weisenberger A G, Kieper D A, Raylman R R and Turkington T G 2003 Analysis of Factors Affecting Positron Emission Mammography (PEM) Image Formation IEEE Trans. Nucl. Sci. 50 53-9 Thompson C J, Murthy K, Picard Y, Weinberg I N and Mako R 1995 Positron Emission Mammography (PEM): A Promising Technique for Detecting Breast Cancer IEEE Trans. Nucl. Sci. 42 1012-17 Zhang N, Thompson C J, Cayouette F, Jolly D and Kecani S 2003 A Prototype Modular Detector Design for High Resolution Positron Emission Mammography Imaging IEEE Trans. Nucl. Sci. 50 1624-9id NH0925257007 sid 914502 cfn 0 / id NH0925257008 auc 魏婉如 tic 我國乳房X光攝影的輻射劑量研究 adc 董傳中 adc 張似瑮 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 87 kwc 乳房X光攝影 kwc 平均乳腺劑量 abc 摘要 tc 第一章 緒論 第二章 基礎理論與文獻探討 第三章 材料與方法 第四章 結果與討論 第五章 結論rf 參考文獻 1. American College of Radiology. Mammography Quality Control Manual ( American College of Radiology , Reston, VA, 1999). 2. Commissioning and Routine Testing of Mammographic X-ray Systems. York, Institute of Physics and Engineering in Medicine, 1994 (IPEM Report No. 59/2). 3. Food and Drug Administration, “MAMMOGRAPHY QUALITY STANDARDS ACT OF 1992 (MQSA)” (Public Law 102-539). 4. International Commission on Radiological Protection, “1990 Recommendations of the International Commission on Radiological Protection”, ICRP Publication 60 (Pergamon Press, Oxford)(1991). 5. International Atomic Energy Agency. International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. IAEA Safety Series No. 115. International Atomic Energy Agency (Vienna) (1996). 6. United Nations Scientific Committee on the Effects of Atomic Radiation, UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes, “Volume I:Source”( United Nations Publication, New York, 2000). 7. http://www.doh.gov.tw/statistic/index.htm, 行政院衛生署,衛生統計資訊網。 8. http://www.bhp.doh.gov.tw/, 行政院衛生署國民健康局。 9. Hammerstein G R, Miller D W, White D R, Masterson M E, Woodard H Q and Laughlin J S, “Absorbed radiation dose in mammography,”radiology, 130, 485-491, 1979. 10. Millis R R, Davis R and Stacey A J, “The detection and significance of calcifications in the breast: a radiological and pathological study,”Br J Radiolo, 49, 12-26, 1976. 11. J. T. Bushberg, J. A. Seribert, E. M. Leidholdt and J. M. Boone, “The essential physics of medical imaging, 2nd edition,”2001. 12. K. L. Rontrager, “Textbook of radiographic positioning and related anatomy, 4th edition,”1997. 13. P. C. Johns and M. J. Yaffe, “X-ray characterization of normal and neoplastic breast tissues,”Phys Med Biol, 32, 675-695, 1987. 14. D. R. Dance, “The Monte Carlo calculation of integral radiation dose in mammography,”Phys Med Biol, 25, 25-37, 1980. 15. M. Rosenstein, L. W. Anderson and G. G. Warner,“Handbook of glandular tissue doses in mammography HHS Publication FDA,”85-8239, 1980. (Centre for Devices and Radiological Health, Rockville, Maryland 20857, USA). 16. X. Wu, E. L. Gingold, G. T. Barnes and D. M. Tucker, “Normalized average glandular dose in molybdenum target-rhodium filter and rhodium target-rhodium filter mammography,”Radi logy, 193, 83-89, 1994. 17. 杜佩芝, 應用蒙地卡羅方法評估乳房攝影之平均乳腺劑量, 國立清華 大學碩士論文, 2003. 18. H. E. Johns and J. R. Cunningham, “The physics of radiology, 4th edition,”1983. 19. International Commission on Radiological Protection, “Radiological Protection and Safety in Medicine,” ICRP Publication 73, Annals of the ICRP , No. 2, 1996 (Pergamon Press, Oxford). 20. http://www.safety.duke.edu/RadSafety/mammo_dose/default.asp, “Radiation Dose to the Breast from Mammography”. 21. K. C. Young, M. L. Ramsdale, “ Performance of mammographic equipment in the UK breast screening programme in 2000/2001,” NHBSP Publication 56, ( National coordinating centre for the physics of mammography ), 2003. 22. T. Fujisaki, S. Takahashi, K. Watanabe, K. Nishimura, S. Abe, H. Saitoh and K. Fukuda, “Investigation of exposure factors in Japanese routine mammography,”NIPPON ACTA RADIOLOGICA, 61, 431-437, 2001. 23. K. C. Young and A. Burch, “Radiation doses received in the UK breast screening programme in 1997 and 1998,”Br J Radiol, 73, 278-287, 2000. 24. A. Burch and D. A. Googman,“A pilot survey of radiation doses received in the United Kingdom breast screening programme,”Br J Radiol, 71, 517-527, 1998. 25. R. L. Kruger and B. A. Schueler, “A survey of clinical factors and patient dose in mammography,”Med. Phys, 28, 1449-1454, 2001. 26. K. C. Young, M. L. Ramsdale, A. Rust and J. Cooke, “Effect of automatic kV selection on dose and contrast for a mammographic X-ray system,” Br J Radiol, 70, 1036-1042, 1997. 27. J. C. P. Heggie, “Survey of doses in screening mammography,”Phys. Eng. Sci. Med, 19, 207-217, 1996. 28. S. M. Bulling and J. J. Nicolli, “Level and distribution of the radiation dose to the population from a mammography screening programme in New Zealand, ” Radiat. Prot. Dosim, 57, 455-458, 1995. 29. R. A. Geise and A. Palchevsky, “Composition of mammographic phantom materials, ”Radiology, 198, 347-350, 1996. 30. A. Thilander-Klang, P. Ackerholm, I. Berlin, N. G. Bjurstam, S. L. J. Mattsson, L. G. Mansson, C. von Scheele and S. J. Thunberg, “Influence of anode-filter combinations on image quality and radiation dose in 965 women undergoing mammography, ”Radiology, 203, 348-354, 1997. 31. J. R. Gentry and L. A. DeWerd, “TLD ,easurements of in vivo mammographic exposures and the calculated mean glandular dose across the Untied States, ”Med. Phys, 23, 899-903, 1996. 32. R. Klein, H. Aichinger, J. T. M. Jansen, S. Joite-Barfuss, M. Sabel, R. Schulz-Wendtland and J. Zoetelief, “Determination of average glandular dose with modern mammography units for two large groups of patients, ” Phys. Med. Biol, 42, 651-671, 1997. 33. S. Eklund, A. Thilander, W. Leitz and S. Mattson, “The impact of anatomic variations in absorbed radiation doses in mammography, ”Radiat. Prot. Dosim, 49, 167-170, 1993.id NH0925257008 sid 914506 cfn 0 / id NH0925257009 auc 黃麗娟 tic 血管自動調節之血氧程度相關功能性磁振造影 adc 許靖涵 adc 葉子成 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 119 kwc 功能性磁振影像 kwc BOLD kwc 血管自動調節 kwc 腦血管反應圖 abc 非侵襲性的血氧程度相關功能性磁振造影(BOLD fMRI) 已是目前用在研究大腦活動相當普遍且可靠的一種方法。主要是藉由神經活動和血液動力學之間的連結間接地觀察神經活動。藉由吸入不同濃度(1-5%)的二氧化碳混合氣體為刺激方法,調控影響BOLD效應的生理機制血液動力學中的腦血流(cerebral blood flow, CBF) 因子;以blip-EPI脈衝波序在3T MR磁振造影儀取像,即時量測動態二氧化碳改變所造成BOLD訊號的變化,得到相關統計參數腦血管反應圖(cerebral vascular reactivity maps)及校正曲線。藉由觀察得到的訊號差異、統計相關反應圖做為受試者施行BOLD fMRI反應的預測、和血管自動調節功能及血管殘存的評估依據。結果顯示受試者的平均BOLD訊號改變為1.36±1.73% (平均±SD, 1%CO2) 至 7.78±3.68% (平均±SD, 5%CO2),且女性的反應比男性來得顯著。在1-5%的二氧化碳濃度範圍和BOLD訊號變化間呈現劑量依存(dose-dependent)且可觀察到BOLD訊號會隨CO2濃度改變重覆地被調控。由腦血管反應圖觀察到反應區域的分佈是一整體的效應;而對於執行握拳的運動工作時,吸入5%的二氧化碳比呼吸空氣平均有1.45±1.43% (平均±SD)的BOLD百分比增強及8-9倍顯著的空間體素增加效應。本研究在探討二氧化碳和BOLD訊號間之動態連結及血管自動調節之視覺化,並可進一步應用於腦血管疾病或生理病變時的fMRI研究。 tc 目次 誌謝.......................................................i 摘要......................................................ii Abstract.................................................iii 目次......................................................iv 圖表索引................................................viii 第一章 緒論.............................................1 第1-1節 前言............................................1 第1-2節 研究背景........................................2 第1-3節 文獻回顧........................................5 第1-4節 研究動機與目的.................................10 第1-5節 研究方法與流程.................................13 第1-5-1節 研究方法.....................................13 第1-5-2節 研究流程.....................................14 第1-5-2-1節 BOLD訊號的測試.............................14 第1-5-2-2節 生理監視器(Maglife C)的測試與校正..........14 第1-5-2-3節 氣體傳輸管的傳輸及延遲時間的測試...........15 第1-5-2-4節 最佳基線的測試實驗(假體及受試者)...........15 第1-5-2-5節 五種濃度二氧化碳混合氣體混合任務(mixed trial) 的BOLD訊號量測.............................16 第1-5-2-6節 呼吸5%的二氧化碳加上握拳運動及呼吸空氣加上握 拳運動.................................... 16 第1-5-2-7節 臨床病患實際應用...........................16 第二章 理論基礎........................................18 第2-1節 功能性的磁振影像(f MRI.........................18 第2-1-1節 EPI成像技術..................................19 第2-2節 腦部的活動.....................................23 第2-2-1節 腦部活動時的生理改變.........................23 第2-2-2節 血氧程度相關對比.............................25 第2-3節 磁化率對比及血氧程度相關功能圖.................29 第2-3-1節 磁化率 (magnetic susceptibility).............29 第2-3-2節 血氧程度相關的磁化率效應.....................32 第2-3-3節 內源性的磁化率對比...........................33 第2-3-4節 T2* - decay和磁化率效應......................34 第2-3-5節 fMRI訊號的改變...............................35 第2-3-6節 功能性磁振影像實驗...........................36 第2-3-7節 以BOLD訊號改變得到反應腦部活動圖.............36 第2-4節 呼吸的調節機制(regulation mechanism of respiratory)...................................38 第2-4-1節 呼吸的控制及調節中樞.........................38 第2-4-2節 化學控制中心.................................39 第2-4-3節 其他影響換氣因子.............................40 第2-4-4節 二氧化碳含量增加對吸呼的效應.................41 第2-4-5節 呼吸的自動管制功能...........................42 第2-4-6節 Pco2對呼吸的調控.............................42 第2-4-7節 血中Pco2、H+、温度和DPG濃度在血紅素飽和的機 制...........................................45 第2-5節 二氧化碳和腦部循環.............................45 第2-5-1節 二氧化碳和腦血流.............................46 第2-5-2節 二氧化碳和腦血管的調節.......................47 第2-5-3節 腦血流的調節機制.............................48 第2-5-4節 血管反應的自動調節...........................49 第2-5-5節 高碳酸症的標準化.............................50 第2-6節 大腦運動皮質區.................................51 第三章 實驗設計、材料與方法............................53 第3-1節 實驗設計.......................................53 第3-1-1節 實驗範例設計.................................53 第3-1-1-1節 假體實驗範例設計...........................54 第3-1-1-2節 人體實驗範例設計...........................54 第3-1-2節 氣體流量的設定及氣體切換.....................57 第3-2節 實驗材料.......................................58 第3-2-1節 假體.........................................58 第3-2-2節 受試者.......................................59 第3-2-3節 硬體儀器設備.................................59 第3-2-3-1節 磁振造影儀.................................59 第3-2-3-2節 附件.......................................59 第3-3節 實驗方法.......................................60 第3-3-1節 受試者受檢前的準備及定位.....................60 第3-3-2節 影像資料的取得參數...........................62 第3-3-2-1節 功能性影像取得參數.........................62 第3-3-2-2節 解剖影像的取得參數.........................63 第四章 資料分析........................................64 第4-1節 分析軟體工具...................................64 第4-2節 影像資料的前處理...............................64 第4-3節 資料的統計參數分析.............................67 第4-3-1節 理想函數的建立...............................67 第4-3-2節 空間標準化(Normalization)....................69 第4-4節 交叉相關統計(Cross correlation coefficient statistics)....................................72 第4-5節 線性模型(Linear model)的線性廻歸分析...........73 第五章 結果與討論......................................75 第5-1節 最佳基線選擇實驗...............................75 第5-2節 調控不同二氧化碳濃度混合氣體的混合區段實驗.....78 第5-3節 右手握拳運動加上5%二氧化碳濃度實驗.............88 第5-4節 再現性及臨床病患實驗...........................96 第5-5節 討論..........................................102 第六章 結論與未來方向.................................110 附錄.....................................................113 參考文獻.................................................116rf 1.Xiong, J., Fox, P.T.& Gao, J.H. “Directly mapping magnetic field effect of neuronal activity by magnetic resonance imaging,” Hum Brain Mapp.20: 41-49 (2003). 2.Bandettini, P.A., Wong, E.C., Hinks, R.S., Tikofsky, R.S. & Hyde., J.S.“Time course EPI of human brain function during task activation, ” Magn. Reson. Med. 25: 390-397 (1992) 3.Kwong, K.K., Belliveau, J.W., Chesler, D.A., Goldberg, I.E., Weisskoff, R.M., Poncelet, B.P., Kennedy, D.N., Hoppel, B.E., Cohen, M.S., Turner, R., Cheng, H.M., Brady, T.B. & Rosen, A.B. “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Natl. Acad. Sci. USA 89: 5675-5679 (1992) 4.Ogawa, S., Tank, D.W., Menon, R., Ellermann, J.M., Kim, S.G., Merkle, H. & Ugurbil, K. “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. USA 89: 5951-5955 (1992) 5.Ogawa, S., Lee, T.M., Kay, A.R. & Tank, D.W. “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. USA 87: 9868-9872 (1990) 6.Fox, P.T. & Raichle, M.E. “Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects,” Proc. Natl. Acad. Sci. USA 83: 1140-1144 (1986) 7.Fox, P.T. Raichle, M.E., Mintun, M.A. & Dence, C.“Nonoxidative glucose consumption during focal physiologic neural activity,” Science 241: 462-464 (1988) 8.Hoge, R.D., Atkinson, Jeff., Gill, Brad., Crelier, G.R., Marrett, Sean. & Pike G..B. “Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex,” Proc. Natl. Acad. Sci. USA 96: 9403-9408 (1999a) 9.Hoge, R.D., Atkinson, Jeff., Gill, Brad., Crelier, G.R., Marrett, Sean. & Pike G.B. “Investigation of BOLD signal Dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution Model,” Magn. Reson. Med. 42: 849-863 (1999b) 10.Kastrup, A., Krüger, G., Tobias, N.H., Glover, G.H. & Moseley, M.E. “Changes of cerebral blood flow, oxygenation, and oxidative metabolism during Graded motor activation,” NeruoImage 15: 74-82 (2002) 11.Blaha, M., Aaslid, R., Douville, C.M., Correra, R.& Newell,D. W. “Cerebral blood flow and dynamic cerebral autoregulation during ethanol intoxication and hypercapnia,” Journal of clinical neuroscience.10(2):195-198 (2003) 12.Mulderink, T.A., Gitelman, D.R., Mesulam, M.M. & Parrish, T.B. “On the use of caffeine as a contrast booster for BOLD fMRI studies,” NeuroImage 15: 37-44 (2002) 13.Kastrup, A., Krüger, G., Tobias Neumann-Haefelin. & Moseley, M.E. “Assessment of cerebrovascular reactivity with functional magnetic resonance imaging: comparison of CO2 and breath holding,” Magn. Reson. Imag. 19: 13-20 (2001) 14.Hsu, Y.Y., Chang, C.N., Jung, S.M., Lim, K-E., Huang, J.C., Fang, S.Y.& Liu, H. L. “Blood oxygenation level dependent MRI of cerebral gliomas during breath holding,” Magn. Reson. Imag. 19: 160-167 (2004) 15.Gregory Krolczyk, B.Sc. “Cerebral vascular reactivity evaluation by BOLD fMRI,” University of Toronto Medical Journal. 79: 18-21 (2001) 16.Bandettini, P.A. & Wong, E.C. “A hypercapnia-based normalization method for improved spatial localization of human brain activation with fMRI,” NMR Biomed. 10:197-203 (1997) 17.Davis, T.L., Kwong, K.K., Weisskoff, R.M. & Rosen, B.R. “Calibrated functional MRI: mapping the dynamics of oxidatived metabolism,” Proc. Natl. Acad. Sci. USA 95: 1834-1839 (1998) 18.Schwarzbauer, C., Heinke, W. “Investigating the dependence of BOLD contrast on oxidative metabolism,” Magn. Reson. Med. 41: 537-543 (1999) 19.Ogawa, S., Lee, T.M. & Barrere, B. “The sensitivity of magnetic resonance image signal of a rat brain to change in the cerebral venous blood oxygenation,” Magn. Reson. Med. 29: 205-210 (1993) 20.Roy, C.S. & Sherrington, S.C. “On the regulation of the blood-supply of the brain,” J Physiol 11: 85-108 (1890) 21.Kim, S.G. “Progress in understanding functional imaging signals,” Proc. Natl. Acad. Sci. USA 100: 3350-3352 (2003) 22.Duong, T.Q., Yacoub, E., Adriany, G., Hu, X.P., Ugurbil, K. & Kim, S.G. “Microvascular BOLD contribution at 4 and 7T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects,” Magn. Reson. Med. 49: 1019-1027 (2003) 23.Kanno, I. & Matsuura, T. “Physiological basis for mapping brain activation through vascular response,” International congress series. 1232: 83-89 (2002) 24.Belliveau, P. A., Kennsdy, D. N., Mckinstry, R. C., Buchbinder,B. R., Weisskoff, R. M., Cohen, M. S., Vevea, J. M., Brady, T. J.& Rosen, B. R. “Functional mapping of the human visual cortex by magnetic resonance imaging,” Science254: 716-719 (1991) 25.Mandeville, J.B., Marota, J.J., Kosofsky, B.E., Keltner, J.R., Weissleder, R., Rosen, B.R. & Weisskoff, R.M. “Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation,” Magn. Reson. Med. 39: 615-624 (1998) 26.Buxton, R.B., Wong, E.C. & Frank, L.R. “ Dynamics of blood flow and oxygenation changes during brain activation: the balloon model,” Magn. Reson. Med. 39: 855-864 (1998) 27.Lythgoe, D.J., Williams, S. C.R., Cullinane, M. & Markus, A.H. “Mapping of cerebrovascular reactivity using BOLD magnetic resonance imaging,” Magn. Reson. Imag. 17: 495-502 (1999) 28.Röther, J., Kanb, R., Hamzei, F., Fiehker, J., Reichenbach, J.R., Büchel, C. & Weiller, C. “Negative dip in BOLD fMRI is caused by blood flow-oxygen consumption uncoupling in humans,” NeuroImage 15: 98-102 (2002) 29.Duong, T.Q., Costantino, I. & Kim, S.G. “Effect of hyperoxia, hypercapnia, and hypoxia on cerebral interstitial oxygen tension and cerebral blood flow,” Magn. Reson. Med. 45: 61-70 (2001) 30.Kastrup, A., Krüger, G., Glover, G.H., Tobias, N.H., & Moseley, M.E. “Regional variability of cerebral blood oxygenation response to hypercapnia,” NeruoImage 10: 675-681 (1999) 31.Brannan, S., Liotti, M., Egan, G., Shade, R., Madden, L., Robillard, R., Abplanalp, B., Stofer, K., Denton, D. & Fox, P.T. “Neuroimaging of cerebral activations and deactivations associated with hypercapnia and hunger for air,” Proc. Natl. Acad. Sci. USA 98: 2029-2034 (2001) 32.Buxton, R.B. & Frank, L.R. “A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation,” J. Cereb. Bloob Flow Metabol. 17: 64-72 (1997) 33.Johnny, E.J. "Carbon dioxide and cerebral circulation," Anesthesiology. 88: 1365-1386 (1998) 34.Moonen, C.T.W. & Bandettini, P.A. “Functional MRI”. Springer - Verlag, Berlin (1999) 35.Richard B. Buxton. “Introduction to functional magnetic resonance imaging- principles and techniques”. Cambridge university press (2002) 36.Richard S.J. Frackowiak, Karl J. Friston Christopher D. Frith, Raymond J. Dolan, Cathy J. Price, Semir Zeki, John Ashburner. & William Penny. “ Human brain function”.CH2.p33-44,Elsevier Science(2004) 37.Arthur, V., James, S & Dorothy, L. “Human physiology: the mechanisms of body function”. CH15: P.461-501, McGraw-Hill (1998) 38.Elaine N. Marieb, R.N.& Jon Mallatt. “Human Anatomy.” Ch12, p325. Benjamin/Cummings (1997)id NH0925257009 sid 914507 cfn 0 / id NH0925257010 auc 彭世勇 tic 利用聚苯乙烯模板結合溶膠凝膠技術製作規則孔洞二氧化矽薄膜研究 adc 董瑞安 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 英文 pg 75 kwc 單層 kwc 規則孔洞 kwc 聚苯乙烯模板 abc 規則性多孔洞材料已廣泛地被應用於許多領域,許多製作技術也陸續被開發來創造更複雜的特性以利更廣泛的用途。物理模板製作技術在傳統上已可達巨孔洞特性與尺寸(> 130 nm)的要求,而化學製造技術在次微米及奈米尺度(< 70 nm)上特性的應用則有其相當重要的地位。為達到更進一步複雜結構,發展具有可調控層數及孔洞大小能力的奈米技術,以製造高度規則化多孔洞結構材料是目前研究的重點。 tc Chapter 1 Introduction 1-1 Motivation…………………………………………………………………………….. 1 1-2 Objective………………………………………………………………………………. 3 Chapter 2 Background 2-1 Background……………………………………………………………………………. 4 2-2 Synthesis opal structure………………………………………………………………...8 2-2-1 Sedimentation ……………………………………………………………………. 8 2-2-2 Filtration …………………………………………………………………………. 8 2-2-3 Vertical deposition ……………………………………………………………….. 10 2-2-4 Langmuir-Blodgett method………………………………………………………. 11 2-2-5 surfactant self-assembly monolayers (SAMs)……………………………………. 12 2-3 Preparation of porous structures……………………………………………………….14 2-3-1 Chemical vapor deposition (CVD) ……………………………………………….14 2-3-2 Electrochemical deposition……………………………………………………….15 2-3-3 Nanocrystal infilling………………………………………………………………16 2-3-4 Dipping …………………………………………………………………………... 17 2-3-5 Filtration…………………………………………………………………………..18 2-4 MEMS method………………………………………………………………………... 19 2-4-1 Nanoimprinting Lithography-NIL………………………………………………... 19 2-4-2 Etching …………………………………………………………………………… 19 2-5 Application…………………………………………………………………………….. 21 2-5-1 Optical application……………………………………………………………….. 21 2-5-2 Biosensor application…………………………………………………………….. 21 2-5-3 Catalytic application……………………………………………………………… 22 2-6 Sol-Gel process……………………………………………………………………... 23 Chapter 3 Experimental details 3-1. Reagents and Materials………………………………………………………………. 26 3-2 Experimental design………………………………………………………………….. 26 3-3. Fabrication of opal film……………………………………………………………… 28 3-3-1 Spin coating……………………………………………………………………… 29 3-3-2 Deposition method……………………………………………………………….. 29 3-4 Preparation of porous structures………………………………………………………. 31 3-4-1 Preparation of sol solution………………………………………………………... 31 3-4-2 Infiltration sol solution…………………………………………………………… 31 3-5 Analytical instruments ……………………………………………………………… 33 3-5-1 Thermo-Gravimetric Analyzer (TGA)………………………………………….. 33 3-5-2 Scanning electron microscopy (SEM)…………………………………………… 33 3-5-3 Atomic Force microscopy (AFM)……………………………………………….. 33 3-5-4 UV-visible……………………………………………………………………….. 34 3-5-5 BET analysis……………………………………………………………………... 34 Chapter 4 Results and Discussion 4-1 Optimization Sol-Gel process…………………………………………………………. 36 4-2 Thermo-Gravimetric Analyzer (TGA)………………………………………………… 38 4-3 Fabrication of porous structure by spin-coating method……………………………… 40 4-4 Effect of cationic surfactant on ordered porous structure……………………………... 45 4-5 2D ordered porous materials by deposition method………………………………… 48 4-6 3D ordered porous materials by deposition method…………………………………. 57 4-7 Atomic Force Microscope (AFM)…………………………………………………….. 61 4-8 UV-Visible……………………………………………………………………………. 67 4-9 BET analysis…………………………………………………………………………... 68 Chapter 5 Conclusions……………………………………………………………….... 70rf [1 ] E. Yablonovitch, Phys. Rev. Lett. 1987, 58, 2059. [2 ] S. John, Phys. Rev. Lett. 1987, 58, 2486. [3 ] Y. Liu, W. Ren, L. Zhang, X. Yao, Thin Solid Films, 1999, 353, 124-128. [4 ] H. Yan, K. Zhang, C. F. Blanford, L. F. Francis, A. Stein, Chem. Mater. 2001, 13, 1374-1482. [5 ] W. Qian, Z.-Z. Gu, A. Fujishima, O. Sato, Langmuir, 2002, 18, 4526. [6 ] J. Lu, Q.-D. Zeng, C. Wang, Q.-Y. Zheng, L. Wana, C. Bai, J. Mater. Chem., 2002, 12, 2856. [7 ] B.T. Holland, C.F. Blanford, T. Do, A. Stein, Chem. Mater., 1999, 11, 795-805. [8 ] P. N. Bartlett, P. R. Birkin, M. A. Ghanem, Chem. Commun., 2000, 17, 1671. [9 ] S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Müllerb, R. Zentel, Synth. Met., 2001, 116, 475. [10 ] M. Miiller, R. Zentel, T. Maka, S. G.. Romanov, C. M. Sotomayor Torres, Adv. Mater. 2000, 12, 1499-1503. [11 ] A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondia, G.A. Ozin,O. Toader, H.M. van-Driel, Nature, 2000, 405, 437-440. [12 ] Y. Xia, B. Gates, Z.-Y. Li, Adv. Mater., 2001, 13, 409-413. [13 ] F. Bresson, C. -C. Chen, G. –C. Chi, Y. –W. Chen, Appl. Surf. Sci., 2003, 217, 281 [14 ] D. Comorettoa, R. Grassib, F. Marabellib and L.C. Andreanib, Mat. Sci. Eng. C, 2003, 23, 61 [15 ] Z.-Ze Gu, A. Fujishima, O. Sato, Chem. Mater., 2002, 14, 760-765. [16 ] M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, D. Whitehead, Thin Solid Films, 2003, 437, 276-279. [17 ] O. D. Velev, P. M. Tessier, A. M. Lenhoff and E. W. Kaler, Nature, 1999, 401, 548-548. [18 ] O. D. Velev, T. A. Jede, R. F. Lobo and A. M. Lenhoff, Chem. Mater. 1998, 10, 3597-3602. [19 ] L. Xu, W. L. Zhou, C. Frommen, R. H. Baughman, A. A. Zakhidov, L. M, J.-Q. Wang, J. B. Wiley, Chem. Commun., 2000, 997. [20 ] P. Ni, P. Dong, B. Cheng, X. Li, D. Zhang, Adv. Mater. 2001, 13, 437-441. [21 ] M. C. Carbajo, A. Gómez, M. J. Torralvo, E. Enciso, J. Mater. Chem., 2002, 12, 2740. [22 ] P. M. Tessier, O. D. Velev, A. T. Kalambur, A. M. Lenhoff, J. F. Rabolt, E. W. Kaler, Adv. Mater. 2001, 13, 396-400. [23 ] S. Sokolov, D. Bell, A. Stein, J. Am. Ceram. Soc., 2003, 86, 1481. [24 ] D. Comoretto, F. Marabelli, C.Soci, M.Galli, E. Pavarini, M.Patrini, L.C. Andreani, Synth. Met., 2003, 139, 633. [25 ] Z.-Z. Gu, S. Kubo, A. Fujishima and O. Sato, Appl. Phys. A , 2002, 74, 127-129. [26 ] P. Jiang, J. Cizeron, J. F. Bertone, V. L. Colvin, J. Am. Chem. Soc. 1999, 121, 7957-7958. [27 ] P. V. Braun, P. Wiltzius, Nature, 1999, 402, 603-604. [28 ] O. D. Velev, A. M. Lenhoff, Cur. Opin. Colloid Interface Sci., 2000, 5, 56-63. [29 ] Brian T. Holland et al., Science, 1998, 281, 538-540. [30 ] J. D. Joannopoulos, Nature, 2001, 414, 257-258. [31 ] Z.-Z. Gu, R. Horie, S. Kubo, Y. Yamada, A. Fujishima, O. Sato, Angew. Chem. Int. Ed., 2002, 41, 1153. [32 ] Michael C. Petty, Langmuir-Blodgett films, 1996, Plenum Press, New York. [33 ] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992, 359, 710-711. [34 ] J. Liu, X. Feng, G. E. Fryxell, L. Q. Wang, A. Y. Kim, and M. Gong Adv. Mater., 1998, 10, 161-165. [35 ] A. A. Zakhidov, I. I. Khayrullin, R. H. Baughman, Z. Iqbat, Nanostructured Materials, 1999, 12, 1089-1095. [36 ] A. A. Zakhidov, I. I. Khayrullin, R. H. Baughman, Z. Iqbat, C. Cui, I. Khayrullin , S. O. Dantas, J. Marti, V. G. Ralchenko, Science, 1998, 282, 897-901. [37 ] O. D. Velev, and E. W. Kaler, Adv. Mater. 2000, 12, 531-534. [38 ] H. Yan, K. Zhang, C.F. Blanford, L.F. Francis, A. Stein, Chem. Mater. 2001, 13, 1374-1382. [39 ] P. V. Braun, P. Wiltzius, Adv. Mater, 2001, 13, 482-485. [40 ] P. V. Braun, P. Wiltzius, Nature, 1999, 402, 603-604. [41 ] P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B. F. Chmelka, G. M. Whitesides, G. D. Stucky, Science, 1998, 282, 2244-2246. [42 ]A. Lebib, Y. Chen, E. Cambril, P. Youinou, V. Studer, M. Natali, A. Pepin,H.M. Janssen, R.P. Sijbesma, Microelect. Eng., 2002,61, 371-377. [43 ] S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, Jim Bur, Nature, 1998, 394, 251-253. [44 ] S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, Science, 2000, 289, 604-606. [45 ] J. G. Fleming, S. Y. Lin, Optics Letters, 1999, 24, 49 [46 ] K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, M. Sigalas, Solid State Commun., 1994, 89, 413. [47 ] http://ab-initio.mit.edu/photons/ [48 ] http://www.nano-tek.org/glossary/dico/Adsorption_(gas).html [49 ] Y. Liu, W. Ren, L. Zhang, Xi Yao, Thin Solid Films, 1999, 353, 124-128. [50 ] P. N. Pusey, W. van Megen, P. Bartlett, B. J. Ackerson, J. G. Rarity, S. M. Underwood, Phys. Rev. Lett. 1989, 63, 2753. [51 ] J. Zhu, M. Li, R. Rogers, W. Meyer, R. H. Ottewill, W. B. Russel, P. M. Chaikin, Nature, 1997, 387, 883-885. [52 ] A. Cai, H. Zhang, H. Hua, Z. Zhang, Nanotechnology, 2002, 13, 627–630. [53 ] S. Ludwigs, A. BÖker, A. Voronov, N. Rehese, R. Magerle, G. Krausch, Nature Materials , 2003, 2, 744-747. [54 ] B. T. Mayers, B. Gates, Y. Xia, Adv. Mater. 2000, 12, 1629-1632.id NH0925257010 sid 914509 cfn 0 / id NH0925257011 auc 陳俊良 tic 氣相沉積鑽石晶片應用於高能輻射劑量之量測 adc 朱鐵吉 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 65 kwc CVD鑽石 kwc 輻射劑量 kwc 熱發光劑量計 abc 近年來,醫學界應用高能輻射進行診斷與醫療,劑量標準定義為空氣克馬及水中的吸收劑量,由於水在人體中占70%,因此可把水等效於人體。醫學界於水吸收劑量量測時,要利用經鈷-60標準場進行校正的腔型游離腔,再將游離腔置於假體中量測高能輻射場的電荷量,利用AAPM 21或AAPM 51號議定書之運算,即可得到人體中之劑量。 tc 摘要 i 英文摘要 ii 謝誌 iii 目錄 iv 圖目錄 v 表目錄 viii 第一章 緒論 1 第二章 氣相沉積鑽石晶片介紹 3 第三章 輻射劑量標準 10 第四章 量測設備及方法 32 第五章 結果與討論 38 第六章 結論 59 參考文獻 63rf 1. C.M. Buttar J. Conway, R. Meyfarth, G. Scarsbrook, P.J. Sellin, A. Whitehead, “CVD diamond detectors as dosimeters for radiotherapy,” Nucl. Instr. and Meth. A392, 281-284 (1997). 2. B. Marczewska, T. Nowak, P. Olko, M. Nesladek, M.P.R. Waligórski, “Studies on the application of CVD diamonds as active detectors of ionising radiation,” Nucl. Instr. and Meth. A410, 96-99(1998). 3. A.J.Whitehead, R. Airey, C.M. Buttar, J. Conway, G. Hill, S. Ramkumar, G.A. Scarsbrook, R.S. Sussmann, S. Walker, “CVD diamond for medical dosimetry applications,” Nucl. Instr. and Meth. A460, 20-26(2001). 4. F. Bogani, E. Borchi, M. Bruzzi, C. Leroy, S. Sciortino, “A comparative of the thermoluminescent response to beta irradiation of CVD diamond and LiF dosimeters,” Nucl. Instr. and Meth. A388, 427-430(1997). 5. C.Furetta, G. Kitis, A. Brambilla, C. Jany, P. Bergonzo, F. Foulon, “Thermoluminescencs Characteristics of a New Production of Chemical Vapour Deposition Diamond,” Radiation Protection Dosimetry, 84, Nos. 1-4, 201-205(1999). 6. Paul W. May, CVD Diamond – a new Technology for the future?, Endeavour Magazine 19(3), 101-106(1995). 7. P1 Diamond Inc.3571 Leonard Court, Santa Clara, CA 95054. 8. 傅利德、翁寶山,熱發光的過程、理論與方法,頁6-12,新竹黎明書局(1990)。 9. V. Pagonis, S.M. Mian, G. Kitis, “Fit of First Order Thermoluminescence Glow Peaks using the Weibull Distribution Function,” Radiat. Prot. Dosim. Vol 93 No.1, 11-17(2001). 10. Chi-Chang Liu, Tieh-Chi Chu, Sung-Yen Lin, Jao-Perng Lin, “Indoor Light on Thermoluminescence of CVD Diamond Film used as a High-energy Photon Dosimeter,” Appl. Radiat. Isot. 58, 89-94(2003). 11. 蘇水華、陳俊良等,應用圓球型空氣游離腔量測137Cs及60Co之空氣克馬率,核能研究所對內報告INER-2347,頁2-24,(2003)。 12. 林炯榆、陳俊良等,應用圓餅型空氣游離腔量測60Co水吸收劑量,核能研究所對內報告INER-2451,頁2-29,(2003)。 13. AAPM TG-21, “A protocol for the determination of absorbed dose from high-energy photon and electron beams,” Med. Phys. 10, 741-771(1983). 14. P.R. Almond, P.J. Biggs, B.M. Coursey, W.F. Hanson, M. Saiful Hug, R. Nath, D.W.O. Rogers, “AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams,” Med. Phys. 26, 1847-1870(1999). 15. M. Boutillon, “Measuring conditions used for the calibration of ionization chambers at BIPM,” Report BIPM-01/04 (2001). 16. M. Boutillon, “Perturbation correction for the ionometric determination of absorbed dose in a graphite phantom for 60Co gamma rays,” Phys. Med. Biol. 28, 375-88(1983). 17. International Organization for Standardization, “Guide to the expression of uncertainty in measurement,” ISO/TAG 4/WG3 (1992). 18. Shirish K. Jani, “Handbook of Dosimetry Data for Radiotherapy,” CRC Press, Florida(1993). 19. 許世明,照射發光玻璃劑量計與熱發光劑量計偵測輻射特性之比較研究,陽明大學碩士論文,(2003)。 20. E. Vittone, C. Manfredotti, F. Fizzotti, A. Lo Guidice, P. Polesello, V. Ralchenko, “Thermoluminescence in CVD diamond films: application to radiation dosimetry,” Diamond and related materials 8, 1234~1239 (1999). 21. Health Physics Socity, “Personal Dosimetry performance Criteria for Testing,” HPS N13.11, New York(1993).id NH0925257011 sid 914510 cfn 0 / id NH0925257012 auc 黃柏嘉 tic 三維統計影像重建法在高解析度小動物Pinhole SPECT之研究 adc 許靖涵 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 87 kwc 針孔 kwc 單光子發射斷層掃描 kwc 解析度 abc 單光子發射斷層掃描是將放射性藥物注射入生物體,並利用各種組織器官對於藥物的吸收反應程度不同,而對組織器官進行功能性的分析。將針孔成像原理與單光子發射斷層掃描加以結合,利用針孔成像的放大原理,可以得到高解析度影像。過去在臨床上使用在針孔單光子發射斷層掃描的影像重建方法是濾波反投影法(Filtered Back Projection, FBP),濾波反投影法雖是臨床上普遍使用的影像重建法,但是其本身的特性限制了重建影像的品質,會在重建影像中產生放射狀假影。本研究使用以統計為基礎的光子偵收模型,對於針孔成像的幾何特性進行分析,再配合硬體設計上的旋轉,用疊代式影像重建演算法(Iterative Image Reconstruction Algorithm)進行影像重建,希望在具有理論基礎的成像系統與演算法的配合下,以相同的偵檢條件,得到高品質的影像。實驗結果顯示,將統計成像原理運用在針孔的放大系統中,重建影像無論在位置、影像值、均勻性與邊界保留上,皆能順利的重建出全三維的高解析度高品質影像。對於需要高品質影像的小型動物實驗而言,本研究結果提供了適用於進行定性與定量分析的影像。 tc 第1章 序論 第2章 針孔單光子發射斷層掃描的原理 第2-1節 單光子發射斷層掃描 第2-2節 針孔準直儀 第2-3節 空間解析度 第2-4節 其他針孔單光子發射斷層掃描特性 第2-4-1節 光子相關特性 第2-4-2節 幾何特性 第2-5節 3D Pinhole SPECT 第3章 統計模型建立與演算法 第3-1節 光子的發射與接收 第3-2節 相似度函數 第3-3節 最大相似度與均值最大化演算法 第3-3-1節 最大化過程 第3-3-2節 最大相似度與均值最大化演算法 第3-4節 相似度與均值最大化演算法的特性 第3-5節 序列子集與均值最大化演算法 第3-6節 序列子集與均值最大化演算法與雜訊影響 第3-7節 兩種演算法的正向投影與反向投影 第3-7-1節 最大相似度與均值最大化演算法 第3-7-2節 序列子集均值最大化演算法 第4章 機率矩陣的建立 第4-1節 機率矩陣 第4-2節 距離反比的機率計算 第4-2-1節 光子偵收 第4-2-2節 一維偵檢器排列 第4-2-3節二維的偵檢器排列 第4-3節 二維空間座標軸旋轉之座標轉換 第4-4節 三維空間中座標定義與投影 第4-4-1節 座標定義 第4-4-2節 旋轉的選擇 第4-4-3節 三為空間座標旋轉的投影與機率計算 第4-5節 有限小孔徑的機率計算 第4-5-1節 有限小孔徑 第4-5-2節 放大倍率與偵檢器需求 第5章 機率矩陣的簡化與影響 第5-1節 儲存空間與非零值儲存 第5-2節 四倍對稱 第5-3節 四倍對稱與OSEM正向投影 第5-4節 正弦圖排列改變之修正第 第6章 實驗設計 第6-1節 硬體參數 第6-2節 模擬假體 第6-2-1節 點射源 第6-2-2節 線射源 第6-2-3節 均勻性射源 第6-2-4節 非均勻性射源 第6-2-5節 影像值設定 第6-3節 影像重建 第6-3-1節 機率矩陣與正向投影 第6-3-2節 模擬正弦圖的影像重建 第6-3-3節 以蒙地卡羅模擬光子特性之研究 第6-3-4節 收斂與疊代演算停止 第7章 結果與討論 第7-1節 驗證實驗 第7-1-1節 正向投影 第7-1-2節 四倍對稱與MLEM 第7-1-3節 OSEM 第7-2節 理想狀況下重建影像與系統品質實驗 第7-2-1節 含有背景值的點射源影像重建 第7-2-2節 三維均向性與空間解析度 第7-2-3節 重建影像均勻性 第7-2-4節 非均勻性影像重建結果 第7-3節 有限小孔徑機率矩陣重建結果 第7-3-1節 使用面積定義機率的合理性 第7-3-2節 點射源的擴散效應與空間解析度 第7-3-3節 球狀射源重建影像的均勻性 第7-3-4節 非均勻性射源的邊界 第7-4節 蒙地卡羅模擬實驗結果 第7-4-1節 25個點射源的重建結果 第7-4-2節 線射源 第7-4-3節 球狀射源 第7-5節 忽略有限小孔徑對影像造成的影響 第7-5-1節 點射源的位置偏移 第7-5-2節 球狀射源的影像扭曲 第7-6節 綜合討論 第8章 結論與未來方向rf 1.J. R. Mallard , F. Inst. P. , M. J. Myers , B. Sc. , “The Performance of a Gamma Camera for the Visualization of Radioactive Isotopes in vivo”, Phys. Med. Biol. ,Vol. 8 , No. 2 ,1963. 2.D. Paix , “Pinhole Imaging of Gamma Rays”, Phys. Med . Biol. , Vol. 12 , No. 4 , 1967. 3.L. A. Shepp , Y. Vardi , “Maximum Likelihood Reconstruction for Emission Tomography” , IEEE Transaction on medical imaging , Vol. MI-1 , No. 2 , October 1982. 4.G. T. Gullberg , B. M. W. Tsui , C. R. Crawford , J. G. Ballard , J. T. Haugius , “Estimation of Geometrical Parameters and Collimator Evaluation for Con Beam Tomography ” , Med. Phys. Vol. 17 , No.2 , 1990. 5.J. Palmer, P. Wollmer, “Pinhole emission computed tomography: method an experimental evaluation”, Phys. Med. Biol., Vol. 35, pp. 339-350, 1990 6.H. M. Hudson and R S. Larkin, “ Accelerated image reconstruction using ordered subsets of projection data, ” IEEE Transactions on Medical Imaging, Vol. 13, No. 4, pp.601-609, Dec. 1994 7.R. J. Jaszczak, J. Li, H. Wang, W. R. Zalutsky, R. E. Coleman, “Pinhole collimation for ultra-high-resolution, small field-of view SPECT”, Phys. Med. Biol., Vol. 39, pp. 425-437, 1994 8.J. Li, R. J. Jaszczak, K. L. Greer, R. E. Coleman, “A filtered backprojection algorithm for pinhole SPECT with a displaced centre of rotation”, Phys. Med. Biol., Vol. 39,pp. 165-176, 1994 9.S. Alenius, U. Ruotsalainen, “Bayesian image reconstruction for emission tomography based on median root prior”, Eur. J. Nucl. Med., Vol. 24, pp. 256-265, 1997 10.M. F. Smith , R. J. Jaszczak , “An Analytic of Pinhole Aperture penetration for 3D Pinhole SPECT Image Reconstruction” , Phys. Med. Biol. , Vol. 43 , 1998 11.K. Ogawa, T. Kawade, K. Nakamura, A. Kubo , T. Ichihara, “Ultra high resolution pinhole SPECT for small animal studies”, IEEE Transaction on nuclear science, Vol. 45, No. 6, pp. 3122-3126, 1998 12.N. Schramm, A. Wirrwar, F. Sonneberg, H. Halling, “Compact high resolution detector for small animal SPECT”, IEEE Transaction on Nuclear Science, Vol. 47, No. 3, pp. 1163-1167, 2000 13.M.C.Wu, H.R.Tang, D.W. Gao, A. Ido, J. W. O’Connell, B.H. Hasegawa, M. W. Dae, ”ECG-Gated pinhole SPECT in millimeter spatial resolution”, IEEE Transaction on Nuclear Science, Vol. 47, No. 3, 2000. 14.L. R. MacDonald , B.E. Patt , J. S. Iwanczyk , B. M. W. Tsui , Y. Wang , E. C. Frey , D. E. Wesswll , P. A. Acton , H. K. Kung , “Pinhole SPECT of Mice Using LumaGem Gamma Camera” , IEEE Tran. Nucl. Sci. , Vol. 48 , No. 3 , June 2001. 15.Seret, M. Defrise, D. Blocklet, “ Pinhole SPET with a tilted detector and OS-EM reconstruction: phantom studies and clinical applications”, Eur. J. Nucl. Med., Vol. 28, pp. 1836-1841, 2001 16.M. C. Wu , B. H. Hasegawa , “Performance Evaluation of a Pinhole SPECT System for Myidardial Perfusion Imaging of Mice” , Med. Phys. Vol. 29 No. 12 , December 2002. 17.T. Y. Song , Y. Choi , Y. H. Chung , J. H. Jung , Y. S. Choe , K. H. Lee , S. E. Kim , B. T. Kim , “Optimization of Pinhole Collimator for Small Animal SPECT Using Monte Carlo Simulation” , IEEE. 18.S. D. Metzler , J. E. Bowsher , K. L. Bgeer , R. J. Jaszczak , “Analytic Determination of The Pinhole Collimator’s Point-Spread Function and RMS Resolution with Penetration” , IEEE Transaction on medical imaging , Vol. 21 , No. 8 , August 2002. 19.A. Sohlberg , . T. Kuikka , U. Ruoysalainen , “Pinhole Single-Photon Emission Tomography Reconstruction Based on Median Root Prior ” , European Journal of Nuclear Medicine and Molecular Imaging , Vol. 30 , No. 2 , February 2003.id NH0925257012 sid 914512 cfn 0 / id NH0925257013 auc 李俞鋆 tic 硒銫在花崗岩上地下水中的吸附與擴散行為 adc 許俊男 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 76 kwc 硒 kwc 銫 kwc 花崗岩 kwc 地下水 kwc 吸附 kwc 擴散 abc 本研究的主要目的是藉由實驗及模式的建立,探討硒和銫在粉碎花崗岩中的擴散行為。由實驗數據的分析結果顯示,可以有效地模擬出放射性核種的擴散模式。本研究包含了批次實驗和管柱實驗,其中所有採用的液相皆為合成地下水及合成海水。在批次實驗中,包含了好、厭氧批次實驗及動力吸、脫附反應。好、厭氧批次實驗主要是觀察在厭氧環境下,其Kd值與在好氧環境下是否有差異,以作為是否進一步探討厭氧中管柱擴散實驗的依據。結果顯示,花崗岩在厭氧的環境下,吸附Cs的能力比在好氧下好,差異也非常明顯。在動力吸、脫附反應裡,主要是在探討其可能的吸附機制。由實驗發現,Cs在花崗岩中的吸附機制為雙位元模式吸附,而Se在花崗岩中的吸附則為單位元模式吸附。在好氧的管柱擴散實驗裡,發現若粉碎花崗岩管柱的直徑和長度比小於5,則不能用以往的濃度累積法來計算其Da及Rf值,而需利用解析解擬合出最適合的破除曲線來找出視擴散係數,進而求出其遲滯因數。在管柱實驗中,發現離子濃度對於擴散情形影響並不大,無論在海水或在地下水中,所求出來的數據都在同一個數級內,且非常地接近。由實驗數據發現,就以本研究中所進行的三種長度而言,視擴散係數及遲滯因數均未受到長度的影響,即無論長度為2公分、4公分或8公分,所得到的數值都差異不大。 tc 目 錄 中文摘要...............................................................................................................................................i 英文摘要..............................................................................................................................................ii 致謝.....................................................................................................................................................iii 目錄.....................................................................................................................................................iv 表目錄.................................................................................................................................................vi 圖目錄................................................................................................................................................vii 第一章 緒論........................................................................................................................................1 1–1 背景介紹......................................................................................................................1 1–2 研究目的......................................................................................................................4 第二章 理論........................................................................................................................................5 2–1 岩石礦物的吸附模式..................................................................................................5 2–2 岩石礦物的擴散理論..................................................................................................7 第三章 方法......................................................................................................................................12 3–1 好氧厭氧批次實驗....................................................................................................12 3–1–1 化學試藥........................................................................................................12 3–1–2 儀器設備........................................................................................................13 3–1–3 實驗材料........................................................................................................13 3–1–4 好氧批次實驗................................................................................................15 3–1–5 厭氧批次實驗................................................................................................15 3–2 動力吸脫附實驗........................................................................................................16 3–2–1 實驗材料........................................................................................................17 3–2–2 動力吸脫附實驗步驟....................................................................................17 3–3 擴散實驗....................................................................................................................17 3–3–1 實驗材料........................................................................................................18 3–3–2 擴散實驗方法................................................................................................18 第四章 結果與討論..........................................................................................................................24 4–1 好氧批次實驗............................................................................................................24 4–1–1 Cs在好氧環境及厭氧環境下的差異...........................................................24 4–1–2 Se在好氧環境及厭氧環境下的差................................................................27 4–2 動力吸脫附實驗........................................................................................................31 4–3 管柱擴散實驗結果....................................................................................................39 4–3–1 地下水環境......................................................................................................39 4–3–2 海水環境..........................................................................................................49 4–3–3 地下水與海水環境下的比較與結果..............................................................57 4–4 批次與管柱的比較....................................................................................................58 第五章 結論......................................................................................................................................61 參考文獻............................................................................................................................................63 附錄一 Cs在好氧及厭氧下批次實驗原始數據...........................................................................65 附錄二 Se在好氧及厭氧下批次實驗原始數據............................................................................67 附錄三 Cs吸附脫附原始數據.......................................................................................................69 附錄四 Se吸附脫附原始數據........................................................................................................73 表目錄 表3-1 合成地下水及合成海水成分表..........................................................................................14 表3-2 各種岩石的基本特性..........................................................................................................14 表4-1 Cs在好氧環境下的各項實驗數據......................................................................................25 表4-2 Cs在厭氧環境下的各項實驗數據......................................................................................25 表4-3 Se在好氧環境下的各項實驗數據......................................................................................28 表4-4 Se在厭氧環境下的各項實驗數據......................................................................................28 表4-5 Cs批次實驗的吸脫附結果..................................................................................................32 表4-6 Se批次實驗的吸脫附結果..................................................................................................32 表4-7 Cs擬合曲線的參數列表......................................................................................................34 表4-8 Se擬合曲線的參數列表......................................................................................................34 表4-9 各核種在地下水環境中數據總整理..................................................................................46 表4-10 各核種在海水環境中數據總整理....................................................................................54 表4-11 批次實驗與擴散實驗的遲滯因數比較............................................................................60 圖目錄 圖1-1 核種從廢料固化體遷移到人類生活圈的路徑示意圖........................................................2 圖1-2 本論文主要研究目的及方向................................................................................................3 圖2-1 一些重要的吸附機制............................................................................................................6 圖2-2 擴散實驗的累積突破曲線圖..............................................................................................11 圖3-1 擴散管柱 (a)構造圖、(b)裝置圖.........................................................................................19 圖3-2 岩石擴散管柱實驗 (a)裝置圖、(b)取樣示意圖.................................................................20 圖3-3 水飽和示意圖......................................................................................................................22 圖4-1 Cs在好氧及厭氧環境下個參數的比較 (a)Kd值、(b)pH、(c)Eh........................................26 圖4-2 Cs在好氧及厭氧環境下個參數的比較 (a)Kd值、(b)pH、(c)Eh........................................29 圖4-3 Cs在地下水中的吸附實驗及其擬合曲線..........................................................................35 圖4-4 Cs在地下水中的脫附實驗及其擬合曲線..........................................................................35 圖4-5 Cs在海水中的吸附實驗及其擬合曲線..............................................................................36 圖4-6 Cs在海水中的脫附實驗及其擬合曲線..............................................................................36 圖4-7 Se在地下水中的吸附實驗及其擬合曲線..........................................................................37 圖4-8 Se在地下水中的脫附實驗及其擬合曲線..........................................................................37 圖4-9 Se在海水中的吸附實驗及其擬合曲線..............................................................................38 圖4-10 Se在海水中的吸附實驗及其擬合曲線............................................................................38 圖4-11 地下水中Cs的突破曲線...................................................................................................40 圖4-12 地下水中的Cs累積曲線...................................................................................................40 圖4-13 地下水中Se的突破曲線...................................................................................................41 圖4-14 地下水中Se的累積曲線...................................................................................................41 圖4-15 地下水中HTO的突破曲線...............................................................................................42 圖4-16 地下水中HTO的累積曲線...............................................................................................42 圖4-17 利用解析解擬合出的視擴散係數 (a)Cs-GW、(b)Se-GW、(c)HTO-GW.........................47 圖4-18 利用濃度累積法算出來的Da值與突破曲線作圖 (a)Cs-GW、(b)Se-GW、 (c)HTO-GW........................................................................................................................48 圖4-19 海水中Cs的突破曲線.......................................................................................................50 圖4-20 海水中Cs的累積曲線.......................................................................................................50 圖4-21 海水中Se的突破曲線.......................................................................................................51 圖4-22 海水中Se的累積曲線.......................................................................................................51 圖4-23 海水中HTO的突破曲線...................................................................................................52 圖4-24 海水中HTO的累積曲線...................................................................................................52 圖4-25 利用濃度累積法算出來的Da值與突破曲線作圖 (a)Cs-SW、(b)Se-SW、 (c)HTO-SW.........................................................................................................................55 圖4-26 利用解析解擬合出的視擴散係數 (a)Cs-SW、(b)Se-SW、(c)HTO-SW...........................56rf 參考文獻 1. U.S. Energy Research Development Administration, “Alternatives for the of managing wastes from reactors and post-fission operation in the LWR fuel cycle,” Read-76-43,2, Energy Research and Development Administration, Washington, D.C. (1976). 2. 許俊男,「在模擬地下水中沸石和高嶺土對鍶銫核種的吸附機制研究,」國立清華大學原子科學系,行政院國家科學委員會專題研究計畫成果報告(1996)。 3. 張顧齡,「酸鹼度和溫度對鍶銫在膨潤土中吸附與擴散行為之影響,」國立清華大學原子科學系研究所,碩士論文(1997)。 4. W.D. Ehmann, and D.E. Dance, Radiochemistry and Nuclear Methods of Analysis, John Wiley & Sons, U.S. (1991). 5. Y. Tachi, T. Shibutani, H. Sato, M. Yui, ”Sorption and diffusion behavior of selenium in tuff,” Journal of Contaminant Hydrology, 35, 77 (1998). 6. NAGRA, “Sorption Database for Crystalline, Marl and Bentonite for Performance Assessment,” Technical Report 93-06, National Cooperative for the Disposal of Radioactive Waste, Switzerland (1995). 7. A. Muurinen, ”Diffusion of anions and cations in compacted sodium bentonite,” Technical Research Centre of Finaland, VTT Publications 168 (1994). 8. J. Crank, The Mathematics of Diffusion, Claredon Press, Oxford, UK (1975). 9. 陳子雲,「放射性廢料處置主要核種之遷移,」清華大學原子科學系研究所,碩士論文(2001)。 10. M. Ochs, B. Lothenbach, H. Wanner, H. Sato and Mikazu Yui, “An integrated sorption-diffusion model for the calculation of consistent distribution and diffusion coefficients in compacted bentonite,” Journal of Contaminant Hydrology, 47, 283(2001). 11. 劉靜蓉,「鍶銫在潛在母岩與水泥工程障壁中吸附與擴散的基礎研究,」國立清華大學原子科學系研究所,碩士論文(1999)。 12. 王明光譯,土壤環境化學,國立編譯館,台北(1991)。 13. 郭殷銘,「銫在粉碎花崗岩中宿命與傳輸模式之建立,」國立清華大學原子科學系研究所,碩士論文(2002)。 14. 黎華嵊,「銫在粉碎花崗岩與低鹽度人造地下水中傳輸之研究,」國立清華大學原子科學系研究所,碩士論文(2000)。 15. 林哲毅,「從緩衝材料觀點研究放射核種在膨潤土中的吸附與擴散行為,」國立清華大學原子科學系研究所,碩士論文(1997)。id NH0925257013 sid 914513 cfn 0 / id NH0925257014 auc 李幸芬 tic 利用半導體製程研製三維光子晶體 adc 朱鐵吉 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 127 kwc 光子晶體 kwc 自行衍生 kwc 半導體製程 kwc 高密度電漿化學氣相沉積 abc 摘要 rf 參考文獻 [1 ] E. Yablonovitch, “Inhibited spontaneous emission in solid-sate physics and electronics,” Phys. Rev. Lett., vol. 58, pp. 2059–2062, 1987. [2 ] S. John, “Strong localization of photons in certain disordered dielectric superlattice,” Phys.Rev.Lett, vol.58, pp. 2486 –2489,1987. [3 ] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, “ Photonic Crystals, Molding the Flow of Light. Princeton” NJ: Princeton Univ. Press, 1995. [4 ] K. W. K. Shung and G. D. Mahan, Phys. Rev. Lett. vol.57, pp1076 , 1986. [5 ] C. J. M. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. F. Krauss, R. M. De La Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystal,” Electron.Lett., vol. 35, pp. 228–230,1999. [6 ] S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature, vol. 407, pp.608–610, 2000. [7 ] T. Baba, N. Fukaya, and A. Motegi, “Light propagation characteristics in photonic crystal waveguides,” in Tech. Dig. CLEO/Pacific Rim, vol. I, paper TuA4-5, pp. 290–291, 2001. [8 ] J. G. Fleming and S. Y. Lin, “Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 μm,” Opt. Lett., vol. 24, pp. 49–51, 1999. [9 ] M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, J. Lightwave Tech. 18, 1402, 2000. [10 ] E. Chow, S. Lin, S. G. Johnson, E. Chow, S. Y. Lin, S. G. Johnson, P. R. Cilleneuve, J. D. Joannapoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, Nature, 407, 983, 2000. [11 ] J. C. knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science, vol.282, pp.1476,1998. [12 ] Shawn-Yu Lin, V. M. Hietala, Li Wang, and E. D. Jones, “Highly dispersive photonic band-gap prism,” vol.21, no.21, 1996. [13 ] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B, vol. 58, no. 16, pp. 10096–10099,1998. [14 ] T. F. Krauss, “Photonic crystal integrated optics,” in Tech. Dig. CLEO/Pacific Rim 2001, vol. I, paper TuA4-1, pp. 282–283, 2001. [15 ] S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, S. R. Kurtz and Jim Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature , vol 394, no 16, 2002. [16 ] J. G. Fleming, S. Y. Lin, I. EI-Kady and K. M. Ho, “All-metallic three-dimensional photonic crystal with a large infrared bandgap ,” Nature , vol 417, no 2 2002. [17 ] Steven G. Johnsona and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett., vol. 77, no. 22, pp. 3490, 2000. [18 ] K. Aoki, “Three-dimensional photonic crystal stacking by micro- manipulation,” Appl. Phys. Lett., vol 81, no 17, pp.3122, 2002. [19 ] Yurii A. Vlasov, Xiang-Zheng Bo, James C. Sturm & David J. Norris,“On-chip natural assembly of silicon photonic bandgap crystals ,” Nature ,vol 414, no 15, 2001. [20 ] U. Gruning, V. Lehmann, S. Ottow, and K. Busch, Appl. Phys. Lett. vol. 68, no.747,1996. [21 ] Ovidiu Toader and Sajeev John, “Square spiral photonic crystals: Robust architecture for microfabrication of materials with large three -dimensional photonic band gaps,” Physical Review E, vol.66, 2002. [22 ] Ovidiu Toader and Sajeev John, “Proposed square spiral micro- fabrication architecture for large three-dimensional photonic band gap crystals,” Science, vol. 292 pp.1133, 2001. [23 ] Steven. G. Jonhson, “Photonic crystals: Periodic surprises in electromagnetism,” MIT. [24 ] S. Kawakami, “Fabrication of submicrometer 3D periodic structures composed of Si/SiO2,” Electron. Lett., vol. 33, no. 14, pp. 1260–1261,1997. [25 ] T. Kawashima, T. Sato, K. Miura, Y. Ohtera, N. Ishino, and S. awakami, “Autocloning technology: Fabrication method for photonic crystals based on sputtering process,” Proc. Int. School Quantum electronics, pp. 115–122, 2000. [26 ] T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami “autocloning technique and their application,” Opt. Quantum Electron, vol. 34, no. 1, pp.63–70,2001. [27 ] T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication process of photonic crystals,” Appl. Phys. Lett., vol. 77, no. 16, pp. 2613–2615, 2000. [28 ] Takashi Sato, Yasuo Ohtera, Naoto Ishino, Kenta Miura, and S. Kawakami, “In-Plane Light Propagation in Ta2O5/SiO2 Autocloned Photonic crystals,” J. of Quantum. Electronics, vol. 38, 2002. [29 ] Y. Ohtera, T. Kawashima, Y. Sakai, T. Tamamura, A. Ozawa, and S.Kawakami, “Fabrication of lattice-modulated photonic crystals and their application to multichannel wavelength selective filters,” in Proc. 2000 Society Conf.,2000. [30 ] T. Baba, N. Fukaya, and A. Motegi, “Light propagation characteristics in photonic crystal waveguides,” in Tech. Dig. CLEO/Pacific Rim 2001,vol. I, paper TuA4-5, pp. 290–291, 2001. [31 ] S. Kawakami and Y. Ohtera, “Band engineering of photonic crystals: Realization of novel waveguides,” in Proc. 3rd Workshop Photonic Electromagnetic Crystal Structures, St. Andrews, Scotland , 2001. [32 ] K. Miur , Y. Ohtera, H. Ohkubo, N. Akutsu and S. Kawakami, “Reduction of propagation and bending losses of heterostructured photonic crystal waveguides by use of a high-Δ structure,” Optics letters , vol. 28, no. 9, 2003. [33 ] M. Shirane, A. Gomyo, K. Miura and S. Kawakami, “Optical directional couplers based on autoconed photonic crystals, ” Electronic Lett, vol.39, no.1, 2003. [34 ] Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett., vol. 35, no. 15,pp. 1271–1272 , 1999. [35 ] M. Notomi, T. Tamamura, T. Kawashima, and S. Kawakami, “Drilled alternating-layer three-dimensional photonic crystals having a full band gap,” Appl. Phys. Lett., vol. 77, pp. 4256–4258, 2000. [36 ] Osamu Hanaizumi, Yasuo Ohtera, Takashi Sato, and S. Kawakami, “Propagation of light beams along line defects formed in a-Si/SiO2 three-dimensional photonic crystals: Fabrication and observation,” Appl. Phys. Lett., vol. 74, no. 6, 1999. [37 ] Hiroyuki Ohkubo, Y. Ohtera, S. Kawakami, T. Chiba and H. Okano, “Integration and evaluation of multichannel photonic crystal wavelength filters consisting of autocloned Ta2O5/SiO2 multilayer thin films,” Jpn. J. Appl. Phys., vol.42, pp.1219-1221, 2003. [38 ] T. Kawashima, T. Sato, K. Miura, Y. Ohtera, N. Ishino, and S. awakami “A new fabrication technique for photonic crystals :Nanolithography combined with alternating-layer deposition”Optical and Quantum Electronics, pp 53-61, 2002. [39 ] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi and Toshiaki, “Photonic crystals for micro lightwave circuits using wavelength- dependent angular beam steering,” Appl. Phys. Lett., vol. 74, no.10, 1999. [40 ] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi and Toshiaki, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett., vol. 74, no.9, 1999. [41 ] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, Takashi Sato, and S. Kawakami, “Superprism phenomena in photonic crystals: toward microscale lightwave circuits,” J. Lightwave Tech., vol. 17, no.11 ,1999. [42 ] H. Kosaka, T. Kawashima, A. Tomita, Takashi Sato and S. Kawakami, “Photonic-crystal spot-size converter,” Appl. Phys. Lett., vol. 76, no.3, 2000. [43 ] S. Kawakami, T. Sato, K. Miura, Y. Ohtera, T. Kawashima, and H. Ohkubo, “3-D photonic-crystal heterostructures: fabrication and in-Line resonator,” Photonics Tech. Lett., vol. 15, no. 6, 2003. [44 ] T. Sato, N. Ishino, K. Miura, S. Kawakami, and M. Miyagi, “Application of in-plane type autocloned photonic crystals,” Institute of Electronics, Information and Communication Engineers, Tech. Rep. OPE2001-46, 2001. [45 ] Shanhui Fan, Rerre FL Villeneuve, Robert D. Meade, and J. D. Joannopoulos, “Design of three-dimensional photonic crystals at submicron lengthscales,” Appl. Phys. Lett. , vol.65 (II), no.12, 1994. [46 ] M. Notomi, T. Tamamura, T. Kawashima, and S. Kawakami, “Transmission characterization of drilled alternating-layer 3-D photonic crystals,” Appl. Phys. Lett. , vol.93, no.11, 2003. [47 ] K. Wang, P. Filloux and N. Paraire, “Two-dimensional photonic crystals by focused-ion-beam etching of multilayer membranes,” J. Vac. Sci. Technol. B, vol.21, no.3, 2003. [48 ] P. Filloux and N. Paraire, “Use of multilayer structures, periodically etched, to implement compact diffractive optical devices,” J. Opt. A: Pure Appl. Opt., vol.4 , 2002. [49 ] N. Paraire, P. Filloux and K. Wang, “Patterning andcharacterization of 2D photonic crystals fabricated by focused ion beam etching of multilayer membranes,” Nanotechnology, vol.15, pp.341–346, 2004. [50 ] K. H. Dridi, “Intrinsic eigenstate spectrum of planar multilayer stacks of two-dimensional photonic crystals,” Optics Eepress, vol. 11, no. 10, pp. 1156, 2003. [51 ] S.Kawakami, T. Kawashima, and T. Sato, “Mechanism of shape-formation of 3D periodic nanostructures by bias sputtering,” Appl. Phys. Lett., vol. 74, pp. 463–465,1999. [52 ] T. Kawashima, Takashi Sato, Yasuo Ohtera, and S. Kawakami, “Tailoring of the Unit Cell Structure of Autocloned Photonic Crystals,” J. of Quantum. Electronics, vol. 38. no 7, 2002. [53 ] Hong Xiao著, 張鼎張、羅正忠譯, 半導體製程技術導論, 台灣培生出版股份有限公司, 2002. [54 ] 莊達人, VLSI製造技術, 高立圖書有限公司出版, 2000. [55 ] Osamu Hanaizumi, Kazutaka Ono, Yuichi Ogama, Takehiro Koga, Yuzo Hasegawa,Atsushi Ogihara and Go Saito, “Fabrication and assessment of sputtered Si:SiO2 films emitting white light without annealing, ” Jpn. J. Appl. Phys. vol. 41, pp. 1084, 2002. [56 ] Osamu Hanaizumi, Kazutaka Ono, and Yuichi Ogawa, “Blue-light emission from sputtered Si:SiO2 films without annealing, ” Appl. Phys. Lett., vol. 82, no.4, 2003. [57 ] Osamu Hanaizumi, Makoto. Saito and Yasuo. Ohtera, “Introducing CdS into two- and three-dimensional photonic crystals, ” Optical and Quantum Electronics, vol.34, pp.71-77, 2002.id NH0925257014 sid 914514 cfn 0 / id NH0925257015 auc 李國紳 tic 影像事前機率在正子斷層掃描之研究 adc 許靖涵 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 81 kwc 正子斷層掃描 kwc 影像事前機率 abc 最大相似度與期望值最大化演算法(Maximum Likelihood Expectation Maximization,MLEM)在正子斷層掃描(Positron Emission Tomography,PET)上用來進行影像重建,會因為PET本身具有不健全性(ill-condition)的問題存在,使得微量的雜訊便可能造成重建影像值的變動性大幅增加。因此使用MLEM演算法會有隨著疊代次數增加,而使得重建影像有著變異性(variance)增大以及數值發散的問題存在。為了避免此一問題,我們改採用最大事後機率評估法(Maximum a Posteriori,MAP),來進行影像重建。此方法中影像事前機率(Image prior)為一極為重要的部份,不同的事前機率會對重建影像產生不同的影響,例如過度平滑(over-smoothing)使得重建影像中邊緣的部份消失。在本研究中,我們提出了Approximate ratio(AR)事前機率,將注重在保留重建影像中邊緣的部份,並兼具能將相同比例但絕對差異不同的區域維持在一相近比例的情況下。我們並進行各類假體的蒙地卡羅模擬(Monte Carlo study)來比較優劣,最後並使用Hoffman假體模擬真實情況,進行驗證。 tc 目錄 第1章 前言 ........................................................................................... 1 第2章 正子斷層掃描原理 ................................................................... 3 第2-1節 物理原理 ......................................................................... 3 第2-2節 正弦圖 ............................................................................. 7 第3章 疊代式影像重建法 ................................................................... 9 第3-1節 正子斷層掃描之資料模型 ............................................. 9 第3-2節 最大相似度評估法 ....................................................... 10 第3-3節 最大相似度與期望值最大化演算法 ........................... 11 第3-4節 最大事後機率評估法 ................................................... 13 第3-5節 ㄧ步延遲期望值最大化演算法 ................................... 15 第4章 影像事前機率 ......................................................................... 18 第4-1節 吉布斯分佈 ................................................................... 18 第4-2節 相鄰系統 ....................................................................... 19 第4-3節 凸面函數 ....................................................................... 21 第4-4節 影像事前機率 ............................................................... 21 第4-4-1節 Quadratic事前機率 ....................................... 22 第4-4-2節 L1-Norm事前機率 ........................................ 23 第4-4-3節 Huber事前機率 ............................................. 24 第4-4-4節 Geman and McClure事前機率 ..................... 25 第4-4-5節 Relative difference事前機率 ......................... 26 第4-4-6節 Thin Plate事前機率 ...................................... 27 第4-5節 Approximate ratio事前機率 ......................................... 29 第5章 實驗模擬方法、結果與討論 ................................................... 32 第5-1節 實驗模擬方法 ……………..……………..................... 32 第5-1-1節 實驗一:解析度 ............................................. 33 第5-1-2節 實驗二:假體大小 ……………..................... 33 第5-1-3節 實驗三:影像對比值 ..................................... 34 第5-1-4節 實驗四:同比例維持與計數率 ..................... 35 第5-1-5節 實驗五:Hoffman假體與背景雜訊 ............... 36 第5-2節 結果與討論 ................................................................... 37 第5-2-1節 實驗一 ........................................................... 37 第5-2-2節 實驗二 ........................................................... 40 第5-2-3節 實驗三 ........................................................... 52 第5-2-4節 實驗四 ........................................................... 67 第5-1-5節 實驗五 ........................................................... 72 第6章 結論與未來方向 ..................................................................... 77 參考文獻 ............................................................................................... 80 圖目錄 圖 2-1. 放射性核種進行正子衰變時,與電子進行互毀反應,產生成 對光子以相反方向射出,由偵檢對同時接收,形成同符事件。………………………………………...…………...………. 3 圖 2-2. 路徑效應。 ……………………………………………....……. 4 圖 2-3. 互毀光子在射出時,可能會有0o ~ 0.5o角的偏差,而非呈180o角射出。 ………………………………………………………. 5 圖 2-4. 散射同符事件。 ……………..…………………………….….. 6 圖 2-5. 隨機同符事件。 ………………………………………...…….. 6 圖 2-6. 衰減效應。 ……………………………………………………. 7 圖 2-7. 正弦圖,縱軸為投影角度0∼π,橫軸為偵檢對位置。 ……………………………………………………...…… 8 圖 3-1. MLEM流程圖 ………………………………………………. 13 圖 3-2. OSL流程圖 ……………………………………………..…… 17 圖 4-1. 0階相鄰系統 …………………………………………...… 20 圖 4-2. 1階相鄰系統 ……………………………………………... 20 圖 4-3. 2階相鄰系統 ……………………………………………... 20 圖 4-4. 1階相鄰系統加權因子 …………………………...……… 20 圖 4-5. 2階相鄰系統加權因子 ……………………………...…… 20 圖 4-6. (a) 凸面函數 (b) 非凸面函數 …………………………..…. 21 圖 4-7. Quadratic事前機率 (a) 潛能函數 (b) 潛能函數之ㄧ階導函數 ……………………………………………………………. 22 圖 4-8. L1-Norm事前機率 (a) 潛能函數 (b) 潛能函數之ㄧ階導函數 …………………………………………………………..... 24 圖 4-9. Huber事前機率 (a) 潛能函數 (b) 潛能函數之ㄧ階導數 …………………………………………………………... 25 圖 4-10. Geman and McClure事前機率 (a) 潛能函數 (b) 潛能函數之ㄧ階導函數 …………………………………………..… 26 圖 4-11. Relative difference事前機率 (a) 潛能函數 (b) 潛能函數之ㄧ階導函數, 。 ………………………………..…… 27 圖 4-12. Thin Plate事前機率 (a) 能量函數相鄰系統 (b) 能量函數之一階導函數相鄰系統 ………………………………...…… 28 圖 4-13. AR事前機率( ),( )(a) 能量函數圖 (b) 一階導函數圖 ……………………………………………...… 31 圖 4-14. AR事前機率,( )(a) 能量函數圖 (b) 一階導函數圖 ………………………………………………………...… 31 圖 5-1. 實驗一假體 …………………………………………………. 33 圖 5-2. 實驗二假體,Center,直徑為1、3、5、7與9個像素。 .… 34 圖 5-3. 實驗二假體,Off-Center,直徑為1、3、5、7與9個像素。 ……………………...…………………………………… 34 圖 5-4. 實驗三假體,直徑5 pixels,影像值對比變化2~4,上排為Center,下排為Off-Center。 ………………………………... 35 圖 5-5. 實驗三假體,直徑 7 pixels,影像值對比變化2~4,上排為Center,下排為Off-Center。 ………………………………... 35 圖 5-6. (a) 實驗四假體 (b) 計數值846166 (c) 計數值84616 (d) 計數值8461。 ……………………………………………………. 36 圖 5-7. (a) Hoffman假體 (b) 無背景雜訊正弦圖 (c) 含背景雜訊正弦圖。 …………………………………………………….… 37 圖 5-8. Background Variance = 0.33之重建影像。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 …………………………...…. 38 圖 5-9. Background Variance = 0.50之重建影像。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative Difference。 ……………………………... 38 圖 5-10. Background Variance = 0.33之剖面圖。 ………………….... 39 圖 5-11. Background Variance = 0.50之剖面圖。 …………………… 39 圖 5-12. FWHM變化圖。 ………………………………………...….. 40 圖 5-13. Center,直徑1 pixel。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 …………………………………………………. 41 圖 5-14. Off-Center,直徑1 pixel。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 ……………………………………………...….. 41 圖 5-15. Center,直徑3 pixels。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 ………………………………………………..... 42 圖 5-16. Off-Center,直徑3 pixels。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference 。 ……………………………………………… 42 圖 5-17. Center,直徑5 pixels。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 …………………………………………………. 43 圖 5-18. Off-Center,直徑5 pixels。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 ……………………………………………...….. 43 圖 5-19. Center,直徑7 pixels。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 …………………………………………………. 44 圖 5-20. Off-Center,直徑7 pixels。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 ……………………………………………...….. 44 圖 5-21. Center,直徑9 pixels。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 ………………………………………………..... 45 圖 5-22. Off-Center,直徑9 pixels。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 ………………………………………………..... 45 圖 5-23. 直徑1 pixel剖面圖。(a) Center (b) Off-Center。 ………...… 46 圖 5-24. 直徑3 pixels剖面圖。(a) Center (b) Off-Center。 …………. 47 圖 5-25. 直徑5 pixels剖面圖。(a) Center (b) Off-Center。 …………. 48 圖 5-26. 直徑7 pixels剖面圖。(a) Center (b) Off-Center。 ……...….. 49 圖 5-27. 直徑9 pixels剖面圖。(a) Center (b) Off-Center。 ……...….. 50 圖 5-28. 假體平均值。(a) Center (b) Off-Center。 ……………….….. 51 圖 5-29. Center,直徑5 pixels,Contrast 2:1。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 …………………………………..……. 53 圖 5-30. Off-Center,直徑5 pixels,Contrast 2:1。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 …………………………...…………… 53 圖 5-31. Center,直徑5 pixels,Contrast 3:1。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 ……………………………………..…. 54 圖 5-32. Off-Center,直徑5 pixels,Contrast 3:1。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 …………………………...………...…. 54 圖 5-33. Center,直徑5 pixels,Contrast 4:1。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 ……………………………………...… 55 圖 5-34. Off-Center,直徑5 pixels,Contrast 4:1。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 ……………………………...……...…. 55 圖 5-35. Center,直徑7 pixels,Contrast 2:1。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 ………………………………………... 56 圖 5-36. Off-Center,直徑7 pixels,Contrast 2:1。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 ……………………………...……….... 56 圖 5-37. Center,直徑7 pixels,Contrast 3:1。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 ……………………………………...… 57 圖 5-38. Off-Center,直徑7 pixels,Contrast 3:1。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 ……………………………...……...…. 57 圖 5-39. Center,直徑7 pixels,Contrast 4:1。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 ……………………………………...… 58 圖 5-40. Off-Center,直徑7 pixels,Contrast 4:1。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 ………………………………………... 58 圖 5-41. 直徑5 pixels,Contrast 2:1。(a) Center (b) Off-Center。 ….. 59 圖 5-42. 直徑5 pixels,Contrast 3:1。(a) Center (b) Off-Center。 ….. 60 圖 5-43. 直徑5 pixels,Contrast 4:1。(a) Center (b) Off-Center。 ….. 61 圖 5-44. 直徑7 pixels,Contrast 2:1。(a) Center (b) Off-Center。 ….. 62 圖 5-45. 直徑7 pixels,Contrast 3:1。(a) Center (b) Off-Center。 ….. 63 圖 5-46. 直徑7 pixels,Contrast 4:1。(a) Center (b) Off-Center。 ….. 64 圖 5-47. 直徑5 pixels,對比度比較。(a) Center (b) Off-Center。 ….. 65 圖 5-48. 直徑7 pixels,對比度比較。(a) Center (b) Off-Cente。 ….. 66 圖 5-49. 計數值846166。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 ……………………………………………...… 68 圖 5-50. 計數值84616。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。………………………………………………..…. 68 圖 5-51. 計數值8461。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 ……………………………………………...….. 69 圖 5-52. 計數值846166之剖面圖。 ………………………………..… 69 圖 5-53. 計數值84616之剖面圖。 ………………………………….... 70 圖 5-54. 計數值8461之剖面圖。 …………………………………….. 70 圖 5-55. 重建影像。(a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 ……………………………...………………..… 72 圖 5-56. 剖面圖 (a) The 60th row (b) The 85th column。 ………...…. 73 圖 5-57. ROI in gray matter (a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 …………………………………………………. 74 圖 5-58. ROI in white matter (a) Geman and McClure (b) Huber (c) L1-Norm (d) AR (e) Quadratic (f) Thin Plate (g) Relative difference。 …………………………………………………. 75 表目錄 表 5-1. 計數值846166之假體比值。 ……………………………….. 71 表 5-2. 計數值84616之假體比值。 ……………………………….... 71 表 5-3. 計數值8461之假體比值。 ………………………………..… 71rf 1. Cliff X. Wang, Wesley E. Snyder, Griff Bilbro, and Pete Santago, “ Performance evaluation of filtered backprojection reconstruction and iterative reconstruction methods for PET images, ” Computers in Biology and Medicine, vol. 28, pp. 13-25, 1998. 2. S. Vandenberghe, Y. D’ Asseler, R. Van de Walle, T. Kauppinen, M. Koole, L. Bouwens, K. Van Laere, I. Lemahieu, and R. A. Dierckx, “Iterative recinstruction algorithms in nuclear medicine, ” Computerized Medical Imaging and Graphics, Vol. 25, pp. 105-111, 2001. 3. L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Transactions on Medical Imaging, Vol. MI-1, No. 2, pp. 113-122, October 1982. 4. E. Levitan, G. T. Herman, “A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography,” IEEE Transactions on Medical Imaging, vol.MI-6, no. 3, pp.185-192, September 1987. 5. Rachel A. Powsner and Edward R. Powsner, Essentials of Nuclear Medicine Physics. Blackwell Science. 1998. 6. Richard M. Leahy and Jinyi Qi, “Statistical approaches in quantitative positron emission tomography,” Statistics and Computing, Vol.10, pp 147-165, 2000. 7. Thomas F. Budinger, “ Advances in positron tomography for oncology,” Nuclear Medicine and Biology, Vol. 23, pp. 659-667, 1996. 8. P. J. Green, “Bayesian Reconstructions from Emission Tomography Data Using Modified EM Algorithm”, IEEE Trans. on Medical Imaging, MI-9(1), pp. 84-93, March 1990. 9. Thomas J. Hebert and Richard M. Leahy, “Statistic-Based MAP Image Reconstruction from Poisson Data Using Gibbs Priors,’ IEEE Trans. on Signal Processing, Vol. 40, No. 9, pp. 2290-2303, September 1996. 10. Erkan U Mumcuogluyz, Richard M. Leahy and Simon R Cherryz, “Bayesian reconstruction of PET images: methodology and performance analysis,” Phys. Med. Biol. Vol. 41, pp. 1777–1807, 1996. 11. C. A. Bouman and K. Sauer, “A Generalized Gaussian Image Model for Edge-preserving MAP Estimation,” IEEE Trans. on Image Processing, Vol. 2, pp. 296-310, July 1993. 12. S. Geman and D. Geman, “Stochastic relaxation, Gibbs distribution, and the Bayesian Restoration of Images”, IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6. pp. 721-741, Nov, 1984. 13. J. Besag, “Towards Bayesian Image Analysis,” Journal of Appilied Statistics, Vol. 16, No. 3, pp. 395-407, 1989. 14. Z. Zhou and R. Leahy, “Approximate Maximum Likelihood Parameter Estimation for Gibbs Priors,” Technical Report TR-285, Signal and Image Processing Institute, University of Southern California, June 1995. 15. J. Nuyts, D. Bequé, P. Dupont, and L. Mortelmans, “A Concave Prior Penalizing Relative Differences for Maximum-a-Posteriori Reconstruction in Emission Tomography,” IEEE Trans. on Nuclear Science, Vol. 49, No.1, February 2002. 16. S. Geman and D. McClure, “Bayesian Image Analysis: An Application to Single Photon Emission Tomography”, in Proc. Statist. Comput. Sect., AMer. Statist. Assoc., Washington, DC., 1985, pp. 12-18. 17. S. J. Lee, I. T. Hsiao, and G.R. Gindi, “The Thin Plate as a Regularizer in Bayesian SPECT Reconstruction”, IEEE Trans. Nuclear Science, Vol. 44, No.3, pp. 1381-1387, June 1997.id NH0925257015 sid 914516 cfn 0 / id NH0925257016 auc 陳珮芳 tic 利用緊束縛理論研究脈衝在光子晶體波導中的傳播 adc 吳見明老師 adc 謝文峰老師 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 45 kwc 光子晶體 kwc 緊束縛理論 kwc 波導 abc 利用緊束縛理論(tight binding theory)推導直線缺陷型光子晶體中缺陷模的色散關係方程式。得到色散關係方程式後‚可以進一步計算群速度與色散係數。掌握缺陷模的特徵則脈衝在光子晶體內的傳播可以加以設計並分析。所以我們可以簡單的設計分析光子晶體波導。這篇論文中討論線型缺陷與耦合共振腔兩種實例。分別計算群速度與色散係數並與相關論文的數值及有限時域差分法模擬結果做比較,結果相當吻合。最後並模擬脈衝於光子晶體中的傳播並觀察其衰減趨勢。 tc Abstract (in Chinese).......................-1- Abstract (in English).......................-2- Acknowledgements............................-3- Content.....................................-4- List of Figures.............................-6- chapter 1 Introduction.......................1 chapter 2 Theory.............................6 chapter 3 Result and Discussion..............23 chapter 4 Conclusion.........................44rf [1 ] M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokahame, Phys. Rev. Lett., v.87, pp253902, (2001) [2 ] A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, Phys. Rev. B, v.68, pp233102, (2003) [3 ] E. Yablonvitch, Phys. Rev. Lett., v.58, pp2059, (1987) [4 ]E. M. Purcell, Phys. Rev., v.69, pp681 (1946) [5 ] N. Stefanou, A. Modinos, Phys. Rev. B., v.57, pp. 12127, (1998) [6 ] A. Yariv, Y. Xu, R. K. Lee, A. Scherer, Opt. Let., v.24, pp.711, (1999) [7 ] K. M. Leung, and Y. F. Liu, Phys. Rev. Lett., v.65, pp2646, (1990) [8 ] Z. Zhang, and Satpathy, Phys. Rev. Lett., v.65, pp2650, (1990) [9 ] K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett., v.65, pp3152, (1990) [10 ] O. Painter, J. Vuckovic, and A. Scherer, J. Opt. Soc. Am. B, v.16, pp275, (1999) [11 ] J. B. Pendry, and A. MacKinnon, Phys. Rev. Lett., v.69, pp2772, (1992) [12 ] M. Bayindir, B. Temelkuran, and E. ozbay, Phys. Rev. Lett., v.84, pp2140, (2000) [13 ] K. Hosomi, T. Katsuyama, IEEE J. Quan. Elec., v.38, pp825, (2002) [14 ] R. P. Leavitt, Phys. Rev. B., v.44, pp. 11270, (1991) [15 ] P. M. Hui, W. M. Lee, and K. H. Luk, Solid state commun., v.91, pp65, (1994) [16 ] N. F. Johnson, P. M. Hui, and K. H. Luk, Solid state commun., v.90, pp229, (1994) [1 ] A. Yariv, Y. Xu, R. K. Lee, A. Scherer, Opt. Let., v.24, pp.711, 1999 [2 ] C. I. Christov, G. A. Maugin, M. G. Velarde, Phys. Re. E, v.54, pp.3621, 1996 [3 ] Govind P. Agrawal, Nonlinear fiber optics [1 ] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals: the road from theory to practice [2 ] K. Ysmsds, H. Morits, A. Shinya, and M. Notomi, Optics Commun. , v.1, pp395, 2001 [3 ] O. painter, J. Vuckvic, and A. Scherer, J. Opt. Soc. Am. B, v.16, pp.275, 1999 [4 ] S. Yamada, Y. Watanabe, and Y. Katayama, J. Appl. Phys., v.93, pp1859, 2003 [5 ] W. J. Kim, W. Kuang, and J. D. O’Brien, Opt. Exp., v.11, pp3431, 2003 [6 ] B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics [1 ] S. Yamade, Y. Watanabe, and Y. Katayama, Journal of applied physics, v.93, pp1859, 2003 [2 ] W. J. Kim, W. Kuang, and J. D. O’Brien, Optics Express, v.11, pp3431, 2003id NH0925257016 sid 914517 cfn 0 / id NH0925257017 auc 蔡朝陽 tic 空氣中C2至C10之醛酮醇類分析方法的建立 adc 羅俊光 adc 吳劍侯 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 84 kwc C2至C10之醛酮醇類, GC-MS-FID abc 本研究的目的為建立一套「空氣中C2至C10之醛酮醇類分析方法」,目標物種共有26個。本研究以不?袗?採樣罐作為採樣介質,樣品在進樣之前會先被冷凝在去活化玻璃珠上作一前濃縮的處理,再瞬間加熱脫附樣品進入氣相層析儀作分析。分析系統方面使用雙管柱搭配兩個偵檢器:其中RTX-502.2管柱連接到質譜儀主要用來檢測24種極性物種而CP-WAX管柱則連接到火焰離子偵檢器上主要用來檢測丙酮與丙醛。本方法的精密度、準確度、平均回收率和偵測極限除了辛醇以外為±20% 、±30% 、70%~130%以及20ppbv以內,因為辛醇的蒸氣壓很低,造成它的品保品管的數據都比其他物種差。檢量線的線性範圍在5 ~150ppbv之間。在真實樣品測試中在新竹縣工業區共測到9個物種(乙醛、丙醛、丙酮、丁醛、丁酮、3-庚酮、2-庚酮、辛酮和壬酮),總樣品濃度為50.34ppbv。 tc 目次 頁次 中文摘要 I 英文摘要 II 謝誌 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 序論 1.1研究緣由 1 1.2研究目的 3 第二章 文獻回顧 2.1 醛酮醇類分析方法的比較 6 2.2 採樣介質 7 2.3 前濃縮處理部分 8 2.3.1 玻璃珠 9 2.3.2 吸附劑 9 2.4 偵檢器 10 2.4.1 質譜儀 10 2.4.2 火焰離子偵檢器 11 2.5分析方法的干擾 12 第三章 實驗與研究方法 3.1 目標分析物 17 3.2 儀器設備 17 3.2.1採樣設備 17 3.2.1.1不鏽鋼採樣罐 17 3.2.1.2不鏽鋼罐真空清洗系統 17 3.2.2 分析設備 18 3.2.2.1 十六組不?袗?瓶自動進樣系統 18 3.2.2.2 質量流速控制器 18 3.2.2.3 樣品前濃縮捕捉系統 18 3.2.2.4 氣相層析與偵檢系統 19 3.2.2.5 分離管柱 20 3.2.2.6 質譜儀 20 3.3分析流程 20 3.3.1 分析系統準備與調整 20 3.3.2 採樣罐清洗系統與測試 21 3.3.3 標準品配置 22 3.4 最佳分析條件尋找 24 3.4.1最佳昇溫梯度測試 24 3.4.2最佳進樣速度測試 24 3.4.3 物種特性測試 24 3.4.4 採樣罐加熱測試 25 3.4.5最佳前濃縮捕捉溫度測試 25 3.4.6最佳脫附溫度測試 25 3.4.7樣品儲存穩定性測試 26 3.4.8真實樣品測試 26 3.5 分析方法的接受性評估 26 第四章 結果與討論 4.1 管柱分析條件 35 4.2 清洗系統 36 4.3 進樣流速與進樣量 37 4.4冷凝前濃縮處理最佳化條件 38 4.4.1冷凝溫度 38 4.4.2 脫附溫度 39 4.5 進樣溫度 40 4.6 樣品特性測試 41 4.7 樣品儲存穩定性 42 4.8分析方法接受性評估 43 4.9 真實樣品 44 第五章 結論 第六章 參考文獻rf 1.張志忠, 揮發性有機化合物自動化氣相層析質譜儀分析方法建立與應用 國立清華大學原子科學系博士論文. 2002. 2.U.S. EPA. Compendium Method TO-1, The determination of toxic organic compounds in ambient air. 1984. 3.U.S. EPA. Compendium method TO-14A, The determination of volatile organic compounds (VOCs) in ambient air using specially prepared canisters with subsequent analysis by gas chromatography. 1999. 4.U.S. EPA. Compendium method TO-15, The determination of volatile organic compounds (VOCs) in air collected in specially prepared canisters and analyzed by gas chromatography/mass spectrometry(GC/MS). 1999. 5.行政院環保署環境檢驗所, 不?袗?採樣筒/氣相層析質譜儀法, NIEA.A715.11B.2000. (http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=AIR) 6.Hsieh, C.C., Chang, K.H., Wang, L.T. “Ambient concentrations of biogenic volatile organic compounds in Southern Taiwan” Chemosphere. 39(5), 731-744, 1999. 7.ACE2588模式中基本毒物性質參考數據,醫學資料檢索系統所屬毒理資訊網的子系統綜合風險資訊系統資料(IRIS) 8.工業技術研究院工安衛中心,物質安全資料卡, 1994. 9.勞工安全研究所資料庫物質安全資料表(http://www.iosh.gov.tw/frame.htm) 10.莊智傑 有機化學(上冊) 8:161~170,10:197~227, 1997. 11.吳思敬,嚴國欽 數種市售食用油酯的理化特性與油煙致突變性Journal of Food and Drug Analysis. 8(2), 133-140, 2000 12.J.WILDT, K. KOBEL, “Emission of Oxygenated Volatile Organic Compounds from Plants Part II: Emissions of Saturated Aldehydes” Journal of Atmospheric Chemistry. 45, 173–196, 2003. 13.A.T.Hodgson, D.Beal, “Sources of Formaldehyde, Other Aldehydes and Terpenes in a New Manufactured House” Indoor Air. 12(4), 235-242, 2002. 14.J.-P. SCHNITZLER1, N. BAUKNECHT, “Emission of Biogenic Volatile Organic Compounds: An Overview of Field, Laboratory and Modelling Studies Performed during the Tropospheric Research Program 1997–2000” Journal of Atmospheric Chemistry. 42, 159–177, 2002. 15.楊明益. 高屏地區大氣醛酮化合物與臭氧污染事件關聯性 國立成功大學環境工程研究學系 碩士論文. 2000. 16.U.S. EPA. Compendium Method TO-5, METHOD FOR THE DETERMINATION OF ALDEHYDES AND KETONES IN AMBIENT AIR USING HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC). 1984. 17.JULIA HURST BOWMAN, DENNIS J, “ATMOSPHERIC Chemistry of Nonanal” Environmental Science and Technology. 37, 2218-2225, 2003. 18.M. Possanzini*, V. Di Palo, “Dynamic system for the calibration of semi-volatile carbonyl compounds in air” Journal of Chromatography A. 883, 171-183, 2000. 19.Glenn C. Morrison*, Carleton J. Howard, “Selective detection of gas-phase aldehydes and ketones using protonated hydrazine” International Journal of Mass Spectrometry. 210/211, 503-509, 2001. 20.Vivek Jain*, Daniel Thielen, “Determination of aldehydes in basic medium by gas chromatography using O-benzylhydroxylamine derivatization” Journal of Chromatography A. 709, 387-392, 1995. 21.S.-W. Tsai*, T.-A. Chang, “Time-weighted average sampling of airborne n-valeraldehyde by a solid-phase microextration device” Journal of Chromatography A. 954, 191-198, 2002. 22.馮健泰. 空氣與水體中揮發性有機化合物自動化採樣與分析 國立清華大學原子科學系碩士論文. 2002. 23.Detlev Helmig*, “Review Air analysis by gas chromatography” Journal of Chromatography A. 843, 129-146, 1999. 24.楊廣苓, 羅俊光,氣態有機污染物自動採樣分析儀. 科儀新知第十八卷四期. 25.Hsien-Wen Kuo, Hsien-Chi Wei, “Exposure to volatile organic compounds while commuting in Taichung, Taiwan” Atmospheric Environment. 34, 3331, 2000. 26.James F. Pankow, Wentai Luo, “Determination of a Wide Range of Volatile Organic Compounds in Ambient Air Using Multisorbent Adsorption/Thermal Desorption and Gas Chromatography/Mass Spectrometry” Journal of Analytical Chemistry. 70, 5213, 1998. 27.Hans-Joachim Hubschmann, Handbook of GC/MS.2002. 28.1-Fu Hung, Shu-An Lee, Ren-Kun Chen, “Simultaneous determination of benzene, toluene, ethylbenzene, and xylenes in urine by thermal desorption-gas chromatography” Journal of Chromatography B. 706, 352, 1998. 29.林裕聰 高雄地區臭氧前驅物與石化工業之相關性研究 國立清華大學碩士論文,2001. 30.Noriko Yamamoto, Hideki Okayasu, Takamititsu Hiraiwa, Satoru Murayama, Tuneaki Maeda, Masatoshi Morita, Koji Suzuki, “Continuous determination of volatile organic compounds in the atmosphere by an automated gas chromatographic system” Journal of Chromatography A. 819, 177, 1998. 31.Noureddine Yassaa, Brahim Youcef Meklati, Angilo Cecinato, “Analysis of volatile organic compounds in the ambient air of Algiers by gas chromatography with a β-cyclodextrin capillary column” Journal of Chromatography A. 846, 287, 1999. 32.Naduoua Chanegriha, Aoumer Baaliouamer, Christian Rolando, “Polarity changes during capillary gas chromatographic and gas chromatographic-mass spectrometric analysis using serially coupled columns of different natures and temperature programming Application to the identification of constituents of essential oils” Journal of Chromatography A. 819, 61, 1998. 33.Balazs Tolnai, Andras Gelencser, Csilla Gal, Jozef Hlavay, “Evaluation of the reliability of diffusive sampling in environmental monitoring” Analytical Chimica Acta. 408, 117, 2000. 34.Meng-Yan Nie, Liang-Mo Zhou, Xue-Liang Liu, Qing-Hai, Dao-Qian Zhu, “Gas chromatographic enantiomer separation on long-chain alkylated β-cyclodextrin chiral stationary phases” Analytical Chimica Acta. 408, 279, 2000. 35.凌永健,洪長春,鄧慧卿,雷逸智, 環境分析用質譜儀,科儀新知第十七卷五期。 36.Ravindra K. Mariwala, Madhav Acharya, Henry C. Foley, “Adsorption of halocarbons on a carbon molecular sieve” Journal of Chromatography A. 22, 281, 1998. 37.吳仁彰 氣相層析儀/熱感偵測器之靈敏度分析法在氣體濃度定量上的應用,科儀新知第十九卷三期。 38.Raymond E. March, “An Introduction to Quadrupole Ion Trap Mass Spectrometry” International Journal of Mass Spectrometry. 32, 351-369, 1997. 39.何國榮,鄭杏玲 快速氣相層析質譜儀,科儀新知第十九卷第三期。 40.石東生 行政院勞工委員會勞工安全衛生研究所,國內工業常用有害物穩定性測試, 1996 (http://www.iosh.gov.tw/data/f8/85a313.htm) 41.Oscar Ezquerro, Begona Pons, “Direct quantitation of volatile organic compounds in packing materials by headspace solid-phase microextraction-gas chromatography-mass spectrometry” Journal of Chromatography A. 985, 247-257, 2003. 42.Randal S, Martin Nonmethane Hydrocarbon, Monocarboxylic, “Acid, and Low molecular Weight Aldehyde and Ketone Emissions From Vegetation in Central New Mexico” Environmental Science and Technology. 33, 2186-2192, 1999.id NH0925257017 sid 914519 cfn 0 / id NH0925257018 auc 林盈瑩 tic 毛細管電泳技術應用於奈米級顆粒的粒徑與形狀分析 adc 吳劍侯 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 英文 pg 126 kwc 毛細管電泳技術 kwc 金,銀奈米粒子 kwc 大小 kwc 形狀 kwc PEO kwc SDS abc 本研究的主要目的為利用毛細管電泳技術建立分離方法並對快速鑑定奈米等級粒子大小與形狀之可行性進行評估。論文由兩部分組成,第一部分為以毛細管電泳技術建立金奈米粒子粒徑大小的分析方法。探討其分離機制,並應用於以微波加熱方法製備的真實樣品。第二部分為以毛細管電泳技術建立不同形狀之銀奈米粒子分離技術,配合線上濃縮概念,建立動態酸鹼梯度掃集毛細管微胞濃縮技術以分離不同形狀之銀奈米粒子。 tc Abstract(Chinese)…………………………………… i Abstract(English)…………………………………… ii Acknowledgement……………………………………… iv Content Index ………………………………………….. vi Figures Index………………………………………….... xi Table Index……………………………………………... xv Abbreviation and Symbol……………………………… xvi Chapter 1 General Introduction………………………… 1 1.1 The history of capillary electrophoresis Technique......... 2 1.2 The separation theory of capillary electrophoresis…….. 4 1.2.1 Electrophoresis………………………………………. 4 1.2.2 Electroosmotic flow and zeta potential……………… 5 1.3 The separation mode of capillary electrophoresis……... 8 1.3.1 Capillary zone electrophoresis………………………. 8 1.3.2 Micellar electrokinetic chromatography…………….. 9 1.3.3 Capillary gel electrophoresis………………………… 10 1.4 Selectivity and the use of additives……………………. 13 1.4.1 Buffer selection……………………………………… 14 1.4.2 Buffer pH…………………………………………….. 15 1.4.3 Surfactants…………………………………………… 15 1.4.4 Chiral selectors………………………………………. 16 1.4.5 Temperature………………………………………….. 17 1.4.6 Sample injection width………………………………. 18 1.5 Reference……………………………………………… 20 Chapter 2 Experimental Section………………………… 22 2.1 Apparatus……………………………………………… 23 2.2 Capillary Rinsing Protocols……………………………. 24 2.3 Procedure………………………………………………. 25 2.3.1 Buffer preparation…………………………………… 25 2.3.2 Sample……………………………………………….. 25 2.4 Calculation…………………………………………….. 25 2.4.1 Resolution……………………………………………. 25 2.4.2 Mobility and migration time…………………………. 26 2.4.3 Injection volume……………………………………... 27 2.5 Sample Injection Method……………………………… 29 2.6 Buffer Replenishment and Set…………………………. 30 2.7 Reference………………………………………………. 31 Chapter 3 Size Separation of Gold Nanoparticles by Capillary Electrophoresis................................ 33 3.1 Introduction…………………………………….……… 34 3.2 Experimental section…………………………………... 38 3.2.1 Apparatus………………….......................................... 38 3.2.2 Chemicals and reagents……………………………… 40 3.2.3 Nanoparticles samples……………………………….. 40 3.2.4 Preparation of PEO solution……………..................... 41 3.2.5 Buffers……………………………………………….. 42 3.3 Results and discussion………………………………… 42 3.3.1 Optimization of this separation method……………... 42 3.3.1.1 Co-additive finding………………………………… 42 3.3.1.2 Optimization of pH value………………………….. 57 3.3.1.3 Separation optimization……………………………. 60 3.3.1.4 Optimization of working condition……………….. 61 3.3.1.5 Summary of separation method optimization……... 67 3.3.2 Real sample analysis………………………………… 71 3.4 Conclusion……………………………………………... 75 3.5 Reference………………………………………………. 76 Chapter 4 Shape Separation of Silver Nanoparticle by Capillary Electrophoresis…................... 80 4.1 Introduction……………………………………………. 81 4.2 Experimental section…………………………………… 84 4.2.1 Apparatus…………………………………………….. 84 4.2.2 Reagents……………………………………………... 84 4.2.3 Silver nanoparticles…………………………………. 84 4.2.3.1 Preparation…………………………………………. 84 4.2.3.2 Sample description ………………………………... 85 4.2.4 Buffers……………………………………………… 86 4.2.5 Fraction collection………………………………….. 86 4.3 Results and discussion…………………………………. 87 4.3.1 Co-additive optimization……………………………. 87 4.3.2 Separation parameters optimization…......................... 90 4.3.2.1 Concentration of SDS……………………………… 90 4.3.2.2 Effect of buffer type and pH value………………… 93 4.3.2.3 Concentration of CAPS…………………………… 95 4.3.3 On- line concentration……………………………… 96 4.3.3.1 On-line concentration by pH gradient…………… 98 4.3.3.2 On-line concentration by sweeping………………. 103 4.3.3.3 Effect of dynamic pH gradient-sweeping………... 106 4.3.4 Proposed mechanism of stacking…………………... 107 4.3.4.1 Mechanism of dynamic pH-gradient……………... 107 4.3.4.2 Mechanism of sweeping………………………….. 109 4.3.4.3 Mechanism of dynamic pH gradient-sweeping…... 110 4.3.5 Separation Results………………………………….. 110 4.4 Reproducibility……………………………………….. 112 4.5 Conclusion….…………………………………............ 112 4.6 Reference……………………………………………... 114 Chapter 5 Conclusion.……………………………………... 119 5.1 Conclusion.………………………………………….. 120 5.2 Suggestions and Future Perspectives………………… 122 5.3 Reference…………………………………………….. 124 The Author…………………………………………….. 125 Figure Index Figure 2-1 Hardware overview of the Lsuerlabs’ Butler replenishment system.…………………………………………... 24 Figure 3-1 UV spectrum of five standards in running buffer.………….. 39 Figure 3-2 The relationship between concentration of SDS and migration time.…………………………………………….. 45 Figure 3-3 Effect of buffer concentration on the migration time of gold particles………………………………………….. 46 Figure 3-4 Electropherograms of 5nm and 20nm mixture separated with different percentage of PEO 8,000,000……….................. 51 Figure 3-5 The effect of different pH and comparison of different percentage of PEO………………………………….. 54 Figure 3-6 Electropherograms of 5nm and 20nm mixture separated with different molecular weights of PEO.……………………. 55 Figure 3-7 Relationship between the migration time and particle diameter.. 56 Figure 3-8 Effect of pH on (a) Rs and (b) migration time on Au nanoparticles............................................................. 59 Figure 3-9 Comparison of Rs with six different buffer compositions..…... 60 Figure 3-10 Influences of temperature on Rs and current and comparison of their electropherograms.………………………….. 63 Figure 3-11 Effect of voltage on (i) Rs and (ii) maximum current.………. 64 Figure 3-12 Electropherograms of using segmental filling method to separate the mixture of 5nm and 20nm standards.………… 67 Figure 3-13 Standard electropherograms of 5 standards........................ 69 Figure 3-14 The SEM images of a mixture of 20nm and 40nm gold nanoparticles……………………………………... 69 Figure 3-15 Electropherograms of 30nm and 40nm gold nanoparticles.…. 70 Figure 3-16 Standard curve.…………………………................ 70 Figure 3-17 SEM images and statistic size distribution graphs of real samples.…………………………………………. 72 Figure 3-18 Electropherograms of four real samples under optimized separation condition.……………………………... 73 Figure 3-19 The correlation of CE and SEM determined particle size.…… 74 Figure 4-1 UV/VIS absorption spectrum of silver nanoparticle sample used thoughout this study. ………………………….......... 85 Figure 4-2 SEM image of the silver nanoparticle sample used in this study. 86 Figure 4-3 Effect of adding Brij35 as co-additive to the running buffer….. 88 Figure 4-4 Effect of adding PEG as co-additive to the running buffer…… 89 Figure 4-5 Effect of adding PEO as co-additive to the running buffer…… 89 Figure 4-6 Electropherogram obtained for silver nanoparticle separation at different concentration of SDS.………………………... 91 Figure 4-7 UV spectrum of 0.01mM silver nanoparticle at pH 10 using different SDS concentration…………………………. 92 Figure 4-8 Electropherograms of 5nm gold nanoparticle at different concentration of SDS.………………………….......... 92 Figure 4-9 Electropherograms of silver nanoparticle with different buffer composition.……………………………………… 93 Figure 4-10 Electropherograms of silver nanoparticle at different pH value..................................................................... 94 Figure 4-11 Electropherograms of different concentration of CAPS.......... 95 Figure 4-12 Schematic illustration of capillary buffer system…………. 99 Figure 4-13 Effect of different pH at inlet and outlet buffer.………....... 100 Figure 4-14 Comparison of different pH gradient method...................... 102 Figure 4-15 Effect of different injection volume……………………. 102 Figure 4-16 Comparison of the electropherograms with different pH gradient.………………………………………… 103 Figure 4-17 Effect of SDS gradients.…………………………….. 105 Figure 4-18 Comparison of different SDS concentration of outlet and flush vial.…………………………………………….. 106 Figure 4-19 Schematic overview of proposed mechanism of dynamic pH-gradient sweeping of silver nanoparticles.…………… 108 Figure 4-20 TEM images of separated silver nanoparticles collect by fraction collection method.………………………….. 111 Figure 4-21 Injection volume test……………………………….. 113 Figure 4-22 Effect of stacking or not…………………………….. 113 Table Index Table 3-1 Altered parameters and effects of adding amines to improve the separation efficiency.……………………………….. 43 Table3-2 Conditions tested to increase the separation efficiency with segmental filling…………………………………… 66 Table 3-3 Size distribution calculated from electropherogram with standard curve……………………………………... 73 Table 3-4 Comparison between mean of two methods and random error with 95% confidence level…………………………… 75 Table 4-1 Conditions tested to study pH-gradient effect.……………... 99 Table 5-1 The optimum conditions and results of this thesis…….......... 120rf Balchunas, A. T.; Spaniak, M. J. Gradient elution for micellar electrokinetic capillary chromatography. Anal. Chem. 1988, 60, 617-621. Camilleri, P. Capillary electrophoresis:/theory and practice, second edition, CRC Press: Boca Raton, Fla. 1998. Chankvetadze, B. Capillary electrophoresis in chiral analysis. John Wiley: New York, 1997. Cottet, H.; Gareil, P. J. Electrophoretic behavior of fully sulfonated polystyrenes in capillaries filled with entangled polymer solutions. J. Chromatogr. A 1997,772, 369-384. Heiger, D. An introduction: High performance capillary electrophoresis. Agilent Technologies: Germany, 2000. Kuhn, R.; Kuhn, S. H. Capillary electrophoresis:/principles and practice, Springer-Verlag: Germany, Berlin, 1993. Lunte, S. M.; Radzik, D. M. Pharmaceutical and Biomedical applications of capillary electrophoresis. Oxford: U.S.A., New York, 1996. McKibbin, P. B.; Chen, D. D. Y. Selective focusing of catecholamines and weakly acidic compounds by capillary electrophoresis using a dynamic pH junction. Anal. Chem. 2000, 72, 1242-1252. Okada, T. Polyethers in inorganic capillary electrophoresis. J. Chromatogr. A 1999, 834, 73-87. Weinberger, R. Practical capillary electrophoresis. Boston : Academic Press, 1993. Bello, M. S. Electrolytic modification of a buffer during a capillary electrophoresis run. J. Chromatogr. A 1996, 744, 81-91. Cottet, H.; Gareil, P. Electrophoretic behavior of fully sulfonated polystyrenes in capillaries filled with entangled polymer solutions, J. Chromatogr. A 1997, 772, 369-384. Heiger, D. An introduction High performance capillary electrophoresis. Agilent Technologies: Germany, 2000. Jones, H. K.; Ballou, N. E. Separations of chemically different particles by capillary electrophoresis. Anal. Chem. 1990, 62, 2484-2490. User manual, programmable injector for capillary electrophoresis, PrinCE Autosampler, Prince Technologies:Nertherland, TC Emmen, 1999. Burgess, I.; Jeffrey, C. A.; Cai, X.; Szymanski, G.; Galus, Z.; Lipkowski, J. Direct visualization of the potential-controlled transformation of hemimicellar aggregates of dodecyl sulfate into a condensed monolayer at the Au(111) electrode surface. Langmuir 1999, 15, 2607-2616. Chang, H. T.; Yeung, E. S. Poly(ethyleneoxide) for high-resolution and high-speed separation of DNA by capillary electrophoresis. J. Chromatogr. B 1995, 669, 113-123. Chang, S. S.; Wang, C.R.C.金屬奈米粒子的吸收光譜, Chemistry 1998, 56, 209-222. Cottet, H.; Gareil, P. Electrophoretic behaviour of fully sulfonated polystyrenes in capillaries filled with entangled polymer solutions. J. Chromatogr. B 1997, 772, 369-384. Fisher, C. H.; Kenndler, E. Analysis of colloids: IX. Investigation of the electrical double layer of colloidal inorganic nanometer-particles by size-exclusion chromatography. J. Chromatogr. A 1997, 773, 179-187. Félidj, N.; Lévi, G.; Pantigny, J.; Aubard, J. A new approach to determine nanoparticle shape and size distributions of SERS-active gold-silver mixed colloids. New J. Chem. 1998, 7,725-732. Guttman, A.; Horvath, J.; Cooke, N. Influence of temperature on the sieving effect of different polymer matrixes in capillary SDS gel electrophoresis of proteins. Anal. Chem. 1993, 65, 199-203. Heller, C. Separation of double-stranded and single-stranded DNA in polymer solutions: I. Mobility and separation mechanism. Electrophoresis 1999, 20, 1962-1977. Heller, C. Principles of DNA separation with capillary electrophoresis. Electrophoresis 2001, 22,629-643. Hubert, S. J., Slater G. W. Theory of capillary electrophoretic separations of DNA-polymer complexes. Electrophoresis 1995, 16, 2137-2142. Hubert, S. J., Slater G. W. Viovy, J. L., Theory of capillary electrophoretic separation of DNA using ultradilute polymer solutions. Macromolecules 1996, 29, 1006-1009. Hwang, W. M.; Lee, C. Y.; Boo, D. W.; Choi, J. G.. Separation of nanoparticles in different sizes and compositions by capillary electrophoresis. Bull. Korean Chem. Soc. 2003, 24, 5, 684-686. Iki, N.; Yeung, E. S. Non-bonded poly (ethylene oxide) polymer-coated column for protein separation by capillary electrophoresis. J. Chromatogr. A 1996, 731, 273-282. Johnson, S. R.; Evans, S. D.; Brydson, R. Influence of a terminal functionality on the physical properties of surfactant-stabilized gold nanoparticles. Langmuir 1998, 14, 6639-6647. Kuhn, R.; Kuhn, S. H. Capillary Electrophoresis: Principles and practice, Springer Laboratory: Germany, Berlin Heidelberg, 1993. Lambert, W. J.; Middleton, D. L. pH hysteresis effect with silica capillaries in capillary zone electrophoresis. Anal. Chem. 1990, 62, 1585. Li, D.; Fu, S.; Lucy, C. A. Prediction of electrophoretic mobilities. 3. Effect of ionic strength in capillary zone electrophoresis. Anal. Chem. 1999, 71, 687-699. Link, S.; Sayed, M. A. E. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 1999, 103, 8410-8426. Liu, F. K.; Ker C. J.; Chang, Y. C.; Ko, F. H.; Chu, T. C.; Dai, B. T. Microwave heating for the preparation of nanometer gold particles. Jpn. J. Appl. Phys. 2003, 42, 4152-4158. Liu, F. K.; Wei, G. T. Adding sodium dodecylsulfate to the running electrolyte enhances the separation of gold nanoparticles by capillary electrophoresis. Anal. Chim. Acta 2004, 510, 77–83. Lopez, N.; NØrskov, J. K. Catalystic CO oxidation by a gold nanoparticle: A density functional study. J. Am. Chem. Soc. 2002, 124, 11262-11263. Mclaughlin, G. M.; Anderson, K. W.; Hauffe, D. K. In High-Performance capillary electrophoresis: theory, techniques, and applications, Khaledi, M. G., Eds.; Wiley-Interscience publications: Canada, 1998. Oana, H.; Masubuchi, Y.; Yoshikawa, K.; Khokhlov, A.R.; Doi, M. Periodic motion of large DNA molecules during steady field gel electrophoresis. Macromolecules 1994, 27, 6061-6067. Radko, S. P.; Stastna, M.; Chrambach, A. Size-dependent electrophoretic migration and separation of liposomes by capillary zone electrophoresis in electrolyte solutions of various ionic strengths. Anal. Chem. 2000, 72, 5955-5960. Sau, T. K.; Pal, A.; Pal, T. Size regime dependent catalysis by gold nanoparticles for the reduction of Eosin. J. Phys. Chem. B, 2001, 105, 9266-9272. Schnabel, U.; Fisher, C. H.; Kenndler, E. Characterization of colloidal gold nanoparticles according to size by capillary zone electrophoresis. J. Microcolumn Sep. 1997, 9, 7, 529-534. Shaffer, J. S. Dynamics of confined polymer melts: Topology and entanglement. Macromolecules 1996, 29, 1010-1013. Siebrands, T.; Giersig, M.; Mulvaney, P.; Fischer, C.H. Steric exclusion chromatography of nanometer-sized gold particles. Langmuir 1993, 9, 2297-2300. Slot, J.W.; Geuze, H. A new method of preparing gold probes for multiple-labeling cytochemistry. J. Eur. J. Cell Biol. 1985, 38, 87-93. Smith, S. C.; Khaledi, M. G.. Optimization of pH for the separation of organic acids in capillary zone electrophoresis. Anal. Chem. 1993, 65, 193-198. Todorov, T. I; Carmejane, O. D.; Walter, N. G.; Morris, M. D. Capillary electrophoresis of RNA in dilute and semidilute polymer solutions. Electrophoresis 2001, 22, 2442-2447. Tseng, W. L.; Lin, Y. W.; Chang, H. T. Improved separation of microheterogeneities and isoforms of proteins by capillary electrophoresis using segmental filling with SDS and PEO in the background electrolyte. Anal. Chem. 2002, 74, 4828-4834. Wei, G. T.; Liu, F. K. Separation of nanometer gold particles by size exclusion chromatography. J. Chromatogr. A 1999, 836, 253-260. Wei, G. T.; Liu, F. K.; Wang, C. C. R. Shape separation of nanometer gold particles by size-exclusion chromatography. Anal. Chem. 1999, 71, 2085-2091. Wei, G. T.; Wang, C. C. R.; Liu, F. K.; Chang, S. S. Separation of nanostructured gold particles by capillary zone electrophoresis. J. Chin. Chem. Soc. 1998, 45, 47-52. Belder, D.; Elke, K.; Husmann, H. Influence of pH-value of methanolic electrolytes on electroosmotic flow in hydrophilic coated capillaries. J. Chromatogr. A 2000, 868, 63-71. Benkhira, A.; Bagassi, M.; Lachhab, T.; Rudatsikira, A.; Reibei, L.; Francois, J. Interactions of ethylene oxide/methylene oxide copolymers with sodium dodecyl sulphate. Polymer 2000, 41, 7415-7425. Cao, Y. W.; Jin, R.; Mirkin, C. A. DNA-Modified core-shell Ag/Au nanoparticles. J. Am. Chem. Soc. 2001, 123, 7961-7962. Caswell, K. K.; Bender, C. M.; Murphy, C. Seedless, surfactant less wet chemical synthesis of silver nanowires. Nano Lett. 2003, 3, 667-669. Chang, H. T.; Yeung, E. S. Poly(ethyleneoxide) for high-resolution and high-speed separation of DNA by capillary electrophoresis. J. Chromatogr. B 1995, 669, 113-123. Coronado, E. A.; Schatz, G. C. Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach. J. Chem. Phy. 2003, 119, 7, 3926-3934. Emory, S. R.; Haskins, W. E.; Nie, S. Direct observation of size-dependent optical enhancement in single metal nanoparticles. J. Am. Chem. Soc. 1998, 120, 8009-8010. Félidj, N.; Aubard, J.; Lévi, G. Discrete dipole approximation for ultraviolet–visible extinction spectra simulation of silver and gold colloids J. Chem. Phy. 1999, 111, 1195-1208. Félidj, N.; Lévi, G.; Pantigny, J.; Aubard, J. A new approach to determine nanoparticle shape and size distributions of SERS-active gold-silver mixed colloids. New J. Chem. 1998, 7,725-732. Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; Natan, M. J. Self-Assembled Metal Colloid Monolayers: An approach to SERS substrates. Science 1995, 267, 5204, 1629-1632. Ramsden, J.; Lvov, Y. M.; Decher, G. Determination of optical constants of molecular films assembled via alternate polyion adsorption. Thin Solid Films 1995, 254, 246-251. Huang, C. C.; Hsieh, M. M.; Chiu, T. C.; Lin, Y. C.; Chang, H. T. Maximization of injection volumes for DNA analysis in capillary electrophoresis. Electrophoresis 2001, 22, 4328-4332. Kim. J. B.; Otsuka, K.; Terabe, S. On-line sample concentration in micellar electrokinetic chromatography with cationic micelles in a coated capillary. J. Chromatogr. A 2001, 912, 343-352. Krivánková, L.; Bocek, P. Synergism of capillary isotachophoresis and capillary zone electrophoresis. J. Chromatogr. B 1997, 689, 13-34. Lee, H. J. ; Yeo, S. Y. ; Jeong, S. H. Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J. Mater. Sci. 2003, 38, 2199-2204. Liu, F. K.; Huang, P. W.; Chang, Y. C.; Ko, F. H.; Chu, T. C. Microwave-assisted synthesis of silver nanorods. J. Mater. Res. 2004, 19, 2, 469-473. Liu, Y.; Kuhr, W. G. Separation of double-and single-stranded DNA restriction fragments: Capillary electrophoresis with polymer solutions under alkaline conditions. Anal. Chem. 1999, 71, 1668-1673. Lunte, S. M.; Radzik, D. M. Pharmaceutical and biomedical applications of capillary electrophoresis, Oxford: U.S.A., New York, 1996. McKibbin, P. B.; Bebault, G. M.; Chen, D. D. Y. Velocity-difference induced focusing of nucleotides in capillary electrophoresis with a dynamic pH junction. Anal. Chem. 2000, 72, 1729-1735. McKibbin, P. B.; Chen, D. D. Y. Selective focusing of catecholamines and weakly acidic compounds by capillary electrophoresis using a dynamic pH Junction. Anal. Chem. 2000, 72, 1242-1252. McKibbin, P. B.; Otsuka, K.; Terabe, S. On-line focusing of Flavin derivatives using dynamic pH junction-sweeping capillary dlectrophoresis with laser-induced fluorescence detection. Anal. Chem. 2002, 74, 3736-3743. Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J.Chem. Phys. 2002, 116, 15, 6755-6759. Morteza G. K. Micelles as separation media in high-performance liquid chromatography and high-performance capillary electrophoresis: overview and perspective. J. Chromatogr. A 1997, 780, 3-40. Palmer, J.; Munro, N. J.; Landers, J. P. A universal concept for stacking neutral analytes in micellar capillary electrophoresis. Anal. Chem. 1999, 71, 1679-1687. Palmer, P.; Burgi, D. S.; Munro, N. J.; Landers. J. P. Electrokinetic injection for stacking neutral analytes in capillary and microchip electrophoresis. Anal. Chem. 2001, 73, 725-731. Phayre, A. N.; Farfano, H. M. V.; Hayes, M. A. Effects of pH gradients on liposomal charge states examined by capillary electrophoresis. Langmuir 2002, 18, 6499-6503. Quirino, J. P.; Terabe, S. Approaching a million-fold sensitivity increase in capillary electrophoresis with direct ultraviolet detection: cation-selective exhaustive injection and sweeping. Anal. Chem. 2000, 72, 1023-1030. Quirino, J. P.; Terabe, S. Exceeding 5000-fold concentration of dilute analytes in micellar electrokinetic chromatography. Science 1998, 282, 465-468. Sastry, M.; Mayya, K. S.; Bandyopadhyay, K. pH dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles. Colloid Surface A-Physicochem. Eng. Asp. 1997, 127, 221-228. Shiraishi, Y.; Toshima, N. Oxidation of ethylene catalyzed by colloidal dispersions of poly (sodium acrylate)-protected silver nanoclusters. Colloid Surf. A- Physicochem. Eng. Asp. 2000, 169, 59-66. Sondi,I.; Goia, D. V.; Matijevi, E. Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. J. Colloid Interface Sc. 2003, 260, 1, 75-81. Sosa, I. O.; Noguez, C.; Barrera, R. G. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 2003, 107, 6269-6275. Taleb, A.; Petit, C.; Pileni, M. P. Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: a way to 2D and 3D self-organization.Chem. Mater. 1997, 9, 950-959. Wang, S. J.; Tseng, W. L.; Lin, Y. W.; Chang, H. T. On-line concentration of trace proteins by pH junctions in capillary electrophoresis with UV absorption detection. J. Chromatogr. A, 2002, 979, 261-270. Wei, W.; Xue, G..; Yeung, E. S. One-step concentration of analytes based on dynamic change in pH in capillary zone electrophoresis. Anal. Chem. 2002, 74, 934-940. Zhang, C. X.; Thormann, W. Head-column field-amplified sample stacking in binary system capillary electrophoresis: a robust approach providing over 1000-fold sensitivity enhancement., Anal. Chem. 1996, 68, 2523-2532. Zhang, Y.; Zhu, J.; Zhang, L.; Zhang, W. High-efficiency on-line concentration technique of capillary electrochromatography. Anal. Chem. 2000, 72, 5744-5747. Zhu, L. Y.; Tu, C.; Lee, H. K. On-line concentration of acidic compounds by anion-selective exhaustive injection-sweeping-micellar electrokinetic chromatography. Anal. Chem. 2002, 74, 5820-5825. Zhu, L. Y.;Lee. H. K. Field-amplified sample injection combined with water removal by electroosmotic flow pump in acidic buffer for Analysis of phenoxy acid herbicides by capillary electrophoresis. Anal. Chem. 2001, 73, 3065-3072. Lu, L; Sun, G.; Zhang, H.; Wang, H.; Xi, S.; Hu, J.; Tian, Z.; Chen, R. Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate. J. Mater. Chem. 2004, 14, 1005-1009.id NH0925257018 sid 914520 cfn 0 / id NH0925257019 auc 王博彥 tic 水相中銅與胺基酸錯合物之光分解含氮產物研究 adc 吳劍侯 adc 羅俊光 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 英文 pg 134 kwc 銨離子 kwc 胺類 kwc 銅錯合物 kwc 胺基酸 kwc 量子產率 abc 本論文主要是使用高效能液相層析(High Performance Liquid Chromatography, HPLC)搭配鄰苯二甲醛(o-phthaldialdehyde, OPA)螢光衍生法以及離子層析法(Ion Chromatography, IC)來探討銅胺基酸錯合物在經由波長313 nm的光照射之後,可能產生的含氮產物(銨離子(NH4+)與胺類(amines))及其量子產率。光照下,銅胺基酸錯合物經由配位基(胺基酸)上的電子轉移到金屬(銅)(ligand to metal charge transfer, LMCT),使二價銅還原成一價銅,胺基酸則被氧化,並進行一系列分解。實驗結果顯示,銅錯合物系統下,除了配位基為β-丙胺酸(β-alanine)時,可以量測到乙胺(ethylamine)外,在本實驗中所使用的α-胺基酸(α-alanine, leucine, isoleucine, phenylalanine, valine, methionine and arginine )都只能量測到銨離子。同時,在不同的條件(pH、銅與配位基濃度)下,一價銅與銨離子的量子產率比(ΦCu(I) /ΦNH3)皆約維持在2。根據實驗結果,提出一個可能的光分解反應路徑。 tc Chinese Abstract English Abstract Acknowledgements Table of Contents List of Figures List of Tables Preface Part 1 1 Chapter 1 Introduction 2 1-1 The Properties of NH4+ 2 1-2 The Properties of Amines 3 1-3 Motivation 4 1-4 Objectives 4 Chapter 2 Literature Review 6 2-1 Methods for Determination of Amines 6 2-1-1 Gas Chromatography (GC) 6 2-1-2 High Performance Liquid Chromatography (HPLC) 7 2-2 Methods for Determination of NH4+ in Aqueous Phase 13 2-2-1 Electroanalytical Methods 13 2-2-2 Spectrophotometry 13 2-2-3 Fluorometry 14 2-2-4 Gas Chromatography 15 2-2-5 Determination of Ammonium Ion by Ion Chromatography 18 2-3 Conclusion 23 2-4 Introduction of Fluorometry 23 2-5 Introduction of Ion Chromatography 24 2-5-1 The Principle of Ion Chromatography 24 2-5-2 The Principle of Conductmetric Detection 29 Chapter 3 Experimental Section 33 3-1 Equipment 33 3-2 Reagents 36 3-3 Cleaning Condition and Instrument Maintenance 38 3-4 Experimental Procedures 38 3-4-1 Stock Solution Preparation 38 3-4-2 Procedures for Analysis of Ethylamine 40 3-4-3 Procedures for Analysis of NH4+ 43 Chapter 4 Results and Discussion 45 4-1 Determination of Ethylamine 45 4-1-1 Determination of Excitation and Emission Wavelength of OPA-ethylamine Derivative 45 4-1-2 Effect of OPA Reagent pH 46 4-1-3 Effect of 2-mercaptoethanol Concentration 47 4-1-4 Effect of OPA Concentration 48 4-1-5 Effect of Na2B4O7 Buffer Concentration 49 4-1-6 Effect of Reaction Time 50 4-1-7 Effect of Sample Matrix Interference 51 4-1-8 Calibration Curve, Precision and Method Detection Limit 52 4-2 Determination of NH4+ 54 4-2-1 Effect of Temperature on Ion Chormatography 55 4-2-2 Effect of Concentration of Methanesulfonic Acid (MSA) 57 4-2-3 Effect of Disproportional Concentration Ratio of Na+ and NH4+ Ions on Their Separation 60 4-2-4 Standard Addition Method 62 4-2-5 Calibration Curve, Precision and Method Detection Limit 63 Chapter 5 Conclusion 66 Reference 68 Part 2 76 Chapter 1 Introduction 77 1-1 Properties of Copper 77 1-2 Copper in the Environment 77 1-3 Research Objectives 79 Chapter 2 Literature Review 81 2-1 Photochemical Behavior of Copper Complexes 81 2-2 Model Assumption 85 Chapter 3 Experimental Section 90 3-1 Equipments 90 3-2 Reagents 92 3-3 Experimental Procedures 92 3-3-1 Preparation of Working Solution 92 3-3-2 Procedures for Determination of Cu+, Amines and NH4+ 93 3-3-3 Procedures for Determination of Light Intensity 95 3-4 Experimental Scheme 96 Chapter4 Results and Discussion 98 4-1 Determination of Possible N-containing Photolysis Products 98 4-2 Cu+/NH4+ Ratio 102 4-2-1 Effect of pH Value 103 4-2-2 Effect of Concentration of Ligand 108 4-2-3 Effect of Concentration of Cu(II) 112 4-3 Purge Effect 120 4-4 Effect of Different Ligands 123 4-4-1 Non-polar Amino Acids 123 4-4-2 Basic Amino Acids 125 4-5 Glycine and Serine 129 Chapter 5 Conclusion 130 Chapter 6 Future Works 131 References 132rf Aminot, A.; Kerouel, R.; Birot, D., A Flow Injection-Fluorometric Method for the determination of ammonium in fresh and saline waters with a view to in situ analyses. Water Research 2001, 35, (7), 1777-1785. Aminot, A.; Kirkwood, D. S.; Kerouel, R., Determination of ammonia in seawater by the indophenol-blue method: Evaluation of the ICES NUTS / C 5 questionnaire. Marine Chemistry 1997, 56, 59-75. Aokl, T.; Uemura, S.; Munemorl, M., Continuous Flow Fluorometric Determination of Ammonia in Water. Analytical Chemistry 1983, 55, 1620-1622. Benson, J. R.; Hare, P. E., o-Phthalaldehyde: Fluorogenic Detection of Primary Amines in the Picomole Range. Comparison with Fluorescamine and Ninhydrin. Proceedings of the National Academy of Sciences of the United States of America 1975, 72, 619-622. Bolleter, W. T.; Bushman, C. J.; Tidwell, P. W., Spectrophotometric Determination of as Indophenol Ammonia. Analytical Chemistry 1961, 33, 592-594. Bouyoucos, S. A., Determination of Ammonia and Methylamines in Aqueous Solutions by Ion Chromatography. Analytical Chemistry 1977, 49, (3), 401-403. Busto, O.; Miracle, M.; Guasch, J.; Borrull, F., Determination of biogenic amines in wines by high-performance liquid chromatography with on-column fluorescence derivatization. Journal of Chromatography A 1997, 757, 311-318. Chong, J.; Hatsis, P.; Lucy, C. A., High-speed ion chromatographic separation of cations at elevated temperature. Journal of Chromatography A 2003, 997, 161-169. Csámpai, A.; Kutlán, D.; Toth, F.; Molnar-Perl, I., o-Phthaldialdehyde derivatization of histidine: stoichiometry, stability and reaction mechanism. Journal of Chromatography A 2004, 1031, 67-78. Daigle, R.; Mehra, M. C.; Mallet, V., Single Column Ion Chromatography of Ammonium Ion, Alkali Metals and Alkyl Amines. Chromatographia 1991, 32, (3/4), 143-147. Gardner, W. S.; John, P. A. S., High-Performance Liquid Chromatogrphic Method To Determine Ammonium Ion and Primary Amines in Seawater. Analytical Chemistry 1991, 63, 537-540. Gaucheron, F.; Graet, Y. L., Determinationof ammonium in milk and dairy products by ion chromatography. Journal of Chromatography A 2000, 893, 133-142. Genfa, Z.; Dasgupta, P. K., Fluorometric Measurement of Aqueous Ammonium Ion in a Flow Injection System. Analytical Chemistry 1999, 61, 408-412. Genfa, Z.; Dasgupta, P. K.; Dong, S., Measurement of Atmospheric Ammonia. Environmental Science and Technology 1989, 23, (12), 1467-1474. Gilbert, T. R.; Clay, A. M., Determination of Ammonia in Aquaria and in Sea Water Using the Ammonia Electrode. Analytical Chemistry 1973, 45, (9), 1757-1759. Gjerde, D. Y.; Fritz, J. S., Ion Chromatography, 2nd Edition. New York : Huthig 1987. Goyal, S. S.; Rains, D. W.; Huffaker, R. C., Determination of Ammonium Ion by Fluorometry or Spectrophotometry after On-Line Derivatization with o-Phthalaldehyde. Analytical Chemistry 1988, 60, 175-179. Greibrokk, T.; Andersen, T., High - temperature liquid chromatography. Journal of Chromatography A 2003, 1000, 743-755. Greim, H.; Bury, D.; Klimisch, H.-J.; Oeben-Negele, M.; Ziegler-Skylakakis, K., Toxicity of aliphatic amines: structure-activity relationship. Chemosphere 1998, 36, (2), 271-295. Guo, X.-Q.; Zhao, Y.-B.; Xu, J.-G., Study on sensitized photochemical fluorescence of menadione sodium bisulfite and its application in pharmaceutics analysis. Analytica Chimica Acta 1997, 343, 109-116. Haidekker, A.; Huber, C. G., Ion Chromatography on chelating stationary phases: separation of alkali metals. Journal of Chromatography A 2001, 921, 217-226. Hanczko, R.; Kutlan, D.; Toth, F.; Molnar-Perl, I., Behavior and characteristics of the o-phthaldialdehyde derivatives of n-C6–C8 amines and phenylethylamines with four additive SH-containing reagents. Journal of Chromatography A 2004, 1031, 51-66. Harbin, A.-M.; Berg, C. M. G. v. d., Determination of Ammonia in Seawater Using Catalytic Cathodic Stripping Voltammetry. Analytical Chemistry 1993, 65, 3411-3416. Hatsis, P.; Lucy, C. A., Evaluation of column temperature as a means to alter selectivity in the cation exchange separation of alkali metals, alkaline earth metals and amines. Analyst 2001, 126, 2113-2118. Hodgin, J. C., The separation of pre-column o-phthalaldehyde derivatized amino acids by high performance liquid chromatography. Journal of Liquid Chromatography 1979, 2, 1047-1059. Holmes, R. M.; Aminot, A.; Kerouel, R.; Hooker, B. A.; Peterson, B. J., A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 1999, 56, 1801-1808. Hu, X.; Takenaka, N.; Takasuna, S.; Kitano, M.; Bandow, H.; Maeda, Y.; Hattori, M., Determination of Ammonium Ion in Rainwater and Fogwater by Flow Injection Analysis with Chemiluminescence Detection. Analytical Chemistry 1993, 65, 3489-3492. Huang, Y.; Mou, S.-f.; Riviello, J. M., Determination of ammonium in seawater by column-switching ion chromatography. Journal of Chromatography A 2000, 868, 209-216. Ichinose, N.; Schwedt, G.; Schnepel, F. M.; Adachi, K., Fluorometric Analysis in Biomedical Chemistry : Trends and Techniques Including HPLC Applications. John Wiley and Sons, Inc. 1987, p1-120. Imai, K.; Toyo'oka, T.; Miyano, H., Fluorigenic Reagent for Primary and Secondary Amines and Thiols in High-performance Liquid Chromatography. Analyst 1984, 109, 1365-1373. Jarrett, H. W.; Cooksy, K. D.; Ellis, B.; Anderson, J. M., The Separation of o-Phthalaldehyde Derivatives of Amino Acids by Reversed-Phase Chromatography on Octylsilica Columns. Analytical Biochemistry 1986, 153, 189-198. Jenkins, R. W.; Cheek, C. H.; Linnenbom, V. J., Determination of dissolved ammonia by gas chromatography. Analytical Chemistry 1966, 38, 1257-1258. Jimenez, C.; Marques, I.; Bartroli, J., Continuous-Flow System for On-Line Water Monitoring Using Back-Side Contact ISFET-Based Sensors. Analytical Chemistry 1996, 68, 3801-3807. Jones, B. N.; Gilligan, J. P., o-phthaldialdehyde precolumn derivatization and reversed-phase high-performance liquid chromatography of polypeptide hydrolysates and physiological fluids. Journal of Chromatography 1983, 266, 471-482. Kataoka, H., Derivatization reactions for the determination of amines by gas chromatography and their applications in environmental analysis. Journal of Chromatography A 1996, 733, 19-34. Kerouel, R.; Aminot, A., Fluorometric determination of ammonia in sea and estrarine waters by direct segmented flow analysis. Marine Chemistry 1997, 57, 265-275. Kutlán, D.; Molnár-Perl, I., New aspects of the simultaneous analysis of amino acids and amines as their o-phthaldialdehyde derivatives by high-performance liquid chromatography Analysis of wine, beer and vinegar. Journal of Chromatography A 2003, 987, 311-322. Kutlán, D.; Presits, P.; Molnár-Perl, I., Behavior and characteristics of amine derivatives obtained with o-phthaldialdehyde / 3-mercaptopropionic acid and with o-phthaldialdehyde / N-acetyl-L-cysteine reagents. Journal of Chromatography A 2002, 949, 235-248. Li, Y.; Echegoyen, L., Unusual Mechanistic Pathways and Dynamic Processes during Cation Exchange between Crown Ether-Sodium Complexes in Homogeneous Solution. Journal of the American Chemical Society 1994, 116, 6832-6840. Lindroth, P.; Mopper, K., High Performance Liquid Chromatographic Determination of Subpicomole Amounts of Amino Acids by Precolumn Fluroescence Derivatization with o-Phthaldialdehyde. Analytical Chemistry 1979, 51, (11), 1667-1674. Lόpez, M. R.; Alvarez, M. J. G.; Ordieres, A. J. M.; Blanco, P. T., Determination of dimethylamine in groundwater by liquid chromatography and precolumn derivatization with 9-fluorenylmethylchloroformate. Journal of Chromatography A 1996, 721, 231-239. Maris, C.; Laplanche, A.; Morvan, J.; Bloquel, M., Development of a packed precolumn for capillary gas chromatographic analysis of amines in acidic aqueous solution. Water Science and Technology 1999, 40, (6), 141-148. Masserini, R. T.; Fanning, K. A., A sensor package for the simultaneuous determination of nanomolar concentrations of nitrite, nitrate, and ammonia in seawater by fluorescence detection. Marine Chemistry 2000, 68, 323-333. Mengerink, Y.; Kutlán, D.; Tόth, F.; Csámpai, A.; Molnár-Perl, I., Advances in the evaluation of the stability and characteristics of the amino acid and amine derivatives obtained with the o-phthaldialdehyde / 3-mercaptopropionic acid and o-phthaldialdehyde / N-acetyl-L-cysteine reagents High-Performance liquid chromatography - mass spectrometry study. Journal of Chromatography A 2002, 949, 99-124. Mizobuchi, M.; Tamase, K.; Kitada, Y.; Sasaki, M.; Tanigawa, K., Liquid Chromatographic Determination of Ammonium in Water. Analytical Chemistry 1984, 56, 603-605. Molnár-Perl, I., Derivatization and chromatographic behavior of the o-phthaldialdehyde amino acid derivatives obtained with various SH-group-containing additives. Journal of Chromatography A 2001, 913, 283-302. Molnár-Perl, I., Quantitation of amino acids and amines in the same matrix by high-performance liquid chromatography, either simultaneously or separately. Journal of Chromatography A 2003, 987, 291-309. Molnár-Perl, I.; Bozor, I., Comparison of the stability and UV and fluorescence characteristics of the o-phthaldialdehyde / 3-mercaptopropionic acid and o-phthaldialdehyde / N-acetyl-L-cysteine reagents and those of their amino acid derivatives. Journal of Chromatography A 1998, 798, 37-46. Molnár-Perl, I.; Vasanits, A., Stability and characteristics of the o-phthaldialdehyde / 3-mercaptopropionic acid and o-phthaldialdehyde / N-acetyl-L-cystein reagents and their amino acid derivatives measured by high-performance liquid chromatography. Journal of Chromatography A 1999, 835, 73-91. Mori, M.; Tanaka, K.; Helaleh, M. I. H.; Xu, Q.; Ikedo, M.; Ogura, Y.; Sato, S.; Hu, W.; Hasebe, K., Selective determination of ammonium ions by high-speed ion-exclusion chromatography on a weakly basic anion-exchange resin column. Journal of Chromatography A 2003, 997, 191-197. Ngo, T. T.; Phan, A. P. H.; Yam, C. F.; Lenhoff, H. M., Interference in Determination of Ammonia with the Hypochlorite-Alkaline Phenol Method of Berthelot. Analytical Chemistry 1982, 54, 46-49. Oehrle, S. A., Controlled changes in selectivity of cation separations by capillary electrophoresis using various crown-ether additives. Journal of Chromatography A 1996, 745, 87-92. Ono, Y.; Somiya, I.; Oda, Y., Identification of a carcinogenic heterocyclic amine in river water. Water Research 2000, 34, (3), 890-894. Pedersen, C. J., Cyclic Polyethers and Their Complexes with Metal Salts. Journal of the American Chemical Society 1967, 89, (10), 2495-2496. Pohl, C.; Rey, M.; Jensen, D.; Kerth, J., Determination of sodium and ammonium ions un disproportionate concentration ratios by ion chromatography. Journal of Chromatography A 1999, 850, 239-245. Qin, W.; Zhang, Z.; Li, B.; Peng, Y., Chemiluminescence flow system for the determination of ammonium ion. Talanta 1999, 48, 225-229. Rapsomanlkls, S.; Wake, M.; Kitto, A.-M. N.; Harrison, R. M., Analysis of Atmospheric Ammonia and Particulate Ammonium by a Sensitive Florescence Method. Environmental Science and Technology 1988, 22, 945-952. Rey, M. A., High-capacity cation-exchange column for enhanced resolution of adjacent peaks of cations in ion chromatography. Journal of Chromatography A 2001, 920, 61-68. Rey, M. A.; Pohl, C. A.; Jagodzinski, J. J.; Kaiser, E. Q.; Riviello, J. M., A new approach to dealing with high-to-low concentration ratios of sodium and ammonium ions in ion chromatography. Journal of Chromatography A 1998, 804, 201-209. Rey, M. A.; Riviello, J. M.; Pohl, C. A., Column switching for difficult cation separations. Journal of Chromatography A 1997, 789, 149-155. Roth, M., Fluorescence Reaction for Amino Acids. Analytical Chemistry 1971, 43, 880-882. Sacher, F.; Lenz, S.; Brauch, H.-J., Analysis of primary and secondary aliphatic amines in waste water and surface water by gas chromatography - mass spectrumetry after derivatization with 2,4-dinitrofluorobenzene or benzenesulfonyl chloride. Journal of Chromatography A 1997, 764, 85-93. Simons, S. S.; Johnson, D. F., Reaction of o-Phthalaldehyde and Thiols with Primary Amines: Formation of 1-Alkyl (and aryl) thio-2-alkylisoindoles. Journal of Organic Chemistry 1978, 43, 2886-2891. Skoog, D. A.; Holler, F. J.; Nieman, T. A., Principles of Instrumental Analysis, Fifth Edition. Harcourt Brace and Company 1998, p355-376 Small, H.; Stevens, T. S.; Bauman, W. C., Novel Ion Exchange Chromatographic Method Using Conductimetric Detection. Analytical Chemistry 1975, 47, 1801-1809. Smith, R. E., Ion Chromatography Applications. CRC Press, Inc. 1988. Smith, T. A., Recent advances in the biochemistry of plant amines. Phytochemistry 1975, 14, 865-890. Spohn, H. M. U., Rapid and selective determination of ammonium by fluorimetric flow injection analysis. Fresenius Journal of Analytical Chemistry 2000, 366. Švedas, V.-J. K.; Galaev, I. J.; Borisov, I. L.; Berezin, I. V., The Interaction of Amino Acids with o-phthaldialdehyde: A Kinetic Study and Spectrophotometric Assay of the Reaction Product. Analytical Biochemistry 1980, 101, 188-195. Thomas, D. H.; Rey, M.; Jackson, P. E., Determination of inorganic cations and ammonium in environmental waters by ion chromatography with a high-capacity cation-exchange column. Journal of Chromatography A 2002, 956, 181-186. Trepman, E.; Chen, R. F., Fluorescence Stopped-Flow Study of the o-phthaldialdehyde Reaction. Archives of Biochemestry and Biophysics 1980, 204, 524-532. Vasanits, A.; Kutlán, D.; Sass, P.; Molnar-Perl, I., Retention / quantitation properties of the o-phthaldialdehyde–3-mercaptopropionic acid and the o-phthaldialdehyde–N-acetyl-Lcysteine amino acid derivatives in reversed-phase high-performance liquid chromatography. Journal of Chromatography A 2000, 870, 271-287. Vasanits, A.; Molnár-Perl, I., Temperature, eluent flow-rate and column effects on the retention and quantitation properties of phenylthiocarbamyl derivatives of amino acids in reversed-phase high-performance liquid chromatography. Journal of Chromatography A 1999, 832, 109-122. Xu, Q.; Tanaka, K.; Mori, M.; Helaleh, M. I.; Toada, H.; Hu, W.; Hasebe, K., Monolithic ODS-Silica Gel Column for Determination of Hydrogen, Sodium, Ammonium and Potassium in Acid Rain by Ion Chromatography. Chromatographia 2003, 57, 19-22. Andrianirinaharivelo, S. L.; Bolte, M., Photochemical behavior of copper(II) nitrilotriacetate in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry 1993, 73, 213-216. Das, S.; Johnson, G. R. A.; Nazhat, N. B.; Hazhat, R. S., Ligand Decomposition in the Photolysis of Copper(II)-Amino acid Complexes in Aqueous Solution. J. Chem. Soc., Faraday Trans. 1 1984, 80, 2759-2766. DiDonato, M., Copper transport and its alterations in Menkes and Wilson diseases. Biochemica et Biophysica Acta 1997, 1360, 3-16. DiDonato, M.; Hsu, H.-F.; Narindrasorasak, S.; Lawrence Que, J.; Sarkar, B., Copper-Induced Conformational Changes in the N-Terminal Domain of the Wilson Disease Copper-Transporting ATPase. Biochemistry 2000, 39, 1890-1896. Donat, J. R.; Lao, K. A.; Bruland, K. W., Speciation of dissolved copper and nickel in South San Francisco Bay: amulti-method approach. Analytica Chimica Acta 1994, 284, 547-571. Faust, B. C., Experimental Determination of Molar Absorptivities and Quantum Yields for Individual Complexes of a Labile Metal in Dilute Solution. Environmental Science and Technology 1996, 30, 1919-1922. Folsom, B. R.; Popescu, N. A.; Wood, J. M., Comparative Study of Aluminum and Copper Transport and Toxicity in an Acid-Tolerant Freshwater Green Alga. Environmental Science and Technology 1986, 20, 616-620. Gächter, R.; Davis, J. S.; Mares, A., Regulation of Copper Availability to Phytoplankton by Macromolecules in Lake Water. Environmental Science and Technology 1978, 12, 1416-1421. Gonźalez-Dávila, M.; Santana-Casiano, J. M.; Laglera, L. M., Copper adsorption in diatom cultures. Marine Chemistry 2000, 70, 161-170. Gonźalez-Dávila, M.; Santana-Casiano, J. M.; Perez-Pena, J.; Millero, F. J., Binding of Cu(ll) to the Surface and Exudates of the Alga Dunaliella tertiolecta in seawater. Environmental Science and Technology 1995, 29, 289-301. Hayase, K.; Zepp, R. G., Photolysis of Copper(II)-Amino Acid Complexes In Water. Environmental Science and Technology 1991, 25, 1273-1279. Hering, J. G.; Morel, F. M. M., Kinetics of Trace Metal Complexation: Ligand-Exchange Reactions. Environmental Science and Technology 1990, 23, 242-252. Hsu, C. S., Experimental Determination of Copper(I) quantum yields for Copper(II)-Amino acid complexes In Aqueous solution. Thesis for the master degree of Department of Atomic Science National Tsing Hua University, Taiwan, R.O.C. 2003. Keith, L.; Telliard, W., ES&T Special Report: Priority pollutants: I-a perspective view. Environmental Science and Technology 1979, 13, 416-423. Kozelka, P. B.; Bruland, K. W., Chemical speciation of dissolved Cu, Zn, Cd, Pb in Narragansett Bay, Rhode Island. Marine Chemistry 1998, 60, 267-282. Lever, A. B. P., Charge transfer spectra of transition metal complexes. Journal of chemical education 1974, 51, 612-616. Mailhot, G.; Andrianirinaharivel, S. L.; Bolte, M., Photochemical transformation of iminodiacetic acid induced by complexation with copper(II) in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry 1995, 87, 31-36. Moffett, J. W.; Zika, R. G., Reaction Kinetics of Hydrogen Peroxide with Copper and Iron in Seawater. Environmental Science and Technology 1987, 21, 804-810. Mönig, J.; Chapman, R.; Asmus, K. D., Effect of the Protonation State of the Amino Group on the OH Radical Induced Decarboxylation of Amino Acids in Aqueous Solution. Journal of physical Chemistry 1985, 89, 3139-3144. Morimoto, J. Y.; Degraff, B. A., Photochemistry of Copper Complexes. A " Sensitized " Reaction. The Journal of Physical Chemistry 1972, 76, (4), 1387-1388. Morimoto, J. Y.; Degraff, B. A., Photochemistry of copper complexes. Copper(II) malonate system. The Journal of Physical Chemistry 1975, 79, 326-331. Natarajan, P.; Ferraudi, G., Photochemical Properties of Copper(II)-Amino Acid Complexes. Inorganic Chemistry 1981, 20, 3708-3712. Petersen, R., Influence of Copper and Zinc on the Growth of a Freshwater Alga, Scenedesmus quadricauda : The Significance of Chemical Speciation. Environmental Science and Technology 1982, 16, 443-447. Robbins, M. H.; Drago, R. S., Activation of Hydrogen Peroxide for Oxidation by Copper(II) Complexes. Journal of Catalysis 1997, 170, 295-303. Sýkora, J., Photochemistry of copper complexes and their environmental aspects. Coordination Chemistry Reviews 1997, 159, 95-108. Voelker, B. M.; Kogut, M. B., Interpretation of metal speciation data in coastal waters: the effects of humic substances on copper binding as a test case. Marine Chemistry 2001, 74, 303-318. Volesky, B.; Holan, Z. R., Biosorption of heavy metals. Biotechnology Progress 1995, 11, 235-250.id NH0925257019 sid 914522 cfn 0 / id NH0925257020 auc 陳錦輝 tic 大氣懸浮微粒中多環芳香烴化合物之採樣分析研究 adc 洪益夫 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 80 kwc 多環芳香烴化合物 kwc 總懸浮微粒 abc 多環芳香烴化合物(polycyclic aromatic hydrocarbons, PAHs)為一普遍存在環境中之污染物,部分PAHs化合物及其衍生物已被證實有致癌性及致突變性。人體可能經由不同管道暴露於此類化合物之中,例如經由呼吸或食物攝入體中。本研究針對新竹市及桃園縣大氣總懸浮微粒中所含PAHs化合物為研究目標,希望能藉著化合物隨著時間及地點不同的分佈差異,提供暴露風險評估的數據。 tc 目錄 摘要.....................................................i 謝誌.....................................................ii 目錄.....................................................iii 表目錄...................................................v 圖目錄..................................................vi 第一章 緒論 1 1-1前言 1 1-2懸浮微粒簡介 2 1-3多環芳香烴化合物簡介 3 1-3-1 PAHs化合物的物性及化性 3 1-3-2 PAHs化合物的來源 3 1-3-3 PAHs化合物對人體的影響 4 第二章 文獻回顧 5 2-1 PAHS化合物分析方法探討 5 2-1-1 懸浮微粒中PAHs化合物之採樣 5 2-1-2 樣品前處理方法 6 2-1-3 PAHs化合物之鑑定方法 7 2-2 PAHS化合物濃度分佈情形 8 第三章 實驗方法 12 3-1 實驗藥品及實驗器材 12 3-1-1藥品 12 3-1-2器材 12 3-2 實驗步驟 13 3-2-1標準溶液之製備 13 3-2-2待測物種滯留時間與檢量線的建立 13 3-2-3採樣方法—高量採樣法 14 3-2-4採樣地點 18 3-2-5採樣時間 18 3-2-6高效能液相層析儀操作條件最適化探討 18 3-2-7萃取 19 3-2-8偵測極限 19 3-2-9空白測試 20 第四章 結果與討論 21 4-1滯留時間與再現性 21 4-2標準溶液校正曲線 21 4-3偵測極限 21 4-4品質管制 22 4-5空白測試結果 22 4-6新竹三個測站結果 22 4-6-1空間分佈 22 4-6-2時間分佈 23 4-6-3總懸浮微粒各種PAHs化合物含量與組成 24 4-7桃園七個測站結果 25 4-7-1空間分佈 25 4-7-2時間分佈 26 4-7-3總懸浮微粒各種PAHs化合物含量與組成 26 4-8氣象因子與化合物 26 4-9與文獻濃度比較 27 4-10特徵比值 28 4-11統計分析 29 4-11-1相關係數 29 4-11-2因素分析 30 第五章 結論 32 第六章 參考文獻 34 表目錄 表一  十六種PAHS化合物之性質 40 表二  採樣日期 42 表三  HPLC儀器設定條件 44 表四  螢光偵檢器波長設定條件 44 表五  滯留與其時間再現性 45 表六  檢量線方程式 46 表七  偵測極限 47 表八  龍山國小懸浮微粒中PAHS化合物逐月濃度 48 表九  新竹衛生局懸浮微粒中PAHS化合物逐月濃度 49 表十  香山衛生所懸浮微粒中PAHS化合物逐月濃度 50 表十一  中壢圖書館懸浮微粒中PAHS化合物逐月濃度 51 表十二  楊梅圖書館懸浮微粒中PAHS化合物逐月濃度 52 表十三  大園工業區懸浮微粒中PAHS化合物逐月濃度 53 表十四  桃園農工懸浮微粒中PAHS化合物逐月濃度 54 表十五  龜山工業區懸浮微粒中PAHS化合物逐月濃度 55 表十六  內定國小懸浮微粒中PAHS化合物逐月濃度 56 表十七  蘆竹工業區懸浮微粒中PAHS化合物逐月濃度 57 表十八  世界各地總懸浮微粒濃度比較 58 表十九  世界各地BaP濃度比較 59 表二十  PAHS化合物特徵比值 60 表二十一  不同地點特徵比值 61 表二十二  新竹市PAHS化合物相關係數表 62 表二十三  桃園縣PAHS化合物相關係數表 63 表二十四  新竹市PAHS化合物因素分析表 64 表二十五  桃園縣PAHS化合物因素分析表 65 圖目錄 圖一  微粒粒徑分布特性 66 圖二  十六種PAHS化合物結構圖 67 圖三  採樣地點 68 圖四  標準溶液檢量線 69 圖五  PAHS標準品積分面積品質管制圖 71 圖六  PAHS化合物標準品圖譜 72 圖七  樣品圖譜 (12月下旬大園工業區測站) 72 圖八  乙腈溶劑圖譜 73 圖九  方法空白圖譜 73 圖十  新竹市個別PAHS化合物濃度比較 74 圖十一  新竹市逐月總懸浮微粒濃度 74 圖十二  新竹市逐月總PAHS化合物濃度 75 圖十三  新竹市逐月總BaP毒性當量濃度 75 圖十四  新竹市PAHS化合物組成成分比較 76 圖十五  新竹市PAHS化合物逐月組成成分 76 圖十六  桃園縣個別PAHS化合物濃度比較 77 圖十七  桃園縣逐月總懸浮微粒濃度 77 圖十八  桃園縣逐月總PAHS化合物濃度 78 圖十九  桃園縣逐月總BaP毒性當量濃度 78 圖二十  桃園縣PAHS化合物組成成分比較 79 圖二十一  桃園縣PAHS化合物逐月組成成分 79 圖二十二  不同地點總PAHS化合物季節分佈 80rf Aghdaie, N., Adib, S., Determination of Some Airborne Polycyclic Aromatic Hydrocarbons in the Tehran Atmosphere, Proceedings of the 7th World Clean Air Conference, vol. 5. Sydney, Australia, 25-29 August, 68-75, 1986. Ang, K.P., Gunasingham, H., Tay, B.T., The Distribution of Polynuclear Aromatic Hydrocarbons in Ambient Air Particulates in Singapore, Environmental Monitoring Assessment, 6:171-180, 1986. Armstrong B., Hutchinson E., Fletcher T., Cancer Risk Following Exposure to Polycyclic Aromatic Hydrocarbons (PAHs):A Meta-analysis, Health and Safety Executive(London) , 2003. Baek S.O., Goldstone M.E., Kirk P.W., Lester J.N., Perry R., Phase Distribution and Particle Size Dependency of Polycyclic Aromatic Hydrocarbons in the Urban Atmosphere, Chemosphere, 22:503–520, 1991. Banerjee, D.K., Khillare, P.S., A Profile of Benzo[a ]pyrene in the Ambient Air of Delhi, Proceedings of the Seventh World Clean Air Conference, vol. 5. Sydney, Australia, 25-29 August, 296-299, 1986. Butler, J.D., Crossley, P., An Appraisal of Relative Airborne Sub-urban Concentrations of Polycyclic Aromatic Hydrocarbons Monitored Indoors and Outdoors, Science of the Total Environment, 11:53-58, 1979. Castellano A.V., Cancio J. L., Aleman P.S., Rodriguez J.S., Polycyclic Aromatic Hydrocarbons in Ambient Air Particles in the City of Las Palmas de Gran Canaria, Environmental International, 29: 475-480, 2003. Chen S.J., Huang P.S., Hsieh L.T., Jian W.J., Liao S.H., Chiu S.C., Particle Size Distribution of PAHs in the Ambient Air of Southern Taiwan, Journal of Aerosol Science, 28(Supplement):S129-S130, 1997. Chiang P.C., Chiang Y.C., Chang E.E., Chang S.C., Characteristics of Polynuclear Aromatic Hydrocarbons in Ambient Air through a Long-Term Sampling Program at a Metropolitan City in Taiwan, Aerosol Science and Technology, 37:133-144, 2003 Finayson-Pitts B.J. and Pitts J.N. Jr., Atmospheric Chemistry Fundamentals and Experimental Techniques, JOHN WILEY & SONS, New York,1986. Friese, R., Israel, G.W., Bauer, H.W., Composition of Suspended Particulates and Source Apportionment for TSP and Its Components in Berlin, Clean Air Congress IUAPPA, Clean Air Society of Australia and New Zealand, Sydney, Australia, 576-583, 1986. Gary L.L. and Winefordner J.D., Limit of Detection: A Closer Look at the IUPAC Definition, Analytical Chemistry, 37:712A–719A, 1983. Goodman, H.S., Particulate Concentration in Air in Eastern Australia and Papua New Guinea. Clean Air, August, 1977. Guo H., Lee S.C., Ho K.F., Wang X. M., Zou S.C., Particle-associated Polycyclic Aromatic Hydrocarbons in Urban Air of Hong Kong. Atmospheric Environment, 55:5307–5317, 2003. Halsall, C.J., Coleman, P.J., Davis, B.J., Burnett, V., Waterhouse, K.S., Harding-Jones, P., Jones, K.D., Polycyclic Aromatic Hydrocarbons in UK Urban Air, Environmental Science and Technology, 28(13):2380-2386, 1994. Handa, T., Kato, Y., Yamamurra, T., Ishii, T., Suda, K., Correlation Between the Concentrations of Polynuclear Aromatic Hydrocarbons and Those of Particulates in the Urban Atmosphere, Environmental Science and Technology, 14(4):416-422, 1980. Kanbour, F.I., Altai, F.A., Yassin, S., Harrison, R.M., Kitto, A.M.N., A Comparison of Smoke Shade and Gravimetric Determination of Suspended Particulate Matter in a Semi-arid Climate (Baghdad, Iraq), Atmospheric Environment, 24A:1297-1301, 1990. Kassomenos P., Kotroni V., Kallos G., Analysis climatological and Quality Observation from Greater Athens Area, Atmospheric Environment, 29:3671–3688, 1995. Kavouras J.G., Lawrence J., Koutrakis P., Stephanou E.G.,Oyola P., Measurement of Particulate Aliphatic and Polynuclear Aromatic Hydrocarbons in Santiago do Chile:Source Reconciliation and Evaluation of Sampling Artifacts. Atmospheric Environment,33: 4977–4986, 1999. Khalili N.R., Scheff P.A., Holsen T.M., PAH Source Fingerprints for Coke ovens, Diesel and Gasoline Engines, Highway Tunnels, and Wood Combustion Emissions. Atmospheric Environment, 29 (4):533–542, 1995. Kuo C.Y., Cheng Y.W., Chen C.Y., and Lee H., Correlation Between the Amounts of Polycyclic Aromatic Hydrocarbons and Mutagenicity of Airborne Particulate Samples from Taichung City, Taiwan, Environmental Research, Section A, 78:43-49, 1998. Lee W.J., Wang Y.F., Lin T.C., Chen Y.Y., Lin W.C., Ku C.C., Cheng J.T., PAH Characteristics in the Ambient Air of Traffic-Source, The Science of the Total Environment, 159:185-200, 1995. Li C.K. and Kamens R.M., The use of polycyclic Aromatic Hydrocarbons as Source Signatures in Receptor Modeling, Atmospheric Environment, 27A:523-532, 1993. Li C.S. and Ro Y.S., Indoor Characteristics of Polycyclic Aromatic Hydrocarbons in the Urban Atmosphere of Taipei, Atmospheric Environment, 34:611-620, 2000. Lin T.C., Chang F.H.,Hsieh J.H., Chao H.R., Chao M.R., Characteristics of polycyclic aromatic hydrocarbons and total suspended particulate in indoor and outdoor atmosphere of a Taiwanese temple, Journal of Hazardous Materials, A95:1-12,2002. Menichine E., Urban Air Pollution by Polycyclic Aromatic Hydrocarbons:Leaves and Source of Variability, Science of the Total Environment,116:109-135, 1992. Mi H.H., Lee W.J., Tsai P.J., Chen C.B., A Comparison on the Emission of Polycyclic Aromatic Hydrocarbons and Their Corresponding Carcinogenic Potencies from a Vehicle Engine Using Leaded and Lead-free Gasoline, Environmental Health Perspectives, 109(12):1285-1290, 2001. Miguel A.H., Kirchstetter T.W., Harley R.A., Hering S., On-road Emissions of Particulate Polycyclic Aromatic Hydrocarbons and Black Carbon from Gasoline and Diesel Vehicles. Environmental Science and Technology, 32:450–455. 1998. Mohan-Rao, A.M., Vohra, K.G., The Concentrations of Benzo[a ]pyrene in Bombay, Atmospheric Environment, 9:403-408, 1975. Nisbet C., and La G.P., Toxic Equivalency Factors (TEFs) for Polycyclic Aromatic Hydrocarbons (PAHs), Regulatory Toxicology and Pharmacology, 16: 290-300, 1992. Pandey, J., Agrawal, M., Khanam, N., Narayan, D., Rao, D.N., Atmospheric Environment, 26B:91-98, 1992. Panther B.C., Hooper M.A., Tapper N.J., A Comparison of Air Particulate Matter and Associated Polycyclic Aromatic Hydrocarbons in Some Tropical and Temperate Urban Environments. Atmospheric Environment, 33 :4087–4099, 1999. Perera P. Frederica, Respirable Particles, Ballinger Publishing Company, New York, 1980. Qi S., Jun Y., Gan Z., Fu J., Sheng G., Wang Z., Tong S.M., Tang U. W., Yunshun M., Distribution of Polycyclic Aromatic Hydrocarbons in Aerosols and Dustfall in Macao, Environmental Monitoring and Assessment, 72:115-127 , 2001. Schnelle-Kreis J., Gebefugi I., Welzl G., Jaensch T., Kettrup A., Occurrence of particle-associated polycyclic aromatic compounds in ambient air of the city of Munich, Atmospheric Environment, 35 (Supplement):S71–S81, 2001. Smith D.J.T and Harrison R.M. Concentration, Trends and Vehicle Source Profile of Polynuclear Aromatic Hydrocarbons in the U.K., Atmospheric Environment, 30:2513–2525, 1996. Venkataraman C., Lyons J.M., Friedlander S.K., Size Distribution of Polycyclic Aromatic Hydrocarbons and Elemental Carbon 1.Sampling, Measurement Methods and Source Characterization, Environmental Science and Technology, 28:555–562, 1994. Venkataraman, C., Friedlander, S.K., Size Distributions of Polycyclic Aromatic Hydrocarbons and Elemental Carbon, 2.Ambient Measurements and Effects of Atmospheric Processes, Environmental Science and Technology, 28(4):563-572, 1994. Verrall, K.A., Muller, W.A., Kingston, P.A., Rose, H.C., Raftery, N.A., Identification of Sources Contributing to Total Suspended Particulates in Brisbane, Proceedings of Clean Air Conference, Clean Air Society of Australia and New Zealand, Sydney, 290-291, 1986. 王秋森及陳志傑,行政院國家科學委員會專題研究計畫成果報告--臭氧及PM1/PM2.5/PM10氣懸微粒之暴露及健康風險評估, 1999. 林淵淙,多環芳香烴化合物(PAHs)對人體之影響,環保訓練園地,66,2002. 郭錦堂、龔聖祐、蕭曉霽、黃元宏、劉鎮源,利用HPLC及GC/MS分析大氣環境中多環芳香烴化合物探討,環境分析化學研討會,2004. 顏有利、王根樹、陳慧雯、林欽章、賴美秀、陳俊宏、許書維、許偉哲,空氣品質長期趨勢分析與年報編撰期末報告,行政院環保署,2003.id NH0925257020 sid 914525 cfn 0 / id NH0925257021 auc 洪崇原 tic 自行設計冷凝前濃縮系統搭配自動化氣相層析質譜儀量測空氣中微量揮發性有機化合物 adc 羅俊光 adc 吳劍侯 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 107 kwc 冷凝前濃縮系統 kwc 多重床吸附劑 kwc 自動化氣相層析質譜儀 kwc 揮發性有機化合物 kwc 前濃縮 abc 本研究成功地開發出一套免用液態氮(LN2)的冷凝前濃縮系統,結合冷凍壓縮機(refrigeration)及多重床吸附劑,利用低溫冷凝吸附原理作為濃縮機制,此冷凝前濃縮系統可與商業化氣相層析儀結合,並自動化,無液態氮氣消耗的困擾,可提供<-40 0C 的低溫,售價便宜等多項優點,同時改善多重床吸附劑,在室溫下對 C2化合物無法完全吸附,造成分析感度不佳的原因。 tc 謝誌…………………………………………………………………Ⅰ 中文摘要……………………………………………………………Ⅱ 英文摘要……………………………………………………………Ⅲ 目錄…………………………………………………………………Ⅳ 圖目錄………………………………………………………………Ⅶ 表目錄………………………………………………………………Ⅸ 第一章 緒論…………………………………………………………1 1.1研究緣由…………………………………………………………1 1.2研究目的…………………………………………………………2 第二章 文獻回顧……………………………………………………4 2.1 目標分析物……………………………………………………4 2.1.1 非極性揮發性有機化合物…………………………………4 2.1.2 極性揮發性有機化合物……………………………………6 2.2空氣中揮發性有機化合物分析方法……………………………7 2.2.1採樣方法………………………………………………………8 2.2.2前濃縮方法……………………………………………………9 2.2.3分析方法………………………………………………………14 2.3干擾………………………………………………………………15 2.3.1採樣干擾………………………………………………………15 2.3.2前濃縮系統干擾………………………………………………16 2.3.3分析系統干擾…………………………………………………16 第三章 實驗與研究方法……………………………………………25 3.1 儀器設備………………………………………………………25 3.2 分析方法………………………………………………………29 3.2.1採樣方法………………………………………………………29 3.2.2樣品分析方法…………………………………………………31 3.2.3數據處理方法…………………………………………………36 3.3系統最佳化參數探討與測試……………………………………37 3.3.1目標分析物參數測試…………………………………………37 3.3.2冷凝前濃縮系統參數測試……………………………………38 3.3.3熱脫附系統參數測試…………………………………………39 3.4方法接受性評估…………………………………………………40 3.4.1檢量線…………………………………………………………40 3.4.2精密度…………………………………………………………40 3.4.3準確度…………………………………………………………40 3.4.4方法偵測極限…………………………………………………41 3.4.5系統穩定度……………………………………………………42 3.5真實樣品分析……………………………………………………42 3.5.1採樣規劃………………………………………………………42 3.5.2採樣點…………………………………………………………43 3.5.3採樣……………………………………………………………………43 第四章 結果與討論…………………………………………………56 4.1系統最佳化測試…………………………………………………56 4.1.1目標分析物參數測試…………………………………………56 4.1.2冷凝前濃縮系統參數測試……………………………………59 4.1.3熱脫附系統參數測試…………………………………………62 4.2方法接受性結果…………………………………………………63 4.2.1檢量線………………………………………………………63 4.2.2精密度………………………………………………………64 4.2.3準確度………………………………………………………64 4.2.4方法偵測極限…………………………………………………64 4.2.5系統穩定度……………………………………………………64 4.3真實樣品分析……………………………………………………65 第五章結論…………………………………………………………93 5.1 總結……………………………………………………………93 5.2未來發展………………………………………………………94 第六章參考文獻……………………………………………………95 附表…………………………………………………………………98rf 1. 新竹科學工業園區管理局網頁.http://www.sipa.gov.tw/ 2. 勞工安全衛生研究所.物質安全資料表. 3. U.S. Environmental Protection Agency. “ Compendium Method TO-14A Determination Of Volatile Organic Compounds (VOCs) In Ambient Air Using Specially Prepared Canisters With Subsequent Analysis By Gas Chromatography(January 1997). 4. U.S. Environmental Protection Agency. “Compendium Method TO-15 Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/ Mass Spectrometry (GC/MS)(January 1999). 5. U.S. Environmental Protection Agency. “Compendium Method TO-17 Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling Onto Sorbent Tubes(January 1997). 6. 環保署.空氣中揮發性有機化合物檢測方法-不?袗?採樣筒/氣相層析質譜儀法. NIEA A715.11B. 7. 蔡政雄、周台華、林彥宏、王家麟.『臭氧前趨物(VOCs)系統之建立與遠端連續監測』.工業污染防治,第79期.(Jul.2001)55. 8. Jia-Lin Wang, Show-Ru Kuo, Si-Shen Ma, Tai-Yih Chen. “Construction of a low-cost automated chromatographic system for the measurement of ambient methane“ Analytica Chimica Acta, 448, 187–193 (2001) 9. 林彥宏.『VOC 前濃縮與預警系統之建構』.國立中央大學化學研究所碩士論文,民國八十九年. 10. Jia-Lin Wang , Chih-Jong Chang, Wen-Dur Chang, Clock Chew, Shin-Wei Chen. “Construction and evaluation of automated gas chromatography for the measurement of anthropogenic halocarbons in the atmosphere“ Journal of Chromatography A, 844, 259–269 (1999) 11. 吳政修. 『鹵碳化合物自動化分析技術之建立與應用』. 國立中央大學化學研究所碩士論文,民國九十年. 12. Gamas, E.D.; Diaz, L.; Rodriguez, R.; Lopez-Salinas, E.; Schifter, I. “Exhaust emissions from gasoline- and LPG-powered vehicles operating at the altitude of Mexico City” J. Air Waste Manage. Assoc, 49, 1179 (1999) 13. Wang, J. L.; Ding, W. H.; Chen, T. Y. “Source determination of light non-methane hydrocarbons by simultaneous multi-site sampling in a metropolitan area” Chemosphere: Global Change Science (2000). 2, 11. 14. Chang, C. C.; Lo, J. G.; Wang, J. L. “ Assessment of reducing ozone forming potential for vehicles using liquefied petroleum gas an alternative fuel ” Atmos. Environ, 35, 6201(2001) 15. 工業技術研究院-環安中心. 物質安全資料庫MSDS. 16. P. Fraser, et al. ”Lifetime and emission estimates of 1,1,2-trichlorotrifluorethane(CFC-113) from daily global background observation June 1982-June ” J. Geophys. Res. 101, 12585–12599 (1994) 17. 馮天治.『高科技園區污(雨)水系統空氣中揮發性有機化合物之探討』.國立清華大學原子科學所碩士論文,民國九十二年. 18. 環保署.空氣中揮發性有機化合物檢測方法-不?袗?採樣筒/氣相層析質譜儀法. NIEA A714.10T. 19. 洪崇凱.『熱脫附/氣相層析法之原理及應用』.國立清華大學原子科學所博士論文,民國八十九年. 20. E. Pierini, L. Sampaolo, A.R. Mastrogiacomo. “Evaluation of a dual-sorbent trap for monitoring organic compounds in air“ Journal of Chromatography A, 855, 593–600 (1999) 21. Jia-Lin Wang , Wei-Li Chen, Yen-Hung Lin, Cheng-Hsiung Tsai. “Cryogen free automated gas chromatography for the measurement of ambient volatile organic compounds“Journal of Chromatography A, 896, 31–39 (2000) 22. Jia-Lin Wang , Shin-Wei Chen, Clock Chew. “Automated gas chromatography with cryogenic / sorbent trap for the measurement of volatile organic compounds in the atmosphere“ Journal of Chromatography A, 863, 183–193 (1999) 23. Martin Harper.”Sorbent trapping of volatile organic compounds from air” Journal of Chromatography A, 885, 129–151(2000) 24. William A, McClenny, Maribel Colón . “Measurement of volatile organic compounds by the US Environmental Protection Agency Compendium Method TO-17 Evalution of performance criteria“ Journal of Chromatography A, 813, 101–111(1998) 25. Chien-Hou Wu, Chien-Tai Feng, Yu-Shiu Lo, Tsai-Yin Lin, Jiunn-Guang Lo. “Determination of volatile organic compounds in workplace air by multisorbent adsorption/thermal desorption-GC/MS“ Chemosphere, 56, 71–80 (2004). 26. 馮健泰.『空氣與水體中揮發性有機化合物自動化採樣與分析』.國立清華大學原子科學所碩士論文,民國九十一年. 27. 湯大同.“有機溶劑採樣中相對溼度對活性碳吸附管的影響”.行政院勞工安全衛生研究季刊. 28. 楊廣苓,羅俊光.“氣態有機污染物自動採樣分析儀”.科儀新知第十八卷四期. 29. Karen D. Oliver, Jeffrey R. Adams, E. Hunter Daughtrey Jr, William A. Mcclenny, Matthias j. Yoong , Michel A. Pardee, Elizabeth B. Almasi, Norman A. Kirshen.” Technique for Mornitoring Toxic VOCs in Air: sorbent Preconcentration, Closed-Cycle Cooler Cryofocusing, and GC/MS Analysis” Environ. Sci.Technol, 30, 1939(1996) 30. Karen D. Oliver, Jeffrey R. Adams, E. Hunter Daughtrey Jr, William A. Mcclenny, Matthias j. Yoong , Michel A. Pardee” Technique for Mornitoring Ozone Precursor Hydrocarbons in Air at Photochemical Assessment Mornitoring Stations: sorbent Preconcentration, and GC/FID Analysis”. Atmospheric Environment, 30 , 15, 2751–2757(1996) 31. 柯順祥.『揮發性有機化合物自動化分析系統建立與應用』.國立清華大學原子科學所碩士論文,民國八十九年. 32. 李天成.『異質接面三五族半導體在致冷晶片上之應用』. 國立交通大學電子工程學系電子工程研究所碩士論文,民國九十一年. 33. Jia-Lin Wang, Cheng-Hsiu Wu.”Construction and validation of a cryogen free gas chromatography–electron–capture detection system for the measurement of ambient halocarbons” Analytica Chimica Acta, 461, 85–95 (2002) 34. 陳韋立. 『大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用』. 國立中央大學化學研究所碩士論文,民國八十九年. 35. 江奇峰.『具積液式熱交換器之階層式混合冷媒之冷凍系統』.國立交通大學/機械工程研究所碩士論文,民國九十一年. 36. 瑞弘冷凍科技股份有限公司網頁 http://www.jhrtc.com.tw/ 37. 張志忠.『揮發性有機化合物自動化氣相層析質譜分析方法建立與應用』.國立清華大學原子科學所博士論文,民國九十一年. 38. 環保署.空氣中氣態有機溶劑檢驗方法— 以活性碳吸附之氣相層析╱ 火焰離子化偵測法. NIEA A710.10T 39. 環保署. 排放管道中氣態有機化合物檢測方法-採樣袋採樣之氣相層析法. NIEA A722.71B. 40. 環保署. 『工業園區特殊空氣污染物成分調查、分析技術研究』 41. 洪益夫,黃國忠,洪崇凱,石東生,汪禧年.作業環境空氣中氯乙烯之採樣分析.勞工安全季刊,第四卷第二期,第61-72頁民國八十五年六月 42. 勞工安全衛生研究所. 勞工衛生研究相關技術資料彙編. 43. 羅湘鈞.『大氣環境中揮發性有機化合物之分析與應用』.國立清華大學原子科學所碩士論文,民國九十一年. 44. Mei-Yin Hwa, Chu-Chin Hsiehb, Tsung-Cheng Wub, Len-Fu W. Chang. “Real-world vehicle emissions and VOCs profle in the Taipei tunnel located at Taiwan Taipei area “ Atmospheric Environment, 36, 1993–2002 (2002) 45. Chunming Liu, Zili Xu, Yaoguo Du, Haichen Guo. ” Analyses of volatile organic compounds concentrations and variation trends in the air of Changchun, the northeast of China ” Atmospheric Environment, 34, 4459–4466(2000)id NH0925257021 sid 914529 cfn 0 / id NH0925257022 auc 郭鉑漳 tic 建立超音波震盪固相微萃取自動化分析系統及水中揮發性有機化合物之現場自動化即時監測 adc 羅俊光 adc 吳劍侯 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 87 kwc 超音波震盪 kwc 即時監測 kwc 揮發性有機化合物 abc 本研究為建立連續進樣搭配超音波前處理技術自動化分析系統,針對高科技廠業污水中常見的揮發性有機物(VOCs)的分析,分析的有機物分別為Acetone、IPA、DMS、MTBE、EA(ethyl acetate)、BA、THF、PGMEA、2-Butanol。 tc 摘要-----------------------------------------------------------------------i 英文摘要(Abstract)----------------------------------------------------ii 誌謝----------------------------------------------------------------------v 總目錄------------------------------------------------------------------iii 圖目錄------------------------------------------------------------------vi 表目錄------------------------------------------------------------------ix 第一章 緒論-----------------------------------------------------------1 1-1 緣起---------------------------------------------------------------------1 1-2 目的---------------------------------------------------------------------2 1-3 方法---------------------------------------------------------------------3 第二章 文獻回顧-----------------------------------------------------5 2-1 固相微萃取(SPME)方法概要------------------------------------------5 2-1-1 固相微萃取原理---------------------------------------------------------6 2-1-2 固相微萃取參數探討---------------------------------------------------9 2-2 SPME的應用-------------------------------------------------------------17 2-3 水中VOCs與環境之間的關係----------------------------------------18 第三章 研究方法-------------------------------------------------26 3-1 超音波震盪前處理系統建立-------------------------------------------27 3-2 超音波震盪-自動化頂空-固相微萃取/氣相層析儀系統說明----28 3-2-1 分析儀器與設備-------------------------------------------------------28 3-2-2 分析目標化合物性質-------------------------------------------------29 3-2-3 實驗標準試劑-------------------------------------------------------29 3-2-4 品保品管-------------------------------------------------------31 3-2-5 分析樣品應注意事項-------------------------------------------------33 3-3 HS-SPME/GC/FID系統最佳化參數探討與測試-------------------33 3-4 玻璃器皿管理-----------------------------------------------------36 3-5 真實樣品採樣及規劃----------------------------------------------------37 3-5-1 真實樣品採樣實驗室進行分析-------------------------------------37 3-5-2 污水處理廠自動化連續監測部分----------------------------------38 第四章 結果與討論-------------------------------------------------45 4-1 超音波震盪-自動化頂空固相微萃取系統---------------------45 4-1-1 超音波震盪片安裝及可行性和不同功率測試-------------------45 4-1-2 超音波震盪槽與GC/FID的聯接---------------------------------46 4-2 HS-SPME/GC/FID系統最佳化參數探討與測試-------------------46 4-3 真實樣品量測的結果與討論-------------------------------------------51 4-4 自動化連續進樣即時監測----------------------------------------------52 4-4-1 5/25至5/26連續24小時進樣量測---------------------------------52 4-4-2 5/26至5/27連續24小時進樣量測--------------------------------53 4-4-3 5/27晚上11點14分至5/28早上9點20分連續進樣量測----53 4-4-4 連續進樣自動化即時監測結論-------------------------------------54 4-4-5 6/15 ~ 6/17 連續進樣量測-------------------------------------------55 第五章 結論---------------------------------------------------------85 5-1 結論-----------------------------------------------------------------------85 5-2 未來展望-----------------------------------------------------------------87 參考文獻---------------------------------------------------------------xirf 1. Magdalena Ligor, Boguslaw Buszewski,“Determination of menthol and menthone in food and pharmaceutical products by solid-phase microextraction–gas chromatography”Journal of Chromatography A, 847,161-169(1999) 2. Beatriz Cancho, Francesc Ventura, M Teresa Galceran,“Determination of aldehydes in drinking water using pentafluorobenzylhydroxylamine derivatization and solid-phase microextraction”Journal of Chromatography A, 43,1-13(2001) 3. Watson Susan B., Brian Brownlee, Trevor Satchwill, Erika E. Hargesheimer,“Quantitative analysis of trace levels of geosmin and MIB in source and drinking water using headspace SPME”Water Research Vol.34,2818-2828(2000) 4. Page B. Denis, Gladys Lacroix,“Application of solid-phase microextraction to the headspace gas chromatographic analysis of semi-volatile organochlorine contaminants in aqueous matrices”Journal of Chromatography A, 757, 173-182(1997) 5. Neppolian B., Haeryong Jung, Heechul Choi, Jai H. Lee, Joon-Wun Kang,“Sonolytic degradation of methyl tert-butyl ether: the role of coupled fenton process and persulphate ion”Water Research Vol.36,4699-4708(2002) 6. Patrick Roose, Udo A.Th. Brinkman, “Determination of volatile organic compounds in marine biota”Journal of Chromatography A, 799,233-248(1998) 7. Wheat P.E., M.A. Tumeo,“Ultrasound induced aqueous polycyclic aromatic hydrocarbon reactivity”Ultrasonics Sonochemistry ,4 , 55-59(1997) 8. Anton Gáplovský, Jana Donovalová, Štefan Toma, Robert Kubinec,“Ultrasound effects on photochemical reactions, Part 1: photochemical reactions of ketones with alkenes”Ultrasonics Sonochemistry ,4 , 109-115(1997) 9. 林瑞聰,“惡臭污染防治”,環保資訊雜誌第6期,PP.14~15,1993。 10. 劉國棟,“VOC管制趨勢展望”,工業污染防治,第48期,PP15-31,1993。 11. Aaron L. Theis, Adam J. Waldack, Susan M. Hansen, Michael A. Jeannot,“Headspace Solvent Microextraction”Anal. Chem.,73, 5651-5654 (2001) 12. Buchholz K. D. and J. Pawliszyn,“Determination of phenols by solid-phase microextraction and gas chromatographic analysis”Environ. Sci. Technol., 27, 2844 (1993). 13. Pawliszyn,“Solid phase microextraction with thermal desorption using fused silica optical fibers”Anal. Chem., 62, 2145 (1990). 14. Application Note of Supelco, “Solid Phase Microexaction:Theory and Optimization of Conditions”, Bulletin 923, Supelco. 15. 黃敬德、謝有容,”固相微萃取技術之原理及其應用”,Chemistry, Dec.,(1998). 16. J.Pawliszyn,“Solid Phase Microextraction:Theory and Practice”,Wiley-Vch, Inc.(1997) 17. J.Pawliszyn,“Application of Solid Phase Microextraction”,RS.C, Inc.(1999) 18. Application Note of Supelco, “SPME Application Guide”, Bulletin 925, Supelco. 19. David. W. Potter and J. Pawliszyn,“Rapid determination of polyaromatic hydrocarbons and polychlorinated biphenyls in water using solid-phase microextraction and GC/MS”Environ. Sci. Technol., 28, 298 (1994). 20. Homepage of Sigma-Aldrich Corporation, Supelco Group, “Product Information of SPME”, http://www.sigma-aldrich.com 21. R. Eisert and K. Levsen, “Review – Solid Phase Microexaction Coupled to Gas Chromatography : A New Method for the Analysis of Organics in Water”, Journal of Chromatography A, 733,143-157(1996). 22. J. L. Schnoor, “Environmental Modeling – Fate and Transport of Pollutants in Water, Air and soil”, John Wiley & Sons Inc., pp.42~51, 328-331(1996). 23. C. Rivasseau and M. Caude, “Comparison of On-Line SPE-HPLC and SPME-GC for the Analysis of Microcontaminants in Water”, Chromatographia, Vol.41, pp.462-470 (1995) 24. Application Note of Supelco, “Optimizing SPME : Parameters to Control to Ensure Consistent Results”, Note 95, Supelco. 25. Z. Zhang and J. Pawliszyn, “Sampling Volatile Organic Compounds Using a Modified Solid Phase Microextraction Device” Journal of High Resolution Chromatography, 19,155-160 (1996) 26. A. Saraullo, P. A. Martos and J. Pawliszyn, “Water Analysis by Solid Phase Microextraction Based on Physical Chemical Properties of the Coating”, Analytical Chemistry, 69, pp.1992-1998 (1997) 27. 新竹科學工業園區管理局首頁,http://www.sipa.gov.tw 28. Homepage of Varian Instrument Corporation, “Automation of the SPME Devices”, http://www.varian.com 29. 陸志德,羅俊光,“高科技產業相關水體中揮發性有機物分析之研究”,國立清華大學碩士論文 (2000) 30. 許慧萍,羅俊光,“環境水體中揮發性有機化合物分析方法建立與驗證”,國立清華大學碩士論文 (2001) 31. Ashish Bhatnager and H. Mlchael Cheung,“Sonochemical Destruction of Chlorinated C1 and C2 Volatile Organic Compounds in Dilute Aqueous Solution” Environ. Sci. Technol.,28 , 1481-1486 (1994) 32. Carvalho L.R.F, S.R. Souza, B.S. Martinis, M. Korn,“Monitoring of the ultrasonic irradiation effect on the extraction of airborne particulate matter by ion chromatography”Analytica Chimica Acta, 317 , 171-179 (1995) 33. Wen Lai Huang, Kai Ming Liang, Shi Hua Cui, Shou Ren Gu,“Influene of ultrasonic vibration on the mesoporosity and surface fractal dimensions of resultant silica xerogels”Materials Research Bulletin, 36 , 461-470 (2001) 34. Maria S. Kuyukina, Irena B. Ivshina, Jim C. Philp, Nick Christofi, Sandra A. Dunbar, Marina I. Ritchkova,“Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction”Journal of Microbiological Methods, 46 , 149-156 (2001) 35. Michael R. Hoffmann,“Kinetic and Mechanism of the Sonolytic Destruction of Methyl tert-Butyl Ether by Ultrasonic Irradiation in the Presence of Ozone” Environ. Sci. Technol.,32 ,3194-3199 (1998) 36. Inez Hua and Michael R. Hoffmann,“Optimization of Ultrasonic Irradiation as an Advanced Oxidation Technology” Environ. Sci. Technol.,31 ,2237-2243 (1997) 37. Joon-Wun Kang, Hui-Ming Hung, Angela Lin and Michael R. Hoffmann,“Sonolytic Destruction of Methyl tert-Butyl Ether by Ultrasonic Irradiation: The Role of O3 H2O2 Frequency and Power Density” Environ. Sci. Technol.,33 , 3199-3205 (1999) 38. Lingshuang Cai, Jun Xing, Li Dong, Caiying Wu,“Application of polyphenylmethylsiloxane coated fiber for solid-phase microextraction combined with microwave-assisted extraction for the determination of organochlorine pesticides in Chinese teas”Journal of Chromatography A,1015 ,11-21 (2003) 39. Sandra Babic, Mira Petrovic, Marija Kastelan-Macan,“Ultrasonic solvent extraction of pesticides from soil”Journal of Chromatography A,823 ,3-9 (1998) 40. Gokhan Savaroglu, Ertunc Aral,“Ultrasonic Velocity and Isentropic Compressibilities of the Ternary Mixture Benzene + Acetone + Chloroform and their Corresponding Binary Mixtures at 298.15K”Journal of Molecular Liquids, 105 ,79-92 (2003) 41. Lowri S. de Jager, Anthony R.J. Andrews,“Development of a screening method for cocaine and cocaine metabolites in urine using solvent microextraction in conjunction with gas chromatography”Journal of Chromatography A,911 ,97-105 (2001) 42. Elefteria Psillakis, Nicolas Kalogerakis,“Application of solvent microextraction to the analysis of nitroaromatic explosives in water samples”Journal of Chromatography A,907 ,211-219 (2001) 43. Guillard C., P. Theron, P. Pichat, C. Petrier,“Evaluation of 1-octanol degradation by photocatalysis and ultrasound using SPME” Water Research,36 ,4263-4272 (2002) 44. Gyorgy Szo llo si , Istvan Kun, Bela Torok, Mihaly Bartok, “Ultrasonics in chemoselective heterogeneous metal catalysis Sonochemical hydrogenation of unsaturated carbonyl compounds over platinum catalysts” Ultrasonics Sochemistry,7 ,173-176 (2000)id NH0925257022 sid 914530 cfn 0 / id NH0925257023 auc 劉勇村 tic 建立水中揮發性有機化合物之現場自動化即時連續監測吹氣捕捉/氣象層析分析系統 adc 羅俊光 adc 吳劍侯 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 123 kwc 吹氣捕捉 kwc 揮發性有機化合物 kwc 即時監測 abc 本研究使用PSM連續式自動進樣器搭配矽烷化不?袗?管作為進樣裝置,以吹氣捕捉裝置為前濃縮方法,再利用氣相層析/火焰游離偵檢器做為分析儀器,並設置一套自動化管路清洗系統,完全由商業化的自動吹氣捕捉裝置控制,如此建立一套可用於分析現場的現場自動化即時連續監測分析系統,可同時分析水中17種高科技產業常見的揮發性有機化合物,包括丙酮(Acetone)、三氯甲烷(Chloroform)、苯(Benzene)、甲苯(Toluene)及萘(Naphthalene)等有機化合物,本方法的各物種校正曲線R-Square值均高於0.993,方法偵測極限丙酮(Acetone)為9.07ppb,其他物種介於0.32~2.39pbb,精確度在15%之內,準確度介於0.27%~23.54%,適合用於長時間即時連續監測。 tc 總目錄 摘要 i 英文摘要(Abstract) ii 總目錄 iii 圖目錄 vi 表目錄 x 謝誌 xiii 第一章 緒論 1 1.1 研究緣起 1 1.2 研究目的 2 1.3 研究方法 3 第二章 文獻回顧 5 2.1 環境樣品前處理技術 5 2.2 吹氣捕捉(Purge & Trap, P&T)方法說明 5 2.2.1 吹氣捕捉方法之原理 6 2.2.2 影響P&T之操作參數 9 2.2.3 捕集管內固體吸附劑的選擇 12 2.2.4 實驗分析中潛在之干擾 13 2.2.5 自動化吹氣捕捉技術之發展與應用 14 2.3偵測極限定義 16 第三章 研究方法 27 3.1 自動化即時連續監測吹氣捕捉/氣相層析系統說明 28 3.1.1 PSM自動進樣系統 29 3.1.2 分析儀器與設備 30 3.1.3 進樣管路與清洗系統 31 3.2 配置儲備標準溶液 32 3.3 捕集管的製備 34 3.4 品保品管項目(QA/QC) 35 3.5 自動化連續監測P&T/GC/FID系統參數探討與測試 37 3.6 真實樣品採樣規劃 42 3.7 污水處理廠現場自動化連續監測規劃 43 第四章 結果與討論 55 4.1 現場自動化即時連續監測吹氣捕捉/氣相層析系統 55 4.1.1 PSM連續式自動進樣管路測試 55 4.1.1.1 PSM自動進樣裝置訊號評估測試 55 4.1.1.2 PSM進樣管路過濾裝置測試 56 4.1.1.3 進樣前管路沖洗(rinse)時間測試 56 4.1.1.4 清洗系統建立 57 4.1.2 吹氣捕捉/氣相層析/火焰游離偵檢器系統結果與討論 58 4.1.2.1 OV-624升溫條件測試 59 4.1.2.2 吹氣捕捉/氣相層析系統最佳化參數結果與討論 59 4.1.3 自動化即時連續監測吹氣捕捉/氣相層析系統之品保與品管項 目 64 4.2 真實樣品分析 66 4.2.1 現場自動化及時連續監測吹氣捕捉/氣相層析系統整體系統評 估 66 4.2.2 現場自動化即時連續監測吹氣捕捉/氣相層析系統現場實測結 果與討論 66 第五章 結論 121 參考文獻 xiv 附錄 xviiirf 參考文獻 [1 ] 新竹科學工業園區全球資訊網站http://www.sipa.gov.tw/ [2 ] 行政院環保署,〝放流水標準〞,中華民國九十二年十一月二十 六日環署水字第0920084786號令修正發布第二條條文 [3 ] 行政院環保署,〝飲用水水質標準〞,九十二年五月七日環署毒 字第○九二○○二八八九六號令修正發布第三條條文 [4 ] 行政院環保署,〝水中揮發性有機化合物檢測方法-吹氣捕捉/氣 相層析質譜儀法〞,中華民國九十一年十一月二十八日環署檢字 第0910083743A號公告,自中華民國九十二年二月二十八日起實 施,NIEA W785.53B [5 ] J. W. Eichelberger, J. W. Munch, T. A. Bellar, 〝Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry〞, U.S. EPA Method 524.2 Revision 4.0, August 1992 [6 ] 陸志德,〝高科技產業相關水體中揮發性有機物分析之研究〞, 國立清華大學碩士論文(2000) [7 ] 許慧萍,〝環境水體中揮發性有機化合物分析方法建立與驗 證〞,國立清華大學碩士論文(2001) [8 ] 蘇致宇,〝建立84種揮發性有機務之自動化吹氣捕捉分析系統及 利用SPME分析3種極性揮發性有機物〞,國立清華大學碩士論文 (2002) [9 ] 新竹市環保局,〝科學工業園區污(雨)水下水道系統內污染物 氣(臭、異)味探討計畫〞,12月(民91年) [10 ] 工研院物質安全資料表網頁http://www.cish.itri.org.tw/ intro/esafty/msds.htm [11 ] J.W. Swinnerton, V.J. Linnenbom,〝Determination of the C1 to C4 Hydrocarbons in Sea Water by Gas Chromatography〞J. Gas Chromatography,5,570-573.(1967) [12 ] 美國環保署網站http://www.epa.gov/ [13 ] 鍾裕仁、李永清、章啟鵬、魏燕君,〝水體中揮發性有機物質 (VOC)的分析與應用〞,中興工程行,九月(民86年) [14 ] Vickers Allen K., Datta Meera,〝A purge-and-trap system for analyzing VOCs in drinking water.〞American Laboratory, 25(1),28N,28P,28R-S.(1993) [15 ] 蕭鶴軒、李茂榮,〝吹氣捕捉萃取技術〞,科儀新知第二十二 卷第三期,12月(民89年) [16 ] OI Analytical,〝USEPA Method 524.2 Revision4 : Optimization of the Analysis of VOAs in Water by GC/MS〞, OI Analytical Application Note 13271198. [17 ] 楊廣苓,羅俊光,〝環境中微量氣態有機污染物採樣方法之探 討〞,科儀新知第十七卷第五期,四月(民85年) [18 ] Daniel L. Vassilaros, Thomas J. Bzik,〝Quantitative Determination of Acrylonitrile in an Industrial Effluent by Ambient-Temperature Purge and Trap Capillary GC-MS and by Heated Purge and Trap GC-FID〞 Environ. Sci. Technol. 25,878-883(1991) [19 ] Ojanpera Ilkka, Pihlainen Katja, Vuori Erkki, 〝Identifi- cation limits for volatile organic compounds in the blood by purge-and-trap GC-FTIR.〞 Journal of Analytical Toxicology,22(4),290-295.(1998) [20 ] Anne-Sophie Allonier, Michel Khalanski, Alain Bermond, Vale´rie Camel,〝 Determination of trihalomethanes in chlorinated sea water samples using a purge-and-trap system coupled to gas chromatography〞Talanta,51,467- 477 (2000) [21 ] Claudia Gerbersmann, R. Lobinski, and C. Adams, 〝Determination of volatile sulfur compounds in water samples, beer and coffee with purge and trap gas chromatography-microwave-induced plasma atomic emission spectrometry.〞Anal. Chim. Acta,316(1),93-104 (1995) [22 ] Zuloaga O., Etxebarria N., Fernandez L. A., Madariaga J. M.,〝MultiSimplex optimisation and comparison of different purge-and-trap extractions of volatile organic compounds in soil samples.〞Analytica Chimica Acta,416(1), 43-53.(2000) [23 ] Povolo Milena, Contarini Giovanna,〝 Comparison of solid- hase microextraction and purge-and-trap methods for the analysis of the volatile fraction of butter.〞 Journal of Chromatography,A,985,117-125(2003) [24 ] Izco Jesús M.,Torre Paloma,〝Characterisation of volatile flavour compounds in Roncal cheese extracted by the ‘purge and trap' method and analysed by GC– MS〞Food Chemistry,70,409-417(2000) [25 ] F. Fabietti, M. Delise, A.Piccioli Bocca, 〝Investigation into the benzene and toluene content of soft drinks〞Food Control,12,505-509(2001) [26 ] Grote James O., Westendorf Robert G.,〝An automatic purge and trap concentrator.〞American Laboratory (Shelton, CT, United States),11(12),61-4,66.(1979) [27 ] Kester. Paul,〝An automated sample handling system for EPA required water analysis.〞American Laboratory (Shelton, CT, United States),20(12-A),12.(1988) [28 ] Poy F., Cobelli L., Banfi S., Fossati F., 〝Determination of vinyl chloride monomer residue in poly(vinyl chloride) at the parts-per-billion level with an automatic purge- and-trap technique.〞Journal of chromatography,395,281- 9.(1987) [29 ] Badings H. T, De Jong. C, Dooper. R. P. M,〝Automatic system for rapid determination of volatile compounds by purge- and-cold-trapping/capillary gas chromatography.〞Journal of High Resolution Chromatography and Chromatography Communications,8 (11),755-63.(1985) [30 ] Ho. J. S, Hodakievic. P, Bellar. T. A,〝A fully automated purge-and-trap system for analyzing volatile organics in drinking water.〞American Laboratory (Shelton, CT, United States),21(7),41-2,44,46,48.(1989) [31 ] Vickers Allen K.,〝An automated purge-and-trap system for analyzing volatile organic compounds in drinking water.〞 American Laboratory (Shelton, CT, United States),23(8), 22,24-7.(1991) [32 ] Elena Martýnez, Sýlvia Lacorte, Isabel Llobet, Paula Viana, Damia Barcelo,〝Multicomponent analysis of volatile organic compounds in water by automated purge and trap coupled to gas chromatography–mass spectrometry〞 Journal of Chromatography,A,959,181-190 (2002) [33 ] Maria N. Kostopoulou, Spyros K. Golfinopoulos, Anastasia D. Nikolaou, Nikos K. Xilourgidis, Themistokles D. Lekkas,〝Volatile organic compounds in the surface waters of Northern Greece〞 Chemosphere,40,527-532.(2000) [34 ] Anastasia D. Nikolaou, Spyros K. Golfinopoulos, Maria N. Kostopoulou, George A. Kolokythas, Themistokles D. Lekkas,〝Determination of volatile organic compounds in surface waters and treated wastewater in Greece〞 Water Research,36, 2883–2890.(2002) [35 ] Schnable Joseph G., Capangpangan Mario B, Dussert Bertrand W, Suffet Irwin H,〝 Continuous automatic monitoring of small sample streams using a modified purge-and-trap system.〞LC-GC,9(12),849-52,854-5.(1991) [36 ] Tso-Ching Chen, Guor-Rong Her,〝 On-line monitoring of trihalomethanes in drinking water using continuous- flow purge and cryofocusing gas chromatography-mass spectrometry.〞Journal of Chromatography A,927,229-235 (2001) [37 ] Yong Hua Xu, Somenath Mitra,〝Continuous monitoring of volatile organic compounds in water using on-line membrane extraction and microtrap gas chromatography system〞Journal of chromatography A,688,171-180(1994) [38 ] 孫毓璋,〝淺談微量元素的分析技術〞,科儀新知第二十卷第 一期,八月(民87年) [39 ] 凌永健,陳秋雲,黃依萍,〝化學分析的偵測極限(上)〞, 科儀新知第十六卷第二期,八月(民83年) [40 ] Lawrance H.Keith, W. Crummett, J. Deegan. Jr., R. A. Libby, J. K. Taylor, and G. Wentler,〝Principles of environmental analysis〞Anal. Chem.,55,2210(1983)id NH0925257023 sid 914531 cfn 0 / id NH0925257024 auc 范佩華 tic 自動化邊緣分割演算法應用於放射治療中食道之移動定量分析 adc 許靖涵 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 91 kwc 自動邊緣偵測 kwc 移動定量分析 abc 食道腫瘤放射治療在製作治療計劃的過程中,針對腫瘤因呼吸及胸腔內如心跳、吞嚥蠕動等作用產生的移動,需加入2-3公分的安全邊距。其中機器的變異性及每日設定的誤差所需的邊距,可藉由品質保證量測及治療前驗證片拍攝評估。而食道移動所需的內部安全邊距,目前僅採用普遍的經驗值加設。 tc 目錄 i 圖目錄 iii 表目錄 vii 第 1 章 前言 1 第 2 章 放射腫瘤治療 4 第2-1節 輻射生物效應 5 第2-2節 治療體積定義 7 第2-3節 治療計劃 11 第2-4節 治療不確定性 13 第2-4-1節 設定誤差 15 第2-4-2節 器官移動 16 第 3 章 器官移動評估 17 第3-1節 治療間器官移動 17 第3-2節 治療中器官移動 18 第3-3節 食道癌治療計劃 19 第3-3-1節 電腦斷層攝影之影像限制 22 第3-3-2節 食道移動成因分析 23 第3-4節 X光透視攝影觀察食道之移動 23 第3-4-1節 X光透視影像特性 23 第3-4-2節 食道移動量化評估 24 第 4 章 影像處理原理 25 第4-1節 閾值分割法 25 第4-2節 影像邊緣偵測 28 第4-2-1節 灰階梯度運算 29 第4-2-2節 邊緣定義 32 第4-3節 影像差異分析 33 第4-4節 邊緣訊號連續性分析 35 第4-4-1節 影像點的鄰近 35 第4-4-2節 影像點的連通性 35 第4-5節 Mathematical Morphology 36 第4-5-1節 結構運算子 37 第4-5-2節 Dilation和Erosion 38 第4-5-3節 Opening和Closing 40 第 5 章 實驗方法與結果 42 第5-1節 影像資料擷取 43 第5-2節 影像前置處理 45 第5-2-1節 方法 45 第5-2-2節 結果 48 第5-3節 影像邊緣偵測 49 第5-3-1節 方法 49 第5-3-2節 結果 51 第5-4節 邊緣訊號後處理 54 第5-4-1節 方法 54 第5-4-2節 結果 57 第5-5節 邊緣定位與移動量化分析 60 第5-5-1節 單一邊緣選取 60 第5-5-2節 質心位置計算 61 第5-5-3節 質心移動量化分析 62 第 6 章 成效評估與討論 65 第6-1節 邊緣正確性評估 65 第6-1-1節 評估標準建立 65 第6-1-2節 評估參數建立 66 第6-1-3節 評估結果與討論 67 第6-2節 參數影響分析 69 第6-2-1節 時間解析度及影像差異分析 69 第6-2-2節 閾值選擇 72 第6-2-3節 不連續邊緣訊號去除次數 74 第6-2-4節 局部邊緣搜尋範圍 76 第6-3節 移動可信度評估 78 第6-3-1節 評估標準建立 78 第6-3-2節 評估結果與討論 81 第 7 章 結論與未來方向 88 參考文獻 90rf 1 Hall E.J.: Radiobiology for the Radiologist. 5th ed. Lippincott Williams & Wilkins 2000; 2 Langen K.M. and Jones D.T.L.: Organ motion and its management. Int J Radiation oncology Biol Phys 2001; 50: 265-278 3 ICRU Report 50. International Commission on Radiation Units and Measurements. Prescribing, recording and reporting photon bean therapy. 1993. 4 ICRU Report 62. International Commission on Radiation Units and Measurements. Prescribing, recording and reporting photon bean therapy. Supplement to ICRU Report 50; 1999. 5 Bushong S.C.: Radiological Science for Technologists Physics, Biology, and Protection 6th ed Mosby 1997; 6 Leaver D.T: Principle and Practice of Radiation Therapy Practical Application. Mosby 1997; 7 Khan F.M.: The Physics of Radiation Therapy. 3rd ed. Lippincott Williams and Wilkins 2003; 8 Bentel G.C.: Radiation Therapy Planning. 2nd ed. McGraw-Hill 1996; 9 Levitt and Tapley: Technological Basis of Radiation Therapy Clinical Application. 3rd ed. Lippincott Williams and Wilkins 1999; 10 Washington CM.: Principle and Practice of Radiation Therapy Physics, Simulation and Treatment Planning. Mosby 1996; 11 Webb S: The Physics of Conformal Radiotherapy. IOP 1997; 12 Webb S: Intensity-Modulated Radiation Therapy. IOP 2001; 13 Mackie T.C. et. al.: Image Guidance for Precise Conformal radiotherapy. Int. J. Radiation Oncology Biol. Phys 2003; 56: 89–105 14 Meijer G..J, Rasch C, Remeijer P. et al.: Three-Dimensional Analysis of Delineation Errors, Setup Errors, and Organ Motion During Radiotherapy of Bladder cancer. Int J Radiation oncology Biol Phys 2003; 55: 1277-1287 15 Stroom J.C. and Heijmen B.J.M.: Geometrical uncertainties, radiotherapy planning margins, and the ICRU-62 report. Radiation and Oncology 2002; 64: 75-83 16 Muren L.P. Smaaland R. and Dahl O.: Organ motion, set-up variation and treatment margins in radical radiotherapy of urinary bladder cancer. Radiation and Oncology 2003; 69: 291-304 17 Erridge S.C. et. al.: Portal imaging to assess set-up errors, tumor motion and tumor shrinkage during conformal radiotherapy of non-small cell lung cancer. Radiation and Oncology 2003; 66: 75-85 18 Ekberg L. et. al.: What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer? Radiation and Oncology 1998; 48: 71-77 19 Melian E. et. al.: Variation in prostate position quantitation and implications for three-dimensional treatment planning. Int J Radiation oncology Biol Phys 1997; 38: 73-81 20 Washington C.M. and Leaver D.T.: Principle and Practice of Radiation Therapy: Practical Application. Mosby 1996; 21 Minsky B.D. et. al.: Final report of intergroup trial 0112 (ECOG PE-289, RTOG 90-12); phase II trial of neoadjuvant chemotherapy plus concurrent chemotherapy and high-dose radiation for squamous cell carcinoma of the esophagus. Int J Radiation oncology Biol Phys 1999; 43: 517-523 22 Nemoto K. et. al.: Radiation therapy for superficial esophageal cancer: a comparison of radiotherapy methods. Int J Radiation oncology Biol Phys 2001; 50: 639-644 23 Caldwell C.B. et. al.: Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET Int J Radiation oncology Biol Phys 2003; 55: 1381-1393 24 Washington CM.: Principle and Practice of Radiation Therapy Physics, Simulation and Treatment Planning. Mosby 1996; 25 Sonka M., Hlavac V. and Boyle R.: Image Processing, Analysis, and Machine Vision. 2nd ed. Brooks/Cole 1999; 26 Gonzalez R.C. and Woods R.E.: Digital Imaging Processing. 2nd ed. Prentice Hall 2002; 27 Kang Y, Engelke K, Kalender WA: A New Accurate and Precise 3-D Segmentation Method for Skeletal Structures in Volumetric CT Data. IEEE Transactions on Medical Imaging 2003; 22: 586-598id NH0925257024 sid 914541 cfn 0 / id NH0925257025 auc 林堉烽 tic 以蒙地卡羅方法驗證強度調控放射治療的劑量分佈 adc 董傳中 adc 趙自強 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 104 kwc 蒙地卡羅方法 kwc 蒙地卡羅模擬 kwc 穿透劑量 kwc 強度調控放射治療 abc 摘要 tc 目錄 目錄 i 圖目錄 ii 表目錄 v 摘要 1 第一章 序論 2 1.1 前言 2 1.2 放射治療的品質保證 5 1.3 活體劑量與穿透劑量 7 1.4 蒙地卡羅方法 9 1.5 研究目的 10 1.6 論文架構 10 第二章 基礎理論 12 2.1 醫用直線加速器構造 12 2.2 蒙地卡羅方法 19 2.2-1 粒子遷移模擬簡述 20 2.2-2 EGSnrc程式簡介 22 2.2-3 BEAMnrc程式簡介 24 2.2-4 DOSXYZnrc程式簡介 31 第三章 材料與方法 36 3.1 直線加速器幾何構造模擬 36 3.2 比較模擬與實際量測之射束數據 44 3.3 均值假體的穿透劑量模擬計算 49 第四章 結果與討論 52 4.1 直線加速器機頭及所產生射束之模擬與驗證結果 52 4.2 穿透劑量評估結果 58 4.2-1 動態楔形濾器照野的相對劑量分佈結果 59 4.2-2 IMRT照野的相對劑量分佈結果 62 第五章 結論 78 參考文獻 80 附錄 84 圖目錄 圖1-1 本論文主要模擬實驗架構。 11 圖2-1 醫用直線加速器的三種類型。 12 圖2-2 醫用直線加速器的剖面圖。 13 圖2-3 使射束轉彎並使能量趨於單一化的磁鐵結構圖。 15 圖2-4 醫用直線加速器輸出X光射束的治療前端(機頭)。 18 圖2-5 蒙地卡羅方法示意圖。 19 圖2-6 使用蒙地卡羅方法之輻射粒子遷移模擬流程圖。 21 圖2-7 BEAMnrc模擬程式相關步驟流程圖。 24 圖2-8 BEAMnrc模擬程式之圖形使用者介面。 25 圖2-9 選擇模擬直線加速器時的相關組成模組。 26 圖2-10 選擇交互作用截面。 27 圖2-11 直線加速器組成模組的相關輸入參數(以靶為例)。 28 圖2-12 模擬直線加速器階段的主要相關輸入參數。 29 圖2-13 EGSnrc相關之演繹法及交互作用過程參數。 30 圖2-14 選用射束相關參數。 30 圖2-15 以DOSXYZnrc模擬計算劑量流程圖。 31 圖2-16 DOSXYZnrc模擬程式之圖形使用者介面。 32 圖2-17 DOSXYZ模擬程式相關輸入參數。 33 圖2-18 使用者自行定義假體參數。 34 圖2-19 設定射束相關參數。 35 圖3-1 以BEAMnrc所模擬之直線加速器機頭幾何結構示意圖。 37 圖3-2 平行運算叢集架構示意圖。 40 圖3-3 分析射束粒子數據之BEAMDP圖形使用者介面。 44 圖3-4 n_split與所需模擬時間關係圖。 46 圖3-5 n_split與平均不準度關係圖。 47 圖3-6 n_split與模擬後所收集粒子數關係圖。 47 圖3-7 BEAMnrc/DOSXYZnrc蒙地卡羅模擬流程示意圖。 48 圖3-8 模擬計算穿透劑量時,實際照射之量測擺設照片及示意圖。 51 圖4-1 電子撞擊靶產生光子射束,光子射束經平坦濾器、游離腔、鏡子及準直系統後進入收集平面的模擬示意圖。 53 圖4-2 6MV光子10×10 cm2照野,於水假體中之百分深度劑量曲線,蒙地卡羅模擬與水假體實際量測之結果比較圖。 55 圖4-3 6MV光子10×10 cm2照野,於水假體中1.5公分深度之profile,蒙地卡羅模擬與水假體實際量測之結果比較圖。 55 圖4-4 6MV光子10×10 cm2照野,於水假體中5公分深度之profile,蒙地卡羅模擬與水假體實際量測之結果比較圖。 56 圖4-5 6MV光子10×10 cm2照野,於水假體中10公分深度之profile,蒙地卡羅模擬與水假體實際量測之結果比較圖。 56 圖4-6 6MV光子10×10 cm2照野,於水假體中20公分深度之profile,蒙地卡羅模擬與水假體實際量測之結果比較圖。 57 圖4-7 6MV光子10×10 cm2照野,於水假體中30公分位置深度之profile,蒙地卡羅模擬與水假體實際量測之結果比較圖。 57 圖4-8 將Kodak X-Omat V軟片的光密度值轉換為絕對劑量圖。 58 圖4-9 距射源100公分處,15度的動態楔形濾器照野,蒙地卡羅模擬與軟片實際量測相對劑量分佈的比較結果圖。 60 圖4-10 距射源100公分處,60度的動態楔形濾器照野,蒙地卡羅模擬與軟片實際量測相對劑量分佈的比較結果圖。 60 圖4-11 距射源140公分處,15度的動態楔形濾器照野,蒙地卡羅模擬與軟片實際量測相對劑量分佈的比較結果圖。 61 圖4-12 距射源140公分處,60度的動態楔形濾器照野,蒙地卡羅模擬與軟片實際量測相對劑量分佈的比較結果圖。 61 圖4-13 第一個IMRT照野,在距射源100公分處,蒙地卡羅模擬與治療計劃系統的等劑量曲線比較結果。 64 圖4-14 第一個IMRT照野,在距射源100公分處,蒙地卡羅模擬與治療計劃系統,X方向的相對劑量分佈比較結果。 65 圖4-15 第一個IMRT照野,在距射源100公分處,蒙地卡羅模擬與治療計劃系統,Y方向的相對劑量分佈比較結果。 65 圖4-16 第二個IMRT照野,在距射源100公分處,蒙地卡羅模擬與治療計劃系統的等劑量曲線比較結果。 66 圖4-17 第二個IMRT照野,在距射源100公分處,蒙地卡羅模擬與治療計劃系統,X方向的相對劑量分佈比較結果。 67 圖4-18 第二個IMRT照野,在距射源100公分處,蒙地卡羅模擬與治療計劃系統,Y方向的相對劑量分佈比較結果。 67 圖4-19 第一個IMRT照野,在距射源100公分處,蒙地卡羅模擬與軟片實際量測的等劑量曲線比較結果。 69 圖4-20 第一個IMRT照野,在距射源100公分處,蒙地卡羅模擬與軟片實際量測,X方向的相對劑量分佈比較結果。 70 圖4-21 第一個IMRT照野,在距射源100公分處,蒙地卡羅模擬與軟片實際量測,Y方向的相對劑量分佈比較結果。 70 圖4-22 第二個IMRT照野,在距射源100公分處,蒙地卡羅模擬與軟片實際量測的等劑量曲線比較結果。 71 圖4-23 第二個IMRT照野,在距射源100公分處,蒙地卡羅模擬與軟片實際量測,X方向的相對劑量分佈比較結果。 72 圖4-24 第二個IMRT照野,在距射源100公分處,蒙地卡羅模擬與軟片實際量測,Y方向的相對劑量分佈比較結果。 72 圖4-25 第一個IMRT照野,在距射源140公分處,蒙地卡羅模擬與軟片實際量測的等劑量曲線比較結果。 74 圖4-26 第一個IMRT照野,在距射源140公分處,蒙地卡羅模擬與軟片實際量測,X方向的相對劑量分佈比較結果。 75 圖4-27 第一個IMRT照野,在距射源140公分處,蒙地卡羅模擬與軟片實際量測,Y方向的相對劑量分佈比較結果。 75 圖4-28 第二個IMRT照野,在距射源140公分處,蒙地卡羅模擬與軟片實際量測的等劑量曲線比較結果。 76 圖4-29 第二個IMRT照野,在距射源140公分處,蒙地卡羅模擬與軟片實際量測,X方向的相對劑量分佈比較結果。 77 圖4-30 第二個IMRT照野,在距射源140公分處,蒙地卡羅模擬與軟片實際量測,Y方向的相對劑量分佈比較結果。 77 表目錄 表4-1 僅用一顆CPU,模擬直線加速器機頭時,分段與不分段模擬所需時間比較表。 53rf ICRU (International Commission on Radiation Units and Measurement): Determination of absorbed dose in patient irradiated by beams of x or gamma rays in radiotherapy procedures. ICRU Report 24, Bethesda, 1976. ICRU (International Commission on Radiation Units and Measurement): Use of computers in external beam radiotherapy procedure with high-energy photons and electrons. ICRU Report 42, Bethesda, 1987. Kutcher GJ, Coia L, Gillin M, et al. Comprehensive QA for radiation oncology: Report of AAPM radiation Therapy Committee Task Group 40. Med Phys 1994; 21: 581-618. Van Dam J, Marinello G.. Methods for in vivo dosimetry in external radiotherapy, ESTRO booklet. Nrl Garant; 1994. World Health Organization. Quality assurance in radiotherapy. Geneva: WHO; 1988. Essers M, Mijnheer BJ. In vivo dosimetry during external photon beam radiotherapy. Int J Radiat Oncol Bilo Phys 1999; 43: 245-259. Noel A, Aletti P, Bey P, et al. Detection of errors in individual patients in radiotherapy by systematic in vivo dosimetry. Radiother Oncol 1995; 34: 144-151. Calandrino R, Cattaneo GM, Fiorino C, et al. Detection of systematic errors in external radiotherapy before treatment delivery. Radiother Oncol 1997; 45: 271-274. Evans P, Hansen P, Mayles W, Swindell W, Torr M, Yarnold J. Design of compensators for breast radiotherapy using electronic portal imaging. Radiother. Oncol. 1995, 37: 41-54. . Fiorino C, Del Vecchio A, Gattaneo G, et al. Exit dose measurements by portal film dosimetry. Radiother. Oncol. 1993, 29: 336-340. Huyskens D, Van Dam J, Dutreix A. Midplane dose determination using in vivo dose measurements in combination with portal imaging. Phys. Med. Biol. 1994, 39: 1089-1101. Roback D, Gerbi B. Evaluation of electronic portal imaging device for missing tissue compensator design and veriÆcation. Med. Phys. 1995, 22: 2029-2033. Van Dam J, Vaerman C, Blankaert N, Leunens G, Dutreix A, van der Schueren E. Are port films reliable for in vivo exit dose measurements?. Radiother. Oncol. 1993, 30: 167-170. Weltens C, Van Dam J, Leunens G, Dutreix A, van der Schueren E. Reliability of clinical port films to measure dose inhomogeneities in radiotherapy for head and neck tumours. Radiother. Oncol.1993, 30: 167-170. Zhu Y, Jiang X, Van Dyk J. Portal imaging using a liquid ion chamber matrix: dose response studies. Med. Phys. 1995, 22: 1101-1106. Bielajew A F. Monte Carlo modeling in external electron-beam radiotherapy—why leave it to chance? Proc. 11th ICCR (Manchester, UK) 1994, pp 2–5. Mackie T R. 1990, Applications of the Monte Carlo method in radiotherapy Dosimetry of Ionizing Radiation vol 3ed K Kase, B Bjarngard and F H Attix (New York: Academic) pp 541–620. Mohan R. Why Monte Carlo? Proc. 12th ICCR (Salt Lake City, Utah), 1997, 16-18. Mohan R, Chui C S and Lidofsky L. Energy and angular distributions from medical linear accelerators Med. Phys. 1985, 12: 592. Rogers D W O, Faddegon B A, Ding G X, Ma C M, Wei J S and Mackie T R BEAM: a Monte Carlo code to simulate radiotherapy treatment units Med. Phys. 1995, 22: 503–25. Rogers D W O, Ma C M, Ding G X and Walters B. BEAM Users Manual National Research Council Report PIRS-0509(A) (Ottawa, Canada: NRCC). 1995. Bielajew A F, Rogers D W O, Cygler J and Battista J J. A comparison of electron pencil beam and Monte Carlo calculational methods The Use of Computer in Radiation Therapy. I ed A D Bruinvis et al (Amsterdam: Elsevier). 1987, 65–68. Rogers D W O and Bielajew A F. Monte Carlo techniques of electrons and photons for radiation dosimetry Dosimetry of Ionizing Radiation vol 3 ed K Kase, B E Bjarngard and F H Attix (New York: Academic). 1990, 427–539. Mackie T R et al. The OMEGA project: comparison among EGS4 electron beam simulations 3D Fermi–Eyges calculations, and dose measurements Proc. 11th ICCR (Manchester, UK). 1994, 152–153. Ma C-M, Faddegon B A, Rogers D W O and Mackie T R. Accurate characterization of the Monte Carlo calculated electron beams for radiotherapy Med. Phys. 1997, 24: 401–417. Ma C-M, Mok E, Kapur A and Findley D Improvement of small-field electron beam dosimetry by Monte Carlo simulations Proc. 12th ICCR (Salt Lake City, Utah). 1997, 159–162. Wang L, Chui C and Lovelock M. A patient-specific Monte Carlo dose-calculation method for photon beams Med. Phys. 1998, 25: 867–878. Ma C-M, Mok E, Kapur A, Findley D, Brain S, Forster K and Boyer A L Clinical implementation of a Monte Carlo treatment planning system Med. Phys. 1999, 26: 2133–2143 Ma C-M, Jiang S B, Pawlicki T, Chen Y, Li J S, Deng J, Lee M C, Mok E and Boyer A L. A QA phantom for IMRT dose verification. Chicago 2000 World Congress on Medical Physics and Biomedical Engineering (Chicago, IL, July 23–28) 2000. Ma C-M, Li J S, Pawlicki T, Jiang S B and Deng J MCDOSE—a Monte Carlo dose calculation tool for radiation therapy treatment planning Proc. 13th Int. Conf. on the Use of Computer in Radiation Therapy (ICCR) ed W Schlegel and T Bortfeld (Heidelberg: Springer). 2000, 123–125. Ma C-M. Characterization of computer simulated radiotherapy beams for Monte Carlo treatment planning Radiat. Phys. Chem. 1998, 35: 329–344. D.W.O. Rogers, C.-M. Ma, G.X. Ding, B.Walters, D.Sheikh-Bagheri, and G.G. Zhang, BEAMnrc Users Manual, NRC Report PIRS 509a 2001. J.A. Treurniet, B.R.B. Walters, and D.W.O. Rogers, BEAMnrc, DOSXYZnrc and BEAMDP GUI User's Manual, NRC Report PIRS 0623 2001. C.-M. Ma, D.W.O. Rogers, and B.Walters, DOSXYZnrc Users Manual, NRC Report PIRS 509b 2001. Kramer, S., N. Suntharalingam, G. Zinninger: High-energy photons and electrons: clinical application in cancer management. New York: Wiley, 1976. 涂振邦. 第十六章 醫用加速器構造及安全設備. 游離輻射防護彙萃. 中華民國八十七年八月 修訂第三版. 16-1~16-6. 張寶樹. 第四章 輻射劑量學. 醫用保健物理學. 西元2001年六月. P148. Nelson R, Hirayama H and Rogers D WO. The EGS4 Code System Stanford Linear Accelerator Center Report SLAC-265 (Stanford, CA: SLAC). 1985. Briesmeister JF: MCNP-A general Monte Carlo N-particle transport code, Version 4A. Los Alamos National laboratory Report, LA-12625 1993. Iwan Kawrakow. Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med. Phys. 2000, 27:485-498. I. Kawrakow and D. W. O. Rogers. The EGSnrc Code System: Monte Carlo simulation of electron and photon transport. NRC Report PIRS-701 (4th printing) 2003. ICRU. Stopping powers for electrons and positrons. ICRU Report 37, ICRU, Washington D.C. 1984. A. F. Bielajaw and D. W. O. Rogers. PRESTA: The Parameter Reduced Electron-Step Transport Algorithm for electron Monte Carlo transport. Nuclear Instruments and Methods. 1987, B18: 165-181. Bielajaw AF, Rogers DWO. A standard timing benchmark for EGS4 Monte Carlo calculations. Med Phys Medica 2001; 17: 84-86. R Sheu, C Yeh, C Chen, C Lee, T Chao, B Chang. The Monte Carlo Simulation On the Dose Disturbance Effect of the Dentures in Intensity Modulated Radiation Therapy.id NH0925257025 sid 914547 cfn 0 / id NH0925257026 auc 黃筱傑 tic 組織等效比例計數器應用於中子之微劑量研究 adc 董傳中 adc 張似瑮 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 59 kwc 微劑量學 kwc 組織等效比例計數器 kwc 鉲252 abc 自1950年代起,為了分析輻射與介質作用時能量沉積的微觀分佈,美國Rossi教授便提出了微劑量學(microdosimetry)相關理論及實驗方法。約在1960年時,為了度量微劑量學參數, Rossi教授製作了第一個球形組織等效比例計數器(tissue equivalent proportional counter, TEPC),日後也成為度量微劑學參數的標準偵檢器。目前國際上對於此類偵檢器已有深入的研究,亦有應用於太空中宇宙射線量測、環境輻射監測、民航機上的人員劑量評估…等。相較於國內,僅有本實驗室與英國聖安德魯斯大學(St. Andrews university)合作,設計製作了兩支球形組織等效比例計數器,相關的微劑量學實驗研究也不多。因此本論文利用核能研究所(Institute of Nuclear Energy Research, INER)之鉲252(252Cf)射源,建立整套量測系統及實驗方法,並對兩支組織等效比例計數器之特性做一探討,希望可作為日後相關研究之參考。 tc 目錄 1 圖目錄 3 表目錄 6 摘要 7 一、前言 9 二、微劑量學與微劑量學能譜 12 2.1機率量與非機率量 12 2.2微劑量學參數 12 2.3微劑量學能譜的表示法 16 2.4單能中子射束之微劑量學能譜 19 三、實驗設備 21 3.1量測系統 21 3.2組織等效比例計數器 22 3.2.1組織等效塑膠 24 3.2.2組織等效氣體 25 3.2.3陽極 26 3.2.4工作電壓 26 3.3微小體積之模擬 26 3.4氣體充填系統 28 3.5鉲252中子射源 29 3.5.1鉲252中子射源與照射場 29 3.5.2鉲252微劑量學能譜 35 四、結果與討論 36 4.1能量校正 36 4.2資料分析 39 4.3鉲252射源量測結果 41 4.3.1距離及角度依存性 42 4.3.2鉲252裸射源之微劑量學能譜 45 4.3.3不同厚度水假體之鉲252微劑量學能譜 49 4.3.4半徑15公分重水球之鉲252微劑量學能譜 51 4.3.5一號與二號組織等效比例計數器之比較 53 五、結論與未來工作 56 5.1結論 56 5.2未來工作 57 六、參考文獻 58rf [1 ] Dessauer F., Uber einige Wirkungen von Strahlen. I., Z. Phys. 12, 38, 1922. [2 ] Crowther I. A., Some considerations relative to the action of X-rays on tissue cells, Proc. Roy. Soc. 96, 207, 1924. [3 ] Jordan P., Uber die elementarprozesse der biologischen strahlenwirkung, Radiologica(Berlin)2, 16 and 166, 1938. [4 ] Lea D. E., Actions of radiation on living cells, 1946(University Press, Cambridge) [5 ] Zirkle R. E., Marchbank D. F. and Kuck K. D., Exponential and sigmoid survival curves resulting from alpha and x-irradiation of Aspergillus spores, J. Cell. Comp. Physiol. 39, Suppl. 1, 75, 1952. [6 ] Wilson, K. S. J., Field, S. B., Measurement of LET spectra using a spherical tissue-equivalent proportional counter, Phys. Med. Biol., Vol. 15, No.4, 657-666, 1970. [7 ] Srdoc, D., Experimental technique of measurement of microscopic energy distribution in irradiated matter using Rossi counters, Radiat. Res., 43, 302-319, 1970. [8 ] Dicello J. F., Gross W. and Kraljevic U., Radiation quality of californium-252, Phys. Med. Biol. 17, 345, 1972. [9 ] George D. Oliver, Quam W. M., Wilde W. O., Empirical dose quality distributions of californium-252, Health Physics Pergamon Press, 22, pp. 341-349, 1972. [10 ] Kliauga P., Dvorak R., Microdosimetric measurements of ionization by monoenergetic photons, Radiat. Res., 73, 1-20, 1978. [11 ] Rossi H. H., Microscopic energy distribution in irradiated matter, Radiation Dosimetry, 43-92, 1967. [12 ] Glass W. A., Braby L. A., A wall-less detector for measuring energy deposition spectra, Radiat. Res., 39, 230-240, 1969. [13 ] Burmeister J., Kota C. and Maughan R. L., Paired miniature tissue-equivalent proportional counters for dosimetry in high flux epithermal neutron capture therapy beams, Nucl. Instrum. Methods Phys. Res. A 422, 606-610, 1999. [14 ] International Atomic Energy Agency. Current status of neutron capture therapy. IAEA-TECODOC-1223. Vienna Austria. 2001. [15 ] International Commission on Radiation Units and Measurements, Radiation quantities and units. Report 33. Washington D.C., USA. 1980. [16 ] International Commission on Radiation Units and Measurements, Microdosimetry. Report 36. Bethesda, Maryland, USA. 1980. [17 ] Rossi H., Zaider M., Microdosimetry and its applications, Springer, NY, U.S.A., 1996. [18 ] Nunomiya T., Kim E., Kurosawa T. et al, Measurement of lineal-energy distributions for neutrons of 8 keV to 65 MeV by using a tissue-equivalent proportional counter, Radiation Protection Dosimetry, Vol. 102, No.1, pp. 49-59, 2002. [19 ] Waker, A. J. Principles of experimental microdosimetry. Radiation Protection Dosimetry, Vol. 61, No. 4, pp. 297-308, 1995. [20 ] Fano, U. Note on the Bragg-Gray cavity principle for measuring energy dissipation. Rad. Res. Vol. 1, 237-240, 1954. [21 ] Braby L. A., Johnson G. W. and Barthe J., Practical considerations in the design and construction of tissue-equivalent proportional counters. Radiation Protection Dosimetry, Vol. 61, No. 4, pp. 351-379, 1995. [22 ] International Commission on Radiation Units and Measurements, Neutron dosimetry for biology and medicine. Report 26, Washington, U.S.A., 1977. [23 ] International Commission on Radiation Units and Measurements, Determination of dose equivalents resulting from external radiation sources. Report 39, Bethesde, Maryland, U.S.A., 1985. [24 ] Waker, A. J. Gas gain characteristics of some walled proportional counters used in microdosimetry. Proc. 8th Symposium on microdosimetry. EUR 8375 (Luxembourg: CEC) Vol. 1, pp.1017-1030, 1981. [25 ] Prince A., Brookhaven National Laboratory Report No. BNL 50168 (T530), 1969. [26 ] Gerdung, S., Pihet, P., Grindborg, J. E., Roos, H., Schrewe, U. J. and Schuhmacher, H. Operation and application of tissue equivalent proportional counters. Radiat. Prot. Dosim. 61, 381-404, 1995.id NH0925257026 sid 914542 cfn 0 / id NH0925257027 auc 高億 auc & auc #23791; tic 評估VIP-Man胸部X光照像之器官劑量 adc 董傳中 adc 趙自強 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 93 kwc 器官劑量轉換因子 kwc 胸部X光照像 kwc VIP-Man斷層假體 kwc 蒙地卡羅方法 kwc BEAMnrc程式 abc 由於現代醫學的進步,造成國民所受的放射診斷輻射劑量十分可觀,因此如何評估病患劑量便顯得相當重要。對於照野固定的X光照像而言,病患的器官劑量無法直接度量,必須用入射表面劑量(entrance surface dose, ESD)作為指標,因此發展出一個轉換因子,其定義是器官劑量除以ESD。我們只要度量獲得X光照像時的ESD,藉由這個轉換因子,就可以很容易地知道器官劑量以評估健康風險。 tc 頁數 目錄 i 摘要 iii 圖目錄 iv 表目錄 vi 第一章 緒論 1 1.1 前言 1 1.2 輻射安全 2 1.3 劑量學 4 1.3.1 有效劑量 4 1.3.2 劑量指標及器官劑量轉換因子 6 1.4 假體 8 1.4.1 假體的概念 8 1.4.2 計算用假體的發展 10 1.5 蒙地卡羅方法 14 1.5.1 蒙地卡羅方法的原理 14 1.5.2 以蒙地卡羅方法模擬輻射遷移 15 1.6 研究目的和方法 18 1.7 論文架構 19 第二章 材料與方法 21 2.1 X光機的介紹 21 2.1.1 X光機之構造和原理 21 2.2.2 X光能譜 25 2.2 BEAMnrc的簡介 26 2.2.1 如何執行BEAMnrc 28 2.2.2 BEAMDP的使用 34 2.3 VIP-Man 35 2.3.1 VIP-Man的發展 35 2.3.2 VIP-Man在本文中的修正 41 第三章 結果與討論 46 3.1 X光能譜的來源 46 3.1.1 XCOMP3 46 3.1.2 X光能譜的比較 47 3.1.3 分段執行BEAMnrc 49 3.1.4 足跟效應 51 3.2 建立輻射和假體作用的模式 52 3.3 調整X光照射的幾何條件及驗證 53 3.3.1 NRPB-R186報告 53 3.3.2 調整照射幾何條件以及VIP-Man大小 55 3.3.3 照野的驗證 59 3.4 計算器官劑量轉換因子 60 3.4.1 與NRPB-R186報告比較 60 3.4.2 探討轉換因子的變因 64 3.4.3 解剖幾何的差異性 70 3.5 國人劑量轉換因子 72 第四章 結論與未來展望 75 4.1 結論 75 4.2 未來展望 76 第五章 參考文獻 78 第六章 附錄 83 6.1 讀入phase space file的fortran程式 83 6.2 本文模擬器官劑量轉換因子的結果 與NRPB-R186號告之比較 84 6.3 我國國人器官劑量轉換因子 91rf [1 ] Dosimetry Working Party of the Institute of Physical Sciences in Medicine.National protocol for patient dose measurements in diagnostic radiology. Chilton,NRPB, 1992. [2 ] ICRP. Diagnostic reference levels in medical imaging, DRAFT ICRP Committee3,2001. [3 ] Hart D, Wall BF. Radiation exposure of the UK population from medical and dental x-ray examinations. NRPB Publication W4, 2002. [4 ] ICRP. 1990 recommendations of the International Commission on Radiological Protection. Oxford: Pergamon Press, ICRP Publication 60, 1991. [5 ] Rosenstein, M. Organs doses in diagnostic radiology. US Department of Health, Education and Welfare, Food and Drug Administration. Rockville, MD, 1976. [6 ] Drexler G, Panzer W, Widenmann L, Williams G and Zankl M. The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods, Part III: Organ doses in x-ray diagnosis. GSF-Bericht S-1026, ISSN 0721-1694, 1984. [7 ] Jones D G and Wall B F. Organ doses from medical x-ray examinations calculated using Monte Carlo techniques. NRPB Report R-186, 1985. [8 ] ICRU. Phantoms and computational models in therapy, diagnosis and protection ICRU Report 48. Bethesda, MD, 1992. [9 ] Snyder W S, Ford M R, Warner G G and Fisher H L. Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. MIRD Pamphlet No.5. J. Nucl. Med. 10, 1969. [10 ] ICRP. Report of the task group on Reference Man. Oxford: Pergamon Press,ICRP Publication 23, 1975. [11 ] Hwang J M L, Poston J W, Shoup R L and Warner G G. Maternal, fetal and pediatric phantoms. Oak Ridge, TN: Oak Ridge National Laboratory, Report No. ORNL-5046, 259-261, 1975. [12 ] Jones R M, Poston J W, Hwang J L, Jones T D and Warner G G. The development and use of a fifteen year old equivalent mathematical phantom for internal dose calculations. Oak Ridge, TN: Oak Ridge National Laboratory, Report No. ORNL/TM-5278, 1976. [13 ] Deus S F and Poston J W. The development of a mathematical phantom representing a ten-year-old for use in internal dosimetry calculations. Oak Ridge, TN: Oak Ridge National Laboratory Health Physics Division Annual Progress, Report No. ORNL-5171, 76-79, 1976. [14 ] Cristy M. Mathematical phantoms representing children of various ages for use in estimates of internal dose. Oak Ridge, TN: Oak Ridge National Laboratory, Report No. ORNL/NUREG/TM-367, 1980. [15 ] Kramer R, Zankl M, Williams G and Drexler G. The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods: part I. the male (Adam) and female (Eva) adult mathematical phantoms GSF-Report S-885, 1982. [16 ] Cristy M and Eckerman K F. Specific Absorbed Fractions of Energy at Various Ages from Internal Photon Sources. Oak Ridge, TN: Oak Ridge National Laboratory, Report No. ORNL/TM-8381 vol 1–7, 1987. [17 ] Stabin M G, Tagesson M, Thomas S R, Ljungberg M and Strand S E. Radiation dosimetry in nuclear medicine. Appl. Radiat. Isot. 50, 73–87, 1999. [18 ] Gibbs S J, Pujol A, Chen T-S, Malcolm A W and James A E. Patient risk from interproximal radiography. Oral Surgery, Oral Medicine, Oral Pathology 58, 347–54, 1984. [19 ] Williams G, Zankl M, AbmayrW, Veit R and Drexler G. The calculation of dose from external photon exposures using reference and realistic human phantoms and Monte Carlo methods. Phys. Med. Biol. 31, 449–52, 1986. [20 ] Zankl M, Veit R, Williams G, Schneider K, Fendel H, Petoussi N and Drexler G. The construction of computer tomographic phantoms and their application in radiology and radiation protection. Radiat. Environ. Biophys. 27, 153–64, 1988. [21 ] Veit R, Zankl M, Petoussi N, Mannweiler E,Williams G and Drexler G. Tomographic anthropomorphic models, part I: construction technique and description of models of an 8 week old baby and a 7 year old child. GSF-Bericht 3/89, 1989. [22 ] Dimbylow P J. Proc. Voxel Phantom Development. Chilton, NRPB, 1996a. [23 ] Zubal I G, Harrell C R, Smith E O, Rattner Z, Gindi G and Hoffer P B. Computerized three-dimensional segmented human anatomy. Med. Phys. 21, 299–302, 1994. [24 ] Caon M, Bibbo G and Pattison J. An EGS4-ready tomographic computational model of a fourteen year-old female torso for calculating organ doses from CT examinations. Phys. Med. Biol. 44, 2213–25, 1999. [25 ] Saito K, Wittmann A, Koga S, Ida Y, Kamei K and Zankl M. The construction of a computed tomographic phantom for a Japanese male adult and the dose calculation system. Radiat. Environ. Biophys. 40, 69–76, 2001. [26 ] Xu X G, Chao T C and Bozkurt A. VIP-MAN: An image- based whole-body adult male model constructed from color photographs of the Visible Human project for multi-particle Monte Carlo calculations. Health Phys. 78, 476–86, 2000. [27 ] Petoussi-Henss N, Zankl M, Fill U and Regulla D. The GSF family of voxel phantoms. Phys. Med. Biol. 47, 89– 106, 2002. [28 ] Zankl M, Fill U, Petoussi-Henss N and Regulla D. Organ dose conversion coefficients for external photon irradiation of male and female voxel models. Phys. Med. Biol. 47, 2367-85, 2002. [29 ] Kramer R, Vieira JW, Khoury HJ, de Andrade Lima F. MAX meets ADAM: a dosimetric comparison between a voxel- based and a mathematical model for external exposure to photons. Phys Med Biol. 49(6), 887-910, 2004. [30 ] D.W.O. Rogers, C.-M. Ma, B. Walters, G.X. Ding, D. Sheikh-Bagheri and G. Zhang. BEAMnrc User’s Manual. National Research Council of Canada, 2002. [31 ] Spitzer, V.M., Whitlock, D.G. Atlas of the Visible Human Male. Jones and Bartlett Publishers International, 1998. [32 ] ICRP. Report of the task group on Reference Man. Oxford: Pergamon Press, ICRP Publication 23, 1975. [33 ] ICRU. Tissue substitutes in radiation dosimetry and measurement. ICRU Report 44. Bethesda, MD, 1989. [34 ] ICRP. Human respiratory tract model for radiological protection. Oxford: Pergamon Press, ICRP Publication 66, 1994. [35 ] Chao T C, Xu X G. Specific absorbed fractions from the image-based VIP-man body model and EGS4-VLSI Monte Carlo code: Internal electron emitters. Phys. Med. Biol. 46, 901—927, 2001. [36 ] Chao T C, Bozkurt A, Xu X G. Conversion coefficients based on VIP-man anatomical model and EGS4-VLSI code for monoenergetic photon beams from 10keV to 10 MeV. Health Phys. 81(2), 163—183, 2001. [37 ] Chao T C, Bozkurt A, Xu X G. Dose conversion coefficients for 0.1—10 MeV electrons calculated for the VIP-Man tomographic model. Health Phys. 81(2), 203—214, 2001. [38 ] Petoussi-Henss N, Zankl M, Drexler G, Panzer W and Regulla D. Calculation of backscatter factors for diagnostic radiology using Monte Carlo methods. Phys. Med. Biol. 43, 2237-50, 1998. [39 ] Bhat M, Pattison J, Bibbo G and Caon M. Diagnostic x- ray spectra: a comparison of spectra generated by different computational methods with a measured spectrum. Med. Phys. 25, 114-20, 1998. [40 ] T. R. Fewell and R. E. Shuping. Photon energy distribution of some typical diagnostic x-ray beams. Med. Phys. 4, 187–196, 1977. [41 ] Eckerman K F, Cristy M and Ryman J C. The ORNL Mathematical Phantom Series. Oak Ridge, TN, 1996. [42 ] http://media.justsports.net.tw/spo_demo/publish_local. asp, 行政院體育委員會網站, 九十一年體育統計.id NH0925257027 sid 914501 cfn 0 / id NH0925257028 auc 翁儷瑜 tic 熱感應分子應用在奈米製造研究 adc 朱鐵吉 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 91 kwc 若丹明 kwc 電子束微影 kwc 奈米壓印微影 kwc 熱感應 abc 在很多研究領域和工業過程中,溫度一直是控制反應動力學、產品良率及反應過程的一項重要參數,對溫度的測量,傳統則採用像溫度計和熱電偶的物理探測器,這些探測器通常具有使用上的限制,例如:它們具有既定的大小,無法適用於小體積的測量;外加電場或磁場會對物理探測器的測量產生干擾。因此,當我們採用若丹明或其他溫度感測的螢光染劑,來做熱效應量測時,不但可以克服物理感測器使用上的侷限,也可以直接量測溫度,用來評估電子束微影製程中所產生的熱對關鍵尺寸造成的形變。 tc 總目錄 摘要謝誌 總目錄 表目錄 圖目錄 第一章 簡介 1.1電子束微影 1.1.1 概述 1.1.2 電子束微影的進步 1.1.3 微影製程 1.2 影響電子束微影解析度的因素 1.2.1 散射效應 1.2.2 充電效應 1.2.3 加熱效應 1.3 奈米壓印微影 1.3.1 概述 1.3.2 奈米壓印微影系統簡介 1.3.3 壓印圖案溫度差異的觀察 1.4溫度量測的方法 1.4.1掃描式焦耳熱膨脹顯微鏡 1.4.2 脈衝電聲法 1.5 溫度感測之螢光染劑 1.5.1常用的染劑種類 1.5.1.1 EuTTA 1.5.1.2 Dy:YAG 1.5.1.3 若丹明 1.5.1.4 螢光染劑比較 1.5.2 若丹明的發光機制 1.5.2.1 溶劑對若丹明發光機制之影響 1.5.2.2溫度對若丹明發光機制之影響 1.5.2.3 酸鹼度對若丹明發光機制之影響 1.6 論文架構 第二章 若丹明的基本特性之研究 2.1 研究動機與目的 2.2 實驗藥品與設備 2.2.1 實驗藥品 2.2.2 實驗設備 2.3螢光偵測系統介紹 2.4 若丹明的基本特性之研究 2.4.1 若丹明螢光強度與溫度之關係 2.4.1.1 實驗步驟 2.4.1.1.1加熱板的校正 2.4.1.1.2 RB+PGMEA 2.4.1.1.3 RB+NEB 2.4.1.2 實驗結果 2.4.1.3 結果討論 2.4.2 若丹明的UV穿透率與溫度之關係 2.4.2.1 實驗步驟 2.4.2.2 實驗結果 2.4.2.3 結果討論 2.4.3 若丹明螢光強度與濃度之關係 2.4.3.1 實驗步驟 2.4.3.2 實驗結果 2.4.3.3 結果討論 2.4.4 若丹明螢光強度與加熱時間之關係 2.4.4.1 實驗步驟 2.4.4.2 實驗結果 2.4.4.3 結果討論 第三章 若丹明運用於電子束微影熱效應之研究 3.1 研究動機與目的 3.2 實驗藥品與設備 3.2.1 實驗藥品 3.2.2 實驗設備 3.3 若丹明對熱效應之研究 3.3.1電子束曝光劑量與溫度之關係 3.3.1.1 實驗步驟 3.3.1.2 實驗結果 3.3.1.3 結果討論 3.3.2不同材質曝光劑量與溫度之比較 3.3.2.1 實驗步驟 3.3.2.1.1 二氧化矽薄膜 3.3.2.1.2 鋁薄膜 3.3.2.2 實驗結果 3.3.2.3 結果討論 3.3.3不同厚度的材質曝光劑量與溫度之比較 3.3.3.1 實驗步驟 3.3.3.1.1 二氧化矽薄膜 3.3.3.1.2 鋁薄膜 3.3.3.2 實驗結果 3.3.3.3 結果討論 3.3.4電子轟擊次數與螢光強度之關係 3.3.4.1 實驗步驟 3.3.4.2 實驗結果 3.3.4.3 結果討論 3.3.5 運用阻劑敏感度評估熱能的累積 3.3.5.1 實驗步驟 3.3.5.2 實驗結果 3.3.5.3 結果討論 第四章 若丹明運用於奈米壓印微影之研究 4.1 研究動機與目的 4.2 實驗藥品與設備 4.2.1 實驗藥品 4.2.2 實驗設備 4.3 評估奈米壓印微影壓印溫度之均勻及準確性 4.3.1 探討壓印溫度的均勻性 4.3.1.1 實驗步驟 4.3.1.2 實驗結果 4.3.1.3 結果討論 4.3.2 壓印壓力及溫度的改變 4.3.2.1 實驗步驟 4.3.2.2 實驗結果 4.3.2.3 結果討論 4.4製作過程與技術 4.4.1 實驗步驟 4.4.2 實驗結果 4.4.2.1 Bare silicon 4.4.2.1.1 NEB 4.4.2.1.2 DSE 4.4.2.2 thermal oxide 4.4.2.2.1 NEB 4.4.2.2.2 DSE 4.4.2.3 石英 4.4.2.3.1 DSE 4.4.3 結果討論 4.5 評估奈米壓印微影加熱溫度對壓印圖案之影響 4.5.1 實驗步驟 4.5.2 實驗結果 4.5.3 結果討論 第五章 結論 5.1實驗結論 5.1.1 若丹明的基本特性之研究 5.1.2 若丹明運用於電子束微影熱效應之研究 5.1.3 若丹明運用於奈米壓印微影之研究 5.2未來工作與建議 5.2.1 若丹明的基本特性之研究 5.2.2 若丹明運用於電子束微影熱效應之研究 5.2.3 若丹明運用於奈米壓印微影之研究 參考文獻rf 1. S. Nonogaki, T. Ueno, and T. Ito,”Microlithography Foundamentals in Semiconductor Devices and Fabrication Technology”, Marcel Dekker, New York, 201-201, 1998. 2. S. Nonogaki, T. Ueno, and T. Ito,”Microlithography Foundamentals in Semiconductor Devices and Fabrication Technology”, Marcel Dekker, New York, 202-202, 1998. 3. 朱育宏,”電子束微影在熱流製程與深次微米閘極金屬矽化物製程之研究”,國立清華大學碩士論文,2003。 4. C. H. Lin, S. D. Tzu, and Y. Anthony, “Optical Proximity Correction by E-Beam Over-Correction”, Microelec. Eng., 46, 55-.58, 1999. 5. 徐俊成, ”化學微縮技術應用於電子束微影製程與電子束阻劑線寬變異原因及其微波消化效率之探討”, 國立清華大學碩士論文, 2002. 6. E. H. Mulder, K. D. vander Mast, and A. C. Enters, "Thermal Effects in Electron Beam Lithography", J. Vac. Sci. Technol. B 7(6),1522-1555, 1989. 7. J. Varesi, and A. Majumdar, "Scanning Joule Expansion Microscopy at Nanometer Scales", Appl. Phys. Lett. 72(1),37-39, 1998. 8. Z. Chao, Kaneko Kazue, and Teruyoshi Mizutani, "Temperature Increase and Charging Current in Polyethylene Film during Application of High Voltage", Appl. Phys. Lett. Vol. 79, No. 23, 3839-3841, 2001. 9. J. Lou, Timothy M. Finegan, Paulash Mohsen, T. Alan Hatton and Paul E. Laibinis, "Fluorescence-Based Thermometry: Principles and Application", Anal. Chem., Vol. 18, No. 4, 235-284, 1999. 10. H. Winston, O. J. Marsh, C. K. Suzuki, and C. L. Telk, "Fluorescence of Europium Thenoyltrifluoroacetonate. I. Evaluation of Laser Threshold Parameters", J. Chem. Phys. Vol. 39, No. 2, 267-271, 1963. 11. M. L. Bhaumik, "Quenching and Temperature Dependence of Fluorescence in Rare-Earth Chelates", J. Chem. Phys. Vol. 40, No. 12, 3711-3715, 1964. 12. P. Kolodner and J. Anthony Tyson, "Microscopic Fluorescence Imaging of Surface Temperature Profiles with 0.01℃ Resolution", Appl. Phys. Lett. 40(9), 782-784, 1982. 13. P. Kolodner, A. Katzir, and Neal Hartsough, "Noncontact Surface Temperature Measurement during Reactive-ion Etching using Fluorescent Polymer Films", Appl. Phys. Lett. 42(8), 749-751, 1983. 14. L. P. Goss, A. A. Smith, and M. E. Post, "Surface Thermometry by Laser-induced Fluorescence", Rev. Sci. Instrum. 60(12), 3702-3706, 1989. 15. V. Romano, a. D. Zweig, M. Frenz, and H. P. Weber, "Time-Resolved Thermal Microscopy with Fluorescent Films", Appl. Phys. B49, 527-533 (1989) 16. E.M.S. Castanheira and J.M.G. Martinho, "Solvatochromic Shifts of Pyrene Excimer Fluorescence", Chem. Phys. Lett. Vol.185, 319-323, 1991. 17. E.M.S. Castanheira and J.M.G. Martinho, "Thermochromic Shifts of Pyrene Excimer Fluorescence", Chem. Phys. Lett. Vol.206, 45-48, 1993. 18. I.. L. Arbeloa and P. R. Ojeda, "Molecular Forms of Rhodamine B", Chem. Phys. Lett. Vol.79, 347-350, 1981. 19. 蔡曉忠,"溶膠-凝膠型陣列生物感測器之研發",國立清華大學博士論文,2003。 20. D. Ross, M. Gaitan, and L. E. Locascio, "Temperature Measurement in Microfluidic System Using a Temperature-Dependent Fluorescent Dye", Anal. Chem. Vol.73, 4117-4123, 2001. 21. H. J. Kim and K. D. Kihm, "Application of A Two-Color Laser Induced Fluorescence(LIF) Technique for Temperature Mapping", ASME International Mechanical Engineering Congress and Exposition, 1-7, 2001. 22. 蘇清森主編, 儀器學 Instrumentation, 71-72, 五南圖書出版股份有限公司出版, 台北市初版一刷, 2002年12月. 23. X. M. Han, J. Lin, R. B. Xing, J. Fu, S. B. Wang, "Patterning and optical properties rhodamine B-doped organic-inorganic silica films fabricated by sol-gel soft lithography", Mater. Lett. 57, 1355-1360, 2003 24. 張俊彥主編,鄭晃忠校審, 積體電路製程及設備技術手冊, 92-93, 中華民國產業科技發展協會, 第十一章, 中華民國電子材料與元件協會出版, 台北市, 1997. 25. C. Perret, C. Gourgon, G. Micouin and P. Grolier, "Influence of Thermal Properties of Polymers on NanoImprint Lithography Performance", Jpn. J. Appl. Phys. Vol. 41, 4203-4207, 2002. 26. Y. Hirai, S. Yoshida, and N. Takagi, "Defect analysis in thermal nanoimprint lithography", J. Vac. Sci. Technol. B 21(6), 2765-2770, 2003.id NH0925257028 sid 914540 cfn 0 / id NH0925257029 auc 李中陽 tic 自組裝奈米材料及奈米碳管純化之研究 adc 朱鐵吉 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 118 kwc 奈米碳管 kwc 微波 kwc 自組裝 abc 摘 要 rf 第六章 參考文獻 [1 ] S. Iijima, Nature 1991, 354, 56. [2 ] 成會明, 奈米碳管, 五南圖書, 2004. [3 ] C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. Chapelle, S. Lefrant, P. Deniard, R. Lee, J.E. Fischer, Nature, 1997, 388, 756 [4 ] V. Ivanov, J.B. Nagy, P. Lambin, A. Lucas, X.B. Zhang, X.F. Zhang, D. Bernaerts, G. Vantendeloo, S. Amelinckx, J. Vanlanduyt, Chem. Phys. Lett. 1994, 223, 329. [5 ] 馬振基, 奈米材料科技原理與應用, 全華科技圖書, 2003. [6 ] 朱屯等, 奈米材料技術, 五南圖書, 2003. [7 ] A. Thess, R. Lee, P. Nikolaev, H.J. Dai, P. Petit, J. Robert, C.H. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley, Science 1996, 273, 483. [8 ] A.G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C.B. Huffman, F.J. Rodriguez-Macias, P.J. Boul, A.H. Lu, D. Heymann, D.T. Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eklund, R.E. Smalley, Appl. Phys. A 1998, 67, 29. [9 ] T.W. Ebbesen, P.M. Ajayan, H. Hiura, K. Tanigaki, Nature 1994, 367, 519. [10 ] H. Hiura, T.W. Ebbesen, K. Tanigaki, Adv. Mater. 1995, 7, 275. [11 ] S. Bandow, A.M. Rao, K.A. Williams, A. Thess, R.E. Smalley, P.C.J. Eklund, Phys. Chem. B 1997, 101, 8839. [12 ] K.B. Shelimov, R.O. Esenaliev, A.G. Rinzler, C.B. Huff-man, R.E. Smalley, Chem. Phys. Lett. 1998, 282, 429. [13 ] P.G. Collins, A. Zettl, H. Bando, A. Thess, R.E. Smalley, Science 1997, 278, 100. [14 ] P. Avouris, T. Hertel, R. Martel, T. Schmidt, H.R. Shea, R.E. Walkup, Appl. Surf. Sci. 1999, 141, 201. [15 ] W.A. Deheer, A. Chatelain, D. Ugarte, Science 1995, 270, 1179. [16 ] Q. Wang, H.A.A. Setlur, J.M. Lauerhaas, J.Y. Dai, E.W. Seelig, R.P.H. Chang, Appl. Phys. Lett. 1998, 72, 2912. [17 ] P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Science 2000, 287, 1801. [18 ] J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K.J. Cho, H.J. Dai, Science 2000, 287, 622. [19 ] A.M. Morales, C.M. Lieber, Science 1998, 297, 208. [20 ] R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 1964, 4,89 [21 ] H.M. Kingston, Stephen J. Haswell, Microwave-Enhanced Chemisrty, American Chemical Society, Washington, DC, 1997 [22 ] E. Nest, M. Collins, Introduction to microwave sample preparation theory and practice, 1998 [23 ] 陳力俊等, 材料電子顯微鏡學, 國科會精儀中心, 2000 [24 ] JB Jackson, SL Westcott, LR Hirsch, N. J. Halas, Applied Physics Letters, 2003, 82, 257. [25 ] B.B. Liu, T. Wagberg, E. Olsson, R.S. Yang, H.D. Li, S.L. Zhang, H.B. Yang, G.T. Zou, B. Sundqvist, Chem. Phys. Lett. 2000, 320, 365. [26 ] M. Monthiouz, B.W. Smith, B. Burteaux, A. Claye, J.E. Fischer, D.E. Luzzi, Carbon 2001, 39, 1251 [27 ] Jeong-Mi Moon, Kay Hyeok An, and Young Hee Lee, J. Phys. Chem. B 2001, 105, 5677 [28 ] P.X. Hou, S. Bai, Q.H. Yang, C. Liu, H.M. Cheng, Carbon 2002, 40, 81 [29 ] H. Hiura, T. Ebbesen, H. Tanighaki, Chem. Phy. Lett. 1993, 202, 509 [30 ] Y. S. Park, Y. C. Choi, K. S. Kim, D. C. Chung, D. J. Bae, K. H. An, S. C. Lim, X. Y. Zhu and Y. H. Lee, Carbon 2001, 39, 655. [31 ] R. Andrews, D. Jacques, D. Qian, E. C. Dickey, Carbon 2001, 39, 1681. [32 ] Y. Sato, T. Ogawa, K. Motomiya, K. Shinoda, B. Jeyadevan, K. Tohji, A. Kasuya and Y. Nishina, J. Phys. Chem. B 2001, 105, 3387. [33 ] A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla and M. J. Heben, Adv. Mater. 1999, 11, 1354. [34 ] W. Zhou, Y. H. Ooi, R. Russo, P. Papanek, D. E. Luzzi, J. E. Fischer, M. J. Bronikowski, P. A. Willis and R. E. Smalley, Chem. Phys. Lett. 2001, 350, 6. [35 ] C. M. Yang, K. Kaneko, M. Yudasaka and S. Iijima, Physica B 2002, 323, 140. [36 ] K. Hernadi, A. Siska, L. Thien-Nga, L. Forro and I. Kiricsi, Solid State Ion. 2001, 141, 203. [37 ] C. H. Liang, G. W. Meng, L. D. Zhang, N. F. Shen, X. Y. Zhang, Journal of Crystal Growth 2000, 218, 136. [38 ] S. Fullam, D. Cottell, H. Rensmo, D. Fitzmaurice, Adv. Mater. 2000, 12, 1430 [39 ] S.C. Tsang, P.J.F. Harris, M.L.H. Green, Nature 1993, 362, 520.id NH0925257029 sid 914536 cfn 0 / id NH0925257030 auc 陸怡雯 tic 線上前濃縮連接ICP-MS分析系統之開發及其應用於高純度之化學品(KOH)及活體動物腦中超微量元素之分析研究 adc 楊末雄 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 209 kwc 化學試劑氫氧化鉀 kwc 活體動物 abc 本研究的目的旨在建立二套連線分析系統,分別針對具複雜基質(Complicated matrix)的工業材料(KOH)及活體動物腦部細胞外液中微量元素進行線上分析。在本研究的第一部分工作中主要係利用Desalter-ICP-MS連線系統,開發一套可測定45% KOH中微量雜質元素的分析方法。在此研究中,除針對利用選擇性薄膜分離裝置(Desalter)各項最適化之操作條件(包括樣品流速、外層交換液流速、電流以及選擇性鉗合試劑之含量等)進行探討外,本研究業已完成本連線分析系統方法可靠性的評估。研究結果顯示,當進樣流速為0.1 mL/min時,配合流速為7 mL/min的600 mM NH4Cl外層交換液的使用,即能有效地將樣品中大量鹽類基質(KOH)予以移除,同時亦可達到分析待測元素之目的。 rf 1. A. Minami, A. Takeda, R. Yamaide, N. Oku, Brain Research (2002). 936, 91-94 2. C.J. Frederickson, G.A. Howell, M.D. Haigh, and G. Danscher, Hearing. Res. (1988). 36,203-212 3. Y. Kawaguchi, H. Katsumaru, T. Kosaka, G.W. Heizmann, and K. Hama, Brain Res. (1987). 416, 369-374 4. M. Parmentier, M. Ghysens, F. Rypens, D. E. M. Lawson, J. L. Pasteels, and R. Pochet, Gen. Comp. Endocrinol. (1987). 65, 399-407 5. B.L. Vallee, Carlsberg. Res. Commun. (1980). 45, 423-441 6. B.L. Vallee, In “Spurenelement” (E. Gladtke, G. Heimann, I. Lombeck, and I. Eckert, Eds.), (1985). pp. 1-22.Thieme, Stuttgart. 7. B.L. Vallee, , and A. Galdes, Adv. Enzymol. Relat. Mol. Biol. (1984). 56, 283-430 8. G.L. Westbrook, , and M.L. Mayer, Nature. (1987). 328, 640-643 9. I.L. Crawford, , and J.D. Conneor, Natuew. (1973). 244, 442-443 10. 陳淑美,莊育梩,李重義,姜樂義,科學新粹,西元1986年6月198期,科學月刊雜誌社,金台灣資訊事業有限公司,圖龍文化事業股份有限公司版權所有。 11. L. S. Stefano, L. M. T. Canzoniero, S. P. Yu, H. S. Ying, J. Y. Koh, G. A. Kerchner, and D. W. Choi, Neuroscience. (1997).17. (24) 9554-9564 12. J. H. Weiss, S. L. Sensi and J. Y. Koh, TiPS. (2000). 21, 395-401 13. A. Santon, S. Giannetto, G. C. Sturniolo, V. Medici, R. D`inca, P. Irato and V. Albergoni, Histochemistry and cell biology. (2002).117, 275-281 14. G. Papanikolaou, M. E. Samuels, E. H. Ludwig, M. L. E MacDonald and P. L. Franchini, Nature genetics. (2004). 36, 77-82 15. J. Wang and E. H. Hansen, Trends in Analytical Chemistry, (2003).22, 836-846 16. A. Boyle and J.M. Edmond, Anal. Chim. Acta, 86 (1977) 199 17. L. Brugmann, L.G. Danielsson, B.V. Magnusson and S. Westerlund, Mar. Chem., 13 (1983) 327 18. J. Minczewski, J. Chwastowska and R. Dybczynski, “Separation and preconcentration methods in inorganic trace analysis”, 1982 19. 吳松勳,(民國91)。建立線上微管柱分離及感應耦合電漿質譜儀連線分析系統應用於微透析樣品中重金屬元素分析研究。國立清華大學原子科學研究所碩士論文,未出版。 20. Z. L. Fang, M. Sperling, B. Welz, J. Anal. At. (1991). Spectrom. 6 301 21. E. J. Hansen and J. H. Wang, Anal. Chim. Acta. (2002). 3. 467 22. Z. Fang, S. Xu, L. Dong, W. Li, Talanta (1994). 41. 2165 23. 洪家駿,(民國91)。建立Microdialysis-desalter-ICP-MS連線分析技術應用於模擬活體動物體內微量元素之現場、原位、連續、動態分析研究。國立清華大學原子科學研究所碩士論文,未出版。 24. 林琦峪,(民國92)。利用Desalter-ICP-MS連線技術進行離體生物樣品中Cr(III,VI)物種分析及活體動物體內微量元素線上連續動態監測之研究。國立清華大學原子科學研究所碩士論文,未出版。 25. E. V. Alonso, A. G. Torres and J. M. C. Pavon, Talanta (2001). 55 .219 26. J. L. Burguera and M. Burguera, Spectrochim. Acta, Part B. (2002).56. 1801 27. K. Benkhedda, H.G. Infante, E. Ivanova and F. Adams, J. Anal. At. Spectrom. (2000). 15. 1349 28. X. P. Yan, M. J. Hendry and R. Kerrich, Anal. Chem. (2000).72. 1879-1884 29. X. P. Yan and R. Kerrich, Anal. Chem. (1998).70 .4736 30. H. H. Chen, D. Beauchemin, Can. J. Anal. Sci. Spectros. (2000). 45. 84 31. H. H. Chen, D. Beauchemin, J. Anal. At. Spectrom. (2001). 16. 1356 32. E. Ivanova, K. Benkhedda and F. Adams, J. Anal. At. Spectrom. (1998). 13. 527-531 33. S. Liawruangrath, S. Waraporn and T. Alan, Talanta. (2002). 58. 1177-1184 34. A. G. Zachariadis, A. N. Anthemidis and P. G. Bettas, Talanta (2002).57. 919-927 35. J. Wang and E. H. Hansen, Analtytica Chimica Acta, (2002). 456 283-292 36. E. Ivanova, X. P. Yan and F. Adams, Analtytica Chimica Acta, (1997). 345. 7-13 37. J. Wang and E. H. Hansen, J. Anal. At. Spectrom. (2002).17 1278-1283 38. J. Wang and E. H. Hansen, J. Anal. At. Spectrom. (2002). 17. 248-252 39. X. P. Yan, R. Kerrich and M. J. Hendry, J. Anal. At. Spectrom. (1999). 14. 215-221 40. H. H. Chen and D. Beauchemin, J. Anal. At. Spectrom. 16 (2001) 1356-1363 41. J. A. Salonia, R. G. Wuilloud, J. A. Gasquez, R. A. Olsina and L. D. Martinez, J. Anal. At. Spectrom. (1999). 14. 1239-1243 42. X. P. Yan and Y. Jiang, Trends in analytical chemistry, (2001). 20. 552-562 43. A. N. Anthemidis, G. A. Zachariadis and J. A. Stratis, Talanta, J. Anal. At. Spectrom. (2002). 17. 1330-1334 44. A. N. Anthemidis, G. A. Zachariadis and J. A. Stratis, Talanta, (2001). 54. 935-942 45. A. N. Anthemidis, G. A. Zachariadis, J. S. Kougoulis and J. A. Stratis, Talanta, (2002). 57. 15-22 46. S. Nielsen and E. H. Hansen, Analytica Chinica Acta (1998). 366 163-176 47. X. P. Yan, R. Kerrich and M. J. Hendry, Anal. Chem. (1998). 70. 4736-4742 48. X. P. Yan, X. B. Yin, X.W. He and Y. Jiang, Anal. Chem. (2002). 74. 2162-2166 49. R. S. Houk, Anal. Chem. (1986). 58, 97A 50. S. H. Tan, G. Horlick, Appl. Spectrosc. (1986) 40,445 51. S. Mazan, N.Glon, G. Cretier, J.L. Rocca and J.M. Mermet, J.anal. At. Spectrom,. (1998). 17. 366-370 52. J.A.Olivares and R. S. Houk, Anal. Chem. (1986). 58, 20-25 53. R. S. Houk, V. A. Fassel, G. D. Flesch, and H. J. Sevec, Anal. Chem. (1980).52, 2283-2289 54. B. Halliwell, and J. M. C. Gutteridage, J. Biochem. (1984). 219, 1. 55. K. Benkhedda, B. Dimitrova, H. G. Infante, E. Ivanova and F. C. Adams, J. Anal. At. Spectrom., (2003) 18, 1019–1025 56. C. Dubuisson, E. Poussel, J. M. Mermet, J. Anal. At. Spectrom., (1997) 12, 281 57. K. E. Jarvis, A. L. Gray, R. S. Houk, “Handbook of Inductively Coupled Plasma Mass Spectrometry”, Blackie, Glasgow, 1992 58. P. V. D. Weijer, W. L. M. Baeten, M. H. J.Bejjers, J. M. G. Vullings, J. Anal. At. Spectrom., (1992) 7, 599 59. S. Maza, N. Glon, G. Cretier, J. L. Rocca, J. M. Mermet, J. Anal. At. Spectrom., (1998) 17, 366 60. S. F. Boulyga, H. J. Dietze, J. S. Becker, Mikrochim., Acta, (2001) 137, 93. 61. M. A. Dexter, P. K. Appelblad, C. P. Ingle, J. H. Batey, H. J. Reid, B. L. Sharp, J. Anal. At. Spectrom., (2002) 17, 183 62. Q. Xie, R. Kerrich, J. Anal. At. Spectrom., (2001) 17, 69 63. C. P. Ingle, P. K. Appelbad, M. A. Dexter, H. J. Reid, B. L. Sharp, J. Anal. At. Spectrom., (2001) 16, 1076 64. I. Feldmann, N. Jakulowski, D. Stuewer, Fresenius. J. Anal. Chem., (1999) 365, 415 65. I. Feldmann, N. Jakulowski, D. Stuewer, Fresenius. J. Anal. Chem., (1999) 365, 422 66. A. Montaser, “ Inductively Coupled Plasma Mass Spectrometry”, Wiley-VCH, New YORK, 1998 67. G. M. Greenway, S. M. Nelms, I. Skhosana and S. J. L. Dolman, Spectrochim. Acta, Part B, (1996) 51, 1909 68. J. Ruzicka and A. Arndal, Anal. Chim. Acta, (1989) 216,243 69. L. C. Aceredo, R. E. Sturgeon and A. J. Curtius, Spectrochim. Acta, Part B, (1993) 48, 91 70. L. M. T. Canzoniero, D. M. Turetsky, and D. W. Choi, J. Neurosci. (1999).19 RC31, 1-6 71. J. H. Weiss, S. L. Sensi, and J. Y. Koh, Trends in Pharmacological Sciences. (2000).10, 395-401 72. T. Budde, A. Minta, J.A.White and A.R. Kay, Neuroscience (1997).79, 347-358 73. E.P. Huang, Proc. Natl. Acad. Sci. USA. (1997) 94, 13386-13387 74. G. Nowak, and B. Szewczyk, Pol. J. Pharmacol. (2002).54, 587-592 75. Mineral requirements found by 74 congress 2nd Session Senate Document No.264 76. P. Zatta, R. Lucchini, S.J. Rensburg and A .Taylor, Brain Research Bulletin, 62 (1): 15-28, NOV 15, (2003)id NH0925257030 sid 914524 cfn 0 / id NH0925257031 auc 林柏亨 tic 輻射致效型奈米級光觸媒二氧化鈦於粉末基材之製備與性能鑑定 adc 王竹方 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 74 kwc TiO2 kwc BaF2 kwc 光觸媒 kwc 輻射 abc 本研究利用陶瓷和玻璃粉末做基材,將所生成的奈米級TiO2顆粒附著於其上,成功克服顆粒分散與固定化的問題。樣品經由利用SEM/EDX、XRF、ICP-AES分析樣品的基本性質,並以光催化分解亞甲藍染料評估產物的光催化效能。由實驗結果得知本研究已成功的將奈米級TiO2光觸媒合成於玻璃與陶瓷粉末基材上。本研究還將BaF2合成於粉末基材中,希望可應用游離輻射做為光催化的能源,克服光源導入不佳的問題。故利用UV光測試外,並嘗試以X-ray和γ輻射當作激發源來測試樣品的分解效果。X-ray與γ輻射有很好的穿透能力,藉由BaF2的吸收,可以有效的解決光源的限制。由實驗結果得知,TiO2/BaF2的粉末複合材料具備利用游離輻射產生光催化反應的效能。本研究已成功將光觸媒的應用拓展至游離輻射的範圍。 rf 【1】 Feynman, 1959, “There’s plenty of room at the Bottom,” Annual Meeting of APS, Caltech. 【2】 Fujishima, A.; Honda, K.; Nature, 1972, 238, 37. 【3】 Photocatalytic Purification and treatment of Water and Air;Ollis, D. F., Al-Ekabi, H., Ed.; Elsevier: Amstredam, 1993. 【4】 Boer, K. W.; Survey of Semiconductor Physis; Van Nostrand Reindold; New York, 1990; 249 【5】 Pehkonen, S.; Siegert, R.; Webb,S.; Hoffmann, M. R.; Environ. Sci. Technol. 1993, 23, 2056. 【6】 Carraway, E. R.; Hoffman, A. J.; Hoffmann, M. R.; Environ. Sci. Technol. 1994, 28, 786. 【7】 Yamashita, H.; Nushuguchi, H.; Kamkda, N.; Res. Chem. Intermed, 1994, 20, 815. 【8】 Mattews, R. W.; J. Catal. 1998, 113, 549 【9】 Linsebigler, A. L.; Guangquan, Lu.; Yates, J. T. Jr.; Chem. Rev. 1995, 95, 735. 【10】 Bawendi, M. G.; Carroll, P. J.; Willson, W. L.; J. Chem. Phys. 1992, 96, 946. 【11】 Yamashita, H.; Fujii, Y.; Ichihashi, Y.; Catalyst Today. 1998, 45, 221. 【12】 Hoffman, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W.; Chem. Rev., 1995, 95, 69. 【13】 Peng, D. K.; Yang, P. H.; Liu, Z. T.; CHEM. J. CHIN. U., 1997, 18, 499. 【14】 Zhang, J. Y.; Boyd, I. W.; O'Sullivan, B. J.; J. NON-CRYST. SOLIDS., 2002, 303, 134. 【15】 Alam, M. J.; Cameron, D. C.; J. SOL-GEL SCI. TECHN. 2002, 25, 137. 【16】 Wen, T.; Gao, J. P.; Shen, J. Y.; J. MATER. SCI. 2001, 36, 5923. 【17】 Wang, C.; Deng, Z. X.; Zhang, G. H.; POWDER. TECHNOL. 2002, 125, 39. 【18】 Legrand-Buscema, C.; Malibert, C.; Bach, S.; THIN. SOLID. FILMS. 2002, 418, 79. 【19】 Choi, W.; Hong, S. J.; Chang, Y. S.; ENVIRON. SCI. TECHNOL. 2000, 34, 4810. 【20】 Zhang, P. Y.; Liang, F. Y.; Yu, G.; J. PHOTOCH. PHOTOBIO. A 2003, 156, 189. 【21】 Kim, S .B.; Hwang, H. T.; Hong, S. C.; CHEMOSPHERE. 2002, 48, 437. 【22】 Tatsuma, T.; Saitoh, S.; Ohko, Y.; Fujishima, A.; CHEM. MATER. 2001, 13, 2838. 【23】 Kosanic, M. M.; Trickovic, J. S.; J. PHOTOCH. PHOTOBIO. A 2002, 149, 247. 【24】 Ruan, S. P.; Wu, F. Q.; Zhang, T.; MATER. CHEM. PHYS. 2001, 69, 7. 【25】 Guillard, C.; Lachheb, H.; Houas, A.; J. PHOTOCH. PHOTOBIO. A 2003, 158, 27. 【26】 Wen, S.; Zhao, J. C.; Sheng, G. Y.; Fu, J.; CHEMOSPHERE. 2002, 46, 871. 【27】 NAIR, M.; LUO, Z. H.; HELLER, A.; IND. ENG. CHEM. RES. 1993, 32, 2318. 【28】 Hata, S.; Kai, Y.; Yamanaka, I.; Oosaki, H.;JSAE. REV. 2000, 21, 97. 【29】 Trapalis, C. C.; Keivanidis, P.; Kordas, G.; THIN. SOLID. FILMS. 2003, 433, 186. 【30】 Yu, J. C.; Ho, W.; Lin, J.; Wong, P. K.; Environ. Sci. Technol. 2003, 37, 2296. 【31】 Sunada, K.; Watanabe, T.; Hashimiti, K.; Environ. Sci. Technol. 2003, 37, 4785. 【32】 Tatsuma, T.; Takeda, S.; Saitoh, S.; ELECTROCHEM. COMMUN. 2003, 5, 793. 【33】 Blake, D.M.; Maness, P.C.; Huang, Z.; SEPAR. PURIF. METHOD. 1999, 28, 1. 【34】 Cai, R.; Hashinoto, K.; Kubota, Y.; CHEM. LETT. 1992, 3, 427. 【35】 Cao, X. Y.; Dai, H. L.; Yan, Y. H.; J. WUHAN. UNIV. TECHNOL. 2003, 18, 52. 【36】 Kato, Y.; Tomida, M.; Ishii, S.; REV. SCI. INSTRU. 2004, 75, 1919. 【37】 Knoll, G. F.; “Radiation Detection and Measurement,” 3nd Ed., A Wiley-Interscience Publication, New York, 1999id NH0925257031 sid 914539 cfn 0 / id NH0925257032 auc 梅若恩 tic 表面結合鐵與銅離子對氯化有機物還原脫氯反應之研究 adc 董瑞安 ty 博士 sc 國立清華大學 dp 原子科學系 yr 92 lg 英文 pg 288 kwc 表面結合鐵 kwc 還原脫氯 kwc 銅離子 kwc 氧化鐵 kwc 四氯化碳 kwc 氯化碳氫化合物 abc no chinese abstract tc Acknowledgement. ………………………….…………………………………………... i ABSTRACT…………………………………………………………………………….... iii Content index ……………………………………………………………………………. vi Figure Index………………………………………………………………………… …... xii Table index ……………………………………………………………………………... xxii CHAPTER 1.GENERAL INTRODUCTION…………………………………………… 1 1.1 BACKGROUND AND THEORY…………………………………………... 2 1.1.1 Introduction ………………………………………………………… 2 1.1.2 Iron oxides …………………………………………………………. 5 1.1.3 Microbial Fe(III) reduction…………………………………………. 7 1.1.4 Electron shuttling compounds to facilitate the microbial Fe(III) reduction…………………………………………………………………… 10 1.1.5 Interaction of dissolved Fe(II) ions with iron minerals……………... 14 1.1.6 Reduction of contaminants by surface-bound Fe(II)………………... 20 1.1.7 Degradation kinetics of the contaminants by surface-bound Fe(II) systems…………………………………………………………………….. 24 1.1.8 Factors controlling the reactivity of heterogeneous Fe(II)/Fe(III) aqueous systems…………………………………………………………… 26 1.1.8.1 pH value. …………………………………………………………. 26 1.1.8.2 Remodeling time of Fe(II) at Fe(III) mineral surface ……………... 27 1.1.8.3 Sorbed Fe(II) concentration………………………………………... 28 1.1.9 Reactivity of Fe(II)/Fe(III) systems towards dechlorination of chlorinated compounds …………………………………………………… 28 1.2 MOTIVATION……………………………………………………………… 37 1.3 OBJECTIVES ………………………………………………………………. 39 1.4 EXPERIMENTAL PLAN …………………………………………………... 40 1.5 REFERENCES…………………………………………………………….… 41 CHAPTER 2. DECHLORINATION OF CARBON TETRCHLORIDE BY FERROUS ION ASSOCIATED WITH VARIOUS IRON OXIDE MINERALS…. 51 ABSTRACT ……………………………………………………………………... 52 2.1 INTRODUCTION…………………………………………………………… 53 2.2 MATERIALS AND METHODS……………………………………………. 56 2.2.1 Chemicals ……………………………………………………………. 66 2.2.2 Preparation of anoxic water and anoxic solutions …………………... 56 2.2.3 Synthesis and characterization of iron oxide minerals……………… 57 2.2.4 Dechlorination Experiments………………………………………… 60 2.2.5 Fe(II) and Cu(II) sorption experiments……………………………… 61 2.2.6 Analytical Methods………………………………………………….. 61 2.3 RESULTS AND DISCUSSION……………………………………………... 63 2.3.1 Characterization of iron oxide minerals……………………………... 63 2.3.2 Sorption of Fe(II) onto iron oxide minerals………………………… 69 2.3.4 Dechlorination of CCl4 by surface-bound Fe system……………….. 74 2.3.5 Effect of pH on the dechlorination of CCl4 by goethite…………….. 79 2.3.6 Effect of Fe(II) on the dechlorination of CT in goethite system…… 82 2.3.7 Effect of goethite concentration…………………………………….. 84 2.3.8 Dechlorination of CCl4 by surface-bound Fe(II) species in the presence of Cu(II)………………………………………………………….. 87 2.3.9 Reduction of chloroform by Cu(II) catalyzed surface bound Fe(II) systems……………………………………………………………………. 91 2.3.10 The sorption of Cu(II) on iron minerals…………………………… 94 2.4 ENVIRONMENTAL SIGNIFICANCE……………………………………. 99 2.5 SUMMARY………………………………………………………………… 100 2.6 REFERENCES............................................................................................... 101 CHAPTER 3. REDUCTIVE DECHLORINATION OF CARBON TETRACHLORIDE BY SURFACE-BOUND FERROUS IONS ASSOCIATED WITH GOETHITE………. 105 ABSTRACT……………………………………………………………………… 106 3.1 INTRODUCTION…………………………………………………………... 107 3.2 MATERIALS AND METHODS……………………………………………. 109 3.2.1 Chemicals…………………………………………………………….. 109 3.2.2 Dechlorination Experiments…………………………………………. 110 3.2.3 Analytical Methods………………………………………………….. 111 3.3 RESULTS AND DISCUSION………………………………………………. 113 3.3.1 Effect of transition metal ions on CT degradation…………………… 113 3.3.2 Effect of pH on CT dechlorination…………………………………... 117 3.3.3 Effect of Cu (II) concentration on CT dechlorination……………….. 121 3.3.4 Effect of Fe(II) on CT dechlorination……………………………….. 130 3.5 ENVIRONMENTAL SIGNIFICANCE ……………………………………. 134 3.4 SUMMARY…………………………………………………………………. 135 3.6 REFERENCES………………………………………………………………. 137 CHAPTER4. REDUCTIVE DECHLORINATION OF CARBON TETRACHLORIDE IN AQUEOUS SOLUTIONS CONTAINING FEROUS AND COPPER IONS……….. 141 ABSTRACT……………………………………………………………………… 143 4.1 INTRODUCTION…………………………………………………………… 145 4.2 MATERIALS AND METHODS…………………………………………….. 147 4.2.1 Chemicals…………………………………………………………….. 147 4.2.2 Dechlorination Experiments…………………………………………. 147 4.2.3 Analytical Methods…………………………………………………... 148 4.3 RESULTS AND DISCUSSION……………………………………………... 150 4.3.1 Concentration effect of Cu(II) on CCl4 dechlorination in the presence of 3 mM Fe(II)……………………………………………………………... 150 4.3.2 Concentration effect of Fe(II) on CCl4 dechlorination in the presence of 0.5 mM Cu(II)…………………………………………………………… 151 4.3.3 Change in morphology of chemogenic solids at various Fe/Cu ratios. 158 4.3.4 Effect of pH………………………………………………………….. 166 4.4 ENVIRONMENTAL SIGNIFICANCE ……………………………………. 171 4.5 SUMMARY…………………………………………………………………. 173 4.6 REFERENCES……………………………………………………………… 174 CHAPTER5. ENHANCED DECHLORINATION OF CHLORINATED METHANES AND ETHENES BY GREEN RUST WITH COPPER IONS…………………... 177 ABSTRACT……………………………………………………………………… 178 5.1 INTRODUCTION…………………………………………………………… 180 5.2 MATERIALS AND METHODS…………………………………………….. 182 5.2.1 Chemicals…………………………………………………………….. 182 5.2.2 Synthesis and characterization of GR(Cl)……………………………. 183 5.2.3 Quantification of GR(Cl) concentration……………………………... 184 5.2.4 Dechlorination Experiments………………………………………... 185 5.2.5 Analytical techniques………………………………………………… 186 5.3 RESULTS AND DISCUSSION……………………………………………... 188 5.3.1 Dechlorination of CT by GR(Cl)…………………………………….. 188 5.3.2 Dechlorination of chlorinated ethenes by GR(Cl)…………………… 191 5.3.3 Concentration effect of Cu(II)……………………………………….. 192 5.3.4 Solid-phase analysis of GR(Cl)–Cu(II) suspension…………………. 199 5.3.5 Effect of pH on PCE dechlorination…………………………………. 203 5.3.6 The concentration effect of GR(Cl) on PCE dechlorination………… 209 5.3.7 The effect of target organic (PCE) concentration…………………… 209 5.4 ENVIRONMNTAL SIGNIFICANCE………………………………………. 216 5.5 SUMMERY…………………………………………………………………. 217 5.6 REFERENCES……………………………………………………………… 219 CHAPTER 6.REDUCTIVE DECHLORINATION OF CARBON TETRACHLORIDE BY BIOGENIC FERROUS SPECIES UNDER MICROBIAL IRON REDUCING CONDITIONS BYGeobacter sulfurreducens…………………………………………… 223 ABSTRACT……………………………………………………………………… 224 6.1 INTRODUCTION…………………………………………………………… 225 6.2 MATERIALS AND METHODS…………………………………………….. 228 6.2.1 Chemicals……………………………………………………………. 228 6.2.2 Microorganism and Cultivation……………………………………… 229 6.2.3 Fe(III) reduction experiments………………………………………... 230 6.2.4 Dechlorination experiments………………………………………….. 231 6.2.5 Analytical methods…………………………………………………... 231 6.3 RESULTS AND DISCUSSION……………………………………………... 232 6.3.1 Reduction of various Fe(III) oxides by Geobacter sulfurreducens…. 232 6.3.2 Abiotically reductive dechlorination of CT under microbial Fe(III) reducing condition…………………………………………………………. 234 6.3.3 Influence of copper ions on the growth of G. sulfurreducens and the microbial Fe(III) reduction………………………………………………… 237 6.3.4 Dechlorination of CT in the presence of Cu(II) under microbial Fe(III) reducing condition………………………………………………….. 239 6.3.5 Microbial reduction of Fe(III)oxides using AQDS as electron shuttling compound………………………………………………………… 244 6.3.6 Dechlorination of carbon tetrachloride under microbial Fe(III) reducing condition using AQDS as electron shuttling compound…………. 247 6.3.7 Effect of Cu(II) ion on the dechlorination of carbon tetrachloride under microbial Fe(III) reducing condition using AQDS as electron shuttling compound………………………………………………………… 254 6.4 ENVIRONMENTAL SIGNIFICANCE……………………………………... 265 6.5 SUMMARY…………………………………………………………………. 267 6.6 REFERENCES………………………………………………………………. 268 CHAPTER 7. CONCLUSIONS…………………………………………………………. 273 CONCLUSIONS………………………………………………………………… 274 APPENDIX ……………………………………………………………………………… 279rf (1) Stroo, H. F.; Unger, M.; Ward, C. H.; Kavanaugh, M. C.; Vogel, C.; Leeson, A.; Marqusee, J. A.; Smith, B. P. Environ Sci Technol 2003, 37, 224a-230a. (2) Henry, S. M.; Hardcastle, C. H.; Warner, S. D. Chlorinated Solvents and DNAPL Remediation 2003, 837, 1-20. (3) Beck, P. Geosci Can 1996, 23, 22-40. (4) Buschmann, J.; Angst, W.; Schwarzenbach, R. P. Environ Sci Technol 1999, 33, 1015-1020. (5) Von Düszeln, J. T., W. Sci. Total Environ. 1985, 41, 187-194. (6) Nowell, L. H.; Hoigne, J. Water Res 1992, 26, 593-598. (7) Roberts, A. L.; Gschwend, P. M. J Contam Hydrol 1994, 16, 157-174. (8) Anon.A.R. Hazardous Waste Cons 1994, 12, A30-A32. (9) Rogers, L. Ground Water 1992, 30, 50-60. (10) Mackay, D.; Shiu, W. Y.; Ma, K. C. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals (vol)3; Lewis Publishers,121, Chelsea, Michigan 48118, 1993. (11) Deutsh, W. J. Groud water geochemistry: Fundamentals and applications to contamination; CRC press, Lewis Publishers: Washington,D.C., 1997. (12) Vogel, T. M.; Criddle, C. S.; Mccarty, P. L. Environ Sci Technol 1987, 21, 722-736. (13) Holliger, C.; Schraa, G.; Stams, A. J. M.; Zehnder, A. J. B. Appl Environ Microb 1993, 59, 2991-2997. (14) Holliger, C.; Schumacher, W. Anton Leeuw Int J G 1994, 66, 239-246. (15) Holliger, C.; Schraa, G. FEMS Microbiol Rev 1994, 15, 297-305. (16) McCarty, P. L. Science 1997, 276, 1521-1522. (17) Krumholz, L. R.; Sharp, R.; Fishbain, S. S. Appl Environ Microbiol 1996, 62, 4108-4113. (18) Assaf-Anid, N.; Lin, K. Y. J Environ Eng-Asce 2002, 128, 94-99. (19) Chiu, P. C.; Reinhard, M. Abstr Pap Am Chem Socity 1995, 209, 65-Envr. (20) Burris, D. R.; Delcomyn, C. A.; Smith, M. H.; Roberts, A. L. Environ Sci Technol 1996, 30, 3047-3052. (21) Curtis, G. P.; Reinhard, M. Environ Sci Technol 1994, 28, 2393-2401. (22) Kriegmanking, M. R.; Reinhard, M. Environ Sci Technol 1992, 26, 2198-2206. (23) Butler, E. C.; Hayes, K. F. Environ Sci Technol 1999, 33, 2021-2027. (24) Butler, E. C.; Hayes, K. F. Environ Sci Technol 1998, 32, 1276-1284. (25) Weerasooriya, R.; Dharmasena, B. Chemosphere 2001, 42, 389-396. (26) Estes, T. J.; Vilker, V. L. J Colloid Interf Sci 1989, 133, 166-175. (27) Hofstetter, T. B.; Schwarzenbach, R. P.; Haderlein, S. B. Environ Sci Technol 2003, 37, 519-528. (28) Schwertmann, U.; Fitzpatrick, R. W. Iron minerals in surface environment in "Biomineralization Process of Iron and Manganese (Eds. Skinner, H. C.W. and Fitzpatrick, R. W.); Catena: Cremlingen, 1992. (29) Cornell, R. M.; Schwertmann, U. The Iron oxides-Structure, properties, Reactions, Occurrence and Uses; VCH: Weinheim, 1996. (30) Lyngkilde, J.; Christensen, T. H. J Contam Hydrol 1992, 10, 273-289. (31) Lyngkilde, J.; Christensen, T. H. J Contam Hydrol 1992, 10, 291-307. (32) Schwertmann, U.; Cornell, R. M. Iron Oxides in the Laboratory:preparation and characterization, pp 1-18; VCH,: Weinheim, 1991. (33) Straub, K. L.; Benz, M.; Schink, B. Fems Microbiol Ecol 2001, 34, 181-186. (34) Pecher, K.; Haderlein, S. B.; Schwarzenbach, R. P. Abstract Paper in American Chemical Society , Divison of Environmental Science 1997, 213, 189. (35) Elsner, M.; Schwarzenbach, R. P.; Haderlein, S. B. Environ Sci Technol 2004, 38, 799-807. (36) Andreeva, D.; Mitov, I.; Tabakova, T.; Mitrov, V.; Andreev, A. Mater Chem Phys 1995, 41, 146-149. (37) Sun, T. C.; Paige, C. R.; Snodgrass, W. J. J Univ Sci Technol B 1999, 6, 168-173. (38) Paige, C. R.; Snodgrass, W. J.; Nicholson, R. V.; Scharer, J. M.; He, Q. H. Water Air Soil Poll 1997, 97, 397-412. (39) Sun, T. C.; Paige, C. R.; Snodgrass, W. J. Water Air Soil Poll 1996, 91, 307-325. (40) Lovley, D. R.; Phillips, E. J. P.; Lonergan, D. J. Environ Sci Technol 1991, 25, 1062-1067. (41) Lovley, D. R. FEMS Microbiol Rev 1997, 20, 305-313. (42) Vargas, M.; Kashefi, K.; Blunt-Harris, E. L.; Lovley, D. R. Nature 1998, 395, 65-67. (43) Straub, K. L.; Buchholz-Cleven, B. E. E. Int J Syst Evol Microbiol 2001, 51, 1805-1808. (44) Jr, F. C.; Lonergan, D. J.; Loveley, D. R.; Davis, M.; Stolz, J. F.; McInerney, M. J. App. Environ. Mcrobiol. 1994, 60, 3752-3759. (45) Doong, R. A.; Schink, B. Environ Sci Technol 2002, 36, 2939-2945. (46) Lloyd, J. R.; Sole, V. A.; Van Praagh, C. V. G.; Lovley, D. R. Appl Environ Microbiol 2000, 66, 3743-3749. (47) Liu, C. X.; Gorby, Y. A.; Zachara, J. M.; Fredrickson, J. K.; Brown, C. F. Biotechnology and Bioengineering 2002, 80, 637-649. (48) Lin, W. C.; Coppi, M. V.; Lovley, D. R. Appl Environ Microbiol 2004, 70, 2525-2528. (49) Lovley, D. R.; Fraga, J. L.; Blunt-Harris, E. L.; Hayes, L. A.; Phillips, E. J. P.; Coates, J. D. Acta Hydroch Hydrobiol 1998, 26, 152-157. (50) Ortiz-Bernad, I.; Anderson, R. T.; Vrionis, H. A.; Lovley, D. R. Appl Environ Microbiol 2004, 70, 3091-3095. (51) Lovley, D. R.; Giovannoni, S. J.; White, D. C.; Champine, J. E.; Phillips, E. J. P.; Gorby, Y. A.; Goodwin, S. Arch Microbiol 1993, 159, 336-344. (52) Caccavo, F.; Blakemore, R. P.; Lovley, D. R. Appl Environ Microbiol 1992, 58, 3211-3216. (53) Myers, C. R.; Myer, J. M. J. Bacteriol. 1997, 17, 1143-1152. (54) Kostka, J. E.; Nealson, K. H. Environ Sci Technol 1995, 29, 2535-2540. (55) Kostka, J. E.; Dalton, D. D.; Skelton, H.; Dollhopf, S.; Stucki, J. W. Appl Environ Microbiol 2002, 68, 6256-6262. (56) Burgos, W. D.; Fang, Y. L.; Royer, R. A.; Yeh, G. T.; Stone, J. J.; Jeon, B. H.; Dempsey, B. A. Geochim Cosmochim Acta 2003, 67, 2735-2748. (57) Finneran, K. T.; Johnsen, C. V.; Lovley, D. R. Int J Syst Evol Microbiol 2003, 53, 669-673. (58) Kashefi, K.; Holmes, D. E.; Baross, J. A.; Lovley, D. R. Appl Environ Microbiol 2003, 69, 2985-2993. (59) Lonergan, D. J.; Jenter, H. L.; Coates, J. D.; Phillips, E. J. P.; Schmidt, T. M.; Lovley, D. R. J Bacteriol 1996, 178, 2402-2408. (60) Finster, K.; Bak, F. Appl Environ Microbiol 1993, 59, 1452-1460. (61) Dobbin, P. S.; Warren, L. H.; Cook, N. J.; McEwan, A. G.; Powell, A. K.; Richardson, D. J. Microbiol-Uk 1996, 142, 765-774. (62) Dobbin, P. S.; Carter, J. P.; San Juan, C. G. S.; von Hobe, M.; Powell, A. K.; Richardson, D. J. FEMS Microbiol Lett 1999, 176, 131-138. (63) Lovley, D. R. Microbiol Rev 1991, 55, 259-287. (64) Lovley, D. R.; Phillips, E. J. P. Appl Environ Microbiol 1988, 54, 1472-1480. (65) Arnold, R. G.; Dichristina, T. J.; Hoffmann, M. R. Biotechnol Bioeng 1988, 32, 1081-1096. (66) Lovley, D. R.; Coates, J. D.; BluntHarris, E. L.; Phillips, E. J. P.; Woodward, J. C. Nature 1996, 382, 445-448. (67) Seeliger, S.; Cord-Ruwisch, R.; Schink, B. J Bacteriol 1998, 180, 3686-3691. (68) Straub, K. L.; Schink, B. Fems Microbiol Lett 2003, 220, 229-233. (69) Sisley, M. J.; Jordan, R. B. Inorg Chem 1995, 34, 6015-6023. (70) Santana-Casiano, J. M.; Gonzalez-Davila, M.; Rodriguez, M. J.; Millero, F. J. Mar Chem 2000, 70, 211-222. (71) Amirbahman, A.; Sigg, L.; vonGunten, U. J Colloid Interf Sci 1997, 194, 194-206. (72) Lovley, D. R.; Anderson, R. T. Hydrogeol J 2000, 8, 77-88. (73) Trivedi, P.; Axe, L.; Dyer, J. Colloid Surface A 2001, 191, 107-121. (74) Zhang, Y.; Charlet, L.; Schindler, P. W. Colloid Surface 1992, 63, 259-268. (75) Charlet, L.; Silvester, E.; Liger, E. Chem Geol 1998, 151, 85-93. (76) Jeon, B. H.; Dempsey, B. A.; Burgos, W. D.; Royer, R. A. Colloid Surface A 2001, 191, 41-55. (77) Jeon, B. H.; Dempsey, B. A.; Burgos, W. D. Environ Sci Technol 2003, 37, 3309-3315. (78) Stumm, W.; Morgan, J. J. Aquatic chemistry.3rd Ed.; John Wiley & Sons, Inc.: New York, 1996. pp 425-613. (79) Truon, T. N.; Johnson, M. A.; Stefanovich, V. Elecronic Structure and Chmical Reactivity of Metal Oxide-Water nterfacs; In Solid-Liquid Interface Theory (Halley,J. W. Ed.) ACS symposium series 789, American Chemical Society.: Washington, DC., 2001. pp124-141. (80) Farley, K. J.; Dzombak, D. A.; Morel, F. M. M. J Colloid Interf Sci 1985, 106, 226-242. (81) Jeon, B. H.; Dempsey, B. A.; Burgos, W. D.; Royer, R. A.; Roden, E. E. Water Res 2004, 38, 2499-2504. (82) Millero, F. J. Geochim Cosmochim Acta 1985, 49, 547-553. (83) Grenthe, I.; Stumm, W.; Laaksuharju, M.; Nilsson, A. C.; Wikberg, P. Chem Geol 1992, 102, 297-297. (84) Fredrickson, J. K.; Zachara, J. M.; Kennedy, D. W.; Dong, H. L.; Onstott, T. C.; Hinman, N. W.; Li, S. M. Geochim Cosmochim Acta 1998, 62, 3239-3257. (85) McCormick, M. L.; Adriaens, P. Environ Sci Technol 2004, 38, 1045-1053. (86) McCormick, M. L.; Bouwer, E. J.; Adriaens, P. Environ Sci Technol 2002, 36, 403-410. (87) Kukkadapu, R. K.; Zachara, J. M.; Fredrickson, J. K.; Smith, S. C.; Dohnalkova, A. C.; Russell, C. K. Am Mineral 2003, 88, 1903-1914. (88) Ona-Nguema, G.; Abdelmoula, M.; Jorand, F.; Benali, O.; Gehin, A.; Block, J. C.; Genin, J. M. R. Environ Sci Technol 2002, 36, 16-20. (89) Glasauer, S.; Weidler, P. G.; Langley, S.; Beveridge, T. J. Geochim Cosmochim Acta 2003, 67, 1277-1288. (90) Hansel, C. M.; Benner, S. G.; Neiss, J.; Dohnalkova, A.; Kukkadapu, R. K.; Fendorf, S. Geochim Cosmochim Acta 2003, 67, 2977-2992. (91) Parmar, N.; Gorby, Y. A.; Beveridge, T. J.; Ferris, F. G. Geomicrobiol J 2001, 18, 375-385. (92) Pecher, K.; Kneedler, E. M.; Tonner, B. P. Abstract Paper in American Chemical Society 1999, 217, 292-294. (93) Bernal, J. D.; Dasgupta, D. R.; Mackay, A. L. Caly. Min. Bull. 1959, 4, 15-25. (94) Mann, S.; Sparks, N. H. C.; Couling, S. B.; Larcombe, M. C.; Frankel, R. B. J Chem Soc Farad T 1 1989, 85, 3033-&. (95) Satapanajaru, T.; Shea, P. J.; Comfort, S. D.; Roh, Y. Environ Sci Technol 2003, 37, 5219-5227. (96) Coughlin, B. R.; Stone, A. T. Environ Sci Technol 1995, 29, 2445-2455. (97) Stone, A. T.; Coughlin, B. R. Environ Sci Technol 1996, 30, 1412-1412. (98) Stumm, W.; Sulzberger, B. Geochim Cosmochim Ac 1992, 56, 3233-3257. (99) Wehrli, B.; Sulzberger, B.; Stumm, W. Chem Geol 1989, 78, 167-179. (100) Scheinost, A. C.; Abend, S.; Pandya, K. I.; Sparks, D. L. Environ Sci Technol 2001, 35, 1090-1096. (101) Gantzer, C. J.; Wackett, L. P. Environ Sci Technol 1991, 25, 715-722. (102) Li, S. Y.; Wackett, L. P. Biochemistry-Us 1993, 32, 9355-9361. (103) Heijman, C. G.; Grieder, E.; Holliger, C.; Schwarzenbach, R. P. Environ Sci Technol 1995, 29, 775-783. (104) Klausen, J.; Trober, S. P.; Haderlein, S. B.; Schwarzenbach, R. P. Environ Sci Technol 1995, 29, 2396-2404. (105) Rugge, K.; Hofstetter, T. B.; Haderlein, S. B.; Bjerg, P. L.; Knudsen, S.; Zraunig, C.; Mosbaek, H.; Christensen, T. H. Environ Sci Technol 1998, 32, 23-31. (106) Hofstetter, T. B.; Heijman, C. G.; Haderlein, S. B.; Holliger, C.; Schwarzenbach, R.P. Environ Sci Technol 1999, 33, 1479-1487. (107) Sorensen, J.; Thorling, L. Geochim Cosmochim Acta 1991, 55, 1289-1294. (108) Haderlein, S. B.; Pecher, K. kinetics and Mechanisms of Reactions at the Mineral/Water Interface;; Americal Chemical Society: Washington, DC,, 1998. (109) Amonette, J. E.; Workman, D. J.; Kennedy, D. W.; Fruchter, J. S.; Gorby, Y. A. Environ Sci Technol 2000, 34, 4606-4613. (110) Haderlein, S. B.; Elsner, M.; Erbs, M.; Hofstetter, T.; Pecher, K.; Schwarzenbach, R. P. Geochim Cosmochim Acta 2002, 66, A301-A301. (111) Pecher, K.; Haderlein, S. B.; Schwarzenbach, R. P. Environ Sci Technol 2002, 36, 1734-1741. (112) Elsner, M.; Haderlein, S. B.; Kellerhals, T.; Luzi, S.; Zwank, L.; Angst, W.; Schwarzenbach, R. P. Environ Sci Technol 2004, 38, 2058-2066. (113) Buerge, I. J.; Hug, S. J. Environ Sci Technol 1999, 33, 4285-4291. (114) Cui, D. Q.; Eriksen, T. E. Environ Sci Technol 1996, 30, 2259-2262. (115) Liger, E.; Charlet, L.; Van Cappellen, P. Geochim Cosmochim Acta 1999, 63, 2939-2955. (116) Strathmann, T. J.; Stone, A. T. Geochim Cosmochim Acta 2003, 67, 2775-2791. (117) Vikesland, P. J.; Valentine, R. L. Environ Sci Technol 2000, 34, 83-90. (118) Doong, R. A.; Wu, S. C. Chemosphere 1992, 24, 1063-1075. (119) Swallow, K. C.; Hume, D. N.; Morel, F. M. M. Environ Sci Technol 1980, 14, 1326-1331. (120) Kim, S.; Picardal, F. W. Environ Toxicol Chem 1999, 18, 2142-2150. (121) Lee, W.; Batchelor, B. Environ Sci Technol 2002, 36, 5147-5154. (122) Hansen, H. C. B.; Borggaard, O. K.; Sorensen, J. Geochim Cosmochim Acta 1994, 58, 2599-2608. (123) Lee, W.; Batchelor, B. Environ Sci Technol 2002, 36, 5348-5354. (124) Erbs, M.; Hansen, H. C. B.; Olsen, C. E. Environ Sci Technol 1999, 33, 307-311. (125) O'Loughlin, E. J.; Kemner, K. M.; Burris, D. R. Environ Sci Technol 2003, 37, 2905-2912. (126) O'Loughlin, E. J.; Burris, D. R. Environ Toxicol Chem 2004, 23, 41-48. (127) Williams, A. G. B.; Scherer, M. M. Environ Sci Technol 2001, 35, 3488-3494. (128) Loyaux-Lawniczak, S.; Refait, P.; Lecomte, P.; Ehrhardt, J. J.; Genin, J. M. R. Hydrol Earth Syst Sc 1999, 3, 593-599. (129) Loyaux-Lawniczak, S.; Refait, P.; Ehrhardt, J. J.; Lecomte, P.; Genin, J. M. R. Environ Sci Technol 2000, 34, 438-443. (130) Johnson, T. M.; Bullen, T. D. Geochim Cosmochim Acta 2003, 67, 413-419. (131) O'Loughlin, E. J.; Kelly, S. D.; Cook, R. E.; Csencsits, R.; Kemner, K. M. Environ Sci Technol 2003, 37, 721-727. (132) Hansen, H. C. B.; Guldberg, S.; Erbs, M.; Koch, C. B. Appl Clay Sci 2001, 18, 81-91. (133) Schwarzenbach, R. P.; Angst, W.; Holliger, C.; Hug, S. J.; Klausen, J. Chimia 1997, 51, 908-914. (134) Maithreepala, R. A.; Doong, R. A. Environ Sci Technol 2004, 38, 260-268. (135) Arnold, W. A.; Roberts, A. L. Environ Sci Technol 2000, 34, 1794-1805. (136) Kenneke, J. F.; Weber, E. J. Environ Sci Technol 2003, 37, 713-720. (137) Riley, R. G.; Zachara, J. M.; Wobber, F. J. Chemical contaminants on DOE Lands and selection of Contaminent Mixtures for Subsurface Science Research;DOE/ER-0547T; U.S. Department of Energy, Washington DC. 1992. (138) Buerge-Weirich, D.; Sulzberger, B. Environ Sci Technol 2004, 38, 1843-1848. (139) Flogeac, K.; Guillon, E.; Aplincourt, M. Environ Sci Technol 2004, 38, 3098-3103. (140) Schlimm, C.; Heitz, E. Environ Prog 1996, 15, 38-47. (141) Lewis, T. A.; Paszczynski, A.; Gordon-Wylie, S. W.; Jeedigunta, S.; Lee, C. H.; Crawford, R. L. Environ Sci Technol 2001, 35, 552-559. (142) Shcheltsyn, L. V.; Brailovskii, S. M.; Temkin, O. N. Kinet Catal 1990, 31, 1191-1200. (143) Chien, Y. C.; Wang, H. P.; Yang, Y. W. Environ Sci Technol 2001, 35, 3259-3262.id NH0925257032 sid 878512 cfn 0 / id NH0925257033 auc 陳之碩 tic 高解析度雷射光鑷子系統之組建與系統研究 adc 許志 adc & adc #26983; adc 吳見明 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 62 kwc 雷射光鑷子 abc 生物醫藥研究及應用已進入了分子的層級,相較於傳統生化方法所看到的是眾多分子的平均表現,單分子技術藉由即時的量測個別分子的空間解析即時間解析行為,為生物醫學提供了一創新研究的舞台。在奈米尺度下觀測單一分子的動態行為是十分複雜且困難的,因此本實驗室致力於發展高解析度雷射光鑷子系統,以提供一精密的單分子研究平台。 tc 第一章 緒論 1.1 研究動機 1 1.2 文獻回顧 3 第二章 光鑷子原理及量測模型 2.1 光鑷子原理 9 2.2 奈米精度量測 14 2.3 光鑷子剛性量測模型 19 第三章 雷射光鑷子系統設計及建立 3.1 簡化版雷射光鑷子系統設計及建立 22 3.2 高解析度雷射光鑷子系統設計及建立 29 第四章 雷射光鑷子系統測試 4.1 QPD訊號校正 38 4.2 光鑷子系統穩定度探討 49 4.3 光鑷子剛性量測 52 第五章 結論與展望 55 文獻回顧 56 附錄一 無塵室設計及建造 58 附錄二 傳動素動態實驗 60 附錄三 Conference 62rf 1.Ha, T., Single-Molecule Fluorescence Resonance Energy Transfer. MRTHODS, 2001. 25: p. 78-86. 2.Grier, D.G., A revolution in optical manipulation. Nature, 2003. 424: p. 810-816. 3.Schnitzer, M.J., Visscher, K. and Block, S.M., Mechanism of force production by single kinesin motors. Nature Cell Biology, 2000. 2. 4.Schnitzer, M.J.a.B., S.M., Kinesin hydrolyses one ATP per 8-nm step. Nature, 1997. 388: p. 386-390. 5.Keir C. Neuman, E.H.C., # Grace F. Liou,Keren Bergman, and Steven M. Block, Characterization of Photodamage to Escherichia coli in Optical Traps. Biophysical Journal, 1999. 77: p. 2856-2863. 6.Block, S.M., Asbury, C.L., Shaevitz, J.W., Lang, M.J., Probing the kinesin reaction cycle with a 2D optical force clamp. Proc. Natl. Acad. Sci., 2003. 100: p. 2351-2356. 7.Michelle D. Wang, M.J.S., Hong Yin,Robert Landick, Jeff Gelles, Steven M. Block, Force and Velocity Measured for Single Molecules of RNA Polymerase. science, 1998. 282: p. 902-907. 8.Lang, M.J., Asbury, C.L., Shaevitz, J.W., Block, S.M., An Automated Two-Dimensional Optical Force Clamp for Single Molecule Studies. Biophys. J., 2002: p. 83. 9.Joshua W. Shaevitz1, E.A.A., Robert Landick and S.M. Block, Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature, 2003. 426: p. 684-687. 10.Keir C. Neuman, E.A.A., J.G. Robert Landick, and a.S.M. Block, Ubiquitous Transcriptional Pausing Is Independent of RNA Polymerase Backtracking. Cell, 2003. 115: p. 437-447. 11.Gijs J. L. Wuite, R.J.D., ?Aaron Rappaport,?and Carlos Bustamante*, An Integrated Laser Trap/Flow Control Video Microscope for the Study of Single Biomolecules. Biophysical Journal, 2000. 79: p. 1155-1167. 12.Carlos Bustamante, Z.B.S.B.S., Ten years of tension:single-molecule DNA mechanics. Nature, 2003. 421: p. 423-427. 13.Zev Bryant, M.D.S., Jeff Gore, Steven B. Smith, and N.R.C.C. Bustamante, Structural transitions and elasticity from torque measurements on DNA. Nature, 2003. 424: p. 338-341. 14.A. Ashkin, J.M.D., J. E. Bjorkholm, and Steven Chu, Observation of a single-beam gradient force optical trap for dielectric particles. OPTICS LETTERS, 1986. 11: p. 288-290. 15.GRIER, D.G., A revolution in optical manipulation. Nature, 2003. 424: p. 810 - 816. 16.Karel Svoboda, S.M.B., Annu.Rev.biophys, 1994. 23: p. 247-285. 17.Koen Visscher, S.P.G., and Steven M. Block, Construction of Multiple-Beam Optical Traps with Nanometer-Resolution Position Sensing. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1996. 2: p. 1066-1076. 18.Abramowitz, M.W.D.a.M., OPTICAL MICROSCOPY. 19.Karel Svoboda, S.M.B., biological applications of optical forces. Annu.Rev.biophys, 1994. 23: p. 247-85. 20.Axelrod, D., Total Internal Refction Fluorescence Microscopy in Cell Biology. traffic, 2001. 2: p. 764-774.id NH0925257033 sid 914503 cfn 0 / id NH0925257034 auc 于心仁 tic 輻射致效型奈米級二氧化鈦薄膜光觸媒之製備與性能鑑定 adc 王竹方 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 62 kwc 二氧化鈦 abc 摘要 rf 參考文獻 [1 ] Fujishima, A.;Honda, K., Nature, 238, 37, 1972. [2 ] Fujishima, A.;Kohayakawa, K.,J. Electrochem. Soc. Jpn., 48, 1041, 1975. [3 ] Fujishima, A.;Kohayakawa, K.;Honda, K., Bull. Chem. Soc., 122, 1487, 1975. [4 ] Matthews, R. W., Sol. Energy, 8, 405, 1987. [5 ] Matthews, R. W., J. Phys. Chem., 91, 3328, 1987. [6 ] Matthews, R. W., J. Chem. Soc., 85, 1291, 1995. [7 ] Bai, N.; Li, S. G.; Chen, H. Y., J. Mater. Chem., 11, 3099, 2001. [8 ] Lee, J. C.;Kim, M. S.;Kim, B. W., Water Res., 36, 1176, 2000. [9 ]Zafiriou, O. C.; Dubien, J. J.; Zepp, R. G.; Zika, R. G. , Environ, Sci & Technol., 18, 358A, 1984. [10 ] Yu, J. C.; Chan, L. Y. L.,J. Chem. Educ., 75, 750, 1998. [11 ] Chatterjee, D.; Mahata, A.,J. Photoch. Photobio., A153, 199, 2002. [12 ]Kang, M.; Kim, B. J.; Cho, S. M., J. Mol. Catal. A-Chem. 180, 125, 2002. [13 ] Liu, X. H.; Liang, C. X.; Wang, H. Z., Mat. Scieng. A-Struct. 326, 235, 2002. [14 ] Oh, S. H.; Kim, D. J.; Hahn, S. H., Mater. Lett. 57, 4151, 2003. [15 ] He, Y. Q.; Ping, Y. H., Mater. Chem. Phys., 78, 614, 2003. [16 ] Chu, S. Z.; Inoue, S.; Wada, K., J. Mater. Chem., 13866, 870, 2003. [17 ] Park, I. S.; Jang, S. R.; Hong, J. S., Chem. Mater., 15, 4633, 2003. [18 ] Yang, H. G.; Zeng, H.C., J. Phys. Chem. B, 107, 12244, 2003. [19 ] Kang, M.; Lee, S. Y.; Chung, C. H., J. Photoch. Photobio. A, 144, 185, 2001. [20 ] Lee, S. H.; Kang, M. S.; Cho, S. M., J. Photoch. Photobio. A, 146, 121, 2001 [21 ] Wang, C.; Deng, Z. X.; Zhang, G. H., Powder. Technol., 125, 39, 2002. [22 ] Jung, S. C.; Imaishi, N., KOREAN J. Chem. Eng., 18, 867, 2001. [23 ] Ding, Z.; Hu, X. J.; Yue, P. L., Catal. Today, 68, 173, 2001. [25 ] Fujishima, A.;Honda, K.;Watanabe T., BKC, Inc. 125, 1999. [26 ] A. L. Linsebigler, G. Lu, and J. T. Yates, Jr., Chem. Rev. 95, 735, 1995. [27 ] Legan, R.W., Chem. Eng., 95, 1982. [28 ] Chen, J. S.; Liu, M. C.; Zhang, L., Water Res. 37, 3815, 2003 [29 ] Xie, Y. B.; Shen, X. W.; Yuan, C. W., Chinese J. Chem. Eng., 11, 27, 2003. [30 ] Lee, S. A.; Choo, K. H.; Lee, C. H., Ind. Eng. Chem. Res., 40, 1712, 2001. [31 ] Zhou, J.; Varazo, K.; Reddic, J. E., Anal. Chim. Acta., 496, 289, 2003. [32 ] Rusu, C. N.; Yates, J. T., J. Phys. Chem. B, 104, 12292, 2000. [33 ] Hong, W. H.; Choi, K. S.; Kim, G. J., Stud. Surf. Sci. Catal., 146, 645, 2003. [34 ] Martyanov, I. N.; Klabunde, K. J., Environ Sci. Technol, 37, 3448, 2003. [35 ] Chapuis, Y.; Kivana, D.; Guy, C., J. Air Waste Manage, 52, 845, 2002. [36 ] Nozawa, M.; Tanigawa, K.; Hosomi, M., Water Sci. Technol, 44, 127, 2001. [37 ] Alberici, R. M.; Canela, M. C.; Eberlin, M. N., Appl. Catal. B-Environ, 30, 389, 2001. [38 ] Pichat, P.; Disdier, J.; Hoang-Van, C., Catal. Today, 63, 363, 2000. [39 ] Trapalis, C. C.; Keivanidis, P.; Kordas, G., Thin Solid Films, 433, 186, 2003. [40 ] Sunada, K.; Kikuchi, Y.; Hashimoto, K., Environ Sci. Technol, 32, 726, 1998. [41 ] Keleher, J.; Bashant, J.; Heldt, N., World J. Microb. Biot, 18, 133, 2002. [42 ] Yoshinari, M.; Oda, Y.; Kato, T., Biomaterials, 22, 2043, 2001. [43 ]Tada, H.; Hattori, A.; Tokihisa, Y.; Imai, K., J. Phys. Chem.B, 104, 4585, 2000. [44 ] Hattori, A.; Tokihisa, Y.; Tada, H.;Ito, S., J. Electrochem.Soc., 147, 2279, 2000. [45 ] Anpo, M., Stud. Surf. Sci. Catal, 130, 157, 2000. [46 ] Knoll, G .F., A Wiley-Interscience Publication,New Yourk,1989 [47 ] “游離輻射防護彙萃”修訂二版,原子能委員會核能研究所編印,民國八十一年七月id NH0925257034 sid 914537 cfn 0 / id NH0925257035 auc 洪玉進 tic 溶膠凝膠結合模板技術配製規則多孔性二氧化鈦材質 adc 董瑞安 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 70 kwc 溶膠凝膠技術 kwc 規則性多孔洞二氧化鈦 abc 近十幾年來,具高規則多孔洞性結構因其具有相當廣泛的可能性應用,如感測器、高效率的光催化反應、太陽能電池與光子晶體材質等,故其配製技術與其性質探討受到相當大的重視。本研究的目的在於利用溶膠凝膠配合垂直浸漬方法,發展製作規則性孔洞二氧化鈦薄膜結構之單一步驟技術,利用聚苯乙烯球體為模板分子,直接混合溶膠溶液使二氧化鈦溶膠粒子與opal結構同時形成。前驅物(Ti(OC4H9)4)在pH 1時最適合填入於直徑為480-1000 nm模板分子的孔隙之間。在溶膠凝膠的最佳化過程中,聚苯乙烯與二氧化鈦溶膠之體積比為影響多孔性結構的重要因素。在10 mM CTAC的存在下,480、600、1000 nm聚苯乙烯球與二氧化鈦溶膠最佳化的比分別為5/4、5/4與5/2。由熱重及熱差的分析中得知,在424 ?aC時聚苯乙烯可完全被移除;而在363 ?aC時,非晶形的二氧化鈦可轉換成anatase。配製的表面結構以SEM觀察時,其具有高度規則多孔洞結構,主要為六角形的排列。XRD顯示TiO2為anatase晶型,晶粒尺寸則為7.98 nm。比表面積的分析可知所製作之多孔洞薄膜為一具高比表面積之結構,其值介於59-84 m2/g間。這些研究結果顯示使用單一步驟溶膠凝膠技術來配製高規則巨孔洞的二氧化鈦材料的可能性,所得之高比表面積規則化結構相當適合作為環境之催化劑之應用。 tc Content Index 中文摘要…………………………………………………………………………………......Ι Abstract…………………………………………………….………………………………...II Content Index………………………………………………………………………….…...III Table Index……………………………………………………………………………..…...VI Figure Index…………………………………………………………………………….....VII Chapter 1 Introduction………………………………………………………….………...1 1-1 Motivation……………………………………………………………………………....1 1-2 Objective………………………………………………………………………………...3 Chapter 2 Background and theory……………………………………………...……...4 2-1 Ordered porous materials………………………………………………………………..4 2-2 Arrangement of template into opal structure……………………………………………7 2-2-1 Self- assembly at a water-air interface…………………………………………....7 2-2-2 Sedimentation through physical confinement and hydrodynamic flow…………..9 2-2-3 Soft lithography………………………….………………………………..……..10 2-2-4 Filtration…………………………………………………………………..……..12 2-2-5 Sedimentation……………………………………………………………..……..13 2-3 Infiltration of voids between templates…………………………………..……………14 2-3-1 Electrochemical deposition…………………………………………….………..14 2-3-2 Dipping method…………………………………………………………….........15 2-3-3 Chemical vapor deposition (CVD) technique…………………….……………..17 2-4 Nanolithography technique…………………………………………….………………18 2-5 Sol-gel chemistry……………………………………………………………………....19 2-5-1 Mechanism of sol-gel technique……………………………………………….19 2-5-2 Application to ordered porous structure……………………………………….22 2-6 Applications………………………………………………………………………...….23 2-6-1 Catalytic application…………………………………………………………......23 2-6-2 Photonic band gap materials……………………………………………..……...24 Chapter 3 Materials methods……………………………………………………..…... 25 3-1 Regents and materials………………………………………………………………….25 3-2 Experimental design………………………………………………………………….25 3-3 Instrumentations…………………………………………………………………….....27 3-3-1 Scanning electron microscopy (SEM) ……………………………………......…27 3-3-2 X-ray powder diffraction analysis (XPRD) ………………….…………………27 3-3-3 Thermogravimetric analysis and differential scanning calorimeter (TGA-DSC).. ………………………………………………………………………………..…28 3-3-4 Surface area analyzer……………………………………….…………………...28 3-3-5 UV-visible………………………………………………………………….....…29 3-4 Preparation of mixing TiO2 sol solution with polystyrene solution…………………...29 3-4-1 TiO2 sol solution…………………………………………………………………29 3-4-2 Polystyrene solution……………………………………………………………..30 3-5 Experimental method………………………………. …………………………...……..30 Chapter 4 Results and discussion……………………………………….. …………….32 4-1 Optimization of sol-gel of titania………………………………………………………32 4-2 Thermal gravitational and differential scanning calorimeter analysis…………………35 4-3 Optimization of fabrication of three-dimensional ordered porous structure…………..38 4-3-1 Optimization of the mixture of sol and PS solution……………………………..38 4-3-2 Effect of surfactant…………………………………………………………...….41 4-3-3 Fabricate of ordered porous titanium……………………………………………46 4-4 Characterization of ordered porous titanium dioxide………………………………….53 4-4-1 Grazing incident X-ray diffraction diffraction analysis………………….……...53 4-4-2 Brunauer–Emmett–Teller (BET) measurement…………………………………55 4-4-3 Band gap measurement………………………………………………………….60 Chapter 5 Conclusions……………………………………………………….. ………....63 References…………………………………………………………………………………...64 Appendix……………………………………………………………………………………..69 Table Index Table 2-1 Summary of the published methods for synthesis of porous materials via colloidal crystal templates………………………………………………………………….5 Table 4-1 The physicochemical property of CTAC, SDS, Brij 30 and Brij 35 surfactants...43 Table 4-2 Optimization of mixture solutions using 480, 600, and 1000 nm polystyrene as template at 55 ℃ and 40-60 % related humidity………………………………48 Table 4-3 The surface areas, pore volume, pore size data for the difference of ordered porous TiO2……………………………………………………………………..56 Table 4-4 Reproducible for fabrication of ordered porous TiO2 using 600 nm polystyrene in diameter…………………………………………………………………………56 Figure Index Figure 2-1 Schematic illustration of self-ordering of PS particles on a water surface. The probability of nucleation increases with increasing rate of water evaporation and buoyancy. After nucleation, particles move toward the ordered regions by convective flow…………………………………………………………………8 Figure 2-2 Schematic outline of the experimental procedure for sedimentation. Aqueous dispersions of polystyrene beads are injected into the cell through the rubber tube using a syringe. The rate of packing of polymer beads increases as the pressure of nitrogen increases…………………………………………………10 Figure 2-3 Schematic illustration of procedures for micromolding in capillaries…………12 Figure 2-4 Shows the method of filtration through into an organic membrane……………13 Figure 2-5 Schematic the diagram of sedimentation in the gravitational field.……………14 Figure 2-6 The electrodeposition in colloidal assemblies………………………………….15 Figure 2-7 Schemes the infiltration of between voids of template using vertical dipping method.………………………………………………………………………...16 Figure 2-8 Schemes diagrams of the apparatus for CVD process………………………….17 Figure 2-9 Schematic drawing of three-dimensional woodpile-structure………………….18 Figure 2-10 The reaction scheme of (a) hydrolysis, (b) condensation and (c) gelation step in sol-gel formation using titanium tetrabutoxide as a precursor………………….21 Figure 2-11 Schematic illustration of the preparation of ordered porous metal oxides by sol–gel chemistry. Latex colloidal crystal templates are infiltrated with sol–gel precursors and dried…………………………………………………………...23 Figure 3-1 The flowchart of the fabrication of ordered porous structure and characterization. ..…………………………………………………………………………………26 Figure 3-2 Schematic illustration of the prepared procedure of the fabrication of porous ordered titanium dioxide. (A) the mixing solution of TiO2 sol and polystyrene, (B) self-assemble process of TiO2 sol and polystyrene particles, (C) composite opal, and (D) ordered porous titanium dioxide structure after removal of the polystyrene particles in the composite opal…………………………………...31 Figure 4-1 The UV-visible spectra in TiO2 sol solution at pH values of 1.0-6.0…………..33 Figure 4-2 The TEM image of the solution of precursor of titanium tetrabutoxide at pH value of a) 1.0 and b) 2.0, respectively………………………………………..34 Figure 4-3 Thermal gravitational analyses of polystyrene after the heat treatment from room temperature up to 600 ?aC……………………………………………………...36 Figure 4-4 Thermal gravitational analysis of titania after the heat treatment from room temperature to 600 ?aC…………………………………………………………37 Figure 4-5 Thermal gravitational analysis of titania-polystyrene composites after the heat treatment from room temperature to 600 ?aC…………………………………..37 Figure 4-6 SEM micrographs of PS latex spheres 460 nm in diameter film obtained by using the vertical dipping method……………………………………………39 Figure 4-7 SEM images of TiO2 porous structures at different volumes of TiO2 sol solution using the vertical dipping method with 480 nm polystyrene as the template…41 Figure 4-8 Effect of CTAC on the fabrication of ordered porous structure using 480 nm polystyrene at the template. The volumes of 0.1 M CTAC used were (a) 222 μl, (b) 2 0 μl, (c) 16 μl, (d) 14 μl, (e) 10 μl, and (f) 2 μl………………………44 Figure 4-9 Effect of volume ratio of SDS to TiO2 sol on the formation of ordered porous structures. The ratios used were (a) 2, (b) 0.8, (c) 0.5, (d) 0.28, and (e) 0.1...45 Figure 4-10 SEM images of 480 nm polystyrene latex sphere and TiO2 sol before calcination by self-assembly of vertical dipping method………………………………….48 Figure 4-11 SEM images at (a) low and (b) high magnification of a typical ordered macroporous TiO2 structure using 480 nm PS microsphere as template…….49 Figure 4-12 SEM image of a typical ordered macroporous TiO2 structure, using 480 nm PS as template showed the (100) orientation region……………………………..50 Figure 4-13 SEM images at (a) low (b) high magnifications of the prepared titanium skeleton with the spherical polystyrene of 600 nm in diameter……………...51 Figure 4-14 SEM images at (a) low (b) high magnifications of a hexagonal packing of air spheres in a titanium inverse opal with by using the polystyrene as template with 1000nm in diameter…………………………………………………….52 Figure 4-15 Low angel X-ray diffraction pattern showing the presence of anatase in an ordered porous titanium dioxide……………………………………………..54 Figure 4-16 Ntrogen adsorption-desoprtion isotherms at –196 ºC for the ordered macroporous using polystyrene with a) 480 nm, b) 600 nm, and c) 1000 nm in diameter…………………………………………………………………..58 Figure 4-17 BJH pore size distribution obtained from the nitrogen adsorption isotherms for the ordered macroporous using polystyrene with a) 480 nm, b) 600 nm, and c) 1000 nm in diameter…………………………………………………59 Figure 4-18 UV-visible absorption spectra of a suspension of ordered porous TiO2…....61 Figure 4-19 The diagram of absorption coefficient and the energy of the wavelength from figure 4-18……………………………………………………………..…..61 Figure 4-20 Graphical determination of the optical band gap of ordered porous TiO2……………………………………………………………..…………62rf 1. S. H. Park, D. Qin, and Y. Xia, Crystallization of mesoscale particles over large areas, Adv. Mater., 10, 1028-1032, 1998. 2. Z.-Z. Gu, S. Kubo, A. Fujishima, and O. Sato, Infiltration of colloidal crystal with nanoparticles using capillary forces: a simple technique for the fabrication of films with an ordered porous structure, Appl. Phys. A, 74, 127–129, 2002. 3. Z.-Ze Gu, R. Horie, S. Kubo, Y. Yamada, A. Fujishima, and O. Sato, Fabrication of a metal-coated three-dimensionally ordered macroporous film and its application as a refractive index Sensor, Angew. Chem. Int. Ed., 41, 1153-1156, 2002. 4. Z.-Z. Gu, S. Kubo, A. Fujishima, and O. Sato, Infiltration of colloidal crystal with nanoparticles using capillary forces: a simple technique for the fabrication of films with an ordered porous structure, Appl. Phys. A, 74, 127–129, 2002. 5. M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, D. Whitehead, Synthetic opals made by the Langmuir–Blodgett method, Thin Solid Films, 437, 276–279, 2003. 6. S. H. Im, Y. T. Lim, and D. J. Suh, Three-dimensional self-assembly of colloids at a water-air interface: a novel technique for the fabrication of photonic bandgap crystals, Adv. Mater., 14, 1367-1369, 2002. 7. B. T. Holland, C. F. Blanford, A. Tein, Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids, Science, 281, 538-540, 1998. 8. J. E. G. Judith, J. Wijnhoven and W. L. Vos, Preparation of photonic crystals made of air spheres in Titania, Science. 281,802-804, 1998. 9. M. C. Carbaj, A. Góme, M. J. Torralvo, E. and Enciso, Macroporous silica and titania obtained using poly[styrene-co-(2-hydroxyethyl methacrylate) ] as template, J. Mater. Chem., 12, 2740-2746, 2002. 10. A. Imhof and D. Pine, Ordered macroporous materials by emulsion ,aterials by emulsion templating, Nature, 389, 948-951, 1997. 11. O. D. Velev and E. W. Kaler, Structured porous materials via colloidal crystal templating: from inorganic oxides to metals, Adv. Mater., 12, 531-534, 2000. 12. Y. Xia, and G. M. Whitesides, Soft lithography, Annu. Rev. Mater. Sci., 28, 153–184, 1998. 13. Y. Xia, R. Gates, Y. Yin, and Y. Lu, Monodispersed colloidal spheres: old materials with new applications, Adv. Mater., 12, 693-713, 2000. 14. P. V. Braun, and P. Wiltzius, Electrochemical fabrication of 3D microperiodic porous materials, Adv. Mater., 13, 482-485, 2001. 15. A. A. Zakhidov, I. I. Khayrullin, R. H. Baughman, and Z. Iqbat, CVD synthesis of carbon-vased matallic photonic crystals, Nanostruct. Mater., 12, 1089-1095, 1999. 16. A.Stein, and R. C. Schroden, Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond, Curr. Opin. in Solid State Mater. Sci., 5, 553–564, 2001. 17. P. Ni, P.Dong, B. Cheng, X. Li, and D. Zhang, Synthetic SiO2 opals, Adv. Mater., 13, 437-441, 2001. 18. Q.-B. Meng, C.-H. Fu, Y. Einaga, Z.-Z. Gu, A. Fujishima, and O. Sato, Assembly of highly ordered Three-Dimensional Porous structure with nanocrystalline TiO2 semiconductors, Chem. Mater., 14, 83-88, 2000. 19. Q.-B. Meng,Z.-Z. Gu, and O. Sato, Fabrication of highly ordered porous structures, Appl. Phys. Lett., 77, 4313-4315, 2000. 20. Y. Xia, B. Gates, Y. Yin, and Y. Lu, Monodisoersed colloidal spheres: old materials with new applications, Adv. Mater., 12, 693-713, 2000. 21. B. Gates, and Y. Xia, Fabrication and characterization of chirped 3D photoic crystals, Adv. Mater., 12, 1329-1332, 2000. 22. P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B. F. Chmelka, G. M. Whitesides, and G. D. Stucky, Hierarchically Ordered Oxides, Science, 282, 2244-2246, 1998. 23. P. Yang, A. H. Rizvi, B. Messer, B. F. Chmelka, G. M. Whitesides, G. D. Stucky, Patterning porous oxides within microchannel networks, Adv. Mater., 13, 427-430, 2001. 24. O. D. Velev, P. M. Tessier, A. M. Lenhoff, E. W. Kaler, A class of porous metallic, nanostructures, Nature, 401, 548, 1999. 25. P. M. Tessier, O. D. Velev, A. T. Kalambur, A. M. Lenhoff, J. F. Rabolt, E. W. Kaler, Structured metallic films for optical and spectroscopic applications via colloidal crystal templating, Adv. Mater., 13, 396-400, 2001. 26. K. E. Davis, W. B. Russel, W. J. Glantschnig, Disorder-to-order transition in setting suspensions of colloidal silica: X-ray measurements, Science, 245, 507-510, 1989. 27. L. N. Donselaar, A. P. Philipse, and J. Suurmond, Concentration-dependent sedimentation of dilute magnetic fluids and magnetic silica dispersions, Langmuir, 13, 6018-6025, 1997. 28. P. V. Braun, and P. Wiltzius, Electrochemically grown photonic crystals, Nature, 402, 603-604, 1999. 29. A. A. Zakhidov, R. H. Baughman, and Z. Iqbat, Carbon structures with three-dimensional periodicity at optical wavelengths, Science. 282, 897-901, 1998. 30. H. Kajii, Y. Kawagishi, H. Take, and K. Yoshinoa, Optical and electrical properties of opal carbon replica and effect of pyrolysis, J. Appl. Phys., 88, 758-763, 2000. 31. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. v. Driel, Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres, Nature, 405, 437-440, 2000. 32. B. T. Holland, C. F. Blanford, A. Stein, Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids, Science. 281, 538-539, 1998. 33. O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff, Microstructured Porous silica Obtained via colloidal crystal templates, Chem. Mater., 10, 3597-3602, 1998. 34. S.Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Full three-dimensional photonic bandgap crystals at near-infrared wavelengths, Science. 289,604-606, 2000. 35. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, three-dimensional photonic crystal operating at infrared wavelengths, Nature, 394, 251-253, 1998. 36. A. Lebib, Y. Chen, E. Cambril, P. Youinou, V. Studer, M. Natali, A. Pepin, H. M. Janssen, R. P. Sijbesma, Room-temperature and low-pressure nanoimprint lithography, Microelectron. Engi., 61– 62, 371– 377, 2002. 37. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett., 58, 2059-2062, 1987. 38. C. Yeh, Applied Photonics (Academic, New York, 1990), Chap. 11. 39. A. Mekis et al., High transmission through sharp bends in photonic crystal waveguides, Phys. Rev. Lett., 77, 3787-3790, 1996. 40. S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett., 58, 2486–2489,1987. 41. M. Abdullah, H. Yoden, K.Okuyama, Optical band gap and ultralow dielectric constant materials prepared by a simple dip coating process, J. of Appl. Phys., 93, 9237-9242, 2003. 42. P. Jiang, J. Cizeron, J. F. Bertone, V. L. Colvin, Preparation of macroporous metal films from colloidal crystals, J. Am. Chem. Soc. 121, 7957-7958, 1999. 43. J. I. Pankove, Optical Processes in Semiconductors; Dover: New York, 1971; Chapter 3. 44. W. N. Delgass, G. L. Haller, R. Kellerman, and J. Lundsford, In Spectroscopy in Heteregeneous Catalysis; Academic Press: New York, 1979; p 128.id NH0925257035 sid 914534 cfn 0 / id NH0925257036 auc 蔡英傑 tic 靈敏度增強型光學外差式偏光儀之研發及其應用於對掌性物質的旋光角度量測 adc 吳見明 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 57 kwc 旋光 kwc 對掌性 kwc 偏光儀 kwc 外差干涉 abc 在此次的研究中,我們發展了一種新型的光學外差式偏光儀,以用來量測對掌性物質溶液的濃度。而為了要減少量測中的環境對訊號所產生的干擾,TE和TM光波的共光程干涉技術被運用在我們的系統架構中,並且擺放一個相位可調式波片在樣品後面,利用它去增強樣品造成偏振態旋轉所引起的相位訊號,而當相位可調式波片的相位延遲量接近180度時,這個增強的能力可以超過100倍。在實驗中,利用我們所發展出來新的靈敏度增強型之偏光儀去進行葡萄糖溶液旋光量測,當調整相位可調式波片的相位延遲量為177.307度,且考慮相位可調式波片快軸軸向的誤差時,其角度放大倍率範圍為-57.853 ~ -60.091,經過計算得到的角度解析能力範圍為6.16×10-4 ~ 6.40×10-4度,其對應的濃度解析能力範圍為13.48 ~ 14.00 mg/dl。我們預期系統在經過改善後,此新型的偏光儀未來將可被運用於糖尿病患非侵入式的血糖濃度監測。 tc 目 錄 中文摘要.........................Ⅰ 英文摘要.........................Ⅱ 誌謝...........................Ⅲ 目錄...........................Ⅳ 圖目錄..........................Ⅵ 表目錄..........................Ⅸ 第一章 緒論 .......................1 1.1 研究動機......................1 1.2 文獻回顧......................3 1.3 研究方法..................... 12 第二章 光學活性與共光程外差干涉儀............14 2.1 光學活性 .....................14 2.1.1 前言 .....................14 2.1.2 形成光學活性的要件...............15 2.1.3 光學對旋光現象的解釋..............16 2.2 共光程外差干涉儀 .................18 2.2.1 前言......................18 2.2.2 原理......................18 2.2.3 基本架構....................20 第三章 實驗架構與理論模擬................22 3.1 實驗架構 .....................22 3.2 理論計算及模擬 ..................25 3.2.1 瓊斯矩陣....................25 3.2.2 模擬......................28 3.3 小結 .......................36 第四章 結果與討論....................38 4.1 前言 .......................38 4.2 相位延遲波片之架設與使用 .............38 4.3 區段上訊號跳動之探討 ...............41 4.4 旋光角度量測 ...................43 4.5 實驗結果討論 ...................47 第五章 結論.......................52 參考文獻.........................54rf 參考文獻 [1 ]行政院衛生署衛生統計資訊,”台灣地區縣市死因統計結果”,民國91年。(http://www.doh.gov.tw/statistic/index.htm) [2 ] R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview”, J. Biomed. Opt., 5(1), 5-16, 2000. [3 ] The Diabetes Control & Complications Trial Research Group, “The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes”, The New England Journal of Medicine, 329, 977-986, 1993. [4 ] J. Tenhunen, H. Kopola, and R. Myllylä, “Noninvasive glucose measurement based on selective near infrared absorption; requirements on instrumentation and spectral range”, Measurement, 24, 173-177, 1998. [5 ] J. J. Burmeister and M. A. Arnold, “Evaluation of measurement sites for noninvasive blood glucose sensing with near-infrared transmission spectroscopy”, Clin. Chem., 45, 1621-1627, 1999. [6 ] G. Yoon, A. K. Amerov, K. J. Jeon, and Y. J. Kim, “Determination of glucose concentration in a scattering medium based on selected wavelengths by use of an overtone absorption band”, Appl. Opt., 41, 1469-1475, 2002. [7 ] P. S. Jensen, J. Bak, S. Ladefoged, S. Andersson-Engels, ”Determination of urea, glucose, and phosphate in dialysate with Fourier transform infrared spectroscopy”, Spectrochimica Acta Part A, 60, 899-905, 2004. [8 ] K. H. Hazen, M. A. Arnold, and G. W. Small, “Measurement of glucose and other analytes in undiluted human serum with near-infrared transmission spectroscopy”, Anal. Chem. Acta., 371, 255-267, 1998. [9 ] J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared”, Opt. Lett., 19, 2062-2064, 1994. [10 ] J. T. Bruulsema, J. E. Hayward, T. J. Farrell, and M. S. Patterson, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient”, Opt. Lett., 22, 190-192, 1997. [11 ] L. Heinemann and G. Schmelzeisen, “Noninvasive continuous glucose monitoring in Type I diabetic patients with optical glucose sensors”, Diabetologia, 41, 848-854, 1998. [12 ]王孟亮,”拉曼光譜學及其在生化上的應用”,科學月刊,第167期,1983。(http://library.ccut.edu.tw/sct/content/1983/00110167/0002.htm) [13 ] X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, and Y. Ozaki, “A highly sensitive, compact Raman system without a spectrometer for quantitative analysis of biological samples”, Vibra. Spect., 14, 199-205, 1997. [14 ] A. M. K. Enejder, T. W. Koo, J. Oh, M. Hunter, S. Sasic, M. S. Feld, and G. L. Horowitz, “Blood analysis by Raman spectroscopy”, Opt. Lett., 27, 2004-2006,2002. [15 ] A. J. Berger, T. W. Koo, I. Itzkan, G. Horowitz, and M. S. Feld, “Multicomponent blood analysis by near-infrared Raman spectroscopy”, Appl. Opt., 38, 2916-2926,1999. [16 ] A. J. Berger, I. Itzkan, and M. S. Feld, “Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy”, Spectrochimica Acta Part A, 53, 287-292, 1997. [17 ] R. O. Esenaliev, K. V. Larin, and I. V. Larina, “Noninvasive monitoring of glucose concentration with optical coherence tomography”, Opt. Lett., 26, 992-994, 2001. [18 ] K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: A pilot study in human subjects”, Diabetes Care, 25, 2263-2267, 2002. [19 ] K. V. Larin, M. Motamedi, T. V. Ashitkov, and R. O. Esenaliev, “Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pliot study”, Phys. Med. Biol., 48, 1371-1390, 2003. [20 ] R. J. McNichols, B. D. Cameron, and G. L. Coté, “Development of a noninvasive polarimetric glucose sensor”, IEEE-LEOS Newsletter, 12, 30-31, 1998. [21 ] G. L. Coté, M. D. Fox, and R. B. Northrop, “Laser polarimetry for glucose monitoring”, Ann. Inter. Conf. of the IEEE Eng. in Med. and Bio. Soc., 12, 476-477, 1990. [22 ]行政院衛生署國民健康局中老年保健網,” 台灣地區高血糖、高血脂、高血壓盛行率調查期末報告”,2003。(http://163.29.76.18/study.htm) [23 ] A. Arnaud, F. Silveira, E. M. Frins, A. Dubra, C. D. Perciante, and J. A. Ferrari, “Precision synchronous polarimeter with linear response for the measurement of small rotation angles”, Appl. Opt., 39, 2601-2604, 2000. [24 ] B. Rabinovitch, W. F. March, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotation”, Diabetes Care, 5, 254-258, 1982. [25 ] B. D. Cameron and G. L. Coté, “Noninvasive glucose sensing utilizing a digital closed- loop polarimetric approach”, IEEE Trans. Biomed. Eng., 44, 1221-1227, 1997. [26 ] W. F. March, B. Rabinovitch, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens”, Diabetes Care, 5, 259-265, 1982. [27 ] M. Yokota, Y. Sato, I. Yamaguchi, T. Kenmochi, T. Yoshino, “A compact polarimetric glucose sensor using a high-performance fibre-optic Faraday rotator”, Meas. Sci. Technol., 15, 143-147, 2004. [28 ] C. Chou, Y. C. Huang, C. M. Feng, and M. Chang, “Amplitude sensitive optical heterodyne and phase lock-in technique on small optical rotation angle detection of chiral liquid”, Jpn. J. Appl. Phys., 36, 356-359, 1997. [29 ] C. Chou, C. Y. Han, W. C. Kuo, Y. C. Huang, C. M. Feng, and J. C. Shyu, “Noninvasive glucose monitoring in vivo with optical heterodyne polarimeter”, Appl. Opt., 37, 3553-3557, 1998. [30 ] G. L. Coté, M. D. Fox, and R. B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique”, IEEE Trans. Biomed. Eng., 39, 752-756, 1992. [31 ] T. Mitsui and K. Sakurai, “Precise measurement of the refractive index and optical rotatory power of a suspension by a delayed optical heterodyne technique”, Appl. Opt., 35, 2253-2258, 1996. [32 ] C. Chou, Y. C. Huang, and M. Chang, “Precise optical activity measurement of quartz plate by using a true phase-sensitive technique”, Appl. Opt., 36, 3604-3609, 1997. [33 ] C. M. Feng, Y. C. Huang, J. G. Chang, M. Chang, and C.Chou, “A true phase sensitive optical heterodyne polarimeter on glucose concentration measurement”, Opt. Comm., 141, 314-321, 1997. [34 ] J. Y. Lin and D. C. Su, “A new type of optical heterodyne polarimeter”, Meas. Sci. Technol., 14, 55-58, 2003. [35 ] J. Y. Lin and D. C. Su, “A new method for measuring the chiral parameter and the average refractive index of a chiral liquid”, Opt. Comm., 218, 317-323, 2003. [36 ] J. Y. Lin, K. H Chen, and D. C. Su, “Improved method for measuring small optical rotation angle of chiral medium”, Opt. Comm., 238, 113-118, 2004. [37 ] D. J. Caldwell and H. Eyring, The Theory of Optical Activity, ch. 1, Wiley-Interscience, New York, 1971. [38 ] Eugene Hecht, Optics, ch. 8, Addison-Wesley, Massachusetts, 1998. [39 ] T. W. King and G. L. Coté, “Closed loop polarimetric glucose sensing using the Pockels effect”, Ann. Inter. Conf. Of IEEE EMBS, 1, 161-162, 1992. [40 ] M. P. Silverman, N. Ritchie, G. M. Cushman, and B. Fisher, “ Experimental configurations using optical phase modulation to measure chiral asymmetries in light specularly reflected from a naturally gyrotropic medium”, J. Opt. Soc. Am. A, 5, 1852-1862, 1988. [41 ]趙凱華、鍾錫華,光學,第七章,儒林圖書有限公司,台北,1997。 [42 ] P. Hariharan, “Basics of interferometry”, Academic Press, INC, 67-77、189, 1991. [43 ] C. Chou, J. C. Shyu, Y. C. Huang, and C. K. Yuan, “Common-path optical heterodyne profilometer: a configuration”, Appl. Opt., 37, 4137-4142, 1998. [44 ] C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, “High-sensitivity sensor based on surface okasmon resonance and heterodyne interferometry”, Sens. Actu, B, 92, 133-136, 2003. [45 ] H. Jiang and C. Y. Yin, “Sensitivity enhanced roll angle measurement”, Opt. Eng., 39, 516-519, 2000. [46 ] W. H. Stevenson, “Optical frequency shifting by means of a rotating diffraction grating”, Appl. Opt., 9, 649-652, 1970.id NH0925257036 sid 914504 cfn 0 / id NH0925257037 auc 陳宛柔 tic 三羰基鎝99m標誌HYNIC-Cyclic RGD Peptide耦合物作為腫瘤造影劑之研究 adc 羅建苗 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 60 kwc 血管新生 kwc RGD胜 kwc & kwc #32957; kwc 雙官能基螯合劑 kwc 三羰基鎝99m abc αvβ3 integrin是一種與腫瘤血管新生及腫瘤轉移相關的細胞黏著受器(cell adhesion receptor)。由於αvβ3 integrin與具Arg-Gly-Asp(RGD)序列之胜肽具有高度的專一結合性,利用放射性標誌RGD胜肽可發展成為有效且具專一性的腫瘤造影劑。據文獻報導,迄今已有多種放射性核種標誌化合物被探討用於偵測αvβ3 integrin,進而作為腫瘤造影劑。鑑於99mTc具有優良的核子特性(Eγ=140.5 keV;t1/2=6 hr;可由99Mo-99mTc發生器取得經濟又方便),以99mTc標誌RGD peptide,當具有臨床醫學應用的價值。 tc 目錄 頁次 謝誌 I 中文摘要 III 英文摘要 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1 核醫藥物簡介 1 1-2 血管新生(Angiogenesis) 3 1-3 99mTc(I)三羰基標誌RGD Peptide 7 1-4 研究方向及目的 9 第二章 NHS-HYNIC有機合成 11 2-1 試藥 11 2-2 儀器與材料 12 2-3 Succinimidyl-6-hydrazinopyridine-3-carboxylic acid (NHS-HYNIC)之合成 13 2-3-1 實驗步驟 13 2-4 結果與討論 16 第三章 HYNIC-RGD peptide耦合 24 3-1 試藥 24 3-2 儀器與材料 24 3-3 NHS-HYNIC與RGD peptide之耦合 25 3-3-1 實驗步驟 26 3-3-1.1 反應步驟 26 3-3-1.2 高效能液相層析 26 3-4 結果與討論 27 第四章 三羰基鎝99m(I)([99mTc(CO)3(OH2)3 ]+)標誌 HYNIC-RGD peptide 31 4-1 試藥 31 4-2 儀器與材料 32 4-3 [99mTc(CO)3(OH2)3 ]+之製備與標誌HYNIC-RGD peptide 33 4-3-1 實驗步驟 33 4-3-1.1 [99mTc(CO)3(OH2)3 ]+之製備 33 4-3-1.2 標誌HYNIC-RGD peptide 34 4-4 標誌效率分析 34 4-4-1 薄層層析法 34 4-4-1.1 99mTcO4- 與[99mTc(CO)3(OH2)3 ]+薄層層析 34 4-4-1.2 99mTc(I)HYNIC-RGD peptide薄層層析 35 4-4-2 電泳動分析 35 4-4-2.1 99mTcO4- 與[99mTc(CO)3(OH2)3 ]+電泳動分析 35 4-4-2.2 99m Tc(I)HYNIC-RGD peptide電泳動分析 36 4-4-3 高效能液相層 36 4-4-3.1 99mTcO4-與[99mTc(CO)3(OH2)3 ]+高效能液相層析 36 4-4-3.2 99m Tc(I)HYNIC-RGD peptide高效能液相層析 36 4-6 結果與討論 37 第五章 動物組織器官生物分佈及腫瘤造影 43 5-1 試藥 43 5-2 儀器與材料 43 5-3 細胞株 44 5-3-1 U-87MG神經纖維瘤細胞生長曲線測定 45 5-4 實驗動物 45 5-4-1 裸鼠U-87MG神經纖維瘤細胞腫瘤模式建立 46 5-5 生物分佈 46 5-6 動物造影 47 5-7 結果與討論 47 第六章 結論 53 第七章 參考文獻 54 表目錄 表5-1 細胞株資料 49 表5-2 99mTc(I)-HYNIC-RGD peptide 於裸鼠體內之生物分佈 52 圖目錄 圖1-1 NHS-HYNIC與[99m Tc(CO)3(OH2)3 ]+形成配位結合 結構推測圖 8 NHS-HYNIC之合成流程圖 13 製備HCl/dioxane溶液之裝置圖 16 圖2-1.1 HYNIC 之1H核磁共振光譜圖 20 圖2-1.2 HYNIC 之13C核磁共振光譜圖 20 圖2-2.1 6-BOC-HYNIC之1H核磁共振光譜圖 21 圖2-2.2 6-BOC-HYNIC之13C核磁共振光譜圖 21 圖2-3.1 Succinimidyl 6-BOC-HYNIC之1H核磁共振光譜圖 22 圖2-3.2 Succinimidyl 6-BOC-HYNIC之13C核磁共振光譜圖 22 圖2-4.1 Succinimidyl-6-HYNIC 之1H核磁共振光譜圖 23 圖2-4.2 Succinimidyl-6-HYNIC 之13C核磁共振光譜圖 23 NHS-HYNIC與RGD peptide耦合之結構推測圖 25 耦合反應圖解 27 圖3-1 RGD peptide之HPLC (C-18 RP)分析圖譜(波長: 240nm) 29 圖3-2 RGD peptide之HPLC (C-18 RP)分析圖譜(波長: 254nm) 29 圖3-3 HYNIC-RGD peptide之HPLC (C-18 RP)分析圖譜 (波長: 240nm) 30 圖3-4 HYNIC-RGD peptide之HPLC (C-18 RP)分析圖譜 (波長: 254nm) 30 99mTc(I)HYNIC-RGD peptide標誌之結構推測圖 33 圖4-1 99mTcO4- 之薄層層析圖 39 圖4-2 [99mTc(CO)3(OH2)3 ] + 之薄層層析圖 39 圖4-3 99m Tc(I)-HYNIC-RGD peptide 之薄層層析圖 39 圖4-4 99mTcO4- 之電泳動分析圖 40 圖4-5 [99mTc(CO)3(OH2)3 ] + 之電泳動分析圖 40 圖4-6 99m Tc(I)-HYNIC-RGD peptide 之電泳動分析圖 40 圖4-7 99mTcO4- 之高效能液相層析圖 41 圖4-8 [99mTc(CO)3(OH2)3 ] + 之高效能液相層析圖 41 圖4-9 99m Tc(I)-HYNIC-RGD peptide 之高效能液相層析圖 41 圖4-10 99mTcO4- 之高效能液相層析圖 42 圖4-11 [99mTc(CO)3(OH2)3 ] + 之高效能液相層析圖 42 圖5-1 U-87MG神經纖維瘤細胞 50 圖5-2 U-87MG神經纖維瘤細胞生長曲線 51 圖5-3 [99mTc(CO)3(OH2)3 ]+ 注射於種有U-87MG 神經纖維瘤細胞的裸鼠之造影圖 51 圖5-4 [99mTc(CO)3(OH2)3 ]+ 於裸鼠體內之生物分佈 52rf 1.Saha G. B., Ph.D. Fundamentals of Nuclear Pharmacy. 4th ed. Springer. 1997 2.Hom R. K. and Katzenellenbogen J. A., Techetium-99m-Labeled Receptor-Specific Small-Molecule Radiopharmaceticals: Recent Developments and Encouraging Results. Nuclear Medicine and Biology. 1997; 24, 485-498 3.Schwochau K., Technetium radiopharmecuticals-fundamentals, synthesis, structure, and development. Angew. Chem. Int. Ed. Engl. 1994; 33, 2258-2267 4.Jurisson S. S. and Lydon J.D., Potential Technetium Small Molecule Radiopharmaceuticals. Chem. Rev. 1999; 99, 2205-2218 5.Carmeliet P, Jain R. K., Angiogenesis in cancer and other diseases. Nature. 2000; 407, 249-256 6.Risau W., Mechanisms of angiogenesis. Nature. 1999; 386, 671-674 7.Folkman J., Clinical applications of research on angiogenesis. N Engl J Med. 1995; 333, 1757-1763 8.Bamias A., Dimopoulos M. A., Angiogenesis in Human Cancer: implications in cancer therapy. European Journal of Internal Medicine. 2003; 14, 459-469 9.Levy A. P., Levy N. S., Wegner S., Goldberg M. A., Transcriptional regulation of the rat vascular endothelial growth factor by hypoxia. J Biol Chem. 1995; 270, 13333-13340 10.Wang G. L., Jiang B. H., Rue E. A., et al. Hypoxia-inducible factor 1 is abasic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 1995; 92, 5510-5514 11.Brooks P. C., Montgomery A. M. P., Rosenfeld M., et al., Integrin avb3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell. 1994; 79, 1157-1164 12.Bischoff J., Approaches to studying cell adhesion molecules in angiogenesis. Trends Cell Biol. 1995; 5, 69-73 13.Folkman J., Tumor angiogenesis: Therapeutic implications. N Engl J Med. 1971; 285, 1182-1186 14.Hanahan D., Weinberg R. A., The hallmarks of cancer. Cell. 2000; 100, 7-70 15.Stephen B. F., Gotter K. C., Harris Al., Tumor angiogenesis. J Pathol. 1996, 179, 232-237 16.Szekanecz Z., Halloran M. M., Haskell C. J., Shah M. R., Polverini P. J., Koch A. E., Mediators of angiogenesis: the role of cellular adhesion molecules. Trends Glycosci Glycotechnol. 1999; 11, 73–93 17.Rueegg C., Dormond O., Foletti A., Suppression of tumor angiogenesis through the inhibition of integrin function and signaling in endothelial cells: which side to target? Endothelium. 2002; 9, 151–160 18.Humphries M. J., Integrin structure, Biochem. Soc. Trans. 2000; 28, 311–339 19.Hynes R. O., Integrins: a family of cell surface receptors, Cell. 1987; 48, 549–554 20.Ruoslahti E., The Walter Herbert Lecture. Control of cell motility and tumour invasion by extracellular matrix interactions, Br. J. Cancer. 1992; 66, 239–242 21.Hynes R.O., Integrins: versatility, modulation, and signaling in cell adhesion, Cell. 1992; 69, 11–25 22.Albelda S. M., Mette S. A., Elder D. E., Stewart R., Damjanovich L., Herlyn M., Buck C. A., Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression, Cancer Res. 1990; 50, 6757–6764 23.Stromblad S., Cheresh D. A., Integrins, angiogenesis and vascular cell survival, Chem. Biol. 1996; 3, 881–885 24.Brooks P. C., Clark R. A., Cheresh D. A., Requirement of vascular integrin avb3 for angiogenesis, Science. 1994; 264, 569–571 25.Brooks P. C., Montgomery A. M., Rosenfeld M., Reisfeld R. A., Hu T., Klier G., Cheresh D. A., Integrin avb3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels, Cell. 1994; 79, 1157–1164 26.Bock M., Bruchertseifer F., Haubner R., Senekowitsch-Schmidtke R., Kessler H., Schwaiger M., Wester H. J., 99mTc, 188Re and 90Y-labeled avb3-antagonists: promising tracer for tumor induced angiogenesis, J. Nucl. Med. 2000; 41, 41P 27.Jong D. M., VanHagen P. M., Breeman W. A., Bernard H. F., Schaar M., Van Gameren A., Srinivasam A., Schmidt M., Bugaj J. E., Krenning E. P., Evaluation of a radiolabeled cyclic DTPA-RGD analog for tumor imaging and radionuclide therapy, J. Nucl. Med. 2000; 41, 232P 28.Haubner R., Wester H. J., Bock M., Senekowitsch-Schmidtke R., Herz M., Reuning U., Diefenbach B., Stocklin G., Kessler H., Schwaiger M., Comparison of tumor uptake and biokinetics of 125I- and 18F- labeled RGD-peptides, J. Labelled Compds. Radiopharm. 1999; 42, S36–S38 29.Haubner R., Wester H. J., Burkhart F., Senekowitsch-Schmidtke R., Weber W., Goodman S. L., Kessler H., Schwaiger M., Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics, J. Nucl. Med. 2001; 42, 326– 336 30.Haubner R., Wester H. J., Reuning U., Senekowitsch-Schmidtke R., Diefenbach B., Kessler H., Stocklin G., Schwaiger M., Radiolabeled avb3 integrin antagonists: a new class of tracers for tumor targeting, J. Nucl. Med. 1999; 40, 1061–1071 31.Haubner R., Wester H. J., Weber W. A., Mang C., Ziegler S. I., Goodman S. L., Senekowitsch-Schmidtke R., Kessler H., Schwaiger M., Noninvasive imaging of avb3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography, Cancer Res. 2001; 61, 1781–1785 32.Janssen M. L. H., Boerman O. C., Edwards D. S., Barnett J. A., Rajopadhye M., Oyen W. J. G., Corstens F. H. M., 111In and 99mTc labeled peptides against the avb3 integrin: a new target for radionuclide peptide targeting of tumors, J. Nucl. Med. 2000; 41, 33P 33.Line B. R., Bennett J. A., Andersen T. T., Wurthmann A., Salgam M., Hnatowich D. J., Evaluation of 99mTc radiolabeled angiogenesis targeting peptides and dextran-peptide conjugates in xenograft models of human breast and prostate cancer, J. Nucl. Med. 2000; 41, 33P 34.Line B. R., Wurthmann A., Andersen T. T., Salgam M., Pumiglia K., Preparation of 99mTc radiolabeled dextran-peptide conjugates targeting multiple tumor angiogenesis related ligands, J. Nucl. Med. 2000; 41, 232P 35.Sivolapenko G. B., Skarlos D., Pectasides D., Stathopoulou E., Milonakis A., Sirmalis G., Stuttle A., Courtenay-Luck N. S., Konstantinides K., Epenetos A. A., Imaging of metastatic melanoma utilising a technetium-99m labelled RGD-containing synthetic peptide, Eur. J. Nucl. Med.1998; 25, 1383–1389 36.Ruoslahti E., Pierschbacher M. D., New perspectives in cell adhesion: RGD and integrins, Science. 1987; 238, 491–497 37.Aumailley M., Gurrath M., Muller G., Calvete J., Timpl R., Kessler H., Arg-Gly-Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1, FEBS Lett. 1991; 291, 50–54 38.Abrams M. J., Juweid M., tenKate C. I., et al., Technetium-99m- human polyclonal IgG radiolabeled via the hydrazine nicotinamide derivative for imaging focal sites of infection in rats. J. Nucl. Med. 1990; 31: 2022–2028. 39.Schwartz D. A., Abrams M. J., Hauser M. M., Gaul F. E., Larsen S. K., Rauh D., and Zubieta J. A., Preparation of hydrazino-modified proteins and their use for the synthesis of 99mTc-protein conjugates. Bioconjugate Chem. 1991; 2, 334-336 40.Babich J. W., Solomon H., Pike M. C., Kroon D., Graham W., Abrams M. J., Tompkins R. G., Rubin R. H., Barrow S. A., and Fischman A. J., Technetium-99m-labeled hydrazino nicotinamide derivatized chemotactic peptide analogs for imaging focal sites of bacterial infection. J. Nucl. Med. 1993; 34, 1964-1974 41.Babich J. W., and Fischman A. J., Effect of “coligand” on the biodistribution of 99mTc-labeled hydrazine nicotinic acid derivatized chemotactic peptides. Nucl. Med. Biol. 1995; 22, 25-30 42.Fischman A. J., Babich J. W., and Rubin R. H., Infection imaging with technetium-99m-labeled chemotactic peptide analogs. Semin. Nucl. Med. 1994, 24, 154-168 43.Fischman A. J., Babich J. W., and Strauss H. W., A ticket to ride: peptide radiopharmaceuticals. J. Nucl. Med. 1993; 34, 2253-2263 44.Fischman A. J., Rauh D., Solomon H., Babich J. W., Tompkins R. G., Kroon D., Strauss H. W., and Rubin H. R., In vivo bioactivity and biodistribution of chemotactic peptide analogs in nonhuman primates. J. Nucl. Med. 1993; 34, 2130-2134 45.Babich J. W., Graham W., Barrow S. A., and Fischman A. J., Comparison of the infection imaging properties of a 99mTc labeled chemotactic peptide with 111In IgG. Nucl. Med. Biol.1995; 22, 643-648 46.Edwards D. S., Liu S., Ziegler M. C., Harris A. R., Crocker A. C., Heminway S. J., Barrett J. A., Bridger G. J., Abrams M. J., and Higgins J. D., RP463: A Stabilized Technetium-99m Complex of a Hydrazino Nicotinamide Derivatized Chemotactic Peptide for Infection Imaging. Bioconjugate Chem. 1999; 10, 884-891 47.Babich J. W., Graham W., Barrow S. A., Dragotakes S. C., Tompkins R. H., Rubin R. H., and Fischman A. J., Technetium-labeled chemotactic peptides: comparison with Indium-111-labeled white blood cells for localizing acute bacterial infection in the rabbit. J. Nucl. Med. 1993; 34, 2176-2181 48.Liu S., Edwards D. S., Looby R. J., Harris A. R., Poirier M. J., Barrett J. A., Heminway S. J., and Carroll T. R., Labeling a hydrazino nicotinamide-modified cyclic IIb/IIIa receptor antagonist with 99mTc using aminocarboxylates as coligands. Bioconjugate Chem. 1996; 7, 63-71 49.Edwards D. S., Liu S., Harris A. R., Looby R. J., Ziegler M. C., Heminway S. J., Barrett J. A., and Carroll T. R., A new and versatile ternary ligand system for technetium radiopharmaceuticals: water soluble phosphines and tricine as coligands in labeling a hydrazino nicotinamidemodified cyclic glycoprotein IIb/IIIa receptor antagonist with 99mTc. Bioconjugate Chem. 1997; 8, 146-154 50.Liua G., Wescottb C., Satob A., Wanga Y., Liua N., Zhanga Y. M., Rusckowskia M., Hnatowicha D. J., Nitriles form mixed-coligand complexes with 99mTc-HYNIC-Peptide. Nuclear Medicine and Biology 2002; 29, 107–113 51.Alberto R., Schibli R., Egli A., et al. A novel organometallic aquacomplex of technetium for the labeling of technetium for the labeling of technetium for the labeling of of [99mTc(OH2)3(CO)3 ]+ from [99mTcO4 ]- in aqueous solution and its reaction with bifunctional ligands. J. Am. Chem. Soc. 1998; 120, 7987-7988 52.Amann A., Decristoforo C., Ott I., Wenger M., Bader D., Alberto R., and Putz G., Surfactant protein B labeled with [99mTc(OH2) 3(CO)3 ]+ retains biological activity in vitro. Nuclear Medicine and Biology. 2001; 28, 243-250 53.Pietzsch H. J., Gupta A., Reisgys M., et al., Chemical and Biological characterization of technetium(I) and rhenium(I) tricarbonyl complexes with dithioether ligands serving as linkers for coupling the Tc(CO)3 and Re(CO)3 moieties to biologically active molecules. Bioconjugate Chem. 2000; 11, 414-424 54.Schibli R., La Bella R., Alberto R., et al., Influence of the denticity of ligand systems on the in vitro and in vivo behavior of 99mTc(I)-tricarbonyl complexes: a hint for the future functionalization of biomolecules. Bioconjugate Chem. 2000; 11, 345-351 55.Liu S. and Edwards D. S., 99mTc-labeled small peptides as diagnostic radiopharmaceuticals. Chemical. Review. 1999; 99, 2235-2268 56.Su Z. F., Liu G., Gupta S., Zhu Z., Rusckowski M., and Hnato D. J., In Vitro and in Vivo Evaluation of a Technetium-99m-Labeled Cyclic RGD Peptide as a Specific Marker of avb3 Integrin for Tumor Imaging. Bioconjugate Chem. 2002; 13, 561-570 57.江昭志〝三羰基鎝99m標誌MISO錯合物作為缺氧造影劑之研究〞,清華大學碩士論文,2002。 58.Microbiology, Third edition, Klein P. H., WCB Company, 1996, p.117id NH0925257037 sid 914521 cfn 0 / id NH0925257038 auc 蔡詩婷 tic 鼻咽癌多種治療技術之放射治療計畫評量 adc 莊克士 adc 李宗其 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 67 kwc 鼻咽癌 kwc 放射治療計畫 kwc 三度空間順形治療 kwc 強度調控放射治療 kwc 質子治療 kwc 合併光子質子治療 kwc 劑量-體積關係圖 abc 近年來,電腦工業快速發展促使醫學影像檢查的進步,臨床醫師在界定腫瘤侵犯範圍時可以更為精確。現代化放射線治療的發展,使放射治療劑量的計算能夠更為準確,減少對正常組織的損害降低副作用,同時也可以提高腫瘤放射線劑量,更有效的殺死癌細胞。 tc 目錄 第一章 引言 1 第二章 研究背景與目的 2 2.1 研究背景2 2.1.1 鼻咽癌之診斷與治療 2 2.1.2 治療技術介紹 16 2.2 研究目的 21 第三章 研究方法 24 3.1 鼻咽癌病人基本資料 24 3.2 治療計畫設計 26 3.2.1 GTV、CTV與PTV之定義 26 3.2.2 治療計畫內容 27 3.3 治療計畫評估工具 33 3.3.1 百分等劑量曲線 33 3.3.2 劑量-體積關係圖 34 第四章 結果 36 4.1 腫瘤包覆劑量評估 36 4.1.1 最小腫瘤劑量 36 4.1.2 95%腫瘤體積劑量 38 4.1.3 順形指數 38 4.1.4 劑量非均勻性 41 4.2 危險器官劑量評估 43 4.2.1 腦幹 43 4.2.2 脊髓 45 4.2.3 眼睛 45 4.2.4 腮腺 50 第五章 討論 52 5.1 腫瘤劑量評估 52 5.2 危急器官劑量評估 58 5.2.1 劑量限制器官 58 5.2.2 生活品質限制器官 60 第六章 結論 64 參考文獻 65 圖目錄 圖1.1 腫瘤與正常組織之劑量與反應關係圖 1 圖2.1 上呼吸道相關解剖圖 4 圖2.2 治療計畫中之BEV圖 17 圖2.3 強度控放射治療之通量分布圖(fluence map)18 圖2.4 250MeV質子射束於水中造成之布拉格尖峰 19 圖2.5 鼻咽癌病患之腫瘤與危險器官之相關位置圖 21 圖2.6 實驗架構 23 圖3.1 GTV、CTV與PTV 27 圖3.2 三度空間順形放射治療第一階段之治療計畫設計 28 圖3.3 三度空間順形放射治療第二階段之治療計畫設計 28 圖3.4 第一階段強度調控放射治療計畫之射束角度 29 圖3.5 第二階段強度調控放射治療計畫之射束角度 30 圖3.6 第一階段質子治療技術之治療計畫設計 31 圖3.7 第二階段質子治療技術之治療計畫設計 31 圖3.8 治療計畫中百分等劑量曲線 33 圖3.9 Cumulative DVH與Differential DVH 34 圖5.1 各項治療技術之最小腫瘤劑量比較 53 圖5.2 各項治療技術之95%腫瘤體積劑量比較 53 圖5.3 各項治療技術之順形指數比較 54 圖5.4 不同治療技術之劑量非均勻性比較 56 圖5.5 不同治療技術之腦幹劑量比較 59 圖5.6 不同治療技術之脊髓劑量比較 59 圖5.7 不同治療技術之右眼劑量比較 61 圖5.8 不同治療技術之左眼劑量比較 61 圖5.9 不同治療技術之右腮腺劑量比較 63 圖5.10不同治療技術之左腮腺量比較 63 表目錄 表2.1 鼻咽癌高發生率族群 7 表2.2 鼻咽癌之相關檢查 10 表2.3 1978年與1991年鼻咽癌分類法之比較 12 表2.4 第5版AJCC分期系統 13 表3.1 15位鼻咽癌研究樣本之基本資料 24 表3.2 15位鼻咽癌研究樣本之基本資料統計 25 表4.1 不同治療技術GTV之最小劑量值 37 表4.2 不同治療技術GTV之D95 39 表4.3 不同治療技術GTV之CI 40 表4.4 不同治療技術GTV之劑量非均性 42 表4.5 不同治療技術之腦幹劑量 44 表4.6 不同治療技術之脊髓劑量 47 表4.7 不同治療技術之右眼劑量 48 表4.8 不同治療技術之左眼劑量 49 表4.9 不同治療技術之腮腺劑量 51rf 第七章 參考文獻 [1 ] Jacob V. Dyk, “The modern technology of radiation oncology”, first edition, p8, Medical Physics Publishing, Wisconsin, 1999. [2 ] Herman Suit, “The gray lecture 2001: Coming technical advances in radiation oncology”, Int. J Radiation Oncology Biol. Physics., 53:798-809, 2002. [3 ] Elaine N. Marieb, “Human anatomy & Physiology”, fourth edition, p802, Addison Wesley Longman, Inc, California, 1997. [4 ] Mimi C. Yu, Ho John H.C. Ho, Shiu-Hung Lai, Brain E. Henderson, “Cantonese-style salted fish as a cause of nasopharyngeal carcinoma: Report of a case-control study in Hong Kong”, Cancer Res., 46:956-961; 1986. [5 ] Mimi C. Yu, Jian-Min Yuan, “Epidemiology of nasopharyngeal carcinoma”, seminar in CANCER BIOLOGY, 12: 421-429; 2002. [6 ] 中華民國行政院衛生署網站資料。來源網址: http://www.doh.gov.tw/statistic/index.htm [7 ] 國家衛生研究院,癌症研究組出版品,鼻咽癌之診斷與治療共識。來源網址: http://www.nhri.org.tw/nhri_org/ca/doc/main2_1_8.doc [8 ] Carlos A. Perez and L. W. Brady, “Principles and Practice of Radiation Oncology”, third edition, p904, Lippincott-Raven Publishers, Philadelphia, 1997. [9 ] Jay S. Cooper, Richard Cohen, Randy E. Stevens, “A comparison of staging system for nasopharyngeal carcinoma”, Cancer, 83:213-219; 1998. [10 ] Joseph T. Chang, Lai-Chu See, Simon G Tang, Steve P. Lee, Chun-Chieh Wang, Ji-Hong Hong, “The role of brachytherapy in early-stage nasopharyngeal carcinoma”, Int. J Radiation Oncology Biol. Physics.,36:1019-1024;1996. [11 ] Nancy Lee, Ping Xia, Jeanne M. Quivey, Khalil Sultanem, Ian Poon, Clayton Akazawa, Pam Akazawa, Vivian Weinberg, Karen K. Fu, “Intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma: an update of the UCSF experience”, Int. J Radiation Oncology Biol. Physics.,53:12-22;2002. [12 ] Skye-Hongiun Cheng, James J.M. Jian, Stella Y.C. Tsai, Kwan-Yee Chan, Lawrence K. Yen, Nei-Min Chu, Tran-Der Tan, Mei-Hua Tsou, Andrew T. Huang, “Prognostic features and treatment outcome in locoregionally advanced nasopharyngeal carcinoma following concurrent chemo- therapy and radiotherapy”, Int. J Radiation Oncology Biol. Physics.,41:755-762;1998. [13 ] Steve Webb, “The physics of three dimensional radiation therapy: conformal radiotherapy, radiosurgery and treatment planning”, p1-17, Institute of Physics Publishing, Philadelphia, 1993. [14 ] Jacob V. Dyk, “The modern technology of radiation oncology”, first edition, p824-867, Medical Physics Publishing, Wisconsin, 1999. [15 ] Ping Xia, Karen K. Fu, Gordon W. Wong, Clayton Akazawa, Lynn J. Verhey, “Comparison of treatment plans involving intensity modulated radiotherapy for nasopharyngeal carcinoma”, Int. J Radiation Oncology Biol. Physics.,48:329-337;2000. [16 ] Marks J. E, Bedwinek J. M, Lee F, “Dose response analysis for nasopharyngeal carcinoma”, Cancer, 50:1042-1050;1992 [17 ] 張東杰,陳俊丞,李紳豪,何志偉,鄭恩加,洪志宏,“鼻咽癌治療計畫之比較:相對兩側照野、三空間順形治療、強度調控順形治療”,放射治療與腫瘤學,7:267-274,2000. [18 ] Steven A. Leibel, Gerald J. Kutcher, Louis B Harrison, et al. “Improved dose distribution for 3D conformal boost treatments in carcinoma of the nasopharynx”, Int. J Radiation Oncology Biol. Physics., 20:823-833;1991. [19 ] Margie A. Hunt, Michael J. Zelefsky, Suzanne Wolden, et al. “Treatment planning and delivery of intensity-modulated radiation therapy for primary nasopharynx cancer”, Int. J Radiation Oncology Biol. Physics., 49:623-632; 2001 [20 ] Ching-Yeh Hsiung, Ellen D. Yorke, Chen-Shou Chui, et al. “Intensity-modulated radiotherapy versus conventional three-dimensional conformal radiotherapy for boost or salvage treatment of nasopharyngeal carcinoma.” Int. J Radiation Oncology Biol. Physics., 53:638-647; 2002 [21 ] Avraham Eisbruch, Randall K. Haken, Hyungjin M. Kim, et al. “ Dose, volume and function relationships in parotid salivary glands following conformal and intensity-modulated irradiation of head and neck cancer ” Int. J Radiation Oncology Biol. Physics., 45:577-587; 1999id NH0925257038 sid 904509 cfn 0 / id NH0925257039 auc 王立莊 tic 使用金屬氧化半導體場校電晶體對頭頸部放射治療的活體劑量驗證 adc 董傳中 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 56 kwc 品質保證 kwc 活體劑量度量 kwc 入射劑量 kwc 出射劑量 kwc 金屬氧化半導體場校電晶體 abc 在放射治療中,病患臨床接受劑量的驗證工作,是品質保證中重要的一環。而活體劑量度量(in vivo dosimetry)乃是一種簡單而又準確的驗證方式,它是在病患治療時即時確認的唯一方法,且它獨立於劑量計算系統之外,並可同時追蹤數個誤差。因此,活體劑量度量已逐漸形成為品質保證中之基本項目。 tc 摘要………………………………………………………………………i 目錄……………………………………………………………………ii 圖目錄…………………………………………………………………iv 表目錄……………………………………………………………………v 第一章 前言……………………………………………………………1 1-1 實驗目的………………………………………………………1 1-2 實驗架構………………………………………………………4 第二章 基礎理論………………………………………………………5 2-1 入射劑量………………………………………………………5 2-2 出射劑量………………………………………………………9 2-3 表面劑量……………………………………………………11 2-4 靶劑量………………………………………………………12 2-4.1 線性平均法……………………………………………12 2-4.2 穿透率曲線法…………………………………………12 第三章 實驗器材………………………………………………………16 3-1 Farmer游離腔………………………………………………16 3-2 MOSFET劑量計………………………………………………18 3-2.1 MOSFET劑量計度量原理……………………………18 3-2.2 MOSFET劑量計度量系統……………………………20 3-2.3 MOSFET劑量計的基本特性…………………………22 3-2.4 MOSFET劑量計實驗規格……………………………24 第四章 實驗方法………………………………………………………25 4-1 穿透率曲線…………………………………………………25 4-2 MOSFET劑量計之特性………………………………………28 4-2.1 劑量再現性……………………………………………29 4-2.2 劑量反應線性…………………………………………30 4-2.3 劑量率依存性…………………………………………31 4-2.4 入射角度依存性………………………………………32 4-3 校正參數……………………………………………………34 4-4 病患量測……………………………………………………37 第五章 結果與討論……………………………………………………38 5-1 MOSFET劑量計活體度量結果………………………………38 5-2 誤差分析與討論……………………………………………42 5-2.1 系統誤差………………………………………………42 5-2.2 組織密度的影響………………………………………44 5-2.3 頭頸部固定面罩之影響………………………………50 第六章 結論……………………………………………………………53 參考文獻………………………………………………………………55rf [1 ].http://www.uhealthy.com/chinese/pet2/composite/clinic-014.htm UHealthy 正子造影醫療網 - 頭頸部癌症 [2 ].http://www.ht.org.tw/ecb/38/ecb38_7.htm 恩主公醫療服務網 - 認識頭頸部癌症 [3 ].Kutcher GJ, Coia L, Gillin M, et al. Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40. Med Phys 1994;21:581-618. [4 ].ICRU Report 24. Determination of absorbed dose in a patient irradiated by beams of x or gamma rays in radiotherapy procedures. International [5 ].Van Dam J, Marinello G. Methods for in vivo dosimetry in external radiotherapy, ESTRO booklet. Nrl Garant; 1994. [6 ].Essers M, Mijnheer BJ. In vivo dosimetry during external photon beam radiotherapy. Int J Radiat Oncol Biol Phys 1999;43:245-259. [7 ].Noel A, Aletti P, Bey P, et al. Detection of errors in individual patients in radiotherapy by systematic in vivo dosimetry. Radiother Oncol 1995;34:144-151. [8 ].Calandrino R, Cattaneo GM, Fiorino C, et al. Detection of systematic errors in external radiotherapy before treatment delivery. Radiother Oncol 1997;45:271-274. [9 ].Boellaard R, Essers M, van Herk M, et al. A new method to obtain the midplane dose using portal in vivo dosimetry. Int J Radiat Oncol Biol Phys 1998;41:465-474. [10 ].Knöös T, Ahlgren L, Nillson M. Comparison of measured and calculated absorbed doses from tangential irradiation of the breast. Radiother Oncol 1986;7:81-88. [11 ].王慧娟, 頭頸部放射治療的活體劑量驗證, 新竹市, 國立清華大學碩士論文, 2001. [12 ].Leunens G, Van Dam J, Dutreix A, et al. Quality assurance in radiotherapy by in vivo dosimetry. 2. Determination of the target absorbed dose. Radiother Oncol 1990;19:73-87. [13 ].Task Group 21, Radiation Therapy Committee, AAPM: Schulz RJ, Almond PR, Cunningham JR, et al. A protocol for the determination of absorbed dose from high-energy photon and electron beams. Med Phys 1983;10:741-771. [14 ].Anatoly R, Jagdish N. M, et al. A new radiotherapy surface detector: The MOSFET. Med Phys 1996;23:655-657. [15 ].Peet D J, Pryor M D. Evaluation of a MOSFET radiation sensor for the measurement of entrance surface dose in diagnostic radiology. The British Journal of Radiology 1999;72:562-568. [16 ].Oldham T.R. and McGarrrity J.M., Comparison of 60Co Response and 10keV X-Ray Response in MOScapaacitorrs, IEEE Trans. Nucl. Sci. NS-30 4377(1983). [17 ].Technical Note No.4. Introduction to the MOSFET dosimeter. Thomson&Nielsen Electronics LTD. March 1996. [18 ].Soubra, M, Cygler, J, and Mackay, G F, Evaluation of a Dual Metal Oxide-Silicon Semiconductor Field Effect Transistor Detector as a Radiation Dosimeter, Med Phys 21(4) April 1994. [19 ].Cynthia F C, Lynn J V, Ping X. Investigation of the use of MOSFET for clinical IMRT dosimetric verification, Med Phys 2002;29:1109-1115. [20 ].Thomson I., Reece M.H., Semiconductor MOSFET Dosimetry, Proceeding of Health Physics Society Annual Meeting(1983). [21 ].羅素花, 活體劑量驗証方法在放射治療的應用, 新竹市, 國立清華大學碩士論文, 2000.id NH0925257039 sid 904543 cfn 0 / id NH0925257040 auc 蘇志賢 tic 外切核酸分解 tic & tic #37238;活性控制因子研究 adc 許志 adc & adc #26983; ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 74 kwc 外切核酸分解 kwc & kwc #37238; kwc 單分子DNA定序 abc 單一分子生技研究的新領域近年來在國際間發展迅速,也為生物醫學提供了一個創新的舞台。而利用單分子的研究來發展DNA定序技術,預計將會是下一個具有很大潛力且可行的方法,它提供了一個作為基因體定序研究的利器。不過現行的技術研究仍有許多的問題及瓶頸亟待克服。本核心實驗室將以對DNA分子的操縱能力為基礎,配合已著手進行架設之光鑷子系統,在現今的國際研究中提供DNA CD-ROM定序的創新想法,並且初步進行利用酵素配合雷射光之激發控制研究,以期研發出具前瞻性的研究方法與成果。我們希望憑著巨觀的初步觀察,來作為接下來單分子微觀技術的基礎。 tc 目錄 中文摘要…………………………………………………………………………I 英文摘要…………………………………………………………………………II 致謝………………………………………………………………………………III 目錄………………………………………………………………………………Ⅳ 圖目錄與表目錄…………………………………………………………………Ⅵ 第一章 緒論……………………………………………………………………1 1.1前言………………………………………………………………………1 1.2 DNA定序方法概述………………………………………………………3 1.3 單分子DNA定序原理與方法……………………………………………6 1.4 單分子DNA定序所遇到的問題…………………………………………10 第二章 CD-ROM DNA定序技術…………………………………………………12 2.1 DNA CD-ROM定序初步構想……………………………………………..12 2.2 DNA CD-ROM定序初步實驗程序………………………………………..13 第三章 雷射光輔助酵素之活性控制………………………………………….16 3.1 研究動機與目標………………………………………………………16 3.2 實驗理論與假設………………………………………………………16 3.2-1 酵素催化…………………………………………………………...16 3.2-2 酵素活性臨界點的控制……………………………………………21 3.2-2-1不同因子與酵素活性的研究設計…………………………22 3.2-3 酵素選擇標準………………………………………………………23 3.3 實驗方法及其步驟………………………………………………………25 3.3-1 光催化系統…………………………………………………………26 3.3-2 生物系統實驗………………………………………………………27 3.3-2-1起始物DNA的備製………………………………………….29 3.3-2-2外切核酸分解酶(ExoIII)的水解反應……………………..32 3.3-2-3 S1核酸分解酶消化(digest)單股DNA片段………………32 3.4 實驗結果與討論………………………………………………………….33 3.4-1雙股DNA與單股DNA的ethidium染色比較………………………33 3.4-2標準生物系統實驗流程之建立…………………………………..…34 3.4-3 ExoIII活性與溫度的關係…………………………………………38 3.4-4 反應活化能的評估………………………………………………….39 3.4-5 ExoIII活性與NaCl濃度的變化…………………………………..41 第四章結論與展望……………………………………………………………….43 參考文獻………………………………………………………………………….45 附錄一 ………………………………………………………………………..….47 附錄二 …………………………………………………………………………...52 附錄三 ……………………………………………………………………………54 圖表目錄 圖1-shotgun 基因體定序方法…………………………………………………4 圖2-微流體單分子DNA定序方法………………………………………………8 圖3-利用光纖尖端與螢光標第的DNA來進行單分子定序實驗………………9 圖4 -DNA CD-ROM定序初步構想圖…………………………………………….12 圖5-DNA CD-ROM定序初步構想流程………………………………………….13 圖6-外切核酸分解酶催化DNA的磷酸二酯鍵………………………………..18 圖7- DNA polymerase I 外切核酸分解活性機制………..…………………..18 圖8- Exonuclease III 外切核酸分解活性機制…….………………………….18 圖9-酵素催化反應使淨活化能降低…………………………………………...19 圖10-溫度與酵素活性的關係………………………………………………….21 圖11-酵素活性與pH值 的關係……………………………………………….21 圖12-鹽類濃度對蛋白質溶解度的影響……………………………………….21 圖13-被核酸分解酶水解過的基質DNA其片段分布………………………….24 圖14-ExoIII 所認基質DNA之特定端點結構………………………………….25 圖15-選用氙燈光源光譜……………………………………………………….26 圖16-光催化系統之光路設計…………………………………………………..27 圖17-建立標準生物系統實驗之流程圖………………………………………..28 圖18-puc19質體DNA電泳檢視…………………………………………………29 圖19-大腸桿菌puc19限制酶作用點資料……………………………………..30 圖20-大量限制酶切割結果電泳檢視…………………………………………..31 圖21-DNA膠純化電泳檢視…………………………………………………..31 圖22- Ethidium Bromide染色比較之實驗結果電泳圖……………….……..34 圖23-生物系統實驗流程之測試結果…………………………………………..36 圖24-ExoIII反應之電泳檢視……………………………………………….…..37 圖25-起始物DNA備製條件改變之比較電泳圖……………………………….37 圖26-不同溫度下ExoIII的反應活性電泳圖…………………………………...38 圖27-溫度與ExoIII反應速率關係圖…………………………………………...39 圖28-酵素反應活化能的評估…………………………………………………....40 圖29-不同NaCl離子濃度下酵素活性變化電泳圖……………………………..41 圖30-NaCl濃度與酵素反應速率關係圖………………………………………..42 表1-可見光譜及各光譜所具之光能…………………………………………….20 表2-現今文獻中單分子定序常用的外切核酸酵素整理……………………….23 表3-本節實驗劑量分配表………………………………………………………33rf 1. Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463-7 (1977). 2. Watson, J. D. The human genome project: past, present, and future. Science 248, 44-9 (1990). 3. Adams, M. D. et al. A model for high-throughput automated DNA sequencing and analysis core facilities. Nature 368, 474-5 (1994). 4. Meldrum, D. Automation for genomics, part two: sequencers, microarrays, and future trends. Genome Res 10, 1288-303 (2000). 5. Weber, J. L. & Myers, E. W. Human whole-genome shotgun sequencing. Genome Res 7, 401-9 (1997). 6. Drmanac, R. et al. DNA sequence determination by hybridization: a strategy for efficient large-scale sequencing. Science 260, 1649-52 (1993). 7. Brenner, S. et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18, 630-4 (2000). 8. Puapaiboon, U., Jai-nhuknan, J. & Cowan, J. A. Rapid and direct sequencing of double-stranded DNA using exonuclease III and MALDI-TOF MS. Anal Chem 72, 3338-41 (2000). 9. Marziali, A. & Akeson, M. New DNA sequencing methods. Annu Rev Biomed Eng 3, 195-223 (2001). 10. Eigen, M. & Rigler, R. Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci U S A 91, 5740-7 (1994). 11. Harding, J. D. & Keller, R. A. Single-molecule detection as an approach to rapid DNA sequencing. Trends Biotechnol 10, 55-7 (1992). 12. Stephan, J. et al. Towards a general procedure for sequencing single DNA molecules. J Biotechnol 86, 255-67 (2001). 13. Werner, J. H. et al. Progress towards single-molecule DNA sequencing: a one color demonstration. J Biotechnol 102, 1-14 (2003). 14. Klaus D L orrey, S. B., Michael Brinkmeiery, et al. Techniques for single molecule sequencing. Bioimaging 5, 139-152 (1997). 15. Sauer, M. et al. Single molecule DNA sequencing in submicrometer channels: state of the art and future prospects. J Biotechnol 86, 181-201 (2001). 16. Foldes-Papp, Z. et al. Fluorescently labeled model DNA sequences for exonucleolytic sequencing. J Biotechnol 86, 203-24 (2001). 17. Seela, F. et al. Fluorescent DNA: the development of 7-deazapurine nucleoside triphosphates applicable for sequencing at the single molecule level. J Biotechnol 86, 269-79 (2001). 18. Dorre, K. et al. Highly efficient single molecule detection in microstructures. J Biotechnol 86, 225-36 (2001). 19. C, H., S. Monajembashi, K.O Greulich. Laser manipulation and UV induced single molecule reactions of individual DNA molecules. Journal of Biotechnology 52, 65-73 (1996). 20. Namasivayam, V., Larson, R. G., Burke, D. T. & Burns, M. A. Light-induced molecular cutting: localized reaction on a single DNA molecule. Anal Chem 75, 4188-94 (2003). 21. Bugg, T. An introduction to enzyme and coenzyme chemistry (1997).九州圖書文物有限公司 21. chin, J., F. Banaszczyk, V. Jubian, and X. Zou. Co(III) complex promoted hydrolysis of phosphate diesters: Comparison in reactivity of rigid cis-diaquotraazacobalt(III) complexes. J. Am. Chem.Soc. 111, 186-190 (1989). 22. Serpersu, E. H., Shortle, D. & Mildvan, A. S. Kinetic and magnetic resonance studies of active-site mutants of staphylococcal nuclease: factors contributing to catalysis. Biochemistry 26, 1289-300 (1987). 23. Hoheisel, J. D. On the activities of Escherichia coli exonuclease III. Anal Biochem 209, 238-46 (1993). 24. Palmer, T. Understanding Enzymes (1995).Fourth Edition. 25. Goodwin, P. M., Ambrose, W.P., Keller, R.A.,. Singlemolecule detection in liquids by laser-induced fluorescence. Acc. Chem. Res. 29, 607–613 (1996). 27. Fo¡Lldes-Papp, Z., Thyberg, P., Bjo¡L rling, S., Holmgren, A., & Rigler, R. Exonuclease degradation of DNA studied by fluorescence correlation spectroscopy. Nucleosides Nucleotides 16, 781–787 (1997). 28. Sauer, M., Angerer, B., Han, K.-T., Zander, C.,. Detection and identification of single dye labeled mononucleotide molecules released from an optical fiber in a microcapillary: First steps towards a new single molecule sequencing technique. Accepted by PCCP. (1999). 29 Brody, R. S., Doherty, K.G., Zimmerman, P.D.,. Processivity and kinetics of the reaction of exonuclease I from Escherichia coli with polydeoxyribonucleotides. J. Biol. Chem 261, 7136-7143 (1986). 30 Mitsis, P. G. & Kwagh, J. G. Characterization of the interaction of lambda exonuclease with the ends of DNA. Nucleic Acids Res 27, 3057-63 (1999). 31. information, m. p. p. SYBRR Green I Nucleic Acid Gel Stain. (2001). 32. information, m. p. p. SYBRR Green II RNA Gel Stain. (2001).id NH0925257040 sid 904538 cfn 0 / id NH0925257041 auc 蔡進賢 tic 建立誘導型腺病毒攜帶細胞激素3基因對攝護腺癌的治療模式 adc 江啟勳 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 英文 pg 47 kwc 細胞激素3 kwc 攝護腺癌 kwc 基因治療 kwc 四環黴素 kwc 植入式滲透壓膠囊 kwc 細胞毒殺型T細胞 abc 細胞激素3(IL-3)為一個調控幹細胞分化與增生的造血因子。先前的研究指出,IL-3修飾過的腫瘤將會減緩它在老鼠體內的生長速率。並且IL-3可以加強細胞毒性T細胞對外生型抗原的辨識,進而抑制轉移的癌細胞。因此利用IL-3作為癌症治療將是一個很有潛力的方式。但是在生物體內大量表現IL-3,將造成嚴重的副作用。因此,在這研究中,將建立一個誘導型的線病毒攜帶細胞激素3的表現系統作為攝護腺癌的基因治療之用。利用BD adenovirus Tet-on 系統為載體將基因帶到腫瘤上,其優點在於基因的表現可以被四環黴素所調控,以降低基因治療的風險;而利用線病毒載體,將可使IL-3大量且局部的表現在腫瘤位置,更有效的去提高對腫瘤的免疫反應。 tc 中文摘要 I ABSTRACT II 誌謝 IV CONTENTS V INTRODUCTION 1 Immunotherapy for malignancies 1 Cytokine gene therapy 3 Interleukin 3 4 The murine prostate cancer cell line - TRAMP C-1 5 Tet-On system 6 MATERIALS AND METHODS 7 Mice and cell lines 7 Constructing recombinant adenoviral DNA 8 Production and purification of recombinant adenovirus 9 Assessment of adenovirus gene expression in vitro 10 In vivo experimental protocol 11 Determination of IL-3 in tumor and blood by ELISA 12 Analysis of tumor-infiltrating host cells 12 X-gal staining 13 Cytotoxicity assay 14 Generation of bone marrow-derived mast cell 15 Functional analysis and phagocytosis assay of mast cell 16 RESULTS 17 Characterization of tetracycline-induced adenovirus expression system 17 Influence of in vivo IL-3 expression on the growth of TRAMP C-1 tumor 18 The influence of IL-3 gene expression on tumor composition 19 Immunity Assay 20 Functional assay of bone-marrow derived mast cells 21 DISCUSSION 22 REFERENCE 27 FIGURES 32rf 1. Gottschalk, A. R. and Roach, M., 3rd The use of hormonal therapy with radiotherapy for prostate cancer: analysis of prospective randomised trials. Br J Cancer, 90: 950-954, 2004. 2. Soyuer, S., Chang, E. L., Selek, U., McCutcheon, I. E., and Maor, M. H. Intracranial meningeal hemangiopericytoma: the role of radiotherapy: report of 29 cases and review of the literature. Cancer, 100: 1491-1497, 2004. 3. Vaidya, J. S., Tobias, J. S., Baum, M., Keshtgar, M., Joseph, D., Wenz, F., Houghton, J., Saunders, C., Corica, T., D'Souza, D., Sainsbury, R., Massarut, S., Taylor, I., and Hilaris, B. Intraoperative radiotherapy for breast cancer. Lancet Oncol, 5: 165-173, 2004. 4. Cuncins-Hearn, A., Saunders, C., Walsh, D., Borg, M., Buckingham, J., Frizelle, F., and Maddern, G. A systematic review of intraoperative radiotherapy in early breast cancer. Breast Cancer Res Treat, 85: 271-280, 2004. 5. Tucker, S. L., Cheung, R., Dong, L., Liu, H. H., Thames, H. D., Huang, E. H., Kuban, D., and Mohan, R. Dose-volume response analyses of late rectal bleeding after radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys, 59: 353-365, 2004. 6. Cross, C. K., Berman, S., Buswell, L., Johnson, B., and Baldini, E. H. Prospective study of palliative hypofractionated radiotherapy (8.5 Gy x 2) for patients with symptomatic non-small-cell lung cancer. Int J Radiat Oncol Biol Phys, 58: 1098-1105, 2004. 7. Taylor, R. E. Review of radiotherapy dose and volume for intracranial ependymoma. Pediatr Blood Cancer, 42: 457-460, 2004. 8. Gudkov, A. V. and Komarova, E. A. The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer, 3: 117-129, 2003. 9. Agarwal, R. and Kaye, S. B. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer, 3: 502-516, 2003. 10. Roodman, G. D. Mechanisms of bone metastasis. N Engl J Med, 350: 1655-1664, 2004. 11. Hunter, K. W. Host genetics and tumour metastasis. Br J Cancer, 90: 752-755, 2004. 12. Timar, J., Csuka, O., Orosz, Z., Jeney, A., and Kopper, L. Molecular pathology of tumor metastasis. I. Predictive pathology. Pathol Oncol Res, 7: 217-230, 2001. 13. Agarwala, S. S., Hellstrand, K., Gehlsen, K., and Naredi, P. Immunotherapy with histamine and interleukin 2 in malignant melanoma with liver metastasis. Cancer Immunol Immunother, 2004. 14. Ruttinger, D., Li, R., Urba, W. J., Fox, B. A., and Hu, H. M. Evaluation of a preclinical model of bone metastasis for the study of adoptive immunotherapy. Eur Surg Res, 35: 346-351, 2003. 15. Movassagh, M., Spatz, A., Davoust, J., Lebecque, S., Romero, P., Pittet, M., Rimoldi, D., Lienard, D., Gugerli, O., Ferradini, L., Robert, C., Avril, M. F., Zitvogel, L., and Angevin, E. Selective accumulation of mature DC-Lamp+ dendritic cells in tumor sites is associated with efficient T-cell-mediated antitumor response and control of metastatic dissemination in melanoma. Cancer Res, 64: 2192-2198, 2004. 16. Saika, T., Satoh, T., Kusaka, N., Ebara, S., Mouraviev, V. B., Timme, T. L., and Thompson, T. C. Route of administration influences the antitumor effects of bone marrow-derived dendritic cells engineered to produce interleukin-12 in a metastatic mouse prostate cancer model. Cancer Gene Ther, 11: 317-324, 2004. 17. Tatsumi, T., Huang, J., Gooding, W. E., Gambotto, A., Robbins, P. D., Vujanovic, N. L., Alber, S. M., Watkins, S. C., Okada, H., and Storkus, W. J. Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tc1-type immunity. Cancer Res, 63: 6378-6386, 2003. 18. Unanue, E. R. Perspective on antigen processing and presentation. Immunol Rev, 185: 86-102, 2002. 19. Lenschow, D. J. and Bluestone, J. A. T cell co-stimulation and in vivo tolerance. Curr Opin Immunol, 5: 747-752, 1993. 20. Berzofsky, J. A., Terabe, M., Oh, S., Belyakov, I. M., Ahlers, J. D., Janik, J. E., and Morris, J. C. Progress on new vaccine strategies for the immunotherapy and prevention of cancer. J Clin Invest, 113: 1515-1525, 2004. 21. Simons, J. W., Mikhak, B., Chang, J. F., DeMarzo, A. M., Carducci, M. A., Lim, M., Weber, C. E., Baccala, A. A., Goemann, M. A., Clift, S. M., Ando, D. G., Levitsky, H. I., Cohen, L. K., Sanda, M. G., Mulligan, R. C., Partin, A. W., Carter, H. B., Piantadosi, S., Marshall, F. F., and Nelson, W. G. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res, 59: 5160-5168, 1999. 22. Houde, M., Bertholet, S., Gagnon, E., Brunet, S., Goyette, G., Laplante, A., Princiotta, M. F., Thibault, P., Sacks, D., and Desjardins, M. Phagosomes are competent organelles for antigen cross-presentation. Nature, 425: 402-406, 2003. 23. Ackerman, A. L., Kyritsis, C., Tampe, R., and Cresswell, P. Early phagosomes in dendritic cells form a cellular compartment sufficient for cross presentation of exogenous antigens. Proc Natl Acad Sci U S A, 100: 12889-12894, 2003. 24. Guermonprez, P., Saveanu, L., Kleijmeer, M., Davoust, J., Van Endert, P., and Amigorena, S. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature, 425: 397-402, 2003. 25. Bellone, M., Camporeale, A., and Boni, A. Dendritic cell activation kinetics and cancer immunotherapy. J Immunol, 172: 2727-2728, 2004. 26. Figdor, C. G., de Vries, I. J., Lesterhuis, W. J., and Melief, C. J. Dendritic cell immunotherapy: mapping the way. Nat Med, 10: 475-480, 2004. 27. Woo, E. Y., Chu, C. S., Goletz, T. J., Schlienger, K., Yeh, H., Coukos, G., Rubin, S. C., Kaiser, L. R., and June, C. H. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res, 61: 4766-4772, 2001. 28. Fayad, L., Keating, M. J., Reuben, J. M., O'Brien, S., Lee, B. N., Lerner, S., and Kurzrock, R. Interleukin-6 and interleukin-10 levels in chronic lymphocytic leukemia: correlation with phenotypic characteristics and outcome. Blood, 97: 256-263, 2001. 29. Dranoff, G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer, 4: 11-22, 2004. 30. Atzpodien, J., Hoffmann, R., Franzke, M., Stief, C., Wandert, T., and Reitz, M. Thirteen-year, long-term efficacy of interferon 2alpha and interleukin 2-based home therapy in patients with advanced renal cell carcinoma. Cancer, 95: 1045-1050, 2002. 31. Pulaski, B. A., Yeh, K. Y., Shastri, N., Maltby, K. M., Penney, D. P., Lord, E. M., and Frelinger, J. G. Interleukin 3 enhances cytotoxic T lymphocyte development and class I major histocompatibility complex "re-presentation" of exogenous antigen by tumor-infiltrating antigen-presenting cells. Proc Natl Acad Sci U S A, 93: 3669-3674, 1996. 32. Yeh, K. Y., McAdam, A. J., Pulaski, B. A., Shastri, N., Frelinger, J. G., and Lord, E. M. IL-3 enhances both presentation of exogenous particulate antigen in association with class I major histocompatibility antigen and generation of primary tumor-specific cytolytic T lymphocytes. J Immunol, 160: 5773-5780, 1998. 33. Clark, S. C. and Kamen, R. The human hematopoietic colony-stimulating factors. Science, 236: 1229-1237, 1987. 34. McBride, W. H., Dougherty, G. D., Wallis, A. E., Economou, J. S., and Chiang, C. S. Interleukin-3 in gene therapy of cancer. Folia Biol (Praha), 40: 62-73, 1994. 35. Chiang, C. S., Syljuasen, R. G., Hong, J. H., Wallis, A., Dougherty, G. J., and McBride, W. H. Effects of IL-3 gene expression on tumor response to irradiation in vitro and in vivo. Cancer Res, 57: 3899-3903, 1997. 36. Chiang, C. S., Hong, J. H., Wu, Y. C., McBride, W. H., and Dougherty, G. J. Combining radiation therapy with interleukin-3 gene immunotherapy. Cancer Gene Ther, 7: 1172-1178, 2000. 37. Haig, D. M., Huntley, J. F., MacKellar, A., Newlands, G. F., Inglis, L., Sangha, R., Cohen, D., Hapel, A., Galli, S. J., and Miller, H. R. Effects of stem cell factor (kit-ligand) and interleukin-3 on the growth and serine proteinase expression of rat bone-marrow-derived or serosal mast cells. Blood, 83: 72-83, 1994. 38. Lantz, C. S., Boesiger, J., Song, C. H., Mach, N., Kobayashi, T., Mulligan, R. C., Nawa, Y., Dranoff, G., and Galli, S. J. Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature, 392: 90-93, 1998. 39. Raposo, G., Tenza, D., Mecheri, S., Peronet, R., Bonnerot, C., and Desaymard, C. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol Biol Cell, 8: 2631-2645, 1997. 40. Skokos, D., Botros, H. G., Demeure, C., Morin, J., Peronet, R., Birkenmeier, G., Boudaly, S., and Mecheri, S. Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J Immunol, 170: 3037-3045, 2003. 41. Foster, B. A., Gingrich, J. R., Kwon, E. D., Madias, C., and Greenberg, N. M. Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res, 57: 3325-3330, 1997. 42. Greenberg, N. M., DeMayo, F., Finegold, M. J., Medina, D., Tilley, W. D., Aspinall, J. O., Cunha, G. R., Donjacour, A. A., Matusik, R. J., and Rosen, J. M. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci U S A, 92: 3439-3443, 1995. 43. Liu, L., Chahroudi, A., Silvestri, G., Wernett, M. E., Kaiser, W. J., Safrit, J. T., Komoriya, A., Altman, J. D., Packard, B. Z., and Feinberg, M. B. Visualization and quantification of T cell-mediated cytotoxicity using cell-permeable fluorogenic caspase substrates. Nat Med, 8: 185-189, 2002. 44. Mazzolini, G., Prieto, J., and Melero, I. Gene therapy of cancer with interleukin-12. Curr Pharm Des, 9: 1981-1991, 2003. 45. Wong, P. M., Chung, S. W., Dunbar, C. E., Bodine, D. M., Ruscetti, S., and Nienhuis, A. W. Retrovirus-mediated transfer and expression of the interleukin-3 gene in mouse hematopoietic cells result in a myeloproliferative disorder. Mol Cell Biol, 9: 798-808, 1989. 46. Dan, Y., Katakura, Y., Ametani, A., Kaminogawa, S., and Asano, Y. IL-3 augments TCR-mediated responses of type 2 CD4 T cells. J Immunol, 156: 27-34, 1996. 47. Storozynsky, E., Woodward, J. G., Frelinger, J. G., and Lord, E. M. Interleukin-3 and granulocyte-macrophage colony-stimulating factor enhance the generation and function of dendritic cells. Immunology, 97: 138-149, 1999. 48. Ebner, S., Hofer, S., Nguyen, V. A., Furhapter, C., Herold, M., Fritsch, P., Heufler, C., and Romani, N. A novel role for IL-3: human monocytes cultured in the presence of IL-3 and IL-4 differentiate into dendritic cells that produce less IL-12 and shift Th cell responses toward a Th2 cytokine pattern. J Immunol, 168: 6199-6207, 2002. 49. McLachlan, J. B., Hart, J. P., Pizzo, S. V., Shelburne, C. P., Staats, H. F., Gunn, M. D., and Abraham, S. N. Mast cell-derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nat Immunol, 4: 1199-1205, 2003. 50. Ott, V. L., Cambier, J. C., Kappler, J., Marrack, P., and Swanson, B. J. Mast cell-dependent migration of effector CD8+ T cells through production of leukotriene B4. Nat Immunol, 4: 974-981, 2003. 51. Schoenberger, S. P. BLT for speed. Nat Immunol, 4: 937-939, 2003. 52. Leskinen, M., Wang, Y., Leszczynski, D., Lindstedt, K. A., and Kovanen, P. T. Mast cell chymase induces apoptosis of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 21: 516-522, 2001. 53. Latti, S., Leskinen, M., Shiota, N., Wang, Y., Kovanen, P. T., and Lindstedt, K. A. Mast cell-mediated apoptosis of endothelial cells in vitro: a paracrine mechanism involving TNF-alpha-mediated down-regulation of bcl-2 expression. J Cell Physiol, 195: 130-138, 2003. 54. Wedemeyer, J., Tsai, M., and Galli, S. J. Roles of mast cells and basophils in innate and acquired immunity. Curr Opin Immunol, 12: 624-631, 2000. 55. Theoharides, T. C. and Conti, P. Mast cells: the JEKYLL and HYDE of tumor growth. Trends Immunol, 25: 235-241, 2004id NH0925257041 sid 914544 cfn 0 / id NH0925257042 auc 羅文彬 tic 以二次離子質譜術分析鋁合金樣品曝水後受光照射之作用 adc 吳見明 adc 陳俊榮 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 71 kwc 光子引發釋氣 kwc 二次離子質譜分析 kwc 鋁合金樣品 kwc 水釋氣 abc 本次實驗利用二次離子質譜術(SIMS)進行鋁合金樣品表面分析,藉以了解曝有大量水氣的旅合金表面受同步輻射光照射後的表面變化情形。在實驗系統方面,縮小曝水腔與分析腔之間的氣導,利用差分抽氣(differential pumping)的方法,縮短曝水至出光的時間,本次實驗已將時間從原先的13小時縮短至200分鐘以內。本實驗也更改了光束引出管前端的電極,在+800 V的偏壓下,可收集散亂的光電子達90%,以釐清光電子在真空腔壁可能造成的電子引發釋氣的干擾。從SIMS表面分析的結果顯示,照光後的表面水氣與氧化物含量都有增加的現象。 tc 摘要 致謝 目錄 第一章 引言................1 第二章 原理................5 第三章 實驗系統與方法.....11 第四章 實驗結果...........22 第五章 討論...............29 第六章 結論...............35 參考文獻..................38rf 1. H.F. Dylla, “Water: It’s Measurement and Control in Vacuum,” Gaithersburg, MD, May 23-25 (1994). 2. 陳俊榮,王敏惠,曾湖興,劉遠中,”不鏽鋼超高真空系統容器輝光放電清洗之研究,” 真空科技1 (1), 13 (1987). 3. K. Akaishi, K. Ezaki, Y. Kubota, and O. Motojima, “ Reduction of Water Outgassing and UHV Production in an Unbacked Vacuum Chamber by Neon Gas Discharge,” Vacuum 53, 285 (1999). 4. K. Tatenuma, T. Momose, and H. Ishimaru, “ Quick Acquisition of Clean Ultrahigh Vacuum System by Chemical Process Technology,” J. Vac. Sci. & Technol. A 11(4), 1719 (1993). 5. S.S. Inayoshi, S. Tsukahara, and A. Kinbara, “ Decrease of Water Vapor Desorption by Si Film Coating on Stainless Steel,” Vacuum 53, 281 (1999). 6. G. Raiteri, and A. Calcatelli, “ Thermal Desorption from Stainless Steel Samples Coated with TiN and Oxide Layers,” Vacuum 62, 7 (2001). 7. Y.C. Liu, J.R. Chen, J.R. Huang, and C.Y. Wu, “ 以不同溼度之氣體研究鋁合金表面熱釋氣,” 真空科技 5(3), 8 (1992). 8. J.R. Chen, K. Narushima, and H. Ishivaru, “ Thermal Outgassing from Aluminum Alloy Vacuum Chamber,” J. Vac. Sci. Technol. A 3, 2188 (1985). 9. 張志明, “ 鋁合金真空材料光子引發釋氣研究,” 碩士論文, 國立清華大學原子科學系, (1996). 10. 詹哲鎧, “ 鋁合金真空材料光子引發釋氣系統改進與研究,” 碩士論文, 國立清華大學原子科學系, (1998). 11. 楊凱淵, “ 利用PSD方法研究鋁合金表面水釋氣行為,” 碩士論文, 國立清華大學原子科學系, (2000). 12. 楊佳螢, “ 水氣在光子引發釋氣實驗系統中的行為探討,” 碩士論文, 國立清華大學原子科學系, (2001). 13. 楊財烈, “ 鋁合金表面曝水後受光照射作用之探討,” 碩士論文, 國立清華大學原子科學系, (2003). 14. R.J. Elsey, “ Outgassing of Vacuum Materials,” Vacuum 25, 299 (1975). 15. 陳俊榮, 劉遠中, “ 鋁合金超高真空材料釋氣之研究,” 科學發展月刊 15(6), (1986). 16. O. Gröbner, A.G. Mathewson, H. Stori, P. Strubin and R. Souchet, “ Studies of Photon Induced Gas Desorption using Synchrotron Radiation,” Vacuum 33, 397 (1983). 17. D. Menzel and R. Gomer, “ Desorption from Metal Surfaces by Low-Energy Electrons,” J. Chem. Phys. 41, 3311 (1964). 18. P.A. Redhead, “ Interaction of Slow Electrons with Chemisorbed Oxygen,” Canadian J. Phys. 42, 886 (1964). 19. M.L. Knotek and P.J. Feibelman, “ Ion Desorption by Core-Hole Auger Decay,” Physical Review Letters 40, 964 (1978). 20. R. Wehrle and J. Moenich, “ A Vacuum System for the Argonne 6GeV Synchrotron Light Source,” IEEE Trans. Nucl. Sci. 32, 5(1985). 21. A. Benninghoven, F.G. Rudenauer and H.W. Werner, “ Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends,” J. Wiley, New York (1987). 22. I. Popova, V. Zhukov, J.T. Yates, Jr. and J.G. Chen, “Electron Stimulated Oxidation of Al(111) in H2O Vapor: Dipole Orientation Effects in the Al2O3 Thin Film,” J. Appl. Phys. 86, 7156 (1999). 23. A. Nylund and I. Olefjord, “Surface Analysis of Oxidized Aluminum,” Surface and Interface Analysis 21, 283-289 (1994).id NH0925257042 sid 904516 cfn 0 / id NH0925257043 auc 黃信華 tic 高度分枝樹枝狀合物之矽晶圓表面自組裝研究 adc 朱鐵吉 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 78 kwc 高度分叉樹枝狀聚合物 kwc 矽晶片 kwc 自組裝 kwc 抗酸性 kwc 抗鹼性 kwc 抗熱性 kwc 抗有機性 abc Poly(amidoamine) Dendrimer大約在1984年由D. A. Tomalia等人所發現的一種新型的聚合物 , 它具有單一分子量分佈(monodispersity)、具多孔性的內部、高溶解度、低黏度及結構設計多樣化等優點 , 這對於醫藥、生物科技、光學等領域而言都有很大的潛力 , 因此近10年來很受到科學家的重視。 tc 摘要…………………………………………………………...……………………. Ⅱ 目錄………………………………………………...…………………….Ⅳ 圖表目錄………………………………………………...………………... Ⅵ 第一章 緒論……………………………………………...………...………1 1.1 Polymers的歷史延革………………...…………..……………………...………...2 1.2 Dendrimers的歷史…….…..………………………………………...…………….3 1.3 Dendrimers各種用途………………………………………………...……………6 1.3.1 光學上的應用………………………………………………………………7 1.3.2 醫藥上的應用………………………………………………………………7 1.3.3 資訊系統上的應用…………………………………………………………8 1.3.4 化妝品工業上的應用………………………………………………………8 第二章 文獻回顧……………………………………………...………….9 2.1合成奈米粒子之方法………………………………………………..……..9 2.2 Dendrimer………………………….…………………………………..12 2.2.1 Dendrimer的主要結構………………………………………....…..12 2.2.2 Dendrimer的世代數計算…..………………………….…………….16 2.2.3 Dendrimer的各種物理性質…….……………………………………17 2.3合成Dendrimer的方法…………….……...………………………………………….22 2.3.1以NH3為核心…..…….……………………………………………………22 2.3.2以Fe3O4為基材…………………………………………………………….24 第三章 Dendrimer 的合成及實驗方法……………………………………...26 3.1實驗藥品與儀器……………………………………………….............26 3.2 Dendrimer 的合成……………………………………………………27 3.3實驗步驟………………………………………………………………31 3.3.1 AEEA抗各種環境條件的能力………………………………..…………..31 3.3.2 Dendrimer-G1抗各種環境條件的能力…………………………………31 3.3.3 Dendrimer-G3抗各種環境條件的能力……………………………….....32 第四章 結果與討論……………………………………………………...35 4.1 AEEA的各種性質…………………………………………………………….....35 4.1.1 抗熱性……………………………………………………………………35 4.1.2 抗酸性……………………………………………………………………..38 4.1.3 抗鹼性……………………………………………………………………..39 4.2 Dendrimer-G1的各種性質………………………………………………………41 4.2.1由TDS-APIMS來證明G1的成長……………………………………….41 4.2.2 抗熱性……………………………………………………………………..44 4.2.3 抗酸性……………………………………………………………………..48 4.2.4 抗鹼性……………………………………………………………………..51 4.3 Dendrimer-G3的各種性質……………………………………………………....52 4.3.1 以TDS-APIMS來證明G3的成長………………………………….......52 4.3.2 抗熱性……………………………………………………………………..57 4.3.3 抗酸性……………………………………………………………………..60 4.3.4 抗鹼性……………………………………………………………………..65 4.3.5 加入Tris-HCl後dendrimer的變化…………………………………….…68 4.3.6 抗有機性…………………………………………………………………..69 第五章 結論………………………………………………………………………..74 參考文獻……………………………………………………………………………76 圖表目錄 圖1-1:巨型分子主要的結構類型…………………………………………………….2 圖1-2:自然界中高度分枝的分子結構…………….…………………………………4 圖1-3 : AB2單體進行聚合反應而形成任意高度分枝聚合物………………………4 圖1-4 : semi-controlled dendritic polymer 一系列的反應過程……….…………….5 圖1-5:Dendron和Dendrimer外型的比較圖…………………………………………6 圖2-1:說明製備金屬奈米粒子的方法………………….……………………………9 表2-1濕式化學法介紹………………………………………………………………........10 圖2-2:(a) 利用檸檬酸鈉形成金奈米粒子的過程 (b) 單獨一顆金奈米粒子的保護形式……………………….……………11 圖2-3:4.5世代的poly(amidoamine) (PAMAM) dendrimer核-殼(core-shell)結構的三維圖形……………………………………………………………………12 圖2-4:發散式合成Dendrimer及收斂式合成Dendrimer的理想流程圖……..........14 圖2-5:發散式合成的概念圖…………………………………………………...……15 圖2-6:收斂式合成的概念圖……….…..…………………………………………....16 圖2-7:世數計算法…………………………………………………………………...16 圖2-8:各種聚合物的黏度比較圖………...…………………………………………17 表2-2 Polyether dendrimer的密度變化……………………………………………..18 圖2-9:Polyether dendrimer的世代數V.S.密度所做的曲線圖………………...……19 圖2-10:為非對稱型分枝聚合物…………..….……………………………………..19 圖2-11:為對稱型分枝球狀聚合物…………..….…………………………………..19 圖2-12:Dendrimer折射率及單位官能基所佔表面積……………………………...20 圖2-13:G8-Dendrimer在不同的離子強度及pH值下的半徑變化…………...……21 圖2-14:球型Dendrimer的合成流程圖………………...……………………………22 圖2-15:環胺化的反應圖(一)………………………………………………………23 圖2-16:環胺化反應圖(二)………………………………………………………......24 圖2-17:將dendrimer長在磁性奈米粒子後的示意圖………………………………25 圖3-1:由矽晶片合成到G1 dendrimer的流程圖……………………………….......29 圖4-1:AEEA加熱後的金粒子密度統計…...………………….……………………35 圖4-2: AEEA加熱後的SEM金粒子分佈…………………………………………..36 圖4-3以熱重分析儀分析AEEA的分解溫度………………………………………37 圖4-4: AEEA泡酸後的金粒子密度統計…………………………………………...38 圖4-5: AEEA泡酸後的SEM金粒子分佈……….………………………………….39 圖4-6:AEEA silane compound合成至矽晶圓上的過程……………………………40 圖4-7: AEEA泡鹼後的SEM金粒子分佈……………………………..……………40 圖4-8: AEEA泡鹼後的金粒子密度統計…………………………………………...41 圖4-9:TDS-APIMS分析的分子量分別為72AMU及86AMU………………….....42 圖4-10:TDS-APIMS分析的分子量分別為114AMU及186AMU……………….43 圖4-11: G1加熱後的金粒子密度統計……..……………………………………….45 圖4-12:G1加熱後的SEM金粒子分佈…………….……………………………..46 圖4-13: Dendrimer在不同pH值下的形態…………………………………………47 圖4-14:G1泡酸後的金粒子密度統計………………………………………………49 圖4-15:G1泡酸後的SEM金粒子分佈…………………………………………..…50 圖4-16:肽鍵的水解過程…………………………………………………………….50 圖4-17:G1泡鹼後的金粒子密度統計……...……………………………………….51 圖4-18:G1泡鹼後的SEM金粒子分佈………..……………………………………52 圖4-19:G3-dendrimer進行retro-Michael addition的流程及其可能會分解出來的 產物…………………………………………………………………………53 圖4-20:TDS-APIMS分析的分子量為72AMU…………………………………......54 圖4-21:TDS-APIMS分析的分子量為86AMU及114AMU……………………….55 圖4-22:TDS-APIMS分析的分子量為186AMU及228AMU……………………...56 圖4-23:G3加熱後的金粒子密度統計………………………………………..……..57 圖4-24:金粒子密度統計,不同世代的dendrimer對於金粒子的吸附能力………...58 圖4-25: 金粒子密度統計, 將G3-dendrimer在140℃下以不同的時間加熱 , 去比較dendrimer被破壞的程度…………………………………………58 圖4-26:G3加熱後的SEM金粒子分佈……………………………………………..59 圖4-27:G3泡過酸後以水沖洗及不沖水的金粒子密度統計………………………61 圖4-28:G3泡酸後沖水及不沖水的SEM金粒子分佈…………………..…………62 圖4-29:以球型dendrimer泡過0.01N及0.1N的鹽酸後 , 量測FT-IR………….63 圖4-30:以球型dendrimer泡過1.0N及5.0N的鹽酸後 , 量測FT-IR……………..64 圖4-31:G3泡鹼後的金粒子密度統計………………………………………………65 圖4-32:G3泡過0.01N的NaOH後以P-10去掃描………………………………….66 圖4-33:G3泡過0. 1N的NaOH後以P-10去掃描………….……………………….66 圖4-34:G3泡過1.0N的NaOH後以P-10去掃描…………….…….……………….67 圖4-35:G3泡過5.0N的NaOH後以P-10去掃描……………………………..…….67 圖4-36:比較泡過Tris-HCl及未泡過Tris-HCl的G3對於金粒子的吸附密度……68 圖4-37:將dendrimer泡過各種有機溶劑之後比較金粒子吸附密度統計…………69 圖4-38:將球型dendrimer分別泡於二氯甲烷和三氯甲烷中30分鐘 , 再以真空 幫浦將其乾燥 , 之後以FT-IR分析…………………………..…………70 圖4-39:將球型dendrimer分別泡於丙酮和環己烷中30分鐘 , 再以真空幫浦將 其乾燥 , 之後以FT-IR分析………………………………………………71 圖4-40 將球型dendrimer分別泡於THF和甲苯中30分鐘 , 再以真空幫浦將 其乾燥 , 之後以FT-IR分析………………………………………………72 圖4-41 G3抗有機性的SEM金粒子分佈…………………………………………..73rf 參考文獻 1. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.xxxvi, Great Britain(2001) 2. Elias, H.-G. Mega Molecules, Springer-Verlag, Berlin. (1987). 3. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.8, Great Britain(2001) 4. http://inventors.about.com/library/inventors/blpolystyrene.htm 5. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.9, Great Britain(2001) 6. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.9, Great Britain(2001) 7. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.9, Great Britain(2001) 8. Z. Guan, P. M. Cotts, E. F. McCord, S. J. McLain, Science, 283, 2059(1999) 9. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.10, Great Britain(2001) 10. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.10, Great Britain(2001) 11. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.14-16, Great Britain(2001) 12. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.16, Great Britain(2001) 13. Gauthier, M. and Moller, “Uniform highly branched polymers by anionic grafting: arborescent graft polymers”, Macromolecules, 24, 4548(1991) 14. Tomalia, D. A., Hedstrand, D. M. and Ferrito, M. S. “Comb-Burst Dendrimer Topology. New Macromolecular Architecture Derived from Dendritic Grafting”, Macromolecules, 24, 1435(1991) 15. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.15, Great Britain(2001) 16. http://www.c-science.com/txt/tc/te/em/980129teem.htm 17. http://www.newton.com.tw/e-paper/epaper65.htm 18. http://www.qsl.net/vr2xbp/nano/nanotech-07.html 19. http://www.google.com.tw/search?q=cache:G2h_IUcUMgYJ:www.st-pioneer.org.tw/%E5%85%A7%E6%96%87%E9%A0%81/it018/p15.html+dendrimer&hl=zh-TW&lr=lang_zh-TW&ie=big5&inlang=zh-TW 20. http://www.st-pioneer.org.tw/modules.php?name=magazine&pa=showpage&tid=319 21. N. Toshima, T. Yonezawa, “Bimetallic Nanoparticles-Novel Materials for Chemical and Physical Application” , New J. Chem., 22, 1179(1998) 22. 張育誠, “研究微波加熱技術在奈米材料之合成、自組裝及分解機構”, 國 立清華大學碩士論文, 2003 23. M. T. Reetz, W. Helbig, S. A.Quaiser, “Electrochemical Preparation of Nanostructural Bimetallic Clusters” , Chem.Mater., 7, 2227(1995) 24. 王鉦源,“以化學還原法製備奈米級銀鈀微粉”,國立成功大學碩士論文 , 2002 25. F. Kim, J. H. Song, P. Yang, “Photochemical Synthesis of Gold Nanorods” , J. Am. Chem. Soc., 124, 14316(2002) 26. M. Y. Han, C. H. Quek, “Photochemical Synthesis in Formamide and Room- Temperature Coulomb Staircase Behavior of Size-Controlled Gold Nanoparticles”, Langmuir., 16, 362(2000) 27. L. Rivas, S. S. Cortes, J. V. G. Ramos, G. Morcillo, “Growth of Silver Colloidal Particles Obtained by Citrate Reduction To Increase the Raman Enhancement Factor” , Langmuir., 17, 574(2001) 28. S. Link, Z. L. Wang, M. A. E. Sayed, “Alloy Formation of Gold-Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition” , J. Phys. Chem. B., 103, 3529(1999) 29. A. B. R. Mayer, J. E. Mark ,“Poly(2-hydroxyalkyl methacrylates) as Stabilizers for Colloidal Noble Metal Nanoparticles” , Polymer., 41, 1627(2000) 30. N. Toshima, M. Harada, Y. Yamazaki, K. Asakura, “Catalytic Activity and Structural Analysis of Polymer-Protected Gold-Palladium Bimetallic Clusters Prepared by The Simultaneous Reduction of Hydrogen Tetrachloroaurate and Palladium Dichloride” , J. Phys. Chem., 96, 9927(1992) 31. http://www.devicelink.com/ivdt/archive/00/03/004.html 32. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.24, Great Britain(2001) 33. G. R. Newkome, E. He, C. N. Moorefield, “Suprasupermolecules with Novel properties Metallodendrimers”, Chem. Rev., 99, 1689(1999) 34. G. R. Newkome, E. He, C. N. Moorefield, “Dendrimers and Dendrons”, WILEY-VCH, p.52, Germany(2001) 35. G. R. Newkome, E. He, C. N. Moorefield, “Dendrimers and Dendrons”, WILEY-VCH, p.191, Germany(2001) 36. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.34, Great Britain(2001) 37. Li Zhou, David H. Russell, Mingqi Zhao, and Richard M. Crooks, “Characterization of Poly(amidoamine) Dendrimers and Their Complexes with Cu2+ by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry”, Macromolecules, 34, 3567(2001) 38. T. H. Mourey, S. R. Turner, M. Rubinstein, C. J. Hawker, K. L. Wooley, Macromolecule, 25, 2401(1992) 39. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.35, Great Britain(2001) 40. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.28, Great Britain(2001) 41. John Scheirs, “Dendrimers and Other Dendritic Polymers”, Wiley Series in Polymer Science, p.29, Great Britain(2001) 42. Giovanni Nisato, Robert Ivkov, and Eric J. Amis, “Size Invariance of Polyelectrolyte Dendrimers”, Macromolecules, 33, 4172(2000) 43. P. Welch, M. Muthukumar, “Tuning the Density Profile of Dendritic Polyelectrolytes”, Macromolecules, 31, 5892(1998) 44. D. A. Tomalia, H. Baker, J. Dewald, M.Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, and P. Smith, “A New Class of Polymers: Starburst-Dendritic Macromolecules”, Polymer Journal, 17, 117(1985) 45. Brandon Yoza, Atsushi Arakaki, Tadashi Matsunaga, “DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer”, Journal of Biotechnology, 101, 219(2003) 46. Wei Chen, Donald A. Tomalia, and James L. Thomas, “Unusual pH-Dependent Polarity Changes in PAMAM Dendrimers: Evidence for pH-Responsive Conformational Changes”, Macromolecules, 33, 9169(2000) 47. Giovanni Nisato, Robert Ivkov, and Eric J. Amis, “Structure of Charged Dendrimer Solutions As Seen by Small-Angle Neutron Scattering”, Macromolecules, 32, 5895(1999)id NH0925257043 sid 914528 cfn 0 / id NH0925257044 auc 易漢威 tic 大氣懸浮微粒中水溶性陰陽離子之採樣分析研究 adc 洪益夫 ty 碩士 sc 國立清華大學 dp 原子科學系 yr 92 lg 中文 pg 91 kwc 懸浮微粒 kwc 陰、陽離子 kwc 離子層析 kwc 因素分析 abc 懸浮微粒是指大氣環境中除了水分子以外之固態或液態微粒,一般定義為粒徑100μm以下之粒狀物。依來源可分為原生性以及衍生性兩種。原生性氣膠的主要來源是物理破碎以及污染源的一次排放所產生,衍生性氣膠則是原生性氣膠經過大氣化學所產生的產物,常見的種類有硝酸鹽、硫酸鹽類等。 tc 摘要 I 誌謝 II 目錄 III 表目錄 VI 圖目錄 VIII 第一章 緒論 1 1-1 研究緣起 1 1-2 研究目的 2 第二章 文獻回顧 3 2-1 大氣中懸浮微粒之特性 3 2-2 懸浮微粒中主要離子來源探討 4 2-3 國內外大氣懸浮微粒中陰陽離子的採樣分析 6 第三章 實驗方法及儀器設備 12 3-1 實驗儀器設備與藥品 12 3-1-1 儀器設備 12 3-1-2 實驗用藥品 12 3-2 實驗方法 13 3-2-1 採樣地點 14 3-2-2 採樣時間 14 3-2-3 TSP採樣方法及濃度計算 14 3-2-4 TSP中水溶性陰陽離子分析方法 20 3-2-5 標準溶液之製備 20 3-2-6 建立檢量線 20 3-2-7 TSP中水溶性陰陽離子之萃取 21 3-2-8 空白實驗 21 3-2-9 TSP中水溶性陰陽離子濃度計算 22 第四章 結果與討論 23 4-1 儀器分析條件 23 4-2 檢量線 23 4-3 空白實驗結果 24 4-4 氣象條件 24 4-5 新竹市三測站採樣結果 24 4-5-1 總懸浮微粒(TSP)採樣結果 24 4-5-2 新竹市TSP中陰陽離子之組成與空間分佈 25 4-5-3 新竹市TSP中陰陽離子之組成與時間分佈 26 4-6 桃園縣七測站採樣結果 27 4-6-1 總懸浮微粒(TSP)採樣結果 27 4-6-2 桃園縣TSP中陰陽離子之組成與空間分佈 28 4-6-3 桃園縣TSP中陰陽離子之組成與時間分佈 29 4-7 新竹市與桃園縣結果之比較 29 4-8 與文獻比較 32 4-9 氣候因素之影響 33 4-10 陰陽離子來源之探討-統計分析 34 4-10-1 相關係數 34 4-10-2 因素分析 35 第五章 結論與建議 38 參考文獻 40rf Chan, L.Y., W.S. Kwok (2001) “Roadside suspended particulates at heavily trafficked urban sites of Hong Kong -- Seasonal variation and dependence on meteorological conditions”, Atmospheric Environment, vol. 35, 3177-3182. Chandra Mouli, P., S. Venkata Mohan, S. Jayarama Reddy (2003) “A study on major inorganic ion composition of atmospheric aerosols at Tirupati”, Journal of Hazardous Materials B96, 217-228. Cheng, Z.L., K.S. Lam, L.Y. Chan, T. Wang, K.K. Cheng (2000) “Chemical characteristics of aerosols at coastal station in Hong Kong. I. Seasonal variation of major ions, halogens and mineral dusts between 1995 and 1996” Atmospheric Environment, vol. 34, 2771-2783. Fang, G.C., C.N. Chang, Y.S. Wu, N.P. Wang, V. Wang, P.C. Fu, D.G. Yang, S.C. Chen (2000) “Comparison of particulate mass, chemical species for urban, suburban and rural areas in central Taiwan, Taichung”, Chemosphere, vol.41, 1349-1359. Fang, G.C., C.N. Chang, Y.S. Wu, P.C. Fu, C.J. Yang, C.D. Chen, S.C. Chang (2002) “Ambient suspended particulate matters and related chemical species study in central Taiwan, Taichung during 1998-2001”, Atmospheric Environment, vol. 36, 1921-1928. Fang, G.C., C.N. Chang, Y.S. Wu, P.C. Fu, D.G. Yang, C.C. Chu (1999) “Characterization of chemical species in PM2.5 and PM10 aerosols in suburban and rural sites of central Taiwan” The Science of the Total Environment, vol. 234, 203-212. Hu, M., L.Y. Hea, Y.H. Zhang, M. Wang, Y.P. Kim, K.C. Moon (2002) “Seasonal variation of ionic species in fine particles at Qingdao, China”, Atmospheric Environment, vol. 36, 5853-5859. IARC website,2004,http://www.iarc.fr Kamataki, H., T. Komeiji and M. Yamada (2000) “Characterization of IonComponents in Atmospheric Aerosol in Tokyo District” 日本化學會誌, No.12, 891-900. Kaneyasu, N., S. Ohta and N. Murao (1995) “Seasonal variation in the chemical omposition of atmospheric aerosols and gaseous species in Sapporo, Japan”, Atmospheric Environment, vol.29, 1559-1568. Lee, S.B., G.N. Bae, K.C. Moon, Y.P. Kim (2002) “Characteristics of TSP and PM2.5 measured at Tokchok Island in the Yellow Sea”, Atmospheric Environment, vol. 36, 5427-5435. Liu, C.H., S.Y. Huang, T.J. Lin, S.C. Candice Lung, S.C. Liu, (2003) “Characterization of The Water-soluble Ionic Species in Aerosol During Spring in Taipei City” 2003年氣膠科技研討會論文集,54-59. McMurry, P.H. and J.C. Wilson (1983) “Droplet phase (heterogeneous) and gas phase(homogeneous) contribution to secondary ambient aerosol formation as functions of relative humidity.” Journal of geophysics Research, vol. 88, 5101-5108. Park, M.H., Y.P. Kim and C.H. Kang (2003) “Aerosol composition change due to dust storm: measurements between 1992 and 1999 at Gosen, Korea”, Water, Air, and Soil Pollution: Focus 3, 117-128. Park, S.H., C.B. Song, M.C. Kim, S.B. Kwon, K.W. Lee (2004) “Study on size distribution of total aerosol and water-soluble ions during an Asian dust storm event at Jeju Island, Korea”, Environmental Monitoring and Assessment, vol. 93, 157-183. Salam, A., H. Bauer, K. Kassin, S. M. Ullah, H. Puxbaum “Aerosol chemical characteristics of a mega-city in SoutheastAsia (Dhaka-Bangladesh)”, Atmospheric Environment, vol. 37, 2517-2528. Seinfield, J.H. (1998) “Atmospheric chemistry and physics: from air pollution to climate change”, John Wiley & Sons, Inc. Saxena, P. and C. Seigneur (1987) “On the oxidation of SO2 to sulfate in atmospheric aerosols”, Atmospheric Environment, vol. 21, 807-812. Wall, S.M., W. Johnand and J.L. Ondo (1988) “Measurement of aerosol sizedistributions for nitrate and major ionic species”, Atmospheric Environment, vol. 22, 1649-1656. Whitby, K.T. and G.M. Sverdrup (1980) “California Aerosols: Their Physical and Chemical Characteristics.” Advances in Environmental Science and Technology, vol.9, 477-517. Yu, C.C., D.S. Ho, C.C. Wang, Y.H. Hsiao(2001), “The Chemical Characterization of Total Suspended Particulate in Taoyuan” 第九屆中華民國氣膠科技研討會論文集,84-88. Zhang, X.Y., J.J. Cao, L.M. Lib, R. Arimoto, Y. Cheng, B. Huebert, D. Wang (2002) “Characterization of Atmospheric Aerosol over XiAn in the South Margin of the Loess Plateau, China”, Atmospheric Environment, vol. 36, 4189-4199. 王秋森及陳志傑,『臭氧及PM1/PM2.5/PM10氣懸微粒之暴露及健康風險評估』,行政院國家科學委員會專題研究計畫成果報告,1999 行政院環保署,『中華民國台灣地區空氣品質監測報告九十一年年報』,行政院環保署監測報告,2003 林能暉,『沙塵暴事件之長程輸送對台灣地區空氣品質之影響研究』,行政院環境保護署90年度專案研究計畫,2001 蔡德明、吳義林,『南高屏地區懸浮微粒中水溶性離子平衡之季節變化』,二000年氣膠科技研討會論文集,146-151. 蘇建中、王竹方,『半導體工業區空氣污染物之懸浮微粒的調查分析』,二000年氣膠科技研討會論文集,135-140.id NH0925257044 sid 914532 cfn 0 / id NH0925259001 auc 邱獻儀 tic 先驗知識如何可能? adc 吳瑞媛 ty 碩士 sc 國立清華大學 dp 哲學研究所 yr 92 lg 中文 pg 75 kwc 先驗知識 kwc 概念理論 kwc 理性論 kwc 蒯因 kwc 先驗性 kwc 證成關係 kwc 先驗真理 abc 論文摘要 tc 目錄 凡例 3 第一章 先驗知識是如何可能的? 4 第一節 先驗知識的特徵 4 § 1.證成方式 4 § 2.先驗性(a priori) 5 § 3.先驗知識 6 § 4.必然為真與經驗上的不可修正性 9 第二節 各章綱要 9 第二章 蒯因對先驗知識的挑戰 11 第一節 對先驗知識的挑戰 11 第二節 經驗論的兩個教條與先驗知識 12 第三節 經驗與知識 16 第四節 蒯因之觀點所提供的啟發 17 第五節 蒯因的困境與先驗知識 20 第三章 皮卡克的概念理論 23 第一節 概念的個別化條件 23 第二節 概念的真值貢獻 28 第三節 正規的概念與掌握概念 31 第四節 隱含觀念 33 第四章 如何說明先驗知識如何可能 39 第一節 溫和理性論 39 第二節 先驗知識的後設語意說明 41 第三節 皮卡克的先驗觀點 44 第四節 先驗知識的幾種類型與例子說明 48 第五節 概念理論的修正對說明先驗性的影響 54 第六節 廣義理性論 58 第五章 回應蒯因的觀點 61 第一節 皮卡克對蒯因的回應 61 第二節 皮卡克理論的特徵 66 第六章 先驗證成所依賴的來源 68 第一節 回應蒯因 68 第二節 結語 71 § 參考文獻 73rf § 參考文獻 “A priori.”, An Encyclopedia of Philosophy, G.H.R. Parkinson, London: Routledge, 1988. Boghossian, Paul and Christopher Peacocke (2000), ‘Introduction’, in New Essays on the A Priori, ed. Paul Boghossian and Christopher Peacocke. Oxford: Oxford University Press, New York, pp. 1-10. Bonjour, Laurence (1998), In Defense of Pure Reason , Cambridge University Press, New York. Especially, Chapter 1: Introduction: the problem of a priori justification, Chapter 3: Quine and radical empiricism, Chapter4: A moderate rationalism. Bonjour, Laurence(2002), Epistemology, Lanham, Md. :/Rowman & Littlefield. Especially, Chapter Five: A Priori Justification and Knowledge. Fodor, Jerry A.(1998), Concepts: Where Cognitive Science Went Wrong, Oxford University Press. Frege, Gottlob, ‘On Sense and Meaning’, in Philosophy of language :the big questions, edited by Andrea Nye. Malden, Mass. :,Blackwell Publishers,1998, pp.72-77. Harman, Gilbert (1973), Thought, Princeton University Press, New Jersey. Harman, Gilbert (2003), ‘The Future of The A priori’, in Philosophy in America at the Turn of the Century, APA Centennial Supplement to Journal of Philosophical Research (Charlottesville, VA: Philosophy Documentation Center, 2003), pp. 23-34. Peacocke, Christopher (1992 a), A Study of Concepts, Cambridge, Mass.: MIT Press. Especially, Chapter 1: Individuating Concepts and Chapter 4:The Metaphysics of Concepts. Peacocke, Christopher (1992 b), ‘Sense and Justification’, in Mind, New Series, V.101, Issue 404(Oct., 1992), 793-861. Peacocke, Christopher (1993),’How Are A Priori Truths Possible?’, in European Journal of Philosophy 1, 175-99. Peacocke, Christopher (1997),’Metaphysical Necessity: Understanding, Truth and Epistemology’, in Mind, Vol. 106.423.July 1997, 175-99. Peacocke, Christopher (1998 a), ‘Implicit Conceptions, Understanding and Rationality’, in Philosophical Issues, 9 Concepts, pp. 43-88. Peacocke, Christopher (1998 b), ‘The Philosophy of Language’, in A. Grayling(ed.), Philosophy 2:Further through the subject, Oxford, Oxford University Press, pp. 73-121 . Peacocke, Christopher (1999), Being Known, Oxford: Oxford University Press, New York. Peacocke, Christopher (2000 a),’Explaining the A priori: The Programme of Moderate Rationalism’, in New Essays on the A Priori, ed. Paul Boghossian and Christopher Peacocke. Oxford: Oxford University Press, New York, pp. 255-285. Peacocke, Christopher (2000 b), ‘Theories of Concepts: A Wider Task’, European Journal of Philosophy 8, pp.298-321. Peacocke, Christopher (2002), ‘Three Principles of Rationalism’, in European Journal of Philosophy10:3, pp.375-397. Peacocke, Christopher (2004), The Realm of Reason, Oxford: Oxford University Press, New York. Quine, W. (1951), ‘Two Dogmas of Empiricism’, in The Philosophical Review, Vol. 60, No. 1. (Jan., 1951), pp. 20-43. Quine, W. (1976), ‘Carnap and Logical Truth’, in The Ways of Paradox and other essays, Revised Edition. Cambridge, Mass.: Harvard University Press, pp. 107-132. 中文資料 吳瑞媛,〈論偽思想〉,台灣哲學學會2003年年會暨學術研討會,會議論文。id NH0925259001 sid 915307 cfn 0 / id NH0925259002 auc 鄭凱元 tic 心理內容的外在論與自我知識觀念是否相容? adc 趙之振 ty 碩士 sc 國立清華大學 dp 哲學研究所 yr 92 lg 中文 pg 78 kwc 心理內容 kwc 內容外在論 kwc 自我知識 kwc 先驗知識 kwc 認知權利 kwc 記憶 abc 信念、欲望等心理態度具有心理內容。不同的心理態度可以透過其在行動系統中扮演的推論角色來加以刻畫,然而心理內容是由什麼樣的事實來決定呢?心理內容的外在論主張,一個思想者的心理內容並非完全由思想者本身的種種條件所決定、而是部分地由思想者之外的環境因素所決定。這個主張似乎威脅到了自我知識的觀念。自我知識是指一思想者對其擁有的心理內容具有直接的、非推論性的掌握。表面上看來,如果外在論為真,一思想者若要知道自己的心理內容為何,似乎必須要先知道決定此內容的環境因素;但由於思想者不能夠對其環境具有直接、非推論性的知識,思想者似乎就無法對自己的心理內容有直接的、非推論性的掌握。內容外在論與自我知識觀念是否相容的問題,引起許多的討論。這個問題牽涉到說明心理內容的決定因素、語言意義與命題態度的關係、自我知識的解釋模型、外在論與自我知識的認知地位的關係、自我知識的認知保證來自何處、記憶的性質為何、批判推理與自我知識之間的關係、一個理性思想者的認知權利與認知責任何在…等一系列的哲學問題。 tc 凡例 3 第一章 主要問題 4 第一節 內容外在論 4 第二節 自我知識的觀念 5 第三節 內容外在論與自我知識觀念是否相容? 6 第四節 博之的外在論與反對意見 6 第五節 本文的立場 8 第六節 章節安排 8 第二章 博之的內容外在論 11 第一節 心理內容的觀念 12 第二節 社會外在論 14 第三節 物理外在論 17 第四節 博之論物理外在論 20 第三章 博之論自我知識 25 第一節 戴維森對社會外在論的批評 26 第二節 博之對幾種重新詮釋策略的反駁 30 第三節 博之的可能辯護 33 第四節 博之論自我知識 36 第四章 內容外在論與先驗的自我知識 41 第一節 麥肯錫的不相容論證 42 第二節 布魯克納替博之的辯護 45 第三節 布朗對博之的批評 46 第四節 對布朗的回應 50 第五章 自我知識的認知權利 52 第一節 伯侯申的轉換論證 54 1. 自我知識是沒根據的? 54 2. 內在觀察模型與外在論不相容 56 第二節 我們對自我知識的認知權利 57 1. 認知權利 58 2. 我們對自我知識的認知權利 59 3. 自我知識的環境中立性格 61 第三節 伯侯申的記憶論證 63 第四節 外在論與記憶內容 65 第六章 結論 70 參考文獻 76rf 參考文獻 方萬全(2001),〈第一身權威與詮釋策略〉,《分析哲學—回顧與反省》,成都:四川教育出版社,2001年12月,一版一刷,頁533-556。 Bilgrami, A. (1992), ‘Can Externalism Be Reconciled With Self-Knowledge?’, The Twin Earth Chronicles: Twenty Years of Reflection on Hilary Putnam’s “The Meaning of ‘Meaning’”, ed. by Andrew Pessin and Sanford Goldberg. Armonk, N.Y.: M.E. Sharpe. Boghossian, P. (1989), ‘Content and Self-Knowledge’, Externalism and Self-Knowledge, ed. by Peter Ludlow and Norah Martin. Stanford, California: CSLI Publications. Burge, T. (1977), ‘Belief De Re’, The Journal of Philosophy, Vol. 74, No. 6. (Jun., 1977), pp. 338-362. Stable URL: http://links.jstor.org/sici?sici=0022-362X%28197706%2974%3A6%3C338%3ABDR%3E2.0.CO%3B2-J ——(1979), ‘Individualism and the Mental’, Externalism and Self-Knowledge, ed. by Peter Ludlow and Norah Martin. Stanford, California: CSLI Publications. ——(1982), ‘Other Bodies’, The Twin Earth Chronicles: Twenty Years of Reflection on Hilary Putnam’s “The Meaning of ‘Meaning’”, ed. by Andrew Pessin and Sanford Goldberg. Armonk, N.Y.: M.E. Sharpe. ——(1988), ‘Individualism and Self-Knowledge’, Externalism and Self-Knowledge, ed. by Peter Ludlow and Norah Martin. Stanford, California: CSLI Publications. ——(1993), ‘Content Preservation’,The Philosophical Review, Vol. 102, No. 4. (Oct., 1993), pp. 457-488. Stable URL: http://links.jstor.org/sici?sici=0031-8108%28199310%29102%3A4%3C457%3ACP%3E2.0.CO%3B2-6 ——(1996), ‘Our Entitlement to Self-Knowledge’, Externalism and Self-Knowledge, ed. by Peter Ludlow and Norah Martin. Stanford, California: CSLI Publications. ——(1998), ‘Memory and Self-Knowledge’, Externalism and Self-Knowledge, ed. by Peter Ludlow and Norah Martin. Stanford, California: CSLI Publications. Brian McLaughlin and Michael Tye (1998), “The Brown-McKinsey Charge of Inconsistency”, Externalism and Self-Knowledge, ed. by Peter Ludlow and Norah Martin. Stanford, California: CSLI Publications. Brown, J. (1995), “The Incompatibility of Anti-Individualism and Privileged Access”, Externalism and Self-Knowledge, ed. by Peter Ludlow and Norah Martin. Stanford, California: CSLI Publications. Brueckner, A. (1992), “What an Anti-Individualist Knows A Priori”, Externalism and Self-Knowledge, ed. by Peter Ludlow and Norah Martin. Stanford, California: CSLI Publications. ——(1997) , “Externalism and Memory”, Externalism and Self-Knowledge, ed. by Peter Ludlow and Norah Martin. Stanford, California: CSLI Publications. Davidson, D. (1984), ‘First Person Authority’, Subjective, Intersubjective, Objective. Oxford: Clarendon Press. ——(1987), ‘Knowing Our Own Mind’, Subjective, Intersubjective, Objective. Oxford: Clarendon Press. ——(1990), ‘Epistemology Externalized’, Subjective, Intersubjective, Objective. Oxford: Clarendon Press. Heil, J. (1988), ‘Privileged Access’, Externalism and Self-Knowledge, ed. by Peter Ludlow and Norah Martin. Stanford, California: CSLI Publications. Kripke, S. (1980), Naming and Necessity, Cambridge, Mass.: Harvard University Press. Ludlow P. (1995), “Externalism, Self-Knowledge and the Prevalence of Slow-Switching”, Externalism and Self-Knowledge, ed. by Peter Ludlow and Norah Martin. Stanford, California: CSLI Publications. ——(1995), “Social Externalism, Self-Knowledge, and Memory” , Externalism and Self-Knowledge, ed. by Peter Ludlow and Norah Martin. Stanford, California: CSLI Publications. ——(1996), “Externalism and Memory: A Problem?”, Externalism and Self-Knowledge, ed. by Peter Ludlow and Norah Martin. Stanford, California: CSLI Publications. ——(1997), “On the Relevance of Slow Switching”, Externalism and Self-Knowledge, ed. by Peter Ludlow and Norah Martin. Stanford, California: CSLI Publications. McKinsey, M. (1991), ‘Anti-Individualism and Privileged Access’, Externalism and Self-Knowledge, ed. by Peter Ludlow and Norah Martin. Stanford, California: CSLI Publications. Putnam, H. (1975), ‘The Meaning of ‘Meaning’’, The Twin Earth Chronicles: Twenty Years of Reflection on Hilary Putnam’s “The Meaning of ‘Meaning’”, ed. by Andrew Pessin and Sanford Goldberg. Armonk, N.Y.: M.E. Sharpe. Warfield, T. A. (1992), “Privileged Self-Knowledge and Externalism are Compatible” , Externalism and Self-Knowledge, ed. by Peter Ludlow and Norah Martin. Stanford, California: CSLI Publications. ——(1997), “Externalism, Self-Knowledge and the Irrelevance of Slow-Switching” , Externalism and Self-Knowledge, ed. by Peter Ludlow and Norah Martin. Stanford, California: CSLI Publications.id NH0925259002 sid 915301 cfn 0 / id NH0925311001 auc 牟善琦 tic 軸推式超音波致動器之設計、模擬、建模與分析 adc 歐陽敏盛 ty 博士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 270 kwc 軸推式超音波致動器 kwc 壓電蜂鳴片 kwc 系統鑑別 kwc 假性亂數二進位序列 kwc 機電轉換常數 kwc 電路合成 abc 軸推式超音波致動器(Shaft-driving type ultrasonic actuator)係使用壓電蜂鳴片(Piezoelectric buzzer)作為致動裝置的一種新型薄盤式超音波致動器,利用其金屬背板上特殊位置鎖上螺釘所形成之三相連續反射波(Reflected wave),能將輸入電能轉換為驅動轉軸進而帶動轉子之動能。而其具有定子與轉子可獨立設計、機構設計容易、價格低廉、結構輕薄短小化等優點,且轉速高達近4000 rpm,極具未來性與開拓性。 rf [1-1 ] 黃世勳、黃元茂,直線式超音波馬達之研究,國立台灣大學機械工程學系碩士論文,2001年6月。 [1-2 ] K. Uchino, “Piezoelectric motor: overview,” Smart Materials and Structures, Vol. 7, No. 3, pp. 273-285, 1998. [1-3 ] T. Sashida and T. Kenjo, An introduction to ultrasonic motors, Clarendon Press, 1993. [1-4 ] 郭榮芳、歐陽敏盛,側推式超音波馬達設計與測試,國立清華大學工程與系統科學學系碩士論文,2000年6月。 [1-5 ] A. Endo, N. Sasaki and Y. Tomikawa, “Linear type ultrasonic motor using two-dimensionally positioned piezoelectric elements,” Ferroelectrics, Vol. 112, pp. 165-170, 1990. [1-6 ] J. Toyoda and K. Murano, “A small-size linear motor,” Japanese Journal of Applied Physics, Part 1, Vol. 30, No. 9B, pp. 2274-2276, 1991. [1-7 ] D. Newton, E. Garcia and G. C. Horner, “A linear piezoelectric motor,” Smart Materials and Structures, Vol. 7, No. 3, pp. 295-304, 1998. [1-8 ] S. He, W. Chen, X. Tao, and Z. Chen, “Standing wave bi-directional linearly moving ultrasonic motor,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 45, No. 5, pp. 1133-1139, 1998. [1-9 ] C. Li and C. Zhao, “A large thrust linear ultrasonic motor using longitudinal and flexural modes of rod-shaped transducer,” IEEE Ultrasonics Symposium, Vol. 1, pp. 691-694, 1998. [1-10 ] M. Fleischer, D. Stein and H. Meixner, “Ultrasonic piezomotor with longitudinally oscillating amplitude-transforming resonator,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 36, No. 6, pp. 607-613, 1989. [1-11 ] M. Fleischer, D. Stein and H. Meixner, “New type of piezoelectric ultrasonic motor,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 36, No. 6, pp. 614-619, 1989. [1-12 ] M. Kurosawa and S. Ueha “Hybrid transducer type ultrasonic motor,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 38, No. 2, pp. 89-92, 1991. [1-13 ] T. Uchiki, T. Nakazawa, K. Nakamura, M. Kurosawa and S. Ueha “Ultrasonic motor utilizing elastic fin rotor,” Japanese Journal of Applied Physics, Part 1, Vol. 30, No. 9B, pp. 2289-2291, 1991. [1-14 ] S. Ueha, Y. Hashimoto and Y. Koike, “Non-contact transportation using near-field acoustic levitation,” Ultrasonics , Vol. 38 ,pp. 26-32, 2000. [1-15 ] Y. Koike, S. Ueha, A. Okonogi, T. Amano and K. Nakamura, “Suspension mechanism in near field acoustic levitation phenomenon,” IEEE Ultrasonics Symposium, Vol. 1, pp. 671-674, 2000. [1-16 ] G. Reinhart, J. Hoeppner and J. Zimmermann, “Non-nontact wafer handling using high-intensity ultrasonics,” IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 139- 140 2001. [1-17 ] S. Ueha, Y. Tomikawa, M. Kurosawa and N. Nakamura, Ultrasonic motors: theory and applications, Clarendon Press, 1993. [1-18 ] M. Kurosawa, K. Nakamura, T. Okamoto and S. Ueha, “An ultrasonic motor using bending vibrations of a short cylinder,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 36, No. 5, pp. 517-521, 1989. [1-19 ] C. Kusakabe, Y. Tomikawa, T. Takano and M. Aoyagi, “Characteristics of ultrasonic motor driven by pulse train in trapezoid form,” Japanese Journal of Applied Physics, Part 1, Vol. 32, No 9B, pp. 4194-4197, 1993. [1-20 ] Y. Izuno, R. Takeda and M. Nakaoka, “New fuzzy reasoning-based high- performance speed/position servo control schemes incorporating ultrasonic motor,” IEEE Transactions on Industry Applications, Vol. 28, No. 3, pp. 613-618, 1992. [1-21 ] T. Senjyu, K. Uezato and H. Miyazato, “Adjustable speed control of ultrasonic motors by adaptive control,” IEEE Transactions on Power Electronics, Vol. 10, No. 5, pp. 532-538, 1995. [1-22 ] F. J. Lin, “Fuzzy adaptive model-following position control for ultrasonic motor,” IEEE Transactions on Power Electronics, Vol. 12, No. 2, pp. 261-268, 1997. [1-23 ] F. J. Lin and L. C. Kuo, “Driving circuit for ultrasonic motor servo drive with variable structure adaptive model-following control,” IEE Proceedings of Electric Power Applications, Vol. 144, No. 3, pp. 199-206, 1997. [1-24 ] F. J. Lin, R. J. Wai and S. L. Wang “A fuzzy neural network controller for parallel-resonant ultrasonic motor drive”, IEEE Transactions on Industrial Electronics, Vol. 45, No. 6, pp. 928-937, 1998. [1-25 ] C. Y. Yen, F. L. Wen and M. S. Ouyang, “Thin-disc piezoceramic ultrasonic motor. Part II: system construction and control,” Ultrasonics, Vol. 41, No. 6, pp. 451-463, 2003. [1-26 ] M. Aoyagi, Y. Tomikawa and T. Takano, “Simplified equivalent circuit of an ultrasonic motor and it’s applications,” Ultrasonics, Vol. 34, No. 3, pp. 275-278,1996. [1-27 ] S. Thomas and F. Norbert, “Parameter identification of ultrasonic motors,” 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 19-23,1999. [2-1 ] 潘純新,電路合成,敦煌書局,1996年7月。 [2-2 ] G. C. Temes and J. W. LaPatra, Introduction to circuit synthesis and design, McGraw-Hill Inc., 1977. [2-3 ] N. Balabanian and T. A. Bickart, Linear network theory: analysis, properties, design and synthesis, Matrix publishers Inc., 1981. [2-4 ] S. J. Leon, Linear algebra with applications, 3rd Edition, Macmillan publishing Company, 1990. [2-5 ] S. H. Friedberg, A. J. Insel and L. E. Spence, Linear algebra, 2nd Edition, Prentice-Hall Inc., 1989. [2-6 ] B. C. Kuo and F. Golnaraghi, Automatic control systems, 8th Edition, John Wiley & Sons Inc., 2003. [2-7 ] 張碩,自動控制系統,四版,鼎茂圖書出版有限公司,1997年5月。 [2-8 ] 歐陽敏盛,系統鑑別原理。 [2-9 ] 賴玲瑩、歐陽敏盛,連線參數估計法的探討,國立清華大學動力機械工程學系碩士論文,1985年5月。 [2-10 ] K. H. Fasol and H. P. Jorgl, “Principles of model building and identification,” Automatica, Vol. 16, pp. 505-517, 1980. [2-11 ] 張家榮、陳建祥,噴墨列印頭伺服控制器之參數最佳化,國立清華大學動力機械工程學系碩士論文,2000年6月。 [2-12 ] 陳昭亨、歐陽敏盛,盤型超音波致動器動態電性分析,國立清華大學工程與系統科學學系碩士論文,2002年6月。 [2-13 ] 趙清風,使用MATLAB控制之系統識別,全華科技圖書股份有限公司,2001年2月。 [2-14 ] 劉豹,現代控制理論,科技圖書股份有限公司,2000年9月。 [2-15 ] 韓曾晉,適應控制系統,科技圖書股份有限公司,2002年3月。 [2-16 ] 黃金壽、陳建祥,光碟機之尋軌伺服控制參數之最佳化研究,國立清華大學動力機械工程學系碩士論文,2000年6月。 [2-17 ] A. Papoulis, Probability and statistics, Prentice-Hall International Inc., 1990. [2-18 ] 張碩、張益,自動控制系統分類題庫,鼎茂圖書出版有限公司,1999年12月。 [2-19 ] R. N. Mutagi, “Pseudo noise sequences for engineers,” Electronics and Communication Engineering Journal, Vol. 8, No. 2, pp. 79-87, 1996. [2-20 ] K. Godfrey, Perturbation signals for system identification, Prentice-Hall Inc., 1993. [2-21 ] K. Godfrey, “Design and application of multifrequency signals,” Computing and Control Engineering Journal, Vol. 2, No. 4, pp. 187-195, 1991. [3-1 ] 楊明昌、歐陽敏盛,超音波馬達之設計與分析,國立清華大學工程與系統科學學系碩士論文,1999年7月。 [3-2 ] 吳朗,電子陶瓷-壓電,全欣資訊圖書股份有限圖書,1994年12月。 [3-3 ] OBO Pro.2 Inc., OBO 2001 products list: acoustic components manufacturer and Exporter, OBO Pro.2 Inc. Acoustic Components Div., 2001. [3-4 ] F. L. Wen, S. C. Mou and M. S. Ouyang, “Design and construction of shaft-driving type piezoceramic ultrasonic motor,” Ultrasonics, 2004. (Accepted) [3-5 ] T. Idogaki, T. Tominaga, K. Senda, N. Ohya and T. Hattori, “Bending and expending motion actuators,” Sensors and Actuators A: Physical, Vol. 54, No. 3, pp. 760-764, 1996. [3-6 ] S. C. Mou and F. L. Wen, “The analytical design of optimal driving locus for a novel ultrasonic actuator by zone-energy method,” Proceedings of the 20th national conference on mechanical engineering and the Chinese society of mechanical engineers, pp. 1883-1890, 2003. [3-7 ] 葉俊余、歐陽敏盛,薄片型超音波致動器之設計與模擬,國立清華大學動力機械工程學系碩士論文,2000年6月。 [3-8 ] 陳英豪、歐陽敏盛,超音波滑動平台之設計與研製,國立清華大學工程與系統科學學系碩士論文,2002年6月。 [3-9 ] 林福來、李恭晴、徐正梅、陳冒海、陳順宇,幾何學,南一書局企業股份有限公司,2003年8月。 [3-10 ] 洪維恩,Mathematica 3.0版入門指引,松崗電腦圖書資料股份有限公司,2000年10月。 [3-11 ] 荀飛,Mathematica 4.X實例學習,博碩文化股份有限公司,2001年6月。 [3-12 ] R. D. Cook, D. S. Malkus and M. E. Plesha, Concepts and applications of finite element analysis, 3rd Edition, John Wiley & Sons Inc., 1989. [3-13 ] 王勗成、邵敏,有限元素法基本原理與數值方法,亞東書局,1992年2月。 [3-14 ] 李錟鋒,電腦輔助工程應用-有限元素分析,新科技書局,2000年6月。 [3-15 ] 虎門科技股份有限公司,ANSYS-最佳有限元素分析系統,http:// www.cadmen.com/,2004年6月。 [3-16 ] 陳明男、歐陽敏盛,缺口式薄盤超音波馬達之設計與分析,國立清華大學工程與系統科學學系碩士論文初稿,2004年6月。 [4-1 ] 林憲陽、馬劍清,壓電陶瓷複合層板動態特性之數值分析與實驗量測,國立台灣大學機械工程學系博士論文,2002年6月。 [4-2 ] 三聯科技股份有限公司,產品介紹-Measurement量測,http://www. sanlien.com.tw/,2004年6月。 [4-3 ] 林宗昇、陳俊傑、白良順、洪志成、溫富亮,智慧型材料(壓電蜂鳴片驅動點振幅量測),聖約翰技術學院機械工程系專題製作成果報告,2004年6月。 [4-4 ] Pico Technology Limited, “High resolution PC oscilloscope/ spectrum analyzer: the ADC-216,” http://www.picotech.com/audio _spectrum_analyzer.html, 2004. [4-5 ] S. C. Mou and M. S. Ouyang, “Establishing the dynamic transfer function of a shaft-driving type ultrasonic motor by system identification,” The 5th World Congress on Intelligent Control and Automation, Hangzhou, China, June 2004. (Accepted) [4-6 ] S. C. Mou and M. S. Ouyang, “Establishing the transfer function and equivalent circuit of a shaft-driving type ultrasonic motor. Part 1: Modeling the transfer function of motor by applying system identification,” Proceedings of the 23th symposium on electrical power engineering, pp. 793-797, 2002. [4-7 ] J. D. Achenbach, Wave propagation in elastic solids, 2nd Edition, North Holland publishing Company, 1984. [4-8 ] B. C. Kuo and F. Golnaraghi, Automatic control systems, 8th Edition, John Wiley & Sons Inc., 2003. [4-9 ] S. C. Mou, J. H. Wu, F. L. Wen and M. S. Ouyang, “Research for the characteristics of ultrasonic air levitation system,” Journal of St. John’s & St. Mary’s institute of technology, Vol. 20, pp. 28-41, 2003. [4-10 ] 張國財、歐陽敏盛,壓電振動子之電性分析與參數估測,國立清華大學工程與系統科學學系博士論文,2002年12月。 [4-11 ] 巫震華、歐陽敏盛,超音波氣浮系統之特性研究,國立清華大學動力機械工程學系碩士論文,2001年6月。 [4-12 ] T. Sashida and T. Kenjo, An introduction to ultrasonic motors, Clarendon Press, 1993. [4-13 ] F. L. Wen, C. Y. Yen and M. S. Ouyang, “Thin-disk piezoelectric ultrasonic motor. Part 1: Design and performance evaluation,” Ultrasonics, Vol. 41, No. 6, pp. 437-450, 2003. [4-14 ] 溫富亮、歐陽敏盛,壓電致動器之機電行為模擬分析與應用,國立清華大學工程與系統科學學系博士論文,2004年4月。 [5-1 ] S. C. Mou and M. S. Ouyang, “Establishing the transfer function and equivalent circuit of a shaft-driving type ultrasonic motor. Part 2: Building the equivalent circuit of motor by using the transfer function,” Proceedings of the 23th symposium on electrical power engineering, pp. 779-782, 2002. [5-2 ] S. C. Mou and M. S. Ouyang, “Modeling the equivalent circuits of a shaft-driving type ultrasonic motor,” Proceedings of the 19th national conference of the Chinese society of mechanical engineering, pp. 601-608, 2002. [5-3 ] 呂錫恩、黃啟光,陶瓷馬達之等效電路模型,中華大學電機工程學系碩士論文,1999年6月。 [5-4 ] 林敬宜、黃啟光,壓電陶瓷馬達之研究,中華大學電機工程學系碩士論文,2000年6月。 [5-5 ] 劉允升、黃啟光,線性陶瓷馬達系統之模式化,中華大學電機工程學系碩士論文,1998年6月。 [5-6 ] 鄒應嶼,直流馬達的模型化與參數判別,http://www.pemclab.cn.nctu. tw/,1996年12月。 [5-7 ] C. T. Chen, Linear system theory and design, 3rd Edition, Oxford University Press, 1999. [5-8 ] A. S. Sedra and K. C. Smith, Microelectronic circuits, 5th Edition, Oxford University Press, 2003. [5-9 ] T. Sashida and T. Kenjo, An introduction to ultrasonic motors, Clarendon Press, 1993. [5-10 ] K. Uchino, Piezoelectric actuators and ultrasonic motors, Kluwer Academic Publishers, 1997. [5-11 ] 許溢适,超音波電動機基礎,文笙書局,1995年3月。 [5-12 ] 吳朗,電子陶瓷-壓電,全欣資訊圖書股份有限圖書,1994年12月。 [5-13 ] S. C. Mou, F. L. Wen and M. S. Ouyang, “Characteristics deliberation and verification of equivalent circuits for an ultrasonic motor,” Proceedings of the 20th national conference on mechanical engineering and the Chinese society of mechanical engineers, pp. 935-940, 2003. [5-14 ] D. E. Johnson, Basic electric circuit analysis, 5th Edition, Prentice-Hall Inc., 1995. [5-15 ] 郭榮芳、歐陽敏盛,側推式超音波馬達設計與測試,國立清華大學工程與系統科學學系碩士論文,2000年6月。 [5-16 ] G. F. Franklin, J. D. Powell and E. N. Abbas, Feedback control of dynamic systems, 4th Edition, Prentice-Hall Inc., 2002. [5-17 ] 潘純新,電路合成,敦煌書局,1996年7月。 [5-18 ] 張碩,自動控制系統,四版,鼎茂圖書出版有限公司,1997年5月。 [5-19 ] S. Ueha, Y. Tomikawa, M. Kurosawa and N. Nakamura, Ultrasonic motors: theory and applications, Clarendon Press, 1993. [6-1 ] 陳昭亨、歐陽敏盛,盤型超音波致動器動態電性分析,國立清華大學工程與系統科學學系碩士論文,2002年6月。 [6-2 ] Texas Instruments Inc., The TTL data book: advanced low-power Schottky, advanced Schottky, Texas Instruments, Vol. 3, 1984. [6-3 ] R. N. Mutagi, “Pseudo noise sequences for engineers,” Electronics and Communication Engineering Journal, Vol. 8, No. 2, pp. 79-87, 1996. [6-4 ] Tektronix Inc., “Digital phosphor oscilloscope: TDS3012B, TDS3014B, TDS3022B, TDS3034B, TDS3052B, TDS3054B,” http://www.tek.com/, 2004. [6-5 ] 陳皆福、黃建立,應用干擾觀測器和遲滯模式於壓電致動器的追蹤控制,逢甲大學自動控制工程學系碩士論文,2003年6月。 [6-6 ] 林德耀、黃宜正,以壓電致動器遲滯模型為基礎之控制補償,國立彰化師範大學機電工程學系碩士論文,2003年6月。 [7-1 ] F. L. Wen, C. Y. Yen and M. S. Ouyang, “Thin-disk piezoelectric ultrasonic motor. Part 1: Design and performance evaluation,” Ultrasonics, Vol. 41, No. 6, pp. 437-450, 2003. [7-2 ] 郭榮芳、歐陽敏盛,側推式超音波馬達設計與測試,國立清華大學工程與系統科學學系碩士論文,2000年6月。 [7-3 ] 李政漢、歐陽敏盛,側推式超音波馬達性能量測與與應用設計,國立清華大學工程與系統科學學系碩士論文,2001年6月。 [7-4 ] 林志和、歐陽敏盛,超音波平台之控制系統設計與測試,國立清華大學工程與系統科學學系碩士論文,2002年6月。 [7-5 ] 葉俊余、歐陽敏盛,薄片型超音波致動器之設計與模擬,國立清華大學動力機械工程學系碩士論文,2000年6月。 [7-6 ] S. C. Mou, F. L. Wen, C. H. Lin and M. S. Ouyang, “Positioning of a ultrasonic piezoelectric actuating stage using neuro-fuzzy control,” Proceedings of 2003 national symposium on automatic control, pp. 348-353, 2003. [7-7 ] 陳英豪、歐陽敏盛,超音波滑動平台之設計與研製,國立清華大學工程與系統科學學系碩士論文,2002年6月。 [7-8 ] S. C. Mou, Y. H. Chen, F. L. Wen and M. S. Ouyang, “Design and analysis of a single-axis ultrasonic sliding platform,” Journal of St. John’s & St. Mary’s institute of technology, pp. 63-81, Vol. 20, 2003. [7-9 ] S. C. Mou, F. L. Wen, Y. H. Chen and M. S. Ouyang, “Simulation and design of a novel piezoelectric actuating stage using ANSYS,” Proceedings of 2003 Taiwan ANSYS user conference, pp. 1-7, 2003. [7-10 ] S. Ueha, Y. Hashimoto and Y. Koike, “Non-contact transportation using near-field acoustic levitation,” Ultrasonics , Vol. 38 ,pp. 26-32, 2000. [7-11 ] Y. Koike, S. Ueha, A. Okonogi, T. Amano and K. Nakamura, “Suspension mechanism in near field acoustic levitation phenomenon,” IEEE Ultrasonics Symposium, Vol. 1, pp. 671-674, 2000. [7-12 ] G. Reinhart, J. Hoeppner and J. Zimmermann, “Non-nontact wafer handling using high-intensity ultrasonics,” IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 139- 140 2001. [8-1 ] OBO Pro.2 Inc., OBO 2001 products list: acoustic components manufacturer and Exporter, OBO Pro.2 Inc. Acoustic Components Div., 2001. [8-2 ] F. L. Wen, Z. J. Wen, M. K. Chen and S. C. Mou, “A study of electromagnetic leakage for piezoelectric actuating component,” Proceedings of 2003 Taiwan EMC conference, pp. 494-498, 2003. [8-3 ] B. K. Cheng, Fundamentals of engineering electromagnetics, Addison-Wesley Pub. Co., 1993. [8-4 ] 歐陽敏盛、賴明宏、黃晉興、牟善琦、黃昱先、謝禮忠,新型超音波致動光碟機尋軌機構的設計與控制(I),2004中華民國自動控制研討會論文集,2004年3月。id NH0925311001 sid 853142 cfn 0 / id NH0925311002 auc 張家源 tic 基於磁流動力泵之中尺度熱交換器分析 adc 王培仁 ty 博士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 英文 pg 136 kwc 磁流動力學 kwc 磁流動力泵 kwc 熱交換器 abc 習知的電子裝備主要係依靠被動式之熱交換器進行散熱,以避免溫度過高而引起損壞;如今因積體電路之功率密度不斷提高,傳統的被動式熱交換器受限於空間及重量的限制,將無法提供所需的冷卻功率。有鑒於此,本論文提出一種應用磁流動力學理以推動導電性冷媒之熱交換器,並經由相關的理論分析與實驗結果獲得驗證。基於理論分析方向,由假設之穩態、不可壓縮之完全發展層流條件下,推導出導電性流體於羅倫茲力作用下的統御方程式,進而使用有限差分法求數值近似解,定量化評估熱交換器之冷卻能力。另於實驗方向,進行磁流動力泵及其熱交換實驗裝置之設計製作,以驗證冷媒於羅倫茲力推動下的流動速率及其所產生的總冷卻容量,由實驗結果得知,當外加磁通密度為0.41特士拉及外加電流為3安培時,所測得之流速為1.09×10-1 米/秒;經進一步分析實驗數據後得知,此熱交換器能夠以1微瓦特之輸入電功率,輸出約1瓦特之等效冷卻功率。故由本論文之理論分析與實驗驗證得知,應用磁流動力學理之熱交換器具有高效率之節能優勢,對於高發熱量之電子產品散熱相關應用具有極佳之發展潛力。 tc 摘 要 ABSTRACT ACKNOWLEDGEMENT TABLE OF CONTENTS Ⅰ LIST OF TABLES AND FIGURES Ⅲ NOMENCLATURES AND NOTATIONS Ⅹ CHAPTER 1 INTRODUCTION 1 1.1 Challenges of Electronic Cooling 1 1.2 Problem Statement 3 1.3 Scope of Study 6 CHAPTER 2 LITERATURE REVIEWS 9 2.1 Cooling Techniques for Electronic Equipment 9 2.1.1 Passive Cooling Techniques 10 2.1.2 Active Cooling Techniques 11 2.2 MHD Engineering Applications 16 2.2.1 Electromagnetic Processing of Molten Metals 17 2.2.2 MHD Micro-pumps 22 2.2.3 Heat Removal Applications 24 2.3 MHD Theoretical Analysis 25 2.4 Concluding Remarks 29 CHAPTER 3 MHD CHANNEL FLOW ANALYSIS 37 3.1 Fundamentals of Electromagnetic Theory 37 3.2 One-dimensional MHD Flow Analysis 39 3.2.1 Inviscid Flow with Incompressibility 39 3.2.2 Viscous Flow with Incompressibility 41 3.2.3 Equivalent Circuit Models 46 3.3 Two-dimensional MHD Flow Analysis 53 3.4 Simulation Results and Discussions 56 3.4.1 Flow Rate Predictions 56 3.4.2 Effects of Channel Geometry 58 3.4.3 Experimental Verifications 59 CHAPTER 4 ELECTROMAGNETIC ANALYSIS 73 4.1 Introduction of CAE Systems 73 4.2 MHD Pump Design 76 4.3 Analysis of Magnetostatic Field 80 4.4 Analysis of Electrostatic Field 82 CHAPTER 5 EXPERIMENTAL VERIFICATIONS 99 5.1 Experimental Setups 99 5.1.1 Hydrostatic Measurement 100 5.1.2 MHD Pump Measurement 101 5.1.3 Heat Exchanger Measurement 103 5.2 Results and Discussions 105 5.2.1 Flow Velocity Measurements 106 5.2.2 Pump Efficiency Determination 107 5.2.3 Cooling Measurements 110 CHAPTER 6 CONCLUSIONS AND FUTURE WORKS 123 6.1 Conclusions 124 6.2 Future Works 125 BIBLIOGRAPHY 127 APPENDIX A 132rf BIBLIOGRAPHY Asai, S., 1988 "Metallurgical Aspects of Electromagnetic Processing of Materials," Liquid Metal Magneto-hydrodynamics, Kluwer Academic Publishers, Boston, M. A., pp.391-400. Asai, S., 1989, “Birth and Recent Activities of Electromagnetic Processing of Materials,” ISIJ International, Vol. 29, No. 12, pp. 981-992. Baker, R. S. and Tessier, M. J., 1987, Handbook of Electromagnetic Pump Technology, Elsevier Science Ltd., New York, N. Y., pp. 1-32. Barkan, P., Kelley, Jr., F. W. and Shook, T. A., 1974, “Increasing the Initial Flow Rate in a Rectifier Assembly Employing Electromagnetically-pumped Liquid Metal for Cooling,” U.S. Patent No. 3,812,404. Bart, S. F., Tavrow, L. S. and Mehregany, M., 1990, “Microfabricated Electro- hydrodynamic Pumps,” Sensors and Actuators, A21-A23, pp. 193-197. Bergles, A. E., 1990, Heat Transfer in Electronic and Microelectronic Equipment, Hemisphere Publishing Corporation, New York, N. Y., pp, 3-60. Chu, R. C., 2003, “The Challenges of Electronic Cooling: Past, Current and Future,” IMECE2003-42198, Proceedings of IMECE’03, 2003 ASME International Mechanical Engineering Congress, Nov. 15-21, Washington, D.C., USA. Fox, R. W. and McDonald, A. T., 1994, Introduction to Fluid Mechanics, John Wiley and Sons, Inc., 4th Ed., New York, N.Y., pp. 304-387. Garnier, M., 1990, “Electromagnetic Processing of Liquid Materials in Europe,” ISIJ International, Vol. 30, No. 1, pp. 1-7. Hamilton, R. E., Kennedy, P. G. and Vale, C. R., 1998, “Non-mechanical Magnetic Pump for Liquid Cooling,” U.S. Patent No. 5,763,951. Heng, K. H., Huang, L., Wang, W. and Murphy, M. C., 1999, “Development of a Diffuser/Nozzle Type Micropump Based on Magnetohydrodynamic (MHD) Principle,” Proceedings of SPIE – Microfluidic Devices and Systems II, Vol. 3877, pp. 66-73. Heng, K. H., Wang, W., Murphy, M. C. and Lian, K., 2000, “UV-LIGA Microfabrication and Test of an AC-Type Micropump Based on the Magnetohydrodynamic (MHD) Principle,” Proceedings of SPIE – Microfluidic Devices and Systems III, Vol. 4177, pp. 174-184. Holroyd, R. J. and Walker, J. S., 1978, “A Theoretical Study of the Effects of Wall Conductivity, Non-uniform Magnetic Fields and Variable-area Ducts on Liquid Metal Flows at High Hartmann Number,” Journal of Fluid Mechanics, Vol. 84, pp. 471-495. Huang, L., Wang, W. and Murphy, M. C., 1999, “A Lumped-Parameter Model for a Micropump Based on the Magnetohydrodynamic (MHD) Principle,” Proceedings of SPIE – Design, Test and Microfabrication of MEMS and MOEMS, Vol. 3680, pp. 379-387. Huang, L., Wang, W., Murphy, M. C., Lian, K. and Ling, Z. G., 2000, “LIGA Fabrication and Test of a DC Type Magneto-hydrodynamic (MHD) Micropump,” Microsystem Technologies, Vol. 6, pp. 235-240. Hughes, M., Pericleous, K. A. and Cross, M., 1994, “The CFD Analysis of Simple Parabolic and Elliptic MHD Flows,” Applied Mathematical Modelling, Vol. 18, pp. 150-155. Hughes, M., Pericleous, K. A. and Cross, M., 1995, “The Numerical Modeling of DC Electromagnetic Pump and Brake Flow,” Applied Mathematical Modelling, Vol. 19, Dec., pp. 713-723. Hughes, W. F. and Young, F. J., 1966, The Electromagnetodynamics of Fluids, John Wiley & Sons, Inc., New York, N. Y., pp. 167-298. Hunt, J. C. R. and Ludford, G. S. S., 1968, “Three-dimensional MHD Duct Flows with Strong Transverse Magnetic Fields. Part 1. Obstacles in a Constant Area Channel,” Journal of Fluid Mechanics, Vol. 33, pp. 693-714. Jackson, J. D., 1962, Classical Electrodynamics, John Wiley and Sons, Inc., New York, N. Y., pp. 469-479. Jang, J. and Lee, S. S., 2000, “Theoretical and Experimental Study of MHD Micropump,” Sensors and Actuators, A80, pp. 84-89. Jeong, O. C., and Yang, S. S., 2000, “Fabrication and Test of a Thermo-pneumatic Micropump with a Corrugated p+ Diaphragm,” Sensors and Actuators A83, pp.249-255. Jon Zuo, Z., North, M. T., and Wert, K. L., 2001, “High Heat Flux Heat Pipe Mechanism for Cooling of Electronics,” IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 2, pp. 220-225. Krasu, A. D. and Bar-Cohen, A., 1983, Thermal Analysis and Control of Electronic Equipment, Hemisphere Publishing Corp., Washington, pp. 303-480. Lemoff, A. V. and Lee, A. P., 2000, “An AC Magnetohydrodynamic Micropump,” Sensors and Actuators, B63, pp. 178-185. Lillicrap, D. C., 1988, “Liquid Metal Flow Control Using AC Fields,” Liquid Metal Magneto-hydrodynamics, Kluwer Academic Publishers, Boston, M. A., pp. 363-370. Maillefer, D., Van Lintel, H., Rey-Mermet, G., and Hirschi, R., 1999, “A High-performance Silicon Micropump for an Implantable Drug Delivery System,” Proceeding of IEEE MEMS Workshop, pp. 541-546. Manz, A., Effenhauser, C. S., Burggraf, N., Harrison, D. J., Seiler, K., and Flurri, K., 1994, “Electro-osmotic Pumping and Electrophoretic Separations for Miniaturized Chemical Analysis Systems,” Journal of Micromechanics and Microengineering 4, pp. 257-265. McBride, S. E., Moroney, R. M., and Chiang, W., 1998, “Electro-hydrodynamic Pumps for High-density Microfluidic Arrays,” Proceedings of Micro Total Analysis Systems Conference, Oct. 13-16, pp. 45-48. Nguyen, N. T., Schubert, S., Richter, S., and Dotzel, W., 1998, “Hybrid-assembled Micro Dosing System Using Silicon-based Micropump/valve and Mass Flow Sensor,” Sensors and Actuators A69, pp.85-91. Olsson, A., Enoksson, P., Stemme, G. and Stemme, E., 1997, “Micromachined Flat-Walled Valve-less Diffuser Pumps,” Journal of Microelectromechanical Systems , Vol. 6, No. 2, pp.161-166. Olsson, A., Stemme, G. and Stemme, E., 1995, “A Valve-less Planar Fluid Pump with Two Pump Chambers,” Sensors and Actuators, A46-A47, pp.549-556. Ramos, J. I. and Winowich, N. S., 1986, “Magnetohydrodynamic Channel Flow Study,” Physics of Fluids, Vol. 29(4), April, pp. 992-997. Ramos, J. I. and Winowich, N. S., 1990, “Finite Difference and Finite Element Methods for MHD Channel Flows,” International Journal for Numerical Methods in Fluids, Vol.11, pp. 907-934. Rapp, R., Schomburg, W. K., Mass, D., Schulz, J., and Stark, W., 1994, “LIGA Micropump for Gases and Liquids,” Sensors and Actuators A40, pp.57-61. Seraphim, D. P., Lasky, R. C., and Li, C. Y., 1993, Principles of Electronic Packaging, McGraw-Hill, Inc., New York, N. Y., pp.127-156. Sergent, J. and Krum, A., 1998, Thermal Management Handbook, McGraw-Hill, Inc., New York, N. Y., pp. 7.1-7.59. Stemme, E. and Stemme, G., 1993, “A Valve-less Diffuser/Nozzle-based Fluid Pump,” Sensors and Actuators, A39, pp.159-167. Szekely, J. and Chang, C. W., 1976, “Electro-magnetically Driven Flows in Metals Processing,” Journal of the Minerals, Metals and Materials Society, Sept., pp. 6-11. Walker, J. S. and Ludford, G. S. S, 1972, “Three-dimensional MHD Duct Flows with Strong Transverse Magnetic Fields. Part 4. Fully Insulated, Variable-area Rectangular Ducts with Small Divergences,” Journal of Fluid Mechanics, Vol. 56, pp. 481-496. Walker, J. S., Ludford, G. S. S. and Hunt, J. C. R., 1971, “Three-dimensional MHD Duct Flows with Strong Transverse Magnetic Fields. Part 2. Variable-area Rectangular Ducts with Conducting Sides,” Journal of Fluid Mechanics, Vol. 46, pp. 657-684. Walker, J. S., Ludford, G. S. S. and Hunt, J. C. R., 1972, “Three-dimensional MHD Duct Flows with Strong Transverse Magnetic Fields. Part 3. Variable-area Rectangular Ducts with Insulating Walls,” Journal of Fluid Mechanics, Vol. 56, pp.121-141. Webb, R. L., 2003, “Next Generation Devices for Electronic Cooling,” IMECE2003-42179, Proceedings of IMECE’03, 2003 ASME International Mechanical Engineering Congress, Nov. 15-21, Washington, D.C., USA. Wiech, Jr., R. E., 1985, “Substrate Cooling,” U.S. Patent No. 4,519,447. Yang, Y. S., Liu, Q. M., Jiao, Y., Ge, Y. L., Hu, Z. Q., Gao, Y. Y., Jia, G. L. and Zhang, J. S., 1995, “Application of Steady Magnetic Field for Refining Solidification Structure and Enhancing Mechanical Properties of 25Cr-20Ni-Fe-C Alloy in Centrifugal Casting,” ISIJ International, Vol. 35, No. 4, pp. 389-392. Zengerle, R., Ulrich, J., Kluge, S., Richter, M., and Richter, A., 1995, “A Bi-directional Silicon Micropump,” Sensors and Actuators, A50, pp.81-86. Zhang, W. Q., Yang, Y. S., Zhu, Y. F., Liu, Q. M. and Hu, Z. Q., 1998, “Structural Transition and Macro-segregation of Al-Cu Eutectic Alloy Solidified in the Electromagnetic Centrifugal Casting Process,” Metallurgical and Materials Transactions A, Vol. 29A, Jan., pp. 404-408. Zhou, P., Hom, J., Upadhya, G., Goodson, K. and Mouch, M., 2004, “Electro-kinetic Microchannel Cooling System for Desktop Computers,” Semiconductor Thermal Measurement and Management, 2004 IEEE Twentieth Annual IEEE (SEMI THERM) Symposium, Mar. 9-11, pp.26-29.id NH0925311002 sid 863778 cfn 0 / id NH0925311003 auc 林士涵 tic 嵌入式CPLD於光碟機伺服系統之實現 adc 陳建祥 博士 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 48 kwc 光碟機 abc 本文重點在於利用複雜型可規劃邏輯晶片(Complex Programmable Logic Device, CPLD)整合光碟機四個伺服系統,包含聚焦伺服、定軌伺服、尋軌伺服與主軸馬達伺服,並搭配周邊電路作控制力的輸出,以建構一數位化的光碟機伺服系統實驗平台。 tc 論 文 中 文 摘 要 I Abstract .II 誌 謝 辭 III 第一章 緒論 1 1.1 背景說明與研究動機 1 1.2 文獻回顧 2 1.3 本文架構 2 第二章 系統描述 4 2.1 光碟機硬體系統簡介 4 2.2 光碟機伺服系統概述 5 2.2.1 聚焦伺服控制系統[1 ] 5 2.2.2 定軌伺服控制系統[1 ] 6 2.2.3 多重取樣速率(multi-sampling-rate)相位領先-落後控制器架構簡介 6 2.2.4 主軸馬達軌伺服控制系統[2 ] 7 2.2.5 長跨軌伺服控制系統[3 ] 8 2.2.6 短跨軌伺服控制系統[4 ] 10 第三章 實驗系統架構 12 3.1 實驗系統架構 12 3.2 實驗設備介紹 13 3.3 實驗模組之電路規劃[1 ] 18 3.3.1 焦伺服模組[1 ] 18 3.3.2 定軌伺服模組[1 ] 22 3.3.3 長跨伺服系統[3 ] 22 3.3.4 短跨伺服系統[4 ] 26 3.3.5 主軸伺服系統(Spindle Servo System)[2 ] 29 第四章 實驗結果與討論 33 4.1 聚焦實驗結果 33 4.2 定軌實驗結果 34 4.3 尋軌實驗結果 35 4.4 主軸馬達實驗結果 43 4.5實驗結果討論 46 第五章 結論 47 5.1 本文貢獻 47 5.2未來發展之建議 47 參考文獻rf [1 ] 蔡福欽, 光碟機聚焦與定軌伺服控制晶片之設計與實作-國立清華大學動力機械工程學系碩士論文,2002年。 [2 ] 王信博, 光碟機之主軸控制晶片之設計與實作-國立清華大學動力機械工程學系碩士論文,2000年。 [3 ] 林建峰, 光碟機之伺服控制晶片設計與實作-國立清華大學動力機械工程學系碩士論文,1999年。 [4 ] 黃建銘, 光碟機短程尋軌伺服控制晶片設計與實作-國立清華大學動力機械工程學系碩士論文,2001年。 [5 ] 黃興生, 光碟機尋軌與主軸伺服控制晶片之設計與實作-國立清華大學動力機械工程學系碩士論文,2002年。 [6 ] CD-ROM Learning Kit, 太和科技編著,1998年初版。 [7 ] Quartus (Altera) Training Manual 2001,國家晶片系統設計中心,2001年。 [8 ] APEX DSP Development Board Data Sheet,CA,USA,ALTERA,2001年。id NH0925311003 sid 903745 cfn 0 / id NH0925311004 auc 江欣怡 tic 電熱式微致動器之結構設計與熱傳分析 adc 江國寧 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 89 kwc 致動器 kwc 熱致動器 abc 致動器(Actuator)為微機電系統元件之一,其驅動方式包含靜電驅動、壓電驅動、電磁驅動、電熱驅動及記憶合金。電熱式致動器因具有低操作電壓、製程容易、與積體電路相容等特性,且可應用陣列方式增加其位移與輸出力量。因此,在應用上具有相當大的發展空間。 rf [1 ] I. J. Busch-Vishniac, “The Case for Magnetically Driven Microactuators,“ Sensors and Actuators, Vol. 33, pp. 207-220, 1992 [2 ] K. Minami, S. Kawamura, and M. Esashi, “Fabrication of Distributed Electrostatic Micro Actuator (DEMA),” Journal of Microelectromechanical systems, Vol. 2, No. 3, pp. 121-127, 1993. [3 ] H. Toshiyoshi, H. Fujita, T. Kawai, and T. Ueda, “Piezoelectrically Operated Actuators by Quartz Micromachining for Optical Application,” IEEE Micro Electro Mechanical System Workshop, Fort Lauderdale, FL, USA, pp. 133-138, 1993. [4 ] R. Holzer, I. Shimoyama, and H. Miura, “Lorentz Force Actuation of Flexible Thin-Film Aluminum Microstructures,” IEEE, pp. 156-161, 1995. [5 ] B. Rashidian, and M. G. Allen, “Electrothermal Microactuators Based on Dielectric Loss Heating,” IEEE, pp. 24-29, 1993. [6 ] W. Huang, “On The Selection of Shape Memory Alloys for Actuators,” Materials and Design, Vol. 23, pp. 11-19, 2002. [7 ] H. L. Tuller, “Microactuators,” Kluwer Academic Publishers, 1998. [8 ] W. Riethmuller, and W. Benecke, “ Thermally Excited Silicon Microactuators,“ IEEE Trangsctions on Electron Devices, Vol. 35, No. 6, pp. 758-762, 1998. [9 ] M. Ataka, A. omodaka, N. Takeshima, and H. Fujita, “Fabrication and Operation of Polyimide Bimorph Actuators for a Ciliary Motion System,” Journal of Microelectromechanical systems, Vol. 2, No. 4, pp. 146-150, 1993. [10 ] H. Sehr, A. G. R. Evans, A. Brunnschweiler, G. J Ensell and T. E G Niblock, “Fabrication and Test of Thermal Vertical Bimorph Actuators for Movement in The Wafer Plane,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 306-310, 2001. [11 ] J. W. Judy, T. Tamagawa, and D. L. Polla, “Surface Micromachined Linear Thermal Microactuator,” IEEE, pp. 629-632, 1990. [12 ] H. Guckel, J. Klein, T. Christenson, K. Skrobis, M. Laudon, and E. G. Lovell, “Thermo-Magnetic Metal Flexure Actuators,” IEEE, pp. 73-75, 1992 [13 ] J. H. Comtois, and Victor M. Bright, “Application for Surface-Micromachined Polysiliccon Thermal Actuators and Arrays,” Sensors and actuators A Vol. 58, pp.19-25, 1997. [14 ] M. Pai, and N. C. Tien, “Low Voltage Electrothermal Vibromotor for Silicon Optical Bench Applications,” Sensors and Actuators A Vol. 83, pp.237-243, 2000. [15 ] C. S. Pan, and W. Hus, “An Electro-Thermally and Laterally Driven Polysilicon Microactuator,” Journal of Micromechanics and Microengineering, Vol. 7, pp. 7-13, 1997 [16 ] Q.-A. Huang, and N. K. S. Lee, “Analytical Modeling and Optimization for a Laterally-Driven Polysilicon Thermal Actuator,” Microsystem Technologies, Vol. 5, pp. 133-137, 1999. [17 ] Y. B. Gianchandani, and K. Najafi, “Bent-Beam Strain Sensors,” Journal of Microelectromechanical Systems, Vol. 5, No. 1, pp. 52-58, March, 1996. [18 ] L. Que, J.-S. Park, and Y. B. Gianchandani, “Bent-Beam Electro-Thermal Actuators for High Force Applications,” IEEE Conf. On Micro Electro Mechanical System, Orlando, FL, pp. 31-36, 1999 [19 ] J. Park, L.Chu, E. Siwapornsathain, A. Oliver, and Y. Gianchandani, “Long Throw and Rotary Output Electrothermal Actuators Based on Bent-Beam Suspensions, ” IEEE Conf. On Micro Electro Mechanical System, Japan, pp.680-685, 2000. [20 ] M. J. Sinclair, “A High Force Low Area MEMS Thermal Actuator,” IEEE Inter Society Conference on Thermal Phenomena, pp. 127-132, 2000. [21 ] P. Lerch, C. K. Slimane, B. Romanowicz, and P. Renaud, “Modelization and Characterization of Asymmetrical Thermal Microactuators, ” Journal of Micromechanics and Microengineering, Vol. 6, pp. 134-137, 1996. [22 ] L. Lin, and M. Chiao, “Electrothermal Responses of Lineshape Microstructures, ” Sensors and Actuators A Vol. 55, pp.35-41, 1996. [23 ] M. Huja, and M. Husak, “Thermal Microactuators for Optical Purpose, ” IEEE International Conference on Coding and Computing, pp. 137-142, 2001, Las Vegas, NV, USA. [24 ] C. T. Peng, and K. N. Chiang, “Overview of Multilayered Thin Film Theories for MEMS and Electronic Packaging Applications, ” IEEE Inter Society Conference on Thermal Phenomena, pp. 1058-1065, 2002, San Diego, USA. [25 ] K. M. Chen, K. H. Horng, and K. N. Chiang, “Coplanarity Analysis and Validation of PBGA and T2-BGA Packages, ” Finite Elements in Analysis and Design, Vol. 38, pp.1165-1178, 2002. [26 ] Q. A. Huang, and N. K. S. Lee, “Analysis and Design of Polysilicon Thermal Flexure Actuator,” Journal of Micromechanics and Microengineering, Vol. 9, pp.64-70, 1999. [27 ] ANSYS Menu, “Thermal-Electric Element” Ch11. Table of Contents Theory Reference 5.5 1998 [28 ] A. F. Mills, “Heat Transfer,” Second Edition, Prentice Hall, U.S.A., 1999. [29 ] A. Bejan, “Convection Heat Transfer,” Second Edition, John Wiley & Sons, Inc. 1995. [30 ] M. M. Yovanovich, “On The Effect of Shape, Aspect Ratio and Orientation upon Natural Convection from Isothermal Bodies of Complex Shape,” The Winter Annual Meeting of The ASME, HTD-Vol. 82, pp. 121-129, 1987 ,Boston, Massachusetts. [31 ] H. Kapels, R. Aigner, and J. Binder, “Fracture Strength and Fatigue of Polysilicon Determined by a Novel Thermal Actuator,” IEEE Transactions on Electron Devices, vol. 47, No. 7, pp.1522-1528, 2000. [32 ] I. S. Sokolnikoff, “Mathematical Theory of Elasticity,” Second Edition, Mcfraw-Hill, New York, 1956. [33 ] F. P. Incropera, and D. P. Dewitt, “Fundamentals of Heat and Mass Transfer,” Fourth Edition, John Wiley & Sons, Inc., New York, 1996. [34 ] W. B. Bickford, “Advanced Mechanics of Materials,” Addison Wesley, 1998. [35 ] G. K. Fedder, and R.T. Howe, “Thermal assembly of polysilicon microstructures, “ IEEE Micro Electro Mechanical Systems, pp. 63-68, 1991. [36 ] C. H. Pan, and S. Y. Tyan, “An electro-thermally driven microactuator with bilateral motion in plane and out-of-plane,” IEEE International Symposium on Micromechatronics and Human Science, pp. 135-142, 2001. [37 ] N. D. Mankame, and G. K. Ananthasuresh, “Comprehensive thermal modelling and characterization of an electro-thermal-compliant microactuator,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 452-462, 2001. [38 ] R. L. Boylestad, and L. Nashelsky, “Electronics: a survey of electrical engineering principles,” Fourth Edition, Prentice Hall, New Jersey, 1996. [39 ] M. Shikida, K. Kawasaki, and K. Sato, “Forming a rounded etched profile by using two-step anisotropic wet etching,” IEEE International symposium on micromechatronics and human science, pp. 95-100, 2000. [40 ] L. Que, J.-S. Park, and Y. B. Gianchandani, “Bent-Beam Electrothermal Actuators-Part I: Single Beam and Cascaded Devices,” Journal of Microelectromechanical Systems, Vol. 10, No. 2, pp. 247-254, June, 2001. [41 ] N. D. Mankame and G. K. Ananthasuresh, “Comprehensive Thermal Modelling and Characterization of An Electro-thermal-compliant Microactuator,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 452-462, 2001. [42 ] ANSYS Menu, “Analysis Procedures” Ch7. Table of Contents Theory Reference 5.5 1998 [43 ] P. Obreja, R. Muller, and M. Ghita, “Silicon Membranes Manufactured by Electrochemical Etch Stop Technique,” International Semiconductor Conference, CAS '99 Proceedings, Vol. 2, pp. 531-534, Sinaia, Romania.id NH0925311004 sid 903763 cfn 0 / id NH0925311005 auc 陳俊達 tic 正交疊層板[90度 ]層橫向裂縫的微觀應力分析 adc 蔣長榮 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 26 kwc 疊層板 kwc 橫向裂縫 kwc 應力強度因子 abc 在線彈性範圍下,裂縫前端附近的應力、應變和位移,均由應力強度因子K來決定,即K是應力應變場強度的度量,應力強度因子已被認可為評估材料或結構之壽命的依據。本文主要是考慮正交性的複合材料疊層板,含裂縫前端曲率半徑為有限值的中央裂縫,以微觀尺度來分析裂縫前端的應力強度因子K。所分析的裂縫分為兩類型,一類型是裂縫只穿過基材,另一類型則是裂縫穿過纖維及基材;利用ANSYS套裝軟體計算在不同位置的K值並且比較兩類在相同微觀位置時K值的差異。 rf 1. Cooper,G.A(1967), “Tensile Properties of Fiber-Reinforced Materials; Fracture Mechanics”, Journal of the Mechanics and Physics of Solids, Vol. 16, pp. 279-297. 2. Talreja, R., Ed.(1967),“Damage Mechanics of Composite Materials”, Composite Materials Series 9,Elsevier. 3. Waddoups, M.E.,Eisenmann, J.R. and Kaminski,B.E.(1971), “Marcoscopic Mechanics of Advanced Composite Meterials”, Journal of Composite Materials, Vol. 5,pp. 446-454,. 4. Sih, G. C. and Chen, E. P.(1973),“Fracture Analysis of Unidirectional Composite”, Journal of Composite Materials, Vol.7, pp.230-244. 5. Whitney, J. M. and Nuismer, R. J.(1974),“Stress Failure Criteria for Laminated Composites Containing Stress Concentrations”, Journal of Composite Materials, Vol. 8, pp.253-265. 6. Snyder, M. D. and Cruse, T. A.(1975),“Boundary-Integral Equation Analysis of Cracked Anisotropic Plates”, Internal Journal of Fracture, Vol.11, pp. 315-328. 7. M. Creager and P.C. Paris(1967), “Elastic Field Equations for Blunt Cracks with reference to the Stress Corrosion Cracking”,International Journal of Fracture, Vol.3, pp.247-252. 8. J. P. Benthem(1987), “Stress in the Region of Rounded Corners”,International Journal of Solids Structures, Vol.23, pp.239-252. 9. G. C. Sih, P. C. Paris and G. R. Irwin(1965), “On Cracks in Rectilinearly Anisotropic Bodies”,International Journal of Fracture, Vol.1, pp189-302,. 10.C. R. Chiang(1991), “Kinked Cracks in an Anisotropic Material”, Engineering Fracture Mechanics, Vol.39, pp.927-930. 11.C.R. Chiang(1995), “The Stress Field for a Blunt Crack in an Anisotropic Material”, International Journal of Fracture, Vol.68, R41-R46, 1994, and addendum:International Journal of Fracture, Vol.70, R99. 12.G. R. Irwin(1957), “Analysis of stresses and strains near the end of a crack traversing a plate.J. appl. Mech, Vol24, pp.361-364. 13.陳文華譯,基本工程破裂力學,國立編譯館,1995. 14.S.G.Lekhnitskii(1968),Anisotropic Plates, Gordon&Breach, New York. 15.C.R. Chiang(1991), “On The Stress Intensity Factors of Cracks Near an Interface between Two Media”, International Journal of Fracture 47:R55-R58. 16.C.R. Chiang(1991), “Stress Field Around a Rounded Crack Tip”, Journal of Applied Mechanics, Vol.58, pp.834-836. 17. C.R. Chiang(1999), “On Stress Concentration Factors In Orthotropic Materials”, Journal of the Chinese Institute of Engineers, Vol.22, No.3, pp.301-305.id NH0925311005 sid 903773 cfn 0 / id NH0925311006 auc 張明琅 tic 遠距監控於射出成形製程之應用 adc 王培仁 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 93 kwc 遠距操控 kwc 開放式可程式控制器 kwc 三層式網路遠距監控系統 abc 中文摘要 tc 目 錄 中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝辭 Ⅲ 目 錄 Ⅳ 圖目錄 Ⅵ 表目錄 Ⅷ 第一章 緒論 1 1.1前言 1 1.2 研究動機 5 1.3 問題描述及研究目的 7 第二章 文獻回顧 14 2.1 遠距操作系統 14 2.2 網際網路遠距監控系統 17 第三章 研究方法 24 3.1 網路遠距監控構想 24 3.2 三層式網路遠距監控架構 25 3.3 實用系統建構差異 26 3.4 PC_Based三層式網路架構 26 3.5 研究規劃與分析 27 3.6 控制系統規格 33 3.7 驗證系統規劃製作 33 3.8 可程式控制器運作原理 35 3.9 開放性架構與SoftPLC 36 3.10 WinPc32圖控系統 36 3.11 控制邏輯規劃 41 3.12 人機介面規劃 41 3.13 網路實驗規劃 42 第四章 遠距連線實驗 73 4.1 實驗運作架構 74 4.2 實驗結果 75 4.3 讀取速度改善 76 4.4 綜合說明 77 第五章 研究結果與討論 85 5.1 與三層式網路架構之差異 87 5.2 研究貢獻 87 5.3 結論與建議 88 5.4 未來工作 89 參考文獻 90 圖目錄 圖1.1 可程式控制器基本架構 13 圖1.2 MS_DOS遠距監控架構 13 圖2.1 雙向遠距操作系統架構[16 ][21 ] 21 圖2.2 MERCURY PROJECT系統組成[20 ]……………………… 21 圖2.3 五層系統工程圖[41 ]……………………………………………. 22 圖2.4 系統驗證平台硬體[41 ]…………………………………………. 22 圖2.5 系統模組運作流程圖[41 ]………………………………………. 23 圖3.1 二層式網路系統架構[11 ]………………………………………. 43 圖3.2 三層式網路系統架構[11 ]………………………………………. 43 圖3.3 實用系統架構差異……………………………………………… 44 圖3.4 捷準公司_三層式網路硬體架構[廠商型錄 ]…………………. 44 圖3.5 歸納之三層式網路硬體架構…………………………………... 45 圖3.6 FT-60射出成形機及射出製品[廠商型錄 ]……………………. 45 圖3.7 射出成形機控制系統研究分析流程…………………………... 46 圖3.8 射出成形機作動順序圖[廠商技術資料 ]……………………… 46 圖3.9 射出成形機壓力控制順序圖[廠商技術資料 ]………………… 47 圖3.10 射出成形機速度控制順序圖[廠商技術資料 ] 47 圖3.11 射出成形機動作流程新規劃…………………………………... 48 圖3.12 射出成形機油壓迴路[廠商技術資料 ]………………………… 48 圖3.13 油壓動力單元迴路……………………………………………… 49 圖3.14 調模單元油壓迴路……………………………………………… 49 圖3.15 鎖模單元油壓迴路……………………………………………… 50 圖3.16 頂出單元油壓迴路……………………………………………… 50 圖3.17 中子抽蕊單元油壓迴路………………………………………… 51 圖3.18 座進單元油壓迴路……………………………………………… 51 圖3.19 計量單元油壓迴路……………………………………………… 52 圖3.20 射出單元油壓迴路……………………………………………… 52 圖3.21 WinPrgC800控制介面………………………………………….. 53 圖3.22 控制器子板硬體………………………………………………… 53 圖3.23 射出成形機極限開關及操作面板……………………………... 54 圖3.24 對應模擬單元及操作面板……………………………………… 54 圖3.25 完成之射出成形模擬裝置……………………………………… 55 圖3.26 可程式控制器內部運作循環…………………………………… 55 圖3.27 虛擬裝置運作模式[44 ]…………………………………………. 56 圖3.28 SoftPLC軟體關連性[45 ]……………………………………….. 56 圖3.29 WinPc32軟體執行順序…………………………………… 57 圖3.30 WinPc32軟體系統功能結構…………………………………… 57 圖3.31 WinPc32軟體元件執行關係…………………………………… 58 圖3.32 WinPc32軟體執行流程圖……………………………………… 59 圖3.33 MMN條件設定與執行畫面……………………………………. 60 圖3.34 MMN 伺服端/客戶端控制點寫入設定……………………….. 60 圖3.35 MMN 伺服端/客戶端執行流程……………………………….. 61 圖3.36 射出成形操作與生產流程……………………………………… 62 圖3.37 人機介面規劃_操作面板……………………………………….. 63 圖3.38 人機介面規劃_主畫面………………………………………….. 63 圖3.39 人機介面規劃_溫控設定監視畫面……………………………. 64 圖3.40 人機介面規劃_溫控記錄畫面…………………………………. 64 圖3.41 人機介面規劃_射出設定監視畫面……………………………. 65 圖3.42 人機介面規劃_射出記錄畫面…………………………………. 65 圖3.43 人機介面規劃_系統參數設定畫面……………………………. 66 圖3.44 人機介面規劃_狀態單元畫面…………………………………. 66 圖3.45 人機介面規劃_密碼保護單元畫面……………………………. 67 圖3.46 網路連線實驗規劃……………………………………………… 67 圖3.47 區域網路連線實驗規劃………………………………………… 68 圖3.48 廣域網路連線實驗規劃………………………………………… 68 圖4.1 遠距信號傳輸實驗結果_MMN………………………………… 78 圖4.2 遠距連線實驗規劃……………………………………………… 79 圖4.3 溫控實驗結果_MMN…………………………………………… 80 圖4.4 計量實驗結果_MMN…………………………………………… 80 圖4.5 射出實驗結果_MMN…………………………………………… 81 圖4.6 遠距射出操作實驗結果_影像確認_MMN……………………. 81 圖4.7 遠距計量操作實驗結果_影像確認_MMN……………………. 82 圖4.8 信號讀取速率改善_ SCADA…………………………………... 83 表目錄 表3.1 FT-60射出成形機規格…………………………………….…….. 69 表3.2 PC_Based控制器硬體規格……………………………………… 70 表3.3 WinPc32軟體規格……………………………………………….. 71 表3.4 WinPc32軟體規格(續1)………………………………………… 72 表3.5 【I】點規劃………………………………………………………… 72 表4.1 網路傳輸速度比較表…………………………………………….. 84rf 參考文獻 [1 ] 劉坤達編著,民國76年11月,”可程式控制器原理入門”,第三波,pp. 1~10。 [2 ] 范逸之,鐘裕亮,民國90年6月,”遠端振動監測之應用與實務”,機械工業雜誌,pp. 141~147。 [3 ] 黃榮堂,陳正光,陳雙源,李逸群,民國90年12月,”遠距診斷維修系統”,機械月刊,pp. 294~304。 [4 ] 唐鴻儒,陳虹,丁偉,民國91年8月,”網路環境下現場智能設備計時維修系統研究”,機電整合雜誌,轉載大陸測控技術月刊,pp. 81~87。 [5 ] 鄭振東,民國89年1月,”資訊通訊時代的新技術”,機電整合雜誌,pp. 143~149。 [6 ] R. Sommer著,蔡振祥譯,民國88年9月,”工業通訊系統的未來趨勢”,機電整合雜誌,pp. 92~98。 [7 ] 劉文帥,民國91年1月,”Moxa揮軍工業乙太網路市場”, 機電整合雜誌,pp. 100~104。 [8 ] 陳仁欽,民國92年,”視訊串流流量控制與封包遺失保護的設計”,台灣大學資訊工程研究所碩士論文。 [9 ] 黃宜正,陳保元,民國89年4月,”PC_Based 工廠自動化創新暨簡易之網際網路通訊安全設計技術”,機電整合雜誌,pp. 156~161。 [10 ] 高蕙玲,民國92年,”動態偵測監控資料庫系統之管理”,台中健康暨管理學院資訊科技與管理研究所所碩士論文。 [11 ] 何彥緯,民國89年,”應用於射出成形之三層式網路架構遠端監控系統”,清華大學動力機械系碩士論文。 [12 ] B. Hannaford and P. Fiorini (1988), ”A Detailed Model of Bi-lateral Teleoperation,” Proceedings of the 1988 IEEE International Conference, Volume1, pp. 117~121. [13 ] 陳俊良,民國92年,”時間延遲下遙控機器人系統之雙向控制策略”,交通大學機械工程研究所碩士論文。 [14 ] P. I. Corke (1996), ”A Robotics Toolbox for MATLAB,” IEEE Robotics & Automation Magazine,Volume3(1), pp. 24~32. [15 ] T. B. Sheridan (1993), ”Space Teleoperation Through Time Delay: Review and Prognosis,” IEEE Trans. on Robotics and Automation,Vol. 9, No. 5,pp. 592~606. [16 ] C. P. Sayers, R. P. Paul, and L. L. Whitcomb (1998), ”Teleprogramming for Subsea Teleoperation Using Acoustic Comunication,” IEEE J. of Oceanic Engn.,Vol. 23, No. 1, pp. 60~71. [17 ] D. B. Stewart and D. E. Schmitz, and P. K. Khosla (1990), ” Implementing Real-Time Robotic Systems Using CHIMERA II,” Proceedings of the IEEE International Conference on Robotics and Automation, pp.598~603. [18 ] R. J. Anderson, (1995) ”SMART: A Modular Control Architecture for Telerobotics,” IEEE Robotics and Automation Magazine, pp. 10~18. [19 ] P. Fiorini, H. Seraji, and M. Long (1997), ”A PC-Based Configuration Controller for Dexterous 7-DOF Arms,” IEEE Robotics and Automation Magazine, pp. 30~38. [20 ] K. Goldberg, M. Mascha, S. Gentner, N. Rothenberg, C. Sutter, and J. Wiegley (1995), ”Desktop Teleoperation via the Word Wide Web,” IEEE Int. Conf. on Robotics and Automation, pp. 654~659. [21 ] J. Kikuchi, K. Takeo, and K. Kosuge (1998), ”Teleoperation System via Computer Network for Dynamic Environment,” IEEE Int. Conf. on Robotics and Automation, pp. 3534~3539. [22 ] N. Xi and T. J. Tarn (1999), ”Action Synchronization and Control of Internet Based Telerobotic System,” IEEE Int. Conf. on Robotics and Automation, pp. 219~223. [23 ] 超鼎科技公司,民國89年4月,”Lab-LINK中文圖控系統”,機電整合雜誌,pp. 62~65。 [24 ] 林正鄰,黃志鵬,陳柏年,楊榮彰,民國90年8月,”利用Citect在稼動率分析之應用”,機電整合雜誌,pp. 78~82。 [25 ] 曾逸敦,林治中,民國91年10月,”以JAVA開發自動化系統之人機介面”,機電整合雜誌,pp. 154~168。 [26 ] 曾郁中,梁順欽,魏忠必,民國90年1月,”圖控軟體規劃與設計”,機電整合雜誌,pp. 100~108。 [27 ] 黃榮堂,龍仁光、彭士杰,蘇金練,民國90年9月,”人機介面編集器與PLC連線”,機電整合雜誌,pp. 78~88。 [28 ] 龍仁光,廖振能,劉全豐,民國89年3月,” 二層式可程式控制器網路系統之應用”,機電整合雜誌,pp. 176~187。 [29 ] 曾郁中,魏忠必,民國90年6月,”電腦對可程式控制器監控架構之探討”,機電整合雜誌,pp. 93~97。 [30 ] 龍仁光,許盟昇,林嘉文,民國90年1月,”Internet 遠端監控單軸定為伺服系統”,機電整合雜誌,pp. 50~58。 [31 ] 龍仁光,賴俊良,江正倫,民國91年9月,”人機介面與Ethernet網路之應用技術”,機電整合雜誌,pp. 104~112。 [32 ] 李武鉦,嚴家銘,民國91年5月,”全球資訊網的集中控制式遠端監控器”,機電整合雜誌,pp. 81~89。 [33 ] 龍仁光,賴俊良,民國91年2月,”PLC網路結合TCP/IP轉換器於工業控制之應用”,機電整合雜誌,pp. 82~88。 [34 ] 葉芳,民國88年5月,”應用Internet技術的機器-WEB基礎的監視系統”,機電整合雜誌,pp. 98~105。 [35 ] 曾郁中,魏忠必,梁舜欽,民國89年10月,”可程式網路監控應用在輸卸煤控至系統之探討”,機電整合雜誌,pp. 148~153。 [36 ] 郭中豐,方建洲,杜弘民,民國93年2月,”整合企業網路與生產資源於中央監控系統”,國科會專題研究報告。 [37 ] 龍仁光,林敬文,賴俊良,民國90年10月,”網路控制_Router與Ethernet網路之應用”,機電整合雜誌,pp. 73~82。 [38 ] 龍仁光,李德淵,林義雄,民國89年10月,”網路資料庫與可程式控制器網路系統應用於自動讀表”,機電整合雜誌,pp. 138~147。 [39 ] 日本AUTOMATION雜誌,晨白譯,民國89年5月,”開放式生產系統及其OPC”,機電整合雜誌,pp. 166~171。 [40 ] 龍仁光,徐銘鴻,許晉懷,游耀程,張齊文,民國91年1月,”工業控制器網路結合ASP資料庫在監控系統之應用研究”,機電整合雜誌,pp. 86~99。 [41 ] 高紹哲,民國91年,”網路動態系統平台之開發”,中正大學機械工程研究所碩士論文。 [42 ] 蔡佳仁,民國90年,”整合型監控系統之開發”,中山大學機械工程研究所碩士論文。 [43 ] 陳志明,民國89年,”遠端遙控機械手臂腹腔鏡手術系統”,中央大學機工程研究所碩士論文。 [44 ] 陳昭榮,林靖國,民國90年5月,”PC-Based開放式系統軟體架構概念”,機電整合雜誌,pp. 50~55。 [45 ] 巨騰科技公司,民國89年2月,”Open PLC 技術概要”,機電整合雜誌,PP58~63。 [46 ] 黃立增,民國90年5月,”網路自動化(e-Automation)控制平台--SoftPLC”,機電整合雜誌,PP68~75。 [47 ] 捷準科技公司,民國93年5月,”WinPc32使用手冊”。id NH0925311006 sid 903795 cfn 0 / id NH0925311007 auc 李詩雯 tic 微型液氣分離器之設計與製作 adc 王訓忠教授 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 英文 pg 40 kwc MEMS kwc bubble kwc separator kwc DMFC abc   本論文提出一具多方向性排氣能力之微型液氣分離器設計,並以微積電製程製作,本設計主要包括一上面佈滿斥水性孔洞之反應槽,以及相間排列的寬窄流道,其中寬流道及其內的排氣孔為斥水性,而窄流道為親水性,以利用毛細現象將液體回收,本設計被成功的製作完成並逹成多方向性排氣,及回收液體之要求.該液氣分離器可應用於處理微型直接甲醇燃料電池陽極副產物(CO2 bubbles)之排除,或任何需要排除氣泡之系統. tc Abstract ------------------------------------------------- 1 Acknowledgements ----------------------------------------- 2 1. Introduction 1.1 Background and Motivation ---------------------------- 7 1.2 Literature Survey on Bubble Separators -------------- 10 1.3 Objectives ------------------------------------------ 15 2. Design Concept and Theory Background 2.1 Effect of Miniaturization on Force ------------------ 16 2.2 Surface Tension Theory and Contact Angle ------------ 17 2.3 Young-Laplace Equation ------------------------------ 18 3. Design and Fabrication of Bubble Separator 3.1 Bubble Separator Design ----------------------------- 21 3.2 Fabrication Process --------------------------------- 23 4. Experimental Results and Discussion 4.1 Preliminary Experimental Method --------------------- 28 4.2 Experimental Results for Bubble Separator ----------- 30 4.3 Discussion ------------------------------------------ 36 5. Conclusions and Future Work -------------------------- 38 References ---------------------------------------------- 39rf [1 ] http://americanhistory.si.edu/csr/fuelcells/ [2 ] P. Argyropoulos, K. scott, and W.M. Taama, “Carbon dioxide evolution patterns in direct methanol fuel cells”, Electrochimica Acta 44, pp. 3575-3584, 1999 [3 ] Luft, et al. US Patent, Patent No. 6,509,112 B1 [4 ] W. Preidel, Erlangen (DE) US Patent, Patent No. 20030145730 A1 [5 ] W. Herdeg, et al. US Patent, Patent No. 6,403,243 [6 ] J.-H. Tsai and L. Lin, “Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump”, Sensors and Actuators, A97-98, pp. 665-671, 2002. [7 ] D.-S. Meng, J. Kim, and C.J. Kim, “A distributed gas breather for micro direct methanol fuel cell” Proc. IEEE Int. Conf. Micro Electro Mechanical System (MEMS 2003), Kyoto, Japan, pp. 534-537, 2003. [8 ] D-S. Meng, T. Cubaud, C. M. Ho, and C.J. Kim, “A membrane breather for micro fuel cell with high concentration methanol”, Solid-State Sensor, Actuator and Microsystems Workshop Hilton Head Island, South, Carolina, June 6-10, 2004. [9 ] http://www.ices.cmu.edu/amon/Projects/Summaries/micro_power.html [10 ] S.-C. Yao, private communication, 2003. [11 ] D.J. Yao, private communication, 2004. [12 ] M. M. Mench, S. Boslet, S. Thynell, J. Scott, and C.Y. Wang, "Experimental study of a direct methanol fuel cell", in Proc. of the symposium on direct methanol fuel cells, the 199th Electrochemical Society Proceedings Series, Princeton, NJ, 2001. [13 ] D. Kim, E.A. Cho, S.A. Hong, I.H. O,and Y. Ha, “Recent progress in passive direct methanol fuel cells at KIST”, Journal of Power Sources, pp. 172-177, 2004. [14 ] G. Gamow, and J. M. Cleveland, Physics, 2nd, pp. 362~pp367, 1969 [15 ] http://hyperphysics.phy-astr.gsu.edu/hbase/surten.html [16 ] 吳友仁編, 物理基礎觀念第二冊, 東江圖書公司印行, pp. 134-137, pp. 147-148, 1991. [17 ] http://www3.interscience.wiley.com:8100/legacy/college/cutnell/04711518 31/ste/ste.pdf [18 ] D. S. Kim, K. C. Lee, T. H. Kwon, and S.S. Lee, “Micro-channel filling flow considering surface tension effect”, Journal of Micromechanics and Microengineering, pp. 236-246, 2002.id NH0925311007 sid 913701 cfn 0 / id NH0925311008 auc 張家銘 tic 離心式渦輪幫浦葉片設計與分析系統 adc 蔣小偉 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 94 kwc 渦輪幫浦 kwc 葉輪 kwc 揚程 kwc 淨正吸水頭 abc 本論文為研究一套從設計到分析渦輪幫浦葉片的系統,提供設計者相關的理論背景、設計方式和模擬流場分析的最佳方法。 rf [1 ] Liu, S., Nishi, M., Yoshida, k., “Impeller Geometry Suitable for Mini Turbo-Pump”, ASME, J. F. Eng., 123, pp.500-506, 2001. [2 ] Stepnnoff, A. J., “Centrifugal and Axial Flow Pumps”, 2nd ed, John Wiley & Sons, Inc, New York, 1957. [3 ] Tanaka, K., Ohashi, H., “Performance of Centrifugal Pumps at Low Reynolds Number”, Trans. Jpn. Soc. Mech. Eng., Ser. B, 50, No. 449, pp. 279-285, 1984. [4 ] Engeda, A., Rautenberg, M., “Partial Flow Performance Comp- arisons of Semi-open and Closed Centrifugal Impellers”, Imec- hE, C334/88, 1988. [5 ] Ishida, M., Senoo, Y., “On the Pressure Losses Due to the Tip Clearenceof Centrifugal Blowers”, ASME J. Eng. Gas Turbines Power, 103, pp.271-278, 1981. [6 ] Japikse, David, Marscher, William D., Furst, Raymond B., “Centrifugal Pump Design and Performance”, Concepts ETI, Inc., 1997. [7 ] Senoo, Y., Ishida, M., “Pressure Loss Due to the Tip Clearance of Impeller Blades in Centrifugal and Axial Blowers”, ASME J. Eng. Gas Turbines Power, 108, pp. 32-35, 1986. [8 ] Senoo, Y., Ishida, M., “Deterioration of Compressor Performan- ce Due to Tip Clearance of Centrifugal Impellers”, ASME J. Tu- rbomach., 109, pp. 55-61, 1987. [9 ] JSME S008, “Performance Conversion Method for Hydraulic Turbines and Pumps”, 1989. [10 ] 黃博全,流體機械,曉園出版社,1989. [11 ] 蘇宗寶,離心式泵,徐氏基金會,1986. [12 ] 洪錡炫,渦輪增壓器性能分析與測試,清華大學,2003. [13 ] 傅彥菳,小型噴射引擎壓縮機性能提升分析研究,清華大學,2003. [14 ] 吳慶財,黃昆明,林英傑,離心泵性能分析與葉輪外型初步設計,金屬工業,第30卷,第六期,P.31∼37,1996. [15 ] Li, W.G., Su, F.Z., BI, Y.F. “Inverse Hydrodynamic Design and Experimental Studay on Centrifugal Oil Pump Impeller”, International Journal of Turbo and Jet Engines, 20, pp.255-266, 2003. [16 ] Blanco-Marigorta, E., Fernandez-Francos, J., Gonzalez-Perez, J., Santolaria-Morros, C., “Numerical Flow Simulation in a Centrifugal Pump With Impeller-Volute Interaction”, ASME 2000 Fluids Engineering Division Summer Meeting, June 11-15, 2000, Boston, Massachusetts. [17 ] Blanco-Marigorta, E., Fernandez-Francos, J., Parrondo-Gayo, J., Santolaria-Morros, C., “Numerical Simulation of Centrifu- gal pump”, ASME 2000 Fluids Engineering Division Summer Meeting, June 11-15, 2000, Boston. [18 ] Visser, F.C., Dijkers, R.J.H., Op de Woerd, J.G.H., “Numerical Flow-Field Analysis and Design Optimization of a High-Ener- gy First-Stage Centrifugal Pump Impeller”, Computing and Visualization in Science”, 2000. [19 ] Faulkner, L.L., Menkes, S.B., “Centrifugal Pump Clinc”, Mar- cel Dekker Inc., New York, 1981. [20 ] Van Os, M.J., Op de Woerd, J.G.H., Jonker, J.B., “A Paramet- eric Study of the Cavitation Inception Behavior of a Mixed- Flow Pump Impeller Using A Three-Dimensional Potential Flow Model”, ASME Fluids Engineering Division Summer Meeting, June22-26, 1997. [21 ] Karassik, I. J., Messina, J. P., Cooper, P., Heald, C. C., “Pump Handbook” 3rd ed, Mcgraw-Hill International Edition, 2001.id NH0925311008 sid 913702 cfn 0 / id NH0925311009 auc 黃慶祥 tic 下泌尿道系統流場量測與模擬分析之研究 adc 林昭安 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 英文 pg 60 kwc 下泌尿道系統 kwc 出口阻塞 kwc 非侵入式 kwc 尿道 kwc 壓力降 kwc 計算流體力學 kwc 尿流動力學 abc 膀胱出口阻塞症狀(BOO)是一種常見的老年疾病,而現今在臨床上的診斷依據卻又都是用非侵入式的檢測方式,這不僅影響病人的身心健康,還會有感染傳染病的危險。此計畫希望能夠透過實驗方式來驗證數值方法,發展一套非侵入式的診斷方法來協助醫師診斷膀胱出口阻塞症狀。 tc Title Acknowledgement Content………………………………………………………………i Nomenclature……………………………………………………… iii List of figures……………………………………………………v Abstract…………………………………………………………… vi Chapter 1 Introduction 1.1 Introduction……………………………………………… 1 1.2 Description of the lower urinary tract system…… 2 1.3 Methods of clinical examination and diagnosis … 5 1.4 Disadvantages of current diagnostic method ……… 6 1.5 Paper survey ……………………………………………… 6 1.6 Objective ………………………………………………… 11 Figures 13 Chapter 2 Mathematical Formulations 2.1 Governing equation ……………………………………… 19 2.2 Turbulence model ………………………………………… 20 2.3 Curvilinear coordinate system …………………………21 Chapter 3 Numerical Solution Procedure 3.1 Discretization …………………………………………… 25 3.2 Hybrid scheme ………………………………………………27 3.3 Linear equation system ………………………………… 28 3.4 SIMPLE algorithm ………………………………………… 29 3.5 Boundary conditions ………………………………………32 Chapter 4 Experimental Method 4.1 Experimental objective ………………………………… 32 4.2 Experimental model ……………………………………… 32 4.3 Experimental apparatus ………………………………… 34 4.4 Experimental procedure ………………………………… 35 4.5 Operating ranges of experiment…………………………36 Figures 37 Chapter 5 Result and Discussion 5.1 Grid independenttest………………………………………41 5.2 Comparisons of CFD predictions & measurement………42 Figures 47 Chapter 6 Conclusion and Future work 6.1 Conclusion ………………………………………………… 52 6.2 Future work …………………………………………………53 Appendix A Diagnostic method and Abrams-Griffiths nomogram……… 55 Reference ……………………………………………………… 57rf [1 ] Scott J.E. S., Clayton C.B., Dee P.M. and Simpson W., “A study of the female urethra. Experiments with models”,Journal of Urology, vol.96, pp.763-769, 1966. [2 ] Spangerg A., Terio H., Anders E. and Ask P., Quantification of urethral function based on Griffiths’ model of flow through elastic tubes”, Neurourol Urodynamics, vol.8, pp.29-52, 1989. [3 ] Lim CS, Abrams P., “The Abrams-Griffiths Nomogram”. World Journal of Urology, vol.13, pp.34-39, 1995. [4 ] Blaivas J.G., “Multichannel urodynamics studies in men with benign prostatic hyperplasia”, Indications and interpretation. Urol Clin North Am 17, pp.543-552, 1990. [5 ] Abrams P, Bruskewitz R, De la Rosette J, et al, “The diagnosis of bladder outlet obstruction”, Urodynamics. In Cockett ATK, Khoury S, Aso Y, et al(eds): Proceedings, the 3rd International Consultation on BPH. Geneva, World Health Organization, pp.299-367, 1995. [6 ] McGuire E.J., “Urodynamic studies in prostatic obstruction”, In Fitzpatrick J.M., Krane R.J. (eds): The Prostate. New York, Churchill Livingstone, pp.103- 109, 1989. [7 ] Bruskewitz R, Jensen KM-E, Ivversen P, et al, ”The relevance of minimum urethral resistance in prostation”, Journal of Urology vol.129, pp.769-771, 1983. [8 ] Schäfer W., “Detrusor as the energy source of micturition”, In Hinman F Jr, Boyarsky S (eds): Benign Prostatic Hypertrophy. New York, Springer Verlag, pp.450-469, 1983. [9 ] Schäfer W., “The contribution of the bladder outletto the relation between pressure and flow rate during micturition”, In Hinman F Jr, Boyarsky S (eds): Benign Prostatic Hypertrophy. New York, Springer Verlag,pp.470- 496, 1983. [10 ]Spangerg A., Terio H., Anders E. and Ask P.,” Quantification of urethral function based on Griffiths’ model of flow through elastic tubes”, Neurourol Urodynamics, vol.8, pp.29-52, 1989. [11 ]Spangerg, A., Terio H., Engberg A., and Ask P., ” Estimation of elastic properties in the urethral flow controlling zone by singnal analysis of urodynamic pressure/flow data”, Med. and Biol.Eng and Computing, vol.27 ,pp.314-321,1989. [12 ]James S. Walter, John S. Wheeler, Jr., Paul Zaszczurynski, and Michael Plishka, ”Urodynamic measure of urethral cross-sectional area: application for obstructive uropathy”, Neurourology and Urodynamics, vol.13, pp.571-586, 1994. [13 ]Hideo Ozawa, Hiromi Kumon, Teruhiko Yokoyama, Toyohiko Watanabe and Michael B. Chancellor, “Develop of noninvasive velocity flow video urodynamics using Doppler sonography. PARTII: Clinical application in bladder outlet obstruction”, Journal of Urology, vol.160, p1792-1796, 1998. [14 ]Ozawa, Hideo; Chancellor, Michael B.; Ding, Yew Yoong; Nasu, Yasutomo; Yokoyama, Teruhiko; Kumon, Hiromi, “Noninvasive urodynamic evaluation of bladder outlet obstruction using Doppler ultrasonography”, Urology, Vol.56, issue 3, pp.408-412, 2000. [15 ]Siroky M.B., Olsson C.A., Krane R.J., “The flow rate nomogram: I. Development”, Journal of Urology, vol.122, pp.665-668, 1979. [16 ]Haylen B.T., Parys B.T., Anyaebunam W.I., et al, “Urine flow rates in male and female urodynamics patient compared with the Liverpool nomograms”, Br Journal of Urology, vol.65, pp.483-487, 1990. [17 ]Harish S. Lecamwasam, Maryrose P. Subbarao V. Yalla, and Ernest G. Cravalho, “The flow regimes and the pressure-flow relationship in the canine urethra”, Neurourology and Urodynamics, vol.18, pp.521-541, 1999. [18 ]Comiter, Craig V.; Sullivan, Maryrose P.; Schacterle, Richard S.; Yalla, Subbarao V., “Prediction of prostatic obstruction with a combination of isometric detrusor contraction pressure and maximum urinary flow rate.”, Urology, vol.48, issue: 5, pp.723-730, 1996. [19 ]C.A. Taylor, “Computational fluid dynamics in cardiovascular surgery planning”, the 9th national conference on computational fluid dynamics, pp.1-4, 2002. [20 ]H. Liu, H. Iwase, T. Hayasaka, Y. He, N. Matsunaga, T. Shigetani and R. Himeno, “Image-based simulation of cardiovascular blood flow and its clinical application”, the 9th national conference on computational fluid dynamics, pp.15-22, 2002. [21 ]T. Yamaguchi, Tomoaki Hayasaka, Daisuke Mori, Hiroyuki Hayashi, Kouichiro Yano, Fumio Mizuno and Makoto Harazawa, “Towards computational biomechanics cardiovascular medical practice”, Proceedings of the Second International Conference on Computational Fluid Dynamics, pp.46-61, 2002. [22 ]楊承修, “根據醫學影像處理計算下泌尿道系統流場之研究”, 國立清華大學碩士論文, 2003. [23 ]K. C. Tan, K. L. Lau, Y. T. Ching, C. H. Yang and C. A. Lin, “Rectangular meshes construction and computational fluid dynamic analysis of the human urethra using computed tomographic images”, submitting to the 2nd Computer Graphics Workshop, 2003. [24 ]李豐銘, “下泌尿道系統非侵入式量測方法之研究”, 國立清華 大學碩士論文, 2002. [25 ]Launder, B. E. and Spalding, D. B., “The Numerical Computation of Turbulent Flow”, Computer Method in Applied Mechanics and Engineering, Vol.3, pp.269-289, 1974. [26 ]M. Peric, “A finite-volume method for the prediction of three-dimensional fluid flow in complex ducts”, Ph.D thesis, University of London, 1985. [27 ]Indeed - Visual Concepts, “Amira”, http://www.indeed3d.com/index.html. [28 ]黃仁政, “計算流體力學運用於泌尿系統臨床檢查可行性之研 究”, 國立清華大學碩士論文, 1999. [29 ]楊子慶, “泌尿系統內部壓力分佈研究”, 國立清華大學碩士論 文,2000id NH0925311009 sid 913703 cfn 0 / id NH0925311010 auc 黃興閎 tic 背向階梯流場之剪流層非穩態特性研究 adc 楊鏡堂 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 151 kwc 突張室 kwc 背向階梯 kwc 暫態 kwc 再接觸 kwc 分離流場 kwc 壁面噴流 kwc PIV kwc 頻譜 abc   背向階梯流場為最典型的邊界層分離後再接觸之流場(separated/ reattached boundary layer flow),於工程上有相當廣泛的應用,其穩態結構及各種應用之相關研究資料豐富,本文嘗試以不同於其他研究的觀點,利用五種不同階梯結構及含壁面噴流之背向階梯變化流場,進行PIV、流場觀測及壓力擾動等實驗量測,以暫態流場結構的觀點出發,分析不同流場造成基本構造的改變。實驗規劃以流場觀測作為流場暫態行為的依據,以PIV量測取得速度場及流場紊流性質,再以壓力擾動頻譜驗證流場中的結構變化特徵。 tc 目錄 摘要 I 目錄 III 圖表目錄 VII 符號說明 XI 第一章 前言 1 第二章 文獻回顧 4 2-1 基本背向階梯流場 4 2-2 含壁面噴流之背向階梯流場 7 2-3 背向階梯流場之暫態效應 8 2-4 粒子影像測速儀 12 2-5 本研究之定位 13 第三章 實驗設計 16 3-1 實驗設備與原理 16 3-1.1 供氣系統 16 3-1.2 風洞 17 3-1.3 兩軸定位平台 20 3-1.4 壁面噴流系統 21 3-1.5 粒子植入系統 22 3-1.6 流場觀測系統 23 3-1.7 壓力及頻譜量測系統 25 3-1.8 速度量測系統 26 3-2 實驗方法與參數 30 3-2.1 實驗項目 30 3-2.2 主要量測方法及參數 32 3-2.2.1 流場觀測 32 3-2.2.2 速度量測 33 3-2.2.3 壓力量測 33 3-2. 3 實驗總結 34 第四章 背向階梯流場之暫態結構 35 4-1 背向階梯流場之穩態結構 35 4-2 背向階梯流場之暫態結構 40 4-2.1 角落渦漩之結構變化 41 4-2.2 剪流層之渦流流逸 42 4-2.3 回饋噴流 45 4-3 整體暫態流場結構與壓力擾動頻譜 46 4-4 流場之極低頻訊號 50 4-5 綜合討論 52 第五章 階梯形狀對剪流層行為的影響 55 5-1 不同階梯階梯形狀之流場結構 55 5-1.1 Step2之流場結構 56 5-1.2 Step3之流場結構 61 5-1.3 Step4之流場結構 64 5-1.4 Step5之流場結構 69 5-2 壓力擾動頻譜 72 5-2.1 各流場之寬頻域壓力擾動頻譜比較 72 5-2.2 流場之低頻域擾動頻譜 77 5-3 剪流層厚度 79 5-4 綜合討論 80 第六章 壁面噴流對剪流層行為的影響 84 6-1 含壁面噴流背向階梯流場之結構改變 84 6-2 流場紊流特性 88 6-3 暫態流場結構 91 6-3.1 迴流模態A 91 6-3.2 迴流模態B 93 6-3.3 蒸散模態 94 6-4 壓力擾動頻譜分析 96 6-5 綜合討論 97 第七章 結論與未來展望 99 7-1 結論 99 7-2 未來展望 102 第八章 參考文獻 104 附錄A-0 壓力頻譜量測-頻譜校正 113 附錄A-1 壓力頻譜量測-step1 116 附錄A-2 壓力頻譜量測-step2 121 附錄A-3 壓力頻譜量測-step3 126 附錄A-4 壓力頻譜量測-step4 131 附錄A-5 壓力頻譜量測-step5 136 附錄B-0 壓力頻譜量測-頻譜校正 141 附錄B-1 壓力頻譜量測-迴流模態B 143 附錄B-2 壓力頻譜量測-蒸散模態 148 圖表目錄 表3-1 供氣系統設備性能列表 16 表3-2 冰水機性能一覽表 22 表3-3 PIV之量測參數表 33 表5-1 各種階梯之流場特徵 55 圖1-1 基本背向階梯流場結構示意圖 2 圖2-1 兩種冷卻方式示意圖:(1) 薄膜冷卻;(2) 蒸散冷卻 7 圖3-2 風洞測試區:(a) 實體圖(林彥夆,2003);(b) 示意圖 19 圖3-3 透明蓋板 20 圖3-4 可水平移動蓋板 20 圖3-5 TSI兩軸精密定位移動平台:(a) 斜視圖;(b) 後視圖 21 圖3-6 粒子植入系統:(a) 粒子產生器;(b) 粒子通入風洞之導管 23 圖3-7 流場觀測系統 24 圖3-8 HP 35670A頻譜分析儀 25 圖3-9 壓力及頻譜量測系統 26 圖3-10 PIV系統實體圖:(a) 電腦及雷射電源;(b) 雷射管與攝影機 29 圖3-11 五種不同階梯形狀(繪圖未依精確尺寸) 31 圖4-1 背向階梯流場之穩態結構 36 圖4-2 PIV量測-背向階梯平均流場 37 圖4-3 PIV量測-dU/dy等位線圖 37 圖4-4 PIV量測-vorticity等位線圖 38 圖4-5 PIV量測-紊流強度等位線圖 39 圖4-6 PIV量測- 等位線圖 40 圖4-7 背向階梯流場之暫態結構約略示意 41 圖4-8 角落渦漩之極限狀態 42 圖4-9 流場觀測-渦流配對及流逸 44 圖4-10 流場觀測-渦流配對 45 圖4-11 (a) 壓力擾動能量分布圖;(b) 壓力擾動分布圖 50 圖4-12 壓力擾動頻譜-再接觸區 52 圖4-13 壓力擾動頻譜-階梯角落 52 圖5-1 PIV量測-平均流場向量圖 56 圖5-2 PIV量測-紊流強度等位線圖 57 圖5-3 PIV量測- 等位線圖 58 圖5-4 PIV量測-vorticity等位線圖 58 圖5-5 流場觀測-step2之渦流流逸 59 圖5-6 角落渦漩之極限狀態:(a) 強勁小渦漩;(b) 微弱大渦漩 60 圖5-7 PIV量測-平均流場向量圖 62 圖5-8 PIV量測-vorticity等位線圖 62 圖5-9 PIV量測-紊流強度等位線圖 63 圖5-10 PIV量測- 等位線圖 63 圖5-11 角落渦漩之極限狀態:(a) 強勁小渦漩;(b) 微弱大渦漩 64 圖5-12 PIV量測-平均流場向量圖 65 圖5-13 PIV量測-vorticity等位線圖 66 圖5-14 PIV量測-紊流強度等位線圖 66 圖5-15 PIV量測- 等位線圖 66 圖5-16 角落渦漩之極限狀態:(a) 強勁小渦漩;(b) 微弱大渦漩 67 圖5-17 回饋噴流之終點與剪流層渦流之起點 68 圖5-18 PIV量測-平均流場向量圖 69 圖5-19 PIV量測-vorticity等位線圖 69 圖5-20 PIV量測-紊流強度等位線圖 70 圖5-21 PIV量測- 等位線圖 70 圖5-22 角落渦漩之極限狀態:(a) 強勁小渦漩;(b) 微弱大渦漩 71 圖5-23 step2流場:(a) 壓力擾動能量分布圖;(b) 壓力擾動分布圖 73 圖5-24 step3流場:(a) 壓力擾動能量分布圖;(b) 壓力擾動分布圖 74 圖5-25 step4流場:(a) 壓力擾動能量分布圖;(b) 壓力擾動分布圖 75 圖5-26 step5流場:(a) 壓力擾動能量分布圖;(b) 壓力擾動分布圖 76 圖5-27 極低頻壓力擾動訊號頻譜 78 圖5-27 各流場剪流層厚度變化圖 79 圖6-1 PIV量測-平均流場向量圖 86 圖6-2 PIV量測-平均流場渦度等位線圖 87 圖6-3 PIV量測-平均流場紊流強度等位線圖 89 圖6-4 PIV量測-平均流場雷諾剪應力等位線圖 90 圖6-5 流場觀測-迴流模態A 93 圖6-6 流場觀測-迴流模態B 94 圖6-7 流場觀測-蒸散模態 95 符號說明 dI  影像直徑(image diameter),Adrian(1991) dint  計算單元直徑(diameter of interrogation cell),Adrian(1991) E(f)  頻譜函數 f  頻率(Hz) F(n)  頻譜函數   位置之灰階值 h  階梯高度(m) H  階梯高度(m),Chun and Sung(1998) I  光強度(cd/m2) M  鏡組放大倍率(lens magnification),Adrian(1991) n   無因次頻率,fXR/U NS  粒子密度(source density),Adrian(1991) NI  影像密度(image density),Adrian(1991) p  壓力(N/m2) r  平面影像中的位置(m)   影像中粒子間之相對向量   相關函數(correlation function), 和 分別代表橫向和縱向位移的參數 Reh  Reynolds number,Uh/ν s  階梯高度,Huang and Fiedler(1997) StXR  Strouhal number,fXR/U StH  Strouhal number,fH/U,Chun and Sung(1998) t  時間(s) t*  無因次時間,Ut/s,Huang and Fiedler(1997)   x方向速度(m/s)   x方向速度平均速度(m/s)   x方向速度速度擾動量(m/s), x方向速度(m/s) U  自由流流速(m/s) U0  進口流流速(m/s)   y方向速度(m/s)   z方向速度(m/s) XR  迴流區長度(再接觸長度)(m) Δt  時間間隔(s) ΔX  x方向位移(m) Δz  雷射光頁厚度,Adrian(1991) μ  流體黏滯度(Ns/m2) ν  流體動力黏滯度,μ/?漶 ]m2/s) ?漶@ 流體密度(kg/m3) δs  分離點邊界層厚度(mm)   漩度(s-1)   渦度(s-1)   紊流強度(100%)rf Abbott, D. E., and Kline, S. J., “Experimental Investigation of Subsonic Turbulent Flow Over Single and Double Backward-facing Steps,” ASME Journal of Basic Engineering, Vol. 84D, 1962, pp. 317-325. Adams, E. W., and Johnston, J. P., “Flow Structure in the Near-Wall Zone of a Turbulent Separated Flow,” AIAA Journal, Vol. 26, 1988, pp. 932-939. Adrian, R. J., “Particle-Imaging Techniques for Experimental Fluid Mechanics,” Annual Review of Fluid Mechanics, Vol. 23, 1991, pp. 261-304 Adrian, R. J., “Scattering Particle Characteristics and Their Effect on Pulsed Laser Measurements of Fluid Flow; Speckle Velocimetry vs Particle Image Velocimetry,” Applied Optics, Vol. 23, No. 11, 1984, pp. 1690-1691 Adrian, R. J., “Statistical Properties of Particle Image Velocimetry Measurements in Turbulent Flow,” Laser Anemometry in Fluid Mechanics, 1998, pp. 115-29. Bradshaw, P., and Wong, F. Y. F., “The Reattachment and Relaxation of Turbulent Shear Layer,” Journal of Fluid Mechanics, Vol. 52, 1972, pp. 113-135. Brown, G. L., and Roshko, A., “On Density Effects and Large Structure in Turbulent Mixing Layers,” Journal of Fluid Mechanics, Vol. 64, Part 4, 1974, pp. 775-816. Chun, K. B., and Sung, H. J., “Visualization of Locally-Forced Separated Flow over a Backward-Facing Step,” Experiments in Fluid, Vol. 25, 1998, pp.133-142. Collier, Jr., F. S., and Schetz, J. A., “Injection into a Turbulent Boundary Layer through Different Porous Surfaces,” AIAA Journal, Vol. 22, No. 6, 1984, pp. 839-841. Driver, D. M., and Seegmiller, H. L., “Time Dependent Behavior of a Reattaching Shear Layer,” AIAA Journal, Vol. 25, 1987, pp. 914-919. Eaton, J. K., and Johnston, J. P., “A Review of Research on Subsonic Turbulent Flow Reattachment,” AIAA Journal, Vol. 19, 1981, pp. 1093-1100. Eaton, J. K., and Johnston, J. P., “Low Frequency Unsteadyness of a Reattaching Turbulent Shear Layer,” Turbulent Shear Flow 3, 1981, pp. 162-170. Eckert, E. R. G., and Cho, H. H., “Transition from Transpiration to Film Cooling,” International Journal of Heat and Mass Transfer, Vol. 37, Suppl. 1, 1994, pp. 3-8. Etheridge, D. W., and Kemp, P. H., “Measurement of Turbulent Flow Downstream of a Rearward-Facing Step,” Journal of Fluid Mechanics, Vol. 86, 1978, Pt. 3, pp. 545-566. Farabee, T. M., and Casarella, M. J., “Measurements of Fluctuating Wall Pressure for Separation/Reattached Boundary Layer Flows,” Journal of Vibration, Acoustic, Stress, and Reliability in Design, Vol. 108,1986, pp. 301-307. Ganji, A. R., and Sawyer, R. F., “Experimental Study of the Flowfield of a Two-Dimensional Premixed Turbulent Flame,” AIAA Journal, Vol. 18, No. 7, 1980, pp. 817-824. Giovannini, A., and Bortolus, N. V., “Heat Transfer in the Reattachment Zone downstream of a Backward-facing Step,” Revue Generale de Thermique, Vol. 37, 1997, pp. 89-102. Grant, I., “Particle Image Velocimetry: a Review,” Journal of Mechanical Engineering Science, Vol. 211, 1997, Part C, pp. 55-76. Hasan, M. A. Z., “The Flow over a Backward-Facing Step under Controlled Perturbation: Laminar Separation,” Journal of Fluid Mechanics, Vol. 238, 1992, pp. 73-96. Heenan, A. F., and Morrison, J. F., “Passive Control of Pressure Fluctuations Generated by Separated Flow,” AIAA Journal, Vol. 36, No. 6, 1998, pp. 1014-1022. Huang, H. T., and Fiedler, H. E., “A DPIV Study of a Starting Flow Downstream of a Backward-Facing Step,” Experiments in Fluids, Vol. 23, 1997, pp. 395-404. Isomoto, K., and Honami, S., “The Effect of Inlet Turbulence Intensity on the Reattachment Process Over a Backward-Facing Step,” Journal of Fluids Engineering, Vol. 111, 1989, pp. 87-92. Kim, J., Kline, S. J., and Jonston, J. P., “Investigation of a Reattaching Turbulent Shear Layer: Flow Over a Backward-Facing Step,” Journal of Fluids Engineering, Vol. 102, 1980, pp. 302-308. Kondoh, T., Nagano, Y., and Tsuji, T., “Computational Study of Laminar Heat Transfer Downstream of a Backward-Facing Step,” International Journal of Heat and Mass Transfer, Vol. 36, 1993, pp. 577-591. Le, H., Moin, P., and Kim, J., “Direct Numerical Simulation of Turbulent Flow over a Backward-Facing Step,” Journal of Fluid Mechanics, Vol. 330, 1997, pp. 349-374. Lee, S. C., “A New Law of Wall for Large-Eddy Simulation of Turbulent Flow with Wall Transpiration and Pressure Gradient,” Proceedings of the Twenty-third National Conference on Theoretical and Applied Mechanics, Hsinchu, Taiwan, Vol. 3, 1999, pp. 336-343 Lee, S. C., Yang, J. T., and Chao, Y. C., “Large Eddy Simulation of Transition from Transpiration to Film Cooling over the Backstep Flow,” Book of Abstracts PSFVIP-3, March 18-21, Maui, Hawaii, U.S.A., 2001, pp. 149-150. Mabey, D., “Analysis and Correlation of Data on Pressure Fluctuations in Separated Flow” Journal of Aircraft, Vol. 9, 1972. McGuinness, M., “Flow with a Separation bubble-Steady and Unsteady Aspects” Ph.D. dissertation, Cambridge University. Olson, R. M., and Eckert, E. R. G., “Experimental Studies of Turbulent Flow in a Porous Circular Tube with Uniform Fluid Injection through the Tube Wall,” Journal of Applied Mechanics, Vol. 33, 1966, pp. 7-17. Pickering, J. D., and Halliwell, N. A., “Speckle Photography in Fluid Flows: Signal Recovery with Two-Step Processing,” Applied Optics,Vol. 23, No. 8, 1984, pp. 1128–1129 Scarano, F., Benocci, C., and Riethmuller, M. L., “Pattern Recognition Analysis of the Turbulent Flow Past a Backward Facing Step,” Physics of Fluids, Vol. 11, No. 12, 1999, pp. 3808-3818. Simpson, R. L., “Turbulent Boundary Layer Separation,” Annual Review of Fluid Mechanics, Vol. 21, 1989, pp. 205-234. Spazzini P. G., Iuso, G., Oronato, M., and Mole, A., “DPIV Analysis of Turbulent Flow over a Back-Facing Step,” Proceedings of the 8th International Symposium on Flow Visualization, Paper 238, Sorrento, Italy, 1998. Smyth, R., “Turbulent Flow Over a Plane Symmetric Sudden Expansion,” ASME Journal of Fluid Engineering, Vol. 101, No. 3, pp. 348-353. Troutt, T. R., Scheelke, B., and Norman, T. R., “Organized Structure in a Reattaching Separated Flow Field,” Journal of Fluid Mechanics s, Vol. 143, 1984, pp. 413-427. Tsou, F. K., Chen, S. J., and Aung, W., “Starting Flow and Heat Transfer Downstream of a Backward-Facing Step,” Journal of Heat Transfer, Vol. 113, 1991, pp. 583-589. Wu, C. Y. Y., Yang, J. T., and Yang, H. T., “Effects of Inlet Configuration on Ignition and Fuel Regression Behind a BackStep,” AIAA Journal, Vol. 13, No. 6, 1997, pp. 714-720. Yang, J. T., Gu J. D., and Ma W. J., “Transient Cooling Effect by Wall Mass Injection After Backstep in High Temperature Flow Field,” International Journal of Heat and Mass Transfer, Vol. 44, 2001, pp. 843-855. Yoshioka, S., Obi, S., and Masuda, S., “Organized Vortex Motion in Periodically Perturbed Turbulent Separated Flow over a Backward-facing Step,” International Journal of Heat and Fluid Flow, Vol. 22, 2001, pp. 301-307. Yang, J. T., Tsai, B. B., and Tsai, G. L., “Separated-Reattaching Flow over a Backstep with Uniform Normal Mass Bleed,” Journal of Fluids Engineering, Vol. 116, 1994, pp. 29-35. 林彥夆,突張室之冷卻增益機制研究,國立清華大學動力機械工程學系碩士論文,2003。 李世昭,背向階梯流場模擬與側向噴流混合效應之大渦模擬分析,國立清華大學動力機械工程學系博士論文,2002。 馬萬鈞,分離流場之蒸散冷卻現象研究,國立清華大學動力機械工程學系博士論文,2000。 蘇裕傑,高溫分離流場之壁面蒸散冷卻暫態研究,國立清華大學動力機械工程學系碩士論文,2001。id NH0925311010 sid 913711 cfn 0 / id NH0925311011 auc 管政綱 tic 平板式熱管熱傳之實驗研究 adc 許文震 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 64 kwc 平板式熱管 kwc 毛細結構 kwc 電子熱傳 kwc 觀測 abc 熱管用於電子熱傳相當廣泛,其概念是利用相變化時的潛熱,將熱大量的從熱管接觸熱源的一端(蒸發端)傳遞到散熱的另一端(冷凝端)。 tc 目錄 摘要 I ABSTRACT II 誌謝 I 目錄 IV 圖目錄 V 第一章 緒論 1 1 – 1 研究動機 1 1 – 2 研究目的 3 1 – 3 文獻回顧: 4 第二章 理論分析 7 2 – 1 熱管基本特性 7 2 – 2 熱管的限制界限 8 第三章 實驗設備 13 3 – 1 真實試片實驗設備 13 3 – 2 觀測試片實驗設備 14 第四章 真實試片實驗結果與討論 16 第五章 觀測試片實驗結果與討論 18 5 – 1 觀測試片內流體為水 18 5 – 1 - 1 觀測試片內部為銅粉燒結的毛細結構 18 5 – 1 – 2 觀測試片內部為純銅 20 5 – 2觀測試片內流體為甲醇 22 5 – 2 – 1觀測試片內部為銅粉燒結的毛細結構 22 5 – 2 – 2 觀測試片內部為純銅 23 5 – 3 觀測試片之綜合結果與討論 23 第六章 結論與未來研究方向 27 6 – 1 結論 27 6 – 2 未來研究方向 28 參考文獻 31 附錄一 64rf 1. C. Belady, 2001, “Cooling and Power Consideration for Semiconductors into the Next Century,” proceedings of the international symposium on Low power electronics and design, Huntigton Beach, California, United States, pp. 100-105. 2. R. Viswanath, V. Wakharkar, A. Watwe, and V. Lebonheur, 2000, “Thermal Performance Challenges from Silicon to Systems,” Intel Technology Journal Q3, pp. 1-16. 3. P. Tadayon, 2000, “Thermal Challenges During Microprocessor Testing,” Intel Technology Journal Q3, pp. 1-8. 4. R. S. Gaugler, 1944, “Heat Transfer Devices,” Patent U.S. 2,350,348. 5. 依日光譯著, 1986, 「熱管技術理論實務」, 日本熱管技術協會編. 6. T. P. Cotter, 1984, “Principles and Prospects for Micro Heat Pipe,” Proc.5th Int. Heat Pipe Conf., Tsukuba, Japan, pp. 328-335. 7. B. R. Babin, G. P. Peterson, and D. Wu, 1990, “Steady-State Modeling and Testing of a Micro Heat Pipe,“ ASME Journal of Heat Transfer, Vol. 112, pp. 595-601. 8. G. P. Peterson, A. B. Duncan, and M. H. Weichold, 1993, “Experimental Investigation of Micro Heat Pipes Fabricated in Silicon Wafers,” Journal of Heat Transfer, Vol. 155, pp.751~754. 9. A. B. Duncan and G. P. Peterson, 1995, “Charge Optimization for a Triangular-Shaped Etched Micro Heat Pipe,” Journal of Thermophysics and Heat Transfer, Vol. 5, No.2, pp. 365-368. 10. A. K. Mallik, G. P. Peterson, and M. H. Weichold, 1995, “Fabrication of Vapor-Deposited Micro Heat Pipe Arrays as an Integral Part of Semiconductor Devices,” Journal of Microelectromechanical System, Vol. 4, No. 3, pp. 119-131. 11. B. Badran, F. M. Gerner, P. Ramadas, T. Henderson, and K. W. Baker, 1997, “Experimental Results For Low-Temperature Silicon Micromachined Micro Heat Pipe Arrays Using Water and Methanol as Working Fluids,” Journal of Experimental Heat Transfer, Vol. 10, pp. 253-272. 12. Y. Cao, M. C. Gao, J. E. Beam, and B. Donovan, 1996, “Experiments and Analyses of Flat Miniature Heat Pipes,” AIAA Journal of Thermophysics and Heat Transfer, Vol. 11, No. 2, pp. 158-164. 13. D. Wu and G. P. Peterson, 1991, “Investigation of the Transient Characteristics of a Micro Heat Pipe,” Journal of Thermophysics, Vol. 5, pp. 129–134. 14. D. Plesch, W. Bier, D. Seidel, and K. Schubert, 1991, “Miniature Heat Pipes for Heat Removal from Microelectronic Circuits,” Micromechanical Sensors, Actuators, and Systems : Proc. of the Winter Annual Meeting of The ASME, Atlanta, Ga., New York : ASME, DSC-Vol. 32, pp. 303-313. 15. Y. Cao, M. Cao, J. E. Beam, and B. Donovan, 1996, “Experiments and Analyses of Flat Miniature Heat Pipes,” Energy Conversion Engineering Conference, IEEE, Vol. 2, pp. 1402-1409. 16. T. Nyguyen , M. Mochizuki, K. Mashiko, Y. Saito, I. Sauciuc, and R. Boggs, 1998, “Advanced Cooling System Using Miniature Heat Pipes in Mobile PC,” InterSociety Conference on Thermal Phenomena, IEEE, pp. 507-511. 17. C. Sarno, J. B. Dezord, G. Moulin, M. C. Zaghdoudi, M. Lallemand, V. Sartte, M. Groll, M. Schneider, H. Holzer, T. Schmitt, J. Rantala, T. Aapro, and R. Lehtiniemi, 1999, “Use of Metal Matrix Composite Material Heat Pipes for The Thermal Management of High Integrated Electronic Packages,” Germany. 18. M. Schneider, M. Yoshida, and M. Groll, 1999, “Investigation of Interconnected Mini Heat Pipe Arrays for Micro Electronic Cooling,” 11th Int. Heat Pipe Conf., Tokyo, Japan. 19. M. Schneider, S. Khandekar, P. Schafer, R. Kulenovic, and M. Groll, 2000, “Phenomenological Investigations on Flat Plate Closed Loop Pulsating Heat Pipes,” Heat Transfer and Transport Phenomena in Microsystems, Banff Centre for Conferences, Banff, Alberta, Canada. 20. G. P. Peterson, 1994, An Introduction to Heat Pipes, John Wiley & Sons, Inc., New York. 21. D. Khrustalev and A. Faghri, 1996, “Fluid Flow Effects in Evaporation from Liquid-Vapor Meniscus,” ASME Journal of Heat Transfer, Vol. 118, pp. 731~739. 22. S. Kakac, R. K. Shah, and W. Aung, 1987, Handbook of Single-phase Convective Heat Transfer, U.S.A. 23. M. Y. Okiishi, 1994, Fundamentals of Fluid Mechanics, John Wiley & Sons, Inc., New York. U.S.A. 24. 陳明生, 1999, 「小型熱管製造、性能測試與熱輸送現象之研究」, 碩士論文, 台北科技大學機電整合研究所, 台北市. 25. 黃玉年,1999,「矽質微熱管之研製與測試」,碩士論文,淡江大學機械工程研究所,淡水鎮. 26. 王添銘, 2002, 「迴路式熱管之毛細結構的設計、製造及性能測試」, 碩士論文, 台灣大學機械工程研究所, 台北市. 27. 石育政, 2002, 「網格組織在熱管內之熱流特性」, 碩士論文, 長庚大學機械工程研究所, 林口鎮.id NH0925311011 sid 913713 cfn 0 / id NH0925311012 auc 王耀塵 tic 利用分子動力學評估液體的熱力學性質 adc 許文震博士 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 64 kwc 分子動力學 kwc 奈米液體 kwc 熱力學性質 abc 在許多奈米科學的理論中,已經發現到許多物質在微小的尺寸下,所呈現出的各種物理及材料特性將與一般傳統巨觀的認知有所不同。例如,物質在奈米尺寸下,電子的傳輸特性及平均自由路徑將與巨觀時有所不同並產生量子尺度效應及電子相干效應。因此,為了了解在微觀的尺寸下,流體相關的各種熱力學性質及傳輸性質是否可能與巨觀比較而有所改變做一些探討。 tc ABSTRACT I 摘 要 II 誌 謝 III 目 錄 IV 圖 表 目 錄 V 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 1 第二章 分子動力學基本理論 6 2-1 運動方程式 6 2-2 分子間的作用力與勢能函數 8 2-3 VELERT鄰近表列法 10 2-4 模擬 12 2-4-1 初始條件 12 2-4-2 Gear’s 預測修正法 13 2-4-3 邊界條件 16 2-4-4 最小映像法則 18 第三章 初步物理模型建構與結果討論 19 3-1 物理模型建構 19 3-2 參數設定 19 3-3 初步結果討論 20 3-3-1 基本熱力學性質 20 3-3-2 傳輸係數 21 3-3-3 奈米流體的基本測試 28 第四章 總結與未來展望 34 4-1 總結 34 4-2 未來展望 35 第五章 參考文獻 38 圖 表 目 錄 圖2-1分子動力學模擬流程圖 41 圖2-2 VELERT表列示意圖1 41 圖2-2-1 VELERT表列示意圖2 42 圖2-3 面心立方晶格結構圖 43 圖2-4 週期型邊界條件示意圖 43 圖2-5 一維週期型邊界條件(情形1)之示意圖 44 圖2-6 一維週期型邊界條件(情形2)之示意圖 44 圖2-7 最小映像法測(情形1)之示意圖 44 圖2-8 最小映像法測(情形2)之示意圖 44 圖2-9 最小映像法測(情形3)之示意圖 45 圖3-1 FCC模型結構示意圖 45 圖3-2 系統溫度-時間示意圖 46 圖3-3 系統位能-時間示意圖 46 圖3-4 系統壓力-時間示意圖 47 圖3-5 系統總能量-時間示意圖 47 圖3-6 累加平均示意圖 48 圖3-7 FCC最初模型構造 48 圖3-8 利用週期性邊界條件模擬後分子位置 49 圖3-9 模擬後分子實際位置1 49 圖3-10 模擬後分子實際位置2 50 圖3-11 不同時間間隔對熱傳導係數分佈圖(EINSTEIN RELATION) 50 圖3-12 熱傳導係數分佈圖1(EINSTEIN RELATION)-108顆粒子 51 圖3-13 熱傳導係數分佈圖2(EINSTEIN RELATION)-256顆粒子 51 圖3-14 熱傳導係數分佈圖3(EINSTEIN RELATION)-500顆粒子 52 圖3-15 不同時間間隔相對黏滯係數分佈圖(EINSTEIN RELATION) 52 圖3-16 黏滯係數分佈圖1(EINSTEIN RELATION)-108顆粒子 53 圖3-17 黏滯係數分佈圖2(EINSTEIN RELATION)-256顆粒子 53 圖3-18 黏滯係數分佈圖3(EINSTEIN RELATION)-500顆粒子 54 圖3-19 熱傳導係數分佈圖1(GREEN-KUBO RELATION)-108顆粒子 54 圖3-20 熱傳導係數分佈圖2(GREEN-KUBO RELATION)-256顆粒子 55 圖3-21 熱傳導係數分佈圖3(GREEN-KUBO RELATION)-500顆粒子 55 圖3-22 不同時間間隔對熱傳導係數分佈圖(GREEN-KUBO RELATION) 56 圖3-23 黏滯係數分佈圖1(GREEN-KUBO RELATION)-108顆粒子 56 圖3-24 黏滯係數分佈圖2(GREEN-KUBO RELATION)-256顆粒子 57 圖3-25 黏滯係數分佈圖3(GREEN-KUBO RELATION)-500顆粒子 57 圖3-26 不同時間間隔相對黏滯係數分佈圖(GREEN-KUBO RELATION) 58 圖3-27 熱傳導係數隨白金比例之分佈變化圖 58 圖3-28 黏滯係數隨白金比例之分佈變化圖 59 圖3-29 奈米流體熱傳導係數與黏滯係數相關變化圖 59 圖4-1 TIP4P水分子構造圖[15 ] 60 表2-1 無 因 次 化 物 理 性 質 表 60 表2-2 GEAR’S 預測修正法之修正參數表 61 表3-1 EINSTEIN與GREEN-KUBO不同分子數模擬結果與實驗量測對照表 61 表3-2 EINSTEIN模擬結果與不同實驗模擬量測對照表[4 ] 61 表3-3 GREEN-KUBO模擬結果與不同實驗模擬量測對照表[4 ] 62 表3-4 液態氬內不同白金顆粒之熱傳導係數 62 表3-5 液態氬內不同白金顆粒之黏滯係數(模擬粒子數=108) 62 表3-6液態氬內不同白金顆粒之黏滯係數(模擬粒子數=256) 63 表3-7液態氬內不同白金顆粒之黏滯係數(模擬粒子數=500) 63 表4-1水的位能模型相關參數[2 ] 63 表4-2 水分子基本物理量[26 ] 64rf [1 ] J. M. Haile, Molecular Dynamics Simulation. John Wiley&Sons, Inc., 1992. [2 ] S. Maruyama, “Molecular Dynamics Method for Microscale Heat Transfer,” Advances in Numerical Heat Transfer, Vol. 2, pp. 189-226. , 2000. [3 ] D. Poulikakos, S. Arcidiacono, and S. Maruyama, “Molecular Dynamics Simulation in Nanoscale Heat Transfer: A review,” Micro. Thermophys. Eng., Vol. 7, No. 1, pp. 41-50, 2003. [4 ] S. H. Lee, “Molecular Dynamics Simulations for Transport Coefficient of Liquid Argon,” Chem. Soc., Vol. 24, No. 2, pp. 178-182, 2003. [5 ] R. Vogelsang, C. Hohrisel, and G. Ciccotti, “Thermal Conductivity of the Lennard-Jones Liquid by Molecular Dynamics Calculations,” Journal of Chemical Physics, Vol. 86, No. 11, pp. 6371-6375, 1987. [6 ] S. Maruyama and T. Kimura, “A Study on Thermal Resistance over a Solid-Liquid Interface by the Molecular Dynamics Method,” Thermal Sci. Eng., Vol. 7, No. 1, pp. 63-68, 1999. [7 ] S. Matsumoto, S. Maruyama, and H. Saruwatari, “A Molecular Dynamics Simulation of a Liquid Droplet on a Solid Surface,” Proc. ASME/JSME Therm. Eng. Conf., Maui, pp. 557-562, 1995. [8 ] S. Maruyama, T. Kurashige, S. Matsumoto, Y. Yamaguchi, and T. Kimura, “Liquid Droplet on Solid Surface,” Micro. Thermphys. Eng., Vol. 2, No. 1, pp. 49-62, 1998. [9 ] T. Kimura and S. Maruyama, “A Molecular Dynamics Simulation of Hetergeneous Nucleation of a Liquid Droplet on Solid Surface,” Microscale Thermophys. Eng., Vol. 2, No. 1, pp. 3-13, 2002. [10 ] T. Kimura and S. Maruyama, “Molecular Dynamics Simulation of Water Droplet in contact with Platinum Surface,” Proc.12th Int. Heat Transfer Conf., pp. 537-542, 2002. [11 ] S. Lee, S. Choi, S. Li, and J. A. Eastman, “Measuring Thermal Conductivity of Liquids Containing Oxide Nanoparticles,” ASME Journal of Heat Transfer, Vol. 121, pp. 280-289, 1999. [12 ] J. A. Eastman, S. Choi, S. Li, G. Soyez, L. J. Thompson, and R. J. Di, “Novel Thermal Properties of Nanostrucred Materials,” Master. Sci. Forum., pp. 312-314, 1999. [13 ] X. Wang, X. Xu, and S. Choi, “Thermal Conductivity of Nanoparticle-Fluid Mixture,” Journal of Thermophysics and Heat Transfer, Vol. 13, No. 4, 1999. [14 ] P. Keblinski, S. R. Phillpot, S. Choi, and J. A. Eastman, “Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 855-863, 2002. [15 ] D. C. Rapaport, The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge, 1995. [16 ] S. Kotake and S. Wakuri, “Molecular Dynamics Study of Heat Conduction in Solid Materials,” JSME Int. J. Series B, Vol. 37, No. 1, pp. 103-108, 1994. [17 ] N. J. Israelachvili, Intermolecular and Surface Forces. Second Edition, Academic Press, 1992. [18 ] F. London, “Properties and Applications of Molecular Forces,” Zeit. Physik. Chem., Vol. 11, pp. 222, 1930. [19 ] S. Holloway and K. H. Bennemann, “Study of Water Adsorption on Metal Surfaces,” Surf. Sci., Vol. 101, pp. 327-333, 1980. [20 ] L. Velert, “Computer Experiments on Classical Fluids,” Phys. Rev., Vol. 159, pp. 98-103, 1967. [21 ] K. Kremer and G. S. Grest, “Dynamics of Entangled Linear Polymer Melts: A Molecular Dynamics Simulation,” J. Chem. Phys., Vol. 92, No. 8, pp. 5057-5066, 1990. [22 ] A. J. H. McGaughey and M. Michigan, “Thermal Conductivity Decomposition and Analysis using Molecular Dynamics Simulation,” Journal of Heat and Mass Transfer, Vol. 47, pp. 1783-1798, 2004. [23 ] J. C. Tully, “Dynamics of Gas-Surface Interactions: 3D Generalized Langevin Model Applied to FCC and BCC Surface,” J. Chem. Phys., Vol. 73, No. 4, pp. 1975-1985, 1980. [24 ] J. Blomer and A. E. Beylich, “MD-Simulation of Inelastic Molecular Collisions with Condensed Matter Surfaces,” Proceedings of 20th International Symposium on Rarefied Gas Dynamics, Beijing, China, August, Vol. 19, No. 23, pp. 392-397, 1996. [25 ] Y. W. Wu and P. Chin, “Molecular Dynamics Simulation of Thin Film Evaporation of Lennard-Jones Liauid,” Department of Engineering and System Science, National Tsing Hua University Hsinchu, Taiwan, 2003. [26 ] 楊宗翰, “以分子動力學模擬液態水之薄膜蒸發與奈米液滴在恆溫白金表面上的物理過程” 國立清華大學工程與系統科學所碩士論文, 台灣, 2004.id NH0925311012 sid 913714 cfn 0 / id NH0925311013 auc 溫俊智 tic 水分子與白金觸媒接觸之分子動力模擬 adc 洪哲文 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 71 kwc 水分子 kwc 白金 kwc 接觸角 kwc 觸媒 abc 摘要 tc 第一章 緒論 1.1引言 隨著科技日新月異的進步,每年全球汽機車量逐年成長,汽機車的動力來源為內燃機,傳統內燃機一直存在著空氣污染的問題,內燃機的燃料為石油,石油是地球有限資源,在人類過渡使用的情形下,全球石油的蘊藏量終將有使用完的一天。有鑑於此,科學家不斷積極的在研發低污染、高效能的新能源技術,燃料電池是新一代能源技術的里程碑,在低溫型燃料電池中,直接甲醇燃料電池(DMFC)、質子交換膜燃料電池(PEMFC),電化學反應的核心部份是膜電極組 (membrane electrode assembly,簡稱MEA),其結構可細分為氣體擴散層和觸媒層,氣體擴散層的主要功能是讓反應氣體到達觸媒層,同時防止電解液或水的逆滲透,氣體擴散電極大部分為多孔性的電極,一般為碳紙或碳布組成,觸媒和液體接觸的情形將直接影響其效能,模擬水分子和甲醇分子在觸媒層上的反應情形,此部分為本論文切入的重點。 當尺寸到達微尺度之下(microscale and nanotechnology),傳統巨觀角度去分析已不再適用。在電腦晶片技術的進步下,分子動力學的方法越來越受到重視,在直接甲醇燃料電池(DMFC)中,水、甲醇和觸媒層的反應,不管是在陰極或者是陽極的作用情形都將影響整個燃料電池的整體效能,在本論文中,初步先架構水分子和觸媒的反應,甲醇的部分由於勢位能參數搜尋困難的問題,暫時沒加入計算,理論上液體和固體之間的接觸現象主要是因為分子之間的作用力而造成,這裡利用分子動力學的方法模擬水分子在白金表面的反應情形。分子動力學法(molecular dynamics,簡稱MD)之基本原理是假設系統中個別一分子(或原子)的運動行為遵守牛頓第二運動定律,總合能量則由分子的位能(potential Energy)及動能(kinetic Energy)來分配。分子與分子之間的作用力,取決於一位勢位能函數,此勢位能產生於分子間的凡得瓦力作用、電荷靜電力、磁偶矩、與分子內部勢位能所造成,最常用的勢位能為Lennard-Jones potential (12,6),對於水分子,則必須找出其適用的勢位能函數(SPC/E),方能得到準確的預測結果。 1.2 文獻回顧 在微燃料電池中,液體和固體之間的接觸現象主要是因為水分子和白金分子之間的作用力而造成,關於動力問題的計算有稱為分子動力的計算方法,我們利用分子動力學的方法來計算分子運動行為,Haile一書中提供完整的分子動力學模擬架構[1 ],M.P.Allen、D.C.RAPAPORT和R.J.Sadus所著的書[2 ][3 ][4 ]也對液體分子的模擬方法有詳細精闢的講解和說明,Shiegeo Maruyama也利用分子動力學的方法研究微小尺寸的熱傳現象[5 ]。漢米頓(Hamiltonian)理論讓物理學家從與牛頓力學不同的角度(phase-space)來描述物理現象,但這些漂亮及有用的數學在使用上有其基本上的限制,對於實際的物理問題,往往很困難得到解析解答,隨著電腦的發明及電腦功能的快速成長,可以利用電腦數值的計算得到答案。這個方法先算每一個分子所受的力,然後以數值方法解牛頓的運動方程式以預測原子經一小段時間( t)後估計位置及速度,將分子的位置及速度換成新的以後,再計算所受的力,再預測新的位置及速度,這樣就可一步接一步的算出分子的位置及速度與時間的關係,在從位置與時間的關係,可知分子的運動路徑,利用此種方法研究水分子如何在白金表面的反應情形。 1987年Berendsen[6 ]等學者,修改之前發表的水分子勢位能函數方程式,水分子是屬於極性分子,由於前面所推導的函數計算分子之間極性效應和實驗值誤差較大,所以使得水分子不能產生凝結狀態的性質,因此水分子的勢位能函數改良導入極性效應和偶極矩,最後形成SPC/E(Simple Point Charge Extended)的模式。 1989年E. Spohr[7 ]建立水分子對於白金團簇的勢位能函數,其勢位能函數模式的基礎是利用 計算水分子和白金團簇之間的相互反應關係,而得到兩分子相互之間勢位能函數的解析解。 1992年J. Nieminen[8 ]首先利用分子動力學的方法模擬液滴降在一均質的固體基質表面上的反應情形,其結果觀測到液滴在固體表面上的反應為開始時以一定的速度慢慢的在固體表面擴散開來,然後慢慢的降低擴散的速度,整體隨時間在固體表面擴散的情形接近線性函數的關係,而J.Yang[9 ]也用分子動力學的方法模擬Ar液滴在固體表面上的反應情形,得到趨勢為 。 Matsumoto等[10 ]在1995年利用分子動力學的方法,勢位能是用Lennard-Jones勢位能函數,模擬數百個氬液滴在平板固體表面的凝結行為,其中固體表面結構是單層面心力方結構的分子,模擬的結果發現親合性是氬液滴和固體表面凝結形狀的主要因素,液滴會逐漸在固體表面散開,這是以微觀的角度來看液滴的反應情形;如果是以巨觀的機制來看,接觸角的形成可以被解釋成表面能量之間的平衡的反應。1997年,Matsumoto等[11 ]繼續利用分子動力學的方法,模擬氬液滴/氬氣體和固體分子接觸時的熱傳現象,這時候固體表面是用三層面心立方結構的固體分子,結果發現微觀的模擬方式可發現接觸角的餘弦函數是積分反應勢能深度的線性函數;以巨觀的觀點來看,楊式方程式也是餘弦函數的關係式,對於不同溫度的固體表面模擬,發現其接觸角在平衡狀態時幾乎相同,液滴在凝結或蒸發的溫度分佈、速度分佈和準平衡狀態所量測的熱通量相同,證明利用分子動力學的方法來模擬分子之間的反應準確性高。 S.Maruyama和T.Kimura利用分子動力學的方法作了一系列的研究,在2000年[12 ]模擬Lennard-Jones分子的蒸汽氣泡在固體表面的成核(nucleation)情形,固體表面的處理方式是用三層結構的幻想分子概念處理,目的是為了維持溫度不變。接著在2001年[13 ],模擬水分子在白金團簇上的反應情形,其中水分子利用以知的SPC/E模式,白金表面是用一層的2900顆白金分子,結構為面心結構<111>排列,而水和白金之間的勢位能用E. Spohr所導出來的S-H勢位能,結果發現當水分子越來越多時,水分子在白金表面的擴散情形越來越趨近於 或是 的關係式,其中R為水在白金表面擴散面積的半徑,其中A為水在白金表面擴散面積,而利用L-J勢位能模擬的預測結果大約是趨近於 ,至於實驗所得到的結果是趨近於 。2003年[14 ]利用相同的理論基礎,將水分子和白金團簇的反應加入由Zhu和Philpott所推導的Z-P勢位能關係,比較S-H和Z-P兩種勢位能的強度以及在不同面心立方結構<111><100><110>表面的反應情形,研究結果得到水分子在白金表面擴散情形一開始趨近於 的關係,然後變成 的關係式,此外水分子的反應結構在Z-P勢位能比較強,而在<100>結構上的接觸角是最大,在<110>結構上的接觸角是最小。 1.3研究的目的和方法 在微觀的研究中,傳統巨觀角度去分析已不再適用,取而代之的是分子動力學的方法,在微燃料電池中,液體和固體之間的接觸現象主要是因為分子之間的作用力而造成,因此我們要利用分子動力學的方法,研究水分子和白金團簇之間的相互反應情形,觀察接觸角的變化情形。 本篇論文利用分子動力學的理論方法建構系統進行模擬,我們關心的問題是水、甲醇對於白金觸媒表面的濕潤情形,因此我們初步先模擬水分子液滴在白金表面的平衡狀態,計算接觸角(contact angle)與接觸面積和時間之間的相互關係。模擬的系統為四個邊界(前後左右)為週期性邊界條件,上面邊界為鏡面反射(mirror reflection)的方式處理,底面白金固體邊界利用Lennard Jones Pt-Pt的勢位能來處理,假設白金為固定的分子,模擬的水分子是利用已知的SPC/E model[6 ],而水分子對於白金團簇的勢位能關係是採用E. Spohr[7 ]根據 所計算出來的勢位能方程式來進行我們的模擬。 1. 4論文架構 本篇論文分為四個章節,略述於下: 第一章為序論的部分,簡略說明如何建立起我們所需要模擬的基本架構,說明我們為何要利用分子動力學的方法來模擬水分子和白金團簇之間的反應,並探討近年來的各種相關研究方法。 第二章為分子動力學的基本架構說明,介紹基本的運動方程式,以及我們所使用的相關勢位能函數,討論邊界條件的處理方式,並說明我們計算勢位能函數的方法,最後說明接觸角的計算方式。 第三章為分子動力學模擬的基本流程圖介紹,這章討論我們所建立模式的基本架構,簡略說明我們所使用程式的基本運算流程和計算的方法,然後介紹單位的無因次化,簡單說明我們所使用的預測分子碰撞軌跡的數值方法以及加快電腦運算的方法,最後為轉動所使用的理論簡述。 第四章為結果的討論部分,這章整理我們所模擬得到的結果,討論接觸角的產生情形以及水分子擴散附著於白金觸媒的速度和時間的關係,分析接觸角的物理變化現象。 第五章為結論和建議的部分,這張我們整理之前所模擬得到的結果,整理出幾點結論,並對未來研究的方向提供建議。 第二章 分子動力學理論 2.1理論 分子動力學所涵蓋的範圍很廣,以模擬而言,一般是以適當的理論方法來描述系統中的分子,預測分子的碰撞情形或解釋分子系統的性質(如熱力學性質)。隨著電腦科技的進步,近年來的分子模擬常利用電腦的高速運算能力,模擬較大的分子系統或用較嚴謹的理論方法以求得較精確的預測結果,而藉由電腦將分子模擬的情形和各種性質轉化成視覺上易瞭解的圖形也是常用的方法。 分子動力學理論之基本原理為假設系統中個別一分子或原子的運動遵守牛頓運動定律(Newton’s second law)方程式,分子之運動加速度由其分子質量及分子所受外力之總合決定,而分子的受力,主要來自分子與分子之間以及分子與壁面固體分子之間的相互作用力,而其總合能量則由分子的位能及動能(包含平移、旋轉、及振動等動能)其方程式為(2.1),分子與分子之間的作用力,來自一位勢能函數,此位勢能係由分子間的凡得瓦力作用、電荷靜電力、磁偶矩、與分子內部勢能造成,當二分子距離甚近時,此勢能對分子距離(rij)的導數將得出一排斥力,而在某適當距離時,則表現出吸引力(圖2-1)。利用MD理論計算分子的電荷分佈、分子內及分子間的力場,提供分子以及更大粒子的多質點動力計算之基礎,此外,由分子或粒子動力計算並透過統計力學的方法,可計算取得物質之熱力性質(分子自我組織化、相圖、熱傳、擴散率、力學性質等)和相介面性質(表面張力、接觸角、邊界熱阻抗、熔融與結晶等),對於單原子分子(惰性分子),最常用的位勢能為Lennard-Jones potential[1 ],對於其他種類的分子,則必須找出其適用的位勢能函數,才能得到準確的模擬結果,對於水分子,我們採用已知的SPC/E model[6 ]。 (2.1) 其中 Etotal total energy Ek kinetic energy U internal energy 2.2 分子動力學基本運動方程式 分子動力學的主要目的是利用運動方程式來計算分子在空間中的運動行為,計算出分子運動的軌跡,在描述分子的運動行為,可以用兩種方程式來說明,一種是牛頓第二運動方程式,另一種為漢米頓運動方程式,下麵分別詳細介紹兩種運動方程式。 2.2.1 牛頓力學(Newtonian Dynamics) 描述分子運動行為的牛頓第二運動方程式為(2.2),牛頓第二運動方程式是屬於二階常微分方程式,以三維空間來說可以表示為(2.3~2.5),如果分子i 不受到外力影響,方程式(2.2)可以簡化成vi=常數,分子的運動為靜者恆靜、動者恆動,也就是牛頓第一運動定律,根據(2.2),假設孤立系統不受任何外力,則系統總力等於零,因此系統中的分子i和j的力是必須平衡,則可推出牛頓第三運動定律(2.6)作用力等於反作用力。 (2.2) (2.3) (2.4) (2.5) (2.6) 其中 i,j atom i and j Fi force on atom m mass of molecule ri postion of atom I relative to a space-fixed origin Fix the force of x direction Fiy the force of x direction Fiz the force of x direction vi velocity of atom I t time 2.2.2 漢米頓力學(Hamiltonian Dynamics) Hamiltonian Dynamics的原理為假設系統中有N個分子,則系統的狀態由分子的位置(rN)和動量(pN)來表示(2.7),我們定義系統的總能量為Etotal(2.8),根據方程式(2.7~2.8),我們可以推導出方程式(2.9)和(2.10),將之帶入我們利用漢米頓(Hamiltonian Dynamic)運動方程式(2.11),求得分子運動變化的軌跡。 (2.7) (2.8) (2.9) (2.10) (2.11) 其中 r position p momentum N spherical molecules 2.3 勢位能函數(Potential Function) 勢位能由分子間的凡得瓦力作用、電荷靜電力、磁偶矩、與分子內部勢能造成,其方程式為(2.12),相鄰兩分子之間距離(rij),在某距離之內表現出排斥力(repulsive force),而在某適當距離時,則表現出吸引力(attractive force)。對於不同的分子需選擇不同的勢位能函數,才能使分子動力學的模擬結果更準確,下麵將針對幾個我們模擬中使用到的勢位能做介紹Lennard-Jones potential、SPC/E和S-H potential function。 (2.12) where effective pair potential rij the distance between molecules i and j 2.3.1 Lennard-Jones potential 為了使模擬更準確,不同的分子必須選擇適合的勢位能函數,目前最廣泛使用的勢位能函數為Lennard-Jones (12,6),其方程式表示如下(2.13),對於不同的惰性分子,例如:He、Ar、Kr和Xe,有不同的 、 ,分子之間的potential關係如圖2.1,當兩分子距離為 時,勢位能為零,兩分子之間最小的勢位能在(2.13)的一次導函數等於零時有最小之值,也就是當兩分子之間的距離等於 ,將此值代入(2.13)可得到-ε,也就是分子之間最小的勢位能,在這裡我們利用此勢位能方程式來計算氧原子與氧原子之間以及和白金分子與白金分子之間的勢位能,其參數列於(表一)。 (2.13) 其中 energy at minimum of Lennard-Jones pair potential(J) length scale (nm) 2.3.2 水分子勢位能(Effective pair potential for water) 水分子和原子不同的地方在於真實的水分子是極性分子,會有移動、轉動、和震動等現象,水分子的結構圖如圖2-2,其勢位能方程式為(2.14),其中前面的式子表示O-O之間的勢位能函數,後面的式子表是為氫原子與氧原子之間的庫倫力,假設有兩個水分子,則其之間共有九組相互影響的庫倫力,水分子模式(SPC/E)參數列於(表一),一個水分子的結構式是呈V字型,H-O-H夾角109.47度(2.15),其中O-H是由氧原子和氫原子共用電子所形成的共價鍵(covalent bond),但是氧原子對共用電子的吸引力較大,所以共用電子(shared electrons)靠近氧原子這端的時間較氫原子長,使得氧原子稍微帶過剩的負電,而氫原子稍微帶正電,由於這種不均等的電荷分配(unequal charge distribution),所以水是極性分子。1980年代Stillinger及Rahman 所提出的ST2模式是水分子位元勢能的標準式,同時,各種改良的位勢能紛紛被提出,其中最常被使用者有Jorgensen等所提出的TIP4P模式與Carravetta及Clementi所提出之CC模式,目前較常使用的模式為SPC(Simple Point Charge)和SPC/E(Extended SPC )[6 ],這些模式主要反應水分子的極性,以及O-O及O-H原子間的作用力及電荷力,對於模擬水的行為有較準確的模擬結果,在計算水分子運動的部分我們只考慮水分子的移動和轉動,震動部分忽略不計。 (2.14) (2.15) 其中 oo pair potential for water oo the diameter of the water molecule R12 the distance between oxygen and oxygen o 8.852x10-12 the permittivity of free space 2.3.3 表面和水分子之間的勢位能(S-H potential) 在水分子和白金表面之間的勢位能函數是由 所推導出來,1988年時,Spohr和Heinzinger所建立的模式[7 ],其方程式如下: 其中 a1=1.8942x10-16J, b1=11.004nm-1 a2=1.8863x10-16J, b2=10.966nm-1 a3=10-13J , b3=53.568nm-1 a4=1.742x10-19J , b4=12.777nm-1 c=11.004nm-1 the length of the projection of the distance vector onto the surface plane 2.4邊界條件(Boundary Conditions) 在MD的模擬中,一般而言系統包含數百到數千的分子,控制系統受到表面效應的影響,也就是分子和系統壁面的相互影響,因此模擬系統壁面和液體之間,系統因該給予液體在接觸壁面時的反應資訊,也就是給予適當的邊界條件。在本論文的模擬中,我們用到週期性邊界條件(periodic boundary condition)、鏡面邊界條件(mirror boundary condition)、固體表面邊界條件(solid surface boundary condition),下面分別介紹這三種邊界條件。 2.4.1週期性邊界(Periodic Boundary Condition) 邊界條件的處理,在平衡系統的模擬中,大多以週期性邊界的觀念處理,以下簡稱PBC,使用週期性邊界條件來移除表面效應,可以避免邊界條件的設定而改變取樣的均質性,即或系統邊界中存在有固體壁,該固體壁皆以鏡面反射來處理,或以絕熱壁視之,此二方式皆無考慮固體壁對介質分子的熱傳。 使用PBC來模擬系統,使系統保持固定數目的原子,其原理為:假設體積V,系統內包含N個原子,我們假設體積V只是系統中的一小部分,我們稱它為primary cell。我們先考慮二維的情形(圖2-3),中間的部分為primary cell而周圍有八個重複cell,我們稱為image cell,其大小形狀皆相同,而每個image cell中也包含N個原子,如同primary cell一樣,整個結構系統我們稱它為primary frame,當原子由 移到 ,我們可以表示為 ,當原子從primary cell移動到左下角,可以表示為 ,其中r為向量。以三維的空間來看,每個系統就有27個cell,當原子移動之後向量可表示為(2.16),當原子在primary frame,我們將他位置表示為(2.17) (2.16) 其中 L the scalar length of one edge of a cubic cell (2.17) 其中 i atom i 在MD模擬之中,我們需要的只有primary cell中的原子,因此在三維系統中,簡單轉換立方晶體中的原子位置可表示向量為(2.18) (2.18) 將(2.16)(2.17)代入(2.18)可以得到(2.19) (2.19) 因此,在計算cell中原子的位置時,我們只要知道原子在primary cell中的位置再加上向量 週期性邊界條件可以除去不必要的邊界影響,而且PBC對系統的勢位能以及作用力的影響也可以忽略不計,PBC是分子動力模擬中常用的邊界條件。 2.4.2固體表面邊界條件(Solid Surface Boundary Condition) 在白金分子的部分,我們係假設白金分子團簇為固定分子(body fixed),也就是底面的固體邊界為固定之邊界,對於白金分子的勢位能,我們利用Lennard Jones(12,6) potential 來計算其分子與分子之間的勢位能函,再將所計算的值加入至系統之總能。 2.4.3鏡面邊界條件 因為系統底部是白金團簇所組成的觸媒層,因此再處理系統上端的部分不能使用週期性邊界條件來處理,在這裡我們使用鏡面邊界條件來處理系統上端部分的邊界問題,鏡面反射的原理是分子的運動路徑乃經由Gear’s predictor correction 預測分子下一時間的位置,然後利用下一時間的位置,反算其經過反射之後的位置,經過鏡面反射的分子,其速度和原來預測之分子的速度大小相等,方向相反。 2.5截斷勢位能(Truncated Potnetial)和長範圍修正勢位能(Long-Range Correction) 在擁有N原子的系統中,根據方程式(2.12),會有(1/2)N(N-1)的原子相互反應,因此在模擬中,相互反應次數會隨著原子的增加而成平方的增加相互反應。更進一步說,如果我們允許相互反應的原子的範圍增加,r到r+ r,則相互反應的樣品總數為(2.20)內當相互反應因此當原子數量越多時,相對的會大量提高電腦運算的時間,因此我們要對我們的勢位能計算方式截斷然後再修正,一般而言我們取rc =2.5 ,在水分子的模擬中我們取rc =4.73 。 (2.20) 其中 the number of atoms in spherical shell of radius and thickness r the volume of shell 利用截斷勢位能可以減少大量的電腦運算時間,但是被截斷的勢能會對於性質上的計算有某種程度上的影響,並且造成分子之間勢位能的階梯差,因此模擬的結果只能代表性質的一部份,例如內能和壓力都有其相關的勢位能,因此在計算時必須再加入長範圍的修正(Long-Range Correction),氧原子與氧原子之間的LRC利用(2.24),而庫倫力的部分我們採用Reaction field method的方法來修正。在MD模擬中,性質的計算基礎為統計熱力學,而統計熱力學中內能的計算為勢位能乘上徑向分佈函數g(r) (radial distribution function)積分而成(2.21),以截斷長度為為界,則(2.21)可以分成兩部分(2.22),當 ,假設g(r)=1,於是我們可以把 寫成(2.24),將L-J potential帶入可以得到(2.25)。 (2.21) (2.22) (2.23) (2.24) (2.25) 其中 time average of internal energy E energy LR Long range correction 2.5.1反應場Reaction Field Method 在計算長距離修正的部分,氧原子與氧原子的長距離修正前面已經提過,而庫倫力的長距離修正有兩個方法Ewald Summation 和 Reaction Field Method,由於Ewald Summation所需要消耗的電腦計算時間過於龐大,我們這裡採用反應場的方法來取代長距離的修正問題,反應場的方程式為(2.26),反應場的原理為計算有限半徑rc之內形成的spherical cavity,計算其中的電子反應,而在cavity之外的部分則假設為絕緣狀態,我們只計算局部範圍內的電場反應,另外長距離修正庫倫力還需利用weighting factor f(rij)來修正值以期達到更準確的計算結果(2.27), (2.26) (2.27) Where 1 dielectric constant outside the cavity (7.0) rt =0.95rc 2.6 最小影像準則(Minimum Image Criterion) 在N個分子的系統中,分子之間的力計算可以由內能對距離的微分得到(2.28),根據週期性邊界條件的理論,我們可以將(2.28)改寫為(2.29),因此我們只需計算primary cell中的分子相互作用力,三維系統中可以表示為(2.30): (2.28) (2.29) (2.30) 利用上式我們可以計算出整個系統原子的作用力,然而我們計算的力為primary cell中的總力,所以如果勢位能在截斷在rc (1/2),我們必須算和27個cell之間可能性的最小影響距離,所以我們要定義最小影響距離(minimum image criterion)來計算力。以一維系統來說,我們所關心的為αx的三個值,最小距離為|xij-αxL|,有三種可能發生的情形如圖2-5,分別為A、B、C三種可能性。 在情況A中,( )因為primary cell中的i原子和image cell中的j(-1)原子距離大於1/2L(rc),我們只需討論primary cell中的i原子和j原子的相互作用力即可,因此可以利用(2.30)求得其作用力。 在情況B中,( ), <(-1/2)L(rc),primary cell中的i原子和j原子不反應,但是i原子和image cell(-1)中的j(-1)原子反應,其距離為 。 在情況C中,( ), >1/2L(rc),primary cell中的i原子和j原子不反應,但是i原子和image cell(+1)中的j(+1)原子反應,其距離為。 2.7 接觸角(Contact Angle) 固體、液體、和氣體的反應現象在熱傳的相變化裡扮演一個重要的角色,當液體潤濕固體表面時,原本氣-固的介面被液-固的介面所取代,而氣-固與液-固之介面張力的差,稱之為濕潤張力。當氣-固的介面張力大於液-固的介面張力時,也就是固體和液體間的吸引力大於固體和氣體間的吸引力時,固體和氣體間的介面張力會將液-固介面拉伸,換句話說,被濕潤的固體表面有較低的介面張力,因此液體會在固體表面擴張。 液體的親水性使液滴在固體表面凝結,形成較大的液滴狀,而此時液體和固體表面所形成的夾角稱為接觸角(contact angle),接觸角為固體表面和液滴切線的夾角如圖2-6,假使接觸角小,如水滴在玻璃基板上的情形,表示液體易濕潤固體表面,但是,如果接觸角像水銀液滴在玻璃基板上那麼大,代表液體不易濕潤此表面,而濕潤張力和接觸角的關係,可以用楊格方程式(2.31)表示,氣-固與液-固介面張力的差等於氣-液介面張力乘上接觸角的餘弦函數。我們先考慮兩種極端的情形,當接觸角為0度時,表示液體能完全的濕潤於固體表面;當接觸角為180度時,代表液體完全不能濕潤於固體表面,從固─氣的介面張力觀點來看,當接觸角越小,餘弦函數cos 會越大,固-氣的介面張力也會越大,此時表示固體表面較易被濕潤,而當接觸角越大,固-氣的介面張力越低,代表越不易被濕潤。 Young's equation : SV - LS = VL cosθ (2.31) 其中 SV surface energy between solid and vapor LS surface energy between liquid and solid VL surface energy between vapor and liquid contact angle 當 = 00 代表液體能完全的濕潤於固體表面 當 = 1800 代表液體完全不能濕潤於固體表面 第三章 模擬方法 3.1分子動力學模擬流程圖 本論文所撰寫的程式主要參考幾本分子動力學相關之書籍,其中包括J. M. Haile 所著作的分子動力學模擬(Molecular Dynamics Simulation)、M. P. Allen 所著液體之電腦模擬(Computer Simulation of Liquid)、D.C.RAPAPORT所著分子動力學模擬藝術(The Art of Molecular Dynamics Simulation)以及R.J.Sadus所著液體分子模擬(Molecular Simulation of Fluids),分子動力學模擬的電腦模擬流程圖參考表二,程式計算的流程為表三,MD模擬的流程係先建立水分子SPC/E和白金(platinum)分子的potential model,加入適當的運動方程式(Newtonian或Hamilton),利用建立出來的model,根據第二章的理論基礎來計算分子之間的勢位能(即水分子與水分子以及水分子對白金分子),然後利用Gear’s Predictor Correction Algorithms可以計算出分子之間運動的軌跡,利用統計熱力學進而推算出各種熱力學性質(溫度、動能、位能、徑向分佈函數…等等物理性質),論文中所使用的繪圖軟體為PVWIN,是由日本東京大學Maruyama實驗室所提供之軟體,分子動力學模擬程式建構的基本流程可分成三個主要步驟,a.初始(initialization)、b.平衡(equilibration)、c.產生(production),下麵詳細說明這三大步驟的流程。 3.1.1初始(initialization) ? 當選定好所需的勢位能,我們就可以開始做電腦的MD模擬,初始可以分成兩個部分:決定相關的參數和分子的初始化,決定的相關參數就是設定系統的單位以及各項參數的設定。初始化就是分子結構排列和初始條件的給定,即設定分子的初始位置和初l速度、角速度,在這一步驟中,最重要的工作就是修正系統的參數使之能符合所規範的條件,為了方便各種成分分子的探討,我們這系統的單位是利用無因次化的方式(3.3小節),然後利用有限差分的運算方法(3.4小節)。 3.1.2平衡(equilibration) 在MD模擬中Ap算所需的性質之前,控制系統需要達到平衡狀態,若所模擬的系統為< N V T >系統,我們必須把分子的速度修正所要求的溫度;若為< N V E >系統,就把系統的總能修正到固定的能量;至於< N P T >系統,就必須把系統修正到固定的壓力和溫度,我們這裡利用平衡所跑出來的結果帶入至產值的初始值,也就是Relax的動作,使得分子的分佈情形更接近一般物理情形。本論文中所模擬的系統為< N VT >,平衡系統與非平衡系統的差異,與熱傳特性有關的,主要有二點:第一點是在< N V T >漸t峇?空間體積V、空間內分子數N、及溫度T係維持固定),其中溫度控制(temperature control)多以調整分子動能的方式,目的在使所有的分子在固定且均勻的溫度囓韝UAF成最終漸倍聾嬪G。第二點是邊界條件的處理,在平衡系統的模擬中,多以週期性邊界(PBC)的觀念處理,目的僅在避免邊界條件的設定改變取樣的均質性,系統邊界中固體壁以鏡惜炷g(mirror reflection)處理,或以絕熱壁視之,此二方式皆無考慮固體壁對介質分子的熱傳,系統內部為平衡均勻(equilibrium and homogeneous),即不存在有熱傳的行為。 這邊有兩種方法可以監控此系統的平衡狀態,分別是位置亂度(position disorder)和速度分佈(velocity distribution)C (a).位置亂度(Position Disorder): 由N個分子所組成的面心結構(FCC)系統的情況,Verlet定義轉移階級參數λ,其定義為(3.1) (3.1) 其中 (3.2) d the length of one edge of the fcc unit cell 在開始狀態,所有的分子皆呈現FCC結構,因為所有 、 、 全為(1/2)a的倍數,所以λ=1,當系統已完全碰撞分離, 會在零上下震盪,震盪的震幅大小約為 ,因為系統的晶格碰撞分離之後,分子的位置分佈是隨機分佈,所以當系統從開始到平衡時,λ值|從1開始遞減直到0附近,然後在0附近上下震盪,而從模擬開始狀態到平衡狀態所需時間長短是和初始速度的給定有關,如果每一分子的初始速度相同,則系統需要較長的時間來達到平衡狀態,此方法不但可以監控分解之後的初始狀態,也可以監控目前的結構是否達平衡的狀態。 (b).速度分佈(Velocity Distribution) 為了監控麥斯威爾速度分佈(maxwell velocity distribution)的情況,我們須計算其速度分佈函數 ,並觀察它到平衡時的變化情峞A我們搨n一個和速度分佈有關的參數以瞭解速度分佈的情況,這裡我們用到的是Boltzmann’s H-function。 在計算H-function之前,我們必需先計算出速度分G蝻ヾA根據(3.3),將不同速度區間(dv)的原子,利用函數的方式表示,根據卡式直角座標可以改寫成(3.4)。在MD模擬的中,我們選定一個有限的速度間格,其大小為 ,然後計算速度在 之間的原子數(3.5),利用(3.5)可以得到某瞬態的速度分佈,求得在該瞬間的H-function (3.6),同理可求得y方向和z方向的H-function,所以可以求得整個系統瞬態的H-function (3.7),我們也可以利用H函數的震盪關係來監控系統的平衡狀態。 (3.3) (3.4) (3.5) (3.6) (3.7) 3.1.3產生(production) 當系統已F平衡狀態,帶入平衡步驟所跑出來的終值為產生的初始值,開始執行production,這步驟開始進行對各種性質的計算,因為平衡之後的狀態較接近自然界的物理現象,所以麂B驟再做各性質的計算C這個步驟和equilibration一樣,重複利用有限差分的方法來計算分子運動軌跡,另外這步驟過程中比平衡過程多了一個計算徑向分佈函數(radial distribution function)(3.8)的步驟,這個函數不但可以使我們瞭解分子間的分佈也可以知道分子的物理狀A(G體、氣體或是固體),這步驟可以用來檢測系統分子的分佈是否為水分子液態的分佈情形,M為總時間步階。 (3.8) 其中 (3.9) 3.2系統架構 本論文分子動力學的模擬中,水分子是以FCC(face center cubic)結構來排定如圖3-1,水分子的各項參數可參考表一,而白金觸媒層是一層結構的FCC排列方式(圖3-2),系統初始位置的架構如圖3-3,在周圍邊界條件的部分,我們是以週期性邊界條件處理(PBC),我們在第二章有詳細介紹過邊界條件處理方式,前後左右為週期性邊界條件,上端為鏡面反射邊界,觸媒層部分為2704顆白金分子,白金分子彼此之間的距離為0.277nm總,而系統分子的結構在二維的結構如圖3-4,系統的長寬高皆為14.5nm的正立方體,系統溫度為350 K。 3.3物理參數無因次化 在孤立系統中MD的平衡,其中N代表系統的分子數,V代表系統的體積大小,E代表的是系統的總能,因此當我們決定N就可以經由ρ*來決定系統的體積V,為了方便各種分子的研究,系統的單位是採用無因次化的方式來設定如表四所示。經過無因次化的L-J model則形成(3.10),無因次化的方式可以避免重複模擬的步驟,我們只需知道各種L-J分子(He、Ne、Ar、Xe…等分子)的 、 將之帶入L-J model即可求得其勢位能。根據無因次化的方法,我們可以將前面計算能量改寫成無因次化的表示式,總能量表示法為(3.11),內能是(3.12) (3.10) (3.11) (3.12) 其中 (3.13) 3.4數值方法 分子動力學的模擬之中,我們使用的模擬是假設分子為軟性球體(soft sphere),而非硬性的球體(hard sphere),假設分子為硬性的球體,我們所解的方程式是代數方程式(algebraic equations),碰撞之後球體的運動為直線的軌跡,速度為定值,但是在實際的情況中,分子的物理性質叫接近軟性的球體。在MD模擬之中分子的勢位能隨著距離而變化,且是連續的變化,所以分子運動軌跡是非直線,速度也不等於常數,也就是兩分子並非瞬時的碰撞,兩分子因為排斥的關係而影響彼此一段有限的時間,所以我們需要用到數值方法來解微分方程式,這邊我們所使用的數值方法是有限差分法。 在MD的模擬之中,當我們設定好分子初始位置,我們需要設定各個分子的初始速度,我們將每一個分子隨機分配一個介於-1到+1之間的速度,因此系統內的分子速度將會介於-1到+1之間而平均分佈,接著再對系統的狀態來對每個分子的速度作修正。由於我們所模擬的系統是不受外力作用,亦即為孤立系統,所以必須將系統的總線性動量修正到零(3.14),修正的步驟可以使系統穩定模擬。 定義系統的總能為E,下標D和A分別代表欲達到之值(Desired)和實際之值(Actual),系統實際上總能及動能、位能之間的關係如(3.15) 若要把系統的總能修正到 ,所需要的動能為(3.16),然後將先前隨機所給定的初始速度由方程式式(3.17)修正,將x、y、z個方向的速度修正到符合系統條件的速度值。我們使用的系統為系統,所以要對速度作溫度上的修正,修正到欲達到的溫度 ,然後可利用動能和溫度的關係(其中水分子的動能部分包含移動所造成的動能和轉動所造成的動能),即方程式(3.18)求得實際上的溫度 (3.19),上式中括號 代表該值對時間的平均值,求得實際上的溫度量後,便可利用(3.20)對初始速度值作修正。 (3.14) (3.15) (3.16) (3.17) (3.18) (3.19) (3.20) 其中 k = 1.381x10-23 J/(molecule K)Boltzmann’s constant vnew new velocity vold previous velocity I* the principle moments of inertia W* angular velocity 3.4.1 有限差分法(Finite Difference) 泰勒定理開創了有限差分理論,使任何單變量函數都可展成羃級數,有限差分法(Finite Difference Method)的原理,是將一連續之物理區間,以有限形狀規則的網格填滿,在此離散的格點中,代入控制方程式中,並配合起始條件(initial conditions)及邊界條件(boundary conditions),計算一格點與其附近格點間的關係。常用在分子動力學模擬的方法有,Verlet、Leap forg和Gear’s Predictor Correction,下麵一小節詳細說明Gear’s Predictor Correction。 (a).Verlet: Verlet的方法是由前兩個時間的位置,根據(3.16)計算出下一時間的分子位置,速度則利用(3.17)求得 (3.16) (3.17) (b.)Leap forg: Leap forg的方法需要知道前一時間的位置ri(t),中間時間的速度Vi(t-0.5h)和力Fi(t),首先由方程式(3.18)計算出Vi(t+0.5h),然後再由(3.19)計算新時刻的位置ri(t+h),最後由(3.20)求得速度Vi(t) (3.18) (3.19) (3.20) 3.4.2 Gear’s Predictor Correction Algorithms 預測校正法是分子動力學模擬中最常用的方法,其基本思想是Taylor series展開,我們的模擬所使用的方法為Gear’s預測校正法,此方法可以求解較複雜的勢位能函數,結果也較精確,在這裡我們除了分子運動位置利用此法修正以外,quaternion和角速度也利用此方法來修正,首先我們將五階泰勒級數展開(3.21~3.26)。 (3.21) (3.22) (3.23) (3.24) (3.25) (3.26) 修正預測的位置和其導函數,我們使用加速度 ,預測分子之間作用力的計算方式可由(3.27)求得在 的力,將此力帶入牛頓第二運動方程式(2.2)可以得到預測加速度 ,其關係是式為(3.28),在二階的Gear’s Predictor Correction Algorithms,微分項用來修正所有預測的位置和其導函數,方程式如下(3.29~3.33) ,預測校正因數參考表五。 (3.27) (3.28) (3.29) (3.30) (3.31) (3.32) (3.33) 其中 (3.34) 3.4.3 Neighbor List MD模擬中最消耗時間的部份為計算分子間作用力及勢位能,假設系統中有N個分子,電腦每次運算需要計算(1/2)N(N-1)次的分子間作用力,如果使用的分子越多對電腦資源的消耗嚴重。在第二章2.4小節,我們介紹截斷勢位能(Truncated Potential)的方法,當分子之間的距離大於截斷長度rc,則分子間的作用力及勢能是忽略不計,因此,電腦不需要去計算當分子之間距離超過rc 的分子間勢位能和相互的作用力。為了提高電腦運算的速度,我們這邊利用Neighbor List的方法來避免不必要的計算浪費,對於系統中每一個分子,我們將所有和該分子相距在特定距離rL以內的分子全部編號紀錄在同一行矩陣上,這樣我們就可以知道對該分子有影響的分子為何,而紀錄這些分子的編號的這一行矩陣我們將它稱為Neighbor List。Neighbor List的方法是利用兩個一維矩陣來儲存分子之間的位置資料,我們在碰撞一定次數之後記錄一次數據,一般而言我們設定十次,而rL的長度大小通常些微大於rC(0.3 ),Neighbor List方法需要設置兩個一行矩陣,List和 Npoint的關係如圖3-7。List用來紀錄每一個i分子以及相鄰分子j的編號,只紀錄j > i 的分子,(編號數j < i 分子的Neighbor List裡i分子已經包含在其中),所以不需要再重覆計算, List僅紀錄每一個分子的Neighbor List,因此在資料中我們無法知道那幾些分子和i分子相鄰,所以我們利用另一行距陣紀錄那些分子是和某分子i的相鄰分子,將紀錄在List中,利用Neighbor List的方法,可以大幅的降低電腦運算所需的時間,對於模擬的速度有很大的改善,因此用在本模擬系統中如圖3-7,我們考慮系統之中有四種原子,分別是Oxygen和Hydrogen a、Hydrogen a以及Platinum四種原子,所以我們只需計算O-O、O-Ha、O-Hb、O-Pt、Ha-Ha、Ha-Hb、Ha-Pt、Hb-Hb、Hb-Pt、Pt-Pt十種分子之間的距離,根據其距離來判斷是否落在Rcut之內來決定是否計算其勢位能和力,決定之後在根據其不同原子和原子之間的勢位能來判別利用何種勢位能方程式計算其勢位能和力,利用此方法可以減少計算所需消耗的時間。 3.4.4 Quaternion for Non-Linear Molecular 由於水分子是三種原子所構成的結構,如圖2-2我們知道水是由兩個氫和一個氧所構成,因此水是屬於非線性的分子,碰撞的過程之中會有轉動(Rotation)和震動(Vibration)的物理現象,由於分子震動是在極短的時間內非常迅速的運動,因此我們忽略不計,這裡我們假設分子的鍵長是固定,不會有震動的現象,因此我們只計算移動和轉動的部分,移動的部分3.4.3小節提過,轉動的部分,根據由拉Euler運動的方程式可寫出空間中剛體角速度的方程式(3.35)、(3.36)、(3.37),經過(3.38)可算出Euler運動方程式剛體的角度,由此式之中我們知道當sin 等於零和 時,其值發散是為奇異點,因此這裡我們使用Quaternion的方法來避開奇異點,利用四組的quaternion< Q(q0,q1,q2,q3) >參數來產生座標,其中參數滿足方程式(3.39),我們將A重新定義為(3.41),並滿足(3.42),再利用Gear’s Predictor Correction的方法來修正其計算出來的quaternions參數以及角速度的一次到四次的微分值,不同於位置的修正,位置的運動方程式是屬於二階微分方程式,這裡的修正是屬於一階微分方程式,參考表六,利用代數的方法來解決奇異點的問題,並提升運算所需時間。 A= (3.35) (3.36) (3.37) (3.38) (3.39) (3.40) (3.41) (3.42) Where Ixx the principal moments of inertia of x axis Iyy the principal moments of inertia of y axis Izz the principal moments of inertia of z axis 第四章?結果與討論 本論文主要是模擬白金觸媒層和水分子反應的物理現象,根據分子動力學的基礎建立程式模擬,我們採用四種不同大小的水分子團來模擬,分別是256顆水分子、500顆水分子、864顆穭壑l和1936顆水分子,然後對於模擬得到的物理現象探討,討論接觸角的產生變化情形以及水分子擴散附著於白金觸媒層的速度和時間的關係,其結果如下: 4.1擬痕G 4.1.1 SPC/E Model 在MD的模擬中,為了確定我們所建立的水分子(SPC/E)的Model是否正確,因此我們建立好Model之寣A設定系統狀態298K,模擬液態水分子的分子動力學模擬,其中液態水的密度在298K時根據熱力學飽和液態水查表可得其密度為998 kg/m3,利用此密度,根據方程式ρ=NM /L3換算分子之間的間距,有了分子之間的間距之後,在建構水分子的結構進行模擬,N代表分子數、M代表水分子質量、L代表分子結構長度,系統模擬進行25 ps (5 ps relax和20 ps平?,每一步階為0.5fs。 我們利用兩個圖來印證水分子的Model是否合理,分別是徑向分佈函數圖以及勢位能的震盪圖,圖4-1為水分子的徑向分佈函數圖,其中其分佈的型態為水分子之分佈情形,其第一個鋒值大約在分子距離為0.25nm左右有三個氧分子的分佈情形,第二個鋒值大約在0.47nm,圖4-2為水分子的勢位能能量圖的震盪情形,其值大約在-41.2~-41.5 kJ/mol 間來回震盪,而[6 ]所計算的值大約為-41.4 kJ/mol,此外我們所建立的Model是以的系統來建立,圖4-3為溫度震盪的情形,從圖中可以看到溫度的震盪趨於穩定的狀態,經過幾個簡單的驗證之後,接著說明為我們建構的模擬系統。 4.1.2 256、500、864、1936顆水壑l之系統模擬結果 計算所需的性質之前,控制系統需要達到平衡狀態,達到平衡狀態之後,我們所模擬的結果才可以更符合物理現象,當系統已達平衡狀態,這裡我們分別模擬256顆水分子、500顆水分子、864顆水分子和1936顆水分子在白金觸媒層上的反應情形,系統ensemble的選定為,系統的邊長皆?4.5nm,一個時間步階為0.5 fs,溫度設定為350K,在給定初始狀態之後,系統先先跑200000步階(100 ps),系統速度的修正100 ps,此步驟為equilibration,目的在使畯怐漕t統狀態更接近自然界的物理現像,100 ps之後,系統繼續模擬900 ps,這部分不做系統速度修正,此步驟為production,共1000ps(2000000步階),系統詳細的參數設定列於表六。 以下針對四種不同水分子數目大小的分子團的系統作模擬,水分子團的大小分別為256顆水分子團、500顆水分子團、864顆水分子團和1936顆水分子團,四種分子團的系統分別模擬1000 ps,圖4-4為256顆水分子團在時間0 ps的初始狀態,圖4-5是256顆水分子團在時間100 ps的模擬結果、圖4-6O256?水分子團在時間200 ps的模擬結果、圖4-7是256顆水分子團在時間300 ps的模擬結果、圖4-8是256顆水分子團在時間400 ps的模擬結果、圖4-9是256顆水分子團在伅?00 ps的模擬結果、4-10為256顆水分子團在1000 ps的模擬結果, 圖4-11為500顆水分子團在時間0 ps的初始狀態,圖4-12是500顆水分子團在時間100 ps的模擬結果、圖4-13是500顆水分子團在時間200 ps的模擬結果、圖4-14是500顆水分子團在時間300 ps的模懇痕G、圖4-15是500顆水分子團在時間400 ps的模擬結果、圖4-16是500顆水分子團在時間500 ps的模擬結果、4-17為500顆水分子團在1000 ps的模擬結果。 圖4-18為864顆水分子團在時間0 ps的初始狀態A圖4-19是864顆水分子團在時間100 ps的模擬結果、圖4-20是864顆水分子團在時間200 ps的模擬結果、圖4-21是864顆水分子團在時間300 ps的模擬結果、圖4-22是864顆水分子團在時間400 ps的模擬結果、圖4-23是864顆水分子團在時間500 ps的模擬結果、4-24為864顆水分子團在1000 ps的模擬結果,而圖4-25∼圖4-26為864顆水分子在時間1000 ps的切面圖,切面大小分別為2nm和4nm的切面圖。 圖4-27為1936顆水分子團在時間0 ps的初始狀態,圖4-28是1936顆水分子團在時間100 ps的模擬結果、圖4-30是1936顆水分子團在時間200 ps的模擬結果、圖4-31是1936顆水分子團在時間300 ps的模擬結果、圖4-32是1936顆水分子在時間400 ps的模擬結果、圖4-33是1936顆穭壑l團在時間500 ps的模擬結果、4-34為1936顆水分子團在1000 ps的模擬結果,而圖4-34∼圖4-35為1936顆水分子在時間1000 ps的切面圖,切面大小分別為2nm和4nm漱蟑措洁A而圖4-36為1936顆水分子在1000 ps的三維示意圖,圖4-37為水分子擴散在白金觸媒表面的速率圖。 4.2討論 1. 由圖4-4∼圖4-10是256顆水分子團從時間0 ps~1000 ps的模擬結果,從圖片中可以觀察到,當模擬開始隨著時〞獐W加,水分子受到白金觸媒表面的吸引力的影響,會逐漸附著於白金觸媒的表面之上,這是因為白金觸媒表面是屬於親水性(hydrophilic),巨觀的角度來看,水滴之所以附著於白金觸媒表面之上是由於重力的關係,導致水會像白金觸媒表面的方向附著,但是在微觀的角度來看,重力已經不是影響接觸角的唯一因素,表面張力的影響已經是影響接觸角的另外一項重要因素,以奈米尺度觀點來看,重力影響幾乎微乎其微,而表面張力的影響也是其中一項因素,但是這邊我們暫時不探討這項因素,我們將討論重點集中在分子之間的作用力,因為白金觸媒表面的親水性,造成白金分子吸引水分子,形成水分子彼此之間的作用力和白金與水分子之間的吸引力相互抗衡,但是由於白金觸媒表面的吸引力大於水分子之間的庫倫力,因此水滴逐漸被附著於白金觸媒表面之上,從圖中我們可以觀察到水分子團在白金觸媒層之上隨著時間慢慢的擴散並且附著(adhesion)於白金表面之上,但是由於水分子數目不夠多,因此只有第一層(first layer)水分子薄膜的出現,觀察不到我們所想觀察的物理現象。 2. 圖4-11∼圖4-17是500顆水分子團從時間0 ps~1000 ps的模擬結果,從圖我們可以觀察到水分子團在白金觸媒層之上隨著時間慢慢的擴散並且附著於白金表面之上,在此可以觀察到附著於白金觸媒層表面的水分子數目明顯的增加,而第二層(secondary layer)水分子薄膜也已經出現,但是接觸角的資訊並不明顯,無法從此得知接觸角的任何資訊,因此我們繼續把系統的分子數目加大至864顆水分子。 3. 圖4-18∼圖4-24是864顆水分子團從時間0 ps~1000 ps的模擬結果,從圖我們可以觀察到水分子團在白金觸媒層之上隨著時間慢慢的擴散並且附著於白金表面之上,可以看到水分子在白金表面上的兩層薄膜清楚的出現,從圖4-25∼圖4-26切面洏i以看到接觸角的形成,這是因為水分子數目的增加,使得庫倫力和白金表面的吸引力大小越來越接近,造成在力平衡上的牽制而導致接觸角的形體產生,根據[13 ]所得到的實驗結果(表七),水滴在白金表面上的附著情形,不同液滴大小附著所造成的角度不同,分別是22.05度、40.81度、50.71度,這裡我們取圖4-26的切面圖來量測接觸角的大小,選擇此切面的原因是因為不做切面的觀測,有可能因為角度的問題造成觀測上角度的誤差,而影響量測角度的結果,因此我們利用切面的方式來觀測模擬結果,從圖中我們利用角度規量測到 的角度為19度。 4. 我們把系統水分子數目加大至1936顆水分子,這裡我們排定的方式是屬於長條狀的水分子團,利用這種排列方式是因為排定的形狀越接近自然型態的液滴形狀,計算系統達平衡的時間也會相對減少,圖4-27∼圖4-33是1936顆水分子團從時間0 ps~1000 ps的模擬結果,從圖我們可以觀察到水分子團在白金觸媒層之上隨著時間慢慢的擴散並且附著於白金表面之上,而隨著時間的增加其接觸角的形狀也清楚的出現,隨著時間的增加接觸角的變化慢慢趨於穩定平衡狀態,變化情形會越來越小,另外圖中可以看到有一些零星的水分子散佈在空間系統中,因為系統溫度為350 k,所以判定這些水分子是屬於汽化狀態的水分子型態,伴隨著比較大的動能分佈於系統中,從圖4-34∼圖4-35切面圖可以看到接觸角的形體的大小以及形狀,接觸角的形體已經產生,因為白金觸媒的吸引力使水滴附著於表面之上,但是由於水分子數目足夠多,所以庫倫力的影響比重也比較明顯,使液滴的形狀清楚明顯,根據圖4-35切面圖,我們利用角度規量測出來接觸角 的角度為42度,將量測的角度整理於表七由於不同水分子團的大小造成量測出來的結果值不同,和實驗的結果趨勢相同,因為水分子的數目比較多,潤濕的效果明顯的增加。 5. 圖4-36為1936顆水分子的三維視點觀測圖,黃色的虛線圓圈部分是水分子團所造成的擴散範圍,藍色線代表的是擴散半徑,紫色的圓圈是小團的水分子凝聚的物理現象,圖4-37為水分子在白金觸媒層表面上的擴散速率,圖中可以觀察到水分子一開始的擴散速率比較急速,到了500 ps之後擴散速率逐漸的緩和,到達最後1000 ps時,面積幾乎不再增加,反應已達平衡狀態,圖中1936顆水分子的擴散速度(紫色曲線)開始的趨勢比其它三組快,這是因為一開始給定的初始條件比較接近自然情況,所以呈現比較和緩的擴散,實驗上[15 ]擴散半徑的速度大概是 ,模擬的結果大概趨近於 。 第五章?結論與建議 本論文主要探討白金觸媒和水的反應變化,透過分子動學方法所的模擬得到的結果可以讓我們瞭解微小分子之間的物理變ヾ形、同時預測腔疏云漣峖酉P變化、計算水分子擴散面積的速度,除此之外,這邊也對外來研究的方向提供幾點建議。 5.1結論 1. 由於水分子的極坋釋部A使得水分子|形成大小不一的水分子團,但是如果水分子的數目不夠多,所形成的水分子團會不夠大,而且水分子團也無法在白金觸媒層表面上形成明顯的薄膜,當水分子的數目夠多時,在模擬達平衡狀態時就會在白金觸媒層表面上形成一層薄膜(first layer),而要形成第二層薄膜(secondary layer),則水分子的數目至少需要500顆以上的水分子,如果要有接觸角的形成,則必須把水分子的數目加大到至少864顆水分子以上,才會有微小的形狀產生,但是並不明顯,因此要觀測到接觸角的形成則系統的水分子數目至少要有上千顆以上的數目,才能觀測到接觸角的產生以及變化情形,864顆水分子團為19度,1936顆水分子團為42度。 2. 當水分子的數目夠多,多到可以形成接觸角時,透過模擬發現接觸角的形成和系統初始排定的水分子結構形狀有密切的關係,如G我們給定的形狀越接近自然情況下水分子團的形狀,系統在模擬的時候會比較快達到穩定的狀態,如此一來可以降低模擬所需要消耗的時間。 3. 分子在白鷵眼C層上的擴散速度在500 PS前,擴散的速度比較快,但是到了500 PS之後,擴散的速度會逐漸變慢,這是因為開始時水分子團受到白金觸媒層表面的吸引力所吸引,水分子團|迅速的向外擴散於觸媒層表面,但是經過一段時間,分子之間的作用力快要達到平衡的狀態,因此擴散速度逐漸變慢,並且有第二層水分子薄膜的形成,當系統到達1000 PS時,接觸角的形體逐漸產生,系統達平衡狀態,接觸角的大小變化甚小,而水分子團擴散面積的速度趨近於 。 4. 不同的水分子團也|因為彼此之間的庫倫力l引,造成水分子團的形成,在1936顆水分子的模擬中,小團的水分子會受到大團水分子的吸引力而聚集,這是因為小團的水分子的總內能比大團水分子的總內能小而遭到吸引,而水分子附著在白金觸媒層上形成薄膜的原因是因為受到水分子和白金分子之間的吸引力而形成薄膜。 5. 接觸角的形成是因為系統已達準平衡的狀態,分子之間的內聚力和附著力達平衡,水分子與水分子之間以及水分子和白金之間的作用力以達平禳A以巨觀的角度來看,在形體上肉眼幾乎看不出有任何變化情形,但是在微觀的角度來看,分子之間的作用力不斷的在變化,水分子團持續不斷的運動(移動、轉動、震動),接觸角的形體還是有些微的變化現H。 5.2建議 1. 架設接觸角量測的實驗,研究液滴(水、甲醇)和基材(白金、碳布)的接觸反應實驗,目前的技術在量測奈米液滴上有其困難,蒸發現象明顯量測ㄘ騿A必須等到技術成熟,再將接觸角量測反應情形和模擬結果比較,以確認模擬結果的準確性和可靠性。 2. 在燃料電池的模擬中,我們關心的問題是甲醇和碳布基材的反應情形,建議加入更複雜的甲醇分子和碳布基材來進行模擬,並且和實驗數據騆?。 3. 加入奈米液滴之相雂じ狾﹛A研究不同種類之分子凝聚(cluster)的液滴成形情形、奈米液滴蒸發及固化、相變化介面動態、表面張力等運動行為。 4. 溫度控制方法加入,phantom molecule的邊界處理方法可以達到溫度控制的目的,利用phantom molecule的方法來模擬白金觸媒層,其預測的結果與篔擘u簧的強度以及各層分子之層數(number of layers)設定值有關係,我們可視電腦效能來增加其層數,此外也可以利用constraint的方法來達到溫度控制的效果,可以[快計算所需要的時間。 5. 利用個人電腦P2.4的處理器來計算分子動力學模擬,所需消耗的時間過於冗長,因此當前如何建立平行化處理的程式,架構平行化運算的處理器為當務之急。rf 參 考 文 獻 1. J. M. Haile, ”Molecular Dynamics Simulation Elementary Methods”, John Wiley & Sons, 1992. 2. M. P. Allen and D. J. Tildesley, ”Computer Simulation of Liquid”, Oxford University Press, 1989. 3. D. C. RAPAPORT, ”The Art of Molecular Dynamics Simulation”, Cambridge University Press, 1995. 4. R. J. Sadus, ” Molecular Simulation of Fluids”, Elsevier Science B.V., 1999. 5. S. Maruyama, “Molecular Dynamics Method for Microscale Heat Transfer, Advances in Numerical Heat Transfer”, Taylor & Francis, New York, 2, p.p.189-226, 2002. 6. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, “The missing term in Effective Pair Potential ”, J. Phys. Chem., 91, p.p.6269-6271, 1987. 7. E. Spohr, “Computer simulation of the water/platinum interface ”, J. Phys. Chem., 93(16), p.p.6171-6180, 1989. 8. J. A. Nieminen, D. B. Abraham, M. Karttunen and K. Kaski, “Molecular Dynamics of a Microscopic Droplet on Solid Surface”, Phys. Rev. Lett., 69-1, p.p.124-127, 1992. 9. J. Yang, J. Koplik and J. R. Banavar, “Terraced Spreading of simple Liquid on Solid Surfaces”, Phys. Rev. A., 46-12, p.p.7738-7749 10.S. Matsumoto, S. Maruyama and H. Saruwatari, “A Molecular Dynamics Simulation of a Liquid Droplet on a Solid Surface”, ASME/JSME Thermal Engineering Conference., 2, p.p.557-562, 1995. 11.S. Maruyama, T. Kimura, T. Kurashigo and Y. Yamaguchi, “Liquid Droplet in Contact with a Solid Surface”, Micro.Thermophys Eng., 2, p.p.49-62, 1998. 12.S. Maruyama and T. Kimura, “A Molecular Dynamics Simulation of a Bubble Nucleation on Solid Surface”, Int. J. Heat & Technology, 18, p.p.69-74, 2000. 13.S. G. Kandlikar, S. Maruyama, M. E. Steinke and T. Kimura, “Measurement and Molecular Dynamics Simulation of Contact Angle of Water Droplet on a Platinum Surface”, HTD (Am. Soc. Mech. Eng.), 369, p.p.343-348, 2001. 14.S. Maruyama and T. Kimura, “Molecular dynamics Simulation of liquid Droplet on solid surface”, Proc.12th Int. Heat Transfer Conf., p.p.537-542, 2002. 15.F. Heslot, A. M. Cazabat, P. Levinson, and N. Fraysse, “Experiments on wetting on the scale of nanometers : Influence of the surface energy”, Phys. Rev. Lett., 65-5, p.p.599-602, 1990.id NH0925311013 sid 913715 cfn 0 / id NH0925311014 auc 王俊淇 tic 相變化記憶體之熱傳模擬分析 adc 林昭安 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 英文 pg 51 kwc 相變化 kwc 熱傳 kwc 記憶體 kwc 結晶態 kwc 非結晶態 abc 相變化材料之所以能夠作為記憶體之用,主要是因為它具有特殊的電流電壓特性所致,當此相變化材料為非晶態時,外加一電壓到此材料上,由於相變化材料在電性上表現是近似半導體特性-當溫度越高、導電性越佳。當電壓施加達到一臨界值(Vth),電阻會忽然降低,導致電流增加、電壓降低(Vth - Vh)。而Vth隨著相變化材料組成及結晶狀態的不同會有所不同。 tc Acknowledgement Abstract i Nomenclature ii Contents iv Chapter 1 Introduction 1 1.1Introduction 1 1.2 Cell’s structure of Chalcogenide phase-change memory and material properties 2 1.3 Characteristic of chalcogenide phase-change memory 2 1.4 Paper survey 5 1.5 Objective and Motivation 6 Figures 8 Chapter 2 Mathematical Formulations 12 2.1 Governing Equation 12 2.1.1 Energy equation 12 2.1.2 Charge conservation law 13 2.2 The electrical resistance R 14 2.3 Boundary Conditions 15 Chapter 3 Numerical methods 17 3.1 Discretization of the energy equation 17 3.2 Discretization of the Charge conservation law 19 3.3 Determination of the electrical resistance and the Joule resistance heating 20 3.4 Criterion for the heating time 23 Figures 24 Chapter 4 Results and discussion 27 4.1 Geometry and dimensions 27 4.2 Grid independent test 27 4.3 Effects of the cross-section area of BEC TiAlN 28 4.4 Effects of the thickness of GST 30 4.5 Effects of the current-limiting resistance Rs 31 4.6 Reset and set simulations 31 Figures 33 Chapter 5 Conclusions and Future work 48 5.1 The conclusions 48 5.2 Future work 49 Reference 50rf 1.S. Tyson, G. Wicher, T. Lowrey, S. Hudgens, K. Hunt, Nonvolatile, high density, high performance phase-change memory, Aero Space Conference Proc., vol. 5, 2000, pp.385-390. 2.S. Lai, and T. Lowrey, OUM-A 180nm nonvolatile memory cell element technology for stand alone and embedded applications, IEDM TECHNICAL Digest 2001, pp. 803-806. 3.Technology presentation, http://www.ovonyx.com/ 4.Lih-Hsin Chou, Chun-Ping Jen and Ching-Chang Chieng, Simulation Study of Phase-change Optical Recording Disks, Jap. J. Appl. Phys. Vol.39, 1999, pp1614-1620. 5.Yoshio Kakimoto and Masakuni Suzuki, Nonvolatile Memory Based on Phase Change in Se-Sb-Te Glass, Jap. J. Appl. Phys. Vol.42, 2003, pp. 404-408. 6.E.-K Kim and S.-l. Kwun, Thermal boundary resistance at interface, Appl. Phys. Vol.76, 2000, pp. 3864-3866. 7.I. Friedrich, and V. weidenhof, Structural transformations of films studied by electrical resistance measurements, J. Appl. Phys. Vol.87, 2000, pp. 4130-4134. 8.Y. C. Chen and H. P. Chen, A High Performance 180nm Nonvolatile Memory Cell Using Phase Change Sn-doped Chalcogenide, VLSI Technology, Systems, and Applications, 2003 International Symposium on , 6-8 Oct. 2003 Pages:32 - 35 9. Young-Tae Kim al., Study on Cell Characteristics of PRAM using the Phase-Change Simulation, Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003. International Conference on , 3-5 Sept. 2003 Pages:211 - 214 10. Dae-Hwan Kang al., One-dimensional heat conduction model for an electrical phase-change random access memory device with an 8 memory cell (F=0.15 ), J. Appl. Phys., Vol. 94, No. 5, 1 September 2003. 11. Y.T. Kim al., A novel technology using N-doped GeSbTe Films for Phase Change RAM, VLSI Technology, 2003. Digest of Technical Papers. 2003 Symposium on , 10-12 June 2003 Pages:177 - 178 12. Daniel Salamon and Bruce F. Cockburn. An Electrical Simulation Model for the Chalcogenide Phase-change Memory Cell, Memory Technology, Design and Testing, 2003. Records of the 2003 International Workshop on , 28-29 July 2003 Pages:86 - 91 13. Suhas V. Patankar, Numerical heat transfer and fluid flow, Mcgraw Hill, 1980. 14. J.H.Feriger and M.Peric, Computational Methods for Fluid Dynamics, Springer Verlag, 1996.id NH0925311014 sid 913719 cfn 0 / id NH0925311015 auc 張育瑋 tic 固態氧化物燃料電池電解質氧離子傳導分子動力模擬 adc 洪哲文 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 65 kwc 固態氧化物燃料電池 kwc 分子動力學 kwc 燃料電池 kwc 氧離子傳導性 abc 本論文探討固態氧化物燃科電池的電解質------釔安定性氧化鋯( yttria - stablized zirconia, YSZ) 中的氧離子傳導現象。釔安定性氧化鋯是由氧化鋯(ZrO2)加入相當量的氧化釔 (Y2O3)而成,現常用來當成固態氧化物燃料電池中的電解質,如果氧離子傳導性很好的話,對整個燃料電池的效能有很大的幫助。在文獻中發現,影響這個性質的兩個最重要的因素為氧化釔濃度及電池的操作溫度。 tc 目錄 摘要…………………………………………………………………Ⅰ 致謝…………………………………………………………………Ⅱ 目錄…………………………………………………………………Ⅲ 表目錄………………………………………………………………Ⅴ 圖目錄………………………………………………………………Ⅵ 參數定義……………………………………………………………Ⅷ 第一章 緒論…………………………………………………………1 1-1 引言 …………………………………………………………1 1-2 文獻回顧 ……………………………………………………1 1-3 研究目的與方法 ……………………………………………4 第二章 分子動力學基礎理論………………………………………5 2-1 分子動力學原理 ……………………………………………5 2-2 分子間勢能模型(Intermolecular Potential Models)…5 2-3 截斷勢能(Truncated potential)和長距離修正勢能(Long- Range Correction ) ………………………………………7 2-3-1 截斷勢能(Truncated potential )…………………7 2-3-2 長距離修正勢能(Long-Range Correction) ………8 2-4 週期性邊界條件(Periodic Boundary Conditions)……9 2-5 最小影像準則(Minimum Image Criterion)……………11 2-6 檢視平衡方式(Monitoring Equilibration) …………13 2-7 靜電作用力 ………………………………………………14 2-7-1 庫倫力(Coulomb Force)……………………………15 2-7-2 Ewald Summation Method …………………………15 第三章 YSZ模型建立 …………………………………………18 3-1 模擬流程 …………………………………………………18 3-1-1 初始化過程(Initialization) ……………………18 3-1-2 平衡過程(Equilibration)及產值過程(Production)19 3-2 模型建構 ……………………………………………………20 3-3 分子間勢能方程式(Intermolecular potential model) 21 3-4 數值方法 ……………………………………………………21 3-4-1 初始速度及速度修正 …………………………………22 3-4-2 Predictor - Corrector Algorithm…………………23 3-4-3 Neighbor list的建構方式……………………………25 3-4-4 平均平方位移(mean square displacement)及Nernst- Einstein relation……………………………………26 3-4-5 徑向分佈函數(radial distribution function) …27 3-4-6 氧離子空洞追蹤方法 …………………………………27 第四章 模擬結果與討論…………………………………………29 4-1 參數設定及平衡狀況 ………………………………………29 4-2 離子運動行為 ………………………………………………29 4-3 平均平方位移(mean square displacement)及氧離子傳導性 (ionic conductivity) ……………………………………30 4-4 徑向分佈函數(radial distribution function) ………31 4-5 氧離子空洞的運動狀態及分析 ……………………………33 第五章 結論…………………………………………………………35 參考文獻………………………………………………………………37rf 1. G. V. Lewis, and C. R. A. Catlow, “Potential Models for Ionic Oxides”, Journal of Physa C, 18, p.p. 1149-1161, 1985. 2. H. W. Brinkman, W. J. Briels, and H. Verweij, “Molecular Dynamics Simulations of Yttria-Stabilized Zirconia”, Chemical Physics Letters, 247, p.p.386-390, 1995. 3. T. P. Perumal, V. Sridhar, K. P. N. Murthy, K. S. Easwarakumar, and S. Ramasamy, “Molecular Dynamics Simulations of Oxygen Ion Diffusion in Yttria-Stabilized Zirconia”, Physica A, 309, p.p.35-44, 2002. 4. X. Li, and B. Hafskjold, “Molecular Dynamics Simulation of Yttria-Stabilized Zirconia”, Journal of Physics: Condensed Matter, 7, p.p.1255-1271, 1995. 5. Y. Yamamura, S. Kawasaki, and H. Sakai, “Molecular Dynamics Analysis of Ionic Conduction Mechanism in Yttria-Stabilized Zirconia”, Solid State Ionics, 126, p.p.181-189, 1999. 6. C. A. J. Fisher, and H. Matsubara, “Molecular Dynamics Investigations of Grain Boundary Phenomena in Cubic Zriconia”, Computational Materials Science, 14, p.p.177-184, 1999. 7. T. Tojo, H. Kawaji, and T. Atake, “Molecular Dynamics Study on Lattice Vibration and Heat Capacity of Yttria-Stabilized Zirconia”, Solid State Ionics, 118, p.p.349-353, 1999. 8. N. Sawaguchi, and H. Ogawa, “Simulated Diffusion of Oxide Ions in YO1.5-ZrO2 at High Temperature”, Solid State Ionics, 128, p.p.183-189, 2000. 9. J. M. Haile, “Molecular Dynamics Simulation Elementary Methods”, JOHN WILEY & SONS, 1992. 10. A. Y. Toukmaji, and J. A. Board Jr, “Ewald Summation Techniques in Perspective: A Survey”, Computer Physics Communications, 95, p.p.73-92, 1996.id NH0925311015 sid 913721 cfn 0 / id NH0925311016 auc 王君豪 tic 微型渦輪機發電系統之性能研究 adc 蔣小偉 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 85 kwc 微型渦輪機 kwc 微型渦輪機發電系統 kwc 氣渦輪引擎 kwc 再生式氣渦輪引擎 abc 本研究係針對150 kW微型渦輪機(Microturbine)發電系統,建立其性能測試與分析之能量,俾提供國人未來自行開發微型渦輪引擎及其控制系統之參數設計依據。本研究主要完成了一套完整微型氣渦輪引擎之測試分析能量,包括實驗建置、性能測試、以及分析模型比對驗證。 rf 1.McDonald, C. F. and Wilson, D. G., The Utilization of Recuperated and Regenerated Engine Cycles for High-Efficiency Gas Turbines in the 21st Century, Applied Thermal Engineering Vol. 16, Nos 8/9, pp. 635-653, 1996. 2.Boyle, J. F. and Nigro, D. N., Applying the Allison GT-404 “The VIP in Action”, SAE Paper No.720695, 1972. 3.Cadwell, R. G., Chapman, W. I., and Walch, H. C., The Ford Turbine-An Engine Designed to Compete with the Diesel, SAE Paper No.720168, 1972. 4.Best, G. C. and Flanigan, E. E., Allison GT-404─The VIP Engine─Versatile Industrial Power, Paper 72-GT-93 Presented at the ASME Gas Turbine and Fluids Engineering Conference and Products Show, San Francisco, California, March 26-30, 1972. 5.Collman, J. S., Amann, C. A., Matthews, C. C., Stettler, R. J., and Verkamp F. J., The GT-225─An Engine for Passenger-Car Gas-Turbine Research, SAE Paper, n 750167, pp. 690-712, 1975. 6.Laux, S. C. and Ware, R. N., Application of a Vehicular Designed, Heavy Duty Gas Turbine Engine to a Military Generator Set, ASME Paper, 85-GT-125, March 18-21, 1985. 7.Bathie, W. W., Fundamentals of Gas Turbines─2nd ed., John Wiley & Sons, Inc., New York, 1996. 8.Wilson, D. G., Low-leakage and High-flow Regenerators for Gas Turbine Engines, Proc. Inst. Mech. Engrs Vol. 207, 195-202, 1993. 9.羅武仁,微型渦輪機轉子-軸承動態特性分析與測試,國立清華大學動力機械工程學系碩士論文,中華民國92年7月。 10.Rahnke, C. J., The Variable-Geometry Power Turbine, SAE Transactions, Vol. 78, paper 690031, 1969. 11.溫文龍,微型渦輪機發電系統實驗研究,國立清華大學動力機械工程學系碩士論文,中華民國91年7月。 12.Mattingly, J. D., Elements of Gas Turbine Propulsion, McGraw-Hill, Inc., New York, 1996. 13.黃一民,超小型噴射引擎之性能研究,國立清華大學動力機械工程學系碩士論文,中華民國91年7月。 14.Kurzke, J., GasTurb 9.0 for Windows, User’s Manual, Printed Germany, 2001. 15.Petrie, E. M., Willes, H. Lee, and Taskhashi, M., Distributed Generation in Development Countries, 2000. 16.Borbely, A. M. and Kreider, J. F., Distributed Generation: The Power Paradigm for the New Millennium, CRC Press, 2001. 17.Borbely-Bartis, A. M., DeSteese, J. G., and Somasundaram, S., U.S. Installation, Operation, and Performance Standards for Microturbine Generator Sets, Aug 2000. 18.International Gas Turbine Forecast Corporation, Gas Turbine Forecast:1999-2008, July 2000. 19.Rodgers, C., Microturbine Cycle Options, ASME Paper No.2001-GT-0552, June 2001.id NH0925311016 sid 913722 cfn 0 / id NH0925311017 auc 黃紹航 tic 百葉窗型熱交換器鰭片表面特性對熱對流係數影響之數值分析 adc 陳理定 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 64 kwc 百葉窗型散熱片 abc 摘要 rf 參考文獻 1. F. E. M. Saboya and E. M. Sparrow, “Transfer characteristic of two-rowplate fin and tube heat exchanger configuration,” Int.J. Heat Mass Transer,Vol.9 , pp.41-49,1976. 2. J. Stasiulevicius and A. Skrinska, “Heat Transfer of Finned Tube Bundlesin Crossflow”, Hemispher Publishing, New York, 1988. 3. W. M. Kays and A. L. London, “Compact Heat Exchangers”, McGrawHill, 2nd ed,New York, 1964. 4. S. Kakac, A. E. Bergles and F. Mayinger, “Thermal-Hydraulic Fundamentals and Design”, Hemispher Publishing, New York, 1981. 5. D. Q. Kern and A. D. Kraus, “Extended Surface Heat Transfer”,McGrawHill, New York, 1972. 6. F. C. McQuistion and J. D. Paker, “Heat Ventilating and Air Conditioning”, John Wiley & Sons, New York, 2nd ed, 1982. 7. Wang, C. C., Chen, P. Y., Jang, J. Y., “Heat transfer and frictioncharacteristics of convex-louver fin-and-tube heat exchangers”,Experimental heat transfer, Vol.9, pp.61-78, 1996. 8. Wang, C. C., Tsai, Y. M., Lu, D. C., “Comprehensive study ofconvex-louver and wavy fin-and-tube heat exchangers”, Journal ofthermophysics and heat transfer, Vol.12, No.3, pp.423-430, 1998. 9. Hatada, T., Senshu, T., “Experimental study on heat transfercharacteristic of convex louver fin for air conditioning heatexchangers”, ASME paper 84-HT-74, 1984. 10. Hadata, T., “Improved heat transfer performance of air coolers bystrip fins controlling air flow distribution”, ASHRAE Trans., part 1pp.166-170, 1989. 5Wanget al. 11. Pauley, L. L., Hodgson, J. E., “Flow visualization of convex louverfin array to determine maximum heat transfer conditions”,Experimental thermal and fluid science Vol.9, pp.53-60, 1994. 12. Atkinson, K. N., Drakulic, R., Heikal, M. R., Cowell, T. A.,“Two-and-three-dimentional numerical models of flow and heattransfer over louver fin arrays in compact heat exchangers”,International Journal of Heat and Mass Transfer 41 pp.4063-4080,1998. 13. Springer, M. E., Thole, K. A., “Experimental design for flowfieldstudies of louvered fins”, Experimental Thermal and Fluid Science Vol.18, pp.258-269, 1998. 14. Bemisderfer, C. H., “Heat Transfer: A contemporary analytical toolfor developing improved heat transfer surface”, ASHRAE Trans.Part1, pp.1157-1166, 1987. 15. Suga, K., Aoki, H., Shinagawa, T., “Numerical analysis on two-dimensional flow and heat transfer of louvered fins using overlaidgrids”, JSME International Journal Series Ⅱ , Vol. 33, No.1pp.122-129, 1990. 16. Suga, K., Aoki, H., “Numerical study on heat transfer and pressuredrop in multilouvered fins”, ASME/JSME Thermal Engineering Proceedings Vol.4, pp.361-368, 1991. 17. Hiramatsu, M., Ishimaru, T., Matsuzaki, K., “Research on fins airconditioning heat exchangers (1st Report, Numerical analysis of heattransfer on louvered fins)”, JSME International Journal Series Ⅱ,Vol.33, No.4, pp.749-756, 1990. 18. Wang, C. C., Liu, M. S., Leu, J. S., Liaw, J. S., “3-Dsimulation of theThermal-Hydraulic characteristics of Louvered Fin-and-Tube Heat Exchangers with Oval Tubes”, ASHRAE Annual Meeting, 2000. 19. 王啟川,熱交換器設計 ,五南圖書出版。 20. Wang, C.C., Lee, C.J., Chang, C.T., Lin, S.P., 1999e. Heat transfer and friction correlation for compact louvered fin-and-tube heat exchangers. Int. J. of Heat and Mass Transfer, 42(11) pp:1945-1956. 21. Wang, C.C.,K.U., 2000c. Heat transfer and friction characteristics of plain fin-and-tube heat exchangers:part2: correlation. Int. J. of Heat and Mass Transfer,43:2692-2700. 22. Kays, W.M., London A.L., 1984. Compact Heat Exchanger. 3rd ed. New York:McGraw-Hill.id NH0925311017 sid 913723 cfn 0 / id NH0925311018 auc 黃勖維 tic 奈米流體熱流性質研究 adc 許文震 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 84 kwc 奈米流體 kwc 熱傳導係數 kwc 黏滯係數 kwc 磁性流體 kwc 磁場 abc 在流體裡面加入奈米粒子,並加入一些界面活性劑使奈米粒子可以均勻分散在流體裡面,稱之為奈米流體。由於奈米流體可以大幅增加流體的熱傳導係數,且隨著濃度的越高,其增加的熱傳導係數越大。本論文在探討一些奈米流體的熱傳導係數,有用化學還原法合成成奈米金水溶液,金的大小尺寸為20nm。也有測量奈米銀的水溶液。更進一步在水和乙二醇裡加入三氧化二鋁和氧化銅粒子,驗證其熱傳導係數有無增加和黏滯係數的增加量,並探討其熱傳增加的機制。 tc 目錄 摘要 I 英文摘要 II 致謝 III 目錄 VI 表目錄 VII 圖目錄 VIII 第一章 導論 1 1-1 前言(奈米流體) 1 1-1.1 前言(奈米流體) 1 1-1.2 研究動機 2 1-1.3 文獻回顧 2 1-2 前言(磁性流體) 4 1-2.1 前言(磁性流體) 4 1-2.2 研究動機 4 1-2.3 文獻回顧 5 第二章 理論分析 7 2-1 奈米金屬微粒的合成 7 2-2 磁場的觀念 9 2-2.1 磁場單位探討 9 2-2.2 材料磁化特性 11 2-2.3 一般磁性固體磁滯曲線 11 2-2.4 一般磁性流體磁滯曲線 12 2-3 磁性流體穩定性分析 14 2-3.1 磁性流體動力穩定性 14 V 2-3.2 磁性流體聚集穩定性 16 2-4 熱傳導係數 18 2-4.1 布朗運動 18 2-4.2 固-液間的規則液體層 21 2-4.3 考慮固態液體層所造成的影響 22 2-4.4 奈米微粒聚集的效應 24 2-4.5 傳統的兩項流理論分析整理 24 2-5 黏滯係數 25 第三章 實驗方式 35 3-1 測量熱傳導係數的方法 35 3-1.1 暫態線金屬法 35 3-1.2 穩態平行板法 38 3-2 測量黏滯係數的方法 39 3-2.1 旋轉黏度計 39 3-2.2 玻璃毛細管黏度計 39 3-3 關於磁場架設的部分 40 第四章 實驗結果與討論 48 4-1 實驗方法比較 48 4-2 奈米流體量測記錄 48 4-2.1 奈米金水溶液 48 4-2.2 奈米銀水溶液 50 4-2.3 乙二醇加入氧化銅奈米粉末 51 4-2.4 水加入三氧化二鋁奈米粉末比較 51 4-2.5 乙二醇加入Al2O3 的黏滯係數 54 4-3 磁性流體在磁場之下的性質比較 55 4-3.1 在不同磁場底下的熱傳導係數 55 4-3.2 在不同磁場底下的黏滯係數 57 VI 第五章 結論與建議 75 第六章 參考書目 78 第七章 附錄 81 7-1 計算熱傳導係數 81 7-2 熱線法不準度分析 83rf 1. .S. Lee, S. Choi, S. Li, and J. A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, ASME Journal of Heat Transfer, vol. 121, pp. 280-289, 1999. 2. .X. Wang, X. Xu, and S. Choi, Thermal conductivity of nanoparticle -fluid mixture, Journal of thermophysics and heat transfer, vol. 13, No4, pp. 474-480, 1999. 3. .C. Maxwell, A Treatise on Electricity and Magnetism, 2nd ed, pp. 435-441, 1904. 4. ..R. L. Hamilton and O. K. Crosser, Thermal conductivity of heterogeneous two-component systems, Ind&Engr. Chem. Fundamental, pp. 187-191, 1962. 5. .K. V. Liu and S. Choi, Measurments of pressure drop and heat transfer in turbulent pipe flows of particulate slurries. report, Argonne National Laboratory ANL-88-15, 1988. 6. S. Choi, Enhancing thermal conductivity of fluids with nano-particles. ASME Fluids engineering division, vol. 231, pp. 99-105, 1995. 7. .J. A. Eastman, S. Choi, S. Li, G. Soyez, L. J. Thompson, and R. J. Di Melfi, Novel thermal properties of nanostrucred materials, Master. sci. forum, pp. 312-314, 1999. 8. .P. Keblinski, S. R. Phillpot, S. Choi, and J. A. Eastman, Mechanisms of heat flow in suspensions of nano-sized particles(nanofluids), International Journal of heat and mass transfer, vol. 45, pp. 855-863, 2002 9. .Q. Z. Xue, Model for effective thermal conductivity of nanofluid, Physics letters A , vol. 307, pp. 313-317, 2003. 10. S. P. Jang and S. Choi, Role of Brownian motion in the enhance thermal conductivity of nanopartles, Applied physics letters, vol.84, pp. 4316-4318, 2004 11. V. E. Fertman, Magnetic fluids guidebook : properties and applicat ions, New York: Hemisphere pub. Corp.,1990. 12. C. Tangthieng , B. A. Finlayson , J. Maulbetsch , and T. Cader , Heat transfer enhancement in ferrofluids subjected to steady magnetic fields, Journal of magnetism and magnetic materials, vol. 201, pp. 252-255, 1999. 13. R. E. Rosensweig, Heating magnetic fluid with alternating magnetic field, Journal of magnetism and magnetic materials, vol. 252, pp. 370-374, 2002. 14. J. P. Mctague, Magnetoviscosity of magnetic colloids, Journal of chemical phys, vol. 51, pp. 133-136, 1969. 15. R. Patel, R.V. Upadhyay, and R.V. Mehta, Viscosity measurement of a ferrofluid:comparison with various hydrodynamic equations , Journal of colloid and interface science, vol. 263, pp. 661-664, 2003. 16. Stefan, Odenbach, Magnetoviscous effects in ferrofluids, 1997 17. T. Ochara, and D. Suzuki, Intermolecular energy at a solid-liquid interface, Microscale thermophysical engineering, vol. 4, pp. 189-196, 2000. 18. H. C. Brinkman, The viscosity of concentrated suspensions and solutions, Journal chemistry physics, vol. 20, pp. 571-581, 1952 19. M. I. Shliomis, Effective viscosity of magnetic suspensions, Soviet physics, vol. 34, pp. 1291-1294, 1972. 20. W. A. Wakeham, A. Nagashime, and J. V. Sengers, Measurement of transport properties of fluids, (Blackwell Scientific, Oxford), pp. 459-460, 1991. 21. Y. Nagasaka and A. Nagashima, Absoluate measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method, Journal of phys, vol. 14, pp. 1435-1439, 1981. 22. J. P. Bentley, Temperature sensor characteristics and measurement system design, Journal of phys, vol. 17, pp. 430-439, 1984 23. K. D. Hagen, Heat transfer with applications, pp. 638 24. M. Windoholz, The Merck Index, ed, pp. 3742, 1983. 25. 徐光宏, 磁性流變流體之至程研究, 國立成功大學機械工程學系碩士論文, 2001. 26. 黃德歡, 改變世界的奈米技術, pp. 84-87, 2002. 27. 陳信宏, 奈米銀微粒之化學合成與應用研究, 國立清華大學化學工程學系碩士論文, 2002.id NH0925311018 sid 913728 cfn 0 / id NH0925311019 auc 王雍行 tic 磁力式分離系統設計與分析 adc 王培仁 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 88 kwc 奈米混鍊 kwc 磁流分離 kwc 電磁鐵 abc 近年來奈米材料技術進步快速,隨著材料尺寸之細緻化,許多新發展之奈米技術隨之被大量應用於高科技商品,例如噴墨印表機墨水及紡織品染料等,但是研磨料與原材料於最終階段之分離過程卻因為奈米材料之高表面能,形成量產製程技術之發展瓶頸;本論文之主要目的為建立導磁性研磨料之製程分離技術,將研磨完成之混合原料以習知之磁流體混合及分離方式,將磁性磨料與原材料於電磁力作用下分離開,同時仍將保持原材料於奈米狀態下之分佈溶液,並輸送至下游之封裝設備。 tc 目 錄 中文摘要 …………………………………………………… I 英文摘要 …………………………………………………… II 誌 謝 ……………………………………………………… III 目 錄 ……………………………………………………… IV 圖目錄 ……………………………………………………… VI 表目錄 ……………………………………………………… IX 符號單位說明 ……………………………………………… XI 第一章 緒論 ……………………………………………… 1 1-1 研究背景 …………………………………………… 1 1-2 研究目的 …………………………………………… 2 1-3 文獻回顧 …………………………………………… 3 1-4 專利分析 …………………………………………… 5 第二章 磁力分離之理論分析 …………………………… 16 2-1 研磨槽體處之磁力分離裝置---靜磁暨流場 …… 16 2-2 研磨槽體處之磁力分離裝置---靜磁暨動流場 …… 19 2-3 鋼球回收磁力分離裝置---靜磁暨動流場 ……… 21 第三章 電腦軟體輔助建模分析 ………………………… 33 3-1 電磁場分析軟體簡介 ……………………………… 33 3-2 研磨槽處電磁裝置之磁鐵極數模擬與尺寸建立 … 36 3-3 研磨槽內鋼球所受磁力之模擬 …………………… 39 3-4 圓管流道內鋼球所受磁力之模擬 ………………… 41 3-5 鋼球隨尺寸變化之受力趨勢 ……………………… 42 第四章 實驗結果與討論 ………………………………… 57 4-1 實驗設備與規劃 …………………………………… 57 4-2 實驗結果 …………………………………………… 60 4-2-1 研磨槽處電磁鐵之磁場量測 ……………… 60 4-2-2 攪拌軸固定分離實驗 ……………………… 61 4-2-3 攪拌軸旋轉分離實驗 ……………………… 62 4-2-4 圓管流道分離實驗 ………………………… 63 4-3 誤差分析 …………………………………………… 65 第五章 結論與未來工作 ………………………………… 80 5-1 結論 ………………………………………………… 80 5-2 未來工作 …………………………………………… 84 參考文獻 …………………………………………………… 86rf [1 ] J. Suleski, (1972) “New Magnets and Tank Designs for Wet Magnetic Drum Separators,” World Mining, pp.44 [2 ] J. A. Oberteuffer, (1974) “Magnetic Separation:A Review of Principles, Devices, and Applications,” IEEE Transactions on Magnetics, Vol. MAG-10, No.2, pp.223-238. [3 ] J. Iannicelli, (1976) “New Developments in Magnetic Separation,” IEEE Transactions on Magnetics, Vol. MAG- 12, No.5, pp.436-443. [4 ] R. R. Oder, (1976) “High Gradient Magnetic Separation,” IEEE Transactions on Magnetics, Vol. MAG- 12, No.5, pp.428-435. [5 ] E. F. R. A. Schloemann, (1977) “Magnetic Drum Materials Separator,” U.S. Patent, No. 4046679. [6 ] J. J Sun, (1980) “Method and Apparatus for Separating Particles Using a Magnetic Barrier,” U.S. Patent, No. 4235710. [7 ] H. Spodig, (1981) “Magnetic Separator Having Intersecting Conveyor Belts,” U.S. Patent, No. 4273646. [8 ] H. Spodig, (1981) “Magnetic Separator Having Two Rotating Magnetic Drums of Opposite Polarity,” U.S. Patent, No. 4296865. [9 ] G. Ries, Klaus-Peter Juengst, S. Foerster, F. Graf, W. Lehmann, Karl-Heinz Unkelbach, and G. Dueren, (1982) “High Intensity Magnetic Field Drum Separator,” U.S. Patent, No. 4315816. [10 ] E. C. Hise and A. S. Holman, (1982) “Method and Apparatus for Separating Materials Magnetically,” U.S. Patent, No. 4340468. [11 ] G. R. Keny, E. J. Sommer, and C. E. Roos, (1985) “Rotary Drum Magnetic Separator,” U.S. Patent, No. 4533053. [12 ] D. R. Kelland and M. Takayasu, (1987) “Method and Apparatus for Continous Magnetic Separation,” U.S. Patent, No. 4663029. [13 ] M. R. Estabrook, (1987) “Cylindrical Drum Magnetic Separator,” U.S. Patent, No. 4686035. [14 ] B. E. Bond and W. J. Harrold, (1987) “Magnetic Drum Separator,” U.S. Patent, No. 4693812. [15 ] O. Christensen, (1988) “High-gradient Magnetic Separator,” U.S. Patent, No. 4769130. [16 ] O. Christensen, (1988) “High-gradient Magnetic Separator,” U.S. Patent, No. 4772383. [17 ] R. D. Doctor, (1988) “Apparatus for Mmagnetic Separation of Paramagnetic and Dlamagnetic Material,” U.S. Patent, No. 4778594. [18 ] K. Schonert and H.-M. Fricke, (1990) “Method of and an Apparatus for the Separation of Paramagnetic Particles in the Find and Finest Particle Size Ranges in a High-Intensity Magnetic Field ,” U.S. Patent, No. 4941969. [19 ] K J. Rhodes and S. D. Voorheis, (1991) “Magnetic Separator with Reciprocating Grate,” U.S. Patent, No. 5066390. [20 ] R. D. Doctor, (1991) “Apparatus for Magnetic Separation of Paramagnetic and Dlamagnetic Material,” U.S. Patent, No. 4778594. [21 ] H. Zakheim, P. M. Clinton, J. D. Goldschneider, C. A. Kasmer, M. Zahn, and C. L. Hoffmeyer, (1991) “Magnetic Media Mill,” U.S. Patent, No. 5022592. [22 ] W. Susse, (1992) “Belt for Magnetic Separator ,” U.S. Patent, No. 5135644. [23 ] H. Zakheim, Pe. M. Clinton, J. D. Goldschneider, C. A. Kasmer, M. Zahn, and C. L. Hoffmeyer, (1993) “Magnetic Media Mill,” U.S. Patent, No. 5178338. [24 ] P, A. Liberti, B, P. Feeley and D, I. Gohel, (1993) “Apparatus for Magnetic Separation Featuring External Magnetic Means,” U.S. Patent, No. 5186827. [25 ] Bo. R. Arvidson, (1995) “Belt Centering Roller and Magnetic Separator Incorporating the Same,” U.S. Patent, No. 5458229. [26 ] R. Darling, (1995) “Rotating Drum Magnetic Separator,” U.S. Patent, No. 5462173. [27 ] P. A. Liberti, Y. Wang, W. Tang, B. P. Feeley and D. I. Gohel, (1995) “Apparatus and Methods for Magnetic Separation Featuring External Magnetic Means,” U.S. Patent, No. 5466574. [28 ] R. A. Sprenger, (1996) “Magnetic Separator,” U.S. Patent, No. 5483042. [29 ] A. M. Turkenich, Ye. S. Lapshin, R. S. lubabov, and V. I. Dudnik, J. Dahl, (1996) “Method of and an Apparatus for Making Continuous Magnetic Separations,” U.S. Patent, No. 5568869. [30 ] A. Reali and I.. Reznik, (1997) “Magnetic Separator,” U.S. Patent, No. 5667074. [31 ] B. R. Arvidson, (1997) “Magnetic Drum Separator,” U.S. Patent, No. 5636748. [32 ] A. Reali and I. Reznik, (1998) “Magnetic Separator,” U.S. Patent, No. 5791492. [33 ] S. C. Burnett, L. C. Andrews, Gr.S. Beck, R. L. Creedon, and J.R. Purcell, (2000) “Magnetic Separator Having an Improved Separation Container Configuration for Use with a Superconductive Electromagnet,” U.S. Patent, No. 6112399. [34 ] J. Iannicelli, (2001) “Continuous Filament Matrix for MagneticSeparator,” U.S. Patent, No. 6180005. [35 ] T. G. Shuttleworth, D. S. Bard, R. S. Darling, (2001) “Belt Tracking for Magnetic Roll Separator,” U.S. Patent, No. 6302275. [36 ] M. D. Sterman, P. Lituri and R. E. Stelter, (2002) “Magnetic Cell Separation Device,” U.S. Patent, No. 6451207. [37 ] J. E. Foy and E. B. Sweeney, (2003) “Magnetic Separation Device,” U.S. Patent, No. 6562239. [38 ] 殷嘉琳, (2001) 分析磁泳在免疫分析上的應用探討, 碩士論 文, 朝陽科技大學應用化學. [39 ] 戴明鳳, (2002) ”表面包敷生物活性劑之奈米磁性微粒子在醫 學藥物傳輸和治療上的應用,” 中華民國磁性技術協會會訊, 第32期, 頁14-15. [40 ] U. Schmitt et al., (2001) “Device and Method for the Separation of Magnetic Microparticles,” U.S. Patent, No. 6,187,270. [41 ] J. Tuunanen, (2001) “Separation Device for Microparticles Involving a Magnetic Rod,” U.S. Patent, No. 6,207,463. [42 ] 中國機械網(2003), www.china- machine.com/MachineBase/Friction/f_18.htm [43 ] 中國鋼鐵信息網(2003), www.ironwareinfo.com.cn/zhinan/hybz8.htmid NH0925311019 sid 913734 cfn 0 / id NH0925311020 auc 崔熙嬅 tic 結合干擾投影與並列干擾消除之CDMA多用戶偵測器 adc 陳文良 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 英文 pg 58 kwc 平行干擾消除 kwc 分碼多工 kwc 多路徑 kwc 干擾投影 kwc 分頻選擇通道 abc   近年來,由於有著較高容量、較佳抗干擾功能,分碼多工存取系統(CDMA)已成為一重要之通訊系統機制。然而,分碼多工系統中之主要缺點之一為多重存取干擾(MAI)。這是由於在此系統中,多位使用者同時在相同的頻帶上傳送訊息所造成。另一個形成干擾的原因則為多路徑干擾。此兩原因降低了系統的效能,為了要消除干擾,數種多用戶偵測器曾被提出,其中包括了平行干擾消除偵測器(PIC)。在此論文裡,我們提出與向量投影法相互結合之平行干擾消除偵測器。 tc Contents................................................I List of Figures.......................................III Chapter 1 Introduction..................................1 1.1 Motivation..........................................1 1.2 Thesis Organization.................................3 Chapter 2 Spread Spectrum and CDMA System...............4 2.1 Direct Sequence Spread Spectrum.....................4 2.2 CDMA System.........................................7 Chapter 3 PIC Structure Using Interference Projection Method in Multipath Environment...............9 3.1 System Model.......................................10 3.2 Conventional Receiver in Single Path Environment...12 3.3 Conventional PIC Structure in Single Path Environment........................................14 3.4 PIC Structure in Multipath Environment.............19 3.4.1 Mutlipath Fading.................................19 3.4.2 Conventional Receiver in Multipath Environment...22 3.4.3 Interference Projection Method in PIC Scheme.....27 3.4.3.1 Training Mode..................................30 3.4.3.2 Demodulation Mode..............................37 Chapter 4 Simulations and Discussions..................39 4.1 Simulation Parameters..............................39 4.2 Performance Comparisons............................40 4.3 Performance of the Proposed Receiver...............42 Chapter 5 Conclusions and Suggestions..................55 Reference ..............................................57rf [1 ]R. L. Peterson, R. E. Ziemer, D. E. Borth, “Introduction to Spread Spectrum Communications”, Prentice Hall, 1995 [2 ]Mahesh K. Varanasi and Behnaam Aazhang, “Multistage Detection in Asynchronous Code-Division Multiple-Access Communications”, IEEE Trans. on Commun., vol 38, pp.509-519, 1990 [3 ]Lars K. Rasmussen, Teng J. Lim and Ann-Louise Johansson, “One-Shot Filtering Equivalence for Linear Successive Interference Cancellation in CDMA”, Vehicular Technology Conference, 47th, IEEE, pp.2163-2167, 1997 [4 ]John G. Proakis, “Digital communications”, Mc Graw Hill, 4th edition, 2001. [5 ]M. D. Austin and G. L. Stuber, “In-service signal quality estimation for TDMA cellular systems”, IEEE Personal Indoor and Mobile Radio Comm., vol. 2, pp. 836-840, 1995 [6 ]C. W Wang, L. C. Wang, “Signal to interference ratio measurement techniques for CDMA cellular systems in a frequency-selective multipath fading channel”, IEEE Wireless Commun., pp. 34-37, 2001 [7 ]Mahesh K. Varanasi and Behnaam Aazhang, “Near-Optimum Detection in Synchronous Code-Division Multiple-Access Systems”, IEEE Trans. on Commun., vol. 39, pp.725-736, 1991 [8 ]D. Divsalar, M. Simon, and D. Raphaeli, “Improved parallel interference cancellation for CDMA”, IEEE Trans. on Commun., vol. 46, pp. 258-268, 1998 [9 ]Dongning Guo, lars K. Rasmussen, Sumei Sun and Teng J. Lim, “A Matrix-Algebraic Approach to Linear Parallel interference Cancellation in CDMA”, IEEE Trans. on Commun., vol. 48, pp.152-161, 2000 [10 ]Matti Latva-aho., Jorma Lilleberg, “Parallel interference cancellation in multiuser CDMA Channel Estimation”, Kluwer Academic, Wireless Personal Commun., vol. 7, pp. 171-195, 1998 [11 ]T. S. Rappaport, “Wireless communications: principles and practice”, Prentice Hall 2nd edition, 2002 [12 ]Jianfeng Weng, Guoqiang Xue, Tho Le-Ngoc, and Sofiene Tahar, “Multistage Interference Cancellation with Diversity Reception for Asynchronous QPSK DS/CDMA Systems over Multipath Fading Channels”, IEEE Journal on Selected Areas in Commun., vol. 17, pp. 2162-2180, 1999 [13 ]Stefano Buzzi and H. Vincent poor, “Channel Estimation and Multiuser Detection in Long-Code DS/CDMA Systems”, IEEE Journal on Selected Areas in Commun., vol. 19, pp. 1476-1487, 2001 [14 ]Markku J, Juntti and Matti Latva-aho, “Multiuser Receivers for CDMA Systems in Rayleigh Fading Channels”, IEEE Trans. on Vehicular Tech., vol. 49, pp. 885-898, 2000 [15 ]莊凱勝, “利用干擾投影法於CDMA系統中之多用戶偵測器”, 國立清華大學碩士論文, 九十二年六月id NH0925311020 sid 913735 cfn 0 / id NH0925311021 auc 邱明志 tic 磁性材料應用於電力電子元件之建模研究 adc 王培仁 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 86 kwc JA模式 kwc 高頻磁性材料 kwc 電腦輔助分析 abc 近年來電路設計高頻化是電力電子技術發展的主流,隨著電路分析之商用套裝軟體發展漸趨成熟,善用此類軟體提高生產力亦為極重要之研究課題,然而習知之模擬軟體於磁性材料建模上,並未考慮於高頻操作下的能量損失,又因坊間磁性材料種類繁多,於模擬軟體資料庫無法提供各類磁性材料模型時,電路設計者須自行建立所需模型參數,故本論文探討之目標為磁性材料模型之參數推導與建置。 tc 中文摘要………………………………………………Ⅰ 英文摘要………………………………………………Ⅱ 誌謝……………………………………………………Ⅲ 目錄……………………………………………………Ⅳ 圖目錄…………………………………………………Ⅵ 表目錄…………………………………………………Ⅹ 符號文字說明…………………………………………XI 第一章 簡介…………………………………………01 1.1 研究背景………………………01 1.2 文獻回顧………………………02 1.3 研究目的………………………08 1.4 研究步驟與方法………………09 第二章 基本理論分析………………………………13 2.1 磁滯原理………………………13 2.2 磁滯模型………………………15 2.3 JA模式參數計算………………20 2.4 渦流損失………………………24 2.5 銅損……………………………26 第三章 電路建模與分析………………………………33 3.1 工具軟體介紹…………………33 3.2 JA模式建模……………………35 3.3 激磁線圈建模…………………38 第四章 實例驗證與分析……………………………44 4.1 模型測試………………………44 4.2 應用電路模擬…………………48 4.3 集膚效應與近接效應分析……51 第五章 結論…………………………………………81 5.1 結論與討論……………………81 5.2 未來工作………………………82 參考文獻…………………………………………………84rf [1 ]”Soft Ferrites and Accessories” Philips Applications Note, Feb. 2002. [2 ]D. Mayergozy, “Dynamic Preisach Models of Hysteresis,” IEEE Trans. on Magnetics, vol. 24, No.6, pp.2925-2927, November 1988. [3 ]S. H. Charap, ”Magnetic Hysteresis Model,” IEEE Trans. on Magnetics, vol. 10, No.4, pp.1091-1096, Dec. 1974. [4 ]D. Jiles and D. Atherton, “Theory of Ferromagnetic Hysteresis,” Journal of Magnetism and Magnetic Materials, pp. 48-60, 1986. [5 ]D. Jiles and D. Atherton, “Ferromagnetic Hysteresis,” IEEE Trans. on Magnetics, vol.MAG-19, pp.2183-2185, Sept., 1983. [6 ]M. Takach and P. Lauritzen, “Survey of Magnetic Core Models,” Proceeding of the IEEE APEC’95 Conference, pp.560-566, 1995. [7 ]W. E. Archer, M. F. Deveney, and R. L. Nagel, ”Non-linear Transformer Modeling and Simulation,” Proceeding of the 37th Midwest Symposium on, pp.665-669, 1994. [8 ]S. Prigozy, ”PSPICE Computer Modeling of Hysteresis Effects,” IEEE Trans. on Education, Vo.l36, No.1, pp1-5, Feb., 1993. [9 ]K. D. T. Ngo, “Subcircuit Modeling of Magnetic Cores with Hysteresis in PSpice,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 38, No. 4, pp. 1425-1434, Oct., 2002. [10 ]I. D. Mayergoyz, Mathematical Models of Hysteresis, Springer–Verlag, Inc., New York, N. Y., 1991. [11 ]D. C. Jiles, Introduction to Magnetism and Magnetic Materials, Chapman and Hall, Inc., New York, N. Y.,1991. [12 ]D. C. Jiles, J. B. Thoelke, and M. K. Devine, “Numerical Determination of Hysteresis Parameters for the Modeling of Magnetic Properties Using the Theory of Ferromagnetic Hysteresis,” IEEE Trans. on Magnetics, Vol. 28, No.1, pp. 27-35, Jan., 1992. [13 ]P .Petrovic, N. Mitrovic, and M. Stevanovic, ”A Hysteresis Model for Magnetic Materials using the Jiles-Atherton Model,” AUTOTESTCON '99. IEEE Systems Readiness Technology Conference, IEEE , Pages:803 – 808, Aug., 1999. [14 ]W. Roshen, “Ferrite Core Loss for Power Magnetic Components Design,” IEEE Trans. on Magnetics, Vol. 27 , No. 6, pp. 4407 – 4415, 1991. [15 ]J. Zhu, S. Hui, and V. Ramsden, “A Dynamic Equivalent Circuit Model for Solid Magnetic Cares for High Switching Frequency Operations,” IEEE Trans. on Power Electronics, Vol. 10, No. 6, pp. 791-795, 1995. [16 ]陳淳杰,”從實例中學習OrCAD PSpice,” 儒林圖書有限公司, pp. 1- pp. 7, 1999. [17 ]PSpice User’s Manual, MicroSim Corp., Irvine, CA, Apr., 1996. [18 ]K. M. Coperich and A. E. Ruehli, “Enhanced Skin Effect for Partial-Element Equivalent (PEEC) Model,” IEEE Trans. on Microwave Theory and Techniques, Vol. 48, pp. 1435-1442, 2000. [19 ]S. Mei and Y. I. Ismail, ”Modeling Skin Effect With Reduced Decoupled R-L Circuits and Systems,” Proceedings of the 2003 International Symposium on ISCAS'03, Vol. 4, pp. 25-28, May, 2003. [20 ]M. J. Tsuk and A. J. Kong, “A Hybrid Method for the Calculation of the Resistance and Inductance of Transmission Lines with Arbitrary Cross Sections,” IEEE Trans. on Microwave Theory and Techniques, Vol. 39, pp. 1338-1347, 1991. [21 ]L. T. Pillage and R. A. Rohrer, “Asymptotic Waveform Evaluation for Timing Analysis,” IEEE Trans. on Computer Aided Design, Vol.9, pp. 352-366, 1990. [22 ]H. A. Wheeler, “Formulas for the Skin-effect,” Proceedings of the Institute of Radio Engineers, Vol. 30, pp. 412-424, 1942. [23 ]B. K. Sen and R. L. Wheeler, “Skin Effects Models for Transmission Line Structures using Generic SPICE Circuit Simulators,” the IEEE 7th topical Meeting on Electrical Performance of Electronic Packaging, pp. 128 – 131, Oct., 1998. [24 ]J. Griffith, P. Reynolds, D. Powell, G.. Wojcik, R. Richards, and P. Wynn, “Cable Parameters and Acoustic Probe Performance,” IEEE Ultrasonics Symposium, Vol. 2, pp. 1055-1059, Oct., 2000. [25 ]S. Asgari, J. O. Oti, and J. N. Subrahmanyam, “Lossy Skin Effect Modeling of Interconnects,” 2000 IEEE International Magnetics Conference, INTERMAG 2000 Digest of Technical Papers, pp.426-426, Apr., pp. 9-13, 2000. [26 ]S. Kim and D. P. Neikirk, “Compact Equivalent Circuit Model for the Skin Effect,” IEEE MTT-S International Microwave Symposium and Digest, Vol. 3, pp.1815-1818, Jun., 1996. [27 ]P. E. Edward Sayre, “Development of a New Transmission Line Skin Effect Model for SPICE Evaluations - Simulations and Measurements” North East Systems Associates, Inc., 2004.id NH0925311021 sid 913744 cfn 0 / id NH0925311022 auc 鄭高博 tic 奈米碳材之電弧放電設備研製 adc 王培仁 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 70 kwc 奈米碳管 kwc 電弧放電法 kwc 製程參數 abc 奈米碳材具有多項特殊且優異的性質,因而工業應用潛力無窮,目前已知製備奈米碳材的方法中,尚缺乏控制奈米碳材長度的有效對策;本研究將針對電弧放電法進行探討,再規劃出能自動製備單層碳管、多層碳管、奈米碳粒並控制碳管生成長度的實驗裝置;研究工作內容主要分為:脈衝產生器和馬達控制電路的製作及其衍生設計之實驗設備,期能以控制電流大小、切換頻率與脈波寬度為參數製備奈米碳管及碳粒。至於實驗驗證部份,係將實驗產物藉由穿透式電子顯微鏡進行觀察鑑定其種類及成份,經由實驗結果初步發現,碳管之長度隨脈衝電流時間增加而增長,本設備所能控制生長的碳管長度約在50到700 奈米之間,如將電漿設備切換頻率設定為250Hz導通週期為0.25時,發現可得到以碳粒為主的奈米生成物,且設備之操作及參數設定均可藉由規劃之功能,進行精確量測與控制,朝向未來商品化之方向邁進。 tc 中英文摘要……………………………………………………… Ⅰ 誌謝……………………………………………………………… Ⅲ 符號單位說明…………………………………………………… Ⅳ 目錄……………………………………………………………… Ⅴ 圖目錄…………………………………………………………… Ⅶ 第一章 緒論…………………………………………………… 01 1.1 前言………………………………………………………… 01 1.2 文獻回顧…………………………………………………… 03 1.3 研究目的與方法…………………………………………… 07 第二章 理論介紹……………………………………………… 14 2.1 碳米碳管的結構…………………………………………… 14 2.2 碳米碳管之性質…………………………………………… 16 2.2.1 熱傳導性質………………………………………………… 16 2.2.2 機械強度…………………………………………………… 16 2.2.3 電子傳導性質……………………………………………… 17 2.3 電漿概述…………………………………………………… 18 第三章 實驗設計與規劃………………………………………… 25 3.1 分析工具介紹……………………………………………… 25 3.2 脈衝產生器設計…………………………………………… 26 3.3 馬達控制電路設計………………………………………… 30 3.4 電流表之設計……………………………………………… 33 第四章 實驗驗證………………………………………………… 50 4.1 實驗裝置及步驟…………………………………………… 50 4.2 實驗結果…………………………………………………… 51 4.3 放電電流計算與模擬……………………………………… 52 第五章 結論與討論………………………………………… 64 5.1 結論………………………………………………………… 64 5.2 未來工作…………………………………………………… 65 參考文獻…………………………………………………………… 68rf [1 ]http://www.research.ibm.com/nanoscience/fet.html, April 2004. [2 ]S. Iijima, ”Helical Microtubules of Graphitic Carbon,” Nature 354, pp. 56-58 , 1991. [3 ]C. Journet and P. Bernier, “Production of Carbon Nanotubes,” J. Appl. Phys, Vol. 67, No. 1, pp.1-9, 1998. [4 ]T. W. Ebbesen and P.M. Ajayan, “Large-scale Synthesis of Carbon Nanotubes ,” Nature 358, pp. 220-222, 1992 . [5 ]D. T. Colbert, J. Zhang, S. M. Mcclure, P. Nikolaev, Z. Chen, J.H. Hafner, D.W. Owens, P. G. Kotula, C. B. Carter, J. H. Weaver, A. G. Rinzler and R. E.Smalley, “Growth and Sintering of Fullerene Nanotubes,” Science, Vol. 266, pp.1218-1222, 1994. [6 ]T. W. Ebbesen, H. Hiura, J. Fujita, Y. Ochiai, S. Matsui and K. Tanigaki, “Patterns in the Bulk Growth of Carbon Nanotubes,” Chem. Phys .Lett., Vol. 209, No. l, pp.83-86, 1993. [7 ]T. Guo, P. Nikolaev, A. Thess, D. T. Colbert and R. E. Smalley, “Catalytic Growth of Single-walled Nanotubes by Laser Vaporization,” Chem. Phys. Lett., Vol. 243 , No.1, pp. 49-54, 1995. [8 ]M. J. Yacaman, M. M. Yoshida, L. Rendon and J. G. Saniesteban, “Catalytic Growth of Carbon Microtubules with Fullerene Structure,” Appl. Phys. Lett, Vol. 62, No. 2, pp. 202-204, 1993. [9 ]L. C. Qin, D. Zhou, A. R. Krauss and D. M. Gruen, “Growing Carbon Nanotubes by Microwave Plasma-enhanced Chemical Vapor Deposition,” Appl. Phys. Lett, Vol. 72, No. 26, pp. 3437 –3439, 1998. [10 ]T. W. G. Wildoer, J. L. Huang, P. Kim and C. M. Lieber, “Structure and Electronic Properties of Carbon Nanotubes,” Phys.Chem. B, Vol. 104, pp. 2794-2809, 2000. [11 ]辛玉麟,黃國柱,”翻轉世界的物質-奈米碳管,”科學月刊,第三十三卷第十期, pp.850, 2002. [12 ]M. Terrones, W. K. Hsu, H. W. Kroto, M. Walton, “Nanotubes: A Revolution in Materials Science and Electronics,” Topics in Current Chemistry, Vol. 199, pp. 189-234 ,1998. [13 ]M. S. Dresselhaus, G. Dresselhaus and R. Saito, “Physics of Carbon Nanatubes,” Carbon, Vol. 33, No.7 , pp. 883-891 ,1995. [14 ]J. Hone, M. Whitney and A. Zettle, “Thermal Conductivity of Single-walled Carbon Nanotubes,” Synthetic Metals, Vol. 103, pp. 2498-2499, 1999. [15 ]S. Berber, Y. K. Kwon and D. Tomànek, “Unusually High Thermal Conductivity of Carbon Nanotubes,” Phys. Rev. Lett, Vol. 84, pp.4613-4616, 2000. [16 ]M. M. J. Treacy, T. W. Ebbesen and J. M. Gibson, “Exceptionally High Young's Modulus Observed for Individual Carbon Nanotubes,” Nature 381, pp.678-670, 1996﹒ [17 ]M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly and R. S. Rouff, “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load,” Science, Vol. 287, pp. 637-640, 2000. [18 ]H. Hiura, T. W. Ebbesen, J. Fujita, K. Tanigaki and T. Takada, “Role of sp3 Defect Structures in Graphite and Carbon Nanotubes,” Nature 367, pp. 148-151, 1994. [19 ]A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. Scuseria, D. Tománek, J. E. Fischer and R. E. Smalley, “Crystalline Ropes of Metallic Carbon Nanotubes,” Science, Vol. 273, pp.483-487, 1996. [20 ]S. Frank, P. Poncharal, Z. L. Wang and W. A. de Heer, “Carbon Nanotube Quantum Resistors,” Science, Vol. 280, pp. 1744-1746 ,1998. [21 ]http://www.pa.msu.edu/cmp/csc/ntproperties/ , April 2004. [22 ]H. Dai, E. W. Wong and C. M. Lieber, ”Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes,” Science, Vol. 272, pp. 523-526 , 1996. [23 ] J. R. Roth, Industrial Plasma Engineering, Vol. 1: Principles, Institute of Physics Publishing Bristol and Philadelphia, pp.353 , 1995. [24 ]陳淳杰, ”從實例中學習OrCAD PSpice, ”儒林圖書有限公司,pp.1-7, 1999.id NH0925311022 sid 913751 cfn 0 / id NH0925311023 auc 黃仕臣 tic 碟片晃動對光碟機讀取資料之影響分析與補償 adc 陳文良 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 pg 72 kwc 光碟機 kwc 讀取資料 kwc 像差 abc 當光碟在讀取碟片資料時,高速旋轉的碟片往往會因為輕微的晃動,因此造成碟片傾斜,這樣的情況是像差產生的主要原因。由於像差會對光學頭在碟片上的聚焦強度有所影響,進而造成光碟機由碟片讀出的訊號品質劣化、甚至錯誤的情況產生。以現今 DVD 的規格來說,碟片傾斜所造成的影響還在可以容許的程度。但隨著資料儲存密度的要求提高,對於讀取訊號正確率的要求勢必會提高,因此像差對讀取訊號的影響必須有更進一步的認識。 rf References [1 ] 徐桂香, “光碟讀取頭光路之數學模型”, 清華大學動力機械工程學系碩士論文, 民國90年6月. [2 ] 陳信豪, “光碟機讀取頭光路系統像差對聚焦偵測之影響”, 清華大學動力機械工程學系碩士論文, 民國91年6月. [3 ] 黃仁澤, “碟片晃動對光碟機讀取頭光強度及聚焦控制之影響分析”, 清華大學動力機械工程學系碩士論文, 民國92年6月. [4 ] B.E.A.Saleh, M.C.Teich, “Fundamentals of Photonics”, New York: Wiley, 1991. [5 ] “Optical Pick-Up Specifications for DVD/CD: HOP-1000”, Hitachi. Ltd., 1998. [6 ] Miles V.Klein, Thomas E.Furtak, “Optics”, New York: Wiley, 1986. [7 ] Frank L., Leno S., “Introduction to Optics”, Prentice Hall, Englewood Cliffs, 1993. [8 ] Eugene Hecht, “Optics”, Addison Wesley Longman, third edition, 1998. [9 ] Joseph Braat, “Analytical expressions for the aberration coefficients of a tilted plane parallel plate”, Applied Optics, Vol. 36, No. 32, pp. 8459-8466, 1997. [10 ] “DVD specifications for Read-Only Disc”, Hitachi, Matsushita, Mitsubishi, Philips, Pioneer, Sony, Thomson, Toshiba, TimeWarner, JVC, August 1996. [11 ] R.E. Gerber, M. Mansuripur, “Tilt correction in an optical disk system”, Applied Optics, Vol. 35, pp. 7000-7007, 1996. [12 ] Doh, T.-Y. Ma B.I., Choi B.H., Park I.S., Chung C.S., Lee Y.-H., Kim S.J., Shin D.H., “Radial tilt detection using one beam and its compensation in a high-density read only memory” Jpn. J. Appl Phys. Part 1, No.3B pp.1680-1683, Mar 2001 [13 ] Shin-inchi Yamada, Seiji Nishiwaki, Atsushi Nakamura, Takashi Ishida, Hiroyuki Yamaguchi, “Track center servo and radial tilt servo system for digital versatile rewritable disk (dvd-ram)” Jpn. J. Appl Phys. Part 1, No.2B pp.867-870, Feb 2000 [14 ] C. Bartlett, D. Kay, M. Mansuripur, “Computer simulations of effects of disk tilt and lens tilt on push-pull tracking error signal in an optical disk drive”, Applied Optics, Vol. 36, pp. 8467-8473, 1997. [15 ] “CD-ROM Learning Kit”, 太和科技, 初版, 民國87年1月id NH0925311023 sid 913752 cfn 0 / id NH0925311024 auc 柯建仲 tic 金屬電極之微間距放電現象研究 adc 王培仁 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 83 kwc 崩潰 kwc 放電 abc 中文摘要 tc 目 錄 中英文摘要 II 符號文字說明 IV 目錄 Ⅴ 表目錄 Ⅶ 圖目錄 VIII 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 2 1-3 研究目的 5 1-4 研究方法與步驟 6 第二章 基本理論介紹 16 2-1 崩潰放電原理 16 2-2 電漿基本原理 17 2-3 Paschen’s Law推導 20 第三章 實驗內容與規劃 29 3-1 實驗硬體架構 29 3-2 實驗內容規劃 31 第四章 實驗結果與討論 47 4-1 電極形狀設計 47 4-2 施加電壓與放電電流波形 48 4-3 崩潰電壓與電流 49 4-4 崩潰電壓與電極間距 50 4-5 實驗值與Dakin等人實驗值比較 51 第五章 結論 66 5-1 結論與討論 66 5-2 未來工作 68 參考文獻 69 附錄 71rf 參考文獻 [1 ] T. B Lane and J. R. Hughes,(1952) ”A Study of the Oil-film Formation in Gears by Electrical Resistance Measurements” , Br . J. Appl. Phys.,vol.3,pp.315-318. [2 ] B.-J. Wang, N. Saka,(1991) ”Static Gap Erosion of Ag-CdO Electrodes”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. 14, No2, June. [3 ] J. M. Torres, R. S. Dhariwal,(1999) ”Electric Field Breakdown At Micrometre Separations In Various Media”, Microsystem Technologies, vol. 6, pp.6-10, 1998. [4 ] R. S. Dhariwal, J. M. Torres and M. P. Y. Desmulliez,(2000) ”Electric Field Breakdown at Micro-meter Separations in Air and Nitrogen at Atmospheric Pressure”, IEE Proc., SciMeas. Techn., 147,5,pp. 261-265,. [5 ] O. Takahito, Y. S. Dong, and E. Masayoshi,(2000) “Micro-discharge and Electric Breakdown in a Micro-gap”, J. Micromech. Microeng, vol. 10, pp. 102-107. [6 ] 邱源成,李榮宗,趙啟盛,「惰性氣體中直流電器銀接點電弧特性和損耗機制之研究」,國立中山大學機械與機電工程研究所碩士論文,高雄市,民國九十一年。 [7 ] J. M. Torres and R. S. Dhariwal,(1999) “Electric Field Breakdown at Micrometer Separations”, Nanotechnology, vol. 10, pp.102-107. [8 ] O. Takahito, Y. S. Dong,and E. Masayoshi,(2000) “Imaging Of Micro-Discharge In A Micro-Gap Of Electrostatic Actuator", Micro Electro Mechanical Systems, vol.10, pp.102-107. [9 ] J. M. Torres, R. S. Dhariwal,(1999) ”Electric Field Breakdown At Micro-Meter Separations In Air and Vacuum”, Microsystem Technologies, vol. 6, pp.6-10. [10 ] 莊達人著,「VLSI製造技術」,高立圖書股份有限公司,台北市,民國八十九年出版。 [11 ] T. W Dakin, G.. Luxa, and G.. Oppermann and J. Vigreux,(1960) ”Breakdown of Gases In Uniform Fields Paschen Curves For Nitrogen, Air, and Sulfur Hexafluoride”, Paper Presented at Study Committee No. 15 (Insulation Material) and published at the request of the Chairman Mr. T. Leardini. [12 ] 鄭晃忠著,「機械材料學」, 全華科技圖書股份有限公司,台北市,民國八十五年出版。 [13 ] P. G.. Slade and E. D. Taylor, ”Electrical Breakdown in Atmospheric Air Between Closely Space (0.2μm~40μm) Electrical Contacts”, Proc. 47th IEEE Holm Conf. Electrical Contacts, pp. 245-250, 2001. [14 ] E. Nasser, “Fundamentals of Gaseous Ionization and Plasma electronics”, John Wiley and Sons, New York, N. Y., 1971. [15 ] http://home.earthlink.net/~jimlux/hv/paschen.htm. [16 ] Semiconductor Glossary. http://semiconductorglossary.com/default/asp? Searchterm = breakdown. [17 ] M. Khalifa, “High Voltage Engineering Theory and Practice”, Marcel Dekker, Inc., New York, N. Y., 1995.S [18 ] 邱振倫, “Design output structure of the electrostatic micro motor by UV-LIGA fabrication and electroplate technology”, 國立交通大學機械工程研究所碩士論文,新竹市,2001。 [19 ] 陳敬恆, “Analysis Of Breakdown Mechanism Of Micro-Electrodes”,國立清華大學動力機械工程學系博士計劃書,高雄市,2002。 [20 ] 李郁偉,「微型高功率點火裝置之設計與製作」,國立台灣大學機械工程研究所碩士論文,台北市,2002。 [21 ] 高國書, “Investigation Of Fatigue Of a Micro-cantilever Component”,國立清華大學動力機械工程學系碩士論文,新竹市,2003。 [22 ] Conduction and Breakdown in Gases Part 1. http://www.eecs.wsu.edu/~pedrow/HV Engineering/lecture/bdgas/part1/. .id NH0925311024 sid 913753 cfn 0 / id NH0925311025 auc 莊坤富 tic 被動式磁浮軸承之設計、分析與實作 adc 葉廷仁 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 122 kwc 被動式磁浮軸承 kwc 風扇馬達 kwc 磁環堆疊錯位設計法 kwc 磁單極模型演算法 abc 在傳統的風扇中,通常以機械接觸式軸承如含油軸承及滾珠軸承來維持轉軸徑向的不穩定,但含油軸承與滾珠軸承會使得機械磨損的機會增加,進而使得風扇性能的限制。吾人將設計一款由台達電公司所提供的散熱風扇馬達,設計上採用無接觸式的被動式磁浮軸承來改善含油軸承及滾珠軸承的缺點,依據我們所推導出的被動式磁浮軸承理論、系統動態及設計概念,來設計風扇馬達系統具有足夠的剛性以達到高速穩定旋轉。本論文最後將提出一套被動式磁浮軸承的堆疊錯位設計法與磁單極模型演算法,設計法與演算法的搭配可取代電腦軟體3D模擬耗時問題,將有助於設計者縮短研發時間,並且從磁單極理論來探討實作上被動式磁浮風扇所遇到的問題,進而改良磁浮風扇而通過功率、振動及噪音測試。 rf 【1】 S. Earnshaw “On the nature of molecular forces …”. Trans. Cambridge Philisophical Society(1839), vol.7, part I, pp97-112. 【2】 Jean-Paul Yonnet, “Permanent Magnet Bearings and Couplings”, IEEE Transactions On Magnetics, VOL. MAG-17, NO.1, JANUARY 1981. 【3】 Jean-Paul Yonnet, “Passive Magnetic Bearings With Permanent Magnets”, IEEE Transactions On Magnetics, VOL.MAG-14, NO.5,SEPTRMBER 1978. 【4】 Gilles Akoun and J.P. Yonnet,”3D Analytical Calculation of the Forces Exerted Between Two Cuboidal Magnets”, IEEE Transactions on Magnetics, VOL. MAG-20, NO.5, SEPTEMBER 1984. 【5】 J. Delanare, E. Rulliere, J.P. Yonnet, “Classification and Synthesis of Permanent Magnet Bearing Configurations”, IEEE Transactions on Magnetics, VOL. 31, NO.6, NOVEMBER 1995. 【6】 Jean-Paul Yonnet, “Etude des paliers magntiqes passifs”, PhD Thesis, INPG, Grenoble, France, 1980. 【7】 李孟賢,”單軸磁浮軸承”,國立清華大學動力機械所碩士論文,1995. 【8】 顏銘憲,”單軸主動式控制磁浮軸承設計”國立台灣大學電機工程學研究所碩士論文,2003. 【9】 孫士牧,”小型磁浮軸承之設計與特性研究” 國立台灣大學機械工程學研究所,1999. 【10】 IECEC2001-AT-89, ”A Passive magnetic Bearing Flywheel”, NASA/TM-2002-211159. 【11】 Rollin J. Parker, Advanced in Permanent Magnetism, John Wiley & Sons Inc, 1990. 【12】 Edited by J.M.D. COEY, “Rare-earth Iron Permanent Magnets”, 1996. 【13】 Takeshi Mizuno, Kenji Araki, and Hannes Bleuler:”Stability Analysis of Self-Sensing Magnetic Bearing Controllers”, IEEE Transactions on Control system technology, VOL.4, NO.5, September 1996 【14】 D. Vischer and H. Bleuler:”Self-Sensing Active Magnetic Levitation”, IEEE Transaction on Magnetics, VOL.29, NO.2, March 1993 【15】 Tadahiko Shinshi, Chihiro Iijima, Kaiji Sato, and Akira Shimokohbe:”Precision Positioning of Magnetic Levitation System Using Hall Element”, IEEE Transaction on Magnetics. 【16】 “磁浮軸承系統(MAGNETIC BEARING SYSTEM)”,葉廷仁、莊坤富、黃文喜,中華民國專利文號:92136862,12/25/2003。 【17】 位移感測器LC-2450的規格資料網頁: http://www.keyence.com/products/measuring/lc/lc.html?TLs11=PC14。 【18】 Department of Mechanical Engineering University of Saskatchewan, Laboratory V2 ME418:Dynamic Balancing(accessed October 2002).id NH0925311025 sid 913759 cfn 0 / id NH0925311026 auc 邵耀賢 tic 雷射鑽孔殘留熱應變之探討 adc 王偉中 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 96 kwc 雷射鑽孔 kwc 雲紋干涉術 kwc 電子束雲紋法 kwc Goldak’s熱源模型 abc 本研究主要係運用兩種精密光學量測方法在雷射鑽孔的殘留熱應變量測上,首先以雲紋干涉術觀察工件在雷射鑽孔後之熱應變狀態,接著利用電子束雲紋法探討工件在雷射鑽孔後之孔周圍的熱應變狀態。本研究另利用商用有限單元分析軟體ANSYS,加上Goldak等人所提之熱源模型,以輔助探討工件在雷射鑽孔的熔融過程和應變狀態。 tc 目 錄 一、前言 1 二、文獻回顧 3 三、原理介紹 5 3-1 SEM的成像 5 3-1.1 線掃描 5 3-1.2 面掃描 5 3-2 電子束雲紋法 6 3-3 雲紋干涉術 8 3-4 雷射鑽孔原理 11 3-5 雷射熱源模型 11 四、實驗裝置與試片 14 4-1 電子束雲紋法實驗裝置 14 4-1.1 電子槍5 14 4-1.2 高溫精密烤爐 14 4-1.3 真空系統 15 4-1.4 試片室 15 4-1.5 偵測系統 15 4-1.6 顯示及紀錄系統 15 4-2 雲紋干涉術光路 16 4-3 光柵 16 4-4 研磨機 16 4-5 CCD相機 17 4-6 影像處理介面卡 17 4-7 雷射鑽孔機 17 4-8 試片規劃 17 五、實驗程序 19 5-1 準備試片 19 5-2 試片之切割和研磨 19 5-3 試片光柵之黏貼 19 5-4 試片之雷射鑽孔 20 5-5 電子束雲紋干涉儀器之架設 20 5-6 電子束雲紋干涉儀器之調整 20 5-7 雲紋干涉術光路之架設 20 5-8 雲紋干涉術光路之調整 21 5-9 金屬試片雷射鑽孔後之取像 21 5-10 分析結果與討論 22 5-11 數值軟體分析 22 六、結果與討論 23 6-1 使用有限單元法於模擬雷射鑽孔之基本假設 23 6-2 使用有限單元法於模擬雷射鑽孔之溫度場分析 25 6-2.1 使用有限單元法於模擬改變熱源參數之溫度場分析 26 6-2.1.1 改變熱源模型幾何參數a 26 6-2.1.2 改變熱源模型幾何參數b 26 6-2.1.3 改變熱源模型幾何參數c和d 27 6-3 金屬材料在雷射鑽孔時熱應變之有限單元探討 28 6-4 利用雲紋干涉術觀測金屬材料在雷射鑽孔後之位移場 30 6-5 利用電子束雲紋法觀測金屬材料在雷射鑽孔後之位移場 31 6-5.1 同種材料在不同功率下的位移量 34 6-5.2 相同雷射功率在不同材料下的位移量 34 6-5.3 雷射鑽孔後之應變量 35 6-6 電子束雲紋法與雲紋干涉術的比較 35 6-6.1 就觀察範圍觀點 36 6-6.2 就解析度觀點 36 6-6.3 就應用範圍觀點 37 七、結論 38 八、未來展望 40 九、參考文獻 41 表目錄 表一 掃描式電子顯微鏡之規格 45 表二 不?袗?材之材料性質 46 表三 鋁材之材料性質 46 表四 鋁材試片在雷射鑽孔之條件和結果數據 47 表五 不?袗?材試片在雷射鑽孔之條件和結果數據 47 表六 各個雷射功率下鋁材試片之幾何參數 48 表七 各個雷射功率下不?袗?材試片之幾何參數 48 表八 鋁材試片在ANSYS中模擬出之最大位移值和最大應變值 48 表九 不?袗?材試片在ANSYS中模擬出之最大位移值和最大應變值 49 表十 鋁材試片在4種不同雷射功率下之條紋數和位移值對照表 5 49 表十一 不?袗?試片在4種不同雷射功率下之條紋數和位移值對照表 49 圖目錄 圖3.1 電子槍之示意圖 50 圖3.2 線掃描的訊息顯示原理 50 圖3.3 面掃描的訊息顯示原理 51 圖3.4 試片光柵示意圖 51 圖3.5 黑白相間的條紋圖 52 圖3.6 光柵之放大圖 52 圖3.7 雲紋條紋圖 53 圖3.8 電子束雲紋法之示意圖 53 圖3.9 虛擬光柵示意圖 54 圖3.10 光從+1及-1繞射級次進入相機之示意圖 54 圖3.11 單一橢圓能量分佈熱源模型之示意圖 55 圖3.12 Goldak’s熱源模型之示意圖 55 圖4.1 掃描式電子顯微鏡 56 圖4.2 掃描式電子顯微鏡示意圖 56 圖4.3 雲紋干涉術之光路圖 57 圖4.4 雲紋干涉光路示意圖 57 圖4.5 光柵 58 圖4.6 高轉速研磨機 58 圖4.7 雷射鑽孔機 59 圖4.8 試片示意圖 59 圖4.9 試片鑽孔位置示意圖 60 圖5.1 黏貼光柵之步驟 60 圖6.1 於數值模擬中之邊界條件 61 圖6.2 鋁材試片在雷射功率1.3W下不同ff和fr之溫度場與實體圖 61 圖6.3 於不?袗?中溫度場之分佈 62 圖6.4 簡化模型 62 圖6.5 a=1.8×10-5;b=8.4×10-5;c,d=1.8×10-5之溫度場(100μm/格) 63 圖6.6 改變a=3.6×10-5,b、c和d不改變時之溫度場(100μm/格) 63 圖6.7 改變b=1.68×10-4,a、c和d不改變時之溫度場(100μm/格) 63 圖6.8 改變c,d=3.6×10-5,a、b不改變時之溫度場(100μm/格) 5 63 圖6.9 鋁材試片在雷射加工功率為1.3W時之模擬溫度場(100μm/格) 64 圖6.10 鋁材試片在雷射加工功率為1.5W時之模擬溫度場(100μm/格) 64 圖6.11 鋁材試片在雷射加工功率為1.9W時之模擬溫度場(100μm/格) 64 圖6.12 鋁材試片在雷射加工功率為2.1W時之模擬溫度場(100μm/格) 64 圖6.13 不?袗?材試片在雷射加工功率為1.3W時之模擬溫度場(100μm/格) 65 圖6.14 不?袗?材試片在雷射加工功率為1.5W時之模擬溫度場(100μm/格) 65 圖6.15 不?袗?材試片在雷射加工功率為1.9W時之模擬溫度場(100μm/格) 65 圖6.16 不?袗?材試片在雷射加工功率為2.1W時之模擬溫度場(100μm/格) 65 圖6.17 簡化模型之邊界條件示意圖 66 圖6.18 鋁材試片在雷射加工功率為1.3W時之位移量圖(100μm/格) (a)U場;(b)V場 66 圖6.19 鋁材試片在雷射加工功率為1.5W時之位移量圖(100μm/格) (a)U場;(b)V場 67 圖6.20 鋁材試片在雷射加工功率為1.9W時之位移量圖(100μm/格) (a)U場;(b)V場描 67 圖6.21 鋁材試片在雷射加工功率為2.1W時之位移量圖(100μm/格) (a)U場;(b)V場 68 圖6.22 鋁材試片在雷射加工功率為1.3W時之應變圖(100μm/格) (a)X方向;(b)Y方向 68 圖6.23 鋁材試片在雷射加工功率為1.5W時之應變圖(100μm/格) (a)X方向;(b)Y方向 69 圖6.24 鋁材試片在雷射加工功率為1.9W時之應變圖(100μm/格) (a)X方向;(b)Y方向 69 圖6.25 鋁材試片在雷射加工功率為2.1W時之應變圖(100μm/格) (a)X方向;(b)Y方向 70 圖6.26 不?袗?試片在雷射加工功率為1.3W時之位移量圖(100μm/格) (a)U場;(b)V場 70 圖6.27 不?袗?試片在雷射加工功率為1.5W時之位移量圖(100μm/格) (a)U場;(b)V場 71 圖6.28 不?袗?試片在雷射加工功率為1.9W時之位移量圖(100μm/格) (a)U場;(b)V場 71 圖6.29 不?袗?試片在雷射加工功率為2.1W時之位移量圖(100μm/格) (a)U場;(b)V場 72 圖6.30 不?袗?試片在雷射加工功率為1.3W時之應變圖(100μm/格) (a)X方向;(b)Y方向 72 圖6.31 不?袗?試片在雷射加工功率為1.5W時之應變圖(100μm/格) (a)X方向;(b)Y方向 73 圖6.32 不?袗?試片在雷射加工功率為1.9W時之應變圖(100μm/格) (a)X方向;(b)Y方向 73 圖6.33 不?袗?試片在雷射加工功率為2.1W時之應變圖(100μm/格) (a)X方向;(b)Y方向 74 圖6.34 在未雷射鑽孔前之V場雲紋條紋圖 74 圖6.35 在未雷射鑽孔前之U場雲紋條紋圖 74 圖6.36 在雷射加工功率為2.1W時之V場雲紋條紋圖 75 圖6.37 在雷射加工功率為7.5W時之V場雲紋條紋圖 75 圖6.38 電子束雲紋法之示意圖 75 圖6.39 鋁材試片在雷射加工功率為1.3W時電子束雲紋法之條紋圖。(a)U場;(b)V場 76 圖6.40 條紋計數及灰度值分佈示意圖 (a)條紋計數示意圖; (b)灰度值分佈示意圖 76 圖6.41 鋁材試片在雷射加工功率為1.3W時電子束雲紋法之條紋圖(四分之一) (a)U場;(b)V場 77 圖6.42 鋁材試片在雷射加工功率為1.5W時電子束雲紋法之條紋圖 (a)U場;(b)V場 77 圖6.43 鋁材試片在雷射加工功率為1.9W時電子束雲紋法之 條紋圖 (a)U場;(b)V 78 圖6.44 鋁材試片在雷射加工功率為2.1W時電子束雲紋法之條紋圖 (a)U場;(b)V場 78 圖6.45 不?袗?試片在雷射加工功率為1.3W時電子束雲紋法之條紋圖 (a)U場;(b)V場 79 圖6.46 不?袗?試片在雷射加工功率為1.5W時電子束雲紋法之條紋圖 (a)U場;(b)V場 79 圖6.47 不?袗?試片在雷射加工功率為1.9W時電子束雲紋法之條紋圖 (a)U場;(b)V場 80 圖6.48 不?袗?試片在雷射加工功率為2.1W時電子束雲紋法之條紋圖 (a)U場;(b)V場 80 圖6.49 鋁材試片在雷射加工功率為1.3W位移量與距離之關係圖 (a)U場;(b)V場 81 圖6.50 鋁材試片在雷射加工功率為1.5W位移量與距離之關係圖 (a)U場;(b)V場 82 圖6.51 鋁材試片在雷射加工功率為1.9W位移量與距離之關係圖 (a)U場;(b)V場 83 圖6.52 鋁材試片在雷射加工功率為2.1W位移量與距離之關係圖 (a)U場;(b)V場 84 圖6.53 不?袗?材試片在雷射加工功率為1.3W位移量與距離 之關係圖 (a)U場;(b)V場 85 圖6.54 不?袗?材試片在雷射加工功率為1.5W位移量與距離之關係圖 (a)U場;(b)V場 86 圖6.55 不?袗?材試片在雷射加工功率為1.9W位移量與距離之關係圖 (a)U場;(b)V場 87 圖6.56 不?袗?材試片在雷射加工功率為2.1W位移量與距離之關係圖 (a)U場;(b)V場 88 圖6.57 鋁材試片在雷射加工功率為1.3W應變量與距離之關係圖 (a) ;(b) 89 圖6.58 鋁材試片在雷射加工功率為1.5W應變量與距離之關係圖 (a) ;(b) 90 圖6.59 鋁材試片在雷射加工功率為1.9W應變量與距離之關係圖 (a) ;(b) 91 圖6.60 鋁材試片在雷射加工功率為2.1W應變量與距離之關係圖 (a) ;(b) 92 圖6.61 不?袗?材試片在雷射加工功率為1.3W應變量與距離之關係圖 (a) ;(b) 93 圖6.62 不?袗?材試片在雷射加工功率為1.5W應變量與距離 之關係圖 (a) ;(b) 94 圖6.63 不?袗?材試片在雷射加工功率為1.9W應變量與距離之關係圖 (a) ;(b) 95 圖6.64 不?袗?材試片在雷射加工功率為2.1W應變量與距離之關係圖 (a) ;(b) 96rf [1 ] “ANSYS Revision 5.1”, Swanson Analysis Systems Inc., Houston, PA, U.S.A., 1993. [2 ] J. Goldak, A. Chakravarti and M. Bibby, “A New Finite Element Model for Welding Heat Sources ”, Metallurgical Transacations B, Vol. 15B, pp. 299-305, 1984. [3 ] J. Guild, “The Interference System of Crossed Diffraction Gratings”, Clarendon Press, Oxford, 1956. [4 ] D. Post and J. D. Wood, “Determination of Thermal Strains by Moiré Interferometry”, Experimental Mechanics, Vol. 29, pp. 318-322, 1989. [5 ] X. Dai and P. S. Ho, “Thermo-Mechanical Deformation of Under-Filled Flip-Chip Packaging”, IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium, Austin, TX USA, pp. 326-333, Oct. 13-15, 1997. [6 ] J. Wang, Z. Qian, D. Zou and S. Liu, “Creep Behavior of a Flip-Chip Package by both FEM Modeling and Real Time Moiré Interferometry”, Electronic Packaging, Vol. 120, pp. 179-185, 1998. [7 ] M. R. Miller, I. Mohammed, X. Dai, N. Jiang and P. S. Ho, “Analysis of Flip-Chip Packages Using High Resolution Moiré Interferometry”, Electronic Components and Technology Conference, San Diego, California, USA, pp. 979-986, June 1-4, 1999. [8 ] D. W. Robinson, “High Resolution Moiré Contouring by a Hybrid Technique Combining Light and Electron Optics”, Opt. Laser Technol., Vol. 13, pp. 145-149, 1981. [9 ] J. W. Dally and D. T. Read, “Electron-Beam Moiré”, Exp. Mech., Vol. 33, pp. 270-277, 1993. [10 ] D. T. Read and J. W. Dally, “Electron-Beam Moiré Study of Fracture of a Glass Fiber Reinforced Plastic Composite”, Trans. Amer. Soc. Mech. Eng., Vol. 61, pp. 402-409, 1994. [11 ] D. T. Read, E. S. Drexler, M. A. Schen, H. Abe and E. Schir, eds., “Local Deformation of Plated Through Holes under Thermomechanical Loading”, Proc. of ASME 1994 International Mechanical Engineering Congress and Exposition, Mechanics and Materials for Electronic Packaging, Vol. 2, Thermal and Mechanical Behavior and Modeling AMD-187, Chicago, IL. New York USA, pp. 185-194, Nov. 6-11, 1994. [12 ] D. T. Read and J. W. Dally, “Theory of Electron-Beam Moiré”, J. Res. Natl. Inst. Stand. Technol., Vol. 101, pp. 47-61, 1996. [13 ] X. Huimin, S. Kishimoto, N. Shinya, D. Fulong, Z. Daqing and L. Sheng, “Thermal Deformation Measurement of The Solder Joints in Electronic Packages Using Electron Moiré Method”, Strain, pp. 127-130, Nov. 1999. [14 ] X. Huimin, C. G. Boay, A. Asundi, J. Yu, L. Yunguang, B.K.A. Ngoi and Z. Zhaowei, “Thermal Deformation Measurement of Electronic Package Using Advanced Moiré Methods”, Electronics Packaging Technology Conference, pp. 163-168, 2000. [15 ] N. Iwata, M. Matsui, N. Nakagawa and S. Ikura, “Improvements in Finite-Element Simulation for Stamping and Application to the Forming of Laser-Welded Blanks”, Journal of Materials Processing Technology, Vol. 50, pp. 335-347, 1995. [16 ] Y. N. Liu and E. J. Kannatey-Asibu, “Finite Element Analysis of Heat Flow in Dual-Beam Laser Welded Tailored Blanks”, Journal of Manufacturing Science and Engineering, Transactions of the ASME, Vol. 120, No. 2, pp. 272-278, 1998. [17 ] 陳力俊, 張立, 梁鉅銘, 林文台, 楊哲人和鄭晃忠, “材料電子顯鏡學”, 國科會精密儀器發展中心, 1994. [18 ] D. Post , B. Han and P. Ifju, “High Sensitivity Moiré ”, Springer-Verlag, New-York, 1994. [19 ] 林三寶, “雷射原理與應用”, 全華科技圖書股份有限公司, 1991. [20 ] 蘇品書, “雷射原理與應用技術”, 復漢出版社, 1993. [21 ] 丁勝懋, “雷射工程導論”, 中央圖書出版社, 1995. [22 ] V. Pavelic, R. Tanbakuchi, O. A. Uychara and P. S. Myers “Welding Journal Research Supplemem”, Vol. 68, pp. 295-305, 1969. [23 ] Website: http://www.jeol.com/sem/jsm_5500.html. [24 ] Website: http://www.kjet.com.tw/. [25 ] J. R. Davis and P. Allen, “Properties and Selection : Nonferrous Alloys and Special-Purpose Materials”, ASM Handbook, Vol. 2, 1990. [26 ] “Matlab”, Version 5.3, The MathWorks, Inc., Natick, Mass., USA., R11. [27 ] D. T. Read and J. W. Dally, “Local Strain Measurements by Electron Beam Moiré”, Proc. ASME 1993 International Electronics Packaging Conference, Advances in Electronics Packaging, Vol. 1, Structural Analysis Materials and Processes Design Reliability, EEP-4-1, 1993, Sept. 29-Oct. 2, Binghamton. N.Y., New York, pp. 163-169, 1993. [28 ] 王偉中, “光測力學方法及應用實例概述”, 科儀新知, pp.65-67, 1996年2月. [29 ] 吳俊生, “以雲紋干涉術探討機械加工對於電子封裝體熱行為之影響”, 國立清華大學動力機械工程學系碩士論文, 2002. [30 ] 王峰, 曹光宇, “簡明實驗力學”,科學出版社, 141-159, 1993. [31 ] S. Kishimoto, M. Egashira, N. Shinya, “Micro-Creep Deformation Measurement by a Moiré Method Using Electron-Beam Scan”, Optical Eng., Vol. 32, No. 2, pp. 522-526, 1993. [32 ] Y. Morimoto and T. Hayashi, “Deformation Measurement During Powder Compaction by a Scanning Moiré Method”, Exp. Mech., Vol. 24, No. 2, pp. 112-116, 1984. [33 ] J. W. Dally, D. T. Read and M. Szanto, “Scanning Moiré at High Magnification Using Optical Method”, Exp. Mech., Vol. 33, No.2, pp. 110-116, 1993. [34 ] 張振燦, “雷射與加工”, 亞太圖書出版社, 1986. [35 ] S. Kishimoto, X. Huimin and N. Shinya, “Electron Moiré Method and its Application to Micro-Deformation Measurement ”, Optics and Lasers in Engineering, Vol. 34, pp. 1-14, 2000.id NH0925311026 sid 913762 cfn 0 / id NH0925311027 auc 范嘉偉 tic 無鉛/錫鉛銲點之金屬間化合物成長機制及潛變特性 adc 葉銘泉博士 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 173 kwc 金屬間化合物 kwc 擴散係數 kwc 剪力推球強度 kwc 破壞模式 kwc 穩態潛變率 abc 本文的研究範圍著重在IMC實驗及潛變實驗。IMC實驗主要為探討63Sn-37Pb、Sn-3.5Ag和Sn-4Ag-0.5Cu三種錫球迴焊至Au/Ni/Cu表面處理的銲墊後,銲點界面IMC層的成長狀況。除了將量測銲點經等溫時效作用後界面IMC層的成長厚度外,也將對銲點的剪力強度進行測試。藉由IMC的厚度量測來探討IMC的成長機制、擴散係數以及生成時所需克服的致動能,而銲點經剪力推球測試的結果則可做為評估銲點強度的參考,並再由銲點破壞模式分析更進一步了解銲點的破壞機制,最後針對IMC、剪力強度和破壞模式三者間的關係做深入探討。 tc 目錄 摘要…...………………………………………………………...………...I 目錄………………………………………………………...………........II 表目錄………………………………………………………...………...IV 圖目錄………………………………………………..............................VI 符號表………………………………………………..............................XI 一. 導論……………………..………………………..…………….........1 1.1電子構裝…………………………………………..……….….......1 1.2 印刷電路板組裝---BGA構裝技術…………………..………........3 1.3 綠色環保構裝技術­--無鉛銲料……………………..….................6 二. 研究動機…..…………………………………………………...........9 三. 文獻回顧……………………………………………………..…….11 3.1電解電鍍Ni/Au與無電鍍Ni/Au....……………………………….11 3.2 IMC對銲料之影響…………………………………………….….14 3.2.1 Sn-Pb銲料……………………………………………….....…14 3.2.2無鉛銲料..…..…………………………………………..……..16 3.3 IMC對UBM之影響………………………………………..……..21 3.4 IMC與尺寸效應...………………………………………………...24 3.5銲料的機械性質…………………………………………………...25 3.6銲料的潛變特性…………………………………………………...30 3.7銲料塊材與銲點之差異………..………………………………….34 四. 理論基礎……………………………………………………..…….36 4.1擴散理論及IMC成長….…………………………………..……...36 4.2潛變………………..………………………………………..……...39 4.3擴散與潛變………………..……………………………………….43 五. 研究方法……………………………………………………..…….47 5.1實驗設備……………………………………………………..…….47 5.2試片組成……………………………………………………..…….51 5.3 IMC實驗方法……………………………………………...……...52 5.3.1 IMC試片製作……………………………….………..….…...52 5.3.2 IMC成長實驗及剪力推球測試……………...………………53 5.4靜態與潛變實驗方法…………………………………..…..……...54 5.4.1潛變試片製作.………………………………………..….…...54 5.4.2潛變實驗……..……………….………………………..……...54 5.5金相觀察………………………………………..…………..……...55 六. 初步成果……………………………………………………..…….58 6.1 IMC實驗…………………………………………………..……...58 6.1.1 IMC成長機制…………………………………………..…….59 6.1.2銲點剪力強度與破壞機制…..…………..................................69 6.1.3三種銲點強度的比較及負載-位移曲線分析……..….……...77 6.2無鉛銲點靜態與潛變實驗…………..……………………..……...79 6.2.1靜態實驗…….…………………………………………..…….80 6.2.2潛變實驗……………………..…………..................................88 6.2.3 Sn-3.5Ag與Sn-4Ag-0.5Cu銲點潛變機制…….…..…..……..97 6.2.3銲料塊材與銲點的差異………………….….…..…..………100 七. 結論………..………………………………………………..…….102 7.1 IMC實驗…………………………………………………..…...102 7.2靜態與潛變實驗…………………………………………..……...103 八. 參考文獻…………..…………………………………………..….104 表目錄 表1.1日本無鉛銲料時程表……………….……..………………..….110 表1.2 歐洲無鉛環境時程表………………………………………….110 表1.3 鉛在各產品中的消耗量……………………..….......................111 表1.4 主要的無鉛銲料組成…………………………..……...............111 表1.5 具潛力的無鉛銲料……………..…….......................................112 表2.1 重要的銲料性質………………………..……...........................112 表3.1 63Sn-37Pb與Sn-3.5Ag性質比較…………………..……......112 表3.2 迴焊用合金的比例分佈………………………………..……...113 表3.3 常用的Sn-Ag-Cu銲料組成…………………..…….................113 表3.4 Sn-Ag-Cu的專利問題………………………………….…..…..114 表3.5 Sn-Ag-Cu合金製造時允許的公差範圍………………..……...114 表5.1 PCB基材的主要特性………...……………………………..….114 表6.1 63Sn-37Pb (Au-Ni-Sn)的厚度成長……………….....................115 表6.2 63Sn-37Pb (Ni-Sn)的厚度成長………………….......................115 表6.3 63Sn-37Pb (Au-Ni-Sn)+(Ni-Sn)的總厚度…………………......115 表6.4 Sn-3.5Ag (Ni-Sn)的厚度成長……………….............................116 表6.5 Sn-4Ag-0.5Cu (Cu-Ni-Au-Sn)的厚度成長………………….....116 表6.6擴散係數(D)與溫度的關係…………………...……………......117 表6.7 IMC之致動能與擴散常數……….………….............................117 表6.8銲點原始剪力強度(0小時)………………………………….....117 表6.9銲點經時效作用120小時後之剪力強度…….……………......118 表6.10銲點經時效作用480小時後之剪力強度…………...……......118 表6.11銲點經時效作用1000小時後之剪力強度…….......................118 表6.12 63Sn-37Pb銲點經等溫時效作用後的破壞面(EDX分析)…..119 表6.13各銲料之剪力模數…………………….…….……………......119 表6.14 Sn-3.5Ag 銲點的穩態潛變率平均值………..........................120 表6.15 Sn-4Ag-0.5Cu 銲點的穩態潛變率平均值…………………..120 表6.16 Sn-3.5Ag在三種不同潛變模型下之材料參數表………........121 表6.17 Sn-3.5Ag應力指數及致動能之比較……………………........121 表6.18 Sn-4Ag-0.5Cu在三種不同潛變模型下之材料參數..………..122 表6.19 Sn-Ag-Cu應力指數及致動能之比較………………………...122 表6.20銲點IMC實驗結果之比較…………………………………....123 表6.21銲點潛變實驗結果之比較……….…………………………...123 圖目錄 圖1.1 電子構裝各階層示意圖………………….………………...….124 圖1.2 半導體晶片的向外連接……………………………..…….......124 圖1.3 UBM的組成結構……………………………..……..................125 圖1.4 TSMC之銲料凸塊製作流程圖……………………..................125 圖1.5 IC組裝流程圖……………..……………..…………………….126 圖1.6 PTH構裝元件截面圖………………………..……………..…..127 圖1.7引腳式表面黏著技術截面圖….………………..……...............127 圖1.8 PBGA構裝元件截面圖…………………………..……............127 圖1.9 FC-BGA構裝元件透視圖….…………………..……...............128 圖1.10 FC-BGA組裝流程圖………..…………………..……............128 圖2.1 CTE不匹配造成的熱應力示意圖………………………...…...128 圖4.1發生擴散需克服之能障(致動能)示意圖……….......................129 圖4.2 典型的潛變曲線……………………..……...............................129 圖4.3空缺擴散…………………………………………......................130 圖4.4間隙擴散…………….………………..……...............................130 圖4.5(a)晶界擴散(b)差排核擴散……………………..........................130 圖4.6材料的變形機制圖…...……………………...............................131 圖4.7擴散潛變………………..............................................................131 圖4.8差排潛變…………….………………..……...............................131 圖4.9差排滑移及爬升機制…………………………..........................132 圖4.10微細晶粒的金屬及合金在高溫下之潛變變形機制................132 圖4.11 63Sn-37Pb的變形機制圖..........................................................132 圖5.1 實驗流程圖…………………………………..……...................133 圖5.2 Instron 8848微拉伸試驗機……………………………....…….134 圖5.3 氣動式夾具 ………………………..…….................................134 圖5.4 微拉伸試驗機外掛溫/溼度控制箱……………..……..............134 圖5.5研磨/抛光機………………………………..……......................135 圖5.6高溫烤箱…………….….………..……................................... ..135圖5.7超音波清洗機…………….……...…………………..……..... ..135 圖5.8 Cu/Ni/Au表面處理……...…………………………..……..... ..135 圖5.9錫球的迴焊曲線…………………………….….........................136 圖5.10 剪力推球試片製作流程圖………………………..…….........136 圖5.11剪力推球試片示意圖……….……………………..…….........136 圖5.12 JEDEC STANDARD-BGA Ball Shear……………..……........137 圖5.13潛變試片示意圖………………................................................137 圖5.14潛變試片黏著至夾具之流程圖……………………..……......138 圖5.15潛變實驗的夾具圖…………………………………..……......138 圖5.16 鑲埋的流程圖……………………….……..............................139 圖6.1迴焊後的63Sn-37Pb銲點外觀圖………….…………..……....140 圖6.2 63Sn-37Pb經125℃時效作用之IMC厚度成長……….……...140 圖6.3 63Sn-37Pb經150℃時效作用之IMC厚度成長 ….…….........141 圖6.4 63Sn-37Pb經175℃時效作用之IMC厚度成長………..…….141 圖6.5 63Sn-37Pb銲點界面IMC的成份分析………………………...142 圖6.6 63Sn-37Pb銲點界面IMC的成份分析……...…….…..….........142 圖6.7 63Sn-37Pb銲點界面IMC層厚度與時效時間的關係…......….142 圖6.8迴焊後的Sn-3.5Ag銲點外觀圖………………..……................143 圖6.9 Sn-3.5Ag經125℃時效作用之IMC厚度成長…………...........143 圖6.10 Sn-3.5Ag經150℃時效作用之IMC厚度成長………….........144 圖6.11 Sn-3.5Ag經175℃時效作用之IMC厚度成長………….........144 圖6.12 Sn-3.5Ag銲點界面IMC的成份分析………………….……..145 圖6.13 Sn-3.5Ag銲點界面IMC層厚度與時效時間的關係…...........145 圖6.14迴焊後的Sn-4Ag-0.5Cu銲點外觀圖…………………...…….146 圖6.15 Sn-4Ag-0.5Cu經125℃時效作用之IMC厚度成長……….…146 圖6.16 Sn-4Ag-0.5Cu經150℃時效作用之IMC厚度成長...………..147 圖6.17 Sn-4Ag-0.5Cu經175℃時效作用之IMC厚度成長………….147 圖6.18 Sn-4Ag-0.5Cu銲點界面IMC的成份分析…...……………....148 圖6.19 Sn-4Ag-0.5Cu銲點界面IMC層厚度與時效時間的關係…...148 圖6.20擴散係數與溫度的關係…………………………………........149 圖6.21銲點界面IMC之致動能……………………………………....149 圖6.22三種銲點之界面IMC層在150℃之厚度成長比較圖……….150 圖6.23三種銲點之界面IMC層在175℃之厚度成長比較圖…….…150 圖6.24 63Sn-37Pb銲點剪力推球強度與時效時間的關係………….151 圖6.25 Sn-3.5Ag銲點剪力推球強度與時效時間的關係………........151 圖6.26 Sn-4Ag-0.5Cu銲點剪力推球強度與時效時間的關係………151 圖6.27 63Sn-37Pb在0小時時效作用(as-reflow)之破壞表面……….152 圖6.28 63Sn-37Pb在125℃時效作用下之破壞表面……………...…152 圖6.29 63Sn-37Pb在150℃時效作用下之破壞表面…...…………....152 圖6.30 63Sn-37Pb在175℃時效作用下之破壞表面……………..….152 圖6.31 63Sn-37Pb在175℃/1000小時之破壞面EDX分析…...….…153 圖6.32 63Sn-37Pb銲點經等溫時效作用後的破壞機制…………….153 圖6.33 Sn-3.5Ag在0小時時效作用之破壞表面………….................154 圖6.34 Sn-3.5Ag在125℃時效作用下之破壞表面……………….…154 圖6.35 Sn-3.5Ag在150℃時效作用下之破壞表面………………….154 圖6.36 Sn-3.5Ag在175℃時效作用下之破壞表面……...………..…154 圖6.37 Sn-4Ag-0.5Cu在0小時時效作用之破壞表面.........................155 圖6.38 Sn-4Ag-0.5Cu在125℃時效作用下之破壞表面.....................155 圖6.39 Sn-4Ag-0.5Cu在150℃時效作用下之破壞表面…………….155 圖6.40 Sn-4Ag-0.5Cu在175℃時效作用下之破壞表面…………….155 圖6.41 Sn-3.5Ag銲點在175℃/1000小時之破壞面EDX分析….….156 圖6.42 Sn-4Ag-0.5Cu銲點在175℃/1000小時之破壞面EDX分析..156 圖6.43三種銲點在125℃之剪力推球強度比較圖……..……………157 圖6.44三種銲點在150℃之剪力推球強度比較圖…………......……157 圖6.45三種銲點在175℃之剪力推球強度比較圖……………….….157 圖6.46 63Sn-37Pb銲點在125℃之剪力推球負載-位移曲線………..158 圖6.47 63Sn-37Pb銲點在150℃之剪力推球負載-位移曲線……..…158 圖6.48 63Sn-37Pb銲點在175℃之剪力推球負載-位移曲線……..…158 圖6.49 63Sn-37Pb銲點在120小時之剪力推球負載-位移曲線……159 圖6.50 63Sn-37Pb銲點在480小時之剪力推球負載-位移曲線……159 圖6.51 63Sn-37Pb銲點在1000小時之剪力推球負載-位移曲線…..159 圖6.52 Sn-4Ag-0.5Cu銲點迴焊後之試片……………………....……160 圖6.53 Sn-3.5Agu銲點(2x2陣列)之負載-位移曲線……………...…160 圖6.54 Sn-3.5Ag銲點之應力-應變曲線(shear)………...……………160 圖6.55 Sn-4Ag-0.5Cu銲點(2x2陣列)之負載-位移曲線(shear)…..…161 圖6.56 Sn-4Ag-0.5Cu銲點之應力-應變曲線(shear)…………...……161 圖6.57剪應變近似值(γ)與實際值(tan-1γ)之比較……………………162 圖6.58剪應變近似值(γ)與實際值(tan-1γ)之誤差……………………162 圖6.59拉伸試驗過程中,應力-應變曲線與試片變形之關係.………163 圖6.60一般金屬材料(鋼材)的應力-應變圖…………………...……163 圖6.61材料真應力-真應變曲線的型態……………………...………164 圖6.62 σ=Kεn的曲線圖………………...…..………………………164 圖6.63 Sn-3.5Ag與Sn-4Ag-0.5Cu銲點剪力強度線性嵌合曲線….. 165 圖6.64 Sn-3.5Ag與Sn-4Ag-0.5Cu銲點剪應力線性嵌合曲線…...…165 圖6.65 Sn-3.5Ag銲點潛變曲線(相同溫度/不同應力等級)…………166 圖6.66 Sn-3.5Ag銲點潛變曲線(相同應力等級/不同溫度)…....……167 圖6.67 Sn-3.5Ag銲點穩態潛變率與應力之間的關係圖……………168 圖6.68 Sn-3.5Ag銲點穩態應變率與溫度倒數之間的關係圖………168 圖6.69 Sn-3.5Ag銲點之主潛變曲線(Dorn方程式)……..……..……169 圖6.70 Sn-3.5Ag銲點之主潛變曲線(sinh模型)………………......…169 圖6.71 Sn-4Ag-0.5Cu銲點潛變曲線(相同溫度/不同應力等級)……170 圖6.72 Sn-4Ag-0.5Cu銲點潛變曲線(相同應力等級/不同溫度)……171 圖6.73 Sn-4Ag-0.5Cu銲點穩態潛變率與應力之間的關係圖………172 圖6.74 Sn-4Ag-0.5Cu銲點穩態潛變率與溫度倒數之間的關係圖…172 圖6.75 Sn-4Ag-0.5Cu銲點之主潛變曲線(Dorn方程式)…….…...…173 圖6.76 Sn-4Ag-0.5Cu銲點之主潛變曲線(sinh模型)..………………173rf 1. 陳力俊, 謝宗雍, “微電子材料與製程”. 2. 江國寧, “電子構裝與計算力學”, 國立清華大學動機系. 3. Rao R. Tummala, “Fundamentals of Microsystems Packaging,” McGraw Hill, 2001. 4. TSMC Wafer Solder Bumping. 5. M. Abtew and G. Selvaduray, “Lead-free Solders in Microelectronics,” Materials Science and Engineering, Vol. 27, pp. 95-141, 2000. 6. PBGA data sheet, www.amkor.com. 7. Y. Sawada, K. Harada, H. Fujioka, ”Study of Package Warp Behavior for High-Performance Flip-Chip BGA,” Microelectronics Reliability, Vol. 43, pp. 465–471, 2003. 8. L. J. Turbini, G. C. Munie, D. Bernier, J. Gamalski and D. W. Bergman, ”Examining the Environmental Impact of Lead-Free Soldering Alternatives,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 24, No. 1, January 2001 9. European Lead-free Technology Roadmap, http://www.tintechnology.com. 10. Z. S. Karim, “Fabrication and Reliability Studies of Lead-Free Solder Bumps,” Advanced Interconnect Technology Ltd.. 11. C. Bastecki, “A Benchmark Process For the Lead-Free Assembly of Mixed Technology PCB’s,” September 1999. 12. R. Erich, R. J. Coyle, G. M. Wenger and A. Primavera, “Shear Testing and Failure Mode Analysis for Evaluation of BGA Ball Attachment,” IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium, 1999. 13. K. Y. Lee, M. Li, D. R. Olsen and W. T. Chen, “Microstructure, Joint Strength and Failure Mechanism of Sn-Ag, Sn-Ag-Cu versus Sn-Pb-Ag Solders in BGA Packages,” Electronic Components and Technology Conference, 2001. 14. C. H. Zhong, S. Yi and D. C. Whalley, “Solder Ball Failure Mechanisms in Plastic Ball Grid Array Packages,” Soldering and Surface Mount Technology, Vol 14, No. 2, pp. 40-50, 2002. 15. C. H. Zhong and S. Yi, “Solder Joint Reliability of Plastic Ball Grid Array Packages,” Soldering and Surface Mount Technology, Vol 11, No. 1, pp. 44-48, 1999. 16. Z. Mei, M. Kaufmann, A. Eslambolchi and P. Johnson, “Brittle Interfacial Fracture of PBGA Package Soldered on Electroless Nickel / Immersion Gold,” Electronic Components and Technology Conference, 1998. 17. M. Amagai, M. Watanabe, M. Omiya, Kikuo Kishimoto and T. Shibuya, “Mechanical Characterization of Sn-Ag-based Lead-free Solders,” Microelectronics Reliability, Vol. 42, pp. 951–966, 2002 18. K. Zeng and K. N. Tu, “Six Cases of Reliability Study of Pb-free Solder Joints in Electronic Packaging Technology,” Materials Science and Engineering R, Vol. 38, pp. 55-105, 2002. 19. C. E. Ho, L. C. Shiau and C. R. Kao, “Inhibiting the Formation of (Au1–xNix)Sn4 and Reducing the Consumption of Ni Metallization in Solder Joints,” Journal of Electronic Materials, Vol. 31, No. 11, pp. 1264-1269, 2002. 20. C. M. Liu, C.E. Ho, W.T. Chen and C. R. Kao, “Reflow Soldering and Isothermal Solid-State Aging of Sn-Ag Eutectic Solder on Au/Ni Surface Finish,” Journal of Electronic Materials, Vol. 30, No. 9, pp.1152-1156, 2001. 21. T. Woodrow, “Lead Elimination From PWAs,” No-Lead Solder Early Customer Interface Meeting, 9 May 2001, Boeing Phantom Works. 22. K. Seeling and D. Suraski, “A COMPARISON OF TIN-SILVER-COPPER LEAD FREE SOLDERALLOYS,” AIM Incorporated. 23. C. E. Ho, R. Y. Tsai, Y. L. Lin and C. R. Kao, “Effect of Cu Concentration on the Reactions between Sn-Ag-Cu Solders and Ni,” Journal of Electronic Materials, Vol. 31, No. 6, pp. 584-590, 2002. 24. L. C. Shiau, C. E. Ho and C. R. Kao, “Reactions Between Sn–Ag–Cu Lead-free Solders and the Au/Ni Surface Finish in Advanced Electronic Packages,” Soldering and Surface Mount Technology, Vol. 14, No. 3, pp.25-29, 2002. 25. N. Duan, J. Scheer, J. Bielen, M. van Kleef, “The Influence of Sn–Cu–Ni(Au) and Sn–Au Intermetallic Compounds on the Solder Joint Reliability of Flip Chips on Low Temperature Co-fired Ceramic Substrates,” Microelectronics Reliability, Vol. 43, pp. 1317–1327, 2003. 26. Y. D. Jeon, A. Ostmann, H. Reichl and K. W. Paik, “Comparison of Interfacial Reactions and Reliabilities of Sn3.5Ag, Sn4Ag0.5Cu, and Sn0.7Cu Solder Bumps on Electroless Ni-P UBMs,” Electronic Components and Technology Conference, 2003. 27. B. Salam, N. N. Ekere and D. Rajkumar, “Study of the Interface Microstructure of Sn-Ag-Cu Lead-Free Solders and the Effect of Solder Volume on Intermetallic Layer Formation,” Electronic Components and Technology Conference, 2001. 28. R. J. Coyle and P. P. Solan, “The Influence of Test Parameters and Package Design Features on Ball Shear Test Requirements,” IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium, 2000. 29. I. Shohji, T. Yoshida, T. Takahashi and S. Hioki, “Tensile Properties of Sn–Ag Based Lead-free Solders and Strain Rate Sensitivity,” Materials Science and Engineering A, Vol. 366, pp. 50–55, 2004. 30. X. Q. Shi, W. Zhou, H. L. Pang and Z. P. Wang, “Effect of Temperature and Strain Rate on Mechanical Properties of 63Sn/37Pb Solder Alloy,” Journal of Electronic Packaging, , Vol.121, pp. 179-185, September 1999. 31. S. W. Chen, S. H. Lee and M. C. Yip, “Mechanical Properties and Intermetallic Compound Formation at the SnNi and Sn0.7wt.%CuNi Joints,” Journal of Electronic Materials, Vol. 32, No.11, pp. 1284-1289, 2003. 32. C. Kanchanomai, Y. Miyashita, Y. Mutoh and S. L. Mannan, “Influence of Frequency on Low Cycle Fatigue Behavior of Pb-free Solder 96.5Sn-3.5Ag,” Materials Science and Engineering A, Vol. 345, pp. 90-98, 2003. 33. X. Q. Shi, H. L. J. Pang, W. Zhou and Z. P. Wang, “Low cycle Fatigue Analysis of Temperature and Frequency Effects in Eutectic Solder Alloy,” International Journal of Fatigue, Vol. 22, pp. 217–228, 2000. 34. H. Mavoori, J. Chin, S. Vaynman, B. Moran, L. Keer and M. Fine, “Creep, Stress Relaxation, and Plastic Deformation in Sn-Ag and Sn-Zn Eutectic Solders,” Journal of Electronic Materials, Vol.26, No. 7, 1997 35. H. Yang, P. Deane, P. Magill and K. L. Murty, “Creep Deformation of 96.5Sn3.5Ag Solder Joint In A Flip Chip Package,” Electronic Components and Technology Conference, 1996. 36. D. K. Joo and J. Yu, “Effect of Microstructure on the Creep Properties of the Lead- free Sn-3.5Ag-Cu Solders,” Electronic Components and Technology Conference, 2002. 37. F. Guo, S. Choi, K. N. Subramanian, T. R. Bieler, J. P. Lucas, A. Achari and M. Paruchuri, “Evaluation of Creep Behavior of Near-eutectic Sn-Ag Solders Containing Small Amount of Alloy Additions,” Materials Science and Engineering A, Vol. 351, pp. 190-199, 2003. 38. H. G. Song, J. W. Morris Jr. and F. Hua, “Anomalous Creep in Sn-Rich Solder Joints,” Material Transaction, Vol. 43, No. 8, pp. 1847-1853, 2000. 39. S. Wiese, A. Schubert, H. Walter, R. Dudek, F. Feustel, E. Meusel, B. Michel, “Constitutive Behaviour of Lead-free Solders vs. Lead-containing Solders Experiments on Bulk Specimens and Flip-Chip Joints,” Electronic Components and Technology Conference, 2001. 40. A. Schubert, H. Walter, R. Dudek and B. Michel, “Thermo-Mechanical Properties and Creep Deformation of Lead-containing and Lead-free Solders,” International Symposium on Advanced Packaging Materials, 2001. 41. C. H. Raeder, G. D. Schmeelk, D. Mitlin, T. Barbieri, W. Yang, L. F. Felton, R.W. Messler, D. B. Knorr and D. Lee, “Isothermal Creep of Eutectic SnBi and SnAg Solder and Solder Joints,” IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium, 1994. 42. J. H. L. Pang, B. S. Xiong. C. C. Neo, X. R. Zhang, T. H. Low, “Bulk Solder and Solder Joint Properties for Lead Free 95.5Sn-3.8Ag-0.7Cu Solder Alloy,” Electronic Components and Technology Conference, 2003. 43. R. Darveaux and K. Banerji, “Constitutive Relations for Tin-Based-Solder Joints,” Electronic Components and Technology Conference, 1992. 44. K. S. Kim, S. H. Huh, and K. Suganuma, “Effects of Cooling Speed on Microstructure and Tensile Properties of Sn–Ag–Cu Alloys,” Materials Science and Engineering A, Vol. 333, pp. 106–114, 2002. 45. 劉國雄, 林樹均, 李勝隆, 鄭晃忠, 葉均蔚, “工程材料科學,” 全華科技圖書股份有限公司, 1996. 46. P. L. Tu, Y. C. Chan and J. K. L. Lai, “Effect of Intermetallic Compounds on the Thermal Fatigue of Surface Mount Solder Joints,” IEEE Transactions on Components, Packaging and Manufacturing Technology—Part B, Vol. 20, NO. 1, February 1997. 47. C. B. Lee, J. W. Yoon, S. J. Suh, S. B. Jung, C. W. Yang, C. C. Shur and Y. E. Shin, “Intermetallic Compound Layer Formation Between Sn3.5Ag BGA Solder Ball and (Cu, immersion Au/electroless Ni-P/Cu) substrate,” Journal of Materials Science : Materials in Electronics, Vol. 14, pp. 487-493, 2003. 48. S. B. Jung, Y. Minamino, T. Yamane and S. Saji, Journal of Materials Science Letter, Vol. 12, 1993. 49. 彭健雄,許哲榮合譯, Reed-Hill, “物理冶金原理”. 50. J. Lau, W. Dauksher, J. Smetana, R. Horsley, D. Shangguan and T. Castello, “HDPUG's Design for Lead-Free Solder Joint Reliability of High-Density Packages,” Presented at IPC SMEMA Council APEX® 2003, www.GoAPEX.org. 51. S. W. R. Lee and X. Huang, “Analysis on Solder Ball Shear Testing Conditions with a Simple Computational Model,” Soldering & Surface Mount Technology, Vol. 14, pp. 45–48, 2002. 52. K. Bowman, “Mechanical Behavior of Materials,” John Wiley, pp.248, 2004. 53. D. Grivas, K. L. Murty and J. W. Morris Jr., “Deformation of Pb-Sn Eutectic Alloy at Relatively High Strain Rates,” Acta Metallurgica, Vol. 27, pp.731-737, 1979. 54. X. Q. Shi, Z. P. Wang, Q. J. Yang and H. L. J. Pang, “Creep Behavior and Deformation Mechanism Map of Sn-Pb Eutectic Solder Alloy,” Journal of Engineering Materials and Technology, Vol. 125, pp. 81-88, January 2003. 55. JEDEC STANDARD-BGA BALL SHEAR-JESD22-B117. 56. 韋孟育, “材料實驗方法-金相分析技術”. 57. JEDEC STANDARD- High Temperature Storage Life-JESD22-A103-B. 58. C. E. Ho, R. Zheng, G. L. Luo, A. H. Lin and C. R. Kao, “Formation and Resettlement of (AuxNi1–x)Sn4 in Solder Joints of Ball-Grid-Array Packages with the Au/Ni Surface Finish,” Journal of Electronic Materials, Vol. 29, No. 10, pp. 1175-1181, 2000. 59. H. D. Blair, T. Y. Pang and J. M. Nicholson, “Intermetallic Compound Growth on Ni, Au/Ni, and Pd/Ni Substrates with Sn/Pb, Sn/Ag, and Sn Solders,” Electronic Components and Technology Conference, pp. 259-267, 1998. 60. R. J. Coyle, P. P. Solan, A. J. Serafino and S. A. Gahr, “The Influence of Romm Temperature Aging on Ball Shear Strength and Microstructure of Arear Array Solder Balls,” Electronic Components and Technology Conference, 2000. 61. K. M. Levis and A. Mawer, “Assembly and Solder Joint Reliability of Plastic Ball Grid Array with Lead-Free versus Lead-Tin Interconnect,” Electronic Components and Technology Conference, pp.1198-1204, 2000. 62. C. E. Pearson, “The Viscous Properties of Extruded Eutectic Alloys of Lead-Tin and Bismuth-Tin, In,” Journal of the Institute of Metals, Vol. 54, pp.111-124, 1934. 63. Gere and Timoshenko, “Mechanics of Materials,” Fourth Edition, PWS Publishing Company, 1997. 64. Q. Zhang, A. Dasgupta and P. Haswell, “Viscoplastic Constitutive Properties and Energy- Partitioning Model of Lead-free Sn3.9Ag0.6Cu Solder Alloy,” Electronic Components and Technology Conference, pp.1862-1868, 2003. 65. X. Shi, Q. Yang, Z. Wang, D. Xie and Z. Shi, “New Creep Constitutive Relationship and Modified Energy-Based Life Prediction Model for Eutectic Solder Alloys,” SIMTech Technical Report (PT/01/021/JT). 66. X. Q. Shi, Z. P. Wang, W. Zhou, H. L. J. Pang and Q. J. Yang, “A New Creep Constitutive Model for Eutectic Solder Alloy,” Journal of Electronic Packaging, Vol. 124, pp. 85-90, June 2002. 67. Z. Guo, Y. H. Pao and H. Conrad, “Plastic Deformation Kinetics of 95.5Sn4Cu0.5Ag Solder Joints,” Journal of Electronic Packaging, Vol. 117, pp. 100-104, June 1995. 68. J. E. Breen and J. Weertman, “Creep of Polycrystalline Tin,” Journal of Metals, pp. 1230-1234, Nov. 1995. 69. P. Adeva, G. Caruana, O.A. Ruano and M. Torralba, “Microstructure and High Temperature Mechanical Properties of Tin,” Materials and Science Engineering A, Vol. 194, pp. 17-23, 1995. 70. S. Choi, J. G. Lee, F. Guo, T. R. Bieler, K. N. Subramanian and J. P. Lucas, “Creep Properties of Sn-Ag Solder Joints Containing Intermetallic Particles,” JOM, pp. 22-26, Jun. 2001. 71. J. Villaina, O. S. Bruellerb and T. Qasim, “Creep Behaviour of Lead Free and Lead Containing Solder Materials at High Homologous Temperatures with Regard to Small Solder Volumes,” Sensors and Actuators A, Vol. 99, pp. 194–197, 2002. 72. M. L. Huang, L. Wang and C. M. L. Wu, “Creep behavior of eutectic Sn–Ag Lead-free Solder Alloy,” Journal of Material Research, Vol. 17, No. 11, November 2002.id NH0925311027 sid g913765 cfn 0 / id NH0925311028 auc 賴群峰 tic 整合UV膠微透鏡及MUMPs元件之SOI微光學平台 adc 方維倫 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 78 kwc UV膠微透鏡 kwc 微光學平台 abc 光學元件在光通訊、光儲存技術、顯示器系統以及生醫流體檢測等領域有重要的應用,然而傳統的光學元件組裝複雜度高、體積與質量較大且元件之間光束對準較不易,這些因素皆使得系統成本增加。近年來應用微機電系統技術所製作之微光學元件,體積更小、質量更輕,因此反應速度更快,且使用半導體製程製作更具有批量製造的優點。因此利用微機電系統技術製作出各式微光學元件,在單一晶片上架構出自由空間微光學平台以完成一個高積集度的微光學系統,將可以大幅度地整合各種模組功能於單一晶片上。 tc 目錄 I 圖目錄 III 表目錄 IV 第一章 前言 1 1-1 研究動機 1 1-2 文獻回顧 2 1-2.1 微透鏡 2 1-2.2 微結構組裝機制 5 1-2.3 微光學平台 6 1-3 研究目標 8 第二章 設計與分析 20 2-1 微透鏡設計 20 2-2 多晶矽薄膜元件設計 24 2-3 單晶矽元件設計 25 第三章 製程與結果 33 3-1 製程步驟 33 3-2 製程結果 35 3-3 製程問題與討論 36 第四章 實驗測試與結果 44 4-1 點膠參數的影響 44 4-2 微透鏡曲率公式驗證 45 4-3 微透鏡光學品質量測 47 4-4 熱致動器性能量測 48 第五章 結論 67 5-1 本文貢獻 67 5-2 未來工作 68 第六章 參考文獻 72rf [1 ] Y. Fu, N.K.A. Bryan, and O. N. Shing, “Integrated micro-cylindrical lens with laser diode for single-mode fiber coupling,” IEEE Photonics Letters, 12, pp 1213-1215, 2000. [2 ] J.S. Leggatt, and M.C. Hutley, “Microlens arrays for interconnection of singlemode fiber arrays,” IEEE Electronics Letters, 27, pp 238-240, 1991. [3 ] 李家雯,“應用於光學讀寫頭之微聚焦平台,”國立清華大學動力機械工程學系碩士論文,2003. [4 ] L.Y. Lin, S.S. Lee, K.S.J. Pister, and M.C. Wu, “Three-dimensional micro-Fresnel optical elements fabricated by micromachining technique,” IEEE Electronics Letters, 30, pp 448-449, 1994. [5 ] S. Sinzinger, and J. Jahns, Microoptics. 1st Ed., New York, NY: WILEY-VCH, 1999. [6 ] M.C. WU, “Micromachining for optical and optoelectronic systems,” Proceedings of the IEEE, 85, pp 1833-1856, 1997. [7 ] P. Heremans, J. Genoe, M. Kuijk, R. Vounckx, and G. Borghs, “Mushroom microlenses: optimized microlenses by reflow of multiple layers of photoresist,” IEEE Photonics Letters, 9, pp 1367-1369, 1997. [8 ] H.S. Alhokail, “Fabrication of photoresist microlens arrays,” Proceedings of the Microelectronics International Conference, pp 49-52, 1998. [9 ] J. Shimada, O. Ohguchi, and R. Sawada, ”Microlens fabricated by the planar process,” Journal of Lightwave Technology, 9, pp 571-576, 1991. [10 ] Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photonics Letters, 12, pp 507-509, 2000. [11 ] C.S. Lee, and C.H. Han, “A novel refractive silicon microlens array using bulk micromachining technology,” Sensors and Actuators A, 88, pp 87-90, 2001. [12 ] S.-K. Lee, K.-C. Lee, and S.S. Lee, “Microlens fabrication by the modified LIGA process,” IEEE MEME’02, Las Vegas, Nevada, January, 2002, pp 544-547. [13 ] S.K. Lee, D.S. Kim, S.S. Yang, S.S. Lee, and T.H. Kwon, “Microlens fabrication by the modified LIGA process and its modeling and analysis,” Optical MEMS Conference, Aug, 2002, pp 77-78. [14 ] H.S. Lee, S.-K. Lee, T. H. Kown, and S.S. Lee, “Microlenses array fabrication by hot embossing process,” Optical MEMS Conference, Aug, 2002, pp 73-74. [15 ] J. Hsieh, C.-j. Wen, H.-H. Lin, H.-L. Lin, Y.C. Hu, H.-Y. Chou, C.-F. Lai, W. Fang, “The study on SU-8 micro cylindrical lens for laser induced fluorescent application,” Optical MEMS Conference, Aug, 2003, pp 65-66. [16 ] N.E.S. Farrington, and S. Iezekiel, “Investigations into the use of SU-8 in the fabrication of a micro-optical bench for hybrid optoelectronic integration and packaging,” IEEE High Frequency Postgraduate Student Colloquium, September, 2001, pp 164-167. [17 ] D.L. MacFarlane, V. Narayan, J.A. Tatum, W.R. Cox, T. Chen, and D.J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photonics Letters, 6, pp 1112-1114, 1994. [18 ] 強玲英, 楊啟榮,“點膠滴置法製作折射式微透鏡陣列及其複製性之研究,”第十七屆機械工程研討會, 高雄, 民國89年12月, 第369至375頁. [19 ] K.-H. Jeong, and L. P. Lee, “A new method of increasing numerical aperture of microlens for biophotonic MEMS,” Annual International IEEE-EMBS Conference on Microtechnologies in Medicine & Biology, May 2-4, 2002, pp 380-383. [20 ] H. Choo, and R.S. Muller, “Optical properties of microlenses fabricated using hydrophobic effects and polymer jet printing technology,” Optical MEMS Conference, Aug, 2003, pp 169-170. [21 ] E.-H. Park, M.-J. Kim, and Y.-S. Kwon, “New fabrication technology of convex and concave microlens using UV curing method,” LEOS99 Annual Meeting, WDD: new waveguide and Interconnect technology session, 1999, pp 639-640. [22 ] E.-H. Park, M.-J. Kim, and Y.-S. Kwon, “Microlens for efficient coupling between LED and optical fiber,” IEEE Photonics Letters, 11, pp 439-441, 1999. [23 ] 何亦平,“微結構自組裝技術之研究,” 國立清華大學動力機械工程學系碩士論文,2002. [24 ] Y.C. Tai, L.S. Fan, and R.S. Muller, “IC-processed micro-motors: design, technology, and testing,” IEEE MEMS’89 , Salt Lake City, UT, 1989, pp 1-6. [25 ] R.T. Chen, H. Nguyen, M.C. Wu, “A high-speed low-voltage stress-induced micromachined 2x2 optical switch,” IEEE Photonics Letters, 11, pp 1396-1398, 1999. [26 ] R.R.A. Syms, “Surface tension powered self-assembly of 3-D micro-optomechanical structures,” Journal of Microelectromechanical Systems, 8, pp 448-455, 1999. [27 ] R.R.A. Syms, “Refractive collimating microlens arrays by surface tension self-assembly,” IEEE Photonics Letters, 12, pp 1507-1509, 2000. [28 ] M.C. Wu, L.Y. Lin, S.S. Lee, and K.S.J. Pister, “Micro-machined free-space integrated micro-optics,” Sensors and Actuators A, 50, pp 127-134, 1995. [29 ] C.R. King, L.Y. Lin, and M.C. Wu, “Out-of-plane refractive microlens fabricated by surface micromachining,” IEEE Photonics Letters, 8, pp 1349-1351, 1996. [30 ] R.S. Muller, and K.Y. LAU, “Surface-micromachined microoptical elements and systems,” Proceedings of the IEEE, 86, pp 1705-1719, 1998. [31 ] G.E. Blonder, “Silicon optical bench research at AT&T bell laboratories,” Lasers and Electro-Optics Society Annual Meeting Conference, Nov, 1990, pp 350-353. [32 ] J. Goodrich, “A silicon optical bench approach to low cost high speed transcievers,” Electronic Components and Technology Conference, May, 2001, pp 238-241. [33 ] J.W. Osenbach, M.F. Dautartas, E. Pitman, C. Nijander, M. Brady, R.K. Schlenker, T. Butrie, S.P. Scrak, B.S. Auker, D. Kern, S. Salko, D. Rinaudo, C. Whitcraft, and J.F. Dormer, “Low cost/high volume laser modules using silicon optical bench technology,” Electronic Components and Technology Conference, May, 1998, pp 581-587. [34 ] P.M. Harrison, R. Cann, and D. Spear, “Silicon V-groove technology in the volume production of optical devices,” Lasers and Electro-Optics Society Annual Meeting Conference, Nov, 1997, pp 134-135. [35 ] M.S. Cohen, M.J. Cordes, S.A. Cordes, J.D. Gelorme, D.M. Kuchta, D.L. Lacey, J. Rosner, J.L. Speidell, “ Lithographically fabricated fiber guides for optical subassemblies,” Electronic Components and Technology Conference, May, 1998, pp 229-237. [36 ] S. Kwon, and L.P. Lee, “Stacked two dimensional micro-Lens scanner for micro confocal imaging array,” IEEE MEMS’02, Las Vegas, Nevada, January, 2002, pp483-486. [37 ] S. Kwon, V. Milanovic, and L.P. Lee, “Vertical microlens scanner for 3D imaging,” Technical Digest: Solid-State Sensor and Actuator Workshop, Hilton Head Isl., SC, Jun, 2002. [38 ] 施瑄芳,“SOI晶片整合面型微加工技術於微光學平台之研究,”國立清華大學動力機械工程學系碩士論文,2003. [39 ] S. Hollar, A. Flynn, S. Bergbreiter, and K.S.J. Pister, “Robot leg motion in a planarized-SOI, 2 poly process,” Sensors and Actuators, Hilton Head Island, S.C., June, 2002. [40 ] J. Kubby, J. Calamita, J. Chang, J. K. Chen, P. Gulvin, C.-C. Lin, R. Loftus, B. Nowak, Y.S., A. Tran, D. Burns, J. Bryzek, J. Gilbert, C. Hsu, T. Korsmeyer, A. Morris, T. Plowman, V. Rabinovich, T. Daiber, Proceedings of SPIE, 4293, pp 32-45, 2001. [41 ] R.R.A. Syms, “Equilibrium of hinged and hingeless structures rotated using surface tension forces,” Journal of Microelectromechanical Systems, 4, pp 177-183, 1995. [42 ] R.R.A. Syms, “Self-assembly of three dimensional microstructures using rotation by surface tension forces,” IEEE Electronics Letters, 29, pp 662-664, 1993. [43 ] F.K. Hansen, “Surface tension by image analysis: fast and automatic measurements of pendant and sessile drops and bubbles,” Journal of Colloid and Interface Science, 160, pp 209-217, 1993. [44 ] Y. Gu, and D. Li, “A model for a liquid drop spreading on a solid surface,” Colloids and Surfaces A, 142, pp 243-256, 1998. [45 ] B. Zhang, and A. Nakajima, “Nanometer deformation caused by the laplace pressure and the possibility of its effect on surface tension measurements,” Journal of Collide and Interface Science, 211, pp 114-121, 1999. [46 ] Y.B. Gianchandani, and K. Najafi, “Bent-beam strain sensors,” Journal of Microelectromechanical Systems, 5, pp 52-58, 1996. [47 ] L. Que, J.S. Park, and Y.B. Gianchandani, “Bent-beam electro-termal actuators for high force applications,” IEEE MEMS’99, January, 1999, pp 31-36.. [48 ] M.J. Sinclair, “A high force low area MEMS thermal actuator,” Thermal and Thermomechanical Phenomena in Electronic Systems, May, 2000, pp 127-132.id NH0925311028 sid 913766 cfn 0 / id NH0925311029 auc 林浩妃 tic 液晶顯示面板振動行為之探討 adc 王偉中 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 76 kwc 液晶面板 kwc 液晶顯示器 kwc 振動行為 kwc 數值參數修正 kwc 影像差異 abc 本研究對車用尺寸之液晶顯示面板進行一系列之振動分析,量測其振型與振頻,並利用實驗結果對數值參數進行修正,找出一合理之數值模型並有效模擬其振動行為。此外,本研究並探討液晶顯示器受振動時與未受振動時之顯示影像差異。 tc 目錄 一 、簡介 1 二、文獻回顧 3 三、實驗原理 5 3.1 模態分析法 5 3.2 振幅變動電子光斑影像干涉術 10 3.3 相關性分析(Correlation Analysis) 13 3.3.1 模態可信度準則(Modal Assurance Criterion) 13 3.3.2 相關係數(Correlation Coefficient) 14 3.3.3 敏感度分析(Sensitivity Analysis) 15 3.4 影像處理 15 四、實驗裝置與試片 17 4.1 實驗試片規劃與架設 17 4.2 實驗裝置 19 4.2.1 模態測試實驗裝置 19 4.2.2 ESPI實驗裝置 19 4.3 模擬分析軟體 21 4.3.1 模態分析軟體STAR 21 4.3.2 套裝軟體SURFER 21 4.3.3 有限元素法ANSYS套裝軟體 22 4.3.4 套裝軟體FEMtools 22 五、實驗架構與分析程序 23 5.1 實驗分析程序 23 5.2 模態測試程序 24 5.3 AF-ESPI實驗 25 5.4 ANSYS軟體分析程序 25 5.5 FEMtools相關性分析程序 26 六、結果與討論 27 6.1 數值模型可信度之提升 27 6.1.1 ANSYS 模型之建立 27 6.1.2 等效系統係數 28 6.1.3 模態測試實驗與AF-ESPI 30 6.2 AF-ESPI條紋 30 6.2.1 條紋量化 31 6.2.2 量化條紋之應用 32 6.3 振動環境下對影像品質之探討 32 七、結論與未來展望 35 表目錄 表5.1 數值系統係數初始設定值 40 表5.2 調整過後之數值系統係數值 40 表6.1 自由邊界模擬比較表 41 表6.2 邊界條件一之數值與實驗結果比較表 41 表6.3 邊界條件二數值與實驗結果比較表 41 表6.4 邊界條件三之數值與實驗結果比較表 42 表6.5 各條紋級次對應ζ*值 42 圖目錄 圖2.1 液晶面板結構簡化圖 43 圖2.2 液晶顯示器組裝圖 43 圖2.3 結合揚聲器功能之液晶顯示器結構 44 圖3.1 電子光斑影像干涉術平面外光路圖 44 圖3.2 不同影像處理方法ESPI之比較 45 圖4.1 液晶顯示器 45 圖4.2 液晶面板實體圖 46 圖4.3 液晶顯示器尺寸與座標定義 46 (a) 液晶顯示面板尺寸 46 (b) 液晶面板尺寸與座標定義 47 圖4.4 ANSYS模型網格與座標定義 48 圖4.5 施載架裝置圖 49 圖4.6 鋼架之等效彈簧示意圖 49 圖4.7 雙面膠帶與鋼架簡化之彈簧示意圖 50 圖4.8 模態測試實驗裝置示意圖 50 圖4.9 模態測試實驗裝置實景圖 51 圖4.10 電子光斑影像干涉術裝置示意圖 51 圖5.1 邊界條件一之膠帶位置 52 圖5.2 邊界條件二之膠帶位置 53 圖5.3 邊界條件三之膠帶位置 54 圖5.4 影像擷取架設圖 55 (a) 影像擷取架設正視圖 55 (b) 影像擷取架設側視圖 55 圖6.1 自由邊界之振動模態 56 (a) 第一振型、303.75 Hz 56 (b) 第二振型、557.5 Hz 56 (c) 第三振型、628.75 Hz 56 (d) 第四振型、743.75 Hz 56 (e) 第五振型、1082.5 Hz 56 (f) 第六振型、1091.2 Hz 56 圖6.2 敏感度分析曲線 57 圖6.3 收斂曲線 57 圖6.4 邊界條件一之實驗與數值結果之模態配對 58 (a) 第一模態配對 58 (b) 第二模態配對 58 圖6.5 邊界條件二之實驗與數值結果之模態配對 59 (a) 第一模態配對 59 (b) 第二模態配對 59 圖6.6 邊界條件三之實驗與數值結果之模態配對 60 (a) 第一模態配對 60 (b) 第二模態配對 60 圖6.7 邊界條件一實驗之第一振型(77.5Hz) 61 (a) AF-ESPI影像 61 (b) 模態測試振型圖 61 (c) AF-ESPI細線化之條紋 61 (d) 模態測試振型之等高線圖 61 圖6.8 邊界條件一實驗之第二振型(186.5Hz) 62 (a) AF-ESPI影像 62 (b) 模態測試振型圖 62 (c) AF-ESPI細線化之條紋 62 (d) 模態測試振型之等高線圖 62 圖6.9 邊界條件二實驗之第一振型(70Hz) 63 (a) AF-ESPI影像 63 (b) 模態測試振型圖 63 (c) AF-ESPI細線化之條紋 63 (d) 模態測試振型之等高線圖 63 圖6.10 邊界條件二實驗之第二振型(225Hz) 64 (a) AF-ESPI影像 64 (b) 模態測試振型圖 64 (c) AF-ESPI細線化之條紋 64 (d) 模態測試振型之等高線圖 64 圖6.11 邊界條件三實驗之第一振型(120Hz) 65 (a) AF-ESPI影像 65 (b) 模態測試振型圖 65 (c) AF-ESPI細線化之條紋 65 (d) 模態測試振型之等高線圖 65 圖6.12 邊界條件三實驗之第二振型(240Hz) 65 (a) AF-ESPI影像 66 (b) 模態測試振型圖 66 (c) AF-ESPI細線化之條紋 66 (d) 模態測試振型之等高線圖 66 圖6.13 AF-ESPI量測液晶顯示器之液晶面板振型 67 (a) 第一振型 20Hz 67 (b) 第二振型 33Hz 67 (c) 第三振型 70Hz 67 (d) 第四振型 223Hz 68 (e) 第五振型 304Hz 68 圖6.14 靜止時之參考影像與差異化圖像 69 (a) 靜止時擷取之參考影像 69 (b) 參考影像與自身相減之差異化圖像 69 圖6.15 以物體觸碰之影像 70 (a) 物體觸碰之擷取影像 70 (b) 與參考影像相減所得差異化圖像 70 (c) 差異化圖像之局部放大 71 (d) 差異化圖像之反白影像 71 圖6.16 灰階後之影像 72 (a) 靜止時擷取之參考影像 72 (b) 以物體觸碰之擷取影像 72 圖6.17 受物體觸碰後之擷取影像與靜止參考影像局部之灰階比較圖 73 圖6.18 20Hz致振時擷取之影像與靜止參考影像之比較 74 (a) 振動擷取影像與參考影像之差異圖像 74 (b) 圖(a)之反白影像 74 圖6.19 35Hz致振時擷取之影像與靜止參考影像之比較 75 (a) 振動擷取影像與參考影像之差異圖像 75 (b) 圖(a)之反白影像 75 圖6.20 70Hz致振時擷取之影像與靜止參考影像之比較 76 (a) 振動擷取影像與參考影像之差異圖像 76 (b) 圖(a)之反白影像 76rf 八、參考文獻 [1 ] 張德安, ”電漿顯示器原理與應用”授課講義, 國立清華大學工程與系統科學系, 2003. [2 ] Website: http://china.nikkeibp.co.jp/, 日經產業新聞2001年8月. [3 ] 徐文雄, “TFT/LCD上游材料技術與發展”, 自強基金會光電人才培訓計畫講義, 2002年10月29日至 2002年12月31日. [4 ] “ANSYS”, Revision 5.7, Swanson Analysis Systems, Inc., Houston, PA, U.S.A., 2001. [5 ] “FEMtools”, Version 1.3, Integration Test and Analysis Data, U.S.A., 2001. [6 ] W. C. Wang, C. H. Hwang and S. Y. Lin, ”Vibration Measurement by the Time-averaged Electronic Speckle Pattern Interferometry Methods”, Applied Optics, Vol. 35, No. 22, pp. 4502-4508, 1996. [7 ] 黃吉宏, ”應用振幅變動電子光斑影像干涉術探討含缺陷複材平板之震動特性”, 國立清華大學動力機械工程學系博士論文, 1996. [8 ] F. Reinitzer. , Monatshefte fur Chemie, Vol. 9, pp. 421, 1888. [9 ] O, Lehmann. , Z, Physik. Chem., Vol. 4, pp. 462, 1889. [10 ] C. W. Oseen, “The Theory of Liquid Crystal”, Transactions of the Faraday Society, Vol. 29, p. 883-900, 1933. [11 ] H. Zocher, ”The Effect of a Magnetic Field on the Nematic State”, Transactions of the Faraday Society, Vol. 29, pp. 945-957, 1993. [12 ] G. H. Heilimeier, ”Dynamic Scattering: A New Electronic Effect in Certain Classes of Nematic Liquid Crystals”, Pro. IEEE. Vol. 56, pp. 1162-1171, 1968. [13 ] 趙中興, “顯示器原理與技術”, 台北市, 全華科技圖書股份有限公司, 1997. [14 ] Ram W. Sabnis, “Color Filter Technology for Liquid Crystal Displays”, Displays, Vol. 20, No. 3, pp. 119-129,Nov. 1999. [15 ] H. Fumio, “Liquid Crystal Display Device and Its Assembly Method” NEC Corp., Patent of Japan 2000-330096, 2000. [16 ] Website: http://matsushita.co.jp/. [17 ] T. Deloy and W. McCauley, “LCD Ruggedization for Severe Environments”, Proceedings of SPIE, Vol. 4712, Apr 2-5, 2002, pp. 166-177. [18 ] N. Butters and J. A. Leendertz, “Holographic and Video Techniques Applied to Engineering Measurement”, Journal of Transactions of the Institute of Measurement and Control, Vol. 4, pp. 349-354, 1971. [19 ] C. H. Huang and C. C. Ma, “Experimental and Numerical Investigations of Resonant Vibration Characteristics for Piezoceramic Plates”, Journal of the Acoustical Society of America, Vol. 109, No. 6, 2001, pp. 2780-2788. [20 ] H. Y. Lin, J. H. Huang and C. C. Ma,” Vibration Analysis of Piezoelectric Materials by Optical Methods”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 49, No. 8, August, 2002, pp. 1139-1149. [21 ] 徐炯勛, ”以振幅變動電子光斑影像干涉術探討含缺陷裂縫航空構件之修補效應”, 國立清華大學動力機械工程學系碩士論文, 1998. [22 ] 蘇志偉, “含缺陷複材平板之非破壞性檢測與振動分析”, 國立清華大學動力機械工程學系碩士論文, 2003. [23 ] 賴凱弘, “以混合法探討彈性支撐含孔構件之振動行為”, 國立清華大學動力機械工程學系博士論文, 2002. [24 ] 林淑瑜, “含圓孔複合材料平板振動之實驗研究”, 國立清華大學動力機械工程學系碩士論文, 1995. [25 ] 陳時新, ”實戰機器視覺”, 台北市, 電子技術出版社, 1990. [26 ] “ Dignal Doctor” Version 1.75, 譜威科技股份有限公司. [27 ] “ The STAR System”, Structural Measurement System(SYS), A GenRed Product Line, Canada, 1990. [28 ] “SURFER”, Version 5.01, Surface Mapping System, Golden Software, Inc., Golden, Colorado, U.S.A., 1993. [29 ] Website: http://www.digital.idv.tw/.id NH0925311029 sid 913767 cfn 0 / id NH0925311030 auc 林國鼎 tic 主機板承受隨機振動負載之疲勞壽命分析 adc 葉孟考教授 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 99 kwc 主機板 kwc 隨機振動 kwc 疲勞壽命 kwc 覆晶焊點 abc 電子元件在製造、運輸(Transportation)及操作等過程,易承受由外界環境所引起的隨機振動,造成封裝結構產生剝離及高循環疲勞破壞(High-Cycle Fatigue Failure),進而影響其可靠度。電子元件受振動負載之受損程度與印刷電路板及主機板的彎曲幅度有關,電路板及主機板的彎曲過大,易使與基板連接的焊點(Solder Joint)或底填膠(Underfill)產生應力集中,造成破裂而影響封裝整體結構之可靠度及使用壽命。 tc 摘要…………………………………………………………………. i 致謝………………………………………………………………….. ii 目錄…………………………………………………………………. iii 圖表目錄……………………………………………………………. v 第一章 緒論………………..……………………………………….. 1 1.1 研究動機………………………...………………………….. 2 1.2 參考文獻………………………...………………………….. 3 1.3 研究主題………………………...………………………….. 5 第二章 有限單元分析………..…………………………………….. 7 2.1 隨機振動分析.…………………………………………….... 10 2.2自由振動分析……….………………………………………. 13 2.3 ANSYS分析…………………………………………………. 14 2.4 焊點可靠度理論……………………………………………. 15 第三章 實驗內容及程序…………………………………………… 17 3.1 實驗設備……………………………………..……………... 17 3.2利用致振器量取主機板模態………………………………..態………………………………….態………………………………………………. 18 3.3利用衝擊槌敲擊以量取主機板模態….…………………….態………………………………………………. 18 3.3 疲勞壽命實驗……….…………………………………...…. 19 第四章 結果與討論…………………………………………… 21 4.1 簡化模型及網格密度探討…………………………………. 21 4.2 以致振器量測主機板模態…………………………………. 22 4.3以衝擊槌量測主機板模態………………………………….. 22 4.4 ANSYS模態分析結果……………………………………….…………………………………. 23 4.5 模態分析結果比較…………………………………………. 24 4.6 隨機振動疲勞壽命分析結果….…………………………… 25 4.7 參數化討論…………………………………………………. 28 第五章 結論……..….………………………………………………. 32 參考文獻……………………………..……………………………… 33 圖表………………………………..………………………………… 36 圖表目錄 頁次 表 1 主機板之材料特性……………………...……………….... 36 表 2 覆晶構裝之材料特性…………………………….……….. 36 表 3 能量頻譜密度表………………………………….……….. 36 表 4 主機板材料之極限應力…………………………………... 37 表 5 隨機振動輸入之加速度均方根值………………………... 37 表6 (a).不同簡化模型之覆晶焊點最大位移表.……...………. 37 表6 (b).不同簡化模型之覆晶焊點最大應力表………………. 37 表7 以致振器激振主機板不同量測位置之自然頻率………... 38 表8 以衝擊槌敲擊主機板不同量測位置之自然頻率………... 38 表9 主機板之前十個自然頻率分析結果……………………... 38 表10 有無I/O連接器之主機板模態分析結果………………… 39 表11 主機板楊氏模數增強之模態分析結果…………………... 39 表12 模態分析與實驗結果……………………………………... 39 表13 夾具模態分析之自然頻率………………………………... 40 表14 (a).主機板不同位置承受隨機振動負載G=6.27 G之分析結果………………………………………………………... 41 表14 (b).主機板不同位置承受隨機振動負載G=6.27 G之分析結果………………………………………………………... 41 表15 (a).覆晶焊點不同位置承受隨機振動負載G=6.27G之分析結果…………………………………………………….. 42 表15 (b).覆晶焊點不同位置承受隨機振動負載G=6.27G之分析結果……………………………………………………... 42 表 16 主機板不同材料承受隨機振動負載G=6.27 G之最大von-Mises應力值…………………………………………. 43 表 17 覆晶晶片材料承受隨機振動負載G=6.27 G之最大von-Mises應力值…………………………………………. 43 表 18 (a).主機板不同位置承受隨機振動負載G=165.3 G之分析結果……………………………………………………... 44 表 18 (b).主機板不同位置承受隨機振動負載G=165.3 G之分析結果……………………………………………………... 44 表 19 (a).覆晶焊點不同位置承受隨機振動負載G=165.3 G之分析結果…………………………………………………... 45 表 19 (b).覆晶焊點不同位置承受隨機振動負載G=165.3 G之分析結果…………………………………………………... 45 表 20 主機板不同材料承受振動負載G=165.3 G之最大von-Mises應力值…………………………………………. 46 表 21 覆晶晶片材料承受振動負載G=165.3 G之最大von-Mises應力值…………………………………………. 46 圖1.1 圖1.1 覆晶構裝剖面示意圖……………………………… 47 圖2.1 Solid45單元示意圖…………………………….…………. 47 圖2.2 主機板結構示意圖………….…………………………….. 48 圖2.3 中央處理器覆晶晶片示意圖……………………………... 48 圖2.4 邊界條件示意圖………………….……………………….. 49 圖2.5 JEDEC能量頻譜密度圖.………………………………….. 49 圖2.6 63Sn/37Pb焊點之疲勞壽命曲線……………………….. 50 圖3.1 主機板試片…………………..……………………………. 50 圖3.2 中央處理器試片……………………………...…………… 51 圖3.3 主機板試片夾具…………………………………………... 51 圖3.4 信號產生器………………………………………………... 52 圖3.5 放大器……………………………………………………... 52 圖3.6 致振器…………………………………...………………… 53 圖3.7 模態實驗裝置示意圖(a)致振器激振方式……………… 54 圖3.7 模態實驗裝置示意圖(b)衝擊槌敲擊方式……………….. 54 圖3.8 主機板振動量測位置示意圖…………...………………… 55 圖3.9 試片夾持圖………………………………………………... 55 圖3.10 疲勞壽命實驗裝置示意圖………………………………... 56 圖3.11 隨機振動疲勞壽命實驗流程圖…………………………... 56 圖3.12 ANSYS疲勞壽命分析流程圖……………………………. 57 圖4.1 覆晶構裝晶片(3×3陣列)模型示意圖…………………….. 57 圖4.2 3×3陣列覆晶焊點簡化模型示意圖………………………. 58 圖4.3 3×3陣列覆晶焊點模型之邊見條件………………………. 59 圖4.4 經簡化之覆晶焊點分布示意圖…………………………... 59 圖4.5 主機板自然頻率與單元數關係圖………………………... 60 圖4.6 主機板網格模型(30870個單元)………………………….. 61 圖4.7 以致振器量測主機板之頻率響應圖(位置A)...………….. 62 圖4.7 以致振器量測主機板之頻率響應圖(位置B)...………….. 62 圖4.7 以致振器量測主機板之頻率響應圖(位置C)...………….. 63 圖4.7 以致振器量測主機板之頻率響應圖(位置D)...………….. 63 圖4.7 以致振器量測主機板之頻率響應圖(位置E)...………….. 64 圖4.7 以致振器量測主機板之頻率響應圖(位置F)...…………... 64 圖4.8 以衝擊槌量測主機板之頻率響應圖(位置A)...………….. 65 圖4.8 以衝擊槌量測主機板之頻率響應圖(位置B)...………….. 65 圖4.8 以衝擊槌量測主機板之頻率響應圖(位置C)...………….. 66 圖4.8 以衝擊槌量測主機板之頻率響應圖(位置D)...………….. 66 圖4.8 以衝擊槌量測主機板之頻率響應圖(位置E)...………….. 67 圖4.8 以衝擊槌量測主機板之頻率響應圖(位置F)...…………... 67 圖4.9 以衝擊槌量測含模具之致振器之頻率響應圖…………... 68 圖4.10 不含夾具之主機板振動模態圖(模態一至模態六)……… 69 圖4.10 不含夾具之主機板振動模態圖(模態七至模態十)……… 70 圖4.11 包含夾具之主機板振動模態圖(模態一至模態六)……… 71 圖4.11 包含夾具之主機板振動模態圖(模態七至模態十)……… 72 圖4.12 無I/O連接器之主機板模型圖……………………………. 73 圖4.13 無I/O連接器之主機板振動模態圖(第一模態)………...... 73 圖4.13 無I/O連接器之主機板振動模態圖(第二模態)………...... 74 圖4.13 無I/O連接器之主機板振動模態圖(第三模態)………...... 74 圖4.14 夾具模型示意圖……………….………………………….. 75 圖4.15 主機板量測位置示意圖…………………………………... 75 圖4.16 主機板不同位置承受隨機振動負載G=6.27 G之位移及應力變化圖(a)位移圖.…………………………………... 76 圖4.16 主機板不同位置承受隨機振動負載G=6.27 G之位移及應力變化圖(b)應力圖………...…………………………... 76 圖4.17 主機板承受隨機振動負載 =6.27 G之變形圖……….. 77 圖4.18 主機板承受隨機振動負載 =6.27 G之應力分佈圖(a) x方向應力分佈………………………………………... 78 圖4.18 主機板承受隨機振動負載 =6.27 G之應力分佈圖(b) y方向應力分佈………………………………………... 78 圖4.18 主機板承受隨機振動負載 =6.27 G之應力分佈圖(c) z方向應力分佈………………………………………... 78 圖4.18 主機板承受隨機振動負載 =6.27 G之應力分佈圖(d) von-Mises方向應力分佈……………………………… 79 圖4.19 覆晶晶片承受隨機振動負載 =6.27 G之變形圖…….. 80 圖4.20 覆晶晶片承受隨機振動負載 =6.27 G之應力分布圖(a) x方向應力分佈………………………………………... 81 圖4.20 覆晶晶片承受隨機振動負載 =6.27 G之應力分布圖(b) y方向應力分佈………………………………………... 81 圖4.20 覆晶晶片承受隨機振動負載 =6.27 G之應力分布圖(b)z方向應力分佈………………………………………... 81 圖4.20 覆晶晶片承受隨機振動負載 =6.27 G之應力分布圖(d) von-Mises方向應力分佈……………………………… 82 圖4.21 覆晶焊點分析位置示意圖………………………………... 82 圖4.22 覆晶焊點不同位置承受隨機振動負載 =6.27 G之位移圖………………………………………………………... 83 圖4.23 覆晶焊點不同位置承受隨機振動負載 =6.27 G之應力變化圖…………………………………………………... 84 圖4.24 覆晶焊點承受JEDEC隨機振動負載之von-Mises應力分佈圖………………………………………………………... 85 圖4.25 加強隨機振動負載強度示意圖…………………………... 86 圖4.26 主機板不同位置承受隨機振動負載G=165.3 G之位移圖 86 圖4.27 主機板不同位置承受隨機振動負載G=165.3 G之應力變化圖………………………………………………………... 87 圖4.28 主機板承受隨機振動負載 =165.3 G之von-Mises應力分佈圖…………………………………………………... 87 圖4.29 覆晶焊點不同位置承受隨機振動負載 =165.3 G之位移圖………………………………………………………... 88 圖4.30 覆晶焊點不同位置承受隨機振動負載 =165.3 G之應力變化圖…………………………………………………... 89 圖4.31 覆晶焊點承受隨機振動負載 =165.3 G之von-Mises應力分佈圖………………………………………………... 89 圖4.32 隨機振動負載強度與焊點最大von-Mises應力關係圖… 90 圖4.33 隨機振動負載強度與焊點疲勞週期關係圖……………... 90 圖4.34 不同晶片厚度之有限單元模型圖………………………... 91 圖4.35 晶片厚度與焊點最大von-Mises應力關係圖…………… 92 圖4.36 晶片厚度與焊點疲勞壽命關係圖………………………... 93 圖4.37 底填膠楊氏模數與焊點最大von-Mises應力關係圖…… 94 圖4.38 底填膠楊氏模數與焊點疲勞壽命關係圖………………... 95 圖4.39 不同底填膠填充角度之有限單元模型圖………………... 95 圖4.40 底填膠填充角度與焊點最大von-Mises應力關係圖…… 96 圖4.41 底填膠填充角度與焊點疲勞壽命關係圖………………... 97 圖4.42 主機板阻尼比與焊點最大von-Mises應力關係圖……… 98 圖4.43 主機板阻尼比與焊點疲勞壽命關係圖…………………... 99rf 1. 謝宗雍, “電子構裝技術,” http://140.114.18.41/micro/chap10/ch10-1.htm. 2. 郭嘉龍, “半導體封裝工程,” 第一章, 全華科技圖書股份有限公司, 中華民國89年. 3. 陳兆宏, “主機板整合進化論,” 2003. http://lab.digitimes.com.tw/extract/extract.asp?extid=104&gid=20. 4. Yang, Q. J., Lim, G. H., Lin, R. M., Yap, F. F., Pang, H. l. J. and Wang, Z. P., “Experimental Modal Analysis of PBGA Printed Circuit Board Assemblies,” IEEE /CPMT Electronic Packaging Technology Conference, pp. 290-296, 1997. 5. Liu, S. and Ume, I. C., “Vibration Analysis Based Modeling and Defect Recognition for Flip-Chip Solder-Joint Inspection,” ASME Journal of Electronic Packaging, Vol. 124, pp. 221-226, 2002. 6. Pitarresi, J. M., Caletka, D. V., Caldwell, R. and Smith, D. E., “Experimental Modal Analysis and Dynamic Response Prediction of PC Boards With Surface Mount Electronic Components,” ASME Journal of Electronic Packaging, Vol. 113, pp. 244-249, September 1991. 7. Wong, T. L., Stevens, K. K. and Wang, G., “The “Smeared” Property Technology for the FE Vibration Analysis of Printed Circuit Cards,” ASME Journal of Electronic Packaging, Vol. 113, pp. 250-275, September 1991. 8. Barker, D. B., Chen, Y. S. and Dasgupta, A., “Estimating the Vibration Fatigue Life of Quad Leaded Surface Mount Component,” ASME Journal of Electronic Packaging, Vol. 115, pp. 195-200, 1993. 9. Sidharth and Barker, D. B., “Vibration Induced Fatigue Life Estimation of Corner Leads of Peripheral Leaded Components,” ASME Journal of Electronic Packaging, Vol. 118, pp. 244-249, 1996. 10. Suhir, E., “Predicted Fundamental Vibration Frequency of a Heavy Electronic Component Mounted on a Printed Circuit Board,” ASME Journal of Electronic Packaging, Vol. 122, pp. 3-5, 2001. 11. Yang, Q. J., Lim, G. H., Pang, H. L. J. and Wang, Z. P., “Vibration Reliability Test of a PBGA Assembly,” IEEE/CPMT Electronic Packaging Technology Conference, pp. 258-263, 1998. 12. Zhao, Y., Basaran, C., Carwright, A. and Dishongh, T., “Inelastic Behavior of Microelectronics Solder Joints Under Concurrent Vibration and Thermal Cycling,” IEEE Inter Society Conference on Thermal Phenomena, pp. 174-180, 2000. 13. Ghaffarian, R., “Shock and Thermal Cycling Synergism Effects on Reliability of CBGA Assemblies,” IEEE Journal of Electronic Packaging, Vol. 122, pp. 327-333, 2000. 14. Yang, Q. J., Wang, Z. P., Lim, G. H., Pang, J. H. L., Yap, F. F. and Lin, R. M., “Reliability of PBGA Assemblies Under Out-of-Plane Vibration Excitations,” IEEE Transactions on Component and Packaging Technology, Vol. 25, No. 25, pp. 293-300, June 2002. 15. Tu, P. L., Chan, Y. C., Tang, C. W. and Lai, J. K. L., “Vibration fatigue of mBGA solder joint,” IEEE Electronic Components and Technology Conference, pp. 1369-1375, 2000. 16. Lau, J. H., “Solder Joint Reliability of Flip Chip and Plastic Ball Grid Array Assemblies Under Thermal, Mechanical, and Vibration Conditions,” IEEE Transactions on Components, and Manufacturing Technology-Part B, Vol. 19, pp. 728-735, No. 4, 1996. 17. Shetty, S., Lehtinen, V., Dasgupta, A., Halkola, V. and Reinikainen, T., “Fatigue of Chip Scale Package Interconnects Due to Cyclic Bending,” ASME Journal of Electronic Packaging, Vol. 123, pp. 302-308, 2001. 18. Rau, I., Miessner, R., Liebing, G. and Becker, K. F., “Accelerated Testing of Flip Chip Packages Under Dynamic Load,” IEEE Polymers and Adhesives in Microelectronics and Photonics, pp. 349-357, 2001. 19. 鍾為勳, “覆晶構裝承受振動負載之疲勞壽命分析,” 國立清華大學動力機械學系碩士論文, 2003. 20. Li, R. S., “A Methodology for Fatigue Prediction of Electronic Components Under Random Vibration Load,” ASME Journal of Electronic Packaging, Vol. 123, pp. 394-400, 2001. 21. Jih, E. and Jung, W., “Vibration Fatigue of Surface Mount Solder Joints,” IEEE InterSociety Conference on Thermal Phenomena, pp. 246-250, 1998. 22. Wong, T.E., Reed, B.A., Cohen, H. M. and Chu, D. W., “Development of BGA Solder Joint Vibration Fatigue Life Prediction Model,” Electronic Components and Technology Conference, pp.149-154, 1999. 23. Wong, T. E., Palmieri, F. W. and Fenger, H. S., “Under-Filled BGA Solder Joint Vibration Fatigue Damage,” IEEE Inter Society Conference on Thermal Phenomena, pp. 961-966, 2002. 24. Lee, S.W. R. and Lui, B. H. W., “Evaluation of Board Level Reliability of Pb-free PBGA Solder Joints,” IEEE International Symposium on Advanced Packaging Materials, pp. 82-89, 2002. 25. Wong, T. E., Palmieri, F. W., Reed, B. A., Fenger, H. S., Cohen, H. M. and Teshiba, K.T., “Durability/Reliability of BGA Solder Joints under Vibration Environment,” Electronic Components and Technology Conference, pp. 1083-1088, 2000. 26. 江孟儒, “高性能電子構裝之振動應力分析,” 元智大學機械工程學系碩士論文, 2000. 27. Quinones, H., Babiarz, A., “Chip Scale Packaging Reliability,” Int’l Symp on Electronic Materials & Packaging, pp. 398-405, 2000. 28. Pitarresi, J., “Dynamic Modeling and Measurement of Personal Computer Motherboards,” Electronic Components and Technology Conference, pp. 597-603, 2002. 29. Cifuentes, A. O., “Estimating the Dynamic Behavior of Printed Circuit Boards,” IEEE Transactions on Components, packaging, and Manufacturing Technology-Part B: Advanced Packaging, Vol. 17, pp. 69-75, 1994. 30. Low, K. H., Chai, G. B., Lim, T. M. and Sue, S. C., “Comparisons of Experimental and Theoretical Frequencies for Rectangular Plates with Various Boundary Conditions and Added Masses,” International Journal of Mechanical Sciences, Vol. 40, No. 11, pp. 1119-1131, 1998. 31. ANSYS Theory Reference. 000855.Eigth Edition.SAS IP, Inc. 32. Cook, R. D., Malkus, D. S. and Plesha, M. E., “Concepts and Applications of Finite Element Analysis,” Wiley, New York, 1989. 33. Rao, S. S., “Mechanical Vibrations,” Addison-Wesley, Reading, Massachusetts, 1995. 34. ANSYS Element Reference. 000855.Eigth Edition.SAS IP, Inc. 35. Kalpakjian, S. and Schmid, S. R., “Manufacturing Engineering and Technology,” Prentice Hall, New Jersey, 2001. 36. 張昆堯, “在熱循環作用下錫球結構與配置方式對FCOB構裝之可靠度分析,” 國立成功大學工程科學系碩士論文, 2002. 37. JEDEC22-B103-B,“Vibration, Variable Frequency,” JEDEC SOLID STATE TECHNOLOGY ASSOCIATION, pp. 1-7, June 2002. 38. Norton, R. L., “Design of Machinery,” McGraw-Hill, New York, 1992. 39. Steinberg, D. S., “Preventing Thermal Cycling and Vibration Failures in Electronic Equipment, Ch.5,” Wiley, New York, 2001. 40. Steinberg, D. S., “Vibration Analysis for Electronic Equipment,” Wiley, New York, 1973.id NH0925311030 sid 913773 cfn 0 / id NH0925311031 auc 徐昌駿 tic 奈米壓痕系統於微懸臂樑彎矩測試之研究 adc 方維倫 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 67 kwc 微機電 kwc 奈米壓痕系統 kwc 微懸臂樑 kwc 彎矩測試 kwc 楊氏係數 abc 本文的研究目的主要是利用奈米壓痕系統進行微懸臂樑彎矩測試,並透過測得之負載-位移關係曲線,計算出薄膜材料的楊氏係數。本文針對微懸臂樑彎矩實驗中,探討數種影響楊氏係數計算的誤差效應並修正之:(1)利用有限元素的模擬,修正微懸臂樑四分之一平面邊界造成的影響;(2)將探頭刺穿懸臂樑表面的壓痕效應排除;(3)透過實驗的方法,將儀器定位解析度所造成的誤差排除。並由上述數種效應整理出一修正的微懸臂樑彎矩測試實驗方法,如此可較準確地測得材料楊氏係數。另外和壓痕測試法的結果比較發現,彎矩測試法與壓痕測試法的量測結果約有10%左右的差異量。 tc 摘要 I Abstract II 目錄 III 圖目錄 V 第一章、前言 1 1-1 研究動機 1 1-2 文獻回顧 1 1-2.1 量測薄膜楊氏係數 1 1-2.2 彎矩測試法的應用 3 1-3 研究目標 4 第二章、實驗規劃 10 2-1試片製作 10 2-2實驗架設 11 2-3 參數萃取 12 第三章、分析與修正 20 3-1、邊界效應 20 3-1.1. 厚結構 20 3-1.2. 薄結構 22 3-2壓痕效應 23 3-3 量測誤差修正 25 3-3.1曲線逼近法(curve fitting) 27 3-3.2剛性疊加法 29 3-4實驗結果補償 31 第四章、結論 47 4-1 研究成果 47 4-2 未來工作 48 第五章、參考文獻 51 附錄A、奈米壓痕試驗機系統簡介 57 A-1 壓痕測試法之量測原理 57 A-2 動態之連續剛性量測 59rf [1 ] W.N. Sharpe, Jr., B. Yuan, and R. Vaidyanathan, “Measurements of Young’s modulus, Poisson’s?sratio, and tensile strength of polysilicon,” IEEE Micro Electro Mechanical Systems, Nagoya, Japan, January, 1997, pp 424–429. [2 ] H. Ogawa, Y. Ishikawa, and T. Kitahara, “Measurements of stress-strain diagrams of thin films by a developed tensile machine,” SPIE, Microlithography and Metrology in Micromachining II, Austin, TX, October, 1996, pp 272–277. [3 ] H. Ogawa, K. Suzuki, S. Kaneko, Y. Ishikawa, and T. Kitahara, “Measurements of mechanical properties of microfabricated thin films,” IEEE Micro Electro Mechanical Systems, Nagoya, Japan, January, 1997, pp 430-435. [4 ] T. Tsuchiya, O. Tabata, J. Sakata, and Y. Taga, “Specimen size effect on tensile strength of surface-micromachined polycrystalline silicon thin films,” Journal of Microelectromechanical Systems, 7, pp 106-113, 1998. [5 ] G.M. Pharr, W.C. Oliver, and F.R. Brotzen, “On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation,” Journal of Materials Research, 7, pp 613–617, 1992. [6 ] G.M. Pharr, and W.C. Oliver, “Measurement of thin film mechanical properties using nanoindentation,” MRS Bulltin, 7, pp 28-33, 1992. [7 ] W.C. Oliver, and G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, 7, pp 1564-1583, 1992. [8 ] W.C. Oliver, and J.B. Pethica, “Methods for continuous determination of the elastic stiffness of contact between two bodies,” U.S. Patent No. 4,848,141, July 18. 1989 [9 ] W.C. Oliver, and G.M. Pharr, “Measurement of hardness amd elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” Journal of Materials Research, 19, pp 9-20, 2004. [10 ] T. Chudoba, M. Griepentrog, A. Duck, D. Schneider, and F. Richter, “Young’s modulus measurements on ultra-thin coatings,” Journal of Materials Research, 19, pp 301-314, 2004. [11 ] C.A. Taylor, M.F. Wayne, and W.K.S. Chiu, “Residual stress measurement in thin carbon films by Raman spectroscopy and nanoindentation,” Thin Solid Films, 429, pp 190-200, 2003. [12 ] A.A. Volinsky, J.B. Vella, and W.W. Gerberich, “Fracture toughness, adhesion and mechanical properties of low-K dielectric thin films measured by nanoindentation,” Thin Solid Films, 429, pp 201-210, 2003. [13 ] M.F. Doerner, and W.D. Nix, “A method for interpreting the data from depth-Sensing indentation instruments,” Journal of Materials Research, 1, pp 601–609, 1986. [14 ] M.F. Doerner, D.S. Gardner, and W.D. Nix, “Plastic properties of thin films on substrates as measured by submicron indentation hardness and substrate curvature techniques,” Journal of Materials Research, 1, pp 845–851, 1986. [15 ] M.K. Small, and W.D. Nix, “Analysis of the accuracy of the bulge test in determining the mechanical properties of thin films,” Journal of Materials Research, 7, pp 1553-1563, 1992. [16 ] Y. Li, and M.J. Cima, “Bulge test on free standing gold thin films,” Materials Research Society Symposium Proc. 795, 2004. [17 ] D. Maier-Schneider, J. Maibach, E. Obermeier, and D. Schneider, “Variations in Young’s modulus and intrinsic stress of LPCVD-polysilicon due to high temperature annealing,” Journal of Micromechanics and Microengineering, 5, pp 121–124, 1995. [18 ] V.M. Paviot, J.J. Vlassak, and W.D. Nix, “Measuring the mechanical properties of thin metal films by means of bulge testing of micromachined windows,” Materials Research Society Symposium Proc. 356, pp 579–584. 1995. [19 ]O. Tabata, K. Kawahata, S. Sugiyama and I. Igaraashi, “Mechanical property measurements of thin films,” Sensors and Actuators A, 20, pp 135-141, 1989. [20 ]O. Tabata, T. Tsuchiya and N. Fujitsuka, “Poisson’s ratio evaluation of thin film for sensor application,” Technical Digest of the 12th Sensor Symposium, 1994, pp 19-22. [21 ] K.E. Petersen, and C.R. Guarnieri, “Young’s modulus measurements of thin films using micromechanics,” Journal of Applied Physics, 50, pp 6761-6766, 1979. [22 ] L. Kiesewetter, J.-M. Zhang, D. Houdeau, and A. Steckenborn, “Determination of Young's moduli of micromechanical thin films using the resonance method,” Sensors and Actuators A, 35, pp 153-159, 1992. [23 ] W.D. Nix, “Mechanical Properties of Thin Films,” Metallurgical Transaction A, 20A, pp 2217-2245, 1989. [24 ] T.P. Weihs, S. Hong, J.C. Bravman, and W.D. Nix, “Mechanical deflection of cantilever microbeams: A new technique for testing the mechanical properties of thin films,” Journal of Materials Research, 3, pp 931–942, 1988. [25 ] T.P. Weihs, S. Hong, J.C. Bravman, and W.D. Nix, “Measuring the strength and stiffness of thin film materials by mechanically deflecting cantilever microbeams,” Thin Films: Stresses and Mechanical Properties, Symposium Proc. Pittsburgh, PA, 1989, pp 87-92. [26 ]S. Johansson, J.-A. Schweitz, L. Tenerz and J. Tiren, “Fracture testing of silicon microelements in situ in a Scanning Electron Microscope,” Journal of Applied Physics, 66, pp 4799-4803, 1988. [27 ]C. Serre, A. Perez-Rodriguez, J.R. Morante, P. Gorostiza and J. Esteve, “Determination of micromechanical properties of thin films by beam bending measurements with an Atomic Force Microscope,” Sensors and Actuators A, 74, pp. 134-138, 1999. [28 ] J.D. Holbery, V.L. Eden, and M. Sarikaya, and R.M. Fisher “Experimental determination of scanning probe microscope cantilever spring constants utilizing a nanoindentation apparatus,” Review of Scientific Instrument, 71, pp 3769-3776, 2000. [29 ] D. Saya, K. Fukushima, H. Toshiyoshi, G. Hashiguchi, H. Fujita, and H. Kawakatsu, “Fabrication of single-crystal Si cantilever array”, Sensor and Acyuators A, 95, pp 281-287, 2002. [30 ] M. Heinzelmann, and M. Petzold, “FEM analysis of microbeam bending experiments using ultramicro indentation,” Computational Materials Science, 3, pp 169–176, 1994. [31 ] D. Son, J.-H. Jeong, and D. Kwon, “Film-thickness considerations in microcantilever-beam test in measuring mechanical properties of metal thin film,” Thin Solid Films, 437 pp 182-187, 2003. [32 ] S. Greek, F. Ericson, S. Johansson, M. Furtsch, and A. Rump, ”Mechanical characterization of thick polysilicon films: Young’s modulus and fracture strength evaluated with microstructures,” Journal of Micromechanics and Microengineering, 9, pp 245-251, 1999. [33 ] X. Li, B. Bhushan, K. Takashima, C.-W. Baek, and Y.-K. Kim, “Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques,” Ultramicroscopy, 97, pp 481–494, 2003. [34 ] T. Yi, and C.-J. Kim, “Measurement of mechanical properties for MEMS materials,” Measurement Science and Technology, 10, pp 706-716, 1999. [35 ] T. Namazu, Y. Isono, and T. Tanaka, “Nano-scale bending test of Si beam for MEMS,” IEEE Micro Electro Mechanical Systems, Miyazaki, Japan, pp 205-210, 2000. [36 ] H.S. Cho, K.J. Hemker, K. Lian, J. Goettert, and G. Dirras, “Measured mechanical properties of LIGA Ni structures,” Sensor and Actuators A, 103, pp 59-63, 2003. [37 ] X. Li, and B. Bhushan, “Fatigue studies of nanoscale structures for MEMSyNEMS applications using nanoindentation techniques,” Surface and Coatings Technology, 163 –164, pp 521–526, 2003. [38 ] C.L. Muhlstein, S.B. Brown, and R.O. Ritchie, ”High-cycle fatigue of polycrystalline silicon thin films in laboratory air,” Materials Research Society Symposium Proc. Vol. 657 2001 [39 ] T. Hassan, and Z. Liu, ”On the difference of fatigue strengths from rotating bending, four-point bending, and cantilever bending tests,” International Journal of Pressure Vessels and Piping, 78, pp 19-30, 2001. [40 ] W. Fang, and J.A. Wickert, “Comments on measuring thin film stresses using bi-layer micromachined beams,” Journal of Micromechanics and Microengineering, 5, pp 276-281, 1995. [41 ] W. Fang, and J.A. Wickert, “Determining mean and gradient residual stresses in thin films with micromachined structures,” Journal of Micromechanics and Microengineering, 6, pp 301-309, 1996. [42 ] A.B. de Morais, M.F. de Moura, J.P.M. Goncalves, and P.P. Camanho, ”Analysis of crack propagation in double cantilever beam tests of multidirectional laminates,” Mechanics of Materials, 35, pp 641–652, 2003. [43 ] F. Roudolff, and Y. Ousset, “Comparison between two approaches for the simulation of delamination growth in a D.C.B. specimen,” Aerospace Science and Technology, 6, pp 123–130, 2002. [44 ] E.S. Berkovich, “Three-faceted diamond pyramid for micro-hardness testing,” Industrial Diamond Review, 11, pp 129–132, 1951. [45 ] B. Bhushan, Handbook of Micro/Nano Tribology. 2nd Ed., New York, NY: CRC Press, 1998. [46 ] 余齊盛,”微無邊界樑振動特性的探討與應用,” 國立清華大學動力機械系碩士論文, 2004id NH0925311031 sid 913777 cfn 0 / id NH0925311032 auc 張維倫 tic 異向性導電膠膜與黏晶膠的機械性質與可靠度測試 adc 葉銘泉 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 110 kwc 異向性導電膠膜 kwc 可靠度 abc 本論文主要探討封裝常用的兩種膠材,異向性導電膠與黏晶膠,在不同溫度與不同的應變率下,材料強度與楊氏係數的變化。此外,針對異向性導電膠進行了70oC高溫老化與85oC/85%RH高溫高溼老化的可靠性測試、在不同溫度下接著強度測試、以及各種接著參數對接著強度的影響測試,其中異向性導電膠的接著強度的測試都是以撥離強度作為基準。另外,經由掃描式電子顯微鏡觀察試片撥離後的斷面,藉以了解相關的破壞機制。 tc 目錄 一、 導論………………………………………………………………..1 二、 研究動機…………………………………………………………..4 三、 文獻回顧…………………………………………………………..6 3.1 薄膜試片測試相關文獻相關文獻……..……………………...6 3.2 異向性導電膠膜製程及使用特性相關文獻………………….7 3.3 異向性導電膠各種機械性質測試文獻……………………...9 3.3-1 疲勞測試………………………………………………....9 3.3-2 剪力測試………………………………………………....10 3.3-3 撥離強度(peel strength)測試…………………………10 3.4 異向性導電膠膜可靠度相關文獻…………………………...10 3.4-1 高溫老化…………………………………………………10 3.4-2 高溫高濕老化…………………………………………..12 3.4-3 熱循環測試……………………………………………..14 3.4-4 熱衝擊(thermal shock)測試……………………………14 四、 研究方法…………………………………………………………15 4.1 試片製作….…………………………………………………15 4.1.1 薄膜塊狀試片製作…………………………………….15 4.1.2 黏著組合試片製作……………………………………..18 4.2 儀器設備……..……………………………………………...20 4.2.1 Instron-8848微拉伸試驗機……………………………21 4.2.2 溫度與溼度控制箱……………………………………..22 4.2.3 微氣動式夾頭…………………………………………..22 4.2.4 可變換夾面夾頭 (Versa Grips)………………………..22 4.2.5 桌上型恆溫恆濕測試機……………………………….23 4.2.6 熱風循環烘箱 (Oven)…………………………………23 4.2.7 掃描式電子顯微鏡 (SEM)…………………………….23 4.2.8 正立式金相顯微鏡 (Metallurgical Microscopes)…….23 4.2.9 工研院自行設計之異向性導電膠接合機……………..24 4.2.10 研磨拋光機……………………………………………24 4.2.11 超音波洗淨器…………………………………………24 4.3 測試方法….…………………………………………………24 4.3.1 薄膜塊狀試片測試……………………………………..25 4.3.2 黏著組合試片測試……………………………………..26 五、 結果與討論………………………………………………………29 5.1 黏晶膠薄膜試片在不同溫度與應變率下機械性質的變化...29 5.2 異向性導電膠膜薄膜試片在不同溫度下機械性質的變化...30 5.3 異向性導電膠膜接著試片在各種測試下機械性質的變化...32 5.3.1 不同黏著條件下機械性質的變化……………………..32 5.3.2 DSC固化程度檢驗…………………………………….34 5.3.3 高溫環境下機械性質的變化…………………………..34 5.3.4 可靠度測試……………………………………………..35 5.3.4.1 高溫老化環境下機械性質的變化………………...36 5.3.4.2 高溫高濕老化後機械性質的變化………………...37 5.5 冷埋試片觀測………………………………………………...40 5.6 破壞斷面SEM觀測………………………………………….41 5.6.1 銅片薄膜粗糙面SEM觀測……………………………42 5.6.2 ITO玻璃面SEM觀測…………………………………43 5.7 破壞斷面圖片觀測…………………………………………...44 六、 結論………………………………………………………………47 七、 參考文獻…………………………………………………………49 表目錄 表 3.1 異向性導電膠膜與異向性導電膏各種材料性質之比較[5 ]...52 表 4.1 異向性導電膠膜靜態測試規格與方法[5 ]………..…………..53 表 4.2 異向性導電膠可靠度測試規格與方法[5 ]……..……………..54 表 4.3 現行液晶面板廠對異向性導電膠膜之可靠度測試規格…….55 表 5.1 黏晶膠楊氏係數在各種溫度與應變率下有效試片數據表….56 表 5.2 黏晶膠破壞強度在各種溫度與應變率下有效試片數據表…57 表 5.3 四種異向性導電膠膜的破壞強度在各種溫度下有效試片數據表………………………………………………………………………..58 表 5.4 四種異向性導電膠膜的撥離強度在各種接合條件下有效數據表…………………………………………………………………….59 表 5.5 四種異向性導電膠膜的撥離強度在各種溫度下有效試片數據表……………………………………………………………………...60 表 5.6 四種異向性導電膠膜的撥離強度在高溫老化下有效試片數據表……………………………………………………………………..61 表 5.7 四種異向性導電膠膜的撥離強度在高溫高濕老化有效數據表…………………………………………………………………...63 圖目錄 圖 2.1 異向性導電膠膜實際接合於背光面板之接著圖…………….65 圖 4.1 黏晶膠薄膜試片幾何外型及尺寸…………………………….66 圖 4.2 黏晶膠薄膜試片樣品圖……………………………………….66 圖 4.3 Loctite公司出品的QMI536HT產品圖………………………67 圖 4.4 異向性導電膠成分種類圖……………….……………………67 圖 4.5 異向性導電膠導電粉體結構形狀圖…….……………………68 圖 4.6 異向性導電膠接著後結構體側面圖[17 ]…………………...68 圖 4.7 純膠材薄膜試片樣品圖…………………………………….…69 圖 4.8 異向性導電膠膜的接合過程示意圖…………………………69 圖 4.9 異向性導電膠膜接著完成後組合試片圖……………………70 圖 4.10 Instron 8848微拉伸試驗機…………………………………..71 圖 4.11 工研院自行設計之異向性導電膠接合機………………….72 圖 4.12 研磨拋光機………………………………………………….72 圖 4.13 超音波洗淨器……………………………………………….73 圖 4.14 薄膜塊狀試片實驗流程圖………………………………….74 圖 4.15 黏著組合試片實驗流程圖………………………………….75 圖 4.16 接著組合試片撥離測試圖(一)…………………………….76 圖 4.17 接著組合試片撥離測試圖(二)…………………………….76 圖 4.18 撥離測試示意圖…………………………………………….77 圖 5.1 黏晶材料在25oC,四種應變率下的應力應變圖……………..78 圖 5.2 黏晶材料在75oC,四種應變率下的應力應變圖…………….78 圖 5.3 黏晶材料在100oC,四種應變率下的應力應變圖……………79 圖 5.4 黏晶材料在125oC,四種應變率下的應力應變圖…………...79 圖 5.5 黏晶膠的楊氏係數在四種應變率下隨溫度的變化情……….80 圖 5.6 黏晶膠的破壞應力在四種應變率下隨溫度的變化情形…….80圖 5.7 異向性導電膠膜薄膜試片在四種溫度下應力應變………….81 圖 5.8 純膠材薄膜試片在四種溫度下應力應變圖……………….…81 圖 5.9 含10% SiO2之異向性導電膠膜試片在四種溫度下應力應變.82 圖 5.10 含20% SiO2之異向性導電膠膜試片在四種溫度下應力應變圖………………………………………………………………………..82 圖 5.11 四種異向性導電膠膜破壞強度與溫度的關係圖…………...83 圖 5.12 四種異向性導電膠膜楊氏係數與溫度的關係…..………...83 圖 5.13 純膠材薄膜試片破壞強度與老化時間的關係圖..………...84 圖 5.14 3M公司出品之異向性導電膠膜撥離強度與接著壓力關係圖………………………………………………………………………..85 圖 5.15 四種材料撥離強度與接著時間的關係圖(接著溫度:240oC)…………………………………………………………………..85 圖 5.16 四種材料撥離強度與接著時間的關係圖(接著溫度:260oC)………..…………………………………………………...…….86 圖 5.17 尚未接著固化的純膠材的DSC掃描圖……………………87 圖 5.18 已固化之純膠材DSC掃描圖………………………………87 圖 5.19 純膠材在70oC高溫下,放置24小時的DSC掃描圖………88 圖 5.20 純膠材經過70oC高溫環境24小時後之DSC掃描圖………88 圖 5.21 四種膠材撥離強度隨不同溫度的變化情形………………..89 圖 5.22 異向性導電膠膜撥離測試曲線與測試溫度的關係………..89 圖 5.23純膠材撥離測試曲線與測試溫度的關係…………………..90 圖 5.24 含10% SiO2之ACF撥離測試曲線與測試溫度的關係……90 圖 5.25 含20% SiO2之ACF撥離測試曲線與測試溫度的關係圖…..91 圖 5.26 四種材料在70oC,撥離強度與老化時間的關係圖…………92 圖 5.27 四種材料在85oC/85%RH,撥離強度與老化時間的關係圖..92 圖 5.28 純膠材接著組合試片冷埋後的試片圖………..…………….93 圖 5.29 純膠材在85oC/85%RH老化0小時之試片橫截面圖……….93 圖 5.30 純膠材在85oC/85%RH老化24小時之試片橫截面圖……...94 圖 5.31 純膠材在85oC/85%RH老化48小時之試片橫截面圖……...94 圖 5.32 純膠材在85oC/85%RH老化72小時之試片橫截面………95 圖 5.33 純膠材在85oC/85%RH老化1000小時之試片橫截面圖…95 圖 5.34 純膠材高溫高濕老化0小時,SEM放大100倍斷面圖…….96 圖 5.35 純膠材高溫高濕老化24小時,SEM放大100倍斷面圖……96 圖 5.36 純膠材高溫高濕老化48小時,SEM放大100倍斷面圖…...97 圖5.37 ACF高溫高濕老化0小時,SEM放大5000倍斷面圖……..97 圖 5.38 ACF高溫高濕老化48小時,SEM放大5000倍斷面圖……98 圖 5.39 含20% SiO2之ACF高溫高濕老化0小時,SEM放大一萬倍 斷面圖…..…………………………………………………..98 圖 5.40 含20% SiO2之ACF高溫高濕老化48小時,SEM放大一萬倍斷面圖……………………………………………………….99 圖 5.41 ACF高溫高濕老化0小時,SEM放大100倍斷面圖……..99 圖 5.42 純膠材高溫高濕老化0小時,SEM放大100倍斷面圖…..100 圖 5.43 含10% SiO2之ACF老化0小時,SEM放大100倍斷面圖.100 圖 5.44 含20% SiO2之ACF老化0小時,SEM放大100倍斷面圖..101 圖 5.45 純膠材高溫高濕老化24小時,SEM放大100倍斷面圖…101 圖 5.46 ACF高溫高濕老化48小時,SEM放大100倍斷面圖….102 圖 5.47 ACF-10%高溫高濕老化48小時,SEM放大100倍斷面…102 圖 5.48 ACF-20%高溫高濕老化48小時,SEM放大100倍斷面…103 圖 5.49 ACF-20%高溫高濕老化0小時,SEM放大5000倍斷面.103 圖 5.50 ACF-20%高溫高濕老化0小時,SEM放大10000倍斷面圖.104 圖 5.51 ACF-20%高溫高濕老化48小時,SEM放大5000倍斷面..104 圖 5.52 ACF-20%高溫高濕老化48小時,SEM放大一萬倍斷面圖..105 圖 5.53 純膠材高溫高濕老化24小時後斷面圖………………….106 圖 5.54 純膠材高溫高濕老化48小時後斷面圖………………….106 圖 5.55 純膠材高溫高濕老化500小時後斷面圖…………………107 圖 5.56 純膠材高溫高濕老化1000小時後斷面圖……………….107 圖 5.57 純膠材70oC高溫老化24小時後斷面圖…………………108 圖 5.58 純膠材70oC高溫老化500小時後斷面圖………………….108 圖 5.59 純膠材在75oC下撥離測試後斷面圖…………………….109 圖 5.60 純膠材在100oC下撥離測試後斷面圖……………………109 圖 5.61 純膠材在125oC下撥離測試後斷面圖……………………110rf 第七章、參考文獻 1. 王閔生, “封裝材料在不同溫度下的靜態和潛變行為.”碩士論文—國立清華大學動力機械工程研究所, 2002. 2. 陳冠中, “溫度-時間效應對底膠填充材料機械性質影響之研究.”碩士論文—國立清華大學動力機械工程研究所, 2003. 3. 簡嘉南, “BT材料積層板及其經鑽孔設計後受不同應變率拉伸強度試驗之研究.” 碩士論文—國立清華大學動力機械工程研究所, 2001. 4. 許永昱, “底膠填充材料在不同環境及介面條件下之介面黏著強度與破壞模式分析.” 碩士論文—國立清華大學動力機械工程研究所, 2001. 5. Kazuyuki Motoki, Masaki Oyama, Takayuki Imai, Takahiro Ishii and Masayuki Kimata, “Connecting technology of anisotropic conductive materials” 6. Helge Kristiansen and Johan Liu, “Overview of Conductive Adhesive Interconnection Technologies for LCD’s.” IEEE transactions on components, packaging, and manufacturing technology—part A, vol. 21, no. 2, pp. 208-214, june 1998. 7. R. G. Mckenna and T. M. Moore, “Advanced Interconnect Technologies,” Characterization of Integrated Circuit Packaging Materials, Butterworth-Heinemann, Boston, pp. 187-212, 1993. 8. I. Watanabe, “ACF flip-chip technology on low-cost substrates,” in The second IEEE International Symposium on Polymeric Electronics Packaging, PEP 99, Tampere University of Technology pp. 153-8, 1999. 9. J. Liu, Conductive Adhesives for Electronic Packaging, Isle of Man Electrochemical Publications, 1999. 10. N. O. Chuks, H. M. Samjid, C. W. David and J. W. David, “Conduction mechanism in anisotropic conducting adhesive assembly,” IEEE Trans Comp, Packaging, Manufact Technol–Part A, 21(2), pp. 235-42, 1998. 11. S. M. Chang, J. H. Jou, A. Hsieh, T. H. Chen, C. Y. Chang, Y. H. Wang and C. M. Huang, “Characteristic study of anisotropic conductive film for flip chip on film packaging,” Microelectronics Reliability 41, pp. 2001-2009, 2001. 12. Y. C. Chan and D. Y. Luk, “Effects of bonding parameters on the reliability performance of anisotropic conductive adhesive interconnects for flip-chip-on-flex packages assembly. II. Different bonding pressure,” Microelectronics Reliability 42, pp. 1195-1204, 2002. 13. S. Gupta, R. M. Hydro and R. A. Pearson, “Fracture behaviour of isotropically conductive adhesives,” IEEE Trans Components Packaging Technol, 22(2), pp. 209-14, 1999. 14. S. Liong and C. P. Wong, “An alternative to epoxy resin for application in isotropically conductive adhesive,” Proceedings of International Symposium on Advanced Packaging Materials, pp. 13-8, 2001 15. R. Gomatam, E. Sancaktar, D. Boismier, D. Schue and L. Malik, “Behavior of electronically conductive filled adhesive joints under cyclic loading part 1: Experimental approach,” Proceedings of International Symposium on Advanced Packaging Materials, pp. 6-12. 2001. 16. C. W. Tan, Y. C. Chan and N. H. Yeung, “Behaviour of anisotropic conductive joints under mechanical loading,” Microelectronics Reliability, 43, pp. 481-486, 2003. 17. C. M. L. Wu, N. H. Yeung, M. L. Chau and J. K. L. Lai, “Residual Strength of OLB Assembly with ACF after Thermal and Mechanical Loading,” IEEE, pp. 295-298, 1998. 18. Cameron T. Murray, Peter B. Hogerton and Harry Egeberg, “Reliability study of sub 100 micro pitch, flux-to-ITO/glass interconnection, Bonded with an anisotropic conductive film, 19. M. T. Goosey, Plastics for Electronics, Elsevier Applied Science Publishers, London and New York, pp. 177-9, 1995. 20. C. M. Lawrence Wu and M. L. Chau, “Degradation of flip chip on glass interconnection with ACF under high humidity and thermal aging,” Soldering and Surface Mount Technology, 14/ 2, pp. 51–58, 2002. 21. J. Liu, “On the failure mechanism of anisotropically conductive adhesive joints on copper metallisation,” Int J Adhes Adhes, 16(4), pp. 285-7, 1996. 22. J. H. Zhang, Y. C. Chan, M. O. Alam and S. Fu, “Contact resistance and adhesion performance of ACF interconnections to aluminum metallization,” Microelectronics Reliability, 43, pp. 1303–1310, 2003. 23. C. W. Tan, Y. C. Chan and N. H. Yeung, “Effect of autoclave test on anisotropic conductive joints,” Microelectronics Reliability 43, pp. 279-285, 2003. 24. 林佑撰, “BGA錫球接點的機械特性與數值模型.” 碩士論文—國立清華大學動力機械工程研究所, 2001.id NH0925311032 sid 913778 cfn 0 / id NH0925311033 auc 鍾明忠 tic 共振腔結構受端面位移影響之模態分析與實驗 adc 葉孟考 教授 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 93 kwc 共振腔 kwc 自然頻率 kwc 模態分析 kwc 端面位移 abc 同步輻射光是二十世紀以來科技研究最重要的光源之一,研究人員藉由同步輻射光可從事物理、化學、生物、材料、化工、環保、能源、電子、微機械等基礎與應用科學研究。同步輻射光的原理是將電子束注入儲存環後,由環內一系列磁鐵導引偏轉並維持在軌道上,電子束能於每一圈的運行中在偏轉磁鐵切線方向放出同步輻射光。由於電子會因輻射而損失能量,因此環內裝置高頻共振腔來補充電子的能量。而當共振腔體承受預力及外界振動源時,會造成其結構的振動特性改變進而使內部電磁場共振頻率產生偏移,為確保光源品質,了解共振腔體自然頻率與模態並精確地調整電磁場的共振頻率是十分重要的。本文將以套裝軟體ANSYSÒ分析電磁場共振頻率分別為500MHz及1.5GHz之兩種低溫超導共振腔體自然頻率與模態;並分析腔體實際操作環境受預力的自然頻率與模態。在幾何參數方面,討論不同腔體厚度及兩端開口大小對於腔體自然頻率之影響。在實驗方面,將使用銅製1.5GHz腔體模型進行實驗,並與ANSYSÒ的分析結果比較。本文研究結果可供日後共振腔體振動控制之參考。 tc 摘要…………………………………………………………...………. Ⅰ 誌謝……………………………………………………………...……. Ⅱ 目錄……………………………………………………………...……. Ⅲ 圖表目錄………………………………………………………...……. Ⅴ 符號說明………………………………………………………...……. Ⅸ 第一章 簡介……………………………..…...………………………. 1 1.1 研究動機………………………...………………...………….. 1 1.2 文獻回顧………………………...………………………...….. 2 1.3 研究主題…………………………..……………….…...…….. 4 第二章 有限單元模擬分析……………..…………………...………. 6 2.1 模型建立與單元選取……………..………………………….. 6 2.1.1 幾何模型建立………………...…...………………...….. 6 2.1.2 單元選取…………..………………...…...………...…… 7 2.1.3 有限單元網格之建立…..…..……………………...…… 7 2.1.4 邊界條件設定……………………………………..……. 8 2.2 有限單元振動分析…………..……………………………….. 8 2.2.1 自由振動分析……………………………………..……. 12 2.2.2 強制振動分析….……………………..……………..….. 13 2.2.3 受端面位移影響之模態分析……………………...…… 14 第三章 實驗程序…………………………………………………..… 18 3.1 實驗設備……..…………………………………………...…... 18 3.1.1 上、下模具…..……………………………………...…… 18 3.1.2 拉壓試驗機及訊號收集系統.……………………..…… 18 3.1.3 衝擊鎚、加速規、放大器及動態訊號分析儀………...… 18 3.2 材料常數量測…………………………………………...……. 19 3.3 試件尺寸………………………………………………...……. 20 3.4 模態實驗……………………………………………...………. 20 3.4.1 自然模態實驗…………………………………...……… 20 3.4.2 受軸向位移影響之模態實驗…………………...……… 21 第四章 結果與討論…………………………………..……………… 22 4.1網格合理性分析……………..……………………...………… 22 4.2 500MHz腔體之模態分析…………………………..………… 23 4.2.1 不同端面位移…………………………………………... 24 4.2.2 不同楊氏係數…………………………………………... 24 4.2.3 不同密度………………………………………………... 25 4.2.4 不同開口半徑…………………………………………... 25 4.2.5不同厚度…………………………………………….…... 26 4.3 1.5GHz腔體之模態分析………..………………..……...……. 26 4.3.1 不同端面位移………..….….…………………………... 26 4.3.2 不同楊氏係數………...….……………………………... 27 4.3.3 不同密度………………………………………………... 27 4.3.4 不同開口半徑…………………………………………... 28 4.3.5不同厚度…………..………………………………...…... 29 第五章 結論…………………………………………………...…… 30 參考文獻……………………………………………………………… 31 圖表…………………………………………………………………… 34 圖表目錄 頁次 表4.1 1.5GHz半腔體承受不同端面位移之自然頻率(t=2 mm)…… 34 表4.2 1.5GHz半腔體承受不同端面位移之自然頻率(t=2.5 mm)…. 34 表4.3 1.5GHz半腔體承受不同端面位移之自然頻率(t=3 mm)…… 35 表4.4 1.5GHz全腔體承受不同端面位移之自然頻率(t=2.5 mm)…. 35 表4.5 1.5GHz全腔體承受不同端面位移之自然頻率(t=3 mm)…… 36 表4.6 1.5GHz半腔體不同厚度之自然頻率………………...……… 36 圖1.1 同步輻射設施 (a) 儲存環 (b) 共振腔外型照片.………...... 37 圖2.1 簡化後之共振腔網格…..………………………………..…… 38 圖2.2 Solid 95 單元……………………………………..………...… 38 圖2.3 腔體邊界條件……………………………………………....… 39 圖3.1 不同厚度之模具 (a) 上模具 (b) 下模具….………..……… 39 圖3.2 拉壓試驗機…………………….………………………...…… 40 圖3.3 訊號收集系統………………………………………....……… 40 圖3.4 模態分析工具………………………………………….……... 41 圖3.5 動態訊號分析儀……………………………………….……... 41 圖3.6 磷銅試片(a) 試片尺寸 (b) 黏貼端板(End Tab)之試片……. 42 圖3.7 磷銅之應力-應變關係…………………………….…………. 43 圖3.8 磷銅試片(a) 軸向應力與軸向及側向應變關係 (b) 磷銅之波松比………………………………….. 44 圖3.9 半腔體試件…………………………………………………… 45 圖3.10 全腔體試件…………………………………………………… 45 圖3.11 自然頻率量測流程….………………………………………... 46 圖3.12 1.5GHz半腔體不同量測位置壓縮1 mm之頻譜圖 (t=2 mm)………………………………………………………. 47 圖3.13 1.5GHz半腔體不同量測位置壓縮0.5 mm之頻譜圖 (t=2 mm)………………………………………………………. 48 圖3.14 1.5GHz半腔體不同量測位置兩端固定之頻譜圖 (t=2 mm)………………………………………………………. 49 圖3.15 1.5GHz半腔體不同量測位置拉伸0.5 mm之頻譜圖 (t=2 mm)………………………………………………………. 50 圖3.16 1.5GHz半腔體不同量測位置壓縮1 mm之頻譜圖 (t=2.5 mm)………….…………………………………………. 51 圖3.17 1.5GHz半腔體不同量測位置壓縮0.5 mm之頻譜圖 (t=2.5 mm)………….…………………………………………. 52 圖3.18 1.5GHz半腔體不同量測位置兩端固定之頻譜圖 (t=2.5 mm)………….…………………………………………. 53 圖3.19 1.5GHz半腔體不同量測位置拉伸0.5 mm之頻譜圖 (t=2.5 mm)………….…………………………………………. 54 圖3.20 1.5GHz半腔體不同量測位置壓縮1 mm之頻譜圖 (t=3 mm)………………………………………………………. 55 圖3.21 1.5GHz半腔體不同量測位置壓縮0.5 mm之頻譜圖 (t=3 mm)………………………………………………………. 56 圖3.22 1.5GHz半腔體不同量測位置兩端固定之頻譜圖 (t=3 mm)………………………………………………………. 57 圖3.23 1.5GHz半腔體不同量測位置拉伸0.5 mm之頻譜圖 (t=3 mm)………………………………………………………. 58 圖3.24 1.5GHz全腔體不同量測位置壓縮1 mm之頻譜圖 (t=2.5 mm)………….…………………………………………. 59 圖3.25 1.5GHz全腔體不同量測位置壓縮0.5 mm之頻譜圖 (t=2.5 mm)………….…………………………………………. 60 圖3.26 1.5GHz全腔體不同量測位置兩端固定之頻譜圖 (t=2.5 mm)………….…………………………………………. 61 圖3.27 1.5GHz全腔體不同量測位置拉伸0.5 mm之頻譜圖 (t=2.5 mm)………….…………………………………………. 62 圖3.28 1.5GHz全腔體不同量測位置壓縮1 mm之頻譜圖 (t=3 mm)………………………………………………………. 63 圖3.29 1.5GHz全腔體不同量測位置壓縮0.5 mm之頻譜圖 (t=3 mm)………………………………………………………. 64 圖3.30 1.5GHz全腔體不同量測位置兩端固定之頻譜圖 (t=3 mm)………………………………………………………. 65 圖3.31 1.5GHz全腔體不同量測位置拉伸0.5 mm之頻譜圖 (t=3 mm)………………………………………………………. 66 圖4.1 (a) 500MHz共振腔體外形(b) 尺寸圖…….….…..……….… 67 圖4.2 (a) 1.5GHz共振腔體外形(b) 尺寸圖..……...…………..…… 68 圖4.3 500MHz共振腔體頻率與單元數目關係圖.……….…..…….. 69 圖4.4 1.5GHz共振腔體頻率與單元數目關係圖.……………..…… 69 圖4.5 500MHz共振腔體前十個自然模態圖………………...……... 70 圖4.6 1.5GHz共振腔體前十個自然模態圖………………..………. 72 圖4.7 500MHz共振腔體自然頻率與端面位移關係圖.……....……. 74 圖4.8 500MHz共振腔體自然頻率與楊氏係數關係圖.……...…….. 74 圖4.9 500MHz共振腔體自然頻率與密度關係圖...………….…….. 75 圖4.10 共振腔體四分之一示意圖…………………………………… 75 圖4.11 500MHz共振腔體自然頻率與開口半徑關係圖.……....……. 75 圖4.12 500MHz共振腔體自然頻率與厚度關係圖...………….…….. 76 圖4.13 1.5GHz半腔體承受軸向位移之頻譜圖(t=2 mm)…………… 77 圖4.14 1.5GHz半腔體承受軸向位移之頻譜圖(t=2.5 mm)…………. 79 圖4.15 1.5GHz半腔體承受軸向位移之頻譜圖(t=3 mm)…………… 81 圖4.16 1.5GHz全腔體承受軸向位移之頻譜圖(t=2.5 mm)…………. 83 圖4.17 1.5GHz全腔體承受軸向位移之頻譜圖(t=3 mm)…………… 85 圖4.18 1.5GHz半腔體承受不同端面位移之分析與量測結果……... 87 圖4.19 1.5GHz全腔體承受不同端面位移之分析與量測結果……... 89 圖4.20 腔體焊接位置示意圖………………………………………… 90 圖4.21 腔體焊接位置承受壓縮示意圖……………………………… 90 圖4.22 腔體焊接位置承受拉伸示意圖……………………………… 90 圖4.23 1.5GHz共振腔體自然頻率與端面位移關係圖..…...…...…... 91 圖4.24 1.5GHz共振腔體自然頻率與楊氏係數關係圖…...……..….. 91 圖4.25 1.5GHz共振腔體自然頻率與密度關係圖………………..…. 92 圖4.26 1.5GHz共振腔體自然頻率與開口半徑關係圖……………... 92 圖4.27 1.5GHz半腔體不同厚度之分析與量測結果………………... 93 圖4.28 1.5GHz共振腔體自然頻率與厚度關係圖…………………... 93rf 1. http://www.srrc.gov.tw/chi/research/accelerator.html. 2. H. Vogel, M. Peiniger, M. Pekeler, P. Vom Stein, L. H. Chang, C. T. Chen, M. C. Lin, G. H. Luo, R. Sah, Ch. Wang, S. Belomestnykh, J. Knobloch, H. Padamsee, J. Sears, “Superconducting Accelerator Modules for the Taiwan Light Source,” Proceedings of EPAC, Vienna, Austria, pp. 711-713, 2000. 3. R. A. Rimmer, G. Koehler, D. Li, N. Hartman, N. Folwell, J. Hodgson, K. Ko and B. McCandless, “PEP-Ⅱ RF Cavity Revisited,” Note of CBP Tech 197 LCC-0032, December, 1999. 4. R. Valdiviez, D. Schrage, F. Martinez and W. Clark, “The Use of Dispersion Strengthened Copper in Accelerator Designs,” XX International Linac Conference, Monterey, California, 2000. 5. S. Belomestnykh, P. Barnes, E. Chojnacki, R. Ehrlich, W. Hartung, T. Hays, R. Kaplan, J. Kirchgessner, E. Nordberg, H. Padamsee, S. Peck, P. Quigley, J. Reilly, D. Rubin and J. Sears, “Development of Superconducting RF for CESR,” Proceedings of the Particle Accelerator Conference, Vancouver, Canada, 1997. 6. M. G. Rao and P. Kneisel, “Mechancal Properties of High RRR Niobium at Cryogenic Temperatures,” Advances in Cryogenic Engineering, Vol. 40, pp. 1383-1390, 1994. 7. K. Saito, T. Fujino, H. Inoue, N. Hitomi, E. Kako, T. Shishido, S. Noguchi and Y. Yamazaki, “Feasiblity Study of Nb/Cu Clad Superconducting RF Cavities,” Superconducting, Vol. 9, No. 2, June, 1999. 8. S. Ellis, “SNS SRF Time Dependent Cavity RF Resonance Shift due to Lorentz Force Induced Mechanical Exictation,” Proceedings of the Particle Accelerator Conference, Chicago, pp. 1107-1109, 2001. 9. S. Bousson, M. Fouaidy, H. Gassot, T. Junquera, J. Lesrel, J. L. Borne, J. Marini, C. Antoine, J. P. Charrier and H. Safa, “An Alternative Scheme for Stiffening SRF Cavities by Plasma Spraying,” Proceedings of the Particle Accelerator conference, New York, Vol. 2, pp. 919-921, 1999. 10. E. Chiaveri, C. Benvenuti, R. Cosso, D. Lacarrere, K. M. Schirm, M. Taufer and W. Weingarten, “Analysis and Results of the Industrial Production of the Superconducting Nb/Cu Cavities for the LEP 2 Project,” Proceedings of the Particle Accelerator Conference, Dallas, Vol. 3, pp. 1509-1511, 1995. 11. H. Padamsee, “The Science and Technology of Superconducting Cavity for Accelerator,” Superconducting Science Technology, Vol. 14, pp. 28-51, 2001. 12. J. Mammosser, P. Kneisel and J. F. Benesch, “Analysis of Mechanical Fabrication Experience with CEBAF’s Production SRF Cavities,” Report of CEBAF 93-019, 1993. 13. S. Belomestnykh, “Calculations of the Frequency Shift due to B-Cell Cavity Shape Deformations,” Report of SRF-940330-02, Cornell University, Ithaca, NY, 1994. 14. J. Kirchgessner and S. Belomestnykh, “On the Pressure Compensation for the B-cell Cavity in the MARK II Cryostat,” Report of SRF 970624-06, Laboratory of Nuclear Studies, Cornell University, pp.1-4, 1997. 15. J. Kirchgessner, “Thoughts on the Very High Value of dF/dP or Pressure Sensitivity of the B Cell Cavity in the MTM Cryostat,” Report of SRF 940321-01, Laboratory of Nuclear Studies, Cornell University, 1994. 16. M. C. Lin, Ch. Wang, L. H. Chang, G. H. Luo, P. J. Chou and M. J. Huang, “ A Coupled -Field Analysis on RF Cavity,” Proceedings of the Particle Accelerator Conference, Chicago, pp.1127-1129, 2001. 17. M. C. Lin, Ch. Wang, L. H. Chang, G. H. Luo, F. S. Kao, M. K. Yeh and M. J. Huang, “A Coupled-Field Analysis on a 500 MHz Superconducting Radio Frequency Niobium Cacity,” Proceedings of EPAC, Paris, 2002. 18. 高褔聲, “低溫超導共振腔之結構變形對內建電磁場特性之影響,” 國立清華大學碩士論文, 2002. 19. 陳伯毅, “低溫超導共振腔之挫曲及變形分析與實驗,” 國立清華大學碩士論文, 2003. 20. D. Schrage, “Structural Analysis of Superconducting Accelerator Cavities,” XX International Linac Conference, Monterey, California. 21. G. Devanz, M. Luong and A. Mosnier, “Numerical Simulations of Dynamic Lorentz Detuning of SC Cavities,” Proceedings of EPAC, Paris, pp. 2220-2222, 2002. 22. R. Mitchell, K. Matsumoto, G. Civovati, K. Davis, K. Macha and R. Sundelin, “Lorentz Force Detuning Analysis of the Spallation Neutron Source(SNS) Accelerating Cavities,” Proceedings of the 10th Workshop on RF Superconductivity, Tsukuba, Japan, pp. 6-21, 2001. 23. M. Liepe, W. D. Moeller and S. N. Simrock, “Dynamic Lorentz Force Compensation with a Fast Piezoelectric Tuner,” Proceedings of the Particle Accelerator Conference, Chicago, Vol. 2, pp. 1074-1076, 2001. 24. G. W. Ellis and B. G. Smith, “Modal Survey of Medium Energy Superconducting Radio Frequency Cavity for Accelerator Production of Tritium Project,” http:/ laacg1.lanl.gov/rfsc99/TUP/tup027.pdf / 25. J. Welch, “Ground Vibration and Siting of Cryogenics Facility for Cornell ERL Prototype,” ERL Report, 2002. 26. K. Tsumaki and N. Kumagai, “Vibration Measurement of the SPring-8 Storage Ring,” Proceedings of the Particle Accelerator Conference, Chicago, pp. 1482-1484, 2001. 27. 何西洲、林家瑞與王端正, “儲存環振動測量概況,” 同步輻射研究中心簡訊, 新竹, No. 52, pp. 18-21, 2002. 28. A. Marziali and H. A. Schwettman, “Microphonic Analysis of Cryo-module Design,” Proceedings of the Particle Accelerator Conference, Vol. 2, pp. 950 –952, 1993. 29. 蕭德慶, “雙跨距圓柱薄殼之振動分析,” 國立成功大學碩士論文, 2002. 30. M. Latour, M. Rahmoune and C. Tarico, “Vibration Control of Elastic Structures by Piezopolymer Transducers-Models and Experimental Results,” 9th International Symposium on Electrets, pp. 1055-1060, 1996. 31. J. Qiu, J. Tani and T. Takagi, “Intelligent Cylindrical Shells without Vibration,” Micro Machine and Human Science, pp. 123-129, 1994. 32. C. T. Loy and K. Y. Lan, “Vibration of Cylindrical Shell With Ring Support,” International Journal of Mechanical Sciences, Vol. 39, No. 4, pp. 455-471, 1997. 33. Y. Xiang, Y. F. Ma, S. Kitiporchai, C. W. Lim and C. W. H. Lau, “Exact Solutions for Vibration of Cylondrical Shells with Intermediate Ring Supports,” International Journal of Mechanical Siences, Vol. 40, pp. 1907-1924, 2002. 34. ANSYS Element Reference. 000855. Eighth Edition. SAS IP, Inc. 1997. 35. ANSYS Theory Reference. 000855. Eighth Edition. SAS IP, Inc. 1997. 36. R. D. Cook, D. S. Malkus and S. C. Sue, “Concepts and Applictions of Finite Element Analysis,” Wiley, New York, 1989. 37. ANSYS Dynamics V5.7 振動分析課程訓練講義. 虎門科技股份有限公司, 新竹, 2002. 38. ASTM E8M-89, “Standard Test Methods for Tension Testing of Metallic Materials,” Annual Book of ASTM Standards, Section 3, Vol. 03.01, pp. 147-161, 1989.id NH0925311033 sid 913779 cfn 0 / id NH0925311034 auc 陳振宇 tic 超音波產生熱應力之探討 adc 王偉中 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 71 kwc 超音波加工 kwc 喇叭 kwc 熱應力 kwc 數位光彈法 abc 超音波加工時,喇叭會因為振動而產生高熱,而這樣的高熱會使得喇叭內部產生熱應力進而會影響加工時的精度與效能,甚至會使得喇叭毀壞,在以往,這樣的熱應力在設計喇叭時並未考慮,而利用數值方法來模擬又相當困難。本研究首次利用數位光彈法來分析因超音波激振工業上最常見的喇叭外形所產生的熱應力分布,以了解應力波在喇叭內的波傳行為和熱應力對不同外形喇叭的影響。 tc 目錄 一、簡介…………………………………………………………….. 1 二、文獻回顧……………………………………………………….. 3 三、理論…………………………………………………………….. 5 3.1傳統穿透式光彈法………………………………………… 5 3.2數位光彈法………………………………………………… 7 3.3熱彈性波動理論………….………………………………... 8 3.3.1平面波在無限熱彈介質中的運動…………………... 9 四、實驗裝置與試片……………………………………………….. 12 4.1實驗裝置…………………………………………………… 12 4.1.1穿透式光彈儀………………………………………... 12 4.1.2超音波產生器………………………………………... 12 4.1.3影像擷取裝置………………………………………... 12 4.1.4紅外線溫度感測器………………………………….. 13 4.2實驗試片…………………………………………………… 13 五、實驗程序………………………………………………………… 15 5.1試片準備…………………………………………………… 15 5.2量測超音波的振幅量……………………………………… 15 5.3試片與施載具的架設……………………………………… 16 5.4計算實驗影像與真實尺寸之比例因子…………………… 16 5.5開始施載與擷取實驗影像………………………………… 16 5.6實驗影像之條紋級次的判定……………………………… 17 5.7光彈資料點的數據擷取…………………………………… 18 六、結果與討論…………………………………………………….. 19 6.1矩形試片…………………………………………………… 20 6.1.1波動現象………….………………………………… 20 6.1.2熱應力波的影響……………………………………. 23 6.1.3各瞬時的暫態熱應力………………………………. 24 6.2梯形試片…………………………………………………… 26 6.3階梯形試片………………………………………………… 27 6.4時間效應的影響…………………………………………… 28 七、結論…………………………………………………………….. 30 八、未來展望……………………………………………………….. 31 九、參考文獻……………………………………………………….. 32 表目錄 表4.1 光彈材料(PSM-1)之材料特性……..………………… 36 表6.1 各形狀試片J處隨超音波激振時間所產生的光彈條紋級次………………………………………………………. 36 圖目錄 圖4.1 數位光彈儀和超音波產生器……………………… 37 圖4.2 光彈實驗之光路擺置圖………………………………….. 37 圖4.3 超音波產生器…………………………………………….. 38 圖4.4 特製喇叭實景圖………………………………………….. 39 圖4.5 特製喇叭的尺寸圖……………………………………….. 39 圖4.6 矩形試片尺寸圖………………………………………….. 40 圖4.7 梯形試片尺寸圖………………………………………….. 40 圖4.8 階梯形試片尺寸圖……………………………………….. 41 圖5.1 測微儀量測振幅量之示意圖…………………………….. 42 圖5.2 試片黏貼於訂製喇叭前端之示意圖…………………….. 42 圖5.3 實驗流程圖……………………………………………….. 43 圖6.1 超音波射入試片示意圖………………………………….. 44 (a)矩形試片 (b)梯形試片 (a)階梯形試片 圖6.2 入射縱波在自由邊界的反射行為示意圖……………….. 45 圖6.3 不考慮熱應力時受相同超音波激振之矩形試片的應力強度圖…………………………………………………….. 46 (a) 尺寸95.1mm×30mm (b) 尺寸95.1mm×95.1mm 圖6.4 超音波射入矩形試片1秒後之暫態暗場條紋圖……….. 47 圖6.5 超音波射入矩形試片2秒後之暫態暗場條紋圖……….. 47 圖6.6 超音波射入矩形試片3秒後之暫態暗場條紋圖……….. 47 圖6.7 超音波射入矩形試片4秒後之暫態暗場條紋圖……….. 48 圖6.8 超音波射入矩形試片5秒後之暫態暗場條紋圖………... 48 圖6.9 超音波射入矩形試片6秒後之暫態暗場條紋圖……….. 48 圖6.10 超音波激振矩形試片5秒後,釋放掉超音波前後的條紋圖………………………………………………………….. 49 (a) 超音波激振時的動態暗場條紋圖 (b) 釋放掉超音波後瞬間的熱應力暗場條紋圖 (c) 為圖(b)的細線化條紋圖 圖6.11 超音波激振矩形試片10秒後,釋放掉超音波前後的條紋圖……………………………………………………….. 50 (a) 超音波激振時的動態暗場條紋圖 (b) 釋放掉超音波後瞬間的熱應力暗場條紋圖 (c) 為圖(b)的細線化條紋圖 圖6.12 超音波激振矩形試片15秒後,釋放掉超音波前後的條紋圖……………………………………………………….. 51 (a) 超音波激振時的動態暗場條紋圖 (b) 釋放掉超音波後瞬間的熱應力暗場條紋圖 (c) 為圖(b)的細線化條紋圖 圖6.13 超音波激振矩形試片20秒後,釋放掉超音波前後的條紋圖……………………………………………………….. 52 (a) 超音波激振時的動態暗場條紋圖 (b) 釋放掉超音波後瞬間的熱應力暗場條紋圖 (c) 為圖(b)的細線化條紋圖 圖6.14 超音波激振矩形試片25秒後,釋放掉超音波前後的條紋圖……………………………………………………….. 53 (a) 超音波激振時的動態暗場條紋圖 (b) 釋放掉超音波後瞬間的熱應力暗場條紋圖 (c) 為圖(b)的細線化條紋圖 圖6.15 超音波激振矩形試片30秒後,釋放掉超音波前後的條紋圖……………………………………………………….. 54 (a) 超音波激振時的動態暗場條紋圖 (b) 釋放掉超音波後瞬間的熱應力暗場條紋圖 (c) 為圖(b)的細線化條紋圖 圖6.16 超音波射入光彈試片5分鐘之音場…...………………… 55 圖6.17 超音波射入梯形試片1秒後之暫態暗場條紋圖……….. 56 圖6.18 超音波射入梯形試片2秒後之暫態暗場條紋圖……….. 56 圖6.19 超音波射入梯形試片3秒後之暫態暗場條紋圖……….. 56 圖6.20 超音波射入梯形試片4秒後之暫態暗場條紋圖……….. 57 圖6.21 超音波射入梯形試片5秒後之暫態暗場條紋圖……….. 57 圖6.22 超音波射入梯形試片6秒後之暫態暗場條紋圖……….. 57 圖6.23 超音波激振矩梯試片5秒後,釋放掉超音波前後的條紋圖………………………………………………………….. 58 (a) 超音波激振時的動態暗場條紋圖 (b) 釋放掉超音波後瞬間的熱應力暗場條紋圖 (c) 為圖(b)的細線化條紋圖 圖6.24 超音波激振梯形試片10秒後,釋放掉超音波前後的條紋圖……………………………………………………….. 59 (a) 超音波激振時的動態暗場條紋圖 (b) 釋放掉超音波後瞬間的熱應力暗場條紋圖 (c) 為圖(b)的細線化條紋圖 圖6.25 超音波激振梯形試片15秒後,釋放掉超音波前後的條紋圖……………………………………………………….. 60 (a) 超音波激振時的動態暗場條紋圖 (b) 釋放掉超音波後瞬間的熱應力暗場條紋圖 (c) 為圖(b)的細線化條紋圖 圖6.26 超音波激振梯形試片20秒後,釋放掉超音波前後的條紋圖……………………………………………………….. 61 (a) 超音波激振時的動態暗場條紋圖 (b) 釋放掉超音波後瞬間的熱應力暗場條紋圖 (c) 為圖(b)的細線化條紋圖 圖6.27 超音波激振梯形試片25秒後,釋放掉超音波前後的條紋圖……………………………………………………….. 62 (a) 超音波激振時的動態暗場條紋圖 (b) 釋放掉超音波後瞬間的熱應力暗場條紋圖 (c) 為圖(b)的細線化條紋圖 圖6.28 前端無工件的錐形喇叭內部之應力分佈…...…………... 63 圖6.29 超音波射入階梯形試片1秒後之暫態暗場條紋圖…….. 64 圖6.30 超音波射入階梯形試片2秒後之暫態暗場條紋圖…….. 64 圖6.31 超音波射入階梯形試片3秒後之暫態暗場條紋圖…….. 64 圖6.32 超音波射入階梯形試片4秒後之暫態暗場條紋圖…….. 65 圖6.33 超音波射入階梯形試片5秒後之暫態暗場條紋圖…….. 65 圖6.34 超音波射入階梯形試片6秒後之暫態暗場條紋圖…….. 65 圖6.35 超音波激振階梯形試片5秒後,釋放掉超音波前後的條紋圖……………………………………………………….. 66 (a) 超音波激振時的動態暗場條紋圖 (b) 釋放掉超音波後瞬間的熱應力暗場條紋圖 圖6.36 超音波激振階梯形試片10秒後,釋放掉超音波前後的條紋圖…………………………………………………….. 67 (a) 超音波激振時的動態暗場條紋圖 (b) 釋放掉超音波後瞬間的熱應力暗場條紋圖 圖6.37 超音波激振階梯形試片15秒後,釋放掉超音波前後的條紋圖…………………………………………………….. 68 (a) 超音波激振時的動態暗場條紋圖 (b) 釋放掉超音波後瞬間的熱應力暗場條紋圖 圖6.38 超音波激振階梯形試片20秒後,釋放掉超音波前後的條紋圖…………………………………………………….. 69 (a) 超音波激振時的動態暗場條紋圖 (b) 釋放掉超音波後瞬間的熱應力暗場條紋圖 圖6.39 超音波激振階梯形試片25秒後,釋放掉超音波前後的條紋圖…………………………………………………….. 70 (a) 超音波激振時的動態暗場條紋圖 (b) 釋放掉超音波後瞬間的熱應力暗場條紋圖 圖6.40 各形狀試片Z處隨激振時間所產生的光彈條紋級次折線圖………………………………………………………. 71rf [1 ] T. B. Thoe, D. K. Aspinwall, and M. L. H. Wise, “Review on Ultrasonic Machining ”, International Journal of Machine Tools and Manufacture, Vol. 38, No. 4, pp. 239~255, 1998. [2 ] D. L. Goetsch, ”Modern Manufacturing Processes”, Delmar Publishers, Albany, NY, 1991. [3 ] M. Lucas, G. Graham and A. C. Smith, “Enhanced Vibration Control of an Ultrasonic Cutting Process”, Ultrasonics, Vol. 34, pp. 205~211, 1996. [4 ] X. Q. Sun, T. Masuzawa and M. Fujino, “Micro Ultrasonic Machining and Its Applications in MEMS”, Sensors and Actuators A, Vol. 57, pp. 159~164, 1996. [5 ] S. G. Amin, M. H. M. Ahmed and H. A. Youssef, “Computer-Aided Design of Acoustic Horns for Ultrasonic Machining Using Finite-Element Analysis”, Journal of Materials Processing Technology, Vol. 55, pp. 254~260, 1995. [6 ] Y. Watanabe and E. Mori, “A Study on a New Flexural-Mode Transducer-Solid Horn System and Its Application to Ultrasonic Plastics Welding”, Ultrasonics, Vol. 34, pp. 235~238, 1996. [7 ] J. Miklowit, Pasadena and Calif, “Flexural Wave Solution of Coupled Equations Representing the More Exact Theory of Bending”, Journal of Applied Mechanics, Vol. 20, pp. 511~514, 1953. [8 ] J. N. Petzing and J. R. Tyrer, “Analysis of Power Ultrasonic Components Using Shearing Interferometry”, Optics and Lasers in Engineering, Vol. 26, pp. 235~248, 1997. [9 ] G. Graham, J. N. Petzing and M. Lucas, “Modal Analysis of Ultrasonic Block Horns by ESPI”, Ultrasonics, Vol. 37, pp. 149~157, 1999. [10 ] G. Graham, J. N. Petzing and M. Lucas, “Extracting Modal Parameters of Ultrasonic Bar Horns from ESPI FRF Data”, Ultrasonics, Vol. 37, pp. 231~238, 1999. [11 ] G. Zhou, “The Performance and Design of Ultrasonic Vibration System for Flexural Mode”, Ultrasonics, Vol. 37, pp. 979~984, 2000. [12 ] E. Ando and Y. Kagawa, ” Finite Element Simulation of Transient Heat Response in Ultrasonic Transducers”, IEEE Transaction on Ultrasonics, Ferroelectrcs, and Frequency Control, Vol. 39, pp. 432~440, 1992. [13 ] K. Kanayama, “Thermal Analysis of A Piezoelectric Transformer”, IEEE Ultrasonics Symposium, Vol. 1, pp. 5~8, Sendai, Japan, 1998. [14 ] J. Hu, “Temperature Field of the Piezoelectric Transformer Operating in Longitudinal Vibration Mode”, IEEE Ultrasonics Symposium, Vol. 1, pp.1003~1006, Munich, Germany, 2002. [15 ] 吳明德, “超聲波場之光彈觀測與辨析”, 國立成功大學物理研究所碩士論文, 1989. [16 ] J. W. Dally and W. F. Riley, “Experimental Stress Analysis”, McGraw-Hill, Inc., New York, U. S. A., 1991. [17 ] A. Voloshin and C. P. Burger, “Half-Fringe Photoelasticity: A New Approach to Whole-Field Stress Analysis”, Experimental Mechanics, Vol. 23, pp. 304~313, 1983. [18 ] W. C. Wang, T. L. Chen and S. H. Lin, “Digital Photoelastic Investigation of Transient Thermal Stresses of Two Interacting Defects”, Journal of Strain Analysis for Engineering Design, Vol. 25, pp. 215~228, 1990. [19 ] J. L. Nowinski, “Theory of Thermoelasticity with Applications”, Alphen aan den Rijn:Sijthoff & Noordhoff International Publishers, Netheland, 1978. [20 ] W. Nowacki, “Dynamic Problems of Thermoelasticity”, PWN-Polish Scientific Publishers, Warszawa, Poland, 1975. [21 ] J. D. Achenbach, “Wave Propagation in Elastic Solids”, North-Holland Pub. Co., Amsterdam, Netheland, 1973. [22 ] W. C. Wang and Y. H. Tsai, “Ultrasonic Stress Analysis of a Strip by Photoelasticity and FEM”, Proceedings of the 12th International Conference on Experimental Mechanics (In Print), Bari, Italy, 2004. [23 ] 王偉中和蔡英煌, “矩形平板之超音波之應力分析”, 第二十屆全國機械工程學術研討會論文集第C冊上集, pp. 369~376, 台北, 台灣, 12月, 2003. [24 ] 蔡英煌, 私下討論, 2002年12月. [25 ] 賴耿陽, “超音波工學理論實務”, 復漢出版社, 第一版, 台灣省台南市, 2001. [26 ] I. Miskioglu, J. Gryzagorides and C. P. Burger, “Material Properties in Thermal-stress Analysis”, Experimental Mechanics, Vol. 21. pp. 295~301, 1981.id NH0925311034 sid 913780 cfn 0 / id NH0925311035 auc 劉家豪 tic 多壁奈米碳管/酚醛樹脂複合材料之機械性質研究 adc 葉孟考 教授 adc 戴念華 教授 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 87 kwc 多壁碳管 kwc 酚醛樹脂 kwc 複合材料 abc 奈米碳管不僅擁有優秀物理性質,也具備優秀機械性質。利用奈米碳管優秀機械性質,如高比強度、高韌性,與高分子材料混合,可提昇高分子材料之各項機械性質。本文以熱固性高分子材料酚醛樹脂為基材,加入以化學氣相沉積法生成之兩種不同結構(粉碎、未粉碎)多壁奈米碳管,探討其不同碳管重量百分比對複合材料之抗拉強度、破壞應變、楊氏模數及波松比等機械性質之影響,結果顯示未粉碎碳管製成之複合材料試片,其機械性質較粉碎碳管製成之複合材料試片為佳。文中以修正型Halpin-Tsai方程式表示楊氏模數與碳管體積百分率之關係,具有不錯的嵌合效果。另外,也對多壁碳管進行化學處理使其具備胺官能基群,以為加強多壁碳管與酚醛樹脂間的介面接合,與粉碎碳管製成之複合材料試片比較後,僅楊氏模數上有提昇的效果。為了探究高分子材料特有的黏彈性質,亦以動態機械分析儀進行儲存模數、損失模數及 的測試,結果顯示多壁碳管的加入有助於增加材料內部的交連程度。最後以場發射掃描式電子顯微鏡(FESEM)觀察複合材料拉伸測試後之破裂表面的微結構,以獲得碳管與酚醛樹脂基材間之抽出、躺平、壓印與交叉等補強或破壞機制。 tc 目 錄 頁次 摘要………………………………………………………………….. i 致謝…………………………………………………………………. ii 目錄…………………………………………………………………. iii 圖表目錄……………………………………………………………. v 第一章 緒論………………..……………………………………….. 1 1.1 研究動機………………………...………………………….. 2 1.2 參考文獻………………………...………………………….. 3 1.3 研究主題………………………...………………………….. 8 第二章 實驗步驟……………..…………………………………….. 9 2.1 實驗儀器…….……………………………………………… 9 2.2 化學氣相沉積法生成多壁碳管……………………………. 12 2.3碳管表面胺(NH2-)官能基的生成…………………………… 14 2.4 多壁碳管/酚醛樹脂複合材料……………………...………. 16 2.5 抗拉測試……………………………………………………. 18 2.6 動態機械分析………………………………………………. 19 2.7 場發射掃描式電子顯微鏡之觀察……….………………… 20 第三章 數據分析方法…………………………………………..….. 22 3.1 ASTM測試之規範..…………………………..……………... 22 3.2 數據分析……...……………………………………………..態………………………………………………. 22 3.3 最小平方法….…………………………………...…………. 23 3.4 Halpin-Tsai方程式…………………………….……………. 25 3.5 Keley-Tyson模型……………………………………………. 28 第四章 結果與討論…………………………………………… 30 4.1 化學氣相沉積法之製程參數………………………………. 30 4.2 碳管表面官能基群之選擇………………………………….…………………………………. 31 4.3 多壁奈米碳管/酚醛樹脂之製程技術……………………… 32 4.4 複合材料拉伸測試之結果…………………………………. 33 4.5 動態機械分析之結果………………………………………. 37 4.6 場發射掃描式電子顯微鏡之型態觀察……………………. 40 第五章 結論…….….……………………………………………….. 42 參考文獻……………………………..……………………………… 44 圖表………………………………..………………………………… 48 附錄………………………………………………………………….. 86 圖表目錄 頁次 表 4-1 抗拉強度結果表……………...…………...………………. 48 表 4-2 楊氏模數結果表…………...……………….…….……….. 48 表 4-3 破壞應變結果表…………………………………………... 49 表 4-4 波松比結果表……………………………………………... 49 表 4-5 氨基碳管/酚醛樹脂的拉伸測試結果…………………….. 50 表 4-6 形狀因子與多壁碳管重量百分比之關係………………... 50 表 4-7 動態機械分析之玻璃轉換溫度 結果表………………... 51 圖2-1 CVD系統示意圖…………………………….……………. 52 圖2-2 粉碎機………….………………………………………….. 53 圖2-3 超音波振動機…………………….……………………….. 53 圖2-4 電磁攪拌機及磁石……….……………………………….. 54 圖2-5 迷你鑽石切割機…………………………...……………… 54 圖2-6 真空烘箱……………………..……………………………. 55 圖2-7 熱壓機……………………………...……………..……….. 55 圖2-8 拉壓試驗機…………………………………………...…… 56 圖2-9 場發射掃描式電子顯微鏡………………………………... 56 圖2-10 水循環真空過濾系統……………………………………... 57 圖2-11 動態機械分析儀………………………...………………… 57 圖2-12 以化學氣相沉積法製作之多壁奈米碳管(粉碎前)……… 58 圖2-13 多壁奈米碳管的直徑統計圖……………………………... 58 圖2-14 以化學氣相沉積法製作之多壁奈米碳管(粉碎後)……… 59 圖2-15 相同重量粉碎前後碳管的體積圖………………………... 59 圖2-16 上下模熱壓法示意圖……………………………………... 60 圖2-17 上下模、脫模布及鋁框擺設示意圖……………………… 61 圖2-18 拉伸測試的應力-應變曲線示意圖……………………….. 61 圖2-19 拉伸測試的側向應變-軸向應變曲線示意圖…………….. 62 圖2-20 動態機械分析操作示意圖………………………………... 62 圖2-21 動態機械量測結果示意圖………………………………... 63 圖3-1 Kelly-Tyson模型示意圖…………………………………... 63 圖3-2 有效長度示意圖…………………………………………... 64 圖4-1 具胺基之多壁碳管的FT-IR圖…………………………. 64 圖4-2 PF-650酚醛樹脂之DSC分析……………………………. 65 圖4-3 多壁碳管分布於酚醛樹脂FESEM圖..………………….. 65 圖4-4 拉伸測試試片圖………………………...………………… 66 圖4-5 抗拉強度結果……………………………….....………….. 67 圖4-6 楊氏模數結果..………………………………………….... 67 圖4-7 以SEM拍攝試片中的微小瑕疵…………………………. 68 圖4-8 氨基碳管試片的抗拉強度結果…………………………. 69 圖4-9 氨基碳管試片的楊氏模數結果………………………….. 69 圖4-10 以修正型Halpin-Tsai方程式嵌合粉碎結構楊氏模數…... 70 圖4-11 以修正型Halpin-Tsai方程式嵌合未粉碎結構楊氏模數... 70 圖4-12 破壞應變結果圖………………………………………..…. 71 圖4-13 波松比結果圖..…………………………………………..... 71 圖4-14 粉碎碳管結構的儲存模數………..………………………. 72 圖4-15 未粉碎碳管結構的儲存模數….………………………….. 72 圖4-16 粉碎碳管結構的損失模數………………………………... 73 圖4-17 未粉碎碳管結構的損失模數……………………………... 73 圖4-18 粉碎碳管結構的 ……………………………………... 74 圖4-19 未粉碎碳管結構的 …………………………………... 74 圖4-20 交連程度與儲存模數曲線型態的關係…………………... 75 圖4-21 交連程度對於儲存模數曲線型態影響示意圖…………... 75 圖4-22 結晶度的影響……………………………………………... 76 圖4-23 分子量的影響……………………………………………... 76 圖4-24 4.0wt%兩種複合材料試片的應變能比較………………... 77 圖4-25 純酚醛樹脂試片破壞面FESEM圖………………………. 77 圖4-26 1.5、2.0及4.0 wt%破壞面FESEM圖……………………... 78 圖4-27 2.0及4.0 wt%未粉碎碳管破壞面大倍數FESEM圖…….. 81 圖4-28 2.0及4.0 wt%粉碎碳管破壞面大倍數FESEM圖……….. 82 圖4-29 高倍率觀察碳管抽出現象………………………………... 83 圖4-30 典型破壞面壓印現象……………………………………... 83 圖4-31 碳管於破裂面的壓印現象………………………………... 84 圖4-32 未粉碎碳管結構中碳管的交叉現象……………………... 85rf 參考文獻 1. 黃德歡, “改變世界的納米技術,” 瀛舟出版社, 台灣台北, 2003. 2. 馬遠榮, “奈米科技,” 商周出版社, 台灣台北, 2002. 3. R. F. Gibson, “Principles of Composite Material Mechanics,” McGraw-Hill, New York, 1994. 4. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load,” Science, Vol. 287, pp. 637-640, 2000. 5. B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, and R. O. Ritchie, “Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes,” Materials Science and Engineering A, Vol. 334, pp. 173-178, 2002. 6. C. F. Cornwell and L. T. Wille, “Elastic Properties of Single-Walled Carbon Nanotubes in Compression,” Solid State Communication, Vol. 96, pp. 555-558, 1997. 7. S. Xie, W. Li, Z. Pan, B. Chang, and L. Sun, “Mechanical and Physical Properties on Carbon Nanotube,” Journal of Physics and Chemistry of Solids, Vol. 61, pp. 1153-1158, 2000. 8. E. T. Thostenson, Z. Ren, and T. W. Chou, “Advances in the Science and Technology of Carbon Nanotubes and Their Composites: a Review,” Composites Science and Technology, Vol. 61, pp. 1899-1912, 2001. 9. K. T. Lau and D. Hui, “The Revolutionary Creation of New Advanced Materials – Carbon Nanotube Composites,” Composites Part B: Engineering, Vol. 33, pp. 263-277, 2002. 10. H. Dai, “Carbon Nanotubes: Opportunities and Challenges,” Surface Science, Vol. 500, pp. 218-241, 2002. 11. S. Xie, W. Li, Z. Pan, B. Chang, and L. Sun, “Carbon Nanotubes Arrays,” Materials Science and Engineering A, Vol. 286, pp. 11-15, 2000. 12. C. Singh, M. Shaffer, I. Kinloch, and A. Windle, “Production of Aligned Carbon Nanotubes by the CVD Injection Method,” Physica B, Vol. 323, pp. 339-340, 2002. 13. W. D. Zhang, Y. Wen, W. C. Tjin, G. Q. Xu, and L. M. Gan, “Growth of Vertically Aligned Carbon-Nanotube Array on Large Area of Quartz Plates by Chemical Vapor Deposition,” Applied Physics A, Vol. 74, pp. 419-422, 2002. 14. A. Allaoui, S. Bai, H. M. Cheng, and J. B. Bai, “Mechanical and Electrical Properties of a MWNT/Epoxy Composite,” Composites Science and Technology, Vol. 62, pp. 1993-1998, 2002. 15. C. A. Cooper, D. Ravich, D. Lips, J. Mayer, and H. D. Wagner, “Distribution and Alignment of Carbon Nanotubes and Nanofibrils in a Polymer Matrix,” Composites Sciences and Technology, Vol. 62, pp. 1105-1112, 2002. 16. J. Sandler, P. Werner, M. S. P. Shaffer, V. Demchuk, and V. Altstadt, “Carbon-Nanofibre-Reinforced Poly(ether ether ketone) Composites,” Composites Part A: Applied Science and Manufacturing, Vol. 33, pp. 1033-1039, 2002. 17. M. Yin, J. A. Koutsky, T. L. Barr, N. M. Rodriguez, R. T. K. Baker, and L. Klebanov, “Characterization of Carbon Microfibers as a Reinforcement for Epoxy Resins,” Chemistry of Materials, Vol. 5, pp. 1024-1031, 1993. 18. K. T. Lau and D. Hui, “Effectiveness of Using Carbon Nanotubes as Nano-Reinforcements for Advanced Composite Structure,” Letters to the Editor / Carbon, Vol. 40, pp. 1065-1066, 2002. 19. K. T. Lau and S. Q. Shi, “Failure Mechanisms of Carbon Nanotube/Epoxy Composites Pretreated in Different Temperature Environments,” Carbon, Vol.40, pp. 2965-2968, 2002. 20. S. Kumar, H. Doshi, M. Srinivasarao, J. O. Park, and D. A. Schiraldi, “Fibers from Polypropylene/Nano Carbon Fiber Composites,” Polymer, Vol. 43, pp. 1701-1703, 2002. 21. H. D. Wagner, O. Lourie, and X. F. Zhou, “Macrofragmentation and Micro- fragmentation Phenomena in Composite Materials,” Composites Part A: Applied Science and Manufacturing, Vol. 30, pp. 59-66, 1999. 22. O. Lourie and H. D. Wagner, “Evidence of Stress Transfer and Formation of Fracture Clusters in Carbon Nanotube-Based Composites,” Composite Science and Technology, Vol. 59, pp. 975-977, 1999. 23. L. Jin, C. Bower, and O. Zhou, “Alignment of Carbon Nanotubes in a Polymer Matrix by Mechanical Stretching,” Applied Physics Letters, Vol. 73, pp. 1197-1199, 1998. 24. L. S. Schadler, S. C. Giannaris, and P. M. Ajayan, “Load Transfer in Carbon Nanotube Epoxy Composites,” Applied Physics Letters, Vol. 73, pp. 3842-3844, 1998. 25. H. D. Wagner, O. Lourie, Y. Feldman, and R. Tenne, “Stress-Induced Fragmentation of Multiwall Carbon Nanotubes in a Polymer Matrix,” Applied Physical Letters, Vol. 72(2), pp. 188-190, 1998. 26. C. Bower, R. Rosen, and L. Jin, “Deformation of Carbon Nanotubes in Nanotube-Polymer Composites,” Applied Physics Letters, Vol. 74, pp. 3317-3319, 1999. 27. D. S. Lim, J. W. An, and H. J. Lee, “Effect of Carbon Nanotube Addition on the Tribological Behavior of Carbon/Carbon Composites,” Wear, Vol. 252, pp. 512-517, 2002. 28. W. X. Chen, J. P. Tu, L. Y. Wang, H. Y. Gan, Z. D. Xu, and X. B. Zhang, “Tribological Application of Carbon Nanotubes in a Metal-Based Composite Coating and Composites,” Carbon, Vol. 41, pp. 215-222, 2003. 29. J. B. Bai, “Evidence of the Reinforcement Role of Chemical Vapour Deposition Multi-Walled Carbon Nanotubes in a Polymer Matrix,” Letters to the Editor/Carbon, Vol. 41, pp. 1325-1328, 2003. 30. D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, “Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites,” Applied Physics Letters, Vol. 76, pp. 2868-2870, 2000. 31. J. J. Luo and I. M. Daniel, “Characterization and modeling of mechanical behavior of polymer/clay nanocomposites,” Composites Science and Technology, Vol. 63, pp. 1607-1616, 2003. 32. T. D. Fornes and D. R. Paul, “Modeling properties of nylon 6/clay nanocomposites using composite theories,” Polymer, Vol. 44, pp. 4993-5013, 2003. 33. J. Zeng, B. Saltysiak, W. S. Johnson, D. A. Schiraldi, and S. Kumar, “Processing and properties of poly(methyl methacrylate)/carbon nano fiber composites,” Composites Part B, Vol. 35, pp. 173-178, 2004. 34. I. C. Finegan, G. G. Tibbetts, and R. F. Gibson, “Modeling and characterization of damping in carbon nanofiber/polypropylene composites,” Composites Science and Technology, Vol. 63, pp. 1629-1635, 2003. 35. T. Ogasawara, Y. Ishida, T. Ishikawa, and R. Yokota, “Characterization of multi-walled carbon nanotube /phenylethynyl terminated polyimide composites,” Composite Part A, Vol. 35, pp. 67-74, 2004. 36. P. Potschke, T. D. Fornes, and D. R. Paul, “Rheological Behavior of Multiwalled Carbon Nanotube/Polycarbonate Composites,” Polymer, Vol. 43, pp. 3247-3255, 2002. 37. Z. Jin, K. P. Pramoda, G. Xie,. and S. H. Goh., “Dynamic Mechanical Behavior of Melt-processed Multi-walled Carbon Nanatubes/Poly(methyl methacrylate) Composites,” Chemical Physics Letters, Vol. 337, pp. 43-47, 2001. 38. Z. Jin, K. P. Pramoda, S. H. Goh, and G. Xu, “Poly(vinylidene fluoride)-assisted Melt-blending of Multi-walled Carbon Nanotube/Poly (methyl methacrylate) Composites,” Materials Research Bulletin, Vol. 37, pp. 271-278, 2002. 39. Z. X. Jin, S. H. Goh, G. Q. Xu, and Y. W. Park, “Dynamic Mechanical Properties of Multi-Walled Carbon Nanotube/Poly(Acrylic Acid)-Surfactant Complex,” Synthetic Metals, Vol. 135-136, pp. 735-736, 2003. 40. H. W. Goh, S. H. Goh, G. Q. Xu, K. P. Pramoda, and W. D. Zhang, “Dynamic Mechanical Behavior of in situ Functionalized Multi-Walled Carbon Nanotube/Phenoxy Resin Composite,” Chemical Physics Letters, Vol. 373, pp. 277-283, 2003. 41. F. H. Gojny, J. Nastalczyk, Z. Roslaniec, and K. Schulte, “Surface Modified Multi-Walled Carbon Nanotubes in CNT/Epoxy-Composites,” Chemical Physics Letters, Vol. 370, pp. 820-824, 2003. 42. C. A. Cooper, R. J. Young, and M. Halsall, “Investigation into the Deformation of Carbon Nanotubes and Their Composites through the Use of Raman Spectroscopy,” Composites Part A: Applied Science and Manufacturing, Vol. 32, pp. 401-411, 2001. 43. Y. J. Liu and X. L. Chen, “Evaluations of the Effective Material Properties of Carbon Nanotube-Based Composites Using a Nanoscale Representative Volume Element,” Mechanics of Materials, Vol. 35, pp. 69-81, 2003. 44. G. M. Odegard, T. S. Gates, L. M. Nicholson, and Kristopher E. Wise, “Equivalent-Continuum Modeling of Nano-Structured Materials,” Composites Science and Technology, Vol. 62, pp. 1869-1880, 2002. 45. 村上新一, 洪純仁 譯, “酚醛樹脂,” 復文出版社, 台灣台北, 1981. 46. 成會明, 張勁燕 校訂, “奈米碳管,” 五南圖書出版股份有限公司, 台灣台北, 2004. 47. T. Saito, K. Matsushige, and K. Tanaka, “Chemical Treatment and Modification of Multi-Walled Carbon Nanotubes,” Physica B, Vol. 323, pp. 280-283, 2002. 48. ASTM D796-65, “Standard Practice for Compression Molding Test Specimens of Phenolic Molding Compounds,” Annual Book of ASTM Standards, Vol. 8.2, 1981. 49. ASTM D638-82a, “Standard Test Method for Tensile Properties of Plastics,” Annual Book of ASTM Standards, Vol. 8.2, 1981. 50. 行政院國家科學委員會精密儀器發展中心出版, “儀器總覽,” 台灣台北, 1998. 51. ASTM D882-83, “Tensile Properties of Thin Plastic Sheeting,” Annual Book of ASTM Standards, Vol. 8.2, 1981. 52. 博精儀器, “熱分析儀訓練課程,” 台灣台北, 2003.id NH0925311035 sid 913784 cfn 0 / id NH0925311036 auc 賴懷恩 tic 導光板成型品質與射出成型製程參數之研究 adc 王培仁 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 78 kwc 導光板 kwc 轉寫度 kwc 田口式品質工程 abc 背光模組(Backlight Module)被廣泛地應用在各種資訊、通訊、消費產品上,是液晶顯示器(LCD)的主要零組件,為液晶顯示器提供穩定之光源;其基本結構包括導光板、反射板、擴散板、稜鏡片和發光器。其中導光板之功能是控制光的散射方向,提高顯示器的輝度,並確保顯示器的亮度均勻性。因此導光板的設計與製造攸關背光模組光學特性之成效,亦是背光模組的關鍵技術與主要製造成本。而降低成本的重點在簡化模組構造,採用單體導光板設計,並利用蝕刻、電鑄、切削製作精密射出成型模具,將光學微特徵轉寫於導光基板,故而尺寸精度、轉寫性及光學性能等,將直接影響單體導光板製程的成敗。 tc 目 錄 中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅱ 目錄 Ⅲ 表目錄 Ⅵ 圖目錄 Ⅶ 符號表 Ⅸ 第一章 簡介 01 1-1.前言 01 1-2.研究目的 03 1-3.文獻回顧 05 第二章 電腦輔助模流分析 08 2-1.電腦輔助模流分析軟體介紹 08 2-2.幾何建模 09 2-3.充填結果 10 2-4.保壓結果 11 2-5.冷卻結果 12 2-6.翹曲結果 13 第三章 參數實驗設計 26 3-1.實驗設計法 26 3-2.田口式品質工程 27 3-2.1.實驗因子與水準決定 27 3-2.2.直交表選擇 28 3-2.3.SN比計算 29 3-2.4.變異數分析 31 3-2.5.最佳因子組合及最佳理論值推定 32 3-2.6.實驗驗證 32 第四章 實驗設備與方法 39 4-1.射出型實驗與設備 39 4-1.1.實驗材料 40 4-1.2.實驗步驟 40 4-2.光學量測 42 4-3.微特徵轉寫量測 42 第五章 結果與討論 53 5-1.模擬及實驗結果 53 5-1.1.導光板收縮位移結果 54 5-1.2.導光板翹曲結果 55 5-1.3.導光板體積收縮結果 56 5-1.4.導光板輝度量測結果 56 5-1.5.導光板均勻度量測結果 57 5-1.6.導光板微特徵轉寫量測結果 57 5-2.模擬及實驗量測結果驗證 59 第六章 結論與未來工作 72 6-1.結論 72 6-2.未來工作 73 參考文獻 77rf 參考文獻 [1 ] 楊明仁,「LCD背光模組產品介紹”,台灣工業銀行(IBT)」,pp. 1-3,2002. [2 ] 賴志良,” Micro-grooving of light guide plate mold core”,模具技術與論文發表會論文集, pp. 32-33, 2003. [3 ] B. Sanchagrin, "Process Control of Injection Molding," Polymer Engineering and Science, Vol. 23, No. 8, pp. 431-438, 1983. [4 ] J. Greener, "General Consequence of the Packing Phase in Injection Molding," Polymer Engineering and Science, Vol. 26, No. 12, pp. 886-892, 1986. [5 ] H. W. Cox and C.C. Mentzer, "Injection Molding: The Effect of Fill Time on Properties", Polymer Engineering and Science, Vol.26, No.1, pp.488-498, 1986. [6 ] D.Pierick and R.Noller, "The Effect of processing Conditions on shrinkage", Society of Plastics Engineers, ANTEC, pp.252-258, 1991. [7 ] O. Vaatainen, P. Jarvela, K. Valta, and P. Jarvela, "The Effect of Processing Parameters on the Quality of Injection Molded Parts by Using the Taguchi Parameter Design Method," Plastics, Rubber and Composites and Applications, Vol. 2, No. 4, pp. 211-217, 1994. [8 ] 陳劍峰,"電腦輔助工程應用於射出成型品收縮之驗證",國立清華大學碩士論文,民國八十六年。 [9 ] 陳宗平,"微射出模溫控制系統及微結構轉寫能力探討",國立台灣大學機械工程學研究所碩士論文,民國九十年。 [10 ] 蔡俊欽,"導光板的翹曲分析研究",模具技術與論文發表會論文集",pp. 196-199, 2003. [11 ] http://www.moldex.com.tw, CoreTech Corp., Hsinchu Taiwan. [12 ] 科盛科技編著,"CAE模流分析技術入門與應用",科盛科技股份有限公司,新竹市,2002年6月版。 [13 ] 蘇朝墩,"產品穩健設計-田口品質工程方法的介紹與應用",中華民國品質學會,民國八十九年一月二版。 [14 ] 鄭燕琴,"田口品質工程工程技術理論與實務",中華民國品質管制學會,1993. [15 ] 徐旭昇,"射出成型專家系統",私立中原大學機械工程研究所碩士論文。 [16 ] 李輝煌,"田口方法品質設計的原理與實務",高力圖書有限公司,台北市,民國八十九年初版。 [17 ] J. McKenzie, R. L. Schaefer, and E. Farber, "The Student Edition of Minitab for Windows: Statistical Software Adapted for Education," Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, , 1995. [18 ] 陳文賢,"統計學:中文統計程式:Minitab 7.2版",三民書局,民國八十一年 [19 ] 蘇義豊,"射出壓縮成型於導光板之製程參數分析",大葉大學機械工程研究所碩士論文,民國九十年。 [20 ] 蔡郁崇,"三次元量床",MM機械技術雜誌 225期/11月號,2003.id NH0925311036 sid 913787 cfn 0 / id NH0925311037 auc 林廷軒 tic 外接正齒輪泵之最佳間隙研究 adc 蕭德瑛 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 49 kwc 泵 kwc 幫浦 kwc 齒輪泵 kwc 齒輪幫浦 kwc 有限差分法 abc 在齒輪泵中,由於可動件與固定件之間的間隙而有滑差的現象,本文以外接正齒輪泵為基礎,分析在齒輪泵間隙中的滑差以及黏滯力,以間隙尺寸為變數,功率損失為指標,求出當功率損失為最小值時的間隙。第一章簡述齒輪泵原理,並敘述齒輪泵中的滑差現象為何。第二章將齒輪泵中的間隙分為齒頂間隙與齒輪側面間隙,再將齒輪側面間隙細分為齒輪側面齒部與齒輪側面輪部,分別求出其功率損失與間隙的關係。其中齒輪側面輪部需要以有限差分法求其壓力分布,因此以有限差分法分析齒輪側面輪部的壓力分布,藉此求出因滑差造成的功率損失。本文的目的在於找出齒輪泵中各項間隙最佳值,以改善齒輪泵的效率。 tc 目錄 第一章 簡介 1 1.1 前言 ……..……………………………………………………… 1 1.2 研究動機 …………………………………………………………… 2 1.3 文獻回顧 …………………………………………………………… 3 1.4 研究方法 …………………………………………………………… 4 第二章 齒輪泵的間隙分析 5 2.1.1 齒輪泵原理與基本模型建立 ………………………………………. 5 2.1.2 齒輪泵的效率 ……………..………………………………………. 6 2.1.3 由齒輪泵效率求最佳間隙值 ……………..………………………... 8 2.2 齒頂與外殼間隙 ………………………………………………….. 9 2.3 齒輪側面間隙(齒部) …………………………………………….... 12 2.4 齒輪側面間隙(輪部) ……………………………………………… 16 第三章 有限差分法之數值分析 20 3.1 基本模型 ………………………………………………………….. 20 3.2 基本公式 ………………………………………………………….. 22 3.3 網格設定與邊界條件 …………………………………………….. 24 3.4 求解與程式撰寫 ………………………………………………….. 26 3.5 功率損失計算 …………………………………………………….. 29 3.6 齒部與輪部綜合分析 …………………………………………….. 30 3.7 壓力急變下的齒輪側面輪部分析 ……………………………….. 36 第四章 計算分析與結果討論 ……………………………………………. 38 4.1 參數設定 ………………………………………………………….. 38 4.2 間隙與功率損失間的關係 ……………………………………….. 39 4.3 間隙容許誤差 …………………………………………………….. 43 4.4 其他可能影響間隙因素 ………………………………………….. 44 第五章 結論與建議 46 參考文獻 48rf 參考文獻 1. E. Koc and C. J. Hooke, “End lubrication and sealing in gear pumps with fixed end plates”, The Journal of Fluid Control, Vol.18-(3), 1988 pp. 52-69. 2. R. H. Frith and W. Scott, “Comparison of an external gear pump wear model with test data”, Wear, 196, 1996, pp. 64-71. 3. E. Koc and C. J. Hooke, “An experimental investigation into the design and performance of hydrostatically loaded floating wear plates in gear pumps”, Wear, 209, 1997, pp. 184-192. 4. E. Koc, A. O. Kurban and C. J. Hooke, “An analysis of the lubrication mechanism of the bush-type bearings in high pressure pumps”, Tribology International Vol. 30, No 8., 1997, pp. 553-560 5. Richard Dearn B. Sc., “The fine art of gear pump selection and operation”, World Pumps, June 2001, pp. 38-40. 6. L. Nelik, “Choosing the right gear pump applications”, World Pumps, August 1999, pp. 42-46. 7. L. Nelik, “Operating conditions and comparisons between chemical-duty pumps and specialized high pressure gear pumps”, World Pumps, December 2001, pp. 32-39. 8. B. R. Munson, D. F. Young and Theodore H. Okiishi, “Fundamentals of Fluid Mechanics, Third Edition”, John Wiley & Sons, Inc., New York, 1998. 9. J. E. Shigley and C. R. Mischke, “Mechanical Engineering Design”, Sixth Edition, McGraw-Hill, New York, 2001. 10. 田中武雄,鄭惠文 譯,“油壓機器設計”,正言出版社,台灣,台南市,1981。 11. 石原智男,市川常雄,金子敏夫,竹中俊夫, “實用油壓技術”,復漢出版社,台灣,台北市,1985。 12. 黎龍芳, “齒輪幫浦容積效率與公差配合之改善”碩士論文,台灣大學機械工程研究所,2000。 13. A. O. Lebeck, “Principles and Design of Mechanical Face Seals”, John Wiley & Sons, Inc., New York, 1991. 14. D. W. Dudley,高則同 譯,“齒輪手冊”,徐氏基金會出版社,台北市,1978。 15. 陳燕生 主編, “摩擦學基礎”,北京航空航天大學出版社。北京,1991。 16. 張智星,“Matlab程式設計與應用”,清蔚科技出版事業部,新竹,2000。id NH0925311037 sid 913788 cfn 0 / id NH0925311038 auc 蕭志仲 tic 溫度對奈米尺度下接觸物體間黏滯現象之影響:分子動力學模擬及原子力顯微鏡實驗 adc 宋震國 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 107 kwc 分子動力學 kwc 黏滯現象 kwc 原子力顯微鏡 abc 本文利用分子動力學模擬(Molecular Dynamics Simulation)以及原子力顯微鏡(Atomic Force Microscope)實驗來探討溫度對奈米尺度下接觸物體間黏滯現象的影響及其物理行為。在分子動力學模擬中,採用Morse勢能函數來描述金原子間的作用力,系統模型利用約一萬顆的金(Au)原子以面心立方(FCC)的排列方式,建構成原子力顯微鏡中探針與基材的幾何形貌,其中角錐形探針是由3632顆金原子所組成,立方體基材則是由7168顆金原子所組成。本研究發現,溫度會對原子級的跳躍接觸(Jump-to-contact)現象造成影響,當系統溫度愈高時,此現象越早發生。另外,探針與基材分離時,因黏滯造成的原子遷移產生了頸縮(Necking)現象,緊縮的高度與溫度成正比。在緊縮現象斷裂後,接著即於基材表面形成島狀結構(Island structure),此奈米結構(頸縮與島狀結構)尺寸與溫度的高低為正相關;黏滯力的大小是隨著溫度升高而下降。研究結果也顯示,由於黏滯現象的作用,探針與基板間機械式的接觸和奈米線及奈米點的形成有很大的關連性。 tc 中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XII 符號說明 XIII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 5 1-2-1 黏滯理論文獻回顧 5 1-2-2 分子動力學文獻回顧 6 1-2-3 庫倫影響文獻回顧 7 1-2-4 溫度影響文獻回顧 7 1-2-5 原子轉移文獻回顧 8 1-3 本文內容 9 第二章 黏滯理論與奈米結構的成形 11 2-1 發展背景 11 2-2 Hertzian理論 14 2-3 Johnson-Kendall-Roberts理論 15 2-4 Derjaguin-Muller-Toporov理論 16 2-5 準則μ 17 2-6 Maugis理論 18 2-7 黏滯理論的比較 21 2-8 奈米尺度的黏滯現象 23 第三章 分子動力學模擬 27 3-1 分子動力學之背景 27 3-2 分子間作用力及勢能函數 28 3-2-1 Lennard-Jones potential 29 3-2-2 Morse potential 30 3-2-3截斷半徑勢能法 30 3-3 模擬系統之初始值 31 3-3-1初始位置 31 3-3-2初始速度 32 3-4 邊界條件 33 3-4-1週期性邊界條件 33 3-4-2 最小鏡像法 34 3-4-3 Langevin方法 36 3-5 數值方法 37 3-5-1 Verlet 鄰近表列 37 3-5-2 Gear五階預測修正演算法 39 第四章 系統模型與模擬結果 42 4-1 物理模型 42 4-2 模擬參數與無因次化 46 4-3 流程圖 48 4-4 模擬結果 49 4-4-1 系統平衡狀態 50 4-4-2 不同系統操作溫度模擬過程 52 4-4-3 跳躍接觸現象 59 4-4-4 緊縮現象 65 4-4-5 島狀結構成型 71 4-4-6 黏滯力 71 4-4-7 模擬結果 78 第五章 實驗結果與討論 81 5-1實驗儀器 81 5-1-1原子力顯微鏡 82 5-1-2探針 84 5-2實驗方法 85 5-2-1材料準備 85 5-2-2力量曲線 87 5-2-3黏滯力 88 5-3實驗結果 88 5-3-1黏滯力的計算 88 5-3-2結果討論 91 第六章 結論與建議 93 6-1 結論 93 6-1-1 分子動力學模擬 93 6-1-2 原子力顯微鏡實驗 93 6-1-3 黏滯力 95 6-2 建議與未來工作 96 參考文獻 99 附錄一 Seiko SPA-300HV 原子力顯微鏡規格表 105 附錄二 NANOSENSOR 接觸模式的探針規格表 107rf 1. 尹邦耀,”奈米時代”,五南圖書公司,台北市,2002。 2. Jacob N. Israelachvili, “Intermolecular and Surface Forces- with Applications to Colloidal and Biological Systems,” Academic press, 1985. 3. T. Fukuda, F. Arai, and L. Dong, “Nano Robotic World - From Micro to Nano,” Proc. of the IEEE Int. Conf. on Robotic and Automation, plenary speech Ⅲ, 2001. 4. http://www.ntmdt.com 5. http://www.research.ibm.com/nanoscience/manipulation.html 6. Tobias Hertel, Richard Martel, Phaedon Avouris, “Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces,” J. Phys. Chem, Vol. 102, pp.910-915, 1998. 7. David Christopher, Roger Smith and Asta Richter, “Atomistic Modeling of Nanoindentation Iron and Silver,” Nanotechnology, Vol. 12, pp.372-383, 2001. 8. G. V. Dedkov, “Review Article: Experimental and Theoretical Aspects of the Modern Nanotribology,” Phys. Stat. Sol. (a), Vol. 179, pp. 3-75, 2000. 9. B. Bhushan, “Handbook of Micro/Nano Tribology,” 2nd Ed., CRC Press, Boca Raton, 1995 10. N. Agraït, G. Rubio, and S. Vieira, “Plastic Deformation of Nanometer-scale Gold Connective Necks,” Phys. Rev. Lett., Vol. 74(20), pp. 3995-3998, 1995. 11. D. Fujita and T. Kumakura, “Reproducible Fabrication of Metallic Silver Nanostructures on a Si(111)-(7×7) Surface by Tip-Material Transfer of a Scanning Tunneling Microscope,” Appl. Phys. Lett., Vol. 82(14), pp.2329-2331, 2003. 12. D. Fujita, Q. Jiang, and H. Nejoh, “Fabrication of Gold Nanostructures on a Vicinal Si(111)-7×7 Surface Using Ultrahigh Vacuum Scanning Microscope and a Gold-Coated Tungsten Tip,” J. Vac. Sci. Technol. B, Vol. 14(6), pp. 3413-3419, 1996. 13. T. C. Chang, C. S. Chang, H. N. Lin, and T. T. Tsong, “Creation of Nanostructures on Gold Surfaces in Nonconducting Liquid,” Appl. Phys. Lett., Vol. 67(7), pp. 903-905, 1995. 14. J. I. Pascual, J. Méndez, J.Gómez-Herrero, A. M. Baró, and N. García, “Quantum Contact in Gold Nanostructures by Scanning Tunneling Microscopy,” Phys. Rev. Lett., Vol. 71(12), pp. 1852-1855, 1993. 15. D. Erts, A. Lõhmus, R. Lõhmus, H. Olin, A. V. Pokropivny, L. Ryen, and K. Svensson, “Force Interactions and Adhesion of Gold Contacts Using a Combined Atomic Force Microscope and Transmission Electron Microscope,” Appl. Surf. Sci., Vol. 188, pp. 460-466, 2002. 16. K. Takayanagi, Y. Kondo, and H. Ohnishi, “Miniaturized STM Working Simultaneously in UHV Electron Microscope-Conductance Quantization of Suspended Gold Nanowires,” JEOL News, Vol. 34E(1), pp. 20-23, 1999. 17. G. Rubio, N. Agraït, and S. Vieira, “Atomic-Sized Metallic Contacts: Mechanical Properties and Electronic Transport,” Phys. Rev. Lett., Vol. 76(13), pp. 2302-2305, 1996. 18. T. N. Todorov and A. P. Sutton, “Force and Conductance Jumps in Atomic-scale Metallic Contacts,” Phys. Rev. B, Vol. 54(20), pp. 14234-14237, 1996. 19. S. Blom, H. Olin, J. L. Costa-Krämer, N. García, M. Jonson, P. A. Serena, and R. I. Shekhter, “Free-Electron Model for Mesoscopic Force Fluctuations in Nanowires,” Phys. Rev. B, Vol. 57(15), pp. 8830-8833, 1998. 20. J. Israelachvili, “Intermolecular & Surface Forces,” 2nd Ed., Academic Press, San Diego, 1992. 21. J. H. Irving and J. G. Kirkwood,” The Statistical Mechanical Theory of Transport Properties. Ⅳ. The Equations of Hydrodynamics,” J. Chem. Phys., Vol. 18, pp. 817-823,1950. 22. J. M. Haile, “Molecular Dynamics Simulation,” John Wiley & Sons, New York, 1992. 23. 北區奈米機電基礎培訓班課程講義。 24. D. S. Rimai, D. J. Quesnel, and A. A. Busnaina, “The Adhesion of Dry Particles in the Nanometer to Micrometer-Size Range,” Colloids and Surfaces A, pp.3-10, 2000. 25. Bhushan, Ashok V. Kulkarni, “Effect of Normal Load on Microscale Friction Measurements”, Thin Solid Films, 278, pp.49-56, 1996 26. K. L. Johnson, K. Kendall, and A. D. Roberts, “Surface Energy and the Contact of Elastic Body,” Proc. Roy. Soc. London. A., Vol. 324, pp.301-313, 1971. 27. B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, “Effect of Contact Deformations on the Adhesion of Particles,” J. Colloid Interface Sci., Vol.53, pp.314-326, 1975. 28. D. Maugis, “Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model,” J. Colloid Interface Sci., Vol. 150, pp.243-269, 1992. 29. K. Maekawa and A. Itoh, “Friction and Tool Wear in Nano-scale Maching — a Molecular Dynamics Approach,” Wear, Vol. 188, pp. 115-122, 1995 30. J. A. Harrison, C. T. White, R. J. Colton, and D. W. Brenner, “Molecular Dynamics Simulations of Atomic-scale Friction of Diamond Surface,” Phys. Rev. B, Vol. 46, No.15, pp. 9700-9708, 15 October 1992 31. V. V. Pokropivny, V. V. Skorokhod, A. V. Pokropivny, “Atomic Mechanism of Adhesive Wear during Friction of Atomic-Sharp Tungsten Asperity Over (110) Bcc-Iron Surface”, Materials Letters 31, pp.49-54, 1997. 32. Jun Shimizu, Hiroshi Eda, Masashi Yoritsune and Etsuji Ohmura, “Molecular Dynamics Simulation of Friction on the Atomic-scale”, Nanotechnology, 9, pp.118-123, 1998. 33. T. H. Fang, “Study on the Nano-scale Processing Technology Using Atomic Force Microscopy,” Ph.D. Dissertation, National Cheng Kung University, Tainan, Taiwan, 2000. 34. Hualiang Yu, James B Adams and Louis G Hector Jr, “Molecular Dynamics Simulation of High-Speed Nanoindentation,” Modelling Simul. Mater.Sci. Eng. 10 319-329,2002 35. M. Saint Jean, S. Hudlet, C. Guthmann, and J. Berger, “van der Waals and Capacitive Forces in Atomic Microscopies,” J. Appl. Phys, pp.5245-5248, 1999. 36. David Kofke, “Text of Course CE530,” Department of Chemical Engineering, SUNY Buffalo, 2003. 37. R. Polke, Dissertation, Universität Karlsruhe, 1971. 38. Stefan Berbner and Friedrich Löffler, ”Influence of High Temperatures on Particle Adhesion,” Powder Technology, Vol. 78, pp.273-280, 1994 39. Shijian Luo and C.P. Wong, “Influence of Temperature and Humidity on Adhesion of Underfills for Flip Chip Packaging,” 2001 Electronic Components and Technology Conference 40. Gary Toikka,+ Geoffrey M. Spinks, and Hugh R. Brown*, “Fine Particle Adhesion Measured at Elevated Temperatures Using a Dedicated Force Rig ,” Langmuir, Vol.17, pp.6207-6212, 2001 41. H. J. Mamin, P. H. Guethner, and D. Rugar, “Atomic Emission from a Gold Scanning- Tunneling-Microscope Tip,” Physical Review Letters, vol. 65, no.19, 1990 42. J. I. Pascual, J. Mendez, J. Gomez-Herrero, A. M. Baro, and N. Garcia, “Quantum Contact in Gold Nanostructures by Scanning Tunneling Microscopy,” Physical Review Letters, vol. 71, no.12, 1993. 43. N. Agrait, G. Rubio, and S. Vieira, “Plastic Deformation of Nanometer-scale Gold Connective Necks,” Physical Review Letters, vol. 74, no.20, 1995. 44. C. S. Chang, W. B. Su, and Tien T. Tsong, “Field Evaporation between a Gold Tip and a Gold Surface in the Scanning Tunneling Microscope Configuration,” Physical Review Letters, vol. 72, no.4, 1994. 45. D. Fujita, Q. Jiang, and H. Nejoh, “Fabrication of Gold Nanostructures on a Vicinal Si(111) 7x7 Surface Using Ultrahigh Vacuum Scanning Tunneling Microscope and a Gold-Coated Tungsten Tip,” J. Vac. Sci. Technol. B 14(6), Nov/Dec, 1996. 46. D. H. Huang, T. Nakayama and M. Aono, “Platinum Nanodot Formation by Atomic Point Contact with a Scanning Tunneling Microscope Platinum Tip,” Appl. Phys. Lett., vol. 73 no.23,1998 47. F. Podczeck, “Particle-particle Adhesion in Pharmaceutical Powder Handling,” Imperial College Press, London, 1998. 48. E. Meyer, R. M. Overney, K. Dransfeld, and T. Gyalog, “Nanoscience: Friction and Rheology on the Nanometer Scale,” World Scientific, 1998. 49. D. S. Rimai, L. P. Demejo, and R. C. Bowen, “Mechanics of Particle Adhesion,” Fundamentals of Adhesion and Interfaces, VSP, Netherlands, 1995. 50. Q. Ouyang, K. Ishida, and K. Okada, “Investigation of Micro-Adhesion by Atomic Force Microscopy,” Appl. Surf. Sci., Vol. 170, pp.644-648, 2001. 51. R. S. Bradley, Trans. Faraday Soc.,32. 1088 (1936) 52. B. V. Derjaguin, Kolloid Zhur., 69. 155 (1934) 53. D. S. Rimai, Lawrence P. DeMejo, Ray Bowen, and Jeffrey D. Morris, “Adhesion Induced Deformations,” Particles on Surfaces, Marcel Dekker, Inc. 1995. 54. K. L. Johnson, “Contact Mechanics,” Cambridge University Press, London, 1985. 55. D. Tabor, “Surface Forces and Surface Interactions,” J. Colloid Interface Sci., Vol. 58, No. 1, 1977. 56. J. A. Greenwood, Proc. Roy. Soc. London A, Vol. 453, 1277, 1997. 57. K. L. Johnson, and J. A. Greenwood, “An Adhesion Map for the Contact of Elastic Sphere,” J. Colloid Interface Sci., Vol. 150, pp.326-333, 1997. 58. U. Landman and W. D. Luedtke, “Nanomechanics and Dynamics of Tip-Substrate Interactions,” J. Vac. Sci. Technol. B, Vol. 9 (2), pp. 414-422, 1991. 59. F. B. Neal, “Molecular Dynamics Simulation of Adhesion and Nanoindentation of Gallium Arsenide,” Ph.D. Dissertation, Louisiana State University, USA, 2002. 60. J. E. Lennard-Jones, “The Determination of Molecular Fields.Ⅰ. From the Variation of the Viscosity of a Gas with Temperature,” Proc. Roy. Soc. (Lond.), 106A, 441, 1924; “The Determination of Molecular Fields.Ⅱ. From the Variation of the Viscosity of a Gas with Temperature,” Proc. Roy. Soc. (Lond.), 106A, 463, 1924. 61. A. Rahman, “Correlations in the Motions of Atoms in Liquid Atom,” Phys. Rev., 136A, pp. 405-11, 1964. 62. L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals,” Phys. Rev., Vol. 114, pp. 687-690, 1959. 63. S. Maruyama, “Molecular Dynamics Methods in Microscale Heat transfer,” Handbook of Heat Exchanger Update, 2002, in press. 64. L. Verlet, “Computer ‘Experiments’ on Classical FluidsⅡ, Equilibrium Correlation Function,” Phys. Rev, Vol. 165, pp. 201~14, 1968. 65. http://www.nanosensors.comid NH0925311038 sid 913789 cfn 0 / id NH0925311039 auc 高旭裕 tic 無暫停凸輪機構與曲柄搖桿機構運動特性及傳力效益之評比 adc 吳隆庸 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 108 kwc 無暫停 kwc 凸輪 kwc 特徵值 kwc 曲柄搖桿機構 kwc 傳力角 kwc 壓力角 abc 本文首先對常見的無暫停運動曲線作分析,並求得常見之無暫停運動曲線方程式及其特徵值。接著利用高階連續微分可使曲線平緩之觀念,設計多項式型萬用曲線,並探討其設計參數對特徵值的影響,進而找出有較佳特徵值的運動曲線。然後分析曲柄搖桿機構之傳力角及運動曲線,並以最佳化的方式來選取出有較佳傳力角及特徵值的曲柄搖桿機構。再將所得之結果與建議整理成圖表,提供設計人員參考。最後以設計輸出桿和凸輪機構從動件有相同擺幅及時間比之曲柄搖桿機構為出發點,利用最佳化的方式找尋出有最佳傳力角之機構,合成所對應的曲柄搖桿機構;根據合成的曲柄搖桿機構做運動曲線之分析,由於特徵值反映出一個機構的運動特性,故根據兩者之比較可以得到何者之運動特性較佳;再根據壓力角與傳力角的對應關係,可比較出兩者傳力效益之優劣,由此歸納出擁有無暫停週期運動的機構中,凸輪機構相對於曲柄搖桿機構,有較多組同時擁有較佳的運動特性及傳力效益之選擇。 tc 摘要 I 誌謝 II 目錄 III 圖目錄 VI 表目錄 IX 符號說明 X 第一章 前言 1 1-1 研究動機 2 1-2 文獻顧 3 1-3 研究的 4 第二章 凸輪從動件運動曲線基本原理 5 2-1凸輪從動件運動曲線型態 5 2-2凸輪從動件運動曲線及特徵值 8 2-3三種型態之無暫停運動曲線 10 2-4無暫停三角函數型萬用曲線函數 12 2-5一般化之無暫停萬用曲線特徵值 17 第三章 無暫停多項式型萬用曲線 21 3-1多項式型萬用曲線設計原理 22 3-2無暫停多項式型萬用曲線於常見運動曲線之應用 28 3-2-1無暫停多項式型Harmonic曲線 28 3-2-2無暫停多項式型MT曲線 36 3-2-3無暫停多項式型MCV曲線 43 3-3本章結論 50 第四章 曲柄搖桿機構設計法與最佳設計 52 4-1 曲柄搖桿機構之設計法 53 4-2 基本原理 58 4-2-1 角速度、角加速度及角急跳度之數學表示式 59 4-2-2 曲柄搖桿機構特徵值之數學表示式 62 4-2-3 傳力角極值之數學表示式 62 4-3 曲柄搖桿機構之最佳設計 63 4-3-1依傳力角最佳化設計 64 4-3-1-1 範例說明 64 4-3-1-2 最佳傳力角及其設計參數之分 66 4-3-2依最佳特徵值分佈 68 4-3-2-1 範例說明 68 4-3-2-2 各最佳特徵值之分佈 70 4-3-2-3 範例比較及討論 73 4-3-3 相同傳力角下依不同目標函數設計出機構之比較 73 4-3-3-1 特徵值之比較 73 4-3-3-2 設計參數β1之比較 80 4-4 本章結論 82 第五章 凸輪機構與曲柄搖桿機構之比較 91 5-1 運動特性之比較 91 5-2 傳力角與壓力角之對應及壓力角之修正 94 5-2-1 傳力角與壓力角之對應關係 94 5-2-2 擺動式凸輪機構向量式表示法 95 5-2-3 凸輪機構壓力角改善法之修正 97 5-3 範例說明 98 5-4 本章結論 103 第六章 結論與建議 104 參考文獻 107rf 1.牧野洋,1989,“C語言之通用曲線計算及作圖”,機械設計,33卷,3期,64-79頁。 2.吳隆庸,陳志蓬,林逸仁,吳曉暉,1994,“凸輪從動件運動曲線之一般化”,機械月刊,20卷,21期,250-560頁。 3.洪嘉宏,2001,雙暫停凸輪從動件運動曲線之分析及設計,碩士論文,國立清華大學動力機械工程學系,新竹。 4.吳降庸,吳曉暉,洪嘉宏,2002,“具較佳特徵值之從動件運動曲線”,技術學刊,17卷,3期,369-379頁。 5.Neklutin, C. N., 1969, Mechanisms and Cams for Automatic Machines, American Elsevier, New York. 6.Rothbart, H. A., 1956,“Cam Dynamics of High-Speed Systems,” Machine Design, March 8, pp.100-107. 7.鄭權賢,2003,凸輪從動件單暫停運動曲線之分析及設計,碩士論文,國立清華大學動力機械工程學系,新竹。 8.吳曉暉,1999,平面四連桿機構運動係數之特性與運用,博士論文,國立清華大學動力機械工程學系,新竹。 9.Söylemez, E., 2002,“Classical Transmission-angle Problem for Slider-crank Mechanisms,” Mechanism and Machine Theory, Vol. 37, pp.419-425. 10.Hall, A. Jr., 1961, Kinematics and Linkage Design , Waveland Press, pp.33- 42. 11.吳隆庸,1990,“機構合成技術”,機械工業雜誌, 4月號, 275-285頁。 12.柯朝元,1996,曲柄搖桿機構之運動特性評判與最佳設計,碩士論文,國立清華大學動力機械工程學系,新竹。 13.Jensen, P. W., 1991, Classical and Modern Mechanisms for Engineers and Inventors, Marcel Dekker, New York. 14.吳隆庸,洪嘉宏,張信良,2002,“盤型凸輪輪廓的向量表示法”,技術學刊,17卷,1期,59-65頁。 15.Hartenberg, R. S., and J. Denavit, 1964, Kinematic Synthesis of Linkage, McGraw-Hill, New York. 16.顏鴻森,1998,機構學,東華書局,台北。 17.Arora, J. S., 1989, Introduction to Optimum Design, McGraw-Hill, New York.id NH0925311039 sid 913792 cfn 0 / id NH0925311040 auc 陳皓怡 tic 微切削最小切削厚度之研究 adc 蕭德瑛 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 79 kwc 微切削 kwc 最小 kwc 厚度 abc 目前微加工要求的切削深度愈來愈小,當切削程度極小時切削的行為會有所改變,甚至因為彈性回復無法切削。因此本研究之目的在於,找到加工開始時刀具下壓工件,會產生切屑的最小切削深度,並了解不同切削深度對加工精度及表面粗糙度的影響。本研究使用ANSYS模擬,以瞭解刀具前端對工件施加負載及移除負載後之情形,工件模擬範圍由彈性力學的觀念,計算集中力F作用在半無限邊界體上的應力分佈情形,考慮有影響結果的範圍,模擬結果以von-Mises stress是否達到材料破裂強度,來判斷刀具穿刺深度。刀具選用適合進行微切削的鑽石刀具,工件則使用銅材,並在模擬過程中考量材料塑性特性。最後架設實驗以印證模擬結果,並觀察穿刺後工件的回彈量。 tc 第一章、序論 1 1.1前言 1 1.2文獻回顧 5 1.3研究方法 8 第二章、理論模型 9 2.1刀具材料 9 2.2刀具幾何外型 12 2.3工件材料 13 2.3.1材料種類 14 2.3.2材料性質 15 2.3.3材料模型 16 2.4工件影響範圍推導 17 2.4.1集中力造成的應力分佈情形 19 2.4.2分散力造成的應力分佈情形 20 2.5討論 26 第三章、ANSYS模擬分析 27 3.1分析方式 27 3.2 ANSYS設定流程 28 3.3 ANSYS設定 31 3.3.1材料性質設定與模型繪製 31 3.3.2網格分割與設定元素性質 34 3.3.3接觸面設定 35 3.3.4施加邊界條件 36 3.3.5模擬結果 38 3.3.5.1 力量與穿刺深度 38 3.3.5.2 表面曲線 41 3.3.5.3 參數改變的影響 42 第四章、材料受力曲線量測 44 4.1實驗目的 44 4.2實驗架構 44 4.3實驗儀器 45 4.4實驗步驟 47 4.5 回彈實驗 55 4.5.1實驗步驟 56 4.6 實驗結果 57 4.6.1 深度與負載之曲線 57 4.6.2 深度與壓力的關係 60 4.6.3 回彈實驗趨勢 60 第五章、結果與討論 63 5.1 模擬與實驗比較 63 5.2 材料性質 65 5.3 形狀精度 66 5.4 壓痕粗糙度 68 5.5 回彈量預估 70 5.6 實驗誤差來源 70 5.6.1 平台間隙 70 5.6.2 平台校準精度 72 5.6.3 量測儀的誤差 73 5.7 未來研究方向 74 第六章、結論 76 參考文獻 77 附錄一 實驗平台設計 附錄二 鑽石刀具規格rf [1 ] T. Masuzawa and M. Fujino, “Three-dimensional micromachining by machine tools”, Annals of the CIRP, Vol.46, 2, 1997, pp.621-628. [2 ] 周俊宏,微切削加工應用現況分析,產業評析專欄,金屬中心,2002。 [3 ] Z. Lu and T. Yoneyama, “Micro cutting in the micro lathe turning system”, machine tools and manufacture, Vol.39, 1999, pp.1171-1183. [4 ] T. Kawai and K. Sawada, “Ultra-precision micro structuring by means of mechanical machining”, IEEE, 2001, pp.22-25. [5 ] http://www-personal.umich.edu/~bclee/lens.html. [6 ] OSAKA DIAMOND, REF. No.5c1. [7 ] K. W. Kim and W. Y. Lee, “A finite element analysis for the characteristics of temperature and stress in micro-machining considering the size effect”, International Journal of Machine Tools & Manufacture, Vol.39, 1999, pp.1507-1524. [8 ] Z. J. Yuan and M. Zhou, “Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining”, Journal of Materials Processing Technology, Vol.62, 1996, pp.327-330. [9 ] 王洪祥及張龍江,“微切削過程的分子動力學分析”,製造技術與機床,1999年第10期。 [10 ] H. Kitsunai, “The transitions between microscopic wear modes during repeated sliding friction observed by a scanning electron microscope tribosystem”, Vol.135, Wear, 1990, pp.237-249 [11 ] 宋健民,超硬材料,臺北市,全華科技圖書股份有限公司,2000。 [12 ] G. Boothroyd, Fundamentals of Metal Machining and Machine Tools, New York, McGraw-Hill Book company, 2nd edition, 1984. [13 ] N. Ikawa and S. Shimada, “Chip morphology and minimum thickness of cut in micromachining”, JSPE, 1993, pp.673-679. [14 ] Z. C. Lin, “Ultra-precision orthogonal cutting simulation for oxygen-free high-conductivity copper”, Materials processing Technology, Vol.65, 1997, pp.281-291. [15 ] R. Hill, The mathematical theory of plasticity, Britain, OXFORD, 1950. [16 ] J. M. Gere and S. P. Timoshenko, Mechanics of materials, Boston, PWS publishing company, 4th edition. [17 ] 錢偉長,彈性力學,台北巿,亞東書局,1991。 [18 ] J. E. Shigley and C. R. Mischke, Mechanical Engineering Desigh, New York, McGraw-Hill Book company, 5th edition, 1995. [19 ] 丁志華及管正平,“奈米壓痕量測系統簡介”,奈米通訊,第九卷第三期,pp.4-10。 [20 ] 黃湫鑌,“空用攝影偵照設備之減震定位平台”,國立清華大學動力機械系碩士論文,2002。 [21 ] K. B. Kwon and D. W. Cho, “A fluid dynamic analysis model of the ultra-precision cutting mechanism”, Annals of the CIRP, Vol.48, 1999, pp43-46. [22 ] 伍秀菁及汪若文編,光學量測儀器v.4,新竹市,國科會精儀中心,1998[民87 ]。 [23 ] http://www.minchali.net/index-c.htm. [24 ] C. Ullner, “Requirement of a robust method for the precise determination of the contact point in the depth sensing hardness test”, Measurement, Vol.27, 2000, pp.43-51. [25 ] A. H. Slocum, Precision machine design Englewood Cliffs, N.J., Prentice Hall, 1992.id NH0925311040 sid 913794 cfn 0 / id NH0925311041 auc 劉紘宇 tic 無暫停定速比共軛凸輪之輪廓設計與最佳化 adc 吳隆庸 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 101 kwc 無暫停 kwc 定速比 kwc 共軛凸輪 kwc 搖擺滾子從動件 kwc 向量表示法 abc 本文所探討之無暫停定速比共軛凸輪,使用搖擺滾子從動件共軛凸輪向量表示法,配合加速度為零與無暫停之位移運動曲線,可獲得原始的共軛凸輪輪廓。考慮凸輪帶動滾子轉動之軌跡,若將位移運動曲線加以延伸,可對原始輪廓不連續處加以連接,形成完整之共軛凸輪輪廓。在設計參數的部分,主要參數有軸心距、速比、搖臂長度、凸輪齒數、滾子半徑等。以上參數對於凸輪輪廓所產生的影響,亦加以討論。至於共軛凸輪輪廓設計參數之最佳化,以壓力角曲線之等效最大值最小化為目標。最佳化之拘束條件有:壓力角最大值須小於30°、避免凸輪輪廓過切、避免同層相鄰滾子干涉、限制滾子中心軌跡等;設計變數為速比、凸輪齒數、搖臂長度與滾子半徑等四個變數。以全域搜尋之方式尋找不同速比與凸輪齒數下之壓力角最佳值。因具有壓力角最佳值之參數組合並非唯一,故加入接觸比拘束條件再次進行最佳化,可得到完整之最佳化結果。最後並將無暫停定速比共軛凸輪與正齒輪進行比較。 tc 第一章 前言 1 1-1 概敘 1 1-2 文獻回顧 2 1-3 研究動機與目的 3 第二章 基本原理 5 2-1 平面機構的瞬心 5 2-2 搖擺滾子從動件凸輪輪廓向量表示法 6 2-3 搖擺滾子從動件共軛凸輪輪廓向量表示法 8 第三章 無暫停定速比之共軛凸輪輪廓設計 12 3-1 共軛凸輪運動曲線設計 12 3-1-1 上升區間 12 3-1-2 折返區間 15 3-1-3 共軛凸輪輪廓 18 3-2 各項參數對共軛凸輪輪廓之影響 22 3-2-1 起動角度 24 3-2-2 速比 25 3-2-3 凸輪齒數 27 3-2-4 滾子半徑 28 3-2-5 搖臂長度 29 第四章 無暫停定速比共軛凸輪之參數最佳化 31 4-1 拘束條件之設定 31 4-1-1 接觸比 31 4-1-2 壓力角 35 4-1-3 滾子中心軌跡 35 4-1-4 凸輪輪廓外形過切 38 4-1-5 同層相鄰滾子干涉 39 4-2 無暫停等速比共軛凸輪之參數最佳化 41 4-2-1 最佳化程式架構 43 4-2-1-1 壓力角最大值 43 4-2-1-2 求取壓力角最大值之程式架構 47 4-2-1-3 拘束條件之程式設定架構 49 4-2-2 無暫停等速比共軛凸輪參數最佳化之程式數據 49 4-2-3 單層無暫停等速比凸輪參數最佳化之程式數據 54 4-3 無暫停定速比共軛凸輪之參數最佳化 56 4-3-1 無暫停減速比共軛凸輪參數最佳化之程式數據 57 4-3-2 無暫停加速比共軛凸輪參數最佳化之程式數據 59 4-4 壓力角最佳化數據之分析與探討 60 4-4-1 壓力角最佳化數據之物理模型 60 4-4-1-1 壓力角最佳化數據之預測 61 4-4-1-2 壓力角最佳化預測數據之幾何證明 62 4-4-1-3 壓力角最佳化預測數據之驗證 64 4-4-2 壓力角最佳化之結果與探討 67 4-4-2-1 接觸比拘束條件 68 4-4-2-2 無暫停等速比共軛凸輪之最佳化與探討 72 4-4-2-3 單層無暫停等速比凸輪之最佳化與探討 75 4-4-2-4 無暫停定速比共軛凸輪之最佳化與探討 76 第五章 無暫停定速比共軛凸輪與正齒輪之比較 80 5-1 無暫停定速比共軛凸輪與漸開線齒輪之比較 80 5-1-1 漸開線齒輪之輪廓向量表示法 80 5-1-2 無暫停定速比共軛凸輪與漸開線齒輪輪廓之比較 83 5-1-3 無暫停定速比共軛凸輪與漸開線齒輪之比較 84 5-2 無暫停定速比共軛凸輪與擺線齒輪之比較 85 5-2-1 擺線齒輪輪廓向量表示法 86 5-2-2 無暫停定速比共軛凸輪與擺線齒輪輪廓之比較 88 5-2-3 銷子輪輪廓向量表示法 91 5-2-4 無暫停定速比共軛凸輪與銷子輪輪廓之比較 93 第六章 結論與建議 97 參考文獻 100rf [1 ] 顏鴻森,機構學,東華書局,台北,1999。 [2 ] K. J. Waldron and G. L. Kinezl, Kinematics, Dynamics, and Design of Machinery, John Wiley & Sons, New York, 1999. [3 ] F. Y. Chen, Mechanics and Design of Cam Mechanisms, Pergamon, New York, 1982. [4 ] P. W. Jensen, Cam Design and Manufacture, 2nd edition, Marcel Dekker, New York, 1987. [5 ] H. Makino, "Design Restrictions for the Parallel Index Cam (Part 1)", Journal of Japanese Society of Precision Engineering (In Japanese), Vol. 38, No. 8, 1972, pp. 638-644. [6 ] H. Makino, "Design Restrictions for the Parallel Index Cam (Part 2)", Journal of Japanese Society of Precision Engineering (in Japanese), Vol. 38, No. 11, 1972, pp. 929-932. [7 ] H. Makino, "Basic Analysis and Optimal Design of In-line Transfer Indexing Cam", Journal of Japanese Society of Precision Engineering (in Japanese), Vol. 45, No. 7, 1979, pp. 833-838. [8 ] T. Maeda and H. Makino, "Basic Analysis and Optimal Design of Internal Parallel Indexing Cam", Journal of Japanese Society of Precision Engineering (in Japanese), Vol. 46, No. 10, 1980, pp. 1297-1302. [9 ] G. Peng, Z. Xiao and H. Tian, "Optimal Configurations for parallel Shaft Indexing Mechanisms", Mechanism and Machine Theory, Vol. 23, No. 4, 1988, pp. 313-318. [10 ] 林逸仁,平行分度凸輪之最佳化設計,碩士論文,國立清華大學,新竹,1993。 [11 ] 林宏宇,擺動式滾子從動件共軛板凸輪之最佳化設計,碩士論文,國立清華大學,新竹,1993。 [12 ] M. A. Gonz?鴣ez-Palacios and J. Angeles, "The Generation of Contact Surfaces of Indexing Cam Mechanisms - A Unified Approach", Journal of Mechanical Design, Vol. 116, pp. 369-374, 1994. [13 ] 吳隆庸,洪嘉宏,張信良,"盤形凸輪輪廓的向量式表示法",技術學刊,17卷,1期,59-65頁,2002。 [14 ] L. I. Wu, "Calculating conjugate cam profiles by vector equations", Journal of Mechanical Engineering Science, Vol. 217, No. 10, pp. 1117 - 1123, 2003. [15 ] C. E. Wilson and J. P. Sadler, Kinematics and Dynamics of Machinery, 2nd edition, Harper Collins, New York, 1991. [16 ] G. J Etgen, Salas and Hille’s Calculus, 7th edition, John Wiley and & Sons, New York, 1995. [17 ] F. L. Litvin, Gear Geometry and Applied Theory, Prentice-Hall, New Jersey, 1994. [18 ] D. B. Dooner and A. A. Seireg, The Kinematic Geometry of Gearing, John Wiley and & Sons, New York, 1995. [19 ] 小栗富士雄、小栗達男 著,黃炎森 譯,標準機械設計圖表便覽,第三版,眾文圖書,台北,1993。 [20 ] J. S. Arora, Introduction to Optimum Design, McGraw-Hill, New York, 1989.id NH0925311041 sid 913796 cfn 0 / id NH0925311042 auc 邱思齊 tic CVD鑽石膜表面拋光技術之研究—熱化學拋光及化學輔助機械拋光 adc 左培倫 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 78 kwc 化學氣相沉積鑽石膜 kwc 熱化學拋光 kwc 化學輔助機械拋光 abc 利用化學氣相沉積法所製造的鑽石膜是一種廣泛被應用的鑽石鍍膜技術。由於其多晶鑽石結構的特性,造成必須在後段製程中加入拋光的步驟,將表面平坦化,以增加其應用之範圍。 tc 第一章 簡介 1-1 研究背景……………………………………………………………1 1-2 化學氣相沉積鑽石膜的生成………………………………………2 1-3 化學氣相沉積鑽石膜與表面聲波濾波器…………………………4 1-4 化學氣相沉積鑽石膜的拋光………………………………………6 1-4-1 熱化學拋光 …………………………………………………7 1-4-2 化學輔助機械拋光 …………………………………………8 第二章 研究動機 2-1 研究動機……………………………………………………………9 2-2 問題描述 …………………………………………………………12 第三章 文獻回顧 文獻回顧…………………………………………………………14 第四章 實驗規劃 4-1 實驗設備 …………………………………………………………21 4-2 實驗材料 …………………………………………………………28 4-3 實驗規劃 …………………………………………………………30 4-3-1熱化學拋光參數對表面粗度影響趨勢分析 ………………30 4-3-2 化學輔助機械拋光參數對表面粗度影響趨勢分析………32 4-3-3 建立表面粗糙度與拋光時間之關係………………………34 第五章 實驗結果 5-1熱化學拋光參數對表面粗度影響趨勢分析………………………35 5-1-1 轉速的影響趨勢分析………………………………………35 5-1-2 溫度的影響趨勢分析………………………………………38 5-1-3 通入氣體的影響趨勢分析…………………………………41 5-2化學輔助機械拋光參數對表面粗度影響趨勢分析………………43 5-2-1 轉速的影響趨勢分析………………………………………43 5-2-2 溫度的影響趨勢分析………………………………………46 5-2-3 加入磨粒種類的影響趨勢分析……………………………49 5-2-4 拋光液種類的影響趨勢分析………………………………52 5-3 拋光時間及表面粗度之趨勢分析 ………………………………55 5-3-1 熱化學拋光中拋光時間及表面粗度之趨勢分析…………55 5-3-2 化學輔助機械拋光中拋光時間及表面粗度之趨勢分析…59 第六章 分析與討論 6-1熱化學拋光及化學輔助機械拋光之拋光機制討論………………64 6-1-1 熱化學拋光之拋光機制……………………………………64 6-1-2化學輔助機械拋光之拋光機制 ……………………………66 6-2熱化學拋光及化學輔助機械拋光之異同及優劣…………………68 6-3最適化拋光參數設計………………………………………………71 6-3-1最適化拋光參數之建構流程 ………………………………71 6-3-2最適化拋光參數之設定 ……………………………………73 第七章 結論與展望 7-1 結論一:各項拋光參數之影響趨勢 ……………………………76 7-1-1 熱化學拋光參數影響趨勢…………………………………76 7-1-2 化學輔助機械拋光參數影響趨勢…………………………77 7-2 結論二:拋光機制與最適化拋光參數之建構 …………………79 7-2-1 拋光機制……………………………………………………79 7-2-2 最適化拋光參數之建構……………………………………79 7-3 未來展望 …………………………………………………………80 Reference………………………………………………………………81 圖表目錄 表1-1 鑽石的應用層面及跨足產業領域………………………………1 表1-2 各種SAW Filter基板材料之比較…………………………… 3 表1-3各種鑽石拋光技術的比較………………………………………6 表4-1 實驗設備規劃………………………………………………… 21 表4-2 掃描式電子顯微鏡S-570的規格 ……………………………27 表4-3 熱化學拋光實驗使用之CVD鑽石薄膜試片 …………………28 表4-4 化學輔助機械拋光使用之CVD鑽石薄膜試片 ………………29 表4-5 熱化學拋光主要製程參數設定 ………………………………30 表4-6 熱化學拋光轉速實驗 …………………………………………31 表4-7 熱化學拋光溫度實驗 …………………………………………31 表4-8 熱化學拋光通入氣體實驗 ……………………………………31 表4-9 化學輔助機械拋光主要製程參數設定 ………………………32 表4-10 化學輔助機械拋光轉速實驗…………………………………33 表4-11 化學輔助機械拋光溫度實驗…………………………………33 表4-12 化學輔助機械拋光拋光液種類實驗…………………………33 表4-13 化學輔助機械拋光磨粒種類實驗……………………………34 表4-14 粗糙度與時間關係實驗流程圖………………………………34 表5-1 熱化學拋光拋光時間實驗參數設定 …………………………55 表5-2 化學輔助機械拋光拋光時間實驗參數設定 …………………55 表6-1熱化學拋光及化學輔助機械拋光製程比較之異同 …………68 表6-2 最適化拋光參數之設定 ………………………………………73 圖1-1 CVD鑽石鍍膜機示意圖…………………………………………2 圖1-2 CVD鑽石膜生長示意圖…………………………………………3 圖1-3表面聲波濾波器示意圖…………………………………………4 圖1-4 熱化學拋光示意圖………………………………………………7 圖1-5 碳原子的擴散及石墨化示意圖…………………………………7 圖1-6 CAMPP工作示意圖………………………………………………8 圖3-1 M. Yoshikawa所開發之熱化學拋光機台 ……………………14 圖3-2 氫氣中的拋光機制 ……………………………………………14 圖3-3 拋光前(a)與拋光後(b)的里曼光譜分析圖 …………………15 圖3-4純鑽石薄膜隨拋光時間改變的XRD圖譜分析圖………………15 圖3-5 實驗中設計的熱化學拋光機台 ………………………………16 圖3-6 CAMPP機台 ……………………………………………………16 圖3-7 各種不同情況化學拋光液的結果 ……………………………17 圖3-8振動式熱化學拋光機示意圖--平坦化拋光 …………………18 圖3-9 振動式熱化學拋光機示意圖--斜面拋光 ……………………18 圖3-10 不同厚度介質層的CVD鑽石膜,壓力與裂痕長度的關係..19 圖3-11 CAMPP 拋光時間對表面粗糙度關係圖………………………20 圖4-1熱鎢絲CVD鑽石鍍膜機 ………………………………………22 圖4-2 熱鎢絲CVD示意圖 ……………………………………………22 圖4-3 熱化學拋光機 …………………………………………………23 圖4-4 熱化學拋光機系統設計 ………………………………………23 圖4-5 CAMPP拋光機台 ………………………………………………25 圖4-6 化學輔助機械拋光機台示意圖 ………………………………25 圖4-6 掃描式電子顯微鏡 ……………………………………………26 圖4-7 Wyko表面輪廓儀………………………………………………28 圖5-1 不同轉速實驗下的SEM影像(6000X)…………………………36 圖5-2 使用Wyko量測之表面粗度結果………………………………37 圖5-3 熱化學拋光轉速影響之趨勢結果 ……………………………38 圖5-4 不同溫度實驗下的SEM影像(6000X)…………………………39 圖5-5 使用Wyko量測之表面粗度結果………………………………40 圖5-6 熱化學拋光溫度影響之趨勢結果 ……………………………41 圖5-7 不同氣氛實驗下的SEM影像(6000X)…………………………41 圖5-8 使用Wyko量測之表面粗度結果………………………………42 圖5-9 轉速實驗的SEM影像(6000X)…………………………………44 圖5-10 使用Wyko量測之表面粗度結果 ……………………………45 圖5-11 化學輔助機械拋光轉速影響之趨勢結果……………………45 圖5-12 溫度實驗的SEM影像(6000X) ………………………………47 圖5-13 使用Wyko量測之表面粗度結果 ……………………………48 圖5-14 化學輔助機械拋光溫度影響之趨勢結果……………………48 圖5-15 磨粒種類實驗的SEM影像(6000X) …………………………50 圖5-16 使用Wyko量測之表面粗度結果 ……………………………51 圖5-17 化學輔助機械拋光磨粒種類影響之趨勢結果………………51 圖5-18 拋光液種類實驗的SEM影像…………………………………53 圖5-19 使用Wyko量測之表面粗度結果 ……………………………54 圖5-20 化學輔助機械拋光拋光液種類影響之趨勢結果……………54 圖5-21 熱化學拋光中拋光時間實驗之SEM影像……………………56 圖5-22 熱化學拋光拋光時間實驗之Wyko 2D影像…………………57 圖5-23 熱化學拋光時間影響之趨勢結果……………………………58 圖5-24 化學輔助機械拋光中拋光時間實驗之SEM影像……………60 圖5-25 熱化學拋光中拋光時間實驗之Wyko 2D影像………………61 圖5-26 化學輔助機械拋光材料移除示意圖…………………………62 圖5-27 化學輔助機械拋光時間影響之趨勢結果……………………63 圖6-1 熱化學拋光轉速與磨除率關係—理論值與實際值 …………65 圖6-2 化學輔助機械拋光轉速與磨除率關係—理論值與實際值 …67 圖6-3 化學輔助機械拋光表面刮痕SEM圖 …………………………69 圖6-4 熱化學拋光表面鑽石膜剝落SEM圖 …………………………70 圖6-5 最適化參數的建構流程圖……………………………………71rf 1 ] Tokura, Yoshikawa, Material Science 24 (1989) 2231. [2 ] Yoshikawa, Diamond Optics III, SPIE 1325 (1990) 210. [3 ] Tokura, Yang, Masanori Yoshikawa “Study on the polishing of chemically vapour deposited diamond film” Thin Solid Films 212 (1992) 49-55 [4 ] Choi, Jung, Kweon, “Surface characterization of diamond films polished by thermomechaincal polishing method” Thin Solid Films 279 (1996) 110-114 [5 ] Yoshikawa, Okuzumi, “Hot-iron-metal polishing machine for CVD diamond films and characteristics of the polished surfaces” Surface and Coatings Technology 88 (1996) 197-203 [6 ] Ramesham, Rose “Polishing of polycrystalline diamond by hot nickel surface” Thin Solid Films 320 (1998) 223-227 [7 ] Zaitsev, Kosaca, Richarz, Raiko, Job, Fries, Fahrner “Thermochemical Polishing of CVD diamond films” Diamond and Related Materials 7 (1998) 1108-1117 [8 ] Malshe, Park, Brown, Naseem “A review of techniques for polishing and planarizing chemically vapor-deposited (CVD) diamond films and substrates” Diamond and Related Materials 8 (1999) 1198-1213 [9 ] Herring, Jour. Phys. 21 (1950) 437 [10 ] Graebner, Jin “Chemical Vapor Deposited Diamond for Thermal Management” JOM June (1998) 52-55 [11 ] Ramesham, Roppel, Johnson “Characterization of polycrystalline diamond thin films grown on various substrates” Thin Solid Films 212 (1992) 96-103 [12 ] Bouwelen “Diamond polishing from different angles” Diamond and Related Materials 9 (2000) 925-928 [13 ] Iwai, Uematsu, Suzuki “High efficiency polishing of PCD with rotating metal disc” Department of Mechanical Systems Engineering, Toyama Prefectural University Kosugi, Toyama, 939-0398, Japan [14 ] Lin , Kuo, Chang “Improvement in adhesion of diamond films on cemented WC substrate with Ti–Si interlayers” Institute of Materials Science and Engineering, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30050, Taiwan [15 ] AJAY ; WILLIAM ; HAMEED “Apparatus for and method of polishing and planarizing polycrystalline diamonds, and polished and planarized polycrystalline diamonds and products made therefrom” US patent NO. US5725413 [16 ] Ollison , Brown , Malshe, Naseem, Ang “A comparison of mechanical lapping versus chemical-assisted mechanical polishing and planarization of chemical vapor deposited (CVD) diamond” The University of Arkansas, Fayetteville, AR 72701, USA [17 ] 宋健民, “鑽石合成” 全華圖書 (2000) [18 ] 宋健民, “超硬材料” 全華圖書 (2000) [19 ] Yen-Kang Liu “Study of Nanodiamond Based SAW Devices for Telecommunication” NTHU , 2003 [20 ] 王興民 ”熱化學拋光鑽石膜的製程研究” 清華大學動機系, 2003id NH0925311042 sid 915702 cfn 0 / id NH0925311043 auc 江政南 tic 利用遺傳演算法設計手術燈反射曲面 adc 蕭德瑛 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 67 kwc 手術燈 kwc 遺傳演算法 kwc 照度分佈 abc 隨著現今社會廣泛的運用照明設備,便利人類之生活,其中,反射式照明系統是最普遍的照明系統,在手術的進行時,對於照明的亮度以及均勻性則有更高的要求,本研究的目的在於提供一套有效的方法,用以設計反射曲面使其照明光域的照度分佈更為均勻,減少能源的浪費。 tc 一. 緒論--------------------------------------------------1 1.1研究動機----------------------------------------------------1 1.2文獻回顧----------------------------------------------------2 1.3研究方法----------------------------------------------------3 二. 理論模型----------------------------------------------6 2.1光學原理----------------------------------------------------6 2.2光線路徑模型------------------------------------------------6 2.2.1空間上的曲線------------------------------------------6 2.2.2二維空間中的光學路徑模型------------------------------8 2.2.3空間上的曲面-----------------------------------------10 2.2.4三維空間中的光學路徑模型-----------------------------12 2.3遺傳演算法基本思-------------------------------------------13 2.4遺傳演算法步驟---------------------------------------------14 2.5目標函數---------------------------------------------------17 三. 分析以及模擬-----------------------------------------23 3.1照度分析---------------------------------------------------23 3.1.1照度計算---------------------------------------------23 3.1.2照度轉換---------------------------------------------25 3.2 TracePro模擬----------------------------------------------27 3.2.1 TracePro簡介----------------------------------------27 3.2.2元件描述---------------------------------------------27 3.2.3模擬結果---------------------------------------------31 3.3結論-------------------------------------------------------34 四. 照度實驗---------------------------------------------35 4.1實驗目的---------------------------------------------------35 4.2手術燈照度的測量-------------------------------------------35 4.2.1實驗設備---------------------------------------------35 4.2.2實驗方法---------------------------------------------37 4.2.3實驗結果---------------------------------------------37 4.2.4實驗誤差---------------------------------------------39 4.3分析的改進-------------------------------------------------40 4.3.1照度計的影響-----------------------------------------41 4.3.2製造誤差---------------------------------------------42 4.3.3燈源的影響-------------------------------------------47 4.3.4手術燈組成方式的影響---------------------------------49 4.4結論-------------------------------------------------------53 五. 最佳化設計-------------------------------------------54 5.1重要參數---------------------------------------------------54 5.2目標函數---------------------------------------------------54 5.3設計結果---------------------------------------------------55 5.4結論-------------------------------------------------------61 六. 結論及研究建議---------------------------------------64 6.1結論-----------------------------------------------------------------------------------64 6.2未來方向-----------------------------------------------------------------------------65 6.3研究建議-----------------------------------------------------------------------------66 參考資料-------------------------------------------------67rf 【1】黃紹宗,”手術燈反射鏡面之設計與照度分析”國立清學碩士論文,2001。 【2】王小平,曹立明,”遺傳演算法—理論、應用與軟件實現”安西交通大學出版社,2002。 【3】周鵬程,”遺傳演算法原理與應用/活用Matlab” 全華出版社,2002。 【4】賴耿陽譯,” 照明工學原理及實用” 復漢出版社,1997。 【5】Y. Osamu & H. Kazuomi,”shadow-free lamp assembly” U.S. Pat. No.4459647,1984. 【6】U. Gampe , R. Marka , S. Greif & Jörg Eduard Hartge,”Medical lamp with component projector unit” (U.S. Pat. No.5800051,1998. 【7】張智星,”Matlab程式設計與應用”清蔚科技,2000。 【8】”Practical handbook of genetic algorithms” Boca Raton,1995. 【9】”Medical Electrical Equipment Particular requirements for the safety of surgical luminaries and luminaires for diagnosis In accordance with IEC-60601-2-41”. 【10】江昭龍,”應用改良型基因演算法於感應馬達最佳控制之研究 “國立中正大學博士論文,2000。id NH0925311043 sid 915703 cfn 0 / id NH0925311044 auc 周志賢 tic 應用次像素插值方法改善印刷電路板缺陷直接檢測之可行性評估 adc 林士傑 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 75 kwc 印刷電路板 kwc 直接比對 kwc 機械視覺 kwc 影像處理 abc 此研究之目的在探討利用次像素插值方法,以提高直接比對法之可行性。我們將利用印刷電路板上之定位點,計算標準影像與待測影像間之平移及旋轉誤差,再經由座標轉換後,利用次像素插值方法計算出參考標準影像,再利用直接比對法將參考標準影像與待測影像直接比對,並將缺陷位置圈選出來。此研究利用三種次像素插值方法:傅立葉轉換、線性內插法、立方內插法,並比較三種插值方法之計算時間、誤差總和平均及誤差平方總和均方根。計算時間上以線性內插法最快,立方內插法次之,傅立葉轉換最慢;在誤差總和平均及誤差平方總和均方根方面,三者間之差異極小。系統測試之印刷電路板為已插件之合格及不合格印刷電路板,不合格印刷電路板包含缺陷種類有橋接、小元件缺件及大元件缺件。測試發現,差異影像除缺陷所造成之影像差異外,還有印刷線條位置之差異,以及反光元件及較高之元件頂端所產生之光線差異。利用適當之遮罩及閥值可以在高(324 pixels/mm2)解析度下,將三種缺陷之位置圈選出來。 tc 中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 目錄 1 第二章 文獻回顧 8 2.1 直接比對法 8 2.2 次像素插值方法 11 2.3 文獻回顧結論 14 第三章 研究方法與步驟 17 3.1 平移誤差與旋轉誤差之計算 17 3.2 次像素插值方法 21 第四章 實驗規劃與結果 28 4.1 實驗規劃 28 4.2 實驗設備 29 4.3 插值方法比較 29 4.4 系統測試 34 第五章 結論與未來工作 69 5.1 結論及建議 69 5.2 未來工作 71 參考文獻 72rf 1. 林育興,「應用機械視覺檢測印刷電路板表面黏著元件演算法之評估與比較」,國立清華大學動力機械研究所碩士論文,2003. 2. Teoh, E. K., Mital, D. P., Lee, B. W. and Wee, L. K.,” Automated Visual Inspection of Surface Mount PCBs,” Industrial Electronics Society, 1990. IECON '90., 16th Annual Conference of IEEE, Vol. 1, pp. 576 -580, Pacific Grove, CA USA, Nov. 1990. 3. Teoh, E. K. and Mital, D. P.,” A Transputer-based Automated Visual Inspection System for Electronic Devices and PCBs,” Optics and lasers in Engineering, Vol. 22, No. 3, pp. 161-180, 1995. 4. Demir, D., Birecik, S., Kurugollu, F., Sezgin, M., Bucak, I. O., Sankur, B. and Anarim, E.,”Quality Inspection in PCBs and SMDs Using Computer Vision Techniques,” 20th International Conference on Industrial Electronics, Control and Instrumentation, 1994. IECON '94., Vol. 2, pp. 857 -861, Bologna, Italy, Sept. 1994. 5. Loh, H. H. and Lu, M. S.; “Printed Circuit Board Inspection Using Image Analysis,” International IEEE/IAS Conference on Industrial Automation and Control: Emerging Technologies, pp. 673 -677, Taipei, Taiwan, May, 1995. 6. 彭光裕,「應用電腦視覺技術於表面黏著元件印刷電路板之自動檢測新系統設計及開發」,國立交通大學工業工程與管理學系碩士論文,2000. 7. Wu, W. Y., Wang, M. J. and Liu, C. M., “Automated inspection of printed circuit boards through machine vision,” Computers in industry, Vol. 28, No. 2, pp. 103-111, May, 1996. 8. Ibrahim, Z., Al-Attas, S. A. R. and Aspar, Z., “Analysis of the wavelet-based image difference algorithm for pcb inspection,” Proceedings of the 41st SICE Annual Conference, Vol. 4, pp. 2108 -2113, Aug. 2002. 9. 楊榮華,「應用灰階共變異矩陣之多重指標於瑕疵檢測」,元智大學工業工程與管理研究所碩士論文,2002. 10. Keys, R., “Cubic Convolution Interpolation for Digital Image Processing,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 29, No. 6, pp. 1153 – 1160, Dec. 1981. 11. Reichenbach, S. E. and Geng, F., “Improved cubic convolution for two dimensional image reconstruction,” Nuclear Science Symposium Conference Record, Vol. 3, pp. 1775 – 1778, Nov. 2001. 12. Albiol, A., and Serra, J., “Morphological Image Enlargements,” Journal of Visual Communication and Image Representation, Vol.8, No. 4, pp. 367-383, 1997. 13. Chuah, C. S., and Leou, J. J., “An adaptive image interpolation algorithm for image/video processing,” Pattern Recognition, Vol. 34, pp. 2383-2393, 2001. 14. Chang, S.G., Cvetkovic, Z. and Vetterli, M., “Resolution enhancement of images using wavelet transform extrema extrapolation,” International Conference on Acoustics, Speech, and Signal Processing, Vol. 4, pp. 2379 – 2382, Detroit, MI USA, May, 1995. 15. 許惟勝,「多層次解析影像放大之研究」,國立台灣科技大學纖維及高分子工程研究所碩士論文,1999. 16. 謝東霖,「利用次像素技術於數位影像量測之研究」,國立清華大學動力機械研究所碩士論文,2003. 17. Nayar, S. K. and Nakagawa, Y. “Shape from focus: An effective approach for rough surfaces,” International Conference on Robotics and Automation, pp. 218-225, Cincinnati, OH USA, May, 1990. 18. Walsh D. and Raftery, A. E. “Accurate and efficient curve detection in images: the importance sampling Hough transform,” Pattern Recognition, Vol. 35, pp. 1421-1431, 2002. 19. Chen T. C. and Chung, K. L., “An efficient randomized algorithm for detecting circles,” Computer Vision and Image Understanding, Vol. 83, pp. 172-191, 2001. 20. 鍾國亮 教授著,「影像處理與電腦視覺」,東華書局,2002. 21. 吳成柯、戴善榮、程湘君與雲立實譯,「數位影像處理」,儒林出版社,2001.id NH0925311044 sid 915704 cfn 0 / id NH0925311045 auc 蔡典霖 tic 應用機械視覺於印刷電路板表面元件之檢測 adc 林士傑 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 77 kwc 電腦視覺 kwc 表面黏著元件 kwc 類神經網路 abc 在印刷電路版的組裝業中,雖然技術不斷的成熟、提升,但製程當中仍存有許多瑕疵,大致上分為四大類,包括有缺件、歪斜、反向、錫誤四種。本研究針對片狀電阻、片狀電容等元件做瑕疵檢測。 tc 目 錄 中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 IV 表目錄 VI 圖目錄 Ⅶ 第一章 緒論 01 1-1.前言 01 1-2.研究目的 02 1-3.元件缺陷種類及表面黏著元件之介紹 03 第二章 文獻回顧 08 2-1.光學檢測系統的評估指標 08 2-2.電路板元件檢測演算法 09 第三章 研究方法與步驟 19 3-1.元件資料格式及元件尺寸資料庫 20 3-2.新的檢測指標 20 3-3.類神經網路 22 第四章 實驗規劃與設備 34 4-1.實驗規劃 34 4-2.測試樣本的規劃 35 第五章 實驗結果與討論 39 5-1.演算法的測試結果 39 5-2.類神經網路訓練結果 41 5-3.類神經網路檢測結果 43 5-3.結論 45 第六章 結論與建議 56 6-1.結論 56 6-2.建議 57 參考文獻 58 附錄A 61 附錄B 72rf 參考文獻 [1 ] 丁志文, “影像處理於SMD元件定位之應用,” 國立台灣科技大學電機工程系碩士論文,” 2001. [2 ] 彭瑞勳, “移動框法在電路板上IC的檢測,” 國立交通大學機械工程系碩士論文, 2000. [3 ] E.K. Teoh, D.P. Mital, B.W. Lee, L.K. Wee, “Automated Visual Inspection of Surface Mount PCBs ,” Industrial Electronics Society, 16th Annual Conference of IEEE , Vol. 1, pp. 576-580, 1990. [4 ] 林育興, “應用機械視覺於印刷電路板表面著裝元件檢測演算法之評估與比較,” 國立大學清華大學動力機械工程系碩士論文, 2003. [5 ] Horng-Hai Loh, Ming-Sing Lu, “Printed Circuit Board Inspection Using Image Analysis,” IEEE Transactions on Industry Applications, Vol. 35, No. 2, pp. 426-432, 1999. [6 ] 彭光裕, “應用電腦視覺技術於表面黏著元件印刷電路板之自動檢測新系統設計及開發,” 國立交通大學工業工程與管理學系碩士論文, 2000. [7 ] D. Demir, S. Birecik, F. Kurugollu, M. Sezgin, I.O. Bucak, B. Sankur, E. Anarim, “Quality Inspection in PCBs and SMDs Using Computer Vision Techniques,” Industrial Electronics, Control and Instrumentation, 20th International Conference on IECON '94, Vol. 2, pp. 857-861, 1994. [8 ] M. Moganti, F. Ercal, “Automatic PCB inspection systems,” Potentials, IEEE, Vol. 14, No. 3, pp. 6-10, 1995. [9 ] M. Moganti, F. Ercal, “Automatic PCB inspection Algorithms : A Survey ,” Computer Vision and Image Understanding, Vol. 63, No. 2, pp. 287-313, 1996. [10 ] M.H. Tatibana, R. de A. Lotufo, “Novel automatic PCB inspection technique based on connectivity,” Computer Graphics and Image Processing, X Brazilian Symposium on Proceedings, pp.187-197, 1997. [11 ] 邱劭農, “銲點檢驗之照明設計與特徵萃取,” 國立清華大學動力機械工程學系碩士論文, 2003. [12 ] P.J. Besl, E.J. Delp, R. Jain, “Automatic visual solder joint inspection,” IEEE Journal of Robotics and Automation, vRA-1, No. 1, pp. 42-56, 1985. [13 ] S.L. Bartlett, P.J. Besl, R. Jain, “Automatic solder joint inspection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 10, No. 1, pp. 31-43, 1988. [14 ] M.R. Driels, D.J. Nolan, “Automatic defect classification of printed wiring board solder joints,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 13, No. 2, pp. 331-340, 1990. [15 ] A.C. Sanderson, L.E. Weiss, S.K. Nayar, “Structured highlight inspection of specular surfaces,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 10, No. 1, pp.44-55, 1988. [16 ] S.K. Nayar, A.C. Sanderson, L.E. Weiss, D.A. Simon, “Specular surface inspection using structured highlight and Gaussian images,” IEEE Transactions on Robotics and Automation, Vol. 6, No. 2, pp. 208-218, 1990. [17 ] D.W. Capson, S.K. Eng, “A tiered-color illumination approach for machine inspection of solder joints,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 10, No. 3, pp.387-393, 1988. [18 ] J.H. Kim, H.S. Cho, “Neural network-based inspection of solder joints using a circular illumination,” Image and Vision Computing, Vol. 13, No. 6, pp. 479-490, 1995. [19 ] K.W. Ko, H.S. Cho, “Solder joint inspection using a neural network and fuzzy rule-based classification method,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 23, No. 2, pp. 93-103, 2000. [20 ] T.H. Kim, T.H. Cho, Y.S. Moon, S.H. Park, “Visual inspection system for the classification of solder joints,” Pattern Recognition, Vol. 32, No. 4, pp. 565-575, 1999. [21 ] R. Schneider, A. Schick, “High-speed optical three-dimensional scanner for automatic solder joint inspection,” Society of Photo-Optical Instrumentation Engineers, Vol. 36, No. 10, pp. 2878-2885, 1997. [22 ] O. Oyeleye, E.A. Lehtihet, “Automatic visual inspection of surface mount solder joint defects,” Int. J. Prod. Res., Vol. 37, No. 6, pp.1217-1242, 1999. [23 ] R. W. Woodgate, “The Handbook of Machine Soldering, SMT and TH,” John Wiley and Sons, Inc, 1996. [24 ] Foley, V. Dam, “Introduction to Computer Graphics,” Addison - Wesley Publication Co., 1994. [25 ] M. Moganti, F. Ercal, “A subpattern level inspection system for printed circuit boards,” Computer Vision and Image Understanding, Vol. 70, No. 1, pp. 51-62, 1998. [26 ] M. Moganti, F. Ercal, “Segmentation of printed circuit board images into basic patterns,” Computer Vision and Image Understanding, Vol. 70, No. 1, pp. 74-86, 1998. [27 ] Z. C. Chen, The automatic optical inspection of surface mounting devices, Master Dissertation, Department of Power Mechanical Engineering, National Tsin- Hua University, 2003. [28 ] 羅華強,類神經網路-MATLAB的應用,清蔚科技股份有限公司,2001. [29 ] 蘇木春,張孝德,機械學習:類神經網路、模糊系統以及基因演算法則,全華科技圖書股份有限公司,1999. [30 ] 周鵬程,類神經網路入門,全華科技圖書股份有限公司,2002.id NH0925311045 sid 915706 cfn 0 / id NH0925311046 auc 孫允祥 tic 多連桿沖床之電腦輔助機構設計 adc 左培倫 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 84 kwc 史蒂芬生三型滑塊六連桿 kwc 肘節構形 abc 摘要 tc 多連桿沖床之電腦輔助機構設計 目錄 第一章 緒論 1 1.1 沖床機構簡介 1 1.2 塑性沖壓加工特性 2 1.3 肘節構形 6 1.4 電腦輔助機構設計 8 第二章 史蒂芬生三型滑塊六連桿沖床機構合成 9 2.1 史蒂芬生三型滑塊六連桿機構簡介 9 2.2 史蒂芬生三型滑塊六連桿機構模型及運動情形觀察 12 2.3 具下死點肘節特性史蒂芬生三型滑塊六連桿機構合成 14 2.3.1 合成方式簡介 14 2.3.2 合程方程式推導 14 2.3.3 合成方法輸出入參數整理 25 2.4 合成限制 28 第三章 電腦輔助設計及設計流程 29 3.1 合成流程 29 3.1.1 設計參數輸入 29 2.3.2 解答平面選取 31 3.2 分析流程 38 3.2.1 分析參數輸入 38 3.2.2 運動分析 41 3.2.3 桿件內力分析 46 3.2.4 行程能力分析 50 第四章 合成及分析實例 52 4.1 合成實例-合成具下死點肘節構形的史蒂芬生三型滑塊六連桿機構 52 4.1.1 合成實例一 52 4.1.2 合成實例二 59 4.1.3 合成實例三 68 4.2 分析實例-三接頭桿夾角對能力發生點速度所造成的影響 75 4.2.1 分析實例一 75 4.2.2 分析實例二 78 4.2.3 分析實例三 80 第五章 結論 81 參考文獻……………………………………………………………… 83 圖目錄 圖1-1 下死點呈肘節構形的史蒂芬生三型滑塊六連桿機構模型圖 7 圖2-1 史蒂芬生三型滑塊六連桿機構模型圖 9 圖2-2 史蒂芬生三型滑塊六連桿機構合成區塊模型圖 10 圖2-3 下死點呈肘節構形的史蒂芬生三型滑塊六連桿機構模型圖 13 圖2-4 合成方法-輸入組四連桿機構模型圖 15 圖2-5 合成方法-輸出組滑塊五連桿機構模型圖 21 圖2-6 下死點時輸出組滑塊五連桿構形圖 23 圖2-7 史蒂芬生三型滑塊六連桿機構模型圖 26 圖3-1 合成程式介面圖 29 圖3-2 機構配置不同所造成差異 32 圖3-3 機構合成程式操作步驟順序 36 圖3-4 機構合成流程圖 37 圖3-5 分析程式介面圖 38 圖3-6 滑塊運動曲線圖 40 圖3-7 行程能力曲線圖 40 圖3-8 史蒂芬生三型滑塊六連桿位置分析區塊 41 圖3-9 運動分析流程圖 45 圖3-10 史蒂芬生三型滑塊六連桿力分析區塊 46 圖3-11 史蒂芬生三型滑塊六連桿力分析區塊之一 47 圖3-12 史蒂芬生三型滑塊六連桿力分析區塊之二 48 圖3-13 史蒂芬生三型滑塊六連桿力分析區塊之三 49 圖3-14 行程能力曲線說明圖 50 圖3-15 行程能力分析流程圖 51 圖4-1 合成實例一機構特性指標設定 53 圖4-2 合成實例一解答平面圖 55 圖4-3 合成實例一各解答的機構構形圖及所合成的機構參數 56 圖4-4 合成實例一各解答的滑塊運動曲線圖及行程能力曲線圖 57 圖4-5 合成實例二機構特性指標設定 61 圖4-6 合成實例二解答平面圖 63 圖4-7 合成實例二各解答的機構構形圖及所合成的機構參數 64 圖4-8 合成實例二各解答的滑塊運動曲線圖及行程能力曲線圖 65 圖4-9 合成實例三機構特性指標設定 68 圖4-10 合成實例三解答平面圖 70 圖4-11 合成實例三各解答的機構構形圖及所合成的機構參數 71 圖4-12 合成實例三各解答的滑塊運動曲線圖及行程能力曲線圖 72 圖4-13 分析實例一β值改變對能力發生點速度變化相關圖 76 圖4-14 分析實例二β值改變對能力發生點速度變化相關圖 78 圖4-15 分析實例二β值改變對能力發生點速度變化相關圖 80 表目錄 表2-1 史蒂芬生三型滑塊六連桿機構合成輸出及輸入參數 11 表2-2 合成輸入組四連桿所需輸入參數類型及其意義 16 表2-3 合成輸出組滑塊五連桿所需輸入參數類型及其意義 22 表2-4 具下死點肘節特性的史蒂芬生三型滑塊六連桿機構 合成方法輸出及輸入參數 27 表3-1 分析程式工具列功能 39 表4-1 合成實例一合成限制 52 表4-2 合成實例一合成參數輸入 54 表4-3 合成實例一所選解答 55 表4-4 合成實例二合成限制 59 表4-5 合成實例二合成參數輸入 62 表4-6 合成實例二所選解答 63 表4-7 合成實例三合成限制 67 表4-8 合成實例三合成參數輸入 69 表4-9 合成實例三所選解答 70 表4-10 分析實例一史蒂芬生三型滑塊六機構尺寸 75 表4-11 分析實例二史蒂芬生三型滑塊六機構尺寸 77 表4-12 分析實例二史蒂芬生三型滑塊六機構尺寸 79rf 參考文獻 1. 蘇貴福編譯,薄板之沖床加工,全華科技圖書,民國82年。 2. 梁克欽,淨成型沖床之電腦輔助機構設計之研究,碩士論文,國立清華大學動力機械工程學系,民國89年6月。 3. 張政泰,史蒂芬生三型六連桿機構在沖床上的合成與應用,碩士 論文,國立清華大學動力機械工程學系,民國八十五年六月。 4. 黃艦緯,精密連桿沖床電腦輔助機構設計之研究,碩士論文,國立清華大學動力機械工程學系,民國91年七月。 5. Barker, C. R., and Tso Pei-Lum, “Characteristic Surface for Three Position Functaion Generation With Planar Four Bar Mechanisms”, Journal of mechanisms, Transmissions and Automation in design, Trans.ASME, Vol. 111,March 1989, pp.104-109. 6. Barker, C. R., and Baumann, J.”Characteristic Surface for Three Position Motion Generation With Planar Four Bar Mechanism”, Journal of Mechanisms, Transmission, and Automation in Design, Vol. 109, June 1987, pp.183-188. 7. Barker, C. R., and Tso Pei-Lum, “Three Position Path Generation Synthesis of Planar Four Bar Mechanisms using SYNTRA,” ASME Mechanism Conference, 1988. 8. Barker, C. R., “A Completely Classification of Planar Four-Bar Linkage”, Mechanism and Machine Theory. Vol. 20, No.6,1985, pp.535-554. 9. Barker, C. R., and Jeng Yew-Ren, “Range of The Six Fundamental Position Angles of A Planar Four-Bar Mechanism”, Mechanism and Machine Theory, Vol. 20, No.4, 1985,pp. 329-344. 10. 顏鴻森,機構學,東華書局,民國八十六年五月。 11. 余煥騰、陳適範,金屬塑性加工學,全華科技圖書,民國82年。 12. 林文樹等,塑性加工學,三民書局,民國75年。 13. 戴宜傑,“肘節式沖床之機構設計”,機械月刊,第十六卷第十一期, 民國79年11月,136頁至140頁。 14. 吳隆庸,平面連桿機構的奇異構形,博士論文,國立成功大學機械工程研究所,民國76年10月。id NH0925311046 sid 915707 cfn 0 / id NH0925311047 auc 袁世駿 tic 結合電潤濕微液滴操作平台之磁珠生化檢測系統 adc 楊鏡堂 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 122 kwc 電潤濕 kwc 磁珠 kwc 微液滴 kwc 微電感 kwc 磁性分離技術 kwc 免疫分析檢測 abc 摘 要 rf 第七章 參文獻 [1 ] C. H. Ahn, M. G. Allen, W. Trimmer, Y. J. Jun, and S. Erramilli, “A Fully Integrated Micromachined Magnetic Particle Separator,” IEEE/ASME Journal of Microelectromechanical Systems, Vol. 5, No. 3, 1996, pp. 151-158. [2 ] C. H. Ahn, and M. G. Allen, “Micromachined Planar Inductors on Silicon Wafers for MEMS Applications,” IEEE Trans. on Industrial Electronics (Special Issue for MEMS), Vol. 45, No. 6, 1998, pp. 866-876. [3 ] C. H. Ahn, and M. G. Allen, “A Planar Micromachined Spiral Inductor for Integrated Magnetic Microactuator Applications,” Journal of Micromechanics and Microengineering, Vol. 3, 1993, pp. 1-9. [4 ] D. J. Sadler, W. Zhang, C. H. Ahn, H. J. Kim, and S. H. Han, “Micromachined Semi-Encapsulated Spiral Inductors for MEMS Applications,” IEEE Trans. on Magnetics, Vol. 33, 1997, pp. 3319-3321. [5 ] C. H. Ahn, and M. G. Allen, “A Fully Integrated Surface Micromachined Magnetic Microactuator with a Multilevel Meander Magnetic Core,” IEEE/ASME Journal of Microelectromechanical Systems, Vol. 2, No. 1, 1993, pp. 15-22. [6 ] C. H. Ahn, Y. J. Kim, and M. G. Allen, “A Planar Variable Reluctance Magnetic Micromotor with Fully Integrated Stators,” IEEE/ASME Journal of Microelectromechanical Systems, Vol. 2, No. 4, 1993, pp. 165-173. [7 ] J. W. Choi, T. M. Liakopoulos, and C. H. Ahn, “An On-Chip Magnetic Bead Separator Using Spiral Electromagnets with Semi-Encapsulated Permalloy,” Biosensors and Bioelectronics, Vol. 16, No. 6, 2001, pp. 409-416. 120 [8 ] T. M. Liakopoulos, J. W. Choi, and C. H. Ahn, “A Bio-Magnetic Bead Separator on Glass Chips Using Semi-Encapsulated Spiral Electromagnets,” Technical Digest of the 9th International Conference on Solid-State Sensors and Actuators (Transducers '97), Chicago, IL, June 16-19, 1997, pp. 485-488. [9 ] J. W. Choi, C. H. Ahn, S. Bhansali, and H. T. Henderson, “A New Magnetic Bead-Based, Filterless Bio-Separator with Planar Electromagnet Surfaces for Integrated Bio-Detection Systems,” Sensors and Actuators B, Vol. 68, 2000, pp. 34-39. [10 ] J. W. Choi, K. W. Oh, J. H. Thomas, W. R. Heineman, H. B. Halsall, J. H. Nevin, A. J. Helmicki, H. T. Henderson, and C. H. Ahn, “An Integrate Microfluidic Biochemical Detection System with Magnetic Bead-Based Sampling and Analysis Capabilities,” Proceedings of the 14th IEEE MEMS Workshop (MEMS 2001), Interlaken, Switzerland, 2001, pp. 447-450. [11 ] W. R. Heineman; J. H. Thomas; C. A. Wijayawardhana; H. B. Halsall; T. H. Ridgway; J. W. Choi; K. W. Oh; C. Ahn; S. Darmatilleke; P. Medis; and T. H. Henderson, “BioMEMS: Electrochemical Immunoassay with Microfluidic Systems,” Analytical Sciences, Vol. 17, 2001, pp. 281-284. [12 ] J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C. J. Kim, “Electrowetting and Electrowetting-on-Dielectric for Microscale Liquid Handling,” Sensors and Actuators, Vol. A95, 2002, pp. 259-268. [13 ] S. K. Cho, H. Moon, and C. J. Kim, “Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits,” IEEE/ASME Journal of Microelectromechenical Systems, Vol. 12, No. 1, Feb. 2003, pp. 70-80. 121 [14 ] M.G. Pollack, R. B. Fair, and A.D. Shenderov, “Electrowetting-Based Actuation of Liquid Droplets for Microfluidic Applications,” Applied Physics Letters, Vol. 77 (11), 2000, pp. 1725-1726. [15 ] R. B. Fair, V. Srinivasn, and H. Ren, P. Paik, V. K. Pamula, M. G. Pollack, "Electrowetting-based On-Chip Sample Processing for Integrated Microfluidics," IEEE Inter. Electron Devices Meeting (IEDM) 2003. [16 ] V. K. Pamula, P. Paik, J. Venkatraman, M.G. Pollack, and R.B. Fair, “Microfluidic Electrowetting-Based Droplet Mixing,” Proceedings of MEMS Conference 2001, Berkeley, pp. 8-10. [17 ] J. Fowler, H. Moon, and C. J. Kim, “Enhancement of Mixing by Droplet-Based Microfluidics,” Proceedings of IEEE Conf. on MEMS, Las Vegas, NV, Jan. 2002, pp. 97-100. [18 ] P. Paik , V. K. Pamula , M. G. Pollack and R. B. Fair, "Electrowetting-based droplet mixers for microfluidic systems," Lab on a Chip, vol 3, 2003, pp. 28-33. [19 ] P. Paik , V. K. Pamula, and R. B. Fair, "Rapid droplet mixers for digital microfluidic systems," Lab on a Chip, vol.3, 2003, pp. 253-259. [20 ] S. K. Fan, C. Hashi, and C. J. Kim, “Manipulation of Multiple Droplets on NxM Grid by Cross-Reference EWOD Driving Scheme and Pressure-Contact Packaging,” Proceedings of IEEE Conf. on MEMS, Kyoto, Japan, Jan. 2003, pp. 694-697. [21 ] S. K. Fan, P. P. de Guzman, and C. J. Kim, “EWOD Driving of Droplet on NxM Grid Using Single-Layer Electrode Patterns,” Solid-State Sensor, 122 Actuator, and Microsystems Workshop, Hilton Head Island, SC, June 2002, pp. [22 ] P. Y. Chiou, and M. C. Wu, “Optical Actuation of Microfluidics Based on Optp-Electrowetting,” Solid-State Sensor, Actuator, and Microsystems Workshop, Hilton Head Island, SC, June 2002, pp. 269-272.id NH0925311047 sid 913704 cfn 0 / id NH0925311048 auc 廖偉全 tic 使用大撓度理論探討奈米探針之結構行為及其參數化設計 adc 江國寧 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 105 kwc 原子力顯微鏡 kwc 奈米探針 kwc 解析度 kwc 大撓度理論 kwc 共振頻率 kwc 彈簧常數 kwc 有限元素法 kwc 奈微機電加工製程 kwc 掃瞄式探針微影術 kwc 分子改質 kwc 奈米探管 kwc 陣列式探針 kwc 接觸式 kwc 非接觸式 kwc 輕敲式 abc 在奈米科技發展中,原子力顯微鏡(AFM)是目前最廣為應用之掃瞄式探針顯微鏡(SPM)。具備高解析度之原子力顯微鏡除了可進行奈米等級量測的功能外,尚可應用於製造奈米材料、奈米元件、奈米加工與高密度資料儲存技術。而探針為原子力顯微鏡極關鍵的部分,其基本結構是由基座、懸臂樑及附於樑前端之尖銳針尖所組成。其中,探針針尖必須達奈米等級並具高深寬比,方可獲得高解析度的樣品表面形貌,並依所需AFM的操作模式而選用適當之彈簧常數和共振頻率的懸臂樑探針。 rf 參考文獻 1. G. Binnig, C. F. Quate,, and C. Gerber, “Atomic Force Microscope”, Physical Review Letters, vol. 56, pp. 930-933, 1986. 2. Y. Martin, C. C. Williams, and H. K. Wickramasinghe, “Atomic force microscope-force mapping and profiling on a sub 100-Å scale”, Journal of Applied Physics, vol. 61, pp. 4723-4729, 1987 3. Q. Zhong, D. Inniss, K. Kjoller, and V. B. Elings, “Fractured polymer/silica surface studied by tapping mode atomic force microscopy”, Surface Science Letters, vol. 290, pp. 688-692, 1993. 4. Y. Martin and H. K. Wickramasinghe, “Magnetic imaging by ``force microscopy'' with 1000 Å resolution”, Applied Physics Letters, vol. 50, pp. 1455-1457, 1987. 5. A. Wadas, J. Moreland, P. Rice, and R. R. Katti, “Magnetic force microscopy images of magnetic garnet with thin-film magnetic tip”, Applied Physics Letters, vol. 64, pp. 1156-1158, 1994. 6. P. R. Krauss and S. Y. Chou, “Fabrication of planar quantum magnetic disk structure using electron beam lithography, reactive ion etching, and chemical mechanical polishing”, Journal of Vacuum Science & Technology B, vol. 13, pp. 2850-2852, 1995. 7. H. J. Mamin and D. Rugar, “Thermomechanical writing with an atomic force microscope tip”, Applied Physics Letters, vol. 61, pp. 1003-1005, 1992. 8. H. J. Mamin, L. S. Fan, S. Hoen, D. Rugar, “Tip-based data storage using micromechanical cantilevers”, Sensors and Actuators A, vol. 48, pp. 215-219, 1995. 9. M. I. Lutwyche, M. Despont, U. Drechsler, U. Dürig, W. Häberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, and P. Vettiger, “Highly parallel data storage system based on scanning probe arrays”, Applied Physics Letters, vol. 77, pp. 3293-3295, 2000. 10. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, “Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air”, Applied Physics Letters, vol. 56, pp. 2001-2003, 1990. 11. A. Majumdar, P. I. Oden, J. P. Carrejo, L. A. Nagahara, J. J. Graham, and J. Alexander, “Nanometer-scale lithography using the atomic force microscope”, Applied Physics Letters, vol. 61, pp. 2293-2295, 1992. 12. E. S. Snow and P. M. Campbell, “Fabrication of Si nanostructures with an atomic force microscope”, Applied Physics Letters, vol. 64, pp. 1932-1934, 1994. 13. F. S.-S. Chien, C.-L. Wu, Y.-C. Chou, T. T. Chen, S. Gwo, and W.-F. Hsieh, “Nanomachining of (110)-oriented silicon by scanning probe lithography and anisotropic wet etching”, Applied Physics Letters, vol. 75, pp. 2429-2431, 1999. 14. M. Zhang, D. Bullen1, S. W. Chung, S. Hong, K. S. Ryu, Z. Fan, C. A. Mirkin, and C. Liu, “A MEMS nanoplotter with high-density parallel dip-pen nanolithography probe arrays”, Nanotechnology, vol. 13, pp. 212–217, 2002. 15. G. Meyer and N. M. Amer, “Novel optical approach to atomic force microscopy”, Applied Physics Letters, vol. 53, pp. 1045-1047, 1988. 16. M. Tortonese, R. C. Barrett, and C. F. Quate, “Atomic resolution with an atomic force microscope using piezoresistive detection”, Applied Physics Letters, vol. 62, pp. 834-836, 1993. 17. T. R. Albrecht, S. Akamine, T. E. Carver, and C. F. Quate, “Microfabrication of cantilever styli for the atomic force microscope”, Journal of Vacuum Science & Technology A, vol. 8, pp. 3386-3396, 1990. 18. A. Folch, M. S. Wrighton, and M. A. Schmidt, “Microfabrication of Oxidation-Sharpened Silicon Tips on Silicon Nitride Cantilevers for Atomic Force Microscopy”, JOURNAL OF MICROELECTRO- -MECHANICAL SYSTEMS, vol. 6, pp. 303-306, 1997. 19. C. Liu and R. Gamble, “Mass producible monolithic silicon probes for scanning probe microscopes”, Sensors and Actuators A, vol. 71, pp. 233-237, 1998. 20. J. P. Cleveland, S. Manne, D. Bocek, and P. K. Hansma, “A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy”, Review of Scientific Instruments, vol. 64, pp. 403-405, 1993. 21. J. D. Holbery, V. L. Eden, M. Sarikaya, and R. M. Fisfer, “Experimental determination of scanning probe microscope cantilever spring constants utilizing a Nanoindentation apparatus”, Review of Scientific Instruments, vol. 71, pp. 3769-3776, 2000. 22. S. K. Jericho, and M. H. Jericho, “Device for the determination of spring constants of atomic force microscope cantilevers and micromachined springs”, Review of Scientific Instruments, vol. 73, pp. 2483-2485, 2002. 23. R. C. Hibbeler, “MECHANICS of MATERIALS”, 1997. 24. J. E. Sader, I. Larson, P. Mulvaney, and Lee R. White, “Method for the calibration of atomic force microscope cantilevers”, Review of Scientific Instruments, vol. 66, pp. 3789-3798, 1995. 25. K. E. Bisshopp, and D. C. Drucker, “Large deflection of cantilever beams”, Quarterly of Applied Math, vol. 3, pp. 272-275, 1945. 26. J. H. Lau, “Large deflection of cantilever beam”, Journal of the Engineering Mechanics Division, ASCE, vol. 107, pp. 259-264, 1981. 27. T. Belẻndez, C. Neipp, and A. Belẻndez, “Large and small deflections of a cantilever beam”, EUROPEAN JOURNAL OF PHYSICS, vol. 23, pp. 371-379, 2002. 28. Rao, and S. Sigiresu, “Mechanical vibrations”, 1990. 29. V. J. Morris, A. R. Kirby, and A. P. Gunning, “Atomic force microscopy for biologists”, 1999. 30. K. S. Birdi, “Scanning probe microscopes :applications in science and technology”, 2003. 31. Nano Technology Research Center of ITRI,http://www.ntrc.itri.org.tw/ 32. MEMS Clearinghouse, http://www.memsnet.org 33.http://www.physics.leidenuniv.nl/sections/cm/ip/group/Principle_of_SPM.htm 34. 化工科技與商情, http://www.chemnet.com.tw/ 35. 中國材料科學學會, http://140.114.18.41/ 36. TRIPLE-O Microscopy, Germany, http://www.triple-o.de 37. M. Tortonese, “Cantilevers and Tips for Atomic Force Microscopy”, IEEE ENGINEERING IN MEDICINE AND BIOLOGY, PP. 28-33, 1997. 38. C. H. Tsai, “Fabrication and actuation of an Integrated scanning probe array”, 奈米工程暨微系統技術研討會. 39. 工研院電子所微系統組(ITRI/ERSO/MEMS). 40. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, “Surface Studies by Scanning Tunneling Microscopy”, Physical Review Letters, vol. 49, pp. 57-61, 1982. 41. D. M. Eigler and E. K. Schweizer, “Positioning single atoms with a scanning tunnelling microscope”, Nature, vol. 344, pp. 524-525, 1990. 42. J. Y. Chen, C. T. Lin, W. C. Liao, H. C. Su, C. H. Tsai, K. N. Chiang, “A New Nano-Probe Using Micro Assembly Transfer”, First International Workshop on Nano & Bio-Electronics Packaging, Atlanta, USA, 22-23 March, 2004. 43. C. Te Lin, W. C. Liao, J. Y. Chen, H. C. Su, C. H. Tsia, K. N. Chiang, “Design and Analysis of Nano-Probe of AFM Using Large Deflection Theory”, The 3rd Cross-Strait Workshop on Nano Science and Technology (CSWNST-3), Hualien, Taiwan, 27-29 April, 2004.id NH0925311048 sid 913772 cfn 0 / id NH0925311049 auc 楊智涵 tic 孔距對貼片修補之碳纖維/環氧樹脂複合材料之靜態與疲勞行為的影響 adc 葉銘泉 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 78 kwc 複合材料 kwc 靜態 kwc 疲勞 kwc 貼片修補 kwc 孔距 abc 複合材料所使用的範圍包含航太汽車等工業,而元件在製造過程中會有無法避免的缺陷產生,到使用階段或運作時承受靜態或往復持續的動態負荷而產生損傷,加上複合材料零件或構造由於設計的結構 tc 表目錄 Ⅲ 圖目錄 Ⅳ 第一章 前言及研究動機 1 第二章 文獻回顧 4 2-1 Graphite/epoxy複合材料介紹 4 2-2 複合材料疲勞性質 5 2-3 疲勞破壞機制 5 2-4 影響疲勞因素 6 2-5 應力(S)與破壞週次(Nf)間的關係 7 2-6 具圓孔複合材料的特性 8 2-7 複合材料的修補 14 第三章 實驗內容及程序 17 3-1 實驗材料與試劑 17 3-2 實驗儀器及設備 17 3-3 實驗流程 19 3-4 試片製作及檢測 19 3-5 實驗方法與程序 22 3-6 試片使用數量 24 第四章 結果與討論 26 4-1 靜態拉伸試驗 26 4-2 拉伸疲勞試驗 28 4-3 疲勞破壞型態 34 第五章 結論 37 參考文獻 39 附表 44 附圖 50rf 1.E. Persson, I. Eriksson and L. Zackrisson, “Effects of hole machining defects on strength and fatigue life of composite laminates,” Composite Part A, Vol.28A, 1997, pp.141-151. 2.J. L. Phillips and R. T. Parker, “Fastener Hole Considerations,”Machining, Assembly, and Assembly Forms, 1998, pp.712-715. 3.中國樹脂基複合材料網, “www.ourfrp.com”. 4.H. O. Fuch and R. I. Stephens, “Metal Fatigue in Engineering,” John Willy and Sons, New York, 1980. 5.D. S. Saunders and G. Clark, “Fatigue Damage in Composite Laminates," Materials Forum, Vol.17, 1993, pp.309-331. 6.R. D. Jamison, K. Schulte, K. L. Reifsnider and W. W. Stinchcomb, “Characterization and Analysis of Damage Mechanisms in Tension-Tension Fatigue of Graphite/Epoxy Laminates,” Effects of Defects in Composite Materials, ASTM STP 836, American Society for Testing and Materials, 1984, pp.21-55. 7.K. L. Reifsnider, E. G. Henneke, W. W. Stinchcomb and J. C. Duke, “Damage Mechanics and NDE of Composite Laminates,” Mechanics of Composite Materials, Recent Advance, Z. Hashin and C. T. Herakovich, eds., Pergamon Press, New York, 1983, pp.399-420. 8.W. Hwnag and K. S. Han, “Fatigue of Composites Fatigue Modulus Concept and Life Prediction,” Journal of Composite Materials, Vol. 20, 1986, pp.154-165. 9.R. Talerja, “Fatigue of Composite Materials,” Technomic Publishing Co., Inc., Lancaster, Pennsylavania, U.S.A., 1987, pp.3-58. 10.F. Aymerich, P. Priolo and C. T. Sun, “Static and fatigue behaviour of stitched graphite/epoxy composite laminates,” Composites Science and Technology, Vol.63, 2003, pp.907-917. 11.F. Ellyin and D. Kujawski, “Tensile and fatigue behaviour of glassfibre/epoxy laminates, Construction and Building Materials, Vol.9, No.6, 1995, pp.425-430. 12.J. M. Whitney and R. J. Nuismer, “Stress Fracture Criteria for Laminated Composites Containing Stress Concentration,” Journal of Composite Materials, Vol.8, 1974, pp. 253-265. 13.M. S. El-Zein and K. L. Reifsnider, “The Strength Prediction of Composite Laminates Containing a Circular Hole,” Journal of Composites Technology & Research, Vol.12, 1990, pp.24-30. 14.R. Olsson, J. Iwarsson, L. G. Melin, A. Sjogren and J. Soltia, "Experiments and analysis of laminates with artificial damage,”Composites Science and Technology, Vol.63, 2003, pp.199-209. 15.A. Al-Ostaz and I. Jasiuk, “Crack initiation and propagation in materials with randomly distributed holes,” Engineering Fracture Mechanics, Vol.58, No.5-6, 1997, pp.395-420. 16.K. D. Cowley and P. W. R. Beaumont, “Damage Accumulation at Notches and the Fractures Stress of Carbon-Fiber/Polymer Composites:Combined Effects of Stress and Temperature,” Composite Science and Technology, Vol.57, 1997, pp.1211-1219. 17.M. T. Kortchot and P. W. R. Beaumont, ”Damage Mechanics of Composite Materials:Ⅲ.Prediction of Damage Growth and Notched Strength,” Composite Science and Technology, Vol.40, 1991, pp.147 -165. 18.M. T. Kortschot and P. W. R. Beaumont, “Damage Mechanics of Composite Materials:Ⅳ. The Effect of Lay- up on Damage Growth and Notched Strength,” Composite Science and Technology, Vol.40, 1991, pp.169-179. 19.C. Soutis, N. A. Fleck, and P. A. Smith, “Failure Prediction Technique for Compression Loaded Carbon Fibre- Epoxy Laminate with Open Holes,” Journal of Composite Materials, Vol.25, 1991, pp.1476-1498. 20.A. Nakai, T. Ohki, N. Takeda and H. Hamada, "Mechanical properties and micro-fracture behaviors of flat braided composites with a circular hole,” Composite Structures, Vol.52, 2001, pp.315-322. 21.M. –H. R. Jen, Y. S. Kan and J. M. Hsu, “Initiation and Propagation of Delamination in a Centrally Notched Composite Laminate,” Journal of Composite Materials, Vol.27(3), 1993, pp.272-302. 22.X. F. Yao, M.H. Kolstein, F. S. K. Bijlaard, Wei Xu and M. Q. Xu, “Tensile strength and fracture of glass fiber- reinforced plastic (GFRP) plate with an eccentrically located circular hole,” Polymer Testing, Vol.22, 2003, pp.995-963. 23.S. Kellas, J. Morton and P. T. Curtis, “The Effect of Hygrothermal Environment upon the Tensile and Compressive Strengths of Notched CFRP Laminates Part 1: Static Loading,” Composites, Vol.21, 1990, pp. 41-51. 24.Y. Yan, W.-D. Wen, F.-K. Chang and P. Shyprykevich, “Experimental study on clamping effects on the tensile strength of composite plates with a bolt-filled hole,” Composites:Part A, Vol.30, 1999, pp.1215-1229. 25.M. C. Yip and T. B. Perng, “The Influence of Hole Size in Static and Fatigue Strengths of CFRP Composite Materials,” International Conference on Advanced Composite Materials, Wollongong, Austrilia, 1993. 26.M. Bertini, L. Beghini, and E. Vitale, “Analysis of Fatigue Delamination Growth in Carboresin Specimens with Central Hole,” Composite Structures, Vol.17, 1991, pp.257-274. 27.葉銘泉及黎瑞雍, “經熱循環之Gr/Epoxy複合材料螺栓接合構件 之靜態與疲勞分析,” 第二十屆國際機械工程研討會, 2003. 28.D. G. Hwang, M. H. R. Jen and J. M. Hsu, “Fatigue Degradation in Centrally Notched Quasi-Isotropic Laminates,” Journal of Composite Materials, Vol.24, 1990, pp.823-835. 29.P. A. Lagace, “Notch sensitivity and stacking sequence of laminated composite,” Composite Materials: Testing and Design, ASTM STP 893, 1986, pp.161-176. 30.E. A. Soriano and S. F. M. Almeida, “Notch sensitivity of carbon/epoxy fabric laminates,” Composites Science and Technology, Vol.59, 1999, pp.1143-1151. 31.J. W. Mar and K. Y. Lin, “Fracture mechanics correlation for tensile failure of filamentary composite with holes,” J Aircraft, Vol.14, 1977, pp.703-704. 32.G. Goulios and Z. Marioli-riga, “Composite Patch Repairs for Commercial Aircraft :COMPRES,” AIR & SPACE EJROPE, Vol.3, No 3/4, 2001, pp.143-147. 33.P. C. Tse, K. J. Lau and W. H. Wong, “Stress and failure analysis of woven composite plates with adhesive patch-reinforced circular hole,” Composite:Part B 33, 2002, pp.57-65. 34.R. Jones, “Neutral Axis Offest Effects due to Crack Patching,”Composite Structures, Vol.1, 1983, pp.163-174. 35.C. H. Chue, L. C. Chang and J. S. Tsai, “Bonded Repair of a Plate with Inclined Central Crack under Biaxial Loading,” Composite Structure, Vol.28, 1994, pp.39-45. 36.C. H. Chue and T. J. C. Liu, “The Effects of Laminated Composite Patch with Different Stacking Sequence on Bonded Repair,” Composite Engineering, Vol.5(2), 1995, pp.223-230. 37.C. N. Duong, “An engineering approach to geometrically nonlinear analyses of a one-sided composite repair under thermo-mechanical loading,” Composite Structure, Vol.64, 2004, pp.13-21. 38.R. B. Heslehurst, “Challenges in the Repair of Composite Structure Part Ⅱ,” SAMPE Journal, Vol.33(6), 1997, pp.16-21. 39.“Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials,” ASTM D3039-95a, 1998, pp.99-109. 40.“Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composites,” ASTM D3479-96, 1998, pp133- 138.id NH0925311049 sid 913761 cfn 0 / id NH0925311050 auc 宋朝凱 tic 固態氧化物燃料電池渦輪混成發電 adc 洪哲文 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 61 kwc 固態氧化物燃料電池 kwc 氣渦輪機 kwc 系統動態 abc 摘 要 rf [1 ]S. Hauff, K. Bolwin,“Thermal Relaxation during Dynamic Fuel Cell Operation,” Journal of Power Sources, Vol.55, pp.167-176, 1995. [2 ]W. Lehnert, J. Meusinger, F. Thom, “Modelling of Gas Transport Phenomena in SOFC Anodes,” Journal of Power Sources, Vol.87, pp.57-63, 2000. [3 ]D. Anaoly, T. Panagiotis, “Thermodynamic Analysis of a Hydrogen Fed Solid Oxide Fuel Cell Based on a Proton Conductor,” International Journal of Hydrogen Energy, Vol.26, pp.1103-1108, 2001. [4 ]H. Yakabe, T. Ogiwara, M. Hishinuma, I. Yasuda, “3-D Model Calculation for Planar SOFC,” Journal of Power Sources, Vol.102, pp.144-154, 2001. [5 ]B. Todd, J. B. Young, “Thermodynamic and Transport Properties of Gases for Use in Solid Oxide Fuel Cell Modelling,” Journal of Power Sources, Vol.110, pp.186-200, 2001. [6 ]L. Petruzzi, S. Cocchi, F. Fineschi, “A Global Thermo- Electrochemical Model for SOFC Systems Design and Engineering,” Journal of Power Sources, Vol.118, pp.96-107, 2003. [7 ]T. Ota, M. Koyama, C. J. Wen, K. Yamada, H. Takahashi, “Object-Based Modeling of SOFC System: Dynamic Behavior of Micro-Tube SOFC,” Journal of Power Sources, Vol.118, pp.430-439, 2003. [8 ]S. Murthy, A. G. Fedorov, “Radiation Heat Transfer Analysis of The Monolith Type Solid Oxide Fuel Cell,” Journal of Power Sources, Vol.124, pp453-458, 2003. [9 ]K. P. Recknagle, R. E. Williford, L. A. Chick, D. R. Rector, M. A. Khaleel, “Three-Dimensional Thermo-Fluid Electrochemical Modeling of Planar SOFC Stacks,” Journal of Power Sources, Vol.113, pp109-114, 2003. [10 ]A. M. Al-Qattan, D. J. Chmielewski, S. Al-Hallaj, J. R. Selman, “A Novel Design for Solid Oxide Fuel Cell Stacks,” Chemical Engineering Science, Vol.59, pp.131-137, 2004. [11 ]A. Layne, N. Holcombe, “Fuel Cell/Gas Turbine Hybrid Power Systems for Distributed Generation,” ASME International IGTI, Global Gas Turbine News, Vol.40, No.2, pp.4-7, 2000. [12 ]P. Costamagna, L. Magistri, A. F. Massardo, “Design and Part-Load Performance of A Hybrid System Based on A Solid Oxide Fuel Cell Reactor And A Micro Gas Turbine,” Journal of Power Sources, Vol.96, pp352-368, 2001. [13 ]K. Nisida, T. Takagi, S. Kinoshita, T. Tsuji, “Performance Evaluation of Multi-Stage SOFC and Gas Turbine Combined Systems,” Proceedings of ASME TURBO EXPO 2002, Amsterdam, The Netherlands, GT-2002-30109, June 3-6, 2002. [14 ]S. Kimijima, N. Kasagi, “Performance Evaluation of Gas Turbine-Fuel cell Hybrid Micro Generation System, “ Proceedings of ASME TURBO EXPO 2002, Amsterdam, The Netherlands, GT-2002-30112, June 3-6, 2002. [15 ]Y. Zhu, K. Tomsovic, “Development of Models for Analyzing The Load-Following Performance of Microturbines And Fuel Cells,” Electric Power System Research, Vol.62, pp1-11, 2002. [16 ]W. Winkler, H. Lorenz, “The Design of Stationary And Mobil Solid Oxide Fuel Cell-Gas Turbine Systems,” Journal of Power Sources, Vol.105, pp222-227, 2002. [17 ]D. Bohn, N. Poppe, J. Lepers,“ Assessment of The Potential of Combined Micro Gas Turbine and High Temperature Fuel Cell Systems,“ Proceedings of ASME TURBO EXPO 2002, Amsterdam, The Netherlands, GT-2002-30111, June 3-6, 2002. [18 ]S. E. Veyo, S. D. Vora, K. P. Litzinger, W. L. Lundberg, “ Status of Pressurized SOFC/Gas Turbine Power System Development at Siemens Westinghouse,“ Proceedings of ASME TURBO EXPO 2002, Amsterdam, The Netherlands, GT-2002-30670, June 3-6, 2002. [19 ]L. Magistri, R. Bozzo, P. Costamagna, A. F. Massardo, “Simplified Versus Detailed SOFC Reactor Models and Influence on The Simulation of The Design Point Performance Hybrid Systems, “ Proceedings of ASME TURBO EXPO 2002, Amsterdam, The Netherlands, GT-2002-30653, June 3-6, 2002. [20 ]J. Padulles, G. W. Ault, J. R. McDonald, “An integrated SOFC plant Dynamic Model for Power Systems Simulation,” Journal of Power Sources , Vol.86 , pp.495-500 , 2000. [21 ]P. Aguiar, D. Chadwick, L. Kershenbaum, “ Modelling of an Indirect Internal Reforming Solid Oxide Fuel Cell,“ Chemical Engineering Science, vol.57, pp.1665-1677, 2002. [22 ]P. Jens, S. Azra, S. Lars, “ Combined Solid Oxide Fuel Cell and Gas Turbine Systems for Efficient Power and Heat Generation,“ Journal of Power Sources, Vol.86, pp.442-448, 2000 [23 ]S.H. Chan, H.K. Ho, Y. Tian, ” Modelling of Simple Hybrid Solid Oxide Fuel Cell and Gas Turbine Power Plant, ” Journal of Power Sources, vol.109, pp.111-120, 2000. [24 ]S.H. Chan, H.K. Ho, Y. Tian, ” Modelling for Part-Load Operation of Solid Oxide Fuel Cell-Gas Turbine Hybrid Power Plant, ” Journal of Power Sources, vol.114, pp.213-227, 2003. [25 ]S. Azra, P. Jens, ” Networked Solid Oxide Fuel Cell Stacks Combined with a Gas Turbine Cycle, ” Journal of Power Sources, Vol.106, pp.76-82, 2002 [26 ]C. Cunnel, M. G. Pangalis, R. F. Martinez-Botas, ” Integration of Solid Oxide Fuel Cells into Gas Turbine Power Generation Cycles.Part2:Hybrid Model for Various Integration,” Proceedings of the Institution of Mechanical Engineers, PartA :Journal of Power and Energy vol.216, pp.129-144, 2002 [27 ]K. Nishida, T. Takagi, S. Kinoshita, T. Tsuji, “Performance Evaluation of Multi-Stage SOFC And Gas Turbine Combined Systems”, ASME TURBO EXPO 2002, Amsterdam, The Netherlands, GT-2002-30109, June3-6, 2002. [28 ]P. Kuchonthara, S. Bhattacharya, A. Tsutsumi, “ Energy Recuperation in Solid Oxide Fuel Cell and Gas Turbine Combine System “ Journal of power sources, vol.117 pp.7-13, 2003. [29 ]F. Jurado, J.R. Saenz, “ Adaptive Control of a Fuel Cell-Microturbine Hybrid Power Plant “ IEEE Transactions, vol.18, pp.342-347, 2003. [30 ]林博煦,“ 燃料電池電動機車即時模擬與控制,”清華大學動力機械研究所論文, 2002。 [31 ]A. F. Massardo, F. Lubelli, “ Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles(IRSOFC-GT):Part A-Cell Model and Cycle Termodynamic Analysis,“ Journal of Engineering for Gas Turbines and Power, vol.122, 2000. [32 ]U. G. Bossel, “ Final Report on SOFC Data Facts and Figures, “ Swiss Federal Office of Energy, Berne, CH. 1992. [33 ]J. W. Kim, A. V. Virkar, K. Z. Fung, K. Mehta, S. C. Singhal, “ Polarization Effects in Intermediate Temperature , Anode Supported Solid Oxide Fuel Cells “ Journal of The Electrochemical Society, vol.146, pp.66-78, 1999. [34 ]E. Achenbach, E. Riensche “ Methane/Steam Reforming Kinetics for Solid Oxide Fuel Cells,“ Journal of Power Sources, vol.52, pp.283-288, 1994. [35 ]K. Ahmed, K. Foger “ Kinetics of Internal Steam Reforming of Methane on Ni/YSZ-based Anodes for Solid Oxide Fuel Cells,“ Catalysis Today, vol.63, pp.479-487, 2000.id NH0925311050 sid 913757 cfn 0 / id NH0925311051 auc 陳禹銘 tic 顱內動脈與側向瘤脈動流場之數值模擬 adc 劉通敏 adc 丁大為 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 134 kwc 顱內動脈瘤 kwc 脈動流 kwc 壁剪應力 kwc 壓力 abc 有關顱內直型與彎型母管側向動脈瘤之定量速度場量測文獻甚少,尤其缺乏重要但實驗上困難量測的瘤體壓力分佈以及流入瘤體之流量資訊,更無數值模擬相關文獻可說明導致動脈瘤破裂之機制。有鑑於此,本文乃以數值模擬計算探討脈動狀態下曲率半徑(Rm/D)為 與2.5之動脈母管與其上側向動脈瘤的脈動流場特性,旨在經由計算結果與文獻中之於實驗脈動波形(模擬人體內頸動脈,ICA)下的動脈瘤量測數據比較驗證後,進一步提供實驗之文獻中所缺乏的脈動流場特性、瘤體壓力分佈及流入瘤體流量;且因人體後腦循環上之動脈瘤病變對人體的非自律神經系統更為嚴重,故迨數值結果與實驗數據驗證無誤後,再將動脈母管內之流動現象設為人體後腦動脈(PCA)的脈動波形並進行運算。本文實驗脈動現象中之無因次參數,沃門斯理數 為3.9,雷諾數Re最大值為850、最小值為300且平均值為600;PCA脈動現象中之無因次參數,沃門斯理數 為3.9,雷諾數Re最大值為250、最小值為10且平均值為60;而所討論之血流動力因數與相關物理量為瘤內渦漩結構、瘤內活動力、流入瘤體之流量、瘤內速度向量與二次流、瘤璧面剪應力及瘤壁面壓力分佈。結果顯示本文之數值模擬能夠相當合理的重現先前文獻之定性與定量量測結果,而所計算之脈動流場特性除提供相關研究人員參考外,並配合臨床報告以板殼理論之拉普拉斯定理說明導致動脈瘤破裂之機制應為瘤體壓力隨脈動週期之劇烈變化,故減緩此影響動脈瘤破裂之危險因子乃為將來醫療人員以人工支架治癒動脈瘤之設計重點。 rf  Aneis, M., Stancampiano, A.P., Wahloo, A.K. and Liber, B.B, (1997) Modeling of flow in a stragight stented and nonstented sidewall aneurysm model, ASME J. Biomechanical Engineering, Vol.119,pp.206-212  Artmann, H., Vonofakos, D., Muller, H., and Grau, H., (1984) neuroradiologic and neuropatholohic findings with growing giant intracranial aneurysm: Review of the Literature, Surgical Neurology, Vol. 21,pp. 391-401  Bando, K., Berger, S.A, (2003) Research on fluid-dynamic design criterion of stent used for treatment of aneurysms by means of computational simulation, J. Computational Fluid Dynamics, vol.11 no.4, pp.527-531  Bassiouny, H.S., Zarins, C.K., Kadowaki, M.H. and Glagov, S.(1994)Hemodynamic stress and experimental aorti-liac atherosclerosis. J. Vascular Surgery, 19:426-434.  Black, S.P.W. and German, W.L. (1960) Observation on the relationship between the volume and the size of the orifice of Experimental aneurysms. J. Neurosurg., 17:984-990.  Burleson, A.C., Strother, C.M. and Turitto, V.T. (1995) Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics. Neurosurgery, 37:774-784.  Crawford, T. (1959) Some observations of the pathogenesis and natural history of intracranial aneurysms. J. Neurosurg. Psychiatry, 22:259-266.  Crompton, M.R. (1966) Mechanism of growth and rupture in cerebral berry aneurysms. Br. Med. J., 1:1138-1142.  Ferguson, G.G. (1970) Turbulence in human intracranial saccular aneurysms. J. Neurosurg., 33:485-497.  Ferguson, G.G. (1972) Physical factors in the initiation, growth, and rupture of human intracranial saccular aneurysms., J. Neurosurg. Vol.37,pp.666-677.  Friedman, M. H., Hutchins, G.M., Bargeron, C. B., Deters, ).T., and Mark, F. F., (1981) Correlation between intimal thickness and fluid shear in human arteries, Atherosclerosis, Vol. 39, 00. 425-436  Fry, D.L. (1968) Acute vascular endothelial changes associated with increased blood velocity gradients. Circ. Res., 22:165-197.  Fry, D.L. (1969) Certain histological and chemical responses of the vascular interface to acutely induced mechanical stress in the aorta of the dog. Cir. Res., 14:93-108.  Giddens, D.P., Zarins, C.K. and Glagov, S. (1990) Response of arteries to near-wall fluid dynamic behavior. Appl. Mech. Rev., 43:98-102.  Glagov, S., Vito, R., Giddens, D.P. and Zarins, C.K. (1992) Microarchitecture and composition of artery wall: relationship to location,diameter and the distribution of mechanical stress. J. Hypertension,10:s101-s104. Gonzalez, C.F., Cho, Y.I., Ortega, H.V. and Moret, J. (1992) Intracranial aneurysms: flow analysis of their origin and progression. AJNR., 13:181-188.  Hashimoto, T. (1984) Dynamic measurement of pressure and flow velocities in glass and silastic berry aneurysms. Neurol. Res., 6:22-28.  Hardesty WH, Roberts B, Toole JF, et al (1960) Studies of Carotid-artery blood flow in man. New Eng J Med 263:944-946  Hassler O, (1961) Morphological studies on the large cerebral arteries with reference to the aetiology of subarachnoid haemorrhage. Acta Neurol Scand Suppl 154:1-145  Hoi, Y. H. Meng, B.R. Bendok, L.R.Guterman, L.N. Hopkins.(2002) Effect of vessel curvature on intracranial aneurysmal Flow. Proceeding of the Second Joint EMBS/BMES Conference, Houston, TX, USA.  Kayembe, K.N.T., Sasahara, M., Hazama, F. (1984) Cerebral aneurysmsand variations of the circle of willis. Stroke, 15:846-850.  Leibovich, S. (1984) Vortex stability and breakdown: survey and extension.AIAA Journal, 22(9):1192-1206.  Ku, D. N., Giddens, D. P., Zarins, C. K., and Glagov, S., (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and oscillating shear stress, Atherosclerosis, Vol. 5, 00. 293-302  Liepsch, D.W. (1986) Flow in tubes and arteries—a comparison.Biorheology, 23:395-433.Liepsch, D.W., Steiger, H.J., Poll, A. and Reulen, H.J. (1987) Hemodynamic stress in lateral saccular aneurysms. Biorheology, 24:689-710.  Liou, T.M., Chang, W.C. and Liao, C.C. (1997a) LDV measurements in lateral model aneurysms of various sizes. Experiments in Fluids, 23:317-324.  Liou, T.M. and Liao, C.C. (1997b) Flowfields in lateral aneurysm arising from parent vessels with different curvatures using PTV. Experiments in Fluids, 23:288-298.  Liou, T.M. and Liao, C.C. (1997c) PTV study of the wormersley number effects on pulsatile flows in a lateral aneurysm model. Proceedings of ASME Fluids Engineering Division Summer Meeting, Vancouver, Canada.  Liou T. M., Ting T.W., Chen Y. M. (2003),Numerical Analysis of Reynolds Number Effects on the Intra-Aneurysmal Flow Features of a Lateral Aneurysmal Arising from a Straight Parent Vessel, ,20th Nat. Conf. on Mech. Energ. ,Taipei,Taiwan  Liou T.M., Liou S.N., and Chu K.L., (2004,a), "Intra-Aneurysmal Flow with Helix and Mesh Stent Placement across Sidewall Aneurysmal Pore of a Straight Parent Vessel," Trans. ASME, Journal of Biomechanical Engineering, Vol. 126, pp.36-43  Liou T.M. and Liou S.N., (2004,b), "Pulsatile Flows in a Lateral Aneurysm Anchored on a Stented and Curved Parent Vessel," Journal of Experimental Mechanics.  Löw, M., Perktold, K. and Rauning, R. (1993) Hemodynamics in rigid and distensible saccular aneurysms: a numerical study of pulsatile flow characteristics. Biorheology, 30:287-298.  Massound, T.F., Guglielmi, G., Ji, C., Vinuela, F. and Duckwiller, G.R. (1994) Experimental saccular aneurysms I. Review of surgically-constructed models and their laboratory applications. Neuroradiology, 36:537-546.  Moore, J E., Xu, C., Glagov, S., Zarins, C.K. and Ku, D.N. (1994) Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. Atherosclerosis, 110:225-240.  Nagasawa S, Kawanishi M, Tada Y, Kawabata S, Ohta T.(2000) Intra-operative measurement of cortical arterial flow volumes in posterior circulation using Doppler sonography. Neurol Res.2000 Mar;22(2):194-6  Niimi, H., Kawano, Y. and Sugiyama, I. (1984) Structure of blood flow through a curved vessel with an aneurysm. Biorheology, 21:603-615.  Nichols W., O’Rourke M., (1990), McDonald’s flow in arterier, Lea & Febiger, Philadelphia, London.  Perktold, K., Gruber, K. and Kenner, T. (1984) Calculation of pulsatile flow and particle paths in an aneurysm model. Basic Res. Cardiol., 79:256-261.  Perktold, K., Peter, R. and Resch, M. (1989) Pulsatile non-newtonian blood flow simulation through a bifurcation with an aneurysm. Biorheology, 26:1011-1030.  Piotr Hryniewicz, John P. Willis, Said Jahanmir, Hooshang Heshmat.(2002) Quantification of Blood Hemolysis Due to Mechanical Shearing. Mohawk Innovative Technology, Inc. Albany, NY12205.  Rhie, C.M., and Chow, W.L., (1983), Numerical study of the turbulence flow and airfoil with trailing edge separations, AAIA Journal Vol.26, No.6.  Ramaling S. Danturthi, Lloyd D. Partrudgeand Vincent T. Turitto(1997) Hemodynamics of intracranial saccular lateral aneurysms: Flow Simulation Studies. IEEE,0-7803-3/97 Sahs, A.L. (1966) Observations on the pathology of saccular aneurysms, J. Neurosurg., 24:79-806.  Sekhar, L.N. and Heros, R.C. (1981) Origin, growth, and rupture of saccular aneurysms—a review. Neurosurgery, 8:248-260.  Stehbens WE, (1963) Histopathology of cerebral aneurysms. Arch Neurol 8:272-285  Steiger, H.J. and Reulen, H.J. (1986) Low frequency flow fluctuations in saccular aneurysms. Acta Neurochir., 83:131-137.  Steiger, H.J., Poll, A., Liepsch, D. and Reulen, H.J. (1987a) Basic flow structure in saccular aneurysms: a flow visualization study. Heart and Vessels, 3:55-65.  Steiger, H.J., Poll, A., Liepsch, D. and Reulen, H.J. (1987b) Haemodynamic stress in lateral saccular aneurysms. Acta Neurochir., 86:98-105.  Steiger, H.J., Poll, A., Liepsch, D. and Reulen, H.J. (1988) Hemodynamic stress in terminal aneurysms. Acta Neurochir., 93:18-23.  Suzuki, J. and Ohara, H. (1978) Clinicopathological study of cerebral aneurysms: origin, rupture, and growth. J. Neurosurg., 48:505-514.  Tognetti, F; Limoni P;Testa C (1983) Aneurysm growth and hemodynamic stress. Surgical Neurology 20:74-78 Van Doormal, J.P and Raithby, G. D.,(1984) Enhancements of the SIMPLE Method for Predicting Incompressible Fluids Flows, Numer. Heat Transfer, 7, pp. 147-163.  Womersley J.R.(1955),Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known, J.Physical.127, 553-563  Zarins, C.K., Gidden, D.P., Bharadvaj, B.K., Scottiurai, V.S., Mabon, R.F. and Glagov, S. (1983) Carotid bifurcation atherosclerosis: quantitative correlation of plague localization with flow velocity profiles and wall shear stress. Circulation Research, 53:502-514.id NH0925311051 sid 913716 cfn 0 / id NH0925311052 auc 潘俊豪 tic 燃料電池混成電動機車控制與硬體嵌入式即時模擬 adc 洪哲文 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 56 kwc 燃料電池系統 kwc 燃料電池混成電動機車 kwc 硬體嵌入式模擬 abc 本論文主要推導燃料電池混成電動機車各子系統之動態模式,整合建立模擬軟體,並設計控制策略,以硬體嵌入式作成整車縱向動態即時控制模擬。 rf 參考文獻 [1 ]Amphlett, J. C., Mann, R. F., Peppiey, B. A., Roberge, P. R., Rodrigues, A., “A Model Predicting Transient Response of Proton Exchange Membrane Fuel Cells,” Journal of Power Source, pp.183-188, 1996. [2 ]林博煦, “燃料電池電動機車即時模擬與控制,”清華大學動力機械研究所論文,2002。 [3 ]Friedman, D.J., “Maximizing Direct-hydrogen PEM Fuel Cell Vehicle Efficiency-Is Hybridization Necessary ? ” SAE Publication Fuel Cell Power for Transportation, 9-17, 1999. [4 ]Rodatz, P., Guzzella, L., and Pellizzari, L., “System Design and Supervisory Controller Development for a Fuel-Cell Vehicle,”1 International Federation of Automatic Control Conference on Mechatronic System, 1,173-178,2000. [5 ]Paul, A., Stephen, G., Douglas, J.N., “Degree of Hybridization Modeling of a Fuel Cell Hybrid Electric Sport Utility Vehicle,” Fuel Cell Power for Transportation 2001. [6 ]Sadler, M., Stapleton, A.J., Heath, R.P.G., Jackson, N.S., “Application of Modeling Techniques to the Design and Development of Fuel Cell Vehicle Systems,” SAE 2000 World Congress Detroit, Michigan, March 5-8, 2001-01-0542. [7 ]Pukrushpan, J. T., Stefanopulou, A. G., Peng, H., “Modeling and Control for PEM Fuel Cell Stack System,” Proceedings of the American Control Conference, Anchorage, May 8-10, 2002. [8 ]Lee, H.S., Jeong, K.S., Oh, B.S., “An Experimental Study of Controlling Strategies and Drive Forces for Hydrogen Fuel Cell Hybrid Vehicles,” International Journal of Hydrogen Energy Vol.28, pp.215-222, 2003. [9 ]Cikanek, S. R., Bailey, K. E., Powell, B. K., “Parallel Hybrid Electric Vehicle Dynamic Model and Powertrain Control,” Proceedings of the American Control Conference, Vol.1, pp.684 –688, 1997. [10 ]Schaffnit, J., Sinsel, S., Isermann, R., “Hardware-in-the-Loop Simulation for the Investigation of Truck Diesel Injection Systems”, Proceedings of the American Control Conference, Volume 1, pp.498-502, 1998. [11 ]Brennan, S., Alleyne, A., DePoorter, M., “The Illinois Roadway Simulator-a Hardware-in-the-Loop Testbed for Vehicle Dynamics and Control”, Proceedings of the American Control Conference, Volume 1, pp.493-497, 1998. [12 ]Raman, S., Sivashankar, N., Milam, W., Stuart, W., Nabi, S., “Design and Implementation of HIL Simulators for Powertrain Control System software development”, Proceedings of the American Control Conference, Volume 1, pp.709-713, 1999. [13 ]Yamazaki, M., Suresheshbabu, S., Loftus, M., Crandell, R., Brackx, M., “Analysis of Automatically Generated Vehicle System Control Software in a HIL Environment,” Proceedings of the American Control Conference, pp.3135-3140, 2002. [14 ]Guzzella, L., “Control Oriented Modeling of Fuel-Cell Based Vehicle,” Presentation in NSF Workshop on the Integration of Modeling and Control for Automotive Systems, 1999. [15 ]Blomen, L.J.M.J., Mugerwa, M.N., “Fuel Cell Systems,” Plenum Press, 1993. [16 ]Amphlett, J.C., Baumert, R.M., Mann, R.F., Peppley, B.A., Roberge, P.R., Harries, T.J., “Performance Modeling of the Ballard Mark-IV Solid Polymer Electrolyte Fuel Cell,” Journal of Electrochemical Society, pp.9-15, 1995. [17 ]Marr, C., Li, X., “An Engineering Model of Proton Exchange Membrane Fuel Cell Performance,” A Interdisciplinary Journal of Physical on Engineering Sciences,Vol. 50,Issue 4, pp.190-200, 1998. [18 ]Rongzhong, J., Deryn, C., “Comparative Studies of Polymer Electrolyte Membrane Fuel Cell Stack,” International Journal of Hydrogen Energy,Vol.24, pp.1107-1115, 1999. [19 ]黃逸群, “燃料電池與直噴式引擎作為混成電動機車動力源分析,” 清華大學動力機械研究所論文,2001。 [20 ]Moraal, P., Kolmanovsky, I., “Turbocharger Modeling for Automotive Control Application,” SAE Paper 1999-01-0908. [21 ]Askri, F., Jemni*, A., Nasrallah, S.B., “Prediction of Transient Heat and Mass Transfer in a Closed Metal-Hydrogen Reactor,” International Journal of Hydrogen Energy 29, pp.195-208, 2004.id NH0925311052 sid 913718 cfn 0 / id NH0925311053 auc 吳奇永 tic 微流道內流體的自由液面形狀及流體流動之動態數值模擬 adc 李雄略 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 28 kwc 數值模擬 kwc 微流道 kwc 接觸角 kwc 表面張力 kwc 自由液面 abc 微機電系統是近年來世界各國積極投入的一個新興領域,在此微科技的領域裡,表面張力的重要性將大幅提高,其中對於微流道的影響更是舉足輕重。可惜目前國內外對微流道的研究多半著重於微流道的製程研發以及一些觀察實驗,因此我們不易由微觀面得知流體自由液面的形狀、外推速度等。 tc 摘要 誌謝 目錄 圖目錄 符號說明 第一章 緒論 1 § 1.1 前言 1 § 1.2 文獻回顧 2 § 1.3 研究動機及目的 3 § 1.4 本文之大綱 4 第二章 理論分析 6 § 2.1 問題描述 6 § 2.2 統御方程式 6 § 2.3 流動引致壓力( )之決定 9 § 2.4 液面曲率( ) 11 § 2.5 動態接觸角 12 第三章 數值方法 13 § 3.1 差分動態方程式 13 § 3.2 網格設置及計算區域 14 § 3.3 靜態及動態接觸角 14 § 3.4 曲率的計算 15 § 3.5 計算流程 15 第四章 結果與討論 18 § 4.1 上下板為相同之疏水材 18 § 4.2 上下板為相同之親水材質 21 § 4.3 上下板為不同材質 22 § 4.4 與1-D Approximation之比較 23 第五章 結論 25 參考文獻 26rf 1. S. L. Lee and H. D. Lee “Evolution of the Liquid Meniscus in a Capillary-Force-Dominant Flow” The 14th International Symposium on Transport Phenomena, 6-10 July 2003, Bali, Indonesia. 2. S. F. Kistler “Hydrodynamics of Wetting, in Wettability” J. C. Berg, ed., Chapter 6, 311-429(Marcel Dekker, New York, 1993). 3. Ping Sheng and Minyao Zhou “Immiscible-fluid displacement: Contact-line dynamics and the velocity-dependent capillary pressure” Physical Review A,Vol. 45,5694-5708(1992). 4. Wei Huang and Raghbir S. bhullar “The surface-tension-driven flow of blood from a droplet into a capillary tube” Journal of Biomechanical Engineering,Vol. 123,446-454(2001). 5. H. Fan and Y. X. Gao, “Thermodynamics modeling for moving contact line in gas/liquid/solid system: Capillary rise problem revisited”, Physics of Fluids, Vol. 13, 1615-1623(2001). 6. S. L. Lee and S. R. Sheu “A new numerical formulation for incompressible viscous free surface flow without smearing the free surface” International Journal of Heat and Mass Transfer 44, 1837-1848 (2001). 7. 郭仕奇 (Shyh-Chyi Cuo) “流體拉伸式微液體混合器之研發” 國立清華大學/工程與系統科學系/89/碩士/89NTHU0593043id NH0925311053 sid 913725 cfn 0 / id NH0925311054 auc 蔡明霖 tic 利用 tic < tic 111 tic > tic 晶片製造之新型光訊衰減器 adc 方維倫 ty 博士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 169 kwc 光訊衰減器 kwc 加速規 kwc 電容感測 kwc 雜訊 abc 自從電報、電話問世之後,人類第一次能夠以幾近於光的速度互相溝通。更有甚者,當光纖問世之後,大量的取代了傳統的電纜成為主要的遠距傳輸主幹,更進一步的將傳輸往量的方面延伸。然而光纖真正所能承載的傳輸量,相較於真正的使用量卻有一段相當大的差距。儘管光纖在使用做傳輸用途上具備有極大的頻寬、低損耗、價格低廉、輕量化、積集化、抗腐蝕、對雜訊以及電磁場干擾的免疫力以及保密性等優點,卻仍不能完全取代現有的電線電纜等傳輸線路,因真正的全光網路中,必須有能對光訊號直接做調變動作的元件以達事半功倍之效,而這一類的元件又多半以機械式的為主流。但傳統機械式的元件因體積龐大、反應速度慢且無法積集化,因此近年來有許多研究致力於以微機電(MEMS)的元件加以取代。由於微機電元件具有積集化、反應速度快的潛力,有逐漸取代傳統元件的趨勢。本研究將針對其中一種必需的元件—可調變光訊衰減器進行探討。 tc 第一章 網路與光纖系統…………..…………………………………....1 1-1研究動機…………………..……………..………………….…..1 1-2網際網路架構…………………………………………….……..2 1-3光纖與光纖網路架構……………..….….………….…………..3 1-3.1光纖種類………….…..…………..…………….………...4 1-3.2傳輸模態…………………..…………………….………...5 1-3.3全光網路節點架構…………..……………………………7 1-3.4重要參數定義……………..……………………………..8 1-4研究目標……………..……..……………………….……….…9 1-5全文架構……………………...…….……………………….…10 第二章 光衰減器之設計與分析………..…………………….…….…19 2-1文獻回顧………….…………..……………………..…….…...19 2-1.1遮板效應式:………………………………………………..19 2-1.2聲光效應式:………………………………………….…….21 2-1.3模態效應式:………………………………………..………22 2-1.4材料效應式:………………………………………..………24 2-2設計架構………………...……………………………………..25 2-3光學性能分析…………………………………………….……27 2-3.1光纖距離與衰減量…….…….…………………….…….27 2-3.2遮擋板位置與插入損失…….….………………………..28 2-4機械性能分析…………………………………….……………30 2-4.1垂直式梳狀致動器………………...……………………31 2-4.2尺寸與剛性……………….…….……………..…………31 2-4.3穩定性分析……………….…………………..…………32 2-5實際尺寸設計…………………………………………..……...35 第三章 製程………………………..….……………………………….52 3-1製程概要……………….…………………………...………….52 3-2製造流程…………………….………………….…...…………53 3-2.1遮罩定義…………………..………………...…………..54 3-2.2矽深蝕刻…………………..………………...…………..54 3-2.3懸浮與濺鍍……………………………..…….…………56 3-2.4結構設計要點……………….…………...………….…..56 3-2.5各遮罩層的限制………………..………….….….……..56 3-3製造結果…………………….………………..…….….………57 第四章 量測結果………………….………………….………………..79 4-1機械性質量測………………..….……….…………………….79 4-1.1機械性質靜態響應…..…..….……………………….….80 4-1.2機械性質動態響應………………..……..………………81 4-1.3可靠度測試…………………....…………….…….……..82 4-2光學性質量測…………………………..…………….…………….83 第五章 結論…………………………….…..…………..…………….87 5-1 研究成果………………….………..…….…….…………….87 5-2 未來工作………………….……..………..…….………….88rf [1 ] D.J. Bishop, C.R. Giles, and G.P. Austin, “The Lucent LambdaRouter: MEMS technology of the future here today,” IEEE Communications Magazine, Vol. 40, I. 3, March 2002, pp. 75-79. [2 ] S.D. Robinson, “MEMS technology-micromachines enabling the ’all optical network’,” Electronic Components and Technology Conference, 2001, Orlando FL., Proceedings 51st, pp. 423-428 [3 ] L.Y. Lin and E.L. Goldstein, “MEMS for free-space optical switching,” LEOS '99, San Fransico, CA, Vol. 2, pp. 483-484. [4 ] S.S. Lee, L.S. Huang, C.J. Kim, and M.C. Wu, “Free-space fiber-optic switches based on MEMS vertical torsion mirrors,” J. Lightwave Technology, Vol. 17, I. 1, pp. 7-13. [5 ] R.A. Miller, Y.C. Tai, G. Xu, J. Bartha, and F. Lin, “An electromagnetic MEMS 2×2 fiber optic bypass switch,” Transducers'97, Chicago, IL, Vol. 1, pp. 8–92. [6 ] J. Leuthold, R. Ryf, S. Chandrasekhar, D.T. Neilson, C.H. Joyner, and C.R. Giles, “All-optical nonblocking terabit/s crossconnect based on low power all-optical wavelength converter and MEMS switch fabric,” OFC’01, Anaheim, CA, Vol. 4, pp. PD16-1 - PD16-3. [7 ] X.M. Zhang, and A.Q. Liu, “A MEMS pitch-tunable grating add/drop multiplexers,” Optical MEMS’00, Kauai, HI, pp. 25-26. [8 ] J. Seo, S. Oh, L.P. Lee, “Single layer 2D optical scanners with integrated polymer microlenses,” Optical MEMS’02, Lugano, Switzerland, pp. 151-152. [9 ] K. Saruta, H. Fujita, and H. Toshiyoshi, “Bulk micromachined 2D lens scanners for transparent optical fiber switches,” Optical MEMS’02, Lugano, Switzerland, pp. 13-14. [10 ] W. Piyawattanametha, H. Toshiyoshi, J. LaCosse, and M.C. Wu, “Surface-micromachined confocal scanning optical microscope,” CLEO’00, San Francisco, CA, pp.447-448. [11 ] H.Y. Lin, and W. Fang, “Torsional mirror with an electrostatically driven lever-mechanism,” Optical MEMS’00, Kauai, HI, pp. 113-114. [12 ] N.C. Tien, O. Solgaard, M.H. Kiang, M. Daneman, K.Y. Lau, and R.S. Muller, “Surface-micromachined Mirrors For Laser-beam Positioning,” Transducers '95, Stockholm, Sweden, Vol. 2, pp. 352-355. [13 ] T.E. Stern, and K. Bala, Multiwavelength Optical Networks, Addison Wesley Longman, 1999. [14 ] G.. Keiser, “Optical Fiber Communication,” 3nd ed., Boston, McGraw-Hill, 2000. [15 ] 趙涵捷, ”光纖之旅,” 初版,台北市,台灣書局, 1990. [16 ] J.E. Ford, J.A. Walker, D.S. Greywall, and K.W. Goossen, “Micromechanical fiber-optic attenuator with 3ms response,” J. Lightwave Technology, vol. 16, I.9, pp.1663 –1670, 1998. [17 ] C.R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A silicon MEMS optical switch attenuator and its use in lightwave subsystems,” J. Selected Topics in Quantum Electronics, vol. 5, I. 1,pp.18 –25, 1999. [18 ] V.A. Aksyuk, C.R. Giles, A. Dentai, E.C. Burrus, C.A. Burrus, L. Stulz, and D.Bishop, “Optically-powered optical power limiter for use in lightwave networks,” MEMS'99, San Diego, CA, pp.344 –348. [19 ] W. Noell, P.A. Clerc, L. Dellmann, B. Guldimann, H.P. Herzig, O. Manzardo, C.R. Marxer, K.J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” J. Selected Topics in Quantum Electronics, vol. 8, I. 1,pp.148 –154, 2002. [20 ] C. Marxer, P. Griss, and N.F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” Photonics Technology Letters, vol, 11, I. 2, pp.233-235, 1999. [21 ] H. Toshiyoshi, K. Isamoto, A. Morosawa, M. Tei, and H. Fujita, “A 5-volt operated MEMS variable optical attenuator,” Transducers’03, Vol. 2, Boston MA, pp. 1768–1771. [22 ] C.H. Ji, Y. Yee J. Choi, and J.U. Bu, “Electromagnetic variable optical attenuator,” Optical MEMS’02, Lugano, Switzerland, pp. 49–50. [23 ] S. Kim and S. Nam, ”Novel MEMS variable optical attenuator with expanded core waveguides,” Optical MEMS’02, Lugano, Switzerland, pp. 65-66. [24 ] R.R.A. Syms, H. Zou, J. Stagg, and D.F. Moore, “Multistate latching MEMS variable optical attenuator,” Photonics Technology Letters, Vol. 16, I. 1, pp.191-193, 2004. [25 ] B. Barber, C.R. Giles, V. Askyuk, R. Ruel, L. Stulz, and D. Bishop, “A fiber connectorized MEMS variable optical attenuator,” Photonics Technology Letters, Vol. 10, I. 9, pp. 1262-1264, 1998. [26 ] X.M. Zhang, A.Q. Liu, C. Lu, and D.Y. Tang, “MEMS variable optical attenuator using low driving voltage for DWDM systems,” Electronics Letters, Vol. 38, I. 8, pp.382-383, 2002. [27 ] R. Wood, V. Dhuler, and E. Hill, “A MEMS variable optical attenuator,” Optical MEMS’00, Kauai, HI, pp. 121-122. [28 ] C.H. Kim, N. Park, and Y.K. Kim, “MEMS reflective type variable optical attenuator using off-axis misalignment,” Optical MEMS’02, Lugano, Switzerland, pp. 55-56. [29 ] W. Sun, J. Mughal, F. Perez, W. Noell, N.A. Riza, and N.F. de Rooij, “A bulk micromachined tiltable mirror array digital variable optical attenuator,” Transducer’03, Boston, MA, Vol. 2, pp. 1772-1775. [30 ] Sun, W. Munghal, M.J. Noell, W. Perez, F. Riza, and N.A. de Rooij, “Fabrication and some measurement of a digital variable optical attenuator,” Optical MEMS’03, Waikoloa, HI, pp. 115-116. [31 ] Y.Y. Kim, S.S. Yun, C.S. Park, J.H. Lee, Y.G. Lee, H.K.i Lee, S.K.i Yoon, and J.S. Kang, “Refractive variable optical attenuator fabricated by silicon deep reactive ion etching,” Photonics Technology Letters, Vol. 16, I. 2, pp. 485- 487, 2004. [32 ] M.J. Mughal and N.A. Riza, “Compact acoustooptic high-speed variable attenuator for high-power applications,” Photonics Technology Letters, vol, 14 I. 4, pp. 510 –512, 2002. [33 ] M.J. Mughal and N.A. Riza, “65 dB dynamic range 2.8 microseconds switching speed variable fiber-optic attenuator,” ECOC '01, Amsterdam, the Netherlands, pp. 56 –57. [34 ] Q. Li, X. Liu, J. Peng, B. Zhou, and H.P. Lee, “Demonstration of a fast all-fiber acousto-optic tunable filter based variable optical attenuator,” LEOS’01, San Diego, CA, vol. 2, pp.845-846. [35 ] A.A. Au, Q. Li, C.H. Lin, and H.P. Lee, “Effects of acoustic reflection on the performance of a cladding-etched all-fiber acoustooptic variable optical attenuator,” Photonics Technology Letters, Vol. 16, I. 1, pp. 150-152, 2004. [36 ] Q. Li, A.A. Au, C.H. Lin, E.R. Lyons, and H.P. Lee, “An efficient all-fiber variable optical attenuator via acoustooptic mode coupling,” Photonics Technology Letters, Vol. 14, I. 11, pp. 1563-1565, 2002. [37 ] F. Chollet, M. de Labachelerie, and H. Fujita, “Compact evanescent optical switch and attenuator with electromechanical actuation,” J. Selected Topics in Quantum Electronics, Vol. 5, I. 1, pp. 52-59, 1999. [38 ] F. Chollet, M. de Labachelerie, and H. Fujita, “Electromechanically actuated evanescent optical switch and polarization independent attenuator,” MEMS’98, Heidelberg, Germany, pp.476-481. [39 ] T. Hashimoto, and M.S. Yataki, “Variable Optical Fiber Attenuators,“ CLEO/Pacific Rim'99, Seoul, Korea, vol. 4, pp.1151-1152. [40 ] T.C. Kowalczyk, I. Finkelshtein, M. Kouchnir, Y.C. Lee, A.-D.Nguyen, D. Vroom, and W.K. Bischel, “Variable optical attenuator with large dynamic range and low drive power,” OFC’01, vol. 3, Anaheim, CA, pp.WR5-1-4. [41 ] V. Morozov, H. Fan, L. Eldada, L. Yang, and Y. Shi, “Fused fiber optic variable attenuator,” OFC’00, vol. 4, Baltimore, MD, pp.22-24. [42 ] S.S. Lee, Y.S. Jin, and Y.S. Son,” Variable optical attenuator based on a cutoff modulator with tapered waveguides in polymers,” J. Lightwave Technology, vol. 17, I. 12, pp. 2556 –2561, 1999. [43 ] S.S. Lee, Y.S. Jin, and Y.S. Son, “Polymeric tunable optical attenuator for power regulator in WDM system,” CLEO/Pacific Rim'99, vol. 2, Seoul, Korea, pp.264-265. [44 ] T. Kawai, M. Koga, M. Okuno, and T. Kitoh, “PLC type compact variable optical attenuator for photonic transport network,” Electronics Letters, Vol. 34, I. 3, pp. 264–265, 1998. [45 ] Y.O. Noh, M.S. Yang, Y.H. Won, and W.Y. Hwang, “PLC-type variable optical attenuator operated at low electrical power,” Electronics Letters, Vol. 36, I. 24, pp. 2032–2033, 2000. [46 ] S.S. Lee, J.U. Bu, S.Y. Lee, K.C. Song, C.G. Park, and T.S. Kim, “Low-power consumption polymeric attenuator using a micromachined membrane-type waveguide,” Photonics Technology Letters, Vol. 12, I. 4, pp. 407-409, 2000. [47 ] N.S. Lagali, J.F.P. van Nune, D. Pant, L. Eldada, “Ultra-low power and high dynamic range variable optical attenuator array,” ECOC '01, Vol. 3, Armsterdam Netherland, pp. 430–431 [48 ] M. Svalgaard, K. Faerch, and L.U. Andersen, “Variable optical attenuator fabricated by direct UV writing,” J. Lightwave Technology, Vol. 21, I. 9, pp. 2097–2103 Sept. 2003 [49 ] T.C. Kowalczyk, I. Finkelshtein, M. Kouchnir, Y.C. Lee, A.D. Nguyen, D. Vroom, and W.K. Bischel, “Polymeric variable optical attenuator array,” CLEO '01, Baltimore MD, pp.17-18. [50 ] S.M. Garner and S. Caracci, “Variable optical attenuator for large-scale integration,” Photonics Technology Letters, Vol. 14, I. 11, pp. 1560-1562, 2002. [51 ] K. Hirabayashi, M. Wada, and C. Amano, “Optical-fiber variable-attenuator arrays using polymer-network liquid crystal,” Photonics Technology Letters, vol. 13, I. 5, pp. 487 -489, 2001. [52 ] M.A. Cowin, R. Varrazza, C. Morgan, R.V. Penty, I.H. White, A.M. McDonagh, S. Bayly, J. Riley, M.D. Ward, and J.A. McCleverty, “Low Power Electrochromic Variable Optical Attenuator with 50 dB attenuation range,“ OFC’01, vol. 3, Anaheim, CA, pp. WR6-1-3. [53 ] N.A. O'Brien, J.G.H. Mathew, and B.P. Hichwa, “An electrochromic variable optical attenuator (ECVOA),” OFC/IOOC'99, Anaheim, CA, pp. PD26/1 -PD26/3. [54 ] B.E.A. Saleh, and M.C. Teich, Fundamentals of Photonics, John Wiley & Sons, 1991. [55 ] A. Benner, H.M. Presby, and N. Amitay, “Low-reflectivity in-line variable attenuator utilizing optical fiber tapers,” J. Lightwave Technology, vol. 8, I. 1, pp. 7 –10, 1990. [56 ] M. Takahashi, “Variable light attenuator of improved air-gap type with extremely low returning light,” IMTC’94, vol.2, Hamamatsu Japan, pp. 947 – 950. [57 ] R.J. Roark, “Formulas for Stress and Strain”, 4th ed., MacGraw-Hill, 1965. [58 ] J. Hsieh, C.C. Chu, J.M. Tsai, and W. Fang, “Using Extended BELST Process in Fabricating Vertical Comb Actuator for Optical Applications,” Optical MEMS, Lugano Switzerland, August 2002, Paper WP 39. [59 ] J. Hsieh and W. Fang, " A Boron Etch-stop Assisted Lateral Silicon Etching Process for Improved High-Aspect-Ratio Silicon Micromachining and Its Applications," J. Micromechanics and Microengineering, vol.12, pp.574-581, 2002. [60 ] 謝哲偉, “BELST高深寬比微加工製程平台及其應用”, 博士論文, 國立清華大學, 2002. [61 ] E. Oosterbroek, J.W. Berenschot, H.V. Jansen, A.J. Nijdam, G. Pandraud, A. van den Berg, and M.C. Elwenspoek, “Etching Methodologies in <111>-oriented silicon wafers,” J. MMEMS, vol.9, pp.390-398, 2000. [62 ] B.C.S. Chou, C.-N. Chen, and J.-S. Shie, “Micromaching on (111)-oriented silicon,” Sensors and Actuator A, vol. 75, pp. 271-277, 1999. [63 ] J.G. Fleming, “Combining the best of bulk and surface micromichining using Si {111} substrate,” in Proc. of SPIE, vol. 3511, Santa Clara, CA, Sep.1998, pp.162-168. [64 ] H.H. Hu, H.Y. Lin, B.C.S. Chou, and W. Fang, "Characteristics of the Micromachined Beams on the (111) Substrate," Sensors and Actuators A, vol. 93, pp. 258-265, 2001. [65 ] S. C. Lee, S. Park, and D. Cho, “Honeycomb-Shaped Deep-Trench Oxide Posts Combined with the SBM Technology for Micromachining Single-Crystal Silicon without using SOI,” Transducers'01, Munich, Germany, June 2001, pp.1124-1127. [66 ] S. Lee, B.-L Lee, K. D. Jung, J. H. Choi, T.-R. Chung, and Y. C. Cho, “Extension of Surface/Buck Micromachining: One-Mask Fabrication Technology Enabling the Integration of 6-DOF Inertial Sensors on A Single Wafer,” Transducers'01, Munich, Germany, June 2001, pp.1136-1139. [67 ] M. Madou, Fundamentals of Microfabrication, CRC press, New York, 1997. [68 ] J. Kim, D. Cho, and R.S. Muller, “Why is (111) Si a better mechanical material for MEMS?” Transducers’01, Munich, Germany, June 2001, vol.1, pp.662-665. [69 ] Y. Gianchandani and K. Najafi, "A Bulk Silicon Dissolved Wafer Process for Microelectromechanical Devices," J. MEMS, vol.1, pp.77-85, 1992. [70 ] C. G. Keller and R. T. Howe, “HexSil Tweezers for Teleoperated Micro-Assembly,” MEMS’97, Nagoya, Japan, Jan. 1997, pp.72-77. [71 ] F. Ayazi and K. Najafi, “High Aspect-Ratio Combined Poly and Single-Crystal Silicon (HARPSS) MEMS Technology,” J. MEMS, vol. 9, pp. 288-294. [72 ] K.A. Shaw, Z.L. Chang, and N.C. MacDonald, “SCREAM I: A Single Mask, Single-Crystal Silicon, Reactive Ion Etching Process for MicroElectroMechanical Structures”, Sensors and Actuators A, vol.40, pp.210-213, 1994. [73 ] T. D. Kudrle, H. P. Neves, D. C. Rodger, and N.C. MacDonald, “A Microactuated Millimeter Wave Phase Shifter,” Transducers'99, Sendai, Japan, June 1999, [74 ] X.Y. Li, P.J. French, P.M. Sarro, and R.F. Wolffenbuttel, “Fabrication of a Single Crystalline Silicon Capacitive Lateral Accelerometer Using Micromachining Based on Single Step Plasma Etching,” MEMS’95, Amsterdam, the Netherlands, Feb. 1995, pp. 398-403. [75 ] W.H. Juan and S.W. Pang, “Released Si Microstructures Fabricated by Deep Etching and Shallow Diffusion,” J. MEMS, vol. 5, pp 18-23, 1996. [76 ] M. E. McNie, D. O. King, and M. C. L. Ward, “Micromachining in SOI,” Recent Advances in Micromachining Techniques (Digest No: 1997/081), IEE Colloquium, 20, [77 ] J.T. Nee, “Hybrid Surface-/Bulk-Micromachining Processes for Scanning Micro-Optical Components”, Ph.D dissertation, U.C. Burkeley, 2001. [78 ] S. Lee, S.Park, and D. Cho, “The Surface/Bulk Micromachining (SBM) process: A New Method for Fabricating Released MEMS in Single Crystal Silicon,” J. MEMS, vol.8, pp.409-416, 1999. [79 ] E. H. Klaassen, K. Petersen, J. M. Noworolski, J. Logan, N. I. Maluf, J. Brown, C. Storment, W. McCulley, and G. T.A. Kovacs, “Silicon Fusion Bonding and Deep Reactive Ion Etching a New Technology for Microstructures,” Tansducers’95, Stockholm, Sweden, June 1995, pp.556-559. [80 ] S. -H. Kim, S.-H. Lee and Y.-K. Kim, “A High-Aspect-Ratio Comb Actuator Using UV-LIGA Surface Micromachining and (110) Silicon Bulk Micromachining,” J. Micromechanics and Microengineering, vol. 12, pp. 128-135, 2002. [81 ] Selvakumar, K. Najafi, W. H. Juan, and S. Pang, “Vertical comb array microactuators,” MEMS’95, San Diego, CA, Jan. 1995, pp.43-48. [82 ] J.A. Yeh, H. Jiang, and N.C. Tien, “Integrated Polysilicon and DRIE Bulk Silicon Micromachining for an Electrostatic Torsional Actuator,” J. MEMS, vol.8, pp.456–465, 1999. [83 ] H.M. Jeong, J.J. Choi, K.Y. Kim, K.B. Lee, J.U. Jeon, and Y.E. Pak, “Milli-scale Mirror Actuator with Buck Micromachined Vertical Combs,” Transducers'99, Sendai, Japan, June 1999, pp.1006-1009. [84 ] R.A. Conant, J.T. Nee, K.Y. Lau, and R.S. Muller, “A Flat High-Frequency Scanning Micromirror,” Solid-State Sensors and Actuators Workshop 2000, Hilton head, SC, June 2000, pp. 6-9. [85 ] J. Kim, S. Park, and D. Cho, “A Novel Electrostatic Vertical Actuator Fabricated in one Homogeneous Silicon Wafer Using Extended SBM Technology,” Transducers’01, Munich, Germany, June 2001, vol.1, pp.756-759. [86 ] H. Schenk, P. Durr, T. Haase, D. Kunze, U. Sobe, H. Lakner, and H. Kuck, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, pp 715-722, 2000. [87 ] J.M. Tsai, H.Y. Chu, J. Hsieh and W. Fang, “The BELST II process for a silicon high-aspect-ratio micromaching verticalcomb actuator and its applications,” J. Micromechanics and Microengineering, Vol. 14, pp.235-241, 2004. [88 ] H. Seidel, “The mechanism anisotropic, electrochemical silicon etching in alkaline solution,” Solid-State Sensor and Actuator Workshop, pp. 86-91, 1990. [89 ] A. Merlos, M. Acero, M. H. Bao, J. Bausells, and J. Esteve, “TMAH/IPA Abisotropic Etching Characteristics,” Sensors and Actuators A, Vol. 37-38, pp.737-743, 1993. [90 ] I. Zubel and M. Kramkowska, “The Effect of Isopropyl Alcohol on Etching Rate and Roughness of (100) Si Surface Etched in KOH and TMAH Solutions” Sensors and Actuators A, Vol. 93, pp.138-147, 2001. [91 ] Y. Lu, J. Ma, J. Zou, and X. Wang, “Research of Anisotropic etching in KOH water solution with Isopropyl Alcohol,” International Conference on Communications, Circuits and Systems and West Sino Expositions, 2002, Chengdu, China, Vol. 2, pp. 1779-1783. [92 ] S.M. Sze, Semiconductor Devices, John Willey & Sons, New York, 1985. [93 ] G..T.A. Kovac, Micromachined Transducers Source Book, McGrow Hill, New York, 2000. [94 ] S.D. Senturia, Microsystem Design, Kluwer Academic Publisher, Boston, 2001. [95 ] Analog Device ADXL05 accelerometer datasheet. [96 ] G. K. Fedder, S. Santhanam, M.L. Reed, S.C. Eagle, D.F. Guillou, M. S.C. Lu, and L.R. Carley, “Laminated High-Aspect-Ratio Microstructures in a Conventional CMOS Process,” Sensors & Actuators A, vol. 57, no. 2, pp. 103-110, 1996. [97 ] http://www.memscap.com/memsrus/svcsrules.html. [98 ] M. Lu, Xu Zhu, and Gary K. Fedder, “Mechanical Property Measurement Of 0.5-mm CMOS Microstructures,” MRS’98, San Francisco, CA, pp. 27-32 [99 ] B. Razavi, “Design of Analog CMOS Integrated Circuit”, McGrow Hill, New York 2000. [100 ] P. Klein, “An Analytical Thermal Noise Model of Deep Submicron MOSFET’s”, IEEE Electron Device Letter, Vol.20, N0.8, 1999. [101 ] G..K. Fedder, “Simulation of Microelectromechanical System”, Ph. D. Thesis, U.C. Berkeley, 1994. [102 ] J.B. Starr, “Squeeze-film damping in solid-state accelerometers”, Technical Diegest in IEEE Solid State Sensor and Actuator Workshop, Hilton Head Island, SC, 1990, pp 44-47. [103 ] W. Ye, X. Wang H. Werner, D. Freeman, and J. White, “Air Damping in Laterally Oscillating Microresonators: A Numerical and Experimental Study”, J. MEMS, Vol.12, I.5, Oct. 2003, pp. 557-566. [104 ] H. Luo, ”Integrated Multiple Device CMOS-MEMS IMU Systems and RF MEMS Applications”, Ph. D. Thesis, ECE CMU 2002.id NH0925311054 sid 873736 cfn 0 / id NH0925311055 auc 張家豪 tic 應變矽於奈米結構之分析與設計 adc 江國寧 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 80 kwc 奈米 kwc 應變矽 kwc 有限單元法 abc 應變矽(Strained Silicon)運用於NMOS時,因矽受到張力應變會令其載子遷移率增加,故能夠提升NMOS的運算速度。應變矽的產生方式主要有兩種,可分為矽/矽鍺異質結構與氮化矽應力層。本研究利用有限單元法針對矽/矽鍺異質結構及氮化矽應力層發展數值模擬方法。對矽/矽鍺異質結構而言,主要是運用虛擬的熱膨脹係數之差異量以模擬兩者晶格常數之不匹配所造成之應變。本研究針對單閘極與三閘極之NMOS的奈米結構進行參數化分析,其結果顯示,當結構長度小於50nm時,有可能因為邊緣的彎矩造成整個應變矽均受到壓應變,導致NMOS之效能無法達到有效的提升。 tc 目錄 Ⅰ 表目錄 Ⅲ 圖目錄 Ⅳ 第一章 導論……………………………………………………………… 1 1.1 研究動機………………………………………………………….. 1 1.2 文獻回顧………………………………………………………….. 2 1.3 研究目標………………………………………………………….. 4 第二章 應變矽結構分析……………………………………………… 6 2.1 張力應變對矽之電子特性的影響………………………………. 6 2.2 金氧半場效電晶體操作原理……………………………………. 7 2.3 應變矽的操作原理………………………………………………. 8 2.3.1 矽鍺異質結構分析…………………………………………. 8 2.3.1.1 矽鍺異質結構的材料特性………………………….. 8 2.3.1.2 矽/矽鍺雙層結構之應變分析………………………. 10 2.3.1.3 使用拉曼光譜圖量測矽鍺異質結構之應變……….. 13 2.3.2 氮化矽應力層………………………………………………. 14 第三章 有限單元分析模型……………………………………………… 18 3.1 矽鍺異質結構…………………………………............................. 18 3.1.1單閘極金氧半電晶體……………………………………….. 18 3.1.1.1 有限單元模型之建立................................................. 18 3.1.1.2 有限單元分析……………………………………….. 18 3.1.2三閘極金氧半電晶體……………………………………….. 21 3.1.2.1 有限單元模型之建立…………………………......... 21 3.1.2.2 有限單元模型分析………………………………….. 21 3.2 氮化矽應力層…………………………………………………….. 22 3.2.1 有限單元模型之建立……………......................................... 22 3.2.2 有限單元分析………………………………………………. 22 第四章 結果分析與討論………………………………………………… 25 4.1 矽鍺異質結構…………………………………………………….. 25 4.1.1 單閘極金氧半電晶體……………………………………....... 25 4.1.1.1 模型之參數化設計…………………………………… 25 4.1.1.2 參數的模擬結果分析………………………………… 25 4.1.1.3 有效應變區域的分析……………………………....... 32 4.1.2 三閘極金氧半電晶體模擬結果討論……………………....... 33 4.2 氮化矽應力層模擬結果討論……………………………………. 34 第五章 結論………………………………………………………………. 37 參考文獻…………………………………………………………………… 39 圖表………………………………………………………………………… 45 表目錄 表一 矽與矽鍺化合物的材料特性…………………………………... 45 表二 矽與矽鍺化合物的單方向熱膨脹係數之設定(升溫) ………… 45 表三 矽與矽鍺化合物的單方向熱膨脹係數之設定(降溫)…………. 45 表四 Si0.8Ge0.2的材料特性之設定(升溫之等方向性熱膨脹係數)...... 46 表五 Si0.8Ge0.2的材料特性之設定(降溫之等方向性熱膨脹係數)...... 46 表六 Si0.8Ge0.2的材料特性之設定(升溫之單方向性熱膨脹係數)...... 46 表七 Si0.8Ge0.2的材料特性之設定(降溫之單方向性熱膨脹係數)...... 46 表八 三閘極電晶體的材料特性之設定(等方向性熱膨脹係數)……. 47 表九 氮化矽薄膜之單閘極電晶體材料特性的設定………………... 47 表十 等比例尺寸的應變比較………………………………………... 47 表十一 結構長度與應變區域的關係…………………………………... 48 圖目錄 圖2-1 未受應變之矽基材的六個傳導帶,(a)三維示意圖,(b)三維投影至平面示意圖…....................................................................... 49 圖2-2 應變矽的二傳導帶和四傳導帶,(a)三維示意圖,(b)三維投影至平面示意圖…..………………………………………………. 49 圖2-3 矽受拉應變後的能量分佈……………………………………... 50 圖2-4 NMOS電晶體的結構………………………………………….. 50 圖2-5 矽鍺磊晶層與矽基材的晶格排列…..…………………………. 51 圖2-6 矽鍺磊晶層成長於矽基材上………………..…………………. 51 圖2-7 矽鍺磊晶層與矽基材間的差排效應……................................... 52 圖2-8 NMOS電晶體的結構圖,紅色箭頭代表電流通過的區域及方向………………………………………………………………... 52 圖2-9 (a)三閘級電晶體的結構(b) 三閘級電晶體的通道中,電流主要在通道與閘極接觸的表面(淺綠色部分)流動,如紅色箭頭所示……………………………………………………………... 53 圖2-10 三閘級電晶體的通道,內部為矽鍺化合物,表面為應變矽… 53 圖2-11 受應變之矽/矽鍺雙層結構的橫切面………………………….. 54 圖2-12 氮化矽應力層中矽與氮原子的個數比與殘留應力之關係…... 54 圖2-13 Intel所發表的覆蓋氮化矽應力層之NMOS電晶體結構……. 55 圖2-14 當氮化矽沉積於矽基板上,不同的薄膜應力對外觀造成之變形………………………………………………...……………… 55 圖2-15 利用高拉伸應力的氮化矽應力層給予NMOS通道拉伸應力.. 56 圖3-1 矽/矽鍺雙層結構……………………………………………….. 56 圖3-2 矽/矽鍺/矽三層結構之方型平台(Mesa)………………………. 57 圖3-3 矽/矽鍺/矽三層結構……………………………………………. 57 圖3-4 矽/矽鍺/矽三層結構的四分之一模型…………………………. 58 圖3-5 三閘極電晶體通道的四分之一模型…………………………... 58 圖3-6 披覆氮化矽薄膜之單閘極電晶體的結構……………………... 59 圖3-7 氮化矽應力層之單閘極電晶體主要邊界條件的設定………... 59 圖3-8-1 預應力的邊界條件設定………………………………………... 60 圖3-8-2 預應力的邊界條件設定(局部放大)……………………………. 60 圖4-1 矽鍺異質結構之參數化…………………………….………….. 61 圖4-2 升溫之不同矽鍺化合物厚度於底層矽厚度參數化之比較(等方向之熱膨脹係數) …………………………………................. 61 圖4-3 降溫之不同矽鍺化合物厚度於底層矽厚度參數化之比較(等方向之熱膨脹係數) ……………………………………………. 62 圖4-4 升溫前與升溫後的變形(等方向之熱膨脹係數) ………............ 62 圖4-5 降溫前與降溫後的變形(等方向之熱膨脹係數) ……………… 63 圖4-6 上層矽之厚度與x方向應變的關係(等方向之熱膨脹係數)…. 63 圖4-7 不同矽鍺化合物厚度於底層矽厚度參數化之比較(水平雙軸方向之熱膨脹係數) ……………………………………………. 64 圖4-8 升溫前與升溫後的變形(水平雙軸方向之熱膨脹係數)….…… 64 圖4-9 降溫前與降溫後的變形(水平雙軸方向之熱膨脹係數)..……... 65 圖4-10 上層矽之厚度與x方向應變的關係(水平雙軸方向之熱膨脹係數)….…………………………………………………………. 65 圖4-11 文獻[9 ]中的應變矽結構………………………………………... 66 圖4-12 應變矽結構的四分之一模型…………………………………... 66 圖4-13 應變矽結構之x方向應變分佈………………………………… 66 圖4-14 結構長度與x方向應變的關係………………………………… 67 圖4-15 x方向應變分佈圖(結構長度:1,500nm) ……………………….. 67 圖4-16 x方向應變分佈圖(結構長度:500nm) …………………………. 68 圖4-17 矽鍺化合物之厚度與x方向應變的關係……………………… 68 圖4-18 上層矽之厚度為5nm的x方向應變分佈…………………….. 69 圖4-19 上層矽之厚度為50nm的x方向應變分佈……………………. 70 圖4-20 上層矽之厚度為300nm的x方向應變分佈………………….. 70 圖4-21 無因次化之結構尺寸與x方向應變的關係…………………… 71 圖4-22 矽表面位於z=0且沿著x軸的單元之x方向應變................... 71 圖4-23 矽表面位於z=0且沿著x軸的單元之x方向應變………....... 72 圖4-24 有效應變區域之總長度與矽鍺化合物之厚度的關係………... 72 圖4-25 矽表面位於z=0且沿著x軸的單元之x方向應變…………… 73 圖4-26 有效應變區域之總長度與上層矽之厚度的關係……………... 73 圖4-27 結構長度為150nm的z方向應變分佈……………………….. 74 圖4-28 電晶體通道於z=0的z方向應變分佈………………………… 74 圖4-29 結構中間表面z方向之應變與x軸的關係…………………… 75 圖4-30 矽表面位於z=0且沿著x軸的單元之x方向應變…………… 75 圖4-31 z方向應變與矽薄膜的厚度及結構長度的關係………………. 76 圖4-32 氮化矽應力層受到2GPa的預應力…………………………… 76 圖4-33 模擬結構受到內應力(1GPa)時的應力分佈…………………… 77 圖4-34 模擬結構受到內應力(1GPa)時的x方向的應變分佈………… 77 圖4-35 電晶體通道部分受到內應力(1GPa)時的x方向應變分佈………………………………………………………………... 78 圖4-36 電晶體的x方向應變分佈(內應力為1GPa且由400°C降至25°C)……………………………………………………………. 78 圖4-37 電晶體通道部分的x方向應變分佈(內應力為1GPa且由400°C降至25°C)………………………………………………..…. 79 圖4-38 電晶體通道部分的x方向應變分佈(內應力為1GPa且由400°C降至25°C)…………………………..……………………….. 79 圖4-39 電晶體通道部分的x方向應變分佈(內應力為500MPa且由400°C降至25°C)……………………………………………….. 80rf 1. Y. H. Xie, Don Monroe, E. A. Fitzgerald, P. J. Silverman, F. A. Thiel, and G. P. Watson, “Very high mobility two-dimensional hole gas in Si/GexSi1-x/Ge structures grown by molecular beam epitaxy.pdf,” Appl. Phys. Lett. 63, pp. 2263-2264 (1993). 2. T. Mizuno, N. Sugiyama, T. Tezuka, and S. Takagi, “(110) Strained-SOI n-MOSFETs With Higher Electron Mobility,” IEEE Electron Device Lett., Vol. 24, No. 4, pp. 266-268 (2003). 3. K. Rim, L. J. Huang, ”Silicon Update,” Compound Semiconductor magazine (August 2001) 4. T. Tezuka, N. Sugiyama, and S. Takagi, “Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction,” Appl. Phys. Lett., 79, pp. 1798-1800 (2001). 5. T. Tezuka, N. Sugiyama, S. Takagi, and T. Kawakubo, “Dislocation-free formation of relaxed SiGe-on-insulator layers,” Appl. Phys. Lett. 80, pp. 3560-3562 (2002). 6. J. C. Tsang, P. M. Mooney, F. Dacol, and J. O. Chu, “Measurements of alloy composition and strain in thin GexSi1–x layers, ” Appl. Phys. J., 75, pp. 8098-8108 (1994). 7. W. M. Chen, P. J. Mcnally, G. D. M. Dilliway, J. Bonar, T. Tuomi, and A. F. W. Willoughby, ”Stress characterization of device layers and the underlying Si1-xGex virtual substrate with high-resolution micro-Raman spectroscopy,” Journal of Materials Science: Materials Electronics, 14, pp. 455-458 (2003). 8. D. Zubia, S. D. Hersee, and T. Khraishi, ”Strain partitioning in coherent compliant heterostructures,” Appl. Phys. Lett., 80, 740 (2002). 9. H. Yin, K. D. Hobart, F. J. Kub, S. R. Shieh, T. S. Duffy, and J. C. Sturm, “Strain partition of Si/SiGe and SiO2/SiGe on compliant substrates,” Appl. Phys. Lett. 82, pp. 3853-3855 (2003). 10. Y. H. Lo, ”New approach to grow pseudomorphic structures over the critical thickness,” Appl. Phys. Lett., 59, pp. 2311-2313 (1994). 11. P. V. Mieghem, S. C. Jain, J. Nijs, and R. V. Overstraeten, ”Stress relaxation in laterally small strained semiconductor epilayers,” Appl. Phys. J., 75, pp. 666-668 (1994). 12. S. Chrisiansen, M. Albrecht, H. P. Strunk, and H. J. Maier, ”Strained state of Ge(Si) islands on Si Finite element calculations and comparison to convergent beam electron-diffraction measurements,” Appl. Phys. Lett., 64, pp. 3167-3619 (1994). 13. T. Benabbas, P. Francois, Y. Androussi, and A. Lefebvre, ”Stress relaxation in highly strained InAs/GaAs structures as studied by finite element analysis and transmission electron microscopy,” Appl. Phys. J., 80, pp. 2763-2767 (1996). 14. P. L. Novikov, Y. B. Bolkhovityanov, O. P. Pchelyakov, S. I. Romanov, and L. V. Sokolov, ”Specific behaviour of stress relaxation in Gex/Si1-x films grown on porous silicon based mesa substrates computer calculations,” Semicond. Sci. Technol., 18 , pp. 39–44(2003) 15. L. B. Freund, and W. D. Nix, ”A critical thickness condition for a strained compliant substrate-epitaxial film system,” Appl. Phys. Lett., 69, pp. 173-175 (1996). 16. H. Yin, R. Huang, K. D. Hobart, Z. Suo, T. S. Kuan, C. K. Inoki, S. R. Shieh, T. S. Duffy, F. J. Kub, andJ. C. Sturm, ”Strain relaxation of SiGe islands on compliant oxide,” Appl. Phys. J., 91, pp. 9716-9722 (2002). 17. G. Kästner, and U. Gösele, ”Principles of strain relaxation in heteroepitaxial films growing on compliant substrates,” Appl. Phys. J., 88, pp. 4048-4055 (2000). 18. M. Fatemi, and E. E. Stahlbush, “X-ray rocking curve measurement of composition and strain in Si-Ge buffer layers grown on Si substrates.,” Appl. Phys. Lett., 58, pp. 825-827 (1991). 19. 賴莉雯,”無應力矽鍺合金層的光學特性”,國立師範大學,(2002) 20. S. I. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, “Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal-oxide-Semiconductor Field-effect transistors,” Appl. Phys. J., 80, pp. 1567-1577 (1996). 21. J. C. Tsang, P. M. Mooney, F. Dacol, And J. O. Chu, “Measurement of alloy composition and strain in thin GexSi1-x layers,” Appl. Phys. J., 75, pp. 8098-8108 (1994). 22. P. D. Moran, D. M. Hansen, R. J. Matyi, L. J. Mawst, andT. F. Kuech, “Experimental test for elastic compliance during growth on glass-bonded compliant substrates,” Appl. Phys. Lett., 76, pp. 2541-2543 (2000). 23. T. Vogelsang , and K. R. Hofmann, “Electron transport in strained Si layers on Si1-xGex substrates,” Appl. Phys. Lett., 63, pp. 186-188 (1993). 24. E. Kasper, “Strained silicon germanium heterostructures for device applications,” International Journal of Modern Physics B, Vol. 16, Nos. 28 & 29, pp. 4189-4194 (2002). 25. M. A. Herman, “Silicon-Based Heterostructures: Strained-Layer Growth by Molecular Beam Epitaxy,” Cryst. Res. Technol., 34, pp. 583-595 (1999). 26. Y. B. Bolkhovityanov, O. P. Pchelyakov, and S. I. Chikichev, “Silicon-germanium epilayers: physical fundamentals of growing strained and fully relaxed heterostructures,” Physics-Uspekhi, 44, pp. 655-680 (2001). 27. E. Lea, and B. L. Weiss, “Modeling and characteristics of photoelastic waveguide in Si1-xGex/Si heterstructures,” IEE Proc.-Optoelectron., Vol. 147, No. 2, pp. 123-131 (2000) 28. K. E. Gonsalves, S.P. Rangarajan, and J. Wang,“Nanostructured materials and nanotechnology,”Academic Press, (2002). 29. J. L. Hoyt, H. M. Nayfeh, S. Enguchi, I. Aberg, G. Xia, T. Drake, E. A. Fitzgerald, D. A. Antoniadis, “Strained Silicon MOSFET Technology,” International Electron Devices Meeting, pp. 23-26 (2002). 30. X. Chen, K. C. Liu, Q. C. Ouyang, S. K. Jayanarayanan, and S. K. Banerjee, “Hole and Electron Mobility Enhancement in Strained SiGe Verical MOSFETs,” IEEE Transaction on Electron Device, Vol.48, No. 9, pp. 1975-1979 (2003). 31. Y. Toivola, J. Thurn, and R. F. Cook, “Influence of deposition conditions on mechanical properties of low-pressure chemical vapor deposited low-stress silicon nitride films,” Appl. Phys. J., 94, pp. 6915-6922 (2003). 32. S. Habermehl, “Stress relaxation in Si-rich silicon nitride thin films,” Appl. Phys. J., 83, pp. 4672-4677 (1998). 33. A. Tarraf, J. Daleiden, S. Irmer, D. Prasai and H. Hillmer, “Stress investigation of PECVD dielectric layers for advanced optical MEMS,” J. Micromech. Microeng. 14, pp. 317-323(2004). 34. J. W. Kim and H. W. Yeom, “Surface and interface structures of epitaxial silicon nitride in Si(111),” PHYSICAL REVIEW B 67, 035304(2003). 35. A. Shimizu, K. Hachimine, N. Ohki, H. Ohta, M. Koghuchi,”Local Mechamical-Stress Control (LMC): A New Technique for CMOS-Performance Enchancement,” IEEE International Electron Devices Meeting, pp. 433-436(2001). 36. S. Ito, H. Namba, K. Yamaguchi, T. Hirata, K. Ando, S. Koyama, etc., ”Mechanical Stress Effect of Etch-Stop Nitride and its Impact on Deep Submicron Transistor Design,” IEEE International Electron Devices Meeting, pp. 247-250(2000). 37. S. Ito, H. Namba, K. Yamaguchi, T. Hirata, K. Ando, S. Koyama, etc., ”Effect of mechical stress induced by etch-stop nitride: impact on deep-submicron transistor performance,” Microelectronics Reliability, 42, pp. 201-209(2002). 38. C. H. Ge, C. C. Lin, C. H. Ko, etc., “Process-Strained Si (PSS) CMOS Technology Featuring 3D strain Engineering,” IEEE International Electron Devices Meeting, pp. 73-76(2003). 39. T. Ghani, M. Armstrong, C. Auth, M. Bost, etc., “A 90nm High Volume Manufacturing Lobic Technology Freaturing Novel 45nm Gate Length Strained CMOS Transistors,” intel. 40. S. Thompson, N. Anand, M. Armstrong, C. Auth, etc., “A 90 nm Logic Technology Featuring 50nm Strained Silicon Channel Transistors, 7 layers of Cu Interconnects, Low k ILD, and 1 μm2 SRAM Cell,” IEEE International Electron Devices Meeting, pp. 61-64(2003). 41. K. Rim, J. Chu, H. Chen, K. A. Jenkins, etc., “Characteristics and Device Design of Sub-100 nm Strained Si N- and PMOSFETs,” Symposium On VLSI Technology Digest of Technical Papers, pp. 98-99(2002) 42. W. D. Robert and H. C. Chang, “Technology Limits and compact model for SiGe Scaled FETs,” NSTI-Nanotech, Vol. 2, pp. 52-55(2004). 43. K. Ikeda, Y. Yamashita, A. Endoh, etc., “50-nm Gate Schottky Source/Drain p-MOSFETs With a SiGe Channel” IEEE ELECTRON DEVICE LETTERS, Vol. 23, No. 11, pp. 670-672(2002) 44. Y. C. Yeo, V. Subramamian, J. Kedzierski, P. Xuan, T. J. King, J. Bokor, and C. Hu, “Nanoscale SiGe-Channel Ultra-Thin-Body Silicon-on-Insulator P-MOSFETs” International Semiconductor Device Research Symposium, Charlottesville VA, pp. 295-298(19990) 45. Y. C. Yeo, V. Subramanian, J. Kedzierski, etc., “Design and Fabrication of 50-nm Thin-Body p-MOSFETs With a SiGe Heterostructure,” IEEE TRANSATIONS ON ELECTON DEVICES, Vol. 49, No. 2, pp. 279-286(2002) 46. B. S. Doyle, S. Datta, M. Doczy, S. Hareland, etc., “High Performance Fully-Depleted Tri-Gate CMOS Transistors,” IEEE ELECTRON DEVICE LETTERS, Vol. 247, No. 4, pp. 263-265(2003). 47. C. H. Chang, C. T. Peng, K. N. Chiang, “Investigation of Local-strain Effect of Nano-Scale Triple-Gate Si/SiGe CMOS Transistor,” The 3rd Cross-Strait Workshop on Nano Science and Technology (CSWNST-3), Hualien, Taiwan, 27-29 April(2004)id NH0925311055 sid 913786 cfn 0 / id NH0925311056 auc 張俊吉 tic 二階式直線微進給系統設計 adc 宋震國 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 英文 pg 64 kwc 進給系統 kwc 卡氏原理 kwc 熱致動器 kwc 爬舉式致動器 kwc 雙穩態機構 kwc 放大機構 abc 本文提出應用於掃描試探針顯微鏡(SPM)的二階式微進給系統,其主要由粗進給系統、細進給系統與定位系統三部份組成。粗進給系統以高放大率的撓性機構,將「山形」熱致動器(Chevron beam thermal actuators)輸出的小位移放大,提高裝設在放大機構上之粗定位平台(Coarse stage)的移動速度及行程距離(60μm)。當粗進給平台位移至特定位置後,由撓性雙穩態機構與熱致動器構成的定位系統固定粗進給平台,此定位系統具有抗干擾與維持進?H系統於穩定位置並無消耗能量的特點。細進給系統以具有奈米精度的爬舉式致動器(Scratch driven actuator)為致動器並以70V的偏壓20V的正弦波驅動細進給平台(Fine stage),使其具有30nm的解析度,最大輸出力量165μN。另一方面,以實驗結果說明卡氏原理(Castigliano’s theorem)可運用於分析撓性機構的運動並與商用軟體ANSYS及pesudo-rigid- tc List of Figures..........................................3 List of Tables...........................................6 Chapter 1 Introduction...................................7 1.1 Background...........................................7 1.2 Literature Review of Linear Micro-Feeding System Performance..............................................8 1.3 The objective of this research......................10 Chapter 2 Design of the Linear Micro-Feeding System.....12 2.1 Configuration of the Linear Micro-Feeding System....12 2.2 Coarse-Feeding Subsystem............................13 2.3 Positioning Subsystem...............................14 2.4 Fine-Feeding Subsystem..............................16 Chapter 3 Theory Applied to the System.................17 3.1 Castigliano’s Theorem and Pesudo-Rigid-Body Model..17 3.2 Modeling of Amplification Mechanism.................18 3.3 Modeling of the Chevron Beam Thermal Actuator.......25 3.4 Modeling of the Compliant Bistable Mechanism........32 3.5 Buckling............................................35 Chapter 4 Fabrication of System........................38 4.1 Sacrificial Layer Technology........................38 4.2 Introduction to the MUMPs?? Process..................39 4.3 Design Features.....................................40 Chapter 5 Simulation and Experiment....................46 5.1 The Amplification Mechanism.........................46 5.2 Chevron Beam Thermal Actuator.......................49 5.3 The Bistable Mechanism..............................52 5.4 The Scratch Drive Actuator..........................54 Chapter 6 Conclusion and Future Work...................59 6.1 Conclusion..........................................59 6.2 Future Work.........................................60 References.............................................62rf [1 ] J. W. Cross, http://www.mobot.org/jwcross/spm/, 2003. [2 ] N. R. Tas, A. H. Sonnenberg, A. F. M. Sander, M. C. Elwenspoek, "Surface Micromachined Linear Electrostatic Stepper Motor," Micro Electro Mechanical Systems, MEMS'97, Proceedings, IEEE, Tenth Annual International Workshop on, Jan, pp. 215–220, 1997. [3 ] M. J. Daneman, N. C. Tien, O. Solgaard, A. P. Pisano, K. Y. Lau, and R. S. Muller, "Linear Microvibromotor for Positioning Optical Components," Journal of MicroElectroMechanical Systems, vol. 5, no. 3, pp.159-165,1996. [4 ] M. Baltzer, T. Kraus, E. Obermeier, "A Linear Stepping Actuator in Surface Micromachining Technology for Low Voltages and Large Displacements," Solid State Sensors and Actuators, TRANSDUCERS'97, Chicago, International Conference on , vol. 2, June, pp.781–784, 1997. [5 ] N. R. Tas, A. H. Sonnenberg, A. F. M. Sander, M. C. Elwenspoek, "Surface Micromachined Linear Electrostatic Stepper Motor," Micro Electro Mechanical Systems, MEMS'97, Proceedings, IEEE, Tenth Annual International Workshop on, Jan, pp. 215–220, 1997. [6 ] Tas, N., J. Wissink, L. Sander, T. Lammerink, M. Elwenspoek, "Modeling, Design and Testing of the Electrostatic Shuffle Motor," Sensors and Actuators A: Physical, vol. 70, Issue: 1-2, October 1, pp.171-178, 1998. [7 ] R. Yeh, S. Hollar, K. S. J. Pister, "Single Mask, Large Force, and Large Displacement Electrostatic Linear Inchworm Motors," Journal of Microelectromechanical Systems, vol. 11, issue. 4, August pp.330 -336, 2000. [8 ] M. Pai, N. C. Tien, "Low Voltage Electrothermal Vibromotor for Silicon Optical Bench Applications," Sensors and Actuators A: Physical, vol. 83, issue. 1-3, May 22, pp.237-243, 2000. [9 ] J. S. Park, L. L. Chu, A. D. Oliver, Y. B. Gianchandani, "Bent-Beam Electrothermal Actuators—Part II: Linear and Rotary Microengines," Journal of MicroElectroMechanical Systems, vol. 10, no. 2, June pp.255-262, 2001. [10 ] H. Kwon, J. H. Lee, S. H. Jeong, S. K. Lee, W. I. Jang, and C. A. Choi, "A Micromachined Thermoelastic Actuator with 2-Dimensional Motion for Inchworm Motor Applications, " Proceedings of the 32nd ISR (International Symposium on Robotics), April, pp.796-801, 2001. [11 ] S. Hollar, S. Bergbreiter, K. S. J. Pister, “Bidirectional Inchworm Motors and Two-DOF Robot Leg Operation,” TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th Innational Conference on, June, vol. 1, 8-12, pp. 262-267, 2003. [12 ] J. M. Maloney, D. S. Schreiber, D. L. D. Voe, "Large-Force Electrothermal Linear Micromotors," J. Micromech. Microeng., vol. 14, no. 2, pp.226-234, 2004. [13 ] L. L. Chu, J. A. Hetrick, Y. B. Gianchandani, "High Amplification Compliant Microtransmissions for Rectilinear Electrothermal Actuators," Sensors and Actuators A: Physical, vol. 97-98, April, pp.776-783, 2002. [14 ] M. J. Sinclair, K. Wang, “Thermal Actuator Improvements: Tapering and Folding,” Proceedings of SPIE-The International Society for Optical Engineering, vol. 5116, pp. 137-251, May 19-21, 2003. [15 ] B. D. Jensen, L. L. Howell, L. G. Salmon, “Design of Two-Link, In-Plane, Bistable Compliant Mechanism,” ASME Journal of Mechanical Design, vol. 121, no. 3, pp. 416-423, 1999. [16 ] T. Akiyama, D. Collard, H. Fujita, “Scratch Drive Actuator with Mechanical Links for Self-assembly of Three-Dimensional MEMS,” J. Microelectromechanical Systems, vol. 6, Issue: 1, pp.10 – 17, 1997. [17 ] I. H. Shames, J. M. Pitarresi, Introduction to Solid Mechanics, third edition, New Jersey: Prentice-Hall International, Inc, p. 673, 2000. [18 ] Howell, Larry L., Spencer P. Magleby, Timothy W. McLain http://research.et.byu.edu/llhwww/pseudo/pseudo.html, 2004. [19 ] L. Que, J. S. Park, Y. B. Gianchandani, “Bent-Beam Electro-Thermal Actuators for High Force Applications,” Twelfth IEEE International Conference on Micro-Electro-Mechanical Systems, MEMS '99, 17-21 Jan, pp.31-36, 1999. [20 ] L-Q. Su, “Design of Micro Feeding System Integrated with Micro Positioning Device Featuring Bistable Mechanism,” MA Thesis, National Tsing Hua University, Taiwan, 2003. [21 ] 楊龍杰́́,認識微機電,滄海書局,pp.348-403,2001[Yang Long Jie, Renshi Weijidian (MEMS), Changhai Shuju ]。 [22 ] D. Koester, A. Cowen, R. Mahadevan, M. Stonefield, B. Hardy, “PolyMUMPs?? Design Handbook”, Revision 10.0, www.memsrus.com/cronos/CIMSmain2ie.html, MEMSCAP, 2003. [23 ] P. Langlet, D. Collard, T. Akiyama, H. Fujita, “A Quantitative Analysis of Scratch Drive Actuation for Integrated X/Y Motion System,” 1997 International Conference on Solid-State Sensors and Actuators, Chicago, June 16-19, 1997.id NH0925311056 sid 913797 cfn 0 / id NH0925311057 auc 江俊緯 tic 靜態液滴與氣泡形狀之數值計算 adc 李雄略 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 22 kwc 液滴 kwc 自由液面 kwc 氣泡 kwc 接觸角 kwc 表面張力 kwc 數值模擬 abc 本文的目的,在透過數值計算,探討在平板上附著的靜態液滴與氣泡,處於不同的長度,以及板壁的親疏水材質下,體積和形狀的變化情形。在數值計算的技巧上,引用Lee and Lee [7 tc 目錄 摘要 I 誌謝 II 目錄 III 圖目錄 V 符號說明 VI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 1 1.3 本文目的 3 第二章 理論分析 4 2.1 問題描述 4 2.2 液滴的方程式推導與無因次化 4 2.3 氣泡問題的分析 7 第三章 數值方法 9 3.1 主軸曲率 9 3.2 方程式與邊界條件 9 3.3 自由液面形狀的計算 10 3.4 計算步驟 10 第四章 結果與討論 14 4.1參數的給定 14 4.2 多解的特性 14 4.3 Bo以及對水滴形狀的影響 17 4.4 接觸角對形狀的影響 19 4.5 力平衡的檢測 19 第五章 結論 21 參考文獻 22 附錄A 附圖rf [1 ] J.Eggers and T.F. Dupont,”Drop formation in a one- dumensional approximation of the Nsvier-Stokes equation,”J.Fluid Mech. Vol. 262 ,pp.205-221,1994. [2 ] R.M.S.M Schulkes,” The evolution and bifercation of a pendant drop,”J. Fluid Mech. Vol.278,pp.83-100 ,1994. [3 ] Zhang, D.F and Stone ,”H.A.,”Drop formation in viscous flows at a vertical capillary tube,” Physics. Fluids Vol.9,pp.2234-2242,1997. [4 ] Zang, X. Z.,”Dynamics of growth and breakup of viscous pendant dorops into air,”Journal of Colloid and Interface Science, Vol.212 , pp.107-122, 1998. [5 ] O.I. del Rio and A. W. Neumann,”Axisymmetric drop shape analysis:computational methods for the measurement of inrerfacial properties from the shape and dimensions of pendant and sessile drops, ”Journal of Colloid and Interface Science,Vol.196,pp.136-147,1996 [6 ] Jeffrey S.Allen,”An analytical solution for determination of small contact angles freom sessile drops of arbitary size, Journal of Colloid and Interface Science,Vol.261,pp.481-489,2003 [7 ] Lee, S.L. and Lee,H.D., “Evolution of the liquid meniscus in a capillary-force-dominant flow,” The 14th International Symposium on Transport Phenomena,2003.id NH0925311057 sid 913731 cfn 0 / id NH0925311058 auc 曾達欽 tic 以小波轉換為基礎之反覆學習控制律設計 adc 陳建祥 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 86 kwc 小波轉換 kwc 離散小波轉換 kwc 反覆學習控制 kwc 不可學習之動態 kwc 數位信號處理器 kwc 學習增益 kwc 回授控制增益 kwc 直流伺服系統 kwc 速度追循 abc 一般伺服機構若希望其轉速能追循任意之軌跡,以目前常用線性之控制器是不易達成的,而反覆學習控制理論能夠藉由重複疊代學習,將誤差量降低,以達成控制目標。但反覆學習控制在使用上有其限制,其中最容易造成學習失敗的因素便在於外界的振動、干擾等。因此,在此將輔以離散小波轉換(Discrete Wavelet Transform, DWT)以分離不可學習之成分,可學習之部分由學習控制處理,而不可學習之部分則以回授控制壓抑之,使反覆學習控制更具強健性。本文以基於小波轉換之反覆學習控制使伺服機構達成追循頻寬下任意軌跡之目標。 tc 目錄 中文摘要................................................I Abstract................................................II 目錄....................................................III 圖目錄..................................................VI 表目錄..................................................XI 第一章 緒論...........................................1 1.1 背景與研究動機.....................................1 1.2 文獻回顧...........................................3 1.3 論文架構...........................................5 第二章 控制系統之理論基礎.............................6 2.1 小波轉換...........................................6 2.2 反覆學習控制理論...................................11 2.3 基於小波轉換之反覆學習控制律.......................13 第三章 實驗系統架構...................................16 3.1 實驗系統描述.......................................16 3.2 實驗系統架構.......................................17 3.3 實驗設備介紹.......................................21 3.3.1 實驗平台.........................................21 3.3.2 數位信號處理器(DSP)..............................22 3.3.3 Altera 8K........................................25 3.3.4 實驗軟體簡介.....................................26 3.3.5 實驗周邊電路.....................................27 3.3.5-1 史密斯觸發器(Hex Schmitt Trigger Inverters)....27 3.3.5-2 數位轉類比電路(DAC)............................27 第四章 實驗結果與討論.................................29 4.1 模擬結果...........................................29 4.1.1 反覆學習控制與基於小波轉換之反覆學習控制.........29 4.1.2 一般低通濾波器與小波轉換之比較...................38 4.1.3 轉速回授精確度之影響.............................40 4.1.4 控制器參數β之選擇................................44 4.2 實驗結果...........................................46 4.2.1 轉速回授精確度之影響.............................46 4.2.2 以DSP實現之實驗結果..............................48 4.2.2-1 控制器參數α、β之選擇...........................48 4.2.2-2 不同軌跡之追循.................................50 A. 振幅3000rpm 0.5Hz正弦波.............................50 B. 振幅1500rpm 0.2Hz與1500rpm 0.5Hz正弦波合成..........53 C. 振幅600rpm 0.1Hz~0.5Hz之正弦波合成..................54 D. 加速、等速、減速之三段軌跡..........................56 4.2.2-3 外在干擾之影響.................................57 A. 反覆學習控制........................................57 B. 有回授控制之反覆學習控制............................59 C. 基於小波轉換之反覆學習控制..........................61 4.2.2-4 速度曲線之平滑化...............................64 4.3 實驗結果討論.......................................65 第五章 本文貢獻與結論.................................66 5.1 本文貢獻...........................................66 5.2 結論與未來研究發展之建議...........................68 5.2.1 結論.............................................68 5.2.2 未來研究發展之建議...............................69 附錄一 直流伺服馬達及編碼器規格........................70 附錄二 直流伺服馬達驅動器使用說明......................75 參考文獻...............................................85rf [1 ]M. Vetteri, and C. Herley, ” Wavelets and filter banks: theory and design,” IEEE Transactions on Signal Processing, Vol.40, No. 9, pp. 2207 -2232, 1992. [2 ]G. Strang and T. Nguyen, Wavelets and filter banks, Wellesley-Cambridge Press, 1996. [3 ]單維彰,凌波初步,全華科技圖書公司,2000年 [4 ]S. Arimoto, S. Kawamura, and F. Miyazaki, ” Bettering operation of robots by learning,” J. of Robotic Systems, Vol. 1, pp. 123-140, 1984. [5 ]T. J. Jang, C. H. Cho, and H. S. Ahn, “Iterative learning control in feedback system,” J. of Automatica, Vol. 31, No. 2, pp. 243-248, 1995. [6 ]S. Arimoto, T. Naniwa, and H. Suzuki, “Robustness of P-type learning control with a forgetting factor for robotic motions,” Proc. 29th IEEE Conf. Decision and Control , Dec. 5-7, Vol. 5, pp. 2640-2645, 1990. [7 ]L. Cai, and W. Huang, ”Fourier base learning control and application to position table,” Robotics and Autonomous System, Vol.32, pp. 89-100, 2000. [8 ]D. Huang and Y. Jin, ”The application of wavelet neural networks to nonlinear predictive control,” IEEE International Conference on Neural Networks, Vol.2, pp. 724 -727, 1997. [9 ]Kune-Shiang Tzeng, and Jian-Shiang Chen, " Toward the Iterative Learning Control for Belt-driven System using Wavelet Transformation", to appear in the Journal of Sound and Vibration, 2004. [10 ]J. X. Xu, R. Yan, and Z. H. Guan, ”Direct learning control design for a class of linear time-varying switched systems,” IEEE Transactions on Circuits and Systems, Vol.50, NO. 8, pp. 1116 -1120, 2003. [11 ]ADSP TS101S DSP Data Sheet, 2002. [12 ] ADSP TS101S EZ-KIT LITE evaluation system manual, 2002. [13 ]ADSP TS101S hardware manual, 2002. [14 ]王信博,光碟機之主軸伺服控制晶片之設計與實作-國立清華大學動力機械工程學系碩士論文,2000年。id NH0925311058 sid 913742 cfn 0 / id NH0925311059 auc 蘇俊欽 tic 以Shape-from-Focus (SFF)和Depth-from- Focus (DFF)為基礎之三次元量測系統 adc 林士傑 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 71 kwc 對焦尋形法 kwc 一般光源量測 kwc 齊性轉換矩陣 abc 中文摘要 tc 目錄 中英文摘要………………………………………………………… Ⅰ 符號表……………………………………………………………… Ⅲ 目錄………………………………………………………………… Ⅴ 表目錄……………………………………………………………… Ⅶ 圖目錄……………………………………………………………… Ⅷ 第一章 簡介……………………………………………………… 01 第二章 文獻回顧………………………………………………… 04 2.1 打光技術………………………………………… 04 2.2 系統相關之影像處理技術……………………… 05 2.3 非接觸式量測…………………………………… 08 2.4 小結……………………………………………… 10 第三章 系統相關之原理介紹………………………………… 13 3.1 鏡頭基本光學…………………………………… 13 3.2 對焦尋形法……………………………………… 15 3.3 聚焦度測量值…………………………………… 16 3.4 座標轉換………………………………………… 18 3.5 尺寸校正………………………………………… 19 第四章 系統軟硬體之規劃與建構…………………………… 24 4.1 CCD攝影機……………………………………… 24 4.2 鏡頭……………………………………………… 25 4.3 照射光源………………………………………… 25 4.4 移動平台及旋轉步進馬達……………………… 27 4.5 系統程式及測試環境…………………………… 27 第五章 系統量測效能驗證…………………………………… 35 5.1 系統取像量測流程……………………………… 35 5.2 系統參數………………………………………… 36 5.3 系統量測精度驗證……………………………… 37 5.4 旋轉取像效能驗證……………………………… 38 第六章 結論與建議…………………………………………… 65 6.1 結論……………………………………………… 65 6.2 建議……………………………………………… 66 參考文獻………………………………………………………… 67 表目錄 表4.1 Basler A101fc CCD 攝影機之規格表………………… 28 表4.2 Kenko KCM-Z 鏡頭之規格表…………………………… 29 表4.3 LED光源之規格表……………………………………… 29 表4.4 HIWIN滾珠導螺桿之規格表…………………………… 30 表4.5 Panasonic 直流伺服馬達之規格表…………………… 30 表4.6 TECO 二相旋轉步進馬達規格表……………………… 31 表5.1 試件一之圓錐角量測結果……………………………… 39 圖目錄 圖2.1 FSM光學系統示意圖…………………………………… 12 圖3.1 對焦影像示意圖……………………………………… 21 圖3.2 景深範圍示意圖……………………………………… 21 圖3.3 對焦尋形法示意圖…………………………………… 22 圖3.4 校正片尺寸圖………………………………………… 22 圖3.5 0.8x校正片影像……………………………………… 23 圖3.6 2x校正片影像………………………………………… 23 圖4.1 系統示意圖…………………………………………… 32 圖4.2 三次元量測系統……………………………………… 32 圖4.3 Kenko KCM-Z鏡頭……………………………………… 33 圖4.4 LED光源………………………………………………… 33 圖4.5 TECO 二相旋轉步進馬達……………………………… 34 圖5.1 試件一(圓錐角加工值60度之鋁製圓錐)………… 40 圖5.2 試件二(RJ-45之網路線接頭)……………………… 40 圖5.3 試件三(電腦主機板之支柱)……………………… 41 圖5.4 本量測系統之量測流程圖…………………………… 42 圖5.5 以步進位移量50μm對試件一取像之量測結果……… 43 圖5.6 以步進位移量200μm對試件一取像之量測結果……… 44 圖5.7 以鏡頭倍率0.8x,步進位移量50μm對試件一 取像之量測結果……………………………………… 45 圖5.8 以鏡頭倍率2x,步進位移量50μm對試件一取 像之量測結果………………………………………… 46 圖5.9 試件一以聚焦閥值5運算之點資料圖………………… 47 圖5.10 試件一以聚焦閥值22運算之點資料圖……………… 47 圖5.11 試件一以聚焦閥值30運算之點資料圖……………… 48 圖5.12 試件二以聚焦閥值0運算之點資料圖………………… 48 圖5.13 試件二以聚焦閥值25運算之點資料圖……………… 49 圖5.14 試件二以聚焦閥值40運算之點資料圖……………… 49 圖5.15 試件一以聚焦閥值5及SML視窗5×5所得之 點資料圖……………………………………………… 50 圖5.16 試件一以聚焦閥值5及SML視窗51×51所得 之點資料圖…………………………………………… 50 圖5.17 試件一以聚焦閥值30及SML視窗5×5所得之 點資料圖……………………………………………… 51 圖5.18 試件一以聚焦閥值30及SML視窗51×51所得 之點資料圖…………………………………………… 51 圖5.19 MITUTOYO 三次元量測系統…………………………… 52 圖5.20 試件二以0度角取像之實物與點資料圖……………… 53 圖5.21 試件二以90度角取像之實物與點資料圖…………… 54 圖5.22 試件二以180度角取像之實物與點資料圖…………… 55 圖5.23 試件二以270度角取像之實物與點資料圖…………… 56 圖5.24 試件二實物圖與點資料圖…………………………… 57 圖5.25 試件二不同視角之三維立體重建圖………………… 58 圖5.26 試件三以0度角取像之實物與點資料圖……………… 59 圖5.27 試件三以90度角取像之實物與點資料圖…………… 60 圖5.28 試件三以180度角取像之實物與點資料圖…………… 61 圖5.29 試件三以270度角取像之實物與點資料圖…………… 62 圖5.30 試件三實物圖,與0度和90度點資料圖……………… 63 圖5.31 試件三不同視角之三維立體重建圖………………… 64rf 參考文獻 [1 ] 范光照, 章明, 姚宏宗, 許智欽, “逆向工程技術及應用,” 高立圖書有限公司, 1999. [2 ] 廖克東, “應用機器視覺於低對比動態X-Ray影像強化及瑕疵偵測之研究( Low Contrast X-ray Image Enhancement and Defects Classification for Real-Time Dynamic System ),” 私立元智大學工業工程與管理學系碩士論文, 2001. [3 ] 田亦凡, “高速超音波影像檢測系統( High Speed Ultrasonic Image Inspection System ),” 國立成功大學機械工程學系碩士論文, 2001. [4 ] 劉寶信, “電子構裝三維尺寸之雷射量測( Laser Measure on The Three Dimensional Size of The IC Package ),” 國立成功大學工程科學系專班碩士論文, 2003. [5 ] 張振龍, “360度立體快速量測系統與寬頻之應用( 360 Degrees Rapid Measuring System of 3-D Profilometry and Application in Wideband Network Collaboration ),” 國立台灣大學機械工程研究所碩士論文, 2000. [6 ] 王彰群, “自製影像式量測儀之自動化研究( The Study of Automation in CCD Camera Measurement Device ),” 國立交通大學機械工程系碩士論文, 2001. [7 ] 馮信榮,“二維影像於三維輪廓重建之研究,” 國立台灣大學機械工程研究所碩士論文, 2001. [8 ] 周佳彥,”運用雙影像對應求取3D座標資訊-模擬退火法之應用” 朝陽科技大學工業工程與管理所碩士論文, 2003. [9 ] Nayar, S. K. and Nakagawa, Y., “Shape from Focus : An Effective Approach for Rough Surfaces,” Proceedings of 1990 IEEE International Conference on Robotics and Automation, vol. 2, May 1990, pp.218-225, Cincinnati, USA. [10 ] Ens, J. and Lawrence, P., “An Investigation of Methods for Determining Depth from Focus,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15, No. 2, Feb. 1993, pp.97-108. [11 ] 陳時新, “實戰機器視覺,” 電子技術出版社, 1997. [12 ] 吳成柯, 戴善榮, 程湘君, 雲立實, “數位影像處理,” 儒林圖書有限公司, 2001. [13 ] 呂學仁, “利用數位影像進行硬碟片表面刮痕檢測可行性之研究( Feasibility Study Scratch Testing on Hard-Disk Surface Using Digital Image Analysis ),” 國立清華大學動力機械工程學系碩士論文, 2001. [14 ] Noguchi, M. and Nayar, S.K., “Microscopic Shape from Focus Using Active Illumination,” Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 1, Oct. 1994, pp.147-152, Jerusalem, Israel. [15 ] Jähne, B. and Geißler, P., “Depth from Focus with One Image,” Proceedings CVPR '94., IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 1994, pp.713-717, Seattle, USA. [16 ] Subbarao, M. and Choi, T., “Accurate Recovery of Three-Dimensional Shape from Image Focus,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 17, No. 3, 1995, pp.266-274. [17 ] Ishii, A., “3-D Shape Measurement Using a Focused-Section Method,” Proceedings of 15th International Conference on Pattern Recognition, Vol. 4, Sep. 2000, pp.828-832, Barcelona, Spain. [18 ] 易明, “現代幾何光學,” 凡異出版社, 1992. [19 ] Jia Li†, James Ze Wang‡, Robert M. Gray§, Gio Wiederhold, “Multiresolution Object-of-Interest Detection for Images with Low Depth of Field,” International Conference on Image Analysis and Processing, Sep. 1999, pp.32-37, Venice, Italy. [20 ] Alexander H. Slocum, “Precision Machine Design,” Prentice-Hall International, Inc., 1992. [21 ] 莊峻超, “逆向工程Imageware功能剖析,” 全華科技圖書股份有限公司, 2003. [22 ] 林瑞璋, 王萬強, 陳文賢, “逆向工程軟體Surfacer使用手冊,” 全華科技圖書股份有限公司, 2002. [23 ]尤春風, 陳宗伯, 陳柏瑞, 林益楓, 趙甦農, 林威延, “CATIA V5 使用手冊 曲面造型篇,” 知城數位科技有限公司, 2002.id NH0925311059 sid 915710 cfn 0 / id NH0925311060 auc 朱凱隆 tic 壓電式噴墨印相頭內外流場特性之量測研究 adc 劉通敏 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 107 kwc 壓電式噴墨頭 kwc 微質點影像測速技術 abc 摘 要 tc 目 錄 摘要……………………………………………………………………..Ⅰ 致謝……………………………………………………………………..Ⅲ 目錄……………………………………………………………………..Ⅳ 表目錄…………………………………………………………………..Ⅷ 圖目錄…………………………………………………………………..Ⅸ 符號說明……………………………………………………………..ⅩⅣ 第一章 緒論…………………………………………………………1 1.1 研究動機……………………………………………………….1 1.2 文獻回顧……………………………………………………….4 1.2.1 噴墨技術數值與實驗流場觀測…………………………..4 1.2.2 微流道製作………………………………………………..5 1.2.3 質點影像測速技術………………………………………10 1.3 研究目的……………………………………………………12 第二章 微米解析流場觀測實驗系統與方法………………………14 2.1 熱氣泡/壓電式驅動噴墨印相技術………………………….14 2.2 實驗系統基本原理與觀念…………………………………..16 2.3 微米解析噴墨印相技術流場觀測系統……………………..17 2.3.1 精密定位系統……………………………………………17 2.3.2 訊號同步與控制系統……………………………………18 2.3.3 光學影像擷取系統………………………………………18 2.3.4 影像處理與分析…………………………………………19 2.4 研究模型與方法……………………………………………...19 第三章 微米解析質點影像測量速度場系統之建立…………………22 3.1 基本原理與觀念……………………………………………...22 3.2 微質點影像測速系統………………………………………22 3.2.1 光學系統…………………………………………………22 3.2.2 質點顆粒的選用…………………………………………23 3.2.3 影像擷取與同步控制系統………………………………26 3.2.4 影像處理與分析系統……………………………………28 3.3 不確定度分析……………………………………………….31 第四章 微流道系統之建立……………………………………………32 4.1 商用噴墨印表頭內部微結構重現…………………………...32 4.2 微流道製作…………………………………………………...34 4.2.1 玻璃基材微流道…………………………………………35 4.2.2 矽基材微流道模具………………………………………37 4.2.3 高分子材料PDMS微流道………………………………38 4.3 工作流體之選擇……………………………………………...39 4.4 精密注射泵浦循環系統……………………………………...39 第五章 微流道數值方法………………………………………………40 5.1 計算模型尺寸與格點分佈………………………………….40 5.2 基本假設…………………………………………………….41 5.3 統馭方程式………………………………………………….41 5.4 邊界條件與起始條件……………………………………….42 第六章 結果與討論……………………………………………………44 6.1 噴墨印相技術外流場定性觀測……………………………...44 6.1.1熱氣泡驅動外流場觀測………………………………….44 6.1.2壓電式驅動外流場觀測………………………………….45 6.2 不同微流元件內部流場之定性/定量量測分析……………47 6.2.1 直管速度分佈積分流量以驗證系統之可信度…………47 6.2.2 不同入-出口寬度比值之漸縮/漸擴微管道……………48 第七章 結論與未來建議………………………………………………52 7.1 結論………………………………………………………….52 7.2 貢獻………………………………………………………….53 7.3 未來建議…………………………………………………….53 參考文獻……………………………………………………………….55 表………………………………………………………………………..61 圖………………………………………………………………………..68 作者簡介………………………………………………………………107rf 參 考 文 獻 Adrian, R.J., 1991, "Particle-Image Techniques for Experimental Fluid Mechanics, "Annual Review of Fluid Mechanics, Vol.23, pp.261-304. Adrian, R. J., 1997, "Dynamic Ranges of Velocity and Spatial Resolution of Particle Image Velocimetry, "Meas. Sci. Tech., Vol. 8, pp.1393-1398. Armani, D., Liu, C. Aluru, N., 1998, "Re-configurable Fluid Circuits by PDMS Elastomer Micromachining, " Conference. Asai, A., 1987, ”One-Dimensional Model of Bubble Growth and Liquid Flow in Bubble Jet Printers,” Japan Journal of Applied Physics, 26, 1794-1801. Asai, A., 1989, ”Application of the Nucleation Theory to the Design of Bubble Jet Printers,” Japan Journal of Applied Physics, 28, 909-915. Asai, A., 1991, ”Bubble Dynamics in Boiling Under High Flux Pulse Heating, “ ASME Journal of Heat Transfer, 113, 973-979. Asai, A., 1992, “Three-Dimensional Calculation of Bubble Growth and Drop Ejection in a Bubble Jet Printer,” ASME Journal of Fluids Engineering, 114, 638-641. Chen, P.H., Peng, H.Y., Liu, H.Y., Chang, S.L., Wu, T.I., Cheng, C.H., 1999, “Pressure Response and Droplet Ejection of a Piezoelectric Inkjet Printhead,” International Journal of Mechanical Sciences, 41, pp. 235-248. Chen, J., Wise, K.D., 1995, "A High-Resolution Silicon Monolithic Nozzle Array for Inkjet Printing, " International Conference on Solid-State Sensors and Actuators, pp. 321-324. Devasenathipathy, S., Santiago, J.G., Wereley, S.T., Meimhart, C.D., Takehara, K., 2003, "Particle Imaging Techniques for Microfabricated Fluidic Systems, " Exp. in Fluids, Vol. 34, pp. 504-514. Guerin, L.J., Bossel, M., Demierre, M., Calmes, S. Renaud, P.h., 1997, "Simple and Low Cost Fabrication of Embedded Microchannels by Using a NEW Thick-Film Photoplastic, " International Conference on Solid-State Sensors and Actuators, Chicago, pp.1419-1422. http://www.dantec.dk/ Hsin-chih, T.Y., 1998, "Fabrication and Cooling Test of High-Aspect-Ratio Electroplated Microchannels, " University of California Mechanical Engineering. Kamholz, A.E., Weigl, B.H., Finlayson, B.A., Yager, P., 1999, “Quantitative Analysis of Molecular Interaction in a Microfluidic Channel : The T-Sensor,” American Chemical Society, Analytical Chemistry, Vol. 71, No. 23, pp. 5340-5347. Kinoshita, H., Oshima, M., Hong, J.W., Fujii, T., Saga, T., Kobayashi, T., 2002, "PIV Measurement of Pressure- and Electrokinetically-driven Flow in Microchannels, " Optical Technology and Image Processing for Fluids and Solids Diagnostics SPIE-Beijing, Kihm, K. D., "Development and Applications of Advanced Flow Visualization Techniques for Microscale Heat and Mass Transport, " Proceedings of PSFVIP-4, June 3-5, 2003. Kim, M. J., Kim, H. J. and Kihm, K. D., "Micro-Scale PIV for Electroosmotic Flow Measurement, " Proceedings of PSFVIP-3 March 18-21, 2001, Maui, Hawaii, U.S.A. Lee, et al., ”Spot Size Modulation Using Multiple Pulse Resonance Drop Ejection,” U.S. Patent 4, 513, 299, Issue 6/27/1950. Mallik, A.K., Peterson, G.P., Weichold, M.H., 1995, "Fabrication of Vapor-Depositied Micro Heat Pipe Arrays as an Integral Part of Semiconductor Devices, " J. of Microelecttomec. Sys., Vol.4, No.3, pp.119-131. Man, P.F., Jones, D.K., Mastrangelo, C.H., 1997, "Microfluidic Plastic Capillaries on Silicon Substrates:A New Inexpensive Technology for Bioanalysis Chips, " Proc. IEEE MEMS Workshop, Nagoya, Japan, pp.311-316. Meinhart, C. D., Prasad, A. K. and Adrian, R. J., 1993, "A Parallel Digital Processor System for Particle Image Velocimetry, " Meas. Sci. Tech., Vol. 4, PP. 619-626. Meimhart, C.D., Wereley, S.T., Santiago, J.G., 1999, "Micron-Resolution Velocimetry Techniques, " Conference. Meinhart, C.D., Wereley, S.T., Santiago, J.G., 1999, "PIV Measurements of a Microchannel Flow, " Exp. in Fluids, Vol. 27, pp. 414-419. Meinhart, C.D., Wereley, S.T., Gray, M H B, 2000, " Volume Illumination for Two-dimensional Particle Image Velocimetry, " Mea. Sci. Tech., Vol. 11, pp. 809-814. Meinhart, C.D., Zhang H., 2000, " The Flow Structure inside a Microfabricated Inkjet Printhead, " Journal of MEMS, Vol. 9, No.1. Meinhart, C. D., Wereley, S. T. and Santiago, J. G., 2000, "A PIV Algorithm for Estimating Time-Averaged Velocity Fields, " Journal of Fluids Engineering, Vol. 122, pp. 285-289. Mielnik, M. M. and Saetran, L. R., 2003, " Micro-PIV Investigation of a Sinusoidal Crossflow Microfiltration Module, " First International Conference on Microchannels and Minichannels, April 24-25. Okuda, R., Sugii, Y. and O kamoto, K., 2003 " Velocity Measurement of Blood Flow in a Microtube Using Micro PIV System, " Proceedings of PSFVIP-4, June 3-5. Papautsky, I., Frazier, A.B., Swerdlow, H., 1997, " A Low Temperature IC Compatible Process for Fabricating Surface Micromachined Metallic Microchannels, " Proc. IEEE MEMS Workshop, Nagoya, Japan, pp.317-322. Prasad, A. K., Adrian, R. J., Landreth, C. C. and Offutt, P. W., 1992, "Effect of Resolution on the Speed and Accuracy of Particle Image Velocimetry Interrogation, " Exp. in Fluids, Vol. 13, pp. 105-116. Ryu, K.S., Liu, C., 2001, "Precision Patterning of PDMS Thin Films : A New Fabrication Method and its Application, " Conference. Santiago, J.G., Wereley, S.T., Meinhart, C.D., Beebe, D.J., Adrian, R.J., 1998, "A Particle Image Velocimetry System for Microfluidics," Exp. in Fluids, Vol. 25, pp. 316-319. Sato, Y., Irisawa, G., Ishizuka, M., Hishida, K., Maeda, M., 2003, "Visualization of Convective Mixing in Microchannel by Fluorescence Imaning, "Mea. Sci. and Tec, Vol. 14, pp. 114-121. Schomburg, W. K. et al., 1994, " Microfluidic Components in LIGA Technique, " J. Micromech. Microeng., Vol. 4, pp.186-191. Stone, S. W., Meinhart, C. D. and Wereley, S. T, 2002, "A Microfluidic-based Nanoscope, " Exp. in Fluids, Vol. 33, pp. 613-619. Sugii, Y., Okamoto, K., Hibara, A., Tokeshi, M. and Kitamori, T., 2003, "Stabilization of interface between two liquid phases on a microchip by means of micro PIV technique, "Proceedings of PSFVIP-4, June 3-5. Terry, S.C., Jerman, J.H., Angell, J.B., 1979, IEEE Trans Electron. Device, ED-26, 1880, pp. 176-183. Tian, J. D. and Qiu, H. H., 2002, " Eliminating Background Noise Effect in Micro-resolution Particle Image Velocimetry, "Applied Optics, Vol. 41, No.32, pp. 6849-6857. Tretheway, D. C., Liu, X. and Meimhart, C. D., 2002, "Analysis of Slip Flow in Microchannels, " Conference. Tretheway, D. C., and Meimhart, C. D., 2002, " Apparent Fluid Slip at Hydrophobic Microchannel Walls, " Physics of Fluids, Vol. 14, No.3, pp. 9-12. Tseng, F.G., Kim, C.J., Ho, C.M., 1998, ” A Novel Microinjector with Virtual Chamber Neck,” IEEE Workshop on MEMS, 11th, pp. 25-29. Westerweel, J., 1997, " Fundamentals of Digital Particle Image Velocimetry, " Meas. Sci. Tech., Vol. 8, PP. 1379-1392. 陳文成,1997,”熱氣泡噴墨頭噴出墨滴串發展之過程,”中國機械工程學會第14屆學術研討會論文集, 70-77. 劉欣怡,彭新亞,陳炳輝,張所鋐,伍次寅,鄭江河,1997,”壓電噴墨印表頭墨滴成型過程之觀測,”台中市, 第二十一屆全國機械工程學術研討會論文集, pp.71-78. 杜彬湧, 鄭友仁, 2002, “壓電式微型噴油泵浦之設計、製作與性能探討,”國立中正大學機械工程研究所碩士論文。 方昱仁, 張所鋐, 2002, “單體單噴孔壓電致動式噴液裝置設計與製造,” 國立台灣大學機械工程學系研究所碩士論文。id NH0925311060 sid 913730 cfn 0 / id NH0925311061 auc 張孟晉 tic 嵌入式DSP於光碟機伺服控制系統之設計與應用 adc 陳建祥 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 77 kwc 光碟機 kwc 數位訊號處理器 kwc 複雜型可程式化邏輯陣列閘 kwc 硬體描述語言 kwc 圖形使用者介面 abc 本文主要目的是利用數位訊號處理器(Digital Signal Processor,DSP)與複雜型可程式化邏輯陣列閘(Complex Programmable Logic Device,CPLD) 設計伺服控制器,應用於整合光碟機之聚焦、定軌、尋軌及主軸伺服的控制晶片設計與實作。藉由DSP的高速運算能力來掌管需要大量演算處理的部分,而CPLD則專門負責邏輯判斷與訊號擷取的部分。 tc 誌謝辭 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1 背景與研究動機 1 1.2 文獻回顧 2 1.3 論文架構 4 第二章 系統描述 5 2.1 光碟機伺服控制系統簡介 5 2.1.1 聚焦伺服(Focusing Servo) 5 2.1.2 定軌伺服(Tracking Servo) 6 2.1.3 尋軌伺服(Seeking Servo) 7 2.1.4 主軸伺服(Spindle Servo) 8 2.2 光碟機伺服控制之DSP/CPLD描述 9 2.3 光碟機伺服控制系統原理 10 2.3.1 聚焦/定軌伺服系統模型 10 2.3.2 聚焦/定軌伺服控制器 11 2.3.3 尋軌伺服系統模型 12 2.3.4 長程尋軌伺服控制器 13 2.3.5 短程尋軌伺服控制器 16 2.3.6 主軸馬達轉速伺服控制器 16 第三章 實驗系統的規劃 19 3.1 實驗設備介紹 19 3.1.1 光碟機本體 19 3.1.2 DSP/CPLD開發環境 21 3.1.3 實驗週邊電路介紹 22 3.2 DSP韌體程式設計 23 3.3 聚焦/定軌伺服系統 23 3.3.1 聚焦/定軌伺服實驗模組之CPLD電路規劃 23 3.3.2 聚焦/定軌伺服控制器之實現 25 3.4 長程尋軌伺服系統 27 3.4.1 長程尋軌伺服實驗模組之CPLD電路規劃 27 3.4.2 長程尋軌伺服實驗之DSP模組規劃 29 3.5 短程尋軌伺服系統 30 3.5.1 短程尋軌伺服實驗模組之CPLD電路規劃 30 3.5.2 短程尋軌伺服實驗之DSP模組規劃 31 3.6 主軸伺服系統 34 3.6.1 定角速度伺服實驗模組之電路規劃 34 3.6.2 定線速度伺服實驗模組之電路規劃 36 3.7 圖形使用者介面之控制器參數模擬與調校 39 第四章 實驗結果 41 4.1 聚焦伺服實驗 41 4.2 定軌伺服實驗 44 4.3 長程尋軌伺服實驗 48 4.3.1 改善速度命令曲線追循效能 48 4.3.2 擬-中心伺服 53 4.3.3 內跨方式之長程尋軌伺服 58 4.3.4 長程尋軌伺服之討論 58 4.4 短程尋軌伺服實驗 63 4.5 主軸馬達伺服實驗 65 4.5.1 CAV模式實驗結果 65 4.5.2 CLV模式實驗結果 70 第五章 本文貢獻與結論 72 5.1 本文貢獻 72 5.2 結論與未來發展之建議 73 參考文獻 74 附錄一(A) 擬-中心伺服電路圖 75 附錄一(B) 擬-中心伺服電路調校方法 76 附錄一(C) CAV相位誤差偵測電路圖 77rf [ 1 ] 黃興生, 光碟機尋軌與主軸伺服控制晶片之設計與實作-國立清華大學動力機械工程學系碩士論文,2002年 [ 2 ] 林建峰, 光碟機之伺服控制晶片設計與實作-國立清華大學動力機械工程學系碩士論文,1999年 [ 3 ] 蔡福欽, 光碟機聚焦與定軌伺服控制晶片之設計與實作-國立清華大學動力機械工程學系碩士論文,2002年 [ 4 ] 黃金壽,光碟機之尋軌伺服控制參數之最佳化研究-國立清華大學動力機械工程學系碩士論文,2000年 [ 5 ] 黃建銘, 光碟機之短程尋軌伺服控制晶片設計與實作-國立清華大學動力機械工程學系碩士論文,2001年 [ 6 ] 王信博, 光碟機之主軸伺服控制晶片之設計與實作-國立清華大學動力機械工程學系碩士論文,2000年 [ 7 ] 劉世賢,嵌入式DSP系統於光碟機尋軌/主軸伺服系統之應用-國立清華大學動力機械工程學系碩士論文,2003年 [ 8 ] 王崇任,嵌入式DSP系統於光碟機聚焦/定軌伺服系統之應用-國立清華大學動力機械工程學系碩士論文,2003年 [ 9 ] CD-ROM Learning Kit Ver1.0,太和科技編著,1998年初版 [ 10 ] ADSP-218x DSP Hardware/Software Reference,2001年 [ 11 ] Wen-Te Chou. May 2001. Central Servo Controller in an Optical Disc Drive. U.S. patent US 6,229,773 B1. [ 12 ] Shigeru Todokoro, Hiroshi Nakane and Satoru Maeda. May 1985. Tracking Servo System for Optical-Disc Information Reproducing Apparatus. U.S. patent 4,520,469.id NH0925311061 sid 913739 cfn 0 / id NH0925311062 auc 余齊盛 tic 微無邊界樑振動特性的探討與應用 adc 方維倫 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 62 kwc 無邊界樑 kwc 共振頻率 kwc 機械特性 abc 在本研究中,微無邊界樑的共振特性已經予以充分的探討,並且透過分析與實驗的方式,觀察懸吊彈簧與製程參數變異對其共振頻率及模態的影響。基於此設計與分析的基礎透過體型微加工技術實際製作出微無邊界樑結構,量測出其共振頻率並與分析結果比較。除此之外,在應用方面,本研究利用微無邊界樑的共振頻率成功的萃取出薄膜的機械特性,同時與微懸臂樑的萃取結果做比較,在體型微加工時,因為製程的關係,微懸臂樑浸於蝕刻液中懸浮時存在著不可避免的缺點,其邊界條件將受底切效應影響甚至隨著蝕刻的時間變化,而微無邊界樑成功的解決此問題。 tc 目錄 目錄 I 圖目錄 III 第一章 緒論 1 1-1前言 1 1-2文獻回顧 2 1-3研究動機與目標 6 第二章 設計與分析 14 2-1 微無邊界樑的設計 14 2-2 理論分析 15 2-3 微無邊界樑共振特性的探討 18 第三章 製程與實驗結果 28 3-1 試片製作 28 3-2 量測機制 29 3-3 實驗結果 30 第四章 應用與討論 39 4-1共振法萃取薄膜機械特性的應用 39 4-2微無邊界樑與微懸臂樑底切效應的影響比較 40 4-3不同萃取方式的比較與結果討論 43 第五章 結論 51 5-1 研究成果 51 5-2 未來工作 51 第六章 參考文獻 54rf [1 ] K.E. Petersen, and C.R. Guarnieri, “Young’s modulus measurements of thin films using micromechanics,” Journal of Applied Physics, 50, pp 6761-6766, 1979. [2 ] H.-C. Tsai, and W. Fang, “Determining the Poisson’s ratio of thin film materials using resonant method,” Sensors and Actuators A, 103, pp 377-383, 2003. [3 ] L. Kiesewetter, J.-M. Zhang, D. Houdeau, and A. Steckenborn, “Determination of Young's moduli of micromechanical thin films using the resonance method,” Sensors and Actuators A, 35, pp 153-159, 1992 [4 ] L.M. Zhang, D. Uttamchandani, B. Culshaw, and P. Dobson, “Measurement of Young’s modulus and internal stress in silicon microresonators using a resonant frequency technique,” Measurement Science & Technology, 1, pp 1343-1346, 1990. [5 ] H.-H. Hu, H.-Y. Lin, W. Fang, and B.C.S. Chou, “The diagnostic micromachined beams on (111) substrate,” Sensors and Actuators A, 93, pp 258-265, 2001 [6 ] ASTM standard, C623-92: Standard Test Method for Young's Modulus, Shear Modulus, and Poisson's Ratio for Glass and Glass-Ceramics by Resonance, ASTM International, West Conshohocken, PA, 2000. [7 ] G. Stemme, “Resonant silicon sensors,” Journal of Micromechanics and Microengineering, 1, pp 113-125, 1991. [8 ] M. Wu, C.-F. Lai, and W. Fang, "Integration of the DRIE, MUMPs, and bulk micromachining for superior micro-optical systems," IEEE Micro Electro Mechanical Systems, Maastricht, Netherlands, Jan. 2004, pp 97-100. [9 ] P.R. Patterson, D. Hah, H. Nguyen, H. Toshiyoshi, R. Chao, and M.C. Wu, “A scanning micromirror with angular comb drive actuation,” IEEE Micro Electro Mechanical Systems, Las Vegas, NV, Jan. 2002, pp 544-547. [10 ] R. Conant, J. Nee, K. Lau, and R. Muller, “A flat high-frequency scanning micromirror,” in Technical Digest Solid-State Sensor & Actuator Workshop, Hilton Head, SC, 2000, pp 6-9. [11 ] H. Xie, Y. Pan, and G.K. Fedder, “A SCS CMOS micromirror for optical coherence tomographic imaging,” IEEE Micro Electro Mechanical Systems, Las Vegas, NV, Jan. 2002, pp 495-498. [12 ] L. Zhou, M. Last, V. Milanovic, J.M. Kahn, and K.S.J. Pister, “Two-axis scanning mirror for free-space optical Communication between UAVs,” IEEE/LEOS Optical MEMS 2003, Hawaii, Aug. 2003. [13 ] H. Urey, ”Optical MEMS scanner design for high-resolution display system,” Optical Scanning Ⅱ, Proceeding SPICE, Seattle, Washington, 2002, pp 27-37. [14 ] J. Yan, S. Luanava, and V.Casasanta, ”Magnetic actuation for MEMS scanners for retinal scanning displays,” MOEMS Display and Imaging Systems, Proceeding SPIE , 4985, San Jose, CA, 2003. [15 ] M. Freeman, “Miniature high-fidelity displays using a biaxial MEMS scanning mirror,” MOEMS Display and Imaging Systems, Proceeding SPIE , 4985, San Jose, CA, 2003. [16 ] R.A. Miller, G.W. Burr, Y.C. Tai, D. Psaltis, C.M. Ho, and R. Katti, “Electromagnetic MEMS scanning mirrors for holographic data storage,” Proceeding of Solid-State Sensor and Actuator workshop, Hilton Head Island, SC, 1996, pp 183-186. [17 ] B. Piekarski, D. DeVoe, M. Dubey, R. Kaul, and J. Conrad, “Surface micromachined piezoelectric resonant beam filters,” Sensors and Actuators A, 91, pp 313-320, 2001 [18 ] H.H. Kim, B.K. Ju, Y.H. Lee, S.H. Lee, J.K. Lee, and S.W. Kim, ”Fabrication of suspended thin film resonator for application of RF bandpass filter,” Microelectronics Reliability, 44, pp 237-243, 2004. [19 ] C.K. Madsen, J.A. Walker, J.E. Ford, K.W. Goossen, T.N. Nielsen, and G. Lenz, ”A Tunable Dispersion Compensating MEMS All-Pass Filter,” IEEE Photonics Technology Letters, 12, pp 651-653, 2000. [20 ] A.R. Brown, and G.M. Rebeiz, “A Varactor Tuned RF Filter,” IEEE Transactions on Microwave Theory & Techniques, Oct. 1999, pp 1-4. [21 ] Y. Ishikawa, T. Nishikawa, T. Okada, S. Shinmura, Y. Kamado, F. Kanaya, and K. Wakino, “Mechanically tunable MSW bandpass filter with combined magnetic units,” Microwave Symposium Digest, IEEE MTT-S International, May 1990, pp 143–146. [22 ] D. Pastor, J. Capmany, and B. Ortega, “Experimental Demonstration of Parallel Fiber-Optic-Based RF Filtering Using WDM Techniques,” IEEE Photonic Technology Letters, 12, pp 77-78, 2000. [23 ] H. Luo, X. Zhu, H. Lakdawala, L.R. Carley and G.K. Fedder, ”A copper CMOS-MEMS z-axis gyroscope,” IEEE Micro Electro Mechanical Systems, Las Vegas, NV, Jan. 2002, pp 631-634. [24 ] P. Greiff, B. Boxenhorn, T. King, and L. Niles, ”Silicon monolithic micromechanical gyroscope,” Digest International Conference on Solid-State Sensors and Actuators, Transducers ’91, San Francisco, CA, 1991, pp 966-968. [25 ] M. Putty, and K. Najafi, “A micromachined vibrating ring gyroscope,” Technical Digest Solid-State Sensor & Actuator Workshop, Hilton Head Island, SC, 1994, pp 213-220. [26 ] W.A. Clark, R.T. Howe, and R. Horowitz, ”Surface micromachined Z-axis vibration rate gyroscope,” Technical Digest Solid-State Sensor & Actuator Workshop, Hilton Head Island, SC, 1996, pp 283-287. [27 ] H. Xie, and G.K. Fedder, "A CMOS-MEMS lateral-axis gyroscope," IEEE Micro Electro Mechanical Systems, Interlaken, Switzerland, Jan. 2001, pp 162-165. [28 ] O. Bel, R. Bourquin, and A. Jeanroy, “Two axes quartz angular rate sensor,” IEEE International Frequency Control Symposium and PDA Exhibition, 2002, pp 214-219. [29 ] M. Lutz, W. Golderer, J. Gerstenmeier, J. Marek, B. Maihofer, S. Mahler, H. Munzel, and U. Bischof, “Aprecision Yaw Rate Sensor in Silicon Micromachining,” Transducers’97, Chicago, IL, June 16-19, 1997, pp 847-850. [30 ] J. Bernstein, S. Cho, A.T. King, A. Kourepenis, P. Maciel, and M. Weinberg, "A micromachined comb-drive tuning fork rate gyroscope," IEEE Micro Electro Mechanical Systems, Fort Lauderdale, FL, 1993, pp 143-148. [31 ] M. Weinberg, J. Bernstein, S. Cho, A.T. King, A. Kourepenis, P. Ward, and J. Sohn, “A micromachined comb-drive tuning fork gyroscope for commercial applications,” Sensor Expo, 1994, pp 187-193. [32 ] N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined Inertial Sensors,” Invited paper, Proceedings of the IEEE, Aug. 1998, pp 1640-1659. [33 ] F. Ayazi and K. Najafi, “High Aspect-Ratio Dry-Release Poly-Silicon MEMS Technology for Inertial Grade Microgyroscopes,” Proceeding IEEE Position Location and Navigation Symposium, San Diego, CA, Mar. 2000, pp 304-308. [34 ] X. Li, M. Bao, H. Yang, S. Shen, and D. Lu, “A micromachined piezoresistive angular rate sensor with a composite beam structure,“ Sensors and Actuators A, 72, pp 217–223, 1999. [35 ] K. Wang, Y. Yu, A.-C. Wong, and C.T.-C. Nguyen, “VHF free-free beam high-Q micromechanical resonators,” IEEE Micro Electro Mechanical Systems, Orlando, Florida, Jan. 1999, pp 453-458. [36 ] M.J. Hill, R.W. Ziolkowski, and J. Papapolymerou, ”A high-Q reconfigurable planar EBG cavity resonator,” IEEE Microwave and Wireless components letters, 11, pp 255-257, 2001. [37 ] B.E. Little, S.T. Chu, H.A. Haus, J. Foresi, and J.–P. Laine, “Microring Resonator Channel Drop Filter,” Journal of Lightwave Technology, 15, pp 998-1005, 1997. [38 ] B.E. Little, S.T. Chu, W. Pan, and Y. Kokubun, “Microring Resonator Arrays for VLSI Photonics,” IEEE Photonics Technology Letters, 12, pp 323-325, 2000. [39 ] C.K. Madsen, G. Lenz, A.J. Bruce, M.A. Cappuzzo, L.T. Gomez, T.N. Nielsen, L.E. Adams, and I. Brenner, “An All-Pass Filter Dispersion Compensator Using Planar Waveguide Ring Resonators,” Optical Fiber Communication Conference and the International Conference on Integrated Optics and Optical Fiber Communications, Piscataway, NJ, 1999, pp 99-101. [40 ] M.W. Putty, S.-C. Chang, R.T. Howe, A.L. Robinson, and K.D. Wise, ”Modeling and characterization of one-port polysilicon resonant microstructures”, IEEE Micro Electromechanical Systems Workshop, Salt Lake City, Utah, Feb. 1989. [41 ] N. Deb, S.V. Iyer, T. Mukherjee, and R.D. Blanton, ”MEMS resonator synthesis for defect reduction,” Journal of Modeling and Simulation of Microsystems, 2, pp 11-20, 2001. [42 ] W.C. Tang, T.-C.H. Nguyen, M.W. Judy, and R.T. Howe, “Electrostatic Comb Drive of Lateral Polysilicon Resonators,” Sensors and Actuators A, 21, pp 328-331, 1990. [43 ] T. Mukherjee, S. Iyer, and G.K. Fedder, “Optimization-based Synthesis of Microresonators,” Sensors and Actuators A, 70, pp 118-127, 1998. [44 ] V. Kaajakari, T. Mattila, A. Oja, J. Kiihamaki, and H. Seppa, ”Square-extensional mode single-crystal silicon micromechanical resonator for low phase noise oscillator applications,” IEEE electron device letters, 25, pp 173-175, 2004. [45 ] M. Spacek, K.B. Brown, Y. Ma, A.M. Robinson, R.P.W. Lawson, and W. Allegretto, “CMOS cantilever microstructures as thin film deposition monitors,” IEEE Canadian Conference on Electrical and Computer Engineering Shaw Conference Center, Edmonton, Alberta, Canada, 1999. [46 ] M. Su, S. Li, and V.P. Dravid, “Microcantilever resonance-based DNA detection with nanoparticle probes,” Applied Physics Letters, 82, pp 3562-3564, 2003. [47 ] D. Lange, C. Hagleitner, O. Brand, and H. Baltes, ”CMOS resonant beam gas sensing system with on-chip self excitation,” IEEE Micro Electro Mechanical Systems, Interlaken, Switzerland, Jan. 2001, pp 547-552. [48 ] D. Strembicke, A.M. Robinson, F.E. Vermeulen, M. Seto, and K.B. Brown, ”Humidity measurement using resonating CMOS microcantilever structures,” IEEE Canadian Conference on Electrical and Computer Engineering Shaw Conference Center, Edmonton, Alberta, Canada, 1999. [49 ] W.-T. Hsu, J.R. Clark, and C.T.-C. Nguyen, “Q-optimized lateral free-free beam micromechanical resonators,” Digest of Technical Papers, the 11th International Conference on Solid-State Sensors & Actuators Transducers’01, Munich, Germany, June 10-14, pp 1110-1113, 2001. [50 ] X.M.H. Huang, M.K. Prakash, C.A. Zorman, M. Mehregany, and M.L. Roukes, ”Free-free beam beam silicon carbide nanomechanical resonators,” IEEE, Transducer’03,12th international Conference on Solid State Sensors, Actuators and Microsystems, Boston, MA, June 2003, pp 342-343. [51 ] W.N. Sharpe, Jr., B. Yuan, and R.L. Edwards, “A new technique for measuring the mechanical properties of thin films,” Journal of Microelectromechanical Systems, 6, pp 193-199, 1997. [52 ] C. Serre, P. Gorostiza, A. Perez-Rodriguez, F. Sanz, and J.R. Morante, “Measurement of micromechanical properties of polysilicon microstructures with an atomic force microscope,” Sensors and Actuators A, 57, pp 215-219, 1998. [53 ] T. Chudoba, N. Schwarzera, F. Richtera, and Beck, “Determination of mechanical film properties of a bilayer system due to elastic indentation measurements with a spherical,” Thin Solid Films, 377, pp 366-372, 2000. [54 ] J.J. Vlassak, and W.D. Nix, “A New Bulge Test Technique for the determination of Young’s modulus and Poisson’s ratio of thin films,” Journal of Materials Research, 7, pp 3242-3249, 1992. [55 ] O. Tabata, K. Kawahata, S. Sugiyama, and I. Igaraashi, “Mechanical property measurements of thin films,” Sensors and Actuators A, 20, pp 135-141, 1989. [56 ] O. Tabata, T. Tsuchiya, and N. Fujitsuka, “Poisson’s ratio evaluation of thin film for sensor application,” Technical Digest of the 12th Sensor Symposium, 1994, pp 19-22. [57 ] K. Najafi, and K. Suzuki, “A novel technique and structure for the measurement of intrinsic stress and Young’s modulus of thin film,” IEEE Micro Electro Mechanical Systems, Salk Lake City, UT, Feb. 1989, pp 96-97. [58 ] X.-Q. Sun, Z. Li, X. Zheng, and L. Lin, ”Study of fabrication process of a micro electrostatic switch and its application to a micromechanical V-F converter,” Sensors and Actuators A, 35, pp 189-192, 1993. [59 ] P.M. Osterberg, and S.D. Senturia, “M-Test: a test chip for MEMS material property measurement using electrostatically actuated test structures,” Journal of Microelectromechanical systems, 6, pp 107-118, 1997. [60 ] W.N. Sharpe, Jr., B. Yuan, R. Vaidyanathan, and R.L. Edwards, “Measurements of Young’s modulus, Poisson’ ratio, and tensile strength of polysilicon,” IEEE Micro Electro Mechanical Systems, Nagoya, Japan, 1997, pp 424-429. [61 ] H. Ogawa, K. Suzuki, S. Kaneko, Y. Ishikawa, and T. Kitahara, “Measurements of mechanical properties of microfabricated thin films,” IEEE Micro Electro Mechanical Systems, Nagoya, Japan, 1997, pp 430-435. [62 ] T. Tsuchiya, O. Tabata, J Sakata, and Y. Taga, “Specimen size effect on tensile strength of surface-micromachined polycrystalline silicon thin films,” Journal of Microelectromechanical Systems, 7, pp 106-113, 1998. [63 ] C. Serre, A. Perez-Rodriguez, J.R. Morante, P. Gorostiza, and J. Esteve, “Determination of micromechanical properties of thin films by beam bending measurements with an Atomic Force Microscope,” Sensors and Actuators A, 74, pp 134-138, 1999. [64 ] N.X. Randall, and R.A.J. Soden, “Characterization of the mechanical properties of MEMS devices using nanoscale techniques,” Proceeding of Material Research Society Symposium, 741, 2003, pp 231-239. [65 ] L. Riester, P.J. Blau, E. Lara-Curzio, and K. Breder, “Nanoindentation with a Knoop indenter,” Thin Solid Films, 377, pp 635-639, 2000. [66 ] S. Johansson, J.-A. Schweitz, L. Tenerz, and J. Tiren, “Fracture testing of silicon microelements in situ in a Scanning Electron Microscope,” Journal of Applied Physics, 66, pp 4799-4803, 1988. [67 ] S.S. Rao, Mechanical Vibrations. 3rd Edition, Menlo Park, CA: Addision-Wesley, 1995. [68 ] L. Meirovitch, Analytical Methods in Vibrations. New York, NY: Macmillan, 1967. [69 ] W. Fang, and J.A. Wickert, “Determining mean and gradient residual stress in thin film using micromachined cantilevers,” Journal of Micromechanics and Microengineering, 6, pp 301-309, 1996. [70 ] W.C. Oliver, and G.M. Pharr, “An improved technique for determing hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, 7, pp 1564-1583, 1992. [71 ] 徐昌駿,“奈米壓痕系統於微懸臂樑彎矩測試之研究,”國立清華大學動力機械系碩士論文, 2004.id NH0925311062 sid 913769 cfn 0 / id NH0925311063 auc 陳佳惠 tic 斥水性奈微結構表面之液珠驅動與操控 adc 楊鏡堂 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 100 kwc 奈微米結構 kwc 斥水性 kwc 液珠驅動 kwc 液珠操控 abc 本文主旨在研究斥水性微結構表面對液珠靜態與動態行為之效應,並將這些新的物理現象應用於微流體系統或元件之新設計。表面粗糙度可以改變表面之親、疏水特性,影響液珠與表面之接觸特性,本文以表面微結構設計模擬表面粗糙度,研究液珠之靜態與動態行為與各種微結構設計參數之間關係,開發設計微結構表面之流體行為操控方式,作為各種微流體系統設計中流體控制之用途。 tc 目 錄 摘 要 I 致 謝 II 目 錄 III 圖表目錄 VII 符號說明 XI 第一章 前言 1 第二章 文獻回顧 3 2-1 接觸角 4 2-1.1 本質接觸角度(Intrinsic Contact Angle) 4 2-1.2 粗糙效應-非複合表面(Wetted Surface) 4 2-1.3 粗糙效應-複合表面(Composite Surface) 5 2-1.4 線性法(Linear Method) 6 2-2 遲滯效應(Hysteresis Effect) 7 2-2.1前進角度θA與後退角度θR 7 2-2.2 遲滯現象 7 2-2.3 邊緣效應(Edge Effect) 8 2-3 超疏水表面(Super-hydrophobic Surfaces) 9 2-3.1 蓮葉表面 9 2-3.2 不規則碎片形表面(Fractal Surface) 11 2-3.3 溶膠-凝膠法(Sol-Gel Method) 11 2-3.4 電漿法(Plasma Method) 12 2-4疏水性結構表面 13 2-4.1 結構表面-接觸角 13 2-4.2 結構表面-遲滯效應 14 2-4.3 結構表面-液滴懸浮條件 16 2-5 液滴操控 18 2-5.1 熱毛細現象 18 2-5.2 電毛細現象 19 2-5.3 表面張力梯度 19 第三章 實驗設計 24 3-1 液滴與疏水性微結構表面之接觸情形 25 3-1.1 實驗方法 25 3-1.2 參數設計 26 3-2 微結構設計於微流體操控之應用 27 3-2.1 微結構表面液滴操控裝置 27 3-2.2奈微米表面結構微閥門裝置 31 3-3 異質平面與微結構表面 32 3-4 實驗儀器 34 3-4.1 接觸角度量測儀(Dataphysics OCA20) 34 3-4.2 接觸角度分析軟體(Software SCA 20:Sessile Drop Method) 35 3-4.3 Zygo干涉儀 35 3-4.4 原子力顯微鏡(Atomic Force Microscope, AFM) 36 3-4.5 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 37 3-4.6 奈米級分散研磨機 37 第四章 製程分析 38 4-1 微結構表面製程 38 4-1.1 AZ 6112經ICP(Inductive Coupled Plasma)蝕刻 38 4-1.2 Plasma Polymerization Fluorocarbon(PPFC)薄膜 38 4-1.3 Parylene C 39 4-1.4 Teflon 39 4-1.5 Polydimethylsiloxane(PDMS) 39 4-2 異質表面製程 41 4-2.1 複合材質表面 41 4-2.2 奈米結構表面 42 第五章 結果與討論 45 5-1 液滴與疏水性微結構表面之接觸情形 45 5-1.1 液滴與表面之接觸角度 45 5-1.2液滴懸浮現象 53 5-1.3表面遲滯效應 54 5-2 微結構設計於液滴操控之應用 60 5-2.1 液滴移動機制 61 5-2.2 以微結構分佈進行液滴驅動 63 5-2.3 液滴定位系統 78 5-3 異質表面與微結構表面 81 5-3.1 SiO2-Teflon複合材質表面 82 5-3.2奈米結構表面 82 第六章 結論與展望 88 6-1 結論 88 6-2 未來展望 90 第七章 參考文獻 92 附錄A Cassie-Baxter equation推導 97 附錄B Teflon表面接觸角精密度分析 ( probability 95% ) 100 圖表目錄 表5.1 結構尺寸對接觸角度效應 46 表5.2 結構形狀對接觸角度效應 48 表5.3 結構分佈密度對接觸角度效應 49 表5.4 結構高度對接觸角度效應 51 表5.5 結構尺寸與對應之前進角及後退角 55 表5.6 結構尺寸對遲滯接觸角度效應 55 表5.7 結構形狀與對應之前進角及後退角 57 表5.8 結構形狀對遲滯接觸角度效應 57 表5.9 溝渠形結構分佈密度與對應之前進角及後退角 59 表5.10 溝渠形結構分佈密度對遲滯接觸角度效應 59 表5.11 結構高度與對應之前進角及後退角 60 表5.12 PPFC鏈狀排列設計之驅動力與阻滯力 75 表5.13 PPFC定位系統設計之驅動力與阻滯力 80 表5.14 液滴操控方式比較 80 圖2.1 表面張力與重力對系統尺度關係圖 3 圖2.2 液滴與固體表面之接觸情形 4 圖2.3 Johnson and Dettre 模型 5 圖2.4 液滴前進與後退角度示意圖 7 圖2.5 液滴在固體邊緣的平衡狀態 9 圖2.6 蓮葉表面階級式結構(hierarchical structure)示意圖 10 圖3.1 陣列狀結構分佈方式示意圖 26 圖3.2 微結構表面軌道上液滴行進示意圖 28 圖3.3 三種相鄰區域接觸方式示意圖 30 圖3.4 液滴操控系統示意圖 31 圖3.5 奈微米表面結構微閥裝置示意圖 31 圖3.6 微結構表面與異質平面示意圖 33 圖3.7 接觸角度量測儀 34 圖3.8 Zygo干涉儀 36 圖3.9 原子力顯微鏡 36 圖3.10 掃描式電子顯微鏡 37 圖3.11奈米級分散研磨機 37 圖4.1 斥水性(PPFC、Parylene C、Teflon)微結構表面製程 39 圖4.2 PDMS微結構表面製程 40 圖4.3 SiO2-Teflon異質表面製程 41 圖4.4 SiO2-Teflon異質表面製程 42 圖4.5 特定奈米結構圖樣製程 43 圖4.6奈米結構表面製程 43 圖4.7奈、微米階層式結構製程 44 圖5.1 PDMS表面微結構OM檢測照片 46 圖5.2 PDMS母模(SU-8)表面微結構Zygo檢測圖 47 圖5.3 PDMS母模(SU-8)表面微結構SEM檢測圖 47 圖5.4 相異形狀微結構SEM檢測圖 48 圖5.5 溝渠結構SEM檢測圖及溝渠結構在不同方向液滴接觸角 48 圖5.6不同f1之溝渠微結構表面 50 圖5.7 液滴在不同f1溝渠微結構之AZ 6112表面接觸情形 50 圖5.8 表面結構高度對液滴接觸角度效應 51 圖5.9 相同結構平面之不同產生方式液滴 53 圖5.10 懸浮液滴與結構之接觸示意圖 54 圖5.11 液滴沾黏於傾斜達90o之微結構表面 55 圖5.12 液滴於64 mm微結構區域即將產生移動情形 56 圖5.13 液滴於PPFC溝渠結構表面,恰開始移動之前進角與後退角 58 圖5.14 液滴在f1 = 0.25與f1 = 0.5交界區域移動情形 61 圖5.15 結構分佈密度0.5及0.25交界面SEM拍攝圖 61 圖5.16 液滴在兩相異斥水程度界面移動示意圖 62 圖5.17 液滴影像處理圖形 63 圖5.18 不同接觸角之液滴各量測點與對應曲率半徑關係圖 64 圖5.19 球蓋狀液滴形態示意圖 65 圖5.20 以液滴寬度推算之接觸角與曲率半徑關係圖 66 圖5.21 液滴寬度及2倍接觸角度正弦值隨接觸角度變化關係圖 67 圖5.22 以液滴高度推算之接觸角度與曲率半徑關係圖 68 圖5.23 接觸角度與曲率半徑之擬合曲線圖 68 圖5.24 與液滴移動方向正交之截面積幾何特性 70 圖5.25 阻滯力與接觸角度關係圖 71 圖5.26 阻滯力與接觸角度之擬合曲線圖 72 圖5.27 qA、qR 餘弦差值與接觸角度關係圖 73 圖5.28 鏈狀結構區域之SEM拍攝圖 73 圖5.29 液滴於鏈狀結構表面移動情形 74 圖5.30 不同相鄰區域接觸方式之SEM拍攝圖 77 圖5.31 液滴於間隔式設計軌道之運動行為 77 圖5.32 液滴定位系統之SEM拍攝圖 78 圖5.33 液滴定位系統示意圖 79 圖5.34 液滴於定位系統之運動行為 79 圖5.35 AZ 4620於Teflon表面顯影完成表面 82 圖5.36 奈米顆粒於Teflon表面之OM照片 83 圖5.37 TiO2奈米顆粒於Teflon表面之AFM檢測圖 84 圖5.38 ZnO奈米顆粒於Teflon表面之AFM檢測圖 85 圖5.39 ZnO奈米顆粒於相異表面之分佈情形 85 圖5.39 不同配製方式之ZnO奈米顆粒於AZ 6112表面分佈情形 86 圖5.40 不同溶液濃度之TiO2奈米顆粒於Teflon表面分佈情形 87 圖5.41 0.25% TiO2溶液於Teflon表面之AFM檢測圖 87rf Adamson, W., 1990, Physical Chemistry of Surfaces, fifth edition, Wiley-Interscience, New York, Chapter 2. Barthlott, W. and Neinhuis, C., 1997, “Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces,” Planta, Vol. 202, pp. 1-8. Bico, J., Marzolin, C., and Quere, D., 1999, “Pearl Drops,” Europhysics Letters, Vol. 47, pp. 220-226. Cassie, A. B. D. and Baxter, S., 1944, “Wettability of Porous Surfaces,” Transactions of the Faraday Society, Vol. 40, pp. 546-551. Chen, J. H., Yang, J. T., Huang, K. J., Yu, C. S., and Hu, Y. C., 2004, “Droplet Manipulation over a Hydrophobic Surface with Roughness Patterns,” ASME Heat Transfer/Fluid Engineering Summer Conference, Charlotte, N. C., July 11-15, No. 56472. Chen, W., Fadeev, A. Y., Hsieh, M. C., Oner, D., Youngblood, J., and McCarthy, T. J., 1999, “Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples,” Langmuir, Vol. 15, pp. 3395-3399. Cho, S. K., Moon, H., and Kim, C. J., 2003, “Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits,” Journal of Microelectromechanical Systems, Vol. 12, pp. 70-80. Daniel, S., Chaudhury, M. K., and Chen, J. C., 2001, “Fast Drop Movements Resulting from the Phase Change on a Gradient Surface,” Science, Vol. 291, pp. 633-636. Darhuber, A. A. and Valentino, J. P., 2003, “Thermocapillary Actuation of Droplets on Chemically Patterned Surfaces by Programmable Microheater Arrays,” Journal of Microelectromechanical Systems, Vol. 12, pp. 873-879. Extrand, C. W., 2002, “Model for Contact Angles and Hysteresis on Rough and Ultraphobic Surfaces,” Langmuir, Vol. 18, pp. 7991-7999. Feng, X., Feng, L., Jin, M., Zhai, J., Jiang, L., and Zhu, D., 2004, “Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films,” Journal of the American Chemical Society, Vol. 126, pp. 62-63. Gallardo, B. S., Gupta, V. K., Eagerton, F. D., Jong, L. I., Craig, V. S., Shah, R. R., and Abbott, N. L., 1999, “Electrochemical Principles for Active Control of Liquids on Submillimeter Scales,” Science, Vol. 283, pp. 57-60. Grunze, M., 1999, “Surface Science: Driven Liquids,” Science, Vol. 283, pp. 41-42. Hazlett, R. D., 1990, “Fractal Applications: Wettability and Contact Angle,” Journal of Colloid and Interface Science, Vol. 137, pp. 527-533. He, B. and Lee, J., 2003, “Dynamic Wettability Switching by Surface Roughness Effect,” 16th IEEE International Micro Electro Mechanical Systems Conference, Kyoto, Japan, Jan., pp. 120-123. He, B., Patankar, N. A., and Lee, J., 2003, “Multiple Equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces,” Langmuir, Vol. 19, pp. 4999-5003. Herminghaus, S., 2000, “Roughness-induced Non-wetting,” Europhysics Letters, Vol. 52, pp. 165-170. Ichimura, K., Oh, S. K., and Nakagawa M., 2000, “Light-Driven Motion of Liquids on a Photoresponsive Surface,” Science, Vol. 288, pp. 1624-1626. Johnson R. E. and Dettre R. H., 1963, “Contact Angle Hysteresis: Contact Angle Measurements on Rough Surfaces,” Advances in Chemistry Series, No. 43, pp. 112-144. Kim, J. and Kim, C. J., 2002, “Nanostructured Surfaces for Dramatic Reduction of Flow Resistance in Droplet-Based Microfluidics,” 15th IEEE International Micro Electro Mechanical Systems Conference, Las Vegas, Nevada, USA, Jan., pp. 479-482. Krupenkin, T. N., Taylor, J. A., Schneider, T. M., and Yang, S., 2004“From Rolling Ball to Complete Wetting: The Dynamic Tuning of Liquids on Nanostructured Surfaces,”Langmuir, Vol. 20, pp. 3824-3827. McMahon, T. A. and Bonner, J. T., 1983, On Size and Life, Scientific American Books, New York. Oliver, J. F., Huh, C., and Mason, S. G., 1977, “Resistance to Spreading of Liquids by Sharp Edges,” Journal of Colloid and Interface Science, Vol. 59, pp. 568-581. Oner, D. and McCarthy, T. J., 2000, “Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability,” Langmuir, Vol. 16, pp. 7777-7782. Patankar, N. A., 2003, “On the Modeling of Hydrophobic Contact Angles on Rough Surfaces,” Langmuir, Vol. 19, pp. 1249-1253. Roura, P. and Fort, J., 2002, “Comment on “Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces,” Langmuir, Vol. 18, pp. 566-569. Seo, J., Ertekin, E., Pio, M. S., and Lee, L. P., 2002, “Self-Assembly Templates by Selective Plasma Surface Modification of Micropatterned Photoresist,” 15th IEEE International Micro Electro Mechanical Systems Conference, Las Vegas, Nevada, USA, Jan., pp. 192-195. Shen, W., Kim, J., and Kim, C. J., 2002, “Controlling the Adhesion Force for Electrostatic Actuation of Microscale Mercury Drop by Physical Surface Modification,” 15th IEEE International Micro Electro Mechanical Systems Conference, Las Vegas, Nevada, USA, Jan., pp. 52-55. Shibuichi, S., Onda, T., Satoh, N., and Tsujii, K., 1996, “Super Water-Repellent Surfaces Resulting from Fractal Structure,” Journal of Physical Chemistry, Vol. 100, pp. 19512-19517. Tadanaga, K., Katata, N., and Minami, T., 1997, “Formation Process of Super-Water-Repellent Al2O3 Coating Films with High Transparency by the Sol-Gel Method,” Journal of the American Chemical Society, Vol. 80, pp. 3213-3216. Takahashi, K., Yoshino, K., Hatano, S., and Nagayama, K., 2001, “Novel Applications of Thermally Controlled Microbubble Driving System,” 14th IEEE International Micro Electro Mechanical Systems Conference, Interlaken, Switzerland, Jan., pp. 286-289. Thomas, Y., 1805,“An Essay on the Cohesion of Fluids,”Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 95, pp. 65-87. Wasan, D. T., Nikolov, A. D., and Brenner, H., 2001, “Fluid Dynamics: Droplets Speeding on Surfaces,” Science, Vol. 291, pp. 605-606. Wenzel, R. N., 1936, “Resistance of Solid Surfaces to Wetting by Water,” Industrial and Engineering Chemistry, Vol. 28, pp. 988-994. Yasuda, T., Suzuki, K., and Shimoyama, I., 2003, “Automatic Transportation of A Droplet on A Wettability Gradient Surface,” 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, pp. 1129-1132. Yoshimitsu, Z., Nakajima, A., Watanabe, T., and Hashimoto, K., 2002, “Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets,” Langmuir, Vol. 18, pp. 5818-5822.id NH0925311063 sid 913709 cfn 0 / id NH0925311064 auc 呂宗祐 tic 變頻式空調機之系統鑑別與最佳效率控制 adc 葉廷仁 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 71 kwc 變頻空調機控制 kwc LQR控制器 kwc 反積分終結 kwc 系統鑑別 abc 與傳統定頻空調機比較,變頻空調機具有提高冷卻效率、降低耗電與改善系統性能等優點。本論文以了解變頻空調機中重要參數為出發點,設計控制器使室內溫度可以快速到達並保持於使用者的設定值,並提出增加系統效率的關鍵所在,在這個過程中同時考慮制動器飽和所產生的控制器積分終結問題。其中將以理論推導、系統模擬與實際系統的實驗驗證所得到的結果。本論文之研究結果將協助國內空調機產業了解變頻式空調機的運作方式及性能極限,以增加效率,並可提升其變頻式空調機的控制技術。 tc 摘要 目錄 圖目錄 第一章 緒論 7 1.1 研究動機與目的 7 1.2 文獻回顧 8 1.3 論文架構 9 第二章 空調機系統簡介 10 2.1 空調機的基本原理 10 2.2 空調機的主要元件 11 2.3 空調機的熱力循環 13 第三章 控制架構與系統鑑別 15 3.1 實驗與控制架構 15 3.2 PI-Control 17 3.3 反積分終結 21 3.4 空調機系統鑑別 24 3.5 室內環境動態推導 29 第四章 LQR控制器設計 33 4.1 反積分終結 35 4.2 LQR控制器 38 4.3 實驗結果 47 4.4 LQR控制器討論 52 第五章 系統效率與過熱度關係 54 5.1 過熱度變化模擬 55 5.2 EER實驗 58 5.3 LQR實驗 59 5.4 過熱度選取討論 61 第六章 結論 64 參考文獻 66 附錄A 空調機系統模擬 69 附錄B 實驗設備 70rf [1 ] Xiangdong He, Sheng Liu, Haruhiko Asada, “Multivariable Feedback Design for Regulating Vapor Compression Cycles,” Proc. 1995 American Control Conf., pp. 4331-4335, 1995. [2 ] X.-D. He, S. Liu, and H. H. Asada, “Modeling of Vapor Compression Cycles of Multivariable Feedback Control of HVAC Systems,” ASME Journal of Dynamic Systems, Measurement, and Control, June, 1997, Vol. 119, 183-191. [3 ] Betzaida Arg¨uello-Serrano and Miguel V´elez-Reyes, “Nonlinear Control of a Heating, Ventilating, and Air Conditioning System with Thermal Load Estimation,” IEEE Transactions on Control Systems Techanology, January 1999, Vol. 7, No. 1, 56-63. [4 ] P. M. T. Broersen, and M. F. G. van der Jagt, “Hunting of Evaporators Controlled by a Thermostatic Expansion Valve,” ASME Journal of Dynamic Systems, Measurement, and Control, June, 1980, Vol. 102, 130-135. [5 ] Wedekind, G. L., Bhatt, B. L., and Beck, B.T., “A system mean void fraction model for predicting various transient phenomena associated with two-phase evaporating and condensing flows,” Int. J. Multiphase Flow, Vol. 4, pp97-114, 1978. [6 ] E. W. Grald, J. W. MacArthur, “A Moving-Boundary Formulation for Modeling Time-dependent Two-phase Flows,” Int. J. Heat and Fluid Flow, Sep. 1992, Vol. 13, No. 3, 266-272. [7 ] D. C. Karnopp, D. L. Margolis, and R. C. Rosenberg, System Dynamics: A Unified Approach, 2nd Edition, 1990, John Wiley & Sons, Inc. [8 ] D. C. Karnopp, “State Variables and Psuedo Bond Graphs for Compressible Thermofluid Systems,” ASME Journal of Dynamic Systems, Measurement, and Control, September, 1979, Vol. 101, P.201-P.204. [9 ] William Z. Black, and James G. Hartley, Thermodynamics, 3rd edition, HarperCollins, 1996. [10 ] McQuiston, F., and Parker, J., Heating, Ventilating, and Air Conditioning, Design and Analysis, 4th edition, Wiley, 1994. [11 ] Clifford C. Federspiel, Haruhiko Asada, “User-Adaptable Comfort Control for HVAC Systems,” Proc. 1992 American Control Conf., pp. 2312-2319, 1992. [12 ] 葉廷仁、林金龍,“變頻空調機效率最佳化研究(一)”,工研院技術報告,2001年12月。 [13 ]葉廷仁、林金龍、呂宗祐“變頻空調機效率最佳化研究(二)”,工研院技術報告,2002年11月。 [14 ]葉廷仁、林金龍、呂宗祐“變頻空調機效率最佳化研究(三)”,工研院技術報告,2003年11月。 [15 ] Luca Zaccarian, Andrew R. Teel, “A Common Framework for Anti-windup, Bumpless Transfer and Reliable Designs,”Automatica, April, 2002, Vol. 38, P.1735-P.1744.id NH0925311064 sid 913749 cfn 0 / id NH0925311065 auc 陳志維 tic 嵌入式CPLD於光碟機尋軌/主軸伺服系統之應用 adc 陳建祥 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 101 kwc 光碟機 kwc 尋軌伺服 kwc 主軸伺服 kwc 中心伺服 kwc 主動式阻尼 kwc 鎖相迴路 abc 本文的研究重點在於實現可應用於光碟機尋軌與主軸馬達伺服系統之控制晶片,在複雜型可程式化邏輯晶片(Complex Programmable Logic Device, CPLD)的發展環境下,配合Quartus II套裝設計軟體進行模組設計,並改裝一商用DVD撥放機之硬體電路與韌體進行最後之實機驗證。 tc 中 文 摘 要 I Abstract II 誌謝辭 III 論文目錄 IV 表圖目錄 VII 第一章 緒論 1 1-1背景與研究動機 1 1-2文獻回顧 3 1-3論文架構 6 第二章 光碟機伺服控制系統描述 7 2-1光碟機伺服控制系統介紹 7 2-2尋軌伺服控制系統介紹 12 2-2.1長尋軌伺服控制系統 12 2-2.2短尋軌伺服控制系統 14 2-3主軸馬達伺服控制系統介紹 17 2-3.1定角速度伺服控制系統 17 2-3.2定線速度伺服控制系統 19 第三章 實驗系統架構與伺服控制晶片設計 22 3-1光碟機測試平台 22 3-2自行規劃的週邊界面電路 25 3-3長尋軌伺服模組 28 3-4短尋軌伺服模組 40 3-5主軸馬達伺服模組 47 第四章 實驗結果與討論 55 4-1長尋軌實驗結果 55 4-1.1速度命令曲線與估測速度 55 4-1.2主動式阻尼 60 4-1.2「擬中心伺服」 62 4-2短尋軌實驗結果 66 4-3主軸馬達實驗結果 69 4-3.1 應用『碰-碰』控制法則於CLV模式 69 4-3.2主軸馬達CLV模式與「擬中心伺服」 74 4-3.3 CAV模式與CLV模式之整合 77 4-3.4 資料鎖相迴路之EFM+訊號與同步訊號 83 4-4實驗結果討論 88 第五章 本文貢獻與結論 90 5-1本文貢獻 90 5-2結論與未來研究之方向與建議 92 參考文獻 93 附錄一 APEX-20K簡介 95 附錄二 AD767電路圖 96 附錄三 三階低通濾波器電路圖 97 附錄四 資料切割器電路圖 98 附錄五 「擬中心伺服」電路圖 99 附錄六 ADC0820電路圖 101rf [1 ] 林建峰, 光碟機之伺服控制晶片設計與實作-國立清華大學動力機械工程學系碩士論文,1999年 [2 ] Gene F. Franklin, J. David Powell and Michael L. Workman, Digital Control of Dynamic Systems, 3rd, Addision Wesley, CA, USA, 1997. [3 ] 黃金壽, 光碟機之尋軌伺服控制參數之最佳化研究-國立清華大學動力機械工程學系碩士論文,2000年 [4 ] 黃建銘, 光碟機之短程尋軌伺服控制晶片設計與實作-國立清華大學動力機械工程學系碩士論文,2001年 [5 ] 王信博, 光碟機之主軸伺服控制晶片之設計與實作-國立清華大學動力機械工程學系碩士論文,2000年 [6 ] 黃興生, 光碟機尋軌與主軸伺服控制晶片之設計與實作-國立清華大學動力機械工程學系碩士論文,2002年 [7 ] 劉世賢, 嵌入式DSP系統於光碟機尋軌/主軸伺服系統之應用-國立清華大學動力機械工程學系碩士論文,2003年 [8 ] 林士涵, 嵌入式CPLD於光碟機伺服系統之實現-國立清華大學動力機械工程學系碩士論文,2004年 [9 ] 陳希孟、蕭亮星, 硬式磁碟機原理,諅峰資訊,1995年六月 [10 ] 楊志彥, 光碟機參數自調系統之設計與實作-國立清華大學動力機械工程學系碩士論文,2001年 [11 ] 劉昶輝, 光碟機尋軌伺服之時間最佳化路徑設計與實作-國立清華大學動力機械工程學系碩士論文,2001年 [12 ] CD-ROM Learning Kit Ver1.0,太和科技編著,1998年初版 [13 ] Quartus (Altera) Training Manual 2001,國家晶片系統設計中心,2001年。 [14 ] APEX DSP Development Board Data Sheet,CA,USA,ALTERA,2001年。id NH0925311065 sid 913740 cfn 0 / id NH0925311066 auc 梁凱智 tic CMOS製程整合電熱致動與壓阻感測之元件開發 adc 方維倫 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 78 kwc 微機電系統 kwc 熱致動器 kwc CMOS abc CMOS MEMS製程是直接從一般IC製造中的CMOS製程加上微加工技術,使其具有機械功能,所以使用CMOS MEMS製程來製作微機電系統元件,不僅具有一般微機電加工技術的優點,也因為與一般IC製程完全相容的特性,十分容易與現有的IC電路整合,形成一個完整的微機電系統。 tc 目錄 目錄 I 圖目錄 III 表目錄 VII 第一章 前言 1 1-1研究動機 1 1-2文獻回顧 3 1-2.1 CMOS MEMS製程分類 3 1-2.2釋放MEMS方式 5 1-2.3 CMOS MEMS致動應用 6 1-2.4 CMOS MEMS感測應用 9 1-3研究目標 11 第二章 元件分析與模擬 25 2-1 MEMS 元件設計 25 2-2 致動與感測方法 26 2-3 模擬分析 27 2-3.1 定義接觸通道功能 28 2-3.2 多晶矽層寬度調變 29 2-3.3 支撐臂長度與寬度之尺寸調變 30 2-3.4 絕熱臂的尺寸調變 31 第三章 製程與實驗 43 3-1 概述UMC 2P2M 0.5µM CMOS製程 43 3-2 定義MEMS元件 44 3-3 後段CMOS製程 45 3-4 製程結果 47 第四章 量測結果與討論 59 4-1 釋放元件後之原型 59 4-2 穩態量測 60 4-3 動態量測 61 4-4 穩態溫度量測 61 第五章 結論 71 5-1 研究成果 71 5-2 未來工作 72 第六章 參考文獻 73rf [1 ] H. Baltes, O. Brand, A. Hierlemann, D. Lange, and C. Hagleitner, “ CMOS MEMS – present and future,” The 15th IEEE International Conference on Micro Electro Mechanical Systems. pp 459-466, 2002. [2 ] H. Baltes, and O. Brand,“ CMOS-based microsensors and packaging,” Sensors and Actuators A. 92, pp 1-9, 2001. [3 ] http://www.dlp.com [4 ] http://www.analog.com/ [5 ] http://www.honeywell.com/sites/honeywell/ [6 ] http://www.infineon.com/ [7 ] http://www.sandia.gov/ [8 ] K.H.-L. Chau, S.R. Lewis, Y.Zhao, R.T. Howe, S.F. Bart, and R.G. Marcheselli,“ An integrated force-balanced capacitive accelerometer for low-G applications,” Tech. Digest, 9th Int. Conf. Solid-State Sensors and Actuators. pp 593-596, 1995. [9 ] G.K. Fedder, S. Santhanam, M.L. Reed, S.C. Eagle, D.F. Guillou, M.S.-C. Lu, and L.R. Carley,“ Laminated high-aspect-ratio microstructures in a conventional CMOS process,” Sensors and Actuators A. 57, pp 103-110, 1996. [10 ] E.H. Klaassen, R.J. Reay, C. Storment, J. Andy, P. Henry, A.P. Brokaw, and G.T. Kovacs,“ A micromachined thermally isolated circuits,” Proceedings of the Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC. pp 127-131, 1996. [11 ] H. Xie, L. Erdmann, X. Zhu, K. Babriel, and G.K. Fedder, “ Post-CMOS processing for high-aspect-ratio integrated silicon microstructures,” J. Microelectromech. Syst., 11, pp.93-101, 2002. [12 ] D.J. Young, and B.E. Boser,“ A micromachine-based RF low-noise voltage-controlled oscillator,” Custom integrated circuits conference, proceeding of the IEEE. pp 5-8, 1997. [13 ] J. Buhler, J. Funk, J.G. Korvink, F.-P. Steiner, P.M. Sarro, and H. Baltes,“ Electrostatic aluminum micromirrors using double-pass metallization,” Journal of Microelectromechanical Systems. 6, pp 126-135, 1997. [14 ] T. Yasuda, I. Shimoyama, and H. Miura,“ CMOS drivable electrostatic microactuator with large deflection.” The 10th IEEE International Conference on Micro Electro Mechanical Systems. pp 26-30, 1997. [15 ] C.L. Dai, H.L. Chen, and P.Z. Chang,“ Fabrication of a micromachined optical modulator using the CMOS process,” J. Micromech. Microeng. 11. pp 612-615, 2001. [16 ] S. P. Timoshenko, “ Analysis of bi-metal thermostats,” J. Opt. Soc. Am. 11 233-55,1925. [17 ] H. Guckel, J. Klein, T. Christenson, K. Skrobis, M. Laudon, and E. G. Lovell, “ Thermo-magnetic metal flexure actuators,” Tech. Digest, 5th Int. Conf. Solid-State Sensors and Actuators. pp 73-75, 1992. [18 ] W. Riethmuller, and W. Benecke,“ Thermally excited silicon microactuators.” Electron Devices, IEEE Transactions. 35, pp 758 -763, 1988. [19 ] M. Parameswaran, L. Ristic, K. Chau, A.M. Robinson, and W. Allegretto, “ CMOS electrothermal microactuators.” Micro Electro Mechanical Systems, 'Proceedings, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots'. , IEEE. pp 128 -131, 1990. [20 ] A. Tuantranont, L.-A. Liew, V.M. Bright, W. Zhang, and Y.C. Lee, “ Smart phase-only micromirror array fabricated by standard CMOS process,” The 13th IEEE International Conference on Micro Electro Mechanical Systems. pp 455-460, 2000. [21 ] M. Huja, and M. Husak,“ Thermal microactuators for optical purpose,” Proceedings of International Conference on Information Technology: Coding and Computing. pp 137 -142, 2001. [22 ] A. Oz, and G.K. Fedder, “ RF CMOS-MEMS capacitor having large tuning range,” Tech. Digest, 12th Int. Conf. Solid-State Sensors and Actuators, Boston, June, 2003. pp 8-12. [23 ] W. H. Chu, M. Mehregany, and R.L. Mullen,“ Analysis of tip deflection and force of a bimetallic cantilever icroactuator,” J. Micromech. Microeng. 3 pp. 4-7, 1993. [24 ] H. Lakdawala, and G.K. Fedder,“ Analysis of temperature dependent residual stress gradients in CMOS micromachined structures,” 10th Int. Conf. on Solid State Sensors and Actuators, pp 526-9, 1999. [25 ] A. Tuantranont, L.A. Liew, V.M. Bright, W. Zhang, and Y.C. Lee, “ Phase-only micromirror array fabricated by standard CMOS process,” Sensors and Actuators A, 89, pp.124-134, 2001. [26 ] S. M. Sze, Semiconductor sensors, New York, NY: John wiley & sons, 1994. [27 ] V. A. Gridchin, V. M. Lubimsky, and M. P. Sarina, “ Piezoresistive properties of polysilicon films,” Sensors and Actuators A, 49, pp.67-72, 1995. [28 ] L. Gisela, K. S. J. Pister, and K. P. Roos, “ Standard CMOS piezoresistive sensor to quantify heart cell contractile forces,” Micro Electro Mechanical Systems, 'Proceedings, An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems'. , IEEE. pp 150 -155, 1996. [29 ] V. Beroulle, Y. Bertrand, L. Latorre, and P. Nouet,“ Micromachined CMOS magnetic field sensors with low-noise signal conditioning,” The 15th IEEE International Conference on Micro Electro Mechanical Systems. pp 256-259, 2002. [30 ] V. Beroulle, Y. Bertrand, L. Latorre, and P. Nouet,“ Monolithic piezoresistive CMOS magnetic field sensors,” Sensors and Actuators A, 103, pp. 23-32, 2003. [31 ] G. Villanueva, J. Montserrat, F. P.-Murano, G. Rius, and J. Bausells, “ Submicron piezoresistive cantilevers in a CMOS-compatible technology for intermolecular force detection,” Microelectronic Engineering, 73-74, pp. 480-486, 2004. [32 ] H. Lakdawala, and G.K. Fedder,“ CMOS micromachined infrared imager pixel,” Tech. Digest, 11th Int. Conf. Solid-State Sensors and Actuators, Munich Germany, June, 2001. pp 556-559. [33 ] http://www-bsac.eecs.berkeley.edu/ [34 ] H. Luo, G. K. Fedder, and L. R. Carley,“ A 1 mG lateral CMOS-MEMS accelerometer,” The Thirteenth Annual International Conference on Micro Electro Mechanical Systems, 2000, pp. 502 –507. [35 ] H. Xie, and G. K. Fedder,“ A CMOS z-axis capacitive accelerometer with comb-finger sensing,” The 13th Annual International Conference on Micro Electro Mechanical Systems, 2000, pp. 496 –501. [36 ] G. Zhang, H. Xie, L. E. de Rosset, and G. K. Fedder,“ A lateral capacitive CMOS accelerometer with structural curl compensation,” The Twelfth IEEE International Conference on Micro Electro Mechanical Systems, 1999, pp. 606 –611. [37 ] J. Wu, G. K. Fedder, and L.R. Carley,“ A low-noise low-offset chopper-stabilized capacitive-readout amplifier for CMOS MEMS accelerometers”, Digest of IEEE International Solid-State Circuits Conference, Volume: 1, 2002, pp. 428 –478. [38 ] H. Xie, and G..K. Fedder,“ A CMOS-MEMS lateral-axis Gyroscope,” The 14th IEEE International Conference on Micro Electro Mechanical Systems. pp 162-165, 2001. [39 ] C. Hierold, A. Hildebrandt, U. Naher, T. Scheiter, B. Mensching, M. Steger, and R. Tielert,“ A pure CMOS surface micromachined integrated accelerometer,” Proceedings of the Ninth Annual International Workshop on Micro Electro Mechanical Systems: An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems, 1996, pp. 174 –179. [40 ] I. Y. Park, C. W. Lee, H. S. Jang, Y. S. Oh, and B. J. Ha,“ Capacitive sensing type surface micromachined silicon accelerometer with a stiffness tuning capability,” Proceedings of the Eleventh Annual International Workshop on Micro Electro Mechanical Systems, 1998, pp. 637 –642. [41 ] E. J. J. Kruglick, B. A. Warneke, and K. S. J. Pister,“ CMOS 3-axis accelerometers with integrated amplifier,” Proceedings of the Eleventh Annual International Workshop on Micro Electro Mechanical Systems, 1998, pp. 631 –636. [42 ] H. Luo, X. Zhu, H. Lakdawala, L.R. Carley, and G.K. Fedder,“ A copper CMOS-MEMS Z-axis gyroscope,” The 15th IEEE International Conference on Micro Electro Mechanical Systems. pp 631-634, 2002. [43 ] Y. Yee, M. Park, S. H. Lee, S. Lee, K. Chun,, Y. K. Kim, and D. I. D. Cho, “ MAMOS-a novel displacement sensitive transducer for fully digital integrated ac accelerometer,” Proceedings of the Eleventh Annual International Workshop on Micro Electro Mechanical Systems, 1998, pp. 345 –350. [44 ] H. Takao, H. Fukumoto, and M. Ishida,“ Fabrication of a three-axis accelerometer integrated with commercial 0.8 /spl mu/m-CMOS circuits,” The Thirteenth Annual International Conference on Micro Electro Mechanical Systems, 2000, pp. 781 –786. [45 ] Y. Konaka, and M. G. Allen,“ Single- and multi-layer electroplated microaccelerometers,” Proceedings of IEEE the Ninth Annual International Workshop on Micro Electro Mechanical Systems: An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems, 1996, pp. 168 –173. [46 ] C. Hierold,“ Intelligent CMOS sensors,” Proc. IEEE MEMS. pp 1-6, 2000. [47 ] D. Lange, C. Hagleiter, O. Brand, and H. Baltes,“ CMOS resonant beam gas sensor with integrated preamplifier,” Tech. Digest, 10th Int. Conf. Solid-State Sensors and Actuators, Sendai, Japan, June, 1999. pp 1020-1023. [48 ] J -J. J. Neumann, and K.J. Gabriel,“ CMOS-MEMS membrane for audio- frequency acoustic actuation.” Sensors and Actuators ., 95, pp 175-182, 2002. [49 ] http://www.ansys.com [50 ] http://mems.isi.edu/mems/materials/index.html [51 ] Q.A. Huang, and N.K.S. Lee, “ Analysis and design of polysilicon thermal flexure actuator,” J. Micromech. Microeng, vol. 9, pp. 64-70, 1999. [52 ] G..Z. Yan, P.C.H. Chan, I.M. Hsing, R.K. Sharma, and J.K.O. Sin, “ An improved TMAH Si-etching solution without attacking exposed aluminum,” The 13th IEEE International Conference on Micro Electro Mechanical Systems.pp. 562 -567, 2000. [53 ] J. J. Tsaur, C. H. Du, and C. Lee,“ Investigation of TMAH for front-side bulk micromachining process from manufacturing aspect,” Sensors and Actuators A, 92, p375-383, 2001.id NH0925311066 sid 905792 cfn 0 / id NH0925311067 auc 蔡俊毅 tic 撓性雙穩態微機構的設計與實驗 adc 宋震國 博士 ty 博士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 英文 pg 115 kwc 撓性機構 kwc 雙穩態機構 kwc 微機電系統 kwc 微鏡面定位裝置 kwc 動態特性 abc 撓性機構具有提高製造性、消除剛性接頭的間隙及摩擦、減少組裝程序、降低成本等特性,特別適合微機電系統(MEMS),尤其微機電系統目前的製程仍受限,無法製造出配合良好的剛性接頭,撓性機構的應用更可提高製程良率,正廣泛應用於微機電系統。雙穩態機構則特別適合用在切換裝置,因為雙穩態機構可以在不供應能量下,保持在穩態位置,因此具有省能效果,而且穩態位置相對具有較高之定位精度。撓性雙穩態微機構結合了撓性機構與雙穩態機構的優點,在微機電系統中可以展現其優越特性。本論文有系統的設計撓性雙穩態微機構,從雙穩態行為的確認、兩個穩態位置間位移量的計算、致動力的評估以及結構最大應力的計算,以得到所需的雙穩態行為,其位移量符合所望,致動力低於致動器所提供之作用力,並保持在材料安全範圍內。除了解析方法的求解,同時使用有限元素法(FEM)模擬其結果,最後以實驗驗證設計之可行性。除此,撓性雙穩態微機構的動態特性具有十分特異的特性,屬於非線性系統,又與一般的非線性系統不同,因此具有與眾不同的性質,本研究針對撓性雙穩態微機構的動態特性加以研究,並提出研究成果。另外,本論文也提出幾個撓性雙穩態微機構的應用例,並加以實現並證實能達到預期之功能。 tc Abstract ii Content iii Index of Tables v Index of Figures vi Chapter 1 Introduction 1 1.1 Background 1 1.2 Literature Review 2 1.2-1 Compliant Mechanisms 3 1.2-2 Bistable Mechanisms 5 1.2-3 Microrelays 10 1.2-4 Dynamic Characteristics of MEMS 11 1.3 The Content of This Research 12 Chapter 2 Theoretical Analyses 14 2.1 Strain Energy 14 2.2 Actuating Force 19 2.3 Decision of Bistable Behavior 23 2.4 Stresses and Safety 27 2.5 Added Stopper 29 2.6 Analyses of Spring 30 2.6-1 Stiffness of Serpentine Spring 30 2.6-2 Improvement of Unalignment 35 2.7 Dynamic Characteristics 37 2.7-1 Nonlinear Systems 37 2.7-2 Dynamic Analysis of Unistable Mechanism 40 2.7-3 Dynamic Analysis of Bistable Mechanism 45 2.8 Examples 50 2.8-1 Example for Verifying Bistable Behavior 50 2.8-2 Example for Verifying Stiffness of Springs 52 2.8-3 Example for Verifying Vibration of Unistable Mechanism 53 2.8-4 Example for Verifying Vibration of Bistable Mechanism 54 Chapter 3 Finite Element Simulations and Their Comparison with Theoretical Analyses 56 3.1 Simulations to Influence of Assumptions 56 3.1-1 Imperfect Boundary Condition – Fixed Ends of Beams 56 3.1-2 Moment Introduced by Elastic Hinge Bent at Center of Side Beam 58 3.1-3 Imperfect Boundary of Elastic Hinge 58 3.1-4 Imperfect Boundary Conditions to Slender Beams of Springs 60 3.2 Simulations of Springs 62 3.2-1 Fixed End of Slender Beam 62 3.2-2 Simulations of Serpentine Springs 64 3.2-3 Simulations of the Box Springs 67 3.3 Dynamic Characteristics of Bistable Mechanisms 69 3.3-1 Modal Analysis of Unistable Mechanism 69 3.3-2 Modal analysis of Bistable Mechanism 70 Chapter 4 Applications 76 4.1 Microrelay 76 4.1-1 Dynamic Characteristics 76 4.1-2 Contact Force 77 4.2 Micromirror Positioner 79 Chapter 5 Experiments and Discussions 82 5.1 Experimental Instruments 82 5.1-1 Vibration Isolation Platform 82 5.1-2 Workbench 83 5.1-3 Optical Micrography System 83 5.1-4 Scanning Electron Microscope 83 5.1-5 Electrical Instruments 85 5.2 Fabrication 85 5.2-1 Surface Micromachining Processes 85 5.2-2 Magnifying Thickness 89 5.3 Experimental Results and Discussion: Bistable Mechanisms 89 5.3-1 Switching Bistable Mechanisms 89 5.3-2 Experimental Results 93 5.3-3 Discussion: Bistable Behavior 99 5.3-4 Bistable Mechanism Added Stopper 100 5.3-5 Discussion: Bistable Mechanism Added Stopper 100 5.4 Experimental Results and Discussion: Micromirror Positioner 101 5.4-1 Experiment and Results 101 5.4-2 Discussion: Micromirror Positioner 102 5.5 Experimental Results: Serpentine Spring 103 5.5-1 Lateral Deformation of Serpentine Spring 103 5.6 Experimental Results and Discussion: Dynamic Characteristics 104 5.6-1 Dynamic Response of Unistable Mechanism 105 5.6-2 Dynamic Response of Bistable Mechanism 106 5.6-3 Discussion: Dynamic Response of Nonlinear System 107 5.7 Sections of Beams Decreased by Etching 107 Chapter 6 Conclusions and Future Works 109 6.1 Conclusions 109 6.2 Future Works 110 6.2-1 Dynamic Characteristics of Bistable Mechanism 110rf 1. Howell, L. L. and Midha, A., 1994, "A Method for the Design of Compliant Mechanisms with Small-Length Flexural Pivots," Transactions of the ASME 1994 Vol. 116, pp. 280-290. 2. Meunier, D., Desplats, R., Bengrik, B., Perez, G., Pellet, C., Ets?ve, D. and Benteo, B., 1998, "Electrical Characterization and Modification of a Micro-Electro-Mechanical System (MEMS) for Extended Mechanical Reliability and Fatigue Testing," Microelectronics Reliability. Vol. 38, pp. 1265-1269. 3. Yokokawa, R., Takeuchi, S., Kon, T., Ohkura, R., Edamatsu, M., Sutoh, K. and Fujita, H., 2003, "Transportation of Micromachined Structures by Biomolecular Linear Motors," IEEE Paper, pp.8-11. 4. Kaiser, T. J., Lutzenberger, B. J., Friholm, R. A., Himmer, P. A., and Dickensheets, D. L., 2001, "Silicon Nitride Biaxial Pointing Mirrors with Stiffening Ribs," MOEMS and Miniaturized Systems II, Proceedings of SPIE Vol. 4561, pp. 276-282. 5. Zhou, G., Low, D., and Dowd, P., 2001, "Method to Achieve Large Displacements Using Comb Drive Actuators," Micromachining and Microfabrication Process Technology VII, Proceedings of SPIE Vol. 4557, pp. 428-435. 6. Salamon, B. A., "Mechanical Advantage Aspects in Compliant Mechanisms Design," M.S. thesis, Purdue University, West Lafayette, Indiana. 7. Sevak, N. M. and McLarnan, C. W., "Optimal Synthesis of Flexible Link Mechanisms with Large Static Deflections," ASME paper No. 74-DET-83. 8. Her, I., "Methodology for Compliant Mechanism Design," Ph.D. dissertation, Purdue University, West Lafayette, Indiana. 9. Jensen, B.D., 1998, "Identification of Macro- and Micro-Compliant Mechanism Configurations Resulting in Bistable Behavior," M.S. Thesis, Brigham Young University Provo, UT. 10. Burns, R. H. and Crossely, F. R. E., 1966, "Structural Permutations of Flexible Link Mechanisms," ASME Paper, No. 66-MECH-5. 11. Shoup, T. E. and McLarnan, C.W., 1971, "On the Use of the Undulating Elastica for the Analysis of Flexible Link Mechanisms," Journal of Engineering for Industry, pp. 263-267. 12. Shoup, T. E. and McLarnan, C. W., 1971, "A Survey of Flexible Link Mechanisms Having Lower Pairs," Journal Mechanisms Vol. 6, pp. 97-105. 13. Winter, S. J. and Shoup, T. E., 1972, "The Displacement Analysis of Path-Generating Flexible-Link Mechanisms," Journal Mechanisms Vol. 7, pp. 443-451. 14. N. M. Sevak, and C. W. McLarnan, 1974, "Optimal Synthesis of Flexible Link Mechanisms with Large Static Deflections," ASME paper, No. 74-DET-83. 15. Salamon, B. A. and Midha, A., 1998, "An Introduction to Mechanical Advantage in Compliant Mechanisms," Journal of Mechanical Design ASME, Vol. 120, pp. 311-315. 16. Midha, A., Norton, T. W., and Howell, L. L., 1994, "On the Nomenclature, Classification, and Abstractions of Compliant Mechanisms," Journal of Mechanical Design, Vol. 116, pp. 270-279. 17. Howell, L.L. and Midha, A., 1995, "Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms," ASME Journal of Mechanical Design, Vol. 117, No. 1, pp. 156-165. 18. Howell, L.L, Midha, A., and Norton, T.W., 1996, "Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body Model of Large-Deflection Compliant Mechanisms," ASME Journal of Mechanical Design, Vol. 118, No. 1, pp. 126-131. 19. Edwards, B.T., 1996, "Functionally Binary Pinned-Pinned Segments," M.S. Thesis, Brigham Young University, Provo, Utah. 20. Howell, L. L. and Midha, A., 1994, "Evaluation of equivalent spring stiffness for use in a pseude-rigid-body model of large deflection compliant mechanisms," Machine Elements and Machine Dynamics ASME 1994 DE-Vol. 70, p. 405. 21. Ananthasuresh, G. K. and Kota, S., 1992, "A Feasibility Study on the Topological Synthesis of Compliant Mechanisms," Technical Report, The University of Michigan. 22. Ananthasuresh, G. K., Kota, S., and Gianchandani, Y., 1993, "Systematic Synthesis of Micro-Compliant Mechanisms Preliminary Results," Proc. The Third National Conference on Applied Mechanisms and Robotics Conference, Nov. 8-10, Vol. 2, p. 82. 23. Larsen, U. D., Sigmund, O., and Bouwstra, S., 1997, "Design and Fabrication of Compliant Micromechanisms and Structures with Negative Poisson's Ratio," J. of MEMS, Vol. 6, pp. 99-106. 24. Jonsmann, J., Sigmund, O., and Bouwstra, S., 1999, "Compliant Thermal Microactuators," Sensors and Actuators A, Vol. 76, pp. 463-469. 25. Frecker, M. and Canfield, S., 2000, "Design of Efficient Compliant Mechanisms from Ground Structure Based Optimal Topologies," Proceedings of ASME DETC: 26th Biennial Mechanisms and Robotics Conference, Baltimore, Maryland, pp. 1-8. 26. Parkinson, M. B., Jensen, B. D., Roach, G. M., 2000, "Optimization-Based Design of a Fully-Compliant Bistable Micromechanism," Proceedings of DETC¡¦00 ASME 2000 Design Engineering Technical Conference and Computers and Information in Engineering Conference September 10-13, 2000 Baltimore, Maryland, pp. 1-7. 27. Baker, M. S., Lyon, S. M., and Howell, L. L., 2000, "A Linear Displacement Bistable Micromechanism," Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 1-7. 28. H?lg, B., 1990, "On a Nonvolatile Memory Cell Based on Micro-electro-mechanics," Proceedings IEEE Workshop on MEMS, pp. 172-176. 29. Jensen, B. D., Howell, L. L., and Salmon, L. G., 1999, "Design of Two-Link, In-Plane, Bistable Compliant Mechanism," ASME Journal of Mechanical Design, Vol. 121, No. 3, pp. 416-423. 30. Dellmann, L., Novell, W., Marxer, C., Weible, K., Hoffmann, M., and de Rooij, N. F., 2001, "4¡Ñ4 Matrix switch Based on MEMS Switches and Integrated Waveguides," Transducers '01 Eurosensors XV, The 11th International Conference on Solid-state Sensor and Actuators, pp. 1332-1335. 31. Sun, X., Farmer, K. R., and Carr, M. N., 1998, "A Bistable Microrelay Based on Two-segment Multimorph Cantilever Actuators," Proceedings IEEE Workshop on MEMS, pp. 154-159. 32. Matoba, H., Ishikawa, T., Kim, C. J., and Muller, R. S., 1994, "A Bistable Snapping Microactuator," Proc. IEEE Micro Electro Mechanical Systems Workshop, Oiso, Japan, pp. 45-50. 33. Saif, M. T. A., 2000, "On a Tunable Bistable MEMS-Theory and Experiment," Journal of Microelectromechanical Systems, Vol. 9, No. 2, pp. 157-170. 34. Ruan, M., Shen, J., and Wheeler, C. B., 2001, "Latching microelectromagnetic relays," Sensors and Actuators, A, Vol. 91, pp. 346-350. 35. Wagar, H. N., 1977, "Impact of the Contact on Electrical System," IEEE Transactions on Parts, and Packaging, Vol. PHP-13, No. 1, pp. 3-13. 36. Bogdan M. and Kristiansen, M., 1988, "Analytical and Experimental Investigations of Reed Contact Bouncing," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 1 I, No. 2, pp. 200-210. 37. Hosaka, H., Kuwano, H., and Yanagisawa, Keiichi, 1993, "Electromagnetic Microrelays-Concepts and Fundamental Characteristics," IEEE Paper, pp. 12-17. 38. Hosaka, H. and Kuwano, H., 1994, "Design and Fabrication of Miniature Relay Matrix and Investigation of Electromechanical Interference in Multi-Actuator Systems," IEEE Paper, pp. 313-318. 39. Schimkat, J., 1998, "Commutated Relay Switching System," IEEE Paper, pp. 669-674. 40. Taylor, W. P., Brand, O., and Allen, M. G., 1998, "Fully Integrated Magnetically Actuated Micromachined Relays," Journal Of Microelectromechanical Systems, Vol. 7, No. 2, pp. 181-191. 41. Chang, C. and Chang, P., 2000, "Innovative Micromachined Microwave Switch with Very Low Insertion Loss," Sensors and Actuators, Vol. 79, pp. 71-75. 42. Kruglick E. J. J. and Pister, K. S. J., 1999, "Lateral MEMS Microcontact Considerations," Journal of Microelectromechanical Systems, Vol. 8, No. 3, pp. 264-271. 43. Rizk, J., Tan, G. L., Muldavin, J. B., and Rebeiz, G. M., 2001, "High-isolation W-band MEMS Switches," IEEE Paper, pp. 10-12. 44. Lafontan, X., Pressecq, F., and Perez, G., 2001, "Physical and Reliability Issues in MEMS Microrelays with Gold Contacts," Proceedings of SPIE, Reliability, Testing, and Characterization of MEMS/MOEMS, Vol. 4558, pp. 11-21. 45. Lyon, S. M., Evans, M, S., Erickson, P. A., Howell, L. L., 1997, "Dynamic Response of Compliant Mechanisms Using the Pseudo-Rigid-Body Model," Proceedings of DETC¡¦97 ASME Design Engineering Technical Conferences September 14-l 7, 1997, Sacramento, California, pp. 1-8. 46. Harness, Ty. And Syms, R. R. A., 1999, "Characteristic Modes of Electrostatic Comb-Drive X-Y Microactuators," Journal of Micromechanics and Microengineering, Vol. 9, pp. 1-8. 47. Zhang, W., Baskaran, R., and Turner, K. L., 2002, "Nonlinear Behavior of a Parametric Resonance-Based Mass Sensor," Proceeding of IMECE2002, ASME International Mechanical Engineering Congress & Exposition, pp. 1-5. 48. Mahmoud, M. S., Khalil, D., El-Hagry, M. T., and Badr, M. A., 2002, "Improving the Comb Drive Actuator Transient Response Using Digital Compensation Technique," Proceeding of the 27th General Assembly of the International Union of Radio Science (Netherlands), pp. 436-439. 49. Ataman, C. and Urey, H., 2004, "Nonlinear Frequency Response of Comb-Driven Microscanners," MOEMS Display and Imaging Systems II, Proc. SPIE, Vol. 5348, pp. 166-174. 50. Ataman, C., Kaya, O., and Urey, H., 2004, "Analysis of Parametric Resonances in Comb-Driven Microscanners,", Proceeding of SPIE, MEMS, MOEMS, and Micromachining, Vol. 5455 (Not Printed). 51. Chang, S. A., 2001, Design of a Bistable Compliant Micro-Mechanism Applied to Optical Switch, Master thesis of National Tsing Hua University. 52. Rao, S. S., 2004, Mechanical Vibration, Fourth Edition, Pearson Education Inc. New Jersey, USA. 53. Caglar Ataman and Hakan Urey, "Nonlinear Frequency Response of Comb-Driven Microscanners," MOEMS Display and Imaging Systems II, Proc. SPIE, Vol. 5348, pp. 166-174, 2004. 54. Sharpe, W. N., Jr. Yuan, B. Edwards, R. L., and Vaidyanathan, R., 1997, "Measurements of Young's Modulus, Poisson's Ratio, and Tensile Strength of Polysilicon," 10th IEEE International Workshop on Microelectromechanical Systems, Nagaya, Japan, January 26-30, pp. 424-429. 55. Koester, D., Cowen, A. Mahadevan, R., and Hardy, B., 2002, PolyMUMPs Design Handbook, Revision 8.0, MEMSCAP.id NH0925311067 sid 897702 cfn 0 / id NH0925311068 auc 林洸銓 tic 主動式與被動式微混合器之最適化設計 adc 陳理定 adc 楊鏡堂 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 88 kwc 生物晶片 kwc 微混合器 abc 本文以數值流力與實驗觀測探討生物晶片的微混合器設計,針對微混合器系統的微幫浦與主流道兩個次元件探討,分別設計產生混合的方法。微幫浦設計上採用主動式脈衝驅動流體達到混合,在兩個流道入口以相位差180o造成兩股流體之間的最大動量差,並且以週期性的交錯來提升兩股流體的混合效率。在主流道的設計上採用被動式蜿蜒形結構增強法,放置交錯排列的十個擋體於主流道的兩側,使得主流道有擴張與收縮的效應來增強混合效率。數值的計算部份,則以SIMPLEC模式法求解,針對兩個不同的混合增強方式設計不同的邊界條件與初始條件,並分析流線場與濃度場。脈衝流混合增強法的研究參數為雷諾數Re與史卓荷數St,蜿蜒形結構混合增強法的研究參數為雷諾數Re與流道擴張收縮比A/R。研究結果顯示脈衝流在低雷諾數會產生動量不足,太高的雷諾數會使得流體混合時間太短。史卓荷數在St=12.6可得到較好的混合結果。在被動式蜿蜒形結構的分析上顯示,當流道的擴張與收縮比A/R=0.25可增加微混合器的使用範圍,兩股流體的介面因為拉長,使得流體的混合在較低的雷諾數Re=3仍然由擴散來主導,在較高的雷諾數Re=30,則藉由迴流區的增長使得對流的效應主導混合。在A/R=0.25∼0.5的範圍,流體的混合效果隨著雷諾數變大而增加,在A/R=0.75∼1的範圍,流體的混合效果隨著雷諾數變大而減低。 tc 摘 要 1 目 錄 2 圖 表 目 錄 5 符 號 說 明 9 第一章 緒 論 11 1-1 前言 11 1-2 研究動機與目的 12 第二章 文 獻 回 顧 14 2-1 微混合器分類 14 2-2 被動式混合器探討 16 2-2.1 叉形微混合器 16 2-2.2 側向形微混合器 17 2-2.3 T型微混合器 17 2-2.4 蜿蜒形微混合器 19 2-2.5交錯鯡骨式微混合器 20 2-3 主動式混合器探討 22 2-3.1 方波脈衝微幫浦 22 2-3.2 正弦波脈衝微幫浦 23 2-4 混合指數 23 2-4.1 利用酸鹼指示劑判斷 23 2-4.2 利用有色染料判斷 23 第三章 理 論 分 析 24 3.1 物理模型 25 3-1.1 蜿蜒型混合器 25 3-1.2脈衝幫浦混合器 26 3-2 基本假設 26 3-3 系統方程式及起始╱邊界條件 27 3-4 統御方程式及起始╱邊界條件無因次化 30 3-5 混合效率檢測 33 第四章 數 值 方 法 34 4-1控制體積法 34 4-1.1 統御方程式離散化 34 4-1.2 有限差分方程式 37 4-2 SIMPLEC 數值方法 38 4-3 低鬆弛係數(under-relaxation) 39 第五章 結 果 與 討 論 40 5-1數值評估 40 5-1.1網格產生 40 5-1.2脈衝微幫浦之時間點監控與網格獨立測試 41 5-1.3蜿蜒型混合器之網格獨立測試 43 5-2 T型混合器 44 5-3主動式脈衝微幫浦混合增強 48 5-3.1脈衝流場對混合增強之影響 50 5-3.2雷諾數Re之影響 56 5-3.3 史卓荷數St之影響 66 5-4被動式結構蜿蜒型混合增強 75 5-4.1 蜿蜒型主流道擴張與收縮之影響 76 5-4.1雷諾數Re之影響 82 第六章 綜 合 結 果 與 未 來 展 望 93 第七章 參 考 文 獻 95rf 第七章 參 考 文 獻 Beebe, D. J., Adrian, R. J., Olsen, M. G., Stremler, M. A., Jo, B. H., and Aref, H., “Passive Mixing in Microchannels: Fabrication and Flow Experiments,” Journal of Mechanics and Industry, Vol. 2, pp. 343-348, 2001. Chang, C. C., Yang, R. J., “Computational Analysis of Electrokinetically Driven Flow Mixing in Microchannels with Patterned Blocks,” Journal of Micromechanics and Microengingeering, Vol. 14, pp. 550-558, 2004. Devahastin, S., and Mujumdar, A. S., “A Numerical Study of Flow and Mixing Characteristics of Laminar Confined Impinging Streams,” Chemical Engineering Journal, Vol. 85, pp. 215-223, 2002. Desmukh, A. A., Liepmann, D., and Pisano, A. P., “Continuous Micromixer with Pulsatile Micropumps,” Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, 2000. Glasgow, I., Aubry, N., “Enhancement of Microfludic Mixing Using Time Pulsing,” Journal of Lab on a Chip, Vol. 3, pp. 114-120, 2003. Gobby, D., Angeli, P., and Gavriilidis, A., “Mixing Characteristics of T-type Microfluidic Mixers,” Journal of Micromechanics and Microengingeering, Vol. 11, pp. 126-132, 2001. Hong, S., Thiffcault, J. L., Frechette, L., and Modi, V., “Numerical Study of Mixing in Microchannels with Patterned Zeta Potential Surfaces,” 2003 ASME International Mechanical Engineering Congresss & Exposition, Washington, D.C., Nov. 16-21, 2003. Ismagilov, R. F., Rosmarin, D., Kenis, P. J. A., Chiu, D. T., Zhang, W., Stone, H. A., and Whitesides, G. M., “Pressure-Driven Laminar Flow in Tangential Microchannels: An Elastomeric Micofluidic Switch,” Analytical Chemistry, Vol. 73, No. 19, pp. 4682-4687, Oct., 2001. Jen, C. P., Wu, C. Y., Lin, Y. C., and Wu, C. Y., “Design and Simulation of the Micromixer with Chaotic Advection in Twisted Microchannels,” Journal of Lab on a Chip, Vol. 3, pp. 77-81, 2003. Kang, T. G., and Kwon, T. H., “Colored Particle Tracking Method for Mixing Analysis of Chaotic Micromixers,” Journal of Micromechanics and Microengingeering, Vol. 14, pp. 891-899, 2004. Kim, D. S., Lee, S. W., Kwon, T. H., and Lee, S. S., “A Barrier Embedded Chaotic Micromixer,” Journal of Micromechanics and Microengingeering, Vol. 14, pp. 798-805, 2004. Koch, M., Witt, H., Evans, and A. G. R., and Brunnschweiler, A., “Improved Characterization Technique for Micromixers,” Journal of Micromechanics and Microengingeering, Vol. 9, pp. 156-158, 1999. Koch, M., Chatelain, D., Evans, A. G. R., and Brunnshweiler, A., “Two Simple Micromixers Based on Silicon,” Journal of Micromechanics and Microengingeering, Vol. 8, pp. 123-126, 1998. Koch, M., Schabmueller, C. G. J., Evans, A. G. R., and Brunnshweiler, A., “Micromachined Chemical Reaction System,” Sensor and Actuators, Vol. 74, pp. 207-210, 1999. Kim, S. Y., Kang, B. H., “Forced Convection Heat Transfer from Two Heated Blocks in Pulsating Channel Flow,” International Journal of Heat Mass Transfer, Vol. 41, pp. 625-634, 1998. Kenwright, D. N., Lane, D. A., “Interactive Time-Dependent Particle Tracing Using Tetrahedral Decomposition,” IEEE Transaction on Visualization and Computer Graphics, Vol. 2, No. 2, 1996. Lu, L. H., Ryu, K. S., and Liu, C., “A Magnetic Microstirrer and Array for Microfluidic Mixing,” Journal of Microelectromechanical System, Vol. 11, No. 5, 2002. Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Aref, R. A. H., and Beebe, D. J., Member IEEE, “Passive Mixing in a Three- Dimensional Serpentine Microchannel,” Journal of Microelectromechanical System, Vol. 9, No. 2, 2002. Lee, Y. K., Deval, J., Tabeling, P., and Ho, C. M., “Chaotic Mixing in Electrokinetically and Pressure Driven Micro Flows,” The 14th IEEE Workshop on MEMS, Interlaken, Switzerland, Jan., 2001. Meinhart, C. D., Wereley, S. T., Santiago, J. G., “PIV Measurements of a Microchannel Flow,” Experiments in Fluids, Vol. 27, pp. 414-419, 1999. Niu, X., and Lee, Y. K., “Efficient Spatial-Temporal Chaotic Mixing in Microchannels,” Journal of Micromechanics and Microengingeering. Vol. 13, pp. 454-462, Apr., 2003. Stroock, A. D., Dertinger, S. K., Whitesides, and G. M., and Ajdari, A., “Patterning Flows Using Grooved Surfaces,” Analytical Chemistry, Vol. 74, No. 20, pp. 5306-5312, 2002. Stroock, A. D., Dertinger, S. K., Ajdar, A., Mezic, L., Stone, H. A., and Whitesides, G. M., “Chaotic Mixer for Microchannels,” Science, Vol. 295, pp. 647-651, 2002. Schwesinger, N., Frank, T., and Wurmus, H., “A Modular Microfluid System with an Integrated Micromixer,” Journal of Micromechanics and Microengingeering, Vol. 6, pp. 99-102, 1996. Wang, H., Lovenitti, P., Harvey, E., and Masood, S., “Numerical Investigation of Mixing in Microchannels with Patterned Grooves,” Journal of Micromechanics and Microengingeering, Vol. 13, pp. 801-808, 2003. CFD-ACE(U) User Manual, Version 6.4, CFD Research Corporation, 2000.id NH0925311068 sid 913706 cfn 0 / id NH0925311069 auc 顏柏輝 tic 微細鑽石線鋸鋸切特性與磨耗之研究 adc 左培倫 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 110 kwc 游離磨粒 kwc 固定磨粒 kwc 田口法 kwc 變異數分析 abc 游離磨粒線鋸目前已廣泛的應用在半導體晶圓的切片製程中。藉由游離磨料來移除材料,SiC磨粒被大量的使用在其製程中,然而這些使用後的磨料易污染環境,導致工業上的浪費,且其加工效率低。基於這些理由,發展固定磨粒線鋸已成為工業界必然的趨勢。 tc 英文摘要 ….....…….……………………………………………………I 中文摘要 ………….....…………………………………………………II 誌謝 …………………....………………………………………………III 目錄 ……………………....……………………………………………IV 圖目錄 …………………….......………………………………………VII 表目錄 ………………………….....……………………………………X 第一章 簡介 1-1 研究背景 ......................................................................................1 1-2 線鋸切割 ......................................................................................4 1-3 固定磨粒線 ..................................................................................6 1-4 研究動機與目的 ..........................................................................8 第二章 文獻回顧 ................................................................................10 第三章 硬脆材料的加工原理 3-1 矽晶材料與精密陶瓷 ................................................................18 3-2 硬脆材料的精密加工原理 ........................................................20 3-3 單顆磨粒對材料移除之理論模型..............................................24 3-3 實驗驗證與討論 ........................................................................26 第四章 實驗設備與規劃 4-1 實驗目的 ....................................................................................28 4-2 實驗材料 ....................................................................................28 4-3 實驗設備 ....................................................................................32 4-3-1 試驗機台設備 ....................................................................32 4-3-2 量測設備 ............................................................................35 4-4 田口式實驗設計法 ....................................................................39 4-4-1 要因實驗與田口實驗 ........................................................40 4-4-2 直交表 ................................................................................41 4-4-3 損失函數 ............................................................................42 4-4-4 訊號雜因(S/N)比 ..........................................................43 4-4-5 控制因子分析 ....................................................................45 4-4-6 變異數分析 ........................................................................46 4-4-7 最佳參數的選擇步驟 ........................................................48 4-4-8 田口式實驗設計流程 ........................................................48 4-5 實驗方法與設計流程 ................................................................49 4-5-1 選擇控制因子及直交表 ....................................................51 4-5-2 執行實驗 ............................................................................54 第五章 實驗結果與討論 5-1 加工參數對表面粗糙度的影響 ................................................55 5-1-1量化公式 ..............................................................................55 5-1-2表面粗糙度實驗結果分析 ..................................................56 5-2 加工參數對材料移除率的影響 ................................................72 5-2-1 量化方式 ............................................................................72 5-2-2 材料移除率實驗結果分析 ................................................73 5-3 加工參數對線鋸磨耗的影響 ....................................................79 5-3-1 量化方式 ............................................................................79 5-3-2 線鋸磨耗實驗結果分析 ....................................................79 5-4 加工參數對切口寬度的影響 ....................................................85 5-4-1 量化方式 ............................................................................85 5-4-2 切口寬度實驗結果分析 ....................................................85 5-5 實驗結果與討論 ........................................................................89 5-5-1 表面粗糙度 ........................................................................90 5-5-2 矽試片表面顯微觀察結果 ................................................91 5-5-3固定磨粒與游離磨粒鋸切之比較 .....................................95 5-5-4 材料移除率 ........................................................................98 5-5-5 線鋸磨耗量 ........................................................................99 5-5-6 線鋸壽命預測 ..................................................................103 5-5-7 切口寬度 ..........................................................................104 第六章 結論與未來展望 ..................................................................105 參考文獻 ..............................................................................................107 附表 .....................................................................................................110rf [1 ] M. Nakai et. al, “Development of a Fixed Diamond Wire Saw for Electronics Application”, Osaka Diamond Co.,Ltd Japan, (2001) 233-240. [2 ] K. Ishikawa, H. Suwabe, ”Study on Machining Characteristics of Wire Tool with Electrodeposited Diamond Grains”, JSPE,vol.60 No.3 Sep (1994) 329-334. [3 ] K. Ishikawa, H. Suwabe, “Development of Spiral Chip-Pocket Wire Tool Electrodeposited Diamond Grains”, Journal of the Japan Society Engineering, vol.62 No.2 (1996) 242. [4 ] Y. Chiba, Y. Tani, “Development of a High-Speed Manufacturing Method for Electroplated Diamond Wire Tools”, Annals of the CIRP, vol52 No.1 (2003) 281-284. [5 ] H.B. McLaughlin, “Precision cutting with a Diamond Wire Saw”, Cuting Tool Engineering June (1985) 17-19. [6 ] P. G. Partridge et. al, “Microstructure and interfaces in diamond coated steel wires”, Journal of Materials Science 32 (1997) 4201-4208. [7 ] M. Kojima, ”Development of new wafer slicing equipment”, Sumitomo Met., vol.42 No.4 (1990) 218-224. [8 ] M.B. Smith et. al, ”Multi-Wire FAST slicing for Photovoltaic Applications”, IEEE (1991) 979-981. [9 ] TaKaya Watanabe et.al, “Study of Quartz Crystal Slicing Technology By Using Unidirectional Multi-Wire-Saw”, IEEE (2001) 329-337. [10 ] Toshiyuki Enomoto et. al, “Development of a Resinoid Diamond Wire Containing Metal Power for Slicing a Slicing Ingot”, Annls of the CIRP, vol.48 No.1 (1999) 273-276. [11 ] S.Y. Luo, “Effect of fillers of resin-bonded composites on diamond retention and wear behavior”, Wear 236 (1999) 339-349. [12 ] C.M.Sung, ”Brazed diamond grid:a revolutionary design for diamond saws”, Diamond and Related Materials 8 (1999) 1540-1543. [13 ] K. Ishikawa, H. Suwabe, ”A Basic Study on Vibration Muti-Wire Sawing using Wire Fixed Diamond Grain”, JSPE, vol21 No.3 Sep (1987) 214-216. [14 ] M.Undea, ”A Basic Study on Processing Characteristics of Diamond Multi-Wire Saw by means of the Workpiece Rotation Type”, JSPE, vol44 No.1 Jan (1995) 229-232. [15 ] W.I. Clark et. al, “Fixed abrasive diamond wire machining—part I: process monitoring and wire tension force”, International Journal of Machine Tools & Manufacture 43 (2003) 523–532. [16 ] W.I. Clark et. al, “Fixed abrasive diamond wire machining—part II: experiment design and results”, International Journal of Machine Tools & Manufacture 43 (2003) 533–542. [17 ] H.K. Tönshoff, H. Hillmann-Apmann,” Diamond tools for wire sawing metal components” Diamond and Related Materials 11 (2002) 742–748. [18 ] F. Schmid, M. B. Smith and C. P. Khattak, ”Kerf reduction using sharp wire”, IEEE (1993) 205-208. [19 ] L. Yin, S. Jahanmir, “Abrasive machining of porcelain and zirconia with a dental handpiece”, Wear 255 (2003) 975-989. [20 ] 甘炎益,「精密線鋸切割之研究」,國立清華大學動力機械工程學系碩士班論文,july 2001。 [21 ] 鄧嘉豪,「鑽石線鋸切割硬脆材料暨加工參數之研究」,國立清華大學動力機械工程學系碩士班論文,july 2002。 [22 ] 陳建民,「鑽石線鋸切割碳化矽與氧化鋁陶瓷材料之特性研究」,國立清華大學動力機械工程學系碩士班論文,july 2003。 [23 ] 黃忠良 譯著,精密陶瓷加工,民88年,富漢出版社印行。 [24 ] 橫山巽子 主編,品質設計的實驗計畫法,民88年,中國生產力中心出版。 [25 ] 鄭燕琴 編著,田口品質工程技術理論與實務,民84年,中華民國品質管制學會發行。 [26 ] 吳復強 著,田口品質工程(Quality Engineering),民91年,全威圖書有限公司出版。 [27 ] 陳耀茂 譯著,田口實驗計畫法(Introduction to Design of Experiment),民88年,滄海書局出版。id NH0925311069 sid 913798 cfn 0 / id NH0925311070 auc 顏永昌 tic 滾珠型自動平衡裝置搭配雙承載底座之動態分析與系統設計 adc 宋震國 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 105 kwc 雙承載底座 abc 本文主要針對滾珠型自動平衡裝置搭配雙承載底座之光碟機系統進行分析,以探討加裝自動平衡裝置後之系統動態行為,並期許能針對單承載平台在平移共振頻率低轉速下,光碟機無法進行「寫」的動作部分作一改善。 tc 摘要…………………………………………………………………... I 目錄…………………………………………………………………... II 圖目錄………………………………………………………………... IV 表目錄………………………………………………………………... VI 第一章 緒論……………………………………………………..… 1 1-1 研究動機……………………………………………. 1 1-2 文獻回顧…………………………………………….. 6 1-3 研究方法與目標…………………………………….. 12 第二章 動態方程式推導與穩定度分析…………………………... 13 2-1 系統架構…………………………………………….. 15 2-2 運度方程式推導…………………………………….. 17 2-3 穩定度分析………………………………………….. 24 2-3-1 無因次化…………………………………….. 25 2-3-2 複合時間比例法…………………………….. 27 2-3-3 系統的穩態解……………………………….. 38 2-3-4 微擾法……………………………………...... 46 2-3-5 特徵方程式………………………………….. 48 第三章 參數設計與分析…………………………………………... 50 3-1 穩態時的穩定區域……………………………..…... 52 3-1-1 由共振頻率 所判斷出的穩定區域……..… 52 3-1-2 由共振頻率 所判斷出的穩定區域……….. 54 3-1-3 整體系統的穩定區域……………………….. 55 3-2 系統動態響應分佈………………………………….. 57 3-2-1 Stable I 區域之系統動態模擬……………… 57 3-2-2 Stable II-a 區域之系統動態模擬…………… 59 3-2-3 Stable II-b 區域之系統動態模擬…………… 61 3-2-4 Stable I 與II-a 重合區域之系統動態模擬… 62 3-2-5 Unstable 區域之系統動態模擬…………….. 64 3-3 承載底座設計參數對自動平衡裝置之影響……….. 66 3-3-1 隔振墊圈剛性的影響……………………….. 66 3-3-2 調整隔振墊圈K1與K2值,比較各區域之不同及影響……………………………………... 68 3-3-3 隔振墊圈阻尼係數的影響………………….. 75 3-4 滾動摩擦阻力的影響……………………………….. 76 第四章 實驗系統架構……………………………………………... 79 4-1 實驗儀器設備……………………………………….. 79 4-2 實驗架構…………………………………………….. 83 4-3 實驗結果討論……………………………………….. 86 4-3-1 高速攝影機拍攝結果……………………………… 86 4-3-2 振動量測結果……………………………………… 90 第五章 搭配自動平衡裝置之系統設計…………………………... 93 5-1 實驗模擬結果……………………………………….. 93 5-2 馬達速度曲線設計………………………………….. 96 第六章 結論………………………………………………………... 101 參考文獻……………………………………………………………... 103rf [1 ] Thearle, E. L.,1950,“Automatic Dynamic Balancers (Part 1-Leblanc Balancer),”Machine Design, Vol. 22, Sep., pp. 119-124. [2 ] Thearle, E. L.,1950,“Automatic Dynamic Balancers (Part 2-Ring, Pendulum, Ball Balancers), ”Machine Design, Vol. 22, Oct., pp. 103-106. [3 ] Kubo, S., Jinouchi, Y., Araki, Y., and Inoue, J., 1986,“Automatic Balancer (Pendulum Balancer),”Bulletin of JSME, Vol. 29, No. 249, pp. 924-928. [4 ] 井上順吉(Inoue), 陣內靖介, 荒木嘉昭, 中原 章, 1979,“自動平衡裝置,”日本機械論文集 (C編), 45卷, 394號, pp. 646-652. [5 ] B?屴ik, P., and H?仩fors, C., 1986, “Autobalancing of Rotor,”Journal of Sound and Vibration, Vol. 111, pp. 429-440. [6 ] Wierzba. P., Cao, W., Park, J., 1995, “Automatic Balancing of a Three-Dimentional Rigid Rotor System---A Washing Machine Application,”pp. 163-172. [7 ] Moorhem, P., 1996, “Analytical and Experimenetal Analysis of a Self-Compensating Dynamic Balancer in a Rotating Mechanism,”Transactions of the ASME, Journal of Dynamic Systems, Mechanism, and Control, Vol. 118, pp. 468-475. [8 ] Rajalingham, C., Bhat, B., Rakheja, S., 1998, “Automatic Balancing of Flexible Vertical Rotors Using a Guided Ball,”Int. J. Mech. Sci, Vol. 40, No. 9, pp. 825-834. [9 ] Silin, R., Royzman, V., Malygin, A., Borko, I., Tholovsky, R., 1999, “The Research into Automatic Balancing Process of Rotors with Vertical Axis of Rotation,”Tenth World Congress on the Theory of Machine and Mechanisms, Oulu, Finland, June 20-24, pp. 1734-1739. [10 ] Hwang, C., Chung, J., 1999,“Dynamic Analysis of an Automatic Ball Balancer with Double Races,”JSME International Journal, Sreies C, Vol. 42, No. 2, pp. 265-272. [11 ] 陣內靖介(Jinnouchi), 荒木嘉昭, 井上順吉, 大塚芳臣, 譚青, 1993,“自動平衡裝置(Static Balancing and Transient Response of a Multi-Ball Balancer),”日本機械論文集 (C編), Vol. 59, No. 557, pp. 79-84. [12 ] Kim, W., and Chung, J., 2002,“Dynamic Stability and Response of an Automatic Ball Balancer Equipped on an Optical Disk Drive,”Ninth International Congress on Sound and Vibration, Orlando, Florida, USA, July 8-11. [13 ] 水野 毅(Takeshi), 北島和也, 荒木獻次, 1995, “利用動態吸振器對平衡試驗機之開發,”日本機械論文集 (C編), 61卷, 582號, pp. 519-524. [14 ] 水野 毅(Takeshi), 北島和也, 荒木獻次, 1996, “主動式動態吸振器的利用對平衡試驗機之開發,”日本機械論文集 (C編), 62卷, 594號, pp. 510-515. [15 ] Wan Changsen, 1991,“Analysis of Rolling Element Bearing”, Mechanical Engineering Publications Ltd. [16 ] 黃偉煜,1999,“創新自動平衡裝置設計”,國立清華大學碩士論文。 [17 ] 康展榮,2000,“滾珠型自動平衡裝置的分析與設計”,國立清華大學碩士論文。 [18 ] 呂惠中,2001,“滾動摩擦阻力對滾珠型自動平衡裝置性能的影響”,國立清華大學碩士論文。 [19 ] 王俊傑,2003,“裝配滾珠型自動平衡裝置之光碟機承載底座動態分析與系統設計”,國立清華大學碩士論文。 [20 ] 呂宗熙、汪仁德、陳俊明,“光碟機之振動分析”,電子產品關鍵機械技術專輯,機械工業雜誌,1998年6月號,pp.127-137.id NH0925311070 sid 893772 cfn 0 / id NH0925311071 auc 林文浩 tic < tic 110 tic > tic 垂直致動微掃描面鏡 adc 劉承賢 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 英文 pg 77 kwc wet etching kwc vertical comb drive actuators kwc < kwc 110 kwc > kwc silicon kwc V-shape spring kwc KOH abc 在光學微機電的領域裡,微掃描面鏡是其中應用最廣泛且最重要的一個基礎元件。像是可應用在光調變(optical modulator)的光開關(optical switch),光遮斷器(optical chopper)和光快門(optical shutter),或是具光掃描功能的掃描器(scanner),條碼讀取器(barcode reader),甚至可整合於光對準(optical positioning)等等。 rf [1 ] W. C. Tang, T-C. H. Nguyen, and R. T. Howe, “Laterally Driven Polysilicon Resonant Microstructures” Proceeding IEEE Micro Electro Mechanical Systems, February 1989. [2 ] Yeh J-L A, Jiang H and Tien N C “Integrated polysilicon and DRIE bulk silicon micromachining for an electrostatic torsional actuator” IEEE/ASME J. Microelectromech. Syst. (1999) 8 459–65 [3 ] Yeh J-L A, Tien N C and Hui C-Y “Electrostatic model of an asymmetric combdrive” IEEE/ASME J. Microelectromech. Syst. (2000) 9 126–35 [4 ] C-Y Hui, J-LA Yeh and N C Tien “Calculation of electrostatic forces and torques in MEMS using path-independent integrals” J. Micromech. Microeng. 10 (2000) 477–482 [5 ] P. R. Patterson, D. H, H. Nguyen, H. Toshiyoshi, R. Chao, M. C. Wu “A scanning micromirror with angular comb-drive actuation” MEMS2002 p.544-547 [6 ] O. Tsuboi, I. Sawaki, F. Yamagishi, etc. “A rotational comb-driven micromirror with a large deflection angle and low drive voltage” MEMS2002 p.532-535 [7 ] Veljko Milanovic “Multilevel-Beam SOI-MEMS for Optical Applications” Int. Conf. on Electronics, Circuits, and Systems, Dubrovnik, Croatia, Sep. 2002. pp. 281-285 [8 ] Sunghoon Kwon, Veljko Milanovic, and Luke P. Lee “Vertical Microlens scanner for 3D imaging” Proc, Solid-state Sensor and Actuator Workshop, Hilton Head, South Carolina, Jun. 2002. [9 ] Sunghoon Kwon, Veljko Milanovic, and Luke P. Lee “A High Aspect Ratio 2D Gimbaled Microscanner with Large Static Rotation” Optical MEMS 2002, Aug [10 ] R. Conant, J. Nee, K. Lau, R. Muller, “A Flat High-frequency Scanning Micromirror” 2000 Solid-State Sensor and Actuator Workshop, Hilton Head, South Carolina, June 2000, pp. 6-9. [11 ] R. Conant, J. Nee, K. Lau, R. Muller, "Dynamic Deformation of Scanning Micromirrors," presented at IEEE/LEOS Optical MEMS 2000, Kauai, Hawaii, August 2000 [12 ] J. H. Lee, etc. “Fabrication of Silicon Optical Scanner for Laser Display” Optical MEMS 2000 [13 ] J. H. Lee, etc. “Design and fabrication of scanning mirror for laser display” Sensors and Actuators A 96 (2002) 223-230 [14 ] J. Kim, S. Park, D. Cho, “A Novel Electrostatic Vertical Actuator Fabrication in One Homogeneous Silicon Wafer Using Extend SBM Technology” Proceedings of Transducers 2001: 11th International Conference on Solid State Sensors and Actuator, Munich, Germany, pp.756-759, June 2001 Fig 4. The simulation result of scanning angle vs. applied voltage [15 ] C. C. Chu, “Applying High Aspect Ratio BLEST Process in Vertical Actuated Electrostatic Micro Scanning Mirror” Master’s thesis of National Tsin-Hua University [16 ] Selvakumar A and Najafi K “High density vertical comb array microactuators fabricated using a novel bulk/poly-silicon trench refill technology” Tech. Digest, Solid State Sensors and Actuators Workshop (1994) (Hilton Head, SC) pp 138–41 [17 ] Mitsuhiro Shikida, Kazuo Sato, Kenji Tokoro, Daisuke Uchikawa. “Differences in anisotropic etching properties of KOH and TMA” Sensors and Actuators 80 2000 179–188 [18 ] G. Kovacs, N. I. Maluf, K. E. Peterson, “Bulk micromachining of silicon”, Proceedings of the IEEE, Vol. 86, no. 8, August 1998 [19 ] E. D. Palik, H. F. Gray, and P. B. Klein, “A Raman study of etching silicon in aqueous KOH”, J. Electrochem. Soc., 130, 956 (1983) [20 ] E. D. Palik, V. M. Bermudez, and O. J. Glembocki, “Ellipsometric study of orientation-dependent etching of silicon in aqueous KOH”, J. Electrochem. Soc., 132, 871 (1985) [21 ] E. D. Palik, V. M. Bermudez, and O. J. Glembocki, “Ellipsometric study of the etch-stop mechanism in heavily doped silicon”, J. Electrochem. Soc., 132, 135 (1985) [22 ] H. Seidel, L. Csepregi, A. Heuberger,“Anisotropic Etching of Crystalline Silicon in Alkaline Solutions I”, J. Electrochem. Soc., Vol.137, No.11, Nov 1990, p.3612-3626. [23 ] H. Seidel, L. Csepregi, A. Heuberger,“Anisotropic Etching of Crystalline Silicon in Alkaline Solutions II”, J. Electrochem. Soc., Vol.137, No.11, Nov 1990 p.3626-3632. [24 ] E. Steinsland, M, Nese, G. Kittilsland, et al., “Boron Etch-stop in TMAH Solutions”, Sensors and Actuators A54, 728-732, 1996 [25 ] S-H Kim, S-H Lee, H-T Lim, “(110) Silicon Etching for High Aspect ratio comb structures” IEEE 6th Int. Conf. on ETFA, pp.248-252, 1997 [26 ] Jiun-Ren Lai, Ruey-Shing Huang, “Heavily Boron Doped Silicon Layer Etching and Stress for MEMS Application”, Master’s thesis of National Tsin-Hua University [27 ] Y. Uenishi, M. Tsugai, and M. Mehregany, “Micro-opto-mechanical devices fabricated by anisotropic etching of (110) silicon” J. of Micromechanics and Microengineering, vol. 5, pp. 305-312, Dec. 1995 [28 ] Eugene Hecht “Optics” fourth edition, published by Addison Wesley. [29 ] P. J. Brosens “Dynamic Mirror Distortions in Optical Scanning”, Applied optics vol.11(no. 12) 2987, Dec 1972 [30 ] E. Bassous and A. C. Lamberti, “Highly selective KOH-Based Etchant for boron-doped silicon structures” Microelectronic Engineering 9 (1989) 167-170 [31 ] M. Shikida, K. Sato, K. Tokoro and D. Uchikawa, “Difference in anisotropic etching properties of KOH and TMAH solutions” Sensors and Actuators 80 (2000) 179-188 [32 ] H. J. Quenzer et al., “Low-Temperature Silicon Wafer Bonding”, Sensors and Actuators A., 32, pp. 340-344, 1992id NH0925311071 sid 903746 cfn 0 / id NH0925311072 auc 彭琪鈺 tic 氣泡於圓柱容器中上升之數值模擬研究 adc 李雄略 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 58 kwc 表面張力 kwc 數值模擬 kwc 兩相流 kwc 氣泡 kwc 流場 kwc 壓力場 kwc 微流道 abc 由於氣泡生成的問題以及在微流道中流動的情形,在微機電系統中應用層面相當廣泛,深具發展潛力,且在微尺度的狀況下,用實驗觀察也相對比較困難,所以數值模擬方法越顯重要,若兩者能相互搭配,互相印證,則可對問題作更深入的了解。 tc 摘要 誌謝 目錄 表目錄 圖目錄 符號說明 第一章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.3目的 6 第二章 理論分析 7 2.1問題描述 7 2.2統御方程式 8 2.3邊界條件 10 第三章 數值方法 15 3.1統御方程式之差分 16 3.2流場與壓力場的簡化處理 19 3.3利用NAPPLE求解壓力場 20 3.4自由液面的位置與速度 23 3.5計算流程 25 第四章 結果與討論 26 4.1模擬參數 26 4.2流場與壓力場 28 4.3 Bo與氣泡上升時終端速度的關係 30 4.4 因次化結果 32 第五章 結論 34 參考文獻 35 附錄A 圓柱座標動量方程式差分 37 附錄B Extended weighting function scheme之推導 41 附錄C 壓力連結方程式於自由液面之修正 44 附表 47 附圖 48rf [1 ] Hnat, J. G., and Buckmaster J. D., “Spherical cap bubbles and skirt formation,” The Physics of Fluids, Vol.19, pp.182-194, 1976. [2 ] Hassan, Y. A., Blanchat, T. K., Seeley Jr, C. H., and Canaan, R. E., “Simultaneous velocity measurements of both components of a two-phase flow using particle image velocimetry,”International Journal of Multiphase Flow, Vol.18, pp.371-395, 1992. [3 ] Makoto, Y., Tomomasa, U., Noriyoshi, Y., and Mamoru, O., “Motion Measurement of Rising Bubble Trains in Cylindrical Pipe,”The Eleventh International Symposium on Transport Phenomena, No.71, pp.441-445, 1998. [4 ] Unverdi, S. O., and Tryggvason, G.,“A front-tracking method for viscous, incompressible, multi-fluid flows,” Journal of Computational Physics, Vol.100, pp.25-37, 1992. [5 ] Hirt, C. W., and Nichols, B. D.,“Volume of fluid (VOF) method for the dynamics of free boundaries,”Journal of Computational Physics, Vol.39, pp.201, 1981. [6 ] Tomiyama, A., un, I., Higaki, H., Makino, Y., and Sakaguchi, T.,“A three-dimensional particle tracking method for bubbly flow simulation,”Nuclear Engineering and Design, Vol.175, pp.77-86, 1997. [7 ] Ginzburg, I., and Wittum, G.,“Two-Phase Flow on Interface Refined Grids Modeled with VOF, Staggered Finite Volunes, and Spline Interpolants,”Journal of Computational Physics, Vol.166, pp.302-335, 2001. [8 ] Li, Y., Zhang, J., Fan, L. S.,“Discrete-phase simulation of single bubble rise behavior at elevated pressures in a bubble column,”Chemical Engineering Science, Vol.55, pp.4597-4609, 2000. [9 ] Sussman, M., Pukett, E. G.,“A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flow,”Journal of Computational Physics, Vol.162, pp.301-337, 2000. [10 ] Takada, N., Misawa, M., Tomiyama, A., Fujiwara,“Numerical simulation of two- and three-dimensional two-phase fluid motion by lattice Boltzmann method,” Computer Physics Communications, Vol.129, pp.233-246, 2000. [11 ] Lee, S. L., and Sheu, S.R.,“ A new numerical formulation for incompressible viscous free surface flow without smearing the free surface,”International Journal of Heat and Mass Transfer, Vol.44, pp.1831-1848, 2001. [12 ] Sarpkaya, T., “Vorticity, free surface and surfactants,“ Annual Review of Fluid Mechanics, Vol.28, pp.83-128, 1996. [13 ] Tsai, W. T., and Yue, D. K. P., “Computation of nonlinear free-surface flows,” Annual Review of Fluid Mechanics, Vol.28, pp.249-278, 1996. [14 ] Lee, S. L.,“ Weighting function scheme and its application on multidimensional conservation,”International Journal of Heat and Mass Transfer, Vol.32, pp.2065-2073, 1989. [15 ] Lee, S. L., and Tzong, R. Y.,“ An enthalpy formulation for phase change problems with a large thermal diffusivity jump across the interface,”International Journal of Heat and Mass Transfer, Vol.34, pp.1491-1502, 1991. [16 ] Lee,S. L., and Tzong, R. Y.,“Artificial pressure for pressure-linked equation,”International Journal of Heat and Mass Transfer, Vol.35, pp.2705-2716, 1992. [17 ] Lee, S. L., “A strongly-implicit solver for two-dimensional elliptic differential equations,”Numerical Heat Transfer, Vol.16, pp.161-178, 1989. [18 ] Lancaster, P., and , K., Curve and Surface Fitting, pp.101-111, 1986. [19 ] Richard, L. Burden, and J., Douglas, Faires, Numerical analysis, 7th, pp.141-152, 2001.id NH0925311072 sid 913727 cfn 0 / id NH0925311073 auc 吳豐光 tic 衛星訊號定位平台系統之非線性動態控制 adc 葉廷仁 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 75 kwc 蝸輪蝸桿 kwc 衛星訊號接收 kwc 穩定平台 abc 衛星通訊提供了高品質與高頻寬的多媒體服務,為了得到較好的傳輸品質,衛星天線需能精確的指向同步衛星.然而對於移動中之載具如汽車或船隻,由於運動方向的改變與本地經緯度的變化,而造成天線所對準之方位角與仰角需修正,故吾人希望能將車用減震平台配合衛星天線所組成的系統用在路用載具上,其能在各種路況下精確地對準衛星以提供不中斷的多媒體服務.在減震平台系統上吾人使用由蝸輪蝸桿與正齒輪所構成的車用減震系統,再加上步進馬達帶動衛星天線,並以衛星訊號得到之強度回授至控制器,最後設計控制器使之在載具振動的情況下能對準指定之同步衛星. tc 1. 序論 8 1.1 研究動機 8 1.2 文獻回顧 9 1.3 本文架構 9 2. 系統描述 11 2.1 系統規格 11 2.2 機構系統 12 2.3 控制系統架構 15 3. 蝸輪蝸桿系統 19 3.1 蝸輪蝸桿 19 3.2 靜態分析 23 3.3 動態分析 28 3.4 穩定平台系統 39 3.5 開迴路模擬實驗與結果 40 4. 控制器設計 50 4.1 PID控制器 50 4.2 PID控制器與前饋控制 54 4.3 滑動控制器 56 5. 衛星訊號接收 66 5.1 衛星通訊簡介 66 5.2 衛星訊號接收 67 6. 結論 74rf [1 ] 王唯任,“液壓雷達穩定平台設計、分析、控制”,國立清華 大學動力機械工程研究所碩士論文,2001. [2 ] 吳唯碩,“電動式穩定平台系統之設計與控制”,國立清華 大學動力機械工程研究所碩士論文,2002. [3 ] Ting-Jen Yeh and Wei-Chung Wu, “Sliding Control of Magnetic Bearing System” ,2001 [4 ] Joseph Edward Shigley and Charles R. Mischke “ Mechanical Engineering Design”,1995. [5 ] Buckingham Earle,“Manual of Gear Design”,1972. [6 ] Lynwander Peter and M. Dekker,“Gear Drive Systems”,1983. [7 ] Seireg Ali,“Friction and Lubrication in Mechanical Design”,1988 [8 ] Donald Bastow and Geoffrey Howard,“ Car Suspension and Handling”,Third Edition,1987. [9 ] 交通技術標準規範公路類公路工程部,“公路路線設計規範”,1986. [10 ] 廖榮廷,“DC伺服馬達選用要點與計算例”,機械月刊第九卷 第三期. [11 ] J.J.E Slotine and W. Li,“Applied Nonlinear Control”, Prentic-Hall,Inc.,Englewood Cliffs,NJ,USA,1991.id NH0925311073 sid 913750 cfn 0 / id NH0925311074 auc 韋靖 tic 線黏塑性材料於平面應變下所含雙孔洞演化之潛變分析 adc 蔣長榮 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 102 kwc 潛變 kwc 線黏塑性 abc 黏塑性行為是種與時間相關的變形行為,若對材料施以一固定應力,除了剛開始的初始應變,材料會隨著時間的增加持續的變形,直到破壞,這個現象稱為潛變。在材料為不可壓縮且為線黏塑性的條件下,線彈性位移與潛變的速率有一比例關係,因此可以可將線彈性解的位移類比為潛變問題的中對應的潛變速率,這種處理方法稱為彈性類比。本文討論内部含兩個圓孔的線黏塑性平板,在單軸均佈拉伸應力及單軸均佈壓縮應力下的潛變行為。調整圓孔間距離及其與負載方向之角度,並對其應力集中之現象及累積應變加以分析。在相同的角度θ之下,不同的L/r值之下,孔洞週圍的最大累積應變及應力集中因子的變化具有類似的趨勢;但當L/r值愈小時,其變化將會愈早發生。 rf 1. Findley W. N., Creep and Relaxation of Nonlinear Viscoelastic Materials, North-Holland (1976), pp.4-28. 2. Thurston, R.H., Materials of Construction, John Wiley, New York (1895), pp.11-28. 3. Andrade,E.N.,”The Viscous Flow in Metals and Allied Phenomena”, Proceedingsof Royal Society,series A,Vol. 84 (1910),pp.1-20. 4. Ludwik, P., Elemente der Technologischen Mechanik, Springer, Berlin (1909), pp.16-25. 5. Baileky, R. W., “Creep of Steel Under Simple and Compound Stresses and The Use of High Initial Temperature in Steam Power Plants”, Transactions, Tokyo Sectional Meeting of the World Power Conference, Tokyo (1929), pp.1089. 6. Norton, F. H., The Creep of Steel at High Temperature, McGraw Hill, New York (1929), pp.11-50. 7. Soderberg, C. R.,“The Interpretation of Creep Tests for Machine Design”, Transaction of ASME, Vol.58 (1936),pp.733-740. 8. Nadai, A., “ON the Creep of Solids at Elevated Temperatures”, Journal of Applied Physics, Vol.8 (1937), pp.418. 9. Odqvist, F. K. G. , “Theory of Creep Under Combined Stresses With Application to High Temperature Machinery”, Royal Swedish Academy of Eng. Research, Proceedings, Vol. 141 (1936),pp. 31. 10. Evans, R. W. and Wilshire, B., Creep of metals and alloys, The Institute of Metals (1985), pp.1-21. 11. Bressers J., Creep and Fatigue in High Temperature Alloys, Applied Science (1976), pp.4-56. 12. Kraus H., Creep Analysis, Wiley (1980), pp.1-40. 13. Donald Peckner, Handbook of stainless steels, McGraw-Hill(1977) ,pp21-3. 14. 謝襦毅,“ 線黏塑性材料於平面應變下孔洞演化之潛變分析”,碩士論文,國立清華大學(2001). 15. 陳達夫,“線黏塑性材料於平面應變下所含週期性孔洞演化之潛變分析”,碩士論文,國立清華大學(2002). 16. 曾榮堃,”機械燒結製程之簡化電腦數值模擬”,碩士論文,國立清華大學(2003).id NH0925311074 sid 913781 cfn 0 / id NH0925311075 auc 徐宗本 tic 固定磨粒拋光墊磨耗與修整之研究 adc 左培倫 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 78 kwc 固定磨粒 kwc 拋光墊 kwc 修整 kwc 鑽石修整器 abc 化學機械拋光,是目前半導體製程中達全域平坦化最有效的方式,同時也是許多製程中不可缺少的步驟。而拋光墊為化學機械拋光中一項主要耗材,如能延長拋光墊的壽命,將可降低成本,提高製程穩定性。 tc 目錄 摘要 …………………………………………………………………..Ⅰ 誌謝 …………………………………………………………………..Ⅲ 目錄 ……………………………………………………………………Ⅳ 圖表目錄 ………………………………………………………………Ⅵ 第一章 簡介 1.1 研究背景…………………………………………………………1 1.2 磨粒加工…………………………………………………………4 1.3 游離磨粒拋光墊…………………………………………………5 1.4 固定磨粒拋光墊…………………………………………………8 第二章 研究動機與目標 2.1 研究動機…………………………………………………………12 2.2 研究目標…………………………………………………………14 第三章 文獻回顧 3.1 拋光墊特性………………………………………………………15 3.2 固定磨粒拋光墊…………………………………………………16 第四章 實驗設備與規劃 4.1 實驗規劃…………………………………………………………20 4.2 實驗設備…………………………………………………………22 4.3 實驗材料 4.3.1 固定磨粒拋光墊……………………………………………..29 4.3.2 鑽石修整器…………………………………………………..32 4.3.3 修整器的製作………………………………………………..33 4.4 實驗方法 4.4.1 拋光墊使用試驗……………………………………………..39 4.4.2 修整實驗基本架構…………………………………………..40 4.4.3 磨粒層高度量測……………………………………………..41 4.4.4 磨粒層表面形貌量測………………………………………..43 4.4.5 修整率計算…………………………………………………..45 第五章 實驗結果 5.1 未使用前拋光墊觀察……………………………………………48 5.2 拋光墊磨耗實驗…………………………………………………50 5.3 拋光墊修整實驗…………………………………………………53 第六章 結果分析與討論 6.1 實驗結果分析 6.1.1 磨耗實驗……………………………………………………..59 6.1.2 修整實驗……………………………………………………..60 6.1.3 分析實驗結果重點整理……………………………………..63 6.2 修整率模式之建構 6.2.1 延性材料的研磨機制………………………………………..64 6.2.2 拋光墊的修整模式…………………………………………..67 6.3 修整率模式與實驗結果之比較…………………………………70 第七章 未來展望…………………………………………………….73 附錄 參考文獻rf 參考資料 [1 ] 左培倫,黃志龍,〝化學機械拋光技術發展趨勢〞,機械工業雜誌,第206期,85年5月,pp.131-145。 [2 ] 戴寶通主編,〝半導體工業材料〞,電子月刊第二卷第十二期,1996年12月,pp.44~54. [3 ] 蔡明蒔,〝化學機械研磨機〞,電子月刊第四卷第九期,1998年9月,pp.114~118. [4 ] J.M. Steigerwald, S.P. Murarka, R.J. Gutmann, 〝Chemical Mechanical Planarization of Microelectronic Meterials〞, John Wiley and Sons, Inc., NY., 37, 1997. [5 ] 土肥俊郎等著,王建榮,林必窈,林慶福等編譯,〝半導體平坦化CMP技術〞,全華科技圖書股份有限公司,89年6月再版。 [6 ] J.J. Gagliardi, 〝An introduction to fixed abrasive CMP〞, Semiconductor CMP group,3M abrasive system division,1999. [7 ] J.J. Gagliardi, 〝Total Planarization of the MIT961 Mask Set Wafer Coated with HDP Oxide〞CMP-MIC Conference,March 2000. [8 ] 蔡明蒔,〝淺溝渠元件隔離技術現況與挑戰〞,奈米通訊第十卷第二期。 [9 ] 宋建民,〝超硬材料〞,全華圖書初版,2000,pp8.2-16. [10 ] J. Grillaert, Marc Meuris, Nancy Heylen, Katia Devriendt, Evi Vrancken, 〝Modeling step height reduction and local removable rates based on pad substrate interactions〞, CMP-MIC conference, 1998, pp.79. [11 ] J. F. Wang, A. R. Sethuraman and L. M. Cook,〝Process/Pad Effect on Electrical and Physical Properties of CMP Copper Damascene Interconnects〞, Rodel, Inc., 2000. [12 ] Sidney Huey, Steven T. Mear, Yuchun Wang, 〝Technological breakthrough in pad life improvement and its impact on CMP CoC〞, IEEE SEMI Advanced Semiconductor Manufacturing Conference, 1999,pp.54-58. [13 ] V.H. Nguyen, A.J. Hof, H.van Kranenburg, P.H. Woerlee, F.Weimar, 〝Copper chemical mechanical polishing using a slurry-free technique〞, IEEE,2001. [14 ] Todd Buley, John Gagliardi, Eric Funkenbusch, 〝Study of STI polishing defects using 3M fixed abrasive technology〞, CMP-MIC conference, 2001. [15 ] 邱丞偉,〝固定磨粒拋光墊修整技術之研究〞,清華大學動力機械工程系碩士論文,2002. [16 ] John Gagliardi, 〝Fixed abrasive Oxide CMP:A 2002 Update〞, 3M CAMP`s seventh international symposium on chemical-mechanical polishing, 2002. [17 ] James C. Sung, Ming-Chi Kan, Michael Sung, Jow-Lay Huang, Emily Sung, Chi-Pong Chen and Kai-Hong Hsu, 〝Amorphous Diamond Electron Emission Capabilities:Implications to Thermal Generators and Heat Spreaders〞, Kinik Company,Taipei ROC,2002. [18 ] 臼井英治著,廉元國等譯,〝金屬加工力學〞,國防工業出版社,1986年1月,pp.181-183。 [19 ] 莊賀喬,〝非球面鏡片形狀誤差修正之研究〞,清華大學動力機械工程系碩士論文,2001. [20 ] 何碩洋,〝化學機械拋光中拋光墊修整參數影響之研究〞,清華大學動力機械工程系碩士論文,2001.id NH0925311075 sid 913799 cfn 0 / id NH0925311076 auc 王嘉德 tic 壓電音叉式原子力顯微鏡之模型建構與控制 adc 葉廷仁 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 83 kwc 原子力顯微鏡 kwc 掃描探針顯微鏡 kwc 懸臂樑 kwc 壓電致動器 kwc 壓電雙晶片 kwc 壓電音叉 kwc 壓電效應 abc 原子力顯微鏡(Atomic Force Microscopy,AFM)為奈米時代的一項重要量測工具。其主要的操作機制是利用光槓桿方式來量測一微小探針與樣品之間各種作用力的變化,藉以獲得高解析度的表面形貌圖。雖然此種光槓桿感測方式的靈敏度高,但是卻有調整與校正程序繁瑣的缺點,因此本研究主要的目的是利用可以同時執行致動與感測功能的壓電音叉式探針來取代光槓桿的感測方法,建立一簡便的原子力顯微鏡。在本論文中,吾人利用對壓電音叉式探針的模型建構,來探討音叉式探針的操作動態;並利用系統等效彈簧係數的改變來探討原子力的影響,最後設計具有強健性的控制器取代需要參數調整的PI控制器。 rf 1.G. Binnig, C. F. Quate and Ch. Gerber, ‘Atomic Force Microscope’, Phys. Rev. Lett 56 (1986), 930. 2.Paul K. Hansma and Jerry Tersoff, ‘Scanning tunneling microscopy’, J. Appl. Phys. 61(2) (1987), R1. 3.Y. Martin, C.C. Williams and H. K. Wickramasinghe, ‘Atomic force microscope-force mapping and profiling on a sub 100- scale’, J. Appl. Phys. 61(10) (1987), 4723. 4.S. R. Manalis, S. C. Minne and C. F. Quate, ‘Atomic force microscopy for high speed imaging using cantilevers with an integrated actuator and sensor’, Appl. Phys. Lett. 68(6) (1996), 871. 5.T. Itoh and T. Suga, ‘Development of a force sensor for atomic force microscopy using piezoelectric thin films’, Nanotechnology 4 (1993), 218. 6.Khaled Karrai and Robert D. Grober, ‘Piezoelectric tip-sample distance control for near field optical microscopes’, Appl. Phys. Lett. 66 (1995), 1842. 7.V.Blank, M.Popov, N.Lvova, K.Gogolinsky and V.Reshetov, ‘Nano-sclerometry measurements of superhard materials and diamond hardness using scanning force microscope with the ultrahard fullerite C60 tip’, J. Mater. Res., 12 (1997), 3109. 8.Q. Zhong, D. Inniss, K. Kjoller and V.B. Elings, ‘Fractured polymer / silica fiber surface studied by tapping mode atomic force microscopy’, Surface Science Letters 290 (1993), L688. 9.Ricardo Garcia and Ruben Perez, ‘Dynamic atomic force microscopy methods’, Surface Science Reports 47 (2002), 197. 10.S.N. Magonov, V. Elings, and M.-H Whangbo, ‘Phase imaging and stiffness in tapping mode atomic force microscopy’, Surface Science 375 (1997), L385. 11.http://www.nanosensors.com. 12.Dror Sarid, ‘Scanning force microscopy : with applications to electric, magnetic,and atomic forces’, Oxford University Press, 1994. 13.Gibson, Ronald F. ‘Principles of composite material mechanics’, McGraw-Hill, 1994 14.Ikeda, Takuro, ‘Fundamentals of piezoelectricity’, Oxford University Press, 1990. 15.C. K. Lee, ‘Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I : Governing equations and reciprocal relationships’, J. Acoust. Soc. Am. 87 (1990), 1144. 16.Hibbeler, R. C., ‘Mechanics of materials’, Prentice Hall, 1997. 17.Singiresu S., ‘Mechanical vibrations’, Addison-Wesley, 1990. 18.Jan G. Smits and Arthur Ballato, ‘Dynamic Admittance Matrix of Piezoelectirc Cantilever Bimorphs’, Journal of microelectro- mechanical systems, 3(3) (1994), 105. 19.Meirovitch, Leonard, ‘Analytical methods in vibrations’, Macmillan, 1967. 20.Ricardo Garcia and Alvaro San Paulo, ‘Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy’, Physical Review B, 60(7) (1999), 4961. 21.T. R. Albrecht, P. Grutter, D. Horne, and D. Rugar, ‘Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity’, J. Appl. Phys. 69(2) (1991), 668. 22.A.G.T. Ruiter, K.O. van der Werf, J.A. Veerman, M.F. Garcia-Parajo, W.H.J. Rensen and N.F. van Hulst, ‘Tuning fork shear-force feedback’, Ultramicroscopy 71 (1998), 149. 23.Charles Kitchin and Lew Counts, ‘RMS TO DC CONVERSION APPLICATION GUIDE’, Analog Devices, 1986. 24.Zhou, Kemin, ’Robust and optimal control’, Prentice Hall, 1996. 25.Michael Athans, ‘A TUTORIAL ON THE LQG/LTR METHOD’, Proc. American Control Conference, Seattle, WA, June 1986. 26.Ting-Jen Yeh, ‘Modeling, Analysis and Control of Magnetically Levitated Rotating Machines.’ Ph.D. dissertation, Massachusetts Institute of Technology (1996). 27.Hal Edwards, Larry Taylor, Walter Duncan and Allan J. Melmed, ‘Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor’, J. Appl. Phys. 82(3) (1997), 980.id NH0925311076 sid 913746 cfn 0 / id NH0925311077 auc 陳凱威 tic 安裝誤差對高速主軸動態所造成的影響及創新之主動式線上平衡機構概念設計 adc 宋震國 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 79 kwc 轉子系統 kwc 安裝誤差 kwc 滾珠軸承 kwc 主動式平衡 abc 本文主要針對安裝誤差對於轉子系統的影響做一探討,此外並提出一創新之主動式平衡器機構,內容主要可分為三大部分。首先是以Bernoulli-Euler beam theory為理論基礎建立轉子系統之模型。在建立轉子系統模型中,針對不同的支撐條件,探討將軸承視為剛性支撐與線彈性支撐時轉子系統動態上的差異。並以理論發現在軸承剛性假設為線性彈簧時,安裝誤差對於轉子的動態影響為一不隨時間變化之外加的靜變形,也因此間接證明安裝誤差對於轉子動態的影響在於支撐剛性的非線性所引起。以上結果証明安裝誤差對於轉子的動態行為與非線性的支撐剛性有密切的關係以驗證非線性軸承模型建立的必要性。另外亦從理論的推導過程中發現,連續轉子在線彈性支撐下之渦動頻率,除了和轉子工作轉速有關外,亦與沿著轉子本身的位置有關,即代表不同部分的轉子會有不同的渦動頻率。接著是建立斜角滾珠軸承模型並推導其剛性矩陣。利用由De Mul所提出的方法,以Hertz contact theory描述斜角接觸滾珠軸承內部各滾珠的接觸剛性,進而得到滾珠軸承在各方向上的剛性矩陣,作為爾後分析搭載滾珠軸承之轉子系統的輸入。最後綜合整理了目前市面上各種主動式線上平衡機構並進而提出了一利用超音波馬達的特性之主動式線上平衡機構的驅動設計概念。 tc ABSTRACT…………………………………………………………………… I 摘要………………………………………………………………………… III 誌謝………………………………………………………………………… IV 目錄………………………………………………………………………… V 圖目錄……………………………………………………………………… VII 表目錄……………………………………………………………………… XI 第一章 緒論……………………………………………………………… 1 1-1研究動機…………………………………………………… 1 1-2 文獻回顧………………………………………………… 2 1-2-1 軸承模型建立……………………………………… 2 1-2-2 主動式線上平衡理論……………………………… 3 1-3 研究內容…………………………………………………… 4 第二章 線性轉子-軸承系統對於安裝誤差的動態行為……………… 6 2-1轉子系統模型建構………………………………………… 6 2-2轉子-軸承系統模型建構…………………………………… 10 2-3考慮安裝誤差時之轉子-軸承系統模型建構……………… 13 2-4彈性支撐對轉子系統的動態影響………………………… 17 第三章 軸承剛性與變形公式推導……………………………………… 27 3-1 軸承重要幾何參數……………………………………… 27 3-2 系統架構………………………………………………… 30 3-3 滾珠接觸剛性推導……………………………………… 32 3-4 Hertz 接觸理論………………………………………… 38 3-5 軸承剛性推導…………………………………………… 41 第四章 平衡方法介紹與主動式平衡系統之概念設計………………… 48 4-1 不平衡量的定義………………………………………… 48 4-1-1靜不平衡…………………………………………… 48 4-1-2偶不平衡…………………………………………… 49 4-1-3動不平衡…………………………………………… 50 4-1-4不平衡量的表示方法……………………………… 50 4-2 動平衡校正的方法 ……………………………………… 51 4-3 主動式平衡系統之概念與系統架構…………………… 54 4-3-1 主動式平衡系統之系統架構…………………… 54 4-3-2 平衡環之作動原理……………………………… 59 4-3-3 平衡環驅動機構之種類與優缺點比較………… 60 4-4 超音波馬達應用於主動式平衡系統之概念設計……… 64 4-4-1 超音波馬達之作動原理………………………… 64 4-4-2 超音波馬達於平衡系統中之配置……………… 68 4-5 如何決定平衡器所需的平衡能力……………………… 69 第五章 結論與未來工作………………………………………………… 74 參考文獻…………………………………………………………………… 76rf 1.http://www.mmsonline.com/ 2.http://www.gmn.de/ 3.Jones, A. B.,”The Mathmatical Theory of Rolling Element Bearings,” Mechanical Design and Systems Handbook, Section 13, McGraw-Hill, 1985, Rothbarth, M. A.,ed. 4.Jones, A. B., “ A General Theory for Elastically Constrained Ball and Radial Roller Bearings under Arbitrary Load and Speed Conditions,” ASME Journal of Basic Engineering, June 1960, pp.309-320 5.Andreason, S., “Load Distribution in a Taper Roller Bearing Arrangement Considering Misalignment,” Journal of Tribology, June 1973, pp.84-93. 6.Liu, J. Y, “Analysis of Tapered Roller Bearings Considering High Speed and Combined Loading,” ASME Journal of Lubrication Technology”, Oct.1976, pp564-574. 7.De Mul, J. M., Vree, J. M., Maas. D.A. “Equilibrium and Associated Load Distribution in Ball and Roller Bearings Loaded in Five Degrees of Freedom While neglecting Friction-Part 1: General Theory and Application to Ball Bearings” ASME Journal of Tribology, Vol.111, Jan.1989, pp.143-148. 8.Bishop, R. E. D., “On the Possibility of Balancing Rotating Flexible Shafts” Journal Mechanical Engineering Science, Vol.24, No.4, 1982, pp.215-220. 9.Van De Vegte, J., “Continuous Automatic Balancing of Rotating Systems”, Journal of Mechanical Engineering Science, Vol.6, No.3, pp.264-269. 10.Gosiewski, Z., “Automatic Balancing of Flexible Rotors, Part I: Theoretical Background” Journal of Sound and Vibration, Vol.100, No,4, pp.551-567 11.Dyer, S. W., Ni, J.,“ Adaptive Influence Control of Single-Plane Active Balancing Systems for Rotating Machinery” Journal of Manufacturing Science and Engineering., Vol. 123, May.2001, pp.291-298 12.Jeffcott, H. H., “The Lateral Vibration of Loaded Shafts in the Neighborhood of a Whirling Speed, Philosophical Magzine,304-314,1919 13.Hertz, H., “Über die Berührung fester, elastischer Körper.” J. für die reine und angewandte Mathematik, 1881, No.92, 156-171. 14.Brandlein, J.,“Ball and Roller Bearings : Theory, Design, and Application”pp.99-108, 1985,John Wiley 15.Harris, Tedric A.,“Rolling Bearing Analysis”John Wiley,1991 16.Wowk, Victor.,“Machinery Vibration: Balancing”McGraw-Hill,1995 17.Neale, Michael.,“Couplings and Shaft Alignment”, 1991, Mechanical Engineering Publications 18.Piotrowski, John,“Shaft alignment handbook”, 1995 ,M. Dekker 19.ISO 1940-1: Mechanical Vibration - Balance Quality Requirements of Rigid Rotors - Determination of Permissible Residual Unbalance. 20.www.irdbalancing.com 21.Ali M. Al-Shurafa.,“ Determination of Balancing Quality Limits”, Saudi Electricity Company- Ghazlan Power Plant 22.Toshiiku Sashida ,Takashi Kenjo.,“An introduction to Ultrasonic Motors”, 1993,Oxford University Press 23.Ueha, S. & Tomikawa, Y. et al ed.,“Ultrasonic Motors: Theory and Applications”, 1993,Oxford University Press 24.Uchino, Kenji .,“Piezoelectric Actuators and Ultrasonic Motors”, 1997, Kluwer Academic Press. 25.Stephen W. Dyer, Zhenhu Zhuang, Jun Ni, Jianjun Shi.,“Auto-Tuning Adaptive Supervisory Control of Single-Plane Active Balancing Systems’’, 2000, Society of Manufacturing Engineers 26.David P.Fleming, J.V.Poplawski.,’’Transient Vibration Prediction for Rotors on Ball Bearing Using Load-Dependent Non-Linear Bearing Stiffness’’, 2002,NASA Glenn Research Center 27.David P.Fleming, J.V.Poplawski., “Unbalance Response Prediction for Rotors on Ball Bearings Using Speed and Load-Dependent Non-Linear Bearing Stiffness’’, 2003,NASA Glenn Research Center 28.Toshio Yamamoto, Yukio Ishida., “ Linear and Nonlinear Rotordynamics :a Modern Treatment With Applications’’, Wiley series in nonlinear science 29. Lee, Y.-S., Lee, C.-W. “ Modelling and vibration analysis of misaligned rotor-ball bearing systems’’, Journal of Sound and Vibration, v 224, n 1, Jul 1, 1999, p 17-32 30.Deng, C.-S., Huang, J.-C., Chin, J.-H. “Effects of support misalignments in deep-hole drill shafts on hole straightness’’, International Journal of Machine Tools and Manufacture, v 41, n 8, June, 2001, p 1165-1188id NH0925311077 sid 913791 cfn 0 / id NH0925311078 auc 羅堂宴 tic 仿龍蝦觸鬚操控陣列之控制架構與實現 adc 劉承賢 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 英文 pg 67 kwc 微機電 kwc 陣列 kwc 即時控制 abc 摘要 tc Table of Contents………………………………………………………………………I List of Figures………………………………………………………………………..III List of Tables…………………………………………………………………………VI 1. Introduction…………………………………………………………………………1 1.1 Background and Motivations……………………………………………………...1 1.2 Literature Survey…………………………………………………………………..2 1.3 Thesis Outline……………………………………………………………………...8 2. Driving Principle and System Structure of Biology Object Manipulation Array…..9 2.1 Manipulation of Biology Objects………………………………………………….9 2.1.1 Learn form Nature – Lobster Sniffing…………………………………………...9 2.1.2 Operation of Actuators…………………………………………………………11 2.2 Driving Principles of Micro Actuator Fingers……………………………………13 2.2.1 Driving Voltage………………………………………………………………...13 2.2.2 Dynamic Model………………………………………………………………...15 2.2.3 Operational signals……………………………………………………………..20 2.3 System Structure………………………………………………………………….22 2.3.1 Hardware Selection and Control Implementation……………………………...22 2.3.2 Matlab/xPC Control Sturcture………………………………………………….23 3. Circuit Design and Simulation…………………………………………………….25 3.1 Driving Circuit of Actuator Fingers……………………………………………...25 3.2 Control Circuit of Transport Path………………………………………………...27 3.3 The Feedback Circuit for Position Simulation…………………………………...34 4. Software Implementation and Control Architecture………………………………38 4.1 Optimal Transport Path…………………………………………………………..38 4.2 Scheme of Real-time Control for LAMA Driving……………………………….44 4.2.1 Structure of Real-time Control Module………………………………………..44 4.2.2 Real-time Driving Module……………………………………………………..45 4.2.3 Orientation Module for Driving Signals……………………………………….49 4.2.4 Manual/Automatic Switching Module…………………………………………50 4.2.5 Coding Module for Hardware Driving…………………………………………51 4.2.6 Scanning Feedback Control Module…………………………………………...53 5. Experimental setup and Simulation Results……………………………………….56 5.1 Experimental setup……………………………………………………………….56 5.2 Simulation Results……………………………………………………………….58 6. Conclusions………………………………………………………………………..63 6.1 Achievements…………………………………………………………………….63 6.2 Suggestions for Future Work……………………………………………………..64 References……………………………………………………………………………65 Biography…………………………………………………………………………….67rf [1 ]M. W. Berns, “Laser Scissors and Tweezers,” Sci. Am., April 1998. [2 ]A. Ashkin and J. M. Dziedzic, “Optical Trapping and Manipulation of Viruses and Bacteria,” Science, vol. 235, pp. 1517-1520, March 1987. [3 ]K. O. Greulich, “Micromanipulation by Light in Biology and Medicine,” Birkhauser Verlat, Basel, pp. 39-87, 1999. [4 ]C. -J. Kim, A. P. Pisano, R. S. Muller, M. G.. Lim, “Polysilicon Microgripper,” Tech. Dig., IEEE Solid-State Sensor and Actuator Workshop, pp. 48-51, June 1990. [5 ]C. –J. Kim, A. P. Pisano, R. S. Muller, “Silicon-Processed Overhanging Microgripper,” J. MEMS, vol. 1, no. 3, pp. 31-36, March 1992. [6 ]A. P. Lee, D. R. Ciarlo, P. A. Krulevitch, S. Lehew, J. Trevino, M. A. Northrup, “A Practical Microgripper by Fine Alignment, Eutectic Bonding and SMA Actuation,” Tech. Dig., Transducers ’95, pp. 368-371, June 1995. [7 ]J. Ok, M. Chu, C. -J. Kim, “Pneumatically Driven Microcage For Micro-Objects in Biological Liquid,” IEEE Micro Electro Mechanical Systems Workshop, pp. 459-463, February. 1999. [8 ]K.F. Böhringer, 1997, “Programmable Force Fields for Distributed Manipulation, and Their Implementation Using Micro-Fabricated Actuator Arrays,” Ph.D. thesis, Cornell University. [9 ]Yoshio MITA, Andreas KAISER, Bruno Stefanelli, Patrick GARDA, Maurice MILGRAM, Hiroyuki FUJITA, “A Distributed Microactuator Conveyance System With Integrated Controller,” IEEE SMC '99 Conference, vol.1, pp.18-21, October. 1999. [10 ]M. A. R. Kohl, J. R. Koseff, J. P. Crimaldi, M. G. McCay, T. Cooper, M. B. Wiley, P. A. Moore, “Lobster Sniffing: Antennule Design and Hydrodynamic Filtering of Information in an Odor Plume,” Science, vol. 294, pp. 1948-1951., November 2001. [11 ]http://iserver.saddleback.edu/faculty/janderson/lobster.jpg [12 ]J. Goldman, Duke University, Oxford University Express. [13 ]張傑,”仿龍蝦觸鬚之生物體操控裝置,”國立清華大學動力機械工程學系碩士論文,2003. [14 ]M. Elwenspoek, M. Weustink and R. Legtenberg, “Static and Dymamic Properties of Active Joints,”TRANSDUCER,pp412-415,1995. [15 ]李佳達,”生物體操控裝置之設計”,計畫編號NSC 92-2815-C-007-034-E,國科會專題研究報告,02/2004。 [16 ]N. Sherwani, Algorithms for VLSI Physical Design Automation, Second Edition Kluwer, 1995.id NH0925311078 sid 913738 cfn 0 / id NH0925311079 auc 廖子淳 tic 利用表面電漿波(SPR)原理探測生物細胞 adc 葉哲良 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 55 kwc 表面電漿共振 kwc 細胞 abc 表面電漿共振(Surface Plasmon Resonance, SPR)現象,被發現已經有近一百年的歷史,而近幾年來,隨著生物醫學的發展,這項技述更是被廣泛的應用在生物檢測的範圍內,由於它對於不同折射率高靈敏度的特性,因此,常常被用來檢測生物體產生化學反應與否,目前,已有檢測抗體和抗原的商用儀器被研發出來。本文則是利用表面電漿共振的性質,期待利用它對折射率的高靈敏度特性,來鑑別不同種類的細胞,已達到快速的檢驗同在一種溶液中不同細胞種類的目的。 tc 目錄 摘要……………………………………………………………………II 致謝 …………………………………………………………………III 目錄……………………………………………………………………IV 圖目錄…………………………………………………………………VI 表目錄…………………………………………………………………XI 第一章 前言 …………………………………………………………1 1.1 研究動機…………………………………………………………1 1.2 研究目的…………………………………………………………2 1.3 文獻回顧…………………………………………………………3 1.4 本文結構…………………………………………………………5 第二章 實驗理論和架構 …………………………………………6 2.1 基本理論 ………………………………………………………6 2.1.1 表面電漿子 …………………………………………………6 2.1.2 ATR(Attenuated Total Reflection)組態 ………………9 2.1.3 三層模式(Three-Layer Model) …………………………11 2.2 實驗系統架設 …………………………………………………12 2.2.1 系統架設流程………………………………………………12 2.3 實驗模擬和分析 ………………………………………………15 2.3.1 金屬膜選擇…………………………………………………15 2.3.2稜鏡選擇 ……………………………………………………17 2.3.3 45度稜鏡分析………………………………………………17 2.3.4 60度稜鏡分析………………………………………………18 2.3.5 BK7稜鏡實驗模擬和分析 …………………………………19 2.3.6 角度分析……………………………………………………23 2.3.7 SF18稜鏡實驗模擬和分析…………………………………24 2.3.8多層結構折射分析 …………………………………………28 2.3.9 吸收頻譜分析 ………………………………………………29 2.3.10 誤差分析 …………………………………………………30 2.3.11 分析總結 …………………………………………………32 第三章 成果和討論 ……………………………………………34 3.1 量測成果 ………………………………………………………34 3.1.0 量測方式 …………………………………………………34 3.1.1 BK7玻片金膜厚度 …………………………………………34 3.1.2 BK7稜鏡量測 ……………………………………………37 3.1.3 SF11玻片金膜厚度 ………………………………………39 3.1.4 SF18稜鏡量測 ……………………………………………41 3.2 實驗結果分析與討論……………………………………………46 3.2.1 金膜厚度 …………………………………………………46 3.2.2 量測結果分析 ……………………………………………48 3.3 結論 ………………………………………………………………51 參考文獻 ………………………………………………………………53 圖目錄 圖1.1 細菌 ……………………………………………………………3 圖1.2 ATR組態 …………………………………………………………4 圖1.3 光波導形式………………………………………………………4 圖1.4 光纖形式…………………………………………………………5 圖2.1光入射於一平面…………………………………………………6 圖2.2 ATR組態之一:Otto形式………………………………………10 圖2.3 ATR組態之一:Kretschmann-Raether形式…………………10 圖2.4 系統架構示意圖 ………………………………………………13 圖2.5 稜鏡-樣本的詳細結構…………………………………………13 圖2.6實驗設備 ………………………………………………………14 圖2.7稜鏡和金膜 ……………………………………………………15 圖2.8 反射鏡 …………………………………………………………15 圖2.9 各種金屬膜的模擬圖 …………………………………………16 圖2.10 金膜厚度模擬圖………………………………………………16 圖2.11 BK7 45度稜鏡示意圖I………………………………………17 圖2.12 BK7 45度稜鏡示意圖II ……………………………………17 圖2.13 BK7 60度稜鏡示意圖I ……………………………………18 圖2.14 BK7 60度稜鏡示意圖II ……………………………………18 圖 2.15 空氣的SPR模擬圖(BK7) ……………………………………20 圖 2.16 水的SPR模擬圖(BK7) ………………………………………21 圖 2.17 生物細胞的模擬圖(BK7) …………………………………22 圖 2.18 鏡子轉動角 …………………………………………………23 圖 2.19 角度分析I……………………………………………………23 圖 2.20 角度分析II …………………………………………………23 圖 2.21 空氣的SPR模擬圖(SF18) …………………………………25 圖 2.22 水的SPR模擬圖(SF18) ……………………………………26 圖 2.23 生物細胞的SPR模擬圖(SF18) ……………………………27 圖 2.24多層結構示意圖 ……………………………………………28 圖2.25 各種玻璃材質的頻譜…………………………………………29 圖2.26 金膜(橘色線)的頻譜 ………………………………………29 圖2.27 誤差分析………………………………………………………30 圖3.1 BK7稜鏡空氣模擬(fitting)圖,金膜厚度40nm………………35 圖3.2 BK7稜鏡空氣模擬(fitting)圖,金膜厚度50nm……………36 圖3.3 BK7稜鏡空氣模擬(fitting)圖,金膜厚度60nm……………36 圖3.4 空氣量測成果 …………………………………………………37 圖3.5 水量測成果 ……………………………………………………38 圖3.6 SF18稜鏡空氣模擬(fitting)圖,金膜厚度40nm …………39 圖3.7 SF18稜鏡空氣模擬(fitting)圖,金膜厚度50nm …………40 圖3.8 SF18稜鏡空氣模擬(fitting)圖,金膜厚度60nm …………40 圖3.9 樣本為空氣時的模擬(fitting)與量測圖……………………42 圖3.10 待測物為水時的模擬(fitting)與量測圖 …………………43 圖3.11 待測物為酒精醋酸混合液時的模擬(fitting)與量測圖 …44 圖3.12 樣本為無水細胞時的模擬(fitting)與量測圖 ……………45 圖3.13 純空氣和無水細胞量測結果比較 …………………………46 圖3.14 金膜厚度和共振現象關係圖 ………………………………47 圖3.15 金膜厚度不夠導致的現象 …………………………………47 圖3.16 鍍於稜鏡上的金膜 …………………………………………48 圖3.17 細胞分布圖……………………………………………………50 圖3.18 細胞分布圖(黑白)……………………………………………50 表目錄 表 2.1 折射率和角度對應……………………………………………31rf 參考文獻 [1 ] 陳嘉芬 編著,“細胞生物學,” 藝軒出版社 [2 ] A. V. Kabashin, et al., “Surface plasmon resonance interferometer for bio- and chemical- sensors,” Opt. Comm., Vol. 150, pp5-8 (1998) [3 ] K. Matsubara, et al., “A compact surface plasmon resonance sensor for measurement of water in process,” Appl. Spectrosc., Vol. 42, pp1375 (1988) [4 ] J. J. Cowan, et al., “Dispersion of surface plasmon in multiple metal and dielectric layers on concave diffraction gratings,” Phys. Stat. Sol., Vol. 1, pp695 (1988) [5 ] A. Hanning, et al., ”Enhanced sensitivity of wavelength modulated surface plasmon resonance devices using dispersion from a dye solution,” Sensors and Actuators B, Vol. 54, pp25-36 (1999) [6 ] S. R. Karlsen, et al., ”Simultaneous determination of refractive index and absorbance spectra of chemical samples using surface plasmon resonance,” Sensors and Actuators B, Vol. 24-25, pp747-749 (1995) [7 ] X. Caide, et al., ”Characterization of surface plasmon resonance biosensor,” Sensors and Actuators B, Vol. 66, pp174-177 (2000) [8 ] G. Steiner, et al., “Surface plasmon resonance imaging of microstructured monolayers,” Journal of Molecular Structure, Vol. 509, pp265-273 (1999) [9 ] J. Homola, et al., ”A novel mutichannel surface plasmon resonance biosensor,” Sensor and Actuators B, Vol. 76, pp403-410 (2001) [10 ] C. P. Cahill, et al., “A surface plasmon resonance sensor probe based on retro-reflection,” Sensors and Actuators B, Vol. 45, pp161-166 (1997) [11 ] J. Melendez, et al., “A commercial solution for surface plasmon sensoring,” Sensors and Actuators B, Vol. 35-36, pp212-216 (1996) [12 ] R. D. Harris, et al., “Wavegiude surface plasmon resonance sensors,” Sensors and Actuators B, Vol. 29, pp261-267 (1995) [13 ] A. J. C. Tubb, et al., “Single-mode optical fibre surface plasma wave chemical sensor,” Sensors and Actuators B, Vol. 41, pp71-79 (1997) [14 ] R. W. Wood, “On remarkable case of uneven distribution of light in a diffraction grating spectrum,” Phil. Mag. ,Vol. 4, pp396-342 (1902) [15 ] A. Otto, “Excitation of nonradiative surface plasma waves insilver by the method of frustrated total reflection,” Z. Phys., Vol. 216, pp398-410 (1968) [16 ] E. Kretchmann, ”Die bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasaschwingungen,” Z. Phys., Vol. 241, pp313-324 (1971) [17 ] E. Kretchmann, “ Die bestimmung der optischen Konstanten dunner Schichten in der Nahe der Plasmafrequenz aus Kurvenfeldern konstanter Transmission”, Z. Phys. Vol. 221, pp346-356 (1971) [18 ] W.C. Kuo, et al., “Optical heterodyne surface-plasmon resonance biosensor,” Optics letters, Vol. 28, pp1329-1331 (2003) [19 ] H. E. de Bruijn, et al., “Determination of dielectric permittivity and thickness of a metal layer from a surface plasmon resonance experiment,” A. Optics, Vol. 29, pp1974-1978 (1990) [20 ] E. Hutter, et al., “Surface plasmon resonance method for probing interactions in nanostructures: CdS nanoparticles linked to Au and Ag substrates by self-assembled hexanedithiol and aminoethanethiol,” Journal of Applied Physics, Vol. 90, pp1977-1985 (2001) [21 ] M. Yamamoto, “Surface Plasmon Resonance(SPR) Theory:Tutorial,” Review of Polarography, Vol. 48, pp209-236 (2002) [22 ] C. Kittel. “Introduction to solid State Physics, 7th edition”, Wiley, New York (1996) [23 ] J. S. Maier, et al., “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Optics Letters, Vol. 19, pp2062-2065 (1994) [24 ] X. Wang, et al., “Liquid-crystal blazed-grating beam deflector,” Apply Phys. Lett., Vol. 50, pp6545-6555 (1987) [25 ] Z. Salamon, et al., “Plasmon Resonance Studies of Agonist/Antagonist Binding to the Human d-Opioid Receptor: New Structural Insights into Receptor-Ligand Interactions,” Biophysical Journal, Vol. 79, pp2463–2474 (2000) [26 ] M. N. Weiss, et al., “A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors,” Sensors and Actuators A, Vol. 51, pp211-217 (1996) [27 ] Z. Salamon, et al., ”Plasmon resonance spectroscopy: probing molecular interactions within membranes,” TIBS 24 – JUNE 1999, pp213-219 [28 ] A. Hanning , et al., ”Enhanced sensitivity of wavelength modulated surface plasmon resonance devices using dispersion from a dye solution,” Sensors and Actuators B, Vol. 54, pp25–36 (1999) [29 ] R. Slavı´k, et al., ”Miniaturization of fiber optic surface plasmon resonance sensor,” Sensors and Actuators B, Vol. 51, pp311–315 (1998) [30 ] T. Akimoto, et al., ” Estimation of sensitivity for refractive index and immunoreaction in a surface plasmon resonance sensor probe,” Analytica Chimica Acta, Vol. 417, pp125–131 (2000) [31 ] R. Slavı´k , et al., “Single-mode optical fiber surface plasmon resonance sensor”, Sensors and Actuators B, Vol. 54, pp74–79 (1999) [32 ] J. Homola , et al., “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sensors and Actuators B, Vol. 54, pp16-24 (1999) [33 ] 陳光鑫等,”光電子學,” 全華出版社id NH0925311079 sid 913741 cfn 0 / id NH0925311080 auc 劉楊倫 tic 奈米碳管材料性質之等效連體力學分析 adc 陳文華 adc 鄭仙志 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 45 kwc 奈米碳管 kwc 等效連體力學 kwc 材料性質 abc 由於奈米碳管具有許多優異之材料、機械、熱傳及電學特性,近年來引起廣泛的研究。本論文旨在建立一等效連體力學分析模式以快速、準確的反算單層奈米碳管材料性質,如等效楊氏模數(Young’s modulus)及柏松比(Poisson’s ratio)等。 tc 目錄 摘要 I 目錄 III 圖表目錄 V 第一章、 導論 1 第二章、 奈米碳管之介紹 4 2.1 奈米碳管之製備 4 2.2 單層奈米碳管結構 4 2.3 奈米碳管之應用 5 第三章、 等效連體力學分析模式 7 3.1 分子力學 7 3.2 等效彈簧單元 9 3.3 等效梁單元 10 第四章、 凡得瓦力對奈米碳管材料性質的影響 12 4.1 凡得瓦力(van der Waals force) 12 4.2 凡得瓦力之等效模擬 12 第五章、 結果與討論 14 5.1 石墨等效楊氏模數之計算 14 5.2 奈米碳管材料性質之計算 15 5.3 等效楊氏模數之計算 16 5.4 柏松比之結果比較 18 5.5 等效彈簧及梁單元之比較 19 5.6 凡得瓦力之影響 19 第六章、 結論與未來展望 21 參考文獻 22 圖表目錄 表一、有限單元分析模型之單元數及節點數 29 表二、等效楊氏模數及柏松比與文獻比較 30 圖一、奈米碳管之電子顯微鏡圖 31 圖二、奈米碳管結構型式 32 圖三、鍵結能量形式 33 圖四、等效彈簧單元 34 圖五、等效梁單元 35 圖六、凡得瓦能及力與原子間距離之關係 36 圖七、奈米碳管之鍵結及非鍵結原子 37 圖八、凡得瓦力影響範圍 38 圖九、石墨之有限單元分析模型 39 圖十、奈米碳管之有限單元分析模型 40 圖十一、奈米碳管之等效梁分析 41 圖十二、等效楊氏模數與半徑之關係 42 圖十三、柏松比與半徑之關係 43 圖十四、等效楊氏模數與半徑之關係 (考慮凡得瓦力效應) 44 圖十五、柏松比與半徑之關係 (考慮凡得瓦力效應) 45rf [1 ] Allinger, N. L., 1977, “MM2. A Hydrocarbon Force Field Utilizing V1 and V2 Torsional Terms,” Journal of the American Chemical So-ciety, Vol. 99, pp. 8127-8134. [2 ] Allinger, N. L., Yuh, Y. H., Lii and J. H., 1989,” The MM3 force field for hydrocarbons,” Journal of the American Chemical Society, Vol. 23, pp. 8551-8582. [3 ] Berber, S, Kwon, Y. K. and Tománek, D, 2000, “Unusually High Thermal Conductivity of Carbon Nanotubes,” Physical Review Let-ters, Vol. 84, pp. 4613-4616. [4 ] Burkert, U. and Allinger, N. L., 1982, “Molecular Mechanics,” American Chemical Society. [5 ] Chang, T. C. and Gao, H. J., 2003, “Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model,” Journal of the Mechanics and Physics of Solids, Vol. 51, pp. 1059-1074. [6 ] Cornwell, C. F. and Wille, L. T., 1997, “Elastic properties of sin-gle-walled carbon nanotubes in compression,” Solid State Commu-nication, Vol. 101, pp. 555-558. [7 ] Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, Jr., K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., and Kollman, P. A., 1995, “A second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules,” Journal of the American Chemical Society, Vol. 117, pp. 5179-5197. [8 ] Dillon, A. C., Jones, K. M., Bekkendahl, T. A., Kiang, C. H., Bethune, D. S. and Heben, M. J., 1997 “Storage of hydrogen in single-walled carbon nanotubes,” Nature, Vol. 386, pp. 377-379. [9 ] Dresselhaus, M. S., Dresselhaus, G., and Saito, R., 1995, “Physics of carbon nanotubes,” Carbon, Vol. 33, pp. 883-891. [10 ] Gao, G. H., Cagin, T. and Goddard III, W. A., 1998, “Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes,” Nanotechnology, Vol. 9, pp. 184-191. [11 ] Gao, H., Huang, Y. and Abraham, F. A., 2001, “Continuum and at-omistic studies of intersonic crack propagation,” Journal of the Me-chanics and Physics of Solids, Vol. 49, pp. 2113-2132. [12 ] Hafner, J. H., Cheung, C. L. and Lieber, C. M., 1999, “Direct Growth of Single-Walled Carbon Nanotube Scanning Probe Microscopy Tips,” Journal of American Chemical Society, Vol. 121, pp. 9750-9751. [13 ] Harris, P. J. F., 1999, “Carbon nanotubes and related structures,” Cambridge University Press. [14 ] Hernandez, E., Goze, C., Bernier, P. and Rubio, A., 1998, “Elastic properties of C and B¬xCyNz¬ composite nanotubes,” Physical Review Letters, Vol. 80, pp. 4502-4505. [15 ] Iijima, S., 1991, “Helical microtubules of graphitic carbon,” Nature, Vol. 354, pp. 56-58. [16 ] Iijima, S. and Ichihashi, T., 1993, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, Vol. 363, pp. 603-605. [17 ] Kelly, B. T., 1981, “Physic of Graphite,” Applied Science, London. [18 ] Kociak, M., Kasumov, A. Y., Guéron, S., Reulet, B., Khodos, I. I., Gorbatov, Y. B., Volkov, V. T., Vaccarini, L. and Bouchiat, H., 2000 “Superconductivity in Ropes of Single-Walled Carbon Nanotubes,” Physical Review Letters, Vol. 86, pp. 2416-2419. [19 ] Krishnan, A., Dujardin, E., Ebbesen, T. W., Yianilos, P. N. and Treacy, M. M. J., 1998, “Young’s modulus of single-walled nanotubes,” Physical Review B, Vol. 58, pp. 14013-14019. [20 ] Kudin, K. N., Scuseria, G. E. and Yakobson, B. I., 2001, “C2F, BN and C nanoshell elasticity from ab initio computations,” Physical Re-view B, Vol. 64, pp. 235406(1-10). [21 ] Lennard-Jones, J. E., 1924, “The Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature,” Proceedings of Royal Society (London), Vol. 106A, pp. 441. [22 ] Li, C. Y. and Chou, T. W., 2003a, “A structural mechanics approach for the analysis of carbon nanotubes,” International Journal of Solid and Structures, Vol. 40, pp. 2487-2499. [23 ] Li, C. Y. and Chou, T. W., 2003b, “Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces,” Composite Science and Technology, Vol. 63, pp. 1517-1524. [24 ] Lier, G. V., Alsenoy, C. V., Doran, V. V. and Geerlings, P., 2000, “Ab intitio study of the elastic properties of single-walled carbon nano¬tubes and grapheme,” Chemical Physics Letters, Vol. 326, pp. 181-185. [25 ] Liu, Y. J. and Chen, X. L., 2003 “Evaluations of the effective mate-rial properties of carbon nanotube-based composite using a nano¬scale representative volume element,” Mechanics of Materials, Vol. 35, pp. 69-81. [26 ] Lu, J. P., 1997, “Elastic properties of carbon nanotubes and nano¬ropes,” Physical Review Letters, Vol. 79, pp. 1297-1300. [27 ] Muster, J., Burghard, M., Roth, S., Duesberg, G. S., Hernandez, E. and Rubio, A., 1998, “Scanning force microscopy characterization of individual carbon nanotubes on electrode arrays,” Journal of Vacuum Science and Technology B, Vol. 16, pp. 2796-2801. [28 ] Odegard, G. M., Gates, T. S., Nicholson, L. M. and Wise, K. E., 2002, “Equivalent-continuum modeling of nano-structured materials,” Composites Science and Technology, Vol. 62, pp. 1869-1880. [29 ] Ozaki, T., Iwasa, Y. and Mitani, T., 2000, “Stiffness of single-walled carbon nanotubes under large strain,” Physical Review Letters, Vol. 84, pp. 1712-1715. [30 ] Prylutskyy, Y. I., Durov, S. S., Ogloblya, O. V., Buzaneva, E. V. and Scharff, P., 2000, “Molecular dynamics simulations of mechanical, vibrational and electronic properties of carbon nanotubes,” Computa-tional Material Science, Vol. 17, pp. 352-355. [31 ] Qian, D., Wagner, G. J., Liu, W. K., Yu, M. F. and Ruoff, R. S., 2002, “Mechanics of carbon nanotubes,” Applied Mechanics Review, Vol. 55, pp. 495-533. [32 ] Rappe, A. K. and Casewit, C. J., 1997, “Molecular Mechanics across chemistry,” University Science Books. [33 ] Rinzler, A. G., Hafner, J. H., Nikolaev, P., Lou, L., Kim, S. G., Tománek, D., Nordlander, P., Colbert, D. T. and Smalley, R. E., 1995, “Unraveling Nanotubes: Field Emission from an Atomic Wire,” Sci-ence, Vol. 269, pp. 1550-1553. [34 ] Robertson, D. H., Brenner, D. W. and Mintmire, J. W., 1992, “Ener-getics of nanoscale graphitic tubules,” Physical Review B, Vol. 45, pp. 2592-2595. [35 ] Salvetat, J. P., Briggs, G. A. D., Bonard, J. M., Bacsa, R. R. and Kulik, A. J., 1999, “Elastic and shear moduli of single-walled carbon nano¬tube ropes,” Physical Review Letters, Vol. 82, pp. 944-947. [36 ] Sanchez-Portal, D., Artacho, E., Soler, J. M., Rubio, A. and Ordejon, P., 1999, “Ab Initio structural, elastic, and vibrational properties of carbon nanotubes,” Physical Review B, Vol. 59, pp. 12678-12688. [37 ] Tombler, T. W., Zhou, C., Alexseyev, L., Kong, J., Dai, H., Liu, L., Jayanthi, C. S., Tang, M. and Wu, S. Y., 2000, “Reversible electro¬mechanical characteristics of carbon nanotubes under local-probe manipulation,” Nature, Vol. 405, pp. 769-772. [38 ] Treacy, M. M. J., Ebbesen, T. W. and Gibson, J. M., 1996, “Excep-tionally high Young’s modulus observed for individual carbon nano-tubes,” Nature, Vol. 381, pp. 678-680. [39 ] Vaccarini, L., Goze, C., Henrard, L., Hernandez, E., Bernier, P. and Rubio, A., 2000, “Mechanical and electronic properties of carbon and boron-nitride nanotubes,” Carbon, Vol. 38, pp. 1681-1690. [40 ] Wong, E. W., Sheehan, P. E. and Lieber, C. M., 1997, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nano¬tubes,” Science, Vol. 277, pp. 1971-1975. [41 ] Yakobson, B. I., Brabec, C. J. and Bernholc, J., 1996, “Nano¬mechanics of carbon tubes: instabilities beyond linear range,” Physi-cal Review Letters, Vol. 76, pp. 2511-2514. [42 ] Yao, N. and Lordi, V., 1998, “Young’s modulus of single-walled car-bon nanotubes,” Journal of Applied Physics, Vol. 84, pp. 1939-1943. [43 ] Yu, M., Lourie, O., Dyer, M., Moloni, K., Kelly, T. and Ruoff, R., 2000, “Strength and breaking mechanism of multiwalled carbon nano¬tubes under tensile load,” Science, Vol. 287, pp. 637-640. [44 ] Zhang, P., Jiang, H., Huang, Y., Geubelle, P. H. and Hwang, K. C., 2004, “An atomistic-based continuum theory for carbon nanotubes: analysis of fracture nucleation,” Journal of the Mechanics and Phys-ics of Solids, Vol. 52, pp. 977-998. [45 ] Zhou, G., Duan, W. and Gu, B., 2001, “First-principles study on morphology and mechanical properties of single-walled carbon nano¬tube,” Chemical Physics Letters, Vol. 333, pp. 344-349. [46 ] The Nanotube Site, http://www.pa.msu.edu/cmp/csc/nanotube.html [47 ] 馬遠榮, 施政宏, 奈米碳管介紹, http://134.208.23.152/.id NH0925311080 sid 913764 cfn 0 / id NH0925311081 auc 劉明享 tic 多流道冷板內流場之PIV觀測 adc 許文震 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 141 kwc 質點顯像測速儀 kwc 冷板 kwc 不均勻分佈 abc 本論文研究目的為利用質點影像測速儀(PIV)來研究不同開孔與出孔對多流道冷板之流場分佈的影響性。相對於單點量測技術無法瞭解整個流場動態變化,質點影像測速儀卻能夠提供整體流場的瞬時觀測,所以它成為現今最熱門的全域流場觀測法。顧名思義,質點影像測速儀是把流場中的質點顆粒在單位時間的運動影像記錄下來,之後再利用自相關性或者交互相關性來計算出位移方向。質點影像測速儀的基本架構為:光線可穿透的透明物件、激發質點粒子用的雷射光、紀錄影像的媒介和對質點影像進行後處理所需要的軟硬體。 tc 一、前言&動機-----1 1.1研究背景 1.2水冷式散熱板之分類 1.2.1流道式(type of channel) 1.2.2柱狀式(type of pin) 1.2.3鰭片式(type of fin) 1.3研究動機 二、文獻回顧-----10 2.1冷板的相關文獻 2.2質點顯像測速儀 三、流場測速法介紹-----16 3.1單點量測法之介紹 3.2全域量測法概說 3.2.1光學質點影像測速法 3.2.2質點軌跡測速法(簡稱PTV) 3.3.3交替色彩影像測速法(簡稱ACIA) 3.3.4數位質點影像測速法(簡稱DPIV) 3.3.5全域量測法的選用 3.3質點影像測速儀之概要介紹 3.4影像分析演算法 3.4.1空間交互相關法之數學模式 3.4.2數位向量法之數學模式 3.5次像素分析法 3.5.1二次函數法 3.5.2高斯函數法 3.5.3雙線性內插法 3.5.4立方迴旋法 3.5.5重心函數法 3.6不一致速度向量的去除與內插修補法 3.7 PIV誤差分析 四、PIV實驗裝置與PIV處理軟體的介紹-----47 4.1 PIV硬體整合系統概述 4.2 PIV硬體系統 4.2.1 成像系統 4.2.2 影像擷取系統 4.2.3 同步控制器 4.3 PIV質點影像相關分析軟體 4.4 PIV後處理資料軟體 4.4.1速度及渦度轉換(calculate V & Ω) 4.4.2刪除錯誤質點區塊(Remove) 4.4.3內插計算(Interpolate) 4.4.4空間率波(Filter) 4.4.5資料回復(Recover) 4.5質點影像分析軟體與後處理軟體間的函數外掛關係 4.6撰寫資料處理的程式碼與改良後處理軟體功能 五、實驗規劃&實驗架設-----78 5.1流場觀測系統之架設 5.2壓差量測系統之架設 六、實驗程序與多流道冷板介紹------92 6.1流場觀測之實驗程序 6.2壓差量測之實驗程序 6.3多流道冷板介紹 七、結果與討論-----99 7.1 model-1與model-2的流場分佈與壓降探討 7.1.1 model-1與model-2的流場探討 7.1.2 model-1與model-2的壓降探討 7.2 model-1與model-3的流場分佈與壓降探討 7.2.1 model-1與model-3的流場探討 7.2.2 model-1與model-3的壓降探討 7.3 model-2與model-4的流場分佈與壓降探討 7.3.1 model-2與model-4的流場探討 7.3.2 model-2與model-4的壓降探討 7.4 model-2、model-5、model-6的流場分佈與壓降探討 7.2.1 model-2、 model-5、 model-6的流場探討 7.4.2 model-2、model-5、 model-6的壓降探討 7.5 mal-distribution discussion 7.5.1 the dimensionless parameter 7.5.2 the dregree of mal-distribution 八、結論與未來展望-----134 九、參考文獻-----137rf 1.陳永樹,「電子構裝概論」,2000 2.Knight, R. W., Hall, D. J., Goodling, J. S., and Jaeger, R. C., Fellow, IEEE, “Heat Sink Optimization with Application to Microchannels”, IEEE Transactions on Components, Hybrids, and ManufacturingTechnology, vol. 15, No. 5, pp. 832-842, October, 1992. 3.A. Bar-Cohen, “Optimization of vertical pin-fin heat sinks in natural convective heat transfer”, in Proc. Heat transfer 11th IHTC, Vol. 3, Kyonju, Korea, Aug. 23–28, pp.501–506, 1988. 4.A.D. Kraus and A. Bar-Cohen, “thermal analysis and Control of Electronic Equipment”, Hemisphere Publishing Corporation, Washington, DC. (1983). 5.C.Y. Liu and Y.H. Hung, “Heat transfer and flow Friction Characteristics for Compact Cold Plates”, Journal of Electronic Packaging, Vol. 125, pp. 104-113, 2003. 6.G. Hetsroni, A. Mosyak and Z. Segal, “Nonuniform Temperature distribution in Electronic Devices Cooled by flow in Parallel Microchannels”, IEEE Transactions on Components & Packaging Technologies, Vol. 24, No. 1, pp. 16-22, 2001. 7.Qu, W., and I. Mudawar, “analysis of Three-dimensional Heat transfer in Micro-channel Heat Sinks”, int. J. Heat & Mass transfer, Vol. 45, pp. 3973-3985, 2002. 8.J.T. Teng, J.C. Chu, M.S. Liu, C.C. Wang and R. Greif, “investigation of the flow mal-distribution in microchannels,” paper to be presented in ASME congress 2003. 9.A.B. Datta, and A.K. Majumdar, “flow distribution in parallel and reverse flow manifolds”, int. J. Heat & Fluid flow, Vol. 2, No.4, pp.253-262, 1980. 10.L. Hesselink, “Digital Image Processing in flow Visualization”, Annual Review of Fluid Mechanics, Vol. 20, pp. 421-485, 1988. 11.Adrian, R.J., “particle-imaging techniques for experimental fluid mechanics”, Ann Rev. Fluid Mech., Vol.23, pp.261-304, 1991. 12.Meinhart CD, Wereley ST, Gray MHB, “volume illumination for two-dimen sional particle image velocimetry”, MEAS SCI TECHNOL 11 (6): 809-814 JUN 2000. 13.Meinhart CD, Zhang HS, “the flow structure inside a microfabricated inkjet printhead”, J MICROELECTROMECH S 9 (1): 67-75 MAR 2000. 14.Brody JP, Yager P, Goldstein RE, et al., “biotechnology at low Reynolds numbers”, BIOPHYS J 71 (6): 3430-3441 DEC 1996. 15.江松柏,PIV之發展與應用-引擎缸內流場滾轉運動之診測,國立台灣科技大學機械工程系碩士論文,中華民國九一年七月。 16.劉岳明,微質點影像測速儀於熱薄膜擠壓式微幫浦,國立台灣大學應用力學研究所碩士論文,中華民國九一年十月。 17.楊東拾,微質點影像測速儀之發展及其用於微管流場之量測,國立台灣大學應用力學研究所碩士論文,中華民國九十年七月。 18.Ming-Chang Lu, Bing-Chwen Yang, Chi-Chuan Wang, “Numerical study of flow mal-distribution on the flow and heat transfer for multi-channel cold-plates”, Semiconductor thermal Measurement and Management, 2004 IEEE Twentieth Annual IEEE (SEMI-THERM), 9-11 March 2004 19.Kobayshi, T., Yoshitake, Y., “ An automatic Analysis Method for Determining velocity Vector from A Pathline Photograph”, Proc. Int. Symp. On Fluid Control an Measurement, 729-734, Tokyo, Pergamon. 1985. 20.M. Ghrib, and G. Willet, “ Particle Tracking Rivisited in Advances in Fluid Mechanics Measurements ”, ed.M.Gad-el-Hak, Springer-Verlag, Berlin, pp.109-126, 1989. 21.E. A. Cowen, S. G. Monismith, “A Hybrid Digital Particle Tracking Velocimetry Technique”, Experiments in Fluid, Vol. 22, pp. 199-211, 1997. 22.E. Willert and M. Gharib, “ Digital Particle image velocimetry”, Experiments inFluid, Vol. 10, pp. 181-193, 1991. 23.Dabiri and M. Gharib, “Generation mechanisms and sources of vorticity within a spilling breaking wave”, Twenty-First Symposium on Naval Hydrodynamics, Trondheim, Norway, June 24-28, pp. 520-533, 1996. 24.R. Meynart, “Equal velocity Fringes in a Rayleigh-Benard flow by a Speckle Method”, Applied Optics, Vol. 19, No. 19, pp. 1385-1386, 1980. 25.G. A. Reynolds, M. Short, and M. C. Whiffen, “automated Reduction ofInstantaneous flow Field Images”, Optical Engineering, Vol. 24, No. 3, pp.475-479, 1985. 26.Z. H. He, M. A. Sutton, W. F. Ranson, and W. H. Peters, “Two Dimension velocity Measurement by Use of Digital-Speckle correlation Techniques”, Experimental Mechanics, June, pp. 117-121, 1984. 27.J. Nogueira, A. Lecuona, and P. Rodriguez, “Data validation, false vectorscorrection and derived magnitudes calculation on PIV data”, Meas. Sci. Technol, Vol. 8, pp. 1493-1501, 1997. 28.L. Lourenco, A. Krothapalli, “On the Accuracy of velocity Measurements with PIV”, Experiments in Fluid, Vol. 18, pp. 421-428, 1995. 29.Streans. SD. Hush D, “Digital Signal Analysis”, Second edition, Prentice Hell, 1990. 30.張簡秀俊,交替色彩影像測速法於船艉流場量測,國立海洋大學造船工程學系碩士論文,中華民國八十六年七月。 31.Westerweel J (1994), “Efficient detection of spurious vectors in particle image velocimetry data” , Exp Fluids 16: 236∼247. 32.Hart DP (1997), “Sparse array image correlation. Developments in laser techniques and fluid mechanics”, Springer-Verlag Berlin Heildelberg, pp 53∼74. 33.Ming-Chang Lu, Bing-Chwen Yang, Chi-Chuan Wang, “Numerical Study of Flow mal-distribution on the Flow and Heat Transfer for Multi-channel Cold-Plates Semiconductor thermal Measurement and Managemen”, 2004 IEEE Twentieth Annual IEEE (SEMI-THERM), 9-11 March 2004 Pages: 205 – 212. 34.Ajay K. Prasad, “Particle image velocimetry”, Current Science, Vol. 79, No. 1, 10 July 2000. 35.李明靜,河川表面流速與流量非接觸式量測方法之發展及應用,國立成功大學水利及海洋工程學系博士論文,中華民國九十一年七月。 36.吳榮峰,大尺度質點影像量測法之應用-分析水面流場,國立成功大學水利及海洋工程學系碩士論文,中華民國九十一年七月。id NH0925311081 sid 913732 cfn 0 / id NH0925311082 auc 王宗憲 tic 單佈性噴霧對等溫熱板之冷卻研究 adc 王訓忠教授 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 74 kwc 噴霧冷卻 kwc 單佈性 abc 本研究討論噴霧液滴對熱板之冷卻行為,藉由霧化器產生不同直徑的單佈性噴霧,實驗觀察不同液滴大小、初始板溫、液體體積流率及空氣體積流率對噴霧液滴冷卻熱板行為之影響,並分暫態與穩態來進行探討。 tc 摘要……………………………………………………………………Ⅰ 目錄……………………………………………………………………Ⅲ 圖表目錄………………………………………………………………Ⅴ 第一章 緒 論…………………………………………………………1 1.1 前言………………………………………………………………1 1.2 液滴對熱板冷卻文獻回顧………………………………………3 1.3 研究目的…………………………………………………………12 第二章 實驗架設與步驟…………………………………………… 14 2.1實驗量測與架設……………………………………………… 14 2.2 實驗步驟 ……………………………………………………… 14 第三章 結果與討論………………………………………………… 21 3.1 預備實驗量測……………………………………………………21 3.1.1.熱板表面溫度量測點的溫度差異…………………………21 3.1.2.氣相強制對流對熱板散熱的影響…………………………21 3.1.3.熱板系統損失熱量的量測…………………………………22 3.2 暫態冷卻實驗……………………………………………………22 3.2.1液體體積流率對表面溫度變化的影響…………………… 22 3.2.2液滴直徑大小對表面溫度變化的影響…………………… 23 3.2.3初始板溫對散熱之影響…………………………………… 23 3.2.4液膜累積對散熱之影響…………………………………… 26 3.3穩態散熱實驗……………………………………………………26 3.3.1不同液滴直徑與液體體積流率對散熱量的差異…………27 3.3.2 液滴衝擊散熱表面速度對散熱量影響……………………29 第四章 結論與未來建議…………………………………………… 31 4.1結論……………………………………………………………31 4.2未來建議………………………………………………………32 參考文獻………………………………………………………………33 表2.1 振動頻率與液體流量(Q)和液滴直徑(D)的對照表………… 36 表2.2 噴霧液滴尺寸與Orifice選用對照表……………………… 36 表 3.1 不同液體體積流率和液滴直徑的散熱量……………………37 表 3.2 不同液體體積流率和液滴直徑的散熱通量…………………37 表 3.3 不同氣體體積流率和液滴直徑的散熱量和散熱通量………38 圖1.1 噴霧冷卻優點………………………………………………… 39 圖1.2 IBM使用之噴霧冷卻…………………………………………39 圖1.3 SprayCool™噴霧冷卻結構圖………………………………… 40 圖1.4 SprayCool™噴霧冷卻產品…………………………………… 40 圖1.5 噴霧冷卻於其他產業之應用: (a)汽電共生廠用噴嘴來冷卻鍋爐中的熱斑………………………41 (b)熱塑及熱固成形機台……………………………………………41 (c)溫室冷卻及畜舍內溫……………………………………………42 (d)PVC管卻…………………………………………………………42 圖1.6 Film boiling impact 示意圖………………………………43 圖1.7 噴霧頻率對液滴汽化的影響…………………………………43 圖1.8不同的液膜型態產生不同的冷卻行為………………………44 圖1.9 液滴生命週圖…………………………………………………44 圖1.10 汽化效率與韋伯數關圖…………………………………… 45 圖1.11 噴霧冷卻與微熱管冷卻的差別…………………………… 45 圖1.12 設計結構作動原理………………………………………….46 圖1.13 噴嘴出口形狀……………………………………………….46 圖1.14 設計chip背面的表面結構………………………………..47 圖1.15 表面溫度量測示意圖……………………………………….47 圖2.1 霧化器簡圖……………………………………………………48 圖2.2 實驗錐角定義…………………………………………………48 圖2.3 (a)熱板系統結構剖面圖(b)熱板系統實體圖………………49 圖 2.4 熱電偶埋測點說圖.…………………………………………50 圖 3.1 液滴直徑為35μm時的三個埋設點溫度變化………………51 圖 3.2 液滴直徑為350μm時的三個埋設點溫度變化…………… 51 圖 3.3 空氣體積流率與散熱量關係圖………………………………52 圖 3.4 液體體積流率與表面溫度變化關係圖(D=35μm)……… 52 圖 3.5 液體體積流率與表面溫度變化關係圖(D=75μm)……… 53 圖 3.6 液體體積流率與表面溫度變化關係圖(D=150μm)………53 圖 3.7 液體體積流率與表面溫度變化關係圖(D=250μm)………54 圖 3.8液體體積流率與表面溫度變化關係圖(D=350μm)……… 54 圖 3.9噴霧直徑(D)與表面溫度變化關係圖(熱板初溫To=80℃)55 圖3.10噴霧直徑(D)與表面溫度變化關係圖(熱板初溫To=100℃)55 圖3.11不同初始溫度(T0)之表面溫度變化關係圖(D=35μm)……56 圖3.12不同初始溫度(T0)之表面溫度變化關係圖(D=75μm)……56 圖3.13不同初始溫度(T0)之量測點降溫曲線(D=150μm)……… 57 圖3.14不同初始溫度(T0)之量測點降溫曲線(D=250μm)……… 57 圖3.15不同初始溫度(T0)之量測點降溫曲線(D=350μm)……… 58 圖3.16 液滴直徑50μm液膜形成至累積圖………………………..58 圖3.16 液滴直徑150μm液膜形成至累積圖……………………….59 圖3.16不同體積流率下實驗與理論散熱量比較圖(To=80˚C)…… 59 圖3.17不同體積流率下實驗與理論散熱量比較圖(To=100˚C)……60 圖3.18不同表面溫度下實驗與理論散熱量比較圖(qa=2.5L/min)…60 圖3.19不同表面溫度下實驗與理論散熱量比較圖(qa=5L/min)……61 圖3.20不同表面溫度下實驗與理論散熱量比較圖(qa=8L/min)……61rf 1.Humberto, C., Kubitzek, A.M.,and Frank, O., “Dynamic processes occurring during the spreading of thin liquid films produced by drop impact on hot walls,” Int. J. Heat and Fluid Flow, 20 (1999) 470-476. 2.Chandra, S. and Avedisian, C.T., “On the collision of a droplet with a solid surface,” Proc. R. Soc. Lond. A, 432, (1991) 13-41. 3.Pedersen, C. O., “An experimental study of the dynamic behavior and heat transfer characteristics of water droplets impinging upon a heated surface,” Int. J. Heat Mass Transfer, 13, (1970) 369-381. 4.Wang, C.H., Sun, C.J.,and Kuo, H.C., “An experimental investigation of heat transfer of a droplet impinging upon a hot surface,” Int. Com. Heat and Mass Transfer , 24 (1997) 65-78. 5.Choi, K. J. and Yao, S.C., “Mechanisms of film boiling heat transfer of normally impacting spray,” Int. J. Heat and Mass Transfer, 30, no.2, (1987) 311-318. 6.Chen, H. R., Chow, C. L., and Navedo, E. J., “Effect of Spray Characteristics on Critical Heat Flux in Subcooled Water Spray Cooling,” Int. J. Heat and Mass Transfer 45, (2002) 4033-4043. 7.Kitaru, S.,and Kenichi, Y., “Spray cooling characteristics of water and FC-72 under reduced and elevated gravity for space application,” Energy Conversion Engineering Conference, 1996. IECEC 96., Proceedings of the 31st Intersociety , 2 (1996) 1500-1505. 8.Um, J.-Y., Sehmbey, S. M., and Chow, C. L., “Effects of Gravity on Spray Cooling,” The 1996 ASME International Mechanical Engineering Congress & Exhibition, Atlanta, GA, USA, 11/17-22/96. 9.Anabel, M., Chow, L. C., Jian-Hua, D., Shuye, L., Dan, P. R., Jennifer, L. “Spray cooling at low system pressure,” IEEE Semiconductor Thermal Measurement and Management Symposium, 2002, Proceedings of the 2002 18th annual IEEE Semiconductor Thermal Measurement and Management Symposium, Mar 12-14 2002, San Jose, CA, 169-175. 10.Kearns, D., Jian-Hua, D., Chen, R.H.,and Chow, L.C., “A parametric study of dielectric spray cooling of a row of heaters in a narrow channel,” Semiconductor Thermal Measurement and Management, 2002. Eighteenth Annual IEEE Symposium , (2002 ) 164 –168. 11.Oliphant, K., Webb, B.W.,and McQuay, M.Q., “An experimental comparison of liquid jet array and spray impingement cooling in the non-boiling regime,” Experimental Thermal and Fluid Science, 18 (1998) 1-10. 12.Qiao, Y. M. and Chandra S., “Spray cooling enhancement by addition of a surfactant,” Int. J. Heat Transfer, Transactions ASME, 120, (1998) 211-219. 13.Chandra, S., Marzo, M.D., Qiao, Y.M., Tartarini, S.,“Effect of liquid-solid contactangle on droplet evaporation,” Int. J. Fire Safety , 27, (1996) 141-158. 14.Sehmbey, S. M., Pais R. M. and Chow, C. L., “Effect of Surface Material Properties and Surface Characteristics in Evaporative Spray Cooling,” AIAA J. Thermophysics and Heat Transfer, 6, no. 3, (1992) 505-512. 15.Pais, M.R., Chow, L.C.,and Mahefkey, E.T., “Surface roughness and its effects on the heat transfer mechanism in spray cooling,” Int. J. Heat Transfer, Transactions ASME, 114, n 1, Feb, (1992) 211-219. 16.Benjamin, R. J.,and Balakrishnan, A. R., “Nucleation site density in pool boiling of saturated pure liquids: effect of surface microroughness and surface and liquid physical properties,” Experimental Thermal and Fluid Science 15, Issue: 1, July, (1997) 32-42. 17.Estes, K.A.,and Mudawar, I., “Correlation of sauter mean diameter and critical heat flux for spray cooling of small surfaces,” Int. J. Heat and Mass Transfer, 38 (1995) 2985-2996 18.Huddle, J.J., Chow, L.C., Lei, S., Marcos, A., Rini, D.P., Lindauer, S.J., II, Bass, M.,and Delfyett, P.J., “Thermal management of diode laser arrays,” Semiconductor Thermal Measurement and Management Symposium, 2000. Sixteenth Annual IEEE, (2000) 154 -160. 19.Tilton D.E., Spray Cooling, Ph.D. Disertation, University of Kentucky, Lexington, K Y, 1989. 20.Murthy, J.Y., Yao, S.C., Gabriel, K., Kumta, P., Amon, C.H., Boyalakuntla, D., Hsieh, C.C., Jain, A., Narumanchi, S.V.J., Rebello, K. and Wu, C.F, “MEMS-Based Thermal management of Electronics Using Spray Impingement,” Proceedings of IPACK’01 The Pacific Rim/ASME International Electronic Packaging, July 8-13,(2001),Kauai,Hawaii,USA,1-12. 21.Harvie, D.J.E.,and Fletcher, D.F., “A hydrodynamic and thermodynamic simulation of droplet impacts on hot surfaces, Part I: theoretical model,” Int. J. Heat and Mass Transfer, 44 (2001) 2633-2642. 22.Bernardin, J. D.,and Stebbins, C.J.,Mudawar I., “Effects of surface roughness on water droplet impact history and heat transfer regimes,” Int. J. Heat and Mass Transfer, 40, n1, (1997) 73-88. 23.Model 3450 Vibrating Orifice Aerosol Generator 操作手冊. 24.郭博鳴,“中低雷諾數下紊流場中之液滴蒸發現象研究,”國立臺灣 大學應用力學研究所碩士論文,2001. 25.張晊源, “微小熱點之主動式冷卻,” 國立中央大學機械工程研究所,1990. 26.鍾政儒, “微小液滴冷卻微小熱點之實驗研究,” 國立中央大學機械工程研究所,2000. 27.康顧嚴, “精微噴霧冷卻實驗觀測,” 國立台灣大學應用力學研究所碩士論文, 2000. 28.陳雨村, “精微噴柱粒化現象之觀測研究”, 國立台灣大學應用力學研究所碩士論文,1999. 29.李逸才, “單佈性噴霧對熱板之冷卻研究”,?國立清華大學動力機械研究所碩士論文, 2002.id NH0925311082 sid 903715 cfn 0 / id NH0925311083 auc 龔威儒 tic 局部遮蔽圖形之自動比對 adc 彭明輝 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 68 kwc 圖形比對 kwc 串列比對 abc 圖形比對領域由於應用範圍很廣泛,成為近年來機械視覺領域中十分熱門的一項研究題目。目前圖形比對所遭遇到主要的問題點在於:難以同時達到效率、旋轉不變量與物件缺陷的強健性三者之間的平衡與需求。 tc 第一章簡介……………………………………………………………1 1.1 研究背景…………………………………………………………1 1.2 文獻回顧…………………………………………………………2 1.2-1圖樣識別的分類與辨認目的…………………………………2 1.2-2樣板比對 (Template matching) ……………………………4 1.2-3結構圖樣識別 (Structure approach) ………………………7 1.2-4旋轉不變性-環形編碼技術 (Ring coding techniques) …9 1.3 研究動機、目的與範圍…………………………………………13 1.4 論文結構…………………………………………………………14 第二章 環狀樣板比對技術………………………………………16 2.1 環狀樣板比對方法介紹…………………………………………16 2.2 環狀樣板比對特性………………………………………………21 2.3 影像分割(image segmentation)技術…………………………24 第三章 串列比對方法設計………………………………………28 3.1 簡易串列比對…………………………………………………28 3.2 循環串列比對…………………………………………………36 第四章 比對系統與候選位置篩選……………………………………41 4.1 角度特徵取得與候選位置歸類…………………………………41 4.2 圖形比對完整流程………………………………………………45 第五章 實驗結果與效能分析………………………………………47 5.1 參數選擇………………………………………………………47 5.2 實驗模擬結果……………………………………………………50 5.2-1 簡單規則影像圖形比對-印刷電路板………………………50 5.2-2 具旋轉與雜訊邊跡之影像圖形比對…………………………52 5.2-3 複雜、不規則且具有遮蔽與缺陷之影像圖形比對…………54 5.2-4 黑白測試影像圖形比對………………………………………57 5.2-5雜訊之影像圖形比對…………………………………………59 5.3 效能與結果分析…………………………………………………60 5.3-1比對速度與計算效率……………………………………………60 5.3-2 影像特性與限制範圍…………………………………………62 第六章 結論……………………………………………………………64 6.1 本研究之貢獻……………………………………………………64 6.2 未來研究方向……………………………………………………65 參考文獻………………………………………………………………66rf [1 ] A.k. Jain, R.P. W. Duin and J.C. Mao, “Statistical pattern recognition : A review,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no.1, pp.4-37, 2000. [2 ] R. Bajcsy and S. Kovacic, “Multiresolution elastic matching,” Computer Vision Graphics Image Processing, vol.46, pp.1-21, 1989. [3 ] U. Grenender, General Pattern Theory. Oxford Univ. Press, 1993. [4 ] H.L. Peng and S.Y. Chen, “Trademark shape recognition using closed contours,” Pattern Recognition, vol.18, pp.791-803, 1997. [5 ] L.I. Perlovsky, “Conundrum of combinational complexity,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.20, no.6, pp.666-670, 1998. [6 ] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis. Wiley, New York, 1972. [7 ] K. Fukunaga, Introduction to Statistical Pattern Recognition. Academic Press, Boston, 1990. [8 ] A.K. Jain, J. Mao, and K.M. Mohiuddin, “Artificial neural networks: A tutorial,” Computer, pp31-44, 1996. [9 ] S. Haykin, Neural Networks: A Comprehensive Foundation. Prentice-Hall, New Jersey, 1999. [10 ] 彭國軒,快速物件辨認與定位-環狀樣板比對,清華大學碩士論文, 2003. [11 ] D.P. Huttenlocher, G.A. Klanderman, and W.J. Rucklidge, “Comparing images using the Hausdorff distance,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 9, pp.850-863, 1993. [12 ] D.P. Huttenlocher, R.H. Lilien, and C.F. Olson, “View-based recognition using an eigenspace approximation to the Hausdorff measure,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.21, no.9, 1999. [13 ] Oh-Kyu Kwon, Dong-Gyu Sim and, Rae-Hong Park, “ Robust Hausdorff distance matching algorithms using pyramidal structures,” Pattern Recognition, vol.34, no.10, pp.2005-2013, 2001. [14 ] Xilin Yi and Octavia I. Camps, “Line-based recognition using a multi-dimensional Hausdorff distance,” IEEE. Trans. on Pattern Analysis And Machine Intelligence, vol.21, no.9, pp.901-916, 1999. [15 ] F. Stein and G. Medioni, “Structural indeing : efficient 2-D object recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.14, no.12, pp.1198-1204, 1992. [16 ] A.M. Mayez, “An efficient indexing scheme for image storage and recognition,” IEEE Transactions on Industrial Electronics, vol.46, no.2, pp.429–439, 1999. [17 ] G. Cortelazzo, G.A. Mian, G. Vezzi, and P. Zamperoni, “Trademark shapes description by string-matching techniques,” Pattern Recognition, vol.27, no. 8, pp.1005–1018, 1994. [18 ] H.L. Peng and S.Y. Chen, “Trademark shape recognition using closed contours,” Pattern Recognition Letters, vol.18, pp.791–803, 1997. [19 ] C. Rekeczky, A. Ushida, and T. Roska, “Rotation invariant detection of moving and standing objects using analogic neural network algorithms based on ring,” IEICE Transactions on Fundamentals, vol.E78-A, no.10, pp.1316–1329, 1995. [20 ] L.A. Torres-Méndez, J.C. Ruiz-Suárez, Luis E. Sucar, and G. Gómez, “Translation, rotation, and scale-Invariant object recognition,” IEEE Transactions on Systems, Man, and Cybernetics, vol.30, no.1, pp.125–130, 2000. [21 ] A. Apostolico and Z. Galil, Pattern Matching Algorithms. Oxford University Press, 1997. [22 ] H.J. Wolfson, “On curve matching,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no.5, pp. 483–489, 1990. [23 ] R.C. Gonzalez and R.E. Woods, Digital Image Processing. Prentice Hall, 2002. [24 ] D. Ziou and S. Tabbone, “Edge detection techniques-An overview,” Image Recognition, Analysis, Understanding, and Processing Techniques, vol.8, pp.537-559, 1998. [25 ] J. Canny, “A computational approach to edge detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.PAMI-8, no.6, pp.679-698, 1986. [26 ] R.A. Wagner and M.J. Fischer, “The string-to-string correction problem,” Journal of the Association for Computing Machinery, vol.21, no.1, pp.168-173, 1974. [27 ] W.H. Tsai and S.S. Yu, “Attributed string matching with merging for shape recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.PAMI-7, no.4, pp.453-462, 1985. [28 ] J. Lladós, H. Bunke, and E. Martí, “Finding rotational symmetries by cyclic string matching,” Pattern Recognition Letters, vol.18, pp. 1435-1442, 1997. [29 ] Serkan Kaygin and M. Mete Bulut, “Shape recognition using attributed string matching with polygon vertices as the primitives,” Pattern Recognition Letters, vol.23, no.1-3, pp. 287-294, 2002. [30 ] R.O. Duda and P.E. Hart, “Use of the Hough transformation to detect lines and curves in picture,” Commun. ACM, vol.15, no.1, pp.11-15, 1972. [31 ] D.G. Sim and R.H. Park, “Two-dimensional object alignment based on the robust oriented Hausdorff similarity measure,” IEEE Transactions on Image Processing, vol.10, no.3, pp.475-483, 2001. [32 ] 陳子超,表面黏著元件之光學檢測,清華大學碩士論文,2003. [33 ] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine vision. PWS Publishing, 1999. [34 ] B.K.P. Horn, Robot Vision. MIT Press, 1986.id NH0925311083 sid 913755 cfn 0 / id NH0925311084 auc 鍾興宜 tic 垂直梳狀致動微掃瞄鏡之分析與控制 adc 陳榮順 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 78 kwc 梳狀致動 kwc 微掃瞄鏡 kwc 適應性控制 abc 微掃瞄鏡驅動方式以靜電致動最為常用,主要是因為它具有結構簡單與單位能量密度大的特性,且在靜電致動微掃瞄鏡之中,垂直靜電式是比較可得到大角度驅動,但由於製作上既有的誤差、微小尺度流場效應以及靜電-結構耦合驅動方式,造成動態特性較難以簡單的數學模式來表示,這對傳統控制器設計是有其限制的。 tc 目錄 摘要.……………………………………………………………………Ⅰ 誌謝………………………………………………………………………Ⅱ 目錄………………………………………………………………………Ⅲ 圖目錄……………………………………………………………………Ⅳ 表目錄……………………………………………………………………Ⅶ 第一章 緒論………………………………………………………………1 1.1 研究背景與動機………………………………………………1 1.2 文獻回顧………………………………………………………4 1.3 本文大綱………………………………………………………11 第二章 微掃瞄鏡結構分析與模擬……………………………………12 2.1 機械動態………………………………………………………13 2.2 扭轉和側向共振 ……………………………………………14 2.3 共振模擬………………………………………………………20 2.4 靜電扭矩的分析與模擬………………………………………22 第三章 適應控制器設計及分析………………………………………33 3.1 系統描述………………………………………………………33 3.2 控制器設計與穏定性分析……………………………………34 3.3 電腦模擬………………………………………………………38 3.3.1 PI控制器……………………………………………39 3.3.2 適應性控制…………………………………………42 第四章 實驗結果與討論………………………………………………49 4.1 製程結果………………………………………………………49 4.2 直流穏態特性…………………………………………………57 4.3 頻率響應………………………………………………………61 4.4 步階響應………………………………………………………64 第五章 結論與未來工作………………………………………………69 附錄A 正交級數近似法…………………………………………………71 A.1 正交級數 ……………………………………………………71 A.2 完全性之定義…………………………………………………72 A.3 正交級數收斂定理……………………………………………72 A.4 傅立葉級數……………………………………………………73 參考文獻:………………………………………………………………76rf [1 ] H. Toshiyoshi and H. Fujita, “An Electrostatically Operated Torsion Mirror for Optical Switching Device,” in Proc. 8th Int. Conf. Solid-State Sensors and Actuators (Transducers’95), Stockholm, Sweden, pp. 25-29, June 1995. [2 ] H. Toshiyoshi and H. Fujita, “Electrostatic Micro Torsion Mirrors for an Optical Switch Matrix,” IEEE Journal of MEMS, vol. 5, no. 4, December 1996. [3 ] D. L. Dickensheets, and G. S. Kino, “Silicon-Micromachined Scanning Confocal Optical Microscope,” IEEE Journal of MEMS, vol. 7, no. 1, pp. 38-47, March 1998. [4 ] H. Miyajima, and Nobuyoshi Asaoka, “A MEMS Electromagnetic Optical Scanner for a Commercial Confocal Laser Scanning Microscope,” IEEE Journal of MEMS, vol. 12, no. 3, June 2003. [5 ] P. F. Van Kessel, L. J. Hornbeck, R. E. Meier and M. R. Douglass, “A MEMS-Based Projection Display, ” Proceedings of the IEEE, vol. 86, no. 8, August 1998. [6 ] Y. Chen, Y. Shroff, W. G. Oldham, “Modeling and Control of Nanomirrors for EUV Maskless Lithography, ” Technical Proceedings of the Third International Conference on Modeling and Simulation of Microsystems, pp. 602-4, 2000. [7 ] C. H. Ji and Y. K. Kim, “Electromagnetic Micromirror Array With Single-Crystal Silicon Mirror Plate and Aluminum Spring, ”Journal of Lightwave Technology, vol. 21, no. 3, March 2003. [8 ] M. Huja, M. Husak, “Thermal microactuators for optical purpose , ”International Conference On Information Technology: Coding And Computing, pp. 137-142, April 2001. [9 ] M. G. Harris, D. M. Gibbs, “A piezoelectric actuated scanning mirror system utilizing a type one control loop, ”IEEE Proceedings on Energy and Information Technologies in the Southeast, vol. 3, pp. 1267-1274, 1989. [10 ] M. H. Kiang, D. A. Francis, “Actuated polysilicon micromirrors for raster-scanning displays,” International Conference on Solid State Sensors and Actuators, vol. 1, pp. 323-326, June 1997. [11 ] H. Schenk, P. Durr, D. Kunze, H. Lakner, H. Kuck, “ An electrostatically excited 2D-micro-scanning-mirror with an in-plane configuration of the driving electrodes, ”Proceeding of MEMS'00, Miyajaki, Japan, pp. 473-478, Jan. 2000. [12 ] T. W. Yeow, K. Y. Lim, B. Wilson, A. A. Goldenberg, “A low-voltage electrostatically actuated MEMS scanner for in vivo biomedical imaging, ”Proceeding of Microtechnologies in Medicine & Biology, pp. 205-207, May 2002. [13 ] J. A. Yeh, H. Jiang and N. C. Tien, “Integrated Polysilicon and DRIE Bulk Silicon Micromachining for a Torsional Actuator, ”Journal of MEMS, vol. 8, pp. 456-465, Dec. 1999. [14 ] J.-H. Lee, Y.-C. Ko, D.-H. Kong, J.-M. Kim, Ki Bang Lee, Duk-Young Jeonc, “Design and fabrication of scanning mirror for laser display, ”Sensors and Actuators A96, pp. 223-230, 2002. [15 ] P. R. Patterson, D. H. Nguyen, H. Toshiyoshi, “A scanning micromirror with angular comb drive actuation,” Proceeding of MEMS'02, pp. 544-547, Jan. 2002. [16 ] Jerwei Hsieh, Chien Cheng Chu, Tsai, J.M.L., Weileun Fng, “Using extended BELST process in fabricating vertical comb actuator for optical application,” IEEE/LEOS Optical MEMs, pp. 133-134, Aug. 2002. [17 ] Chien Cheng Chu, Tsai, J.M., Jerwei Hsieh, Weileun Fang, “A novel electrostatic vertical comb actuator fabricated on (111) Silicon Wafer,” Proceeding of MEMS'03, Kyoto, pp. 56-59, Jan. 2003. [18 ] J. C. Chiou and Y. C. Lin, “A Novel Control Design of Stepping Micromirror Using Multiple Electrostatic Driving Electrodes”, IEEE-LEOS Optical MEMS, 2001. [19 ] J. C. Chiou, Y. C. Lin, and S.D. Wu, “Closed-loop fuzzy control of torsional micromirror with multiple electrostatic electrodes,” IEEE-LEOS Optical MEMS, 2002. [20 ] J. C Chiou and Y. C. Lin, “A multiple electrostatic electrodes torsion micromirror device with linear stepping angle effect,” Journal of MEMS, vol. 12, no. 6, Dec 2003. [21 ] H. Toshiyoshi, W. Piyawattanametha, C. T. Chan, and M. C. Wu, “Linearization of Electrostatically Actuated Surface Micromachined 2-D Optical Scanner,” Journal of MEMS, vol. 10, no. 2, June 2001. [22 ] Jianglong Zhang, Y. C. Lee, V. M. Bright, J. Neff, “Digitally positioned micromirror for open-loop controlled applications,” Proceedings of MEMS'02, pp. 536-539, Jan. 2002. [23 ] N. Yazdi, H. Sane, T. D. Kudrle, C. H. Mastrangelo, “Robust sliding-mode control of electrostatic torsional micromirrors beyond the pull-in limit,”TRANSDUCERS'03, vol. 2, pp. 1450-1453, 2003. [24 ] H. Sane, N. Yazdi, and C. Mastrangelo, “Applicationof Sliding Mode Control to Electrostatically Actuated Two-Axis Gimbaled Micromirrors,” Proceedings American Control Conference, pp. 3726 – 3721, June 2003. [25 ] 黃安橋,“適應控制理論”上課講義, 2000. [26 ] 郭有順,“不確定時變系統之適應控制研究,”國立台灣科技大學機械工程系 博士論文, 2001. [27 ] Erwin Kreyszig, “Advanced engineering mathenatics,” pp. 553-557, 8th ed., 1999. [28 ] 曾繁根,“微系統設計”上課講義, 2001. [29 ] R. A. Conant,“Micromachined Mirrors,” Ph.D. Thesis, EECS, U. C. Berkeley, Spring 2002. [30 ] Jan Mehner, J. Wibbeler, “ANSYS Multiphysics Capabilities for MEMS Modeling and Simulation,” ANSYS Solutions, vol. 3, no. 3. [31 ] J. A. Yeh, C.-Y. Hui and N. C. Tien, “Electrostatic Model for an Asymmetric Combdrive,” IEEE/ASME Journal of MEMS, vol. 9, pp. 126-135, March 2000. [32 ] 朱健誠,“高深寬比 BELST 製程於垂直靜電驅動微掃描面鏡之應用,”國立清華大學動力機械工程系 碩士論文, 2002. [33 ] R. C. Hibbeler, “Engineering Mechanics,” pp.626, 1997. [34 ] I. J. Nagrath and M. Gopal, “Control Systems Engineering,” Second Edition, pp. 144, 1985.id NH0925311084 sid 913733 cfn 0 / id NH0925311085 auc 陳燦議 tic 多頻率結構輔助式介電泳細胞分離裝置 adc 劉承賢 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 英文 pg 57 kwc 細胞分離 kwc 細胞分類 kwc 介電泳 kwc 微機電系統 abc 微機電系統(MEMS)發展至今已逾二十餘年,近年來由於生物科技發展迅速,微機電於生醫領域亦有廣大的應用面。目前發展的生醫微晶片包括細胞分離晶片(Cell Sorting\Separation Chip)、細胞裂解晶片(Cell Lysis Chip)、聚合脢鏈鎖反應晶片(PCR Chip)、去氧核醣核酸檢測晶片(DNA Detection Chip)等。此類晶片可經由製程整合後成一實驗室晶片(Lab-On-a-Chip)以作為全功能的疾病檢測分析晶片。本研究主要針對細胞分離部分設計一新型晶片以取代傳統分離方式。過去已有不少利用微機電技術分離細胞的文獻發表,包括微過濾器(Micro Filter)、微水力開關(Hydraulic Switch)、介電泳等。其中微過濾器有細胞阻塞的顧慮,而微水力開關則需要外加即時偵測裝置,而以介電泳方式來分離對細胞的選擇性為最佳,然而受限於單一頻率的訊號供給,以致於無法同時分離多種細胞。本文首先提出多頻率介電泳的概念,配合結構的設計,同時施加多種頻率的訊號於晶片上,期望能分離多種細胞。 tc 1. Introduction-----1 1.1 Background and Motivation 1.2 Survey of Literature 1.2.1 Structural Filtration 1.2.2 Hydraulic Separation 1.2.3 Gravity-Driven Separation 1.2.4 Dielectrophoretic Separation 2. Theoretical Analysis and Design Concept-----10 2.1 Domain Knowledge - Dielectrophoresis 2.2 Design Concept 3. Simulation and Analysis-----18 3.1 Simulation with ANSYS 3.1.1 Derivations from ANSYS 3.2 CFDRC Simulation 4. Fabrication-----33 4.1 Fabrication Process 4.2 Microfabrication Results 5. Driving Circuit Design-----41 5.1 Circuit Layout 5.2 Waveform Testing 6. Experimental Results-----46 6.1 Experimental Setup 6.2 Preliminary Testing 6.3 Device Testing 7. Conclusion-----56 7.1 Summary 7.2 Future Workrf [1 ] D.J. Oh, S.K Choi, and H.N. Chang, (1994) Cytotechnol. 15, 243-251. [2 ] A.W. Caron, L. Rosanne, A.A. Kamen, and B. Massie, (1994) Biotechnol. [3 ] H.A. Hansen, B. Damgaard, and C. Emborg (1993) Cyrorechnol. 11,155-166. [4 ] J.A. Searies, P. Todd, and D.S. Kompala (1994) Biotechnol. Prog. 10, 198-206. [5 ] Dongeun Huh et al., “Gravity-Driven-Microhydrodynamics-Based Cell Sorter (microHYCS) for Rapid, Inexpensive, and Efficient Cell Separation and Size-Profiling”, IEEE MEMS 2002, Poster180 [6 ] S.M. Lee, (1989) J. Biotechnol. 1, 103-118. [7 ] W. Berthold, and R. Kempken, (1994) Cytotechnol. 15, 229-242 [8 ] F. Trampler, S.A. Sonderhoff, P.W.S. Pui, D.G. Kilburn, and J.M. Piret, (1994) Biotechnol. 12, 281-284 [9 ] O. Dobihoff-Dier, T. Gaida, and H. Karinger (1994) Biotechnol. Prog.10, 428-432. [10 ] G. Fuhr, H. Glasser, T. Muller, and T. Schnelle, (1994) Biochim. Biophys. Acta 1201, 353-360 [11 ] Jaisree Moorthy, David J. Beebe, “In situ Fabricated Porous Filter – Characterization Biological Applications”, IEEE-EMBS 2002, Poster 186 [12 ] Stefan Metz et al., “Flexible microchannels with integrated nanoporous membranes for filtration and separation of molecules and particles”, IEEE 2002 [13 ] R.A. Haldon, and B.E. Lee, “Structure and permeability of porous films of poly(hydroxyl ethyl methacrylate),” Br. Polym. 4, 1972. pp.491-501 [14 ] C.C. Chen, and S. Zappe, “Microfluidic Switch for Embryo and Cell Sorting,” 2E65.P, Transducers 2003 [15 ] S. Masuda, M. Washizu, T. Nanba (1989) “Novel method of cell fusion in field constriction area in fluid integrated circuit”, IEEE transactions on industry applications, 25, 4 ,pp. 732-737. [16 ] M. Washizu, T. Nanba, S. Masuda (1990) “Handling biological cells using a fluid integrated circuit”, IEEE transactions on industry applications, 26, 2, pp. 352-357 [17 ] U. Zimmermann, G. Neil, “Electromanipulation of cells”(1996) CRC Press. [18 ] G.H. Markx, Y. Huang, X-F Zhou, R. Pethig, “Dielectrophoretic characterization and separation of micro-organisms” (1994) Microbiology, 140 pp.585-591. [19 ] K.L. Chan, Green N.G., Hughes M.P. and Morgan H. “Cellular characterisation and separation: Dielectrophoretically Activated Cell Sorting (DACS)” (1998) Proc. IEEE Conf. on Engineering in Medicine and Biology (Hong Kong) pp. 2953-2956 [20 ] H. Sano, H. Kabata, O. Kurosawa, M. Washizu, ”Dielectrophoretic chromatography with cross-flow injection”, IEEE MEMS 2002, pp. 11-14 [21 ] K.V.I.S. Kaler and R. Paul, “Bioparticle Mechatronics,” IEEE MEMS 1996 [22 ] http://www.mogami-wire.co.jp/paper/physical-constants.html [23 ] http://www.allaboutcircuits.com/vol_1/chpt_13/3.html [24 ] N. G. Green, A. Ramos and H. Morgan, “Ac electrokinetics: a survey of sub-micrometre particle dynamics,” (2000) J. Phys. D: Appl. Phys. 33 632–641.id NH0925311085 sid 913748 cfn 0 / id NH0925311086 auc 顧成麟 tic 大位移梳狀致動器設計及回授控制 adc 陳榮順 博士 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 53 kwc 梳狀致動器 kwc 靜電式致動器 kwc 大位移梳狀致動器 abc 在微機電系統的研究領域中,利用致動元件在不同環境中來完成特定目的是其特點之一,而在這些微機電系統之元件中,有效的致動方式一直是主要的研究方向之一,而其使用靜電力做為驅動方式的梳狀致動器更是許多產品所採用。其主要的原因便是靜電力容易控制,不易受環境因素的影響,且可與積體電路互相整合成一個系統。 tc 目錄 摘要…………………………………………………………………………Ⅰ 誌謝………………………………………………………………………Ⅱ 目錄…………………………………………………………………………Ⅲ 圖表目錄……………………………………………………………………Ⅴ 第一章 緒論…………………………………………………………………1 1.1 背景與動機…………………………………………………………1 1.2 文獻回顧…………………………………………………………2 1.3 本文大綱…………………………………………………………7 第二章 系統架構與設計考量 ……………………………………………9 2.1 致動器元件分析 …………………………………………………9 2.1.1梳狀致動器最大行進距離分析……………………………9 2.1.2 梳狀致動器結構改良………………………………………14 2.1.3 補償電極靜電力分析………………………………………16 2.1.4 元件設計與製程……………………………………………19 2.1.5致動器元件結構共振組態模擬……………………………23 2.2介面電路設計………………………………………………………24 2.2.1電容量測電路設計…………………………………………25 2.2.2系統介面電路設計…………………………………………28 2.3系統程式設計………………………………………………………32 第三章 結果與討論………………………………………………………36 3.1致動器位移及電荷密度模擬………………………………………36 3.2 元件製程結果……………………………………………………42 3.3電路模擬及量測結果………………………………………………44 3.3.1 電容量測電路模擬…………………………………………44 3.3.2 補償電極選擇電路量測……………………………………48 3.4系統程式設計………………………………………………………49 第四章 結論………………………………………………………………51 參考文獻:……………………………………………………………………52rf [1 ]W. C. Tang, T. H. Nguyen, “Laterally driven polysilicon resonant microstructures,” Sensors and Actuators, Vol.20 P25-32, 1989. [2 ]C. J. Kim, “Silicon processed overhanging microgripper,” J. MEMS Vol.1 No.1, March 1992. [3 ]B. Ha, Y. Oh, B. Lee, and K. Y. Yao, “A area variable capacitive microacceletometer with Force Balancing electrodes,” Samsung Electro Mechanics Co. [4 ]V. P. Jaecklin, C. Linder ,and N. F. de Rooij, “Novel polysilicon comb actuators for xy stages,” Proc. IEEE Micro. Electro. Mech. Syst. P147-9, 1992. [5 ]C. C. Chen, C. K. Lee, and Y. J. Lai, “Novel VOA using in plane reflective micromirror and off axis light attenuation,” Asia Pacific Microsystems Inc, P16-29, 2003. [6 ] M. H. Kiang, S. Olav, K. Y. Lau, “Electrostatic combdrive actuated micromirrors for laser beam scanning and positiong,” J.MEMS Vol. 7 No.1, March 1998. [7 ]國科會精密儀器發展中心, “微機電系統技術與應用”, 2003. [8 ]T. Hirano, T. Furuhata, and K. J. Gabriel, “Design, Fabrication, and Operation of Submicron Gap Comb Drive Microactuator,” J. Microelectromechanical system Vol.1 NO.1 P52-59, 1992. [9 ]R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb drive actuators for large displacements,” J.Micromech. Microeng. P320-329 ,1996. [10 ]G. Zhou, P. Dowd, “Tilted folded beam suspension for extending the stable travel range of comb drive actuators,” J. Micromech. Microeng. Vol.13 P178-183, 2003. [11 ]C. L. Joost, O. Wouter, and H. V. Petr, “A Sensitive Differential Capacitance to Voltage Converter for Sensor Application,” Transactions on Instrumentation and measurement Vol.48 No.1 P89-96, 1999. [12 ]V. P. Jaecklin, C. Linder, N. F. Rooij, and J. M. Moret, “Micromechanical comb actuators with low driving voltage,” J. Micromech. Miroeng. Vol.2 P250-255, 1992. [13 ]D. A. Johns, K. Martin, “Analog Integrated Circuit Design,” John Wiley, 1997. [14 ]B. Razavi, “Design of Analog CMOS Integrated circuits,” Mc Graw Hill, 2002. [15 ]林踐,蔡明龍, “LabView 6.X 入門與應用,” 台科大, 2002. [16 ]林俊賓, “SPICE,” 國家晶片系統設計中心, 2003.id NH0925311086 sid 913758 cfn 0 / id NH0925311087 auc 陳揚哲 tic 微環形殘餘應力感測器出平面挫曲變形與拉伸應力感測之研究 adc 陳榮順 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 57 kwc 微機電 kwc 殘餘應力 kwc 薄膜 abc 微機電系統乃是以半導體製程為平台,並結合了機械、電子、光學、材料等多種領域所發展出的新技術。在微機電元件製程中由於殘餘應力的影響,常造成結構出現不必要的變形,影響元件的性能,因此,量測應力數值作為製程參數的參考已有多人進行研究。本文將研究重心投注在微環形殘餘應力感測器的分析上,研究出平面方向變形對感測結果之影響,以改變元件尺寸的方式降低出平面變形的現象,進一步提高感測器量測的精確度。此外,本論文中提出一另類的設計,利用改變結構挫屈方向完全抑制垂直方向的變形。 tc 摘要…………………………………………………………………………………Ⅰ 誌謝………………………………………………………………………………Ⅱ 目錄………………………………………………………………………………… Ⅲ 圖目錄………………………………………………………………………………Ⅳ 表目錄………………………………………………………………………………Ⅶ 第一章 緒論…………………………………………………………………………1 1.1研究動機與背景……………………………………………………………1 1.2文獻回顧…………………………………………………………………2 1.3本文大綱……………………………………………………………………3 第二章 微環形殘餘應力感測器工作原理…………………………………………5 2.1微環形殘餘應力感測器簡介……………………………………………5 2.2挫屈現象……………………………………………………………………6 2.3理論模型……………………………………………………………………8 第三章 殘餘應力模擬分析…………………………………………………………11 3.1有限單元法模擬過程……………………………………………………11 3.2導圓角以及固定端對於簡化模型模擬之影響…………………………14 3.3有限單元法觀察重點……………………………………………………19 3.4出平面挫屈變形之微環形應力感測器模擬結果討論…………………24 3.5水平面挫屈變形之微環形應力感測器模擬結果討論…………………32 3.6模擬結果結論…………………………………………………………36 第四章實驗分析……………………………………………………………………39 4.1製程設計…………………………………………………………………39 4.2光罩設計…………………………………………………………………41 4.3 第一道黃光製程結果……………………………………………………44 4.4第二道黃光製程結果……………………………………………………47 第五章 結論………………………………………………………………………54 參考文獻…………………………………………………………………………56rf [1 ] W. Fang and J.A. Wickert, “Determining mean and gradient residual stress in thin films using micromachined cantilevers,” J. Micromech. Microeng., Vol. 6, pp. 301-309, 1999. [2 ] J. Hsieh and W. Fang, “A novel microelectrostatic torsional actuator,” Sensors and Actuators A, Vol. 79, pp. 64-70, 2000. [3 ] R. T. Chen, H. Nguyen, and M.C. Wu, “A low voltage micro-machined optical switch by stress-induced bending,” Micro Electro Mechanical Systems MEMS '99, pp. 424-428, 1999. [4 ] C. Tsou and W. Fang, “The effect of residual stresses on the deformation of semi-circular micromachined beams,” J. Micromech. Microeng., Vol. 10, pp. 43-41, 1999. [5 ] C. Tsou, H. Yin, and W. Fang, “On the out-of-plane of v-shaped micromachined beams,” J. Micromech. Microeng., Vol. 11, pp. 153-160, 2001. [6 ] H. Guckel, T. Randazzo, and D.W. Burns, “A simple technique for the determination of mechanical strain in thin films with application to polysilicon,” J. Appl. Phys., Vol. 57, No. 1, pp. 1671-1675, 1985. [7 ] H. Guckel, D. Burns, C. Rutigliano, E. Lovell, and B. Choi, “Diagnostic micro structure for the measurement of intrinsic strain in thin films,” J. Micromech. Microeng., Vol. 2, pp. 86-95, 1992. [8 ] L. Lin, A.P. Pisano, and R.T. Howe, “A micro strain gauge with mechanical amplifier,” Journal of Microelectromechanical Systems, Vol. 6, No. 4, pp. 313-321, 1997. [9 ] C. Pan and W. Hsu, “A microstructure for in situ determination of residual strain,” Journal of Microelectromechanical System, Vol. 8, No. 2, pp. 200-207, June 1999. [10 ] Y.B. Gianchandani and K. Najafi, “Bent-beam strain sensors,” Journal of Microelectromechanical Systems, Vol. 5, No. 1, pp. 52-58, 1996. [11 ] L. Que, M.-H. Li, L.L. Chu, and Y.B. Gianchandani, “A micromachines strain sensor with differential capacitive readout,” Micro Electro Mechanical Systems MEMS '99, pp. 552-557, 1999. [12 ] S. Seok, B. Lee, and K. Chun, “New electrical residual stress characterization using bent beam actuators,” J. Micromech. Microeng., Vol. 12, pp. 562-566, 2002. [13 ] L. Elbrecht, U. Storm, R. Catanescu, and J. Binder, “Comparison of stress measurement techniques in surface micromachining,” J. Micromech. Microeng., Vol. 7, pp. 151-154, 1997. [14 ] M. Boutry, A. Bosseboeuf, J.P. Grandchamp, and G. Coffignal, “Finite-element method analysis of freestanding microrings for thin-film tensile strain measurement,” J. Micromech. Microeng., Vol. 7, pp. 280-284, 1997. [15 ] M. J. Madou, “Fundamentals of microfabrication,” 2nd Edition, CRC Press, 2002.id NH0925311087 sid 913783 cfn 0 / id NH0925311088 auc 駱緯世 tic 熱電式紅外線微感測器之設計、分析及製造 adc 陳榮順 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 85 kwc 熱電 kwc 紅外線 kwc 微機電 abc 紅外線感測器之應用範圍相當廣泛,無論是國防相關的飛彈導引裝置,商業相關的建築物老化偵測,甚至於民生相關的醫療診斷系統皆有其應用。而使用微機電技術所製造之紅外線感測器不僅價格便宜、體積小易用於系統組裝且性能佳,由於這些優點使得熱型的感測器漸漸取代量子型感測器,成為紅外線感測器研究的主要趨勢;而在四種主要的熱型感測器中,又以熱電式紅外線感測器最具研究潛力。 tc 摘要...........................................................................................................................Ⅰ誌謝..............................................................................................................................Ⅱ目錄..............................................................................................................................Ⅲ圖目錄………………………………………………………………………………..Ⅳ表目錄………………………………………………………………………………..Ⅵ第一章 緒論…………………………………………………………………………1 1.1研究背景與動機…………………………………………………………….1 1.2文獻回顧……………….……..…………………………………………….2 1.2.1紅外線感測器的種類………………………………………………….2 1.2.2熱型紅外線感測器的種類及比較…………...………………………..3 1.2.3熱電式紅外線感測器………………………………………………….5 1.3本文大綱………………………..…………………………………………..7 第二章 系統架構與分析……………………………………………………………8 2.1感測器系統架構…….……………………………………………..………….8 2.2工作原理描述與熱電偶材料選擇………..……………………………..……9 2.3感測器基本性能參數介紹…………………………………………………..12 2.3.1響應度(responsivity)………….………………………………………12 2.3.2雜訊等效功率(Noise Equivalent Power,NEP)………………………13 2.3.3感測度(Detectivity,D)……………………….………………………14 2.3.4歸一化感測度(Normalized detectivity, )……………………….…14 2.4結構設計……………………..………………………………………………15 2.5設計參數選擇………………………………………………………………..21 第三章 製程介紹及光罩設計……….……………...………………………………31 3.1下線製程部份(TSMC 0.35 2P4M CMOS)…………………………………32 3.2自行處理之後製程部份…………………..…………………………………36 3.3光罩設計部份…………….…….……………………………………………39 第四章 感測器熱傳模擬分析及量測電路之設計…………….…………………43 4.1紅外線感測器熱傳暫態模擬分析…………..……………………………43 4.2紅外線感測器等效類比電路模組……………………………..…………50 4.3訊號處理電路設計…….……………………………………..……………57 第五章 實驗結果與討論…………………………………………………….……64 5.1訊號處理電路及顯示系統…………..…………………………….………65 5.2感測器後製程及實驗量測……………………..………………………….74第六章 結論………….……………………………...……………………….……80參考文獻……………………………………………..………………………………82rf [1 ] I. J. Spiro, “The optimization of an optical missile guidance tracker,” Apply Optical, vol. 8, 1969, pp. 1365-1371. [2 ] L. B. Carpenter, “Long path detection of atmospheric contaminanta,” U. S. Patent 2930893, 1960. [3 ] R. D. Hudson and J. W. Hudson, “The military applications of remote sensing by infrared,” Proc. of the IEEE, vol. 1, no. 63, 1975, pp. 104-128. [4 ] G. J. Weil, “Computer-aided IR analysis of bridge deck delaminations,” Proceedings of the 5th IR information exchange, 1985, pp. 85-93. [5 ] J. Grant, “Intruder Alarms,” Paramount Publishing Ltd., 1996, pp. 112-159. [6 ] W. D. Lawson, S. Nielsen, E. H. Putley and A. S. Young, “Preparation and properties of HgTe and mixed crystals of HgTe-CdTe,” J. Phys. Chem. Solids, vol. 9, 1959, pp. 325-329. [7 ] S. Borrello and H. Levinstein, “Preparation and properties of mercury-doped germanium,” J. of Appl. Phys., vol. 33, 1962, pp. 2947-2950. [8 ] D. Long and J. L. Schmidt, “Mercury-cadmium telluride and closely related alloys,” Semiconductors and Semimetals, Academic Press, New York, vol. 5, 1970, pp. 175-255. [9 ] W. S. Boyle and G. E. Smith, “Charge coupled semiconductor devices,” Bell System Technical Journal, 1970, pp. 587-593. [10 ] W. Parrish and A. Lockwood, “Characterization of a 32×32 InSb hybrid focal plane,” IEDM Technical Digest, Dec, 1978, pp. 513-516. [11 ] J. S. Shie, Y. M. Chen, M. Ou-Yang and B. C. S. Chou, “Characterization and modeling of metal-film microbolometer,” IEEE J. of MEMS, vol. 5, no. 4, 1996, pp. 298-306. [12 ] K. C. Liddiard, “Thin-film resistance bolometer IR detectors,” Infrared Physics, vol. 24, no. 1, 1984, pp. 57-64. [13 ] M. F. Thompsett, “A Pyroelectric thermal imaging camera tube,” IEEE Trans. Electron Device, vol. 18, Nov, 1972, pp. 1070-1074. [14 ] R. W. Whatmore, “Pyroelectric devices and materials,” Rep. Prog. Phys., vol. 49, 1986, pp. 1335-1386. [15 ] K. Yamashita, A. Murata and M. Okuyama, “Miniaturized infrared sensor using silicon diaphragm based on Golay cell,” Sensors and Actuators A, vol. 66, 1998, pp. 29-32. [16 ] R. Muanghlua, S. Cheirsirikul and S. Supadech, “The Study of Silicon thermopile,” Proceedings, vol. 3, 24-27 Sept, 2000, pp. 226-229. [17 ] J. Muller, V. Baier, U. Dillner, R. Guttich and E. Kessler, “ A novel micromachined 2×128-element linear thermoelectric infrared radiation sensor array,” Proceedings of micro tec2000, VDE World Microtechnologies Congress, Hanover, vol. 1, 25-27 Sept, 2000, pp. 465-469. [18 ] D. Yao, G. Chen and C. J. Kim, “Low temperature eutectic bonding for in-plane type micro thermoelectric cooler,” Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition, 11-16 Nov, 2001. [19 ] W. G. Baer, T. L. Hull, K. Najafi and K. D. Wise, “A multiplexed silicon infrared thermal imager, ” Digest IEE Int. Conf. Solid-State Sensors Actuators, San Francisco, USA, June, 1991, pp. 631-634. [20 ] R. Lenggenhager, H. Baltes, J. Peer and M. Forster, “Thermoelectric Infrared Sensors by CMOS Technology,” IEEE Electron Device Letters, vol. 13, no. 9, Sept, 1992. [21 ] A. D. Oliver and K. D. Wise, “A 1024-element bulk-micromachined thermopile infrared imaging array,” Sensors and Actuators, vol. 73, 1999, pp. 222-231. [22 ] K. Liao, R. Chen and B. C. S. Chou, “Analysis and design of thermoelectric infrared microsensor,” Proceedings of 2003 ASME International Mechanical Engineering Congress and Exposition, 16-21 Nov, 2003. [23 ] 李宗昇, “低解析度紅外線影像系統之家庭保全應用,” 國立交通大學光電工程研究所博士論文,民國八十八年。 [24 ] B. C. S. Chou and M. Ou-Yang, “Thermopile infrared sensor, thermopile infrared sensors array, and method of manufacturing the same,” U. S. Patent 6335478B1, 2002. [25 ] B. C. S. Chou and J. S. Shie, “An innovative Pirani pressure sensor,” Solid State Sensors and Actuators 1997, vol. 2, 16-19 June, 1997, pp. 1465-1468. [26 ] G. T. A. Kovacs, “Micromachined Transducers sourcebook,” McGraw-Hill, 1998. [27 ] M. J. Madou, “Fundamentals of Microfabrication second edition,” CRC PRESS, 2002. [28 ] 姚志民, 石玉清, “微機電設計模擬軟體CoventorWare研習會,” 國家高速電腦中心,2002. [29 ] R. P. Ribas, N. Bennouri, J. M. Karam and B. Courtois, “Study of Suspended Microstrip and Planar Spiral Inductor Built Using GaAs Compatible Micromachining,” Journal of Solid-State Device and Circuits, vol. 6, no. 1, Feb, 1998, pp. 11-16.id NH0925311088 sid 913737 cfn 0 / id NH0925311089 auc 張昇崑 tic 高速連桿沖床機構動態特性研究 adc 左培倫 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 英文 pg 47 kwc 沖床 kwc 機構動力學 kwc 坤氏定理 kwc 高速沖壓 abc Four-bar crank slider mechanism is broadly used in the design of mechanical presses. General assumptions such as crank having a constant input angular velocity or neglecting the effect of workpiece are often made for simplicity in the analysis and synthesis. tc ABSTRACT…………………………...………..............………Ⅰ CONTENTS.................................................................................Ⅱ LIST OF FIGUES... ....................................................................Ⅳ LIST OF TABLES.......................................................................Ⅵ CHAPTER 1 Introduction....................................................................1 1.1 Metal forming and press machine........................................................1 1.2 Mechanical press..................................................................................4 1.3 Motive of study.....................................................................................6 1.4 Objective of study.................................................................................8 1.5 Previous work.......................................................................................8 CHAPTER 2 Theory and Modeling...................................................11 2.1 Quinn’s theorem.................................................................................11 2.2 Advantages of applying Quinn’s theorem..........................................16 2.3 Assumptions for Modeling.................................................................18 2.4 Procedure of Modeling.......................................................................20 CHAPTER 3 Numerical Examples....................................................23 3.1 Establishing εcurves........................................................................23 3.2 Effect of Different ......................................................................26 3.3 Consideration of potential energy.......................................................30 3.4 Designing of flywheel........................................................................33 3.5 Dynamic pressing force......................................................................36 3.6 Comparison of dynamic and static pressing force..............................39 CHAPTER 4 Conclusions and Future Work....................................43 4.1 Conclusions........................................................................................43 4.2 Future Work........................................................................................44 REFERENCES.......................................................................................45rf [1 ] B. E. Quinn, “Energy Method for Determining Dynamic Characteristics of Mechanisms”, ASME Journal of Applied Mechanics. Vol. 16. No. 3. September 1949 [2 ] Hamilton H. Mabie, Fred W. Ocvirk, “Mechanisms and dynamics of machinery”, 1987 [3 ] http://www.advantagefabricatedmetals.com/metalformingglossaryb.html [4 ] http://www.ent.ohiou.edu/~raub/manufacturing/forging.htm [5 ] Erik Oberg & Franklin D. Jones & Holbrook L. Horton & Henry H. Ryffel “Machinery's handbook /a reference book for the mechanical engineer, designer, manufacturing engineer, draftsman, toolmaker, and machinist”, 1992 [6 ] 黃艦緯著, 左培倫指導, 「精密連桿沖床電腦輔助機構設計之研究」, 清華大學2002碩士論文 [7 ] S. Molian, “Mechanism design: the practical kinematics and dynamics of machinery”, 1997 [8 ] Barker, C. R., and Tso Pei-Lum, “Characteristic Surface for Three Position Function Generation with Planar Four Bar Mechanisms”, Journal of Mechanisms, Transmission, and Automation in Design, vol. 109, June 1987 [9 ] 梁克欽著, 左培倫指導, 「淨成型沖床之電腦輔助機構設計」, 清華大學2000碩士論文 [10 ] A. G. Sandor and G. N. Erdman “Mechanism design: analysis and synthesis”, 1984 [11 ] Rao, J. S. & Dukkipati, R. V., ”Mechanism and machine theory”, (Publish Info.) New York/Wiley/1989 [12 ] Howell, L.L. ,Midha, A. “Effects of a compliant workpiece on the input/output characteristics of rigid-link toggle mechanisms”, Mechanism & Machine Theory, v 30, n 6, Aug, 1995, p 801-810 [13 ] 押田良輝等著,陳以淦譯, 「機械製圖與演習第四冊」,五洲出版社 [14 ] 伊藤美光著,杜光宗譯, 「機械之驅動系統設計」,建宏出版社, 1995 [15 ] 賴耿陽譯著, 「應用塑性加工學」, 復漢出版社, 2000 [16 ] Charles E. Wilson, J. Peter Sadler. ”Kinematics and dynamics of machinery”, 1993id NH0925311089 sid 915701 cfn 0 / id NH0925311090 auc 林亮佑 tic CNC控制器之即時NURBS插補 adc 雷衛台 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 52 kwc 數值工具機 kwc 即時插補 abc NURBS提供豐富的彈性,讓使用者可以利用自由曲線設計各式各樣的外型,但受限於其複雜的數學形式,以及必需耗費龐大的計算量,過去在NURBS即時插補上乃是透過簡化之數值方法,在即時環境下利用路徑長逼近求取下一時刻之路徑參數,再轉換成座標點完成插補動作。 rf [1 ] W.T. Lei, Computer Numerical Control of Machine Tool, Classroom lecture at Department of Power Mechanical Engineering, NTHU, R.O.C., 2002. [2 ] W.D. Tang, Spline Compression and NURBS Interpolation Technology for High Speed Machining, Master Dissertation, NTHU, R.O.C., 2000. [3 ] P.H. Tsai, 多軸組CNC之物件導向分析與設計, Master Dissertation, NTHU, R.O.C., 2003. [4 ] P.J. Schneider, NURB Curves: A Guide for the Uninitiated, The Apple Technical Journal, Develop issue 25, 2003. [5 ] D.F. Rogers, Introduction to NURBS: with Historical Perspective, San Francisco: Morgan Kaufmann Pub., 2000. [6 ] L. Piegl, W. Tiller, The NURBS Book, 2nd ed. Berlin: Springer, 1997. [7 ] J.D. Faires, R. Burden, Numerical Methods, 2nd ed. Pacific Grove, CA: Brooks/Cole Pub. Co., 1998. [8 ] T. Otsuki, H. Kozai, Y. Wakinotani, inventors, Fanuc Ltd., assignee. Free-Form Curve Interpolation Method and Apparatus, US Patent 5,815,401, 1996. [9 ] T. Otsuki, H. Kozai, Y. Wakinotani, inventors, Fanuc Ltd., assignee. Free Curve Interpolation Apparatus and Interpolation Method. US Patent 5,936,864, 1997. [10 ] Q.G. Zhang, R.B. Greenway, Development and implementation of a NURBS curve motion interpolator, Robotics and Computer-Integrated Manufacturing, Vol. 14, No. 1, pp. 27-36, 1998. [11 ] S.S. Yeh, P.L. Hsu, The speed-controlled interpolator for machining parametric curves, Computer-Aided Design, Vol. 31, No. 5, pp. 349-357, 1999. [12 ] S.S. Yeh, P.L. Hsu, Adaptive-feedrate interpolation for parametric curves with a confined chord error, Computer-Aided Design, Vol. 34, No. 3, pp. 229-237, 2002. [13 ] H. Wang, J. Kearney, K. Atkinson, Arc-Length Parameterized Spline Curves for Real-Time Simulation, Proceedings of the 5th International Conference on Curves and Surfaces, San Malo, France, pp. 387-396, 2002. [14 ] C.W. Cheng, Design and Implementation of Real-time NURBS Curve and Surface Interpolators for Motion Controllers, Ph. D Dissertation, NCKU, R.O.C., 2003.id NH0925311090 sid 913793 cfn 0 / id NH0925311091 auc 藍斌豪 tic 多向斜衝燃燒器之衝擊效應數值分析 adc 楊鏡堂 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 55 kwc 流場衝擊 kwc 多向斜衝 kwc 燃燒 abc 本論文以數值方式分析不同流場衝擊下的燃燒現象,使用兩向衝擊型燃燒器與三向衝擊型燃燒器,不同幾何形狀下改變流場型態,並與前人實驗結果做部份比對,比對結果,由於忽略熱輻射影響,導致溫度極值普遍高於實驗值300k,而速度極值也因此較實驗值高出1.4(m/s)。 tc 目 錄 摘 要 i 誌 謝 ii 目 錄 iii 圖表目錄 vi 符號說明 viii 第一章 前 言 1 第二章 文獻回顧 3 2.1 燃料選擇 3 2-2 燃燒模型 7 2-3 火焰模式 7 2-4 流場結構 8 2-5 預熱效應 11 2-6 二次空氣 11 2-7 不完全燃燒 12 2-8 燃燒不穩定 12 2-9 紊流燃燒 13 2-10 火焰間的影響 14 2-11 衝擊效應 14 第三章 物理模式 18 3-1 問題假設 18 3-2 氣相統御方程式 19 3-3 化學反應模式 20 3-4 紊流模式 20 3-5 邊界條件 21 第四章 數值方法 22 4-1 有限體積法簡介 22 4-1-1 對流項離散 24 4-1-2 物理量離散 24 4-1-3 擴散項離散 25 4-1-4 源項線性化 25 4-2 有限差分方程式 26 4-3 SIMPLEC 演算法 26 4-3-1 求解步驟 28 4-3-2 收斂標準 29 第五章 結果與討論 30 5-1 燃燒器幾何外形 30 5-2 兩向衝擊燃燒器當量比(Φ=2.44)分析 32 5-2-1 兩向衝擊燃燒器當量比(Φ=2.44)溫度場分析 32 5-2-2 兩向衝擊燃燒器當量比(Φ=2.44)速度場分析 35 5-3 三向衝擊燃燒器當量比(Φ=2.44)分析 41 5-3-1 三向衝擊燃燒器當量比(Φ=2.44)溫度分析 41 5-3-2 三向衝擊燃燒器當量比(Φ=2.44)速度場分析 44 5-4 燃燒器性能評估 47 第六章 結論與未來展望 49 6-1 兩向與三向衝擊型燃燒器之比較 49 6-2 未來展望 50 第七章 參考文獻 52rf 第七章 參考文獻 Abdel-Gayed, R. G., Bradley, D., and Lawes, M., 1987, “Turbulent Burning Velocities: A General Correlation in Terms of Straining Rates,” Proc. R. Soc, Lond A, Vol. 414, pp. 389-413. Beer, J. N., and Chigiter, N. A., 1968,“Impinging Jet Flames,” Combustion and Flame, Vol. 12, pp. 575-586. Bain, D. B., Smith, C. E., and Holdeman, J. D., 1994,“CFD Assessment of Orifice Aspect Ratio and Mass Flow Ratio on Jet Mixing in Rectangular Ducts,” AIAA Paper 94-0218. Bain, D. B. and Smith, C. E., 1995, “Mixing Analysis of Axially Opposed Rows of Jets Injected into Confined Crossflow,”Journal of Propulsion and Power, Vol. 11, pp. 885-893. Chen, R. H. and Discroll, J. F., 1988, “The Role of the Recirculation Vortex in Improving Fuel-Air Mixing within Swirling Flames,” Twenty-second Symposium ( International ) on Combustion, The Combustion Institute, Pittsburgh, pp. 531-540. Disimile, P. J., Savory, E., and Toy, N., 1995, “Mixing Characteristic of Twin Impinging Circular Jets,” Journal of Propulsion and Power, Vol. 11, No. 6, pp. 1118-1124. Domingo, P. and Vervisch, L., 1996, “Triple Flames and Partially Premixed Combustion in Autoignition of Non-premixed Turbulent Mixtures,” Twenty-sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 233-240. Dong, L. L., Cheung, C. S., and Leung C. W., 2002, “Heat Transfer from an Impinging Premixed Butane/Air Slot Flame Jet,”International Journal of Heat and Mass Transfer, Vol. 45, pp. 979-992. Dong, L. L., Leung., C. W., and Cheung, C. S., 2003,“Heat Transfer of a Row of Three Butane/Air Flame Jets Impinging on Flat Plate,”International Journal of Heat and Mass Transfer, Vol. 46, pp. 113-125. Eickhoff, H., and Lenze, B., 1969,“Basic Forms of Jet Flames,” Chem. Ing. Techn., Vol.41, pp. 1095-9. Gollahalli, S. R., Khanna, T., and Prabhu, N., 1992,“Diffusion Flames of Gas Jets Issued from Circular and Elliptic Nozzles,” Combustion Science and Technology, Vol. 86, pp. 267-288. Gollahalli, S. R., and Subba, S., 1997,“Partially Premixed Laminar Gas Flame From Triangular Burners,” Journal of Propulsion and Power, Vol. 13, No. 2, pp. 226-232. Gollahalli, S. R., Choudhuri, A. R., 2000,“Combustion Characteristics of Hydrogen-Hydrocarbon Hybrid Fuels,” International Journal of Hydrogen Energy, Vol. 25, pp.451-462. Gutmark, E. and Schadow, K. C., 1996, “Suppression of “Buzz” Instability by Geometrical Design of the Flameholder,” AIAA Journal, Vol. 34, pp. 90-102. Kanury, A., 1975, Introduction to Combustion Phenomena, Gordon and Breach Science Publishers, New York, Chapter 7 & Chapter 8. Kawaguchi, O., Kinoshita, J., and Sato, G. T., 1985, “Premixed Flames at a Multi-Slit Burner,” 日本機械學會論文集( B篇 ), 51卷, 467號. Kuo, K. K., 1986, Principle of Combustion, John Wiely and Sons, New York, Chapter 5 & Chapter 6. Lenze, B. and Milano, M. E., 1975, “ The Mutual Influence of Multiple Jet Diffusion Flames,” Combustion Science and Technology, Vol. 11, pp. 1-8. Li, X. and Tankin, R. S., 1987, “A Study of Cold and Combusting Flow Around Bluff-Body Combustors,” Combustion Science and Technology, Vol. 52, pp. 173-206. Masri, A. R. and Bilger, R. W., 1984, “Turbulent Diffusion Flames of Hydrocarbon Fuels Stabilized on a Bluff Body,” Twentieth Symposium ( International ) on Combustion, The Combustion Institute, Pittsburgh, pp. 319-326. Matovic, M., Oka, S., and Durst, F., 1994, “Structure of the Mean Velocity and Turbulence in Premixed Axisymmetric Acetylene Flames,” Journal of Fluids Engineering, Vol. 116, pp. 631-642. Maughan, J. R., 1995, “Two Stage Flames Stabilization for a Gas Burner,” United States Patent No. 5,408,984. Nosseir, N., Peled, U., and Hildebrand. G., 1987,“Pressure Field Generated by Jet-to-Jet Impingement,” AIAA Journal, Vol. 25 , pp. 1312-1317. Peter, N., 1986, “Laminar Flamelet Concept in Turbulent Combustion,” Twenty-first Symposium ( International ) on Combustion, The Combustion Institute, Pittsburgh, pp. 1231-1250. Poinsot, T., Veyname, D., and Candel, S., 1991, “Quenching Processes and Premixed Turbulent Combustion Diagrams,” Journal of Fluid Mechanics, Vol. 288, pp. 561-602. Stwalley, R. M. and Lefebvre, A. H., 1987, “Flame Stabilization Using Large Flameholders of Irregular Shape,” Journal of Propulsion and Power, Vol. 4, pp. 4-13. Seitzman, J. M., Paul, P. H., and Hanson, R. K., 1990, “Imaging and Characterization of OH Structures in a Turbulent Nonpremixed Flame,” Twenty-third Symposium ( International ) on Combustion, The Combustion Institute, Pittsburgh, pp. 637-644. Su, A., and Liu, Y. C. 2002,“Investigation of Impinging Diffusion Flames with Inert Gas,”International Journal of Heat and Mass Transfer, Vol. 45, pp. 3251-3257. Turn, S. R., 2000, An Introduction to Combustion, Concepts and Application, McGraw-Hill International Edition, pp. 1. Williams, F., 1985, Combustion Theory, Second Ed., Benjamin-Cummings, Menlo Park, California, Chapter 7. Wu, J., Seyed-Yagoobi, J., and Paga, R. H., 2001,“Heat Tansfer and Combustion Characteristic of an Array of Radial Jet Reattachment Flames,”Combustion and Flame, Vol. 125, pp. 955-964. Yang, J. T. and Tsai, G. L., 1993,“Near-Wake Flow of a V-Gutter with Slit Bleed,”Trans. ASME., J. Fluids Engineering, Vol. 115, pp. 13-20. Yang, J. T., Chang, C. C., and Pan, K. L., 2002a,“Flow Structure and Mixing Mechanisms behind a Disc Stabilizer with a Central Fuel Jet,” Combustion Science and Technology, Vol. 174( 3 ), pp. 73-94. Yang, J. T., Change, C. C., Pan, K. l., Kang, Y. P., and Lee, Y. P., 2002b,“Thermal Analysis and PLIF Imaging of Reacting Flow behind a Bluff-body with a Central Fuel Jet,” Combustion Science and Technology, Vol. 174( 3 ), pp. 95-126. Zhang, Y. and Bray, K. N. C., 1999, “Characterization of Impinging Jet Flame,” Combustion and Flame, Vol. 116, pp. 671-674. CFD-ACE(U) User Manual, Version 6.4, CFD-Research Corporation, 2000. 大塚哲二,1995,「濃淡燃燒裝置」,日本國特許廳公開特許公報,特開平7-253204。 黃木丈俊、藤生昭,1995,「燃燒裝置」,日本國特許廳公開特許公報,特開平7-151319。 白井豐,守屋好文,原正一,1995,「燃燒器裝置」,日本國特許廳公開特許公報,特開平7-260108。 李玉華,1996,渦漩燃燒器反應流場之實驗研究,國立清華大學動力機械工程學系碩士論文。 孫泊寧,1997,高負荷燃燒器之設計實作與火焰結構分析,國立清華大學動力機械工程學系碩士論文。 楊鏡堂, 張家齊, 孫泊寧, 高智勇, 1999, "強制擴散型燃燒器," 中華民國新型專利 第147062號 (專利權期間:1999/5/01~2009/6/28, 發證日期;88/9/13; 計畫編號:NSC-87-0401-E-007-034). 楊鏡堂, 高智勇, 1999, "對流衝擊型燃燒器," 中華民國新型專利 第149086號 (專利權期間:1999/7/21~2010/6/28, 發證日期: 88/12/06; 計畫編號:NSC-87-2212-E-007- 034). 楊鏡堂, 陳福安, 鄭翰昌, 2001, "複合進氣道氣態燃料燃燒器," 中華民國新型專利,正申請美國專利 (計畫編號:NSC-89-2212-E-007-026). 陳福安,2000,高負荷燃燒器之火焰雷射診測與燃燒機制研究,國立清華大學動力機械工程學系碩士論文。 蔣淑卿,2002,複合進氣道燃燒器之火焰結構分析,國立清華大學動力機械工程學系碩士論文。 吳志勇,2003,噴流火焰暫態吹熄過程之行為與不穩定特性之探討,國立成功大學航空太空工程研究所博士論文。id NH0925311091 sid 913707 cfn 0 / id NH0925311092 auc 林韋辰 tic 氫/空氣層流預混氣流於平行絕熱催化性白金壁面之實驗 adc 王訓忠博士 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 36 kwc 氫氣 kwc 白金 kwc 觸媒燃燒 kwc 催化性壁面 kwc 催化性側壁 abc 本文對於氫/空氣預混層流燃氣與白金催化近似絕熱側壁之反應進行研究。白金催化性側壁為兩個平行相距1cm的電鍍白金鈦板,在兩平行板所圍成的區間兩側,用石英板隔絕外界空氣的影響並方便觀察。之後通入不同當量比(Φ=1.0、0.5、0.35、0.15)、進口流速(uin=0.2、0.27、0.43、0.59 m/s)等不同條件的預混燃氣,待其反應建立穩定的溫度場後,利用S-type的熱電偶量取燃氣流場及板面的溫度分佈。結果發現,白金對氫氣預混燃氣的催化效應在常溫常壓下就可進行,並且在相同的燃氣進口流速下,當量比越高則壁面及流場溫度分佈會越高;在相同的當量比時,燃氣的進口速度越快時溫度分佈較高;若以相同的氫氣體積流量來看,則整體燃氣流速慢(即當量比高)時溫度分佈較高。另外在低當量比時(Φ=0.15),不管進口流速如何,平均壁溫會較低,且壁溫會沿燃氣流向緩緩增加,而較高當量比時(Φ=1.0),平均壁溫較高,但壁溫也會沿燃氣流向增加,兩者原因有所不同,其詳細說明如內文所示。 tc 圖表目錄 ii 第一章 緒論 1 1.1 前言………………………………………… 1 1.2 文獻回顧…………………………………… 4 1.3 研究目的…………………………………… 8 第二章 實驗方法 10 2.1 實驗設備…………………………………… 10 2.2 實驗方法…………………………………… 12 第三章 結果與討論 14 3.1 壁面溫度…………………………………… 15 3.2 流場溫度…………………………………… 18 第四章 結論與未來工作 20 4.1 結論………………………………………… 20 4.2 未來工作…………………………………… 21 參考文獻 23rf [1 ] Hayes, R.E. and Kolaczkowski, S.T., “Introduction to catalytic combustion,” Text Book Gordon & Breach Science Publishers 681 pp ISBN: 90-5699-092-6, (1997) [2 ] Davy, H., “Some New Experiments and Observations on The Combustion of Gaseous Mixtures,” The Collected Works of Sir Humphrey Davy (J. Davy Ed.), Vol.Ⅵ, Smith, Elder and Co. Cornhill London, (1840). [3 ] 趙怡欽, 許紘瑋, “觸媒燃燒”, 燃燒季刊38期Vol.11 No.2 Page12-30(2002). [4 ] Pfefferle, W. C. and Pfefferle, L. D.,“Catalytically Stabilized Combustion,”Prog. Energy Combust. Sci., Vol.12, pp.25-41 (1986). [5 ] Arai, H., and Machida, M., “Recent Progress in High-Temperature Catalytic Combustion,” Catalysis Today 10 pp.81-94 (1991). [6 ] Schefer, R. W., Robben, F., and Cheng, R. K., “Catalyzed Combustion of H2/Air Mixtures in a Flat-Plate Boundary Layer:ⅠExperimental Results,” Combustion and Flame 38:51-63 (1980). [7 ] Schefer, R. W., “Catalyzed Combustion of H2/Air Mixtures in a Flat-Plate Boundary Layer:ⅡNumerical Model,” Combustion and Flame 45:171-190 (1982). [8 ] Brown, N. J., Schefer, R. W. and Robben, F., “High-Temperature Oxidation of H2 on a Platinum Catalyst,” Combustion and Flame 51:263-277 (1983). [9 ] Bui,P. A., Vlachos, D. G. and Westmoreland, P. R., “Homogeneous Ignition of Hydrogen-Air Mixtures over Platinum,” Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, 1996, pp.1763-1770. [10 ] Fernandes, N. E., Park, Y. K., and Vlachos, D. G. ,“The Autothermal Behavior of Platinum Catalyzed Hydrogen Oxidation: Experiment and modeling,” Combustion and Flame 118: 164-178 (1999). [11 ] Appel , C., Mantzaras, J., Schaeren, R., Bobach, R., Inauen, A., Kaeppeli, B., Hemmerling, B. and Stampanoni, A.,“An Experimental and Numerical Investigation of Homogeneous Ignition in Catalytically Stabilized Combustion of Hydrogen/Air Mixtures Over Platinum,” Combustion and Flame 128:340-368 (2002). [12 ] Warnatz, J., Dibble, R. W. and Maas, U., Combustion, Physical and Chemical Fundamentals, Modeling andPhysical and Chemical Fundamentals, Modeling andSimulation, Springer-Verlag, New York, 1996. [13 ] Deutschmann, O., Schmidt, R., Behrendt, F. and Warnatz, J., “Numerical Modeling of Catalytic Ignition,” Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, 1996, pp.1747-1754. [14 ] Dupont, V., Moallemi, F., Williams, A. and Zhang S.-H., “Combustion of Methane in Catalytic Honeycomb Monolith Burners,” Int. J. Energy Res. 2000; 24:1181-1201. John Wiley & sons, Ltd. [15 ] Dupont, V., Zhang, S. H., Bentley, R. and Williams, A., “Experimental and modeling studies of the catalytic combustion of menthan,” Fuel 81 (2002) 799-810. [16 ] Seo, Y. S., Cho, S. J., Kang, S. K. and Shin, H. D., “Experimental and numerical studies on combustion characteristics of a catalytically stabilized combustion,” Catalysis Today, Vol.59, pp.75-86 (2000). [17 ] Wierzba, I. and Depiak, A., “Catalytic oxidation of lean homogeneous mixtures of hydrogen/hydrogen-mathane in air,” International Journal of Hydrogen Energy 29 (2004) 1303-1307. [18 ] Deutschman, O., Maier, L. I., Riedel, U., Stroemman, A. H. and Dibble, R. W. “Hydrogen assisted catalytic combustion of methane on platinum,” Catalysis Today, Vol.59, pp.141-150 (2000). [19 ] Boehman, A. L. and Dibble, R. W., “Experimental and numerical investigation on the influence of temporal fuel/air unmixedness on NOX emissions of lean premixed catalytically stabilized and non-catalytic combustion,” Catalysis Today, Vol.59, pp.131-140 (2000). [20 ] Eguchi, K. and Arai, H., “Recent Advances in High Temperature Catalytic Combustion,”Catalysis Today 12 pp.51-65 (1996). [21 ] Vaillant, S. R., and Gastec, A. S., “Catalytic combustion in a domestic natural gas burner,” Catalysis Today 47 pp.415-420 (1999). [22 ]Kesselring, J. P.,“Catalytic Combustion,”in Advanced Combustion Method, ed. By Weinberger, pp.237-257 (1986). [23 ] Aghalayam, P., Bui, P. A. and Vlachos, D. G., “The role of radical wall quenching in flame stability and wall heat flux: hydrogen-air mixtures,” Combust. Theory Modeling 2 (1998) 515-530. [24 ]Andrae, J., Bjornbom, P. and Edsberg, L., “Numerical Studies of Wall Effects with Laminar Methane Flames,” Combustion and Flame 128:165-180 (2002). [25 ] Kent, J. H., “A Noncatalytic Coating for Platinum-Rhodium Thermocouples,” Combustion and Flame 14:279-282, (1970). [26 ] Peterson, R. C. and Laurendeau, N. M., “Emittance of Yttrium-Beryllium Oxide Thermocouple Coating,” Combustion and Flame 60:279-284 (1985). [27 ] Aung, K. T., Hassan, M. I. and Faeth, G. M., “Flame Stretch Interaction of Laminar Premixed Hydrogen/Air Flames at Normal Temperature and Pressure,” Combustion and Flame 109:1-24 (1997).id NH0925311092 sid 913729 cfn 0 / id NH0925311093 auc 陳永為 tic 新型平面滑軌之參數鑑別及預壓之調整 adc 王志宏 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 191 kwc 新型平面滑軌 kwc 剛性值 kwc 阻尼值 kwc 參數鑑別 abc 工具機的滑軌通常分成平面滑軌(或俗稱硬軌)及有滾動元件之線性滑軌。由於傳統平面滑軌在高速時阻力很大,而在極低速之微量進給時又會發生突靜突動(stick-slip)之現象,而滾珠型線性滑軌阻尼小,因此本論文主要研究內容就是在探討一種新型平面式滑軌之動態特性,此新型平面滑軌是利用氧化鋯之陶瓷做成,希望利用陶瓷之低摩擦係數及耐高溫、耐磨耗之特性改善傳統平面滑軌之缺點。 tc 摘要 Ι 誌謝 Ⅱ 目錄 Ⅲ 符號對照表 Ⅵ 第一章 前言---------------------------------1 1-1 研究動機--------------------------------------1 1-2 文獻回顧--------------------------------------1 1-3 研究目標--------------------------------------4 第二章 平面滑軌參數之鑑別理論------------------------5 2-1 新型平面滑軌之物理模型------------------------5 2-2 參數鑑別之理論--------------------------------8 2-3 狀態值的應用---------------------------------15 第三章 實驗鑑別結果---------------------------------17 3-1 實驗設備-------------------------------------17 3-2 實驗設計與架設-------------------------------17 3-3 實驗量測結果與討論---------------------------20 3-4 結論-----------------------------------------31 第四章 數值模擬-------------------------------------32 4-1 單獨滑軌理論模型之建立-----------------------32 4-1-1 滑軌之簡化誤差-------------------------------33 4-1.2 滑軌之材料參數設定---------------------------34 4-1.3 滑軌單獨模型之驗證---------------------------35 4-2 滑塊理論模型之建立---------------------------37 4-2-1  滑塊之簡化誤差-------------------------------37 4-2-2 滑塊之材料參數設定----------------------------38 4-2-3 滑塊模型之驗證--------------------------------39 4-3 滑軌系統等效阻尼與剛性值之淬取----------------41 4-4 結論------------------------------------------49 第五章 磁流變液之特性--------------------------------53 5-1 磁流變液元件之基本特性------------------------53 5-2 磁流變液調整器--------------------------------56 5-3 實驗設備--------------------------------------59 5-4 實驗設計與架設--------------------------------60 5-5 實驗結果--------------------------------------62 5-6 結論------------------------------------------74 第六章 總結------------------------------------------75 參考文獻----------------------------------------------76 附錄(A) 實驗FRF之補充資料---------------------------A-1 附錄(B) 理論FRF之補充資料---------------------------B-1 附錄(C) 合成理論FRF之補充資料-----------------------C-1 附錄(D) 實驗鑑別FRF之補充資料-----------------------D-1 附錄(E) 激振之方法與設備----------------------------E-1 附錄(F) 鑑別程式------------------------------------F-1rf [1 ].Hindhede ,Zimmerman ,Hopkins, “Machine design fundamentals–a practical approach”, Prentice Hall,Englewood Cliffs,New Jersey ,1983. [2 ].屈岳陵,張國榮, “線性傳動元件時代來臨-自潤式滾珠螺桿、自潤式線性滑軌”,機械月刊, pp.242-247 ,2000 [3 ].楊鎮在, “工具機新型平面滑軌之動態特性研究”,國立清華大學碩士論文,2002 [4 ].黃文定, “綜合加工機過高振動之診斷及減振案例研究”,碩士論文,國立清華大學 ,2000. [5 ].Rahman, M., Mansur, M.A., Lee, L.K., Lum, J.K. “Development of a polymer impregnated concrete damping carriage for linear guideways for machine tools”, International Journal of machine Tool & Manufacture, Vol. 41 , pp.431-441 ,2001 [6 ].Slocum, Alexander H.“Precision Machine Design”MIT Prentice ,1992 [7 ].林茂興,“線性滑軌滑塊與軌道介面剛性與阻尼值的驗證”,碩士論文 ,國立中興大學 ,2000. [8 ].Kodiyalam, S., Kao, R.J., Wang, G.,”Analysis and Test Correlation of spacecraft Structures Using Dynamic Parameter Sensitivites”,AIAA Journal, Vol.32, No.11, pp.2286-2292 ,1994. [9 ].Ting, T.,Chen, T.L., Twomey, W. J., “Automated Mode Tracking Strategy”, AIAA Journal, Vol.33, No.1, pp.183-185 ,1993. [10 ].Ting, T.,Chen, T.L., Twomey, W. J., “Correlation Mode Shapes Based on the Modal Assurance Criterion”, Finite Element in Analysis and Design, Vol.14, pp.353-360 , 1993. [11 ].Chou, Y.F., and Tsai,J.S.,“The Identification of Dynamic Characteristics of A Single Bolt Joint”,Journal of Sound and Vibration,Vol.125, pp. 487-502 ,1988. [12 ].Chou, Y.F., and Tsai,J.S.,“Modeling of Dynamic Characteristics of two-Bolt- Joints”,Journal of the Chineses Institite of Engineers,Vol.11 , pp.235-245 ,1988. [13 ].劉奇明, "實驗子結構之合成法研究",國立清華大學碩士論文 ,1989. [14 ].Jolly, M.R. and Carlson J.D. “Controllable Squeeze Film Damping Using Magnetorheological Fluid”Actuator 96, 5th Int. Conf. on New Actuators, eds. H. Borgmann and K.Lenz, Axon Technologies Consult GmbH, 1996 [15 ].Duclos, T.G..“Design of Devices Using Electrorheological Fluid”,SAE,Future Transp.Techn.Conf.and Exp.,pp. 881134 ,1988. [16 ].Wang.M. and Fei, R.Y., “Improvement of Machining Stability Using a Tunable-stiffffness Boring Bar Containing an Electroheological Fluid”,Smart Material structure No.8,pp.511-514 ,1999. [17 ].Delphi corporation, “Delphi Magneto-Rheological(MR) Powertrain Mount”, Engineering Note, December ,2003. [18 ]. Wang, J. H., and Liou, C. S., “The Use of Condition Number of a FRF Matrix in Mechanical Parameter Identification”, ASME Vibrations of Mechanical Systems and the History of Mechanical Design, Vol. 63, pp. 117-124 ,1993,.id NH0925311093 sid 913770 cfn 0 / id NH0925311094 auc 杜諺泊 tic 光碟機防振阻尼器動態特性分析與驗證 adc 王志宏 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 128 kwc 防振阻尼器 kwc 黏彈材料 kwc 橡膠 abc 一般隔振阻尼器之組成皆為高分子聚合物,其中以黏彈性材料最常使用,因為其不僅具備有彈性固體儲存能量的能力,還具有黏滯阻尼之消耗能量的特性。除此之外,由於黏彈材料在製作過程中較為方便,且成本亦較為便宜,因此在光碟機減振的方式中常使用此黏彈材料來作為避振的工具。 tc 摘要........................................Ⅰ 誌謝........................................Ⅱ 目錄........................................Ⅲ 第一章 前言..................................1 1-1 研究動機..................................1 1-2 文獻回顧..................................1 1-3 研究目標..................................4 第二章 高分子材料之黏彈理論..................5 2-1 彈性材料之簡介 ............................5 2-2 潛變行為..................................8 2-3 鬆弛現象..................................10 2-4 線性黏彈材料之理論........................12 2-4.1 三維黏彈材料之本構方程式 ............12 2-4.2 G(t)與K(t)之數學表示法...............16 2-5 簡諧變形下黏彈材料之力學行為.................20 2-6 等效勁度與阻尼之計算.........................27 2-7 根據理論分析結果來改善阻尼器之設計...........30 2-7.1 增加阻尼器之阻尼.....................30 2-7.2 增加阻尼器之勁度.....................31 第三章 數值模擬.................................35 3-1 光碟機具與阻尼器模型之建立...................36 3-2 光碟機具與阻尼器模型之模擬...................39 3-3 材料特性參數.................................41 3-4 模擬流程之驗証 ...............................46 3-4.1圓柱型橡膠之動態特性理論分析................46 3-4.2圓柱型橡膠之動態特性模擬....................50 3-5 數值模擬結果.................................52 3-6 設計之範例...................................56 第四章 實驗驗証.................................71 4-1 實驗設備與配置 ...............................71 4-2 實驗前之準備工作.............................77 4-2.1加速規之校正..........................77 4-2.2力規之校正............................77 4-2.3位移計之校正..........................80 4-3 實驗步驟.....................................80 4-4 實驗結果.....................................87 4-5 實驗與模擬之比較.............................99 第五章 結論.....................................108 參考文獻.........................................109 附錄A............................................112 附錄B............................................114 附錄C............................................117 附錄D............................................118 附錄E............................................120 附錄F............................................122 附錄G............................................124rf 【1】N. W. Tschoegl, The Theory of Linear Viscoelastic Behavior, Academic Press , 1981 【2】Alfrey and Turner, Mechanical Behavior of High Polymers ,Interscience , New York , 1948 【3】John D. Ferry,Viscoelastic Properties of Polymers,Wiley, New York , 1980 【4】Y. C. Fung , Foundations of Solid Mechanics , Prentice Hall , Englewood Cliffs , N. J. , 1965 【5】J.D.Dickens,“Dynamic Model of Vibration Isolator Under Static Load”,Journal of Sound and Vibration , Vol. 236 ,No. 2 , pp.323~337 , 2000 【6】T.K.Ahn and K.W.Kin,“Dynamic Stiffness Estimation Of Pre-Deformed Elastomers”,The 8th International Congress on Sound and Vibration , pp.2211~2218 , 2001 【7】Mattias Sjöberg ,“Dynamic Behaviour Of A Rubber Component In The Low Frequency Range – Measurements And Modelling”,The 7th International Congress on Sound and Vibration , pp.2955~2962 , 2000 【8】C.M.Richards and R.Singh,“Characterization Of Rubber Isolation Nonlinearities In The Context Of Single– And Multi-Degree-Of-Freedom Experimental Systems”, Journal of Sound and Vibration, Vol.247 , No.5 , pp.807~834 , 2001 【9】K.C.Chang , T.T. Soong ,S.T. Oh and M.L. Lai,“Seismic Response of A 2/5 Scale Steel Structure with Added Viscoelastic Dampers”, Proceedings , ASCE Structural Congress , pp.1955~1960 , 1991 【10】張國鎮,蔡孟豪,蔡繼義,加橡皮隔振元件及黏彈性阻尼器橋梁 之抗振行為研究,國科會計畫,NSC86-2621-P002-036 【11】I. S. Sokolnikoff , Mathematical Theory of Elasticity , McGraw Hil l , New York , 1956 【12】Roderic S. Lakes , Viscoelastic solids , Boca Raton: CRC Press , 1999 【13】D. R. Bland , The Theory of Linear Viscoelasticity , Pergamon , London, 1960 【14】G.W. Scherer and S.M. Rekhson ,“Viscoelastic-Elastic Composites : I, General Theory”, Journal of the American Ceramic Society , Vol. 65, No.7 , pp.352~360 , 1982 【15】Singiresu S. Rao , Mechanical Vibrations , Addison- Wesley ,1990 【16】長野早男,“丁基橡膠在防震橡膠的應用”,化工資訊 , Vol.4 , No.4 , pp.49-50 , 1990 【17】Alan S. Wineman and K. R. Rajagopal , Mechanical Response of Polymer , Cambridge University Press , 2000 【18】Robert D. Corsaro and L. H. Sperling , Sound and Vibration Damping with Polymers , Washington, D.C. : American Chemical Society , 1990 【19】I. M. Ward. , Mechanical Properties of Solid Polymers , Wiley New York, 1983 【20】Lawrence E. Nielsen , Mechanical Properties of Polymers and Composites , New York , 1974 【21】Jan Hult , Mechanics of Visco-elastic Media and Bodies , Berlin ,1975 【22】F. J. Lockett , Nonlinear Viscoelastic Solids, London:Academic Press ,1972 【23】Ahid D. Nashif , Vibration Damping , Wiley , New York , 1985 【24】胡德 , 高分子物理與機械性質(上),渤海堂書局, 1990 【25】胡德 , 高分子物理與機械性質(下),渤海堂書局, 1990 【26】陳俊明 ,“光碟機動態之研究”,國立交通大學機械工程系碩 士論文 , 1998 【27】虎門科技股份有限公司 ,Introduction to ANSYS for Revision 5.0 ,1990id NH0925311094 sid 913785 cfn 0 / id NH0925311095 auc 王凱立 tic PDP面板振動噪音之研究 adc 王志宏 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 94 kwc 電漿電視 kwc 肋 kwc 噪音 abc 電漿電視(Plasma Display Panel,簡稱PDP)是目前生活中最常見的顯示器的其中一種,然而由於PDP的驅動原理是利用高電壓使得氣體產生放電現象而發光,當高電壓施加於前後面板時,便會產生電極吸引力而引發面板振動。 tc 第一章 前言 ----------------------------- 1 1-1 研究動機 ------------------------ 1 1-2 文獻回顧 ------------------------ 1 1-3 研究目標 ------------------------ 3 第二章 理論分析 ------------------------- 4 2-1 PDP的結構與發光原理 ------------------4 2-2 PDP的製程 ----------------------- 6 2-3 PDP的製程模擬 -------------------10 2-4 肋彈簧常數之計算---------------- 16 2-5 PDP的顯示與驅動方式 -----------------21 2-6 面板振動的動態分析-------------------23 第三章 PDP噪音與振動狀況 ----------------27 3-1 實驗設備 ----------------------------27 3-2 實驗設定 ----------------------------28 3-3 噪音的分佈狀況 ----------------------28 3-4 振動與噪音特性 ----------------------32 3-5 振動與噪音相關性分析 ----------------49 第四章 理論模擬討論 ---------------------50 4-1 Ansys之模型----------------------50 4-2 PDP靜態變形模擬------------------53 4-3 PDP的動態分析--------------------68 4-4 PDP製程參數對面板動態行為之影響--86 第五章 結論 -----------------------------93 參考文獻 ---------------------------------94 附錄A ------------------------------------A-1 附錄B ------------------------------------B-1rf 【1】 M.Shibata , “Noise-free Plasma Display Panels for Consumer Use” , SID02 , pp.1068-1071 (2002) 【2】 N.S.Bardell , “Free Vibration and analysis of coplanar sandwich panels” , Composite Structure , pp.463-475 (1997) 【3】 Z. Oniszczuk , “Free Transverse Vibration of an Elastically Connected Rectangular Simply Supported Double-Plate Complex System” , Journal of Sound and Vibration, pp.595-608 (2000) 【4】 L.Shuyu , “Study on the Radiation Acoustic Field of Rectangular Radiators in Flexural Vibration” , Journal of Sound and Vibration, pp.469-479 (2002) 【5】 W.L.Li and H.J.Gibeling , “Acoustic Radiation from a Rectangular Plate Reinforced by Springs at Arbitrary Locations” , Journal of Sound and Vibration , pp.117-133(1999) 【6】 D.A.McGraw , “A Method for Determine Young’s Modulus of Glass at Elevated Temperatures” , Journal of The American Ceramic Society , pp.22-27(1952) 【7】 S.Spinner , “Elastic Moduli of Glasses at Elevated Temperatures by a Dynamic Method” , Journal of the American Ceramic Society, pp. 113-118(1956) 【8】 S.H.Lee , Y.D.Kim , “New Method to Reduce Addressing Time of ADS Method for AC PDP” , IDW ’00 , pp.659-662(2000) 【9】 S.Kanda , K.Mizutani , T.Sone , “Fabrication of Fine Barrier Ribs for Color Panels by Sandblasting” , IDW ’96 , pp.263-266(1996) 【10】 D.H.Kim , “Wall Charge Measurement in the Address Period of AC Plasma Display Panel” , Journal of Information Display , pp.42-47(2000)id NH0925311095 sid 913776 cfn 0 / id NH0925311096 auc 吳稚逸 tic 基於STEP-NC之五軸曲面加工 adc 雷衛台 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 40 kwc ISO 14649 kwc STEP-NC kwc NURBS kwc 五軸CNC工具機 kwc 解譯器 abc 本論文針對五軸曲面加工的應用場合,秉持ISO 14649 STEP-NC的物件導向精神,擴充了ISO 14649文件中對於五軸自由曲面及曲面曲線的實際特徵加工命令定義,並設計出一套STEP-NC五軸銑床曲面加工任務展開模組。在完成STEP-NC五軸加工命令擴充後,CNC內部獲得足夠的幾何特徵描述,在控制器中的解譯器擷取曲面及曲面曲線加工特徵描述指令,並自動展開為刀具之引導軌跡。至於刀具指向在簡單無衝擊危險情況下可根據曲面局部曲率特性,計算刀具在軌跡切線方向的前傾角,或是為了避免衝擊並節省複雜的前傾角計算,刀具指向也可由三個在軌跡上運動的參考座標所定義的轉動角決定。最後所計算出的刀具路徑及五軸刀具指向則以適當CNC參數規範,粗插補成刀具路徑曲線及五軸刀具指向曲線送入即時插補器的暫存器中。 tc 中文摘要………………………………………………………………i 英文摘要………………………………………………………………ii 目錄……………………………………………………………………iii 圖目錄…………………………………………………………………iv 符號表…………………………………………………………………vi 1 導論……………………………………………………………1 1.1 前言……………………………………………………………1 1.2 五軸曲面加工的關鍵問題……………………………………1 2 文獻回顧………………………………………………………3 2.1 研究背景………………………………………………………3 2.2 相關技術標準…………………………………………………6 2.2.1 ISO 14649與ISO 10303的關連性……………………………6 2.2.2 ISO 14649 的完整定義關連性………………………………6 2.3 研究目的………………………………………………………7 3 五軸曲面加工之STEP-NC 介面設計…………………………8 3.1 STEP-NC 銑床下的元素定義…………………………………8 3.1.1 三軸銑床加工之STEP-NC 介面定義…………………………8 3.1.2 五軸銑床加工之STEP-NC 介面定義…………………………12 3.2 五軸曲面加工STEP-NC 介面設計……………………………14 3.2.1 五軸曲面加工的重要參數……………………………………14 3.2.2 五軸曲面加工的特徵展開模式………………………………15 3.2.3 Patch 加工介面設計…………………………………………17 3.2.4 曲面曲線及曲面指向曲線介面設計…………………………18 4 CNC 解譯功能…………………………………………………20 4.1 CNC 結構………………………………………………………20 4.2 基於STEP-NC 之五軸曲面加工數據處理……………………21 4.3 五軸粗插補曲線模組的參數決定……………………………25 5 五軸曲面加工解譯器…………………………………………27 5.1 解譯器的功能…………………………………………………27 5.2 基於STEP-NC 之五軸曲面加工解譯器程式…………………28 5.3 基於STEP-NC 之五軸曲面加工解譯器運算輸出……………31 5.3.1 五軸曲面及曲面曲線加工運算輸出…………………………31 6 結論……………………………………………………………34 參考文獻………………………………………………………………35 附錄 基於STEP-NC之五軸曲面加工檔 ……………………………37rf [1 ]ISO 6983-1, Numerical Control of Machines-Program Format and Definition of Address Words-Part 1: Data Format for Positioning, Line and Contouring Control Systems, First Edition, 1982. [2 ]ISO 10303-1, Industrial Automation Systems and Integration-Product Data Representation and Exchange-Part 1: Overview and Fundamental Principles, 1994. [3 ]ISO 10303-11, Industrial Automation Systems and Integration-Product Data Representation and Exchange-Part 11: Description Methods: The EXPRESS Language Reference Manual, 1994. [4 ]ISO 10303-21, Industrial Automation Systems and Integration-Product Data Representation and Exchange-Part 21: Implementation Methods: Clear Text Encoding of the Exchange Structure, 1994. [5 ]ISO 10303-27, Industrial Automation Systems and Integration-Product Data Representation and Exchange-Part 27: Implementation Methods: Java Programming Language Binding to the Standard Data Access Interface with Internet/Intranet Extensions, 1999. [6 ]ISO 10303-42, Industrial Automation Systems and Integration-Product Data Representation and Exchange-Part 42: Integrated Generic Resources: Geometric and Topological Representation, 1994. [7 ]ISO/DIS 14649-1, Industrial Automation Systems and Integration-Physical Device Control-Data Model for Computerized Numerical Controllers-Part 1: Overview and Fundamental Principles, 2000. [8 ]ISO/DIS 14649-10, Industrial Automation Systems and Integration-Physical Device Control-Data Model for Computerized Numerical Controllers-Part 10: General Process Data, 2002. [9 ]ISO/DIS 14649-11, Industrial Automation Systems and Integration-Physical Device Control-Data Model for Computerized Numerical Controllers-Part 11: Process Data for Milling, 2002. [10 ]L. Piegl and W. Tiller, The NURBS Book, Springer-Verlag, Germany, 1995. [11 ]張純榕, STEP標準資料模式與CAD系統之整合-以輪圈設計系統為例, 碩士論文, 國立清華大學工業工程研究所, 1998. [12 ]吳境豐, STEP之標準資料存取介面探討-以Java及關聯式資料庫為例, 碩士論文, 國立台灣大學機械工程研究所, 2000. [13 ]蘇育全, 自由曲面五軸銑削加工刀具路徑規劃, 碩士論文, 國立清華大學動力機械研究所, 1994. [14 ]W. T. Lei, Flaechenorientierte Steuerdatenaufbereitung fuer das fuenfachsige Fraesen, Springer-Verlag, Dissertation, 1992. [15 ]S.U. Roberto. Jr. Rosso, R.D. Allen, S. T. Newman, Future Issues For CAD/CAM and Intelligent CNC Manifacture, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, UK., 2002. [16 ]P. Mueller, Y. T. Hyun(WZL), ESPRIT Project EP 29708, STEP –Compliant Data Interface for Numerical Controls(STEP-NC), EU Partners, 2001. [17 ]S. T. Newman, R. D. Allen, R. S. U. Rosso Jr., CAD/CAM solutions for STEP Compliant CNC Manufacture, AMT Centre, Wolfson School of Mechanical & Manufacturing Engineering, Loughborough University, Loughborough, 2002. [18 ]M. Weck, Dipl.-Ing. J. Wolf, A Standard Providing Data for Modern NC-Machining Enabling Enhanced Functionality, Laboratory For Machine Tools and Production Engineering Aachen University of Technology, 2003. [19 ]H. Martin, President Professor of Computer Science, RPI., Digital Manufacturing Using STEP-NC, STEP Tools, Inc., 2003.id NH0925311096 sid 913724 cfn 0 / id NH0925311097 auc 江政隆 tic 牙齒修補體雷射掃描數據之三角網格建模 adc 雷衛台 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 44 kwc 三角網格 kwc 建模 kwc 雷射掃瞄 kwc 方向選點 abc 三角網格面是外貌重建技術中,最常使用的方法之一。本論文針對雷射掃描機掃描牙齒修復體得出之點群數據,考慮補牙鑲合應用上的需要,研究簡單快速的演算法,將點群數據拉建出修補體的三維三角網格面模型。 tc 摘要 I 目錄 II 圖目錄 III 1 簡介....................1 2 文獻回顧................2 3 點的處理................6 3-1 點的取得................6 3-2 點的處理................6 3-3 點的過濾................8 3-3-1 點接連..................9 3-3-2 最適合直線的拉建.......13 3-3-3 開口方向選點 ...........15 3-4 結論...................23 4 三角面的舖陳 ...........24 4-1 點和點與面的數量.......25 4-2 點對應的連接...........26 4-2-1 第一次最近點的搜尋.....26 4-2-2 第二次最近點的搜尋.....27 4-2-3 餘下的最近點搜尋.......28 4-3 點對應的記錄 ...........29 4-4 空間上歪斜排列的發生...30 4-5 結論...................32 5 三角網格面.............33 5-1 三角面的數據結構.......33 5-2 原始表面...............32 5-3 新建的三角網格面.......36 5-4 於X方向上簡化的可能....40 6 結論與未來研究.........43 參考文獻.....................44rf 參考文獻 [1 ]Y. Sato and M. Otsuki, “Three-Dimensional Shape Reconstruction by Active Rangefinder”, in Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Jun. 1993, pp. 142-147. [2 ]Y. Ebara, H. Sone, Y. Nemoto, and T. Takagi, “A High-Resolution Measurement System for Surface Profile of Electric Contact”, IEICE Trans. on Electronics, vol. E81-C, pp. 432-434, March 1998. [3 ]H. D. Graham and D. D. Snyder, “The Generation of Unstructured Triangular Meshes Using Delaunay Triangulation”, in Proc. Numerical Grid Generation in Computational Fluid Mechanics, Miami, 1998, pp.643-652. [4 ]Y. Zheng, R. W. Lewis, and D. I. Gethin, “Three-dimensional unstructured mesh generation: Part1. Fundamental aspects of triangulation and point creation”, Computer Methods in Applied Mechanics and Engineering, vol. 134, pp.249-268, 1996. [5 ] A Survey of Unstructured Mesh Generation Technology, S. Owen. (Jun. 14, 2004). http://www.andrew.cmu.edu/user/sowen/survey/. [6 ]J.L. Peng, C.S. Kim, and C.-C J. Kuo, ”Technologies for 3D Triangular Mesh Compression: A Survey”, Journal of Visual Communication and Image Representation, 2003. [7 ]T. Jurczyk and B. Glut, “Triangular and Quadrilateral Meshes on 3D Surfaces”, in Proc. the fifth World Congress on Computational Mechanics, Vienna, Austria, Jul. 2002. [8 ] H. Chen and J. Bishop, ”Delaunay Triangulation for Curved Surfaces”, in Proc. 6th International Meshing Roundtable, Sandia National Laboratories, Oct. 1997, pp. 115-127. [9 ]R. E. Fayek, ”Feature-Based 3D Surface modeling by improved constrained triangular meshes”, in Proc. IEEE International Conf. on Image Processing, Santa Barbara, Calif,Oct. 1997, pp. 740-743.id NH0925311097 sid 913736 cfn 0 / id NH0925311098 auc 莊育喬 tic 五軸工具機旋轉軸動態誤差量測與改善研究 adc 雷衛台 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 62 kwc 循圓量測儀 kwc 動態誤差 kwc 轉動軸 kwc 五軸工具機 kwc DBB abc 過去文獻曾提出新的量測方法,將原本使用在工具機線性軸誤差量測的DBB量測工具,經由特殊之路徑規劃,使其亦能量測五軸工具機旋轉軸的動態誤差,其利用兩旋轉軸同動所產生圓軌跡作為量測路徑,量測過程中其餘三個線性軸維持靜止不動,因此線性軸的動態誤差並不會貢獻於量測的結果,而單純為轉動軸所產生的動態誤差。本論文則針對此量測方法作更深入的研究,包括建立不同座標系之量測路徑,對量測靈敏度作分析,以決定最佳化之量測參數及計算定量的誤差值,並討論量具的干涉情形。除此之外,更建立DBB轉動軸誤差量測模型,以此模型模擬各項誤差所對應之量測圖譜,並討論誤差與圖譜之間的關係。最後則以實機實驗來驗證模擬結果,並對於兩轉動增益不匹配所造成的動態誤差,由量測得到的圖譜,建立調整動態參數的程序及方法,以有效的改善旋轉軸動態誤差。 rf 參考文獻 [1 ] V. S. B. Kiridena and P. M. Ferreira, “Kinematic Modellng of Quasistatic Errors of Three-Axis Machining Centers”, Int. J. Mach. Tools Manufact, vol. 34, pp. 85-100, 1994. [2 ] S. Sakamoto, I. Inasaki, H. Tsukamoto, and T. Ichikizaki, “Identification of alignment errors in five-axis machining centers using telescoping ball bar”, Transactions of the Japan Society of Mechanical Engineers Part C, vol. 63, pp. 262-267, 1997. [3 ] 雷衛台, 王智益, "五軸銑床幾何誤差之分析、量測與補償", 中國機械工程學會第十三屆學術研討會. [4 ] Y. Kakino, Y. Ihara, and Y. Nakatsu, “The measurement of motion errors of NC machine tools and diagnosis of their origins by using telescoping magnetic ball bar method”, Annals of the CIRP, vol. 36, pp. 337-380, 1987. [5 ] Z. A. Ahmad, Y. Kakino, Y. Ihara, and S. Lin, “Analysis of the motion accuracy of 5-axis controlled machining centers using DBB method”, International Conference on Precision Engineering, pp. 55-60, 1997. [6 ] 簡宏澤, “五軸同動工具機動態誤差改進研究”, 國立清華大學碩士論文, 2002. [7 ] 彭朝宗, “前饋控制控制應用於五軸床”, 國立清華大學碩士論文,1995. [8 ] 張香鈜, “扭力驅動模式下之運動控制研究”, 國立清華大學碩士論文,2000. [9 ] 吳嘉晉, “進給驅動系統之動態模擬與分析”, 國立清華大學碩士論文,2003. [10 ] J. B. Bryan, “A simple method for testing measuring machines and machine tools, Part I: Principle and applications”, Journal of Precision Engineering 4(2), pp. 61-69, 1982. [11 ] S. H. Suh, E. S. Lee, and S. Y. Jung, “Error modeling and measurement for the rotary table of five-axis machine tools”, International Journal Advanced Manufacturing Technology, vol. 14, pp. 656-663, 1998. [12 ] W. T. Lei and Y. Y. Hsu, “Accuracy test of five-axis CNC machine tools with 3D probe-ball, part II: errors estimation”, International Journal of Machine Tools & Manufacture, vol. 42 , pp. 1163-1170, 2002. [13 ] J. S. Chen, “Real-time compensation of time-variant volumetric error on a machine center”, Ph.D. Thesis, Michigan University, 1991. [14 ] 廖明毅, “以DBB量測及校正五軸工具機之幾何誤差”, 國立清華大學碩士論文, 2002. [15 ] I. J. NA, C. H. Choi, T. J. Jang, B. K. Choi, and O. S. Song, “Contour Error Analysis and Gain Tuning for CNC Machining Center”, International Workshop on AMC -MIE, pp. 197-202, 1996. [16 ] M. Tomizuka, ”Zero Phase Error Tracking Algorithm for Digital Control”, Journal of Dynamics System Measurements and Control, vol. 109, pp. 65-68, 1987. [17 ] M. Weck and G. Ye, “Sharp Corner Tracking Using the IKF Control Strategy”, Annals of CIRP, vol. 39, pp. 437-441, 1990. [18 ] 洪明諒, “高速高精度CNC工具機之前饋控制”, 國立清華大學碩士論文, 2000. [19 ] S. Kim and D. Kim , “Iterative Learning Control Method with Application for CNC Machine Tools” , IEEE Industry Applications, vol. 32, pp. 66-72, 1993. [20 ] 宋漢釧, “CNC工具機高速進給軌跡精度改進研究”, 國立清華大學碩士論文, 1998. [21 ] 劉偉樂, “五軸工具機旋轉軸之動態誤差量測方法”, 國立清華大學碩士論文, 2003. [22 ] J. S. Kim, M. S. Choi, and S. Kang, “The Unified Gain Tuning Approach to the PID Position Control with Minimal Overshoot, Position Stiffness, and Robustness to Load Variance for Linear Machine Drives in Machine Tool Environment”, in Proc. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition , vol. 1, pp. 635-641, 2001. [23 ] H. P. William, T. V. William, A. T. Saul, and P. F. Brian, “Numerical Recipes in C++, The art of Scientific Computing”, Cambridge University Press, 2002. [24 ] G. Stute, K. H. Bobel, J. Hesselbach, “Electrical feed drives for machine tools”, Chichester, 1983.id NH0925311098 sid 913745 cfn 0 / id NH0925311099 auc 張志銘 tic 五軸對光控制系統研發 adc 雷衛台 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 47 kwc 高密度波長分多工器 kwc 粗調整 kwc 細調整 kwc 準直器 kwc 二次函數擬合法 abc 本研究之重點在於高密度波長分多工器(DWDM)內部之準直器(Collimator)的對準,此對準涉及兩準直器在3D空間中的定位與定向,須設計五自由度/軸對準裝置,並配合適當的搜尋法則,使光損失值可以在允許值(-0.3dB)以內。 rf [1 ] L.Mchaughan and E.J.Murphy, “Influence of temperature and initial titanium dimen- sions on fiberTi:LiNbO3 insertion loss at ”, IEEE J.Quantum Electron, vol. QE-19, pp.131-136, 1993. [2 ] 孫清華, “光纖通信”, 全華出版社, 1998. [3 ] 鞏祖德, “光纖通訊技術”, 全華出版社, 2001. [4 ] M.A.Rothman, C.L.Shieh, A.J.Negri, J.A.Thompson,C.A.Armiento, R.P.Holmstrom, and J.Kaur,“Monolithically integrated laser/rearfacet monitor arrays with V-groove for passive optical fiber alignment”, IEEE Photo. Tech. Lett., vol.5, no.2, pp.169-171, 1993. [5 ] H.Wang, “Fiber optical accelerometer employing a GRIN rod lens”, Industrial technology proceedings of the IEEE international conference, 1994. [6 ]陳伯睿, 光纖自動對準組裝技術研發, 國立台灣大學機械工程研究所碩士文, 2001. [7 ] G.A.West and W.J.Hill, “Automatic optical inspection of printed circuit board”, International Conference on Image Processing, pp.139-143, 1985. [8 ]B.E.Dom, V.Brcher, “Recent advances in the automatic inspection of integrated circuits of pattern defects”, Machine vision and applications, vol.18, pp.5-19, 1995. [9 ] N.Asada, H.Fujiwara, T.Matsuyama, “Edge and depth from focus”, International J. of Computer Vision, vol.26, pp.153-163, 1998. [10 ]J.S.R.Jang C.T.Sun, and E.Mizutani, “Neuro fuzzy and soft computing”, Prentice Hall International, Inc, 1998. [11 ]Miyazaki, “Method for aligning laser diode and optical fiber”, US Patenet, No.0081075, 2002.id NH0925311099 sid 903749 cfn 0 / id NH0925311100 auc 陳俊達 tic 正交疊層板[90度 ]層橫向裂縫的微觀應力分析 adc 蔣長榮 ty 碩士 sc 國立清華大學 dp 動力機械工程學系 yr 92 lg 中文 pg 26 kwc 疊層板 kwc 橫向裂縫 kwc 應力強度因子 abc 在線彈性範圍下,裂縫前端附近的應力、應變和位移,均由應力強度因子K來決定,即K是應力應變場強度的度量,應力強度因子已被認可為評估材料或結構之壽命的依據。本文主要是考慮正交性的複合材料疊層板,含裂縫前端曲率半徑為有限值的中央裂縫,以微觀尺度來分析裂縫前端的應力強度因子K。所分析的裂縫分為兩類型,一類型是裂縫只穿過基材,另一類型則是裂縫穿過纖維及基材;利用ANSYS套裝軟體計算在不同位置的K值並且比較兩類在相同微觀位置時K值的差異。 tc 第一章 導論 1.1 前言…………………………………………………………..1 1.2文獻回顧……………………………………………………….2 1.3研究動機與目的……………………………………………….3 第二章 基本理論 2.1 線彈性破裂力學……………………………………………..4 2.2 應力強度因子………………………………………………..5 2.3 異向彈性理論………………………………………………..8 第三章 有限單元應力分析 3.1 問題描述……………………………………………………12 3.2 模型的建立與分析…………………………………………13 第四章 結果與討論………………………………………………….15 第五章 結論………………………………………………………….17 參考文獻……………………………………………………………….18rf 1. Cooper,G.A(1967), “Tensile Properties of Fiber-Reinforced Materials; Fracture Mechanics”, Journal of the Mechanics and Physics of Solids, Vol. 16, pp. 279-297. 2. Talreja, R., Ed.(1967),“Damage Mechanics of Composite Materials”, Composite Materials Series 9,Elsevier. 3. Waddoups, M.E.,Eisenmann, J.R. and Kaminski,B.E.(1971), “Marcoscopic Mechanics of Advanced Composite Meterials”, Journal of Composite Materials, Vol. 5,pp. 446-454,. 4. Sih, G. C. and Chen, E. P.(1973),“Fracture Analysis of Unidirectional Composite”, Journal of Composite Materials, Vol.7, pp.230-244. 5. Whitney, J. M. and Nuismer, R. J.(1974),“Stress Failure Criteria for Laminated Composites Containing Stress Concentrations”, Journal of Composite Materials, Vol. 8, pp.253-265. 6. Snyder, M. D. and Cruse, T. A.(1975),“Boundary-Integral Equation Analysis of Cracked Anisotropic Plates”, Internal Journal of Fracture, Vol.11, pp. 315-328. 7. M. Creager and P.C. Paris(1967), “Elastic Field Equations for Blunt Cracks with reference to the Stress Corrosion Cracking”,International Journal of Fracture, Vol.3, pp.247-252. 8. J. P. Benthem(1987), “Stress in the Region of Rounded Corners”,International Journal of Solids Structures, Vol.23, pp.239-252. 9. G. C. Sih, P. C. Paris and G. R. Irwin(1965), “On Cracks in Rectilinearly Anisotropic Bodies”,International Journal of Fracture, Vol.1, pp189-302,. 10.C. R. Chiang(1991), “Kinked Cracks in an Anisotropic Material”, Engineering Fracture Mechanics, Vol.39, pp.927-930. 11.C.R. Chiang(1995), “The Stress Field for a Blunt Crack in an Anisotropic Material”, International Journal of Fracture, Vol.68, R41-R46, 1994, and addendum:International Journal of Fracture, Vol.70, R99. 12.G. R. Irwin(1957), “Analysis of stresses and strains near the end of a crack traversing a plate.J. appl. Mech, Vol24, pp.361-364. 13.陳文華譯,基本工程破裂力學,國立編譯館,1995. 14.S.G.Lekhnitskii(1968),Anisotropic Plates, Gordon&Breach, New York. 15.C.R. Chiang(1991), “On The Stress Intensity Factors of Cracks Near an Interface between Two Media”, International Journal of Fracture 47:R55-R58. 16.C.R. Chiang(1991), “Stress Field Around a Rounded Crack Tip”, Journal of Applied Mechanics, Vol.58, pp.834-836. 17. C.R. Chiang(1999), “On Stress Concentration Factors In Orthotropic Materials”, Journal of the Chinese Institute of Engineers, Vol.22, No.3, pp.301-305.id NH0925311100 sid 903773 cfn 0 / id NH0925337001 auc 李泰成 tic 顧客服務問題-一確切解 adc 唐正 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 英文 pg 28 kwc 顧客服務 kwc 最佳化 kwc 隨機過程 kwc 卜瓦松分配 abc 本篇論文提供了一個明確可求得的解,解決一固定速率來到的顧客,進入系統與否所應該採取的最佳策略,能使得系統本身不過載,亦無使用不足。為了達到此目的,有一套規則決定是否要讓到達的顧客進入系統。決策的目標函數是一個PDP(piecewise deterministic processes)的特例,已經有相關文獻指出解是存在且唯一的;但是要解決其所需滿足的微分差分方程,似乎是很困難的。在這篇文章裡,我們首先對最佳解的性質作一些推導,經由這些性質加上利用由後面往前推演的方式,本文可以找到最好的決策。最後提出了其他在直觀上合理決策作模擬比較。 rf Rishel, R., “Controlled Continuous Time Markov Processes,” in Handbooks in Operations Research and Management Science, vol. 2, ed. by Heyman, D.P. and Sobel, M. J., 1990, North-Holland. Davis, M.H.A. (1984). “Piecewise-deterministic Markov Processes: A General Class of Non-diffusion Models,” Journal of Royal Statistical Society, Series B, 46, 353-388.id NH0925337001 sid 904019 cfn 0 / id NH0925337002 auc 林資程 tic Single EWMA 控制器在動態模型下之績效分析 adc 曾勝滄 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 中文 pg 39 kwc 批次控制 kwc 動態模型 kwc 製程干擾 kwc Single EWMA 控制器 kwc 穩定條件 kwc 折扣因子 abc 批次控制是針對IC製程之特殊生產型態所發展出來的製程回饋控制工具。一般而言,由於投入變數可調整之範圍很窄,因此製程之投入-產出模型,大多用一靜態線性模型來描述之。然而實際製程之投入-產出模型應與時間有關之動態模型。因此,在兩種最常見的動態模型之假設下,若採用傳統的EWMA回饋控制器來對投入變數做微調機制時,本文分別探討此控制器的穩定條件並決定其最佳折扣因子等決策問題,最後,本文亦進行敏感度分析,來探討動態模型中參數變動對TMSE之影響。 tc 第一章 簡介 1 1.1 前言 1 1.2 研究動機 2 1.3 研究架構 3 第二章 Single EWMA控制器及動態模型之文獻回顧與問題描述 5 2.1 Single EWMA回饋控制器 5 2.2 動態模型-轉換函數 5 2.3 問題描述 5 第三章 動態系統下的Single EWMA控制器 11 3.1 動態系統下模型(I)之Single EWMA控制器 11 3.1.1 製程產出及其穩定性質 11 3.1.2 最佳折扣因子的選取 15 3.1.3 敏感度分析 19 3.2 動態系統下模型(II)之Single EWMA控制器 22 3.2.1 製程產出及其穩定性質 22 3.2.2 最佳折扣因子的選取 24 3.2.3 敏感度分析 26 第四章 結論與後續研究 29 附錄 31 參考文獻 39rf [1 ] Del Castillo, E., and Hurwitz, A. (1997). Run to run process control: A literature review and some extensions. Journal of Quality Technology, 29, 184-196. [2 ] Del Castillo, E., (1999). “Long run and transient analysis of a double EWMA feedback controller.” IIE Transactions, 31, 1157-1169. [3 ] Del Castillo, E., (2002). “Statistical process adjustment for quality control.” JOHN WILY & SONS, INC. [4 ] Ingolfsson, A. and Sachs, E. (1993). “Stability and sensitivity of an EWMA controller.” Journal of Quality Technology, 25, 271-287. [5 ] Sachs, E., Hu, A. and Ingolfsson A. (1995). “Run by Run Process Control: Combining SPC and Feedback Control.” IEEE Transactions on Semiconductor Manufacturing, 8, 26-43. [6 ] 李水彬 “多變量 EWMA 控制器設計之研究”。國立清華大學統計學研究所博士論文,2001。id NH0925337002 sid 914001 cfn 0 / id NH0925337003 auc 謝珮琳 tic 一般化柏拉圖分配其L-moments的估計與抽樣分配 adc 唐 正 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 英文 pg 51 kwc Edgeworth展開式 kwc 極端值理論 kwc 一般化柏拉圖分配 kwc L-moments kwc 機率加權動差 abc 以Edgeworth展開式修正來自一般化柏拉圖分配其L-moments統計量的漸近分配 tc 1.Introduction ------------------------------------1 2.Extreme Value Theory ----------------------------4 2.1The Generalized Extreme Value Distributions ---4 2.2 The Generalized Pareto Distribution ----------7 3.L-moments and Probability-weighted Moments Estimation -------------------------------------10 3.1 L-moments -----------------------------------10 3.2 Probability-weighted Moments and Their Unbiased Estimators -------------------------11 3.3 Asymptotic Distributions of Sample PWMs -----13 4.Estimations and Edgeworth Expansions of Sampling Distributions of L-moments ---------------------14 4.1 L-moments and UMVUEs-------------------------14 4.2 Asymptotic Sampling Distributions of Sample L-moments -----------------------------------18 4.3 Edgeworth Approximations of the Sampling Distributions of L-moments ------------------19 5.Numerical Illustration -------------------------27 6.Data Analysis ----------------------------------35 7.Conclusions ------------------------------------39 References ---------------------------------------40 Appendix A ---------------------------------------43 Appendix B ---------------------------------------45 Appendix C ---------------------------------------50rf Beirlant, J. & Teugels, J. (1992). “Modelling Large Claims in Non-life Insurance,” Insurance: Mathematics and Economics, 11, 17-29. Blom, G. (1980). “Extrapolation of Linear Estimates to Larger Sample Sizes,” J. Am. Statist., 4, 1139-1158. Bradley, B. O. and Taqqu, M. S. (2002). Financial Risk and Heavy Tails, Boston University Press, Boston, MA. Chan, L. K. (1967). “On A Characterization Of Distributions By Expected Values Of Extreme Order Statistics,” Am. Math. Mathly, 74, 950-951. Chernoff, H., Gastwirth, J. L. and Johns, M. V. (1967).”Asymptotic Distribution Of Linear Combinations Of Functions Of Order Statistics With Applications To Estimation,” Ann. Math. Statist., 38, 52-72. Duffie, D. and Pan, J. (1997). “An Overview of Value at Risk,” The Journal of Derivatives, Spring, 7-49. Embrechts, P. & Kluppelberg, C. (1993). “Some Aspects of Insurance Mathematics,” Theory of Probability and its Applications, 38, 262-295. Fisher, R. A. and Tippett, L. H. C. (1928). “Limiting Forms of the Frequency Distribution of the Largest or Smallest Member of a Sample,” Proceedings Cambridge Philosophical Society, 24, 180-190. Greenwood, J.A., Landwehr J.M., Matalas, N.C., and Wallis, J.R. (1979). “Probability Weighted Moments: Definition and Relation to Parameters of Several Distributions Expressable in Inverse Form,” Water Resources Research, 15, 1049-1054. Jenkinson, A. F. (1955). “The Frequency Distribution Of The Annual Maximum (Or Minimum) Values Of Meteorological Elements,” Quarterly Journal of the Royal Meteorological Scoiety, 87, 158-171. Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer-Verlag, New York. Helmers, R. (1982). “Edgeworth Expansions for Linear Combinations of Order Statistics,” Math. Centre Tracts 105. Math. Centrum, Amsterdam. Hoeffding W. (1948). ”A Non-Parametric Test Of Independence,” Ann. Statist, 19, 546–57. Hosking, J.R.M. and Wallis, J.R.and Wood, E. F.(1985). “Estimation Of The Generalized Extreme-Value Distribution By The Method Of Probability-Weighted Moments,” Technometrics, 27, 251-261. Hosking, J.R.M. and Wallis, J.R. (1987). “Parameter And Quantile Estimation For The Generalized Pareto Distribution,” Technometrics, 29 ,339-349. Hosking, J.R.M. and Wallis, J.R. (1988). “The Effect Of Intersite Dependence On Regional Flood Frequency Analysis,” Water Resources Research, 24, 588-600. Hosking, J.R.M. (1990). “L-Moments: Analysis And Estimation Of Distributions Using Linear Combinations Of Order Statistics,” Journal of the Royal Statistical Society, Series B, 52, 105-124. Hosking, J.R.M. and Wallis, J.R. (1993). “Some Statistics Useful in Regional Frequency Analysis,” Water Resources Research, 29, 271- 281. Konheim, A. G. (1971). “A Note on Order Statistics,” Am. Math. Mthly, 78, 524. Landwehr, J.M. , Matalas, N.C. and Wallis, J.R. (1979). “Probability Weighted Moments Compared With Some Traditional Techniques In Estimating Gumbel Parameters And Quantiles,” Water Resources Research, 15, 1055-1064. Lehmann, E. L. and Casella G. (1998). Theory of Point Estimation. Springer-Verlag. Pickands, J. III (1975). “Statistical Inference Using Extreme Order Statistics,” Ann. Statist, 3 ,119-131. Randles, R. H. and Wolfe, D. A. (1979). Introduction to the Theory of Nonparametric Statistics, New York: Wiley. Reiss, R-D. and Thomas, M. (2001). Statistical Analysis of Extreme Values: with Applications to Insurance, Finance, Hydrology and Other Fields. 2nd Edition. Birkhauser. Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. John Wiley and Sons, New York.id NH0925337003 sid 914002 cfn 0 / id NH0925337004 auc 顏慧貞 tic Modified VMEWMA 回饋控制器之研究 adc 曾勝滄 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 中文 pg 48 kwc 批次控制 kwc MEWMA控制器 kwc 穩定條件 kwc 折扣因子 kwc 製程干擾 abc 在半導體產業中,大部份生產製程的投入-產出模型均屬於MIMO tc 目錄 第一章 緒論 1 1.1 前言 1 1.2 批次控制 2 1.3 R2R之相關文獻探討 4 1.4 研究動機與目的 5 1.5 研究架構 6 第二章 文獻回顧及問題描述 10 2.1 Single MEWMA回饋控制器 (sMEWMA) 及其穩定條件 10 2.1.1 Single MEWMA回饋控制器 10 2.1.2 Single MEWMA控制器之穩定條件 11 2.2 Double MEWMA回饋控制器 (dMEWMA) 12 2.3 問題描述與實例說明 14 2.3.1 問題描述 14 2.3.2 實例說明 15 第三章 Modified VMEWMA 回饋控制器 21 3.1 Modified VMEWMA 回饋控制器之製程產出值及其穩定性質 21 3.2 TMSE極小化之最適變動折扣因子 24 3.2.1 TMSE 極小化之最適變動折扣因子 24 3.2.2 實例說明 25 3.3 Modified VMEWMA與Double MEWMA兩控制器之績效比較 27 3.3.1 相對執行效能 28 3.3.2 製程干擾為IMA(1,1) 之最適變動折扣因子 29 3.3.3 製程斜率參數估計錯誤之探討 29 3.3.4 製程飄移係數估計錯誤之探討 30 第四章 結論與後續研究 41 附錄 43 附錄3.1 引理3.1之證明 43 附錄3.2 定理3.1之證明 44 附錄3.3 李水彬 (2001),Double MEWMA 回饋控制器 47 參考文獻 48 表目錄 表1.1 批次控制系統之文獻回顧 9 表3.1 Modified VMEWMA與Double MEWMA控制器相對執行效能比較 32 表3.2 ,且 時兩控制器之tr(TMSE*) 績效比較 33 表3.3 ,且 時兩控制器之tr(TMSE*) 績效比較 34 表3.4 ,且 時兩控制器之tr(TMSE*) 績效比較 35 表3.5 時兩控制器之tr(TMSE*) 績效比較 36 圖目錄 圖1.1 EPC 與 SPC 兩種製程監控方法 7 圖1.2 批次控制流程圖 8 圖2.1 熱擴散爐的設備結構 16 圖2.2 使用Double MEWMA 控制器調整後之製程產出 19 圖2.3 使用變動折扣因子控制器調整後之製程產出 19 圖2.4 綜合比較-使用兩種不同控制器調整後之製程產出 20 圖3.1 Modified VMEWMA 控制器之最適變動折扣因子收斂情形 26 圖3.2 Modified VMEWMA 與 Double MEWMA 控制器調整後之製程產出比較 27 圖3.3 不同干擾項參數及初始偏差下之相對執行效能 37 圖3.4 製程干擾為 IMA(1,1) 各模型下之最適變動折扣因子 37 圖3.5 時之tr(TMSE*) 及相對執行效能比較圖 38 圖3.6 時之tr(TMSE*) 及相對執行效能比較圖 38 圖3.7 製程產出值三個維度的偏差量 39 圖3.8 綜合比較:當 且 時相對執行效能比較圖 40rf [1 ] Bulter, S.W. and Stefani, J.A., (1994). “Supervisory run-to-run control of a polysilicon gate etch using in situ ellipsometry. ” IEEE Transactions on Semiconductor Manufacturing, 7, 193-201. [2 ] Del Castillo, E., and Hurwitz, A. (1997). Run to run process control: A literature review and some extensions. Journal of Quality Technology, 29, 184-196. [3 ] Del Castillo, E., (1999). “Long run and transient analysis of a double EWMA feedback controller.” IIE Transactions, 31, 1157-1169. [4 ] Ingolfsson, A. and Sachs, E. (1993). “Stability and sensitivity of an EWMA controller.” Journal of Quality Technology, 25, 271-287. [5 ] Sachs, E., Hu, A. and Ingolfsson A. (1995). “Run by Run Process Control: Combining SPC and Feedback Control.” IEEE Transactions on Semiconductor Manufacturing, 8, 26-43. [6 ] Tseng, S. T., Chou, R.J. and Lee, S. P. (2002a). “A study of multivariate EWMA controller.” IIE Transactions, 34, 541-549. [7 ] Tseng, S. T., Chou, R.J. and Lee, S. P. (2002b). “Statistical design of double EWMA controller.” Applied Stochastic Models in Business and Industry, 18, 313-322. [8 ] Tseng, S. T., Yeh, A. B, Tseng, F and Chen, T. Y., “A study of Variable EWMA Controller,” Tentatively Accepted by IEEE Transactions on Semiconductor Manufacturing. [9 ] 李水彬 “多變量 EWMA 控制器設計之研究”。國立清華大學統計學研究所博士論文,2001。 [10 ] 劉珮筠 “Modified VEWMA 控制器之研究”。國立清華大學統計學研究所碩士論文,2003。 [11 ] 吳俊達 “MEWMA 控制器最是變動折扣因子之研究”,國立清華大學統計學研究所碩士論文,2003。id NH0925337004 sid 914003 cfn 0 / id NH0925337005 auc 鄧安婷 tic 二維馬可夫鏈具時間效應與行為反應之重複捕取模式 adc 趙蓮菊 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 中文 pg 56 kwc 重複捕取 kwc 馬可夫鏈 abc 本文的研究目的在於發展一個新的封閉型重複捕取模式,可以同時考慮時間效應、短期和長期行為反應效應,並且在所發展的重複捕取模式下,估計母體總數。本文採用的方法為:建構在二維馬可夫鏈觀念下,加入時間效應以推廣過去解釋行為反應的模式。針對此模式,本文提出三個不同的估計量:最大概似估計量、條件最大概似估計量、以及廣義估計方程估計量。為了評估所提出的模式與估計量之表現,我們利用模擬實驗進行分析,除了比較所提出的三個估計量之外,並與一維馬可夫鏈行為反應模式、一維馬可夫鏈時間行為反應模式和二維馬可夫鏈行為反應模式等,三個模式下發展出來的估計量進行比較。結果發現所提出的估計量在正確模式下,表現比傳統估計量好,但由於參數較多,有時有變異較大的狀況。 tc 第一章 緒論 1 第二章 模式假設與模式簡介 3 2.1 符號說明 3 2.2 模式假設 4 2.3 估計量介紹 4 2.4 模式簡介 5 第三章 模式回顧 6 3.1 Mt模式 6 3.2 Mb模式 6 3.3 MM1(b)模式 7 3.4 MM1(tb)模式 8 3.5 MM2(b)模式 9 第四章 MM2(tb)模式 12 4.1 最大概似估計量 13 4.2 條件最大概似估計量 17 4.3 廣義估計方程估計量 18 第五章 實例分析 23 第六章 模擬比較 30 6.1 模擬的實驗架構及問題討論 30 6.2 模擬結果與討論 31 6.2.1 比較本論文提出的三個新估計量之表現 31 6.2.2 比較一維和二維馬可夫估計量之表現 33 6.2.3 模擬分析結論 34 參考文獻rf Chao, A., Chu, W. and Hsu, C.H. (2000) “Capture-Recapture When Time and Behavioral Response Affect Capture Probabilities,” Biometrics 56, 427-433 Darroch, J.N. (1958), “The Multiple-Recapture Census I.: Estimation of a Closed Population,” Biometrika 45, 343-359 Liang, K.Y. and Zeger, S.L. (1995), “Inference Based on Estimating Functions in the Presence of Nuisance Parameters (with discussion),” Statistical Science 10, 99-158 McCullagh, P. and Nelder, J.A. (1989), Generalized Linear Models, Second Edition, Chapman and Hall, London. Nichols, J. D., Pollock, K. H. and Hines, J. E. (1984), “The Use of a Robust Capture-Recapture Design in Small Mammal Population Studies: A Field Example with Microtus pennsylvanicus,” Acta Theriologica 29, 357-365 Otis, D.L., Burnham, K.P., White, G.C. and Anderson, D.R. (1978). “Statistical Inference from Capture Data on Closed Animal Populations,” Wildlife Monographs 62, 1-135 Pollock, K. H.(1976), “Building Models of Capture-Recapture Experiment,” The Statistician 25, 253-260 Sanathanan, L. (1972), “Estimating the Size of a Multinomial Population.” The Annals of Mathematical Statistics 43, 142-152 Sanathanan, L. (1977), “Estimating the Size of a Truncated Sample.” Journal of the American Statistical Association 72, 669-672 Williams, B. K., Nichols, J. D. and Conroy, M. J. (2002), Analysis and Management of Animal Populations. Academic Press, San Diego, CA. Yang , H.-C. and Chao, A. (2004) “Modeling Animals’ Behavioral Response by Markov Chain Models for Capture-Recapture Experiments” under revision. Zippin, C.(1956), “An Evaluation of the Removal Method of Estimating Animal Populations” Biometrics 12, 163-189 楊欣洲 (2002)。馬可夫鏈模式與核平滑法在重複捕取實驗上的應用 (清華大學統計學研究所博士論文)id NH0925337005 sid 914004 cfn 0 / id NH0925337006 auc 劉家銘 tic 非線性隨機衰變試驗之設計與分析 adc 曾勝滄 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 中文 pg 48 kwc 高可靠度產品 kwc 衰變試驗 kwc 非線性隨機衰變模型 kwc 終止時間 kwc 最佳衰變試驗 abc 針對高可靠度產品之壽命推論問題,「如何On-line決定實驗最適終止時間」及「如何安排一個有效的衰變試驗來推估產品壽命」是工業界十分重視之研究課題。Tseng & Yu (1997) 及Tseng & Liao (1998) 曾分別對上述兩問題提出適當處理方法,唯因受限於分析工具,其結果僅在衰變模型為可經由函數轉換為線性 (quasi-linearization) 之條件下獲得。本文採用Tseng & Peng (2004) 所提之非線性隨機衰變模型來描述產品衰變路徑,並重新分析這兩個決策問題,具體結論如下: tc 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 3 1.3 研究範圍與限制 4 1.4 研究架構 5 第二章 非線性衰變模型及其參數估計 7 2.1 衰變試驗模型之演進 7 2.2 非線性隨機衰變模型 8 2.3 模型參數估計 10 第三章 非線性衰變試驗最適終止時間之研究 12 3.1 LED資料簡介 12 3.2 衰變試驗終止時間之決定 13 3.3 非線性衰變模型資料分析 15 3.4 與傳統可線性化模型之比較 16 第四章 LED衰變試驗之最佳設計 32 4.1 前言 32 4.2 衰變試驗最佳化分析步驟 33 4.2.1 參數估計與 之漸近抽樣分配 33 4.2.2 成本函數 34 4.2.3 最佳設計之演算法 35 4.3 實例說明-以LED衰變試驗為例 36 4.3.1 最佳試驗設計 36 4.3.2 敏感度分析 37 4.4 小結 38 第五章 結論與後續研究工作 42 5.1 結論 42 5.2 未來研究方向 43 附錄 附錄A 之推導公式 44 附錄B 費雪資訊量矩陣 (Fisher Information matrix) 45 附錄C 的抽樣分配 46 參考文獻 47rf Bernt Oksendal (1998), Stochastic Differential Equation: An Introduction with Applications, Springer, New York. Boulanger, M. and Escorbar, L. A. (1994), “Experimental Design for a Class of Accelerated Degradation Tests,” Technometrics, 36, 260-272. Chhikara, R. S. and Folks, L. (1989), The Inverse Gaussain Distribution, Theory, Methodology, and Applications, Marcel Dekker, Inc. Cleveland, W. S. (1979), “Robust Locally Weighted Regression and Smoothing Sterplots,” J. Amer. Statist. Assoc., 74, 829-836. Di Nardo, E., Nobile, A. G., Pirozzi, E. and Ricciardi, L. M. (1989), “On the Evaluation of the First-Passing-Time Probability Density via Nonsingular Integral Equation,” Advance Application Probability, 21, 20-36. Di Nardo, E., Nobile, A. G., Pirozzi, E. and Ricciardi, L. M. (2001), “A Computational Approach to First-Passing-Time Problems for Gauss-Markov Process,” Advance Application Probability, 33, 453-482. Doksum, K. A. and Hóyland, A. (1992), “Models for Variable-Stress Accelerated Life Testing Experiments Based on Wiener Process and The Inverse Gaussian Distribution,” Theory Probability Application, 37(1), 137-139. Hoel, P. G.., Port, S. C. and Stone, C. J. (1972), Introduction to Stochastic Process, Waveland Press, Illinois 60070. Lu, C. J. and Meeker, W. Q. (1993), “Using Degradation Measures to Estimate a Time-to-Failure Distribution,” Technometrics, 35, 161-174. Meeker, W. Q. and Escobar, L. A. (1998), Statistical Methods for Reliability Data, John Wiley and Sons, New York. Nelson, W. (1990), Accelerated Testing: Statistical Methods, Test Plans and Data Analysis, John Wiley and Sons, New York. Tseng, S. T. and Liao, C. M. (1998), “Optimal Design for A Degradation Test,” International Journal of Operations and Quantitative Management, 4(3), 293-301. Tseng, S. T. and Peng, C. Y. (2004), “A Stochastic Diffusion Model for LED Accelerated Degradation Data,” (submitted for publication). Tseng, S. T., Tang, J. and Ku, I. H. (2003), “Determination of Optimal Burn-in Parameter and Residual Life for Highly Reliable Products,” Naval Research Logistics, 50(1), 1-14. Tseng, S. T. and Yu, H. F. (1997), “A Termination Rule for Degradation Experiment,” IEEE Transactions on Reliability, 46, 130-133. Whitmore, G. A. and Yalovsky, M. (1978), “A Normalizing Logarithmic Transformation for Inverse Gaussian Random Variables,” Technometrics, 20, 207-208. Yu, H. F. and Tseng, S. T. (1998), “On-line Procedure for Termination an Accelerated Degradation Test,” Statistica Sinica, 8(1), 207-220. Yu, H. F. and Tseng, S. T. (1999), “Design a Degradation Experiment,” Naval Research Logistics, 46 689-706.id NH0925337006 sid 914005 cfn 0 / id NH0925337007 auc 游惠群 tic 種類數估計量在小樣本時的模擬比較 adc 趙蓮菊 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 中文 pg 38 kwc 種類數 kwc 小樣本 abc 本論文主要是以模擬的方式探討在抽樣比例小時,以歸還取樣(sampling with replacement)的方式取得樣本,則Burnham and Overton(1978, 1979) 提出的摺刀估計量、Chao ( 1984) 提出的下界估計量、Chao and Lee ( 1992 ) 與Ashbridge and Goudie ( 2000 ) 提出的樣本涵蓋估計量及Chao and Bunge(2002)提出的重複訊息估計量在母體種類相對豐富度不同時有何不同的表現。文中先介紹各個估計量,再推導估計量的估計變異數。最後以Zipf模式模擬與實例分析比較估計量的表現,並建議一個較適合使用在小樣本的估計量。 tc 第一章 緒論 1 第二章 模式假設與文獻回顧 2 2.1 符號說明……………………………………………2 2.2 模式假設……………………………………………2 2.3 估計量回顧…………………………………………3 第三章 估計量的討論 9 3.1 摺刀估計量…………………………………………9 3.2 下界估計量…………………………………………10 3.3 樣本涵蓋估計量……………………………………10 3.4 重複訊息估計量……………………………………12 第四章 模擬研究結果與分析 14 4.1 估計量的模擬條件與方法…………………………15 4.2 估計量的模擬結果與討論分析……………………16 第五章 實例分析 19 第六章 結論與建議 21 附表 22 參考文獻 37rf Ashbridge, J. and Goudie, I. B. J. (2000). Coverage- adjusted estimators for mark-recapture in heterogeneous populations. Communications in Statistics-Simulation and Computation, 29, 1215-1237. Burnham, K.P. and Overton, W. S. (1978). Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika, 65, 635-633. Burnham, K.P. and Overton, W. S. (1979). Robust estimation of population size when capture probabilities vary among animals. Ecology, 60, 927-936. Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11, 265-270. Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchability. Biometrics, 43, 783-791. Chao, A. (1992). Estimating the number of classes via sample coverage. Journal of American Statistical Association, 87, 210-217. Chao, A. (1993). Estimating population size for continuous-time capture-recapture models via sample coverage. Biometrical Journal, 35, 29-45. Chao, A. and Bunge, J. (2002). Estimating the number of species in a stochastic abundance model. Biometrics, 58, 531-539. Good, I.J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika, 40, 237-264 Greenberg, B. and Zayatz, L. (1992). Strategies for measuring risk in public use microdata files. Statistica Neerlandica, 46, 33-48. Rao, C. R. (1973). Linear statistical inference and its applications. 2nd edition. New York: Wiley. 林志峰 (2001)。種類數預測及模擬研究。(清華大學統計學研究所碩士論文)id NH0925337007 sid 914006 cfn 0 / id NH0925337008 auc 陳愉惠 tic 不動產抵押貸款證券之評價--可贖回債券評價模型 adc 周若珍 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 中文 pg 63 kwc 不動產抵押貸款證券 kwc 可贖回債券 kwc 封閉型解 kwc 提前清償選擇權 kwc 半美式可贖回債券 abc 多數不動產抵押貸款證券﹝Mortgage Backed Securities﹞的評價方法,乃根據假定的提前清償模型及利率模型,在給予邊界值及終值條件下,找出偏微分方程式的解,但是封閉型解﹝Closed-Form Solution﹞通常不存在,故須利用數值分析方法來求取近似解。在簡化某些條件下,本論文利用半美式可贖回債券﹝Semi- American Callable Bond﹞的模型來評價不動產抵押貸款證券,由於可提前清償時點是有限的,故可找出不動產抵押貸款證券的封閉型解。 tc 第一章 緒論…………………………………………… 01 第二章 文獻回顧……………………………………… 07 第一節 常用數值分析方法…………………………07 第二節 利率隨機模型………………………………09 第三節 半美式可贖回債券評價模型的應用………12 第三章 研究方法……………………………………… 17 第一節 歐式可贖回債券……………………………17 第二節 半美式可贖回債券…………………………21 第三節 不動產抵押貸款證券………………………26 第四章 實例研究……………………………………… 28 第一節 實例設計……………………………………28 第二節 實例討論……………………………………37 第五章 結論與討論…………………………………… 44 第一節 結論…………………………………………44 第二節 討論…………………………………………45 附錄A……………………………………………………… 46 附錄B……………………………………………………… 48 附錄C……………………………………………………… 50 附錄D……………………………………………………… 54 參考文獻……………………………………………………62rf 一、英文文獻 1.Büttler, Hans-Jürg and Jorg Waldvogel [1996 ]:“Pricing Callable Bonds by Means of Green's Function,” Mathenatical Finance, 6: pp.53-88. 2.Beaglehole, David R. and Mark S. Tenney [1991 ]:“General Solutions of Some Interest Rate-Contingent Claim Pricing Equations,” Journal of Fixed Income, pp. 69- 83. 3.Buser, Stephen A., and Patric H. Hendershoot [1984 ]:“Pricing Default-Free Fixed-Rate Mortgage,” Housing Finance Review, 3: pp.405-429. 4.Cox, John C., Jonathan E. Ingersoll, JR., and Stephen A. Ross [1985a ]:“An Intertemporal General Equilibrium Model of Asset Prices,” Econometrica, 53: pp. 363-384. 5.Cox, John C., Jonathan E. Ingersoll, JR., and Stephen A. Ross [1985b ]:“A Theory of the Term Structure of Interest Rates,” Econometrica, 53: pp.385-407. 6.Cox, John C., Stephen A. Ross and Mark Rubinstein [1979 ]:“Option Pricing: A Simplified Approach,” Journal of Financial Economics, 7: pp.229-264. 7.Dunn, K. B., and John J. McConnell [1981 ]:“Valuation of GNMA Mortgage-Backed Securities,” The Journal of Finance, 36: pp.599-616. 8.Fabozzi, Frank J. [1992 ]:The handbook of Mortgage Mortgage-Backed Securities, Chicago, Illinois: Probus Publishing. 9.Follain, James F., Louis O. Scott, and T. L. Tyler Yang [1992 ]:“Microfoundations of a Mortgage Prepayment Function,” Journal of Real Estate Finance and Economics, 5: pp.197-217. 10.Jamshidian, Farshid [1991a ]:“Bond and Option Evaluation in the Gaussian Interest Rate Model,” Research in Finance, 9: pp.131-170, JAI Press Inc. 11.Jamshidian, Farshid [1989 ]:“An Exact Bond Option Formula,” The Journal of Finance, pp.205-209. 12.Jamshidian, Farshid [1987 ]:“Pricing of Contingent Claims in the One-Factor Term Structure Model,” Working Paper, Merrill Lynch Capital Markets. 13.Kau, J. B., D. C. Keenan, and W. J. Muller Ⅲ [1993 ]:“An Option-Based Pricing Model of Private Mortgage Insurance,” Journal of Risk and Insurance, pp.288-299. 14.Kau, J. B., D. C. Keenan, W. J. Muller Ⅲ, and J. F. Epperson [1990a ]:“Pricing Commercial Mortgages and Their Mortgage-Backed Securities,” Journal of Real Estate Finance and Economics, 3: pp.333-356. 15.Kau, J. B., D. C. Keenan, W. J. Muller Ⅲ, and J. F. Epperson [1987 ]:“The Valuation and Securitization of Commercial and Multifamily Mortgages,” Journal of Banking and Finance, 11: pp.525-546. 16.Kau, J. B., D. C. Keenan, W. J. Muller Ⅲ, and J. F. Epperson [1985 ]:“Pricing Default Risk in Mortgages,” American Real Estate and Urban Economics Association, pp.1417-1431. 17.Leung, Wai K. and C. F. Sirmans [1990 ]: “A Lattice Approach To Fixed-Rate Mortgage Pricing With Default And Prepayment Options,” American Real Estate and Urban Economics Association, 18: pp.91-104. 18.Titman Sheridan and Walter Torous [1989 ]:“Valuing Commercial Mortgages: An Empirical Investigation of the Contingent-Claims Approach to Pricing Risk Debt,” Journal of Finance, 44: pp.345-373. 19.Vasicek, Oldrich [1977 ]:“An Equilibrium Characterization of the Term Structure,” Journal of Financial Economics, 5: pp.177-188. 20.Y. K. Kwok [1998 ]:Mathematical Models of Financial Derivatives, Springer. 二、中文文獻 1.周奇勳 [2001 ],「美式選擇權之相關研究」,碩士論文,政治大學統計所。 2.陳昆賢 [2001 ],「不動產抵押權證券之評價研究--選擇權調整利差法之應用」,碩士論文,朝陽科技大學財務金融所。 3.陳仁遶、廖咸興、楊太樂 [1995 ]:「抵押貸款訂價模型之效率性—數值分析模型與封閉解模型之比較」,證券市場發展季刊 第七卷第二期 pp.29-45。 4.郭姿伶 [1999 ],「住宅貸款之提前清償與逾期還款」,碩士論文,中正大學財務金融所。 5.黃至民 [2001 ],「利率可調整之不動產抵押貸款證券之評價與分析」,碩士論文,台灣大學財務金融所。id NH0925337008 sid 914007 cfn 0 / id NH0925337009 auc 劉芳儀 tic 多因子利率模型於選擇權評價上的應用 adc 周若珍 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 中文 pg 41 kwc 多因子利率模型 kwc 狀態空間型式 abc 過程廣泛應用在金融產品的評價後,無論是商品訂價或相關避險比例的計算,皆與利率模型息息相關。故以隨機過程理論為基礎發展出來的利率模型,在財務工程領域上佔有一席之地。 tc 第1章 緒論 1 第2章 文獻回顧 6 2.1 利率模型 6 2.1.1 CIR模型 6 2.1.2 Vasicek模型 9 2.2 選擇權評價模型 10 2.2.1 B-S模型 10 2.2.2 GARCH模型 13 2.2.3 GARCH-SIR模型 15 第3章 多因子利率模型之參數估計 17 3.1 Kalman Filter法 17 3.2 多因子利率模型之狀態空間型式 20 3.3 參數估計結果 23 第4章 選擇權評價模型之實研究 28 第5章 結論 31 參考文獻 33 附錄一 36rf 1 Babbs,S.H. and Nowman,K.B.(1999):”Kalman Filtering of Generalized Vasicek Term Structure Models,” Journal of Financial and Quantitative Analysis,34,115-130. 2 Brigo,D., Mercurio, F.(2001):”Interest Rate Models: Theory and Practice,”Springer. 3 Chan,K.C., Karoly, G..A., Longstaff ,F.A. and Sanders,A.B. (1992): “An Empirical Comparison of Alternative Models of the Short-Term Interest Rate,” Journal of Finance,47 ,1209-1227. 4 Chapman,D.A. and Pearson,N.D.(2001):”Recent Advances in Estimating Term-Structure Models,” Financial Analyst Journal,77-95 5 Chen,R.R. and Scott,L.(2003):” Multi-Factor Cox-Ingersoll-Ross Models of the Term Structure:Estimates and Tests from a Kalman Filter Model”, Journal of Real Estate Finance and Economics,27,143-172. 6 Chen,R.R.(1996):”Understanding and Managing Interest Rate Risks,” World Scientific. 7 Chen,R.R. and Scott,L.(1995):” Multi-Factor Cox-Ingersoll-Ross Models of the Term Structure:Estimates and Tests from a Kalman Filter Model”, Working Paper,University of Georgia. 8 Chen,R.R. and Scott,L.(1993):”Maximum Likelihood Estimation for a Multifactor Equilibrium Model of the Term Structure of Interest Rates,” Journal of Fixed Income,3,14-31. 9 Cox,J.C., Ingersoll,J.E. and Ross,S.A.(1985):”A Theory of the Term Structure of Interest Rates,”Econometrica,53,385-408. 10 Duan,J.C.(1995):”The GARCH Option Pricing Model,” Mathematical Finance,5,13-32. 11 Duan,J.C. and Simonato,J.G.(1995):”Estimating and Testing Exponential-Affine Term Structure Models by Kalman Filter,” Working Paper, University of Montreal. 12 Duffee,G. R. and Stanton,R.H.(2002):”Estimation of Dynamic Term Structure Models,”Working Paper,Hass School of Business,U.C.Berkeley. 13 Engle,R. and Watson, M.(1981): “A One-Factor Multivariate Time Series Model of Metropolitan Wage Rates,” Journal of the American Statistical Association,76, 774-781. 14 Geyer,A.L.J. and Pichler,S.(1999):”A State-Space Approach to Estimate and Test Multi-Factor Cox-Ingersoll-Ross Models of the Term Structure,”The Journal of Financial Recearch,22,107-130. 15 Greene,W.H.(2003):”Econometric Analysis,” Prentice Hall. 16 Hamilton,J.D.(1994):”Time Series Analysis,” Princeton University Press. 17 Harvey,A.C.(1991):”Forecasting, Structural Time Series Models and the Kalman Filter,” Cambridge University Press, New York. 18 Hull,J.C.(2000):”Options, Futures & Other Derivatives,” Prentice Hall. 19 Johnson,N.L. and Kotz,S.(1994):”Continuous Univariate Distributions,” John Wiley &Sons,Inc. 20 Johnson,N.L. and Leone,F.C.(1977):”Statistics and Experimental Design in Engineering and the Physical Science,” John Wiley &Sons,Inc. 21 Judd,K.L.(1998):”Numerical Methods in Economics,” MIT Press. 22 Kwok,Y.K.(1998):”Mathematical Models of Financial Derivatives,” Springer. 23 Litterman, R. and Scheinkman, J. (1991): “Common Factors Affecting Bond Returns,” Journal of fixed Income,1,54-61. 24 Maddala,G.S., Rao,C.R. and Vinod,H.D.(1993):”Econometrics,” North-Holland. 25 Nath,P.(1998):”Multi-Factor Cox-Ingersoll-Ross Models of the Term Structure:Estimates and Tests from a Kalman Filter Model with UK Gilt Market Data,” Working Paper. 26 Pearson,N.D. and Sun,T.S(1994):”Exploiting the Conditional Density in Estimating the Term Structure:An Application to the Cox,Ingersoll and Ross Model,” Journal of Finance,49,1279-1304. 27 Rabinovitch,R.(1989):”Pricing Stock and Bond Options when Default-Rate is Stochastic,” Journal of Financial and Quantitative Analysis,24,447-457. 28 Vasicek,O.(1977):”An Equilibrium Characterization of the Term Structure,” Journal of Financial Economics,5,177-188. 29 王家偉(2002):”隨機利率模型對於選擇權定價之影響”,國立清華大學統計學研究所碩士論文id NH0925337009 sid 914008 cfn 0 / id NH0925337010 auc 陳道鵬 tic cDNA微陣列實驗的2^k因子設計 adc 許文郁 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 中文 pg 37 kwc 微陣列 kwc 實驗設計 kwc D-最佳化 kwc 2^k因子設計 kwc 最佳設計 kwc 有效設計 abc cDNA微陣列(cDNA Microarray)是近十年發展出來的生物技術,可以同時檢測上萬個基因的表現。cDNA微陣列實驗過程中很多環節都要用到統計方法,本論文主要是針對實驗設計的部分。微陣列實驗要如何執行,方能讓研究者在有限的資源下獲得最多資訊,是本論文的主要目標。 tc 誌謝辭 摘要 目錄 第一章 緒論 1 1-1 cDNA微陣列簡介與實驗過程 1 1-2 cDNA微陣列的統計分析 3 第二章 微陣列的實驗設計 4 2-1 微陣列實驗設計所遇到的問題 4 2-2 Log Ratio Model 6 2-3 微陣列實驗設計的圖形表示法 8 2-4 最佳設計與S = kV的有效設計 9 第三章 微陣列實驗的2^k因子設計 12 3-1 2^k的因子設計 12 3-2 2^k因子設計下的Log Ratio Model 13 第四章 2^k因子設計的理論上界 15 4-1 最佳化問題 15 4-2 相關定理的整理 17 4-3 2^k因子設計最佳化問題的理論上界 19 4-4 評斷準則:phi_0-optimality 23 第五章 2^k因子設計下的最佳設計與有效設計 24 5-1 k = 3的最佳設計 24 5-2 k = 4與5,S = V的有效設計 26 第六章 結論與討論 30 附錄:尋找S = kV有效設計的程式 31 參考文獻 37rf (1) 王陽照,2003,cDNA微陣列的實驗設計與數據分析,國立清華大學統計學研究所碩士論文。 (2) 陳恩賜,2001,基因微陣列系統之優化研究及其應用於細胞凋亡相關基因的基因表現之初探,國立清華大學原子科學系碩士論文。 (3) 張泰宏,2004,cDNA微陣列實驗的二因子設計,國立清華大學統計學研究所碩士論文。 (4) Churchill, G. A. 2002. Fundamentals of experimental design for cDNA Microarrays. Nature genetics supplement, 32: 490-495. (5) Eisen, M. B., P. T. Spellman, P. O. Brown, and D. Botstein. 1998. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci., 95: 14863-14868. (6) Kerr, M. K. and G. A. Churchill. 2000. Experimental design for gene expression Microarrays. Biostatistics, 2: 183-201. (7) Kerr, M. K. and G. A. Churchill. 2001. Statistical design and the analysis of expression Microarray data. Genet. Res.,77: 123-128. (8) Pukelsheim, Friedrich. 1993. Optimal design of experiments. John Wiley & Sons, New York. (9) Rao, C. R. and H. Toutenburg. 1999. Linear model. Springer, New York. (10) Yang, Y. H., S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai and T. P. Speed. 2002. Normalization for cDNA Microarray data: A robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, 30, No. 4 e15. (11) Yang, Y. H. and T. P. Speed. 2002. Design issues for cDNA Microarray experiments. Nature genetics, 3: 579-588.id NH0925337010 sid 914010 cfn 0 / id NH0925337011 auc 陳致翔 tic 監控單一觀測值之製程變異數管制圖 adc 黃榮臣 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 中文 pg 53 kwc 指數加權均方差 kwc 指數加權根均方差 kwc 指數加權移動變異數 kwc 平均連串長度 kwc 修正指數加權均方差 kwc 修正指數加權移動變異數 abc 當生產過程中的合理子群(樣本)只有一個觀測值,這樣的情況最明顯的缺點就是失去樣本中變異數的資訊,因而無法直接來估計製程變異數。在合理子群只有一個觀測值的狀況下,對監控製程的變異數,文獻上並沒有很多有效的方法被提出來,其中較佳的方法為MacGregor 和Harris(1993)提出的EWMS與EWMV管制圖,但是在實用上存在一些問題。本文針對這兩種管制圖將原來的管制統計量做適當的修正,並提出新的管制界限來改善這些問題,我們利用統計模擬來顯示和說明原來方法的缺點,然後針對新舊方法做比較並說明新方法在實際上有較好的適用性。 tc 第一章 緒論……………………………………………………… 1 1.1 統計製程管制簡介…………………………………………… 1 1.2 文獻回顧……………………………………………………… 2 1.3 研究動機與目的……………………………………………. 3 第二章 個別觀測值之製程變異數監控………………………… 4 2.1 指數加權均方差管制圖…………….…..……………... 4 2.2 指數加權移動變異數管制圖……………………..…… 6 2.3 修正指數加權均方差與修正指數加權移動變異數管制圖… 9 第三章 平均連串長度的比較……………………………………. 17 3.1 管制圖的比較準則…………………………………………. 17 3.2 各種管制圖的比較…………………………………………. 18 3.3 例子…………………………………………………….…. 23 第四章 結論………………………………………………………. 26 參考文獻………..………………………………………………. 27 附表…………………………...……………………… 28 附圖………………………………………………………….….. 41rf [1 ] Box, G. E. P. (1954). “Some Theorems on Quadratic Forms Applied in the Study of Analysis of Variance Problems: Effect of Inequality of Variance in One-Way Classification”. Annals of Mathematical Statistics 25, pp. 290-302. [2 ] Chen, G. and Cheng, S. W. and Xie, H. (2001). “Monitoring Process Mean and Variability With One EWMA Chart”. Journal of Quality Technology 33, pp. 223-233. [3 ] Crowder, S. V. and Hamilton, M. (1992). “An EWMA for Monitoring Standard Deviation”. Journal of Quality Technology 24, pp. 12-21. [4 ] Domangue, R. and Patch, S. C. (1991). “Some Omnibus Exponentially Weighted Moving Average Statistical Process Monitoring Schemes”. Technometrics 33, pp. 299-313. [5 ] MacGregor, J. F. and Harris, T. J. (1993). “The Exponentially Weighted Moving Variance”. Journal of Quality Technology 25, pp. 106-118. [6 ] Montgomery, D. C. (1991). Statistical Quality Control. John Wiley & Sons, New York, NY. [7 ] Nelson, L. S. (1980). “The Mean Square Successive Difference Test”. Journal of Quality Technology 12, pp. 174-175. [8 ] Page, E. S. (1954). “Continuous Inspection Schemes”. Biometrics 41, pp. 100-114. [9 ] Roberts, S. W. (1959). “Control Chart Tests Based on Geometric Moving Averages”. Technometrics 1, pp. 239-250.id NH0925337011 sid 914011 cfn 0 / id NH0925337012 auc 張甫 tic 評價導入延遲贖回權取消之固定利率房貸選擇權價值 adc 林哲群 adc 徐南蓉 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 中文 pg 37 kwc 違約 kwc 延遲贖回權取消 kwc 雙變數二項式方法 kwc 差額求償 kwc 延遲還款罰金 kwc 信用成本 abc 本研究引入實務房貸業操作的觀念,將傳統上房貸評價模型對違約(default)的認定分成兩部分,借款人停止付款和其任由延遲贖回權取消(foreclosure)的發生,利用雙變數二項式方法(bivariate binomial pricing technique),來評價固定利率房貸(fixed rate mortgages)下借款人選擇權價值,並考慮差額求償判決(deficiency judgments)、 延遲還款罰金(penalty)、信用成本(credit cost)各種成本因素,探討在不同參數的影響之下,借款人所做的決策考量,以及提前清償和違約選擇權價值的變動情形。 tc 圖目錄…………………………………………………………………3 表目錄……………………………………………………………………4 第壹章、緒論……………………………………………………………5 第一節、前言………………………………………………………5 第二節、研究動機……………………………………………………7 第三節、研究目的……………………………………………………9 第四節、研究架構……………………………………………………11 第貳章、文獻探討………………………………………………………12 第一節、二項式訂價模型的相關文獻………………………………12 第二節、二項式模型評價住宅抵押貸款的相關文獻………………14 第參章、研究方法………………………………………………………16 第一節、描述變數關係……………………………………………17 第二節、偏微分方程式……………………………………………19 第三節、雙變數二項式逼近法………………………………………20 第四節、借款人決策模型……………………………………………24 第肆章、結果分析……………………………………………………27 第一節、經濟環境參數對提前清償與違約選擇權的影響…………28 一、房價變動率………………………………………………………28 二、利率變動率…………………………………………………28 三、利率調整速度………………………………………………….30 第二節、房貸合約參數對提前清償與違約選擇權的影響………31 一、延遲還款罰金……………..…………………………………31 二、差額求償………..…………………………………………32 三、信用成本……..……………………………………………33 第伍章、結論…………………………………………………………34 參考文獻. ……………………………………………………………36rf 1. Ambrose, Brent W. and Richard J. Buttimer (2000). Embedded Option in the Mortgage Contract, Journal of Real Estate Finance and Economics, 21(2), 95-111. 2. Black F. and Scholes M. (1973). The Pricing of Options and Corporate Liabilities, Journal of Political Economy, 81, 637-659. 3. Boyle, P.(1988). A Lattice Framework for Option with Two State Variables, Journal of Financial and Quantitative Analysis, 23(1), 1-12. 4. Brennan, M.J. and E.S. Schwartz(1978). Finite Difference Methods and Jump Processes Arising in the Pricing of Contingent Claims, Journal of Financial and Quantitative Analysis, 13(3), 461-474. 5. Cox, J.C., J.E. Ingersoll and S. A. Ross(1985). An Intertemporal General Equilibrium Model of Asset Prices, Econometrica, 53(2), 363-384. 6. Cox, J.C., S.A. Ross and M. Rubinstein(1979). Options Pricing: A Simplified Approach, Journal of Financial Economics, 7(3), 229-263. 7. Hilliard, Jimmy E., Adam L. Schwartz and Alan L. Tucker(1996). Bivariate Binomial Options Pricing With Generalized Interest Rate Processes, The Journal of Financial Research, 19(4), 585-602. 8. Hilliard, Jimmy E., James B. Kau and V. Carlos Slawson(1998). Valuing Prepayment and Default in a Fixed-Rate Mortgage: A Bivariate Binomial Option Pricing Technique, Real Estate Economics, 26(3), 431-468. 9. Hull, J.C. and A. White.(1990). Valuing Derivative Securitier Using the Explicit Finite Difference Method, Journal of Finance and Quantitative Analysis, 25, 87-100. 10.Kau, James B., Donald C. Keenan, Walter J. Muller and James F. Epperson(1990). A Generalized Valuation Model for Fixed-Rate Residential Mortgages, Journal of Money,Credit and Banking, 24(3), 279-299. 11. Merton R. C.(1973). Theory of Rational Option Pricing, Bell Journal of Economics and Management Science, 4, 141-83. 12. Nelson, Deniel B. and Krishna Ramaswamy(1990). Simple Binomial Processes as Diffusion Approximations in Financial Models, The Review of Financial Studies, 3(3), 393-430.id NH0925337012 sid 914012 cfn 0 / id NH0925337013 auc 游永昌 tic 三音豐富以及雙音豐富語音資料庫在語音辨識表現之探討 adc 江永進 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 中文 pg 44 kwc 語音辨識 kwc 台語 kwc 雙音豐富 kwc 三音豐富 kwc 平衡詞 kwc 雙音模型 kwc 三音模型 abc 本篇論文要討論從台語詞庫中以不同的平衡條件,分別為以“音節間雙音模型”與“音節間三音模型”為平衡詞的主要篩選條件,錄製雙音豐富與三音豐富語音資料庫從中比較語音辨識效果,實驗為特定語者(speaker dependent),訓練聲學模型為隱藏式馬可夫模型,並以聲學模型的frame大小,動態決定每個聲學模型狀態的混合高斯函數個數,在搜尋網路上做了單音節網路與線性網路的辨識結果分析。 tc 第一章 介論 1 1.1 研究動機與目的 1 1.2 研究架構 2 第二章 台語聲學模型及詞庫 3 2.1 音節內的聲學模型介紹 3 2.2 音節間的聲學模型介紹 4 2.3 福爾摩沙標音系統ForPA 5 2.4 台音詞庫 7 第三章 平衡詞集合演算法 8 3.1 雙音豐富的平衡詞集合演算法 10 3.1.1 先達到"音節"平衡再達到"雙音模型"平衡 10 3.1.2 先達到"雙音模型"平衡再達到"音節"平衡 13 3.2 三音豐富的平衡詞集合演算法 16 3.3 平衡詞集合分析 16 3.4 雙音豐富與三音豐富語音資料庫 18 第四章 台語聲學模型實驗與比較 21 4.1 辨識搜尋網路與辨識率 21 4.2 聲學模型的參數選擇 23 4.3 聲學模型“決策樹的狀態參數分享” 24 4.4 線性網路的實驗結果 27 4.5 自由網路的實驗結果 30 第五章 結論 40 附錄 41 參考文獻 44rf Liang, M., Lyu, R., Chaing, Y. (2003), “An Efficient Algorithm to Select Phonetically Balanced Scripts for Constructing A Speech Corpus”, International Conference on Natural Language Processing and Knowledge Engineering , NLP-KE’03, Beijing, China 26-29 Rabiner, L. & Jung, B.H. (1993), “Fundamental of Speech Recognition”, Prentice-Hall International Young, S. (2000), “HTK BOOK v3.0”, Entropic 江永進 (2003), “台音輸入法6.0”, 清華大學統計所 呂道誠 (2000), “Speaker Independent Acoustic Modeling for Large Vocabulary Bi-lingual Mandarin/Taiwanese Continuous Speech Recognition”, 長庚大學碩士論文 陳志宇 (1990), “國台雙語大詞彙與連續語音辨認系統研究”, 長庚大學碩士論文 梁伯宇 (1998), “國語連續語音辨識之聲學模型研究”, 台灣大學碩士論文 謝文萍 (1998), “以右連音為單位運用決策分類樹的台語大辭彙語音辨識”, 清華大學碩士論文id NH0925337013 sid 914013 cfn 0 / id NH0925337014 auc 彭睦棋 tic 非高斯之移動平均過程的貝氏參數估計 adc 徐南蓉 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 中文 pg 30 kwc 非高斯 kwc 移動平均模式 kwc 貝氏估計 abc 本文以貝氏分析的方法估計非高斯移動平均模式的參數。傳統的quasi likelihood估計法(QMLE)是以Gaussian likelihood 當做估計時的目標函數,而Huang 和 Pawitan (2000)的quasi-likelihood的估計法(H&P)則是以Laplace likelihood當作目標函數。不論所考慮的MA模式是可逆或不可逆,相較於傳統的QMLE及H&P的方法,本研究所提出之方法在所考慮的有限樣本下都有較佳的估計表現。 tc 第一章 緒論 1 第二章 移動平均過程 3 2.1 定義 3 2.2 概似函數 3 第三章 貝氏估計 7 3.1 方法介紹 7 3.2 參數之先驗分配與條件後驗分配 8 第四章 其他Likelihood-Based估計法 12 4.1 Gaussian QMLE 12 4.2 Huang 與 Pawitan的Laplace Quasi- Likelihood估計法 12 第五章 數值模擬 15 5.1 模擬實驗之設計 15 5.2 估計量的比較結果 17 第六章 結論與未來研究方向 28 參考文獻 29rf Benveniste, A., Goursat, M., and Roget, G. (1980). Robust identification of a nonminimum phase system: blind adjustment of linear equalizer in data communications. IEEE Transactions on Automatic Control, AC-25, 385-398. Breidt, F.J. and Hsu, N.-J. (2004). Best mean square prediction for moving averages. forthcoming in Statistica Sinica. Chien, H.-M., Yang, H.-L., and Chi, C.-Y. (1997). Parametric cumulant base phase estimation of 1-d and 2-d nonminimum phase systems by allpass filtering. IEEE Transactions on Signal Processing, 45, 1742-1762. Donoho, D. (1981). On minimum entropy deconvolution. In Applied Time Series Analysis II, (D.F. Findley, ed.), Academic Press, New York, 565-608. Gelman, A., Carlin, J.S., Stern H.S. and Rubin D.B. (1995). Bayesian Data Analysis, Chapman and Hall, London. Giannakis G.B. (1987). On the identifiability of non-Gaussian ARMA models using cumulants. IEEE Transactions on Automatic Control, 35, 18-26. Godfrey, R. and Rocca, F. (1981). Zero memory nonlinear deconvolution. Geophysical Prospecting, 29, 189-228. Green, P.J. (1995). Reversible jump MCMC computation and Bayesian model determination, Biometrika, 82, 711-732. Huang, J. and Pawitan, Y. (2000). Quasi-likelihood estimation of non-invertible moving average processes. Scandinavian Journal of Statistics, 27, 689-702. Lii, K.-S. and Rosenblatt, M. (1982). Deconvolution and estimation of transfer function phase and coefficients for nonGaussian linear processes. Annals of Statistics, 10, 1195-1208. Lii, K.-S. and Rosenblatt, M. (1992). An approximate maximum likelihood estimation for non-Gaussian non-minimum phase moving average processes. Journal of Multivariate Analysis, 43, 272-299. Lii, K.-S. and Rosenblatt, M. (1996). Maximum likelihood estimation for nonGaussian nonminimum phase ARMA sequences. Statistica Sinica, 6, 1-22. Wiggins, R.A. (1978). Minimum entropy deconvolution. Geoexploration, 16, 21-35.id NH0925337014 sid 914014 cfn 0 / id NH0925337015 auc 張泰宏 tic cDNA微陣 tic & tic #63900;實驗的二因子設計 adc 許文郁 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 中文 pg 52 kwc 二因子 abc 近年來生命科學蓬勃發展,最令人興奮的莫過於人類基因序列的定序,這個跨時代的工程連帶的引起生物醫學上的快速發展,其中,cDNA 微陣列晶片由於可以大量分析每個基因受調控後,其表現量的變化,對於現今的分子生物學研究而言,是一種很有力的工具。cDNA微陣列實驗其過程很多環節都要用使統計方法,本論文主要針對實驗部份。本文以log Ratio來建模,並利用線性模型最佳性質φp-optimality來當作選擇設計的評斷標準,提供了二因子設計的最佳化理論上界,因此,對任一個設計我們都可以知道它是不是最佳設計(optimal design)或離最佳有多遠。另外,我們亦提供了一些建構高效設計的方法。 tc 第一章 緒論 1 1-1 前言 1 1-2 cDNA微陣列基因晶片系統 1 1-3 製備螢光標的物與雜合反應 4 1-4 影像資料分析 5 第二章 微陣列系統之實驗設計 8 2-1 實驗設計所面臨的問題 8 2-2 log Ratio model之建模與假設 10 2-3 迴歸範圍的特性 13 第三章 log Ratio model的最佳化設計 15 3-1 最佳化問題 15 3-2 評斷法則&相關定理的整理 17 3-3 最佳化問題的理論上界 19 第四章 最佳設計的建構 27 4-1 設計的圖形表示法 27 4-2 評斷法則:φP-efficiency 28 4-3 搜尋S=AXB的optimal design 29 第五章 因子設計分析 34 5-1 因子設計的分析相關定理的整理 34 5-2 因子設計分析 35 第六章 結論 37 附錄 38 參考文獻 51rf [1 ] Bretz, F. , Landgrebe, J. and Ebrunner, E. (2003). Efficient Design and Analysis of Two Colour Factorial Microarray Experiments. Biostatistics(2003),1,1, 1-20. [2 ] Churchill, G. A. (2002). Fundamentals of experimental design for cDNA microarrays. Nature genetics supplement. vol. 32, 490-495. [3 ] Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatter plots. J. Amer. Statist. Assoc. 74, 829-836. [4 ] Eisen, M. and Brown, P. (2000). DNA arrays for analysis of gene expression. Methods in Enzymology 303, 179-205. [5 ] Glonek, G. F. V. and Solomon, P. J. (2002). Factorial and time course designs for cDNA microarray experiments. Technical report, School of Applied Mathematics, University of Adelaide,Australia. [6 ] Jin, W., Riley, R., Wolfinger, R., White, K., Passador-Gurgel, G.and Gibson, G. (2001). The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nature Genetics 29, 389-395. [7 ] Kerr, M. K. and Churchill, G. A. (2000b). Experimental design for gene expression microarrays. Biostatistics 2, 183-201. [8 ] Kerr, M. K. and Churchill, G. A. (2001). Statistical design and the analysis of expression microarray data. Genet. Res. 77, 123-128. [9 ] Pukelsheim, Friedrich. (1993). Optimal Design of Experiments. John Wiley & Sons, New York. [10 ] Pan, W., Lin, J. and Le, C. (2002). How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach.Genome Biology 3, research0022.1-0022.10. 51 [11 ] Smyth, G. K.,Yang, Y. H. and Speed, T. P. (2003).Statistical Issues in cDNA Mircoarray Data Analysis. Methods of Molecular Biology. Vol. 224, 111-136. [12 ] Searle, S. (1971). Linear Models. John Wiley & Sons, New York. [13 ] Speed, T. P.and Yang, Y. H. (2002). Direct and indirect hybridizations for cDNA microarray experiments. Sankhya A In press. [14 ] Yang, Y. H. and Speed, T. P. (2002a). Design issues for cDNA microarray experiments. Nature genetics. vol. 3, 579-588. [15 ] Yang, Y. H. and Speed T. P. (2002b). Design and analysis of comparative microarray experiments. In T. P. Speed (ed.), Statistical Analysis of Gene Expression Microarray Data. Boca Raton: CRC Press. [16 ] Yang, Y. H., Dudoit, S., Luu, P., Lin, D. M., Peng, V., Ngai, J. and Speed, T. P. (2002). Normalization for cDNA microarray data:a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, vol. 30, No. 4 e15. [17 ]王陽照.(2003) ”cDNA微陣列的實驗設計與數據分析 ”清華大學碩士論文. [18 ]王山求.(2003) ”統計方法在微陣列實驗中的應用-三個實例研究 ”清華大學碩士論文. [19 ]沈偉舜. (2003) ”以基因微陣列研究人類肺部纖維母細胞經紫外光照射後之基因表現 ” 清華大學碩士論文. 52id NH0925337015 sid 914015 cfn 0 / id NH0925337016 auc 張裕鳳 tic 高可靠度母群體之擇優研究 adc 曾勝滄 adc 唐正 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 中文 pg 48 kwc 高可靠度產品 kwc 加速壽命試驗 kwc 設限資料 kwc EM演算法 kwc 局部最佳準則 abc 針對高可靠度產品,如何在眾多元件供應商中挑選出可靠度較高的供應商,為生產者常常面臨到的擇優決策問題。針對加速壽命有設限資料的情況,本研究先以EM演算法和BLUE方法對設限資料做預估,其次在完整失效資料下,利用局部最優 (Locally optimal) 準則來建構最佳擇優法則。 最後,在控制正確決策品質以及錯誤決策機率之限制下,決定加速壽命試驗 (ALT) 之最適樣本數及擇優法則的最適臨界值。本研究以模擬的結果發現最大能允許 (allowable tolerance) 之設限比率為0.8,亦能確保填補資料後之決策品質達到所要求之水準。 rf 1.D. S. Chang, D. Y. Huang, S. T. Tseng, “Selecting the Most Reliable Design under Type II Censored Accelerated Testing,” IEEE Trans. Reliability, vol. 41,no. 4, 1992, pp 588-592. 2.S. S. Gupta, D. Y. Huang, “Multiple Statistical Decision Theory: Recent Development,” Lecture Note in Statistics, vol. 6, 1981; Springer Verlag. 3.S. S. Gupta, D. Y. Huang, K. Nagel, “Locally Optimal Subset Selection Procedures Based On Ranks,” In: J. Rustagi, Ed., Optimizing Methods in Statistics. Academic Press, New York, 1979, pp251-262. 4.S. S. Gupta, S. Panchapakesan, Multiple Decision Procedures: Theory and Methodology of Selecting and Ranking Population , 1982, John Wiley & Sons, Inc . 5.D. Y. Huang, S. Panchapakesan, S. T. Tseng,“Some Locally Optimal Subset Selection Rules For Comparison With A Control,” J. Statistical Planning and Inference, vol. 9, 1984, pp 63-72. 6.D. Y. Huang, S. T. Tseng, “A decision procedure for determining the number of components in principal component analysis,” J. Statist. Plann. Inference, vol. 30, no. 1, 1992, pp 63-71. 7.K. S. Kaminsky, P. I. Nelson,“Best Linear Unbiased Prediction of Order Statistics in Location and Scale Families,” J. Amer. Statist. Assoc., vol. 70, 1975, pp 145-150. 8.J. F. Lawless, Statistical Models And Methods For Lifetime Data , John Wiley & Sons , 1982. 9.W. Q. Meeker, L. A. Escobar, Statistical Methods for Reliability Data , John Wiley & Sons , 1998. 10.W. B. Nelson, J. Schmee, “Inference for (log) normal life distribution from small singly censored samples and BLUES,” Technometrics, vol. 21, 1979, pp 43-54. 11.W. Nelson, Acceleratrated Testing: Statistical Model, Test Plans, and Data Analysis , John Wiley & Sons , New York, 1990. 12.J. Schmee, W. Nelson, “Predicting form Early Failures the Last Failure Time of a ( Log ) Normal Sample,” IEEE Trans. Reliability, vol. 25, no. 1, 1979, pp 23-26. 13.W. A. Shewhart, S. S. Wilks, Contributions to Order Statistics, Wiley, 1962. 14.S. T. Tseng, D. S. Chang, “Selecting the Most Reliable Design Under Type-II Censoring,” Reliability Engineering and System Safety, vol. 25, 1989, pp 147-156. 15.S. T. Tseng, H. J. Wu, “Selecting, Under Type II Censoring, Weibull Populations That Are More Reliable,” IEEE Trans. Reliability, vol. 39, no. 2, 1990, pp 193- 198. 16.S. T. Tseng, “Planning Accelerated Life Tests For Selecting the Most Reliable Product,” J. Statist. Plann. Inference, vol. 41, no. 2, 1994, pp 215-230. 17.S. T. Tseng, D. Y. Huang, T. Y. Wu, “A sampling plan for selecting the most reliable product under the Arrhenius accelerated life test model,” Statist. Sinica, vol. 4, no. 1, 1994, pp 233-247.id NH0925337016 sid 914016 cfn 0 / id NH0925337017 auc 邱俊淵 tic 監控製程變異數及同時監控製程平均數和變異數的管制圖 adc 黃榮臣 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 中文 pg 64 kwc 管制圖 kwc 製程變異數 kwc 製程平均數 kwc 測量誤差 abc 在使用管制圖來監控製程時,常會有測量誤差的存在而影響管制圖的偵測能力,在大部分的情況下,測量誤差的存在是會降低管制圖的偵測能力,但是對監控製程變異數的 管制圖,大多數管制界限的取法,在某些情況下會發生含有測量誤差的檢定力比不含測量誤差檢定力大的不合理現象。在本文裡,首先我們比較 管制圖中使用四種管制界限的差異,並討論測量誤差對上述管制圖所產生的影響。此外我們進一步使用上述四種管制界限來建構合併監控製程平均數及變異數的管制圖,並與文中使用概似比檢定得到的另一種混合監控管制圖做比較,同時我們也討論測量誤差對合併監控管制圖及混合監控管制圖的影響。 tc 第一章 緒論............................................1 1.1 管制圖的簡介........................................1 1.2 測量誤差的簡介......................................2 1.3 研究動機與目的......................................3 第二章 監控製程變異數的管制圖..........................4 2.1 利用統計量 之各種管制圖.............................4 2.2 不同管制界限的S2管制圖之平均連串長度比較............6 2.3 在測量誤差下各種S2管制圖之平均連串長度比較.........10 第三章 同時監控製程平均數和變異數的管制圖.............15 3.1 合併監控製程管制圖.................................15 3.2 利用概似比檢定之混合監控製程管制圖.................17 3.3 合併監控管制圖與混合監控管制圖之比較...............19 3.4 測量誤差對合併監控管制圖與混合監控管制圖的影響.....20 第四章 結論............................................25 參考文獻...............................................26 附表...................................................28rf 1.Bennett, C. A. (1954). “Effect of Measurement Error on Chemical Process Control”. Industrial Quality Control 10, p. 17-20. 2.Casella, G. and Berger, R. L. (2002). Statistical Inference. 2nd ed. 3.Kanazuka, T. (1986). “The Effects of Measurement Error or the Power of Charts”. Journal of Quality Technology , 18, p. 91-95. 4.Linna, K. W. and Woodall, W. H. (2001). “Effect of Measurement Error On Shewhart Control Charts”. Journal of Quality Technology, 33, p. 213-222. 5.Mittag, H. J. (1995). “Measurement Error Effects on Control Chart Performance”. ASQC 49th Annual Quality Congress Proceedings. p. 66-73. 6.Montgomery, D. C. (1996). Introduction to Statistical Quality Control. 3rd ed. John Wiley & Sons, Inc., New York. 7.Pearson, E. S. (1941). “The Probability Integral of the Range in Samples of n Observations from a Normal Population”. Biometrika 32, p. 301-308. 8.Roussas, G. G. (1997). A Course in Mathematical Statistics. 2nd ed. San Diego, CA. 9.Tate, R. F., and Klett, G. W. (1959). “Optimal Confidence Intervals for the Variance of a Normal Distribution”. J. Amer. Statist. Assoc. 54, p. 674-682. 10.Walden, C. T. (1990). “An Analysis of Variables Control Charts in the Presence of Measurement Error”. Unpublished Master’s Thesis, Department of Industrial Engineering, Mississippi State University, UMI No.1343291. 11.卓嘉純. (2003) “測量誤差對監控單變量變異數管制圖的影響”清華大學碩士論文.id NH0925337017 sid 914017 cfn 0 / id NH0925337018 auc 王姿晴 tic cDNA微陣列實驗中基因表現比變異度之估計 adc 許文郁 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 中文 pg 36 kwc 微陣列 kwc 變異度 kwc 顯著性 abc 基因是一切生命現象的基礎,生物要表現某項功能,一定要具有此功能的基因被啟動,因此要了解生命的本質必須由了解基因的功能著手。cDNA微陣列(cDNA Microarray)實驗可以同時檢測大量基因,降低了研究基因的障礙。 rf Brown, P.O. and Botstein D. 1999. Exploring the New World of The Genome With DNA Microarray. Suppl Nat Genet , Volume 21 , p33-37. Cleveland, W. S. 1979. Robust locally weighted regression and smoothing scatterplots. J. Amer. Statist. Assoc. 74, p829-836. Dudoit, S., Yang, Y. H., Callow, M. J. and Speed, T. P. 2002. Statistical Methods for Identifying Differentially Expressed Genes In Replicated cDNA Microarray Experiments. Statistica Sinica , Volume 12, p111-139. David, H.A. 1970. Order Statistics , New York:Wiley , p196-197. Ideker, T., Thorsson, V., Siegel, A.F. and Hood, L.E.2000. Testing for Differentially-Expressed Genes by Maximum-Likelihood Analysis of Microarray Data. Journal of Computational Biology , Volume 7 , p805-817. Ingrid L. and Terry S. 2002. Replicated Microarray Data. Statistica Sinica , Volume 12, p31-46. Kerr, M. K. and Churchill, G. A. 2000. Experimental design for gene expression microarrays. Biostatistics , Volume 2, p183-201. Newton, M.A., Kendziorski, C.M., Richmond, C.S., Blattner, F.R. and Tsui, K.W. 2001. On Difference Variability of Expression Rations: Improving Statistical Inference about Gene Expression Changs From Microarray Data. Journal of Computational Biology , Volume 7 , p37-52. Yang, Y.H., Dudoit, S., Luu, P., Lin, D.M., Peng, V., Ngai, J. and Speed, T.P. 2002. Normalization for cDNA Microarray Data: A Robust Composite Method Addressing Single and Multiple Slide Systematic Variation. Nucleic Acides Research, Volume 30 , Number 4 , p.e15.id NH0925337018 sid 914018 cfn 0 / id NH0925337019 auc 林義雄 tic 非高斯移動平均模式之可逆性判斷與預測比較 adc 徐南蓉 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 中文 pg 30 kwc 非高斯移動平均模式 kwc 可逆性判斷 kwc 最佳預測 kwc 最佳線性預測 abc 本篇論文的目的有兩個,第一個要討論的是非高斯的移動平均(moving tc 第一章 緒論 ………………………………………………………1 第二章 移動平均模型與其概似函數 ………………………………3 2.1 廣義移動平均模型 ………………………………3 2.2 Non-Gaussian MA(q)模式的概似函數 …………4 第三章 移動平均模型之可逆性判斷方法 ………………………9 3.1 Huang與Pawitan之Quasi-Likelihood 判斷法 …9 3.2 概似函數判斷法 …………………………………11 3.3 兩判別法的比較 …………………………………12 第四章 最佳線性預測與最佳預測 ………………………………14 第五章 模擬結果比較 ……………………………………………16 5.1 MA(1)和MA(2)之可逆性質判定 …………………16 5.2 最佳線性預測和最佳預測的比較 ………………20 第六章 結論 ………………………………………………………27 附錄 …………………………………………………………………28 參考文獻 ……………………………………………………………30rf 參考文獻 Akaike, H. (1978). A new look at the statistical model identification. IEEE Transactions on Automatic Control, AC-19,716-723. Breidt, F.J. and Hsu, N. J. (2004). Best mean square prediction for moving averages.forthcoming in Statistica Sinica . Brockwell, P.J. and Davis, R.A. (1991). Time Series: Theory and Methods, 2nd ed. Springer-Verlag, New York. Carlin, J.S., Gelman, A.B., Stern,H.S., and Rubin, D.B. (1995). Bayesian Data Analysis. Chapman&Hall, London. Huang, J. and Pawitan, Y. (2000). Quasi-likelihood estimation of non-invertible moving average processes. Scandinavian Journal of Statistics, 27, 689-702. Kanter, M. (1979). Lower bonds for nonlinear prediction error in moving average processes. Annals of Probablity, 7, 128-138. Lii. K. S. and Rosenblatt, M. (1992). An approximate maximum likelihood estimation for nonGaussian nonminimum phase moving average processes. Journal of the Multivariate Analysis, 43, 272-299. Rosenblatt, M. (2000). Gaussian and Non-Gaussian Linear Time Series and Random Fields. Springer-Verlag, New York. Shepp, L.A., Slepian, D., and Wyner, A.D. (1980). On prediction of moving average processes. The Bell System Technical Journal, 59, 367-415.id NH0925337019 sid 914019 cfn 0 / id NH0925337020 auc 陳世民 tic 探討共識假說應用於關鍵詞擷取的作用 adc 江永進 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 中文 pg 31 kwc 共識假說 kwc 關鍵詞 abc 本論文主要的目的是觀察在自動語音辨識系統中,模擬關鍵詞擷取率在使用共識假說 (Mangu 2000) 之後,關鍵詞擷取率是否較最常用的MAP (maximum a posteriori probability) 解碼器的改善。在給定聲學模型之後,MAP解碼器的輸出可以是top-N或者是詞格輸出網路(word lattice),網路的連接邊是由較高的概似機率的詞所組成。從top-N和詞格網路,Mangu (2000)執行了一個多重對齊(multiple alignment)的算程,產生另一個較簡單看似香腸鏈的詞格網路。然後每一個詞假說的後驗機率可以容易計算,最後選擇後驗機率最佳的詞所組成的句子,叫共識假說。 tc 目 錄 摘要 第一章 介論 1 1.1 研究動機 1 1.2 台語介紹 2 1.3 ForPA標音系統 3 1.4 章節架構 4 第二章 共識假說和關鍵詞擷取 6 2.1 共識假說 6 2.2 共識假說用在SDG-C訓練語料 10 2.3 關鍵詞擷取 12 第三章 實驗組態以及結果 13 3.1 環境背景介紹 14 3.2 辨識網路 16 3.3 關鍵詞為測試語句下的共識假說效果 21 3.4 模擬醫院掛號的關鍵詞擷取率 22 3.5 使用共識假說在關鍵字擷取率上的效果 26 第四章 結論 29 附錄 30 參考文獻 31rf 參考文獻 Bahl, L. R., Jelinek, F. & Mercer, R. L. (1983). A maximum likelihood approach to continuous recognition. IEEE PAMI, 5(2): 179-190. Liang, M., Lyu, R., & Chaing, Y. (2003). “An Efficient Algorithm to Select Phonetically Balanced Scripts for Constructing A Speech Corpus ”, International Conference on Natural Language Processing and Knowledge Engineering, NLP - KE’03, Beijing, China 26- 29. Schwartz, R. & Chow, Y.-L. (1990). The N-best Algorithm: An efficient and exact procedure for finding the N most likely sentence hypotheses. In Proceedings of ICASSP. Steve Young (1999). “The HTK BOOK version3.1”. Entropic, 1999. Stolcke, A., Konig, Y. & Weintraub, M. (1997). Explicit word error minimization in N-best list rescoring. In G. Kokkinakis, N. Fakotakis, and E. Dermatas, editors, Proc. EUROSPEECH, vol. 1, pp. 163-166, Rhodes, Greece.id NH0925337020 sid 914020 cfn 0 / id NH0925337021 auc 蘇翠淑 tic Estimating Lifetime Distribution and Its Parameters Based on Intermediate Data from a Wiener Degradation Model adc 唐正 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 英文 pg 49 kwc Accelerated life test kwc Wiener process kwc Degradation data kwc Lifetime distribution kwc Maximum likelihood estimator kwc Uniformly minimum variance unbiased estimator kwc Goodness-of-fit test kwc Inverse Gaussian distribution abc Due to technological advance and high expectation from consumers, many products are now expected to function for a long time before failure. However, during design and manufacturing stages, managers and engineers need failure data much sooner to estimate the lifetime distributions of their products. Accelerated life testing and step-stress life testing, where products are subject to higher-than-normal stresses to accelerate their failures, are standard methods of obtaining timely failure data. In a different approach, one will study the degradation/accumulated decay of a quality characteristic (QC) in case where the product will fail when its QC’s sample degradation path first passes the failure threshold. One advantage is that, if one can model the degradation sample path by, for example, a stochastic process, then it is possible to predict/estimate the lifetime without testing till failure of the product. When assuming a Wiener process with a constant or linear failure threshold, the lifetime distribution is an inverse Gaussian distribution and estimation procedures based on failure data are available. However, since we have a time-continuous degradation process, it is possible to obtain intermediate data before product’s failure and these data may be useful for lifetime estimation and model verification. In this paper, we first propose a simple way of obtaining intermediate data, which are basically boundary-crossing times of the degradation process but over certain boundaries before failure and hence are not actual failure times. Then we obtain various estimators of the lifetime distribution and its parameters based on these intermediate data, with or without the actual failure data. The results for cases without failure data are particularly useful for products that are highly reliable since lifetime could be too long or costly to obtain. In addition to the standard maximum likelihood estimators, we also obtain the uniformly minimum variance unbiased (UMVU) estimators, or mixtures of the two, for various quantities of interest. An example of an electronic product, namely the contact image scanner (CIS), is used to illustrate the proposed method. tc 1.Introduction 1 2.The Degradation Model and Lifetime Distribution 7 3.The Proposed Sampling Scheme and Intermediate Data 10 4.MLEs and UMVUEs of the Mean and Variance of Lifetime Distribution Based on Intermediate Data 13 4.1.MLE and UMVUE of mu and 1/lambda 13 4.2.MLE and UMVUE of the Variance of the Lifetime Distribution 15 5.Inference on the Lifetime Distribution and Its Percentiles 18 5.1.MLE and Modified MLE of F(t) 18 5.2.An Alternative Estimator of F(t) With Only Intermediate Data 19 5.3.Approximate Confidence Intervals for F(t) and Its Percentiles 22 6.Goodness-of-Fit Test of the Inverse Gaussian Distribution 25 7.An Example and Comparisons 28 8.Conclusions 32 References 34 Appendices A-C 37rf [1 ] W. R. Blischke, and D. N. P. Murthy, Reliability: Modeling, prediction, and optimization, Wiley, New York, 2000. [2 ] R. S. Chhikara and L. Folks, Statistical distribution related to the inverse Gaussian, Communication in statistics, 4(12), (1975), 1081-1091. [3 ] R. S. Chhikara and L. Folks, The inverse Gaussian distribution: Theory, methodology, and applications, Marcel Dekker, New York, 1989. [4 ] K. A. Doksum and A. Hoyland, Models for variable-stress accelerated life testing experiments based on Wiener processes and the inverse Gaussian distribution, Technometrics, 34(1), (1992), 74-82. [5 ] K. A. Doksum and S.-L. T. Normand, Gaussian models for degradation processes-Part I: Methods for the analysis of biomarker data, Lifetime Data Analysis, 1 (1995), 131-144. [6 ] G. J. Hahn, S. S. Shapiro, Statistical models in engineering, New York: John Wiley and Sons, 1967. [7 ] K. Iwase and N. Seto, Uniformly minimum variance unbiased estimation for the inverse Gaussain distribution, Journal of the American Statistical Association, 78 (1983), 660-663. [8 ] S. Karlin and H. M. Taylor, A second course in stochastic processes, Academic Press, New York, 1981. [9 ] E. L. Lehmann, and G. Casella, Theory of point estimation, Springer-Verlag, New York, 1998. [10 ] C. J. Lu, and W. Q. Meeker, Using degradation measures to estimate a time-to-failure distribution, Technometrics, 35 (1993), 161-174. [11 ] J. C. Lu, J. Park, and Q. Yang, Statistical inference of a time-to-failure distribution derived from linear degradation data, Technometrics, 39 (1997), 391-400. [12 ] Y. L. Luke, The special functions and their approximations, vol. 1, Academic Press, New York, 1969. [13 ] W. Q. Meeker and L. A. Escobar, A review of recent research and current issues in accelerated testing, International Statistical Review, 61(1) (1993), 147-168. [14 ] W. Q. Meeker and L. A. Escobar, Statistical methods for reliability data, John Wiley and Sons, New York, 1998. [15 ] W.Q. Meeker, L. A. Escobar, and C. J. Lu, Accelerated degradation tests: Modeling and analysis, Technometrics, 40 (1998), 89-99. [16 ] Nelson, W., Accelerated testing: Statistical models, test plans, and data analysis, Wiley, New York, 1990. [17 ] R. J. Pavur, R. L. Edgeman and R. C. Scott, Quadratic statistics for the goodness-of-fit test of the inverse Gaussian distribution, IEEE Trans. on Reliab., R-41(1) (1992), 118-123. [18 ] V. Seshadri, The inverse Gaussian distribution: Statistical theory and applications, Springer-Verlag, New York, 1999. [19 ] N. D. Singpurwalla, Survival in dynamic environments, Statistical Science, 10 (1995), 86-103. [20 ] C. Su, J. C. Lu, D. Chen and J. M. Hughes-Oliver, A random coefficient degradation model with random sample size, Lifetime Data Analysis, 5 (1999), 173-83. [21 ] L. C. Tang and D. S. Chang, Reliability prediction using nondestructive accelerated degradation data, IEEE Trans. on Reliab., R-44 (1995), 562-566. [22 ] S. T. Tseng, J. Tang, and I. H. Ku, Determination of optimal burn-in parameters and residual life for highly reliable products, Nav. Res. Logistics, 50 (2003), 1-14. [23 ] S. T. Tseng and H.F. Yu, A termination rule for degradation experiment, IEEE Trans. Reliab., R-46(1) (1997), 130-133. [24 ] M.C.K. Tweedie, Statistical properties of inverse Gaussian distributions I, Ann. Math Statist., 28 (1957), 362-377. [25 ] G. A. Whitmore, and F. Schenkelberg, Modelling accelerated degradation data using Wiener diffusion with a time scale transformation, Lifetime Data Analysis, 3(1) (1997), 27-45. [26 ] A. J. Wu, and J. Shao, Reliability analysis using the least squares method in nonlinear mixed-effect degradation models, Statistica Sinica, 9 (1999), 855-877. [27 ] H. F. Yu and S. T. Tseng, Designing a degradation test, Nav. Res. Logistics, 46 (1999), 699-706.id NH0925337021 sid 914021 cfn 0 / id NH0925337022 auc 陳景詮 tic 利用同胞對尋找易感染性基因的方法 adc 丘政民 adc 趙蓮菊 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 中文 pg - kwc 基因定位 kwc 同胞對 kwc 邏輯斯迴歸 kwc 非線性迴歸 kwc 費雪計分法 abc 數量性狀之基因定位的目的是想要尋找影響有興趣之數量性狀的基因座在染色體上之確切位置。近年來,由於分子生物學的快速發展,提供了更多的材料和結果,使得在複雜性狀之基因定位的研究也有長足之進步。在本文中主要提出一個數量性狀分析方法,利用同胞對資料,建立同胞對間數量性狀差之絕對值與標識基因座之同源全等基因的邏輯斯迴歸模型,並應用此邏輯斯迴歸之斜率與截距估計量建立非線性迴歸模型,進而建構出控制數量性狀基因座之估計量與此估計量之信賴區間。透過模擬研究可以發現,同胞對相環境效應的相關係數較高,且遺傳率較高時,此方法的所建構之估計量會越穩建。 tc 摘要 I 第1章 緒論 1-1 第2章 文獻回顧 2.1 基本遺傳概念,連鎖分析與性狀函數 2-1 2.2 文獻回顧 2.2.1 Haseman-Elston 方法 2-5 2.2.2 變異數成份分析方法 2-8 2.2.3 計分統計量分析方法 2-9 2.2.4 其他方法與比較 2-10 第3章 數量性狀分析方法 3.1 建立數量性狀和標識基因之模型 3.1.1 觀察數量性狀和標識基因之關係 3-1 3.1.2 資料轉換 3-4 3.1.3 建立邏輯斯迴歸模型 3-5 3.2 數量性狀基因座位置之估計 3.2.1 建立非線迴歸模型 3-5 3.2.2 費雪評分法 3-8 3.2.3 數量性狀基因座之點估計與區間估計 3-11 第4章 模擬結果 4.1 資料生成 4-1 4.2 模擬結果 4-3 第5章 討論 5-1 參考文獻 R1rf Allison, D. B., Neale, M. C., Zannolli, R., Schork, N. J., Amos, C. I., and Blangero, J.(1999). Testing the robustness of the likelihood-ratio test in a variance-component quantitative-trait loci-mapping procedure, Am. J. Hum. Genet. 65, 531–544. Almasy, L., and Blangero, J. (1998). Multipoint quantitative-trait linkage analysis in general pedigrees, Am. J. Hum. Genet. 62,1198–1211. Amos, C. I. (1994). Robust variance-components approach for assessing genetic linkage in pedigrees, Am. J. Hum. Genet. 54, 535–543. Drigalenko, E. (1998). How sib pairs reveal linkage, Am. J. Hum. Genet. 63, 1242–1245. Elston, R. C., Buxbaum, S., Jacobs, K. B., and Olson, J. M. (2000). Haseman and Elston revisited, Genet. Epidemiol. 19, 1–17. Feingold E (2002) Regression-based quantitative-trait–locus mapping in the 21st century. Am J Hum Genet 71:217–222 Forrest W (2001) Weighting improves the new Haseman-Elston method. Hum Hered 52:47–54 Haseman JK, Elston RC (1972) The investigation of linkage between a quantitative trait and a marker locus. Behav Genet 2:3–19 Jin P. Szatkiewicz, Karen T.Cuenco, and Eleanor Feingold (2003) Recent Advances in Human Quantitative-Trait-Locus Mapping:Comparison of Methods for Discordant Sibling Pairs. Am. J. Hum. Genet. 73:874-885 Liang, K.-Y., Huang, C.-Y., and Beaty, T. H. (2000).A unified sampling approach for multipoint analysis of qualitative and quantitative traits in sib pairs, Am. J. Hum. Genet. 66, 1631–1641. Putter H, Sandkuijl LA, van Houwelingen JC (2002) Score test for detecting linkage to quantitative traits. Genet Epidemiol 22:345–335 Sham PC, Purcell S, Cherny SS, Abecasis GR (2002). Powerful regression-based quantitative-trait linkage analysis of general pedigrees. Am J Hum Genet 71:238–253 Tang H-K, Siegmund D (2001) Mapping quantitative trait loci in oligogenic models. Biostatistics 2:147–162 Wright FA (1997) The phenotypic difference discards sibpair QTL linkage information. Am J Hum Genet 60:740-742 Xu X, Weiss S, Xu X, Wei LJ (2000) A unified Haseman-Elston method for testing linkage with quantitative traits. Am J Hum Genet 67:1025–1028id NH0925337022 sid 914022 cfn 0 / id NH0925337023 auc 錢怡 tic 伽瑪樣本全距之研究 adc 黃提源 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 中文 pg 39 kwc 伽瑪分配特徵性 kwc 樣本全距 kwc 樣本全距係數 kwc Xbar -管制圖 kwc R-管制圖 abc 本論文主要導出:當隨機樣本來自伽瑪分配時,其樣本全距Rn之分配及其近似分配,同時亦求出其偏態係數與峰度以了解其分配之大概形狀。又利用伽瑪分配之特徵性,導出Rn*=Rn/Xbar 之近似分配,其中Xbar為樣本平均數,並求出其偏態係數及峰度以了解其分配之大概情形。最後,將上述之研究結果應用在品質管制圖上。 tc 1. 緒論……………………………………………………... 1 2. 樣本全距Rn之分配…...………………………………… 3 3. 樣本全距係數Rn*之分配………………………………. 16 4. 在品質管制圖的應用…………………………………... 22 5. 結論……………………………………………………... 37 參考文獻…………………………………………………….. 38rf 1. Burr, I. W. (1967). The effect of nonnormality on constants for and R charts, Industrial Quality Control, 23, pp. 563-568. 2. David, H.A. (1981). Order Statistics. New York: John Wiley & Sons. 3. Hartley, H. O. (1945).Note on the calculation of the distribution of the estimate of mean deviation in normal samples. Tables of probability integral of the mean deviation in normal samples. Biometrika, 33, 257. 4. Hwang T. Y. and Hu C. Y. (1999). On a characterization of the Gamma distribution:the independence of the sample mean and the sample coefficient of variation. Annals of the Institute of Statistics Mathematics, 51,749-753, Japan. 5. Hwang T. Y. and Hu C. Y. (2000). On some characterizations of population distributions. Taiwan J. of Math., 4, 427-437. 6. Hwang T. Y. and Huang P. H. (2002). On new moment estimation of parameters of the Gamma distribution using it’s characterization. Annals of the Institute of Statistics Mathematics, 54, 840-847, Japan. 7. Huang P. H. and Hwang T.Y. (2003). The inference of Gini’s mean difference. Summitted to Statistics & Probability Letters. 8. Hwang T.Y. and Huang P. H. (2004), On new moment estimation of parameters of the generalized Gamma distribution using it’s characterization. Summitted to Technometrics. 9. Montgomery, D. C. (2001). Introduction to Statistical Quality Control. New York: John Wiley & Sons. 10. Pearson E. S. (1926). A further note on the distribution of range in samples taken from a normal population. Biometrika, 18, 173. 11. Pearson E. S. (1932). The percentage limits for the distribution of range in samples from a normal population. Biometrika, 24, 404. 12. Schilling, E. G., and P. R. Nelson (1976). The effect of nonnormality on the control limits of charts. Journal of Quality Technology, 8, pp. 239-250. 13. Tippet, L. H. C. (1925). On the extreme individuals and the range of samples taken from a normal population. Biometrika, 17, 364.id NH0925337023 sid 914023 cfn 0 / id NH0925337024 auc 胡政宏 tic 二階段逐步加速壽命實驗之無母數分析 adc 唐正 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 英文 pg 45 kwc 無母數 kwc 階段性加速壽命實驗 abc 在本篇論文中,我們將展現二無母數的模型,分別為AFT/CE模型以及PH/TFR模型,用來描述在階段性加速壽命實驗中所獲得的資料。並且介紹一無母數的方法可藉由這些資料推測在常態使用下,累積失敗機率的上界及可靠度函數的下界。 tc Section 1 Introduction 1 Section 2 The Model Assumptions 7 2.1 The AFT Model with the CE Assumptions 7 2.2 The PH Model with the TFR Assumptions 8 Section 3 Extrapolation for the Cumulative Failure Probabilities and the Reliability Function under Normal Condition 10 Section 4 Verification of Condition (3.1) 13 Section 5 Goodness-Of-Fit Test Of The AFT/CE Model (2.1) 15 5.1 Methods For Verifying Assumption (3.1) under the Proposed Experiment for the AFT/CE Model 16 5.2 A Graphical Approach for the GOF of the AFT/CE Model 19 5.3 A Formal GOF Test of AFT/CE Model (2.1) 19 Section 6 A Simulated Example 22 6.1 Description of the Simulated Data 22 6.2 Analyses for the Simulated Data 23 6.2.1 Model Checking 23 6.2.2 Checking Condition (3.1) 24 6.3 The UCB of Pr(x0,t0) 26 Section 7 Results For The PH/TFR Model (2.2) 28 Section 8 Conclusions 35 References 37 Table 1, 2, 3 39 Table 4 40 Figures 1 41 Figures 2 42 Figures 3 43 Figures 4, 5 44 Figures 6 45rf Bhattacharyya, G. K., and Soejoeti, Z. (1989), “A Tampered Failure Rate Model for Step-Stress Accelerated Life Test,” Communications in Statistics-Theory and Methods, 5, 1627-1643. Cox, D. R. (1972), “Regression Models and Life Tables,” Journal of the Royal Statistical Society, Ser. B, 34, 187-220. David, H. A. (1981), Order Statistics, 2nd ed., John Wiley & Sons, New York. DeGroot, M. H. and Goel, P. K. (1979), “Bayesian Estimation and Optimal Designs in Partially Accelerated Life Testing,” Naval Research Logistics Quarterly, 26, 223-235. Dorp, J. R., Mazzuchi, T. A., Fornell, G. E., and Pollock, L. R. (1996), “A Bayes Approach to Step-Stress Accelerated Life Test,” IEEE Transactions on Reliability, 45, 491-498. Ferguson, T. S. (1967), Mathematical Statistics, A Decision Theoretic Approach. New York: Academic Press. Kalbfleisch, J. D., and Prentice, R. I. (1980), The Statistical Analysis of Failure Time Data, John Wiley & Sons, New York. Kiefer, J. (1959), “K-Sample Analogues of the Kolmogorov-Smirnov and Cramer-V. Mises Tests,” Annals of Mathematical Statistics, 30, 420-447. Lawless, J. F. (1982), Statistical Models and Methods for Lifetime Data, John Wiley & Sons, New York. Lawless, J. F. (1986), “A Note on Lifetime Regression Models,” Biometrika, 73, 509-512. Nelson, W. B. (1980), “Accelerated Life Testing-Step Stress Models and Data Analyses,” IEEE Transactions on Reliability, 29, 103-108. Nelson, W. B. (1982), Applied Life Data Analysis: John Wiley & Sons, New York. Nelson, W. B. (1990), Accelerated Life Testing, Statistical Models, Test Plans, and Data Analysis: John Wiley & Sons, New York. Owen. D. B. (1962), Handbook of Statistical Tables, Addison-Wesley, New York. Schmoyer, R. L. (1986), “An Exact Distribution-Free Analysis for Accelerated Life Testing at Several Levels of a Single Stress,” Technometrics, 28, 165-175. Schmoyer, R. L. (1988), “Linear Interpolation With a Nonparametric Accelerated Failure Time Model,” Journal of the American Statistical Association, 83, 441-449. Schmoyer, R. L. (1991), “Nonparametric Analyses for Two-Level Single-Stress Accelerated Life Tests,” Technometrics, 33, 175-186. Shaked, M., and Singpurwala, N.D. (1983), “Inference for Step-Stress Accelerated Life Tests,” Journal of Statistical Planning and Inference, 7, 295-306. Thomas, R. E. (1964), “When Is a Life Test Truly Accelerated?” Electronic Desig, 12, 64-70. Tseng, S. T. and Wen, Z. C. (2000), “Step-Stress Accelerated Degradation Analysis for Highly Reliable Products,” Journal of Quality Technology, 32, 209-216. Tyoskin, O. I. and Krivolapov, S.Y. (1996), “Nonparametric Model for Step-Stress Accelerated Life Test,” IEEE Transactions onReliability, 45, 346-350. Xiong, C. (1998), “Inference on A Simple Step-Stress Model With Type II Censored Exponential Data,” IEEE Transactions on Reliability, 47, 142-146.id NH0925337024 sid 914024 cfn 0 / id NH0925337025 auc 林詩倩 tic 基因晶片數據混合常態分配之參數估計 adc 許文郁 ty 碩士 sc 國立清華大學 dp 統計學研究所 yr 92 lg 中文 pg 42 kwc 微陣列 kwc 混合常態分配 abc 本文針對微陣列實驗所獲得的數據提出一個混合常態分配模型(mixed normal distribution model),利用三種參數估計方法:最大概似法、間距對數和法及動差法,進行模型參數的估計,並以其漸近共變異矩陣比較三種方法之優劣情形。最後再利用實際數據,檢視基因晶片的數據是否符合我們所提出的模型。 tc 第一章 前言                          1 第二章 基因晶片模型介紹                    3 2.1 微陣列的資料處理 3 2.2 模型配適                        4 2.2.1 常態分配                      4 2.2.2 混合常態分配                    5 第三章 參數估計方法 7 3.1 最大概似法                      7   3.2 間距對數和法 8    3.2.1 K-L Information Quantity 8 3.2.2 間距對數和 9   3.3 動差法 11    3.3.1 參數估計及其漸近分配 11    3.3.2 模擬實驗 20    3.3.3 動差法參數估計之優劣評估 21 第四章 數值模擬 25   4.1 模擬研究設計                     25 4.2 模擬數值結果 25 第五章 實例說明 36 5.1 模擬實驗                       36   5.2 實例說明 37 第六章 結論及未來方向 41 參考文獻                           42rf Brown,P.O. and Botstein,D.(1999). Exploring the new world of the genome with DNA microarray. Suppl Nat Genet,Vol.21,p33-37. Box,M.J. (1971). Bias in nolinear estimation,J.R. Statist. Soc., B,32, p171-201. Ghosh, D. and Chinnaiyan, A. M. (2002). Mixture modelling of gene expression data from microarray experiments. Bioinformatics, Vol.18, p275-286. Hoyle, D. C.,and Rattray, M., Jupp, R. and Brass, A. (2002). Making sense of microarray data distributions. Bioinformatics, Vol.18, p576-584. Sakamoto, Y. and Ishiguro, M. and Kitagawa, G. (1986). Akaike Information Criterion Statistics.,D. Reidel,Tokyo,Japan. 顏良芬(2002)。間距對數和統計量之研究。清華大學統計學研究所碩士論文。id NH0925337025 sid 904018 cfn 0 / id NH0925389001 auc 楊承翰 tic 台灣CD-ROM光碟機產業之發展歷程 adc 劉瑞華 ty 碩士 sc 國立清華大學 dp 經濟學系 yr 92 lg 中文 pg 71 kwc 學習 kwc 創新 kwc 光碟機產業 kwc 垂直分工 kwc 工研院 kwc 建準電機 kwc 產業史 kwc 產業發展歷程 kwc 使用者創新 kwc 研發機構 kwc 光碟機產業特性 abc 本文的主要目的在於了解技術落後的開發中國家,如何能追趕上技術領先國。利用台灣CD-ROM光碟機的產業架構為主軸,本文根據Chandler長期觀點的產業史理論為基礎,推導出適合台灣的產業理論,並由此找出一些台灣CD-ROM光碟機產業發展成功的原因。學習是為能力的累積,而創新是由學習而來,Chandler提供了Learning Base的觀念,說明核心公司的Learning Base是為產業發展的來源、動力,也定義了產業創新的方向與路徑。有別於Chandler原來的理論,本文提供一個重要的觀點,Learning Base的累積並不一定是在廠商的內部,因此「創新應該在廠商的內部發生」並不成立。技術與功能兩方面的Learning Base因為產業架構的不同,可以分別在公立研發機構以及民間廠商累積,這樣的方式對於技術後進國家來說,是為追趕先行者廠商的模式。本論文根據理論做歷史事件的分析,台灣CD-ROM光碟機產業能夠追上技術先進國家,並且出貨量在世界上佔有一席之地的原因,是由於有工研院研發提供光碟機的技術,將其移轉給民間廠商,並且能由過去的經驗了解到某些決策的錯誤,進而做轉變。更重要的是,民間廠商有能力應用此技術,達成量產的目的。由工研院和民間廠商兩方面的合作並進,工研院追趕技術,民間廠商拼產量,有別於Chandler所說明的核心公司那樣的大廠型態,由垂直分工,水平技術支援的產業架構,使光碟機產業發展成功。 tc 第一章 緒論 1.1 研究動機 ...................................................1 1.2 文獻回顧與研究方法..........................................5 1.3 論文架構 ..................................................11 第二章 光碟機產業介紹與理論探討 2.1 光碟機產業簡介 2.1.1光儲存技術........................................... 12 2.1.2 光碟機產業特性.......................................15 2.2 理論架構 2.2.1 Chandler的創新理論 ..................................17 2.2.2 Chandler的分析方式 ..................................22 2.2.3台灣光碟機產業的模式 ................................ 28 2.2.4 Learning Base ....................................... 31 第三章 台灣光碟機產業發展歷程 3.1 前言:工業技術研究院 .......................................37 3.2 硬碟機的失敗 ..............................................38 3.3 光碟機產業初始 ............................................41 3.4 擁有Base的光碟機廠商 .....................................44 3.5 關鍵零組件與建準電機 ......................................46 3.6 工研院的學習與貢獻 ........................................52 3.7 CD-ROM光碟機產業的成功.....................................54 第四章 結論 .......................................................57 參考文獻 ..........................................................59 附件 光碟機產業大事記 .............................................63rf 參考文獻 中文部分: 工研院光電所網頁,http://www.oes.itri.org.tw/,專利查詢。 工研院光電工業研究所(1991~1994),《光電產業速報》(93年前為《光電速報》) 台灣財經資料庫,台灣經濟新報資料庫。 李孝揚(2002),《DVD-ROM光碟機專利權利金解決方案之法律分析》,碩士論文,世新大學。 洪懿妍(2003),《創新引擎 工研院:台灣產業成功的推手》,天下雜誌股份有限公司。 洪世章(2002),〈結構衝突與產業劣勢:台灣硬碟機工業之發展〉,管理學報,2002年4月,273-302。 莊東霖(2002),《台灣IC設計產業發展驅動力之研究》,碩士論文,國立清華大學。 徐耀璘(2001),《光儲存媒體技術授權爭議行為之研究》,碩士論文,國立台北大學。 陳丁銘(1996),《認識光碟機》,台北,全欣。 陳世運、陳泓志(1998),《個案研究(六)—工研院對產業的貢獻—以光碟機產業為例》,工業技術研究院。 陳鐵元、葉惠娟(2003),《科技政策與研究機構,產業科技與工研院—看的見的腦》,工業技術研究院。 張俊彥、游伯龍(2002),《活力:台灣如何創造半導體與個人電腦產業奇蹟》,時報出版。 張珉慈(2002),《台灣與韓國之半導體產業結構交易成本分析》,碩士論文,國立清華大學。 陳彥澍(2001),《台灣消費性IC設計產業成功因素之研究》,碩士論文,國立交通大學。 黃怡華(2003),《資源,技術與產業:工研院模式之分析》,碩士論文,國立清華大學。 曾淑華(2002),《邁向世代交替之光儲存產業探討》,工業技術研究院。 彭淑敏(2002),《台灣CD-R光碟片產業之發展歷程》,碩士論文,國立交通大學。 楊艾俐(1989),《孫運璿傳》,天下雜誌股份有限公司。 經濟部技術處(1996~2002),《光電工業綜論》,工業技術研究院產業經濟與資訊服務中心。 經濟日報(1990-1998),聯合知識庫,http://udndata.com/。 劉文仁(2002),《以專利指標衡量台灣DVD產業之創新能力》,碩士論文,國立交通大學。 聯合報(1985-1998),聯合知識庫,http://udndata.com/。 英文部分: Arrow ,Kenneth J. (1962),The Economic Implications of Learning by doing, The Review of Economic Studies, Vol. 29, No. 3. (Jun., 1962), pp. 155-173. Chandler ,Alfred D. (1962),Strategy and Structure : chapters in the history of the industrial enterprise.,Cambridge , M.I.T Press Chandler ,Alfred D. (2001),Inventing the electronic century,Free Press of Simon & Schuster, Inc. Hipple ,Von(1988),Sources of Innovation, Oxford University Press,London. Hipple ,Von(1998),Economics of Product Development by User: The impact of “Sticky” Local Information,Manegement Science,40. Hipple ,Von (2001),Innovation by User communities: Learning from Open-Source Software, Sloan Management Review. Hughes ,Thomas P. (1987)“Reverse Salients and Critical Problems: The Dynamics of Technological Change.” U. of Pennsylvania paper; presented at the Conference on Technology and the Enterprise in an Historical Perspective, Terni, Italy, Oct. 1987. Kambil, A., G. B. Friesen, & A. Sundaram(1999),Co-Creation: A New Source of Value,Outlook Magazine. Lengnick-Hall,L.A.(1996),Customer Contributions to Quality: A Different View of Customer-Oriented Firm,Academy of Management Review,21(3). Mowery ,David C. (1980),“The Emergence and Growth of Industrial Research in American Manufacturing –1899-1946.” PhD diss., Stanford U., Mowery ,David C. (1983),“The Relationship Between Intrafirm and Contractual Forms of Industrial Research in American Manufacturing, 1900-1940,” Exploration Econ. Hist., Oct. 1983, 20(4), pp. 351-74. Nelson ,Richard R. (1982),The Role of knowledge in R&D Efficiency, The Quarterly Journal of Economics, Vol. 97 No. 3(Aug,1982), pp. 453-470. Nelson ,Richard R. (1986),”Institutions Generating and Diffusing New Technology”, Conference on Innovation Diffusion, 17-21 Mar. 1986. in Frontiers in innovation diffusion. Eds.: Fabio Arcangeli, Paul David and Giovanni Dosi. Oxford: Oxford U. Press, Forthcoming. Nelson ,Richard R.; Winter ,Sidney G. (1977), “In Search of a Useful Theory of Innovations,”Res. Policy, Jan. 1977, 6(1), p. 36. Pavitt ,Keith (1986), “Technology, Innovation and strategic Management”, in Strategic management research: A European perspective. Eds.: J. McGee and H. Thomas. NY: Wiley. Reich ,Leonard (1985), The making of American industrial research: science and business at G.E. and Bell, 1876-1926. NY: Cambridge U. Press. Rosenberg ,Nathan (1985), “The Commercial Exploitation of Science by American Industry,” in The uneasy alliance” Managing the productivity-technology dilemma. ED.: Kim B. Clark, Robert H. Hayes and Christopher Lorenz. Cambridge, MA: Harvard Business School Press. Stigler ,George J. (1956), “Industrial Organisation and Economic Progress,” in The State of social sciences. Ed.: Leonard D. White. Chicago: Chicago U. Press. Williamson ,Oliver (1975), Markets and hierarchies. NY: Free Press. Williamson ,Oliver (1985), The economic institutions of capitalism. NY: Free Press.id NH0925389001 sid 904915 cfn 0 / id NH0925389002 auc 張菁 tic 金融資產證券化對貨幣政策信用管道之影響---美國實證分析 adc 黃朝熙 ty 碩士 sc 國立清華大學 dp 經濟學系 yr 92 lg 中文 pg 63 kwc 金融資產證券化 kwc 貨幣政策傳遞機制 kwc 信用管道 kwc 向量自我迴歸分析 kwc 衝擊反應函數 kwc 變異數分解 kwc 半結構性向量自我迴歸分析 abc 有鑑於美國金融市場在1980年代初期結構性的改變,本篇論文以美國的金融創新—金融資產證券化為背景,研究在央行貨幣政策的傳導機制中,藉由影響銀行貸放來影響實質經濟的信用管道,其重要性是否會因金融資產證券化的漸趨普及而下降。 rf 黃朝熙,2004,”金融資產證券化對銀行體系之影響暨對中央銀行政策之 意涵”,央行研究計畫。 陳文達、李阿乙、廖咸興,2002,資產證券化理論與實務,初版,智勝文化。 周傳斌,1997,”貨幣政策傳遞機能之信用管道---台灣的實證分析”,國立中正大學國際經濟研究所碩士論文。 羅雅惠,1997,”貨幣傳送結構---廣義信用管道之實證研究”,國立清華大學經濟學系碩士論文。 朱惠娟,2003,”不動產抵押貸款債權證券與資本市場關聯性---美國資本市場實證研究”,淡江大學財務金融學系碩士論文。 黃建銘,2002年3月,”金融資產證券化的架構與運用”,存款保險資訊季刊,15:3,p.130-149。 郭恆慶,2002年7月,”銀行金融資產證券化”,信用合作,73,p.42-54。 林建輝,2002年3月,”金融資產證券化”,萬通銀行季刊,p.26-30。 賴惠子,2002,”台灣地區貨幣政策信用傳遞管道之探討”,經濟研究,38:1,57-95。 Bernanke, Ben S., 1993, “Credit in the Macroeconomy,” Quarterly Review, Federal Reserve Bank of New York, 18, 50-70. Bernanke, Ben S., and Alan S. Blinder, 1988, “Credit, Money, and Aggregate Demand,” American Economic Review, 78, 435-39. _____, and _____, 1992, “The Federal Funds Rate and the Channels of Monetary Transmission,” American Economic Review, 82, 901-921. Bernanke, Ben S., and Ilian Mihov, 1998, “Measuring Monetary Policy,” Quarterly Journal of Economics, 113, no.3, 869-902. Estrella, Arturo, 2002, “Securitization and the Efficacy of Monetary Policy,” Federal Reserve Bank of New York, 8(1), 243-256. Gertler, Mark, and Simon Gilchrist, 1992, “The Role of Credit Market Imperfections in the Monetary Transmission Mechanism: Arguments and Evidence,” New York University, Unpublished, Revised May 1992. Greenwald B., J. Stiglitz and A. Weiss, 1984, “Information Imperfections in the Capital Market and Macroeconomic Fluctuations,” American Economic Review, 74, 194-199. Hirtle, Beverly and Jeannette Kelleher, 1990, “Financial Market Evolution and the Interest Sensitivity of Output,” Federal Reserve Bank of New York, Quarterly Review, Summer, 56-70. Kashyap, Anil K., and Jeremy C. Stein, 1992, “Monetary Policy and Bank Lending,” Graduate School of Business, University of Chicago, unpublished. Kashyap, Anil K., and Jeremy C. Stein and David W. Wilcox, 1993, “Monetary Policy and Credit Conditions: Evidence from the Composition of External Finance,” American Economic Review, 83, March, 78-98. McCarthy, Jonathan and Richard W. Peach, 2002, “Monetary Policy Transmission to Residential Investment,” Federal Reserve Bank of New York, 8, May, 139-159. Myers, S. and N.S. Majluf, 1984, “Corporate Financing and Investment Decisions When Firms Have Information That Investors Do Not Have,” Journal of Financial Economics, 13, 187-221. Pozdena, Randall J., 1990, “Do Interest Rates Still Affect Housing?” Economic Review, Federal Reserve Bank of San Francisco, Summer, 3-15. Sims, Christopher, 1980, “Macroeconomics and Reality,” Econometric, 48, Jan, 1-49.id NH0925389002 sid 914902 cfn 0 / id NH0925389003 auc 唐孟祺 tic 法律環境、創業投資與台灣製造業總要素生產力的成長 adc 祁玉蘭 ty 碩士 sc 國立清華大學 dp 經濟學系 yr 92 lg 英文 pg 35 kwc 創業投資 kwc 法律環境指標 kwc 總要素生產力 abc 本論文以新古典成長理論為基礎,進一步提出一個新的知識成長內生機制模型。傳統的內生成長理論著重在人力資本及研究發展的重要,我們則進一步將另外兩類的知識長成管道納入現有的理論模型:一是來自技術先進國家對技術落後國家的知識外溢效果,包括衡量以出口及外人投資為管道的技術吸收能力,與國家間技術發展的差異;二是來自創業投資者對新進公司企業家的經驗傳遞效果。創業投資者對新企業家在發展技術以外所提供的幫助,包括公司治理及技術商品化等建議,是我們認為同樣對製造業總要素生產力的成長相當重要、卻長久以來為著重技術發展的傳統成長理論所忽略的部份。此外,在創業投資與總要素生產力成長間存在著內生性的問題。為了解決在文獻中的爭議,我們建立一套創業投資的法律環境指標做為工具變數,主要針對台灣目前相關法律對創業投資的資金來源、租稅誘因及上市容易程度等管制及獎勵進行評量。最後,我們進一步提出法律環境、創業投資、與台灣製造業總要素生產力成長間的實證結果。我們發現創業投資對台灣製造業總要素生產力有非常顯著的影響。此外,製造業的研發及出口,同樣對其發展有著顯著貢獻。然而,在我們的結果中,外人投資、人力資本對台灣製造業的影響並不顯著。 tc I. Introduction II. A Model of Knowledge growth 2.1 Internal Diffusion of knowledge: The Baseline 2.2 External diffusions of knowledge: Absorptive Capability and Technology Gap 2.3 Experiential Diffusion of knowledge: Venture Capital III. The Legal Environment of Venture Capital 3.1 Venture Capital and the Laws 3.2 Methodology 3.3 The Legal Environment Indicators IV. Empirical Results V. Conclusions Appendix Relevant Legal Rules Data Sources Referencesrf Acemoglu D. and F. Zilibotti, 2001, Productivity Differences., Quarterly Journal of Economics, 115, 563-606. Armour, J., 2002, Law, Innovation and Finance: A Review., ESRC Centre for Business Research, University of Cambridge, Working Paper No. 243. Arrow K. J., 1962, The Economic Implications of Learning by Doing., Review of Economic Studies, 29, 155-73. Baumol. W. J., 2002, The Free Market Innovation Machine: Analyzing the Growth Miracle of Capitalism, Princeton NJ: Princeton University Press. Black, B.S., and R. J. Gilson, 1998, Venture Capital and the Structure of Capital Markets: Banks versus Stock Markets., Journal of Financial Economics, 47, 243-77. Caselli, F. and N. Gennaioli, 2003, Dynastic Management., CEPR Discussion Paper,No. 3767, http://ssrn.com/abstract=390103. Chen, B. –L., Hsu M., and J. –Y, Chen, 1999, Technology Adoption and Technical Efficiency in Taiwan: Foreign Investment Led versus Export Performance Promoted., Economic Efficiency and Productivity Growth in the Asia- Pacific Region, Cheltenham, UK, Edward Elgar Publishing Limited, 215- 36. Chuang, Y. –C., 1996, Identifying the Sources of Growth in Taiwan's Manufacturing Industry., Journal of Development Studies, 32 , 3, 445-63. Chuang, Y. –C and C. –M. Lin, 1999, Foreign Direct Investment, R&D and Spillover Efficiency: Evidence from Taiwan's Manufacturing Firms., Journal of Development Studies, 35, 4, 117-37. Coe D. and E. Helpman, 1995, International R&D Spillovers., European Economic Review, 39, 859-87. Collins, S. M. and B. P. Bosworth, 1996, Economic Growth in East Asia: Accumulation Versus Assimilation., Brookings Papers on Economic Activity 2, 135-204. Dale W. J., 1996, Empirical Studies of Depreciation., Economic Inquiry 34, 1, 24-42. Dessus, S., 1999, Total Factor Productivity and Outward Orientation in Taiwan: What is the Nature of the Relationship?. Economic Efficiency and Productivity Growth in the Asia- Pacific Region, Cheltenham, UK, Edward Elgar Publishing Limited, 191- 214, http://ssrn.com/abstract=147262. Färe, R., Grosskopf S., and W. –F. Lee (2001), Productivity and Technical Change: The Case of Taiwan., Applied Economics, 33, 15, 1911-25. Fu, P. H., 2001, Developing Venture Capital Laws in China: Lessons Learned from the United States, Germany, and Japan., 23 Loyola of Los Angeles International and Comparative Law Review, 487- 528. Ginarte, J.C., Park,W., 1997., Determinants of Patent Rights: A Cross-National Study., Research Policy, 26, 283– 301. Gompers, P. and J. Lerner, 1998, What Drives Venture Fundraising?, Brookings Papers on Economic Activity, Microeconomics, 149-92. _____, 1999, The Venture Capital Cycle, Cambridge: MIT Press. _____, 2001, The Venture Capital Revolution., Journal of Economic Perspectives, 15, 2, 145-68. Gretai Securities Market, 2001, Report of the dynamics of over-the counter market. Grossman G. and E. Helpman, 1991, Innovation and Growth in the Global Economy., Cambridge, Mass: MIT Press. Hansen, L., 1982, Large Sample Properties of Generalized Method of Movements Estimators, Econometrica, 50, 1029-54. Hellman, T., 1998, The Allocation of Control Rights in Venture Capital Contracts., The Rand Journal of Economics, 29, 1, 57-76. Hellman, T., and M. Puri, 2000, The Interaction between Product Market and Financing Strategy: The Role of Venture Capital., Review of Financial Studies, 13, 4, 959-84. Investment Commission, Ministry of Economic Affairs, R.O.C., FDI Annual Report. (In Chinese) Jeng L.A. and P. C. Wells, 2000, The Determinants of Venture Capital Funding: Evidence Across Countries., Journal of Corporate Finance, 6, 3, 241-89. Johnston, J. and DiNardo, J., 1997, Econometric Methods, fourth edition, Singapore: McGraw-Hill Companies, Inc. Jorgenson, D.W., and Z. Griliches, 1967, The Explanation of Productivity Change., Review of Economic Studies, 34, 249–83. Kleibergen, F., 1999, Reduced Rank Regression Using GMM, General Method of Moments Estimation, Cambridge: Cambridge University Press, 171-210. Keller, W., 1998, Are International R&D Spillovers Trade-Related? Analyzing Spillovers among Randomly Matched Trade Partners, European Economic Review, 42, 1469-81. Keuschnigg, C., 2002, Venture Capital Backed Growth., IFF-HSG, CEPR and CESifo Discussion paper no. 2002-04. Kirzner, I. M., 1979, Perception, Opportunity, and Profit: Studies in the Theory of Entrepreneurship, Chicago: University of Chicago Press. Kortum, S. and J. Lerner, 2000, .Assessing the Contribution of Venture Capital to Innovation., RAND Journal of Economics, 31, 4, 674-92. Krugman, P., 1994, The Myth of Asia’s Miracle., Foreign Affairs, 62-78. La Porta, R.; Lopez-de-Silanes, F., Shleifer, A., and R. W. Vishny, 1998, Law and Finance., Journal of Political Economy, 106, 6, 1113-55. Levine, R., 1998, The Legal Environment, Banks, and Long-Run Economic Growth., Journal of Money, Credit, and Banking, 30, 3, 596-613. Liu X. and C. Wang, 2003, Does Foreign Direct Investment Facilitate Technological Progress? Evidence from Chinese Industries., Research Policy, 32, 945–53. Lucas Jr., R. E., 1988, On the Mechanics of Economic Development., Journal of Monetary Economics, 22, 3-42. Milhaupt, C. J., 1997, The Market for Innovation in The United States and Japan: Venture Capital and the Comparative Corporate Governance Debate., 91 Northwestern University Law Review, Spring, 865- 98. Nadiri, M.I., 1993, Innovations and Technological Spillovers., National Bureau of Economic Research Working Paper, No. 4423, Cambridge, MA. Nelson, R. R. and E. S. Phelps, 1966, Investment in Humans, Technological Diffusion, and Economic Growth, American Economic Review, 56, 69-75. Prescott, E., 1998, Needed: A Theory of Total Factor Productivity, International Economic Review, 39, 525-53. Rogers, M., 1998, The International Diffusion of Technology: Technological Catch-up and Economic Growth., Paper presented at IRIC Conference, Perth, August. Romain, Astrid, and Bruno van Pottelsberghe de la Potterie, 2004, The Economic Impact of Venture Capital, Working Paper WP-CEB: #04/014, Universite Libre de Bruxelles. Romer P., 1986, Increasing Returns and Long Run Growth., Journal of Political Economy, 94, 1002-37. _____, 1990, Endogenous Technological Change, Journal of Political Economy., 98, 5, 71-101. Stiroh, K., 2001, What Drives Productivity Growth?, FRBNY Economic Policy Review., 37–59. Taiwan Venture Capital Association (TVCA), 2003, TVCA Yearbook. (In Chinese) Tsai, D. -H and T. –G. Chen, 2002, Intra- and Inter-industry R&D Spillovers and Exogenous Technical Change Effects: Evidence from Taiwan High-Tech Plant-Level Data., Taiwan Economic Review, 30, 2, 175-204. (In Chinese) Ueda M. and M. Hirukawa, 2003, Venture Capital and Productivity., unpublished working paper, University of Wisconsin, USA. Wang, J. –C., 2003, Taiwan Venture Capital Enterprise and China Market Regulation., Yuê- Dan Law Review, 103, 77- 103. (In Chinese) Xu, B., 2000, Multinational Enterprises, Technology Diffusion, and Host Country Productivity Growth., Journal of Development Economics, 62, 477–93. Yang, C. –H. and J. –R. Chen, 2002, R&D, Patents and Productivity--Evidence from Taiwanese Manufacturing Firms., Taiwan Economic Review, 30, 1, 27-48. (In Chinese) Young, A., 1995, The Tyranny of Numbers: Confronting the Statistical Realities of the East Asian Growth Experience., The Quarterly Journal of Economics, 110, 641-80.id NH0925389003 sid 914907 cfn 0 / id NH0925389004 auc 林邦傑 tic 近代貨幣傳導機制理論之發展 adc 趙相科 ty 碩士 sc 國立清華大學 dp 經濟學系 yr 92 lg 中文 pg 91 kwc 貨幣傳導機制 kwc James Tobin kwc Allan H. Meltzer kwc Karl Brunner kwc Ben S. Bernanke kwc 因果關係 abc 摘要 tc 目錄 表次 ..………………………………………………………………VIII 圖次…………………………………………………………………VIII 第一章 序論……………………………………………………………..1 1.1 貨幣傳導機制之簡介……………………………………………….1 1.2 文獻回顧…………………………………………………………….5 1.3 研究目的與方法…………………………………………………….8 第二章 Tobin之資金成本傳遞管道…………………………………...9 2.1傳統凱因斯學派之貨幣傳導機制…………………………………..9 2.1.1傳統凱因斯學派之貨幣傳導機制……………………………..9 2.1.2傳統凱因斯學派傳導機制之主要精神……………………….10 2.2 Tobin與傳統凱因斯學派………………………………………..11 2.2.1 Tobin對傳統凱因斯學派傳導機制之批評……………… ..11 2.2.2 Tobin’ s q………………………………………………….12 2.3 Tobin之貨幣理論模型…………………………………………..13 2.4 Tobin對其貨幣傳導機制之詮釋………………………………..17 2.4.1 Tobin之貨幣傳導機制…………………………………… ..17 2.4.2 Tobin傳導機制之主要精神 ……………………………….18 2.5 小結……………………………………………………………...20 第三章 Brunner與Meltzer之相對價格傳遞管道…………………….21 3.1 Friedman, Brunner與Meltzer……………………………………21 3.1.1 Friedman對傳統凱因斯學派傳導機制之批判…………….21 3.1.2 Meltzer對Friedman之批評..……………………………….23 3.2 Brunner與Meltzer之貨幣理論模型……………………………..24 3.3 Brunner與Meltzer對其貨幣傳導機制之詮釋…………………..28 3.3.1 Brunner與Meltzer之貨幣傳導機制 .………………………28 3.3.2 Brunner與Meltzer傳導機制之主要精神………………… ..30 3.4 小結…………………………………………………………….31 第四章 Bernanke之信用傳遞管道……………………………… .. 33 4.1 經濟大蕭條之信用傳遞管道解釋……………………………….33 4.2 Bernanke之貨幣理論模型 ..…………………………………..35 4.3 Bernanke對其貨幣傳導機制之詮釋……………………………..41 4.3.1 Bernanke之貨幣傳導機制……………………………… . 41 4.3.2 Bernanke傳導機制之主要精神………………………… ..42 4.4 小結……………………………………………………………….44 第五章 不同貨幣傳導機制之比較…………………………………..45 5.1 Tobin與傳統凱因斯學派之比較…………………………………45 5.2 Tobin, Brunner與Meltzer傳導機制之比較…………...…...47 5.2.1 Tobin, Brunner與Meltzer傳導機制之比較…………47 5.2.2 Tobin’s q與相對價格之討論 …………………. .50 5.2.3 Tobin, Brunner與Meltzer傳導機制差異之探討 ….52 5.2.4不同傳導機制之經濟影響分析…………………… ..53 5.3 Tobin, Brunner與Meltzer, Bernanke傳導機制之比較….54 5.3.1 Tobin, Brunner與Meltzer, Bernanke傳導機制差異之探討 61 5.3.2 不同傳導機制之經濟影響分析………………………… .62 5.4 小結……………………………………………………………… 64 第六章 不同貨幣傳導機制之實證研究比較……………………… .66 6.1 前言………………………………………………………….66 6.2 Tobin, Meltzer, Bernanke貨幣傳導機制之實證研究……….70 6.3貨幣傳導機制中之因果關聯分析……………………………… .76 6.3.1 Tobin實證研究之因果推論…………………………… 76 6.3.2 Meltzer實證研究之因果推論……………………… .77 6.3.3 Bernanke實證研究之因果推論…………………… ..78 6.4 理論、模型與經驗事實之關係………………………………….79 6.4.1模型為建立與發現理論之工具…………………………… ..79 6.4.2模型為測量之工具………………………………………….. 80 6.4.3模型為實驗設計與政策干預之工具……………………… ..81 6.4.4模型為陳述理論與經驗事實之功能……………………… ..82 6.5 小結………………………………………………………………82 第七章 結論與建議 ……………………………………………… .84 7.1結論 …………………………………………………………… .84 7.2 未來研究展望 ………………………………………………… 87 參考文獻………………………………………………………………88rf 參考文獻 一、中文部分 Gordon, R. J. 編,侯家駒譯 (民國67年),『佛瑞德曼貨幣理論架 構—爭論與其批判』,台北:黎明。 劉孟奇 (民國88年),Lakatos之科學哲學與經濟學方法論,『經濟論文叢刊』,27:1,pp.101-142。 Kuhn, T. S. 著,程樹德、傅大為、王道環與錢永祥譯 (民國83年),『科學革命的結構』,台北:遠流。 二、英文部分 Bernanke, Ben S. (1983), “Nonmonetary Effects of the Financial Crisis in the Propagation of the Great Depression,” American Economic Review, June 1983, 73, pp.257-76. Bernanke, Ben S. and Alan Blinder (1988), “Credit, Money, and Aggregate Demand,” American Economic Review, May 1988, 78,pp.435-39. Bernanke, Ben S. (1992,93), “Credit in the Macroeconomy,” Federal Reserve Bank of New York Quarterly Review, Spring 1992-93, pp.50-70. Bernanke, Ben S. and Alan Blinder (1992), “The Federal Funds Rate and the Channels of Monetary Transmission,” American Economic Review, September 1992, 82, pp.901-21. Bernanke, Ben S., and Mark Gertler (1995), “Inside the Black Box: The Credit Channel of Monetary Policy Transmission,” Journal of Economic Perspectives, vol. 9, no. 4 (Fall), pp.27-48. Brunner, Karl, and Allan H. Meltzer (1993), Money and the Economy: Issue in Monetary Analysis. Cambridge: Cambridge Universality Press, pp.53-103. Cechetti, Stephen G. (1995), “Distinguishing Theories of the Monetary Transmission Mechanism,” Federal Reserve Bank of St. Louis Review (May/June), pp.83-100. Dimand, Robert W. (2003), “James Tobin and the Transformation of the IS/LM Model,” Presented at the History of Political Economy conference on “The IS/LM Models: Its Rise, Fall and Strange Persistence,” at Duke Unversity, Durham, North Carolina, USA. Fisher, Irving (1933), “The Debt-Deflation Theory of Great Depressions,” Econometrica, vol. 1, pp.337-357. Friedman, Milton (1970), “A Theoretical Framework for Monrtary Analysis,” Journal of Political Economy, 78 (March/April), pp.193-238. Friedman, Milton, and Anna J. Schwartz (1963), A Monetary History of the United States, 1867-1960. Princeton, N.J.: Princeton University Press. Gertler, Mark, and Simon Cilchrist (1991,1992), “Monetary Policy, Business Cycles, and the Behavior of Small Manufacturing Firms,” NBER working paper no.3892, November 1991. Granger, Clive W. J. (1998), “Granger Causality,” in J. B. Davis, D. W. Hands and U. Maki (eds.), The Handbook of Methodology, Cheltenham: Edward Elgar, pp.214-216. Hoover, K. D. (2001), Causality in Macroeconomics, Cambridge: Cambridge University Press, pp.1-28. Kuttner, Kenneth N., and Patricia C. Mosser (2202), “The Monetary Transmission Mechanism: Some Answers and Further Questions,” Federal Reserve Bank of New York Economic Policy Review, May, pp.15-26. Lakatos, I. (1970), “Falsification and Methodology of Scientific Research Programmes”, in I. Lakatos and A. Musgrave (eds.), Criticism and the Growth of knowledge, Cambridge: Cambridge University Press, pp.91-196. McCallum, Bennett T. (1999), “Recent Developments in Monetary Policy Analysis: The Roles of Theory and Evidence,” Journal of Economic Methodology, vol. 6, no. 2, pp.171-198. Meltzer, Allan H. (1995), “Monetary, Credit and (Other) Transmission Processes: A Monetarist Perspective,” Journal of Economic Perspectives, vol. 9, no. 4 (Fall), pp.49-72. Mishkin, Frederic S. (1995), “Symposium on the Monetary Transmission Mechanism,” Journal of Economic Perspectives, vol. 9, no. 4 (Fall), pp.3-10. Morrison, M., and Morgan, M. S. (1999), “Models as Mediating Instruments,” in M. Morrison and M. S. Morgan (eds.), Models as Mediators, Cambridge: Cambridge University Press, pp.10-37. Romer, Christina D., and David H. Romer (1990), “New Evidence on the Monetary Transmission Mechanism,” Brookings Papers on Economic Activity , 1, pp.149-213. Taylor, John B. (1995), “The Monetary Transmission Mechanism: An Empirical Framework,” Journal of Economic Perspectives, vol. 9, no. 4 (Fall), pp.11-26. Taylor, John B. (2000), “The Monetary Transmission Mechanism and the Evaluation of Monetary Policy Rules,” Central Bank of Chile Working Papers, no. 87. Tobin, J. (1958), “Liquidity Preference As Behavior Toward Risk,” The Foundations of Monetary Economics, vol. 1, pp.358-376. Tobin, J. (1969), “A General Equilibrium Approach to Monetary Theory,” Journal of Money, Credit and Banking, vol. 1, February, pp.15-29. Tobin, J. (1972), “Money and Income: Post Hoc Ergo Propter Hoc?,” The Quarterly Journal of Economics, vol. 84, no. 4 (May), pp.301-317. Tobin, J. (1978), “Monetary Policies and the Economy: The Transmission Mechanism,” Southern Economic journal, January, 44, pp.421-31. Tobin, J. and Walliam C. Brainard (1977), “Asset Markets and the Cost of Capital,” in R. Nelson and B. Balassa (eds.), Economic Progress: Private values and Public Policy, Amsterdam: North-Holland, pp.235-262.id NH0925389004 sid 914916 cfn 0 / id NH0925389005 auc 吳易樺 tic 從同儕效果看高中社區化 adc 黃春興 ty 碩士 sc 國立清華大學 dp 經濟學系 yr 92 lg 中文 pg 60 kwc 高中社區化 kwc 同儕效果 kwc 教育成就 abc 本文從同儕效果(peer group effect)來討論高中社區化實施後,是否能提高國中畢業生就讀社區內高中的機會,以降低教育成本,使公、私及城、鄉高中教育均衡發展,並且提升教育成就(education attainment)。由本文理論以及實證資料可以發現,高中社區化的目標在台灣是難以達成的。 tc 前言…………………………………………………………………………………1 壹.模型……………………………………………………………………………4 第一節:在聯考下的學生選擇………………………………………………7 第二節:高中社區化的選擇…………………………………………………14 第三節:社區化下保留一家明星公立學校…………………………………20 第四節:Numerical Example ………………………………………………26 貳.實證分析………………………………………………………………………34 第一節:同儕效果對於教育成就的影響……………………………………34 第二節:新竹縣和苗栗縣國中社區化的特性………………………………39 第三節:清華大學和台灣大學的大學部新生入學分佈……………………45 一.清華大學大學部新生入學分佈…………………………………45 二.台灣大學大學部新生入學分佈…………………………………49 參.結論……………………………………………………………………………52 附錄一:公私立高中職平均教育支出以及公私立高中職平均教育支出比率 ……………………………………………………………………………54 附錄二:國立新竹高中90到92學年度新生前40名畢業國中排名 …………55 附錄三:清華大學88到92學年度大學部新生入學人數排名前20名 ………57 參考文獻……………………………………………………………………………58rf 教育部網站; www.edu.tw, 2003. 高中職社區化督導與推動小組資訊網; http://211.72.57.171/, 2003. 新竹縣政府教育局國教科網站:學區劃分資料;http://eb1.nc.hcc.edu.tw/eduide/,2003. 新竹市政府教育局國教科網站:學區劃分資料; http://www.eb.hc.edu.tw/national/,2003. 苗栗縣政府教育局國教科網站:學區劃分; http://www.medu.mlc.edu.tw/index3-7.html,2003. 內政部戶政司: http://www.ris.gov.tw/; 1999年台灣人口分佈. 新竹市政府民政局網站:http://www.e-master.idv.tw/demo/1/, 1999年新竹市人口分佈. 新竹縣政府民政局網站:http://www1.hchg.gov.tw/housenet/, 1999年新竹縣人口分佈. 苗栗縣政府民政局: http://www.miaoli.gov.tw/Civil/index.asp, 1999年苗栗縣人口分佈. 中華民國教育統計; http://140.111.1.22/moecc/rs/pkg/tedc/bank/edu.htm,2003. 清華大學教務處註冊組:88到92學年度新生入學資料. 國立新竹高中教務處:90到92學年度新生入學資料. 新政府執政周年,教育部工作報告. 駱明慶,〈誰是台大生?-性別、省籍與城鄉差異〉,《台灣經濟叢刊》(Taiwan Economic Review)第30卷, (2002)。 Bartolome, Charles A. M. de. ” Equilibrium and Inefficiency in a Community Model With Peer Group Effects.” Journal of Political Economy 98 (Feb. 1990): 110- 133. Barron, John M., and Gjerde, Kathy P. ”Peer Pressure in an Agency Relationship.” Journal of Labor Economics 15 (Apr. 1997): 234-254. Epple, Dennis, and Romano, Richard E. ”Competition Between Private and Public schools, Vouchers, and Peer-Group Effects.” American Economic review 88 (Mar. 1998): 33-62. Epple, Dennis; Filimon, Radu; and Romer, Thomas ”Equilibrium Among Local Jurisdictions: Toward an Integrated Treatment of Voting and Residential Choice.” Journal of Public Economics 24 (1984): 281-308. Epple, Dennis; Newlon, Elizabeth; and Romano, Richard. ”Ability Tracking, School Competition, and the Distribution of Educational Benefits.” Journal of Public Economics 83 (Jan. 2002): 1-48. Fernandez, Raquel, and Rogerson, Richard. ”Income Distribution, Communities, and the Quality of Public Education.” The Quarterly Journal of Economics 111 (Feb.1996): pp 135-164. Fernandez, Raquel, and Rogerson, Richard. ”Public Education and Income Distribution: A Dynamic Quantitative Evaluation of Education-Finance Reform.” American Economic review 88 (Sep. 1998); 813-833. Hanushek, Eric A.; Kain, John F.; Markman, Jacob M.; and Steven G Rivkin. “Does peer ability affect student achievement?” Journal of Applied Econometrics 18 (Sep. 2003); 5-27. Hanushek, Eric A.; Kain, Jonh F.; and Rivkin, Steven G.. ”Why Public Schools lose teachers.” NBER Working Paper No. 8599, Nov. 2001. Henderson, Vernon; Mieszkowski, Peter; and Sauvageau, Yvon. ”Peer Group Effect and Educational Production Functions.” Journal of Public Economics 10(Aug. 1978), 97-106. Hoxby, Caroline M. “Peer Effect in the Classroom.” NBER Working Paper No. 7867, 2000a. Hoxby, Caroline M. “Does Competition Among Public Schools Benefit Students and Taxpayers?” American Economic review 88 (Dec. 2000b); 1209-1238. Kandel, Eugene, and Lazear, Edward P. ”Peer Pressure and Partnerships.” Journal of Political Economy 100 (Aug,1992); 801-817. Ladd, Helen F. ”School Vouchers: a Critical view.” Journal of Economic Perspectives 16 (Fall 2002); 3-24. Lazear, Edward P. ”Educational Production.” The Quarterly Journal of Economics, Aug., 2001, 116(3); 777-803. Nechyba, Thomas J. ”Centralization, Fiscal Federalism, and Private school Attendance.” International Economic Review 44 (Feb. 2003); 179-204. Poterba, James M. “Demographic Change, Intergenerational linkages, and Public Education.” American Economic review 88 (May. 1998); 315-320. Robertson, Donald and Symons, James. ”Do Peer Groups Matter? Peer Group Versus Schooling Effects on Academic Attainment.” Economica 70 (Feb. 2003): 31-53. Rothschild, Michael and White, Lawrence J. ”The analytics of the Pricing of Higher Education and Other Services in Which the Customers Are Inputs.” Journal of Political Economy 103 (Jun. 1995); 573-586. Sacerdote, Bruce, ”Peer Effect With Random Assignment: Result for Dartmouth Roommate.” The Quarterly Journal of Economics 116 (May. 2001); 681-704. Summer, A., and Wolfe B. L. ”Do Schools Make A Difference?” American Economic review 67 (Sep. 1977); 639-652. Tiebout, Charles M. “A Pure Theory of Local Expenditures.” Journal of Political Economy 64 (1956); 416-424. Westhoff, Frank. “Policy Inferences from Community Choice Model: A Caution.” Journal of Urban Economics 6 (1978); 535-549.id NH0925389005 sid 914915 cfn 0 / id NH0925389006 auc 廖書敏 tic 製造業與服務業之兩性薪資差異 adc 莊慧玲 ty 碩士 sc 國立清華大學 dp 經濟學系 yr 92 lg 中文 pg 66 kwc 性別薪資差異 kwc 製造業 kwc 服務業 kwc 白領階級 kwc 藍領階級 abc 摘要 tc 目錄 圖目錄 2 表目錄 3 第一章 緒論 5 第二章 文獻回顧 8 第三章 研究方法 14 3.1假說與檢驗方法 14 3.2衡量產業對薪資影響性的指標 18 3.2.1各產業係數的均差 18 3.2.2產業影響兩性薪資差異部份的排序 20 第四章 實證結果分析 22 4.1 變數的定義與樣本的選取 22 4.2各產業的女性迴歸係數與兩性薪資差異值之比較 25 4.3其他衡量產業對兩性薪資影響的指標 28 4.3.1各產業的產業係數均差值τ 28 4.3.2由各產業 、 與 的排序分析產業性別薪資的差距 33 第五章 職業分類分析 36 5.1藍領與白領的女性迴歸係數與兩性薪資差異值 37 5.2藍領與白領的產業係數均差值τ 40 第六章 結論 44 參考文獻 46 附錄 50 圖目錄 圖〈一〉:各產業女性薪資/男性薪資比 7 圖〈二〉:兩性勞參率中大學程度的比例 9 圖〈三〉:製造業τ值 31 圖〈四〉:商業τ值 31 圖〈五〉:金融保險不動產及工商服務業τ值 32 圖〈六〉:社會及個人服務業τ值 32 附錄圖〈一〉:營造業的τ值 57 附錄圖〈二〉:倉儲運輸通信業的τ值 58 表目錄 表〈一〉:國內外針對產業與兩性薪資差異關聯的實證文獻 12 表〈二〉:製造業與服務業各年變數的平均值〈男/女比例〉 13 表〈三〉:本文變數設定方式 23 表〈四〉:女性為虛擬變數之迴歸結果〈全體樣本〉 26 表〈五〉:兩性對數薪資差距值〈全體樣本〉 27 表〈六〉:歷年產業的男性/女性τ值 30 表〈七〉:歷年產業的 與 之排名 34 表〈八〉:女性為虛擬變數之迴歸結果〈白領階級〉 38 表〈九〉:女性為虛擬變數之迴歸結果〈藍領階級〉 38 表〈十〉:兩性對數薪資差異值 40 表〈十一〉:白領員工各產業的τ值 41 表〈十二〉:藍領員工各產業的τ值 41 表〈十三〉:全體員工各產業的τ值 42 附錄表〈一〉:男性、女性各產業人數 50 附錄表〈二〉:將女性視為虛擬變數之歷年迴歸分析 51 附錄表〈三〉:兩性對數薪資方程式歷年迴歸分析〈全體樣本〉 53 附錄表〈四〉:女性為虛擬變數下的迴歸係數值〈全體樣本〉 55 附錄表〈五〉:兩性對數薪資差異值〈全體樣本〉 56 附錄表〈六〉:各產業歷年的 與 值〈全體樣本〉 56 附錄表〈七〉:各產業 和 歷年的排序 58 附錄表〈八〉:各產業 歷年的排序 59 附錄表〈九〉:各產業男性白領階級的人數 60 附錄表〈十〉:各產業男性藍領階級的人數 60 附錄表〈十一〉:各產業女性白領階級的人數 61 附錄表〈十二〉:各產業女性藍領階級的人數 62 附錄表〈十三〉:各產業女性虛擬變數係數值〈白領階級〉 63 附錄表〈十四〉:各產業女性虛擬變數係數值〈藍領階級〉 63 附錄表〈十五〉:各產業白領階級之兩性薪資差異 64 ]附錄表〈十六〉:各產業藍領階級之兩性薪資差異 64 附錄表〈十七〉:各產業的 和 值,〈白領階級〉 65 附錄表〈十八〉:各產業的 和 值〈藍領階級〉 66rf 參考文獻 林忠正(1988),“初入勞動市場階段之薪資性別差異”,Taiwan Economic Review, 16:3, 305-322. 江豐富(1988), “台灣地區國中男女薪資差異-人力資本理論探討” ,Taiwan Economic Review, 16:3, 323-347 吳忠吉(1988),“產業就業性別結構的初步研究”,Taiwan Economic Review, 16:3, 439-457 吳惠林(1988), “專上人力勞動報酬的決定因素─台灣實證分析” ,Taiwan Economic Review, 16:3, 357-463 林忠正(1989),“初入勞動市場階段薪資與職業之性別差異”,性別角色與社會發展學術研討會論文集,pp201-226 劉鶯釧(1989),“台灣地區受雇人員性別歧視”, Taiwan Economic Review, 17:3, 359-388 高長(1993),“台灣地區婦女就業與性別歧視之實證研究”,台灣銀行季刊,44:4, 223-248 Becker, Gary (1957), The Economics of Discrimination, Chicago: Univ. of Chicago Press. Blau, Francine and Kahn, Lawrence (1992), “ The gender earnings gap: learning from international comparisons,” American Economic Review,82(2), 533-538. ------(1994) “Rising wage inequality and U.S. gender gap,” American Economic Review, 84(2), 23-28. ------(1997) “Swimming upstream: trends in the gender wage differential in the 1980s,” Journal Labor Economics, 15(1), 1-42. Blackaby, D.、Clark, K.、Leslie, D and Murphy. P (1997), “The distribution of male and female earnings 1973-91: evidence for Britain,” Oxford Economic Papers, 49(2), 256-271. Card, David and DiNardo, John (2002), “Skill-based technological change and rising wage inequality: some problems and puzzles,” Journal of Labor Economics, 20(4), 733-783. Dunne, T. and Schmitz, Jr (1995), ”Wages, employment structure and employment size-wage premia: their relationship to advanced-technology usage at U.S. manufacturing estabilishments,”Economica.,62,(245), 89-107. Fan, Chengze Simon and Lui, Hon-Kwong (2003), ”Structural change and the narrowing gender gap in wages: theory and evidence from Hong Kong,” Labour Economics, 10, 609-626. Fields, J & E.N. Wolff (1991), ”The decline of sex segregation and the wage gap, 1970-1980,”The Journal of Human Resources, 26, 609-621. -----(1995), “Interindustry wage differentials and the gender wage gap,” Industrial and Labor Relations Review, 49(1), 105-120. Fortin, Nicole and Lemieux, Thomas (1997), “Rank regressions, wage distributions, and gender gap,” The Journal of Human Resources, XXXIII(3), 610-643. Galor, Qded and Weil, David (1996),”The gender gap, fertility, and growth,” American Economic Review, 86(3), 347-387. Horrace, William and Oaxaca, Ronald (2001), “Inter-industry wage differentials and the gender wage gap: an identification problem,” Industrial and Labor Relations Review, 54(3), 611-618. -------(1999), ”From Malthusian stagnation to modern growth,” American Economic Review, 89(2), 150-154. Katz, Lawrence and Murphy, Kevin (1992), ”Change in relative wages, 1967-1987:supply and demand factors,” Quarterly Journal of Economics, , 107(1),.35-78. Kruger, A. (1993)”How computer have changed the wage structure: evidence form Microdata1984-1989,”Quarterly Journal of Economics, 108(1), 33-60. Leamer, Edward (1996),”Wage inequality from international competition and technological change: theory and country experience,” American Economic Review, 86(2), 309-314. Mincer, Jacob (1974), Schooling, Experience and Earning, New York: Columbia University Press Mincer, Jacob and Polachek, Solomon (1974), “Family investments in human capital: earning in women,” Journal of Political Economy, 82:2:2, 76-108. Murphy, K. and F. Welch (1993)”Inequality and relative wages, ”American Economic Review, 83(2), 104-109. Oaxaca, Ronald (1973), ”Male-female wage differentials in urban labor markets,” International Economics Review,14, 693-709 Oaxaca, Ronald and Ransom, Michael (1999), “Note:identification in detailed wage decompositions,” The Review of Economics and Statistics, 81(1), 154-157. O’Neill and Polachek, Solomon (1993), ”Why the gender gap in wages narrowed in the 1980’s,” Journal of Labor Economics, 11(1), 205-228. Polachek, Solomon (1978),”Sex differences in education: an analysis of determinants of college major,” Industrial and Labor Relations Review, 31(4), 498-508. ------(1981),“Occupational self-selection: a human capital approach to sex differences in occupational structure,” Review of Economics and Statistics, 63(1), 60-69. Thoenig , Mathias and Verdier , Thierry (2003)”A Theory of Defensive Skill-Biased Innovation and Globalization,” American Economic Review, June, 709-728. Wood, Adrin (1995)”How Trade Hurt Unskilled Workers,” Journal of Economics Perspectives, summer, 9, 57-80. ------(1997)”Openness and Wage Inequality in Developing Countries: The Latin American Challenge to East Asian Conventional Wisdom, ”The World Bank Economic Review, 11(1), 33-57. Zveglich, Joseph、Rodgers, Yana Van Der Meulen, and Rodgers III , Willian (1997) ” The Persistence of Gender Earning Inequality in Taiwan, 1978-1992”, Industrial & labor Relations Review, 50(.4) ,594-609.id NH0925389006 sid 914914 cfn 0 / id NH0925389007 auc 余芝穎 tic 美國貨幣政策跨國傳遞--台灣的實證研究 adc 黃朝熙 ty 碩士 sc 國立清華大學 dp 經濟學系 yr 92 lg 英文 pg 51 kwc 貨幣政策衝擊 kwc Mundell-Flemming-Dornbusch模型 kwc 跨期經常帳模型 kwc 向量自我 kwc & kwc #24315;歸分析 kwc 半結構性向量自我迴歸模型 kwc 衝擊反應函數 kwc 變異數分解 kwc 跨國傳遞 abc 有鑑於世界各國近年來彼此之間的貿易增加,國與國之間的關係日益密切,對現今的經濟學家和政策決策者而言,了解他國的貨幣政策是否對本國的實質經濟有所影響、或所此影響經由的跨國傳遞管道為何益顯得重要。故本文欲探討台灣和其主要貿易國--美國之間的貨幣政策跨國傳遞管道,本文同時採用向量自我迴歸模型和半結構性向量自我迴歸模型估計,並利用衝擊反應函數及變異數分解等分析,觀察美國的貨幣政策擴張對其自身的貿易收支和台灣總體經濟的實質效果。 tc 1 Introduction 1 2 Literature review 4 2.1 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Empirical studies of international transmission of monetary shocks . . 8 3 Methodology 11 3.1 VAR modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Identication scheme and extended system . . . . . . . . . . . . . . . 15 4 Empirical results 19 4.1 Impulse responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1.1 The trade balance channel . . . . . . . . . . . . . . . . . . . . 20 4.1.2 The real interest rate channel . . . . . . . . . . . . . . . . . . 25 4.2 Forecast error variance decompositions . . . . . . . . . . . . . . . . . 28 5 Extended experiments 32 5.1 International policy coordination and policy endogeneity . . . . . . . 32 5.2 Semi-structural identication scheme . . . . . . . . . . . . . . . . . . 33 6 Conclusion 39 A JI model 45 B Data 48rf Bernanke, B.S. (1986). “Alternative explanations of the money-income correlation," Carnegie-Rochester conference series on public policy , 25(0): 49-99. Bernanke, B.S. and A.S. Blinder (1992). “The Federal funds rate and the channels of monetary transmission," American Economic Review , 82(4): 901-921. Bernanke, B.S. and I. Mihov (1998a). “The liquidity e_ect and long-run neutrality," NBER Working paper No.6608. Bernanke, B.S. and I. Mihov (1998b). “Measuring monetary policy," Quarterly Journal of Economics , 113(3): 869-902. Betts, C. and M.B. Devereux (2000). “The international e_ects of monetary and _scal policy in a two-country model," in G. Calvo, R. Dornbusch and M. Obstfeld(eds.) Money, Capital Mobility and Trade: Essays in Honor of Robert Mundell , MIT Press. Borondo, C. (2000). “International transmission of monetary shocks with interest rate rules," mimeo, Universidad de Valladolid. Buiter, W.H. (1981). “Time preference and international lending and borrowing in an overlapping-generations model," Journal of Political Economy , 89(4): 769-797. Christiano, L., M. Eichenbaum and C. Evans (1996). “The effects of monetary policy shocks: evidence from the flow of funds," Review of Economics and Statistics , 78(1): 16-34. Cushman, D.O. and T. Zha (1997). “Identifying monetary policy in a small open economy under flexible exchange rates," Journal of Monetary Economics, 39(3): 433-448. Doan, T.A. (2000). “RATS User's Manual.Version 5," Estima , IL. Dornbusch, R. (1976). “Expectations and exchange rate dynamics," Journal of Political Economy , 84(6): 1161-1176. Eichenbaum, M. and C. Evans (1995). “Some empirical evidence on the effects of monetary policy shocks on exchange rates," Quarterly Journal of Economics , 110(4): 975-1010. Fleming, J.M. (1962). “Domestic financial policies under fixed and floating exchange rates," IMF Staff Papers , 9(November): 369-379. Holman, J.A. and R.M. Neumann (2002). “Evidence on the cross-country transmission," Applied Economics , 34(15): 1837-1857. Kim, S. (2001). “International transmission of U.S. monetary policy shocks : Evidence from VAR's," Journal of Monetary Economics , 48(2): 339-372. Kim, S. and N. Roubini (2000). “Exchange rate anomalies in the industrial countries: a solution with a structural VAR approach," Journal of Monetary Economics ,45(3): 561-586. Lane, P. (2000). “Money shocks and the current account,"in G. Calvo, R. Dornbusch and M. Obstfeld(eds.) Money, Capital Mobility and Trade: Essays in Honor of Robert Mundell , MIT Press. Lane, P. (2001). “The new open economy macroeconomics: A survey," Journal of International Economics , 54(2): 235-266. McCallum, B.T. (1983). “A reconsideration of Sim's evidence regarding monetarism," Economics Letters, 13(2{3): 167-171. McCallum, B.T.and E. Nelson (1999). “An optimizing IS-LM specification for monetary policy and business cycles analysis," Journal of Monetary Economics, 31(3):296-316. Mundell, R. (1962). “The appropriate use of monetary and fiscal policy for internal and external stability," IMF Staff Papers , 9: 70-79. Mundell, R. (1968). “International Economics," Macmillan, NY. Obstfeld, M. (1982). “Aggregate spending and the terms of trade: Is there a Laursen-Metzler effect?," Quarterly Journal of Economics , 103(3): 624-660. Obstfeld, M. and K. Rogoff (1995). “Exchange rate dynamics redux," Journal of Political Economy , 103(3): 624-660. Obstfeld, M. and K. Rogoff (1996). “Foundations of international macroeconomics," MIT Press, Cambridge, MA. Sachs, J.D., R.N. Cooper and S. Fischer(1981). “The current account in the macroeconomics adjustment process," Brookings Papers on Economic Activity , 1: 201-282. Schlagenhauf, D.E. and J.M. Wrase (1995). “Liquidity and real activity in a simple open economy model," Journal of Monetary Economics , 35(3): 431-461. Shen, C.H. and D. Hakes (1995). “Monetary policy as a decision-making hierarchy the case of Taiwan," Journal of Macroeconomics , 17(2): 357-368. Sims, C.A. (1980). “Macroeconomics and reality," Econometrica , 48(1): 1-48. Sims, C.A. (1992). “Interpreting the macroeconomic time series facts: the effects of monetary policy," European Economic Review , 36(5): 975-1000. Stock and Watson (2001). “Vector autoregressions," Journal of Economic Perspectives , 15(4): 975-1000. Svensson, L.E.O. and A. Razin (1983). “The terms of trade and the current account: The Hargerger-Laursen-Metzler effect," Journal of Political Economy , 91(1):97-125. Svensson, L.E.O. and S. Van Wijnbergen (1989). “Excess capacity, monopolistic competition, and international transmission of monetary distrubances," Economic Journal , 99(397):785-805. Tille, C. (2001). “The role of consumption substitutability in the international transmission of monetary shocks," Journal of International Economics , 53(2):421- 444.id NH0925389007 sid 914911 cfn 0 / id NH0925389008 auc 林積谷 tic 公營銀行民營化前後交易成本變動之比較分析 adc 林其昂 adc 潘萬祥 ty 碩士 sc 國立清華大學 dp 經濟學系 yr 92 lg 中文 pg 68 kwc 公營銀行 kwc 交易成本 kwc 民營化 abc 在經濟學中,交易成本的觀念已逐漸的被大家所接受,然而從既有的文獻不難發現,這個領域中的理論性研究卻大量多於實證性的研究,比較起其他領域的發展,顯示了交易成本經濟學在研究上出現了極不對稱的情況,理論的發展確實更能夠掌握實質的內涵,但透過實證性研究的分析,更能清楚的證實與突顯出理論內容的正確性與重要性。本論文的研究內容,便是希望透過交易成本的實際衡量,說明公營銀行民營化前後交易成本內容的變動關係。 tc 第一章 緒論 1 第二章 文獻回顧 4 第一節 制度與交易成本的關係 4 第二節 交易成本文獻探討 7 第三章 公、民營銀行交易成本的估算與評估 10 第一節 銀行與互動者間的交易成本 10 第二節 衡量比較的基礎與方法 14 第三節 交易成本的實證結果與分析比較 19 第四章 結論 39 參考文獻 41 附錄一:全體資料 44 附錄二:公營銀行總交易成本指標趨勢圖 56rf 中文部分 杜相如(2003),《台灣地區銀行業市場結構、行為與績效之研究》,朝陽科技大學財務金融系碩士論文。 林毅夫(1989)「關於制度變遷的經濟學理論:誘致性變遷與強制性變遷」,收錄於《財產權利與制度變遷:產權學派與新制度學派》,上海:上海三聯書店。 周添城等(1999),《台灣民營化的經驗》,台北:中華徵信所企業股份有限公司。 吳若予(1992),《戰後臺灣公營事業之政經分析》,台北:業強出版社。 洪銘甫(2002),《我國定期存款牌告利率與市場集中度間關係之研究》,中山大學財務管理系碩士論文。 段樵、伍鳳儀、劉常勇(2002),《公有企業改革與民營》,香港中文大學。 陳師孟、林忠正、朱敬一、張清溪、施俊吉、劉錦添(1991),《解構黨國資本主義-論台灣官營事業之民營化》,台北:自立晚報社文化出版部。 彭百顯(1994),《透視民營化瓶頸》,台北:財團法人新社會基金會。 黃偉恆(1993),《銀行差異化之決定因素探討》,國立中央大學企業管理研究所碩士論文。 張舒晶(2001),《從市場結構與成本效率決定台灣銀行存放款訂定之因素》,國立台北大學經濟研究所碩士論文。 張善智(1997),《台灣「交易成本」之估計》,國立台灣大學經濟研究所碩士論文。 張晉芬(2001),《台灣公營事業民營化:經濟迷思的批判》,台北:中央研究院社會學研究所。 詹中原(1993),《民營化政策-公共行政理論與實務之分析》,台北:五南圖書出版公司。 楊小凱(1997),《當代經濟學與中國經濟》,北京:中國社會科學出版社。 劉瑞華譯(1993),《制度、制度變遷與經濟成就》,台北:遠流。 盧現祥(1996),《西方新制度經濟學》,北京:中國發展出版社。 英文部分 Alchian, Armen and Demsetz, Harold (1972), “Production, Information Costs, and Economic Organization,” American Economic Review, 62(5): 777-95 Barzel, Yoram. (1997), Economic Analysis of Property Rights, 2nd Edition. Combridge:Cambridge University Press Benham, Alexandra and Benham, Lee (1990), “Measuring the Costs of Exchange,” Unpublished Manuscript. Bishop, Matthew, Kay, John and Mayer, Colin (1995), Privatization and Economiic Performance, Oxford Uniersity Press. Coase, Roanld (1937), “The Nature of The Firm,” Economica, 4, 386-405. Coase, Roanld (1960),”The Problem of Social Cost,” Journal of Law and Economics, Volume III, 1-44. Coase, Ronald (1988), The Firm, The Market, and The Law, Chicago: University of Chicago Press. Coase, Ronald (1992), “The Institutional Structure of Production,” American Economic Review, 82, pp. 713-19. Dahlman, Carl J. (1979), “The Problem of Externality,” The Journal of Law and Economics, 22, pp. 141-62. Daivs, Lance. (1986), “Comment.” In Stanley L. Engerman and Robert E. Gallman, Eds. Longterm Factors in American Economic Growth. Vol.51 of Studies in Income and Wealth Series. Chicago, IL: University of Chicago Press. Morgan, Phillip (1991), Privatization and The Welfare State, Dartmouth Publishing Company Limited. Mullins, F. and R. Baron (1997), “International GHG Emission Trading. Policies and Measures for Common Action,” Working Paper 9, Paris: OECD/IEA. North, D.(1990), Institution, Institutional Change and Economic Performance, Cambridge:Cambridge Univ. Press. Ott, Attiat and Hartley Keith (1991), Privatization and Economic Efficiency, Edward Elgar Publishing Limited. Polski, Margaret (2002), “Measuring Transaction Costs and Institutional Change in The U.S. Commercial Banking Industry,” Unpublished Working Paper. Stavins, Robert N. (1995), “Transaction Costs and Tradeable Permits,” Journal of Environmental Economics and Management, 29, pp. 133-48. Wallis, John Joseph and Douglass C. North (1986), Measuring the transaction sector in the American economy, 1870-1970, in Stanley L. Engerman and Robert E. Gallman (eds), Long-Term Factors in American Economic Growth, 95-161, Chicago: University of Chicago Press. Williamson, Oliver W. (1976), “The Economics of Internal Organization: Exit and Voice in Relation to Markets and Hierarchies,” American Economic Review, 66(2): 369-77 Williamson, Oliver W. (1985), The Economic Institutions of Capitalism. New York: The Free Press.id NH0925389008 sid 914904 cfn 0 / id NH0925389009 auc 吳家鑫 tic 台灣緊縮性貨幣政策實質效果-敘述法之實証研究 adc 黃朝 adc & adc #29013; ty 碩士 sc 國立清華大學 dp 經濟學系 yr 92 lg 中文 pg 63 kwc & kwc #25933;述法 kwc 緊縮性貨幣政策 kwc 貨幣政策代理變數 kwc 虛擬變數 kwc 自我相關預測分析 abc 本文擬參考David H.Romer 和 Christina D.Romer(1989)以敍述法(Narrative Approach)判定美國貨幣政策時期的研究方式,藉由我國中央銀行貨幣政策制定相關資料的比對,我們認定國內緊縮性貨幣政策執行並實證研究其對經濟體系所造成之實質影響。敍述法的採用有助於釐清緊縮性貨幣政策和實質經濟變數間之因果關係,且能避免一般貨幣政策代理變數中的內生性和不一致性問題。針對台灣1960年至2003年的資料,利用自我相關預測分析和虛擬變數方式進行檢定,得到的結論是,我們所認定的六次緊縮性貨幣政策執行在工業生產指數方面的確造成明顯地下降,在失業率方面卻沒有明顯的證據顯示緊縮性貨幣政策造成其正向影響。 tc 目 錄 第一章 序論 第一節 研究動機與目的 ………………………………… 1 第二節 本文特色 ………………………………………… 3 第三節 研究架構 ………………………………………… 5 第二章 文獻回顧 第一節 貨幣中立性相關研究 …………………………… 6 第二節 敍述法相關文獻 ………………………………… 7 第三節 台灣相關文獻 …………………………………… 8 第三章 敍述法例證 第一節 敍述法簡介 ……………………………………… 9 第二節 緊縮性貨幣政策判讀方法及原則 ……………… 10 第三節 台灣緊縮性貨幣政策執行例證 ………………… 12 第四章 實證研究 第一節 圖示緊縮性貨幣政策效果 ……………………… 26 第二節 自我相關預測分析 ……………………………… 30 第三節 虛擬變數迴歸分析 ……………………………… 34 第五章 結 論 ………………………………………………… 55 圖 目 錄 圖1-1 工業生產指數和緊縮性貨幣政策執行 …………………………… 28 圖1-2 失業率和緊縮性貨幣政策執行 …………………………………… 29 圖1-3 通貨膨脹率和緊縮性貨幣政策執行 ……………………………… 29 圖1-4 貨幣總計數(M2)和緊縮性貨幣政策執行 ………………………… 29 圖2-1-1~6工業生產指數累積預測誤差 ………………………………… 32,33 圖2-2-1~4 失業率累積預測誤差 ……………………………………… 33,34 圖3-1 工業生產指數衝擊反應函數 ……………………………………… 37 圖3-2 落後期數延伸至48期之衝擊反應函數 …………………………… 38 圖3-3 落後期數延伸至60期之衝擊反應函數 …………………………… 38 圖3-4 失業率衝擊反應函數 ……………………………………………… 40 圖3-5 失業率衝擊反應函數(季資料) …………………………………… 42 圖3-6工業生產指數衝擊反應函數(兩政策虛擬變數1始點設定) …… 44 圖3-7工業生產指數衝擊反應函數(政策虛擬變數1始定至政策終止份) …………………………………………………………………………… 44 圖3-8失業率衝擊反應函數(兩政策虛擬變數1始點設定) ……………… 48 圖3-9失業率衝擊反應函數(政策虛擬變數1始定至政策終止月份)…… 49 圖3-10工業生產指數Monte Carlo實驗結果 …………………………… 48 圖3-11失業率Monte Carlo實驗結果 ………………………………………49 圖3-12排除1968年執行下之衝擊反應函數 ……………………………… 50 圖3-13排除1978年執行下之衝擊反應函數 ……………………………… 50 圖3-14排除1988年執行下之衝擊反應函數 ……………………………… 51 圖3-15排除1992年執行下之衝擊反應函數 ……………………………… 51 圖3-16排除1995年執行下之衝擊反應函數 ……………………………… 51 圖3-17排除2000年執行下之衝擊反應函數 ……………………………… 51 圖3-18納入石油價格後之衝擊反應函數(工業生產指數) …………………53 圖3-19納入物價成長率後之衝擊反應函數(工業生產指數) ………………53 圖3-20納入淨出口量後之衝擊反應函數(工業生產指數) …………………54 <圖1-1>M2年增率 …………………………………………………………… 58 <圖1-2>消費者物價指數年成長率 ………………………………………… 58 <圖1-3>消費者物價指數較上年同月之年增率 …………………………… 59 <圖1-4>躉售物價指數較上年同月之年增率 ……………………………… 59 <圖2-1>1980寛鬆政策執行累積預測誤差 ………………………………… 60 <圖2-2>1981寛鬆政策執行累積預測誤差 ………………………………… 60 <圖2-3>1993寛鬆政策執行累積預測誤差 ………………………………… 60 <圖2-4>1997寛鬆政策執行累積預測誤差 ………………………………… 60 表 目 錄 表2-1工業生產指數自我相關迴歸Q統計值 ……………………………… 31 表2-2 失業率自我相關迴歸Q統計值 ……………………………………… 31 表3-1工業生產指數迴歸結果 ……………………………………………… 36 表3-2失業率迴歸結果(月資料) …………………………………………… 39 表3-3失業率迴歸結果(季資料) …………………………………………… 42 表3-4分別排除六次認定緊縮貨幣政策執行之統計結果比較 …………… 51rf 1.沈中華、陳華倫:<貨幣政策指標的建立與貨幣政策反應函數>, 《經濟論文》,24卷4期(1996年12月),頁559-590。 2.陳煜煕:《緊縮性貨幣政策對實質經濟活動影響之探討-以台灣經濟為(1971-2001)》,國立成功大學政治經濟研究所碩士論文,2002年8月。 3.解立亞:《貨幣經濟學:理論與政策》,(台北市:茂昌書局 初版) 4.賴景昌:《總體經濟學》,(台北市:雙葉書廊 第二版) 5.《中華民國中央銀行之制度與功能》,中央銀行發行,民國九十二年。 6.《中央銀行年報》,民國五十一年至民國九十二年,中央銀行發行。 7.《中央銀行季刊》,民國六十七年第一季至民國九十二年第四季,中央銀行發行。 英文參考文獻 1.Ben S. Bernanke and Alan S. Blinder(1992),”The federal funds rate and the Channels of monetary transmission”American Economic Review,Vol.82, pp 901-921. 2.Christina D. Romer and David H.Romer(1997),”Identification and the narrative approach: A reply to Leeper” Journal of Monetary Economics, Vol.40,pp.659~665 3.Christina D. Romer and David H.Romer(1989),”Does monetary policy matter? A new test in the spirit of Friedman and Schwartz,”NBER Working Paper,No.2966,pp.1-57. 4.Christina D. Romer and David H.Romer(1994),“ Monetary Policy Matters”,Journal of Monetary Economics,Vol.34, pp75~88. 5.Christina D. Romer and David H.Romer(1996),”A new measure of monetary shocks:derivation and implications”,NBER. No.9866 6.Eric M.Leeper(1997),”Narrative and VAR approaches to monetary policy:Common identification problems.”Journal of Monetary Economics, Vol.40,pp.641~657. 7.Frederic S. Mishikin(1982),”Does anticipated monetary policy matter? An econometric investigation” Journal of Polotical Economy, Vol.90 ,pp. 22-51 8.Hiroshi Gunji(2004)“Did Monetary Policy Matter in prewar Japan?”Japan Society Promotion for the Science 9.Lucas, Robert J.( 1996),”Nobel lecture: Monetary neutrality,”Journal of Polotical Economy, Vol.104, Iss.4,pp.661-683. 10.Maria S. Gochoco(1986),”Tests of the money neutrality and rationality hypotheses:The case of Japan 1973-1985”, Journal of Money,Credit and Banking, Vol.18,pp.458-466. 11.Robert King and Mark W. Watson(1992),”Testing long run neutrality”. NBER. No.4156 12.Robert J. Barro(1976).,”Rational expectations and the role of monetary policy”Journal of Monetary Economics,Vol.2,pp.1-32. 13.Kevin D. Hoover and Stephen J. Perez(1994),”Post hoc ergo propter once more An evaluation of‘Does monetary policy matter? ’in the spirit of James Tobin”Journal of monetary economics,Vol.34,pp.47-73. 14.James D. Hamilton(1983),”Oil and the macroeconomy since World War II”,Journal of Political Economy,Vol.91,pp.228-248. 15.Friedman, Milton, and Schwartz, Anna Jacobson(1963), 《A monetary history of the United States》,Princeton: Princeton University Press,id NH0925389009 sid 914912 cfn 0 / id NH0925389010 auc 黃寰耀 tic 環境管制對廠商競爭力之影響-四類水污染產之實證分析 adc 陸怡蕙 ty 碩士 sc 國立清華大學 dp 經濟學系 yr 92 lg 中文 pg 86 kwc 誘發創新 kwc 環境管制 kwc 廠 kwc & kwc #21831;競爭力 kwc 資料包絡分析法 kwc 水污染產業 abc 隨著各先進國家國民所得提高,國民對於生活品質的要求增加,各國對於環境資源的重視也隨之提昇;然而在工業革命之後,大量環境資源被犧牲以換取高速經濟成長,造成各種污染問題日趨嚴重。環境管制逐漸為各國政府所重視,然而在進行環境管制後對於產業競爭力的影響為何?則是自1970以來美國制訂環境管制標準後,成為許多學者關注焦點。 tc 目錄....................................................Ⅰ 圖表目..................................................Ⅱ 第一章 緒...............................................1  第一節 研究動機.......................................1  第二節 研究方法與本文架構.............................2 第三節 研究流程.........................................3 第二章 文獻回顧.........................................4  第一節 環境管制與產業競爭力...........................4  第二節 誘發創新理論...................................6  第三節 相關實證文獻檢閱..............................11 第三章 模型建立........................................13  第一節 理論架構......................................13  第二節 實證模型......................................20 第四章 實證結果分析....................................29  第一節 產業特性......................................29  第二節 資料來源與處理................................32  第三節 實證結果分....................................33 第五章 結論............................................70 附錄....................................................72 參考文獻................................................80rf 1國外參考文獻 Adam, B. Jaffe and Karen P. (1996), “Environmental Regulation and Innovation: A Panel Data Study,” National Bureau of Economic Research, WP5545. Binswanger, H.P. (1974), “A Microeconomics Approach to Innovation,” Economic Journal of Development, Baltimore MD: John Hopkins University Press. Chang, C.C. (1999), “The Nonparametric Risk-Adjusted Efficiency Measurement: An Application to Taiwan’s Major Rural Financial Intermediaries,” American Journal Agriculture Economics, 81, 902-913. Chen, T.J. and Ying-Hua Ku (2000), “Foreign Direct Investment and Industrial Restructuring: The Case of Taiwan's Textile Industry,” The Role of Foreign Direct Investment in East Asian Economic Development, The University of Chicago Press. Christainsen, G and T. Tietenberg(1985), “Distributional and Macroeconomic Aspects of Environmental Policy” , A. Kneese and J. Sweeney(eds) Handbook of Natural Resource and Energy Economics, 1, Elsevier Science Publishers, Amsterdam, 345-93. Coelli, T. (1996), “A Guide to DEAP Version 2.1: A Data Envelopment Analysis Program,” CEPA Working Paper, 08/96, Department of Econometrics, University of New England, Armidale NSW Australia.. Conrad, K. and Catherine J. Morrison (1989), “The Impact of Pollution Abatement Investment on Productivity Change: An Empirical Comparison of the U.S., Germany, and Canada,“ Southern-Economic-Journal. January, 55(3), 684-698. Dearing, A. (2000), “Sustainable Innovation” Drivers and Barriers,” World Business Council for Sustainable Development Farell, M.J. (1957), “The Mearsurement of Productive Efficiency,” Journal of Royal Statististical Society, 120, 253-581. Fried, H. O., C. A. K. Lovell, S. S. Schmidt and S. Yaisawarng (2002), “Accounting for Environmental Effects and Statistical Noise in Data Envelopment Analysis,” Journal of Productivity Analysis, 17, 157-174. Freeman, A.M. and R.H. Haveman (1972), “Clean Rhetoric and Dirty Water,” Public Interest, 28, 51-65. Fried, H.O., S. S. Schmidt and S. Yaisawarng (1999), “Incorporating the Operating Environment Into a Nonparametric Measure of Technical Efficiency,” Journal of Productivity Analysis, 12, 249-267. Gale, A. B. and John D. M. (1999), “The Impact of Enviroment Constraints on Productivity Improvement in Integrated Paper Plants,” Journal of Environmental Economental Economics and Mangagement, 38, 121-142.l. Gollop, F.M. and M.J. Roberts (1983), “Environmental Regulations and Productitivy Growth:The Case of Fossil-Fueled Electric Power Generation,” Journal of Political Economy, 91, 654-674. Goulder, L.H. and K. Mathai (2000), “Optimal CO2 Abatement in the Presence of Induced Technological Change,” Journal of Environmental Economics and Management, 39, 211-253. Gray, W.B. and R.J. Shadbegian (1995), “Pollution Abatement Costs, Regulation, and Plant Level Productitiy,” National Bureau of Economic Research Working Paper, 4994. Gray, W.B. and R.J. Shadbegian (1998), “Environmental Regulatrion, Investment Timing, and Technology Choice,” Journal of Industrial Economics, 46, 235-256. Hemelskamp, J. (1997), “Environmental policy instruments and their effect on I nnovation,” European Planning Studies, 5(2), 177-193. Haveman, Robert H. and Christiansen, Gregory B. (1981), “Environmental Regulaions and Productivity Growth,” in Henry M. Peskin, Paul R. Portney, and Allen V. Kneese (eds.), Environmetal Regulation and the U.S. Econmy, 55-75, Washington, DC: Resources for the Future. Hu, M. W. (1998), “The Determinants of SMEs’ Market Share in 1991- Taiwan Manufacturers,” Small business Econmics, 12, 1-9. Jaffe, A.B. and R.N. Stavins (1995), “Dynamic Incentives of Environmental Regulations: The Effects of Alternative Policy Instruments on Technology Diffusion,” Journal of Environmental Economics and Management, 29, S43-63. Jaffe, A. B., Peterson, P. Portney, and R.N. Stavins (1995), “Environmental Regulation and the Competitiveness of U.S. Manufacturing: What Does the Evidence Tell US?” Journal of Econmic Literature, 33, 132-163. Jovanovic, Boyan (1996), “Acs,-Zoltan-J., ed. Small Firms and Economic growth. Volume 1”.0 Previously published 1982. Kemp, R. (1998), “Environmental Regulation and Innovation Key Issues and Question for research,” Papers presented at the Expert Meeting on ‘Regulation and Innovation, Sevilla, 18-19. Kumbhakar, S. C. and A. Heshmati. (1995), “Efficiency Measurement in Swedish Dairy Farms: An Application of Rotating Panel Data,” American Journal of Agricultural Economics, 77, 660-674. Kopp, R. J. (1981), “The Measurement of Productive Efficiency: A Recondideration,” The Quaterly Journal of Economics, 96, 479-503. Kumbhakar, S. C. (1990), “Production Frontiers, Panel Data, and Time-varying Technical Inefficiency,” Journal of Econometrics, 46, 201-211. Kumbhakar, S.C., S. Ghosh and J.T. McGuckin (1991), “A Generalized Production Frontier Approach for Estimating Determinants of Inefficiency in U.S. Dairy Farms,” Journal of Business and Economics Statistics, 9, 279-286. Kumbhakar, S.C. (1997), “Efficiency Estimation with Heteroscedasticity in A Panel Data Model,” Applied Economics, 29, 379-386. Lovell, C.A.K (1993), “Productiong Frontiers and Productive Efficiency. In H. Fried, C.A.K. Lovell, and S.S. Schmidt(eds), “The Measurement of Productive Efficiency” Efficiency Techniques and Applications, New York: Oxford University Press. Marin, A. (1991), “Firm Incentives to Promote Technological Change in Pollution Control: Comment,” Journal of environmental Economics and Management, 21, 297-300. McGire, Martin C. (1982), “Regulation, Factor rewards, and International Trade,” J. public Econ., 17(3), 335-354. McCarty, T. and S. Yaisawarng. (1993), “Technical Efficiency in New Jersey School Districts,” in H.O. Fried, C. A. K. Lovell and S. S. Schmidt(eds.), The Measurement of Productive Efficiency: Techniques and Applications, New York: Oxford Univesity Press. Nelson, R. and S. Winter (1982), “An Evolutionary Theroy of Economic Change,” Cambredge, MA: The Belknap Press of Harvard Unitersity Press. Newell, R.G, A.B. Jafffe and R.N. Stavins (1999), “The Induced Innovation Hypothesis and Energy-Saving Technological Change,” The Quarterly Journal of Economics, 114, 941-975. Palmer K., W. E. Oates and P. R. Portney (1995), “Tightening Environmental Standards: The Benefit-Cost or the No-Cost Paradigm?” The Journal of Economics Perspetives, 9(4), 119-132. Palmer, K., W.E. Oates and P.R. Portney (1995), “Tightening Environmental Standards: The Benefit-Cost or the No-Cost Paradigm?” Journal of Economic Perspectives, 9, 119-132. Parry, I. W., W. A. Pizer and C. Fischer (2000), “How Important is Technological Change in Protecting the Environment?” Resources for the Future Discussion Paper, 00-15. Popp, D. (2000a), “Induced Innovation and Energy Prices,” mimeo University of Kansas. Popp, D. (2000b), “The Effect of New Technology on Energy Consumption,” mimeo University of Kansas. Porter, M. E. and van der Linde, C. (1995), “Toweard a New Conception of the Environment-Competitivenss Relationship,” The Journal of Economic Perspectives, 9(4), 97-118. Rolf F., Shawna G., Mary N. and Zhongyang Z. (1994), “Productitvity Growth, Technical Progress, and Efficiency Change in Industrialized Countries,” The American Economics Review, 84(1), 66-83. Russell W. P. (1981), ”Issue in Pollution Control: Interplant Cost Differences and Economies of Scale,” Land Economics, 57(1), 1-15. Schieve, F.M. and D.Ross (1990), Industrial Market Structure and Economics Performance, 3rd ed., Boston: Houghton Mifflin. Schive, C. (1988), “An Intra-Firm Study of X-Efficiency of Taiwan Sugar Industry,” The Developing Economics, 26(2), 161-171. Simon, H.A. (1947), Administrative Behavior: A Study of Decision-making Processes in Administrative Organization, New York: Macmillan Company. Timmer, C. P. (1971), “Using a Probabilistic Frontier to Mearsure Technical Efficiency,” Journal of Political Economy, 79, 776-794. Wayne B. G. and Ronald J. S. (1997), ”Environmental Regulation, Investment Timing, and Technology Choice,” National Bureau of Economic Research, 5WP6036. Yaisawarng, S. and J. D. Klein (1994), “The Effects of Sulfur Dioxide Controls on Productivity Change in the U.S. Electric Power Industry,” The Review of Economics and Statistics, 7, 447-460. 2.國內參考文獻 胡名雯、薛琦 (1997),「中小企業生產特性與效率之研究:台灣製造業之分析」,《經濟論文叢刊》, 25(1), 1-26。 馬裕豐 (1994),「銀行分支單位經營績效衡量模式之建構-資料包絡分析法的應用」,《企銀季刊》, 18(1), 102-121。 劉錦添 (1995), 「台灣製造業技術效率之實證分析」, 《經濟論文叢刊》, 23(2), 149-366。 李東杰 (2001), 《臺灣製造業中小企業考量地區特性影響下技術效率與生產力的變化:隨機性統計邊法與資料包絡分析法之比較》, 東吳大學經濟學系博士論文。 朱珊瑩 (1998),《污染防治與技術效率-台灣地區鋼鐵工業之實證研究》, 國立中央大學產業經濟研究所碩士論文。 顧瑩華 (1998), 「對外投資與產業結構調整:台灣電子業的實証研究」, 《經濟論文叢刊》, 26(4)。 官俊榮 (1990), 「中小企成長的合理性」, 《台灣銀行季刊》, 41(4), 123-143。 官俊榮 (1990), 「中小企成長的合理發展」, 《經社法制論叢》, 72, 25-50。 3.資料出處 ____ ,(1989),「環境污染防治對產業發展之影響-鋼鐵業、水泥業、造紙業及石化業調查研究」, 《行政院經濟建設委員會經濟研究處》。 ____ ,(1991),「環境污染防治對產業發展之影響-製造業之調查分析與實證研究《行政院經濟建設委員會經濟研究處》。 ____ ,(1986, 1992, 1997), 「中華民國臺灣地區地方環境資訊」, 《行政院環境保護署》。 ____ ,(1986, 1992, 1997),「環境白皮書」, 《行政院環境保護署》。id NH0925389010 sid 914908 cfn 0 / id NH0925392001 auc 邱志義 tic 多模式視覺內容擷取 adc 楊熙年 adc 林信志 ty 博士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 115 kwc 多模式互動 kwc 視覺內容擷取 kwc 語意隔閡 kwc 材質影像 kwc 人體動作 kwc 人體姿勢重建 abc 視覺內容擷取(visual content retrieval)是近年來受到相當重視的多媒體資訊檢索技術,而這項技術目前面臨的最大瓶頸是語意隔閡問題(semantic gap problem)。要降低語意之間的隔閡,其中一個可行的方法是透過多模式互動(multi-modal interactions)進行視覺內容擷取。多模式互動提供多種使用者與電腦系統互動的模式,例如相關性回饋(relevance feedback)或多種不同的輸出輸入介面,使用者可以在擷取的過程中,選擇一個方便合適的模式輸入查詢條件,然後觀察輸出的結果。 tc Chapter 1 Introduction.................................1 Chapter 2 Multi-modal Interactions in Visual Content Retrieval.................................................4 2.1. W3C Multi-modal Interaction Framework 2.1.1. Input module 2.1.2. Output module 2.2. Proposed Multi-Modal Retrieval Framework Chapter 3 Multi-Modal Texture Image Retrieval.........12 3.1. Related Work 3.2. Framework Overview 3.3. Image Representation 3.4. Query Expression 3.5. Personal Adaptation 3.5.1. Similarity Function Construction 3.5.2. Preference Adaptation 3.5.3 Feature-Weight Updating 3.6. Experimental Results 3.6.1. Retrieval Scenarios 3.6.2. The Effectiveness of the Personal Preference Adaptation 3.6.3. The Effectiveness of the Relevance Feedback Process 3.7. Summary Chapter 4 Multi-Modal Human Motion Retrieval..........43 4.1. Related Work 4.1.1. Content-Based Video Retrieval 4.1.2. Human Motion Analysis 4.2. Framework Overview 4.3. Interacting 4.4. Indexing 4.4.1. Posture Representation 4.4.2. Index Map Construction 4.5. Matching 4.5.1. Candidate Clip Searching 4.5.2. Dynamic Time Warping 4.6. Experimental Results 4.6.1. Retrieval Scenarios 4.6.2. Retrieval Accuracy 4.6.3. Retrieval Time 4.7. Summary Chapter 5 Human Posture Reconstruction from a Single Image....................................................72 5.1. Related Work 5.2. Approach Overview 5.3. Posture Library Preprocessing 5.3.1. Posture Feature Representation 5.3.2. Posture Table Creation 5.4. Human Posture Reconstruction 5.4.1. Pivotal Posture Retrieval 5.4.2. Constraint-Based Reconstruction 5.4.2.1. Physical Constraint 5.4.2.2. Environmental Constraint 5.5. Experimental Results 5.5.1. Performance 5.5.2. Discussion 5.6. Summary Chapter 6 Conclusions and Future Work................102 Bibliography............................................103rf [1 ] H. Tamura, N. Yokoya, Image database system: a survey, Pattern Recognition, 17(1), 1984. [2 ] S. K. Chang, A. Hsu, Image information systems: where do we go from here? IEEE Transactions on Knowledge and Data Engineering, 4(5), 1992, pp. 431-442. [3 ] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, P. Yanker, Query by image and video content: the QBIC system, IEEE Computer, 28(9), 1995, pp. 23-32. [4 ] A. Gupta, R. Jain, Visual information retrieval, Communications of the ACM, 40(5), 1997, pp. 71-79. [5 ] J. Dowe, Content-based retrieval in multimedia imaging, SPIE Storage and Retrieval for Image and Video Databases, San Jose, California, USA, Jan 31-Feb. 5, 1993, Vol. 1908, pp. 164-167. [6 ] A. Pentland, R. W. Picard, S. Sclaroff, Photobook: content-based manipulation of image databases, International Journal of Computer Vision, 18(3), 1996, pp. 233-254. [7 ] J. R. Smith, S. F. Chang, VisualSEEk: a fully automated content-based image query system, ACM International Conference on Multimedia, Boston, Massachusetts, USA, Nov. 18-22, 1996, pp. 87-98. [8 ] W. Y. Ma, B. S. Manjunath, NeTra: a toolbox for navigating large image databases, Multimedia Systems, 7(3), 1999, pp. 184-198. [9 ] S. Mehrotra, Y. Rui, M. Ortega-B, T. S. Huang, Supporting content-based queries over images in MARS, IEEE International Conference on Multimedia Computing and Systems, Ottawa, Canada, Jun. 3-6, 1997, pp. 632-633. [10 ] I. J. Cox, M. L. Miller, T. P. Minka, T. V. Papathomas, P. N. Yianilos, The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments, IEEE Transactions on Image Processing, 9(1), 2000, pp. 20-37. [11 ] S. W. Smoliar, H. J. Zhang, Content-based video indexing and retrieval, IEEE Multimedia, 1(2), 1994, pp. 62-72. [12 ] K. Shearer, S. Venkatesh, D. Kieronska, Spatial indexing for video databases, Journal of Visual Communication and Image Representation, 7(4), 1996, pp. 325-335. [13 ] E. Ardizzone, M. Cascia, Automatic video database indexing and retrieval, Multimedia Tools and Applications, 4(1), 1997, pp. 29-56. [14 ] D. Ponceleon, S. Srinvasan, A. Amir, D. Petkovic, D. Diklic, Key to effective video retrieval: effective catalogin and browsing, ACM International Conference on Multimedia, Bristol, UK, Sep. 12-16, 1998, pp. 99-107. [15 ] Y. Deng, B. S. Manjunath, NeTra-V: toward an object-based video representation, IEEE Transactions on Circuits and Systems for Video Technology, 8(5), 1998, pp. 616-627. [16 ] A. K. Jain, A. Vailaya, X. Wei, Query by video clip, Multimedia Systems, 7(5), 1999, pp. 369-384. [17 ] R. Lienhart, W. Effelsberg, R. Jain, VisualGREP: a systematic method to compare and retrieve video sequences, Multimedia Tools and Applications, 10(1), 2000, pp. 47-72. [18 ] M. R. Naphade, T. S. Huang, A probabilistic framework for semantic video indexing, filtering and retrieval, IEEE Transactions on Multimedia, 3(1), 2001, pp. 141-151. [19 ] Y. Rui, T. S. Huang, S. F. Chang, Image retrieval: current techniques, promising directions, and open issues, Journal of Visual Communication and Image Representation, 10(1), 1999, pp. 39-62. [20 ] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, R. Jain, Content-based image retrieval at the end of the early years, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(12), 2000, pp. 1349-1380. [21 ] G. Ahanger, T. D. C. Little, A survey of technologies for parsing and indexing digital video, Journal of Visual Communication and Image Representation, 7(1), 1996, pp. 28-43. [22 ] F. Idris, S. Panchanathan, Review of image and video indexing techniques, Journal of Visual Communication and Image Representation, 8(2), 1997, pp. 146-166. [23 ] R. Brunelli, O. Mich, C. M. Modena, A survey on the automatic indexing of video data, Journal of Visual Communication and Image Representation, 10(2), 1999, pp. 78-112. [24 ] S. Antani, R. Kasturi, R. Jain, A survey on the use of pattern recognition methods for abstraction, indexing, and retrieval of images and video, Pattern Recognition, 35(4), 2002, pp. 945-965. [25 ] E. Chang, K. Goh, G. Sychay, G. Wu, CBSA: content-based soft annotation for multimodal image retrieval using Bayes Points Machines, IEEE Transactions on Circuits and Systems for Video Technology, 13(1), 2003, pp. 26-38. [26 ] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman, D. Dobkin, D. Jacobs, A search engine for 3D models, ACM Transactions on Graphics, 22(1), 2003, pp. 83-105. [27 ] Multimodal requirements for voice markup languages, W3C working draft 10 July 2000, http://www.w3.org/TR/multimodal-reqs [28 ] W3C multimodal interaction framework, W3C note 06 May 2003, http://www.w3.org/TR/mmi-framework/ [29 ] Y. Rui, T. S. Huang, M. Ortega, S. Mehrotra, Relevance feedback: a power tool for interactive content-based image retrieval, IEEE Transactions on Circuits and Systems for Video Technology, 8(5), 1998, pp. 644-655. [30 ] Y. Ishikawa, R. Subramanya, MindReader: querying databases through multiple examples, International Conference on Very Large Databases, New York, USA, Aug. 24-27, 1998, pp. 218-227. [31 ] Z. Su, H. Zhang, S. Li, S. Ma, Relevance feedback in content-based image retrieval: Bayesian framework, feature subspaces, and progressive learning, IEEE Transactions on Image Processing, 12(8), 2003, pp. 924-937. [32 ] X. S. Zhou, T. S. Huang, Relevance feedback in image retrieval: a comprehensive review, Multimedia Systems, 8(6), 2003, pp. 536-544. [33 ] B. S. Manjunath, W. Y. Ma, Texture features for browsing and retrieval of image data, IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8), 1996, pp. 837-842. [34 ] J. F. Cullen, J. J. Hull, P. E. Hart, Document Image Database Retrieval and Browsing Using Texture Analysis, International Conference Document Analysis and Recognition, Ulm, Germany, Aug. 18-20, 1997, pp. 718-721. [35 ] C. R. Shyu, C. E. Brodley, A. C. Kak, A. Kosaka, A. M. Aisen, L. S. Broderick, ASSERT: a physician-in-the-loop content-based retrieval system for HRCT Image databases, Computer Vision and Image Understanding, 75(1/2), 1999, pp. 111-132. [36 ] H. Tamura, S. Mori, T. Yamawaki, Texture features corresponding to visual perception, IEEE Transactions on Systems, Man, and Cybernetics, 8(6), 1978, pp. 460-473. [37 ] S. Medasani, R. Krishnapuram, A fuzzy approach to complex linguistic query based image retrieval, IEEE International Conference on Fuzzy Systems, Seoul-Korea, Aug., 1999, pp. 590-595. [38 ] L. Balmelli, A. Mojsilović, Wavelet domain features for texture description, classification and replicability analysis, IEEE International Conference on Image Processing, Kobe, Japan, Oct. 1999, Vol. 4, pp. 440-444 [39 ] B. S. Manjunath, P. Wu, S. Newsam, H. D. Shin, A texture descriptor for browsing and similarity retrieval, Singnal Processing: Image Communication, 16(1/2), 2000, pp. 33-43. [40 ] B. C. O'Connor, M. K. O'Connor, J. M. Abbas, User reactions as access mechanism: an exploration based on captions for images, Journal of the American Society for Information Science, 50(8), 1999, pp. 681-697. [41 ] C. Jörgensen, Attribute of images in describing tasks, Information Processing & Management, 34(2/3), 1998, pp. 161-174. [42 ] M. Rorvig, C. H. Turner, J. R. Moncada, The NASA visual thesaurus, Annual Mid-Year Meeting of the American Society for Information Science, Ann Arbor, Michigan, May 15-18, 1988. [43 ] J. Mostafa, A. Dillon, Design and evaluation of a user interface supporting multiple image query models, Annual Conference of the American Society for Information Science, Baltimore, MD, USA, Oct. 21-26, 1996. [44 ] S. F. Chang, J. R. Smith, M. Beigi, A. B. Benitez, Visual information retrieval from large distributed online repositories, Communications of the ACM, 40(12), 1997, pp. 63-71. [45 ] A. Goodrum, A. Spink, Visual information seeking: a study of image queries on the world wide web, Annual Meeting of the American Society for Information Science, Washington, DC, USA, Oct. 31-Nov. 4, 1999. [46 ] J. M. Corridoni, A. Del Bimbo, P. Pala, Image retrieval by color semantics, Multimedia Systems, 7(3), 1999, pp. 175-183. [47 ] A. Del Bimbo, Visual Information Retrieval, Morgan Kaufmann Publishers, 1999. [48 ] A. Mojsilović, J. Kovačević, J. Hu, R. J. Safranek, S. K. Ganapathy, Matching and retrieval based on the vocabulary and grammar of color patterns, IEEE Transactions on Image Processing, 9(1), 2000, pp. 38-54. [49 ] G. R. Hjaltason, H. Samet, Ranking in spatial databases, International Symposium on Spatial Databases, Portland, Maine, Aug. 6-9, 1995, pp. 83-95. [50 ] B. Bradshaw, Semantic based image retrieval: a probabilistic approach, ACM International Conference on Multimedia, Los Angeles, California, USA, Oct. 30-Nov. 4, 2000, pp. 167-176. [51 ] K. Barnard, D. Forsyth, Learning the semantics of words and pictures, IEEE International Conference on Computer Vision, Vancouver, Canada, Jul. 9-12, 2001, Vol. 2, pp. 408-415. [52 ] R. Zhao, W. I. Grosky, Negotiating the semantic gap: from feature maps to semantic landscapes, Pattern Recognition, 35(3), 2002, pp. 593-600. [53 ] J. Li, J. Z. Wang, Automatic linguistic indexing of pictures by a statistical modeling approach, IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(9), 2003, pp. 1075-1088. [54 ] P. V. Beek, K. Yoon, A. M. Ferman, User interaction, In: B. S. Manjunath, P. Salembier, and T. Sikora (Eds.) Introduction to MPEG-7, John Wiley, 2002. [55 ] T. P. Minka, R. W. Picard, Interactive learning with a society of models, Pattern Recognition, 30(4), 1997, pp. 565-582. [56 ] M. Pazzani, D. Billsus, Learning and revising user profiles: the identification of interesting web sites, Machine Learning, 27(3), 1997, pp. 313-331. [57 ] X. S. Zhou, T. S. Huang, Unifying keywords and visual contents in image retrieval, IEEE Multimedia, 9(2), 2002, pp. 23-32. [58 ] C. Zhang, T. Chen, An active learning framework for content-based information retrieval, IEEE Transaction on Multimedia, 4(2), 2002, pp. 260-268. [59 ] E. Chang, K. Goh, G. Sychay, G. Wu, CBSA: content-based soft annotation for multimodal image retrieval using Bayes point machines, IEEE Transactions on Circuits and Systems for Video Technology, 13(1), 2003, pp. 26-38. [60 ] X. He, O. King, W. Y. Ma, M. Li, H. J. Zhang, Learning a semantic space from user’s relevance feedback for image retrieval, IEEE Transactions on Circuits and Systems for Video Technology, 13(1), 2003, pp. 39-48. [61 ] D. Dubois, H. Prade, C. Testemale, Weighted fuzzy pattern matching, International Journal of Fuzzy Sets and Systems, 28, 1988, pp. 313-331. [62 ] MIT VisTex: http://www-white.media.mit.edu/vismod/imagery/VisionTexture/ distribution.html [63 ] G. Salton, M. J. McGill, Introduction to modern information retrieval, McGraw-Hill, 1983. [64 ] I. Haritaoglu, D. Harwood, L. S. Davis, W4: real-time surveillance of people and their activities, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 2000, pp. 809-830. [65 ] N. M. Oliver, B. Rosario, A. P. Pentland, A Bayesian computer vision system for modeling human interactions, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 2000, pp. 831-843. [66 ] M. Kőhle, D. Merkl, J. Kastner, Clinical gait analysis by neural networks: issues and experiences, IEEE Symposium on Computer-Based Medical Systems, 1997, pp. 138-143. [67 ] D. Meyer, J. Denzler, H. Niemann, Model based extraction of articulated objects in image sequences for gait analysis, IEEE International Conference on Image Processing, 1997, pp. 78-81. [68 ] J. W. Davis, A. F. Bobick, Virtual PAT: a virtual personal aerobics trainer, Workshop on Perceptual User Interfaces, San Francisco, CA, Nov. 5-6, 1998, pp. 13-18. [69 ] P. T. Chua, R. Crivella, B. Daly, N. Hu, R. Schaaf, D Ventura, T. Camill, J. Hodgins, R. Pausch, Training for physical tasks in virtual environments: Tai Chi, IEEE International Conference on Virtual Reality, Los Angeles, CA, Mar. 22-26, 2003. [70 ] C. BenAbelkader, R. Cutler, L. Davis, Person identification using automatic height and stride estimation, IEEE International Conference on Pattern Recognition, Quebec City, Canada, Aug. 11-15, 2002. [71 ] A. F. Bobick, A. Johnson, Gait recognition using static activity-specific parameters, IEEE Computer Vision and Pattern Recognition, Kauai, Hawaii, Dec. 8-14, 2001. [72 ] F. Multon, L. France, M.-P. Cani-Gascuel, G. Debunne, Computer animation of human walking: a survey, The Journal of Visualization and Computer Animation, 10(1), 1999, pp. 39-54. [73 ] O. Arikan, D. A. Forsyth, J. F. O’Brien, Motion synthesis from annotations, ACM Transactions on Graphics, 22(3), 2003, pp. 402-408. [74 ] W. T. Freeman, P. A. Beardsley, H. Kage, K.-I. Tanaka, K. Kyuma, C. D. Weissman, Computer vision for computer interaction, ACM SIGGRAPH Computer Graphics, 33(4), 1999, pp. 65-68. [75 ] J. Lee, J. Chai, J. K. Hodgins, P. S. A. Reitsma, N. S. Pollard, Interactive control of avatars animated with human motion data, ACM Transactions on Graphics, 21(3), 2002, pp. 491-500. [76 ] S. Jeannin, A. Divakaran, MPEG-7 visual motion descriptors, IEEE Transactions on Circuits and Systems for Video Technology, 11(6), 2001, pp. 720-724. [77 ] N. Dimitrova, F. Golshani, Motion recovery for video content analysis, ACM Transactions on Information Systems, 13(4), 1995, pp. 408-439. [78 ] S. F. Chang, W. Chen, H. J. Meng, H. Sundaram, D. Zhong, A fully automated content-based video search engine supporting spatiotemporal queries, IEEE Transactions on Circuits and Systems for Video Technology, 8(5), 1998, pp. 602-615. [79 ] E. Sahouria, A. Zakhor, A trajectory based video indexing system for street surveillance, IEEE International Conference on Image Processing, Kobe, Japan, Oct. 24-28, 1999. [80 ] S. Dağtaş, W. Al-Khatib, A. Ghafoor, R. L. Kashyap, Models for motion-based video indexing and retrieval, IEEE Transactions on Image Processing, 9(1), 2000, pp. 88-101. [81 ] M. Nabil, A. H. H. Ngu, J. Shepherd, Modeling and retrieval of moving objects, Multimedia Tools and Applications, 13(1), 2001, pp. 35-71. [82 ] C. S. Li, J. R. Smith, L. D. Bergman, V. Castelli, Sequential processing for content-based retrieval of composite objects, SPIE Storage and Retrieval of Image and Video Databases, San Jose, CA, Jan. 28-30, 1998, pp. 2-13. [83 ] H. Sundaram, S. F. Chang, Efficient video sequence retrieval in large repositories, SPIE Storage and Retrieval of Image and Video Databases, San Jose, CA, Jan. 26-29, 1999. [84 ] T. B. Moeslund, E. Granum, A survey of computer vision-based human motion capture, Computer Vision and Image Understanding, 81(3), 2001, pp. 231-268. [85 ] L. Wang, W. Hu, T. Tan, Recent developments in human motion analysis, Pattern Recognition, 36(3), 2003, pp. 585-601. [86 ] Y. Li, T. Wang, H. Y. Shum, Motion texture: a two-level statistical model for character motion synthesis, ACM Transactions on Graphics, 21(3), 2002, pp. 465-472. [87 ] L. Kovar, M. Gleicher, F. Pighin, Motion graphs, ACM Transactions on Graphics, 21(3), 2002, pp. 473-482. [88 ] Web3D working group on humanoid animation, specification for a standard humanoid, Version 1.1, August 1999. [89 ] MPEG-4 overview, ISO/IEC JTC1/SC29/WG11 N4668, March 2002, http://mpeg.telecomitalialab.com/standards/mpeg-4/mpeg-4.htm [90 ] R. Parent, Computer Animation: Algorithms and Techniques, Morgan Kaufmann, 2002. [91 ] R. O. Duda, P. E. Hart, D. G. Stork, Patten Classification, John Wiley & Sons, 2001. [92 ] T. W. Parsons, Voice and Speech Processing, McGraw-Hill, 1986. [93 ] G. Lu, Multimedia Database Management Systems, Artech House, 1999. [94 ] C. R. Wren, A. Azarbayejani, T. Darrell, A. P. Pentland, Pfinder: real-time tracking of the human body, IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 1997, pp. 780-785. [95 ] C. Theobalt, M. Magnor, P. Schüler, H. Seidel, Combining 2D Feature Tracking and Volume Reconstruction for Online Video-Based Human Motion Capture, Pacific Conference on Computer Graphics and Applications, Beijing, China, Oct. 9-11, 2002. [96 ] G. K. M. Cheung, S. Baker, T. Kanade, Shape-from-silhouette of articulated objects and its use for human body kinematics estimation and motion capture, IEEE Computer Vision and Pattern Recognition, Madison, Wisconsin, USA, Jun. 16-22, 2003. [97 ] T. Igarashi, S. Matsuoka, H. Tanaka, Teddy: a sketching interface for 3D freeform design, ACM SIGGRAPH, Los Angeles, California, USA, Aug. 8-13, 1999, pp. 409-416. [98 ] K. Morimura, T. Sonoda, Y. Muraoka, A whole-body-gesture input interface with a single-view camera – a user interface for 3D games with a subjective viewpoint, International Conference on Web Delivering of Music, Darmstadt, Germany, Dec. 9-11, 2002. [99 ] J. Davis, M. Agrawala, E. Chuang, Z. Popović, D. Salesin, A sketching interface for articulated figure animation, ACM SIGGRAPH/Eurographics Symposium on Computer Animation, San Diego, California, USA, Jul. 26-27, 2003. [100 ] M. Sonka, V. Hlavac, R. Boyle, Image Processing, Analysis, and Machine Vision, Second Edition, Brooks/Cole, 1999. [101 ] H. J. Lee, Z. Chen, Determination of 3D human body postures from a single view, Computer Vision, Graphics, and Image Processing, 30, 1985, pp. 148-168. [102 ] C. Bregler, J. Malik, Tracking people with twists and exponential maps, IEEE Computer Vision and Pattern Recognition, Santa Barbara, California, USA, Jun. 23-25, 1998, pp. 8-15. [103 ] D. E. Difranco, T. J. Cham, J. M. Rehg, Recovery of 3D articulated motion from 2D correspondences, Compaq Cambridge Research Laboratory Technical Report Series, CRL 99/7, Dec. 1999. [104 ] C. J. Taylor, Reconstruction of articulated objects from point correspondences in a single uncalibrated image, Computer Vision and Image Understanding, 80(3), 2000, pp. 349-363. [105 ] C. Barron, I. A. Kakadiaris, Estimating anthropometry and posture from a single image, IEEE Computer Vision and Pattern Recognition, South Carolina, USA, Jun. 13-15, 2000. [106 ] M. J. Park, M. G. Choi, S. Y. Shin, Human motion reconstruction from inter-frame feature correspondences of a single video stream using a motion library, ACM SIGGRAPH Symposium on Computer Animation, San Antonio, Texas, Jul. 21-22, 2002. [107 ] M. Gleicher, N. Ferrier, Evaluating video-based motion capture, International Conference on Computer Animation, Geneva, Switzerland, Jun. 19-21, 2002. [108 ] K. Rohr, Towards model-based recognition of human movements in image sequences, CVGIP: Image Understanding, 59(1), 1994, pp. 94-115. [109 ] X. Liu, Y. Zhuang, Y. Pan, Video based human animation technique, ACM International Conference on Multimedia, Orlando, Florida, USA, Oct. 30-Nov. 5, 1999. [110 ] H. Ning, T. Tan, L. Wang, W. Hu, Kinematics-based tracking of human walking in monocular video sequences, Image and Vision Computing, 22(5), 2004, pp. 429-441. [111 ] V. Pavlović, J. M. Rehg, T. J. Cham, K. P. Murphy, A dynamic Bayesian network approach to figure tracking using learned dynamic models, IEEE International Conference on Computer Vision, Kerkyra, Corfu, Greece, Sep. 20-25, 1999, pp. 94-101. [112 ] M. Brand, Shadow puppetry, IEEE International Conference on Computer Vision, Kerkyra, Corfu, Greece, Sep. 20-25, 1999, pp. 1237-1244. [113 ] N. R. Howe, M. E. Leventon, W. T. Freeman, Bayesian reconstruction of 3D human motion from single-camera video, Neural Information Processing Systems, Denver, Colorado, USA, Nov. 29-Dec. 4, 1999. [114 ] R. Rosales, S. Sclaroff, Learning body pose via specialized maps, Neural Information Processing Systems, Vancouver, British Columbia, Canada, Dec. 3-8, 2001. [115 ] D. Tolani, A. Goswami, N. Badler, Real-time inverse kinematics techniques for anthropomorphic limbs, Graphical Models, 62(5), 2000, pp. 353-388. [116 ] S. McFarlane, The Complete Book of T’ai Chi, Dorling Kindersley Limited, London, 1999. [117 ] M. Gleicher, Retargetting motion to new characters, ACM SIGGRAPH, Orlando, Florida, USA, Jul. 19-24, 1998, pp. 33-42. [118 ] K. J. Choi, H. S. Ko, Online motion retargetting, The Journal of Visualization and Computer Animation, 11(5), 2000, pp. 223-235. [119 ] M. Hilaga, Y. Shinagawa, T. Kohmura, T. L. Kunii, Topology matching for fully automatic similarity estimation of 3D shapes, ACM SIGGRAPH, Los Angeles, CA, USA, Aug. 12-17, 2001, pp. 203-212. [120 ] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman, D. Dobkin, A search engine for 3D models, ACM Transactions on Graphics, 22(1), 2003, pp. 83-105. [121 ] D. Y. Chen, M. Ouhyoung, X. P. Tian, Y. T. Shen, On Visual Similarity Based 3D Model Retrieval, Computer Graphics Forum, 22(3), 2003, pp. 223-232.id NH0925392001 sid 888314 cfn 0 / id NH0925392002 auc 洪明郁 tic 支援推測式多緒計算機結構的編譯器設計 adc 李政崑 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 39 kwc 推測式多緒計算機結構 kwc 相依關係分析 kwc 同名機率資訊分析 kwc 平行化 abc 隨著VLSI技術的進步,在單一個處理器上已經可以加入許多特殊運作功能。支援推測式多緒計算機結構(SpMT)就是其中一種。它具有推測執行及多緒處理的能力,而且可以達到緒列間的平行處理。這樣的架構可以藉著推測且多緒平行處理,讓一般的程式達到執行效能的提升;但是要注意的是,SpMT架構存在著推測錯誤的可能性,所以當程式有高度的相依性存在時,效能不但不會提升,還有可能會有衰減的情形;因為當推測錯誤時,必須做回復的動作,而回復的程式必須先將已經存在的多緒列先刪除,再執行原來正常的程式。由此可知,量化程式間的相依性,對SpMT架構是很重要的;因為可以依照量化出來的結果,來決定是否讓此架構作推測性的執行,如此一來就可以防止發生效能衰減的情形。 tc Acknowledgements i Abstract ii Contents iv List of Figures vi List of Tables vii 1 Introduction 1 1.1 Thesis Overview 1 1.2 RelatedWork 4 2 Speculative Multithreading 6 2.1 Speculative Architecture 6 2.2 SimultaneousMultithreading Architecture 9 2.3 SpMT Architecture and Simulator 11 3 Data Dependence Probability 17 3.1 Definition of Data Dependence Probability 17 3.2 Optimization Target and CostModel 21 4 Experiments 24 4.1 Simulation 24 4.2 Experimental Results 24 5 Conclusion 29 5.1 Summary 29 5.2 FutureWork 30 Bibliography 31 Appendix 37rf [1 ] B. D. and T. Austin. The SimpleScalar Tool Set, Version 3.0. Unversity of Wisconsin Madison Computer Science Department. [2 ] L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen, and K. Olukotun. The stanford hydra cmp. IEEE MICRO Magazine, March-April 2000. [3 ] V. Krishnan and J. Torrellas. A chip-multiprocessor architecture with speculative multithreading. IEEE Transactions on Computers, 48(9):866–880, 1999. [4 ] J. Oplinger, D. Heine, S.-W. Liao, B. A. Nayfeh, M. S. Lam, and K. Olukotun. Software and hardware for exploiting speculative parallelism with a multiprocessor. Technical Report CSL-TR-97-715, Stanford University, February 1997. [5 ] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors. In 25 Years ISCA: Retrospectives and Reprints, pages 521–532, 1998. [6 ] J.-Y. Tsai, J. Huang, C. Amlo, D. J. Lilja, and P.-C. Yew. The superthreaded processor architecture. IEEE Transactions on Computers, 48(9):881–902, 1999. [7 ] J.-Y. Tsai, Z. Jiang, and P.-C. Yew. Compiler techniques for the superthreaded architectures. International Journal of Parallel Programming, 27(1):1–19, 1999. [8 ] A. Berson, S. Smith, and K. Thearling. Building Data Mining Applications for CRM. McGraw-Hill, 1999. 31 BIBLIOGRAPHY 32 [9 ] B. W. Kernighan and D. M. Ritchie. The C programming language, Second Edition. Prentice Hall, 1988. [10 ] B. Stroustrup. The C++ programming language. Addison-Wesley, 1991. [11 ] G. Ramalingam. Data flow frequency analysis. In Proceedings of the ACM SIGPLAN ’96 conference on Programming language design and implementation, pages 267–277. ACM Press, 1996. [12 ] Yuan-Shin Hwang, Peng-Sheng Chen, Jenq Kuen Lee, and Roy Dz-Ching Ju. Probabilistic Points-to Analysis In Proceeding of the 2001 International Workshop on Languages and Compilers for Parallel Computing (LCPC’01), Cumberland Falls, Kentucky, August, 2001. [13 ] Smith, M., Horowitz, M., Lam, M. Efficient Superscalar Performance Through Boosting In 5th International Conference on Architectural Support for Programming languages and Operating Systems. IEEE/ACM. Boston, MA. p248-259. October, 1992 [14 ] Jin Lin, Tong Chen, Wei-Chung Hsu, Pen-Chung Yew, Roy Ju, Tin-fook Ngai, and Sun Chan, A Compiler Framework for Speculative Analysis and Optimizations in the ACM SIGPLAN’03 Conference on Programming Language Design and Implementation (PLDI), pp. 289-299, June 2003 [15 ] Roy Dz-ching Ju, Kevin Nomura, Uma Mahadevan, Le-Chun Wu A Unified Compiler Framework for Control and Data Speculation 2000 International Conference on Parallel Architectures and Compilation Techniques (PACT’00) October 15 - 19, 2000 Philadelphia, Pennsylvania [16 ] Dongkeun Kim (Intel), Steve Shih-wei Liao (Intel), Perry Wang (Intel), Juan del Cuvillo (Intel), Xinmin Tian (Intel), Xiang Zou (Intel), Hong Wang (Intel), BIBLIOGRAPHY 33 Donald Yeung (U. of Maryland College Park), Milind Gikar (Intel), John Shen (Intel) Physical Experimentation with Prefetching Helper Threads on Intel’s Hyper-Threaded Processors 2004 International Symposium on Code Generation and Optimization with Special Emphasis on Feedback-Directed and Runtime Optimization [17 ] Intel’s docuemnt that provides the overview of the Microarchitecture, System Bus, Data Integrity, Configuration and Initialization, Test Access Port, and Integration Tools for use while designing systems with the Itanium processor. ftp://download.intel.com/design/Itanium/Downloads/24870102.pdf [18 ] M. Burke, P. Carini, J.-D. Choi, and M. Hind. Flow-insensitive interprocedural alias analysis in the presence of pointers. In Proceedings of the 8th International Workshop on Languages and Compilers for Parallel Computing, Columbus, Ohio, August 1995. [19 ] J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural computation of pointer-induced aliases and side effects. In Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 232–245. ACM Press, 1993. [20 ] M. Das. Unification-based pointer analysis with directional assignments. In Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language Design and Implementation (PLDI-00), volume 35.5 of ACM Sigplan Notices, pages 35–46, N.Y., June 18–21 2000. ACM Press. [21 ] A. Deutsch. Interprocedural May-Alias analysis for pointers: Beyond k-limiting. SIGPLAN Notices, 29(6):230–241, June 1994. Proceedings of the ACM SIGPLAN ’94 Conference on Programming Language Design and Implementation. BIBLIOGRAPHY 34 [22 ] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive interprocedural Points-to analysis in the presence of function pointers. SIGPLAN Notices, 29(6):242–256, June 1994. Proceedings of the ACM SIGPLAN ’94 Conference on Programming Language Design and Implementation. [23 ] W. Landi and B. G. Ryder. A safe approximate algorithm for interprocedural pointer aliasing. SIGPLAN Notices, 27(7):235–248, July 1992. Proceedings of the ACM SIGPLAN ’92 Conference on Programming Language Design and Implementation. [24 ] J. K. Lee, D. Ho, and Y.-C. Chuang. Data distribution analysis and optimization for pointer-based distributed programs. In Proceedings of the 1997 International Conference on Parallel Processing (ICPP ’97), pages 56–63, Washington - Brussels - Tokyo, Aug. 1997. IEEE Computer Society Press. [25 ] Y.-J. Lin, Y.-S. Hwang, and J. K. Lee. Compiler optimizations with dsp-specific semantic descriptions. In Proceedings of the 2002 International Workshop on Languages and Compilers for Parallel Computing, July 2002. [26 ] Y.-S. Hwang, P.-S. Chen, J. K. Lee, and R. D.-C. Ju. Probabilistic points-to analysis. In Proceedings of the 2001 International Workshop on Languages and Compilers for Parallel Computing, August 2001. [27 ] The Stanford SUIF Compiler Group. The SUIF Library. Stanford University, 1995. [28 ] M. D. Smith. The SUIF Machine Library. Division of of Engineering and Applied Science, Harvard University, March 1998. BIBLIOGRAPHY 35 [29 ] R. Krishnaiyer, D. Kulkarni, D. M. Lavery, W. Li, C.-C. Lim, J. Ng, and D. C. Sehr. An advanced optimizer for the ia-64 architecture. IEEE Micro, 20(6):60– 68, November/December 2000. [30 ] D.-C. R. Ju, J.-F. Collard, and K. Oukbir. Probabilistic memory disambiguation and its application to data speculation. In G. Lee and P.-C. Yew, editors, Third Workshop on Interaction between Compilers and Computer Architectures (INTERACT-3), San Jose, CA, Oct. 1998. [31 ] M. C. Carlisle and A. Rogers. Software caching and computation migration in olden. In Proceedings of ACM SIGPLAN Conference on Principles and Practice of Parallel Programming, pages 29–39, July 1995. [32 ] R.-G. Chang, T.-R. Chuang, and J. K. Lee. Efficient support of parallel sparse computation for array intrinsic functions of Fortran 90. In Conference Proceedings of the 1998 International Conference on Supercomputing, pages 45–52, Melbourne, Australia, July 13–17, 1998. ACM SIGARCH. [33 ] R.-G. Chang, J.-S. Li, J. K. Lee, and T.-R. Chuang. Probabilistic inference schemes for sparsity structures of fortran 90 array intrinsics. In 2001 International Conference on Parallel Processing (ICPP ’01, pages 61–68, Washington - Brussels - Tokyo, Sept. 2001. IEEE. [34 ] G.-H. Hwang, J. K. Lee, and R. D.-C. Ju. A function-composition approach to synthesize Fortran 90 array operations. Journal of Parallel and Distributed Computing, 54(1):1–47, 10 Oct. 1998. [35 ] G.-H. Hwang, J. K. Lee, and R. D.-C. Ju. Array operation synthesis to optimize HPF programs on distributed memory machines. Journal of Parallel and Distributed Computing, 61(4):467–500, Apr. 2001. BIBLIOGRAPHY 36 [36 ] Y.-P. You, C.-R. Lee, and J. K. Lee. Compiler analysis and supports for leakage power reduction on microprocessors. In Proceedings of the 2002 International Workshop on Languages and Compilers for Parallel Computing, July 2002.id NH0925392002 sid 904396 cfn 0 / id NH0925392003 auc 陳永祚 tic 虛擬環境下即時三維手勢之介面系統 adc 楊熙年 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 123 kwc 手勢 kwc 虛擬實境 kwc 操作 kwc 隱馬可夫模型 kwc 辨識 abc 近幾年來,隨著電腦視覺技術以及運算能力的進步,發展出許多以手勢作為人機互動工具的研究成果。但是大部分的成果多只以少量簡單的示範內容展示其相關辨識技術,若要有效率地將手勢辨識的技術跟應用程式內容結合仍舊需要進一步的研究。 tc 中文摘要 ii 英文摘要(Abstract) iii 致謝(Acknowledgement) v 目錄(Contents) vi 圖形目錄(Figures) ix 第一章:簡介 1 1.1 系統發展的原因 1 1.2 Gesture的介紹 1 1.3 系統的要求以及困難 4 1.3.1 系統需求 4 1.3.2 手勢設計的問題 6 1.3.3 特徵擷取的問題 7 1.3.4 手勢追蹤的問題 8 1.3.5 手勢辨識的問題 9 1.4 理論背景 10 1.5 研究內容 11 1.5.1 系統描述 11 1.5.2 動作捕捉器製作 12 1.5.3 手勢追蹤 14 1.5.4 連續手勢辨識 15 1.5.5 使用者操作系統 15 1.6 論文架構 16 第二章:相關研究 17 2.1 手勢資料的表示法 17 2.1.1 使用特殊裝置 18 2.1.2 使用影像 20 2.1.3 軌跡追蹤 21 2.1.4 Model Based 21 2.1.5 Contour Based 22 2.1.6 Appearance Based 22 2.1.7 其他 23 2.2 分類的方法 24 第三章:提出的方法 28 3.1 前言 30 3.2 影像擷取 32 3.2.1 所使用的裝置 32 3.2.2 跟投射式紅外線捕捉器的比較 33 3.2.3 捕捉的目標 34 3.2.4 使用硬體 35 3.3 手勢追蹤 37 3.3.1 空間對應 38 3.3.2 時間對應 39 3.3.3 推測的方法 40 3.3.4 手指對應 41 3.3.5 追蹤錯誤修正 41 3.4 手勢辨識 42 3.4.1 靜態手型辨識 43 3.4.1.1 手指頭的組態 43 3.4.1.2 EigenSpace的產生 43 3.4.2 動態手勢辨識 46 3.4.2.1 手勢的segmentation與模組化 46 3.4.2.2 取用的特徵 50 3.4.2.3 所支援的手勢 52 3.4.2.4 Gesture Thresholding 52 3.4.2.5 Recognition 54 3.5 系統架構 55 3.5.1 系統流程 55 3.5.2 展示應用系統與手勢操作系統溝通架構 57 第四章:系統實作 59 4.1 3D 定位矯準 60 4.1.1 基礎矩陣 62 4.2 手勢追蹤 63 4.2.1 影像處理 63 4.2.2 MHT介紹與實作方法 64 4.2.3 整合MHT於時間對應與空間對應 69 4.2.4 猜測方法 72 4.2.5 手指對應 75 4.2.6 追蹤錯誤修正 76 4.3 手勢辨識 77 4.3.1 靜態手型辨識 77 4.3.2 HMM簡介 79 4.3.2.1 基本概念 79 4.3.2.2 HMM三個主要的問題 82 4.3.3 手勢分割 83 4.3.4 Gesture Thresholding 88 4.3.4.1 AntiGesture Model 90 4.3.5 手勢辨識 93 4.4 系統架構實作 96 4.4.1 以BB跟Manager架構整合系統 96 4.4.2 展示應用系統與手勢操作系統溝通架構 97 第五章:實驗結果 103 5.1 追蹤結果 103 5.2 手勢辨識結果 104 第六章:結論 110 參考文獻 112rf A [Aggarwal 99 ] Aggarwal, J.K., Cai, Q.,"Human Motion Analysis: A Review", CVIU(73), No. 3, March 1999, pp. 428-440. [Atid Shamaie 01 ] Atid Shamaie and Alistair Sutherland, "Graph- based Matching of Occluded Hand Gestures," IEEE Applied Imagery Pattern Recognition Workshop (AIPR 2001), Washington DC, USA, 10-12 October 2001. [Atid Shamaie 03-1 ] Atid Shamaie and Alistair Sutherland, "A Dynamic Model for Real-Time Tracking of Hands in Bimanual Movements," 5th International Gesture Workshop, Genova, 15-17 April 2003. [Atid Shamaie 03-2 ] Atid Shamaie and Alistair Sutherland,"Accurate Recognition of Large Number of Hand Gestures",Second Iranian Conference on Machine Vision and Image Processing, K.N. Toosi University of Technology, Tehran, 13-15 February 2003. B [Bales 70 ] Bales, R. F. (1970). Personality and interpersonal behavior. New York: Holt, Rinehart & Winston. [Baudel 93 ] T. Baudel and M. Beaudouin-Lafon, CHARADE: Remote Control of Objects using Free-Hand Gestures, Communications of ACM, Vol. 36, No. 7, pp. 28-35, 1993. [Bobick 97 ] Bobick, A., and A. Wilson."A State-Based Approach to the Representation and Recognition of Gesture", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 12, 1997. [Bowden 00 ] R. Bowden and M. Sarhadi, “Building Temporal Models for Gesture Recognition,” Proc. of the British Machine Vision Conference 2000, Vol 1, University of Bristol, UK, September 2000. [Bahrami 01 ] Sh. Bahrami, J. M. Vannobel "A parallel and hierarchic framework to gesture recognition" Gesture Workshop 2001. Londres Avril 2001 [Ben 02 ] Ben W. Miners, Otman A. Basir, Mohamed Kamel, “Knowledge- Based Disambiguation of Hand Gestures”, Proceedings of the IEEE International Conference on Systems, Man and Cybernetics pp 201-206, Volume 5, October 6-9, 2002 C [Chen 93 ] F.R. Chen, L.D. Wilcox and D.S. Bloomberg, Work Spotting in Scanned Images using Hidden Markov Models, Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol V, pp. 1-4, 1993. [Colin Ware 94 ] Colin Ware, Ravin Balakrishnan: Reaching for Objects in VR Displays: Lag and Frame Rate. ACM Trans. Comput.-Hum. Interact. 1(4): 331-356 (1994) [Cox 95 ] Cox, I.J., Miller, M.L., On Finding Ranked Assignments with Application to Multi-Target Tracking and Motion Correspondence. IEEE Trans. AES, 1995. 32(1): p. 486-489. [Cox 96 ] I. Cox and S. Hingorani, "An efficient implementation of Reid's multiple hypothesis tracking algorithm and its evaluation for the purpose of visual tracking," IEEE Trans. Pattern Anal. Machine Intell., vol. 18, no. 2, pp. 138-- 150, 1996. [Campbell 96 ] L. W. Campbell, D.A. Becker, A. Azarbayejani, A.F.Bobick, and A. Pentland. "Invariant features for 3-Dgesture recognition. Second International Workshop onFace and Gesture Recognition", Killington VT, 1996. [Cox 97 ] I.J. Cox, M.L. Miller, R. Danchick, and G.E. Newnam. A comparison of two algorithms for determiningranked assignments with application to multi-target tracking and motion correspondence. IEEE Transac-tions on Aerospace and Electronic Systems, 33(1):295–300, January 1997. [Christian Vogler 99-1 ] Christian Vogler and Dimitris Metaxas. Toward scalability in ASL recognition: Breaking down signs into phonemes. Springer Lecture Notes on Artificial Intelligence 1739, pp. 211-224, Proceedings of the Gesture Workshop'99, Gif-sur-Yvette, France, March 17-19, 1999. [Christian Vogler 99-2 ] Christian Vogler, Dimitris Metaxas,"Parallel hidden markov models for american sign language recognition",In: ICCV (1). (1999) 116–122 [Chung-Lin Huang 00 ] Chung-Lin Huang, Ming-Shan Wu, Sheng-Hung Jeng: Gesture recognition using the multi-PDM method and hidden Markov model. Image Vision Comput. 18(11): 865-879 (2000) [Christian Vogler 00 ] Christian Vogler, Harold Sun and Dimitris Metaxas. A Framework for Motion Recognition with Applications to American Sign Language and Gait Recognition. Proceedings of the Workshop on Human Motion, Austin, TX, December 7-8, 2000. [Chen Yu 02-1 ] Chen Yu and Dana H. Ballard, "Understanding Human Behaviors Based on Eye-head- hand coordination", 2nd Workshop on Biologically Motivated Computer Vision (BMCV2002), T?bingen, Germany, November 22nd - 24th, 2002 [Chen Yu 02-2 ] Chen Yu and Dana H. Ballard, "Learning to Recognize Human Action Sequences", IEEE International Conference on Development and Learning (ICDL'02), Cambridge, MA, June 12 - 15, 2002. D [Dorner 93 ] Dorner, B. (1993). Hand shape identification and tracking for sign language interpretation. In IJCAI Workshop Looking at People. [Darrell 93 ] Darrell, T. & Pentland, A. (1993). Space-time gestures. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 335-340). [Davis 94-1 ] J.Davis . M.Shah "Visual Gesture Recogniton" IEEE proc Vis Image Singal Process 1994 Vol.141 No.2 April 1994 [Davis 94-2 ] Davis, J. & Shah, M. (1994). Recognizing hand gestures. In European Conference on Computer Vision (pp. A:331-340). [Davis 99 ] J. Davis and M. Shah "Toward 3-D Gesture Recognition" International Journal of Pattern Recognition and Artificial Intelligence, Vol. 13, No. 3 (1999) 381- 393 E [Efron 41 ] Efron, D. (1941): Gesture and environment. Morningside Heights, NY: King’s Crown Press. [Ekman 72 ] Ekman, P., & Friesen, W.V. (1972): Hand movements. Journal of communication, 22, p.353−374. [Eickeler 98 ] S. Eickeler, S. M?ller, G. Rigoll. "Person-Independent Continuous Online Recognition of Gestures". Demo Session in IEEE Intern. Conference on Computer Vision and Computer Vision (CVPR) , Santa Barbara, 1998. [Ehrenmann 01 ] Ehrenmann, M. Lutticke, T. and Dillmann, R. Dynamic Gestures as an Input Device for Directing a Mobile Platform.In Proc. of the IEEE Int. Conf. of Robotics and Automation 2001 (ICRA), Seoul/Korea, 21.-26. May 2001. [Eisenstein 03 ] J. Eisenstein, S. Ghandeharizadeh, L. Golubchik, C. Shahabi, D. Yan, R. Zimmermann. Device Independence and Extensibility in Gesture Recognition. IEEE Virtual Reality 2003, p. 207 F [Fels 93 ] S. Fels and G.E. Hinton, Glove-talk: A Neural Network Interface between a Data- glove and a Speech Synthesizer, IEEE transactions on Neural Networks, Vol. 4, pp. 2-8, 1993. [Fels 94 ] S. Fels, Glove-Talk II: Mapping Hand Gestures to Speech Using Neural Networks. An Approach to Building Adaptive Interfaces, Ph.D. Thesis, University of Toronto, 1994. [Freeman 98 ] Freeman, W.T., Anderson, D.B., Beardsley, P.A., Dodge, C.N., Roth, M., Weissman, C.D., Yerazunis, W.S., Kage, H., Kyuma, K., Miyake, Y.; Tanaka, K., "Computer Vision for Interactive Computer Graphics", IEEE Computer Graphics and Applications, Vol. 18, Issue 3, pp. 42-53, May-June 1998 G [Gregory Berry 98 ] Gregory Berry and Vladimir Pavlovic and Thomas S. Huang A Multimodal Human-Computer Interface for the Control of a Virtual Environment. 1998. in AAAI Workshop on Intelligent Environments. Stanford University, CA. [Guangqi Ye 04 ] Guangqi Ye, Jason J. Corso, and Gregory D. Hager. Gesture Recognition Using 3D Appearance and Motion Features. In Proceedings of CVPRHCI, 2004. H [Huang 90 ] X.D. Huang, Y. Ariki and M.A. Jack, Hidden Markov Models for Speech Recognition, Edinburgh University Press, 1990. [Heap 95 ] Real-Time Hand Tracking and Gesture Recognition using Smart Snakes, A. J. Heap, Proc. Interface to Real and Virtual Worlds, Montpellier, June 1995 [Holden 97 ] Holden, E. J. (1997), Visual Recognition of Hand Motion, PhD thesis, The University of Western Australia. [Ho-Sub Yoon 01 ] Ho-Sub Yoon, Jung Soh, Younglae J. Bae, Hyun Seung Yang: Hand gesture recognition using combined features of location, angle and velocity. Pattern Recognition 34(7): 1491-1501 (2001) [Rochelle 02 ] Rochelle O'Hagan, Alexander Zelinsky "Visual Gesture Interfaces for Virtual Environments" First Australasian User Interface Conference January 31 - February 03, 2000 Canberra, Australia Interacting with Computers, Special Issue, 2002 I J [Jochen Triesch 97 ] Jochen Triesch, Christoph von der Malsburg: Robotic Gesture Recognition. Gesture Workshop 1997: 233-244 [Jakub Segen 00 ] Jakub Segen, Aditi Majumder, and JoshuaGluckman.Virtualdanceandmusicconducted by a human conductor.InEurographics, volume 19(3). EACG, 2000. [Jochen Triesch 01 ] Jochen Triesch, Christoph von der Malsburg: A System for Person-Independent Hand Posture Recognition against Complex Backgrounds. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(12): 1449-1453 (2001) K [Kim 96 ] J. Kim, W. Jang, and Z. Bien: “A Dynamic Gesture Recognition System for the Korean Sign Language (KSL)”, IEEE Trans. on Systems, Man and Cybernetics -Part B:Cybernetics, Vol.26, No.2, April, 1996 [Ken 98 ] KEN HINCKLEY "Two-Handed Virtual Manipulation" ACM Transactions on Computer-Human Interaction (TOCHI) Volume 5 ,Issue 3 (September 1998) 260 – 302 [Kenji Oka 02 ] Kenji Oka, Yoichi Sato, and Hideki Koike,"Real-time fingertip tracking and gesture recognition,"IEEE Computer Graphics and Applications, Vol. 22, No. 6, pp. 64-71, November/December 2002. [Krahnstoever 02 ] Krahnstoever, N., Kettebekov, S., Yeasin, M., Sharma,R.: AReal-Time Framework for Natural Multimodal Interactionwith Large Screen Displays. Proceedings of ICMI’02, 161-166. [Krahnstver 03 ] N. Krahnstver, M. Yeasin and R. Sharma, “Automatic Acquisition and Initialization of Articulated Models” to appear in Machine Vision and Applications, Vol.14, No. 3, 2003 [Keni Bernardin 03 ] Keni Bernardin, "A Hidden Markov Model Based Approach fo Recognizing Continuous Human Grasping Sequences," Third IEEE Int. Conf. on Humanoid Robots, October 2003 [Koichi Ogawara 03 ] Koichi Ogawara, Kentaro Hashimoto, Jun Takamatsu, Katsushi Ikeuchi, "Grasp Recognition using a 3D Articulated Model and Infrared Images," Proc. of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2003), October 2003 L [Lowe 91 ] Lowe, D. (1991). Fitting parameterized three-dimensional models to images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(5), 441-450. [Lee 99 ] H.K. Lee and J. H. Kim. An hmm-based threshold model approach for gesture recognition. In IEEE Transaction on Pattern Analysis and Machine Intelligence,volume 21, pages 961–973, 1999 [Loy 02 ] Loy, G., Fletcher, L., Apostoloff N., and Zelinsky, A.: "An Adaptive Fusion Architecture for Target Tracking" , Proceedings of Fifth International Conference on Face and Gesture Recognition (FGR2002), Washington DC, May 2002. [Louis-Philippe Morency 02 ] Louis-Philippe Morency, Ali Rahimi, Neal Checka, Trevor Darrell "Fast Stereo-Based Head Tracking for Interactive Environments" Fifth IEEE International Conference on Automatic Face and Gesture Recognition. May 20 - 21, 2002 M [McGrew 72 ] McGrew, W. C. (1972):An ethological study of children’s behavior. New York: Academic Press. [McNeill 92 ] McNeill, D. (1992): Hand and Mind: What Gestures Reveal about Thought. Chicago: University of Chicago Press. [Maggioni 93 ] C. Maggioni, A Novel Gestural Input Device for Virtual Reality, Proceedings of IEEE Virtual Reality Annual International Symposium, pp. 118-124, 1993. [Maes 96 ] The ALIVE System: Wireless, Full-Body Interaction with Autonomous Agents. P. Maes, T. Darrell, B. Blumberg, A. Pentland. In the ACm Special Issue on Multimedia and Multisensory Virtual Worlds. 1996. [Matthew Brand 97 ] Matthew Brand, Nuria Oliver, and Alex Pentland. Coupled hidden Markov models for complex action recognition. InProc. IEEE Int. Conf. on Computer Vision and Pattern Recognition, pages 994–999, 1997. [Meide Zhao 98 ]; Quek, F.K.H.; Xindong Wu "RIEVL: recursive induction learning in hand gesture recognition" Pattern Analysis and Machine Intelligence, IEEE Transactions on , Volume: 20 Issue: 11 , Nov. 1998 [Ming-Hsuan Yang 02 ] Ming-Hsuan Yang, Member, IEEE, Narendra Ahuja, Fellow, IEEE, and Mark Tabb, Member, IEEE "Extraction of 2D Motion Trajectories and Its Application to Hand Gesture Recognition" IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 8, AUGUST 2002 [Malassiotis 02 ] S. Malassiotis, N. Aifanti, and M. Strintzis.A GestureRecognition System Using 3D Data. In Proceedings of theFirst International Symposium on 3D Data Processing Visu- alization and Transmisssion, pages 190–193, 2002. [Malassiotis 03 ] S. Malassiotis and M. G. Strintzis, "Real-time Head Tracking and 3D Pose Estimation from Range Data," in Proc. IEEE International Conference on Image Processing 2003, Barcelona, Spain, September 2003. N [Nespoulous 86 ] Jean-Luc Nespoulous, Paul Perron, and Andre Roch Lecours. The Biological Foundations of Gestures: Motor and Semiotic Aspects. Lawrence Erlbaum Associates, Hillsdale, MJ, 1986. [Nam 96 ] Y. Nam and K. Wohn, "Recognition of space-time hand- gestures using hidden markov model," in Proceedings of ACM Symposium on Virtual Reality Software and Technology, 1996, pp. 51-- 58. [Norman Murray 03 ] Norman Murray, John Yannis Goulermas, and Terrence Fernando. Visual tracking for a virtual environment. In Proceedings of HCI International, volume 1, pages 1198-1202, 2003 O [Ohno 99 ] Ohno H. and Yamamoto M., 1999." Gesture Recognition using Character Recognition Techniques on Two- DimensionalEigenspace". Proc. of 7th IEEE International Conference on Computer Vision, Kerkyra, Greece, Vol. I, pp. 151-156 P [Pavlovic 97 ] Vladimir I. Pavlovic, Rajeev Sharma, and Thomas S. Huang, "Visual interpretation of hand gestures for human-computer interaction: A review," IEEE Trans. on PAMI, July 1997. [Plamondon 00 ] Plamondon, R., Srihari, S. N.: On-Line and Off-Line Handwriting Recognition: a Compre-hensive Survey. IEEE Trans. on Pattern Analysis and Machine Intelligence. 22 (1) (Jan. 2000) 63-84 [Polat 03 ] Ediz Polat, Mohammed Yeasin_ and Rajeev Sharma “Robust Tracking of Human Body Parts for Collaborative Human Computer Interaction”Computer Vision and Image Understanding. Volume 89 , Issue 1, 44 - 69, January 2003 Q [Quek 94 ] Quek, F., "Toward a vision-based hand gesture interface," Proceedings of the Virtual Reality System Technology Conference, pp. 17-29, August 23-26, 1994, Singapore. [Queck 01 ] Queck F., et al., Gesture and Speech Multimodal Conversational Interaction, Tech. Rep., VISLab-01-01, University of Illinois, 2001 R [Reid 79 ] DPNALD B. REID, An Algorithm for Tracking Multiple Targets IEEE Transaction on Automatic Control Vol AC-24 No.6 December 1979 [Rose 92 ] R.C. Rose, Discriminant Wordspotting Techniques for Rejection Non-vocabulary utterances in Unconstrained Speech, Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol II, pp. 105-108, 1992. [Rehg 94 ] Rehg, J. & Kanade, T. (1994). Visual tracking of high DoF articulated structures: An application to human hand tracking. In European Conference on Computer Vision (pp. B:35-46). [Ribo 01 ] M. Ribo. State of the art report on optical tracking. TechnicalReport 2001-25, VRVis, 2001 [Rosales 01 ] R. Rosales, Vassilis Athitsos, and Stan Sclaroff. 3D Hand Pose Reconstruction Using Specialized Mappings. In Proc. IEEE International Conference on Computer Vision (ICCV). Presented at ICCV, Vancouver, BC, Canada, Jul 2001. [Rolland 01 ] Rolland, J., Davis, L., & Baillot, Y. (2001). A survey of tracking technology for virtual environments. In W. Barfield & T. Caudell (Eds.), Fundamentals of Wearable Computers and Augmented Reality (pp. 67-112). Mahwah, NJ: Lawrence Erlbaum. [Rauschert 02 ] Rauschert, I., Agrawal, P., Fuhrmann, S., Brewer, I., Wang, H., Sharma, R., Cai, G. and MacEachren, A., "Designing a Human- Centered, Multimodal GIS Interface to Support Emergency Management," Proc. of the 10th ACM International Symposium on Advances in Geographic Information Systems, McLean, Virginia, USA, 2002 [Ramamoorthy 03 ] Ramamoorthy, A.[Aditya ], Vaswani, N.[Namrata ], Chaudhury, S.[Santanu ], Banerjee, S.[Subhashis ], Recognition of dynamic hand gestures, PR(36), No. 9, September 2003, pp. 2069-2081 [Rowel Atienza 03 ] Rowel Atienza and Alexander Zelinsky "Interactive Skills Using Active Gaze Tracking" , ACM 5th International Conference on Multimodal Interfaces, Vancouver Canada, Nov 2003. S [Sirovich 87 ] Sirovich, L. & Kirby, M. (1987). Low-dimensional procedure for the characterization. Journal Optical Society of America-A, 4(3), 519-524. [Schlenzig 94 ] Schlenzig, J., Hunter, E. & Jain, R. (1994). Vision based gesture interpretation using recursive estimation. In Asilomar Conference on Signals, Systems and Computers. [Starner 95 ] T. Starner. "Visual Recognition of American Sign Language Using Hidden Markov Models", Master's Thesis, MIT Media Laboratory, February 1995 [Starner 97 ] T. Starner, and A. Pentland, Real-Time American Sign Language Recognition from Video Using Hidden Markov Models, PAMI, July 1997 [Starner 98 ] Starner, T.; Weaver, J.; Pentland, A."Real-time American sign language recognition using desk and wearable computer based video",Pattern Analysis and Machine Intelligence, IEEE Transactions on , Volume: 20 Issue: 12 , Dec 1998 [Sparacino 99 ] F. Sparacino, C. Wren, G. Davenport and A. Pentland "Augmented Performance in Dance and Theater," Proc. Intl. Dance and Technology 99 (IDAT99) 1999 [Shahabi 01 ] Shahabi, S., Kaghazian, L., Mehta, S., Ghoting, A., Shanbhag, G., McLaughlin, M. Analysis of haptic data for sign language recognition. 1st International Conference on Universal Access in Human-Computer Interaction. HCI International 2001, V3, pp 441-445 [Sato 00 ] Yoichi Sato, Yoshinori Kobayashi, and Hideki Koike, "Fast tracking of hands and fingertips in infrared images for augmented desk interface," Proc. 2000 IEEE International Conference on Automatic Face and Gesture Recognition (FG 2000), pp. 462-467, March 2000. [Sato 01 ] Y. Sato, M. Saito, and H. Koike, "Real-time input of 3D pose and gestures of a user's hand and its applications for HCI," Proc. 2001 IEEE Virtual Reality Conference (IEEE VR2001), pp. 79-86, March 2001. (honorary mention for the Best Paper Award) [Stenger 03 ] B. Stenger, A. Thayananthan, P. H. S. Torr, and R. Cipolla. I "Filtering Using a Tree-Based Estimator" n Proc. 9th IEEE International Conference on Computer Vision, Vol. II, pages 1063- 1070, Nice, France, October 2003. T [Turk 91 ] Turk, M. & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 71-86. [Thomas 01 ] Thomas B. Moeslund, Erik Granum,"POSE ESTIMATION OF A HUMAN ARM USING KINEMATIC CONSTRAINTS",Proc. 12th Scandinavian conference on image analysis (SCIA’01),Bergen, Norway, June 11-14, 2001. U V [Vaananen 93 ] K. Vaananen and K. Boehm, Gesture Driven Interaction as a Human Factor in Virtual Environments - An Approach with Neural Networks, Virtual Reality Systems Chapter 7, R. Earnshaw, M. Gigante, H. Jones (eds.), Academic Press, pp. 93-106, 1993. [Vassilis Athitsos 02 ] Vassilis Athitsos, Stan Sclaroff ,"An Appearance-Based Framework for 3D Hand Shape Classification and Camera Viewpoint Estimation " Boston University. Fifth IEEE International Conference on Automatic Face and Gesture Recognition May 20 - 21, 2002. Washinton D.C. [Vassilis Athitsos 03-1 ] V. Athitsos and S. Sclaroff. Estimating 3D Hand Pose from a Cluttered Image. In Proc. IEEE Conf. on ComputerVision and Pattern Recognition, pages 432–439, Madison, WI, June 2003 [Vassilis Athitsos 03-2 ] Vassilis Athitsos, Stan Sclaroff,"Database Indexing Methods for 3D Hand Pose Estimation.", Gesture Workshop 2003: 288- 299 W [Wallbott 82 ] Wallbott, H. G. (1982): Bewegungsstil und Bewegungsqualit. Weinheim, Basel: Beltz. [Wilcox 92 ] L.D. Wilcox and M.A. Bush, Training and Search Algorithms for an Interactive Wordspotting System, Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol II, pp. 97- 100, 1992. [Wilson 95-1 ] Wilson, A., and A. F. Bobick "Learning Visual Behavior for Gesture Analysis", In Proceedings of the IEEE Symposium on Computer Vision, Coral Gables, Florida, November 20-22, 1995 [Wilson 95-2 ] A. Wilson and A. Bobick, "Using Configuration States for the Representation and Recognition of Gesture," MIT Media Laboratory, Perceptual Computing Section, Technical Report No. 308, 1995. [Wexelblat 95 ] Wexelblat, A.: An Approach to Natural Gesture in Virtual Environments Special Issue on Virtual Reality Software and Techno logy. ACM Transactions on Computer-Human Interaction, Vol. 2 No. 3 (1995) 179—200 [Wilson 98 ] A. Wilson and A Bobick, “Recognition and interpretation ofparametric gesture,” in ICCV, 1998, pp. 329–336. [Wilson 98 ] Wilson, Andrew D. and Aaron F. Bobick (1999). Parametric hidden markov models forgesture recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(9), 884–900 X Y [Yamato 92 ] Yamato, J., Ohya, J. & Ishii, K. (1992). Recognizing human action in timesequential images using a hidden Markov model. In IEEE International Conference on Computer Vision and Pattern Recognition (pp. 379-385). [Ying Wu 00 ] Ying Wu, Thomas S. Huang, "View-independent Recognition of Hand Postures", In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR'2000), Vol.II, pp.88-94, Hilton Head Island, SC, June, 2000 Zid NH0925392003 sid 914303 cfn 0 / id NH0925392004 auc 翁珮玹 tic 輪旋與賦格的自動化曲式分析系統 adc 陳良弼 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 36 kwc 自動化音樂分析 kwc 曲式分析系統 kwc 音樂資訊擷取 abc 在傳統的音樂曲式分析中,大多需要靠專家做人工的分析與判斷,非常的花費時間與人力,因此能自動化的分析樂曲的結構是相當重要的議題。在之前的音樂研究中較著重於尋找樂曲中不斷反覆出現的片段(repeating pattern),但在找出這些片段後,並未能進一步分析其在音樂語意上的含意,因此對使用者來說,無法從中得到音樂相關的有用資訊,此外,因為沒有考慮到樂理,因此許多找出來的片段在實際的樂曲分析中是無用且多餘的資訊。 tc Abstract Acknowledgements Contents List of Figures List of Tables 1.Introduction 2.Approach 2-1 Feature extraction and representations 2-2 Musicology-based Approach for Rondo Analysis 2-3 Musicology-based Approach for Fugue Analysis 3.Experiments 3-1 Environment 3-2 Effectiveness of the Rondo Analysis 3-3 Effectiveness of the Fugue Analysis 4.Conclusion Referencerf [1 ]Chen, H. C., C. H. Lin, and A. L. P. Chen, “Music Segmentation by Rhythmic Features and Melodic Shapes,” IEEE International Conference on Multimedia & Expo, 2004. [2 ]Chen, H. C. and A. L. P. Chen , “A Music Recommendation System Based on Music Data Grouping and User Interests,” Proc. ACM International Conference on Information and Knowledge Management, 2001. [3 ]Cole, W., The Form of Music, The Associated Board of the Royal School of Music, 1973. [4 ]Dannenberg, R. B. and N. Hu, “Pattern Discovery Techniques for Music Audio,” Proc. of International Symposium on Music Information Retrieval, 2002. [5 ]Friberg, A., R. Bresin, L. Fryden, and J. Sunberg, “Musical Punctuation on the Microlevel: Automatic Identification and Performance of Small Melodic Units,” Journal of New Music Research, 1998. [6 ]Hsu, J. L., C. C. Liu, and A. L. P. Chen, “Discovering Nontrivial Repeating Patterns in Music Data,” IEEE Transactions on Multimedia, Vol. 3, No. 3, 2001. [7 ]Leichtentritt, H., Musical Form, Harvard University Press Cambridge, 1967. [8 ]Lartillot, O., “Discovering Musical Pattern through Perceptual Heuristics,” Proc. of International Symposium on Music Information Retrieval, 2003. [9 ]Pienimaki, A., “Indexing Music Database Using Automatic Extraction of Frequent Phrases,” Proc. of International Symposium on Music Information Retrieval, 2002. [10 ]Renwick, W., Analyzing Fugue: A Schenkerian Approach, Pendragon Press, 1995. [11 ]Rolland, P. Y., “FlExPat: Flexible Extraction of Sequential Patterns,” Proc. of the IEEE International Conference on Data Mining, 2001. [12 ]Schoenberg, A., Fundamentals of Musical Composition, St Martin’s Press New York, 1967. [13 ]Takasu, A., T. Yanase, T. Kanazawa, and J. Adachi, “Music Structure Analysis and Its Application to Theme Phrase Extraction,” Research and Advanced Technology for Digital Libraries, Third European Conference, 1999. [14 ]Walker, P. M., Theories of Fugue: for The Age of Josquin to The Age of Bach, University of Rochester Press, 2000. [15 ]Yanase, T., “Phrase Based Feature Extraction for Musical Information Retrieval,” Proc. of Communications, Computers and Signal Processing, IEEE Pacific Rim Conference, 1999. [16 ]http://w3.rz-berlin.mpg.de/cmp/g_fugue.html. [17 ]http://w3.rz-berlin.mpg.de/cmp/g_rondo.html. [18 ]http://www.kunstderfuge.com/theory/smith/anatomy.htm.id NH0925392004 sid 914306 cfn 0 / id NH0925392005 auc 謝明峰 tic 使用大量語料庫的中文語音合成系統實作 adc 張智星 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 39 kwc 語音合成 kwc 大量語料庫 abc   本論文主要在討論使用大量語句的聲音檔來做語音合成的方法。我們對一般的中文語音合成系統的三大部分:文句分析、韻律產生器、語音合成器加以實作並對語音合成器的部分加以比較。另外,有別於一般傳統的使用單音節來做語音合成的做法,我們同時建構了一個使用411個音節來做合成語料的單音節語音合成系統,和使用許多語音文句語音檔中,取出相同的片段來接合的大量語料庫語音合成系統。並且拿這二個系統來做分析比較。 tc 第一章 緒論 - 1 - 1.1研究動機 - 1 - 1.2系統簡介 - 2 - 1.3章節大綱 - 3 - 第二章 語音合成系統介紹 - 4 - 2.1國語的語音組成 - 4 - 2.2 文句分析 - 6 - 2.2.1 詞庫 - 7 - 2.2.2 斷詞原則 - 7 - 2.3 韻律產生器 - 8 - 2.3.1 類神經網路韻律產生器 - 8 - 2.3.2 輸入參數 - 10 - 2.3.3 輸出參數 - 12 - 2.3.4 實驗結果 - 14 - 2.4 語音韻律常數的調整 - 16 - 2.4.1 調整音調 - 17 - 2.4.2 調整聲音大小 - 18 - 2.4.3 調整音長 - 18 - 第三章 大量語料庫合成系統優缺點 - 21 - 3.1 大量語料庫的合成系統介紹 - 21 - 3.2 大量語料庫的合成系統所遇到的困難 - 22 - 3.3 大量語料庫多寡的影響 - 24 - 3.4 大量語料庫合成系統欲改進的方向 - 24 - 第四章 改進大量語料庫語音合成系統 - 26 - 4.1 搜尋大量語料庫的目標 - 26 - 4.2 比對演算法討論 - 26 - 4.3 建立最長連續詞數表 - 29 - 4.4 比對時間實驗討論 - 31 - 4.5 片段接合語音合成音質分析 - 32 - 4.6 改進片段接合的方向 - 33 - 4.7 實驗比較 - 34 - 第五章 結論與未來工作 - 37 - 參考文獻 - 39 -rf 魯弘茂,中文語音合成技術之實作與分析,交通大學碩士論文,民國91年6月 鍾綸,用於語音合成的中文斷詞分析,清華大學碩士論文,民國93年6月 S. Haykin,”Neural Networks – A Comprehensive Foundation,” Macmillan College Publishing Company, 1994 F. Charpentier and Moulines, “Pitch-synchronous Waveform Processing Technique for Text-to-Speech Synthesis Using Diphones,” European Conf. On Speech Communication and Technology, pp.13-19, Paris, 1989 王鴻彬,國語聲訊處理,交通大學碩士論文,民國85年6月 邵芳雯,國語歌曲之合成,交通大學碩士論文,民國83年6月 Werner Verhelst and Mark Roelands“An Overlap-Add Technique Based on Waveform Similarity For High Quality Time-Scale Modification of Speech” In Proc. International Conference on Acoustics, Speech and Signal Processing, pages 554--557, Minneapolis, USA, apr #"27--30 1993id NH0925392005 sid 914307 cfn 0 / id NH0925392006 auc 陳雨廷 tic 以網路處理器建構一個支援.NET Remoting的叢集式伺服器 adc 李政崑 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 53 kwc 網路處理器 kwc 叢集式伺服器 abc 分散式物件導向平台已逐漸成為平行與分散式運算架構底下的關鍵一環,在眾多的分散式物件導向技術之中,由微軟公司所推廣的.NET架構便是其中一種可提供平行與分散式運算的執行環境,而.NET Remoting這項技術則是在.NET架構下開發分散式系統的重要方法之一。在本篇論文裡頭,我們提出了一個有效的負載平衡機制來支援.NET Remoting在叢集式伺服器上的應用。 rf [1 ] Ingo Rammer, “Advanced .NET Remoting”, 2002. [2 ] Douglas E. Comer, “Network System Design using Network Processors”, 2003. [3 ] Erik J. Johnson and Aaron R. Kunze, “IXP1200 Programming”, 2002. [4 ] “Intel IXP1200 Hardware Reference Manual”, December 2001. [5 ] “Intel IXP1200 Microcode Programmer’s Reference Manual”, December 2001 [6 ] R. Haas, L. Kencl, A. Kind, B. Metzler, R. Pletka, M. Waldvogel, L. Frelechoux, and P. Droz, IBM Research Clark Jeffries, IBM Corporation, “Creating Advanced Functions on Network Processors: Experience and Perspectives, ” IEEE Network, July/August 2003. [7 ] G. Apostolopoulos, D. Aubespin, V. Peris, P. Pradhan, and D. Saha, “Design, Implementation and Performance of a Content-Based Switch, ” in Proceedings of IEEE Infocom 2000, Mar. 2000. [8 ] G. Teodoro, T. Tavares, B. Coutinho, W. Meira Jr., and D. Guedes, “Load Balancing on Stateful Clustered Web Servers, ” in 15th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'03), November, 2003. [9 ] Microsoft Corporation, “Network Load Balancing Technical Overview”, January, 2000 [10 ] Zornitza Genova, Kenneth J. Christensen, “Challenges in URL Switching for Implementing Globally Distributed Web Sites, ” in International Workshop on Parallel Processing, August, 2000id NH0925392006 sid 914309 cfn 0 / id NH0925392007 auc 陳宏昇 tic 具備品質平滑特性的FGS編碼技術 adc 王家祥 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 44 kwc 視訊傳輸 kwc 影像 kwc 壓縮 kwc 編碼 kwc 解碼 kwc 畫面品質 abc 在不同的網路環境中進行視訊傳輸,FGS是一個很有用的技術。根據發送端與接收端之間的可用頻寬,FGS可以動態的調整要傳送的影片資料量,使得接收端能得到相對應品質的影片。然而,為了適合網路傳輸,我們通常會利用固定位元速率(CBR)編碼的技術,來壓縮基本的影片(base layer video)。以此技術壓縮的影片,雖然頻寬得到固定,但卻會有品質不穩定的問題。因此,當可用頻寬大於基本的影片資料量時,我們利用FGS可以動態調整影片資料量的特性,提出了三個方法來穩定影片品質。這些方法的目標,是要減小每張影像之間,以及同一張影像不同區域之間品質的差異。第一個方法標記每一層bit-plane的品質等級,讓每張影像在傳送時可以知道要傳送幾層bit-plane才會有相同的影片品質。第二個方法我們改變了block的傳送順序,讓同一張影像之中,品質較低的區域可以比較早提昇其品質。第三個方法我們利用較高品質的影像,來作為壓縮下一張影像的參考,此方法不但能使得頻寬較低時的影像品質得到穩定,而且還可以提昇FGS的壓縮效率。實驗結果證明了上述的方法都有不錯的效果。另外,這些方法的運算量都非常的低,因此上述的方法都可以應用在需要即時編碼與解碼的系統之中。 rf [1 ] Weiping Li; “Overview of fine granularity scalability in MPEG-4 video standard,” Circuits and Systems for Video Technology, IEEE Transactions on, Volume: 11 Issue: 3, March 2001 Page(s): 301 – 317. [2 ] Radha, H.M.; van der Schaar, M.; Yingwei Chen; “The MPEG-4 fine-grained scalable video coding method for multimedia streaming over IP,” Multimedia, IEEE Transactions on, Volume: 3 Issue: 1, March 2001 Page(s): 53 – 68. [3 ] Taehyun Kim; Ammar, M.H.; “Optimal quality adaptation for MPEG-4 fine-grained scalable video,” INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies. IEEE, Volume: 1, 30 March - 3 April 2003 Pages: 641 – 651. [4 ] Xi Min Zhang; Vetro, A.; Shi, Y.Q.; Huifang Sun; “Constant quality constrained rate allocation for FGS-coded video,” Circuits and Systems for Video Technology, IEEE Transactions on, Volume: 13, Issue: 2, Feb. 2003 Pages: 121 – 130. [5 ] Lifeng Zhao; Jong Won Kim; Kuo, C.-C.J.; “Constant quality rate control for streaming MPEG-4 FGS video,” Circuits and Systems, 2002. ISCAS 2002, IEEE International Symposium on, Volume: 4, 26 – 29 May 2002 Pages: IV-544 – IV-547 vol.4. [6 ] Won-Sik Cheong; Kyuheon Kim; Gwang Hoon Park; Young Kwon Lim; Yoon Jin Lee; and Jinwoong Kim; “FGS Coding Scheme with Arbitrary Water Ring Scan Order”, ISO/IEC JTC1/SC29/WG11, MPEG01/M7442, July 2001. [7 ] Jian Zhou; Huairong Shao; Chia Shen; Ming-Ting Sun; “FGS enhancement layer truncation with minimized intra-frame quality variation,” International Conference on Multimedia and Expo 2003. [8 ] Wei Ding; Bede Liu; “Rate control of MPEG video coding and recording by rate-quantization modeling,” Circuits and Systems for Video Technology, IEEE Transactions on, Volume: 6, Issue: 1, Feb. 1996 Pages: 12 – 20. [9 ] Jagmohan, A.; Ratakonda, K.; “MPEG-4 one-pass VBR rate control for digital storage,” Image Processing. 2002. Proceedings. 2002 International Conference on, Volume: 3, 24-28 June 2002 Pages: 709 – 712. [10 ] Yi-Shin Tung; Ja-Ling Wu; Po-Kang Hsiao; Kan-Li Huang; “An efficient streaming and decoding architecture for stored FGS video,” Circuits and Systems for Video Technology, IEEE Transactions on, Volume: 12 Issue: 8, Aug. 2002 Page(s): 730 – 735. [11 ] Hsiang-Chun Huang; Chung-Neng Wang; Tihao Chiang; “A robust fine granularity scalability using trellis-based predictive leak,” Circuits and Systems for Video Technology, IEEE Transactions on, Volume: 12 Issue: 6, June 2002 Page(s): 372 – 385. [12 ] Feng Wu; Shipeng Li; Ya-Qin Zhang; “A framework for efficient progressive fine granularity scalable video coding,” Circuits and Systems for Video Technology, IEEE Transactions on, Volume: 11 Issue: 3, March 2001 Page(s): 332 – 344.id NH0925392007 sid 914312 cfn 0 / id NH0925392008 auc 孫文宏 tic 虛擬叢集計算系統之實作 adc 金仲達 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 40 kwc 網格計算 kwc 點對點網路 abc 本篇論文提出一個合作計算架構,稱為VC2A(虛擬叢集計算架構),VC2A是使用點對點(peer-to-peer)網路技術,將多台電腦組織成一個計算網格(computational grid)。這個計算架構的原始構想是由[10 tc Abstract Content List of Figures List of Tables Chapter 1. Introduction Chapter 2. Related works Chapter 3. System architecture Chapter 4. Implementation Chapter 5. Evaluation Chapter 6. Conclusions Bibliographyrf Bibliography [1 ] D.G. Andersen, H. Balakrishnan, M.F. Kaashoek, and R. Morris, "Resilient overlay networks", Proc. ACM Symposium on Operating Systems Principles (SOSP 2001), October 2001. [2 ] N. Andrade, W. Cirne, F. Brasileiro, “OurGrid: An approach to easily assemble grids with equiTable resource sharing”, IEEE Workshop on Job Scheduling Strategies for Parallel Process 2003 [3 ] A. Chien, B. Calder, S. Elbert, and K. Bhatia, “Entropia: Architecture and performance of an enterprise desktop grid system”, Journal of Parallel and Distributed Computing, 2003. [4 ] Condor, http://www.cs.wisc.edu/condor/ [5 ] Entropia, http://www.entropia.com/ [6 ] G. Fedak , C. Germain , V. Neri , F. Cappello, “XtremWeb: A generic global computing system”, Proceedings of the 1st International Symposium on Cluster Computing and the Grid, p.582, May 15-18, 2001 [7 ] I. Foster, C. Kesselman, S. Tuecke, “The anatomy of the grid: enabling scalable virtual organizations”, International J. Supercomputer Applications, 15(3), 2001. [8 ] M. Hefeeda, A. Habib, B. Botev, D. Xu, D. B. Bhargava, “PROMISE: Peer-to-peer media streaming using CollectCast,” Proc. of ACM Multimedia 2003, Berkeley, CA, November 2003. [9 ] H.-C. Hsiao, C.-T. King, and S.-Y. Gao, "Making Exploitation of Peer Heterogeneity as a First Class Citizen for Resource Discovery in Peer-to-Peer Networks," Proc. of the First International Conference on Embedded on Ubiquitous Computing (EUC'04), August 25-27, 2004, Aizu, Japan. [10 ] H.-C. Hsiao, M. Baker, and C.-T. King, “VC2A: Virtual cluster computing architecture,” submitted. [11 ] H.-C. Hsiao and C.-T. King. “Similarity discovery in structured peer-to-peer overlays,” Proc. of the International Conference on Parallel Processing, pages 636–644. IEEE Press, October 2003. [12 ] H.-C. Hsiao and C.-T. King, “Neuron: A wide-area service discovery infrastructure,” Proc. of the International Conference on Parallel Processing, pages 455–462. IEEE Press, August 2002. [13 ] H.-C. Hsiao, C.-W. Wang, and C.-T. King, “Typhoon: Mobile distributed hash tables,” Journal of Parallel and Distributed Computing, Special Issue on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks, 2004 [14 ] H.-C. Hsiao, P.-S. Huang, A. Banerjee, and C.-T. King, “Taking advantage of the overlay geometrical structures for mobile agent communications,” Proc. of the 18th IEEE International Parallel and Distributed Processing Symposium (IPDPS'04), April 26-30, 2004, Santa Fe, NM, USA. [15 ] S. Iyer, A. Rowstron, and P. Druschel, "Squirrel: A decentralized, peer-to-peer web cache," Proceedings of PDOC 2002, July 2002 [16 ] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, "Oceanstore: An architecture for global-scale persistent storage," Proc. of ASPLOS, 2000. [17 ] M. Litzkow, M. Livny, and M. Mutka, “Condor - A hunter of idle workstations”, Proc. of 8th International Conference of Distributed Computing Systems, 1988 [18 ] NCHC PC Cluster, http://hpcserv2.nchc.org.tw/doc/usage.html [19 ] OurGrid, http://www.ourgrid.org/ [20 ] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, "A scalable content-addressable network", Proc. ACM SIGCOMM, August 2001. [21 ] A. Rowstron and P. Druschel, "Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems", Proc. IFIP/ACM International Conference on Distributed Systems Platforms (Middleware 2001), November 2001. [22 ] C. Schmidt and M. Parashar. “Flexible information discovery in decentralized distributed systems,” Proc. of the International Symposium on High Performance Distributed Computing, pages 226–235. IEEE Press, June 2003. [23 ] G. Shao, F. Berman, and R. Wolski, “Master/Slave computing on the grid,” Proc. of Heterogeneous Computing Workshop at IPDPS, May, 2000 [24 ] D. Spence and T. Harris. “Xenosearch: Distributed resource discovery in the xenoserver open platform,” Proc. of the International Symposium on High Performance Dis¬tributed Computing, pages 216–225. IEEE Press, June 2003. [25 ] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, "Chord: A scalable peer-to-peer lookup service for Internet applications", Proc. ACM SIGCOMM, August 2001. [26 ] I. Stoica, D. Adkins, S. Zhaung, S. Shenker, and S. Surana, "Internet indirection infrastructure", Proc. ACM SIGCOMM, August 2002. [27 ] C. Tang, Z. Xu, and S. Dwarkadas. “Peer-to-peer information retrieval using self-organizing semantic overlay networks,” Proc. of the International Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, pages 175–186. ACM Press, Augut 2003. [28 ] XtremWeb, http://www.xtremweb.orgid NH0925392008 sid 914313 cfn 0 / id NH0925392009 auc 張宏彰 tic 強固整體運動估測及其視訊應用 adc 賴尚宏 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 63 kwc 強固整體運動 kwc 訊視穩定化 kwc 照相機移動型式辨別 abc 許多的應用都需要由影片來抽取基本的資訊,進一步執行處理、分析和資訊擷取等後續動作。而整體運動的估測在不同的影片應用上是被廣泛應用的,例如全景影像合成、視訊穩定化、移動物體分割和視訊擷取等。 tc Chapter 1. Introduction 4 Chapter 2. Previous Work 7 2.1 Global Motion Estimation Techniques 7 2.2 Camera Motion Classification Techniques 10 2.3 Video Stabilization Techniques 11 Chapter 3. Robust Global Motion Computation 13 3-1 Optical Flow Computation 13 3-2 Global Motion Estimation 17 3-2-1 Affine Motion Model 17 3-2-2 Simplified Affine Motion Model 18 3-2-3 Trimmed Least Squares Method 19 Chapter 4. Video Stabilization Technique 23 4-1 Motion Smoothing 24 4-2 Motion Compensation and Image Warping 26 Chapter 5. Long-Term Camera Motion Estimation and Camera Motion Type Classification 29 5-1 Iterative RANSAC Algorithm for Multiple Global Motion Computation 30 5-2 Long-Sequence Dominant Motion Estimation 33 5-2-1 Formulation as a Shortest-Path Problem 33 5-2-2 Single-Source Shortest Path Algorithm 36 5-3 Motion Classification by Neural Networks 37 Chapter 6. Experimental Results 41 6-1 Video Stabilization 41 6-2 Camera Motion Classification 49 Chapter 7. Conclusions and Future Directions 57 7-1 Conclusion 57 7-2 Future Directions 58 References 59rf References [1 ] Krishna Ratakonda, “Real time digital video stabilization for multimedia applications”, Circuits and Systems, 1998. ISCAS '98. Proceedings of the 1998 IEEE International Symposium on , Volume: 4 , 31 May-3 June 1998. pp. 69 - 72 vol.4. [2 ] Yeping Su, Ming-Ting Sun, Vincent Hsu, “Global motion estimation from coarsely sampled motion vector field and the applications”, Circuits and Systems, 2003. ISCAS '03. Proceedings of the 2003 International Symposium on, Volume: 2 , 25-28 May 2003 pp. II-628 - II-631 vol.2. [3 ] S. Etrurk, “Digital image stabilization with sub-image phase correlation based global motion estimation”, Consumer Electronics, IEEE Transactions on , Volume: 49 , Issue: 4 , Nov. 2003. pp. 1320 - 1325. [4 ] Jyh-Yeong Chang, Wen-Feng Hu, Mu-Huo Chen, Bo-Sen Chang, “Digital image translational and rotational motion stabilization using optical flow technique”, Consumer Electronics, IEEE Transactions on , Volume: 48 , Issue: 1 , Feb. 2002. pp. 108 – 115. [5 ] Yossi Keller, Amir Averbuch, ”Fast gradient methods based on global motion estimation for video compression”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 4, April 2003. [6 ] Carlos Morimoto, Rama Chellappa, ”Automatic digital image stabilization”, IEEE International Conference on Pattern Recognition, pp. 660-665, 1997. [7 ] Carlos Morimoto, Rama Chellappa, “Fast electronic digital image stabilization for off-road navigation”, IEEE International Conference on Pattern Recognition, Vol. 3, pp. 284-288, August, 1996. [8 ] Zhigang Zhu, Guangyou Xu, Yudong Yang, Jesse S. Jin, ”Camera stabilization based on 2.5D motion estimation and inertial motion filtering”, IEEE International Conference on Intelligent Vehicles 1998. pp. 329 – 334. [9 ] Aljoscha Smolic, Thomas Sikora, Jens-Rainer Ohm, ”Long term global motion estimation and its application for sprite coding, content description, and segmentation”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 9, No. 8, December, 1999. [10 ] Demin Wang, Limin Wang, “Global motion parameters estimation using a fast and robust algorithm”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 7, No. 5, October, 1997. [11 ] Ming Fai Fu, Oscar Au, Wing Cheong Chan, ”Fast global motion estimation based on local motion segmentation”, IEEE International Conference on Image Processing, Vol. 2, pp. 367-370, September, 2003. [12 ] Yap Pen Tan, Drew D. Saur, Sanjeev R. Kulkarni, Peter J. Ramadge, ”Rapid estimation of camera motion from compressed video with application to video annotation”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 10, No. 1, February, 2000. [13 ] Fang Zhu, Ping Xue, Eeping Ong, “Low complexity global motion estimation based on content analysis”, ISCAS, Vol. 2, pp. II624--II627, May, 2003. [14 ] Q. Tian, H. J. Zhang, “Video shot detection and analysis: Content-based approaches”, in: C.W. Chen, Y. Q. Zhang, Visual information representation, communication, and image processing, pp.227~253, Marcel Dekker, 1999. [15 ] B. S. Manjunath, P. Salembier, and T. Sikora, ”Introduction to MPEG-7”, John Wiley & Sons, 2002. [16 ] P. Bouthemy, M. Gelgon, and F. Ganansia, “A unified approach to shot change detection and camera motion characterization,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 9, No. 7, October, 1999. [17 ] J. H. Kuo and J. L. Wu, “An efficient algorithm for scene change detection and camera motion characterization using the approach of heterogeneous video transcoding on MPEG compressed videos,” Proc. SPIE: storage and retrieval for media databases, Vol. 4676, pp.168~176, 2002. [18 ] N. V. Patel and I. K. Sethi, “Video shot detection and characterization for video databases,” Pattern Recognition, Vol. 30, No. 4, pp. 607~625, April, 1997. [19 ] J. G. Kim, H. S. Chang, J. W. Kim, and H. M. Kim, “Efficient camera motion characterization for mpeg video indexing,” IEEE International Conference on Multimedia, New York, July, 2000. [20 ] T. Chen, “Video stabilization algorithm using a block-based parametric motion model”, EE392J Project Report, Winter 2000. [21 ] A. Litvin, J. Konrad, W. C. Karl, ”Probabilistic video stabilization using Kalman filtering and mosaicking”, In IS&T/SPIE Symposium on Electronic Imaging, Image and Video Communications and Proc., Jan. 20-24, 2003. [22 ] B. D. Lucas and T. Kanade, “An Iterative Image Registration Technique with an Application to Stereo Vision”, Proc. IJCAI81, pp. 674-679, 1981. [23 ] A. Nomura, “Spatio-temporal optimization method for determining motion vector fields under non-stationary illumination”, Image and Vision Computing 18, pp. 939-950, 2000. [24 ] S.-H. Lai?|?nand W.-K. Li, “New video shot change detection algorithm based on accurate motion, and illumination estimation”, Proc. SPIE: storage and retrieval for media databases, vol. 4676, pp. 148-157, 2002 [25 ] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2000. [26 ] N. V. Patel and I. K. Sethi, “Video shot detection and characterization for video databases”, Pattern Recognition, vol. 30, no. 4, pp. 607~625, April 1997. [27 ] T. H. Cormen, C. E. Leiserson and R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd Edition, MIT Press, 2001. [28 ] T. M. Mitchell, Machine Learning, chapter 4, McGraw-Hill, 1997. [29 ] Z. Duric and A. Rosenfeld, “Image sequence stabilization in real time”, Real-Time Imaging 2, pp. 271-284, 1996. [30 ] J. H. Kuo and J. L. Wu, “An efficient algorithm for scene change detection and camera motion characterization using the approach of heterogeneous video transcoding on MPEG compressed videos,” Proc. SPIE: storage and retrieval for media databases, vol. 4676, pp.168-176, 2002.id NH0925392009 sid 914315 cfn 0 / id NH0925392010 auc 陳奕麟 tic 三維片段隱式表面模型之漸進式重建 adc 賴尚宏 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 53 kwc 表面重建 kwc 隱式表面 kwc 漸進式重建 abc 本論文發展了一套以Variational Implicit Surface為基礎,由緻密、精確三維座標點重建物體表面模型之快速演算法。物體表面模型重建乃科學與工程範疇中一重要之研究課題,並在諸如電腦圖學、視覺、CAD、醫學影像等領域中被廣泛應用。 tc List of Figures iii List of Tables iv Chapter 1 INTRODUCTION 1 1.1 PROBLEM STATEMENT 1 1.2 PREVIOUS WORKS 2 1.2.1 Generality: 2 1.2.2 Efficiency: 4 1.2.3 Flexibility: 6 1.2.4 Robustness: 7 1.3 OVERVIEW OF THE ALGORITHM 8 1.4 MAIN CONTRIBUTIONS 11 1.5 THESIS ORGANIZATION 11 Chapter 2 VARIATIONAL IMPLICIT SURFACE 13 2.1 MODELLING SURFACES WITH IMPLICIT FUNCTIONS 13 2.2 VARIATIONAL METHODS AND RADIAL BASIS FUNCTIONS 14 2.3 CONSTRAINT SPECIFICATION 19 2.4 APPROXIMATION VERSUS INTERPOLATION 20 2.5 COMPARISON OF VARIATIONAL METHODS WITH RELATED APPROACHES 22 Chapter 3 PARTITIONING OF IMPLICIT SURFACE 24 3.1 PARTITIONING 24 3.1.1 k-means clustering 25 3.1.2 Octree subdivision 26 3.1.3 Hierarchical BSP clustering 27 3.2 RBF CENTER PADDING 28 3.3 PIECEWISE IMPLICIT SURFACE 29 3.4 ALGORITHM COMPLEXITY 30 Chapter 4 PROGRESSIVE RECONSTRUCTION 32 4.1 PROGRESSIVE RECONSTRUCTION OF IMPLICIT SURFACES 32 4.2 SEED SETS SELECTION 34 4.3 ITERATIVE GREEDY ALGORITHM 36 Chapter 5 EXPERIMENTAL RESULTS 38 Chapter 6 CONCLUSIONS 46 6.1 SUMMARY 46 6.2 REMARKS ON THE PROPOSED RECONSTRUCTION METHOD 47 6.3 FUTURE DIRECTIONS 48 Bibliography 50rf [1 ] N. Amenta, M. Bern, and M. Kamvysselis, "A New Voronoi-Based Surface Reconstruction Algorithm," In Proceedings of ACM SIGGRAPH, pp. 415-420, Aug. 1998. [2 ] N. Amenta, S. Choi, T. K. Dey and N. Leekha, "A simple algorithm for homeomorphic surface reconstruction," In Proceedings of 16th. ACM Sympos. Comput. Geom., 213–222, 2000. [3 ] R. K. Beatson and L. Greengard, "A short course on fast multipole methods," In Wavelets, Multilevel Methods and Elliptic PDEs, pp. 1-37, Oxford University Press, 1997. [4 ] R. K. Beatson, W. A. Light, and S. Billings, "Fast solution of the radial basis function interpolation equations: Domain decomposition methods," SIAM J. Sci. Comput., vol. 22, no. 5, pp. 1717-1740, 2000. [5 ] F. Bernardini, J. Mittleman, H. Rushmeier, and C. Silva, "The Ball-Pivoting Algorithm for Surface Reconstruction," IEEE Trans. Visualization and Computer Graphics, vol. 5, no. 4, pp. 349-359, Oct./Dec. 1999. [6 ] J. F. Blinn, "A Generalization of Algebraic Surface Drawing," ACM Transactions on Graphics, 1(3), July 1982, pp. 135–256. [7 ] J. Bloomenthal, "Polygonization of implicit surfaces," Computer-Aided Geometric Design 5, 4, 341-355, 1988. [8 ] J. Bloomenthal, "An implicit surface polygonizer," In Graphics Gems IV, P. S. Heckbert, Ed. Academic Press, Cambridge, 324–349, 1994 [9 ] J. C. Carr, R.K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, and B. C. McCallum, "Reconstruction and Representation of 3D Objects with Radial Basis Functions," In Proceedings of ACM SIGGRAPH, pp. 67-76, Aug. 2001. [10 ] J. C. Carr, R. K. Beatson, B. C. McCallum, W. R. Fright, T. J. McLennan and T. J. Mitchell, "Smooth surface reconstruction from noisy range data," ACM GRAPHITE 2003, pp119-126, 11-19 February 2003. [11 ] P. Crossno and E. Angel, "Spiraling edge: Fast surface reconstruction from partially organized sample points," IEEE Visualization, pp. 317-324, October 1999. [12 ] B. Curless and M. Levoy, "A Volumetric Method for Building Complex Models from Range Images," In Proceedings of ACM SIGGRAPH, pp. 303-312, Aug. 1996. [13 ] T. K. Dey and J. Giesen, "Detecting undersampling in surface reconstruction," In Proceedings of 17th ACM Sympos. Comput. Geom, 257–263, 2001. [14 ] T. K. Dey, J. Giesen and J. Hudson, "Delaunay Based Shape Reconstruction from Large Data," In IEEE Symposium on Parallel and Large Data Visualization, pp. 19-27, 2001. [15 ] H. Q. Dinh, G. Turk and G. Slabaugh, "Reconstructing Surfaces by Volumetric Regularization Using Radial Basis Functions," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 10, October 2002, pp. 1358-1371. [16 ] H. Q. Dinh, G. Turk and G. Slabaugh, "Reconstructing surfaces using anisotropic basis functions," In International Conference on Computer Vision (ICCV) 2001, 606–613. [17 ] H. Edelsbrunner and E. P. Mücke, "Three-Dimensional Alpha Shapes," ACM Trans. Graphics, vol. 13, no. 1, pp. 43-72, Jan. 1994. [18 ] M. Gopi, S. Krishnan and C.T. Silva, "Surface Reconstruction based on Lower Dimensional Localized Delaunay Triangulation," In Proceedings of EUROGRAPHICS 2000, pp. 467-478. [19 ] B. Heckel, A. E. Uva, and B. Hamann, "Clustering-Based Generation of Hierarchical Surface Models," IEEE Transactions on Visualization, Late Breaking Hot Topics Proceedings, pp. 41–44, 1998. [20 ] H. Hoppe, "Surface Reconstruction from Unorganized Points," Ph.D. Thesis, Computer Science and Engineering, University of Washington, 1994. [21 ] H. Hoppe, T. DeRose, and T. Duchamp, "Surface Reconstruction from Unorganized Points," In Proceedings of ACM SIGGRAPH, pp. 71-78, July 1992. [22 ] D. Keren and C. Gotsman, "Fitting Curve and Surfaces with Constrained Implicit Polynomials," IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(1), pp. 21–31, 1999. [23 ] L. P. Kobbelt, M. Botsch, U. Schwanecke and H.-P. Seidel, "Feature sensitive surface extraction from volume data," In Proceedings of ACM SIGGRAPH, pp. 57–66, 2001. [24 ] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade and D. Fulk, "The digital Michelangelo project: 3D scanning of large statues," In Proceedings of ACM SIGGRAPH 2000, 131–144. [25 ] W. E. Lorensen and H. E. Cline, "Marching Cubes: A High Resolution 3D Surface Construction Algorithm," In Proceedings of ACM SIGGRAPH, pp. 163-169, July 1987. [26 ] B. Mederos, L. Velho and L. H. Figueiredo, "Moving Least Squares Multiresolution Surface Approximation," In Proceedings of IEEE SIBGRAPI, São Carlos, Brazil, October 12-15, 2003. [27 ] D. D. Morris and T. Kanade, "Image-consistent surface triangulation," In Conf. Computer Vision and Pattern Recognition, volume 1, pp. 332–338, Hilton Head SC, USA, 2000. [28 ] B. S. Morse, T. S. Yoo, P. Rheingans, D. T. Chen, and K. R. Subramanian, "Interpolating Implicit Surfaces from Scattered Data Using Compactly Supported Radial Basis Functions," Proc. of Shape Modeling Int’l Conf., pp. 89-98, May 2001. [29 ] E. P. Mücke, "A Robust Implementation for Three-dimensional Delaunay Triangulations," International Journal of Computational Geometry & Applications, 8(2):255-276, 1998. [30 ] S. Muraki, "Volumetric Shape Description of Range Data Using Blobby Model," In Proceedings of ACM SIGGRAPH, pp. 227–235, 1991. [31 ] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Seidel, "Multi-level partition of unity implicits," In Proceedings of ACM SIGGRAPH, pp. 463-470, 2003. [32 ] D. V. Ouellette, "Schur complements and statistics," Linear Algebra Appl., 36, 187–295, 1981. [33 ] M. Pauly, M. Gross and L. P. Kobbelt, "Efficient Simplification of Point-Sampled Surfaces," In Proceedings of IEEE Visualization, pp. 163-170, 2002. [34 ] V. V. Savchenko, A. A. Pasko, O.G. Okunev, and T. L. Kunii, "Function Representation of Solids Reconstructed from Scattered Surface Points and Contours," Computer Graphics Forum, vol. 14, no. 4, pp. 181-188, 1995. [35 ] L. G. Shapiro and G. C. Stockman, Computer Vision, Prentice Hall, Inc., Upper Saddle River, New Jersey, 2001. [36 ] G. Taubin, "An Improved Algorithm for Algebraic Curve and Surface Fitting," In Proceedings of Fourth International Conference on Computer Vision, May 1993, pp. 658–665. [37 ] I. Tobor, P. Reuter, and C. Schlick, "Efficient reconstruction of large scattered geometric datasets using the partition of unity and radial basis functions," Journal of WSCG, Vol. 12, No. 3, pp. 467-474, 2004. [38 ] G. Turk and J. F. O’Brien, "Variational Implicit Surfaces," Technical Report 15, Georgia Inst. of Technology, 1999. [39 ] G. Turk and J. F. O’Brien, "Modelling with Implicit Surfaces that Interpolate," ACM Transactions on Graphics, Vol. 21, No. 4, pp. 855-873, October 2002. [40 ] G. Turk and J. F. O’Brien, "Shape Transformation Using Variational Implicit Functions," In Proceedings of ACM SIGGRAPH, pp. 335-342, Aug. 1999. [41 ] G. Yngve and G. Turk, "Robust Creation of Implicit Surfaces from Polygonal Meshes," IEEE Trans. Visualization and Computer Graphics, Vol. 8, No. 4, pp. 346-359, October-December 2002. [42 ] http://www.research.ibm.com/pieta/ [43 ] http://www.cyberware.com/samples/index.html [44 ] http://www.cc.gatech.edu/projects/large_models/index.htmlid NH0925392010 sid 914321 cfn 0 / id NH0925392011 auc 林炳毅 tic 無線網路上高效率廣播與定位技術 adc 許奮輝 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 37 kwc 週期性廣播 kwc 聲音串流 kwc 傳輸效率 kwc 位置偵測服務 kwc 無線網路 kwc 四分位數 abc 隨著科技日新月異,無線網路系統的使用越來越普遍,其建置成本亦日益低廉,創造出許多新穎的應用,如何在此應用環境中提供實用的加值服務,實為無線網路系統之主要課題,一方面能藉由傳輸技術之高延展性,來確保眾多行動裝置接收視訊影音資料之即時性,而無庸冗長的等待耗時,另一方面又能自動地判定行動裝置的所在,暨以選擇性地擷取與該位置相關的服務項目,提供連續性查詢貼切的服務內容,而不需操作者僵化的反覆輸入,誠能妥善地發揮無線網路有別於有線網路之特點,增益其應用服務之實質內涵。 tc Chapter 1 Introduction.....................................1 1.1: An Efficient Broadcast Scheme for Low Bit-Rate Media Streams....................................................1 1.2: Indoor Location Estimation for Mobile Users.........5 Chapter 2 An Efficient Broadcast Scheme for Low Bit-Rate Media Streams..............................................8 2.1: Related Work........................................8 2.1.1: Poly-Harmonic Broadcast (PHB) and Harmonic Broadcast (HB).............................................9 2.1.2: Reliable Periodic Broadcast (RPB)..............10 2.2: The Proposed Solution..............................11 2.3: Performance Study..................................16 2.3.1: The Effect of Server Bandwidth.................17 2.3.2: The Effect of Client Bandwidth.................19 Chapter 3 Indoor Location Estimation for Mobile Users.....20 3.1: Related Work.......................................20 3.2: The proposed solution..............................22 3.2.1: Our Strategy...................................23 3.2.2: The algorithm for Location Determination.......24 3.2.3: Location Determination using a sequence of testing data..............................................25 3.3: Performance Study..................................26 3.3.1: Hardware.......................................26 3.3.2: Training & testing parameters..................27 3.3.3: Results – with single testing data............28 3.3.4: Results – with 2 continuous testing data......29 Chapter 4 Concluding Remarks and Future Work..............32 Bibliography..............................................34rf [1 ] P. Bahl and V. N. Padmanabhan, "RADAR: An In-Building RF-based User Location and Tracking System," presented at INFOCOM, 2000. [2 ] M. K. Bradshaw, B. Wang, S. Sen, L. Gao, J. Kurose, P. Shenoy, and D. Towsley, "Periodic Broadcast and Patching Services - Implementation, Measurement, and Analysis in an Internet Streaming Video Testbed," presented at ACM Multimedia, Ottawa, Ontario, Canada, 2001. [3 ] M. Brunato and C. K. Kallo, "Transparent Location Fingerprinting for Wireless Services," presented at the First Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), Sardegna, Italy, 2002. [4 ] M. Brunato and R. Battiti, "PILGRIM: A Location Broker and Mobility-Aware Recommendation System," presented at PerCom, Fort Worth, USA, 2003. [5 ] Y. Cai, K. A. Hua, and S. Sheu, "Leverage Client Bandwidth to Improve Service Latency in a Periodic Broadcast Environment," Journal of Applied Systems Studies (special issue), vol. 2, 2001. [6 ] S. R. Carter and J.-F. Pâris, "A Dynamic Heuristic Broadcasting Protocol for Video-on-Demand," presented at IEEE INFOCOM, 2001. [7 ] D. L. Eager and M. K. Vernon, "Dynamic Skyscraper Broadcasts for Video-on-Demand," presented at the Int'l Workshop on Multimedia Information Systems, Turkey, 1998. [8 ] J. Heidemann and N. Bulusu, "Using Geospatial Information in Sensor Networks," 2001. [9 ] J. Hightower and G. Borriello, "Location Systems for Ubiquitous Computing," IEEE Computer, vol. 34, pp. 57-66, 2001. [10 ] A. Hu, "Video-on-Demand Broadcasting Protocols: A Comprehensive Study," presented at IEEE INFOCOM, 2001. [11 ] K. A. Hua and S. Sheu, "Skyscraper Broadcasting: A New Broadcasting Scheme for Metropolitan Video-on-Demand Systems," Proc. of ACM SIGCOMM, Computer Communication Review, vol. 27, pp. 89-100, 1997. [12 ] K. A. Hua, Y. Cai, and S. Sheu, "Exploiting Client Bandwidth for more Efficient Video Broadcast," presented at the Int'l Conf. on Computer, Communications and Networks, Lafayette, Louisiana, 1998. [13 ] K. A. Hua and S. Sheu, "An Efficient Periodic Broadcast Technique for Digital Video Libraries," Multimedia Tools and Applications, vol. 10, pp. 157-177, 2000. [14 ] L.-S. Juhn and L.-M. Tseng, "Harmonic Broadcasting for Video-on-Demand Service," IEEE Trans. on Broadcasting, vol. 43, pp. 268-271, 1997. [15 ] L.-S. Juhn and L.-M. Tseng, "Fast Data Broadcasting and Receiving Scheme for Popular Video Service," IEEE Transaction on Broadcasting, vol. 44, pp. 100-105, 1998. [16 ] L.-S. Juhn and L.-M. Tseng, "Enhanced Harmonic Data Broadcasting and Receiving Scheme for Popular Video Service," IEEE Trans. on Consumer Electronics, vol. 44, pp. 343-346, 1998. [17 ] V. Kumar, M. Korpi, and S. Sengodan, IP Telephony with H.323: Architecture for Unified Networks and Integrated Services: Wiley Computer Publishing, 2001. [18 ] A. M. Ladd, K. E. Bekris, and A. Rudys, "Robotics-Based Location Sensing using Wireless Ethernet," presented at MOBICOM'02, 2002. [19 ] A. Mahanti, D. L. Eager, M. K. Vernon, and D. Sundaram-Stukel, "Scalable On-Demand Media Streaming with Packet Loss Recovery," presented at ACM SIGCOMM, San Diego, CA, 2001. [20 ] P. Prasithsangaree, P. Krishnamurthy, and P. K. Chrysanthis, "On Indoor Position Location with Wireless LANs," presented at IEEE Int'l Symposium on Personal, Indoor and Mobile Radio Communications, Portugal, 2002. [21 ] J.-F. Pâris, S. W. Carter, and D. D. E. Long, "Efficient Broadcasting Protocols for Video-on-Demand," presented at the 6th Int'l Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS '98), 1998. [22 ] J.-F. Pâris, S. W. Carter, and D. D. E. Long, "A Low Bandwidth Broadcasting Protocol for Video-on-Demand," presented at the Int'l Conf. on Computer, Communications and Networks, Lafayette, Louisiana, 1998. [23 ] J.-F. Pâris, "A Simple Low-Bandwidth Broadcasting Protocol for Video-on-Demand," presented at the Int'l Conf. on Computer, Communications and Networks, 1999. [24 ] J.-F. Pâris, S. W. Carter, and D. D. E. Long, "A Hybrid Broadcasting Protocol for Video-on-Demand," presented at SPIE Multimedia Computing and Networking, 1999. [25 ] J.-F. Pâris, D. D. E. Long, and P. E. Mantey, "Zero-Delay Broadcasting Protocols for Video-on-Demand," presented at ACM Multimedia, Orlando, FL, USA, 1999. [26 ] J.-F. Pâris, S. W. Carter, and D. D. E. Long, "A Universal Distribution Protocol for Video-on-Demand," presented at IEEE International Conference on Multimedia and Expo, New York, NY, USA, 2000. [27 ] S. Sheu, K. A. Hua, and Y. Cai, "A Novel Broadcast Technique for Theaters in the Air," presented at Workshop on Virtual University for Multilingual Education, Chicago, IL, 2000. [28 ] Y. C. Tseng, C. M. Hsieh, M. H. Yang, W. H. Laio, and J. P. Sheu, "Data Broadcasting and Seamless Channel Transition for Highly-Demanded Vodeos," presented at IEEE INFOCOM, 2000. [29 ] S. Viswanathan and T. Imielinski, "Pyramid Broadcasting for Video-on-Demand Service," presented at the SPIE Multimedia Computing and Networking, 1995. [30 ] K. Whitehouse and D. Culler, "Calibration as Parameter Estimation in Sensor Networks," presented at WSNA, Atlanta, Georgia, 2002. [31 ] L. Xu, "Efficient and Scalable On-Demand Data Streaming Using UEP Codes," presented at ACM Multimedia, Ottawa, Ontario, Canada, 2001. [32 ] M. Youssef and A. Agrawala, "Small-Scale Compensation for WLAN Location Determination Systems," presented at IEEE Wireless Communications and Networking Conference (WCNC), 2003. [33 ] M. A. Youssef, "MWaveLan: A New GPL Driver for the Wavelan IEEE/Orinoco," in Http://www.cs.umd.edu/~moustafa/mwavelan/mwavelan.html. [34 ] M. A. Youssef, A. Agrawala, and A. U. Shankar, "WLAN Location Determination via Clustering and Probability Distributions," presented at IEEE PerCom, 2003.id NH0925392011 sid 914323 cfn 0 / id NH0925392012 auc 程芝潔 tic 以隱藏式馬可夫模型整合聲音及運動資訊擷取棒球賽事精華 adc 許秋婷 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 53 kwc 精彩畫面擷取 kwc 聲音特徵 kwc 攝影機運動 kwc 物件運動強度 kwc 機率模型 kwc 隱藏式馬可夫模型 abc 隨著多媒體資料庫的日益龐大,快速瀏覽及分類多媒體資料的需求也漸形急迫。視訊資料之所以能展現極大的多樣性主要是由於它同時包含了聲音及視覺的訊號,因此,在視訊資料分析方法中,同時將聲音與視覺資訊結合分析以達到與人類知覺相似的理解力,已成為一種必須的趨勢。在這些視訊資料之中,運動比賽影片是一個相當重要的類型,主要是由於運動比賽已是全球化的娛樂,並且吸引了大量的觀眾。本篇論文的目的為根據整合的聲音及運動資訊,偵測並擷取棒球賽事精華。為了更能描述聲音及運動特性,我們提出了以機率模型為基礎的特徵值表示法,而這個表示法主要在於計算聲音及運動特徵值屬於某一種聲音及運動類型的「可能程度」。實驗顯示我們所提出的表示法確實提升了以聲音及運動資訊描述影片的可靠性。接著我們將聲音及運動的機率模型以對等的方式結合,而得到一個整合的表示模型,並且以隱藏式馬可夫模型偵測此表示模型在時間上的轉變。我們在一個12小時的棒球比賽資料庫下的實驗證明了我們所提出方法的有效性及可靠性。 rf [1 ] D. Zhong and S.F. Chang, “Structure Analysis of Sports Video Using Domain Models,” Proc. ICME’01, 2001. [2 ] A. Ekin, A. Murat Tekalp and R. Mehrotra, “Automatic Soccer Video Analysis and Summarization,” IEEE Tran. Image Processing, vol. 12, no. 7, Jul. 2003. [3 ] V. Tovinkere and R. J. Qian, “Detecting Semantic Events in Soccer Games: Towards A Complete Solution,” Proc. ICME’01, 2001. [4 ] J. Assfalg, M. Bertini, A. Del Bimbo, W. Nunziati and P. Pala, “Detection and Recognition of Football Highlights using HMM,” Proc. ICECS’02, 2002. [5 ] G. Xu, Y.F. Ma, H.J. Zhang and S.Q. Yang, “A HMM Based Semantic Analysis Framework for Sports Game Event Detection,” Proc. ICIP’03, Sep. 2003. [6 ] B. Li and I. Sezan, “Semantic Sports Video Analysis: Approaches and New Applications,” Proc. ICIP’03, Sep. 2003. [7 ] T. Kawashima, K. Tateyama, T. Iijima and Y. Aoki, “Indexing of Baseball Telecast for Content-Based Video Retrieval,” Proc. ICIP’98, 1998. [8 ] M. Petkovic, V. Mihajlovic and W. Jonker, “Techniques for Automatic Video Content Derivation,” Proc. ICIP’03, Sep. 2003. [9 ] H. Pan, P. van Beek and M. I. Sezan, “Detection of Slow-Motion Replay Segments in Sports Video for Highlights Generation,” Proc. ICASSP’01, 2001 [10 ] Y. Rui, A. Gupta and A. Acero, “Automatically Extracting Highlights for TV Baseball Programs,” Eighth ACM International Conference on Multimedia, pp. 105-115, 2000 [11 ] Z. Xiong, R. Radhakrishnan, A. Divakaran and T. Huang, “Audio Events Detection Based Highlights Extraction from Baseball, Golf and Soccer Games in a Unified Framework,” Proc. ICASSP 2003, Apr. 2003. [12 ] R. Leonardi, P. Migliorati and M. Prandini, “Semantic Indexing of Sports Program Sequences by Audio-Visual Analysis,” Proc. ICIP 2003, Sep. 2003 [13 ] A. Divakaran, R. Radhakrishnan and K. A. Peker, “Motion Activity-based Extraction of Key-frames from Video Shots,” Proc. ICIP’02, Sep. 2002 [14 ] X. Shao, C. Xu and M. S. Kankanhalli, “Automatically Generating Summaries for Musical Video,” Proc. ICIP 2003, Sep. 2003. [15 ] Y. Gong and X. Liu, "Video Summarization and Retrieval using Singular Value Decomposition," Multimedia Systems, vol. 9, no. 2, Aug. 2003 [16 ] M. Smith and T. Kanade, “Video Skimming and Characterization through the Combination of Image and Language Understanding Techniques,” Proc. CVPR’97, 1997. [17 ] Y.F. Ma and H.J. Zhang, “A Model of Motion Attention for Video Skimming,” Proc. ICIP 2002, Sep. 2002. [18 ] H. Sundaram, L. Xie and S.F Chang, “A Utility Framework for the Automatic Generation of Audio-Visual Skims,” Proc. ACM Multimedia, 2002. [19 ] M.J. Roach, J.S.D. Mason and M. Pawlewski, “Video Genre Classification using Dynamics,” Proc. ICASSP’01, 2001. [20 ] A. Bonzanini, R. Leonardi and P. Migliorati, “Event Recognition in Sport Programs using Low-Level Motion Indices,” Proc. ICME’01, 2001 [21 ] N. Peyrard and P. Bouthemy, “Detection of Meaningful Events in Videos Based on A Supervised Classification Approach,” Proc. ICIP’03, Sep. 2003. [22 ] Y.P. Tan, D. D. Saur, S. R. Kulkarni and P. J. Ramadge, “Rapid Estimation of Camera Motion from Compressed Video with Application to Video Annotation,” IEEE Tran. Circuits and Systems for Video Tech., vol. 10, no. 1, Feb. 2000. [23 ] P. Chang, M. Han and Y. Gong, “Extract Highlights from Baseball Game Video with Hidden Markov Models,” Proc. ICIP 2002, Sep. 2002. [24 ] L. Xie, S.F. Chang, A. Divakaran and H. Sun, “Structure Analysis of Sports Video with Hidden Markov Models,” Proc. ICASSP’02, 2002 [25 ] G. Xu, Y.F. Ma, H.J. Zhang and S.Q. Yang, “Motion-Based Event Recognition using HMM,” Proc. ICPR’02, 2002. [26 ] Y.L. Chang, W. Zeng, I. Kamel and R. Alonso, “Integrated Image and Speech Analysis for Content-Based Video Indexing,” Proc. ICMCS 1996, 1996 [27 ] A. Albiol, L. Torres and J. Delp, “The Indexing of Persons in News Sequences using Audio-Visual Data,” Proc. ICASSP’03, 2003. [28 ] S.C. Chen, M.L. Shyu, W. Liao and C. Zhang, “Scene Change Detection by Audio and Video Clues,” Proc. ICME’02, 2002. [29 ] Z. Xiong, R. Radhakrishnan and A. Divakaran, “Generation of Sports Highlights using Motion Activity in Combination with a Common Audio Feature Extraction Framework,” Proc. ICIP 2003, Sep. 2003. [30 ] W. Hua, M. Han and Y. Gong, “Baseball Scene Classification using Multimedia Features,” Proc. ICME’02, 2002. [31 ] A. Hanjalic, “Generic Approach to Highlight Extraction from A Sport Video,” Proc. ICIP’03, Sep. 2003. [32 ] R. Dahyot, A. Kokaram, N. Rea and H. Denman, “Joint Audio Visual Retrieval for Tennis Broadcasts,” Proc. ICASSP’03, 2003. [33 ] Y. Gong, X. Liu and W. Hua, “Creating Motion Video Summaries with Partial Audio-Visual Alignment,” Proc. ICME’02, 2002. [34 ] C.C. Cheng and C.T. Hsu, “Content-Based Audio Classification with Generalized Ellipsoid Distance,” Proc. PCM 2002, Dec. 2002. [35 ] J. R. Deller, J. H. L. Hansen and J. G. Proakis, Discrete-Time Processing of Speech Signals, IEEE Press, 2000. [36 ] T. Hastie and R. Tibshirani, “Discriminant Analysis by Gaussian Mixtures,” J. Royal Statistical Society, series B, 1996. [37 ] T. Zhang and C.-C. J. Kuo, “Audio Content Analysis for On-line Audiovisual Data Segmantation and Classification,” IEEE Trans. Speech and Audio Processing, vol. 9, no. 4, May 2001 [38 ] Y. Wang, Z. Liu, and J.C. Huang, “Multimedia Content Analysis,” IEEE Signal Processing Magazine, pp. 12-36, Nov. 2000 [39 ] A. M. Kondoz, Digital Speech, Wiley, 1994 [40 ] L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition, Englewood Cliffs, NJ: Prentice-Hall, 1993. [41 ] S. Z. Li, “Content-Based Audio Classification and Retrieval Using the Nearest Feature Line Method,” IEEE Trans. Speech and Audio Processing, Vol.8, No.5, Sep. 2000 [42 ] Z. Liu, J. Huang, Y. Wang, and T. Chen, “Audio Feature Extraction and Analysis for Scene Segmentation and Classification,” Journal of VLSI Signal Processing 20, pp.61-79, 1998. [43 ] E. Wold, T. Blum, D. Keislar, and J. Wheaton, “Content-based classification, search and retrieval of audio,” IEEE Multimedia Mag., vol. 3, no.3, pp. 27-36, 1996. [44 ] J. Foote et al, “Content-based retrieval of music and audio,” Multimedia Storage Archiving Syst. II, vol. 3229, pp. 138-147, 1997. [45 ] M. A. T. Figueiredo and A. K. Jain, “Unsupervised Learning of Finite Mixture Models,” IEEE Tran. Pattern Analysis and Machine Intelligence, vol. 24, no. 3, Mar. 2002. [46 ] M. A. T. Figueiredo and A. K. Jain, “Unsupervised Selection and Estimation of Finite Mixture Models,” Proc. ICPR’00, pp. 87-90, 2000. [47 ] F. Dufaux and J. Konrad, “Efficient, Robust, and Fast Global Motion Estimation for Video Coding,” IEEE Tran. Image Processing, vol. 9, no. 3, Mar. 2000. [48 ] X. Q. Gao, C. J. Duanmu and C. R. Zou, “A Multilevel Successive Elimination Algorithm for Block Matching Motion Estimation,” IEEE Tran. Image Processing, vol. 9, no. 3, Mar. 2000. [49 ] D. Wang and L. Wang, “Global Motion Parameters Estimation Using a Fast and Robust Algorithm,” IEEE Tran. Circuits and Systems for Video Tech., vol. 7, no. 5, Oct. 1997. [50 ] Y. T. Tse and R. Baker, “Global Zoom/Pan Estimation and Compensation for Video Compression,” Proc. ICASSP’91, 1991. [51 ] S. Lee and M. Hayes, “Real-Time Camera Motion Classification for Content-Based Indexing and Retrieval using Templates,” Proc. ICASSP’02, 2002 [52 ] I. Koprinska and S. Carrato, “Temporal Video Segmentation: A Survey,” Signal Processing: Image Communication, vol.16, p.477-500, 2001. [53 ] A. Hanjalic, “Shot-Boundary Detection: Unraveled and Resolved?,” IEEE Trans. Circuit Syst. Video Technol., vol. 12, no. 2, Feb. 2002 [54 ] W.J. Heng and K.N. Ngan, “Shot Boundary Refinement for Long Transition in Digital Video Sequence,” IEEE Trans. Multimedia, vol. 4, no. 4, Dec. 2002. [55 ] L. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition,” Proc. Of the IEEE, vol. 77, no. 2, Feb. 1999 [56 ] D. Gatica-Perez, A. Loui and M.T. Sun, “Finding Structure in Home Videos by Probabilistic Hierarchical Clustering,” IEEE Trans. Circuit Syst. Video Technol., vol. 13, no. 6, Jun. 2003.id NH0925392012 sid 914324 cfn 0 / id NH0925392013 auc 謝天威 tic 符合進階高速匯流排規格的低功率、高效能之JPEG2000區塊編碼架構 adc 林永隆 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 36 kwc JPEG2000影像壓縮標準 kwc 區塊編碼 kwc 內容產生器 kwc 算術編碼器 abc 我們在這篇論文中提出一個低功率、高效能的區塊編碼(Embedded Block Coding with Optimized Truncation)架構,用以加速JPEG2000影像壓縮。區塊編碼分為兩個步驟:內容產生(Context Formation)和算術編碼(Arithmetic Encoder)。在內容產生方面,我們提出十六位元平行處理架構,用以減少計算所花的時脈週期以達低功率消耗。在算術編碼方面,我們提出三級管線化的架構,可以提升整個區塊編碼的輸出能力。我們另外設計符合進階高速匯流排(Advanced High-performance Bus)規格的介面,讓我們的區塊編碼器可以整合到以進階微控制器匯流排架構(Advanced Microcontroller Bus Architecture)為基礎的單晶片系統(Silicon on a Chip)上。最後,我們與現在最好的設計做比較,我們的設計可以再節省17%的計算週期;若以內容產生的個數做為下限,我們的設計只比最佳解多5%的計算週期。 tc Contents ABSTRACT..................................................I CONTENTS.................................................II LIST OF FIGURES .........................................IV LIST OF TABLES ...........................................V CHAPTER 1 ................................................1 INTRODUCTION..............................................1 CHAPTER 2.................................................5 RELATED WORK .............................................5 2.1 TIER-1 CODING ALGORITHM............................. 5 2.1.1 Context Formation ................................7 2.1.2 Arithmetic Encoder ..............................10 2.2 PREVIOUS DESIGNS .................................. 11 2.2.1 Normal Mode .....................................11 2.2.2 Pass-Parallel Mode...............................12 2.3 COMPARISON......................................... 13 CHAPTER 3................................................15 PROPOSED ARCHITECTURE ...................................15 3.1 TIER-1 ENCODER .................................... 15 3.2 CONTEXT FORMATION.................................. 16 3.3 ARITHMETIC ENCODER................................. 20 CHAPTER 4................................................24 IMPLEMENTATION ..........................................24 4.1 IP DESIGN FLOW .................................... 24 4.2 IP INTERFACE ...................................... 25 CHAPTER 5................................................28 EXPERIMENTAL RESULTS.....................................28 5.1 DESIGN REPORTS..................................... 28 5.2 EXPERIMENTAL RESULTS............................... 29 CHAPTER 6................................................32 CONCLUSIONS .............................................32 BIBLIOGRAPHY.............................................33rf [1 ]“JPEG 2000 Part I Final Committee Draft Version 1.0”, ISO/IEC JTC 1/SC 29/WG 1 N1646R, March 2000. Available from http://www.jpeg.org [2 ] Michael D. Adams, “The JPEG-2000 Still Image Compression Standard”, ISO/IEC JTC 1/SC 29/WG 1 N2412, September 2001. [3 ] A. N. Skodras, C. A. Christopoulos and T. Ebrahimi, “JPEG2000: The Upcoming Still Image Compression Standard”, Proceedings of the 11th Portuguese Conference on Pattern Recognition, pp 359-366, May 2000. [4 ]“An analytical study of JPEG 2000 functionalities”, ISO/IEC JTC 1/SC 29/WG 1 N1816, July 2000. [5 ] David Taubman, “High Performance Scalable Image Compression with EBCOT”, IEEE Transactions on Image Processing, Vol. 9, No. 7, pp 1158-1170, July 2000. [6 ] David Taubman, Erik Ordentlich, Marcelo Weinberger, Gadiel Seroussi, Ikuro Ueno and Fumitaka Ono, “Embedded Block Coding in JPEG2000”, Proceedings of the IEEE International Conference on Image Processing (ICIP), Vol. 2, pp 33-36, September 2000. [7 ] David Taubman, Erik Ordentlich, Marcelo Weinberger and Gadiel Seroussi, “Embedded Block Coding in JPEG2000”, HPL-2001-35, February 2001. [8 ] Kuan-Fu Chen, Chung-Jr Lian, Hong-Hui Chen and Liang-Gee Chen, “Analysis and Architecture Design of EBCOT for JPEG-2000”, IEEE International Symposium on Circuits and Systems, Vol. 2, pp 765-768, May 2001. [9 ] Michael D. Adams and Faouzi Kossentini, “Jasper: A Software-Based JPEG-2000 Codec Implementation”, Proceedings of 2000 International Conference on Image Processing, Vol. 2, pp 53-56, September 2000. [10 ] Michael D. Adams, “Jasper Software Reference Manual (Version 1.600.0)”, ISO/IEC JTC 1/SC 29/WG 1 N2415, October 2002. [11 ] Chung-Jr Lian, Kuan-Fu Chen, Hong-Hui Chen and Liang-Gee Chen, “Analysis and Architecture Design of Lifting Based DWT and EBCOT for JPEG 2000”, Proceedings of Technical Papers of 2001 International Symposium on VLSI Technology, Systems, and Applications, pp 180-183, April 2001. [12 ] Hong-Hui Chen, Chung-Jr Lian, Te-Hao Chang and Liang-Gee Chen, “Analysis of EBCOT Decoding Algorithm and its VLSI Implementation for JPEG 2000”, IEEE International Symposium on Circuits and Systems, Vol. 4, pp 329-332, May 2002. [13 ] Yun-Tai Hsiao, Hung-Der Lin, Kun-Bin Lee and Chein-Wei Jen, “High-Speed Memory-Saving Architecture for the Embedded Block Coding in JPEG2000”, IEEE International Symposium on Circuits and Systems, Vol. 5, pp 133-136, May 2002. [14 ] Jen-Shiun Chiang, Yu-Sen Lin and Chang-Yo Hsieh, “Efficient Pass-Parallel Architecture for EBCOT in JPEG2000”, IEEE International Symposium on Circuits and Systems, Vol. 1, pp 773-776, May 2002. [15 ] Kishore Andra, Chaitali Chakrabarti and Tinku Acharya, “A High Performance JPEG2000 Architecture”, IEEE International Symposium on Circuits and Systems, Vol. 1, pp 765-768, May 2002. [16 ] Yijun Li, Ramy E. Aly, Beth Wilson and Magdy A. Bayoumi, “Analysis and Enhancements for EBCOT in High-Speed JPEG2000 Architectures”, the 45th Midwest Symposium on Circuits and Systems, Vol. 2, pp 207-210, August 2002. [17 ] Tsung-Han Tsai and Kuei-Lan Lin, “A High Speed and Low Complexity Integrated Framework for JPEG2000”, the 8th International Conference on Communication Systems, Vol. 1, pp 493-496, November 2002. [18 ] Chung-Jr Lian, Kuan-Fu Chen, Hong-Hui Chen and Liang-Gee Chen, “Analysis and Architecture Design of Block-Coding Engine for EBCOT in JPEG 2000”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 3, pp 219-230, March 2003. [19 ] Kishore Andra, Chaitali Chakrabarti and Tinku Acharya, “A High Performance JPEG2000 Architecture”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 3, pp 209-218, March 2003. [20 ] Hung-Chi Fang, Tu-Chih Wang, Chung-Jr Lian, Te-Hao Chang and Liang-Gee Chen, “High Speed Memory Efficient EBCOT Architecture for JPEG2000”, Proceedings of the 2003 International Symposium on Circuits and Systems, Vol. 2, pp 736-739, May 2003. [21 ] Paul R. Schumacher, “An Efficient JPEG2000 Tier-1 Coder Hardware Implementation for Real-Time Video Processing”, IEEE Transactions on Consumer Electronics, Vol. 49, No. 4, November 2003. [22 ] Manjunath Gangadhar and Dinesh Bhatia, “FPGA based EBCOT Architecture for JPEG 2000”, Proceedings of the 2003 IEEE International Conference on Field-Programmable Technology (FPT), pp 228-233, December 2003. [23 ] Masaya Tarui, Masaru Oshita, Takao Onoye and Isao Shirakawa, “High-Speed Implementation of JBIG Arithmetic Coder”, Proceedings of the IEEE Region 10 Conference, Vol. 2, pp 1291-1294, September 1999.id NH0925392013 sid 914326 cfn 0 / id NH0925392014 auc 李靜瑋 tic 運用運動特徵之統計特性進行視訊內容分類 adc 許秋婷 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 59 kwc 最大相似法 kwc 統計模組 kwc 視訊影片分類 abc 在這篇論文中,提出了一個描述視訊影片中動態內容的方法。這個方法並不需要任何事先的物件切割,或是完整的運動向量運算。為了達到這個目的,我們先計算出每一個像素點的移動量值與移動方向,再用三個單一 Gibbs 模組來分別表示不同的運動分佈情形。這些運動分佈包括:運動量值沿著時間軸上的分佈,運動量值在空間上的結構,以及運動方向在空間上的分佈。接著,我們利用最大相似法來計算用來定義這三個單一 Gibbs 模組的 potential值。此外,我們更進一步地將這三個單一 Gibbs 模組做結合,並且得到四個複合式 Gibbs 模組來更完整地表示視訊影片中的動態內容。為了證明所提出方法的效能,我們將這些運動模組應用於視訊內容的分類。而從實驗結果可以顯示出利用複合式的模組可以比使用單一模組能得到更好的分類結果。 rf [1 ] M. Gelgon and P. Bouthemy, “Determining a structure spatio-temporal representation of video content for efficient visualization and indexing,” Proc. ECCV, vol. 1, LNCS 1406, pp. 595-609, June 1998. [2 ] C. T. Hsu and S. J. Teng, “Motion trajectory based video indexing and retrieval,” Proc. ICIP 2002. [3 ] F. I. Bashir, A. A. Khokhar, and D. Schonfeld, “Segmented trajectory based indexing and retrieval of video data,” Proc. ICIP, vol. 2, pp. 14-17, Sept. 2003. [4 ] C. M. Lu, and N. J. Ferrier, “Repetitive motion analysis: segmentation and event classification,” IEEE Trans. Pattern Anal. Machine Intell., vol. 26, no. 2, pp. 258-263, Feb. 2004. [5 ] W. Zeng, W. Gao, and D. Zhao, “Video indexing by motion activity maps,” Proc. ICIP, 2002. [6 ] C. H. Peh, and L. F. Cheong, “Synergizing spatial and temporal texture,” IEEE Trans. Image Processing, vol. 11, no. 10, pp. 1179-1191, Oct. 2002. [7 ] R. Fablet, P. Bouthemy, and P. Pérez, “Nonparametric motion characterization using causal probabilistic models for video indexing and retrieval,” IEEE Trans. Image Processing, vol. 11, no. 4, pp. 393-407, April 2002. [8 ] K. Otsuka, T. Horikoshi, S. Suzuki, and M. Fujii, “Feature extraction of temporal texture based on spatiotemporal motion trajectory,” Proc. ICPR, pp. 1047-1051, Aug. 1998. [9 ] K. Otsuka, T. Horikoshi, and S. Suzuki, “Image velocity estimation from trajectory surface in spatiotemporal space,” Proc. CVPR, pp. 200-205, 1997. [10 ] R. Nelson and R. Polana, “Qualitative recognition of motion using temporal texture,” Comput. Vis. Graph. Image Processing, vol. 56, no. 1, pp. 78-99, 1992. [11 ] R. Fablet and P. Bouthemy, “Motion recognition using nonparametic image motion models estimated from temporal and multiscale co-occurrence statistics,” IEEE Trans. Pattern Anal. Machine Intell., vol. 25, no. 12, Dec. 2003. [12 ] Y. Wang, J. Ostermann, and Y. Q. Zhang, Video processing and communications, Prentice Hall, 2002. [13 ] Y. T. Tse, and R. L. Baker, “Global zoom/ pan estimation and compensation for video compression,” Proc. ICASSP, vol. 4, pp. 2725-2728, April 1991. [14 ] A. M. Tekalp, digital video processing. Prentice Hall, 1995. [15 ] B. Horn and B. Schunck, “Determining optical flow,” Artificial Intelligence, vol. 17, pp. 185-203, 1981. [16 ] S. Z. Li, Markov random field modeling in computer vision, Springer-Verlag, 1995. [17 ] J. Besag, “Spatial interaction and the statistical analysis of lattice systems,” J. Royal Stat. Soc. B, vol. 36, no. 2, pp. 192-236, 1974. [18 ] G. L. Gimel’Farb, “Texture modeling by multiple pairwise pixel interactions,” IEEE Trans. Pattern Anal. Machine Intell., vol. 18, no. 11, Nov. 1996. [19 ] J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical flow techniques,” Int. J. Comput. Vis., vol. 12, no. 1, pp. 43-77, 1994.id NH0925392014 sid 914327 cfn 0 / id NH0925392015 auc 吳凱強 tic 使骨牌式電路具有延遲變動容忍度之電路再合成 adc 張世杰 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 37 kwc 骨牌式電路 kwc 延遲變動 kwc 延遲變動容忍度 kwc 再合成(重新合成) kwc 製程變動 kwc 雜訊效應 abc 骨牌式動態電路比一般的靜態電路提供了較小的面積及較快的速度,因此骨牌式電路被廣泛地應用在高效能的數位設計中。另一方面,因為製程及設計趨勢不斷地進步,電路在追求更高的效能及更低的功率消耗的同時,也使得電路的運作速度越來越容易受到製程變動及雜訊效應的影響。製程變動及雜訊效應等造成延遲變動的因素可能使一個製作完成的晶片違反預定的時脈限制,像這種時脈不符合要求的電路,雖然能夠正常運作,但因為不能為市場所接受,通常只能報廢,造成良率的下降。傳統上,設計者往往消極地使用較寬鬆的時脈限制來減輕延遲變動的問題,但這個方法卻會無謂地降低電路的效能。在本篇論文中,我們對骨牌式電路提出一個重新合成的方法,以加入額外的輔助電路來達到容忍延遲變動的效果。我們發現在關鍵性的路徑上的邏輯閘較容易受到延遲變動的影響,而改變整個電路的運作速度。因此,我們主要的觀念就在於利用額外加入的電路,來增加這些在關鍵性的路徑上的邏輯閘對延遲變動的容忍度,使電路的效能不會隨著少量的延遲變動產生波動,進而提高良率。實驗結果顯示,經過我們所提出的方法重新合成過的電路,在蒙地卡羅模擬中超過預定的時脈限制的數量,比原本的電路多出約20%。我們將所有蒙地卡羅樣本的時序描繪成分布曲線,可以發現重新合成後的電路的時序分布較原本的電路集中,表示新電路較不易受到製程變動及雜訊效應等造成延遲變動的因素影響。 tc ABSTRACT ... 2 CONTENTS ... 3 LIST OF FIGURES ... 4 LIST OF TABLES ... 5 CHAPTER 1 INTRODUCTION ... 6 CHAPTER 2 DELAY VARIATION TOLERANCE IN DUPLEX DOMINO SYSTEMS ... 9 2.1 PROPERTIES OF DUPLEX DOMINO CIRCUITS ... 9 2.2 PROBLEM FORMULATION ... 10 CHAPTER 3 RE-SYNTHESIS FOR DELAY VARIATION TOLERANCE ... 12 3.1 OUR RE-SYNTHESIS FRAMEWORK ... 12 3.2 AREA REDUCTION BY WIRE REMOVAL ... 12 3.3 AREA REDUCTION BY SIGNAL SHARING ... 19 3.4 SLACK ANALYSIS AFTER RE-SYNTHESIS ... 20 CHAPTER 4 DELAY TOLERANCE ON INTERNAL SIGNALS ... 23 CHAPTER 5 EXPERIMENTAL RESULTS ... 27 CHAPTER 6 CONCLUSIONS ... 35 REFERENCES ... 36rf [1 ] K. Baker, G. Gronthoud, M. Lousberg, I. Schanstra, and C. Hawkins, “Defect-based delay testing of resistive vias-contacts, a critical evaluation,” Proc. of International Test Conference, pp. 467-476, Sept. 1999. [2 ] M. A. Breuer, C. Gleason, and S. Gupta, “New validation and test problems for high performance deep sub-micron VLSI circuits,” Tutorial Notes, VLSI Test Symposium, April 1997. [3 ] Shih-Chieh Chang, Cheng-Tao Hsieh, and Kai-Chiang Wu, “Re-synthesis for delay variation tolerance,” Proc. of Design Automation Conference, pp. 814-819, June 2004. [4 ] D. G. Chinnery and K. Keutzer, “Closing the gap between ASIC and custom: an ASIC perspective,” Proc. of Design Automation Conference, pp. 637-642, June 2000. [5 ] Kurt Keutzer and Michael Orshansky, “From blind certainty to informed uncertainty,” Proc. of International Workshop on Timing Issues in the Specification and Synthesis of Digital Systems, pp. 37-41, 2000. [6 ] Jing-Jia Liou, A. Krstic, Li-C. Wang, and Kwang-Ting Cheng, “False-path-aware statistical timing analysis and efficient path selection for delay testing and timing validation,” Proc. of Design Automation Conference, pp. 566-569, June 2002. [7 ] E. Malavasi, S. Zanella, J. Uschersohn, M. Misheloff, and C. Guardiani, “Impact analysis of process variability on digital circuits with performance limited yield,” Proc. of International Workshop on Statistical Methodology, pp. 60-63, June 2001. [8 ] Alexander Saldanha, “Functional timing optimization,” Proc. of International Conference on Computer-Aided Design, pp. 539-543, Nov. 1999.id NH0925392015 sid 914329 cfn 0 / id NH0925392016 auc 吳銘揚 tic 多模式查詢之人體動作擷取系統 adc 楊熙年 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 68 kwc 內容擷取 kwc 人體動作 kwc 多模式 abc 在這篇論文中,我們展示了一套多模式互動之人體動作擷取系統。這套系統除了提供多種方便的互動式界面以外,並能快速而有效地幫助使用者擷取出需要的人體動作。在界面上,我們設計了四種符合使用者直覺而且操作簡單方便的輸入界面,如關鍵字、關鍵姿勢、照片、範例動作片段,來讓使用者作查詢。使用者可以從資料庫或查詢結果中挑選出一段動作來當做範例進行查詢;也可輸入關鍵字找出已經註解過的動作片段進行查詢;若對動作姿勢有概念,可從資料庫中挑選出並或是由平面照片來產生想要擷取的動作之超始和終止人體立體姿勢,並可對其調整出更符合的人體姿勢來進行查詢。之後,使用者可以透過兩種不同的輸出界面,如動畫、動作影像,來觀看查詢結果。在擷取方法上,我們針對人體動作特徵設計了索引與比對機制。首先,我們對人體姿勢擷取出對平移、縮放和旋轉均不受影響的仿射不變參數(affine invariant),並利用了一種能保有叢集中心點原有拓撲性的自我組織網路(self-organizing map),來產生索引映射圖。為了避免在高維空間搜尋時,會產生時間過長的問題,我們將全身的高維參數換成了各肢幹二維參數的直和。其次對於使用者所給予的起始及終止姿勢,我們將其轉換為對應的索引值然後在索引映射圖上找出此兩位置間可能的動作片段,再利用動態時間校正法(dynamic time warping)來做相似度的計算。最後我們以實驗結果顯示多重使用者互動式介面的有用性以及動作擷取方法的有效性。 tc 中文摘要 ……………………………………………... ii Abstract ……………………………………………… iii Acknowledgments …………………………………... iv Table of Contents …………………………………….. v List of Figures ……………………………………… viii List of Tables ………………………………………… xi Chapter 1 Introduction …………………………..... 1 Chapter 2 Related Work …………………………... 4 2.1 Content-Based Video Retrieval ……………………..... 4 2.2 Human Motion Analysis ……………………………… 8 Chapter 3 System Overview ……………………... 10 Chapter 4 Multi-modal query interfaces ……….. 13 4.1 Example Clip Input Interface ………………………... 13 4.2 Text Input Interface ………………………………….. 13 4.3 Stickman Input Interface …………………………….. 14 4.4 Image Input Interface ………………………………... 14 4.4.1 Human Posture Reconstruction from a Single Image ……………………………………………………….. 14 4.4.2 Posture Library Preprocessing …………………….. 17 4.4.2.1 Posture Feature Representation ………………….. 18 4.4.2.2 Posture Table Creation …………………………... 19 4.4.3 Human Posture Reconstruction …………………… 24 4.4.3.1 Pivotal Posture Retrieval ………………………… 25 4.4.3.3 Constraint-Based Reconstruction ………………... 29 4.4.3.2.1 Physical Constraint …………………………….. 29 4.4.3.2.2 Environmental Constraint ……………………... 32 4.4.4 Experimental Results ……………………………… 34 4.4.4.1 Performances …………………………………….. 34 4.4.4.2 Discussion ……………………………………….. 36 4.5 Graphics Images Output Interface …………………... 43 4.6 Animation Video Output Interface …………………... 43 Chapter 5 Human Motion Retrieval …………….. 44 5.1 Indexing ……………………………………………... 44 5.1.1 Index Map Construction …………………………... 44 5.2 Matching …………………………………………….. 49 5.2.1 Candidate Clip Searching …………………………. 49 5.2.2 Dynamic Time Warping …………………………… 52 Chapter 6 Experimental Results ………………… 54 6.1 Retrieval Scenarios ………………………………….. 54 6.2 Retrieval Accuracy …………………………………... 58 6.3 Retrieval Time ………………………………………. 60 Chapter 7 Conclusions and Future Work …………….. 62 References …………………………………………... 63 List of Figures Chapter 2 Fig. 2.1 Human motion retrieval in a long-length sequence ….. 9 Fig. 2.2 Segmented object motion retrieval …………………... 9 Chapter 3 Fig. 3.1 System Overview (a) Multi-modal query interfaces (b) Motion retrieval …………………………………………. 10 Chapter 4 Fig. 4.1 The reconstruction procedure of the proposed approach …………………………………………………………… 16 Fig. 4.2 The hierarchical human model ……………………... 19 Fig. 4.3 Eight projections around a 3D posture of a set of sampling view directions ………………. 20 Fig. 4.4 The body segment and its projection under scaled orthographic projection ………………………………….. 21 Fig. 4.5 An example of indexing in a posture table for a body segment ………………………………………………….. 24 Fig. 4.6 The 2D human figure in an image (a) Measuring angle and length for each labeled body segment. (b) Estimating the root orientation of the postured character .. 28 Fig. 4.7 Range search in the posture table of a body segment …………………………………………………………… 28 Fig. 4.8 Posture reconstruction for the j-th body segment (a) Front view. (b) Top view ………………………………… 32 Fig. 4.9 The feet-floor contact constraint (a) Original reconstructed posture. (b) Define the floor and floor fulcrum. (c) Apply the inverse kinematics technique ……………... 33 Fig. 4.10 A sequence of 2D and 3D key postures of Tai Chi Chuan motion – “Grasp the Swallow’s Tail.” …………… 38 Fig. 4.11 Experimental results obtained by applying our reconstruction approach to some images ………………... 39 Fig. 4.12 Experimental results for some testing photographs …………………………………………………………… 40 Chapter 5 Fig. 5.1 (a) Initial cluster centers; (b) the segment-posture distribution of the left lower arm; (c) the segment-posture distribution of the left lower leg; (d) the index map of the left lower arm; (e) the index map of the left lower leg ….. 48 Fig. 5.2 Candidate clip searching …………………………… 52 Chapter 6 Fig. 6.1 (a) The query example; (b)-(h) the retrieved clips …. 55 Fig. 6.2 (a) The query example; (b)-(f) the retrieved clips ….. 56 Fig. 6.3 (a) The query example; (b)-(f) the retrieved clips ….. 57 Fig. 6.4 The PR graph for three indexing methods ………….. 59 List of Tables Chapter 4 Table 4.1 Average RMS errors of pivotal postures and reconstructed postures …………………………………... 41 Table 4.2 Average RMS errors of reconstructed postures based on the physical constraint only, and that based on physical and environmental constraints …………………………... 42 Chapter 6 Table 6.1 The matching time cost for three indexing methods …………………………………………………………… 60rf [1 ] I. Haritaoglu, D. Harwood, L. S. Davis, W4: real-time surveillance of people and their activities, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 2000, pp. 809-830. [2 ] N. M. Oliver, B. Rosario, A. P. Pentland, A Bayesian computer vision system for modeling human interactions, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 2000, pp. 831-843. [3 ] M. Kőhle, D. Merkl, J. Kastner, Clinical gait analysis by neural networks: issues and experiences, IEEE Symposium on Computer-Based Medical Systems, 1997, pp. 138-143. [4 ] D. Meyer, J. Denzler, H. Niemann, Model based extraction of articulated objects in image sequences for gait analysis, IEEE International Conference on Image Processing, 1997, pp. 78-81. [5 ] J. W. Davis, A. F. Bobick, Virtual PAT: a virtual personal aerobics trainer, Workshop on Perceptual User Interfaces, San Francisco, CA, Nov. 5-6, 1998, pp. 13-18. [6 ] P. T. Chua, R. Crivella, B. Daly, N. Hu, R. Schaaf, D Ventura, T. Camill, J. Hodgins, R. Pausch, Training for physical tasks in virtual environments: Tai Chi, IEEE International Conference on Virtual Reality, Los Angeles, CA, Mar. 22-26, 2003. [7 ] C. BenAbelkader, R. Cutler, L. Davis, Person identification using automatic height and stride estimation, IEEE International Conference on Pattern Recognition, Quebec City, Canada, Aug. 11-15, 2002. [8 ] A. F. Bobick, A. Johnson, Gait recognition using static activity-specific parameters, IEEE Computer Vision and Pattern Recognition, Kauai, Hawaii, Dec. 8-14, 2001. [9 ] F. Multon, L. France, M.-P. Cani-Gascuel, G. Debunne, Computer animation of human walking: a survey, The Journal of Visualization and Computer Animation, 10(1), 1999, pp. 39-54. [10 ] O. Arikan, D. A. Forsyth, J. F. O’Brien, Motion synthesis from annotations, ACM Transactions on Graphics, 22(3), 2003, pp. 402-408. [11 ] W. T. Freeman, P. A. Beardsley, H. Kage, K.-I. Tanaka, K. Kyuma, C. D. Weissman, Computer vision for computer interaction, ACM SIGGRAPH Computer Graphics, 33(4), 1999, pp. 65-68. [12 ] J. Lee, J. Chai, J. K. Hodgins, P. S. A. Reitsma, N. S. Pollard, Interactive control of avatars animated with human motion data, ACM Transactions on Graphics, 21(3), 2002, pp. 491-500. [13 ] S. W. Smoliar, H. J. Zhang, Content-based video indexing and retrieval, IEEE Multimedia, 1(2), 1994, pp. 62-72. [14 ] K. Shearer, S. Venkatesh, D. Kieronska, Spatial indexing for video databases, Journal of Visual Communication and Image Representation, 7(4), 1996, pp. 325-335. [15 ] E. Ardizzone, M. Cascia, Automatic video database indexing and retrieval, Multimedia Tools and Applications, 4(1), 1997, pp. 29-56. [16 ] D. Ponceleon, S. Srinvasan, A. Amir, D. Petkovic, D. Diklic, Key to effective video retrieval: effective catalogin and browsing, ACM International Conference on Multimedia, Bristol, UK, Sep. 12-16, 1998, pp. 99-107. [17 ] Y. Deng, B. S. Manjunath, NeTra-V: toward an object-based video representation, IEEE Transactions on Circuits and Systems for Video Technology, 8(5), 1998, pp. 616-627. [18 ] A. K. Jain, A. Vailaya, X. Wei, Query by video clip, Multimedia Systems, 7(5), 1999, pp. 369-384. [19 ] R. Lienhart, W. Effelsberg, R. Jain, VisualGREP: a systematic method to compare and retrieve video sequences, Multimedia Tools and Applications, 10(1), 2000, pp. 47-72. [20 ] M. R. Naphade, T. S. Huang, A probabilistic framework for semantic video indexing, filtering and retrieval, IEEE Transactions on Multimedia, 3(1), 2001, pp. 141-151. [21 ] G. Ahanger, T. D. C. Little, A survey of technologies for parsing and indexing digital video, Journal of Visual Communication and Image Representation, 7(1), 1996, pp. 28-43. [22 ] F. Idris, S. Panchanathan, Review of image and video indexing techniques, Journal of Visual Communication and Image Representation, 8(2), 1997, pp. 146-166. [23 ] R. Brunelli, O. Mich, C. M. Modena, A survey on the automatic indexing of video data, Journal of Visual Communication and Image Representation, 10(2), 1999, pp. 78-112. [24 ] S. Antani, R. Kasturi, R. Jain, A survey on the use of pattern recognition methods for abstraction, indexing, and retrieval of images and video, Pattern Recognition, 35(4), 2002, pp. 945-965. [25 ] S. Jeannin, A. Divakaran, MPEG-7 visual motion descriptors, IEEE Transactions on Circuits and Systems for Video Technology, 11(6), 2001, pp. 720-724. [26 ] N. Dimitrova, F. Golshani, Motion recovery for video content analysis, ACM Transactions on Information Systems, 13(4), 1995, pp. 408-439. [27 ] S. F. Chang, W. Chen, H. J. Meng, H. Sundaram, D. Zhong, A fully automated content-based video search engine supporting spatiotemporal queries, IEEE Transactions on Circuits and Systems for Video Technology, 8(5), 1998, pp. 602-615. [28 ] E. Sahouria, A. Zakhor, A trajectory based video indexing system for street surveillance, IEEE International Conference on Image Processing, Kobe, Japan, Oct. 24-28, 1999. [29 ] S. Dağtaş, W. Al-Khatib, A. Ghafoor, R. L. Kashyap, Models for motion-based video indexing and retrieval, IEEE Transactions on Image Processing, 9(1), 2000, pp. 88-101. [30 ] M. Nabil, A. H. H. Ngu, J. Shepherd, Modeling and retrieval of moving objects, Multimedia Tools and Applications, 13(1), 2001, pp. 35-71. [31 ] C. S. Li, J. R. Smith, L. D. Bergman, V. Castelli, Sequential processing for content-based retrieval of composite objects, SPIE Storage and Retrieval of Image and Video Databases, San Jose, CA, Jan. 28-30, 1998, pp. 2-13. [32 ] H. Sundaram, S. F. Chang, Efficient video sequence retrieval in large repositories, SPIE Storage and Retrieval of Image and Video Databases, San Jose, CA, Jan. 26-29, 1999. [33 ] T. B. Moeslund, E. Granum, A survey of computer vision-based human motion capture, Computer Vision and Image Understanding, 81(3), 2001, pp. 231-268. [34 ] L. Wang, W. Hu, T. Tan, Recent developments in human motion analysis, Pattern Recognition, 36(3), 2003, pp. 585-601. [35 ] Y. Li, T. Wang, H. Y. Shum, Motion texture: a two-level statistical model for character motion synthesis, ACM Transactions on Graphics, 21(3), 2002, pp. 465-472. [36 ] L. Kovar, M. Gleicher, F. Pighin, Motion graphs, ACM Transactions on Graphics, 21(3), 2002, pp. 473-482. [37 ] H. J. Lee and Z. Chen, “Determination of 3D human body postures from a single view,” Computer Vision, Graphics, and Image Processing, 30, 1985, pp. 148-168. [38 ] C. Bregler and J. Malik, “Tracking people with twists and exponential maps,” IEEE Computer Vision and Pattern Recognition, Santa Barnara, California, USA, Jun. 23 - 25, 1998, pp. 8-15. [39 ] C. J. Taylor, “Reconstruction of articulated objects from point correspondences in a single uncalibrated image,” Computer Vision and Image Understanding, 80(3), 2000, pp. 349-363. [40 ] M. Brand, “Shadow puppetry,” IEEE International Conference on Computer Vision, Kerkyra, Corfu, Greece, Sep. 20-25, 1999, pp. 1237-1244. [41 ] N. R. Howe, M. E. Leventon, and W. T. Freeman, “Bayesian reconstruction of 3D human motion from single-camera video,” Neural Information Processing Systems, Denver, Colorado, USA, Nov. 29 - Dec. 4, 1999. [42 ] R. Rosales, M. Siddiqui, J. Alon, and S. Sclaroff, “Estimating 3D body posture using uncalibrated cameras,” IEEE Computer Vision and Pattern Recognition, South Carolina, USA, Jun. 13-15, 2001, pp. I-821- I-827. [43 ] Web3D Working Group on Humanoid Animation, Specification for a Standard Humanoid, Version 1.1, August 1999. [44 ] MPEG-4 Overview, ISO/IEC JTC1/SC29/WG11 N4668, March 2002, http://mpeg.telecomitalialab.com/standards/mpeg-4/mpeg-4.htm [45 ] C. Bregler, J. Malik, Tracking people with twists and exponential maps, IEEE Computer Vision and Pattern Recognition, Santa Barbara, California, USA, Jun. 23-25, 1998, pp. 8-15. [46 ] C. J. Taylor, Reconstruction of articulated objects from point correspondences in a single uncalibrated image, Computer Vision and Image Understanding, 80(3), 2000, pp. 349-363. [47 ] H. J. Lee, Z. Chen, Determination of 3D human body postures from a single view, Computer Vision, Graphics, and Image Processing, 30(1985), pp. 148-168. [48 ] D. Tolani, A. Goswami, N. Badler, Real-time inverse kinematics techniques for anthropomorphic limbs, Graphical Models, 62(5), 2000, pp. 353-388. [49 ] S. McFarlane, The Complete Book of T’ai Chi, Dorling Kindersley Limited, London, 1999. [50 ] Reference removed for double blind reviewing. [51 ] M. Gleicher, Retargetting motion to new characters, ACM SIGGRAPH, Orlando, Florida, USA, Jul. 19-24, 1998, pp. 33-42. [52 ] K. J. Choi, H. S. Ko, Online motion retargetting, The Journal of Visualization and Computer Animation, 11(5), 2000, pp. 223-235. [53 ] R. O. Duda, P. E. Hart, D. G. Stork, Patten Classification, John Wiley & Sons, 2001. [54 ] T. W. Parsons, Voice and Speech Processing, McGraw-Hill, 1986. [55 ] G. Salton, M. J. McGill, Introduction to modern information retrieval, McGraw-Hill, 1983. [56 ] G. Lu, Multimedia Database Management Systems, Artech House, 1999. [57 ] G. R. Hjaltason, H. Samet, Ranking in spatial databases, International Symposium on Spatial Databases, Portland, Maine, Aug. 6-9, 1995, pp. 83-95. [58 ] G. Salton, M. J. McGill, Introduction to modern information retrieval, McGraw-Hill, 1983.id NH0925392016 sid 914330 cfn 0 / id NH0925392017 auc 黃培浩 tic 自動指紋辨識系統實作 adc 陳朝欽 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 28 kwc 指紋 kwc 自動指紋辨識系統 kwc 指紋分類 kwc 特徵比對 abc 指紋是個人獨一無二的特徵,而且已經被用來做個人辨識許多年了,然而一個理想的自動指紋辨識系統始終不存在。這一篇指紋利用兩大類來進行自動指紋辯識:指紋分類與特徵比對,指紋分類可以減少特徵比對的時間。指紋主要分為五大類:”Arch”、”Left Loop”、”Right Loop”、”Whorl”和”Others”,然後有兩個特徵”Endings”和”Bifurcations”必須被偵測出來,來進行比對。 tc Chapter 1 Introduction 1 Chapter 2 Fingerprint Classification 3 2.1 Image Enhancement 2.2 Block Orientation Computing 2.3 Block Image Segmentation 2.4 Singular Point Extraction 2.5 Type Classification 2.5.1 Discussion Chapter 3 Fingerprint Matching 12 3.1 Image Binarization 3.2 Smoothing & Thinning 3.3 Minutiae Extraction 3.4 Registration Point 3.5 Fingerprint Template Data 3.6 Minutiae Matching Chapter 4 Experimental Results 20 4.1 Experiments on Right28 4.2 Experiments on Lindex101 4.3 Experiments on FVC2000 4.4 Summary Chapter 5 Conclusion and Future Works 26 References 27rf [Baz00 ] A.M. Bazen, and S.H. Gerez, “Directional Field Computation for Fingerprints Based on the Principal Component Analysis of Local Gradients”, In Proc. ProRISC2000 Workshop on Circuits, Systems and Signal Processing, Veldhoven, The Netherlands, November 2000. [Baz01 ] A.M. Bazen and S.H. Gerez, “Segmentation of Fingerprint Images”, In Proc. ProRISC2001 Workshop on Circuits, Systems and Signal Processing, Veldhoven, The Netherlands, November 2001. [Cha03 ] C.Y. Chang, “Automatic Fingerprint Verification System”, M.S. Thesis, National Tsing Hua University, June 2003. [Che02 ] Y.Y. Chen, “Fingerprint Image Classification Based on Singular Points”, M.S. Thesis, National Tsing Hua University, June 2002. [Con02 ] V. Conti, G. Pilato, S. Vitabile, F. Sorbello, “Verification of Ink-on-paper Fingerprints by Using Image Processing Techniques and a New Matching Operator”, VIII Convegno AI*IA, Siena 10-13, 594-601, Sept. 2002. [Esp02 ] V. Espinosa-Duro, “Minutiae detection algorithm for fingerprint recognition”, IEEE Aerospace and Electronics Systems Magazine, Vol. 17, No. 3, 7-10, 2002. [Gon92 ] R.C. Gonzalez and R.E. Woods, “Digital Image Processing”, Reading, MA: Addison-Wesley Publishing Company, 3rd Edition, 1992. [Hon98 ] L. Hong, Y. Wan, and A. Jain, “Fingerprint Image Enhancement: Algorithm and Performance Evaluation”, IEEE Transactions on Pattern Analysis Machine Intelligence, Vol. 20, No. 8, 777-789, 1998. [Kar96 ] K. Karu, and A.K. Jain, “Fingerprint Classification”, Pattern Recognition, Vol. 29, No. 3, 284-404, 1996. [Ko02 ] T. Ko, “Fingerprint enhancement by spectral analysis techniques”, The Proceedings of Applies Imagery Pattern Recognition Workshop, 133-139, 2002. [Luo00 ] X. Luo, J. Tian and Y. Wu, “A Minutia Matching algorithm in Fingerprint Verification”, 15th ICPR, Vol.4, 833-836, 2000 [Mai02 ] D. Maio, D. maltoni, R. Cappelli, J.L. Wayman, and A.K. Jain, “FVC2000: Fingerprint Verification Competition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 3, 2002. [Nac84 ] N.J. Naccache and P. Shinghal, “An Investigation into the Skeletonization Approach of Hilditch”, Pattern Recognition, Vol. 17, No. 3, 279-284, 1984. [Rat96 ] N. K. Ratha, K. Karu, S. Chen, and A. K. Jain, “A Real-Time Matching System for Large Fingerprint Databases”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, No. 8, 1996. [Sen01 ] A.Senior, “A Combination Fingerprint Classifier”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, No. 10, 2001 [Wan01 ] Y. I. Wang, “An AFIS Using Fingerprint Classification”, M.S. Thesis, National Tsing Hua University, June 2001. [Zor01 ] D. S. Zorita, J.O. Garcia, S. C. Lianas, and J. G. Rodriguez, “Minutiae extraction scheme for fingerprint recognition systems”, International Conference on Image Processing, Vol. 2, 254-257, 2001.id NH0925392017 sid 914331 cfn 0 / id NH0925392018 auc 李欣樺 tic 應用在多點視訊傳播上的層狀鍊結串流技術 adc 王家祥 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 37 kwc 層狀編碼 kwc & kwc #37676;結傳輸 kwc 串流視訊 kwc 群播 abc 視訊傳播不啻為當今最熱門的網路應用,使用者藉由網路從遠端的伺服器接收視訊或影片。一些著名的視訊傳播系統,例如NICE、ZIGZAG、PALS…等,各針對不同的使用需求,實況轉播或是隨選視訊(video on demand),而發展出因應的傳輸機制。 rf [1 ]. S. H. G. Chan, F. Tobagi, and T. M. Ko, “Providing on-demand video services using request batching,” in IEEE Int. Conf. Communication, vol. 3, 1998, pp. 1716–1722. [2 ]. C. Aggarwal, J. Wolf, and P. Yu, “On optimal batching policies for video-on-demand storage servers,” in Proceedings of IEEE International Conference on Multimedia Computing and Systems, Jun. 1996. [3 ]. K. A. Hua, Y. Cai, and S. Sheu, “Patching: A multicast technique for true video-on-demand services,” in Proceedings of ACM Multimedia Conf., Bristol, U.K., Sep. 1998. [4 ]. S. Viswanathan and T. Imielinaki, “Metropolitan area video-on-demand service using pyramid broadcasting,” in ACM Multimedia System., vol. 4, no. 4, Aug. 1996, pp.197–208. [5 ]. L-S. Juhn and L-M. Tseng, “Fast broadcasting for hot video access,” in RTCSA’ 97: the proceedings of the 4th international workshop on real-time computing systems and applications, Oct. 1997, pp.237-243. [6 ]. L-S. Juhn and L-M. Tseng, “Harmonic broadcasting for video-on-demand service,” IEEE Transactions on Broadcasting, vol. 43, no.3, Sep. 1997, pp. 268-271. [7 ]. Yang-Hua Chu, Sanjay G. Rao, and Hui Zhang, “A case for end system multicast,” in ACM SIGMETRICS, 2000, pp. 1–12. [8 ]. S. Banerjee, B. Bhattacharjee and C. Kommareddy, “Scalable Application Layer Multicast,” in Proceedings of ACM SIGCOM, Aug. 2002. [9 ]. Tran, D.A., Hua, K.A.; Do, T., “ZIGZAG: an efficient peer-to-peer scheme for media streaming,” in Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies, vol.2, Apr. 2003, pp.1283 – 1292. [10 ]. Reza Rejaie and Antonio Ortega, “PALS: Peer-to-Peer Adaptive Layered Streaming,” in NOSSDAV’03, Conference of the Network and Operating System Support for Digital Audio and Video, Jun. 2003. [11 ]. Subhabrata Sen, Jennifer Rexford, and Don Towsley,” Proxy prefix caching for multimedia streams,” in Proceedings of the Conference on Computer Communications, New York, Mar.1999. [12 ]. J. Almeida, D. Eager, and M. Vernon, “A hybrid caching strategy for streaming media files,” in Proceedings of SPIE/ACM Conference on Multimedia Computing and Networking, Jan.2001. [13 ]. D. Eager, M. Ferris, and M. Vernon, “Optimized regional caching for on-demand data delivery,” in Proceedings of Multimedia Computing and Networking, Jan. 1999. [14 ]. Simon Sheu, Kien A. Hua, W. Tavanapong, “Chaining: a generalized batching technique for video-on-demand systems,” in proceedings of IEEE International Conference on Multimedia Computing and Systems, 1997, pp.110 –117. [15 ]. Kien A. Hua, Simon Sheu, James Z. Wang, “Earthworm: A Network Memory Management Technique for Large-Scale Distributed Multimedia Applications,”in Proceedings of Sixteenth Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, 1997, pp. 990-997. [16 ]. Jen-Kai Chen and Jean-Lien C. Wu, “Adaptive Chaining Scheme for Distributed VOD Applications,” IEEE Transactions on Broadcasting, vol. 45, no. 2, Jun. 1999, pp. 215 - 224. [17 ]. Te-Chou Su, Shih-Yu Huang, Chen-Lung Chan, Jia-Shung Wang, “Optimal chaining and implementation for large scale multimedia streaming,” in Proceedings of IEEE International Conference on Multimedia and Expo.,vol.1, Aug. 2002, pp.385 – 388. [18 ]. Weiping Li, “Overview of fine granularity scalability in MPEG-4 video standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol.11, no.3, Mar.2001, pp.301 - 317. [19 ]. Wei-Hsiu Ma; Du, D.H.C., “Reducing bandwidth requirement for delivering video over wide area networks with proxy server,” in Proceedings of IEEE International Conference on Multimedia Computing and Systems, vol. 2, 2000, pp.991-994. [20 ]. Kangasharju, J., Hartanto, F.; Reisslein, M.; Ross, K.W., “Distributing layered encoded video through caches,” IEEE Transactions on Computers, vol.51, Jun. 2002, pp.622 – 636. [21 ]. Yi Cui, Klara Nahrstedt, “Layered peer to peer streaming,” International Workshop on Network and Operating System Support for Digital Audio and Video, 2003, pp.162 – 171. [22 ]. Wang, B., Sen, S. ,Adler, M. ,Towsley, D., “Optimal Proxy Cache Allocation for Efficient Streaming Media Distribution,” IEEE Transactions on Multimedia, vol.6, Apr. 2004, pp.366 – 374. [23 ]. R. Tewari, H. M. Vin, A. Dan, and D. Sitaram, “Resource based caching for Web servers,” in Proceedings of SPIE/ACM Conference on Multimedia Computing and Networking, Jan. 1998. [24 ]. Philippe de Cuetos, Keith W. Ross, “Adaptive Rate Control for Streaming Stored Fine­Grained Scalable Video,” in NOSSDAV’02, Conference of the Network and Operating System Support for Digital Audio and Video, May 2002.id NH0925392018 sid 914335 cfn 0 / id NH0925392019 auc 郭秉儒 tic 尋找所有在RNA上的莖幹及其應用 adc 唐傳義 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 23 kwc 催化性核 kwc � kwc ˙ kwc � kwc 核 kwc � kwc ˙ kwc � kwc 莖幹 kwc 催化 abc 這篇論文是討論一個程式的發展及其應用。這個程式是用在實驗室的一個名為tRNA計畫上以尋找ribozyme (催化性 RNA)可以嫁接上去的位置。RNA分子因為是單股核酸,而且其分子通常不會很長,因此可以捲繞成一定的分子構形,可能因而具有催化的能力;此種具有催化力的RNA,統稱之為ribozyme。這是一個核心程式。除了用在實驗室的計畫外,還有其他的用處。此程式對於stem的找法,還有對RNA的結構都有很不錯的應用。所使用的方法不同於以前的做法,之前的做法是找到最大的base pair或是計算最低自由能,對於我們所要的結果又不盡相同,我們所要做的事情是把所有的stem都產生出來,而非找到可能的二級結構,所以發展了一種新的方法,此種方法將之命名為stem finding方法。其步驟分為四部份,第一步會將RNA序列以三個字為一個小單元分開編碼後,做成一個word set(字集),第二步則是將相對應的字集做一次的pairing,所有相對應的word sets在每一個word上的字母都是共軛的,其中的字母A對應U、C對應G,以及另一種可能就是U對應G。第三步則是產生所有的3-unit stem candidates,第四步則是利用dynamic programming的方法將所有的3 unit-stem candidates結合成一個成長的stem。在完成演算法後,我們也用了已知的tRNA來測試結果,以及對於SARS冠狀病毒還有腸病毒71型的測試。此外,這個程式也可以用在folding RNA 2D或3D結構上的一種選擇(過濾)的方法。我們利用了一個簡單的想法解決了我們的問題,而這一個想法的延伸也可以解決其他的問題。在往後應該還可以有更多不同的想法來讓這個核心程式有更多的應用空間。 rf [1 ] T. Akutsu, Dynamic programming algorithm for RNA secondary structure prediction with pseudoknot, Discr. Appl. Math. 104 (2000) 45-62 [2 ] E. Rivas, S. Eddy, A dynamic programming algorithm for RNA structure prediction including pseudoknkt, Journal of Molecular Biology, 285(5) (1999) 2053-2068 [3 ] Fariza Taho, Manolo Gouy, Mireille Regnier, Automatic RNA secondary structure prediction with a comparative approach, Computer and Chemistry 26 (2002) 521-530 [4 ] Baharak Rastegari, Yinglei S. Zhao, Mohammad Safari, Jack Jia,, Linear Time Algorithm for Calculating the Free Energy of the RNA Secondary Structure Including Pseudoknots (VS other algorithms), Department of Computer Science University of British Columbia Vancouver, B.C., V6T 1Z4, Canada (2004) [5 ] Guo-Hui Lin, Bin Ma, Kaishong Zhang, Edit Distance between Two RNA Structures, ACM Press (2001) 211-220 [6 ] Richard C. T. Lee, Computational Biology, [7 ] D. S. Hirschberg. A linear space algorithm for computing maximal common subsequences. Comm. A.C.M. ( 1975) 18(6) p341-343 [8 ] D. R. Powell, L. Allison, T. I. Dix. A versatile divide and conquer technique for optimal string alignment. Information Processing Letter (1999) 70 p127-139.id NH0925392019 sid 914336 cfn 0 / id NH0925392020 auc 傅思為 tic 基於終止式理論的自動譜和弦系統 adc 張智星 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 44 kwc 和絃產生 kwc 終止式 kwc 和絃序列 kwc 有限機器 kwc 動態規劃 kwc 狀態機率 kwc 轉移機率 kwc 樂理 abc 隨著MIDI和音效卡音源技術的進步,音樂創作不再只是音樂家們的專利,但創作時所需的樂理知識卻仍為一般使用者在創作上的門檻。因此在未來,一個能結合樂理知識幫助使用者進行音樂創作的工具,便是音樂創作普及化的關鍵。本文所提之「和絃產生」正是如此目標的一個系統:為缺乏樂理知識的使用者自行創作的主旋律決定適合的「和絃序列」。 tc 中文摘要 i 英文摘要 (Abstract) ii 致謝 iii 目錄 iv 表目錄 vi 圖目錄 vii 1 介紹 1 1.1 背景 1 1.2 適用領域 2 1.3 系統流程 2 2 說明和演算法 4 2.1 系統架構 4 2.2 終止式 6 2.2.1 定義和說明 6 2.2.2 終止式的數學模型 7 2.2.3 演算法與實做 9 2.2.3.1 分類機制 10 2.2.3.2 模組G 12 2.2.3.3 模組C 15 2.3 動態規劃 16 2.3.1 動態規劃之設定 16 2.3.2 狀態機率 17 2.3.2.1 調性過濾器 17 2.3.2.2 狀態機率的統計 20 2.3.3 轉移機率 21 3 實驗 22 3.1 基本設定 22 3.1.1 實驗取樣 22 3.1.2 辨識率的計算 25 3.2 實驗一 26 3.3 實驗二 29 3.4 實驗三 32 3.5 實驗四 34 3.6 實驗五 36 3.7 實驗六 38 3.8 實驗七 40 4 總結 42 4.1 結論 42 4.2 未來工作 44 參考文獻 45 附錄:相關研究資料表 46rf [1 ] 林明輝,和聲精義與實用歌曲伴奏法,初版,高雄復文圖書出版社,高雄,西元一九九六年三月初版,ISBN 957-555-014-5。 [2 ] 李永剛,實用歌曲做法,九版,全音樂譜出版社有限公司,台北,西元二零零零年十月二十九日九版。 [3 ] 成田剛,鍵盤和聲的喜悅,盧紹洋 譯,五版,全音樂譜出版社有限公司,台北,西元二零零一年十月二十五日五版。 [4 ] 池內有次郎、長谷川良夫、石桁真禮生、松本民之助、島岡讓、柏木俊夫、丸田昭三、小林秀雄、三善晃、末吉保雄、佐藤真,和聲理論與實習I,共3卷,張邦彥 譯,十四版,全音樂譜出版社有限公司,台北,西元一九九七年九月二十日十四版,ISBN 555240186-7。 [5 ] Liu Chung Laung,離散數學,曹為實、曾海蒼 譯,二版,美商麥格羅.希爾國際股份有限公司,台北,一九九六年五月初版。 [6 ] Tim Hoffman、William P. Birmingham,A Constraint Satisfaction Approach To Tonal Harmonic Analysis,EECS, University of Michigan,Michigan USA,Master Degree,25 January 2000。 [7 ] Wen-Ni Cheng、Jyh-Shing Roger Jang,Chord Identification Based On Statistical Methods and Musical Theory,CS, Nation Tsing Hua University,Taipei Taiwan,Master Degree,20 June 2002。id NH0925392020 sid 914340 cfn 0 / id NH0925392021 auc 王俊傑 tic 在平面圖上尋找兩條不共點且長度有限制的路徑之改良演算法 adc 王炳豐 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 24 kwc 平面圖 kwc 無界限的區域 kwc 傳輸策略 kwc 路由器 kwc 可靠度 abc 令 G = (V, E) 為一個無向的平面圖 (undirected planar graph),每一個edge都有一個非負整數的長度 (length),(r1, s1) 和 (r2, s2)是兩組成對且相異的點.而這些點都跟無界限的區域 (unbounded face) 相鄰,最後再給另外兩個正整數b1, b2.令L = max{b1, b2}.在這篇論文中我們要探討的問題是如何在平面圖中尋找兩條點相異且長度有限制的路徑 (problem of finding two length-bounded vertex-disjoint paths in planar graphs),這個問題常常被應用在設計網路的傳輸策略 (routing strategy),一般來說,當我們傳輸兩個以上的封包時,我們不希望這些封包會同時傳給同一個路由器 (router),並且我們也不希望這些封包花太多的時間到達目的地.能不能找到這樣的傳輸路徑對網路的可靠度(reliability)是一個重要的因素. tc Abstract i Contents ii List of Figures iii List of Tables iv Chapter 1 Introduction 1 1.1 Problem Definition 1 1.2 Application 3 1.3 Preliminaries 4 1.4 Contribution 6 1.5 Related Work 6 Chapter 2 Holst and Pina’s Algorithm 11 Chapter 3 An Improved Algorithm 15 Chapter 4 Conclusion and Future Work 19 References 20rf [1 ] T. Bohman, A. M. Frieze, “Arc-disjoint Paths in Expander Digraphs,” SIAM Journal on Computing, vol. 32(2), pp. 326-344, 2003. [2 ] U. Brandes, G. Neyer and D. Wagner, “Edge-Disjoint Paths in Planar Graphs with Short Total Length,” Technical Report, Department of Computer and Information Science, University of Konstanz, 1996. [3 ] U. Brandes, D. Wagner, “A Linear Time Algorithm for the Arc Disjoint Menger Problem in Directed Planar Graphs,” Algorithmica, vol. 28(1), pp. 16-36, 2000. [4 ] A. Z. Broder, A. M. Frieze, S. Suen, E. Upfal, “An Efficient Algorithm for the Vertex-Disjoint Paths Problem in Random Graphs,” in Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 261-268, 1996. [5 ] A. Z. Broder, A. M. Frieze, S. Suen, E. Upfal, “Optimal Construction of Edge-Disjoint Paths in Random Graphs,” SIAM Journal on Computing, vol. 28(2), pp. 541-573, 1998. [6 ] W. T. Chan, F. Y. L. Chin, “Efficient Algorithms for Finding the Maximum Number of Disjoint Paths in Grids,” Journal of Algorithms, vol. 34(2), pp.337-369, 2000. [7 ] W. T. Chan, F. Y. L. Chin, H. F.Ting, “Escaping a Grid by Edge-Disjoint Paths,” Algorithmica, vol. 36(4), pp. 343-359, 2003. [8 ] C. Chekuri, S. Khanna, “Edge Disjoint Paths Revisited,” in Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.628-637, 2003. [9 ] T. Erlebach and K. Jansen, “The Maximum Edge-Disjoint Paths Problem in Bidirected Trees,” SIAM Journal on Discrete Mathematics, vol.14(3), pp. 326-355, 2001. [10 ] A. Frank, T. Ibaraki, H. Nagamochi, “Two Arc-Disjoint Paths in Eulerian Digraphs,” SIAM Journal on Discrete Mathematics, vol. 11(4), pp. 557-589, 1998. [11 ] A. M. Frieze, “Edge-Disjoint Paths in Expander Graphs,” SIAM Journal on Computing, vol. 30(6), pp.1790-1801, 2000. [12 ] J. S. Fu, G. H. Chen, D. R. Duh, “Node-disjoint Paths and Related Problems on Hierarchical Cubic Networks,” Networks, vol. 40(3), pp. 142-154, 2002. [13 ] Q. P. Gu, S. Peng, “Algorithms for Node Disjoint Paths in Incomplete Star Networks,” in Proceedings of the 1994 International Conference on Parallel and Distributed Systems, pp. 296-303. [14 ] Q.P. Gu, S. Peng, “An Efficient Algorithm for k-Pairwise Disjoint Paths in Star Graphs,” Information Processing Letters, vol. 67(6), pp. 283-287, 1998. [15 ] Qian-Ping Gu, Shietung Peng, “An Efficient Algorithm for the k-Pairwise Disjoint Paths Problem in Hypercubes,” Journal of Parallel Distributed Computing, vol. 60(6), pp. 764-774, 2000. [16 ] Q. P. Gu, H. Tamaki, “Routing a Permutation in the Hypercube by Two Sets of Edge Disjoint Paths,” Journal of Parallel Distributed Computing, vol. 44(2), pp. 147-152, 1997. [17 ] V. Guruswami, S. Khanna, R. Rajaraman, F. B. Shepherd, M. Yannakakis, “Near-Optimal Hardness Results and Approximation Algorithms for Edge-Disjoint Paths and Related Problems,” Journal of Computer and System Science, vol. 67(3), pp. 473-496, 2003. [18 ] H. V. D. Holst and J. C. D. Pina, “Length-Bounded Disjoint Paths in Planar Graphs,” Discrete Applied Mathematics, vol. 120, pp. 251-261, 2002. [19 ] S. Khuller, S. G.. Mitchell, V. V. Vazirani, “Processor Efficient Parallel Algorithms for the Two Disjoint Paths Problem and for Finding a Kuratowski Homeomorph,” SIAM Journal on Computing, vol. 21(3), pp. 486-506, 1992. [20 ] K. Kaneko, Y. Suzuki, “Node-to-Node Internally Disjoint Paths Problem in Bubble-Sort Graphs,” in Proceedings of the 10th IEEE Pacific Rim International Symposium on Dependable Computing, pp. 173-182, 2004. [21 ] J. M. Kleinberg, É. Tardos, “Disjoint Paths in Densely Embedded Graphs,” in Proceedings of the 36th Annual Symposium on Foundations of Computer Science, pp. 52-61, 1995. [22 ] J. M. Kleinberg, E. Tardos, “Approximations for the Disjoint Paths Problem in High-Diameter Planar Networks,” Journal of Computer and System Science, vol. 57(1), pp. 61-73, 1998. [23 ] E. Korach, A. Tal, “General Vertex Disjoint Paths in Series-Parallel Graphs,” Discrete Applied Mathematics, vol. 41(2), pp. 147-164, 1993. [24 ] C. N. Lai, G. H. Chen, D. R. Duh, “Constructing One-to-Many Disjoint Paths in Folded Hypercubes,” IEEE Transactions on Computers, vol. 51(1), pp. 33-45, 2002. [25 ] C. Li, S. T. McCormick, D. Simchi-Levi, “The Complexity of Finding Paths with Min-Max Objective Function,” Discrete Applied Mathematics, vol. 26 pp. 105-115, 1990. [26 ] M. Middendorf, F. Pfeiffer, “On the complexity of the disjoint paths problems,” Combinatorica, vol. 13(1), pp. 97-107, 1993. [27 ] T. Nishizeki, J. Vygen, X. Zhou, “The edge-disjoint paths problem is NP-complete for series-parallel graphs,” Discrete Applied Mathematics, vol. 115(1-3), pp. 177-186, 2001. [28 ] H. Ripphausen-Lipa, D. Wagner and K. Weihe, “The Vertex-Disjoint Menger Problem in Planar Graphs,” SIAM Journal on Computing, vol. 26, pp. 331-349, 1997. [29 ] A. Schrijver, “Finding k Disjoint Paths in a Directed Planar Graph,” SIAM Journal on Computing, vol. 23, pp. 780-788, 1994. [30 ] A. Slivkins, “Parameterized Tractability of Edge-Disjoint Paths on Directed Acyclic Graphs,” in Proceedings of the 11th Annual European Symposium on Algorithms, pp. 482-493, 2003. [31 ] M. Y. Su, H. L. Huang, G.. H. Chen, D. R. Duh, “Node-Disjoint paths in incomplete WK-recursive networks,” Parallel Computing, vol. 26(13-14):, pp. 1925-1944, 2000. [32 ] J. W. Suurballe and R.E. Tarjan, “A Quick Method for Finding Shortest Pairs of Disjoint Paths,” Networks, vol 14, pp. 325-336, 1984. [33 ] K. R. Varadarajan, G. Venkataraman, “Graph decomposition and a greedy algorithm for edge-disjoint paths,” in Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 379-380, 2004. [34 ] J. Vygen, “NP-completeness of some edge-disjoint paths problems,” Discrete Applied Mathematics, vol. 61, pp.83-90, 1995. [35 ] D. Wagner and K. Weihe, “A Linear-Time Algorithm for Edge-Disjoint Paths in Planar Graphs,” Combinatorica, vol 15 (1), pp. 135-150, 1995. [36 ] K. Weihe, ”Edge-Disjoint (s,t)-Paths in Undirected Planar Graphs in Linear Time,” Journal of Algorithms, vol. 23, pp. 121-138, 1997. [37 ] H. Yinnone, “Maximum Number of Disjoint Paths Connecting Specified Terminals in a Graph,” Discrete Applied Mathematics, vol. 55(2), pp. 183-195, 1994. [38 ] X. Zhou, S. Tamura, T. Nishizeki, “Finding Edge-Disjoint Paths in Partial k-Trees,” Algorithmica, vol. 26(1), pp. 3-30, 2000.id NH0925392021 sid 914341 cfn 0 / id NH0925392022 auc 柯建潭 tic 在無線網路環境下有效的進行遠端物件呼叫之研究 adc 李政崑 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 79 kwc 物件導向 kwc 分散式物件模型 kwc 分散式系統 kwc CORBA kwc Java RMI kwc .NET Remoting kwc JavaBT kwc 藍芽 kwc .NET Compact Framework kwc 遠端物件呼叫 abc 在現今以物件導向為主的程式設計環境底下,分散式物件模型已經被證明是設計大型分散式系統有效率且穩定可靠的一種方式。目前在設計分散式系統時比較受歡迎的物件導向程式設計平台共有CORBA、Java RMI以及.NET Remoting等三種。雖然在有線的網路環境底下,分散式物件模型已經漸趨成熟可靠,但是當我們將這些既有的分散式物件模型運用到無線網路的環境下卻遇到了許多嚴厲的挑戰及困難,造成這些困難的主要原因包括有以下幾項: rf [1 ] Support and optimization of Java RMI over Bluetooth environments, by P. C. Wey, J. S. Chen, C. W. Chen, Jenq Kuen Lee, accepted, Concurrency and Computation: Practice and Experience, Wiley (Special Issue for Java Grande-ISCOPE 2002). [2 ] Efficient Support of Java RMI over Heterogeneous Wireless Networks, Cheng-Wei Chen, Chung-Kai Chen, Jyh-Cheng Chen, Chien-Tan Ko, Jenq-Kuen Lee, Hong-Wei Lin, Wang-Jer Wu, International Conference on Communications (ICC), Paris, June 2004. [3 ] Specification and Architecture Supports for Component Adaptations on Distributed Environments, Chung-Kai Chen, Cheng-Wei Chen, Jenq Kuen Lee, IPDPS 2004, USA, April 2004. [4 ] Efficient Supports of .NET Remoting over Heterogeneous Wireless Networks, Jenq Kuen Lee, Research Proposal Award by Microsoft Research award for Embedded Systems, 2003. [5 ] HCI USB Transport Layer, Bluetooth Specification Version 1.1, February 22 2001, Part H:4, pages 781-796. [6 ] Jeff Ferguson, Brian Patterson, Pierre Boutquin, C# Bible, John Wiley & Sons, June 15, 2002. [7 ] Richard Blum, C# Network Programming, Sybex, November 26, 2002. [8 ] Srinivasa Sivakumar, Ajit Mungale, Andrew Krowczyk, Vinod Kumar, Christian Nagel, Nauman Laghari, Tim Parker, Professional .NET Network Programming, Wrox Press Inc, October 1, 2002. [9 ] Jim Ohlund , Lance Olson, Anthony Jones, Network Programming for the Microsoft .NET Framework, Microsoft Press,1st edition, September 24, 2003. [10 ] Steven Makofsky, Pocket PC Network Programming, 1st edition, Addison-Wesley Pub Co, 1st edition, July 7, 2003. [11 ] Jennifer Bray (Technical Editor), Brian Senese, Gordon McNutt, Bill Munday, David Kammer, Bluetooth Application Developer's Guide, Syngress, December 2001, page 41. [12 ] Ingo Rammer, Advanced .NET Remoting, APress, April 5, 2002, page 10. [13 ] Kim Williams, James Naftel, Scott McLean, Microsoft .NET Remoting, Microsoft Press, 1st edition, September 25, 2002, pages 23-47. [14 ] Douglas Boling, Programming Microsoft Windows CE .NET, Microsoft Press, 3rd Edition, June 25, 2003, pages 692-713. [15 ] Andy Wigley, Mark Sutton, Rory MacLoed, Robert Burbidge, Stephen Wheelwright, Microsoft .NET Compact Framework, Microsoft Press, 1st edition, January 22, 2003, pages 695-742. [16 ] F. Breg and C. D. Polychronopoulos. Java virtual machine support for object serialization. In Java Grande/ISOPE'01, pages 173--180, 2001. [17 ] Michael Philippsen and Bernhard Haumacher, "More Efficient Object Serialization", Proc. of IEEE International Conference on Parallel and Distributed Processing, San Juan, Puerto Rico, USA, April 1999, pp719-731. [18 ] M. Philippsen and B. Haumacher. Bandwidth, Latency, and other Problems of RMI and Serialization. JavaGrande report, May 1998.id NH0925392022 sid 914345 cfn 0 / id NH0925392023 auc 林志祥 tic 在資料串流環境中探勘具時間性滑動窗限制之頻繁項目集 adc 陳良弼 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 48 kwc 頻繁項目集 kwc 資料串流 kwc 資料探勘 abc 頻繁項目集(Frequent Itemset)的探勘在最近的十年中被廣泛的討論及應用。過去的頻繁項目集探勘的研究所針對的資料通常為靜態交易資料庫。然而,隨著資料串流(Data Stream)的重要性與日俱增,如何將傳統的頻繁項目集探勘問題應用於此新興的資料串流環境(Data Stream Environment)中,便成為了一個十分有趣且重要的議題。 tc Contents Abstract I Acknowledgements II Contents III List of Figures IV List of Tables VI 1. Introduction 1 2. Preliminaries and System Framework 9 2-1 Preliminaries 9 2-2 System Framework 12 3. Derive Approximate Count of Itmesets 14 3-1 Discounting Table 14 3-2 Discounting Table With Merging Loss 17 4. Mining Algorithms and Proofs of Guarantees 22 4-1 Algorithms for frequent itemsets mining over data streams 22 4-2 Proof of no false dismissal guarantee 30 4-3 Proof of no false alarm guarantee 32 5. Experiments 35 5-1 Experiment Set-Up 35 5-2 Experiment Results 36 6. Conclusion and Future Work 45 Reference 46rf [AS94 ] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” Proceeding of International Conference on Very Large Data Bases (VLDB), 1994, 487-499 [AS95 ] R. Agrawal and R. Srikant, “Mining sequential patterns,” Proceeding of International Conference on Data Engineering (ICDE), 1995, 3-14 [BBD02 ] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and Issues in Data Stream Systems,” Proceeding of ACM Symposium on Principles of Database Systems (Invited Paper). 2002 [CCF02 ] M. Charikar, K. Chen and M. Farach-Colton, “Finding Frequent Items in Data Streams,” Proceeding of ICALP, 2002 [CHN96 ] D. Cheung, J. Han, V. Ng and C.Y. Wong, '' Maintenance of Discovered Association Rules in Large Databases: An Incremental Updating Technique,'' Proceeding of International Conference on Data Engineering (ICDE),1996 [CL03 ] J. H. Chang and W. S. Lee, “Finding Recent Frequent Itemsets Adaptively over Online Data Streams,” Proceeding of ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), 2003 [CM03 ] G. Cormode and S. Muthukrishnan, “What's Hot and What's Not: Tracking Most Frequent Items Dynamically,” Proceeding of ACM Symposium on Principles of Database Systems (PODS), 2003, 296-306. [CWC04 ] D. Y. Chiu, Y. H. Wu and Arbee L. P. Chen, “An efficient algorithm for mining frequent sequences by a new strategy without support counting,” Proceeding of International Conference on Data Engineering (ICDE), 2004 [DH00 ] P. Domingos and G. Hulten, “Mining high-speed data streams,” Proceeding of ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), 2000, 71-80 [DLM02 ] E. Demaine, A.LopezOrtiz and J. I. Munro, “Frequency estimation of internet packet streams with limited space,” Proceeding of Annual European Symposium on Algorithms, 2002 [GGR02 ] M. Garofalakis, J. Gehrke, R. Rastogi, “Ouerying and mining data streams: you only get one look,” Proceeding of International Conference on Very Large Data Bases (VLDB), 2002 [GHP02 ] C. Giannella, J. Han, J. Pei, X. Yan, and P. S. Yu, “Mining Frequent Patterns in Data Streams at Multiple Time Granularities,” Proceeding of NSF Workshop on Next Generation Data Mining, 2002, 191-212 [GMM00 ] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan, “Clustering Data Streams,” Proceeding of Annual IEEE Symposium on Foundations of Computer Science, 2000, 359-366 [GO03 ] L. Golab and M. Ozsu. “Issues in Data Stream Management,” In SIGMOD Record, Volume 32, Number 2, June 2003, 5-14 [HPY00 ] J. Han, J. Pei and Y. Yin, “Mining frequent patterns without candidate generation,” Proceeding of ACM International Conference on Management of Data (SIGMOD), 2000, 1-12 [HSD01 ] G. Hulten, L. Spencer, and P. Domingos, “Mining time changing data streams,” Proceeding of ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), 2001 [JQS03 ] C. Jin, W. Qian, C. Sha, J. X. Yu and A. Zhou, “Dynamically Maintaining Frequent Items Over A Data Stream,” Proceeding of ACM International Conference on Information and Knowledge Management (CIKM), 2003 [KPS03 ] R. M. Karp, C. H. Papadimitriou and S. Shenker, “A Simple Algorithm for Finding Frequent Elements in Streams and Bags,” Proceeding of the ACM Transactions on Database Systems (TODS), 2003 [LLC01 ] C. Lee, C. Lin and M. Chen, “Sliding-window filtering: An efficient algorithm for incremental mining,” Proceeding of ACM International Conference on Information and Knowledge Management (CIKM), 2001, 263-270 [MM02 ] G. Manku and R. Motwani, “Approximate frequency counts over data streams,” Proceeding of International Conference on Very Large Data Bases (VLDB), 2002, 346-357 [TCY03 ] W. Teng, M. Chen and P. Yu, “A Regression-Based Temporal Pattern Mining Scheme for Data Streams,” Proceeding of International Conference on Very Large Data Bases (VLDB) 2003 [TLH03 ] K. Tung, H. Lu, J. Han and L. Feng, “Efficient mining of intertranscation association rules,” In IEEE Transactions on Knowledge and Data Engineering (TKDE), 2003 [ZS02 ] Y. Zhu and D. Shasha, “StatStream: Statistical Monitoring of Thousands of Data Streams in Real Time,” Proceeding of International Conference on Very Large Data Bases (VLDB), 2002. 358-369id NH0925392023 sid 914346 cfn 0 / id NH0925392024 auc 徐葦棻 tic 在即時嵌入式系統中節省快閃記憶體能源消耗之線上排程演算法 adc 石維寬 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 42 kwc 線上排程演算法 kwc 快閃記憶體 kwc 非精準式計算 abc 目前市面上有越來越多的民生消費性產品,例如筆記型電腦、PDA、手機等皆採用電池來供電。消費者在購買這些產品時考量的因素除了產品的美觀、實用性之外,產品的待機時間也是一項重要的考量因素。因此隨身設備的省電設計是極重要的一環。 tc 中文摘要 1 目錄 4 圖次 5 表次 6 第一章 緒論 7 1.1 背景簡介 7 1.2 文獻探討 9 1.2.1 DVS Algorithms 9 1.2.2 Imprecise Computation Algorithms 10 1.3 論文架構 11 第二章 快閃記憶體性質 13 2.1 序言 13 2.2 NAND快閃記憶體 13 2.3 Model Translation 14 2.4 Chang’s algorithm 14 第三章 節省能源消耗演算法 17 3.1 序言 17 3.2 Preliminaries 17 3.2.1 System Model 17 3.2.2 View Point from Imprecise Computation 18 3.2.3 Scheduling the Task 19 3.3 Energy-Conservation Algorithms 21 3.3.1 最早符合演算法 (First-fit Algorithm) 21 3.3.2 最佳符合演算法 (Best-fit Algorithm) 26 第四章 實驗效能驗證 32 4.1  實驗環境與參數描述 32 4.2  實驗計畫與結果 33 4.2.1 Simulation with different mean interarrival times 33 4.2.2 Simulation with same task set and different interval 36 第五章 結論 39 5.1  總結 39 5.2  未來展望 39 參考文獻 41rf [1 ] M.Weiser, B.Welch, A. Demers, and S. Shenker. “Scheduling for reduced CPU energy”. In USENIX Symposium on Operating Systems Design and Implementation, pp. 13–23, 1994. [2 ] I. Hong, G. Qu, M. Potkonjak, and M. Srivastavas. “Synthesis techniques for low-power hard real-time systems on variable voltage processors”. In Proc. IEEE Real-Time Systems Symposium, pp. 178–187, 1998. [3 ] P. Pillai and K. G. Shin, "Real-time dynamic voltage scaling for low-power embedded operating systems". In Proc. ACM Symposium on Operating Systems Principles, pp. 89–102, 2001. [4 ] Jinfeng Liu, Pai H. Chou, Nader Bagherzadeh “Power-aware Scheduling for Embedded Systems under Min/Max power and Timing Constraints”. [5 ] A. Manzak and C. Chakrabarti, “Variable voltage task scheduling for minimizing energy”. In Proc. Int. Symp. Low Power Design, pp. 279-282, 2001. [6 ] A. Manzak and C. Chakrabarti, “Variable voltage task scheduling for minimizing energy or minimizing power”. In Proc. ICASSP, vol 6. pp. 3239-42, 2000. [7 ] F. Yao, A. Demers, and S. Shenker. “A scheduling model for reduced CPU energy”. In IEEE Annual Foundations of Computer Science, pp. 374–382, 1995. [8 ] T. Ishihara and H. Yasuura. “Voltage scheduling problem for dynamically variable voltage processors”, In Proc. International Symposium on Low Power Electronics and Design, pp. 197–202, 1998. [9 ] Yi-Ping You, Ching-Ren Lee, Jenq-Kuen Lee, and Wei-Kuan Shih, “Real-time task scheduling for dynamically variable voltage processors” . In IEEE workshop on power managements for realtime and embedded systems, 2001. [10 ] Inki Hong, Miodrag Potkonjak, Mani B. Srivastava “On-line scheduling of hard real-time tasks on variable voltage processor”. In Proc. of IEEE/ACM international conference on Computer-aided design, pp. 653 - 656, 1998. [11 ] Wei-Kuan Shih, Jane W. S. Liu, "Algorithms for Scheduling Imprecise Computations with Timing Constraints to Minimize Maximum Error". In IEEE Trans. on Computers, Vol. 44, No. 3, pp. 466-471, 1995. [12 ] Wei-Kuan Shih, Jane W. S. Liu, "On-line Algorithms for Scheduling Imprecise Computations". In Proceedings of the Real-Time Systems Symposium, pp. 280-289, 1992. [13 ] Wei-Kuan Shih, Jane W. S. Liu, "On-line Scheduling of Imprecise Computations to minimize error”. In SIAM Journal on Computing, Vol. 25, pp. 1105-1121, 1996. [14 ] Kevin I-J. Ho, Joseph Y-T. Leung, W-D Wei, “Scheduling imprecise computation tasks with 0/1 constraint”. In Discrete Applied Mathematics, pp.117-132, 1997 [15 ] Kun-Ming Yu, “Algorithms for Imprecise Computation tasks with 0/1 constraints”. In Journal of Information Science and Engineering, Vol.17 No.1, pp.73-83, 2001. [16 ] Li-Ping Chang, “Flash memory storage systems for embedded systems”, IEEE Conference on Consumer Electronic , 2001. [17 ] Liu, Jane W. S., Kwei-Jay Lin, Wei-Kuan Shih, A. C. Yu, J.Y. Chung and W.Zhao, "Algorithms for Scheduling Imprecise Computations", Computer magazine, pp. 58-68, 1991.id NH0925392024 sid 914348 cfn 0 / id NH0925392025 auc 鄭昶延 tic 串流資料上快速式樣偵測技術 adc 許奮輝 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 30 kwc 串流資料 kwc 數位污染 kwc 字串比對 kwc 入侵偵測 kwc 決策樹 abc 由於網際網路的盛行,使得我們能很容易取得各種文件(包含XML格式化的文件及一般未格式化的普通文件)以及接收多媒體影音串流(例如聲音及影像),這使可得到的資料量大增。資料的來源並不缺乏,反而是必須花費很多時間從眾多的資料中找到我們真正想要的。另外,像是網路入侵偵測系統(Network intrusion detection system, NIDS)會以入侵的特徵(signature)去比對每個被偵測的封包(package),偵測速度和精確性成了網路入侵偵測系統效能的重要指標。為了從這龐大的串流資料中有效率的找尋到資料或在文件內找到指定的字串,我們提出一種有別於傳統搜尋的方式,即是以樹狀的資料結構去搜尋我們想要的資料或字串。藉由將查詢字串的各個位置的字元分類再合併成一個搜尋樹,我們將它命名為C-樹(Comparison tree),成為搜尋時的索引。依據C-樹,我們可以快速的將不符合的資料屏除,節省不必要的比較時間。由於以C-樹作索引的搜尋方法會在最少的比較次數將不會出現的可能符合位置(possible matching shift)去除,藉由這種平行比較方式來減少比較時間。實驗顯示,若以C-樹作索引會比現存的方法來得快。這種比較方式在對長字串做搜尋時,加快的效果尤其明顯。我們相信未來將C-樹整合於需要大量的搜尋時間應用(如病毒特徵的掃描以及網路入侵模式的偵測)內,可以有效而快速的得到搜尋結果。 tc Chapter 1 Introduction 1 Chapter 2 Related Work 5 Chapter 3 The proposed Solution: Comparison Tree (CT) 8 3.1 Construction of Comparison Tree 8 3.2 Exact String Matching Strategy 14 Chapter 4 Performance Study 17 4.1 String Matching in Speech 17 4.2 String Matching in DNA String 19 4.3 Realistic Search Time for String Matching 22 Chapter 5 Discussion and Future Work 23 5.1 Shortage of CT 23 5.2 Applications of CT 24 Chapter 6 Concluding Remark 26 Bibliography 27rf [1 ] J. Aach, "Aligning gene expression time series with time warping algorithms," http://arep.med.harvard.edu/timewarp/supplement.htm, June 11, 2001. [2 ] A. Apostolico and R. Giancarlo, "The Boyer-Moore-Galil string searching strategies revisited," SIAM Journal on Computing, 15(1):98-105, 1992. [3 ] R. S. Boyer and J. S. Moore, "A fast string searching algorithm," Communications of the ACM, 20(10):762-772, 1977. [4 ] C. Charras, T. Lecroq, and J. D. Pehoushek, "A very fast string matching algorithm for small alphabets and long patterns," in Proc. of 9th Annual Symp. on Combinatorial Pattern Matching, pp. 55-64, 1998. [5 ] C. J. Coit, S. Staniford, and J. McAlerney, "Towards Faster Pattern Matching for Intrusion Detection, or Exceeding the Speed of Snort," in Proc. of the 2nd DARPA Information Survivability Conference and Exposition (DISCEX II), June, 2002. [6 ] G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan, "Comparing Data Streams Using Hamming Norms (How to Zero In)," in Proc. of VLDB, Hong Kong, China, August 20-23, 2002. [7 ] M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski, and W. Rytter, "Speeding up Two String Matching Algorithms," Algorithmica, 12(4/5):247-267, 1994. [8 ] M. Crochemore, C. Hancart, and T. Lecroq, "A Unifying Look at the Apostolico-Giancarlo String Matching Algorithm," Journal of Discrete Algorithms, 2000. [9 ] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological sequence analysis: Cambridge University Press, 1998. [10 ] M. Fisk and G. Varghese, "Fast Content-Based Packet Handling for Intrusion Detection," University of California San Diego, TR CS2001-0670, May, 2001. [11 ] G. R. Ganger, G. Economou, and S. M. Bielski, "Finding and containing enemies within the walls with self-securing network interfaces," Carnegie Mellon University, TR CMU-CS-03-109, January, 2003. [12 ] D. Gusfiled, Algorithms on Strings, Trees, and Sequences: Cambridge University Press, 1997. [13 ] J. Han and M. Kamber, Data Mining: Concepts and Techniques, Mogan Kaufmann Publishers, 2001. [14 ] M. Hirao, S. Inenaga, A. Shinohara, M. Takeda, and S. Arikawa, "A Practical Algorithm to Find the Best Episode Patterns, “Lecture Notes in Computer Science,” 2226:435-440, 2001. [15 ] E. Hunt, "The Suffix Sequoia Index for Approximate String Matching," Department of Computing Science, University of Glosgow, Glasgow, UK, TR 2003-135, March, 2003. [16 ] T. Kahveci and A. K. Singh, "An Efficient Index Structure for String Databases," in Proc. of VLDB, Roma, Italy, pp. 351-360, 2001. [17 ] W. J. Kent, "BLAT-The BLAST-Like Alignment Tool," Genome Research, 12(4):656-664, April, 2002. [18 ] S. Kim and Y. Kim, "A Fast Multiple String-Pattern Matching Algorithm," in Proc. of the 17th AoM/IAoM Conference on Computer Science, 1999. [19 ] D. E. Knuth, J. H. Morris, and V. R. Pratt, "Fast pattern matching in strings," SIAM Journal on Computing, 6(1):323-350, 1977. [20 ] T. Lecroq, "A Variant on the Boyer-Moore Algorithm," Theoretical Computer Science, 92(1):119-144, 1992. [21 ] Y.-S. Moon, K.-Y. Whang, and W.-S. Han, "General Match: A Subsequence Matching Method in Time-Series Databases Based on Generalized Windows," in Proc. of ACM SIGMOD, Madison, Wisconsin, pp. 382-393, June 3-6, 2002. [22 ] Y.-S. Moon, K.-Y. Whang, and W.-K. Loh, "Duality-Based Subsequence Matching in Time-Series Databases," in Proc. of IEEE Data Engineering, Heidelberg, Germany, pp. 263-272, April 2-6, 2001. [23 ] D. Moore, C. Shannon, G. M. Voelker, and S. Savage, "Internet Quarantine: Requirements for Containing Self-Propagating Code," in Proc. of IEEE INFOCOM, San Francisco, USA, March, 2003. [24 ] S. H. Mueller, "Fight Spam on the Internet!," http://spam.abuse.net/, 2003. [25 ] G. Navarro and M. Raffinot, "Compact DFA Representation for Fast Regular Expression Search," in Proc. of Workshop on Algorithm Engineering (WAE'01), LNCS 2141, pp. 1-12, 2001. [26 ] Z. Ning, A. J. Cox, and J. C. Mullikin, "SSAHA: A Fast Search Method for Large DNA Databases," Genome Research, 11(10):1725-1729, October, 2001. [27 ] O. Ozturk and H. Ferhatosmanoglu, "Effective Indexing and Filtering for Similarity Search in Large Biosequence Databases," in Proc. of IEEE Sym. on BioInformatics and BioEngineering, Maryland, pp. 359-366, March, 2003. [28 ] Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara, T. Shinohara, and S. Arikawa, "Speeding Up Pattern Matching by Text Compression," in Proc. of the 4th Italian Conference on Algorithms and Complexity, Italy, pp. 306-315, 2000. [29 ] D. M. Sunday, "A Very Fast Substring Search Algorithm," Comm. of the ACM, 33(8):132-142, 1990. [30 ] K. Thompson, "Regular Expression Search Algorithm," Comm. of the ACM, 11(6):419-422, 1968. [31 ] S. Wu, U. Manber, and E. W. Myers, "A Subquadratic Algorithm for Approximate Regular Expression Matching," Journal of Algorithms, 19(3):346-360, 1995. [32 ] R. F. Zhu and T. Takaoka, "On Improving the Average Cast of the Boyer-Moore String Matching Algorithm," Journal of Information Processing, 10(3):173-177, 1987. [33 ] Y. Zhu and D. Shasha, "StatStream: Statistical Monitoring of Thousands of Data Streams in Real Time," in Proc. of VLDB, Hong Kong, China, August 20-23, 2002.id NH0925392025 sid 914352 cfn 0 / id NH0925392026 auc 李建緯 tic 運用動態臨界值且可抵抗串連攻擊的多頻帶視訊浮水印 adc 許秋婷 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 63 kwc 浮水印 kwc 動態臨界值 kwc 串連攻擊 kwc 多頻帶 kwc 視訊 abc 中文摘要 rf REFERENCES [1 ] K. Su, D. Kundur, and D. Hatzinakos, “Statistical Invisibility for Collusion-resistant Digital Video Watermarking–PartⅠ: Theoretical considerations,” http://ee.tamu.edu/~deepa/pdf/kundur1.pdf. [2 ] K. Su, D. Kundur, and D. Hatzinakos, “Statistical Invisibility for Collusion-resistant Digital Video Watermarking–PartⅡ: A Novel Approach,” http://ee.tamu.edu/~deepa/pdf/kundur2.pdf. [3 ] C. Harris, and M. Stephen, "A combined corner and edge detector," Proc. Of 4th Alvey Vision Conf., pp. 147-151, Aug. 1988. [4 ] D. Simitopoulos, D. Koutsonanos, and M. G. Strintzis, “Robust Image Watermarking Based on Generalized Radon Transformations,” IEEE Trans. Circuits and Systems for Video Technology, vol. 13, no.8, pp.732-745, Aug. 2003. [5 ] M. Barni, F. Bartolini, and A. Piva, “Multichannel Watermarking of Color Images,” IEEE Trans. Circuits and Systems for Video Technology, vol. 12, no. 3, pp. 142-156, Mar. 2002. [6 ] M. Barni, F. Bartolini, V. Cappellini, and A. Piva, “A DCT-domain system for robust image watermarking,” Signal Processing, vol. 66, no. 3, pp. 357-372, May 1998. [7 ] I. J. Cox, M. L. Miller, and J. A. Bloom, Digital Watermarking, Morgan Kaufmann Publisher, 2001. [8 ] I. J. Cox, J. Killian, T. Leighton, and T. Shamoon, “Secure spread spectrum watermarking for multimedia,” IEEE Trans. Image Processing, vol. 6, no. 12, pp. 1673-1687, Dec. 1997. [9 ] E. T. Lin, and E. J. Delp, “Temporal synchronization in video watermarking,” Security and Watermarking of Multimedia Contents Ⅳ, Proc. SPIE, vol. 4675, pp. 478-490, Apr. 2002. [10 ] K. Su, D. Kundur, and D. Hatzinakos, “A novel approach to collusion-resistant video watermarking,” Security and Watermarking of Multimedia Contents Ⅳ, Proc. SPIE, vol. 4675, pp. 491-502, Jan. 2002. [11 ] F. Deguillaume, G. Csuka, and T. Pun, “Countermeasures for unintentional and intentional video watermarking attacks,” Security and Watermarking of Multimedia Contents Ⅱ, Proc. SPIE, vol. 3971, pp. 346-357, Jan. 2000. [12 ] F. Hartung, and B. Girod, “Watermarking of Uncompressed and Compressed Video,” Signal Processing, vol. 66, pp. 283-301, 1998. [13 ] Mitchell D. Swanson, Bin Zhu, and Ahmed T. Tewfik, “Multiresolution scene-based video watermarking using perceptual models,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 4, pp. 540-550, May 1998. [14 ] R. C. Gonzalez, and R. E. Woods, Digital Image Processing 2nd, Tom Robbins Publisher, 2001. [15 ] G. Doërr, and J.L. Dugelay, “A guide tour of video watermarking,” Signal Processing: Image Communication, vol. 18, no. 4, pp. 263-282, Apr. 2003. [16 ] D. Kundur, and D. Hatzinakos, “A robust digital image watermarking method using wavelet-based fusion,” in Proc. IEEE Internet. Conf. Image Processing ’97, pp. 544-547, Oct. 1997. [17 ] Brian Chen and Gregory W. Wornell, “Quantization Index Modulation Methods for Digital Watermarking and Information Embedding of Multimedia,” Journal of VLSI signal processing, vol. 27, pp. 7-33, 2001. [18 ] A. M. Alattar, E. T. Lin, and M. U. Celik, “Digital Watermarking of Low Bit-Rate Advanced Simple Profile MPEG-4 Compressed Video,” IEEE Trans. Circuit and System for Video Technology, vol. 13, no.8, pp.787-800, Aug. 2003. [19 ] J. R. Hernandez and F. Perez-Gonzalez, “Statistical analysis of watermarking schemes for copyright protection of images,” Proc. IEEE, vol. 87, pp. 1142-1143, Jul. 1999.id NH0925392026 sid 914353 cfn 0 / id NH0925392027 auc 沈家本 tic 利用支配尋找二元樹上的最大共同子樹 adc 唐傳義 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 19 kwc 最大共同子樹 kwc 支配 kwc 範圍搜尋樹 kwc 樹 abc 演化樹是種有根的且葉子有標號的樹,而對於這樹中的每一個內部節點,它有兩個以上的孩子。在計算生物學上,對於給定的一群物種建構一棵演化樹是基本而實在的工作。很不幸地,不同的演算法往往產生不同的演化樹,而即使對於相同的一群物種,不同的研究也有不同的演化結果。因此,如何在這些不同的演化樹上去找到它們的一致性變得非常重要且迫切了。在本篇論文中,我們把焦點放在一系列的一致性問題中最讓人感興趣的一個:尋找最大共同子樹問題(the maximum agreement subtree problem)。 rf [1 ] C.R. Finden and A.D. Gordon, ”Obtaining common pruned trees”, J. Classification, Vol. 2, 1985, pp. 255-276. [2 ] A. Amir and D. Keselman, “Maximum agreement subtree in a set of evolutionary trees: metrics and efficient algorithms,” SIAM J. Comput. , Vol. 26, 1997, pp.1656-1669 [3 ] D. Bryant, “Hunting for trees, building trees and comparing trees: theory and methods in phylogenetic analysis”, Ph. D. thesis, Dept. Math., University of Canterbury, 1997, pp.117-182 [4 ] R. Cole, M. Farach, R. Hariharan, T. Przytycka, and M. Thorup, “An algorithm for the maximum agreement subtree problem for binary trees,” SIAM J. Comput, Vol.30, 2000, PP. 1385-1404 [5 ] M. Farach, T. Przytycka, and M. Thorup, “The maximum agreement subtree problem for binary trees,” in Proceedings of the 2nd European Symposium on Algorithms, Corfu, Greece, 1995, Lecture Notes in Comput. Sci. 979, SpringerVerlag, New York, 1995, pp.381-393. [6 ] M. Farach, T. Przytycka, and M. Thorup, “On the agreement of many trees,” Information Processing Letters, Vol.55, 1995, pp.297-301 [7 ] M. Farach and M. Thorup, “Fast comparison of evolutionary trees,” Inform. and Comput., Vol.123, 1995, pp.29-37. [8 ] M. Farach and M. Thorup, “Sparse dynamic programming for evolutionary tree comarison,” SIAM J. Comput., Vol.26, 1997, pp.210-230. [9 ] M.L. Fredaman, “Two applications of a probabilistic search technique: Sorting X+Y and building balanced search trees,” in Proceedings of the 7th ACM Symposium on the Theory of Computing, ACM, New York, 1975, pp.240-244. [10 ] M. Mehlhorn, “A best possible bound for the weighted path length of binary search trees,” SIAM J. Comput., Vol.6, 1977, pp.235-239. [11 ] E. Kubicka, G. Kubicki, and F.R. McMorris, “An algorithm to find agreement subtrees,” J. Classification, Vol.12, 1995, pp.91-100. [12 ] M. Steel and T. Warnow, “Kaikoura tree theorems: Computing the maximum agreement subtree,” Information Processing Letters, Vol.48, 1993, pp.77-82. [13 ] G. S. Lueker, “A data structure for Orthogonal Range Queries,” Proceedings of the 19th Annual IEEE Symposium on Foundations of Computer Science, 1978, pp. 28-34. [14 ] K. Mehlhorn, Data structures and Algorithms 3. Multi-dimensional Searching and Computational Geometry, Springer, Berline, Heidelberg, New York, 1984 [15 ] Maw-Shang Chang, Ling-Ju Hung, “Range Search Trees and the Maximum Agreement Subtree Problem on Binary Trees,” Chung Cheng University, Taiwan, 2003id NH0925392027 sid 914354 cfn 0 / id NH0925392028 auc 黃人傑 tic 一個為串流資料查詢系統設計之XML路徑選擇性估計方法 adc 陳良弼 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 54 kwc XML kwc 選擇性 kwc XPath abc 隨著串流資料的日益重要,管理此類之龐大而不可預測之資料成為一急須之問題。許多串流資料管理系統 (DSMS) 被提出來解決不同的環境與資料型態之問題。其中一纇即為針對 XML (eXtensible Markup Language) 串流資料。XML 被廣泛用在資訊交換,與描述性之語言。因此,加速 XML 串流的查詢處理為一重要之課題。 tc Table of Contents Abstract III Table of Contents V List of Figures VI 1. Introduction 1 2. The Overview 6 2.1 The Environment and the Query Processor 6 2.2 Query Optimization Using Path Selectivity Estimation 8 3. Selectivity Estimation Using Summarization 11 3.1 Construction of the Summary Tree 11 3.2 Deletion of Nodes and Expiration of Data 18 3.3 Estimate the Selectivity Using the Summary Structure 27 4. Query Relaxation Using Selectivity Estimation 30 4.1 Motivation 30 4.2 the Relaxation Model 36 4.3 System: an Overview 39 4.4 The Proposed Relaxation Method 40 5. Performance Evaluation 43 5.1 Data Generation 43 5.2 Query Generation 44 5.3 Experiment Environment 45 5.3.1 The Experiment Setup 45 5.3.2 The Measures 45 5.4 Results and Discussion 46 5.4.1 Deletion Policies: D-Val vs. Leaf 46 5.4.2 Relevance of Data vs. Nodes in the Summary Tree 49 6. Conclusion 51 7. References 52 List of Figures Figure 1 a Sample SQL Query 2 Figure 2 a Sample Query with Window Parameters 3 Figure 3 a Sample XQuery with Window Parameters 4 Figure 4 the Example Stream Proxy 6 Figure 5 the Sample Query Processor 7 Figure 6 the Initial Label Table 12 Figure 7 the Sample Path Expressions 13 Figure 8 an Incoming XML Data Tree 14 Figure 9 the Summarization Process at Step One with Parsing Stack 14 Figure 10 the Summarization Process at Step Two with Parsing Stack 15 Figure 11 the Partial Summary Tree with Parsing Stack 15 Figure 12 Another Partial Summary Tree 17 Figure 13 Yet Another Summary Tree 17 Figure 14 the Completed Summary Tree 18 Figure 15 Example of the Order-1 Markov Property 19 Figure 16 the Example of Order-2 Markov Property 20 Figure 17 A Sample Summary Tree to Be Trimmed 21 Figure 18 A Partial Preference Matrix 21 Figure 19 Another Partial Preference Matrix 23 Figure 20 the Partially Deleted Summary Tree 23 Figure 21 the Complete Preference Matrix 24 Figure 22 the Summary Tree Trimmed 24 Figure 23 the D-Value Formula 25 Figure 24 Estimation Function of Order-1 27 Figure 25 the Computation of Dead 27 Figure 26 the Algorithm for Simple Path Estimation 29 Figure 27 a Sample XML Schema 32 Figure 28 a Sample XML Document 33 Figure 29 a VLDB Example 34 Figure 30 a QAC-framework Query 37 Figure 31 a Sample Query to Be Relaxed 38 Figure 32 the Query Relaxation Framework 39 Figure 33 the Relaxation Result 41 Figure 34 the Complete Summary Tree 41 Figure 35 the Relaxed Query 42 Figure 36 the Error Function 45 Figure 37 the EC-Ratio Function 46 Figure 38 Window Size vs. Error with Deletion Ratio 0.2 46 Figure 39 Window Size vs. Error with Deletion Ratio 0.5 47 Figure 40 EC-Ratio vs. Window Size with Node Deletion Ratio 0.2 47 Figure 41 EC-Ratio vs. Window Size with Node Deletion Ratio 0.5 48 Figure 42 Error vs. Node Deletion Ratio of Path Queries with Different Data 49 Figure 43 Error vs. Node Deletion Ratio of Path Queries with Different Data 50rf [1 ] Mehmet Altinel and Michael J. Franklin, “Efficient Filtering of XML Documents for Selective Dissemination of Information,” Proceedings of the 26th Very Large Data Bases Conference (VLDB), 2000. [2 ] Yanlei Diao, Peter Fischer, Michael J. Franklin and Raymond To, “YFilter: Efficient and Scalable Filtering of XML Documents,” Proceedings of the 18th International Conference on Data Engineering (ICDE), 2002. [3 ] Chee-Yong Chan, Pascal Felber, Minos Garofalakis and Rajeev Rastoji, “Efficient Filtering of XML Documents with XPath Expressions,” Proceedings of the 18th International Conference on Data Engineering (ICDE), 2002. [4 ] Chee-Yong Chan, Minos Garofalakis and Rajeev Rastoji, “”RE-Tree: An Efficient Index Structure for Regular Expressions,” Proceedings of the 28th Very Large Data Bases Conference (VLDB), 2002. [5 ] Madoka Yuriyama and Hiroaki Nakamura, “Filtering Contents by Efficient Evaluation of XPath Expressions,” Proceedings of the 2003 Symposium on Applications and the Internet (SAINT ‘03). [6 ] Feng Peng and Sudarshan S. Chawathe, "XPath Queries on Streaming Data," Proceedings of Special Interests Groups Management of Data Conference (SIGMOD) 2003. [7 ] Ashish Kumar Gupta and Dan Suciu, "Stream processing of XPath queries with predicates," Proceedings of Special Interest Group on Management of Data Conference (SIGMOD) 2003. [8 ] Ashraf Aboulnaga, Jeffrey F. Naughton, Chun Zhang, "Generating Synthetic Complex-structured XML Data," Proceedings of International Workshop on the Web and Databases (WebDB) 2001 [9 ] Nicholas J. Belkin and W. Bruce Croft, "Information Filtering and Information Retrieval: Two Sides of the Same Coin?" Communications of the ACM (CACM) 35(12):29-38 1992. [10 ] Georg Gottolob, Christoph Koch, and Reinhard Pichler, "XPath Processing in a Nutshell," SIGMOD Record 32(1):12-19 2003 [11 ] Jianjun Chen, David J. DeWitt, Feng Tien, and Yuan Wang, "NiagaraCQ, A Scalable Continuous Query System for Internet Databases," Proceedings of the Special Interest Group on Management of Data Conference (SIGMOD) 2000 [12 ] Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld, "An XML Query Engine for Network-Bound Data," Very Large Data Bases Journal 11(4):380-402, 2002. [13 ] Dongwon Lee, "Query Relaxation for XML Model," PhD. Thesis [14 ] Ashraf Aboulnaga, Alaa R. Alameldeen, and Jeffrey F. Naughton, "Estimating the Selectivity of XML Path Expressions for Internet Scale Applications," Proceedings of 27th Very Large Data Bases Conference (VLDB) 2001. [15 ] Neoklis Polyzotis and Minos Garofalakis, "Statistical Synopses for General Graph-Structured XML Documents," Proceedings of Special Interest Group on Management f Data Conference (SIGMOD), 2002. [16 ] Ashraf Aboulnaga, Jeffrey F. Naughton, "Building XML Statistics for the Hidden Web," Proceedings of Conference on Information and Knowledge Management (CIKM) 2002 [17 ] J. Clark, XML path language (XPath), 1999, http://www.w3.org/TR/xpath [18 ] J. P. T. Bray and C. M. Sperberg-McQueen. eXtensible Markup Language(xml) 1.0, http://www.w3.org/TR/Rec-xml, 1998 [19 ] The STREAM Group. "STREAM: The Stanford Stream Data Manager," IEEE Data Engineering Bulletin, Vol. 26 No. 1, March 2003 [20 ] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, "Models and Issues in Data Stream Systems," Proceedings of Principles of Database Systems Conference (PODS) 2002. [21 ] Jaewoo Kang, Jeffrey F. Naughton, and Stratis D. Viglac, “Evaluating Window Joins over Unbounded Streams”, Proceedings of the 28th Very Large Data Bases Conference (VLDB) 2002 [22 ] S. J. Kaplan. “Cooperative Aspects of Database Interactions,” Artificial Intelligence, 19(2):165–187, Oct. 1982. [23 ] Lukasz Golab and M. Tamer ?頊su, “Processing Sliding Window Multi-Joins in Continuous Queries over Data Streams,” Proceedings of the 29th Very Large Data Bases Conference (VLDB) 2003. [24 ] Megginson Technologies, “SAX 1.0: a free API for event-based XML parsing”, http://www.megginson.com/SAX/index.html, May, 1998 [25 ] TinyXML project, http://tinyxpath.sourceforge.net/, 2004 [26 ] XQuery, http://www.w3c.org/XML/Query, 2004id NH0925392028 sid 914360 cfn 0 / id NH0925392029 auc 吳旺哲 tic 有效率地支援遠端物件呼叫於InfiniBand架構 adc 李政崑 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 45 kwc 物件導向 kwc Java RMI kwc .NET Remoting kwc InfiniBand架構 abc 在平行和分散式計算的領域裡,分散式物件導向平台已經成為其重要的要素,而在物件導向的語言設計中,Java RMI和.NET Remoting分別在Java和.NET此兩種語言環境上扮演著舉足輕重的角色,透過這兩種機制我們可以在Java和.NET的環境上進行平行和分散式運算。在本論文中我們將描述如何有效地支援Java RMI和.NET Remoting此兩種遠端物件呼叫在InfiniBand架構﹝一種具有高效能低延遲性的網路架構﹞上。 rf [Thiruvathukal98 ] G. K. Thiruvathukal, L. S. Thomas, and A. T. Korczynski. Reflective Remote Method Invocation. Concurrency: Practice and Experience, 10(11--13):911--925, September--November 1998. [RAJE97 ] R. Raje, J. Williams, and M. Boyles. An asynchronous remote method invocation mechanism for Java, Concurrency: Practice and Experience, Vol. 9(11), 1207-1211, 1997. [MAASSEN99 ] J. Maassen, R. van Nieuwport, R. Veldema, H. E. Bal, and A. Plaat. An efficient implementation of Java remote method invocation. In Proceedings of the 7th ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming, pages 173--182, Atlanta, GA, May 1999. [Nester99 ] Christian Nester, Michael Philippsen, and Bernhard Haumacher. A More Efficient RMI for Java. In Proceedings of ACM 1999 Java Grande Conference, pp. 152--157, June 1999. [Lee2002 ] P. C. Wey, J. S. Chen, Cheng-Wei Chen, Jenq-Kuen Lee, Support and Optimization of Java RMI over Bluetooth Environments. In Proceedings of Joint ACM Java Grande - ISCOPE 2002 Conference, Seattle, Nov. 2002. [LeeChenIPDPS2004 ] Chung-Kai Chen, Cheng-Wei Chen, Jenq Kuen Lee. Specification and Architecture Supports for Component Adaptations on Distributed Environments, Proceedings of the IPDPS Conference}, Santa Fe, April 2004. [LeeChenICC2004 ] Cheng-Wei Chen, Chung-Kai Chen, Jyh-Cheng Chen, Chien-Tan Ko, Jenq-Kuen Lee, Hong-Wei Lin, Wang-Jer Wu, Efficient Support of Java RMI over Heterogeneous Wireless Networks, International Conference on Communications (ICC), Paris, June 2004. [Cox86 ] Brad Cox. Object-Oriented Programming: An Evolutionary Approach, Addison-Wesley, Reading, MA 1986. [McLean03 ] Scott McLean, James Naftel, Kim Williams. Microsoft .NET REMOTING, Microsoft Press, 2003. [Rammer02 ] Ingo Rammer. Advanced .NET Remoting, A! aPress, 2002. [RMISpec ] Sun Microsystems, "RMI Architecture and Functional Specification", http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html. [InfiniBandSpec ] Infiniband Trade Association, ”Infiniband Architecture Specification, Release 1.0”, http://www.infinibandta.org. [uDAPL ] DAT Collaborative. uDAPL API Specification Version 1.0. http://www.datcollaborative.org [VIA ] UC Berkeley Millennium. Virtual Interface Architecture. http://www.cs.berkeley.edu/ philipb/via/. [VIASpec ] Compaq, Microsoft, and Intel, ”Virtual Architecture Specification Version 1.0”, Technical report, Compaq, Microsoft, and Intel, December 1997. [IPoIB ] Active IETF Working Groups, internet-drafts, ”IP over InfiniBand(IPoIB) Architecture”, http://www.ietf.org/internet-drafts/draftietf-ipoib-architecture-03.txt [LNCS2001 ] U. Kremer, J. Hicks and J. Rehg. A Compilation Framework for Power and Energy Management on Mobile Computers. In Proceedings of the 14th International Workshop on Parallel Computing (LCPC), August 2001.id NH0925392029 sid 914369 cfn 0 / id NH0925392030 auc 郭育旻 tic 以電路結構機率分析之智慧型亂數驗證向量產生器 adc 張世杰 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 35 kwc 機率 kwc 亂數向量產生器 kwc 亂數模擬 kwc 偏向 abc 由於現在的設計的複雜度以指數方式成長,使得驗證成為流程上的瓶頸,佔整個設計流程中的百分之七十的付出,在眾多驗證的方法中,模擬仍然是通用且重要的方法。傳統上模擬是由設計者撰寫驗證程式,但隨著設計增大,這樣一來不僅需要花很多時間而且不易達到很高的涵蓋率。另一方面,在驗證程式中也許存在著一些錯誤,這也需要額外的付出來找到錯誤的所,在統計上,約有四分之三的錯誤是藉由亂數模擬而找到的。近年來亂數模擬變得越來越重要,最主要的理由是它可以自動化來產生大量的驗證向量,而且可以發現許多設計中難以發現的錯誤。一個有效率的亂數驗證向量產生器與輸入端的機率有著極為密切的關聯性,所以在我的碩士論文中提出一個新的驗證架構---以電路結構機率分析之智慧型亂數驗證向量產生器,首先我們先提出一個評量輸入端機率的方法,接下來再自動化地去分析電路的架構,將輸入端的機率用偏移亂數的方式,動態地產生驗證向量,來進行電路的驗證。針對組合邏輯電路提出了三種方法,並且能進一步應用於循序邏輯電路上,來得到與狀態相關聯的輸入機率。論文中使用狀態數和輸出組合數進行測量,經實驗後,我們發現所提出的方法確實是有效的,可以比單純沒變化的亂數方式,有更高的涵蓋率。 tc Contents List of Figures............................................4 List of Tables.............................................5 Chapter 1. Introduction....................................6 Chapter 2. Evaluation of Input Probabilities..............10 Chapter 3. Intelligent Random Vector Generator............13 3.1 Weighted Method..............................13 3.2 Refinement Method............................17 3.3 Dynamic Method...............................23 Chapter 4. Extension to Sequential Circuits...............27 Chapter 5. Experimental Results...........................30 Chapter 6. Conclusions....................................34 References................................................35 List of Figures Figure 1: Example of uniform random simulation.............8 Figure 2: Example of biased random simulation..............8 Figure 3: Example with strong correlation.................12 Figure 4: Example with a simple tree structure............14 Figure 5: Backward propagation of probability.............15 Figure 6: Pseudo code of the weighted method..............16 Figure 7: Disadvantage of weighted method by averaging probabilities.............................................17 Figure 8: The refinement rules for AND and OR gates.......18 Figure 9: Single path from output to input................19 Figure 10: A node with multiple paths.....................20 Figure 11: Probabilities after refinement.................21 Figure 12: Pseudo code of the refinement method...........22 Figure 13: Probabilities after refinement.................24 Figure 14: Back propagate probabilities from outputs when a is 0......................................................25 Figure 15: Back propagate probabilities from outputs when a is 0 and b is 0...........................................26 Figure 16: Pseudo code of the dynamic method..............26 Figure 17: Example with an input-noncontrollable state variable..................................................28 Figure 18: Pseudo code for handling sequential circuits...29 List of Tables Table 1: Experimental results of combinational circuits...32 Table 2: Experimental results of sequential circuits......33rf [1 ] Ken Albin , “Nuts and Bolts of Core and SoC Verification,” In Proc. of Design Automation Conference, 2001, June 2001. [2 ] P. Faye, E. Cerny, and P. Pownall, “Improved Design Verification by Random Simulation Guided by Genetic Algorithms,” In Proc. of IEEE/IFIP World Computer Congress 2000, Int'l Conf. On Chip Design Automation (ICDA2000), page 2000. [3 ] M. Kantrowitz, L.M. Noack, “Functional Verification of a Multiple-issue, Pipelined, Superscalar Alpha Processor – the Alpha 21164 CPU Chip,” In Digital Technical Journal, Vol. 7 No.1 Fall 1995. [4 ] Yossi Levhari, “Verification of the PalmDSPCore Using Pseudo Random Techniques,” http://www. veri-sure.com/thesiss.html [5 ] Tasiran, S., Fallah, F., Chinnery, D.G., Weber, S.J., and Keutzer, K. “A Functional Validation Technique: Biased-Random Simulation Guided by Observability-Based Coverage,” In Proceedings of 2001 Inter- national Conference on Computer Design (ICCD 2001), pages 82-88, 2001. [6 ] System Science, Inc. (Synopsys, Inc.), “The VERA verification system,” http://www.systems.com/product/vera. [7 ] Verisity Design, Inc., “Spec-man: Spec-based approach to automate functional verification,” http://www.verisity.com.id NH0925392030 sid 914372 cfn 0 / id NH0925392031 auc 陳世堂 tic 硬體加速之高品質以點繪圖技術 adc 張鈞法 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 26 kwc 以點為基礎的繪圖 abc 在3D電腦圖學已經被廣泛的應用中,要繪出高品質的畫質是非常必要的,而在以點為基礎的繪圖中,Surfels和Surface splatting是目前很重要的代表,因為利用它們可以繪出高品質的繪圖效果。 tc 目錄(Table of Contents) Chapter 1 Introduction 1 Chapter 2 Related Work 3 2-1 LDI 、LDC and Surfels 3 2-2 EWA Filter 6 2-3 Surface Splatting 7 2-3.1 EWA splatting 7 2-3.2 Screen Space EWA Surface Splatting 8 2-3.3 Object Space EWA Surface Splatting 8 Chapter 3 Methods 9 3-1Construction of Surfels 9 3-2View-Independent Object-Space EWA Surface Splatting 11 3-3Visibility Splatting 12 3-4Texture Filtering 15 3-5Weight Normalization 16 Chapter 4 Results 19 Chapter 5 Conclusions and Future Work 26rf References [1 ] SHADE J., GORTLER S., HE L.-W, SZELISKI R.: Layered Depth Images. In Proceedings of SIGGRAPH 1998, pages 231-242. [2 ] CHANG C.-F.: LDI Tree: A Sampling Rate Preserving and Hierarchical Data Representation for Image-Based Rendering. Ph.D. Dissertation.Technical Report 01-032, University of North Carolina at Chapel Hill, Department of Computer Science, 2001. [3 ] LISCHINSKI D., RAPPOPORT A.: Image-based rendering for non-diffuse synthetic scenes. In Rendering Techniques ’98 (Proceedings of the 9th Eurographics workshop on Rendering) (1998), Springer, pp. 301–314. [4 ] PFISTER H., ZWICKER M., VAN BAAR J., GROSS M.: Surfels: surface elements as rendering primitives. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques (2000), ACM Press/Addison-Wesley Publishing Co., pp. 335– 342. [5 ] RUSINKIEWICZ S., LEVOY M.: Qsplat: a multiresolution point rendering system for large meshes. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques (2000), ACM Press/Addison-Wesley Publishing Co., pp. 343–352. [6 ] HECKBERT P.: Fundamentals of Texture Mapping and Image Warping. Master’s thesis, University of California at Berkeley, Department of Electrical Engineering and Computer Science, June 17 1989. [7 ] REN L., PFISTER H., ZWICKER M.: Object space ewa surface splatting: A hardware accelerated approach to high quality point rendering. Computer Graphics Forum 21, 3 (Sept. 2002). (Proc. Eurographics 2002). [8 ] ZWICKER M., PFISTER H., VAN BAAR J., GROSS M.: Surface splatting. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques (2001), ACM Press, pp. 371–378. [9 ] LEVOY M., WHITTED J.T., “The Use of Points as a Display Primitive”, Technical Report TR 85-022, 1985 [10 ] GROSSMAN J.P. , DALLY W.J., “Point Sample Rendering”, Proc. Eurographics Rendering Workshop, 1998id NH0925392031 sid 914374 cfn 0 / id NH0925392032 auc 張智淳 tic 符合晶片匯流排規格之正反向離散小波轉換的可參數化矽智財產生器 adc 林永隆 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 48 kwc JPEG2000 kwc 離散小波轉換 kwc 矽智財 kwc 單晶片系統晶片 abc 中文摘要 tc Contents ABSTRACT I CONTENTS II LIST OF FIGURES IV LIST OF TABLES V CHAPTER 1 6 INTRODUCTION 6 CHAPTER 2 9 PREVIOUS WORK 9 CHAPTER 3 12 PROPOSED DWT ARCHITECTURE 12 3.1 DWT TOP ARCHITECTURE 12 3.1.1 COMBINE FORWARD DWT AND INVERSE DWT 12 3.1.2 THE BIT PRECISION 14 3.2 LOW-POWER AND HIGH-PERFORMANCE DESIGN 15 3.2.1 IMPROVED SYMMETRIC EXTENSION MODULE 15 3.2.2 CANONIC SIGNED DIGIT (CSD) MULTIPLIERS 18 3.2.3 USING RETIMING TO IMPROVE PERFORMANCE 20 CHAPTER 4 21 GENERALIZED DWT 21 4.1 LIFTING-BASED DWT THEORY 22 4.2 THE FACTORIZATION OF DIFFERENT WAVELET FILTERS 23 4.2.1 The factorization of odd taps wavelet filters 23 4.2.2 The factorization of even taps wavelet filters 25 4.2.3 The factorization of inverse discrete wavelet transform 26 4.3 GENERALIZED DWT ARCHITECTURE 27 4.3.1 Top local DWT architecture 27 4.3.2 Predict/Update module 28 4.3.3 Signal extension module 30 4.3.4 Control unit module 31 CHAPTER 5 32 DWT IP IMPLEMENTATION 32 5.1 SYNTHESIS RESULT 33 5.2 DESIGN-FOR-TEST SYNTHESIS REPORT AND ATPG RESULT 33 5.3 IP QUALIFICATION 34 5.4 DESIGN MODELS 34 5.4.1 Programmable parameter 35 5.4.2 Reconfigurable parameter 36 CHAPTER 6 37 VERIFICATION AND INTEGERATION 37 6.1 TESTBENCH 37 6.2 BUS INTERFACE 38 6.3 ADVANCE BUS INTERFACE 39 6.4 DEVICE DRIVER 40 6.5 A HW/SW CO-DESIGN JPEG2000 40 6.6 EXPERIMENT REPORT 41 CONCLUSIONS 44rf Bibliography [1 ] S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,“ IEEE Transactions on Pattern Anal. Machine Intell., Vol.11, pp. 674-693 ,July 1989. [2 ] M. Vishwanath, “The Recursive Pyramid Algorithm for the Discrete Wavelet Transform,” IEEE Trans. on Signal Processing, vol. 42, no. 3, pp.673-676, Mar 1994. [3 ] C.-Y. Chen, Z.-L. Yang, T.-C. Wang and L.-G. Chen, ” A programmable VLSI architecture for 2-D discrete wavelet transform,” IEEE International Symposium on Circuits and Systems 2000, Vol.1, pp. 619 – 622, May 2000. [4 ] C.-T. Huang, P.-C. Tseng and L.-G. Chen, “Efficient VLSI architectures of lifting-based discrete wavelet transform by systematic design method,” IEEE International Symposium on Circuits and Systems 2002, Vol.5, pp. 565 – 568, May 2002. [5 ] I. Daubechies and W. Swelden, “Factoring wavelet transform into lifting steps,” The Journal of Fourier Analysis and Applications, Vol. 4, pp.247-269, 1998. [6 ] C. Chrysafis and A. Ortega, “Line-based, reduced memory, wavelet image compression,” IEEE Transactions on Image Processing, Vol.9, No.3, pp. 378-389, Mar 2000. [7 ] P.-C. Wu and L.-G. Chen, “An efficient architecture for two-dimensional discrete wavelet transform,” IEEE Transactions on Circuits and Systems for Video Technology, Vol.11, No. .4 , pp. 536-545, April 2001. [8 ] ISO/IEC. ISO/IEC 15444-1. Information technology – JPEG2000 Part I. image coding system. Mar 2000. [9 ] C.-J. Lian, K.-F. Chen, H.-H. Chen and L.-G. Chen, “Lifting based discrete wavelet transform architecture for JPEG2000,” IEEE International Symposium on Circuits and Systems 2001, Vol.2, pp. 445 – 448, May 2001. [10 ] P.-C. Tseng, C.-T. Huang and L.-G. Chen, “Reconfigurable discrete wavelet transform architecture for advanced multimedia systems,” IEEE Workshop on Signal Processing Systems 2003, pp. 137 – 141, Aug 2003. [11 ] M. Ravasi, L. Tenze and M. Mattavelli, “A scalable and programmable architecture for 2-D DWT decoding,” IEEE Transactions on Circuits and Systems for Video Technology, Vol.12, Issue.8 , pp. 671-677, Aug 2002. [12 ] K. Andra, C. Chakrabarti, and T. Acharya, “A VLSI architecture for lifting-based forward and inverse wavelet transform,” IEEE Transactions on Signal Processing, Vol. 50, Issue.4 , pp. 966-977, April 2002. [13 ] ISO/IEC. ISO/IEC 15444-3. Information technology –Motion JPEG2000. 2002. [14 ] ISO/IEC. JTC1/SC29/WG11 Coding of moving pictures and audio. Jan 2001. [15 ] A. Cohen, I. Daubechies,and J. Feauveau, “Bi-othogonal bases of compactly supported wavelets,” Comm. Pure Appl. Math., vol. 45, pp. 485-560, 1992. [16 ] A. R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo, “Wavelet transforms that map integers to integers,” Technical report, Deportment of Mathematics, Princeton University, 1996. [17 ] M. Grangetto, E. Magli, M. Martina, and G. Olmo, “Optimization and Implementation of the Integer Wavelet Transform for Image Coding,” IEEE Transactions on Signal Processing, Vol. 11, June 2002. [18 ] M. Ferretti and D. Rizzo, “Handling borders in systolic architectures for the 1-D discrete wavelet transform for perfect reconstruction,” IEEE Transactions on Signal Processing, Vol. 48, pp. 1365-1378, May 2000. [19 ] M. Keating ,Synopsys,Inc and P. Bricaud, Mentor Graphics Cor, “REUSE METHODOLOGY MANUAL --- FOR SYSTEM-ON-A-CHIP DESIGNS (second edition)”, KLUWER ACADEMIC PUBLISHERS, 1999. [20 ] R. I. Hartley, “Subexpression Sharing in Filters Using Canonic Signed Digit Multipliers,” IEEE Trans. on Circuit and Systems, Vol. 43, No. 10, pp. 677-688, October 1996. [21 ] “nLint® – A HDL Design Rule Checker,” by Novas Softwar, Inc. [22 ] JPEG2000 Part5(ISO/IEC 15444-5:2003) Reference Software. http://www.jpeg.org/jpeg2000/j2kpart5.html [23 ] K. K. Parhi, University of Minnesota, “VLSI Digital Signal Processing Systems --- Design and Implementation”, A Wiley-Interscience Publication JOHN WILEY & SONS, INC.id NH0925392032 sid 914376 cfn 0 / id NH0925392033 auc 簡鶴松 tic 針對電晶體陣列為基礎的可程式細胞陣列之細胞元件庫自動產生器 adc 張世杰 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 33 kwc 光罩 abc 在深次微米時代,光罩的成本已經快速地增加。為了減少光罩的成本,在現今各種不同的設計方式中,結構化之特殊應用積體電路(Structural ASIC)已經成為一個很普遍的設計方式。在本篇論文中,我們利用了一種叫做「電晶體陣列為基礎的可程式細胞陣列」(Transistor Array Based Programmable Cell Array)的新的設計形式。這種設計形式使用排列成像陣列的電晶體來實作細胞元件庫(Cell Library)需要的細胞(Cell)。除此之外,對於每一個超大型積體電路(VLSI)的設計,它只使用五層光罩。這也就是說,生產一個晶片(Chip)只需要五層光罩,因此可以大幅減低光罩成本並且也可以改進產品的製作時程(Turn Around Time)。因為手動的設計細胞元件庫中的細胞是非常花時間的並且容易出錯,在本篇論文中,我們發展了幾個電腦輔助設計(CAD)軟體來自動地排列出細胞功能(Cell Function)以及畫出相對應的佈局(Layout)。經由我們的實驗,我們可以得知我們所實作出的細胞元件庫產生器(Cell Library Generator)可以有效率針對給定的「電晶體陣列為基礎的可程式細胞陣列」(Transistor Array Based Programmable Cell Array)之形式來建出細胞元件庫。 rf [1 ] S. Brown, R. Francis, J. Rose and Z. Vranesic, Field-Programmable Gate Arrays, Kluwer Academic Publishers, 1992. [2 ] V. Betz and J. Rose, “Directional Bias and Non-Uniformity in FPGA Global Routing Architectures,” ICCAD, 1996, pp. 652-659. [3 ] OpenBook, Cadence Design System, Inc. [4 ] S. Brown, J. Rose, and Z. G. Vranesic, “A Detailed Router for Field-Programmable Gate Arrays,” IEEE Trans. On CAD, May 1992, pp. 620-628. [5 ] V. Betz and J. Rose, A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs, Kluwer Academic Publishers, 1998. [6 ] S.M. Sait and H. Youssef, VLSI Physical Design Automation, World Scientific Publishing, 1999. [7 ] H. Bhathagar, Advanced ASIC Chip Synthesis Using Synopsys and PrimeTime , Kluwer Academic Publishers, 1999.id NH0925392033 sid 914381 cfn 0 / id NH0925392034 auc 陳柏元 tic 針對週期性即時工作的公平品質率排程演算法 adc 黃泰一 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 pg 31 kwc 即時系統 kwc 回饋機制排程演算法 kwc 平衡回饋系統 kwc 週期性即時排程演算法 abc 於即時系統(Real-Time System)中,回饋機制排程法提供了一個較具彈性的模型,回饋機制排程法與許多現實上的應用程式相似,如多媒體應用程式及反覆定義型的演算法。回饋機制工作由兩個部分組成,分別是主要部分工作(Mandatory Part)和次要部分工作(Optional Part),次要部分工作必需要在主要部分工作完成後,才能開始執行。而每一個次要部分工作都伴隨了一個回饋函式,回饋函式定義了當次要部分工作執行了某段時間後,它所能得到的回饋值,在多數的研究中,回饋函式常為凹面型(cancave)回饋函式或直線型(linear)回饋函式。此兩種函式被認為是最接近於實際應用程式的函式,因此,論文中的回饋函式,也以此兩種函式為依歸。傳統上的回饋機制排程演算法專注於如何使系統整體的回饋值達到最大值。也因為如此,這些回饋機制排程演算法常常造成系統工作所收到的回饋值不平衡。有些工作可能會得到極高的回饋值,而有些工作可能會得到極低的回饋值。在這篇論文中,我們將提出一個最佳化的回饋平衡演算法,使每個工作能得到相同的回饋品質率。首先,我們將討論當回饋函式是可逆且漸增的時候,我們將利用數學的方式解決。接下來,我們對於一般函式或不可逆函式發展另一套演算法。最後,我們將利用實驗以證明我們的排程演算法是有效率並且有好的效用。實驗結果證明,我們的確發展出一套有效率並且有效用的演算法。 rf [1 ] H. Aydin, R. Melhem, D. Mossé, and P. Mejía-Alvarez. Optimal Reward-Based Scheduling for Periodic Real-Time Tasks. IEEE Transactions on Computers, February 2001. [2 ] C.-Y. Chong and S. P. Kumar. Sensor Networks: Evolution, Opportunities, and Challenges. In Proceedings of the IEEE, pages 1247-1256, August 2003. [3 ] J.-Y. Chung, J. W.-S. Liu, and K.-J. Lin. Scheduling Periodic Jobs That Allow Imprecise Results. IEEE Transactions on Computers, 39(9):1156-1174, September 1990. [4 ] J. K. Dey, J. Kurose, and D. Towsley. On-Line Scheduling Policies for a Class of IRIS (Increasing Reward with Increasing Service ) Real-Time Tasks. IEEE Transactions on Computers, 45(7):802-813, July 1996. [5 ] J. K. Dey, J. f. Kurose, D. Towsley, C. Krishna, and M. Girkar. Efficient On-Line Processor Scheduling for a Class of IRIS (Increasing Reward with Increasing Service ) Real-Time Tasks. In Proceedings of the ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pages 217-228, May 1993. [6 ] H. Ghafir and H. Chadwick. Multimedia Servers – Design and Performance. In IEEE Global Telecommunications Conference, volume 2, pages 886-890, November-December 1994. [7 ] R. Iyer and L. Kleinrock. QoS Control For Sensor Networks. In IEEE International Conference on Communications, Pages 517-521, May 2003. [8 ] R. E. Korf. Real-Time Heuristic Search. Artificial Intelligence, 42(2-3):189-211, March 1990. [9 ] C. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming in Hard Real-Time Environment. Journal of ACM, 20(1):46-61, January 1973. [10 ] J. W.-S. Liu, K.-J. Lin, W.-K. Shih, A. C. shi Yu, J.-Y. Chung and W. Zhao. Algorithms of Scheduling Imprecise Computations. Computer, 24(5):58-68, May 1991. [11 ] P. Mejía-Alvarez, R. Melhem, D. Mossé, and H. Aydin. An Incremental Server for Scheduling Overloaded Real-Time Systems. IEEE Transactions on Computers, 52(10): 1347-1361, October 2003. [12 ] A. K. Mok. Fundamental Design Problems of Distributed Systems for the Hard Real-Time Environment. PhD thesis, Massachusetts Institute of Technology, 1983. [13 ] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. Aresource Allocation Model for QoS Management. In IEEE Real-Time Systems Symposium, pages 298-307, December 1997. [14 ] C. Rusu, R. Melhem, and D. Mossé. Maximizing Rewards for Real-Time Applications with Energy Constraints. ACM Transactions on Embedded Computing Systems, 2(4):537-559, November 2003. [15 ] T. Sato. The Method for Multimedia Information Transfer System. In IEEE Midnight-Sun Workshop on Soft Computing Methods in Industrial Applications, pages 40-45, June 1999. [16 ] W.-K. Shin, J. W.-S. Liu, and J.-Y. Chung. Algorithms for Scheduling Imprecise Computations with Timing Constraints. SIAM J. Computing, 20(3):537-552, July 1991. [17 ] M. Zu and A. M. K. Chen. Real-Time Scheduling of Hierarchical Reward-Based Tasks. In IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS ‘03), pages 2-9, May 2003.id NH0925392034 sid 914386 cfn 0 / id NH0925392035 auc 王東立 tic 運用貝氏理論進行以核心函數為基礎之視訊物件追蹤 adc 許秋婷 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 63 kwc 視訊物件追蹤 kwc 貝氏理論 abc 在本篇論文中,提出了一個有效地運用貝氏理論進行以核心函數為基礎的視訊物件追蹤方法。物件追蹤在許多視訊處理中扮演重要的角色,例如視訊監視系統、物件式視訊資料庫檢索、或是自動化視訊操作等。而視訊物件的變化則增加了追蹤上的困難度,其中主要的變化來自於視訊物件比例的改變以及遮蔽的發生。 rf [1 ] A. R. Mansour, “Region Tracking via Level Set PDEs Without Motion Computation”, IEEE Trans. Pattern Anal. Machine Intell., vol. 24, No. 7, pp. 947-961, July 2002. [2 ] A. D. Jepson, D. J. Fleet ,and T. F. El-Maraghi, “Robust Online Appearance Models for Visual Tracking ”, IEEE Trans. Pattern Anal. Machine Intell., Vol. 25, No. 10, pp. 1296-1311, October 2003. [3 ] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel Based Object Tracking”, IEEE Trans. Pattern Anal. Machine Intell., Vol. 25, No. 5, pp. 564-577, May 2003. [4 ] D. Comaniciu, and P. Meer, “Mean Shift: A Robust Approach Toward Feature Space Analysis”, IEEE Trans. Pattern Anal. Machine Intell., Vol. 24, No. 5, pp. 603-619, May 2002. [5 ] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, “Detecting Moving Objects, Ghosts, and Shadows in Video Streams”, IEEE Trans. Pattern Anal. Machine Intell., Vol. 25, No. 10, pp. 1337-1342, October 2003. [6 ] T. L. Liu, and H. T. Chen, “Real-time tracking using trust-region methods”, IEEE Trans. Pattern Anal. Machine Intell., Vol. 26 , No. 3 , pp. 397-402, March 2004. [7 ] R. T. Collins, “Mean-shift Blob Tracking through Scale Space”, IEEE CVPR, Madison, June 2003. [8 ] A. Yilmaz, X. Li, and M. Shah, “Object contour tracking using level sets”, Asian Conference on Computer Vision, ACCV 2004, Jaju Islands, Korea, January 2004. [9 ] J. O. Berger, “Statistical Decision Theory and Bayesian Analysis”, Springer-Verlag, New York, 1985. [10 ] Z.Zivkovic, and B.Krose, “A probabilistic model for an EM-like object tracking algorithm using color-histograms” 6th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, May, 2004. [11 ] K. Nummiaro, E. Koller-Meier, and L. V. Gool, “Color Features for Tracking Non-rigid Objects”, Chinese Journal of Automation, Vol. 29, No. 3, pp. 345-355, May 2003 [12 ] Y. Wang, J. Ostermann, and Y. Q. Zhang, “Video Processing and Communications”, 2001. [13 ] M. J. Lucena, J. M. Fuertes, N. P. D. L. Blanca, and A. Garrido “An Optical Flow Probabilistic Observation Model for Tracking”, ICIP 2003, Barceloma, Spain, Sep. 2003. [14 ] D. Comaniciu, V. Ramesh, and P. Meer, “The Variable Bandwidth Mean Shift and Data-Driven Scale Selection”, International Conference on Computer Vision, Vol. I, pp. 438-445, July 2001. [15 ] T. Kailath, “The divergence and Bhattacharyya distance measures in signal selection”, IEEE Trans. Commun. Tech. Vol. 15, pp. 52-60, 1976.id NH0925392035 sid 914388 cfn 0 / id NH0925392036 auc 梁博程 tic 大尺度基因型資料之單體型解構與重建 adc 劉庭祿 adc 陳朝欽 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 59 kwc 單體型 kwc 標籤單核 kwc & kwc #33527;酸多態性 kwc 理想系統發生樹 kwc 鋪貼區塊 abc 本篇論文旨在探討有關單體型(haplotype)解構與重建的問題,我們提出一個處理大尺度基因型(genotype)資料的方法,來決定其單體型的區塊分割及重建每個基因型之成對單體型。在單體型解構方面,我們採用動態程式規劃演算法決定最佳的區塊分割;在單體型重建方面,我們提出每個區塊內包含至少一個理想系統發生樹(perfect phylogeny tree)的模型,以及由標籤單核苷酸多態性(tag SNPs)組成區塊間的鋪貼區塊,來重建整個單體型。經由這二個主要元件的搭配,發展出一套有效率的單體型重建系統。 tc Contents 1 Introduction 1 1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Haplotype Decomposition . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Haplotype Reconstruction . . . . . . . . . . . . . . . . . . . . . . 4 1.1.3 Simultaneous Haplotype Reconstruction and Decomposition . . . . 6 1.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.1 Haplotype Resolving within a Block . . . . . . . . . . . . . . . . . 7 1.2.2 Haplotype Resolving among Blocks . . . . . . . . . . . . . . . . . 8 2 Haplotype Decomposition 11 2.1 Haplotype Decomposition and Dynamic Programming . . . . . . . . . . . 11 2.2 Why Minimizing the Number of Tag SNPs? . . . . . . . . . . . . . . . . . 12 2.3 Dynamic Programming for Minimizing the Number of Tag SNPs . . . . . . 12 2.3.1 Useful Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.2 Some Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.3 The Dynamic Programming Argument . . . . . . . . . . . . . . . 14 3 Haplotype Reconstruction with Large Scale Genotype Data 17 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Haplotype Reconstruction within a Block . . . . . . . . . . . . . . . . . . 18 3.2.1 The Perfect Phylogeny Haplotype Problem . . . . . . . . . . . . . 18 3.2.2 Useful Definitions and Lemma . . . . . . . . . . . . . . . . . . . . 19 3.2.3 Build-Tree Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.4 Maximum Likelihood Model . . . . . . . . . . . . . . . . . . . . . 22 3.2.5 Resolving Missing Data . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 Finding the Block Partitions from Genotype Data . . . . . . . . . . . . . . 23 3.4 Haplotype Reconstruction between Adjacent Blocks . . . . . . . . . . . . . 23 4 Our Framework 27 4.1 At-Least-One Perfect-Phylogeny-Tree Model . . . . . . . . . . . . . . . . 27 4.1.1 Our Model and the Key Ideas . . . . . . . . . . . . . . . . . . . . 28 4.1.2 At-Least-One Perfect-Phylogeny-Tree Model . . . . . . . . . . . . 29 4.2 Informative Score Function . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3 Tiling Blocks Consisting of Tag SNPs . . . . . . . . . . . . . . . . . . . . 33 4.3.1 Unresolvable Choices from Tiling Blocks of Eskin et al. . . . . . . 34 4.3.2 Reducing and Transferring the Unresolvable Choices . . . . . . . . 34 4.3.3 Tiling Blocks with Tag SNPs . . . . . . . . . . . . . . . . . . . . . 34 4.4 Mutual Relation among Blocks . . . . . . . . . . . . . . . . . . . . . . . . 35 5 Implementation and Experiments 39 5.1 Details of the Implementation . . . . . . . . . . . . . . . . . . . . . . . . 39 5.1.1 Definitions and Criteria . . . . . . . . . . . . . . . . . . . . . . . . 39 5.1.2 The Steps of Our Approach . . . . . . . . . . . . . . . . . . . . . 40 5.1.3 Two Tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.2.1 The Measures for Comparing Results . . . . . . . . . . . . . . . . 41 5.2.2 Experiments on Genotype Data in Daly et al. . . . . . . . . . . . . 44 5.2.3 Experiments on Simulation Genotype Data . . . . . . . . . . . . . 49 6 Conclusions 53 6.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 List of Figures 1-1 SNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1-2 Haplotype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1-3 Haplotype decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1-4 Two-level haplotype resolving . . . . . . . . . . . . . . . . . . . . . . . . 7 2-1 Tag SNPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2-2 The diagram of the recursion for dynamic programming theory . . . . . . . 15 3-1 Genotypes A ) haplotypes B . . . . . . . . . . . . . . . . . . . . . . . . 19 3-2 Perfect phylogeny tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3-3 The relation of two sites on the perfect phylogeny tree . . . . . . . . . . . . 21 3-4 Equally / unequally resolving . . . . . . . . . . . . . . . . . . . . . . . . . 21 3-5 Finding the block partitions from genotype data . . . . . . . . . . . . . . . 24 3-6 Blocks tiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4-1 Solving Gc by the triangle rule . . . . . . . . . . . . . . . . . . . . . . . . 31 4-2 The flow chart of addressing at-least-one perfect-phylogeny-tree model . . 32 4-3 Tiling blocks consisting of tag SNPs . . . . . . . . . . . . . . . . . . . . . 36 List of Tables 4.1 Example of the mutual relation table. . . . . . . . . . . . . . . . . . . . . . 37 5.1 Example of measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2 The result of haplotype reconstruction by the given block partitions from Daly et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3 The result of haplotype reconstruction and decomposition from the genotype data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.4 Comparing with Eskin et al. on genotype data in Daly et al. . . . . . . . . . 48 5.5 Results of simulation genotype data from NT 001035 . . . . . . . . . . . . 51 5.6 Results of simulation genotype data from NT 003545 . . . . . . . . . . . . 51rf [1 ] V. Bafna, D. Gusfield, G. Lancia, and S. Yooseph, “Haplotyping as Perfect Phylogeny: A Direct Approach,” Tech. Rep., Technical Report UCDavis CSE-2002-21, July 2002. [2 ] V. Bafna, B. V. Halldorsson, R. Schwartz, A. G. Clark, and S. Istrail, “Haplotypes and Informative SNP Selection Algorithms: Don’t Block out Information,” In Proceedings of The 7th Annual International Conference on Research in Computational Molecular Biology(RECOMB), pp. 19–27, 2003. [3 ] A. Clark, “Inference of Haplotypes from PCR-amplified Samples of Diploid Populations,” Molecular Biology and Evolution, vol. 7, no. 2, pp. 111–22, March 1990. [4 ] M. J. Daly, J. D. Rioux, S. F. Schaffner, T. J. Hudson, and E. S. Lander, “Highresolution Haplotype Structure in the Human Genome,” Nature Genetics, vol. 29, no. 2, pp. 229–232, October 2001. [5 ] E. Eskin, E. Halperin, and R. M. Karp, “Large Scale Reconstruction of Haplotypes from Genotype Data,” In Proceedings of The 7th Annual International Conference on Research in Computational Molecular Biology(RECOMB), pp. 104–113, 2003. [6 ] L. Excoffier and M. Slatkin, “Maximum-likelihood Estimation of Molecular Haplotype Frequencies in a Diploid Population,” Molecular Biology and Evolution, vol. 12, no. 5, pp. 921–927, September 1995. [7 ] G. Greenspan and D. Geiger, “Model-based Inference of Haplotype Block Variation,” In Proceedings of The 7th Annual International Conference on Research in Computational Molecular Biology(RECOMB), pp. 131–137, 2003. [8 ] D. Gusfield, “Haplotyping as Perfect Phylogeny: Conceptual Framework and Ef- ficient Solutions,” In Proceedings of The 6th Annual International Conference on Research in Computational Molecular Biology(RECOMB), pp. 166–175, 2002. [9 ] E. Halperin and E. Eskin, “Haplotype Reconstruction from Genotype Data using Imperfect Phylogeny,” To appear in Bioinformatics, 2004. [10 ] G. Kimmel and R. Shamir, “Maximum Likelihood Resolution of Multi-block Genotypes,” In Proceedings of The 8th Annual International Conference on Research in Computational Molecular Biology(RECOMB), pp. 2–9, 2004. [11 ] M. Koivisto, M. Perola, T. Varilo, W. Hennah, J. Ekelund, M. Lukk, L. Peltonen, E. Ukkonen, and H. Mannila, “An MDL Method for Finding Haplotype Blocks and for Estimating the Strength of Haplotype Block Boundaries,” In Proceedings of the Pacific Symposium on Biocomputing (PSB), vol. 8, pp. 502–513, 2003. [12 ] J. Long, R. Williams, and M Urbanek, “An EM Algorithm and Testing Strategy for Multiple-locus Haplotypes,” American Journal of Human Genetics, vol. 56, no. 3, pp. 799–810, March 1995. [13 ] NHGRI, “http://www.genome.gov/10005336,” October 2002. [14 ] NHGRI, “http://www.genome.gov/10001772,” February 2004. [15 ] N. Patil, A. J. Berno, D. A. Hinds, W. A. Barrett, J. M. Doshi, C. R. Hacker, C. R. Kautzer, D. H. Lee, C. Marjoribanks, D. P. McDonough, B. T. N. Nguyen, M. C. Norris, J. B. Sheehan, N. Shen, D. Stern, R. P. Stokowski, D. J. Thomas, M. O. Trulson, K. R. Vyas, K. A. Frazer, S. P. A. Fodor, and D. R. Cox, “Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21,” Science, vol. 294, no. 5547, pp. 1719–1723, November 2001. [16 ] R. SCHWARTZ, B. V. HALLDORSSON, V. BAFNA, A. G. CLARK, and S. ISTRAIL1, “Robustness of Inference of Haplotype Block Structure,” Journal of Computational Biology, vol. 10, no. 1, pp. 13–19, 2003. [17 ] M. Stephens, N. Smith, and P. Donnelly, “A New Statistical Method for Haplotype Reconstruction from Population Data,” American Journal of Human Genetics, vol. 68, no. 4, pp. 978–989, October 2001. [18 ] K. Zhang, M. Deng, T. Chen, M. S.Waterman, and F. Sun, “A Dynamic Programming Algorithm for Haplotype Block Partitioning,” Proceedings of the National Acadamy of Science(PNAS), vol. 99, no. 11, pp. 7335–7339, May 2002.id NH0925392036 sid 914392 cfn 0 / id NH0925392037 auc 朱立年 tic 一種新的強固人臉辨識演算法使用分割性梯度人臉影像 adc 賴尚宏 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 57 kwc 人臉辨識 kwc 梯度 kwc 分割 abc 在這一篇論文中,我們提出了一個克服不同光源變化的新人臉辨識演算法。我們的方法主要是以Fisherface分析為基礎並包含了三個有效的策略去克服光源變化的問題。第一個策略是使用了影像的梯度特徵而非亮度特徵,這樣的特徵比較不受光源變化的影響。第二個策略是影像的分割並且使用可調適的區塊比對。我們適當的將人臉區域切成數個方塊來做比對,並且根據PCA分析方法重建回來的誤差給予比較可靠的區域一個比較大的比重值。藉由此方式,資料遺失的區域將被給予一個較小的比重值,藉此我們可以降低資料遺失區塊做辨識時所造成的影響。第三個策略則是我們在兩張人臉影像間使用了新的相似度計算方法。此相似度計算方式是以L2 and Mahalanobis-L2 distances為基礎並結合PCA跟LDA的係數去決定相似度。藉由引入這一些策略到我們提出的演算法中,我們能夠達到更強固的人臉辨識。 tc Chapter 1. Introduction 5 Chapter 2. Previous Work 8 Chapter 3. Partitioned Gradient Fisherface Approach 13 3.1. Gradient mapping via 1DHarr Transform 14 3.2. PCA 15 3.3. LDA 17 3.4. Fisherface 19 3.5. System Overview 21 3.6. Training Phase 23 3.6.1. Gradient mapping 24 3.6.2. Image Partitioning 25 3.6.3. Block-feature combination and normalization 25 3.6.4. Modeling the combinational block-features 26 3.6.5. The estimation of average PCA reconstruction error 26 3.7. Execution Phase 27 3.7.1. Preprocessing 29 3.7.2. Distance Measure 30 3.7.3. Block-feature weighting and combination 32 Chapter 4. Experimental Results 34 4.1. Accuracy comparisons 34 4.2. The samples of error recognition 41 4.3. Time complexity 43 4.4. Discussion with only one training image per person 45 4.5. Apply the face recognition system to the identification of the members in our laboratory 48 Chapter 5. Conclusions 52rf [1 ] P.N. Belhumeour, J.P. Hespanpa, and D.J. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 711-720, 1997. [2 ] L Chengiun, “A Bayesian Discriminating Features Method for Face Detection,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 6, pp. 725-740, 2003. [3 ] C.P. Papageorgiou, M. Oren, and T. Poggio, “A General Frame Work for Object Detection,” Proc. Int. Conf. on Computer Vision, pp.555-562, Jan 1998. [4 ] M. Turk, and A. Penland, “Eigenfaces for Recognition,” J. Cognitive Neuroscience, vol. 3, no. 1, pp. 71-86, 1991. [5 ] J. Ross Beveridge. “The Geometry of LDA and PCA Classifiers Illustrated with 3D examples,” Technical Report CS-01-101, Computer Science, Colorado State University, 2001. [6 ] W. Zhao, R. Chellappa, and P.J. Phillips, “Subspace Linear Discriminant Analysis for Face Recognition,” in UMD, 1999. [7 ] A.M. Martinez, and A.C. Kak, “PCA versus LDA,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 2, pp. 228-233, 2001. [8 ] R. Duda, and P. Hart, Pattern Classification and Scene Analysis. New York: Wiley, 1973. [9 ] H. Yu, and J. Yang, “A Direct LDA Algorithm for High-Dimensional Data - With Application to Face Recognition,” Pattern Recognition, vol. 34, no. 10, pp.2067-2070, 2001. [10 ] W. Zhao, R. Chellappa, A. Rosenfild, and P.J. Phillips, “Face Recognition: A Literature Survey,” University of Maryland, CS-Tech Report-4167, 2000. [11 ] R. Chellappa, C.L. Wilson, and S. Sirohey, “Human and Machine Recognition of Faces: A Survey,” Proc. IEEE, vol. 83, pp. 705-740, 1995. [12 ] M.D. Kelly, “Visual Identification of People by Computer,” Tech. Rep. AI-130, Stanford SI Proj., Stanford CA, 1970. [13 ] T. Kanade, Computer Recognition of Human Faces. Basel and Stuttgart: Birkhauser, 1977. [14 ] R. Brunelli, and T. Poggio, “Face recognition: Features versus Templates,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 10, pp. 1042-1053, 1993. [15 ] B. Scholköpf, A. Smola, and K.R. Müller, “Nonlinear Component Analysis as A Kernel Eigenvalue Problem,” Neural Computation, vol. 10, no. 5, pp. 1299-1319, 1998. [16 ] M.H. Yang, N. Ahuja, and D. Kriegman, “Face Recognition Using Kernel Eigenfaces,” in Proc. Int. Conf. Image Processing, pp. 37-40. 2000. [17 ] Q.S. Liu, R. Huang, H.Q. Lu, and S.D. Ma, “Face Recognition Using Kernel Based Fisher Discriminant Analysis,” in Proc. Int. Conf. Automatic Face and Gesture Recognition, Washington, DC, pp. 197-201, 2002. [18 ] Q.S. Liu, H.Q. Lu, and S.D. Ma, “Improving Kernel Fisher Discriminant Analysis for Face Recognition,” IEEE Trans. Circuits and System for Video Technology, vol. 14, no. 1, pp. 42-49, 2004. [19 ] B. Heisele, P. Ho, and T. Poggio, “Face Recognition with Support Vector Machines: Global versus Component-based Approach,” IEEE Proc. Int. Conf. on Computer Vision, vol. 2, pp. 7-14, 2001. [20 ] G. Gordon, “Face Recognition Based on Depth Maps and Surface Curvature,” in SPIE Proceedings, vol. 1570: Geometric Method in Computer Vision, pp. 234-247, 1991. [21 ] L. Sirovich, and M. Kirby, “Low-Dimensional Procedure for Characterization of Human Faces,” J. Optical Society American, vol. 4, pp.519-524, 1987. [22 ] M. Kirby, and L. Sirovich, “Application of the KL Procedure for the Characterization of Human Faces,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 12, no.1 pp. 103-108, 1990.id NH0925392037 sid 914394 cfn 0 / id NH0925392038 auc 陳威名 tic 效能分析整合WLAN及GPRS之行動管理閘道器 adc 陳志成 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 56 kwc 效能分析 kwc 閘道器 kwc 漫遊延遲時間 kwc 緩衝區大小 abc 無線通訊網路與手機網路這近年來熱門研究,在目前市場上屬較成熟的無線通訊網路技術當推2.5G的GPRS與無線區域網路,為了要讓此兩不同系統網路能相互運作,提出一個能在兩系統中漫遊整合方法,儘可能減低對現有系統的影響,且針對此方法做效能上的研究與探討。 tc 1. Introduction 1 1.1. Overview 1 1.2. Mobility Management 4 1.2.1. Mobility Management in GPRS 4 1.2.2. Mobility Management in WLAN 4 1.3. Organization of the Thesis 6 2. The Mobility Gateway for GPRS-WLAN Integration 7 2.1. Design of GPRS-WLAN Mobility Gateway (GWMG) 7 2.1.1. Home in WLAN System 9 2.1.2. Home in GPRS Network 13 2.2. Handoff Management 17 2.3. System Requirements 18 2.3.1. Requirements for GPRS and WLAN Systems 18 2.3.2. Requirements for MS 18 3. The Analysis of Cost 20 3.1. Signaling and Database Cost 20 3.2. Numerical Results 23 3.3. Summary 24 4. The Analysis of Handoff Latency 25 4.1. Handoff Latency 25 4.1.1. Related Works 25 4.1.2. Analysis 28 4.2. Numberical Results 36 4.3. Summary 40 5. Analysis of Buffer Size on GPRS-WLAN Mobility Gateway(GWMG) 41 5.1. Related Works 42 5.1.1. Blocking Probability 42 5.2. Analysis for Buffer Size 44 5.3. Numberical Results 47 5.4. Summary 51 6. Conclusion 53 Bibliography 54rf [1 ] 3GPP TR 22.934. Feasibility study on 3GPP system to wireless local area network (WLAN) interworking, Sept. 2003. [2 ] 3GPP TR 23.234. 3GPP system to wireless local area network (WLAN) interworking; system description, Jan. 2004. [3 ] 3GPP TS 23.060. General packet radio service (GPRS); service description; stage 2, 2002. [4 ] 3GPP TS 29.060. General packet radio service (GPRS); GPRS tunneling protocol (GTP) across the G_n and G_p interface, 2002. [5 ] 3GPP TS 29.061. Packet domain; interworking between the public land mobile network (PLMN) supporting packet based services and packet data network (PDN), 2002. [6 ] ALA-LAURILA, J., MIKKONEN, J., AND RINNEMAA, J. Wireless LAN access network architecture for mobile operators. IEEE Communications Magazine (Nov. 2001), 82-89. [7 ] AUST, S., PROETEL, D., KONSGEN, A., PAMPU, C., AND GORG, C. Design issues of mobile IP handoffs between general packet radio service (GPRS) networks and wireless LAN (WLAN) systems. In Proc. of the 5th International Symposium on Wireless Personal Multimedia Communications (Hawaii, USA, Oct. 2002), pp. 868-–872. [8 ] ETSI TR 101 957. Requirements and architectures for interworking between HIPERLAN/ 2 and 3rd generation cellular systems, Aug. 2001. [9 ] FISCHER, W., AND MEIER-HELLSTERN, K. The Markov-modulated Poisson process (MMPP) cookbook. Performance Evaluation 18 (1992), 149-–171. [10 ] HEFFES, H., AND LUCANTONI, D. A Markov modulated characterization of packetized voice and data trafc and related statistical multiplexer performance. IEEE J. Selected Areas Comm. 4(6), 1986. [11 ] JIANG, M.-C., CHEN, J.-C., AND LIU, Y.-W. WLAN-centric authentication in integrated GPRS-WLAN networks. In Proc. of IEEE Vehicular Technology Conference (Orlando, FL, USA, Oct. 2003). [12 ] LIN, H.-W., CHEN, J.-C., JIANG, M.-C., AND HUANG, C.-Y. Integration of GPRS and wireless LANs with multimedia applications. Lecture Notes in Computer Science: Advances in Multimedia Information Processing - PCM 2002, Springer, 2532 (Dec. 2002), 704-–711. [13 ] MORAND, L., AND TESSIER, S. Global mobility approach with Mobile IP in all IP networks. In Proc. of IEEE International Conference on Communications (ICC) (2002), pp. 2075–2079. [14 ] NAOR, P., AND YECHIALI, U. Queueing problems with heterogenous arrivals and service. Oper. Res. 19, 1971. [15 ] NEUTS, M. F. A queue subject to extroneous phase changes. Adv. Appl. Probab. 3, 1971. [16 ] NEUTS, M. F. Matrix-Geometric Solutions in Stochastic Modeling: An Algorithmic Approach. Baltimore, MD:Johns Hopkins University Press, 1981. [17 ] SALKINTZIS, A. K., FORS, C., AND PAZHYANNUR, R. WLAN-GPRS integration for next-generation mobile data networks. IEEE Wireless Communications 9 (Oct. 2002), 112-–124. [18 ] TRIVEDI, K. S. Probability and Statistics with Reliability, Queuing and Computer Science Applications. Wiley, 2002. [19 ] YLIANTTILA, M., PANDE, M., M¨AKEL ¨A, J., AND M¨AH ¨ONENI, P. Optimization scheme for mobile users performing vertical handoffs between IEEE 802.11 and GPRS/EDGE networks. In Proc. of IEEE GLOBECOM (2001), vol. 6, pp. 3439-3443.id NH0925392038 sid 914395 cfn 0 / id NH0925392039 auc 蔡曉雯 tic 以統計模型HMM為基礎的藍調變奏系統 adc 陳良弼 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 36 kwc 音樂變奏 kwc 馬可夫模型 abc 藍調音樂始於十九世紀初,起源於新大陸殖民者的黑奴拓墾區。由於許多非洲黑人被白人抓來美洲作奴隸,他們就藉著工作或閒暇時間以歌唱來減輕肉體與心靈的苦痛。搖滾樂、爵士樂、節奏藍調(R&B)、嘻哈(hip-hop)…等現今我們所熟悉的流行音樂,無一不與藍調有關。它不僅是搖滾樂的先驅,甚至對古典音樂等世界音樂也皆有所衝擊。藍調可說是──「音樂背後的音樂」。 tc Abstract II Acknowledgements III Contents IV List of Figures V List of Tables VI 1. Introduction 1 2. System Framework 6 3. Blues Scale Transformation 9 4. Grace Notes Insertion 12 4-1 Training Process 12 4-2 Varying Process 14 5. Dominant 7th Chords Accompaniment 20 5-1 Training Process 20 5-2 Varying Process 22 6. Experiments 26 6-1 Sensitivity Training in Blues Music 26 6-2 Evaluation of Variation 27 7. Conclusion 31 Reference 33rf [1 ]P. Berg, R. Rowe and D. Theriault, “SSP and Sound Description,” Computer Music Journal, 4(3), pp. 25-35. [2 ]E. BILOTTA, P. PANTANO and V. TALARICO, “Synthetic Harmonies: An Approach to Musical Semiosis by Means of Cellular Automata,” In Artificial Life VII: Proceedings of the Seventh International Conference, edited by M. Beday et al. MIT Press, 2000. [3 ]H.C. Chen and Arbee L.P. Chen, "A Music Recommendation System Based on Music Data Grouping and User Interests," Proc. ACM International Conference on Information and Knowledge Management 2001. [4 ]H.C. Chen, C.H. Lin and Arbee L.P. Chen, “Music Segmentation by Rhythmic Features and Melodic Shapes,” IEEE International Conference on Multimedia & Expo (ICME), 2004. [5 ]E. Chew, “The Spiral Array: An Algorithm for Determining Key Boundaries,” International Conference on Music and Artificial Intelligence (ICMAI), 2002. [6 ]T.C. Chou, Arbee L.P. Chen and C.C. Liu, "Music Databases: Indexing Techniques and Implementation," Proc. IEEE Intl. Workshop on Multimedia Data Base Management Systems, 1996. [7 ]A.S. Durey and M.A. Clements. “Melody Spotting Using Hidden Markov Models. In Proceedings of the International Symposium on Music Information Retrieval”, pages 109-117, Bloomington, IN, October 2001. [8 ]D. Eck and J. Schmidhuber, “Finding Temporal Structure in Music: Blues Improvisation with LSTM Recurrent Networks,” In H. Bourlard, editor, Neural Networks for Signal Processing XII, Proc. 2002 IEEE Workshop, pages 747-756, New York, 2002. [9 ]M. Farbood and B. Schoner, “Analysis and Synthesis of Palestrina-Style Counterpoint Using Markov Chains,” In International Computer Music Conference, 2001. [10 ]J. Harnum, “Basic Music Theory: How to Read, Write, and Understand Written Music,“ -- 1st ed. [11 ]M. Hirzel and D. Soukup, “The Viterbi Jazz Improvisator,” May 2000. [12 ]J.L. Hsu and Arbee L.P. Chen, "Building a Platform for Performance Study of Various Music Information Retrieval Approaches" International Symposium on Music Information Retrieval, pp. 153-161, 2001. [13 ]J.L. Hsu, C.C. Liu and Arbee L.P. Chen, "Discovering Nontrivial Repeating Patterns in Music Data" IEEE Transactions on Multimedia, Vol. 3, No. 3, 2001. [14 ]J.L. Hsu and Arbee L.P. Chen, "A Qualitative Comparison (Comparative Study) of Various Techniques for Content-based Music Information Retrieval", 2002. [15 ]M.H. Jian, C.H. Lin and A.L.P. Chen, "Perceptual Analysis for Music Segmentation," SPIE Storage and Retrieval Methods and Applications for Multimedia, 2004. [16 ]H. Jin and H.V. Jagadish, “Indexing Hidden Markov Models for Music Retrieval,” International Symposium on Music Information Retrieval (ISMIR), 2002. [17 ]O.E. Laske, “Composition Theory in Koenig’s Project One and Project Two,” Computer Music Journal, 5(4), 1981, pp. 54-65. [18 ]R. Lawrence, “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition," Proc. IEEE 77, 1989. [19 ]C.H. Lee, C.W. Cho, Y.H. Wu and Arbee L. P. Chen "A Novel Representation of Sequence Data based on Structural Information for Effective Music Retrieval," International Conference on Database Systems for Advanced Applications (DASFAA), 2004. [20 ]C.R. Lin, N.H. Liu, Y.H. Wu and Arbee L.P. Chen "Music Classification Using Significant Repeating Patterns" International Conference on Database Systems for Advanced Applications (DASFAA), 2004. [21 ]C.C. Liu, J.L. Hsu and Arbee L.P. Chen "Efficient Near Neighbor Searching Using Multi-Indexes for Content-Based Multimedia Data Retrieval," Multimedia Tools and Applications, Vol 13, No. 3, pp.236-254. 2001. [22 ]N.H. Liu, Y.H. Wu and Arbee L.P. Chen, "Efficient k-NN Search in Polyphonic Music Databases Using a Lower Bounding Mechanism," ACM SIGMM International Workshop on Multimedia Information Retrieval, 2004. [23 ]Y. Marom, “Honours Thesis: Improvising Jazz Using Markov Chains,”, The University of Western Australia, 1997. [24 ]A. Marsden. Modeling the Perception of Musical Voices. In Alan Marsden and Anthony Pople, editors, Computer Representations and Models in Music, pages 213{251. Academic Press, 1992. [25 ]M.C. Mozer, “Neural Network Music Composition by Prediction: Exploring the Benefits of Psychophysical Constraints and Multiscale Processing,” Connection Science, 6, 247-280, 1994. [26 ]G. Papadopoulos and G. Wiggins, “A Genetic Algorithm for the Generation of Jazz Melodies,” In STeP’98, Jyv¨askyl¨a, Finland, 1998. [27 ]A. Sheh and D. Ellis. “Chord Segmentation and Recognition Using Em-Trained Hidden Markov Models.” In 4th International Symposium on Music Information Retrieval (ISMIR), October 2003. [28 ]J. Shifrin, B. Pardo, C. Meek and W.P. Birmingham, “HMM-Based Musical Query Retrieval.” International Conference on Digital Libraries (JCDL), 295-300, 2002. [29 ]H.H. Shih, S. Narayanan and C.C.J. Kuo, “An HMM-Based Approach to Humming Transcription,” IEEE International Conference on Multimedia and Expo (ICME), 2002. [30 ]L. Smith and R. Medina, “Discovering Themes by Exact Pattern Matching,” International Symposium on Music Information Retrieval, 2001. [31 ]B. Thom. Unsupervised Learning and Interactive Jazz/Blues Improvisation. Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-2000), Austin, TX. [32 ]A.L. Uitdenbogerd and J. Zobel, “Manipulation of Music For Melody Matching,” Proceedings of the sixth ACM international conference on Multimedia, 1998, Pages 235 – 240. [33 ]G. Wiggins, G. Papadopoulos, S. Phon-Amnuaisuk, and A. Tuson, “Evolutionary Methods for Musical Composition,” International Journal of Computing Anticipatory Systems, 1999. [34 ]Y. Zhu and M. Kankanhalli, “Music Scale Modeling for Melody Matching,” ACM Multimedia, 2003. [35http://www.campusprogram.com/reference/en/wikipedia/b/bl/blues.html [36 ]http://www.chipin-kaiya.com/JazzForm/Blues/Blues.html [37 ]http://www.dolmetsch.com/musictheory25.htm [38 ]http://www.jazclass.aust.com/bl1.htm [39 ]http://www.jimmychanbluesharp.com.hk/lesson2.htm [40 ]http://www.sciencedaily.com/encyclopedia/blues [41 ]http://www.zentao.com/guitar/theory/7th-chords.htmlid NH0925392039 sid 914397 cfn 0 / id NH0925392040 auc 余坤庭 tic 以資料探勘進行視訊系統快取機制之研究 adc 石維寬教授 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 60 kwc 隨選視訊系統 kwc 快取機制 kwc 資料探勘 kwc 命中率 abc 近年來由於網路技術不斷地進步及網路頻寬大幅地增加,過去只能提供簡單的文字及聲音的網路媒體,如今進化為能提供圖片及多媒體影片的網路媒體。例如:由中華電信公司推出的互動式多媒體隨選視訊服務(MOD)就是一個最典型的例子。由於網路使用人口呈現越來越多的趨勢,且網路的應用也越來越往多媒體影片服務方面來發展。有鑑於此,本論文將利用資料探勘的概念,配合預存式機制的技術來解決在視訊系統中的影片快取機制問題。配合該機制,我們能提供一個簡單的小型配送系統,來解決目前在多媒體配送系統中,提高快取伺服器的命中率減少點選影片的反應時間及大量的人力資源浪費還有避免人為疏失上的可能。 rf [1 ]財團法人台灣網路資訊中心。台灣網路資訊中心網路使用調查。 上網日期:民93年6月2日。http://www.twnic.net.tw/download/200307/200307index.shtml [2 ]中國互聯網絡信息中心。中国互联网络发展状况统计调查。上網日期:民93年6月2日。http://www.cnnic.net.cn/index/0E/00/11/index.htm [3 ]Brain D. Davison; “A Web Caching Primer;” IEEE Internet Computing, Volume 5, Number 4; IEEE; p.38-45 ; 2001. [4 ]David W. Cheung, Ben Kao, Joseph Lee; “Discovering user access patterns on the World Wide Web;” Knowledge Based Systems Journal; Elsevier Science , V10, N6; 1998. [5 ]Evangelos Markatos , Catherine E. Chronaki ; “A Top-10 Approach to Prefetching on the Web;” In Proceedings of the INET 98 Conference; July 1998. [6 ]Jinquan Li, Z.X. Wang, Daniel Zeng, Fei-Yue Wang; “Combined Coherence and Prefetching Mechanisms for Effective Web Caching;” 2001 IEEE International Conference on , Vol. 5 ; IEEE; p.3034-3038; 2001. [7 ]美國nSTREAMS Technologies, Inc.公司。上網日期:民93年6月2日。http://www.nstreams.com. [8 ] H. Shachnai and P. S. Yu, “The role of wait tolerance in effective batching: A paradigm for multimedia scheduling schemes,” Technical Report RC 20038, IBM Research Division, T.J. Watson Research Center, April 1995. [9 ]Dan, A., Sitaram, D., and Shahabuddin, P., “Scheduling policies for an on-demand video server with batching,” Proceedings of ACM Multimedia, pp. 15-23, 1994. [10 ] Dan, A., Shahabuddin, P., Sitaram, D., and Towsley, D., “Channel allocation under batching and VCR control in video-on-demand systems,” Journal of Parallel and Distributed Computing, vol. 30, no. 2, pp. 168-179, November 1995. [11 ] Dan, A., Sitaram, D., and Shahabuddin, P., “Dynamic batching policies for an on-demand video server,” Multimedia Systems, vol. 4, no. 3, pp. 112-121,June 1996. [12 ] Carter, S. W. and Long, D. D. E., “Improving video-on-demand server efficiency through stream tapping,” Proceedings of the Sixth International Conference on Computer communications and Networks, pp. 200-207, Las Vegas, N.V., U.S.A., September 1997. [13 ]Aggarwal, C. C., Wolf, J. L., and Yu, P. S., “A permutation-based pyramid broadcasting scheme for video-on-demand systems,” IEEE Proceedings of the International Conference on Multimedia Computing and Systems, pp.118-126, June 1996. [14 ]Chiueh, T. and Lu, C., “A periodic broadcasting approach to video-on-demand service,” International Society for Optical Engineering, vol. 26, no. 15, pp. 162-169, October 1995. [15 ]Gao, L., Kurose, J., and Towsley, D., “Efficient schemes for broadcasting popular videos,” International Workshop on Network and Operating Systems Support for Digital Audio and Video, pp. 317-329, August 1998. [16 ] Juhn, L. S. and Tseng, L. M., “Fast broadcasting for hot video access,” Real-Time Computing Systems and Applications, pp. 237-243, October 1997. [17 ] H. Shachnai and P. S. Yu, "Exploring wait tolerance in effective batching for video-on-demand scheduling," in Proc. International Conference on ComputerSystems and Software Engineering, pp. 67-76, 1997. [18 ] Chen, M. S., Han, J., & Yu, P.S. (1996). Data Mining: An Overview from a Database Perspective. IEEE Transactions on Knowledge and Data Engineering, 8(6), 866-883. [19 ] Fong, J., Wong, H.K., & Huang, S.M. (2003). Continuous and incremental data mining association rules using frame metadata model. Knowledge-Based System, 16(2), 91-100. [20 ] Fu, Y. (1997). Data mining Tasks, techniques and applications, IEEE Potentials, 16(4), 18-20. [21 ] Cheung, D., Han, J., Ng, V., & Wong, C. Y. (1996). Maintenance of discovered association rules in large databases: An incremental updating technique. Proceedings of 1996 International Conference on Data Engineering, 106-114. [22 ] Agrawal, R., & Srikant, R. (1994). Fast Algorithms for Mining Association Rules. Proc. of the 20th Int’l Conference on Very Large Databases, 487-499. [23 ] D. J. Gemmell, H. M. Vin, D. D. Kandlur, and L. A. Rowe, “Multimedia storage servers: a tutorial,” Computer, Vol. 28, No. 5, 1995, pp. 40-49. [24 ] Buretta, M. (1997). Data Replication Tools and Techniques for Managing Distributed Information. John Wiley & Sons. [25 ] Y. M. Huang and J. W. Ding, “Performance analysis of video storage server under initial delay bounds,” Journal of Systems Architecture, Vol. 46, No. 2,2000, pp. 163-179. [26 ] A. N. Mourad, “Issues in the design of a storage server for video on demand,” ACM Multimedia Systems, Vol. 4, No. 2, 1996, pp. 70-86. [27 ] Y. J. Lee and D. H. C. Du, “Adaptive load sharing and scheduling schemes for distributed continuous media delivery,” Proc. IEEE International Conference on Multimedia Computing and Systems, 1999, pp. 506-511. [28 ] David E. Goldberg, Genetic algorithms in search, optimization, and machine learning, Addison Wesley Longman, Inc., 1989. [29 ] G. Rawlins, Foundations of Genetic Algorithms, Morgan Kaufmann, 1991. [30 ] Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1996. [31 ] Berson, A., Thearling, K., & Smith, S. (1999). Building Data Mining Applications for CRM. McGraw-Hill. [32 ] Abraham Silberschatz, Greg Gagne, Peter Baer Galvin, “Operating System Concepts 6/e, XP Edition”, JOHN WILEY, Inc., 2002. [33 ] Andrew S.Tanenbaum,“Modern Operating Systems”, 2nd edition, Prentice Hall press. [34 ] S. Chaudhuri and U. Dayal, “An Overview of Data Warehouse and OLAP Technology,” in ACM SIGMOD Record, 1997, pp: 65-74. [35 ] Q. Chen, U. Dayal and M. Hsu, “A Distributed OLAP Infrastructure for E-commerce,” Proc. IFCIS International Conference on Cooperative Information Systems, 1999, pp: 209-220. [36 ] J. Han, M. Kamber, Data Mining Concepts and Techniques, Morgan Kaufmaun, 2001. [37 ] Kimball et al,The Data Warehouse Lifecycle Toolkit,Wiley, 1998. [38 ] Richard J. Roiger and Michael W. Geatz, Data Mining: A Tutorial-Based Primer, Addison-Wesley, 2003. [39 ] N. Venkatasubramanian and S. Ramanathan, “Load management in distributed video servers,” Proc. 17th International Conference on Distributed Computing Systems, 1997, pp. 528-535. [40 ] Anker, T., Dolev, D., and Keidar, I., “Fault tolerant video-on-demand services,” Proceedings of the Nineteenth International Conference on Distributed Computing Systems, pp. 244-252, Austin, Texas, June 1999. [41 ] Golubchik, Leana, Richard R. Muntz, Cheng-Fu Chou, and Steven Berson,“Design of fault-tolerant large-scale VOD servers: with emphasis on high-performance and low-cost,” IEEE Transactions on Parallel and Distributed Systems, vol.12, no. 4, April 2001. [42 ] Shyu, I. J. and Shieh, S. P., “Balance workload and recovery load on distributed fault tolerant VOD system,” IEEE Journal on Communication Letters, vol.2, no. 10, October 1998. [43 ] J. F. Conde and Á. Viña, “Efficient memory management in video on demand servers,” Computer Communications, Vol. 23, No. 3, 2000, pp. 253-266. [44 ] K. L. Wu and P. S. Yu, “Consumption based buffer management for maximizing system throughput of a multimedia system,” Proc. Third IEEE International Conference on Multimedia Computing and Systems, 1996, pp. 164-171.id NH0925392040 sid 916303 cfn 0 / id NH0925392041 auc 孫佑銘 tic 在任意連接蟲洞網路下基於轉動模組所建立的有效率無死結以樹為基礎的繞徑演算法 adc 鍾葉青 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 32 kwc 轉動模組 kwc 任意連接網路 kwc 以樹為基礎的繞徑演算法 kwc 無死結 kwc 蟲洞繞徑 abc 在這篇碩士論文中,我們提出了一個有效率無死結(deadlock-free)的繞徑(routing)演算法━ DOWN/UP routing. 此繞徑演算法的理論基礎為轉動模組(turn model)適用於任何蟲洞(wormhole)交換技術相連接的網路. 在一個使用延伸樹(spanning tree)為基礎所建立的繞徑演算法,在延伸樹根節點周圍的熱點(hot spots)和不平均的流量分布是繞徑演算法效能降低的兩個主要原因.為了解決在延伸樹根節點周圍的熱點和不平均的流量分布這兩個問題,我們在DOWN/UP routing 設法將流量往延伸樹的葉子部分推進,並對每一個點消除具有完全相反方向的轉動組(turn pairs)來分別解決這兩個問題. 當我們有一個網路拓樸(topology), DOWN/UP routing 包含以下三個階段. 第一個階段中,使用這個拓樸建立一個基於座標樹(coordinated tree)的溝通圖(communication graph). 在溝通圖中,屬於延伸樹的邊和其它的邊將被視做不同的邊. 我們這樣做是為了使選擇禁止的轉動更為精確. 同時,我們也提出一個較佳的方法來建立座標樹,繞徑演算法可以達到較佳的產量(throughput)基於這較佳方式所建造出的延伸樹. 在第二階段中, 基於最大方向圖(maximal direction graph)和轉動模組,我們建立一個最大無圈方向相依圖(maximal acyclic direction dependency graph)來得到一個禁止轉動的集合. 在此階段,我們小心的選擇一個禁止轉動的集合使得流量可以盡量被推向延伸樹的樹葉結點並且達成平均分布流量的目的. 在第三階段,我們將此找到的禁止轉動集合實施在溝通圖的每一個結點中,並且釋放掉不需要禁止的轉動. 可以針對每一個溝通圖結點的禁止轉動推導出適用於任意連接(irregular)的拓樸的DOWN/UP routing 演算法. 為了得到DOWN/UP routing的效能,我們使用了模擬的方式. 我們將DOWN/UP routing 和L-turn routing 實作在IRFlexSim0.5 模擬器上, 並模擬了含有4阜或8阜128交換器(switch)任意連接的網路. 由模擬的結果得知我們提出的繞徑演算法不論在熱點的程度上,流量的分布上,產量上都勝過L-turn routing對於所有測試的個案. tc 1.Introduction..................................1 2.Related Work..................................4 3.Preliminaries.................................6 4.The DOWN/UP Routing..........................11 4.1 Phase 1....................................12 4.2 Phase 2....................................13 4.3 Phase 3....................................22 5.Performance Analyses.........................26 6.Conclusion Remarks...........................31 References.....................................32rf [1 ] J. Flich and J. Duato, and P. Lopez, “Deadlock-Free Routing in Infiniband through Destination Renaming*,” the International Conference on Parallel Processing (ICPP), pp.427-434, Sep. 2001. [2 ] C. J. Glass and L.M. Ni, “The Turn Model for Adaptive Routing,’ J. ACM, Vol. 41, No. 5, pp. 874-902, Sept. 1994. [3 ]IRFlexSim0.5 is available in " http://www.usc.edu/dept/ceng/pinkston/tools.html” [4 ] A. Jouraku, A. Funahashi, H. Amano, and M. Koibuchi, ”Routing Algorithms on 2D Turn Model for Irregular Networks,” the Sixth International Symposium on Parallel Architectures, Algorithms, and Networks(I-SPAN'02), pp.289-294, May. 2002 [5 ] A. Jouraku, A. Funahashi, H. Amano, and M. Koibuchi,”L-turn routing: An Adaptive Routing in Irregular Networks,” the International Conference on Parallel Processing (ICPP), pp.374-383, Sep. 2001. [6 ] A. Jouraku, H. Amano, and M. Koibuchi, “Deterministic Routing Techniques by Dividing into Sub-Networks in Irregular Networks,” The IASTED International Conference on Networks, Parallel and Distributed Processing, and Applications (NPDPA 2002), pp.143-148, Oct. 2002. [7 ] O.Lysne and T.Skeie. “Load Balancing of Irregular System Area Networks Through Multiple Roots,” Proceedings of the International Conference on Communication in Computing, CIC 2001, CSREA Press, pages 165 -171. [8 ] G. Pfister and V. Norton, “Hot Spot Contention and Combining in Multistage Interconnection Networks,” IEEE Trans. Computers. C34 (10):943-948, Oct. 1985. [9 ] A. Robles, J.C. Carlos, and J. Duato,” Effective Strategy to Compute Forwarding Tables for InfiniBand Networks,” the International Conference on Parallel Processing (ICPP), pp.48-60, Sep. 2001. [10 ] A. Robles, J. Duato, J. Flich, J.C. Sancho, and P. Lopez, “Effective Methodology for Deadlock-Free Minimal Routing in Infiniband Networks,” the International Conference on Parallel Processing (ICPP), pp.409-418, Aug. 2002. [11 ] A. Robles , J. Duato, and J.C. Sancho,” A Flexible Routing Scheme for Networks of Workstations,” ISHPC, pp. 260-267,2000. [12 ] M. D. Schroeder et al., “Autonet: A High-Speed Self-Configuring Local Area Network Using Point-to-Point Links,” SRC research report 59, DEC, Apr. 1990. [13 ] F. Silla and J. Duato, “High-Performance Routing in Networks of Workstations with Irregular Topology,” IEEE Transactions on Parallel and Distributed Systems, Vol.11, No.7, pp. 699-719, July 2000. [14 ] I. Theiss, O. Lysne, and T. Skeie, “Layered Shortest Path (LASH) Routing in Irregular System Area Networks,” Proc. Int’l Parallel and Distributed Symp., pp. 162-169, Apr. 2002.id NH0925392041 sid 916304 cfn 0 / id NH0925392042 auc 吳冠賢 tic MPEG-7的二維形狀特徵描述子 adc 陳朝欽 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg - kwc MPEG-7 kwc XML Schema kwc DDL kwc 二維形狀 abc 隨著多媒體資訊的迅速增加,如何發展出一種機制,能夠在龐大而紊亂的資料量中,依據需求的資訊內容,來搜尋與篩選資訊,是一件重要的事。過去由於缺乏統一的描述方式,研究者往往使用不一致的描述方式,不但內部資料的表示,甚至介面的不統一,造成資訊整合的困難。MPEG-7被稱為多媒體內容描述介面(Multimedia Content Description Interface),是由MPEG專家們所制定的一個國際標準,它的主要目的是在於建立多媒體內容的描述標準。現在由於這項標準的誕生,遵循MPEG-7標準變成一個重要的課題。形狀分析有許多的方法被提出來,主要分成兩種:其一是對整個物件作分析,其二是對物件的邊界值作分析。我們先介紹五個形狀分析的方法,分別是Moment invariants、Zernike moments、Pseudo Zernike moments(屬於前者)、Improved moment invariants、Fourier descriptors(屬於後者)。再來我們介紹了MPEG-7中Description Definition Language(DDL)和Multimedia Description Schemas(MDS)較重要的一些部分。我們使用了DDL定義了我們提到的五個形狀分析方法的語法。因為MPEG-7選擇了XML Schema當作其DDL,DDL定義了Descriptors(Ds)和Descriptor Schemas(DSs)的語法,且可以定義新的Ds和DSs或修改現有的Ds和DSs,所以學習XML和XML Schema是了解MPEG-7的基礎。我們將我們的研究成果用MPEG-7的方式來描述以符合標準。我們在第二章介紹五個形狀分析的方法。第三章介紹DDL和MDS,且定義出我們所提及的形狀分析方法的語法。第四章實驗的結果和第五章的結論。 rf [Cha01 ] S.F. Chang, T. Sikora and A. Puri, "Overview of the MPEG-7 Standard", IEEE Trans. Circuits and Systems for Video Technology, Vol. 11, No. 6, pp. 688-695, 2001. [Che93 ] C.C. Chen, "Improved moment invariants for shape discrimination", Pattern Recognition, Vol. 26, No. 5, pp. 683-686, 1993. [Hu62 ] M. Hu, "Visual pattern recognition by moment invariants", IRE Trans. Inf. Theory, pp. 179-187, 1962. [Hun01 ] J. Hunter, "An overview of the MPEG-7 description definition language (DDL)", IEEE Trans. Circuits and Systems for Video Technology, Vol. 11, No. 6, pp. 765-772, 2001. [Kho90 ] A. Khotanzad and Y.H. Hong, "Invariant image recognition by Zernike moments", IEEE Trans. PAMI, Vol. 12, No. 5, pp. 489-497, 1990. [Kos03 ] H. Kosch, Distributed Multimedia Database Technologies Supported by MPEG-7 and MPEG-21, 2003. [Lin93 ] L.C. Lin, "Zernike moments for 2D shape Recognition", Master Thesis, National Tsing Hua University, Hsinchu, Taiwan, 1993. [Man02 ] B. S. Manjunath, P. Salembier and T. Sikora, Introduction to MPEG-7: Multimedia Content Description Interface, 2002. [Ots79 ] N. Otsu, "A threshold selection method from gray-level histograms", IEEE Trans. Man, Cybern., Vol. SMC-9, No. 1, pp. 62-66, 1979. [Sal01 ] P. Salembier and J. R. Smith, "MPEG-7 Multimedia Description Schemas", IEEE Trans. Circuits and Systems for Video Technology, Vol. 11, No. 6, pp. 748-759, 2001. [Zah72 ] C.T. Zahn and R.Z. Roskies, "Fourier descriptors for plane closed curves", IEEE Trans. Computers, Vol. 21, pp. 269-281, 1972. [ISO1 ] ISO/IEC 15938-2 Information Technology – Multimedia Content Description Interface – Part 2: Description Definition Language. [ISO2 ] ISO/IEC 15938-3 Information Technology – Multimedia Content Description Interface – Part 3: Visual. [ISO3 ] ISO/IEC 15938-5 Information Technology – Multimedia Content Description Interface – Part 5: Multimedia Description Schemas. [WWW1 ] XML Schema Part 0: Primer, W3C Recommendation (2001, May). [Online ]. Available: http://www.w3.org/TR/xmlschema-0/ [WWW2 ] XML Schema Part 1: Structures, W3C Recommendation (2001, May). [Online ]. Available: http://www.w3.org/TR/xmlschema-1/ [WWW3 ] XML Schema Part 2: Datatypes, W3C Recommendation (2001, May). [Online ]. Available: http://www.w3.org/TR/xmlschema-2/ [WWW4 ] Namespaces in XML, W3C Recommendation (1999, Jan). [Online ]. Available: http://www.w3.org/TR/REC-xml-names/ [WWW5 ] MPEG-7 Overview (version 9). [Online ]. Available: http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm [WWW6 ] NIST MPEG-7 Validation Site. [Online ]. Available: http://m7itb.nist.gov/M7Validation.htmlid NH0925392042 sid 916305 cfn 0 / id NH0925392043 auc 何威毅 tic 建構全域的視向映圖以壓縮光場映對資料 adc 張鈞法 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 24 kwc 光場 kwc 影像為主成像法 abc 光場(Light Field) 為一個描述三維空間中所有光線行進的位置與方向的函數。對於那些由不同位置及角度觀察時顏色會隨著變化的物體,將光場參數化在物體表面上則自然的提供了一個不錯的方法來紀錄下物體表面由各角度觀察的變化。而得力於日漸成熟的顯示卡硬體加速,加上利用PCA(Principle Component Analysis) 將龐大的四維表面光場資料分解成數項Surface Map和View Map相乘的和來逼近原本的資料,Light Field Mapping能在即時的更新速率下畫出一物體的表面光場。 tc 摘要 Abstract 誌謝 目錄 圖表索引 Chapter 1 緒論 01 Chapter 2 相關研究 05 § 2-1 Light field rendering and lumigraph 05 § 2-2 Surface light fields for 3d photography 07 § 2-3 Light field mapping 08 Chapter 3 方法 10 § 3-1 Data acquisition 10 § 3-2 Process of light field mapping 11 § 3-3 Globalization of view map 12 § 3-4 Data compression 17 § 3-5Rendering 17 Chapter 4 實作與結果 18 § 4-1 System 18 § 4-2 Compression size and quality 18 Chapter 5 結論與未來方向 24 參考文獻rf [Bishop95 ] C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, 1995. [Chen02 ] Wei-Chao Chen , J. Bouguet , Michael H. Chu and Radek Grzeszczuk. Light Field Mapping: efficient Representation and Hardware Rendering of surface Light Fields. In SIGGRAPH02, pages 447-456, July 2002. [Gersho92 ] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression. Kluwer Academic Publishers, 1992. [Glorter96 ] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. The lumigraph. SIGGRAPH 96, pages 43–54. [Lee99 ] D. D. Lee and H. S. Seung. Learning the Parts of Objects by Non-Negative Matrix Factorization. Nature, 401:788–791, 1999. [Levoy96 ] Levoy and P. Hanrahan. Light Field Rendering. Proceedings of SIGGRAPH 96, pages 31-42, August 1996. [Miller98 ] G. S. P. Miller, S. Rubin, and D. Ponceleon. Lazy Decompression of Surface Light Fields for Precomputed Global Illumination. Eurographics Rendering Workshop 1998, pages 281–292, June 1998. [Wood00 ] D. N. Wood, D. I. Azuma, K. Aldinger, B. Curless, T. Duchamp, D. H. Salesin, and W. Stuetzle. Surface Light Fields for 3D Photography. Proceedings of SIGGRAPH 2000, pages 287–296, July 2000.id NH0925392043 sid 916306 cfn 0 / id NH0925392044 auc 賴大立 tic 微晶片影像分析的探討 adc 陳朝欽 博士 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 28 kwc 微晶片 kwc 影像處理 kwc 特徵選取 abc 微晶片能夠在單張微晶片影像同時檢驗數千至數萬顆基因,這項技術被廣泛的應用於分子生物實驗上。然而,目前計算微晶片影像上的每一點的特徵值仍仰賴人工操作與手動調整,這不但耗時而且不具重現性。並且,一般商用微晶片分析軟體與生物公司都不透漏分析方法的細節,分析方法的不明確影響實驗結果的可靠度。在這篇論文我們提出一個方法以接近全自動的方法,計算基因的表現量,並由其中篩選出,在正常與腫瘤有不同表現量的基因,這些基因值得作進一步臨床檢驗。我們提出的方法首先將微晶片影像作灰階化,使每一點的量值代表基因的表現量,接著濾除實驗上殘留的物質所造成的雜訊。因為晶片掃描時會有角度誤差,造成定位圓點的錯誤,所以我們提出方法將影像旋轉至正確角度。生物晶片上的每一圓點,代表實驗所得的基因表現量,利用影像辨識的方法,定位每一點在晶片上的圓點,並將之從背景上分離出。最後計算每一圓點的統計數據作為特徵值。根據這些特徵值再作進一步的基因篩選。 rf [1 ] N. Brändle, H. Lapp, and H. Bischof. Fully Automatic Grid Fitting for Genetic Spot Array Images Containing Reference Spots. Technical Report PRIP-TR-058, PRIP, TU Wien, 1999. [2 ] A. Brazma and etc., “Minimum Information about Microarray Experiment (MIAME) - toward Standards for Micorarray Data”, Nature Genetics, vol. 29, pp. 365-371, Dec. 2001. [3 ] H.C. Causton, J. Quackenbush, and A. Brazma, Microarray Gene Expression Analysis, Blackwell Publishing, 2003. [4 ] C.C. Chen and R.C. Dubes, Environmental Studies of ICM Segmentation Algorithm, Journal of Information Science and Engineering, vol. 6, pp. 325-337, Nov. 1990. [5 ] Yidong Chen, Vishnu Kamat, Edward R. Dougherty, Michael L. Bittner, Paul S. Meltzer, Jeffery M. Trent: Ratio statistics of gene expression levels and applications to microarray data analysis. Bioinformatics 18(9): 1207-1215 (2002) [6 ] Han-Yu Chuang, Hongfang Liu, Stuart Brown, Cameron McMunn-Coffran, Cheng-Yan Kao, and D. Frank Hsu, “Identifying Significant Genes from Microarray Data”, BIBE 2004 [7 ] R.A. Fisher, “The Use of Multiple Measurements in Taxonomic Problems,” Annals of Eugenics, vol. 7, part II, pp. 179-188, 1936. [8 ] R.C. Gonzalez and R.E. Woods, Digital Image Processing, Prentice-Hall, Inc., 2002. [9 ] Jay L. Devore. “Probability and statistics for Engineering and the Sciences”. Duxbury 1995 [10 ] Anil K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, 1986 [11 ] Khan et al., “Classification and Diagnostic Prediction of Cancers Using Gene Expression Profiling and Artificial Neural Networks,” Nature Medicine 7, no. 6 (2001) 673–679. [12 ] N. Otsu. "A Threshold Selection Method from Gray-Level Histograms," IEEE Trans. on Systems, Man, and Cybernetics, vol. SMC-9, pp. 62-66, Sept. 1979. [13 ] http://www.angio.bioinfo.ntu.edu.tw [14 ] http://www.mediacy.com/arraypro.htm [15 ] http://www.axon.com/GenePixSoftware.htmid NH0925392044 sid 916309 cfn 0 / id NH0925392045 auc 葉威志 tic 考慮延遲與壅塞的緩衝樹重建 adc 王廷基 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 28 kwc 壅塞 kwc 延遲 kwc 緩衝 abc 在現代的VLSI設計裡,晶片的複雜度大大的增加,而且導線(wires)及邏輯閘(gates)的數目大量的成長,甚至到千萬這麼多。在有限的晶片空間裡,達到預期延遲(delay)地繞線與擺放緩衝(buffer)變的越來越困難。例如,當已經在晶片上繞好的導線沒有盡量地避免壅塞的區域,一些將要被繞的導線很容易會有因為要多繞路而違反延遲的窘境。再者,導線在壅塞的區域可能會遭受到一些風險,例如鄰近導線的訊號干擾變強或是晶片製程上的失誤機率變大等。另一方面,擺放緩衝若沒有注意壅塞程度(congestion)而插在壅塞的區域,則後來較重要的導線若要插入緩衝在那區域減少延遲就會有可能發生困難。因此,在晶片上考慮壅塞程度變的越來越重要。分散壅塞程度可以幫助達到成功且完整地繞(routing)及擺排(placement)。 tc Abstract………………………………………………………………………………II Contents………………………………………………………………………………III Chapter 1………………………………………………………………………………1 Introduction………………………………………………………………1 Chapter 2………………………………………………………………………………5 Problem Formulation………………………………………………………5 Chapter 3………………………………………………………………………………7 The Algorithm………………………………………………………………7 3.1 Buffer Tree Decomposition…………………………………………7 3.2 Component Look-up Tables……………………………………………9 3.2.1 Wire Path Table (WPT)……………………………………9 3.2.2 Virtual Buffered Path Length Table (VBPLT)…………9 3.2.3 Buffered Path Table (BPT)………………………………10 3.3 Alternative Positions for Component Drivers……………………12 3.4 Algorithm Overview………………………………………………………13 3.5 Details of BTRTC_core……………………………………………15 3.6 Remarks………………………………………………………………………………18 3.7 Time Complexity……………………………………………………………………19 Chapter 4…………………………………………………………………………………20 Experimental Results…………………………………………………………20 Chapter 5…………………………………………………………………………………26 Conclutions……………………………………………………………………26 References…………………………………………………………………………………27rf [1 ] C. J. Alpert, G. Gandham, M. Hrkic, J. Hu, and S. T. Quay, “Porosity Aware Buffered Steiner Tree Construction,” in Proc. Int. Symp. on Physical Design, 2003, pp. 158 – 165. [2 ] C. J. Alpert, G. Gandham, M. Hrkic, J. Hu, A. Kahng, J. Lillis, B. Liu, S. Sapatnekar, A. Sullivan, and P. Villarubia, “Buffered Steiner Trees for Difficult Instances”, in Proc. Int. Symp. on Physical Design, 2001, pp. 4 – 9. [3 ] J. Cong, and X. Yuan, “Routing Tree Construction under Fixed Buffer Locations”, in Proc. Design Automation Conf., 2000, pp. 379 – 384. [4 ] S. Dechu, Zion C. Shen, and Chris C. N. Chu, “An Efficient Routing Tree Construction Algorithm with Buffer Insertion, Wire Sizing and Obstacle Considerations”, in Proc. Asia South Pacific Design Automation Conf., 2004, pp. 361-366. [5 ] L.P.P.P. van Ginneken, “Buffer Placement in Distributed RC-tree Networks for Minimal Elmore Delay”, in Proc. Int. Symp. on Circuits and Systems, 1990, pp. 865 - 868. [6 ] M. Hrkic, and J. Lillis, “Buffer Tree Synthesis with Consideration of Temporal Locality, Sink Polarity Requirements, Solution Cost and Blockages”, in Proc. Int. Symp. on Physical Design, 2002, pp. 98 – 103. [7 ] J. Hu, C. J. Alpert, S. T. Quay, and G. Gandham, “Buffer Insertion with Adaptive Blockage Avoidance”, in Proc. Int. Symp. on Physical Design, 2002, pp. 92 – 97. [8 ] M. Lai, and D. F. Wong, “Maze Routing with Buffer Insertion and Wiresizing”, in Proc. Design Automation Conf., 2000, pp. 374 – 378. [9 ] C. Y. Lee, “An Algorithm for Path Connection and Its Application”, IRE Trans. Electronic Computer, EC-10, 1961, pp. 346-365. [10 ] C. N. Sze, J. Hu, and C. J. Alpert, “A Place and Route Aware Buffered Steiner Tree Construction”, in Proc. Asia South Pacific Design Automation Conf., 2004, pp. 355-360. [11 ] X. Tang, R. Tian, H. Xiang, and D. F. Wong, “A New Algorithm for Routing Tree Construction with Buffer Insertion and Wire Sizing under Obstacle Constraints”, in Proc. Int. Conf. on Computer Aided Design, 2001, pp. 49 – 56. [12 ] H. Zhou, D. F. Wong, I. M. Liu, and A. Aziz, “Simultaneous Routing and Buffer Insertion with Restrictions on Buffer Locations”, in Proc. Design Automation Conf., 1999, pp. 96 – 99.id NH0925392045 sid 916317 cfn 0 / id NH0925392046 auc 詹凱元 tic 系統單晶片設計方法與其在影像壓縮系統的應用研究 adc 林永隆 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 32 kwc 系統單晶片 kwc 矽智財 kwc 影像壓縮 kwc 內嵌式 kwc 硬體加速器 kwc 高階合成 kwc 系統整合 kwc 軟硬體共同設計 abc 我們提出一個平台式 (Platform-Based) 系統單晶片 (System-on-Chip) 的設計方法。在一般的系統單晶片發展電路驗證板中包含一個內嵌式的RISC CPU及可程式化的FPGA,使用者可在此環境中實現特定的應用系統,其軟體及硬體各別會在CPU及FPGA上執行。在此設計方法中包含了一個完整設計流程及不同的輔助設計工具,可用來各別作軟體/硬體設計時的分割、自動產生AHB相容的硬體加速器、內嵌式軟體的設計及編譯、整合系統中的軟體/硬體並作共同模擬、整個系統在電路驗證板上的驗證。我們也以JPEG Decoder為例,說明如何以提出來的方法在此平台上以軟體/硬體共同設計的方法來實現此影像解壓縮的系統單晶片。一開始我們會先找出JPEG Decoder中的計算瓶頸,並把此計算瓶頸的部分以AMBA相容的硬體加速器來實現,其它部分則以軟體實現並在RISC CPU上執行。由實驗結果可看到藉由我們提出的設計方法可以很快地用來發展矽智財 (Silicon Intellectual Properties) 並作系統整合的驗證,最後可完成整個系統的原型 (Prototyping) tc ABSTRACT--------------------------------------------- II CONTENTS-------------------------------------------- III LIST OF FIGURES--------------------------------------- V LIST OF TABLES--------------------------------------- VI CHAPTER 1 INTRODUCTION--------------------------------1 CHAPTER 2 PREVIOUS WORK------------------------------ 4 2.1 HARDWARE/SOFTWARE CO-DESIGN---------------------- 4 2.2 PLATFORM-BASED SOC DESIGN------------------------ 5 2.3 IP INTEGRATION----------------------------------- 6 CHAPTER 3 SOC DESIGN FLOW---------------------------- 7 3.1 PLATFORM AND METHODOLOGY------------------------- 7 3.2 SOPC BUILDER------------------------------------- 9 CHAPTER 4 JPEG DECODER IMPLEMENTATION---- ---------- 11 4.1 PERFORMANCE REQUIREMENT------------------------- 11 4.2 PROFILING--------------------------------------- 12 4.3 HW/SW PARTITIONING------------------------------ 13 4.4 AUTOMATIC SYNTHESIS OF AHB COMPLIANT IDCT HARDWARE ACCELERATOR--- --------- 15 4.4.1 High Level Synthesis Flow-------------------- 16 4.4.2 AHB Interface-------------------------------- 17 4.5 EMBEDDED SOFTWARE------------------------------- 18 4.5.1 Memory Management Unit (MMU)----------------- 20 4.5.2 Way Over Simple File System (WOSFS)---------- 21 4.6 HW/SW CO-SIMULATION----------------------------- 22 CHAPTER 5 FPGA PROTOTYPING AND PERFORMANCE ANALYSIS- 24 CHAPTER 6 CONCLUSIONS------------------------------- 27 BIBLIOGRAPHY----------------------------------------- 29rf [1 ] A. Baganne, J. L. Philippe, and E. Martin, “A Formal Technique for Hardware Interface Design,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, pp. 584–591, May 1998 [2 ] D. Gajski et al., High-Level Synthesis, Introduction to Chip and System Design, Kluwer Academic, 1992. [3 ] F. Vermeulen, L. Nachtergaele, F. Catthoor, D. Verkest, and H. De Man,“Flexible Hardware Acceleration for Multimedia Oriented Microprocessors,” IEEE Transactions on Very Large Scale Integration Systems, pp. 171-177, December 2000 [4 ] G. Martin, H. Chang , Winning the SoC revolution, Kluwer Academic, 2003. [5 ] H. Kalte, D. Langen, E. Vonnahme, A. Brinkmann, and U. Ruckert, ”Dynamically Reconfigurable System-on- Programmable- Chip,” in Proceeding of 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing, pp. 235-242, January 2002. [6 ] I. E. G. Richardson, H.264 and MPEG-4 Video Compression Video Coding for Next Generation Multimedia, John Wiley & Sons Ltd., December 2003 [7 ] I. Maalej, G. Gogniat, M. Abid, and J.L. Philippe, ” Interface Design Approach for System on Chip Based on Configuration,” in Proceeding of the International Symposium on Circuits and Systems 2003, vol. 5, pp. 593-596, May 2003 [8 ] K. Sakiyama, P. Schaumont, and I. Verbauwhede, "Finding the Best System Design Flow for a High-Speed JPEG Encoder", in Proceeding of Asia and South Pacific Design Automation Conference 2003, pp. 577-578, January 2003 [9 ] M. Boden, J. Schneider, K. Feske, and S. Rulke, “Enhanced Reusability for SoC-based HW/SW Co-design,” in Proceeding of Euromicro Symposium on Digital System Design 2002, pp. 94-99, September 2002. [10 ] M. Kovac, N. Ranganathan, “JAGUAR: A Fully Pipeline VLSI Architecture for JPEG Image Compression Standard,” in Proceeding of the IEEE, vol. 83, pp. 247-258, February 1995 [11 ] P. Coussy, A. Baganne, and E. Martin, “A Design Methodology for Integrating IP into SOC System,”in Proceeding of IEEE Custom Integrated Circuits Conference, pp. 307-310, May 2002 [12 ] Q. Han, J. Zheng, and W. Jia, “IP Reusable Design Methodology,” in Proceeding of 4th International Conference on Application Specified Integrated Circuit 2001, pp. 756-759, October 2001. [13 ] R. Ernst, J. Henkel, and T. Benner, “Hardware- Software Cosynthesis for Microcontrollers,“ IEEE Transaction on Design and Test of Computers, vol. 10, pp. 64-75, December 1993 [14 ] W. Savage, J. Chilton, and R. Camposano, “IP Reuse in the System on a Chip Era,” in Proceeding of 13th International Symposium on System Synthesis, pp. 2-7, September 2000 [15 ] W. Pennebaker, J. Mitchell, JPEG Still Image Data Compression Standard, Van Nostrand Reinhold, January 1992 [16 ] W. Wolf, “ Hardware/software Co-design of Embedded Systems,” IEEE Proceeding, vol. 82, pp. 967-989, July 1994 [17 ] W. Wolf, “A Decade of Hardware/Software Codesign,” IEEE Computer, vol. 36, pp. 38-43, April 2003 [18 ] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and J. Stockwood,“Hardware-Software Co-Design of Embedded Reconfigurable Architectures,” in Proceeding of 37th Design Automation Conference, pp. 507-512, June 2000 [19 ] AMBATM Specification (Rev 2.0), ARM Ltd., Available: http://www.arm.com/products/solutions/AMBA_Spec.html [20 ] ARM Developer Suite 1.2 user guide, ARM Ltd., Available: http://www.arm.com/pdfs/DUI0064D_ADS1_2_GettingStarted. pdf [21 ] data Sheet of FPSLIC – AT94K Series Field Programmable System Level Integrated Circuit, Atmel Corporation, Available: http://www.atmel.com [22 ] Information Technology Digital Compression and Coding of Continuous - Tone still Images – Requirements and Guideline, CCITT Recommendation T.81 http://www.w3.org/Graphics/JPEG/itu-t81.pdf [23 ] Literature: Embedded Software Design, ALTERA Corporation, Available: http://www.altera.com/literature/quartus2/lit-emb.jsp [24 ] Literature: Excalibur, ALTERA Corporation, Available: http://www.altera.com/literature/lit-exc.jsp [25 ] Literature: Quartus II Development Software, ALTERA Corporation. Available: http://www.altera.com/literature/lit-qts.jsp [26 ] Literature: SOPC Builder, ALTERA Corporation, Available: http://www.altera.com/literature/lit-sop.jsp [27 ] ModelSim SE users manual, Mentor Graphics Inc., Available: http://www.model.com/support/docs.asp?id=121 [28 ] Product Description of Triscend E5 Configurable System- On-Chip Platform, Triscend Corporation, Available: http://ww.trisced.com [29 ] QuickMIPS Data Sheet, QuickLogic Corporation, Available: http://www.quicklogic.com/images/QL901M_DS.pdf [30 ] Virtex II Data Sheet, Xilinx Inc., Available: http://direct.xilinx.com/bvdocs/publications/ds031.pdfid NH0925392046 sid 916320 cfn 0 / id NH0925392047 auc 林芳儀 tic 為Gnutella系統提供一個高效能的基底架構 adc 金仲達 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 32 kwc 點對點系統 kwc 基底架構 kwc 生成樹 abc 傳統的檔案分享機制多為client-server模式,他們採用中央伺服器來管理所有的資源,使用者需透過網路連上伺服器,向其要求提供服務。這樣單一伺服器獨自運作的機制,可能因負荷過重引起當機,而有嚴重損失。 tc Abstract Contents List of Figures Chapter 1 Introduction...........................1 Chapter 2 Related Works..........................6 Chapter 3 System Design.........................10 Chapter 4 Performance Evaluations...............21 Chapter 5 Conclusions and Future Works..........30 Bibliography....................................31rf [1 ] Napster website. http://www.napster.com. [2 ] The Gnutella Protocol Specification v0.41 Document Revision 1.2. http://dss.clip2.com/GnutellaProtocol04.pdf. [3 ] A. Rowstron and P. Druschel. “Pastry: Scalable, Decentralized Object Location and Routing for Large-Scale Peer-to-Peer Systems,” in Proceedings of the IFIP/ACM International Conference on Distributed Systems Platforms (Middleware 2001), November 2001. [4 ] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. “Tapestry: An Infrastructure for Fault-Tolerant Wide-Area Location and Routing,” U.C. Berkeley Technical Report UCB//CSD-01-1141, U. C. Berkeley, April 2001. [5 ] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A Scalable Content-Addressable Network,” in Proceedings of ACM SIGCOMM, San Diego, August 2001, pp. 149–160. [6 ] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. “Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications,” in ACM SIGCOMM, pages 149-160, August 2001. [7 ] H.C. Hsiao and C.T. King. “Tornado: Capability-Aware Peer-to-Peer Storage Networks,” in IEEE International Conference on Parallel and Distributed Processing Symposium (IPDPS 2003), April 2003. [8 ] A. Crespo and H. Garcia-Molina, “Routing Indices For Peer-to Peer systems,” in Proceedings of the 22nd IEEE International Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, July 2002. [9 ] B. Yang and H. Garcia-Molina, “Efficient Search in Peer-to-peer Networks,” in Proceedings of the 22nd International Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, July 2002. [10 ] Q. Lv, et al., “Search and Replication in Unstructured Peer-to-Peer Networks,” in Proceedings of ACM International Conference on Supercomputing, 2002. [11 ] Web Caching and Content Delivery Resources. http://www.web-caching.com/. [12 ] ClarkNet-HTTP trace. http://ita.ee.lbl.gov/html/contrib/ClarkNet-HTTP.html. [13 ] LimeWire website. http://www.limewire.com. [14 ] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A Distributed Anonymous Information Storage and Retrieval System,” Lecture Notes in Computer Science, vol. 2009, pp. 46+, 2001. [15 ] Morpheus software website. http://www.morpheussoftware.net/. [16 ] Shareaza website. http://www.shareaza.com/. [17 ] Gnucleus website. http://www.gnucleus.com/Gnucleus/. [18 ] Bearshare website. http://www.bearshare.com/. [19 ] Z. Zhuang, Y. Liu, L. Xiao and L. M. Ni, “Hybrid Periodical Flooding in Unstructured Peer-to-Peer Networks”, in Proceedings of 2003 International Conference on Parallel Processing (ICPP 2003), Kaohsiung, Taiwan, China, October 6-9, 2003. [20 ] S. Jiang, L. Guo and X. Zhang, ”LightFlood: An Efficient Flooding Scheme for File Search in Unstructured Peer-to-Peer Systems”, in Proceedings of 2003 International Conference on Parallel Processing (ICPP 2003), Kaohsiung, Taiwan, China, October 6-9, 2003. [21 ] Peer-to-Peer Research Group, IRTF. http://www.irtf.org/charters/p2prg.html [22 ] IEEE distributed systems ONLINE, Expert-authored articles and resources. http://dsonline.computer.org/os/related/p2p/index.htm [23 ] White Paper: A Survey of Peer-to-Peer File Sharing Technologies. http://www.eltrun.aueb.gr/whitepapers/p2p_2002.pdfid NH0925392047 sid 914311 cfn 0 / id NH0925392048 auc 王士竑 tic 於機架式平台上設計與實作以網路處理器為基礎之超高速IPv4/IPv6轉換器 adc 黃能富 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 70 kwc 轉換器 kwc 超高速 abc 因為IPv4網路協定位址空間將不敷使用,因此IETF已於1995年末制訂了新 一代的網際網路協定,稱之為IPv6。雖然我們利用CIDR將位址區塊做有效率的分配,且在網際網路的邊界使用NAT的技術來延遲這天的到來,然而,IPv4網際網路協定位址將不足以提供目前大量的使用者卻是必然的。大家都認為要從IPv4網路轉換至IPv6網路仍需要一段很長的時間,而在這段期間便需要使用一些轉換的機制來使得IPv4網路能夠與IPv6網路共存,如Dual Stack、Tunneling以及NAT-PT。本論文以「網路處理器」為開發的平台,來設計與實作上述功能之網路通訊協定轉換器,並將此系統以「模組」的形式嵌入至機架式的網路平台上。網路處理器為一特別針對網路資料處理而設計的處理器,結合軟硬體的優點,達到第三、四甚至第七層封包快速處理的目的,並保有軟體設計時的彈性。其特色在於可以提供「高速」、「強大處理能力」、「高效能」、以及「多層次」等等特色。而機架式的網路平台更具擴充性,可以整合多種網路服務技術成為一向多元化整合服務系統。而本論文之成果,可配合未來網路環境需求,作為下一代核心網路設備之雛形。 tc Content Figure List…. i Table List….. ii Chapter 1. Introduction 1 1.1. Why IPv6 1 1.2. Why Network Processor 1 Chapter 2. Related Work 5 2.1. Transition Mechanism 5 2.1.1. Dual Stack 6 2.1.2. Tunneling 7 2.1.2.1. 6to4 Tunnel 9 2.1.2.2. 6over4 Tunnel 10 2.1.2.3. Tunnel Broker 11 2.1.3. NAT-PT with ALGs 12 2.1.3.1. Introduction to NAT-PT 12 2.1.3.2. Network Address Translation 13 2.1.3.3. Protocol Translation 13 2.1.3.4. Application Level Gateway 13 2.1.3.5. Why NAT-PT 14 2.2. Vitesse IQ2000 14 2.2.1 Data Flow Modules 16 2.2.1.1. FOCUS Interface 16 2.2.1.2. Packet Input Module (PIM) 16 2.2.1.3. Packet Output Module (POM) 16 2.2.1.4. Buffer Allocation/De-allocation (BAD) 17 2.2.1.5. Smart Buffer Module (SB) 18 2.2.2 Packet Processing Modules 19 2.2.2.1. FACET CPU 19 2.2.2.2. Data and Header Memory 20 2.2.2.3. DMA Coprocessor 20 2.2.3 System Modules 21 2.2.3.1. MIPS Host Interface 21 2.2.3.2. Fusion Bus 21 Chapter 3. System Design 22 3.1. System Software Architecture 22 3.2. DNS-ALG 23 3.3. Data Flow of NAT-PT with DNS-ALG 24 3.4.1. Data Flow of IPv4 to IPv6 25 3.4.2. Data Flow of IPv6 to IPv4 27 Chapter 4. System Implementation 31 4.1. Overview 31 4.2. FOCUS Cell and Packet Type 33 4.3. Buffer Allocation and Memory Management 34 4.3.1. Header Buffer Allocation 34 4.3.2. Memory Management 37 4.3.2.1. Memory usage 37 4.3.2.2. Payload Address in RDRAM 38 4.4. Header Size Problem 39 4.5. System Initialization 44 4.5.1. Pre-Resolution in Chassis-Based NAT-PT 46 4.5.2. Mapping Tables in Chassis-Based NAT-PT 47 4.6. Processes in Data-Plane 48 4.6.1. Packet Descriptor Modification 48 4.6.2. Header Translation 50 4.6.3. Enqueuing Process 57 4.6.3.1. Enqueuing the OHD to Smart Buffer Queue 57 4.6.3.2. Communication between PPE and MIPS 58 4.7. Processes in Control-Plane 59 4.7.1. IP-MAC Table Construction 59 4.7.2. DNS-ALG 60 Chapter 5. Performance Analysis 62 5.1. Analysis on Various Methods of Address Resolution 62 5.2. Performance Evaluation 66 Chapter 6. Conclusion 68 Reference 69rf Reference [1 ] http://www.ipv6style.jp [2 ] http://www.ipv6forum.com [3 ] http://www.ipv6.org.tw [4 ] S. Deering, R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification”, RFC2460, December 1998. [5 ] Hagen, Silvia, “IPv6 essentials”, 2002. [6 ] The Yankee Group, A Review of IPv6 Technology Positioning And Current Take-up in the Enterprise Sector, September 2003. [7 ] R. Gilligan, E. Nordmark, “Transition Mechanisms for IPv6 Hosts and Routers”, RFC1933, April 1966. [8 ] Brian McGehee, Yurie Rich, “A Discussion on IPv6 Transition Mechanisms”, IPv6 Style, August 2003. [9 ] Mallik Tatipamula, Patrick Grossetete, Hiroshi Esaki, “IPv6 Integration and Coexistence Strategies for Next-Generation Network”, IEEE Communication Magazine, January 2004. [10 ] Daniel G. Waddington, Fangzhe Chang, “Realizing the Transition to IPv6”, IEEE Communication Magazine, June 2002. [11 ] E. Nordmark, “Stateless IP/ICMP Translation Algorithm (SIIT)”, RFC2765, February 2000. [12 ] G. Tsirtsis, P. Srisuresh, “Network Address Translation - Protocol Translation (NAT-PT)”, RFC2766, December 2000. [13 ] B. Carpenter, C. Jung, “Transmission of IPv6 over IPv4 Domains without Explicit Tunnels”, RFC2529, March 1999. [14 ] R. Gilligan, E. Nordmark, “Transition Mechanisms for IPv6 Hosts and Routers”, RFC2893, August 2000. [15 ] A. Durand, P. Fasano, I. Guardini, D. Lento, “IPv6 Tunnel Broker”, RFC3053, January 2001. [16 ] B. Carpenter, K. Moore, “Connection of IPv6 Domains via IPv4 Clouds”, RFC3056, February 2001. [17 ] J. Bound, “Dual Stack Transition Mechanism (DSTM)”, draft-ietf-bound-dstm-exp-00.txt, July 2003. [18 ] http://tech.nplogic.com/, The NPLogic Network Processor Pages [19 ] “The Challenge for Next Generation Network Processors”, Agere Systems, April 2001. [20 ] “Building the Next Generation Network Processors”, Agere Systems, April 2001. [21 ] “Challenges in Building Network Processor Based Solutions”, Future Software, 2003 [22 ] http://www.npforum.org [23 ] http://www.vitesse.com/products/families.cfm?family_id=5 [24 ] http://www.intel.com/design/network/products/npfamily/index.htm [25 ] http://www.networking.ibm.com/ [26 ] P. Hallin, S. Satapati, “NAT-PT DNS ALG Solutions”, draft-hallin-natpt-dns-alg-solutions-01, July 2002. [27 ]A. Durand, J. Ihren, “NGtrans IPv6 DNS Operational Requirements and Roadmap”, draft-ietf-ngtrans-dns-ops-req-04.txt, March 2002. [28 ] A.Durand, “IPv6 DNS transition issues”, draft-durand-ngtrans-dns-issues-00.txt, June 2002. [29 ] J. Postel, J. Reynolds, “File Transfer Protocol (FTP)”, RFC959, October 1985. [30 ] M. Allman, S. Ostermann, C. Metz, “FTP Extensions for IPv6 and NATs”, RFC2428, September 1998. [31 ] “IQ2000 Design Manual”, IQ2000 Familyof Network Processor, Vitesse Semiconductor, 2001 [32 ] “A Day in the Life of a Packet”, Vitesse Semiconductor, 2001 [33 ] “Hardware Development System: Software Development Guide”, Vitesse Semiconductor, June 8, 2001. [34 ] “IQ2000 Programmer’s Reference Manual”, Vitesse Semiconductor, December 8, 2000. [35 ] T. Narten, E. Nordmark, W. Simpson, “Neighbor Discovery for IP Version 6 (IPv6)”, RFC2461, December 1998. [36 ] David C. Plummer, “An Ethernet Address Resolution Protocol – or – Converting Network Protocol Addresses to 48.bit Ethernet Address for Transmission on Ethernet Hardware”, RFC826, November 1982. [37 ] W. Richard Stevens, “TCP/IP Illustrated”, Volume 1, The Protocol, 1994. [38 ] Hsin Hua Lee, “The Design and Implementation of IPv4/IPv6 Translator on Network Processor”, June 2004. [39 ] J. Postel, “Internet Control Message Protocol”, RFC792, September 1981. [40 ] A. Conta, S. Deering, “Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6)”, RFC2463, December 1998.id NH0925392048 sid 914377 cfn 0 / id NH0925392049 auc 林于峻 tic 高效率靜態優先權分配的嵌入式系統低功率即時排程 adc 黃泰一 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 45 kwc 即時系統 kwc 低功率 abc 隨著科技日新月異,攜帶型消費電子產品,如:手機、PDA、…也日益普及。這些電子產品強調小巧攜帶方便,不可能設計過大的電池空間,而且電池也有一定的能源容量。所以如何降低能源消耗以延長系統運作時間就成為一門重要的議題。對這些電子產品而言,中央處理器是主要的能源消耗者。而動態電壓調整技術(Dynamic Voltage Scaling technology)動態地調整中央處理器電壓機制可以有效率地降低能源消耗。但是在這些產品內部會執行某些及時工作,不適當地降低電壓反而可能造成這些及時工作達不到及時要求。所以在此篇論文中,我們提出一個低功率及時排程演算法--LPRM(Low-Power Rate-Monotonic)。LPRM演算法不僅滿足及時工作的及時要求,而且還可以降低能源消耗。LPRM演算法是基於Rate Monotonic排程演算法衍生的低功率排程演算法。此外,LPRM演算法的運作簡單,僅需花費 O(n) 和 O(1) 時間複雜度在靜態和動態狀態下。因為LPRM有上述特性又不複雜,所以可以輕易地實作在現有的作業系統內。從實驗數據中得知,LPRM可節省25% ~ 35%的能源,而LPRM的進階延伸版本可以節省30% ~ 45%的能源。 rf [1 ] Hakan Aydin, Rami Melhem, Daniel Moss´e, and Pedro Mej´ıa-Alvarez. Optimal reward-based scheduling of periodic real-time tasks. In IEEE Real-Time Systems Symposium, pages 79–89, 1999. [2 ] Hakan Aydin, Rami Melhem, Daniel Moss´e, and Pedro Mej´ıa-Alvarez. Determining optimal processor speeds for periodic realtime tasks with different power characteristics. In Euromicro Conference on Real-Time Systems, pages 225–232, 2001. [3 ] Hakan Aydin, Rami Melhem, Daniel Moss´e, and Pedro Mej´ıa-Alvarez. Dynamic and aggressive scheduling techniques for poweraware real-time systems. In IEEE Real-Time Systems Symposium, pages 95–105, 2001. [4 ] Enrico Bini, Giorgio C. Buttazzo, and Giuseppe M. Butazzo. Rate monotonic analysis: The hyperbolic bound. 52:933–942, 2003. [5 ] eCos. http://www.ecoscentric.com/. [6 ] Flavius Gruian. Hard real-time scheduling for low-energy using stochastic data and DVS processors. In International Symposium on Low Power Electronics and Design, pages 46–51, 2001. [7 ] Inki Hong, Miodrag Potkonjak, and Mani B. Srivastava. On-line scheduling of hard real-time tasks on variable voltage processor. In International Conference on Computer-Aided Design, pages 653–656, 1998. [8 ] John Lehoczky, Lui Sha, and Ye Ding. The rate monotonic scheduling algorithm: Exact characterization and average case behavior. In IEEE Real-Time Systems Symposium, pages 166–171, 1989. [9 ] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard real-time environment. Journal of the ACM, 20(1):46–61, 1973. [10 ] Jane W.S. Liu. Real-Time Systems. Prentice Hall, 2000. [11 ] µC/OS II. http://www.micrium.com/. [12 ] Padmanabhan Pillai and Kang G. Shin. Real-time dynamic voltage scaling for low-power embedded operating systems. In ACM Symposium on Operating Systems Principles, pages 89–102, 2001. [13 ] Gang Quan and Xiaobo (Sharon) Hu. Energy efficient fixed-priority scheduling for real-time systems on variable voltage processors. In Annual ACM IEEE Design Automation Conference, pages 828–833, 2001. [14 ] Gang Quan and Xiaobo Sharon Hu. Minimum energy fixed-priority scheduling for variable voltage processors. In Design, Automation, and Test in Europe, pages 782–787, 2002. [15 ] RTLinux. http://www.fsmlabs.com/. [16 ] Youngsoo Shin and Kiyoung Choi. Power conscious fixed priority scheduling for hard real-time systems. In Annual ACM IEEE Design Automation Conference, pages 134–139, 1999. [17 ] Youngsoo Shin, Kiyoung Choi, and Takayasu Sakurai. Power optimization of real-time embedded systems on variable speed processors. In International Conference on Computer Aided Design, pages 365–368, 2000. [18 ] Frances Yao, Alan Demers, and Scott Shenker. A scheduling model for reduced cpu energy. In IEEE Annual Foundations of Computer Science, pages 374–382, 1995. [19 ] Han-Saem Yun and Jihong Kim. On energy-optimal voltage scheduling for fixed-priority hard real-time systems. ACM Transactions on Embedded Computing Systems, 2:393–430, 2003. [20 ] Fan Zhang and Samuel T. Chanson. Processor voltage scheduling for real-time tasks with non-preemptible sections. In IEEE Real-Time Systems Symposium, pages 235–245, 2002.id NH0925392049 sid 914337 cfn 0 / id NH0925392050 auc 顏文祺 tic 一個軟硬體同時執行的 JPEG2000 編碼器 adc 林永隆 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 34 kwc JPEG2000 kwc 軟硬體同時執行 abc 我們利用實驗室成員所提出的平台式 (Platform-Based ) 系統單晶片(System-on-Chip, SOC) 設計流程以及矽智產(Silicon Intellectual Property, SIP) 設計和整合方法 (Integration methodology),以軟硬體共同設計的方式完成一個JPEG2000編碼器。我們特別著重在硬體加速器部份和中央處理器 (CPU) 內軟體部份的同時執行 (concurrent execution) 規劃上。在我們採用的可程式化系統單晶片平台上,JPEG2000以離散小波轉換 (Discrete Wavelet Transform, DWT) 和區塊編碼 (Embedded Block Coding with Optimized Truncation, EBCOT) 硬體加速器等循序執行加速後,和 JPEG2000 以純軟體方式執行的時間相比較,約可減少 70% 的執行時間。而利用我們所提出的同時執行規劃,我們可以更進一步地縮短約 14% 的執行時間。在此,我們將在所提出的系統上,敘述我們的實作經驗。 tc ABSTRACT CONTENTS LIST OF FIGURES LIST OF TABLES CHAPTER 1 INTRODUCTION 1.1 JPEG2000 STILL IMAGE CODING SYSTEM 1.1.1 Profiling Analysis 1.2 PLATFORM-BASED SOC METHODOLOGY 1.2.1 An Overview of AMBA-based platform architecture 1.2.2 SOC Design Flow CHAPTER 2 PREVIOUS WORK 2.1 SPEEDUP WITH PARALLEL PROCESSING 2.2 SPEEDUP WITH CO-PROCESSORS 2.3 SPEEDUP WITH HARDWARE ACCELERATORS 2.4 SPEEDUP WITH HARDWIRED ASIC 2.5 MOTIVATION CHAPTER 3 PROPOSED APPROACH 3.1 PURE SOFTWARE PERFORMANCE 3.2 SEQUENTIALLY-ACCELERATION OF DWT AND EBCOT TIER-1 3.3 CONCURRENT EXECUTION OF HARDWARE AND SOFTWARE CHAPTER 4 EXPERIMENTAL RESULTS 4.1 EMBEDDED SOFTWARE MODIFICATION 4.2 HARDWARE ACCELERATOR INTEGRATION 4.3 HARDWARE/SOFTWARE CO-SIMULATION 4.4 EXPERIMENTAL RESULTS CHAPTER 5 CONCLUSION BIBLIOGRAPHYrf [1 ] AMBATM Specification (Rev 2.0), ARM Ltd., Available: http://www.arm.com/products/solutions/AMBA_Spec.html [2 ] ARM Developer Suite 1.2 user guide, ARM Ltd., Available: http://www.arm.com/pdfs/DUI0064D_ADS1_2_GettingStarted.pdf [3 ] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 Still Image Compression Standard,” IEEE Signal Processing Magazine, vol. 18, pp. 36-58, Sept 2001 [4 ] C. B. Fan, “An IP Integration Methodology for AMBA-based SOC,” Master thesis, University of National Tsing Hua University, Hsinchu, Taiwan, June 2004 [5 ] C. C. Chang, “A Parameterized On-Chip-Bus-Compliant FDWT/IDWT Accelerator IP Generator,” Master thesis, University of National Tsing Hua University, Hsinchu, Taiwan, June 2004 [6 ] H. C. Fang, C. T. Huang, Y. W. Chang, T. C. Wang, P. C. Tseng, C. J. Lian, and L. G. Chen, “81MS/s JPEG 2000 single-chip encoder with rate-distortion optimization,” in Proceedings of 2004 IEEE International Solid-State Circuits Conference (ISSCC 2004), pp.328-329, February, 2004. [7 ] H. Tsutsui, T. Masuzaki, T. Izumi, T. Onoye, and Y. Nakamura, “High Speed JPEG2000 Encoder by Configurable Processor,” in the 2002 Asia-Pacific Conference on Circuits and Systems, pp. 45-50, October 2002 [8 ] Information technology-Digital compression and coding of continuous-tone still images: Requirements and guidelines, ISO/IEC, ISO/IEC 10918-1:1994, 1994. [9 ] Jasper, Open source code for JPEG2000 standard part-1, Available: http://www.ece.uvic.ca/~mdadams/jasper/ [10 ] JJ2000, An implementation of the JPEG2000 standard in JAVA, Available: http://jj2000.epfl.ch [11 ] JPEG-2000 Part 1 Final Draft International Standard(ISO/IEC FDIS15444-1),ISO/IEC JTC1/SC29/WG1 N1855, Aug. 2000 [12 ] K. Y. Jan, “A Platform-Based SOC Design Methodology and Its Application on JPEG Decoding,” Master thesis, University of National Tsing Hua University, Hsinchu, Taiwan, June 2004 [13 ] Literature: Embedded Software Design, ALTERA Corporation, Available: http://www.altera.com/literature/quartus2/lit-emb.jsp [14 ] Literature: Excalibur, ALTERA Corporation, Available: http://www.altera.com/literature/lit-exc.jsp [15 ] Literature: Quartus II Development Software, ALTERA Corporation, Available: http://www.altera.com/literature/lit-qts.jsp [16 ] Literature: SOPC Builder, ALTERA Corporation, Available: http://www.altera.com/literature/lit-sop.jsp [17 ] Literature: Xtensa Application Specific Microprocessor Solutions – Overview Handbook, Tensilica Inc., 2000 [18 ] M. Boden, J. Schneider, K. Feske, and S. Rulke, “Enhanced Reusability for SoC-based HW/SW Co-design,” in Proceeding of Euromicro Symposium on Digital System Design 2002, pp. 94-99, September 2002. [19 ] M. D. Adams, “The JPEG-2000 Still Image Compression Standard,” A tutorial paper on JPEG 2000 distributed with the JasPer software , Available: http://www.ece.uvic.ca/~mdadams/papers/jpeg2000.pdf [20 ] M. Martina, G. Masera, G. Piccinini, F. Vacca, and M. Zamboni, “Reconfigurable Coprocessor Based JPEG 2000 Implementation, “ in the 8th IEEE International Conference on Electronics, Circuits and Systems 2001, vol. 3, pp. 1227-1230, September 2001 [21 ] ModelSim SE users manual, Mentor Graphics Inc., Available: http://model.com/support/docs.asp?id=121 [22 ] M. Rabbani and D. Santa Cruz, “The JPEG2000 Still-Image Compression Standard,” short course at the 2001 International Conference in Image Processing (ICIP), Thessaloniki, Greece, October 11, 2001, Available: http://ltswww.epfl.ch/~dsanta/teaching/ICIP2001_JPEG2K.pdf [23 ] OpenMP, Open specifications for Multi Processing, Available: http://www.openmp.org [24 ] P. Coussy, A. Baganne, and E. Martin, “Platform-Based Design for Digital Signal Proceeding Systems: A Case Study of MPEG-2/JPEG2000 Encoder,” in IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions, vol. 2, pp.1361-1366, June 2002 [25 ] P. Meerwald, R. Norcen, and A. Uhl, “Parallel JPEG2000 Image Coding on Multiprocessors,” in the Proceedings International Parallel and Distributed Processing Symposium 2002, pp. 2-7, April 2002 [26 ] Product Page: JPEG2000 Video Codec, ADV-JP2000, Analog Devices, http://www.analog.com [27 ] Product Page: JPEG2000 Codec, CS6590, Amphion Semiconductor Ltd., Available: http://www.amphion.com/cs6590.html [28 ] S. Ramamurthy, S. Madhavankutty, V. Meena, and R. Gupta, “JPEG-2000 on An Advanced Architecture, Multiple Execution Unit DSP,” in IEEE International Symposium on Circuits and Systems 2002, vol. 4, pp. 325-328, May 2002 [29 ] StarCoreTM, Licensable DSP Technology, http://syatcore-dsp.com [30 ] T. W. Hsieh, “Low Power and High Performance AHB-compliant EBCOT Architecture for JPEG2000 Encoding,” Master thesis, University of National Tsing Hua University, Hsinchu, Taiwan, June 2004 [31 ] Y. Hayashi, H. Tsutsui, T. Masuzaki, T. Izumi, T. Onoye, and Y. Nakamura, “Design Framework For JPEG2000 Encoding System Architecture, “ in Proceeding of the 2003 International Symposium on Circuits and Systems, vol. 2, pp. 740-743, May 2003id NH0925392050 sid 916314 cfn 0 / id NH0925392051 auc 陳殷盈 tic 聲音和影像資訊在生物認證系統上的融合 adc 賴尚宏 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 52 kwc 聲音 kwc 人臉 kwc 生物認證 kwc 多模式 abc 認證系統目前已經被廣泛的利用在真實生活中,其重要性與日俱增。例如自動櫃員機系統或是進出管理系統等等。生物特徵的獨特性可以有力地分辨出使用者的不同,並且不會遺失。因此,可取代一般的密碼及身分認證卡來建立認證系統。利用多種生物特徵建立的多模式生物認證更可強化系統的可靠度及安全度。 tc Chapter 1. Introduction 1 Chapter 2. Previous Works 6 Chapter 3. The Verification System Using Audio and Visual Information Based on Input Level Fusion 11 3.1. Face expert 11 3.1.1. PCA (principle component analysis) 11 3.1.2. Facial feature Extraction using eigenfaces 13 3.2. Speech expert 13 3.3. Feature concatenation 15 3.3.1. Segmentation 16 3.3.2. Feature mapping 16 3.4. Classifications 17 3.4.1. Support Vector Machines 17 3.4.2. Training phase 19 3.4.3. Testing phase 21 Chapter 4. The Verification System Based on Classifier Level Fusion Using Gaussian Mixture Models 24 4.1. Face expert 25 4.2. Speech expert 25 4.2.1. GMM 25 4.2.2. Speaker verification 27 4.3. Opinion Normalization 28 4.4. Decision stage 29 Chapter 5. The Verification System Based on Classifier Level Fusion Using Support Vector Machines 30 5.1. Face expert 30 5.1.1. Training phase 31 5.1.2. Testing phase 31 5.2. Speech expert 32 5.2.1. Training phase 33 5.2.2. Testing phase 34 5.3. Decision stage 34 Chapter 6. Experimental Results 35 Chapter 7. Conclusion 50 Bibliography 51rf [1 ] C. C Chibelushi, F, Deravi and J. S. Mason, “Voice and Facial Image Integration for Speaker Recognition”, IEEE International Symposium and Multimedia Technologies and Future Applications, Southampton, UK, 1993. [2 ] R. Brunelli, D. Falavigna, T. Poggio and L. Stringa, “Automatic Person Recognition Using Acoustic and Geometric Features”, Machine Vision & Applications, Vol. 8, 1995, pp. 317-325. [3 ] R. Brunelli, D. Falavigna, “Person Identification Using Multiple Cues”, IEEE Trans. On Pattern Analysis and Machine Intelligence, Vol. 10, No. 17, 1995, pp 955-965. [4 ] J.Kittler, M. Hatef, R. P. W. Duin and J. Matas, “On Combining Classifiers”, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 20, No. 3, 1998, pp. 226-239. [5 ] T. Wark, S. Sridharan and V. Chandran, “Robust Speaker Verification via Fusion of Speech and Lip Modalities”, Proc. International Conf. Acoustics, Speech and Signal Processing, Phoenix, Arizona, 1999, Vol. 6, pp. 3061-3064. [6 ] T. Wark, S. Sridharan and V. Chandran, “Robust Speaker Verification via Asynchronous Fusion of Speech and Lip Information”, Proc. 2nd International Conf. Audio- and Video- based Biometric Person Authentication, Washington, D.C., 1999, pp. 37-42. [7 ] C. Sanderson and K. K. Paliwal, “Noise Compensation in a Person Verification System Using Face and Multiple Speech Features”, Pattern Recognition, Volume 36, Issue 2, pp. 293-302, February, 2003 [8 ] M. Turk and A. Pentland, "Eigenfaces for recognition," Journal of Cognitive Neuroscience, Vol. 3, No. 1, pp. 71-86, Winter 1991 [9 ] Steve Young, Gunnar Evermann, Thomas Hain, Dan Kershaw, Gareth Moore, Julian Odell, Dave Ollason, Dan Povey, Valtcho Valtchev, Phil Wooland, "The HTK Book(for HTK Version 3.2.1", @copyright 2001-2002 Cambridge University Engineering Department. [10 ] J.A. Haigh, Voice activity detection for conversational analysis, Masters Thesis, University of Wales, 1994. [11 ] Douglas A. Reynolds and C. Rose, "Robust Text-Independent Speaker Identification Using Gaussian Mixture Speaker Models", IEEE Transections on Speech and Audio Processing, Vol. 3, No. 1, pp. 72-83, January 1995 [12 ] V. Wan and S. Renals. Speaker verification using sequence discriminant support vector machines. IEEE Trans. on Speech and Audio Processing, 2004. Accepted for publication [13 ] Wan, V. and Campbell, W. M., Support Vector Machines for Speaker Verification and Identification. Neural Networks for Signal Processing X, pp. 775-784, 2000. [14 ] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from incomplete data via the EM algorithm”, J. Royal Stat. Soc. Vol. 39, pp. 1-38, 1977. [15 ] Conrad Sanderson and Kuldip K. Paliwal, "Information Fusion and Person Verification Using Speech & Face Information", IDIAP-RR 02-33, September 2002id NH0925392051 sid 916391 cfn 0 / id NH0925392052 auc 盧郁安 tic 利用三維頭部模型從單張人臉照片作影像內插 adc 賴尚宏 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 46 kwc 影像內插 kwc 密集對應 kwc 姿勢估計 kwc 透視圖法投影 kwc 半徑基底函數 kwc 光影流 abc 在這篇論文中,我們提出了一個影像內插的演算法,從單張非正面的人臉照片合成出新的、不同角度的臉部影像。基於人臉對稱的假設,我們將原本的非正面人臉影像當作一張基底影像,之後影像對縱軸作水平的鏡射轉換,可得到另一張基底影像。這個系統使用了一個三維的人體頭部平均模型,並藉由使用者手動給定一組少量的臉部特徵點來估計原本影像和鏡射影像上人臉的姿勢。求密集對應關係一直是這類研究裡一個重要然而困難的問題,在本篇論文裡,我們藉由二維到三維的RBF(radial basis function)函數計算、三維到二維的透視圖法投影(perspective projection),並且利用optical flow計算作微調以克服平均模型與目標影像之間的差異,再加上用relative gradient以克服光影變化太大的問題,即可求出兩張基底影像之間的密集點對應關係。本篇論文裡提出一個雙向的影像轉換演算法,求得正向和逆向的內插影像,以解決物體自身遮蔽所產生的點對應問題。最後,我們提出一個適當的加權函數來合併上述求得的兩張影像,以計算出最終的內插影像。實驗結果顯示,在這個系統裡,僅需要輸入單張非正面的臉部照片,可以內插出原本與鏡射影像間各個角度的內插影像,這些得到的內插影像可以模擬真實人臉在相同角度下的影像。實驗並提供真實人臉照片與合成後的結果影像之比較。 tc CHAPTER 1 INTRODUCTION 1 1.1 Previous Work 1 1.2 Problem Description 3 CHAPTER 2 PROPOSED METHOD 6 2.1 Input Data 7 2.1.1 Mirrored Image and Feature Points 8 2.2 Dense Matching between Images 9 2.2.1 Pose Estimation 11 2.2.1.1 Problem Formulation 11 2.2.1.2 Result of Pose Estimation 13 2.2.2 RBF Computing 15 2.2.3 3D Point Projection 16 2.2.4 Optical Flow 18 2.2.4.1 Illumination Alleviation: Using Relative Gradient 20 2.2.4.2 Relative Gradient Images 20 2.3 Warping and View Morphing 22 2.4 Combination of Bi-directional Morphing 23 2.4.1 Invisible Region and Matching Problem 23 2.4.2 Flowchart 25 2.5 Weighting Function 26 CHAPTER 3 EXPERIMENTAL RESULT 32 3.1 Experiments on Single Non-frontal Face Image 32 3.1.1 Experiment 1 33 3.1.2 Experiment 2 34 3.1.3 Experiment 3 36 3.1.4 Experiment 4 38 3.2 Comparison with Real Data 40 3.3 Comparison with Texture Mapping 42 CHAPTER 4 CONCLUSION 44 References 45rf [1 ] T. Beier and S. Neely, “Feature-Based Image Metamorphosis,” Proc. ACM SIGGRAPH, pp. 35-42, 1992. [2 ] T. Poggio and R. Brunelli, “A Novel Approach to Graphics,” Technical Report A.I. Memo No. 1354, Artificial Intelligence Laboratory, Massachusetts Inst. of Technology, page 71, 1992. [3 ] D. Beymer, A. Shashua, and T. Poggio, “Example Based Image Analysis and Synthesis,” Technical Report A.I. Memo No. 1431, Artificial Intelligence Laboratory, Massachusetts Inst. of Technology, 1993. [4 ] S.E. Chen and L. Williams, “View Interpolation for Image Synthesis,” Proc. ACM SIGGRAPH, pp. 279-288, 1993. [5 ] S.M. Seitz and C.R. Dyer, “Physically-Valid View Synthesis by Image Interpolation,” Proc. IEEE Workshop Representation of Visual Scenes, pp.18-25, 1995. [6 ] S.M. Seitz and C.R. Dyer, “View Morphing,” Proc. ACM SIGGRAPH, pp. 21-30, 1996. [7 ] Shai Avidan and Amnon Shashua, “Novel View Synthesis by Cascading Trilinear Tensors,” IEEE Trans. on Visualization and Computer Graphics, vol. 4, no. 4, pp. 293-306, 1998. [8 ] H. Saito, S. Baba, and T. Kanade, “Appearance-Based Virtual View Generation from Multicamera Videos Captured in the 3-D Room,” IEEE Trans. on Multimedia, vol.5, no.3, pp.303-316, 2003. [9 ] R.M. Haralick, H. Joo, C. Lee, X. Zhuang, V.G. Vaidya, and M.B. Kim, “Pose estimation from corresponding point data,” IEEE Trans. Systems, Man, and Cybernetics, vol.19, no. 6, pp. 1426-1446, 1989. [10 ] Y. Liu, T.S. Huang, and O.D. Faugeras, “Determination of camera location from 2-d to 3-d line and point correspondences,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 12, no. 1, pp. 28-37, Jan. 1990. [11 ] R. Franke and G. Nielson, “Scattered Data Interpolation and Applications: A Tutorial and Survey,” in Geometric Modeling: Methods and Their Application, H. Hagan and D. Roller, eds., Springer, Berlin, pp. 131-160, 1990. [12 ] R. L. Hardy, “Multiquadric equation of topography and other irregular surfaces,” J. Geophysical Res. 76, pp. 1905-1915, 1971. [13 ] Richard Hartley and Andrew Zisserman, “Camera Models,” in Multiple View Geometry in Computer Vision, Cambridge University Press, Cambridge, UK, pp.139-165, 2000. [14 ] S.H. Lai and B.C. Vemuri, “Reliable and Efficient Computation of Optical Flow,” Intl. Journal of Computer Vision, vol. 29, no. 2, pp. 87-105, August-September 1998.id NH0925392052 sid 914375 cfn 0 / id NH0925392053 auc 黃柏豪 tic 長程影像串列包含資訊遮蔽情形中,以分解為基礎,強固的三維重建方法 adc 賴尚宏 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 79 kwc 三維重建 kwc 相機校正 kwc 遮蔽 kwc 消失 kwc 錯誤對應 kwc 基本矩陣 kwc 長程 kwc 強固 kwc 分解 abc 從影像中重建物體的三維模型,在電腦視覺領域裡一直是一個很有趣且很有挑戰性的問題。從運動求得結構(Structure from motion)是其中一種從影像中重建物體三維結構的方法。在這篇論文中,我們提出了一個強固的長程影像三維重建方法,同時這個方法也克服了對應點找尋錯誤或是被遮蔽的問題。 tc Contents i List of Figures iii List of Algorithms v List of Tables vi Chapter 1 Introduction 1 1.1 Methods for 3D Modeling 1 1.2 Structure from Motion 2 1.3 Projective Factorization Method 4 1.4 Challenges of SfM 5 1.5 Our Approach 6 1.6 Organization of this thesis 9 Chapter 2 Related Works 10 2.1 Camera Model and Two View Geometry 10 2.1.1 Camera Model 10 2.1.2 Projection Matrix 13 2.1.3 Triangulation Method 14 2.1.4 Fundamental Matrix 15 2.1.5 Normalization Method 17 2.2 Projective Factorization 19 2.2.1 Factorization Method 20 2.2.2 Projective Depth Recovery Method 21 2.3 Self-Calibration 24 2.3.1 Canonical Expression 24 2.3.2 Assumptions and Constraints for Self-Calibration 26 2.3.3 From General Expression to the Canonical One 27 2.4 Robust Estimators 28 2.4.1 Determine the maximal sampling times N 30 2.4.2 Adaptive RANSAC algorithm 32 2.5 Multiple View Consistency 33 2.5.1 Sequential Updates 33 2.5.2 Batch Update 35 Chapter 3 Robust SfM Methods 38 3.1 Multiple-View Projective Reconstruction 40 3.1.1 Iterative Projective Factorization Method 40 3.1.2 Initialization of Projective Depth 41 3.2 Projective SfM with Occlusions 42 3.3 Projective SfM with Outliers 44 3.3.1 Estimating Fundamental Matrix by adaptive RANSAC method 45 3.3.2 Estimating Projective SfM by adaptive RANSAC method 46 3.3.3 Weighted Linear Equation for obtaining X with outliers 48 3.3.4 Refine the Structure and Motion using All Inliers 49 3.4 Long-term SfM with Outliers and Occlusions 50 3.4.1 Image Sequence Division 51 3.4.2. Applying Robust Estimator on each Sub-sequence 51 3.4.3. Point Propagation to the Whole Sequence 52 3.5 Upgrade form Projective to Metric Frame 54 Chapter 4 Experimental Results 56 4.1 Synthetic Data 56 4.1.1 Tolerance of Missing Data with Noise 56 4.1.2 Tolerance of Outliers with Noise 60 4.1.3 The Result of Long-term SfM 63 4.14 The Result of Different Amount of Views as Sub-sequences 64 4.1.5 Comparison with the Results without Using the Robust Estimator 67 4.2 Real Data 70 Chapter 5 Conclusion 75 References 77rf [A. Fusiello, 2000 ] A. Fusiello. Uncalibrated Euclidean reconstruction: a review. Image and Vision Computing, 18, 555-563, 2000. [A. Heyden, 1999 ] A. Heyden, R. Berthilsson and G. Sparr. An iterative factorization method for projective structure and motion from image sequences. Image Vision and Computing, 17, pages 981-991, 1999. [A. W. Fitzgibbon, 1998 ] A. W. Fitzgibbon and A. Zisserman. Automatic camera recovery for closed or open image sequences. In Proc. European Conference on Computer Vision, pages 311-326, Springer-Verlag, June 1998. [B. Triggs, 1996 ] B. Triggs. Factorization methods for projective structure and motion, In Proc. IEEE Conference on Computer Vision and Pattern Recognition, pages 845-851, 1996. [C. Tomasi, 1992 ] C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization approach. International Journal of Computer Vision, 9(2):137-154, November 1992. [M. Han, 2000 ] M. Han and T. Kanade. Creating 3D models with uncalibrated cameras. IEEE Computer Society Workshop on the Application of Computer Vision, 9(2), 137-154, 2000. [M. Pollefeys, 1999 ] M. Pollefeys. Self calibration and metric 3D reconstruction from uncalibrated image sequences. PhD thesis, ESAT-PSI, K. U. Leuven, 1999. [Oxford ] “Visual Geometry Group Oxford”, http://www.robots.ox.ac.uk/~vgg/data/ [O. D.Faugeras, 1992 ] O. D. Faugeras. What can be seen in three dimensions with an uncalibrated stereo rig? In Proc. European Conference on Computer Vision, LNCS 588, pages 563-578. Springer-Verlag, 1992. [P. Sturm, 1996 ] P. Sturm and B. Triggs. A factorization based algorithm for multi-image projective structure and motion. In Proc. European Conference on Computer Vision, pages 709-720, 1996. [Q. Chen, 1999 ] Q. Chen and G. Medioni. Efficient, iterative solution to M-view projective reconstruction problem. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, 1, pages 55-61, 1999 [R. I. Hartley, 1992 ] R. I. Hartley. Invariants of points seen in multiple images. GE internal report, GE CRD, Schenectady, NY12301, USA, May 1992. [R. I. Hartley, 1997 ] R. I. Hartley. In defense of the eight-point algorithm. In Proc. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(6), pages 580-593, October, 1997. [R. I. Hartley, 2000 ] R. I. Hartley and A. Zisseman. Multiple View Geometry. Cambridge Univ. Press, 2000. [S. Mahamud, 2000 ] S. Mahamud and M. Hebert. Iterative projective reconstruction from multiple views. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2, pages 430-437, 2000.id NH0925392053 sid 914371 cfn 0 / id NH0925392054 auc 許元泰 tic 一個新的視覺密碼的建構演算法 adc 張隆紋 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 34 kwc 祕密分享 kwc (k,n)門檻方法 kwc 視覺密碼 abc Adi Shamir 提出了一個著名的祕密分享的方法。這個方法可以將一個資料 D 分成 n 份,使得當有 k 份以上時可以輕易的重建 D,但是你無法獲得 D 的任何資訊即使你有了 k-1份。這樣的方法稱為(k,n) threshold scheme。 tc List of Contents ABSTRACT (in Chinese) i ABSTRACT (in English) ii ACKNOWLEDGEMENTS iii List of Contents iv List of Figures v Chapter 1 Introduction 1 Chapter 2 Review of Space Filling Curve Ordered Dither Technique and Basic Visual Cryptography Model 3 2.1 Review of Space Filling Curve Ordered Dither 3 2.2 Review of Basic Visual Cryptography Model 5 Chapter 3 The Proposed Extended SFCOD Technique and Extended Visual Cryptography Model 12 3.1 The Proposed Extended SFCOD 12 3.2 The Proposed Extended Visual Cryptography Model 15 3.3 Algorithm for Encrypting a Gray-level Image 18 3.4 Algorithm for Encrypting a Color Image 19 Chapter 4 Simulations 23 Chapter 5 Conclusion 33 Reference 34 List of Figures 1. The process of using a Hilbert curve to divide the pixels of an 8×8 image into 16 classes. (a) A traversal curve of an 8x8 image. (b) The map of the traversal order of (a). (c) The traversal order of (a) mod 16. (d) The traversal curves of 4 4x4 images 4 2. The shares and decoded white pixel of the example of (3,3)-threshold visual cryptography. (a) The visual pattern of share1, (b) the visual pattern of share2, (c) the visual pattern of share3, (d) decoding result of a white pixel 9 3. The shares and decoded black pixel of the example of (3,3)-threshold visual cryptography. (a) The visual pattern of share1, (b) the visual pattern of share2, (c) the visual pattern of share3, (d) decoding result of a black pixel 10 4. Experiment results of the ESFCOD algorithm. (a) The original image. (b) The image halftoned by the ESFCOD algorithm, where . (c) The image transformed by the SFCOD algorithm. (d) The transformed image with 4 grayscales by simple threshoding 14 5. The flowchart of the new construction principle for grey level images 21 6. The flowchart of the new construction principle for color images 22 7. (a) The original Elaine image, (b) the image after using extended SFCOD, (c) the share1 with grayscale values 0, 20, 200, and 255, (d) the share2 with grayscale values 0, 20, 200, and 255, (e) the decoded image 24 8. (a) The original boat image, (b) the image after using extended SFCOD, (c) the share1 with grayscale values 0, 20, 200, and 255, (d) the share2 with grayscale values 0, 20, 200, and 255, (e) the decoded image 25 9. (a) The original Lena image, (b) the C component of (a), (c) the M component of (a), (d) the Y component of (a) 27 10. (a) The image of Fig. 9(b) after using extended SFCOD, (b) the image of Fig. 9(c) after using extended SFCOD, (c) the image of Fig. 9(d) after using extended SFCOD 28 11. (a) The share1 of Fig. 10(a), (b) the share2 of Fig. 10(a), (c) the share1 of Fig. 10(b), (d) the share2 of Fig. 10(b), (e) the share1 of Fig. 10(c), (f) the share2 of Fig. 10(c) 28 12. (a) The share image 1 by combining Fig. 11(a), Fig. 11(c), and Fig. 11(e), (b) The share image 2 by combining Fig. 11(b), Fig. 11(d), and Fig. 11(f), (c) the decoding image by stacking (a) and (b) 29 13. (a) The original baboon image, (b) the C component of (a), (c) the M component of (a), (d) the Y component of (a) 29 14. (a) The image of Fig. 13(b) after using extended SFCOD, (b) the image of Fig. 13(c) after using extended SFCOD, (c) the image of Fig. 13(d) after using extended SFCOD 30 15. (a) The share1 of Fig. 14(a), (b) the share2 of Fig. 14(a), (c) the share1 of Fig. 14(b), (d) the share2 of Fig. 14(b), (e) the share1 of Fig. 14(c), (f) the share2 of Fig. 14(c) 31 16. (a) The share image 1 by combining Fig. 15(a), Fig. 15(c), and Fig. 15(e), (b) The share image 2 by combining Fig. 15(b), Fig. 15(d), and Fig. 15(f), (c) the decoding image by stacking (a) and (b) 32rf [1 ] A. Shamir, How to share a secret, Communications of the ACM, 22(11): 612- 613, November 1979. [2 ] M. Naor, A. Shamir, Visual Cryptography, Advances in Cryptography – Eurocrypt ’94, pp. 1-12, 1995. [3 ] G. Ateniese, C. Blundo, A. D. Santis, D. R. Stinson. Visual Cryptography for General Access Structure, Information and Computation, 129 (2), pp. 86--106, 1996. [4 ] M. Naor, B. Pinkas, Visual Authentication and Identification, Lecture Notes in Computer Science. [5 ] Chang, C. C. and Chuang, J. C., An Image Intellectual Property Protection Scheme for Gray-level Images Using Visual Secret Sharing Stragegy, Pattern Recognition Letters, Vol. 23, No. 8, 2003, pp. 931-941. [6 ] E.R.Verheul, Henk C.A. Van Tilborg, Constructions and Properties of k out of n Visual Secret Sharing Schemes, Designs, Codes and Cryptography, Volume 11, Issue 2 (May 1997), Pages: 179 – 196. [7 ] C. C. Lin and W. H. Tsai, Visual Cryptography for Gray-level Images by Dithering Technique, Pattern Recognition Letters 24 (2003) 349-358. [8 ] Yuefeng Zhang, Space-filling Curve Ordered Dither, Computers & Graphics 22(4): 559-563 (1998). [9 ] Young-Chang Hou, Visual Cryptography for color images, Pattern Recognition 36 (2003) 1619-1629.id NH0925392054 sid 916322 cfn 0 / id NH0925392055 auc 劉鴻勳 tic 利用可變長度碼改變技術之即時數位視訊版權管理系統 adc 張隆紋 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 28 kwc 數位版權管理 kwc 數位浮水印 kwc 可變長度碼 kwc 即時性 abc 近年來由於網際網路的蓬勃發展,越來越多的數位內容被廣泛使用,由於數位內容具有容易取得,容易複製,容易假造等特性,如何保障數位內容的擁有者或提供者的權利變成一個很重要的議題。數位版權管理系統用來保護數位內容的版權和商業交易的公平性,數位版權管理系統一般包括數位內容的加密,存取控制,數位複製的限制,版權證明,數位散佈的追蹤等多項機制。數位浮水印提供一個可行的技術,藉由在音樂,影片,影像等多媒體資料中嵌入一不可視的訊號,包括版權證明及數位複製的限制資訊,達到保護數位版權防止非法複製和散佈的目的。因此,數位浮水印在現今數位版權管理系統中扮演重要角色。 tc Abstract 1 Introduction............................................1 2 The MPEG Compression Algorithm 2.1 MPEG layered structure................................3 2.2 MPEG GOP structure....................................4 2.3 Coding of I-pictures..................................5 3 The Proposed Algorithm 3.1 VLCs modification concept.............................9 3.2 The watermark embedding scheme with VLCs modification concept..............................................13 3.3 The watermark extracting scheme without original video stream...............................................15 4 Experimental Results...................................17 5 Conclusion.............................................26 Referencerf [1 ] R. Barnett, “Digital watermarking: Applications, techniques, and challenges,” IEE Electronics & Communication Engineering Journal, vol.11, no.4, pp.173-183, 1999. [2 ] F. Hartung, M. Kutter, “Multimedia watermarking techniques,” Proceedings of the IEEE: Special Issue on Identification and Protection of Multimedia Content 87 (7) (1999) 1079-1107. [3 ] R.B. Wolfgang, C.I. Podilchuk, E.J. Delp, “Perceptual watermarks for digital images and video,” Proceedings of the IEEE: Special Issue on Identification and Protection of Multimedia Content 87 (7) (1999) 1108- 1126. [4 ] Jian-Chyn Liu, Shu-Yuan Chen, “Fast two-layer image watermarking without referring to the original image and watermark,” Image and Vision Computing 19 (2001) 1083-1097. [5 ] S. Katzenbeisser, F. Petitcolas, “Information hiding techniques for steganography and digital watermarking,” Artech House, Norwood, 2000. [6 ] Frank Y. Shih, Scott Y.T. Wu, “Combinational image watermarking in the spatial and frequency domains,” Pattern Recognition, vol.36, April 2002. [7 ] C.T. Hsu, J.L. Wu, “Hidden digital watermarks in images,” IEEE Trans. Image Processing, vol.8, no.1, Jan. 1999, pp.58-68. [8 ] Minoru Kuribayashi, Hatsukazu Tanaka, “A new digital watermarking scheme applying locally the wavelet transform,” IEICE Trans. Fundamentals, vol.84, no.10, Oct. 2001. [9 ] C.T. Hsu, J.L. Wu, “Image watermarking by wavelet decomposition,” Academy of Information and Management Sciences Journal, vol.3, no.1, pp.70-86, 2000. [10 ] J.K. Ruanaidh, W.J. Dowling, F.M. Boland, “Phase watermarking of digital images,” Proc. IEEE Int. Conf. Image Processing, vol.3, pp.239-242, Laussane, Sept. 1996. [11 ] M. George, J.Y. Chouinard, N.D. Georganas, “Digital watermarking of images and video using direct sequence spread spectrum techniques,” Proc. Can. Conf. on Elec. and Comp. Engg., Edmonton, May 1999. [12 ] Tae-Yun Chung, Min-Suk Hong, Young-Nam Oh, Dong-Ho Shin, Sang-Hui Park, “Digital watermarking for copyright protection of mpeg2 compressed video,” IEEE Trans. Consumer Electronics, vol.44, no.3, August 1998. [13 ] C.T. Hsu, J.L. Wu, “DCT-based watermarking for video,” IEEE Trans. Consumer Electronics, vol.44, no.1, pp.206-216, Feb. 1998. [14 ] Frank Hartung, Friedhelm Ramme, “Digital rights management and watermarking of multimedia content for m-commerce applications,” IEEE Communications Magazine, November 2000. [15 ] A.O. Waller, G. Jones, T. Whitley, J. Edwards, D. Kaleshi, A. Munro, B. MacFarlane, A. Wood, “Securing the delivery of digital content over the Internet,” Electronics & Communication Engineering Journal, October 2002. [16 ] Gerrit C. Langelaar, Reginald L. Lagendijk, Jan Biemond, “Real-time labeling of mpeg2 compressed video,” Visual Communication & Image Representation Journal, vol.9, no.4, pp.256-270, December 1998. [17 ] Y.K. Lee, L.H. Chen, “Secure error-free steganography for jpeg images,” I.J. Pattern Recognition and Artificial Intelligence, vol.17, no.6, pp.967-982, Sept. 2003. [18 ] Joan L. Mitchell, William B. Pennebaker, Chad E. Fogg, Didier J. Legall, “MPEG video compression standard,” Champman & Hall, 1996.id NH0925392055 sid 914305 cfn 0 / id NH0925392056 auc 王俊傑 tic 高容量黑白影像資訊偽裝術 adc 張隆紋 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 21 kwc 資訊隱藏 kwc 資訊偽裝術 kwc 黑白影像 abc 在今日社會中,多媒體資訊的流行及普及性促進了資訊偽裝術在數位通訊上的發展。就數位影像的資訊偽裝術而言,所著重的是資料可藏量以及藏入資料後原始影像品質的維護。另一方面,由於每一個像素都僅僅由一個位元組成,在黑白影像上藏入資料相當具有挑戰性。 tc ABSTRACT (in Chinese).............................i ABSTRACT (in English)............................ii ACKNOWLEDGEMENTS................................iii List of Contents.................................iv List of Figures...................................v List of Tables...................................vi Chapter 1 Introduction............................1 Chapter 2 Review of Related Researches............3 Chapter 3 The Proposed Binary Image Steganography...............................5 3.1 The Embedding Criteria....................5 3.2 The Weighting Method......................7 3.3 The Data Embedding Procedure..............9 3.4 The Data Extracting Procedure............11 Chapter 4 Experimental Results...................13 Chapter 5 Conclusions............................19 Reference........................................20rf [1 ] I. J. Cox, J. Kilian, T. Leighton, and T. Shamoon, “Secure spread spectrum watermarking for images, audio and video,” in Proc. IEEE Int. Conf. Image Processing, Lausanne, Switzerland, Sept. 1996, vol. 111, pp. 243-246. [2 ] Gruhl, D., A. Lu, and W. Bender, “Echo Hiding,” in Information Hiding: First International Workshop, Proceedings, vol.1174 of Lecture Notes in Computer Science, Springer, 1996, pp. 295-316. [3 ] Van Schyndel, R. G., A. Tirkel, and C. F. Osborne, “A Digital Watermark,” in Proceedings of the IEEE International Conferences on Image Processing, vol. 2, 1994, pp.86-90. [4 ] A. Piva, M. Barni, F. Bartolini, and V. Cappellini, “DCT-Based watermark recovering without restoring to the uncorrupted original image,” in IEEE ICIP, 1997. [5 ] R. Dugad, K. Ratakonda, and N. Ahuja, “A new wavelet-based scheme for watermarking images,” in IEEE ICIP, 1998. [6 ] R. B. Wolfgang and E. J. Delp, “A watermark for digital images,” in Proc. IEEE Int. Conf. Image Processing, Lausanne, Switzerland, Sept. 1996, vol. 111, pp. 219-222. [7 ] R. Machado, http://www.fqa.com/romana/romanasoft/stego.html. [8 ] M. Y. Wu and J. H. Lee, “A novel data embedding method for two-color facsimile images,” in Proc. Int. Symp. Multimedia Inform. Processing, Chung-Li, Taiwan, R.O.C, Dec, 1998. [9 ] J. Zhao and E. Koch, “Embedding robust labels into images for copyright protection,” in Proc. Int. Conf. Intellectual Property Rights for Inform., Knowledge, New Techniques, Munich, Germany, 1995, pp. 242-251. [10 ] Min Wu, E. Tang and B. Lin, “Data hiding in digital binary image,” Multimedia and Expo, 2000. ICME 2000. 2000 IEEE International Conference on, 30 July-2 Aug. 2000, vol.1, pp. 393 – 396. [11 ] Yu-Chee Tseng, Yu-Yuan Chen and Hsiang-Kuang Pan, “A secure data hiding scheme for binary images,” Communications, IEEE Transactions on , Aug. 2002 , Issue: 8 , vol.50 , pp. 1227 – 1231. [12 ] Haiping Lu, A.C. Kot and R. Susanto, “Binary image watermarking through biased binarization,” Multimedia and Expo, 2003. ICME '03. Proceedings. 2003 International Conference on , 6-9 July 2003, vol.3, pp. III - 101-4. [13 ] J. Chen, Tung-Shou Chen and Meng-Wen Cheng, “A new data hiding method in binary image” Multimedia Software Engineering, 2003. Proceedings. Fifth International Symposium on , 2003, pp. 88 – 93. [14 ] Tung - Hsiang Liu and Long-Wen Chang, “Data hiding in binary images”.id NH0925392056 sid 916307 cfn 0 / id NH0925392057 auc 鄭雯方 tic 代理伺服器為基礎的串流視訊傳送架構 adc 王家祥 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 42 kwc 影音串流 abc 隨著網路頻寬的不斷提升,影音串流視訊傳輸也受到越來越多重視。在這一篇論文裡面,我們提出了以代理伺服器來為基礎的串流視訊傳輸架構。這個架構包含了在骨幹網路以及區域網路上的多媒體檔案伺服器、代理伺服器(Proxy)、與客戶端設備。當客戶端向代理伺服器發出多媒體檔案的要求時,多媒體檔案伺服器即傳輸據多層漸進式(Scalable)特性的檔案到代理伺服器端。代理伺服器則根據網路狀況及網路頻寬傳送最適合的品質給客戶端。 tc Table of Contents List of Figures List of Tables Chapter 1 Introduction Chapter 2 Background and Related Works 2.1 MPEG-4 FGS Bit-plane Coding 2.2 Quality Smoothing Method 2.3 Reed-Solomon Code 2.4 PFGS based Streaming System Chapter 3 Proxy-based Layered Transmission System (PLTS) 3.1 Conventional Transmission Systems 3.2 Proposed Framework of PLTS Chapter 4 Proposed Methods for PLTS 4.1 Interleaving Packetization with Unequal Error Protection 4.2 Bitrate Smoothing 4.3 Regulation Mechanism Chapter 5 Conclusion and future work 5.1 Conclusion 5.2 Future work Referencesrf [1 ] D. Wu, Y. T. Hou, W. W. Zhu, Y.-Q. Zhang, and J.M. Peha, “Streaming Video over the Internet: Approaches and Directions,” IEEE Transactions on Circuits and Systems for Video Technology, VOL. 11, Mar. 2001, pp. 282–300. [2 ] D. Wu, Y. T. Hou, and Y.-Q. Zhang, “Transporting Real-time Video over the Internet: Challenges and Approaches,” Proceeding of the IEEE, VOL. 88, Dec. 2000, pp. 1855–1877. [3 ] W. Li, “Overview of Fine Granularity Scalability in MPEG-4 Video Standard,” IEEE Transactions on Circuits and Systems for Video Technology, VOL. 11, Mar. 2001, pp. 301–317. [4 ] F. Wu, S. Li, and Y. Zhang, “A Framework for Efficient Fine Granularity Scalable Video Coding,” IEEE Transactions on Circuits and System for Video Technology, VOL. 11, Mar. 2001, pp. 332–344. [5 ] R. Kalluri, “Single-Loop Motion-Compensated based Fine-Granular Scalability (MC-FGS)”, MPEG2001/M6831, Jul. 2001. [6 ] X. Zhang, A. Vetro, Y. Shi, and H. Sun, “Constant Quality Constrained Rate Allocation for FGS Video Coded Bitstreams,” Proceedings of SPIE Conference on Visual Communications and Image Processing (VCIP) 2002, VOL. 4671, pp. 817–827. [7 ] Y. Wang and Q. Zhu, “Error Control and Concealment for Video Communication: A Review,” Proceedings of the IEEE, VOL. 86, May 1998, pp.974–997.id NH0925392057 sid 914332 cfn 0 / id NH0925392058 auc 劉星佑 tic 建立在BB84 模型下之高度安全性量子訊息傳輸協定 adc 張隆紋 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 31 kwc 量子 kwc 金鑰協定 abc 隨著近年來量子相關研究的發展,量子電腦逐漸成型,伴隨而來的,就是量子計算與量子密碼學的相關研究。一旦量子電腦完全成型,舊有的密碼理論將會瓦解。舉例來說,利用量子電腦,RSA的加密方式將馬上被淘汰。同樣地,一些傳統的密碼交換理論勢必也會因量子電腦的強大運算能力而瓦解。竊取者透過量子電腦將可輕鬆地竊取破解使用傳統加密理論的使用者所要傳遞的訊息。 tc 1 Introduction 1 2 Related Work 2.1 Quantum information theory 2 2.2 BB84 model 4 2.3 Eavesdropping detection in BB84 model 8 2.4 Conventional Key Distribution Scenario 11 2.5 Cyclic Redundancy Check 13 3 Quantum Key Distribution Using Session Keys 3.1 Quantum message communication model 15 3.2 The concept of quantum key distribution using session keys 16 3.3 The proposed quantum key distribution model using session keys 20 4 Quantum Key Distribution With KDC 4.1 The concept of quantum key distribution with KDC 24 4.2 The proposed quantum key distribution model with KDC 27 5 Conclusion 30 Reference 31rf [1 ] Wiesner, S., "Conjugate coding", Sigact News, vol. 15, no. 1, 1983, pp. 78 - 88; original manuscript written circa 1970. [2 ] Bennett, C. H., Bessette, F., Brassard, G., Salvail, L. and Smolin, J., "Experimental quantum cryptography", Journal of Cryptology, vol. 5, no. 1, 1992, pp. 3 - 28. Preliminary version in Advances in Cryptology - Eurocrypt '90 Proceedings, May 1990, Springer - Verlag, pp. 253 - 265. [3 ] Dirac, P. 1958. The Principles of Quantum Mechanics, 4th edition ed. Oxford University Press. [4 ] 23. Bennett, C. H., Brassard, G. and Ekert, A. K., "Quantum cryptography", Scientific American, October 1992, pp. 50 - 57. Appeared in December 1992 as translation into German ( Spektrum der Wissenschaft, pp. 96 - 104), Italian ( Le Scienze, pp. 84 - 93), Japanese ( Saiensu, pp. 50 - 60), and Polish (Swiat Nauki, pp. 28 - 37), among others. [5 ] ZHOU XU, “An Introduction to Quantum Key Distribution”, National University of Singapore. [6 ] Quantum computing. I Glassner, A.;Computer Graphics and Applications, IEEE , Volume: 21 Issue: 4 , July-Aug. 2001 Page(s): 84 -92 [7 ] Quantum computing. 2 Glassner, A.;Computer Graphics and Applications, IEEE , Volume: 21 Issue: 5 , July-Aug. 2001 Page(s): 86 -95 [8 ] Quantum computing. 3 Glassner, A.;Computer Graphics and Applications, IEEE , Volume: 21 Issue: 6 , Nov.-Dec. 2001 Page(s): 72 -82 [9 ] P. Kaye, R. Laflamme , M. Mosea, "Quantum Computing", September 20, 2003 [10 ]Sufyan T. Faraj, Prof. Fawzi Al – Naima, and Siddeeq Y. Ameen, "Quantum Cryptographic Key Distribution in Multiple–Access Networks" ICCT-009, 2000 IEEEid NH0925392058 sid 914314 cfn 0 / id NH0925392059 auc 陳信宇 tic 使用平均色飽和度隱蔽法之數位版權管理模型 adc 張隆紋 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 30 kwc 隱匿學 kwc 資訊隱藏 kwc 密碼學 kwc 高階加密演算法 kwc 數位版權管理 abc 本論文以所研究的資訊隱藏法將版權資訊藏匿在平均色飽和度中,來防止非法使用者拷貝散布有版權的數位內容,在合法狀況下使用時還原數位內容。將資訊隱藏在空間域,會造成模糊的效果,可以達到保護數位內容的目的,並且可用於各種檔案格式,也就是說,只要將擷取流程附加到現行播放軟硬體上即可達到版權保護效果,這和現行數位版權管理機制需要特殊的軟硬體去驗證專用的檔案格式不同。所以即使是未授權之使用者,也可以去預覽模糊的數位內容。 tc Abstract (in Chinese) ii Abstract (in English) iii Contents iv List of Figures v List of Tables vi 1. Introductio 1 2. Review 4 2.1 DRM 4 2.2 AES 7 3. The Proposed DRM Model 9 3.1 The Embedding end Extracting Procedure 11 3.2 The Proposed DRM Model 18 4. Experimental Results 19 5. Conclusion 28 Bibliography 29rf [1 ] Fetscherin, M., Schmid, M. “The Application of Digital Rights Management Systems in the Music Industry - An Empirical Investigation”, IEEE Computer Society, September 2003, p. 115-121. [2 ] Y. K. Lee and L. H. Chen, “Secure Error-Free Steganography for JPEG Images”, International Journal of Pattern Recognition and Artificial Intelligence, Vol. 17, 2003, p. 967-981. [3 ] N. F. Johnson and S.Jajodia, “Steganography: seeing the unseen,” IEEE Computer 31, 2 (1998), p. 26-34. [4 ] R. Machado, “Stego,” http://www.stego.com/. [5 ] H. Repp, “Hide4PGP,” http://www.rugeley.demon.co.uk/security/hdsk50.zip. [6 ] J2k, http://www.fnordware.com/j2k/. [7 ] Fetscherin, M., Schmid, M. “The Application of Digital Rights Management Systems in the Music Industry - An Empirical Investigation”, IEEE Computer Society, September 2003, p. 115-121. [8 ] Microsoft, http://www.microsoft.com/windows/windowsmedia/drm.aspx. [9 ] Adobe, http://www.adobe.co.uk/epaper/features/drm/drmtools.html. [10 ] IBM, http://www-3.ibm.com/software/data/emms/. [11 ] SDMI, SDMI Portable Device Specification, Part 1, Version 1.0, SDMI doc.pdwg99070802, 1999. [12 ] R. H. Koenen, J. Lacy, M. Mackay, and S. Mitchell, “The Long March to Interoperable Digital Rights Management”, Proceedings of IEEE, June 2004, p. 883-897. [13 ] L. Jean Camp, “First Principles of Copyright for DRM Design”, IEEE Internet Computing, Vol. 7, No. 3, 2003, p. 59-65. [14 ] F. Hartung, and F. Ramme, “Digital Rights Management and Watermarking of Multimedia Content for M-Commerce Applications”, IEEE Communications Magazine, Vol. 38, Nov. 2000, p. 78-84. [15 ] J. Lacy, N. Rump, and P. Kudumarkis, “MPEG-4 Intellectual Property Management & Protection (IPMP) Overview and Applications”, MPEG doc. ISO/IEC JTC1/SC29/WG11/N2614, Dec. 1998. [16 ] Daemen, J., and Rijmen, V. “Rijndael: The Advanced Encryption Standard.” Dr. Dobb’s Journal, March 2001. [17 ] William Stallings, “Cryptography and Network Security”, Chap. 5, 2003. [18 ] D.E. Knuth. “The Art of Computer Programming” Vol. 2, Seminumerical Algorithms. Addison-Wesley. Reading, MA, 1969. [19 ] H.S. Bright, R.L. Enison, “Quasi-Random Number Sequences from a Long-Period TLP Generator with Remarks on Application to Cryptography”, ACM Computing Surveys 11(4), 1979, p. 357-370. [20 ] P. Bratley, B.L. Fox, L.E. Schage, “Uniform Random Numbers”, in A Guide to Simulation. Springer Verlag, 1995, p. 180-213. [21 ] G.Mastronardi. A Combination of Pseudorandom Number Generators Applied to the Steganography. In Abstracts of SIMAI’2000 Congress, Ischia(Italy). June 2000, p. 756-757.id NH0925392059 sid 914316 cfn 0 / id NH0925392060 auc 張軒瑋 tic 低功率之多重臨界電壓互補金屬氧化物導體下以邏輯功能為導向之叢隻設計 adc 黃婷婷 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 38 kwc 臨界電壓 kwc 低功率 kwc 漏電流 kwc 多重臨界電壓互補金屬氣化物導體 abc 多重臨界電壓互補金屬氧化物導體是解決漏電流一個很有效的技術。而設計時,靜態電晶體的大小是最重要且關鍵的因素。如果此電晶體的面積太大,電路的效率可以維持但所耗的動態能量就能增加。相反的,如果電晶體的面積太小,電路的效能就會受很大的影響。有些研究提出以彼此間完全互斥的放電模式來設計靜態電晶體的大小。但是一般的研究都只有考慮到電路的拓蹼資訊。我們發現以邏輯功能為導向來說,二個有可能同時發生轉變的邏輯閘並不一定會同時放電。因此,我們提出一個演算法流程同時考慮了包括拓蹼資訊與邏輯功能的資訊來完成叢集邏輯閘的方法,叢集的邏輯閘可以共用一個靜態電晶體來節省面積的消耗。我們的實驗結果顯示我們的方法在考慮邏輯功能下對於靜態電晶體的個數可以節省百分之18左右的程度也證明我們的方法可以有效的達到在設計多重臨界電壓互補金屬氧化物導體時所需考慮的問題。 tc 1 Introduction 1 2 Related Work on MTCMOS and Our Motivation 6 3 Algorithm for Cell Clustering 13 3.1 Cell Characterization.............................. 13 3.2 Construct Relation Graph........................... 17 3.2.1 Compute Delays of all Gate-Outputs........... 17 3.2.2 Determine Mutual Exclusive Cells by Topology and Functionality............................ 19 3.3 Clique Partitioning................................ 26 3.4 Merge of Cliques................................... 26 4 Experimental Results 29 5 Conclusion 35rf [1 ]“BSIM3 Homepage.” http://www-device.eecs.berkeley.edu$\sim$bsim3/arch\_ftp.html. [2 ] Shekhar Borkar, "Low Power Challenges for the Decade", Proceedings of ASP-DAC, pp. 293-296, 2001. [3 ] Dongwoo Lee and David Blaauw, "Static Leakage Reduction through Simultaneous Threshold Voltage and State Assignment," Proceedings of the 40th conference on Design automation, pp. 191-194, 2003. [4 ] Rahul M. Rao, Frank Liu, Jeffrey L. Burns, and Richard B. Brown, "A Heuristic to Determine Low Leakage Sleep State Vectors for CMOS Combinational Circuits," Proceedings of ICCAD, pp. 689-692, 2003. [5 ] Dongwoo Lee, Harmander Deogun, David Blaauw, and Dennis Sylvester, "Simultaneous State, Vt and Tox Assignment for Total Standby Power Minimization," Proceedings of DATE, pp. 494-499, 2004. [6 ] Yen-Te Ho, TingTing Hwang, "Low Power Design Using Dual Threshold Voltage," Proceedings of ASP-DAC, pp. 205-208, 2004. [7 ] S.Muth, T.Douseki, T.Matsuya, T.Aoki, S.Shigematsu, and J.Yamada, "1-V Power Supply High-Speed Digital Circuit Technology with Multithreshold-Voltage CMOS," IEEE Journal of Solid-State Circuits, vol. 30, no. 8, pp. 847-853, Feb. 1995. [8 ] J.Kao, A.Chandrakasan, and D.Antoniadis, "Transistor Sizing Issues and Tool for Multi-threshold CMOS Technology," Proceedings of the 34th conference on Design automation, pp. 409-414, 1997. [9 ] J.Kao, S.Narendra, and A.Chandrakasan, "MTCMOS Hierarchical Sizing Based on Mutual Exclusive Discharge Patterns," Proceedings of the 35th conference on Design automation, pp. 495-500, 1998. [10 ] Mohab Anis, Shawki Areibi, Mohamed Mahmoud, and Mohamed Elmasry, "Dynamic and Leakage Power Reduction in MTCMOS Circuits Using an Automated Efficient Gate Clustering Technique," Proceedings of the 39th conference on Design automation, pp. 480-485, 2002. [11 ] Harish Kriplani, Farid N. Najm, Ibrahim N. Hajj, "Pattern Independent Maximum Current Estimation in Power and Ground Buses of CMOS VLSI Circuits: Algorithms, Signal Correlations, and Their Resolution," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 998-1012, 1995 [12 ] Sablh H. Gerez, "Algorithms for VLSI Design Automation," pp. 265-267.id NH0925392060 sid 914325 cfn 0 / id NH0925392061 auc 劉鐘予 tic 階層式與混合式之可程式規劃邏輯陣列之架構評估 adc 黃婷婷 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 50 kwc 可程式規劃邏輯陣列 kwc 可編程邏輯陣列 abc 在這篇論文中,我們將分別就面積與效能這兩大要素,去評估層級式以及混合式之可程式規劃陣列之間的優劣表現。在面積評估方面,我們發現混合式之可程式規劃陣列僅僅只比階層式之可程式規劃陣列小了百分之零點零八。而在效能評估上,階層式之可程式規劃陣列表現出較佳的臨界路徑延遲。混合式之可程式規劃陣列上的臨界路徑所行經的交換開關數目將比階層式之可程式規劃陣列多了兩倍左右。 tc 1 Introduction 1 2 Related Work 4 2.1 Survey of FPGA architecture 4 2.2 Review of target hierarchical FPGA 6 3 Evaluation of Hierarchical and Mixed FPGA Architecture 10 3.1 Mixed FPGA structure description 10 3.2 Area Evaluation 12 3.2.1 Area model 12 3.2.2 Experimental Flow 18 3.2.3 Result 20 3.3 Delay Evaluation 27 3.3.1 Experiment to Produce the Best Pin Constraint for Delay 27 3.3.2 Experimental Flow for Estimation of Critical Path for Hierarchical and Mixed FPGA Structure 29 3.3.3 Result 30 4 Evaluation of Data Path Circuit 34 4.1 Area evaluation 34 4.1.1 Area Model of PLA 35 4.1.2 Experimental Flow for Area versus PLA Cell Granularity 36 4.1.3 Total Area versus PLA Cell Granularity 37 4.2 Delay evaluation 38 4.2.1 Delay Model of PLA 38 4.2.2 Experimental Flow for Delay versus PLA Cell Granularity 39 4.2.3 Delay versus PLA Cell Granularity 39 4.3 Comparisons of PLA Cell to Lookup Table Cell 40 5 Conclusions 45rf S. Brown, R. Francis, J. Rose and Z. Vranesic, "Field Programmable Gate Arrays,"Kluwer Academic Publishers, 1992. Ping-Tsung Wang, Kun-Nen Chen, and Yen-Tai Lai, "A High Performance FPGA with Hierarchical Interconnection Structure,"Proc. of ISCAS, pp 4.239-4.242, 1994. Chen-Hung Hsieh, "Performance-driven Clustering for Hierarchical FPGA Architecture,"Master Thesis of National Tsing Hua University, 2002. Wei-Lun Hung, "Placement and Routing for Hierarchical FPGA,"Master Thesis of National Tsing Hua University, 2002. Jack L. Kouloheris, Abbas El Gamal, "FPGA Performance versus Cell Granularity,"Proceedings of the 1991 Custom Integrated Circuits Conference, pp 6.2.1-4. Jack L. Kouloheris, Abbas El Gamal, "FPGA Area vs. Cell Granularity-Lookup Tables and PLA Cells,"FPGA '92 Workshop Notes, pp 9-14. Jack L. Kouloheris, Abbas El Gamal, "PLA-based FPGA Area vs. Cell Granularity,"Proceedings of the 1992 Custom Integrated Circuits Conference, pp 4.3.1-4. Shin-Liang Chen, "Report: FPGA Arhcitecture and Related Software," Macronix International Co., LTD, 2002. Jonathan Rose st al., "Architecture of Field Programmable Gate Arrays: The Effect of Logic Block Functionality on Area Eficiency,"IEEE Journal of Solid State Circuits,Vol. 25, No 5, 1990, pp 1217-1225. Oldridge S.W., Wilton S.J.E., "Placement and routing for FPGA architectures supporting wide shallow memories,"Field-Programmable Technology (FPT), 2003. Proceedings 2003 IEEE International Conference, pp 154-161. Yan, A.; Wilton, S.J.E, "Product-term based synthesizable embedded programmable logic cores,"Field-Programmable Technology (FPT), 2003. Proceedings 2003 IEEE International Conference, 2003.pp 162-169. Noha Kafafi, Kimberly Bozman, Steven J.E. Wilton, "Architecture and Algorithm for Synthesizable Embedded Programmable Logic Cores,"Proceedings of FPGA, 2003, pp 3-11. Jonathan Rose, Stephen Brown, "Flexibility of Interconnection Structures for Field-Programmable Gate Arrays,"IEEE Journal of Solid-State Circuits, Vol.26, pp 277-282, 1991. Chih-Chung Lin, "Performance Driven Clustering for Hierarchical FPGA Architecture,"Master Thesis of National Tsing Hua University, 2003. Jason Helge Anderson, Stephen Dean Brown, "Technology Mapping for Large Complex PLDs,"Proceedings of the 35th Annual Conference on Design automation conference, pp 698-703, 1998 V. Betz and J. Rose, "VPR: A New packing, placement and routing tool for FPGA research,"International Workshop on Field-Programmable Logic, 1997. Vaughn Betz, Jonathan Rose and Alexander Marquardt, "Architecture and CAD for Deep-Submicron FPGAs,"KAP, ISBN 0-7923-8460-1, 1999. Electronics Research Laboratory, "SIS: A System for Sequential Circuit Synthesis,"Memorandum No.UCB/ERL M92/41, UC Berkeley.id NH0925392061 sid 916315 cfn 0 / id NH0925392062 auc 黃光立 tic 在分散式系統中以位元運算為基礎之負載平衡演算法 adc 黃泰一 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 35 kwc 點對點 kwc 分散式系統 kwc 負載平衡 abc 在高效能的分散式系統中, 經常藉由複製常被存取的檔案以減少擁有這些檔案的節點的工作量. 傳統複製檔案的演算法大多依靠分析 client 存取行為的記錄檔來決定要將檔案複製於那些節點內. 在這篇論文中, 我們提出了 LessLog, 一個不需要分析 client 記錄檔的演算法, 是為了結構式點對點分散式系統 (structured peer-to-peer system) 所設計的. 在這個演算法中, 我們利用 binomial tree, 首先建構出一顆唯一的 virtual replication tree. rf [1 ] AllPeers. http://www.allpeers.com/. [2 ] Gnutella. http://www.gnutella.com/. [3 ] KaZaA. http://www.kazaa.com/us/index.htm. [4 ] Napster. http://www.napster.com/. [5 ] SETI@Home. http://setiathome.ssl.berkeley.edu/. [6 ] Y. Chen, R. H. Katz, and J. D. Kubiatowicz. SCAN: A Dynamic, Scalable, and E±cient Content Distribution Network. In International Conference on Pervasive Computing (Pervasive 2002), pages 282-296, August 2002. [7 ] Jerry C.Y. Chou, Tai Yi Huang, and Kuang Li Huang. SCALLOP: A Scalable and Load-balanced Peer-to-Peer Lookup Protocol for High-performance Distributed Systems. In Proceedings of the 4th IEEE/ACM International Symposium on Cluster Computing and the Grid, April 2004. [8 ] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A Distributed Anonymous Information Storage and Retrieval System. Lecture Notes in Computer Science, 2009:46+, 2001. [9 ] P. Druschel and A. Rowstron. PAST: A Large-scale, Persistent Peer-to-Peer Storage Utility. The 8th Workshop on Hot Topics in Operating Systems, May 2001. [10 ] A. Fiat and J. Saia. Censorship Resistant Peer-to-Peer Content Addressable Networks. In Proceedings of Symposium on Discrete Algorithms, 2002. [11 ] C. Gkantsidis, M. Mihail, and A. Saberi. Random Walks in Peer-to-Peer Networks. In Infocom, March 2004. [12 ] J. Kangasharju, J. Roberts, and K. W. Ross. Object Replication Strategies in Content Distribution Networks. In Proceedings of the 6th International Web Caching Workshop and Content Delivery Workshop, pages 376-383, June 2001. [13 ] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. OceanStore: An Architecture for Global-scale Persistent Storage. In Proceedings of ACM Architectural Support for Programming Languages and Operating Systems, pages 190-201, November 2000. [14 ] A. Kumar, S. Merugu, J. Xu, and X. Yu. Ulysses: A Robust, Low-Dimeter, Low-Latency Peer-to-Peer Network. In Proceedings of the 11th IEEE International Conference on Network Protocols, pages 258-267, November 2003. [15 ] G. Kwon and K. D. Ryu. An E±cient Peer{to{Peer File Sharing Exploiting Hierarchy and Asymmetry. In Proceedings of the 2003 Symposium on Applications and the Internet, pages 226-233, January 2003. [16 ] J. Li, J. Jannotti, D. De Couto, D. Karger, and R. Morris. A Scalable Location Service for Geographic Ad-hoc Routing. In Proceedings of the 6th ACM International Conference on Mobile Computing and Networking, pages 120u-130, August 2000. [17 ] D. Loguinov, A. Kumar, V. Rai, and S. Ganesh. Graph-theoretic Analysis of Structured Peer-to-Peer Systems: Routing Distances and Fault Resilience. In Proceedings of ACM SIGCOMM, August 2003. [18 ] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and Replication in Unstructured Peer-to-Peer Networks. In Proceedings of the 16th International Conference on Supercomputing, pages 84-95, June 2002. [19 ] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A Scalable and Dynamic Emulation of the Butterfly. In Proceedings of the 21nd Annual ACM Symposium on Principles of Distributed Computing, pages 183-192, July 2002. [20 ] W. S. Ng, B. C. Ooi, K. L. Tan, and A. Zhou. PeerDB { a Peer-to-Peer Based System for Distributed Data Sharing. In Proceedings of the 19th International Conference on Data Engineering, pages 633-644, May 2003. [21 ] G. On, J. Schmitt, and R. Steinmetz. The E®ectiveness of Realistic Replication Strategies on Quality of Availability for Peer-to-Peer Systems. In Proceedings of the Third International Conference on Peer-to-Peer Computing, pages 57-65, September 2003. [22 ] C. Greg Plaxton, R. Rajaraman, and A. W. Richa. Accessing Nearby Copies of Replicated Objects in a Distributed Environment. In ACM Symposium on Parallel Algorithms and Architectures, pages 311-320, June 1997. [23 ] K. Ranganathan, A. Iamnitchi, and I. Foster. Improving Data Availability through Dynamic Model-Driven Replication in Large Peer-to-Peer Communities. In Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid, pages 376-381, May 2002. [24 ] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content Addressable Network. In Proceedings of ACM SIGCOMM, pages 161-172, August 2001. [25 ] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location and Routing for Large-scale Peer-to-Peer Systems. Lecture Notes in Computer Science, pages 329-340, 2001. [26 ] A. Rowstron and P. Druschel. Storage management and Caching in PAST, a Large-scale, Persistent Peer-to-Peer Storage Utility. In Proceedings of the 18th ACM Symposium on Operating Systems Principles, pages 188{201, October 2001. [27 ] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications. In Proceedings of ACM SIGCOMM, pages 149-160, August 2001. [28 ] M Theimer and M.B Jones. Overlook: Scalable Name Service on an Overlay Network. In Proceedings of the 22nd International Conference on Distributed Computing Systems, pages 52-61, July 2002. [29 ] T. Wauters, J. Coppens, T. Lambrecht, B. Dhoedt, and P. Demeester. Distributed Replica Placement Algorithms for Peer-to-Peer Content Distribution Networks. In Proceedings of the 29th EUROMICRO Conference "New Waves in System Architecture", pages 181-188, September 2003. [30 ] Z. Xu and Y. Hu. SBARC: A Supernode Based Peer-to-Peer File Sharing System. In Proceedings of the Eighth IEEE International Symposium on Computers and Communication, pages 1053-1058, June 2003. [31 ] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz. Tapestry: A Global-scale Overlay for Rapid Service Deployment. In IEEE Journal on Selected Areas in Communications, pages 41-53, January 2004. [32 ] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Kubiatowicz. Bayeux: An Architecture for Scalable and Fault-tolerant Wide-area Data Dissemination. In Proceedings of NOSSDAV, pages 11-20, June 2001.id NH0925392062 sid 914373 cfn 0 / id NH0925392063 auc 鄭建明 tic 多媒體訊息中心之設計與實作 adc 石維寬 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 37 kwc 多媒體訊息 kwc 多媒體訊息中心 abc 隨著無線通訊技術的進步與網際網路的蓬勃發展,E-Mail與SMS是已分別被廣泛地運用在有線與無線網路上的訊息服務。雖然SMS是第二代行動通訊系統中最受歡迎的服務但簡訊內容受限,而內容豐富的E-Mail則並沒有善用無線網路的行動優勢,兩者皆不足以滿足當前及未來對無線訊息的需求。 rf [1 ] Open Mobile Alliance (OMA) Web site, URL: http://www.openmobilealliance.org/index.html [2 ] The 3rd Generation Partnership Project (3GPP) Web site, URL: http://www.3gpp.org/ [3 ] “MMS多媒體簡訊服務可望成為電信業另一波營收主力”, 網際網路資訊情報中心, Mar 27, 2003. URL: http://www.find.org.tw/trend_disp.asp?trend_id=1228 [4 ] ETSI GSM 3.40, “Digital Cellular Telecommunications System (Phase 2+); Technical Realisation of the Short Message Service Point-to-Point, vol. 4.13.0, May 1996. [5 ] ETSI GSM 3.41, “Digital Cellular Telecommunication System (Phase 2); Technical Realisation of Short Message Service Cell Broadcast (SMSCB)”, vol. 5.2.0, May 1996. [6 ] Webopedia: Online Computer Dictionary for Computer and Internet Terms and Definitions, http://www.webopedia.com/ [7 ] W3C Recommendation 15-June-1998: “Synchronized Multimedia Integration Language (SMIL) 1.0 Specification”, URL: http://www.w3.org/TR/REC-smil/ [8 ] IETF RFC 2821 (2001): “Simple Mail Transfer Protocol (SMTP)”, URL: http://www.ietf.org/rfc/rfc0821.txt [9 ] IETF RFC 1939 (1996): ”Post Office Protocol - Version 3 (POP3)”, URL: http://www.ietf.org/rfc/rfc1939.txt [10 ] IETF RFC 2060 (1996): “Internet Message Access Protocol (IMAP)”, URL: http://www.ietf.org/rfc/rfc2060.txt [11 ] IETF RFC1730 (1994): “Internet Message Access Protocol - Version 4 (IMAP4)”, URL: http://www.ietf.org/rfc/rfc1730.txt [12 ] MSN® Messenger躍居台灣用戶最多的即時傳訊服務, April 2002, URL: http://www.microsoft.com/taiwan/press/2002/0425.htm [13 ] WAP 205, “Multimedia Messaging Service Architecture Overview Specification”, version 25-April-2001. [14 ] WAP 206, “Multimedia Messaging Service Client Transactions Specification”, version 15-Jan-2002. [15 ] WAP 209, “Multimedia Messaging Service Encapsulation Protocol”, version 05-Jan-2002. [16 ] OMA, “Multimedia Messaging Service Architecture Overview”, Version 1.2, OMA-MMS-ARCH-v1_2, 20-September-2003. [17 ] OMA , “Multimedia Messaging Service, Client Transactions, Version 1.2”, OMA-WAP-MMS-CTRv1_2, 22-November-2002. [18 ] OMA, “Multimedia Messaging Service, Encapsulation Protocol, Version 1.2”, OMA-WAP-MMSENC-v1_2, 12-Jan-2003. [19 ] 3GPP TS 22.140: “Service aspects; Stage 1; Multimedia Messaging Service”, release 6, version 6.5.0, 2004-03. [20 ] 3GPP TS 23.140: “Multimedia Messaging Service (MMS); Functional description; Stage 2”, release 6, version 6.5.0, 2004-03. [21 ] WAP Forum: “Wireless Application Environment Specification, Version 1.2”, WAP-WAESpec-19991104, . URL: http://www.wapforum.org/. [22 ] 3GPP TS 23.057: “Mobile Execution Environment (MExE); Functional description; Stage 2”. [23 ] W3C Note 08 May 2000 “Simple Object Access Protocol (SOAP) 1.1”, URL: http://www.w3.org/TR/SOAP [24 ] W3C Note 11 December 2000 “SOAP Messages with Attachments”, URL: http://www.w3.org/TR/SOAP-attachments [25 ] 3GPP TS 32.240: “Charging Management; Charging Architecture and Principles”. [26 ] 3GPP TS 32.270: “Charging Management; Multimedia Messaging Service (MMS) charging”. [27 ] OMA, “Wireless Application Protocol, Wireless Session Protocol Specification”, WAP-230-WSP-20010705-a , URL: http://www.openmobilealliance.org [28 ] OMA, “Push Access Protocol Specification”, WAP-247-PAP-20010429-a, URL:http://www.openmobilealliance.org [29 ] Nokia, “How to Create MMS Services”. [30 ] Nokia, “Getting Started with Nokia MMS Tools”. [31 ] Nokia, “MMS Java Library version 1.1”, March 4, 2002. [32 ] Jabber Web site, URL: http://www.jabber.org/ [33 ] Extensible Markup Language (XML) Web site, URL: http://www.w3.org/XML/ [34 ] Nokia, “MMSC EAIF Emulator – User’s Guide version 1.0”, March 4, 2002. [35 ] Nokia, “Series 60 SDK 2.0 for Symbian OS”.id NH0925392063 sid 916318 cfn 0 / id NH0925392064 auc 周嘉政 tic InfiniBand網路中Fat-Tree拓樸上的多點傳播機制 adc 鍾葉青 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 26 kwc 多點傳播,單點傳播,InfiniBand,fat-tree,聯集方法 abc 多點傳播在平行的應用程式中是常用的運算。多點傳播運算的效能大大地影響著應用程式以及通訊運算。在此論文中,我們利用了InfiniBand架構所提供的硬體多點傳播,在m-port n-tree 的InfiniBand 的網路上提出了多點傳播的機制。我們所提出機制的基本觀念是找出介於來源結點與在多點傳播群組結點中,所經過交換器的輸出埠聯集集合。基於聯集集合和多重LID訊息繞徑機制,我們可以建立出多點傳播群組所需用到的封包傳遞對映表。我們將提出的機制實作在m-port n-tree 的InfiniBand網路模擬器上。並且模擬了幾個一對多、多對多的多點傳播實例。在所有的模擬實例結果中,顯示出多點傳播機制的效能優於單點傳播機制。 tc Chapter 1 Introduction………………………………………………………………1 Chapter 2 Preliminaries……………………………………………………………4 2. 1 Fat-Tree Topology…………….……………………………………………..4 2. 2 InfiniBand Architecture (IBA)……………………. ………………………. 6 2. 3 The m-Port n-Tree InfiniBand Networks……………………………………9 Chapter 3 Multicast in Fat-Tree-Based InfiniBand Network……………………12 Chapter 4 Performance Evaluation………………………………………………17 Chapter 5 Conclusions and Future Work…………………………………………24 Reference…………………………………………………………………………….25rf References [1 ] C. -M. Chiang and L. M. Ni, “Deadlock-free multi-head wormhole routing,” Proceedings of the First High Performance Computing-Asia, 1995. [2 ] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks - An Engineering Approach, IEEE CS Press, 1997. [3 ] Kai Hwang, Advanced Computer Architecture – Parallelism, Scalability, Programmability, McGraw-Hill, 1993. [4 ] InfiniBand™ Trade Association, InfiniBand™ Architecture Specification Volume 1, Release 1. 1, November 2002. [5 ] S. Kumar and L. V. Kale, “Scaling Collective Multicast on Fat-Tree Networks,” To appear in International Conference on Parallel and Distributed Systems, 2004. [6 ] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann Publishers, San Mateo, CA, USA, 1992. [7 ] C. E. Leiserson, “Fat-Trees: Universal Networks for Hardware-Efficient Supercomputing,” IEEE Transactions on Computers, vol. 34, no. 10, October 1985, pp. 892-901. [8 ] X. Y. Lin, Y. C. Chung, and T. Y. Huang, “A Multiple LID Routing Scheme for Fat-Tree-Based InfiniBand Networks,” Proceedings of IEEE International Parallel and Distributed Proceeding Symposiums (CD-ROM), Aril 2004. [9 ] X. Lin, P. K. McKinley, and L. M. Ni, “Performance evaluation of multicast wormhole routing in 2D-mesh multicomputers,” Proceedings of the 1991 International Conference on Parallel Proceeding, vol. I, pp. 435-442, August 1991. [10 ] J. Liu, A. R. Mamidala, and D. K. Panda, “Fast and Scalable MPI-Level Broadcast using InfiniBand’s Hardware Multicast Support,” Proceedings of IEEE International Parallel and Distributed Proceeding Symposiums (CD-ROM), Aril 2004. [11 ] R. J. Littlefield, “Charaterizing and tuning communications performance for real applications,” Proceedings of the First Intel DELTA Applications Workshop, February 1992. [12 ] P. López, J. Flich, and J. Duato, “Deadlock-Free Routing in InfiniBand™ through Destination Renaming,” in Proceedings of the International Conference on Parallel Processing, ICPP '01, Sept. 2001, pp. 427-434. [13 ] F. Petrini and M. Vanneschi, “k-ary n-trees: High Performance Networks for Massively Parallel Architectures,” in Proceedings of the 11th International Parallel Processing Symposium, IPPS’97, April 1997, pp. 87-93. [14 ] J. C. Sancho, A. Robles, and J. Duato, “Effective Strategy to Compute Forwarding Tables for InfiniBand Networks,” in Proceedings of the International Conference on Parallel Processing, ICPP '01, Sept. 2001, pp. 48-57. [15 ] J. C. Sancho, A. Robles, J. Flich, P. López, and J. Duato, “Effective Methodology for Deadlock-Free Minimal Routing in InfiniBand Networks,” in Proceedings of the International Conference on Parallel Processing, ICPP '02, Aug. 2002, pp. 48-57. [16 ] R. Sivaram, D. K. Panda, and C. B. Stunkel, “Efficient broadcast and multicast on multistage interconnection networks using multiport encoding,” Proceedings of the 8th IEEE Symposium on Parallel and Distributed Proceeding, pp. 36-45, October 1996. [17 ] M. Valerio, L. Moser, and P. Melliar-Smith, “Recursively Scalable Fat-Trees as Interconnection Networks,” in Proceedings of the 13th IEEE International Phoenix Conference on Computers and Communications, April 1994, pp. 40-46.id NH0925392064 sid 914390 cfn 0 / id NH0925392065 auc 林長毅 tic 軟體分散式共享記憶體系統中適應的遷移家協定 adc 鍾葉青 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 24 kwc 分散式共享記憶體系統 kwc 基於家協定 kwc 家遷移 abc 在軟體分散式共享記憶體系統中,基於家(home-based)的協定是很好的設計,因為它的實作容易、很少的記憶體額外開銷以及很好的效能。基於家的協定可以分為兩類,固定的家協定以及遷移的家協定。固定的家協定產生的頁錯誤比遷移的家協定來的少,它適合有高程度頁分享性的應用程式。遷移的家協定可以節省頁差的製造和頁差的傳遞,它適合有低程度頁分享性和的應用程式和有大量頁差的應用程式。對於一個應用程式來說,在某一段時間之內,它適合固定的家協定,而在別段時間之內,它適合遷移的家協定。對於應用程式的效能而言,一個可以適應於固定家協定和遷移家協定的協定是很重要的。在這篇論文裡面,我們提出一個結合固定的家協定和遷移的家協定優點的適應的遷移家協定。在適應的遷移家協定中,頁的家結點可以根據應用程式的行為改變頁的狀態,再某個時段之內,頁的狀態可能是在固定的家協定之中,而在別的時段頁的狀態是在遷移的家協定之中。所以適應的遷移家協定可以適應固定的家協定和遷移的家協定。為了評估適應的遷移家協定,我們針對這三種協定測試了八個應用程式,實驗結果顯示固定的家協定對於有分享性的存取模式的應用程式表現很好,遷移的家協定則對有遷移性的存取模式的應用程式擁有很好的效能,而適應的遷移家協定介於這兩個協定之間,對於大部分的應用程式都表現都很好。 tc Chapter 1 Introduction…………………………………………………………...1 Chapter 2 Preliminaries………………………………………………………….4 Chapter 3 An Adaptive Migratory Home Protocol..........…………………….9 3.1 INIT ?_ FIX and INIT ?_ MIG………………………………………….....11 3.2 FIX ?_ MIG………………………………………………………………...13 3.3 MIG ?_ FIX………………………………………………………………...14 Chapter 4 Performance Evaluation……………………………………………...17 Chapter 5 Conclusions…..………………………………………………………..22 References......................................................................................................23rf [1 ] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W. Zwaenepoel, “TreadMarks: Shared Memory Computing on Networks of Workstations,” IEEE Computer, Volume 29, No. 2, pages 18-28, February 1996. [2 ] John B. Carter, John Bennett, Willy Zwaenepoel, “Implementation and Performance of Munin,” Proceedings of the 13th ACM Symposium on Operating Systems Principles (SOSP-13), pages 152-164, October 1991. [3 ] Benny Wang-Leung Cheung, Cho-Li Wang and Kai Hwang, “A Migrating-Home Protocol for Implementing Scope Consistency Model on a Cluster of Workstations,” Journal of Information Science and Engineering, 1999. [4 ] A. L. Cox, E. de Lara, Y. C. Hu, and W. Zwaenepoel, “A Performance Comparison of Homeless and Home-Based Lazy Release Consistency Protocols in Software Shared Memory,” Proceedings of the 5th IEEE Symposium on High-Performance Computer Architecture (HPCA-5), pages 279-283, January 1999. [5 ] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy, “Memory consistency and event ordering in scalable shared memory multiprocessors,” Proceedings of the 17th Annual International Symposium on Computer Architecture, pages 15-26, May 1990. [6 ] Weiwu Hu, Weisong Shi, Zhimin Tang, Zhiyu Zhou, “JIAJIA: An SVM System Based on a New Cache Coherence Protocol,” Proceedings of the High-Performance Computing and Networking Europe 1999 (HPCN'99), pages 463-472, April 1999. [7 ] Weiwu Hu, Weisong Shi and Zhimin Tang, “Home Migration in Home Based Software DSMs,” Proceedings of ACM 1st Workshop on Software DSM System, (in Conjunction with ICS'99), Greece, June, 1999. [8 ] Liviu Iftode, “Scope Consistency: A Bridge between Release Consistency and Entry Consistency,” Proceedings of the 8th ACM Annual Symposium on Parallel Algorithms and Architectures (SPAA'96), pages 277-287, June 1996. [9 ] Liviu Iftode, “Home-based Shared Virtual Memory,” Ph.D. Thesis, Princeton University, June 1998. [10 ] Pete Keleher, “The Relative Importance of Concurrent Writers and Weak Consistency Models,” Proceedings of the 16th Int'l Conference on Distributed Computing Systems (ICDCS-16), pages 91-98, May 1996. [11 ] Pete Keleher, Alan L. Cox, Willy Zwaenepoel, “Lazy Release Consistency for Software Distributed Shared Memory,” Proceedings of the 19th Annual Int'l Symposium on Computer Architecture (ISCA'92), pages 13-21, May 1992. [12 ] Peter J. Keleher, “Symmetry and Performance in Consistency Protocols,” International Conference on Supercomputing (ICS’99), June 1999. [13 ] Peter J. Keleher, “The Impact of Symmetry on Software Distributed Shared Memory,” Journal of Parallel and Distributed Computing (JPDC), 60(11): 1388-1419, 2000. [14 ] Leslie Lamport, “How to make a multiprocessor computer that correctly executes multiprocess programs,” IEEE Transactions on Computers, C-28(9):690-691, September1979. [15 ] Kai Li, “IVY: a shared virtual memory system for parallel computing,” Proceedings 1988 International Conference on Parallel Processing, volume 2, pages 94-101, August 1988. [16 ] Kai Li and Paul Hudak, “Memory Coherence in Shared Virtual Memory Systems,” ACM Transactions on Computer Systems, 7(4):321-359, November 1989. [17 ] L. R. Monnerat and R. Bianchini, “Efficiently Adapting to Sharing Patterns in Software DSMs,” Proceedings of the 4th IEEE International Symposium on High-Performance Computer Architecture (HPCA98), Feb 1998. [18 ] M.C. Ng and W.F. Wong, “Adaptive Schemes for Home-based DSM Systems,” Proceedings of the 1999 Workshop on Software Distributed Shared Memory, pages 13-20, June 1999. [19 ] Per Stenstrom, “A Survey of Cache Coherence Schemes for Multiprocessors,” IEEE Computer, 23(6):12--24, June 1990. [20 ] Yuanyuan Zhou, Liviu Iftode and Kai Li, “Performance Evaluation of Two Home-Based Lazy Release Consistency Protocols for Shared Virtual Memory Systems,” Proceedings of the 2nd Symposium on Operating Systems Design and Implementation, October 1996.id NH0925392065 sid 914362 cfn 0 / id NH0925392066 auc 薛博謙 tic 嵌入式系統上的語音辨識 adc 張智星 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 32 kwc 語音辨識 kwc 語音特徵擷取 kwc 加速 kwc 嵌入式系統 abc 基於近年來行動運算技術日漸發達且普及,愈來愈多的行動裝置如手機和PDA 等產品,將要或已經提供了語音辨識和語音指令等相關功能,這些功能最主要的目的,通常在於讓人們的生活更方便,但是若要將它們實作在嵌入式系統上時,卻會遇到如執行速度太慢等問題。 rf 1. A LOW-POWER, FIXED-POINT, FRONT-END FEATURE EXTRACTION FOR A DISTRIBUTED SPEECH RECOGNITION SYSTEM, Brian Delaney , Nikil Jayant, Mat Hans, Tajana Simunic, Andrea Acquaviva 2. CHIPDESIGN OF MFCC EXTRACTION FOR SPEECH RECOGNITION, Jia-Ching Wang, Jhing-Fa Wang*, Yu-Sheng Weng 3. REDUCING COMPUTATIONAL AND MEMORY COST FOR CELLULAR PHONE EMBEDDED SPEECH RECOGNITION SYSTEM, Christophe L´evy, Georges Linar`es, Pascal Nocera, Jean-Franc¸ois Bonastre 4. The FFT Demystified. V2.1, http://www.eptools.com/tn/T0001/INDEX.HTM 5. SPEAKER RECOGNITION WITH SMALL TRAINING REQUIREMENTS USING A COMBINATION OF VQ AND DHMM, Minh Do and Michael Wagner 6. FOURIER TRANSFORMS AND THE FAST FOURIER TRANSFORM (FFT) ALGORITHM, Paul Heckberk 7. ON DESIGN AND IMPLEMENTATION OF AN EMBEDDED AUTOMATIC SPEECH RECOGNITION SYSTEM, Sujay Phadke, Rhishikesh Limaye, Siddharth Vermam, Kavitha Subramanian. 8. A QUANTIZED FIXED-POINT FRONT-END FOR DISTRIBUTED SPEECH RECOGNITION, Laura Miyakawa, Lee Hetherington 9. FUNDAMENTALS OF SPEECH RECOGNITION, L. Rabiner, B.H.Juang. 10. WRITING EFFICIENT C FOR ARM, ARM Inc. 11. MATH TOOLKIT FOR REAL-TIME PROGRAMMING, Lawrence, Kansasid NH0925392066 sid 916310 cfn 0 / id NH0925392067 auc 林孟珊 tic 利用Blosum62計分矩陣為基礎的交叉參考投票機制, 識別蛋白質關鍵性的胺基酸候選者 adc 唐傳義 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 32 kwc 多條序列比對 kwc 交叉參考投票 kwc Blosum62計分矩陣 abc 在人類基因定序計劃完成之後,已定序的蛋白質序列數目也在逐漸地增加.。因此,在這後基因體時代,了解蛋白質的功能、結構、如何運作,似乎也更加地重要且迫切。目前有很多現有的工具被用來分析蛋白質的功能與結構,例如:X-ray晶體繞射、核磁共振等,藉由蛋白質的結構,我們可以推測它們的功能與運作;但是這是相當沒有效率的,因為X-ray晶體繞射、核磁共振是相當耗時且昂貴的. tc Contents Abstract..................................................I Chinese Abstract.........................................II Acknowledgement.........................................III Contents.................................................IV List of Figures...........................................V List of Tables...........................................VI Chapter 1 Introduction....................................1 Chapter 2 Algorithm.......................................3 Chapter 3 Mammal Imidase and Eosinophil Cationic Protein (ECP)....................................................11 3.1 Imidase Superfamily..........................11 3.2 RNase A Family...............................14 Chapter 4 Experimental Results and Discussion............17 4.1 Rat Imidase..................................17 4.2 Eosinophil Cationic Protein (ECP)............27 Chapter 5 Conclusion.....................................30 Reference................................................31rf [1 ] Tatusova, T. A. and Madden, T. L. (1999) BLAST 2 sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiology Letters, 174, 247-250. [2 ] Lee, Chihan, Lin, Y.T., Tang, C.Y. and Yang, Y.S., “Identify Amino Acid Candidates Critical for Function of Rat Imidase by Cross-Reference Voting in Imidase Super Family”, ACM Symposium on Applied Computing, Bioinformatics Track, (SAC 2003), pp. 127-134. [3 ] Murata, M., Richardson, J. S., and Sussman, J. L. (1985). Simultaneous comparison of three protein sequences. Proc. Natl. Acad. Sci. U. S. A. 82, 3073-3077. [4 ] Bernheim, F. and Bernheim, M. L. C. (1946) The hydrolysis of hydantoin by various tissues. J. Biol. Chem. 163, 683-685. [5 ] Eadie, G. S., Bernheim, F. and Bernheim, M. L. C. (1949) The partial purification and properties of animal and plant hydantoinase. J. Biol. Chem. 181, 449-458. [6 ] Yang, Y.-S., Ramaswamy, S., and Jakoby, W.B. (1993) Rat liver imidase. J. Biol. Chem., 268, 10870-10875. [7 ] Syldatk, C., May, O., Altenbuchner, J., Mattes, R. and Siemann, M. (1999) Microbial hydantoinases-industrial enzymes from the origin of life? Appl. Microb. Biotechnol. 51, 293-309. [8 ] Huang, C. -Y., and Yang, Y. -S. (2002) The role of metal on imide hydrolysis: metal content and pH profiles of metal ion-replaced mammalian imidase. Biochem. Biophy. Res. Commun. 297, 1027-1032. [9 ] Goshima, Y., Nakamura, F., Strittmatter, P., and Strittmatter, S.M. (1995) Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature 376, 509-514. [10 ] Hamajima, N., Matsuda, K., Sakata, S., Tamaki, N., Sasaki, M., and Nonaka, Masaru (1996) A novel gene family defined by human dihydropyrimidinase and three related proteins with differential tissue distribution. Gene 180, 157-163. [11 ] Wang, L.-H., and Strittmatter, S.M. (1997) Brain CRMP forms heterotetramers similar to liver dihydropyrimidinase. J. Neurochem. 69, 2261-2269. [12 ] Holm, L. and Sander, C. (1997) An evolutionary treasure: unification of a broad set of amidohydrolases related to urease. Proteins 28, 72-82. [13 ] Copley, R. R. and Bork, P. (2000) Homology among (β/α)8 barrels: implications for the evolution of metabolic pathway. J. Mol. Biol. 303, 627-640. [14 ] Zhang, J., Dyer, K. D., and Rosenberg, H. F. (2002) RNase 8, a novel RNase A superfamily ribonuclease expressed uniquely in placenta. Nucleic Acids Res. 30, 1169-1175. [15 ] Motojima, S., Frigas, E., Loegering, D. A., and Gleich, G. J. (1989) Toxicity of eosinophil cationic proteins for guinea pig tracheal epithelium in vitro. Am. ReV. Respir. Dis. 139, 801-805. [16 ] Tai, P. C., Ackerman, S. J., Spry, C. J., Dunnette, S., Olsen, E. G., and Gleich, G. J. (1987) Deposits of eosinophil granule proteins in cardiac tissues of patients with eosinophilic endomyocardial disease. Lancet 1, 643-647. [17 ] Fredens, K., Dahl, R., and Venge, P. (1982) The Gordon phenomenon induced by the eosinophil cationic protein and eosinophil protein X. J. Allergy Clin. Immunol. 70, 361-366. [18 ] Domachowske, J. B., Dyer, K. D., Adams, A. G., Leto, T. L., and Rosenberg, H. F. (1998) Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucleic Acids. Res. 26, 3358-3363. [19 ] Kim, G. J. and Kim H. S. (1998) C-Terminal regions of D-hydantoinases arenonessential for catalysis, but affect the oligomeric structure. Biochem. Biophy. Res. Comm. 243, 96-100. [20 ] Williams, N. K., Manthey, M. K., Hambley, T.W., O’Donoghue, S. I., Keegan, M., Chapman, B. E., and Christopherson, R. I. (1995) Catalysis by Hamster Dihydroorotase: Zinc Binding, Site-Directed Mutagenesis, and Interaction with Inhibitors”, Biochemistry. 34,11344-11352. [21 ] Thoden, J. B., George N., Phillips, Jr., Neal, T. M., Raushel, F. M., and Holden, H. M., (2001) Molecular Structure of Dihydroorotase: A Paradigm for Catalysis through the Use of Binuclear Metal Center”, Biochemitry. 40(24), 6989-6997 [22 ] Abendroth, J. Niefind, K. and Schomburg, D. (2002) X-ray structure of a dihydropyrimidinase from Thermus sp. at 1.3 Å resolution. J. Mol. Biol., 320, 143-156. [23 ] Huang, C. -Y., Chiang, S. -K., Yang, Y. –S., and Sun, Y. –J. (2003) Crystallization and Preliminary X-ray diffraction analysis of thermophilic imidase from pig liver. Acta. Cryst., D59, 1-3. [24 ] Wu is a PhD student who concentrates on human RNase proteins, in college of life sciences in NTHU.id NH0925392067 sid 914318 cfn 0 / id NH0925392068 auc 許德勇 tic 感測網路中解決覆蓋問題之叢集演算法 adc 李端興 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 19 kwc 無線感測網路 kwc 電源 abc 在無線感測網路(wireless sensor network)有許多的電源有限的sensor,如何讓這些sensor的工作時數增長,進而延長整個系統的可靠度,是重要的課題。在本篇論文中,我們提出了一個sensor coverage演算法。這演算法以減少計算次數、節省電源為主要目標,並且能夠達到high coverage目的。與其他演算法最大的不同在於:本演算法能夠在第一次的演算就安排好各個sensor的排程,相較之下簡易許多;省去在每個隔一段時間便必須重新演算一次所造成的電源花費。並且提出一種簡化的方式,將一個點所考慮的鄰居所在位置歸類成蜂巢式般的六個方位,而不需考慮細微的鄰居與鄰居間的相對角度計算。並藉由參數的設定,使得本演算法能夠具有一些不同的性質。 tc 第一章 簡介…………………………………………………………1 第二章 相關論文……………………………………………………3 第三章 演算法介紹…………………………………………………5 第四章 效能評估及模擬…………………………………………15 第五章 結論………………………………………………………18 參考資料 ……………………………………………………………19rf [1 ] S. Slijepcevic and M. Potkonjak, “Power Efficient Organization of Wireless Sensor Networks,” Proc. of IEEE International Conference on Communications, Vol 2, pp 472-476, Helsinki, Finland, June 2001. [2 ] D. Tian and N. D. Georganas, “A Coverage-Preserving Node Scheduling Scheme for Large Wireless Sensor Networks,” Proc. of the 1st ACM Workshop on Wireless Sensor Networks and Applications, 2002. [3 ] F. Ye, G. Zhong, S. Lu, and L. Zhang, “Energy Efficient Robust Sensing Coverage in LargeSensor Networks,” Technical Report UCLA, 2002. [4 ] H. Zhang and J. C. Hou, “Maintaining Sensing Coverage and Connectivity in Large Sensor Networks,” Technical Report UIUC, UIUCDCS-R-2003-2351, June 2003.id NH0925392068 sid 916319 cfn 0 / id NH0925392069 auc 楊敦致 tic WCDMA中TFC挑選及MAC排程方法的實作 adc 李端興 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 38 kwc 服務品質 kwc 傳輸格式組合挑選 kwc Linux網路系統 abc 隨著行動無線網路的使用者對於多媒體服務的需求日益增加,第三代行動無線網路的一個重要目標便是對於各種不同品質要求的服務提供有效的資料傳輸。在UMTS的無線存取網路中,藉由同時建立多個服務載體來調和這些混合類型服務的需求,如何對這些載體做適當的傳輸速率控制成為一重要的議題。第三代無線介面在較低的協定層,例如實體層,媒體存取控制層或是無線鏈結控制層提供了一些傳輸速率調整的作法。此論文中實作了在媒體存取控制層中的傳輸格式組合挑選及排程方法的一種:負載量測優先權方法。藉由考慮邏輯通道的優先權及緩衝區佔有率來決定傳輸格式組合及對傳輸區塊做排程的工作。此方法可快速的分配網路資源並保持公平性。 tc 一、簡介…………………………………………………………………1 二、在媒體存取控制層中的傳輸格式組合挑選………………………3 三、排程方法:負載量測優先權方法…………………………………9 四、Linux網路下之模擬無線控制層…………………………………14 五、實作描述……………………………………………………………22 六、測試與結果…………………………………………………………34 七、結論與未來工作……………………………………………………37 參考文獻…………………………………………………………………38rf [1 ] Medium Access Control (MAC) protocol specification V5.6.0 3GPP, Sep. 2003 TS 25.321 [2 ] Radio Interface Protocol Architecture V5.2.0 3GPP, Sep. 2002 TS 25.301 [3 ] Radio Link Control (RLC) protocol specification V5.6.0 3GPP, Sep. 2003 TS 25.322 [4 ] Radio Resource Control (RRC) protocol specification V5.6.0 3GPP, Sep. 2003 TS 25.331 [5 ] Services provided by the physical layer V5.6.0 3GPP, Sep.2003 TS 25.302 [6 ] Harri Holma and Antti Toskala, WCDMA for UMTS-Radio Access for Third Generation Mobile Communications. John Wiley & Sons,2000 [7 ] Common test environments for User Equipment (UE) conformance testing V4.8.0 3GPP Sep. 2003 TS 34.108 [8 ] Duan-Shin Lee, Chiung-Sui Liu, TFC Selection and MAC Scheduling in WCDMA. July 2002id NH0925392069 sid 914366 cfn 0 / id NH0925392070 auc 江振龍 tic 混合式FPGA架構之佈局及繞線演算法 adc 黃婷婷 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 39 kwc 佈局 kwc 繞線 kwc 可程式規劃邏輯陣列 abc 在[5 tc 第一章 簡介 1 第二章 相關研究 7 第三章 新混合式FPGA架構 11 第一節 架構描述...................................11 第二節 架構參數化.................................16 第三節 設計流程...................................19 第四章 設計電路在層級式連接架構的佈局及繞線演算 21 第一節 圖形化層級式連接架構.......................21 第二節 接線的繞線優先權...........................24 第三節 佈局及繞線演算法...........................26 第五章 使用VPR實現設計電路在對稱式連接架構的佈局及繞線 30 第六章 實驗結果 32 第七章 總結 36 參考文獻 37rf [1 ] Taraneh Taghavi, Soheil Ghiasi, Abhishek Ranjan, Salil Raje, and Majid Sarrafzadeh, “Innovate or Perish: FPGA Physical Design,” International Symposium on Physical Design, pp. 148-155, 2004. [2 ] Xilinx Inc., “The Programmable Logic Data Book”, 1994. [3 ] Yen-Tai Lai and Ping-Tsung Wang, “Hierarchical Interconnection Structures for Field Programmable Gate Arrays,” IEEE Transactions on Very Large Scale Integration Systems, Vol. 5, pp. 186-196, June 1997. [4 ] P. T. Wang, K. N. Chen, and Y. T. Lai, “A High Performance FPGA with Hierarchical Interconnection Structure,” International Symposium on Circuits and Systems, pp. 4.239-4.242, 1994. [5 ] Chung-Yu Liu, “Architecture Evaluation of Hierarchical and Mixed FPGA Structure,” Thesis of National Tsing Hua University, 2004. [6 ] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA Research,” International Workshop on Field-Programmable Logic and Application, pp. 213-222, 1997. [7 ] Alexander, Marquardt, Vaughn Betz and Jonathan Rose, “Timing-Driven Placement for FPGAs,” International Symposium on Field Programmable Gate Arrays, pp.203-213, 2000. [8 ] Tim(Tianming) Kong, “A Novel Net Weighting Algorithm for Timing-Driven Placement,” International Conference on Computer Aided Design, pp. 172-179, 2002. [9 ] Jing-Jou Tang and Ping-Tsung Wang, ”A Efficient Placement and Global Routing Algorithm for Hierarchical FPGAs,” International Symposium on Circuits and Systems, pp. 4.729-4.732, 2000. [10 ] Michael Hutton, Khosrow Adibsamii and Andrew Leaver, ”Timing-Driven Placement for Hierarchical Programmable Logic Devices,” International Symposium on Field Programmable Gate Arrays, pp. 3-11, 2001. [11 ] S. Brown, J. Rose, and Z. G. Vranesic, “A Detailed Router for Field-programmable Gate Arrays,” IEEE Transactions on Computer-Aided Design of Intergrated Circuits and Systems, Vol. 11, No. 5, pp. 620-628, May 1992. [12 ] F. D. Lewis andW. C.-C Pong, “A Negative Reinforcement Method for PGA Routing,” Annual ACM IEEE Design Automation Conference, pp. 601-605, 1993. [13 ] G. G. Lemieux and S. D. Brown, “A Detailed Routing Algorithm for Allocating Wire Segments in Field-programmable Gate Arrays,” ACM Physical Design Workshop, pp. 215-226, 1993. [14 ] M. J. Alexander and G. Robins, “New Performance-driven FPGA Routing Algorithms,” Annual ACM IEEE Design Automation Conference, pp. 562-567, 1995. [15 ] Y. Sun and C. L. Liu, “Routing in a New 2-dimensional FPGA/FPIC Routing Architecture,” Annual ACM IEEE Design Automation Conference, pp. 171-176, 1994. [16 ] Y. Sun, T.-C.Wang, C. K.Wang, and C. L. Liu, “Routing for Symmetric FPGAs and FPICs,” International Conference on Computer Aided Design, pp. 486-490, 1993. [17 ] Wei-Lun Hung, “Placement and Routing for Hierarchical FPGA,” Thesis of National Tsing Hua University, 2002.id NH0925392070 sid 916313 cfn 0 / id NH0925392071 auc 范直賓 tic 一個以進階微控制器匯流排架構為基礎的系統單晶片矽智財整合方法 adc 林永隆 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 41 kwc 整合 kwc 平台 kwc 進階微控制器匯流排架構 abc 系統單晶片設計(System-on-Chip)有賴於在系統平台上整合可重複使用且已經完成設計及驗證流程的硬體加速器,即所稱的矽智財,來減少開發產品所需的時間,我們在這篇論文中提出了一個分層的平台整合方法,並選定目前最普遍被使用的進階微控制器匯流排架構(AMBA)來做為我們介面資料傳輸的標準,我們使用這個方法來將硬體加速器整合到一個以進階微控制器匯流排架構為基礎的系統單晶片上,工程師可藉由此方法整合硬體加速器到系統單晶片的平台上,而並不需要明白進階微控制器匯流排架構的規格,這種整合方法和以往只在平台上另行加入一個直接記憶體存取(DMA)模組來負責資料傳輸的方法相比,可以降低半數在匯流排上的資料傳輸,所以可以將資料傳輸的時間減半,如此一來可以得到更好的結果,我們並使用了JPEG解碼器整合離散餘弦函數轉換(Discrete Cosine Transform, DCT)硬體加速器和JPEG2000編碼器整合離散小波轉換(Discrete Wavelet Transform, DWT)硬體加速器及嵌入式區塊最佳化切割編碼(Embedded Block Coding with Optimized Truncation, EBCOT)硬體加速器來驗證所提出的方法。 tc ABSTRACT CONTENTS LIST OF FIGURES LIST OF TABLES CHAPTER 1.....1 INTRODUCTION 1.1 PLATFORM-BASED DESIGN AND IP REUSE 1.2 INTEGRATION OVERVIEW 1.3 PLATFORM AND DESIGN FLOW OVERVIEW 1.4 THESIS ORGANIZATION CHAPTER 2.....7 PREVIOUS WORK 2.1 INTEGRATION METHODOLOGIES 2.2 IP INTEGRATION ARCHITECTURE CHAPTER 3.....9 AMBA SPECIFICATION 3.1 INTRODUCTION OF AMBA 3.2 AMBA AHB 3.2.1 AMBA AHB Signal List 3.2.2 AHB Transfer Type 3.3 AHB DEVICE IMPLEMENTATION 3.3.1 AHB Slave Interface and FSM 3.3.2 AHB Master Interface and FSM 3.3.3 AHB DMA and FSM CHAPTER 4.....22 PROPOSED INTEGRATION METHODOLOGY 4.1 APPLICATION LAYER 4.2 FUNCTION LAYER 4.3 IP ANALYSIS LAYER 4.3.1 IP Execution Requirements 4.3.2 IP Execution Cycle Estimation 4.3.3 IP Communicating Method 4.4 IMPLEMENTATION LAYER 4.4.1 Reusable Slave Interface 4.4.2 Reusable Master Interface 4.4.3 Software Driver 4.4.4 Control Logic 4.4.5 Modification for Platform Constraints 4.5 INTEGRATION LAYER CHAPTER 5.....33 EXPERIMENTAL RESULT 5.1 INTEGRATION FOR DWT AND EBCOT TIER-1 IPS 5.2 SYNTHESIS REPORT 5.3 JPEG DECODER REPORT 5.4 DWT AND EBCOT TIER-1 REPORT CHAPTER 6.....37 CONCLUSION BIBLIOGRAPHY.....38rf [1 ]David Flynn, “AMBA: Enabling Reusable On-Chip Designs”, IEEE Micro, 1997, pp. 20-27. [2 ]Erno Salminen, Vesa lahtinen, Kimmo Kuusilinna, Timo Hamalainen, “Overview of Bus-based System On Chip Interconnections,” IEEE International Symposium on Circuits and System, vol. 2, pp. 372-375, May 2002 [3 ]G. V. Micheli, R.K. Gupta, “Hardware/Software Co-Design” IEEE Proceedings, vol. 85, NO. 3, March 1997 [4 ]Han Qi, Zheng Jiang, Jia Wei, “IP Reusable Design Methodology,” IEEE Proceedings, the 4th International Conference on ASIC, pp. 756-759, Oct. 2001 [5 ]H. Kalte, D. Langen, E.Vonnahme, A.Brinkmann, U. Ruckert, “Dynamically Reconfigurable System-on-Progrmmable Chip,” IEEE Proceedings of 10th Euromicro WorkShop on Parallel, Distributed and Network-based Processing, pp. 235-242, January 2002 [6 ]Jer-Min Jou, Shiann-Rong Kuang, Kuang-Ming Wu, “A Hierarchical Interface Design Methodology and Models for SOC IP Integration,” IEEE International Symposium on Circuits and System, vol.2, pp. 360-363, May 2002 [7 ]Jose Carlos Palma, Aline Vieira de Mello, Leandro Moller, Fernando Moraes, Ney Calazans, “Core Communication Interface for FPGAs,” IEEE Proceedings, the 15th Symposium on Integrated Circuits and System Design, pp. 183-188, Sept. 2002 [8 ]Maalej, I, Gogniat, G, Abid, M, Philippe, “J.L.; Interface design approach for system on chip based on configuration,” in processing of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03. Volume: 5 , 25-28 May 2003 [9 ]Maik Boden, Jorg Schneider, Klaus Feske, Steffen Rulke, “Enhanced Ruesability for SoC-based HW/SW Co-Design,” IEEE Proceedings of the Euromicro Symposium on Digital System Design, 2002 [10 ]P. Coussy, A. Baganne, E. Martin, “Platform-Based Design for Digital Signal Processing System: A Case Study of MPEG-2 / JPEG2000 Encoder,” IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions, vol. 2, pp. 1361-1366, July 2002 [11 ]Po-Hao Chang, “Hardware software co-design and Implementation of Wavelet-based Video Compression System,” Department of Electrical Engineering National Cheng Kung University, June 2002 [12 ]Roman L. Lysecky, Frank Vahid*, Tony D. Givargis, “Experiment with the Peripheral Virtual Component Interface,” IEEE Proceedings, the 13th Internation Symposium on System Synthesis, pp. 221-224 Sept. 2000 [13 ]Shih-Chieh Chang, “Implementation of on-chip bus - AMBA”, Department of Computer Science National Tsing Hua University, June 2002 [14 ]W. Wolf, “A Decade of Hardware/Software Codesign,” IEEE Proceedings of computer, vol. 36, pp. 38-43, April 2003 [15 ]AMBA specification, refer to ARM Limited web page: http://www.arm.com [16 ]Virtual Components Interface Standard, refer to VSIA web page: http://www.vsi.org [17 ]ARM PrimeCell Single Master DMA Controller Technique Reference Manual: http://www.arm.com [18 ]Literature: Embedded Software Design, ALTERA Corporation, Available: http://www.arm.com [19 ]http://www.altera.com/literature/quartus2/lit-emb.jsp [20 ]Literature: Excalibur, ALTERA Corporation, Available: http://www.altera.com/literature/lit-exc.jsp [21 ]Literature: Quartus II Development Software, ALTERA Corporation, Available: http://www.altera.com/literature/lit-qts.jsp [22 ]Literature: SOPC Builder, ALTERA Corporation, Available: http://www.altera.com/literature/lit-sop.jsp [23 ]ALTERA Corporation, on-line literatures, http://www.altera.com/literature/lit-index.html [24 ]ModelSim SE user manual, Mentor Graphics Inc., Abailable: http://www.model.com/support/docs.asp?id=121 [25 ]ARM Inc., application notes, http://www.arm.com/documentation/board-and -firmware/index.htmlid NH0925392071 sid 916302 cfn 0 / id NH0925392072 auc 洪浩翔 tic 在無線隨意網路下建立及維持一具連結性之k-中繼點控制集 adc 蔡明哲 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 28 kwc 控制集 kwc 路由 kwc 無線隨意網路 kwc 連結性 abc 在一圖形中之一k-中繼點控制集為一節點之子集合,而此子集合外之點相隔此控制集其中一點至多k個中繼點。若一k-中繼點控制集中之任兩點間皆存在經過控制集內之路徑,則稱其具有連結性(connected)。在無線隨意網路中之節點可藉由在頻道內傳送訊信息,或透過網路之路由(routing)與其鄰近節點進行溝通。經由階層式的路由協定來建立並維護具有連結性之k-中繼點控制集,可節省傳輸功率及網路溝通成本。本文發現一屬於具有連結性之k-中繼點控制集之特性,並證明:若圖中所有點皆符合此特性,則k-中繼點控制集具有連結性。且藉由此特性,建立並維護一具有連結性之k-中繼點控制集僅需2個中繼點之資訊。模擬結果顯示,隨著k遞增,所建立具有連結性之k-中繼點控制集也穩定地縮小。 tc Abstract I Contents III List of Figures IV Chapter 1 Introduction 1 Chapter 2 Notations and Preliminaries 3 Chapter 3 The Proposed Method 9 3.1 Shrinking the dominating set 10 3.2 Extending the dominating set 11 3.3 Switching on 15 3.4 Switching off 16 Chapter 4 Simulation 22 Chapter 5 Conclusion 26 References 27 List of Figures Figure 1.Two dominating sets 4 Figure 2.An example of binary relation R 5 Figure 3.The measurement of paths 7 Figure 4.Algorithm CKDS 9 Figure 5.An example of Algorithm CKDS 10 Figure 6.Procedure Shrink_Set 11 Figure 7.An example of shrinking the dominating set 12 Figure 8.Procedure Extend_Set 12 Figure 9.Procedure Wake_Up 13 Figure 10.An example of extending the dominating set 15 Figure 11.Procedure Switch_On 16 Figure 12.An example of switching on 17 Figure 13.Procedure Switch_Off 17 Figure 14.An example of switching off 19 Figure 15.The size of the k-hop dominating set 23 Figure 16.The number of changed nodes in the k-hop dominating set 25rf [1 ] “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications,” IEEE Standard 802.11, 1997. [2 ] D. J. Baker and A. Ephremides, “The Architectural Organization of a Mobile Radio Network via a Distributed Algorithm,” IEEE Transactions on Communications, pp.1694—1701, 1981. [3 ] Benjie Chen, Kyle Jamieson, Hari Balakrishnan, and Robert Morris, “Span: An Energy-Efficient Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless Networks,” ACM Wireless Networks Journal, 2002. [4 ] C. C. Chiang and M. Gerla, “Routing and Multicast in Multihop, Mobile Wireless Networks,” Proceedings of IEEE International Conference on Universal Personal Communications, pp.28—33, 1997. [5 ] T. Imielinski and J. C. Navas, “GPS-based Addressing and Routing,” IETF RFC 2009, 1996. [6 ] D. Johnson and D. Maltz., “Dynamic Source Routing in Mobile Ad hoc Networks,” Mobile Computing, pp.153—181, 1996. [7 ] C. R. Lin and M. Gerla, “Adaptive Clustering for Mobile Wireless Networks,” IEEE Journal on Selected Areas in Communications, vol.15, no.7, pp.1265—1275, 1997. [8 ] M. Mauve, J. Widmer, and H. Hartenstein, “A Survey on Position-Based Routing in Mobile Ad Hoc Networks,” IEEE Network Magazine, pp.30—39, 2001. [9 ] C. Perkins, “Ad Hoc On Demand Distance Vector (AODV) Routing,” http://www.ietf.org/internet-drafts/draft-ietf-manet-aodv-02.txt. [10 ] C. Santivanez, R. Ramanathan, and I. Stavrakakis, “Making Link-State Routing Scale for Ad Hoc Networks,” The ACM Symposium on Mobile Ad Hoc Networking & Computing, pp.22—32, 2001. [11 ] B. Stefano, “Finding a Maximal Weighted Independent Set in Wireless Networks,” Telecommunication Systems, pp.155—168, 2001. [12 ] D. C. Su, S. F. Hwang, C. R. Dow, and Y. W. Wang, “An Efficient K-hop Clustering Routing Scheme for Ad hoc Wireless Networks,” pp. 139—146, Journal of the Internet Technology, 2002. [13 ] J. Wu and H. Li, “A Dominating-Set-Based Routing Scheme in Ad Hoc Wireless Networks,” Telecommunication Systems, pp. 13—36, 2001. [14 ] Fabian Garcia Nocetti, Julio Solano Gonzalez and Ivan Stojmenovic, “Connectivity Based k-Hop Clustering in Wireless Networks,” Telecommunication Systems, pp. 205—220, 2003. [15 ] T. Camp, J. Boleng, and V. Davies, “A Survey of Mobility Models for Ad Hoc Network Research,” Wireless Communication & Mobile Computing(WCMC): Special issue on Mobile Ad Hoc Networking: Research, Trends and Applications, pp. 483—502, 2002. [16 ] A.D. Amis, R. Prakash, T.H.P. Vuong, and D.T. Huynh, “Max-Min d-cluster Formation in Wireless Ad Hoc Networks,” Proceedings of IEEE INFOCOM, pp. 32—41, 2000. [17 ] http://www.webopedia.com/TERM/N/network_interface_card_NIC.htmlid NH0925392072 sid 914347 cfn 0 / id NH0925392073 auc 莊若純 tic 藉由雙層邊界機制於交易資料庫之快速查詢系統 adc 陳良弼 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 52 kwc 交易相似度查詢 kwc 邊界機制 kwc 交易分群 abc 交易庫中交易的相似度查詢一直是一個很重要的議題。大部分現存的方法都是先預估查詢和交易的最小距離值(distance lower bound),移除不可能為答案的交易再進一步找相似度夠高的交易。另ㄧ方面這些方法都只將這個問題考慮在靜態交易資料庫上,因此並不適用在動態交易資料庫中。因為動態交易資料庫中更新是很頻繁的,這些方法並不夠快速。 tc Abstract..................................................II Acknowledgement...........................................IV Contents...................................................V List of Figures...........................................VI List of Tables...........................................VII 1.Introduction.............................................1 2.Related Work.............................................7 2.1 Signature Table........................................7 2.2 SG-tree................................................9 2.2.1 Insertion, Deletion and Update .....................10 2.2.2 Query Processing....................................12 3.The First-Level Bounding Mechanism .....................15 3.1 Features and Properties of The Cluster................15 3.2 The First-Level Query Processing .....................17 3.3 The First-Level Transaction Clustering................19 4.The Second-Level Bounding Mechanism.....................23 4.1 The Difference-Value Pair for The Second-Level Transaction Clustering....................................23 4.2 The Second-Level Query Processing.....................26 5.Insertion, Deletion and The Maintenance of Data Update..31 5.1 The Maintenance of Data Update........................31 5.2 Insertion and Deletion................................33 6.Experimental Results....................................35 6.1 Pruning Effects.......................................35 6.2 Correlation among ??, The Number of Clusters and The Query Processing Time.....................................35 6.3 Correlation between The Node Size and The Query Processing Time of SG-tree................................37 6.4 Comparison and Analysis...............................38 7.Conclusion..............................................42 Reference.................................................43rf [1 ] Aggarwal C. C., J. L. Wolf and P. S. Yu, “A New Method for Similarity Indexing of Market Basket Data,” Proc. of ACM International Conference on Management of Data (SIGMOD), pages 407-418, 1999. [2 ] Gionis A., D. Gunopulos and N. Koudas, “Efficient and Tunable Similar Set Retrieval,” Proc. of ACM International Conference on Management of Data (SIGMOD), pages 247-258, 2001. [3 ] Gibson D., J. Kleinberg and P. Raghavan, “Clustering Categorical Data: An Approach based on Dynamical Systems,” The VLDB Journal Volume 8 Numbers 3-4, pages 222-236, February 2000. [4 ] Guha S., R. Rastogi, and K. Shim, “ROCK: A Robust Clustering Algorithm for Categorical Attributes,” Proc. of IEEE International Conference on Data Engineering (ICDE), pages 512-521, 1999. [5 ] Ganti V., J. Gehrke and R. Ramakrishnan, “CACTUS-Clustering Categorical Data Using Summaries,” Proc. of ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 73-83, 1999. [6 ] Han E.H., G. Karypis and V. Kumar, “Hypergraph Based Clustering in High-Dimensional Data Sets: A Summary of Results,” Bulletin of the Technical Committee on Data Engineering (TCDC), Vol. 21, No. 1, March 1998. [7 ] Hellerstein J.M. and Arbee A. Preffer, “The RD-Tree: An Index Structure for Sets,” University of Wisconsin Computer Science Technical Report 1252, November 1994. [8 ] Mamoulis N., David W. Cheung and W. Lian, “Similarity Search in Sets and Categorical Data Using the Signature Tree,” Proc. of IEEE International Conference on Data Engineering (ICDE), pages 73-83, 2003. [9 ] Nanopoulos A. and Y. Manolopoulos, “Efficient Similarity Search for Market Basket Data,” The VLDB Journal Volume 11 Number 2, pages 138-152, 2002. [10 ] Roussopoulos N., S. Kelley and F. Vincent, “Nearest Neighbor Queries,” Proc. of ACM International Conference on Management of Data (SIGMOD), pages 71-79, 1995. [11 ] Strehl A. and J. Ghosh, “A Scalable Approach to Balanced, High-dimensional Clustering of Market-baskets,” Proc. of International Conference on High Performance Computing (HiPC), volume 1970 of LNCS, pages 525-536, December 2000. [12 ] C. Ordonez, E. Omiecinski and N. Ezquerra, “A Fast Algorithm to Cluster High Dimensional Basket Data,” Proc. of IEEE International Conference on Data Mining (ICDM), pages 633-636, 2001. [13 ] Wojna A., “Center-Based Indexing for Nearest Neighbors Search,” Proc. of IEEE International Conference on Data Mining (ICDM), pages 681-684, 2003. [14 ] Wang K., C. Xu and B. Liu, “Clustering Transactions Using Large Items,” Proc. of International Conference on Information and Knowledge Management (CIKM), pages 483-490, 1999. [15 ] Y. Xiao and M.H. Dunham, “Interactive Clustering for Transaction Data,” Proc. of International Conference on Data Warehousing and Knowledge Discovery (DaWaK), pages 124-131, 2001. [16 ] Yun C.H., K.T. Chuang and M.S. Chen, “An Efficient Clustering Algorithm for Market Basket Data based on Small Large Ratios,” Proc. of International Computer Software and Applications Conference (CAMPSAC), pages 505-510, 2001. [17 ] Yun C.H., K.T. Chuang and M.S. Chen, “Self-Tuning Clustering: An Adaptive Clustering Method for Transaction Data,” Proc. of International Conference on Data Warehousing and Knowledge Discovery (DaWaK), pages 42-51, 2002. [18 ] Yun C.H., K.T. Chuang and M.S. Chen, “Using Category-Based Adherence to Cluster Market-Basket Data,” Proc. of IEEE International Conference on Data Mining (ICDM), pages 546-553, 2002. [19 ] Yang Y and B. Padmanabhan, “Segmenting Customer Transaction Using a Pattern-Based Clustering Approach,” Proc. of IEEE International Conference on Data Mining (ICDM), pages 441-448, 2003. [20 ] Yang Y. X. Guan and J. You, “CLOPE: A Fast and Efficient Clustering Algorithm for Transactional Data,” Proc. of ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 682-687, 2002.id NH0925392073 sid 914385 cfn 0 / id NH0925392074 auc 古秀琪 tic 用於實現秘密分享方法之具多項式時間複雜度的分解構建法 adc 孫宏民 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 41 kwc 秘密分享 kwc 分解建構 abc 秘密分享是一種能夠將所要保護的鑰匙(key)或是秘密(secret)分散給各個參與者,同時只允許經過認證的參與者的子集合重建這個秘密。 Stinson在1994年爲實現秘密分享提出了”分解建構法”,此方法主要是將存取結構(access structure)用圖表示,然後將圖拆解成各個 complete multipartite 子圖,稱為bases,這些bases則經由解一個適當的線性規劃演算法即可求出具有information rate 最高的秘密分享結構。然而在一個圖中找出所有complete multipartite子圖是一個極難的問題(NP-complete),即使只考慮找出較簡單的K1,n子圖也是NP-complete。 tc Chapter 1 INTRODUCTION 1 1. 1 Motivation 1 1. 2 Related Works 5 1.2. 1 The Threshold Scheme Based on Interpolation of Polynomials 6 1.2. 2 The Threshold Scheme Based on Geometry 7 1.2. 3 The Ito Scheme 8 1.2. 4 Monotonic Circuit Construction 9 1.2. 5 Decomposition Construction 10 1.2. 6 Hypergraph Decomposition 10 1. 3 Organization of the Thesis 11 Chapter 2 PRELIMINARIES 12 2. 1 Definitions and Basic Results 12 2. 2 Graph-based Decomposition 15 2. 3 Stinson’s Scheme 17 Chapter 3 DIRECTED GRAPH DECOMPOSITION CONSTRUCTION 22 3. 1 Motivation 22 3. 2 The Proposed Graph Decomposition Construction 23 3. 3 An Example 26 Chapter 4 THE ANALYSIS OF THE PROPOSED ALGORITHM 28 4. 1 Correctness 28 4. 2 Complexity 32 Chapter 5 EXPERIMENT AND RESULTS 34 5. 1 Experiment of the new approach 34 5. 2 Experiment of Stinson’s method with star schemes 35 5. 3 Experiment of Stinson’s method 37 5.4 Experiment of the new approach with additional complete multipartite subgraph 38 Chapter 6 CONCLUSIONS 41rf REFERENCES [1 ] J. C. Benaloh and J. Leichter, Generalized Secret Sharing and Monotone Functions, in Advances in Cryptology-Crypto'88 Proceedings, Lecture Notes in Computer Science, Vol. 403, Springer-Verlag, Berlin, pp. 27-35, 1990. [2 ] G. R. Blakley, Safeguarding Cryptographic Keys, Proceedings of AFIPS 1979 National Computer Conference, Vol. 48, pp. 313-317, 1979. [3 ] C. Blundo, A. De Santis, R. De Simone, and U. Vaccaro, Tight bounds on the information rate of secret sharing schemes, Designs, Codes and Cryptography Vol.11, No.1, pp. 1-25, 1997. [4 ] E.F. Brickell and D.R. Stinson, Some Improved Bounds on the Information Rate of Perfect Secret Sharing Schemes, Journal of Cryptology, Vol. 5, pp. 153-166, 1992. [5 ] E. F. Brickell and D. M. Davenport, On the classification of ideal secret sharing schemes, J. Cryptology vol. 4, pp. 123-134, 1991. [6 ] C. Blundo, A. De Santis, L. Gargano, and U. Vaccaro, On the Information Rate of Secret Sharing Schemes, Theoretical Computer Science, Vol. 154, pp. 283-306, 1996. [7 ] C. Blundo, A. De Santis, D.R. Stinson and U. Vaccaro, Graph Decompositions and Secret Sharing Schemes, Journal of Cryptology, Vol. 8, pp. 39-64, 1995. [8 ] E. F. Brickell, Some ideal secret sharing schemes, J. Combin. Math. Combin. Comput., vol. 9, pp. 105-113, 1989. [9 ] C. Blundo, A. De Santis, D.R. Stinson and U. Vaccaro, Graph Decompositions and Secret Sharing Schemes, Advances in Cryptology EUROCRYPT’92, r. Rueppel (Ed.), Lectures Notes in Computer Science, Vol.658,pp.1-24,1993, [10 ] R. M. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro, On the Size of Shares for Secret Sharing Schemes, Journal of Cryptology, Vol. 6, pp. 157-169, 1993. [11 ] Giovanni Di Crescenzo, Clemente Galdi, Hypergraph Decomposition and Secret Sharing. ISAAC: 645-654, 2003. [12 ] M. van Dijk, On the Information Rate of Perfect Secret Sharing Schemes, Designs, Codes and Cryptography, Vol. 6, pp. 143-169, 1995. [13 ] Giovanna Giammarino, Nemo Semret, CS 6998 - Secure Systems Generalized Graph Representation, http://comet.ctr.columbia.edu/~nemo/work.html, 1995 [14 ] M. Ito, A. Saito and T. Nishizeki, Secret Sharing Scheme Realizing General Access Structure, in Proc. IEEE Globecom'87, Tokyo, pp. 99-102, 1987. [15 ] M. Ito, A. Saito and T. Nishizeki, Multiple Assignment Scheme for Sharing Secret, Journal of Cryptology, Vol. 6, pp. 15-20, 1993. [16 ] N. Karmarkar, A new polynomial time algorithm for linear programming, Combinatorics, Vol. 4, 1984, pp.373-395. [17 ] L.G. Khachian, A polynomial algorithm in linear programming, Soviet Math. Dokl., Vol. 20, No.1 1979, pp. 191-194. [18 ] K. M. Martin, New Secret Sharing Schemes from Old, J. Combin. Math. Combin. Comput. Vol. 14 , pp. 65-77, 1993. [19 ] A. Shamir, How to Share a Secret, Communications of the ACM, Vol. 22, pp. 612-613, 1979. [20 ] D.R. Stinson, An Explication of Secret Sharing Schemes, Designs, Codes and Cryptography, Vol. 2, pp. 357-390, 1992. [21 ] D.R. Stinson, New General Lower Bounds on the Information Rate of Secret Sharing Schemes, in Advance in Cryptology-CRYPTO‘92, Lecture Notes in Comput. Sci., Vol. 740, pp. 168-182, 1993. [22 ] D.R. Stinson, Decomposition Constructions for Secret Sharing Schemes, IEEE Trans. Inform. Theory, Vol. 40, pp. 118-125, 1994. P. M. Vaidya, "An algorithm for linear programming which requires O(((m+n)n 2 + (m + n) 1.5 n)L) arithmetic operations," Proceedings of the nineteenth annual ACM conference on Theory of computing, p.29-38, January 198id NH0925392074 sid 914383 cfn 0 / id NH0925392075 auc 李宗豪 tic 設計及實作叢集式物件快取管理系統 adc 黃泰一 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 50 kwc 叢集式快取系統 kwc 異質性分散式系統 abc 快取是高速設備和低速設備間的橋樑。本身的目的在於在有較好反應時間的設備上儲存資料,避免向較低速設備存取,如L1/L2 cache、檔案快取、proxy cache等。隨著網路的蓬勃發展,如Gigabit, Myrinet, InfiniBand, NPU等,網路傳輸速度日益飛快,而硬碟等機械裝備的速度雖然也有進步,但和高速網路的進步想比實在有限,而硬碟存取常常造成整體系統效率的瓶頸。將資料透過高速網路快取在其他電腦記憶體內,比從硬碟直接讀取來的有效率。因此,這篇論文主在闡述如何在一個由PC所組成的叢集式系統中,設計並實作一廣域的快取管理系統。我們的目的在使用位於作業系統中的一個單一、一致且分散式的記憶體快取管理中介軟體。藉由此中介軟體,應用程式能從叢集式系統的記憶體得到優勢且能獲得更多可使用的記憶體,即使是由不同的作業系統所組成的叢集式系統。此中介軟體整合了整個叢集式系統的快取記憶體(在此指檔案快取),對於應用程式而言,看到的只是一個大型而唯讀的快取空間。所有的應用程式透過此系統分享檔案並進行快取,不需要再自己維護快取,而避免重複複製。我們已經在一個由Gigabit高速網路所連接的PC叢集式系統上實作出此一中介軟體,而其作業系統包含Linux和Microsoft Windows NT。在實驗中,我們實際測量一個擁有大量檔案的網頁伺服器效能,結果因避免掉了大部分的磁碟機讀取,成功的提升了網頁伺服器的效能,隨著叢集式系統節點的增加,效率可呈1到2.5倍的成長。 tc Contents 1. Introduction 1 2. Related Work 4 3. Design and Algorithm 7 3.1 Software Architecture 7 3.2 Control Flow 9 3.3 Lookup Algorithm 9 3.4 Replacement Algorithm 10 3.5 Migration Algorithm 11 4. Implementation 12 4.1 Application Program Interface 12 4.2 Kernel-Mode Cache Driver 17 4.2.1 Linux Kernel-Mode Cache Driver 18 4.2.2 NT Kernel-Mode Cache Driver 24 4.3 Communication Daemons 26 4.3.1 設計概念 26 4.3.2 Daemon處理request流程 29 4.3.3 Node Addition and Deletion 29 4.3.4 Consistent TCP Connection 30 4.3.5 Replication Mechanism 31 4.3.6 NT Communication Daemon 31 4.3.7 Information Protocol 32 5. Experimental Results 34 5.1 Experimental Setup 34 5.2 Performance with Mixed Workload 35 5.3 Fixed-workload Results 39 5.4 Distributed File Set 44 5.5 NT COC Performance 46 6. Conclusion and Future Work 48rf Bibliography [1 ] T. Anderson, D.Culler, and D. Patterson. A Case for NOW (Networks of Workstations). In IEEE Micro, 15(1):54-64, 1995 [2 ] Thomas Anderson, Michael Dahlin, Jeanna Neefe, David Patterson, Drew Roselli, and Randolph Wang. Serverless network file systems. In Proceedings of the 15th Symposium on Operating system Principles. ACM, pages 109-126, Copper Mountain Resort, Colorado, December 1995 [3 ] Marshall Bern, Daniel Greene, and Arvind Raghunathan. Online algorithms for cache sharing. In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 422-430. ACM Press, 1993. [4 ] B. Bloom. Space/time trade-offs in hash coding with allowable errors, Communications of the ACM, vol 13, no, 7, pages 422-426, July 1970. [5 ] Anawat Chankhunthod, Peter B. Danzig, Chunk Neerdaels, Michael F. Schwartz, and Kurt J. Worrell. A hierarchical internet object cache. In USENIX Annual Technical Conference, pages 153-164, 1996. [6 ] G. Chen, C.L. Wang, and F.C.M. Lau. Building a scalable web server with global object space support on heterogeneous cluster. In Proceeding of IEEE International Conference on Cluster Computing, 2001. [7 ] T. Cortes, S. Girona, and J. Labata. PACA: A Distributed File System Cache for Parallel Machines. Technical Report UPC-DAC-1995-20, Department d’Arquitectura de computadors, Universitat Politecnica de Catalunya (UPC), June 15 1995. [8 ] Michael Dahlin, Randolph Wang, Thomas E. Anderson, and David A. Patterson. Cooperative caching: Using remote client memory to improve file system performance. In Operating System Design and Implementataion, pages 267-280, 1994. [9 ] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary cache: a scalable wide area Web cache sharing protocol. IEEE/ACM Transactions on Networking, 8(3):281-293, 2000. [10 ] Michael J. Feeley, William E. Morgan, Frederic H. Pighin, Anna R. Karlin, Henry M. Levy, and Chandramohan A. Thekkath. Implementing global memory management in a workstation cluster. In Symposium on Operating Systems Principles, pages 201-212, 1995. [11 ] Thu D. Nguyen Francisco Matias Cuenca-Acuna. Cooperative caching middleware for cluster-based servers. In Tenth IEEE International Symposium on High Performance Distributed Computing (HPDC-10). IEEE Press, August 2001. [12 ] Syam Gadde, Jeff Chase, and Michael Rabinovich. A taste of Crispy Squid. In Proceedings of the Workshop on Internet Server Performance (WISP’98), 1998. [13 ] Zornitza Genova and Kenneth J. Christensen. Challenges In URL switching for implementing globally distributed web sites. In ICPP Workshop, pages 89-94, 2000. [14 ] John H. Hartman and John K. Ousterhout. The Zebra striped network file system. In Proceedings of the 14th ACM Symposium on Operating Systems Principles, pages 29-43, 1993. [15 ] Josh H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan, Robert N. Sidebotham, and Michael J. West. Scale and performance in a distributed file system. ACM Transactions on Computer Systems, 6:51-81, 1988. [16 ] ICP working group. National Lab for Apllied Network Research. http://www.irache.net/. [17 ] InfiniBand Trade Association http://www.infinibandta.org/. [18 ] Information and Communication Technologies at CSIRO Australia. http://www.ict.csiro.au/gigabit/gigabitradio.htm. [19 ] David Karger, Eric Lehman, Tom Leighton, Mathhew Levine, Daniel Lewin, and Rina Panigraphy. Consistent hashing and random trees: Distributed caching protocols for retrieving hot spots on the world wide web. In ACM Symposium on Theory of Computing, pages 654-663, May 1997 [20 ] Evangelos P. Markatos and George Dramitinos. Implementation of a reliable remote memory pager. In USENIX Annual Technical Conference, pages 177-190, 1996. [21 ] Myrinet. http://www.myrinet.com/. [22 ] NTT Microsystem Integration Laboratories. Development of Large-Scale Integrated Optical Switched Based on Silica Waveguide. http://www.ntt.co.jp/saiyo/e/rd/review/pdf/ct07.pdf. [23 ] S. Rhea and W. Weimer. Data location in the oceanstore, 1999. [24 ] Sean C. Rhea and John Kubiatowicz. Probabilistic location and routing. In Proceedings of INFOCOM 2002, 2002. [25 ] Prasenjit Sarkar and John H. Hartman. Hint-based cooperative caching. 18(4):387-419, 2000. [26 ] Bill N. Schilit and Dan Duchamp. Adaptive remote paging for mobile computers. Technical Report CUCS-004-91, Department of Computer Science, Columbia University, 1991. [27 ] Standard Performance Evaluation Corporation. The specweb99 benchmark. http://www.spec.org/osg/web99/. [28 ] Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. Frangipani: A scalable distributed file system. In Symposium on Operating Systems Principles, pages 224-237, 1997. [29 ] Jeffery Westbrook. Randomized algorithms for multiprocessor page migration. In DIMACS Series in Discrete Mathematics and Theoretical Computer Science, volume 7, pages 135-150, 1992. [30 ] Youhui Zhang, Weimin Zheng. User-Level Commnuication based Cooperative Caching. In ACM SIGOPS Operating Systems Review, volume 37, pages 23-33, January 2003id NH0925392075 sid 904398 cfn 0 / id NH0925392076 auc 陳宗言 tic 建立高速網路上叢集式快取之研究 adc 黃泰一 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 37 kwc 叢集 kwc 快取 kwc 高速網路 abc 近幾年來,高速網路發展迅速,像Gigabit,Myrinet以及Infiniband的傳輸速度已經逼近匯流排的傳輸速度。由於磁碟機的讀取速度相對於高速網路實在太慢,所以我們可以經由高速網路讀取遠端機器的快取檔案,這樣的讀取速度遠遠快於原本的磁碟機讀取速度。在這篇論文中,我們提出並且實做了一個通用檔案快取(Universal File Cache or UFC),它可以完整的利用並且整合所有的記憶體資源在一個用高速網路連接起來的分散式系統中。對應用軟體而言,通用檔案快取提供了一個大型並且唯讀的快取空間。任何應用軟體可透過通用檔案快取系統所提供的應用程式介面去分享檔案進而避免檔案在快去中重複的現象。為了使我們的系統容易延伸並且擴展到異質性的分散式系統中,我們將通用檔案快取實做成一個中介軟體,它包含了兩個主要的元件,cache driver和communication daemon。為了能夠快速的在通用檔案快取系統中取得檔案,我們設計了新穎並且有效率的尋找檔案演算法(file lookup algorithm)。另外還有migration和replication演算法來幫助系統管理快取檔案。在實驗中,通用檔案快取大大的增進了web server的效能,避免掉了大部分的磁碟機讀取,成功了提昇了使用通用檔案快取的應用軟體的效能。 rf [1 ] T. Anderson, D. Culler, and D. Patterson. A Case for NOW (Networks of Workstations). In IEEE Micro, 15(1):54-64,1995. [2 ] Thomas Anderson, Michael Dahlin, Jeanna Neefe, David Patterson, Drew Roselli, and Randolph Wang. Serverless network file systems. In Proceedings of the 15th Symposium on Operating System Principles. ACM, pages 109{126, Copper Mountain Resort, Colorado, December 1995. [3 ] Marshall Bern, Daniel Greene, and Arvind Raghunathan. Online algorithms for cache sharing. In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 422-430. ACM Press, 1993. [4 ] B. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of the ACM, vol. 13, no. 7, pages 422-426, July 1970. [5 ] Anawat Chankhunthod, Peter B. Danzig, Chuck Neerdaels, Michael F. Schwartz, and Kurt J. Worrell. A hierarchical in-ternet object cache. In USENIX Annual Technical Conference, pages 153-164, 1996. [6 ] G. Chen, C.L. Wang, and F.C.M. Lau. Building a scalable web server with global object space support on heterogeneous clusters. In Proceedings of IEEE International Conference on Cluster Computing, 2001. [7 ] T. Cortes, S. Girona, and J. Labarta. PACA: A Distributed File System Cache for Parallel Machines. Technical Report Technical Report UPC-DAC-1995-20, Departament d'Arquitectura de computadors, Universitat Politecnica de Catalunya (UPC), June 15 1995. [8 ] Michael Dahlin, Randolph Wang, Thomas E. Anderson, and David A. Patterson. Cooperative caching: Using remote client memory to improve file system performance. In Operating Sys- tems Design and Implementation, pages 267-280, 1994. [9 ] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary cache: a scalable wide-area Web cache sharing protocol. IEEE/ACM Transactions on Networking, 8(3):281-293, 2000. [10 ] Michael J. Feeley, William E. Morgan, Frederic H. Pighin, Anna R. Karlin, Henry M. Levy, and Chandramohan A. Thekkath. Implementing global memory management in a work- station cluster. In Symposium on Operating Systems Principles, pages 201-212, 1995. [11 ] Thu D. Nguyen Francisco Matias Cuenca-Acuna. Cooperative caching middleware for cluster-based servers. In Tenth IEEE International Symposium on High Performance Distributed Computing (HPDC-10). IEEE Press, August 2001. [12 ] Syam Gadde, Jeff Chase, and Michael Rabinovich. A taste of crispy Squid. In Proceedings of the Workshop on Internet Server Performance (WISP'98), 1998. [13 ] Zornitza Genova and Kenneth J. Christensen. Challenges in URL switching for implementing globally distributed web sites. In ICPP Workshop, pages 89-94, 2000. [14 ] John H. Hartman and John K. Ousterhout. The Zebra striped network file system. In Proceedings of the 14th ACM Symposium on Operating Systems Principles, pages 29-43, 1993. [15 ] John H. Howard, Michale L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan, Robert N. Sidebotham, and Michael J. West. Scale and performance in a distributed file system. ACM Transactions on Computer Systems, 6:51-81, 1988. [16 ] ICP working group. National Lab for Apllied Network Research. http://www.ircache.net/. [17 ] InfiniBand Trade Association. http://www.infinibandta.org/. [18 ] Information and Communication Technologies at CSIRO Australia. http://www.ict.csiro.au/gigabit/gigabitradio.htm. [19 ] David Karger, Eric Lehman, Tom Leighton, Mathhew Levine, Daniel Lewin, and Rina Panigrahy. Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on the world wide web. In ACM Symposium on Theory of Computing, pages 654-663, may 1997. [20 ] Evangelos P. Markatos and George Dramitinos. Implementation of a reliable remote memory pager. In USENIX Annual Technical Conference, pages 177-190, 1996. [21 ] Myrinet. http://www.myrinet.com/. [22 ] NTT Microsystem Integration Laboratories. Development of Large-Scale Integrated Optical Switched Based on Silica Waveguide.http://www.ntt.co.jp/saiyo/e/rd/review/pdf/ct07.pdf. [23 ] Sean C. Rhea and John Kubiatowicz. Probabilistic location and routing. In Proceedings of INFOCOM 2002. [24 ] Prasenjit Sarkar and John H. Hartman. Hint-based cooperative caching. ACM Transactions on Computer Systems, 18(4):387-419, 2000. [25 ] Bill N. Schilit and Dan Duchamp. Adaptive remote paging for mobile computers. Technical Report CUCS-004-91, Department of Computer Science, Columbia University, 1991. [26 ] Standard Performance Evaluation Corporation. the specweb99 benchmark. http://www.spec. org/osg/web99/. [27 ] Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. Frangipani: A scalable distributed file system. In Symposium on Operating Systems Principles, pages 224-237, 1997. [28 ] Jeffery Westbrook. Randomized algorithms for multiprocessor page migration. In DIMACS Series in Discrete Mathematics and Theoretical Computer Science, volume 7, pages 135-150, 1992.id NH0925392076 sid 914350 cfn 0 / id NH0925392077 auc 徐嘉臨 tic NS網路模擬軟體在WLAN之應用研究 adc 石維寬 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 43 kwc ns2網路模擬器 abc 隨著無線網路的蓬勃發展,研究人員為提高網路傳輸的服務品質,不斷地找出解決方案以因應各種不同的狀況發生,網路模擬軟體即是一套輔助的工具用來協助研究人員現實網路中的頻頸所在,在本論文中所採用的網路模擬軟體為NS2,它的原始碼是開放的,因此可於其上延伸其它功能,在本論文引用了瑞典Lulea大學計算機與網路學系提供的相關Open source,並作了缺失的改進,作為第四章實作的基礎。 tc 中文摘要………………………………………………………2 Abstract………………..……………………………………3 第1章 導論……………………………………………………5 1.1 研究動機與目的…………………………………………5 1.2 內容簡介…………………………………………………6 第2章 無線網路IEEE 802.11及NS2網路模擬器之無線網路架構簡介7 2.1 無線網路IEEE 802.11簡.………………………………7 2.1.1 IEEE 802.11發展現況……………………………….7 2.1.2 IEEE 802.11技術規格內容………………………….8 2.1.3 IEEE 802.11無線網路的組成元件及架….…………9 2.1.4 IEEE 802.11 MAC 簡介………………………………11 2.1.4.1 RTS/CTS 淨空程序(clearing procedure)……12 2.1.4.2 DCF競爭式存取………………………….…………13 2.2 NS2網路模擬器之無線網路架構簡介………….………14 2.2.1 NS2網路模擬器之獨立型無線網路介紹……….……14 2.2.2 NS2網路模擬器之中控型無線網路介紹………….…18 第3章 PCF無線媒介存取模式介紹及實作…………….……22 3.1 PCF無線媒介存取模式介紹………………………….…22 3.1.1 PCF作業……………………………………………….22 3.1.2 免競爭期間的媒介使用權……………………………23 3.1.3 免競爭期間的長短…………………………..………23 3.1.4 IEEE 802.11 MAC 存取模式與時機…………………24 3.2 NS2網路模擬器802.11 PCF實作………….……………25 3.2.1 PCF運作模式……………………….…………………25 3.3 PCF實作缺失改進……………………….………………27 3.3.1 實作系統環境說明……………………..……………27 3.3.2 改善PCF實作……………………………….…………27 第4章 無線網路fair real-time packet scheduling實作……31 4.1 Real-Time Traffic scheduling模型…………………31 4.2 演算法………………………………………………………33 4.2.1 演算法一…………………………………………………33 4.2.2 演算法二…………………………………………………34 4.3 實作方法……………………………………………………36 4.4 模擬結果…………………………………………………………38 4.4.1 模擬環境…………………………………………………………38 4.4.2 模擬結果…………………………………………………………38 第5章 結論與未來工作…………………………………………………41 參考文獻………………………………………………………………43rf 1. Tutorial for the Network Simulator “ns” http://www.isi.edu/nsnam/ns/tutorial/index.hm/ 2. WPI WORCESTER POLYTECHNIC INSTITUTE Computer Science, NS by Example, Jac Chung and Mark Claypool, http://nile.wpi.edu/NS/ 3. Learning NS Website http://netlab.cse.yzu.edu.tw/ns2/ns2_website/ 4. The Rice University Monarch Project : Mobile Networking Architecture, http://www.monarch.cs.cmu.edu/ 5. 802.11無線網路技術通論 Matthew S. Gast 著,黃裕彰 譯,蔣大偉 校編 6. Maria Adamou, Sanjeev Khauna, Insup Lee, Insik Shin, Shiyu Zhou, Fair Real-time Traffic Scheduling over A wireless LAN 7. contributions to the network simulator ns2 http://www.sm.luth.se/~dugdale/index/software.shtro/id NH0925392077 sid 884382 cfn 0 / id NH0925392078 auc 徐延源 tic 次世代無線網路主動式應用程式導向垂直式交替方法 adc 陳文村 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 34 kwc 次世代無線網路 kwc 垂直式交替方法 kwc 應用程式 abc 就目前以及可預見的未來來看,沒有單一個類型的無線通訊網路可以滿足所有目前以及接下來即將出現的各種無線網路服務的需求。因此在次世代無線網路的發展過程中,不同類型的無線網路同時存在,用以滿足不同服務的需求將是必然的趨勢。由於這些無線網路的涵蓋範圍是重疊的,擁有多重無線網路介面的移動式終端機(Mobile Terminal)可能會隨著不同的服務切換到不同的無線網路,這樣的切換動作稱之為垂直式交替(Vertical Handoff)。如何以及何時執行垂直式交替將會直接影響到網路服務的品質與效能。 rf REFERENCES [1 ] M. Buddhikot, G. Chandranmenon, S. Han, Y.W. Lee, S. Miller and L. Salgarelli, “Integration of 802.11 and Third-Generation Wireless Data Networks,” IEEE INFOCOM 2003, Volume: 1, 30 March - 3 April 2003, pp. 503 – 512. [2 ] A.K. Salkintzis, C. Fors and R. Pazhyannur, “WLAN-GPRS Integration for Next-Generation Mobile Data Networks,” IEEE Wireless Communications, Volume: 9 Issue: 5, Oct 2002, pp. 112-124. [3 ] Ye Min-hua, Liu Yu and Zhang Hui-min, “The Mobile IP Handoff Between Hybrid Networks,” PIMRC 2002, Volume: 1, 15-18 Sept. 2002, pp. 265 – 269. [4 ] M. Salamah, “Buffering Requirements for Lossless Vertical Handoffs in Wireless Overlay Networks,” VTC 2003-Spring. The 57th IEEE Semiannual, Volume: 3, April 22-25 2003, pp. 1984 – 1987. [5 ] Fan Du, L.M. Ni and A.H. Esfahanian, “HOPOVER: A New Handoff Protocol for Overlay Networks,” ICC 2002, Volume: 5, 28 April-2 May 2002, pp. 3234 - 3239. [6 ] M. Stemm and R. H. Katz, “Vertical Handoffs in Wireless Overlay Networks,” ACM Mobile Networking (MONET), Special Issue on Mobile Networking in the Internet 1998. [7 ] M. Inoue, K. Mahmud, H. Murakami and M. Hasegawa, “MIRAI: A Solution to Seamless Access in Heterogeneous Wireless Networks,” ICC 2003, Volume: 2, 11-15 May 2003, pp. 1033 – 1037. [8 ] H.J. Wang, R.H. Katz and J. Giese, “Policy-enabled Handoffs Across Heterogeneous Wireless Networks,” Mobile Computing Systems and Applications, 1999. Proceedings. WMCSA '99. Second IEEE Workshop on, 25-26 Feb. 1999, pp. 51 – 60. [9 ] E.J. Latvakoski and P.J. Laurila, “Application based access system selection concept for all IP mobile terminals,” GLOBECOM 2002, Volume: 3, 17-21 Nov. 2002, pp. 2984 - 2988. [10 ] M. Ylianttila, R. Pichna, J. Vallstrom, J. Makela, A. Zahedi, P. Krishnamurthy and K. Pahlavan, “Handoff Procedure for Heterogeneous Wireless Networks,” GLOBECOM 1999, Volume: 5, 1999, pp. 2783 - 2787. [11 ] J. Ala-Laurila, J. Mikkonen and J. Rinnemaa, “Wireless LAN Access Netowrk Architecture for Mobile Operators,” IEEE Communications Magazine, Volume: 39, Issue: 11, Nov 2001, pp. 82 – 89. [12 ] K. Pahlavan, P. Krishnamurthy, A. Hatami, M. Ylianttila, J.P. Makela, R. Pichna and J. Vallstron, “Handoff in Hybrid Mobile Data Networks,” Personal Communications, Volume: 7, Issue: 2, April 2000, pp. 34 – 47. [13 ] Q. Wang and M. A. Abu-Rgheff, “Towards a Complete Solution to Mobility Management for Next-Generation Wireless System,” Proc. London Communications Symposium 2002, London, UK, Sep 2002. [14 ] M. Ylianttila, M. Pande, J. Makela and P. Mahonen, “Optimization Scheme for Mobile Users Performing Vertical Handoffs between IEEE 802.11 and GPRS/EDGE networks,” Proc. IEEE Global Telecommunications Conference, Volume 6, 2001, pp. 3439–3443. [15 ] C. Perkins (Editor), “IP Mobility Support for IPv4,” RFC 3220, IETF, January 2002. [16 ] C. Perkins and D. Johnson, “Mobility Support in IPv6,” Internet Draft, IETF, March 2002. [17 ] Y-B. Lin and I. Chlamtac, “Wireless and Mobile Network Architecture,” John Wiley & Sons, Inc., 2001. [18 ] A. Mishra, M. Shin and W. A. Arbaugh, “Context Caching using Neighbor Graphs for Fast Handoffs in a Wireless Network,” IEEE INFOCOM 2004, March 7-11 2004. [19 ] H. Soliman, C. Casteluccia, K. Malki and L. Bellier, “Hierarchical MIPv6 Mobility Management,” Internet Draft, IETF, July 2002. [20 ] A. G. Valko, A. T. Campbell and J. Gomez, “Cellular IP,” Internet Draft, November 1998.id NH0925392078 sid 914368 cfn 0 / id NH0925392079 auc 洪振榮 tic 基於特徵點之數位影像版權保護 adc 孫宏民 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 68 kwc 數位影像版權保護 kwc 特徵點 kwc 特徵擷取 kwc 幾何攻擊 kwc Marr wavelet abc 傳統的浮水印技術面臨兩個重要的問題。第一,在演算公開的情況下,很難抵擋針對演算法所設計出來的攻擊,這些攻擊可以輕易地抹除已加入的浮水印,第二,一張影像可以同時加入很多浮水印,甲說這是他的影像,乙說這也是他的影像,兩者都可以萃取出浮他們的浮水印,然而我們就無法得知誰這張影像的所有權歸誰所有。這兩個問題,使浮水印的技術無法全面的發展。 tc Chapter 1 Introduction 1.1 Motivation 1.2 Traditional Watermark 1.3 Digital Image Copyright Protection Technique 1.4 Attacks 1.5 Possible Approaches 1.6 Structure of the Paper Chapter 2 Previous Researches 2.1 Digital Image Copyright Protection on Spatial Domain 2.2 Digital Image Copyright Protection on Frequency Domain Chapter 3 Our Scheme for Image Copyright Protection 3.1 Introduction to Feature Points Extraction 3.2 The Proposed Algorithm 3.2.1 Register Phase 3.2.2 Detect Phase 3.2.3 Security Analysis Chapter 4 . Simulation Chapter 5 . Conclusions Referencesrf [1 ] C. C. Chang, K. F. Hwang, and M. S. Hwang. “A block based digital watermarks for copy protection of images,” In Proceedings of APCC/OECC’99, pages 977-980, Beijing, October 1999. [2 ] G. Voyatzis and I. Pitas. “Chaotic mixing of digital images and applications to watermarking. Proceedings of European Conference on Multimedia Applications,” Services and Techniques (ECMAST ‘96), 2:687-695. [3 ] S. Craver, N. Memon, B. L. Yeo, and M. Yeung, “Can Invisible Watermarks Resolve Rightful Ownership?” Proc. SPIE Storage and Retrieval for Still Image and Video Databases V, Vol. 3022, 1997, pp. 310-321. [4 ] W. B. Lee, and T. H. Chen, "A Robust Copyright Protection Scheme for Still Images," Proceedings of 2000 International Computer Symposium Workshop, Dec. 2000, [5 ] C. Y. Lin, M. Wu, J. A. Bloom, I. J. Cox, M. L. Miller, and Y. M. Lui, “Rotation, Scale and translation resilient public watermarking for images,” Proc. SPIE Security Watermarking Multimedia Contents II, vol.3971, pp. 90-98,2000 [6 ] S. Pereira, J. J. K. ÓRuanaidh, and F. Deguillaume, “Template based recovery of Fourier-based watermarks using log-polar and log-log maps,” in Proc. IEEE Int. Conf. Multimedia Comput. Syst., vol. 1, 1999,, pp.870-874 [7 ] Shelby Pereira, and Thierry Pun, Member, IEEE, “Robust Template Matching for Affine Resistant Image Watermarks,” IEEE transactions on image processing, VOL. 9 NO.6,June 2000. [8 ] Z. Ni, E. Sung, and Y. Q. Shi, “Enhancing robustness of digital watermarking against geometric attack based on fractal transform,” in Proc. IEEE Int. Conf. Multimedia Expo., vol. 2,2000,pp. 1033-1036. [9 ] M. Gruber and K. Y. Hsu, “Moment-based image normalization with high noise-tolerance,” IEEE Trans. Pattern Annual. Machine Intell., vol. 19, pp.136-139, Feb. 1997. [10 ] M. Alghomiemy and A. H. Tewfik, “geometric distortion correction through image normalization,” in Proc. IEEE Int, Conf. Multimedia Expo., vol. 3, 2000, pp. 1291-1294. [11 ] M. Alghomiemy and A. H. Tewfik, “Image watermarking by moment invariants,” in Proc. IEEE Int. Conf. Image Process., vol. 2, Jan. 2001, pp. 73-76. [12 ] A. Nikolaidis and I. Pitas, “Robust watermarking of facial Images based on salient geometric patter matching,” IEEE Trans. Multimedia, vol. 2, pp. 172-184, Sept. 2000. [13 ] M. Kutter, S. K. Bhattacharjee, and T. Ebrahimi, “Toward second generation watermarking schemes,” in Proc. IEEE Int. Conf. Image Process., vol. 1, 1999, pp. 320-323. [14 ] P. Bas, J.-M. Chassery, and B. Macq, “Robust watermarking based on the warping of Multimedia Contents II, vol. 3971, pp.99-109, 2000. [15 ] Sushil Bhattacharjee, and Martin Kutter, “Compression Tolerant Image Authentication,” in Proc. IEEE Int. Conf. Image Process., vol. 1,1998,pp.435-439 [16 ] B. S. Manjunath, C. Shekhar, and R. Chellappa, “A new approach to image feature detection with applications,” Pattern Recogn., vol. 29, no. 4, pp,627-640, 1996. [17 ] Chih-Wei Tang, and Hwueh-Min Hang, Fellow, IEEE, “A Feature-Based Robust Digital Image Watermarking Scheme,” IEEE transactions on signal processing, vol. 51, NO. 4,April 2003. [18 ] Martin Garvrilov, Piotr Indyk, Rajeev Motwanim, and Wuresh Venkatasubramanian, “Combinatorial and Experimental Methods for Approximate Point Patter Matching.” [19 ] 孫宏民,陳孟彰,“無失真數位浮水印技術“,In Proceedings of the Twelfth National Conference on Information Security, page 25-32, 2002. [20 ] 陳同孝,董俊良,白明弘,“植基於離散餘弦轉換之影像權益保障系統“,In Proceedings of the Ninth National Conference on Information Security, page 1-7, 2001. [21 ] 陳同孝,吳曉蓉,“植基於向量量化編號法之影像權益保障系統“,In Proceedings of the Ninth National Conference on Information Security, page 75-81, 2001. [22 ] 張真誠,黃國峰,陳同孝,“電子影像技術“,松崗電腦圖書資料股份有限公司,2000. [23 ] 陳同孝,張真誠,黃國峰,“數位影像處理技術“,松崗電腦圖書資料股份有限公司,2001. [24 ] Stirmark. [Online ]. Available : http://www.cl.cam.ca.uk/~fapp2/watermarking/stirmark/ [25 ].孫宏民,陳孟彰,“無失真數位浮水印技術“,In Proceedings of the Twelfth National Conference on Informid NH0925392079 sid 914399 cfn 0 / id NH0925392080 auc 林承昆 tic 可程式化單晶片平台上的設計流程研究 adc 李政崑 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 38 kwc 可程式化單晶片平台 kwc 平台架構 kwc 作業系統 abc 特殊應用積體電路發展以來,許多特殊應用硬體模組出現在計算機架構當中。之後,硬體模組的設計趨勢導向了包含百萬邏輯閘的可程式化邏輯元件,巨量的可程式化區域使得可程式化單晶片平台兼具彈性以及效能。當系統加入更多的硬體模組,軟體設計以及硬體設計的複雜度也跟著增加,作業系統在軟體以及硬體之間提供一般化的介面,使得設計流程更加簡化。此外,作業系統也擁有許多額外的資源,開 rf [1 ] Altera Corporation, EPXA10 Development Board - Hardware Reference Manual, 2002 [2 ] The ARM Linux Project, ARM Linux, http://www.arm.linux.org.uk [3 ] Altera Corporation, NIOS Development Kit Getting Start - User Guide, 2002 [4 ] Altera Corporation, ARM-Based Embedded Processor PLDs Hardware Reference Manual v3.0, 2002 [5 ] ARM Limited, AMBA Speci‾cation, 1999 [6 ] Altera Corporation, Introduce to Quartus II - Manual, 2003 [7 ] Red Hat, Inc, RedBoot, http://sources.redhat.com/redboot/ [8 ] Red Hat, Inc, eCos, http://sources.redhat.com/ecos/ [9 ] Free Software Foundaton, Inc, GDB: The GNU Project Debugger, http://www.gnu.org/software/gdb/ [10 ] The ARMboot Project, ARMboot, http://armboot.sourceforge.net/ [11 ] Altera Corporation, APEX 20K Programmable Logic Device Family - Data Sheet, 2002 [12 ] JTAG, JTAG Speci‾cation, 2003, http://www.jtag.com/ [13 ] Altera Corporation, ByteBlaster II Parallel Download Cable, 2003 [14 ] Altera Corporation, Hierarchical Block-Based & Team-Based Design Flows, 2004 [15 ] Mentor Graphics Corporation, LeonardoSpectrum with LeonardoInsight - Data Sheet, 2003 [16 ] Synopsis, Inc, Design Compiler FPGA Design Once - Data Sheet, 2004 [17 ] Mentor Graphics Corporation, ModelSim SE - Data Sheet, 2003 [18 ] Synopsis, Inc, PrimeTime SI - Data Sheet, 2003id NH0925392080 sid 914396 cfn 0 / id NH0925392081 auc 陳志豪 tic 高階高速網路交換機之設計與實作 adc 黃能富 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 57 kwc 第二層交換機 kwc 網路安全交換機 kwc 入侵偵測 kwc 入侵偵測防禦 kwc 防火牆 kwc 蠕蟲 kwc 網路攻擊 abc 由於近來網際網路應用程式如P2P (peer-to-peer),IM (Instant Messenger),和 Spyware/Adware 的蓬勃發展,網路安全的議題也就越發引起注意。再者,由於攻擊產生工具的日趨便利與普及,使得DOS/DDOS的攻擊和蠕蟲病毒,諸如:(NetKey, Sasser, MS-Blaster, SQL Slammer, CodeRed 等)日益肆虐。就目前所知,在單機上執行的軟體解決方案已不適用於阻擋上述日益嚴重的網路攻擊。雖然,入侵偵測和入侵偵測防禦系統 (IDP/IPS) 已漸取而代之而為人所熟知,但是由於其多裝置於路由器與防火牆之間的企業網路出口,且缺乏有效的縱深防禦機制使得單一入侵偵測防禦系統對於發自網路內部的攻擊仍是束手無策。而如眾所熟知的第二層網路交換機已成為佈置最廣的網路設備,誠然若欲有效扼制發自網路內部的網路攻擊,就是使第二層網路交換機升級成為網路安全交換機;使得每個封包在交換機的兩port進出之間得以接受安全性的檢查。 rf [1 ]. 3com crop, “3com security switch 6200”. http://www.3com.com/other/pdfs/products/en_US/400835.pdf [2 ]. Howard C. Berkowitz, “Designing Routing and Switching Architecture”, Macmillan Technical Publishing, 1999. [3 ]. E. Bell, A. Smith, P. Langille, A. Rijhsinhani, and K. McCloghrie, “Definitions of Managed Objects for Bridges with Traffic Classes, Multicast Filtering and Virtual LAN Extensions”, RFC 2674, August 1999. [4 ]. Kennedy Clark and Kevin Hamilton, “Cisco LAN Switching:The most complete guide to Cisco Catalyst switch network design, operation, and configuration ”, Cisco Press, 2001. [5 ]. Cisco Systems Inc., “Cisco Catalyst 2950 Series Switches with Enhanced Image SW”. http://www.cisco.com/warp/public/cc/pd/si/casi/ca2950/prodlit/sseis_ds.pdf [6 ]. Cisco Systems Inc., “How to Get VLAN Information From a Catalyst Using SNMP”. http://www.cisco.com/en/US/tech/tk648/tk362/technologies_configuration_example09186a008015773e.shtml [7 ]. Cisco Systems Inc., “How to Add, Modify, and Remove VLANs on a Catalyst Using SNMP”. http://www.cisco.com/en/US/tech/tk648/tk362/technologies_tech_note09186a00801c6035.shtml [8 ]. Cisco Systems Inc., “Using SNMP to Find a Port Number from a MAC Address on a Catalyst Switch”. http://www.cisco.com/en/US/tech/tk648/tk362/technologies_tech_note09186a00801c9199.shtml [9 ]. Cisco Systems, “SNMP Community String Indexing”. http://www.cisco.com/en/US/tech/tk648/tk362/technologies_tech_note09186a00801576ff.shtml [10 ]. Cisco Systems, “Virtual LAN Security Best Practices”. http://www.cisco.com/warp/public/cc/pd/si/casi/ca6000/prodlit/vlnwp_wp.pdf [11 ]. E. Decker, P. Langille, A. Rijisinghani, and K. McCloghire, “Definitions of Managed Objects for Bridges”, RFC1286, July 1993. [12 ]. Sanjib HomChudhuri and Macro Foschiano, “PRIVATE VLANS: Addressing vlan scalability and security issues in a multi-client environment”, Internet-Draft, September 2003. [13 ]. IEEE 802.1D: Media Access Control (MAC) Bridges, 1998. [14 ]. IEEE 802.1Q/D8: Virtual Bridge Local Area Networks, December 1998. [15 ]. IEEE 802.1Q: Virtual Bridge Local Area Networks, May 2003. [16 ]. Jack Koziol, “Intrusion Detection with Snort”, SAMS, 2003. [17 ]. Merike Kaeo, “Designing Network Security:A Practical guide to creating a secure network infrastructure”, Cisco Press, 2003. [18 ]. Allan Liska, “The Practice of Network Security:Development Strategies for Production Environments”, Prentice Hall, 2003. [19 ]. Saadat Malik, “Network Security Principles and Practices”, Cisco Press 2003. [20 ]. David Passmore and John Freeman, “The Virtual LAN Technology Report”, 1996. www.3com.com/other/pdfs/solutions/en_US/20037401.pdf [21 ]. Radia Perlman, “Interconnections Second Edition:Bridges, Routers, Switches, and Internetworking Protocols”, Addison Wesley, 1999. [22 ]. Radware Ltd., “DefensePro White Thesis”, http://www.radware.com/content/download.asp?document=3932 [23 ]. Gene Schultz, Carl Endorf, and Jim Mellander, “Intrusion Detection & Prevention”, McGraw-Hill, 2003. [24 ]. Rich Seifert, “The Switch Book:The Complete Guide to LAN Switching Technology ”, John Wiley & Sons, Inc., 2000. [25 ]. Timothy D. Wickham, “Intrusion Detection is Dead. Long Live Intrusion Prevention!”, SANS GIAC Certification Practical, 2003.id NH0925392081 sid 914328 cfn 0 / id NH0925392082 auc 鍾允昇 tic 具限制條件的序列比對:考慮範圍與順序資訊 adc 唐傳義 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 40 kwc 序列比對 kwc 計算生物學 kwc 演算法 kwc 計算複雜度 abc 在序列排比問題(Sequence Alignment Problem)之中,加入有意義的限制條件(Constraints),是一種整合使用者對於所處理的資料所具備的額外知識的有效方法。例如,欲比對的序列如果屬於同一類蛋白質,且已知該類蛋白質必定擁有一些序列上或結構上的特徵,則在序列比對的結果中,這類特徵應該被保持,並且應被排比在一起;否則可視為一種語意上的違背。這是在序列排比中,加入限制條件的主要精神。 tc Abstract{i} {1}Introduction{1} {2}Preliminaries{6} {2.1}Definitions and Problem Formulation{6} {2.2}Annotation of the Patterns{10} {2.2.1}Annotation of Type-1 Patterns{10} {2.2.2}Annotation of Type-2 Patterns{11} {2.2.3}A Note on the Efficiency of the Annotation Process{12} {3}Constrained Sequence Alignment{13} {3.1}Constrained Pairwise Sequence Alignment{13} {3.2}One-Annotated Constrained Sequence Alignment{15} {3.3}A More Efficient Approximation Algorithm for CMSA{17} {4}Sequence Alignment with Ranged Constraint{19} {4.1}The Data Structure{19} {4.2}The Algorithm for One-Annotated SARC{20} {4.3}Multiple Sequence Alignment with Ranged-Motif onstraint{24} {5}Sequence Alignment with Unordered Constraint{26} {5.1}Terminology{27} {5.2}Hardness of SAUC{29} {6}Conclusions and Future Works{34} {6.1}Conclusions{34} {6.2}Future Works{34} {6.2.1}Providing Services on the Web{34} {6.2.2}A More Efficient Algorithm for the Unannotated SARC{35} {6.2.3}Lower Bound for the Pairwise Version without Range Constraints{36} {6.2.4}More Hybrid Annotated Sequence Comparison{36} Bibliography{38}rf Abendroth, J., Niefind, K., Schomburg, D.: X-ray Structure of a Dihydropyrimidinase from Thermus sp. at 1.3A Resolution. J. Mol. Biol. 320 (2002) 143--156 Ausiello, G., Crescenzi, P., Protasi, M.: Approximate Solution of NP Optimization Problems. Theoret. Comput. Sci. 150 (1995) 1--55 Bafna, V., Muthukrishnan, S., Ravi, R.: Computing Similarity between RNA Strings. DIMACS Tech. Rep. (1996) Bonizzoni, P., Vedova, G. D.: The Complexity of Multiple Sequence Alignment with SP-score that is a metric. Theoret. Comput. Sci. 259 (2001) 63--79 Chin, F. Y. L., Ho, N. L., Lam, T. W., Wong, P. W. H., Chan, M. Y.: Efficient Constrained Sequence Alignment with Performance Guarantee. In: Proc. Comput. Syst. Bioinfo. (CSB'03). IEEE (2003) 337--346 Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms (2nd ed.) The MIT Press (2001) Crescenzi, P., Kann, V. (eds.): A compendium of NP optimization problems. http://www.nada.kth.se/~viggo/wwwcompendium/wwwcompendium.html Evans, P. A.: Algorithms and Complexity for Annotated Sequence Analysis. Ph. D Thesis, Department of Computer Science, University of Victoria, Canada (1999) Faisst, S., Meyer, S.: Compilation of Vertebrate-encoded Transcription Factors. Nucleic Acids Research 20 (1992) 3--26 Fessele, S., Maier, H., Zischek, C., Nelson, P.J., Werner,T.: Regulatory Context is a Crucial Part of Gene Function. Trends Genet., 18 (2002) 60-63 Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Company (1979) Gusfield, D.: Efficient Methods for Multiple Sequence Alignment with Guaranteed Error Bounds. Bul. Math. Biol. 30 (1993) 141--154 Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press (1997) Hirschberg, D. S.: A Linear Space Algorithm for Computing Maximal Common Subsequences. Comm. ACM. 18 (1975) 341--343 Huang, X.: A Lower Bound for the Edit-Distance Problem under Arbitrary Cost Function. Inform. Process. Lett. 27 (1988) 319--321 Jiang, T., Lin, G., Ma, B., Zhang, K.: A General Edit Distance between RNA Structures. J. Comput. Biol. 9 (2002) 371--388 Jiang, T., Xu, Y., Zhang, M. Q. (ed.): Current Topics in Computational Molecular Biology. The MIT Press (2002) Karp, R. M.: Reducibility among Combinatorial Problems. In R. E. Miller and J. W. Thatcher (eds.), Complexity of Computer Computations. Plenum Press, New York (1972) 85--103 Katoh, K., Misawa, K., Kuma, K.-I., Miyata, T.: MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 30 (2002) 3059--3066 Kel, A., Kel-Margoulis, O., Babenko, V., Wingender, E.: Recognition of NFATp/AP-1 Composite Elements within Genes Induced upon the Activation of Immune Cells. J. Mol. Biol. 288 (1999) 353-376 Kel-Margoulis, O., Kel, A.E., Reuter, I., Deineko, I.V., Wingender, E.: TRANSCompel: a Database on Composite Regulatory Elements in Eukaryotic Genes. Nucleic Acids Res. 30 (2002) 332-334 Lin, G.-H., Chen, Z.-Z., Jiang, T., Wen, J.: The Longest Common Subsequence Problem for Sequences with Nested Arc Annotations. J. Comput. Syst. Sci. 65 (2002) 465--480 Ma, B., Wang, L., Zhang, K.: Computing Similarity between RNA Structures. Theoret. Comput. Sci. 276 (2002) 111--132 Myers, G., Selznick, S. Zhang, Z., Miller, W.: Progressive Multiple Alignment with Constraints. J. Comput. Biol. 3 (1996) 563-572 Schmidt, J. P.: All Highest Scoring Paths in Weighted Grid Graphs and Their Application to Finding All Approximate Repeats in Strings. SIAM J. Comput. 27 (1998) 972--992 Tang, C. Y., Lu, C. L., Chang, M. D. T., Sun, Y. J., Tsai, Y. T., Chang, J. M., Chiou, Y. H., Wu, C. M., Chang, H. T., Chou, W. I., Chiang, S. C.: Constrained Sequence Alignment Tool Development and its Application to RNase Family Alignment. J. Bioinfo. Comput. Biol. 1 (2003) 267--287 Taylor, W. R.: Motif-biased Protein Sequence Alignment. J. Comput. Biol. 1 (1994) 297--310 Tsai, Y. T., Lu, C. L., Yu, C. T., Huang, Y. P.: MuSiC: A Tool for Multiple Sequence Alignment with Constraints. Bioinformatics (to appear) Wang, L., Jiang, T.: On the Complexity of Multiple Sequence Alignment. J. Comput. Biol. 1 (1994) 337--348 Wishart, D.S., Boyko, R.F., Sykes, B.D.: Constrained multiple sequence alignment using XALIGN. Comput. Appl. Biosci. 10 (1994) 687--688 Wu, Q.S., Chao, K.M., Lee, R.C.T.: The NPO-completeness of the longest Hamiltonian cycle problem. Infor. Proc. Lett. 65 (1998) 119--123 Zhang, K.: Computing Similarity between RNA Secondary Structures. Proc. IEEE Internat. Joint Symp. on Intelligence and Systems (1998) 126--132id NH0925392082 sid 914342 cfn 0 / id NH0925392083 auc 簡家弘 tic 基於市場機制之分散式資源排程 adc 蘇豐文 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 49 kwc 格網計算 kwc 資源排程 kwc 市場導向規劃 kwc 工作流程 abc 格網計算(Grid Computing)是一個正在崛起的嶄新計算架構。這種計算架構正在被許多科學研究所使用中。這種計算架構原本僅止於加速運算上的功用,但現在已經已衍生出新的一種:”資源分享”的概念。在這種概念之下,在虛擬組織(Virtual Organization)中的成員,可以共享彼此的資源以完成他們自己的工作。 tc Chapter 1 Introduction 1 1.1 What is Grid Computing 1 1.2 An Example for Illustration 3 1.3 Potential Problems of Grid Computing 4 1.4 Motivation 5 1.5 Related Work 7 Condor/Condor-G 7 Acution/Combinatorial Auction 8 1.6 Problem Definition 10 1.7 Market-Oriented Programming 12 1.7.1 What is Market-Oriented Programming 12 1.7.2 Why to Use Market-Oriented Programming 13 1.8 Ogranization of Thesis 14 Chapter 2 Market Model and System Architecture 15 2.1 Revised Market-Oriented Programming 15 2.1.1 Definition and Assumption 15 2.1.2 Market Model 16 2.1.3 Utility Function of a Work-flow Agent 18 2.1.4 Market-Price Adjustment 19 2.2 System Architecture 20 2.2.1 Architecture 20 2.2.2 Components 22 Information Service Agent 22 Resource Provider Agent 22 Market Broker Agent 23 Work-flow Agent 24 Chapter 3 Experiment and Discussion 29 3.1 Implementation 29 3.2 Experimant and Discussion 31 Chapter 4 Conclusion and Future Work 38 Reference 41 Appendix The Work-flow Representation XML Content 43rf 1. Ian Foster, Carl Kesselman, Jeffrey M. Nick, Steven Tuecke. The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration. Open Grid Service Infrastructure WG, Global Grid Forum, June 22, 2002. 2. Ian Foster, Carl Kesselman, Steven Tuecke, The Anatomy of the Grid: Enabling Scalable Virtual Organizations, International Journal of Supercomputer Applications and High Performance Computing, 2001 3. Ian Foster, Carl Kesselman, The Grid: Blueprint for a New Computing Infrastructure, 2nd Edition. Morgan Kaufmann, ISBN:1-55860-933-4, 2004. 4. Mario Cannataro, Domenico Talia, and Paolo Trunfio, Distributed data mining on the grid, Future Generation Computer Systems, volume 18, pages 1101-1112, 2002 5. The Condor Project, http://www.cs.wisc.edu/condor/ 6. Rajesh Raman, Miron Livny, and Marvin Solomon, Matchmaking: Distributed Resource Management for High Throughput Computing, Proceedings of the Seventh IEEE International Symposium on High Performance Distributed Computing, 1998 7. James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steven Tuecke, Condor-G: A Computation Management Agent for Multi-Institutional Grids, Journal of Cluster Computing, volume 5, pages 237-246, 2002. 8. Tuomas Sandholm, Algorithm for optimal winner determination in combinatorial auctions, Artificial Intelligence, volume 135, pages 1-54, 2002 9. David C. Parkes, iBundle: An Efficient Ascending Price Bundle Auction, Proceedings of the 1st ACM conference on Electronic commerce, 1999 10.Luke Hunsberger, Barbara J. Grosz, A Combinatorial Auction for Collaborative Planning, In Proceedings of the Fourth International Conference on Multi-Agent Systems, IEEE Computer Society Press, pages 151-158, 2000 11.Michael P. Wellman, William E. Walsh, Auction Protocols for Decentralized Scheduling, Games and Economic Behavior, volume 35, pages 271-303, 2001 12.Gerhard Weiss, Multiagent Systems: A Modern Approach to Decentralized Artificial Intelligence, pages 201-233, MIT Press, ISBN: 0262731312, 2000 13.Michael P. Wellman, Market-Oriented Programming: Some Early Lessons, Market-Based Control: A Paradigm for Distributed Resource Allocation, World Scientific, 1996. 14.Andreu Mas-Colell, Michael Whinston, and Jerry R. Green, Microeconomic Theory, Oxford University Press, ISBN:0195073401, 1995 15.The DataGrid Project, http://eu-datagrid.web.cern.ch/eu-datagrid/ 16.GriPhyN, the Grid Physics Network, http://www.griphyn.org/ 17.Michael P. Wellman, A Market-Oriented Programming Environment and its Application to Distributed Multicommodity Flow Problems, Journal of Artificial Intelligence Research, volume 1, pages 1-23, 1993 18.M. Johnson, P. Chang, J. Bradshaw, M. Breedy, L. Bunch, S. Kulkarni, J. Lott, N. Suri, A. Uszok, and Von-Wun Soo, Kaos Semantic Policy and Domain Services: An Application of DAML to Web Services-Based Grid Architectures, AAMAS workshop on Web Services, 2003 19.Java Agent Development Framework, http://jade.tilab.com/id NH0925392083 sid 914364 cfn 0 / id NH0925392084 auc 李青峰 tic 基於點對點型式的可程式化網路量測架構 adc 林華君博士 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 24 kwc 網路量測 kwc 點對點網路 kwc 行動式代理人 kwc 網路量測架構 abc 基於促進我們瞭解網路的各種特性,網路量測(Network Measurement)是一項極重要的活動。為了進行網路量測,人們發展了所謂的網路量測架構(Network Measurement Infrastructure),其內含多個量測用的量測點,每個量測點則是分散在網路上不同地點的工作站,專門負責對網路的性質進行各種不同的量測。目前已經有許多的分散式量測架構被提出,這些架構都具有一個共通的特性,即皆倚靠少數幾個(例如數十個)分散式的量測節點,去測量大規模的網路。以這樣的架構來量測網路的特性,其量測結果的精確度必然會跟所佈署的量測點個數相關。本篇論文著重於討論目前現有分散式量測架構應用於測量大規模的網路時有哪些不足。 tc 1 簡介 1 2 點對點網路 3 2.1 點對點網路 3 2.2 PROJECT JXTA 4 3 系統架構設計 7 3.1 系統架構 7 3.2 系統初始化 8 3.3 量測點群組管理 9 3.4 量測工作 9 3.5 JXTA和行動式代理人平台的整合 11 3.6 系統架構運作 12 3.6.1 系統初始化 12 3.6.2 請求執行基本測量工作 13 3.6.3 接受執行基本測量工作 13 3.6.4 請求執行指派式測量工作 14 3.6.5 接受執行指派式測量工作 15 3.6.6 搜尋測量工作結果 16 4 實際應用舉例 16 4.1 測量點對點之間的網路效能(QUERY END-TO-END PERFORMANCE) 16 4.2 搜尋網路拓撲結構位置與實際地理位置的對應(QUERY THE MAPPING FROM TOPOLOGICAL LOCATION TO GEOGRAPHICAL LOCATION) 17 5 結論 20 6 參考文獻 (REFERENCES) 20rf [1 ] Caceres, R.; Duffield, N.; Feldmann, A.; Friedmann, J.D.; Greenberg, A.; Greer, R.; Johnson, T.; Kalmanek, C.R.; Krishnamurthy, B.; Lavelle, D.; Mishra, P.P.; Rexford, J.; Ramakrishnan, K.K.; True, F.D.; van der Memle, J.E. “Measurement and Analysis of IP Network Usage and Behavior” Communications Magazine, IEEE , Volume: 38 , Issue: 5 , May 2000 Pages:144 – 151 [2 ] Wijata, Y.I.; Niehaus, D.; Frost, V.S. “A scalable agent-based network measurement infrastructure” Communications Magazine, IEEE , Volume: 38 , Issue: 9 , Sept. 2000 Pages:174 - 183 [3 ] RFC 2925 - Definitions of Managed Objects for Remote Ping, Traceroute, and Lookup Operations Available at: http://www.faqs.org/rfcs/rfc2925.html [4 ] RFC 2573 - SNMP Applications Available at: http://www.faqs.org/rfcs/rfc2573.html [5 ] Internet Measurement Infrastructure Available at: http://www.caida.org/analysis/performance/measinfra/ [6 ] Paulson; L.D. “Microsoft, Sun announce P2P technologies” Computer, Vol. 34, Issue. 9, Sept 2001, pp. 21-21 [7 ] Marques, P.; Simoes, P.; Silva, L.; Boavida, F.; Silva, J.; Providing applications with mobile agent technology Open Architectures and Network Programming Proceedings, 2001 IEEE , 27-28 April 2001 Pages:129 - 136 [8 ] “Project JXTA 2.0 Super-Peer Virtual Network” Available at: http://www.jxta.org/project/www/docs/JXTA2.0protocols1.pdf [9 ] Li Gong "Project JXTA: A Technology Overview" Available at: http://www.jxta.org/project/www/docs/jxtaview_01nov02.pdf [10 ] “Project JXTA: An Open, Innovative Collaboration” Available at: http://www.jxta.org/project/www/docs/OpenInnovative.pdf [11 ] How do I find the geographical location of a host, given its IP address ? Available at: http://www.private.org.il/IP2geo.html [12 ] RFC 1876 - A Means for Expressing Location Information in the Domain Name System Available at: http://www.faqs.org/rfcs/rfc1876.html [13 ] All Domains Available at: http://www.allwhois.com/cgi-bin/allwhois.cgi [14 ] CAIDA Available at: http://www.caida.org/tools/utilities/netgeo/ [15 ] Rüdiger Schollmeier, Gerald Kunzmann “GnuViz – Mapping the Gnutella Network to its Geographical Locations” Available at: http://www.lkn.ei.tum.de/lkn/mitarbeiter/hrs/Komponenten/paper/GnuViz.pdf [16 ] Venkata N. Padmanabhan; Lakshminarayanan Subramanian “An Investigation of Geographic Mapping Techniques for Internet Hosts” Proceedings of SIGCOMM'2001 Available at: http://research.microsoft.com/~padmanab/papers/sigcomm2001.pdfid NH0925392084 sid 914304 cfn 0 / id NH0925392085 auc 陳光泰 tic 基於道德與情緒之代理人決策 adc 蘇豐文 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 52 kwc 情緒 kwc 道德情操 kwc 有理性 kwc 非理性 kwc 可信代理人 kwc 情緒計算 abc 長久以來人工智慧一直著重在理性的研究。 理性代理人能為短期利益,在單一代理人環境做出最佳的決定,卻無法在長期,互相了解的多代理人環境中取得較佳的利益。 本文探討理性及非理性的極限與其存在的背景,提出以情緒為基礎的代理人架構,希望藉由情緒代理人架構解釋眾多非理性行為對於代理人的好處,在長期多代理人系統中,代理人以情緒解釋各種狀態,利用情緒的特質,以趨近快樂遠離痛苦的基本原則,快速評估環境,做出最快樂的決定。 tc 封面 i 摘要 ii 誌謝 iii 目錄表 iv 圖表 vi 第一章 緒論 1 第一節 研究動機 1 第二節 理性的不足 4 第三節 情緒研究的興起 6 第四節 道德對代理人社會的重要性 10 第二章 道德-情緒架構的設計 13 第一節 情緒的的表示方式 18 第一小節 情緒產生框架 18 第二小節情緒合成與情緒分類 22 第三小節 心情的產生 32 第二節 改變情緒以適應環境 33 第三節 優先權與焦點的好處與簡介 38 第四節 如何以情緒擬定計畫 40 第五節 以對未來的情緒做出簡單決策 44 第三章 案例與劇情 47 第一節 案例:買彩券的非理性 47 第二節 劇情:可信代理人的抉擇 51 第四章 討論與未來工作 57 第一節 問題與討論 57 第二節 結論 61 參考文獻 63rf 參考文獻 [1 ] Matt Ridley. (1996). The Origins of Virtue: Human Instincts and the Evolution of Cooperation., Viking Press. [2 ] Russell S. Norvig P. (2003). Artificial Intelligence: A Modern Approach, 2nd Edition, Prentice Hall. [3 ] Richard Dawkins. (1976). The selfish gene, Oxford University Press. [4 ] Eugénio Oliveira, Luís Sarmento. (2003). Emotional Advantage for Adaptability and Autonomy, Proceeding of the Second International Joint Conference of Autonomous Agent and Multiagent System, AAMAS’03, [5 ] Sally Planalp. (1999). Communicating Emotion Social, Moral, and Cultural Process, Cambridge University Press. [6 ] Thomas Nagel. (1987). What Does It All Mean? A Very Short Introduction to Philosophy, Oxford University Press. [7 ] Ana L. C. Bazzan and Rafael H. Bordini. (2001). A Framework for the Simulation of Agents with Emotions , In Proceedings of the fifth international conference on Autonomous agents, pages 292--299. ACM Press, 2001 [8 ] Fiedler, K. and Bless. H.. (2000). The formation of beliefs at the interface of affective and cognitive processes. In Frijda, N. et al. (Eds.). Emotions and Beliefs. Cambridge University Press 2000. [9 ] Bower, G., Forgas, J. Affect, Memory and Social Cognition. (2000). In Eich, E. et al. (Eds). Cognition and Emotion. Oxford U. P., 2000. [10 ] Schwarz, N.(2000). Emotion, Cognition, and Decision Making. In Smith, C. (Ed.) Cognition and Emotion, Vol. 14, Issue 4, Psychology Press, 2000. [11 ] Deborah Hayden. (2003). POX: Genius, Madness, and the Mysteries of Syphilis, Basic Books. [12 ] Lawrence Kohlberg. (1984), The psychology of moral development : the nature and validity of moral stages, San Francisco, Harper & Row [13 ] David Traum, Jeff Rickel, Jonathan Gratch and Stacy Marsella. (2003). Negotiation over Tasks in Hybrid Human Agent Teams for Simulation Based Training, Proceeding of the Second International Joint Conference of Autonomous Agent and Multiagent System , AAMAS 03 [14 ] Mayer, J.D., Gayle, M. Meehan, M. E., & Haarman, A. K. (1990). Toward better specification of the mood-congruenct effect in recall. Journal of Experimental Social Psychology, 26, 465-480. [15 ] Stacy Marsella, Jonathan Gratch. (2002). “A step toward irrationality: using emotion to change belief”, Proceeding of the First International Joint Conference of Autonomous Agent and Multiagent System , AAMAS 02, Bologna, Italy, ACM Press [16 ] Shelley E. Taylor, Letitia Anne Peplau, David O. Sears. (1996). Social Psychology Prentice Hall. [17 ] Walden T.A. (1991). Infant social referencing. In J. Garber & K. A. Dodge(Ed.), The development of emotion regulation and dysregulation (pp. 69-88). Cambridge: Cambridge University Press. [18 ] Ortony A., Clore, G. L., & Collins, A. (1988). The Cognitive Structure of Emotions. Cambridge University Press. [19 ] Stanley Schachter. (1964). The interaction of cognitive and physiological determinants of emotional state. In L. Berkowitz(Ed.), Advances in experimental social psychology (pp. 49-80). New York: Academic Press. [20 ] Lin Padgham, Guy Talyor. (1997). PAC Personality and Cognition-- an interactive system for modelling agent scenarios (IJCAI) [21 ] John R. Rose, Michael N. Huhns, Soumik Sinha Roy, William H. Turkett, Jr..(2002). An Agent Architecture for Long-Term Robustness, Proceeding of the First International Joint Conference of Autonomous Agent and Multiagent System , AAMAS 02, Bologna, Italy, ACM Press [22 ] B. Weiner. (1986). An attribution theory of motivation and emotion. New York: Springer-Verlag. [23 ] Sabyasachi Saha, Sandip Sen, Partha Sarathi Dtta. (2003). Helping Based on future expectations, Proceeding of the First International Joint Conference of Autonomous Agent and Multiagent System , AAMAS 03 [24 ] Velásquez J. (1998), Modeling Emotion-Based decision making. In D. Cañanero (Ed.), Emotional and Intelligent: The Tangled Knot of Cognition. [25 ] Damasio, A. (1994). Descartes’ Error. Avon Books, NY, NY. [26 ] Rosalind W. Picard. (1997) Affective Computing, MIT Press. [27 ]張春興. (2002). 現代心理學, 東華書局。id NH0925392085 sid 916308 cfn 0 / id NH0925392086 auc 陳科位 tic WDM網路上以最小化ADMs數目為目標的邏輯環狀結構設計 adc 林華君 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 67 kwc WDM kwc 環狀結構 kwc 存活能力 kwc ADMs abc 在這篇文章中,我們研究了如何利用Survivable Rings來確保WDM網路上存活能力。若有數條光徑形成環狀結構,則當環狀結構上的某條光徑無法傳送資料時,可以藉由環狀結構上的其他光徑來繼續傳送資料,所以說環狀結構上的光徑都具有存活能力,而為了使得每條光徑都具有存活能力,所有的光徑都必須是某個環狀結構的一部分,若是無法形成完整的環狀結構,則增加額外的光徑來形成完整的環狀結構,而這方面研究的成本考量,是希望使用較少的額外光徑,同樣也代表著希望使用較少的電子終端設備,在一般的實體拓樸上(general topology),有[5,6 tc 目 錄 1.概述....................................................1 1.1.光分波長多工網路上的存活能力(Survivability)與恢復機制........................................................5 1.2.WDM網路上相關的存活能力研究...........................7 1.3.要解決的問題與目前提出的方法.........................14 1.4.研究動機與貢獻.......................................20 2.將問題定義與問題難易度.................................25 3.提出的Greedy演算法.....................................29 3.1.判斷所需額外光徑程序(Additional_Lightpath_Procedure).29 3.2.尋找初始集合程序(Initial_Set_Finding_Procedure). ....31 3.3.簡單的Greedy演算法(Simple Greedy Algorithm)..........39 3.4.增進的Greedy演算法(Enhanced Greedy Algorithm)........43 4.演算法效能模擬與結果...................................52 5.結論...................................................64 參考文獻.................................................65rf [1 ] B. Mukherjee, ”WDM-based local lightwave networks. I. Single-Hop Systems,” IEEE Network, vol. 6, no. 3, pp. 12-27, May 1992. [2 ] B. Mukherjee, ”WDM-based local lightwave networks. II. Multihop Systems,” IEEE Network, vol. 6, no. 4, pp. 20-32, May 1992. [3 ] S. Ramamuthy and B. Mukherjee, “Survivable WDM Mesh Networks: Part I—Protection,” Proc., IEEE INFOCOM’99, New York, Mar. 1999, pp.744-751. [4 ] S. Ramamuthy and B. Mukherjee, “Survivable WDM Mesh Networks: Part II—Restoration,” Proc., ICC’99, Vancouver, CA, June 1999, pp.2023-2030. [5 ] T. Eilam, S. Moran and S. Zaks, “Lightpath Arrangement in Survivable Rings to Minimize the Switching Cost,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 1, pp.172 – 182, Jan. 2002. [6 ] G. Calinescu, O. Frieder, and P. J. Wan, “Minimizing Electronic Line Terminals for Automatic Ring Protection in General WDM Optical Networks,” IEEE Journal on Selected Areas in Communications, vol. 20 , no. 1, pp.183 – 189, Jan. 2002. [7 ] O. Crochat and J.-Y. Le Boudec, “Design Protection for WDM Optical Networks,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 7, pp. 1158-1165, Sep. 1998. [8 ] Y. Wang, L. Li and S. Wang, “A New Algorithm of Design Protection for Wavelength-Routed Networks and Efficient Wavelength Converter Placement,” Proc., ICC’01, vol. 6, 11-14 June 2001, pp.1807-1811. [9 ] A. Nucci, B. Sanso, T. G. Crainic, E. Leonardi, and M. A. Marsan, “Design of Fault-Tolerant Logical Topologies in Wavelength-Routed Optical IP Networks,” Proc., IEEE GLOBECOM '01, vol. 4, 25-29 Nov. 2001, pp.2098-2103. [10 ] E. Modiano and A. Narula-Tam, “Survivable Lightpath Routing: A New Approach to the Design of WDM-Based Networks,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 4, pp.800-809, May 2002. [11 ] A. Sen, B. Hao, B. H. Shen and G. Lin, ”Survivable Routing in WDM Networks-Logical Ring in Arbitrary Physical Topolopy,” Proc, ICC’01, vol. 5, 28 April-2 ,May 2002, pp. 2771 – 2775. [12 ] A. Fumagalli, I. Cerutti and M. Tacca, “Optimal design of survivable mesh networks based on line switched WDM self-healing rings,” IEEE/ACM Transactions on Networking, vol. 11, no. 3, pp.501-512, June 2003 [13 ] M. Medard, R. A. Barry, S. G. Finn, He Wenbo and S. S. Lumetta, “Generalized Loop-Back Recovery in Optical Mesh Networks,” IEEE/ACM Transactions on Networking, vol. 10, no. 1 , pp. 153-164, Feb. 2002. [14 ] G. Ellinas, A. G. Hailemariam, and T.E. Stern, “Protection Cycles in Mesh WDM Networks,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 10, pp. 1924-1937, Oct. 2000. [15 ] D. Stamatelakis, and W. D. Grover, “IP Layer Restoration and Network Planning Based on Virtual Protection Cycles,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 10, pp. 1938-1949, Oct. 2000. [16 ] D. A. Schupke, C. G. Grube and A. Autenrieth, “A Optimal Configuration of p-Cycles in WDM Networks,” Proc., ICC’2002, vol. 5, 28 April-2 May 2002, pp. 2761-2765. [17 ] X. Guoliang, C. Li and K. Thulasiraman, “Quality-of-Service and Quality-of-Protection Issues in Preplanned Recovery Schemes Using Redundant Trees,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 8, pp. 1332-1345, Oct. 2003. [18 ] M. Medard, S. G. Finn, R. A. Barry and R. G. Gallager, “Redundant Trees for Preplanned Recovery in Arbitrary Vertex-Redundant or Edge-Redundant Graphs,” IEEE/ACM Transactions on Networking, vol. 7, no. 5, pp.641-652, Oct. 1999. [19 ] J. Shi and J. Fonseka, “Hierarchical self-healing rings,” IEEE/ACM Transactions on Networking, vol. 3, no. 6, pp. 690-697, Dec. 1995. [20 ] J. Shi and J. Fonseka, “Interconnection of self-healing rings,” Proc., ICC’96,vol. 3, June 1996, pp. 1563-1567. [21 ] L.Wuttisittikulkij and M. O’Mahony, “Design of WDM network using a multiple ring approach,” Proc.,IEEE GLOBECOM’97, vol. 1, Nov. 1997, pp. 551-555. [22 ] C. Xin, Y. Ye, S. Dixit and C. Qiao, ”A Joint Working and Protection Path Selection Approach in WDM Optical Networks,” Proc.,IEEE GLOBECOM’01, vol. 4, 25-29 Nov. 2001, pp.2165-2168. [23 ] A. Fumagalli, M. Tacca, F. Unghvary and A. Farago, “Shared Path Protection With Differentiated Reliability,” Proc., ICC’02, vol. 4, 28 April-2 May 2002, pp.2157-2161. [24 ] Canhui Ou, Jing Zhang, Hui Zang, L. H. Sahasrabuddhe and B. Mukherjee, Near-Optimal Approaches for Shared-Path Protection in WDM Mesh Networks,” Proc., ICC '03, vol. 2, 11-15 May 2003, pp.1320-1324. [25 ] C. Assi, Y. Ye, A. Shami, S. Dixit and M. Ali, “Efficient Path Selection and Fast Restoration Algorithms for Shared Restorable Optical Networks,” Proc., ICC’03, vol. 2, 11-15 May 2003, pp.1412-1416. [26 ] L. Liu, X. Li, P.-J. Wan and O. Frieder, “Wavelength Assignment in WDM Rings to Minimize SONET ADMs,” Proc., IEEE INFOCOM’00, vol. 2, 26-30 March 2000, pp.1020-1025. [27 ] X. Yuan and A. Fulay, “Wavelength Assignment to Minimize the Number of SONET ADMs in WDM Rings,” Proc., ICC’02, vol. 5, 28 April-2 May 2002, pp.2917-2921. [28 ] R. Berry and E. Modiano, “Reducing Electronic Multiplexing Costs in SONET/WDM Rings with Dynamically Changing Traffic,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 10, pp.1961-1971, Oct. 2000. [29 ] O. Gerstel, R. Ramaswami and G. H. Sasaki, “Cost-Effective Traffic Grooming in WDM Rings,” IEEE/ACM Transactions on Networking, vol. 8, no. 5, pp.618-630, Oct. 2000 [30 ] O. Gerstek, P. Lin and G. Sasaki, “Wavelength assignment in a WDM ring to minimize cost of embedded SONET rings,” Proc., IEEE INFOCOM’98, vol. 1, pp.94-101. [31 ] C. A. Brackett, “Dense wavelength division multiplexing networks: Principles and applications,” IEEE Journal on Selected Areas in Communications, vol. 8, pp.948–946, Aug. 1990. [32 ] P. R. Trischitta and W. C. Marra, “Applying WDM technology to undersea cable networks,” IEEE Commun. Mag., pp. 62–66, Feb. 1998.id NH0925392086 sid 904322 cfn 0 / id NH0925392087 auc 劉宏浩 tic 以智慧型代理人為基礎的入侵偵測系統 adc 蘇豐文 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 47 kwc 入侵偵測系統 kwc 智慧型代理人 kwc 警報相關 abc 隨著科技的進步,網路已成為日常生活中不可缺少的一部份,不過藉由竊取他人資料賺取自身利益的駭客也就日以遽增,如何防範駭客的攻擊儼然已經變成了重要的研究課題,不幸的是,目前現有的入侵偵測系統(intrusion detection system)都不足以擔當起完整的防禦任務。 tc 第一章 序論 -1 第二章 相關研究 -4 第一節 入侵偵測相關 -4 一、入侵偵測系統 -4 二、蜂蜜罐 -5 三、防火牆 -6 四、AAFID -7 第二節 警報關聯相關 -9 一、特徵辨識 -9 二、EMRALD -10 第三章 系統設計 -12 第一節 系統概論 -12 一、客戶端 -12 二、伺服器端 -13 第二節 系統元件介紹 -14 一、代理人 -14 二、警報關聯平台 -17 三、本體論 -18 第三節 警報融合 -20 一、證據性融合 -22 二、推測性融合 -24 第四章 研究成果與討論 -29 第一節 實驗環境介紹 -29 第二節 實驗一:證據性融合門檻值的設定 -30 第三節 實驗二:證據性融合時間區段的設定 -33 第四節 實驗三:證據性融合實驗成果 -36 第五節 實驗四:推測性融合實驗成果 -40 第五章 結論與未來展望 -44 參考文獻 -46rf [1 ] A. Valdes and K. Skinner, “probabilistic-alert-correlation”, Recent Advances in Intrusion Detection (RAID), 2001. [2 ] C. W. Geib and R. P. Goldman, “Plan Recognition in Intrusion Detection Systems”, DARPA Information Survivability Conference and Exposition (DISCEX), June 2001. [3 ] E. Spafford, J.S. Balasubramaniyan, J.O.Garcia-Fernandez, D. Isacoff and D. Zamboni, “An architecture for intrusion detection using autonomous agents”, Purdue University, 1998. [4 ] F. Cuppens, F. Autrel, A. Mi`ege and S. Benferha, “Correlation in an intrusion detection process”, Internet Security Communication Workshop (SECI), September 2002. [5 ] F. Cuppens and R. Ortalo, “LAMBDA:A Language to Model a Database for Detection of Attacks”, Third International Workshop on the Recent Advances in Intrusion Detection (RAID'2000), October 2000. [6 ] F. Cuppens and A. Miège, “Alert Correlation in a Cooperative Intrusion Detection Framework”, IEEE Symposium on Research in Security and Privacy, Oakland, May 2002. [7 ] F. Cuppens, F. Autrel, A. Mi`ege and S. Benferhat, “Recognizing Malicious Intention in an Intrusion Detection Process”, Second International Conference on Hybrid Intelligent Systems, December 2002. [8 ] Firewall, http://www.syau.edu.cn/nic/support/su7.htm. [9 ] 簡易防火牆建置與流量統計, pangty.ta139.com/ipchains/0.htm. [10 ] Honey pot, http://www.sarc.com/region/tw/enterprise/article/mantrap.html. [11 ] J. Pikoulas, W.Buchanan, M.Mannion and K.Triantafyllopoulos, “An Intelligent Agent Security Intrusion System”, 9th Annual IEEE International Conference and Workshop on the Engineering of Computing Based Systems, April 2002. [12 ] K. Boudaoud, N. Foukia and Z. Guessoum, “An Intelligent Agent Approach for Security Management”, 7th Plenary Workshop HP Openview University Association, June 2000. [13 ] K. Boudaoud, Z. Guessoum and C. McCathieNevile, “Policy-based Security Management using a Multiagent system”, Proceedings of the 8th HP-OVUA Workshop, 2002. [14 ] M. Bishop, “Vulnerabilities Analysis”, Proceedings of the Recent Advances in Intrusion Detection (RAID), September 1999. [15 ] R. P. Goldman, C. W. Geib and C. A. Miller, “A new Model of Plan Recognition” proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI), 1999. [16 ] Snort, http://www.snort.org [17 ] S. Russell and P. Norvig, “Artificial Intelligent - A Modern Approach” ,ISBN 0-13-080302-2, 2003 [18 ] T. Olukemi, I. Liabotis, O. Prnjat, L. Sacks, “Security and Resource Policy-based Management Architecture for ALAN”, Net-Con'2002 - IFIP and IEEE Conference on Network Control and Engineering for QoS , Security and Mobility, Paris, France, 2002.id NH0925392087 sid 916321 cfn 0 / id NH0925392088 auc 劉義文 tic 行動虛擬私有網路上動態本地代理器之指派方法 adc 陳志成 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 46 kwc 虛擬私有網路 kwc 可移動式網際網路通訊協定第四版 kwc 動態本地代理器 kwc IP 層保密通訊協定 kwc 認證,授權及計費服務 abc 網路安全已成為現今網際網路(Internet)技術發展最重要的考量之一。在眾多已發展的安全機制之中,虛擬私有網路(Virtual Private Network, 以下簡稱VPN)是目前最被廣為應用的一種。VPN是一種可利用廣域網路(如:網際網路)將一遠端使用者電腦與一本地網路的伺服器建立專用的網路通道,進行數據傳輸,並提供就像在封閉的私人區域網路(如:公司內部網路)裡一樣安全。 tc 1. Introduction 1.1. Virtual Private Networks (VPNs) . . . . . . . . . . . . . . . . . . . . . . . 2 1.2. Mobile IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3. Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Related Work 2.1. IETF Mobile VPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2. Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2. Dynamic Home Agent Assignment . . . . . . . . . . . . . . . . . . . . . . 10 2.3. Diameter Mobile IPv4 Application . . . . . . . . . . . . . . . . . . . . . . 11 3. Dynamic External Home Agent Assignment in Mobile VPN 3.1. System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2. Roaming in Private Networks . . . . . . . . . . . . . . . . . . . . . . . . . 14 vi 3.3. Roaming in Public Networks . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.4. System Requirements for Dynamic x-HA Assignment . . . . . . . . . . . . 21 4. Testbed and Experiments 4.1. Testbed Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2. Implementation of Dynamic x-HA Assignment . . . . . . . . . . . . . . . 23 4.2.1. Diameter Mobile IPv4 Application . . . . . . . . . . . . . . . . . . 23 4.2.2. Foreign Agent and Home Agent . . . . . . . . . . . . . . . . . . . 26 4.2.3. Mobile Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3. Implementation of IETF Mobile VPNs . . . . . . . . . . . . . . . . . . . . 28 4.4. Experiments and Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.4.1. Experimental Analyses of Dynamic x-HA Assignment . . . . . . . 29 4.4.2. Experimental Analyses of IETF Mobile VPN . . . . . . . . . . . . 31 4.5. Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5. Conclusions Bibliographyrf [1 ] S. Kent and R. Atkinson, “Security Architecture for the Internet Protocol.” IETF RFC 2401, Nov. 1998. [2 ] C. E. Perkins, “IP Mobility support for IPv4.” IETF RFC 3344, Aug. 2002. [3 ] S. Vaarala (Ed.), “Mobile IPv4 traversal across IPsec-based VPN gateways.” [4 ] F. Adrangi and H. Levkowetz, “Problem statement: Mobile IPv4 traversal of VPN gateways.” [5 ] K. Hamzeh, G. Pall, W. Verthein, J. Taarud, W. Little, and G. Zorn, “Point-to-Point Tunneling Protocol (PPTP).” IETF RFC 2637, 1999. [6 ] W. Townsley, A. Valencia, A. Rubens, G. Pall, G. Zorn, and B. Palter, “Layer Two Tunneling Protocol (L2TP).” IETF RFC 2661, Aug. 1999. [7 ] D. C. Plummer, “An Ethernet address resolution protocol.” IETF RFC 826, Nov. 1982. [8 ] J. Postel, “Multi-LAN Address Resolution.” IETF RFC 925, Oct. 1984. [9 ] D. Harkins and D. Carrel, “The Internet Key Exchange (IKE).” IETF RFC 2409, Nov. 1998. [10 ] S. Kent and R. Atkinson, “IP Encapsulating Security Payload (ESP).” IETF RFC 2406, Nov. 1998. [11 ] M. Kulkarni, A. Patel, and K. Leung, “Mobile IPv4 dynamic Home Agent assignment.” [12 ] R. Droms, “Dynamic Host Configuration Protocol.” IETF RFC 2131, Mar. 1997. [13 ] S. Alexander and R. Droms, “DHCP Options and BOOTP Vendor Extensions.” IETF RFC 2132, Mar. 1997. [14 ] C. Perkins and P. Calhoun, “Mobile IPv4 challenge/response extensions.” IETF RFC 3012, Nov. 2000. [15 ] P. Calhoun and C. Perkins, “Mobile IP network access identifier extension for IPv4.” IETF RFC 2794, Mar. 2000. [16 ] P. Calhoun, , J. Loughney, E. Guttman, G. Zorn, and J. Arkko, “Diameter base protocol.” IETF RFC 3588, Sept. 2003. [17 ] P. R. Calhoun, T. Johansson, C. E. Perkins, T. Hiller, and P. J. McCann, “Diameter Mobile IPv4 application.” [18 ] T. Dierks and C. Allen, “The TLS Protocol.” IETF RFC 2246, Jan. 1999. [19 ] F. Johansson and T. Johansson, “Mobile IPv4 extension for carrying network access identifiers.” IETF RFC 3846, June 2004. [20 ] C. E. Perkins and P. R. Calhoun, “AAA registration keys for Mobile IPv4.” [21 ] “FreeS/WAN - implementation of IPsec and IKE for Linux.” http://www.freeswan.org/. [22 ] “NIST Net - a Linux-based network emulation tool.” http://snad.ncsl.nist.gov/itg/nistnet/. [23 ] “Dynamics - HUT Mobile IP.” http://dynamics.sourceforge.net/. [24 ] C. Rigney, S.Willens, A. Rubens, andW. Simpson, “Remote authentication dial in user service (RADIUS).” IETF RFC 2865, June 2000. [25 ] “Netperf - benchmark used to measure the performance of many different types of networking.” http://www.netperf.org/.id NH0925392088 sid 914343 cfn 0 / id NH0925392089 auc 陸宗慶 tic Adaptive Routing Tree Reconstruction with Simultaneous Flip-flop and Buffer Insertion adc 王廷基 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 33 kwc 奈米設計 abc We study in this thesis the problem of adaptive routing tree reconstruction with simultaneous flip-flop and buffer insertion, where a routing tree is given for considering flip-flop and buffer insertion with blockage avoidance and net segments of the tree are adaptively re-routed such that the clock period of the resultant registered-buffered tree is met and the latency is as small as possible. Our focus is to find alternative registered-buffered paths between each internal node inside a blockage and its parent node. To this end, we modify an existing registered-buffered path construction algorithm to find a set of irredundant registered-buffered paths (instead of just a single path). All the paths are found within a bounding region containing both the internal node and the parent node. The size of the routing grid graph imposed on the bounding region is scalable for considering tradeoff between CPU time and solution quality. Our approach can be also easily extended to handle several other problems, such as a latency constrained problem and a buffer insertion only problem. We conduct experiments to compare our approaches with two existing algorithms, the MiLa and GiLa algorithms. In comparison to the MiLa algorithm, our approach is able to find a solution with the same latency (for about half of the test cases) or even better latency (for the remaining test cases) and the same wirelnegth, while the buffer/flip-flop usage and CPU time are comparable or acceptable. In comparison to the GiLa algorithm, our approach is able to find a feasible solution for each test case while the Gila algorithm fails to do so for several test cases. tc Contents ABSTRACT I CONTENTS II LIST OF FIGURES III LIST OF TABLES IV CHAPTER 1 INTRDOUCTION 1 CHAPTER 2 PRELIMINARIES 6 CHAPTER 3 PREVIOUS WORKS 8 3.1 THE MILA ALGORITHM 8 3.1 THE GILA ALGORITHM 10 CHAPTER 4 OUR APPROACH 13 CHAPTER 5 EXTENSIONS 20 CHAPTER 6 EXPERIMENTAL RESULTS 22 CHAPTER 7 CONCLUSION 31 REFERENCE 32rf References [1 ] L. Lev and P. Chao, “Down to the wire: requirements for nanometer design implementation,” Cadence White Paper. [2 ] J. Cong, “Challenges and opportunities for design innovations in nanometer technologies,” SRC Design Sciences Concept Paper, 1997. [3 ] L. P. P P. van Ginneken, “ Buffer placement in distributed RC-tree networks for minimal Elmore delay,” Proc. IEEE International Symposium on Circuits and Systems, pp. 865-868, 1990. [4 ] W. Shi and Z. Li, “An O(nlogn) time algorithm for optimal buffer insertion,” Proc. Design Automation Conference, pp. 580-585, 2003. [5 ] J. Lillis, C. K. Cheng and T. Y. Lin, “Simultaneous routing and buffer insertion for high performance interconnect,” Proc. the Great Lake Symposium on VLSI, pp. 148-153, 1996. [6 ] A. H. Salek, J. Lou and M. Pedram, “A simultaneous routing tree construction and fanout optimization algorithm,” Proc. International Conference on Computer-Aided Design, pp. 625-630, 1998. [7 ] A. H. Salek, J. Lou and M. Pedram, “Merlin: semi-order-independent hierarchical buffered routing tree generation using local neighborhood search,” Proc. Design Automation Conference, pp. 472-478, 1999. [8 ] M. Hrkic and J. Lillis, “Buffer tree synthesis with consideration of temporal locality, sink polarity requirements, solution cost and blockages,” Proc. International Symposium on Physical Design, pp. 98-103, 2002. [9 ] C. J. Alpert, G. Gandham, M. Hrkic, J. Hu, A.B. Kahng, J. Lillis, B. Liu, S.T. Quay, S.S. Sapatnekar and A.J. Sullivan, “Buffered Steiner trees for difficult instances,” IEEE Transactions on Computer-Aided Design, Vol. 21, No. 1, January 2002, pp. 3-14. [10 ] H. Zhou, D. F. Wong, I-M. Liu and A. Aziz, “Simultaneous routing and buffer insertion with restrictions on buffer locations,” Proc. Design Automation Conference, pp. 96-99, 1999. [11 ] A. Jagannathan, S.-W. Hur and J. Lillis, “A fast algorithm for context-aware buffer insertion,” Proc. Design Automation Conference, pp. 368-373, 2000. [12 ] J. Cong and X. Yuan. “Routing tree construction under fixed buffer locations,” Proc. Design Automation Conference, pp. 379-384, 2000. [13 ] X. Tang, R. Tian, H. Xiang and D.F.Wong, “A new algorithm for routing tree construction with buffer insertion and wire sizing under obstacle constraints,” Proc. International Conference on Computer-Aided Design, pp. 49-56, 2001. [14 ] C. J. Alpert, G. Gandham, J. Hu, J. L. Neves, S. T. Quay, and S. S. Sapatnekar, “A Steiner tree construction for buffers, blockages, and bays,” IEEE Transactions on Computer-Aided Design, Vol. 20, No. 4, April 2001, pp. 556-562. [15 ] J. Hu, C. J. Alpert, S. T. Quay, and G. Gandham, “Buffer insertion with adaptive blockage avoidance,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol. 22, No. 4, April 2003, pp. 492-498. [16 ] S. Hassoun, C. Alpert, and M. Thiagarajan, "Optimal buffered routing path constructions for single and multiple clock domain systems", Proc. International Conference on Computer-Aided Design, pp. 247-253, 2002. [17 ] P. Cocchini , “Concurrent flip-flop and repeater Insertion for high performance integrated circuits,” Proc. International Conference on Computer-Aided Design, pp. 268-273, 2002.id NH0925392089 sid 914380 cfn 0 / id NH0925392090 auc 劉宗信 tic 熱度導向式標準單元之力導向全域配置演算法 adc 王廷基 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 38 kwc 力導向全域配置 kwc 標準單元 kwc 熱度導向式配置 abc 現今超大型積體電路設計之流程中,關於熱度問題越顯重要。在晶片中,若是熱度無法平均分配於晶片表面的話,將會影響到電路的可靠度,甚至成為晶片效能的瓶頸。 tc ABSTRACT II CONTENTS III LIST OF FIGURES IV LIST OF TABLES V CHAPTER 1 INTRODUCTION 1 CHAPTER 2 RELATED WORK 4 2.1 FORCE-DIRECTED METHOD 5 2.2 COMPACT SUBSTRATE THERMAL MODEL 7 CHAPTER 3 PROBLEM FORMULATION 11 CHAPTER 4 OUR APPROACH 13 4.1 THE READJUSTMENT STRATEGY 15 4.2 THE CALCULATION OF ADDITIONAL FORCE 18 4.3 THE POST-PROCESSING TECHNIQUE 21 CHAPTER 5 EXPERIMENTAL RESULTS 24 CHAPTER 6 CONCLUSIONS 35 REFERENCES 36rf [1 ] W.-J. Sun and C. Sechen, “A loosely coupled parallel algorithm for standard cells placement,” in Proc. of Int. Conf. Computer-Aided Design, pp. 137-144, 1994. [2 ] W. Sun and C. Sechen, “Efficient and effective placement for very large circuits,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol. 14, No. 3, pp. 349-359, Mar, 1995. [3 ] M. C. Yildiz and P. H. Madden, “Global objectives for standard cell placement,” in Proc. of Great Lakes Symp. on VLSI, pp. 68-72. [4 ] C. M. Fiduccia and R. M. Mattheyses, “A linear time heuristic for improving network partition,” in Proc. of Desgin Automation Conf., pp. 175-181, 1982. [5 ] S.-W. Hur, T. Cao, k. Rajagopal, Y. Parasuram, A. Chowdhary, V. Tiourin and B. Halpin, “Force directed Mongrel with physical net constraints,” in Proc. of Design Automation Conf., pp. 214-219, 2003 . [6 ] Y.-C. Chou and Y.-L. Lin, “Effective enforcement of path-delay constraints in performance-driven placement,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol. 21, No. 1, Jan, 2002. [7 ] H. Eisenmann and F. M. Johannes, “Generic global placement and floorplanning,” in Proc. of Design Automation Conf., pp. 269-274, June 1998. [8 ] J. Kleinhans, G. Sigl, F. Johannes, and K. Antreich, “GORDIAN: VLSI placement by quadratic programming and slicing optimization,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol. 10, No. 3, pp. 356-365, Mar, 1991. [9 ] C. N. Chu and D. F. Wong, “A matrix synthesis approach to thermal placement,” in Proc. of Int. Symp. on Physical Design, pp. 163-168, 1997. [10 ] C. H. Tsai and S. M. Kang, “Cell-level placement for improving substrate thermal distribution,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol. 19, No. 2, pp. 253-266, Feb. 2000. [11 ] G. Chen and S. S. Sapatnekar, “Partition-driven standard cell thermal placement,” in Proc. of Int. Symp. on Physical Design, pp. 75-80, 2003. [12 ] B. Obermeier and F. M. Johannes, “Temperature-aware global placement,” in Proc. of Asia South Pacific Design Automation Conf., pp. 143-148, Jan. 2004. [13 ] B. Goplen and S. Sapatnekar, “Efficient thermal placement of standard cells in 3D ICs using a force directed approach,” in Proc. of Int. Conf. on Computer-Aided Design, pp. 86 - 89, 2003. [14 ] P. Madden, “Reporting of standard cell placement results,” in Proc. of Int. Symp. on Physical Design, pp. 30-35, 2001. [15 ] http://www.netlib.org/c/meschach [16 ] http://vlsicad.cs.binghamton.edu/id NH0925392090 sid 914387 cfn 0 / id NH0925392091 auc 蔡蒔修 tic 可組態乘法器之功率消耗估計模型 adc 吳中浩 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 27 kwc 功率估計 kwc 乘法器 abc 我們提出了一個可組態乘法器的功率消耗估計模型,這個估計模型可以預估各種不同組態的乘法器的功率消耗。我們提出的功率消耗模型中,特徵值抽取所需的運算資源被大幅度地減少。使用者可以將要輸入可組態乘法器的資料流,直接輸入到我們提出來的模型以得到估計的功率消耗,這個功率消耗估計模型可以在系統架構抽象層,幫助設計者針對乘法運算的功率消耗做最佳化的動作。我們提出的功率消耗估計模型在積體電路前期的設計階段就可以估計出可靠的功率消耗,大約有百分之三十二的錯誤率,而錯誤率的標準差是百分之十四左右。 rf [1 ] Subodh Gupta and Farid N. Najm, “Power Modeling for High-Level Power Estimation,” IEEE Trans. VLSI Systems, vol. 8, No. 1, Feb. 2000. [2 ] Giuseppe Bernacchia and Marios C. Papaefthymiou. “Analytical Macromodeling for High-Level Power Estimation,” in Proceedings of IEEE International Conference on Computer Aided Design, Nov. 1999. [3 ] A. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power CMOS design,” IEEE Journal of Solid-State Circuits, pp. 472-484, Apr. 1992. [4 ] P. Duncan, S. Swamy, and R. Jain, “Low-power DSP circuit design using retimed maximally parallel architectures,” in Proc. 1st Symp. Integrated System, Mar. 1993, pp.266-275. [5 ] S. R. Powell and P. M. Chau, “Estimating power dissipation of VLSI signal processing chips: The PFA Technique,” in Proc. VLSI Signal Processing IV, 1990, pp. 250-259. [6 ] H. Mehta, R. M. Owens, and M. J. Irwin, “Energy characterization based on clustering,” in Proc. 33rd ACM/IEEE Design Automation Conf., June 1996, pp. 702-707. [7 ] A. Raghunathan, S. Dey, and N. K. Jha, “Register-transfer level estimation techniques for switching activity and power consumption,” in Proc. IEEE International Conf. Computer-Aided Design, Nov. 1996, pp. 158-165. [8 ] Subodh Gupta, Farid N. Najm, “Analytical Models for RTL Power Estimation of Combinational and Sequential Circuits,” Proc. of IEEE Alessandro Volta Memorial Workshop on Low-Power Design, 1999, Page 164. [9 ] Michael Eiermann, Walter Stechele, “Novel Modeling Techniques for RTL Power Estimation”, International Symposium on Low Power Electronic Design, Aug. 2002. pp. 323-328 [10 ] Alessandro Bogliolo, Roberto Corgnati, Enrico Macii, Massimo Poncino, “Parameterized RTL Power Models for Soft Macros”, IEEE Trans. on VLSI Systems, vol. 9, No. 6, Dec. 2001, pp. 880-887. [11 ] Paul E. Landman and Jan M. Rabaey, “Architectural Power Analysis: The Dual Bit Type Method”, IEEE Trans. on VLSI Systems, 1995, Pages173-187. [12 ] Xun Liu Marios C. Papaefthymiou, “A Statistical Model of Input Glitch Propagation and its Application in Power Macromodeling”, Proc. of the 45th IEEE International Midwest Symposium on Circuits and Systems , August 2002 [13 ] Rita Yu Chen and Mary Jane Irwin, “Architecture-Level Power Estimation and Design Experiments”, ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 1, January 2001, Pages 50-66. [14 ] Alice Wang and Anantha P. Chandrakasan, “Energy-Aware Architectures for a Real-Valued FFT Implementation”, Proc. of ISLPED, 2003. [15 ] Xun Liu and Marios C. Papaefthymiou, “A Markov Chain Sequence Generator for Power Macromodeling”, Proc. of ICCAD, 2003, Pages 404-411id NH0925392091 sid 914310 cfn 0 / id NH0925392092 auc 董龍治 tic 在動態路由環境下的網路連線異常偵測 adc 林華君 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 38 kwc 動態路由 kwc 連線異常 kwc 偵測 kwc 靜態路由 abc Link failure是一種嚴重的網路錯誤的情況,偵測link failure以及找出哪一條link發生錯誤是一件很重要的事。我們可以在網路上放置多個所謂的「detector」,透過讓detector週期性的traceroute到某些固定的節點,藉以比對經過路徑的方式來偵測link failure。為了減少放置detector的成本,必須盡量減少detector的數目。在我們之前所做的研究中,提出了一個可以在static routing環境下找出放置detector位置的方法,利用這個方法所找出的detector數目也相當接近最佳化下的最少數目。但在dynamic routing環境下這個方法有些不適用的地方。不適用的情形在於:當從detector到目的地有兩條以上的路徑時,traceroute會選擇其中之一的路徑傳送封包,如果選擇的路徑改變了,依照我們之前的方法,會被視為另一條路徑上發生了link failure。但事實上也許link是正常的,或是的確發生了link failure,無法僅僅依此就判定發生link failure。在這篇論文中,我們提出了在dynamic routing的環境下正確運作的方法,我們也分析了在各種不同的圖形下detector數目的多寡,並且提出合理的解釋。 tc Chapter 1. Introduction……………………………………………………………1 Chapter 2. Related Work……………………………………………………………4 Chapter 3. Proposed Algorithms…………………………………………………9 Chapter 4. Simulation Results…………………………………………………20 Chapter 5. Conclusions……………………………………………………………37 Reference……………………………………………………………………………38rf [1 ] Andre Broido, kc claffy, “Internet topology: connectivity of IP graphs”, Proceedings of SPIE International Symposium on Convergence of IT and Communication, Aug, 2001 [2 ] Labovitz, C.; Malan, G.R.; Jahanian, F.; ” Internet Routing Instability”, Networking, IEEE/ACM Transactions on , Volume: 6 , Issue: 5 , Oct. 1998, Pages:515 - 528 [3 ] E. W. Zegura, “GT-ITM: Georgia Tech internetwork topology models (software),” 1996, http://www.cc.gatech.edu/projects/gtitm/, http://www.cc.gatech.edu/fac/Ellen.Zegura/gt-itm/gt-itm.tar.gz [4 ] Zegura, E.W.; Calvert, K.L.; Donahoo, M.J.; “A Quantitative Comparison of Graph-Based Models for Internet Topology”, Networking, IEEE/ACM Transactions on , Volume: 5 , Issue: 6 , Dec. 1997, Pages:770 – 783 [5 ] T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms, MIT Press, 1989, pp. 974-978. [6 ] R. Barth, “A Davis-Putnam Based Enumeration Algorithm for Linear Pseudo-Boolean Optimization,” Technical Report MPI-I-95- 2-003, Max-Planck-Institute far Informatik, January 1995. [7 ] W. Stallings, SNMP SNMPv2 and RMON - Practical Network Management 2nd Edition, Addison-Wesley, 1996.id NH0925392092 sid 914357 cfn 0 / id NH0925392093 auc 陳盈村 tic 網路安全系統之TCAM字串比對架構設計 adc 黃能富 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 37 kwc 入侵偵測系統 kwc 字串比對 kwc 三態內容存取記憶體 kwc 二元內容存取記憶體 kwc 前置處理器 abc 現今網路型入侵偵測系統已經被大量的佈置。特徵比對網路型入侵偵測系統的效能是根據字串比對演算法,將封包內容跟特徵做比對。以軟體實做字串比對的演算法雖然具有較彈性的優點,但其效能卻不盡理想。本論文設計了一個使用TCAM與BCAM為前處理器系統加速字串比對速度。TCAM是一種可儲存三種邏輯值”0”, “1”,“don’t care”的記憶體。特徵的字首被謹慎地結構化後儲存在BCAM與TCAM中。當封包到達時,每個BCAM/TCAM項目將被同時搜尋。所有的封包都會被兩階段的掃描。第一階段,使用BCAM/TCAM快速地指出攻擊可能發生的位置。第二階段,系統才會真正地確認攻擊碼是否存在。根據效能評估,這個架構可以達到multi-gigabits的效能。 rf [1 ] Panos C. Lekkas, “Network Processors: Architectures, Protocols and Platforms”, McGraw-Hill, 2003. [2 ] McHugh, J., Christie, A, and Allen, J. “Defending Yourself: The Role of Intrusion Detection Systems,” IEEE Software, Vol. 17, Issue: 5, Sept.-Oct. 2000, pp.42–51. [3 ] Bo Jiang and Bin Liu “High-Speed Discrete Content Sensitive Pattern Match Algorithm for Deep Packet Filtering”, International Conference on Computer Networks and Mobile Computing (ICCNMC 2003), Shanghai, China, October. 2003, pp.149–156. [4 ] Snort: The Open Source Network Intrusion Detection System, http://www.snort.org/ [5 ] Young H. Cho, Shiva Navab, and William H. Mangione-Smith, “Specialized Hardware for Deep Network Packet Filtering”, Proceedings of FPL 2002, LNCS 2438, pp.452-461. [6 ] Nathan Tuck, Timothy Sherwood, Brad Calder, and George Varghese, “Deterministic Memory-Efficient String Matching Algorithms for Intrusion Detection”, IEEE INFOCOM 2004, Hong Kong, China, March 2004. [7 ] Mike Fisk and George Varghese, “Applying Fast String Matching to Intrusion Detection”, September 2002. http://public.lanl.gov/mfisk/papers/setmatch-raid.pdf [8 ] “Implementing High-Speed Search Applications with Altera CAM”, Altera Application Note 119, July 2001. [9 ] Mike Fisk and George Varghese, “Fast Content-Based Packet Handling for Intrusion Detection”, USCD Technical Report CS2001-0670, May 2001. [10 ] Y.C. Huang, P. Zhang, and S.L. LI, “Research on Distributed Real Time Network Information Auditing System”, ICICS 2001, Xian, China. [11 ] PMC Sierra Inc, “PM2329 ClassPI Network Classification Processor Datasheet”, 2001 [12 ] IDT Inc, “Classification and Content Inspection Co-Processor”, 2003. [13 ] D. Knuth, J. Morris, and V. Pratt, “Fast pattern matching in strings”, SIAM Journal on Computing, 1977, pp.323-350. [14 ] B. L. Hutchings, R. Franklin, and D. Carver, “Assisting Network Intrusion Detection with Reconfigurable Hardware”, FCCM02, Napa, California, September 2002. [15 ] Vern Paxson, “Bro: A system for detecting network intruder in real-time”, Computer Networks, vol.31, no. 23-24, Dec 1999, pp.2435-2463. [16 ] R.S. Boyer and J.S. Moore, “A fast string searching algorithm” Communications of the ACM, 1977, pp.762-772. [17 ] R.N. Horspool, “Practical fast searching in strings”, Software - Practice and Experience, 1980, pp.501-506. [18 ] A. Aho and M. Corasick, “Efficient string matching: An aid to bibliographic search," Communications of the ACM, Vol. 18, No. 6, June 1975, pp.333-343.id NH0925392093 sid 914389 cfn 0 / id NH0925392094 auc 劉冠志 tic 支援可適應環境跳頻功能的藍芽系統下可因應干擾封包選擇的效能評估 adc 林華君 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 48 kwc 藍芽 kwc 可適應環境跳頻 kwc 可因應干擾封包選擇 abc 藍芽是短距離的無線傳輸技術,運作在2.4GHz ISM band。和無線網路(WLAN)使用相同的頻率,因此會受到WLAN的干擾。Specification of the Bluetooth System, Core Version 1.2 [2 tc 一、 概述 ……………………… 1 二、 藍芽系統 ………………… 3 三、 AFH及IAPS ………………… 9 四、 模擬結果 ………………… 20 五、 結論 ……………………… 46 參考文獻 ……………………………… 47rf [1 ] Bluetooth Special Interest Group, “Specification of the Bluetooth System, Core Version 1.1,” Feb. 2001. [2 ] Bluetooth Special Interest Group, “Specification of the Bluetooth System, Core Version 1.2,” Nov. 2003. [3 ] 林志融, “藍芽系統可因應干擾的封包選擇,” 清華大學通訊工程所碩士論文, Jun. 2003. [4 ] A. Soltanian and R. E. VanDyck, “Physical Layer Performance for Coexistence of Bluetooth and IEEE 802.11b.” Available: http://w3.abtd.nist.gov/wctg/bluetooth/bint.html [5 ] Trapeze Networks, “White Papers: Capacity is Critical: Designing Enterprise Wireless LANs for Capacity vs. Coverage,” Available: http://www.trapezenetworks.com/technology/whitepapers/designingWLANs/designingWLANs.asp [6 ] N. Golmie, O. Rebala and N. Chevrollier, “Bluetooth Adaptive Frequency Hopping and Scheduling,” Proc. MILCOM ’03, Boston, MA, Oct. 2003. [7 ] N. Golmie, N. Chevrollier and I. ElBakkouri, “Interference Aware Bluetooth Packet Scheduling,” Global Telecommunications Conference, vol. 5, Nov 2001, pp. 2857–2863. [8 ] B. Zhen, Y. Kim and K. Jang, “The Analysis of Coexistence Mechanisms of Bluetooth,” IEEE VTC 2002, pp. 419-423, 2002. [9 ] M. Kalia, D. Bansal, and R. Shorey, “MAC scheduling and SAR policies for Bluetooth: a master driven TDD pico-cellular wireless system,” MoMuC’99, Nov 1999, pp. 384–388. [10 ] C. Hodgdon, Ericsson Tech., “Adaptive Frequency Hopping for Reduced Interference between Bluetooth and Wireless LAN,” May 2003.id NH0925392094 sid 894316 cfn 0 / id NH0925392095 auc 黃順照 tic 以SIP為基礎之行動虛擬私有網路 adc 陳志成 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 58 kwc 行動 kwc 虛擬私有網路 kwc SIP kwc 應用程式層匣道 kwc 網路電話 abc 虛擬私有網路(Virtual Private Network)是一種即使在公共網路上也能利用隧道機制以及安全通訊協定來存取內部私有網路資源的技術。而行動IP技術(Mobile IP)則是提供了使用者在>不同網路移動時,仍能使用其原本的IP位址與其他使用者連結並且不會造成任何程式斷線。然而,當這兩種技術合併使用時會產生出額外的問題。例如,當使用並存模式(Co-located mode)時,當使用者移動時,虛擬私有網路方面必須每次重新建立彼此的安全連繫(Security Association)。因此 IETF 提出了泛用型的解決方案,如此一來使用者可以無縫隙地任意移動到不同網路並且同時得到虛擬私有網路的服務。然而,行動IP技術所使用的隧道機制以及虛擬私有網路所使用的安全保護對於即時通訊服務會造成極大的影響,尤其是網路電話服務(VoIP)會造成在頻寬使用上的負擔以及點對點的延遲增加。 tc Acknowledgments iii Abstract iv List of Tables viii List of Figures ix 1. Introduction 1 1.1. Overview of VPN 2 1.2. Overview of Mobile IP 2 1.3. Mobile VPN Proposed by IETF 3 1.4. Organization of This Thesis 5 2. Problem Statement 6 2.1. Problems 6 2.1.1. Registration in Co-located Mode 6 2.1.2. Registration via Foreign Agent 7 2.1.3. Summary 8 2.2. Solution Requirements 8 3. Proposed Solution 10 3.1. Architecture 10 3.1.1. CN Located at Home Network 11 3.1.2. CN Located at Foreign Network 23 3.2. Protocols 25 3.2.1. Signaling: SIP, SDP 25 3.2.2. Secured Transport: SRTP, cRTP 26 3.2.3. Key Management: MIKEY 31 3.2.4. AAA: Diameter 32 3.2.5. Gateway: Application Level Gateway 33 4. Implementation and Experiments 36 4.1. Testbed 36 4.2. Experiment Results 38 4.2.1. Bandwidth Consumption 40 4.2.2. End-to-End Delay 43 4.2.3. Handoff Latency 47 5. Conclusion 52 Bibliography 57rf [1 ] V. Consortium, “VPN Technologies: Definitions and Requirements.” VPN Consortium, Jan. 2003. [2 ] C. E. Perkins, “IP Mobility support for IPv4.” IETF RFC 3220, Jan. 2002. [3 ] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley, and E. Schooler, “SIP: Session Initiation Protocol.” IETF RFC 3261, June 2002. [4 ] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman, “The Secure Realtime Transport Protocol (SRTP).” IETF RFC 3771, Mar. 2004. [5 ] J. Arkko, E. Carrara, F. Lindholm, M. Naslund, and K. Norrman, “MIKEY: Multimedia Internet KEYing.” IETF Internet-Draft draft-ietf-msec-mikey-08, Dec. 2003. [6 ] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, and J. Arkko, “Diameter Base Protocol.”IETF RFC 3588, Sept. 2003. [7 ] F. Adrangi and H. Levkowetz, “Problem Statement: Mobile IPv4 Traversal of VPN Gateways.” IETF Internet-Draft draft-ietf-mip4-vpn-problem-statement-02.txt, Feb.2004. [8 ] F. Adrangi and H. Levkowetz, “Problem Statement: Mobile IPv4 Traversal of VPN Gateways.” IETF Internet-Draft draft-ietf-mobileip-vpn-problem-statement-req-03, June 2003. [9 ] M. Handley and V. Jacobson, “SDP: Session Description Protocol.” IETF RFC 2327, Apr. 1998. [10 ] E. Wedlund and H. Schulzrinne, “Mobility Support using SIP.” [11 ] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport Protocol for Real-Time Applications.” IETF RFC 3550, July 2003. [12 ] S. Casner and V. Jacobson, “Compressing IP/UDP/RTP Headers for Low-Speed Serial Links.” IETF RFC 2508, Feb. 1999. [13 ] C. Rigney, S. Willens, A. Rubens, and W. Simpson, “Remote Authentication Dial In User Service (RADIUS).” IETF RFC 2865, June 2000. [14 ] M. Garcia-Martin, M. Belinchon, M. Pallares-Lopez, C. Canales, and K. Tammi, “Diameter Session Initiation Protocol (SIP) Application.”id NH0925392095 sid 914355 cfn 0 / id NH0925392096 auc 陳相廷 tic 視點追蹤之大眾化三維投影顯示系統 adc 張鈞法 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 52 kwc 虛擬環境 kwc 擴充實境 kwc 投影機 kwc 相機 kwc 校正 abc 隨著電腦圖學近十年來的快速發展,我們已經可以即時的繪製出如真實物體一般的複雜三維電腦圖學模型。但一般用來表現三維模型的顯示裝置有絕大部份仍舊是個人電腦或工作站上的二維CRT或LCD螢幕。換句話說,當三維模型被顯示在二維螢幕上時,它的深度資訊就已經被捨棄(隱藏)了。雖然我們可以使用立體視覺(stereo vision)的技術來模擬物體深度的效果,這仍然是種被動的表示法。因為當使用者移動他的視點時,使用者應該要能看到物體相對應於該視點的不同部份,而不是一張靜止的圖像。在絕大部份現有的應用程式裡,使用者仍然得使用滑鼠或鍵盤來操縱虛擬物體或是改變自已的視點,這是很不方便而且很不自然的。要帶給使用者極逼真的虛擬實境感覺,我們相信視點追蹤(head-tracking)是不可或缺的重要元素。 tc Chapter 1 Introduction 1 1.1 Problem Description 2 1.2 System Setup 4 1.3 System Framework 5 Chapter 2 Background and Related Work 9 Chapter 3 Calibration System 12 3.1 Camera Calibration 13 3.1.1 Cameras 13 3.1.2 Geometric Camera Model 14 3.1.3 Geometric Camera Calibration 16 3.1.4 Automatic Camera Calibration VS Manual Camera Calibration 18 3.1.5 Camera Calibration Process 19 3.2 Projector Calibration 20 3.2.1 Projectors 21 3.2.2 Projector Calibration 21 3.2.3 Projector Calibration Process 22 Chapter 4 Head Tracking System 23 4.1 Related Works 23 4.2 Marker Locating 25 4.2.1 Camera Configuration 25 4.2.2 2D Marker Locating 27 4.2.3 3D Marker Locating 27 4.3 Implementation 29 Chapter 5 Projector-Based Rendering System 30 5.1 Displays in AR 31 5.2 Proxy Object 35 5.3 Coordinate Systems 37 5.4 Relation between Camera Matrix and Graphic Pipeline 37 5.5 Generation of Perspective Correct Image 40 Chapter 6 Implementation and Results 43 6.1 Intuitive Access to Virtual Objects 43 6.2 Stereo Vision 45 Chapter 7 Conclusions and Future Work 47 Bibliography 49rf BIMBER O. FROHLICH, B. SCHMALSTEG, D. AND ENCARNACAO, L. M. 2001. The Virtual Showcase. In Proceedings of IEEE Computer Graphics and Applications, November/December, 2001. BIOCCA, F.A. AND ROLLAND, J.P. 1998 Virtual Eyes Can Rearrange Your Body: Adaptation to Visual Displacement in See-Through, Head-Mounted Displays. Presence: Teleoperators and Virtual Environments. vol. 7, no. 3, June 1998 BRUNELLI, R. AND POGGIO, T. 1993 Face recognition: Features versus templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(10):1042–1052, 1993. CRUZ-NEIRA, C. SANDIN, D.J. AND DEFANTI, T.A. 1993. Surround-Screen Projection-Based Virtual Reality: The Design and Implementation of the CAVE. Proceedings of ACM SIGGRAPH, pp. 135-142, 1993 DORSEY, J. O’B. SILLION, F. X. GREENBERG, D. P. 1991. Design and Simulation of Opera Lighting and Projection Effects. SIGGRAPH 91 Conference Proceedings, Annual Conference Series, Addison-Wesley, pp 41-50. DWORKIN, P. AND ZELTER, D. 1993. A New Model for Efficient Dynamic Simulation. Proceedings Fourth Eurographics Workshop on Animation and Simulation, pp.135-147. B. HEISELE, T. SERRE, AND T. POGGIO. 2001 Component-based face detection. AI Memo, Center for Biological and Computational Learning, MIT, Cambridge, MA, 2001. JARVIS, K. 1997. Real Time 60Hz Distortion Correction on a Silicon Graphics IG.. in Real Time Graphics, Vol. 5, No. 7, pp. 6-7, February 1997. LOW, K.L. WELCH, G. LASTRA, A. AND FUCHS, H. 2001 Life-Sized Projector-Based Dioramas: Spatially Real and Visually Virtual. ACM SIGGRAPH 2001 Sketches and Applications, August 2001 LOWE, D.G. 1987 Three-Dimensional Object Recognition from Single Two-Dimensional Images. Artificial Intelligence, pp.355-395. LOWE, D.G. 1992 Robust Model-based Motion Tracking Through the Integration of Search and Estimation. International Journal of Computer Vision, pp.113-122. MILGRAM, P. AND KISHINO, F. 1994. A Taxonomy of Mixed RealityVisual Displays IEICE Trans. Information Systems, vol. E77-D, no. 12, 1994, pp. 1321-1329. RASKAR, R. WELCH, G. AND FUCHS, H. 1998a. Spatially Augmented Reality. In Proceedings of First International Workshop on Augmented Reality, San Francisco, November 1, 1998. RASKAR, R. CUTTS, MATT. WELCH, GREG. AND ST?慟RZLINGER. W. 1998b Efficient Image Generation for Multiprojector and Multisurface Displays. In Proceedings of 9th Eurographics Rendering Workshop, 1998. RASKAR, R. WELCH, G. CUTTS, M. LAKE, A. STESIN, L AND FUCHS, H. 1998. The Office of the Future: A Unified Approach to Image-Based Modeling and Spatially Immersive Displays. SIGGRAPH 98 Conference Proceedings, Annual Conference Series, Addison-Wesley, July 1998. RASKAR, R. WELCH, G. LOW, K. L. AND BANDYOPADHVAY, D. 2001. Shader Lamps: Animating Real Objects With Image-Based Illumination. In Proceedings of Eurographics Workshop on Rendering, London, England, June 25-27, 2001. RASKAR, R. AND BEARDSLEY, P. 2001. A Self-Correcting Projector. In Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR) 2001, Hawaii, Dec 2001. RASKAR, R. BAAR, J. V. BEARDSLEY, P. WILLWACHER, T. RAO, S. AND FORLINES, C. 2003. iLamps: Geometrically Aware and Self-Configuring Projectors. ACM Transactions on Graphics, 22, 3, 809-818. ROLAND, A. BAILLOT, Y. BEHRINGER, R. FEINER, S. JULIER, S. MACINTYRE, B. 2001. Recent Advances in Augmented Reality. IEEE Computer Graphics and Applications 21, 6 (Nov/Dec 2001), 34-47. ROWLEY, H.A. BALUJA, S. AND KANADE, T. Neural networkbased face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1):23–38, 1998. RUSPINI, D. C. KOLAROV, K. KHATIB, O. 1996. The Haptic Display of Complex Graphical Environments. STATE, A. HIROTA, G. CHEN, D. T. GARRETT, W. AND LIVINGSTON M.A. 1996. Superior Augmented Reality Registration by Integrating Landmark Tracking and Magnetic Tracking. SIGGRAPH 96 Conference Proceedings. TAKAGI, A. ET AL. 2001 Development of a Stereo Video Seethrough HMD for AR Systems Proc. Int’l Symp. Augmented Reality 2000 (ISAR 00), IEEE CS Press, Los Alamitos, Calif., 2000, pp. 68-77. WELCH, G. BISHOP, G. VICCI, L. BRUMBACK, S. KELLER, K. AND COLUCCI, D. N. 1999 . The HiBall Tracker: High-Performance Wide-Area Tracking for Virtual and Augmented Environments. Proceedings of the ACM Symposium on Virtual Reality Software and Technology (pp. 1-11). University College London, London, United Kingdom (December 20 - 23): ACM SIGGRAPH, Addison-Wesley. ZILLES, C. B. AND SALISBURY, J. K. 1995. A Constrained-based God-object Method for Haptic Displaid NH0925392096 sid 916311 cfn 0 / id NH0925392097 auc 陳晴 tic 哼唱選歌的加速方法 adc 張智星 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 37 kwc 動態時間伸縮 kwc 哼唱搜尋 kwc 加速比對 abc 實驗室經由歷屆學長姐的努力,發展出了一套音樂搜尋系統稱之為CBMR(Content-based Music Retrieval),在這個系統中,使用者可以透過哼唱甚至不需要歌詞來做查詢的動作。其比對核心,主要是根據DTW(Dynamic Time Warping)來進行比對,這樣的比對方式可以允許使用者唱快或唱慢,因此辨識率上有九成以上的優異表現。 tc 中文摘要 ……………………………………………………… i 英文摘要 ……………………………………………………… ii 誌謝 ……………………………………………………… iii 目錄 ……………………………………………………… iv 圖表目錄 ……………………………………………………… v 表格目錄 ……………………………………………………… vi 第一章 導論………………………………………………… 1 第二章 音樂的搜尋技術…………………………………… 2 第一節 CBMR……………………………………………… 2 第二節 前處理……………………………………………… 3 第三節 動態時間伸縮……………………………………… 4 第四節 加速的相關研究…………………………………… 7 第五節 實驗室歷年加速相關研究………………………… 8 第三章 改進方法…………………………………………… 10 第一節 Lower Bound的定義……………………………… 10 第二節 演算法一…………………………………………… 16 第三節 改良前人的演算法………………………………… 21 第四節 演算法二…………………………………………… 23 第五節 演算法三:標準差………………………………… 25 第六節 演算法四:相關係數……………………………… 26 第四章 實驗結果與分析…………………………………… 27 第一節 實驗環境…………………………………………… 27 第二節 U和L分析圖……………………………………… 28 第三節 篩選能力評比……………………………………… 29 第四節 辨識率和Flops評比……………………………… 31 第五節 討論………………………………………………… 32 第五章 討論與未來工作…………………………………… 33 第一節 結論………………………………………………… 33 第二節 未來工作…………………………………………… 33 參考文獻 ……………………………………………………… 36rf [1 ] E. Keogh, "Exact Indexing of Dynamic Time Warping," in Proc. of VLDB Conference, Hong Kong, China, Aug. 20-23, 2002. [2 ] Kim, S,. Park, S., & Chu, W. (2001). An Index-based approach for similarity search supporting time warping in large sequence databases. In Proc 17th International Conference on Data Engineering, pp 607-614. [3 ] Park, S., Lee, D., & Chu, W. (1999). Fast retrieval of similar subsequences in long sequence databases. In 3rd IEEE Knowledge and Data Engineering Exchange Workshop. [4 ] Park, S., Kim, S, & Chu, W. (2001). Segment-based approach for subsequence searches in sequence databases. In Proceedings of the 16th ACM Symposium on Applied Computing, pp. 248-252, Las Vegas, NV, USA. [5 ] Park, S., Chu, W., Yoon, J & Hsu, C. (2000). Efficient searches for similar subsequences of different lengths in sequence databases. In Proc. 16th IEEE Int'l Conf. on Data Engineering, pp. 23-32. [6 ] Yi, B, K. Jagadish, H & Faloutsos (1998). Efficient retrieval of similar time sequences under time warping. In ICDE 98, pp 23-27. [7 ]Simon Sheu , “Effective Filtering for Nearest-Neighbors Queries in Large Time-Series Databases” , Taiwan , 2003 [8 ].Teddy Siu Fung Fong, Man Hon Wong(2003), “Efficient Subsequence Matching for Sequences Databases under Time Warping”, inSeventh International Database Engineering and Applications Symposium (IDEAS'03) pp.139 [9 ] Sanghyun Park, Wesley W. Chu, Jeehee Yoon, Chihcheng Hsu , (2000)“Efficient Searches for Similar Subsequences of Different Lengths in Sequence Databases” 16th International Conference on Data Engineering pp.23 [10 ] Antonin Guttman. R-tree: a dynamic index structure for spatial searching. Proc. ACM SIGMOD Conf. on Management of Data, 322-331, 1990. [11 ] Y. Zhu, and D. Shasha. Warping Indexes with Envelope Transforms for Query by Humming. Proc. 2003 ACM SIGMOD Conf. on Management of Data. pp. 181-192id NH0925392097 sid 914370 cfn 0 / id NH0925392098 auc 康文俊 tic 視訊串流傳輸的適應性JSCC模組 adc 許奮輝 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 44 kwc 資料傳輸結合編碼 kwc 畫框集合 kwc 錯誤回復編碼 kwc 頁框參照 kwc 突波性遺失 kwc 暴力法 abc 對於視訊串流傳輸越來越被渴望的情況下,許多的問題也浮現出來,同時有許多的方法被提出來解決這樣的問題。JSCC(Joint Source / Channel Coding)的概念,被廣泛的研究著。在這篇論文裡我們由龐大的實驗數據分析及長期研究這個問題的經驗,推論出一個相當簡潔的JSCC解決方法,對於任何頁框參照(frame-dependence)的壓縮影片,在任一網路情況均可立即求得一組JSCC的參數,包括GOP結構,頁框速率(frame rate),預先錯誤修正碼(FEC)的配置,此外我們的JSCC模組考慮到實用上的真實環境,引入了可適用於相異場景的頁框大小模組(frame size model),這是壓縮影像轉碼(source transcoding)常被忽略的。最後的模擬實驗都顯示出我們的JSCC模組可以適用於場景特性相異的數種影片,不論在一定範圍的封包遺失率下,或是不同的流量限制條件裡,我們的JSCC模組都可以達到相當接近於由全域最佳搜尋(brute-force search)的效能,甚至在包含變動封包遺失長度(burst loss length)的模擬環境裡,測試結果顯示我們方法的效能超越了全域最佳預測搜尋的結果,更重要的是,我們JSCC的時間複雜度遠低於全域最佳預測搜尋所耗費的時間成本。因此,對於在具有封包遺失特性的網路環境下,透過我們的JSCC模組的處理後可以讓使用者端得到較佳的畫框速率。 tc 摘 要 誌 謝 第1章 簡 介 1 第2章 相關研究及問題概述 5 第3章 頁框大小模組 8 3.1 P-FRAME SIZE的統計及逼近模組 10 3.2 B-FRAME SIZE的統計及逼近模組 12 3.3 頁框大小模組推導 14 第4章 特性分析及方法推論 16 4.1 模擬環境設定 16 4.2 分析數據 18 4.2.1 平均頁框大小對於FPS效能的影響 19 4.2.2 發送端FPS對於接收端FPS效能的影響 20 4.2.3 FEC ratio 對於FPS效能的影響 21 4.3 方法推論 23 第5章 我們的JSCC方法模組 24 5.1 SC及CC的頻寬分配 25 5.2 SC的參數決定 25 5.2.1 平均頁框大小最小的GOP結構 25 5.2.1.1 參數 及 的設定 26 5.2.1.2 參數n的決定 26 5.2.2 發送端FPS的決定 27 5.3 CC的FEC REDUNDANCY分配 27 第6章 實驗模擬及效能評論 30 6.1 模擬環境設定 31 6.1.1 測試影片樣本及網路流量限制 31 6.1.2 封包遺失事件(Loss events) 33 6.2 效能探討 34 6.2.1 在不同流量限制下的效能比較 34 6.2.2 在Burst packet loss環境的效能比較 36 6.2.3 頁框大小模組的影響 39 第7章 缺點及問題討論 42 第8章 結 論 44 附錄一 參考文獻 Arf 1. Braden, B., et al., Recommendations on Queue Management and Congestion Avoidance in the Internet. 1998, IETF. 2. Floyd, S., et al. Equation-Based Congestion Control for Unicast Applications. in Proceedings of ACM SIGCOMM. 2000. 3. Rhee, I., V. Ozdemir, and Y. Yi, TEAR: TCP Emulation at Receivers -- Flow Control for Multimedia Streaming. 2000, North Carolina State University. 4. Bolot, J.-C. and T. Turletti, Experience with Control Mechanisms for Packet Video in the Internet. ACM SIGCOMM Computer Communication Review, 1998. 28(1): p. 4-15. 5. Boyce, J.M. and R.D. Gaglianello. Packet Loss Effects on MPEG Video Sent over the Public Internet. in Proceedings of ACM MM. 1998. Bristol. 6. Huang, C., R. Janakiraman, and L. Xu. Optimal Loss-Resilient Media Streaming using Priority Encoding. in ACM MM. 2004. New York. 7. Bolot, J.C., S. Parisis, and D. Towsley. Adaptive FEC-Based Error Control for Internet Telephony. in Proceedings of IEEE INFOCOM. 1999. NY. 8. Park, K. and W. Wang. QoS-Sensitive Transport of Real-Time MPEG Video using Adaptive Redundancy Control. in Proceedings of ICMCS. 1999. 9. Frossard, P. and O. Verscheure. Content-based MPEG-2 Structuring and Protection. in Multimedia Systems and Applications II. 1999. 10. Tang, X., et al. Unequal Error Protection for Motion Compensated Video Streaming over Internet. in Proceedings of ICIP. 2002. New York. 11. Wol.nger, B.E. On the Potential of FEC Algorithms in Building Fault-tolerant, Distributed Applications to Support High QoS Video Communications. in Proceedings of PODC. 1997. 12. Mayer-Patel, K., L. Le, and G. Carle. An MPEG Performance Model and Its Application to Adaptive Forward Error Correction. in Proceedings of ACM MM. 2002. French 13. Wu, H., M. Claypool, and R. Kinicki. A Model for MPEG with Forward Error Correction and TCP- friendly Bandwidth. in Proceedings of NOSSDAV. 2003. CA. 14. Saparilla, D. and K.W. Ross. Optimal Streaming of Layered Video. in Proceedings of IEEE INFOCOM. 2000. Israel. 15. Tan, W. and A. Zakhor, Real-Time Internet Video using Error Resilient Scalable Compression and TCP- Friendly Transport Protocol. IEEE Trans. Multimedia, 1999. 1(2): p. 172-186. 16. Servetto, S. and K. Nahrstedt. Video Streaming Over The Public Internet: Multiple Description Codes And Adaptive Transport Protocols. in Proceedings of ICIP. 1999. Japan. 17. Nguyen, T. and A. Zakhor. Distributed Video Streaming with Forward Error Correction. in Proceedings of Packet Video. 2002. 18. Rhee, I. Error Control Techniques for Interactive Low-bit Rate Video Transmission over the Internet. in Proceedings of ACM SIGCOMM. 1998. Canada. 19. Rejaie, et al., Layered Quality Adaptation for Internet Video Streaming. IEEE Journal on Selected Areas in Communications, 1999. 18(12). 20. Wu, H., M. Claypool, and R. Kinicki, Adjusting Forward Error Correction with Temporal Scaling for TCP-Friendly Streaming MPEG. 2003, Worcester Polytechnic Institute. 21. Chung, J. and M. Claypool. Better-Behaved, Better- Performing Multimedia Networking. in Proceedings of SCS Euromedia. 2000. Belgium. 22. Walpole, J., et al. A Player for Adaptive Mpeg Video Streaming over The Internet. in AIPR. 1997. Washington DC. 23. Gurses, E., G.B. Akar, and N. Akar. Selective Frame Discarding for Video Streaming in TCP/IP Networks. in Proceedings of Packet Video. 2003. Nantes , France. 24. Zeng, W. and B. Liu. Rate Shaping by Block Dropping for Transmission of MPEG-precoded Video over Channels of Dynamic Bandwidth. in Proceedings of ACM MM. 1996. Boston. 25. Jacobs, S. and A. Eleftheriadis., Streaming Video using Dynamic Rate Shaping and TCP Congestion Control. Journal of Visual Communication and Image Representation, 1998. 9(3): p. 211-222. 26. Zhao, H., N. Ansari, and Y.Q. Shi. A Fast Non- Linear Adaptive Algorithm for Video Traffic Prediction. in Proceedings of IEEE ITCC. 2002. Las Vegas, NV. 27. Padhye, J., et al. Modeling TCP Throughput: A Simple Model and its Empirical Validation. in Proceedings of ACM SIGCOMM. 1998. CA. 28. Acharya, S. and B. Smith. An Experiment to Characterize Videos Stored On The Web. in ACM/SPIE Multimedia Computing and Networking. 1998. 29. Loguinov, D. and H. Radha. Measurement Study of Low-bitrate Internet Video Streaming. in Proceedings of ACM SIGCOMM. 2001. California. 30. Mena, A. and J. Heidemann. An Empirical Study of Real Audio Traffic. in Proceedings of IEEE INFOCOM. 2000. Israel. 31. Liang, Q. and J.M. Mendel, MPEG VBR Video Traffic Modeling and Classification Using Fuzzy Technique. IEEE Trans. Fuzzy Syst, 2001. 9(1): p. 183-193.id NH0925392098 sid 914398 cfn 0 / id NH0925392099 auc 林哲宇 tic 以三維扭圖實作網路行動裝置之三維繪圖引擎 adc 張鈞法 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 30 kwc 影像繪圖 kwc 行動裝置 kwc 扭圖 kwc 手機 kwc 主從式架構 abc 我們的主要目的是能夠在行動裝置上面產生快速且高品質的 3D 圖形,行動裝置(PDA)的缺點是CPU運算速度慢 (400MHz),記憶體小 (64MB),若是採用傳統 polygon-based 方式,檔案中包含了每一點的位置顏色,每個平面資訊,因為在來源檔案大小有了限制,所以不太能夠放上複雜 model,而CPU運算速度不夠快所以要做3D旋轉的重繪需要等待蠻長的運算時間,所以我們採用Image Based Rendering (IBR)的方式來解決繪圖速度問題。 rf [Baker ] Steve Baker: Learning to Love your Z-buffer. http://www.sjbaker.org/steve/omniv/love_your_z_buffer.html [Bishop02 ] Lars M. Bishop: An Introduction to Fixed-Point Math. In SIGGRAPH 2002 Course 48: Dynamic Media on Demand: Exploring Wireless & Wired Streaming Technologies & Content, (Topic: Games and 3D Rendering on Handheld Devices.) [Chang02 ] Chun-Fa Chang and Shyh-Haur Ger: Enhancing 3D Graphics on Mobile Devices by Image-Based Rendering. In Proceedings of 2002 IEEE Pacific-Rim Conference on Multimedia (PCM 2002). [Ericsson03 ] Ericsson Mobile Platforms: Graphics for the Masses:A Hardware Rasterization Architecture for Mobile Phones. In SIGGRAPH 2003 SAN DIEGO. [Heck96 ] Hecker, Chris: Let’ s Get to the (Floating) Point. Game Developer Magazine; Feb/Mar, 1996; pp19-24 [Hoff ] Kenneth E. Hoff III: Conversion Between OpenGL Depth-Buffer Z and Actual Screen-Space Depth (adapted from notes from Bill Mark). http://www.cs.unc.edu/~hoff/techrep/openglz.html [McMillan95 ] Leonard McMillan and Gary Bishop: Plenoptic Modeling: An image-based rendering system. In SIGGRAPH 95 Conference Proceedings, pages 39–46, August 1995. [McMillan97 ] Leonard McMillan: An Image-Based Approach to Three-Dimensional Computer Graphics. Ph.D. Dissertation. Technical Report 97-013, University of North Carolina at Chapel Hill, Department of Computer Science, 1997. [Shade98 ] Jonathan Shade, Steven Gortler, Li-wei He and Richard Szeliski: Layered Depth images. In SIGGRAPH 98 Conference Proceedings, pages 231–242, July 1998. [Westover91 ] Lee Westover. SPLATTING: A Parallel, Feed-Forward Volume Rendering Algorithm. Ph.D. Dissertation. Technical Report 91-029, University of North Carolina at Chapel Hill. 1991.id NH0925392099 sid 916301 cfn 0 / id NH0925392100 auc 高世彥 tic 無結構性點對點網路中利用節點能力的樹狀架構 adc 金仲達 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 43 kwc 無結構性 kwc 點對點 kwc 網路 kwc 能力 kwc 樹狀 abc 在傳統的無結構式點對點(peer-to-peer)網路中,系統必須透過訊息的廣播(flooding)或其類似方式來做資源的搜尋。Gnutella是目前最廣泛被討論的無結構式點對點網路系統,因為它使用盲目訊息廣播會產生許多重複的訊息,因此浪費了很大的網路流量。最近有研究顯示,在有50000個節點的Gnutella網路中,估計每秒總共會產生1 Gbit的網路流量。因此,有許多的研究工作在改進無結構式點對點網路中搜尋的效率,包括減少搜尋所使用的網路流量。然而,之前的研究並沒有考慮到搜尋結果的品質。 tc Abstract I Contents II List of Figures IV List of Tables V Chapter 1 Introduction 1 1.1 Gnutella 2 1.2 Quality of Search in Unstructured P2P 3 1.3 Proposed Research 4 1.4 Thesis Organization 5 Chapter 2 Related Works 6 2.1 Trail-based Technique 6 2.2 Tree-like Sub-overlay Structure 6 2.3 Non-forwarding Search Mechanism 7 Chapter 3 System Design 9 3.1 Overview 9 3.2 Assumptions and Data Structure 11 3.3 Basic Algorithms 13 3.3.1 Peer Joining 13 3.3.2 Tree Maintenance 15 3.3.3 Exploiting the Heterogeneity of Peers 16 3.3.4 Query Delivery Process 17 3.4 Dynamic Exchange Methodology 18 Chapter 4 System Implementation 21 4.1 System Architecture 21 4.2 Application Interface 22 4.3 Implementation 23 Chapter 5 Evaluation 27 5.1 Evaluation with Real System 27 5.1.1 The Elapse Time of Peer Joining 28 5.1.2 The Elapse Time of Peer Replacement 30 5.1.3 The Recovery Time of Peers’ Failure 31 5.1.4 The Broadcasting Time of Queries 33 5.2 Simulations 34 5.2.1 Experiment Setup 34 5.2.2 Simulation Results 36 Chapter 6 Conclusions 40 Bibliography 41rf [1 ] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet applications. In Proceedings of ACM SIGCOMM, pages 149–160, San Diego, CA, Aug. 2001. [2 ] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In Proceedings of the 18th IFIP/ACM International Conference on Distributed System Platforms (Middleware 2001), Heidelberg, Germany, Nov. 2001. [3 ] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure for fault-tolerance wide-area location and routing. Technical Report UCB/CSD-01-1141, Computer Science Division, University of California, Berkeley, Apr. 2001. [4 ] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and Shenker. A scalable content-addressable network. In Proceedings of ACM SIGCOMM, pages 161–172, San Diego, CA, Aug. 2001. [5 ] H.-C. Hsiao and C.-T. King. Tornado: A capability-aware peer-to-peer storage overlay. Journal of Parallel and Distributed Computing, February 2004. [6 ] T. Klingberg and R. Manfredi. The gnutella 0.6 protocol draft. http://rfc-gnutella.sourceforge.net/. [7 ] I. Clarke, S. G. Miller, T. W. Hong, O. Sandberg, and B. Wiley. Protecting free expression online with freenet. IEEE Internet Computing, 6(1):40–49, January/February 2002. [8 ] B. Yang, H. Garcia-Molina. Improving Search in Peer-to-Peer Systems. Proceedings of the 22nd International Conference on Distributed Computing Systems, July 2002, pp. 5-14. [9 ] K. Scipanidkulchai, B. Maggs, and H. Zhang. Efficient Content Location Using Interest-Based Locality in Peer-to-Peer Systems. Proceedings of IEEE INFOCOM 2003. [10 ] B. Yang, H. Garcia-Molina. Designing a Super-peer Network. Proceedings of the 19th International Conference on Data Engineering, March 2003. [11 ] Beverly Yang, Patrick Vinograd, Hector Garcia-Molina. Evaluating GUESS and Non-Forwarding Peer-to-Peer Search. Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS), March 2004 [12 ] Yunhao Liu, Xiaomei Liu, Li Xiao, Xiaodong Zhang. Location-Aware Topology Matching in P2P Systems. IEEE INFOCOM 2004, Hong Kong, China, March 2004. [13 ] Yunhao Liu, Zhenyun Zhuang, Li Xiao, Lionel M Ni. A Distributed Approach to Solving Overlay Mismatching Problem. IEEE ICDCS 2004, Tokyo, Japan, March 2004. [14 ] Brian D. Davison. Web Caching and Content Delivery Resources. http://www.web-caching.com/ . [15 ] Peter Marshall. CA*net II Caching Hierarchy Project. http://ardnoc41.canet2.net/cache/ . [16 ] M. Arlitt, C. Williamson. Web Server Workload Characterization: The Search for Invariants. 1996 ACM SIGMETRICS Conference on the Measurement and Modeling of Computer Systems, Philadelphia, PA, May 23-26, 1996. [17 ] Q. Lv, S. Ratnasamy, and S. Shenker. Can heterogeneity make gnutella scalable?. Proceedings of the first International Workshop on Peer-to-Peer Systems (IPTPS), Mar. 2002. [18 ] Java Threads http://java.sun.com/docs/books/tutorial/essential/threads/index.html [19 ] Java Timer and TimerTask http://java.sun.com/docs/books/tutorial/essential/threads/timer.html [20 ] S. Jiang and X. Zhang. FloodTrail : an Efficient File Search Technique in Unstructured Peer-to-Peer Systems. In Proceedings of IEEE GlobeCom’03, December 1-5, 2003. [21 ] S. Jiang, L. Guo and X. Zhang. LighFlood: an efficient flooding scheme for file search in unstructured peer-to-peer systems. In Proceedings of 2003 International Conference on Parallel Processing, (ICPP’03), October, 2003.id NH0925392100 sid 914356 cfn 0 / id NH0925392101 auc 徐茂原 tic 國語歌曲的歌聲合成之自然度改良與研究 adc 張智星 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 22 kwc 歌聲合成 abc 在本論文中,討論了如何使的合成的歌聲更接近真人歌唱,並且在其音質上加以改進。在音質上,我們嘗試了使用對於時域與對於頻域作音高語音長調校的不同方法。在音高的調整上包涵了Multirate,phase vocoder,PSOLA等等方法,同時在音長的改變上我們則嘗試了PSOLA,phase vocoder,WSOLA幾個方向。並且在論文中說明了何以在最後的系統中決定使用何種方法作為依歸的準則。除此之外,在自然度的方面,我們加入了音量的考量,音高遞嬗的平滑化,轉折音,抖音等等部份的模擬。我們也利用multirate的方式作男聲女聲的轉換,經由這樣的轉換可以製造出男女合唱或對唱的特殊效果。 tc 第一章 導論 1.1 研究動機…………………………………………………………………1 1.2 研究方向…………………………………………………………………1 1.3 相關研究…………………………………………………………………1 第二章 歌聲合成相關方法 2.1 音高調整   2.1.1 Multirate………………………………………………………………2 2.1.2 PSOLA………………………………………………………………...2 2.1.3 Phase vocoder…………………………………………………………4 2.2 音長調整 2.2.1 線性內插……………………………………………………………..5 2.2.2 WSOLA 相似波形疊加法…………………………………………...6 第三章 模擬真人歌唱 3.1 緒論……………………………………………………………………….8 3.2抖音………………………………………………………………………..8 3.3 音量調整………………………………………………………………….9 3.4 轉折音……………………………………………………………………12 3.5 音高曲線平滑化…………………………………………………………13 第四章 系統簡介與實驗結果 4.1 系統簡介…………………………………………………………………14 4.2 實驗結果…………………………………………………………………15 第五章 結論與未來工作…………………………………………………………...20 參考文獻rf 參考文獻 1 Alan V. Oppenheim and Ronald W. Schafer, “Discrete-Time Signal Processing”, Prentice Hall, 1989. 2 F. Charpentier and Moulines, “Pitch-synchronous Waveform Processing Technique for Text-to-Speech Synthesis Using Diphones,” European Conf. On Speech Communication and Technology, pp.13-19, Paris, 1989. 3 An Overlap-add Technique Based on Waveform Similarity For High Quality Time Scale Modification of Speech , Werner Verhelst and Marc Roelands ,Vrije University Brussels ,Belgium 4 C. Hamon and E. Mouline and F. Charpentier , “A diphone synthesis system based on time-domain prosodic modifications of speech”, Acoustics, Speech, and Signal Processing, 1989. ICASSP-89., 1989 International Conference on , 1989 , Page(s): 238 -241 vol.1 5 John R.Deller, John G. Proakis, John HL Hansen “Discrete-Time Processing of Speech Signals” Prentice Hall, 1993, p236-250 6 New Phase-Vocoder Techniques for Pitch-Shifting, Harmonizing, and other Exotic Effects. J. Laroche and M. Dolson. (1999). Proc. IEEE ASSP Workshop on app. of sig. proc. to audio and acous.. 7 J. Laroche and M. Dolson,. (1997). Phase-vocoder: About this phasiness business. Proc. IEEE ASSP Workshop on app. of sig. proc. to audio and acous. 8 H. Valbret and E. Moulines and J.P. Tubach, “Voice transformation using PSOLA technique” , Acoustics, Speech, and Signal Processing, 1992. ICASSP-92, 1992 IEEE International Conference on Volume: 1 , 1992 , Page(s): 145 -148 vol. 9 國語歌曲之合成,交通大學碩士論文,民國83年 -- 邵芳雯即時歌唱聲合成系統與音樂合成系統 10 國語歌曲的合成與實作,清華大學碩士論文,民國90年 --林政源 11 即時歌唱聲合成系統與音樂合成系統之整合,台灣科技大學碩士論文,民國91年 --盛思豪 12 合成歌聲,臺灣大學碩士論文,民國92年 --歐婉菁id NH0925392101 sid 914358 cfn 0 / id NH0925392102 auc 王俊傑 tic 最相似影像比對技術 adc 許奮輝 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 24 kwc 影像比對 kwc 動態時間偏移 kwc 二維動態時間偏移 kwc 動態二維偏移 kwc 最相近比對 abc 由於資料的普及、多媒體的盛行和網路的發達,我們可以經由許多的管道接觸到許多的多媒體文件,而最常見的多媒體文件就是影像。這些影像在不同的應用上可以形成許多不同種類的多媒體系統。當我們在使用這些多媒體系統時,其中的步驟不外乎是尋找和比對。但是尋找和比對影像是無法用單一的方法就可以解決的,而且相近似影像的判斷也會因人而異。我們不使用傳統的方法,即對影像先取出許多的特徵值,然後在特徵空間上的距離決定相似的檔案。我們把影像以較大的區塊為單位,把每一個新單位以新的數值來代表他,形成另一種特徵值。因為影像的形成本來就有其空間上的關係,所以我們都以空間的概念來形成我們的方法。我們利用較快速的投影方法,先找出影像區塊可能所在的位置,並利用原來影像裡的空間關係來去除不相似的檔案。再來我們利用動態時間偏移(Dynamic Time Warping)的概念導出動態二維偏移(Dynamic 2-Dimension Warping)的方法,利用較準確的動態二維偏移方法找出影像裡相似區塊的位置,並以和相似區塊的距離,作為最後輸出最相似影像的依據。我們在校園導覽系統中實作我們的方法。以實驗結果來看,動態二維偏移可以找到最相似的區塊,而且我們可以有九成的準確度找出最相近的地點。我們所導出的動態二維偏移方法,可以再延伸成為動態三維偏移方法或是動態多維偏移方法。 tc 第一章 簡介 1 第二章 相關研究 4 2.1其它研究的方法 4 2.2動態時間偏移(Dynamic Time Warp) 4 第三章 實驗方法 7 3.1 先前處理 7 3.2 定義 9 3.3 尋找區塊(block)的方法 10 3.3.1 對行和列作投影 10 3.3.2 動態二維偏移(Dynamic 2-Dimension Warp, D2DW ) 12 3.3.3 空間上的關係 16 第四章 實驗結果 18 第五章 結論 23 附錄 參考文獻 Arf [1 ] Antonios Deligiannakis, N.R., Extended Wavelets for Multiple Measures. in SIGMOD, (San Diego, CA, 2003). [2 ] Bin Cui, B.C.O., Jianwen Su, Kian-Lee Tan, Contorting High Dimensional Data for Efficient Main Memory KNN Processing. in SIGMOD, (San Diego, CA, 2003). [3 ] C. H. Wang, H.C.L., C. C. Shih, H. R. Tyan, C. F. Lin Querying Image Database by Video Content. Journal of Information Science and Engineering, 19. 967-987. [4 ] Chee-Yong Chan, M.G., Rajeev Rastogi RE-tree: an efficient index structure for regular expressions. VLDB, 12. 102-119. [5 ] Cheng-Chia Chang, J.-S.R.J., and Ling-Ling Wang, Color Image Retrieval Based on 2D Strings. in Computer Vision, Graphics, and Image Processing, (Taiwan, 1998). [6 ] Deok-Hwan Kim, C.-W.C., Qcluster: Relevance Feedback Using Adaptive Clustering for Content-Based Image Retrieval. in SIGMOD, (San Diego, CA, 2003). [7 ] Ertem Tuncel, H.F., Kenneth Rose, VQ-Index: An Index Structure for Similarity Searching in Multimedia Databases. in ACM Multimedia, (2002). [8 ] Feng Jing, M.L., Hong-Jiang Zhang, Bo Zhang, An Effective Region-Based Image Retrieval Framework. in. [9 ] Hans-Peter Kriegel, S.B., Peer Kroger, Martin Pfeifle, Matthias Schubert, Using Sets of Feature Vectors for Similarity Search on Voxelized CAD Objects. in SIGMOD, (San Diego, CA, 2003). [10 ] Jun Zhang, M.Z., Dimitris Papadias, Yufei Tao, Dik Lun Lee, Location-based Spatial Queries. in ACM SIGMOD, (San Diego, California, USA, 2003). [11 ] Keogh, E., Exact Indexing of Dynamic Time Warping. in VLDB, (Hong Kong, China, 2002). [12 ] King-Shy Goh, B.L., Edward Chang, DynDex: A Dynamic and Non-metric Space Indexer. in ACM Multimedia, (2002). [13 ] Lei Zhu, A.R., Aidong Zhang, Theory of Keyblock-Based Image Retrieval. in ACM, (2002). [14 ] Liyuan Li, W.H., Irene Y. H. Gu, Qi Tian, Foreground Object Detection from Videos Containing Complex Background. in ACM Multimedia, (2003). [15 ] Lok-Lam Cheng, D.W.C., Siu-Ming Yiu, Approximate String Matching in DNA Sequences. in Database Systems for Advanced Applications, (2003). [16 ] Michail Vlachos, M.H., Dimitrios Gunopulos, Eamonn Keogh, Indexing Multi-Dimensional Time-Series with Support for multiple Distance Measures. in ACM SIGKDD, (2003). [17 ] Ronald Fagin, R.K., D. Sivakumar, Efficient similarity search and classification via rank aggregation. in SIGMOD, (San Diego, CA, 2003). [18 ] Seok-Lyong Lee, S.-J.C., Deok-Hwan Kim, Ju-Hong Lee, Chin-Wan Chung, Similarity Search for Multidimensional Data Sequences. in IEEE Data Engineering, (2000). [19 ] Simon Sheu, J.S., Effective Filtering for Nearest-Neighbors Queries in Large Time-Series Databases. in. [20 ] Simon Tong, E.C. Support Vector Machine Active Learning for Image Retrieval. ACM Multimedia. [21 ] Tamer Kahveci, A.K.S., An Efficient Index Structure for String Databases. in VLDB, (Roma, Italy, 2001). [22 ] Tamer Kahveci, A.K.S., Aliekber Gurel, Similarity Searching for Multi-attribute Sequences. in. [23 ] Xiang Sean Zhou, I.C., Qi Tian, Thomas S. Huang, Feature Extraction and Selection for Image Retrieval. in. [24 ] Xiang Sean Zhou, T.S., Huang, Comparing Discriminating Transformations and SVM for Learning during Multimedia Retrieval. in ACM Multimedia, (2001). [25 ] Xiang Sean Zhou, Y.R., Thomas S. Huang, Water-Filling: A Novel Way for Image Structural Feature Extraction. in. [26 ] Yong-Sheng Chen, Y.-P.H., Chiou-Shann Fuh, Winner-Update Algorithm for Nearest Neighbor Search. in Pattern Recognition, (Barcelona, Spain, 2000).id NH0925392102 sid 914363 cfn 0 / id NH0925392103 auc 林立 auc & auc #23791; tic 支援指令結構描述語言與GCC的結合技術 adc 李政崑 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 53 kwc 嵌入式系統 kwc Design space exploration kwc 架構描述語言 kwc 可移植性編譯器 kwc GCC abc 嵌入式系統已經被廣泛地應用在通訊、多媒體、電腦,甚至於資訊家電上,從早期使用 application specific integrated circuits tc Abstract i Contents iv List of Figures vi List of Tables vii 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . 1 1.2 RelatedWork . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Porting the GNU C compiler . . . . . . . . . . 3 1.2.2 Architectural description languages . . . . . 4 1.3 Thesis Overview . . . . . . . . . . . . . . . . . . 5 2 Architectural Description Languages 7 2.1 An ADL Overview . . . . . . . . . . . . . . . . . . 7 2.2 The LISA Processor Modeling Language . . . . . . . 12 3 The GNU C Compiler 15 3.1 Cross Compilation . . . . . . . . . . . . . . . . . 15 3.2 Building and Running GCC . . . . . . . . . . . . . 16 3.3 Compilation Passes . . . . . . . . . . . . . . . . 19 3.3.1 The compilation flow . . . . . . . . . . . . 19 3.3.2 The RTL generation pass . . . . . . . . . . . 21 3.3.3 The final pass and the insn matching . . . . 21 3.4 Machine Description . . . . . . . . . . . . . . . . 23 3.4.1 The `.md' file . . . . . . . . . . . . . . . 24 3.4.2 Target description macros . . . . . . . . . . 27 4 The ADL-to-MD Translator 29 4.1 Design Flow for the GCC Backend Generation . . . . 30 4.2 System Architecture . . . . . . . . . . . . . . . . 33 5 Applying Scenarios 39 5.1 Example for define_insn "mulsi3" . . . . . . . . . 40 5.2 Examples for define_expand "mulsi3" . . . . . . . . 42 5.3 Example for define_peephole2 . . . . . . . . . . . 45 5.4 Code Selection According to Cost Function . . . . . 46 6 Conclusion 47 6.1 Summary . . . . . . . . . . . . .. . . . . . . . . 47 6.2 Future Work . . . . . . . . . . . . . . . . . . . . 48 Bibliography 49rf [1 ] Richard M. Stallman, "GNU Compiler Collection Internals," Free Software Foundation, December 2002. [2 ] Alfred V. Aho, Mahadevan Ganapathi, Steven W. K. Tjiang, "Code Genera-tion Using Tree Matching and Dynamic Programming," ACM Transactions on Programming Languages and Systems (TOPLAS), v.11 n.4, p.491-516, October 1989. [3 ] Rainer Leupers, "Code Selection for Media Processors with SIMD Instructions," Proc. of 3th Design, Automation and Test in Europe (DATE'00), March 2000. [4 ] Hans-Peter Nilsson, "Porting the Gnu C Compiler to the CRIS architecture," master thesis, September 1998. [5 ] Harry Gunnarsson, Thomas Lundqvist, "Porting the GNU C Compiler to the Thor Microprocessor," master thesis, December 1995. [6 ] Manuel Hohenauer, Hanno Scharwaechter, Kingshuk Karuri, Oliver Wahlen, Tim Kogel, Rainer Leupers, Gerd Ascheid, Heinrich Meyr, Gunnar Braun, and Hans van Someren. "A Methodology and Tool Suite for C Compiler generation from ADL Processor Models," Proc. of 7th Design, Automation and Test in Europe (DATE'04), March 2004. [7 ] Oliver Schliebusch, A. Chattopadhyay, R. Leupers, G. Ascheid, H. Meyr, Mario Steinert, Gunnar Braun, Achim Nohl, "RTL Processor Synthesis for Architecture Exploration and Implementation," Proc. of 7th Design, Automation and Test in Europe (DATE'04), March 2004. [8 ] A. Ho®mann, H. Meyr, R. Leupers, "Architecture Exploration for Embedded Processors with LISA," Kluwer Academic Publishers, ISBN 1-4020-7338-0, December 2002. [9 ] Associated Compiler Experts vb: http://www.ace.nl [10 ] CoWare Inc.: LISATek product family, http://www.coware.com [11 ] S.Pees, A. Ho®mann, V. ^Zivojnovi¶c, and H. Meyr, "LISA: Machine Description Language for Cycleaccurate Models of Programmable DSP Architectures," Proc. of 35th DAC, 1999. [12 ] V. ^Zivojnovi¶c, S. Pees, and H. Meyr, "LISA: Machine Description Language and Generic Machine Model for HW/SW Co-design," Proc. of Workshop on VLSI Signal Processing, 1996. [13 ] C. Siska, "A Processor Description Language Supporting Retargetable Multi-pipeline DSP Program Development Tools," Proc. of 11th ISSS, 1998. [14 ] Armita Peymandoust, Giovanni De Micheli, "Aymboli Algebra and TimingDriven Data-°ow Synthesis," Proc. of the International Conference on Computer Aided Design 2001 (ICCAD), November 2001. [15 ] Hiroyuki Tomiyama, Ashok Halambi, Peter Grun, "Architecture Description Languages for Systems-on-Chip Design," Proc. of the Sixth Asia Paci‾c Conference on Chip Design Language, October 1999. [16 ] J.Sato, A. Y. Alomary, Y. Honma, T. Nakata, A. Shiomi, N. Hikichi, and M. Imai, "PEAS-I: A Hardware/Software Codesign System for ASIP development," IEICE Trans. Fundamentals, E77-A(3):483-491, March 1994. [17 ] T. Morimoto, K. Yamazaki, H. Nakamura, T. Boku, and K. Nakazawa, "Superscalar Processor Design using Hardware Description Language AIDL," Proc. of APCHDL, 1994. [18 ] T. Morimoto, K. Saito, H. Nakamura, T. Boku and K.Nakazawa, "Advanced Procssor Design Using Hardware Description Language AIDL," Proc. of ASPDAC, 1997. [19 ] S. Bashford, U. Bieker, B. harking, R. Leupers, P. Marwedel, A. Neumann, and D. Voggenauer, "The MIMOLA Language Version 4.1," University of Dortmund, 1994. [20 ] R. Leupers and P. Marwedel, "Retargetable Code Generation Based on Structural Processor Descriptions," Design Automation for Embedded Systems, Kluwer Academic Publishers, 3(1):1-36, January 1998. [21 ] R. Leupers, "Regargetable Code Generation for Digital Signal Processsors," Kluwer Academic Publishers, 1997. [22 ] H. Akaboshi, "A Study on Design Support for Computer Architecture Design," PhD Thesis, Dept. of Information Systems, Kyushu University, January 1996. [23 ] UDL/I Committee, "UDL/I Language Reference Manual Version 2.1.0a," 1994. [24 ] ASTEM RI. "UDL/I Logic Synthesis System User's Guide Ver. 1.1.0," 1995. [25 ] M. Freericks, "The nML Machine Description Formalism," Technical Report 1991/15, Fachbereich Informatik, TU Berlin, 1991. [26 ] F.Lohr, A. Fauth, and M. Freericks, "SIGH/SIM: An Environment for Retargetable Instruction Set Simulation," Technical Report 1993/43, Fachbereich Infomatic, TU Berlin, 1993. [27 ] D. Lanneer, J. Van Praet, A. Ki°i, K. Schoofs, W. Geurts, F. Thoen, and G. Goossens, "CHESS: Retargetable Code Generation for Embedded DSP Processors," Code Generation for Embedded Processors, Kluwer Acedemic Publishers, 1995. [28 ] A. Fauth and A. Knoll, \Automatic Generation of DSP Program Development Tools," Proc. of ICASSP, 1993. [29 ] G. Hadjiyiannis, P, Russo, and S. Devadas, "ISDL: An Instruction Set Description Language for Retargetability," Proc. of 34th DAC, 1997. [30 ] S. Hanono and S. Devadas, "Instruction Selection, Resource Allocation, and Scheduling in the AVIV Retargetable Code Generator," Proc. of 35th DAC, 1998. [31 ] G. Hadjiyiannis, P. Russo, and S. Devadas, "A Methodology for Accurate Performance Evaluation in Architecture Exploration," Proc. of 36th DAC, 1999. [32 ] J. C. Gyllenhaal, "A Machine Description Language for Compilation," Master's thesis, Dept. of ECE, UIUC, September 1994. [33 ] P. Paulin, C. Liem, T. May and S. Sutarwala, "FlexWare: A Flexible Firmware Development Environment for Embedded Systems," Code Generation for Embedded Processors, Kluwer Academic Publishers, 1995. [34 ] A. Inoue, H. Tomiyama, F. N. Eko, H. Kanbara, and H. Yasuura, "A Programming Language for Processor Based Embedded Systems," Proc. of APCHDL, 1998. [35 ] A. Inoue, H. Tomiyama, H. Okuma, H. Kanbara, and H. Yasuura, "Language and Compiler for Optimizing Datapath Widths of Embedded Systems," IEICE Trans. Fundamentals, E81-A(12):2595-2604, Dec. 1998. [36 ] A. Appel, J. Davidson, and N. Ramsey, "The Zephyr Compiler Infrastructure," Internal Report, http://www.RCS.virginia.edu/zephyr, 1998. [37 ] N. Ramsey and M. F. Fern¶andez, "Specifying Representations of Machine Instructions," ACM Trans. Programmming Languages and Systems, 19(3):492-524, May 1997. [38 ] N. Ramsey and J. W. Davidson, "Machine Descriptions to Build Tools for Embedded Systems," Proc. of LCTES, 1998. [39 ] M. W. Bailey and J. W. Davidson, "A Formal Model and Specification Languagefor Procedure Calling Conventions," Proc. of 22th POPL, 1995. [40 ] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau, "EXPRESSION: A Language for Architecture Exploration through Compiler/Simulator Retargetability," Proc. of DATE, 1999. [41 ] M. R. Hartoog, J. A. Rowson, P. D. Reddy, S. Desai, D. D. Dunlop, E. A. Harcourt, and N. Khullar, "Generation of Software Tools from Processor Descriptions for Hardware/Software Codesign," Proc. of 34th DAC, 1997.id NH0925392103 sid 914378 cfn 0 / id NH0925392104 auc 謝濟安 tic 利用演化樹追蹤法分析TIM Barrel中配醣 tic & tic #37238;家族的聚醣 adc 唐傳義 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 英文 pg 27 kwc 演化樹 kwc 演化樹追蹤 kwc 蛋白質演化 kwc 蛋白質功能 abc Abstract tc Table of Contents Abstract……………………………………………….. 0 致謝…………………………………………………… 0 Table of Contents……………………………………… I List of Figures………………………………………… II List of Tables…………………………………………. III Chapter 1 Introduction………………………………... 1 Chapter 2 Background and previous studies…………...4 2.1 TIM-barrel……………………………….4 2.2 (Trans)glycosidases Superfamily………..5 2.3 Evolutionary Trace Method……………..6 Chapter 3 Materials And Methods…………...………. 11 3.1 Samples……………...………………… 11 3.2 System and Methods..…………………. 12 Chapter 4 Experimental Results and Discussion…….. 19 4.1 Regulator of G protein signaling(RGS) family………………………………….19 4.2 (Trans)glycosidases Superfamily……... 22 Chapter 5 Conclusion…………………………………25 Reference……………………………………………...26 List of Figures Fig. 1 The topology diagram of Hevamine-one of the TIM barrel structures……………………………………………………… 4 Fig.2 Glycosides are composed of two structural features………..…. 5 Fig.3 The role of glycosidases is the hydrolysis of the sugar-aglycon bond………………………………….……..…………..…..…..6 Fig.4. partition identity cutoffs (PICs)………………..…………………………….. 8 Fig.5 Derivation of the evolutionary trace……………..…………….. 9 Fig.6 ET of the RGS protein family………………………………… 20 Fig.7 Evolutionary Tree and tracing pathway……………..…………21 Fig.8 Evolutionary Tree constructed in case of our study…………....23 List of Tables Table1. List of beta-glycanases of TIM-barrel glycosidases……...…... 18 Table 2. Correlation of ET identified RGS residues with PDE….…… 20rf Reference [1 ]Farber,G.K. (1993) An tim barrel full of evolutionary trouble. Current Opinion in Structural Biology, 3, 409-412. [2 ]Henrissat,B. and Davies,G. (1997) Current Opinion in Structural Biology, 7, 637-644. [3 ]Murzin A. G., Brenner S. E., Hubbard T., Chothia C. (1995). SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536-540. [4 ]Lichtarge O, Bourne HR, Cohen FE. An evolutionary trace method de.nes binding surfaces common to protein families. J Mol Biol 1996;257:342–358. [5 ]Higgins D., Thompson J., Gibson T. Thompson J. D., Higgins D. G., Gibson T.J.(1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. [6 ]Mathew E.Sowa, Wei He et al. (2000) A regulator of G protein signaling interaction surface linked to effector specificity. PNAS. Vol.97 no.4 :1483-1488 [7 ]Umesh R Desai, Ph.D.Associate. School of Pharmacy, Virginia Commonwealth University, Richmond, VA http://www.people.vcu.edu/~urdesai/ [8 ]Biocatalysis page. Wageningen University 2001 http://www.ftns.wau.nl/oc/research/biocatalysis/glycosidase/glycosidasepage.htm [9 ]Chothia, C. & Lesk, A. M. (1986). The relation between the divergence of sequence and structure in proteins. EMBO J. 5, 823–826. [10 ]Zvelebil, M. J., Barton, G. J., Taylor, W. R. & Sternberg, M. J. (1987). Prediction of protein secondary structure and active sites using the alignment of homologous sequences. J. Mol. Biol. 195, 957–961. [11 ]Shunyi Zhu, Isabelle Huys et al.(2004) Evolutionary Trace Analysis of Scorpion Toxins Specific for K-Channels. PROTEINS: Structure, Function, and Bioinformatics 54:361-370 [12 ]Wang, J., Ducret, A. T. Y., Kozasa, T., Aebersold, R. & Ross, E. M. (1998) J. Biol. Chem. 273, 26014–26025. [13 ]Hepler, J. R., Berman, D. M., Gilman, A. G. & Kozasa, T. (1997) Proc. Natl. Acad. Sci. USA 94, 428–432. [14 ]O’Neill, G., Goh, S. H., Warren, R. A. J., Kilburn, D. G., and Miller, R. C., Jr. (1986) Gene 44, 325. [15 ]A.White, D.Tull, et al.(1996).Crystallographic observation of a covalent catalytic intermediate in a beta-glycosidase. Nat Struct Biol. Feb;3(2):149-54.id NH0925392104 sid 916312 cfn 0 / id NH0925392105 auc 蔡仲鵬 tic 全光式WDM網路上固定式替用繞徑演算法的路徑排序方式 adc 林華君 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 40 kwc 全光式網路 kwc 繞逕與波長分配 kwc 固定式交替繞徑 abc 使用波長分割多工 (wavelength division multiplexing, WDM) 技術的光纖網路是目前網際網路骨幹架構中一個適合的解決方案。它提供極大的頻寬,讓使用者能夠在極短的時間內傳遞大量的資料。在WDM網路中,繞徑 (routing) 是一個相當熱門的議題,而在眾多繞徑方式中,固定式替用繞徑 (fixed-alternate routing) 實作簡單,也有著不錯的效能,在繞徑方法中是一個合適的選擇。 Fixed-alternate routing 在節點之間有數條路徑可供使用,而網路會依照路徑的排序順序來決定使用的路徑。Fixed-alternate routing 通常使用路徑長度作為排序順序,然而這可能會使得路徑上的某些光纖連結負擔沉重,反而無法有效降低連線阻斷率 (blocking probabilities)。在此篇論文中,我們將透過協調安排替用路徑排序順序的方式,來改良固定式替用繞徑方法,使得改良後的方法和一般的固定式替用繞徑方法相比,在連線阻斷率的降低上能夠有更好的效能。 tc 一、概述............1 I. WDM 網路上的各種繞徑方式......................................................................................................5 A. 固定式繞徑(fixed routing)...........................................................................................5 B. 固定式替用繞徑(fixed-alternate routing)...............................................................5 C. 動態波長繞徑(dynamic wavelength routing).............................................................7 D. 適性波長繞徑(adaptive wavelength routing)...........................................................7 II. 波長分配的方法.........................................................................................................................8 A. 亂數(Random) 分配:.......................................................................................................8 B. first-fit 分配:................................................................................................................9 C. most-used 分配:...............................................................................................................9 III. 各種繞徑方法的比較...............................................................................................................10 A. 固定式替用繞徑和動態波長繞徑的比較......................................................................... 11 B. Fixed-alternate routing 的問題點.............................................................................15 二、路徑排序問題..........................................................................................................................18 I. 給定的變數...............................................................................................................................18 II. 所求...........20 III. 成本函數的設計.......................................................................................................................20 IV. 將問題利用非線性規劃的方式解決.......................................................................................26 V. 解決問題的方式.......................................................................................................................30 三、模擬結果..31 I. 模擬環境的參數.......................................................................................................................31 II. 結果...........33 四、結論..........38 參考文獻................39rf 39 [1 ] C. A. Brackett, “Dense wavelength division multiplexing networks: Principles and applications,” IEEE Journal on Selected Areas in Communications, vol. 8, pp.948–946, Aug. 1990. [2 ] P. R. Trischitta and W. C. Marra, “Applying WDM technology to undersea cable networks,” IEEE Commun. Mag., pp. 62–66, Feb. 1998. [3 ] I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications: an approach to high bandwidth optical WAN’s,” IEEE Trans. Communications, vol. 40, no. 7, pp. 1171-1182, Jul. 1992. [4 ] E. Karasan and E. Ayanoglu, “Effects of wavelength routing and selection algorithm on wavelength conversion gain in WDM optical networks,” IEEE/ACM Trans. Networking, vol. 6, pp. 186-196, Apr. 1998. [5 ] A. Birman, “Computing approximate blocking probabilities for a class of all-optical networks,” IEEE Journal on Selected Areas in Communications, vol. 14, pp 852-857, Jun. 1996. [6 ] A. Sridharan and K. Sivarajan, “Blocking in all-optical networks,” IEEE/ACM Trans. Networking, vol. 12, pp. 384-397, Apr. 2004. [7 ] S.P. Chung, A. Kashper, and K. W. Ross, “Computing approximate blocking probabilities for large loss networks with state-dependent routing,” IEEE/ACM Trans. Networking, vol. 1, No. 1, Feb. 1993. [8 ] L. Li and A. K. Somani, “A new analytical model for multifiber WDM networks,” IEEE Journal on Selected Areas in Communications, vol. 18, No. 10, pp. 2138-2145, Oct. 2000. [9 ] R. Ramaswami and K. N. Sivarajan, “Routing and wavelength assignment in all-optical networks,” IEEE/ACM Trans. Networking, vol. 3, No. 5, Oct. 1995. [10 ]H. Harai, M. Murata and H. Miyahara, “Performance of alternate routing methods in all-optical switching networks,” in Proc. IEEE INFOCOM, 1997, pp. 516-524. [11 ]R. Ramamurthy and B. Mukherjee, “Fixed-alternate routing and wavelength conversion in wavelength-routed optical networks,” IEEE/ACM Trans. Networking, vol. 10, pp. 351-367, Jun. 2002. [12 ]A. Birman and A. Kershenbaum, “Routing and wavelength assignment methods in single-hop all-optical networks with blocking,” in Proc. IEEE INFOCOM’95, pp. 431-438, 1995. [13 ]P. H. Ho and H. T. Mouftah, “An approach for enhancing fixed alternate routing in dynamic wavelength-routed WDM networks,” in Proc. IEEE GLOBECOM, 2002. Vol. 3, pp. 2792 - 2797 [14 ]L. Li and A. K. Somani, “Dynamic wavelength routing using congestion and neighborhood information,” IEEE/ACM Trans. Networking, vol. 7, pp. 779-786, Oct. 1999. [15 ]A. Mokhtar and M. Azizoglu, “Adaptive wavelength routing in all-optical networks,” IEEE/ACM Trans. Networking, vol. 6, pp. 197-206, Apr 1998. [16 ]D. Gross and C. M. Harris, Fundamentals of Queueing Theory 3rd edition, John Wiley & Sons, 1998. [17 ]L. Kleinrock, Queueing Systems Volume II: Computer Applications, John Wiley & Sons, 1976. [18 ]M. S. Bazaraa and C. M. Shetty, Nonlinear Programming - Theory and Algorithms, John Wiley & Sons, 1979. [19 ]A. Girard, Routing and Dimensioning in Circuit-Switched Networks, Addison-Wesley, 1990. [20 ]E.W. Zegura, GT-ITM: Georgia Tech internetwork topology models (software), http://www.cc.gatech.edu/fac/Ellen.Zegura/gt-itm/gt-itm.tar.gz, 1996. [21 ]J.M.S. Doar, “Multicasting in the asynchronous transmission mode environment,” Computer Laboratory Technical Report, no.298, University Cambridge, 1993.(Ph.D. dissertation) [22 ]Matlab 6 R13, the language of technical computing (software), http://www.mathworks.com/products/matlab/id NH0925392105 sid 914393 cfn 0 / id NH0925392106 auc 黃俊傑 tic 一個新的分散式藍芽散網建構方式 adc 林華君 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 42 kwc 藍芽 kwc 散網建構 abc 由於藍芽系統採用跳頻式展頻系統, tc 1 概述1 2 藍芽系統簡介5 2.1 Bluetooth 架構. . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 一對一連線建立方法. . . . . . . . . . . . . . . . . . . . . . . 10 3 Proposed Algorithm 14 3.1 Scatternet 特性. . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 設計原則. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4 Simulation Results 26 4.1 效能評估方法. . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 實驗設定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3 實驗結果與分析. . . . . . . . . . . . . . . . . . . . . . . . . . 30 5 結論37rf [1 ] Bluetooth Special Interest Group. Specification of the Bluetooth System: Core, February 2001. . [2 ] Jaap C. Haartsen. Bluetooth – ad-hoc networking in an uncoordinated environment. In IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, USA, May 2001. [3 ] Jaap C. Haartsen. The bluetooth radio system. IEEE Personal Communications, February 2000. [4 ] Jennifer Bray and Charles F. Sturman. Bluetooth: Connect without Cables. Prentice Hall, 2001. [5 ] Bill Nickerson and Rick Lally. Development of a smart wireless networkable sensor for aircraft engine health management. In Aerospace Conference, 2001, IEEE Proceedings, volume 7, Big Sky, MT, USA, March 2001. [6 ] Charles E. Perkins. Ad Hoc Networking. Addison-Wesley, 2001. [7 ] Samir R. Das, Robert Casta neda, and Jiangtao Yan. Simulation-based performance evaluation of routing protocols for mobile ad hoc networks. In Mobile Networks and Applications, volume 5, pages 179–189, 2000. [8 ] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jorjeta Jetcheva. A performance comparison of multi-hop wireless ad hoc network routing protocols. In Mobile Computing and Networking, pages 85–97, 1998. [9 ] Lakshmi Ramachandran, Manika Kapoor, Abhinanda Sarkar, and Alok Aggarwal. Clustering algorithms for wireless ad hoc networks. In Proceedings Of The 4th International Workshop On Discrete Algorithms And Methods For Mobile Computing And Communications, pages 54–63, Boston, Massachusetts, United States, 2000. ACM Press. [10 ] Alan D. Amis, Ravi Prakash, Thai H.P. Vuong, and Dung T. Huynh. Maxmin d-cluster formation in wireless ad hoc networks. In Proc. IEEE INFOCOM, Tel Aviv, Israel, March 2000. [11 ] Hwa-Chun Lin and Yung-Hua Chu. A clustering technique for large multihop mobile wireless networks. In Vehicular Technology Conference Proceedings, volume 2, pages 1545 – 1549, Tokyo, Japan, May 2000. VTC 2000-Spring Tokyo. [12 ] Gergely V. Zaruba, Stefano Basagni, and Imrich Chlamtac. Bluetrees– scatternet formation to enable bluetooth-based ad hoc networks. In IEEE International Conference on Communications (ICC), Helsinki, Finland, June 2001. [13 ] Godfrey Tan, Allen Miu, John Guttag, and Hari Balakrishnan. Forming scatternets from bluetooth personal area networks. Technical Report MITLCS- TR-826, MIT, October 2001. [14 ] Godfrey Tan, Allen Miu, John Guttag, and Hari Balakrishnan. An efficient scatternet formation algorithm for dynamtic environments. In IASTED International Conference on Communications and Computer Networks, Boston, MA, USA, November 2002. [15 ] Ting-Yu Lin, Yu-Chee Tseng, Keng-Ming Chang, and Chun-Liang Tu. Formation, routing, and maintenance protocols for the bluering scatternet of bluetooths. In Proceedings of the 36th Hawaii International Conference of System Sciences, Big Island, Hawaii, USA, January 2003. [16 ] F. Chun-Choong and C. Kee-Chaing. Bluerings - bluetooth scatternets wiwith ring structures. In IASTED International Conference on Wireless and Optical Communication(WOC 2002), Banff, Canada, July 2002. [17 ] Theodoros Salonidis, Pravin Bhagwat, Leandros Tassiulas, and Richard LaMaire. Distributed topology construction of bluetooth personal area networks. In Proc. IEEE INFOCOM, Anchorage, AK, April 2001. [18 ] Ching Law, Amar K. Mehta, and Kai-Yeung Siu. Performance of a new bluetooth scatternet formation protocol. In Proceedings of the ACM Symposium on Mobile Ad Hoc Networking and Compuing 2001, Long Beach, California, USA, October 2001. [19 ] Ching Law and Kai-Yeung Siu. A bluetooth scatternet formation algorithm. In IEEE Symposium on Ad Hoc Wireless Networking, November 2001. [20 ] Ching Law and Kai-Yeung Siu. A bluetooth scatternet formation algorithm. In IEEE Global Telecommunications Conference. GLOBECOM ’01, November 2001. [21 ] Thedoros Salonidis, Pravin Bhagwat, and Leandros Tassiulas. Proximity awareness and fast connection establishment in bluetooth. In Proceedings of the First Annual Workshop on Mobile and Ad Hoc Networking and Computing, Boston, MA, USA, August 2000. MobiHOC. [22 ] Bluetooth Special Interest Group. Bluetooth Assigned Numbers Version 2.16, June 2002. . [23 ] Blueware: Bluetooth simulator for ns. http://nms.lcs.mit.edu/projects/blueware/. [24 ] Min-Te Sun, Chung-Kuo Chang, and Ten-Hwang Lai. A self-routing topology for bluetooth scatternets. In IEEE International Symposium on Parallel Architectures, Algorithms and Networks. I-SPAN ’02, May 2002. [25 ] Zhifang Wang, Robert J. Thomas, and Zygmunt Haas. Bluenet–a new scatternet formation scheme. In Proceedings of the 35th Hawaii International Conference on System Sciences(HICSS-35), Big Island, Hawaii, January 2002. [26 ] Stefano Basagni and Chiara Petrioli. Multihop scatternet formation for bluetooth networks. In Vehicular Technology Conference, volume 1, May 2002.id NH0925392106 sid 894348 cfn 0 / id NH0925392107 auc 黃至德 tic 802.11無線區域網路負載平衡 adc 林華君 ty 碩士 sc 國立清華大學 dp 資訊工程學系 yr 92 lg 中文 pg 49 kwc 無線區域網路 kwc 負載平衡 kwc 802.11 abc 越來越多人使用無線區域網路,改進無線區域網路的效能就顯得越重要。無線區域網路會因為基地台負載不平衡而降低了無線區域網路的效能。此外,這種負載不平衡現象導致高負載的基地台頻寬吃緊,而另一方面卻浪費了低負載基地台的頻寬,結果使得無線區域網路的效能無法被充分運用。為了使無線區域網路的效能能被充分運用,必須採用某些機制來改善這種負載不平衡的現象,這類機制我們稱為負載平衡機制。本篇論文基於目前無線區域網路的架構,探討負載平衡機制並且實現一個負載平衡的系統。 tc 一、簡介 二、系統模型 三、系統功能及相關模組 四、負載平衡演算法 五、系統展示 六、效能評估 七、結論 參考文獻rf [1 ] R. Jordan and C. T. Abdallah, “Wireless Communications and Networking: An Overview,” IEEE Antenna’s and Propagation Magazine, v.44, no. 1, pp.185-193, 2002. [2 ] S. Kapp, “802.11: Leaving the Wire Behind,” IEEE Internet Computing, pp.82-85, 2002. [3 ] S.T. Sheu , C.C. Wu,“Dynamic Load Balance Algorithm (DLBA) for IEEE 802.11 Wireless LAN”, Tamkang Journal, 1999. [4 ] Ioannis Papanikos, Michael Logothetis, “A Study on Dynamic Load Balance for IEEE 802.11b Wireless LAN”, COMCON 8, 2001. [5 ] C.Y. Sung, H.C. Chao, C.L. Wang,“A Load-sharing Algorithm for 802.11 MAC Protocol Using Connection Monitor Mechanism”, Journal of Internet Technology, v.4, no. 2, pp.127-134, May 2003. [6 ] Tzu-Chieh Tsai, Chih-Feng Lien, ”Load Balance and Seamless Roaming with QoS support in IEEE 802.11 WLAN”, Oct. 2003. [7 ] E. Decker, “Definitions of Managed Objects for Bridges,” RFC 1493, July 1993. [8 ] K. McCloghrie, “Management Information Base for Network Management of TCP/IP-based internets: MIB-II,” RFC 1213, March 1991. [9 ] C. Rigney, "RADIUS Accounting" RFC 2866, June 2000. [10 ] Anand Balachandran, “Wireless Research API” http://ramp.ucsd.edu/pawn/wrapi/ [11 ] Jean Tourrilhes, Linux Wireless Extension and the Wireless Tools”, http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html [12 ] N. R. Prasad, “IEEE 802.11 System Design”, Personal Wireless Communications, pp.490-494, 2000. [13 ] A. R. Prasad, N.R. Prasad, A. Kamerman, H. Moelard, A. Eikelenboom, “Indoor Wireless LANs Deployment”, Vehicular Technology Conference Proceedings, v.2, pp.1562-1566, May 2000.id NH0925392107 sid 904388 cfn 0 / id NH0925394001 auc 邱柏仁 tic Web Services為基之Peer-to-peer CPFR訊息交換架構 adc 林則孟 ty 碩士 sc 國立清華大學 dp 資訊系統與應用研究所 yr 92 lg 中文 pg 83 kwc 網路服務 kwc 點對點 kwc 協同規劃、預測、補貨 abc 針對供應鏈上需求預測的不準確性及資訊不透明的問題,在眾多供應鏈管理的策略上,VICS(Voluntary Interindustry Commerce Standard)協會於1998年提出的Collaborative Planning, Forecasting, and Replenishment 即為解決這兩項問題的最佳方案之一。VICS(2002)提出的CPFR 建議指南(Guildlines)中不僅將CPFR的觀念清楚的表示出來,並且針對企業進行CPFR 時資訊傳遞架構所採用的各種部署情境(Deployment)也詳細的介紹。其中主要分為共享式的部署情境(Shared Deployement)及點對點式的部署情境(Peer-to-peer Deployment)。 tc 目錄 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究範圍與限制 3 1.4 研究方法與步驟 3 第二章 CPFR及相關技術 5 2.1 CPFR(Collaborative Planning, Forecasting, and Replenishment) 5 2.1.1 CPFR簡介 5 2.1.2 CPFR九大步驟 5 2.2 CPFR的部署情境(Deployment) 7 2.2.1 共享式部署情境(Share Model Deployment) 7 2.2.2 點對點式部署情境(Peer-to-Peer Model Deployment) 8 2.2.3 共享式部署情境與點對點式部署情境之比較 9 2.3 BMS(Business Message Standards) 10 2.3.1 UML類別圖的表示法 11 2.3.2 BMS訊息標準 13 2.3.3 BMS基本類別 13 2.3.4 品項資訊需求(Item Information Pequest) 15 2.3.5 品項位置基本資料(Item Location Profile) 16 2.3.6 預測(Forecast) 17 2.3.7 異常狀況標準(Exception Criteria) 18 2.3.8 產品活動(Product Activity) 20 2.3.9 歷史績效(Performance History) 21 2.3.10 異常狀況通知(Exception Notification) 21 2.3.11 預測修正(Foercast Revisions) 22 2.3.12 事件(Event) 23 2.4 Web Services 24 2.4.1 Web Services定義及觀念 24 2.4.2 Web Services使用技術 25 2.4.3 Web Services架構 26 2.4.4 網路服務定義語言(Web Services Description Language, WSDL) 27 2.4.5 簡單物件存取協定(Simple Object Access Protocol, SOAP) 28 2.4.6 通用敘述查詢與整合(Universal Description、Discovery and Integration, UDDI) 29 2.4.7 Web Services應用於CPFR之研究 29 2.5 B2Bi 30 2.5.1 B2Bi的定義 30 2.5.2 B2Bi的分類 30 2.5.3 B2Bi的架構 31 2.6 物件導向與軟體元件概念 31 2.6.1 物件導向(Object-oriented) 32 2.6.2 軟體元件之定義及特性 32 2.6.3 UML相關研究 33 2.6.4 小結 33 第三章 以Web services為基之Peer-to-peer的CPFR系統架構 35 3.1 Peer-to-peer CPFR的內涵與架構 36 3.2 Peer-to-peer CPFR部署情境的優點 37 3.3 傳統以B2Bi 伺服器為主的Peer-to-peer CPFR資訊交換架構 38 3.3.1 傳統的Peer-to-peer CPFR資訊交換模式 38 3.3.2 傳統的Peer-to-peer CPFR系統架構 40 3.3.3 傳統的Peer-to-peer CPFR資訊架構之缺點 42 3.4 以Web Services為基之Peer-to-peer CPFR資訊交換架構 43 3.4.1 以Web Services為基之Peer-to-peer CPFR資訊交換模式 44 3.4.2 以Web Services為基之Peer-to-peer CPFR系統架構 45 3.5 以Web Services為基之Peer-to-peer CPFR之延伸 46 3.5.1 以Web Services為基之Peer-to-peer CPFR延伸至多對多CPFR資訊交換模式 46 3.5.2 以Web Services為基礎延伸的Peer-to-peer CPFR網路架構 48 3.6 以Web Services為基之Peer-to-peer CPFR部署情境的優點 49 第四章 系統設計與實作 51 4.1 系統架構 52 4.2 系統架構模組分析 53 4.3 BMS元件分析、設計與實作 54 4.3.1 基本元件及模組 54 4.3.2 訊息封裝元件演算法 63 4.3.3 封裝訊息-以Forecast訊息為例 64 4.3.4 解譯BMS訊息元件 70 4.3.5 解譯BMS訊息演算法 71 4.3.6 訊息解譯元件範例-以forecast為例 72 4.4 實作展示 73 4.5 實作討論 77 第五章 結論與建議 78 5.1 結論 78 5.2 建議 79 參考文獻 81rf [1 ] 李美芬,”製造體系間電子化採購作業系統之發展程序”,清華大學工業工程與工業管理學系研究所碩士論文,2000。 [2 ] 辛瑋雄,”CPFR協同商務平台之分析與設計”,國立清華大學工業工程與工業管理學系研究所碩士論文,2003。 [3 ] 吳慧玲,”台灣零售業應用協同規劃預測補貨模式之可行性研究-以烘焙業與百貨量販業為例”,淡江大學資訊管理研究所碩士論文,2003。 [4 ] 林則孟、張慧、辛瑋雄、陳君涵、劉家麟、蘇東煜,”製造業導入CPFR之效益指標及其資料流分析-以中環公司為例”,2003年產學合作產業電子化研討會,2003。 [5 ] 林則孟、辛瑋雄, "CPFR協同商務平台之分析與設計", 第九屆資訊管理暨實務研討會, 大葉大學,2003。 [6 ] 林敦睦,”CPFR導入方法之研究-以木工機械業為例”,國立清華大學工業工程與工業管理學系研究所碩士論文,2004。 [7 ] 林仕文,”以企業流程塑模語言自動化CPFR之補貨機制”,國立台北大學資訊管理研究所碩士論文,2002。 [8 ] 林宣佐,”運用企業流程語言描述關鍵企業流程之研究-以BPEL4WS應用於CPFR為例”,國立中正大學資訊管理研究所碩士論文,2002。 [9 ] 柯育迫,”以元件為基之多層次企業資源規劃系統架構設計”,國立成功大學製造工程研究所碩士論文,2001。 [10 ] 陳泓志,”物件導向企業框架之研究-以會計總帳系統為例”,國立政治大學資訊管理學系碩士論文,2000。 [11 ] 黃子儀,”結合XML與SOAP發展電子病歷傳輸介面之研究”,國立成功大學資訊管理研究所碩士論文,2003。 [12 ] 彭士齊,”應用元件為基礎之物件導向模擬模式發展程序-eM-Plant為例”,國立清華大學工業工程與工業管理學系研究所碩士論文,2002。 [13 ] 廖漢君,”UML:類別圖轉換至物件關聯模式之研究”,國立中山大學資訊管理研究所碩士論文,2002。 [14 ] 張榮圳,”供應鏈管理資訊分享之模式”,國立中山大學資訊管理研究所碩士論文,2000。 [15 ] 劉熒潔,”從ERP、SCM、CRM到電子商務”,文魁資訊股份有限公司,2002年8月 初版。 [16 ] 陳慶蔚,”網路系統架構之競爭策略-以Web Services與Microsoft .Net為例”,國立台灣大學商學研究所碩士論文,2002。 [17 ] 聯合通商電子商務股份有限公司譯,”協同規劃、預測、補貨(CPFR®)建議指南”,2002。 [18 ] 蘇雄義譯, “供應鏈之設計與管理”,美商麥格羅•希爾國際股份有限公司,初版,民國九十年二月。 [19 ] 航網科技,http://www.niceshipping.com/。 [20 ] 聯合通商電子商務股份有限公司,http://www.ebizprise.com/。 [21 ] Lublinsky, B. , “Approaches to B2B Integration”,EAI Journal, Feburary 2002,pp.38-47,2002 [22 ] Bussler, C. ,”B2B Integration Technology Architecture”, Proceedings of the 4th IEEE int’l Workshop on Advanced Issues of E-Commerce and Web-Based information Systems,2002,pp.147-152,2002 [23 ] Bussler, C. , ”The Role of B2B Protocols in Inter-Enterprise Process Execution”. In: Proceedings of the WorkShop on Technologies for E-services (TES 2001), Rome, Italy, September 2001,pp.16-29,2001 [24 ] Bussler, C. , “The Role of B2B Engines In B2B Integration Architectures”. ACM SIGMOD Record, Special Issue on Data Management Issues in E-Commerce, Vol.31 ,NO.1,March 2002,pp.67-72,2002 [25 ] Simchi-Levi, D., P. Kaminsky and E. Simchi-levi, “Designing and managing the Supply Chain. Concepts, Strategies, and Case Studies”, McGraw-Hill,2000. [26 ] Linthicum, D. S.,”B2B Application Integration”,Addison-Wesley,2000 [27 ] EAN.UCC, EAN.UCC CPFR® Business Message Standards version 1.0,2001. [28 ] Karin, L. & Andrew, G. “PEER-TO-PEER BASED CPFR/TRADING EXCHANGE CASE STUDY”, http://ww.logility.com [29 ] Lee, H. L. and Whang, S.,“Information Sharing in a Supply Chain”,International Journal of Technology Management, Vol.20, Iss.3.4, pp.373-387, 2002 [30 ] Lublinsky, B. , “Approaches to B2B Integration” , EAI Journal, Feburary 2002,pp.38-47,2002 [31 ] Napster.com,http://www.napster.com [32 ] Olsen, G. ,”An Overview of B2B Integration”, EAI Journal, May 2000,pp.28-36,2000 [33 ] Småros , J. & Främling , K., “Peer-to-peer information systems - An enabler of collaborative planning, forecasting and replenishment” , http://www.cs.hut.fi/~framling/Publications/peertopeer.html [34 ] VICS, GCI CPFR® Guide, 2002. [35 ] VICS, VICS CPFR® XML Messaging Model, June 25,2001. [36 ] W3C, http://www.w3c.org。 [37 ] XSLT,http//www.w3c.org/style/XSL/id NH0925394001 sid 906706 cfn 0 / id NH0925394002 auc 羅瑞麟 tic 以語音辨識與評分輔助口說英文學習 adc 張智星 ty 碩士 sc 國立清華大學 dp 資訊系統與應用研究所 yr 92 lg 中文 pg 59 kwc 英文語音評分 kwc 語音評分 kwc HMM對數機率 kwc 說話驗證 kwc 強迫切割 kwc 英文語音辨識 abc   英文語音評分乃是結合了許多音訊處理以及語音辨識技術的一門學問,本論文主要論述的重點在於利用標準語音資料來比對評分。從定義評分系統的各個部份開始,依英文發音的特有性,針對各部份設計了對應的實驗,期許建立一套合理的英文語音評分系統。 tc 第1章 緒論 1 1.1 研究主題 1 1.2 英文語音評分系統簡介 2 1.3 本論文研究方向和主要成果 3 1.4 前人相關研究 4 1.5 章節概要 5 第2章 說話驗證 6 2.1 驗證系統簡介 6 2.2 語音訊號切割 7 2.3 驗證機制建立 9 2.3.1 音素排名 9 2.3.2 驗證機制 10 2.4 說話驗證實驗結果 13 第3章 英文語音訊號切割 17 3.1 聲學模型訓練 17 3.1.1 語料取得 17 3.1.2 聲學模型設計 18 3.1.3 特徵參數擷取 21 3.1.4 隱藏式馬可夫模型 23 3.2 語音辨識及語音訊號切割 25 3.2.1 語音訊號切割流程 25 3.2.2 端點偵測 27 3.2.3 維特比演算法 29 3.3 英文語音訊號切割實驗結果 33 第4章 英文語音評分 36 4.1 評分系統簡介 36 4.2 特徵參數擷取 38 4.2.1 音量強度曲線 38 4.2.2 基頻軌跡曲線 39 4.2.3 發聲急緩變化 41 4.2.4 HMM對數機率差異 42 4.3 特徵參數正規化 43 4.3.1 內插法 43 4.3.2線性縮放 43 4.3.3線性平移 44 4.4 圖樣比對方法設計 46 4.4.1 音量強度曲線比對方法 46 4.4.2 基頻軌跡曲線比對方法 47 4.4.3 發聲急緩變化比對方法 47 4.4.4 HMM對數機率差異比對方法 48 4.5 評分機制建立 52 4.5.1 評分機制 - 特徵 52 4.5.2 評分機制 - 音素 52 4.5.3 評分機制 - 單字 53 4.5.4 評分機制 - 句子 53 4.6 英文語音評分實驗結果 54 第5章 結論與展望 56 參考文獻 58rf 【1】鐘林,“漢語語音辨別說話驗證”,北京清華大學碩士論文,民國91年 【2】楊永泰,“隱藏式馬可夫模型應用於中文語音辨識之研究”,中原大學碩士論文,民國89年 【3】陳柏琳,“中文語音資訊檢索-以音節為基礎之索引特徵、統計式檢索模型及進一步技術”,台灣大學博士論文,民國90年 【4】呂道誠,“不特定語者、國台雙語大詞彙語音辨識之聲學模型研究”,長庚大學碩士論文,民國90年 【5】G.S. Ying, L.H. Jamieson and C.D. Michell, A probabilistic approach to AMDF pitch detection, Spoken Language, 1996. ICSLP 96. Proceedings., Fourth International Conference on Volume: 2 , 1996 , Page(s): 1201-1204 vol.2 【6】Steve Young, The HTK Book version 3, Microsoft Corporation, 2000 【7】Lawrence Rabiner, B.H Juang, Fundamentals of speech recognition, Prentice Hall, 1993 【8】J.D., J.G., J.H. and L.H., Discrete-Time Processing of Speech Signals, Prentice Hall, 1993 【9】Giuliano Monti, Mark Sandler, Mnophonic transcription with autocorrelation, Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000 【10】L. Neumeyer, H. Franco, V. Digalakis and M. Weintraub, Automatic scoring of pronunciation quality, 1999 【11】H. Franco, L. Neumeyer, Y. Kim and O. Ronen, Automatic pronunciation scoring for language instruction, Proc. Int. Congress on Acoustics, Speech and Signal Processing(ICASSP), 1997 【12】J.-S. Roger. Jang, C.-T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing, Prentice Hall, 1996 【13】高名揚,“以聲音內容為主的音樂資料庫檢索系統的加速方法”,清華大學碩士論文,民國90年 【14】J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles, Addison-Wesley Publishing Company, 1974 【15】李俊毅,“語音評分”,清華大學碩士論文,民國91年 【16】Gies Bouwman and Lou Boves, Utterance Verification based on the Likelihood Distance to Alternative Paths, Department of Speech, University of Nijmegen, The Netherlands, 2002 【17】Rafid A. Sukkar and Chin-Hui Lee, Vocabulary Independent Discriminative Utterance Verification for Nonkeyword Rejection in Subword based Speech Recognition, IEEE Transactions on Speech and Audio Processing, VOL. 4, No. 6, November 1996 【18】Leonardo Neumeyer, Horacio Franco, Mitchel Weintraub, and Patti Price, Automatic Text-Independent Pronunciation Scoring of Foreign Language Student Speech, 1996 【19】C. Cucchiarini, H. Strik and L. Boves, Automatic Evaluation of Dutch Pronunciation by Using Speech Recognition Technology, Department of Speech, University of Nijmegen, The Netherlands, 1997id NH0925394002 sid 916701 cfn 0 / id NH0925394003 auc 徐瑩 tic 多平台行動訊息交換系統 adc 石維寬 ty 碩士 sc 國立清華大學 dp 資訊系統與應用研究所 yr 92 lg 中文 pg 55 kwc 訊息交換 abc 隨著網際網路和通訊技術的蓬勃發展,人與人之間傳遞訊息的方式和設備也越來越多樣化。人們可以經由各種不同的訊息傳遞平台傳遞即時或非即時性的訊息。在訊息的內容上,單調的純文字訊息已經不能滿足使用者的需求,豐富的多媒體訊息服務,漸漸的受到使用者的喜愛。 rf [1 ] “802.11b specification”, IEEE, 1999 [2 ] Asha Mehrotra, “GSM System Engineering”, Artech House, Inc.Boston•London [3 ] “Overall Description of the GPRS Radio Interface, Stage 2”.Techmical Report Recommendation GSM 03.64, ETSI, 1997 [4 ] GSM 03.40: “Digital cellular telecommunication system (Phase 2+); Technical realization of the Short Message Service (SMS) Point-to-Point (PP) [5 ] “Multimedia Messaging Service version 1.1”, OMA [6 ] Jabber Protocols, jabber.org, Inc. 2004-03-18 [7 ] “Wireless Session Protocol, WAP-203-WSP-20000504-a”, Open Mobile Alliance™ [8 ] “MMS Stage 2, Functional Description”, 3GPP2 X.S0016.200, Version 1.0.0, April 3, 2003 [9 ] “Integrated Messaging System in Mobile Computing Environment”, 邱瓊嬌, 2002 [10 ] “The Implementation of Integrated Personal Real-Time Information System”, 張淑美, 2001 [11 ] Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation 6 October 2000 [12 ] XMPP Core, draft-miller-xmpp-core-00, IETF, December 20, 2002 [13 ] “Wireless Application Protocol, WAP-209-MMSEncapsulation -20020105-a”, Version 05, Jan, 2002id NH0925394003 sid 916704 cfn 0 / id NH0925394004 auc 陳宗猷 tic 資訊隱藏在彩色影像中 adc 張隆紋 ty 碩士 sc 國立清華大學 dp 資訊系統與應用研究所 yr 92 lg 英文 pg 41 kwc 資訊隱藏 kwc 隱像學 kwc 空間域 kwc 頻率域 kwc 修改量化表 abc 資訊嵌入或資料隱藏的技術,都是能夠使我們秘密嵌入額外資料在數位檔案的方法,而這些數位檔案包括了影像檔、電影檔、以及聲音檔等。一般來講我們將資訊嵌入或資料隱藏的技術分成兩大類的應用,一則是應用在數位版權的保護方面,也就是數位浮水印;一則是應用在秘密通訊方面,也就是隱像學。這兩大類的主要分別在於它們對所藏入資訊強調的重點不同,在數位浮水印裡,我們所著重的是藏入資料(數位浮水印)的強韌性,這樣才能確保當數位檔案遭受惡意修改、攻擊時,依舊能夠從中取出我們的數位浮水印來證明這個數位檔案是屬於我們所有;而在秘密通訊裡,我們所著重的則是在不影響原始影像下可藏入資料量的多寡。在秘密通訊裡我們若將所藏入資訊改為是對影像或數位檔案的註解或註釋的話,則可用來做資料管理。本篇論文則是著重於在不影響原始影像下使可藏入資料量更多。 tc Acknowledgements i Abstract (in Chinese) ii Abstract (in English) iii List of Contents iv List of Figures v List of Tables viii Chapter 1 Introduction 1 Chapter 2 Review of Data Hiding Techniques 3 2.1 Data hiding method in the spatial domain 3 2.1 Data hiding method in the frequency domain 3 Chapter 3 The Proposed Methods for Data Hiding in Color Images 5 Chapter 4 Experimental Results and Discussions 17 Chapter 5 Conclusions 39 References 40rf [1 ] W. Bender, D.Gruhl and N. Morimoto, "Technique for data hiding", IBM System Journal, Vol.35, NOS 3&$, 1996. [2 ] E. Franz, A. Jerichow, S. Moeller, A. Pfitzmann and I. Stierand, "Computer Based Steganography: How it works and why therefore any restrictions on cryptography are nonsense, at best", in: Information Hiding, First Int. workshop, Cambridge, UK, May, June, 1996, Springer, Lecture Notes in Computer Science, No. 1174, pp. 7-21 [3 ] C Kurak, J McHugh, "A Cautionary Note on Image Downgrading", Computer Security Applications Conference, (IEEE, 1992) pp 153—159 [4 ] Gruhl, D., A. Lu, and W. Bender, “Echo Hiding,” in Information Hiding: First International Workshop, Proceedings, vol.1174 of Lecture Notes in Computer Science, Springer, 1996, pp. 295-316. [5 ] Van Schyndel, R. G., A. Tirkel, and C. F. Osborne, “A Digital Watermark,” in Proceedings of the IEEE International Conferences on Image Processing, vol. 2, 1994, pp.86-90 [6 ] E. H. Adelson, “Digital signal encoding and decoding apparatus,” U.S. Patent 4939515, 1990. [7 ] "StegoDos-Black Wolf's Picture Encoder v0.90B," ftp://ftp.csua.berkely.edu/pub/cypherpunks/steganography/stegodos.zip, 1993 [8 ] Brown, A., "S-Tools for Windows," ftp://idea.sec.dsi.unimi.it/pub/security/crypt/code/s-tools4.zip, 1996. [9 ] Machado,R.,"Ezstego,Stego Online,Stego,"http://www.stego.com,1997. [10 ] Repp, H., "Hide4PGP," http://www.rugeley.demon.co.uk/security/hide4pgp.zip, 1996. [11 ] Hansmann, F., "Steganos, Deus Ex Machina Communications," http://www.steganography.com/, 1996. [12 ] H. Y. Chang, “Data hiding and watermarking in color images by wavelet transforms,” Master thesis, Department of Computer and Information Science, National Chiao Tung University, Taiwan, Republic of China, 1999. [13 ] Kobayashi, H., Y. Noguchi and H. Kiya (1999). A method of embedding binary data into JPEG bitstreams. IEICE Trans. Information and Systems, J83-D-II, 1469-1476 [14 ] D. Upham, Jpeg–Jsteg, http://www.tiac.net/users/korejwa. [15 ] Chin-Chen Chang, Tung-Shou Chen, Lou-Zo Chung, A steganographic method based upon JPEG and quantization table modification, Information Sciences 141 (2002) 123–138 [16 ] USC-SIPI image databaseid NH0925394004 sid 916710 cfn 0 / id NH0925394005 auc 蔡峰杰 tic 從多重音樂資料串流中建立一個具有音樂心情偏好的虛擬音樂頻道 adc 陳良弼 ty 碩士 sc 國立清華大學 dp 資訊系統與應用研究所 yr 92 lg 英文 pg 44 kwc 線上廣播電台 kwc 虛擬頻道 kwc 多重資料串流 kwc 表演單 abc 在本論文中,我們提出了一個名為『虛擬頻道(virtual channel)』的新型態線上廣播電台(online radio)之資訊服務系統。在這個系統中,它最主要的功能是讓我們透過統合與分析各個網路電台的播放內涵後,經由自動選取並轉換到合適的電台的機制,讓我們享受到一個持續撥放著音樂的環境,也由於我們不需要手動地尋找目前正在撥放著有音樂內容的電台(就如同擁有一個一直撥放音樂的電台),所以我們的系統才名為虛擬音樂頻道系統;此外在本系統中,我們亦分析並判斷出每一個音樂頻道所屬的音樂心情(music mood),也就是在已經判斷出目前正在撥放著音樂的電台中,再進一步地判別出此撥放的音樂所帶給人的感覺是被歸類為悲傷、滿足、急躁或是熱鬧的機制;在經過以上兩層的判斷程序後,我們可以根據使用者的習慣或是外在所需的音樂環境(例如在輕鬆時想要有滿足風格的音樂氣氛等)來建立起一個可動態調整的音樂電台選擇清單(playbill)。綜合以上的系統服務需求,我們首先要研究的是:如何有效率的擷取出每一個網路電台資料串流中的特徵值,並且透過有效率的分析與判斷機制來找出正在撥放著含有音樂內涵的網路電台;緊接著是如何透過特徵值的分析來判斷出那些正被撥放的音樂片段們所代表的音樂心情。由於在資料串流的環境下有著反應時間的限制,所以我們必須找出兼具有特徵值組合精簡以及判斷時間迅速的分類機制的來建構此系統。最後我們將展示一系列的實驗來驗證系統中分類機制的判斷正確率以及評估系統整體的表現。 tc Abstract III Acknowledgements IIII Contents IIV List of Figures V List of Tables VII List of Algorithms VIII 1. Introduction 1 1.1 Motivation 1 1.2 Related Work 2 1.3 System Design 4 2. System Overview 6 2.1 Preliminary 6 2.2 System Framework 8 3. Algorithms and Example of system Processing 12 3.1 Algorithms 12 3.2 Processing Example 15 4. Feature Extraction and Analysis 25 4.1 Finding the songs with preferred Music Mood 29 4.1.1 Music Intension Detection 29 4.1.2 Music Mood Classification 31 4.2 Tuning point Detection 34 5. Experiment results 36 5.1 Experimental Environment 37 5.2 Evaluations 38 6. Conclusion 41 7. Reference 42rf [Rose00 ] B. Rose and L. Rossin. Internet study v: “Startling new insights about the internet and streaming,” Sep. 2000 http://www.arbitron.com/downloads/internet_study_v.pdf. [Davi01 ] David B. Hauver, and James C. French, “Flycasting: Using Collaborative Filtering to Generate a Playlist for Online Radio,” WEDELMUSIC ‘2001 (International Conference on Web Delivering of Music) [Luka03 ] Lukasz Golab and M. Tamer Ozsu, “Issue in Data Stream Management,” In ACM SIGMOD (Special Interest Group On Management Of Data) Record, Volume 32, Number 2, June 2003, pp.5—14. [Zhu02 ] Yunyue Zhu, Dennis Shasha, “StatStream: Statistical Monitoring of Thousands of Data Streams in Real Time,” VLDB (Very Large DataBase) 2002: 358-369 [Clau01 ] Claudine Santos Badue, Ricardo A. Baeza-Yates, Berthier A. Ribeiro-Neto, Nivio Ziviani, “Distributed Query Processing Using Partitioned Inverted Files,” SPIRE (String Processing and Information REtrieval) 2001: 10-20 [Anna01 ] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, Martin Strauss, “Surfing Wavelets on Streams: One-Pass Summaries for Approximate Aggregate Queries,” VLDB 2001: 79-88 [Char03 ] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, Philip S. Yu, “A Framework for Clustering Evolving Data Streams,” VLDB (Very Large DataBase) 2003: 81-92 [Savi99 ] Savitha Srinivasan, Dragutin Petkovic, Dulce B. Ponceleon, “Towards robust features for classifying audio in the CueVideo system,” ACM Multimedia (1) 1999: 393-400 [Erli96 ] Erling Wold, Thom Blum, Douglas Keislar, James Wheaton, “Content-Based Classification, Search, and Retrieval of Audio,” IEEE MultiMedia 3: 27-36 (1996) [Lu01 ] Lie Lu, Hao Jiang, HongJiang Zhang, “A robust audio classification and segmentation method,” ACM Multimedia 2001: 203-211 [Lu02 ] Lie Lu, Hao Jiang, Senior Member, IEEE, HongJiang Zhang, “Content Analysis for Audio Classification and Segmentation,” IEEE Transactions on Speech and Audio Processing, VOL. 10, NO. 7, October 2002 [Alex00 ] Alex Weiss, “Music Selection for Internet Radio,” November 3, 2000 [Zhan01 ] Tong Zhang, and C.-C. Jay Kuo, “Content-Based Classification and Retrieval of Audio” [Jian04 ] M.H. Jian, C.H. Lin, and A.L.P. Chen, “Perceptual Analysis for Music Segmentation,” SPIE Storage and Retrieval Methods and Applications for Multimedia 2003 [Sche97 ] Scheirer, E. and M. Slaney, “Construction and evaluation of a robust multi-feature speech/music discriminator,” in IEEE Transactions on Acoustics, Speech and Signal Processing, PP. 1331-1334, 1997 [Mart03 ] Martin F. McKinney, and Jeroen Breebaart, “Features for Audio and Music Classification,” ISMIR (International Symposium on Music Information Retrieval) 2003 [Liu03 ] Dan Liu, Lie Lu, Hong-Jiang Zhang, “Automatic Mood Detection from Acoustic Music Data,” ISMIR (International Symposium on Music Information Retrieval) 2003 [Saun96 ] J.Saunder, “Real-Time Discrimination of Broadcast Speech/Music,” Proc. ICASSP (International Conference on Acoustic, Speech and Signal Processing) ’96, VOL II PP.93-996, Atlanta, May, 1996. [Sche97 ] E.Scheirer, M. Slaney, “Construction and Evaluation of a Robust Multifeature Speech/Music Discriminator,” Proc. ICASSP (International Conference on Acoustic, Speech and Signal Processing) ’97, Munich, Germany, April, 1997 [Wyse95 ] L.Wyse, S. Smoliar, “Toward Content-based Audio Indexing and Retrieval and a New Speaker Discrimination Technique,” download from http://www.zwhome.org/~lonce, Institute of Systems Science, National Univ. of Singapore, Dec., 1995id NH0925394005 sid 916713 cfn 0 / id NH0925394006 auc 鍾綸 tic 用於語音合成的中文斷詞分析 adc 張智星 ty 碩士 sc 國立清華大學 dp 資訊系統與應用研究所 yr 92 lg 中文 pg 44 kwc 語音合成 kwc 斷詞 kwc 構詞 abc 聲音訊號處理(Audio Signal Processing) 近年成為資訊領域的另一研究焦點,無論是語音辨識或合成,都成為資訊生活化,以及改善人機介面的重要核心技術。以語音合成為例,為達成貼近自然人聲的遠程目標,如何讓機器學習、模擬人類說話的方式,如語調的變化、韻律節奏的起頓乃至文意的表達等,都是語音合成研究的重點。其中,斷詞在中文語音合成又極具影響。 tc 章節目錄 摘  要 I Abstract II 致  謝 V 章節目錄 VI 圖表目錄 VIII 第一章 緒論 - 1 - 1.1 研究主題及動機 - 1 - 1.2 中文斷詞系統簡介 - 2 - 1.3 章節概要 - 3 - 第二章 連讀變調 - 4 - 2.1 五度標記法 - 4 - 2.2 連讀變調 - 7 - 2.2.1 上聲變調 - 7 - 2.2.2 快速的陽平變調 - 9 - 2.3 「一、 不」變調 - 9 - 2.3.1 「一」的變調 - 9 - 2.3.2 「不」的變調 - 11 - 2.4 疑問句尾升調 - 11 - 第三章 中文語音合成的斷詞系統 - 14 - 3.1 資料庫介紹 - 14 - 3.1.1 詞庫與斷詞系統的關連 - 15 - 3.1.2 清大多媒體資訊檢索實驗室語文資料庫(MIR DB) - 15 - 3.1.3 中研院漢語平衡語料庫(Sinica Corpus 3.0) - 16 - 3.2 斷詞單元 - 18 - 3.2.1 長詞優先法 - 19 - 3.2.2 動態規劃演算法 - 21 - 3.3 構詞單元 - 23 - 3.3.1 定量複合詞構詞 - 23 - 3.3.2 疊詞構詞 - 25 - 3.3.3 姓名構詞 - 26 - 3.4 詞庫擴增 - 27 - 3.4.1 新聞資料庫簡介 - 27 - 3.4.2 姓名及一般詞資料庫的增加 - 27 - 第四章 實驗結果與分析 - 28 - 4.1 實驗資料庫及效能定義 - 28 - 4.2 長詞優先與動態規劃演算法的斷詞單元 - 29 - 4.3 定量複合詞的構詞單元 - 30 - 4.4 疊詞的構詞單元 - 31 - 4.5 姓名的構詞單元 - 32 - 4.6 語音合成用之斷詞系統整體效能分析 - 33 - 4.7 實驗錯誤分析 - 35 - 第五章 結論與未來展望 - 37 - 參考文獻 - 39 - 附錄一 定詞及量詞 - 41 - 附錄二 常用百家姓 - 44 - 圖表目錄 圖1-1 斷詞系統基本架構及斷詞流程示意圖 - 2 - 圖2-1 五度標記法 - 6 - 圖2-2 五度標記法的疑問句尾升調 - 12 - 圖3-1 斷詞單元中詞庫與斷詞演算法示意圖 - 15 - 圖3-2 長詞優先法示意圖 - 20 - 圖3-3 動態規劃演算法示意圖一 - 22 - 圖3-4 動態規劃演算法示意圖二 - 22 - 表 2-1 國語聲調表 - 6 - 表 2-2 疑問句尾升調 - 13 - 表3-1 清大多媒體資訊檢索實驗室語文資料庫(MIR DB)詞庫分佈 - 16 - 表3-2 中研院漢語平衡語料庫主題分佈 - 17 - 表3-3 中研院漢語平衡語料庫語式分佈 - 17 - 表3-4 中研院漢語平衡語料庫媒體分佈 - 17 - 表3-5 中研院漢語平衡語料庫(SINICA CORPUS 3.0)詞庫分佈 - 18 - 表3-6 修正後的清大多媒體資訊檢索實驗室語音資料庫(MIR DB)詞庫分佈 - 24 - 表3-7 修正後的中研院漢語平衡語料庫(SINICA CORPUS 3.0)詞庫分佈 - 25 - 表4-1 長詞優先與動態規劃演算法效能實驗分析 - 29 - 表4-2 加上定量複合詞構詞的斷詞系統效能實驗 - 30 - 表4-3 加上定量複合詞、疊詞構詞的斷詞系統效能實驗 - 31 - 表4-4 加上定量複合詞、疊詞與姓名構詞的斷詞系統效能實驗 - 32 - 表4-5 MIR實驗室語音資料庫在LONGEST WORD FIRST斷詞的各階段表現 - 34 - 表4-6 SINICA平衡語料庫在LONGEST WORD FIRST斷詞的各階段表現 - 34 - 表4-7 MIR實驗室語音資料庫在DYNAMIC PROGRAMMING斷詞的各階段表現 - 34 - 表4-8 SINICA平衡語料庫在DYNAMIC PROGRAMMING斷詞的各階段表現 - 35 -rf 1.張孝裕、葉德明,《中國語發音續篇》,台灣復文興業股份有限公司發行,2000年十月初版。ISBN 7-218-00010-8/G.108。 2.張琨,《漢語音韵史論文集》,聯經出版事業公司出版,民國七十六年八月初版。 3.汪壽明、潘文國,《漢語音韵學引論》,華東師範大學出版社出版發行,1992年8月初版。ISBN7-5617-0793-2/H.061。 4.孫玉文,《漢語變調構詞研究》,北京大學出版社出版,2000年6月初版。ISBN7-301-04459-3/H.0529。 5.郭錦桴,《漢語聲調語調闡要與探索》,北京語言學院出版社出版,1993年7月初版。ISBN7-5619-026-1/H.190。 6.聶敏熙,《多音字讀音規範手冊》,巴蜀書社出版發行,2001年7月三刷。ISBN7-80523-831-6/H.29。 7.吳宗濟,《現代漢語語音概要》,華語教學出版社出版,1992年初版。ISBN7-80052-137-0/H.131。 8.徐世榮,《現代漢語語音概要》,語文出版社出版,1993年10月初版。ISBN7-80006-679-7/H.152。 9.李東毅,《普通話正音知識》,語文出版社出版,1995年2月初版。ISBN7-80006-897-8/H.188。 10.金有景,《普通話語音常識》,北京出版社出版,1981年9月初版。 11.徐世榮,《普通話語音知識》,文字改革出版社出版,1980年10月初版。 12.張本楠、楊若薇,《普通話連讀因變》,商務印書館有限公司出版,2000年9月二刷。ISBN962-07-1219-6。 13.陳寶如,《普通話語音》,廣東人民出版社出版,1993年5月二刷。ISBN 7-218-00010-8/G.108。 14.謝明峰,<使用大量語料庫的中文語音合成系統實作>,國立清華大學資訊工程學系92學年碩士論文。 15.廖碩鵬,<中文語音辨識中語言模型的強化>,國立臺灣大學資訊工程學研究所91學年碩士論文。 16.朱怡霖,<中文斷詞與專有名詞辨識之研究>,國立臺灣大學資訊工程學研究所90學年碩士論文。 17.唐大任,<中文斷詞器之研究>,國立交通大學電信工程系90學年碩士論文。 18.鐘祥睿,<台語TTS系統之改進>,國立交通大學電信工程系90學年碩士論文。 19.黃居仁、陳克建<中央研究院平衡語料庫的內容與說明(修訂版)>,中央研究院資訊科學研究所中文詞知識庫小組,1998年8月。Technical Report No. 95-02/98-04。 20.Richard Sproat and Chilin Shin 〈A Statistical Method for Finding Word Boundaries in Chinese Text〉,《Computer Processing of Chinese & Oriental Languages》Vol. 4, No. 4, March 1990. 21.《國語辭典》,教育部國語推行委員會編錄,民國八十七年四月版。網路版URL: http://140.111.1.22/mandr/clc/dict/。id NH0925394006 sid 916716 cfn 0 / id NH0925394007 auc 林青慧 tic 強韌式語者辨識系統:從麥克風、市話到手機 adc 張智星 ty 碩士 sc 國立清華大學 dp 資訊系統與應用研究所 yr 92 lg 中文 pg 49 kwc 語者辨識 kwc 梅爾倒頻譜參數 kwc 離散小波轉換 kwc 分群法 kwc 高斯混合模型 kwc 自迴歸向量模型 kwc 正交化高斯混合模型 kwc 向量量化結合正交化高斯混合模型 kwc 分類器合併 abc 本論文的目標在於研究出能適應各種錄音環境下的語者辨識系統。在辨識前處理的部份,我們使用小波轉換特徵參數及梅爾倒頻譜參數來擷取語者的語音特徵參數。語者模型訓練方法則使用 OGMM 及 VQOGMM 的訓練方法。OGMM 解決了一般 GMM 訓練方法通常將共變異數矩陣假設為對角線化,而忽略特徵參數各維度間相關性的問題,且使得描述語者資料分佈的能力更佳。VQOGMM 則結合向量量化與 OGMM,透過事先將訓練資料分群的方式,能快速地訓練出語者的模型,且只要分群數適當,辨識率也有可能再提升。 tc 第一章 緒論...........................1 1.1 研究動機 .......................1 1.2 前人相關研究....................2 1.2.1 TIMIT 語料..................2 1.2.2 NTIMIT 語料.................3 1.2.3 CTIMIT 語料.................4 1.3 研究方向........................4 1.4 章節概要........................4 第二章 語者識別基本技術...............5 2.1 語者辨認概論....................5 2.2 語音特徵參數擷取................7 2.2.1 梅爾倒頻譜參數............ 8 2.2.2 小波轉換特徵參數..........11 2.3 分群法.........................15 2.3.1 K-means 演算法............15 2.3.2 LBG-VQ 演算法.............15 2.4 語者模型建立...................17 2.4.1 高斯混合模型..............17 2.4.2 自迴歸向量模型............21 第三章 改進方法......................24 3.1 正交化高斯混合模型.........24 3.2 向量量化結合正交化高斯混合模型...........26 3.3 GMM 和 ARVM 分類器的合併.................29 3.3.1 GMM 和 ARVM 模型相似度分數之標準化...29 3.3.2 以全句為基礎的合併方式...............31 3.3.3 以音框為基礎的合併方式...............32 第四章 實驗結果與討論..............................33 4.1 語音資料庫簡介...............................33 4.2 TIMIT語料實驗................................34 【實驗結果4.1】小波轉換特徵參數維度及OGMM對辨識率的影響.34 【實驗結果4.2】GMM、OGMM、VQOGMM辨識率比較..............37 【實驗結果4.3】GMM、OGMM、VQOGMM訓練時間比較............38 【實驗結果4.4】GMM、OGMM、VQOGMM辨識時間比較............39 4.3 NTIMIT語料實驗.....................................40 【實驗結果4.5】使用小波轉換特徵參數及OGMM訓練方式實驗結果41 【實驗結果4.6】GMM與ARVM分類器合併實驗結果...............43 4.4 CTIMIT語料實驗......................................44 【實驗結果4.7】使用MFCC及OGMM訓練方式實驗結果............44 【實驗結果4.8】GMM與ARVM分類器合併實驗結果...............45 第五章 結論與展望.........................................46 5.1 結論................................................46 5.2 展望................................................47 參考文獻..................................................48rf 【1】Douglas A. Reynolds, “Large Population Speaker Identification Using Clean and Telephone Speech”, IEEE SIGNAL PROCESSING LETTERS, VOL. 2, NO. 3, MARCH 1995. 【2】J.-L. Le Floch, C. Montaci'e, and M.-J. Caraty, “Speaker Recognition Experiments on The NTIMIT Database”, In Proceedings of EUROSPEECH 95, volume 1, pp. 379-382, September 1995. 【3】R. Sarikaya, B. Pelom, J.H.L. Henson, “Wavelet Packet Transform Features with Application to Speaker Identification”, NORSIG-98 IEEE Norsic Signal Processing Symposium, pp. 81-84, Vigso, Denmark, June 1998. 【4】 鄭順德, “不特定語句中量語者辨識系統之研究”, 中山大學電機工程所碩士論文, 民國九十一年 【5】 古詩峰, “基於小波轉換特徵參數以及使用麥克風和電話語料之大量語者識別系統”, 長庚大學電機工程所碩士論文, 民國九十二年 【6】 J.-L. Le Floch, C. Montaci'e, and M.-J. Caraty, “GMM and ARVM Cooperation And Competition for Text-Independant Speaker Recognition on Telephone Speech”, In ICSLP. 【7】Daniel J. Mashao, and N. Tinyiko Baloyi,“Improvements in The Speaker Identification Rate Using Feature-Sets on A Large Population Database”, Eurospeech 2001. 【8】 鐘偉仁, “語者辨認與驗證之初步研究”, 台灣大學電信工程研究所碩士論文, 民國八十九年 【9】Jyh-Shing Roger Jang, 線上中文教材:音訊處理與辨識 Home page: http://neural.cs.nthu.edu.tw/jang/books/audioSignalProcessing 【10】許文豪, “圖形辨識概述與實作”, 清華大學資工所碩士論文, 民國八十九年 【11】Douglas A. Reynolds and Richard C. Rose, “Robust Text-Independent Speaker Identification Using Gaussian Mixture Speaker Models”, IEEE Transactions on speech and audio processing, Vol. 3, No. 1, pp.72-83, Jan. 1995. 【12】F. BIMBOT, L. MATHAN, A. DE LIMA & G. CHOLLET, “Standard and Target Driven AR-Vector Models for Speech Analysis and Speaker Recognition”, IEEE-ICASSP, San Francisco, 1992. 【13】Ivan Magrin-Chagnolleau, Joachim WILKE, Frédéric BIMBOT, “A Further Investigation on AR-Vector Models for Text-Independent Speaker Identification”, Proc. ICASSP ’96. 【14】J. He, L. Liu, “On The Use of Orthogonal GMM in Speaker Recognition”, Proc. of IEEE ICASSP’99, Vol. 2, pp.845-848, March 1999, Phoenix, USA. 【15】吳金池, “語者辨識系統之研究”, 中央大學電機研究所碩士論文, 民國九十年 【16】Montaci'e C., and Le Floch J.-L., “AR-Vector Models for Free-Text Recognition”, ICSLP 92, Banff, vol. 1, pp. 611-614, 1992.id NH0925394007 sid 916717 cfn 0 / id NH0925394008 auc 劉一凡 tic 應用於供應鏈管理課程的網路學習系統之設計與研究 adc 楊叔卿 ty 碩士 sc 國立清華大學 dp 資訊系統與應用研究所 yr 92 lg 中文 pg 150 kwc 網路學習 kwc 供應鏈管理 kwc 學習理論 kwc 網路學習社群 abc 在一般大學或研究所的商學院和工學院中,「供應鏈管理」(Supply Chain Management, SCM)該門課程對工業工程系或資訊管理系的學生而言,是一門相當重要的課程。此門課程在於探討產業環境對供應鏈特性的影響,以及相關的供應鏈管理技術,包括最佳化方法的運用、數學模式的規劃等,使學生在未踏入就業市場之前對於一產業上、中、下游之間的連鎖行為及流程運作的方式有深入的了解。在比較國內外各大學供應鏈管理課程教學情形之後,本研究採三層式架構及模組化系統開發理念,設計一套供應鏈模擬系統與網路學習系統。在供應鏈模擬系統方面,提供使用者供應鏈數學模式規劃、生產排程估算、最佳化路徑運算等。在網路學習系統方面,提供三大功能類別--個人學習功能類別、互動合作學習功能類別以及以課程評量功能類別,強化輔助學習的機制。 tc 第一章 緒論…………………………………………………………1 1.1 前言………………………………………………….. 1 1.2 研究背景…………………………………………….. 2 1.3 研究目的…………………………………………….. 3 1.4 研究待答問題……………………………………….. 4 1.5 研究限制…………………………………………….. 4 第二章 文獻探討…………………………………………………6 2.1 網路學習相關理論………………………………….. 6 2.1.1 網路學習的定義……………………………… 6 2.1.2 建構式主義學習理論………………………… 9 2.1.3 合作學習理論………………………………… 13 2.1.4 網路學習社群………………………………… 19 2.2 網路在教學上應用的探討………………………….. 21 2.2.1 網路教學……………………………………… 22 2.2.2 傳統教學與網路教學的比較………………… 26 2.2.3 網路課程與教學設計的探討………………… 29 2.3 供應鏈管理課程教學現況………………………….. 37 2.3.1 供應鏈管理的定義…………………………… 38 2.3.2 國內外大學供應鏈管理教學課程網站……… 40 第三章 研究方法…………………………………………………53 3.1 研究方法…………………………………………….. 53 3.2 研究流程與步驟…………………………………….. 55 3.3 研究對象與教學情境……………………………….. 58 3.4 研究時間與地點…………………………………….. 58 第四章 系統研發…………………………………………………60 4.1 供應鏈管理課程網路學習架構…………………….. 60 4.1.1 供應鏈管理網路課程規劃…………………… 61 4.1.2 應用於系統設計的三層式架構概念………… 62 4.1.3 系統環境需求與開發工具…………………… 66 4.2 供應鏈管理系統設計……………………………….. 73 4.2.1 供應鏈管理系統架構………………………… 73 4.2.2 供應鏈管理結合數學模式最佳化…………… 78 4.2.3 供應鏈管理系統功能展示…………………… 86 4.3 網路學習系統平台設計…………………………….. 91 4.3.1 網路學習系統平台架構……………………… 91 4.3.2 網路學習系統平台功能設計與展示………… 93 4.3.3 線上助教功能展示…………………………… 107 第五章 研究結果分析……………………………………………110 5.1 修課學生背景資料………………………………….. 110 5.2 學生修課動機分析………………………………….. 112 5.3 學生學習歷程檔案分析…………………………….. 114 5.4 學生使用SCM系統的學習成效分析……………… 123 5.5 學生使用網路學習系統平台分析………………….. 126 第六章 結論與建議………………………………………………134 6.1 結論………………………………………………….. 134 6.2 建議………………………………………………….. 137 6.3 未來研究建議……………………………………….. 140 第七章 參考文獻…………………………………………………141 英文部分………………………………………………………….. 141 中文部分………………………………………………………….. 147rf 英文部分 1.Adexa, http://www.adexa.com/ 2.Bettencourt, A. (1993), “The construction of knowledge: A radical constructivist view”, In K. Tobin (Ed.), The Practice of Constructivism in Science Educational, pp.39- 50, Washington, DC: AAAS Press. 3.Boczkowsk, P. J. (1999), “Mutual Shaping of Users and Technologies in a National Virtual Community”, Journal of Communication, 49(2), pp.86-108 4.Brown, A., & Campione, J. C. (1994), “Guided discovery in a community of learners”, in M. Kate (Eds.)., Classroom lessons: integrating cognitive theory and classroom practice, pp.229-270. 5.Batey, A. & Cowell, R. N. (1986), “Distance education: An overview Regional Education Laboratory”, Portland, OR: Northwest, ERIC Document Reproduction Service No. Ed, pp.278-519. 6.Bonk, C. J., & Cumningham, D. J. (1998), “Searching for learner-centered, constructivist, and sociocultural components of Collaborative educational learning tools”, In C. J. Bonk & K. S. King (Eds.), Electronic Collaborators: Learner-centered technologies for literacy, apprenticeship, and discourse. Mahwah, NJ: Lawrence Erlbaum Associates, pp.25-25. 7.Bonk, C. J., & Dennen, V. P. (1999), “Teaching on the Web: With a little help from my pedagogical friends”, Journal of Computing in Higher Education, 11(1), pp.3-28. 8.Bonk, C. J., King, K. S. (1998), “Computer Conferencing and Collaborative writing tools: Starting a dialogue about student dialogue”, In C. J. Bonk & K. S. King (Eds.), Electronic Collaborators: Learner-centered technologies for literacy, apprenticeship, and discourse. Mahwah, NJ: Lawrence Erlbaum Associates, pp3-23. 9.Communication, Guelph, Ontario: University of Guelph, pp.37-55. 10.Christopher M., (1992), “Logistics and Supply Chain Management: Strategies for Reducing Costs and Improving Services”, Pitman, London. 11.Cooper, Martha C., and Lisa M. Ellram (1993), “Characteristics of Supply Chain Management and the Implications for Purchasing and Logistics Strategy”, International Journal of Logistics Management, 4, No. 2. 12.Colin McCormack & David Jones, (1998), “Building A Web- Based Education System”, Wiley Computer Publishing. 13.Curtis J. Bonk, Jack A. Cummings, Norika Hara, Robert B. Fischler and Sun Myung Lee (2000), “A Ten Level Web Integration Continuum for High Education”, Instructional and Cognitive Impacts of Web-Based Education, pp.56-77. 14.Damon, W. & Phelps, E. (1989), “Critical distinctions among three approaches to peer education”, International Journal of Educational Research, 13(1), pp.7-19. 15.Dismuke, Jerry B., (1995), “Formal Specification, Verification, and Analysis of the Reliable Multicast Transport Protocol”, Master’s Thesis, Naval Postgraduate school. 16.Dorothy Leflore (2000), “Theory Supporting Design Guidelines for Web-based Instruction”, Instructional and Cognitive impacts of Web-based Education, Idea Group Publishing, pp.102-116. 17.Dennis, A. R. (1998), “Lessons from the Early Adopters of Web Groupware”, Journal of Management Information System, 14(4), pp.65-86. 18.Dick, W., & Carey, L., (1985), “The Systematic Design of Instruction” (2nd Ed.)., Glenview, IL: Scott, Foresman, and Company. 19.Foreman, S. K. (1999), “Marketing: Marketing Organization and Virtual Communities”, Manager Update, 11(1), pp.11-21. 20.Heckscher, C. & Donnellon, A. M. (1994), “The post- bureaucratic organization”, London: Sage Publications (Eds.). 21.Hiltz, S. R. (1990), “Collaborative teaching in a virtual classroom”, PROCEEDINGS of The 3rd Symposium on Computer-mediated 22.Hooper, S., (1992), "Cooperative learning and computer- base instruction," Educational Tchnology Research & Developmen, Vol. 40, No. 3, p.p. 21-38. 23.i2-eBPO, http://www.i2.com 24.Jay, A. (1998), “A Trainer’s Guide to Web-Based Instruction”, American Society for Training & Development (ASTD). 25.Johnson, D. W., & Johnson, R. T., (1994), “Learning together and Alone: Cooperative, Competitive, and Individualistic learning”, Needham Heights, Massachusetts: Allyn and Bacon, 4th Ed. 26.Johnson, R. T., & Johnson, D. W. (1994), “Learning toghther in the social studies classroom”, In R. J. Stahl, (Ed.), “Cooperative learning in social studies: A handbook for teachers”, Menlo Park CA: Addison-Wesley Publishing Company, pp.51-77. 27.Krueger, R. A. & Casey, M. A. (2000), “Focus groups: A practical guide for applied research (3rd)”, Thousand Oaks, CA: Sage. 28.Keegan, D., (1986), “Problems in defining the field of distance education”, The American Journal of Distance Education, 2(2), pp.4-11. 29.Michael Li & David Simchi-Levi, “ The Web-Based Beer Game Guide”, MIT Forum for Supply Chain Innovation, http://beergame.mit.edu/gameapplet.asp 30.Owston, R. D. (1997), “The world Wide Web: A technology to enhance teaching and learning?”, Educational Research, 26(2), pp.27-33. 31.Phillips, D. C. (1995), “The good, the bad, and the ugly: The many faces of constructivism”, Educational Researcher, 24(7), pp.5-12. 32.Piaget, J. (1954), “The Construction of Reality in the Child”, NY: New York Basic Books. 33.Perkins, D. N. (1991), “What constructivism demands of the learner”, Education Technology, pp.19-21. 34.Rowley, D. J., Lujan, H. D., & Dolence, M. G. (1998), “Strategic choices for the academy: How demand for lifelong learning will re-create higher education”, San Francisco: Jossey Bass. 35.Rosenberg, M. J. (2001), “E-learning Strategies for delivering knowledge in the digital age”, U.S.: A Division of McGraw Hill Company. 36.SAP-APO, http://www.sap.com 37.Stewart, D. S., & Shamdasani, P. N. (1990/2000), “Focus groups: Theory and Practice”, Newbury Park, CA: Sage. 38.Slavin, R. E. (1990), “Cooperative Learning: Theory, Research, and Practice”, Englewood. 39.Slavin, R. E. (1995), “Cooperative learning theory, research and practice”, (2nd Ed.), Center for Research on Effective Schooling for Disadvantaged Students, The Johns Hopkins University. 40.Stepher, W. H., & Marshall, G. J. (1999), “The Five Levels of Web Use in Education: Factors to Consider in Planning Online Course”, Educational Technology, Nov- Dec, pp.28-32. 41.Saloman, G. (Ed.)(1993), “Distributed Cognition: Psychological and educational considerations”, Cambridge University Press. 42.Trace A. Urdan, & Cornelia C. Weggen (2000), “CORPORATE E-LEARNING: EXPLORING A NEW FRONTIER”, WR Hambrecht + Co. 43.Umiker-Sebeok, J. & Kim G. (1999), “The social matrix of information need and behavior: Community”, http://www.slis.indiana.edu/umikerse/L503/commun.htm 44.Vygotsky, L. S. (1978), “Mind in Society: The development of higher psychological processes”, Cambridge, MA: Harvard University Press. 45.Voygotsky, L. S. (1926), “The Historical Meaning of the Crisis in Psychology”, Published in 1982. 46.William Horton (2000), “Designing Web-based training”, John Wiley & Sons, Inc. Publishing, pp.409-410. 中文部分 1.尹玫君(1997),”遠距教學的理論與文獻之探討”,初等教育學 報,第10期。 2.台灣網路資訊中心 http://www.twnic.net.tw 3.台灣經建會人力規劃處(2001),”電子學習(e-Learning)現況及未 來展望”, http://www.cepd.gov.tw/service/news/@index.htm 4.田耐青、洪明洲(1998),”電腦中介溝通與高等教育教學革新”, 台北師院學報,第11期。 5.何榮桂(民90),”他中之石可以攻錯-亞太地區(台、港、新、 日、韓)資訊教育的發展與前瞻”,資訊與教育,81期,頁1-6。 6.巫靜宜(2000),”比較網路教學與傳統教學對學習效果之研究”, 淡江大學資訊管理研究所碩士論文。 7.李俊慶(1997),” 分散式資料管理之網際地理資訊系統的設 計”,國立交通大學資訊管理研究所碩士論文。 8.吳齊殷(1997),”真實社區與虛擬社區-交融、對立或互蝕”, Available http://www.ios.sincia.edu.tw/SEMINAR/infotec2/吳 齊殷.htm 9.余玫萱(2002),”互動式數位學習之設計”,政治大學資訊管理研 究所碩士論文。 10.林奇賢、馬榮燦、林志能(2000),”網路學習與網路學校的發展 對教師專業表現的衝擊”,資訊教育雜誌79期,頁2-12。 11.林奇賢(1995),”遠距教學系統於國民小學之應用研究”,台 南:台南師範學院資訊教育研究所。 12.林奇賢(2000),”網路學習環境的設計與應用”,資訊與教育, 67期,頁34-49。 13.林瓊如、林奇賢(2000),”網路學習代理人之設計與應用研 究”,台灣網際網路研討會。 14.邱貴發(1996),”情境學習理論與電腦輔助學習-學習社群理念 探討”,台北:師大書苑。 15.邱瓊慧(2000),”網路合作學習環境之研究”,第八屆國際電腦 輔助教學研討會。 16.洪明洲(1997),”創造組織學習”,台北:桂冠出版。 17.洪明洲(1999),”網路教學”,台北:華彩軟體出版。 18.能力雜誌編輯部(2001),“「供應鏈管理」細說從頭”,能力雜 誌,10月號。 19.唐宣蔚(1998),”大學生學業成長網路學習社群之建構與實 施”,淡江大學教育科技研究所碩士論文。 20.徐照麗(1999),”教學媒體:系統化的設計、製作與應用”,台 北:五南圖書,頁76-80。 21.教育部(1997),”教育部資訊教育基礎建設計畫”。 22.黃貝玲(2001),”從線上學習的發展看企業線上訓練”,電子化 企業經理人報告,19期,頁12-23。 23.黃經智(1999),”企業網路化訓練架構之探討”,台灣科技大學 管理學研究所碩士論文。 24.黃政傑、林佩璇(1996),”合作學習”,台北:五南圖書。 25.黃英忠(1997),”人力資源管理”,台北:三民書局。 26.陳昭秀、周倩(1995),”遠距合作學習的定義:理論與科技使用 之初探研究”,第四屆國際電腦輔助教學研討會論文集,頁4- 11。 27.陳鴻基(2000),”虛擬大學的發展與未來展望”,虛擬大學之組 織與管理國際研討會論文集, http://140.123.19.211/c_main/papers/speech/chen.htm 28.陳鴻基(2001),”虛擬大學的發展與未來展望”,2000年虛擬大 學之組織與管理國際研討會論文集,頁1-8。 29.張基成(1998),”教師專業成長網路學習社群的建立”,迎接二 十一世紀師資培育-教師專業知能的省思研討會論文集,頁130- 140,淡水:淡江大學。 30.辜輝趁(2001),”企業e化-知識管理策略”,台北縣:知行文化 事業。 31.張世忠(1999),”教材教法之實踐要領-方法、研究”,台北: 五南圖書。 32.張金淑(1989),”合作學習對學習效果之研究”,國立政治大學 教育研究所碩士論文。 33.張春興(1996),”教育心理學”,東華書局。 34.楊富菁(2001),” 台灣IC製造業導入供應鍊管理系統之研究”, 國立交通大學科技管理研究所碩士論文。 35.曾曉勤(2000),”供應鏈管理應用現況與發展趨勢”,資策會 MIC IT IS計畫。 36.曾守正、鄭菲菲(1999),”ELITE: Easy Learning by Integrated Testing Environment”,第五屆資訊管理研究暨實 務研討會,頁382-388。 37.資策會(1999),”專科以上學校開辦遠距教學作業要點”, http://www.edu.tw/rules/index.htm 38.經濟部工業局(2002),”兩兆雙星計畫”, http://sun1.moeaidb.gov.tw/web/ind1.htm 39.鄒景平(2000),”e-Learning是知識企業致勝的不二法門”,資 訊人通訊,59期,頁1-4。 40.壽大衛(2001),”資訊網路教學”,師大書苑。 41.廖肇弘(2001),”建置有效的線上學習系統”,管理雜誌,第321 期,頁12-15。 42.黎漢林(2003),”供應鏈管理與決策”,台北:儒林出版。 43.賴士葆(1995),”生產作業管理-理論與實務”,華泰書局,頁 267。 44.謝明瑞(2000),”遠距教育理論之探討”,隔空教育論叢,第12 輯,頁47-68。id NH0925394008 sid 916720 cfn 0 / id NH0925394009 auc 方鼎鈺 tic 利用移動向量的相角將資訊隱藏在數位視訊中 adc 張隆紋 ty 碩士 sc 國立清華大學 dp 資訊系統與應用研究所 yr 92 lg 英文 pg 39 kwc 資訊隱藏 kwc 視訊 kwc 交互引用框頁 kwc 移動向量 abc 論文中文摘要 tc Table of Contents Chapter 1 Introduction.....1 1.1 Introduction Chapter 2 Preliminary.....4 2.1 MPEG Coding Principles 2.2 Encoder and Decoder Block Diagrams 2.3 Motion Compensation 2.4 Block Matching Algorithm Chapter 3 The Proposed Method for Information Hiding in Digital Video.....11 3.1 Introduction 3.2 The Proposed Information Embedding Procedure Chapter 4 Experimental Result and Discussions.....22 4.1 Experimental Results 4.2 Discussions Chapter 5 Conclusion.....37 Reference.....38rf Reference [1 ] Min Wu and Bede Liu, “Data hiding in image and video .I. Fundamental issues and solutions,” IEEE. Trans. Image Processing, vol. 12, no. 6, pp. 685-695, June 2003. [2 ] Min Wu and Bede Liu, “Data hiding in image and video .II. Designs and applications,” IEEE. Trans. Image Processing, vol. 12, no. 6, pp. 696-710, June 2003. [3 ] F. Hartung and B. Girod, “Digital watermarking of MPEG-2 coded video in the bitstream domain,” IEEE. Proc. ICASSP, vol. 4, pp. 2621-2624 , Apr. 1997. [4 ] J. Song and K.J.R. Liu, “A data embedding scheme for H.263 compatible video coding,” IEEE. Proc. ISCAS, vol. 4, pp. 390-393, 1999. [5 ] F. Hartung and B. Girod, “Watermarking of uncompressed and compressed video,” Signal Processing vol. 66, pp. 283-301, 1998. [6 ] F. Jordan, M. Kutter, and T. Ebrahimi, “Proposal of a Watermarking Technique for Hiding/Retrieving Data in Compressed and Uncompressed video,” Technical Report, ISO/IEC Doc. JTC1/SC29/WG11 MPEG97/M2281, July 1997. [7 ] Y. Bodo, N. Laurent and J. Dugelay, “Watermarking video, hierarchical embedding in motion vectors,” in Proc. ICIP, vol. 2, pp. 739-742, Sept. 2003. [8 ] Z. Zhuo, Y. Nenghai and L. Xuelong, “A novel video watermarking scheme in compression domain based on fast motion estimation” in Proc. ICCT 2003, vol. 2, pp. 1878-1882, Apr. 2003. [9 ] J. Zhang, H. Maitre, L. Jiegu and Z. Ling, “Embedding watermark in MPEG video sequence,” IEEE Fourth Workshop on Multimedia Signal Processing, pp. 535-540, Oct. 2001. [10 ] R. Li, B. Zeng, and M.L. Liou,“A New Three-Step Search Algorithm for Block Motion Estimation,” IEEE Trans. Circuits System, Video Technology, vol. 4, pp. 438-442, Aug. 1994. [11 ] L. M. Po and W. C. Ma, “A novel four-step search algorithm for fast block motion estimation,” IEEE Trans. Circ. System and Video Technology, vol. 6, pp. 313–317, June 1996. [12 ] L. K. Liu and E. Feig, “A block-based gradient descent search algorithm for block motion estimation in video coding,” IEEE Trans. Circ. System and Video Technology, vol. 6, pp. 419–422, Aug. 1996.id NH0925394009 sid 916708 cfn 0 / id NH0925394010 auc 姜芝怡 tic 漸進式的資料分類方法 adc 楊熙年 ty 碩士 sc 國立清華大學 dp 資訊系統與應用研究所 yr 92 lg 中文 pg 45 kwc 資料探勘 kwc 漸進式資料探勘 kwc 分類 abc 在這個競爭激烈的時代,企業為了掌握競爭優勢,時時都得注意最新資訊,這些資訊也許在報章媒體上、也許在市場中、也許就存在企業自己的資料庫中。如何將這些隱藏的資訊挖掘出來進而轉換成有用的競爭策略,是資料探勘這個領域的主題。 rf [1 ] Jiawei Han and Micheline Kamber, “Data Mining: Concepts and techniques”, 2001 [2 ]Michael J.A. Berry and Gordan S. Linoff, ”Data Mining Techniques: for marketing, sales, and customer support”,1997 [3 ]Catherine Bounsaythip and Esa Rinta-Runsala, “Overview of Data Mining for Customer Behavior Modeling”, VTT Information Technology, 2001 [4 ] Michael Goebel, Le Gruenwald, “A survey of data mining and knowledge discovery software tools”, ACM SIGKDD Explorations Newsletter Vol. 1 , Issue 1, P. 20 – 33, 1999 [5 ]TJEN-SIEN LIM ,WEI-YIN LOH and YU-SHAN SHIH, “A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-three Old and New Classification Algorithms”, Machine Learning, Vol. 40 , Issue 3 p. 203 - 228,,2000 [6 ]Venkatesh Ganti, Johannes Gehrke and Raghu Ramakrishnan, “Mining Data Streams under Block Evolution”, ACM SIGKDD Explorations Newsletter archive Vol. 3 , Issue 2, 2002 [7 ] Venkatesh Ganti, Johannes Gehrke and Raghu Ramakrishnan, “A Framework for Measuring Changes in Data Characteristics”, In Proceedings of the Eighteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS 1999). Philadelphia, Pennsylvania, 1999 [8 ]Qingguo Zheng, Ke Xu and Shilong Ma, “When to Update the Sequential Patterns of Stream Data?”, Proc. 7th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Korea, LNAI 2637, p. 545-550, 2003 [9 ] David W. Cheung, Jiawei Han, Vincent T, Ng and C.Y. Wong, “Maintenance of Discovered Association Rules in Large Databases: An Incremental Updating Technique”, ICDE, Proceedings of the Twelfth International Conference on Data Engineering, P. 106 – 114 , 1996 [10 ]David W. Cheung, S. D. Lee, and Benjamin Kao, “Maintenance of Discovered Association Rules in Large Databases: An Incremental Updating Technique.”, In Proceedings of the Fifth International Conference on Database Systems for Advanced Applications, Melbourne, Australia, 1-4 April 1997 [11 ]S.D. Lee and David W. Cheung, “Maintenance of Discovered Association Rules: When to Update?”, Proc. 1997 ACM-SIGMOD Workshop on Data Mining and Knowledge Discovery (DMKD'97) in cooperation with ACM-SIGMOD'97,Tucson, Arizona, May 11, 1997 [12 ]Bing Liu, Wynne Hsu Yiming Ma, “Integrating Classification and Association Rule Mining”, Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD-98, full paper), New York, USA, 1998 [13 ]Bing Liu, Yiming Ma and Ching-Kian Wong, “Classification Using Association Rules: Weaknesses and Enhancements”, To appear in Vipin Kumar, et al, (eds), Data mining for scientific applications, 2001 [14 ]James Dougherty, Ron Kohavi and Mehran Sahami, “Supervised and Unsupervised Discretization of Continuous Features”, ML-95 [15 ]Rakesh Agrawa and Ramakrishnan Srikant, “Mining Sequential Patterns”, Proceedings of the Eleventh International Conference on Data Engineering, P. 3 – 14, 1995 [16 ]Johannes Gehrke, Venkatesh Ganti, Raghu Ramakrishnan and Wei-Yin Loh, “BOAT--- Optimistic Decision Tree Construction”, In Proceedings of the ACM SIGMOD Conference on Management of Data (SIGMOD 1999), Philadelphia, Pennsylvania, 1999 [17 ]Michael J. A. Berry and Gordon S. Linoff, “Mastering Data Mining: The Art and Science of Customer Relationship Management”, 2000 [18 ]楊昌憲, “資料庫行銷之新產品推薦系統, 國立台灣大學國際企業學研究所碩士學位論文, 2002id NH0925394010 sid 916707 cfn 0 / id NH0925394011 auc 彭義昆 tic 利用一個強韌的封包過濾機制來保護伺服器免於DDoS攻擊 adc 孫宏民 ty 碩士 sc 國立清華大學 dp 資訊系統與應用研究所 yr 92 lg 英文 pg 41 kwc DDoS攻擊 kwc 封包過濾機制 kwc 防火牆 kwc DDoS防禦 abc 近幾年最常發生的攻擊事件莫過於分散式服務攻擊,影響了資訊安全中的可得性,對於網路的經營者更是一項重大的損失。因此,這些提供服務的網路伺服器需要一個IP封包過濾機制來避免DDoS攻擊。尤其是這些伺服器的特質是開放給任何人存取的,對於網管人員來說,很難去設定其防火牆的規則來阻擋這一類型的攻擊。而且最困難的一點是這些攻擊封包的來源IP位址往往是透過隨機變數而產生的,防火牆更無法去分辨那些為合法封包或者是攻擊封包。因此,我們改進Cheng Jin等人提的“Hop-Count Filtering”來建立更強韌的IP封包過濾機制來保護伺服器的資源遭受攻擊。主要特點有如下:(1) 增加一個欄位來記錄優先權,再加上原有的來源IP位址與Hop-count,合稱為Address Table。當我們遭受DDoS攻擊時,可依優先權決定封包通過與否,增加伺服器的存活能力。(2) 使用三維的陣列結構來處理Address Table的資料存放,而且搜尋時只需花O(1)的時間。(3) 透過網路探測的技術,主動地建立Address Table的資料,使得Address Table夠大而足以捕抓偽造的封包以及節省訓練時間。(4) 在保護伺服器安裝佇列監控器,使得佇列在接近滿的時候,可以通知這個封包過濾機制保留空間給其它人,使它能夠持續的提供服務。 tc 1. Introduction 1.1 Background 1.2 Motivation 1.3 Contribution 1.4 Synopsis 2. Related Work 2.1 DoS Attack 2.2 DDoS Attack 2.3 Firewall 2.4 Intrusion Prevention System 2.5 IP Traceback 2.6 Packet Filtering Mechanism 2.6.1 Ingress Filtering 2.6.2 Hop-Count Filtering 2.6.3 History-based IP Filtering 3. Our proposed Packet Filtering Mechanism 3.1 The Placement 3.2 The Architecture 3.3 The Construction of Address Table 3.4 The Network Variation Problem 3.5 The Data Structure of Address Table 3.6 The Feasibility Analysis 3.7 Comparison 4. Implementation 5. Experiment 5.1 The Testing Environment 5.2 Scenario 1 of TCP SYN Flooding 5.3 Scenario 2 of Huge HTTP requests 5.4 Some Parameters Discussion 6. Conclusion 7. Referencesrf [1 ] Yahoo Attributes a Lengthy Service Failure to an Attack, http://www.nytimes.com/library/tech/00/02/biztech/articles/08yahoo.html [2 ] DDoS tools, http://www.packetstormsecurity.org/distributed/indexsize2.html [3 ] CERT, http://www.cert.org/ [4 ] Kihong Park and Heejo Lee, “On the Effectiveness of Probabilistic Packet Marking for IP Traceback under Denial of Service Attack”, Proceedings of IEEE INFOCOM'2001 (20th), Page(s): 338-347 vol.1. [5 ] A. Belenky and N. Ansari, “IP Traceback with Deterministic Packet Marking,” IEEE Communications Leters, vol.7, No.4 April 2003. [6 ] S. Bellovin, M. Leech, and T. Taylor. The ICMP Traceback message. Internet-Draft, draft-ietf-itrace-01.txt, Oct. 2001 Work in progress, avaiable at ftp://ftp.ietf.org/internet-drafts/draft-ietf-itrace-01.txt [7 ] Stephanie Hagopian, "Network-Based Intrusion Prevention System Technology Evaluation" SANS Institute 2004. [8 ] Ingress Filteirng, http://www.faqs.org/rfcs/rfc2267.html [9 ] Cheng Jin, Haining Wang, Kang G. Shin, “Hop-Count Filtering: An Effective Defense against Spoofed Traffic,” 10th ACM conference on CCS'03. [10 ] Tao Peng, Christopher Leckie, and Kotagiri Ramamohanarao, "Protection from Distributed Denial of Service Attack Using History-based IP Filtering," IEEE ICC 2003. [11 ] C.L. Tao Peng, and K. Ramamohanarao, “Detecting distributed denial of service attacks using source IP address monitoring,” available at http://www.ee.mu.oz.au/pgrad/taop/research/detection.pdf, November 2002. [12 ] Netfiler firewalling, NAT, and Packet mangling for Linux 2.4, http://www.netfilter.org/ [13 ] “CERT advisory CA-1996-21 TCP SYN flooding and IP spoofing attacks,” available at http://www.cert.org/advisories/CA-1996-21.html, September 1996. [14 ] Ping of Death, http://www.ovb.ch/?http://www.ovb.ch/Ping/pod.html [15 ] CERT® Advisory CA-2003-25 Buffer Overflow in Sendmail, http://www.cert.org/advisories/CA-2003-25.html, September 29, 2003. [16 ] "CERT advisory CA-1998-01 smurf IP Denial-of-Service attacks," available at http://www.cert.org/advisories/CA-1998-01.html, January 1998. [17 ] Iris® Network Traffic Analyzer, available at http://www.eeye.com/html/Products/Iris/index.html [18 ] http_load - multiprocessing http test client , http://www.acme.com/software/http_load/ [19 ] IPv4 World Allocated statistics of TWNIC, http://www.twnic.net.tw/ipstats/ipv4stats.php [20 ] C. Labovitz, A. Ahuja, and F. Jahanian. Experimental study of internet stability and backbone failure. In Proceedings of the 29th International Symposium on Fault-Tolerant Computing, Madison, WI, June 1999. [21 ] J. Li, J. Mirkovic, M. Wang, P. Reiher, and L. Zhang. Save: Source address validity enforcement protocol. In Proceedings of IEEE INFOCOM ‘20002, New York City, NY, June 2002. [22 ] Default TTL Values in TCP/IP of different type of operating systems, http://secfr.nerim.net/docs/fingerprint/en/ttl_default.html [23 ] Stateful firewall, http://www.fact-index.com/s/st/stateful_firewall.html [24 ] Intrusion Detection System, http://www.intrusion-detection-system-group.co.uk/id NH0925394011 sid 916706 cfn 0 / id NH0925394012 auc 張君豪 tic 大學校院導入委外數位學習系統之專業實務與決策考量研究 adc 楊叔卿 ty 碩士 sc 國立清華大學 dp 資訊系統與應用研究所 yr 92 lg 中文 pg 185 kwc 數位學習系統 kwc 數位學習 kwc 高等教育 kwc 大學校院 kwc 資訊服務委外 abc 台灣地區逾80%的大學校院已完成全校性數位學習系統的建置,而其中近75%的學校選擇直接導入實務界的成品,顯見以委外方式導入數位學習系統儼然成為各校不約而同的決策。數位學習系統為延伸教學時空維度的科技媒介,於本質上雖為一獨立運作的資訊系統,實則與學生的學習活動緊密相扣,因此導入前的需求分析與決策考量是否周詳,將直接影響於教學施行的成效。由於各校尚處導入的實驗探索階段,因此相關的實證文獻闕如,無法進而釐清此一現象背後的歸因與邏輯推演。鑒於此,本研究係聚焦於:大學校院選擇委外建置數位學習系統之情境下,探究各校導入系統時的專業實務與決策考量,於研究法上採用深度訪談法輔以參與觀察法,共訪問十位學術界與實務界的專家先進,同時由願景實施與資源整合的角度,還原並分析數位學習系統「導入前的規劃」、「導入中的實務」與「導入後的維運」。在質性訪談觀察與量化的統計資料分析後,本研究針對大學校院導入委外數位學習系統時,依據時間軸的發展提出以下的結論與建議:(1)導入數位學習系統的前置規劃:兩大導入委外系統的歸因、挑選委外廠商的四項決策考量點、學校與廠商的三種合作模式;(2)導入數位學習系統的實務:組織推動數位學習系統的良善架構、導入數位學習系統的八步驟;(3)導入數位學習系統後的維運:教師教學使用率最頻繁的四大功能模組、未來於維運面潛在的挑戰。最後,提出對大學校院與實務廠商的建言,企盼可作為大學校院規劃數位學習系統時的策略藍圖,同時供後續研究延伸觸角的脈絡參考。 tc 目 錄 第一章 緒論 ……………………………………………………1 第一節 研究背景 …………………………………………… 1 第二節 研究動機 …………………………………………… 3 第三節 研究待答的問題 ……………………………………5 第四節 研究範圍與限制 ……………………………………7 第五節 重要名詞解釋……………………………………… 9 第二章 文獻探討 ……………………………………………11 第一節 資訊科技與高等教育………………………………11 2.1.1 科技融入教學情境的演進歷程 …………………11 2.1.2 高等教育導入網路化教學 ……………………..13 2.1.3 網路融入教學帶來的改變………………………16 2.1.4 影響推動網路教學的因素………………………19 第二節 台灣地區大學校院推動網路教學……………………22 2.2.1 網路輔助教學活動的方式…………………………22 2.2.2 數位學習系統的分類…………………………25 2.2.3 校園資訊服務的類型 …………………………30 2.2.4 教學資源中心的定位 …………………………34 第三節 數位學習系統 …………………………………………36 2.3.1 數位學習系統的演進………………………………36 2.3.2 LMS與LCMS的比較與釐清 ………………………39 2.3.3 數位學習系統的市場發展 …………………………45 2.3.4 導入數位學習系統的步驟 …………………………50 2.3.5 數位學習系統規劃考量………………………………53 第四節 資訊系統的委外建置……………………………56 2.4.1 資訊系統委外的演進 ………………………………56 2.4.2 資訊系統委外的歸因………………………………59 2.4.3 資訊系統委外的優劣勢…………………………61 2.4.4 委外建置的決策考量………………………………62 2.4.5 資訊系統委外建置的關鍵性成功因素…………65 第三章 研究設計與架……………………………………68 第一節 研究情境與背景 ………………………………68 第二節 研究方法…………………………………………69 3.2.1 研究方法的選擇………………………………69 3.2.2 研究信度與效度的檢驗…………………………72 第三節 研究步驟…………………………………………75 第四節 研究時間與對象……………………………………78 第五節 訪談流程與問項……………………………………80 第六節 研究資料蒐集……………………………………86 第七節 資料分析與編碼……………………………………87 第四章 資料分析與討論 ……………………………………92 第一節 數位學習系統建置概況與市場分析 ………………92 第二節 校園資訊服務架構………………………………98 第三節 數位學習系統導入前的規劃與分析………………102 4.3.1 建置數位學習系統的導因………………………102 4.3.2 選擇委外而非自製的考量………………………104 4.3.3 挑選廠商的4個決策考量………………………107 4.3.4 學校與廠商的合作模式 ………………………112 第四節 數位學習系統的導入實務…………………………114 4.4.1 導入數位學習系統的流程………………………114 4.4.2 整合校園資訊服務 ……………………………122 4.4.3 學校與廠商的互動……………………………126 第五節 數位學習系統導入後的維運…………………………129 4.5.1 應用系統於教學情境 ……………………………129 4.5.2 智慧財產權議題 ……………………………133 4.5.3 其他教學相關問題……………………………137 第五章 結論與展望 ……………………………………140 第一節 研究結論 ……………………………………140 5.1.1 導入數位學習系統的前置規劃策略…………140 5.1.2 導入數位學習系統的實務與執行……………148 5.1.3 導入數位學習系統後的維運…….……………155 第二節 對於學術界與實務界的建議………………………160 5.2.1 對學術界的策略思考…………………………160 5.2.2 對實務界的策略思考…………………………163 第三節 後續研究的建議………………………………160 參考文獻……………………………………………………170 附錄……………………………………………………180 1.訪談問卷(大學校院版) …………………………………180 2.訪談問卷(實務廠商版) ……………………………………182 3.研究資料授權書……………………………………………184 4.訪談資料確認書…………………………………………185rf 參考文獻 一、英文部分 1.Adkins, S. S. (2002). The 2002 U.S. market for e-learning simulation, Retrieved April 18, 2003: http://www.brandon-hall.com/simmarket.html. 2.American Federation of Teachers. (2001). A virtual revolution: trends in the expansion of distance education, Retrieved October 10, 2002. http://www.aft.org. 3.Alvarado, P. (2004). Seven Steps to Selecting a Learning Management System. Retrieved March 5, 2004: http://www.clomedia.com/content/templates/clo_webonly.asp?articleid=365&zoneid=78 4.Bates, A.W. (2000). Managing technological change: Strategies for college and university leaders. San Francisco: Jossey-Bass. 5.Beller, M., & Or, E. (1998). The Crossroads Between Lifelong Learning and Information Technology: A Challenge Facing Leading Universities. Journal of Computer and Mediated Communication, 4 (2). Retrieved Sep 25, 2002: http://www.ascusc.org/jcmc/vol4/issue2/beller.html 6.Bonk, C. (2001). Online teaching is an online world. Retrieved Sep 25, 2002. http://www.courseshare.com/report.php. 7.Bonk, C., Cummings, J. A., Hara, N., Fischler, R., & Lee, S. M. (2000). A ten level Web integration continuum for higher education: New resources, partners, courses, and markets. In B. Abbey (Ed.), Instructional and cognitive impacts of Web-based education (pp 56-77). Hershey, PA: Idea Group Publishing. 8.Brown, J. S., & Duguid, P. (2000). The Social Life of Information. Boston: Harvard Business School Press. 9.Brown, J. S. (2002). Re-engineering the university. [Electronic version ]. Open Learning, 17 (3), 231-243. 10.Boshier, R., Brand, S., Dabiri, A., Fujitsuka, T., & Tsai, C. Y. J. (2001). Virtual universities revealed: more than just a pretty interface? Distance Education, 22 (2), 212-231. 11.Browning, P., & Williams, J. (1997). Using the Internet in teaching and learning: a U.K. perspective. Computers and Geosciences. 23 (5), 549-557. 12.Chan, T. W., Hue, C. W., Chou, C. Y. & Tzeng, J.L. (2001). Four spaces of network learning models. Computers and Education, 37, 141-161. 13.Chapman, B., & Hall, B. (2002). Learning Management Systems and Learning Content Management Systems Demystified, Retrieved May 6, 2003: http://www.brandonhall.com/public/resources/lms_lcms/ 14.Chou, C., & Tsai C. C. (2002). Developing web-based curricula: issues and challenges. [Electronic version ]. Journal of Curriculum Studies, 34 (6), 623-636. 15.Clark, J. (2002). A product review of WebCT. [Electronic version ]. Internet and Higher Education, 5, 79-82. 16.Clegg, S., Hudson, A., & Steel, J. (2003). The emperor’s new clothes: globalization and e-learning in higher education. British Journal of Society of Education, 24 (1), 39-53. 17.Cummings, J. A., Bonk, C. J., & Jacobs, R. F. (2002). Twenty-first century college syllabi Options for online communication and interactivity. [Electronic version ]. Internet and Higher Education, 5, 1-19. 18.Egan, D. (2002). Top 10 LMS purchasing mistakes (and how to avoid them), Retrieved Sep 25, 2003: http://www.learningcircuits.org/2002/mar2002/egan.html 19.Ellis, K. R. (2001). LCMS roundup. Retrieved May 6, 2003: http://www.learningcircuits.org/2001/aug2001/ttools.htm 20.Farrell, G. M. (1999). The development of virtual education: a global perspective. London: The Commonwealth of Learning. 21.Greenberg, L. (2002). LMS and LCMS: what's the difference? Retrieved Sep 25, 2003: http://www.learningcircuits.org/2002/dec2002/greenberg.htm 22.Grover, V., Cheon, M., & Teng, J. (1994). A descriptive study on the outsourcing of information systems functions, Information and Management, 27, 33-44. 23.Guri-Rosenblit, S. (2001). Virtual universities: current model and future trends. [Electronic version ]. Higher Education in Europe, XXVI (4), 487-499. 24.Hamid, A. A. (2001). e-Learning: is it the “e” or the learning that matters? [Electronic version ]. Journal of Computers and Education, 4, 311-316. 25.Harasim, L. (2000). Shift happens online education as anew paradigm in learning. [Electronic version ]. Internet and Higher Education, 3, 41-61. 26.Harmon, S.W., & Jones, M. G. (1999). The five levels of web use in education: factors to consider in planning online courses. Educational Technology, 39 (6), 28-32. 27.Horton, W. (2000). Designing web-Based training: how to teach anyone anything anywhere anytime. New York: John Wiley & Sons. 28.Issroff, K., & Scanlon, E. (2002). Using technology in higher education: an activity theory perspective. Journal of Computer Assisted Learning, 18, 77-83. 29.JES & Co. (2002). Managed Learning System, Retrieved Sep 25, 2003: http://www.jesandco.org/MLS/default.asp 30.Johnson, A., & Ruppert, S. (2002). An evaluation of accessibility in online learning management systems. Library Hi Tech, 20 (4), 441-451. 31.Jung, I., & Rha, I. (2000). A virtual university trial project: Its impact on higher education in South Korea. Innovations in Education and Teaching International, 38(1), 53-63. 32.Keller, C., & Cernerud, L. (2002). Students’ perception of e-learning in university education. [Electronic version ]. Journal of Educational Media, 27 (1-2), 55-67. 33.Kendall, M. (2001). Teaching online to campus-based students: the experience of using WebCT for the community information model at Manchester Metropolitan University. Education for Information, 19, 325-346. 34.Kerker, S. (2000). The corporate university boom is over. New Corporate University Review. Retrieved May 6: http://www.traininguniversity.com. 35.Kirschner, P. A., & Paas, F. (2001). Web-enhanced higher education: a tower of babel. Computers in Human Behavior, 17, 347-353. 36.Kwon, T. H., & Zmud, R. D. (1987). Unifying the fragmented models of information systems implementations, in Boland, R. J. Jr. and Hirschheim, R. A. (Eds.), Critical Issues in Information System Researc. (pp. 227-252). NJ: John Wiley & Sons. 37.Labbs, J. J. (1993). Successful outsourcing depends on critical factors. Personal Journal, October, 51-60. 38.Lacity, M. C., Willcocks, L. P., & Feeny, D. F. (1995). Maximize flexibility and control, Harvard Business Review, 73 (3), 84-93. 39.Levy, S. (2003). Six factors to consider when planning online distance learning Programs in Higher Education. Online Journal of Distance Learning Administration, 6 (4), Retrieved October 10, 2003: http://www.westga.edu/%7Edistance/ojdla/spring61/levy61.htm 40.Liegle, J. O., & Meso, P. N. (2000). Web-based instruction system. In Lau, L. K. (2000). Distance learning technologies: Issues, trends and opportunities. (pp. 186-206). Hershey, PA: Idea Group. 41.Malloy, T. E., Jensen, G. C., & Regan, A. (2002). Open courseware and shared knowledge in higher education. [Electronic version ]. Behavior Research Methods, Instruments, & Computers, 34 (2), 200-203. 42.McFarlan, E. W., & Nolan, R. L. (1995). How to manage an IT outsourcing Alliance.Sloan Management Review, 36, pp.9-23. 43.Meyer, N. D. (1994). A sensible approach to outsourcing. Information System Management, 11 (4), 23-27. 44.Meyer-Peyton, L. (2000). Elements of a successful distributed learning program. In Lau, L. K. (2000). Distance learning technologies: Issues, trends and opportunities. (pp. 82-90). Hershey, PA: Idea Group. 45.Michell, V. & Fitzgerald, G. (1997). The IT outsourcing market-place: vendors and their selection. Journal of Information Technology, 12, 223-237. 46.Minoli, D. (1995). Analyzing outsourcing : reengineering information and communication systems. New York: McGraw-Hill. 47.Moore, M. G., & Kearsley, G. (1996). Distance education: a system view. Belmont, CA: Wadsworth. 48.Mortimer, L. (2002). (Learning) Objects of desire: promise and practicality, Retrieved December 17, 2003: http://www.learningcircuits.org/2002/apr2002/mortimer.htm 49.Nachmias, R. (2002). A research framework for the study of a campus-wide web-based academic instruction project. Internet and Higher Education, 5, 213-229. 50.Neumann, P. G. (1998). Risks of e-education. communications of the ACM, 41(10), 136-137. 51.Nichani, M. (2001). LCMS = LMS + CMS [RLOs ], Retrieved December 17, 2003: http://www.elearningpost.com/features/archives/001022.asp 52.Oliver, R., & McLoughlin, C. (2001). Using networking tools to support online learning. In Lockwood, F., & Gooley, A. (2001). Innovation in open & distance learning: successful development of online and Web-based, (pp. 148-159). London: Kogan 53.Olsen, F. (2002). Putting course materials online, the university faces high expectations. Retrieved Dec 18, 2003: http://chronicle.com/free/v49/i15/15a03101.htm 54.Paul, C. (2003). Managing evolution and change in the web-based teaching and learning environments. Computers and Education, 40, 99-114. 55.Rengarajan, R. (2001). LCMS and LMS - Taking Advantage of Tight Integration. Click2learn. Retrieved Dec 18 2003: http://www.sumtotalsystems.com/home/transition.html 56.Robbins, R. S. (2002). The evolution of the learning content management system. Retrieved Feb 4, 2003: http://www.learningcircuits.org/2002/apr2002/robbins.htm 57.Robertson, J. (2003). So, what is a content management system? Retrieved Dec 18, 2003: http://www.steptwo.com.au/papers/kmc_what/pdf/KMC_What.pdf 58.Robinson, B. (2001). Innovation in open and distance learning: some lessons from experience and research. In Lockwood, F., & Gooley, A. (2001). Innovation in open & distance learning: successful development of online and Web-based, (pp. 16-26). London: Kogan 59.Rogers, D. L. (2000). A paradigm shift: technology integration for higher education in the new millennium. Educational Technology Review, 13, 19-27. 60.Rosenberg, M. J. (2000). E-Learning: strategies for delivering knowledge in the digital Age. NY: McGraw-Hill. 61.Ryan, S., Scott, B., Freeman, H., & Patel, D. (2000). The virtual university. London: Kogan Page. 62.Scardamalia, M., & Bereiter, C. (1994). Computer support for knowledge building communities, Journal of the Learning Sciences, 3 (3), 265-283. 63.Schmidt, P. (1999). Concept of university centers has appeal in several states. The Chronicle of Higher Education, Retrieved June 10, 2003: http://chronicle.com/weekly/v45/i21/21a04101.htm 64.Segrave, S., & Holt, D. (2003). Contemporary learning environments: designing e-Learning for Education in the professions. Distance Education, 24, 7-23. 65.Stallings, D. (1997). The virtual university is inevitable: but will the model be non-profit or profit? a speculative commentary on the emerging education environment. Journal of Academic Leadership, 23 (4), 271-280. 66.Stallings, D. (2002). Measuring success in the virtual university. Journal of Academic Leadership, 28 (1), 47-53. 67.Vest, M. C. (2002). A message from the president. Retrieved December 17, 2003: http://ocw.mit.edu/OcwWeb/Global/AboutOCW/presidentspage.htm 68.Werry, C. (2002). The work of education in the age of ecollege. [Electronic version ]. Computers and Composition, 19, 127-149. 69.Willett, H. G. (2002). Not one or the other but both: hybrid course delivery using WebCT. The Electronic Library, 20 (5), 413-419. 70.Wulf, K. (1996). Training via the Internet: where are we? Training and Development, 50(5), 50-55. 71.Young, S. S. C., Chan, T. W., & Lin, C. B. (2002). A preliminary evaluation of a web-mediated ‘School for All’. Journal of Computer Assisted Learning, 18 (2), 209-218. 72.Zeiberg, C. (2002). Ten steps to selecting an LMS. Retrieved October 13, 2003: http://www.lguide.com/reports/lmsbuying.cfm 二、中文部分 1. 朱則剛 (1986)。為教學資源中心正名。視聽教育雙月刊,28(3),68-71。 2. 朱唯勤 (2002)。教育科技與資訊化刻不容緩 。通訊雜誌,107,55-57。 3. 李隆興 (2002)。淺談數位學習技術之演進。通訊雜誌,107,28-33。 4.李世忠 (2000)。教育科技、教學資源中心與教學資源共享。教學科技與媒體,52,3-10。 5. 李進寶 (2002)。數位學習產業的機會與挑戰。通訊雜誌,107,24-26。 6.林一鵬、岳修平 (1999)。大學網路課程之規劃與實施-台大經驗。遠距教學系統化教材設計國際研討會論文集 (pp. 1-17),嘉義:國立中正大學。 7.林菁 (2000)。如何經營一個學校教學資源中心 – 從妥善人力規劃談起。教學科技與媒體,50,30-36。 8.林東清 (2003)。資訊管理 – e化企業的核心競爭力。台北:智勝。 9.計惠卿 (2003)。數位學習的成功因素:STCPPP構面。公教資訊,7(1),18-28。 10.洪明洲 (2001)。網路教學。台北:華彩。 11.教育部 (2001)。遠距教學中程發展計畫。Retrieved Feb 5, 2002: http://140.111.1.22/tanet/tan-intro/4.html 12.邱瑞科 (2002)。校園e-Learning將更現成效 。通訊雜誌,107,58-61。 13.徐新逸 (2003)。學校推動資訊融入教學的實施策略探究。教學科技與媒體,64,68-84。 14.許巧齡 (2002)。e-Learning時代來臨的新挑戰 。通訊雜誌,107,52-54。 15.許朱勝 (2003)。資訊委外--推動企業改造。IBM知識大學,Retrieved Nov 5, 2003:http://www-901.ibm.com/tw/knowledge_uni/press/20030522.html 16.陳年興、林甘敏 (2001)。網路大學學習問題探討。資訊管理研究,4 (2),65-85。 17.梁朝雲 (1996)。希望工程在元智 – 談大學資訊服務的組織變革。中國圖書館學會會報,56,9-26。 18.梁朝雲 (2000)。虛擬大學的媒體服務體系。遠距教育,15,56-64。 19.張基成、唐宣蔚 (2002)。大學生網路學習社群。資訊與教育,89,65-80。 20.楊錦潭、宗立達 (2002)。SCORM規格學習物件在教材編輯的應用--以高師大教材庫管理系統為例。教學科技與媒體,65,75-84。 21.游寶達、劉明宗 (2003)。符合數位學習標準之網頁教材設計。資訊與教育,92,27-34。 22.楊叔卿,張君豪,(2004),由校園資訊服務的觀點探討大學校院委外建置學習管理平台,2004全球華人計算機教育應用大會,HongKong. 23.楊叔卿、張君豪,(2003)。高等教育情境導入商用學習管理平台於輔助教學之研究。2003全球華人計算機教育應用大會,Nanjing, China. 24.蔡昌均、曾憲雄、林智揚 (2002)。中文化e-Learning共享教材元件標準之規範。資訊與教育,91,10-20。 25.黃武元 (2002)。多媒體討論互動系統在數學教育應用之研究。教學科技與媒體,61,15-32。 26.黃瑞琴 (1999)。質性教育研究方法。台北:心理出版社。 27.蘇金輝 (2003)。網路教學系統使用效能評估之研究--以通識音樂課程為例。視聽教育,44(5),19-32。 28.陳德懷、黃亮華 (2003)。邁向數位學習型社會。台北:遠流出版社。 29.數位學習網路科學園區LearnBank應用服務中心 (2004)。服務提供廠商列表。Retrieved May 5, 2004:http://www.learnbank.com/intro.php?page=p4-1#。 30.網路科學園區UPcity學習不夜城 (2004) 。e-Learnig產業中心。 Retrieved May 5, 2004:http://www.upcity.com.tw/e_01.htm。 31.楊家興(2001)。網路虛擬教室的完全設計。管理與資訊學報,6,113-134。 32.潘淑滿(2003)。質性研究理論與應用。台北:心理出版社。 33.顏永進、何榮桂、吳正己(2001)。我國大學校院遠距教育實施現況與問題。視聽教育,43 (2),23-42。id NH0925394012 sid 916718 cfn 0 / id NH0925394013 auc 陳書磊 tic 詩句中的語意結構之擷取和檢索 adc 蘇豐文 ty 碩士 sc 國立清華大學 dp 資訊系統與應用研究所 yr 92 lg 英文 pg 49 kwc 語義擷取 kwc 語義結構相似度比對 kwc 中文詩詞 kwc 資訊檢索 kwc 語義結構擷取 kwc 本體論擷取 abc 隨著語意網(Semantic Web)的發展,從文件中擷取語意知識變成了一個越來越被重視的課題。語意擷取技術上的困難,使得語意網的普及性和應用都受到限制.尤其是變化複雜,一字通常多義的中文,其處理更加困難。目前已經有的語意擷取技術,往往只擷取文件中的某些特定詞彙,並不能完整的表達其中包含的語意。我們針對中國近體詩的詩句作分析,利用近體詩整齊有規律的格律,從詩句中擷取語意結構。同時我們不但可以用語意網中通用的本體論(Ontology)表達詩中得取的語意結構,也可以用樹狀結構來表示。針對這種語意樹狀結構,我們設計了其相似度的演算法.比較使用者的查詢句和詩句語意結構上的相似(Semantic Structural Similarity),我們也能幫助使用者查詢詩句。 tc 摘要 2 Chapter 1 Introduction 4 1.1 Background 4 1.2 Problem Description 4 1.3 Organization of Thesis 5 Chapter 2 Related Works 6 Chapter 3 System Overview 8 Chapter 4 Proposed Methods 11 4.1 About Chinese Poetry 11 4.2 The Chinese Thesaurus & Semantic Annotation 14 4.3 Parsing 15 4.4 Semantic Structural Similarity 25 4.5 Poetry Retrieval 35 Chapter 5 Experiments 37 Chapter 6 Conclusion and Future Work 43 References 45 Appendix A 47 Appendix B 47rf [1 ] “RDF, Resource Description Framework”, http://www.w3.org/RDF/. [2 ] “RDFS, Resource Description Framework Schema Specification 1.0”, http://www.w3.org/TR/2000/CR-rdf-schema-20000327/. [3 ] “The DARPA Agent Markup Language Homepage”, http://www.daml.org/. [4 ] D. W. Embley, D. M. Campbell, and R.D. Smith, “Ontology-Based Extraction and Structuring of Information from Data-Rich Unstructured Documents”, in Proc. of CIKM'98. [5 ] T. Andreasen, H. Bulskov, and R. Knappe, “From Ontology over Similarity to Query Evaluation”, in Proc. of 2nd International Conference on Ontologies, Databases, and Applications of Semantics for Large Scale Information Systems ODBASE 2003. [6 ] T. Brasethvik, and J. A. Gulla, “Natural Language Analysis for Semantic Document Modeling”, Data & Knowledge Engineering, March, 2001, pp. 45-62. [7 ] E. Brill, “A Simple Rule-Based Part of Speech Tagger”, Applied Natural Language Conferences’92 Proceedings. [8 ] J. T. Kim and D. I. Moldovan, “Acquisition of Linguistic Patterns for Knowledge-Based Information Extraction”, IEEE Transactions on Knowledge and Data Engineering, Vol. 7, No, 5, Oct 1995. [9 ] T. Poibeau and D. Dutoit, “Generating extraction patterns from a large semantic network and an untagged corpus”, in Proc. of SemaNet’02 Workshop, August 2002. [10 ] Mei et al. “TongyiciCilin Thesaurus”, Commercial Press, Shanghai, 1996. [11 ] A Maedche and S. Staab, “Measuring Similarity between Ontologies”, in Proc. of EKAW, 2002. [12 ] “Classical Chinese Poetry”, http://en.wikipedia.org/wiki/Chinese_Poetry. [13 ] M. Collins and N. Duffy, "Convolution kernels for natural language", in Proc. Of Neural Information Processing Systems (NIPS 14), pp. 625–632, 2001. [14 ] T. Takahashi, K. Nawata, K. Inui, and Y. Matsumoto, “Effects of Structural Matching and Paraphrasing in Question Answering", in Proc. of IEICE Transactions on Information and Systems 2003. [15 ] V. W. Soo, S. Y. Yang, S. L. Chen and Y. T. Fu, “Ontology Acquisition and Semantic Retrieval from Semantic Annotated Chinese Poetry”, in Proc. of JCDL 2004. [16 ] "Web Ontology Language (OWL) Guide Version 1.0", http://www.w3.org/TR/owl-guide/. [17 ] “WordNet, a lexical semantic net for the English language”, http://www.cogsci.princeton.edu/~wn/. [18 ] “HowNet Knowledge Database”, http://www.keenage.com/. [19 ] S. H. Wu, T. H. Tsai, and W. L. Hsu, “Text Categorization using Automatically Acquired Domain Ontology”, in Proc. of IRAL2003 Workshop on Information Retrieval with Asian Languages, 2003. [20 ] S. H. Wu, and W. L. Hsu, “SOAT: A Semi-Automatic Domain Ontology Acquisition Tool from Chinese Corpus”, in Proc. of COLING 2002. [21 ] S. H. Wu, T. H. Tsai, and W. L. Hsu, “Domain Event Extraction and Representation with Domain Ontology,” in Proc. of IJCAI’03 Workshop on Information Integration on the Web, 2003. [22 ] R. Culmone, G. Rossi, and E. Merelli, “An ontology similarity algorithm for bioagent,” In Proc. of NETTAB Workshop on Agents in Bioinformtics, 2002. [23 ] G. Chen, “The Special Rules for the Third from Last Word in Tang Poetics,” GuoWenTianDi國文天地, Vol. 12, No, 4, 1996 [24 ] A. Moschitti and C. A. Bejan “Semantic Kernel for Predicate Argument Classification,” in Proc. of CoNLL 2004. [25 ] S. Pradhan, K. Hacioglu, W. Ward, J. H. Martin, and D. Jurafsky, “Semantic role parsing: Adding semantic structure to unstructured text,” In Proc. of ICDM03. [26 ] K. Hacioglu, S. Pradhan,W.Ward, J. Martin, and D. Jurafsky, “Shallow semantic parsing using Support Vector Machines,” Technical report. 2003. [27 ] J. Chen and O. Rambow, “Use of deep linguistic features for the recognition and labeling of semantic arguments,” In Proc. of EMNLP 2003. [28 ] F. Ciravegna and Y. Wilks, “Designing Adaptive Information Extraction for the Semantic Web in Amilcare,” in Annotation for the Semantic Web, IOS Press, Amsterdam, 2003. [29 ] F. Ciravegna, “Adaptive Information Extraction from Text by Rule Induction and Generalisation,” in Proc. of IJCAI 2001. [30 ] I. H. Meng and W. P. Yang, “An Effective Engine for Answering Questions Based upon Chinese Semantic Extraction,” International Journal of Information and Management Sciences, Vol. 14, No, 4, pp.27-48, 2003. [31 ] A. Ittycheriah, M. Franz, and S. Roukos, “IBM’s statistical question answering system–TREC-10”, Proc. The Text REtrieval Conference (TREC), pp. 258–264, 2001. [32 ] Y. Kiyota, S. Kurohashi, and F. Kido, “”dialog navigator” : A questions answering system based on large text knowledge base”, In Proc. of COLING 2002.id NH0925394013 sid 916723 cfn 0 / id NH0925394014 auc 林忠誠 tic 基於本體論與標準物件以遞增式學習來理解影像 adc 蘇豐文 ty 碩士 sc 國立清華大學 dp 資訊系統與應用研究所 yr 92 lg 中文 pg 43 kwc 學習 kwc 本體論 kwc 低階層技術 kwc 高階層技術 kwc 影像擷取 kwc 推論 abc 在多媒體的網路世界裡,電腦若能對影像能有更深入的了解,將會有很大的進步。本篇論文對影像上結合了低階層技術和高階層技術,並導入本體論,使系統可以對影像有更深入的理解,成為一個更智慧的系統。 tc                目錄 第一章 導論 第一節 前言……………………………………… 1 第二節 動機……………………………………… 2 第三節 論文架構………………………………… 3 第二章 文獻採討 第一節 本體論…………………………………… 4 第二節 影像處理………………………………… 5 第三節 相關研究………………………………… 8 第三章 系統設計與架構 第一節 系統簡介………………………………… 11 第二節 系統架構………………………………… 14 一、 低階層架構……………………………… 15 二、 高階層架構……………………………… 22 三、 比對……………………………………… 27 四、 遞增式學習……………………………… 29 第四章 系統展示與實驗 第一節 系統展示………………………………… 32 第二節 實驗……………………………………… 32 一、 顏色實驗………………………………… 33 二、 推理實驗………………………………… 34 三、 學習實驗………………………………… 37 四、 影像搜尋實驗…………………………… 40 第三節 實驗討論………………………………… 42 第五章 結論與未來研究方向 第一節 結論……………………………………… 43 第二節 未來研究方向…………………………… 43 參考文獻 附錄 附件一 實體資料 附件二 影像資料rf 1. “What are Ontologies, and Why Do We Need Them?” , B.Chandrasekaran and John R. Josephson, Ohio State University , IEEE Intelligent Systems 1999. 2. “Do we need an Ontology of Ontologies” , Panel Discussion , Tampere, October 10, 2002 3. “Ontology-Based Image Retrieval” , Eero HyvÄonen, Avril Styrman, and Samppa Saarela, HIIT 2003. 4. “Intelligent Image Retrieval and Browsing Using Semantic Web Techniques- A Case Study”, Eero Hyvonen, Samppa Saarela, and Viljanen, SEIPA Conference , September 2003. 5. “Object Boundary Detection for Ontology-based Image Classfiction”, Lei Wang , Latifur Khan and Casey Breen, ACM SIGKDD, pp. 51-61, Edmonton, Alberta, Canada, July, 2002 6. “Adventures in HSV space” , Darrin Cardani 7. “Image Databases – Search and Retrieval of Digital Imagery”, edited by Vittorio Castelli and Lawrence D. Bergman, Book 2002. 8. CYC , http://www.cyc.com 9. “DAMLJessKB : A Tool for Reasoning with the Semantic Web” , Joe Kopena , William C. Regli*, ISWC 2003. 10. “Ontology Inference Layer OIL”, I. Horrocks, D. Fensel, J. Broekstra, S. Decker , M. Erdmann , C. Goble, F. Van Harmelen, M. Klein, S. Staab, and R. Studer. http://www.ontoknowledge.org/oil. 11. “The semantic Web and its languages”, Dieter Fensel 12. “The Semantic Web – on the respective Roles of XML and RDF”, Stefan Decker , Frank van Harmelen , Jeen Broekstra , Michael Erdmann , Dieter Fensel , Ian Horrocks , Michel Klein , Sergey Melnik. 13. “Triple – An RDF Query, Inference, and Transformation Language”, Michael Sintek, Stefan Decker. 14. “F-OWL: An OWL Inference Engine in Flora-2”, Department of Computer Science & Electrical Engineering, UMBC 15. “OIL: An ontology infrastructure for the semantic web”, Dieter Fensel, Frank van Harmelen, Ian Horrocks, Deborah L. McGuinness, and Peter F. Patel-Schneider, IEEE Intelligent Systems, 16(2):38-45, 2001. 16. “Automated Semantic Annotation and Retrieval Based on Sharable Ontology and Case-based Learning Techniques” , Von-Wun Soo, Chen-Yu Lee, Chung-Cheng Lin , Shu Lei Chen , Ching-chih Chen, JCDL 2003. 17. Quicklook , http://quicklook.itc.cnr.it/ 18. “The QuickLook image search engine”, G. Ciocca, R. Schettini, Journal of Image and Graphics, Vol5, 2000. 19. “Query by Image and Video Content: The QBIC System”, M.Filickner, Harpreet Sawhney, Wayne Niblack, Jonathan Ashley, W. Huang, Byron Dom, Monika Gorkani, Jim Hafine, Denis Lee, Draguti Petkovic, David Steele, and Peter Yanker, IEEE 1995. 20. “VisualSEEk: a fully automated content-based image query system” John R. Smith and Shih-Fu Chang. ACM Multimedia 96. 21. “PicToSeek: combining color and shape invariant features for image retrieval” Gevers, T. and Smeulders, A.W.M. IEEE Transactions on Image Processing,Volume: 9 1 , Jan. 2000 , Page(s): 102 -119 22. “The PicToSeek WWW Image Search System”, Theo Gevers and Arnold W. M. Smeulders 23. http://ecogrid.nchc.org.tw/id NH0925394014 sid 916711 cfn 0 / id NH0925394015 auc 林楷勛 tic 適用於保護應用伺服器以防止分散式阻斷服務攻擊之入侵保護系統 adc 孫宏民 ty 碩士 sc 國立清華大學 dp 資訊系統與應用研究所 yr 92 lg 中文 pg 47 kwc 入侵偵測 kwc 阻斷服務 kwc 防火牆 abc 阻斷服務是泛指駭客用攻擊程式讓正常使用者沒有辦法存取特定的服務,一般可以分為三種,一種是針對服務系統漏洞整個癱瘓掉攻擊目標,一種是利用通訊協定的弱點來使正常使用者沒有辦法存取服務,另一種則是用大量的封包流量,讓受攻擊端來不及處理而癱瘓掉,這三者中又以利用通訊協定的阻斷服務最難預防。TCP SYN Flooding是一個著名的阻斷服務攻擊法,它是利用TCP 通訊協定(three-way handshake)的弱點。現在許多知名的網站面對的是傷害更強的分散式阻斷服務攻擊。利用防火牆與入侵偵測系統只能抵禦傳統的阻斷服務攻擊,到目前為止,對於TCP SYN Flooding DDoS Attack攻擊並沒有一個完整的解決方案。本篇論文首先分析TCP SYN Flooding Attack的攻擊原理且提出一個抵禦TCP SYN Flooding攻擊的方法,這個方法藉由產生合法使用者位址的資料庫、監控在Backlog佇列裡半開啟(half-open)數量的多寡與封包過濾機制來對抗DDoS。這個機制主要的優點是它能有效的抵抗TCP SYN Flooding的攻擊,且對於合法使用者不對造成任何的延遲。另外本篇論文也分析和實驗一種應用層的阻斷服務攻擊法,在這篇論文稱之為TCP keep alive攻擊法,本篇論文提出的系統架構同樣可以解決TCP keep alive阻斷服務攻擊。 tc 第一章 簡介.....1 第二章 背景介紹.....4 2.1 INTERNET PROTOCOL 2.2 TRANSMISSION CONTROL PROTOCOL 2.2.1 TCP Control Flags 2.2.2 TCP port 2.2.3 TCP Three-way handshake 2.2.4 TCP Backlog Queue 2.2.5 TCP連線建立過程 2.2.6 TCP計時器 2.2.7 SYN Flooding阻絕服務攻擊 2.2.8 分散式阻絕服務攻擊 (DDoS) 2.2.9 DDoS 攻擊程式 2.2.10 Application Keep alive攻擊 第三章 相關研究.....15 3.1 系統設定改善 3.2 改善ROUTER設定 3.2.1 Ingress Filtering 3.2.2 Egress Filtering 3.2.3 IP Traceback 3.3 連線建立的改善 3.4 防火牆 3.4.1 防火牆重導 (Firewall as a Relay) 3.4.2 Firewall as a semi-transparent Gateway 3.5 主動偵測(ACTIVE MONITOR) 3.6 其他防治方法 3.6.1 負載平衡 3.6.2 First SYN reject 3.6.3 亂數丟棄連線請求 (Random Drop) 3.6.4 轉換攻擊目標 (Moving Target) 第四章 提出的系統.....23 4.1 系統描述 4.2 系統架構 4.2.1 正常存取計算元件(Legal Access Computing Component) 4.2.2 偵測元件 (Monitor Component) 4.2.3 封包過濾元件 (Packet Filtering Component) 4.3 相對的演算法 ( ALGORITHM) 4.3.1 正常存取元件 4.3.2 阻斷服務攻擊的偵測 4.3.3 封包過濾 4.3.4 攻擊中的資料庫更新 4.4 系統流程 4.4.1正常情況 4.4.2攻擊情況 第五章 系統實作與實驗分析.....32 5.1 實作 5.1.1 Linux可卸載核心模組 5.1.2 Netfilter 5.2 實驗分析 5.2.1 測試環境 5.2.2 偵測TCP SYN Flooding攻擊 5.2.3 抵禦DDoS攻擊 第六章 結果分析與總結.....43rf [1 ] Denial of Service Attacks, Cert Coordination Center http://www.cert.org/tech_tips/denial_of_service.html [2 ] M. Williams, Ebay, Amazon, Buy.com hit by attacks, IDG News Service, 02/09/00 http://www.nwfusion.com/news/2000/0209attack.html [3 ] R. W. Stevens and G. R. Wright. TCP/IP Illustrated, Volume 2, The Implementation. Prentice-Hall, Englewood Cliffs, New Jersey, 1995 [4 ] J. Postel. RFC - 791 Internet Protocol. Information Science Institute, University of Southern California, CA, Sept. 1981. [5 ] J. Postel, editor. RFC - 793 Transmission Datagram Proto-col. Information Sciences Institute, USC, CA, Sept. 1981. [6 ] CERT/CC. ‘CERT Advisory CA-1999-17 Denial of Service Tools.’’ 3 March 2000. http://www.cert.org/advisories/CA-1999-17.html [7 ] CERT/CC. ‘Results of the Distributed-Systems Intruder Tools Workshop.’ 2-4 November 1999. http://www.cert.org/reports/dsit_workshop.pdf [8 ] Dittrich, S. D. Dittrich, and N. Long. ‘ An analysis of the ‘Shaft’ Distributed denial of Service Tool’. 13 March 2000. http://www.sans.org/y2k/shaft.htm [9 ] Dittrich, David. ‘ The DoS Project’s ‘Trinoo’ distributed denial of service attack tool’. 21 October 1999. http://staff.washington.edu/dittrich/misc/trinoo.analysis [10 ] Dittrich, David. ‘ The stacheldraht’ distributed denial of service attack tool’. 31 December 1999. http://staff.washington.edu/dittrich/misc/stacheldraht.analysis [11 ] Dittrich, David. ‘ The Tribe Flood Network’ distributed denial of service attack tool’. 21 October 1999. http://staff.washington.edu/dittrich/misc/ftn.analysis [12 ] M. Graff. Sun Security Bulletin 00136. Mountain View, CA, Oct. 1996 [13 ] Computer Emergency Response Team (CERT), Carnegie Mellon University, Pittsburgh, PA. TCP SYN Flooding and IP Spoofing Attacks, Sept. 1996. CA-96:2 [14 ] Cisco Systems Inc. Defining Strategies to Protect Against TCP SYN Denial of Service Attacks, September 1996 [15 ] P. Ferguson. Network ingress filtering. Internet draft, Cisco Systems, Inc., September 1996 [16 ] P. Ferguson, D. Senie. Network Ingress Filtering: Defeating Denial of Service Attacks Which Employ IP Source Spoofing. RFC 2827 May 2000. [17 ] Egress Filtering. v 0.2. GIAC Special Notice, SANS Institute Resources, February 2000. [18 ] Computer Emergency Response Team (CERT), Carnegie Mellon University, Pittsburgh, PA. IP Spoofing Attacks and Hijacked Terminal Connections, Jan. 1995. CA-95:01. [19 ] C. Schulba, I. Krsul, M. Kuhn, E. Spafford, A. Sundram, D. Zamboni, ‘‘Analysis of a Denial of Service Attack on TCP’’, Proceedings of the 1997 IEEE Symposium on Security and Privacy. [20 ] Frank Kargl, et. al. Protecting Web Servers from Distributed Denial of Service Attacks. May 2001. [21 ] Livio Ricciulli, et. al. TCP SYN Flooding Defence, [22 ] Linux Kernel http://www.kernel.org/ [23 ] Loadable Kernel Module http://www.tldp.org/HOWTO/Module-HOWTO/ [24 ] Netfilter & Ipteables http://www.netfilter.org/ [25 ] W32.Blaster.Worm http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.worm.html [26 ] Ping of Death http://compnetworking.about.com/library/glossary/bldef-pingofdeath.htm [27 ] Smurf http://www.cert.org/advisories/CA-1998-01.htmlid NH0925394015 sid 916705 cfn 0 / id NH0925394016 auc 謝明憲 tic 即時傳訊系統之聲音提示對使用者工作績效的影響 adc 許有真 ty 碩士 sc 國立清華大學 dp 資訊系統與應用研究所 yr 92 lg 中文 pg 110 kwc 提示系統 kwc 即時傳訊系統 kwc 聲音提示方式 abc 提示系統是一種在使用者進行工作過程中,提供額外資訊的系統,藉由提示系統所提供的資訊可以協助使用者去決策或計畫未來將從事的工作。目前已被應用的提示系統種類繁多,如即時傳訊系統、股價指數提示、系統負載監控,以及警示系統…等等。其中即時傳訊系統可讓使用者彼此聊天並交換檔案,然而也可能影響使用者原本的工作績效,原因在於使用者必須在原工作 (主要工作) 與即時傳訊系統間作工作情境的切換。在應用上,即時傳訊系統採用視覺與聽覺的提示方式並行以提示使用者提示訊息的出現,在研究上許多學者透過不同的視覺提示方式來探討提示系統的視覺提示功能與使用者工作績效之間的關係。然而,探討即時傳訊系統的聽覺提示設計方式以了解其功效的相關研究卻少之又少。因此本研究旨在探討即時傳訊系統中不同的聲音提示方式對使用者工作績效的影響。研究者設計了四種不同的視聽覺提示呈現方式,分別為: 視覺、視覺加上單調聲音、視覺加上對應聲音、及視覺加上語音。研究中受測者的主要工作是瀏覽網頁以找出二十題資訊搜尋題目的答案,在進行主要工作的同時,四組的介面會跳出不同的提示訊息以提醒受測者去執行次要工作。 tc 目 次 中文摘要 ⅰ 英文摘要 ⅱ 目次 iv 表次 ⅴ 圖次 ⅵ 第一章 緒論 第一節 研究背景 1 第二節 研究目的與問題 4 第三節 研究之重要性 4 第二章 文獻探討 第一節 提示系統的定義與分類 6 第二節 提示系統類型 15 第三節 即時傳訊系統 20 第四節 中斷及提示方式 27 第五節 中斷、反應及理解模型 40 第三章 研究方法 第一節 實驗設計 59 第二節 主要研究概念說明 62 第三節 研究工具設計 69 第四節 研究對象 73 第五節 實驗設備及場地 75 第六節 實驗流程 75 第七節 操作流程 76 第四章 研究結果 第一節 不同聲音提示介面對主要工作完成的速度及正確率影響 80 第二節 不同聲音提示介面對偵測至執行次要工作的速度影響 83 第三節 受測者質性問卷的使用情況分析 85 第五章 討論與建議 第一節 結論 90 第二節 研究發現 95 第三節 研究限制 97 第四節 未來建議 97 參考文獻 中文部分 99 外文部分…………………………………………………………..100 附錄 附錄A受測者篩選問卷………………………………………….103 附錄B各組質性問卷……………………………………………..104rf 李賢輝(無日期)。國立台灣大學網路教學課程-認知心理學與圖像設計。 取自:http://ceiba.cc.ntu.edu.tw/fineart/database/chap16/chap16-03.htm 參考文獻(英文) Arroyo E. & Selker T. (2003) Arbitrating multimodal outputs: Using ambient displays as interruptions. Human-Computer Interaction: Theory and Practice (Part II) , 2, 591-595. Baldwin, C. L., & Struckman-Johnson, D. (2002). Impact of speech presentation level on cognitive task performance: Implications for auditory display design. Ergonomics, 45(1), 61-74. Bartram, L., Ware, C., & Calvert, T. (2003). Moving icons: Detection and distraction. International Journal of Human-Computer Studies, 58, 515-545. Brush, A. J. B., & Borning, A. (2003). ‘Today’ messages: Lightweight group awareness via email. CHI 2003 Cadiz, J., Czerwinski, M., Mccrickard S., & Stasko, J. (2003). Providing elegant peripheral awareness. In Proceedings of CHI 2003 : Summaries, 1066-1067 Cadiz, J., Venolia, G., Jancke, G., & Gupta, A. (2002). Designing and deploying an information awareness interface. CSCW 2002/ Carroll, J. M., Neale, D. C., Isenhour, P. L., Rosson, M. B., & McCrickard, D. S. (2003). Notication and awareness: Synchronizing task-oriented collaborative activity. International Journal of Human-Computer Studies, 58, 605-632. Cheverst, K., Mitchell, K., & Davies, N. (2002). Exploring context-aware information push. Personal and Ubiquitous Computing, 6, 276-281. Clark, D. E., & Cushing, B. M. (2002). Predicted effect of automatic crash notification on traffic mortality. Accident analysis and prevention, 34, 507-513. Dabbish, L., & Kraut, R. (2003). Coordinating communication: Awareness displays and interruption. CHI 2003/ Fong, A. C. M., Hui, S. C., & Lau, C. T. (2001).Towards an open protocol for secure online presence notification. Computer Standards & Interfaces, 23, 311-324. Franke J., Daniels J., & McFarlane D. (2002). Recovering context after interruption. In: 24th Annual Meeting of the Cognitive Science Society, 758-812. Gross, T., Wirsam,W., & Graether, W. (2003). AwarenessMaps : Visualizing awareness in shared workspaces. CHI 2003 Horvitz, E., Kadie, C. M., Paek, T., & Hovel, D. (2003). Models of Attention in Computing and Communications: From Principles to Applications. Communications of the ACM 46(3):52-59, March 2003. Hugdahl, K., Thomsen, T., Ersland, L., Rimol, L. M., & Niemi, J. (2003). The effects of attention on speech perception: an fMRI study. Brain and Language, 85, 27-48. Maglio, P. P., & Campbell, C. S. (2003). Attentive agents. Communication of The ACM, 46(3), 47-51. McCrickard , D. S., Catramboneb, R., Chewara, C. M., & Staskoc, J. T. (2003). Establishing tradeoffs that leverage attention for utility: Empirically evaluating information display in noti.cation systems. International Journal of Human-Computer Studies, 58, 547-582 McCrickard, D. S., Chewar, C. M., Somervell, J. P., & Ndiwalana, A. (2003). A model for notification systems evaluation-capturing user goals for multitasking activity. ACM 2003/ McCrickard, D. S., Czerwinski, M., & Bartram, L. (2003). Introduction: Design and evaluation of notification user interfaces. International Journal of Human-Computer Studies, 58, 509-514. Rice, R. J., Decker, R., Jensen, N., Patterson, R., Singer, S., Sullivan, C., & Wells, L. (2002). Avalanche hazard reduction for transportation corridors using real-time detection and alarms. Cold Regions Science and Technology, 34, 31-42. Roeber, U., Widmann, A., & Schroger, E. (2003). Auditory distraction by duration and location deviants: A behavioral and event-related potential study. Cognitive brain research, 17, 347-357. Sawhney, N., & Schmandt, C. (1999). Nomadic Radio: Scaleable and contextual notification for wearable audio messaging. ACM CHI 99, 96-103. Sawhney, N., & Schmandt, C. (2000). Nomadic radio: speech and audio interaction for contextual messaging in nomadic environments. ACM Transactions on Computer-Human Interaction, 7(3), 353-383. Segerstad, Y. H., & Ljungstrand, P. (2002). Instant messaging with webwho. International Journal of Human-Computer Studies, 56, 147-171. Shell, J. S., Selker, T., & Vertegaal, R. (2003). Interacting with groups of computers. Communication of The ACM, 46(3), 40 -46. Somervall, J., Chewar, C. M., & Mccrikard, D. S. (2003). Evaluating graphical vs. textual displays in Dual-task environments. Stifelman, L. J., Arons, B., Schmandt, C., & Hulteen, E. A. (1993). Voice Notes: A speech interface for a hand-held voice notetaker. ACM INTERCHI 93, 24-29. Wu, J. H., & Yuan, Y. (2003). Improving searching and reading performance: The effect of highlighting and text color coding. Information & Management, 40, 617-637. Zhang, P. (2001). The impact of animation timing an location on visual search task performance in the web environment. Seven Americans Conference on Information Systems, Vol.2 1361-1366. Zhao, Q. A., & Stasko, J. T.(2000). "What"s Happening? The Community Awareness Application", Short Paper, CHI 2000 Extended Abstracts, 253-254. Ellen Isaacs, Alan Walendowski, Steve Whittaker, Diane J. Schiano & Candace Kamm CSCW ’02, November 16-20, 2002, New Orleans, Louisiana, USA Csikszentmihalyi, M. (1975). Beyond Boredom and Anxiety. San Francisco: Jossey-Boss. Martens, R. (1987). Coaches Guide to Sport Psychology. Champaign, IL: Human Kinetics. Jenny Preece, Yvonne Rogers, Helen Sharp, David Benyon, Simon Holland & Tom Carey.(1994), Human-Computer Interaction. Wokingham, UK: Addison Wesley.id NH0925394016 sid 916719 cfn 0 / id NH0925428001 auc 吳明園 tic 以有機金屬氣相磊晶法研製1.3微米磷化銦鎵量子位障之磷砷化銦鎵應力型多重量子井雷射二極體 adc 吳孟奇 ty 博士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 英文 pg 131 kwc 半導體雷射 kwc 電子阻擋層 kwc 磷砷化銦鎵/磷化銦 kwc 砷化鋁鎵銦/磷化銦 kwc 有機金屬氣相磊晶法 abc 光纖通訊系統需要之發光源是半導體雷射最重要應用之一,而1.3微米與1.55微米之雷射二極體是目前用於長距離通訊系統可獲得之光源。另外在標準矽光纖內,1.3微米波長有低損失與可忽略色散特點。其中,磷砷化銦鎵/磷化銦系列在材料成長與元件結構上,尤其在多次磊晶成長與光積體元件等方面,有很大之變通性,是目前長波長雷射之主流材料。然而這材料有較小導電帶差,嚴重影響溫度特性,因此改善1.3微米磷砷化銦鎵半導體雷射之元件特性,是目前非常重要且刻不容緩之研究工作。 tc Content Abstract (in Chinese) ………………………………………………... I Abstract (in English) ………………………………………………. III Content (in Chinese) ……………………………………………....... V Acknowledgement (in Chinese) …………………………………… VI Content (in English) …………….……………………………….... VII Table Captions ..…………………………………………………....... X Figure Captions …………………………………………………..... XI Chapter 1 Introduction 1-1 Background ……………………………………………. 1 1-2 Outline of this Dissertation ……………………………. 5 Chapter 2 Experiment and Theory 2-1 MOCVD Growth System ……………………………… 8 2-2 Material Characterizations …………………………… 13 2-3 Device Fabrication …………………………………… 15 2-4 Theory Review ……………………………………….. 17 Chapter 3 1.3 μm GaInAsP/GaInAsP Compressive Strain Multiple Quantum Well Laser Diodes 3-1 Introduction …………………………………………... 27 3-2 Design Consideration and Material Characterization ... 28 3-3 Device Fabrication and Characteristics ………………. 33 3-4 Summary ……………………………………………... 36 Chapter 4 1.3 μm GaInAsP/GaInAsP Compressive Strain Multiple Quantum Well Laser Diodes with the GaInP Quantum Barrier 4-1 Introduction …………………………………………... 37 4-2 Growth and Characterization of GaInP-QB Layers ….. 39 4-3 Device Fabrication and Characteristics ………………. 42 4-4 Summary ……………………………………………... 46 Chapter 5 1.3 μm AlGaInAs/AlGaInAs Strained Compensated Multiple Quantum Well Laser Diodes with/without GaInAsP and AlGaInAs Graded-Composition Layers 5-1 Introduction …………………………………………... 48 5-2 Experiment …………………………………………… 49 5-3 Results and Discussion ……………………………….. 52 5-4 Summary ……………………………………………... 54 Chapter 6 Conclusions and Future Studies 6-1 Conclusions …………………………………………... 55 6-2 Future Studies ………………………………………… 56 References …………………………………………………………... 58 Tables ……………………………………………………………….. 65 Figures ……………………………………………………………… 69 Appendix …………………………………………………………... 125 Publication List ………………………………………………….... 128 Autobiography …………….…..………………………………….. 131rf References [1 ] A. L. Schawlow and C. H. Townes, “Infrared and optical masers”, Phys. Rev., vol. 112, pp. 1940-1949, 1958. [2 ] T. H. Maiman, “Stimulated optical radiation in Ruby”, Nature, vol. 187, pp. 493-494, 1960. [3 ] A. Javan, W. R. Bennett, Jr., and D. R. Herriott, “Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture”, Phys. Rev. Lett., vol. 6, pp. 106-110, 1961. [4 ] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent light emission from GaAs junctions”, Phys. Rev. Lett., vol. 9, pp. 366-368, 1962. [5 ] M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, Jr., and G. Lasher, “Stimulated emission of radiation from GaAs p-n junctions”, Appl. Phys. Lett., vol. 1, pp. 62-64, 1962. [6 ] T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeigler, “Semiconductor maser of GaAs”, Appl. Phys. Lett., vol. 1, pp. 91-92, 1962. [7 ] H. Kroemer, “A proposed class of heterojunction injection lasers”, Proc. IEEE, vol. 51, pp. 1962-1963, Dec. 1963. [8 ] I. Hayashi, M. B. Panish, and P. W. Foy, “A low-threshold room-temperature injection laser”, IEEE J. Quantum Electron., vol. 5, pp. 211-212 , 1969. [9 ] H. Kressel and H. Nelson, “Close-confinement gallium arsenide PN junction lasers with reduced optical loss at room temperature”, RCA Rev., vol. 30, pp. 106-113, 1969. [10 ] I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature”, Appl. Phys. Lett., vol. 17, pp. 109-111, 1970. [11 ] R. Dingle, W. Wiegmann, and C. H. Henry, “Quantum states of confined carriers in very thin AlxGa1-xAs-GaAs-AlxGa1-xAs heterostructures”, Phys. Rev. Lett., vol. 33, pp. 827-830, 1974. [12 ] G. Keiser, Optical Fiber Communications. Singapore: McGraw-Hill, 2000, Chap. 1. [13 ] E. Kapon, Semiconductor Lasers II: Materials and Structures. San Diego: Academic, 1999, Chap. 2. [14 ] V. M. Ustinov and A. E. Zhukov, “GaAs-based long-wavelength lasers”, Semicond. Sci. Technol., vol. 15, pp. R41-R54, 2000. [15 ] E. Yablonovitch and E. O. Kane, “Band structure engineering of semiconductor lasers for optical communication”, IEEE J. Lightwave Tech., vol. 6, pp. 1292-1299, 1988. [16 ] P. J. A. Thijs, L. F. Tiemeijer, J. J. M. Binsma, and T. van Dongen, “Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers”, IEEE J. Quantum Electron., vol. 30, pp. 477-499, 1994. [17 ] T. Kamijoh, H. Horikawa, Y. Matsui, Y. K. Sin, M. Nakajima, C. Q. Xu, and Y. Ogawa, “Improved operation characteristics of long-wavelength lasers using strained MQW active layers”, IEEE J. Quantum Electron., vol. 30, pp. 524-532, 1994. [18 ] M. Fukuda, Optical Semiconductor Devices. New York: Wiley, 1999, Chap. 1. [19 ] J. W. Matthews and A. E. Blakeslee, “Defects epitaxial multilayers”, J. Cryst. Growth, vol. 27, pp. 118-125, 1974. [20 ] R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures”, Appl. Phys. Lett., vol. 47, pp. 322-324, 1985. [21 ] P. E. Brunemeier, D. G. Deppe, and N. Holonyak, and Jr., “Photoluminescence measurements of band discontinuity in InP-InGaPAs heterostructures”, Appl. Phys. Lett., vol. 46, pp. 755-757, 1985. [22 ] I. Queisser, V. Härle, A. Dőrnen, and F. Scholz, “Band discontinuity of strained-layer GaInAs/GaInAsP heterostructures”, Appl. Phys. Lett., vol. 64, pp. 2991-2993, 1994. [23 ] R. Tsu and L. Esaki, “Tunneling in a finite superlattice”, Appl. Phys. Lett., vol. 22, pp. 562-564, 1973. [24 ] K. Iga, H. Uenohara, and F. Koyama, “Electron reflectance of multiquantum barrier (MQB)”, Electron. Lett., vol. 22, pp. 1008-1010, 1986. [25 ] T. Takagi, F. Koyama, and K. Iga, “Design and photoluminescence study on a multiquantum barrier”, IEEE J. Quantum Electron., vol. 27, pp. 1511-1519, 1991. [26 ] M. Irikawa, H. Shimiza, T. Fukushima, K. Nishikata, and Y. Hirayama, “Strained GaInAs-AlGaInAs 1.5-μm-wavelength multiquantum-well lasers loaded with GaInAs-AlInAs multiquantum barriers at the p-side optical confinement layer”, IEEE J. Sel. Topics Quantum Electron., vol. 1, pp. 285-292, 1995. [27 ] J. W. Pan, M. H. Chen, J. I. Chyi, T. T. Shih, “Strain-compensated 1.3-μm AlGaInAs quantum-well lasers with multiquantum barriers at the cladding layers”, IEEE Photo. Tech. Lett., vol. 11, pp. 9-11, 1999. [28 ] R. F. Kazarinov and G. L. Belenky, “Novel design of AlGaInAs-InP lasers operating at 1.3 μm”, IEEE J. Quantum Electron., vol. 31, pp. 423-426, 1995. [29 ] H. Murai, Y. Matsui, Y. Ogawa, and T. Kunii, “Lasing characteristics under high temperature operation of 1.55μm strained InGaAsP/InGaAlAs MQW laser with InAlAs electron stopper layer”, Electron. Lett., vol. 31, pp. 2105-2107, 1995. [30 ] K. Takemasa, T. Munakata, M. Kobayashi, H. Wada, and T. Kamijoh, “1.3-μm AlGaInAs-AlGaInAs strained multiple-quantum-well lasers with a p-AlInAs electron stopper layer”, IEEE Photon. Tech. Lett., vol. 10, pp. 495-497, 1998. [31 ] C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3 μm AlxGayIn1-x-yAs/InP strained-layer quantum-well lasers for subscriber loop applications”, IEEE J. Quantum Electron., vol. 30, pp. 511-523, 1994. [32 ] H. Nelson, “Epitaxial growth from the liquid state and its application to the fabrication of tunnel and laser diodes”, RCA Rev., vol. 24, pp. 603-615, 1963. [33 ] H. M. Manasevit, “Single-crystal gallium arsenide on insulating substrates”, Appl. Phys. Lett., vol. 12, pp. 156-159, 1968. [34 ] A. Y. Cho, “Film deposition by molecular-beam techniques”, J. Vac. Sci. Technol., vol. 8, pp. S31-S38, 1971. [35 ] M. J. Ludowise, “Metalorganic chemical vapor deposition of III-V semiconductors”, J. Appl. Phys., vol. 58, pp. R31-R55, 1985. [36 ] A. C. Jones, “Metalorganic precursors for vapour phase epitaxy”, J. Cryst. Growth, vol. 129, pp. 728-773, 1993. [37 ] A. G. Thompson, “MOCVD technology for semiconductors”, Mater. Lett., vol. 30, pp. 255-263, 1997. [38 ] G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice. California: Academic, 1999, Chap 1. [39 ] V. Swaminathan and A. T. Macrander, Materials Aspects of GaAs and InP Based Structures. New Jersey: Prentice-Hall, 1991, Chap. 3 and Chap. 5. [40 ] S. L. Chuang, “Efficient band-structure calculations of strained quantum wells”, Phys. Rev. B, vol. 43, pp. 9649-9661, 1991. [41 ] T. Ishikawa and J. E. Bowers, “Band lineup and in-plane effective mass of InGaAsP or InGaAlAs on InP strained-layer quantum well”, IEEE J. Quantum Electron., vol. 30, pp. 562-570, 1994. [42 ] J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers”, IEEE J. Quantum Electron., vol. 35, pp. 771-782, 1999. [43 ] S. L. Chuang, Physics of Optoelectronic Devices. New York: Wiley, 1995, Chap. 3. [44 ] N. K. Dutta and R. J. Nelson, “The case for Auger recombination in In1-xGaxAsyP1-y”, J. App. Phys., vol. 53, pp. 74-92, 1982. [45 ] M. Asada, A. Kameyama, and Y. Suematsu, “Gain and intervalence band absorption in quantum-well lasers“, IEEE J. Quantum Electron., vol. 20, pp. 745-753, 1984. [46 ] J. Wang, P. von Allmen, J. P. Leburton, and K. J. Linden, “Auger recombination in long-wavelength strained-layer quantum-well structures”, IEEE J. Quantum Electron., vol. 31, pp. 864-875, 1995. [47 ] S. R. Chinn, P. S. Zory, and A. R. Reisinger,” A model for GRIN-SCH-SQW diode lasers”, IEEE J. Quantum Electron., vol. 24, pp. 2191-2214, 1988. [48 ] H. Hirayama, Y. Miyake, and M. Asada, “Analysis of current injection efficiency of separate-confinement-heterostructure quantum-film lasers”, IEEE J. Quantum Electron., vol. 28, pp. 68-74, 1992. [49 ] S. Adachi, “Material parameters of In1-xGaxAsyP1-y and related binaries”, J. Appl. Phys., vol. 53, pp. 8775-8792, 1982. [50 ] E. H. Li, “Material parameters of InGaAsP and InAlGaAs systems for use in quantum well structures at low and room temperatures”, Phys. E, vol. 5, pp. 215-273, 2000. [51 ] E. P. O’Reilly and A. R. Adams, “Band-structure engineering in strained semiconductors, IEEE J. Quantum Electron., vol. 30, pp. 366-379, 1994. [52 ] A. Kasukawa, R. Bhat, C. E. Zah, M. A. Koza, and T. P. Lee, “Very low threshold current density 1.5-μm GaInAs/AlGaInAs graded-index separate-confinement-heterostructure strained quantum well laser diodes grown by organometallic chemical vapor deposition, Appl. Phys. Lett., vol. 59, pp. 2486-2488, 1991. [53 ] N. Holonyak, Jr., R. M. Kolbas, R. D. Dupuis, and P. D. Dapkus, “Quantum-well heterostructure lasers”, IEEE J. Quantum Electron., vol. 16, pp. 170-186, 1980. [54 ] M. Silver and E. P. O’Reilly, “Optimization of long wavelength InGaAsP strained quantum-well lasers”, IEEE J. Quantum Electron., vol. 31, pp. 1193-1200, 1995. [55 ] C. Y. Lee, W. J. Jiang, M. C. Wu, W. J. Ho, “The influence of InGaP barrier layer on the characteristics of 1.3 μm strain-compensated multiquantum-well InAsP/InP/InGaP laser diodes”, Solid-State Electron., vol. vol. 46, pp. 1389-1394, 2002. [56 ] Y. C. Chen and J. M. Liu, “Temperature-dependent polarization behavior of semiconductor lasers”, Appl. Phys. Lett., vol. 45, pp. 731-733, 1984. [57 ] D. T. Cassidy and C. S. Adams, “Polarization of the output of InGaAsP semiconductor diode lasers”, IEEE J. Quantum Electron., vol. 25, pp. 1156-1160, 1989. [58 ] Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors”, Physica, vol. 34, pp. 149-154, 1967. [59 ] P. H. Lei, M. Y. Wu, C. C. Lin, W. J. Ho, and M. C. Wu, “High-power and low-threshold-current operation of 1.3 μm strain-compensated AlGaInAs/AlGaInAs multiple-quantum-well laser diodes”, Solid-State Electron., vol. 46, pp. 2041-2044, 2002. [60 ] M. Y. Wu, C. D. Yang, P. H. Lei, M. C. Wu, and W. J. Ho, “Very low threshold current operation of 1.3-μm AlGaInAs/AlGaInAs strain-compensated multiple-quantum-well laser diodes”, Jpn. J. Appl. Phys., vol. 42, pp. L643-L645, 2003. [61 ] J. D. Evans, J. G. Simmons, D. A. Thompson, N. Puetz, T. Makino, and G. Chik, “An investigation into the temperature sensitivity of strained and unstrained multiple quantum-well, long wavelength lasers: new insight and methods of characterization”, IEEE J. Sel. Topics Electron., vol. 1, pp. 275-284, 1995. [62 ] Y. Sugiyama, T. Inata, T. Fujii, Y. Nakata, S. Muto, and S. Hiyamizu, “Conduction band edge discontinuity of In0.52Ga0.48As/In0.52(Ga1-xAlx)0.48As (0≦x≦1) heterostructures”, Jpn. J. Appl. Phys., vol. 25, pp. L648-L650, 1986. [63 ] B. J. Hawdon, T. tűtken, A. Hangleiter, R. W. Glew, and J. E. A. Whiteaway, “Direct comparison of InGaAs/InGaAlAs and InGaAs/InGaAsP quantum well modulators”, Electron. Lett., vol. 29, pp. 705-707, 1993. [64 ] P. A. Andrekson, R. F. Kazarinov, N. A. Olsson, T. Tanbun-Ek, and R. A. Logan, “Effect of thermionic electron emission from the active layer on the internal quantum efficiency of InGaAsP lasers operating at 1.3 μm”, IEEE J. Quantum Electron., vol. 30, pp. 219-211, 1994. [65 ] P. A. Chen, C. Juang, and C. Y. Chang, “Carrier-induced energy shift in GaAs/AlGaAs multiple quantum well laser diodes”, IEEE J. Quantum Electron., vol. 29, pp. 2607-2618, 1993. [66 ] V. Negoita, D. W. Snoke, and K. Eberl, “Stretching quantum wells: A method for trapping free carriers in GaAs heterostructures”, Appl. Phys. Lett., vol. 75, pp. 2059-2061, 1999. [67 ] J. E. Bowers, “High speed semiconductor laser design and performance”, Solid-State Electron., vol. 30, pp. 1-11, 1987. [68 ] P. H. Lei, M. Y. Wu, M. C. Wu, C. Y. Lee, W. J. Ho, and C. C. Lin, “1.3-μm InAsP multiquantum well laser diodes with the n-type modulation-doped InAsP/InP/InGaP active region”, J. Vac. Sci. Technol. B, vol. 20, pp. 1013-1018, 2002. [69 ] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, “GaInNAs: A novel material for long-wavelength-range laser diodes with excellent high-temperature performance”, Jpn. J. Appl. Phys., vol. 35, pp. 1273-1275, 1996. [70 ] D. A. Livshits, A. Y. Egorov, and H. Riechert, “8W continuous wave operation of InGaAsN lasers at 1.3μm”, Electron. Lett., vol. 36, pp. 1381-1382, 2000. [71 ] C. Monier, M. F. Vilela, I. Serdiukova, and A. Freundlich, “Band discontinuity in strained In(As,P)/InP heterostructures”, App. Phys. Lett., vol. 72, pp. 1587-1589, 1998. [72 ] K. Uomi, “Modulation-doped multi-quantum well (MD-MQW) lasers. I. Theory”, Jpn. J. Appl. Phys., vol. 29, pp. 81-87, 1990. [73 ] K. Umoi, T. Mishima, and N. Chinone, ” Modulation-doped multi-quantum well (MD-MQW) lasers. II. Experiment”, Jpn. J. Appl. Phys., vol. 29, pp. 88-94, 1990. [74 ] S. M. Shank, J. A. Varriano, and G. W. Wicks, “Single quantum well GaAs/AlGaAs separate confinement heterostrcutre lasers with n-type modulation doped cores”, Appl. Phys. Lett., vol. 61, pp. 2851-2853, 1992.id NH0925428001 sid 885021 cfn 0 / id NH0925428002 auc 林崇偉 tic 以CMOS製程實現之應用於GSM900與WCDMA之70MHz數位式中頻系統 adc 徐永珍 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 114 kwc 自動控制增益放大器 kwc 中頻系統 kwc 無線通訊系統 kwc 數位式中頻 kwc 三角積分調變器 kwc 可調式增益放大器 abc 在此篇論文中我們提出了一個能操作於70MHz中頻的自動控制增益放大器與帶通三角積分調變器,其中在自動控制增益放大器的部份,我們應用了我們所提出之V-V Converter與Corner Tracker之概念,來讓我們所設計之AGC能夠比較不會受到製程變異之影響,並且也藉由設計其排列順序,來讓整體VGA的線性度能夠提升,而另外我們也提出了兩段式電流充放電的機制,來減少AGC在大訊號操作時所需之額外的穩定時間,最後我們則是提出了一個AGC閉迴路的設計準則,並且提供了一個追求快速穩定時間的AGC閉迴路之最佳化設計方法。而我們是使用低成本的TSMC 0.35um 2P4M CMOS製程來實現此AGC電路,此電路最後消耗了6mA的電流,具有87dB的可調增益範圍與24dB的動態範圍,並且擁有80MHz以上之頻寬。 rf [1 ] T. Drenski and et al., “A BiCMOS 300ns Attack-Time AGC Amplifier with Peak-Detect and Hold Feature for High-Speed Wireless LAN ATM Systems”, IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, pp. 166–167, Feb 1999. [2 ] Hung Yan Cheung, King Sau Cheung and Jack Lau, “A Low Power Monolithic AGC with Automatic DC Offset Cancellation for Direct Conversion Hybrid CDMA Transceiver Used in Telemetering”, Circuits and Systems, 2001, The 2001 IEEE International Symposium, Volume: 4, pp. 390-393, May 2001. [3 ] Omid Shoaei and W. Martin Snelgrove, “Design and Implementation of a Tunable 40 MHz–70 MHz Gm-C Bandpass ΔΣ Modulator”, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 44, NO. 7, pp. 521-528, July 1997. [4 ] H. Tao and K. J. M. Khoury, “A 100MHz IF, 400MSamples/s CMOS Direct-Conversion Bandpass ΣΔ Modulator”, IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, Feb 1999. [5 ] Jurgen A. E. P. van Engelen and et al., ” A Sixth-Order Continuous-Time Bandpass Sigma–Delta Modulator for Digital Radio IF”, IEEE Journal of Solid-State Circuits, VOL. 34, NO. 12, pp. 1753-1764, Dec 1999. [6 ] Issac Hsu and Howard C. Luong, “A 70-MHz Continuous-time CMOS Band-pass ΣΔ Modulator for GSM Receivers”, IEEE International Symposium on Circuits and Systems, pp. 750-753, May 2000. [7 ] Gopal Raghavan and et al., ”Architecture, Design, and Test of Continuous-Time Tunable Intermediate-Frequency Bandpass Delta–Sigma Modulators”, IEEE Journal of Solid-State Circuits, VOL. 36, NO. 1, pp. 5-13, Jan 2001. [8 ] Jussi Ryynänen and et al., “A Dual-Band RF Front-End for WCDMA and GSM Applications”, IEEE Journal of Solid-State Circuits, VOL. 36, NO. 8, pp. 1198-1204, Aug 2001. [9 ] Jussi Ryynänen and et al., “A Single-Chip Multimode Receiver for GSM900, DCS1800, PCS1900, and WCDMA”, IEEE Journal of Solid-State Circuits, VOL. 38, NO. 4, pp. 594-602, Apr 2003. [10 ] Arnold R. Feldman, “High-Speed, Low-Power Sigma-Delta Modulators for RF Baseband Channel Applications”, PHD Dissertation, University of California, Berkeley, USA, pp. 4-26, Sep 1997 [11 ] Behzad Razavi, “RF Microelectronics”, Prentice-Hall. Inc. pp. 118-149, 1998 [12 ] Teemu Salo and Saska Lindfors, and Kari A. I. Halonen, “A 80-MHz Bandpass ΔΣ Modulator for a 100-MHz IF Receiver”, IEEE Journal of Solid-State Circuits, VOL. 37, NO. 7, pp. 798-808, July 2002. [13 ] David Johns and Ken Martin, “Analog Integrated Circuit Design”, John Wiley & Sons, Inc. 1997 [14 ] Chorng-kuang Wang and Po-Chiun Huang, “An Automatic Gain Control Architecture for SONET OC-3 VLSI”, , IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 44, NO. 9, pp. 779-783, Sept 1997. [15 ] Yuan Taur and Tak H. Ning, “Fundamentals of Modern VLSI Deivces”, Cambridge University Press, pp. 128-129, 1998 [16 ] F.Balteanu, M.Cloutier, “Charge-Pump Controlled Variable Gain Amplifier”, Electronics Letters , Volume: 34 NO. 9, Apr 1998. [17 ] Omid Shoaei, “Continuous-Time Delta-Sigma A/D Converters for High Speed Applications”, PHD Dissertation, Carleton University, Canada, Nov 1995. [18 ] Maxim IC’s Application Note, “Demystifying Sigma-Delta ADCs”, Application Note 1870, Jan 2003 [19 ] W. L. Lee, “A novel higher order interpolative modulator topology for high resolution oversampling A/D converters”, Master’s Thesis, Massachusetts Institute of Technology, Cambridge, June 1987 [20 ] Steven R. Norsworthy, Richard Schreier, Gabor C. Temes, “Delta-Sigma Data Converters: Therory, Design, and Simulation”, IEEE PRESS, 1996 [21 ] Leland B. Jackson, “Signals, Systems, and Transforms”, Addison-Wesley Publishing Company, 1990 [22 ] James A. Cherry and W. Martin Snelgrove, “CONTINUOUS-TIME DELTA-SIGMA MODULATORS FOR HIGH-SPEED A/D CONVERSION”, KLUWER ACADEMIC PUBLISHERS, 1999 [23 ] Rolf Schaumann and Mac E. Van Valkenburg, “DESIGN OF ANALOG FILTERS”, OXFORD UNIVERSITY PRESS, 2001 [24 ] 3rd Generation Partnership Project, ”UE Radio transmission and Reception (FDD) (Release 1999)”, Technical Specification, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA, TTC), 2000id NH0925428002 sid 895007 cfn 0 / id NH0925428003 auc 洪世勳 tic 氧化鉿薄膜電容器與場效電晶體的製作與電性分析 adc 李雅明 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 89 kwc 氧化鉿 kwc 高介電常數 kwc 電子有效質量 abc 本實驗中,金屬(Al )/氧化鉿(HfO2)/半導體(p-Si)結構的電容器成功地製作出,氧化鉿(HfO2)薄膜使用射頻磁控濺鍍法沈積。並對元件作基本的變溫電性量測,溫度範圍在77 K至465 K,並充分討論漏電流機制。結果顯示在累積區偏壓為1 V時漏電流約為10-6 A/cm2,介電常數為17.00,氧化鉿(HfO2)薄膜的厚度為23.2 nm,溫度範圍在450 K以上,所得到的結果顯示在低電場( 2.2 MV/cm),得金屬(Al)/氧化鉿(HfO2)界面的電流傳導機制為蕭基發射所主導。溫度在77 K時,所得到的結果顯示在高電場( 2.6 MV/cm), 電流傳導機制為傅勒-諾德翰穿隧所主導,並可利用蕭基發射及佛勒-諾德翰穿隧分析的結果求得在氧化鉿薄膜中電子的有效質量為0.4m0 (等效厚度為5.33 奈米(nm)) ,並可得到鋁/氧化鉿的位障高為0.94 eV。至於物性分析方面,我們也作了二次離子質譜儀縱深分佈分析(SIMS)、X光繞射分析(XRD)、穿透式電子顯微鏡照相分析(TEM)、電子能譜儀(ESCA)等分析薄膜的物理性質,亦有了很多收穫。 tc 目 錄 第一章 緒論---------------------------------------------------------------------------1 1.1 高介電常數 (High-k)薄膜於極大型積體電路 (ULSI) 的應用 與發展-------------------------------------------------------------------------------1 1.2 High-k薄膜在DRAM上的應用-------------------------------------------------2 1.3 HfO2薄膜熱穩定性的簡介-------------------------------------------------------3 1.4 HfO2薄膜的製備方法-------------------------------------------------------------4 1.5 High-k薄膜於MOSFET閘極氧化層 (gate oxide) 的發展----------------5 1.6 本論文的研究方向----------------------------------------------------------------6 第二章 氧化鉿 (HfO2)薄膜元件的製備-----------------------------------7 2.1 射頻磁控濺鍍法 (RF magnetron sputtering)的簡介-------------------------7 2.2 晶片背面歐姆接面 (Ohmic contact) 的製備---------------------------------8 2.3 HfO2薄膜的成長-------------------------------------------------------------------8 2.4 HfO2薄膜電容器的製備----------------------------------------------------------9 2.5 HfO2薄膜電晶體的製備----------------------------------------------------------9 2.6 量測使用儀器---------------------------------------------------------------------12 第三章 氧化鉿 (HfO2) 薄膜基本介紹及物性分析-------------------13 3.1 HfO2薄膜的基本介紹-----------------------------------------------------------13 3.2 二次離子質譜儀縱深分佈之分析---------------------------------------------14 3.3 X-ray 繞射分析-------------------------------------------------------------------15 3.4 電子能譜儀之分析---------------------------------------------------------------16 3.5 穿隧式電子顯微鏡照相分析---------------------------------------------------17 第四章 Al/HfO2/Silicon電容器基本電性及漏電流機制分析-----18 4.1 電容-電壓 (C-V) 特性曲線量測---------------------------------------------18 4.2 電流-電壓 (I-V) 特性曲線量測----------------------------------------------19 4.3 漏電流傳導機制之簡介---------------------------------------------------------19 4.3.1 蕭基發射 (Schottky emission)------------------------------------------20 4.3.2 普爾-法蘭克發射 (Poole-Frenkel emission)--------------------------21 4.3.3 傅勒-諾德翰穿隧 (Fowler-Nordheim tunneling)---------------------22 4.4 MOS結構電容器與溫度變化之漏電流傳導機制分析---------------------22 4.5絕緣層中電子的有效質量-------------------------------------------------------25 4.6本章結論----------------------------------------------------------------------------27 第五章 Al/HfO2/Silicon場效電晶體基本電性量測-------------------28 5.1 IDS-VDS 曲線的特性探討-------------------------------------------------------28 5.2 IDS-VGS 曲線的特性探討-------------------------------------------------------29 5.3 次臨界斜率 (subthreshold swing)---------------------------------------------29 5.4 臨界電壓 (threshold voltage) 的粹取----------------------------------------30 5.5 遷移率 (mobility) 的探討-----------------------------------------------------31 第六章 結論-------------------------------------------------------------------------34 參考資料------------------------------------------------------------------------------36 實驗圖表------------------------------------------------------------------------------41 附錄-------------------------------------------------------------------------------------84 1. 射頻磁控濺鍍法操作步驟-------------------------------------------------------84 2. 電晶體製程之三道光罩圖-------------------------------------------------------87rf References [1 ] H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Makamura, M. Saito, and H. Iwai, “1.5 nm direct-tunneling gate oxide Si MOSFET’s,” IEEE Trans. Electron Devices, vol. 43, pp. 1233-1241, August 1996. [2 ] B. H. Lee, L. Kang, W. J. Qi, R. Nieh, Y. Jeon, K. Onishi, and J. C. Lee, “Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gated dielectric application,” in IEDM Tech. Dig., pp. 133-136, 1999. [3 ] L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, “Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric,” IEEE Electron Device Lett., vol. 21, no. 4, pp. 181-183, April 2000. [4 ] K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res., vol. 11, no. 11, pp. 2757-2776, 1996. [5 ] G. D. Wilk, and R. M. Wallace, “Electrical properties of hafnium silicate gate dielectrics deposited directly on silicon,” Appl. Phys. Lett., vol. 74, no. 19, pp. 2854-2856, May 1999. [6 ] M. Gutowski, J. E. Jaffe, C. L. Liu, M. Stoker, R. I. Hegde, R. S. Rai, and P. J. Tobin, “Thermodynamic stability of high-?? dielectric metal oxide ZrO2 and HfO2 in contact with Si and SiO2,” Appl. Phys. Lett., vol. 80, no. 11, pp. 1897-1899, March 2002. [7 ] W. J. Zhu, T. P. Ma, T. Tamagawa, J. Kim, and Y. Di, “Current transport in metal/hafnium oxide/silicon structure,” IEEE Electron Device Lett., vol. 23, no. 2, pp. 97-99, February 2002. [8 ] Z. Xu, M. Houssa, S. D. Gendt, and M. Heyns, “Polarity effect on the temperature dependence of leakage current through HfO2/SiO2 gate dielectric stacks,” Appl. Phys. Lett., vol. 80, no. 11, pp. 1975-1977, March 2002. [9 ] H. Kim, A. Marshall, and P. C. Mclntyre, “Crystallization kinetics and microstructure-dependent leakage current behavior of ultrathin HfO2 dielectrics: In situ annealing studies,” Appl. Phys. Lett., vol. 84, no. 12, pp. 2064-2066, March 2004. [10 ] B. K. Park, J. Park, M. Cho, C. S. Hwang, K. Oh, Y. Han, and D. Y. Yang, “Interfacial reaction between chemically vapor-deposited HfO2 thin films and a HF-cleaned Si substrate during film growth and postannealing,” Appl. Phys. Lett., vol. 80, no. 13, pp. 2368-2370, April 2002. [11 ] D. A. Neumayer and E. Cariter, “Materials characterization of ZrO2-SiO2 and HfO2-SiO2 binary oxides deposited by chemical solution deposition,” J. Appl. Phys., vol. 90, no. 4, pp. 1801-1808, August 2001. [12 ] H. Lee, S. Jeon, and H. Hwang, “Electrical characteristics of a Dy-doped HfO2 gate dielectric,” Appl. Phys. Lett., vol. 79, no. 16, pp. 2615-2617, October 2001. [13 ] A. Callegari, E. Cariter, H. F. Okorn-Schmidt, and T. Zabel, “Physical and electrical characterization of hafnium oxide and hafnium silicate sputtered films,” J. Appl. Phys., vol. 90, no. 12, pp. 6466-6475, December 2001. [14 ] L. Kang, Y. Jeon, K. Onishi, B. H. Lee, W. J. Qi, R. Nieh, S. Gopalan, and J. C. Lee, “Single-layer thin HfO2 gate dielectric with n+-polysilicon gate,” IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 44-45, 2000. [15 ] S. J. Lee, S. J. Rhee, R. Clark and D. L. Kwong, “Reliability projection and polarity dependence of TDDB for ultra thin CVD HfO2 gate dielectrics,” IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 78-79, 2002. [16 ] S. J. Lee, H.F. Luan, C. H. Lee, T. S. Jeon, W. P. Bai, Y. Senzaki, D. Roberts and D. L. Kwong, “Performance and reliability of ultra thin CVD HfO2 gate dielectrics with dual poly-Si gate electrodes,” IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 133-134, 2001. [17 ] R. Choi, C. S. Kang, B. H. Lee, K. Onishi, R. Nieh, S. Gopalan, E. Dharmarajan and J. C. Lee., “High-quality ultra-thin HfO2 gate dielectric MOSFETs with TaN electrode and nitridation surface preparation,” IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 15-16, 2001. [18 ] J. E. Jaffe, C. L. Liu, M. Stoker, R. I. Hegde, R. S. Rai and P. J. Tobin, “Thermodynamic stability of high-?? dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2,” Appl. Phys. Lett., vol.80, pp. 1897-1899, 2002. [19 ] P. D. Kirsch, C. S. Kang, J. Lozano, J. C. Lee, and J. G. Ekerdt, “Electrical and spectroscopic comparison of HfO2/Si interfaces on nitrided and un-nitrided Si (100),” J. Appl. Phys., vol. 91, no. 7, pp. 4353-4363, April 2002. [20 ] Y. M. Lee and C. M. Lai, “Handbook of thin films material,” edited by H. S. Nalwa, vol. 3: Ferroelectric and Dielectric Thin Films. [21 ] T. Ma, S. Campbell, R. Smith, N. Hoilien, B. He, W. Gladfelter, C. Hobbs, D. Buchanan, M. Gribelyuk, M. Tiner, M. Coppel, and J. J. Lee, “Group IVB metal oxide high permittivity gate insulators deposited from anhydrous metal nitrates,” IEEE Transactions on Electron Devices, vol. 48, no. 10, pp. 2348-2356, October 2001. [22 ] K. Onishi, L. Kang, R. Choi, E. Dharmarajan, S. Gopalan, J. Yongjoo, S. K. Chang, H. L. Byoung, R. Nieh, and J. C. Lee, “Dopant penetration effects on polysilicon gate HfO2 MOSFET’s,” IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 131-132, 2001. [23 ] Y. Kim, G. Gebara, M. Frelier, J. Barnett, D. Riley, J. Chen, K. Torres, J. E. Lim, B. Foran, F. Shaapur, A. Agarwal, P. Lysaght, G. A. Brown, C. Young, S. Borthakur, H. J. Li, B. Nguyen, P. Zeitzoff, G. Bersuker, D. Derro, R. Bergmann, R. W. Murto, A. Hou, H.R. Huff, E. Shero, C. Pomarede, M. Givans, M. Mazanez, and C. Werkhoven, “Conventional n-channel MOSFET device using single layer HfO2 and ZrO2 as high-?? gate dielectrics with polysilicon gate electrode,” in IEDM Tech. Dig., pp. 455-458, 2001. [24 ] W. Zhu, T. P. Ma, T. Tamagawa, Y. Di, J. Kim, R. Carruthers, M. Gibson, and T. Furukawa, “HfO2 and HfAlO for CMOS: thermal stability and current transport,” in IEDM Tech. Dig., pp. 463-466, 2001. [25 ] C. Hobbs, H. Tseng, K. Reid, B. Taylor, L. Dip, L. Hebert, R. Garcia, R. Hegde, J. Grant, D. Gilmer, A. Franke, V. Dhandapani, M. Azrak, L. Prabhu, R. Rai, S. Bagchi, J. Conner, S. Backer, F. Dumbuya, B. Nguyen, and P. Tobin, “80nm poly-Si gate CMOS with HfO2 gate dielectric,” in IEDM Tech. Dig., pp. 651-654, 2001. [26 ] H. J. Cho, C. S. Kang, K. Onishi, S. Gopalan, R. Nieh, R. Choi, E. Dharmarajan, and J. C. Lee, “Novel nitrogen profile engineering for improved TaN/HfO2/Si MOSFET performance,” in IEDM Tech. Dig., pp. 655-658, 2001. [27 ] K. Onishi, C. S. Kang, R. Choi, H. J. Cho, S. Gopalan, R. Nieh, E. Dharmarajan, and J. C. Lee, “Reliability characteristics, including NBTI, of polysilicon gate HfO2 MOSFET’s,” in IEDM Tech. Dig., pp. 659-662, 2001. [28 ] M. Balog, M. Schieber, M. Michman, and S. Patai, “Chemical vapor deposition and characterization of HfO2 films from Organo-Hafnium compounds,” Thin Solid Films, vol. 41, pp. 247- 259, August 1997. [29 ] C. H. Choi, T. S. Jeon, R. Clark, and D. L. Kwong, “Electrical properties and thermal stability of HfxOy gate dielectric with poly-Si gate electrode,” IEEE Electron Device Lett., vol. 24, pp. 215-217, April 2003. [30 ] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “Hafnium and zirconium silicates for advanced gate dielectrics,” J. Appl. Phys. vol. 87, pp. 484-492, January 2000. [31 ] K. P. Bastos, J. Morais, L. Miotti, R. P. Pezzi, G. V. Soares, I. J. R. Baumvol, R. I. Hegde, H. H. Tseng, and P. J. Tobin, “Oxygen reaction-diffusion in metalorganic chemical vapor deposition HfO2 films annealed in O2,” Appl. Phys. Lett., vol. 81, pp. 1669-1671, August 2002. [32 ] M. Cho, H. B. Park, J. Park, and C. S. Hwang, “Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic- layer deposition,” J. Appl. Phys., vol. 81, pp. 472-474, July 2002. [33 ] M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, “Thermal annealing effects on the structural and electrical properties of HfO2/Al2O3 gate dielectric stacks grown by atomic layer deposition on Si substrates,” Appl. Phys. Lett., vol. 94, pp. 2563-2571, August 2003. [34 ] S. M. Sze, “Physics of Semiconductor Device,” 2nd ed.,Wiley, New York, 1981. [35 ] D. K. Schroder, “Semiconductor material and device characteristics,” Wiley, Arizona, 1998. [36 ] M. Lenzlinger and E. H. Snow, “Fowler-Nordheim tunneling into thermally grown SiO2,” J. Appl. Phys., vol. 40, no. 1, pp. 278-283, September 1969. [37 ] J. F. Conley, J. Y. Ono, W. Zhuang, L. Stecker and G. Stecker, “Electrical properties and reliability of HfO2 deposited via ALD using Hf(NO3)4 precursor,” IEEE Integrated Reliability Workshop Final Report, pp. 108-112, October 2002. [38 ] K. Kukli, M. Ritala, J. Sundqvist, J. Aarik, J. Lu, T. Sajavaara, M. Leskela, A. Harsta, “Properties of hafnium oxide films grown by atomic layer deposition from hafnium tetraiodide and oxygen,” J. Appl. Phys., vol. 92, no. 10, pp. 5698-5703, November 2003. [39 ] H. Hu, C. Zhu, Y. F. Lu, Y. H. Wu, T. Liew, M. F. Li, B. J. Cho, W. K. Choi and N. Yakovlev, “Physical and electrical characterization of HfO2 metal-insulator-metal capacitors for Si analog circuit applications,” J. Appl. Phys., vol. 94, no. 1, pp. 551-557, July 2003. [40 ] Y. T. Hou, M. F. Li, H. Y. Yu, and D. L. Kwong, “Modeling of tunneling currents through HfO2 and (HfO2)x(Al2O3)1-x gate stacks,” IEEE Electron Device Lett., vol. 24, no. 2, pp. 96-98, February 2003. [41 ] V. V. Afanas’ev and A. Stesmans, “Internal photoemission of electrons and holes from (100)Si into HfO2,” Appl. Phys. Lett., vol. 81, pp. 1053-1055, August 2002. [42 ] N. Zhan, K. L. Ng, M. C. Poon, C. W. Kok, M. Chan, and H. Wong, “Characteristics of high quality hafnium oxide gate dielectric,” IEEE Electron Devices Meeting, pp. 43-46, June 2002. [43 ] S. Zafar, A. Callegari, E. Gusev, and M. V. Fischetti, “Charge trapping related threshold voltage instabilities in high permittivity gate dielectric stacks,” J. Appl. Phys., vol. 93, no. 11, pp. 9298-9300, June 2003. [44 ] K. Chen, H. C. Wann, J. Dunster, P. K. Ko, and C. Hu, “MOSFET carrier mobility model based on gate oxide thickness, threshold voltage and gate voltages,” Solid-State Electronics vol. 39, no. 10, pp. 1515-1518, 1996. [45 ] 賴志明,應用於金氧半電晶體閘極氧化層的氧化鉭薄膜電性之研究,國立清華大學博士論文,民國九十年六月。id NH0925428003 sid 905029 cfn 0 / id NH0925428004 auc 施明松 tic 利用陣列非晶矽薄膜電晶體在平面顯示感測的應用 adc 黃惠良 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 英文 pg 44 kwc 平面顯示器 kwc 光感測運用 kwc 非晶矽薄膜電晶體 abc 近來,平板顯視用途的領域,利用非晶矽薄膜電晶體當作光感側元件的運用及發展越來越多元化。主要配合主動式液晶顯示器的運用通常需要多加的元件如電阻式、電容式 或是電感式的接觸平板元件,這不僅增加元件的材料成本也相對的影響顯示器的光穿透效率。如果利用平面顯示器前段製程技術上的設計,將光感側元件製作在每一個影像畫素中,利用相同驅動液晶的非晶矽薄膜電晶體來當感測光信號的元件,每一個光信號將透過光感測電晶體被儲存下來,經過循序的電路定址輸出所要的信號,達到所需要的功能。 tc Chapter 1 Amorphous Si TFT photo sensor array applications.....1 1-1 Introduce 1-2 Flat panel Imager using a-Si TFT Array 1-3 Active Matrix LCD with Integrated Optical Touch Panel 1-4 Fingerprint Scanner Using a-Si : H TFT Array 1-5 Amorphous Silicon Phototransistor n-i-p-i-n for Name Card Reading 1-6 TFT Arrays for Direct-Conversion X-Ray Sensors and High-Aperture AMLCDS Chapter 2 Amorphous Si TFT-LCD Process.....13 2-1 Basic Concept of TFT-LCD 2-2 Amorphous TFT Array Process flow introduce 2-3 Active Matrix LCDs driving method 2-4 TFT LCD Panel Embedded sensor arrays Chapter 3 Photo detector of Amorphous Si TFT Device.....20 Simulation 3-1 Medici simulation tool introduce 3-2 Amorphous TFT Device simulation Chapter 4 Experimental.....26 4-1 Tools introduce 4-2 Light source measurement and evaluation 4-3 Experiment 1- Different W/L of TFT devices 4-4 Experiment 2 - Different illuminations conditions of TFT devices 4-5 Experiment 3 - New structures of a-Si TFT photo sensors 4-6 Experiment 4 – Micro lenses array insert into the top of TFT sensors Chapter 5 Conclusion.....41 References.....43rf 1.Willem den Boer, Adi Abileah, Pat Green, Terrance Larsson, 56.3 SID 2003. 2.Jeong Hyun Kim, Jae Kyun Lee, Youn Gyoung Chang, Beom Jin Moon, 24.1, SID 2000. 3.Sung Hwan Won, Jai Il Ryu, Ji Ho Hur and Jin Jang ; Gyu Jung Jang, Cheor Woo Lee and Suk Tae Jung, 6.4,SID 2001. 4.Gerald Morrison, Manvinder Singh, and David Holmgren, 7.4, SID 2001. 5.W. den Boer, S. Aggas, T. Gu, K H. Byun, C.-B. Qiu, S. V Thomsen, 25.1 SID 1998. 6.Jai Il Ryu, Sung Hwan Won, and Jin Jang ; Gyu Jung Jang, Cheor Woo Lee, and Suk Tae Jung, 24.2, SID 2000. 7.A. A. Muravski, S. Ye. Yakovenko ; C. Crell ; A. D. Wieck, 24.3, SID 2000. 8.R. Akins , Motorola Advanced Technology Center, Schaumburg, IL USA ; SID 1999. 9.Yuzo Odoi, Fumio Matsukawa, Hitoshi Nagata and Tadashi Sumi 14.1,SID 2002. 10.Yoshihiro Izumi, Osamu Teranuma, Masayuki Takahashi, Tamotsu Sato, Kazuhiro , Uehara, Hisao Okada, Yasukuni Yamane, AMD10-2 , IDW 2003. 11.P. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar, and I. Adesida, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 10, NO. 4, APRIL 1998. 12.Ronald Lin, Qiang Lu, Pushkar Ranade, Tsu-Jae King, and Chenming Hu, Fellow, IEEE ELECTRON DEVICE LETTERS, VOL. 23, NO. 1, JANUARY 2002. 13.Xiying Chen, Bahram Nabet, Adriano Cola, Fabio Quaranta, and Marc Currie, IEEE ELECTRON DEVICE LETTERS, VOL. 24, NO. 5, MAY 2003. 14.Jin Jang, Kyu Man Kim, Kyu Sik Cho, Byoung Kwon Choo, and Gregory Um, IEEE ELECTRON DEVICE LETTERS, VOL. 24, NO. 2, FEBRUARY 2003. 15.Li-Hong Laih, Tien-Chang Chang, Yen-Ann Chen, Member, IEEE, TRANSACTIONS ON ELECTRON DEVICES, VOL. 45, NO. 9, SEPTEMBER 1998. 16.Natalie Wong, 991074190 , University of Toronto, CMOS Integrated Photodiode and Low Voltage Transimpedance Amplifier in Si-OEIC ApplicationApril 9, 2001. 17.Cha-Shin Lin, Li-Ping Tu, Rong-Hwei Yeh, and Jyh-Wong Hong, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 15, NO. 7, JULY 2003. 18.Wei Gao, Al-Sameen Khan, Paul R. Berger, and R. G. Hunsperger, Appl. Phys. Lett. 65 (15), 10 October 1994. 19.Ching-Ting Lee and Hsin-Ying Lee, IEEE ELECTRON DEVICE LETTERS, VOL. 24, NO. 9, SEPTEMBER 2003. 20.Yu-Zung Chiou, Shang-Chao Hung, Chang Hung-Wen, Yan-Kuin Su, Shoou-Jinn Chang, Kin-Tak Lam. 成功大學 微電子工程研究所 21.Bing-Yue Tsui, Senior Member, IEEE, and Chih-Feng Huang, Student Member, IEEE ELECTRON DEVICE LETTERS, VOL. 24, NO. 3, MARCH 2003. 22.Woo-Young So, Kyung-Jin Yoo, Sang-Il Park, Hye-Dong Kim, Byung-Hee Kim, Ho-Kyoon Chung, 50.3, SID 2001. 23.Jai II Ryu, Sung Hwan Won, Ji Ho Hur, Hyong Jun Kim and Jin Jang; Gyu Jung Jang, Cheor Woo Lee and Suk Tae Jung, Journal of the Korean Physical Society, Vol. 39, December 2001. 24.Dimitra G. Darambara, Radiation Physics Group, Department of Medical Physics and Bioengineering, University College, London, U.K. 25.Semiconductor Device Physics and Technology, John Wiley and Sons. 26.Fundamentals of Modern VLSI Device, Yuan Taur and Tak H. Ning. 27.Color TFT Liquid Crystal Display, Teruhiko Yamazaki and Hideadi Kawakami, Hiroo Hori. 28.液晶顯示器技術手冊 紀國鐘 , 鄭晃忠 29.Liquid Crystal Flat Panel Display, William C . O Mara. 30.Low Temperature p-Si TFTs, Display Search 5900 Balcones Dr. Austin. 31.Semiconductor Device , Fred J. Taylor, University of Florida. 32.Photoelectronic Properties of Semiconductors, Richard H. Bube. 33.Amorphous Silicon Solar Cells, Devid E. Carlson. 34.Semiconductor Devices Physics and Technology, S.M SZE.id NH0925428004 sid 905092 cfn 0 / id NH0925428005 auc 楊奇達 tic 光纖通訊用高速高效率砷化銦鎵P-I-N檢光器 adc 吳孟奇 ty 博士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 英文 pg 109 kwc 邊 kwc & kwc #32257;耦合式感測器 kwc 自行終止氧化物延磨 kwc 自行對準氏擴散 kwc 晶相蝕刻 kwc 光漏斗 kwc 波導 abc 在高速、高密度的光纖通訊系統中,單石化砷化銦鎵檢光器陣列,相較於複合式陣列,提供更一致、更可靠的檢光器特性以及較低廉的生產成本。而其中邊緣入射型檢光器,在與邊緣發射型雷射或波導整合時,比起傳統面入射型檢光器,可採用更簡易的整合方式,因而得以進一步降低整體成本。然除受磊晶品質、元件製程影響外,邊緣入射型檢光器的光入射面尚易受元件後續處理所影響,諸如劈裂、鍍抗反射層,以至於儲放環境等。是以此類陣列的實現,隨著陣列中的檢光器數目增加而大幅趨於困難。截至目前,相關文獻以至於技術上的資訊因而十分稀少。 tc CONTENTS ABSTRACT …………………………………………………………………………Ⅰ Contents…………………………………………………………………………Ⅱ FIGURE CAPTIONS…………………………………………………………Ⅴ TABLE CAPTIONS………………………………………………………………Ⅶ LIST OF SYMBOLS………………………………………………………………Ⅷ CHAPTER 1 INTRODUCTION TO InGaAs P-I-N PHOTODIODES and APPLICATION……1 CHAPTER 2 THEORETICAL ANALYSES OF InP/InGaAs/InP DOUBLE-HETEROJUNCTION P-I-N PHOTODIODE………………………………………………………………8 2-1 Dark Current………………………………………………………………8 2-1-1 Main Determination Among These Components……………9 2-1-2 Surface Recombination Current Caused Through Density of State…………………………………………………………………11 2-1-3 Density of States Contribute to Drift Current…………………15 2-2 Quantum Efficiency……………………………………………………19 2-3 Dynamic Response……………………………………………………21 CHAPTER 3 EDGE (I-SIDE ILLUMINATED)-COUPLED GaInAsP/InGaAs/InP DOUBLE-HETEROJUNCTION P-I-N PHOTODIODE WITH LIGHT INPUT TAPERED-SiOx FACET OF InP CRYSTALLOGRAPHIC SLOPE BASED ON N+ InP SUBSTRATE…………………..……………………………………………27 3-1. The Effectiveness of the Light Funnel Waveguide………………28 3-1-1 Device fabrication………………………………………………29 3-1-2 DC characterizations…………………………………………32 3-1-3 Dynamic response calculation………………………………38 3-1-4 Effectiveness of slope in front of photodiode……………39 3-2. Improved Fabrication---Novel Waveguide Photodetector (WGPD) ………………………………………………………………39 3-2-1 Device fabrication………………………………………………42 3-2-2 DC characterizations…………………………………………45 3-2-3 Dynamic response calculation………………………………53 3-2-4 Effectiveness of Improved Fabrication……………………54 CHAPTER 4 FUTURE WORKS……………………………………………………….56 4-1. FUTURE WORK OF EDGE-COUPLED P-I-N PHOTODIODE………56 4-2. Miniature of surface (P-side illuminated)- coupled resonant-cavity -enhanced (RCE) InP/InGaAs/InP Heterojunctions photodiodes..………………59 4-2-1. Distributed Bragg Reflector (DBR) simulation and epitaxy…59 4-2-1-1 Simulation of Distributed Bragg Reflector (DBR)………59 4-2-1-2 Distributed Bragg Reflector (DBR) epitaxy……………61 4-2-1-3 The epitaxy of InGaAs p-i-n photodetector……………62 4-2-2. Lift off fabrication and RCE photodiode process……………62 4-2-2-1 InGaAs p-i-n photodetector lift off on DBR GaAs substrate…………………………………………………………62 4-2-2-2 Process of RCE p-i-n photodetector……………………63 4-2-3. Discussion of a DBR epitaxial wafer comparing the analytic information simulated from the transmission matrix method………………………………………………..………………64 4-2-3-1 Distributed Bragg Reflector (DBR) ………………………64 4-2-3-2 Epitaxial Lift Off (ELO) ………………………………………65 4-2-3-3 Electrical analysis of the ELO photodetector…………65 REFERENCES………………………………………………………………………67 PUBLICATION LIST……………………………………………………………..,110rf [1 ] J. E. Bowers, and C. A. Burrus, “Ultrawideband long-wavelength p-i-n photodetectors,” J. Lightwave Technol., vol. LT-5, pp. 1339-1350,1987. [2 ] S. R. Forrest, “In0.53Gs0.47As photodiodes with dark current limited by generation-recombination and tunneling,” Appl. Phys. Lett., vol. 37, pp. 322-325, Aug. 1980. [3 ] G. A. Porkolab, Y. J. Chen, S. A. Merritt, Seyed Ahmad Tabatabaei, Sambhu Agarwala, F. G. Johnson, Oliver King, M. Dagenais, R. A. Wilson, and D. R. Stone, “Wet-chemistry surface treatment for dark-current reduction that preserves lateral dimensions of reactive ion etched Gs0.47In0.53As p-i-n diode photodetectors,” IEEE Photon. Technol. Lett., vol. 9, No. 4, Apr. pp.490-492, [4 ] R.-T. Huang and D. Renner, “Improvement in dark current characteristic and long-term stability of mesa InGaAs/InP p-i-n photodiodes with two-step SiNx surface passivation,” IEEE Photon. Technol. Lett., vol. 3, pp. 934-936, 1991. [5 ] D.-S. Kim, C.-P. Chao, K. Beyzavi, P. E. Burrows, and S. R. Forrest, “Surface passivation of InP/ In0.53Gs0.47As heterojunction bipolar transistors for opto-electronic integration,” J. Electron. Mater., vol. 25, pp. 537-540, 1996. [6 ] T. Takeuchi, K. Makita, and K. Taguchi, “A planar slab-waveguide photodiode with a pseudowindow region in front of the waveguide,” IEEE Photon. Technol. Lett., vol. 10, pp. 255-257, 1998. [7 ] C. L. Ho, M. C. Wu, W. J. Ho, J. W. Liaw, and H. H. Wang, “Effectiveness of the pseudowindow for edge-coupled InP-InGaAs-InP PIN photodiodes,” IEEE J. Quantum Electron., vol. 36, no. 3, pp. 333-339, 2000. [8 ] Vincent Magnin, Louis Giraudet, Joseph Harari, J. Decobert, P. Pagnot, E. Noucherez, and Didier Decoster, ”Design, optimization, and fabrication of side-illuminated p-i-n photodetectors with high responsivity and high alignment tolerance for 1.3- and 1.55-μm wavelength use,” J. Lightwave Technol., vol. 209, pp. 477-4880, 2002. [9 ] Robert B. Taylor, Paul E. Burrows, and Stephen R. Forrest, “An integrated, crystalline organic waveguide-coupled InGaAs photodetector,” IEEE Photon. Technol. Lett., vol. 9, pp. 365-367, 1997. [10 ] R. J. Deri, W. Doldissen, R. J. Hawkins, R. Bhat, J. B. D. Soole, L. M. Schiavone, M. Seto, N. Andreakis, Y. Silverberg, and M. A. Koza, “Efficient vertical coupling of photodiodes to InGaAs rib waveguide,” Appl. Phys. Lett., vol. 58, pp. 2749-2751, 1991. [11 ] K. Kato, S. Hata, A. Kozen, S. Oko, S. Matsumoto, and J. Yoshida, “22 GHz photodiode monolithically integrated with optical waveguide on semi-insulating InP using novel butt-joint structure,“ Electron. Lett., vol. 28, pp. 1140-1142, 1992. [12 ] F. Hieronymi, E. H. Bottcher, E. Droge, D. Kuhl, St. Kollakowski and D. Bimberg, ”Large-area low-capacitance InP/InGaAs MSM photodetectors for high-speed operation under front and rear illumination,” Electron. Lett., vol.30, pp.1247-1248, 1994 [13 ] J. E. Bowers, E. L. Hu, Tan I-Hsing, B. I. Miller, ”Modeling and performance of wafer-fused resonant-cavity enhanced photodetectors,” IEEE J. Quantum Electron., vol. 27, pp. 1863-1875, Oct. 1995. [14 ] H. Bourdoucen, and J. A. Jervase, ”Design of ultra-fast dual-wavelength resonant-cavity-enhanced Schottky photodetectors,” IEEE J. Quantum Electron., vol. 37, pp. 63-68, Issue 1 , Jan. 2001. [15 ] C. C. Barron, C. J. Mahon, B. J. Thibeault, G. Wang, W. Jiang, L. A. Coldren, and J. E. Bowers, ”Resonant-cavity-enhanced pin photodetector with 17 GHz bandwidth-efficiency product,” Electron. Lett., vol. 30, pp. 1796-1797, 1994. [16 ] A. Dodabalaput and T. Y. Chang, “Resonant-cavity InGaAlAs/InGaAs/InAlAs phototransistors with high gain for 1.3-1.6μm,” Appl. Phys. Lett., vol. 60, pp. 929-931, 1992. [17 ] A. G. Dentai, R. Kuchibhotla, J. C. Campbell, C. Tsai, and C. Lei, “High quantum efficiency, long wavelength InP/InGaAs microcavity photodiode,” Electron. Lett., vol. 27, pp. 2125-2127, 1991. [18 ] M. J. Mondry, D. I. Babic, J. E. Bowers, and L. A. Coldren, “Refractive indexes of (AlGaIn)As epilayers on InP for optoelectronic applications,” IEEE Photon. Technol. Lett., vol. 4, pp. 627-630, 1992 [19 ] S. Adachi, “GaAs, AlAs, and AlxGa1-xAs: Material parameters for use in research and device applications,” J. Appl. Phys., vol. 58 , pp. R1-29, 1985. [20 ] W. K. Chan and E. Yablonovitch,” Van der Waals bonded III-V films for optoelectronic,“ Proc. 1st Int. Symp. on Semiconductor Wafer Bonding : Science, Technology and Applications, Pennington, NJ, USA, pp.123-131, 1992 [21 ] H. Schumacher, T. J. Gmitter, H. P. LeBlanc, R. Bhat, E. Yablonovitch, and M. A. Koza,” High-speed InP/GaInAs photodiode on sapphire substrate,” Electron. Lett., vol. 22, pp. 1653-1654, 1989 [22 ] C. Caneau, W. K. Chan, F. De Rosa, T. J. Gmitter, B. P. Hong, J. I. Song, P. F. Micelli, and D. M. Shah, “Epitaxial lift-off GaAs HEMT's,” IEEE Trans. Electron Devices, vol. 42, pp. 1877-1881, Nov. 1995. [23 ] R. Bhat, G. L. Christenson, M. Hong, Y. H. Lo, J. P. Mannaerts, A. T. T. D. Tran, and Z. H. Zhu, “Long-wavelength resonant vertical-cavity LED/photodetector with a 75-nm tuning range,” IEEE Photon. Technol. Lett., vol. 9, pp. 725 -727, 1997. [24 ] K. Shimomura, and T. Yamagata, “High responsivity in integrated optically controlled metal-oxide semiconductor field-effect transistor using directly bonded SiO2 –InP,” IEEE Photon. Technol. Lett., vol. 9, pp. 1143 -1145,1997. [25 ] Bell Lab. T. P. Lee, C. A. Burrus, A. G. Dentai, and K. Ogawa, “Small area InGaAs/InP p-i-n photodiodes: fabrication, characteristics and performance of devices in 274Mb/s and 45Mb/s lightwave receivers at 1.31 μm wavelength”, Electron. Lett., vol. 16, pp. 155-156, 1980. [26 ] NTT N. Susa, Y. Yamauchi, and H. Kanbe, “Punch-through type InGaAs photodetector fabricated by vapor-phase epitaxy”, IEEE J. Quantum Electron., vol. 16, pp. 542-545, 1980. [27 ] Bell Lab. T. P. Lee, C. A. Burrus, and A. G. Dentai, “InGaAs/InP p-i-n photodiodes for lightwave communications at the 0.95-1.65 μm wavelength”, IEEE J. Quantum Electron., vol. 17, pp. 232-238, 1981. [28 ] Y. Le Bellego, J. P. Praseuth, F. Lugiez, L. Giraudet, and A. Scavennec, “High-responsivity GaInAs PIN photodiode with AlGaInAs window”, Inst. Phys. Conf. Ser., No. 112, pp. 603-606, 1990. [29 ] CTSD, Rockwell International, & AT&T Bell Lab. O. K. Kim, B. V. Dutt, R. J. McCoy, and J. R. Zuber, “A low dark-current, planar InGaAs p-i-n photodiode with a quaternary InGaAsP cap layer”, IEEE J. Quantum Electron., vol. 21, pp. 138-143, 1985. [30 ] RCA G. H. Olsen, “Low leakage, high-efficiency, reliable VPE InGaAs 1.0-1.7μm photodiodes”, IEEE Electron Device Lett., vol. 2, pp. 217-219, 1981. [31 ] Matsushita K. Ohnaka, M. Kubo, and J. Shibata, “A low dark current InGaAs/InP p-i-n photodiode with covered mesa structure”, IEEE Trans. Electron Devices, vol. 34, pp. 199-204, 1987. [32 ] Mitsubishi K. Takahashi, T. Murotani, M. Ishii, W. Susaki, and S. Takamiya, “A monolithic 1×10 array of InGaAsP/InP photodiodes with small dark current and uniform responsivities”, IEEE J. Quantum Electron., vol. 17, pp. 239-242, 1981. [33 ] Conductus & UCSB Y. M. Zhang, V. Borzenets, N. Dubash, T. Reynolds, Y. G. Wey, and J. E. Bowers, “Cryogenic performance of a high-speed GaInAs/InP p-i-n photodiode”, J. Lightwave Technol., vol. 15, pp. 529-533, 1997. [34 ] Y. Takanashi, M. Kawashima, and Y. Horikoshi, “Required donor concentration of epitaxial layers for efficient InGaAsP avalanche photodiodes,” Jpn. J. Appl. Phys., 19, pp.693-701, 1980. [35 ] S.M Sze, ”Physics of semiconductor devices: physics and technology,” Wiley, 1985. [36 ] S.R.Forrest, R.F.Leheny, R.E.Nahory, and M.A.Pollack, ”In0.53Ga0.47As photodiodes with dark current limited by generation-recombination and tunneling,” Appl.Phys.Lett,vol.37,322,1980. [37 ] C. H. Henry, R. A. Logan, and F. R. Merritt, “The effect of surface recombination on current in AlxGa1-xAs heterojunctions,” J. Appl. Phys., vol.49, pp. 3530-3542, 1978. [38 ] M. Fukuda, “Current drift associated with surface recombination current in InGaAsP/InP optical devices,” J. Appl. Phys., vol. 59, pp. 4172-4176, 1986. [39 ] HENRY, C.H., LOGAN, R.A., and MERRITT, F.R., “Measurement of gain and absorption spectra in A1GaAs buried heterostructure lasers” , J Appl. Phys., 1980,51,pp. 3042-3050 [40 ] DERJ, R.J., KAPON. E., and SCHIAVONE, L.M.: “Scattering in low-loss GaAs/A1GaAs rib waveguides”, Apple. Phys Lett., 1987.51,pp. 789-791 [41 ] CASEY Jr., H.C., and PANISH, M.B., “Heterostructure lasers, Pt. A.“ (Academic Press, 1978,p. 52) [42 ] ALPING, A., TELL, R., and ENG, S.T., ”Photodetection properties of semiconductor laser diode detectors”, J. Lightwave Technol., 1986, LT-4, pp. 1662-1668. [43 ] SARUWATARI, M., and NAWATA, K., “ Semiconductor laser to single-mode fibre coupler”, Appl. Opt., 1979, 18, pp. 1847-1856. [44 ] KAWANO, L., SARUWATARI, M., and MITOMI, O., ”A new confocal combination lens method for a laser-diode module using a single-mode fiber”, J. Lightwave T echnol., 1985, LT-3, pp. 739-745 [45 ] GHAFOORI-SHIRAZ, H., and ASANO, T., “Microlens for coupling a semiconductor laser to a single-mode fibre“, Optics Lett., 1986, 11, pp. 537-539. [46 ] LARSSON, A., ANDRELSON, P.A., ENG, S.T., and YARIV, A., “Tunable superlattice pin photodetectors: characteristics, theory, and applications” ,IEEE J . Quantum Electron., 1988, 24, pp. 787-801. [47 ] LUCOVSKY, G., SCHWARZ, R.F., and EMMONS, R.B., “Transit-time considerations in pin diodes”, J. Appl. Phys., 1964,35, pp.622-628. [48 ] WANG, S.Y., and BLOOM, D.M., “100 GHz bandwidth planar GaAs Schottky photodiode”, ibid., 1983, 19, pp.554-555. [49 ] SZE, S.M., “Pyhsics of semiconductor devices “, Wiley, 1981 [50 ] LUCOVSKY, G., SCHWARZ, R.F., and EMMONS, R.B., “Transit-time considerations in pin diodes”, J. Appl. Phys., 1964,35, pp.622-628. [51 ] WINDHORN, T.H., COOK, L.W., and STILLMAN, G.E., “The electron velocity-field characteristics for n-In0.53Ga 0.47 As at 300 K”, Electron Device Lett., 1982, EDL-3, pp. 18-20. [52 ] WINDHORN, T.H., COOK, L.W., and STILLMAN, G.E., “High-field electron transport in InX Ga 1-X As y P 1-y ( g=1.2 m)”, Appl. Phys. Lett., 1982,41,pp. 1065-1067. [53 ] BOWERS, J.E., and BURRUS, C.A., “Ultrawide-band long-wavelength pin photodetectors”, J. Lighwave Technol., 1987, LT-5, pp. 1339-1350. [54 ] FORREST, S.R., KIM, O.K., and SMITH, R.G., ”Optical reponse time of In0.53Ga 0.47 As/InP avalanche photodiodes”, Appl. Phys. Lett., 1982, 41,pp. 95-98. [55 ] HOLDEN, W.S., CAMPBELL, J.C., FERGUSON, J.F., DENTAI, A.G., and JHEE, Y.K., “Improved frequency response of InP/InGaAsP/InGaAs avalanche photodiodes with separate absorption, grading, and multiplication region”, Electron. Lett., 1985, 21, pp.886-887. [56 ] T. Takeuchi, K. Makita, and K. Taguchi, “A planar slab-waveguide photodiode with a pseudowindow region in front of the waveguide,” IEEE Photon. Technol. Lett., vol. 10, pp. 255-257, 1998. [57 ] C. L. Ho, M. C. Wu, W. J. Ho, J. W. Liaw, and H. H. Wang, “Effectiveness of the pseudowindow for edge-coupled InP-InGaAs-InP PIN photodiodes,” IEEE J. Quantum Electron., vol. 36, no. 3, pp. 333-339, 2000. [58 ] C. L. Ho, W. J. Ho, and M. C. Wu, “Edge-coupled InGaAs P-I-N photodiode with the pseudowindow defined by etching process,” IEEE J. Quantum Electron., vol. 37, no. 11, pp. 1409-1411, 2001. [59 ] T. Bottner, H. Krautle, E. Kuphal, K. Miethe and H. L. Hartnagel, “Surface- and sidewall-damage of InP-based optoelectronic devices during reactive etching using CH4/H2” pp. 115-118 [60 ] C. L. Ho, C. J. Lin, W. J. Ho, and J. W. Liaw, ”Self-aligned fabrication method for ridge-waveguide semiconductor laser” U. S. Patent, US 6,503,770 B1, 2003. [61 ] C. H. Henry, R. A. Logan, and F. R. Merritt, “The effect of surface recombination on current in AlxGa1-xAs heterojunctions,” J. Appl. Phys., vol.49, pp. 3530-3542, 1978. [62 ] M. Fukuda, “Current drift associated with surface recombination current in InGaAsP/InP optical devices,” J. Appl. Phys., vol. 59, pp. 4172-4176, 1986. [63 ] G. Lucovsky, R. F. Schwarz, and R. B. Emmios, “Transit-time considerations in p-i-n diode,” J. Appl. Phys., vol. 35, pp. 622-628, 1964. [64 ] P. Hill, J. Schlafer, W. Powazinik, M. Urban, E. Eichen, and R. Olshansky, “Measurement of hole velocity in n-type InGaAs,” Appl. Phys. Lett., vol. 50, pp. 1260-1262, 1987. [65 ] T. H. Windhorn, L. W. Cook, and G. E. Stillman, “The electron velocity-field characteristic for n-In0.53Ga0.47As at 300K,” IEEE Electron Device Lett., vol. 3, pp. 18-20, 1982. [66 ] J. Harari, D. Decoster, J. P. Vilcot, B. Kramer, C. Oguey, P. Salzac, and G. Ripoche, “Numerical simulation of avalanche photodiodes with guard ring,” IEE Proc. vol. 138, pt. J, no. 3, pp. 211-217, 1991. [67 ] J. Harari, G. H. Jin, F. Journet, J. Vandecasteele, J. P. Vilcot, C. Dalle, M. R. Friscourt, and D. Decoster, “Modeling of microwave top illuminated PIN photedetector under very high optical power,” IEEE Trans. Microwave Theory and Tech., vol. 44, pp. 1484-1487, 1996. [68 ] A. Alping, “Waveguide pin photodetectors: Theoretical analysis and design criteria,” IEE Proc. vol. 136, pt. J, pp. 177-182, 1989. [69 ] M. Born and E. Wolf, “Principles of Optics,” 3rd ed Oxford : Pergamon,1965 [70 ] P. Yeh, Optical Waves in Layered Media. New York: Wiley, 1988. [71 ] T. Mukaihara, N. Yamanaka, N. Iwai, T. Ishikawa and A. Kasukawa, ”1.3μm GaInAsP lasers integrated with butt-coupled waveguide and high reflective semiconductor/air Bragg reflector (SABAR)” Electron. Lett., vol. 34, pp.882-884, 1998 [72 ] S. S. Murtaza, K. A. Anselm, A. Srinvasan, B. G. Streetman, and J. C. Campbell, ”High-Reflectivity Bragg Mirror for Optoelectronic Applications,” IEEE J. Quantum Electron., 1995, 31, pp1819-1825 [73 ] ]F. Hieronymi, E. H. Bottcher, E. Droge, D. Kuhl, St. Kollakowski and D. Bimberg, ”Large-area low-capacitance InP/InGaAs MSM photodetectors for high-speed operation under front and rear illumination,” Electron. Lett., vol.30, pp.1247-1248, 1994id NH0925428005 sid 909003 cfn 0 / id NH0925428006 auc 閔紹恩 tic 應用於W-CDMA之頻率合成器與其低功率壓控振盪器及注入鎖定式除頻器之實做 adc 徐永珍 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 87 kwc WCDMA kwc 頻率合成器 kwc 壓控振盪器 kwc 除頻器 kwc 相位雜訊 abc 本論文主要是根據3GPP(3rd Generation Partner-ship Project)的機構所制訂的WCDMA規格,在直接降頻(Direct-Conversion)接收器的架構下,針對其接收端頻段:2110MHz~2170MHz,以及本地振盪源在8Mhz偏移主頻處相位雜訊<-130dBc/Hz之要求,進行設計,模擬並且實做工作在兩倍射頻頻率的壓控振盪器,以及低消耗功率的注入鎖定式除二除頻器,將本地振盪源設計在兩倍的射頻頻率再降頻,主要是要降低直接降頻式接收器的本地振盪源經由電容,基板及打線路徑耦合,洩漏至混頻器射頻端,或是洩漏至低雜訊放大器放大再經由混頻器自我混頻所造成的直流準位漂移,故在製程變異以及電壓擾動下,所設計的壓控振盪器均須能夠振盪在4.22Ghz~4.34Ghz,且相位雜訊換算成在1Mhz偏移主頻處需小於-115dBc/Hz rf [1 ] PLL Performance, Simulation, and Design 3rd Edition Dean Banerjee [2 ] RF chip IC for 46/49MHz Cordless Telephone TOSHIBA , technical data [3 ] Direct-Conversion Radio Transceivers for Digital Communications Abidi, A.A.; Solid-State Circuits, IEEE Journal of , Volume: 30 Issue: 12 , Dec. 1995 Page(s): 1399 –1410 [4 ] A directconversion receiver integrated circuit for WCDMA mobile systems IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003 S. K. REYNOLDS ET AL. [5 ] Key specifications and implementation of WCDMA receiver Ramachandran, B.; Vasa, J.; Loke, A.; VLSI Technology, Systems, and Applications, 2001. Proceedings of Technical Papers. 2001 International Symposium on , 18-20 April 2001 Page(s): 49 –52 [6 ] Low-Noise Local Oscillator Design Techniques using a DLL-based Frequency Multiplier for Wireless Applications George Chien- ph.D dissertation UNIVERSITY OF CALIFORNIA, BERKELEY [7 ] Phase noise in multi-gigahertz CMOS ring oscillators Hajimiri, A.; Limotyrakis, S.; Lee, T.H. Custom Integrated Circuits Conference, 1998. Proceedings of the IEEE 1998 , 1998 Page(s): 49 -52 [8 ] A General Theory of Phase Noise in Electrical Oscillators Hajimiri and T. H. Lee, EEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998. [9 ] Oscillator Phase Noise: A Tutorial Thomas H. Lee, Member, IEEE, and Ali Hajimiri, Member, IEEE [10 ] A solution for minimizing phase noise in low-power resonator-based oscillators HongMo Wang Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on , Volume: 3 , 2000 Page(s): 53 -56 vol.3 [11 ] Design issues in CMOS differential LC oscillators Hajimiri, A.; Lee, T.H.; Solid-State Circuits, IEEE Journal of , Volume: 34 Issue: 5 , May 1999 Page(s): 717 –724 [12 ] A filtering technique to lower LC oscillator phase noise Hegazi, E.; Sjoland, H.; Abidi, A.A.; Solid-State Circuits, IEEE Journal of , Volume: 36 Issue: 12 , Dec. 2001 Page(s): 1921 -1930 [13 ] Superharmonic Injection-Locked Frequency Dividers H. Rategh and T. Lee, IEEE J. Solid-State Circuits, vol. 34, No. 6, pp 813-821, June 1999 [14 ] A 19GHz, 0.5mW, Frequency Divider with Shunt-Peaking with Shunt-Peaking Locking Range Enhancement H. Wu and A. Hajimiri, ,Proc. of IEEE International Solid-State Circuits Conference, pp. 412-413, Feb. 2001. [15 ] A CMOS Frequency Synthesizer with an Injection-Locked Frequency Divider for a 5-GHz Wireless LAN Receiver H. Rategh, H. Samavati and T. Lee, IEEE J. Solid-State Circuits, vol. 35, pp 780-787, May 2000 [16 ] Multi-Ghz Frequency Synthesis & Division: Frequency Synthesizer Design for 5 Ghz Wireless LAN Systems Rategh H, Lee T [17 ] Design techniques for Gb/s of CMOS SCL circuits applications Lu, JH; Tian, L; Chen, HT; Xie, TT; Chen, ZH; Wang, ZG , 2001 4TH INTERNATIONAL CONFERENCE ON ASIC PROCEEDINGS, 559-562, 2001 [18 ] Low-Jitter Process-Independent DLL and PLL Based on Self-Biased Techniques John G. Maneatis , IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 31, NO. 11, NOVEMBER 1996 1723 [19 ] Frequency dependence on bias current in 5 GHz CMOS VCOs: impact on tuning range and flicker noise upconversion Levantino, S. Samori, C. Bonfanti, A. Gierkink, S.L.J. Lacaita, A.L. Boccuzzi, V. Dipt. di Elettronica e Inf., Politecnico di Milano Solid-State Circuits, IEEE Journal ,Aug 2002, 1003- 1011id NH0925428006 sid 915001 cfn 0 / id NH0925428007 auc 林志和 tic 矽鍺異質接面雙載子電晶體之量子效應 adc 龔正 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 60 kwc 矽鍺 kwc 異質接面 kwc 量子效應 abc 摘要 rf 參考文獻 1.Harame, D.L.; Freeman, G.; Rieh, J.; Jagannathan, B.; Greenberg,D.; Joseph, A.; Johnson, J.; Guarin, F.; Yang,Z.;Ahlgren, D.;Cottrell, P.; Dunn, J.; Orner, B.; Subbanna, S.”A Look into the Future of SiGe HBTs”,IEEE Compound Semiconductors, 2003.International Symposium on ,pp.207-208, 25-27 Aug. 2003. 2.Yuan Taur, Tak H.Ning. ”Fundamental of Modern VlSI Devices,”Cambridge 1998. 3.Emmamuel F. Crabbe, John D. Cressel, Gary L.Patton, Johannes M.C.Stork, James H.Comfort, Jack Y-C.Sun,” Current Gain Rolloff in Graded-Base SiGe Heterojunction Bipolar Transistors,”IEEE Electron Device Letters, vol. 14,pp.193-195, 1993. 4.Simon C.M.Ho, David L.Pulfrey,” The Effect of Base Grading on The Gain and High-Frequency Performance of AlGaAs/GaAs Heterojunction Bipolar Transistors,”IEEE Trans.Electron Devices, vol.36, no.10, pp.2173-2182, 1989. 5.Z.matutunivic-Krstel, V.Venkataraman, E.J.Prinze, J.C.Sturm, and C.W.Magee, ”Base Resistance and Effective Bandgap Reduction in n-p-n Si/Si1-XGeX/Si HBT's with Heavy Base Doping,”IEEE Trans.Electron Devices, vol.43, no.3, 1996. 6.C.H.Gan, J.A.del Alamo, B.R.Bennett, Bernard S.Meyerson, E.F.Crabbe, C.G.Sodini and L.Rafael Reif,”Si/Si1-XGeX ValenceBand Discontinuity Measurements Using a Semiconductor-Insulator-Semiconductor(SIS) Heterostructure,”IEEE Trans. Electron Devices,vol.41, no.12,1994. 7.Shin-ichi Takagi, J.L.Hoyt, kern Rim, J.J.Welser, and J.F.Gibbons, ”Evaluation of the Valence Band Discontinuity of Si/Si1-XGeX/Si Heterostrctures by Application of Admittance Spectrocscopy to MOS Capacitors,”IEEE Trans. Electron Devices, vol.45, no.2, 1998. 8.Juan M,Lopez _Gonzalez, and Lius Prat, ”The Importance of Bandgap Narrowing Distribution Between the Conduction and Valence Bands in Abrupt HBT's,” IEEE Trans. Electron Devices,vol.44, no.7, 1998. 9.Nick Holonyak,JR, Robert M.Kolbas, Russell D.Dupuis and P.Daniel Dapkus”Quantum-Well Heterostructure Lasers,” IEEE J. Quantum Electron. vol.QE-16, no.2, Feb. 1980. 10.D.K Guthrie, Thomas K.Gaylord and Elias N.Glytsis”Number and Density of States in Quantum Semiconductor Structures,”IEEE Trans. Education,vol.39, no.4, Nov. 1996. 11.Alvin J.Joseph, John D.Cressler, David M.Richey and Guofu Niu ”Optimization of SiGe HBT's for Operation at High Current Densities,” IEEE Trans. Electron Devices, vol.46,no.7, July,1999. 12.Sandip Tiwari ”A New Effect at High Currents in Hetero-structure Bipolar Transistors,”IEEE Electron Devices Lett., vol.9, no.3, Mar.1988. 13.B.Mazhari and H.Morkoc ”Effect of collector-base valence-band discontinuity on Kirk effect in double- heterojunction bipolar transistors,” Appl. Phys. Lett., vol.59, no.17, Oct. 1991. 14.K.P Roenker, S.A.Alterovitz and C.H. Mueller ” Device Physics Analysis of Parasitic Conduction Band Barrier Formation in SiGe HBTs”IEEE Silicon Monolithic Integrated Circuits in RF System 2000, Digest of Papers ,pp.182-186,Apr., 2000. 15.Zhiping Yu, Peter E.Cottrell and R.W Dutton”Modeling and Simulation of High-Level Injection Behavior in Double Hetero-Junction Bipolar Transistors” IEEE Bipolar Circuits and Technology Meeting, Proceeding of the 1990, pp.192-194,Setp., 1990. 16.Jiling Song and J.S. Yuan ”Base-Collector Heterojunction Barrier Effects at High Current densities of Si/SiGe/Si Heterojunction Bipolar Transistors” IEEE Southeastcon '98, Proceedings, pp.162-165, April, 1998. 17. Jiling Song and J.S. Yuan ”Base-Collector Heterojunction Barrier Effects of the SiGe HBT at High Current Densities”IEEE Electron Devices Meeting, 1998, Proceedings,pp.101-104, Aug.,1998. 18.Jiann S. Yuan ”Overview of SiGe Technology Modeling and Application” IEEE Quality Electronic Design, 2000. ISQED 2000. Proceedings pp.67-72, March, 2000. 19.A. F. M .Anwar and M. M. Jahan ”A Self-Consistent Model for Temperature and Current Distribution in Abrupt Heterojunction Bipolar Transistors,” IEEE Trans. Electron Devices vol.50 no.2 Feb. 2003. 20.Yun Bai and Neil Goldsman ”Modeling of Nonuniform SiGe Heterostructure,”Department of Electrical and Computer Enginnering ,University of Maryland. 21.R.S.Muller,T.I.Kamins and M.Chan”Devices Electronics for Integrated Circuits 3rd,”,John Wiley & Sons,2003.id NH0925428007 sid 915002 cfn 0 / id NH0925428008 auc 于岳平 tic 新式具高動態範圍影像感測器元件之研究 adc 金雅琴 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 英文 pg 67 kwc 感測元件 kwc 高動態範圍 kwc 光閘極 abc 在最近十年的影像感測器的應用上,金氧半導體主動式的影像感測器已經慢慢的普遍起來,相較於CCD比較弱勢的暗電流方面,隨著製程技術的進步已經被克服了,所以在設計上動態範圍變成是需要被克服的主要缺點,因此本篇論文利用標準的0.25-µm金氧半導體邏輯製程開發了一種新式具高動態範圍的主動式影像感測器元件,它的操作原理跟傳統的三顆電晶體的架構是一樣的,只是在光閘極元件的閘極端加上一個控制的脈衝電壓,這樣的想法是來自於之前實驗室學長所提出消除暗電流的架構繼續做動態範圍的延伸,在照光週期中利用控制閘極上的電壓造成不同的電容來調變光靈敏度,使輸出的特性曲線發生轉折進而達到增加動態範圍的目的。從實驗的結果中可以證實藉由延遲脈衝電壓加在閘極上的時間,我們確實可以得到延伸動態範圍的效果,而且光感測元件的設計也會影響到動態範圍,因為元件的設計會影響耦合的效果以及在光二極體的操作模式下光電荷的儲存容量。所以只要經由元件的設計跟光閘極上控制電壓時脈的最佳化,就可以有高的動態範圍。至於影像感測的靈敏度也可以利用最佳化光閘極跟光二極體的面積比,以及控制光閘極上脈衝電壓的高低來改善。實驗的數據中可以證明經過這樣最佳化的設計,影像感測器就可以兼顧到在低照度下的靈敏度和高照度下動態範圍的延伸。 tc ABSTRACT……………………………………………………………II ACKOWLEGEMENT………………………………………………………IV LIST OF CONTENTS……………………………………………………V LIST OF FIGURES……………………………………………………VII LIST OF TABLES………………………………………………………IX CHAPTER 1 : INTRODUCTION…………………………………………10 CHAPTER 2 : RESEARCHES OF DYNAMIC RANGE……………………12 2.1 Dynamic Range for Image Sensor……………………………12 2.2 Prior Approaches to Increase Dynamic Range……………13 2.2.1 Well Capacity Adjusting……………………………13 2.2.2 Conditional Reset……………………………………14 2.2.3 Logarithmic Image Sensor……………………………15 2.2.4 New Sensing Device With Dark Current Cancellation Operations……………………………16 2.3 Summary……………………………………………………………17 CHAPTER 3 : CELL STRUCTURE AND OPERATION DESIGN……………27 3.1 Photon Sensing Structure and Physics………………27 3.1.1 Photodiode Sensing……………………………………28 3.1.2 Photogate Sensing………………………………………28 3.2 Dynamic Range Extension Operation …………………29 3.3 Test Key Design…………………………………………………30 CHAPTER 4 : MEASUREMENT RESULTS AND DISCUSSIONS……………41 4.1 Sensor Performance………………………………………41 4.1.1 FPN………………………………………………………41 4.1.2 Dark current……………………………………………42 4.1.3 Sensitivity……………………………………………42 4.1.4 Dynamic Range…………………………………………43 4.2 Dynamic Range Extension………………………………44 4.2.1 Pixel Layout Optimization………………………44 4.2.2 Operation Timing Design……………………………45 4.3 Performance Comparison………………………………46 CHAPTER 5 : CONCLUSIONS…………………………………………65 REFERENCES……………………………………………………………66rf [1.1 ] E. R. Fossum, “CMOS image sensors: Electronic camera-on-a-chip,” in IEEE IEDM Tech. Dig., 1995, pp. 17-25. [1.2 ] B. Ackland and A. Dickinson, “Camera-on-a-chip”, in 1996 ISSCC Tech. Papers, 1996, pp.22-25. [1.3 ] S. K. Mendis, S. E. Kemeny, R. C. Gee, B. Pain, Q. Kim, and E. R. Fossum, “CMOS active pixel image sensors for highly integrated imaging systems”, IEEE J. Solid-State Circuits, vol. 32, pp. 187-197, Feb. 1997. [1.4 ] R. H. Nixon, S. E. Kemeny, B. Pain, C. O. Staller, and E. R. Fossum, “256 x 256 CMOS active pixel sensor camera-on-a-chip”, IEEE J. Solid-State Circuits, vol. 31, pp. 2046-2050, Dec. 1996. [1.5 ] Albert J. P. Theuwissen, “CCD or CMOS image sensors for consumer digital still photography? ”, presented at 2001 Int. Symposium on VLSI Technology, Systems, and Applications, Hsinchu, Taiwan, Apr. 168-171, 2001. [1.6 ] E. R. Fossum, “CMOS image sensors: Electronic camera-on-a-chip,” IEEE Trans. Electron Devices, vol. 44, pp.1689-1698, Oct. 1997. [1.7 ] H. S. P. Wong, “CMOS image sensors---Recent advances and device scaling considerations,” in IEEE IEDM Tech. Dig., 1997, pp. 201-204. [1.8 ] J. Hynecek, “A new device architecture suitable for high-resolution and high-performance image sensors,” IEEE Trans. Electron Devices, vol. 35, pp.646-652, Mar. 1988. [1.9 ] P. Lee, R. Gee, M. Guidash, T. Lee, and E. R. Fossum, “An active pixel sensor fabricated using CMOS/ CCD process technology,” presented at 1995 IEEE workshop on CCD’s and Advanced Image Sensors, Dana Point, CA, Apr. 20-22, 1995. [1.10 ] H. S. P. Wong, R. T. Chang, E. Crabbe, and P. D. Agnello, “CMOS Active Pixel Image Sensors Fabricated Using a 1.8-V, 0.25-µm CMOS Technology”, IEEE Trans. Electron Devices, vol. 45, pp. 889-894, April 1998. [1.11 ] S. Mendis, S. E. Kemeny, R. Gee, B. Pain, and E. R. Fossum, “Progress in CMOS active pixel image sensors,” Charge-Coupled Devices and Solid State Optical Sensors IV, Proc. SPIE, vol. 2172, pp.19-29, 1994. [1.12 ] J. Woo, D. J. Min, J. Kim, and W. Kim, “A 600-dpi capacitive finger-print sensor chip and image synthesis technique,” IEEE J. Solid-State Circuits, vol. 34, pp. 469-475. [1.13 ] Ho-Ching Chien; Shou-Gwo Wuu; Dun-Nian Yaung; Chien-Hsien Tseng; Jeng-Shyan Lin; Wang, C.S.; Chin-Kung Chang; Yu-Kung Hsiao” Active pixel image sensor scale down in 0.18 µm CMOS technology”; IEDM '02. Pages:813 – 816. [2.1 ] Steven Decker, R. Daniel McGrath, Kevin Brehmer, and Charles G.”A 256 256 CMOS Imaging Array with Wide Dynamic Range Pixels and Column-Parallel Digital Output” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 12, DECEMBER 1998. [2.2 ] Sung-Hyun Yang; Kyoung-Rok Cho.” High dynamic range CMOS image sensor with conditional reset” Custom Integrated Circuits Conference, 2002. Pages:265 – 268. [2.3 ] B. Dierickx, D. Scheffer, G. Meynants, W. Ogiers, and J. Vlummens, “Random addressable active pixel image sensors,” Proc. SPIE 2950, pp.2-7, 1996. [2.4 ] Hsiu-Yu Cheng; Ya-Chin King, “A CMOS image sensor with dark current cancellation and dynamic sensitivity operations” Electron Devices, IEEE Transactions on, Volume: 50, Jan. 2003, Pages:91 – 95.id NH0925428008 sid 915003 cfn 0 / id NH0925428009 auc 林哲毅 tic 具高動態範圍之4T主動式影像感測器元件及操作方式 adc 金雅琴 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 英文 pg 50 kwc 主動式影像感測器 kwc 動態範圍 abc 因為製程便宜,加上跟金氧半的製程有高度的整合性,金氧半電晶體主動式影像感測器在影像感測器領域的發展上已經越來越重要,並且在低階影像感測器應用方面已經有取代CCD的趨勢。目前金氧半電晶體主動式影像感測器所遇到的主要問題有高雜訊、暗電流、低動態範圍。在暗電流方面已經可以由製程的改進來完成,所以動態範圍的提升成為主要的議題。本篇論文提出一個可以操作在高動態範圍的新型主動式影像感測器,並且在新的架構與操作下,輸出方式並不需要經過特別的設計。新型主動式影像感測器元件的架構是在傳統的元件上多加入一顆電晶體。從實驗的結果可以看出,使用一個升壓的電源操作下可以達到高動態範圍,並且改變升壓電源的操作可以設計出不同的輸出曲線。從量測的結果發現,在電路中有電洞升級的現象,利用這一個現象可以做一些類比的影像處理動作。除此之外,我們可以利用電洞的收集來做另外一種高動態範圍的操作,主要有兩個方式。一個是在照光週期中,分別有電子與電洞的收集週期,改變電子與電洞的收集週期可以做不同程度的動態範圍的延伸。另外一個是在照光的週期中,電子與電洞同時收集,這樣的操作有兩個好處,一個是有較大的靈敏度,另外可以改變電洞的收集程度來做不同動態範圍的延伸。 tc LIST OF CONTENTS ABSTRACT………………………………………………...………………………..II ACKNOWLEGEMENT……………………………………….…………………..IV LIST OF CONTENTS…………………………………….………………………...V LIST OF FIGURES…………………………………………………………….…..VI CHAPTER ONE INTRODUCTION………………………….…………………..1 CHAPTER TWO RESEARCH OF HIGH DYNAMIC RANGE IMAGE SENSOR……………………………………………………………………………..3 2.1 Characteristics of a High Dynamic Range Sensor…………………………...3 2.2 Review of Prior Approaches…………………………………………………3 2.2.1 Logarithmic-Mode APS……………………………………………...3 2.2.2 CMOS APS with Conditional Reset………………………………….3 2.2.3 Fused Image…………………………………………………………..4 CHAPTER THREE CELL STRUCTURE AND OPERATION SCHEME…..13 3.1 Four Transistor APS…………………………………………………………13 3.2 High Dynamic Range Operations Using a Ramp Voltage…………………..13 3.3 High Dynamic Range Operations Using Hole Collection…………………...14 CHAPTER FOUR MEASUREMENT RESULTS AND DISCUSSIONS……....35 4.1 Test-Key Design and Measurement Setup…………………………….…….35 4.2 Experimental Results…………………………………………………...……35 4.2.1 Experimental Results of High Dynamic Range Operations Using a Ramp Voltage…………………………………………………………………………..35 4.2.2 Experimental Results of High Dynamic Range Operations Using Hole Collection……………………………………………………………………….36 4.3 Performance Comparison…………………………………………………….36 CHAPTER FIVE CONCLUSIONS…………………………………………..…...48 REFERENCES…………………………………………..………………………….49rf [1 ]. B. Ackland and A. Dickinson, “Camera on a chip,” ISSCC, pp. 22-25, 1996. [2 ]. E.R. Fossum, “CMOS image sensors: Electronic camera-on- a-chip,” IEEE Trans. Electron Devices, vol. 44, pp. 1689-1698, Oct. 2001. [3 ]. P. Lee, R. Gee, M. Guidash, T. Lee, and E. R. Fossum, “An active pixel sensor fabricated using CMOS/CCD process technology,” presented at 1995 IEEE workshop on CCD’s and Advanced Image Sensors, Dana Point, CA, Apr. 20-22, 1995. [4 ]. H. S. P. Wong, R. T. Chang, E. Crabbe, and P. D. Agnello, “CMOS Active Pixel Image Sensors Fabricated Using a 1.8-V, 0.25-um CMOS Technology,” IEEE, Trans. Electron Devices, vol. 45, pp.889-894, April 1998. [5 ]. S. Mendis, S. E. Kenmeny, R. Gee, B. Pain, and E. R. Fossum, “Process in CMOS active pixel image sensors,” Charge-Coupled Devices and Solid State Optical Sensors IV, Proc. SPIE, vol.2172, pp.19-29, 1994. [6 ]. J. Woo, D. J. Min, J. Kim, and W. Kim, “A 600-dpi capacitive finger-print sensor chip and image synthesis technique,” IEEE J. Solid-State Circuits, vol.34, pp. 469-475. [7 ]. J. Huppertz, R. Hauschild, B. J. Hosticka, T. Kneip, S. Muller, and M. Schwarz, ‘‘Fast CMOS imaging with high dynamic range,’’ in Proc. IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors, 1997. [8 ]. S. Decker, R. McGrath, K. Brehmer, and C. Sodini, ‘‘A 2563256 CMOS imaging array with wide dynamic range pixels and column parallel digital output,’’ in Proc. ISSCC 1998, pp. 176–177 1998. [9 ]. A. Deval, A. Khan, and L. A. Akers, ‘‘locally adaptive active pixel sensors,’’ in Proc. of ISCAS 1997, Vol. 1, pp. 685–688, 1997. [10 ]. O. Yadid-Pecht, B. Pain, C. Staller, C. Clark, and E. Fossum, ‘‘CMOS active pixel sensor star tracker with regional electronic shutter,’’ IEEE J. Solid-State Circuits 32~2, 285–288, 1997. [11 ]. Hsiu-Yu Cheng and Ya-Chin King, “A CMOS image sensor with dark-current cancellation and dynamic sensitivity operations,” IEEE Trans. Electron Devices, vol. 50, pp.91-95, Jan. 2003. [12 ]. D.X.D. Yang, A.E. Gamal, B. Fowler, and H. Tian, “A 640×512 CMOS image sensor with ultrawide dynamic range floating-point pixel-level ADC,” IEEE Journal of Solid-State Circuits, Vol. 34, Issue: 12, pp.1821 - 1834, Dec. 1999. [13 ]. S. Decker, R. McGrath, K. Brehmer, and C. Sodini, “A 256×256 CMOS imaging array with wide dynamic range pixels and column-parallel digital output,” Solid-State Circuits Conference, Digest of Technical Papers 45th ISSCC 1998 IEEE International, 5-7 pp.176 - 177, Feb. 1998. [14 ]. Chamberlain, S.G.; Lee, J.P.Y, “A novel wide dynamic range silicon photodetector and linear imaging array,” Solid-State Circuits, IEEE Journal of, vol. 19, pp. 41-48, Feb 1984. [15 ]. Orly Yaddid-Pecht, “Wide-Dynamic Range Sensor,” Society of Photo-optical Instrumentation Engineers, pp.1650-1660, October, 1999. [16 ]B. Dierickx, D. Scheffer, G. Meynants, W. Ogiers, and J. Vlummens, “Random addressable active pixel image sensors,” Proc. SPIE 2950, pp.2-7, 1996. [17 ]. Sung-Hyun Yang, and Kyoung-Rok Cho, “High Dynamic Range CMOS Image Sensor with Conditional Reset,” IEEE Custom Integrated Circuits Conference, 2002. [18 ]. David X.D Yang, Abbas El Gamal, Boyd Fowler, Hui Taing, “A 640x512 CMOS Image Sensor with Ultra Wide Dynamic Range Floating-Point Pixel-Level ADC,” ISSCC, Digest of Technical Papers, Session 17, 1999. [19 ]. Y. P. Orly, “Wide-dynamic-range sensors,” Society of Photo-Optical Instrumentation Engineers, pp.1650-1660, October 1999.id NH0925428009 sid 915006 cfn 0 / id NH0925428010 auc 陳和穎 tic 矽鍺異質接面雙載子電晶體在高集極偏壓下的元件模型 adc 龔正教授 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 英文 pg 81 kwc 矽鍺 kwc 雙載子電晶體 kwc 元件模型 kwc 高集極偏壓 kwc 穿遂效應 kwc 量子效應 abc 本篇論文針對0.18微米製程的矽鍺異質接面雙載子電晶體在高集極偏壓操作點作分析與模型建立。當矽鍺異質接面雙載子電晶體操作在高集極偏壓時,發現集極與基極會出現兩階段突然增加的電流,集基接面由於傳導帶不連續,會形成兩個量子能階,在高集基偏壓下,電子穿隧效應發生,會進而導致兩階段的電流突增。這些穿隧電子經過集基接面的空乏區,會因為累增效應而碰撞產生許多電子電洞對,其中電子與穿隧電子形成巨大的集極電流,電洞則從基極流出形成巨大的基極電流。這兩個量子能階剛好對應到兩個階段的電流突增。 rf 1. Ahlgren, D.C. ; Gilbert, M. ; Greenberg, D. ; Jeng, J. ; Malinowski, J. ; Nguyen-Ngoc, D. ; Schonenberg, K. ; Stein, K. ; Groves, R. ; Walter, K. ; Hueckel, G. ; Colavito, D. ; Freeman, G. ; Sunderland, D. ; Harame, D.L. and Meyerson, B. , “Manufacturability demonstration of an integrated SiGe HBT technology for the analog and wireless marketplace” , Electron Devices Meeting , pp.859–862 , Dec. 1996 2. Schuppen, A. ; Gerlach, S. ; Dietrich, H. ; Wandrei, D. ; Seiler, U. and Konig, U. , “1-W SiGe power HBTs for mobile communication” , Microwave and Guided Wave Letters, IEEE , vol.6 , pp.341-343 , Sept. 1996 3. Schuppen, A. ; Dietrich, H. ; Gerlach, S. ; Hohnemann, H. ; Arndt, J. ; Seller, U. ; Gotzfried, R. ; Erben, U. and Schumacher, H. , “SiGe-technology and components for mobile communication systems” , Bipolar/BiCMOS Circuits and Technology Meeting , pp.130-133 , Oct. 1996 4. Henderson,G.N. ; O'Keefe,M.F. ; Boles,T.E. ; Noonan,P. ; Sledziewski, J.M. and Brown, B.M. , “SiGe bipolar junction transistors for microwave power applications” , Microwave Symposium Digest, 1997., IEEE MTT-S International , vol.3 , pp.1299-1302 , June 1997 5. B. Mazhari and H. Morkoc , “Effect of collector-base valence-band discontinuity on Kirk effect in double-heterjunction bipolar transistors” , University of Illinois at Urbana Champaign , vol.59 , pp.2162-2164 , Oct. 1991 6. Jiann S. Yuan , “SiGe, GaAs, and InP heterojunction bipolar transistors” , A wiley interscience publication , 1999 7. Sankaran, V. ; Hinckley, J.M. and Singh, J. , “Theoretical small-signal performance of Si/SiGe/Si HBT” , Electron Devices, IEEE Transactions on , vol.40 , pp.1589–1596 , Sept. 1993 8. Harame, D.L. ; Comfort, J.H. ; Cressler, J.D. ; Crabbe, E.F. ; Sun, J.Y.-C. ; Meyerson, B.S. and Tice, T. , “Si/SiGe epitaxial-base transistors. I. Materials, physics, and circuits” , Electron Devices , IEEE Transactions on , vol.42 , pp.455–468 , March 1995 9. Ben G. Streetman and Sanjay Banerjee , “Solid state electronic devices” , Prentice hall , 2000 10. Yuan Taur and Tan H. Ning , “Fundamentals of modern VLSI devices” , Combridge university press , 1998 11. Gruhle, A. , “The influence of emitter-base junction design on collector saturation current, ideality factor, Early voltage, and device switching speed of Si/SiGe HBT's” , Electron Devices, IEEE Transactions on , vol.41 , pp.198-203 , Feb. 1994 12. Prinz, E.J. ; Garone, P.M. ; Schwartz, P.V. ; Xiao, X. and Sturm, J.C. , “The effect of base-emitter spacers and strain dependent densities of states in Si/Si1-xGex/Si heterojunction bipolar transistors” , Electron Devices Meeting, 1989. Technical Digest., International , pp.639-642 , Dec. 1989 13. Matutinovic-Krstelj, Z. ; Venkataraman, V. ; Prinz, E.J. ; Sturm, J.C. and Magee, C.W. , ” Base resistance and effective bandgap reduction in n-p-n Si/Si1-xGex/Si HBTs with heavy base doping” , Electron Devices, IEEE Transactions on , vol.43 , pp.457-466 , March 1996 14. Gan, C.H. ; del Alamo, J.A. ; Bennett, B.R. ; Meyerson, B.S. ; Crabbe, E.F. ; Sodini, C.G. and Reif, L.R. , “Si/Si1-xGex valence band discontinuity measurements using a semiconductor-insulator-semiconductor (SIS) heterostructure” , Electron Devices, IEEE Transactions on , vol.41 , pp.2430-2439 , Dec. 1994 15. Le Tron, B. ; Hashim, M.D.R. ; Ashburn, P. ; Mouis, M. ; Chantre, A. and Vincent, G. , “Determination of bandgap narrowing and parasitic energy barriers in SiGe HBT's integrated in a bipolar technology” , Electron Devices, IEEE Transactions on , vol.44 , pp.715-722 , May 1997 16. Lopez-Gonzalez, J.M. and Prat, L. , “The importance of bandgap narrowing distribution between the conduction and valence bands in abrupt HBTs” , Electron Devices, IEEE Transactions on , vol.44 , pp.1046-1051 , July 1997 17. Lu, P.-F. and Chen, T.-C. , “Collector-base junction avalanche effects in advanced double-poly self-aligned bipolar transistors” , Electron Devices, IEEE Transactions on , vol.36 , pp.1182-1188 , June 1989 18. Jeong, H. and Fossum, J.G. , “Modeling impact ionization in advanced bipolar transistors for device/circuit simulation” , Bipolar Circuits and Technology Meeting, 1988. , pp 107-110 , Sept. 1988 19. J. J. Ebers and J. L. Moll , “Large-signal behavior of junction transistors” , Proc. IRE , vol.42 , pp.1761-1772 , 1954 20. Fellows, J.A. ; Bright, V.M. and Jenkins, T.J. , “A physics-based heterojunction bipolar transistor model for integrated circuit simulation” , Aerospace and Electronics Conference, 1994. , vol.1 , pp.334-341 , May. 1994 21. Bright, V.M. ; Jenkins, T.J. and Fellows, J.A. , “An accurate physics-based broadband heterojunction bipolar transistor model for SPICE-assisted microwave circuit design” , Microwave Symposium Digest, 1994. , vol.2 , pp.1265-1268 , May 1994 22. Fuse, T. ; Kawanaka, S. ; Inoh, K. and Shino, T. , “A compact lateral-SOI BJT model for RF circuit simulation” , Simulation of Semiconductor Processes and Devices, 1999. , pp.19-22 , Sept. 1999 23. Helmy, A. ; Sharaf, K. and Ragai, H. , “A simplified analytical model for nonlinear distortion in RF bipolar circuits” , Circuits and Systems, 2000. , vol.2 , pp.966-969 , Aug. 2000 24. Tzung-Yin Lee ; Fox, R.M. ; Green, K. and Vrotsos, T. , “Modeling and parameter extraction of BJT substrate resistance” , Bipolar/BiCMOS Circuits and Technology Meeting, 1999. , pp.101-104 , Sept. 1999 25. P. E. Gray ; D. DeWitt ; A. R. Boothroyd and J. F. Gibbons , “Physical electronics and circuit models of transistors” , Semiconductor electronics education committee, vol.2 , 1964 26. K.Schroder , “Semiconductor material and device characterization” , A Wiley-interscience publication , 1998 27. I. Getreu , “Modeling the bipolar transistor” , Tektronix , Beaverton , 1976 28. K. C. Sedra and K. C. Smith , “Microelectronic Circuits” , Saunders college publishing , 1997 29. 曾謹言and 錢伯初 , “量子力學專題分析” , 凡異出版社 , 1987 30. Raymond A. Serway ; Clement J. Moses and Curt A. Moyer , “Modern physics” , Saunders college publishing , 1997id NH0925428010 sid 915007 cfn 0 / id NH0925428011 auc 何金原 tic 利用間歇光輔助的濕蝕刻方式發展氮化鎵的奈米級蝕刻技術 adc 黃惠良 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 英文 pg 58 kwc 氮化鎵 kwc 光電化學蝕刻 kwc 間歇光 abc 光電化學蝕刻是一種利用光輔助的濕蝕刻方式,具有低蝕刻缺陷和高蝕刻速率的特性,而廣泛應用在純態和N型氮化鎵蝕刻上。然而,傳統光電化學蝕刻所發生的側向蝕刻深度分佈的問題,透過以過硫酸鉀作為氧化劑來取代光電化學蝕刻中的電極所發展出的無電極光電化學蝕刻可以成功的解決這個問題。最後,利用間歇光輔助的光電化學蝕刻讓我們成功的達到大面積的平整蝕刻表面,表面的平均粗糙度更達到0.37nm。透過這些成就,我們提出這種利用間歇光輔助的方式來製造平坦的蝕刻表面,以便於應用在之後的奈米點沈積或甚至是奈米級結構的蝕刻技術。 tc Chinese Abstract English Abstract Acknowledgements Contents List of Figures Chap. 1 Introduction 1.1 Key issues for high luminant light emitting diode fabrication 1.1.1 Dislocation issue 1.1.2 Doping issue 1.1.3 P-GaN ohmic contact issue 1.1.4 Etching issue 1.2 Chopped photon assisted wet etching (CPAWE) 1.3 Reference Chap. 2 Mechanism 2.1 Photoelectrochemical ( PEC ) Etching 2.1.1 Chopped Photon Assisted Wet Etching ( CPAWE ) 2.1.2 P-GaN etching by CPAWE 2.2 Nano-lithography 2.2.1 E-beam lithography 2.3 Reference Chap. 3 Experiment apparatus, process and Measurement 3.1 Experiment system 3.2 Measurement 3.3 Experiment Process 3.3.1 P-type GaN etching 3.3.2 Nano-scale etching technique 3.4 Reference Chap. 4 Results and discussion 4.1 P-GaN etching by CPAWE 4.1.1 Under-cut effect 4.1.2 Frequency dependence 4.2 Nano-scale etching ability 4.2.1 E-beam lithography 4.2.2 Nano-scale etching profile by CPAWE 4.3 Reference Chap. 5 Conclusions Figures Appendix I. Defect mask II. Determination of absolute luminous efficiency III. Reference IV. Figuresrf chap 1 [1 ]Chih-Hsin Ko, Yan-Kuin Su, Shoou-Jinn Chang, Ta-Ming Kuan, Chung-I Chiang, Wen-How Lan, Wen-Jen Lin and James Webb, Jpn. J. Appl. Phys., Vol. 41, 2489-2492 (2002) [2 ]Toshio Nishida, Tomoyuki Ban, and Naoki Kobayashi, Jpn. J. Appl. Phys., 2273 (2003) [3 ]Koichi Tachibana, Takao Someya, Satomi Ishida, and Yasuhiko Arakawa, Appl. Phys. Lett., Vol. 76, No. 22, 3212 (2000) [4 ]P. A. Crozier, J. Tolle, J. Kouvetakis, and Cole Ritter, Appl. Phys. Lett. Vol. 84, No. 18, 3441 (2004) [5 ]W. Walukiewicz, Physica B, Vol. 302-303, 123-134 (2001) [6 ]Tetsuya Yamamoto, and Hiroshi Katayama-Youshida, Jpn. J. Appl. Phys., Vol. 36, L180-L183 (1997) [7 ]H. Katayama-Youshida, and T. Yamamoto, Phys. Stat. Sol. (b), Vol. 202, 763 (1997) [8 ]Tetsuya Yamamoto, and Hiroshi Katayama-Youshida, Journal of Crystal Growth Vol. 189/190, 532-536 (1998) [9 ]G. Kipshidze, V. Kuryatkov, B. Borisov, Yu. Kuryavtsev, R. Asomoza, S. Nikishin, and H. Temkin, Appl. Phys. Lett., Vol. 80, No. 16 2910 (2002) [10 ]T. Yamamoto, Phys. Stat. Sol. (a), Vol. 193, No. 3, 423-433 (2002) [11 ]Oliver Brandt, Hui Yang, Helmar Kostial, and Kaus H. Ploog, Appl. Phys. Lett., Vol. 69, No. 18, 2707 (1996) [12 ] H. Katayama-Youshida, T. Nishimatsu, T. Yamamoto, and N Orita, J. Phys.: Condens. Matter, Vol. 13, 8901-8914 (2001) [13 ]R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, Appl. Phys. Lett., Vol. 78, No. 2, 222 (2001) [14 ] H. Katayama-Youshida, R. Kato, and T. Yamamoto, J. Crys. Growth, Vol. 231, 428-436 (2001) [15 ] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, Opto-Electronics Review, Vol. 10, No. 4, 243-249 (2002) [16 ]Peter Kozodoy, Yulia P Smorchkova, Monica Hansen, Huili Xing, Steven P. Denbaars, and Umesh K. Mishra, Appl. Phys. Lett., Vol. 75, No. 16, 2444 (1999) [17 ]M. S. Minskey, M. White, and E. L. Hu, Appl. Phys. Lett., Vol. 68, 1531 (1996) [18 ]C. Youtsey, I. Adesida, L.T. Romano, and G.. Bulman, Appl. Phys. Lett., Vol. 72, 560 (1998) [19 ]C. Youtsey and I. Adesida, Appl. Phys. Lett., Vol. 71, 2151 (1997). chap 2 [1 ]C. Youtsey, I. Adesida, and G. Bulman, Appl. Phys. Lett., Vol. 71, 2151 (1997) [2 ]C. Youtsey, I. Adesida, T. Romano, and G. Bulman, Appl. Phys. Lett., Vol. 72, 560 (1998) [3 ]B. S. Shelton, T. G. Zhu, M. M. Wong, H. K. Kwon, C. J. Eiting, D. J. H. Lambert,S. P. Turini, and R. D. Dupuis, Electrochem. Solid-State Lett., Vol. 3, 87 (2000) [4 ] J. A. Bardwell, J. B. Webb, H. Tang, J. Fraser, and S. Moisa, J. Appl. Phys., Vol. 89, No. 7, 4142 (2001) [5 ]Z. H. Hwang, J. M. Hwang, and H. L. Hwang, and W. H. Hung, Appl. Phys. Lett., Vol. 84, No. 19, 3759 (2004) [6 ]S. Chandra, S. L. Singh, and N. Khare, J. Appl. Phys. Vol. 59, 1570 (1986) [7 ]D. J. Fu, T. W. Kang, S. U. Yuldashev, N. H. Kim, S. H. Park. J. S. Yun, and K. S. Chung, Appl. Phys. Lett., Vol. 78, 1309 (2001) [8 ]Jeon Wook Yang, Byung-Mok Kim, Chang-Joo Yoon, Gye-Mo Yang, and Hyung-Jae Lee, Electronics Letters, Vol. 36, No. 1, 88 (2000) [9 ]J. E. Borton, C. Cai, M. I. Nathan, P. Chow, J. M. Van Hove, A. Wowchak, and H. Morkoc, Appl. Phys. Lett., Vol. 77, No. 8, 1227 (2000) [10 ]Chen-Jen Hung, Lara I. Halaouui, Allen J. Bard, Paul A. Grudowski, Russell D. Dupuis, Jay Molstad, and Francis J. DiSalvo, Electrochemical and Solid-State Letters, Vol. 1, No. 3, 142-144 (1998) [11 ]Stephen Y. Chou, a)Peter R. Krauss, Wei Zhang, Lingjie Guo, and Lei Zhuang, J. Vac. Sci. Technol. B 15(6), 2897 (1997) [12 ]Kathryn Wilder, Calvin F. Quate, Bhanwar Singh, and David F. Kyser, J. Vac. Sci. Technol. B Vol. 16, No. 6, 3864 (1998) [13 ]T. R. Groves, D. Pickard, B. Rafferty, N. Crosland, D. Adam, G. Schubert, Microelectronics Engineering, Vol. 61-62, 285-293 (2002) [14 ]Th. Weimann, H. Scherer, P. Hinze, and J. Niemeyer, Microelectronic Engineering, Vol. 53, 225-228 (2000) [15 ]F. Calle, T. Palacios, E. Monroy, J.Grajal, M. Verdu, Z. Bougrioua, I. Moerman, J. Materials science: Materials in electronics, Vol. 14, 271-277 (2003) [16 ]I. Raptis, N. Glezos, E. Valamontes, E. Zervas, P. Argitis, Vacuum, Vol. 62, 263-271 (2001) chap 3 [1 ] Z. H. Hwang, J. M. Hwang, and H. L. Hwang, and W. H. Hung, Appl. Phys. Lett., Vol. 84, No. 19, 3759 (2004) chap 4 [1 ]J. T. Hsieh, J. M. Hwang, and H. L. Hwang, MRS, 1998 [2 ]Z. H. Hwang, J. M. Hwang, and H. L. Hwang, and W. H. Hung, Appl. Phys. Lett., Vol. 84, No. 19, 3759 (2004) [3 ] C. H. Ko, Y. K. Su, S. J. Chang, W. H. Lan, Jim Webb, M. C. Tu, Y. T. Cherng, Material Science and Engineering, Vol. B96, 43-47 (2002) [4 ]Chang-Chin Yu, Chen-Fu Chu, Juen-Yen Tsai, Hung Wen Huang, Tao-Hung Hsueh, Chia-Feng Lin, and Shing-Chung Wang, Jap. J. Appl. Phys. Vol. 41, 910-912 (2002) Appendix [1 ]M. Toth*, K. Fleischer, and M. R. Phillips, “Electron beam induced impurity electro-migration in unintentionally doped GaN” [2 ]M. Avella, E. de la Puentea, J. Jimenez, A. Castaldini, A. Cavallini, L. Polenta, J. Crystal Growth, Vol. 210, 220-225 (2000) [3 ]S. J. Rosner, E. C. Carr, M. J. Ludowise, G. Girolami, and H. I. Erikson, Appl. Phys. Lett., Vol. 70, No. 4, p-420 (1997) [4 ]C. Youtsey, L. T. Romano, I. Adesida, Appl. Phys. Lett., Vol. 73, No. 6, 797 (1998) [5 ]J. T. Hsieh, J. M. Hwang, H. L. Hwang, J. K. Ho, C. N. Huang, C. Y. Chen, and W. H. Hung, Electrochemical and Solid-State Letters, Vol. 3, No. 8, 395-398 (2000) [6 ]J. L. Weyher, F. D. Tichelaar, H. W. Zandbergen, L. Macht, P. R. Hageman, J. Appl. Phys. Vol. 90, No. 12, 6105 (2001) [7 ]J. L. Weyher, L. Macht, F. D. Tichelaar, H. W. Zandbergen, P. R. Hageman, P. K. Larsen, Material Science and Engineering, Vol. B91-92, 280-284 (2002) [8 ]F. Wang, R. Zhang, X. Q. Xiu, K. L. Chen, S. L. Gu, B. Shen, Y. D. Zheng, T. F. Kuech, Material Letters, Vol. 57, 1365-1368 (2003) [9 ]G. Kamler, J. L. Weyher, I. Grzegory, E. Jezierska, T. Wosinski, J. cryst. Growth, Vol. 246, 21-24 (2002) [10 ]J. D. Beach, R. T. Collins, and J. A. Turner, J. Electrochemical Society, Vol. 150 No. 7, A899-A904 (2003) [11 ]Francisco Machuca, Zhi Liu, Yun Sun, P. Pianetta, W. E. Spicer, R. F. W. Pease, J. Vac. Sci. Technol. A, Vol. 20, No. 5, 1784 (2002) [12 ]N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Philips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holemes and R. H. Friend, Chem. Phys. Lett., Vol. 241, 89 (1995) [13 ]Chul Huh, Kug-Seung Lee, Eun-Jeong Kang, and Seong-Ju Park, J. Appl. Phys. Vol. 93, No. 11, 9383 (2003) [14 ]T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett., Vol. 84, No. 6, 855 (2004) [15 ]Thomas F. Krauss, Richard M. De La Rue, Progress in Quantum Electronics, Vol. 23, 51-96 (1999) [16 ]Bhat JC, Kim A, Collins D, et al., INST PHYS CONF SER (170), 243-248 (2002) [17 ]Tetsuo Tsutsui and Kounosuke Yamamato, Jap. J. App. Phys., Vol. 38, 2799-2803 (1999)id NH0925428011 sid 915008 cfn 0 / id NH0925428012 auc 黃志揚 tic 低壓降線性穩壓器頻率補償之改善方法 adc 連振炘 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 74 kwc 低壓降 kwc 穩壓器 kwc 頻率補償 abc 摘要 tc 目錄 摘 要 Ⅰ 誌 謝 Ⅱ 目 錄 Ⅲ 圖 目 錄 Ⅵ 第1章、緒論 1.1 研究動機…………………………………….…………………..1 1.2 研究目標…………………………………….…………………..2 1.3 論文組織…………………………………….………….……….3 第2章、低壓降線性穩壓器之重要特性參數 2.1 低壓降線性穩壓器概論…………………….…………………..4 2.2 低壓降線性穩壓器的重要參數…………….…………………..5 2.2.1輸出電壓差(Dropout voltage)……...…………………..5 2.2.2線性調節率(Line regulation)……...…………………..7 2.2.3負載調節率(Load regulation)……...…………………..8 2.2.4接地電流(Ground current)………….…………………..9 2.2.5電源效率(Efficiency)…………………………………10 2.2.6輸出準確率(Output accuracy)……….………………..11 2.2.7暫態響應(Transient response)……………………….14 2.2.8頻率響應(Frequency response)……………………….16 第3章、低壓降線性穩壓器之內部結構電路 3.1 能隙參考電壓源……………………………...…………….….22 3.1.1負溫度係數的電壓………………………………………23 3.1.2正溫度係數的電壓………………….....……………...…23 3.1.3零溫度係數參考電壓之產生……………………………25 3.1.4電路上的實現……………………………………………25 3.2 誤差放大器………….…………………………..……...……...27 3.2.1單級運算放大器…………………………………………28 3.2.2串疊運算放大器…………………………………………29 3.2.3折疊串疊運算放大器……………………………………31 3.3 輸出結構………………….……………………..…..………....33 3.3.1雙載子電晶體輸出………………………………………33 3.3.2 MOS電晶體輸出……………………………….…………34 3.4 回授穩定度及頻率補償………………………....……..……...35 3.4.1等效串聯電阻……………………………………………36 3.4.2極零點補償………………………………………………38 3.4.3追蹤零點補償……………………………………………40 3.5 其它保護電路………………………….…....……..………......43 第4章、本論文中低壓降線性穩壓器之設計 4.1 參考電壓源之設計………………….………………..………..46 4.2 誤差放大器之設計……………………………………….……50 4.3 輸出結構……………………………………………………….54 4.4 頻率補償…………………………..……..……….……………54 第5章、結果討論 5.1 暫態響應………………………………….……………………62 5.2 結果討論及建議……………………………………….………69 參考文獻References……………………………………….…………71 圖目錄 第1章、緒論 圖1.1 直流轉壓示意圖…………………….……………………….2 第2章、低壓降線性穩壓器之重要特性參數 圖2.1 低壓降線性穩壓器…………….…………………...………..4 圖2.2 壓降範圍……….…………………………………………….6 圖2.3 線性調節率..…………………………………………………7 圖2.4 負載調節率…...………………………………………….…..8 圖2.5 接地電流...………………………………….……………....10 圖2.6 輸出電壓誤差….…………………………………………...11 圖2.7 誤差放大器電壓偏移………………………………………13 圖2.8 電阻值誤差….……………………………………….……..13 圖2.9 低壓降線性穩壓器及其輸出電容………………………....14 圖2.10 輸出電壓對於負載電流變化之反應……………………..15 圖2.11 交流分析等效模型…………………………………..……17 圖2.12 低壓降線性穩壓器的頻率響應……………………..……19 圖2.13 等效串聯電阻過大之情形……………………………..…20 圖2.14 等效串聯電阻過小之情形…………..……………………21 第3章、低壓降線性穩壓器之內部結構電路 圖3.1 正溫度係數電壓之產生………………...…………….…...24 圖3.2 零溫度係數參考電壓之產生………………………………25 圖3.3 電路實現能隙參考電壓源….....……………...................…26 圖3.4 另ㄧ種能隙參考電壓源……………………………………26 圖3.5 單級運算放大器……………………………………………28 圖3.6 基本串疊組態…………………..……...…………………...29 圖3.7 主動式串疊組態……………………………………………30 圖3.8 望遠鏡式串疊運算放大器…………………………………31 圖3.9 NMOS差動輸入組態之折疊串疊運算放大器………………32 圖3.10 PMOS差動輸入組態之折疊串疊運算放大器…..................32 圖3.11 線性穩壓器輸出結構……………………………………..33 圖3.12 輸出阻抗示意圖………….……………………………….37 圖3.13 利用電容前饋產生零點…………....……..……………....38 圖3.14 產生左半平面的零點…………………………………..…39 圖3.15 極零點補償低壓降線性穩壓器………………………..…39 圖3.16 主極點及頻寬隨負載電流之變化……………………..…40 圖3.17 用NMOS取代補償電路中的電阻…..……….......................41 圖3.18 改變 時電阻值的變化....................................................41 圖3.19 追蹤零點補償低壓降線性穩壓器……..............................42 圖3.20 短路保護電路之一…..........................................................43 圖3.21 短路保護電路之二…..........................................................44 圖3.22 電池倒置保護………………………………………........45 第4章、本論文中低壓降線性穩壓器之設計 圖4.1 能隙參考電壓源……………..……………………………..46 圖4.2 輸出參考電壓 V.S.Vdd變化.…………………………..…47 圖4.3 輸出參考電壓 V.S.溫度變化…………………….……….47 圖4.4 增加輸出阻抗之作法…..……..……….……………...……48 圖4.5 參考電壓源加入啟動電路…………………………………49 圖4.6 增強PSRR之OP放大器….……………………………….…50 圖4.7 增強PSRR及共模輸入範圍之OP放大器……………..……51 圖4.8 誤差放大器之增益以及相位響應.………………...………52 圖4.9 輸出訊號對於一步階輸入訊號之反應時間(a)輸入步階訊 號0V~5V (b)輸入步階訊號5V~0V………………..………53 圖4.10 無頻率補償時之頻率響應(a)輸出電流30mA (b)輸出電流 300mA…………………………………………………..…55 圖4.11 追蹤零點補償之頻率響應(a)輸出電流30mA (b)輸出電流 300mA.………………………………………………….…56 圖4.12 加入電容產生額外的零點.………………..……...………56 圖4.13 加入雙零點補償之頻率響應(a)輸出電流30mA (b)輸出電流300mA……………………………………………..……58 圖4.14 利用兩個零點補償之電路.…………………..…...………59 圖4.15 利用回授電容的補償方法….………………….…………59 圖4.16 利用回授電容補償之頻率響應(a)輸出電流30mA (b)輸出 電流300mA……………………………………..…………61 第5章、結果討論與建議 圖5.1 (a)步階電流0~30mA (b)輸出電壓變化……..….....………63 圖5.2 (a)步階電流0~300mA (b)輸出電壓變化……..……...……64 圖5.3 (a)步階電流30~0mA (b)輸出電壓變化……..…….....……65 圖5.4 (a)步階電流300~0mA (b)輸出電壓變化..…...……………66 圖5.5 線性調節率(a)輸出電壓變化 (b)計算其線性調節率. …67 圖5.6 負載調節率(a)輸出負載電流0mA~300mA (b)計算其負載調節率………………………………………………..………68 圖5.7 LDO電路實現..………………………………………………69rf References [1 ] S. Franco, Design with Operational Amplifires and Analog Integrated Circuits. New York: McGraw-Hill Publishing Compeany, 1998. [2 ] G. A. Rincon-Mora and P. E. Allen, “Study and Design of Low Drop-Out Regulators,” Submitted to IEEE Trans. Circuits Syst. [3 ] “Technical Review of Low Dropout Voltage Regulator Operation and Performance,” Application Report, Texas Instruments, Aug. 1999. [4 ] B. Wolbert, “Design with Low Dropout Voltage Regulators,” Application Note, Micrel Semiconductor, Dec. 1998. [5 ] “Fundamental Theory of PMOS Low-Dropout Voltage Regulators,” Application Report, Texas Instruments, Apr. 1999. [6 ] Bang S. Lee, “Understanding the Terms and Definitions of LDO Voltage Regulators,” Application Report, Texas Instruments, Oct. 1999. [7 ] Brian M. King, “Advantages of Using PMOS-Type Low-Dropout Linear Regulators in Battery Applications,” Analog Application Journal, Aug. 2000. [8 ] Y. S. Shyu, ”Low Operating Current Analog Integrated Circuits,” National Chiao Tung University, Taiwan, PhD Thesis, Jun. 2002. [9 ] C. Simpson, “A User’s Guide to Compensating Low-Dropout Regulators,” Wescon Conference, Santa Clara, CA, pp. 270–275, Nov. 1997. [10 ] C. Simpson, “Linear Regulators: Theory of Operation and Compensation,” Application Note 1148, National Semiconductor, May 2000. [11 ] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, Inc., 2001. [12 ] P. R. Gray and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, New York: John Wiley & Sons, Inc., 1993. [13 ] K. O’Malley, “Linear Regulator Output Structures,” Application Note, ON Semiconductor, 2000. [14 ] K. O’Malley, ”Compensation for Linear Regulators,” Application Note, ON Semiconductor, 2000. [15 ] K.C. Kwok and P.K.T. Mok, “Pole-Zero Tracking Frequency Compensation For Low Dropout Regulator,” IEEE International Symposium on Circuits and Systems, Scottsdale, Arizona, USA, Vol. IV, pp. 735-738, May 2002. [16 ] K. O’Malley, ”Linear regulator protection circuitry,” Application Note, ON Semiconductor, 2000. [17 ] M. Layachi & Y. Chouia, “Low Dropout Voltage Regulator,” Department of Electrical Engineering, Ecole Polytechnique de Montreal. [18 ] C. Simpson, “Linear and Switching Voltage Regulator Fundamentals,” Power Management Applications, National Semiconductor. [19 ] Ribner D.B., Copeland M.A., ”Design techniques for cascoded CMOS op amps with improved PSRR and common-mode input range,” IEEE Journal of Solid-State Circuits, Vol. 19 , Issue 6 , Dec. 1984, Pages 919 – 925. [20 ] G. A. Rincon-Mora and P. E. Allen, “A Low-voltage, Low Quiescent current, Low Drop-Out Regulator,” IEEE J. Solid-State Circuits, vol. 33, no. 1, pp. 36–44, Jan. 1998. [21 ] K. M. Tham and K. Nagaraj, “A Low Supply Voltage High PSRR Voltage Reference in CMOS Process,” IEEE J. Solid-State Circuits, vol. 30, pp. 586–590, May 1995. [22 ] Chava, C.K.& Silva-Martinez, & J., “A robust frequency compensation scheme for LDO regulators,” Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on , Volume: 5 , 26-29 May 2002 Pages:V-825 - V-828 vol.5 [23 ] Ka Nang Leung; Mok, P.K.T.; Wing Hung Ki , ”A novel frequency compensation technique for low-voltage low-dropout regulator;” Circuits and Systems, 1999. ISCAS '99. Proceedings of the 1999 IEEE International Symposium on , Volume: 5 , 30 May-2 June 1999 Pages:102 - 105 vol.5id NH0925428012 sid 915009 cfn 0 / id NH0925428013 auc 薛富元 tic 由模擬來探討Floating Gate Memory及SONOS元件微小化之極限 adc 金雅琴 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 71 kwc 快閃記憶體 kwc 資料保存能力 kwc 浮動閘極 abc 快閃記憶體誕生的30年來,全世界隨著「摩爾定律」之下,不斷的追求高密度、操作更快速的記憶體, 使得記憶體在大約3年一個世代的推衍下不斷的微縮,當IC技術往奈米級推進,快閃記憶體所衍生出的問題也越來越多。因此在過去的數十年來針對快閃記憶體微縮後所遇到的問題的研究的文獻甚多,也有致力於其它的新型記憶體架構的研究,都是為了因應未來記憶體容量提升的需求。一般認為,在元件微縮後所導致的可靠度及操作干擾的問題,將會造成快閃記憶體縮小的極限。 tc 內文目錄 Abstract………………………………………………………………………….. i 摘要……………………………………………………………………………... ii 誌謝……………………………………………………………………………... iii 內文目錄………………………………………………………………………... iv 圖片目錄………………………………………………………………………... v 表格目錄………………………………………………………………………... vii 第一章 緒論…………………………………………………………………... 1 1.1 快閃記憶體優點及用途………………………………………… 1.2 論文內容簡介…………………………………………………… 1 2 第二章 快閃式計憶體之回顧………………………………………………... 4 第三章 ETOX和 SONOS 微縮探討及模擬理論基礎…………………….. 14 3.1 ETOX寫入及擦拭機制……………………………………………... 3.2 記憶體微縮優缺點探討…………………………………………….. 3.3 閘極氧化層微縮限制(TAT理論)…………………………………… 3.4 ETOX資料保存能力模擬程序及方法……………………………... 3.5 SONOS寫入及擦拭時電荷穿隧機制………………………………. 3.6 SONOS資料流失模型探討…………………………………………. 3.7 SONOS資料保存能力模擬程序及方法…………………………… 14 16 16 17 18 20 22 第四章 模擬結果與討論……………………………………………………... 34 4.1 ETOX相關模擬……………………………………………………… 34 4.1.1 ETOX微縮限制模擬……………………………………………. 4.1.2 ETOX漏電流機制模擬…………………………………………. 4.1.3 ETOX微縮資料保存能力模擬…………………………………. 34 35 35 4.2 SONOS相關模擬…………………………………………………… 37 4.2.1 SONOS寫入及擦拭模擬……………………………………….. 4.2.2 Poole-Frenkel Effect模擬…………………………………..…… 4.2.3 SONOS資料保存能力模擬…………………………………….. 37 37 38 4.3 模擬結果討論……………………………………………………….. 39 第五章 總結……………………………………………………………………. 62 參考文獻………………………………………………………………………... 64 附錄A記憶體元件寫入及擦拭定義…………………………………………... 66 附錄B ETOX Cell 預測保存能力程式………………………………….…….. 67 附錄C SONOS Cell 預測保存能力程式..…………………………………….. 69 附錄D程式所使用常數檔 …………………………………………………... 71rf 參考文獻 [1 ] William D. Brown, Joe E. Brewer, “Nonvolatile Semiconductor Memory Technology : A Comprehensive Guide to Understanding and Using NVSM Devices,” p.6- p.9, p.47-p.50 , IEEE Press. [2 ] Dov Frohman-Bentchkowsky, “A Fully Decoded 2048-Bit Electrically Programmable FAMOS Read-Only Memory,” IEEE J. Solid-State Circuits, Vol. sc-6, No. 5, p. 301, Oct. 1971. [3 ] Yunheub Song, ”Highly manufacturable 90nm nor flash technology with 0.081 cm2 Cell Size,” IEEE VLSI Technology, 2003. Digest of Technical Papers. [4 ] H. A. R. Wegener, A. J. Lincoln, et. at., “The variable threshold transistor, A new electrically alterable , non-destructive read-only storage device,” in IEDM Tech. Dig., Oct. 1967. [5 ] Simon Tam,Ping-Keung Ko,Chenmig Hu, “ Lucky-Electron Model of Channel Hot-Electron Injection in MOSFET’s “, IEEE Transactions On Electron Devices ,Vol ED-31,No.9, September 1984 [6 ] Kamohara, S.; Park, D.; Hu, C, “Deep-Trap SILC (Stress Induced Leakage Current)Model For Nominal and Weak Oxide,” Reliability Physics Symposium Proceedings, 1998. 36th Annual. 1998 IEEE International , 31 March-2 April 1998 Pages : 57 – 61 [7 ] Ting-Kuo Kang; Ming-Jer Chen; Chuan-Hsi Liu; Chang, Y.J.; Shou-Kong Fan, ” Numerical confirmation of inelastic trap-assisted tunneling (ITAT) as SILC mechanism,” Electron Devices, IEEE Transactions on , Volume: 48 , Issue: 10 , Oct. 2001 Pages:2317 - 2322 [8 ] Belgal, H.P.; Righos, N.; Kalastirsky, I.; Peterson, J.J.; Shiner, R.; Mielke, N,” A new reliability model for post-cycling charge retention of flash memories ”, Reliability Physics Symposium Proceedings, 2002. 40th Annual , 7-11 April 2002 Pages:7 - 20 [9 ] Margaret L. French and Marvin H. White, “Scaling of Multidielectric Nonvolatile SONOS Memory Structures,” Solid-State Electronics Vol. 37, No. 20, pp.1913- 1923, 1994. [10 ] Christer Svensson and Ingemar Lundström, “Trap-Assisted Charge Injection in MNOS Structures,” J. Appl. Phys., Vol. 44, No. 10, Oct. 1973. [11 ] Gritsenko, V.A.; Morokov, Yu.N.; Xu, J.B.; Pridachin, N.B.; Kalinin, V.V.; Ng, A.C.; Lau, L.W.M.; Kwok, R.W.M.”, Charge transport and nature of traps in implanted silicon nitride”, Electron Devices Meeting, 1999. Proceedings., 1999 IEEE Hong Kong , 26 June 1999 ,Pages:62 – 65 [12 ] Tahui Wang, “ Reliability models of data retention and read-disturb in 2-bit nitride storage flash memory cells (invited paper) “ , Electron Devices Meeting, 2003. IEDM '03 Technical Digest. IEEE International , Dec. 8-10, 2003 , Pages:169 – 172 [13 ] Ming-Hung Chang , “Effect of Device Structure on SONOS Operation Characteristics” Jul,2003. [14 ] Intel Corporation , “Intel StrataFlash Memory Technology , Application Note”, Dec 1998. [15 ] Hanafi, H.I.; Tiwari, S.; Khan, I., ” Fast and long retention-time nano-crystal memory” , Electron Devices, IEEE Transactions on , Volume: 43 , Issue: 9 , Sept. 1996 ,Pages:1553 – 1558 [16 ] Suhail, M. , “ Effects of Fowler Nordheim tunneling stress vs. Channel Hot Electron stress on data retention characteristics of floating gate non-volatile memories ” , Reliability Physics Symposium Proceedings, 2002. 40th Annual , 7-11 April 2002 , Pages:439 – 440 [17 ] Manabe, Y.; Okuyama, K.; Kubota, K.; Nozoe, A.; Karashima, T.; Ujiie, K.; Kanno, H.; Nakashima, M.; Ajika, N. ,” Detailed observation of small leak current in flash memories with thin tunnel oxides” ,Semiconductor Manufacturing, IEEE Transactions on , Volume: 12 , Issue: 2 , May 1999 Pages:170 – 174 [18 ] C.T. Swift, G.L. Chindalore, et al., “ An Embedded 90nm SONOS Nonvolatile Memory Utilizing Hot Electron Programming and Uniform Tunnel Erase,” IEDM 2002,pp.927-930. [19 ] Reisinger, H.; Franosch, M.; Hasle, B.; Bohm, T.,” A Novel SONOS Structure For Nonvolatile Memories With Improved Data Retention” , VLSI Technology, 1997. Digest of Technical Papers., 1997 Symposium on , June 10-12, 1997 , Pages:113 - 114 [20 ] Jiankang Bu, Marvin H. White, “Design considerations in scaled SONOS nonvolatile memory devices,” Solid-State Electronics Vol. 45, pp.113-120, 2001. [21 ] Sam pan , “Nonvolatile Memory Challenges toward Gigabit and Nano-scale Era and a Nano-scale Flash Cell : PHINES “ , SSDM , Nagoya , 2002, pp.152-153id NH0925428013 sid 915010 cfn 0 / id NH0925428014 auc 王千慧 tic 改良的共軛有機半導體單載子傳輸之電流密度與電壓關係式 adc 洪勝富 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 59 kwc 共軛有機高分子 kwc 空間電荷限制電流 abc 目前有機半導體的電壓、電流關係通常以Mott-Gurney式來作分析。Mott-Gurney式的推導主要是假設載子遷移率為常數,單一載子及無缺陷限制傳輸等。由此推導可得電流與電壓的平方成正比。但是許多的研究數據發現當外加高正偏壓,有機半導體的電流與電壓的2∼5次方成正比,而非單單二次方。實驗與理論的差異一般歸於載子遷移率會隨著電場增加而變大。典型分析數據的方式是直接將載子遷移率與電場的關係式,如Poole-Frenkel關係,代入Mott-Gurney式。然而,這與先前載子遷移率為常數的假設存在邏輯上的矛盾。雖然空間電荷限制電流模型已有更廣的發展,但是一個簡化、合於邏輯的近似解析解更有用於分析載子遷移率。 tc 摘要 Abstract 致謝 目錄 章節 第一章 序論...............1 1-1 研究背景 1-2 研究動機 1-3 本文結構 第二章 共軛有機高分子半導體電荷傳輸理論...........4 2-1 共軛有機高分子的特性 2-2 金屬與半導體接面 2-3 有機半導體的傳輸機制 2-3-1 蕭基接面載子注入制機 2-3-2 空間電荷限制電流理論 2-4 空間電荷限制電流理論 2-4-1單載子傳輸、無擴散電流情況下,Schottky Equations之簡化 2-4-2 Mott-Gurney equation的推導 2-5 高場效應與溫度效應 2-5-1 高場效應 2-5-2 溫度效應 2-5-3 載子遷移率的經驗式 2-6 考慮高場效應的Mott-Gurney equation 第三章 實驗架構.......................19 3-1 光罩的製作 3-2 前處理及清洗 3-3 上光阻-ITO 區域的定義 3-4 細部連接電極的製作 3-5 封裝測試 第四章 結果與討論................27 4-1 高場效應Mott-Gurney equation的推導 4-2 討論 4-3 參數粹取 4-3-1 新的參數粹取方法一 4-3-2 新的參數粹取方法二 4-3-3 傳統的參數粹取方法 4-3-4 、 與J—V之間的關係 4-4 實驗數據的參數粹取 4-4-1 新參數與傳統參數的比較 4-4-2 不同濃度、不同溶劑及時間對載子遷移率的影響 4-4-2-1 溶劑與濃度對載子遷移率之影響 4-4-2-2 時間因子對載子遷移率之影響 第五章 結論..............59 參考文獻rf [1-1.1 ] “Temperature-dependent single carrier device model for polymeric light emitting diodes” J M Lupton and I D W Samuel J. Phys. D: Appl. Phys. 32 (1999) 2973–2984. [1-1.2 ] “Electric-field and temperature dependence of the hole mobility in poly.p-phenylene vinylene.” P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster Phys. Rev. B, 55 R656 (1997) [1-1.3 ] “Consistent time-of-flight mobility measurements and polymer light-emitting diode current–voltage characteristics” I. H. Campbell and D. L. Smith C. J. Neef and J. P. Ferraris Appl. Phys. Lett. 74 2809 (1999) [2-3.1 ] “Regional approximation approach to space charge limited tunneling injection in polymer devices” M.Koehier and I.A.Hummelgen J.App.Phys. 87 3074 (2000) [2-3-1.1 ] “Carrier Injection into Semiconducting Polymers:Fowler-Nordheim Field-Emission Tunnelilng” A.J.Heeger,I.D.Parker,and Y.Yang Synth.Met. 67,23(1994) [2-3-1.2 ] “Physics of Semiconductor Devices” S.M.Sze [2-3-1.3 ] R.H.Fowler and L.Nordheim,Proc.R.Soc.London Ser. AA, 119, 173 (1928) [2-3-2.1 ] “Space-Charge-Limited Currents in Single Crystals of Cadmium Sulfide” R.W.Smith and A.Rose Phys. Rev 97,1531 (1955) [2-1.1 ][2-3-2.2 ] “Electrical Transport in Solids” Kwan C. Kao [2-5-1.1 ] “Electric-field dependence of mobility in conjugated polymer films” S. V. Rakhmanova and E. M. Conwell Appl. Phys. Lett. 76 3822 (2000) [ 2-5-1.2 ] “High-field hopping mobility in molecular systems which spatially correlated energetic disorder” Yu. N. Gartstein and E.M. Conwell Chemical Physics Letter 245 (1995) 351-358 [ 2-5-2.1 ] http://researchweb.watson.ibm.com/journal/rd/451/dimitrakopoulos.html Organic thin-film transistors: A review of recent advances by C. D. Dimitrakopoulos and D. J. Mascaroid NH0925428014 sid 915012 cfn 0 / id NH0925428015 auc 呂卓穎 tic 應用於WCDMA SiGe 0.35um 製程DC offset消除機制頻率合成器與低功率射入鎖定除頻器 adc 徐永珍 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 87 kwc 頻率合成器 kwc 射入鎖定除頻器 kwc 第三代無線通訊 kwc SiGe 0.35 製程 kwc 系統規劃 kwc 系統分析 kwc 直流偏移消除 abc 本論文藉由SiGe 0.35um 製程製作了應用於WCDMA一個低相位雜訊與DC offset消除機制的頻率合成器與低功率的射入鎖定除頻器,同時也對於整個WCDMA前端系統作了一非常詳細的分析與規劃。 rf 【1】 Friedhelm Hillebrand, GSM and UMTS, Wiley Press, 2002. 【2】 Harri Holma and Antti Toskala, WCDMA for UMTS, Wiley Press, 2001. 【3】 Aarno Prssinen, DIRECT CONVERSION RECEIVERS IN WIDE-BAND SYSTEM, KLUWER ACADEMIC PUBLISHERS Press, 2001. 【4】 Behzad Razavi, RF MICROELECTRONICS, PRENTICE HALL PTR Press, 1998. 【5】 William O.Keese, “An Analysis and Performance Evaluation of a Passive Filter Design Technique for Charge Pump Phase-Locked Loops”, National Semiconductor Application Note 1001, 1996.id NH0925428015 sid 915013 cfn 0 / id NH0925428016 auc 張耿孟 tic 應用於W-CDMA之整數型頻率合成器 adc 徐永珍 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 89 kwc 寬頻分碼多工多重擷取 kwc 頻率合成器 kwc 直接降頻 kwc 壓控振盪器 kwc 相位頻率檢測器 kwc 除頻器 abc 隨著積體電路和無線通訊技術的迅速發展,行動通信的使用愈來愈普及,服務內容也趨於樣化,第三代行動通訊服務也因應而生。 rf 參考文獻 [1 ] Behzad Razavi, “RF Microelectronics,” Prentice Hall Series in Mobile Communication, 1998. [2 ] Behzad Razavi, “Design Considerations for Direct-Conversion Communications,” IEEE Trans. Circuits Syst. II, vol. 44, pp. 428-435, June 1997. [3 ] J. H. Mikkelsen, T. E. Kolding, T. Larsen, T. Klingenbrunn, K. I. Pedersen, and P. Mogensen, “Feasibility Study of DC Offset Filtering for UTRA-FDD/WCDMA Direct-Conversion Receiver,” in Proc. 17th IEEE NORCHIP Conf., Oslo, Norway, Nov. 1999, pp. 34-39. [4 ] http://www.muruta.com [5 ] Third Generation Partnership Project (3GPP), “UE Radio Transmission and Reception (FDD),” Technical Specification 25.101, Vol. 3.0.0, October 1999. [6 ] Bala Ramachandran, John Vasa, and Aravind Loke, “Key Specifications and Implementation of WCDMA Receiver,” Proceedings of the 2001 International Symposium on VLSI Technology, Systems, and Applications, pp.49-52, April 2001. [7 ] O. K. Jensen, T. E. Kolding, C. R. Iversen, S. Laursen, R. V. Reynisson, J. H. Mikkelsen, E. Pedersen, M. B. Jenner, and T. Laursen, “RF Receiver Requirements for 3G W-CDMA Mobile Equipment,” Microwave J., pp.22-46, Feb. 2000. [8 ] http://www.sawnics.com [9 ] Behzad Razavi, “Design of Analog CMOS Integrated Circuits,” McGRAW-Hill international edition, 2001. [10 ] W. O. Keese, “An Analysis and Performance Evaluation of a Passive Filter Design Technique for Charge Pump PLL’s,” National Smiconductor Application Note, no. 1001, July. 2001. [11 ] J. C. Bor, “Course-Related Materials,” Department of Electrical Engineering, National Tsing-Hua University. [12 ] D. B. Leeson, “A Simple Model of Feedback Oscillator Noises Spectrum,” proc. IEEE, vol 54, pp. 329-330, Feb. 1966. [13 ] A. Hajimiri, and T. H. Lee, “Oscillator Phase Noise: a Tutotrial,” IEEE J. Solid-State Circuits, vol. 32, pp. 326-336, March. 2000. [14 ] Bram De Muer, M. Borremans, M. Steyaert, and G. Li Puma, “A 2-GHz Low-phase-noise Integrated LC-VCO Set with Flicker-noise Upconversion Minimization,” IEEE J. Solid-State Circuits, vol. 35, no. 7, pp. 1034-1038, July 2000. [15 ] Pietro Andreani, and Sven Mattisson, “On the Use of Mos Varactors in RF VCO’s,” IEEE J. Solid-State Circuits, vol. 35, pp. 905-910, June. 2000. [16 ] J. Rogers, J. Macedo, and C. Plett, “The Effect of Varactor Nonlinearity on Phase Noise of Completed Integrated VCOs,” IEEE J. Solid-State Circuits, vol. 35, pp. 1360-1367, Sept. 2001. [17 ] M. Rachedine, A. Das, M. Shah, J. Mondal, and C. Shurbboff, “Performance Review of Integrated CMOS VCO Circuits for Wireless Communications,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 77-80, 2003. [18 ] R. B. Merrill et al., “Optimization of High Q Integrated Inductors in Multi-level Metal CMOS,” IEDM Tech. Dig., pp.983-986, Dec. 1995. [19 ] M. Park et al., “High Q Microwave Inductors in CMOS Double-metal Technology,” IEDM Tech. Dig., pp. 59-62, Dec. 1997. [20 ] D. Lovelace, N. Camilleri, and G. Kannel, “Silicon MMIC Inductor Modeling for High Volume, Low Cost Applicationsd,” Microwave J., pp 60-71, Aug. 1994. [21 ] C. M. Hung, B. A. Floyd, N. Park, and K. O. Kenneth, “Fully Integrated 5.35-GHz CMOS VCOs and Prescalers,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 1, pp. 17-22, Jan. 2000. [22 ] Neric H. W. Fong, Jean-Olivier Plouchart, Noah Zamdmer, Duixian Liu, Lawrence F. Wagner, Calvin Plett, and N. Garry Tarr, “Design of Wide-band CMOS VCO for Multiband Wireless LAN Applications,” IEEE J. Solid-State Circuits, vol. 38, no. 8, pp. 1333-1342, Aug. 2003. [23 ] Zhenbiao Li, and Kenneth O, “A 900-MHz 1.5-V CMOS Voltage-Controlled Oscillator Using Switched Resonators with a Wide Tuning Range,” IEEE Microwave and Wireless Components Letters, vol. 13, no. 4, pp. 137-139, April 2003. [24 ] Domine M. W. Leenaerts, Cicero S. Vaucher, Hank Jan Bergveld, Michael Thompson, and Kevin Moore, “A 15-mW Fully Integrated I/Q Synthesizer for Bluetooth in 0.18-um CMOS,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1155-1162, July 2003. [25 ] Yuan-Kai Chu, and Huey-Ru Chuang, “A Fully Integrated 5.8 GHz U-NII Band 0.18-um CMOS VCO,” IEEE Microwave and Wireless Components Letters, vol. 13, no. 7, pp. 287-289, July 2003. [26 ] A. Kral, F. Behbahani, and A. A. Abidi, “RF-CMOS Oscillators with Switched Tuning,” Custom IC Conf., May 1998, pp. 555-558. [27 ] Tsung-Hsien Lin, and William J. Kaiser, “A 900-MHz 2.5-mA CMOS Frequency Synthesizer with an Automatic SC Tuning Loop,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 424-431, March 2001. [28 ] R. E. Best, “Phase –Locked Loops: Theory, Design, and Applications,” New York: McGraw-Hill, 1984. [29 ] H. Kondoh, H. Notani, T. Yoshimura, H. Shibata, and Y. Matsuda, “A 1.5-V 250-MHz to 3.0-V 622-MHz Operation CMOS Phase-Locked Loop with Precharge Type Phase-Detector,” IEICE Trans. Electron., vol. E78-C, no. 4, pp. 381-388, Apr. 1995. [30 ] G. B. Lee, P. K. Chan, and L. Siek, “A CMOS Phase Frequency Detector for Charge Pump Phase-Locked Loop,” Circuit and System, vol. 2, pp. 601-604, Aug. 1999. [31 ] Jae-Shin Lee, Min-Sun Keel, Shin-II Lim, and Suki Kim, “Charge Pump with Perfect Current Matching Characteristics in Phase-Locked Loops,” ELECTRONICS LETTERS, 9th, vol. 36, no. 23, pp. 1907-1908, Nov. 2000. [32 ] W. Rhee, “Design of High-Performance Charge Pumps in Phase-Locked Loops,” IEEE Press, 1999. [33 ] C. Y. Wu, “A 1.5V 5GHz Dual-Band Frequency Synthesizer,” MS Thesis, Institute of Electronics Engineering, National Tsing-Hua University, June 2002. [34 ] K. Ware et al., “A 200-MHz CMOS Phase-Locked Loop with Dual Detectors,” IEEE J. Solid-State Circuits, vol.24, no. 6, pp. 1560-1568, Dec. 1989. [35 ] Behzad Razavi, “Design of Integrated Circuits for Optical communications,” McGraw-Hill international edition, 2003. [36 ] S. Pellerano et al., “A 13.5-mW 5-GHz Frequency Synthesizer With Dynamic-Logic Frequency Divider,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 378-383, Feb. 2004. [37 ] J. N. Soares, and W. A. M. Van Noije, “A 1.6-GHz Dual Modulus Prescaler Using the Extended True-Single-Phase-Clock CMOS Circuit Technique (E-TSPC),” IEEE J. Solid-State Circuits., vol. 34, pp. 97-102, Jan. 1999. [38 ] Q. Huang, and R. Rogenmoser, “Speed Optimization of Edge-Triggered CMOS Circuits for Gigahertz Single-Phase Clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-465, Mar. 1996. [39 ] A. Lehner, R. Weigel, D. Sewald, H. Eichfeld, and A. Hajimiri, “Design of a Novel Low-Power 4th-Order 1.7 GHz CMOS Frequency Synthesizer for DCS-1800,” IEEE International Symposium on Circuits and Systems, vol. 5, pp. V-637-V640, May 2000. [40 ] Cicero S. Vaucher, “Architectures for RF Frequency Synthesizers,” Kluwer Academic Publishers, 2002. [41 ] Dean Banerjee, “PLL Performance, Simulation, and Design, 3rd Edition,” National Semiconductor Handbook, 2003. [42 ] http://www.rakon.com [43 ] C. K Chiu, “Design and Realization of CMOS RF Frequency Synthesizers,” MS Thsis, Graduate Institute of Electronics Engineering, National Taiwan University, June 2001.id NH0925428016 sid 915014 cfn 0 / id NH0925428017 auc 吳子忠 tic 應用於WCDMA高動態範圍及寬控制電壓之自動控制增益放大器 adc 徐永珍 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 77 kwc 自動控制增益放大器 kwc 可調增益放大器 kwc 寬控制電壓 kwc 高動態範圍 kwc 負迴授 kwc 補償電路 abc 本論文的目的在於設計一個適用於無線通訊的高動態範圍及寬控制電壓 rf 75 【1】John M. Khoury “On the Design of Constant Settling Time AGC Circuits” Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on , Volume: 45 Issue: 3 , March 1998 【2】Hung Yan Cheung “A low power monolithic AGC with automatic DC offset cancellation for direct conversion CDMA receiver”Department of Electrical and Electronic Engineering B.Eng. in Electronic Engineering, HKUST Hong 【3 】Chen-Yi Huang; Yung-Chow Peng; Chorng-Kuang Wang;”A BiCMOS automatic gain control amplifier for SONET OC-3”Custom Integrated Circuits Conference, 1995., Proceedings of the IEEE 1995 , 1-4 May 1995 【4】連倍興”CMOS IF/Baseband Analog Signal Processor for CDMA based IS-95 Communication System”, Department of Electronic Engineering, National Taiwan University, June 2002 【5】Hrng Yan Cheung,King Sau Cheung,Jack Lau “A Low Power Monolithic AGC with Automatic DC Offset Cancellation for Direct Conversion Hybrid CDMA Transceiver Used in Telemetering”Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE International Symposium on , Volume: 4 , 2001 【6】Hwang-Cherng Chow; I-Hsin Wang”High performance automatic gain control circuit using a S/H peak-detector for ASK receiver”Electronics, Circuits and Systems, 2002. 9th International Conference on , Volume: 2 , 15-18 Sept. 2002 【7】Takafumi Yamaji“A Temperature-Stable CMOS Variable-Gain Amplifier with 80-dB Linearly Controlled Gain Range”Solid-State Circuits, IEEE Journal of , Volume: 37 Issue: 5 , May 2002 【8】S.Khorram,A.Rofougaran,A.A.Abidi “A CMOS Limiting Amplifier and Signal-Strength Indicator”VLSI Circuits, 1995. Digest of Technical Papers., 1995 Symposium on , 1995 76 【9】S.Tadjpour,F.Behbahani,A.A.Abidi “A CMOS Variable Gain Amplifier for a Wideband Wireless Receiver”VLSI Circuits, 1998. Digest of Technical Papers. 1998 Symposium on , 1998 【10】Yonghui Tang; Geiger, R.L.;”A highly linear CMOS amplifier for variable gain amplifier applications”Circuits and Systems, 2002. MWSCAS-2002. The 2002 45th Midwest Symposium on , Volume: 1 , Aug. 4-7, 2002 【11 】Gopinathan, V.; Tarsia, M.; Choi, D.; “Design considerations and implementation of a programmable high-frequency continuous-time filter and variable-gain amplifier in submicrometer CMOS”Solid-State Circuits, IEEE Journal of, Volume: 34 Issue: 12 , Dec. 1999 【12】Po-Chiun Huang; Chen-Yi Huang; Chorng-Kuang Wang;”A 155-MHz BiCMOS automatic gain control amplifier”Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on , Volume: 46 Issue: 5 , May 1999 【13】Tacconi, E.J.; Christiansen, C.F.;”A wide range and high speed automatic gain control”Particle Accelerator Conference, 1993., Proceedings of the 1993 , 17-20 May 1993 【14】Green, M.M.; Joshi, S.;”A 1.5 V CMOS VGA based on pseudo-differential structures”Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on , Volume: 4 , 28-31 May 2000 【15】Watanabe, O.; Otaka, S.; Ashida, M.; Itakura, T.;”A 380-MHz CMOS linear-in-dB signal-summing variable gain amplifier with gain compensation techniques for CDMA systems”VLSI Circuits Digest of Technical Papers, 2002. Symposium on , 13-15 June 2002 【16】Harjani, R.;”A low-power CMOS VGA for 50 Mb/s disk drive read channels” Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on , Volume: 42 Issue: 6 , June 1995 【17】Pan, T.-W.; Abidi, A.A.;”A 50 dB variable gain amplifier using parasitic 77 bipolar transistors in CMOS”Solid-State Circuits, IEEE Journal of , Volume: 24 Issue: 4 , Aug. 1989 【18】Chunbing Guo; Luong, H.C.;”A 70-MHz 70-dB-gain VGA with automatic continuous-time offset cancellation”Circuits and Systems, 2000. Proceedings of the 43rd IEEE Midwest Symposium on , Volume: 1 , 8-11 Aug. 2000 【19】Song, W.C.; Oh, C.J.; Cho, G.H.; Jung, H.B.;”High frequency/high dynamic range CMOS VGA”Electronics Letters , Volume: 36 Issue: 13 , 22 June 2000 【20】Mangelsdorf, C.W.;”A variable gain CMOS amplifier with exponential gain control”VLSI Circuits, 2000. Digest of Technical Papers. 2000 Symposium on , 15-17 June 2000 【21】Weihsing Liu;Cheng-Chieh Chang; Shen-Iuan Liu;”Realisation of exponential V-I converter using composite NMOS transistors”Electronics Letters , Volume: 36 Issue: 1 , 6 Jan. 2000 【22】Motamed, A.; Hwang, C.; Ismail, M.;”CMOS exponential current-to-voltage converter”Electronics Letters , Volume: 33 Issue: 12 , 5 June 1997 【23】Chi-Hung Lin; Pimenta, T.C.; Ismail, M.;”A low-voltage CMOS exponential function circuit for AGC applications”Integrated Circuit Design, 1998. Proceedings. XI Brazilian Symposium on , 30 Sept.-3 Oct. 1998 【24】David Johns”Analog Integrated Circuit Design”, 1997 【25】Behzad Razavi, “RF Microelectronics” Prentice Hall PTR, 1998.id NH0925428017 sid 915015 cfn 0 / id NH0925428018 auc 陳憲部 tic 應用於WCDMA高動態範圍之自動控制增益放大器 adc 徐永珍 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 51 kwc 自動增益放大器 kwc 可變增益放大器 kwc 高動態增益範圍 abc 積體電路應用於無限通訊是近代的潮流,尤其是第三代無線通訊系統。在這篇論文中,提出一個自動增益放大器,應用於直接耦合的WCDMA通訊系統,其操作頻率在2.4GHz。該電路是由TSMC 0.35um SiGe BiCMOS製程所提供,其主要功能有高的動態增益範圍,且可以抵抗直流準位偏移的影響。其自動增益放大器的子電路包括可變增益放大器(Variable Gain Control Amplifier),峰值偵測器(Peak Detector),比較器(Comparator),電壓轉換器(V-V Converter)和偏壓電路(Bandgap Circuits)。在自動增益放大器的電路裡,有四級可變增益放大器,信號經由四級放大器放大,由峰值偵測器偵測其輸出信號,經由比較器比較,產生一個控制電壓,控制可變增益放大器的增益大小。若輸出信號太小,則負迴授迴路機制會把信號放大;若輸出信號太大,則負迴授迴路機制會把信號縮小,直到把輸出信號鎖在我們設計的值,也就是1Vpp。在模擬的結果可以得知,該電路有107dB的可調增益範圍。在全諧波失真要好於30dBc與輸出信號鎖在1Vpp的條件下,有69dB的動態增益範圍。該電路是操作在3.3V的電壓,其主要電路共消耗1.6mW的功率。最後,分析與比較其量測與模擬的結果。 rf 參考文獻 【1】 Friedhelm Hillebrand, “GSM and UMTS, The Creation of Global Mobile Communication”, John Wiley & Sons, LTD, 2002. 【2】 Chorng-Kuang Wang, Po-Chiun, “An Automatic Gain Control Architecture for SONET OC-3 VLSI”, Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on , Volume: 44 Issue: 9 , Sept. 1997. 【3】 H. Meyr and G. Rein, Ascheid, “Synchronization in Digital Communications”, New York, Wiley, 1990, vol. 1. 【4】 Paul R. Gray, etc, “Analysis and Design of Analog integrated circuits”, 4th Edition, Wiley, 2000. 【5】 Po-Chiun Huang, Chen-Yi Huang, Chorng-Kuang Wang, ”A 155-MHz BiCMOS automatic gain control amplifier”, Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, 1999. 【6】 Phillip E. Allen, Douglas R. Holberg, “CMOS Analog Circuit Design”, 2ed Edition, Oxford, 2002. 【7】 Drefiski T., Desclos L., Madihian M., Yoshida H., Suzuki H., Yamazaki T., ” A BiCMOS 300 ns attack-time AGC amplifier with peak-detect-and-hold feature for high-speed wireless ATM systems”, Solid-State Circuits Conference, 1999. Digest of Technical Papers. ISSCC. 1999 IEEE International. 【8】 Hung Yan Cheung, King Sau Cheung, Lau J., ” A low power monolithic AGC with automatic DC offset cancellation for direct conversion hybrid CDMA transceiver used in telemetering”, Circuits and Systems, 2001. ISCAS 2001. 【9】 Behzad Razavi, “Design of Analog CMOS Integrated Circuits”, McGRAW -HALL International Edition, 2001. 【10】 David Johns, Ken Martin, “Analog Integrated Circuit Design”, John Wiley & Sons, LTD, 1997. 【11】 Khoury, J.M., ” On the design of constant settling time AGC circuits”, Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on , Volume: 45 Issue: 3 , 1998. 【12】 F.Balteanu, M.Cloutier, “Charge-Pump Controlled Variable Gain Amplifier”, Electronics Letters, Volume: 34 Issue: 9, 30 April 1998. 【13】 Shoji Otaka, Gaku Takemura, “A low-power low-noise accurate linear-in-dB variable gain amplifier with 500 MHz bandwidth”, Solid-State Circuits Conference, 2000.id NH0925428018 sid 915016 cfn 0 / id NH0925428019 auc 許程琳 tic 應用於WCDMA高增益高線性度混波器分析與設計 adc 徐永珍 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 66 kwc 矽鍺 kwc 混波器 kwc 線性度 abc 本論文中主要針對直接降頻接收器(Direct-Conversion Receiver)架構中混波器進行設計與研究,並透過對元件特性的研究、電路的分析以及頻率的轉換原理來增進此架構中混波器的效能,降低因直接降頻所造成對訊號的干擾。並藉由CIC以及實驗室RFIC高頻量測系統來進行電路特性的量測。 rf 參考文獻 [1 ] Jan Crols and Michiel Steyaert, “CMOS Wireless Transceiver Design” Kluwer Academic Publishers, 1995. [2 ] Behzad Razavi, “RFIC Design Challenges ” Design Automation Conference, 1998. Proceedings , 15-19 June 1998 Page(s): 408 -413 [3 ] Keng Leong Fong and Robert G. Meyer, “Monolithic RF Active Mixer Design” Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on , Volume: 46 Issue: 3 , March 1999 Page(s): 231 -239 [4 ]B. Gilbert, “A Precise Four-Quadrant Multiplier with Subnanosecond Response” IEEE Journal of Solid-State Circuits, Volume: 3 Issue: 4 , Dec 1968 Page(s): 365 –373 [5 ]Manolis T. Terrovitis and Robert G. Meyer, “Intermodulation Distortion in Current-Commutating CMOS Mixers IEEE Journal of Solid-State Circuits, Vol. 35, NO. 10, October 2000 [6 ]Robert G. Meyer, “Intermodulation in High-Frequency Bipolar Transistor Integrated-Circuit Mixers” IEEE Journal of Solid-State Circuits, Vol. Sc-21, NO. 4, August 1986 [7 ]Christopher D. Hull and Robert G. Meyer, “A Systematic Approach to the Analysis of Noise in Mixers” IEEE Transactions on Circuit and System, Vol. 40, NO. 12, December 1993 [8 ]S.Reynold, B.Floyd, T. Beukema, T. Zwick, U. Pfeiffer, and H. Ainspan, “A Direct-Conversion Receiver IC for WCDMA Mobile Systems” IEEE BCTM 3.2, 2002 [9 ]Ali Karimi-Sanjaani, Henrik Sjoland, Asad A. Abidi, “A 2GHz Merged CMOS LNA and Mixer for WCDMA” Symposium on VLSI Circuits Digest of Technical Papers 2001 [10 ]Keng Leong Fong, and G. Meyer, “High-Frequency Nonlinearity Analysis of Common-Emitter and Differential-Pair Transconductance Stages” IEEE Journal of Solid-State Circuits, Vol. 33, NO. 4, April 1998 [11 ]Kiran Nimmagadda and Gabriel M. Rebeiz, “A 1.9GHz Double – Balanced Subharmonic Mixer for Direct Conversion Receiver” IEEE Radio Frequency Integrated Circuits Symposium 2001 [12 ]Liwei Sheng, Jonathan C. Jensen, and Lawrence E. Larson, “A Wide-Bandwidth Si/SiGe HBT Direct Conversion Sub-Harmonic Mixer/Downconverter” IEEE Journal of Solid-State Circuits, Vol. 35, NO. 9, September 2000id NH0925428019 sid 915017 cfn 0 / id NH0925428020 auc 陳信宏 tic 數位化交直流轉換器之功率因數校正電路 adc 龔正 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 111 kwc 功率因數 kwc 交直流轉換器 kwc 數位式 abc 這篇論文介紹一些電源轉換器的型式和功因校正電路的機制,並且對之前的一些論文加以研究,最後展現利用TSMC CMOS 0.35 ?慆 製程參數去實現數位的功因校正電路。 rf [1 ] Fu, M.; Chen, Q.,” A DSP based controller for power factor correction (PFC) in a rectifier circuit,” Applied Power Electronics Conference and Exposition, 2001. APEC 2001. Sixteenth Annual IEEE , Volume: 1 , 4-8 March 2001 Pages:144 - 149 vol.1. [2 ] Wanfeng Zhang; Guang Feng; Yan-Fei Liu; Bin Wu,” A new power factor correction (PFC) control method suitable for low cost DSP,” Telecommunications Energy Conference, 2002. INTELEC. 24th Annual International , 29 Sept.-3 Oct. 2002 Pages:407 – 414. [3 ] Yu Qin; Shanshan Du,” A novel adaptive hysteresis band current control using a DSP for a power factor corrected on-line UPS,” Industrial Electronics, Control and Instrumentation, 1997. IECON 97. 23rd International Conference on , Volume: 1 , 9-14 Nov. 1997 Pages:208 - 212 vol.1. [4 ] Van de Sype, D.M.; De Gusseme, K.; Van den Bossche, A.P.; Melkebeek, J.A,” A sampling algorithm for digitally controlled boost PFC converters,” Power Electronics Specialists Conference, 2002. pesc 02. 2002 IEEE 33rd Annual , Volume: 4 , 23-27 June 2002 Pages:1693 – 1698. [5 ] Gyeong-Hae Han; Bum-Suk Ko,” All-digital logic control PWM/PFC for inverter system,” Electronics, Circuits and Systems, 2000. ICECS 2000. The 7th IEEE International Conference on , Volume: 2 , 17-20 Dec. 2000 Pages:789 - 792 vol.2. [6 ] Ulhaq, S.M.; Shirakawa, S.; Nakaoka, M.; Takano, H,” Computer-aided simulation of digitally-controlled active single phase PFC converter,” Power Electronics and Variable Speed Drives, 1998. Seventh International Conference on (IEE Conf. Publ. No. 456) , 21-23 Sept. 1998 Pages:121 – 126. [7 ] de Castro, A.; Zumel, P.; Garcia, O.; Riesgo, T.; Uceda, J,” Concurrent and simple digital controller of an AC/DC converter with power factor correction based on an FPGA,” Power Electronics, IEEE Transactions on , Volume: 18 , Issue: 1 , Jan. 2003 Pages:334 – 343. [8 ] De Gusseme, K.; Van de Sype, D.M.; Melkebeek, J.A.A,” Design issues for digital control of boost power factor correction converters,” Industrial Electronics, 2002. ISIE 2002. Proceedings of the 2002 IEEE International Symposium on , Volume: 3 , 26-29 May 2002 Pages:731 - 736 vol.3. [9 ] Ya-Tsung Feng; Gow-Long Tsai; Ying-Yu Tzou,” Digital control of a single-stage single-switch flyback PFC AC/DC converter with fast dynamic response,” Power Electronics Specialists Conference, 2001. PESC. 2001 IEEE 32nd Annual , Volume: 2 , 17-21 June 2001 Pages:1251 - 1256 vol.2. [10 ] Mobin, S.; Hiraki, E.; Takano, H.; Nakaoka, M.,” Simulation method for DSP-controlled active PFC high-frequency power converters,” Electric Power Applications, IEE Proceedings- , Volume: 147 , Issue: 3 , May 2000 Pages:159 – 166. [11 ] Robert W. Erickson, Dragan Maksimoic’,”fundamentals of power electronics second edition,”Kluewr Academic Publishers, 2001. [12 ] Mohan, Undeland, Robbins,”Power Electronics”3rd edition, John Wiley& Sons, Inc. 2003. [13 ] Wilsun Xu, “Comparisons and comments on harmonic standards IEC 1000-3-6 and IEEE Std. 519”, Harmonics and Quality of Power, 2000. Proceedings. Ninth International Conference on , Volume: 1 , 1-4 Oct. 2000 Pages:260 - 263 vol.1. [14 ] F.C. Lee, P. Barbosa, X. Peng, J. Zhang, B. Yang and F. Canales,“Topologies and design considerations for distributed power system applications,” Proceedings of the IEEE, issue 6, June 2001, vol. 89, pp. 939 –950. [15 ] 王信雄博士, “高等電力專題,”Lecture note, Fall, 2003 . [16 ] A. Prasad, P Ziogas, S Manias “A Novel Passive Wave shaping Method for Single-Phase Diod Rectifiers” IEEE Transaction on Industrial Electronics, VOL 37, NO 6, December 1990, P521-30. [17 ] R. Redl, L. Balogh “Power-Factor Correction in Bridge and Voltage-Doubler Rectifier Circuits with Inductor and Capacitors” APEC’95, P446-72. [18 ] P. Parto and K. Smedley, "PASSIVE PFC FOR FLYBACK CONVERTORS." International Power Conversion and Intelligent Motion Conference (PCIM 99), Chicago. [19 ] C. Qiao and K. Smedley, "Improved Integration Control of Power Factor Correction" IEEE Industrial Electronics Conference (IECON), Nov. 1999. [20 ] Zaohong Yang and P.C. Sen, ”Recent Developments In High Power Factor Switch-mode Converters” Electrical and Computer Engineering, 1998. IEEE Canadian Conference on Volume:2, 1998, Page(2):477-480 vol.2 . [21 ]鄭全宏, ”應用數位信號處理器建構之並聯市電換流器,” 國立成功大學電機工程研究所碩士論文,” 民國87年. [22 ] Sangsun Kim and Dr. P. Enjeti, ”Digital Control of Switching Power Supply – Power Factor Correction Stage,” Power Electronics of Electrical Engineering, Texas A&M University. [23 ] Tanitteerapan, T.; Mori, S.,” An input current shaping technique for PFC flyback rectifier by using inductor voltage detection control method,” Electrical and Electronic Technology, 2001. TENCON. Proceedings of IEEE Region 10 International Conference on , Volume: 2 , 19-22 Aug. 2001 Pages:799 - 803 vol.2. [24 ] Wang, Z.,” A CMOS four-quadrant analog multiplier with single-ended voltage output and improved temperature performance,” Solid-State Circuits, IEEE Journal of , Volume: 26 , Issue: 9 , Sept. 1991 Pages:1293 – 1301. [25 ] Maundy, B.; Maini, M.,” Correction to "A comparison of three multipliers based on the technique for low-voltage applications",” Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on [see also Circuits and Systems I: Regular Papers, IEEE Transactions on ] , Volume: 50 , Issue: 10 , Oct. 2003 Pages:1370 – 1370. [26 ] Enomoto, T.; Yasumoto, M.-A.,” Integrated MOS four-quadrant analog multiplier using switched capacitor technology for analog signal processor ICs,” Solid-State Circuits, IEEE Journal of , Volume: 20 , Issue: 4 , Aug 1985 Pages:852 – 859. [27 ]林世宏,”電子安定器積體電路研製,” 清華大學電機工程研究所碩士論文, 民國86年6月. [28 ] Martin Rowe,” How do ADCs work?,” Test & Measurement World, July 2002. [29 ] Lin, Y.-M.; Kim, B.; Gray, P.R.,” A 13-b 2.5-MHz self-calibrated pipelined A/D converter in 3-μm CMOS,” Solid-State Circuits, IEEE Journal of , Volume: 26 , Issue: 4 , April 1991 Pages:628 – 636. [30 ] Dae Yong Kim, Gil Su Kim, Hoon Jae Ki, and Soo Won Kim,” 2.5 V, 10-bit, 50-MS/s CMOS Pipeline Low Power A/D Converter,” ASIC Design Lab., Dept. of Electronics Eng., Korea Univ. [31 ] Kannan Sockalingam and Rick Thibodeau,” 10-Bit 5MHz Pipeline A/D Converter,” July 30, 2002. [32 ] Yotsuyanagi, M.; Etoh, T.; Hirata, K.,” A 10 b 50 MHz pipelined CMOS A/D converter with S/H,” Solid-State Circuits, IEEE Journal of , Volume: 28 , Issue: 3 , March 1993 Pages:292 – 300. [34 ] Cho, T.B.; Gray, P.R..” A 10 b, 20 Msample/s, 35 mW pipeline A/D converter,” Solid-State Circuits, IEEE Journal of , Volume: 30 , Issue: 3 , March 1995 Pages:166 – 172. [35 ] Toshio Kumamoto, Osamu Matsumoto, Masao Ito, Takashi Okuda,Hiroyuki Momono*, Takahiro Miki, Keisuke Okada and Tadashi Sumi,” A 10-bit 50MS/s 300mW A/D Converter using Reference Feed-Forward Architecture,” System LSI Laboratory *Manufacturing Technology Division, Mitsubishi Electric Corporation 4-1 Mizuhara, Itami, Hyogo 664, Japan. [36 ] Behzad Razavi,” Design of Analog CMOS Integrated Circuits,” McGraw-Hall Higher Education, 2001. [37 ] Lee, G.B.; Chan, P.K.; Siek, L,” A CMOS phase frequency detector for charge pump phase-locked loop,” Circuits and Systems, 1999. 42nd Midwest Symposium on , Volume: 2 , 8-11 Aug. 1999 Pages:601 - 604 vol. 2. [38 ] Kuo-Hsing Cheng; Tse-Hua Yao; Shu-Yu Jiang; Wei-Bin Yang,” A difference detector PFD for low jitter PLL,” Electronics, Circuits and Systems, 2001. ICECS 2001. The 8th IEEE International Conference on , Volume: 1 , 2-5 Sept. 2001 Pages:43 - 46 vol.1. [39 ] Hee-Tae Ahn; Allstot, D.J.,” A low-jitter 1.9-V CMOS PLL for UltraSPARC microprocessor applications,” Solid-State Circuits, IEEE Journal of , Volume: 35 , Issue: 3 , March 2000 Pages:450 – 454. [40 ] Johansson, H.O.,” A simple precharged CMOS phase frequency detector,” Solid-State Circuits, IEEE Journal of , Volume: 33 , Issue: 2 , Feb. 1998 Pages:295 – 299. [41 ] Ya-Chin King,”Analog Circuit Design,”Lecture notes, chapter 7, Fall 2001. [42 ] Liang Dai; Harjani, R.,” CMOS switched-op-amp-based sample-and-hold circuit,” Solid-State Circuits, IEEE Journal of , Volume: 35 , Issue: 1 , Jan. 2000 Pages:109 – 113. [43 ] Yin, G.M.; Eynde, F.O.; Sansen, W.,” A high-speed CMOS comparator with 8-b resolution,” Solid-State Circuits, IEEE Journal of , Volume: 27 , Issue: 2 , Feb. 1992 Pages:208 – 211. [44 ] Daegyu Lee, Jincheol Yoo, Kyusun Choi, and Jahan Ghaznavi, ”Fat Tree Encoder Design For Ultra-High Speed Flash A/D Converters,” Circuits and Systems, 2002. MWSCAS-2002. The 2002 45th Midwest Symposium on , Volume: 2 , 4-7 Aug. 2002 Pages:II-87 - II-90 vol.2. [45 ] Pereira, P.; Fernandes, J.R.; Silva, M.M.,” Wallace tree encoding in folding and interpolation ADCs,” Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on , Volume: 1 , 26-29 May 2002 Pages:I-509 - I-512 vol.1. [46 ] Shi-Yu Huang, ”VLSI Design,” 2003.Spring,Leture note, Chapter 8.id NH0925428020 sid 915020 cfn 0 / id NH0925428021 auc 范士凱 tic 金屬(鈦)絕緣體(氧化鈦)穿隧電晶體試製與電性分析 adc 李雅明 adc 周亞謙 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 77 kwc 鈦 kwc 穿隧電晶體 kwc 局部氧化 kwc 原子力顯微儀 kwc 金屬絕緣體穿隧電晶體 abc 可以藉由在閘極上施加不同的電壓來控制穿隧通過絕緣體電流大小之金屬絕緣體穿隧電晶體已經實現出來了。在本次實驗中,使用爐管生成厚度為11 奈米(nm)閘極氧化層,接者利用電子槍蒸鍍系統鍍上奈米級厚度的金屬和金屬電極,在此時並利用二次離子質譜儀(secondary ion mass spectrometry, SIMS)以及穿透式電子顯微鏡(transmission electron microscope,TEM)照片分析來作金屬薄膜鈦(Ti)的物性方面的確認。最後,再使用接觸式原子力探針顯微儀(contact mode atomic force microscope,C-AFM)利用其導電性探針(探針尖端誘發氧化的原理)在極薄的鈦金屬薄膜(約奈米級的厚度)上作局部氧化,藉以產生金屬氧化物,用來製作金屬/絕緣體/金屬(鈦/氧化鈦/鈦,Ti/TiOx/Ti)結構,並完成金屬/絕緣層穿隧電流電晶體的製作。在電晶體中所謂的奈米尺寸之通道長度,亦即穿隧絕緣體(TiOx)的寬度為58.8 奈米,此數量級是本次實驗所得到最小的數值,利用這個樣品在通道的動態介電常數約1.7。另外,金屬絕緣體穿隧電晶體在室溫下的汲極電流對汲極電壓特性,也就是說利用閘極電壓來有效控制穿隧電流的大小,也可以從中觀察得到。但是卻發現汲極電流為汲極電壓的指數函數,換句話說,就是閘極的控制能力較汲極差。最後再利用自洽法(self-consistent method)的分析,可以得到在氧化鈦(TiOx)中的有效電子質量為0.48 m0和鈦/氧化鈦之間的能障高度為96毫電子伏特(meV)。 tc 第一章 緒論…………………………………………………………………………………… 1 1.1深次微米積體電路技術概況………………………………… 1 1.2金屬/絕緣體穿隧電晶體……………………………………… 2 1.3論文研究方向 ………………………………………………… 3 第二章 原理…………………………………………………………………………………… 5 2.1原子力顯微儀工作原理……………………………………… 5 2.2 傅勒-諾德翰穿隧 …………………………………………… 7 第三章 電晶體設計考量和製作流程……………………………………… 9 3.1設計考量……………………………………………………… 9 3.2製作流程……………………………………………………… 10 3.2.1第一道光罩(對準光罩)………………………………… 10 3.2.2第二道光罩(薄金屬圖樣光罩)………………………… 11 3.2.3第三道光罩(電極光罩)………………………………… 12 3.2.4局部氧化………………………………………………… 12 3.3元件製作上所遭遇到的困難………………………………… 13 第四章 金屬鈦薄膜基本物性分析………………………………………… 15 4.1 前言………………………………………………………… 15 4.2 二次離子質譜儀(SIMS)縱深分佈之分析………………… 15 4.3 穿透式電子顯微鏡(TEM)照相分析………………………… 16 4.4 原子力顯微儀製作及分析局部氧化的結果……………… 17 第五章 元件基本電性量測…………………………………………………… 18 5.1量測介紹 …………………………………………………… 18 5.2金屬/絕緣層/金屬結構(MIM)I-V量測…………………… 18 5.3閘極氧化層電流-電壓(IG-VG)量測 ……………………… 22 5.4元件電流-電壓(ID-VD)的量測……………………………… 22 5.5初步結果分析與討論 ……………………………………… 23 第六章 結論……………………………………………… 25 參考資料……………………………………………………. 27 實驗圖表…………………………………………………….. 31 附錄1 e-gun 操作步驟…………………………………… 66 附錄2 AFM 操作步驟…………………………………… 71 附錄3 高介電係數薄膜電容電性圖……………………… 76rf [1 ] S. M. Sze, “Semiconductor Devices Physics and Technology,” Wiley, New York, 1985. [2 ] C. K. Hiang, W. E. Zhang, and C. H. Yang, “Two-dimensional numerical simulation of schottky barrier MOSFET with channel length of 10 nm,” IEEE Trans. Electron Devices, vol. 45, no. 4, pp. 842-848, 1998. [3 ] C. Teague, “奈米技術發展近況,“ 量測資訊, vol. 80, pp. 12-13, 2001. [4 ] K. Fujimaru, R. Sasajima, and H. Matsumura, “Nanoscale metal transistor control of Fowler–Nordheim tunneling currents through 16 nm insulating channel,” J. Appl. Phys., vol. 85, pp. 6912-6916, 1999. [5 ] 羅士哲, 林熙翔, 和王鴻年, “掃瞄探針顯微鏡之原理與應用,“ 量測資訊, vol. 80, pp. 15-20, 2001. [6 ] J. A. Dagata, J. Schneir, and H. H. Harary, “Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air,” Appl. Phys. Lett., vol. 56, pp. 2001-2003, 1990. [7 ] L. Tsau, D. Wang, and K. L. Wang, “Nanometer scale patterning of silicon (100) surfaces by an atomic force microscope operating in air, ” Appl. Phys. Lett. , vol. 64, pp. 2133-2135, 1994. [8 ] P. M. Campbell, E. S. Snow, and J. S. Tsai, “Fabrication of nanometer- scale side-gated silicon field effect transistors with an atomic force microscope,” Appl. Phys. Lett., vol. 66 , pp. 1388-1390, 1995. [9 ] Y. Nakamura, D. L. Klein, and J. S. Tsai, “Al/Al2O3/Al single electron transistors operable up to 30 K utilizing anodization controlled miniaturization enhancement,” Appl. Phys. Lett., vol. 68, pp. 275-277, 1996. [10 ] E. S. Snow, D. Park, and P. M. Campbell, “Single-atom point contact devices fabricated with an atomic force microscope,” Appl. Phys. Lett., vol. 69, p. 269, 1996. [11 ] J. T. Sheu, S. P. Yeh, C. H. Wu, and K. S. You, “Nanometer-scale patterning on titanium thin film with local oxidation of scanning probe microscope,” Nanotechnology, 2002. IEEE-NANO 2002. Proceedings of the 2002 2nd IEEE Conference on, 26-28 Aug. 2002, pp. 363-367. [12 ] J. G. Simmons, “Carrier transport in thin insulator film,” J. Appl. Phys., vol. 34, p. 1793, 1963. [13 ] C. Hamann, H. Burghardt, and T. Frauenheim, Electrical conduction mechanisms in solids, 1988. [14 ] 李雅明, 固態電子學, 全華出版社, 1995, pp. 425-434. [15 ] E. S. Snow, P. M. Campbell, R. W. Rendell, F. A. Buot, D. Park, C. R. K. Marrian,and R. Magno, “A metal/oxide tunneling transistor,” Appl. Phys. Lett., vol. 72, pp. 3071-3073, 1998. [16 ] E. S. Snow, P. M. Campbell, R. W. Rendell, F. A. Buot, D. Park, C. R. K. Marrian, and R. Magno, “A metal/oxide tunneling transistor,” Semicond. Sci. Technol. vol. 13, p. A75-A78, 1998. [17 ] R. Sasajima, K. Fujimaru, and H. Matsumura, “A metal/insulator tunnel transistor with 16 nm channel length,” Appl. Phys. Lett., vol. 74, pp. 3215-3217, 1999. [18 ] K. Fujimaru, R. Sasajima, and H. Matsumura, “Nanoscale metal transistor control of Fowler–Nordheim tunneling currents through 16 nm insulating channel,” J. Appl. Phys., vol. 85, pp. 6912-6916, 1999. [19 ] D. Wang, L. Tsau, and K. L. Wang, “Nanofabrication of thin chromium film deposited on Si(100) surfaces by tip induced anodization in atomic force microscopy,” Appl. Phys. Lett., vol. 67, pp. 1295-1297, 1995. [20 ] Y. Takemura, S. Kidaka, K. Watanabe, Y. Nasu, and T. Yamada, “Applied voltage dependence of nano-oxidation of ferromagnetic thin films using atomic force microscope,” J. Appl. Phys., vol. 93, pp.7346-7348, 2003. [21 ] J. Shirakashi, M. Ishii, K. Matsumoto, N. MiuRa, and M. Konagai, “Surface modification of niobium (Nb) by atomic force microscope (AFM) nano-oxidation process,” Jpn. J. Appl. Phys., vol. 35, pp. L1524-L1527, 1996. [22 ] E. S. Snow, and D. Park, and P. M. Cambell, “Single-atom point contact devices fabricated with an atomic force microscope,” Appl. Phys. Lett., vol. 69, pp. 269-271, 1996. [23 ] Y. Gotoh, K. Matsumoto, and T. Maeda, “Experimental and theoretical results of room-temperature single-electron transistor formed by the atomic force microscope nano-oxidation process,” J. Vac. Sci. Technol. A, vol. 18, pp. 1321-1325, 2000. [24 ] B. Irmer, M. Kehrle, H. Lorenz, and J. P. Kotthaus, “Fabrication of Ti/TiOx tunneling barriers by tapping mode atomic force microscopy induces local oxidation,” Appl. Phys. Lett., vol. 71, pp. 1733-1735, 1997. [25 ] K. Matsumoto, “STM/AFM nano-oxidation process to room-temperature-operated single-electron transistor and other devices,” Proc. IEEE, vol. 85, pp. 612-628, April 1997. [26 ] H. R. Tsai, T. E. Hsieh, S. C. Lo, and H. H. Lin, “A study of oxide patterning on titanium thin films using scanning probe microscopy,” Nanotechnology, 2001. IEEE-NANO 2001. Proceedings of the 2001 1st IEEE Conference on, 28-30 Oct. 2001, pp. 218-222. [27 ] H. Sugimura, T. Uchida, N. Kitamura, and H. Masuhara, “Nanofabrication of titanium surface by tip-induced anodization in scanning tunneling microscopy,” Jpn. J. Appl. Phys., vol. 32, pp. 363-367, 1993. [28 ] K. Fujimaru and H. Matsumura, “Theoretical consideration of a new nanometer transistor using metal/insulator tunnel junction,” Jpn. J. Appl. Phys., vol. 35, p. 2090-2094, 1996. [29 ] H. Scherer, T. Weimann, P. Hinze, B. W. Samwer, A. B. Zorin,and J.Niemyer, “Characterization of all-chromium tunnel junctions and single-electron tunneling devices fabricated by direct-writing multiplayer technique,” J. Appl. Phys., vol. 86, pp. 6956-6964, 1999. [30 ] T. Wada, S. Haraichi, K. Ishii, H. Hiroshima, and M. Komuro, “The use of a Si-based resist system and Ti electrode for the fabrication of sub-10 nm metal-insulator-metal tunnel junctions,” J. Vac. Sci. Technol. A, vol. 16, pp.1430-1434, 1998. [31 ] A practical guide to scanning probe microscopy, Park Scientfic Instruments. [32 ] J. Shirakashi, K. Matsumoto, N. Miura, and M. Konagai, “Room temperature Nb/Nb oxide-based single-electron transistors,” in IEDM Tech. Dig., 1997, pp. 175-178. [33 ] H. Scherer, T. Weimann, A. B. Zorin, and J. Niemyer, “The effect of thermal annealing on the properties of Al-AlOX-Al single electron tunneling transistors,” J. Appl. Phys., vol. 90, p. 2528, 2001. [34 ] A. Olbrich, B. Ebersberger, and C. Boit, “Oxide thickness mapping of ultrathin Al2O3 at nanometer scale with conducting atomic force microscopy,” Appl. Phys. Lett., vol. 78, p. 2934, 2001. [35 ] K. Matsumoto, M. Ishii, J. Shirakashi, K. Segawa, and Y. Oka, “Comparison of experimental and theoretical results of room temperature operated single electron transistor made by STM/AFM nano-oxidation process,” Electron Devices Meeting, 1995., International, pp. 363-366, 10-13 Dec. 1995. [36 ] F. A. Buot, R. W. Rendell, E. S. Snow, P. M. Campbell, C. R. K. Marrian, and R. Magno, “Dependence of gate control on the aspect ratio in metal/metal-oxide/metal tunnel transistors,” J. Appl. Phys., vol. 84, pp. 1133-1139, 1998. [37 ] R. W. Rendell, F. A. Buot, E. S. Snow, P. M. Campbell, C. R. K. Marrian, and R. Magno, “Operation and design of metal-oxide tunnel transistors,” J. Appl. Phys., vol. 84, pp. 5021-5031, 1998. [38 ] F. A. Buot, R. W. Rendell, E. S. Snow, P. M. Campbell, C. R. K. Marrian, and R. Magno, “Fundamental operation and design considerations for metal-oxide tunnel transistors,” Computational Electronics, 1998. IWCE-6. Extended Abstracts of 1998 Sixth International Workshop, pp. 166-169, 1998. [39 ] A. Shaker and A. Zekry, “Theoretical investigation of single- and dual- gate MITT nanometer transistors ,” The First Egyptian Workshop on Advancements of Electronic Devices (EWAED)., pp. 92-108, 2002.id NH0925428021 sid 915023 cfn 0 / id NH0925428022 auc 荊溪瑞 tic 應用於WCDMA雙模式差動低雜訊放大器分析與設計 adc 徐永珍 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 73 kwc 低雜訊放大器 kwc 雜訊 abc 射頻前端電路的傳收器包含了接收器(Receiver)和傳送器(Transmitter),其中包括天線、濾波器(Filter)、低雜訊放大器(Low-noise Amplifier,LNA)、混波器(Mixer)、功率放大器(PA)、合成器(Synthesizer)、A/D與D/A 轉換器(Converter)。在以前的射頻前端電路設計中,較常被使用的有GaAs、Bipolar或BiCMOS等製成技術。然而著科技的日益進步,低成本、高效能、高整合度的製程技術已成為未來發展的趨勢,而現今又已CMOS與SiGe HBT兩套製成最為熱門。CMOS具有與後級數位電路高度的整合以及低成本的優點,使得嚴然成為現今市場上的主流。而SiGe HBT以優良的performance在許多高階產品中也受到相當的重視。而本次論文就是以這兩套先進製成同時設計一個符合WCDMA規格的低雜訊放大器。從整個RF雜訊原理為出發,以最低雜訊設計為基礎,從元件的選取、輸入與輸出網路的匹配、S參數的模擬、線性度的考量到偏壓電路的設計,並且實際送件並進行量測,將這兩種製成做一個完整的設計流程,並且對在做低雜訊放大器時所有的技巧與遇到的問題做討論與分析。電路架構上採用差動(Differential)設計,並且為了後級電路在線性度上的要求,採用雙模式的增益切換電路,以達到整個系統的規格需求。最後晶片在PCB板上做差動的量測,並做比較以討論兩套製成的優缺點以及其設計上的差別。 rf [1 ] Behzad Razavi, “RFIC Design Challenges” IEEE, 1998. [2 ] B. S. Meyerson, “Low-temperature silicon epitaxy by ultra-high vacuum/chemical vapor deposition,” Appl. Phys. Lett., vol. 48, pp. 797-799, May. 1986. [3 ] G. F. Niu, S. Zhang, J. D. Cressler, A. J. Joseph, J. S. Fairbanks, L. E.Larson, C. S. Webster, W. E. Ansley, and D. L. Harame, “SiGe profile design tradeoffs for RF circuit applications,” in Tech. Dig. IEDM, 1999,pp. 573–576. [4 ] Guofu Niu, Shiming Zhang, John D. Cressler,Alvin J. Joseph, John S. Fairbanks, Lawrence E. Larson, Charles S. Webster,William E. Ansley, and David L. Harame,” Noise modeling and SiGe profile design tradeoffs for RF applications,” IEEE Trans. Electron Devices, vol. 47, pp. 2037–2044, 2000. [5 ] D. L. Harame, J. H. Comfort, J. D. Cressler, E. F. Crabbe, J. Y.-C. Sun, B. S. Meyerson, and T. Tice, ”Si/SiGe Epitaxial-Base Transistor-Part I: Materials, Physics, and Circuits” IEEE Trans. Electron Devices, Vol. 42, no. 3, pp. 455-467, Mar. 1995. [6 ] D. L. Harame, J. H. Comfort, J. D. Cressler, E. F. Crabbe, J. Y.-C. Sun, B. S. Meyerson, and T. Tice, ”Si/SiGe Epitaxial-Base Transistor-Part II: Process Integration and Analog Application” IEEE Trans. Electron Devices, Vol. 42, no. 3, pp. 469-482, Mar. 1995. [7 ] Behzad Razavi “Design od Analog CMOS Integrated Circuits [8 ] Behzad Razavi “RF MICROELECTRONICS” [9 ] Sorin P. Voinigescu,Member,IEE, Michael C. Mailiepaard“A scalable High-frequency Noise Model for Bipolar Transistors with Application to Optimal Transistor Sizing for Low-Noise Amplifier Design” IEEE JOURNAL OF SOLID-STATE CIRCUITS. VOL.32, NO. 9. SEPTEMBER 1997 [10 ] “Frequency-scalable SiGe bipolar RF front-end design”--Osama Shana’a, Student Member, IEEE, Ivan Linscott, Member, IEEE, and Len Tyler, Fellow, IEEE 2001 [11 ] Derek K. Shaeffer, Student Member, IEEE, and Thomas H. Lee, Member, IEEE:A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 32, NO. 5, MAY 1997 [12 ] Keng Leong Fong“Dual-band high-linearity variable-gain low-noise amplifiers for wireless applications”ISSCC99/SEASON13/PAPER TP13.3 [13 ] Hirad Samavati,Student Member,IEEE,Hamic R.Rategh,Student Member,IEEE,and Thomas H.Lee,Member,IEEE,”A 5-GHz CMOS Wireless LAN Receiver Front End”IEEE JOURNAL OF SOLID-STATE CIRCUITS,VOL.35,NO.5,MA?Y 2000 [14 ] David T. Cassan, John R. Long “A 1V 0.9db NF Low noise amplifier for 5-6GHz WLAN in 0.18um CMOS”, IEEE 2002 CUSTOM INTEGRATED CIRCUITS CONFERENCEid NH0925428022 sid 915024 cfn 0 / id NH0925428023 auc 黃文彬 tic 0.35um SiGe BiCMOS 5.2 GHz 射頻主動電感的設計與應用 adc 龔正 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 英文 pg 85 kwc 主動電感 kwc 主動負載低雜訊放大器 abc 在本篇論文中,我們使用了0.35μm SiGe BiCMOS 製程設計一個可操作至射頻範圍的主動電感,並將設計的主動電感應用於實際電路中。第一章描述本篇論文的研究動機以及各章節的組織安排。第二章中,我們討論了現代製程中常被使用的各式電感,包含平面螺旋電感、金屬打線電感和以gyrator為核心結構的主動式電感。在第三章中,我們討論不同的設計考量與電路結構內各元件對主動電感特性的影響。其中,使用一個回授電阻可以有效的提升電感的品質因素,再加上一個額外的電容可以改變主動電感的等效電感值。結合這兩種方法可以輕易的設計出品質因素大於20的主動電感,並在某些特定的場合能夠有效的取代由晶圓廠所提供的平面螺旋電感,除了有效提升品質因素,主動電感並可以明顯的減少晶片面積消耗。第四章中,我們比較分別使用平面螺旋電感和主動電感當負載的低雜訊放大器,其中使用被動電感當負載的S11 和 S22 皆在5.2GHz時小於-10dB,S21 為 15.9dB,雜訊指數為2.25dB,功率消耗為11.6mW。而主動負載的低雜訊放大器同樣具有S11 and S22 在5.2GHz時小於-10dB,S21 為 20dB,雜訊指數為4dB,功率消耗為16.5mW。最後於第五章為本論文結論與未來繼續研究的方向。 rf [1 ] H. Greenhouse, “Design of Planar Rectangular Microelectronic Inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, pp.101 – 109, Vol. 10, Issue: 2 , Jun 1974. [2 ] Nguyen, N.M.; Meyer, R.G, “Si IC-compatible inductors and LC passive filters,” IEEE J. Solid State Circuits, pp. 1028-1031, Vol. 25, no. 4, 1990. [3 ] M. Park, S. Lee, H. K. Yu, J. G. Koo, and K. S. Nam, “High Q CMOS-compatible microwave inductors using double-metal interconnection silicon technology,” IEEE Microwave Guided Wave Lett., pp. 45-47, Vol. 7, Feb. 1997. [4 ] Burghartz, J.N.; Jenkins, K.A.; M. Soyuer,” Multilevel-spiral inductors using VLSI interconnect technology,” IEEE Electron Device Lett., pp. 428-430, Vol. 17, Sept. 1996. [5 ] Ming-Chun Hsieh; Yean-Kuen Fang; Chung-Hui Chen; Shuo-Mao Chen; Wen-Kuan Yeh,”Design and fabrication of deep submicron CMOS technology compatible suspended high-Q spiral inductors,” IEEE Transactions on Electron Devices, pp. 324 – 331, Vol. 51, March 2004. [6 ] J. Y.-C. Chang, A. A. Abidi, M. Gaitan, “Large suspended inductors on silicon and their use in a 2-μm CMOS RF amplifier,” IEEE Electron Device Lett., pp. 246-248, Vol. 14, no. 5, 1993. [7 ] P. Q. Chen and Y. J. Chan, “Improved microwave performance on low-resistivity Si substrates by Si+ ion implantation,” IEEE Trans. Microwave Theory Tech., pp. 1582-1585, Vol. 48, Sept. 2000. [8 ] Yong-Goo Lee; Sang-Ki Yun; Hai-Young Lee, “Novel high-Q bondwire inductor for MMIC,” Electron Devices Meeting, IEDM '98 Technical Digest., International, pp.548 – 551, Dec. 1998. [9 ] Sung-Jin Kim; Yong-Goo Lee; Sang-Ki Yun; Hai-Young Lee, “Realization of high-Q inductors using wirebonding technology,” The First IEEE Asia Pacific Conference on ASICs, AP-ASIC '99., pp.13 – 16, Aug. 1999. [10 ] Hara, S.,” Broad-band monolithic microwave active inductor and its application to miniaturized wide-band amplifiers,” IEEE Trans. on Microwave Theory and Techniques, pp.1920 – 1924, Vol. 36, no. 12, Dec. 1988 [11 ] Hara, S.; Tokumitsu, T.; Aikawa, M., “Lossless broad-band monolithic microwave active inductors,” Microwave Symposium Digest, IEEE MTT-S International, pp.1229 – 1232, Vol.3, June 1996. [12 ] Thanachayanont, A.; Payne, A.,”VHF CMOS integrated active inductor,” Electronics Letters, pp.999 – 1000, Vol. 32, Issue: 11, 23 May 1996. [13 ] G. Mascarenhas, J. Caldinhas Vaz, and J. Costa Freire, “ CMOS active inductors for L band,” in Asia-Pacific Microwave Conf., Tech. Dig., pp. 157-160, 2000. [14 ] Bialko, M., “Realizations of Inductive and Capacitive Gyrators,” IEEE Transactions on Circuits and Systems, pp.158 – 160, Vol. 15, Jun 1968. [15 ] Fu Tz-heng, Feng Wu-shiung, “A 2.4-GHz CMOS RF Low Noise Amplifier with Active Load,” NTU Thesis, R.O.C., 1999 [16 ] Sackinger. E., W. Guggenbuhl., “A high swing high-impedance MOS cascode circuit,” IEEE J. Solid-State Circuits, pp. 289-298, 1990. [17 ] Bult, K. Gielen., J.G.M., “A fast-settling CMOS op-amp for SC circuits with 90-dB gain,” IEEE J. Solid-State Circuits, pp. 1379-1384, 1990. [18 ] Thomas H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits,” Cambridge University Press, 1998. [19 ] Y. C. Hsu, M. L. Sheu, “Design of CMOS Low Noise Amplifier for 5.2GHz Wireless Local Area Network,” NCNU Thesis, R.O.C., 2003. [20 ] 呂學士編譯, 本城和彥原著, “ 微波通訊半導體電路,” 全華科技, 2001 [21 ] C. J. Chang, S. I. Liu, “CMOS Low Noise Amplifier,” NTU Thesis, R.O.C., 2001. [22 ] David A. Johns, Ken Martin, “Analog Integrated Circuit Design,” Wiley,1997. [23 ] Chao-Chih Hsiao, Chin-Wei Kuo, Chien-Chih Ho, Yi-Jen Chan, “Improved quality-factor of 0.18-/spl mu/m CMOS active inductor by a feedback resistance design,” IEEE Microwave and Wireless Components Letters , pp. 467-469, Vol. 12 , Issue: 12 , Dec. 2002 [24 ] I. E. Ho and R. L. Van Tuyl, “Inductorless monolithic microwave amplifiers with directly cascaded cells,” in IEEE MTT-S Tech. Dig., pp. 515-518, Vol. 1, May 1990. [25 ] Mascarenhas, G.., Caldinhas Vaz, J., Costa Freire, J., “CMOS active inductors for L band,” Microwave Conference, 2000 Asia-Pacific, pp. 157-160, 3-6 Dec. 2000 [26 ] Thanachayanont, A., “CMOS transistor-only active inductor for IF/RF applications,” Industrial Technology, 2002. IEEE ICIT '02. 2002 IEEE International Conference, pp. 1209-1212, Vol. 2, 11-14 Dec. 2002 [27 ] Behzad Razavi, “RF Microelectronics,” Pearson Education Taiwan Ltd., 2003. [28 ] Derek K. Shaeffer and Thomas H. Lee, “A 1.5V, 1.5GHz CMOS Low Noise Amplifier,” IEEE J. of Solid-State Circuits, pp. 745-759, Vol. 32, no.5, May 1997. [29 ] Po-Wei Lee, Shey-Shi Lu, “The Design and Implimentation HBT Low Noise Amplifiers,” NTU Thesis, R.O.C., 2002. [30 ] Guillermo Gonzalez, “Microwave transistor amplifiers: analysis and design,” Prentice Hall, 1984. [31 ] Sadowy J., Graffeuil J., Tournier E., Escotte L., Plana R., “Advanced design of high linearity, low noise amplifier for WLAN using a SiGe BiCMOS technology,” Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2001. Digest of Papers, pp. 6-11, 12-14 Sept. 2001 [32 ] Erben U., Sonmez E., “Fully differential 5 to 6 GHz low noise amplifier using SiGe HBT technology, ” Electronics Letters, pp. 39-41, Vol. 40, Issue: 1 , 8 Jan. 2004 [33 ] Thanachayanont A., Payne A., “A 3-V RF CMOS bandpass amplifier using an active inductor,” Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, ISCAS '98., pp. 440-443, Vol. 1, 31 May-3 June 1998 [34 ] Zhuo, W.; de Gyvez, J.P.; Sanchez-Sinencio, E., “Programmable low noise amplifier with active-inductor load,” Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, 1998. ISCAS '98, pp.365-368, Vol. 4, 31 May-3 June 1998 [35 ] Sharaf K, “2-V, 1-GHz CMOS inductorless LNAs with 2-3dB NF,” Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, pp. 714-717, Vol. 2, 8-11 Aug. 2000 [36 ] Jhy-Neng Yang; Yi-Chang Cheng; Terng-Yin Hsu; Terng-Ren Hsu; Chen-Yi Lee, “A 1.75 GHz inductor-less CMOS low noise amplifier with high-Q active inductor load,” Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems, 2001. MWSCAS ‘01, pp. 816-819, Vol. 2, 14-17 Aug. 2001id NH0925428023 sid 915025 cfn 0 / id NH0925428024 auc 王順源 tic 利用脈衝寬度調變操作在省電模式之高效率切換式穩壓器 adc 連振炘 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 60 kwc 切換式穩壓器 kwc 降壓式轉換器 kwc 脈衝寬度調變 kwc 輕負載電流 kwc 功率轉換效率 kwc 電流取樣電路 abc 論文的內容主要是設計一個直流轉直流的電壓轉換器。針對降壓切換式穩壓器在輕負載電流時的轉換效率降低,控制電路提供一組迴路來減少切換次數和降低靜態操作電流。可以使輕負載電流時的轉換效率提升,但輸出電壓漣波會變大。 tc 摘要 Ⅰ 誌謝 Ⅱ 目錄 Ⅲ 圖目錄 Ⅵ 1. 緒 論…………………………………………………………………1 1.1 背景簡介……………………………………………………………1 1.2 研究動機……………………………………………………………2 1.3 論文架構……………………………………………………………3 2. 切換式電源供應器概論………………………………………………4 2.1 簡介…………………………………………………………………4 2.1.1 線性穩壓器………………………………………………………4 2.1.2 切換式穩壓器……………………………………………………5 2.2 切換式電源供應器分類……………………………………………6 2.2.1 降壓式轉換器……………………………………………………7 2.2.2 其他類型轉換器…………………………………………………9 2.3 控制電路分類………………………………………………………11 2.3.1 電壓模式…………………………………………………………11 2.3.2 電流模式…………………………………………………………12 3. 高效率脈衝寬度調變架構…………………………………………17 3.1 切換式穩壓器規格…………………………………………………17 3.1.1 功率轉換效率……………………………………………………17 3.1.2 切換式穩壓器暫態響應…………………………………………20 3.2 脈衝寬度調變或脈衝頻率調變……………………………………22 3.3 有突變模式的脈衝寬度調變………………………………………25 3.4 有電流評估的脈衝寬度調變………………………………………29 4. 高效率脈衝寬度調變電路設計……………………………………31 4.1 整個架構……………………………………………………………31 4.2 偏壓電路和帶差參考電壓…………………………………………32 4.3 誤差放大器…………………………………………………………36 4.4 比較器、時脈產生器和斜率補償電路……………………………39 4.5 電流取樣電路和控制電路…………………………………………42 5. 高效率降壓式轉換器模擬結果……………………………………46 5.1 整個架構……………………………………………………………46 5.2 電路模擬結果………………………………………………………47 5.3 同步整流架構以及模擬結果………………………………………55 5.4 結論…………………………………………………………………58 參考文獻…………………………………………………………………59rf [1 ] Jan M.Rabaey, Anantha Chandrakasan and Borivoje Nikolic, “Digital Integrated circuit,” Prentice Hall, 2002. [2 ] Daniel W. Hart, “Introduction to Power Electronics,” Prentice Hall, 1997. [3 ] B. Murari, F. Bertotti and G.A. Vignola, “Smart Power ICs,” Springer, 2002. [4 ] Robert W. Erickson and Dragan Maksimovic, “Fundamentals of Power Electronics,” SCI-TECH, 2001. [5 ] Lu Chen, Bingxue Shi and Chun Lu, “Design and Test of a Synchronous PWM Switching Regulator System,” IEEE APCCAS, pp. 517-520, 2000. [6 ] Pressman, Abraham I., “Switching Power Supply,” McGraw-Hill, 1992. [7 ] Anthony John Stratakos, “High-Efficiency Low-Voltage DC-DC Conversion for Portable Applications,” Master thesis of U.C. Berkeley, U.S.A., 1998. [8 ] Tsung-Yin Yu, “A High-Efficiency Synchronous CMOS Switching Regulator with PWM/PFM-Mode Operation,” Master thesis of National Chiao Tung University, Taiwan, 2003. [9 ] “TPS62200: High-Efficiency, SOT23 Step-Down, DC-DC Converter,” Texas Instrument Inc., Oct. 2002. [10 ] Milton E. Wilcox, “Circuit and Method for Reducing quiescent current in switching regulator,” United States Patent No.6366066, 2002. [11 ] “LTC1772: Constant Frequency Current Mode Step-Down DC/DC Controller in SOT-23,” Linear Technology Inc., Oct. 1999. [12 ] X. Zhou, Mauro Donati, Luca Amoroso, and F. C. Lee, “Improved Light-Load Efficiency for Synchronous Rectifier Voltage Regulator Module,” IEEE Transactions on Power Electronics, vol. 15, pp. 826-834, Sep. 2000. [13 ] X. Zhou, Mauro Donati, Luca Amoroso, and F. C. Lee, “Improve Light Load Efficiency for Synchronous Rectifier Buck Converter,” Applied Power Electronics Conference and Exposition, APEC, vol. 1, pp. 295-302, 1999. [14 ] Behzad Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hill, Inc., 1997. [15 ] Ka Nang Leung and Mok, P.K.T., “A Sub-1-V 15-ppm/℃ CMOS Bandgap Voltage Reference Without Requiring Low Threshold Voltage Device,” IEEE J. Solid-State Circuits, pp. 526 -530, Apr 2002. [16 ] R.Jacob Baker, Harry W. Li and David E. Boyce “CMOS circuit design, layout, and simulation,” IEEE press, John Wiley and Sons, Inc., 1998. [17 ] David A. Johns and Ken Martin, “Analog Integrated Circuit Design,” John Wiley and Sons, Inc., 1997. [18 ] Phillip E. Allen and Douglas R. Holberg, “CMOS Analog Circuit Design,” Oxford university press, 2002.id NH0925428024 sid 915026 cfn 0 / id NH0925428025 auc 鄭兆陞 tic 以六氟矽化銅為電解液之低應力電鍍銅膜之特性 adc 黃惠良 adc 吳幼麟 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 英文 pg 59 kwc 六氟矽化銅 kwc 低應力銅膜 abc 當積體電路(IC)跨入深次微米時代,元件的尺寸逐漸縮小而且導線本身也變的更薄更窄,導線中的電阻及電流密度也隨之增加,使得RC的延遲時間與焦耳熱增加。先前所使用的鋁內接導線將面臨到高性能和內接導線可靠度的問題。由於銅具備低電阻和較優良的抗電阻遷移特性,因而銅被認為是最適合用來取代鋁的金屬。當積體電路製程進入0.18微米技術節點時,銅導線更是變成金屬連線的主流。 tc Abstract (In Chinese)..............................A Abstract (In English)..............................B Acknowledgement (In English).......................D Contents...........................................I Table caption....................................III Figure caption....................................IV Chapter 1 Intorduction............................1 1-1 Characteristics of Copper......................2 1-2 Methods for Copper Deposition..................3 1-3 Electroplating Deposition (EP).................6 1-3.1 Process Chemistry............................6 1-3.2 Impacts of Seed Layer........................7 1-4 Motivation.....................................8 Chapter 2 Basic Properties of Electroplating Copper film...................................10 2-1 Mechanism of Electroplating...................10 2-2 Stress........................................11 2-3 Self-annealing in as-deposited Copper Film....12 2-4 Electromigration..............................13 Chapter 3 Experimental Details...................16 3-1 Introduction..................................16 3-2 Sample Preparation............................17 3-3 System Configuration..........................18 3-4 The Metrology Tools...........................20 3-4.1 Four-Point Probe............................20 3-4.2 Scanning Electron Microscopy (SEM)..........20 3-4.3 X-ray Diffraction (XRD).....................20 3-4.4 Energy Dispersive X-ray Spectrometer (EDX)..21 3-4.5 FLX-2320 (Thin-Film Stress).................21 3-4.6 Semiconductor Parameter Analyzer HP 4156A...22 3-5 Structures for Reliability Test...............22 Chapter 4 Results and Discussion.................25 4-1 Resistivity...................................25 4-1.1 Resistivity and Self-Annealing Effect of Copper Films Deposited by CuSiF6 and CuSO4 Mixed Electrolyte.................................25 4-1.2 Resistivity and Self-annealing Effect of Copper Films Deposited by CuSiF6 and CuSO4 Electrolyte on Different Substrate................27 4-2 SEM Analysis..................................29 4-3 Growth Rate...................................30 4-4 XRD Analysis..................................31 4-5 Wet Etching Rate..............................32 4-6 EDX Analysis..................................33 4-7 Stress........................................34 4-8 Reliability Test..............................35 Chapter 5 Conclusion & Future Work...............54 5-1 Conclusion....................................54 5-2 Future Work...................................56 Reference .........................................58rf [1 ] V.Arita, Semiconductor World, p.158 December 1993. [2 ] J. D. McBrayer, R. M. Swanson, and T. W. Sigmon, J. Electrochem. Soc., 133, 1242, 1993. [3 ] Y. Shacham-/Diamond, A. Dedia, D. Hoffsterr, and W.G. Oldham, J. Electrochem. Soc., 140, 2427, 1993. [4 ] K.L. Choy, Progress in Materials Science, 48, pp. 57–170, 2003. [5 ] K. Takahashi. J. “Electroplating Copper onto Resistive Barrier Films” Electrochem. Soc., 147, (4), pp. 1414-1417, 2000. [6 ] H. Brown and R. Fellows: US patent 2882209, Apr.14, 1959. [7 ] O. Kardos, D. Arcelesi and S. Valayil: US patent 3956120, May 11, 1976. [8 ] A. Steponavicius, S. Lichusina, A. Surviliene and A. Sudavicius, Chemija., 3, 64,1997. [9 ] J. J. Kelly and A. C. West: “Copper Deposition in the Presence of Polyethylene Glycol. I. Quartz Crystal Microbalance Study” Electrochem. Soc., 145, 3472, 1998. [10 ] J.J. Kelly, C. Tian and A. C. West: “Leveling and Microstructural Effects of Additives forCopper Electrodeposition” Electrochem. Soc. 146, (7), pp.2540-2545, 1999. [11 ] J. M. E. Harper, C. Cabral, Jr., P. C. Andricacos, L. Gignac, I. C. Noyan, K. P. Rodbell, and C. K. Hu, ” Mechanisms for microstructure evolution in electroplated copper thin films near room temperature”, J. Appl. Phys., 86, pp. 2516-2525, 1999. [12 ] H. Lee, S. D. Lopatin, and S. S. Wing, Proceeding of the IEEE Int. Interconnect Technology Conf., 114, 2000. [13 ] J. Reid, V. Bhaskaran, R. Contonlini, E. Patton, R. J. Jackson, E. Broadbent, T. Walsh, S. Mayer, J. Martin, D. Morrissey, R. Schetty ands. Menard: Proc. of IITC 1999, p. 284, 1999. [14 ] J. Hartman, H. Yeh, H. Ateater and I. Hashim: Mater. Res. Soc. Proc., 564, p. 257, 1999. [15 ] J. Reid, S. Mayer, E. Broadbent, E. Klawuhn and K. Ashtiani, Solid State Technol., p. 86, 2000. [16 ] T. Hara and K. Sakata, “Stress in Copper Seed Layer Employing in the Copper Interconnection” Electrochem. Solid State Lett., 4, (10), pp. 77-79, 2001. [17 ] T. Hara, K. Sakata, and Y. Yoshida, “Control of the (111) Orientation in Copper Interconnection Layer,” Electrochem. Solid State Lett., 5, (3), pp. 41-43, 2002. [18 ] T. Hara, K. Miyazawa, M. Miyamoto, T. Yonezawa and S. Lshida, VMIC Conference 2001., Septerber 25-26 2001 [19 ] A. J. Bard and L.R. Faulkner, Electrochmeical Methods, (Wiley and Sons, New York,1980). [20 ] Milton Ohring, The Materials Science of Thin Films, pp. 403-404, 1992. [21 ] I. A. Blech and C. Herring, “Stress generation by electromigration”, Appl Phys Lett, 29, p.131, 1976. [22 ] Korhonen MA, Borgesen P, Tu KN and Li C-Y., J Appl Phys, 73, p. 790, 1993. [23 ] Black JR. In, Proc 6th Annual Int Rel Phy Symp, p. 148, 1967. [24 ] C.S. Hau-Riege, Microelectronics Reliability, 44, p195–205, 2004. [25 ] Changsup Ryu, Alvin L. S. Loke, et al.,“Microstructure and Reliability of Copper Interconnects,” IEEE Transactions on Electron Devices, 46, (6), June 1999.id NH0925428025 sid 915027 cfn 0 / id NH0925428026 auc 曾國禎 tic 有機高分子之水平元件製程與特性研究 adc 洪勝富 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 50 kwc 集聚體 kwc 共軛高分子 kwc 有機發光 kwc 有機電晶體 abc 本文利用水平元件量測共軛高分子電洞遷移率,水平元件的製作主要是利用黃光微影的技術在玻璃上製作水平電極,我們將水平量測的結果以空間電荷限制電流模型 ( SCLC ) 去分析,實驗發現在固定電場下,水平的電洞遷移率比垂直結構大三個數量級,且發現隨著時間增加,電洞遷移率也跟著增加,此外高溫可加速此現象,藉由光激發光譜可以清楚的瞭解使電洞遷移率增加原因,其主要的原因為藉由旋轉塗怖的離心力對集聚體規則的排列。本論文對水平元件的研究,對於共軛高分子電晶體元件,提供參考的價值。 tc 目錄 第一章 緒論--------------------------------------------------------------------------1 1-1 前言…………………………………………………………………………1 1-2 導電高分子…………………………………………………………………2 1-3 研究目的與方向……………………………………………………………3 1-4 本文結構……………………………………………………………………4 第二章 實驗理論………………………………………………………5 2-1 電流傳輸機制………………………………………………………………5 2-2 發光原理……………………………………………………………………9 2-3 集聚體 ……………………………………………………………………11 第三章 實驗架構 ……………………………………………………14 3-1 元件製作 …………………………………………………………………14 3-2 元件量測 …………………………………………………………………21 第四章 實驗結果與討論 ……………………………………………23 4-1 溶劑因素 …………………………………………………………………25 4-2 濃度因素 …………………………………………………………………28 4-3 溫度的影響 ………………………………………………………………33 4-4 轉速的影響 ………………………………………………………………35 4-5 時間因素 …………………………………………………………………36 4-6 FET與SCLC之比較………………………………………………………38 4-7 溶液中的形貌 ……………………………………………………………41 4-8 結果討論 …………………………………………………………………42 第五章 總結及未來展望 ……………………………………………44 參考文獻……………………………………………………………………………46 Appendix ………………………………………………………………………47rf 【1】J.H,Burroughes,.et al.Nature 347, 539-541 (1990) 【2】D.Braun and A.J.Heeger, Appl. Phys. Lett. 58,1982-1984 (1991) 【3】D.Braun and A.J.Heeger ,Appl.Phys.Lett.58,1982 (1991) 【4】D.A.Neamen, Semiconductor Physics & Devices, 2nd ED . 【5】S.M.Sze , Physics of Semiconductor Device 【6】E.H. Rhoderick and R.H. Williams, Metal-Semiconductor-Contacts 【7】B.K. Crone, et al,Appl.Phys.Lett.73,3162(1998) 【8】P.W.M.Blom,H.C.J.M.Vissenberg,Mat.Sci.&Eng.27,53(2000) 【9】Susan K.VanderKam ,.et al. Langmuir 1999,15,6598 【10】D. D. C. Bradley, Synth. Met. 1993, 54, 401. 【11】H. M. Lee,et al, Appl. Phys. Lett., 72 (1998) 2382. 【12】M. Onoda.et al, Jpn. J. Appl. Phys., 34 (1995) L260. 【13】Y. Cao,et al, Synth. Met., 87 (1997) 171 【14】Y. Yang and A . J . Heeger , Appl . Phys . Lett 64 , 1245(1994) 【15】C. Y. Yang,et al, Polymer 39,2299(1998) 【16】T. Huser, M. Yan, and L.J. Rothberg, PNAS 97, 11187-91(2000) 【17】I. H. Campbell, Appl. Phys. Lett. 74 2809(1999) 【18】I. H. Campbell and D. L. Smith, in Solid State Physics, Vol. 55 (2001) 【19】S. V. Rakhmanova and E. M. Conwell, Appl. Phys. Lett. 76, 3822 (2000) 【20】M. Tammer and A. Monkman, Adv. Mater. 14, 210 (2002) 【21】H. Sirringhuas et al, Nature 401, 685 (1999) 【22】Y. Shi, J. Liu, and Y. Yang, J. Appl. Phys. 87 4254 (2000)id NH0925428026 sid 915031 cfn 0 / id NH0925428027 auc 連哲楠 tic 共振穿隧元件利用矽量子點埋在氮化矽的矽基之製作 adc 黃惠良 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 英文 pg 56 kwc 負微分電阻元件 kwc 共振穿隧二極體 abc 現在積體電路裡的元件尺寸從微米一直縮減到次微米,量子效應就愈顯得重要。而這當元件的尺寸持續縮簡到奈米尺寸時,量子效應就非常值得我們來探討。例如利用量子效應,可以實現負微分電阻元件;它可以將現今的電路再往更快、更緊密、更小尺寸的方向發展。 tc Acknowledgement (In English) Abstract (In Chinese) Abstract (In English) Chapter 1 Introduction Chapter 2 Theory and Operation 2.1 Theory of NDRD 2.1.1 Tunneling Through a Single Barrier 2.1.1.1 Quantum effect tunneling 2.1.1.2 Other tunneling effects 2.1.2 Tunneling Throhgh a Double Barrier Structure 2.1.3 RTD Current-Voltage Characteristic Chapter 3 Experiments 3.1 Experiment Process 3.2 Working of the Experimental Equipment 3.2.1 Plasma-enhance chemical-vapor-deposition (PECVD) 3.2.2 Fourier Transform Infrared Spectroscopy (FTIR) 3.2.3 Scanning Electron Micorscopy (SEM) 3.2.4 Transmission Electron Micorscopy (TEM) 3.2.5 HP 4156A Chapter 4 Result and Discusstion 4.1 Effect of Nitrogen Flow Rate on Dot Size 4.2 Optimum NDRD 4.3 Mechansim of Electrical Characterization of NDRD Chapter 5 Conclusion Table caption Figure captionrf [1 ] F. Capasso, S. Sen, F. Beltram, L. M. Lunardi, A. S. Vengurlekar, P. R. Smith, N. J. Shah, R. J. Malik, and A. Y. Cho, IEEE Trans. Electron Devices, vol. 36, pp. 2065–2082, Oct. 1989. [2 ] L. Esaki and R. Tsu, IBM J. Res. Develop., vol. 14, no. 1, pp. 61–65, Jan. 1970. [3 ] A. Cho, Appl. Phys. Lett., vol. 19, no. 11, pp. 467–468, Dec. 1971. [4 ] A. Cho, Ed., Molecular Beam Epitaxy. Woodbury, NY: AIP Press, 1994. [5 ] L. L. Chang, L. Esaki, W. E. Howard, and R. Ludeke, J. Vac. Sci. Technol., vol. 10, no. 1, pp. 11–16, Jan./Feb. 1973. [6 ] L. L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett., vol. 24, no. 12, pp. 593–595, June 1974. [7 ] A. C. Seabaugh and R. Lake, Encyclop. Phys., vol. 22, pp. 335–359, 1998. [8 ] T. P. E. Broekaert, W. Lee, and C. G. Fonstad, Appl. Phys. Lett., vol. 53, no. 16, pp. 1545–1547, Oct. 1988. [9 ] Pinaki Mazumder, Shriram Kulkarni, Mayukh Bhattacharya, Jian Ping Sun, and George I. Haddad, IEEE vol. 86, no.4 , pp. 664-686, April.1998 [10 ] S. M. Sze, “Modern Semiconductor Device Physics”, John Wiley & Sons, Inc. [12 ] S. M. Sze, “Physics of Semiconductor Devices 2nd”, John Wiley & Sons, Inc. [13 ] L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature (London) 408, 440 (2000). [14 ] N. Takahashi, H. Ishikuro, and T. Hiramoto, Appl. Phys. Lett. 76, 209 (2000). [15 ] S. Arucha, MRS Bull. 23, 49 (1998). [16 ] S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, Appl. Phys. Lett. 68, 1377 (1996). [17 ] Y. Hirano, F. Sato, Aihara, N. Saito, S. Miyazaki, and M. Hirose, Appl. Phys. Lett. 79, 2255 (2001). [18 ] M. Fukuda, K. Nakagawa, S. Miyazaki, and M. Hirose, Appl. Phys. Lett. 70, 2291 (1998). [19 ] S. Vijayalakshmi, H. Grebel, G. Yaglioglu, R. Pino, R. Dorsinville, and C. W. White, Appl. Phys. Lett. 88, 6418 (2000). [20 ] R. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973). [21 ] L. L. Chang, L. Easki, and R. Tsu, Appl. Phys. Lett. 24, 593 (1974). [22 ] K. Rash, A. Scherer, J. M. Warlock, H. G. Craighead, and M. C. Tamargo, Appl. Phys. Lett. 49, 1043 (1986). [23 ] M. A. Reed, J. N. Randall, R. J. Matyi, T. M. Moor, and A. E. Wetsel, Phys. Rev. Lett. 60, 535 (1988). [24 ] Q. Wan, T. H. Wang, M. Zhu, and C. L. Lin, Appl. Phys. Lett. 81 538 (2002) [25 ] Edward H. Nicollian and Raphael Tsu, J. Appl. Phys. 74 4020 (1993) [26 ] Z.Pei, H. L. Hwang, Materials Science in Semiconductor Processing 6 (2003) 339-342 [27 ] Zingway Pei, Y. R. Chang, and H. L. Hwang, Appl. Phys. Lett. 80 2839 (2002) [28 ] His-Lien Hsiao, PHD Thesis, National Tsing Hua University (1999) [29 ] Pei Z, Chang YR, Hwang HL. Appl Phys Lett 2002;80:2839. [30 ] Helmut Gunzler, and Hans-Ulrich Gremlich “IR Spectroscopy An Itroduction”, Willey-Vch [31 ] His-Lien Hsiao, PHD Thesis, National Tsing Hua University (1999) [32 ] Zing-Way Pei, PHD Thesis, National Tsing Hua University (2004) [33 ] V. J. Goldman and D. C. Tsui, Physical Review Letters, vol:58, 12, March (1987) [34 ] Atanas Groshev, Physical Review B, vol: 42, 9, 5895-5898, September (1990)id NH0925428027 sid 915035 cfn 0 / id NH0925428028 auc 鄭全福 tic 超短脈衝激發螺旋天線的輻射分析與鑭鍶錳氧鑭鈣錳氧量測 adc 洪勝富 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 81 kwc 螺旋天線 kwc 兆赫波 kwc 鑭鍶錳氧 kwc 鑭鈣錳氧 kwc 短脈衝雷射 kwc 螺旋天線輻射 abc 因為TeraHz這頻段是許多凝態物理的現象範圍,可提供許多材料的物理特性,例如水、DNA、碳、氮、氧氣、臭氧一氧化碳等,還有像是尺寸是奈米級材料的束縛能、光激發載子的束縛能、無線天文、醫學影像、食物、藥品的偵測等,而在近代由於電子材料技術的快速進步,使的許多元件的尺寸縮小到了奈米級的尺寸,這時由於兆赫波的波長為皮米(pico-meter)小一數量級,這時兆赫波量測所能提供的訊息就變的極為有用了;利用超短脈衝雷射所激發的圓形極化兆赫波,去架設實驗系統的過程以及實驗設備的介紹,在其後再對不同條件下得到的數據去做分析;利用螺旋狀的光導天線去產生兆赫波時,會有不同旋向的發射端和不同旋向的吸收端,以及由於電脈衝在天線中傳播時,位於不同的位置所發出的不同訊號強弱和吸收效率,去對不同時域中所接收到的不同訊號;和在不同水氣濕度下,訊號被吸收影響的頻段去做分析和比較;以及雷射激發光點大小對訊號所產生的影響;以上述這些變因去對螺旋天線做分析;而最後再用此螺旋天線去探測一些磁性物質如鑭鍶錳氧和鑭鈣錳氧,對於不同情況下,如不同的磁場大小、不同的磁場方向、不同的天線旋向下訊號的吸收的頻段,而一些共振頻率落於兆赫波頻段附近的磁性物質,而其中具有雙色性的分子則會對於不同旋向的兆赫波具有不同程度的吸收。 tc 導論................................1 第一章 理論與原理的分析...........3 1-1光整流的優缺點和原理.............3 1-2光導天線的優缺點和原理...........4 1-3螺旋天線.............8 第二章 天線的製作與天線的材料....17 2-1天線的材料......................17 2-2天線的製作..........18 2-2.1 LT-GaAs的製作....18 2-2.2 二臂型螺旋天線的製作.........20 2-3鑭鈣錳氧 (La0.8Ca0.2MnO3) 鑭鍶錳氧 (La0.7Sr0.3MnO3)..24 2-3.1磁阻(magnetic resistence,MR).........24 2-3.2鑭鈣錳氧 鑭鍶錳氧.....................25 第三章 實驗流程和系統的架設..............27 3-1雷射系統. ..............................27 3-1.1鎖模雷射..............................27 3-2光路系統................................29 3-3樣品量測................................33 第四章 實驗結果..........................34 4-1光點大小不同的比較......................35 4-2天線的正反旋的比較......................39 4-3不同水氣下的比較........................54 4-4 LSMO & LCMO 對不同磁場的分析......57 4-4.1 LSMO.................................59 4-4.2 LCMO.................................70 第五章 結論..............................80 參考資料...................................81rf [1 ] R. Chau, B. Doyle, J. Kavalieros, D. Barlage, A. Murthy, M. Doczy, R. Arghavani, S. Datta,International Conference on Solid State Devices and Materials, Nagoya, japan, 2002, pp. 68–69. [2 ] D.Dragoman, M.Dragoman, “Terahertz fields and applications”, Progress in Quantum Electronics 28, 2004 [3 ] P. R. Smith,D. H. Auston, and M. C. Nuss,“Subpicosecond photo - conducting dipole antennas”, IEEE J.Quantum Electron., vol. 24, pp. 255-260, 1988. [4 ] V.H.Rumsey,”Frequency independent antennas,”1957 IRE National Convention [5 ] 洪鶯玲 , “利用混合式微影技術製作Thz輻射場之光混頻器” , 國立交通大學 ,碩士論文 ,2001 [6 ] Hisamatsu NaKano , “Helical and Spiral Antennas” , p80-81 [7 ] John D. Dyson,“The Equiangular Spiral Antenna”,IRE Trans. on Antennas and Propagation.,pp181-187,April 1959. [8 ] C.N.R. Rao , A.K. Raychaudhur,“Colossal Magnetoresistance,Charge Ordering and Other Novel Properties of Maganates and Related Materials.” [9 ] David K. Cheng , “Field and Wave Electromagnetics” , ADDISON WESLEY , p634 [10 ] 楊子宜 , “二臂型等角螺旋天線產生/接收由超短脈衝鎖模雷射激發之圓極化兆赫輻射波之研究” , 國立清華大學 , 碩士論文 , 2003id NH0925428028 sid 915036 cfn 0 / id NH0925428029 auc 王琮鴻 tic 金屬/ 氧化鋯/ 半導體電容器與場效電晶體之製作與電性分析 adc 李雅明 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 81 kwc 氧化鋯 kwc 電流機制 abc 我們研究氧化鋯電流機制和溫度與電場函釋有關,製備金屬(Al)/氧化鋯(ZrO2)/半導體(p-Si)結構的電容器,並對元件作基本的變溫電性量測,在負偏壓下,在越高溫時(375K~450K)以及在低電場下(0.81~1.40MV/cm)機制為修正型蕭基發射,從修正型蕭基發射方程式所萃取出來的能障高( )為1.06 eV,在高電場(1.50~2.25 MV/cm)及高溫之下(375K~450K),ZrO2薄膜本體的電流傳導機制為修正型普爾-法蘭克發射所主導,所得到的ZrO2薄膜本體捕獲中心的能帶高為0.83 eV。在正偏壓下,低電場(0.20~0.60 MV/cm)及高溫之下(425K~450K),ZrO2/Si界面間的電流傳導機制為蕭基發射所主導,其能障為1.0eV。從這些結果,我們可以得到Al/ ZrO2/p-Si的能帶圖 tc 目 錄 第一章 緒論--------------------------------------------------------------------------1 1.1 高介電常數(High-κ)薄膜於極大型積體電路(ULSI)的發展------------1 1.2高介電常數薄膜在DRAM上的應用------------------------------------------2 1.3 ZrO2薄膜的製備方法-------------------------------------------------------------3 1.4 High-κ薄膜於MOSFET閘極氧化層(Gate Oxide)的發展----------------3 1.5 本論文的研究方向----------------------------------------------------------------4 第二章 熱穩定性(Thermodynamic Stability)之探討---------------6 2.1 「熱穩定性」理論簡介-------------------------------------------------------------6 2.2 矽化物(Silicide)及矽酸鹽(Silicate)的產生----------------------------------7 第三章 氧化鋯(ZrO2)薄膜元件的製備-------------------------------------9 3.1 射頻磁控濺鍍法(RF Magnetron Sputtering)的簡介----------------------9 3.2 晶片背面歐姆接面(Ohmic contact)的製備-----------------------------------9 3.3氧化鋯(ZrO2)薄膜的成長-------------------------------------------------------10 3.4氧化鋯(ZrO2)薄膜電容器的製備----------------------------------------------11 3.5氧化鋯(ZrO2)薄膜電晶體的製備----------------------------------------------11 3.6 量測使用儀器---------------------------------------------------------------13 第四章 氧化鋯(ZrO2)薄膜基本介紹及物性量測分析--------------15 4.1 ZrO2薄膜的基本介紹-----------------------------------------------------------15 4.2 二次離子質譜儀縱深分佈之分析---------------------------------------------16 4.3 X-Ray(x-ray diffraction) 繞射分析--------------------------------------------17 4.4 電子能譜儀之分析--------------------------------------------------------------17 4.5穿隧式電子顯微鏡照相分析---------------------------------------------------18 第五章 AL/ZrO2/Silicon電容器基本電性及漏電流機制分析---19 5.1電流-電壓(I-V)特性曲線量測--------------------------------------------------19 5.2電容-電壓(C-V)特性曲線量測------------------------------------------------19 5.3 漏電流傳導機制之簡介---------------------------------------------------------20 5.3.1 蕭基發射(Schottky emission)-------------------------------------------21 5.3.2 修正型蕭基發射(Modified Schottky emission)----------------------22 5.3.3普爾-法蘭克發射(Poole-Frenkel Emission)--------------------------23 5.3.4傅勒-諾德翰穿隧(Fowler-Nordheim Tunneling)---------------------24 5.3.5歐姆傳導(Ohmic Conduction)----------------------------------------24 5.4 MIS結構電容器與溫度變化之漏電流傳導機制分析---------------------24 5.5 本章結論---------------------------------------------------------------------------29 第六章 Al/ZrO2/Silicon場效電晶體基本電性量測------------------31 6.1 IDS-VDS 曲線的特性探討------------------------------------------------------31 6.2 IDS-VGS 曲線的特性探討------------------------------------------------------31 6.3 次臨界斜率(Sub-threshold Swing)--------------------------------------------32 6.4 臨界電壓(VT)的粹取-----------------------------------------------------------33 6.5 遷移率(Mobility)的探討-------------------------------------------------------33 第七章 結論------------------------------------------------------------------------36 Reference Experimental Diagrams and Tables Appendix A. 電晶體製程之三道光罩圖rf Reference [1 ] H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Makamura, M. Saito, and H. Iwai, “1.5 nm Direct-tunneling Gate Oxide Si MOSFET’s,” IEEE Trans. Electron Devices, vol. 43, pp. 1233–1241, August 1996. [2 ] J. L. Autran, R. Devine, C. Chaneliere, and B. Balland, “Fabrication and Characterization of Si-MOSFET’s with PECVD Amorphous Ta2O5 Gate Insulator,” IEEE Electron Device Lett., vol. 18, pp. 447–449, September 1997. [3 ] C. Chaneliere, S. Four, J. L. Autran, R. A. B. Devine, and N. P. Sandler, “Properties of Amorphous and Crystalline Ta2O5 Thin Films Deposited on Si from Ta(OC2H5)5 precursor,” J. Appl. Phys., vol. 83, no. 9, pp. 4823-4829, May 1998. [4 ] Q. Lu, D. Park, A. Kalnitsky, C. Chang, C. C. Cheng, S. P. Tay, T. J. King, and C. Hu, “Leakage Current Comparison between Ultra-Thin Ta2O5 Films and Conventional Gate Dielectrics,” IEEE Electron Device Lett., vol. 19, no. 9, pp. 341-342, September 1998. [5 ] D. Park, Y. King, Q. Lu, T. J. King, C. Hu, A. Kalnitsky, S. P. Tay, and C. C. Cheng, “Transistor Characterization with Ta2O5 Gate Dielectric,” IEEE Electron Device Lett., vol. 19, no. 11, pp. 441-443, November 1998. [6 ]B. C. Lai, N. Kung, and J. Y. Lee, “A Study on the Capacitance -voltage Characteristics of Metal-Ta2O5-silicon Capacitors for Very Large Scale Integration Metal-Oxide-Semiconductor Gate Oxide Applications,” J. Appl. Phys., vol. 85, no. 8, pp. 4087-4090, April 1999. [7 ] J. C. Yu, B. C. Lai, and J. Y. Lee, “Fabrication and Characterization of Metal-Oxide-Semiconductor Field-Effect Transistors and Gated Diodes Using Ta2O5 Gate Oxide,” IEEE Electron Device Lett., vol. 21, no. 11, pp. 537-539, November 2000. [8 ] B. C. Lai, J. C. Yu, and J. Y. Lee, “Ta2O5/Silicon Barrier Height Measured from MOSFETs Fabrication with Ta2O5 Gated Dielectric,” IEEE Electron Device Lett., vol. 22, no. 5, pp. 221-223, May 2001. [9 ] B. Cheng, M. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, M. C. Stock, Z. Yu, and M. Zeitzoff, “The Impact of High-K Gate Dielectrics and Metal Gate Electrodes on Sub-100 nm MOSFET’s,” IEEE Transactions on Electron Devices, vol. 46, no. 7, pp. 1537-1544, July 1999. [10 ]W. J. Qi, R. Nieh. B. H. Lee, L. Kang, Y. Jeon, K. Onishi, T. Ngai, S. Banerjee, and J. C. Lee, “MOSCAP and MOSFET Characteristics using ZrO2 gate dielectric deposited on Si,” in IEDM Tech. Dig., pp. 145-148, 1999. [11 ] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “Hafnium and Zirconium Silicates for Advance Gate Dielectrics,” J. Appl. Phys., vol. 87, no. 1, pp. 484-492, January 2000. [12 ] Y. Ma., Y. Ono, L. Stecker, D. Evans, and S.T. Hsu, ”Zirconium Oxide Based Gate Dielectrics with Equivalent Oxide Thickness of Less Than 1.0nm and Performance of Submicron MOSFET using a Nitride Gate Replacement Process,” in IEDM Tech. Dig., pp. 149-152, 1999. [13 ] D. A. Neumayer, and E. Cariter, “Materials Characterization of ZrO2-SiO2 and HfO2-SiO2 Binary Oxides Deposited by Chemical Solution Deposition,” J. Appl. Phys., vol. 90, no. 4, pp. 1801-1808, August 2001. [14 ] T. Ma, S. A. Campbell, R. Smith, N. Hoilien, B. He, W. L. Gladfelter, C. Hobbs, D. Buchanan, C. Taylor, M. Gribelyuk, M. Tiner, Matthew Coppel, and Jang Jung Lee, “Group IVB Metal Oxide High Permittivity Gate Insulators Deposited From Anhydrous Metal Nitrates,” IEEE Transactions on Electron Devices, vol. 48, no. 10, pp. 2348-2356, October 2001. [15 ] Z. Luo, “Ultra-thin ZrO2 (or silicate) with High Thermal Stability For CMOS Gate Application,” IEEE Symposium on VLSI Technology Digest of Technical Papers, pp.135-136, 2001 [16 ] Y. Kim, G. Gebara, M. Frelier, J. Barnett, D. Riley, J. Chen, K. Torres, J. E. Lim, B. Foran, F. Shaapur, A. Agarwal, P. Lysaght, G. A. Brown, C. Young, S. Borthakur, H. J. Li, B. Nguyen, P. Zeitzoff, G. Bersuker, D. Derro, R. Bergmann, R. W. Murto, A. Hou, H.R. Huff, E. Shero, C. Pomarede, M. Givans, M. Mazanez, and C. Werkhoven, “Conventional N-channel MOSFET Device Using Single Layer HfO2 and ZrO2 as High-k Fate Dielectrics with Polysilicon Gate Electrode,” in IEDM Tech. Dig., pp. 455-458, 2001. [17 ] M. Gutowski, J. E. Jaffe, C. L. Liu, M. Stoker, R. I. Hegde, R. S. Rai, and P. J. Tobin, “Thermodynamic stability of High-K Dielectric metal oxide ZrO2 and HfO2 in Contact with Si and SiO2,” Appl. Phys. Lett., vol. 80, no. 11, pp. 1897-1899, March 2002. [18 ] J Y. Min Lee and B. C. Lai, “The Electrical Properties of High Dielectric Constant and Ferroelectric Thin Films for Very Large Scale Integration (VLSI) Circuit,” p. 53,2001 [19 ] W. J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Jeon, and J. C. Lee ”Electrical and Reliability Characteristics of ZrO2 Deposited Directly on Si for Gate Dielectric Application,” Appl. Phys. Lett., vol. 77, no. 20, pp. 3296-3271, November 2000. [20 ] H. Watanable, ”Interface Engineering of a ZrO2/SiO2/Si Layered Structure by in Situ Reoxidation and its Oxygen-pressure-dependent Thermal Stability,” Appl. Phys. Lett., vol. 78, no.24, pp. 3803-3805, June 2001. [21 ] J. P. Chang and Y.-S. Lin, “Dielectric Property and Conduction Mechanism of Ultrathin Zirconium Oxide Films,” Appl. Phys. Lett., pp .3666-3668, vol. 79, no. 22, November 2001. [22 ] D. K. Schroder, Semiconductor Material and Device Characteristics, Wiley, Arizona, 1998. [23 ] K. J. Hubbard and D. G. Schlom, “Thermodynamic Stability of Binary Oxides in Contact with Silicon,” J. Mater. Res., vol. 11, no. 11, pp. 2757–2776, 1996. [24 ] T. S. Jeon, J. M. White, and D. L. Kwong, ”Thermal Stability of Ultrathin ZrO2 Films Prepared by Chemical Vapor Depositor on Si(100),” Appl. Phys. Lett., vol. 78, no. 4, pp. 368-370, January 2001. [25 ] C. H. Lee, H. F. Luan, W. P. Bai, S. J. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, “MOS Cracteristics of Ultra Thin Rapid Thermal CVD ZrO2 and Zr Silicate Gate Dielectrics,” in IEDM Tech. Dig., pp. 27-30, 2000. [26 ] S. M. Sze, Physics of Semiconductor Device, 2nd ed., Wiley, New York, 1981. [27 ] C. R. Crowell and S. M. Sze, “Current Transport in Metal -Semiconductor Barriers,” Solid State Electron., vol 9, pp. 1035-1048, June 1966. [28 ] J. R. Yeargan, H. L. Taylor, “The Poole-Frenkel Effect with Compensation Present,” J. Appl. Phys. vol. 39, no. 12, pp. 5600-5604 , November 1968. [29 ] G.R. Fox, and S.B. Krupanidhi, “Nonlinear Electrical Properties of Lead-Lanthanum-Titanate Thin Films Deposited by Multi-Ion-Beam Reactive Sputtering,” J. Appl. Phys., vol. 74, no. 3, pp. 1949-1959, August 1993. [30 ] D. A. Neamen,“Semiconductor Physics & Devices,” 2nd Ed., Mc Graw-Hill, Inc., 1998. [31 ] I H. Ishii, A. Nakajima, and S. Yokayama, “Growth and Electrical Properties of Atomic-layer Deposited ZrO2/Si-nitride stack gate dielectrics,” J. Appl. Phys. vol. 95, no. 2, pp. 536-542, January 2004. [32 ] T. Yamaguchi, H. Satake, N. Fukushima and A. Toriumi, “Band Diagram Carrier Conduction Mechanism in ZrO2/Zr-silicate/Si MIS Structure Fabricated by Pulsed-laser-ablation Deposition,” in IEDM Tech. Dig., pp. 19-22, 2000. [33 ] 張哲維,氧化鋯薄膜電容器與金屬/氧化鋯/半導體場效電晶體之電性分析,國立清華大學碩士論文,民國九十二年七月. [34 ] K. Chen, H. C. Wann, J. Dunster, P. K. Ko, C. Hu, “MOSFET Carrier Mobility Model Based on Gate Oxide Thickness, Threshold Voltage and Gate Voltages,” Solid-State Electronics vol. 39, no. 10, pp. 1515-1518, 1996.id NH0925428029 sid 915037 cfn 0 / id NH0925428030 auc 周鴻文 tic 金屬(鋁)/氧化鑭(La2O3)/半導體電容器與場效電晶體之製作與電性分析 adc 李雅明 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 81 kwc 氧化鑭 kwc 高介電係數薄膜 abc 我們成功的製備金屬(Al)/氧化鑭(La2O3)/半導體(p-Si)結構的電容器,並對元件作基本的變溫電性量測,溫度範圍在300 K至470 K,所得到的結果顯示絕緣層厚度為18 nm,經過快速熱退火500 0C通氮氣60秒後,在溫度470 K電場為2.25 MV/cm 以下時,Al/ La2O3界面間的電流傳導機制為蕭基發射所主導,所得到的Al/ La2O3的蕭基能帶高為0.95 eV。而絕緣層厚度為24 nm,經過快速熱退火700 0C通氮氣60秒後,發現電流機制為空間電荷限制電流所主導,Von 是 0.08 V,VTFL 是 0.3 V,缺陷能階在傳導帶下方0.21 eV,氧化鑭薄膜內的電子遷移率在溫度300 K時是8.15´10-7 cm2/V-sec。 tc 第一章 緒論………………………………………………………………1 1.1 高介電常數(High-κ)薄膜於極大型積體電路(ULSI)的發展1 1.2 High-κ薄膜在DRAM上的應用………………………………………2 1.3 High-κ薄膜於MOSFET閘極氧化層(Gate Oxide)的發展………3 1.4 La2O3薄膜的製備方法………………………………………………3 1.5 本論文的研究方向…………………………………………………4 第二章 熱穩定性(Thermodynamic Stability)之探討……………6 2.1 「熱穩定性」理論簡介……………………………………………6 2.2 矽化物(Silicide)及矽酸鹽(Silicate)的產生……………7 第三章 La2O3(氧化鑭)薄膜元件的製備……………………………9 3.1 射頻磁控濺鍍法(RF Magnetron Sputtering)的簡介…………9 3.2 晶片背面歐姆接面(Ohmic contact)的製備…………………10 3.3 La2O3薄膜的成長…………………………………………………10 3.4 La2O3薄膜電容器的製備…………………………………………11 3.5 La2O3薄膜電晶體的製備…………………………………………11 3.6 量測使用儀器………………………………………………………14 第四章 La2O3薄膜基本介紹及物性量測分析…………………………15 4.1 La2O3薄膜的基本介紹……………………………………………15 4.2 二次離子質譜儀(SIMS)縱深分佈之分析………………………15 4.3 X-Ray 繞射分析……………………………………………………16 4.4電子能譜儀(E.S.C.A.)之分析……………………………………17 4.5穿隧式電子顯微鏡(TEM)照相分析………………………………18 第五章 Al/ La2O3/Silicon電容器基本電性及漏電流機制分析……19 5.1 I-V(電流-電壓)特性曲線量測…………………………………19 5.2 C-V (電容-電壓) 特性曲線量測…………………………………19 5.3 漏電流傳導機制之簡介……………………………………………20 5.3.1 蕭基發射(Schottky emission)…………………………21 5.3.2 普爾-法蘭克發射(Poole-Frenkel Emission)…………22 5.3.3 傅勒-諾德翰穿隧(Fowler-Nordheim Tunneling)……23 5.3.4 歐姆傳導(Ohmic Conduction)…………………………24 5.3.5空間電荷限制電流(space charge limited current, SCLC)………24 5.4 MIS結構電容器與溫度變化之漏電流傳導機制分析……………26 5.5 本章結論……………………………………………………………30 第六章 Al/La2O3/Silicon場效電晶體基本電性量測………………31 6.1 IDS-VDS Curve的特性探討………………………………………31 6.2 IDS-VGS Curve的特性探討………………………………………32 6.3 次臨界斜率(Sub-threshold Swing)…………………………32 6.4 臨界電壓(VT)的粹取……………………………………………33 6.5 遷移率(Mobility)的探討………………………………………34 第七章 結論……………………………………………………………37 參考資料…………………………………………………………………39 實驗圖表…………………………………….…………………………42 附錄……………………………………………………………………79 電晶體製程之三道光罩圖………………………………………………79rf [1 ] H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Makamura, M. Saito, and H. Iwai, “1.5 nm direct-tunneling gate oxide Si MOSFET’s,” IEEE Trans. Electron Devices, vol. 43, pp. 1233–1241, August 1996. [2 ] J. L. Autran, R. Devine, C. Chaneliere, and B. Balland, “Fabrication and characterization of Si-MOSFET’s with PECVD amorphous Ta2O5 gate insulator,” IEEE Electron Device Lett., vol. 18, pp. 447–449, September 1997. [3 ] C. Chaneliere, S. Four, J. L. Autran, R. A. B. Devine, and N. P. Sandler, “Properties of amorphous and crystalline Ta2O5 thin films deposited on Si from Ta(OC2H5)5 precursor,” J. Appl. Phys., vol. 83, no. 9, pp. 4823-4829, May 1998. [4 ] Q. Lu, D. Park, A. Kalnitsky, C. Chang, C. C. Cheng, S. P. Tay, T. J. King, and C. Hu, “Leakage Current Comparison Between Ultra-Thin Ta2O5 Films and Conventional Gate Dielectrics,” IEEE Electron Device Lett., vol. 19, no. 9, pp. 341-342, September 1998. [5 ] D. Park, Y. King, Q. Lu, T. J. King, C. Hu, A. Kalnitsky, S. P. Tay, and C. C. Cheng, “Transistor Characterization with Ta2O5 Gate Dielectric,” IEEE Electron Device Lett., vol. 19, no. 11, pp. 441-443, November 1998. [6 ] B. C. Lai, N. Kung, and J. Y. Lee, “A study on the capacitance-voltage characteristics of metal-Ta2O5-silicon capacitors for very large scale integration metal-oxide-semiconductor gate oxide applications,” J. Appl. Phys., vol. 85, no. 8, pp. 4087-4090, April 1999. [7 ] J. C. Yu, B. C. Lai, and J. Y. Lee, “Fabrication and Characterization of Metal-Oxide-Semiconductor Field-Effect Transistors and Gated Diodes Using Ta2O5 Gate Oxide,” IEEE Electron Device Lett., vol. 21, no. 11, pp. 537-539, November 2000. [8 ] B. C. Lai, J. C. Yu, and J. Y. Lee, “Ta2O5/Silicon Barrier Height Measured from MOSFETs Fabrication with Ta2O5 Gated Dielectric,” IEEE Electron Device Lett., vol. 22, no. 5, pp. 221-223, May 2001. [9 ] Y.H.Wu, Alber Chin, “Electrical Characteristics of High Quality La2O3 Gate Dielectric with Equivalent Oxide Thickness of 5 Ả,” IEEE Electron Device Lett., vol. 21, no. 7, pp.341-343, July 2000. [10 ] J. R. Hauser, Tech. Dig. Int. Electron Device Meeting, Short Course on Sub-100nm CMOS, IEEE, Piscataway, NJ, 1999. [11 ] M. Jason Kelly, D. B. Terry, “Properties of La-silicate high-K dielectric films formed by oxidation of La on silicon,” J. Appl. Phys., vol. 93, pp. 1691-1696, February 2003. [12 ] J. H. Jun, C. H. Wang, D. J. Won, “Structural and Electrical Properties of a La2O3 Thin Film as a Gate Dielectric,” Journal of the Korea Physical Society, vol. 41, no. 6, pp. 1-5, December 2002. [13 ] S.Ohmi, C. Kobayashi, “Characterization of La2O3 and Yb2O3 Thin Films for High-K Gate Insulator Application,” Journal of Electrochemical Society, vol. 150, no. 7, pp. F134-F140, 2003. [14 ] Iwai, H. Ohmi, S. Akama, S. Ohshima, C. Kikuchi, A. Kashiwagi, I. Taguchi, J. Yamamoto, H. Tonotani, J. Kim, Y. Ueda, I. Kuriyama, A. Yoshihara, “Advanced gate dielectric materials for sub-100 nm CMOS,” Electron Devices Meeting, 2002., International, 8-11, pp.625-628, December 2002. [15 ] Y. Kim, A. Kuriyama, Isao Ueda, S. Ohmi, K. Tsutsui and H. Iwai, “Analysis of Electrical Characteristics of La2O3 Thin Films Annealed in Vacuum and Others,” European Solid-State Device Research Conference, 2003, vol. 16, pp. 569-572, 2003. [16 ] K. J. Hubbar and D.G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res., vol. 11, no. 11, pp. 2757-2776, November 1996. [17 ] S. Lee et al., “High Quality Ultra Thin CVD HfO2 Gate Stack with Poly-Si Gate Electrode,” IEEE Symposium on VLSI Technology Digest of Technical Papers, ” pp. 31-34, 2000. [18 ] S. M. Sze, Physics of Semiconductor Device, 2nd ed., Wiley, New York, 1981. [19 ] D. K. Schroder, Semiconductor Material and Device Characteristics, Wiley, Arizona, 1998. [20 ] K.C. Kao, and W. Hwang, Electrical Transport in Solids, Pergamon, New York, 1981. [21 ] P. Mark, and W. Helfrich, “Space-Charge-Limited Currents in Organic Crystals,” J. Appl. Phys. vol. 33, p.205 1965. [22 ] M.A. Lampert and P. Mark, Current Injection in Solids, Academic, New York, 1970. [23 ] M.A. Lampert, “Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps,” Phys. Rev., vol. 103, p.1648, 1956. [24 ] K. Chen, H. C. Wann, J. Dunster, P. K. Ko, and C. Hu, “MOSFET Carrier Mobility Model Based on Gate Oxide Thickness, Threshold Voltage and Gate Voltages,” Solid-State Electronics, vol. 39, no. 10, pp. 1515-1518, 1996. [25 ] D. K. Schroder, Semiconductor Material and Device Characteristics, Wiley, Arizona, 1998.id NH0925428030 sid 915038 cfn 0 / id NH0925428031 auc 胡喻評 tic 金屬/鐵電層/絕緣層/矽 結構電容之試製與電性分析 adc 李雅明 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 77 kwc 鐵電材料 kwc 鋯鈦酸鉛 abc 本實驗以射頻磁控濺鍍法製備金屬-鐵電(鋯鈦酸鉛)-絕緣層-半導體電容。本實驗採用三種不同絕緣層(insulator) La2O3, HfO2以及Dy2O3,以射頻磁控濺鍍法方式,沉積不同厚度當作緩衝層(buffer layer)。而後經由不同溫度的熱退火處理後,再以射頻磁控濺鍍法沈積PZT,最後再以lift-off的方式製作上電極,由此完成樣品的製作。自發性極化的特性是鐵電材料應用於非發揮性記憶體的主要精神,故本實驗主要是藉由電容-電壓以及電流-電壓的量測探討鐵電材料在其中所扮演的角色。 tc 第一章 緒論.....1 1.1 鐵電材料鋯鈦酸鉛在記憶體上的應用 1.2 鐵電材料於FeRAM的發展現況 1.3 Metal/ferroelectric/insulator/silicon 結構的應用 1.4 鐵電材料的電性 第二章 鋯鈦酸鉛(PZT)的理論.....5 2.1 鐵電材料的結構 2.2 鐵電材料的特徵 2.3 鐵電材料的開關理論 2.4 鐵電材料的可靠度 第三章 金屬/鐵電薄膜PZT/絕緣體/半導體 電容器的製備..10 3.1 設備與製程 3.2製作問題分析 第四章 M(Al)/F(PZT)/I(Dy2O3 )/Si M(Al)/F(PZT)/I(La2O3 )/Si的C-V電性量測.....16 4.1 四種氧化層電荷對氧化層薄膜的貢獻 4.2電容-電壓(C-V)曲線的基本量測 4.3 C-V曲線漂移與走向的探討 4.4 Al/PZT/ Dy2O3/Si結構之C-V特性 (一) C-V曲線的頻率響應 (二)Poling對C-V曲線之影響 4.5極化強度-電壓(P-V)量測 (一) MFIS電容器的P-V量測 (二)矯頑電場與C-V記憶窗的比較 第五章 電流-電壓(I-V)曲線量測.....29 5.1 MFIS結構之 I-V 變溫量測 5.2 Poling對MFIS結構I-V曲線之影響 5.3 MFIS結構電容器與溫度變化之漏電流傳導機制討論 第六章 結論.....33 Reference.....35 Sputter 操作說明 Process Flowrf 第一章 [1 ] 鄭晃忠, “高密度鐵電性記憶體之趨勢發展”, 電子月刊, 第五卷第五期, p.137. [2 ] 賴明駿, “極大型積體電路之鐵電材料”, 電子月刊, 第五卷第六期, p. 94. [3 ] B. W. Shen., G. Chung, I. C. Chen, D. J. Coleman, Jr., P. S. Ying, R. McKee, M. Yashiro, C. W. Teng., “Scalability of a Trench Capacitor Cell for 64 Mbit DRAM,” in IEDM, Tech Dig., 1989, pp. 27-30. [4 ] 何彬明, “FeRAM產品化的崎嶇道路”, 電子月刊, 第五卷第三期, p.166. [5 ] T. Kada, “Process and device technologies for 1 Gbit dynamic random-access memory cells,” J. Vac. Sci. Technol. B, vol.13, no. 6, pp. 258-261,1995. [6 ] T. Eimori, “A newly designed planar stacked capacitor cell with high dielectric constant film for 256Mbit DRAM,” in IEDM, Tech Dig., 1993, pp. 631-634. [7 ] T. Sumi, “Ferroelectric nonvolatile memory technology and its applications,” Jpn. J. Appl. Phys.,pt. 1, vol. 35, no. 2B, pp. 1516-1520, 1996. [8 ] S. L. Miller and P. J. McWhorter, “Physics of the ferroelectric nonvolatile memory field effect transistor,”J. Appl. Phys., vol. 72, pp. 5999-6010,December 1992. [9 ] R. Moazzami, C. Hu, W.H. Shepherd, “A ferroelectric DRAM cell for high-density NVRAM’s,” IEEE Electron Device Lett., vol.11, pp. 454 –456, 1990. [10 ] 李雅明, “鐵電記憶元件”, 電子月刊, 9月號, 1996. [11 ] S. Sinharoy, H. Buhay, D. R. Lampe, M. H. Francombe, “Integration of ferroelectric thin films into nonvolatile memories,” J. Vac. Sci. Technol. A, vol. 10,no. 4, pp. 1554-1561, April 1992. [12 ] T. Nakamur and Y. Fujimor, “Fabrication Technology of Ferroelectric Memories,” Jpn. J. Appl. Phys., pt. 1, vol. 37, no. 3B, pp. 1325-1327, 1998. [13 ] K. Kwang-Ho, Member, IEEE, “Metal-Ferroelectric-Semiconductor (MFS) FET’s Using LiNbO3/Si (100) Structures for Nonvolatile Memory Application,” IEEE Electron Device Lett., vol. 19, pp. 204-206, 1998. [14 ] K. Sugibuchi, Y. Kurogi, and N. Endo, “Ferroelectric field-effect memory device using Bi4Ti3O12 film,” J. Appl. Phys., vol.46, pp. 2877-2881, 1975. [15 ] N. A. Basit and H. K. Kim, “Growth of highly oriented Pb(Zr,Ti)O3 films on MgO-buffered oxidized Si Substrates and its application to ferroelectric nonvolatile memory field-effect transistors ,“Appl. Phys. Lett., vol. 73, p. 3941, 1998. [16 ] H. N. Lee, M. H. Lim, and Y. T. Kim, “Characteristics of Metal / Ferroelectric / Insulator / Semiconductor Field Effect Transistors Using a Pt/SrBi2Ta2O9 /Y2O3 /Si Structure,” Jpn. J. Appl. Phys., pt. 1, vol. 37, no.3B, pp. 1107-1109, 1998. [17 ] T. Hirai, Y. Fujisaki, and K. Nagashima, “Preparation of SrBi2Ta2O9 Film at Low Temperatures and fabrication of a Metal / Ferroelectric /Insulator /Semiconductor Field Transistor Using Al/SrBi2Ta2O9/CeO2/Si (100) Structures,” Jpn. J. Appl. Phys., pt. 1 vol. 36, no. 9B, pp. 5908-5911, 1997. [18 ] 沈士傑, “淺談快閃式記憶體(Flash Memory)之發展”, 電子月刊, 1996. 第二章 [1 ] L. L. Hench and J. K. West, J. Wiley and Sons, ”Principle of electronic ceramics” New York,1990. [2 ] H. M. Dulker, P. D. Beal, and J. F. Scott, “Fatigue and switching in ferroelectric memories : theory and experiment,” J. Appl. Phys., vol.68, pp. 5783-5791, March 1990. [3 ] Y. Xu, “Ferroelectric Materials and Their Applications,” pp.25-31. [4 ] Y. Xu, “Ferroelectric Materials and Their Applications,” pp.7-11. [5 ] J. F. Scott, “Device Physics of Ferroelectric Thin-Film Memories,” Jpn. J. Appl. Phys., pt. 1, vol. 38, no. 4B, pp.2272-2274, 1999. [6 ] G. W. Dietz, M. Schumacher, and R. Waser, “Leakage Current in Ba0.7Sr0.3TiO3 Thin Films for Ultrahigh-Density Dynamic Random Access Memories ,“ J. Appl. Phys., vol. 82, pp. 2359-2361, April 1997. [7 ] B. A. Baumert, L. H. Chang, A. T. Matsuda, T. L. Tsai, C. J. Tracy, R. B. Gregory, P. L. Fejes, N. G. Cave, and W. Chen, “Characterization of Sputtered Barium Strontium Titanate and Strontium Titanate Thin Films,”J. Appl. Phys., vol. 85, pp.2558-2566, January 1997. [8 ] I. K. Yoo and S. B. Desu, “Leakage current mechanism and accelerated unified test lead zirconate thin film capacitor,” ISAF 92 Proceedings, pp. 225-228, 1992. [9 ] H. Hu and S. B. Ktupanidhi, “Current-voltage characteristics of ultrafine-grained ferroelectric Pb(Zr,Ti)O3 thin film”, J. Mater. Res., Vol. 9, No. 6, 1994. [10 ] J. F. Scott, C. A. Araujo, B. M. Melnick, and L. D. McMillan, “Quantitative measurement of space-charge effects in lead zirconate-titanate memories,” J. Appl. Phys., vol.70, pp. 382-388, December 1991. [11 ] C. Sudhama, A. C. Campbell, P. D. Maniar, R. E. Jones, R. Moazzami, and C. J. Mogab, “A model for electrical conduction in metal-ferroelectric-metal thin film capacitor,” J. Appl. phys., vol.75, pp. 1014-1022, March 1994. [12 ] N. Inoue and Y. Hayashi, “Effect of imprint on operation and reliability of ferroelectric random acess memory(FeRAM),” IEEE Trans. Electron Devices, vol. 48, pp. 2266-2272, 2001. 第三章 [1 ] Y. Nakao, “Study on Pb-based ferroelectric thin films prepared by sol-gel method for memory application,” Jpn. J. Appl. Phys., pt. 1, vol. 33, no. 9B, pp. 5265-5267, 1994. [2 ] K. Aoki, “Dielectric Properties of (111) and (100) Lead-Zirconate-Titanate Films Prepared by Sol-Gel Technique,” Jpn. J. Appl. Phys., pt.1, vol. 33, no. 9B, pp. 5155-5158, 1994. [3 ] W. J. Lin, “Growth and fatigue properties of pulsed laser deposited PLZT thin films with [001 ] preferred orientation,” J. Mat. Sci.: MATERIALS IN ELECTRONICS, Vol. 7, pp. 409-417, 1996. [4 ] T. F. Tseng, R. P. Yang, and K. S. Liu, “Ferroelectric properties of PLZT films deposited on Si3N4-coated Si substrates by pulsed laser deposition process,” Appl. Phys. Lett., vol. 70, pp. 46-48, 1997. [5 ] H. Nakasima, “Electrical properties for capacitors of dynamic random access memory on PLZT thin films by metaorganic chemical vapor deposition,” Jpn. J. Appl. Phys., pt. 1, vol.33, no. 9B, pp. 5139-5142, 1994. [6 ] C.M. Foster, “Single-crystal PZT thin films prepared by metal-organic chemical vapor deposition:Systematic compositional variation of electronic and optical properties,” J. Appl. Phys., vol. 81, pp. 2349-2357, January 1997. [7 ] H. Miki and Y. Ohji, “Uniform Ultra-Thin Pb(Zr,Ti)O3 Films Formed by Metal-Organic Chemical Vapor Deposition and Their Electrical Characteristics,” Jpn. J. Appl. Phys., pt. 1, vol. 33, no. 9B, pp. 5143-5146, 1994. [8 ] E. Cattan, “Structure control of PZT buffer layers produced by magnetron sputtering,” Appl. Phys. Lett., vol. 70, pp. 1718-1720, 1997. [9 ] O. Auciello, A. I. Kingon, and S. B. Krupanidhi, “Sputter Synthesis of Ferroelectric Films and Heterostructures,” MAT. RES. BULLETIN, p.25, 1996. [10 ] L. Wang, “Properties of PbZrTiO3 Thin Films Preapred By R.F. Magnetron Sputtering and Heat Treatment,” Mat. Res. Bull., vol. 25, pp.1495-1501, 1990. [11 ] V. Chikarmane, “Effects of post-deposition annealing ambient on the electrical characteristics and phase transformation kinetics of sputtered lead zirconate (65/35) thin film capacitors,” J. Vac. Scl. Technol. A, vol. 10, no. 4, 1992. [12 ] S. M. Sze, VLSI Technology, Second Edition, pp. 466-513. [13 ] S. Wolf and R. N. Tauber, Silicon Processing for the VLSI Era Vol. 1 [14 ] T. P. Juan, S.Chen, and J. Y. M. Lee, “Temperature dependence of the current conduction mechanisms in ferroelectric Pb(Zr0.53,Ti0.47)O3 thin films,” J. Appl. Phys., vol. 95, pp. 3121-3125, March 2004. 第四章 [1 ] F. Y. Chen, Y. K. Fang, and M. J. Sun, “Experimental characterization and modeling of a ferroelectric bulk channel field effect transistor with nonvolatile memory characteristics,” Appl. Phys. Lett., vol. 69, pp.812-814, 1996. [2 ] Y. Watanabe, “Epitaxial all-perovskite ferroelectric field effect transistor with a memory retention,” Appl. Phys. Lett., vol. 66, pp.1770-1772, 1995. [3 ] K. Nagashima, T. Hirai, H. Koike, Y. Fujisaki and Y. Tarui, “Characteristics of Metal/Ferroelectric/Insulator/Semiconductor Structure Using SrBi 2Ta 2O 9 as the Ferroelectric Material,” Jpn. J. Appl. Phys., pt. 1, vol. 35, no. 4B, pp.1680-1682, 1996. [4 ] K. Sugibuchi, Y. Kurogi, and N. Endo, “.Ferroelectric field-effect memory device using Bi4Ti3O12 film,” J. Appl. Phys., vol. 46, pp. 2877-2881, November 1975. [5 ] V. Chikarmane, C. Sudhama, J. Kim, J. Lee, and asch, “Effects of post-deposition annealing ambient on the electrical characteristics and phase transformation kinetics of sputtered lead zirconate titanate (65/35) thin film capacitors ,“ J. Vac. Sci. Technol. A, no. 10, pp.1562-1568, 1992. [6 ] R. Gastaldi, D. Novosel, M. Dallabora, and G. Casagrande, “A 1-Mbit CMOS EPROM with enhanced verification,” IEEE J. Solid State Circuits, vol. 23, pp. 1150-1156, 1988. [7 ] Y. Lin, B. Zhao, H. Peng, Z. Hao, B. Xu, Z. Zhao, and J.Chen, “Asymmetry in the hysteresis loop of Pb(Zr0.53Ti0.47)O3/SiO2/Si structures,” J. Appl. Phys., vol. 86, pp.4467-4472, May 1999. [8 ] C. L. Benjamin, K. Nan-hui, and Y. L. Joseph, “A study on the capacitance--voltage characteristics of metal-Ta2O5-silicon capacitors for very large scale integration metal-oxide-semiconductor gate oxide applications ,“J. Appl. Phys., vol. 85, pp. 4087-4090, 1999. [9 ] H. Sugiyama, T. Nakaiso, Y. Adachi, M. Noda, M. Okuyama, “An improvement in C-V Characteristics of Metal/Ferroelectric/Insulator/Semiconductor Structure for Ferroelectric Gate FET Memory Using a Silicon Nitride Buffer Layer,” Jpn. J. Appl. Phys., pt. 1, vol. 38, no. 4B, pp.2131-2135, 2000. [10 ] D. M. Fleetwood and Senior Member, IEEE Transactions of Nuclear Science, Vol. 39, 1992. [11 ] Y. Watanabe, “Energy band diagram of ferroelectric heterostructures and its application to the thermodynamic feasibility of ferroelectric FET ,“ Solid State Ionics, vol. 108, pp. 59-65, 1998. [12 ] 鍾維烈, “鐵電體物理學”, 1998 [13 ] A. Chin, M. Y. Yang, C. L. Sun ,and S. Y. Chen, “Stack Gate PZT/Al2O3 One Transistor Ferroelectric Memory,” IEEE Electron Device Lett., vol. 22, pp. 336-338, 2001. [14 ] M. Y. Tang, S. B. Chen, Albert Chin, C. L. Sun, B. C. Lan, and S. Y. Chen, “One-transistor PZT/Al2O3, SBT/Al2O3 and BLT/Al2O3 stacked gate memory,” in IEDM Tech. Dig., 2001, pp. 36.3.1-36.3.4. [15 ]T. Kanashima and M. Okuyama, “Analyses of High Frequency Capacitance- Voltage Characteristics of Metal/Ferroelectric/Insulator/Semiconductor Structure ,” Jpn. J. Appl. Phys., pt. 1, vol. 38, no. 4A, pp.2044-2048, 1999 第五章 [1 ] M. Yamaguchi, K. Hiraki, T. Homma, T. Nagatomo, and Y. Masuda, “Fabrication and properties of Bi2SiO5 thin films for MFIS structures,” Proc. of 12th IEEE Int. Symp. On Application of Ferroelectrics, 2000, pp. 629-632. [2 ] H. N. Lee, Y. T. Kim, C. W. Lee, and S. H. Choh, “Enhancement of memory window in the metal/ferroelectric (YMnO3 )/insulator/semiconductor capacitor,” Proc. of 11th IEEE Int. Symp. On Application of Ferroelectrics, 1998, pp. 39-42.id NH0925428031 sid 915039 cfn 0 / id NH0925428032 auc 楊欲忠 tic 共軛高分子之主動式矩陣畫素製程與研究 adc 洪勝富 adc 孟心飛 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 65 kwc 有機薄膜電晶體 kwc 有機發光二極體 kwc 主動式矩陣畫素 kwc P3HT kwc 載子遷移率 abc 在新的平面顯示技術中,有機發光二極體是最具有潛力的產品,因其具有低超作電壓、低耗電量、自發光、高亮度、應答速度快、高對比、廣視角、輕量薄型、可撓曲性、可全彩化等特性,是最被為看好的下一世代平面顯示技術。而發展主動式矩陣的面板技術,更可因應未來高資訊量,高解析度的需求。 tc 第一章 序論……………………………………………………………..1 1.1、 研究背景………………………………………………………………………1 1.1.1平面顯示器產業發展現況…………………………………………….......1 1.1.2有機電激發光顯示器產業發展…………………………………………...3 1.2、 研究動機………………………………………………………………………5 1.2.1有機發光二極體的優越特性……………………………………………...5 1.2.2有機發光二極體顯示器電路驅動方式…………………………………...6 1.2.3研究方向與所欲解決之問題……………………………………………...8 1.3、 論文架構……………………………………………………………………..11 第二章 文獻回顧與實驗原理………………………………………..12 2.1、 共軛高分子發光二極體………………………………………………………12 2.1.1共軛高分子發光材料…………………………………………………….12 2.1.2 共軛高分子發光二極體結構……………………………………………13 2.1.3 共軛高分子發光二極體操作方式………………………………………15 2.2、 有機薄膜電晶體………………………………………………………………16 2.2.1有機薄膜電晶體發展…………………………………………………….16 2.2.2有機薄膜電晶體結構與操作原理……………………………………….18 2.3、 有機主動式矩陣畫素………………………………………………………...23 2.3.1有機主動式矩陣畫素操作方式………………………………………….23 2.3.2文獻回顧………………………………………………………………….26 第三章 實驗架構……………………………………………………..30 3.1、 有機高分子半導體P3HT…………………………………………………….30 3.2、 元件製作步驟…………………………………………………………………32 3.3、 元件量測………………………………………………………………………40 第四章 實驗量測結果分析…………………………………………..42 4.1、 有機薄膜電晶體電性分析……………………………………………………42 4.2、 單一OTFT驅動PLED……………………………………………………….52 4.3、 主動式矩陣2T1C輸出特性………………………………………………….54 4.4、 結論……………………………………………………………………………62 第五章 結論與未來發展……………………………………………..63 參考文獻……………………………………………………………………………..64rf 【1】J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers” Nature 347, 539 (1990) 【2】D. Braun “miconducting polymer LEDs” Science 【3】“Electroluminescence in conjugated polymer” Nature 1999 【4】陳壽安 “PLED發展回顧與前瞻” 2002年4月光訊稿 【5】顧鴻壽 “光電有激電機發光顯示器” 2001 【6】Z. L. Li, S. C. Yang, H. F. Meng and Y. S. Chen “Patterning-free integration of polymer light-emitting diode and polymer transistor” APL May 3, 2004 【7】”Plastic transistors in active-matrix displays” Nature DECEMBER 6, 2001 VOL 414 【8】D. de Leeuw, Phy. World, p31(March 1999) 【9】Christos D. Dimitrakopoulos* and Patrick R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics” Adv. Mater. 2002, 14, No. 2, January 16 【10】H. Sirringhaus, P. J. Brown, R. H. Friend et al., Nature (London) 401, 685 (1999) 【11】“Field-effect transistors made from solution-processed organic semiconductors” Synthetic Metal s 88 (1997)37-55 【12】Zhenan Bao, Ananth Dodabalapur, and Andrew J. Lovinger “Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility” 4108 Appl. Phys. Lett. 69 (26), 23 December 1996 【13】H. Sirringhaus , P.J. Brown , R.H. Friend , M.M. Nielsen, K. Bechgaard B.M.W. Langeveld-Voss , A.J.H. Spiering , R.A.J. Janssen , E.W. Meijer “Microstructure- mobility correlation in self-organised conjugated polymer FET” Synthetic Metals 111–112 2000 129–132 【14】“Two-dimensional charge transport in self-organized high-mobility conjugated polymers” Nature VOL401 ,OCTOBER 14 (1999) 【15】Henning Sirringhaus,* Nir Tessler, Richard H. Friend* “Integrated Optoelectronic Devices Based on Conjugated Polymers” Science VOL. 280 p1741, JUNE 12 (1998) 【16】A. Dodabalapur, Z. Bao, A. Makhija, J. G. Laquindanum, V. R. Raju, Y. Feng, H. E. Katz, and J. Rogers “Organic smart pixels” APL VOLUME 73 NUMBER 2 ,13 JULY 1998 【17】K. L. Tzeng, H. F. Meng, M. F. Tzeng, and Y. S. Chen “One-polymer active pixel” APL VOL 84, NUMBER 4 ,26 JANUARY 2004 【18】Z. L. Li, S. C. Yang, H. F. Meng, and Y. S. Chen “Patterning-free integration of polymer light-emitting diode and polymer transistor” APL VOLUME 84, NUMBER 18 ,3 MAY 2004 【19】Masatoshi KITAMURA1, Tadahiro IMADA1 and Yasuhiko ARAKAWA “Organic transistor circuits for application to organic light emittingdiode displays” Jpn. J. Appl. Phys. Vol. 42 (2003) pp. 2483–2487 【20】E. J. Meijera “Dopant density determination in disordered organic field-effect transistors” JAP VOLUME 93, NUMBER 8 15 APRIL 2003 【21】Sung Kyu Park., Yong Hoon Kim, Jeong In Han, Dae Gyu Moon, Won Keun Kim, Min Gi Kwak ”Electrical characteristics of poly (3-hexylthiophene) thin film transistors printed and spin-coated on plastic substrates” Synthetic Metals 139 (2003) 377–384id NH0925428032 sid 915040 cfn 0 / id NH0925428033 auc 鄭嵐瑄 tic 互補式金氧半積體電路之對消式溫度感測器之設計 adc 金雅琴 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 英文 pg 59 kwc 溫度感測器 abc 為了要達到降低成本與高精準度的需求,本論文提出了一種互補式金氧半積體電路之對消式溫度感測器的設計。此設計的重點是針對整個電路中的能隙參考電壓電路(bandgap reference circuit)和正比於絕對溫度之電壓電路(PTAT circuit)這兩個部分做了降低電路中運算放大器之輸入偏移電壓(offset voltage of operational amplifier)的改良。如此一來,在沒有校調的情況下,就有很好的輸出線性度,亦可降低校正成本。 tc List of Contents English Abstract……………………………………………………………….. i Chinese Abstract………………………………………………………………. ii Acknowledgement……………………………………………………………… iii List of Contents………………………………………………………………… iv List of Figures………………………………………………………………….. vi List of Tables…………………………………………………………………… viii Chapter1 Introduction 1.1 Background and Motivation………………………………………………. 1 1.2 Research Goals and Thesis Organization…………………………………. 2 Chapter2 Review of Temperature Sensors 2.1 Introduction of Temperature Sensors……………………………………... 4 2.2 Parameters of Temperature Sensor………………………………………... 4 2.2.1 Temperature Range…………………………………………………… 5 2.2.2 Accuracy……………………………………………………………… 5 2.2.3 Calibration and Trimming……………………………………………. 5 2.3 Introduction of Temperature Sensors……………………………………... 5 2.4 PTAT Source………………………………………………………………. 6 2.4.1 VBE Generator………………………………………………………… 6 2.4.2 Operation Principle…………………………………………………… 7 2.4.3 Accuracy……………………………………………………………… 8 2.5 Bandgap Reference………………………………………………………... 8 2.5.1 Conventional bandgap Voltage Reference……………………………. 9 2.5.2 Errors in CMOS Bandgap Reference………………………………… 9 Chapter3 Design Issues of CMOS Temperature Sensors 3.1 CMOS Bandgap Reference and PTAT Design……………………………. 16 3.2 Dynamic Offset Cancellation Techniques………………………………… 16 3.2.1 Autozero Technique………………………………………………….. 16 3.2.2 Chopper Technique…………………………………………………… 17 3.3 Dynamic Element Matching Techniques………………………………….. 18 3.4 Target Specifications of the Bandgap Reference and PTAT Voltage……… 19 Chapter4 CMOS Chopper Temperature 4.1 Design of CMOS Chopper Bandgap Reference…………………………... 26 4.1.1 Principle………………………………………………………………. 26 4.1.2 Low Pass Filter……………………………………………………….. 26 4.2 CMOS Chopper Bandgap Reference with Internal Low-pass Filter……… 28 4.2.1 Principle………………………………………………………………. 28 4.2.2 Simulation Results……………………………………………………. 28 4.3 PTAT Generator…………………………………………………………… 29 4.3.1 Principle………………………………………………………………. 29 4.3.2 Chopped Instrumentation Amplifier………………………………….. 29 4.3.3 S/H Circuit Design…………………………………………………… 30 4.3.4 Simulation Results……………………………………………………. 31 Chapter5 Experiment Results and Discussions 5.1 Experiment Results………………………………………………………... 47 5.1.1 Bandgap Reference Voltage…………………………………………... 47 5.1.2 PTAT Voltage…………………………………………………………. 48 5.2 Discussions………………………………………………………………... 48 Chapter6 Conclusion and Future Work 6.1 Conclusions……………………………………………………………….. 56 6.2 Future Work……………………………………………………………….. 56 REFERENCE………………………………………………………………….. 58 List of Figures Figure 1-1. Principle of thermal management in a computer system…………. 3 Figure 2-1. Block diagram of a typical temperature sensor…………………... 11 Figure 2-2. Substrate PNP transistor in twin-well CMOS technology……….. 12 Figure 2-3. Base-emitter voltage VBE versus temperature T………………….. 13 Figure 2-4. Principle of a PTAT source……………………………………….. 14 Figure 2-5. Conventional CMOS bandgap reference…………………………. 15 Figure 3-1. Basic schematic for a CMOS bandgap reference circuit…………. 21 Figure 3-2. A basic autozeroing stage………………………………………… 22 Figure 3-3. Amplifier using the chopper stabilization technique, and signals illustrated in both the frequency and time domain……………… 23 Figure 3-4. Residual offset caused by spikes (a) Spike signal (b) demodulation signal (c) demodulation spike... 24 Figure 3-5 Generation of VPTAT using DEM………………………………….. 25 Figure 4-1(a). Chopper circuit design…………………………………………... 32 Figure 4-1(b). CMOS chopper bandgap reference circuit……………………… 33 Figure 4-2. CMOS chopper bandgap reference with a RC low pass filter……. 34 Figure 4-3. CMOS chopper bandgap reference with a SC low pass filter……. 35 Figure 4-4. Schematic of the conventional CMOS chopper bandgap voltage reference…………………………………………………………. 36 Figure 4-5. Reference output voltage under different chopping frequencys….. 37 Figure 4-6. Simulated Vref for overly high chopping frequency……………… 38 Figure 4-7. Schematic of the PTAT generator………………………………… 39 Figure 4-8. Instrumentation amplifier for PTAT voltage……………………… 40 Figure 4-9. Instrumentation amplifier with chopper………………………….. 41 Figure 4-10. Sample/hold circuit for chopped signal…………………………… 42 Figure 4-11. Timing diagram for sample/hold circuit…………………………... 43 Figure 4-12. Temperature analysis of VPTAT,O…………………………………… 44 Figure 4-13. Transient response of V?SPTAT………………………………………. 45 Figure 4-14. Transient response of VPTAT………………………………………. 46 Figure 5-1. Layout diagram…………………………………………………… 50 Figure 5-2. Temperature characteristic of bandgap voltage reference with different chopping frequency……………………………………. 51 Figure 5-3. Temperature characteristic of bandgap voltage reference of TEMP1………………………………………………………….. 52 Figure 5-4. Temperature characteristic of bandgap voltage reference of 6 samples…………………………………………………………… 53 Figure 5-5. Temperature characteristic of PTAT voltage of TEMP4………….. 54 Figure 5-6. Temperature characteristic of PTAT voltage of 6 samples……….. 55 List of Tables Table 2-1. Errors in CMOS bandgap reference………………………………. 10 Table 3-1. Target specifications of the bandgap reference and PTAT voltage... 20 Table 5-1. Comparison of target specifications and experiment results………. 49rf REFERENCE [1 ] Ming-Chan Weng, “Design of CMOS Temperature Sensors”, Ph.D. dissertation, nct. Univ. Taiwan, 1999 [2 ] A. Bakker,J. Huijsing, “High-accuracy CMOS Smart Temperature Sensors”, Kluwer Academic Publishers, 2000 [3 ] Maxim Integrated Products, “MAX6649 +145?aC Precision SMBus-Compatible Remote/Local Sensor with Overtemperature Alarms”, http://www.maxim-ic.com [4 ] Sunay Shah and Steven Collins, “A Temperature Independent Trimmable Current Source”, Circuits and Systems, ISCAS 2002. IEEE [5 ] G. C. M. Meijer, A. W. Herwaarden, “Thermal Sensors”, Institute of Physics Publishing, 1994 [6 ] C.Popa, ”Superior-order Curvature-correction CMOS Smart Temperature Sensor”, IEEE Smolenice Castle, Slovakia, 14-16 October 2002 [7 ] Stamatios Kartalopoulos, ”Voltage Reference From Diode to Precision High-order Bandgap Circuit”, Wiley Interscience, 2002 [8 ] A. Bakker, “CMOS Smart Temperature Sensor-An Overview”, Philip Semiconductors Delft, Netherlands [9 ] B.S.Song, P.R. Gray, “A Precision Curvature-Compensated CMOS bandgap Reference”, IEEE J.Solid-State Circuit, vol.18,pp 634-643,December 1983 [10 ] Christian C. Enz, Eric A.Vittoz, “A CMOS Chopper Amplifier”, IEEE Journal of Solid-State Circuit, vol. sc-22, No. 3, June 1987 [11 ] Christian C Enz, Gabor C. Temes, “Circuit Techniques for Reducing the effects of Op-Amp Imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabbilization”, IEEE Proceedings, vol.84, No.11 November 1996 [12 ] A Bakker, Kevin Thiele, Johan Huijsing, “A CMOS Nested Chopper Instrumentation Amplifier with 100nV Offset”, IEEE International Solid-State Circuit Conference 2000 [13 ] Gerard C. M. Meijer, “Temperature Sensors and Voltage References Implemented in CMOS Technology”, IEEE Sensors Journal, vol. 1 No.3, October 2001 [14 ] National Semiconductor, “LM75-Digital Temperature Sensor and Thermal Watchdog with Two-Wire Interface”, http:// www.national.com, November 1999 [15 ] A Bakker, Johan H Huijsing, “Micropower CMOS Temperature Sensor with Digital Output”, IEEE Journal of Solid-State Circuit, vol.31 No.7, July 1996 [16 ] Adel S. Sedra, Kenneth C. Smith, “Microelectronic Circuit”, New York Oxford 1998 [17 ] Anton Bakker, Kevin Thiele, Johan Huijsing, “ A CMOS Nested Chopper Instrumentation Amplifier with 100nV Offset”, IEEE International Solid-State Circuit Conference, 2000 [18 ] Peter R. Hollowway, Ravi Subrahamayan, Gray E. Sheehan, “Linearized Temperature Sensor”, US patent 6,183,131 B1id NH0925428033 sid 915043 cfn 0 / id NH0925428034 auc 洪德儒 tic 可變增益之0.35um矽鍺5.25GHz射頻前端積體電路設計 adc 龔正 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 75 kwc 可變增益放大器 kwc 射頻接收器 kwc 混波器 kwc 低雜訊放大器 kwc 5.25GHz kwc 矽鍺 abc 在本篇論文中,將探討各種接收器架構的優劣,而相較於傳統式的超外插接收器,直接降頻接收器擁有較佳的積體化能力,同時擁有較低的功率消耗,高品質因子(Q)的被動元件,將有助於RF-SOC,進而使接收器能達到同時存在多頻段,多規格的使用。 rf 參考文獻 [1 ]Zargari, M.; Su, D.K.; Yue, C.P.; Rabii, S.; Weber, D.; Kaczynski, B.J.; Mehta, S.S.; Singh, K.; Mendis, S.; Wooley, B.A.; ”A 5-GHz CMOS transceiver for IEEE 802.11a wireless LAN systems”, IEEE Journal of Solid-State Circuits, Pages:1688 - 1694, Volume: 37 , Issue: 12 , Dec. 2002 [2 ] Samavati, H.; Rategh, H.R.; Lee, T.H.; “A 5-GHz CMOS wireless LAN receiver front end”, IEEE Journal of Solid-State Circuits, Pages:765 - 772, Volume: 35 , Issue: 5 , May 2000 [3 ] Lie, D.Y.C.; Xiaojuen Yuan; Larson, L.E.; Wang, Y.H.; Senior, A.; Mecke, J.; ” "RF-SoC": low-power single-chip radio design using Si/SiGe BiCMOS technology”, 2002 3rd International Conference on Microwave and Millimeter Wave Technology, Proceedings. Pages: 30 – 37, ICMMT 2002, 17-19 Aug. 2002 [4 ]Larson, L.E., ”Integrated circuit technology options for RFICs-present status and future directions”, IEEE Journal of Solid-State Circuits, Pages:387 – 399, Volume: 33 , Issue: 3 , March 1998 [5 ]Matsuzawa, A.; “RF-SoC-expectations and required conditions”, IEEE Transactions on Microwave Theory and Techniques, Pages: 245 – 253, Volume: 50, Issue: 1, Jan. 2002 [6 ]Raja, M.K.; Boon, T.T.C.; Kumar, K.N.; Wong Sheng Jau; “A fully integrated variable gain 5.75-GHz LNA with on chip active balun for WLAN” Radio Frequency Integrated Circuits (RFIC) Symposium, Pages:439 - 442 2003 IEEE , 8-10 June 2003, [7 ]B. Razavi, “RF MICROELECTRONICS”, Prentice Hall, 1998 [8 ]Rofougaran, A.; Chang, J.Y.-C.; Rofougaran, M.; Abidi, A.A.;” A 1 GHz CMOS RF front-end IC for a direct-conversion wireless receiver” IEEE Journal of Solid-State Circuits, Pages:880 – 889 Volume: 31 , Issue: 7 , July 1996 [9 ]Thomas H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits” Cambridge University Press, 2001. [10 ]A. Abidi, “Direct-conversion radio transceivers for digital communications,”IEEE J. Solid-State Circuits, vol. 30, pp. 1399–1410, Dec. 1995. [11 ]Seungwooi Lee; Keewook Jung; Wonchan Kim; Hyunkyu Ryu; Wonchul Song; “A 1 GHz image-rejection down-converter in 0.8 μm CMOS technology” IEEE Transactions on Consumer Electronics, Pages:235 – 239 Volume: 44, Issue: 2, May 1998 [12 ]Rahul Magoon, Member, IEEE, Alyosha Molnar, Jeff Zachan, Member, IEEE, Geoff Hatcher, Member, IEEE, and Woogeun Rhee, Member, IEEE” A Single-Chip Quad-Band (850/900/1800/1900 MHz) Direct Conversion GSM/GPRS RF Transceiver with Integrated VCOs and Fractional-N Synthesizer” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 12, DECEMBER 2002 [13 ]Behzad Razavi.McGraw-Hill, “Design of analog CMOS integrated circuits” 2001 [14 ]Won Namgoong, Member, IEEE, and Teresa H. Meng, Fellow, IEEE” Direct- Conversion RF Receiver Design” IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 49, NO. 3, MARCH 2001 [15 ]Crols, J.; Steyaert, M.S.J.;” A single-chip 900 MHz CMOS receiver front-end with a high performance low-IF topology” IEEE Journal of Solid-State Circuits, Pages:1483 – 1492, Volume: 30 , Issue: 12 , Dec. 1995 , [16 ]D. K. Weaver, “A Third Method of Generation and Detection of Single-Sideband Signals”Proc. IRE, Vol. 44, pp. 1703-1705, December 1956 [17 ]Hao-Shun Yang “Area and Cost Effectiveness of RF Front-End Integrated Circuits” Communication National Tsing Hua University, 2002 [18 ]Wu, S.; Razavi, B.;” A 900-MHz/1.8-GHz CMOS receiver for dual-band applications” IEEE Journal of Solid-State Circuits, Pages: 2178 – 2185, Volume: 33, Issue: 12, Dec. 1998, [19 ]Kwang-Jin Koh; Yong-Sik Youn; Hyun-Kyu Yu;” A gain boosting method at RF frequency using active feedback and its application to RF variable gain amplifier (VGA)”, ISCAS 2002. IEEE International Symposium on Circuits and Systems, Pages: III-89 - III-92 vol.3 Volume: 3 , 26-29 May 2002 [20 ]Elwan, H.; Soliman, A.M.; Ismail, M.;” A CMOS Norton amplifier-based digitally controlled VGA for low-power wireless applications” Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on [see also Circuits and Systems II: Express Briefs, IEEE Transactions on ], Pages: 245 – 254 Volume: 48 , Issue: 3 , March 2001 [21 ]D. Y. C. Lie et al., “A Direct Conversion W-CDMA Front-End SiGe Receiver Chip”, IEEE RFIC Symposium, pp 31~34, 2002. [22 ]Tsang, T.K.K.; El-Gamal, M.N., ” Gain and frequency controllable sub-1 V 5.8 GHz CMOS LNA” Circuits and Systems, 2002.. IEEE International Symposium on ISCAS 2002, Pages:IV-795 - IV-798 vol.4 Volume: 4 , 26-29 May 2002 [23 ]Ken Leong Fong;, ” Dual-band high-linearity variable-gain low-noise amplifiers for wireless applications” Solid-State Circuits Conference, 1999. Digest of Technical Papers.. 1999 IEEE International ISSCC, Pages: 224 – 225 15-17 Feb. 1999 [24 ]Aoki, Y.; Fujii, M.; Ohkubo, S.; Yoshida, S.; Niwa, T.; Miyoshi, Y.; Dodo, H.; Goto, N.; Hida, H.;” A 1.4-dB-NF variable-gain LNA with continuous control for 2-GHz-band mobile phones using InGaP emitter HBTs” Microwave Symposium Digest, 2001 IEEE MTT-S International , Pages:289 - 292 vol.1 Volume: 1 , 20-25 May 2001 [25 ]Jussila, J.; Ryynanen, J.; Kivekas, K.; Sumanen, L.; Parssinen, A.; Halonen, K.A.I.;” A 22-mA 3.0-dB NF direct conversion receiver for 3G WCDMA” IEEE Journal of Solid-State Circuits , Pages:2025 – 2029 Volume: 36 , Issue: 12 , Dec. 2001 [26 ]Kobayashi, K.W.; Ip, K.T.; Oki, A.K.; Umemoto, D.K.; Claxton, S.; Pope, M.; Wiltz, J.; “GaAs HBT 0.75-5 GHz multifunctional microwave-analog variable gain amplifier” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, Page(s): 239 -242, 1993. Technical Digest 1993, 15th Annual , 10-13 Oct. 1993 [27 ]ALAN B. GREBENE”BIPOLAR AND MOS ANALOG INTEGRATED CIRCUIT DESIGN” New York: /J. Wiley, /c1984. [28 ]Vintola, V.T.S.; Matilainen, M.J.; Kalajo, S.J.K.; Jarvinen, E.A.;” Variable-gain power amplifier for mobile WCDMA applications” Microwave Theory and Techniques, IEEE Transactions on , Pages:2464 – 2471, Volume: 49 , Issue: 12 , Dec. 2001 [29 ]Kobayashi, K.W.; Umemoto, D.K.; Block, T.R.; Oki, A.K.; Streit, D.C.;, ”A monolithically integrated HEMT-HBT low noise high linearity variable gain amplifier”, IEEE Journal of Solid-State Circuits, Pages:714 – 718, Volume: 31 , Issue: 5 , May 1996 [30 ]Gray, Paul R., Meyer, Robert G., “Analysis and design of analog integrated circuits “Wiley, 2001 [31 ]Keng Leong Fong; Meyer, R.G.; “High-frequency nonlinearity analysis of common-emitter and differential-pair transconductance stages” IEEE Journal of Solid-State Circuits, Pages: 548 – 555 Volume: 33, Issue: 4, April 1998 [32 ]Keng Leong Fong;” High-frequency analysis of linearity improvement technique of common-emitter transconductance stage using a low-frequency-trap network” IEEE Journal of Solid-State Circuits, Pages: 1249 - 1252 Volume: 35, Issue: 8, Aug. 2000 [33 ]David M. Pozar,“Microwave and RF Design of Wireless Systems”New York: Wiley, 2001 [34 ]Liang-Hui Li, ”RF System Planning of 802.11a WLAN Receiver and 5GHz CMOS Differential LNA/Mixer Circuit Design”, Communication National Cheng Kung University, 2002 [35 ]Thomas H. Lee, Member, IEEE, Hirad Samavati, and Hamid R. Rategh”5-GHz CMOS Wireless LANs” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 1, JANUARY 2002 [36 ]Meyer, R.G.; Mack, W.D.;” A 1-GHz BiCMOS RF front-end IC”, IEEE Journal of Solid-State Circuits, Volume: 29, Pages: 350 – 355, Issue: 3, March 1994id NH0925428034 sid 915045 cfn 0 / id NH0925428035 auc 陳郁仁 tic 利用電漿輔助化學氣相沉積法成長埋藏在氮化矽薄膜的矽基奈米點之儲存效應 adc 黃惠良 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 英文 pg 56 kwc 電漿輔助化學氣相沉積法 kwc 奈米點 abc 在最近的幾年內,特別是,以奈米點為基礎的金屬-絕緣體-半導體的結構不但針對它們所具有的這種新的物理現象,而且和它們的淺藏能力應用在下一個世代的單電子記憶體元件已均被廣泛的研究。利用穿襚式電子顯微鏡可以看到用電漿輔助化學氣相沉積法所長成的矽基奈米點埋藏於氮化矽薄膜中,並且可以計算其面密度大約在每平方公分1011–1012的程度。電荷被捕陷和儲存在矽基奈米點中可以顯示在室溫下的電容-電壓量測結果中,透過遲滯現象和平帶電壓的平移量在這些矽基奈米點的樣品裡。 tc Chap 1 Introduction.....1 1.1 Overview of the Nonvolatile Memory 1.1.1 History of the Nonvolatile Memory 1.1.2 Review of the Flash Memory with Stacked-gate Structure 1.1.3 Review of the Flash Memory with Split-gate Structure 1.2 Attention and obstruction in Flash Memory 1.3 Edification and Motivation Chap 2 Mechanism.....15 2.1 mechanism sma Enhanced Chemical Vapor Deposition (PECVD) 2.1.1 Introduction 2.1.2 Plasma Fundamentals 2.1.3 Classification of PECVD 2.2 Fowler-Nordheim (FN) Tunneling 2.3 Frenkel-Poole Effect Tunneling 2.4 Capacitance –Voltage Characteristic of MIS Structure Chap 3 Experiment.....38 3.1 Introduction 3.2 Process flow 3.3 Microscopy and electrical Measurement Chap 4 Results and Discussion.....43 4.1 Size and Sheet Density of Si Nano-Dots 4.2 Memory Effect of Si Nano-Dots 4.3 Discussion Chap 5 Conclusion and future work.....54 5.1 Conclusion 5.2 Future workrf [1.1 ] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices,” Bell Syst. Tech. J., vol. 46, p.1288, 1967. [1.2 ] H. A. R. Wegener, A. J. Lincoln, H. C. Pao, M. R. O’Connell, and R.E. Oleksiak, “The variable threshold transistor, a new electrically alterable, non-destructive read-only storage device,” IEEE IEDM Tech. Dig., Washington, D. C., 1967. [1.3 ] D. Frohman-Bentchkowsky, “A fully decoded 2048-bit electrically programmable MOS-ROM,” IEEE ISSCC Dig. Tech. Pap., p. 80, 1971. [1.4 ] D. Frohman-Bentchkowsky, “Memory behavior in a floating gate avalanche injection MOS (FAMOS) structure,” Appl. Phys. Lett., vol. 18, p332, 1971. [1.5 ] D. Frohman-Bentchkowsky, “A fully decoded 2048-bit electrically programmable FAMOS read-only memory,” IEEE Trans. Elect. Dev., vol. ED-25, p 1277, 1978. [1.6 ] D. Frohman-Bentchkowsky, “FAMOS-A new semiconductor charge storage device,” Sol. St. Electr., vol. 17, p 517, 1974. [1.7 ] H. lizuka, T. Sato, F. Masuoka, K. Ohuchi, H. Hara, H. Tango, M. Ishikawa, and Y. Takeishi, "Stacked gate avalanche injection type MOS (SAMOS) memory," Proc. 4th Conf. Sol. St. Dev., Tokyo, 1972; J. Japan. Soc. Appl. Phys., vol. 42, p. 158, 1973. [1.8 ] H. lizuka, F. Masuoka, T. Sato, and M. Ishikawa, "Electrically alterable avalanche injection type MOS read-only memory with stacked gate structure, " IEEE Trans. Elect. Dev., vol. ED-23, p. 379, 1976. [1.9 ] W. Johnson, G. Perlegos, A. Renninger, G. Kuhn, and T. Ranganath, "A 16k bit electrically erasable non-volatile memory, in Tech. Dig. IEEE ISSCC, p. 152, 1980 [1.10 ] Kume, H. et al. (1987) A Flash-Erase EEPROM Cell with an Asymmetrical Source and Drain Structure, IEDM Proceedings, p. 560. [1.11 ] Masuoka, F. et al (1984) A new flash EEPROM cell using triple polysilicon technology, IEDM Proceedings, p. 464. [1.12 ] Samachisa, G. et al. (1987) A128k Flash EEPROM Using Double-Polysilicon Technology, IEEE Journal of Solid State Circuits, vol. SC-22, No. 5, October 1987, p. 676. [1.13 ] F. Masuokaand K. Sakui, "Technology trend of Flash EEPROM," Ext. Abstract of SSDM, p.877-p.979, 1993 [1.14 ] H. Kume, M. Kato, T. Adachi, T. Tanaka, T. Sasaki, T. Okazaki, "A 1.28um2 contactless memory cell technology for a 3V- only 64M bit EEPROM," in IEDM Tech. Dig., p.991-p.993, 1992 [1.15 ] Y. S. Hisamune, K. Kanamori, T. Kubota, Y. Suzuki, M. Tsukiji, E. Hasegawa, et. al., "A high capacitive-coupling ratio (HiCR)cell for 3V-only 64 M bit and future Flash memories" in IEDM Tech. Dig., p. 19-p.22, 1993 [1.16 ] B. Guillaumot, Ph. Candelier and F. Martin, "A 13.5 nm Full LPCVD NO and ONO interpoly dielectric for 0.25mm nonvolatile memory process," in intl. NVM workshop, 1995 [1.17 ] T. Kobayashi, A. Katayama; H. Kume and K. Kimura, "NH3-annealed and wet-oxidized CVD Si02 single-layer interpoly dielectric for highly integrated Flash memories," in intl. NVM workshop, 1997 [1.18 ] S.Yamada, T.Suzuki, E.Obi, M.Oshikiri, K.Naruke and M.Wada, "A self-convergence erasing scheme for a simple stacked gate Flash EEPROM," in IEDM Tech. Dig., p.307-310, 1991 [1.19 ] D.P.Dhum, C.T.Swift, J.M.Higman, W.J.Taylor, K.T.Chang, K.M.Chang and J.R.Yeargain, "A novel band-to-band tunneling induced convergence mechanism for low current, high density Flash EEPROM applications," in IEDM Tech. Dig.,p.41-p.44, 1994 [1.20 ] C.-Y.Hu, D.L.Kencke, S.K.Banerjee, R.Richart, B. Bandyopadhyay, B.Moore, E.Ibok and S.Garg, "A convergence scheme for over-erased Flash EEPROM's using substrate-bias-cnhanced hot electron injection," IEEE Electron Device Lett., vol.EDL-16, no.l 1, p.500-p.502, 1995 [1.21 ] Ph.Candelier, F.Mondon, G.Buillaumot, G.Reimbold, H.Achard, F.Martin and J.Hartmann, "Hot carrier self-convergent programming method for multi-level Flash cell memory," in Proc. IEEE/IRPS, p.l04-p.l09, 1997 [1.22 ] C.-S.Yang, Y.-S.Wang, S.-J. Shen, C.-J.Lin, M. S.Liang, C.C-H.Hsu, "New Self-Convergent Programming Method for Multi-Level AND Flash Memory," submitted to IEEE Electron Device Letter. [1.23 ] S. Tiwari, et al, “Volatile and Non-volatile Memories in Silicon with Nanocrystal Storage”, (IBM) IEDM, December 1995, pp521. [1.24 ] S. Tiwari, et al, “Single charge and confinement effects in nano-crystal memories”, Appl. Phys. Lett, 69(9), August 1996. [1.25 ] J. A. Wahl, et al, “Write, Erase and storage Times in Nanocrystal Memories and the Role Interface States, (IBM) IEDM, December, 1999, pp375. [1.26 ] J. J. Welser, et al, “Room Temperature Operation of a Quantum-Dot Flash Memory”, IEEE Electron Device Letter, Vol. 18, NO. 6, June 1997 ,pp278. [1.27 ] O. Winkler , et al, “Concept of floating-dot memory transistors on silicon-on-insulator substrate”, Microelectronic Engineering, 61-61 (2002), pp497. [1.28 ] T. Ishii, et al, “Engineering Variation : Towards Practical Single-Electron (Few-Electron) Memory”, IEDM, December 2000, pp305.id NH0925428035 sid 915060 cfn 0 / id NH0925428036 auc 蘇炳誠 tic 5.2 GHz CMOS射頻前端電路設計 adc 龔 正 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 90 kwc 低雜訊放大器 kwc 壓控震盪器 kwc 混頻器 kwc RF kwc CMOS kwc 射頻前端電路 abc 在本論文裡,我們設計以TSMC 0.18um RF CMOS 製程為基礎的射頻前端電路區塊,它包括:低雜訊放大器(LNA),壓控震盪器(VCO),混頻器(mixer)等電路,其中LNA以共源極電感退化式放大器為架構,VCO的架構為互補式cross-coupled式架構,混頻器則選擇以主動式Gilbert cell混頻器為主。在電路規格上,所有設計的輸出皆符合IEEE 802.11a WLAN的規範,有些IEEE 802.11a WLAN規格所沒有明確的規範,將以參考其它論文所訂之規格為主。電路區塊輸入射頻(RF)頻率為5.2 GHz,本地震盪(LO)器的頻率為5.0GHz,中頻輸出頻率為200MHz。在電路模擬過程上以ADS 射頻軟體進行,並且以 ASITIC 電感模型取代TSMC無法提供的特殊規格電感模型。考量製程上飄移因素,模擬中以TSMC corner case進行電路模擬,使電路在最惡劣的製程環境下,所設計的功能仍能符合我們所訂的規格。個別電路模擬所得的重要結果有:低雜訊放大器S11 為-15.87dB ,NF (50Ω)為2.29 dB,混頻器(mixer)的IIP3為-0.05 dB,轉換增益為-0.23dB,壓控震盪器的相位雜訊(1MHz offset frequency)為-109.4 dB,其中壓控震盪器為了避免負載效應與基板洩漏的效應,在混波器與壓控震盪器之間插入一個緩衝器電路以增加埠與埠隔離度。最後將個別電路加以整合,形成我們所要的核心區塊,整體電路的重要輸出結果有:S11參數為-13.75dB,轉換增益為19.93dB ,NF (50Ω)為4.69 dB,IIP3為-16.94 dB,整體功率消耗為46.46mW。最後所有的輸出結果皆符合IEEE 802.11a WLAN所規範規格,無論在任何 製程飄移的corner case下。 rf [1 ] Akira Matsuzawa, “RF-SoC—Expectations and Required Conditions”, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 1, JANUARY 2002 245. [2 ] John D. Cressler, “ Silicon germanium heterojunction bipolar technology: the next leap in silicon?” Solid-State Circuits Conference, 1994. Digest of Technical Papers. 41st ISSCC, pp24-27, Feb., 1994. [3 ] P. Nicopolitidis, M. S. Obaidat, G. I. Papadimitriou, A. S. Pomportsis , ”Wireless Networks”, John Wiley & Sons Ltd, 2001. [4 ] Behzad Ravavi, “RF Microelectronics”, Prentice-Hall, Inc. 1998. [5 ] Thomas H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits”, Cambridge University Press, 1998. [6 ] Paul H. Young, “Electronic Communication Techniques”, Prentice Hall International, Inc. Fourth Editioin1999. [7 ] Kai Chang, “Microwave Solid-State Circuits and Applications", John Wiley & Sons, Inc. 1994 [8 ] T. H. Lee and S. Simon Wong, “CMOS RF Integrated Circuits at 5 GHz and Beyond,1998. [9 ] Joachim N. Burghartz, D. C. Edelstein, H. A. Ainspan, and Keith A. Jenkins ,”RF Circuit Design Aspects of Spiral Inductors on Silicon”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 12, DECEMBER 1998. [10 ] T. H. Lee ,“The design of CMOS radio-frequency circuits”, pp 47~50,1998. [11 ] C. P. Yue, and S. S. Wang, “On-chip spiral inductors with patterned ground shields for Si-based RF IC’s,” IEEE J. Solid -State Circuits, vol. 33, no. 5, pp. 743-752, May 1998. [12 ] Min Park, Seonghearn Lee, Cheon Soo Kim, Hyun Kyu Yu, Hyun Kyu Yu, and Kee Soo Nam, “The Detailed Analysis of High CMOS-Compatible Microwave Spiral Inductors in Silicon Technology “,, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 45, NO. 9, SEPTEMBER 1998 1953. [13 ]José M. López-Villegas, , Josep Samitier, , Charles Cané, Pere Losantos, and Joan Bausells,” Improvement of the Quality Factor of RF Integrated Inductors by Layout Optimization”, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 1, JANUARY 2000 [14 ] “Analysis and Simulation of Inductors and Transformers for Integrated Circuits,” provided by Berkley. [15 ] Behzad Razavi, “Design of Analog CMOS Integrated Circuits”, McGraw-Hill Previews Edition 2001. [16 ] Derek K. Shaeffer and Thomas H. Lee, “A 1.5V, 1.5GHz CMOS Low Noise Amplifier”, IEEE Journal of Solid-State Circuits, vol.32, no.5, pp.745-759, May 1997. [17 ] TSMC 0.18um RF CMOS ADS model. [18 ] Thomas H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits”, 0Cambridge University Press, 1998. [19 ] Kai-Cheung Juang, “ Low Phase Noise Ka-band Oscillator ”, Institute of Communication Nation Chiao Tung University, pp. 8-9, 1999. [20 ] Yongmin Ge and Kartikeya Mayaram, “A Comparative Analysis of CMOS Noise Amplifier for RF Applications”, IEEE, pp.IV-349-352, 1998. [21 ] Kai-Cheung Juang, “ Low Phase Noise Ka-band Oscillator ”, Institute of Communication Nation Chiao Tung University, pp. 8-9, 1999. [22 ] Behzad Razavi, “ Design of Integrated Circuits for Optical Communications ”, McGraw-Hill International Edition, 2003. [23 ] Pietro Andreani & Sven Mattisson, “ On the Use of MOS Varactors in RF VCO’s ”, IEEE Journal of Solid-State Circuits, Vol. 35, No. 6, June 2000. [24 ] Tso-Cheng Hsu, “ S-Band Voltage Controlled Oscillator Development and Characterization ”, Institute of Communication Nation Chiao Tung University, 1998. [25 ] Che-Sheng Chen, “ A design of 2.4 GHz CMOS FHSS Receiver ”, Institute of Communication Nation Chiao Tung University, 2000. [26 ] Ali Hajimiri, “ The Design of Low Noise Oscillators ”, California Institute of Technology, 1999. [27 ] Keng Leong Fong, Robert G. Meyer, “Monolithic Rf Active Mixer Design”, IEEE Transactions on Circiuts and Systmes II: Analog and Digital Signal Processing, Vol. 46, No.3, Mar. 1999. [28 ] Teresa H. Meng, Stanford University Bill McFarland, David Su, and John Thomson, Atheros Communications, “Design and Implementation of an All-CMOS 802.11a Wireless LAN Chipset”. [29 ]Masoud Zargari, David K. Su, Member, C. Patrick Yue, Shahriar Rabii, David Weber, Brian J. Kaczynski,, Srenik S. Mehta, Kalwant Singh, Sunetra Mendis,and Bruce A. Wooley,”A 5-GHz CMOS Transceiver for IEEE 802.11a Wireless LAN Systems”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 12, DECEMBER 2002. [30 ]Zheng Yuanjin and Tear, Chin Boon Terry, “5G Wireless LAN RF transceiver system design : a new optimization approach”. ICCS 2002. [31 ]T. H. Lee, “5-GHz CMOS Wireless LANs,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 1, pp. 268-280, Jan. 2002. [32 ] Samavati, H.; Rategh, H.R.; Lee, T.H.“A 5-GHz CMOS wireless LAN receiver front end”,Solid-State Circuits, IEEE Journal of , Volume: 35 , Issue: 5 , May 2000 Pages:765 – 772. [33 ] Ting-Ping Liu; Westerwick, E.; Rohani, N.; Ran-Hong Yan,”5 GHz CMOS radio transceiver front-end chipset”,Solid-State Circuits Conference, 2000. Digest of Technical Papers. ISSCC. 2000 IEEE International , 7-9 Feb. 2000 ,Pages:320 - 321, 467-8. [34 ]John Janssens and Michiel Steyaert , “ CMOS cellular receiver front-ends from specification to realization “ ,edition 2002 ,Kluwer Academic Publishers,Boston. [35 ] Li, Q.; Yuan, J.S. ;”Linearity analysis and design optimisation for 0.18 μm CMOS RF mixer”,Circuits, Devices and Systems, IEE Proceedings [see also IEE Proceedings G- Circuits, Devices and Systems ] , Volume: 149 , Issue: 2 , April 2002 Pages:112 – 118. [36 ]Frontend analog and digital technology cor. Taiwan.id NH0925428036 sid 915064 cfn 0 / id NH0925428037 auc 陳彥文 tic & tic #63965;用電化學掃瞄穿隧式顯微鏡操縱術發展 tic & tic #63756;米光罩 adc 黃惠良 adc 黃英碩 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 英文 pg 48 kwc 金屬氧化 kwc 金屬沈積 kwc 奈米點 kwc 奈米微影術 kwc 掃瞄穿隧式顯微鏡 kwc 電化學 abc 現代半導體工業已經發展到了奈米的尺度了,其中最常見的就是場效電晶體(FET),電晶體的閘極間距已達到90nm,但相對於FET 的展,光學微影的進度卻很少,尤其在50nm 以下,對於光學微影已經是達到了物理極限,但是對於元件製作才是另一個新世界的開始,世人都在期待一個革命性的的技術,以達成奈米元件製作的工具。 tc Acknowledgement 摘要 Abstract Contents Chapter One Introduction 1.1 Scanning Tunneling Microscope 1 1.2 Scanning Probe Lithography (SPL) 3 Reference 8 Chapter Two Mechanism 2.1 Tip-Induced Oxidation 10 2.1.1 Water Bridge Models 10 2.1.2 Field Induced Oxidation Models 12 a. Cabrera-Mott model 12 b. Avourios-Hertel-Martel model 14 c. Empirical power-of-time model 15 2.2 Metal Deposition by EC-STM 16 2.2.1 Electrochemical Scanning Tunneling Microscope (EC- STM) 16 2.2.2 Metal deposition by jump-to-contact method 18 Reference 20 Chapter Three Experiment 3.1 Experiment System 3.1.1 Sample Preparation 21 3.1.2 Tip Preparation 21 3.1.3 Experiment Instrumentation 24 3.2 Experimental 3.2.1 Experiment Flow Chart 25 3.2.2 Experiment Procedures 26 Reference 29 Chapter Four Experiment Results and Discussion 4.1 Titanium Oxidation by STM 30 4.1.1 Voltage Inference 32 4.1.2 Duration Time Inference 34 4.1.3 Theoretical Model Fitting 35 4.1.4 Pattern Formation 37 4.2 Copper Deposition by EC-STM 4.2.1 Electrochemical Copper Deposition 38 4.2.2 Cooper deposition on Gold (111) by jump-to-contact method 40 Chapter Five Conclusions 5.1 Titanium Oxidation by STM 46 5.2 Copper deposit by EC-STM 47 Reference 48rf Reference 1. G. Binnig and H. Rohrer, Helv. Phys. Acta 55, 726 (1982). 2. J. Bardeen, Phys. Rev. Lett. 6(2), 57 (1961) 3. K. Kurihara, H. Namatsu, M. Nagase and T. Makino, Microelectronic Engineering 35 (1997) 261 4. Henry. Smith, M.L. Schattenburg, S.D. Hector, J.Ferrera, E.E. Moon, I.Y.Yang, Microelectronic Engineering 32 (1996) 143 5. Electrochemical Micromachining of the UV-LIGA’s Microstructure,(1999) 4 6. S. Minne. J. Adams. G. Yaralioglu. S. Manalis. A. Atalar. C. Quaate. Appl. Phys. Lett. 73 1742 (1998) 7. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, J. Bennett, Appl. Phys. Lett. 56 2001 (1990) 8. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, Appl. Phys. Lett. 57 2437 (1990) 9. J. A. Dagata, W. Tseng, J. Bennett, E.A. Dobisz, J. Schneir, H. H. Harary, C. J. Evans, J. Vac. Sci. Technol. A 10, 2105 (1992). 10. J. A. Dagata, J. Schneir, H. H. Harary, W. Tseng, J. Bennett, J. Vac. Sci. Technol. B 9, 1384 (1991). 11. P. M. Campbell, E. S. Snow and P. J. McMarr, Solid-State Electronics, 37 (1994)583 12. E. S. Snow, P. M. Campbell and P. J. McMarr, Appl. Phys. Lett. 63 749 (1993) 13. F. S. Chien, C. L. Wu, Y. C. Chou, T. T. Chen, S. Gwo, and W. F. Hsieh, Appl. Phys. Lett. 18 2429 (1999) 14. E.S.Snow, D.Park, P.M.Campbell, Appl. Phys. Lett., 69,(1996) 269. 15. Dawen Wang, Liming Tsau, K.L.Wang, Appl. Phys. Lett., 67,(1995) 1295. 9 16. Marco Rolandi, Calvin F. Quate and Hongjie Dai, Adv. Mater 14 No3(2002) 191 17. K. Matsumoto, Proceedings of The IEEE, vol.85, (1997), 612 18. K. Matsumoto, S. Takahashi, M. Ishii, Masakatsu Hoshi, Akira Kurokawa, Shingo Ichimura and Atsushi Ando, J. J. Appl. Phys, 34 (1995) 1387 19. K.Matsumoto, M. Ishii, K. Segawa, Y. Oka, B. J. Vartanian and J. S. Harris, Appl. Phys. Lett. 68 (1996) 34 20. H. Martin, P. Carro, A. Hernandez Creus, S. Gonzalez, R. C. Salvarezza, and A. J. Arvia, Langmuir 13 100-110 (1997) 21. A. S. Dakkouri, Solid State Ionics 94 (1997) 99-114 22. Wieland Zahn, Antje Zosch, Hans Dieter Scnabel, Anal Bioanal Chem 375(2003) 871-874 23. A. Gonzalez, R. C. Bhardwaj, J. O’M. Bockris, J. Appl. Electrochem, 23 (1993) 531 24. R. Sonnenfeld and P. K. Hansma, Science 232 (1986) 211 25. W. Li, J. A. Virtanen, R. M. Penner, Appl. Phys. Lett. 60,1181 (1992). 26. J. R. LaGraff and A. A. Gewirth, ibid. 98, 11246 (1994). 27. R. Ullmann, T. Will, D. M. Kolb, Chem. Phys. Lett. 209, 238 (1993). 28. Bar. Bunsenges. Phys. Chem. 99, 1414 (1995)id NH0925428037 sid 915066 cfn 0 / id NH0925428038 auc 連啟發 tic 利用散射矩陣方法研究砷化鎵奈米 adc 林叔芽 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 54 kwc 散射矩陣 abc 本論文研究首先以s矩陣來描述行進波遭遇單一摻雜或缺陷, tc 第一章 緒論………………………………………………………1-3 第二章 理論方法………………………………………………4-14 2.1二維自由電子態密度(2DEG Density of State)…………………4 2.2橫向模態(Transverse Modes)……………………………………6 2.2.1無限位勢井(infinite deep square well) ……………………6 2.2.2 拋物線型位能(parabolic potential) ……………………7 2.2.3有限位勢井(finite potential well) …………………………8 2.3藍道方程式(Landauer Formula)……………………………………10 2.4 s矩陣(s-Matrix)…………………………………………………12 2.5局部化現象(Localization)……………………………………13 第三章 結果與討論……………………………………15-43 3.1費曼路徑(Feynman path)與相位關係………………………………15 3.2常數矩陣散射(constant matrix scattering)………………………17 3.2.1相位移的影響………………………………………………19 3.2.2摻雜個數影響………………………………………………21 3.3 -function散射…………………………………………………25 3.3.1相位移的影響……………………………………………27 3.2.2摻雜個數、結構的影響……………………………………30 3.2.3摻雜強度的影響……………………………………………35 3.2.4橫向模態對局部化長度的影響……………………………37 3.2.5費米能階對電阻值影響……………………………………39 第四章 遞減模態…………………………………………43-52 4.1遞減模態(Evanescent mode)修正項………………………………44 4.2遞減模態(Evanescent mode)影響…………………………………49 第五章 結論………………………………………………………53 參考文獻………………………………………………………54rf [1 ] K.von Klitzing,G.Dorda and M.Pepper,Phys.Rev.Lett.,45,494(1980). [2 ] Beenakker,C.W.J.and van Houten,H.,’Quantum transport in semiconductor nanostructures’in Solid State Physis,vol44,eds.H. Ehrenreich and D.Turnbull(New York,Academic Press)(see partIV) (1991) . [3 ] S.Datta’Quantum Phenomena’,Addison-Wesley,Reading,MA(1989). [4 ] S.Datta’Electronic Transport in Mesoscopic System’ Cambridge University Press.,Cambridge,UK(1995). [5 ] J.R.Gao,C.de Graaf,J.Caro,and S.Radelaar, Phys.Rev.B,41,12315(1990) [6 ] W.Hansen,M.Horst,J.P.Kotthaus,U.Merkt,and Ch.Sikorski,and K.Ploog , Phys.Rev.Lett.,58,24,(1987) [7 ] F.Brinkop,W.Hansen,and J.P.Kotthaus,andK.Ploog,Phys.Rev.B.,37, 6547(1988) [8 ] S.Datta,M.Cahay,and M.McLennan,Phys.Rev.B,36,5655(1987). [9 ] Richard L.Liboff,’INTRODUCTORY QUANTUM MECHANICS’, Addison-Wesley,p184(1990). [10 ] Richard L.Liboff,’INTRODUCTORY QUANTUM MECHANICS’, Addison-Wesley,p275(1990). [11 ] M.Buttiker,Y.Imry,R.Landauer,S.Pinhas, Phys.Rev.B,31,6207(1985). [12 ] R.Landauer,IBM J.Res.Dev.,1,223(1957). [13 ] R.Landauer,Philos Mag.,21,863(1970). [14 ] M.Cahay,M.McLennan,and S.Datta,Phys.Rev.B,37,10125(1988). [15 ] M.Lundstrom,’Fundamentals of carrier transport’,Cambridge University Press(2000). [16 ] H.Tamura and T.Ando , Phys.Rev.B,44,1972(1991). [17 ] S.Chaudhuri and S.Bandyopadhyay,M.Cahay, Phys.Rev.B,45, 11126(1992). [18 ] Philip F.Bagwell, Phys.Rev.B ,41,10354,(1990) [19 ] Arvind Kumar and Philip F.Bagwell, Phys.Rev.B ,44,1747,(1991) [20 ] Arvind Kumar and Philip F.Bagwell, Phys.Rev.B ,43,9012,(1991)id NH0925428038 sid 915067 cfn 0 / id NH0925428039 auc 曾嵩弼 tic 絕緣層覆矽晶片上平面螺旋電感之研究 adc 葉哲良 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 英文 pg 80 kwc 電感 kwc 絕緣層覆矽 abc 無線通訊是一項不可或缺的技術,它的應用涵蓋軍事、商業、民生、學術等方面。射頻積體電路(RFIC)是一個無線系統中負責收發訊號的電路。而晶片上的電感是RFIC上的一個重要的元件,但它的品質參數一直不佳。品質參數是一項電感效能比較的一個指標。有許多因素會影響電感的品質參數,其中一項重要的因素便是基材效應。因此了解絕緣層覆矽(SOI)晶片上的電感特性便是設計SOI RFIC首先要做的步驟。 tc CHAPTER 1 PLANAR SPIRAL INDUCTOR........................................................................1 1.1 INTRODUCTION ............................................................................................................................................... 1 1.1.1 Research Objective................................................................................................................................. 4 1.2 THEORY .......................................................................................................................................................... 6 1.2.1 Structure of Planar Spiral Inductor......................................................................................................... 6 1.3 LOSS MECHANISMS....................................................................................................................................... 14 1.3.1 Substrate Coupling Loss........................................................................................................................ 15 1.3.2 Resistive Loss ....................................................................................................................................... 17 1.3.3 Radiation Loss...................................................................................................................................... 21 1.4 EQUIVALENT CIRCUIT MODEL ....................................................................................................................... 22 1.4.1 Parameters Extraction .......................................................................................................................... 24 1.4.2 De-embedding ...................................................................................................................................... 25 1.5 FIGURE OF MERITS........................................................................................................................................ 27 1.5.1 Q-factor................................................................................................................................................ 27 1.5.2 Inductance............................................................................................................................................ 27 1.5.3 Self-resonance Frequency ..................................................................................................................... 28 1.5.4 FMI....................................................................................................................................................... 28 1.6 SOI WAFER................................................................................................................................................... 28 1.6.1 Structure of SOI Wafer.......................................................................................................................... 29 CHAPTER 2 DESIGN OF EXPERIMENT (DOE) ..............................................................31 2.1 INTRODUCTION ............................................................................................................................................. 31 2.2 PHASE I PLANNING ....................................................................................................................................... 31 2.3 PHASE II DESIGNING..................................................................................................................................... 33 2.4 PHASE III CONDUCTING................................................................................................................................ 35 2.4.1 Layout................................................................................................................................................... 35 2.4.2 Fabrication Process .............................................................................................................................. 38 CHAPTER 3 SIMULATION AND EXPERIMENT SETUP ...............................................43 3.1 INTRODUCTION ............................................................................................................................................. 43 3.2 SIMULATION.................................................................................................................................................. 43 3.2.1 Study on SOI Substrate......................................................................................................................... 44 3.2.2 Study on Substrate Resistivity................................................................................................................ 53 3.3 MEASUREMENT SETUP.................................................................................................................................. 56 CHAPTER 4 SIMULATION VERIFICATION....................................................................57 4.1 INTRODUCTION ............................................................................................................................................. 57 4.2 DESIGN ......................................................................................................................................................... 57 4.2.1 Metal Pole ............................................................................................................................................ 58 4.2.2 Patterned Trench Isolation .................................................................................................................... 59 4.3 SIMULATION, MEASUREMENT, AND MODEL................................................................................................... 60 4.3.1 Contribution of Currents in Substrate ................................................................................................... 64 4.4 SUMMARY..................................................................................................................................................... 66 CHAPTER 5 ANALYSIS AND CONCLUSION ...................................................................67 5.1 PHASE IV ANALYZING................................................................................................................................... 67 5.1.1 Q at 2.4GHz ......................................................................................................................................... 68 5.1.2 Maximum Q.......................................................................................................................................... 71 5.2 PHASE V CONFIRMING.................................................................................................................................. 73 5.3 CONCLUSION ................................................................................................................................................ 75 5.4 FUTURE WORKS............................................................................................................................................ 76 REFERENCES........................................................................................................................77rf [1 ] J. Kim, et al., “High-performance three dimensional on-chip inductor in SOI CMOS technology for monolithic RF circuit applications,” IEEE Radio Frequency Integrated Circuits Symposium, pp591-594, 2003. [2 ] A. Thanachayanont, “2-V 3.36-mW 2.5-GHz fourth-order inductorless CMOS RF bandpass filter,” Asia-Pacific Conference on Circuits and Systems, Vol. 1, pp127 – 130, October, 2002. [3 ] J. B. Kuo, et al., Low-voltage SOI CMOS VLSI devices and circuits, John Wiley & Sons, Inc., New York, 2001. [4 ] C. A. Chang, et al., “Characterization of spiral inductors with patterned floating structures,” IEEE Transactions on Microwave Theory and Techniques, Vol. 52, Issue: 5, pp1375 – 1381, May, 2004. [5 ] S. Yim, et al., “The effect of a ground shield on the characteristics and performance of spiral inductors,” IEEE Journal on Solid-State Circuit, Vol. 37, pp237-244, February, 2002. [6 ] Y. Choi, et al., “Experimental analysis of the effect of metal thickness on the quality factor in integrated spiral inductors for RF ICs,” IEEE Electron Device Letter, Vol. 25, pp76-79, Feb, 2004. [7 ] M. Hsieh, et al., “Design fabrication on deep submicron CMOS technology compatible suspended high-Q spiral inductor,” IEEE Transaction on Electron Devices, Vol. 51, pp324-331, March, 2004. [8 ] K. T. Chan, et al., “Large Q-factor improvement for spiral inductors on silicon using proton implantation,” IEEE Microwave and Wireless Components Letters, Vol. 13 , Issue 11 , pp460 – 462, November, 2003. [9 ] L. Guo, et al., “High Q multilayer spiral inductor on silicon chip for 5/spl sim/6 GHz,” IEEE Electron Device Letters, Vol. 23, Issue: 8, pp470 – 472, Aug, 2002. [10 ] H. M. Hsu, et al., “High Q broadband copper spiral inductors with Q=45 on proton-bombarded semi-insulating silicon substrate,” IEEE Asia-Pacific Conference on Proceedings, pp113 – 116, August, 2002. [11 ] H. Long, et al., “Enhancement of quality factor in RF-MEMS spiral inductors by etching out substrate,” International Conference on Microwave and Millimeter Wave Technology, pp1166 – 1169, August, 2002. [12 ] Y. E. Chen, et al., “Q-enhancement of spiral inductor with N+-diffusion patterned ground shields,” IEEE MTT-S International Microwave Symposium Digest, Vol. 2, pp1289 – 1292, May, 2001. [13 ] D. Kelly, et al., “Improvements to performance of spiral inductors on insulators,” IEEE MTT-S International Microwave Symposium Digest, Vol. 1,pp541 – 543, June, 2002. [14 ] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, Vol. PHP-10, No. 2, pp101-109, June, 1974. [15 ] I. Wolff, et al., “Modeling of Circular Spiral Inductors for MMICs,” MTT-S International Microwave Symposium Digest, Vol. 87, Issue: 1, pp123 - 126, June, 1987. [16 ] E. Zencir, et al., ”Modeling and performance of spiral inductors in SOI CMOS technology,” IEEE Canadian Conference on Electrical and Computer Engineering, Vol. 1 , pp408 – 411, May, 2002. [17 ] A. M. Niknejad, et al., Design, simulation and applications of inductors and transformers for Si RF ICs, Kluwer Academic Publisher, London, 2000. [18 ] W. L. Stutzman, et al., Antenna theory and design, second edition, John Wiley & Sons, Inc., New York, 1998. [19 ] W. Y. Yin, et al., “Experimental Characterization of On-Chip Inductor and Capacitor Interconnect: Part II. Shunt Case,” IEEE Transactions on Magnetics, Vol. 40, Issue: 3, pp1657 – 1663, May, 2004. [20 ] S. J. Pan, et al., “Performance Trends of On-Chip Spiral Inductors for RFICs,” Progress in Electromagnetic Research, PIER 45, pp 123 – 151, 2004 [21 ] I. J. Bahl, “High-Performance Inductors,” IEEE Transactions on Microwaves Theory and Techniques, Vol. 49, pp 654 – 664, April, 2001 [22 ] R. K. Roy, Design of experiments using the Taguchi approach :16 steps to product and process improvement, John Wiley & Sons, Inc., New York, 2001. [23 ] A. Aktas, et al., Pad de-embedding in RF CMOS, Circuits & Devices, MAY, 2001. [24 ] Minitab® Realease 14, Minitab, Inc., 2003id NH0925428039 sid 915069 cfn 0 / id NH0925428040 auc 陳和泰 tic MOS元件源極/汲極寄生電阻之計算與模擬 adc 連振炘 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 59 kwc 寄生電阻 kwc 源極/汲極 kwc MOS元件 kwc 覆蓋長度 kwc 接面深度 abc MOS元件為目前半導體工業的主要驅動力,但隨著MOS元件的縮小化,許多原本在長通道MOS元件中較不重要的參數已慢慢浮現出來。因此,有相當多的研究報告都在討論如何使MOS元件在通道長度愈來愈短的情況下,依然可以保持長通道時的良好特性。其中,MOS元件的寄生電阻更是不可忽視之課題, 這是由於它不如預期般的隨著MOS元件的縮小化而縮小。因此擁有一個有效的MOS元件寄生電阻模型來正確地預測和分析源極/汲極寄生電阻在未來的MOS元件中是必要的。 tc 摘要 致謝 目錄 第一章 緒論 1 1-1研究動機與目的 1 1-2論文架構 2 第二章 寄生電阻之理論模型 3 2-1 長通道寄生電阻模型 3 2-1-1 Racc:累積層電阻 5 2-1-2 Rsp:散開電阻 6 2-1-3 Rsh:片電阻 8 2-1-4 Rco:接觸電阻 8 2-2 短通道寄生電阻模型 12 2-2-1 Rov:閘極對源極/汲極延伸區域覆蓋電阻 13 2-2-2 Rext:源極/汲極延伸電阻 17 2-2-3 Rdp:深源極/汲極電阻 21 2-2-4 Rcsd:矽化物-擴散 接觸電阻 23 2-3短通道寄生電阻模型之缺點與改良 27 2-3-1 電荷-薄片近似之原理 27 2-3-2 改良後短通道寄生電阻模型 29 第三章 深次微米MOS元件之電性模擬 32 3-1 MEDICI基本理論模型和模擬環境設定 32 3-2 閘極電壓對源極/汲極延伸區域寄生電阻之模擬與分析 36 3-2-1 模擬結果和短通道寄生電阻模型之比較 36 3-2-2 模擬結果和改良後短通道寄生電阻模型之比較 37 3-3 寄生電阻對不同參數之模擬與分析 39 3-3-1 Overlap對源極/汲極延伸區域寄生電阻之模擬與 分析 39 3-3-2 接面深度對源極/汲極延伸區域寄生電阻之模擬與 分析 42 3-3-3 Abruptness對源極/汲極延伸區域寄生電阻之模 擬與分析 44 3-3-4 Spacer對源極/汲極延伸區域寄生電阻之模擬與 分析 46 3-3-5 Pocket Implant/Halo對源極/汲極延伸區域寄生 電阻之模擬與分析 48 3-4 MOS元件寄生電阻未來趨勢之比較與討論 50 第四章 結論 53 參考文獻 56rf [1 ] K.Ng and W.T.Lynch,“Analysis of the Gate-Voltage Dependent Series Resistanceof MOSFETs,”IEEE Trans.Electron Devices,vol.33,p.965,1986. [2 ] Y.Taur and T.Ning,Fundamental of modern VLSI device. Cambridge University Press,1998. [3 ] Wolf,Stanley,Silicon Processing for the VLSI Era, Volume2: Process Integration, Volume 4: Deep Submicron Process Technology [4 ] H.H.Berger(1972).“ Model for contacts to planar devices,”Solid-State Electron.15,p145 [5 ] S.D.Kim,C.-M.Park,and J.C.S.Woo,“Advanced model and analysis of series resistance for CMOS scaling into nanometer regime—Part I: Theoretical derivation,”IEEE Trans. Electron Devices,vol.49,pp.457–466,Mar.2002. [6 ] S.D.Kim,C.-M.Park, and J.C.S.Woo,“Advanced model and analysis of series resistance for CMOS scaling into nanometer regime—.Part II. Quantitative analysis,”Electron Devices, IEEE Transactions on,Volume: 49 ,Issue: 3 ,March 2002 Pages:467–472 [7 ] K.F.Schuegraf,C.C.King,and C.Hu,“Impact of polysilicon depletion in thin oxide MOS technology,”in Proc.Symp.VLSI Technol.,1993,pp.86–90. [8 ] S.S.Chung and T.Li,“An analytical threshold-voltage model oftrench-isolated MOS devices with nonuniformly doped substrates,”IEEE Trans.Electron Devices,vol.39,pp.614–622, Mar.1992. [9 ] K.Varaharamyan and E.J.Verret,“A model for specific contact resistance application for Titanium silicide-silicon contact,”Solid-State Electron.,vol.39,pp.1601–1607,Nov. 1996. [10 ] D.B.Scott,R.A.Chapman,C.Wei,S.S.Mahant-Shetti,R.A. Haken,and T.C.Holloway,“Titanium disilicide contact resisitivity and its impact on 1-um CMOS circuit performance,” IEEE Trans.Electron Devices,vol.ED-34,pp.562–574,Mar.1987. [11 ] Y.-S.Chieh,A.H.Perera,and J.P.Krusius,“Series resistance of silicided ohmic contacts for nanoelecronics,” IEEE Trans.Electron Devices,vol.39,pp.1882–1888,Aug.1992. [12 ] B.-Y.Tsui and M.-C.Chen,“Series resistance of self-aligned silicided source/drain structure,”IEEE Trans. Electron Devices,vol.40,pp.197–206,Jan.1993. [13 ] Medici Two Dimensional Device Simulation Program version2.3 ,Technology Modeling Associates,Inc. [14 ]“MODELING OF NANOSCALE MOSFETS”A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY ,Changhoon Choi ,April 2002 [15 ] The National Technology Roadmap for Semiconductors (ITRS), Semiconductor Ind.Assoc.,2001-2003id NH0925428040 sid 915034 cfn 0 / id NH0925428041 auc 陳照勗 tic 由表面徑向角不對稱分佈探討三五族氮化物、銀薄膜及銀奈米微顆粒鍍於矽(111)表面內留存應力對二次諧波之影響 adc 呂助增 ty 博士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 英文 pg 95 kwc 二次諧波 kwc 氮化鎵 kwc 方位角 kwc 應力 kwc 銀微顆粒 kwc 銀薄膜 abc 在這篇論文中,我們討論了兩個主題。第一個主題是關於三五族氮化物成長在矽基板的方位角二次諧波研究。我們以分子束磊晶成長AlN/Si(111)及GaN/AlN/Si(111)兩種結構,以RHEED(Reflection High Energy Electron Diffraction), PL(Photoluminescence spectroscopy),XRD(X-ray Diffraction)來證實磊晶薄膜的結構,藉以驗證光學二次諧波對薄膜本身及介面應力的響應。考慮來自於薄膜及介面的非線性響應,我們發現不均勻的介面應力對二次諧波的貢獻為方位角ψ的函數。因此,非線性效應可以提供非破壞性檢測並搭配製程參數檢測磊晶品質。 tc Acknowledgment(誌謝) Abstract (Chinese)……………………………………………….Ι Abstract (English)...……………………………………..….ΙΙ Table of contents…………………………………….…..... IV List of Figures……………………………...……..…..….VI List of Tables………………………….…………………...VIII 1.Intruduction……………………………………..…..1 2.Phenomenological Theory of SHG from Si(111) surface…8 2.1 Theory…………………………………………………………8 2.2Bibliography………………………………………….19 3.Experimental Set-up for SHG…………………………20 4.Azimuthal SHG of AlN/Si(111) and GaN/AlN/Si(111)…….23 4.1 Introduction…………………………………………23 4.2 Thory…………………………………………………..27 4.3 Fabrication of Samples…………………………..33 4.4 Results and Discussions……………………………34 4.4.1 Sample Quality…………………………………………34 4.4.2 Azimuthal SHG patterns of AlN/Si(111) and GaN/AlN/Si(111)........................................35 4.5 Conclusion……………………………………………38 4.6 Bibliography…………………………………………39 5. Azimuthal SHG of Ag thin films and Ag nanoparticles on Si(111) substrate....................49 5.1 Introduction…………………………………………49 5.2 Theory…………………………………………………54 5.3 Results and Discussions…………………………59 5.3.1 Fabrication of Samples……………………………59 5.3.2 Comparsion between Ag thin films and nanoparticles on Si(111) substrates………………………60 5.3.3 Strain effect………………………………………64 5.4 Conclusion…………………………….…………66 5.5 Bibliography………………………………………68 6. Summary…………………………………………………86 Appendix A…………………………………………………………89 The hardware construction for the SHG experiments Appendix B…………………………………………………………90 The software construction for the SHG experiments.rf Chapter 1 [1 ]. P. Fraken, A. E. Hill, C. W. Peters, and G. Weinreich, Phys. Rev. Lett., 7, 118 (1961) [2 ]. R. W. Terhune, P. D.Maker, and C. M. Savage, Phys. Rev. Lett. 8, 404 (1962) [3 ]. C. S. Wang, Phys. Rev. 173, 908–917 (1968) [4 ]. N. Bloembergen, R. K. Chang, and C. H. Lee, Phys. Rev. Lett. 16, 986–989 (1966) [5 ]. F. Brown, R. E. Parks, and A. M. Sleeper, Phys. Rev. Lett. 14, 1029 (1965). [6 ]. H. Sonnenberg and H. Heffner, J. Opt. Soc. Am. 58, 209 (1968). [7 ]. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, Phys. Rev. 174, 813 (1968). [8 ]. J. Rudnick and E. A. Stern, in Polaritons, edited by E. Burstein and F. De Martini (Plenum, New York, 1974) [9 ]. J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, Phys. Rev. B 21, 4389 (1980) [10 ]. H. J. Simon, D. E. Mitchell, and J. G. Watson, Phys. Rev. Lett. 33, 1531 (1974) [11 ]. T. F. Heinz, C. K. Chen, D. Ricard, Y.R. Shen, Phys. Rev. Lett. 48 (7), 478 (1982) [12 ]. H. W. K. Tom, T. F. Heinz, and Y. R. Shen, Phys. Rev. Lett. 51 (21) 1983-1986 (1983) [13 ]. B. DICK, A. Gierulski, G. Marowsky, G. A. Reider, Appl. Phys B-Photo 38 (2), 107-116 (1985) [14 ]. B. DICK, A. Gierulski, G. Marowsky, G. A. Reider, Ber Bunsen Phys. Chem. 89 (3), 346-348 (1985) [15 ]. J. E. Spie, D. J. Moss, and H. M. van Driel, Phys. Rev. B 35, 1129 (1987) Chapter 2 [1 ]. J. E. Spie, D. J. Moss, and H. M. van Driel, Phys. Rev. B 35, 1129 (1987) [2 ]. P. Guyotsionnest, W. Chen and Y. R. Shen, Phys. Rev. B 33, 8254 (1986) [3 ]. N. Bioembergen, R. K. Chang, S. S. Jha, and C. H. Lee, Phys. Rev. 174, 813 (1968) [4 ]. P. S. Pershan, Phys. Rev. 130, 919 (1963) [5 ]. H. W. K. Tom, T. F. Heinz, and Y. R. Shen, Phys. Rev. Lett. 51. 1983 (1983) [6 ]. S. V. Popov, Y. P. Svirko, and N. I. Zheludev, Susceptibility tensors for nonlinear optics (Institute of Physics Pub., Bristol, [Eng. ]; Philadelphia, Pa, 1995) Chpater 4 [1 ]. S. Gwo, C. L. Wu, C. H. Shen, W. H. Chang, T. M. Hsu, J. S. Wang and J. T. Hsu, Appl. Phys. Lett., 84, 3765 (2004) [2 ]. C. L. Wu,J. C. Wang,M. H. Chan, Tom T. Chen,and S. Gwo,Appl. Phys. Lett., 83, 4530 (2003) [3 ]. C. C. Tzeng and J. T. Lue, Surface Science 216, 579-586(1989) [4 ]. C. C. Tzeng and J. T. Lue, Phys. Rev A39, 191(1989) [5 ]. J. T. Lue, K. Y. Lo and C. C. Tzeng, IEEE J. Quantum Electronics, 38, 302(1992) [6 ]. J. T. Lue, and C. Dai, Phys. Rev. B 47, 13653(1993). [7 ]. Y. R Shen, The Principles of Nonlinear Optics(Wiley, New York, 1984). [8 ]. H.W.K. Tom, G.D. Aumiller, and C.H. Brito-Cruz. Phys. Rev. Lett. 14, 1438(1988). [9 ]. W. A. Shank, C. V. Yen, R. & Hirlimann, C. Phys. Rev. Lett. 51, 900-902(1983) [10 ]. T. F. Heinz, M. M. T. Loy, and W. A. Thompson, J. Vac. Sci. Technol. B3, 1467-1470(1985) [11 ]. S.A. Akhamanov,. et al. Opt. Commun. 47, 202-204(1983) [12 ]. B. F. Levine, Phys. Rev. B7, 2600(1973) [13 ]. I. M. Catalano, A. Cingolani, M. Lugara, and A. Minafra, Opt. Commun. 23, 419(1977) [14 ]. T. Ishidate, K. Inoue, and M. Aoki, Jpn. J. Appl. Phys. 19, 1641(1980) [15 ]. W. P. Lin, P. M. Lundquist, G. K. Wong, E. D. Rippert, and J. B. Ketterson, Appl. Phys. Lett. 63, 2875(1993) [16 ]. S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and N. I. Seminogov, Sov. Phys. Usp. 28, 1084-1154(1985) [17 ]. H. W. K. Tom, T. F. Heinz, and Y. R. Shen, Phys. Rev. Lett. 51, 1983-1986(1983) [18 ]. N. Grandjean, J. Massies, Appl. Phys. Lett. 71, 1816(1997) [19 ]. J.P. Silverira, F. Briones, J. Crys. Growth 201/202, 113(1999) [20 ]. R. Beresford, J. Yin, K. Tetz, E. Chason, J. Vac. Sci. Technol. B 18(3), 1431(2000) [21 ]. D. J. Bottomley, A. Mito, P. J. Fons, S. Niki, and A. Yamada, IEEE J. Quantum Electron. 33,1294(1997) [22 ]. S. V. Govorkov, V. I. Emel’yanov, N. I. Koroteev, G. I. Petrov, I. L. Shumay and V. V. Yakolev: J. Opt. Soc. Am. B6(1989)1117. [23 ]. J. Y. Huang, Jpn. J. Appl. Phys., Part 1 33A, 3878(1994) [24 ]. I. L. Lyubchanskii, N. N. Dadoenkova, and M. I. Lyubchanskii, Th. Rasing, J.W. Jeong and S.C. Shin, Appl. Phys. Lett. 76, 1848(2000) [25 ]. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, Phys. Rev. 174, 813(1968); 178, 1528(E)(1969) [26 ]. M. B. Feller, W. Chen and Y. R. Shen: Phys. Rev. A 43, 6778(1991) [27 ]. J. E. Sipe, D. J. Moss, H. M. van Driel, Phys. Rev. B 35, 1129(1987) [28 ]. S. S. Jha and N. Bloembergen, Phys. Rev. 171, 891-898(1968) Chapter 5 [1 ]. N. Bloembergen and Y. R. Shen, Phys. Rev. 141, 298 (1966) [2 ]. M. Weber and A. Liebsch, Phys. Rev. B 35, 7411 (1987) [3 ]. A. Liebsch, Phys. Rev. Lett. 61, 1233(1988) [4 ]. G. S. Agarwal, S. S. Jha, Sol. State Commun. 41, 499, (1982). [5 ]. X. M. Hua, J. I. Gersten, Phys. Rev. B 33, 3756, (1986). [6 ]. F. Brown, R. E. Parks and A. M. Sleeper, Phys. Rev. Lett. 14, 1029 (1965) [7 ]. S. S. Jha, Phys. Rev. B 140, A2020 (1965) [8 ]. S. S. Jha, Phys. Rev. 145, 500(1966) [9 ]. N. Bloembergen and P.S. Pershan. Phys. Rev., 128, 606 (1962). [10 ]. N. Bloembergen and Y. R. Shen, Phys. Rev. 145, 390 (1966) [11 ]. W. L. Schaich and A. Liebsch, Phys. Rev. B 37, 6187 (1988) [12 ]. R. Murphy, M. Yeganeh, K. J. Song and E. W. Plummer, Phys. Rev. Lett. 63, 318(1989) [13 ]. J. Rudnick and E. A. Stern, Phys. Rev. B 4, 4274 (1971) [14 ]. A. Chizmeshya and E. Zaremba, Phys. Rev. B 37, 2805 (1988) [15 ]. C. S. Chang and J. T. Lue, Surf. Sci. 393, 231 (1997). [16 ]. J. E. Sipe, D. J. Moss and H. M. van Driel, Phys. Rev. B 35, 1129(1987) [17 ]. T. F. Heinz, “Nonlinear Surface Electromagnetic Phenomena”, eds. H.E. Ponath and G. I. Stegeman (Elsevier, Amsterdam, 1991), p. 353 [18 ]. C. C. Tzeng and J. T. Lue, Surf. Sci. 216, 579 (1989). [19 ]. C. S. Chen, J. T. Lue, C. L. Wu, S.G. Gwo and K.Y. Lo, J. Phys. Condense. Matter. 15, 6537 (2003). [20 ]. C. C. Tzeng, and J. T. Lue, Phys. Rev. A 39, 191 (1989). [21 ]. J. M. Howe, Interfaces in Materials (Wiley-Interscience, New York, 1997) [22 ]. J. T. Lue, K.Y. Lo, and C. C. Tzeng, IEEE J. Quantum Electron. 38, 302 (1992) [23 ]. J. T. Lue and C. Dai, Phys. Rev. B 47, 13653 (1993). [24 ]. A. J. Durelli, E. A. Phillips, C. H. Tsao, Introduction to the Theoretical and Experimental Analysis of Stress and Strain.id NH0925428041 sid 869003 cfn 0 / id NH0925428042 auc 徐永任 tic 以浸鍍法製作奈米金線 adc 葉鳳生 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 43 kwc 浸鍍法 kwc 奈米線 kwc 金 abc 摘要 rf 參考文獻 [1 ] Jinqiang Liua, Zhanghua Wub, Xiangyang Meib, Harry E. Rudab, and Karen L. Kavanagha, http://www.icip.ulaval.ca/icip/publications/revue/ A2003/Microstructural_characterization_of_GaAs_nanowires.pdf [2 ] T. I. Kamins, R. Stanley Willianms, D. P. Basile, T. Hesjedal, and J. S. Harris, J. Appl. Phys., Vol. 89, No. 2(2001)P.1008 [3 ] Alfredo M. Morales and Charles M. Lieber,Science, Vol. 279,(1998)P. 208 [4 ] Kuiqing Peng, Jing Zhu, J. Electroanal. Chem., 558(2003)P.35 [5 ] Chappell Brown, http://www.eet.com/story/OEG20010313S0127 [6 ] X. Y. Zhang, J. Mater. Chem., Vol. 11(2001)P.1732 [7 ] G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, J. Appl. Phys. Vol. 90, No. 8, (2001) P. 3825 [8 ] Mingliang Tian, Jinguo Wang, James Kurtz, Thomas E. Mallouk, and M. H. W. Chan, Nano Lett., Vol. 3, No. 7, (2003) P.919 [9 ] Yong J. Yuan, Mike K. Andrews, and Barry K. Marlow, Appl. Phys. Lett., Vol. 85, No. 1, (2004) P. 130 [10 ] Hiroto Miyake a, Shen Ye a,b, Masatoshi Osawa, Chem. Commun. 4, (2002)P.973 [11 ] Dieter K. Schroder, “Semiconductor Material and Device Characterization” [12 ] 汪建民等,”材料分析”新竹市/中國材料學會/1998id NH0925428042 sid 915046 cfn 0 / id NH0925428043 auc 張正憲 tic 熱光型MZI元件背蝕刻效應研究 adc 葉鳳生 adc 吳清沂 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 61 kwc 熱光效應 kwc 背面蝕刻 abc 本篇論文主要研究以半導體製程技術製作積體光學元件-熱光型調製元件,主要是利用熱光效應改變波導的折射率,達到改變波導的光程;我們以PECVD(Plasma-Enhanced Chemical Vapor Deposition)來成長二氧化矽氧化層以組成波導管的中心部分,藉由調變TEOS/ O2/ TMP的比率來控制折射率,波導核心層折射率n=1.487,覆蓋層折射率n=1.479, 的弱約束(Weakly guiding)波導。 rf [1 ] Ryoichi Kasahara,Masahiro Yanagisawa,”New Structure of Silica-Based Planar Lightwave Circuits for Low-Power Thermo-optic Switch and its Application to 8 x 8 Optical Matrix Switch”,Journal of lightwave technology,vol.20,NO.6,JUNE 2002 [2 ] W.P.Hwang, C.L. Xu, S.T. Chu,and S.K. Chandhuri, “A finite-difference vector beam propagation method for three dimension waveguide structure”, IEEE Photon. Technol. Lett. ,vol. 4, pp. 148-151,1992 [3 ] Q. Lai, W. Hunziker, Member, IEEE, and H. Melechior, Fellow, IEEE,”Low-Power Compact 2 x 2 Thermooptic Silica-on-Silicon Waveguide Switch with Fast Response”, IEEE, PHOTONICS TECHNOLOGY LETTERS,VOL.10,NO.5,MAY 1998 [4 ] G. Ronald Hadley ,”Transparent boundary condition for the beam propagation method”,IEEEJ.QuantumElectron,vol.28, pp.363-370.Jan.1992 [5 ] Hirosh Nishihara, Masamitsu Haruna, Toshiaki Suhara ”,Optical Integrated Circuits” [6 ] Harua,M and J.koyama,”Thermo-optic effect im LiNO3 for light deflection and switching”,Election. Lett., 17(22):842-844.Otc.1981 [7 ] Harua,M and J.koyama,”Thermo-optic deflection and switching glass”,Appl. Opt.,21(19):3461-3465,Oct. 1982 [8 ] Harua, M.Sec. 2.2:”Thermo-optic waveguide devices”,JARECT, Vol. 17-Optical Devices and Fibers (Y. Suematsu ed.), Tokyo,Ohmsha,Ltd., and Noth-Horlland Pub. Co.,1985 [9 ] 張文昌,國立清華大學碩士論文2003 [10 ] 楊國裕,國立清華大學碩士論文2001id NH0925428043 sid 915061 cfn 0 / id NH0925428044 auc 彭陳鍠 tic 銅/TaSix/SiOC鑲嵌結構製程整合 adc 葉鳳生 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 54 kwc 擴散阻障層 kwc 低介電係數介質 kwc 化學機械研磨 kwc 奈米晶粒 abc 本論文之目的在於研究銅、擴散阻障層TaSix與低介電係數介質SiOC 之製程整合,並配合化學機械研磨製程完成銅/TaSix/SiOC damascene結構,探討其導線與導線之間漏電流傳導機制。 rf [1 ]Peter Singer, Semiconductor International, p.91. June 1998 [2 ]K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma, and Z. S. Yanovitskaya, “Low dielectric constant materials for microelectronics”, Journal of Applied Physics, vol. 93(11), p.8793-8841, 2003 [3 ]冉景涵, “ULSI中銅種子層及有電極電鍍的製程整合”, 國立清華大學碩士論文, 1999 [4 ]C. Lin, L. Clevenger, F. Schnabel, F. F. Jamin, and D. Dobuzinski, “Planarization of dual-damascene post-metal-CMP structures”, IITC, p.99-86, 1999 [5 ]C. Y. Chang, S. M. Sze, “ULSI Technology”, McGraw-Hill, Chap. 8, 1996 [6 ]J. M. Steigerwald, S. P. Murarka, and R. J. Gutmann, “Chemical Mechanical Planization of Microelectronic materials”, John Wiley & Sons, Chap. 1, 1997 [7 ]G. S. Chen, P. Y. Lee and S. T. Chen, “Phase formation behavior and diffusion barrier property of reactively sputtered tantalum-based thin films used in semiconductor metallization”, Thin Solid Films, vol.353, p.264-273, 1999 [8 ]B. S. Kang, S. M. Lee, J. S. Kwak, D. S Yoon, and H. K. Baik, “The effectiveness of Ta prepared by Ion-Assisted Deposition as a diffusion barrier between copper and silicon”, Journal of the Electrochemical Society, vol. 144(5), p.1807-1812, 1997 [9 ]陳忠賢, “銅/鉭基擴散障礙層與低介電係數材料之製程整合”, 國立清華大學博士論文, 2003 [10 ]W. D. Gray, M. J. Loboda, J. N. Bremmer, H. Struyf, M. Lepage, M. V. Hove, R. A. Donaton, E. Sleeckx, M. Stucchi, F. Lanckmans, T. Gao, W. Boullart, B. Conegrachts, M. Maenhoudt, S. Yanhaelemeersch, H. Meynen and K. Maex, “Process optimization and integration of trimethylsilane-deposited a-SiC:H and a-SiCO:H dielectric thin films for Damascene processing”, Journal of the Electrochemical Society, vol. 150(7), p.G404-G411, 2003 [11 ]K. C. Tsai, J. M. Shieh, and B. T. Dai, “Inductively coupled plasma deposited silicon oxycarbide interlayers”, Electrochemical and Solid-State Letters, 6(10), p.F31-F33, 2003 [12 ]S. U. Kim, T. Cho, and P. S. Ho, “Leakage current degradation and carrier conduction mechanisms for Cu/BCB Damascene process under bias-temperature stress”, 37th Annual International Reliability Physics Symposium, p. 277-282, 1999 [13 ]Z. C. Wu, C. C. Chiang, W. H. Wu, M. C. Chen, S. M. Jeng, L. J. Li, S. M. Jang, C. H. Yu, and M. S. Liang, “Leakage current mechanisms for damascene process of Cu/methylsilane-doped low-k chemical vapor deposited oxides”, Proceedings of the IEEE 2001 International Interconnect Technology Conference, p.42-44, 2001 [14 ]K. Y. Yiang, W. J. Yoo, Q. Guo, and A. Krishnamoorthy, “Investigation of electrical conduction in carbon-doped silicon oxide using a voltage ramp method”, Applied Physics Letters, vol. 83(3), p.524-526, 2003 [15 ]S. M. Sze, “Physics of Semiconductor Devices”, 2nd edition, Wiley, 1981 [16 ]C. Hamann, H. Burghardt, and T. Frauenheim, “Electrical Conduction Mechanisms in Solids”, Deutscher Verlag der Wissenschaften, 1988 [17 ]International Technology Roadmap for Semiconductors, Interconnect, 2003 [18 ]張立德, 牟季美, “奈米材料和奈米結構”, 初版, 滄海書局 ,2002 [19 ]薛增泉, 李浩, “薄膜物理”, 電子工業出版社 [20 ]P. Sheng, “Fluctuation-induced tunneling conduction in disordered materials”, Physical Review B, vol. 21(6), p.2180-2195 1980 [21 ]J. G. Simmons, “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film”, Journal of Applied Physics, vol. 34(6), p.1793-1803 1963id NH0925428044 sid 915068 cfn 0 / id NH0925428045 auc 洪國鐘 tic 奈米銅導線的製作與量測 adc 葉鳳生 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 75 kwc 奈米銅線 abc 本論文主要在於研究奈米銅導線的製作及量測方式,利用電子束微影的技術在非晶矽上定義出我們想要成長的銅線及電極位置,再利用置換方法,鍍製成銅奈米線。 rf [1 ] Tomonori AKAI, “Fabrication process of fine electrodes using shadow mask evaporation and tip-induce local oxidation”, Jpn. J. Appl. Phys. Vol. 41 (2002) pp.4883-4886 Part 1, No.7B, July 2002 [2 ] Stephen B, “Making electrical contact to nanowires with a think oxide coating” , Nanotechnology 13 (2002) 653–658 [3 ] E. M. Toimil Molares, “Electrical characterization of electrochemically grown single copper nanowires” , Appl. Phy. Letter Vol.81, No.13, MARCH 2003 [4 ] 王宣凱 “ Novel Seed Layer for Cu Metallization”, 國立清華大學電子工程研究所碩士論文, 2001 [5 ] 黃意文 “Electroless deposition for via filling”, 國立清華大學電子工程研究所碩士論文, 2002 [6 ] 張宏達 “ The fabrication of Cu nanowires”, 國立清華大學電子工程研究所碩士論文, 2003 [7 ] 朱育宏 “Study of Thermal Flow Processes and Deep Sub-micron of Metal Salicided Gate Processes by Electron Beam Lithograpy”, 國立清華大學電子工程研究所碩士論文, 2003 [8 ] 羅正忠, 張鼎張 “半導體製程技術導論”, 台灣培生教育出版股份有限公司 92年1月 汪建民等, ”材料分析” [11 ] A. Schiltz, J. F. Terpan, S. Brun, and P. J. Pantiez, Microelec. Eng., 30, p.283 ,1996. [12 ] Nonogaki, S., Ueno, T., and Ito, T., Microlithography Foundamentals in Semiconductor Devices and Fabrication Technology, Marcel Dekker, New York, pp202, 1998. [13 ] C. H. Lin, S. D. Tzu, and Anthony Yen. Microelec. Eng., 46, pp.58, 1999 [14 ] L. J. Chen, I. W. Wu, J. J. Chu, and C. W. Nieh, Appl. Phys. 63, 2778, 1998. [15 ] Lee, H. D. Wang, “A Cu seed layer for Cu deposition on silicon”, Solid-State Electronics, Vol. 41, No. 5, 1997, p. 695 [16 ] DIETER K. SCHRODER, “Semiconductor Material and Device Characterization” [17 ] 汪建民等, ”材料分析”id NH0925428045 sid 915055 cfn 0 / id NH0925428046 auc 劉仁福 tic 奈米壓模微影技術的研究 adc 葉鳳生 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 70 kwc 奈米壓模 kwc 微影 abc 隨著半導體技術的進步,元件的尺寸不斷縮小,根據2003年ITRS(International Technology Roadmap For Semiconductors Conference )的預測元件的1/2 Pitch未來將達到32 nm,傳統微影技術之解析度早因光波繞射與干射效應及基座的backscattering 而無法達其所求。在幾個解決方法中,奈米壓印微影技術由於符合了產業界高生產量和低成本考量要求所以將是未來解決微影技術問題發展重點。 rf 參考文獻 [1 ] ITRS, International Technology Roadmap for semiconductors Conference, Hsinchu, Taiwan, 2003. [2 ] S. Huck, and T. Wilhelm, Current Opinion in Solid State and Materials Science, Polymers in nanotechnology, 6, 2002,3-8. [3 ] Y. Xia, X.M. Zhao and G.M. Whitesides, Microelectronic Engineering, PP. 255-268, 1996 [4 ] T. Bailey, B. J. Choi, M. Colburn, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivasan, and C. G. Willson, J. Vac. Sci. Technol. B, 18, 6(2000) [5 ] T. Bailey, B. Smith, B. J. Choi, M. Colburn, M. Meissl, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, J. Vac. Sci. Technol. B, 19, 6(2001) [6 ] C.C. Yang、W.C. Chen, J. Mater. Chem., 12, 1138-1141(2002) [7 ] H.C. Liou, J. Pretzer, Thin Solid Films, 335, 186-191(1998) [8 ] S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, J. Vac. Sci. Technol. B 15, 6 (1997). [9 ] Mingtao Li, Jian Wang, Lei Zhuang, and Stephen Y. Chou, Appl. Phys. Lett., 76, 6(2000) [10 ] H .-C . Scheer, and H . Schulz, Microelectronic Engineering, 56, pp. 311– 332 (2001). [11 ] C. Gourgon , C. Perret, and G. Micouin, Microelectronic Engineering, 61, pp. 385–392(2002). [12 ] H.-C. Scheer, and H. Schulz, J. Vac. Sci. Technol. B, 16, p. 6(1998). [13 ] S Zankovych, T Hoffmann, J Seekamp, J-U Bruch and C M Sotomayor Torres, Nanotechnology 12, 91–95(2001). [14 ] Dahl-Young Khang and Hong H. Lee, Appl. Phys. Lett., vol. 76, p. 7(2000) [15 ] M.M. Alkaisi , R.J. Blaikie, and S.J. McNab, Microelectronic Engineering, 57, pp. 367– 373(2001) [16 ] C. Martin, L. Ressier., and J.P. Peyrade, Physica E, 17, pp. 523 – 525(2003) [17 ] Y. Hirai, M. Fujiwara, T. Okuno, and Y. Tanaka, J. Vac. Sci. Technol. B, 19, p. 6(2001) [18 ] C. Gourgon, C. Perret, G. Micouin, F. Lazzarino, J. H. Tortai, and O. Joubert, J. Vac. Sci. Technol. B, 21, 1(2003) [19 ] H.-C. Scheer , and H. Schulz, Microelectronic Engineering, 56, 311– 332(2001) [20 ] Y. Hirai, S. Yoshida, and N. Takagi, J. Vac. Sci. Technol. B, 21, 6(2003) [21 ] H. Schulz, D. Lyebyedyev, and H.-C. Scheer, J. Vac. Sci. Technol. B, 18, 6(2000) [22 ] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Appl. Phys. Lett. 67, 21 (1995). [23 ] S. Y. Chou, P. R. Krauss, and Preston J. Renstrom, J. Vac. Sci. Technol. B 14, 6 (1996). [24 ] S. Matsui, Y. Igaku, and H. Ishigaki, J. Vac. Sci. Technol. B, 19, 6(2001) [25 ] S. Matsui, Y. Igaku, and H. Ishigaki, J. Vac. Sci. Technol. B, 21, 2(2003)id NH0925428046 sid 915019 cfn 0 / id NH0925428047 auc 邱敬文 tic 用於萃取有效通道長度的改良偏移比例法 adc 連振炘 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 55 kwc 有效通道長度 kwc 偏移比例法 kwc 改良的偏移比例法 kwc 遷移率 abc 摘要 tc 摘要 I 致謝 目錄 A 第一章 簡介 1-1簡介 1 1-2研究動機與目的 4 第二章 有效長度的萃取 2-1-1 典型的萃取有效長度方法 6 2-1-2 通道電阻法 7 2-1-3 遷移率跟垂直電場相關的函數 10 2-2 偏移比例法的有效長度萃取 2-2-1 Shift and Ratio method數學推導 12 2-3 C-V法萃取有效長度 16 第三章 改良的偏移比例法 3-1-1 偏移比例法的假設與缺點探討 19 3-1-2 長度計算模型 21 3-1-3 Medici模擬在不同電壓下 長度 24 3-1-4 Halo/Pocket implant+ SSR MOSFET結構下的假設檢視 26 3-1-5 淺溝槽隔離效應Shallow Trench Isolation Effect 27 3-2 改良的偏移比例法 3-2-1 改良的偏移比例法假設探討 31 3-2-2 改良的偏移比例法數學推導 33 第四章 有效長度的摸擬以及結果討論 4-1 MOSFET元件的結構 37 4-1-2 Channel Doping MOSFET 結構下的有效長度取 38 4-1-2 4-1-3 源極與汲極濃度變化陡峭與緩慢對有效通 道長度的影響 40 4-1-4 Halo/Pocket implant+ SSR MOSFET結構下的有效長度萃取值 45 第五章 50 參考文獻 52rf 參考文獻 Reference [1 ]Rim, K.; Narasimha, S.; Longstreet, M.; Mocuta, A.; Cai, J.;” Low field mobility characteristics of sub-100 nm unstrained and strained Si MOSFETs”Electron Devices Meeting, 2002. IEDM '02. Digest. International , 8-11 Dec. 2002 [2 ]Yuan Taur “MOSFET channel length: extraction and interpretation”Electron Devices, IEEE Transactions on , Volume: 47 , Issue: 1 , Jan. 2000 [3 ]Taur, Y.; Zicherman, D.S.; Lombardi, D.R.; Restle, P.J.; Hsu, C.H.; Nanafi, H.I.; Wordeman, M.R.; Davari, B.; Shahidi, G.G.” A new shift and ratio' method for MOSFET channel-length extraction”Electron Device Letters, IEEE , Volume: 13 , Issue: 5 , May 1992 [4 ] B. J. Sheu and P. K. Ko, “A capacitive method to determine channel lengths for conventional and LDD MOSFET’s,” IEEE Electron Device Lett., vol. EDL-5, p. 491, 1984 [5 ] Ng, K.K.; Brews, J.R.; Measuring the effective channel length of MOSFETs Circuits and Devices Magazine, IEEE , Volume: 6 , Issue: 6 , Nov. 1990 Pages:33 – 38 [6 ] K. Terada and H. Muta, “A new method to determine effective MOSFET channel length,” Japan. J. Appl. Phys., vol. 18, p. 935, 1979. [7 ] 6. J. G. J. Chem. P. Chang, R. F. Motta and N.Godinho, "A New Method lo Determine MOSFET Channel Length." IEEE Elect. Dev. Lett.. EDL-1(9). p. 170. 1980. [8 ]P. 1. Suciu and R. L. Johnston."Experimental Derivation of the Source and Drain Resistance of MOS Transistors," IEEE Trans. Elect. Dev.. ED-27(9), p.l846. 1980. [9 ] F. H. De La Moneda, H. N. Kotecha and M.Shatzkes. "Measurement of MOSFET Constants," IEEE Elect. Dev. Lett., EDL-3(1),p. 10.1982. [10 ] K. L. Peng and M. A. Afromowitz, "An Improved Method to Determine MOSFET Channel Length." IEEE Elect. Dev. Lett.. EDL 3(12), p. 360, 1982. [11 ]B. J. Sheu. C. Hu. P. K. Ko and F. C. Hsu."Source-and-Drain Series Resistance of LDD MOSFET's," IEEE Elect. Dev. Lett., EDL-5(9). p. 365.1984. [12 ] K. -L. Peng, S. -Y. Oh. M. A. Afromowitz and J. L. Moll. "Basic Parameter Measurement and Channel Broadening Effect in the Submicrometer MOSFET." Elect Dev.Leil..EDL-5(ll) IEEE p.473.1984. [13 ] J. Whilfield, "A Modification on –An Improved Method to Determine MOSFET Channel Length,'" IEEE Elect. Dev. Lett., EDL-6(3).p. 109.1985. [14 ] L. Chang and J. Berg. "A Derivative Method to Determine a MOSFET's Effective Channel Length and Width Electrically." IEEE Elect. Dev. Lett.. EDL-7(4). p. 229. 1986. [15 ] G. J. Hu. C. Chang and Y. T. Chia. "Gate-Voltage-Dependent Effective Channel Length and Series Resistance of LDD MOSFET's."IEEE Trans. Elect. Dev., ED-34(12), p. 2469,1987. [16 ] J. C. Guo, S. S. Chung, and C. C. Hsu, “A new approach to determine the effective channel length and the drain and source series resistance of miniaturized MOSFET’s,” IEEE Trans. Electron Devices, vol. 41, p.1811, 1994. [17 ] Limitations of shift-and-ratio based Leff extraction techniques for MOS transistors with halo or pocket implants van Meer, H.; Henson, K.; Lyu, J.-H.; Rosmeulen, M.; Kubicek, S.; Collaert, N.; De Meyer, K. Electron Device Letters, IEEE , Volume: 21 , Issue: 3 , March 2000 Pages:133 – 136 [18 ] Takagi, S.; Toriumi, A.; Iwase, M.; Tango, H.:On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration;Electron Devices, IEEE Transactions on , Volume: 41 , Issue: 12 , Dec. 1994 Pages:2357 – 2362 [19 ] Impact of reducing STI-induced stress on layout dependence of MOSFET characteristics Miyamoto, M.; Ohta, H.; Kumagai, Y.; Sonobe, Y.; Ishibashi, K.; Tainaka, Y.;Electron Devices, IEEE Transactions on , Volume: 51 , Issue: 3 , March 2004 Pages:440 - 443id NH0925428047 sid 915051 cfn 0 / id NH0925428048 auc 張學信 tic 非整數比光伏元件及材料之智慧型設計工具之開發 adc 黃惠良 ty 博士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 英文 pg 195 kwc 非整數比 kwc 光伏材料 kwc 光伏元件 abc 在本研究中,我們開發出一種新的晶體最低總自由能(包括缺陷形成焓和組態火商)的計算程序,結合了缺陷物理(即以第一原理方法計算缺陷形成能和缺陷能級)和缺陷化學(即解電中性方程式以求出缺陷濃度),用以探討幾種非簡單整數比光伏材料(銅銦硒,銅鎵硒,氧化鋅及氧化鋅摻鋁)的光電特性(如缺陷濃度,載子濃度,吸收係數,反射率,擴散係數和載子壽命)和原子組成比例之間的關係.我們發現我們的模擬結果可以解釋其他研究團隊的一些實驗結果,而且這個計算程序不只對平衡態特性的計算有用,也可用於非平衡態的計算(藉由與元件模擬器結合,可得知元件操作時缺陷的出現與消失對元件的影響).除此之外,我們也開發出了一個全功能的(含I-V, C-V, 室內及戶外應用),解析式的,一維異質接面太陽電池模擬器,並且將之前計算所得之光電特性應用於太陽電池轉換效率之模擬.這個觀念使得元件模擬不再只是帶入與組成沒有關聯性的參數的工作而已.這個工作為未來的全數值式的太陽電池模擬器的開發立下了基礎.還有,我們研究了我們的物理氣相沉積系統(包括射頻磁控式(反應式)濺鍍機以及快速熱處理機)的薄膜組成的可控性,並將製程參數關聯到材料參數及元件結構參數.這對於大面積光伏工業的發展是關鍵性的. rf Publications of H. H. Chang (1998~2004): [P 1 ] H. H. Chang, H.Y. Ueng, H. L. Hwang, Jpn. J. Appl. Phys. 39 Suppl. 39.1, 399 (2000) [P 2 ] H. H. Chang, H.Y. Ueng, H. L. Hwang, Journal of Physics and Chemistry of Solids 64 (2003) 2047-2053 [P 3 ] H. H. Chang, H.Y. Ueng, H. L. Hwang, Materials Science in Semiconductor Processing 6(2003)401 [P 4 ] H. H. Chang, master thesis, National Tsing Hua University, 1998 Books Semiconductor physics_band theory and total energy calculation: [B a1 ] J. M. Thijssen, Computational physics, Cambridge [B a2 ] M. Springborg, Methods of electronic structure calculations, John Wiley & Sons, 2000 [B a3 ] K. Ohno, K. Esfarjani, Y. Kawazoe, computational materials science, Springer, 1999 [B a4 ] (simple Chinese ed.)李名復, 半導體物理學 [B a5 ] (simple Chinese ed.)謝希德, 固體能帶理論 Defect physics and chemistry: [B b1 ] Point defect in semiconductors, solid state series vol. 22, Springer-Verlog, 1981 [B b2 ] J. A. Van Vechten, A simple man's view of the thermochemistry of semiconductors, in Handbook on Semiconductors, vol. 3, ed. By S. P. Keller, North-Holland, 1980, p. 1 [B b3 ] Wolfgang Schroter, Weinheim, Electronic structure and properties of semiconductors, VCH 1991 [B b4 ] (simple Chinese ed.)夏建白, 現代半導體物理 [B b5 ] (simple Chinese ed.)徐毓龍, 氧化物與化合物半導體基礎 Semiconductor statistics: [B c1 ] N. M. Ashcroft, N. D. Mermin. Solid State Physics, Saunders College Publishing, 1976 [B c2 ] J. S. Blackmore. Semiconductor Statistics. Pergamon Press: Oxford, 1962 [B c3 ] Enderlein, Horing, Fundamentals of Semiconductor Physics and Devices, World Scientific Publishing, 1997 [B c4 ] A. G. Milnes, Deep Impurities in Semiconductors, John Wiley & Sons, 1973 [B c5 ] P. T. Landsberg, Recombination in Semiconductors, Cambridge1991 Semiconductor physics_opto-electrical properties: [B d1 ] C. M. Wolfe, N. Holonyak, G. E. Stillman. Physics Properties of Semiconductors, Prentice Hall, 1989 [B d2 ] Ridley, Quantum Processes in Semiconductors, 3rd edition, Clarendon Press, 1993 [B d3 ] M. Balkanski and R. F. Wallis, Semiconductor Physics and Applications, Oxford University Press, 2000 [B d4 ] H. T. Grahn, Introducion of Semiconductor Physics, World Science, 1999 [B d5 ] B. R. Nag. Electron Transport in Compound Semiconductors, Springer, 1980 [B d6 ] D. L. Rode, Low-Field Electron Transport, in Semiconductors and Semimetals, Vol. 10, R. K, Willardson and A. C. Beer ed., Acadmic Press, 1975 [B d7 ] Tomizawa, Numerical simulation of submicron semiconductor devices, Artech House [B d8 ] P. K. Basu, Theory of Optical Processes in Semiconductors, Clarendon Press, 1997 [B d9 ] D. K. Ferry, Semiconductor transport, Taylor and Francis, 2000 [B d10 ] (simple Chinese ed.)沈學礎, 半導體光譜和光學性質 [B d11 ] (simple Chinese ed.)蔣平, 徐至中, 固體物理簡明教程 [B d12 ] J. I. Pankove, Optical processes in semiconductors, Dover Publications, 1971 Semiconductor Device physics: [B e1 ] S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, 1981 [B e2 ] S. M. Sze ed., Modern Semiconductor Device Physics, John Wiley & Sons, 1998 [B e3 ] J. J. Liou. Advanced semiconductor device physics and modeling, Artech House, 1994 [B e4 ] S. Selberhher, Analysis and simulation of Semiconductor Devices, Springer, 1984 [B e5 ] B. L. Sharma, R. K. Purohit, Semiconductor Heterojunctions, Pergamon Press, Solar cell: [B f1 ] T. J. Coutts, L. L. Kazmerski, S. Wagner eg., Copper Indium Diselenide for photovoltaic applications, Elsevier, 1986 [B f2 ] R. H. Bube, Photovoltaic materials, Imperial College Press, 1998 [B f3 ] Fonash, Solar Cell Device Physics, Academic Press, 1981 [B f4 ] A. L. Fahrenbruch, R. H. Bube, fundamentals of solar cells, Acadmic press, 1983 [B f5 ] H. J. Moller, Semiconductors for Solar Cells, Artech House, 1993 [B f6 ] Coutts, Meakin ed., Current Topics in Photovoltaics (1), Academic Press, 1985 [B f7 ] Chopra, Das, Thin Film Solar Cells, Plenum Press, 1983 [B f8 ] Archer, Hill ed., Clean Electricity from Photovoltaics, Imperial College Press, 2001 [B f9 ] S. K. Deb, B. Sopori, recent advances in thin film solar cells, in Handbook of Thin Film Devices, Acadmic press, 2000 [B f10 ] Messenger, Ventre, Photovoltaic Systems Engineering, CRC Press, 2000 [B f11 ] Luis Castaner, Santiago Silvestre, Modeling Photovoltaic Systems Using PSpice, Wiley [B f12 ] (simple Chinese ed.)劉恩科, 光電池及其應用 PVD [B g1 ] M. A. Lienerman, A. J. Lichtenberg, Principles of plasma discharges and materials processing, John Wiley & Sons, 1994 [B g2 ] J. E. Mahan, Physical Vapor Deposition of Thin Films, John Wiley & Sons, 2000 [B g3 ] R. A. Powell, S. M. Rossnagel, Thin Films, PVD for microelectronics: sputter deposition applied to semiconductor manufacturing, Physics of thin films vol. 26, Academic press, 1999 Journal papers * Three most professional journals/magazines about solar cells are: Progress in Photovoltaics Solar Energy Materials and Solar Cells Photon Magazine Defect physics: [J a1 ] S. Pantilides, Rev. Mod. Phys.50(1978)797 [J a2 ] R. Marquez and C. Rincon, phys. stat. sol. (b) 191, 115(1995) [J a3 ] R. Marquez and C. Rincon, Mat. Lett. 40, 66-70(1999) [J a4 ] S. H. Wei, S. B. Zhang, Phys. Rev. Lett. 90, 26103 (2003) [J a5 ] A. Zunger, APL 83(2003)57 CuInSe2, CuGaSe2 [J a6 ] S. B. Zhang, S. H. Wei, A. Zunger, Phys. Rev. B 57(1998)9642 [J a7 ] S. W. Wei, S. B. Zhang, A. Zunger, Appl. Phys. Lett. 72(1998) 3199 ZnO [J a8 ] S. B. Zhang, S. H. Wei, A. Zunger, Phys. Rev. B 63(2001)75205 [J a9 ] Y. Yan, S. B. Zhang, S. T. Pantelides, Phys. Rev. Lett. 86, 5723 (2001). [J a10 ] A. F. Kohan, G. Ceder, and D. Morgan, Chris G. Van de Walle, PRB 61 (2000)15019 H-doping [J a11 ] C. G. Van de Walle, J. Neugebauer, Nature 423(2003)626 ASW method [J a12 ] T. Yamamoto, H. Katayama-Yoshida, Jpn J Appl Phys 34(1995)L1584 [J a13 ] H. Neumann, Crys Res Tech 18(1983)901 [J a14 ] O. K. Al-Mushadani, R. J. Needs, Phys. Rev. B 68(2003)235205 Defect chemistry: [J b1 ] H. Y. Ueng, H. L. Hwang, JAP 62(1987)434 [J b2 ] H. Y. Ueng, H. L. Hwang, J. Phys. Chem. Solids 50(1989) 1297 [J b3 ] H. Y. Ueng, H. L. Hwang, J. Phys. Chem. Solids 51(1989) 1 [J b4 ] H. Y. Ueng, H. L. Hwang, J. Phys. Chem. Solids 51(1989) 11 [J b5 ] A. Yamada, S. Niki, P. J. Tweet, H. Oyanagi, Inst. Phys. Conf. Ser. No 152, IOP (1998) p. 801 [J b6 ] J. Klais, H. J. Moller, D. Cahen, Thin Solid Films 361-362, 446 (2000) [J b7 ] T.J. Anderson and B.J. Stanbery, NREL/SR-520-30391, Final Report 6 May 1995-31 December 1998 Opto-electrical properties: [J c1 ] W. Shockley, J. T. Last, Phys. Rev. 107(1957)392 [J c2 ] W. P. Dumke, Phys. Rev. 132(1963)1998 [J c3 ] B. E. Sernelius et al., Phys. Rev. B 37(1988)10244 MDF method [J c4 ] Takahiro Kawashima and Sadao Adachi, Hideto Miyake and Koichi Sugiyama, JAP 84, 1998 5202 [J c5 ] H. Yoshikawa, S. Adachi, Jpn. J. Appl. Phys. 36(1997)6237; S. Ninimiya, S. Adachi, J. Appl. Phys 78(1995)1183 ZnO GB [J c6 ] F. Oba, S. R. Nishitani, H. Adachi, I. Tanaka, M. Kohyama, S. Tanaka, Phys. Rev. B 63(2001)45410 [J c7 ] Yanfa Yan and M. M. Al-Jassim, Phys. Rev. B 69(2004)085204 CIE GB [J c8 ] Clas Persson and Alex Zunger, PRL 91(2003)266401 CIGS carrier scattering [J c9 ] D. J. Schroeder, J. L. Hernandez, G. D. Berry and A. A. Rockett, J. Appl. Phys. 83, 1519 (1998) [J c10 ] T. Irie, S. Endo, S. Kimura, Jpn. J. Appl. Phys. 1979; 18: 1303-1310 [J c11 ] S. W. Wasim. Transport properties of CuInSe2. Solar cells 16(1986)289 [J c12 ] S. M. Wasim, G. Sanchez Porras, Phys. Stat. Sol. (a) 79(1983)65 [J c13 ] J. H. Schon, E. Arushanov, N. Fabre, E. Bucher, Solar Energy Mat. Solar Cells 61(2000)417 [J c14 ] D. C. Look, J. C. Manthuruthil, J. Phys. Chem. Solids 37(1976)173 Stability [J c15 ] J. F. Guillemoles, L. Kronik, D. Cahen, U. Rau, A. Jasenek, H. W. Schock, J. Phys. Chem. B 104(2000)4849 [J c16 ] J. F. Guillemoles, Thin Solid Films 361(2000)238 Others [J c17 ] M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, N, Yamamoto, Phys. Rev. B 63(2001)75203 [J c18 ] W. Shockley, W. T. Read, Phys Rev 87(1952)835 Experiments: CIS [J d1 ] H. W. Schock, in Polycrystalline Semiconductors, Edited by H. J. Moller, H. Strunk and H. Werner, Springer Proceeding in Physics 35(1989) p.246 [J d2 ] G. Morell, R. S. Katiyar, S. Z. Weisz, T. Walter, H. W. Schock, I. Balberg, Appl. Phys. Lett. 69(1996) 987 [J d3 ] R. Noufi, R. Axton, C. Herrington and S. K. Deb, Appl. Phys. Lett. 45, 668 (1984) [J d4 ] R. Noufi, R. C. Powell, R. J. Matson, Solar Cells 21, 55 (1987) [J d5 ] W. N. Shafarman, R. Klenk, B. E. McCandless, 25th IEEE PVSC, 763 (1996) ZnO [J d6 ] Gang Xiong, John Wilkinson, Brian Mischuck, S. Tuzemen, K. B. Ucer, R. T. Williams, Appl. Phys. Lett. 80(2002)1195 [J d7 ] K. Ellmer, J. Phys. D 33(2000)R17 [J d8 ] K. Ellmer, J. Phys. D 34(2001)3097 [J d9 ] J. H. Werner, N. E. Christensen, in Polycrystalline Semiconductors II, Edited by J. H. Werner, H. P. Strunk, Springer Proceedings in Physics 54(1991)145 [J d10 ] F. Abou-Elfotouh, D. J. Dunlavy, T. J. Coutts, Solar Cells 27(1989)237 [J d11 ] F. Abou-Elfotouh, H. Moutinho, A. Bakry, T. J. Coutts, L. L. Kazmerski, Solar Cells 30(1991)151 Process idea: [J e1 ] J. A. Thornton, Ann. Rev. Mater. Sci. 7(1997)239 [J e2 ] P. B. Barna, M. Adamik, 'Growth Mechanisms of Polycrystalline Thin Film' in F. C. Matacotta, G. Otaviani Ed. Science and Technology of Thin Film, World Scientific [J e3 ] Hadi Savaloni and Mehran Gholipour Shahraki, Nanotechnology 15 (2004) 311-319 [J e4 ] A. Galdikas, Thin Solid Film 418(2002)112 IEC CIE PVD [J f1 ] N. Orbey, G. Norsworthy, R. W. Birkmire, and T. W. F. Russell, Prog. Photovolt. Res. Appl. 6(1998) 79 [J f2 ] N. Orbey, H. Hichri, R. W. Birkmire and T. W. F. Russell, Prog. Photovolt. Res. Appl., 5 (1997) 237 NREL [J f3 ] L L Kazmerski, Renewable and Sustainable energy reviews 1(1997)71 [J f4 ] M. E. Beck, A. Swartzlander-Guest, R. Matson, J. Keane, R. Noufi, Solar Energy Materials & Solar Cells 64 (2000) 135 [J f5 ] J. A. M. AbuShama1, S. Johnston, T. Moriarty, G. Teeter, K. Ramanathan, R. Noufi, Prog. Photovolt: Res. Appl. 12(2004)39 [J f6 ] D. L. Young, J. Keane, A. Duda, J. A. M. AbuShama, C. L. Perkins, M. Romero , R. Noufi, Prog. Photovolt: Res. Appl. 11(2003)535 [J f7 ] K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, A. Duda, Prog. Photovolt: Res. Appl. 11(2003)225 [J f11 ] C. S. Jiang, F. S. Hasoon, H. R. Moutinho, H. A. Al-Thani, M. J. Romero, M. M. Al-Jassim, Appl Phys Lett 82(2003)127 IPE [J f8 ] H. W. Schock, Appli. Surf. Sci. 92(1996) 606 HMI [J f9 ] M.Ch. Lux-Steiner, A. Ennaoui, Ch.-H. Fischer, A. Jager-Waldau, J. Klaer, R. Klenk, R. Konenkamp, Th. Matthes, R. Scheer, S. Siebentritt, A. Weidinger, Thin Solid Films 361 (2000) 533 [J f10 ] K. Siemer, J. Klaer, I. Luck, J. Bruns, R. Klenk, D. Brakunig, Solar Energy Materials & Solar Cells 67 (2001) 159 Reactive sputtering [J g1 ] S. Berg, H-O. Blom, T. Larsson, C. Nender, J. Vac. Sci. Technol. A 5(1987)202 [J g2 ] S. Berg, T. Larsson, C. Nender, H-O Blom, J. Appi. Phys. 63(1988)887 [J g3 ] S. Berg, T. Nyberg, H-O. Blom, C. Nender, 'Modeling of the Reactive Sputtering Process' in D. A. Glocker, S. I. Shah Ed. Handbook of Thin Film Process Technology, IOP Publishing [J g4 ] C. Li, J-H Hsieh, Surf. Coat. Tech. 177(2004)824 [J g5 ] O. Kluth, G. Schope, J. Hupkes, C. Agashe, J. Muller, B. Rech, Thin Solid Films 442(2003)80 Fraunhofer's ZnO [J h1 ] A.Pflug, B.Szyszka, J.Niemann, Thin Solid Films 442 (2003) 21-26 [J h2 ] B. Szyszka, V. Sittinger , X. Jiang , R.J. Hong , W. Werner , A. Pflug , M. Ruske , A. Lopp, Thin Solid Films 442 (2003) 179-183 [J h3 ] Andreas Pflug, Volker Sittinger , Florian Ruske , Bernd Szyszka , Georg Dittmar, Thin Solid Films 455 -456 (2004) 201-206 Solar cell simulation_analytical: [J i1 ] H J Pauwels and G Vanhoutte, J. Phys. D: Appl. Phys., 11 (1978) 649 [J i2 ] M.D. Archer, J.R. Bolton, S.T.C. Siklos, Solar Energy Materials & Solar Cells, Vol. 40, iss.2, 1996, p.133-176 [J i3 ] J. J. Liou, Sol. Energy Mater. Sol. cells 29(1993) 261 [J i4 ] JJ Liou, F. A. Lindholm, D. C. Malocha, J. Appl. Phys. 63(1988)5015 [J i5 ] R. J. Schwartz, J. L. Gray, Y. J. Lee, 22th IEEE PVSC(1991)920 Solar cell simulation_numerical: [J j1 ] M. S. Lundstrom, R. J. Schuelke, IEEE ED 30(1983)1151 [J j2 ] Reiner Klenk, Thin Solid Films 387 2001 135_140 [J j3 ] M. Burgelman, J. Verschraegen, S. Degrave and P. Nollet, "Modeling thin film PV devices", Progress in Photovoltaics, 12(2004)143 XRD: [J k1 ] A A Attia, M Lachab, S Harsono, C LLinares, Renewable energy 6(1995) 559id NH0925428048 sid 909008 cfn 0 / id NH0925428049 auc 陳俊瑋 tic 深次微米金氧半場效電晶體之Flicker Noise量測與特性分析 adc 徐碩鴻 博士 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 57 kwc 低頻雜訊 kwc 深次微米 kwc 應力效應 kwc 淺溝隔離層 abc   本文主要在探討,淺溝隔離層(STI: Shallow Trench Isolation)之應力效應對於0.13?慆金氧半電晶體(MOSFET)之低頻1/f雜訊特性與其影響。在此研究中,SA定義為閘極邊到汲極邊之STI之距離,而SB為閘極邊到源極邊之STI的距離長短。我們分析當參數SA=SB (10, 1.2, 0.71?慆),即元件兩邊結構對稱情形下,或是SA為0.71?慆,但SB為19.29, 1.69, 0.71?慆在不同偏壓情況,對於低頻1/f雜訊之影響。 rf [1 ]  Kenneth K. O , Namkyu Park , and Dong-Jun Yang “1/f Noise of NMOS and PMOS Transistors and their Implications to Design of Voltage Controlled Oscillators” IEEE RFIC symposium, pp. 59-62, 2002 [2 ]  Lee, T.H., Hajimiri, A. “Oscillator phase noise: a tutorial” IEEE J.Solid-State Circuits, vol 35 pp. 326-336, 2000 [3 ]  A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179–194, 1998. [4 ]  Yael Nemirovsky, Igor Brouk, and Claudio G. Jakobson “1/f noise in CMOS Transistors for analog applications” IEEE Transcation on Electron Devices vol.48 pp.921-927 2001 [5 ]  Gray, Hurst, Lewis, Meyer “Analysis and Design of Analog Integrated Circuits (4th Edition)” WILEY 2001 [6 ]  A. van der Ziel, Noise in Solid State Devices and Circuits. New York Wiley, 1986. [7 ]  A. van der Ziel and E. R. Chenette, “Noise in solid state devices,”Adv.Electron. Electron Phys., vol. 46, p. 313, 1978. [8 ]  Hans, Ramūnas, Arvydas“Microwave Noise in Semiconductor Devices” WILEY INTER-SCIENCE 2001 [9 ]  NIKEF, Amsterrdam “Noise sources in MOSFET transistors” 1999 JDS [10 ]  Kent Lundberg “Noise Source in Bulk CMOS” 2002 [11 ]  Bipin Rajendran “REVIEW OF NOISE IN SEMICONDUCTOR DEVICES AND MODELING OF NOISE IN SURROUNDING GATE MOSFET 2001” http://www.stanford.edu/~bipin/research/Noise.pdf [12 ]  Ming-Horn Tsai, Tso-Ping Ma “1/f Noise in Hot-Carrier Damaged MOSFET’s: Effects of oxide change and interface traps” IEEE Transcation on Electron Devices vol.14 pp.256-258 1993 [13 ]  L.K.J. Vandamme, Xiaosong Li, and Dominique Rigaud “1/f noise in MOS devices. Mobility or Number Fluctuations?” IEEE Transcation on Electron Devices vol.41 pp.1936-1945 1994 [14 ]  F.N. Hooge“1/f Noise Sources” IEEE Transcation on Electron Devices vol.41 pp.1926-1935 1994 [15 ]  Andries J. Scholten, Luuk F. Tiemeijer, Ronald van Langevelde, Ramon J. Havens,Adrie T. A. Zegers-van Duijnhoven, and Vincent C. Venezia “Noise Modeling for RF CMOS Circuit Simulation” IEEE Transcation on Electron Devices vol. 50, pp 618-632, 2003 [16 ]  K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng, “A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors,” IEEE Trans. Electron Devices, vol. 37, pp. 654–665, 1990. [17 ]  BSIM Research Group “BSIM3v3.2.2 MOSFET Model Users’ Manual” http://www-device.eecs.berkeley.edu/ [18 ]  BSIM Research Group “BSIM4.3.0 MOSFET Model User’s Manual” http://www-device.eecs.berkeley.edu/ [19 ]  Motchenbacher, C. D. “Low noise electronic system design” J. Wiley & Sons, 1993. [20 ]  C.Gallon, G.Reimbold, G.Ghibaudo, R.A. Bianchi, R.Gwoziecki, C.Raynaud “Electrical Analysis of Mechanical Stress Induced by Shallow Trench Isolation” European Solid-State Device Research, 2003. ESSDERC '03. 33rd Conference pp.359-362 2003id NH0925428049 sid 915059 cfn 0 / id NH0925428050 auc 黃政傑 tic 生醫檢測用氫化非晶矽P-I-N型感測器之最佳化 adc 黃惠良 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 英文 pg 27 kwc 氫化非晶矽 kwc 感測器 abc 使用電漿輔助氣相沉積系統(PECVD)製作非晶矽p-i-n型光二極體已經使用非常廣泛,目前市面上已經有許多利用此項技術所作之產品上市,然而在生醫檢測用之目的方面的要求,卻比一般之應用要求更為嚴刻,是故為了製造出更佳效能的光二極體,我們所訂定的條件也必須更加嚴謹•在製作出p-i-n型光二極體前,我們必須先分析本質非晶矽半導體的材料特性是否已達到我們製作p-i-n型光二極體的要求•利用光學特性FTIR了解材料結構上之特性可以幫助我們了解所長薄膜的條件,繼而幫助我們調整參數已達要求•除此之外藉由照光與不照光下的導電系數亦可幫助我們了結薄膜特性,經由長膜參數的調整我們已經可以在單一腔體內製作出照光與不照光下的本質非晶矽導電率比值可達五個數量級,此代表本質層之污染已經降至可接受之範圍,如此我們便可以將這本質層應用在p-i-n型光二極體•除此之外,因為所使用之電漿輔助氣相沉積系統為單一腔體製程,是故不同層與層之間的相互污染將有可能影響最後製造之p-i-n光二極體之電性,是故再度完p-型層後,作一簡單之氫氣沖刷處理流程,亦可減低互相污染,在我們的實驗裡,我們已經將p-i-n光二極體之電性照光比暗電流達到七至八個數量級•有如此高之數量及方可作為生醫檢測知使用,除此之外,p-i-n光二極體之電性照光對550nm波長之光照效率亦達70%•此一波長的光乃是X-光經由光轉化層CsI(Tl)所轉化出之波長峰值所在,代表轉換之效率亦非常高• tc Contents Chapter 1. Introduction …………………………………………………………...(1) 1.1 Applications for Optical Sensors: Bio-Medical Detection System and Digital X-ray Sensor.…………………………………………………………………….(1) 1.2 Optical Sensor……………………………………………………………………(3) 1.3 Essential Material Considerations and Requirements for a-Si:H P-I-N Photo Diode…………………………………………………………………………... (4) Reference…………………………………………………………………………….(6) Chapter 2. Theory…………………………………………………………………..(7) 2.1 Crystalline Silicon, Amorphous Silicon, and Hydrogenated Amorphous Silicon…………………………………………………………………………(7) 2.2 The Growth of Amorphous Silicon………………………………………………(9) 2.3 Material Characteristic Analysis of Hydrogenated Amorphous Silicon………..(10) 2.4 P-I-N Photo Sensor Diode……………………………………………………...(14) Reference…………………………………………………………………………...(16) Chapter 3. Experiments…………………………………………………………..(17) 3.1 The Cleaning Process of Sample Substrate…………………………………….(17) 3.2 Growth of Hydrogenated Amorphous Silicon in PECVD System……………..(18) 3.3 The Deposition of P-I-N Photo Sensor Diode………………………………….(21) 3.4 I-V Measurement of P-I-N Photo Sensor Diode……………………………….(22) Chapter 4. Result………………………………………………………………….(23) 4.1 The Characteristic of Hydrogenated Amorphous Silicon………………………(23) 4.2 The I-V Characteristics of P-I-N Photo Diode Sensor………………………….(24) Chapter 5. Discussion and Conclusion…………………………………………...(27)rf Reference [1.1 ] Xiujiang J. Rong, Chris C. Shaw, Dennis A. Johston, Michael R. Lemacks, Xinming Liu, Gary J. Whitman, Mark J. Dryden, Tanya W. Stephens, Stephen K. Tompson, Kerry T. Krugh, and Chao-Jen Lai, “Microcalcification detectability for four mammographic detectors: Flat-panel, CCD, CR, and screen/film,” Med. Phys. 29(9), pp. 2052-2061, 2002. [1.2 ] D. L. Lee, L. K. Cheung, E. F. Palecki, and L. S. Jeromin I, “A discussion on resolution and dynamic range of Se-TFT direct digital radiographic detector,” Physics of Medical Imaging, proc., SPIE, 2708, pp. 511-522, 1996. [1.3 ] Richard L. Weisfield, “High performance input scanning arrays using amorphous silicon photodiode and thin film transistor,” Mat. Res .Soc. Symp. Pro., 258, pp. 1105-1114, 1992. [1.4 ] N. Jung, P. L. Alving, F. Busse, N. Conards, H. M. Meulenbrugge, W. Rutten, U. Schiebel, M. Weibrecht, H. Wieczorek, “Dynamic x-ray imaging system based on an amorphous silicon thin film array,” Physics of Medical Imaging, proc., SPIE, 3336, pp. 396-407, 1998. [1.5 ] Semiconductors and Semimetals volume 21 Part A, Advances in Plasma-Grown Hydrogenated Films [2.1 ] Galloni, Roberto,” Amorphous silicon solar cells,”Reneable Energy,Vol. 8, , Issue: 1-5, pp. 400-404, 1996. [2.2 ] Keiichi, Sano,” Polycrystalline silicon photovoltaic device” Solar Energy, Vol. 57, Issue: 2, 1996, pp. VII [2.3 ] R. A. Street, “Hydrogenated Amorphous Silicon,” Cambridge University Press, 1991 [2.4 ] Maurice H. Francombe, “Advances in Plasma-Grown Hydrogenated Films,” Academic Press, 2002 [2.5 ] Kasap, S. O./S.O. Kasap. /Prentice Hall, “Optoelectronics and Photonics,” 2001 [2.6 ] Giovanni Bruno, Pio Capezzuto, Arun Madan, “Plasma Deposition of Amorphous Silicon-Based Materials,” Academic Press, 1995 [2.7 ] Maurice H. Francombe, “Advances in Plasma-Grown Hydrogenated Films,” Academic Press, 2002 [2.10 ] Pouya Valizadeh, "Amorphous Silicon Solar Cells: Efficiency and Stability Issues," Electrical Engineering and Computer Science Department, University of Michigan, 1301 Beal Ave., Ann Arbor, MI 48109 [2.8 ] Pouya Valizadeh, "Amorphous Silicon Solar Cells: Efficiency and Stability Issues," Electrical Engineering and Computer Science Department, University of Michigan, 1301 Beal Ave., Ann Arbor, MI 48109 [2.9 ] John Robertsona, Engineering Department, Cambridge University, Cambridge CB2 1PZ, United Kingdom [2.10 ] J. D. Joannopoulos and G. Lucovsky, “The Physics of Hydrogenated Amorphous Silicon II,” Topics in Applied Physics Vol. 56, 1984id NH0925428050 sid 905037 cfn 0 / id NH0925428051 auc 林有□ tic 光激發-兆赫波探測時間解析光譜在各種物理系統的應用 adc 洪勝富博士 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 49 kwc 兆赫波 kwc 光激發 kwc 時間解析 kwc 半導體光學 abc 在過去的兆赫波時間解析光譜(THz-TDS)的工作裡,我們利用它時間解析的優點去研究半導體當中受光激發產生的暫態超快現象,對於聚焦在半導體上的激發光而言,極高的能量密度足以在半導體表面產生表面電漿態 (surface plasma)。 rf [Ref.1 ] G.Mourrou et al., Appl. Phys. Lett., 39, 295 (1981) [Ref.2 ]Ch.Fattinger and D. Grischkowsky , Appl.Phys.Lett/53.1480(1988) [Ref.3 ] X. C. Zhang and D. H. Auston , J. Electron. Wave Appl. 6,85 (1992) [Ref.4 ] B. B. Hu, J. T. Darrow, X. C. Zhang, D. H. Auston and P. R. Smith , Appl. Phys. Lett. 56, 886 (1990) Ref.5 ] M. P. Halsall, P. Harrison, J.-P. R. Wells, and I. V. Bradley. Picosecond far-infrared studies of intraacceptor dynamics in bulk gaas and □-doped AlAs/GaAs quantum wells. Phys. Rev. B, 2001. [Ref.6 ] X. C. Zhang and D. H. Auston, J. Appl. Phys. 71, 326 (1992) [Ref.7 ] Wu Q and Zhang X-C , Appl Phys Lett/67,3523(1995) [Ref.8 ] Grischkowsky D , J.Opt.Soc.Am.B/7,2006(1990) [Ref.9 ] Grischkowsky D , Applied Physics Letters, v 61, n 7, Aug 17, 1992, p 840 [Ref.10 ] X. C. Zhang et al. , Appl. Phys. Lett. , 62 , 2003 (1993) [Ref.11 ] Pedersen, J.E.; Keiding, S.R.; IEEE Journal of Quantum Electronics, v 28, n 10, Oct, 1992 [Ref.12 ] I. Wilke et al. Physica C: Superconductivity and its Applications, 341-348 (IV), 2000 [Ref.13 ] winnerl,s Nature, v 420, n 6912, Nov 14, 2002, p 153-156 [Ref.14 ] 黃衍介,非線性光學講義 [Ref.15 ] Peyghambarian, introduction to semiconductor optics, Prentice Hall [Ref.16 ] wolf, Principles of optics, Cambridge University Press/1999 [Ref.17 ] 徐邦昱,清華大學電子工程研究所畢業論文,2003 [Ref.18 ] 郭適豪,清華大學電子工程研究所畢業論文,2003id NH0925428051 sid 915053 cfn 0 / id NH0925428052 auc 周均穎 tic 氫化非晶矽蕭特基感測器光靈敏度增進之研究 adc 黃惠良 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 英文 pg 49 kwc 蕭特基二極體 kwc 光敏性 kwc 非晶矽 kwc 電漿輔助化學氣相沉積 abc 本論文的研究主要是用脈衝式電漿製作非晶矽光檢測器。 論文分為兩主要部份:(1) 非晶矽薄膜的製作,(2)蕭特基型光檢測器的製作。 rf [1 ] A.A.Howling, L. Sansonnens, J. L. Dorier, and Ch. Hollenstein. “Time resolved measurements of highly polymerized negative ions in radio frequency plasma deposition experiments”J. Appl. Phy. Vol.75(3).pp.1340-1353,1994 [2 ] T. Yoshida, H. Fujisawa, T. Hokaya and H. Sakai.“Film deposition process in pulse discharge CVD.”M.R.S Vol.219,pp.655-665 [3 ] E.Fortunato, R.Martins, Solid State Phenom. 44-46,1995 [4 ] Jyh-Wong Hong, Yu-Wen Chen, Wuu-Larng Laih, Y.K. Fang, C.Y.Chang, C.Gong,“The hydrogenated Amorphous Silicon Reach Though Avalanche Photodiodes.”IEEE Quantum Electronics. Vol.26,No.2,pp.208-284 [5 ] C.Y.Chen, A.Y.Cho, P.A. Garbinski, C.G.Bathea, and B.F.Levine.“Modulated barrier photodiode:A new majority-carrier photodetector.”Appl.Phys.Lett.Vol.39(4).pp.340-342,1981 [6 ] 陳治明,非晶半導體材料與器件,科學出版社,p.123~130 [7 ] K.D.Mackenzine, J.H.Burnett, J.R.Eggert, Y.M.Li, Z.LSun and W.Paul. “Comparison of the structural, electrical,and optical properties of amorphous silicon-germanium alloys produced form hydrides and fluorides. ”Phys.Rev B. Vol.38. pp.6120-6735,1988 [8 ] S.M.Sze, “Physics of Semiconductor Devices”,2nd Edition, [9 ] A.A.Howling, Ch.Hollenstein, and P.J.Paris.“Direct visual observation of powder dynamics in RF plasma assisted deposition”Appl.Phys.Lett.Vol.59(12), 16 1991, pp.1409-1411,1991 [10 ] J.Robertson, J. Appl .phys .87,2608(2000) [11 ] W. Beyer, H. Wagner, and H. Mell, MRS Symp. Proc. 49, 189 (1985) [12 ] H. Fritzsche, M. Tanielian, C. C. Tsai, and P. J. Gaczi, J. Appl. Phys. 50, 3366(1979) [13 ] Maurice H. Francombc “Thin Films and Nanostructures”vol.30 Academic press [14 ] E. Fortunato, A. Malik, R. Martins, Sens. Actuators 46 (1998). [15 ] V. Chu, Schottky Barriers on Amorphous Silicon and Amorphous Silicon-Germanium Alloys, UMI publisher, Princeton University 1990 [16 ] S. O. Kasap “Optoelectronics and Photonics Principles and Practices ” Prentice Hall (2001).id NH0925428052 sid 905021 cfn 0 / id NH0925428053 auc 林有 auc � auc � tic 光激發-兆赫波探測時間解析光譜在各種物理系統的應用 adc 洪勝富博士 ty 碩士 sc 國立清華大學 dp 電子工程研究所 yr 92 lg 中文 pg 49 kwc 兆赫波 kwc 光激發 kwc 時間解析 kwc 半導體光學 abc 在過去的兆赫波時間解析光譜(THz-TDS)的工作裡,我們利用它時間解析的優點去研究半導體當中受光激發產生的暫態超快現象,對於聚焦在半導體上的激發光而言,極高的能量密度足以在半導體表面產生表面電漿態 (surface plasma)。 rf [Ref.1 ] G.Mourrou et al., Appl. Phys. Lett., 39, 295 (1981) [Ref.2 ]Ch.Fattinger and D. Grischkowsky , Appl.Phys.Lett/53.1480(1988) [Ref.3 ] X. C. Zhang and D. H. Auston , J. Electron. Wave Appl. 6,85 (1992) [Ref.4 ] B. B. Hu, J. T. Darrow, X. C. Zhang, D. H. Auston and P. R. Smith , Appl. Phys. Lett. 56, 886 (1990) Ref.5 ] M. P. Halsall, P. Harrison, J.-P. R. Wells, and I. V. Bradley. Picosecond far-infrared studies of intraacceptor dynamics in bulk gaas and ??-doped AlAs/GaAs quantum wells. Phys. Rev. B, 2001. [Ref.6 ] X. C. Zhang and D. H. Auston, J. Appl. Phys. 71, 326 (1992) [Ref.7 ] Wu Q and Zhang X-C , Appl Phys Lett/67,3523(1995) [Ref.8 ] Grischkowsky D , J.Opt.Soc.Am.B/7,2006(1990) [Ref.9 ] Grischkowsky D , Applied Physics Letters, v 61, n 7, Aug 17, 1992, p 840 [Ref.10 ] X. C. Zhang et al. , Appl. Phys. Lett. , 62 , 2003 (1993) [Ref.11 ] Pedersen, J.E.; Keiding, S.R.; IEEE Journal of Quantum Electronics, v 28, n 10, Oct, 1992 [Ref.12 ] I. Wilke et al. Physica C: Superconductivity and its Applications, 341-348 (IV), 2000 [Ref.13 ] winnerl,s Nature, v 420, n 6912, Nov 14, 2002, p 153-156 [Ref.14 ] 黃衍介,非線性光學講義 [Ref.15 ] Peyghambarian, introduction to semiconductor optics, Prentice Hall [Ref.16 ] wolf, Principles of optics, Cambridge University Press/1999 [Ref.17 ] 徐邦昱,清華大學電子工程研究所畢業論文,2003 [Ref.18 ] 郭適豪,清華大學電子工程研究所畢業論文,2003id NH0925428053 sid 915053 cfn 0 / id NH0925442001 auc 蘇信銘 tic 內嵌式永磁同步電動機之線性轉矩控制 adc 潘晴財 教授 ty 博士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 140 kwc 內嵌式永磁同步電動機 kwc 線性轉矩控制 kwc 弱磁控制 kwc 線性最大轉矩電流比控制 kwc 磁阻轉矩 kwc 磁飽和效應 abc 本論文係對於內嵌式永磁同步電動機驅動器提出新型的線性轉矩控制策略,以充分發揮其磁阻轉矩,並仍保有線性轉矩控制的優點。以下則摘要地敘述本論文的主要貢獻。首先針對內嵌式永磁同步電動機在定轉矩極限區之運轉提出一新型的線性轉矩控制策略,使得輸出轉矩與線電流空間向量的大小成正比,其中已經推導並證明得到此線性轉矩控制的一個充分條件,並獲得對應的最大轉矩常數,且在控制上也推導出直交軸電流的封閉數學關係式。此一新型線性轉矩控制策略不但可以充分發揮內嵌式永磁同步電動機之磁阻轉矩,並且可以明顯地增加其定轉矩極限的轉速範圍,因此採用此控制策略可以使內嵌式永磁同步電動機在較高轉速具有比表面黏著式永磁同步電動機更好的性能。其次,吾人再將此線性轉矩控制觀念由定轉矩極限區延伸到更高速的弱磁區,其中不僅推導出其直交軸電流之數學解析式,並建立全區域運轉的理論基礎。本論文可說是在國際上首次將內嵌式永磁同步電動機的轉速區域分為定轉矩極限區、部分弱磁區與全弱磁區三區域,並明確說明如何採用定轉矩極限控制模式或弱磁控制模式以充分利用其磁阻轉矩,其中並提出一個隨轉速不同而改變大小的轉矩限制器,以簡化其實體製作之複雜性。為了進一步減少內嵌式永磁同步電動機穩態運轉時之銅損,並且保持動態運轉時快速的響應,吾人再提出一線性最大轉矩電流比控制策略,並將該控制策略延伸到全轉速區域,有關其詳細理論基礎均詳述於本論文中。最後,為獲得更精確的轉矩控制,吾人進一步考量內嵌式永磁同步電動機之磁飽和效應,即採用一個三階多項式以更精確的近似交軸磁交鏈的磁飽和效應,並根據此新模型推導及實現新的線性最大轉矩電流比控制策略。除了上述理論基礎之推導與模擬分析外以,在本論文中並依所創理論實際製作一雛型驅動器,由其實測結果與理論分析結果互相驗證,證明本論文所創新之方法確實可行並能達到預期成效。 tc CHINESE ABSTRACT--------------------------------------I ABSTRACT----------------------------------------------II ACKNOWLEDGEMENTS -------------------------------------IV CONTENTS-----------------------------------------------V LIST OF FIGURES---------------------------------------VII LIST OF TABLES-----------------------------------------XII 1. INTRODUCTION---------------------------------------1 1.1 Motivation-----------------------------------------1 1.2 Literature Survey----------------------------------2 1.3 Contributions of the Dissertation------------------5 1.4 Outline of the Contents----------------------------7 2. A NOVEL TORQUE CONTROL STRATEGY FOR IPMSM DRIVES--------------------------------------------------------10 2.1 Introduction---------------------------------------10 2.2 Mathematical Model of an IPMSM---------------------11 2.3 Optimization of the Torque Constant----------------13 2.4 Implementation of the Proposed Linear Torque Control Strategy-----------------------------------------------19 3. EXTENSION OF THE PROPOSED LTC TO THE FIELD WEAKENING RANGE---------------------------------------27 3.1 Introduction---------------------------------------27 3.2 The Proposed Field Weakening Control28 3.3 Implementation of the Proposed Control Strategy----34 3.4 Experimental Results-------------------------------40 4. THE PROPOSED LTC WITH COPPER LOSS MINIMIZATION-----------------------------------------------------------45 4.1 Introduction---------------------------------------45 4.2 The Proposed Linear Maximum Torque Per Ampere (LMTPA) Control—Constant Torque Limit Region------------------45 4.3 Extension of the Proposed LMTPA to the Field Weakening Region-------------------------------------------------50 4.4 Implementation and Experimental Results of the Proposed LMTPA Control------------------------------------------57 5. CONSIDERATION OF THE MAGNETIC SATURATION EFFECT ON THE PROPOSED LTC---------------------------------70 5.1 Introduction---------------------------------------70 5.2 Saturated Model of an IPMSM------------------------71 5.3 The Proposed Linear Maximum Torque Per Ampere Control Considering Magnetic Saturation------------------------74 5.3.1 Constant Torque Limit Region---------------------74 5.3.2 Partial Field Weakening Region and Full Field Weakening Region---------------------------------------79 5.4 Implementation and Experimental Results------------86 6. CONCLUSIONS----------------------------------------107 REFERENCES---------------------------------------------110 APPENDIX A THE DSP PROGRAM CODE FOR THE SPEED CONTROLLED IPMSM DRIVE---------------------------------117 PUBLICATION LIST---------------------------------------139rf [1 ] I. Takahashi and H. Haga, “Inverter Control Method of IPM Motor to Improve Power Factor of Diode Rectifier,” in Proc. of IEEE-PCC Conf., 2002, pp. 142-147. [2 ] H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto, and Y. Takeda, “The Performance Comparison of SPMSM, IPMSM, and SynRM in Use as Air-conditioning Compressor” in Conf. Rec. IEEE-IAS Annual Meeting, 1999, pp. 840-845. [3 ] L. Chen, R. Davis, S. Stella, T. Tesch, and A. Fischer-Antze, “Improved Control Techniques for IPM Motor Drives on Vehicle Application,” in Conf. Rec. IEEE-IAS Annual Meeting, 2002, pp. 2051-2056. [4 ] J. W. Park, D. H. Koo, J. M. Kim, and H. G. Kim, “High Performance Drive Unit for 2-motor Driven Electric Vehicle,” in Conf. Rec. APEC Annual Meeting, 1999, pp. 443-449. [5 ] Z. Q. Zhu, Y. S. Chen, and D. Howe, “Online Optimal Flux-Weakening Control of Permanent-Magnet Brushless AC Drives,” IEEE Trans. Ind. Applicat., vol. 36, no. 6, pp. 1661-1668, Nov./Dec. 2000. [6 ] J. Wai and T. M. Jahns, “A New Control Technique for Achieving Wide Constant Power Speed Operation with an Interior PM Alternator Machine,” in Conf. Rec. IEEE-IAS Annual Meeting, 2001, pp. 807-814. [7 ] B. H. Bae and S. K. Sul, “Practical Design Criteria of Interior Permanent Magnet Synchronous Motor for 42V Integrated Starter-Generator,” in Conf. Rec. IEEE-IEMDC , 2003, pp. 656-662. [8 ] M. A. Rahman and M. A. Hoque, “On-line Adaptive Artificial Neural Network Based Vector Control of Permanent Magnet Synchronous Motors,” IEEE Trans. Energy Conv., vol. 13, no. 4, pp. 311-318, Dec. 1998. [9 ] M. A. Rahman, D. M. Vilathgamuwa, M. N. Uddin, and K. J. Tseng, “Nonlinear Control of Interior Permanent-Magnet Synchronous Motor,” IEEE Trans. Ind. Applicat., vol. 39, no. 2, pp. 408-416, Mar./Apr. 2003. [10 ] Y. Yi, D. M. Vilathgamuwa, and M. A. Rahman, “Implementation of an Artificial-Neural-Network-Based Real-Time Adaptive Controller for an Interior Permanent-Magnet Motor Drive,” IEEE Trans. Ind. Applicat., vol. 39, no. 1, pp. 96-104, Jan./Feb. 2003. [11 ] S. Morimoto, Y. Takeda, and T. Hirasa, “Current Phase Control Methods for Permanent Magnet Synchronous Motors,” IEEE Trans. Power Electron., vol. 5, no. 2, pp. 133-139, Apr. 1990. [12 ] T. M. Jahns, G. B. Kliman, and T. W. Neumann, “Interior Permanent-Magnet Synchronous Motors for Adjustable-Speed Drives,” IEEE Trans. Ind. Applicat., vol. 22, no. 4, pp. 738-747, July/Aug. 1986. [13 ] S. Morimoto, M. Sanada, and Y. Takeda, “Wide-Speed Operation of Interior Permanent Magnet Synchronous Motors with High-Performance Current Regulator,” IEEE Trans. Ind. Applicat., vol. 30, no. 4, pp. 920-926, July/Aug. 1994. [14 ] C. Mademlis and V. G. Agelidis, “On Considering Magnetic Saturation with Maximum Torque to Current Control in Interior Permanent Magnet Synchronous Motor Drives,” IEEE Trans. Energy Conv., vol. 16, no. 3, pp. 246-252, Sep. 2001. [15 ] N. Bianchi, S. Bolognani, and M. Zigliotto, “High-Performance PM Synchronous Motor Drive for an Electrical Scooter,” IEEE Trans. Ind. Applicat., vol. 37, no. 5, pp. 1348-1355, Sep./Oct. 2001. [16 ] M. N. Uddin, T. S. Radwan, and M. A. Rahman, “Performance of Interior Permanent Magnet Motor Drive Over Wide Speed Range,” IEEE Trans. Energy Conv., vol. 17, no. 1, pp. 79-84, Mar. 2002. [17 ] S. Morimoto, Y. Tong, Y. Takeda, and T. Hirasa, “Loss Minimization Control of Permanent Magnet Synchronous Motor Drives,” IEEE Trans. Ind. Electron., vol. 41, no. 5, pp. 511-517, Oct. 1994. [18 ] C. Mademlis and N. Margaris, “Loss Minimization in Vector-Controlled Interior Permanent-Magnet Synchronous Motor Drives,” IEEE Trans. Ind. Electron., vol. 49, no. 6, pp. 1344-1347, Dec. 2002. [19 ]R. F. Schiferl and T. A. Lipo, “Power Capability of Salient Pole Permanent Magnet Synchronous Motors in Variable Speed Drive Applications,” IEEE Trans. Ind. Applicat., vol. 26, no. 1, pp. 115-123, Jan./Feb. 1990. [20 ]N. Bianchi and S. Bolognani, “Parameters and Volt-Ampere Ratings of a Synchronous Motor Drive for Flux-Weakening Applications,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 895-903, Sep. 1997. [21 ]Z. Q. Zhu, Y. S. Chen, and D. Howe, “Maximizing the Flux-Weakening Capability of Permanent Magnet Brushless ac Machines and Drives,” in Proc. of IEEE-PEMC Conf., 2000, pp. 552-557. [22 ]W. L. Soong, and N. Ertugrul, “Field- Weakening Performance of Interior Permanent-Magnet Motors,” IEEE Trans. Ind. Applicat., vol. 38, no. 5, pp. 1251-1258, Sep./Oct. 2002. [23 ]B. Sneyers, D. W. Novotny, and T. A. Lipo, “Field Weakening in Buried Permanent Magnet AC Motor Drives,” IEEE Trans. Ind. Applicat., vol. IA-21, no. 2, pp. 398-407, Mar./Apr. 1985. [24 ]M. A. Rahman and P. Zhou, “Analysis of Brushless Permanent Magnet Synchronous Motors,” IEEE Trans. Ind. Electron., vol. 43, no. 2, pp.256-267, Apr. 1996. [25 ]E. Levi, “Saturation Modeling in D-Q Axis Models of Salient Pole Synchronous Machines,” IEEE Trans. Energy Conv., vol. 14, no. 1, pp. 44-50, Mar. 1999. [26 ]B. Stumberger, B. Kreca, and B. Hribernik, “Determination of Parameters of Synchronous Motor with Permanent Magnets from Measurement of Load Conditions,” IEEE Trans. Energy Conv., vol. 14, no. 4, pp. 1413-1416, Dec. 1999. [27 ]U. Schaible and B. Szabados, “Dynamic Motor Parameter Identification for High Speed Flux Weakening Operation of Brushless Permanent Magnet Synchronous Machines,” IEEE Trans. Energy Conv., vol. 14, no. 3, pp. 486-492, Sep. 1999. [28 ]E. Levi and V. A. Levi, “Impact of Dynamic Cross-Saturation on Accuracy of Saturated Synchronous Machine Models,” IEEE Trans. Energy Conv., vol. 15, no. 2, pp. 224-230, June 2000. [29 ]G. H. Kang, J. P. Hong, G. T. Kim, and J. W. Park, “Improved Parameter Modeling of Interior Permanent Magnet Synchronous Motor Based on Finite element Analysis,” IEEE Trans. Magnetics, vol. 36, no. 4, pp. 1867-1870, July 2000. [30 ]A. H. Wijenayake and P. B. Schmidt, “Modeling and Analysis of Permanent Magnet Synchronous Motor by Taking Saturation and Core Loss into Account,” in Proc. of IEEE-PEDS Conf., 1997, pp. 530-534. [31 ]E. C. Lovelace, T. M. Jahns, and J. H. Lang, “Impact of Saturation and Inverter Cost on Interior PM Synchronous Machine Drive Optimization,” IEEE Trans. Ind. Applicat., vol. 36, no. 3, pp. 723-729, May/June 2000. [32 ]E. C. Lovelace, T. Keim, J. H. Lang, D. D. Wentzloff, T. M. Jahns, J. Wai, F. Leonardi, and J. M. Miller, “Design and Experimental Verification of a Direct-Drive Interior PM Synchronous Machine Using a Saturable Lumped-Parameter Model,” in Conf. Rec. IEEE-IAS Annual Meeting, 2002, pp. 2486-2492. [33 ]E. C. Lovelace, T. M. Jahns, and J. H. Lang, “A Saturating Lumped-Parameter Model for an Interior PM Synchronous Machine ,” IEEE Trans. Ind. Applicat., vol. 38, no. 3, pp. 645-650, May/June 2002. [34 ]B. Stumberger, G. Stumberger, D. Dolinar, A. Hamler, and M. Trlep, “Evaluation of Saturation and Cross-Magnetization Effects in Interior Permanent-Magnet Synchronous Motor,” IEEE Trans. Ind. Applicat., vol. 39, no. 5, pp. 1264-1271, Sep./Oct. 2003. [35 ]W. L. Soong, D. A. Staton, and T. J. E. Miller, “Design of a New Axially-Laminated Interior Permanent Magnet Motor,” IEEE Trans. Ind. Applicat., vol. 31, no. 2, pp. 358-367, Mar./Apr. 1995. [36 ]B. Stumberger, A. Hamler, M. Trlep, and M. Jesenik, “Analysis of Interior Permanent Magnet Synchronous Motor Designed for Flux Weakening Operation,” IEEE Trans. Magnetics, vol. 37, no. 5, pp. 3644-3647, Sep. 2001. [37 ]N. Bianchi and S. Bolognani, “Interior PM Synchronous Motor for High Performance Applications,” in Proc. of the Power Conv. Conf., 2002, pp. 148-153. [38 ]T. Sebastian, “Temperature Effects on Torque Production and Efficiency of PM Motors Using NdFeB Magnets,” IEEE Trans. Ind. Applicat., vol. 31, no. 2, pp. 353-357, Mar./Apr. 1995. [39 ]R. Krishnan and P. Vijayraghavan, “Fast Estimation and Compensation of Rotor Flux Linkage in Permanent Magnet Synchronous Machines,” in Proc. of the IEEE-ISIE Conf., 1999, pp. 661-666. [40 ]M. F. Rahman, L. Zhong, W. Y. Hu, K. W. Lim, and M. A. Rahman, “An Investigation of Direct and Indirect Torque Controllers for PM Synchronous Motor Drives,” in Proc. of the IEEE-PEDS Conf., 1997, pp. 519-523. [41 ]L. Zhong, M. F. Rahman, W. Y. Hu, and K. W. Lim, “Analysis of Direct Torque Control in Permanent Magnet Synchronous Motor Drives,” IEEE Trans. Power Electron., vol. 12, no. 3, pp. 528-536, May 1997. [42 ]M. F. Rahman, L. Zhong, and K. W. Lim, “A Direct Torque-Controlled Interior Permanent Magnet Synchronous Motor Drive Incorporating Field Weakening,” IEEE Trans. Ind. Applicat., vol. 34, no. 6, pp. 1246-1253, Nov./Dec. 1998. [43 ]M. F. Rahman and L. Zhong, “Voltage Switching Tables for DTC Controlled Interior Permanent Motor,” in Proc. of the IEEE-IECON, 1999, pp. 1445-1451. [44 ]L. Zhong, M. F. Rahman, W. Y. Hu, K. W. Lim, and M. A. Rahman, “A Direct Torque Controller for Permanent Magnet Synchronous Motor Drives,” IEEE Trans. Energy Conv., vol. 14, no. 3, pp. 637-642, Sep. 1999. [45 ]M. F. Rahman and L. Zhong, “Comparison of Torque Responses of the Interior Permanent Magnet Motor under PWM Current and Direct Torque Controls,” in Proc. of the IEEE-IECON, 1999, pp. 1464-1470. [46 ]M. F. Rahman and L. Zhong, “Problems of Stator Flux Oriented Torque Controllers for the Interior Permanent Magnet Motor,” in Proc. of the IEEE-PEMC Conf., 2000, pp. 342-345. [47 ]M. E. Haque and M. F. Rahman, “Influence of Stator Resistance Variation on Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drive Performance and Its Compensation,” in Conf. Rec. IEEE-IAS Annual Meeting, 2001, pp. 2563-2569. [48 ]M. Zordan, P. Vas, M. Rashed, S. Bolobnani, and M. Zigliotto, “Field-Weakening in Vector Controlled and DTC PMSM Drives: A Comparative Analysis,” in Conf. Rec. IEE-PEVSD, 2000, pp. 493-499. [49 ]S. R. Macminn and T. M. Jahns, “Control Techniques for Improved High-Speed Performance of Interior PM Synchronous Motor Drives,” IEEE Trans. Ind. Applicat., vol. 27, no. 5, pp. 997-1004, Sep./Oct. 1991. [50 ]S. Morimoto, M. Sanada, and Y. Takeda, “Effects and Compensation of Magnetic Saturation in Flux-Weakening Controlled Permanent Synchronous Motor Drives,” IEEE Trans. Ind. Applicat., vol. 30, no. 6, pp. 1632-1637, Nov./Dec. 1994. [51 ]J. M. Kim and S. K. Sul, “Speed Control of Interior Permanent Synchronous Motor Drive for the Flux Weakening Operation,” IEEE Trans. Ind. Applicat., vol. 33, no. 1, pp. 43-48, Jan./Feb. 1997. [52 ]M. Zordan, P. Vas, M. Rashed, S. Bolobnani, and M. Zigliotto, “Field-Weakening in High-Performance PMSM PMSM Drives: A Comparative Analysis,” in Conf. Rec. IEEE-IACON, 2000, pp. 1718-1724. [53 ]C. Mademlis and V. G. Agelidis, “A High-Performance Vector Controlled Interior PM Synchronous Motor Drive with Extended Speed Range Capability,” in Conf. Rec. IEEE-IECON, 2001, pp. 1475-1482. [54 ]H. Kim and R. D. Lorenz, “Improved Current Regulators for IPM Machine Drives Using On-Line Parameter Estimation,” in Conf. Rec. IEEE-IACON, 2002, pp. 86-91. [55 ]B. H. Bae, N. Patel, S. Schulz, and S. K. Sul, “New Field Weakening Technique for High Saliency Interior Permanent Magnet Motor,” in Conf. Rec. IEEE-IACON, 2003, pp. 898-905. [56 ]M. Tomita, T. Senjyu, S. Doki, and S. Okuma, “New Sensorless Control for Brushless DC Motors Using Disturbance Observers and Adaptive Velocity Estimations,” IEEE Trans. Ind. Electron., vol. 45, no. 2, pp. 274-282, Apr. 1998. [57 ]T. Aihara, A. Toba, T. Yanase, A. Mashimo, and K. Endo, “Sensorless Torque Control of Salient-Pole Synchronous Motor at Zero-Speed Operation,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 202-208, Jan. 1999. [58 ]Z. Chen, M. Tomita, S. Ichikawa, S. Doki, and S. Okuma, “Sensorless Control of Interior Permanent Magnet Synchronous Motor by Estimation of an Extended Electromotive Force,” in Conf. Rec. IEEE-IACON, 2000, pp. 1814-1819. [59 ]W. Limei, G. Qingding, and R. D. Lorenz, “Sensorless Control of Permanent Magnet Synchronous Motor,” in Conf. Rec. IEEE-PEMC, 2000, pp. 186-190. [60 ]V. Comnac, M. N. Cirstea, F. Moldoveanu, D. N. Ilea, and R. M. Cernat, “Sensorless Speed and Direct Torque Control of Interior Permanent Magnet Synchronous Machine Based on Extended Kalman Filter,” in Proc. of the IEEE-ISIE conf., 2002, pp. 1142-1147. [61 ]S. Morimoto, K. Kawamoto, M. Sanada, and Y. Takeda, “Sensorless Control Strategy for Salient-Pole PMSM Based on Extended EMF in Rotating Reference Frame,” IEEE Trans. Ind. Applicat., vol. 38, no. 4, pp. 1054-1061, July/Aug. 2002. [62 ]Z. Chen, M. Tomita, S. Doki, and S. Okuma, “An Extended Electromotive Force Model for Sensorless Control of Interior Permanent-Magnet Synchronous Motors,” IEEE Trans. Ind. Electron., vol. 50, no. 2, pp. 288-295, Apr. 2003. [63 ]H. Kim, M. C. Harke, and R. D. Lorenz, “Sensorless Control of Interior Permanent-Magnet Machine Drives with Zero-Phase Lag Position Estimation,” IEEE Trans. Ind. Applicat., vol. 39, no. 6, pp. 1726-1733, Nov./Dec. 2003. [64 ] P. Vas, Vector Control of AC Machines, New York: Oxford University Press, 1990. [65 ] M. N. Uddin, T. S. Radwan, and M. A. Rahman, “Performance of Interior Permanent Magnet Motor Drive Over Wide Speed Range,” IEEE Trans. Energy Conv., vol. 17, no. 1, pp. 79-84, Mar. 2002. [66 ] P. Vas, Electrical Machines and Drives-A Space-Vector Theory Approach, New York: Oxford University Press, 1992. [67 ]Shinn-Ming Sue and Ching-Tsai Pan, “A Novel Torque Control Strategy for IPMSM Drives,” International Journal of Electrical Engineering, vol. 11, no. 2, pp. 123-130, May 2004.id NH0925442001 sid 867902 cfn 0 / id NH0925442002 auc 蕭鳴均 tic 嵌入式時間參數量測 adc 張慶元 ty 博士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 72 kwc 時間參數量測 kwc 雙斜率轉換 kwc 雙指數曲線轉換 kwc 設定時間 kwc 保持時間 kwc 時間數位轉換器 kwc 安定時間補償 abc 隨著深次微米製程的進步以及降低成本的需求,將各式各樣的線路整合至一個系統晶片已經是一種趨勢。但是由於高度整合的結果,使得各個線路缺乏足夠的可控制性與可觀測性,也造成了需要額外的測試存取機制以及高速的自動測試機台來完成測試,因此造成了測試成本的增加。除此之外,額外的測試存取機構也帶來額外的時間延遲而造成測式時間參數上的困難以及準確度。而嵌入式的量測可以在晶片內完成準確的量測,同時又能與低價的自動測試機台合作來得到量測數據,因而能降低測試成本。 tc Contents Chapter 1. Introduction 1 Chapter 2. Overview 4 2.1. Built-in timing measurement for embedded memories 4 2.2. Issues of timing parametric measurement 6 2.3. Principle of Vernier delay line 11 2.4. Principle of Vernier oscillator 12 2.5. Principle of dual-slope conversion for time interval measurement 13 Chapter 3. The Dual-Slope Method 16 3.1. The proposed method: version 1 16 3.1.1. Ratioed resistor array 17 3.1.2. Comparator (CMP) 17 3.1.3. Control logic 20 3.1.4. Offset Canceling (AutoZero) 21 3.2. The proposed method: version 2 23 3.2.1. The block diagram of the proposed circuit 24 3.2.2. The self-timed method 25 3.2.3. Settling time cancellation 26 3.3. Linearity analysis and calibration 28 3.3.1. Linearity analysis 28 3.3.2. Calibration 30 3.4. Simulations and experimental results 34 3.4.1. Access time measurement 35 3.4.2. Setup/hold time measurement 37 3.4.3. Experimental results 38 3.5. Comparisons and discussions 40 3.6. A complete access time measurement unit for embedded memory 42 3.6.1. TVC and VTC 44 3.6.2. The implementation of proposed TDC 45 3.6.3. The peak detector and comparator 46 3.6.4. The measurement flow 49 3.6.5. Experimental results 50 3.7. Summary 53 Chapter 4. Dual-Exponential Curve Transformation 54 4.1. The Basic Principle 54 4.2. The Calibration Methodology 56 4.3. The Implementation 56 4.3.1. The Operation Principle 57 4.3.2. The Calibration Process 60 4.4. Error Analysis 61 4.4.1. Quantization error of calibration 61 4.4.2. Parasitic Effect 62 4.5. Simulation Results 63 4.6. Summary 67 Chapter 5. Conclusions and Future Works 68 References 70rf [1 ] E. J. Marinissen, R Kapur and Y. Zorian, “On Using IEEE P1500 SECT for Test Plug-n-Play”, Proceedings of International Test Conference, IEEE, 2000, pp. 770-777. [2 ] E. J. Marinissen, Y. Zorian, R Kapur, T. Taylor and L. Whetsel, “Towards a Standard for Embedded Core Test: An Example”, Proceedings of International Test Conference, IEEE, 1999, pp. 616-627. [3 ] P. D. Fisher and R. Nesbitt, “The Test of Time – Clock-cycle Estimation and Test Challenges for Future Microprocessors”, IEEE Circuits and Devices Magazine, Mar. 1998, pp. 37-44. [4 ] http://public.itrs.net/Files/2001ITRS/Home.htm [5 ] K. Arabi, K.-D. Hilliges, D. Keezer and S. Tabatabaei, “Multi-GigaHertz Testing Challenges and Solutions”, Proceedings of IEEE VLSI Test Symposium, 2002, pp. 265. [6 ] S. Balajee and A. K. Majhi, “Automated AC (timing) characterization for digital circuit testing”, Proceedings of Eleventh International Conference on VLSI Design, IEEE, 1998, pp. 374-377. [7 ] P. Chen and S.-I. Liu, “A Cyclic CMOS Time-to-Digital Converter with Deep Sub-Nanosecond Resolution”, Proceedings of Custom-Integrated Circuits Conference, IEEE, 1999, pp. 605-608. [8 ] E. R?韉s?躪en-Ruosalainen, T. Rahkonen and J. Kostamovaara, “A Low-Power CMOS Time-to-Digital Converter”, IEEE Journal of Solid-State Circuits, vol. 30, no. 9, 1995, pp. 984-990. [9 ] P. Dudek, S. Szczepański and J. V. Hatfield, “A High-Resolution CMOS Time-to-Digital Converter Utilizing a Vernier Delay Line”, IEEE Transactions on Solid-State Circuits, vol. 35, no. 2, Feb. 2000, pp. 240-247. [10 ] A. H. Chan and G. W. Roberts, “A Synthesizable, Fast, and High-Resolution Timing Measurement Device Using a Component-Invariant Vernier Delay Line”, Proceedings of International Test Conference, IEEE, pp. 858-867, 2001. [11 ] A. H. Chan and G. W. Roberts, “A Deep Sub-Micron Timing Measurement Circuit Using a Single Stage Vernier Delay Line”, Proceedings of Custom Integrated Circuits Conference, IEEE, 2002, pp. 77–80. [12 ] C.-C. Tsai and C.-L. Lee, “An On-Chip Jitter Measurement Circuit for the PLL”, Proceedings of Asian Test Symposium, IEEE, 2003, pp. 332-335. [13 ] N. Abaskharoun, M. Hafed and G.W. Roberts, “Strategies for On-chip Sub-Nanosecond Signal Capture and Timing Measurements”, Proceedings of International Symposium on Circuits and Systems, IEEE, 2001, pp. 174-177. [14 ] J.-L. Huang and K.-T. Cheng, “An On-Chip Short-Time Interval Measurement Technique for Testing High-Speed Communication Links”, Proceedings of VLSI Test Symposium, IEEE, 2001, pp. 380-385. [15 ] S. Tabatabaei and A. Ivanov, “Embedded timing analysis: A SoC infrastructure”, IEEE Design and Test of Computers, May/Jun. 2002, pp. 24–36. [16 ] J. O’Hern and N. Schindler, “High Resolution Time Interval Measuring Circuit Employing a Balanced Crystal Oscillator”, US patent 3,325,750, to General Electric Co., Patent and Trademark Office, 1967. [17 ] Z. Tarczy-Hornoch and P. Young, “Interpolating Time Interval Counter with Course Count Ambiguity Eliminating Means”, US patent 3,505,594, to W.K. Rosenberry, Patent and Trademark Office, 1970. [18 ] W. Curtice, Time Interval Measurement, US patent 4,165,459, to RCA Corp., Patent and Trademark Office, 1979. [19 ] A. Frisch and T. Rinderknecht, “Jitter Measurement System and Method”, US patent 6,295,315, to Fluence Technologies, Patent and Trademark Office, 2001. [20 ] E. R?韉s?躪en-Ruosalainen, T. Rahkonen and J. Kostamovaara, “Time Interval Measurements Using Time-to-Voltage Conversion with Built-in Dual-Slope A/D Conversion”, Proceedings of International Symposium on Circuits and Systems, IEEE, 1991, pp. 2573-2576. [21 ] E. R?韉s?躪en-Ruosalainen, T. Rahkonen and J. Kostamovaara, “A BiCMOS Time-to-Digital Converter with 30 ps Resolution”, Proceedings of International Symposium on Circuits and Systems, IEEE, pp. 278-281, 1999. [22 ] R. L. Sumner, “Apparatus and Method for Measuring Time Intervals with Very High Resolution, US patent 6,137,749, to LeCroy Corp., 2000. [23 ] E. R?韉s?躪en-Ruosalainen, T. Rahkonen and J. Kostamovaara, “An Integrated Time-to-Digital Converter with 30-ps Single-Shot Precision”, IEEE Journal of Solid-State Circuits, vol. 35, no. 10, 2000, pp. 1507-1510. [24 ] M.-J. Hsiao, J.-R. Huang, S.-S. Yang and T.-Y. Chang, “A Low-Cost CMOS Time Interval Measurement Core”, Proceedings of International Symposium on Circuits and Systems, IEEE, vol. 4, 2001, pp. 190-193. [25 ] M.-J. Hsiao, J.-R. Huang, S.-S. Yang and T.-Y. Chang, “A Built-in Timing Parametric Measurement Unit”, Proceedings of International Test Conference, IEEE, 2001, pp. 315-322. [26 ] S.-R. Lee, M.-J. Hsiao and T.-Y. Chang, “An Access Timing Measurement Unit of Embedded Memory”, Proceedings of Asian Test Symposium, IEEE, 2002, pp. 266-271. [27 ] T. Xia and J.-C. Lo, “Time-to-Voltage Converter for On-Chip Jitter Measurement”, IEEE Transactions on Instrument and Measurement, vol. 52, no. 6, Dec. 2003, pp. 1738-1748. [28 ] S. Sunter and A. Roy, “BIST for Phase-Locked Loops in Digital Applications”, Proceedings of International Test Conference, IEEE, 1999, pp. 532-540. [29 ] N.-Y. Sung and T.-Y. Wu, “A Method of Embedded Memory Access Time Measurement,” Proceeding of International Symposium on Quality Electronic Design, IEEE, 2001, pp.462-465. [30 ] E. Rubiola, A. Del Casale and A. De Marchi, “Noise Induced Time Interval Measurement Biases”, Proceedings of Frequency Control Symposium, IEEE, 1992, pp. 265-269. [31 ] A. Mutoh and S. Nitta, “Noise Immunity Characteristics of Dual-Slope Integrating Analog-Digital Converters”, Proceedings of International Symposium on Electromagnetic Compatibility, IEEE, 1999, pp. 622-625. [32 ] K. Koli, K Halonen, ”Low voltage MOS-Transistor -only precision current peak detector with signal independent discharge time constant” Proceedings of International Symposium on Circuits and Systems, IEEE, vol.3., 1997, pp. 1992 –1995. [33 ] J. Kalisz, “Determination of Short-Term Error Caused by the Reference Clock in Precision Time-Interval Measurement and Generation”, IEEE Transactions on Instrument and Measurement, vol. 37, no.2, Jun. 1988, pp. 315-316. [34 ] S. Bregni, M. Carbonelli, D. De Seta and D. Perucchini, “Impact of Slave Clock Internal Noise on Allan Variance and Root Mean Square Time Interval Error Measurements”, Proceedings of Instrument and Measurement Technology Conference, IEEE, 1994, pp. 1411-1414. [35 ] B. Razavi and B. A. Wolley, “Design Techniques for High-Speed, High-Resolution Comparators”, IEEE Journal of Solid-State Circuits, vol. 27, no. 12, Dec. 1992, pp. 1916–1926. [36 ] D. A. Johns, K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc., N.Y., 1997.id NH0925442002 sid 887905 cfn 0 / id NH0925442003 auc 蘇持平 tic 密碼處理器之設計與測試 adc 吳誠文 ty 博士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 149 kwc 密碼學 kwc 處理器 kwc 安全性 kwc 測試排程 abc 隨著通訊技術的進步,利用網際網路或其他通訊設備來交換資料已深植在我們生活的每一個角落。網路資料的處理已成為電腦系統裡所需解決的問題,這一方面在過去是由一般的CPU來處理,而現在已發展成由專門的網路處理器(NPU)來提供高速的封包處理,以解決現今日亦嚴重的網路流量問題。網路與通訊安全在過去僅用於政府機關、軍事單位或私人機構,如今也隨著網際網路的發達而成為今後急需解決的問題,因此資訊加密的處理也跟著網路資料傳輸一樣,將會有越來越多的需求。 tc Contents 1 Introduction 2 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 CryptographicHardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 DissertationOrganization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Overview of Cryptography 7 2.1 SecurityRequirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 SecurityAlgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Symmetric-KeyCryptography . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Public-KeyCryptography . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.3 Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 SecurityMechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 DigitalSignature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.2 Key Agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.3 KeyManagement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 SecurityProtocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.1 SecuritySocketLayer (SSL) . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.2 IPSecurity (IPSec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 System Architecture of Security Processors 23 3.1 System Considerations in Security Processor . . . . . . . . . . . . . . . . . . . . . 23 3.2 Types of Security Processor Architecture . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.1 Look-Aside Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.2 Flow-Through Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.3 IntegratedArchitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.1 SafeNet SafeXcel-1842 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.2 Hifn HIPPP III 8300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.3 Intel IXP2850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 AES Processor Core 31 4.1 AESAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 PreviousWorks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.3 AnEfficientS-BoxDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.4 AESTHETIC: A Configurable AES Processor for Enhanced Security Requirement 41 4.4.1 Scope of Configurability . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.4.2 Design Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.4.3 CompositeFieldArithmetic . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.4.4 FieldConversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.5 On-the-FlyKeyScheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.6 ChipImplementationsandComparison . . . . . . . . . . . . . . . . . . . . . . . 49 4.6.1 Hardware Implementation of AES Processor . . . . . . . . . . . . . . . . 49 4.6.2 Hardware Implementation of AESTHETIC . . . . . . . . . . . . . . . . . 52 4.6.3 Results and Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5 Cryptographic Processor 66 5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.1.1 HardwareArchitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.1.2 Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.2 AddressMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.2.1 CryptoDMAControllerRegisters . . . . . . . . . . . . . . . . . . . . . . 76 5.2.2 ChannelRegisters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.3 Crypto-Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.3.1 AESEngine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.3.2 RSAEngine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.3.3 HMACEngine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.3.4 Random Number Generator . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.4 Crypto-DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.4.1 TransferEngines andTransferArbiters . . . . . . . . . . . . . . . . . . . 100 5.4.2 Crypto-Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.4.3 MainController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.5 ImplementationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.6 Performance Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6 Power-Constrained Test Scheduling for Core-Based Design 115 6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.2 Problem Definition and the Graph Model . . . . . . . . . . . . . . . . . . . . . . 117 6.2.1 CoreTestModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.2.2 Test Compatibility Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.3 TAMAssignmentAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.4 Modified Tabu Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.5 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.5.1 Test Scheduling without Power Constraint . . . . . . . . . . . . . . . . . . 130 6.5.2 Power-Constrained Test Scheduling . . . . . . . . . . . . . . . . . . . . . 136 7 Conclusions and Future Work 139rf [1 ] W. Stallings, Cryptography and Network Security: Principles and Practices. Upper Saddle River, NJ, 07458: Prentice-Hall Inc., 2003. [2 ] SafeNet, Inc., “SaftNet SafeXcel-1842 Product Brief,” 2003. [3 ] Hifn, Inc., “HIPP III FlowThrough Security Processor Product Brief,” 2003. [4 ] Intel, Inc., “Intel IXP2850 Network Processor Product Brief,” 2003. [5 ] National Institute of Standards and Technology (NIST), Advanced Encryption Standard (AES). Springfield, VA 22161: National Technical Information Service, Nov. 2001. [6 ] P. Fergguson and G. Huston, “What is a VPN?—Part I,” The Internet Protocol Journal, vol. 1, pp. 2–19, June 1998. http://www.cisco.com/warp/public/759/. [7 ] S. Kent and R. Atkinson, Security Architecture for the Internet Protocol. IETF Network Working Group, 1998. RFC 2401. [8 ] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems,” Communications of the ACM, vol. 21, pp. 120–126, Feb. 1978. [9 ] N. Koblitz, “Elliptic curve cryptosystems,” in Mathmatics of Computation, pp. 203–209, 1987. [10 ] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Trans. Information Theory, vol. 22, pp. 644–654, Nov. 1976. [11 ] National Institute of Standards and Technology (NIST), Data Encryption Standard (DES). Springfield, VA 22161: National Technical Information Service, Oct. 1999. [12 ] National Institute of Standards and Technology (NIST), Secure Hash Standard (SHS). Spring- field, VA 22161: National Technical Information Service, Aug. 2002. [13 ] R. L. Rivest, “The MD5 message-digest algorithm.” RFC 1321, the Internet Society, Apr. 1992. [14 ] P. L. Montgomery, “Modular multiplication without trial division,” Math. Computation, vol. 44, no. 7, pp. 519–521, 1985. [15 ] P.-S. Chen, S.-A. Hwang, and C.-W.Wu, “A systolic RSA public key cryptosystem,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), vol. 4, (Atlanta), pp. 408–411, May 1996. [16 ] C.-C. Yang, T.-S. Chang, and C.-W. Jen, “A new RSA cryptosystem hardware design based on Montgomery’s algorithm,” IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, pp. 908–913, July 1998. [17 ] C.-Y. Su, S.-A. Hwang, P.-S. Chen, and C.-W. Wu, “An improved Montgomery algorithm for high-speed RSA public-key cryptosystem,” IEEE Trans. VLSI Systems, vol. 7, pp. 280–284, June 1999. [18 ] J.-H. Hong and C.-W. Wu, “A radix-4 cellular array modular multiplier based on Montgomery’s algorithm and Booth’s algorithm,” in Proc. 10th VLSI Design/CAD Symp., (Nantou), pp. 165–168, Aug. 1999. [19 ] C.-H. Wu, J.-H. Hong, and C.-W. Wu, “VLSI design of RSA cryptosystem based on the Chinese Remainder Theorem,” J. Inform. Science and Engineering, vol. 17, pp. 967–979, Nov. 2001. [20 ] Y.-C. Lin, “A word-based RSA public-key crypto-processor core for IC smart card,” master thesis, Dept. Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan, June 2001. [21 ] A. F. Tenca, G. Todorov, and C¸ .K.Koc¸, “High-radix design of a scalable modular multiplier,” in Cryptographic Hardware and Embedded Systems (CHES) 2001 (C¸ . K. Koc¸, D. Naccache, and C. Paar, eds.), vol. 2162 of LNCS, pp. 189–205, Springer-Verlag, 2001. [22 ] M.-C. Sun, C.-P. Su, C.-T. Huang, and C.-W. Wu, “Design of a scalable RSA and ECC crypto-processor,” in Proc. Asia and South Pacific Design Automation Conf. (ASP-DAC), (Kitakyushu), pp. 495–498, Jan. 2003. (Best Paper Award). [23 ] E. Savas¸, A. F. Tenca, and C¸ .K. Koc¸, “A scalable and unified multiplier architecture for finite fields GF(p) and GF(2m),” in Cryptographic Hardware and Embedded Systems (CHES) 2000, LNCS, pp. 281–296, Springer-Verlag, 2000. [24 ] J. Burke, J. McDonald, and T. Austin, “Architectural support for fast symmetric-key cryptography,” ACM SIGPLN Notices, vol. 35, pp. 178–189, Nov. 2000. [25 ] L. Wu, C. Weaver, and T. Austin, “CryptoManiac: A fast flexible architecture for secure communication,” in Proc. 28th Ann. Int. Symp. Computer Architecture, pp. 110–119, 2001. [26 ] C.-H. Wang, C.-P. Su, C.-T. Huang, and C.-W. Wu, “A word-based rsa crypto-processor with enhanced pipeline performance,” in Proc. 4th IEEE Asia-Pacific Conf. ASIC, (Fukuoka, Japan), Aug. 2004 (to appear). [27 ] M.-Y. Wang, C.-P. Su, C.-T. Huang, and C.-W. Wu, “An HMAC processor with integrated SHA-1 and MD5 algorithms,” in Proc. Asia and South Pacific Design Automation Conf. (ASP-DAC), (Yokohama), pp. 456–458, Jan. 2004. [28 ] C.-W. Wang, J.-R. Huang, K.-L. Cheng, H.-S. Hsu, C.-T. Huang, C.-W. Wu, and Y.-L. Lin, “A test access control and test integration system for system-on-chip,” in Sixth IEEE Int. Workshop on Testing Embedded Core-Based System-Chips (TECS), (Monterey, California), pp. P2.1–P2.8, May 2002. [29 ] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography. Boca Raton, FL: CRC Press, Oct. 1996. [30 ] N. I. of Standards and T. (NIST), The Keyed-Hash Message Authentication Code (HMAC). Springfield, VA 22161: National Technical Information Service, Mar. 2002. [31 ] N. Cravotta, “Accelerating high-speed encryption: one bottleneck after another,” 2001. [32 ] W. Feghali, B. Burres, G. Wolrich, and D. Carrigan, “Security: Adding protection to the network via the network processor,” Intel Technology Journal, vol. 6, no. 3, pp. 40–49, 2002. [33 ] P. C. Lekkas, Network Processors: Architectures, Protocols, and Platforms. McGraw-Hill, 2003. [34 ] E. Khan, M. W. El-Kharashi, A. N. M. E. Rafiq, F. Gebali, and M. Abd-El-Barr, “Network processors for communication security: A review,” in Proc. IEEE Pacific Rim Conf. Communications, Computers and Signal Processing, pp. 173–176, 2003. [35 ] V. R. J.Daemen, “The Block Cipher Rijndael,” in Smart Card Research and Application, vol. 1820 of LNCS, pp. 288–296, Springer-Verlag, 2000. [36 ] A. Dandalis, V. K. Prasanna, and J. D. P. Rolim, “A comparative study of performance of AES final candidates using FPGAs,” in Cryptographic Hardware and Embedded Systems (CHES) 2000, vol. 1965 of LNCS, pp. 125–140, Springer-Verlag, Aug. 2000. [37 ] K. Gaj and P. Chodowiec, “Fast implementation and fair comparison of the final candidates for advanced encryption standard using field programmable gate arrays,” in Proc. RSA Security Conf., Cryptographer’s Track, vol. 2020 of LNCS, pp. 84–99, Springer-Verlag, Apr. 2001. [38 ] S. McMillan and C. Patterson, “JBits implementations of the advanced encryption standard (Rijndael),” in Proc. 11th Int. Conf. Field-Programmable Logic and Applications (FPL), vol. 2147 of LNCS, pp. 162–171, Springer-Verlag, Aug. 2001. [39 ] P. Chodowiec, K. Gaj, P. Bellows, and B. Schott, “Experimental testing of the Gigabit IPSeccompliant implementations of Rijndael and triple DES using SLAAC-1V FPGA accelerator board,” in Proc. Information Security Conf. (ISC), vol. 2200 of LNCS, pp. 220–234, Springer- Verlag, Oct. 2001. [40 ] K. U. Jarvinen, M. T. Tommiska, and J. O. Skytta, “A fully pipelined memoryless 17.8 Gbps AES-128 encryptor,” in Proc. Int. Symp. Field-Programmable Gate Arrays (FPGA), (Monterey), pp. 207–215, ACM Press, 2003. [41 ] I. Verbauwhede, P. Schaumont, and H. Kuo, “Design and performance testing of a 2.29-GB/s Rijndael processor,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 569–572, Mar. 2003. [42 ] V. Fischer and M. Drutarovsky, “Two methods of Rijndael implementation in reconfigurable hardware,” in Cryptographic Hardware and Embedded Systems (CHES) 2001, vol. 2162 of LNCS, pp. 77–92, Springer-Verlag, May 2001. [43 ] S. Morioka and A. Satoh, “A 10Gbps full-AES crypto design with a twisted-BDD S-Box architecture,” in Proc. IEEE Int. Conf. Computer Design (ICCD), (Freiburg, Germany), pp. 98– 103, Sept. 2002. [44 ] U. Mayer, C. Oelsner, and T. Kohler, “Evaluation of different Rijndael implementations for high end servers,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), vol. 2, pp. 348– 351, May 2002. [45 ] V. Rijmen, “Efficient implementation of the Rijndael S-box.” http://www.esat.kuleuven.ac.be/˜rijmen/rijndael/sbox.pdf. [46 ] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A compact Rijndael hardware architecture with S-box optimization,” in ASIACRYPT 2001, vol. 2248 of LNCS, pp. 239–254, Springer-Verlag, 2001. [47 ] J. Wolkerstorfer, E. Oswald, and M. Lamberger, “An ASIC implementation of the AES SBoxes,” in CT-RSA 2002, vol. 2271 of LNCS, pp. 67–78, Springer-Verlag, 2002. [48 ] T.-F. Lin, C.-P. Su, C.-T. Huang, and C.-W. Wu, “A high-throughput low-cost AES cipher chip,” in Proc. 3rd IEEE Asia-Pacific Conf. ASIC, (Taipei), pp. 85–88, Aug. 2002. [49 ] S. Mangard, M. Aigner, and S. Dominikus, “A highly regular and scalable AES hardware architecture,” IEEE Trans. Computers, vol. 52, pp. 483–491, Apr. 2003. [50 ] S. Morioka and A. Satoh, “An optimized S-box circuit architecture for low power AES design,” in Cryptographic Hardware and Embedded Systems (CHES) 2002, vol. 2523 of LNCS, pp. 172–186, Springer-Verlag, 2002. [51 ] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “Unified hardware architecture for 128- bit block ciphers AES and Camellia,” in Cryptographic Hardware and Embedded Systems (CHES) 2003, Springer-Verlag, Aug. 2003. [52 ] H. Kuo and I. Verbauwhede, “Architectural optimization for a 1.82 Gbits/sec VLSI implementation of the AES Rijndael algorithm,” in Cryptographic Hardware and Embedded Systems (CHES) 2001 (C¸ . K. Koc¸, D. Naccache, and C. Paar, eds.), vol. 2162 of LNCS, Springer- Verlag, May 2001. [53 ] J. H. Shim, D.W. Kim, Y. K. Kang, T.W. Kwon, and J. R. Choi, “A Rijndael cryptoprocessor using shared on-the-fly key scheduler,” in Proc. 3rd IEEE Asia-Pacific Conf. ASIC, (Taipei), pp. 89–92, Aug. 2002. [54 ] C.-P. Su, T.-F. Lin, C.-T. Huang, and C.-W.Wu, “A high-throughput low-cost AES processor,” IEEE Communications Magazine, vol. 41, pp. 86–91, Dec. 2003. [55 ] C.-L. Horng and C.-W.Wu, “An aes cipher chip design using on-the-fly key scheduler,” Master’s thesis, National Tsing-Hua University, Electrical Engineering Department, June 2004. [56 ] W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes. Cambridge, MA: MIT Press, 2 ed., 1972. [57 ] C. Paar, “A new architecture for a parallel finite field multiplier with low complexity based on composite fields,” IEEE Trans. Computers, vol. 45, pp. 856–861, July 1996. [58 ] I. ARM Components, AMBA Specification Rev2.0, May 1999. [59 ] T. Ichikawa, T. Kasuya, and M. Matsui, “Hardware evaluation of the AES finalists,” in Proc. 3rd AES Candidate Conference, 2000. [60 ] ARM components, Inc., “Multi-Layer AHB,” 2001. [61 ] IEEE, “IEEE P1500 standard for embedded core test (SECT).” http://grouper.ieee.org/groups/1500/, 2002. [62 ] IEEE, IEEE Standard Test Interface Language (STIL) for Digital Test Vector Data. Piscataway: IEEE Standards Department, Sept. 1999. [63 ] Y. Zorian, E. J. Marinissen, and S. Dey, “Testing embedded-core based system chips,” in Proc. Int. Test Conf. (ITC), pp. 130–143, Oct. 1998. [64 ] J. Aerts and E. J. Marinissen, “Scan chain design for test time reduction in core-based ICs,” in Proc. Int. Test Conf. (ITC), pp. 448–457, 1998. [65 ] V. Iyengar and K. Chakrabarty, “Precedence-based, preemptive, and power-constrained test scheduling for system-on-a-chip,” in Proc. IEEE VLSI Test Symp. (VTS), pp. 368–374, 2001. [66 ] R. M. Chou, K. K. Saluja, and V. D. Agrawal, “Scheduling tests for VLSI systems under power constraints,” IEEE Trans. VLSI Systems, vol. 5, pp. 175–185, June 1997. [67 ] K. Chakrabarty, “Test scheduling for core-based systems using mixed-integer linear programming,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 19, pp. 1163–1174, Oct. 2000. [68 ] K. Chakrabarty, “Design of system-on-a-chip test access architecture using integer linear programming,” in Proc. IEEE VLSI Test Symp. (VTS), pp. 127–134, 2000. [69 ] K. Chakrabarty, “Design of system-on-a-chip test access architecture under place-and-route and power constraints,” in Proc. IEEE/ACM Design Automation Conf. (DAC), pp. 432–437, 2000. [70 ] V. Muresan, X. Wang, V. Muresan, and M. Vladutiu, “A comparison of classical scheduling approaches in power-constrained block-test scheduling,” in Proc. Int. Test Conf. (ITC), pp. 882–891, 2000. [71 ] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test wrapper and test access mechanism co-optimzation for system-on-chip,” in Proc. Int. Test Conf. (ITC), (Baltimore), pp. 1023– 1032, Oct. 2001. [72 ] E. Larsson and Z. Peng, “An integrated system-on-chip test framework,” in Proc. Design, Automation and Test in Europe (DATE), (Munich), pp. 138–144, Mar. 2001. [73 ] V. Iyengar, K. Chakrabary, and E. J.Marinissen, “Efficient wrapper/TAMco-optimization for large SOCs,” in Proc. Design, Automation and Test in Europe (DATE), (Paris), pp. 491–498, Mar. 2002. [74 ] V. Iyengar, K. Chakrabarty, and E. J.Marinissen, “On using rectangle packing for SOC wrapper/ TAM co-optimization,” in Proc. IEEE VLSI Test Symp. (VTS), (Monterey), pp. 253–258, Apr. 2002. [75 ] S. K. Goel and E. J. Marinissen, “Cluster-based test architecture design for system-on-chip,” in Proc. IEEE VLSI Test Symp. (VTS), (Monterey), pp. 259–264, Apr. 2002. [76 ] S. K. Goel and E. J. Marinissen, “Effective and efficient test architecture design for SOCs,” in Proc. Int. Test Conf. (ITC), (Baltimore), pp. 529–538, Oct. 2002. [77 ] Y. Huang, W.-T. Cheng, C.-C. Tsai, N. Mukherjee, O. Samman, Y. Zaidan, and S. M. Reddy, “Resource allocation and test scheduling for concurrent test of core-based SOC design,” in Proc. Tenth IEEE Asian Test Symp. (ATS), (Kyoto), pp. 265–270, Nov. 2001. [78 ] Y. Huang, S. M. Reddy, W.-T. Cheng, and P. Reuter, “Optimal core wrapper width selection and SOC test scheduling based on 3-D bin packing algorithm,” in Proc. Int. Test Conf. (ITC), (Baltimore), pp. 74–82, Oct. 2002. [79 ] G. L. Craig, C. R. Kime, and K. K. Saluja, “Test scheduling and control for VLSI built-in self-test,” IEEE Trans. Computers, vol. 37, pp. 1099–1109, Sept. 1988. [80 ] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Integrated wrapper/TAM co-optimization, constraint-driven test scheduling, and tester data volumne reduction for SOCs,” in Proc. IEEE/ACM Design Automation Conf. (DAC), (New Orleans), pp. 685–690, June 2002. [81 ] C.-P. Su and C.-W. Wu, “Graph-based power-constrained test scheduling for SOC,” in Proc. IEEE Int. Workshop on Design and Diagnostics of Electronic Circuits and Systems (DDECS), (Brno, Czech Republic), pp. 61–68, Apr. 2002. (Best Paper Award). [82 ] E. Marinissen, R. Kapur, and Y. Zorian, “On using IEEE P1500 SECT for test plug-n-play,” in Proc. Int. Test Conf. (ITC), pp. 770–777, 2000. [83 ] E. J. Marinissen, S. Goel, and M. Lousberg, “Wrapper design for embedded core test,” in Proc. Int. Test Conf. (ITC), pp. 911–920, 2000. [84 ] E. J. Marinissen and S. K. Goel, “Analysis of test bandwidth utilization in test bus and TestRail architectures for SOCs,” in Proc. IEEE Int. Workshop on Design and Diagnostics of Electronic Circuits and Systems (DDECS), pp. 52–60, Apr. 2002. [85 ] V. Iyengar and K. Chakrabarty, “Test bus sizing for system-on-a-chip,” IEEE Trans. Computers, vol. 51, pp. 449–459, May 2002. [86 ] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. New York: Academic Press, 1980. [87 ] W.-L. Hsu and T.-H. Ma, “Fast and simple algorithm for recognizing chordal comparability graphs and interval graphs,” SIAM J. Computing, vol. 28, no. 3, pp. 1004–1020, 1999. [88 ] E. T. F. Glover and D. de Werra, “A user’s guide to Tabu Search,” Annals of Operations Research, vol. 41, pp. 3–28, 1993. [89 ] E. J. Marinissen, V. Iyengar, and K. Chakrabarty, “A set of benchmarks for modular testing of SOCs,” in Proc. Int. Test Conf. (ITC), (Baltimore), pp. 519–528, Oct. 2002. [90 ] C.-P. Su and C.-W.Wu, “A graph-based approach to power-constrained SOC test scheduling,” J. Electronic Testing: Theory and Applications, vol. 20, pp. 45–60, Feb. 2003.id NH0925442003 sid 897905 cfn 0 / id NH0925442004 auc 鄭國良 tic 系統晶片與記憶體之測試整合 adc 吳誠文 ty 博士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 80 kwc 系統晶片 kwc 矽智產 kwc 測試 kwc 系統晶片測試 kwc 記憶體測試 kwc 自我測試電路 abc 矽智產與記憶體核心是矽統晶片(System-on-Chip---SOC)的兩大主要元件,然而矽智產的再利用衍生出許多測試整合上的困難與挑戰。此外,在系統晶片中,大量且不同種類組成的記憶體,同樣增加了測試的成本。這兩個問題使得測試成本,尤其是在測試整合方面,成為系統晶片發展過程中的主要成本。如何降低數位邏輯元件以及記憶體的測試成本是系統晶片發展必須要考量的一個重要課題。 tc 1 Introduction 1 2 SOC Test Challenges 6 3 Core-Based SOC Testing 17 4 Built-In Self-Test for Multiple Heterogeneous Memories 50 5 SOC Test Integration Platform 62 6 Conclusions and Future Work 71rf [1 ] IEEE, “IEEE P1500 standard for embedded core test (SECT)”, http://grouper.ieee.org/groups/1500/, 2002. [2 ] C. Cheng, C.-T. Huang, J.-R. Huang, C.-W. Wu, C.-J. Wey, and M.-C. Tsai, “BRAINS: A BIST complier for embedded memories”, in Proc. IEEE Int. Symp. Defect and Fault Tolerance in VLSI Systems (DFT), Yamanashi, Oct. 2000, pp. 299–307. [3 ] J. Aerts and E. J. Marinissen, “Scan chain design for test time reduction in core-based ICs”, in Proc. Int. Test Conf. (ITC), 1998, pp. 448–457. [4 ] E. J. Marinissen, R. Arendsen, and G. Bos, “A structured and scalable mechanism for test access to embedded reusable cores”, in Proc. Int. Test Conf. (ITC), 1998, pp. 284–293. [5 ] M. Benabdenbi, W. Maroufi, and M. Marzouki, “CAS-BUS: a scalable and reconfigurable test access mechanism for systems on a chip”, in Proc. Design, Automation and Test in Europe (DATE), Paris, Mar. 2000, pp. 141–145. [6 ] L. Whetsel, “Addressable test ports—an approach to testing embedded cores”, in Proc. Int. Test Conf. (ITC), 1999, pp. 1055–1061. [7 ] P. Harrod, “Testing reusable IP—a case study”, in Proc. Int. Test Conf. (ITC), 1999, pp. 493–498. [8 ] C.-W. Wang, J.-R. Huang, K.-L. Cheng, H.-S. Hsu, C.-T. Huang, C.-W. Wu, and Y.-L. Lin, “A test access control and test integration system for system-on-chip”, in Sixth IEEE Int. Workshop on Testing Embedded Core-Based System-Chips (TECS), Monterey, California, May 2002, pp. P2.1–P2.8 [9 ] IEEE, IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture, IEEE Standards Department, Piscataway, May 1990. [10 ] K.-L. Cheng, J.-R. Huang, C.-W. Wang, C.-Y. Lo, L.-M. Denq, C.-T. Huang, and C.-W. Wu, “An SOC test integration platform and its industrial realization”, in Proc. Int. Test Conf. (ITC), Charlotte, Oct. 2004 (to appear). [11 ] K.-L. Cheng, C.-M. Hsueh, J.-R. Huang, J.-C. Yeh, C.-T. Huang, and C.-W. Wu, “Automatic generation of memory built-in self-test cores for system-on-chip”, in Proc. Tenth IEEE Asian Test Symp. (ATS), Kyoto, Nov. 2001, pp. 91–96. [12 ] Semiconductor Industry Association, “International technology roadmap for semiconductors (ITRS), 1998 update”, Apr. 1999. [13 ] Y. Zorian, E. J. Marinissen, and S. Dey, “Testing embedded-core-based system chips”, IEEE Computer, vol. 32, no. 6, pp. 52–60, June 1999. [14 ] E. J. Marinissen, Y. Zorian, R. Kapur, T. Taylor, and L. Whetsel, “Towards a standard for embedded core test: An example”, in Proc. Int. Test Conf. (ITC), 1999, pp. 616–626. [15 ] C.-W. Wu, J.-F. Li, and C.-T. Huang, “Core-based system-on-chip testing: Challenges and opportunities”, J. Chinese Institute of Electrical Engineering, vol. 8, no. 4, pp. 335–353, Nov. 2001. [16 ] IEEE, IEEE Standard Test Interface Language (STIL) for Digital Test Vector Data, IEEE Standards Department, Piscataway, Sept. 1999. [17 ] R. Kapur, M. Lousberg, T. Taylor, B. Keller, P. Reuter, and D. Kay, “CTL: the language for describing core-based test”, in Proc. Int. Test Conf. (ITC), 2001, pp. 131–139. [18 ] Semiconductor Industry Association, “International technology roadmap for semiconductors (ITRS), 2001 edition”, Dec. 2001. [19 ] P. Camurati, P. Prinetto, M. S. Reorda, S. Barbagallo, A. Burri, and D. Medina, “Industrial BIST of embedded RAMs”, IEEE Design & Test of Computers, vol. 12, no. 3, pp. 86–95, Fall 1995. [20 ] J. Dreibelbis, J. Barth, H. Kalter, and R. Kho, “Processor-based built-in self-test for embedded DRAM”, IEEE Journal of Solid-State Circuits, pp. 1731–1740, Nov. 1998. [21 ] A. J. van de Goor, Testing Semiconductor Memories: Theory and Practice, ComTex Publishing, Gouda, The Netherlands, 1998. [22 ] C.-W. Wu, “Testing embedded memories: Is BIST the ultimate solution?”, in Proc. Seventh IEEE Asian Test Symp. (ATS), Singapore, Dec. 1998, pp. 516–517. [23 ] C.-T. Huang, J.-R. Huang, C.-F. Wu, C.-W. Wu, and T.-Y. Chang, “A programmable BIST core for embedded DRAM”, IEEE Design & Test of Computers, vol. 16, no. 1, pp. 59–70, Jan.-Mar. 1999. [24 ] C.-W.Wang, R.-S. Tzeng, C.-F.Wu, C.-T. Huang, C.-W.Wu, S.-Y. Huang, S.-H. Lin, and H.-P. Wang, “A built-in self-test and self-diagnosis scheme for heterogeneous SRAM clusters”, in Proc. Tenth IEEE Asian Test Symp. (ATS), Kyoto, Nov. 2001, pp. 103–108. [25 ] O. Kebichi and M. Nicolaidis, “A tool for automatic generation of BISTed and transparent BISTed RAMs”, in Proc. IEEE Int. Conf. Computer Design (ICCD), Oct. 1992, pp. 570–575. [26 ] B. F. Cockburn, “Tutorial on semiconductor memory testing”, J. Electronic Testing: Theory and Applications, vol. 5, pp. 321–336, 1994. [27 ] R. Rajsuman, “RAMBIST builder: A methodology for automatic built-in self-test design of embedded RAMs”, in Proc. IEEE Int. Workshop on Memory Technology, Design and Testing (MTDT), San Jose, 1996, pp. 50–56. [28 ] K. Zarrineh and S. J. Upadhyaya, “On Programmable memory built-in self test architecutres”, in Proc. Design, Automation and Test in Europe (DATE), Paris, Mar. 1999, pp. 708–713. [29 ] K.-J. Lin and C.-W. Wu, “PMBC: a programmable BIST compiler for memory cores”, in Third IEEE Int. Workshop on Testing Embedded Core-Based System-Chips (TECS), Dana Point, Apr. 1999, pp. P2.1–P2.6. [30 ] C.-T. Huang, J.-R. Huang, and C.-W. Wu, “A programmable built-in self-test core for embedded memories”, in Proc. Asia and South Pacific Design Automation Conf. (ASP-DAC), Yokohama, Jan. 2000, pp. 11–12, (Design contest). [31 ] S. Adham, D. Bhattacharya, D. Burek, C. J. Clark, M. Collins, G. Giles, A. Hales, E. J. Marinissen, T. McLaurin, J. Monzel, F. Muradali, J. Rajski, R. Rajsuman, M. Ricchetti, D. Stannard, J. Udell, P. Varma, L. Whetsel, A. Zamfirescu, and Y. Zorian, “Preliminary outline of the IEEE P1500 scalable architecture for testing embedded cores”, in Proc. IEEE VLSI Test Symp. (VTS), Apr. 1999, pp. 483–488. [32 ] E. J. Marinissen and S. K. Goel, “Analysis of test bandwidth utilization in test bus and TestRail architectures for SOCs”, in Proc. IEEE Int. Workshop on Design and Diagnostics of Electronic Circuits and Systems (DDECS), Apr. 2002, pp. 52–60. [33 ] R. M. Chou, K. K. Saluja, and V. D. Agrawal, “Scheduling tests for VLSI systems under power constraints”, IEEE Trans. VLSI Systems, vol. 5, no. 2, pp. 175–185, June 1997. [34 ] K. Chakrabarty, “Test scheduling for core-based systems using mixed-integer linear programming”, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 19, no. 10, pp. 1163–1174, Oct. 2000. [35 ] K. Chakrabarty, “Design of system-on-a-chip test access architecture using integer linear programming”, in Proc. IEEE VLSI Test Symp. (VTS), 2000, pp. 127–134. [36 ] E. Larsson and Z. Peng, “An integrated system-on-chip test framework”, in Proc. Design, Automation and Test in Europe (DATE), Munich, Mar. 2001, pp. 138–144. [37 ] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test wrapper and test access mechanism co-optimzation for system-on-chip”, in Proc. Int. Test Conf. (ITC), Baltimore, Oct. 2001, pp. 1023–1032. [38 ] V. Iyengar and K. Chakrabarty, “Precedence-based, preemptive, and power-constrained test scheduling for system-on-a-chip”, in Proc. IEEE VLSI Test Symp. (VTS), 2001, pp. 368–374. [39 ] Y. Huang, W.-T. Cheng, C.-C. Tsai, N. Mukherjee, O. Samman, Y. Zaidan, and S. M. Reddy, “Resource allocation and test scheduling for concurrent test of core-based SOC design”, in Proc. Tenth IEEE Asian Test Symp. (ATS), Kyoto, Nov. 2001, pp. 265–270. [40 ] M. Nourani and C. Papachristou, “An ILP formulation to optimize test access mechanism in system-on-chip testing”, in Proc. Int. Test Conf. (ITC), 2000, pp. 902–910. [41 ] C.-P. Su and C.-W. Wu, “Graph-based power-constrained test scheduling for SOC”, in Proc. IEEE Int. Workshop on Design and Diagnostics of Electronic Circuits and Systems (DDECS), Brno, Czech Republic, Apr. 2002, pp. 61–68, (Best Paper Award). [42 ] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “On using rectangle packing for SOC wrapper/TAM co-optimization”, in Proc. IEEE VLSI Test Symp. (VTS), Monterey, Apr. 2002, pp. 253–258. [43 ] C.-W. Wu and C.-T. Huang, “VLSI Test Technology Forum”, IC Design Magazine, vol. 12, pp. 86–88, Mar. 2001, (in Chinese). [44 ] R. Dekker, F. Beenker, and L. Thijssen, “Fault modeling and test algorithm development for static random access memories”, in Proc. Int. Test Conf. (ITC), 1988, pp. 343–352. [45 ] R. Dekker, F. Beenker, and L. Thijssen, “A realistic fault model and test algorithm for static random access memories”, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 9, no. 6, pp. 567–572, June 1990. [46 ] A. J. van de Goor and Z. Al-Ars, “Functional memory faults: a formal notation and a taxonomy”, in Proc. IEEE VLSI Test Symp. (VTS), 2000, pp. 281–289. [47 ] S. Hamdioui and A. J. van de Goor, “An experimental analysis of spot defects in SRAMs: realistic fault models and tests”, in Proc. Ninth IEEE Asian Test Symp. (ATS), Taipei, Dec. 2000, pp. 131–138. [48 ] S. Hamdioui, A. J. van de Goor, D. Eastwick, and M. Rodgers, “Realistic fault models and test procedure for multi-port SRAMs”, in Proc. IEEE Int. Workshop on Memory Technology, Design and Testing (MTDT), San Jose, Aug. 2001, pp. 65–72. [49 ] A. J. van de Goor, I. B. S. Tlili, and S. Hamdioui, “Converting march tests for bit-oriented memories into tests for word-oriented memories”, in Proc. IEEE Int. Workshop on Memory Technology, Design and Testing (MTDT), San Jose, Aug. 1998, pp. 46–52. [50 ] C.-F. Wu, C.-T. Huang, and C.-W. Wu, “RAMSES: a fast memory fault simulator”, in Proc. IEEE Int. Symp. Defect and Fault Tolerance in VLSI Systems (DFT), Albuquerque, Nov. 1999, pp. 165–173. [51 ] C.-F. Wu, C.-T. Huang, K.-L. Cheng, and C.-W. Wu, “Fault simulation and test algorithm generation for random access memories”, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 21, no. 4, pp. 480–490, Apr. 2002. [52 ] K. Zarrineh and S. J. Upadhyaya, “Programmable memory BIST and a new synthesis framework”, in Proc. Int. Symp. Fault Tolerant Computing (FTCS), Montreal, June 1999, pp. 352–355. [53 ] C.-W. Wang, C.-F. Wu, J.-F. Li, C.-W. Wu, T. Teng, K. Chiu, and H.-P. Lin, “A built-in selftest and self-diagnosis scheme for embedded SRAM”, in Proc. Ninth IEEE Asian Test Symp. (ATS), Taipei, Dec. 2000, pp. 45–50. [54 ] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, and M. Lobetti-Bodorni, “A programmable BIST architecture for clusters of multiple-port SRAMs”, in Proc. Int. Test Conf. (ITC), 2000, pp. 557–566. [55 ] M. Lobetti-Bodoni, A. Benso, S. Chiusano, S. ”Di Carlo”, G. ”Di Natale”, and P. Prinetto, “An effective distributed BIST architecture for RAMs”, in Proc. IEEE European Test Workshop (ETW), 2000, pp. 119–124. [56 ] L. Whetsel, “A IEEE 1149.1 base test access architecture for ICs with embedded cores”, in Proc. Int. Test Conf. (ITC), 1997, pp. 69–78. [57 ] M. Benabdenbi, W. Maroufi, and M. Marzouki, “Testing TAPed cores and wrapped cores with the same test access mechanism”, in Proc. Design, Automation and Test in Europe (DATE), Munich, Mar. 2001, pp. 150–155. [58 ] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test wrapper and test access mechanism co-optimization for system-on-chip”, J. Electronic Testing: Theory and Applications, vol. 18, pp. 213–230, Apr. 2002. [59 ] S. K. Goel and E. J. Marinissen, “Effective and efficient test architecture design for SOCs”, in Proc. Int. Test Conf. (ITC), Baltimore, Oct. 2002, pp. 529–538. [60 ] H.-S. Hsu, J.-R. Huang, K.-L. Cheng, C.-W. Wang, C.-T. Huang, C.-W. Wu, and Y.-L. Lin, “Test scheduling and test access architecture optimization for system-on-chips”, in Proc. 11th IEEE Asian Test Symp. (ATS), Guam, Nov. 2002, pp. 411–416. [61 ] E. J. Marinissen, V. Iyengar, and K. Chakrabarty, “ITC’02 SOC test benchmarks”, http://www.extra.research.philips.com/itc02socbenchm/, 2002. [62 ] C.-F. Wu, C.-T. Huang, C.-W. Wang, K.-L. Cheng, and C.-W. Wu, “Error catch and analysis for semiconductor memories using March tests”, in Proc. IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD), San Jose, Nov. 2000, pp. 468–471. [63 ] C.-W. Wang, K.-L. Cheng, J.-N. Lee, Y.-F. Chou, C.-T. Huang, C.-W. Wu, F. Huang, and H.-T. Yang, “Fault pattern oriented defect diagnosis for memories”, in Proc. Int. Test Conf. (ITC), Charlotte, Sept. 2003, pp. 29–38. [64 ] K.-L. Cheng, C.-W. Wang, J.-N. Lee, Y.-F. Chou, C.-T. Huang, and C.-W. Wu, “FAME: a fault-pattern based memory failure analysis framework”, in Proc. IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD), San Jose, Nov. 2003, pp. 595–598. [65 ] M. Nicolaidis, V. Castro Alves, and H. Bederr, “testing complex couplings in multiport memories”, IEEE Trans. VLSI Systems, vol. 3, no. 1, pp. 59–71, Mar. 1995. [66 ] C.-F. Wu, C.-T. Huang, K.-L. Cheng, C.-W. Wang, and C.-W. Wu, “Simulation-based test algorithm generation and port scheduling for multi-port memories”, in Proc. IEEE/ACM Design Automation Conf. (DAC), Las Vegas, June 2001, pp. 301–306. [67 ] F. Karimi, S. Irrinki, T. Crosby, and F. Lombardi, “A parallel approach for testing multiport static random access memories”, in Proc. IEEE Int. Workshop on Memory Technology, Design and Testing (MTDT), San Jose, Aug. 2001, pp. 73–81.id NH0925442004 sid 897907 cfn 0 / id NH0925442005 auc 王志偉 tic 半導體記憶體瑕疵診斷分析系統 adc 吳誠文 ty 博士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 102 kwc 瑕疵診斷 kwc 記憶體測試 kwc 測試演算法產生器 kwc 錯誤模型 kwc 失效分析 kwc 失效圖樣 kwc 錯誤樣型 abc 瑕疵診斷的技術是半導體產業中關鍵的技術之一,密切地關係到量產的時程及獲利能力。傳統上,記憶體的瑕疵診斷大多仰賴失效圖樣和工程人員的經驗來達成,然而這樣的方法已難滿足現今產品更替的速度。為此我們提出一個半導體記憶體的瑕疵診斷系統來加速瑕疵診斷的時間及精確度。它結合了記憶體偵錯及分析(Memory Error Catch and Analysis, MECA)系統,以及記憶體缺陷診斷(Memory Defect Diagnostics, MDD)系統。記憶體偵錯及分析系統採用以錯誤模型為導向之診斷方法,同時能依需求自動產生測試及診斷演算法。記憶體缺陷診斷系統係採用錯誤樣型為導向之診斷方法,進一步提升了缺陷辨認之精確度。此外,這個診斷系統也包含一個圖形界面的瀏覽器,提供工程人員詳查記憶體之失效圖樣與錯誤樣型和分析的結果。同時我們以展示了運用參數量測配合可測性設計的技術,可更進一步釐清缺陷的位置。 tc 1 Introduction 9 1.1 Motivation and Background . . . . . . . . . . 9 1.2 Objectives . . . . . . . . . . . . . . . . . .12 1.3 Organization. . . . . . . . . . . . . . . . . 13 2 Fundamentals of Memory Diagnostics 14 2.1 Functional Fault Models . . . . . . . . . . . 14 2.2 March Tests for Memories . . . . . . . . . .. 16 2.3 Memory Fault-type Diagnostics . . . . . . . . 18 2.4 Memory Failure Analysis with Failure Patterns 20 3 Overview of the Memory Failure Analysis Framework 22 3.1 Fault Pattern Based Memory Diagnostics . . . 22 3.2 Failure Analyzer for Memories (FAME) . . . . 24 3.2.1 Memory Error Catch and Analysis (MECA) System 25 3.2.2 Memory Defect Diagnostics (MDD) System . . 25 4 MECA System 26 4.1 Memory Fault Simulator: RAMSES . . . .. . . . 26 4.2 Test Algorithm Generator: TAGS . . . . . . . 28 4.3 Error Catch Scheme . . . . . . . . . . . . . 33 4.3.1 Error Catch by Built-In Self-Test (BIST) Circuit 33 4.3.2 Error Catch by External Automatic Test Equipment(ATE) . . . . . . . . . . . . . . . . . . . . 37 4.4 Error Analyzer: ERA . . . . . . . . . . . . . 39 5 MDD System 43 5.1 Defect Analysis and Injection . . . . . . . . 44 5.2 Simulation of Faulty Circuits . . . . . . . 50 5.3 Fault Pattern Generation . . . . . . . . . . 51 5.4 Defect Dictionary Creation . . . . . . . . . 53 5.5 Enhanced Automatic Failure Analysis . . . . . 53 5.5.1 Critical Area Estimation . . . . . . . . . .55 5.5.2 Estimation Results . .. . . . . . . . . . . 56 6 Failure/Fault Pattern Analyzer and Viewer 63 6.1 Failure/Fault Pattern Analyzer . .. . . . . . 63 6.2 Failure/Fault Pattern Viewer . . . . . . . . 66 7 SRAM Design-for-Test (DFT) Techniques 69 7.1 Individual Power Supplies . . . . . . . . . . 70 7.2 Read Current Measurement . . . . . . . . . . 73 7.3 Adjustable WordLine Control . . . . . . . . . 74 8 Experimental Results 77 8.1 Realistic Defect Injection Results . . . . . 77 8.2 Fault Pattern Generation . . . . . . . . . . 78 8.3 Defect Dictionary Generation . . . . . . . . 80 8.4 Defect Diagnostics with DFT Support . . . . 80 8.4.1 Diagnostics of Class 1 . . . . . . . . . . 80 8.4.2 Diagnostics of Class 2 . .. . . . . . . . . 86 8.4.3 Diagnostics of Classes 3 and 4 . . .. . . . 88 8.4.4 Diagnostics of Classes 5 and 6 . . .. . . . 89 8.5 Summary of the Experiments . . . . . . . . . 91 8.6 Results from Industrial Chips .. . . . . . . 91 9 Conclusions and Future Work 96rf [1 ] D. K. Scovel, “Semiconductor industry outlook.” http://www.needhamco.com/, 2003. [2 ] Semiconductor Industry Association, “International technology roadmap for semiconductors (ITRS), 2001 edition,” Dec. 2001. [3 ] K.-L. Cheng, C.-W. Wang, J.-N. Lee, Y.-F. Chou, C.-T. Huang, and C.-W. Wu, “FAME: a fault-pattern based memory failure analysis framework,” in Proc. IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD), (San Jose), pp. 595–598, Nov. 2003. [4 ] R. R. Montanes, J. P. de Gyvez, and P. Volf, “Resistance characterization for weak open defects,” IEEE Design & Test of Computers, vol. 19, pp. 18–26, Sept.-Oct. 2002. [5 ] Y. Zorian, “Embedded infrastructure IP for SOC yield improvement,” in Proc. IEEE/ACM Design Automation Conf. (DAC), (New Orleans), pp. 709–712, June 2002. [6 ] M. Tarr, D. Boudreau, and R. Murphy, “Defect analysis system speeds test and repair of redundant memories,” Electronics, pp. 175–179, Jan. 12 1984. [7 ] J. R. Day, “A fault-driven, comprehensive redundancy algorithm,” in IEEE Design & Test of Computers, vol. 2, pp. 35–44, June 1985. [8 ] R. Dekker, F. Beenker, and L. Thijssen, “Fault modeling and test algorithm development for static random access memories,” in Proc. Int. Test Conf. (ITC), pp. 343–352, 1988. [9 ] S. Naik, F. Agricola, and W. Maly, “Failure analysis of high-density CMOS SRAMs using realistic defect modeling and Iddq testing,” IEEE Design & Test of Computers, vol. 10, pp. 13–23, June 1993. [10 ] J. Khare and W. Maly, “Inductive contamination analysis (ICA) with SRAM application,” in Proc. Int. Test Conf. (ITC), (Washington, DC), pp. 552–560, Oct. 1995. [11 ] T. M. Mak, D. Bhattacharya, C. Prunty, B. Roeder, N. Ramadan, J. Ferguson, and Y. Jianlin, “Cache RAM inductive fault analysis with fab defect modeling,” in Proc. Int. Test Conf. (ITC), pp. 862–871, Oct. 1998. [12 ] A. J. van de Goor, Testing Semiconductor Memories: Theory and Practice. Gouda, The Netherlands: ComTex Publishing, 1998. [13 ] A. J. van de Goor and S. Hamdioui, “Fault models and tests for two-port memories,” in Proc. IEEE VLSI Test Symp. (VTS), pp. 401–410, 1998. [14 ] A. J. van de Goor and Z. Al-Ars, “Functional memory faults: a formal notation and a taxonomy,” in Proc. IEEE VLSI Test Symp. (VTS), pp. 281–289, 2000. [15 ] A. J. van de Goor, “Using march tests to test SRAMs,” IEEE Design & Test of Computers, vol. 10, pp. 8–14, Mar. 1993. [16 ] A. J. van de Goor, Testing Semiconductor Memories: Theory and Practice. Chichester, England: John Wiley & Sons, 1991. [17 ] P. Camurati, P. Prinetto, M. S. Reorda, S. Barbagallo, A. Burri, and D. Medina, “Industrial BIST of embedded RAMs,” IEEE Design & Test of Computers, vol. 12, pp. 86–95, Fall 1995. [18 ] K. Zarrineh, S. J. Upadhyaya, and S. Chakravarty, “A new framework for generating optimal march tests for memory arrays,” in Proc. Int. Test Conf. (ITC), pp. 73–82, 1998. [19 ] C.-T. Huang, J.-R. Huang, C.-F. Wu, C.-W. Wu, and T.-Y. Chang, “A programmable BIST core for embedded DRAM,” IEEE Design & Test of Computers, vol. 16, pp. 59–70, Jan.-Mar. 1999. [20 ] C.-F. Wu, C.-T. Huang, and C.-W. Wu, “RAMSES: a fast memory fault simulator,” in Proc. IEEE Int. Symp. Defect and Fault Tolerance in VLSI Systems (DFT), (Albuquerque), pp. 165– 173, Nov. 1999. [21 ] A. Benso, S. D. Carlo, G. D. Natale, and P. Prinetto, “Specification and design of a new memory fault simulator,” in IEEE Asian Test Symp. (ATS), pp. 92–97, Nov. 2002. [22 ] A. J. van de Goor and B. Smit, “Generating march tests automatically,” in Proc. Int. Test Conf. (ITC), pp. 870–878, 1994. [23 ] A. Benso, S. D. Carlo, G. D. Natale, and P. Prinetto, “An optimal algorithm for the automatic generation of march tests,” in Proc. Design, Automation and Test in Europe (DATE), pp. 938– 943, Mar. 2002. [24 ] C.-F. Wu, C.-T. Huang, K.-L. Cheng, and C.-W. Wu, “Simulation-based test algorithm generation for random access memories,” in Proc. IEEE VLSI Test Symp. (VTS), (Montreal), pp. 291–296, Apr. 2000. [25 ] Y. E. Hong, L. S. Leong,W. Y. Choong, L. C. Hou, and M. Adnan, “An overview of advanced failure analysis techniques for Pentium and Pentium Pro microprocessors,” Intel Technology Journal, no. 2, 1998. [26 ] J. Segal, A. Jee, D. Lepejian, and B. Chu, “Using electrical bitmap results from embedded memory to enhance yield,” IEEE Design & Test of Computers, vol. 15, pp. 28–39, May 2001. [27 ] V. N. Yarmolik, Y. V. Klimets, A. J. van de Goor, and S. N. Demidenko, “RAM diagnostic tests,” in Proc. IEEE Int. Workshop on Memory Technology, Design and Testing (MTDT), (San Jose), pp. 100–102, 1996. [28 ] C.-F. Wu, C.-T. Huang, C.-W. Wang, K.-L. Cheng, and C.-W. Wu, “Error catch and analysis for semiconductor memories using March tests,” in Proc. IEEE/ACM Int. Conf. Computer- Aided Design (ICCAD), (San Jose), pp. 468–471, Nov. 2000. [29 ] D. Niggemeyer and E. Rudnick, “Automatic generation of diagnostic March tests,” in Proc. IEEE VLSI Test Symp. (VTS), (Marina Del Rey, California), pp. 299–304, Apr. 2001. [30 ] V. Vardanian and Y. Zorian, “A march-based fault location algorithm for static random access memories,” in Proc. IEEE Int. Workshop on Memory Technology, Design and Testing (MTDT), (France), pp. 62–67, July 2002. [31 ] C.-W. Wang, C.-F. Wu, J.-F. Li, C.-W. Wu, T. Teng, K. Chiu, and H.-P. Lin, “A built-in self-test and self-diagnosis scheme for embedded SRAM,” J. Electronic Testing: Theory and Applications, vol. 18, pp. 637–647, Dec. 2002. [32 ] I. Schanstra, D. Lukita, A. J. van de Goor, K. Veelenturf, and P. J. van Wijnen, “Semiconductor manufacturing process monitoring using built-in self-test for embedded memories,” in Proc. Int. Test Conf. (ITC), (Washington, DC), pp. 872–881, Oct. 1998. [33 ] J. T. Chen, J. Rajski, J. Khare, O. Kebichi, and W. Maly, “Enabling embedded memory diagnosis via test response compression,” in Proc. IEEE VLSI Test Symp. (VTS), (Marina Del Rey, California), pp. 292–298, Apr. 2001. [34 ] M. A. Merino, S. Cruceta, A. Garcia, and M. Recio, “SmartBitTM: bitmap to defect correlation software for yield improvement,” in Advanced Semiconductor Manufacturing Conference and Workshop, IEEE/SEMI, (Boston), pp. 194–198, Sept. 2000. [35 ] C.-W. Wang, K.-L. Cheng, J.-N. Lee, Y.-F. Chou, C.-T. Huang, C.-W. Wu, F. Huang, and H.-T. Yang, “Fault pattern oriented defect diagnosis for memories,” in Proc. Int. Test Conf. (ITC), (Charlotte), pp. 29–38, Sept. 2003. [36 ] K.-L. Cheng, C.-M. Hsueh, J.-R. Huang, J.-C. Yeh, C.-T. Huang, and C.-W. Wu, “Automatic generation of memory built-in self-test cores for system-on-chip,” in Proc. Tenth IEEE Asian Test Symp. (ATS), (Kyoto), pp. 91–96, Nov. 2001. [37 ] J.-F. Li and C.-W.Wu, “Memory fault diagnosis by syndrome compression,” in Proc. Design, Automation and Test in Europe (DATE), (Munich), pp. 97–101, Mar. 2001. [38 ] S. Hamdioui and A. J. van de Goor, “An experimental analysis of spot defects in SRAMs: realistic fault models and tests,” in Proc. Ninth IEEE Asian Test Symp. (ATS), (Taipei), pp. 131– 138, Dec. 2000. [39 ] A. Ferris-Prabhu, “Defect size variations and their effect on the critical area of VLSI devices,” IEEE Journal of Solid-State Circuits, vol. 20, pp. 878–880, Aug. 1985. [40 ] C.-W. Wang, C.-F. Wu, J.-F. Li, C.-W. Wu, T. Teng, K. Chiu, and H.-P. Lin, “A built-in selftest and self-diagnosis scheme for embedded SRAM,” in Proc. Ninth IEEE Asian Test Symp. (ATS), (Taipei), pp. 45–50, Dec. 2000. [41 ] A. J. van de Goor and J. E. Simonse, “Defining SRAM resistive defects and their simulation stimuli,” in Proc. Eighth IEEE Asian Test Symp. (ATS), (Shanghai), pp. 33–40, Nov. 1999. [42 ] A. Meixner and J. Banik, “Weak write test mode: An SRAM cell stability design for test technique,” in Proc. Int. Test Conf. (ITC), (Washington, DC), pp. 1043–1052, Nov. 1997. [43 ] D. L. Wendell, “Memory array test and characterization using isolated cell power supply.” U.S. Patent No. 5920517, 1999. [44 ] D.-M. Kwai, H.-W. Chang, H.-J.Liao, C.-H. Chiao, and Y.-F. Chou, “Detection of SRAM cell stability by lowering array supply voltage,” in IEEE Asian Test Symp. (ATS), (Taipei), pp. 268–273, Dec. 2000.id NH0925442005 sid 897909 cfn 0 / id NH0925442006 auc 劉明珅 tic 適用於內嵌式核心設計之AMBA介面自動產生工具 adc 吳誠文 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 66 kwc 介面 kwc 自動化 kwc 核心設計 kwc 匯流排 kwc 積體電路設計 kwc 矽智產 abc 隨著設計時程縮短的壓力增加與系統晶片的整合複雜度的提升,設計可重複使用的矽核(Cores)或IP(Intellectual Property)成為整合系統晶片過程中需要面對的課題。對於系統晶片與測試的整合,目前仍然存在著很多的問題,例如在在系統晶片之內的IP們之間相互連接的訊號,數量之龐大與之間溝通的複雜便是個很重要的問題所在。由ARM Limited.公司所推出AMBA協定,是一種逐漸廣為使用的on-chip bus架構。一個以AMBA架構的SOC,一般來說包含了high performance的system bus - AHB與low power的peripheral bus - APB。 tc 1 Introduction 1 1.1 What is IP(IntellectualProperty)? . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 ComparisonbetweentheASICDesignFlowand IPDesignFlow . . . . . . . . . . 2 1.3 WhyWrapper? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 AdvancedMicrocontrollerBusArchitecture (AMBA) . . . . . . . . . . . . . . . . 5 1.5 Tools forAMBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5.1 AMBADesignKit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5.2 AMBAComplianceTool . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5.3 AMBAComplianceTestbench . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5.4 AMBAOn-Chip-Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5.5 AMBAUniversityKit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.6 AMBAWrapperGenerationTool . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.6.1 OverviewofAMBAWrapperGenerationTool . . . . . . . . . . . . . . . 7 1.6.2 AMBAWrapperGenerationFlow . . . . . . . . . . . . . . . . . . . . . . 8 1.7 ThesisOrganization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Advanced High-performance Bus (AHB) 10 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 BasicTransferSessionofAHB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 ControlSignals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 TransferType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.2 BurstType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.3 TransferDirection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.4 TransferSize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Slave Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 ArbitrationSignals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.6 AddressDecoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.7 AHBLite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 Template Signals of AHBWrapper Generation Tool 19 3.1 SlaveTemplateSignals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.1 Classification ofSlaveTemplateSignals . . . . . . . . . . . . . . . . . . . 21 3.1.2 Definition of Slave Template Signals . . . . . . . . . . . . . . . . . . . . . 22 3.2 MasterTemplateSignals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.1 Classification ofMasterTemplate signals . . . . . . . . . . . . . . . . . . 32 3.2.2 Definition of Master Template Signals . . . . . . . . . . . . . . . . . . . . 36 4 Configuration of AHB Wrapper Generation Tool 38 4.1 FormatofSystem.cfgFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.1.1 ExampleofSystem.cfgFile . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2 FormatofSlave.cfgFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2.1 ExampleofSlave.cfgFile . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3 FormatofMaster.cfgFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3.1 ExampleofMaster.cfgFile . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5 Verification and Experimental Results 48 5.1 VerificationofAHBSlaveWrapper . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.1.1 ExampleAMBASYstem(EASY) . . . . . . . . . . . . . . . . . . . . . . 48 5.1.2 Verification ofTemplateSignalsProtocol . . . . . . . . . . . . . . . . . . 49 5.1.3 Verification ofAMBACompliance . . . . . . . . . . . . . . . . . . . . . 52 5.2 VerificationofAHBMasterWrapper . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.2.1 Verification ofTemplateSignalsProtocol . . . . . . . . . . . . . . . . . . 56 5.2.2 Verification ofAMBACompliance . . . . . . . . . . . . . . . . . . . . . 59 5.3 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6 Conclusions and Future Work 63 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63rf [1 ] ARM Components, Inc., AMBA Specification Rev2.0, May 1999. [2 ] ARM Components, Inc., “AMBA Design Kit.” http://www.arm.com/miscPDFs/4605.pdf,2003. [3 ] DesignWare Library, “AMBA On-Chip-Bus Data Sheet.” http://www.synopsys.com/, 2003. [4 ] ARM Components, Inc., “AMBA Compliance Test-bench.” http://www.arm.com/miscPDFs/1743.pdf, 2003. [5 ] DesignWare Verification IP, “AMBA Compliance Tool Data Sheet.”http://www.synopsys.com/, 2003. [6 ] ARM Components, Inc., AMBA University Kit User Guide, Sept. 2001. [7 ] M. Keating and P. Bricaud, Reuse Methodology Manual. KAP, third ed., 2002. [8 ] ARM Components, Inc., “AHB lite overview.” http://www.arm.com/miscPDFs/1744.pdf, 2001. [9 ] ARM Components, Inc., AMBA University Kit Technical Reference Manual, Sept. 2001. [10 ] ARM Components, Inc., AMBA Compliance White Paper, Aug. 2002. [11 ] T.-F. Lin, C.-P. Su, C.-T. Huang, and C.-W. Wu, “A high-throughput low-cost AES cipher chip,” in Proc. 3rd IEEE Asia-Pacific Conf. ASIC, (Taipei), pp. 85–88, Aug. 2002. [12 ] National Institute of Standards and Technology (NIST), Advanced Encryption Standard (AES). Springfield, VA 22161: National Technical Information Service, Nov. 2001. [13 ] Y.-C. Lin, “A word-based RSA public-key crypto-processor core for IC smart card,” master thesis, Dept. Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan, June 2001. [14 ] C.-H. Wang, “A high speed word-based RSA crypto-processor,” master thesis, Dept. Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan, June 2003. [15 ] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems,” Communications of the ACM, vol. 21, pp. 120–126, Feb. 1978. [16 ] M.-Y. Wang, C.-P. Su, C.-T. Huang, and C.-W. Wu, “An HMAC processor with integrated SHA-1 and MD5 algorithms,” in Proc. Asia and South Pacific Design Automation Conf. (ASP-DAC), (Yokohama), pp. 456–458, Jan. 2004. [17 ] R. L. Rivest, “The MD5 message-digest algorithm.” RFC 1321, the Internet Society, Apr. 1992.id NH0925442006 sid 903949 cfn 0 / id NH0925442007 auc 洪繼宇 tic L-Band 摻鉺光纖放大器功率轉換效率改善之研究 adc 王立康 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 65 kwc 摻鉺光纖放大器 kwc 功率轉換效率 kwc 長波長 abc 論文摘要 tc 目錄 論文摘要 第一章 論文簡介 1.1 研究背景 …………………………………………………1 1.2 研究動機 …………………………………………………2 1.3 論文架構 …………………………………………………2 第二章 摻鉺光纖放大器(EDFA)之基本原理 2.1 摻鉺光纖放大器的基本特性 ……………………………4 2.2 雜訊指數(noise figure)分析………………………… 10 2.3 長波長摻鉺光纖放大器原理……………………………16 第三章 長波長摻鉺光纖放大器效率改善研究與實驗架構 3.1 1pass與2pass的差別………………………………… 21 3.2 2 pass結構的改良:ASE的利用 ………………………27 3.2-1 改良方法一:後向pump ……………………………29 3.2-2改良方法二:藉由grating反射抑制ASE生長……32 3.2-3改良方法三:使用two stage結構做改良 ………42 3.3 雜訊指數(NF)的改善…………………………………… 44 3.4 針對架構a與架構b的改良:前級放大器ASE的利用…52 第四章 結論…………………………………………………… 58 參考文獻 ……………………………………………………… 63rf 參考資料 [1 ] Felton A.Flood , L-Band Erbium-Doped Fiber Amplifiers,Photonics Research Center, Corning Incorporated. [2 ]Y.Sun,J.W.Sulhoff,A.K.Srivastava,J.L.Zyskind,T.A.Strasser,.R.Pedrazzani,C.Wolf,J.Zhou,J.B.Judkins,R..Espindola and A.M.Vengsarkar, “80nm ultra-wideband erbium-doped silica fibre amplifier”,ELECTRONICS LETTERS,vol.33,NO.23,November 1997. [3 ] M.Yamada,H.Ono,TKanamori,S.Sudo and Y.Ohishi, “Broadband and gain-flattened amplifier composed of a 1.55?慆-band and a 1.58?慆-band Erbium-doped fibre amplifier in a parallel configuration”, ELECTRONICS LETTERS,vol.33,NO.8,April 1997. [4 ] Seongtaek Hwang,Kwan-Woong Song,Hyung-Jin Kwon,Junho Koh,Yun-Je Oh and Kyuman Cho, “Broad-Band Erbium-Doped Fiber Amplifier With Double-Pass Configuration”, IEEE PHOTONICS TECHNOLOGY LETTERS,vol.13,NO.12,December 2001. [5 ] Seongtaek Hwang,Kwan-Woong Song,Ki-Uk Song,Se-Hong Park,J.Nilsson and Kyuman Cho, “Comparative high power conversion efficiency of C-plus L-band EDFA, ELECTRONICS LETTERS”,vol.37,NO.25,December 2001. [6 ]DAVID B. MORTIMORE ,” Fiber Loop Reflectors “ ,JOURNAL OF LIGHTWAVE TECHNOLOGY,VOL.6,NO.7,JULY 1988. [7 ]S.W.Harun, P.Poopalan, and H.Ahmad , “Gain Enhancement in L-Band EDFA Through a Double-Pass Technique”, IEEE PHOTONICS TECHNOLOGY LETTERS,vol.14,NO.3,MARCH 2001. [8 ] Hongyun Meng,Yange Liu,Weiqing Gao,Hao Zhang,Shuzhong Yuan and Xiaoyi Dong,” Reflection L-band Erbium-Doped Fiber Amplifier Based on a Fiber Loop Mirror”,MICROWAVE AND OPTICAL TECHNOLOGY LETTERS,vol. 36,NO.6,March 2003. [9 ] P.C.Becker,N.A.Olsson,J.R.Simpson, Erbium-Doped Fiber Amplifiers:Fundamentals and Technology. [10 ] Emmanuel Desurvire, Erbium-doped fiber amplifiers :/principles and applications. [11 ] Y.Sun,J.L.Zyskind,A.K.Srivastava,” Average Inversion Level,Modeling and Physics of Erbium-Doped Fiber Amplifiers”,IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS,vol.3,NO.4,August 1997. [12 ] Max Ming-Kang Liu, PRINCIPLES AND APPLICATIONS OF OPTICAL COMMUNICATIONS. [13 ] J.F.Massicott,R.Wyatt and B.J.Ainslie,” Low Noise Operation of Erbium Doped Silica Fibre Amplifier Around 1.6?慆”, ELECTRONICS LETTERS,vol.28,NO.20,September 1992. [14 ] Makoto Yamada,Makoto Shimizu,Masanobu Okayasu,TatsuyaTakeshita,Masaharu Horiguchi,Yoshiaki Tachikawa and Etsuji Sugita, “Noise Characteristics of Erbium Doped Fiber Amplifiers Pumped by 0.98 and 1.48?慆 Laser Diodes”,IEEE PHOTONICS TECHNOLOGY LETTERS,vol.2,NO.3,March 1990. [15 ] Hirotaka Ono,Makoto Yamada et.al,” 1.58-?慆 Band Gain-Flattened Erbium-Doped Fiber Amplifiers for WDM Transmission Systems”,JOURNAL OF LIGHTWAVE TECHNOLOGY,vol.17,NO.3,March 1999. [16 ]Faisal Rafiq M Adikan, Mohd Adzir Mahdi,Kaharudin Dimyati,Harith Ahmad, “A Study of Gain and Noise Figure Performance of an L-Band Erbium Doped Fiber Amplifier(EDFA)with 980nm and Amplified Spontaneous Emission(ASE)Pumps”,Telekom Malaysia Photonics Research Centre Department of Physics Univesity of Malaya. [17 ] Aydin Yenial and Renyuan Gao ,” L-BAND EDFA GAIN AND GAIN FLATNESS ENHANCEMENT VIA CO-PROPAGATING C-BAND SEED TECHNIQUE”, Proc.27th Eur. Conf.on Opt. Comm. [18 ] M.A.Mahdi *,F.R.Mahamd Adikan,P.Poopalan,S.Selvakennedy,W.Y.Chan, H.Ahmad ,” Long-wavelength EDFAgain enhancement through 1550nm band signal injection”, Optics Communications 176(2000)125-129. [19 ]Jung Mi Oh,Hyun Beom Choi ,Donghan Lee,Seong Joon Ahn,Soo Jin Jung,and Sang Bae Lee, “Demonstration of Highly Efficient Flat-Gain L-Band Erbium-Doped Fiber Amplifiers by Incorporating a Fiber Bragg Grating”,IEEE PHOTONICS TECHNOLOGY LETTERS,VOL.14,NO.9,SEPTEMBER 2002. [20 ]Bo-Hun Choi,Hyo-Hoon Park,Moojung Chu,and Seung Kwan Kim , “High-Gain Coefficient Long-Wavelength-Band Erbium-Doped Fiber Amplifier Using 1530-nm Band Pump”, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL.13,NO.2,FEBRUARY 2001. [21 ] A.Buxens,H.N.Poulsen,A.T.Clausen and P.Jeppesen, “Gain flattened L-band EDFA based on upgraded C-band EDFA using forward ASE pumping in an EDF section”, ELECTRONICS LETTERS,vol.36,NO.9,April 2000. [22 ] Juhan Lee,Uh-Chan Ryu,Seong Joon Ahn and Namkyoo Park,” Enhancement of Power Conversion Efficiency for an L-band EDFA with a Secondary Pumping Effect in the Unpumped EDF Section”, IEEE PHOTONICS TECHNOLOGY LETTERS,VOL. 11,NO. 1,January 1999. [23 ] H.S.Chung,M.S.Lee,N.Park and D.J.DiGiovanni,” Low noise,high efficiency L-band EDFA with 980nm pumping”,ELECTRONICS LETTERS,vol.35,NO.13,June 1999. [24 ] M. A. Mahdi and H. Ahmad, “Gain Enhanced L-Band Er3+-Doped Fiber Amplifier Utilizing Unwanted Backward ASE”,IEEE PHOTONICS TECHNOLOGY LETTERS,VOL. 13,NO. 10,October 2001.id NH0925442007 sid 903978 cfn 0 / id NH0925442008 auc 李浩群 tic 一維光子晶體在高密度多工分波系統中解波多工分波器的設計與應用 adc 趙 煦 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 64 kwc 光子晶體 kwc 超稜鏡現象 kwc 薄膜設計 kwc 高密度多工分波器 abc 本篇論文主旨在介紹一維光子晶體結構內的超稜鏡效應(Superprism effect),探討改變各項設計參數後將對此超稜鏡現象有何影響,並分別比較無限層數之一維光子晶體和有限層數之一維光子晶體的結果有何不同,進而模擬設計製作一可應用在光纖通訊波段範圍的分光元件。 rf 【1】http://ab-initio.mit.edu/photons/tutorial/ 【2】Haifeng Li “WDM photonic Integrated Circuits Using Phased-Array Waveguide Grating Multi/Demultiplexers” Department of CS and EE University of Maryland Baltimore County 【3】安捷倫科技”光纖通訊基礎簡介”/祁子年 【4】 http://ab-initio.mit.edu/photons/tutorial/ 【5】趙雅芝,”淺談光子晶體” 物理雙月刊二十一卷四期,1998 【6】Hideo Kosaka, Takayuki Kawashima, Akihisa Tomita, Masaya Notomi,Toshiaki Tamamura, Takashi Sato, and Shojiro Kawakami,” Superprism Phenomena in Photonic Crystals:Toward Microscale Lightwave Circuits” JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 17, NO. 11, NOVEMBER 1998 【7】Hideo Kosaka, Takayuki Kawashima, Akihisa Tomita, Masaya Notomi,Toshiaki Tamamura, Takashi Sato, and Shojiro Kawakami,” Superprism Phenomena in Photonic Crystals:Toward Microscale Lightwave Circuits” JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 17, NO. 11, NOVEMBER 1999 【8jPochi Yeh, Amnon Yariv, et al., J. Opt. Soc. Am., Vol.67,p423 (1977). 【9】陳逸中,清華大學碩士論文,2003 【10】H.A. Macleod, “Thin-Film Optical Filters.2nd ed 【11】Martina Gerken 2003, “wavelength multiplexing by spatial beam shifting multilayer structures” Sdanford university for the degree of doctor of philosophy 【12】劉鎧銘 清華大學碩士論文,2004 【13】Rsoft,“BeamPROP™/FullWAVE™Training Seminar” 【14】Rsoft,” BeamPROP™/FullWAVE™ Menu”2002 【15】李正中,”薄膜光學與鍍膜技術” 藝軒出版社,1999 【16】G. Lenz and C. K. Madsen, “General optical all-pass filter structures for dispersion control in WDM systems,” J. Lightw. Techn., 17/7, 1248-1254 (1999). 【17】G. Lenz and C. K. Madsen, “General optical all-pass filter structures for dispersion control in WDM systems,” J. Lightw. Techn., 17/7, 1248-1254 (1999). 【18】H. A. MacLeod, Thin-Film Optical Filters, Institute of Physics Publishing, Philadelphia (2001). 【19】N. Matuschek, F.X. Kärtner, and U. Keller, “Exact Coupled-Mode Theories for Multilayer Interference Coatings with Arbitrary Strong Index Modulations,” IEEE J. Quantum Electron., 33/3, 295-302 (1997). 【20】P. Tournois and P. Hartemann, “Bulk chirped Bragg reflectors for light pulse compression and expansion,” Opt.Commun. 119, 569-575 (1995). 【21】N. Matuschek, F.X. Kärtner, and U. Keller, “Theory of Double-Chirped IEEE J. Select. Topics Quantum Electron., 4/2, 197-208 (1998).id NH0925442008 sid 903984 cfn 0 / id NH0925442009 auc 趙志涵 tic 光子晶體Mach-Zehnder式光塞取多功器 adc 王立康 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 87 kwc 光子晶體 kwc 干涉儀 kwc 光子晶體波導 kwc 濾波器 kwc 積體元件 kwc 光波導 abc 以光傳遞訊息的日漸普及至積體光學元件益見其重要,而一日千里的製程技術使積體化元件日漸縮小,並也漸適於光子晶體波導元件的發展。循傳統波導元件Mach-Zehnder干涉儀式光塞取多功架構,改以線形光子晶體缺陷取代傳統導光波導,而處於晶體結構本身能隙內的電磁波模態受到強大的控光能力使元件面積大幅縮小,也因異於傳統波導在相對較高介電常數物質中傳導,光子晶體波導能設計成在較低介電常數物質內傳導,如此減少了物質本身的色散問題及非線性問題所帶來的困擾﹙但光子晶體結構使波導色散影響大幅提昇。﹚照相同於傳統波導布拉格反射濾波器結構於光子晶體,因高折射率比亦造成了過大帶止頻帶而不適用於反射式波長多功系統中。論文中以傳統波導耦合原理為基礎,設計了適用於波長多功的窄頻帶止濾波器,並分析各種結構變化即影響,使率波器頻帶能任意做不同程度的調整;且以多級架構使濾波器方正化更適合作於波長多功系統,最後加至干涉儀架構中成為光塞取多功器,因為採用傳統干涉儀架構的光塞取多功器,也因此很容易經由多級串/並後成為多頻道的光塞取架構。 tc 目錄 摘要 目錄 附錄一 附錄二 第一章 緒論.....1 第二章 光子晶體基本原理.....2 2.1 平面波展開法(Plan Wave Expansion method, PWE) 2.1.1 單純結構光子晶體 2.1.2 超晶格結構光子晶體 2.2 時域有限差分法(Finite Difference Time Domain method,FDTD) 2.3 無因次化Maxwell方程式(Scaling Law) 第三章 模擬結果與分析(Ⅰ):光子晶體架構波導與偶合機制.13 3.1 光子晶體波導(Photonic Crystals Waveguide) 3.2 光子晶體偶合器(PCs Based Coupler) 3.2.1 方向偶合器(Directional Coupler) 波長與偶合長度的關係 波導間不同障礙(Barrier)與偶合長度的關係 方向波導偶合器偶合頻寬 3.2.2 帶止濾波器(Band Stop Filter, BSF) 單級結構帶止濾波器(Single Stage BSF) 多級結構帶止濾波器(Multiple Stage BSF) 複合結構帶止濾波器(Hybrid Structure BSF) 3.3 本章結論 第四章 模擬結果與分析(Ⅱ):光子晶體光塞取多功器.....66 4.1 對稱結構Mach Zehnder干涉式光塞取多功器 4.2 非對稱結構Mach Zehnder干涉式光塞取多功器 4.3 減縮結構(Reduce Structure)Mach Zehnder干涉式光塞取多功器 4.4 穿透式Mach Zehnder干涉式光塞取多功器 4.5 本章結論 第五章 後續:立體化結構討論.....87 參考文獻rf [1 ]. Yablonovitch, E., Inhibited spontaneous emission in solid state physics and electronics, Phys. Rev. Lett. 58 2059, 1987. [2 ]. S. John, Phys. Rev. Lett. 58 2486, 1987. [3 ]. John D. Joannopoulos, Robert D. Meade and Joshua N. Winn, Photonic Crystals:Molding the Flow of Light, Princeton University Press, 1995. [4 ]. Kazuaki Sakoda, Optical Properties of Photonic Crystals, Springer, 2001. [5 ]. Yoel Fink, Joshua N. Winn, Shanhui Fan, Chiping Chen, Jurgen Michel, John D. Joannopoulos, and Edwin L. Thomas, A Dielectric Omnidirectional Reflector, Science, 282 pp1679-1682, November 27 1998. [6 ]. External Reflection from Omnidirectional Dielectric Mirror Fibers, Science, Vol.296, pp510-513, April 19 2002. [7 ]. Shanhui Fan, P. R. Villeneuve, J. D. Joannopoulos, Channel Drop Filters in Photonic Crystals, Opt. Express, Vol.3 No.1, July 6 1998. [8 ]. Lehoucq, R.B., D.C. Sorensen, and C. Yang, ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM Publications, Philadelphia, 1998. [9 ]. K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Transactions on Antennas and Propagation, Vol.14, p302, 1966. [10 ]. T. Allen, C. H. Susan, Computational electrodynamics: the finite-difference time-domain method, Artech House, 2nd Edition, 2000. [11 ]. M. S. Min, C. H. Teng, The instability of the Yee scheme for the “Magic time step”, J. of Computational Phys., Vol.166(2), pp.418-424, January 20 2001. [12 ]. Z. X. Shen, C. L. Law and R. H. MacPhie, Application of anisotropic PML in mode-matching analysis of open-ended waveguide, IEEE Transactions on Magnetics, Vol.38(2), pp.733-736, Part 1, March 2002. [13 ]. S. D. Gedney, An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices, IEEE Transactions on Antennas and Propagation, Vol. 44, p1630, 1996. [14 ]. K. Sakoda, T. Ueta, K. Ohtaka, Phys. Rev.B, Vol.56, 4830, 1997. [15 ]. Alongkarm Chutinan, Masamitsu Mochizuki, Masahiro Imada, and Susuma Noda, Surface-emitting channel drop filters using single defects in two-dimensional photonic crystals slabs, Apply Phys. Lett. Vol.79 Number17, 22 Oct. 2001.id NH0925442009 sid 903987 cfn 0 / id NH0925442010 auc 胡元國 tic 開關磁阻馬達之前端轉換器開發 adc 廖聰明 博士 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 191 kwc 開關磁阻馬達 kwc 前端轉換器開發 abc 開關磁阻馬達之驅動特性及轉矩產生能力受許多關鍵因素之影響,如線圈電流波形、換相激磁行為及動態控制。本論文旨在建構一具前端轉換器之數位訊號處理器為主開關磁阻馬達驅動系統,及從事換相控制策略研究以改善其驅動特性。一般認知,直流鏈增壓是改善馬達於高速驅動下線圈電流響應之最佳方法。?d達此目的,本論文開發出一置於馬達驅動器及電池間之前端直流轉換器,除增壓外,此轉換器也可操控成降壓式切換式整流器對電瓶充電。在兩個工作模態下之電路及控制器分析與設計於文中均有詳細說明。實測結果顯示所設計之前端轉換器可從事動態增壓而增進線圈在高速下之電流響應,進而增進馬達之速度動態響應特性。而此前端轉換器操作於切換式整流器時,亦可得到良好之輸出電壓調節特性及線電流入電電力品質。 tc 誌謝 ……………………………………………………………… i 摘要 ……………………………………………………………… ii 目錄 ……………………………………………………………… iii 第一章、簡介 …………………………………………………… iv 第二章、所建立之數位驅動系統 ……………………………… v 第三章、動態控制 ……………………………………………… vi 第四章、前端轉換器 …………………………………………… vii 第五章、換相時刻調控 ………………………………………… viii 第六章、結論 …………………………………………………… ix 附錄:英文論文 ………………………………………………… xrf A. Fundamentals of SRM [1 ] W. F. Ray and R. M. Davis, “Inverter drive for doubly-salient reluctance motor,” IEE Proc. B, vol. 2, no. 6, pp. 185-193, 1979. [2 ] P. J. Lawrenson, J. M. Stephenson, P. T. Blenkinsop, J. Corda and N. N. Fulton, “Variable speed switched reluctance motors,” IEE Proc. Electric Power Applications, vol. 136, no. 4, pp. 253-265, 1980. [3 ] T. J. E. Miller, Switched Reluctance Motors Drives, Intertec Communications Inc., California, 1988. [4 ] H. H. Moghbelli and M. H. Rashid, “Performance review of the switched reluctance motor drives,” IEEE Proc. Circuits and Systems, vol. 1, pp. 162-165, 1991. [5 ] T. J. E. Miller, Switched Reluctance Motors and Their Control, Clarendon Press, Oxford, 1993. [6 ] H. C. Lovatt, M. C. Clelland and J. M. Stephenson, “Comparative performance of singly salient reluctance, switched reluctance and induction motors,” IEE Conf. Electrical Machines and Drives, pp. 361-365, 1997. [7 ] P. Pillay, Y. Liu, W. Cai and T. Sebastian, “Multiphase operation of switched reluctance motor drives,” IEEE Conf. Ind. Applicat., vol. 1, pp. 310- 317 , 1997. [8 ] M. T. DiRenzo, M. K. Masten and C. P. Cole, “Switched reluctance motor control techniques,” American Control Conference, vol. 1, pp. 272-277, June 1997. [9 ] H. A. Ashour, D. S. Reay and B. W. Williams, “Shunt-excited doubly salient 8/6-switched reluctance machine,” IEE Proc. Electric Power Applications , vol. 147, no. 5, pp. 391-401, 2000. [10 ] K. I. Hwu, Development of a switched reluctance motor drive, Ph.D. Dissertation, Deparment of Electrical Engineering, National Tsing Hua University, ROC, 2001. [11 ] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002. B. Converters and Voltage Boosting Circuits [12 ] S. J. Watkins, J. Corda, and L. Zhang, “Multilevel asymmetric power converters for switched reluctance machines,” International Conference on Power Electronics, Machines and Drives, no. 487, pp. 195-200, 2002. [13 ] T. J. E. Miller, P. G. Bower, R. Becerra and M. Ehsani, “Four quadrant brushless reluctance motor drive,” IEE Conf. Power Electronics and Variable-Speed Drives, pp. 273-276, 1988. [14 ] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Applicat., vol. 27, no. 6, pp. 1034-1049, 1991. [15 ] A. M. Hava, V. Blasko and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Applicat., vol. 28, no. 5, pp. 1017-1022, 1992. [16 ] S. Bolognani, E. Ognibeni and M. Zigliotto, “Sliding mode control of the energy recovery chopper in a C-dump switched reluctance motor drive,” IEEE Trans. Ind. Applicat., vol. 29, no.1, pp. 181-186, 1993. [17 ] S. Mir, I. Husain and M.E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, pp. 912-921, 1997. [18 ] K. J. Tseng, S. Cao and J. Wang, “A new hybrid C-dump and buck-fronted converter for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 47, no. 6, pp. 1228-1236, 2000. [19 ] K. D. Kim, D. J. Shin and U. Y. Huh, “Application modified C-dump converter for industrial low voltage SRM,” IEEE International Symposium on Industrial Electronics, vol. 3, pp. 1804-1809, 2001. [20 ] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Applicat., vol. 38, no. 6, pp. 1558-1565, 2002. [21 ] D. H. Jang, I. Husain and M. Ehsani, “Modified (n+1) switch converter for switched reluctance motor drives,” IEEE PESC, vol. 2, pp. 1121-1127, 1995. [22 ] L. Morel, H. Fayard, H. V. Fos, A. Galindo and G. Abba, “Study of ultra high speed switched reluctance motor drive,” IEEE Conf. Ind. Applicat., vol. 1, no. 1, pp. 87-92, 2000. [23 ] D. H. Jang, “The converter topology with half bridge inverter for switched reluctance motor drives,” IEEE International Symposium on Industrial Electronics, vol. 2, pp. 1387-1392, 2001. [24 ] S. Chan, “Performance enhancement of single-phase switched reluctance motor by DC link voltage boosting,” IEE Proc. Electric Power Applications, vol. 140, no. 5, pp. 316-322, 1993. [25 ] Y. G. Dessouky, B. W. Williams and J. E. Fletcher, “A novel power converter with voltage-boosting capacitors for a four-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 815-823, 1998. [26 ] A. Dahmane, F. Meebody and F. M. Sargos, “A novel boost capacitor circuit to enhance the performance of the switched reluctance motor,” IEEE PESC, vol. 2, pp. 844-849, 2001. [27 ] M. Barnes and C. Pollock, “Forward converters for dual voltage switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 16, no. 1, pp. 83-91, 2001. C. Modeling for SRM [28 ] L. Xu and E. Ruckstadter, “Direct modeling of switched reluctance machine by coupled field-circuit method,” IEEE Trans. Energy Conversion, vol. 10, no. 3, pp. 446-454, 1995. [29 ] O. Ichinokura, T. Onda, M. Kimura, T. Watanabe, T. Yanada and H. J. Guo, “Analysis of dynamic characteristics of switched reluctance motor based on SPICE,” IEEE Trans. Magnetics, vol. 34, pp. 2147-2149, 1998. [30 ] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Applicat., vol. 36, pp. 714-722, 2000. [31 ] Shuyu Cao, and K.J. Tseng, “Evaluation of neighboring phase coupling effects of switched reluctance motor with dynamic modeling approach,” Power Electronics and Motion Control Conference, vol. 2, pp. 881-886, 2000. [32 ] V. Vujicic and S.N. Vukosavic, “ A simple nonlinear model of the switched reluctance motor,” IEEE Trans. Energy Conversion, vol. 15, no. 4, pp. 395-400, 2000. [33 ] B. C. Mecrow, C. Weiner and A. C. Clothier, “The modeling of switched reluctance machines with magnetically coupled windings,” IEEE Trans. Ind. Applicat., vol. 37, no. 6, pp. 1675-1683, 2001. [34 ] Shanshan Liu, Zhengming Zhao, Shuo Meng, Jianyun Chai, “A nonlinear analytical model for switched reluctance motor,” IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, vol. 3, pp. 2034-2037, 2002. [35 ] Xiaoyan Wang and Jih-Sheng Lai, “Small-signal modeling and control for PWM control of switched reluctance motor drives,” IEEE Power Electronics Specialists Conference, vol. 2, no. 1, pp. 546-551, 2002. [36 ] D. N. Essah and S. D. Sudhoff, “An improved analytical model for the switched reluctance motor,” IEEE Trans. Energy Conversion, vol. 18, no. 3, pp. 349-356, 2003. [37 ] B. P. Loop and S. D. Sudhoff, “Switched reluctance machine model using inverse inductance characterization,” IEEE Trans. Ind. Applicat., vol. 39, no. 3, pp. 743-751, 2003. [38 ] W. Lu, A. Keyhani and A. Fardoun, “Neural network-based modeling and parameter identification of switched reluctance motors,” IEEE Trans. Energy Conversion, vol. 18, pp. 284-290, 2003. [39 ] S. A. Hussain and I. Husain, “Modeling, simulation and control of switched reluctance motor drives,” IEEE IECON’03, vol. 3, pp. 2447-2452, 2003. [40 ] K. N. Srinivas and R. Arumugam, “Dynamic characterization of switched reluctance motor by computer-aided design and electromagnetic transient simulation,” IEEE Trans. Magnetics, vol. 39, no. 3, pp.1806-1812, 2003. [41 ] F.R. Salmasi and B. Fahimi, “Modeling Switched-Reluctance Machines by Decomposition of Double Magnetic Saliencies,” IEEE Trans. Magnetics, vol. 40, no. 3, pp. 1562-1572, 2004. D. Current Control [42 ] H. K. Bae and R. Krishnan, “A study of current controllers and development of a novel current controller for high performance SRM drives,” in Conf. Rec. IEEE-IAS Annu. Meeting, vol. 1, pp. 68-75, 1996. [43 ] F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, 1999. [44 ] G.. Gallegos-Lopez, K. Rajashekara, “ Peak PWM current control of switched reluctance and AC machines” Industry Applications Conference, vol. 2, pp. 1212-1218, 2002. [45 ] R. B. Inderka, M. Menne, R. W. A. A. De Doncker, “Control of switched reluctance drives for electric vehicle applications” IEEE Trans. Industrial Electronics, vol. 49, pp. 48-53, 2002. [46 ] L. O. A. P. Henriques, P. J. C. Branco, L. G. B. Rolim and W. I. Suemitsu, “ Proposition of an off line learning current modulation for torque-ripple reduction in switched reluctance motors: design and experimental evaluation,” IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 665-676, 2002. [47 ] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Applicat., vol. 39, no. 4, pp. 1118-1126, 2003. E. Speed Control [48 ] G. John and A. R. Eastham, “Speed control of switched reluctance motor using sliding mode control strategy,” Industry Applications Conference, vol. 1, pp. 263-270, 1995. [49 ] S. K. Panda and P. K. Dash, “Application of nonlinear control to switched reluctance motors: a feedback linearization approach,” IEE Proc. Electric Power Applications, vol. 143, no. 5, pp. 371-379, 1996. [50 ] S. K. Panda, X. M. Zhu and P. K. Dash, “Fuzzy gain scheduled PI speed controller for switched reluctance motor drive,” IEEE Proc. IECON’97, vol. 3, pp. 989-994, 1997. [51 ] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997. [52 ] B. Singh, V. K. Sharma and S. S. Murthy, “Performance analysis of adaptive fuzzy logic controller for switched reluctance motor drive system,” IEEE IAS’98, vol. 1, pp. 571-579, 1998. [53 ] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor,” IEE Proc. Electric Power Applications, vol. 148, no. 4, 2001. [54 ] J. Y. Seo, H. R. Cha, H. Y. Yang, J. C. Seo, K. H. Kim, Y. C. Lim and D. H. Jang, “Speed control method for switched reluctance motor drive using self-tuning of switching angle,” IEEE International Symposium on Industrial Electronics, vol. 2, pp. 811-815, 2001. [55 ] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002. [56 ] C. Visa, G. Abba and F. Leonard, “Speed control of a switched reluctance motor using non-linear methods,” IEEE Conf. Syst., Man, Cybern., vol. 5, pp. 1-6, 2002. [57 ] F. Nekoogar and G. Moriarty, Digital Control using Digital Signal Processing, Prentice Hall PTR, New Jersey, 1999. [58 ] J. G. Bollinger and N. A. Duffie, Computer Control of Machines and Processes, Addison-Wesley, Massachusetts, 1988. [59 ] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems, 2nd Edition, Addison Wesley, New York, 1990. F. Commutation Tuning [60 ] D. A. Torrey and J. H. Lang, “Optimal-efficiency excitation of variable- reluctance motor drives,” IEE Proc. Electric Power Applications, vol. 138, no. 1, pp. 1-14, 1991. [61 ] P. C. Kjaer, P. Nielsen, L. Andersen and F. Blaabjerg, “A new energy optimizing control strategy for switched reluctance motors,” IEEE Trans. Ind. Applicat., vol. 31, no. 5, pp. 1088-1095, 1995. [62 ] A. V. Rajarathnam, B. Fahimi and M. Ehsani, “Neural network based self-tuning control of a switched reluctance motor drive to maximize torque per ampere,” IEEE IAS’97, vol. 1, pp. 548-555, 1997. [63 ] P. Tandon, A. Velayutham Rajarathnam and M. Ehsani, “Self-tuning control of a switched-reluctance motor drive with shaft position sensor,” IEEE Trans. Ind. Applicat., vol. 33, no. 4, pp. 1002-1010, 1997. [64 ] B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen and I. Panahi, “Self-tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” IEEE Proc. APEC’98, vol. 2, pp. 778-783, 1998. [65 ] J. J. Gribble, P. C. Kjaer and T. J. E. Miller, “Optimal commutation in average torque control of switched reluctance motors,” IEE Proc. Electric Power Applications, vol. 146, no. 1, pp. 2-10, 1999. [66 ] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Conversion, vol. 18, no. 3, pp. 448-457, 2003. [67 ] A. M. Omekanda, “A new technique for multidimensional performance optimization of switched reluctance motors for vehicle propulsion,” IEEE Trans. Ind. Applicat., vol. 39, no. 3, pp. 672-676, 2003. [68 ] H. E. Akhter, V. K. Sharma, A. Chandra and K. Al-Haddad, “Modeling simulation and performance analysis of switched reluctance motor operating with optimum value of fixed turn-on and turn-off switching angles,” IEEE Power Electronics Specialist Conf., vol. 1, pp. 397-402, 2003. [69 ] Y. Sozer, D.A. Torrey and E. Mese, “Automatic control of excitation parameters for switched-reluctance motor drives,” IEEE Trans. Power Electronics, vol. 18, no. 2, pp. 594-603, 2003. [70 ] K.I. Hwu and C.M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Conversion, vol. 18, no. 1, pp. 113-120, 2003. [71 ] R. Orthmann and H.P. Schoner, “Turn-off angle control of switched reluctance motors for optimum torque output,” Fifth European Conference on Power Electronics and Applications, vol. 6, pp. 20-25, 1993. [72 ] M. Rodrigues, P. J. Costa Branco and W. Suemitsu, “Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 48, pp. 711-715, 2001. [73 ] H. E. Akhter, V. K. Sharma, A. Chandra and K. Al-Haddad, “Starting performance of switched reluctance motor with fixed turn-off angle control scheme,” IECON 02, vol. 2, pp. 1020-1025, 2002. [74 ] J. P. Hong, B. S. Choi, S. J. Park, S. J. Kwon and M. H. Lee, “Switching angle control of the SRM for maximization of energy conversion ratio,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, vol. 2 , pp. 1151-1159, 2003. G. Current Profiling [75 ] R. S. Wallace and D. G. Taylor, “A balanced commutator for switched reluctance motors to reduce torque ripple,” IEEE Trans. Power Electron., vol. 7, no. 4, pp. 617–626, July 1992. [76 ] I. Husain and M. Ehsani, “Torque ripple minimization in switched reluctance motor drives by PWM current control,” IEEE Trans. Power Electron., vol. 11, no. 1, pp. 83-88, 1996. [77 ] H. C. Lovatt and J. M. Stephenson, “Computer-optimised smooth-torque current waveforms for switched-reluctance motors,” IEE Proc. Electric Power Applications, vol. 144, no. 5, pp. 310-316, 1997. [78 ] S. Mir, M. E. Elbuluk and I. Husain, “Torque-ripple minimization in switched reluctance motors using adaptive fuzzy control,” IEEE Trans. Ind. Applicat., vol. 35, no. 2, pp. 461-468, 1999. [79 ] L. O. A. P. Henriques, L. G. B. Rolim, W. I. Suemitsu, P. J. C. Branco and J. A. Dente, “Torque ripple minimization in a switched reluctance drive by neuro-fuzzy compensation,” IEEE Trans. Magnetics, vol. 36, no. 5, pp. 3592- 3594, 2000. [80 ] K. Russa, I. Husain and M. E. Elbuluk, “A self-tuning controller for switched reluctance motors,” IEEE Trans. Power Electron., vol. 15, no. 3, pp. 545- 552, 2000. [81 ] I. Agirman, A. M. Stankovic, G.. Tadmor and H. Lev-Ari, “Adaptive torque- ripple minimization in switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 48, no. 3, pp. 664-672, 2001. [82 ] I. Husain, “Minimization of torque ripple in SRM drives,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 28-39, 2002. [83 ] P. L. Chapman and S. D. Sudhoff, “Design and precise realization of optimized current waveforms for an 8/6 switched reluctance drive,” IEEE Trans. Power Electron., vol. 17, no. 1, pp. 76-83, 2002. [84 ] C. Choi, S. Kim; Y. Kim and K. Park, “A new torque control method of a switched reluctance motor using a torque-sharing function,” IEEE Trans. Magnetics, vol. 38, no. 5,pp.3288-3290, 2002. H. Front-End Converter [85 ] G.. A. Garvelis, S. N. Manias and G.. Kostakis, “A DC-DC boost converter with short circuit protection,” IEEE IECON '94, vol. 1, pp. 238-243, 1994. [86 ] K. I. Hwu and C. M. Liaw, “ DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Electric Power Applications, vol. 147, no. 5, pp. 337-344, 2000. [87 ] F. Caricchi, F. Crescimbini, G. Noia and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” IEEE APEC’94, vol. 1, pp. 381-389, 1994. [88 ] F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a buck-boost bidirectional DC-DC converter topology for electrical vehicle motor drives,” IEEE APEC’95, pp. 887-892, 1995. [89 ] F. Caricchi, F. crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” IEEE APEC’98, vol. 1, pp. 287-293, 1998. [90 ] P. T. Tsai, Development of Front-End Converter and Driving Performance Improvement for Switched Reluctance Motor, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2003. I. Switch-Mode Rectifier [91 ] C. M. Liaw, T. H. Chen and W. L. Lin, “Dynamic modelling and control of a step up/down switching-mode rectifier,” IEE Proc. Electric Power Applications, vol. 146, no. 3, pp. 317-324, 1999. [92 ] L. Dixon, “High power factor switching pre-regulator design optimization,” Unitrode Power Supply Design Seminar SEM-700, pp. 7/1-7/2, 1990. [93 ] A. Kandianis and S. N. Manias, “A comparative evaluation of single-phase SMR converters with active power factor correction,” IECON Industrial Electronics, Control and Instrumentation Conference, pp. 244-249, 1994. [94 ] J. Sebastian, M. Jaureguizar and M. Uceda, “An overview of power factor correction in single-phase off-line power supply systems,” IECON Industrial Electronics, Control and Instrumentation Conference, vol. 3, pp. 1688-1693, 1994. [95 ] M.C. Ghanem, K. Al-haddad and G. Roy, “A new control strategy to achieve simusoidal line current in a cascade buck-boost converter,” IEEE Trans. Ind. Electron., vol. 43, no. 3, pp. 441-449, 1996. [96 ] J. Cardesin, J. Sebastian, P. Villegas, A. Hernando and A. Fernandez, “Average small-signal model of buck converter used as power factor preregulator,” IEEE Industry Applications Conference, vol. 3, pp. 2147-2157, 2002. [97 ] N. Mohan, T.M. Undeland and W.P. Robbins, Power Electronics: Converters, Applications and Design, 3rd edition, Wiley, 2003.id NH0925442010 sid 913902 cfn 0 / id NH0925442011 auc 陳建良 tic 具可變電壓直流鏈之永磁同步馬達驅動系統性能改善研究 adc 廖聰明 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 163 kwc 永磁式同步馬達 kwc 數位處理器ADMC401 kwc 線圈電流追 kwc & kwc #36392;控制 kwc 低頻切換式整流器 kwc 激磁及換相時刻調控 kwc 脈波寬度調變 abc 相較於其它馬達,永磁式同步馬達(Permanent magnet synchronous motor, PMSM)具有高功率密度、高效率以及高加速能力等優點,使其已逐漸被廣泛地應用。本論文之目的在於從事以DSP為主全數位永磁同步馬達驅動系統之建立與其操控性能之改善研究。為了熟悉馬達之驅動運轉特性,首先探究其結構與主導方程式。在變頻馬達驅動系統之分析及設計上,馬達之等效電路參數是不可或缺者,本論文應用實用估測法以獲得PMSM之參數。為了從事所擬研究之性能測試,本論文建構一以數位處理器ADMC401為主之PMSM驅動系統,並配以感測器、信號處理電路及控制機構,使其能具有媲美於直流馬達之運轉操控性能。 tc ACKNOWLEDGEMENT I ABSTRACT II LIST OF CONTENTS III LIST OF FIGURES V LIST OF TABLES XII CHAPTER 1 INTRODUCTION 1 CHAPTER 2 FUNDAMENTALS OF PERMANENT MAGNET SYNCHRONOUS MOTORS 8 2.1 Introduction8 2.2 Classification of BDCMs 8 2.3 Structure of PMSMs 9 2.4 Governing Equations 12 2.5 Parameter Estimation for PMSM 19 2.5.1 Back-EMF Constant 20 2.5.2 Winding Resistance and Inductance20 CHAPTER 3 DSP- BASED PMSM DRIVE SYSTEM 23 3.1 Introduction 23 3.2 Some Practical Digital Control Issues 23 3.3 DSP-Based PMSM Drive System 27 3.4 Some Measured Results 36 CHAPTER 4 WINDING CURRENT PWM SWITCHING CONTROL 43 4.1 Introduction 43 4.2 System Configuration and Control Methodology 43 4.3 Robust Current Control 45 4.3.1 System Configuration 45 4.3.2 Current Control Loop Modeling 48 4.3.3 Design of System Components 49 4.3.4 Design Results of Robust Control Scheme 52 4.4 Experimental Results 52 CHAPTER 5 DESIGN AND IMPLEMENTATION OF AN AC-SWITCH BASED FRONT- END BOOST CONVERTER 65 5.1 Introduction 65 5.2 Circuit Configuration and Problem Statements 67 5.3 Circuit Operation of Low-Frequency SMR 69 5.4 Design of SMR Circuit 73 5.5 Some Simulation and Measured Results 78 5.6 Dynamic Voltage Control 98 5.7 Performance Evaluation from Field Measurements 101 CHAPTER 6 TUNING CONTROL STRATEGIES FOR PERMANENT-MAGNET SYNCHRONOUS MOTOR DRIVES 114 6.1 Introduction 114 6.2 Some Key Parameters of a PMSM Drive 114 6.3 PAM and PWM Switching Controls 116 6.4 The Commonly Used Tuning Strategies for PMSMs 117 6.5 Performance Evaluation for PMSM Drive under PAM Control 121 6.6 Commutation and Field Excitation Tuning Controls For PMSM 131 6.6.1 Manual Tuning 131 6.6.2 Automatic Tuning 146 CHAPTER 7 CONCLUSIONS 154 REFERENCES 156rf A. AC Motor Drives [1 ] P. C. Sen, Principle of Electric Machines and Power Electronics, 2nd ed. Canada: John Wiley & Sons, Inc., 1997. [2 ] J. M. D. Murphy and F. G. Turnbull, Power Electronic Control of AC Motors, Pergamon Press, Oxford, 1988. [3 ] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machine and Drive System. New York: The Institute of Electrical and Electronics Engineers, Inc., 1995. [4 ] H. H. Moghbelli and M. H. Rashid, “Performance review of AC adjustable drives,” Conf. Rec. IEEE IECON, vol. 2, pp. 895-902, 1990. [5 ] H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto and Y. Takeda, “The performance comparison of SPMSM, IPMSM and SynRM in use as air-conditioning compressor,” Conf. Rec. IEEE IAS, vol. 2, pp. 840-845, 1999. [6 ] G. L. Donner, W. L. Subler and S. T. Evon, “A motor primer- part I,” IEEE Trans. Ind. Applicat., vol. 36, no. 5, pp. 1455-1466, 2000. [7 ] G. L. Donner, W. L. Subler and S. T. Evon, “Motor primer- part II,” IEEE Trans. Ind. Applicat., vol. 38, no. 4, pp. 955-965, 2002. [8 ] G. L. Donner, W. L. Subler and S. T. Evon, “A motor primer- part III,” Conf. Rec. IEEE IAS, pp. 137-146, 2002. [9 ] J. Holtz, “Pulsewidth modulation - a survey,” IEEE Trans. Ind. Electron., vol. 39, no. 5, pp. 410-420, 1992. [10 ] D. Zmood and D. G. Holms, “Practical performance limitations for PWM strategies,” Conf. Rec. IEEE IAS, vol. 2, pp. 1245-1252, 1998. [11 ] F. Blaabjerg and J. K. Pedersen, “Optimized design of a complete three-phase PWM-VS inverter,” IEEE Trans. Power Electron., vol. 12, no. 3, pp. 567-577, 1997. B. Analysis, Design and Modeling of PMSM [12 ] R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control. New Jersey: Prentice Hall Inc., 2001. [13 ] P. Pillay and R. Krishnan, “Modeling, simulation and analysis of permanent-magnet motor drives, part I: the permanent-magnet synchronous motor drive,” IEEE Trans. Ind. Applicat., vol. 25, no. 2, pp. 265-273, 1989. [14 ] D. C. Hanselman, Brushless Permanent-Magnet Motor Design. New York: McGraw Inc., 1994. [15 ] G. H. Kang, J. P. Hong, G. T. Kim and J. W. Park, “Improved parameter modeling of interior permanent magnet synchronous motor based on finite element analysis,” IEEE Trans. Magn., vol. 36, no. 4, pp. 1867-1870, 2000. [16 ] E. C. Lovelace, T. M. Jahns and J. H. Lang, “A saturating lumped-parameter model for an interior PM synchronous machine,” IEEE Trans. Ind. Applicat., vol. 38, no. 3, pp. 645-650, 2002. [17 ] R. F. Schiferl and T. A. Lipo, “Power capability of salient pole permanent magnet synchronous motors in variable speed drive applications,” IEEE Trans. Ind. Applicat., vol. 26, no. 1, pp. 115-123, 1990. [18 ] S. Morimoto, Y. Takeda and T. Hirasa, “Expansion of operating limits for permanent magnet motor by current vector control considering inverter capacity,” IEEE Trans. Ind. Applicat., vol. 26, no. 5, pp. 866-871, 1990. [19 ] W. L. Soong and T. J. E. Miller, “Theoretical limitations to the field-weaking performance of the five classes of brushless synchronous AC motor drive,” Conf. IEEE IEMDC, no. 376, pp. 127-132, 1993. [20 ] T. M. Jahns, “Component rating requirements for wide constant power operation of interior PM synchronous machine drives,” Conf. Rec. IEEE IAS, vol. 3, pp. 1697-1704, 2000. C. Parameter Estimation [21 ] IEC 34-4: Methods for determining synchronous machine quantities from tests, Internation Electrotechnical committee, June 1995. [22 ] IEC 34-2: Methods for determining losses and efficiency of rotating electrical machinery from tests (excluding machines for traction vehicles), Internation Electrotechnical committee, Nov. 1996. [23 ] S. Weisgerber, A. Proca and A. Keyhani, ”Estimation of permanent magnet motor parameters,” Conf. Rec. IEEE IAS, vol. 1, pp. 29-34, 1997. [24 ] D. Y. Ohm, “Dynamic model of PM synchronous motors,” Available: http://www. drivetechinc.com/articles/IM97PM_Rev1forPDF.pdf. [25 ] F. F. Bernal, A. G. Cerrada and R. Faure, “Determination of parameters in interior permanent-magnet synchronous motors with iron losses without torque measurement,” IEEE Trans. Ind. Applicat., vol. 37, no. 5, pp. 1265-1272, 2001. [26 ] N. Urasaki, T. Senjyu and K. Uezato, “A novel calculation method for iron loss resistance suitable in modeling permanent-magnet synchronous motors,” IEEE Trans. Energy Conversion, vol. 18, no. 1, pp. 41-47, 2003. D. Current Control [27 ] N. Mohan, T. M. Undeland and W. P. Robbims, Power Electronics: Converters, Applications and Design. New York: John Wiley & Sons, 1995. [28 ] B. K. Bose, Modern Power Electronics and AC Drives. New Jersey: Prentice Hall Inc., 2002. [29 ] B. K. Bose, Power Electronics and Variable Frequency Drives. New York : The Institute of Electrical and Engineers, Inc. 1997. [30 ] D. W. Novotny and T. A. Lipo, Vector Control and Dynamics of AC Drives, Clarendon Press, Oxford, 1996. [31 ] T. M. Rowan and R. J. Kerkman, “A New Synchronous Current Regulator and Analysis of Current-Regulated PWM Inverter,” IEEE Trans. Ind. Applicat., vol. 22, no. 4, pp. 678-690, 1986 [32 ] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998. [33 ] D. Y. Ohm and R. J. Oleksuk, “On practical digital current regulator design for PM synchronous motor drives,” Conf. Rec. IEEE APEC, vol. 1, pp. 56-63, 1998. [34 ] J. K. Seok, J. S. Kim and S. K. Sul, “Overmodulation strategy for high-performance torque control,” IEEE Trans. Power Electron., vol. 13, no. 4, pp. 786-792, 1998. [35 ] D. N. Zmood and D. G. Holmes, “Stationary frame current regulation of PWM Inverter with zero steady state error,” IEEE Trans. Power. Electron., vol. 18, no. 4, pp. 814-822, 2003. [36 ] M. N. Uddin, T. S. Radwan, G. H. George and M. A. Rahman, “Performance of current controllers for VSI-fed IPMSM drive,” IEEE Trans. Ind. Applicat., vol. 36, no. 6, pp. 1531-1538, 2000. [37 ] B. H. Bae and S. K. Sul, “A compensation method for time delay of full-digital synchronous frame current regulator of PWM AC drives,” IEEE Trans. Ind. Applicat., vol. 39, no. 3, pp. 802-810, 2003. [38 ] C. M. Liaw and S. J. Chiang, “Robust control of multimodule current-mode controlled converters,” IEEE Trans. Power Electron., vol. 8, no. 4, pp. 455-465, 1993. [39 ] T. H. Chen, K. C. Huang and C. M. Liaw, “High-Frequency switching-mode power amplifier for shaker armature excitation,” Proc. IEE Electric Power Applicat., vol. 144, no. 6, pp. 415-422, 1997. [40 ] H. C. Chen, M. S. Huang, C. M. Liaw, Y. C. Chang, P. Y. Yu and J. M. Huang, “Robust current control for brushless DC motor,” Proc. IEE Electric Power Applicat., vol. 147, no. 6, pp. 503-512, 2000. [41 ] M. F. Rahman, L. Zhone and K. W. Lim, “A DSP based instantaneous torque control strategy for interior permanent synchronous motor drive with wide speed range and reduced torque ripples,” Conf. Rec. IEEE IAS, vol. 1, pp. 518-524, 1996. [42 ] M. N. Uddin, T. S. Radwan and M. A. Rahman, “Performance of interior permanent magnet motor drive over wide speed range,” IEEE Trans. Energy Conversion, vol. 17, no. 1, pp. 79-84, 2002. [43 ] S. Morimoto, M. Sanada and Y. Takeda, “Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator,” IEEE Trans. Ind. Applicat., vol. 30, no. 4, pp. 920-926, 1994. [44 ] R. Monajemy and R. Krishnan, ”Implementation strategies for concurrent flux weakening and torque control of the PM synchronous motor,” Conf. Rec. IEEE IAS, vol. 1 , pp. 238-245, 1995. [45 ] J. H. Song, J. M. Kim and S. K. Sul, ”A new robust SPMSM control to parameter variations in flux weakening region,” Conf. Rec. IEEE IECON, vol. 2, pp. 1193-1198, 1996. [46 ] C. Mademlis, J. Xypteras and N. Margaris, “Loss minimization in surface permanent-magnet synchronous motor drives,” IEEE Trans. Ind. Electorn., vol. 47, no. 1, pp. 115-122, 2000. [47 ] C. Stancu, S. Hiti and F. Biais, “Maximum torque-per-ampere control of a saturated surface-mounted permanent magnet motor,” Conf. Rec. IEEE PESC, vol. 4, pp. 1667-1672, 2002. [48 ] J. J. Chen and K. P. Chin, “Minimum copper loss flux-weakening control of surface mounted permanent magnet synchronous motors,” IEEE Trans. Power Electron., vol. 18, no. 4, pp. 929–936, 2003. [49 ] S. Morimoto, Y. Takeda, K. Hatanaka, Y. Tong and T. Hirasa, “Design and control system of permanent magnet synchronous motors for high torque operation,” IEEE Trans. Ind. Applicat., vol. 29, no. 6, pp. 1150-1155, 1993. [50 ] H. C. Chen and C. M. Liaw, “Sensorless control via intelligent commutation tuning for brushless DC motor,” Proc. IEE Electric Power Applicat., vol. 146, no. 6, pp. 678-684, 1999. [51 ] C. C. Liaw, C. M. Liaw, H. C. Chang and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” Conf. Rec. IEEE APEC, vol. 2, pp. 1045-1051, 2003. E. PAM/PWM Operation of PMSM [52 ] B. K. Bose, “Power Electronics and Variable Frequency Drives: Technology and Applications” IEEE Press, New York, 1997. [53 ] K. Taniguchi and A. Okumura, “A PAM inverter system for vector control of induction motor,” Conf. Rec. IEEE PCC, pp.478-483, 1993. [54 ] K. Kimoto, Y. Kameko, K. Hashimoto and K. Ohnishi, “Decoupling control of an induction motor operated with a PAM inverter,” Conf. Rec. IEEE PES, pp. 1091-1098, 1988. [55 ] K. Taniguchi, Y. Matano, T. Morizane and H. W. Lee, “PAM system for motor drive with soft-switching PFC converter,” Conf. Rec. IEEE IECON, vol. 3, pp. 1820-1825, 1996. [56 ] K. Taniguchi, T. Sodeyama, T. Morizane and N. Kimura, “Novel strategy for soft-switching PAM inverter system,” Conf. Rec. IEEE PCC, vol. 3, pp. 1267-1272, 2002. [57 ] K. Yamamoto, K. Shinohara and H. Makishima, ”Characteristics of permanent magnet synchronous motor driven by PWM inverter with voltage booster,” Conf. Rec. IEEE IEMDC, vol. 3, pp. 1556-1562, 2003. [58 ] F. D. Kieferndorf, M. Forster and T. A. Lipo, ”Reduction of DC bus capacitor ripple current with PAM/PWM converter,” IEEE Trans. Ind. Applicat., vol. 40, no. 2, pp. 607-614, 2004. F. Switching Mode Rectifier [59 ] M. S. Dawande and G. K. Dubey, “Single phase switch mode rectifiers,” Conf. Rec. IEEE PESC, vol. 2, pp. 637-643, 1996. [60 ] W. Huai and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” in Proc. IEEE SEC, pp. 348-353, 1998. [61 ] A. Kandianis and S. N. Manias, “A comparative evaluation of single-phase SMR converters with active power factor correction,” Conf. Rec. IEEE IECON, pp. 244-249, 1994. [62 ] G. A. Karvelis, S. N. Manias and G. Kostakis, “A comparative evaluation of power converters used for current harmonics elimination,” Conf. Rec. IEEE HQPC, vol. 1, pp. 227–232, 1998. [63 ] J. A. Pomilio, G. Spiazzi and S. Buso, “Comparison among high-frequency and line-frequency commutated rectifiers complying with IEC 61000-3-2 standards,” Conf. Rec. IEEE IAS, vol. 4, pp. 2218-2223, 2000. [64 ] I. Suga, M. Kimata, Y. Ohnishi and R. Uchida, “New switching method for single-phase AC to DC converter,” Conf. Rec. IEEE PCC, pp. 93-98, 1993. [65 ] J. A. Pomilio and G. Spiazzi, “A double-line-frequency commutated rectifier complying with IEC 1000-3-2 standards,” Conf. Rec. IEEE APEC, pp. 349-355, 1999. [66 ] L. Rossetto, G. Spiazzi and P. Tenti, “Boost PFC with 100Hz switching frequency providing output voltage stabilization and compliance with EMC standards,” IEEE Trans. Ind. Applicat., vol. 36, no. 1, pp. 188-193, 2000. [67 ] J. A. Pomilio and G. Spiazzi, “A low-inductance line-frequency commutated rectifier complying with EN 61000-3-2 standards,” IEEE Trans. Power Electron., vol. 17, no. 6, pp. 963-970, 2002. G. Sensorless Control [68 ] J. P. Johnson, M. Ehsani and Y. Guzelgunler, “Review of sensorless methods for brushless DC,” Conf. Rec. IEEE IAS, vol. 1, pp. 143-150, 1999. [69 ] S. Morimoto, K. Kawamoto, M. Sanada and Y. Takeda, “Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame,” IEEE Trans. Ind. Applicat., vol. 38, no. 4, pp. 1054-1061, 2002. [70 ] Z. Chen, M. Mutuwo, S. Doki and S. Okuma, “An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motor,” IEEE Trans. Ind. Electron., vol. 50, no. 2, pp. 288-294, 2003. [71 ] S. Ogasawara and H. Akagi, “Implementation and position control performance of a position-sensorless IPM motor drive system based on magnetic saliency,” IEEE Trans. Ind. Applicat., vol. 34, no. 4, pp. 806-812, 1998. [72 ] V. Petrovic and A. M. Stankovic, “Saliency-Based Position Estimation in PM Synchronous Motors ” Conf. Rec. IEEE IAS, vol. 2, pp. 801-806, 2001. [73 ] B. Terzic and M. Jadric, “Design and implementation of the extended Kalman filter for the speed and rotor position estimation of brushless DC motor,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1065-1073, 2001. [74 ] S. Bolognani, L. Tubiana and M. Zigliotto, ”Extended kalman filter tuning in sensorless PMSM drives,” IEEE Trans. Ind. Applicat., vol. 39, no. 6, pp. 1741-1747, 2003. [75 ] M. E. Haque, L. Zhong and M. F. Rahman, “A sensorless initial rotor position estimation scheme for a direct torque controlled interior permanent magnet synchronous motor drive,” Conf. Rec. IEEE APEC, vol. 2, pp. 879-884, 2001. [76 ] J. I. Ha, K. Ide, T. Sawa and S. K. Sul, “Sensorless Position Control and Initial Position Estimation of an Interior Permanent Magnet Motor,” Conf. Rec. IEEE IAS, vol. 4, pp. 2607-2613, 2001. [77 ] Y. S. Lai, F. S. Shyu and S. S. Tseng, “New initial position detection technique for three-phase brushless DC motor without position and current sensors,” IEEE Trans. Ind. Applicat., vol. 39, no. 2, pp. 485-491, 2003. H. DSP-Based Digital Control and Digital Signal Processor [78 ] N. S. Nise, Control System Engineering, 3rd ed. John Wiley and Sons. Inc., 2000. [79 ] G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic System, 4th ed. Prentice Hall Inc., 2002. [80 ] F. Nekoogar and G. Moriry, Digital Control and Digital Signal Processing, Prentice Hall Inc., 1999. [81 ] G. F. Franklin, J. D. Powell and M. Workman, Digital Control of Dynamic Systems, 3rd ed. Addison Wesley Inc., 1998. [82 ] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 2nd ed. New Jersey: Prentice Hall Inc., 1999. [83 ] “Considerations for Selecting a DSP Processor,” Application Note, AN-393, 1994. [84 ] “Fixed-Point Blockset User’s Guide,” The Math Works Inc., 2000. [85 ] “DSP Selection Guide,” Analog Devices Inc., 2000. [86 ] F. Moynihan, ”High-Performance Motion Control”, Analog Devices Inc., USA, 1999. [87 ] A. Murray and P. Kettle, “The DSP Performance Edge in Variable Speed Drives”, Analog Devices Inc., USA, 1996. [88 ] A. Murray, P. Kettle, A. Margio and F. Moynihan, “Advances in DSP Based Motor Control Solutions”, Analog Devices Inc., USA, 1995. [89 ] “Single-Chip, DSP-Based High Performance Motor Controller ADMC 401, “Analog Devices Inc., 2000. [90 ] “ADSP-2100 Family User’s Manual,” Analog Devices Inc., 1995.id NH0925442011 sid 913903 cfn 0 / id NH0925442012 auc 陳玥樺 tic 台電公司的區營運處降低用戶停電時間之目標訂定方法 adc 陳士麟 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 85 kwc 輸電 kwc 用戶停電時間 kwc 供電區營運處 kwc 解析式階層程序 kwc 台電 abc 台電公司近年來積極推動各項方案,以提高用戶的供電可靠度,並以用戶全年平均恢復供電時間及用戶全年平均恢復供電次數(SAIFI)列為公司的重要營運目標。台電自91年度起,設定公司的SAIDI和SAIFI全年目標值,再將此目標分配至公司內的各個區處。此目標之設定(包括如何將公司的營運目標分配至各個區處),僅憑藉著公司管理階層的經驗,而無邏輯方法,導致區處之間目標值的分配不盡公平。若目標設定過於嚴苛,由於目前缺少高、低壓用戶停電之自動監測設施,台電公司的區處承辦單位可能會對於用戶停電記錄造假,此造假行為對於公司的基層士氣影響甚鉅。 tc 目 錄 中文摘要 I 英文摘要 II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 IX 第一章 緒論 1 1.1 研究背景 1 1.2 研究方法 1 1.2.1 研究範圍 2 1.2.2 研究流程架構 2 1.2.3 研究方法概述 4 1.3 各章重點 6 第二章 解析式階層程序之演算流程 7 2.1 整體說明 7 2.1.1 分析流程 7 2.1.2 階層式問卷 9 2.2 權重評估流程 9 2.3 成對比較所依據之尺度 11 2.4 各層級準則間權重之計算 12 2.4.1 交叉比較矩陣 12 2.4.2 基本原理 14 2.4.3 特徵向量計算 17 2.4.4 最大特徵值之計算 18 2.4.5 一致性與整合比 19 2.4.6 修正評比 20 2.4.7 受試問卷之彙整 21 2.5 範例說明 23 第三章 區處用戶停電時間影響因素之量化指標及其權重問卷之設計 30 3.1 前言 30 3.2 可靠度指標之定義 31 3.3 降低用戶停電時間的公司總目標 31 3.4 輸電部門造成用戶停電的影響因素 32 3.4.1 一次輸電系統事故停電 32 3.4.2 二次輸電系統事故停電 33 3.4.3 輸電系統工作停電 33 3.5 區處用戶停電時間影響因素之階層式架構 33 3.5.1 影響因素之間的關連性架構 34 3.5.2 用戶停電次數 34 3.5.3 用戶每次停電時間 38 3.5.4 每次停電用戶數 38 3.6 問卷設計 38 3.7 影響因素之量化指標 39 3.8 區處用戶停電時間目標值之訂定流程 40 第四章 研究結果 42 4.1 前言 42 4.2 權重模擬結果 42 4.2.1 供電部門權重之整體計算結果 43 4.2.2 輸、變電專家之差異分析 51 4.2.3 區處間的差異分析 52 4.3 量化指標值於區處間之比較 58 4.4 降低用戶停電時間目標值於區處間之比較 60 第五章 結論 63 5.1 結論 63 5.2 未來研究方向 65 參考文獻 66 附錄A 供電可靠度統計指標 69 附錄B 國內外電力公司供電可靠度現況比較 71 附錄C 輸電系統事故停電時間影響因素權重評估問卷 75rf [1 ]T. L. Saaty, The Analytic Hierarchy Process : Planning, Priority Setting, Resource Allocation (Vol. I), RWS Publications, U.S.A., 1990. [2 ]T. L. Saaty, Fundamentals of Decision Making and Priority Theory with The Analytic Hierarchy Process (Vol. VI), RWS Publications, U.S.A., 1994. [3 ]T. L. Saaty, “Axiomatic Foundation of the Analytic Hierarchy Process”, Management Science, Vol. 32, No. 7, July 1986, pp.841~855. [4 ]T. L. Saaty, and M. Takizawa, “Dependence and Independence: from Linear Hierarchies to Nonlinear Networks”, European Journal of Operations Research, Vol. 26, 1986, pp.229~237. [5 ]T. L. Saaty, L. G. Vargas, “Inconsistency and Rank Preservation”, Journal of Mathematical Psychology, Vol. 28, No. 2, June 1984, pp.205~214. [6 ]T. L. Saaty, “Absolute and Relative Measurement with the AHP: The Most Livable Cities in the United States”, Socio-Economic Planning Sciences, Vol. 20, No. 6, 1986, pp.327~331. [7 ]T. L. Saaty, “Exploring Optimization Through Hierarchies and Ratio Scales”, Socio-Economic Planning Sciences, Vol. 20, No. 6, 1986, pp.355~360. [8 ]T. L. Saaty, “A Note on AHP and Expected Value Theory”, Socio-Economic Planning Sciences, Vol. 20, No. 6, 1986, pp.397~398. [9 ]D. M. DeTurck, “The Approach to Consistency in the Analytic Hierarchy Process”, Mathematical Modeling, Vol. 9, No. 3-5, 1987, pp.345~352. [10 ]P. T. Harker, “Alternative Modes of Questioning in the Analytic Hierarchy Process”, Mathematical Modeling, Vol. 9, 1987, pp.353~360. [11 ]B. L. Golden, and E. A. Wasil (eds.), “The Analytic Hierarchy Process – Applications and Studies”, Springer-Verlag, NY, 1989. [12 ]L. G. Vargas, “Reciprocal Matrices with Random Coefficients”, Mathematical Modeling, Vol. 3, 1982, pp.69~81. [13 ]R. Kumar,研究方法步驟化學習指南,胡龍藤、黃瑋瑩、潘中道合譯,學富文化事業有限公司,2000年8月。 [14 ]朱家勳,台灣有線電視系統台經營績效之研究 — 綜合用DEA與AHP模式,長庚大學企業管理研究所在職專班碩士論文。 [15 ]刀根 薰,競賽式決策制訂法 — AHP入門,陳名揚譯,建宏出版社,1993年11月。 [16 ]王玉民,社會科學研究方法原理,紅葉文化,1994年12月。 [17 ]台電系統降低用戶停電時間之具體作法完成報告,EPRI Worldwide S.A.委託清大研究計畫期末報告(中文版),計畫主持人:陳士麟,協同主持人:盧豐彰,2004年3月。 [18 ]供電單位達成系統可靠度指標執行辦法,台電供電處內部文件,2002年。 [19 ]輸變電設備事故統計表,台電供電處內部文件,2002年。 [20 ]R. Billinton, and J. E. Billinton, “Distribution System Reliability Indices”, IEEE Trans. On Power Delivery, Vol. 4, No. 1, January 1989, pp.561~568.id NH0925442012 sid 913904 cfn 0 / id NH0925442013 auc 劉培民 tic 台電輸電系統最大及最小短路電流計算方法 adc 陳士麟 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 111 kwc 最大短路電流 kwc 最小短路電流 abc 本研究旨在提出最大及最小短路電流的合理計算條件。由於目前國外計算短路電流的方法不盡相同,且IEEE及IEC等國際標準的計算方法亦未相同,本論文遂於研究過程中蒐集IEEE及IEC的短路電流計算方法,並探討台灣電力、韓國電力、關西電力、九州電力(台電、韓電、關電、九電)等總共四家電力公司的計算方法之差異,據此提出最大及最小短路電流之合理計算條件及其計算流程。本研究另以台電系統為例,進行檢討試算並對台電公司現行的計算方法提出檢討。 tc 中文摘要...I 英文摘要...III 誌謝...V 目錄...VII 第一章 緒論...1 第二章 最大及最小短路電流之基本原理...8 第三章 對於最大短路電流計算之建議....39 第四章 最大短路電流計算結果...56 第五章 對於最小短路電流計算之建議...65 第六章 最小短路電流計算結果................78 第七章 結論與建議..........92 參考文獻..........98 附錄A 電力品質管制標準..............100 附錄B 台電345KV及161KV斷路器啟斷週波數之統計....103 附錄C 台電機組事故停機表........................104 附錄D 英國電業建議之計算標準草案................109rf [1 ] B. Ravindranath and M. Chander, Power System Protection and Switchgear, John Wiley, 1987. [2 ] Rating structure for ac high-voltage circuit breakers, IEEE Std. C37.04, 1979 (Superseded by C37.04-1999 Edition). [3 ] Calculation of fault current for application of AC high-voltage circuit breakers rated on a total current basis, ANSI/IEEE Std. C37.05, 1979 [4 ] Application guide for AC high-voltage circuit breakers rated on a symmetrical current basis, ANSI/IEEE Std. C37.010, 1979 (Superseded by C37.04-1999 Edition). [5 ] Recommended practice for electric power distribution for industrial plants, IEEE Std. C141 (IEEE Red Book), 1997. [6 ] Short-circuit current calculation in three phase a.c. system, IEC 60909, 1988.05. [7 ] Short-circuit currents -Calculation of effects-Part1: Definition and calculation methods, IEC 60865-1, 1993.10. [8 ] Short-circuit currents -Calculation of effects-Part2: Examples of calculation, IEC/TR2 60865-2, 1994.06. [9 ] Short-circuit current calculation in three phase a.c. system-Part1: Factors for the calculation of short-circuit current, IEC /TR2 60909-1, 1991.11. [10 ] Short-circuit Electrical equipment – Date for short-circuit current calculations in accordance with IEC 909(1988), IEC/TR3 60909-2, 1992.09. [11 ] Short-circuit current calculation in three phase a.c. system – Part3: current during two sequarate short circuits, IEC 60909-3, 1995.09. [12 ] Short-circuit current in three phase a.c. system – Part4: Example for the calculation of short-circuit current, IEC/TR 60909-4, 2000.07. [13 ] 高富建,最小短路電流值訂定方法對電力諧波、閃爍、三相不平衡限制之影響,國立清華大學博士論文,民85年7月。 [14 ] 余政勳,短路容量對高鐵諧波及電壓變動管制之影響,國立清華大學碩士論文,民86年6月。 [15 ] 李宗明,最小短路電流值訂定方式對電力品質管制之影響,國立清華大學碩士論文,民84年6月。 [16 ] F.C. Kao and S.L. Chen , Specification of minimum short-circuit capacity for three-phase unbalance limitation based on an efficient algorithm , Electric Power System Research, 39 (1996), pp.223-232 . [17 ] Allen J. Wood, Bruce F. Wollenberg, Power Generation, Operation, and Contral, New York Willey, 1984.id NH0925442013 sid 913905 cfn 0 / id NH0925442014 auc 陳岡見 tic 新型冷陰極螢光燈電子安定器之設計與研製 adc 潘晴財 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 102 kwc 冷陰極螢光燈 kwc 電子安定器 kwc 單級升壓型反流器 kwc 叢發式調光控制 kwc 整合型迴授控制器 kwc 穩定性分析 abc 由於液晶顯示器的快速發展,薄膜電晶體之液晶顯示器(TFT-LCD)將取代陰極射線管(CRT)成為桌上型電腦和電視這兩個最大顯示器市場的主流產品,當然有關於液晶顯示器背光模組採用的冷陰極螢光管之使用量亦隨之大增,為此各類相關電子安定器之研究紛至沓來;就目前所採用的冷陰極螢光燈的電子安定器之架構來看,不僅無法承受輸入電源之廣範圍變動,且亦存在開關數目較多以致增加成本之缺點,因此本論文即為此提出一新型單級升壓型冷陰極螢光燈電子安定器以改善上述之缺點。 rf [1 ]J.A.Donahue, and M. M. Jovanovic, “The LCC inverter as a cold cathode fluorescent lamp driver,” IEEE Applied power Electronics Conference and Exposition, Vol. 1,pp.472-431,1994. [2 ]M. Jordan, and J. A. O’Connor, “Resonant fluorescent lamp converter provides efficient and compact solution,” IEEE Applied power Electronics Conference and Exposition, pp. 424-431, 1993. [3 ]L. H. Hwang, J. H. Yoo, B. H. Lee, E. S. Jang, and M. T. Cho, “Modeling of piezoelectric transformer and CCFL and PSPICE,” IEEE International Conference on Power System Technology, Vol. 4,pp. 2664-2668, 2002. [4 ]M. Sun, and B. L. Hesterman, “PSpice High-Frequency Dynamic Fluorescent Lamp Model,” IEEE Transactions on Power Electronics, Vol. 13, pp. 261- 272, March 1998. [5 ]廖益弘,『壓電式螢光燈電子安定器之研製』,清華大學碩士論 文,中華民國八十九年七月。 [6 ]魏慶德,『高性能壓電型冷陰極螢光管驅動器』,清華大學博士 論文,中華民國九十二年四月。 [7 ]Gie Hyoun Kweon, Young Cheol Lim, and Seung Hak Yang, “Analysis of the backlight inverter by topologies,” IEEE International Symposium on Industrial Electronics, Vol. 2 , 12-16, pp 896 – 900, June 2001. [8 ]C. Branas, F. J. Azcondo, and S. Bracho, “Pulsewidth modulation control of electronic ballast for dimming control of fluorescent lamps,” Proceedings of the IEEE International Symposium on Industrial Electronics, Vol 2, 7-11, pp 537 – 542, July 1997. [9 ]M. K. Kazimierczuk, and W. Szaraniec, “ Electronic ballast for fluorescent lamps,” IEEE Transactions on Power Electronics, Vol 8 , pp 386 – 395, Oct 1993. [10 ]K. Shimizu, and H. Matsuo, “ Input current analysis of the modified half bridge inverter as electronic ballast for fluorescent lamps,” Power Electronics Specialists Conference, Vol 2, 17-21, pp 683 – 687, June 2001. [11 ]M. S. Lin, M. C. Lee, D. Y. Chen, and W. S. Feng, “ Synchronous dimming control for a cold-cathode fluorescent lamp driver,” Electronics Letters , Vol 32 ,pp 1151 – 1153, June 1996. [12 ]Weiyun Chen, “Series-parallel resonant forward inverter as a cold cathode fluorescent lamp (CCFL) driver,” Applied Power Electronics Conference and Exposition, Vol 2, 10-14, pp 943 – 947, March 2002. [13 ]Y. L .Lin, and A. F. Witulski, “ Analysis and design of current-fed push-pull resonant inverters-cold cathode fluorescent lamp drivers,” Industry Applications Conference, Vol 4, 6-10,pp 2149 – 2152, Oct 1996. [14 ]Mu-Shen Lin, and Jan-Bin Lio, D. Y.Chen, Wu-Shiung Feng, “ Primary-side dimming control driver for cold- cathode fluorescent lamps,” Electronics Letters, Vol 32, pp 1334 – 1335, July 1996. [15 ]Mu-Shen Lin, Wen-Jung Ho, Fu-Yuan Shih, Dan Y. Chen, and Yan-Pei Wu, “ A cold-cathode fluorescent lamp driver circuit with synchronous primary-side dimming control,” IEEE Transactions on Industrial Electronics, Vol 45, pp 249 – 255, April 1998. [16 ]K. H. Edelmoser and F. A. Himmelstoss, “Analysis of a new high-efficiency DC-to-AC inverter,” IEEE Transactions on Power Electronics, vol. 14, pp. 454-460, May 1999. [17 ]N. Kasa, T. Iida and H. Iwamoto, “An inverter using buck-boost type chopper circuits for popular small-scale photovoltaic power system,” The 25th Annual Conference of the IEEE Industrial Electronics Society, vol. 1, pp. 185-190, 1999. [18 ]N. Kasa, H. Ogawa, T. Iida and H. Iwamoto, “A transformer-less inverter using buck-boost type chopper circuit for photovoltaic power system,” Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems, vol. 2, pp. 653-658, 1999. [19 ]N. Kasa, T. Lida and H. Iwamoto, “Maximum power point tracking with capacitor identifier for photovoltaic power system,” IEE Proceedings-Electric Power Applications, vol. 147, pp. 497-502, Nov. 2000. [20 ]C. Y. Hsu, “Stability analysis of a switched mode inverter using C’uk converters,” IEEE Power Electronics Specialists Conference, pp. 785-795, 1994. [21 ]Chao Su, Lian-Kuan Chen, and Kwok-Wai Cheung, “ Theory of burst-mode receiver and its applications in optical multiaccess networks,” Journal of Lightwave Technology,Vol. 15, pp 590 – 606, April 1997. [22 ]Y. Yamada, S. Mino, and K. Habara, “ Ultra-fast clock recovery for burst-mode optical packet communication,” International Conference on Integrated Optics and Optical Fiber Communication Conference, Vol, 1,pp 114- 116, 21-26 Feb 1999. [23 ]E. Sackinger, Y. Ota, T. J. Gabara, and W. C. Fischer, “ A 15-mW, 155-Mb/s CMOS burst-mode laser driver with automatic power control and end-of-life detection,” IEEE Journal of Solid-State Circuits, Vol 35, pp 269 - 275, Feb 2000. [24 ]Chin-Der Wey, Tai-Lang Jong, and Ching-Tsai Pan, “ Design and analysis of an SLPT-based CCFL driver,” IEEE Transactions on Industrial Electronics, Vol. 50, pp 208 - 217, Feb 2003. [25 ]M. K. Nalbant, “ A new CCFL inverter circuit far AMLCD panels results in significantly higher efficiency and brightness Active Matrix Liquid Crystal Displays,” Second International Workshop on AMLCDs '95,pp 133 – 136, Sept 1995. [26 ]K. Yuasa, K. Nishimura, Y. Hara, and Y. Dobashi,” A low power consumption fluorescent lamp for LCD backlighting Plasma Science,” IEEE International Conference on Record – Abstracts, pp 124, June 1996. [27 ]Y. Ishizuka, K.-W. Lee, T. Oyama, H. Matsuo, and T. Koga, “ Consideration of a single-switch inverter for piezoelectric transformer with a new control method,” IEEE 34th Annual Conference on Power Electronics Specialist, Vol. 4, pp 1621 - 1626, June 2003. [28 ]L. H. Hwang, J. H. Yoo, B. H. Lee, J. R. Kim, E. S. Jang, M. T. Cho, I. S. Ahn, H. J. Joo, and J. S. Kim, “ MATLAB and PSPICE micro-modeling of piezoelectric transformer for CCFL drive,” Proceedings of the 13th IEEE International Symposium on Applications of Ferroelectrics, Vol. 28, pp 281 – 285, May-1 June 2002. [29 ]L. H. Hwang, J. H. Yoo, B. H. Lee, E. S. Jang, and M. T. Cho, “ Modeling of piezoelectric transformer and CCFL by PSPICE,” International Conference on Power System Technology, Vol. 4, pp 2664 – 2668, Oct 2002. [30 ]Weiyun Chen, “Series-parallel resonant forward inverter as a cold cathode fluorescent lamp (CCFL) driver,” Applied Power Electronics Conference and Exposition, Vol. 2, pp 943 – 947, March 2002. [31 ]C. S. Moo, W. M. Chen, and H. K. Hsieh,” An electronic ballast with piezoelectric transformer for cold cathode fluorescent lamps,” IEEE International Symposium on Industrial Electronics, Vol. 1, pp 36 – 41, June 2001. [32 ]Wei-Chung Cheng, and M. Pedram, “ Power minimization in a backlit TFT-LCD display by concurrent brightness and contrast scaling,” IEEE Transactions on Consumer Electronics, Vol. 50, pp 25 - 32, Feb 2004. [33 ]Cherl-Jin Kim, Jae-Geun Ji, and Shin-Yong Yoon, “ A study on the design and performance of electronic ballast for ccfl dimming control with frequency modulation,” International Conference on Electrical Machines and Systems, Vol. 1, pp 453 - 456, Nov 2003. [34 ]C. S. Moo, W. M. Chen, and H. K. Hsieh, “ Electronic ballast with piezoelectric transformer for cold cathode fluorescent lamps,” IEE Proceedings Electric Power Applications, Vol. 150 , pp 278 - 282, May 2003. [35 ]Guangsup Cho; Y. S. Kim, D. H. Lee, W. Lee, J.W. Hong, D. W. Yang, Y.G. Kim, J. G. Kang, B. S. Kim, E. H. Choi, and H. S. Uhm,” Influence of auxiliary discharges on a multi-lamps backlight for large area LCD TVs Plasma Science,” The 30th International Conference on IEEE Conference Record - Abstracts, pp 137, June 2003. [36 ]D.Klien, “ A sensing and regulation concept for high end dimming ballasts,” Conference Record of the Industry Applications, Vol. 2, pp 785 - 790, 12-16, Oct 2003. [37 ]C.S.Moo,W.M. Chen, and H.C.Yen, “ A series-resonant electronic ballast for rapid-start fluorescent lamps with programmable starting,” Proceedings of the Power Conversion Conference, Vol. 1, pp 95 – 99, April 2002. [38 ]O. Montero, D. Baez, F. Alvarez, R. Alejos, and G.E. Flores-Verdad, “ Simulation and experimental results for a compact fluorescent lamp with electronic adapter,”Proceedings of the 38th Midwest Symposium on Circuits and Systems, Vol. 1, pp 216 – 218, 13-16, Aug 1995. [39 ]Fang Zheng Peng, “ Z-source inverter.” IEEE Transactions on Industry Applications, Vol. 39, pp 504- 510, March-April 2003. [40 ]L. Grajales, and F. C. Lee, “ Control system design and small-signal analysis of a phase-shift-controlled series-resonant inverter for induction heating,” Power Electronics Specialists Conference, Vol. 1, pp 450 – 456, 18-22 June 1995.id NH0925442014 sid 913907 cfn 0 / id NH0925442015 auc 吳昆諺 tic 變頻器系統之強健波形控制及三相模組化組接 adc 廖聰明 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 162 kwc 變頻器組接 abc 變頻器相當廣泛地應用於許多電力電子設備,如不斷電電源供應器、電子式照明設備及馬達驅動系統等,因應不同負載用電特性及要求,變頻器須妥善控制其輸出品質,有些場合甚至須規範具有良好之輸出電壓波形。本論文旨在從事變頻器之強健波形控制及由單相模組組接成 -接三相變頻器研究。首先探究變頻器之電路、切換控制、關鍵參數之影響及補償控制,以及其他一些實務考量事宜。接著組立建構單相變頻器模組,其電路組成元件、輸出濾波器、保護電路等之分析與設計於文中均有詳細介紹。在控制方面,先設計一雙可調度電流控制脈寬調制切換機構,使濾波電感電流具有緊密之命令追控特性。再研擬提出一電壓強健波形控制機構,由於精密之動態模式難以獲得,所提控制機構各組成部份之參數係以直覺式定之。在決定了迴授控制器之後,先在所定工作點線上調整命令前向控制器之轉移函數以得到最佳之波形追控特性,再將此轉移函數複製設定成強健擾動前向控制器之反模式,藉擾動消去補償控制技術以得強健之波形控制。為進一步精進波形控制,最後又輔加所提之強健波形補償控制。 tc 誌謝…………………………………………………………………... I 中文摘要……………………………………………………………... II 英文摘要……………………………………………………………... III 目錄…………………………………………………………………... IV 圖形明細表…………………………………………………………... VI 表格明細表…………………………………………………………... XIV 第一章、 簡介………………………………………………………. 1 第二章、 變頻器基本實務………………………………………….. 5 2.1 簡介…………………………………………………. 5 2.2 變頻器之切換控制及頻譜分析……………………. 5 2.2.1 直接責任週期電壓控制…………………….. 5 2.2.2 修正式PWM…………………………..…….. 10 2.2.3 電流控制模式……………………………….. 11 2.3 變頻器之電力品質分析……………………………. 14 2.4 變頻器之實務特性…….…………………………… 16 2.4.1 變頻器之關鍵參數及其折衷考量………….. 16 2.4.2 空白時間之影響及補償控制……………….. 19 2.4.3 直流鏈之漣波特性….………………………. 23 2.4.4 功率潮流控制……………………………….. 25 2.5 三相變頻器……………….………………………… 25 第三章、 單相變頻器之研製………………………………………. 28 3.1 簡介…………………………………………………. 28 3.2 所提變頻器之系統組成……………………………. 28 3.3 輸出濾波器之設計….……………………………… 36 3.4 性能評估:實測結果………………………………. 45 第四章、 所提之變頻器強健波形控制機構…..………….………... 55 4.1 簡介………………….……………………………… 55 4.2 控制架構及問題描述………………………..……... 55 4.3 電流控制迴路……………………………..………... 58 4.4 電壓控制迴路…….…………………………..…...... 61 4.4.1 迴授控制器………………………………….. 61 4.4.2 命令前向控制器…………………………….. 63 4.4.3 電壓強健擾動前向控制器………………….. 63 4.4.4 電壓波形強健控制器……………………….. 63 4.5 性能評估:不具輸出變壓器…………………….…. 64 4.5.1 線性負載(純電阻)…………………………… 66 4.5.2 非線性負載(橋式整流電容濾波負載)……… 75 4.6 性能評估:具輸出變壓器……………………….…. 96 4.6.1 線性負載(純電阻)…………………………… 96 4.6.2 非線性負載(橋式整流電容濾波負載)……… 102 第五章、 三相變頻器之模組化組接……………………….…….… 127 5.1 簡介…………………………………………………. 127 5.2 共同直流鏈單相變頻器之連接限制...…………….. 127 5.3 V-接三相變頻器之系統組成.………..………..…. 133 5.4 三相電壓波形之補償控制………………………… 136 5.5 性能評估:線性負載(純電阻)………………….…. 136 5.6 性能評估:非線性負載(橋式整流電容濾波負載)… 144 第六章、 結論……………………………………………………….. 152 參考資料…………………………………………………………….... 153rf A. Single phase inverter [1 ] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, New York: John Wiley & Sons, 1997. [2 ] B. K. Bose, Modern Power Electronics and AC Drive, New Jersey: Prentice-Hall, 2002. [3 ] T. L. Skvarenina, W. E. DeWitt, Electrical Power and Controls, New Jersey: Prentice Hall, 2001. [4 ] D. W. Hart, Introduction to Power Electronics, New Jersey: Prentice-Hall, 1997. [5 ] J. Vithayathil, Power Electronics: Principles and Applications, New York: McGraw-Hill Companies, 1995. [6 ] J. M. D. Murphy and F. G. Turnbull, Power Electronic Control of AC Motors, New York: Pergamon Press, 1988. [7 ] J. Arrillaga, D. Bradley and P. Bodger, Power System Harmonics, New York: John Wiley & Sons, 1985. [8 ] P. M. J. Heskes and J. H. R. Enslin, “Powerquality behavior of different photovoltaic inverter topologies,” International conference PCIM-2003, pp. 263-268, 2003. [9 ] H. Broeck and M. Miller, “Harmonics in DC to AC converters of single phase uninterruptible power supplies,” Telecommunications Energy Conference, pp. 653-658, 1993. [10 ] P. A. Dahono, A. Purwadi and Qamaruzzaman, “An LC filter design method for single-phase PWM inverters,” Proceedings of 1995 International Conference on Power Electronics and Drive Systems, vol. 2, pp. 571-576, 1995. [11 ] J. Kim, J. Choi and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” International Conference on Power System Technology, vol. 3, pp. 1659-1664, 2000. [12 ] S. Vukosavic, L. Peric, E. Levi and V. Vuckovic, “Reduction of the output impedance of PWM inverters for uninterruptible power supply,” Power Electronics Specialists Conference, pp. 757-762, 1990. [13 ] J. Sakly, P. Delarue and R. Bausiere, “Rejection of undesirable effects of input DC-voltage ripple in single-phase PWM inverters,” Fifth European Conference on Power Electronics and Applications, vol. 4, pp. 65-70, 1993. [14 ] P. N. Enjeti and W. Shireen, “A new technique to reject DC-link voltage ripple for inverters operating on programmed PWM waveforms,” IEEE Transactions on Power Electronics, vol. 7, no. 1, pp. 65-70, 1993. [15 ] A. C. dos Reis, V. J. Farias, L. C. de Freitas and J. B. Vieira, “A full-bridge three-level single phase inverter with stressless commutation cell and special PWM technique,” APEC '98, vol. 7, pp. 171-180, 1992. [16 ] E. A. Coelho, P. C. Cortizo and P. F. D. Garcia, “Small signal stability for single phase inverter connected to stiff AC system,” Industry Applications Conference Record of the 1999 IEEE, vol. 4, pp. 2180-2187, 1999. B. PWM and current controls [17 ] P. N. Enjeti, P. D. Ziogas and J. F. Lindsay, “Programmed PWM techniques to eliminate harmonics: a critical evaluation,” IEEE Transactions on Industry Applications, vol. 26, no. 2, pp. 302-316, 1990. [18 ] J. Holtz, “Pulse modulation: a survey,” IEEE Transactions on Industrial Electronics, vol. 39, no. 1, pp. 410-420, 1992. [19 ] G. Venkataramanan, D. M. Divan and T. M. Jahns, “Discrete pulse modulation strategies for high-frequency inverter systems,” IEEE Transactions on Power Electronics, vol. 8, no. 3, pp. 279-287, 1993. [20 ] F. Blaabjerg, J. K. Pedersen and P. Thoegersen, “Improved modulation techniques for PWM-VSI drives,” IEEE Transactions on Industrial Electronics, vol. 44, no. 1, pp. 87-95, 1997. [21 ] H. Dehbonei, L. Borle and C. V. Nayar, “A review and a proposal for optimal harmonic mitigation in single-phase pulse width modulation,” IEEE International Conference on Power Electronics and Drive Systems, vol. 1, pp. 408-414, 2001. [22 ] D. Czarkowski, D. V. Chudnovsky and I. W. Selesnick, “Solving the optimal PWM problem for single-phase inverters,” IEEE Transactions on Circuits and Systems I, vol. 49, no. 4, pp. 465-475, 2002. [23 ] P. A. Dahono and I. Krisbiantoro, “A hysteresis current controller for single-phase full-bridge inverters,” IEEE Proceedings Power Electronics and Drive Systems, vol. 1, pp. 415-419, 2001. [24 ] N. Abdel-Rahim and J. E. Quaicoe, “Three-phase voltage-source UPS inverter with voltage-controlled current-regulated feedback control scheme,” International Conference on Industrial Electronics, Control and Instrumentation, vol. 1, pp. 479-502, 1994. [25 ] S. K. Chung, “Steady-state error minimisation technique for single-phase PWM inverters,” Electronics Letters, vol. 38, no. 22, pp. 1043-1048, 2002. [26 ] M. P. Kazmierkowskzi and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: A survey,” IEEE Transactions on Industrial Electronics, vol. 45, no. 5, pp. 691-703, 1998. [27 ] M. Prodanovic, T. C. Green and H. Mansir, “A survey of control methods for three-phase inverters in parallel connection,” Eighth International Conference on Power Electronics and Variable Speed Drives, vol. 475, pp. 472-477, 2000. [28 ] Y. Xing, L. P. Huang and Y. G. Yan, “A decoupling control method for inverters in parallel operation,” International Conference on Power System Technology, vol. 2, pp. 1025-1028, 2002. [29 ] M. E. Fraser and C. D. Manning, “Performance of average current mode controlled PWM UPS inverter with high crest factor load,” Fifth International Conference on Power Electronics and Variable-Speed Drives, pp. 661-667, 1994. [30 ] G. Alarcon, V. Cardenas, S. Ramirez, N. Visairo, C. Nunez, M. Oliver and H. Sira-Ramirez, “Nonlinear passive control with inductor current feedback for an UPS inverter,” Power Electronics Specialists Conference, vol. 3, pp. 1414-1418, 2000. [31 ] J. Gao, X. Zhao, X. Yang and Z. Wang, “The research on avoiding flux imbalance in sinusoidal wave inverter,” Power Electronics and Motion Control Conference, vol. 3, pp. 1122-1126, 2000. [32 ] T. Senjyu, H. Kamifurutono and K. Uezato, “Robust current control method with disturbance voltage observer for voltage source PWM inverter,” Proceedings of 1995 International Conference on Power Electronics and Drive Systems, vol. 1, pp. 379-384, 1995. [33 ] T. H. Chen and C. M. Liaw, “Vibration acceleration control of an inverter-fed electrodynamic shaker,” IEEE/ASME Transactions on Mechatronics, vol. 4, no. 1, pp. 60 –70, 1999. [34 ] B. J. Kang and C. M. Liaw, “Robust hysteresis current-controlled PWM scheme with fixed switching frequency,” IEE Proceedings Electric Power Applications, vol. 148, no. 6, pp. 503-512, 2001. C. Voltage and waveform control [35 ] C. Rech, H. Pinheiro, H. A. Grundling, H. L. Hey and J. R. Pinheiro, “Analysis and design of a repetitive predictive-PID controller for PWM inverters,” Power Electronics Specialists Conference, vol. 2, pp. 986-991, 2001. [36 ] K. Guo, W. Xuejuan and J. Chen, “PWM VSI waveform control based on feedback and feedforward technology,” International Conference on Power Electronics and Drive Systems, vol. 2, pp. 638-642, 2001. [37 ] J. M. Guerrero, L. G. de Vicuna, J. Miret, J. Matas, and M. Castilla, “Integral control technique for single-phase UPS inverter,” International Symposium on Industrial Electronics, vol. 4, pp. 257-261, 2002. [38 ] M. Lopez, J. L. Garcia de Vicuna, M. Castilla, J. Matas and O. Lopez, “Control design for parallel-connected DC-AC inverters using sliding mode control,” Eighth International Conference on Power Electronics and Variable Speed Drives, vol. 475, pp. 457-460, 2000. [39 ] K.Y. Cho, “Control method of PWM inverter for driving LSM to reduce the burden of output transformer,” IEE Proceedings Electric Power Applications, vol. 150, no. 1, pp. 88-96, 2003. [40 ] S. J. Chiang, T. L. Tai and T. S. Lee, “Variable structure control of UPS inverters,” IEE Proceedings Electric Power Applications, vol. 145, no. 6, pp. 559-567, 1998. [41 ] O. Kukrer, H. Komurcugil and N. S. Bayindir, “Control strategy for single-phase UPS inverters,” IEE Proceedings Electric Power Applications, vol. 150, no. 6, pp. 743-746, 2003. [42 ] H. C. Chen, S. H. Li and C. M. Liaw, “Switch-mode rectifier with digital robust ripple compensation and current waveform controls,” IEEE Transactions on Power Electronics, vol. 19, no. 2, pp. 560-566, 2004. [43 ] X. Sun, M. H. L. Chow, F. H. F. Leung, D. Xu, Y. Wang and Y. S. Lee, “Analogue implementation of a neural network controller for UPS inverter applications,” IEEE Transactions on Power Electronics, vol. 17, no. 3, pp. 305-313, 2002. [44 ] O. Kukrer and H. Komurcugil, “Deadbeat control method for single-phase UPS inverters with compensation of computation delay,” IEE Proceedings Electric Power Applications, vol. 146, no. 1, pp. 123-128, 1999. [45 ] J. M. Guerrero, L. Garcia de Vicuna, J. Miret, J. Matas and M. Castilla, “A nonlinear feed-forward control technique for single-phase UPS inverters,” Annual Conference of the Industrial Electronics Society, vol. 1, pp. 257-261, 2002. [46 ] M. J. Ryan, W. E. Brumsickle and R. D. Lorenz, “Control topology options for single-phase UPS inverters,” IEEE Transactions on Industry Applications, vol. 33, no. 2, pp. 493-501, 1997. [47 ] T. Senjyu and K. Uezato, “Sinusoidal voltage controller for uninterruptible power supply by robust control,” Conference Record of the Power Conversion Conference, pp. 200-205, 1993. D. Dead time compensation [48 ] D. Leggate, and R. J. Kerkman, “Pulse-based dead-time compensator for PWM voltage inverters,” IEE Proceedings Electric Power Applications, vol. 137, no. 2, pp. 73-81, 1990. [49 ] T. Sukegawa, K. Kamiyama, K. Mizuno, T. Matsui and T. Okuyama, “Fully digital, vector-controlled PWM VSI-fed AC drives with an inverter dead-time compensation strategy,” Conference Record of the 1988 IEEE Industry Applications Society Annual Meeting, vol. 27, no. 3, pp. 552-559, 1991. [50 ] J. W. Choi and S. K. Sul, “New dead time compensation eliminating zero current clamping in voltage-fed PWM inverter,” Conference Record of the 1994 IEEE Industry Applications, vol. 1, no. 3, pp. 977-984, 1994. [51 ] W. C. Jong, Sung I l Yong and K. S. Seung, “Inverter output voltage synthesis using novel dead time compensation,” Conference Record of the 1994 IEEE Industry Applied Power Electronics, vol. 1, no. 3, pp. 100-106, 1994. [52 ] S. O. Won, T. K. Yong and J. K. Hee, “Dead time compensation of current controlled inverter using space vector modulation method,” Conference Record of the 1995 IEEE Power Electronics and Drive Systems, vol. 1, no. 3, pp. 374-378, 1995. [53 ] D. Leggate and R. J. Kerkman, “Pulse based dead time compensator for PWM voltage inverters,” Conference Record of the 1995 IEEE Industrial Electronics, vol.1, no. 4, pp. 474-481, 1995. [54 ] C. B. Jacobina, A. M. N. Limal and A. C. Oliveira, “Enhanced PWM voltage waveform and dead time compensation for AC drive systems,” Conference Record of the 1997 IEEE Industrial Electronics, vol. 2, no. 3, pp. 694-697, 1997. [55 ] J. Llaquet, D. Gonzalez, A. Arias, J. L.Romeral and D. Bedford, “EMI effects of hard-less dead time compensated PWM voltage inverter,” Conference Record of the 1998 IEEE Harmonics and Quality of Power , vol. 1, no. 3, pp. 516-520, 1998. [56 ] A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for open-loop PWM-VSI drives,” IEEE Transactions on Power Electronics, vol. 14, no. 4, pp. 683-689, 1999. [57 ] X. Yu, M. W. Dunnigan and B. W. Williams, “Phase voltage estimation of a PWM VSI and its application to vector-controlled induction machine parameter estimation,” IEEE Transactions on Industrial Electronics, vol. 47, no. 5, pp. 1181-1184, 2000. [58 ] A. C. Oliveira, A. M. N. Lima and C. B. Jacobina, “Varying the switching frequency to compensate the dead-time in pulse width modulated voltage source inverters,” Conference Record of the 2001 IEEE Power Electronics, vol.1, no. 2, pp. 244-249, 2001. [59 ] C. Attaianese, D. Capraro and G.. Tomasso, “A low cost digital SVM modulator with dead time compensation,” Conference Record of the 2001 IEEE Power Electronics, vol. 1, no. 4, pp.158-163, 2001. [60 ] X. Jiang, W. Shen and X. Huang, “High performance space-vector PWM inverters using nonlinear voltage gain correction,” Conference Record of the 2001 IEEE Electrical Machines and Systems, vol. 1, no. 3, pp.534-537, 2001. [61 ] H. S. Kim, H. W. Kim and M. J. Youn, “A new on-line dead-time compensation method based on time delay control,” Conference Record of the 2001 IEEE Industrial Electronics, vol. 2, no. 2, pp.1184-1189, 2001. [62 ] J. L. Lin, “A new approach of dead-time compensation for PWM voltage inverters,” IEEE Transactions on Circuits and Systems, vol. 49, no. 4, pp. 476-483, 2002. [63 ] A. C. Oliveira, C. B. Jacobina, A. M. N. Lima, E. R. C. D. Silva, “Dead-time compensation in the zero-crossing current region,” Conference Record of the 2003 IEEE Power Electronics Specialist, vol. 4, no. 3, pp. 1937-1942, 2003. [64 ] H. S. Kim, H. T. Moon and M. J. Youn;, “On-line dead-time compensation method using disturbance observer,” IEEE Transactions on Power Electronics, vol. 18, no. 6, pp. 1336-1345, 2003. E. Multi-modular connection and three phase inverter [65 ] F. Barzegar and S. Cuk, “A new switched-mode amplifier produces clean three-phase power,” TESLAco, Pasadena, Advances in Switched-Mode Power Conversion, vol. 3, pp. 179-193, 1983. [66 ] K. Matsui, Y. Murai, M. Watanabe, M. Kaneko and F. Ueda, “A pulsewidth-modulated inverter with parallel connected transistors using current-sharing reactors,” IEEE Transactions on Power Electronics, vol. 8, no. 2, pp. 186-191, 1993. [67 ] F. Ueda, K. Matsui, M. Asao and K. Tsuboi, “Parallel-connections of pulsewidth modulated inverters using current sharing reactors,” IEEE Transactions on Power Electronics, vol. 10, no. 6, pp. 673-679, 1995. [68 ] F. V. P. Robinson, “The interleaved operation of power amplifiers,” Seventh International Conference on Power Electronics and Variable Speed Drives, vol. 456, pp. 606-611, 1998. [69 ] B. H. Li, S. S. Choi and D. M. Vilathgamuwa, “Transformerless dynamic voltage restorer,” IEE Proceedings- Generation, vol. 149, no. 3, pp. 263-273, 2002. [70 ] A. Chibani and M. Nakaoka, “A new state-feedback control based 3 phase PWM inverter with improved parallel resonant DC link,” Conference Record of the 1992 IEEE, vol. 1, pp. 801-808, 1992. [71 ] G. Yao, S. Phillips and L. Norum, “Three-phase inverters-analysis of ability to maintain symmetrical output voltages,” International Conference on Industrial Electronics, Control, and Instrumentation, vol. 2, pp. 1033-1039, 1993. [72 ] V. M. Cardenas, S. Horta and R. Echavarria, “Elimination of dead time effects in three phase inverters,” IEEE International Technical Proceedings of Power Electronics Congress, pp. 258-262, 1996. [73 ] R. Stoicescu, K. Miu, C. O. Nwankpa, D. Niebur and Xiaoguang Yang, “Three-phase converter models for unbalanced radial power-flow studies,” IEEE Transactions on Power Systems, vol. 17, no. 4, pp. 1016-1021, 2002. F. Commercialized AC Power Source [74 ] “Programmable AC source specification 6590,” CHROMA ATE INC. [75 ] “Single and three phase AC power sources models from 500 VA to 12,000 VA,” PACIFIC INC. [76 ] “Single and three phase AC power sources models from 1 kVA to 12 kVA manual or programmable control,” PACIFIC INC. [77 ] “P series 800 VA to 2000 VA output power,” California Instruments. [78 ] “IX Series 3000 VA to 30000 VA of AC output power,” California Instruments. [79 ] “Elgar 1001SL 1000VA AC Power Source,” Test Equipment Corporation. [80 ] “Elgar 1203SL 3 phase 1200VA AC Power Source,” Test Equipment Corporation.id NH0925442015 sid 913909 cfn 0 / id NH0925442016 auc 賴英傑 tic 台電系統低頻振盪參數之計算方法 adc 陳士麟 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 88 kwc 低頻振盪 kwc 離散小波轉換 kwc 阻尼常數 kwc 監測 abc 摘要 tc 目錄 中文摘要....................................................................................................I 英文摘要...................................................................................................II 誌謝..........................................................................................................IV 目錄...........................................................................................................V 圖目錄.................................................................................................. VIII 表目錄....................................................................................................XII 第一章 緒論 1 1.1 研究動機及目的 1 1.2 國內外研究概況 1 1.3 研究內容及成果 3 1.4 各章重點 3 第二章 電力系統低頻振盪之現象與發生原理 5 2.1 前言 5 2.2 穩定度分類 5 2.3 低頻振盪之現象與對策 6 2.3.1 低頻振盪模式 6 2.3.2 同步轉矩與阻尼轉矩 8 2.3.3 系統阻尼與電力系統穩定器 8 2.4 低頻振盪發生原理 9 2.4.1 動態穩定度模型 10 2.4.2 物理現象說明 14 2.5 低頻振盪模擬方法 - 定義自然頻率及阻尼常數 15 2.6 低頻振盪波形 17 2.6.1 增長中的弦波振盪 / 持續中的弦波振盪 / 衰減中的 弦波振盪 17 2.6.2 定值的直流偏移量及變動的直流偏移量 19 第三章 低頻振盪信號處理方法 21 3.1 前言 21 3.2 傅立葉轉換 21 3.2.1 信號之前處理:直流偏移量濾除方法 22 3.2.2 改良式傅立葉轉換 24 3.3 小波轉換 26 3.3.1 小波函數的基本特性 26 3.3.2 多重解析空間 29 3.3.3 離散小波轉換 31 3.3.4 離散小波轉換之矩陣表示方式 34 3.4 傅立葉轉換與小波轉換之比較 35 第四章 測試結果 38 4.1 程式設計 38 4.1.1 程式架構 38 4.1.2 程式設計所使用的語言及套裝軟體 41 4.2 自發性低頻振盪之信號處理結果 41 4.3 大型擾動後振盪信號之處理結果 47 4.3.1 以85/9/3的台電波形記錄進行測試之結果 47 4.3.2 以93/1/24的台電記錄波形進行測試之結果 56 第五章 結論 74 5.1 結論與建議 74 5.2 未來研究方向 76 參考文獻 77 附錄A 動態穩定度模型之推導 80 附錄B 小波函數族 86 圖目錄 圖2.1 80/04/28 於龍崎超高壓變電所記錄之低頻振盪波形 7 圖2.2 轉矩與轉子角度的關係 10 圖2.3 單機連接至系統無限匯流排模型線性化模型方塊圖 12 圖2.4 機組相量圖(相量圖右側為 的時變圖) 13 圖2.5 低頻振盪波形的發展過程 18 圖2.6 故障發生時造成的短暫振盪現象(待續) 19 圖2.6 故障發生時造成的短暫振盪現象(續) 20 圖3.1 視窗型傅立葉轉換(右側圖之說明請參閱圖3.8) 22 圖3.2 Haar函數 28 圖3.3 函數中尺度的縮小(j值增大,解析度提高) 30 圖3.4 以濾波器組進行小波分解之示意圖(圖內↓2表示降級取樣係取 的樣本,進行三次降層,降層為多個低解析度信號) 31 圖3.5 圖3.4之信號分解後係數分佈 32 圖3.6 正弦波與小波的比較 36 圖3.7 傅立葉轉換及小波轉換的波形分析方式 36 圖3.8 視窗型傅立葉轉換和小波轉換於相位平面上的有效涵蓋範圍 37 圖4.1 程式架構 39 圖4.2 程式流程圖(粗框者為可變視窗型傅立葉轉換部分) 40 圖4.3 測試波形一 42 圖4.4 測試波形二 42 圖4.5 測試波形三 44 圖4.6 測試波形四 44 圖4.7 測試波形五 45 圖4.8 測試波形六 45 圖4.9 短暫振盪波形(此即圖2.6(c)所示台電於85/9/3錄得之大型擾動波形) 48 圖4.10 小波分解階層示意圖 49 圖4.11 以db10小波函數分解圖4.9波形之分解結果 51 圖4.12 圖4.9之原始波形與第四層小波分解後細項波形之比較 (待續) -- (a)以db8函數進行小波分解 (b)以sym7函數進行小波分解 52 圖4.12 圖4.9之原始波形與第四層小波分解後細項波形之比較(待續)--(c)以sym8函數進行小波分解 (d)以coif3函數進行小波分解 53 圖4.12 圖4.9之原始波形與第四層小波分解後細項波形之比較(續) -- (e)以coif4函數進行小波分解 (f)以dmey函數進行小波分解 54 圖4.13 原始波形與第四層小波分解後細項波形之比較(待續)--(a)原始波形1-1(上);db10之分解(中);dmey之分解(下). 58 圖4.13 原始波形與第四層小波分解後細項波形之比較(續)-- (b)原始波形1-2(上);db10之分解(中);dmey之分解(下) 59 圖4.14 原始波形與第四層小波分解後細項波形之比較(待續)--(a)原始波形2-1(上);db10之分解(中);dmey之分解(下). 61 圖4.14 原始波形與第四層小波分解後細項波形之比較(待續)--(b)原始波形2-2(上);db10之分解(中);dmey之分解(下). 62 圖4.14 原始波形與第四層小波分解後細項波形之比較(待續)--(c)原始波形2-3(上);db10之分解(中);dmey之分解(下) 63 圖4.14 原始波形與第四層小波分解後細項波形之比較(續)-- (d)原始波形2-4(上);db10之分解(中);dmey之分解(下) 64 圖4.15 原始波形與第四層小波分解後細項波形之比較(待續)--(a)原始波形3-1(上);db10之分解(中);dmey之分解(下) 66 圖4.15 原始波形與第四層小波分解後細項波形之比較(待續)--(b)原始波形3-2(上);db10之分解(中);dmey之分解(下) 67 圖4.15 原始波形與第四層小波分解後細項波形之比較(待續)--(c)原始波形3-3(上);db10之分解(中);dmey之分解(下) 68 圖4.15 原始波形與第四層小波分解後細項波形之比較(待續)--(d)原始波形3-4(上);db10之分解(中);dmey之分解(下) 69 圖4.15 原始波形與第四層小波分解後細項波形之比較(待續)--(e)原始波形3-5(上);db10之分解(中);dmey之分解(下) 70 圖4.15 原始波形與第四層小波分解後細項波形之比較(續)-- (f)原始波形3-6(上);db10之分解(中);dmey之分解(下) 71 圖A.1 發電機連接至無限匯流排古典模型 80 圖A.2 單部發電機連接至無限匯流排古典模型方塊圖 82 圖B.1 Haar小波函數 86 圖B.2 Daubechies小波函數 86 圖B.3 Biorthogonal小波函數 87 圖B.4 Coiflets小波函數 88 圖B.5 Symlets小波函數 88 圖B.6 Meyer小波函數 88 表目錄 表2.1 圖2.3內實線部份各變數之相關相量相對位置(參閱圖2.4) 12 表4.1 三波峰偵測法及可變視窗型離散傅立葉轉換程式之6個測試波形特性 42 表4.2 以測試波形一、二測試三波峰偵測直流濾波法及可變視窗型離散傅立葉轉換程式之分析結果 43 表4.3 以測試波形三、四測試三波峰偵測直流濾波法及可變視窗型離散傅立葉轉換程式之分析結果 44 表4.4 以測試波形五、六測試三波峰偵測直流濾波法及可變視窗型離散傅立葉轉換程式之分析結果 45 表4.5 以測試波形一~六於三波峰偵測直流濾波法及可變視窗型離散傅立葉轉換程式之測試誤差統計 46 表4.6 以圖4.9波形測試圖4.2程式之分析結果(比較兩種不同的濾波方法) 48 表4.7 選用六種小波函數分解圖4.9波形再進行可變視窗傅立葉轉換程式之分析結果(參考圖4.12) 55 表4.8 以圖4.9波形測試圖4.2程式之分析結果(比較三種不同的濾波方法) 56 表4.9 93/01/24台電記錄的三組共12件測試波形之識別資料 57 表4.10 經小波分解之D4波形再進行可變視窗傅立葉轉換程式之分析結果(參考圖4.13a~b) 60 表4.11 經小波分解之D4波形再進行可變視窗傅立葉轉換程式之分析結果(參考圖4.14a~d) 65 表4.12 經小波分解之D4波形再進行可變視窗傅立葉轉換程式之分析結果(參考圖4.15a~f) (待續) 72 表4.12 經小波分解之D4波形再進行可變視窗傅立葉轉換程式之分析結果(參考圖4.15a~f) (續) 73rf 參考文獻 [1 ]台電系統適用之電力系統穩定器選擇,台灣電力公司系統規劃處,1984年。 [2 ]台電動態低頻振盪現象分析,台灣電力公司75年度研究發展專題,1986年。 [3 ]台電系統低頻振盪現象之實測與改善,經濟部83年度研究發展專題,1994年。 [4 ]蔡泓錡、李盛輝、朱家齊,民營電廠振盪模式之分析與改善策略之研究,中華民國第二十四屆電力工程研討會論文集,第1289~1293頁,2003年12月。 [5 ]K. P. Poon, K. C. Lee, “Analysis of Transient Stability Swings in Large Interconnected Power Systems by Fourier Transformation”, IEEE Trans. on Power Systems, Vol. 3, No. 4, pp.1573-1581, 1988. [6 ]C. L. Chang, A. S. Liu, C. T. Huang, “Oscillatory Stability Analysis Using Real-Time Measured Data”, IEEE Trans. on Power Systems, Vol. 8, No.3, August 1993. [7 ]I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992. [8 ]小波分析導論,崔錦泰著,程正興譯,西安交通大學出版社,1995年。 [9 ]凌波初步,單維彰著,全華圖書,1998年。 [10 ]M. Meunier, and F. Brouaye, “Fourier Ttransform,Wavelet,Prony Analysis : Tools for Harmonics and Quality of Power”, Proceedings of 8th International Conference on Harmonics and Quality of Power , Volume 1, pp.71 – 76, 1998. [11 ]黃世杰、趙維和,應用小波轉換於電力系統次同步共振之鑑別,中華民國第二十四屆電力工程研討會論文集,第1567~1571頁,2003年12月。 [12 ]黃世杰、林矩民,應用離散小波轉換技術於分散式發電系統之孤島現象偵測,中華民國第二十三屆電力工程研討會論文集,第1174~1178頁,2002年12月。 [13 ]任震、黃雯瑩、何建軍、石志強、楊樺、楊浩,小波分析及其在電力系統中的應用-- (一)概論,電力系統自動化,第21卷,第1期,第5~7頁,1997年1月。 [14 ]P. Kundur, Power System Stability and Control, McGraw-Hill, 1993. [15 ]Y. N. Yu, Electric Power System Dynamics, Academic Press, 1983. [16 ]P. M. Anderson, and A. A. Found, Power System Control and Stability, IEEE Press, 1993. [17 ]G. Rogers, Power System Oscillations, Kluwer Academic, 2000. [18 ]林水秀,電力系統的動態和小信號穩定度,電機月刊,第十二卷,第三期,第266 ~ 276頁,2002年3月。 [19 ]李森源、石連柱、陳躬耕、廖如柏、林淳義,台電系統低頻振盪現象之回顧與分析,中華民國第十三屆電力工程研討會論文集,第772~777頁,1992年12月。 [20 ]台灣電力公司負載特性監錄設備之開發與安裝,經濟部80年度研究發展專題,1991年。 [21 ]Y. Y. Hsu, S. W. Shyue, and C. C. Su, “Low Frequency Oscillations in Longitudinal Power Systems: Experience with Dynamic Stability of Taiwan Power Company”, IEEE Trans. on Power Systems, Vol.2, No.1, pp.92-100, 1987. [22 ]C. Barbier, E. Ferrari, and K. E. Johansson, “Questionnaire on Electromechanical Oscillation Damping in Power Systems Report on the Answers”, Electra, No. 64, pp.59-90, 1976. [23 ]F. P. deMello, and C. Concordia, “Concepts of Synchronous Machine Stability as Affected by Excitation Control”, IEEE Trans. on Power Applied Systems, Apr., pp.189-202, 1969. [24 ]O. I. Elgerd, Electric Energy System Theory - An Introduction, McGraw-Hill, 1982. [25 ]張忠良、劉阿興、劉傳聖、胡文俊、陳永田、黃江滄,電力系統穩定器功能評估,中華民國第十三屆電力工程研討會論文集,第724~731頁,1992年12月。 [26 ]Wavelet Toolbox User’s Guide, The MathWorks, 2002.id NH0925442016 sid 913912 cfn 0 / id NH0925442017 auc 林彥瑋 tic 開關磁阻馬達之切換及速度控制改善研究 adc 廖聰明 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 181 kwc 開關磁阻 kwc 噪音 kwc 振動 kwc 速度 abc 本論文旨在於建立一以數位訊號處理器(Digital signal processor, DSP)為主之開關磁阻馬達(switched reluctance motor, SRM)驅動系統,並從事其切換及速度控制性能改善研究。首先探究馬達驅動系統組成及DSP數位控制實務,然後據以設計組立一以DSP為主之實驗用SRM驅動系統。接著在有關噪音及振動消除之研究方面,先探究其產生之來源、效應及暨有減輕噪音及振動之方法。然後研究及應用五種控制策略於所建構之馬達驅動系統上,並比較評估其效果和限制。這些策略含隨機頻率脈寬調變、導通及截止角度同步前移、截止角之隨機化改變,電流下降波形控制、及電流下降波形結合換相位置前移。最後一種為最有效之控制策略,可在噪音及振動消除與能量轉換效率綜合考量上得到最佳效能。 tc ACKNOWLEDGEMENTS ……………………………………….………………. I ABSTRACT ……………………………………………………….……………… II LIST OF CONTENTS …………………………………………….………………. III LIST OF FIGURES ……………………………………………….………………. VI LIST OF TABLES ..……………………………………………….………………. XIII CHAPTER I INTRODUCTION …...………………………………………. 1 CHAPTER II FUNDAMENTALS OF SRM DRIVE ………………………. 6 2.1 Introduction .……….………………………………………… 6 2.2 Structure, Operation and Governing Equations of SRM ……. 6 2.3 Hard-Switching Converters ………………………………….. 13 2.4 Soft-Switching Converters ………………………................... 28 CHAPTER III DSP-BASED SRM DRIVE …………………….…………… 48 3.1 Introduction .…………………………………………………. 48 3.2 Some Practical Issues of Digital Control ……….…………… 48 3.3 The Established DSP-Based SRM Drive …….……………… 50 3.3.1 Power Circuit ……………………………………….. 53 3.3.2 DSP-Based Control Environment …………………... 53 3.3.3 Interface Circuits …………………………………… 57 3.3.4 Control Flowcharts …………………………………. 66 3.4 Some Measured Results …………………………………….. 66 CHAPTER IV REDUCTION OF ACOUSTIC NOISE AND VIBRATION EFFECTS VIA IMPROVED SWITCHING CONTROLS ….. 76 4.1 Introduction .…………………………………………………. 76 4.2 Sources of Acoustic Noise and Vibration …………………… 76 4.3 Mitigation of Acoustic Noise and Vibration Via Random PWM Switching ……..…………………………………………….. 83 4.3.1 Intuitive Spectral Analysis ….....………........……… 83 4.3.2 The Proposed Random Switching Scheme ……....… 85 4.3.3 Experimental Results ………………………………. 87 4.4 Mitigation of Acoustic Noise and Vibration Via Commutation Tuning ……..…………………………………………..…….. 92 4.4.1 Theoretical Analysis ….…..………........…………… 92 4.4.2 The Proposed Commutation Tuning Scheme ……..... 92 4.4.3 Experimental Results ………………………………. 95 4.5 Mitigation of Acoustic Noise and Vibration Via Random Commutation Tuning ……..……………...…………..…….. 95 4.5.1 Theoretical Analysis ….…..………........…………… 95 4.5.2 The Proposed Random Commutation Tuning Scheme 104 4.5.3 Experimental Results ………………………………. 104 4.6 Mitigation of Acoustic Noise and Vibration Via Current Tail Profiling …....…………………………………………..…….. 104 4.6.1 Theoretical Analysis ….…..………........…………… 104 4.6.2 The Proposed Current Tail Profiling Scheme ……… 112 4.6.3 Experimental Results ………………………………. 115 4.7 Comparative Evaluation ……………………………………... 125 CHAPTER V MODEL FOLLOWING SPEED CONTROL ….……………. 126 5.1 Introduction .…………………………………………………. 126 5.2 Dynamic Model Estimation …………………….…………… 126 5.3 2DOF Speed Controller ……………………………………… 133 5.3.1 Analysis and Design ………………………………... 133 5.3.2 Simulation and Experimental Results ……………… 138 5.4 Linear Model Following Controller ...…...…………………... 141 5.4.1 Analysis and Design ………………………………... 141 5.4.2 Simulation and Experimental Results ……………… 145 5.5 Model Following Controller with VSS-Adapted Output Following Error Regulation ………………............................. 146 5.5.1 Analysis and Design ………………………………... 151 5.5.2 Simulation and Experimental Results ……………… 153 CHAPTER VI CONCLUSIONS ………………………..…………………… 168 REFERENCES …………………………………………….……….…………… 169rf A. Fundamentals of SRM [1 ] T. J. E. Miller, Brushless Permanent-Magnet and Reluctance Motors Drives, Clarendon Press, Oxford, 1989. [2 ] T. J. E. Miller, Switched Reluctance Motors and Their Control, Clarendon Press, Oxford, 1993. [3 ] P. C. Sen, Principles of Electrical Machines and Power Electronics, John Wiley & Sons, 1997. [4 ] J. J. Cathey, Electric Machines: Analysis and Design Applying Matlab, McGraw Hill, 2001. [5 ] R. Krishnan, Switched Reluctance Motor Drives: Analysis, Design and Application , CRC Press, New York, 2001. [6 ] K. I. Hwu, “Development of a switched reluctance motor drive,” Ph.D. Dissertation, Deparment of Electrical Engineering, National Tsing Hua University, ROC, 2001. [7 ] Y. Hayashi and T. J. E. Miller, “A new approach to calculating core losses in the SRM,” IEEE Trans. on Industrial Application, vol. 31, no. 3, pp. 1039-1046, 1995. [8 ] M. E. Hall, S. S. Ramamurthy and J. C. Balda, “An enhanced simple method for designing switched reluctance motors under multi-phase excitation,” Electric Machines and Drives Conference, pp. 715-720, 2001. [9 ] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. on Industrial Electronics, vol. 49, no. 1, pp. 15-27, 2002. [10 ] B. Mirzaeian, M. Moallem, V. Tahani and C. Lucas, “Multiobjective optimization method based on a genetic algorithm for switched reluctance motor design,” IEEE Trans. on Magnetics, vol. 38, no. 3, pp. 1524-1527, 2002. [11 ] W. Wu, J. B. Dunlop, S. J. Collocott and B. A. Kalan, “Design optimization of a switched reluctance motor by electromagnetic and thermal finite-element analysis,” IEEE Trans. on Magnetics, vol. 39, no. 5, pp. 3334-3336, 2003. B. Converters and voltage boosting control [12 ] P. K. Sood, Power converter for a switched reluctance motor, U.S. Patent 5225 181, 1992. [13 ] M. Ehsani, J. T. Bass, T. J. E. Miller and R. L. Steigerwald, “Development of a unipolar converter for switched reluctance motor drive,” IEEE Trans. on Industrial Application, vol. 23, no. 3, pp. 545-553, 1987. [14 ] C. Pollock and B. W. Williams, “A unipolar converter for a switched reluctance motor,” IEEE Trans. on Industrial Application, vol. 26, no. 2, pp. 222-228, 1990. [15 ] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. on Industrial Application, vol. 27, no. 6, pp. 1034-1049, 1991. [16 ] C. Pollock and M. Barnes, “Power electronic converters for switched reluctance drives,” IEEE Trans. on Power Electronics, vol. 13, no. 6, pp. 1100-1111, 1998. [17 ] Y. G. Dessouky, B. W. Williams and J. E. Fletcher, “A novel power converter with voltage-boosting capacitors for a four-phase SRM drive,” IEEE Trans. on Industrial Application, vol. 45, no. 5, pp. 815-823, 1998. [18 ] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Electric Power Applications, vol. 147, no. 5, pp. 337-344, 2000. [19 ] M. Dahmane, F. M. Tabar and F. M. Sargos, “An adapted converter for switched reluctance motor/generator for high speed applications,” Industry Applications Conference, Conference Record of the 2000 IEEE, vol. 3, pp. 1547-1554, 2000. [20 ] C. Hao and Z. Dong, “Analysis of the two types of the four-phase switched reluctance motor drive” ICEMS 2001, vol. 2, pp. 982-985, 2001. [21 ] S. J. Watkins, J. Corda and L. Zhang, “Multilevel asymmetric power converters for switched reluctance machines,” International Conference on Power Electronics, Machines and Drives, pp. 195-200, 2002. [22 ] K. Y. Cho, “Power converter circuit for a switched reluctance motor using a flyback transformer,” IEE Proc. Electric Power Applications, vol. 150, no. 1, pp. 88-96, 2003. C. Soft switching [23 ] G. Hua, C. Leu, Y. Jiang and F. C. Lee, “Novel zero-voltage-transition PWM converter,” IEEE Trans. on Power Electronics, vol. 9, no. 1, pp. 213-219, 1994. [24 ] G. Hua, E. X. Yang, Y. Jiang and F. C. Lee, “Novel zero-current-transition PWM converters,” IEEE Trans. on Power Electronics, vol. 9, no. 6, pp. 601-606, 1994. [25 ] K. T. Chau, T. W. Ching, C. C. Chan and M. S. W. Chan, “A novel zero-current soft-switching converter for switched reluctance motor drives,” IEEE Proc., IECON'98, vol. 2, pp. 893-898, 1998. [26 ] Y. Murai, J. Cheng and M. Yoshida, “New soft-switched reluctance motor drive circuit,” IEEE Industrial Application Conference, vol. 1, pp. 676-681, 1997. [27 ] K. M. J. Smith and K. M. Smedley, “A comparison of voltage-mode soft-switching methods for PWM converters,” IEEE Trans. on Power Electronics, vol. 12, no. 2, pp. 376-386, 1997. [28 ] Y. Murai, J. Cheng and M. Yoshida, “A soft-switched reluctance motor drive circuit with improved performances,” Power Electronic Specialists Conference, PESC '97 Record, 28th Annual IEEE, vol. 2, pp. 881-886, 1997. [29 ] Y. Murai and J. Cheng, “A simple soft-switched switched-reluctance motor drive,” IEEE Proc. IECON '98, vol. 2, pp. 911-916, 1998. [30 ] T. W. Ching, K. T. Chau and C. C. Chan, “A new zero-voltage-transition converter for switched reluctance motor drives,” Power Electronics Specialists Conference, PESC 98 Record, vol. 2, pp. 1295-1301, 1998. [31 ] J. Cheng, M. Yoshida and Y. Murai, “Analysis and application of a part resonant circuit for switched reluctance motor,” IEEE Proc. IECON'99, vol. 3, no. 2, pp. 1115-1120, 1999. [32 ] Y. Murai, J. Cheng and M. Yoshida, “New soft-switched/switched-reluctance motor drive circuit,” IEEE Trans. on Industrial Application, vol. 35, no. 1, pp. 78-85, 1999. [33 ] L. G. B. Rolim, W. I. Suemitsu, E. H. Watanabe and R. Hanitsch, “Development of an improved switched reluctance motor drive using a soft-switching converter,” IEE Electric Power Application, vol. 146, no. 5, pp. 488-494, 1999. [34 ] Y. Murai, J. Cheng, S. Sugimoto and M. Yoshida, “A capacitor-boosted, soft-switched switched-reluctance motor drive,” Applied Power Electronic Conference APEC'99, vol. 1, pp. 424-429, 1999. [35 ] L. P. B. Oliveira, E. R. Silva, A. M. N. Lima and C. B. Jacobina, “New soft-switched power converter topologies for variable reluctance machine drives,” IEEE Proc. PESC’99, vol. 2, pp. 826-831, 1999. [36 ] Y. berkovich and A. Ioinovici, “High efficient PWM zero-voltage-transition boost converter: AC small signal analysis,” IEEE Trans. on Circuits System I, vol. 47, no. 6, pp. 860-867, 2000. [37 ] H. J. Chen, “Design and implementation of a soft-switching converter-fed switched reluctance motor drive,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2002. [38 ] Y. Zhang and P. C. Sen, “A new soft-switching technique for buck, boost, and buck-boost converters,” IEEE Trans. on Industry Applications, vol. 39, no. 6, pp. 1775-1782, 2003. [39 ] N. Jain, P. K. Jain and G. Joos, “A zero voltage transition boost converter employing a soft switching auxiliary circuit with reduced conduction losses,” IEEE Trans. on Power Electronics, vol. 19, no. 1, pp. 130-139, 2004. [40 ] H. Bodur and A. F. Bakan, “An improved ZCT-PWM DC–DC converter for high-power and frequency applications,” IEEE Trans. on Industrial Electronics, vol. 51, no. 1, pp. 89-95, 2004. D. Commutation control and torque ripple reduction [41 ] H. Cailleux, B. L. Pioufle, B. Multon and C. Sol, “A precise analysis of the phase commutation for the torque nonlinear control of a switched reluctance motor - torque ripples minimization,” IEEE Proc. Industrial Electronics, Control, and Instrumentation, vol. 3, pp. 1985-1990, 1993. [42 ] D. S. Reay, T .C. Green and B. W. Williams, “Neural networks used for torque ripple minimisation from a switched reluctance motor,” Conference on Electronics and Applications, vol. 6, pp. 1-6, 1993. [43 ] I. Husain and M. Ehsani, “Torque ripple minimization in switched reluctance motor drives by PWM current control,” IEEE Trans. on Power Electronics, vol. 11, no. 1, pp. 83-88, 1996. [44 ] K. Russa, I. Husain and M. E. Elbuluk, “Torque-ripple minimization in switched reluctance machines over a wide speed range,” IEEE Trans. on Industry Applications, vol. 34, no. 5, pp. 1105-1112, 1998. [45 ] M. S. Islam and J. Husain, “Torque-ripple minimization with indirect position and speed sensing for switched reluctance motors,” IEEE Trans. on Industry Electronics, vol. 47, no. 5, pp. 1126-1133, 2000. [46 ] Z. Z. Ye, T. W. Martin and J. C. Balda, “Control of a 10/8 SRM based on the torque ripple minimization and speed feedback,” Power Electronics Specialists Conference, vol. 3, pp. 1695-1700, 2001. [47 ] I. Husain, “Minimization of torque ripple in SRM drives,” IEEE Trans. on Industrial Electronics, vol. 49, no. 1, pp. 28-39, 2002. [48 ] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. on Energy Conversion, vol. 18, no. 1, pp. 113-120, 2003. E. Acoustic noise reduction [49 ] D. E. Cameron, J. H. Lang and S. D. Umans, “The origin and reduction of acoustic noise in doubly salient variable-reluctance motors,” IEEE Trans. on Industry Applications, vol. 28, no. 1, pp. 1250-1255, 1992. [50 ] C. Y. Wu and C. Pollock, “Analysis and reduction of vibration and acoustic noise in the switched reluctance drive,” IEEE Trans. on Industry Applications, vol. 31, no. 2, pp. 91-98, 1995. [51 ] A. Michaelides and C. Pollock, “Reduction of noise and vibration in switched reluctance motors: new aspects,” Industry Applications Conference, vol. 2, pp. 771-778, 1996. [52 ] R. S. Colby, F. M. Mottier and T. J. E. Miller, “Vibration modes and acoustic noise in a four-phase switched reluctance motor,” IEEE Trans. on Industry Applications, vol. 32, no. 2, pp. 1357-1364, 1996. [53 ] C. Pollock and C. Y. Wu, “Acoustic noise cancellation techniques for switched reluctance drives,” IEEE Trans. on Industry Applications, vol. 33, no. 1, pp. 477-484, 1997. [54 ] K. B. Kim, “Field analysis of low acoustic noise switched reluctance motor,” IEEE Trans. on Magnetics, vol. 33, no. 1, pp. 2026-2029, 1997. [55 ] M. Gabsi, F. Camus, T. Loyau and J. L. Barbry, “Noise reduction of switched reluctance machine,” Proc. IEMD Conference, pp. 263-265, 1999. [56 ] B. Fahimi and M. Ehsani, “Spatial distribution of acoustic noise caused by radial vibration in switched reluctance motors: application to design and control,” Industry Applications Conference, Conference Record of the 2000, vol. 1, pp. 114-118, 2000. [57 ] W. Cai, P. Pillay and A. Onekanda, “Analytical formulae for calculating SRM modal frequencies for reduced vibration and acoustic noise design,” Electric Machines and Drives Conference, vol. 2, pp. 203-207, 2001. [58 ] W. Cai, P. Pillay, Z. Tang and A. Omekanda, “Experimental study of vibrations in the switched reluctance motor,” Electric Machines and Drives Conference, vol. 1, pp. 576-581, 2001. [59 ] J. W. Moon, J. Kim, S. G. Oh and J. W. Ahn, “Reduction of vibration and acoustic noise of SRM with hybrid excitation method,” IEEE Proc. Industrial Electronics, vol. 2, no. 1, pp. 1407-1412, 2001. [60 ] J. O. Fiedler and R. W. D. Doncker, “ Extended analytic approach to acoustic noise in switched reluctance drives,” Power Electronics Specialists Conference, vol. 4, pp. 1960-1964, 2002. [61 ] M. Takemoto, A. Chiba, H. Akagi and T. Fukao, “ Radial force and torque of a bearingless switched reluctance motor operating in a region of magnetic saturation,” Industry Applications Conference, Conference Record of the 2002, vol. 1, pp. 35-42, 2002. [62 ] F. Blaabjerg and J. K. Pedersen, “ Digital implemented random modulation strategies for AC and switched reluctance drives,” IEEE Proc. IECON'93, vol. 2, no. 3, pp. 676-682, 1993. [63 ] T. Boukhobza, M. Gabsi and B. Grioni, “Random variation of control angles, reduction of SRM vibrations,” Electric Machines and Drives Conference, IEMDC 2001, vol. 3, pp. 640-643, 2001. [64 ] B. Fahimi, G. Suresh, K. M. Rahman and M. Ehsani, “Mitigation of acoustic noise and vibration in switched reluctance motor drive using neural network based current profiling,” Industry Applications Conference, vol. 1, pp. 715-722, 1998. [65 ] J. W. Ahn, S. J. Park and D. H. Lee, “Hybrid excitation of SRM for reduction of vibration and acoustic noise,” IEEE Trans. on Industrial Electronics, vol. 51, no. 2, pp. 374-380, 2004. [66 ] K. H. Ha, Y. K. Kim, G. H. Lee and J. P. Hong, “Vibration reduction of switched reluctance motor by experimental transfer function and response surface methodology,” IEEE Trans. on Industrial Electronics, vol. 40, no. 2, pp. 577-580, 2004. F. Current control [67 ] J. M. D. Murphy and F. G. Turnbull, Power Electronic Control of AC Motors, Pergamon Press, Oxford, 1989. [68 ] B. K. Bose, “An adaptive hysteresis-band current control technique of a voltage-fed PWM inverter for machine drive system,” IEEE Trans. on Industrial Electronics, vol. 37, no. 5, pp. 402-408, 1990. [69 ] H. L. Huy, K. Slimani and P. Viarouge, “A current-controlled quasi-resonant converter for switched-reluctance motor,” IEEE Trans. on Industrial Electronics, vol. 38, no. 5, pp. 355-362, 1991. [70 ] J. Holtz, “Pulsewidth modulation-a survey,” IEEE Trans. on Industrial Electronics, vol. 39, no. 5, pp. 410-420, 1992. [71 ] F. Briz, A. Diez, M. W. Dengner and R. D. Lorenz, “Current and flux regulation in field-weakening operation of induction motors,” IEEE Trans. on Industrial applications, vol. 37, no. 1, pp. 42-50, 2001. [72 ] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. on Industrial Electronics, vol. 45, no. 5, pp. 691-703, 1998. [73 ] F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. on Industrial Electronics, vol. 14, no. 3, pp. 563-572, 1999. [74 ] M. T. Alrifai, J. H. Chow and D. A. Torrey, “Practical application of backstepping nonlinear current control to a switched-reluctance motor,” American Control Conference, vol. 1, pp. 594-599, 2000. [75 ] P. L. Chapman and S. D. Sudhoff, “Optimized waveform control for an 8/6 switched reluctance motor drive,” Applied Power Electronics Conference and Exposition, vol. 2, pp. 1096-1102, 2001. [76 ] G. G. Lopez and K. Rajashekara, “Peak PWM current control of switched reluctance and AC machines,” Industry Applications Conference, vol. 2, pp. 1212-1218, 2002. G. Speed control [77 ] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. on Industrial Electronics, vol. 44, no. 1, pp. 800-808, 1997. [78 ] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. on Electronics System, vol. 38, pp. 955-968, 2002. [79 ] V. K. Sharma, B. Singh, S. S. Murthy, A. Chandra and K. A. Haddad, “Performance analysis of fuzzy logic based speed controller for switched reluctance motor drive,” Power electronics, Drives and Energy System for Industrial Growth, Proceedings of the 1996 International Conference on, vol. 1, pp. 8-11, 1996. [80 ] C. Visa, G. Abba and F. Leonard, “Speed control of a switched reluctance motor using non-linear methods,” Conference on Systems, Man and Cybernetics, vol. 5, pp. 1-6, 2002. [81 ] C. M. Liaw, “Design of a two-degree-of-freedom controller for motor drives,” IEEE Trans. on Automatic Control, vol. 37, no. 8, pp. 1215-1220, 1992. [82 ] F. J. Lin and C. M. Liaw, “Reference model selection and adaptive control for induction motor drives,” IEEE Trans. Automat. Contr., vol.38, no. 10, pp. 1594-1600, 1993. [83 ] T. G. Lee and U. Y. Huh, “An error feedback model based adaptive controller for nonlinear systems,” IEEE Proc. Industrial Electronics, vol. 3, no. 4, pp. 1095-1100, 1997. [84 ] A. D. Cheok and N. Ertugrul, “Use of fuzzy logic for modeling, estimation, and prediction in switched reluctance motor drives,” IEEE Trans. on Electronics System, vol. 46, no. 6, pp. 1207-1224, 1999. [85 ] C. Lucas, M. M. Shanehchi, P. Asadi and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” Industry Applications Conference, vol. 3, pp. 1573-1577, 2000. [86 ] B. Fahimi, “Design of adjustable speed switched reluctance motor drives,” Industrial Electronics Society, vol. 3, no. 2, pp. 1577-1582, 2001. [87 ] J. Seo, H. R. Cha, H. Yang, J. C. Seo and K. H. Kim, Y. C. Lim and D. H. Jang, “Speed control method for switched reluctance motor drive using self-tuning of switching angle,” IEEE Proc. Industrial Electronics, vol. 2, no. 1, pp. 811-815, 2001. [88 ] G. Wei, M. Zhiyuan and Z. Qionghua, “An simplified estimation method of PI control parameters for switched SRM drive system,” Conference on Electrical Machines and System, vol. 2, pp. 946-949, 2001. [89 ] J. Y. Seo, H. R. Cha, H. Y. Yang, J. C. Seo, K. H. Kim, Y. C. Lim and D. H. Jang, “Speed control method for switched reluctance motor drive using self-tuning of switching angle,” Industrial Electronics, 2001. Proceedings. ISIE 2001. IEEE International Symposium on, vol. 2, pp. 811-815, 2001. [90 ] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor,” IEE Proc. Electric Power Applications, vol. 148, no. 4, pp. 345-353,2001. [91 ] A. S. B. F. Rahman and M. N. B. Taib, “Simulation of PID and fuzzy logic controller for the newly developed switched reluctance motor program,” Conference on Research and Development, vol. 4, pp. 49-53, 2002. [92 ] Z. Z. Ye, T. W. Martin, J. C. Balda and R. M. Schupbach, “Feedback control of an 8/6 SRM under multiphase excitation mode with short flux paths,” IECON 02, vol. 2, pp. 1072-1078, 2002. [93 ] M. T. Alrifai, J. H. Chow and D. A. Torrey, “Backstepping nonlinear speed controller for switched-reluctance motors,” IEE Proc. Electric Power Application, vol. 150, no. 2, pp. 193-200, 2003. [94 ] O. Barambones, A. J. Garrido and F. J. Maseda, “A robust field oriented control of induction motor with flux observer and speed adaptation,” IEE Proc. Emerging Technologies and Factory Automation,, vol. 1, no. 2, pp. 245-252, 2003. [95 ] K. T. Chau, S. W. Chung and C. C. Chan, “Neuro-fuzzy speed tracking control of traveling-wave ultrasonic motor drives using direct pulsewidth modulation,” IEEE Trans. on Electronics System, vol. 39, no. 4, pp. 1061-1069, 2003. H. Digital signal processing [96 ] F. Nekoogar and G. Moriarty, Digital Control Using Digital Signal Processing, Prentice Hall PTR, New Jersey, 1999. [97 ] J. G. Bollinger and N. A. Duffie, Computer Control of Machines and Processes, Addison-Wesley, Massachusetts, 1988. [98 ] G. F. Franklin, J. D. Powell and M. L. Workman, Digital Control of Dynamic Systems, 2nd Edition, Addison Wesley, New York, 1990. [99 ] D. Krakauer, Single Chip DSP Motor Control Systems Catching on in Home Appliances, Analog Devices Inc., USA, 2000. [100 ] S. Y. R. Hui, I. Oppermann and S. Sathiakumar, “Microprocessor-based random PWM schemes for DC-AC power conversion,” IEEE Trans. on Power Electronics, vol. 12, no. 2, pp.253-260, 1997. I. Random switching [101 ] T. Tanaka, T. Ninomiya and K. Harada, “Random-switching control in DC-to-DC converters,” Power Electronics Specialists Conference, PESC '89 Record, Vol. 1, pp. 500-507, 1989. [102 ] A. M. Trzynadlowski, F. Blaabjerg, J. K. Pedersen, R. L. Kirlin and S. Legowski, “Random pulse width modulation techniques for converter fed drive systems-a review,” Industry Applications Society Annual Meeting, Conference Record of the 1993, vol. 2, pp. 136-1143, 1993. [103 ] G. A. Covic and J. T. Boys, “Noise quieting with random PWM AC drives,” IEE Proc. Electric Power Applications, vol. 145, no. 1, pp. 1-10, 1998. [104 ] K. K. Tse, H. S. H. Chung, S. Y. R. Hui and H. C. So, “A comparative study of using random switching schemes for DC/DC converters,” APEC '99, vol. 1, pp. 893-898, 1999. [105 ] C. M. Liaw and Y. M. Lin, “Random slope PWM inverter using existing system background noise: Analysis, design and implementation,” IEE Proc. Electric Power Applications, vol. 147, no. 1, pp. 45-54, 2000. [106 ] R. L. Kirlin, M. M. Bech and A. M. Trzynadlowski, “Analysis of power and power spectral density in PWM inverters with randomized switching frequency,” IEEE Trans. on Industrial Electronics, vol. 49, no. 2, pp. 486-499, 2002.id NH0925442017 sid 913914 cfn 0 / id NH0925442018 auc 林立協 tic 利用交叉基因辨識技巧建立基因的cis調控網路動態模型及基因表現的預測 adc 陳博現 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 34 kwc 順式(cis)因子、cis調控網路、交叉基因辨識技巧、酵母菌 abc 基因的表現必須依賴轉錄因子(Transcription factor)辨識所對應的調控motif。然而基因表現如何藉由轉錄因子辨識順式因子(cis-element)之間的交互作用所調控,到目前為止對其瞭解仍是相當有限。本篇論文中,吾人定義一種cis調控網路的系統,它主要由順式因子及辨識它的轉錄因子所構成,並發展出一種動態模型來研究這種網路的動態特性與功能性結構。論文中,吾人主要研究酵母菌細胞分裂週期(cell cycle)基因的cis 調控網路,研究中吾人提出一種新的交叉基因辨識技巧,此技巧是針對感興趣的目標基因,利用生物晶片實驗資料與調控motif 的資訊,找出一群與該目標基因具有相同motif的基因,進而幫助分析多轉錄因子如何調控酵母菌細胞分裂週期基因的表現,並找出隱藏在cis 調控網路中轉錄因子之間交互作用所產生的調控能力。藉由這樣的動態模型分析,吾人不但可以對於每個轉錄及順式因子辨別量化出個別及交互作用所產生的調控能力特性,並可藉由這些辨別出的調控特性,發展出一種新的預測基因表現的方法。藉由這樣的預測方法,亦能有效的預測出基因的表現結果。本論文的分析技巧未來將可以應用在分析更複雜的真核生物,並探討基因調控序列間的演化變異。 tc 1. Introduction ………………………………………………………… 1 2. Methods …………………………………………………………… 5 2.1 Choice of a Cluster of Genes ……………………………………… 6 2.2 Dynamic modeling of cis-regulatory circuits ………………………… 7 2.3 Cross-gene identification scheme …………………………………… 10 2.4 Experimental data ………………………………………………… 12 3. Results ……………………………………………………………… 14 3.1 The cis-regulatory circuit of MFA2 ………………………………… 14 3.2 The cis-regulatory circuit of CLB2 ………………………………… 15 3.3 Accuracy of constructed cis-regulatory circuits ……………………… 19 3.4 Prediction of gene expression profil ………………………………… 20 4. Discussion …………………………………………………………… 22 Bibliography 25rf 1. Althoefer, H., Schleiffer, A., Wassmann, K., Nordheim, A., Ammerer, G., (1995) Mcm1 is required to coordinate G2-specific transcription in Saccharomyces cerevisiae. Mol. Cell. Biol., 15, 5917-5928 2. Costanzo, M., Schub, O., and Andrews, B., (2003) G1 Transcription Factors Are Differentially Regulated in Saccharomyces cerevisiae by the Swi6-Binding Protein Stb1. Mol. Cell. Biol., 23, 5064-5077 3. Cross, F., M. Hoek, J. D. McKinney, and A. H. Tinkelenberg. (1994) Role of Swi4 in cell cycle regulation of CLN2 expression. Mol. Cell. Biol., 14, 4779-4787 4. De Boor, C. (1978). A Practical Guide to Splines. Springer-Verlag. 5. Dirick, L., Moll, T., Auer, H. and Nasmyth, K. (1992) A central role for SWI6 in modulating cell cycle Start-specific transcription in yeast. Nature, 357, 508-513. 6. Ho, Y., Costanzo, M., Moore, L., Kobayashi, R., and Andrews, B.J. (1999) Regulation of Transcription at the Saccharomyces cerevisiae Start Transition by Stb1, a Swi6-Binding Protein. Mol. Cell. Biol., 19, 5267-5278. 7. Iyer, V.R., Horak, C.E., Scafe, C.S., Botstein, D., Snyder, M., and Brown, P.O. (2001). Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature, 409, 533–538. 8. Koranda, M., Schleiffer, A., Endler, L., and Ammerer, G. (2000). Fork-head-like transcription factors recruit Ndd1 to the chromatin of G2/M-specific promoters. Nature, 406, 94–98. 9. Kumar, R., Reynolds, D.M., Shevchenko, A., Goldstone, S.D., and Dalton, S. (2000). Forkhead transcription factors, Fkh1p and Fkh2p, collaborate with Mcm1p to control transcription required for M-phase. Current Biol. 10, 896–906. 10. Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Bar-Joseph, Z., Gerber, G.K., Hannett, N.M., Harbison, C.T., Thompson, C.M., Simon, I., et al. (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science, 298, 799-804. 11. Liao, J. C., Boscolo, R., Yang, Y.-L., Tran, L. M., Sabatti, C., Roychowdhury, V. P. (2003). Network component analysis: Reconstruction of regulatory signals in biological systems. Proc. Natl. Acad. Sci. U. S. A., 100, 15522-15527 12. Lim, F.L., Hayes, A., West, A.G., Pic-Taylor, A., Darieva, Z., Morgan, B.A., Oliver, S.G., and Sharrocks ,A.D. (2003) Mcm1p-induced DNA bending regulates the formation of ternary transcription factor complexes. Mol. Cell. Biol., 23, 450-461 13. Loy, C. J., Lydall, D. & Surana, U. (1999) Ndd1, a high-dosage suppressor of cdc28-1N, is essential for expression of a subset of late-S-phase-specific genes in Saccharomyces cerevisiae. Mol. Cell. Biol., 19, 3312-3327 14. Maher, M., Cong, F., Kindelberger, D., Nasmyth, K., and Dalton, S. (1995) Cell cycle-regulated transcription of the CLB2 gene is dependent on Mcm1 and a ternary complex factor. Mol. Cell. Biol., 15, 3129-3137 15. McBride, H.J., Yu, Y., and Stillman, D.J. (1999) Distinct regions of the Swi5 and Ace2 transcription factors are required for specific gene activation. J. Biol. Chem. 274, 21029-21036. 16. McInerny, C.J., Partridge, J.F., Mikesell, G.E., Creemer, D.P., and Breeden, L.L. (1997). A novel Mcm1-dependent element in the SWI4, CLN3, CDC6, and CDC47 promoters activates M/G1-specific transcription. Genes Dev. 11, 1277-1288. 17. Michaelis, S., and Herskowitz, I. (1988) The a-factor pheromone of Saccharomyces cerevisiae is essential for mating. Mol Cell Biol., 8, 1309-1318 18. Pilpel Y, Sudarsanam P, Church GM. (2001) Identifying regulatory networks by combinatorial analysis of promoter elements. Nature Genetics., 29, 153-159. 19. Segal, E., Shapira, M., Regev, A., Pe'er, D., Botstein, D., Koller, D., and Friedman, N. (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics, 34, 166-176. 20. Singer, R.H. and Penman, S. (1973) Messenger RNA in HeLa cells: kinetics of formation and decay. J. Mol. Biol., 78, 321-334. 21. Simon, I., Barnett, J., Hannett, N., Harbison, C.T., Rinaldi, N.J., Volkert, T.L., Wyrick, J.J., Zeitlinger, J., Gifford, D.K., Jaakkola, T.S. and Young, R.A. (2001) Serial Regulation of Transcriptional Regulators in the Yeast Cell Cycle. Cell., 106, 697-708. 22. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.Q., Bostein, D. and Futcher, B. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cererisiae by microarray hybridization. Mol. Biol. Cell., 9, 3273-3297 23. Ho, Y., Costanzo, M., Moore, L., Kobayashi, R., and Andrews, B.J. (1999) Regulation of Transcription at the Saccharomyces cerevisiae Start Transition by Stb1, a Swi6-Binding Protein. Mol Cell Biol., 19, 5267–5278 24. Yuh, C.H., Moore, J.G., and Davidson, E.H. (1996) Quantitative functional interrelations within the cis-regulatory system of the S. purpuratus Endo16 gene. Development, 122, 4045-4056 25. Yuh, C.H., Bolouri, H., and Davidson, E.H. (1998) Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. Science, 279, 1896-1902. 26. Yuh, C.H., Bolouri, H., and Davidson, E.H. (2001) Cis-regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control. Development, 128, 617-629. 27. Zhu, G., Spellman, P.T., Volpe, T., Brown, P.O., Botstein, D., Davis, T.N., and Futcher, B. (2000) Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature, 406, 90-94.id NH0925442018 sid 913915 cfn 0 / id NH0925442019 auc 黃莨展 tic 在多重路徑衰褪通道下編碼調變系統之反覆式解碼法 adc 呂忠津 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 48 kwc 反覆式解碼 kwc 多重路徑衰褪通道 kwc 等化器 kwc 因子圖 abc 無線通訊是現在及未來的主要通訊技術,在無線通訊中,惡劣的傳輸環境使得傳送訊號被嚴重破壞,造成接收端無法解碼解調變時候的困難,而多重路徑干擾是最常見的現象。由於傳輸環境中地形和周遭物的影響,反射路徑及落後的路徑會夾雜在一起,加上傳輸速度越來越快,解決多重路徑干擾的問題就成了在無線通訊環境中傳輸的一個主要課題。 rf [1 ] J.G. Proakis, Digital Communications. 2nd ed., New York: McGraw Hill, 2001. [2 ] H.-A. Loeliger, ”An introduction to factor graph,” IEEE Signal Processing Mag., vol. 21, pp. 28-41, Jan. 2004. [3 ] F.R. Kschischang, ”Codes defined on graphs,” IEEE Commun. Mag., vol. 41, no. 8, pp. 118-125, Aug. 2003. [4 ] N. Wiberg, H.-A. Loeliger, and R. K¨otter, ”Codes and iterative decoding on general graphs,” European Trans. Telecomm., vol. 6, pp. 513-525, Sep./Oct. 1995. [5 ] S. Benedetto, G. Montorsi, D. Divsalar, ”Concatenated convolutional codes with interleavers,” IEEE Commun. Mag., vol. 41, pp. 102-109, Aug. 2003. [6 ] H.R. Sadjadpour, N.J.A. Sloane, M. Salehi, and G. Nebe, ”Interleaver design for turbo codes,” IEEE J. Select. Areas Commun., vol. 19, pp. 831-837, May 2001. [7 ] F.R. Kschischang and B.J. Frey, ”Factor graphs and the sum-product algorithm,” IEEE Trans. Inform. Theory, vol. 47, pp. 498-519, Feb. 2001. [8 ] C. Berrou, A. Glavieux, and P. Thitimajshima, ”Near Shannon limit error-correcting coding and decoding: Turbo-codes,” in Proc. IEEE ICC’93, vol. 2, pp. 1064-1070. [9 ] C. Douillard, M. J´ez´equel, and C. Berrou, ”Iterative correction of intersymbolinterference: Turbo-Equalization,” European Trans. Telecomm., vol. 6, no. 5, pp. 507- 511, Sep./Oct. 1995. 47 [10 ] Y. Li and W.-H Mow, ”Iterative decoding of serially concatenated convolutional codes over multipath intersymbol-interference channels,” in Proc. IEEE ICC’99, vol. 2, pp. 947-951. [11 ] Y. Li and B. Chen, ”Hybrid equalization for multipath fading channels with intersymbol interference,” in Proc. IEEE VTC’99, vol. 1, pp. 309-313. [12 ] C.-C. Lu, ”Coding techniques of turbo codes,” Lecture notes, Jun. 2002. [13 ] V. Tarokh, N. Seshadri, and A.R. Calderbank, ”Space-time codes for high data rate wireless communication: Performance criterion and code construction,” IEEE Trans. Inform. Theory, vol. 44, pp. 744-765, Mar. 1998. [14 ] R.A. Horn and C.R. Johnson, Matrix analysis. New York: Cambridge Univ. Press, 1998. [15 ] S.H. Jamali and T. Le-Ngoc, Coded-Modulation Technique for Fading Channels. Boston: Kluwer, 1994. [16 ] C.-L. Hsiao and C.-C. Lu, ”Rate l/(l+1) convolutional encoders over rings with maximal free branch distance,” in Proc. ISIT 1998, Cambridge, USA, Aug. 1998. [17 ] C.-C. Cheng and C.-C. Lu, ”Space-time code design for CPFSK modulation over frequency-nonselective fading channels Part I: Fast fading.” Submitted for publication.id NH0925442019 sid 913916 cfn 0 / id NH0925442020 auc 郭碩芬 tic 縮短半導體記憶元件測試時間的方法與快閃記憶體之自我測試電路產生器 adc 吳誠文 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 98 kwc 縮短測試時間 kwc 快閃記憶體 kwc 自我測試 kwc 半導體記憶元件 abc 在單晶片(SoC)系統的設計上,半導體記憶元件的比重越來越大,因此,半導體記憶元件的測試也日驅重要,隨著半導體記憶元件的面積與速度快速地增加,所需使用的測試時間與測試電路也越來越大。在這篇碩士論文中,我們針對在半導體記憶元件的測試中兩種不同的問題,提出不同的解決方法,第一個問題是關於縮短半導體記憶元件測試時間的方法,另一個事關於快閃式記憶體之自我測試電路產生器。 tc 摘要....... .......................................... 1 誌謝...... ........................................... 2 目錄..... ............................................ 3 第一章 導論........................................... 4 第二章 背景資料與回顧................................. 5 第三章 縮短半導體記憶元件測試時間的方法............... 6 第四章 縮短半導體記憶元件測試時間自動化............... 7 第五章 縮短半導體記憶元件測試時間的實驗結果........... 8 第六章 整合隨機存取記憶體與快閃記憶體之自我測試電路... 9 第七章 快閃記憶體之自我測試電路產生器................ 10 第八章 快閃記憶體之自我測試電路產生器的實驗結果...... 11 第九章 結論與未來展望................................ 12 英文附錄 ............................................ 13rf [1 ] J. E. Vollrath, “Testing and characterization of SDRAMs,” in IEEE Design & Test of Computers, pp. 42– 50, Feb. 2003. [2 ] C. Cheng, C.-T. Huang, J.-R. Huang, C.-W. Wu, C.-J. Wey, and M.-C. Tsai, “BRAINS: A BIST complier for embedded memories,” in Proc. IEEE Int. Symp. Defect and Fault Tolerance in VLSI Systems (DFT), (Yamanashi), pp. 299–307, Oct. 2000. [3 ] K.-L. Cheng, C.-M. Hsueh, J.-R. Huang, J.-C. Yeh, C.-T. Huang, and C.-W. Wu, “Automatic generation of memory built-in self-test cores for system-on-chip,” in Proc. Tenth IEEE Asian Test Symp. (ATS), (Kyoto), pp. 91–96, Nov. 2001. [4 ] J.-C. Yeh, C.-F. Wu, K.-L. Cheng, Y.-F. Chou, C.-T. Huang, and C.-W. Wu, “Flash memory built-in self-test using march-like algorithms,” in Proc. IEEE Int. Workshop on Electronic Design, Test, and Applications (DELTA), (Christchurch), pp. 137–141, Jan. 2002. [5 ] P. Bernardii, M. Rebaudengo, M. S. Reorda, and M. Violante, “A P1500-compatible programmable BIST approach for the test of embedded flash memories,” in Proc. Design, Automation and Test in Europe (DATE), (Munich), pp. 720–725, Mar. 2003. [6 ] C.-T. Huang, J.-R. Huang, C.-F. Wu, C.-W. Wu, and T.-Y. Chang, “A programmable BIST core for embedded DRAM,” IEEE Design & Test of Computers, vol. 16, pp. 59–70, Jan.-Mar. 1999. [7 ] P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, Flash Memories. Boston: Kluwer Academic Publishers, 1999. [8 ] K.-L. Cheng, J.-C. Yeh, C.-W. Wang, C.-T. Huang, and C.-W. Wu, “RAMSES-FT: A fault simulator for flash memory testing and diagnostics,” in Proc. IEEE VLSI Test Symp. (VTS), (Monterey, California), pp. 281–286, Apr. 2002. [9 ] IEEE, IEEE 1005 Standard Definitions and Characterization of FloatingGate Semiconductor Arrays. Piscataway: IEEE Standards Department, 1999. [10 ] A. K. Sharma, Semiconductor Memories: Technology, Testing, and Reliability. Piscataway: IEEE Press, 1997. [11 ] M. G. Mohammad, K. K. Saluja, and A. Yap, “Testing flash memories,” in Proc. 13th Int. Conf. VLSI Design, pp. 406–411, Jan. 2000. [12 ] M. G. Mohammad and K. K. Saluja, “Flash memory disturbances: modeling and test,” in Proc. IEEE VLSI Test Symp. (VTS), (Marina Del Rey, California), pp. 218 –224, Apr. 2001. [13 ] S.-K. Chiu, J.-C. Yeh, C.-T. Huang, and C.-W. Wu, “Diagonal test and diagnostic schemes for flash memories,” in Proc. Int. Test Conf. (ITC), (Baltmore), pp. 37–46, Oct. 2002. [14 ] A. J. van de Goor, Testing Semiconductor Memories: Theory and Practice. Chichester, England: John Wiley & Sons, 1991. [15 ] C.-F. Wu, C.-T. Huang, and C.-W. Wu, “RAMSES: a fast memory fault simulator,” in Proc. IEEE Int. Symp. Defect and Fault Tolerance in VLSI Systems (DFT), (Albuquerque), pp. 165–173, Nov. 1999. [16 ] C.-F. Wu, C.-T. Huang, K.-L. Cheng, and C.-W. Wu, “Simulation-based test algorithm generation for random access memories,” in Proc. IEEE VLSI Test Symp. (VTS), (Montreal), pp. 291–296, Apr. 2000. [17 ] W.-J. Wu, C.-Y. Tang, and M.-Y. Lin, “Methods for memory test time reduction,” in Proc. IEEE Int. Workshop on Memory Technology, Design and Testing (MTDT), pp. 64–70, Aug. 1996. [18 ] W.-J. Wu and C.-Y. Tang, “Memory test time reduction by interconnecting test items,” in IEEE Asian Test Symp. (ATS), pp. 290–298, Dec. 2000. [19 ] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco: W. H. Freeman, 1979. [20 ] R. A. Brualdi and V. Pless, “Greedy codes,” in Proc. IEEE Int. Symp., pp. 366– 366, Jan. 1993.id NH0925442020 sid 913917 cfn 0 / id NH0925442021 auc 林三煬 tic 雙場橢圓曲線加密處理器 adc 吳誠文 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 61 kwc 橢圓曲線 kwc 加密處理器 abc 隨著有線、無線通訊的發展,安全性的考量變的越來越重要。如果沒有可靠的安全機制,許多應用將受到很大的限制,諸如:電子商務,網路銀行。密碼學是一個很有用的安全機制,利用它可以使得資料在不安全的環境中傳送而不會遭人竊取,基本上它分為二種加密系統,一種為對稱加密系統,例如DES、AES等,它利用同一把金鑰來做加解密的工作,此種加密速度較快,但金鑰的傳送需要另一安全的通道來傳送。另一種為非對稱加密系統,例如ECC、RSA同為公開金鑰的加密演算法,它需要二把金鑰才可以把加密的資料給還原,由於其中的一把金鑰是在不公開的環境下,故此它的安全性是無庸置疑的。橢圓曲線加密演算法裡主要是有限場數學運算,在一般的處理器並沒有為此目的而設計的硬體,也因此軟體來實現的話會造成處理速度的緩慢與能源沒有效率的消耗,這對行動電子商品會造成使用時間的縮短,所以的確需要一個專門負責加解密的硬體來加解密資料。我們設計一個ECC加密處理器。這個加密處理器支援雙場運算。實驗結果顯示這個加密處理器可以跑在時脈384MHz,面積約200Kgate,平均一個163 bit ECC運算耗時0.46ms,在適當的處理clock gating時,消耗功率約為152mW。 tc 1 Introduction . . . . 8 1.1 DemandofSecurity . . . . 8 1.2 PreviousWorks . . . . 9 1.3 Elliptic Curve Cryptographic Hardware . . . . . . . . . . 10 1.4 Organization . . . . . . 10 2 Cryptosystems . . . . . . 12 2.1 Fundamentals . . . . . . 12 2.2 Symmetric Key Cryptosystem . . 13 2.3 Asymmetric Key Cryptosystem. . 14 2.3.1 Discrete Logarithm Problem . 15 2.3.2 CertificationAuthority . . . 16 2.3.3 One-wayHashingFunction . . . 16 2.3.4 ECCvs. RSA . . . . . . . . . 16 3 Mathematical Background . . . . 19 3.1 Groups and Fields . . . . . . 19 3.2 GaloisFields . . . . . . . . 20 3.3 Modular Arithmetic . . . . . . 21 3.4 Polynomial Basis . . . . . . . 21 4 Introduction to Elliptic Curves 23 4.1 Elliptic Curve Groups over Real Numbers . . . . . . . . . . . . . 23 4.1.1 Elliptic Curve Addition: A Geometric Approach . . . . . . . . . . . . . 24 4.2 Elliptic Curve Groups over Fp . . . . . . . . . . . . . . . . 25 4.3 Elliptic Curve Groups over F2m 27 4.4 A Crypto Example for Elliptic Curve . . . . . . . . . . . . . . 28 5 Elliptic Scalar Multiplication 30 5.1 Scalar Multiplication Algorithm . . . . . . . . . . . . 30 5.2 ECCArithmetic . . . . . . . . 31 5.2.1 Modular Multiplication in GF(p) 33 5.2.2 GF(2n) Multiplication . . . 34 5.2.3 GF(2n) Inversion . . . . . . 35 6 Elliptic Curve Crypto-Processor Design 36 6.1 Features of Crypto-Processor . 37 6.2 IOInterface . . . . . . . . . 37 6.3 Controller . . . . . . . . . 39 6.4 ArithmeticUnit . . . . . . . . 39 6.4.1 RegisterFile . . . . . . . . 39 6.4.2 Comparator Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.4.3 AdderUnit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.4.4 ArithmeticDatapath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3 7 Experimental Results 47 7.1 ComplexityAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.2 SimulationFlow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7.3 DFT Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 8 Conclusions & Future Work 54 8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 8.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 A Microcode for EC Scalar Multiplication 56 4rf [1 ] G. B. Agnew, R. C. Mullin, and S. A. Vanstone, “An implementation of elliptic curve cryptosystems over f2155 ,” IEEE Journal on Selected Areas in Communications, vol. 11, pp. 804–803, June 1993. [2 ] G. Orlando and C. Parr, “A high-performance reconfigurable elliptic curve processor for GF(2m),” in CHES 2000 Workshop on Cryptographic Hardware and Embedded Systems,Springer-Verlag, Aug. 2000. [3 ] A. D. Woodbury, D. V. Bailey, and C. Parr, “Elliptic curve cryptography on smart cards without coprocessors,” in The Fourth Smart Card Research and Advanced Applications (CARDIS2000) Conference, Sept. 2000. [4 ] M.Bednara, M. Daldrup, J. von zur Gathen, and J. Shokrollahi, “Reconfigurable implementation of elliptic curve crypto algorithms,” in Reconfigurable Architectues Workshop, 16th International Parallel and Distributed Processing Symposium, Apr. 2002. [5 ] H. Eberle, N. Gura, S. C. Shantz, and V. Gupta, “A cryptographic processor for arbitaray elliptic curves over GF(2m),” Technical Report, Sun Microsystems Laboratories TR-2003-123, May 2003. [6 ] A. Satoh and K. Takano, “A scalable dual-field elliptic curve cryptographic processor,” IEEE Trans. Computers, vol. 52, pp. 449–460, Apr. 2003. [7 ] National Institute of Standards and Technology (NIST), Data Encryption Standard (DES).Springfield, VA 22161: National Technical Information Service, Oct. 1999. [8 ] National Institute of Standards and Technology (NIST), Advanced Encryption Standard (AES). Springfield, VA 22161: National Technical Information Service, Nov. 2001. [9 ] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Trans. Information Theory, pp. 644–654, 1976. [10 ] CCIT, Recommendation X.509: The directory authentication framework. 1988. [11 ] S. Kent, RFC 1422: Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based Key Management. Internet Activities Board, Feb. 1993. [12 ] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystem,” Communications of the ACM, vol. 21, pp. 120–126, Feb. 1978. [13 ] Certicom corporation. http://www.certicom.com. [14 ] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation, vol. 21, 1987. [15 ] V. Miller, “Uses of elliptic curves in cryptography,” in Advances in Cryptography, Crypto 85, pp. 417–426, Springs Verlag LNCS 218, 1986. [16 ] IEEE Standard Specifications for public-Key Cryptography. IEEE Computer Society, Jan.2000. [17 ] Handbook of applied cryptography. CRC Press, 1997. [18 ] D. M. Gordon, “A survey of fast exponentiation methods,” Jornal of Algorithms, pp. 129–146,1998. [19 ] J. Lopez and R. Dahab, “Fast multiplication on elliptic curves over GF(2m) with precomputation,” LNCS, pp. 316–327, 1998. [20 ] P. L. Montgomery, “Modular multiplication without trial division,” Mathematics of Computation,vol. 44, pp. 519–521, Apr. 1985. [21 ] A. Tenca and C¸ .K. Koc¸, “A scalable architecture for Montgomery multiplication,” Cryptographic Hardware and Embedded Systems (CHES), pp. 94–108, 1999. [22 ] S. Okada, N. Torii, K. Itoh, and M. Takenaka, “Implementation of elliptic curve cryptographic coprocessor over GF(2m),” Proc. Cryptographic Hardware and Embedded Systems (CHES2000), pp. 25–40, Aug. 2000. [23 ] G. Orlando and C. Parr, “A scalable GF(p) elliptic curve processor architecture for programmable hardware,” Proc. Cryptographic Hardware and Embedded Systems (CHES2001),pp. 349–363, May 2001.id NH0925442021 sid 913918 cfn 0 / id NH0925442022 auc 洪嘉隆 tic 使用即時金鑰產生器之AES密碼晶片設計 adc 吳誠文 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 60 kwc 先進加密標準 kwc 密碼 kwc 密碼學 kwc 即時金鑰產生器 abc   先進加密標準(Advanced Encryption Standard)演算法是一種對稱式加密系統的新的標準。這演算法是由美國國家標準與技術協會於西元2001年所公開發表的新的標準,以用來取代資料加密標準(Data Encryption Standard)演算法。近年來,有很多關於AES演算法的硬體實現已經被發表。在大部份的設計研究中,主要是著重在AES演算法中S-Box的實現,但對於回合金鑰產生程序方面,通常是採事先運算回合金鑰,再利用記憶體或暫存器的方法來實現。這種事先運算金鑰產生程序的好處為在硬體實現上是相當的簡單、方便,可以直接地取得任何所需的回合金鑰,但缺點是這種方式將會有較多的功率消耗。 tc 摘 要…………………………………………………1 誌 謝…………………………………………………2 目 錄…………………………………………………3 第一章 緒論………………………………………4 第二章 AES演算法介紹 …………………………5 第三章 即時金鑰產生器設計……………………6 第四章 硬體簡化策略……………………………7 第五章 AES設計 …………………………………8 第六章 實驗結果…………………………………9 第七章 結論與未來展望…………………………10 英 文 附 錄…………………………………………11rf [1 ] National Institute of Standards and Technology (NIST), Advanced Encryption Standard (AES), National Technical Information Service, Springfield, VA 22161, Nov. 2001. [2 ] National Institute of Standards and Technology (NIST), Data Encryption Standard (DES), National Technical Information Service, Springfield, VA 22161, Oct. 1999. [3 ] W. Stallings, Cryptography and Network Security: Principles and Practice. 3rd ed., Prentice-Hall Inc., Upper Saddle River, N.J., 2003. [4 ] J. Daemen, L. R. Knudsen, and V. Rijmen, "The block cipher square", in Fast Software Encryption, E. Biham, Ed. 1997, vol. 1267 of LNCS, pp. 149-165, Springer-Verlag. [5 ] B. Song and J. Seberry, "Further observations on the structure of the AES algorithm", in Fast Software Encryption (FSE) 2003. 2003, vol. 2887 of LNCS, pp. 223-234, Springer-Verlag. [6 ] N. Ferguson, R. Schroeppel, and D. Whiting, "A simple algebraic representation of rijndael", in Selected Areas in Cryptography (SAC) 2003. 2003, vol. 2259 of LNCS, pp. 103-111, Springer-Verlag. [7 ] V. Fischer and M. Drutarovsky, "Two methods of Rijndael implementation in reconfigurable hardware", in Cryptographic Hardware and Embedded Systems (CHES) 2001. May 2001, vol. 2162 of LNCS, pp. 77-92, Springer-Verlag. [8 ] I. Verbauwhede, P. Schaumont, and H. Kuo, "Design and performance testing of a 2.29-GB/s Rijndael processor", IEEE Journal of Solid-State Circuits, vol. 38, no. 3, pp. 569-572, Mar. 2003. [9 ] H. Kuo and I. Verbauwhede, "Architectural optimization for a 1.82 Gbits/sec VLSI implementation of the AES Rijndael algorithm", in Cryptographic Hardware and Em-bedded Systems (CHES) 2001, C. K. Koc, D. Naccache, and C. Paar, Eds. May 2001, vol. 2162 of LNCS, Springer-Verlag. [10 ] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, "A compact Rijndael hardware architecture with S-box optimization", in ASIACRYPT 2001. 2001, vol. 2248 of LNCS, pp. 239-254, Springer-Verlag. [11 ] M.-H. Li, "A Gbps AES cipher", Master Thesis, Dept. Computer Science, National Tsing Hua University, Hsinchu, Taiwan, June 2001. [12 ] A. Rudra, P. K. Dubey, C. S. Jutla, V. Kumar, J. R. Rao, and P. Rohatgi, "Efficient Rijndael encryption implementation with composite field arithmetic", in Cryptographic Hardware and Embedded Systems (CHES) 2001. May 2001, vol. 2162 of LNCS, pp. 171-184, Springer-Verlag. [13 ] S. Morioka and A. Satoh, "A 10Gbps full-AES crypto design with a twisted-BDD S-Box architecture", in Proc. IEEE Int. Conf. Computer Design (ICCD), Freiburg, Germany, Sept. 2002, pp. 98-103. [14 ] S. Morioka and A. Satoh, "An optimized S-box circuit architecture for low power AES design", in Cryptographic Hardware and Embedded Systems (CHES) 2002. 2002, vol. 2523 of LNCS, pp. 172-186, Springer-Verlag. [15 ] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, "Unified hardware architecture for 128-bit block ciphers AES and Camellia", in Cryptographic Hardware and Embedded Systems (CHES) 2003. Aug. 2003, Springer-Verlag. [16 ] S. Mangard, M. Aigner, and S. Dominikus, "A highly regular and scalable AES hardware architecture", IEEE Trans. Computers, vol. 52, no. 4, pp. 483-491, Apr. 2003. [17 ] C.-P. Su, T.-F. Lin, C.-T. Huang, and C.-W. Wu, "A high-throughput low-cost AES processor", IEEE Communications Magazine, vol. 41, no. 12, pp. 86-91, Dec. 2003. [18 ] J. H. Shim, D. W. Kim, Y. K. Kang, T. W. Kwon, and J. R. Choi, "A rijndael cryptoprocessor using shared on-the-fly key scheduler", in Proc. 3rd IEEE Asia-Pacific Conf. ASIC, Taipei, Aug. 2002, pp. 89-92. [19 ] J. Wolkerstorfer, E. Oswald, and M. Lamberger, "An ASIC implementation of the AES SBoxes", in CT-RSA 2002. 2002, vol. 2271 of LNCS, pp. 67-78, Springer-Verlag. [20 ] S.-Y. Wu, S.-C. Lu, and C.-S. Laih, "Design of aes based on dual cipher and composite field", in Topics in Cryptology - CT-RSA 2004. 2004, vol. 2964 of LNCS, pp. 25-38, Springer-Verlag. [21 ] V. Rijmen, "Efficient implementation of the Rijndael S-box", http://www.esat.kuleuven.ac.be/~rijmen/rijndael/sbox.pdf. [22 ] M. Pedram, "Power minimization in IC design: principles and applications", ACM Trans. Design Automation of Electronic Systems, vol. 1, no. 1, pp. 3-56, Jan. 1996. [23 ] J. Daemen and V. Rijmen, "Description of known answer tests and monte carlo tests for advanced encryption standard (AES) candidate algorithm submissions", http://www.esat.kuleuven.ac.be/~rijmen/rijndael/katmct.pdf, 1998.id NH0925442022 sid 913919 cfn 0 / id NH0925442023 auc 張孟華 tic 以馬古勒斯碼與拉瑪紐俊-馬古勒斯碼為基礎所建構的低密度同位元檢查碼 adc 呂忠津 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 65 kwc 低密度同位元檢查碼 kwc 馬古勒斯碼 kwc 拉瑪紐俊-馬古勒斯碼 kwc 蓋勒格 kwc 代數方法建構 abc 早在六零年代,蓋勒格(Gallager)即在他的論文中提出一種錯誤更正碼,稱為低密度同位元檢查碼(LDPC Codes)。但在接下來的三十年,它被大多數的人遺忘。直到1993年渦輪碼(Turbo Codes)興起後,才開始有更多人對它做詳細的探討與研究,目前它已成為最熱門的錯誤更正碼之一。與已往的錯誤更正碼最大不同的地方在於,之前的碼是著眼在尋找擁有高度組織化及較大的最小距離(minimum distance),相對的它的解碼處會較為簡單。但實際上,隨機尋找的碼會有很高的機率是足夠好的,因此,在蓋勒格的論文中,低密度同位元碼的建構方法是使用隨機方式,只是它的解碼處是使用循環解碼,利用這種方式我們可以得到很好的錯誤更正效果。 tc 1 Low-Density Parity-Check Codes 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4.2 Gallager's hard-decision decoding algorithm [7 ] . . . . . . . . . . . . 7 1.4.3 Belief-propagation decoding algorithm: . . . . . . . . . . . . . . . . . 10 2 Margulis Codes and Ramanujan-Margulis Codes Constructions 11 2.1 Margulis codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 Cayley Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.2 Application to LDPC codes . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Ramanujan-Margulis codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1 Ramanujan Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.2 Expander . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.3 Explicit Construction of Ramanujan Graphs . . . . . . . . . . . . . . 17 2.2.4 An application to LDPC codes . . . . . . . . . . . . . . . . . . . . . 20 3 Other LDPC Code Constructions 22 3.1 Regular LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1.1 Gallager's Codes [7 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1.2 Mackay-1A [14 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.3 Progressive Edge-Growth Tanner Graphs [8 ] . . . . . . . . . . . . . . 23 3.2 Irregular LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.1 Mackay-2A [14 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.2 Luby et. al.'s Method [13 ] . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.3 Richardson et. al.'s Method [26 ] . . . . . . . . . . . . . . . . . . . . . 27 3.2.4 Random Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.5 Heuristic Search Method [20 ] . . . . . . . . . . . . . . . . . . . . . . 28 3.2.6 Progressive Edge-Growth Tanner Graphs [8 ] . . . . . . . . . . . . . . 29 3.2.7 PEG-Random Method . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 Properties of LDPC Codes 30 4.1 Upper Bound for the Girth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2 Lower Bound for the Minimum Distance of LDPC Codes . . . . . . . . . . . 32 4.3 Concentration and Convergence to the Cycle-Free Case . . . . . . . . . . . . 33 5 Modification to Margulis and Ramanujan-Margulis Codes 35 5.1 Extended Regular Margulis Codes . . . . . . . . . . . . . . . . . . . . . . . . 35 5.2 Irregular Margulis Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.2.1 Irregular Margulis-A . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.2.2 Irregular Margulis-B . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.2.3 Irregular Mar-Random method . . . . . . . . . . . . . . . . . . . . . 37 5.3 Irregular Ramanujan-Margulis Codes . . . . . . . . . . . . . . . . . . . . . . 37 5.3.1 Irregular Raman-Random method . . . . . . . . . . . . . . . . . . . . 37 6 Simulation 38 6.1 Margulis Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.1.1 q=5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.1.2 q=7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.1.3 q=11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.1.4 q=13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.2 Ramanujan-Margulis code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.2.1 p=5, q=13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.2.2 p=5, q=17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7 Conclusionrf [1 ] C. Berrou, A. Glavieux, and P. Thitimajshima, ”Near Shannon limit error-correcting coding and decoding,” Proc. ICC ’93, pp. 1064-1070, 1993. [2 ] F. Bien, ”Construction of telephone networks by group representations,” Notices of the Amer. Math. Society, no. 1 pp. 5-22, 1989. [3 ] J. T. Coffey and R. M. Goodman. ”Any code of which we cannot think is good.” IEEE. Trans. Inform. Theory, vol. 36, pp. 1453-1461, 1990. [4 ] P. Erd˝os and H. Sachs. ”Regul‥are graphen gegebener taillenweite mit minimaler knotenzahl.”Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, pp. 251-257, 1963. [5 ] G. L. Feng and T. R. N. Rao. ”Decoding algebraic-geometric codes up to the designed minimum distance.” IEEE Trans. Inform. Theory, vol. 39, pp. 37-45, Jan. 1993. [6 ] J. Friedman, ”On the second eigenvalue and random walks in random d-regular graphs,” Combinatorica, vol. 11, pp. 331-362, 1991. [7 ] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1963. [8 ] X. Y. Hu, E. Eleftheriou, and D. M. Arnold, ”Regular and irregular progressive edgegrowth tanner graphs,” Submitted to IEEE. Trans. Inform. Theory. [9 ] A. Lubotzky, R. Phillips and P. Sarnak, ”Ramanujan graphs,” Combinatorica, vol. 9, pp. 261-277, 1988. [10 ] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann, ”Practical loss-resilient codes,” in Proc. 29th Annu. ACM Symp. Theory of Computing, 1997, pp. 150-159. [11 ] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, ”Analysis of low density codes and improved designs using irregular graphs,” in Proc. 30th Annu. ACM Symp. Theory of Computing, 1998, pp. 249-258. [12 ] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann, ”Practical loss-resilient codes,” IEEE Trans. Inform. Theory, vol.47, pp. 569-584, Feb. 2001. [13 ] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, ”Improved low-density parity-check codes using irregular graph,” IEEE Trans. Inform. Theory, vol. 47, no.2, pp. 585-598, Feb. 2001. [14 ] D. J. Macky, ”Good error-correcting codes based on very sparse matrices,” IEEE. Trans. Inform. Theory, vol. 42, pp. 1710-1722, Nov. 1996. [15 ] D. J. Mackay and R. M. Neal, ”Near Shannon limit performance of low-density paritycheck codes,” Election. Lett., vol. 32, pp. 1645-1646, 1996. [16 ] D. J. Mackay and M. S. Postol, ”Weaknesses of Margulis and Ramanujan-Margulis low-density parity-check codes,” Electronic Notes in Theoretical Science 74, 2003. [17 ] D. Mackay, S.Wilson, and M. Davey, ”Comparison of constructions of irregular Gallager codes,” IEEE Trans. Commun., vol. 47, pp. 1449-1454, Oct. 1999. [18 ] G. A. Margulis, ”Explicit construction of graphs without short cycles and low density codes,” Combinatorica, vol. 2, no. 1, pp. 71-78, 1982. [19 ] G. A. Margulis, ”Explicit group-theorectical constructions of combinatorial schemes and their application to the design of expanders and concentrators,” J. Probl. Inf. Transm. vol. 24, no. 1, pp. 39-46, 1988. [20 ] Y. Mao and A. H. Banihashemi, ”A heuristic search for good low-density parity-check codes at short block lengths,” Proc. ICC’01, pp. 41-44. [21 ] R. J. McEliece. The Theory of Information and Coding: A Mathematical Framework for Communication, Reading, Mass: Addison-Wesley,, 1977. [22 ] M. Morgenstern, ”Existence and explicit construction of q+1 regular Ramanujan graphs for every prime power q,” J. Comb. Theory, ser. B, vol. 62. pp.44-62, 1994. [23 ] M. R. Murty, ”Ramanujan Graph,” J. Ramanujan Math. Soc., no. 1, pp. 1-20, 2003. [24 ] A. Pizer, ”Ramanujan graphs and Hecke operator,” Bulletin of the Amer. Math. Soc., vol. 23(1), pp. 127-137, 1990. [25 ] T. Richardson and R. Urbanke, ”The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47, pp. 599-618, Feb. 2001. [26 ] T. Richardson, A. Shokrollahi, and R. Urbanke, ”Design of capacity-approaching irregular low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 47, pp. 619-637, Feb. 2001. [27 ] T. Richardsom and R. Urbanke, ”Efficient encoding of low-density parity-check codes,”IEEE Trans. Inform. Theory, vol.47, pp. 638-656, Feb. 2001. [28 ] T. Richardson and R. Urbanke. ”The renaissance of Gallager’s low-density parity-check codes,” IEEE. Comm. Magazine, vol. 41, pp. 126-131, Aug. 2003. [29 ] J. Rosenthal and P. O. Vontobel, ”Constructions of LDPC codes using Ramanujan graphs and ideas from Margulis,” in Proc. of the 38th Annual Allerton Conference on Communication, Control, and Computing, pp. 248-257, Oct. 2000. [30 ] C. E. Shannon. ”A mathematical theory of communication,” Bell Sys. Tech. J., vol. 27, pp. 279-423 and pp. 623-656, 1948. [31 ] M. Sipser and D. Spielman, ”Expander codes,” IEEE Trans. Inform. Theory, vol. 42, pp. 1710-1722, Nov. 1996. [32 ] R. M. Tanner, ”A recursive approach to low complexity codes,” IEEE Trans. Inform. Theory, vol. IT-27, pp. 533-547, Sept. 1981. [33 ] M. A. Tsfasman. ”Algebraic-geometric codes and asymptotic problems.” Discrete Applied Mathematics, vol. 33, pp. 241-256, 1991. [34 ] V. Zyablov and M. Pinsker, ”Estimation of the error-correction complexity of Gallager low-density codes,” Probl. Pered. Inform., vol. 11, pp. 23-26, Jan. 1975. [35 ] —, ”Improved low-density parity-check codes using irregular graphs and belief propagation,”in Proc. 1998 IEEE Int. Symp. Information Theory, Cambridge, MA, Aug. 1998, pp. 117.id NH0925442023 sid 913922 cfn 0 / id NH0925442024 auc 陳宇恆 tic 利用抹失位元的低複雜度低密度同位元碼解碼演算法 adc 呂忠津 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 33 kwc 低密度 kwc 抹失位元 kwc 解碼 kwc 低複雜度 abc 近年來,低密度同位元檢查碼(Low Density Parity Check Code)搭配和積演算法(Sum-Product Algorithm)展現了接近薛氏極限(Shannon Limit)的效能,因而受到廣泛的重視.低密度同位元檢查碼被視為渦輪碼(Turbo Code)的最主要對手.然而和積演算法是一個高硬體複雜度的演算法,這項限制使得和積演算法難以實現.在這篇論文裡,我們提出一個低硬體複雜度的解碼演算法來實現低密度同位元檢查碼的解碼.在低密度同位元碼中,其同位元檢查矩陣的非零元素相當稀疏,數目約正比於碼字(code-word)的長度,因此在低密度同位元碼的碼字中,每個位元的相關聯位元較一般的區塊碼(block code)少了許多.我們在此演算法中利用這個特性,使用了一個低複雜度的方法來決定一個抹失位元(erasure bit)的原始值,並讓此被決定的抹失位元提共更多的資訊以決定其他的抹失位元.以此決定抹失的機制為基礎,配合一個低複雜度的程序來處理剩餘的錯誤位元(error bit),我們提出一個低複雜度的解碼演算法.此演算法只使用相當簡單的運算單元,並且不像和積演算法需要龐大的記憶體來儲存演算過程中傳遞的訊息(message passing),因此是一個低硬體複雜度的演算法,較易於實現.我們提出的演算法屬於循序式的(sequential)的,其演算複雜度正比於碼字長度(code-word length).相較於一般區塊碼,其複雜度與碼字長度成非線性比例.此優勢使得我們的演算法可適用於非常長的低密度同位元碼. tc Contents: 1.Introduction.....................................3 2.Low-Density Parity-Check Codes...................4 3.A Low Complexity Decoding Algorithm.............12 4.Simulation Results..............................25 5.Conclusion......................................31 Bibliography......................................32rf [1 ] R. Gallager, Low-density Parity-check Codes. Cambridge,MA: MIT Press, 1963. [2 ] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, \Factor graphs and the sum-product algorithm," IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 498{519, Feb. 2001. [3 ] S. M. Aji and R. J. McEliece, \The generalized distributive law," IEEE Trans. Inform. Theory, vol. 46, no. 2, pp. 325{343, Mar. 2000. [4 ] M. Davey and D. MacKay, \Low-density parity-check codes over GF(q)," IEEE Com- munications Letters, vol. 2, no. 6, pp. 165{167, Jun. 1998. [5 ] R. Tanner, \A recursive approach to low complexity codes," IEEE Trans. Inform. The- ory, vol. IT-27, pp. 533{547, Sept. 1981. [6 ] D. MacKay, \Good error-correcting codes based on very sparse matrices," IEEE Trans. Inform. Theory, vol. 45, pp. 399{431, Mar. 1979. [7 ] Y. Kou, S. Lin, and M. P. Fossorier, \Low-density parity-check codes based on nite geometries: a rediscovery and new results," IEEE Trans. Inform. Theory, vol. 47, no. 7, pp. 2711{2736, Nov. 2001. [8 ] T. Richardson, M. Shokrollahi, and R. Urbanke, \Design of capacity-approaching irreg- ular low-density parity-check codes," IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 619{637, Feb. 2001. [9 ] M. Luby, M. Mitzenmacher, M. Shokrollahi, and D. Spielman, \Improved low-density parity-check codes using irregular graphs," IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 585{598, Feb. 2001. [10 ] M. Sipser and D. Spielman, \Expander codes," IEEE Trans. Inform. Theory, vol. 42, no. 6, pp. 1710{1722, Nov. 1996. [11 ] D. MacKay, S. Wilson, and M. Davey, \Comparison of constructions of irregular gallager codes," IEEE Trans. Comm., vol. 47, no. 10, pp. 1449{1454, Oct. 1998. [12 ] T. Richardson and R. Urbanke, \Ecient encoding of low-density parity-check codes," IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 638{656, Feb. 2001. [13 ] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, \Ecient erasure correcting codes," IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 569{584, Feb. 2001.id NH0925442024 sid 913924 cfn 0 / id NH0925442025 auc 謝忠憲 tic 在快速雷利衰減通道中對時變速度用戶的強健性多載子分碼多重存取通道估測 adc 陳博現 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 41 kwc 適應性非集中式濾波器 kwc 多載子分碼多重存取 kwc 雷利衰減 kwc 聯合估測 abc 多載子分碼多重存取(MC-CDMA)結合了多載子傳輸與直序列展頻兩種調變方式,近來已經有一些方法在討論當通道資訊未知的狀況下如何設計MC-CDMA系統。在本論文中,我們考慮更實際的情況,那就是使用者的速度會隨著時間改變。所以,我們將提出一個可以對時變性的通道衰減有穩健性的適應性非集中式濾波器(Adaptive Unscented Filter)。首先,我們假設通道為自回歸(AutoRegressive)隨機程序,接下來用提出的適應性非集中式濾波器經由非線性的方式同時估測這個自回歸程序的參數以及通道增益以達到在時變衰減通道中的穩健性。在通道估測後,我們可以利用估測到的通道以及在估測過程中產生的一些參數來增強等化器的性能。而在這裡我們採用決策回授的方式來作通道估測。用電腦模擬的結果顯示,我們所提出的利用適應性非集中式濾波器所做的決策回授方式可以更穩健並且更準確的追蹤到通道。 tc 摘要………………………………………… i 致謝………………………………………… ii 目錄………………………………………… iii 第一章:簡介……………………………… iv 第二章:MC-CDMA系統介紹……………… v 第三章:強健性通道追蹤演算…………… vi 第四章:增強型MMSE等化器設計………… vii 第五章:電腦模擬結果與討論…………… viii 第六章:結論……………………………… ix 英文版論文………………………………… xrf [1 ] A. J. Viterbi, CDMA, Principle of Spread Spectrum Communications. Reading, MA: Addison-Wesley, 1995. [2 ] K. Tachikawa, “W-CDMA Mobile Communications Systems,” John Wiley & Sons Inc., 2002. [3 ] E. Dahlman, B. Gudmundson„ M. Nilsson, and J. Skold, “UMTS/IMT-2000 Based onWidband CDMA,” IEEE Communication Magzine, vol. 36, no. 9, pp. 70-80, Sept. 1998. [4 ] “802.11 WLAN Standard,” IEEE 802.11 Standards Committee, 1994. [5 ] H. Honkasalo, K. Pehkonen, M.T.Niemi, A.T.Leino, “WCDMA and WLAN for 3G and beyond,” IEEE Wireless Communications, vol. 9, no. 2, pp.14-18, April 2002. [6 ] A. Chouly, A. Brajal, and S. Jourdan, “Orthogonal multicarrier technique applied to direct sequence spread spectrum CDMA systems,” Proc. IEEE GLOBECOM’93, Houston, pp.1723-1728, Nov. 1993. [7 ] V. N. Richard and P. Ramjee, “OFDM Wireless Multimedia Communications,” Artech House, 2000. [8 ] J. A. C. Bingham, “Multicarrier modulation for data transmission: An idea whose time has come,” IEEE Communication magzine, vol. 28, pp. 5-14, May 1990. [9 ] N. Yee, J. P. Linnartz, “Wiener filtering of multi-carrier CDMA in Rayleigh fading channel,” PIMRC’94, vol.4, pp.1344 - 1347, Sept. 1994. [10 ] H. Xing and M. Renfors, “The performance evaluation of the multicarrier CDMA system with frequency domain equalization,” IEEE Vehicular Technology Conf., vol. 4, pp. 2362 -2366, 1999. [11 ] A. Peled and A. Ruiz, “Frequency domain data transmission using reduced computational complexity algorithms,” Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp. 964-968, 1980. [12 ] L. Lindbom, “Simplified Kalman estimation of fading mobile radio channels: high performance at LMS computational load ”Acoustics, Speech, and Signal Processing, ICASSP93, Vol.3 , pp.352 - 355, April 1993. [13 ] P. H-Y Wu and A. Duel-Hallen, “Multiuser detectors with disjoint Kalman channel estimators for synchronous CDMA mobile radio channels,” IEEE Trans. Commun., vol. 48, no. 5, pp. 752 -756, May 2000. [14 ] H. Y. Wu and A. Duel-Hallen, “On the performance of coherent and noncoherent multiuser detectors for mobile radio CDMA channels,” PROC. IEEE 6th Int. Conf. Universal Personal Communications (ICUPC’96), Cambridge, MA, pp. 76-80, Oct. 1996. [15 ] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” Proceedings of the IEEE , vol.92 , no.3, pp.401-422, March 2004. [16 ] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, “A new approach for filtering nonlinear systems,” in Proc. American Control Conf.,pp. 1628—32, 1995. [17 ] S. Haykin, Adaptive Filter Theory, 4rd Edition. Prentice-Hall, 2002. [18 ] T. Muller, H. Rohling, and R. Grunheid, “Comparison of different detection algorithms for OFDM-CDMA in broadband Rayleigh fading,”in Proc. IEEE Vehicular Technology Conf., pp. 835—838, 1995. [19 ] S. Kaiser, “Analytical performance evaluation of OFDM-CDMA mobile radio systems,” in Proc. 1st European Personal and Mobile Communications Conf., EPMCC’95, Bologna, Italy, pp. 215—220, Nov. 1995. [20 ] D. N. Kalofonos and J. G. Proakis, “Performance of the multistage detector for aMCCDMA system in a Rayleigh fading channel,” in Proc. IEEE Global Communications Conf. (GLOBECOM"96), vol. 3, pp. 1784—1788, Nov. 1996. [21 ] S. Kaiser and P. Hoeher, “Performance of multicarrier CDMA with channel estimation in two dimensions,” in Proc. IEEE Symp. Personal Indoor and Mobile Radio Communications (PIMRC’97), pp. 115—119, 1997. [22 ] P. Hoeher, S. Kaiser, and P. Robertson, “Two-dimensional pilot-symbol-aided channel estimation by Wiener filtering,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP’97), pp. 1845—1848. systems, 1997. [23 ] S. Cacopardi, F. Frescura, F. Gatti, and G. Reali, “Channel estimation and tracking of an indoor orthogonal multicarrier DS-CDMA systemn using measured channel delay profiles,” in Proc. IEEE Vehicular Technology Conf. (VTC’96), pp. 1559—1563, 1996. [24 ] S. Cacopardi, F. Frescura, and G. Reali, “Performance comparison of multicarrier DS-SS radio access schemes for WLAN using measured channel delay profiles,” in Proc. IEEE Vehicular Technology Conf. (VTC’97), pp. 1877—1881, 1997. [25 ] D. N. Kalofonos, Milica Stojanovic, and J. G. Proakis, “Performance of Adaptive MC-CDMA Detectors in Rapidly Fading Rayleigh Channel,” IEEE Trans. Wireless Communications, vol.2, No. 2, pp. 1375-1387, March 2003. [26 ] G. L. Stuber, “Principles of Mobile Communication 2/e,” Kluwer Academic Publishers, 2001. [27 ] T.S. Rappaport, “Wireless communications 2/e,” Prentice Hall PTR, 2002.id NH0925442025 sid 913925 cfn 0 / id NH0925442026 auc 賴彥廷 tic 加強測試模式控制的快閃記憶體內建式自我測試電路設計 adc 吳誠文教授 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 66 kwc 快閃記憶體 kwc 自我測試電路設計 kwc 測試模式控制 kwc 減少測試成本 abc 近年來,快閃記憶體被廣泛的使用於許多不同的應用之中。隨著3C產品需求量日已漸增,商業用與嵌入式快閃記憶體的使用量有快速且顯著的成長。尤其是在以利用電池為動力的商品以及其他低功率的產品裡面,常常都可以看到他們的存在。快閃記憶體是一種非揮發性的記憶體,它利用特殊的電荷注入機制,可以用簡單的方法達到寫入或與清除資料的效果,並能夠保證其中所儲存的資料,維持很久的一段時間而不會變動或消失。因為這樣子的特性,快閃記憶體非常適合於大量儲存的設備之中。因此,越來越多的快閃記憶體被大量的製造出來。然而為了要保證足夠的良率,在測試與診斷快閃記憶體上面的成本也會相對的增加。所以說如何降低量產時測試的成本以及提高良率等有關於測試快閃記憶體的問題,是非常重要且需要我們仔細探討的問題我們。 tc Contents 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . .1 1.2 Review of Previous Works. . . . . . . . . . . . . .2 1.3 Proposed Approach . . . . . . . . . . . . . . . . .4 1.4 Organization. . . . . . . . . . . . . . . . . . . .5 2 Overview of Flash memory . . . . . . . . . . . . . .6 2.1 Charge Transfer Mechanism . . . . . . . . . . . . .6 2.1.1 ChannelHot-ElectronInjection(CHEI) . . . . . . . 7 2.1.2 Fowler-Nordheim (F-N) Tunneling . . . . . . . . 8 2.2 Cell and Array Structures . . . . . . . . . . . . 8 2.2.1 Cell Structures. . . . . . . . . . . . . . . . . 9 2.2.2 Array Structures . . . . . . . . . . . . . . . . 11 2.3 Basic Operations . . . . . . . . . . . . . . . . . 12 2.3.1 Program. . . . . . . . . . . . . . . . . . . . . 13 2.3.2 Erase . . . . . . . . . . . . . . . . . . . . . 15 2.3.3 Read . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Testing Flash Memories . . . . . . . . . . . . . . 15 2.4.1 Over-erasing and Programming . . . . . . . . . . 16 2.4.2 Program Disturbs . . . . . . . . . . . . . . . . 16 2.4.3 Read Disturbs. . . . . . . . . . . . . . . . . . 17 2.4.4 Program/Erase Endurance. . . . . . . . . . . . . 17 2.4.5 Data Retention . . . . . . . . . . . . . . . . . 18 2.4.6 Testing Embedded Flash Memories. . . . . . . . . 18 3 Flash Memory Fault Models and Test Algorithms. . . . 20 3.1 Flash Memory Fault Models. . . . . . . . . . . . . 20 3.1.1 Flash Memory Specific Faults . . . . . . . . . . 20 3.1.2 Conventional RAM Faults. . . . . . . . . . . . . 24 3.2 March-like Tests for Flash Memories. . . . . . . . 25 3.3 Memory Diagnostic Approach. . . . . . . . . . . . 28 4 Design of Built-In Self-Test/Self-Diagnosis Circuit. 31 4.1 Introduction . . . . . . . . . . . . . . . . . . . 31 4.2 Behavior Model of Flash Memory with Engineering Test Modes. . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2.1 Introduction. . . . . . . . . . . . . . . . . . 33 4.2.2 Using Engineering Test Mode for Test Time Reduction. . . . . . . . . . . . . . . . . . . . . . . 34 4.2.3 Behavior Model of a 264Mbits Flash Memory. . . . 36 4.3 Specification of BIST. . . . . . . . . . . . . . . 37 4.3.1 I/O Interface. . . . . . . . . . . . . . . . . . 37 4.3.2 Test Command Format. . . . . . . . . . . . . . . 40 4.4 BIST Architectue. . . . . . . . . . . . . . . . . 44 4.4.1 Controller (CTR) . . . . . . . . . . . . . . . . 45 4.4.2 Test Pattern Generator (TPG) . . . . . . . . . . 49 4.4.3 Reset Wait Feature . . . . . . . . . . . . . . . 55 5 Experimental Results . . . . . . . . . . . . . . . . 59 5.1 Hardware Overhead Estimation . . . . . . . . . . . 59 5.2 FPGA Prototyping System and Results. . . . . . . . 60 5.3 Diagnosis Results. . . . . . . . . . . . . . . . . 63 6 Conclusions and Future Work. . . . . . . . . . . . . 65 6.1 Conclusions. . . . . . . . . . . . . . . . . . . . 65 6.2 FutureWork . . . . . . . . . . . . . . . . . . . . 65rf Bibliography [1 ] IEEE, IEEE 1005 Standard Definitions and Characterization of FloatingGate Semiconductor Arrays. Piscataway: IEEE Standards Department, 1999. [2 ] S. Mukherjee, T. Chang, R. Pang, M. Knecht, and D. Hu, “A single transistor EEPROM cell and its implementation in a 512K CMOS EEPROM,” in Proc. IEEE Int. Solid-State Cir. Conf. (ISSCC), p. 616, 1985. [3 ] G. Samachisa, C.-S. Su, Y.-S. Kao, G. Smarandoiu, C. Wang, T. Wong, and C. Hu, “A 128K flash EEPROM using double-polysilicon technology,” IEEE Journal of Solid-State Circuits, vol. SC-22, pp. 676 – 683, Oct. 1987. [4 ] F. Masuoka, M. Asano, H. Iwahashi, T. Komuro, and S. Tanaka, “A 256K flash EEPROM using triple polysilicon technology,” in Proc. IEEE Int. Solid-State Cir. Conf. (ISSCC), vol. XXVIII, pp. 168–169, 335, Feb. 1985. [5 ] F. Masuoka, M. Momodomi, Y. Iwata, and R. Shirota, “New ultra high density EPROM and flash EEPROM with NAND structure cell,” in Proc. IEEE Int. Solid-State Cir. Conf. (ISSCC), p. 552, 1987. [6 ] P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, Flash Memories. Boston: Kluwer Academic Publishers, 1999. [7 ] M. G. Mohammad, K. K. Saluja, and A. Yap, “Testing flash memories,” in Proc. 13th Int. Conf. VLSI Design, pp. 406–411, Jan. 2000. [8 ] M. G. Mohammad and K. K. Saluja, “Flash memory disturbances: modeling and test,” in Proc. IEEE VLSI Test Symp. (VTS), (Marina Del Rey, California), pp. 218 –224, Apr. 2001. [9 ] J. Dreibelbis, J. Barth, H. Kalter, and R. Kho, “Processor-based built-in self-test for embedded DRAM,” IEEE Journal of Solid-State Circuits, pp. 1731–1740, Nov. 1998. [10 ] R. Rajsuman, “Testing a system-on-a-chip with embedded microprocessor,” in Proc. Int. Test Conf. (ITC), pp. 499–508, 1999. [11 ] P. Camurati, P. Prinetto, M. S. Reorda, S. Barbagallo, A. Burri, and D. Medina, “Industrial BIST of embedded RAMs,” IEEE Design & Test of Computers, vol. 12, pp. 86–95, Fall 1995. [12 ] J.-C. Yeh, C.-F. Wu, K.-L. Cheng, Y.-F. Chou, C.-T. Huang, and C.-W. Wu, “Flash memory built-in self-test using march-like algorithms,” in Proc. IEEE Int. Workshop on Electronic Design, Test, and Applications (DELTA), (Christchurch), pp. 137–141, Jan. 2002. [13 ] S.-K. Chiu, J.-C. Yeh, C.-T. Huang, and C.-W. Wu, “Diagonal test and diagnostic schemes for flash memories,” in Proc. Int. Test Conf. (ITC), (Baltmore), pp. 37–46, Oct. 2002. [14 ] C.-W. Wang, C.-F. Wu, J.-F. Li, C.-W. Wu, T. Teng, K. Chiu, and H.-P. Lin, “A built-in selftest and self-diagnosis scheme for embedded SRAM,” in Proc. Ninth IEEE Asian Test Symp. (ATS), (Taipei), pp. 45–50, Dec. 2000. [15 ] V. Mastrocola, G. Palumbo, P. Kumar, F. Pipitone, and G. Introvaia, “Built in self test for low cost testing of a 60MHz synchronous flash memory,” in Proc. 7th IEEE Int. On-Line Testing Workshop, (Taormina, Italy), pp. 192–196, July 2001. [16 ] P. Bernardi, M. Rebaudengo, M. S. Reorda, and M. Violante, “A P1500-compatible programmable BIST approach for the test of embedded flash memories,” in Proc. Design, Automation and Test in Europe (DATE), pp. 720– 725, March 2003. [17 ] IEEE, “IEEE P1500 standard for embedded core test (SECT).” http://grouper.ieee.org/groups/1500/, 2002. [18 ] A. K. Sharma, Semiconductor Memories: Technology, Testing, and Reliability. Piscataway: IEEE Press, 1997. [19 ] A. H.-F. Chou, C.-S. Yang, C.-J. Liu, H.-H. Pong, M.-C. Liaw, T.-S. Chao, Y.-C. King, H.-L. Hwang, and C. C.-H. Hsu, “Comprehensive study on a novel bidirectional tunneling program/ erase nor-type (binor) 3-d flash memory cell,” IEEE Transactions Electron Devices, vol. 48, pp. 1386– 1393, April 2001. [20 ] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells—an overview,” Proc. of the IEEE, vol. 85, pp. 1248–1271, Aug. 1997. [21 ] S. Aritome, R. Shirota, G. Hemink, T. Endoh, and F. Mausouka, “Reliability issues of flash memory cells,” Proc. of the IEEE, vol. 81, pp. 776–787, May 1993. [22 ] K.-L. Cheng, J.-C. Yeh, C.-W. Wang, C.-T. Huang, and C.-W. Wu, “RAMSES-FT: A fault simulator for flash memory testing and diagnostics,” in Proc. IEEE VLSI Test Symp. (VTS), (Monterey, California), pp. 281–286, Apr. 2002. [23 ] C.-W. Wang, J.-R. Huang, Y.-F. Lin, K.-L. Cheng, C.-T. Huang, C.-W. Wu, and Y.-L. Lin, “Test scheduling of BISTed memory cores for SOC,” in Proc. 11th IEEE Asian Test Symp. (ATS), (Guam), pp. 356–361, Nov. 2002. [24 ] A. J. van de Goor, Testing Semiconductor Memories: Theory and Practice. Gouda, The Netherlands: ComTex Publishing, 1998. [25 ] C.-F. Wu, C.-T. Huang, and C.-W. Wu, “RAMSES: a fast memory fault simulator,” in Proc. IEEE Int. Symp. Defect and Fault Tolerance in VLSI Systems (DFT), (Albuquerque), pp. 165– 173, Nov. 1999. [26 ] C.-F. Wu, C.-T. Huang, K.-L. Cheng, and C.-W. Wu, “Simulation-based test algorithm generation for random access memories,” in Proc. IEEE VLSI Test Symp. (VTS), (Montreal), pp. 291–296, Apr. 2000. [27 ] A. J. van de Goor and C. A. Verruijt, “An overview of deterministic functional RAM chip testing,” ACM Computing Surveys, vol. 22, pp. 5–33, Mar. 1990. [28 ] C.-F. Wu, C.-T. Huang, C.-W. Wang, K.-L. Cheng, and C.-W. Wu, “Error catch and analysis for semiconductor memories using March tests,” in Proc. IEEE/ACM Int. Conf. Computer- Aided Design (ICCAD), (San Jose), pp. 468–471, Nov. 2000. xiid NH0925442026 sid 913926 cfn 0 / id NH0925442027 auc 王思凱 tic 無線通訊之多重存取合作式編碼 adc 呂忠津 博士 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 37 kwc 合作式編碼 kwc 多重存取通道 kwc 合作式碼 kwc 複值多重存取合作式編碼 kwc 多重存取干擾 kwc 合作式解碼 abc 合作式編碼(collaborative coding)是針對多重存取通道(multiple access channel)編碼的技術,利用每個使用者合作式碼之間的關係,在接收端可以設計出簡單的演算法解碼出每個使用者傳輸的資訊。在沒有雜訊的固定通道之下,接收端可以保證完全正確地解碼而沒有錯誤產生;在有雜訊的固定通道之下,合作式編碼也有一些訊息保護錯誤更正的功能。如何讓每個使用者都能擁有較高的資訊傳輸速率以及系統在解碼程序中擁有較低的複雜度是沒有雜訊或是有雜訊的固定通道下合作式編碼研究的主要目標。 tc Contents 1 Introduction 1 2 Collaborative Coding Multiple Access 3 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 _-user CCMA Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Hard Decision (HD) Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.4 Maximum Likelihood Soft Decision (MLSD) Decoding . . . . . . . . . . . . . . . 6 2.5 Complex-Valued Collaborative Coding Multiple Access (CV-CCMA) . . . . . . . 6 2.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.5.2 Estimation and Detection Processes . . . . . . . . . . . . . . . . . . . . . 7 2.5.3 Estimation and Detection Processes in the Matrix Form . . . . . . . . . . . 9 3 Principles of Code Construction 11 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.1 Least Squares Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.2 Least Squares Problems with Several Variables . . . . . . . . . . . . . . . 13 3.2 Principles of Code Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4 Code Construction Methods 18 4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2 Code Construction Method I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.3 Code Construction Method II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3.1 Walsh-Hadamard Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3.2 Code Construction Method . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.4 Code Construction Method III . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5 Simulation Results 24 5.1 Comparison between Matched Filter Decoding and Collaborative Decoding of SSMA 24 5.2 Wireless Collaborative Coding Multiple Access Systems . . . . . . . . . . . . . . 25 6 Conclusions 36rf [1 ] C. E. Shannon, ”Two-way communication channels,” in Proc. 4th Berkeley Symp. Math. Stat. Prob., vol. 1, pp. 611-644, 1961. [2 ] T. Kasami and S. Lin, ”Coding for a multiple-access channel,” IEEE Trans. Inform. Theory, vol. IT-22, pp. 129-137, Mar. 1976. [3 ] E. J.Weldon Jr. and K. P. Yiu, ”Coding for a multiple access channel,” presented at Int. Symp. Inform. Theory, Ronneby, Sweden, 1976. [4 ] E. J. Weldon Jr., ”Coding for a multiple access channel,” Inform. Contr., vol. 36, no.3, pp. 256-274, 1978. [5 ] M. A. Deaett and J. K. Wolf, ”Some very simple codes for the nonsynchronized two-user multiple-access adder channel with binary inputs,” IEEE Trans. Inform. Theory, vol. IT-24, no. 5, pp. 635-636, Sept. 1978. [6 ] R. Ahlswede and V. B. Balakirsky, ”Construction of uniquely decodable codes for the twouser binary adder channel,” IEEE Trans. Inform. Theory, vol. 45, no. 1, pp. 326-330, Jan. 1999. [7 ] S. C. Chang and E. J.Weldon Jr., ”Coding for _-user multiple-access channels,” IEEE Trans. Inform. Theory, vol. IT-25, no.6, pp. 684-691, Nov. 1979. [8 ] T. J. Ferguson, ”Generalized _-user codes for multiple-access channels,” IEEE Trans. Inform. Theory, vol. IT-28, no. 5, pp. 775-778, Sept. 1982. [9 ] S. C. Chang, ”Further results on coding for _-user multiple-access channels,” IEEE Trans. Inform. Theory, vol. IT-30, no. 2, pp. 411-415, Mar. 1984. [10 ] G. H. Khachatrian and S. S. Martirossian, ”Code construction for the _-user noiseless adder channel,” IEEE Trans. Inform. Theory, vol. 44, no. 5, pp. 1953-1957, Sept. 1998. [11 ] B. L. Hughes and A. B. Cooper III, ”Nearly optimal multiuser codes for the binary adder channel,” IEEE Trans. Inform. Theory, vol. 42, no. 2, pp. 387-398, Mar. 1996. [12 ] S. I. Bross and I. F. Blake, ”Upper bound for uniquely decodable codes in a binary input '-user adder channel,” IEEE Trans. Inform. Theory, vol. 44, no. 1, pp. 334-340, Jan. 1998. [13 ] G. Ungerboeck, ”Channel coding with multilevel/phase signals,” IEEE Trans. Inform. Theory, vol. IT-28, no. 1, pp. 55-66, Jan. 1982. [14 ] H. C. A. Van Tilborg, ”An upper bound for codes for the noisy two-access binary adder channel,” IEEE Trans. Inform. Theory, vol. IT-32, no. 3, pp. 436-440, May 1986. [15 ] F. H. Ali and B. Honary, ”Low complexity soft decision decoding technique for _-user collaborative coding multiple-access channels,” Electronics Letters, vol. 27, no. 13, Jun. 1991. [16 ] F. H. Ali and B. Honary, ”Collaborative coding and decoding techniques for multiple access channel,” IEE Proc.-Commun., vol. 141, no. 2, Apr. 1994. [17 ] S. D. Morgera and L. Zhang, ”Performance of uplink cooperative code division multiple access over an AWGN channel ,” IEEE Int. Conf. Commun., vol. 1, pp. 81-85, Jun. 1997. [18 ] V. P. Telang and M. A. Herro, ”Error control coding for the '-user mod-2 multiple-access channel,” IEEE Trans. Inform. Theory, vol. 44, no. 4, pp. 1632-1642, Jul. 1998. [19 ] R. L. Peterson, R. E. Ziemer, and D. E. Borth, Introduction to spread spectrum communications. London: Prentice-Hall, 1995. [20 ] J. G. Proakis, Digital communication, 4th ed. New York: McGraw-Hill, 2001. [21 ] F. H. Ali, S. A. G. Chandler, and S. Soysa, ”Complex-valued receiver for multiuser collaborative coding schemes,” Electronics Letters, vol. 31, no. 5, Mar. 1995. [22 ] F. H. Ali and S. Soysa, ”Complex-valued collaborative coding multiple access for fading channels,” IEE Proc.-Commun., vol. 148, no. 5, Oct. 2001. [23 ] F. H. Ali, S. Soysa, and S. A. G. Chandler, ”Channel capacity limits for multiple-access channels with slow Rayleigh fading,” Electronics Letters, vol. 32, no. 16, Aug. 1996. [24 ] N. Yee and J. P. M. G. Linnartz, ”Multi-carrier CDMA in an indoor wireless radio channel,” Memorandum UCB/ERL M94/6, U.C. Berkeley, Electronics Research Lab. [25 ] S. Verdu, Multiuser detection. Cambridge: Cambridge University Press, 1998. [26 ] N. Benvenuto and G. Cherubini, Algorithms for communications systems and their applications. West Sussex: John Wiley & Sons Ltd, 2002. [27 ] G. H. Golub and C. F. Van Loan, Matrix computations, 3rd ed. Baltimore, Maryland: The Johns Hopkins University Press, 1996. [28 ] R. M. Gray, ”Toeplitz and circulant matrices: a review,” Lucent Technologies, Aug. 2002. [29 ] G. Strang, Linear algebra and its applications, 3rd ed. Orlando, Florida: Harcourt Brace Jovanovich, 1988. [30 ] O. Bretscher, Linear algebra with applications. London: Prentice-Hall, 1997.id NH0925442027 sid 913928 cfn 0 / id NH0925442028 auc 劉家榮 tic 藉由動態模型討論酵母菌在高溫環境下的基因群間調控網路 adc 陳博現 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 31 kwc 群組 kwc 動態模型 kwc 高溫 kwc 酵母菌 abc 藉由有時間序列的生物晶片(microarray)實驗,可以獲得大量有關於基因間調控關係的訊息。而由這些訊息可以建立出基因之間的動態模型,這些模型將顯示出基因跟基因之間的調控關係。而由於直接的去探討基因間的調控關係將會造成一連串複雜且難以看出其中調控的關鍵,所以這裡吾人藉由群組(cluster)以降低其複雜度,且由於群組起來的基因之間本身將具有一定的相關程度,這將可獲得更多有關於基因之間的關係,因吾人希望能從生物晶片中能盡量獲取其中基因間重要關係,所以又加入動態模型以尋求其中基因之間的調控關係。而這裡吾人選用目前較多文獻記載的酵母菌檢視這方法在高溫下的動態調控網路的效果。 tc 1. Introduction ……………………………………………………… 1 2. Methods …………………………………………………………… 5 2.1 Experimental Data and Clustering of Heat Shock Genes………… 5 2.2 Identification of the Cluster Regulatory Networks……………………. 6 3. Results …………………………………………………………… 13 3.1 The Result of Fuzzy K-Means Clustering…………………………… 13 3.2 The Estimated Regulatory Mechanism of HSP26 …………………… 14 3.3 The Estimation of Regulatory Mechanism of ALD3 ………………… 16 4. Discussion ………………………………………………………… 18 References 21rf 1. Allocco DJ, Kohane IS, Butte AJ. (2004). Quantifying the relationship between co-expression, co-regulation and gene function. BMC Bioformatics , 5:18 2. Aranda A, del Olmo Ml M. (2003) Response to acetaldehyde stress in the yeast Saccharomyces cerevisiae involves a strain-dependent regulation of several ALD genes and is mediated by the general stress response pathway. Yeast. Jun;20(8):747-59. 3. Arava Y, Wang Y, Storey JD, Liu CL, Brown PO, Herschlag D. (2003) Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. Apr 1;100(7):3889-94. 4. Boy-Marcotte E, Perrot M, Bussereau F, Boucherie H, Jacquet M.(1998) Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae. J Bacteriol 180: 1044-1052. 5. Choder M. (1991) A general topoisomerase I-dependent transcriptional repression in the stationary phase in yeast. Genes Dev. Dec;5(12A):2315-26. 6. Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, Herskowitz I. 1998. The transcriptional program of sporulation in budding yeast . Science 282(5389): 699-705. 7. de Hoon MJ, Imoto S, Kobayashi K, Ogasawara N, Miyano S. (2003). Inferring gene regulatory networks from time-ordered gene expression data of Bacillus subtilis using differential equations. Pac Symp Biocomput.:17-28. 8. DeRisi JL, Iyer VR, Brown PO. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680–686. 9. Eisen MB, Spellman PT, Brown PO, Botstein D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc Nat Acad Sci USA 95(25): 14863-14868 10. Ge H, Liu Z, Church GM, Vidal M. ( 2001). Correlation between transcriptiome and interactome mapping data from Saccharomyces cerevisiae. Nat Genet, 29: 482-486 11. Hwang D, Alevizos I, Schmitt WA, Misra J, Ohyama H, Todd R, Mahadevappa M, Warrington JA, Stephanopoulos G, Wong DT. 2003. Genomic dissection for characterization of cancerous oral epithelium tissues using transcription profiling. Oral Oncology 39 (3): 259-268 12. Heyer LJ, Kruglyak S, Yooseph S. 1999. Exploring expression data: Identification and analysis of coexpressed genes. Genome Research 9(11): 1106-1115. 13. Kosko B. (1992). Neural Networks and Fuzzy systems. Prentice Hall International. London. 14. Navarro- JP, Prasad R, Miralles VJ, Benito RM, Serrano R. (1999). A proposal for nomenclature of aldehyde dehydrogenases in Saccharomyces cerevisiae and characterization of the stressinducible ALD2 and ALD3 genes. Yeast 15: 829–842. 15. Pedruzzi I, Burckert N, Egger P, De Virgilio C. (2000) Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1. EMBO J. Jun 1;19(11):2569-79. 16. Schmitt WA Jr, Stephanopoulos G. (2003). Prediction of transcriptional profiles of Synechocystis PCC6803 by dynamic autoregressive modeling of DNA microarray data. Biotechnol Bioeng. Dec 30;84(7):855-63 17. Schuller C, Brewster JL, Alexander MR, Gustin MC, Ruis H. (1994) The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J. Sep 15;13(18):4382-9. 18. Segal E, Shapira M, Regev A, Pe'er D, Botstein D, Koller D, Friedman N. (2003). Module networks identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet. Jun;34(2):166-76. 19. Segal, E., Shapira, M., Regev, A., Pe'er, D., Botstein, D., Koller, D., and Friedman, N. (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics, 34(2), 166-76. 20. Simonis N, Van Helden J, Cohen GN, Wodak SJ. (2004). Transcriptional regulation of protein complexes in yeast. Genome Biol., 5:R33. 21. Stepanenko IL.(2001). [Apoptosis and response to heat shock of interference gene networks ]. Mol Biol (Mosk). Nov-Dec;35(6):1063-71. 22. Teichmann SA, Babu MM. (2002) Conservation of gene co-regulation in prokaryotes and eukaryotes. Trends Biotechnol, 20: 407-410.id NH0925442028 sid 913935 cfn 0 / id NH0925442029 auc 郭銘彬 tic 深次微米缺陷之路徑延遲診斷技術 adc 劉靖家 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 56 kwc 延遲診斷 abc 延遲診斷 (delay diagnosis) 的目的是為了找出最有可能造成延遲錯誤的地方,一個有效率的診斷軟體可以提供設計者一組比較少且需要先檢查的地方,藉以減少重新設計所花費的時間。 tc Contents 1 Introduction 8 1.1 Diagnosis Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Delay Testing Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Applications of Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Previous Approaches of Delay fault Diagnosis 13 2.1 Diagnosis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Diagnosis Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 Six-ValuedSimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Multiple delay fault diagnosis . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.3 Effect-Cause Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.4 Bounding Circuit Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.5 Diagnosis Using PDFs With Validatable Non-robust Test . . . . . . . . . . 24 2.3 Diagnosis in Sequential Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 Diagnosis Methodology for Deep Sub-Micron Delay Defects 28 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2 An Example to Illustrate the New Diagnosis Method . . . . . . . . . . . . . . . . 33 3.3 SolverResultAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2 3.3.1 Combine Inseparable Segments . . . . . . . . . . . . . . . . . . . . . . . 38 4 Experimental Results 40 4.1 Experimental Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2 The Experimental Results for Diagnosing Path Delay Fault . . . . . . . . . . . . . 41 4.2.1 TheFirstExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2.2 TheSecondExperimentalResults . . . . . . . . . . . . . . . . . . . . . . 46 4.2.3 Results of Diagnosing Multiple Delay Faults . . . . . . . . . . . . . . . . 50 5 Conclusions and Future Work 52 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3 List of Figures 1.1 TestingScheme forCombinationalCircuits . . . . . . . . . . . . . . . . . . . . . 10 2.1 Diagnosis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Generate Suspect List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 ReduceSuspectList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 ExampleCircuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5 SuspectCircuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.6 LinearRelationsbetweenPathDelays . . . . . . . . . . . . . . . . . . . . . . . . 23 2.7 Diagnosis Using PDFs with a VNR Test (a) Passed test: Pattern I. . . . . . . . . . 25 2.8 Diagnosis Using PDFs with a VNR Test (b) Passed test: Pattern II. . . . . . . . . . 25 2.9 Diagnosis Using PDFs with a VNR Test (c) Passed test: Pattern III. . . . . . . . . 26 3.1 New Diagnosis Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 TheExampleof theCircuitC17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3 Inseparable Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4 CombineSegmentRule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.1 ExperimentalFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2 OriginalTopTen&DelaySize . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3 ImprovedTopTen&DelaySize . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.4 CompareTopTenResult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.5 Compare Unbounded Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.1 Unbounded Result Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 List of Tables 2.1 Comparison of Different Delay Fault Models . . . . . . . . . . . . . . . . . . . . 16 2.2 PathsofExampleCircuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 LocalSuspectSets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 SensitizedPDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1 SymbolMappingTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2 LinearProgrammingSolverResult . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3 CombinedSymbolMappingTable . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.1 Combine Inseparable Segments Result . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2 ExperimentalSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3 The number of injected faults without combining inseparable segments . . . . . . . 44 4.4 OriginalTop20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.5 Original Unbounded Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.6 CombinedInjectSegmentFaultNumbers . . . . . . . . . . . . . . . . . . . . . . 46 4.7 Top20 of ImprovementMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.8 The Average Rank of Top Ten . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.9 ExperimentalSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.10 Top20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.11 Unbounded Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.12 Experimental Results for Diagnosing Multiple Faults . . . . . . . . . . . . . . . . 51 5.1 SegmentMappingtable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2 Appearance Time and Ranking Result . . . . . . . . . . . . . . . . . . . . . . . . 54rf [1 ] M. Sharma and J. H. Patel, “Bounding Circuit Delay by Testing a Very Small Subset of Paths”, Proceedings of IEEE VLSI Test Symposium, pp. 333–341, Apr. 2000. [2 ] Brian D. Bunday, Basic Linear Programming, Edward Arnold, London, 1984. [3 ] A. Krstic and K.-T. Cheng, Delay Fault Testing for VLSI Circuits, Kluwer Academic Publishers, Boston, MA, 1998. [4 ] P. Girard, C. Landrault, and S. Pravossoudovitch, “A Novel Approach to Delay-Fault Diagnosis”, Proceedings of Design Automation Conference, pp. 357–360, June 1992. [5 ] J. G. Dastidar and N. A. Touba, “A systematic Approach for Diagnosing Multiple Delay Faults”, Symposium on Defect and Fault Tolerance, pp. 211–216, Nov. 1998. [6 ] J. G. Dastidar and N. A. Touba, “Adaptive Techniques for Improving Delay Fault Diagnosis”, Proceedings of IEEE VLSI Test Symposium, pp. 168–172, Apr. 1999. [7 ] Y.-C. Hsu and S. K. Gupta, “A New Path-Oriented Effect-Cause Methodology to Diagnose Delay Failures”, Proceedings of IEEE International Test Conference, pp. 758–767, Oct. 1999. [8 ] P. Pant and A. Chatterjee, “Efficient Diagnosis of Path Delay Faults in Digital Logic Circuits”, Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 471– 475, Nov. 1999. [9 ] P. Pant, Y.-C. Hsu, S. K. Gupta, and A. Chatterjee, “Path Delay Fault Diagnosis in Combinational Circuits With Implicit Fault Enumeration”, Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 1226–1335, Oct. 2001. [10 ] K. T. Cheng and H. C. Chen, “Delay testing for nonrobust untestable circuits”, Proceedings of IEEE International Test Conference, pp. 954–961, Apr. 1993. [11 ] W. K. Lam, A. Saldanha, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Delay fault coverage and performance tradeoffs”, Proceedings of Design Automation Conference, pp. 446–452, June 1993. [12 ] U. Sparmann, D. Luxenburger, K. T. Cheng, and SM. Reddy, “Fast identificationof robust dependent path delay faults”, Proceedings of Design Automation Conference, pp. 119–125, June 1995. [13 ] K. T. Cheng and H. C. Chen, “Classification and identification of nonrobust untestable path delay faults”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 845–853, Aug. 1996. [14 ] S. Padmanaban and S. Tragoudas, “An Implicit Path-Delay Fault Diagnosis Methodology”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 1399– 1408, Oct. 2003. [15 ] R. C. Tekumalla, S. Venkataraman, and J. G. Dastidar, “On Diagnosing Path Delay Fault in an At-Speed Environment”, Proceedings of IEEE VLSI Test Symposium, pp. 28–33, Apr. 2001. [16 ] Peter Notebaert, “Linear programming solver”, http://groups.yahoo.com/group/lpsolve, 2003. [17 ] J. J. Liou, K. T. Cheng, and D. A.Mukherjee, “Path Selection for Delay Testing of Deep Sub- Micron Devices Using Statistical Performance Sensitivity Analysis”, Proceedings of IEEE VLSI Test Symposium, pp. 97–104, Apr. 2000.id NH0925442029 sid 913938 cfn 0 / id NH0925442030 auc 陳元賀 tic 利用L1最佳預測器在分碼多重存取微細胞通訊系統中的功率控制 adc 陳博現 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 36 kwc 功率控制 kwc 分碼多重存取 kwc 線性矩陣不等式 kwc L1 abc 在直接序列分碼多重存取(DS-CDMA)通訊系統中,每一位使用者擁有各自獨特的展頻碼來做為使用者之間傳輸的保護以及區分,進而達到更佳的頻譜使用效益,使其在區域無線網路中有非常高的傳輸能力。然而,由於展頻碼的不完全正交及多重路徑有著延遲的問題,導致了多重路徑干擾(MAI),而在微細胞通訊系統中,此現象(MAI)將會限制通訊系統的品質以及使用者的容量。功率控制被提出來對付這個問題(MAI) ,利用功率的調節,以克服干擾的影響,達到較有效益的通訊品質。 tc 摘要 ……………………………………………………………… i 目錄 ……………………………………………………………… ii 第一章:簡介 …………………………………………………… iii 第二章:分碼多重存取功率控制之系統描述 ………………… iv 第三章: 預測控制 ……………………………………………… v 第四章:模擬分析和結果討論 ………………………………… vi 第五章:結論 …………………………………………………… viirf [1 ] W. C. Y. Lee, “ Overview of cellular CDMA, ” IEEE Trans. Veh. Technol., vol. 40, no. 2, pp. 291-302, May 1991. [2 ] K. S. Gilbousen, I. M. Jacobs, R. Padovani, A. J. Viterbi, L. A. Weaver, and C. E. Wheatley, “ On the capacity of cellular CDMA systems, ” IEEE Trans. Veh. Technol., vol. 40, no. 2, pp. 303-312, May 1991. [3 ] R. L. Pickholt, L. B. Milstein, and D. L. Schilling, “ Spread spectrum for mobile communication, ” IEEE Trans. Veh. Technol., vol. 40, no. 2, pp. 313-323, May 1991. [4 ] S. A. Grandhi, R. Vijayan, D. J. Goodman, and J. Zander, “ Centralized Power Control in Cellular Radio Systems, ” IEEE Trans. Veh. Tech., vol. 42, no. 4, pp. 466-468, Nov. 1993. [5 ] J. F. Chamberland and V. V. Veeravalli, “ Decentralized dynamic power control for cellular CDMA systems, ” IEEE Trans. Wireless Commun., vol. 2, no. 3, pp. 466-468, May 2003. [6 ] J. Zander, “ Distributed cochannel interference control in cellular radio systems, ” IEEE Trans. Veh. Technol., vol. 41, no. 3, pp. 305-311, Aug. 1992. [7 ] G. J. Foschini and Z. Miljanic,“ A sample distributed autonomous power control algorithm and its convergence, ” IEEE Trans. Veh. Technol., vol. 42, no. 4, pp. 641-646, Nov. 1993. [8 ] A. J. Viterbi, A. M. Viterbi, and E. Zehavi,“ Performance of power-controlled wideband terrestrial digital communication, ” IEEE Trans. Commun., vol. 41, no. 4, pp. 559-569, Apr. 1993. [9 ] C. U. Saraydar, N. B. Mandayam, and D. J. Goodman, “ Pricing and power control in a multicell wireless data network, ” IEEE Jour. on selected area in Commun., vol. 19, no. 10, pp. 1883-1892, Oct. 2001. [10 ] A. J. Viterbi, CDMA: Principle of Spread Spectrum Communication, Massachusetts: Addison-Wesley, 1995. [11 ] J. G. Andrews and T. H. Meng,“ Optimum Power Control for Successive Interference CancellationWith Imperfect Channel Estimation, ” IEEE Trans.Wireless Commun., vol. 2, no. 2, pp. 375-383, March 2003. [12 ] F. Gunnarsson, F. Gustafsson, and J. Blom, “ Dynamical Effects of Time Delays and Time Delay Compensation in Power Controlled DS-CDMA, ” IEEE Jour. on selected area in Commun., vol. 19, no. 1, Jan. 2001. [13 ] B. K. Lee, H. W. Chen, and B. S. Chen, “ Power Control of Cellular Radio Systems via Robust Smith Prediction Filter, ” to appear in IEEE Trans. Wireless Commun.. [14 ] S. C. Peng and B. S. Chen, “ Deconvolution filter design via 􀁣1 optimization technique, ” IEEE Trans. Signal Processing, vol. 45, no. 3, pp. 736-746, March 1997. [15 ] T. S. Rappaport, “ Wireless Communications: Principles and Practice, ” Prentice Hall, 2002. [16 ] M. Gudmundson, “ Correlation model for shadowing fading in mobile radio systems, ” Electron. Lett., vol. 27, no. 23, pp. 2145-2146, Nov. 1991. [17 ] D. Giancristofaro, “ Correlation model for shadow fading in mobile radio channels, ” Electron. Lett., vol. 32, no. 11, pp. 958-959, Nov. 1996. [18 ] S.Mockford, A. M. D. Turkmani, and J. D. Parsons, “ Local mean signal variability in rural areas at 900 MHz, ” in Proc. 40th Veh. Technol. Conf., pp. 610-615, 6-9 May 1990. [19 ] T. Jiang, N. D. Sidiropoulos, G. B. Giannakis, “ Kalman Filtering for Power Estimation in Mobile Communications, ” IEEE Trans. Wireless Commun., vol. 2, no. 1, pp. 151-161, Jan. 2003. [20 ] W. C. Jakes, Tr., ed., “ Microwave Mobile Communications, ” Wiley, New York, 1974. [21 ] H. J. Su and E. Geraniotis, “ Adaptive closed-loop power control with quantized feedback and loop filtering, ” IEEE Trans. Wireless Commun., vol. 1, no. 1, pp. 76-86, Jan. 2002. [22 ] K. Astrom and B. Wittenmark, “ Computer Controlled Systems Theory and Design, ” Englewood Cliffs, NJ: Prentice Hall, 1984. [23 ] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. Philadelphia, PA: SIAM, 1994. [24 ] G. L. Stuber, “ Principles of Mobile Communication, 2nd ed. ” Kluwer Academic Publishers, 2001. [25 ] S. Kandukuri and S. Boyd, “ Optimal power control in interference-limited fading wireless channels with outage-probability specifications, ”IEEE Trans. Wireless Commun., vol. 1, no. 1, pp. 46-55, Jan. 2002. [26 ] S. Ariyavisitakul, “ Signal and interference statistics of a CDMA system with feedback power control–part II, ” IEEE Trans. Commun., vol. 42, pp. 597-605, no. 2/3/4, Feb./March/Apr. 1994. [27 ] M. L. Sim, E. Gunawan, C. B. Soh, and B. H. Soong, “ Characteristics of closed loop power control algorithms for a cellular DS/CDMA system, ” IEE Proceedings on Commun., vol. 145, no. 5, pp. 355-362, Oct. 1998. [28 ] H. J. Su and E. Geraniotis, “ Adaptive closed-loop power control with quantized feedback and loop filtering, ” IEEE Trans. Wireless Communications., vol. 1, no. 1, pp. 76-86, Jan. 2002. [29 ] N. S. Jayant and P. Noll, “Digital Coding of Waveforms, ” Englewood Cliffs, NJ: Prentice Hall, 1984. [30 ] M. Chilali and P. Gahinet, “ H∞ design with pole placement constraints: An LMI approach, ” IEEE Trans. Automat. Control, vol. 41, no. 3, pp. 358-367, March 1996.id NH0925442030 sid 913941 cfn 0 / id NH0925442031 auc 李志峰 tic 鎖相迴路之最大累積抖動量測 adc 張慶元 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 47 kwc 鎖相迴路 kwc 抖動量 kwc 時間電壓轉換器 kwc 峰值電壓檢測器 kwc 谷值電壓檢測器 kwc 快閃式類比轉數位轉換器 abc 鎖相迴路 (Phase-Locked Loops)在系統整合晶片(System on Chip)已經被廣泛的用來產生乾淨而且穩定的時脈,由於現在系統速度越來越快,以及系統也有著雜訊干擾,所以使得系統需要更嚴謹的時間規格。藉由量測鎖相迴路所產生出來時脈的抖動量(Jitter)便能判別雜訊影響的程度,進而改善鎖相迴路的效能,而不致使得整個系統整合晶片的良率受到影響。傳統的量測方式是使用外部的 ATE (Automation Testing Equipment) ,此量測方式有著量測成本昂貴且不能準確的直接量測深藏在晶片中的鎖相迴路的問題,使用內建自我量測電路 BIST(Built-in-Self-Test)以達到解決這些問題且能正確量測到鎖相迴路的抖動量。本論文提出一個量測方式及電路來直接量測到鎖相迴路的最大累積抖動,包含正和負的最大累積抖動。量測電路使用高速計數器(High-Speed Counter)對鎖相迴路輸出累積N個週期時間量,經由兩級時間對電壓轉換(Two-Stage Time-to-Voltage Conversion)對正負抖動量作個區分,峰值電壓檢測(Peak Detector)、谷值電壓檢測(Valley Detector),以反向器為基礎的快閃類比轉數位輸出(Inverter-based Flash Analog-to-Digital Conversion)所組成。因此便能在量測過程就直接量測到最大的抖動量而不需事後決定抖動的正負之分(Without Post-Processing)。量測頻率範圍為 700MHz-1.4GHz,累積8個週期進行量測,量測得到的解析度和線性失真分別是44ps及1.25%。量測在1GHz之下再經過校正(Calibration)得到的最大誤差為一個最小計數單位(LSB),而1GHZ以上的頻率量測得到最大誤差在1LSB--2LSB之間。 tc Contents Abstract Contents List of Figures List of Tables Chapter1. Introduction………………………………..………………….1 1.1 Background…………………………………………………..………1 1.2 Jitter Analysis………………………………………………………...3 1.3 Motivation……………………………………………………………4 1.4 Organization………………………………………………………….7 Chapter2. Previous Works……………………………………………..…8 2.1 Timing-test Techniques……….………………………………………9 2.2 Period Jitter Measurement……………………………………..……10 2.3 Time to Digital Converter Techniques………………………………11 2.3.1 Interpolation based TDC………………………………..……..11 2.3.2 Vernier Delay Line….…….………………………………..….14 2.3.3 Dual Slope Method………………............................................16 2.4 Summary……………………………………………………………18 Chapter3 Proposed Method and Proposed Measurement Circuits….…..19 3.1 Accumulated Signal Generator…………………………..…………22 3.2 Time-to-Voltage Converter (TVC)………………………………….25 3.3 Valley Detector and Peak Detector…………………………………28 3.4 Leakage Cancellation Circuits……………………………...……….29 3.5 A/D Converter……………………………………………….…..31 Chapter4 Calibration and Simulation Results……………………..……34 Chapter5. Conclusions and Future Works…………………………........43 Bibliography.............................................................................................44rf [1 ] A mixed-signal framework and standard for high-frequency timing measurements Soma, M.; AUTOTESTCON Proceeding, 2001. IEEE Systems Readiness Technology Conference,20-23 Aug. pp. 504 – 513, 2001. [2 ] Frank Herzel & Behzad Razavi, "A Study of Oscillator Jitter Due to Supply and Substrate Noise", IEEE Transactions on Circuits and Systems, Analog and Digital Signal Proceeding, Vol. 46, No. 1, 1999 [3 ] Extraction of peak-to-peak and RMS sinusoidal jitter using an analytic signal method Yamaguchi, T.J.; Soma, M.; Ishida, M.; Watanabe, T.; Ohmi, T.; VLSI Test Symposium, 2000. Proceedings 18th IEEE, 30, pp. 395 – 402, April-4 May 2000 [4 ] T. Yamaguchi, M. Soma, L.Marrlarsie, M.Ishida, H. Musha, "Timing Jitter Measurement of 10Gbps Bit Clock Signals Using Frequency Division", Proc. IEEE VLSI Test Symposium, pp. 207-212, 2002 [5 ] H. C. Lin, K. Taylor, A. Chong, E. Chan, M. Soma, H. Haggag, J. Huard, J. Braatz , “CMOS Built-In Test Architecture for High-Speed Jitter Measurement”, Proc.of ITC, pp. 67-76, 2003. [6 ] T. Yamaguchi and M. Sima, “A Method for Measuring the Cycle-to-Cycle period Jitter of High-Frequency Clock Signals”, Proceeding 19th IEEE VTS, pp. 102-110, 2001. [7 ] E. Raisanen - Ruosalainen, T. Rahkonen, and J. Kostamovaara, “A Low Power CMOS Time-to-Digital Converter”, Proceedings CICC, pp. 605-990, 1995. [8 ] T. Rahkonen, and J. Kostamovaara, “The use of stabilized CMOS delay lines in the digitization of short time intervals’’, Proceeding IEEE JSSC, vol. 28, pp. 887-894, 1993. [9 ] P. Dudek, Student Member, IEEE, S. Szczepanski, and J. V. Hatfield, “A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line”, Proceedings IEEE JSSC, Vol.35, pp. 240 –247, 2000. [10 ] A. H. Chan and G. W. Roberts, “A synthesizable, fast and high-resolution timing measurement device using a component-invariant vernier delay line”, Proceeding ITC 2001, pp. 858 -867, 2001. [11 ] A. H. Chan and G. W. Roberts, “A deep sub-micron timing measurement circuit using a single-stage Vernier delay line”, Proceeding IEEE CICC, pp 77 -80, 2002. [12 ] C. Kimsal and J. B. Wilstrup, Time Interval Measurement System Incorporating a Linear Ramp Generation Circuit, US patent 6,194,925, to Wavecrest Corp.,Patent and Trademark Office, Washington, D.C., 2001. [13 ] R. L. Sumner, Apparatus and Method for measuring Time Interval with Very High Resolution, US patent 6,137,749, to LeCroy Corp., Patent and Trademark Office, Washington, D.C., 2000. [14 ] J. O’Hern and N. Schindler, High Resolution Time Inetrval Measuring Circuit Employing a Balanced Crystal Oscillator, US patent 3,325,750, to General Electric Co., Patent and Tradmark Office, Washington, D.C., 1967. [15 ] S. Tabatabaei and A. Ivanov, “Embedded timing analysis: a soc infrastructure”, Proceedings IEEE D&T, Vol.19, pp. 22–34, 2002. [16 ] N. Abaskharoun, and G. W. Roberts, “Circuits for on-chip sub-nanosecond signal capture and characterization”, Process IEEE CICC, pp. 251-254, 2001. [17 ] E. Raisanen-Ruosalainen, T. Rahkonen, and J. Kostamovaara, “Time Interval Measure- ments Using Time-to-Voltage Conversion with Built-in Dual-Slope A/D Conversion”, Proc. of ISCAS, Vol.5, pp. 2573-2576, 1991. [18 ] E. Raisanen-Ruosalainen, T. Rahkonen, and J. Kostamovaara, “A time digitizer with interpolation based on time-to-voltage conversion”, Proceedings on MWSCAS, Vol.1, pp. 197-200, 1997. [19 ] E. Raisanen-Ruosalainen, T. Rahkonen, and J. Kostamovaara, “A BiCMOS time-to-digital converter with 30 ps resolution”, Proceedings on IEEE ISCAS ’99 Vol.1, pp. 278 -281, 1999. [20 ] M. –J. Hsiao, J. –R. Huang, S. –S. Yang and T. –Y. Chang, “A Built-in Timing Parametric Measurement”, Proceedings of IEEE ITC, pp. 315-322, 2001. [21 ] Louis S. Y. Wang, S. Hossain, and A. Walker, "Leakage Current Cancellation Technique for Low Power Switched-Capacitor Circuits", ISLPED, pp. 310-315, 2001 [22 ] Sang-Hoon Lee and Hong June Park, "A CMOS High-Speed Wide-Range Programmable Counter", IEEE Transaction On Circuits and Systems, Vol.49, No.9, pp. 638-642, 2002. [23 ].K.- J. Mo, S. - S. Yang, and T. - Y. Chang, “An timing measurement unit with multi-stage for embedded memory”, Proc. of ASP-DAC, pp. 455-456, 2004. [24 ] S. - R. Lee, M. - J. Hsiao, and T. - Y. Chang, "An access timing measurement unit of embedded memory", Proceedings of the 11th ATS, pp. 104 -109, 2002. [25 ] Daegyu Lee, Jincheol Yoo, and Kyusun choi,"Design Method and Automation of Comparator Generation for flash A/D Converter", Proceeding IEEE ISQED, pp. 138-142, 2002.id NH0925442031 sid 913945 cfn 0 / id NH0925442032 auc 王宏達 tic 運用Buyer-Seller浮水印協定生物認證技術及Java Card行動商務機制改進cIDf提出的架構 adc 許文星 教授 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 121 kwc 浮水印協定 kwc 生物認證技術 kwc 行動商務機制 abc 近年來,因為通訊和網路的發達,使得數位訊息的如同影像、音樂、電影或是其他型態的數位內容在數位世界的傳播更為方便,也造就了數位內容交易的龐大商機。雖然通訊的發達為數位內容的傳播或交易帶來許多的便利,但相對的也產生許多的問題,其中最為重要的就是數位內容的智慧財產權保護的問題和交易的安全性的問題。以數位內容的保護來說,當一件商品被轉換為數位的型式之後,就很容易被隨意的複製,而降低商品的價值。另一方面,如何確保網路上交易安全性,讓交易雙方都能放心的交易數位內容,也是數位世界要蓬勃發展的關鍵因素。 tc Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Benefits of Content ID 5 1.2.1 Efficient Charging and Royalty Allocation 5 1.2.2 Efficient Watching of Unscrupulous Use 5 1.2.3 Efficient Collection of Mart Information 6 1.2.4 Promote to Originality 6 1.2.5 Assertion of Origination 6 1.2.6 Introduction of the Concept of Individuality to Digital Content 6 1.3 Objective 7 1.3.1 Protection Intellectual Property Rights 7 1.3.2 Identification Verification 7 1.3.3 Anonymity 8 1.3.4 Confidentiality 8 1.3.5 Convenience 8 1.3.6 Integrity 9 1.3.7 Non-Repudiation 9 1.4 Thesis Organization 9 Chapter 2 Content ID Forum 10 2.1 Introduction 10 2.1.1 Background 10 2.1.2 Scope of the Content ID Forum 11 2.2 Function Analysis 11 2.2.1 High Level View 12 2.2.1.1 Perceived Problems 12 2.2.1.2 The Principles of cIDf 12 2.2.1.3 The Scope of Rights Targeted by cIDf 13 2.2.2 Reference Model 13 2.2.2.1 Definitions of Terms 13 2.2.2.2 Reference Model 16 2.2.2.3 Case Studies 17 2.2.2.4 Security of Digital Content 21 2.2.3 Function Requirements 21 2.2.3.1 Rights Owner Requirements 21 2.2.3.2 Editor/Arranger Requirements 21 2.2.3.3 Aggregator/Distributor Requirements 21 2.2.3.4 Consumer Requirements 22 2.3 The Technology to Implement the Practical Use of Content ID 22 2.3.1 Overview of Processing to Issue Content ID 22 2.3.2 Distributed Content Descriptor 23 2.3.2.1 DCD Attributes 23 2.3.2.2 Functions of DCD 23 2.3.2.3 Alternative Models for Associating the DCD to Content 24 2.3.2.4 DCD Functions 24 2.3.2.5 DCD Expression Models 25 2.3.3 Digital Watermarking 27 2.3.3.1 Strategy for Using Watermarks 27 2.3.3.2 Watermarking Methods 27 2.3.3.3 Meta-Watermarking 28 2.3.4 The Content ID Issuing Center(CIC) and the IPR Database(IPR-DB) 28 2.3.4.1 The Functions of the Content ID Issuing Center 28 2.3.4.2 Consumer Acquiring the Digital Content From an Aggregator/Distributor 32 2.3.4.3 Consumer Requesting the Identification of the Metadata Contained in the Watermark 32 2.3.4.4 Protocol 33 2.3.4.5 The Content ID Management Center and the IPR-DB 33 2.3.5 Detection of Illegal Use 33 2.3.5.1 Types of Illegal Acts and Detection Mechanisms 34 2.3.5.2 Detection of illegal acts using “Netwatcher” technologies 34 2.4 cIDf Metadata 35 2.4.1 cIDf Metadata Sets 35 2.4.2 cIDf Metadata Expression 36 2.4.2.1 Essential Attributes 36 2.4.2.2 Notation Format 37 2.4.2.3 Data Transfer Interface 37 2.5 cIDf Registration Authorities and cIDf Identifier Resolution 37 2.5.1 Definition of Terms 37 2.5.2 The Relationship between the Registration Authority and the Content ID Management Center (CIC) 38 2.5.2.1 Role and Operations of the Registration Authority 38 2.5.2.2 The Function of Registration Agencies 40 2.5.3 cIDf Resolution 41 2.5.3.1 What is cIDf Resolution? 41 2.5.3.2 The Relationship between cIDf and Handle 42 2.5.3.3 Handle System Management 42 2.5.3.4 Issuing of Handles 42 2.5.3.5 The Resolution Process 43 2.5.4 The CIDCMN/Handle Identifier Relationship 43 2.5.4.1 Handle Syntax 44 2.5.4.2 Handle Metadata for the cIDf Specification 44 2.5.5 Resolution Server System Architecture 44 Chapter 3 Related Techniques 46 3.1 E-Commerce and Smart Card Technique 47 3.1.1 E-Commerce Models 47 3.1.2 E-Commerce Payment Systems 47 3.1.2.1 Credit Card Payment System 47 3.1.2.2 Electronic Cash Payment System 49 3.1.2.3 Micropayment System 50 3.1.2.4 Electronic Check Payment System 51 3.1.3 Smart Card Technique 51 3.2 A Java Card based Consumer-Oriented Mobile-Commerce Payment System 54 3.2.1 Overview 54 3.2.2 Definition 55 3.2.3 Architecture 57 3.2.4 Transaction Procedure 58 3.2.5 Contents of Database 60 3.3 A Buyer–Seller Watermarking Protocol 60 3.3.1 Insertion Operation 61 3.3.2 Watermark Generation Protocol 62 3.3.3 Watermark Insertion Protocol 63 3.3.4 Copyright Violator Identification Protocol 64 3.3.5 Dispute Resolution Protocol 64 3.4 Biometric Authentication System 65 Chapter 4 Proposed System 68 4.1 Conception and Glossary 68 4.1.1 The Conception of Our System 68 4.1.2 Glossary and Symbols Used in Our System 69 4.2 System Servers 77 4.2.1 cIDf Domain 78 4.2.2 Smart Card Payment Domain 83 4.2.3 Biometric Authentication Domain 85 4.3 Flowchart of Our system 88 4.3.1 Preparation class 89 4.3.1.1 Register Phase 89 4.3.1.2 Application Phase 90 4.3.2 Content Transaction Class 92 4.3.2.1 Rights transaction phase 92 4.3.2.2 Authentication Phase 93 4.3.2.3 Payment Phase 98 4.3.2.4 Content Transfer Phase 100 4.3.3 Retrieval Class 103 Metadata Retrieval Phase 103 4.4 System Characteristics 107 1. Disputation Deterrence: 108 2. Non-Repudiation: 108 3. Effectively Retrieval Metadata: 108 4. Biometric Verification: 108 5. More General Assumption: 109 6. Anonymity and Privacy: 109 7. Confidentiality Communication Channel: 109 8. User Convenience: 109 9. User Identity Confirmation (support mutual authentication and Public-Key Infrastructural X.509 certificate) 110 10. Secure Storage Media: 110 11. Watermark Techniques and Cryptosystem: 110 4.5 System Analysis 112 1. Digital Content 112 2. User 112 3. Client 113 4. Aggregator/Distributor 114 5. Bank 114 6. Content ID Issuing Center 115 7. Biometric Watermark Secure Server 115 8. Watermark Management Center 115 9. System Limitation 116 Chapter 5 Conclusions 117 Bibliography 119rf [1 ] The Digital Object Identifier System, “The DOI Handbook,” Edition 3.3.0, November 2003. [2 ] International DOI Foundation, http://www.doi.org/ [3 ] Counting Online Usage of Networked Electronic Resources, http://www.projectcounter.org [4 ] Interoperability of Data in E-Commerce System, http://www.indecs.org/ [5 ] The Open eBook Forum, http://www.openebook.org/. [6 ] Content ID Forum (cIDf), ”cIDf Specification 2.0 /English version/,” Content ID Forum specification Ver.2.0 ,August 2003. [7 ] Content ID Forum (cIDf), ”cIDf Specification Ver.2.0 Appendices /English version/,” Content ID Forum specification Ver.2.0 appendices ,August 11 2003. [8 ] Chen-Hai Yu, “A Java Card Based Consumer-Oriented Mobile-Commerce Payment System,” Master thesis, National Tsing Hua University, June 2001. [9 ] Nasir Memon, Ping Wah Wong , “A Buyer-Seller Watermarking Protocol,” IEEE Transactions on Image Processing, VOL. 10, NO.4, April 2001. [10 ] S. Korper and J. Ellis, “The E-commerce book: Building the E-Empire,” Acdemic Press, San Diego, San Francisco, 2000. [11 ] L. Jean Camp, “Trust and Risk in Internet Commerce,” MIT Press, Cambridge, Massachusetts, 2000. [12 ] D. Amor, “The e-business (R) evolution: living and working in an interconnected world, Prentice Hall PTR,” Upper Saddle River,2000. [13 ] N. Itoi, and P. Honeyman, “Practical Security Systems with Smartcards,” Proc., 7th Workshop on Hot Topics in Operating Systems, pages 185~190, 1999. [14 ] Zhiqun Chen, ”Java Card Technology for Smart Cards: Architecture and Programmer’s Guide,” Reading, MA: Addison Wesley, June 2000. [15 ] Chin-Chen Yen, “A Secure Authentication System for Distributed Computing Environment Based on PKI Biometric Verification and Kerberos,” Master thesis, National Tsing Hua University, June 2002. [16 ] L. Qian and K. Nahrstedt, “Watermarking schemes and protocols for protecting rightfuk ownership and customer’s rights,” J. Visual Commun. Image Represent., vol. 9, pp. 194–210, Sept. 1998 [17 ] R. Rivest, A. Shamir, and L. Adelman, “A method for obtaining digital signatures and public key cryptosystems,” Commun. ACM, vol. 21, pp. 120–126, 1978. [18 ] D. Stinson, Cryptography: Theory and Practice. Boca Raton, FL: CRC, 1995. [19 ] J. D. Cohen and M. J. Fischer, “Arobust and verifiable cryptographically secure election scheme (extended abstract),” in Proc. IEEE 26th Annu. Symp. Foundations Computer Science, Portland, OR, Oct. 21–23, 1985, pp. 372–382. [20 ] Chin-Chen Yen, “A Secure Authentication System for Distributed Computing Environment Based on PKI Biometric Verification and Kerberos,” Proceeding of the 2002 International Computer Symposium, pp. 1330~1337, December. 2002. [21 ] M. Vandenwauver, R. Govaerts, and J. Vandewalle, “Overview of Authentication Protocol.” Proc. IEEE Int. 31st Annual IEEE Carnahan Conference on Security Technology, pages 108-113, 1997. [22 ] Y. Isobe, Y. Seto, and M. Kataoka, “Development of Personal Authentication System Using Fingerprint with Digital Signature Technologies.” Proc., 34th Annual Hawaii International Conference on System Sciences, pp. 4039~4047, 2001. [23 ] Chin-Chen Yen, “A Secure Authentication System for Distributed Computing Environment Based on PKI Biometric Verification and Kerberos,” Master thesis, National Tsing Hua University, June 2002. [24 ] Interoperability of Data in E-Commerce System, “Principles, model and data dictionary,” WP1a-006-2.0, June 2000. [25 ] Handel system, http://www.handle.net/ [26 ] Handel system,” Handle System 5.3,” November 2002. [27 ] Korea Digital content Forum, http://www.dcforum.or.kr/ [28 ] Korea Digital content Forum, http://www.dcforum.or.kr/ [29 ] D.E. Denning and G.M. Sacco, “Timestamps in Key Distribution Protocols.” Communication of the ACM, vol. 24, no. 8, pp.533~536, August 1981. [30 ] W. Diffie, and M. Hellman, “New Directions in Cryptography,” IEEE Transactions on information theory, Nov 1995. [31 ] “Public Key Infrastructure Specification.” The specification issued by Object Management Group (OMG), February 2001.id NH0925442032 sid 913946 cfn 0 / id NH0925442033 auc 蘇明毅 tic 利用功率模式分析及功能性權值計算法估測暫存器轉換層次功率消耗 adc 黃錫瑜 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 71 kwc 功率評估 kwc 暫存器轉移階層 abc 近年來,功率消耗成為了IC設計中非常重要的一個課題。這主要是因為過大的功率消耗,會導致電路過熱,使得電路的效能大打折扣。為了處理今日越來越複雜的晶片密度,電路在設計的階段中,能夠越早知道電路的消耗,越能夠在早期幫助設計者做功率上的最佳化設計。如此的最佳化設計,能夠在越高的層次執行,所節省的功率消耗更顯著。 tc 1. Introductions 7 1.1 Motivation……...…………….……………………………………………......8 1.2 Organization……………………………………………...…………………...12 2. Preliminary 13 2.1 RT-level power estimation techniques…………………………………….…..13 2.1.1 Analytical power models……………………………………….......….13 2.1.2 Characterization-based macro-model……………………….………....14 2.1.3 Control logic analysis techniques………………………….…………..15 2.2 Power consumption components…………………………………….………..15 2.2.1 Static power consumption…………………………………….....………16 2.2.2 Dynamic power consumption…………………………....…….………..18 3. Improved Linear Approximation 20 3.1 Statement of the problem………………………………….…………...……...20 3.1.1 Power model format…………………………………………………..…21 3.2 Up-down encoding…………………………………………………………….22 3.3 The main restrictions on up-down encoding scheme………………………….27 4. Overall Flow 29 4.1 Power mode identification………………………………………….………....29 4.1.1 Build hierarchical module tree of the circuit………………….………...29 4.1.2 Build power mode tree of every module……………………….…….…31 4.1.3 Analyze the VCD file………………………………………….………..33 4.2 Power model using functional weighting…………………………….……….35 4.2.1 Constructing fan-out cones of each input……………………….………36 4.2.2 Calculating functional weights………………………………….………37 5. Implementation 43 5.1 System overview………………………………………………………….…..44 5.1.1 Data preparation……………………………………………….………..44 5.1.2 Modeling phase………………………………………………....………45 5.1.3 Extrapolation phase………………………………………………….….47 6. Experimental Results 49 6.1 Usage of our tool………………………………………………………………49 6.2 Experiments………………………………………………………….………..51 6.2.1 Circuits elaborated from DesignWare………………………….……….51 6.2.2 Greatest-common-divisor circuit……………………………….……….55 6.2.3 Montgomery inverse circuit…………………………………….……….57 6.2.4 Finite impulse response filter…………………………………….…..….60 6.2.5 Arithmetic encoder………………………………………………...…….62 6.2.6 A symmetric crypto processor (AES)…...………………………….……65 7. Conclusion 67 8. Bibliography 68rf [1 ] S. Gupta and F. N. Najm, “Power Macro modeling For High-Level Power Estimation,” Proc. of Design Automation Conf., pp. 365-370, 1997. [2 ] E. Macii, M. Pedram, and F. Somenzi, “High-Level Power Modeling, Estimation, and Optimization,” in IEEE Transactions on CAD, Vol. 17, No. 11, pp. 1061-1079, 1998. [3 ] P. Landman, “High-Level Power Estimation,” in IEEE Proc. of ISLPED, Monterey, CA, pp. 29-35, June 1996. [4 ] D. Marculescu, R. Marculescu, and M. Pedram, “Information Theoretic Measures For Power Analysis,” in Trans. on CAD, Vol. 15, No. 6, pp. 599-610, 1996. [5 ] A. Bogliolo, R. Corgnati, E. Macii, and M. Poncino, ”Parameterized RTL Power Models For Soft Macros,” IEEE Trans. On VLSI Systems, Vol. 9, No.6, pp. 880-887, 2001. [6 ] R. Corgnati, E. Macii, and M. Poncino, “Clustered Table-Based Macromodels For RTL Power Estimation,” Greak Lake Symposium on VLSI, pp. 354-357, 1999. [7 ] M. Eiermann and W. Stechele, “Novel Modeling Techniques For RTL Power Estimation,” Proc. of Low-Power Electronics and Design (ISLPED), pp. 323-328, 2002. [8 ] P. Landman, and J. Rabaey, “Architectural Power Analysis: The Dual-Bit Type Method,” IEEE Trans. On VLSI Systems, Vol. 3, No. 2, pp. 173-187, 1995. [9 ] A. Bogliolo, L Benini, and G. DeMicheli, “Regression-Based RTL Power Modeling,” ACM Trans. on Design Automation of Electronics Systems, Vol. 5, No. 3, pp. 337-372, 2000. [10 ] S. Gupta and F. N. Najm, “Power Macromodeling For High-Level Power Estimation,” Proc. of Design Automation Conf., pp. 365-370, 1997. [11 ] A. Bogliolo and L. Benini, “Node Sampling: A Robust RTL Power Modeling Approach,” Prof. of Int’l Conf. on Computer-Aided Design, pp. 8-12, 1998. [12 ] S. Gupta, and F. N. Najm, “Energy-per-cycle Estimation at RTL,” in Proc. ISLPED, Monterey, CA, pp. 121-126, 1999. [13 ] Q. Wu, Q. Qiu, and M. Pedram, C. S. Ding, “Cycle-Accurate Macro-Models for RT-Level Power Analysis,” in Trans. On VLSI 1998, Vol. 6, No. 4, pp. 520-528, 1998. [14 ] K. D. Muller-Glaser, K. Kirsch, and K. Neusinger, “Estimating Essential Design Characteristics to Support Project Planning for ASIC Design Management,” in Proc. Int. Conf. Computer-Aided Design, pp. 148-151, Nov. 1991. [15 ] D. Marculescu, R. Marculescu, and M. Pedram, “Information Theoretic Measures for Energy Consumption at the Register-Transfer Level,” in Proc. Int. Symp. Low-Power Design, pp. 81-86, Apr. 1995. [16 ] F. N. Najm, “Toward a High-Level Power Estimation Capability,” in Proc. Int. Symp. Low-Power Design, pp. 87-92, Apr. 1995. [17 ] M. Nemani and F. N. Najm, “High Level Power Estimation And the Area Complexity of Boolean Functions,” in Proc. Int. Symp. Low-Power Electronics and Design, pp. 329-334, Aug. 1996. [18 ] C. H. Chen and C. Y. Tsui, “Toward the Capability of Providing Power-Area-Delay Tradeoff at the Register Transfer Level,” in Proc. Int. Symp. Low-Power Electronics and Design, pp. 24-29, Aug. 1998. [19 ] M. Nemani and F. Najm, “High-Level Area and Power Estimation for VLSI Circuits,” IEEE Trans. Computer-Aided Design, Vol. 18, pp.697-713, June 1999. [20 ] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin, “High-level Synthesis: Introduction to Chip and System Design.” Norwell, MA: Kluwer, 1992 [21 ] S. R. Powell and P. M. Chau, “Estimating Power Dissipation of VLSI Signal Processing Chips: The PFA Technique,” in Proc. VLSI Signal Processing IV, pp. 250-259, Sept. 1990. [22 ] P. Landman and J. M. Rabaey, “Architectural Power analysis: The Dual Bit Type Method,” IEEE Trans. VLSI Syst., Vol.3, pp. 173-187, June 1995. [23 ] P. Landman and J. M. Rabaey, ”Activity-Sensitive Architectural Power Analysis for the Control Path,” in Proc. Int. Symp. Low-Power Design, pp. 93-98, Apr. 1995. [24 ] R. P. Llopis and F. Goossens, “The Petrol Approach to High-Level Power Estimation,” in Proc. Int. Symp. Low-Power Electronic and Design, pp.130-132, Aug. 1998. [25 ] D. I. Cheng, K.-T. Cheng, D. C. Wang, and M. Marek-Sadowska, “A New Hybrid Methodology for Power Estimation,” in Proc. Design Automation Conf., pp. 439-444, June 1996. [26 ] A. Bogliolo and L. Benini, “Node Sampling: A Robust RTL Power Modeling Approach,” Prof. of Inte’l Conf. on Computer-Aided Design, pp. 8-12, 1998.id NH0925442033 sid 913959 cfn 0 / id NH0925442034 auc 黃柏勳 tic 針對處理器功能性路徑延遲錯誤測試 adc 張慶元 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 48 kwc 功能性測試 kwc 路徑延遲錯誤 kwc 測試樣本 kwc 處理器 kwc 掃描測試 kwc 系統單晶片 abc 隨著超大型積體電路(VLSI)製造技術的進步,系統單晶片(System-on-Chip)已成為積體電路設計的趨勢。系統單晶片將各種不同特性,不同型態的電路整合在同一塊晶片上,可以達到高效能,低功率損耗的需求。此外,晶片的操作頻率也越來越快,造成時間方面的缺陷越來越重要.在這篇論文中,我們提出一個針對系統單晶片中的微處理器(Microprocessor),做功能性路徑延遲錯誤自我測試的方法。然而我們針對處理器找出功能性限制,並且利用功能性限制(Functional constraints)和自動測試樣本產生器(Automatic test patterns generation)去產生測試樣本,再將測試樣本轉為測試程式.測試程式由原來處理器的指令集所組成,並且利用指令集形式合成測試程式可以達到即時測試(At-Speed Testing)流程的需求。 tc Content Chapter 1 Introduction 1 Chapter 2 Preliminary work 3 2.1 Previous Work .......................................................................................... 3 2.1.1 Test Program Synthesis for Path Delay Faults in Microprocessor Cores [4 ]……………………………………………………………………… 4 2.1.2 Instruction-Based Delay Fault Self-Testing of Processor Core [12 ]…………………………………………………………………….. 6 2.1.3 A Self-Test Methodology of Functional Path Delay Fault on Embedded Processor [13 ]………………………………………………………. 8 2.2 Discussions ...........................................................................……………… 12 Chapter 3 The Problem of the Path Delay Fault Testing for Processor 14 3.1 The Path Delay Fault Testing …………………………… ………………… 14 3.2 Functional Test Concept .....................…………...................…………….. 16 3.3 The Difficulty for Processor Testing…………………………………...… 17 Chapter 4 The Functional Path Delay Fault Testing Flow 18 4.1 Automatic circuit partition.....................…………………………................ 20 4.2 Constraints Extraction…………………. ......................…………..……….. 27 4.2.1 Constraints extraction method……………………………….……….….27 4.2.2 Combine Spatial Constraints & Temporal Constraints………………….30 4.3 Automatic test patterns generation…………………………........................ 32 4.4 Automatic back trace test patterns…………………….…............................. 35 Chapter 5 Experiment Results 40 Chapter 6 Conclusions and Future Works 47 6.1 Conclusions………………………………………………………………… 47 6.2 Future Works…………………………………………………… 48rf [1 ] The National Technology Roadmap for Semiconductors, Semiconductor industry Association,1977 [2 ] “National Science Foundation Workshop on Future Research Directions in Testing of Electronic Circuits and Systems,” http://yellow-stone.ece.ucsh.edu /NSF_WORKSHOP,1998 [3 ] C.J Lin, Y.Zorian, and S.Bhawmik, “Integration of Partial-Scan and Built-In Self-Test,” Journal of Electronics Testing: Theory and Applications, Vol. 7, No. 1-2, pp. 125-137, August 1995 [4 ] W.-C. Lai, A.Kritic and K.T Cheng, “Test Program Synthesis for Path Delay Faults in Microprocessor Cores,” Proc. Of International Test Conference, pp 1080-1089, 2000. [5 ] J.Shen and J.A. Abraham, “Native Mode Functional Test Generation for Processors with Application to Self Test and Design Validation ”, Proc. of the International Test Conference, pp.990-999, 1998. [6 ] K.Batcher and C.Papachristou, “Instruction Randomization Self Test for Processor Cores”,Proc. of the VLSI Test Symposium, pp.34-40, 1999 [7 ] Li Chen and Sujit Dey, “Software-based Self-Testing Methodology for Processor Cores”, IEEE Trans, on CAD of Integration Circuits and Systems, Vol. 20, no.3, pp.369-380, March 2001. [8 ] N. Krantis, D. Gizopoulos, A. Paschalis, and Y. Zorian, “Instruction –Based Self-Testing of Processor Cores”, Proc. of the VLSI Test Symposium, pp 233-228, 2002. [9 ] N. Krantis, A. Paschalis, D. Gizopoulos, and Y. Zorian, “Instruction-Based Self-Testing of Processor Cores”, Journal of Electronic Testing: Theory and Application Vol. 19, pp 103-112, 2003. [10 ] Li Chen, S. Ravi, A. Raghunath, and S. Dey, “A Scalable Software-Based Self-Test Methodology for Programmable Processors”, Proc. of the Design Automation Conference, ACM Press, pp. 548-553, 2003. [11 ] R. S. Tupuri and J. A. Abraham, “A Novel Functional Test Generation Method for Processors using Commercial ATPG”, Proc. of Intl. Test Conf., pp. 743-752, 1997. [12 ] Virendra Singh, Michiko Inoue, Kewal K Saluja, and Hideo Fujiwara, “Instruction-Based Delay Fault Self-Testing of Processor Cores”, Proc. of International Conference on VLSI Design, pp. 933-938, 2004 [13 ] H.-H., Lee “A Self-Test Methodology of Functional Path Delay Fault on Embedded Processor” MS Thesis, Dept. of EE, National Tsing Hua Uuniv., 2003. [14 ] M. L. Bushnell, V. D. Agrawal, “Essentials of electronic Testing for Digital, Memory and Mixed-signal VLSI Circuits”, Kluwer Academic Publishers, 2000. [15 ] V. M. Vedula and J. A. Abraham, “A Novel Methodology for hierarchical Test Generation using Functional Constraint Composition,” Proc. IEEE Int’l high-Level Design Validation and Test Workshop, pp. 9-14, November 2000. [16 ] Synopsys, Inc. “TetraMAX® ATPG User Guide”, Version U-2003.06, June 2003. [17 ] Synopsys, Inc. “PrimeTime User Guide”, Version 2002.03, March 2002. [18 ] S.M. Thatte and J.A Abraham, “Test Generation for Microprocessors”, IEEE Trans. on Computers, Vol. C-29, pp. 429-441, 1980. [19 ] D. Brahme and J.A Abraham, “Functional Testing of Microprocessors”, IEEE Trans. on Computers, Vol. C-33, pp. 475-485, 1984. [20 ] Z. Navabi, VHDL: Analysis and Modeling of Digital Systems, McGraw-Hill, New York, 1997. [21 ] P.L. Chen, “ The Automation of Constraint Extraction for Functional Path Delay Fault Testing,” MS Thesis, Dept. of EE, National Tsing Hua Univ, 2004.id NH0925442034 sid 913962 cfn 0 / id NH0925442035 auc 陳柏霖 tic 功能性路徑延遲錯誤測試自動化限制產生 adc 張慶元 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 45 kwc 功能性限制 kwc 延遲路徑 kwc 樣本產生 abc 隨著積體電路製程技術的進步,從0.25微米製程進入0.18甚至是0.09深次微米製程,也因此導致關於時序(Timing)所引起的製程缺陷(Manufacturing Defects)將漸漸的主宰了晶片的良率(Yield),然而,利用傳統針對Stuck-at Fault所加入可測試性設計(Design for Testability)的測試方法,諸如掃描串聯測試(Scan Chain Testing)以及內建自我測試(Built-in Self-testing)來測試時序缺陷並不適合。此外,針對上述方法缺點而研發的軟體介面功能性測設(Software-based Functional Testing)在處理較複雜的大型電路,例如處理器(Processors)或是功能導向積體電路(ASICs)卻顯得費時而無效率可言。在此篇論文,我們提出一個改善軟體介面功能性測試缺點並針對時序缺陷之一的路徑延遲錯誤(Path Delay Fault)的功能性路徑延遲性錯誤測試流程(Functional Path Delay Fault Test Flow),並且針對較複雜 tc Abstract 1 Contents 2 List of Figures 4 List of Tables 5 Chapter 1 Introduction 6 Chapter 2 Preliminaries 10 2.1 Previous Works 10 2.1.1 Test Generation for Gigahertz Processors Using an Automatic Functional Constraints Extractor 11 2.1.2 A Novel Methodology for Hierarchical Test Generation using Functional Constraints Composition1 12 2.1.3 FACTOR: A Hierarchical methodology for Functional Test Generation and Testability Analysis 14 2.1.4 Test Program Synthesis for Path Delay Faults in Microprocessor Cores 16 2.2 Open Problems 18 Chapter 3 Proposed Functional Path Delay Fault Test Flow 20 Chapter 4 The Detail Explanation 24 4.1 Automatic Circuit Partition 24 4.2 Automatic Constraints Extraction 26 4.2.1 Constraints Extraction Method 26 4.2.2 Combine Spatial and Temporal Constraints 34 4.3 Automatic Test Patterns Generation 34 4.4 Automatic Back Trace Test Patterns 35 Chapter 5 Experiment Results and Comparisons 37 Chapter 6 Conclusions and Future Works 41 6.1 Conclusions 41 6.2 Future Works 41 Bibliography 45rf [1 ] The National Technology Roadmap for Semiconductors, Semiconductor industry Association, 1977 [2 ] “National Science Foundation Workshop on Future Research Directions in Testing of Electronic Circuits and Systems,” http://yellow-stone.ece.ucsh.edu/NSF_ WORK SHOP, 1998 [3 ] C. J Lin, Y. Zorian, and S. Bhawmik, “Integration of Partial-Scan and Built-In Self-Test,” Journal of Electronics Testing: Theory and Applications, 7(1-2): pp. 125-137, August 1995. [4 ] W.-C. Lai, A.Kritic and K.T Cheng, “Test Program Synthesis for Path Delay Faults in Microprocessor Cores,” Proc. of Int’l Test Conf., pp 1080-1089, 2000. [5 ] J. Shen and J.A. Abraham, “Native Mode Functional Test Generation for Processors with Application to Self Test and Design Validation,” Proc. of the Int’l Test Conf., pp. 990-999, 1998. [6 ] K. Batcher and C. Papachristou, “Instruction Randomization Self Test for Processor Cores,” Proc. of the VLSI Test Symp., pp.34-40, 1999. [7 ] Li Chen and Sujit Dey, “Software-based Self-Testing Methodology for Processor Cores”, IEEE Trans, on CAD of Integration Circuits and Systems, Vol. 20, no.3, pp.369-380, March 2001. [8 ] N. Krantis, D. Gizopoulos, A. Paschalis, and Y. Zorian, “Instruction –Based Self-Testing of Processor Cores”, Proc. of the VLSI Test Symp., pp 233-228, 2002. [9 ] N. Krantis, A. Paschalis, D. Gizopoulos, and Y. Zorian, “Instruction-Based Self-Testing of Processor Cores”, Journal of Electronic Testing: Theory and Application (JETTA) 19, pp 103-112, 2003. [10 ] Li Chen, S. Ravi, A. Raghunath, and S. Dey, “A Scalable Software-Based Self-Test Methodology for Programmable Processors”, Proc. of the Design Automation Conf., ACM Press, pp. 548-553, 2003. [11 ] R. S. Tupuri and J. A. Abraham, “A Novel Functional Test Generation Method for Processors using Commercial ATPG”, Proc. of Int’l Test Conf., pp. 743-752, Nov. 1997. [12 ] V. Singh, M. Inoue, K. K. Saluja, and H. Fujiwara, “Instruction-Based Delay Fault Self-Testing of Processor Cores”, Proc. of Int’l Conf. on VLSI Design, pp. 933-938, 2004. [13 ] H.-H., Lee “A Self-Test Methodology of Functional Path Delay Fault on Embedded Processor” MS Thesis, Dept. of EE, National Tsing Hua Uuniv., 2003. [14 ] R. S. Tupuri, A. Krishnamachary and J. A. Abraham, ”Test Generation for Gigahertz Processors using an Automatic Functional Constraint Extractor,” Proc. 36th Design Automation Conf., pp. 647-652, June 1999. [15 ] V. M. Vedula and J. A. Abraham, “A Novel Methodology for hierarchical Test Generation using Functional Constraint Composition,” Proc. IEEE Int’l high-Level Design Validation and Test Workshop, pp. 9-14, November 2000. [17 ] Synopsys, Inc. “PrimeTime User Guide”, Version 2002.03, March 2002. [18 ] Synopsys, Inc. “TetraMAX® ATPG User Guide”, Version U-2003.06, June 2003. [19 ] W.-C. Lai, A. Krstic, and K.-T. Cheng, “On Testing the Path Delay Faults of a Microprocessor Using its Instruction Set”, Proc. of the VLSI Test Symposium, pp. 15-20, 2000. [20 ] W.-C. Lai, A.Krstic, and K.-T. Cheng, “Functionally Testable Path Delay Faults on a Microprocessor”, IEEE Design & Test of Computers, pp 6-14, Oct-Dec 2000. [21 ] v2html, “Rough Verilog Parser,” Version 6.0, www.burbleland.com/vwhtml/rvp.htm. [22 ] P.S Huang, “The ATPG for Functional Path Delay Fault” MS Thesis, Dept. of EE, National Tsing Hua Uuniv., 2004.id NH0925442035 sid 913963 cfn 0 / id NH0925442036 auc 許承偉 tic 利用關聯圖及其展開貝氏網路建立轉錄啟動點和啟動子元素之模型 adc 呂忠津 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 39 kwc 啟動子 kwc 塔塔盒子 abc 感謝人類基因體計畫 (HGP) 中,定序人類DNA序列這部份的提前完成,因此我們現在能從網路上得到大量的人類原始的DNA序列。而至目前為止也有許多的程式被發展出來分析這些DNA序列。在基因的5’端有一區塊它包含了轉錄啟動點稱為啟動子,啟動子主要的功能為調控基因的表現,我們也可以藉由分析它來增進尋找基因的準確度。現在已有許多程式可以來做啟動子的和轉錄啟動點的預測,但是就目前為止,它們做出來的結果並不佳,主要的原因是因為錯誤的預測過多,造成太多假的訊號,而我們需要的是更準確更有效率的預測程式。 tc 1 Introduction 1 1.1 Gene Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Promoter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 TSS Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 The Biology of Eukaryotic Promoter 5 2.1 DNA and Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 The RNA Polymerase II Machinery . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 The RNA Polymerase II Core Promoter . . . . . . . . . . . . . . . . . . . . 9 3 Method 11 3.1 Chi-Square Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Model and Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3.1 Dependency Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3.2 Expanded Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . 17 3.4 G+C Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.5 Detection of Promoter Elements . . . . . . . . . . . . . . . . . . . . . . . . . 24 4 Datasets 25 4.1 TATA Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 Transcription Start Site Datasets . . . . . . . . . . . . . . . . . . . . . . . . 26 5 Results 28 5.1 Measures for Predictive Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 28 5.2 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6 Conclusion 36 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37rf Bucher, P. (1990). Weight matrix descriptions of four eukaryotic rna polymearse ii promoter elements derived from 502 unrelated prmoter sequences. Journal of Molecular Biology, 212, 563–578. Burge, C. and Karlin, S. (1997). Prediction of complete gene structures in human genomic dna. Journal of Molecular Biology, 268, 78–94. Burke, T. W. and Kadonaga, J. T. (1996). Drosophila tfiid binds to a conserved downstream basal promoter element that is present in many tata-box-deficient prmoters. Genes and Development, 10, 711–724. Burke, T. W. and Kadonaga, J. T. (1997). The downstream promoter element, dpe, is conserved from drosophila to humans and is recognized by tafII60 of drosophila. Genes and Development, 11, 3020–3031. Butler, J. E. and Kadonaga, J. T. (2002). The rna polymerase ii core promoter: a key component in the regulation of gene expression. Genes and Development, 16, 2583– 2592. Cai, D., Delcher, A., Kao, B., and Kasif, S. (2000). Modeling splice sites with bayes networks. Bioinformatics, 16, 152–158. Chen, T. M. (2002). Modeling splice sites with dependency graphs and their approximation by bayesian networks. Master’s thesis, National Tsing Hua University. 37 Ewens, W. J. and Grant, G. R. (2001). Statistical Methods in Bioinformatics: An Introduction. Springer Science Business Media. Huet, J., Sentenac, A., and Fromageot, P. (1982). Spot-immunodetection of conserved determinants in eukaryotic rna polymerases. Journal of Biology Chemistry, 257, 2613–2618. Kadonaga, J. T. (2002). The dpe, a core promoter element for transcription by rna polymerase ii. Experimental and Molecular Medicine, 4, 259–264. Kutach, A. K. and Kadonaga, J. T. (2000). The downstream promoter element dpe appears to be as widely used as the tata box in drosophila core promoters. Molecular Cell Biology, 14, 116–127. Mathe, C., Sagot, M. F., Schiex, T., and Rouze, P. (2002). Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Research, 30, 4103–4117. Orphanides, G., Lagrange, T., and Reinberg, D. (1996). The general transcription factors of rna polymerase ii. Genes and Development, 10, 2657–2683. Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc. Roberts, S. G. E. (2000). Mechanisms of action of transcription activation and repression domains. Cell and Molecular Life Sciences, 57, 1149–1160. Roeder, R. (1996). The role of general initiation factors in transcription by rna polymerase ii. Trends of Biochemistry Sciences, 21, 327–335. Rouaida, C. P., Viviane, P., Thomas, J., Claude, B., and Philipp, B. (2000). The eukaryotic promoter database (epd). Nucleic Acids Research, 28, 302–303. Smale, S. T. (1994). Dna sequence requirements for transcriptional initiator activity in mammalian cells. Molecular Cell, 14, 116–127. 38 Suzuki, Y., Ishihara, D., Sasaki, M., Nakagawa, H., Hata, H., Tsunoda, T., Watanabe, M., Komatsu, T., Ota, T., Isogai, T., and Suyama, A. (2000). Statistical analysis of the 5’ untranslated region of human mrna using oligo-capped cdna libraries. Genomics, 64, 286–297. Suzuki, Y., Tsunoda, T., Sese, J., Taira, H., Mizushima, J. S., Hata, H., Ota, T., Isogai, T., Tanaka, T., Nakamura, Y., Suyama, A., Sakaki, Y., Morishita, S., Okubo, K., and Sugano, S. (2001). Identification and caracterization of the potential promoter regions of 1031 kinds of human genes. Genome Research, 11, 677–684. Willy, P. J., Kobayashi, R., and Kadonaga, J. T. (2000). A basal transcription factor that activates or represses transcription. Science, 290, 982–984. Woychik, N. A. and Michael, H. (2002). The rna polymerase ii machinery: Structure illuminates function. Cell, 108, 453–463. 39id NH0925442036 sid 913964 cfn 0 / id NH0925442037 auc 盛以明 tic 一種靜態隨機存取記憶體之感應放大器輸入訊號分析量測單元 adc 張慶元 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 47 kwc 靜態隨機存取記憶體 kwc 量測 kwc 取樣 kwc 緩衝 kwc 放大器 kwc 可靠度 kwc 偏移 kwc 感應 kwc 測試 kwc 輸入訊號 abc 傳統記憶體測試技術上大部分採取數位觀點與方法進行測試,較成熟的方法乃利用內建自我測試(BIST)、掃描鏈(Scan Chain)等方法針對記憶體系統各電路區塊進行功能測試,將輸入資料與輸出資料來做驗證,但是在感應放大器(Sense Amplifier)的部份卻是類比的行為。當記憶體做讀取動作時,在感應放大器致能的時間點位元線對(Bit Line Pair)上的電壓差是否足以讓感應放大器放大成正確的邏輯資料值是無法由數位的方法測試出來。 tc Contents Abstract .............................................. 1 Contents .............................................. 2 List of Figures ....................................... 5 List of Tables ........................................ 7 Chapter 1 Introductions ............................... 8 1.1 Variation Issues .............................. 8 1.2 Previous Works ............................... 10 1.3 Organization ................................. 14 Chapter 2 Background ................................. 15 2.1 Traditional Test Technique on SRAM ........... 15 2.2 Motivation ....................................16 Chapter 3 The Proposed Measuring Architecture of SRAM ................................................. 18 3.1 Memory Array ................................. 18 3.1.1 Resistive Model .......................... 19 3.1.2 Capacitive Model ......................... 20 3.1.3 Total Parasitical Effects ................ 21 3.2 Sample and Hold Circuit ...................... 21 3.2.1 Sampling Switch .......................... 22 3.2.2 Differential Sampling .................... 22 3.2.3 Dummy Transistors ........................ 23 3.2.4 Delay Chains ............................. 26 3.3 Voltage Buffer ............................... 27 3.3.1 Level Shifter ............................ 27 3.3.2 Unit-Gain Buffer ......................... 28 3.4 Voltage Subtractor ........................... 28 3.4.1 Non-Ideal Term ........................... 29 3.4.2 Resistor Sizing .......................... 30 3.5 Sampling Methodology ......................... 32 3.5.1 Pass Transistor Switching ................ 32 3.5.2 Active Sampling .......................... 34 Chapter 4 Simulation Results and Comparisons ......... 36 4.1 Simulation Methodology ....................... 36 4.2 Simulation Result ............................ 39 4.2.1 Signal Distribution ...................... 39 4.2.2 Comparisons .............................. 41 4.3 Circuit Layout ............................... 43 4.3.1 Layout of SRAM Cell ...................... 43 4.3.2 Symmetry of Layout Geometry .............. 43 4.3.3 The comparison of Area ................... 44 Chapter 5 Discussions and Conclusions ................ 46 5.1 Discussions .................................. 46 5.2 Conclusions .................................. 46 Bibliography ......................................... 47rf Bibliography [1 ] L. Ternullo, et al., “Deterministic self-test of a high-speed embedded memory and logic processor subsystem,” ITC, 1995, pp. 33-44,. [2 ] R. Chandramouli, S. Pateras, “Testing systems on a chip,” IEEE Spectrum, Nov. 11 1996, pp. 42-7. [3 ] R.D Adams, E.S Cooley, and P.R Hansen, “A self-test circuit for evaluating memory sense-amplifier signal,” Test Conference, 1997 Proceedings., International , 1-6 Nov. 1997, pp. 217 – 225. [4 ] D.G Laurent, “Sense amplifier signal margins and process sensitivities,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 49, Mar 2002, pp. 269-275. [5 ] R. Kraus and K. Hoffman, “Optimized sensing scheme of DRAMs,” IEEE. J Solid-State Circuits, vol. 24, Aug. 1989, pp. 895-899. [6 ] R. Kraus, “Analysis and reduction of sense-amplifier offset,” IEEE J. Solid-State Circuits, vol. 24, Aug. 1989, pp. 1028-1033. [7 ] Y.C Hsu, S.K Gupta, “An automatic test pattern generator for at-speed robust path delay testing”, Asian Test Symposium, Dec. 1998, pp. 88-85. [8 ] Behzad Razavi, “Design of Analog CMOS Integrated Circuits”, McGraw-hill, NY, International Edition 2001, pp. 418-423.id NH0925442037 sid 913966 cfn 0 / id NH0925442038 auc 邱嘉亮 tic 分析邏輯電路光罩佈局建立橋接錯誤 adc 黃錫瑜 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 40 kwc 光罩佈局 kwc 橋接錯誤 kwc 偵錯 abc 積體電路測試最常用的模型為固定型錯誤模型 (stuck-at fault model),主要原因在於固定型錯誤模型的設計簡單,不需要複雜的計算,就能得到不錯的測試結果。然而,若想要進一步分析積體電路內部為何會產生錯誤,固定型錯誤模型便顯得過於簡略,整體的偵錯能力一直無法提高,如果可以改良模型使得與真實情況接近,偵錯效能應該可以獲得改善。 tc Contents Abstract………………………………………………………………….1 Contents………………………………………………………………….2 List of Figures…………………………………………………………...4 List of Tables…………………………………………………………….6 Chapter 1 Introduction 7 1.1 Motivation…………………….………………………...8 1.2 Thesis Organization……………………..……………8 Chapter 2 Preliminary 9 2.1 GDS Information…………………………………………9 2.2 Critical Area…………………………………..…………..10 2.3 Byzantine Fault………………………………………..10 Chapter 3 Defect Injector 12 3.1 Defect Inject Flow...………………………………….……12 3.2 Parse Circuit Layout...……………………………..………14 3.3 Defect Injection……………………………………………17 3.4 Graphical User Interface……………………………………20 Chapter 4 Bridging fault Modeling 23 Chapter 5 Experimental Results 27 5.1 Benchmark Circuit…………………………………...27 5.2 Byzantine Fault Probability………………………...28 5.3 Experiment of Bridging fault Modeling……………...32 Chapter 6 Conclusion 34 Bibliography 35 Appendix A 37rf [1 ] Yuming Gong, and S. Chakravarty, “Locating Bridging Faults Using Dynamically Computed Stuck-at Fault Dictionaries,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.17, no. 9, pp. 876 – 887, Sept. 1998. [2 ] D.B. Lavo, B. Chess, T. Larrabee, and F.J. Ferguson, “Diagnosing realistic bridging faults with single stuck-at information,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 17, no. 3, pp. 255 – 268, March 1998. [3 ] S.D. Millman, and J.M. Acken, “Diagnosing CMOS bridging faults with stuck-at, IDDQ, and voting model fault dictionaries,” IEEE Custom Integrated Circuits Conference, pp. 409 – 412, May 1994. [4 ] J. Segura, A. Keshavarzi, J. Soden, and C. Hawkins, “Parametric failures in CMOS ICs - a defect-based analysis,” IEEE International Test Conference, pp. 90 – 99, Oct. 2002. [5 ] S. Chakravarty, K. Komeyli, E.W. Savage, M.J. Carruthers, B.T. Stastny, and S.T. Zachariah, “Layout Analysis to Extract Open Nets Caused by Systematic Failure Mechanisms,” IEEE VLSI Test Symposium, pp.367 – 372, April 2002. [6 ] S.T. Zachariah, and S. Chakravarty, “Algorithm to Extract Two-Node Bridges,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11, no. 4, pp.741 – 744, Aug. 2003. [7 ] F.M. Goncalves, I.C. Teixeira, and J.P. Teixeira, “Realistic Fault Extraction for High-Quality Design and Test of VLSI Systems,” IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 29 – 37, Oct. 1997. [8 ] A.L. Jee, and F. J. Ferguson, “Carafe : An Inductive Fault Analysis Tool for CMOS VLSI Circuits,” IEEE VLSI Test Symposium, pp. 92 – 98, April 1993. [9 ] P.K. Nag, and W. Maly, “Hierarchical Extraction of Critical Area for Shorts in Very Large ICs,” IEEE International Workshop on Defect and Fault Tolerance in VLSI Systems, pp. 19 – 27, Nov. 1995. [10 ] F.M. Goncalves, I.C. Teixeira, and J.P. Teixeira, “Integrated Approach for Circuit and Fault Extraction of VLSI Circuits,” IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, pp.96 – 104, Nov. 1996. [11 ] Z. Stanojevic, and D.M.H. Walker, “FedEx – A Fast Bridging Fault Extractor,” IEEE International Test Conference, pp.696 – 703, Nov. 2001. [12 ] ALBERT V. FERRIS-PRABHU, “Defect Size Variations and Their Effect on the Critical Area of VLSI Devices,” IEEE Journal of Solid-State Circuits, vol. 20, no. 4, pp. 878 - 880, Aug. 1985. [13 ] D.B. Lavo, T. Larrabee, and B. Chess, “Beyond the Byzantine Generals Unexpected Behavior and Bridging Fault Diagnosis,” International Test Conference, pp. 611 - 619, Oct. 1996. [14 ] Y.-C. Lin and S.-Y. Huang, "Chip-Level Diagnostic Strategy For Full-Scan Designs With Multiple Faults," Proc. of Asian Test Symposium, Nov. 2003.id NH0925442038 sid 913967 cfn 0 / id NH0925442039 auc 黃喬楠 tic 利用記憶體分解降低功率之JPEG2000編碼器設計 adc 黃錫瑜 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 72 kwc JPEG2000 編碼器 kwc 小波轉換 kwc 方塊編碼器 abc JPEG2000是一個新制訂完成的靜態影像壓縮標準,比目前通用的JPEG標準有更高的壓縮率,並且可以支援許多新且實用的功能。目前,JPEG2000的硬體架構設計已成為數位相機的關鍵技術。 tc 1 Introduction 7 1.1 JPEG-2000 Overview…………………………………………...7 1.2 Motivation……………………………………………………….9 1.3 Thesis Organization……………………………………………..9 2 Overview of JPEG2000 Encoding Algorithm 10 2.1 Lifting-Based Wavelet Transform……………….……………..10 2.2 Context Formation of EBCOT…………………………………14 2.2.1 Concepts…………………………………………………15 2.2.2 Fractional bit-plane coding: Three coding passes……….18 2.2.3 Four types of context formation…………………………19 2.3 Adaptive Context-Based Arithmetic Encoder………………….24 3VLSI Architecture for JPEG2000 Encoder 27 3.1 VLSI Architecture for Lifting-Based DWT…………………….27 3.1.1 1-D discrete wavelet transform…………………………..27 3.1.2 2 -D discrete wavelet transform………………………….29 3.2 VLSI Architecture for Context Formation……………………...29 3.2.1 Column-Based Operation………………………………..30 3.2.2 Memory Arrangement……………………………………31 3.2.3 The Bit-plane Module……………………………………34 3.2.4The Context Formation module…………………………..35 3.3 VLSI Architecture of Adaptive Arithmetic Coder……………...37 4 Memory Decomposition for Power Reduction 39 4.1 Memory Decomposition for Low Power……………………….40 4.2 Flow of power-conscious memory decomposition......................43 4.2.1 Memory Power Model…………………………………...44 4.3.2 The Logic Circuit Power Model…………………………46 4.3 Recursive Partitioning algorithm…………………………….…48 4.4 Implementation…………………………………………………51 5 Experimental Results 53 5.1Implement of JPEG2000 encoding ……………………….…….53 5.2Experimental result of memory decomposition…………………55 6 Conclusion 69 Bibliography 70rf [ 1 ] “JPEG2000 Part 1 Final Committee Draft Version 1.0,” ISO/IEC JTC1/SC29/WG1 N1646R. [ 2 ] “JPEG2000 Verification Model Version 7.0,” ISO/IEC JTC1/SC29/WG1 N1684R. [ 3 ] D. Taubman, “EBCOT: Embedded Block Coding with Optimized Truncation,” Proceedings of the IEEE International Conference on Image Processing (ICIP), vol. 3, pp. 344-348, 1999. [ 4 ] D. Taubman, “High Performance Scalable Image Compression With EBCOT,” IEEE Trans. On Image Processing, vol. 9, pp. 1158-1170, July, 2000. [ 5 ] D. Taubman, E. Ordentlich, I. Ueno, “Embedded Block Coding in JPEG2000,” Proc. Of IEEE International Confernance on Image Processing (ICIP), vol. 2, pp. 3-36, Sep. 2000. [ 6 ] Kuan-Fu Chen, Chung-Jr Lian, Hong-Hui Chen and Liang-Gee Chen, “Analysis and Architecture Design of EBCOT for JPEG2000,” The 2001 IEEE International Symposium on Circuits and System, vol. 2, pp. 765-768, 2001. [ 7 ] Chung-Jr Lian, Kuan-Fu Chen, Hong-Hui Chen and Liang-Gee Chen, “Analysis and Architecture Design of Block-Coding Engine for EBCOT in JPEG2000,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, pp. 219-230, March 2003. [ 8 ] C. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal, vo1. 27, pp. 379-423, July 1948. [ 9 ] W.B. Pennebaker, J.L. Mitchell, “Probability Estimation for the Q-Coder,” IBM Journal of Research and Development, vol. 32, pp. 737, 1988. [ 10 ] S. Mallat, “A Theory for Multiresolution Signal Decomposition,” IEEE Trans. Pattern Recognition and Machine Intelligence, vol. 11, No.7, pp. 674-693, 1989. [ 11 ] M. Vetterli and J. Kovaeevie, “Wavelets and Subband Coding,” 1995. [ 12 ] I. Daubechies, “Orithonormal Bases of Compactly Supported Wavelets,” Communications on Pure and Applied Mathematics, Vol. XL1, pp. 090-996, 1988. [ 13 ] Kishore Anrda, Chakrabarti, and Tinku Acharya, “A VLSI Architecture for Lifting-Based Forward and Inverse Wavelet Transform,” IEEE transactions on signal processing, vol. 50, pp. 996-977, 2002 [ 14 ] Michael D. Adams, Hong Man, Faouzi Kossentin, and Touradj Ebrahimi, “JPEG2000: The Next generation Still Image Compression Standard,” ISO/IEC JTC1/SC29/WG1 N1734R. [ 15 ] Athanassios Skodras, Charilaos Christopulos and Touradj Ebrahimi, “The JPEG2000 Still Image Standard,” IEEE signal processing, pp. 36-58, 2001 [ 16 ] M. Boliek, J. Houchin, and G. Wu, “JPEG2000 Next Generation Image Compression System Features and Syntax,” Proc. Of IEEE International Conference on Image Processing (ICIP), vol. 1, pp. 45-48, Sep. 2000. [ 17 ] Digital Compression and Coding of Continuous-Tone Still Images, ISO/IEC, International Standard DIS 10918. [ 18 ] C.A. Christopoulos, A.N. Skodras, and T. Ebrahimi, “The JPEG2000 still image coding system: An overview,” IEEE Trans. Consumer Electron, vol. 46, pp. 1103-1127, 2000. [ 19 ] I. Moccagatta, M. Z. Coban, and H. H. Chen, “Wavelet-Based Image Coding: Comparison of MPEG-4 and JPEG2000,” Proc. Of thirty-thied Asilomar Conference on Signals, Systems, and Computers, pp. 1178-1182, 1999. [ 20 ] D. Santa-Cruz and T. Ebrahimi, “An Analytical Study of JPEG2000 Functionalities,” Proc. Of IEEE International Conference on Image Processing (ICIP), vol. 2, pp. 49-52, Sep. 2000. [ 21 ] J. M. Shapiro, “An Embedded Hierarchical Image Coder Using Zerotrees of Wavelet Coefficient,” Proc. Of IEEE Data Compression Conference. PP. 214-223, 1993. [ 22 ] A. Said and W. Pearlman, “A New, Fast and Efficient Image Codec Based on Set Partitioning In Hierarchical Trees,” IEEE Trans. Circuits and Systems for Video Technology. PP. 234-250, June 1996. [ 23 ] Image Power Inc., “Image Power Developing Ultra High Speed Blackbird JPEG2000 Core,” VANCOUVER, British Columbia, April 18, 2001. [ 24 ] J. Yoshida, “JPEG2000 Wave Rises As ADI Shows Still Camera Accelerator,” EETimes.Com, May 11, 2001. [ 25 ] Luca Benini, Alberto Macii and Massimo Poncino “A Recursive Algorithm for Low-Power Memory Partitioning,” Proc. Of international symposium on Low power electronics and design, pp 78-83, 2000.id NH0925442039 sid 913968 cfn 0 / id NH0925442040 auc 張志豪 tic 一種使用分段電阻電容模型的方法來分析最大串音雜訊 adc 張慶元 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 61 kwc 網路 kwc 串音雜訊 kwc 邏輯閘模型 kwc 極點/零點 kwc 最大串音雜訊 abc 由於製程快速演進,元件的大小隨之快速縮小,而電路的性能也跟著加速。在現今的高速晶片中,網路(interconnect)上的延遲主宰了整個晶片性能。造成網路運作延遲或工作錯誤的因素中,串音雜訊(crosstalk noise)扮演了一個很重要的角色。在論文中將會對此現象做深入的探討,而且會對現今方法的優缺點做詳細的剖析。本論文目的即提供一個有效縮短分析時間及增加準確度的分析串音雜訊之方法。 tc Abstract 1 Contents 2 List of Figures 4 List of Tables 6 Chapter 1 Introduction 7 1.1 Crosstalk Phenomena 9 1.2 Motivation 10 1.3 Organization 11 Chapter 2 Preliminaries 12 2.1 Worst-Case Crosstalk Noise (WCN) 12 2.1.1 The WCN Condition 12 2.1.2 Aggressor Alignment 13 2.2 Asymptotic Waveform Evaluation (AWE ) 14 2.2.1 Moment Generation 14 2.2.2 Moment Matching 15 2.3 Numerical Methods 17 2.3.1 Newton Method and Modified False Position Method 17 2.3.2 Companion Matrix and QR Iteration 18 2.4 Gate Modeling 21 2.4.1 Inverter Gate Model 21 2.4.2 Analysis of Parameters 22 2.4.3 Input and Output Relationship 23 Chapter 3 The Proposed Analysis Flow 25 3.1 Construction of Interconnect Structure 25 3.1.1 Input Signal Information 27 3.1.2 Combine With Inverter Model 28 3.2 Generate Transfer Functions 30 3.2.1 Polynomial Generation 30 3.2.2 Model Reduction 31 3.2.3 Pole / Zero Generation 33 3.3 Estimate Peak Time 35 3.3.1 Pole Approximation Method 36 3.3.2 AWE Technique for Initial Value 37 3.3.3 Segmental RC Model 37 3.3.4 Estimate Peak Time Flow 41 3.3.5 Aggressor Alignment 44 Chapter 4 Simulation Results and Comparisons 47 4.1 Simulation Conditions 47 4.1.1 Pole / Zero Constraints 47 4.2 Simulation Results 49 4.2.1 Pre-work Preparations 50 4.2.2 Real Case Simulations 54 Chapter 5 Conclusions 58 Bibliography 59rf [1 ] W. Y. Chen, S. K. Gupta, and M. A. Breuer, “Analytical Models for Crosstalk Excitation and Propagation in VLSI Circuits”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 21, no. 10, Oct. 2002, pp. 1117-1131. [2 ] L. Ding, D. Blaauw, and P. Mazumder, “Accurate Crosstalk Noise Modeling for Early Signal Integrity Analysis”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 22, no. 5, May. 2003, pp.627-634. [3 ] L. T. Pillage and R. A. Rohrer, “Asymptotic Waveform Evaluation for Timing Analysis”, IEEE Transactions on Computer-Aided Design, vol. 9, no. 4, April 1994, pp. 352-366. [4 ] L. H. Chen and M. Marek-Sadowska, “Aggressor alignment for worst-case crosstalk noise,” IEEE Transactions on Computer-Aided Design, vol. 20, no. 5, pp. 612-621, May 2001. [5 ] M. Ceilk, L. Pileggi and A. Odabasioglu, IC Interconnect Analysis, Kluwer Academic Publishers, Boston, 2002. [6 ] M. Kuhlmann and S. S. Sapatnekar, “Exact and Efficient Crosstalk Estimation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 20, No. 7, pp. 858-866, 2001. [7 ] A. Nabavi-Lishi and N. C. Rumin, “Inverter Models of CMOS Gates for Supply Current and Delay Evaluation”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 13, no. 10, Oct. 1994, pp. 1271-1279. [8 ] A. B. Kahng and S. Muddu, “Gate Load Delay Computation Using Analytical Models”, Proceedings of IEEE Asia Pacific Conference on Circuits and Systems, Nov. 1996, pp. 433-436. [9 ] F. Dartu, N. Menezes, and L. T. Pileggi, “Performance Computation of Precharacterized CMOS Gate with RC Loads”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 15, no.5, May, 1996, pp. 544-553. [10 ] J. Chen and L. He, “Determination of Worst-Case Crosstalk Noise for Non-Switching Victims in GHz+ Interconnects”, IEEE Design Automation Conference, Proceedings of the ASP-DAC, Asia and South Pacific, Jan. 2003, pp. 162-167. [11 ] F. Caignet, S. Delmas-Ben Diaz, and E. Sicard, “On the Measurement of Crosstalk in Integrated Circuits”, IEEE Transactions on Very Large Scale Integration Systems, vol. 8, no. 5, Oct. 2000, pp. 606-609. [12 ] A. Chatzigeorgiou, S. Nikolaidis, and I. Tsoukals, “Modeling CMOS Gates Driving RC Interconnect Loads”, IEEE Transactions on Circuit and Systems II – Analog and Digital Signal Processing, vol. 48, no. 4, Apr. 2001, pp. 413-418. [13 ] P. Renault, P. Bazargan-Sabet, and D. L. Du, “A MOS Transistor Model for Peak Voltage Calculation of Crosstalk Noise”, Proceeding of IEEE on Electronics, Circuits and Systems, 9th International Conference, vol. 2 , Sept. 2002, pp. 773 – 776. [14 ] A. Sinha, S. K. Gupta, and M. A. Breuer, “Validation and Test Issues Related to Noise Induced by Parasitic Inductances of VLSI Interconnects”, IEEE Transactions on Advanced Packaging, vol. 25, no. 3, Aug. 2002, pp. 329-339. [15 ] A. Vittal and M. Marek-Sadowska, “Crosstalk Reduction for VLSI”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems”, vol. 16, no. 3, Mar. 1997, pp. 290-298. [16 ] Plybon and Benjamin F., An introduction to applied numerical analysis, PWS-Kent Pub. Co., Boston, 1992. [17 ] Avant Corporation, “Star-Hspice Manual”, Dec. 2000.id NH0925442040 sid 913969 cfn 0 / id NH0925442041 auc 賴國欣 tic 消除比較器的雜訊應用於CMOS影像感測器設計 adc 黃錫瑜 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 50 kwc 影像感測器 kwc 雜訊 kwc 比較器 abc 在現代生活中,數位影像系統扮演著一個很重要的角色,影像感測器可以提供給我們視覺及溝通上的便利,數位相機、網路攝影機便是很好的例子。拿現在兩大主流:電子耦合式(CCD)影像感測器和互補式金氧半導體式影像感測器(CMOS Image Sensor)做比較,對互補式金氧半導體式影像感測器而言,雖然有動態範圍較低、雜訊較大的問題,但是它的耗電量低、整合度高的優勢,是值得我們去做深入研究。 tc Abstract…………………………………………………………………1 Contents…………………………………………………………………2 List of Figures…………………………………………………………4 List of Tables…………………………………………………………6 Chapter 1 Introduction………………………………………………7 1.1 Motivation…………………………………………………………8 1.2 Thesis Organization………………………………………………9 Chapter 2 Preliminaries……………………………………………10 Chapter 3 Review of A CMOS Image Sensor Design………………14 3.1 A Nonlinear A/D Converter for CMOS Image Sensor………14 3.2 Two-Frame Approach………………………………………………16 3.3 Timing Controller………………………………………………21 3.4 Chip Implementation……………………………………………22 Chapter 4 A Sizing Methodology for A Low-Noise Comparator…24 4.1 Offset-Free Comparator…………………………………………24 4.2 Sizing Methodology………………………………………………28 4.2.1 Exhaustive Method…………………………………………30 4.2.2 Screening Method…………………………………………33 Chapter 5 Experimental Result……………………………………35 5.1 Results of Sizing Methodology………………………………36 5.1.1 Result of Exhaustive Method………………………………36 5.1.2 Result of Exhaustive Method………………………………38 5.1.3 Result of Post-Layout Simulation…………………………40 5.2 Simulation Result………………………………………………41 5.3 Layout………………………………………………………………45 Chapter 6 Conclusion…………………………………………………47 Bibliography……………………………………………………………48rf [1 ] R. H. Nixon, S. E. Kemeny, B. Pain, C. O. Staller, and E .R. Fossum, “256×256 CMOS active pixel sensor camera-on-a-chip”, IEEE Journal of Solid-State Circuits, vol. 31, pp. 2046-2050, December 1996. [2 ] E. R. Fossum, “CMOS Image Sensors: Electronic Camera-On-A-Chip”, IEEE Transactions on Electron Devices, vol.44, pp. 1689-1698, October 1997. [3 ] S.-F. Chen, Y.-J. Juang, S.-Y. Huang, and Y.-C. King, “Logarithmic CMOS Image Sensor Through Multi-Resolution Analog-To-Digital Conversion,” Proc. Of Int’l Symposium on VLSI Technology, Systems, and Applications, (VLSI-TSA), April 2003. [4 ] B.-R. Lin, S.-Y. Huang, C.-H. Lai, and Y.-C. King, "A High Dynamic Range CMOS Image Sensor Design Based On Two-Frame Composition," Proc. of Int'l SOC Conf., pp. 389-392, Sept. 2003. [5 ] S. Yang and K. Cho, “High dynamic range CMOS image sensor with conditional reset,” Proc. Of Custem Integrated Circuit Conf., pp.265-268, 2002. [6 ] S. Decker, D. McGrath, K. Brehmer, and C. G. Sodini;” A 256×256 CMOS imaging array with wide dynamic range pixels and column-parallel digital output,”, IEEE Journal of Solid-State Circuits, Vol. 33 , No. 12 , pp.2081-2091, Dec. 1998. [7 ] O. Yadid-Pecht and E. R. Fossum, ”Wide intrascene dynamic range CMOS APS using dual sampling,” IEEE Transactions on Electron Devices ,Vol. 44 , No. 10 , pp. 1721–1723, Oct. 1997 [8 ] X. Q. Liu and A. El Gamal, “Simultaneous Image Formation And Motion Blur Restoration Via Multiple Capture,” Proc. Of ICASSP Conf., pp. 1841-1844, May 2001. [9 ] D. Yang, B. Fowler, and A. El Gamal, ”A Nyquist rate pixel level A/D converter for CMOS image sensors,” IEEE Journal of Solid-State Circuits ,” Vo.34 , No. 3 , pp.348–356, March 1999. [10 ] T. Hamamoto, T. Wakamatsu, and K. Aizawa, “New method of on-sensor A/D conversion,” ISCAS 2001 ,Vol. 4 , pp.6-9, May 2001. [11 ] D. A. Johns and K. Martin, “Analog Integrated Circuit Design”, John Wiley & Sons, Inc., 1996. [12 ] M. Bruccoleri and P. Cusinato, “Offset Reduction Technique For High-Speed CMOS Comparators,” Electronics Letters, Vol. 32, No.13, pp.1193-1194, 1996. [13 ] C.P. Chong and K.C. Smith, “The Design of a High-Resolution CMOS Comparators,” Proc. of Int’l Symposium on Circuits and Systems, Vol. 2, pp. 1427-1430, 1989. [14 ] B. Razavi and B.A. Wooley, “Design Techniques For High-Speed, High-Resolution Comparators,” IEEE Journal of Solid-State Circuits, Vol. 27, No. 12, pp. 1916-1926, 1992. [15 ] G.M. Yin, F.O. Eynde, and W. Sansen, ”A High-Speed CMOS Comparator With 8-bit Resolution,” IEEE Journal of Solid-State Circuits, Vol. 27, No. 2, pp. 208-211, 1992. [16 ] B. Sheu, J.H. Shieh, and M. Patil, “Modeling Charge Injection in MOS Analog Switches,” IEEE Trans. on Circuits and Systems, Vol. 34, No. 2, pp. 214-216, 1987. [17 ] L.-W. Lai and Y.-C. King, ”A novel logarithmic response CMOS image sensor with high output voltage swing and in-pixel fixed pattern noise reduction,” 2002 IEEE Asia-Pacific Conference, pp.105– 08, August 2002. [18 ] K. Yonemoto and H. Sumi, “A CMOS image sensor with a simple fixed-pattern-noise-reduction technology and a hole accumulation diode,” IEEE Journal of Solid-State Circuits, Vol. 35, No. 8, pp. 1146-1152, December 2000.id NH0925442041 sid 913970 cfn 0 / id NH0925442042 auc 高吉毅 tic 利用相對長度做相機校正以恢復3D結構 adc 許文星 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 58 kwc 3D 重建 kwc 相機校正 abc 早期,3D重建的研究,最常應用於機器人導引的領域,及地形量測領域。隨著IC設計產業的蓬勃發展,使得原本相當費時的3D視覺處理,可以透過硬體來加快處理速度。如今,3D視覺效果,幾乎已成為個人電腦的標準配備,無論是大型電玩,或是電腦遊戲,都強調以3D視覺呈現為其賣點,甚至醫學影像,也朝往3D的領域邁進,以增加診斷的準確性。這都一再顯示3D視覺的重要性,及大幅度提升其未來的價值。有了後段應用層面的需求,則前段建立3D模型的研究,自然引起各界高度的興趣。如何用最普遍的方法,建出最逼真的3D模型,想必是炙手可熱的問題。 tc 1. Introduction p1 1.1 Motivation and Objective...………..………………………………………..p1 1.2 The Overview of 3D Reconstruction…..…………………………………...p2 1.3 The Stratification of 3D geometry…………………………………….p4 1.3.1 Projective Stratum……………………………………………….p5 1.3.2 Affine Stratum…………………………………………………...p6 1.3.3 Metric Stratum…………………………………………………...p6 1.3.4 Euclidean Stratum………………………..……………………...p8 1.4 Organization of the Thesis…………………………………………………..p8 2. Camera Model and the Projective Reconstruction p10 2.1 Camera Model……………………………………………………………...p10 2.2 Camera Calibration…………...……………………………………………p14 2.3 Two View Geometry……….……………………………………………….p15 2.4 The fundamental matrix……………………………………………………p18 1.3.1 Linear Method………………………………………………………p18 1.3.2 Robust Method…………….………………………………………..p21 2.5 Projective Reconstruction of Multiple Views……………………………...p22 3. Self-Calibration p26 3.1 Stratified Self-Calibration……………...………………………………….p26 1.3.1 Modulus Constraint…………………………………………………..p26 1.3.2 Stratified Self-Calibration from Constant Intrinsic Parameters…...…p27 3.2 Self-Calibration from the Constraints of Intrinsic Parameters……..…p28 1.3.1 Looking for the Homography Matrix...…….……......……………..p30 1.3.2 Looking for the Focal Length………………………………………...p31 1.3.3 Looking for the q………………………………………………..……p32 4. Proposed Algorithm- Self-Calibration Using Relative Lengths p33 4.1 Metric Reconstruction Using the Homography Matrix…….……...………p33 4.2 Camera Calibration……………………………………….…..…………...p34 4.3 The Complete Algorithm….……………………………………………….p36 5. Experimental Results p39 5.1 Synthetic Data……………...………...………...……………………….…p39 5.2 Real Images……………………..…………………………………………p45 6. Conclusion p53rf [1 ] O. Faugeras, L. Robert and S. Laveau, “3-D Reconstruction of Urban Scenes from Image Sequences”, Computer Vision and Image Understanding, Vol. 69, No. 3, March, pp. 292-309, 1998. [2 ] Marc Pollefeys, Self-Calibration and Metric 3D Reconstruction from Uncalibrated Image Sequence. Ph.D. thesis, 1999. [3 ] P. Debevec, C. Taylor and J. Malik, “Modeling and Rendering Architecture from Photographs: A Hybrid Geometry- and Image-Based Approach”, Siggraph, 1996. [4 ] R. Deriche, Z. Zhang, Q.T. Luong and O. Faugeras, “Robust Recovery of the Epipolar Geometry for an Uncalibrated Stereo Rig” , Computer Vision - ECCV’94, Lecture Notes in Computer Science, Vol. 801, Springer-Verlag, pp. 567-576, 1994. [5 ] C. Schmid, R. Mohr and C. Bauckhage, “Comparing and Evaluating Interest Points”, Proc. International Conference on Computer Vision, Narosa Publishing House, pp. 230-235, 1998. [6 ] Z. Zhang, R. Deriche, O. Faugeras and Q.-T. Luong, “A Robust Technique for Matching Two Uncalibrated Images through the Recovery of the Unknown Epipolar Geometry”, Artificial Intelligence Journal, Vol.78, pp.87-119, October 1995. [7 ] C.Schmid, R. Mohr and C. Bauckhage, “Comparing and Evaluating Interest Points”, Proc. International Conference on Computer Vision, Narosa Publishing House, pp. 230-235, 1998. [8 ] M. Pollefeys and L. Van Gool, “A Stratified Approach to Self-Calibration”,Proc. 1997 Conference on Computer Vision and Pattern Recognition, IEEE Computer Soc. Press, pp. 407-412, 1997. [9 ] Z. Zhhang, “A Flexible New Technique for Camera Calibration”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 22, No. 11, November 2000. [10 ] Luc Robert, “Camera Calibration without Feature Extraction”, Computer Vision and Image Understanding, Vol. 63, No. 2, March, pp. 314-325, 1996. [11 ] H. Longuet-Higgins, “A Computer Algorithm for Reconstructing a Scene from two Projections”, Nature, 293:133-135, 1981. [12 ] R. Hartley, “Estimation of Relative Camera Positions for Uncalibrated Cameras”, Com Computer Vision - ECCV’92, Lecture Notes in Computer Science, Vol. 588, S Springer-Verlag, pp. 579-587, 1992. [13 ] Milan Sonka, Vaclav Hlavac and Roger Boyle, Image Processing, Analysis, and Machine Vision, 1998. [14 ] M. Pollefeys and L. Van Gool, “A Stratified Approach to Self-Calibration”,Proc. 1997 Conference on Computer Vision and Pattern Recognition, IEEE Computer Soc. Press, pp. 407-412, 1997. [15 ] R. Hartley, “Euclidean Reconstruction from Uncalibrated Views”, in : J.L. Mundy, A. Zisserman, and D. Forsyth (eds.), Applications of Invariance in Computer Vision, Lecture Notes in Computer Science, Vol. 825, Springer-Verlag, pp. 237-256, 1994. [16 ] Z. Zhang and C. Loop, “Estimation the Fundamental Matrix by Transforming Image Points in Projective Space”, Computer Vision and Image Understanding, Vol. 82, pp. 174-180, 2001. [17 ] L. Finschi, An Implementation of the Levenberg-Marquardt Algorithm, April 1996. [18 ] S. Kopparapu and P. Corke, “The Effect of Noise on Camera Calibration Parameters”, Graphical Models, Vol. 63, pp. 277-303, 2001. [19 ] Umesh R. Dhond and J. K. Aggarwal, “Structure from Stereo – A Review”, IEEE Transactions on Systems, Man, And Cybernetics, Vol. 19, No. 6, November 1989. [20 ] Changming Sun, “Fast Stereo Machine Using Rectangular Subregioning and 3D Maximum – Surface Techniques”, International Journal of Computer Vision 47, pp. 99-117, 2002. [21 ] R Horaud, R Mohr, F Dornaika, and B Boufama. The advantage of mounting a camera onto a robot arm. In Proceedings of the Europe- China Workshop on Geometrical Modelling and Invariants for Computer Vision, Xian, China, pages 206-213, 1995. [22 ] R I Hartley. Self-calibration from multiple views with a rotating camera. In J-O Eklundh, editor, 3rd European Conference on Computer Vision, Stockholm, Sweden, pages A:471-478, Springer Verlag, Berlin, 1994. [23 ] Tomas Pajdla and Vaclav Hlavac. Camera calibration and Euclidean reconstruction from known translations. Presented at the workshop Computer Vision and Applied Geometry, Nordfjordeid, Norway, August 1-7, 1995. [24 ] S J Maybank and O D Faugeras. A theory of self-calibration of a moving camera. International Journal of Computer Vision, 8(2):123-151, 1992. [25 ] Xavier Armangue and Joaquim Salvi, “Overall View regarding fundamental matrix estimation”, Image and Vision Computing, Vol. 21, Issue 2, pp. 205-220, February 2003. [26 ] Z. Zhang, “Determining the Epipolar Geometry and its Uncertainty: A Review”, International Journal of Computer Vision, Vol. 27, pp. 161-195, March 1998. [27 ] J-S. Liu, J-H. Chuang, “Self- calibration with varying focal length from two images obtained by a camera with small rotation and general translation”, Pattern Recognition Letters 22 (2001) 1393-1404. [28 ] M. Bober, N. Georgis and J. Kittler, “On Accurate and Robust Estimation of Fundamental Matrix”, Computer Vision and Image Understanding, Vol. 72, No. 1, October, pp. 39-53, 1998. [29 ] R. Hartley and A. Zisserman, Multiple Views Geometry in Computer Vision, Cambridge University Press. Cambridge. 2000. [30 ] O. Faugeras, Three-Dimensional Computer Vision: a Geometric Viewpoint, MIT press, 1993. [31 ] S. Bougn oux, From Projective to Euclidean Space under any practical situation a criticism of self-calibration. [32 ] P.J. Hubber, Robust Statistics, Wiley, New York, 1981. [33 ] E. Mosteller, J. Turkey, Data and Analysis and Regression, Addison Wesley, Reading, MA, 1977. [34 ] F. Devernay and O. Faugeras, “From projective to euclidean reconstruction”, Proc. 1997 Conference on Computer Vision and Pattern Recognition, IEEE Computer Soc. Press, pp. 264-269, 1996. [35 ] R. Horaud and G. Csurka, “Self-Calibration and Euclidean Reconstruction Using Motions of a Stereo Rig”, Proc. International Conference on Computer Vision, Narosa Publishing House, New Delhi /Madras /Bombay /Calcutta /London, pp. 96-103, 1998, [36 ] A. Zisserman, P. Beardsley and I. Reid, “Metric Calibration of a Stereo Rig”, Proceedings IEEE Workshop on Representation of Visual Scenes, Cambridge, pp. 93-100, 1995. [37 ] Jong-Eun Ha, In-So Kweon, “3D Structure Recovery and Calibration Under Varying Intrinsic Parameters Using Known Angles“, Pattern Recognition 34 (2001). [38 ] Milan Sonka, Vaclav Hlavac and Roger Boyle, Image Processing, Analysis, and Machine Vision, 1998. [39 ] Forsyth, Ponce, Computer Vision A Modern Approach, 2003. [40 ] O.D. Faugeras, G. Toscani, Camera calibration for 3D computer vision, Proceedings of International Workshop on Machine Vision and Machine Intelligence, Tokyo, Japen, 1987. [41 ] R.K. Lenz, R.Y. Tsai, Techniques for calibration of the scale factor and image center for high accuracy 3D machine vision metrology, IEEE Pattern Anal. Mach. Intell. 10(1988) 713-720. [42 ] R.Y Tsai, R.K. Lenz, A new technique for fully autonomous and efficient 3D robotics hand/eye calibration, IEEE Trans. Robot. Automat. 5(1989) 345-358. [43 ] O. Faugeras, Stratification of 3D vision: projective, affine, and metric representations, J. Opt. Soc. Am. A 12 (1995) 465-484. [44 ] O. Faugeras, S. Laveau, L. Robert, G. Csurka, C. Zeller, 3D reconstruction of urban scenes from sequences of images, INRIA RR-2575, 1995. [45 ] B. Boufama, R. Mohr, F. Veillon, Euclidean constraints for uncalibrated reconstruction, ICCV 93 (1993) 466-470.id NH0925442042 sid 913973 cfn 0 / id NH0925442043 auc 蔡名人 tic 混合階層瞬間最大功率量測方法 adc 黃錫瑜 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 44 kwc 最大瞬間功率 kwc 估測 abc 近年來,晶片運作時所消耗的功率漸漸受到設計者的重,尤其是近年來廣泛研究的低功率晶片設計。功率消耗一般來說可以分為瞬間最大功率以及平均功率。過大的瞬間功率會造成整個電路效能以及可靠性的問題。電腦輔助設計(CAD)必須幫助設計者在設計時快速而且準確的估計正確的功率,讓設計者可以及早更改設計。 tc Abstract………………………………………………………………….1 Contents………………………………………………………………….2 List of Figures…………………………………………………………...4 List of Tables…………………………………………………………….5 Chapter 1 Introduction…………………………………………………6 1.1 Organization of This Thesis……..…………………………….7 Chapter 2 Preliminaries………………………………………………...8 2.1 Power Classification…………………………………………...8 2.2 Model used in peak power estimation ……………………….10 2.3 Mixed-level Peak Power Estimation…………………………10 Chapter 3 Previous Work……………………………………………..12 3.1 Static approach……………………………………………….13 3.1.1 i-Max algorithms………………………………………13 3.2 Dynamic approach……………………...…………………….14 3.2.1 Functional approaches………………………………....14 3.2.2 Vector generation approaches………………………....15 Chapter 4 Waveform Model…………………………………………..18 4.1 Delay Calibration ……………………………………………18 4.1.1 Skew model……………………………………………19 4.1.2 Slope Model……………………………………………24 Chapter 5 Implementation……………………………………….……27 5.1 System Overview…………………………………………….27 5.2 Data Preparation……………………………………………...29 5.3 Delay Calibration…………………………………………….30 5.4 Waveform Shaping…………………………………………...34 5.5 Experimental Result………………………………………….37 Chapter 6 Conclusion………………………………………………….42 Bibliography……………………………………………………………43rf [1 ] N. Najm,“A Survey of Power Estimation Techniques in VLSI Circuits,” IEEE Transactions on Very Large Scale Integration Systems, vol.2, NO.4, December 1994. [2 ] J. Lu and Z. Lin, “Effects of Delay Models on Maximum Power Estimation of VLSI Circuits,” ASIC Proc. 4th Int’l Conf., pp. 179-182, October 2001. [3 ] M. S. Hsiao, E. M. Rudnick, and J.H. Patel, “Effects of Delay Models on Peak Power Estimation of VLSI Sequential Circuits,” Proc. of Int’l Conf. on Computer-Aided Design, pp. 45-51, 1997. [4 ] H. Kriplani, F. N. Najm, and I. N. Hajj, “Pattern Independent Maximum Current Estimation in Power and Ground Buses of CMOS VLSI Circuits: Algorithms, Signal Correlations, and Their Resolution,” IEEE Trans. on Computer-Aided Design, pp. 998-1012, Aug. 1995. [5 ] Y. M. Jiang, A. Krstic, and K. T. Cheng, “Estimation for Maximum Current Through Supply Lines for CMOS Circuits,” IEEE Transactions on Very Large Scale Integration Systems, vol.8, NO.1, February 2000. [6 ] Y. M. Jiang, K. T. Cheng, and A. Krstic, ” Estimation Of Maximum Power And Instantaneous Current Using A Genetic Algorithm,” Proc. Of Custom Integrated Circuits Conf., pp. 135 – 138, 1997. [7 ] M S. Hsiao, “Peak Power Estimation Using Genetic Spot Optimization For Large VLSI Circuits,” Proc. of Int’l Conf. on Design Automation and Test In Europe, pp. 175-179, 1999. [8 ] A. Krstic and K.T. Cheng, “Vector Generation for Maximum Instantaneous Current Through Supply Lines For CMOS Circuits,” Proc. of Design Automation Conf., pp. 383-388, 1997. [9 ] C. Y. Wang, K. Roy, and T. L. Chou, “Maximum Power Estimation For Sequential Circuits Using A Test Generation Based Technique,” Proc. of IEEE Custom Integrated Circuits Conf., pp. 229-232, 1996. [10 ] C. Y. Wang and K. Roy, “COSMOS: A Continuous Optimization Approach For Maximum Power Estimation Of CMOS Circuits,” Proc. of Int’l Conf. on Computer-Aided Design, pp. 52-57, 1997. [11 ] Y. M. Jiang and K. T. Cheng, “Exact and Approximate Estimation for Maximum Instantaneous Current of CMOS Circuits,” Proc. of Int’l Conf. on Design Automation and Test in Europe., pp. 698-702, 1998.id NH0925442043 sid 913974 cfn 0 / id NH0925442044 auc 張文杰 tic 阿拉伯芥生理時鐘基因調控網路之系統辨別及分析 adc 陳博現 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 54 kwc 生理時鐘 kwc 基因調控網路 kwc 生物晶片 kwc 阿拉伯芥 kwc 系統生物學 kwc 靈敏度 abc 植物的生理時鐘(Circadian System)對于其生理反應及能量的吸取有相當的重要性,相關基因的調控的機制仍然不清楚;故我們在此研究中,針對廣為研究的模型植物-阿拉伯芥(Arabidopsis thaliana)其生理時鐘基因調控網路進行系統辨別及分析。 我們主要使用ARX (AutoRegressive with eXternal input)的方法及生物晶片(Microarray chip)所偵測到的基因訊號資料建構系統動態模型,並且進一步探討基因調控網路中的基因調控能力及增益(Activation)或抑制(Inhibition)特性;另一方面我們也討論了系統基因對於輸入照光、基因突變(mutation)及擾動(perturbation)的影響,尤其可以計算出系統對于擾動的靈敏度(Sensitivity)。如此應用電機工程上之系統(System)分析概念,引進到生命科學的研究,結合成一新興的研究方向-系統生物學(System Biology)。 tc 1.INTROCUSTION ………………………… 1 2.METHODS ………………………………… 7 2.1 Dynamic system description of circadian regulatory model ……………… 7 2.2 Simulation assay of the ARX system model……………12 3.RESULTS ……………………………………20 3.1 Analysis of data set ………………………………20 3.2 Modeling of the circadian system ………………21 3.3 Analysis of the circadian network model ……23 4.DISCUSSION ………………………………30 REFERENCES …………………………………35rf 1. Ahmad M, Jarillo JA, Smirnova O, Cashmore AR. (1998) The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol Cell, 1, 939-948. 2. Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA. (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science, 293, 880-883. 3. Alter O, Brown PO, Botstein D. (2000) Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci U S A, 97, 10101-10106. 4. Brazma A, Parkinson H, Sarkans U, Shojatalab M, Vilo J, Abeygunawardena N, Holloway E, Kapushesky M, Kemmeren P, Lara GG, Oezcimen A, Rocca-Serra P, Sansone SA. (2003) ArrayExpress--a public repository for microarray gene expression data at the EBI. Nucleic Acids Res., 31, 68-71. 5. Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, Ares M Jr, Haussler D. (2000) Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci U S A, 97, 262-267. 6. Carre IA, Kim JY. (2002) MYB transcription factors in the Arabidopsis circadian clock. J Exp Bot., 53, 1551-1557. 7. Carre IA. (2001) Day-length perception and the photoperiodic regulation of flowering in Arabidopsis. J Biol Rhythms, 16, 415-423. 8. Casal JJ. (2000) Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants. Photochem Photobiol., 71, 1-11. 9. Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA. (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell, 12, 323-337. 10. Deng XW, Quail PH. (1999) Signalling in light-controlled development. Semin Cell Dev Biol., 10, 121-129. 11. Edgar R, Domrachev M, Lash AE. (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res, 30, 207-210. 12. Eisen MB, Spellman PT, Brown PO, Botstein D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A, 95, 14863-14868. 13. Eriksson ME, Hanano S, Southern MM, Hall A, Millar AJ. (2003) Response regulator homologues have complementary, light-dependent functions in the Arabidopsis circadian clock. Planta., 218, 159-162. 14. Fankhauser C, Staiger D. (2002) Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. Planta., 216, 1-16. 15. Friedman N, Linial M, Nachman I, Pe'er D. (2000) Using Bayesian networks to analyze expression data. J Comput Biol., 7, 601-620. 16. Gasch AP, Eisen MB. (2002) Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biol., 3. 17. Green RM, Tingay S, Wang ZY, Tobin EM. (2002) Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol., 129, 576-584. 18. Hall A, Kozma-Bognar L, Toth R, Nagy F, Millar AJ. (2001) Conditional circadian regulation of PHYTOCHROME A gene expression. Plant Physiol., 127, 1808-1818. 19. Hall A, Kozma-Bognar L, Bastow RM, Nagy F, Millar AJ. (2002) Distinct regulation of CAB and PHYB gene expression by similar circadian clocks. Plant J., 32, 529-537. 20. Harkin, D.P. (2000) Uncovering Functionally Relevant Signaling Pathways Using Microarray-Based Expression Profiles. The Oncologist, 5, 501-507. 21. Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA. (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science, 290, 2110-2113. 22. Hayama R, Coupland G. (2003) Shedding light on the circadian clock and the photoperiodic control of flowering. Curr Opin Plant Biol., 6, 13-19. 23. Huang S. (1999) Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery. J Mol Med., 7, 469-480. 24. Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA. (2003) FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature, 426, 302-306. 25. Kettman JR, Frey JR, Lefkovits I. (2001) Proteome, transcriptome and genome: top down or bottom up analysis. Biomol Eng., 18, 207-212. 26. Kim JY, Song HR, Taylor BL, Carre IA. (2003) Light-regulated translation mediates gated induction of the Arabidopsis clock protein LHY. EMBO J., 22, 935-944. 27. Lipshutz, R.J., Fodor, S.P., Gingeras T.R., Lockhart D.J. (1999) High density synthetic olignucleotide arrays. Nat. Gent. (suppl.) 21, 20-24. 28. Martinez-Garcia JF, Huq E, Quail PH. (2000) Direct targeting of light signals to a promoter element-bound transcription factor. Science, 288, 859-863. 29. Mas P, Devlin PF, Panda S, Kay SA (2000) Functional interaction of phytochrome B and cryptochrome 2. Nature, 408, 207–211 30. Mas P, Alabadi D, Yanovsky MJ, Oyama T, Kay SA. (2003) Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. Plant Cell, 15, 223-236. 31. Mazzella MA, Cerdan PD, Staneloni RJ, Casal JJ. (2001) Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development. Development, 128, 2291-2299. 32. Michael TP, McClung CR. (2002) Phase-specific circadian clock regulatory elements in Arabidopsis. Plant Physiol., 130, 627-638. 33. Motaki, S., Ayako, K., Kazuko Y.S., Kazuo S. (2003) Moleular response to drought, salinity and frost: common and different paths for plant protection. Cur. Opn. Biotechnol. 14, 194-199. 34. Schaffer R, Landgraf J, Accerbi M, Simon V, Larson M, Wisman E. (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell, 13, 113-123. 35. Scheel J, Von Brevern MC, Horlein A, Fischer A, Schneider A, Bach A. (2002) Yellow pages to the transcriptome. Pharmacogenomics, 3, 791-807. 36. Schena, M., Shalon, D., Davis, R.W., Brown, P.O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467-470. 37. Sharrock RA, Clack T. (2002) Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiol., 130, 442-456. 38. Sherlock G, Hernandez-Boussard T, Kasarskis A, Binkley G, Matese JC, Dwight SS, Kaloper M, Weng S, Jin H, Ball CA, Eisen MB, Spellman PT, Brown PO, Botstein D, Cherry JM. (2001) The Stanford Microarray Database. Nucleic Acids Res., 29, 152-155. 39. Staiger D. (2002) Circadian rhythms in Arabidopsis: time for nuclear proteins. Planta., 214, 334-344. 40. Somers DE, Devlin PF, Kay SA. (1998) Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science, 282, 1488-1490. 41. Somers DE. (2001) Clock-associated genes in Arabidopsis: a family affair. Philos Trans R Soc Lond B Biol Sci., 356, 1745-1753. 42. Soukas A, Socci ND, Saatkamp BD, Novelli S, Friedman JM. (2001) Distinct transcriptional profiles of adipogenesis in vivo and in vitro. Biol Chem., 276, 34167-34174. 43. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.Q., Bostein, D. and Futcher, B. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cererisiae by microarray hybridization. Mol. Biol. Cell., 9, 3273-3297. 44. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR. (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci U S A, 96, 2907-2912. 45. Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM. (1999) Systematic determination of genetic network architecture. Nat Genet., 22, 281-285. 46. Toth R, Kevei E, Hall A, Millar AJ, Nagy F, Kozma-Bognar L. (2001) Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol., 127, 1607-1616. 47. Velculescu VE, Zhang L, Zhou W, Vogelstein J, Basrai MA, Bassett DE Jr, Hieter P, Vogelstein B, Kinzler KW. (1997) Characterization of the yeast transcriptome. Cell, 88, 243-251. 48. Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G. (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science, 303, 1003-1006. 49. Yanovsky MJ, Kay SA. (2001) Signaling networks in the plant circadian system. Curr Opin Plant Biol., 4, 429-435.id NH0925442044 sid 913976 cfn 0 / id NH0925442045 auc 余建城 tic 快閃記體元件電流量測的內建式量測電路 adc 張慶元 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 34 kwc 快閃記憶體 kwc 感應放大器 kwc 電流量測電路 kwc 內建式 abc 近年來快閃記憶體的應用越來越廣泛,例如數位相機、mp3播放器、手機、大姆哥等等~~,所以快閃記憶體可靠度的問題越來越受到重視,我們設計快閃記憶體cell電流的內建量測電路,主要的應用有二個:第一個應用是在快閃記憶體剛出廠時cell 電流分佈的特性分析;第二個應用是在快閃記憶體cell使用期限的偵測,因為快閃記憶體在長時間使用之後,電子從集極(drain)入射(injection)到浮動閘極(floating gate),或是電子從浮動閘極退回(rejection)到集極的能力降低,而造成cell 電流的偏移。當偏移的電流超過安全範圍時,將導致感應放大器(sense amplifier)資料誤判,所以我們可以籍由觀察cell電流的變化而去決定這個cell的使用期限。目前量測快閃記憶體陣列的cell電流所使用的方法是使用外部精密昂貴的測試設備,我們提出了一個針對快閃記憶體的內建式cell電流量測電路,目的是為了降低量測成本並且能夠隨時偵測cell的電流,我們利用簡單的串疊電流鏡以及改良式的current mode的電流類比數位轉換器完成電流量測電路,我們提出的這個電路也能夠根據不同的快閃記憶體cell電流分佈,而選用不同的參考電流(reference current),而能避免直接量測小電流,進而提高量測速度。我們設計的量測電路量測的範圍為25.6mA的寬廣量測範圍,最大的參考電流可設為12.8mA,解析度能達到0.1mA,量測時間為250ns加上感應放大器的感應時間,一般來說可以在260ns完成量測。我們使用TSMC 0.25mm標準的 tsmc CMOS製程,用Hspice模擬結果。 tc 中文摘要 英文摘要 誌謝 目錄 圖目錄 表目錄 第一章 緒論.......................................1 1.1. 需求與分析 1.2. 快閃記憶體電路的基本架構 1.3. 論文組織 第二章 研究回顧...................................4 2.1. 電流比較器 2.2. 電流類比數位轉換器 2.3. 感應放大器 2.3.1. 差動感應放大器 2.3.2. Single Ended感應放大器 第三章 電流量測方法及設計電路....................14 3.1. 電流量測方法 3.2. 介面電路 3.3. 減法電路 3.4. 感應放大器 3.5. 七位元電流類比數位轉換器 第四章 模擬結果與討論.............................22 4.1. 七位元電流類比數位轉換器電路的模擬結果 4.2. 感應放大器的模擬 4.3. 完整電路的模擬結果 4.4. 結果討論 第五章 結論與未來展望.............................32 參考文獻.............................................33rf [1 ] P. Cappelletti, C. Golla, P. Olivo, E. Zanoni, “Flash memories”, 1999, Kluwer Academic Publishers. [2 ] Z. Jun, “Flash memory technology development”, Proc. of 6th IEEE International Conference on Solid-State and Integrated-Circuit Technology, vol. 1, Oct. 2001, pp. 189-194. [3 ] “IEEE standard definitions and characterization of floating gate semiconductor arrays”, IEEE Std 1005-1998 , 9 Feb. 1999. [4 ] J. P. A. Carreira and J. E. Franca, “High-speed CMOS current comparators” Proc. of IEEE International Symposium on Circuits and Systems, vol. 5, June. 1994, pp.731-734 [5 ] D.G. Nairn and C.A.T. Salama, “Current-mode algorithmic analog-to-digital converters” , IEEE Journal of Solid-State Circuits , vol. 25, Issue: 4, Aug. 1990, pp. 997 – 1004. [6 ] Z. Ciota, M. Jankowski and A. Napieralski, “Design of A/D converters using current-mode standard cells”, Proc. of IEEE International Conference on Electronics Circuits and Systems, Volume: 1 , vol.1, Dec. 2000, pp. 24 – 27. [7 ] G.. Giustolisi, G.. Palumbo and S. Pennisi, “Resolution of a current-mode algorithmic analog-to-digital converter”, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 49, Issue. 10, Oct 2002, pp. 1480-1486. [8 ] T. Tanzawa , Y. Takano, T. Taura and S. Atsumi, “Design of a sense circuit for low-voltage flash memories”, IEEE Journal of Solid-State Circuits, vol. 35, Issue. 10, Oct 2000, pp. 1415-1421. [9 ] A. Chrisanthopoulos, Y. Moisiadis, A. Varagis, Y. Tsiatouhas and A. Arapoyanni, “A new flash memory sense amplifier in 0.18 μm CMOS technology”, Proc. of the 8th IEEE International Conference on Electronics Circuits and Systems, vol 2, Setp 2001, pp. 941-944. [10 ] C. Papaix and J. M. Daga, “A new single ended sense amplifier for low voltage embedded EEPROM non volatile memories”, Proc. of IEEE International Workshop on Memory Technology Design and Testing, July 2002, pp. 149-153. [11 ] P. Pavan, L. Larcher, M. Cuozzo, P. Zuliani and A. Conte,“A complete model of E/sup 2/PROM memory cells for circuit simulations”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 22, Issue. 8, Aug 2003, pp.1072-1979.id NH0925442045 sid 913978 cfn 0 / id NH0925442046 auc 江振煜 tic 利用溶膠凝膠法在熔融石英玻璃基板上製作摻鍺的光學波導 adc 趙 煦 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 105 kwc 溶膠凝膠法 kwc 波導 kwc 非線性 kwc 熱極化處理 abc 本研究內容是利用溶凝膠(sol-gel)法在熔融石英玻璃(fused silica)基板上製作出掺鍺的二氧化矽(GeO2-SiO2)薄膜,然後對覆膜的基板進行熱極化處理(thermal poling)實驗,使之產生非線性的特性。實驗首先將矽酸乙酯(Si(OC2H5)4,簡稱TEOS)、水(pH=1)、乙醇以及第四丁氧基鍺(Ge(OC4H9)4)等起始原料,按照ㄧ定比例及流程分別調配出二氧化矽溶膠(SiO2 sol)以及掺鍺的二氧化矽溶膠(GeO2-SiO2 sol),然後利用旋轉塗佈(spin coating)的方式在矽基板以及熔融石英玻璃(fused silica)基板上進行覆膜實驗。在覆膜的實驗過程中克服了許多薄膜製作上的問題,諸如單層膜在經過高溫烘烤(baking)之後會產生裂痕(cracks)、鍍出來的膜表面不平有放射狀條紋…等,而得到理想的單層SiO2膜以及GeO2-SiO2膜。 tc 摘 要 I 誌 謝 辭 II 目 錄 III 圖目錄 V 表目錄 VII 第一章 緒論 1 1.1前言 1 1.2實驗內容 3 1.3文獻回顧 4 第二章 溶膠凝膠法製備薄膜之製程 8 2.1 SOL-GEL之製程介紹 8 2.2 SOL-GEL之理論基礎 10 2.2.1基本原理 10 2.2.2主要影響因素 12 2.3 SOL-GEL製備薄膜 16 2.3.1 Sol-Gel製備薄膜之方式 16 2.3.2實驗所用之覆膜方式 18 2.4實驗流程 19 2.4.1切割及晶片編號 19 2.4.2清洗 20 2.4.3試劑調配 21 2.4.3.1試藥 21 2.4.3.2調配裝置及流程 22 2.4.4薄膜之製備 30 2.4.4.1儀器與設備 30 2.4.4.2薄膜製備流程 30 2.5特性量測 34 2.5.1 膜的表面特性量測 34 2.5.2光譜量測 34 2.5.3非線性光學特性的量測 35 第三章 二次非線性光學特性之測量 36 3.1二次非線性光學的二次諧波產生理論 36 3.2熱極化中心對稱結構晶體產生二次非線性光學之機制 38 3.2.1理論機制 38 3.2.2實驗流程及裝置 41 3.3 MAKER’S FRINGE架設及量測流程 43 第四章 實驗結果與討論 46 4.1 SIO2光學膜的製作及其特性探討 46 4.1.1溶膠的穩定性 46 4.1.2單層光學膜的裂痕 47 4.1.3 Particles以及霧膜的現象 50 4.1.4膜的表面平整問題 52 4.1.4.1膜在基板邊緣回縮效應 52 4.1.4.2放射狀條紋現象 53 4.1.5 Multi-coating流程所產生的裂痕 57 4.1.6良好光學膜的製作及其性質量測 61 4.2 GEO2-SIO2光學膜的製作及其特性探討 65 4.2.1穩定溶膠的製作 65 4.2.2霧膜的現象 67 4.2.3膜的表面平整問題 68 4.2.4 Multi-coating流程所產生的裂痕 69 4.2.5良好光學膜的製作及其性質量測 70 4.3熱極化處理 78 4.3.1各參數定義 78 4.3.2熱極化處理結果 79 第五章 結論與未來展望 83 5.1結果討論 83 5.2未來可繼續進行的實驗 85 A1 ICP-MS量測 87 參 考 文 獻 103rf 1. 顏珮珍,「摻雜PZT微粉的SiO2光波導材料製作與特性研究」,國立清華大學碩士論文,民國91年 2. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica”, Opt. Lett. 16, 1732-1734 (1991). 3. 周禮君、田珮,「有機矽烷氧基前驅物衍生的有機-無機混成溶凝膠材料」,化工技術,第8卷第5期,152-164頁,2000年5月。 4. 丁原傑,「無機有機混合溶凝膠配製與應用」,化工,第46卷第5期,63-71頁,1999年10月。 5. M.Green, R.R.A.Syms,A.S.Holmes,K.Ueki,H.Yanagawa,”Method of manufacturing silica waveguide optical components” , US patent:5,378,256 (1995). 6. S.Kashimura,M.Takeuchi,K.Maru and H.Okano,”Loss reduction of GeO2-doped silica waveguide with high refractive index difference by high-temperature annealing”, Jpn. J. Appl. Phys., 39,521-523(2000). 7. R.R.A. Syms,A.S. Holmes,“Deposition of thick silica-titania sol-gel films on Si substrates”, J. Non-Cryst Solids, 170,223-233 (1994) 8. Din-Guo Chen, PhD dissertation, University of Florida (1991) 9. D.G.Chen,B.G.Pottor,J.H.Simmons,”GeO2-SiO2 thin films for planar waveguide applications”, J. Non-Cryst Solids, 178,135-147 (1994). 10. K. D. Simmons, G. I. Stegeman, B. G. Potter Jr., and J. H. Simmons, “Photosensitivity of sol–gel-derived germanosilicate planar waveguides”, Opt. Lett., 18, 25–27 (1993). 11. K. D. Simmons, B. G. Potter, and G. I. Stegeman, “Red photoluminescence and optical absorption in hydrogen-treated GeO2-SiO2 sol-gel-derived planar waveguides,” Appl. Phys. Lett., 64, 2537–39 (1994). 12. A.D.Razafimahatratra, M.Benatsou, M.Bouazaoui, W.X.Xie,C.Mathieu, A.Dacosta, M.Douay,”UV-induced permanent gratings in sol-gel germanosilicate thin films” , Optical Materials, 13,439-448 (2000). 13. S.I.Najafi,T.Touam, R.Sara, M.P.Andrews, and M.A.Fardad,”Sol-Gel glass waveguide and grating on silicon” , Journal of Lightware Technology, 16[9 ] (1998). 14. A. Martucci, G. Brusatin, M. Guglielmi, C. Strohhofer, J. Fick, S. Pelli, and G.C. Righini, “Fabrication and Characterization of Sol-Gel GeO2-SiO2 Erbium-Doped Planar Waveguides”, J. Sol-Gel Sci. Tech. 13, 535-539 (1998). 15. E.M.Yeatman, M.M.Ahmad and O.Mccarthy,”Sol-Gel Fabrication of Rare-Earth Doped Photonic Component” , J. Sol-Gel Sci. Tech. 19, 231-236 (2000). 16. Y. Sasaki Y.Ohmori, “phase-matched sum-frequency light generation in optical fibers”,Appl.Phys.Lett. 39(6),15(1981) 17. U.Osterberg W.Margulis, “Dye laser pumped by Nd:YAG laser pulses frequency double in a glass optical fiber”, Optical Letters vol.11 No.8 (1986) 18 P.G. Kazansky L.Dong, “high second-order nonlinearities in poled silicate fibers” OPT. LETTER vol 19 No.10(1994) 19. O. Sugihara, T. Hirama, H. Fujimura, and N. Okamoto, ‘‘Second-order nonlinear optical properties from poled silicate channel-waveguide,’’ Opt. Rev. 3, 150–152 (1996). 20. O. Sugihara, M. Nakanishi, H. Fujimura, and N. Okamoto, ‘‘Thermally poled silicate thin films with large second-harmonic generation,’’ J. Opt. Soc. Am. B, 15[1 ],421–425(1998). 21.徐志凌、劉麗英、楊鵬、侯占佳、徐雷、王文澄,「SiO2-GeO2薄膜電場極化後倍頻效率與極化電場的超平方關係」,物理學報,第48卷第11期,2076-2081,1999年11月 22. 徐志凌、劉麗英、楊鵬、侯占佳、徐雷、王文澄,「束缚電荷對玻璃材料二階光學非線性的影響」,物理學報,第49卷第8期,1503 -1506,2000年8月 23. 李佳融,「以溶凝膠法製作SiO2 奈米多孔質載體之加工特性的初步探討」,國立交通大學碩士論文,民國91年。 24. C. Jeffrey Brinker and G. W. Scherer “Sol-Gel Science” Academic Pres Inc. (1990). 25. Larry L. Hench. “Sol-gel silica :/properties, processing, and technology transfer” Noyes Publications (1998). 26. 林偉毅,「超臨界流體乾燥法製作光波導管用之SiO2光學薄膜」,國立清華大學碩士論文,民國90年。 27. 黃雅鈺,「多孔氧化矽薄膜之覆膜程序與電性分析研究」,國立清華大學碩士論文,民國91年。 28. D. C. Bradley, L. J. Kay, and W. Wardlaw, J. of Chem. Soc., 4916-4926 (1956). 29. 陳建州,「以電漿輔助化學氣相沉積製作摻磷二氧化矽平面波導及其非線性光學特性之研究」,國立清華大學碩士論文,民國92年 30. 章豐帆,「熱極化熔融石英玻璃之二次非線性光學特性的衰減現象之探討」,國立清華大學碩士論文,民國93年。 31. ”Fundamentals of photonics ” by Bahaa E.A. Saleh and Malvin Carl Teich 32. 林毅軒,「真空熱極化光學級熔融石英玻璃所產生的二次非線性光學特性探討」,國立清華大學碩士論文,民國92年 33. N. Mukherjee, R. A. Myers, S. R. J. Brueck,”Dynamics of second-harmonic generation in fused silica,” J. Opt. Soc. Am. B 11, 665-669(1994). 34. T. G. Alley, The formation of the second-order nonlinearity in thermally poled fused silica glass, Ph. D. Dissertation, University of New Mexico (1998). 35. T. G. Alley ,and S. R. J. Brueck ,”Visualization of the nonlinear optical space-charge region of bulk thermally poled fused-silica glass,”Opt. Lett. 23, 1170-1172(1998). 36. V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: The influence of charge transport on second harmonic generation,” Appl. Phys. Lett. 74, 2423-2425(1999). 37. T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. Appl. Phys. 86, 6634-6640(1999). 38. V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: The influence of charge transport on second harmonic generation,” Appl. Phys. Lett. 74, 2423-2425(1999). 39. T. G. Alley, S. R. J. Brueck ,and R. A. Myers , “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165-176 (1998). 40. W. Xu, J. Arentoft, D. Wong, and S. Fleming, ”Evidence of space-charge effects in thermal poling,” Photon. Technol. Lett. 11, 1265-1267(1999). 41. X. M. Liu, M. D. Zhang, “Theoretical study for thermal/electric field poling of fused silica,” Jpn. J. Appl. Phys. 40, 4069-4076(2001). 42. 陳淮義,「熱極化熔融石英玻璃平面基板之非線性光學特性探討與準相位匹配倍頻產生元件之研製」,國立清華大學博士論文,民國92年 43. 蘇錦昇, “quasi-phase matched second harmonic generation in periodically poled fused silica plate” ,清華大學碩士論文,民國91年 44. http://www.metricon.com/ 45. I. Fanderlik, “Silica Glass and Its Application,” (Elsevier Science publishing, New York 1990). 46. http://www.gequartz.com/en/tab11.htm 47. 張儀盛、唐宏怡,「感應偶合電漿質譜儀」,科儀新知,第十第三期,81-90,民國77年 48. 行政院國家科學委員會精密儀器發展中心編,「質譜分析術專輯」,1992 49. 孫毓璋,楊末雄計畫主持,「以ICP-MS建立環境中重金屬檢測技術」,民國91年 50. 張宜隆,「熱處理矽晶圓中微量過渡元素之縱深濃度分佈分析」,國立清華大學碩士論文,民國92年 51. K.E.Jarvis, A.L.Gary, R.S.Houk, Handbook Inductively Coupled Plasma Mass Spectrometry (1992).id NH0925442046 sid 913981 cfn 0 / id NH0925442047 auc 詹博文 tic 利用電漿輔助化學氣相沈積法製作摻鍺二氧化矽平面波導及其非線性光學特性探討 adc 趙煦 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 111 kwc 非線性 kwc 波導 kwc 電漿輔助化學氣相沈積 kwc 電光效應 abc 玻璃是低損耗、價格低廉、極適合應用於光通訊與非線性領域的光學材料,其結構上為中心對稱結構,並無二階非線性光學特性,僅能成為被動元件,因此如何誘發其非線性特性,使應用在主動元件上為首要考量課題。 tc 摘 要 I 誌 謝 辭 II 內 容 目 錄 III 圖 目 錄 V 表 目 錄 IX 第一章 導論 1 1.1 前言 1 1.2 基本原理 2 1.2.1 熱極化熔融石英玻璃產生二階非線性效應之機制 2 1.2.2 電漿輔助化學氣象沈積法(PECVD)工作原理 5 1.3 相關文獻回顧 7 1.3.1 摻鍺二氧化矽薄膜相關文獻整理 7 1.3.2 電光係數量測相關文獻整理 10 第二章 摻鍺二氧化矽平面波導的製程特性分析 15 2.1 實驗流程簡介 15 2.2 PECVD製作摻鍺二氧化矽平面波導的特性分析與摻雜物對折射係數的關係 16 2.2.1 摻雜物濃度對折射係數之影響 16 2.2.2 波導製作之前置作業與條件 17 2.2.3 波導製程厚度分析 19 2.2.4 波導製程速率分析 21 2.2.5 波導製程均勻性分析 22 第三章 摻鍺二氧化矽平面波導的光學特性研究 24 3.1 穿透光譜量測與分析 24 3.2 波導特性量測與分析 26 3.2.1 稜鏡耦合量測原理與分析 26 3.2.1.1 穿透式稜鏡耦合量測原理與系統架設 26 3.2.1.2 反射式稜鏡耦合量測原理與系統架設 29 3.2.2 波導模態量測結果 31 3.2.3 波導相關光學參數計算與探討 38 第四章 摻鍺二氧化矽平面波導的非線性效應特性研究 43 4.1 不同的熱極化條件對二次非線性強度之探討 43 4.1.1 熱極化實驗架設系統 43 4.1.2 Maker Fringe實驗量測系統 45 4.1.3 不同熱極化電壓的特性探討 46 4.1.4 不同熱極化時間的特性探討 48 4.1.5 不同熱極化溫度的特性探討 50 4.2 UV 紫外光抹除對二階非線性強度的探討 53 4.2.1 實驗架設系統 53 4.2.2 UV光抹除二階非線性強度實驗結果 54 第五章 Mach Zehnder interferometer (MZI)電光係數量測系統架設與測量結果 56 5.1 MZI系統測量原理 57 5.2 MZI系統架設說明 62 5.3 MZI系統量測步驟 66 5.4 MZI誤差評估 67 5.5 測量結果與討論 71 第六章 結論與未來展望 77 參 考 文 獻 78 附錄A PECVD操作流程 80 附錄B 摻磷二氧化矽平面波導的探討(補充陳建州學長摻磷二氧化矽平面波導未完成之相關實驗) 83 附錄C Beam_Prop Simulation of Planar and Channel waveguide 104 附錄D Quasi Phase-Matched period evaluation of Ge-doped SiO2 planar waveguide 105 附錄E 摻鍺二氧化矽 Channel waveguide 製作流程 111rf 1, R.A.Myers, N. Mukherjee, and S.R.Jbrueck, “Large second-order momlinearity in poled fused silica”, Opt.Lett.,16,pp.1732-1734,1991 2, T. G. Alley, “The formation of the second-order nonlinearity in thermally poled fused silica glass”, Ph. D. Dissertation, University of New Mexico (1998) 3, X. M. Liu, M. D. Zhang, Jpn. J. Appl. Phys. 40, 4069 (2001) 4, Marc Madou “Fundamentals Of Microfabrication”©1997 BY CRC Press LLC 5, J J.Kester and P J.Wolf ,Second-harmonic generation in planar waveguide of doped silica , optics letters /Vol.17 /No.24/ December 15 1992 6, Leanne J.Henry,Correlation of Ge E’ defect sites with second-harmonic generation in poled high-water fused silica, optics letters/ Vol.20 /No.15/ August 1 1995 7,O.Sugihara, M,Nakanishi, H.Fujimura,”Thermal poled silicate thin films with large senond-harmonic generation”, optical Society of America/Vol.15/No.1/1998 8, X-C. Long, R.A Myers, and S.R.J. Brueck ,Measurement of the linear E-O coefficient in poled amorphous silica ,optics letter/ vol19 / No.22/ November 15 1994 9, Alice. Liu, M.J.F. Digonnet, and G.S.Kino ,E-O phase modulation in a silica channel waveguide,optics letter /vol.19, No.7/April 1 1994 10, M.Abe, T.Kitagawa,E-O optic switch constructed with a poled silica-based waveguide on a Si substrate,Electronics letters /vol.32 /No.10 / 9th May 1996 11, Mark Janos, Wei Xu, Danny Wong ,Growth and Decay of the E-O effect in thermally Poled B/Ge Codoped Fiber, journal of lightwave tech/ Vol.17 /No.6 /june 1999 12, Yitao Ren, Carl Johan, Jesper Arentoft,Thermally Poled Channel Waveguides with Polarization- Independent E-O Effect,IEEE Photonics technology, letter/ vol.14 /No.5 / may 2002 13, Fatima C.Garcia, Laura Vogelaar and Raman Kashyap,Poling of Channel waveguide,optics express /Vol.11, No.23/ November 17 2003 14, Yu Lu, Zhong-Yang CHENG, Seung-Eek Park, Linear E-O Effect of 0.88Pb(Zn1/3Nb2/3)O3 -0.12PbTiO3 Single Crystal , Jpn.J. Appl.Phys. vol.39/pp.141-145 ,2000 15, Handbook Of Optical Fibers And Cable, Second Edition,P18,Hiroshi Murata 16, P.K. Tien, R.Ulrich, ”Theory of prism-film coupler and thin-film light guides”,J. Opt. Soc. Am., 60,pp.1325,1970 17, Richard Syms , John Cozens, ”Optical guide wave and devices”, McGraw-Hill , 1992 18, 陳建州,” 以電漿輔助化學器相沈積摻磷二氧化矽平面波導與其非線性與光學特性之研究”,91級碩士論文,清華大學電機所光電組 19, 陳淮義,”熱極化熔融石英玻璃平面基版之非線性光學特性探討與準相位匹配倍頻產生元件之研製”,91級博士論文,國立清華大學電機工程學系 20, J. Jerphagnon, and S. K. Kurtz , J. Appl. Phys. 41, 1667 (1970) 21, G. Bonfrate et al, pp.73 ,CLEO(2000) 22, 林毅軒,”真空熱極化光學級熔融石英玻璃所產生的二次非線性光學特性探討”,90級碩士論文,國立清華大學電機所光電組 23, 歐英列,”摻磷二氧化矽對UV 曝光後折射率變化之研究”,88級碩士論文,國立清華大學電機所光電組id NH0925442047 sid 913982 cfn 0 / id NH0925442048 auc 詹健弘 tic 軟X光反射鏡之設計與製作 adc 趙煦 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 83 kwc 軟X光 kwc 多層膜 kwc 原子力顯微鏡 abc 本篇論文研究軟X光波段(波長1nm~25nm)多層膜反射鏡之設計與實做之過程,除了做軟X光波段反射鏡的特性模擬外,並利用多種儀器如RF/DC磁控濺鍍系統、α–Step、SIMS、低略角X光反射測量儀以及AFM等儀器來做薄膜反射鏡的製作以及膜層的特性檢測等,最後在於同步輻射中心作軟X光反射率之量測。 tc 論文摘要 Ⅰ 誌謝詞 Ⅱ 目錄 Ⅲ 圖目錄 Ⅳ 表目錄 Ⅴ 第一章 前言 1 1.1軟X光之應用和研究動機 1 1.2軟X光反射鏡相關論文回顧 5 第二章 軟X光多層膜反射鏡之設計 13 2.1軟X光波段多層膜反射率理論 13 2.2軟X光波段多層膜之材料選擇 19 第三章 軟X光波段多層膜反射鏡之模擬與實作 24 3.1軟X光多層膜反射率之模擬 24 3.2軟X光多層膜反射鏡濺鍍系統之建立 28 3.3軟X光多層膜反射鏡的鍍製 33 3.4實驗進行及結果與討論 35 3.4.1控制鍍膜參數來做薄膜厚度之矯正 35 3.4.1.1厚度之量測 36 3.4.2 薄膜試片S.I.M.S 縱深分佈量測 44 3.4.2.1 S.I.M.S基本原理 45 3.4.2.2量測結果 48 3.4.3 薄膜試片低掠角X光反射率量測 50 3.4.3.1低掠角X光反射率量測原理 51 3.4.3.2量測結果 57 3.4.4 薄膜試片AFM表面分析量測 61 3.4.4.1 AFM基本原理 61 3.4.4.2 量測結果 63 3.4.5.同步輻射中心軟X光反射率量測 71 3.4.5.1同步輻射中心光束線簡介 71 3.4.5.2實驗結果與分析討論 73 第四章 結論與未來展望 80 第五章 參考文獻 82rf [1 ] C. W. Gwyn et. al., "Extreme ultraviolet lithography", J. Vac. Sci. Technol. B 16(6), 1998, pp.3142-3149 [2 ] Mandeep Singh and Joseph J. M. Braat, "Design of multilayer EUV mirrors for enhanced reflectivity",Appl. Opt. 39, May 2000 [3 ] K. M. Skulina, C. S. Alford, R. M. Bionta, D. M. Makowiecki,E. M. Gullikson, R. Soufli, J. B. Kortright, and J. H. Underwood,“Molybdenumyberyllium multilayer mirrors for normalincidence in the extreme ultraviolet,” Appl. Opt. 34,3727–3730(1995). [4 ] D. G. Stearns, R. S. Rosen, and S. P. Vernon, “Multilayer mirror technology for soft-x-ray projection lithography,” Appl. Opt. 32, 6952–6960 (1993). [5 ] A. V. Vinogradov and B. Ya. Zeldovich, “X-ray and far UV multilayer mirrors: principles and possibilities,” Appl. Opt.16, 89–93 (1977). [6 ] J. H. Underwood and T. W. Barbee, “Layered synthetic microstructuresas Bragg diffractors for x-rays and extreme ultraviolet: theory and predicted performance,” Appl. Opt. 20,3027–3034 (1981). [7 ] B. Vidal and P. Vincent, “Metallic multilayers for x-rays using classical thin-film theory,” Appl. Opt. 23, 1794–1801 (1984). [8 ]J. F. Meekins, R. G. Cruddace, and H. Gursky, “Optimization of layered synthetic microstructures for narrowband reflectivity at soft x-ray and EUV wavelengths,” Appl. Opt. 25, 2757–2763 (1986) [9 ] C. K. Carniglia and J. H. Apfel, “Maximum reflectance of multilayer dielectric mirrors in the presence of slight absorption,”J. Opt. Soc. Am. 70, 523–534 (1980). [10 ] A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (1996). [11 ]李正中,薄膜光學與鍍膜技術,藝軒出版社,1999 [12 ]郭俊欽,國立清華大學物理系碩士論文,2001 [13 ]許樹恩,吳泰伯,X光繞射原理與材料結構分析,中國材料科學學會,1993 [14 ]B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsortion, scattering, transmission and reflection at E 5 50–30,000 eV, Z 5 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993). [15 ] Schäfers, F. “Multilayers for the EUV/soft X-ray range“Physica B Volume: 283, Issue: 1-3, June, 2000, pp. 119-124 [16 ]D.G Stearms and R.S. Rosen. “Fabrication of high-reflectance Mo-Si multilayer mirrors by planar-magetron sputtering“J.Vac.Sci.Technol.A 9(5),Sep/Oct 1991 [17 ]汪建民,材料分析,中國材料學會,1998 [18 ]L.G.Parratt,“Surface Studies of Solids by Total Reflection of X-Rays “Phys.Rev.,95,3589(1954) [19 ]王文祥,國立清華大學電機系博士論文,1999 [20 ]光束線相關資料來自http://www.srrc.gov.tw/.id NH0925442048 sid 913985 cfn 0 / id NH0925442049 auc 黃仁甫 tic 高深寬比鏡面矽基一維光子晶體之設計與製作 adc 趙煦 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 127 kwc 光子晶體 kwc 電漿耦合離子蝕刻 kwc 半導體製程 kwc 低粗糙度 kwc Fabry-Perot 共振腔 kwc 高深寬比 abc 當兩種不同折射率的介電結構在空間週期性變化,其變化週期和光的波長為同一個數量級。則某些特定波長的光波或電磁波會被排斥,亦即在該頻率電磁波不能存在其間。具備這種光子能隙的性質者,稱為光子晶體。 tc 摘要 Ⅰ 致謝辭 Ⅱ 目錄 Ⅳ 圖目錄 Ⅵ 表目錄 Ⅸ 第一章 序論 1 第二章 基礎理論 4 2.1基本概念 4 2.2光子晶體在光通信中的應用 6 2.3矽基光子晶體 11 2.4元件介紹 12 2.5 模擬方法 14 第三章 實驗規劃以及原理 19 3.1實驗目標 19 3.2使用實驗儀器及設備 20 3.3製程規劃 22 3.4光罩設計 26 3.5黃光微影製程 28 3.6蝕刻製程 35 3.6.1電漿蝕刻機制 37 3.6.2感應耦合電漿離子蝕刻製程40 3.6.3側壁鏡面蝕刻製程 43 3.7 量測系統架設 55 3.7.1自動化量測系統 59 3.7.2量測試片處理 63 3.7.3光纖對準 66 第四章 實驗結果與討論 74 4.1 製程分析與討論 74 4.1.1元件分析 74 4.1.2蝕刻寬度縮減與蝕刻深寬比83 4.1.3表面粗糙度 99 4.1.4蝕刻均勻度 102 4.2 量測結果與討論 107 4.2.1光纖透鏡量測 107 4.1.2單模光纖量測 111 4.3影響效率因素討論 116 第五章 結論與未來展望 121 5-1 結論 121 5-2未來展望 122 第六章 參考文獻 124 附錄A 126rf 【1】 J. D. Joannopoulos, R. D. Meade, and R. D. Winn,“Photonic Crystals “Princeton Univ. Press, Princeton,(1995) 【2】 M. G. Berger, M. Thonissen, R. Arens-Fisher, et al., “Thin Solid Films” 255, 313 (1995). 【3】 D. L. Kendall, “Vertical etching of silicon at very high aspect ratios” , Ann. Rev. Mater. Sci. 9, 373–403(1979) 【4】 J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G.Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I.Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides”,Nature 390, 143–513 (1997) 【5】 V. A. Tolmachev, L. S. Granitsyna, E. N. Vlasova, B. Z.Volchek, A. V. Nashchekin, A. D. Remenyuk, and E. V. Astrova,“One-dimensional photonic crystal obtained by verticalanisotropic etching of silicon” ,Semiconductors 36, 996–1000 (2002) 【6】 Lu Chen,Y. Suzuki, Glenn E. Kohnke” Integrated platform for silicon photonic crystal devices at near-infrared Wavelengths”, Applied Physics Letters,80,No.9(2002) 【7】 V. Tolmachev, T. Perova, E. Astrova, B. Volchek, and J. K. Vij,“Vertically etched silicon as 1D photonic crystal” ,Phys. Status Solidi A 197, 544–548 (2003) 【8】 E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol. 58, pp. 2059–2062,(1987) 【9】 S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., vol. 58, pp. 2486–2489, (1987) 【10】E. Chow, S. Y. Lin, S. G. Johnson, P. R. Cilleneuve, J. D. Joannapoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman,” Three-dimensional control of light in a two-dimensional photonic crystal slab “Nature, 407, 983 (2000). 【11】M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and Fabrication of Silicon Photonic Crystal Optical Waveguides”J. Lightwave Tech. 18, 1402 (2000). 【12】Martina Gerken and David A. B. Miller,“Multilayer thin-film structures with high spatial Dispersion” Applied Optics ,42, (2003) 【13】劉鍇銘,”利用FDTD法針對一維光子晶體超稜鏡現象在分光元件模擬與分析”清華大學電機所,碩士論文(2004) 【14】 O. J. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. Obrien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser” Science, 284, 1819, (1999). 【15】Thomas F. Krauss,” Photonic Crystals For Integrated Optics” 【16】李正中 “波膜光學與鍍膜技術” 藝軒出版社(1999) 【17】龍文安,“積體電路微影製程”,高立出版社,(1998) 【18】陳力俊,”微電子材料與製程”,中國材料科學學會,(2000) 【19】張俊彥等,”積體電路製程及設備技術手冊”,經濟部技術處,(1997) 【20】莊達仁,”VLSI 製造技術”,高立出版社,(2000) 【21】李明逵,”矽元件與積體電路製程”,全華出版社,(2002) 【22】林郁欣、徐永裕等,“微機電系統技術與應用”,pp. 210-225,國科會精密儀器發展中心出版(2003) 【23】La¨rmer F; Schilp A “Method of anisotropically etching silicon. “German Patent DE4241045 (1996) 【24】H.-C. Liu, Y.-H. Lin, W. Hsu” Sidewall roughness control in advanced silicon etch process” Microsystem Technologies,10,29–34,(2003) 【25】簡清雲,”光通訊自動化量測系統”電子技術月刊,205,電子技術雜誌社出版(2003) 【26】Hiroshi Murata “Handbook of Optical Fibers and Cable,Second Eidtion”pp.18 【27】Hiroshi Nishihara,Masamiysu Haruna,Toshiaki Suhara,”Optical Integrated Circuits”,pp.239id NH0925442049 sid 913990 cfn 0 / id NH0925442050 auc 施耀輝 tic 脊狀波導分光器之研究與改良 adc 王立康 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 67 kwc 光波導 kwc 等效折射率法 kwc 脊狀波導 abc 此論文主要是探討在大尺寸能維持單模態(single mode)的光波導型態下,所設計的一分二之分光器。以往而言,針對Y型分光器來說,通道式波導(channel waveguide),為了讓光傳播時的耗損減小使得分光效率增加,便會將導光層(guided layer)的折射率(refractive index)加大,可是如此需要以更小的尺寸才能達到單模態。而另一方面為了讓光纖連接光波導時,使其光耦合耗損(coupling loss)降低,所以便欲將光波導的尺寸大小與光纖符合,可是當尺寸與光纖符合便會導致高模態的產生,為了解決這個問題,所以便想用脊狀式波導(rib waveguide)來達成在折射率差大或波導尺寸大時,亦能維持單模態。 rf 參考文獻 [1 ] Richard A. Soref,Joachim Schmidtchen,and Klaus Petermann "Large Single-Mode Rib Waveguide in GeSi-Si and Si-on-SiO ",in IEEE Journal of Quantum Electronics,Vol. 27,NO.27,August 1991,pp:1971 - 1974. [2 ] Lucas B. Soldano,and Erik. C. M. Pennings ”Optical Multi-Mode Interference Devices based on Self-Imaging:Principles and Applications”,Journal of Lightwave Technology,Vol.13,NO 4,April 1995. [3 ] O.Bryngdahl,"Image formation using self-imageing technique",J.Opt.Soc.Amer.,vol.63,no.4,1973,pp.416-419. [4 ] Kawano, Kenji,"Introduction to optical waveguide analysis :solving maxwell's equations and the schroinger equation",New York,Wiley-Interscience,2001. [5 ] Robson, P. N. & Kendall, P. C. eds.,"Rib waveguide theory by the spectral index method",Taunton Research Studies Press,1990. [6 ] N. S. Kapany and J. J. Burke.,"Optical waveguides",New York,Academic Press,1972. [7 ] Way-Seen Wang,"Integrated Optics",Lecture note. [8 ] ORichard Syms, John Cozens,"Optical Guided Waves and Devices,McGraw-Hill Companies,September 1,1992. [9 ] C. M. Weinert and N. Agrawai,"Three-dimensional simulation of multimode interference devices",in Proc. Integr. Phot. Res. (IPRC),San Francisco,Feb. 1994,pp.287-289. [10 ] L. B. Soldano,F. B. Veerman ,M. K. Smit,B. H. Verbeek,A.H. Dubost,and E. C. M. Pennings,"Planar monomode optical couplers based on multi-mode interference",J. Lightwave Technol. Vol.10,no12.,1922,pp.1843-1850. [11 ] R. M. Jenkins,R. W. J. Deveraux,and J. M. Heaton,"Waveguide beam splitters and recombiners based on multimode propagation phenomena",Opt. Lett,vol.17,no. 14,1992,pp.991-993. [12 ] Tsang Hon Ki,Optical Integrated Circuits,Lecture Notes. [13 ] Hiroshi Nishihara, Masamitsu Haruna, Toshiaka Suhara"Optical Integrated Circuits",McGraw-Hill Professiona,January 1,1989. [14 ] BeamProp Manual,RSoft,Inc. and Columbia University. [15 ] Hongzhen Wei,Jinzhong Yu, Zhongli Liu, Xiaofeng Zhang, Wei Shi,Changshui Fang,"Fabrication of 4×4 tapered MMI coupler with large cross section",Photonics Technology Letters, IEEE , Volume: 13 , Issue: 5 , May 2001,pp:466–468. [16 ] Chan, H.P.; Cheng, S.Y.; Chung, P.S.,"Low loss wide-angle symmetric Y-branch waveguide",Electronics Letters , Volume: 32 , Issue: 7 , 28 March 1996 ,pp:652–654. [17 ] 黃伯欽,電漿輔助化學氣相沈積二氧化矽之1x4分光器製作與設計,國立清華大學/電機工程學系/92. [18 ] 吳彥鋒,以摻雜磷之 SiO2 製作光波導及其模擬分析,國立清華大學/電機工程學系/91. [19 ] 林義彬,多模干涉功率分光器之研究,國立臺灣大學/電機工程學系研究所/90.id NH0925442050 sid 913994 cfn 0 / id NH0925442051 auc 汪子凱 tic 全向反射鏡之膜厚為四分之一波長與非四分之一波長之分析比較 adc 趙煦 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 62 kwc 全向反射鏡 kwc 四分之一波長 kwc 光子晶體 abc 本文利用數值模擬的方法來比較全向反射鏡(omnidirectional reflector)之膜厚為四分之一波長(quarter wave thickness)與非四分之一波長(non-quarter wave thickness)的不同,利用簡單的圖示法清楚的表現出材料厚度與全向反射鏡各種特性的關係。在可見光範圍部分所採用的高低折射係數材料分別為二氧化鈦(TiO2)與二氧化矽(SiO2),而在紅外光範圍則為矽(Si)與二氧化矽(SiO2),且在不考慮吸收係數的情況下,將折射係數分成定值與隨波長改變兩種情形來討論。結果發現當折射係數為定值時,隨著中心波長的增加,可用的厚度組合越廣,全向反射頻寬越大,全向反射頻寬最大值約在等中心波長線的中央點,而將各中心波長的全向反射頻寬最大值連接之後,幾乎可視為一條通過原點的直線。而當折射係數隨波長改變時,若是折射係數比(index ratio)隨波長增加而下降的比例夠大時,會造成波長越大,可用的全向反射頻寬越小,全向反射頻寬最大值與膜厚為四分之一波長的位置隨著波長增加而越差越遠。但若是折射係數比隨波長增加而下降的比例不夠大時,則顯現出來的特性會和折射係數為定值時相似。但是不論折射係數是否會隨波長改變,利用四分之一波長厚度所得到的全向反射頻寬並不會是最大值。 tc 中 文 摘 要 I 誌 謝 II 目 錄 IV 圖 目 錄 VII 表 目 錄 X 第一章 緒 論 1 第二章 基 礎 理 論 3 2.1 簡介光子晶體 3 2.2 重要文獻回顧 5 2.3 全向反射鏡之模擬計算方法 8 第三章 數值分析與特殊的圖示法 12 3.1 全向反射頻寬與中心波長 12 3.2 等中心波長線與其所對應之全向反射頻寬分佈圖 14 3.3 等頻寬線、最大頻寬線與四分之一波長線 17 第四章 結 果 與 討 論 19 4.1 可見光範圍 20 4.1.1 Constant refractive index 21 4.1.1.1 等中心波長線 22 4.1.1.2 全向反射頻寬分佈圖 23 4.1.1.3 等頻寬線與最大頻寬線 24 4.1.1.4 最大頻寬線與四分之一波長線的比較 26 4.1.1.5 與Y. Fink等人的方法比較 27 4.1.2 Dispersive refractive index 28 4.1.2.1 等中心波長線 30 4.1.2.2 全向反射頻寬分佈圖 31 4.1.2.3 等頻寬線與最大頻寬線 32 4.1.2.4 最大頻寬線與四分之一波長線的比較 33 4.1.2.5 與Y. Fink等人的方法比較 34 4.1.3 Dispersive refractive index(另一種TiO2的折射係數) 35 4.1.3.1 等中心波長線 37 4.1.3.2 全向反射頻寬分佈圖 38 4.1.3.3 等頻寬線與最大頻寬線 39 4.1.3.4 最大頻寬線與四分之一波長線的比較 40 4.1.3.5 與Y. Fink等人的方法比較 41 4.2可見光範圍結果之討論 42 4.3 紅外光範圍 44 4.3.1 Constant refractive index 45 4.3.1.1 等中心波長線 46 4.3.1.2 全向反射頻寬分佈圖 47 4.3.1.3 等頻寬線與最大頻寬線 48 4.3.1.4 最大頻寬線與四分之一波長線的比較 49 4.3.1.5 與Y. Fink等人的方法比較 50 4.3.2 Dispersive refractive index 51 4.3.2.1 等中心波長線 53 4.3.2.2 全向反射頻寬分佈圖 54 4.3.2.3 等頻寬線與最大頻寬線 55 4.3.2.4 最大頻寬線與四分之一波長線的比較 56 4.3.2.5 與Y. Fink等人的方法比較 57 4.4 紅外光範圍結果之討論 58 第五章 結 論 59 參 考 文 獻 61rf [1 ] Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, Science 282, 1679 (1998). [2 ] J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, Opt. Lett. 23, 1573 (1998). [3 ] K. M. Chen, A. W. Sparks, H. C. Luan, D. R. Lim, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 3805 (1999). [4 ] H. Y. Lee and T. Yao, J. Appl. Phys. 93, 819 (2003). [5 ] D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, Appl. Phys. A: Mater. Sci. Process. 68, 25 (1999). [6 ] M. Deopura, C. K. Ullal, B. Temelkuran, and Y. Fink, Opt. Lett. 26, 1197 (2001). [7 ] B. Gallas, S. Fisson, E. Charron, A. B. Bruneau, R. Vuye, and J. Rivory, Appl. Opt. 40, 5056 (2001) [8 ] 蔡雅芝, “淺談光子晶體” 物理雙月刊二十一卷四期 (1998). [9 ] E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987). [10 ] S. John, Phys. Rev. Lett. 58, 2468 (1987). [11 ] 陳逸中, 國立清華大學碩士論文 (2003) [12 ] T. Gessmann, E. F. Schubert, J. W. Graff, K. Streubel, C. Karnutsch, IEEE Electron device letters, 24, 683 (2003). [13 ] J. K. Kim, T. Gessmann, H. Luo, E. Fred Schubert, Appl. Phys. Lett., 84, 4508 (2004). [14 ] P. Yeh, A. Yariv, and C. S. Hong, J. Opt. Soc. Am., 67, 423 (1977). [15 ] E. Hecht, Optics, 4th ed. (Addison-Wesley, San Francisco, 2002), pp. 426-428. [16 ] Thin-Film Coating Design Software, The Essential Macleod, version 8.1e (2000) [17 ] E. D. Palik, Handbook of Optical Constants of Solids, Academic Press, Inc.(1985) [18 ] 李正中, Institute of Optical Sciences, National Central University, private communication (2003).id NH0925442051 sid 913995 cfn 0 / id NH0925442052 auc 劉鎧銘 tic 利用有限時域差分法針對一維光子晶體超稜鏡效應在多工分波元件模擬量測方法之建立與分析 adc 趙煦 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 75 kwc 光子晶體 kwc 超稜鏡效應 kwc 多工分波器 kwc 有限時域差分法 abc 本篇論文旨在介紹利用FDTD方法針對一維光子晶體superprism effect作模擬及分析,期望可以利用FDTD法搭配我們現有的軟體及數學方法,一方面模擬不同波長的入射光在結構中傳遞,場形隨時間變化的情形,一方面設計一套方法可實際求出superprism effect中的spatial shift,探討不同結構所產生的結果,並和利用無限層理論以及有限層理論計算的結果作比較。 tc 目錄 摘要 I 誌謝辭 III 目錄 IV 圖表目錄 VI 第一章 序論 1 1.1 簡介 1 1.2 一維光子晶體SUPERPRISM EFFECT 2 1.3 介紹製作DWDM元件的技術與原理 3 第二章 一維光子晶體SUPERPRISM EFFECT的理論分析 5 2.1 SPATIAL SHIFT 公式推導 5 2.1.1無限層結構-Bloch theory 6 2.1.2有限層結構-傳輸矩陣法 11 2.2 有限層結構與無限層結構的比較 16 2.2.1 Bloch theory 和傳輸矩陣法的計算結果 16 2.2.2 Bloch theory 和傳輸矩陣法的比較 18 2.3 有限結構與平面波計算的影響-RIPPLES的產生 20 2.4 有限BEAM SIZE的討論 21 2.4.1 有限beam size的模擬 21 2.4.2 平面波計算與beam simulation的不同 22 2.5 增進SUPERPRISM EFFECT的方法 23 第三章 時域有限差分法 24 3.1 FDTD METHOD的原理介紹 24 3.1.1 起源 24 3.1.2 數學架構 25 3.1.3 邊界條件和穩定解 30 3.2 優點與缺點 38 第四章 利用FDTD法量測SPATIAL SHIFT 39 4.1 動機與目的 39 4.2 利用FDTD法計算SUPERPRISM EFFECT 的SPATIAL SHIFT 40 4.2.1 模擬量測方法的建立 40 4.2.2 利用模擬量測系統測量spatial shift的步驟 42 4.3 實際模擬量測結果 43 4.3.1週期性結構 43 4.3.1.1結構與場形分佈 43 4.3.1.2 利用FDTD法求得spatial shift 48 4.3.1.3 大beam size的例子 50 4.3.2 最佳化結構 53 4.3.2.1結構設計原理與場形分佈 54 4.3.2.2 利用FDTD法求得spatial shift 60 第五章 結論 62 <參考文獻> 64 附錄---沉膜速率的穩定 67 介紹鍍膜系統 67 實驗步驟 70 結果分析 73 圖表目錄 圖 1.1 傳統稜鏡和superprism effect分光效果的比較 2 圖 1.2 光纖分光色散效應 4 圖 2.1 superprism effect 5 圖 2.2 一維光子晶體超稜鏡效應理論架構圖 6 圖 2.3 無限層週期性結構示意圖 6 圖 2.4 在光子晶體中 K 和 ω(λ)的關係圖 10 圖 2.5 Transform matrix method 12 圖 2.6 spatial shift calculated by Bloch Th for s-pol 16 圖 2.7 spatial shift calculated by Transform matrix for s-pol 17 圖 2.8 有限層結構與無限層結構結果的比較 18 表 2.1 difference between Bloch Th and Transform matrix method 19 圖 3.1 Yee cell 中電磁場的配置 25 圖 3.2 電磁場的時間配置 26 圖 3.3 TM-cell電磁場的配置 30 圖 3.4 s-pol波傳遞電磁場的方向 32 圖 3.5 PML absorption boundary condition 35 圖 3.6 FDTD compute process 37 圖 4.1 layout and time monitor of FullWAVE v3.1.1 41 表 4.1 模擬量測方法的步驟 42 圖 4.2 periodic structure layout 44 圖 4.3 Reflectance vs wavelength for s-pol bragg stack 45 圖 4.4-b 46 圖 4.4-a 46 圖 4.4-c 47 圖 4.4-d 47 圖 4.5 position of beam at 1010nm 49 圖 4.6 spatial shift with wavelength compared with 49 圖 4.7 不同角度入射平面波spatial shift對波長的關係 50 圖 4.8-a 51 圖 4.8-b 51 圖 4.8-c 52 圖 4.8-d 52 圖 4.9 利用高斯函數擬合光束位置的結果 53 圖 4.10 physical thickness of optimize stack 54 圖 4.11 Reflectance vs wavelength of optimized structure 55 圖 4.12 66 layers optimized structure 55 圖 4-13-a λ=815nm 56 圖 4-13-b λ=820nm 56 圖 4-13-c λ=825nm 57 圖 4-13-d λ=830nm 57 圖 4-13-e λ=835nm 58 圖 4-13-f λ=840nm 58 圖 4-14 λ=840nm 利用高斯函數擬合高斯光束中心位置的結果 60 圖 4.15 傳輸矩陣法和FDTD法的結果比較 60 圖 A-1 離子束鍍製光學薄膜的實驗裝置結構 69 圖 1.1 真空腔的外觀 69 圖 1.2 機械pump和Cryo pump 69 附表一、鍍膜速率確定與穩定 73rf [1 ].E. Yablonovitch, Phys. Rev. Lett., Vol.58,p2059 (1987). [2 ].S. John, Phys. Rev. Lett., Vol.58,p2468 (1987). [3 ].蔡雅芝,”淺談光子晶體” 物理雙月刊二十一卷四期,1998 [4 ].Pochi Yeh, Amnon Yariv, et al., J. Opt. Soc. Am., Vol.67,p423 (1977). [5 ].Martina Gerken 2003, “wavelength multiplexing by spatial beam shifting in multilayer structures” Sdanford university for the degree of doctor of philosophy [6 ].Martina Gerken、David A.B Miller,”Multilayer thin film structures with high spatial dispersion”,Applied Optics,Vol 42,p1330~p1345,2003 [7 ]. Bianca E. Nelson, Martina Gerken, David A. B. Miller, and Rafael Piestun Chien-Chung Lin and James S. Harris, Jr. ,” Use of a dielectric stack as a one-dimensional photonic crystal for wavelength demultiplexing by beam shifting” OPTICS LETTERS, Vol. 25,2000 [8 ]. Martina Gerken, Student Member, IEEE, and David A. B. Miller, Fellow, IEEE,” Wavelength Demultiplexer Using the Spatial Dispersion of Multilayer Thin-Film Structures”, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 15, 2003 [9 ]. Allen Taflove, ”Computational Electrodynamics :The finite Difference Time Domain Method”p35~90,p181~187,Norwood,MA:Artech House,1995 [10 ].宇野亨著林振華編譯,”電磁場與天線分析” 全華科技圖書(1999) [11 ].Rsoft,“BeamPROP™/FullWAVE™Training Seminar” [12 ].Rsoft,” BeamPROP™/FullWAVE™ Menu”2002 [13 ].J-P Berenger,J.Comput.Phys,pp186,pp190~191,1994 [14 ].李正中,”薄膜光學與鍍膜技術” 藝軒出版社,1999 [15 ].H.A. Macleod, “Thin-Film Optical Filters.2nd ed [16 ].王文祥,清華大學博士論文,1999 [17 ].陳逸中,清華大學碩士論文,2003 [18 ].李浩群,清華大學碩士論文,2004 [19 ] Hideo Kosaka, Takayuki Kawashima, Akihisa Tomita, Masaya Notomi,Toshiaki Tamamura, Takashi Sato, and Shojiro Kawakami,” Superprism Phenomena in Photonic Crystals: Toward Microscale Lightwave Circuits” JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 17, NO. 11, NOVEMBER 1999 [20 ]K.S.Yee,”Numerical Solution of Initial Boundary Value Problems Involving Maxwell Equations in Isotropic Media,”IEEE Trans. Antennas Prpagat., 14, 4, pp.302-307,1966 [21 ] 張育誠,”寬頻通訊網路—DWDM技術”摘自http://www.ncku.edu.tw/TANET2000/download/id NH0925442052 sid 913996 cfn 0 / id NH0925442053 auc 許緒寬 tic 脊狀結構之波導元件的模擬與製作 adc 王立康 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 66 kwc 光波導 kwc 脊狀波導 kwc 脊狀光波導 kwc 摻磷 kwc 模擬與製程 abc 本論文主要在探討脊狀結構的光波導(rib waveguide),先從模擬分析其特性,選擇最佳的情況參數,然後利用半導體製程技術來實作,最後量測分析。 rf 參考文獻 [1 ] Soref, R.A.; Schmidtchen, J.; Petermann, K., “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” Quantum Electronics, IEEE Journal of , Volume: 27 , Issue: 8 , Aug. 1991 ,Pages:1971 - 1974 [2 ] Dagli, N.; Fonstad, C.,“Analysis of rib dielectric waveguides,” IEEE Journal of Quantum Electronics, Vol. 21, No. 4, 1985 [3 ] Hiroshi Nishihara, Masamitsu Haruna, Toshiaki Suhara, “optical integrated circuits,” McGraw-Hill international editions 2001 [4 ] Richard Syms, John Cozens, “optical guided waves and devices,” McGraw-Hill international editions 1993 [5 ] Kenji Kawano and Tsutomu Kitoh, ”introduction to optical waveguide analysis,” [6 ] 歐英列,“摻磷之SiO2對UV曝光後折射率變化之研究,”碩士論文(2001), 國立清華大學, 指導老師 王立康教授 [7 ] 吳彥鋒,“以摻雜磷之SiO2製作光波導及其模擬分析,”碩士論文(2002), 國立清華大學, 指導老師 王立康教授 [8 ] 黃柏欽,“多模干涉波導4X4 MMI設計與製程,”碩士論文(2004), 國立清華大學, 指導老師 王立康教授 [9 ] BeamPROP, Rsoft, Inc. and Columbia University, Rsoft, Inc. Research software [10 ] P. Swell, T. M. Benson, and P. C. Kendall, “Rib waveguide spot-size transformers: modal properties,” Lightwave Technology, Journal of Volume: 17 , Issue: 5 , May 1999, Pages:848 - 856 [11 ] Ladele, E.O.; Rahman, B.M.A.; Wongcharoen, T.; Obayya, S.S.A.; Grattan, K.T.V., “Design optimization of monolithically integrated semiconductor spot-size converters for efficient laser-fiber coupling,” Electron Devices for Microwave and Optoelectronic Applications, 2001 International Symposium on , 15-16 Nov. 2001, Pages:301 - 306 [12 ] Peter Van Zant著, 姜庭隆譯, ”半導體製程--第四版,” 滄海出版 [13 ] B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D. C. Johnson, and K. O. Hill, “Photosensitivity In Phosphorus-doped silica glass and optical waveguides,” Appl. Phys. Lett. 65 (4), 25 July 1994 [14 ] Saleh Teich, ”fundamental of Photonics,” WILEY, 1991 [15 ] 董德國與陳萬清譯, ”光纖通訊,”東華出版社, 2000 [16 ] G. Grand, J.P. Jadot, H. Denis, S. Valette, A. Fourier and A.M.Grouillet, “Low-loss PECVD silica channel waveguides for optical communications,” Electronics Letters, Vol. 26, No.25 , 6 December 1990, pp 2135-2137id NH0925442053 sid 913997 cfn 0 / id NH0925442054 auc 王志中 tic 高增益低雜訊的寬頻 tic & tic #25530;鉺光纖放大器之研究 adc 王立康 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 68 kwc & kwc #25530;鉺光纖放大器 kwc 高增益 kwc 低雜訊 abc 在寬頻(1530nm~1560nm、1570nm~1610nm)的掺鉺光纖放大器設計上,Conventional band(1530nm~1560nm以下簡稱C band)部份我們是利用兩級串接的方式,以第一級當做前置放大器除了有增益放大的效果之外,並且能有效地壓制住雜訊指數的產生。而第二級則繼續提供功率放大的功能,且因為一、二級在相同的EDF長度和pump power情況下,第二級放大器也同樣的具有第一級的低雜訊特性,因此對於前置放大器的雜訊抑制不會有太大的影響,使得我們C band架構和傳統的單一級比較起來具有更高的增益且一樣具有低雜訊的效果。 rf 參考文獻 [1 ] H.B.Choi,B.S.KIM AND D.Lee,S.B.Lee,S.J.Ahn,“High power gain-clamped EDFAs with flat gain”2000 Optical Society of America, OCIS codes: fiber-optica amplifiers and oscillators ; fiber, erbium.PP.28-1~28-3. [2 ] Yan Sun,Atul k , Srivastava , Jianhui Zhou , and James W .Sulhoff,“ Optical Fiber Amplifiers for WDM Optical”pp.187~206, Bell Labs technical journal,PP.187~206,January-march 1999. [3 ] M. A. Mahdi and H. Ahmad,”Gain Enhanced L-Band Er3+-Doped Fiber Amplifier Utilizing Unwanted Backward ASE”,IEEE PHOTONICS TECHNOLOGY LETTERS,VOL. 13,PP.1067~1069,NO. 10,October 2001. [4 ] Faisal Rafiq M Adikan, Mohd Adzir Mahdi,Kaharudin Dimyati,Harith Ahmad,”A Study of Gain and Noise Figure Performance of an L-Band Erbium Doped Fiber Amplifier(EDFA)with 980nm and Amplified Spontaneous Emission(ASE)Pumps”,Telekom Malaysia Photonics Research Centre Department of Physics Univesity of Malaya,PP.417~420,2000. [5 ] Bumki Min ,Hosung Yoon Won ,Jae lee ,Namkyoo park”Coupled structure for Wide-band EDFA with gain and noise figure improvement from C to L-bnad ASE injection “ IEEE PHOTONICS TECHNOLOGY ,VOL.12,PP.480~482,NO.5,MAY 2000. [6 ] Jung Mi Oh,Hyun Beom Choi ,Donghan Lee,Seong Joon Ahn,Soo Jin Jung,and Sang Bae Lee, “Demonstration of Highly Efficient Flat-Gain L-Band Erbium-Doped Fiber Amplifiers by Incorporating a Fiber Bragg Grating”,IEEE PHOTONICS TECHNOLOGY LETTERS,VOL.14,PP.~642~643,NO.9,SEPTEMBER 2002. [7 ] 洪繼宇,“長波長摻鉺光纖放大器功率改善之研究” 碩士論文 國立清華大學 [8 ] M.A.*,H.Ahmad “ Low-noise and high-gain L-band EDFA utilizing a novel self-generatedsignal-seeding technique“optical communications, August 2001 , PP.241~248. [9 ] David B. Mortimore,”Fiber Loop Reflectors”,JOURNAL OF LIGHTWAVE TECHNOLOGY,vol. 6,PP.1217~1224,NO. 7,July 1988. [10 ] S.W.Harun, P.Poopalan, and H.Ahmad ,“Gain Enhancement in L-Band EDFA Through a Double-Pass Technique”, IEEE PHOTONICS TECHNOLOGY LETTERS,vol.14,PP.501~503,NO.3,MARCH 2001. [11 ] Beelloni bonzid ,mohd ahi,”a high gain EDFA design using double pass amplification with a double pass filter”,IEEE PHOTONICS TECHNIQUE LETTER,PP.1055~1057,MAY 5 ,2003. [12 ] S.W.Harun.N.Tamchek,p.poopalan,and H.Ahamad,”Double pass L band EDFA with enhanced noise figure characteristics” IEEE PHOTONICS TECHNIQUE LETTER VOL 15,PP.1~3,NO.8 AUGUET.2003. [13 ] Hongyun Meng,Yange Liu,Weiqing Gao,Hao Zhang,Shuzhong Yuan and Xiaoyi Dong,”Reflection L-band Erbium-Doped Fiber Amplifier Based on a Fiber Loop Mirror”,MICROWAVE AND OPTICAL TECHNOLOGY LETTERS,vol. 36,PP.31~33,NO.6,March 2003. [14 ] 李嘉航 ”增益鉗制及增益平坦化之長波長掺鉺光纖放大器之研究”碩士論文 (2003) ,國立清華大學. [15 ] Seongtaek Hwang,Kwan-Woong Song,Hyung-Jin Kwon,Junho Koh,Yun-Je Oh and Kyuman Cho,”Broad-Band Erbium-Doped Fiber Amplifier With Double-Pass Configuration”, IEEE PHOTONICS TECHNOLOGY LETTERS,vol.13,PP.1289~1291,NO.12,December 2001. [16 ] M.A.Mahdi,F.R.mahamd Adikan,P .Poopalan,S.Selvakennedy and H .Ahmad“A novel design for broadband Fiber Amplifier“ department of physics university of Malaya,PP.410~413,2000. [17 ] Seongtaek Hwang,Kwan-Woong Song,Ki-Uk Song,Se-Hong Park,J.Nilsson and Kyuman Cho,”Comparative high power conversion efficiency of C-plus L-band EDFA”, ELECTRONICS LETTERS,vol.37,PP.1539~1541,NO.25,December 2001. [18 ] Seongtaek Hwang,Sungtae kim, sangho kim Yunje Oh,”A Novel wide-Band EDFA With Flat Gain“ CTH035,PP.528~529,THURSDAY,2002. [19 ] Y.Sun,J.W.Sulhoff,A.K. Srivastava,J.L.Zyskind,T.A.Strasser,.R.Pedrazzani,C.Wolf,J.Zhou,J.B.Judkins,R..Espindola and A.M.Vengsarkar,”80nm ultra-wideband erbium-doped silica fibre amplifier”,ELECTRONICS LETTERS,vol.33,NO.23,November 1997. [20 ] Hirotaka Ono,Makoto Yamada et.al,”1.58-?慆 Band Gain-Flattened Erbium-Doped Fiber Amplifiers for WDM Transmission Systems”,JOURNAL OF LIGHTWAVE TECHNOLOGY,vol.17,PP.1099~1100,NO.3,March 1999. [21 ] H.S.Chung,M.S.Lee,N.Park and D.J.DiGiovanni,”Low noise,high efficiency L-band EDFA with 980nm pumping”,ELECTRONICS LETTERS,vol.35,PP.490~496,NO.13,June 1999. [22 ] Y.Sun,J.L.Zyskind,A.K.Srivastava,”Average Inversion Level,Modeling and Physics of Erbium-Doped Fiber Amplifiers”,IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS,vol.3,PP.991~1007,NO.4,August 1997. [23 ] Max Ming-Kang Liu,PRINCIPLES AND APPLICATIONS OF OPTICAL COMMUNICATIONS,IRWIN,1996. [24 ] Michel JF. Digonnet ,Rare-Earth-Doped-Fiber-Lasers and Amplifiers , MARCEL DEKKER,2001,second edition revised and expanded . [25 ] P.C.Becker,N.A.Olsson,J.R.Simpson,Erbium-Doped Fiber Amplifiers:Fundamentals and Technology,ACADEMIC,1997. [26 ] Makoto Yamada,Makoto Shimizu,Masanobu Okayasu,TatsuyaTakeshita,Masaharu Horiguchi,Yoshiaki Tachikawa and Etsuji Sugita,”Noise Characteristics of Erbium Doped Fiber Amplifiers Pumped by 0.98 and 1.48?慆 Laser Diodes”,IEEE PHOTONICS TECHNOLOGY LETTERS,vol.2,PP.33~36,NO.3,March 1990.id NH0925442054 sid 913999 cfn 0 / id NH0925442055 auc 楊又先 tic 在鍺離子佈植之非線性光學平面波導與通道波導上實現準相位匹配二次諧波產生 adc 趙煦 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 98 kwc 鍺離子佈植 kwc 平面波導 kwc 通道波導 kwc 準相位匹配 kwc 二次諧波產生 abc 本論文的研究方向主要是以融熔石英為基板,把鍺離子佈植到試片表面,由專門分析離子佈植的模擬軟體(SRIM)模擬實際佈植情況的結果,選擇鋁金屬薄膜當作遮罩並用金屬反應式離子蝕刻系統(Metal RIE system)蝕刻鋁膜,在試片表面上製作出平均寬度約為8um的通道波導遮罩結構,再把高能量(5MeV)的鍺離子束入射到試片表面,成功的在試片表面製作出鍺離子佈植通道波導。 tc CHAPTER 1 導論 1 1.1簡介 1 1.2非線性光學理論概述 2 1.3 二次諧波產生 4 1.4相位匹配(PM)與準相位匹配(QPM) 5 1.5波導中的準相位匹配與調制週期預估修正 8 1.6各種波導製成方式與摻鍺非線性探討相關論文回顧 10 1.7 本篇論文架構 11 CHAPTER 2離子佈植原理簡述 13 2.1離子佈植加速器之基本原理簡述 13 2.2離子佈植後通道波導模擬 17 CHAPTER 3 離子佈植後平面波導分析與QPM-SHG測試結果 19 3.1離子佈植後波導模擬分析 19 3.1.1 使用模擬軟體做平面波導模擬分析與週期預估 19 3.2 鍺離子佈植後平面波導之非線性特性探討與QPM SHG 測試結果與討論 28 3.2.1 佈植後平面波導非線性特性探討 28 3.2.2 QPM SHG光路架設與結果 30 CHAPTER 4 通道波導製作 37 4.1 通道波導結構製作 37 4.2實驗內容 39 4.2.1試片準備 39 4.2.2鋁膜蒸鍍 39 4.2.3黃光製程 41 4.2.4 RIE金屬反應離子蝕刻 43 4.2.5試片清潔 49 4.2.6熱極化誘導(Thermal poling) 50 4.2.7 Maker Fringe原理與量測 51 4.2.8鋁光罩製作 52 4.2.9 UV紫外光抹除 55 4.2.10 拋光磨邊 56 4.3 元件製作結果與討論 56 CHAPTER 5倍頻元件週期預估、測試與結果討論 57 5.1 QPM 週期設計分析 57 5.1.1通道波導的倍頻轉換週期預估 57 5.1.2 相位匹配之範圍預估 59 5.1.3 RIE製程後通道波導模擬分析 62 5.2 QPM SHG光路評估與架設 66 5.3 QPM SHG量測結果 71 5.3.1 二次非線性量測結果呈現 71 5.4 結果討論 77 5.5 轉換效率與非線性係數計算 80 APPENDIX A佈植前後機制探討 86 APPENDIX B離子佈植操作流程 90 APPENDIX C RIE操作步驟 92rf [1 ] R. A. Myers , N. Mukherjee , “Large second-order nonlinearity in poled fused silica” Optics letters ,Vol. 16, No. 22,November 15, 1991. [2 ] Huai-Yi Chen, Jin- Sheng Sue , ”Quasi-phase-matched second - harmonic generation in ultraviolet-assisted periodically poled planar fused silica” Optics Letters Vol.28 No. 11, p917(2003) [3 ] 林群翎 ” 鍺離子佈植之非線性光壆平面波導之製作處理及凖相位匹配二次諧波產生之應用”清華大學碩士論文(2003) [4 ] Wei Xu, Paul Blazkiewicz ,“Silica Fiber Poling Technology” . Adv.Mater.,No12-13(2001). [5 ] Xue-Ming LIU , Ming-De ZHANG “Theoretical study for thermal electric field poling of Fused Silica” J.Appl.Phys.Vol.40(2001),p4069. [6 ] George I. Stegeman , Roger H. Stolen” Waveguides and fibers for nonlinear optics” J. Opt. Soc. Am. B/Vol. 6, No. 4/April 1989. [7 ] Martin M. Fejer , G. A. Magel “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances” IEEE Journal of quantum electronics , Vol .28 , No .11 , p2631(1992). [8 ] M. Houe and P. D. Townsend “ An introduction to methods of periodic poling for second-harmonic generation ” , Appl. Phys. 28 (1995) , 1747-1763. [9 ] Overlap. [10 ] P.W.Leech , M.F.Faith, “channel waveguide fromed by ion implantation of PECVD grown silica” IEE Proc.Optoelectron. Vol.144,No.2,April 1997. [11 ] optical review vol.3 No 3.1996. [12 ] 江振煜 ”利用溶膠凝膠法在熔融石英玻璃基板上製作摻鍺的光學波導” 清華大學碩士論文(2004). [13 ] 葉彥鈞 “在具有質子交換波導之第一階週期性鐵電域反轉的鉭酸鲤晶體上以準向位匹配原理產生二次諧波藍光” 清華大學碩士論文(2000) [14 ] C.M.Johnson,M.C.Ridgway ”Ion-implanted Waveguide Formation in Silica” IEEE 1997 [15 ] G. M. Davis L. Zhang, P. J. Chandler,” Planar and channel waveguide fabrication in LiB3O5 using MeV He1 ion Implantation ”J. Appl. Phys. 79 (6), 15 March 1996. [16 ] A.C. Busacca , D. Faccio “Electro-optic dynamics in thermally poled Ge core doped silica fibre” Electronics Letters Vol. 39 , No.1 , 2003. [17 ] C.J.Marckmann ”Measuring poling-induced nonlinearities in Ge:SiON waveguides using a Bragg grating”. [18 ] http://www.srim.com.org [19 ] R. Ulrich , R. Torge ” Measurement of Thin Film Parameters with a Prism Coupler ” Applied Optics Vol.12 , No.12 , p2901(1973). [20 ] Steven T. Kirsch “ Determining the refractive index and thickness of thin films from prism coupler measurements “Applied Optics Vol.20 , No.12 , p2085(1981). [21 ] Beam_Prop 5.0C User manual [22 ] J. Albert, J. L. Brebner ”Refractive-index changes in fused silica produced by heavy-ion implantation followed by photobleaching” Optics Letters ,Vol. 17, No. 23,December 1, 1992 [23 ] 陳淮義 “A study on the optical nonlinearity of thermally poled planar fused silica plates and development of QPM SHG devices ” 清華大學博士論文(2003). [24 ] D. Fluck St. Bauer,”Blue-light second-harmonic generation in ion-implanted KNbO3 channel waveguides of new design” Appl. Phys. Lett. 69 (27), 30 December 1996 [25 ] D. Pureur, A. C. Liu “ Absolute measurement of the second-order nonlinearity profile in poled silica ” Optics Letters , Vol. 23 , No. 8, (1998). [26 ] J. M. Dell, M. J. Joyce, and G. O. Stone,”Erasure of poling induced second order optical nonlinearities in silica by UV exposure ” SPIE Proc. 2289,185(1994). [27 ] 蘇錦昇 “在週期性極化融熔石英玻璃基板上利用第一階準相位匹配原理製作二次諧波綠光倍頻元件” 清華大學碩士論文(2002) [28 ] Kazuhisa Yamamoto , Kimineri Mizuuchi , “Quasi-Phase-Matched Second Harmonic Generation in a LiTaO3 Waveguide” IEEE , Journal of Quantum electronics , Vol. 28 , No. 9 , 1992. [29 ] P.S. Weitzman , J.J. Kester “ Electric Field induced second harmonic generation in germanium doped silica planar waveguide ” Electronics Letters , Vol. 30 , No. 9 , p697(1994). [30 ] J. Albert, J. L. Brebner, “ Formation and bleaching of strong ultraviolet absorption bands in germanium implanted synthetic fused silica“ p148 , Appl. Phys. Lett. 60 (2), 13 January 1992. [31 ] Junji Nishii , Akiyoshi Chayahara “ Comparison of formation process od ultraviolet induced color centers in GeO2-SiO2 glass fiber perform and Ge-implanted SiO2 “ Nuclear Instruments and Methods in Physics Research B , 116(1996) , 150-153. [30 ] T. Yamaguchi , E. Watanabe “Evaluation of silica glasses implanted by high-energy ions using a UV-excited microspectroscopy” Nuclear Instruments and Methods in Physics Research B , 191 (2002) 371–374. [31 ] M.Hattori , Y.Nishihara “Characterization of ion-implanted silica glass by vacuum ultraviolet absorption spectroscopy ” Nuclear Instruments and Methods in Physics Research B 191 (2002) , 362–365.id NH0925442055 sid 915901 cfn 0 / id NH0925442056 auc 陳怡豪 tic 寬頻放大自發性輻射光纖光源之研究 adc 王立康 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 76 kwc 寬頻光源 kwc 放大自發性輻射 kwc 摻鉺光纖放大器 kwc 死頻帶 abc C band ASE光纖光源與L band ASE光纖光源具有不同的性質,本論文中,我們針對L band(1570nm-1610nm) ASE光纖光源的低效率問題,我們利用Fiber Loop Mirror反射光源的機制,設計一個雙端激發光源的double pass系統架構,並嘗試利用un-pump的系統結構,將主要的L band 光源放大器拆成兩部份,以使得ASE在架構中能更有效率的被利用,以及利用grating反射C band光源來抑制系統內的C band ASE生長,使得能量能能夠有效留在系統內,以供L band ASE使用的方式,再進一步提升L band ASE光源的輸出功率(output power)及功率轉換效率。 rf [1 ] R.J. Mears,L. Reekie,I.M. Jauncie, and D. N. Payne, ”High-gain rear-earth doped fiber amplifier at 1.54um,”in Optical Fiber Communication Conference,Vol 3,1987 OSA Technical Digest Series,(Optical Society of America, Washington, DC,1987),vol.2,p.167.1990 [2 ] E. Desurvier,J.R. Simpson and P.C. Becker, IEEE PHOTONICS TECHNOLOGY LETTERS,vol.3,p.888,1987. [3 ] D.Derickson ,Fiber Optical Test and Measurement, Prentice Hall PTR, New Jersey,1998. [4 ] Felton A.Flood ,“ L-Band Erbium-Doped Fiber Amplifiers”, Corning Incorporated,Photonics Research Center,vol.30,p.653-654,1994. [5 ] P. F. Wysocki,M.J.F. Digonnet and B.Y. Kim, ”Wavelength stability of a high-output,broadband,Er-doped superfluorescent fiber source pumped near 980nm”Optics Letters.,vol.16,p.961-963,1991 [6 ]S.V. Chernikov,J.R. Taylor,V.P.Gapontsev,B.E.Bouma and J.G.Fujimoto,”A 75-Mw superflourescent ytterbium fiber source operating around 1.06um,”OLEO,P.83-84,1997 [7 ] P.R. Morkel,K.P. Jedrzejewski,E.R. Taylor and D.N. Payne,”High-gain superfluorescent neodymium-doped single mode fiber source, ”IEEE PHOTONICS TECHNOLOGY LETTERS,vol.4,p.706-708,1992. [8 ] C.C. Hall and W.K. Burns, ”Wavelength stability optimization in Er3+-doped superfluorescent fibre sources, ” Electronics Letters,vol.30,no. 8,pp.653-654,1994. [9 ] H.Fevrier,J.F. Marcerou,P. Bousselet,J. Auge and M. Furczyszyn,”High power,compace 1.48um diode-pumped broadband superfluorescent fiber source at 1.55um,” Electronics Letters,vol. 27,p.261-263,1991. [10 ] W.K. Burns,C. Chen and R.P. Moeller, ”Fiber-optic gyroscopes with broad-band sources,”JOURNAL OF LIGHTWAVE TECHNOLOGY,vol.LT-1,p.98-105,1983. [11 ] G. Sagnac,”Lether lumineux demontre par 1’effet du vent relative d’ether dans un interferometer en rotation uniforme,” Optics Letters,vol.95,p.708-710,1913. [12 ] R.A. Bergh,H.C.Lefevre and H.J. Shaw,”An overview of fiber-optic gyroscopes,”IEEE JOURNAL OF LIGHTWAVE TECHNOLOGY.,vol LT-2,p.91-107,1984. [13 ] V. Vali and R.W. Shorthill,”Fiber ring interferometer,”Appl. Optics.,vol.15,p.1099-1100,1976. [14 ] P.Myslinski,C. Barnard,X.Pan,Q.Wu,J.Chrostowski,”Application of rear-doped fibers,” IEEE PHOTONICS TECHNOLOGY LETTERS,pp.209-294,1993. [15 ]Paul F. Wysocki,M.J.F.Digonnet,B.Y.Kim,H. J. Shaw,”Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,”IEEE JOURNAL OF LIGHTWAVE TECHNOLOGY.,vol. 12,p.550-567,1994. [16 ] Rong Zhu,Yanhuz Zhang,Qilian Bao,”A novel intelligent strategy for improvine measurement precision of FOG,”IEEE Transaction,vol. 49,p.1183-1188,2000. [17 ] Jefferson L. Wagener,Michel J. F. Digonnet Herbert J. Shaw,”IEEE JOURNAL OF LIGHTWAVE TECHNOLOGY.,vol.15,p.1689-1694,1997. [18 ]K. Takada,T. Kitagawa,W. Shimizu and M. Horiguchi, ”High-sensitivity low coherence reflectometer using erbium-doped superfluorescent fibre source and erbium-doped power amplifier,”ELECTRONICS LETTERS.,vol.29,p.365-367,1993. [19 ] B.L. Danielson and C.D. Whittenberg, ”Guided-wave reflectometry with micrometer resolution,”Appl. Optics.,vol.26,,p.2836-2842,1987. [20 ] S.R. Chinn and E.A. Swanson, ”Blindness limitation in optical coherence domain reflectometry,” ELECTRONICS LETTERS.,vol 29,p.2025-2027,1993. [21 ] W.V. Sorin and D.M. Baney,”Measurement of Rayleigh backscattering at 1.55um with 32um spatial resolution,” IEEE PHOTONICS TECHNOLOGY LETTERS.,vol.4,p.374-376,1992. [22 ] K. Takada,H. Yamada and M. Horguchi,”Loss distribution measurement of silicabased waveguides by using a jaggedness-free optical low coherence reflectometer,” ELECTRONICS LETTERS.,vol.30,,p.1441-1443,1994. [23 ] K. Takada,M. Yamada and S. Mitachi,”Optical low coherence reflectometer with a 47-Db dynamic range achieved by using a fluoride-based fiber amplifier,”IEEE JOURNAL OF LIGHTWAVE TECHNOLOGY.,vol.16,,p.593-597. [24 ] P.Y. Fonjallaz,H.G. Limberger,R.P. Salathe,C. Zimmer and H.H. Gilgen,”Direct determination of main fiber Bragg grating parameters using OLCR,”IEE Proc. Optoelectron.,vol.141,p.141-144,1994. [25 ] U.Wiedmann,P.Gallion,Y. Jaouen and C. Chabran,”Analysis of distributed feedback lasers using optical low-coherence reflectometry,”IEEE JOURNAL OF LIGHTWAVE TECHNOLOGY.,vol.16,p.846-869,1998. [26 ] M.H. Reeve,A.R. Hunwicks,W. Zhao,S.G. Methley,L. Bickers and S. Hornung,”LED spectral slicing for single-mode local loop application,” ELECTRONICS LETTERS,vol. 24,p.389-390,1988. [27 ] T.E. Chapuran,S.S. Wagner,R.C. Menendez,H.E. Tohme and L.A. Wand,”Broadband multichannel WDM transmission with superluminescent diodes and LEDs,”GLOBECOM,p.613-618,1991. [28 ] J.S. Lee,Y.C. Chung and D.J. DiGiovanni,”Spectrum-sliced fiber amplifier light source for multichannel WDM application,” IEEE PHOTONICS TECHNOLOGY LETTERS.,vol.5,p.1458-1461,1993. [29 ] Jung-Hee Han,sun-Jong Kim, Jae-Seung Lee,”Transmission of 4*2.5-Gb/s spectrum-sliced incoherent light channels over 240km of dispersion-shifted fiber with 200-Ghz channel spacing,” IEEE PHOTONICS TECHNOLOGY LETTERS,vol.11,p.901-903,1999. [30 ] K.Y. Liou,J.B. Stark,U. Koren,E.C. Burrows,J.L. Zyskind,K. Dreyer,”System performance of an eight-channel WDM local access network employing a spectrum-sliced and delay-line-multiplexed LED source,” IEEE PHOTONICS TECHNOLOGY LETTERS.,vol.5,p.696-698,1997. [31 ] P.D.D. Kilkelly,P.J. Chidgey,G. Hill,”Experimental demonstration of a three channel WDM system over 110km using superluminescent diodes,” ELECTRONICS LETTERS.,vol.11,p.931-933,1990. [32 ] Jung-Hee Han,Jae-Seung Lee,Sang-Soo lee,Tae-Yeoul Yun,Hyang-kyun Kim,Chang-Lee,sang-Yung Shin,”2.5Gb/s transmission of spectrum-sliced fibre amplifier light source channels over 200km of dispersion-shifted fibre,” vol. 31,p.989-991,1995. [33 ] DAVID B. MORTIMORE , “ Fiber Loop Reflectors “ ,JOURNAL OF LIGHTWAVE TECHNOLOGY,VOL.6,NO.7,JULY 1988. [34 ] Shih Hsu, Tsair-Chun Liang and Yung-Kuang Chen,” Optimum Configuration and Design of L-Band Erbium-Doped Superfluorescent Fiber Source Institute of Electro-Optical Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, 1 September 2000, Pages 51-63 [35 ] S.W.Harun, P.Poopalan, and H.Ahmad , “Gain Enhancement in L-Band EDFA Through a Double-Pass Technique”, IEEE PHOTONICS TECHNOLOGY LETTERS,vol.14 ,p.567-569,2001. [36 ] Hongyun Meng,Yange Liu,Weiqing Gao,Hao Zhang,Shuzhong Yuan and Xiaoyi Dong,”Reflection L-band Erbium-Doped Fiber Amplifier Based on a Fiber Loop Mirror”,MICROWAVE AND OPTICAL TECHNOLOGY LETTERS,vol. 36,p.423-424,2003. [37 ] P.C.Becker,N.A.Olsson and J.R.Simpson,Erbium-Doped Fiber Amplifiers Fundamentals and Technology.,ACADEMIC PRESS,1997. [38 ] Emmanuel Desurvire,Erbium-doped fiber amplifiers : principles and applications,IRWIN,1996. [39 ] Y.Sun,J.L.Zyskind and A.K.Srivastava,”Average Inversion Level,Modeling and Physics of Erbium-Doped Fiber Amplifiers”,IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS,vol.3,p.522-529,1997. [40 ] P.C.Becker,N.A.Olsson and J.R.Simpson,Erbium-Doped Fiber Amplifiers Fundamentals and Technology.,ACADEMIC PRESS,1997. [41 ] Emmanuel Desurvire,Erbium-doped fiber amplifiers : principles and applications.IRWIN,1996. [42 ] Max Ming-Kang Liu,PRINCIPLES AND APPLICATIONS OF OPTICAL COMMUNICATIONS. ACADEMIC PRESS,2001. [43 ] T. C. Liang, Y.S. Lin and Y. K. Chen, ”Comparison of the characteristics of double-pass erbium superfluorescent fiber source obtained from different flatting techniques,” Appl. Opt., vol.38,p.522-529,1999 [44 ] Paul F. Wysocki,M.J.F. Digonnet,B.Y. Kim and H.J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” IEEE JOURNAL OF LIGHTWAVE TECHNOLOGY.,vol.12,p.550-567,1994 [45 ] Jung-Hee Han, Jae-Seung Lee, Sang-Soo lee, Tae-Yeoul Yun, Hyang-Kyun Kim, Chang-Lee, sang-Yung Shin,”2.5Gb/s transmission of spectrum-sliced fiber amplifier light source channels over 200km of dispersion-shifted fiber,” ELECTRONICS LETTERS.,vol.31,p.989-991,1995 [46 ] Seongtaek Hwang,Kwan-Woong Song,Hyung-Jin Kwon,Junho Koh,Yun-Je Oh and Kyuman Cho,”Broad-Band Erbium-Doped Fiber Amplifier With Double-Pass Configuration”, IEEE PHOTONICS TECHNOLOGY LETTERS,vol.13,p.547-549,2001. [47 ] Seongtaek Hwang,Kwan-Woong Song,Ki-Uk Song,Se-Hong Park,J.Nilsson and Kyuman Cho,”Comparative high power conversion efficiency of C-plus L-band EDFA”,ELECTRONICS LETTERS,vol.37,p989-993,2001. [48 ] Hirotaka Ono,Makoto Yamada et.al,”1.58-?慆 Band Gain-Flattened Erbium-Doped Fiber Amplifiers for WDM Transmission Systems”,JOURNAL OF LIGHTWAVE TECHNOLOGY,vol.17,p.471-473,1999. [49 ] A.Buxens,H.N.Poulsen,A.T.Clausen and P.Jeppesen,”Gain flattened L-band EDFA based on upgraded C-band EDFA using forward ASE pumping in an EDF section”,ELECTRONICS LETTERS,vol.36,p.264-268,2000. [50 ] Y.Sun,J.L.Zyskind,A.K.Srivastava,”Average Inversion Level,Modeling and Physics of Erbium-Doped Fiber Amplifiers”,IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS,vol.3,p.334-338,1997. [51 ] M. A. Mahdi and H. Ahmad,”Gain Enhanced L-Band Er3+-Doped Fiber Amplifier Utilizing Unwanted Backward ASE”,IEEE PHOTONICS TECHNOLOGY LETTERS,VOL. 13, p.532-535,2001.id NH0925442056 sid 915902 cfn 0 / id NH0925442057 auc 章豐帆 tic 熱極化熔融石英玻璃之二階非線性光學特性的衰減現象之探討 adc 趙煦 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 123 kwc 二階非線性 kwc 熱極化 kwc 熔融石英 kwc 玻璃 kwc 衰減 kwc 非線性光學 abc 非線性光學在目前應用的範圍非常廣泛,包括電光調變、頻率轉換、光通訊應用之色散補償等。一般具二階非線性光學性質的物質如Quartz、LiNbO3、LiTaO3等等,都是晶體結構或是化學合成的高分子化合物。1991年R.A. Myers等發現將熔融石英平面基板加熱,並施加高電壓(熱極化法),成功地使中心對稱結構的熔融石英基板產生恆常性的二階非線性光學特性,使得價格便宜之熔融石英獲得更廣泛的應用。 tc 摘要 I 誌謝辭 II 目錄 III 圖表目錄 V 第一章 緒論 1 1.1 前言 1 1.2 二階非線性光學的二階諧波產生理論簡述 2 1.3 熱極化中心對成結構晶體產生二階非線性之機制 5 1.4 熱極化後二階非線性強度衰減現象相關論文回顧 8 第二章 熱極化熔融石英之製程及量測 14 2.1 實驗用熔融石英之特性 14 2.2 大氣環境熱極化系統 18 2.3 真空環境熱極化系統 19 2.4 實驗流程及量測系統 22 2.4.1 切割與編號 22 2.4.2 清洗 24 2.4.3 光譜特性測量 25 2.4.4 熱極化 28 2.4.5 二階非線性光學性質之量測 33 第三章 大氣與真空環境下熱極化熔融石英之比較 36 3.1 大氣與真空環境熱極化之參數定義 36 3.2 比較大氣與真空環境下熱極化熔融石英之實驗方法 39 3.3 Type I Fused Quartz GE124 大氣與真空環境下熱極化之比較 42 3.4 Type II Fused Quartz KV Contains Low OH 大氣與真空環境下熱極化之比較 44 第四章 熱極化熔融石英之二階非線性光學特性的衰減現象 46 4.1 二階非線性強度衰減之量測方法 46 4.2 保存樣品之環境控制 49 4.3 Type I Fused Quartz GE124二階非線性光學特性的衰減現象 50 4.3.0 數據 50 4.3.1 熱極化後保存於大氣環境 63 4.3.2 真空熱極化後保存於高濕度與低濕度環境之比較 64 4.3.3 大氣環境熱極化後保存於高濕度與低濕度環境之比較 67 4.4 Type II Fused Quartz KV Contains Low OH二階非線性光學特性的衰減現象 70 4.4.0 數據 70 4.4.1 熱極化後保存於大氣環境 92 4.4.2 熱極化降溫後維持高電壓抑制衰減 97 4.4.3 真空環境熱極化後保存於高濕度與低濕度環境之比較 105 4.5 Type II Fused Quartz Contains High OH二階非線性光學特性的衰減現象 111 第五章 結論與未來方向 112 5.1 結果討論 112 5.2 未來方向 113 參考文獻 114 附錄 116 A1. 樣品表面鍍銀之熱極化 116 A2. 真空熱極化系統之樣品夾具設計圖 121 附錄參考文獻 122rf [1 ] Bahaa E. A. Saleh and Malvin Carl Teich, “Fundamentals of photonics,” (A Wiley-Interscience publication, New York, 1991) [2 ] Yi-Hsuan Lin, “Study of second order nonlinear optics characteristics induced by vacuum thermal poling on optical grade fused silica,” Master Dissertation, National Tsing Hua University (2003). [3 ] N. Mukherjee, R. A. Myers, S. R. J. Brueck, “Dynamics of second-harmonic generation in fused silica,” J. Opt. Soc. Am. B, 11,665-669 (1994). [4 ] T.G. Alley, “The formation of the second-order nonlinearity in thermally poled fused silica glass,” Ph. D. Dissertation, University of New Mexico (1998). [5 ] T.G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165-176 (1998). [6 ] X. M. Liu, M. D. Zhang, “Theoretical study for thermal/electric field poling of fused silica,” Jpn. J. Appl. Phys. 40, 4069-4076 (2001). [7 ] R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732-1734 (1991). [8 ] O. Sugihara, M. Nakanishi, H. Fujimura, C. Egami, and N. Okamoto, “Thermally poled silicate thin films with large second-harmonic generation,” J. Opt. Soc. Am. B, 15, 421-425. [9 ] V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: The influence of charge transport on second harmonic generation,” Appl. Phys. Lett. 74, 2423-2425 (1999). [10 ] M.-X. Qiu, F. Pi, G. Orriols, and M. Bibiche,“Signal damping of second-harmonic generation in poled slda-lime silica glass,” J. Opt. Soc. Am. B, 15, 1362-1365 (1998). [11 ] M.-X. Qiu, T. Mizunami, R. Vilaseca, F. Pi, and G. Orriols, “Bulk and near-surface second-order nonlinearities generated in a BK7 soft glass by thermal poling,” J. Opt. Soc. Am. B, 19, 37-42 (1998). [12 ] I. Fanderlik, “Silica Glass and Its Application,” (Elsevier Science publishing, New York 1990). [13 ] http://www.almazoptics.com/KV.htm [14 ] Chun-Lin Lin, “Fabrication of Ge ion-implanted nonlinear optical planar waveguide and application on QPM-SHG,” Master Dissertation, National Tsing Hua University (2003). [15 ] http://www.gequartz.com/en/tab11.htm [16 ] Huai-Yi Chen, “A study on the optical nonlinearity of thermally poled planar fused silica plates and development of QPM SHG devices,” Ph. D. Dissertation, National Tsing Hua University (2003). [17 ] Chien-Chou Chen, “Fabrication of P-doped SiO2 plaanar waveguide by PECVD and nonlinear optical properties study,” Master Dissertation, National Tsing Hua University (2003). [18 ] Jin-Sheng Sue, “Quasi-phase matched second harmonic generation in periodically poled fused silica plate,” Master Dissertation, National Tsing Hua University (2002).id NH0925442057 sid 915903 cfn 0 / id NH0925442058 auc 呂翰昇 tic 多模干涉式光子晶體光塞取多工器之研究 adc 王立康 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 90 kwc 光子晶體 kwc 光塞取多工器 kwc 窄頻濾波器 kwc 3dB偶合器 kwc 平面波展開法 kwc 時域有限差分法 abc 本篇論文主要是以電腦模擬的方式,來做光子晶體元件的模擬與討論,首先一開始我們先介紹基本的光子晶體概念,以及簡單的介紹論文當中所採用的兩種數值分析方法,平面波展開法(Plane Wave Expansion method ,PWE)與時域有限差分法﹙Finite Difference Time Domain method, FDTD﹚,並利用所介紹的數值方法求出光子晶體結構的色散關係圖,接著討論光子晶體波導,以及比較其與傳統波導的差異,隨後將重點放在光子晶體窄頻濾波器的設計與改進上,我們首先先對濾波器的原理做仔細的說明,然後再將濾波器分為穿透與反射兩種類型做進一步的討論比較,結果發現如果以改變瑕疵點周圍圓柱半徑比例的方法,來調整濾波器的中心頻率,相較於直接調變瑕疵點中央的圓柱半徑,會有較佳的效果,且隨著調變的圓柱位置遠離瑕疵點,其對於中心頻率的影響也較不靈敏,這些都將在論文中做詳細說明。在來,本篇論文介紹多模干涉式的光子晶體波導,以及一些多模干涉的光子晶體架構,結果發現出其與傳統的多模干涉結構有些許類似的地方,最後,我們會使用多模干涉式的結構加上之前兩種窄頻濾波器,設計出新的光子晶體光塞取多工器架構,其主要的優點是大幅的縮小了元件的尺寸,並且同時也保有了不錯的功能,對於未來元件的積體化與加強整合性,相信會有相當的幫助。 rf [1 ]. Yablonovitch, E.”Inhibited spontaneous emission in solid state physics and electronics” Phys. Rev. Lett. 58 2059, 1987. [2 ]. S. John, Phys. Rev. Lett. 58 2486, 1987. [3 ]. John D. Joannopoulos, Robert D. Meade and Joshua N. Winn “Photonic Crystals:Molding the Flow of Light”Princeton University Press, 1995. [4 ]. Kazuaki Sakoda,“Optical Properties of Photonic Crystals”, Springer, 2001. [5 ]. Loncar, M.; Doll, T.; Vuckovic, J.; Scherer, A. “Design and fabrication of silicon photonic crystal optical waveguides”, Lightwave Technology, Journal of , Volume: 18 Issue: 10 , Oct. 2000 [6 ]. Attila Mekis, J.C. Chen, I. Kurland, Shanhui Fan, Pierre R. Villeneuve, and J.D. Joannopoulos, “High Transmission through Sharp Bend in Photonic Crystal Waveguides” Physical Review Letters Vol. 77 NO.18 [7 ]. Philip Russell,“Photonic Crystal Fiber”,Science 299,358-362(2003) [8 ]. Werner, R.; Kuhn, S.; Kamp, M.; Reithmaier, J.P.; Forchel, A.; Soderstrom, D.; Lourdudoss, S.; “Integration of 2D photonic crystals in InP laserdiodes” Indium Phosphide and Related Materials, 2000. Conference Proceedings. 2000 International Conference on , 14-18 May. 2000 [9 ].Masanori Koshiba, Senior Member, IEEE, “Wavelength Division Multiplexing and Demultiplexing With Photonic Crystal Waveguide Couplers” JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 19, NO. 12, DECEMBER 2001 [10 ].Max Ming-Kang Liu, “principles and applications of optical communication” [11 ]. David M. Pustai, Ahmed Sharkawy, Shouyuan Shi, and Dennis W. Prather, “Tunable photonic crystal microcavities”, APPLIED OPTICS , Vol. 41,No. 26 ,10 September 2002 [12 ]. T. Allen, C. H. Susan, Computational electrodynamics: the finite-difference time-domain method, Artech House, 2nd Edition, 2000. [13 ]. K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Transactions on Antennas and Propagation, Vol.14, p302, 1966. [14 ]. M. S. Min, C. H. Teng, The instability of the Yee scheme for the “Magic time step”, J. of Computational Phys., Vol.166(2), pp.418-424, January 20 2001. [15 ]. Z. X. Shen, C. L. Law and R. H. MacPhie, Application of anisotropic PML in mode-matching analysis of open-ended waveguide, IEEE Transactions on Magnetics, Vol.38(2), pp.733-736, Part 1, March 2002. [16 ]. Raffaella Costa, Andrea Melloni, Member, IEEE, and Mario Martinelli, Member, IEEE, “Bandpass Resonant Filters in Photonic-Crystal Waveguides”, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 15, NO. 3, MARCH 2003 [17 ].Lucas B., Soldano and Erik C.M. Pennings, Member, IEEE, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications” JOURNAL OF LIGHTWAVE TECHONOLOGY, VOL. 13, NO.4, APRIL 1995. [18 ].Bahaa E. A. Saleh, Malvin Carl Teich, “Fundamentals of Photonics”WILEY. INTERSCIENCE. [19 ].Masahiro Imada, Susumu Noda, Member, IEEE, Alongkarn Chutinan, Masamitsu Mochizuki, and Tomoko Tanaka, “Channel Drop Filter Using a Single Defect in a 2-D Photonic Crystal Slab Waveguide”, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 20, NO. 5, MAY 2002. [20 ]. Takashi Asano, Masamitsu Mochizuki, Susumu Noda, Member, IEEE, Makoto Okano, and Masahiro Imada, “A Channel Drop Filter Using a Single Defect in a 2-D Photonic Crystal Slab—Defect Engineering With Respect to Polarization Mode and Ratio of Emissions From Upper and Lower Sides” JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 5, MAY 2003. [21 ]. Ahmed Sharkawy, Shouyuan Shi, and Dennis W. Prather, “Multichannel wavelength division multiplexing with photonic crystals”, APPLIED OPTICS , Vol. 40, No. 14 , 10 May 2001 [22 ]. Augustsson T., “Bragg Grating-Assisted MMI-Coupler for Add-Drop Multiplexing”, Journal of Lightwave Technology , Vol. 16 ,NO. 8 ,pp.1517-1522 Aug. 1998.id NH0925442058 sid 915904 cfn 0 / id NH0925442059 auc 黃建文 tic 增益受箝制的寬頻摻餌光纖放大器之研究 adc 王立康 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 70 kwc & kwc #25530;餌光纖放大器 kwc 寬頻 kwc 增益箝制 abc 我們主要設計為寬頻(C-band + L-band,1530nm ~1610nm)摻鉺光纖放大器。在C-band方面我們採用一個具有部分增益箝制(partially clamped)功能的前置放大器,以及由一組波長成對的布拉格光纖光柵(FBG)共振所組成的增益箝制放大器,構成了具有增益箝制功能的C-band放大器,其中我們所設計之具有部分增益箝制功能的前置放大器,不同於傳統上必須利用一組光循環器加上band pass filter和衰減器所達成之高成本的增益箝制放大器,並且由於在第一級使用元件較少和增益箝制功能不如一組布拉格光纖光柵所組成的增益箝制放大器那麼地強,所以使得此具有部分增益箝制功能的前置放大器之雜訊指數表現可以控制得當,以致於整體的雜訊指數不會太高。 rf 參考文獻 [1 ] Paul F.Wysocki,Justin B et.al,”Broad-Band Erbium-Doped Fiber Amplifier Flattened Beyond 40nm Using Long-Period Grating Filter”,IEEE PHOTONICS TECHNOLOGY LETTERS,vol. 9,pp. 1343-1345, NO. 10,October 1997. [2 ] Kyo Inoue,Toshimi Kominato et.al,”Tunable Gain Equalization Using a Mach-Zehnder Optical Filter in Multistage Fiber Amplifiers”,IEEE PHOTONICS TECHNOLOGY LETTERS,vol. 3,pp. 718-720,NO. 8,August 1991. [3 ] Hirotaka Ono,Makoto Yamada et.al,”1.58-?慆 Band Gain-Flattened Erbium-Doped Fiber Amplifiers for WDM Transmission Systems”,JOURNAL OF LIGHTWAVE TECHNOLOGY,vol. 17,pp. 490-496,NO. 3,March 1999. [4 ] Felton A.Flood ,“ L-Band Erbium-Doped Fiber Amplifiers”, Corning Incorporated,Photonics Research Center. [5 ] J.F.Massicott,R.Wyatt and B.J.Ainslie,”Low Noise Operation of Erbium Doped Silica Fibre Amplifier Around 1.6?慆”, ELECTRONICS LETTERS,vol. 28,pp. 1924-1925,NO. 20,September 1992. [6 ] A.Buxens,H.N.Poulsen,A.T.Clausen and P.Jeppesen,”Gain flattened L-band EDFA based on upgraded C-band EDFA using forward ASE pumping in an EDF section”, ELECTRONICS LETTERS,vol. 36,pp. 821-823,NO. 9,April 2000. [7 ] Shinji Yamashita and Masato Nishihara,”L-Band Erbium-Doped Fiber Amplifier Incorporating an Inline Fiber Grating Laser”,IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS,vol. 07,pp. 44-48,NO. 1,January 2001. [8 ] Y.Sun,J.W.Sulhoff,A.K. Srivastava,J.L.Zyskind,T.A.Strasser,.R.Pedrazzani,C.Wolf,J.Zhou,J.B.Judkins,R..Espindola and A.M.Vengsarkar,”80nm ultra-wideband erbium-doped silica fibre amplifier”,ELECTRONICS LETTERS,vol. 33,pp. 1965-1967,NO. 23,November 1997. [9 ] M.Yamada,H.Ono,TKanamori,S.Sudo and Y.Ohishi,”Broadband and gain-flattened amplifier composed of a 1.55?慆-band and a 1.58?慆-band Erbium-doped fibre amplifier in a parallel configuration”, ELECTRONICS LETTERS,vol. 33,pp. 710-711,NO. 8,April 1997. [10 ] Seongtaek Hwang,Kwan-Woong Song,Hyung-Jin Kwon,Junho Koh,Yun-Je Oh and Kyuman Cho,”Broad-Band Erbium-Doped Fiber Amplifier With Double-Pass Configuration”, IEEE PHOTONICS TECHNOLOGY LETTERS,vol. 13,pp. 1289-1291,NO. 12,December 2001. [11 ] Seongtaek Hwang,Kwan-Woong Song,Ki-Uk Song,Se-Hong Park,J.Nilsson and Kyuman Cho,”Comparative high power conversion efficiency of C-plus L-band EDFA”, ELECTRONICS LETTERS,vol. 37,pp. 1539-1541,NO. 25,December 2001. [12 ] Kyo Inoue,”Gain-Clamped Fiber Amplifier with a Short Length of Preamplification Fiber”,IEEE PHOTONICS TECHNOLOGY LETTERS,vol. 11,pp. 1108-1110,NO. 9,September 1999. [13 ] T.C.Teyo,N.S.Mohd.Shah,M.K.Leong,P.Poopalan and H.Ahmad,”Comparison Between Regenerative-Feedback and Cofeedback Gain-Clamped EDFA”, IEEE PHOTONICS TECHNOLOGY LETTERS,vol. 14,pp. 1255-1257,NO. 9,September 2002. [14 ] Bing Xia,Lawrence R.Chen,”Comparison of Two-stage L-band EDFAs with Gain-Clamped Characteristics Based on Three Configurations”,OFC 2002 [15 ] Bing Xia,Lawrence R.Chen,”Two-stage L-band EDFA with gain-clamped characteristics using partial gain-clamping”,Optics Communications,vol. 206,pp. 301-308,NO. 4,June 2002. [16 ] Hongyun Meng,Yange Liu,Weiqing Gao,Hao Zhang,Shuzhong Yuan and Xiaoyi Dong,”Reflection L-band Erbium-Doped Fiber Amplifier Based on a Fiber Loop Mirror”,MICROWAVE AND OPTICAL TECHNOLOGY LETTERS,vol. 36,pp. 501-503,NO. 6,March 2003. [17 ] Kyo Inoue,”Gain-Clamped Fiber Amplifier with a Loop Mirror Configuration”, IEEE PHOTONICS TECHNOLOGY LETTERS,vol. 11,NO. 5,May 1999. [18 ] David B. Mortimore,”Fiber Loop Reflectors”,JOURNAL OF LIGHTWAVE TECHNOLOGY,vol. 6,pp. 533-535,NO. 7,July 1988. [19 ] P.C.Becker,N.A.Olsson,J.R.Simpson,Erbium-Doped Fiber Amplifiers:Fundamentals and Technology,ACADEMIC PRESS,1997. [20 ] Michel J.F.,Rare-Earth-Doped Fiber Lasers and Amplifiers,MARCEL DEKKER,2001. [21 ] Y.Sun,J.L.Zyskind,A.K.Srivastava,”Average Inversion Level,Modeling and Physics of Erbium-Doped Fiber Amplifiers”,IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS,vol. 3,pp. 991-1007,NO. 4,August 1997. [22 ] Max Ming-Kang Liu,PRINCIPLES AND APPLICATIONS OF OPTICAL COMMUNICATIONS,IRWIN,1996. [23 ] Makoto Yamada,Makoto Shimizu,Masanobu Okayasu,TatsuyaTakeshita,Masaharu Horiguchi,Yoshiaki Tachikawa and Etsuji Sugita,”Noise Characteristics of Erbium Doped Fiber Amplifiers Pumped by 0.98 and 1.48?慆 Laser Diodes”,IEEE PHOTONICS TECHNOLOGY LETTERS,vol. 2,pp. 418-421,NO. 3,March 1990. [24 ] T.C. Teyo,M.K. Leong,H.Ahmad,”Lasing wavelength dependence of gain-clamped EDFA performance with different optical feedback schemes”,Optics & Laser Technology,vol. 34,pp. 497-500,NO. 6,September 2002. [25 ] Yuxing Zhao,Jennifer Bryce and Robert Minasian,”Gain Clamped Erbium-Doped Fiber Amplifiers-Modeling and Experiment”,IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS,vol. 3,pp. 1008-1012,NO. 4,August 1997. [26 ]李嘉航,增益箝制及增益平坦化之長波長摻餌光纖放大器之研究,碩士論文(2003),國立清華大學. [27 ] 洪繼宇,L-band摻餌光纖放大器功率轉換效率改善之研究,碩士論文(2004),國立清華大學.id NH0925442059 sid 915909 cfn 0 / id NH0925442060 auc 劉建宏 tic 臉部參數之無線環境傳輸 adc 陳永昌 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 46 kwc 超低位元傳輸 kwc 臉部參數 kwc 錯誤更正 abc 無線通訊已經成為現代人生活中不可或缺的一部份,而自從寬頻時代來臨後,通訊的定義也漸漸由聲音的傳輸轉變為影像的傳輸。為了達到多媒體的通訊的目標,許多相關的規格被訂定,如H.264 (ITU)和MPEG4 (ISO)等。雖然如此,但是要達到一定品質的傳輸,頻寬仍然不足。為了在有限的頻寬上使用,MPEG4定義了超低位元傳輸 ( very low bit-rate communication ),利用68個重要的參數(FAP),描述動態臉部的表情動作,利用此傳輸技術,可在1k的有限頻寬下,達到即時 ( real-time )的對談。但是在頻寬變動及多干擾的通訊環境下,資料被破壞相當嚴重,且由於FAP是十分重要的參數,只要有少許的錯誤,就會立即的造成畫面被毀滅,所以我們應該如何有效的保護這些參數,就成為了十分重要的問題。本論文針對MPEG4所定義超低位元編碼的形式,對不同的BER討論burst error和packet loss的影響以及保護的方法。 tc Abstract                        I Contents                       II Chapter 1: Introduction                1 1.1 Background .                   1 1.1.1 MPEG-4 Facial Animation on transmission     1 1.1.2 Convolution Encoder 4 1.1.3 BCH Encoder 5 1.2 Motivation 5 1.3 Thesis organization 6 Chapter 2: UDP-Lite 8 Chapter 3: Communication System for FAPs 11 3.1 System architecture 11 3.1.1 Convolution Encoder 12 3.1.2 BCH Encoder 15 3.2 Packet Format 15 3.3 BitMask Protection 16 3.4 Protection of FAP values 20 Chapter 4: Switch Mode 23 4.1 Switch Mode 23 4.2 Error Concealment 29 4.2.1 Error Concealment of BitMask 30 4.2.2 Error Concealment of FAP value 31 4.3 Error concealment over WIFI 31 Chapter 5: Experimental Result 33 5.1 Simulation Environment 33 5.2 Error Resilience 33 5.2.1 BitMask Protection 34 5.2.2 FAP value Protecion 35 5.3 Switch Mode 39 5.3.1 DBCH and BCH 39 5.3.2 Error Concealment of BitMask 39 5.3.3 Error Concealment of FAP values 40 5.4 Error Concealment over WIFI 41 Chapter 6: Conclusion and Future work 43 Reference 45rf [1 ]Text of ISO/IEC FDIS 14496-10 ,Advanced Video Coding, Final Draft, 2003 . [2 ]Text of ISO/IEC FDAM2 14496-1, Systems, AMENDMENT, Final Draft, 2002. [3 ]Text of ISO/IEC FDIS 14496-2 : Visual, “ISO/IEC JTC1/SC29/WG11 N2502, Atlantic City MPEG MEETING, Oct, 1998. [4 ]Worral,S.T., Sadka,A.H., Kondoz,A.M., ”3D facial animation for very low bit rate mobile video” Proceedings of 35th Annual Simulation Symposium ,2002 . [5 ]Murat Tekalp and Jorn Ostermann, MPEG4 FACIAL ANIMATION PROJECT, http://www.cs.technion.ac.il/~gip/projects/s2002/Dmitry_Vadim_MPEG4/index.htm . [6 ]Maria Fresia, Carlo Bonamico, Fabio Lavagetto, Roberto Pockaj, “An Encoding/Packetization Solution for MPEG-4 Facial Animations Delivery over RTP ”, Proc. of IWDC'02 - Tyrrenian International Workshop on Digital Communications, 2002 [7 ]Larzon, L.-A., et al., “The UDP-Lite Protocol”, Internet Draft, Internet Engineering Task Force, Dec. 2002. Work in Progress. [8 ]H. Zheng and J. Boyce. “An improved UDP protocol for video transmission over internet-to-wireless networks”. IEEE Trans. on Multimedia. 3(3): 356-365. 2001. [9 ]Toshio Miki, Toshiro Kawahara and Tomoyuki Ohya, “Revised Error Pattern Generation Programs for Core Experiments on Error Resilience ”, ISO/IEC JTC1/SC29/WG11 MPEG96/1492, 1996 [10 ]Di Giacomo,T ; Joslin, C.;Garchery, S ; Magnenat-Thalmann,N. “Adaptation of facial and body animation for MPEG-based architectures”, Proceedings, 2003 Intermational Conference on Cyberworlds, 2003, 21-228 .id NH0925442060 sid 913958 cfn 0 / id NH0925442061 auc 王俊捷 tic FPGA內部繞線延遲錯誤之內建自我測試 adc 劉靖家 adc 吳誠文 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 55 kwc 可程式化邏輯閘陣列 kwc 延遲錯誤 kwc 內建自我測試 kwc 內部繞線 abc FPGA在IC設計的功能驗證及原型上(Prototyping)早已被廣泛地使用著。由於它具備可以重複規劃的特性(Configurability),使得它也被大量應用在網路、訊號處理等方面。今日伴隨著深次微米製程技術的進步,FPGA可以容納更大且更快的設計,但這也同時使得影響電路效能的延遲錯誤(Delay Fault)越加地明顯且嚴重。因而關於FPGA的延遲錯誤測試便顯得日益重要。此外由於FPGA內部超過80%的電晶體都屬於內部繞線(Interconnect),所以我們所提出來的方法將專注在FPGA內部繞線的延遲錯誤上。 tc 1 Introduction...........................................1 1.1 FPGA Category.......................................2 1.1.1 Island-Style and Hierarchy-Style FPGA............2 1.1.2 Cluster-Based and Non-Cluster-Based FPGA.........3 1.2 Island-Style FPGA Architecture......................4 1.3 FPGA Testing Classification.........................7 1.4 FPGA Delay-Fault Testing Issues.....................8 1.5 Organization........................................9 2 Previous Work.........................................10 2.1 FPGA BIST for Static Faults........................10 2.1.1 BIST of CLB.....................................10 2.1.2 BIST of Interconnect............................12 2.2 FPGA BIST for Delay Faults.........................13 2.3 A Universal Delay Testing Methodology for FPGA.....15 2.3.1 The Basic Concept...............................15 2.3.2 Single-Line-Segment Delay Fault Model...........17 2.3.3 Fault Detectability.............................17 2.3.4 Implementation Limitations......................19 3 The Proposed Method...................................21 3.1 The First BIST Circuit (BIST1).....................21 3.1.1 Operations of BIST1.............................23 3.1.2 Validation of BIST1.............................25 3.2 WE and ES Switch Testing Issues....................25 3.3 Clock Skew Validation for Testing PUTs Across CLBs.26 3.4 The Second BIST Circuit (BIST2)....................28 3.5 Test Configurations Reduction......................33 3.6 Test Flow..........................................34 4 Experimental Results..................................36 4.1 Routing Constraints and Test Configurations........36 4.2 Segment Coverage...................................38 4.3 Single-Line-Segment Delay Fault Coverage...........39 4.4 Statistical Delay Defect Coverage..................41 4.5 Test Time..........................................41 4.6 Comparison.........................................43 5 Conclusions and Future Work...........................44 A Test Configurations...................................45rf [1 ] C.-F.Wu and C.-W.Wu, “Testing function units of dynamic reconfigurable FPGAs,” in Proc. 9th VLSI Design/CAD Symp., (Nantou), pp. 189–192, Aug. 1998. [2 ] W.-K. Huang and F. Lombardi, “An approach for testing programmable/configurable field programmable gate arrays,” in Proc. IEEE VLSI Test Symp. (VTS), pp. 450–455, 1996. [3 ] C. Stroud, S. Konala, P. Chen, andM. Abramovici, “Built-in self-test for programmable logic blocks in FPGAs (Finally, a free lunch: BIST without overhead!),” in Proc. IEEE VLSI Test Symp. (VTS), pp. 387–392, 1996. [4 ] M. Renovell and Y. Zorian, “Different experiments in test generation for XILINX FPGAs,” in Proc. Int. Test Conf. (ITC), pp. 854–862, 2000. [5 ] C.-F. Wu and C.-W. Wu, “Testing interconnects of dynamic reconfigurable FPGAs,” in Proc. Asia and South Pacific Design Automation Conf. (ASP-DAC), (Hong Kong), pp. 279–282, Jan. 1999. [6 ] H. Michinishi, T. Yokohira, T. Okamoto, T. Inoue, and H. Fujiwara, “A test methodology for interconnect structures of LUT-based FPGAs,” in Proc. Fifth IEEE Asian Test Symp. (ATS), (Hsinchu), pp. 68–74, Nov. 1996. [7 ] M. Renovell, J. Figueras, and Y. Zorian, “Test of RAM-based FPGA: Methodology and application to the interconnect,” in Proc. IEEE VLSI Test Symp. (VTS), (Monterey), pp. 230–237, Apr. 1997. [8 ] C. Stroud, S. Wijesuriya, C. Hamilton, and M. Abramovici, “Built-in self-test of FPGA interconnect,” in Proc. Int. Test Conf. (ITC), pp. 404–411, 1998. [9 ] X. Sun, J. Xu, and B. Chan, “Novel technique for built-in self-test of FPGA interconnects,” in Proc. Int. Test Conf. (ITC), pp. 795–803, 2000. [10 ] C. Stroud, J. Nall, M. Lashinsky, and M. Abramovici, “BIST-based diagnosis of FPGA interconnect,” in Proc. Int. Test Conf. (ITC), pp. 618–627, 2002. [11 ] A. Krasniewski, “Application-dependent testing of FPGA delay faults,” in Proc. EUROMICRO Conf., pp. 260–267, 1999. [12 ] I. G. Harris, P. R. Menon, and R. Tessier, “BIST-based delay path testing in FPGA architectures,” in Proc. Int. Test Conf. (ITC), pp. 932–938, 2001. [13 ] M. Tahoori, “Improving detectability of resistive open defects in FPGA,” in MAPLD Int. Conf., 2002. [14 ] M. Abramovici and C. Stroud, “BIST-based delay-fault testing in FPGAs,” in Proc. Eighth IEEE Int’l On-Line Testing Workshop, pp. 131–134, 2002. [15 ] E. Chmelar, “FPGA interconnect delay fault testing,” in Proc. Int. Test Conf. (ITC), pp. 1239– 1247, 2003. [16 ] Y.-L. Peng, “A universal delay testing methodology for FPGA,” Master’s thesis, National Tsing Hua University, Dept. Electrical Engineering, July 2003. [17 ] Xilinx, The Programmable Gate Array Data Book. San Jose, California: Xilinx, Inc., 1996. [18 ] X. Inc., “Virtex-II complete data sheet.” http://www.xilinx.com/, 2003. [19 ] Altera, FLEX 8000 Programmable Logic Device Family Data Sheet, Ver. 10.01. Altera, Co., June 1999. [20 ] Xilinx, XC6200 Field Programmable Gate Arrays. San Jose, California: Xilinx, Inc., Apr. 1997. [21 ] I. G. Harris and R. Tessier, “Interconnect testing in cluster-based FPGA architectures,” in Proc. IEEE/ACM Design Automation Conf. (DAC), pp. 49–54, 2000. [22 ] X. Inc., “Spartan complete data sheet.” http://www.xilinx.com/, 2002. 54 [23 ] C. Stroud, A Designer’s Guide to Built-In Self-Test. Boston: Kluwer Academic Publishers, 2002. [24 ] H.-C. Liao, R.-F. Huang, J.-J. Liou, and C.-W. Wu, “An FPGA fault simulator for stuck-at and segment delay faults,” in Proc. The 14th VLSI/Design CAD Symp, pp. 461–464, 2003.id NH0925442061 sid 913956 cfn 0 / id NH0925442062 auc 裴靜偉 tic 發光多矽氮化矽薄膜電流傳輸特性研究 adc 黃惠良 ty 博士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 144 kwc 發光 kwc 氮化矽 kwc 電流傳輸 abc 本篇論文中,我們利用電漿輔助化學氣象沈積法成長過矽氫化非晶矽薄膜。成長的氣體為稀釋於氬氣中的Silane與氮氣。成長溫度為300oC。所成長出來的過矽氫化非晶矽薄膜隨著氣體流量的變化,矽含量也跟著變化。在光激發光(photoluminescence,PL)的實驗中,所發出的光隨著矽含量的不同而有著系統化波長的變化。矽含量愈多,波長愈長。而利用此一薄膜製作電激發光(Electroluminescence, EL)元件,在高電壓下,發出伯長範圍在400到750nm的光,在肉眼下,可看到白色的光點。利用X-ray的光誘發電子頻譜(x-ray photoemission spectroscopy, XPS)實驗中薄膜的Si 2p訊號涵蓋了Si-Si4的位置。而經過熱處理的薄膜顯現了明顯的Si-Si4相。在穿隧式電子顯微鏡的影像中則發現了明顯的矽原子團。大小在2至4nm。平均半徑為3nm。面密度為7X1011/cm2。 rf [1.1 ]. K.D. Hirschman, L.Tsybeskov, S.P Duttagupta and P.M Fauchet, NATURE, Vol 384, 338(1996) [1.2 ]. R.T Collins, P.M. Fauchet and M.A.Tischler, PHYSICS TODAY, Jan. 24(1997) [1.3 ]. H.Z.Song, X.M,Bao, N.S,Li and X.L.Wu, Appl.Phys.Lett. 72(3),356(1998) [1.4 ]. J.F.Tong, H.L.Hsiao and H.L.Hwang, Appl.Phys.Lett. 74(16),2316(1999) [1.5 ]. G.G.Qin, A.P.Li, B.R.Zhang and B.C. Li, J.Appl.Phys. 78(3),2006(1995) [1.6 ]. I.G.Austin, W.A.Jackson, T.M.Searle and P.K.Bhat, PHILOSOPHICAL MAGAZINE B, 52(3), 271(1985) [1.7 ]. C. Mo, L.Zhang, C. Xie and T. Wang, J. Appl. Phys. 73(10), 5185(1993) [1.8 ]. N.M Park, C.J. Choi, T.Y. Seong, and S.J. Park , Phys. Rev. Letters, 7 (86) p1355 (2001) [1.9 ]. H.L.Hsiao, A.B.Yang and H.L. Hwang, Applied Surface Science, 212-213, P73-77 (2003) [1.10 ]. H. L. Hsiao, Ph.D Thesis, National Tsing Hua University, 2000 [1.11 ]. P. Steiner, F. Kozlowski, and W. Lang, Appl. Phys. Lett. 62, 2700 (1993). [1.12 ]. Jan Linnros and Nenad Lalic, Appl. Phys. Lett. 66, 3048 (1995). [1.13 ]. W. Boonkosum, D. Kruangam and S. Panyakeow, Jpn. J. appl. Phys. 32, 1534 (1993). [1.14 ]. A.P. Li, Lidong Zhang, Y. X. Zhang, G. G. Qin, Xin Wang and X. W. Hu, Appl. Phys. Lett. 69(1), 4(1996) [1.15 ]. I TRS Roadmap, 2003. http://www.itrs.org [1.16 ]. P. Mazumder, S. Kulkarni, M. Bhattacharya, J.P. Sun and G. I. Haddad, Proceedings of IEEE, Vol.86, No. 4, 664 (1998) [1.17 ]. Alan, Seabaugh, 1999 SRC Report, 1999 [1.18 ]. P. Fay et.al., IEEE TED, Vol.48, No.6, 2001 [1.19 ]. K. Ismail, B.S. Meyerson, and P. J. Wang, “Electron resonant tunneling in Si/SiGe double barrier diodes,” Appl. Phys. Lett., vol. 59, pp.973-975, 1991. [1.20 ]. P. See, D.J. Paul, S. Mantl, I. V. Zozoulenko, and K.-F. Berggren, “High performance Si/Si1-xGex resonant tunneling diodes,” IEEE Electron. Dev. Lett., vol. 22, pp.182-184, 2001. [1.21 ]. Y. Ishikawa, T. Ishihara, M. Iwasaki, and M. Tabe, “Negative differential conductance due to resonant tunneling through SiO2/single-crys-talline-Si double barrier structure,” Elect. Lett., vol. 37, pp.1200-1201, 2001. [1.22 ]. M. Shahjahan, Y. Koji, K. Sawada, and M. Ishida, “Fabrication of resonance tunnel diode by gamma-Al2O3/Si multiple heterostructures,” Jpn. J. Apple. Phys., pt. 1, vol. 41, pp.2602-2605, 2002. [1.23 ]. M. Watanabe, T. Funayama, T. Teraji, and N. Sakamaki, “CaF2/CdF2 double-barrier resonant tunneling diode with high room-temperature peak-to-valley ratio,” Jpn. J. Apple. Phys., pt. 2, vol. 39, pp.L716-L719, 2000. [1.24 ]. M. Watanabe, Yaketani, and M. Asada, “Epitaxial growth and electrical characteristics of CaF2/Si/CaF2 resonant tunneling diode structures grown on Si(111) 1 degrees-off substrate,” Jpn. J. Apple. Phys., pt. 2, vol. 39, pp.L764-L967, 2000. [1.25 ]. V. M. Franks, K. F. Hulme, and J. R. Morgan, “An alloy process for making high current density Si tunnel diode junctions,” Solid-State Electron., vol. 8, pp.343-344, 1965. N. Holonyak, Jr. (private communication). [1.26 ]. Germanium Power Devices Corp., ,Andover, MA, 1996. [1.27 ]. J. Wang, D. Wheeler, Y. Yan, J. Zhao, S. Howard, and A. Seabaugh, “Si tunnel diodes formed by proximity rapid thermal diffusion,” in IEEE Lester Eastman Conf. High-Performance Devices, Newark, DE, 2002. [1.28 ]. H. Jorke, H. Kibbel, K. Strohm, and E. Kasper, “Forward-bias characteristics of Si bipolar junctions grown by molecular-beam epitaxy at low-temperatures,” Appl. Phys. Lett., vol. 63, pp.2408-2410, 1993. [1.29 ]. S. L. Rommel, T. E. Dillon, P. R. Berger, R. Lake, P. E. Thompson, K. D. Hobart, A. C. Seabaugh, and D. S. Simons, “Si-Based interband tunneling devices for high-speed logic and low power memory applications,” in Late News int. Elect. Dev. Meet. Tech. Dig.,1998, pp.1035-1037. [1.30 ]. S. L. Rommel, T. E. Dillon, P. R. Berger, P. E. Thompson, K. D. Hobart, R. Lake, and A. C. Seabaugh, “Epitaxially grown Si resonant interband tunnel diodes exhibiting high current densities,” IEEE Electron Dev. Lett., vol. 20, pp.329-331, July 1999. [1.31 ]. P. E. Thompson, K. D. Hobart, M. Twigg, G. Jernigan, T. E. Dillon, S. L. Rommel, P. R. Berger, D. S. Simons, P. H. Chi, R. Lake, and A. C. Seabaugh, “Si resonant interbant tunnel diodes grown by low temperature molecular beam epitaxy,” Appl. Phys. Lett., vol. 75, pp.1308-1310, 1999 [1.32 ]. P. E. Thompson, K. D. Hobart, M. E. Twigg, S. L. Rommel, N. Jin, P. R. Berger, R. Lake, A. C. Seabaugh, P. H. Chi, and D. S. Simons, “Epitaxial Si-based tunnel diodes,” Thin Solid Films, vol. 380, pp.145-150, 2000. [1.33 ]. R. Duschl, O. G. Schmidt, E. Kasper, and K. Eberl, “High room temperature peak-to-valley current ratio in Si-based Esaki diodes,” Elect. Lett., vol. 35, pp.1111-1112, 1999. [1.34 ]. R. Duschl and K. Eberl, “Physics and applications of Si/SiGe/Si resonant interband tunneling diodes,” Thin Solid Films, vol. 380, pp.151-153, 2000. [1.35 ]. M.Watanabe et.al. ESSDERC 2003 [1.36 ]. Y.Suda,H.Koyama, Appl.Phys.Lett., 79(2273),2001 [1.37 ]. N.Jin et.al. IEEE TED, Vol. 50, p1876-1884,2003 [1.38 ]. S.Surdigo et.al. ISDRS,2003,p176-177, 2003 [1.39 ]. J.-E. Wernersson et.al., Electronic Letters, 2004 [1.40 ]. Q.-Y. Ye, R. Tsu and E. H. Nicollian, Phys. Rev. B, 44,1806 (1991) [1.41 ]. E. H. Nicollian and R. Tsu, J. Appl. Phys., 74,4020 (1993) [1.42 ]. M. Fukuda, K. Nakagawa, S. Miyazaki, and M. Hirose, Appl. Phys. Lett. 70, 2291(1997) [1.43 ]. Q.Wan, T.H. Wang, M.Zhu and C.L.Lin, Appl. Phys.Lett., 81,538 (2002) [1.44 ]. R. Compano, Technology Roadmap for Nanoelectronics,2000 [1.45 ]. V.-Y. Aaron and J.-P. Leburton, IEEE potentials, 21,35(2002) [2.1 ]. H.L. Hsiao, Ph.D Thesis, National Tsing Hua University, 1999 [2.2 ]. Y.R. Chang, MS Thesis, National Tsing Hua University, 1999 [2.3 ]. A.R. Forouhi, and I. Bloomer, Phys. Rev. B34, 7018(1986), ibid. 38,1865(1988) [2.4 ]. A.Iqbal, W.B.Jackson, C.C.Tsai, J.W.Allen and C.W. Bates, Jr., J.Appl.Phys. 61,2947(1987) [2.5 ]. C.D.Wagner, L.E.Davis, M.V. Zeller, J.A.Taylor, R.H. Baymond,and H.Gale, Surf. Interface Anal. 3,211(1981) [2.6 ]. D.V.Tsu, G. Lucovsky, and M. Mantani, Phys. Rev. B 33, 7069 (1986) [2.7 ]. W.S.Liao, C.H.Lin and S.C. Lee, Appl.Phys.Lett. 65, 2229(1994) [3.1 ]. C. Mo, L. Zhang, C. Xie and T. Wang, J. Appl. Phys., 73 (10), 5185 (1993) [3.2 ]. J. Robertson and M. J. Powell, Appl. Phys. Lett., 44,415 (1984) [3.3 ]. A. Zunger and L.W. Wang, Appl. Surf. Sci. 102, 350(1996) [3.4 ]. T.Takagahara, K. Takeda, phys. Rev B46, 15578(1992) [3.5 ]. H. L. Hsiao, Ph.D Thesis, National Tsing Hua University, 2000 [3.6 ]. H.L.Hsiao, A.B.Yang and H.L. Hwang, Applied Surface Science, 212-213, P73-77 (2003) [3.7 ]. L. T. Canham. Appl. Phys. Lett. 57, 1046(1990) [3.8 ]. H. Z. Song, X. M. Bao, N. S. Li and J. Y. Zhang, J. Appl. Phys. 82(8), 4028(1997). [3.9 ]. J. F. Tong, H. L. Hsiao and H. L. Hwang, Appl. Phys. Lett. 74(16), 2316(1999) [3.10 ]. P. Steiner, F. Kozlowski, and W. Lang, Appl. Phys. Lett. 62, 2700 (1993). [3.11 ]. Jan Linnros and Nenad Lalic, Appl. Phys. Lett. 66, 3048 (1995). [3.12 ]. K. D. Hirschman, L. Tsybeskov, S. P Duttagupta and P. M Fauchet, NATURE, Vol 384, 338(1996) [3.13 ]. P. Knapek, B. Rezek, D. Muller, J. J. Grob, R. Levy, K. Luterova, J. Kocka and I. Pelant, Phys. Stat. Sol. (a) 167, R5 (1998). [3.14 ]. Zingway Pei, Y. R. Chung, H. L. Hsiao and H. L. Hwang, ECS proceedings ''ADVANCED LUMINESCENT MATERIALS AND QUANTUM CONFINEMENT'', 99-22,474-(1999) [3.15 ]. W. Boonkosum, D. Kruangam and S. Panyakeow, Jpn. J. appl. Phys. 32, 1534 (1993). [3.16 ]. A.P. Li, Lidong Zhang, Y. X. Zhang, G. G. Qin, Xin Wang and X. W. Hu, Appl. Phys. Lett. 69(1), 4(1996) [4.1 ] K.D. Hirschman, L.Tsybeskov, S.P Duttagupta and P.M Fauchet, NATURE, Vol. 384, 338(1996) [4.2 ] R.T Collins, P.M Fauchet and M.A.Tischler, PHYSICS TODAY, Jan. 24(1997) [4.3 ] H.Z.Song, X.M,Bao, N.S,Li and X.L.Wu, Appl.Phys.Lett. 72(3),356(1998) [4.4 ] J.F.Tong, H.L.Hsiao and H.L.Hwang, Appl.Phys.Lett. 74 (16), 2316(1999) [4.5 ] G.G.Qin, A.P.Li, B.R.Zhang and B.C. Li, J.Appl.Phys. 78(3),2006(1995) [4.6 ] Zingway Pei, Y.R.Chang and H.L Hwang, ADVANCED LUMINCESCENT MATERIALS AND QUANTUM CONFINEMENT, p.474, THE ELECTROCHEMICAL SOCIETY , Pennington (1999). [4.7 ] N.M Park, C.J. Choi, T.Y. Seong, and S.J. Park , Phys. Rev. Letters, 7 (86) p1355 (2001) [4.8 ] Zingway. Pei, Y.R. Chang and H.L.Hwang, Appl. Phys.Lett 80 (2839), 2002. [4.9 ] C. Mo, L.Zhang, C. Xie and T. Wang, J. Appl.Phys. 73(10), 5185(1993) [4.10 ] H.R. Phillip, J. Non-Cryst. Solids 8/10, 627 (1972) [4.11 ] R.J. Temkin, J. Non-Cryst. Solids 17, 215 (1975) [4.12 ] G.M. Ingo, N. Zacchetti, D. della Sala, C. Coluzza, J. Vac. Sci.Technol. A 7 (5) 3048(1989) [4.13 ] A. Simunek, G. Wiech, J. Non-Cryst. Solids 192 &193, 161(1995) [4.14 ] S. Takeoka, M. Fujii, S. Hayashi and K. Yamamoto, Phys. Rev. B 58 (7921), 1998 [4.15 ] C.S. Yang, C.J. Lin, P.Y. Kuei, S.F. Horng, C. C. H. Hsu, M.C. Liaw, Applied Surface Science 113/114, 116(1997) [5.1 ]. Light Emission in Silicon: From Physics to Devices, edited by D. J. Lockwood (Academic, San Diego,1998) [5.2 ]. Z. Pei, Y. R. Chang and H. L. Hwang, Appl. Phys. Lett., 80,2839 (2002) [5.3 ]. J. F. Tong, H. L. Hsiao and H. L. Hwang, Appl. Phys. Lett. 74(16), 2316(1999) [5.4 ]. P. Mazumder, S. Kulkarni, M. Bhattacharya, J.P. Sun and G. I. Haddad, Proceedings of IEEE, Vol.86, No. 4, 664 (1998) [5.5 ]. V.-Y. Aaron and J.-P. Leburton, IEEE potentials, 21,35(2002) [5.6 ]. Q.-Y. Ye, R. Tsu and E. H. Nicollian, Phys. Rev. B, 44,1806 (1991) [5.7 ]. E. H. Nicollian and R. Tsu, J. Appl. Phys., 74,4020 (1993) [5.8 ]. M. Fukuda, K. Nakagawa, S. Miyazaki, and M. Hirose, Appl. Phys. Lett. 70, 2291(1997) [5.9 ]. Q.Wan, T.H. Wang, M.Zhu and C.L.Lin, Appl. Phys.Lett., 81,538 (2002) [5.10 ]. D.N. Kouvatsos, V. Ioannou-Sougleridis and A.G. Nassiopoulou, Appl. Phys. Lett., 82, 397 (2003) [5.11 ]. V. Ioannou-Sougleridis and A.G. Nassiopoulou, J. Appl. Phys., 94, 4084(2003) [5.12 ]. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbe, and K. Chan, Appl. Phys. Lett. 68, 1377 (1996) [5.13 ]. S.M. Sze, Physics of Semiconductor Devices, 1981 [5.14 ]. B. L. Yang, H. Wong and Y. C. Cheng, Solid-State. Electron. 37, 481 (1994) [5.15 ]. M. Lenzlinger, and E. H. Snow, J. Appl. Phys. 40, 278 (1969). [5.16 ]. M. Depas, B. Vermeirs, P. W. Mertens, R. L. Van Meirhaeghe and M. M. Heyns, Solid-State. Electron. 28, 1465 (1995) [5.17 ]. Y.C. Yeo, Q. Lu, W. C. Lee, T.J. King. C. Hu, X. Wang, x. Guo and T. P. Ma, IEEE Electron Device Lett., 21,540 (2000) [5.18 ]. N.G. Tarr, D.L. Pulfrey and D. S. Camporese, IEEE Trans. Electron Devices,30, 1760(1983) [5.19 ]. J. Frenkel, Phys. Rev. 54 ,647(1939) [5.20 ]. J. P. Chang and Y.-S. Lin, Appl. Phys. Lett. 79, 3666 (2001) [5.21 ]. A. L. J. Levy, Applied Quantum Mechanics, 2003 [5.22 ]. J.P.A. Van Der Wagt, Proceedings of IEEE, 87(571)1999 [5.23 ]. Semiconductor Physics and Devices, 3/e, Donald A. Neamen, (McGraw Hill, 2003) [5.24 ]. L. L. Chang, L. Easki, and R. Tsu, Appl. Phys. Lett., 24,593(1974) [5.25 ]. G.H. Parker and C. A. Mead, Appl. Phys. Lett., 14,21(1969) [5.26 ]. E. Suzuki, D. K. Schroder and Y. Hayashi, J. Appl. Phys., 60,3616(1986) [6.1 ] S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbe, and K. Chan, Appl. Phys. Lett. 68, 1377 (1996) [6.2 ] Z. Pei, Y. R. Chang and H. L. Hwang, Appl. Phys. Lett., 80,2839 (2002) [6.3 ] E. H. Nicollian and R. Tsu, J. Appl. Phys., 74,4020 (1993) [6.4 ] Z. Pei and H.L. Hwang, Material Science in Semiconductor Processing, to be published (2004) [6.5 ] Y. Kim, K. H. Park, T. H. Chung, H. J. Bark, J.-Y. Yi, W. C. Choi, E. K. Kim, J. W. Lee and J. Y .Lee, Appl. Phys. Lett., 78,934 (2001) [6.6 ] D. N. Louvatsos, V. Ioannou-Sougleridis, and A.G. Nassiopoulou, Appl. Phys. Lett., 82,397 (2003) [6.7 ] C. Miesner, T. Asperger, K. Brunner, and G. Abstreiter, Appl. Phys. Lett., 77, 2704 (2000) [6.8 ] J. Genoe, C. V. Hoof, W.V. Roy,J. H. Smet, K. Fobelets, R. P. Mertens, and G. Borghs, IEEE Trans. Electron Devices, on, 38,2006 (1991) [6.9 ] R.J. Luyken, A. Lorke,A.O. Govorov, and J.P. Kotthaus, G. Medeiros-Ribeiro, and P.M. Petroff, Appl. Phys. Lett., 74, 2486 (1999) [6.10 ] Z. Pei and H. L. Hwang, Applied Surface Science, 212-213, 760 (2003) [6.11 ] Z. Pei and H.L. Hwang, Appl. Phys. Lett., in revised [6.12 ] K. J. Yang and C. Hu, IEEE Trans. Electron Devices, 46,1500(1999) [6.13 ] Semiconductor Physics and Devices, 3/e, Donald A. Neamen, (McGraw Hill, 2003) [6.14 ] M. Büttiker, IBM J. Res. Develop., 32,63(1988) [6.15 ] H.L. Hsiao, A.B.Yang and H. L. Hwang, Applied Surface Science, 212-213, 73-77 (2003) [7.1 ] H.L.Hsiao, Ph. D Thesis, National Tsing Hua University, 1999 [7.2 ] J. G. Simmons, J. appl. Phys., 35,2655(1964) [7.3 ] S.Zafar, C.Cabral, J.R. Amos, and A. Callegari, Appl. Phys. Lett., 80,4859 (2002) [7.4 ] Semiconductor Physics and Devices, 3/e, Donald A. Neamen, (McGraw Hill, 2003) [7.5 ] Y. C. Yeo, Q. Lu, W.C. Lee, T.J. King and C. Hu, Digest of 58th Device Research Conference, pp.65 – 66 (2000)id NH0925442062 sid 857916 cfn 0 / id NH0925442063 auc 王暐智 tic 運用生物認證技術及智慧卡於隨選視訊上建構一可信賴之認證及動態付款機制 adc 許文星 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 112 kwc 隨選視訊 kwc 智慧卡 kwc 付款機制 abc 在今日,電視是一種十分廣泛的通訊媒體。不過,觀眾對於已編排固定的節目型態已不能滿足。因此,針對於上述的情況,就有人提出其他額外的影視服務出來。再者,網際網路在現在亦是十分地普及受歡迎,且能提供使用者許多資源及資訊。由此,可以知道,隨選視訊(Video-on-Demand)在未來勢必是一個趨勢。 rf [1 ]工業技術研究院電腦與通訊工業研究所, 互動視訊與多媒體產業發展策略. [2 ]財團法人資訊工業策進會, 寬頻網路發展趨勢分析. [3 ]Mike Hendry, Smart Card Security and Applications, 1997. [4 ]International Telecommunication Union(ITU), http://www.find.org.tw/news_disp.asp?news_id=2842 [5 ]John V. Pavlik, VIDEO ON DEMAND SYSTEMS:Technology,Interoperability and Trials, 1997 [6 ]Babak Hamidzadeh, INTERACTIVE VIDEO-ON-DEMAND SYSTEMS:Resource Management and Scheduling Strategies, 1998. [7 ]Wu-chi Feng, BUFFERING TECHNIQUES FOR DELIVERY OF COMPRESSED VIDEO IN VIDEO-ON-DEMAND SYSTEMS, 1997. [8 ]Unicast, http://www.webopedia.com/TERM/U/unicast.html [9 ]Jerry Fitz Gerald, Alan Dennis, Business data communications and networking, 1999. [10 ]粘添壽, 電腦網路理論與連結技術, 2002. [11 ]Multicast,http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/ipmulti.htm [12 ]Lin Huang Chang; Kuen-Chu Lai, Near video-on-demand systems with combining multicasting and unicasting batching, Electrical and Electronic Technology, 2001. TENCON. Proceedings of IEEE Region 10 International Conference on, Volume: 1, 19-22 Aug. 2001 Pages:198 - 201 vol.1 [13 ]Qazzaz, B.; Suppi, R.; Cores, F.; Ripoll, A.; Hernandez, P.; Luque, E., Providing interactive video on demand services in distributed architecture, Euromicro Conference, 2003. Proceedings. 29th , 1-6 Sept. 2003 Pages:215 – 222 [14 ]C. Kenneth Miller, Multicast networking and applications, 1999. [15 ]賴溪松, 近代密碼學及其應用, 1998. [16 ]陳彥學, 資訊安全理論與實務:介紹最實用的密碼學技術, 2000. [17 ]Stream Cipher, http://www.x5.net/faqs/crypto/q86.html [18 ]Block Cipher, http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci213594,00.htmlid NH0925442063 sid 913940 cfn 0 / id NH0925442064 auc 廖祥傑 tic 評估場可程式化閘級陣列測試電路之統計延遲缺陷涵蓋率 adc 吳誠文 adc 劉靖家 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 51 kwc 延遲測試 kwc 評估 kwc 缺陷 kwc 場可程式化閘級陣列 abc 場可程式化閘級陣列(Field Programmable Gate Array)表現問題的測試,對於日新月異的科技來講已經變成一個重要的任務。在開發測試方法的過程中,一個有效的評估工具將扮演一個重要的角色。在這篇論文中,我們發表了一個場可程式化閘級陣列錯誤模擬器的工具。這個工具可以報告測試方法對於隨機分佈於FPGA中延遲缺陷的涵蓋率。此外,這個工具還可確認目前測試沒有包含到的路徑,且可用以更進一步地改善測試電路集合的品質。 tc 1 Introduction 6 1.1 Background . . . . . . . . . . . . . . . . . . . . . .6 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . .7 1.3 Organization. . . . . . . . . . . . . . . . . . . . .7 2 Previous Work 9 2.1 FPGATest . . . . . . . . . . . . . . . . . . . . . . .9 2.2 FaultSimulation . .. . . . . . . . . . . . . . . . . 10 2.3 FaultModels . . . . . . . . . . . . . . . . . . . . 11 2.4 FPGAArchitectures . . . . . . . . . . . . . . . . . .12 2.4.1 Hierarchical-style FPGA Architecture . . . . . . . 12 2.4.2 Island-style FPGA Architecture . . . . . . . . . . 14 3 The Proposed Fault Simulator 16 3.1 FFAST Simulation Environments . . . . . . . . . . . 16 3.2 Segment Coverage . . . . . . . . . . . . . . . . . . 17 3.3 Statistical Delay Defect Coverage . . . . .. . . . . 20 3.3.1 Statistical Defect Models . . . . . . . . . . . . .21 3.3.2 Effective SDDC . . . . . . . . . . . . . . . . . . 22 3.3.3 Failed Path Searching . . . . . . . . . . . . . . .22 3.4 SimulationFlow. . . . . . . . . . . . . . . . . . . .24 3.5 Implementation . . . . . . . . . . . . . . . . . . . 26 3.5.1 Switch Matrix Modeling . . . . . . . . . . . . . . 27 3.5.2 Defect Model . . . . . . . . . . . . . . . . . . . 27 3.5.3 Failed Paths Decision . . . . . . . . . . . . . . 28 4 Experimental Results 31 4.1 Test Configurations for Interconnect Testing . . . . 31 4.2 Test Configurations for Universal FPGA Delay Testing 33 4.3 Test Configurations for FPGA BIST . . . . . . . . . .34 4.4 CPU Time Usage . . . . . . . . . . . . . . . . . . . 40 5 Conclusions 44 A The List of All Commands 45 B File Formats 46 B.1 Architecture File . . . . . . . . . . . . . . . . . .46 B.2 Configuration File . .. . . . . . . . . . . . . . . .47 B.2.1 Route File . . . . . . . . . . . . . . . . . . . . 47 B.2.2 Place File . . . . . . . . .. . . . . . . . . . . .47 B.3 Defect File . . . . . . .. . . . . . . . . . . . . . 48 B.4 Map File . . . . . . . . . . . . . . . . . . . . .. 48 B.5 Specification File . . . . . . . . . . . . . . . . . 48 B.6 Simulation Report . . . . . . . . . . . . . . . . . 49rf [1 ] M. Renovell, J. M. Portal, J. Figueras, and Y. Zorian, “Testing the interconnect of RAM-based FPGAs,” IEEE Design & Test of Computers, vol. 15, Jan.-Mar. 1998. [2 ] Y.-L. Peng, “A Universal Segment-Delay Fault Test Methodology for FPGAs,” Master Thesis, Dept. Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan, July 2003. [3 ] A. Krasniewski, “Application-dependent testing of FPGA delay faults,” in Proc. EUROMICRO Conf., pp. 260–267, 1999. [4 ] M. L. et al., “Rothko: A three dimensional FPGA,” IEEE Design & Test of Computers, pp. 16–23, 1998. [5 ] K. Kwiat, W. Debany, and S. Hariri, “Effects of technology mapping on fault-detection coverage in reprogrammable FPGAs,” IEE Proc.-Comput. Digit. Tech., vol. 142, pp. 407–410, Nov. 1995. [6 ] C.-F. Wu and C.-W. Wu, “Testing interconnects of dynamic reconfigurable FPGAs,” in Proc. Asia and South Pacific Design Automation Conf. (ASP-DAC), (Hong Kong), pp. 279–282, Jan. 1999. [7 ] T. Inoue, H. Fujiwara, H. Michinishi, T. Yokohira, and T. Okamoto, “Universal test complexity of field-programmable gate arrays,” in Proc. Fourth IEEE Asian Test Symp. (ATS), (Bangalore), pp. 259–265, Nov. 1995. [8 ] W.-K. Huang and F. Lombardi, “An approach for testing programmable/configurable field programmable gate arrays,” in Proc. IEEE VLSI Test Symp. (VTS), pp. 450–455, 1996. [9 ] A. Krasniewski, “Self-testing of FPGA delay faults in the system environment,” in On-Line Testing Workshop, pp. 40–41, July 2000. [10 ] A. Krasniewski, “Testing FPGA delay faults in the system environment is very different from ”ordinary” delay fault testing,” in On-Line Testing Workshop, pp. 37–40, July 2001. [11 ] I. G. Harris, P. R. Menon, and R. Tessier, “BIST-based delay path testing in FPGA architectures,” in Proc. Int. Test Conf. (ITC), pp. 932–938, 2001. [12 ] C.-F. Wu, C.-T. Huang, and C.-W. Wu, “RAMSES: a fast memory fault simulator,” in Proc. IEEE Int. Symp. Defect and Fault Tolerance in VLSI Systems (DFT), (Albuquerque), pp. 165–173, Nov. 1999. [13 ] M. B. Tahoori and S. Mitra, “Techniques and algorithms for fault grading of FPGA interconnect test configurations,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 23, pp. 261–272, Feb. 2004. [14 ] S. Toutounchi and A. Lai, “FPGA test and coverage,” in Proc. Int. Test Conf. (ITC), (San Jose, California), pp. 599–607, Sept. 2002. [15 ] The Programmable Logic Data Book. 2001. [16 ] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool for FPGA research,” in International Workshop on Field Programmable Logic and Applications, 1997. [17 ] Xilinx, XC6200 Field Programmable Gate Arrays. San Jose, California: Xilinx, Inc., Apr. 1997. [18 ] Y. Ran and M. Marek-Sadowska, “Crosstalk noise in FPGAs,” in Proc. IEEE/ACM Design Automation Conf. (DAC), pp. 044–949, June 2003. [19 ] C. Stroud, J. Nall, M. Lashinsky, and M. Abramovici, “BIST-based diagnosis of FPGA interconnect,” in Proc. Int. Test Conf. (ITC), pp. 618–627, 2002. [20 ] C. H. Stapper, A. N. McLaren, and M. Dreckmann, “Yield model for productivity optimization of VLSI memory chips with redundancy and partially good product,” IBM J. Research and Development, vol. 24, pp. 398–409, May 1980. [21 ] C. H. Stapper, F. M. Armstrong, and K. Saji, “Integrated circuit yield statistics,” Proc. of the IEEE, vol. 71, pp. 453–470, Apr. 1983. [22 ] A. Tyagi and M. A. Bayoumi, “Defect clustering viewed through generalized poisson distribution,” IEEE Trans. Semiconductor Manufacturing, vol. 5, pp. 196–206, Aug. 1992. [23 ] X. Sun, A. Alimohammad, and P. Trouborst, “Modeling of FPGA local/global interconnect resources and derivation of minimal test configurations,” in Proc. Int. Symp. Defect and Fault Tolerance in VLSI Systems (DFT), 2002.id NH0925442064 sid 913961 cfn 0 / id NH0925442065 auc 許正杰 tic 利用方向性內插法以及運動補償內插法之混合式去交錯系統 adc 陳永昌 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 77 kwc 去交錯處理 kwc 運動補償 kwc 方向性內插 abc 摘要 tc Table of Contents Abstract i Table of Contents ii List of Figures iv List of Tables vi Chapter 1: Introduction 1 1.1 Overview of interlacing 1 1.2 Motivation 2 1.3 Thesis organization 2 Chapter 2: Overview of De-interlacing Algorithm 4 2.1 The problems and objectives 4 2.2 Conventional de-interlacing systems 8 2.2.1 Non-motion-compensated de-interlacing 8 2.2.2 Motion-compensated de-interlacing 13 2.2.3 Hybrid method 17 2.3 The main challenge 20 Chapter 3: Hybrid Method using Directional Interpolation and Motion Compensation 20 3.1 Algorithm of the proposed method 20 3.1.1 Block-based robust motion detection 20 3.1.2 Two-step motion search with fast motion detection 22 3.1.3 Motion vector smoothness 25 3.1.4 Complex region detection 26 3.1.5 Camera motion detection 27 3.1.6 Directional interpolation using ELA 28 3.1.7 Interpolation method 29 3.1.8 Summary of the proposed algorithm 33 3.2 Architecture design of the proposed algorithm 36 3.2.1 Field buffers and block buffers 37 3.2.2 Field-based processor 40 3.2.3 Block-based de-interlacing module 41 3.2.4 Summary of the proposed architecture 55 Chapter 4: Simulation Result 56 4.1 Simulation environments 56 4.1.1 Measurement system 56 4.1.2 De-interlacing parameters 57 4.2 Simulation result 57 4.2.1 Foreman sequence 58 4.2.2 Container sequence 60 4.2.3 Mother and daughter sequence 61 4.2.4 Stefan sequence 63 4.2.5 Flower garden sequence 65 4.2.6 Coastguard sequence 67 4.2.7 Pendulum sequence 69 4.3 Summary 73 Chapter 5: Conclusions and Future Works 74 5.1 Conclusions 74 5.2 Future works 75 References 76 List of Figures Fig. 1-1 Interlaced video 1 Fig. 1-2 The process of de-interlacing 3 Fig. 2.1-1 The sampling lattices of progressive scanning and interlaced scanning 4 Fig. 2.1-2 The carrier lattices of progressive scanning and interlaced scanning 5 Fig. 2.1-3 The replications of the continuous spectrum after progressive sampling and interlaced sampling 6 Fig. 2.1-4 The spectrums of video signals after sampling 6 Fig. 2.2-1 The required frequency domain passbands of VT-filtering 9 Fig. 2.2-2 VT filtering de-interlacing technique 9 Fig. 2.2-3 Motion adaptive de-interlacing algorithm 10 Fig. 2.2-4 An example for block-based motion detection 10 Fig. 2.2-5 A local window for the ELA interpolation 11 Fig. 2.2-6 De-interlacing using motion compensated field insertion 13 Fig. 2.2-7 De-interlacing using motion compensated average 14 Fig. 2.2-7 Switching of motion vector 15 Fig. 2.2-9 De-interlacing using hybrid method proposed in [11 ] 17 Fig. 2.2-9 De-interlacing using MCFI proposed in [3 ] 18 Fig. 3.1-1 (a) The conventional block-based motion detection method 21 Fig. 3.1-1 (b) Misjudgement results from fast motion object 21 Fig. 3.1-2 The proposed robust motion detection 21 Fig. 3.1-3 An example of video sequence with fast moving object 22 Fig. 3.1-4 Two-step motion with fast motion detection 23 Fig. 3.1-5 Bi-directional refined search 24 Fig. 3.1-6 Neighboring blocks used for MV smoothing 25 Fig. 3.1-7 Complex region detection 26 Fig. 3.1-8 Camera motion detection 28 Fig. 3.1-9 The seven-point ELA algorithm 29 Fig. 3.1-10 Fast motion information detection 30 Fig. 3.1-11 Input pixels of median filter 30 Fig. 3.1-12 Deteermination of “BadMotion” and “Edge” 32 Fig. 3.1-13 Flow chart of choosing final interpolation method 32 Fig. 3.1-14 Flow chart of proposed algorithm (a) 34 Fig. 3.1-15 Flow chart of proposed algorithm (b) 35 Fig. 3.2-1 Block diagram of the proposed architecture 36 Fig. 3.2-2 The architecture of a field-buffer 37 Fig. 3.2-3 Connection between frame buffers and field buffers 38 Fig. 3.2-4 Block buffer 39 Fig. 3.2-5 Flow chart of “MBcounter” controller 40 Fig. 3.2-6 Block diagram of “block-based de-interlacing” module 41 Fig. 3.2-7(a)(b) IO ports and block diagrams of “Motion Detection module” 41 Fig. 3.2-7(c) Architecture of “Motion Detection processor” 43 Fig. 3.2-8 IO ports of Initial motion search module and Refined search module 43 Fig. 3.2-9 Block diagram of “Initial motion search” module 44 Fig. 3.2-10 Architecture of “MVI processor” 45 Fig. 3.2-11 Block diagram of “Refined motion search” module 46 Fig. 3.2-12 Architecture of “MVR processor” 47 Fig. 3.2-13 IO ports of “MV smoothing” module 48 Fig. 3.2-14 IO ports of “MV smoothing” module 49 Fig. 3.2-15 Architecture of “MVS processor” 49 Fig. 3.2-16 IO ports of camera motion detection 50 Fig. 3.2-17 Block diagram of camera motion detection module 51 Fig. 3.2-18 Architecture of “CPX Processor” module 51 Fig. 3.2-19 Functions of “J” and “counter” 52 Fig. 3.2-20 Block diagram of the “ELA & Median interpolation” module 52 Fig. 3.2-21 The block diagram of “Processor_N” module 53 Fig. 3.2-22 The block diagram of “ELA” module 54 Fig. 3.2-23 The block diagram of “OutPixel” module 54 Fig. 4-1 Performance measurement by re-converting 56 Fig. 4.2-1 The PSNR performance of the four methods on the “Forman” sequence 58 Fig. 4.2-2 154th reconstructed image of test sequence “Foreman” 59 Fig. 4.2-3 The PSNR performance of the four methods on the “container” sequence 60 Fig. 4.2-4 264th reconstructed frame of test sequence “Container” 61 Fig. 4.2-5 The PSNR performance of the four methods on the “Mother and daughter” sequence 62 Fig. 4.2-6 58th reconstructed image of test sequence “Mother and daughter” 61 Fig. 4.2-7 The PSNR performance of the four methods on the “Stefan” sequence 63 Fig. 4.2-8 176th reconstructed image of test sequence “Stefan” 64 Fig. 4.2-9 The PSNR performance of the four methods on the “Flower garden” sequence 65 Fig. 4.2-10 13th reconstructed image of test sequence “Flower Garden” 66 Fig. 4.2-11 The PSNR performance of the four methods on the “Coastguard” sequence 67 Fig. 4.2-12 220th reconstructed image of test sequence “Coastguard” 68 Fig. 4.2-13: The 4th (a) and 5th (b) interlaced images of the “Pendulum” sequence 69 Fig. 4.2-14: Reconstructed images of the “Pendulum” sequence using different methods 70 Fig. 4.2-15: Reconstructed images of the “Toilet paper” sequence. 71 Fig. 4.2-16: Reconstructed images of the “Flag” sequence. 72 List of Tables Table. I The parameters of the proposed algorithm 57 Table. II PSNR comparison 73rf [1 ] G. de Haan and E.B.Bellers, “De-interlacing-an overview”, Proceedings of the IEEE, vol86, Issue 9, pp. 1839-1857, Sept.1998. [2 ] G. de Haan and E.B.Bellers, “De-interlacing of Video Data”, IEEE Transactions on Consumer Electronics, Vol.44 Issue 3, pp.819-825, Aug. 1997. [3 ] You-Young Jung, Byung-Tae Choi, Yung-Jun Park, and Sung-Jea Ko, “An Efficient De-interlacing Technique Using Motion Compensation Interpolation”, IEEE Transations on Consumer Electronics, Vol 46 Issue 3, pp 460-466,Aug. 2000. [4 ] Byung-Tae Choi, Sung-Hee Lee, and Sung-Jea Ko, “New Frame Rate Up-conversion using Bi-directional Motion Estimation”, IEEE Transactions on Consumer Electronics, Vol.46, No.3, August 2000. [5 ] G. de Haan and E.B.Bellers, “De-interlacing A Key Technology for Scan Rate Conversion”, ELSEVIER, 2000. [6 ] Alexander E. Mohr, Eve A. Riskin and Richard E. Ladner, “Generalized Multiple Description Coding through Unequal Loss Protection,” Proceedings of IEEE International Conference on Image Processing, vol.1, pp.411-415, Dec. 1999. [7 ] Thomas Komarek and Peter Pirsch, “Array Architecture for Block Matching Algorithms”, IEEE Transactions on Circuits and Systems, Vol. 36, No. 10, October 1989. [8 ] Kenju Sugiyama and Hiroya Nakamura, “A Method of Deinterlacing with Motion Compensation Interpolation”, IEEE Transactions on Consumer Electronics, Vol.45, No.3, August 1999. [9 ] Yeong-Taeg Kim, Shin-Haeng Kim, and Se-Woomg Park, “Motion Decision Feedback Deinterlacing Algorithms”, IEEE International Conference on Image Processing, 2002.. [10 ] Hoon Yoo and Jechang Jeong, “Direction-Oriented Interpolation and Its Application to De-interlacing”, IEEE Transactions on Consumer Electronics, Vol.48, no. 4, November 2002. [11 ] Ohjae Kwon, Kwanghoon Sohn, and Chulhee Lee, “Deinterlacing using Directional Interpolation and Motion Compensation”, IEEE Transactions on Consumer Electronics, Vol.49, No. 1, February 2003. [12 ] You-Young Jung, Seungjoon Yang, and Pillho Yu,“An Effective De-Interlacing Technique Using two Types of Motion Information”, IEEE Transactions on Consumer Electronics, Vol.49, No.3, August 2003. [13 ] Stephan Wenger, “Error Patterns for Internet Experiments,” ITU Telecommunications Standardization Sector, Red Bank, New Jersey, Doc. Q15-I-16r1, Oct. 1999. [14 ] Shyh-Feng Lin, Yu-Ling Chang, and Liang-Gee Chen, “Motion Adaptive Interpolation with Horizontal Motion Detection for Deinterlacing”, IEEE Transactions on Consumer Electronics, Vol.49, No.4, November 2003. [15 ] Rob A. Beuker and Imran A. Shah, “Analysis of Interlaced Video Signals and Its Applications”, IEEE Transactions on Image Processing, Vol. 3, No. 5, Septemper 1994. [16 ] Renxiang Li, Bing Zeng, and Ming L. Liou, “Reliable motion Detection/Compensation for Interlaced Sequences and Its Applications to Deinterlacing”, IEEE Transactions on Circuits and Systems for Video Technilogy, Vol. 10, No. 1, February 2000.id NH0925442065 sid 913957 cfn 0 / id NH0925442066 auc 賴進鴻 tic 淺溝絕緣結構機械應力對深次微米元件電學特性影響之分析 adc 龔正 ty 博士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 115 kwc 金氧半場效電晶體 kwc 淺溝絕緣結構 kwc 機械應力 kwc 主動區幾何尺寸大小 kwc 指數應力分佈模型 kwc 溫度效應 abc 隨著製程技術的進步進入深次微米時代,被用來作為元件之間絕緣的淺溝絕緣結構 (Shallow trench isolation, STI) 其所引起的機械應力 (Mechanical stress) 隨著元件愈作愈小而變得愈來愈重要。根據文獻的報告,此機械應力會造成元件特性大到20%的改變,同時也發現此機械應力引起的元件特性的改變與製程和元件佈局 (Layout) 是相關的。到目前為止,元件佈局與淺溝絕緣結構機械應力效應之間的關連性並沒有一個完整清楚的說明。在這篇論文中,我們提出了指數應力分佈模型 (Exponential stress distribution model) 可以成功地解釋絕大部份有關淺溝絕緣結構機械應力效應與元件佈局之間的相關性。 tc Contents Abstract i Contents iii Chapter 1 Introduction 1 Chapter 2 Theory Review 4 2.1 Isolation Technologies for Deep-Submicron CMOS 4 2.2 The Originality of Mechanical Stress in MOSFETs 5 2.2.1 Thermal Expansion Coefficient Mismatch 6 2.2.2 Layout Dependence of STI Induced Mechanical Stress 7 2.3 Mechanical Stress Impact on the Performance of MOSFET 8 2.3.1 Piezoresistance Effect 8 2.3.2 Externally Applied Mechanical Stress testing 9 2.3.3 Layout Dependence of STI Mechanical Stress Effect 10 2.4 Method of Improving STI Mechanical Stress Effect 13 Chapter 3 Characteristics of Shallow Trench Isolation Induced Mechanical Stress Effect on MOSFET 25 3.1 Introduction 25 3.2 Experimental Details 27 3.3 Electrical characteristics 28 3.3.1 STI Stress effect impact on drive current 28 3.3.2 STI Stress effect impacts on Vt and Gm 29 3.3.3 Exponential Stress distribution Model 31 3.3.4 Channel length and width dependence of STI stress effect 34 Chapter 4 Temperature Dependence of Shallow-Trench-Isolation Mechanical Stress on n-Channel Metal-Oxide-Semiconductor Field Effect Transistors 66 4.1 Introduction 66 4.2 Experimental Details 67 4.3 Results and Discussion 68 Chapter 5 New structure for Improved Shallow Trench Isolation Induced Mechanical Stress Effect 77 5.1 Introduction 77 5.2 Experimental Details 79 5.3 Results and Discussion 80 5.3.1 The impact of STI stress effect on n-MOSFET characteristics 80 Chapter 6 104 References 107rf [1 ] R. J. Jaccodine and W. A. Schleget, "Measurement of Strains at Si-SiO2 Interface," J. Appl. Phys., vol. 37, pp. 2429-2434, 1966. [2 ] C. Gallon, G. Reimbold, G. Ghibaudo, R. A. Bianchi, R. Gwoziecki, C. Raynaud, "Electrical Analysis of Mechanical Stress Induced by Shallow Trench Isolation," Eur. Solid-State Device Conf., 33rd, pp. 359-362, 2003. [3 ] Gregory Scott, Jeffrey Lutze, Mark Rubin, Faran Nouri, and Martin Manley, "NMOS Drive Current Reduction Caused by Transistor Layout and Trench Isolation Induced Stress," in IEDM Tech. Dig., pp. 827-830, 1999. [4 ] Richard C. Jaeger, Jeffrey C. Suhling, Ramanathan Ramani, Arthur T. Bradley, and Jianping Xu, "CMOS Stress Sensors on (100) Silicon," IEEE Solid-State Circuits vol. 35, no. 1, pp. 85-95, 2000. [5 ] R. A. Bianchi, G. Bouche, O. Roux-dit-Buisson, "Accurate Modeling of Trench Isolation Induced Mechanical Stress effects on MOSFET Electrical Performance," in IEDM Tech. Dig., pp. 117-120, 2002. [6 ] Ke-Wei Su, Yi-Ming Sheu, Chung-Kai Lin, Sheng-Jier Yang, Wen-Jya Liang, Xuernei Xi, chung-shi Chiang, Jaw-Kang Her, Yu-Tai Chia, Carlos H. Diaz, and Chenming Hu, "A Scaleable Model for STI Mechanical Stress Effect on Layout Dependence of MOS Electrical Characteristics," IEEE Custom Integrated Circuits Conf., pp. 245-248, 2003. [7 ] Y. M. Sheu, Kelvin Y. Y. doong, C. H. Lee, M. J. chen, and C. H. Diaz, "Study on STI Mechanical Stress Induced Variations on Advanced CMOSFETs," Int. Conf. on Microelectronic Test Structure, pp. 205-208, 2003. [8 ] Y.G. Wang, D.B. Scott, J. Wu, J.L. Waller, J.Hu, K. Liu, and V. Ukraintsev, "Effect of Uniaxial Mechanical Stress on Drive Current of 0.13 um MOSFETs," IEEE Trans. Electron Devices, vol. 50, no. 2, pp. 529-531, 2003. [9 ] Y. Jeon, G. C. -F. Yeap, P. Grudowski, T. Van Gompel, J. Schmidt, M. Hall, B. Melnick, M. Mendicino, S. Venkatesan, "The impact of STI mechanical Stress on the device performance of 90nm technology node with different substrates and isolation processes," in Proc. IEEE Int. SOI Conf., pp. 164-165, 2003. [10 ] Tony Lin, Yoyi Gong, J. T. Tseng, Lorenzo Yu, Tzermin Shen, Daniel Chen, T. P. Chen, C. L. Kuo, W. T. Shiau, J. K. Chen, S. C. Chien, and S. W. Sun, "Optimization of STI Stress and Active Geometry Configuration for Advanced CMOS Devices," J. Appl. Phys., vol. 43, no. 4B, pp.1756-1758, 2004. [11 ] Masafumi Miyamoto, Hiroyuki Ohta, Yukihiro Kumagai, Yasuo Sonobe, Kousuke Ishibashi, and Yasushi Tainaka, "Impact of Reducing STI-Induced Stress on Layout Dependence of MOSFET Characteristics," IEEE Trans. Electron Devices, vol. ED-51, no.3, pp. 440-443, 2004. [12 ] Heemyong Park, Kevin S. Jones, Jim A. Slinkman, and Mark E. Law, "The Effects of Strain on Dopant Diffusion in Silicon," in IEDM Tech. Dig., pp. 303-306, 1993. [13 ] Shinya Ito, Hiroaki Namba, Kensuke Yamguchi, Tsuyoshi ahairata, Koichi Ando, Shin Koyama, Shunichiro Kuroki, Nobuyuki Ikezawa, Tatsuya Suzuki, Takehiro Saitoh, and Tadahiko Horiuchi, "Mechanicl Stress Effect of Etch-Stop Nitride and its Impact on Deep Submicron Transistor Design," in IEDM Tech. Dig., pp. 247-250, 2000. [14 ] Willem-Jan Toren, Emmanuel Perrin, Meindert Lunenborg, "Characterization of the diode leakage current in advanced 0.12μm CMOS technology," Extended Abstracts of int. Workshop on Junction Tech., pp. 15-18, 2001. [15 ] Hyeokjae Lee, Jong-Ho Lee, Hungsoon Shin, Young-June Park, and Hong Shick Min, "An Anomalus Device Degradation of SOI Narrow Width Devices Caused by STI Edge Influence," IEEE Trans. Electron Devices, vol. ED-49, no. 4., pp. 605-612, 2002. [16 ] Scott R. Stiffler, Jerry B. Lasky, Charles W. Koburger, and Wayne S. Berry, "Oxidation-Induced Defect Generation in Advanced DRAM Structures," IEEE Trans. Electron Devices, vol. ED-37, no.5, pp. 1253-1258, 1990. [17 ] Chih-Hsin Yu, Min-hwa Chi, Yuan-Hung Liou, Yeur-Luen Tu, Chi-San Wu, Yu-Shen Chen, Chih-Yang Pai, and Chia-Shiung Tsai, "Plasma charging Defect Characterization, Inspection, and Monitors in Poly-Buffered STI," IEEE Trans. Semiconductor Manufacturing, vol. 15, no. 4, pp. 478-485, 2002. [18 ] T. Kuroi, T. Uchida, K. Horita, Horita, M. Sakai, Y. Inoue, and T. Nishimura, "Stress Analysis of Shallow Trench Isolation for 25MDRAM and beyond," in IEDM Tech. Dig., pp. 141-144, 1998. [19 ] Peter Smerys, Peter B. Griffin, Zofia U. Rek, Ingrid De Wolf, and Krisna C. Saraswat, "Influence of Process-Induced Stress on Device Characteristics and its Impact on Scaled Device Performance," IEEE Trans. Electron Devices, vol. ED-46, no.6, pp. 1245-1252, 1999. [20 ] Astuki Ono, Ryuichi Ueno, and Issmi Sakai, "TED Control Technology for Suppression of Reverse Narrow Channel Effect in 0.1 um MOS Devices," in IEDM Tech. Dig., pp. 227-230, 1997. [21 ] J. Damiano, C. K. Subramanian, M. Gibson, Y. -S. Feng, L. Zeng, J. Sebek, E. Deeters, C. Feng, T. Mcnelly, M. Blackwell, H. Nguyen, H. Tian, J. Scott, J. Zaman, C. Honcik, M. Miscione, K. Cox, J. D. Hayden, "Characterization and Elimination of Trench Dislocations," VLSI Symp. Tech. Dig., pp212-213, 1998. [22 ] H. Miura, S. Ikeda, and N. Suzuki, "Effect of mechanical Stress on Reliability of Gate-Oxide Film in MOS Transistors," in IEDM Tech. Dig., pp. 743-746, 1996. [23 ] Shuji Ikeda, Hiroyuki Ohta, Hideo Miura, and Yasuhide Hagiwara, "Mechanical Stress Control in a VLSI-Fabrication Process: A Method for Obtaining the Relation Between Stress Levels and Stress-Induced Failures," IEEE Trans. Semiconductor Manufacturing, vol. 16, no. 4, pp. 696-703, 2003. [24 ] William G. En, Dong-Hyuk Ju. Darin Chan, Simon Chan, and Olov Karlsson, "Reduction of STI/active Stress on 0.18μm SOI Devices Through Modification of STI Process," in Proc. IEEE Int. SOI Conf., pp. 85-86, 2001. [25 ] A. Shimizu, K. Hachimine, N. Ohki, H. Ohta, M. Koguchi, Y. Nonaka, H. Sato, and F. Ootsuka, "Local Mechancial-Stress Control(LMC): A New Technique for CMOS-Performance Enhancement," in IEDM Tech. Dig., pp. 433-436, 2001. [26 ] Fabiano Fruett, Gerard C. M. Meijer, and Anton Bakker, "Minimization of the Mechanical-Stress-Induced Inacuracy in Bandgap Voltage References," IEEE Solid-State Circuits. vol. 38, no. 7, pp. 1288-1291, 2003. [27 ] Stanley Wolf, Silicon Processing for the VLSI ERA , vol. 4, part 1, Lattice Press. [28 ] S. M. Sze, Physics of Semiconductor Devices. New York: Wiley, 1993. [29 ] Cheng-Liang Huang, Hamid Soleimani, Greg Grula, Narain D. Arora, and Dimitri Antoniadis, "Isolation Process Dependence of Channel Mobility in Thin-Film SOI Devices," IEEE Electron Device Lett., vol. 17, no. 6, pp. 291-293, 1996. [30 ] Jian Chen, Moses Chan, Ingrid De Wolf, "Local Stress Measurements in Package by Raman Spectroscopy," Electronics Packaging Tech. Conf., pp. 159-162, 2000. [31 ] Daewon Ha, Changhyun Cho, Dongwon Shin, Gwan-Hyeob Koh, Tae-Young Chung, and Kinam Kim, "Anomalous Junction Leakage Current Induced by STI Dislocation and Its Impact on Dynamic Random Access Memory Devices," IEEE Trans. Electron Devices, vol. ED-46, no.5, pp. 940-146, 1999. [32 ] Venkatesh P. Gopinath, Helmut Puchner, and Mohammad Mirabedini, "STI Stress-Induced Increase in Reverse Bias Junction Capacitance," IEEE Electron Device Lett., vol. 23, no. 6, pp. 312-314, 2002. [33 ] Peter Smeys, Peter B. Griffin, Zofia U. Rek, Ingrid De Wolf, and Krishan C. Saraswat, "The influence of oxidation-induced stress on the generation current and its impact on scaled device performance," in IEDM Tech. Dig., pp. 709-712, 1996. [34 ] Ke-Wei Su, Kuang-Hsin Chen, Tang-Xuan Chung, Hung-Wei Chen, Cheng-Chuan Huang, Hou-Yu Chen, Chang-Yun Chang, Di-Hong Lee, Cheng-Kuo Wen, Yi-Ming Sheu, Sheng-Jier Yang, Chung-Shi Chiang, Chien-Chao Huang, Fu-Liang Yang, and Yu-Tai Chia, "Modeling Isolation-Induced Mechanical Stress Effect on SOI MOS Devices," in Proc. IEEE Int. SOI Conf., pp. 80-82, 2003. [35 ] V. Senez, T. Hoffmann, E. Robilliart, G. Bouche, H. Jaouen, M. Lunenborg, and G. Carnevale, "Investigations of Stress Sensitivity of 0.12 CMOS Technology Using Process Modeling," in IEDM Tech. Dig., pp. 831-834, 2001. [36 ] Kazunari Ishimaru, Jone F. Chen, and Chenming Hu, "Channel Width Dependence of Hot-Carrier Induced Degradation in Shallow Trench Isolated PMOSFET's," IEEE Trans. Electron Devices, vol. ED-46, no.7, pp. 1532-1536, 1999. [37 ] Bernd Borchert, and Gerhard E.Eorda, "Hot-Electron Effects on Short-Channel MOSFET's Determined by the Piezoresistance Effect," IEEE Trans. Electron Devices, vol. ED-35, no.4, pp. 483-488, 1988. [38 ] Z. Z. Wang, J. Suski, and D. Collard, "Piezoresistive Simulation in MOSFETs," Sensors and Actuators A, 37-38, pp. 357-364, 1993. [39 ] Scott E. Thompson, Mark Armstong, Chis Auth, Steve Cea, Robert Chau, Glenn Glass, Thomas Hoffman, Jason Klaus, Zhiyong Ma, Brian Mcintyre, Anand Murthy, Borna Obradovic, Lucian Shifren, Sam Sivakumar, Sunit Tyagi, Tahir Ghani, Kaizad Mistry, and Youssef EI-Mansy, "A Logic Nanotechnology Featuring Strained-Silicon," IEEE Electron Device Lett., vol. 25, no. 4, pp. 191-193, 2004. [40 ] Akemi Hamada, Takeharu Furusawa, Naota Saito, and Eiji Takeda, "A New Aspect of Mechanical Stress Effects in Scaled MOS Devices," IEEE Trans. Electron Devices, vol. ED-38, no.4, pp. 895-900, 1991. [41 ] Tung-Sheng Chen, and Yu-Ren Huang, "Evaluation of MOS Devices as Mechanical Stress Sensors," IEEE Trans. Comp. and Packag. Technol. vol. 25, no. 3, pp. 511-517, 2002. [42 ] Cheng-Liang Huang, Hamid R. Soleimani, Gregory J. Grula, Jeffrey W. Sleight, Angelo Villani, Hassan Ali, and Dimitri A. Antoniadis, "LOCOS-Induced Stress Effects on Thin-Film SOI Devices," IEEE Trans. Electron Devices, vol. ED-44, no.4, pp. 646-650, 1997. [43 ] Arthur T. Bradley, Richard C. Jaeger, Jeffrey C. Suhling, and Kevin J. O'Conor, "Piezoresistive characteristics of Short-channel MOSFETs on (100)silicon," IEEE Trans. Electron Devices, vol. ED-48, no. 9, pp. 2009-2015, 2001. [44 ] Robin Degraeve, Guido Groeseneken, Ingrid De Wolf, and Herman E. Maes, "The Effect of Externally Imposed Mechanical Stress on the Hot-Carrier-Induced Degradation of Deep-Sub Micron nMOSFET's," IEEE Trans. Electron Devices, vol. ED-44, no.6, pp. 943-950, 1997. [45 ] Hissayo Sasaki Momose, Toyota Morimoto, Kikuo Yamabe, and Hiroshi Iwai, "Relationship Between Mobility and Residual-Mechanical-Stress as Measured by Raman Spectroscopy for Nitrided-Oxide-Gate MOSFETs," in IEDM Tech. Dig., pp. 65-68, 1990. [46 ] B-Y. Tsaur, John C. C. Fan, and M. W. Geis, "Stress-Enhanced Carrier Mobility in Zone Melting Recrystallized Polycrystalline Si Films on SiO2-Coated Substrates," Appl. Phys. Lett., vol. 40, no. 4, pp. 322-324, 1982. [47 ] Hyeokjae Lee, Jong-Ho Lee, Hyungsoon Shin, Young June Park, and Hong Shick Min, "Low-Frequency Noise Degradation Caused by STI Interface Effects in SOI-MOSFETs," IEEE Electron Device Lett., vol. 22, no.9, pp. 449-451, 2001. [48 ] Sandip Tiwari, M. V. Fischetti, P. M. Mooney, and J. J. Welser, "Hole Mobility Improvement in Silicon-on-Insulator and Bulk Silicon Transistors Using Local Strain," in IEDM Tech. Dig., pp. 939-941, 1997. [49 ] Chih Yuan Lu, and J. M. Sung, "Reverse Short-Channel Effect on Threshold Voltage in Submicrometer Salicide Devices," IEEE Electron Device Lett., vol. 10, no.10, pp. 446-448, 1989. [50 ] Jong-Wook Lee, Hyung-Ki Kim, Min-Rok Oh, and Yo-Hwan Koh, "Threshold Voltage Dependence of LOCOS-Isolated Thin-Film SOINMOSFET on Buried Oxide Thickness," IEEE Electron Device Lett., vol. 20, no.9, pp. 478-480, 1999. [51 ] S. W. Crowder, P. M. Rousseau, J. A. Scott, P. B. Griffin, and J. D, Plummer, "The Effect of Source/Drain Processing on the Reverse Short Channel Effect of Deep Sub-Micron Bulk and SOINMOSFETs," in IEDM Tech. Dig., pp. 427-430, 1995. [52 ] Hyeokjae Lee, Kwun-Soo Chun, Jeong-Hyong Yi, Jong Ho Lee, Young June Park, and Hong Shick Min, "Harmonic Distortion due to Narrow Width Effects in Deep sub-micron SOI-CMOS Device for analog-RF applications," in Proc. IEEE Int. SOI Conf., pp. 83-85, 2002. [53 ] Miroslav Micovic, Ara Kurdoghlian, Paul Janke, Paul Hashimoto, Danny W. S. Wong, Jeong S. Moon, Loren McCray, and chanh Nguyen, "AlGaN/GaN Heterojunction Field Effect Transistors Grown by Nitrogen Plasma Assisted Molecular Beam Epitaxy," IEEE Trans. Electron Devices, vol. ED-48, no. 3, pp. 591-596, 2001.id NH0925442066 sid 827929 cfn 0 / id NH0925442067 auc 葉人傑 tic 快閃記憶體故障模型及測試演算法之研發 adc 吳誠文 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 71 kwc 快閃記憶體測試 kwc 故障模型 kwc 測試演算法 kwc 內建自我測試 kwc 故障模擬程式 abc 快閃記憶體是由一種浮動閘晶體所組成的非揮發性記憶元件,正當我們跨入系統晶片的設計環境時,商用型快閃記憶體及內崁式快閃記憶體的使用也正急遽且快速的成長。然而,傳統的快閃記憶體測試方式不外乎是使用較特定用途之故障模型及測試程式,且傳統之測試流程也是專為特殊設計之快閃記憶體所開發使用。有見於此,我們根據了國際電機/電子工程學會針對浮動閘半導體陣列之特性及定義之標準(IEEE Standard)提出了一套快閃記憶體常見之干擾故障模型。另外,我們也針對位元及字元之快閃記憶體發展出有效率之測試演算法(March-FT),它能有效的測試出快閃記憶體干擾故障及傳統定義之故障。除此之外,我們還開發了故障模擬分析器(RAMSES-FT)方便使用者開發及分析測試演算法之效率。借由測試演算法產生器工具(TAGS)搭配此故障模擬分析器,即可針對使用者希望偵測之故障輕鬆的找出有效率之測試演算法或測試程式。而我們所產生及開發出的測試演算法,都能輕易的移植進內建自我測試電路中,使得我們所開發出之內建自我測試電路皆能針對一般商用之快閃記憶體或內崁式快閃記憶體擁有高效率之測試能力。最後,我們將開發出之內建自我測試電路實際應用於兩個工業界之快閃記憶體,統計出內建自我測試電路之硬體使用量不超出整體總面積之百分之三,足以顯示其耗費之硬體成本極低。 tc 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . 2 1.2 Review of Previous Works. . . . . . . . . . . . . . 3 1.3 Proposed Approach . . . . . . . . . . . . . . . . 4 1.4 Organization . . . . . . . . .. . . . . . . . . 5 2 Flash Memories 7 2.1 Overview . . . . . . . . . . . . . . . .. . . . . . 7 2.2 Basic Operations . . . . . . . . . . . . . . . . . . 9 2.2.1 Read Operation . . . . . . . . . . . . . 10 2.2.2 Program Operation . . . . . . . . . . . . . . 12 2.2.3 Erase Operation . . . . . . . . . . . . . . 12 2.3 Cell Structures . . . . . . . . . . . . . . . . . . 14 2.4 Array Architectures . . . . . . . . . . . . . . . 17 2.5 Common Flash Interface (CFI) . . . . . . . . . . 20 3 Disturb Fault Modeling 22 3.1 Preliminaries . . . . . . . . . . . . . . . . . . . 22 3.2 Program Disturb Faults . . . . . . . . . . . . . . . 22 3.3 Read Disturb Faults . . . . . . . . . . . . . . . . . 25 3.4 Erase Disturb Faults . . . . . . . . . . . . . . . 26 3.5 Conventional Functional Faults . . . . . . . . . . 26 4 Test Algorithm Development 28 4.1 Flash Fault Simulator: RAMSES-FT . . . . . . . . . 28 4.1.1 Basics . . . . . . . . . . . . . . . . . . . . 28 4.1.2 Fault descriptors . . . . . . . . . . . . . . . 30 4.1.3 Fault Coverage Scaling . . . . . . . . . . . . 32 4.2 March-like Tests . . . . . . . . . . . . . . . . 34 ii 4.2.1 March Flash Test (March-FT) . . . . . . . . . . 34 4.2.2 March Flash Diagnosis (March-FD) . . . . . . . 40 4.2.3 Simulation Results andAnalysis . . . . . . . . 42 4.3 Diagonal Tests . . . . . . . . . . . . . . . . . 43 4.3.1 Diagonal Flash Test (Diagonal-FT) . . . . . 44 4.3.2 Diagonal Flash Diagnosis (Diagonal-FD) . . . . 46 4.3.3 Simulation Results andAnalysis . . . . . . . 47 4.4 Test Algorithm Generation by Simulation . . 49 5 Built-In Self-Test Design 51 5.1 BIST Architecture . . . . . . . . . . . . . . . . . 51 5.1.1 Controller (CTR) . . . . . . . . . . . . . 53 5.1.2 Test Pattern Generator (TPG) . . . . . . 56 5.1.3 Multiplexer (MUX) . . . . . . . . . . . 58 6 Experimental Result and Discussions 59 6.1 Experimental Result . . . . . . . . . . . . . . . 59 6.1.1 Embedded Flash Memory Core . . . . . 59 6.1.2 Commodity Flash Memory Chip . . . . . 61 6.2 Discussions . . . . . . . . . . . . . . . . . . . . 64 7 Conclusions and Future Work 65 APPENDIX A RAMSES-FT Manual 67 Bibliography 69rf [1 ] IEEE, IEEE 1005 Standard Definitions and Characterization of FloatingGate Semiconductor Arrays. Piscataway: IEEE Standards Department, 1999. [2 ] K.-L. Cheng, J.-C. Yeh, C.-W. Wang, C.-T. Huang, and C.-W. Wu, “RAMSES-FT: A fault simulator for flash memory testing and diagnostics,” in Proc. IEEE VLSI Test Symp. (VTS), (Monterey, California), pp. 281–286, Apr. 2002. [3 ] S.-K. Chiu, “Diagonal test and diagnostic schemes for flash memories,” Master Thesis, Dept. Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan, June 2002. [4 ] J.-C. Yeh, C.-F. Wu, K.-L. Cheng, Y.-F. Chou, C.-T. Huang, and C.-W. Wu, “Flash memory built-in self-test using march-like algorithms,” in Proc. IEEE Int. Workshop on Electronic Design, Test, and Applications (DELTA), (Christchurch), pp. 137–141, Jan. 2002. [5 ] S.-K. Chiu, J.-C. Yeh, C.-T. Huang, and C.-W. Wu, “Diagonal test and diagnostic schemes for flash memories,” in Proc. Int. Test Conf. (ITC), (Baltmore), pp. 37–46, Oct. 2002. [6 ] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells—an overview,” Proc. of the IEEE, vol. 85, pp. 1248–1271, Aug. 1997. [7 ] S. Aritome, R. Shirota, G. Hemink, T. Endoh, and F. Mausouka, “Reliability issues of flash memory cells,” Proc. of the IEEE, vol. 81, pp. 776–787, May 1993. [8 ] A. J. van de Goor, Testing Semiconductor Memories: Theory and Practice. Chichester, England: John Wiley & Sons, 1991. [9 ] F.-B. D., “A fully decoded 2048-bit electrically programmable FAMOS read-only memory,” in Proc. IEEE Int. Solid-State Cir. Conf. (ISSCC), pp. 301–306, Oct. 1971. [10 ] F. Masuoka, M. Asano, H. Iwahashi, T. Komuro, and S. Tanaka, “A new flash eeprom cell using triple polysilicon technology,” in Proc. IEEE IEDM, pp. 464–467, 1984. [11 ] G. Verma and N. Mielke, “Reliability performance of ETOX based flash memories,” in Proc. IEEE Int. Reliability Physics Symp., pp. 158–166, 1988. [12 ] M. G. Mohammad, K. K. Saluja, and A. Yap, “Testing flash memories,” in Proc. 13th Int. Conf. VLSI Design, pp. 406–411, Jan. 2000. [13 ] Y.-L. Horng, J.-R. Huang, and T.-Y. Chang, “A realistic fault model for flash memories,” in Proc. Ninth IEEE Asian Test Symp. (ATS), (Taipei), pp. 274–281, Dec. 2000. [14 ] J.-N. Ko, J.-R. Huang, and T.-Y. Chang, “March test and on-chip test circuit of flash memories,”in Proc. 43st Midwest Symp. Circuits and Systems, vol. 1, (East Lansing, MI 48824-1226), pp. 128–131, Aug. 2000. [15 ] M. G. Mohammad and K. K. Saluja, “Flash memory disturbances: modeling and test,” in Proc. IEEE VLSI Test Symp. (VTS), (Marina Del Rey, California), pp. 218 –224, Apr. 2001. [16 ] C.-W. Wang, C.-F. Wu, J.-F. Li, C.-W. Wu, T. Teng, K. Chiu, and H.-P. Lin, “A built-in selftest and self-diagnosis scheme for embedded SRAM,” in Proc. Ninth IEEE Asian Test Symp. (ATS), (Taipei), pp. 45–50, Dec. 2000. [17 ] C.-F. Wu, C.-T. Huang, and C.-W. Wu, “RAMSES: a fast memory fault simulator,” in Proc. IEEE Int. Symp. Defect and Fault Tolerance in VLSI Systems (DFT), (Albuquerque), pp. 165–173, Nov. 1999. [18 ] C.-F. Wu, C.-T. Huang, K.-L. Cheng, and C.-W. Wu, “Simulation-based test algorithm generation for random access memories,” in Proc. IEEE VLSI Test Symp. (VTS), (Montreal), pp. 291–296, Apr. 2000. [19 ] P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, Flash Memories. Boston: Kluwer Academic Publishers, 1999. [20 ] V. N. Kynett, A. Baker, M. Fandrich, G. Hoekstra, O. Jungroth, J. Kreifels, and S. Wells, “An in-system reprogrammable 256k cmos flash memory,” in Proc. IEEE Int. Solid-State Cir. Conf. (ISSCC), pp. 132–133, 330, Feb. 1988. [21 ] JEDEC, JESD 68.01 Common Flash Interface (CFI). Arlington, VA 22201-3834: JEDEC Solid State Technology Association, Sept. 2003. [22 ] A. K. Sharma, Semiconductor Memories: Technology, Testing, and Reliability. Piscataway: IEEE Press, 1997. [23 ] C.-W. Wu, Embedded Memory Testing and Diagnostics. 2004. [24 ] C.-F. Wu, C.-T. Huang, C.-W. Wang, K.-L. Cheng, and C.-W. Wu, “Error catch and analysis for semiconductor memories using March tests,” in Proc. IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD), (San Jose), pp. 468–471, Nov. 2000. [25 ] T. J. Bergfeld, D. Niggemeyer, and E. M. Rudnick, “Diagnostic testing of embedded memories using BIST,” in Proc. Design, Automation and Test in Europe (DATE), (Paris), pp. 305–309, Mar. 2000. [26 ] A. J. van de Goor, Testing Semiconductor Memories: Theory and Practice. Gouda, The Netherlands: ComTex Publishing, 1998.id NH0925442067 sid 883915 cfn 0 / id NH0925442068 auc 張兆中 tic 使用關聯圖及其貝氏網路展開實現多聚腺 tic & tic #33527;酸化點之模型 adc 呂忠津 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 44 kwc 多聚腺 kwc & kwc #33527;酸化 kwc 關聯圖 kwc 貝氏網路展開 abc 預測人類的新基因是目前生物資訊領域中的一個重要課題,其終極目標便是於人類的三十億個鹼基對中,標記出每個基因特定的結構。其中,多聚腺苷酸化點(polyadenylation site)是位於基因結尾的一種結構,在這個點出現的位置,前信使核糖核酸(pre-mRNA)將會精確地發生核酸內切,並在切開的位置上形成多腺苷酸尾巴,而多腺苷酸尾巴幾乎在所有成熟的真核生物前信使核糖核酸的末端都有發現;正由於這種普遍性,我們選定多聚腺苷酸化點為我們預測人類基因結構的第一步。 tc 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Mechanism of mRNA Polyadenylation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 The CPSF and Polyadenylation Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 The CstF and Downstream Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.3 CF Im, CF IIm, and Cleavage Site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 2.1.4 RNA Polymerase II, PAP, and PAB II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 2.2 Conventional Models of Polyadenylation Prediction . . . . . . . . . . . . . . . . . . . . . . . .10 2.2.1 Weight Matrix Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 2.2.2 Weight Array Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.3 Second-order Markov Chain Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.2.4 Famous Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 3.1 Dependency Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Expanded Bayesian Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.1 Chi-square Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.2 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 4.2 Accuracy Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2.1 K-fold Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2.2 Signal Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2.3 PAS Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.4 DE Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.5 Integrated detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41rf Barabino, S. M., Hubner, W., Jenny, A., Minvielle, S. L., and Keller, W. (1997). The 30- kd subunit of mammalian cleavage and polyadenylation speci‾city factor and its yeast homolog are rna-binding zinc ‾nger proteins. Gene & Dev., 11, 1703{1716. Berget, S. M. (1984). Are u4 small nuclear ribonucleoproteins involved in polyadenylation? Nature, 309, 179{182. Bienroth, S., Wahle, E., Satler, C. C., and Keller, W. (1991). Puri‾cation of the cleavage and polyadenylation factor incolved in 3' processing of mrna precursors. J. Biol. Chem., 266, 19768{19776. Burge, C. and Karlin, S. (1997). Prediction of complete gene structures in human genomic dna. J. Mol. Biol., 268, 78{94. Chen, F., MacDonald, C. C., and Wilusz, J. (1995). Cleavage site determinants in the mammalian polyadenylation signal. Nucleic Acids Res., 23, 2614{2620. Chen, T. M. (2002). Modeling splice sites with dependency graphs and their approximation by bayesian networks. Master's thesis, National Tsing Hua University. Chou, Z. F., Chen, F., and Wilusz, J. (1994). Sequence and position requirements for uridylate-rich downstream elements of polyadenylation signals. Nucleic Acids Res., 13, 2525{2531. Colgan, D. F. and Manley, J. L. (1997). Mechanism and regulation of mrna polyadenylation. Genes Devel., 11, 2755{2766. 42 Edmonds, M. and Abrams, R. (1960). Polynucleotide biosynthesis : Formation of a sequence of adenylate units from adenosine triphosphate by an enzyme form thymus nuclei. J. Biol. Chem., 235, 1142{1148. Ewens, W. J. and Grant, G. R. (2001). Statistical Methods in Bioinformatics : An Introduc- tion. New York: Springer-Verlag. Gautheret, D. and Lambert, A. (2001). Direct rna motif de‾nition and identi‾cation from multiple sequence alignments using secondary structure pro‾les. J. Mol. Biol., 313, 1003{1011. Kondrakhin, Y. V., Shamin, V. V., and Kolchanov, N. A. (1994). Construction of a gen- eralized consensus matrix for recognition of vertebrate pre-mrna 3'-terminal processing sites. Comput. Appl. Biosci., 10, 597{603. Legendre, M. and Gautheret, D. (2003). Sequence determinants in human polyadenylation site selection. BMC Genom., 4(1), 7. Lewis, J. S., Gunderson, and Mattaj, I. W. (1995). The in°uence of 5' and 3' end structures on pre-mrna metabolism. J. Cell Sci. (Suppl.), 19, 13{19. MacDonald, C., Wilusz, J., and Shenk, T. (1994). The 64-kilodalton subunit of cstf polyadenylation factor binds to pre-mrnas downstream of the cleavage site and in°uences cleavage site location. Mol. Cell. Biol., 14, 6647{6654. MacDonald, C. C. and Redondo, J. L. (2002). Reexamining the polyadenylation signal : were we wrong about aauaaa? Mol. Cell. Endo., 190, 1{8. Margarita, I. Z., Iryna, M. K., Andriy, L. P., and Dmytro, M. H. (2003). Downstream elements of mammalian pre-mrna polyadenylation signals : primary, secondary and higher-order structures. Nucleic Acids Res., 31, 1375{1386. McCracken, S., Fong, N., Yankulov, K., Ballantyne, S., Pan, G., Greenblatt, J., Patterson, S. D., Wickens, M., and Bentley, D. L. (1997). The c terminal domain of rna polymerase ii couples mrna processing to transcription. Nature, 385, 357{361. 43 McLauchlan, J., Ga®ney, D., Whitton, L., and Clements, J. B. (1985). The consensus sequence ygtgttyy located downstream from the aauaaa signal is required for e±cient formation of 3' termini. Nucleic Acids Res., 13, 1347{1368. Murthy, K. G. K. and Manley, J. L. (1992). Characterization of the multisubunit cleavage and polyadenylation factor from calf thymus. J. Biol. Chem., 267, 14804{14811. Pesole, G., Liuni, S., and Saccone, C. (1997). Structural and compositional features of untranslated regions of eukaryotic mrnas. Gene, 205, 95{102. Proudfoot, N. J. and Brownlee, G. G. (1976). 3' non-coding region sequences in eukaryotic messenger rna. Nature, 263, 211{214. Sachs, A. A., Sarnow, P., and Hentze, M. W. (1997). Starting at the beginning middle and end:translation initiation in eukaryotes. Cell, 89, 831{838. Salamov, A. A. and Solovyev, V. V. (1994). Recognition of 3'-processing sites of human mrna precursors. Comput. Appl. Biosci., 10, 23{28. Sheets, M. D., Ogg, S. C., and Wickens, M. (1990). Point mutations in aauaaa and poly(a) addition site : e®ects on the accuracy and e±ciency of cleavage and polyadenylation in vitro. Nucleic Acids Res., 18, 5799{5805. Tabaska, J. E. and Zhang, M. Q. (1999). Detection of polyadenylation signals in human dna sequences. Gene, 231, 77{86. Takagaki, Y. and Manley, J. L. (1997). Rna recognition by the human polyadenylation factor cstf. Mol. Cell. Biol., 17, 3907{3914. Wahle, E. (1995). 3'-end cleavage and polyadenylation of mrna precursors. Biochim. Biophy. Acta, 1261, 183{194. Weaver, R. F. (2002). Molecular Biology. McGraw-Hill. Wickens, M., Anderson, P., and Jackson, R. J. (1997). Life and death in the cytoplasm: Messages from the 3' end. Curr. Opin. Genet. Dev., 7, 202{232. 44 Wickens, M. and Stephenson, P. (1984). Role of the conserved aauaaa sequence : four aauaaa point mutants prevent messenger rna 3' end formation. Science, 226, 1045{1051. Zhao, J., Hyman, L., and Moore, C. (1999). Formation of mrna 3' ends in eukaryotes : mechanism, regulation, and interrelationships with other steps in the mrna synthesis. Microbio. Mol. Bio. Rev., 63, 405{445.id NH0925442068 sid 913927 cfn 0 / id NH0925442069 auc 吳國瑞 tic 資訊存取裝置中之浮水印資料防護系統研究 adc 許文星 ty 博士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 102 kwc 浮水印 kwc 影像 kwc 視訊 kwc 資料防護系統 kwc 碟片格式 kwc 壓縮攻擊 abc 近年來,數位資料儲存裝置與媒體之應用已從電腦平台擴展至消費性電子平台,大量之影音資訊藉由數位媒體的發行而做傳播,數位儲存媒體已成為現今出版業所倚賴之主流傳播載具。然而,數位媒體的易於發行卻也帶來不合法拷貝之風險,由於不合法之數位拷貝風行,現今的出版業者正承受重大損失。發展下一代數位多媒體裝置之資料防護系統是今日好萊塢電影出版業者之重要工作。 tc Contents Abstract in Chinese i Acknowledgements in Chinese iv Abstract in English v Contents viii List of Figures xi List of Tables xv 1. Introduction 1 1.1 Motivation and Objectives for this Research 1 1.2 Technical Requirements of Watermark Embedding/DetectionTechnology 3 1.3 Thesis Organization 4 2. Previous Research 6 2.1 Image Watermark System Based on DCT Transform 6 2.1.1 Private Image Watermarking System 7 2.1.2 Public Image Watermarking System 8 2.2 Vid” Revision 0.93. [76 ] 4C Entity, LLC, “ Content Protection for Recordable Media Specification,” Revision 0.9. [77 ] 4C Entity, LLC, “CPRM Specification: DVD Book,” Revision 0.94. [78 ] http://csrc.nist.gov/encryption/aes/ [79 ] A. Farhad and M. Tom, “CD-R and CD-RW optical disk characterization in response to intense light source,” SPIE 3806, pp. 84-92,1999. [80 ] K. Naohiko, “Compositional dependence of optical constants and microstructure of GeSbTe thin films for compact-disc-rewritable (CD-RW) readable with conventional CD-RW drive,” JJAP, part 2, Letters, v38,n 3B, pp.1707-1708, 1999. [81 ] 吳國瑞,許文星, “以相對特徵為基礎之振幅相位移資訊嵌入及偵測方法,”中華民國專利發明第192308號,2004 [82 ] B. Girod, “What’s wrong with mean squares error,” in A.B. Watson (ed.), Visual Factors of Electronic Image Communication, MIT press, pp.207-220,1993. [83 ] “ A Guide to picture quality measurements for modern television systems,” Tektronix, 2003. Available from http://www.tek.com.rf S.(1996), “Improving outpatient clinic staffing and scheduling with computer simulation”, J Gen Intern Med 11:182 Hung, Ying-Chao and Michailidis, G.(2003), “Developing Efficient Simulation Methodology for Complex Queueing Networks”, Proceedings of the 2003 Winter Simulation Conference Kim, S.C. , Horowitz I. , Young K.K., Buckley,T.A.(2000), “Flexible bed allocation and performance in the intensive care unit ”, Journal of Operations Management , Vol.18 , pp427–443 Kleijnen, Jack P.C.(1994) “Sensitivity analysis and optimization of simulation models”, Procedings of the European Simulation Symposium, October, pp9-12, 1994, Istanbul,Turkey,SCS. Kleijen, Jack P.C.(1993) “Simulation and Optimization in production planning”, Decision Support Systems 9,pp269-280 Kotler ,P. (1991), Marketing Management—Analysis, Planning, Implementation and Control, 7th edition, Englewood Cliffs, NJ: Prentice-Hall, Inc. Lane, P.M., Lindquist, J.D.(1998), “Hospital Choice : A Summary of the Key Empirical and Hypothetical Findings of the 1980s.” , Journal of Health Care Marketing, Vol. 8, pp 5-20. Law A.M. and Kelton W.D.(2000), Simulation Modeling and Analysis, 3rd edition, McGraw-Hill, Inc. Lin, Li, Jeffery K. Cochran, and Joseph Sarkis(1992)” A metamodel-based decision support system for shop floor production control”, Computers in Industry 19,pp155-168 Lowery, J. C. (1998), “Getting Started in Simulation in Healthcare”, Proceedings of the 1998 Winter simulation conference,PP31-35 McGuire, F. (1997),”Using simulation to reduce length of stay in emergency department”, JSHS, ;5(3),pp81-90 Myers, R.H, Montgomery, D.C.(2002), Response Surface Methodology, John Wiley & Sons, Inc. Simpson, T., Dennis, L., and Chen, W.(2002),“Sampling Strategies for Computer Experiments: Design and Analysis" , Journal of International Journal of Reliability and Application, 2(3), pp209-240 Swain, J.J.(2003), “Simulation Reloaded: Sixth biennial survey of discrete-event simulation software tools that empower users to imagine new systems, and study and compare alternative designs”, OR/MS Today, August Schruben, L.W.(2002), Event Graph Simulation Song W.T. and Su, C.C. (1996), “An extension of the multiple-blocks strategy on estimating simulation metamodels”, IIE Transactions, Vol.28,p511-519 Vogt W. and Braun, S.L. (1994), “Realistic Modeling of Clinical Laboratory Operation by Computer Simulation”, Clinical Chemistry, Vol.40,p922-928 Wilt A. and Goggin D.(1989), “Health Care Case Study: Simulation Staffing Needs and Work Flow in an Outpatient Diagnostic Center”, Industrial Engineering, Vol.12,p22-26 藍采風、廖榮利(1992),社會醫療學,三民書局 盧瑞芬、謝啟瑞(2000),醫療經濟學,學富文化事業有限公司 李石燕(1992), ”台北市老人健康檢查經驗之探討”,國立台北護理學校護理研究長所碩士論文 蔡宗仁(1996), ”健檢發展史”,中華民國醫檢會報,11卷,3期pp52-54 李智峰(1997), ”健檢服務業現狀與經營策略之分析”,長庚大學醫學暨工程學院管理研究所碩士論文 侯幸雨(1999), ”應用模擬技術探討台灣醫院門診預約掛號系統”, 國立中正大學企業管理研究所碩士論文 黎家銘(2000), ”全民健康成人健檢實施情形調查分析”, 國立台灣大學醫療機構管理研究所碩士論文 陳秀珠(2003), ”醫療服務品質與病患滿意度非線性關係的探討與應用”, 國立台灣大學商學研究所博士論文 吳欣芳(2002), ”隨機性作業與排序性作業之比較─以台大醫院健檢中心流程為例”,國立台灣大學商學研究所碩士論文 謝淑慧(2002), ”健檢中心之經營策略與經營績效之探討”,國立雲林科技大學工業工程與管理研究所碩士論文 李建廷(2003), ”急診檢查排程系統之研究”,國立暨南國際大學資訊管理研究所碩士論文 林怡君(2003), ”運用模擬技術於手術室排程管理─以某醫學中心為例”,國立台灣大學醫療機構管理研究所碩士論文 陳春枝(2003), ”流程管理介入對手術室服務效能之影響”,台北醫學大學護理研究所碩士論文 行政院衛生署衛生統計資料網站, http://www.doh.gov.tw/statistic/index.htm 馬偕紀念醫院新竹分院網站, http://www.hc.mmh.org.tw/div_int/health/health01.aspid NH0925442069 sid 827920 cfn 0 / id NH0925442070 auc 范富誠 tic 分佈回饋式光參數放大波導 adc 黃衍介 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 54 kwc 分佈回饋式 kwc 週期反轉鋰酸鋰晶體 kwc 退火式質子交換波導 kwc 鋰酸鋰 abc 回饋式光參數放大器波導擁有相當多的優點,例如經由波導的方式,大幅提升波長轉換的效率;利用分佈式回饋來得到單一頻率的輸出;準相位匹配的使用則可以產生任意波長的雷射;光學元件的使用量大幅減少也增加了系統的穩定度和可靠性;不再需要依靠精細的人工微調光路也是一大特點;波導的使用也方便和積體光學的被動元件做進一步的結合。相較於一般的波長轉換系統約需50cm x 50cm 的地方放置,本設計搭配一般半導體雷射則只約佔10cm x 10 cm的大小。 (若不包括半導體雷射的電源) tc Table of Contents CHAPTER 1: INTRODUCTION 1.1 Motivation………………………………………………………1 1.2 Principle of Guided-Wave Quasi Phase Matching……….2 1.3 Overview of This Dissertation……..…………………….4 CHAPTER 2: THEORY OF DISTRIBUTED FEEDBACK PARAMETRIC OSCILLATOR IN APE PPLN WAVEGUIDE 2.1 Introduction………………………………………………………..8 2.2 Theory of DFB OPO APE PPLN waveguide................9 2.3 Summary...…………………………………..........…….12 CHAPTER 3: FABRICATION OF PERIODIC POLED LITHIUM NIOBATE ANNEALED PROTON EXCHANGED WAVEGUIDE 3.1 Introduction……………………………………………………13 3.2 Periodic Poled Lithium Niobate….……………………….13 3.3 Annealed Proton Exchanged waveguide…...............19 3.4 Summary.............................................25 CHAPTER 4: DISTRIBUTED FEEDBACK ANNEALED PROTON EXCHANGED WAVEGUIDE 4.1 Introduction……………………………………………………29 4.2 Theory of Distributed Feedback grating…………………30 4.3 Simulation and calculation…………………………………32 4.4 Fabrication of Distributed Feedback structure on APE Waveguide………...……………………......................36 4.5 Optical Measurement………………………………………………………….41 4.6 Summary………………………………………………………….45 CHAPTER 5: CONCLUSION AND FUTURE WORK 5.1 Summary of the thesis contributions…………………...51 5.2 Future Work……………………………………………………………………51rf [1 ] Missuo Fukuda, “Optical semiconductor devices”, Wiley Series in microwave and optical engineering, John Wiley & Sons, INC. [2 ] Wei Shi and Yujie J. Ding, “Designs of terahertz waveguides for efficient parametric terahertz generation”, Applied Physics Letters, 82, 4435-4437, 2003. [3 ] Y. S. Lee, T. Meade, and T. B. Norris, “Tunable narrow-band terahertz generation from periodically poled lithium niobate”, Applied Physic Letters, 78, 3583-3585,2001. [4 ] Kodo Kawase, et al, “Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition”, Appl. Phys. Lett., 71, 753-755, 1997. [5 ] D J Birkin, et al, “3.6mW blue light by direct frequency doubling of a diode laser using an aperiodically poled lithium niobate crystal”. Appl. Phys. Lett., 78, 3172-3173, 2001. [6 ] M H Chou, et al, “1.5 um band wavelength conversion based on difference frequency generation in LiNbO3 waveguides with integrated coupling structures”, Opt. lett., 23, 1004-1006, 1998. [7 ] M H Chou, et al, “1.5-um-band wavelength conversion based on cascaded second-order nonlinear susceptibility in LiNbO3 waveguides”, Photonics Tech. Lett., 11, 653-655, 1999. [8 ] Y W Lee, F C Fan, and Y C Huang, “Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate”, Optics Letters, 27, 2191-2193, 2002. [9 ] Xiaofan Cao, et al, “Simultaneous blue and green second harmonic generation in quasiphase matched LiNbO3 waveguide”, Appl. Phys. Lett., 60, 3280-3282, 1992. [10 ]G Z Luo, et al, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3”, Appl. Phys. Lett., 78, 3006-3008, 2001. [11 ]P E Powers, Thomas J Kulp, and S E Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by using of a fan-out grating design”, Optics Letters, 23, 159-161, 1998. [12 ]Michael L Bortz, “Quasi-Phasematched Optical Frequency Conversion in Lithium Niobate Waveguides”, Ph.D. dissertation, Department of Electrical Engineering, Stanford University, Stanford, CA, 1994. [13 ]Ming-Hsien Chou, “Optical frequency mixers using three-wave mixing for optical fiber communications”, Ph.D. dissertation, Department of Electrical Engineering, Stanford University, Stanford, CA, 1999. [14 ]W. Sohler, “Report 1997-99, Applied Physics / Integrated Optics”, Universitat Paderborn. [15 ]Yen-Chieh Huang and Yuan-Yao Lin, “Coupled-wave theory for distributed-feedback optical parametric amplifiers and oscillators”, J. Opt. Soc. Am. B, 21, 777-790, 2004. [16 ]A. C. Chiang, et al, “Distributed-Feedback optical parametric oscillation by use of a photorefractive grating in periodically poled lithium niobate,” Opt. Lett., 27, 1815-1817, 2002. [17 ]M. M. Fejer, R. L. Byer, W. R. Bosenberg,” Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3”, Journal of the Optical Society of America B, 12, 2012, 1995. [18 ]M M Fejer, et al, “Quasi-phase-matched second harmonic generation: tuning and tolerances”, IEEE J. Quantum Electron., 28, 2631-2654, 1992.id NH0925442070 sid 903967 cfn 0 / id NH0925442071 auc 葉向林 tic 聽障者之語音增強與轉換 adc 王小川 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 49 kwc 聽障者 kwc 語音增強 kwc 語音轉換 abc 聽障者在噪音環境下對語音的理解能力遠比一般人差,要在噪音環境下提升聽障者對語音訊號的理解力,首先要做的是將語音增強,亦即作噪音去除,本論文使用了具聽覺遮蔽效應之概念來做語音增強。當噪音去除之後,使用了等效矩形頻寬的分頻法(equivalent rectangular bandwidth scale),搭配上圓通化指數(rounded exponential)模型,將增強後的語音轉換,以期在噪音環境下對聽障者提供最大之幫助。一個語音訊號如果被雜訊所干擾,對一般人來說,會產生辨認率的下降及耳朵的不舒服的感覺,對聽障者來說更為嚴重。所以我們在做語音增強的時候,第一步要做的就是將帶有雜訊的語音訊號中的雜訊去除,語音增強的處理,運用到了聽覺遮蔽效應的概念,典型的方式就是將語音訊號的功率頻譜(power spectrum)乘上一增益函數(Gain function) 。聽障者對於聽聲音有一定的困難度,不論是聽不清楚或聽不到,會導致這樣的結果一定是有其原因的。對一個需要配戴助聽器的人來說,一定要讓助聽器跟聽障者的聽力特性達到一個最佳匹配,才能得到戴助聽器的效果。本研究期望能找到讓聽障者聽不清楚或聽不到聲音的原因,針對這個原因,去做語音訊號上的處理,讓語音訊號跟聽障者的聽力特性達到最佳的配合效果。每個聽障者的情況不盡相同,本研究只是針對一般聽障者會有的情形,對訊號做適當的轉換。一般語音訊號在頻譜上變化迅速,聽障者可能無法完全接收或理解,而且比較聽不到高頻的成份,所以第二步驟的處理是將語音訊號的低頻變化及變動幅度降低,且提高高頻的頻譜值,以符合聽障者的需要。 tc 目錄 第一章 緒論...........................................1 1.1 研究動機........................................1 1.2 研究方向........................................3 1.3 章節概要........................................4 第二章 噪音環境下的語音增強方法....................6 2.1 傳統方法簡介....................................6 2.1.1 頻譜刪減法..................................7 2.1.2 韋納濾波器..................................8 2.2 利用聽覺特性的語音增強方法......................9 第三章 聽覺遮蔽門檻值估計..........................12 3.1 聽覺遮蔽效應...................................12 3.2 聽覺遮蔽門檻值之估計...........................16 3.2.1 臨界頻帶之分析.............................17 3.2.2 與延展函式的摺合積分(convolution)..........18 3.2.3 門檻值之估計...............................18 3.2.4 門檻值正規化(normalization)之處理..........20 第四章 具聽覺效應的語音增強系統...................23 4.1 噪音的頻譜值估計...............................23 4.2 vb、ab值對增益函數的影響........................24 4.3 ab值的推導過程.................................25 4.4 還原語音訊號...................................28 4.5 將訊號從頻域轉回時域...........................29 第五章 適合於聽障者之語音轉換 ....................30 5.1 聽障者的聽覺現象及特性.........................30 5.2 處理流程.......................................31 5.3 圓通化指數模型.................................31 5.4 激發樣型之計算.................................34 第六章 實驗結果與討論...............................38 6.1 實驗環境介紹...................................38 6.2 SNR值及Itakura-Saito distance值...............38 6.3 實驗結果.......................................39 6.4 討論...........................................43 第七章 結論與未來展望...............................46 參考文獻................................................47 圖目錄 圖一、頻譜刪減法流程圖..............................................8 圖二、Iterative Wiener filter流程圖.................................9 圖三、系統方塊圖....................................................11 圖四、CB與ERB的頻帶個數與頻率之關係...............................13 圖五、AMT的計算流程................................................16 圖六、延展函式.....................................................18 圖七、絕對聽覺門檻曲線圖............................................21 圖八、乾淨語音其中一個音框的功率頻譜與對應之AMT....................21 圖九、含雜訊語音(工廠噪音0dB)的功率頻譜與對應之AMT................22 圖十、瞬間SNR值跟Gain值的關係圖..................................24 圖十一、模糊頻譜的示意圖...........................................31 圖十二、中心頻率為1000Hz的聽覺濾波器形狀(正常聽者)................33 圖十三、中心頻率為1000Hz的聽覺濾波器形狀(聽障者 ).................33 圖十四、激發樣型(正常聽者)示意圖...................................35 圖十五、(上)乾淨語音功率頻譜.......................................36 (中)激發樣型 Y.............................................36 (下)修正後的功率頻譜 Yc....................................36 圖十六、(i)~(iii)分別為乾淨語音訊號、帶有雜訊的語音訊號、增強後的語音 訊號.......................................................43 圖十七、圖十六(i)~(iii)其中一個音框分別對應的頻譜圖..................44 圖十八、(i)~(ii)分別為增強後的語音訊號及轉換成適合於聽障者之語音訊號.45 圖十九、圖十八(i)~(iii)其中一個音框分別對應的頻譜圖..................45 表目錄 表一、CB的中心及邊界頻率及對應的FFT點數列表........................14 表二、ERB的中心及邊界頻率及對應的FFT點數列表.......................15 表三、含雜訊語音的IS distance值....................................39 表四、疊代次數0、vb(i)=1改善的SNR值..................................40 表五、疊代次數1、vb(i)=1改善的SNR值..................................40 表六、疊代次數2、vb(i)=1改善的SNR值..................................40 表七、疊代次數0、vb(i)=2改善的SNR值..................................40 表八、疊代次數1、vb(i)=2改善的SNR值..................................41 表九、疊代次數2、vb(i)=2改善的SNR值..................................41 表十、疊代次數0、vb(i)=1的IS distance值..............................41 表十一、疊代次數1、vb(i)=1的IS distance值............................41 表十二、疊代次數2、vb(i)=1的IS distance值............................42 表十三、疊代次數0、vb(i)=2的IS distance值............................42 表十四、疊代次數1、vb(i)=2的IS distance值............................42 表十五、疊代次數2、vb(i)=2的IS distance值............................42rf [1 ] 謝逸博,“以語音合成技術發展聽障者語言學習輔助系統,” 國立清華大學電機工程研究所碩士論文,2001 [2 ] Whimal,N.A.,Rutledge,J.C.,“Noise reduction algorithm for digital hearing aids,”IEEE ,3-6 Nov.1994,pp.1294- 1295 [3 ] Moore,B.C.J.,“Speech processing for the hearing- impaired:successes,failures,and implications for speech mechanisms,” Speech Commun.Vol 41,81-91,2003 [4 ] Jonhston,J.D.,“Transform coding of audio signal using perceptual noise criteria,”IEEE J.Select.Areas Commum., Vol.6,pp.314-323,Feb.1988 [5 ] Tsoukalas,D.E.Mourjoupoulos,J.and Kokkinakis,G. “Speech enhancement based on audible noise suppression,” IEEE Trans.Speech & Audio Proc.,5(6):497-514,1997 [6 ] Patterson,R.D.,Nimmo-Smith,I.,Weber,D.L.,andMilroy,R. (1982).“The deterioration of hearing with age:Frequency selectivity,the critical ratio,the audiogram and speech threshold,”J.Acoust.Soc.Amer.,vol.72,1788-1803 [7 ] Deller,Jr.J.R.,Hansen.J.H.L.,Proakis,J.G.“Discrete- Time Procesng of Speech Signals,”An IEEE PRESS Classic Reissue 1993 [8 ] Steven,F.B.,“Suppression of Acoustic Noise in Speech Using Spectral Subtraction,”IEEE Trans.on Acoustics, Speech,and Signal Processing,Vol.ASSP-27,No.2,pp.113- 120,April 1979 [9 ] Arehart,K.H.,Hansen,J.H.L.,Gallant,S.and Kalstein,L. “Evaluation of An auditory masked threshold noise suppression algorithm in normal-hearing and hearing- impaired listeners,”Speech Commun.,Vol 40(4):575- 592 June 2003 [10 ] Baer,T.,and Moore,B.C.J.(1993). “Effects of spectral smearing on the intelligibility of sentences in the presence of noise,”J.Acoust.Soc.Amer.94,1229-1241. [11 ] http://www.ling.su.se/staff/hartmut/bark.htm [12 ] Fillon,T.,Prado,J. “Evaluation of an ERB frequency scale noise reduction for hearing aids:A comparative study,” Speech Commun.Vol 39,23-32,2003 [13 ] Virag,N. “Speech Enhancement Based on Masking Properties of the Auditory System,”IEEE ICASSP, Detroit,MI,pp.796-799,May 1995 [14 ] Virag,N. ”Single Channel Speech Enhancement Based on Masking Properties of the Human Auditory System,”IEEE Trans.On Speech and Audio Proc,vol.7,no.2,pp.126-137 ,March 1999 [15 ] M.R.Schroeder,B.S.Atal,and J.L.Hall, “Optimizing digital speech coders by exploiting masking properties of the human ear,”J.Acoust. Soc.Amer.,vol.66,pp.1647-1652, Dec.1979 [16 ] 林輝彥, “應用具聽覺效應之模型於噪音環境中語音辨識,”國立成功大學資訊工程研究所碩士論文,2001 [17 ] Doblinger,G.“Computationally efficient speech enhancement by spectral minima tracking in subbands,” EUROSPEECH 1995,pp.1513-1516. [18 ] Thomas,F.Q.,“Discrete-Time Speech Signal Processing, ”PRINCIPLES AND PRACTICE 2002 [19 ] Nejime,Y.,Moore,B.C.J.,(1997). “Simulation of the effect of threshold elevation and loudness recruitment combined with reduced frequency selectivity on the intelligibility of speech in noise,” J.Acoust.Soc.Amer.102,603-615 [20 ] Natarajan,A.,Hansen,J.H.L.,Arehart,K.,Rossi-Katz,J.A. “Perceptual based speech enhancement for normal-hearing & hearing-impaired individuals,”Eurospeech 2003,pp 1425-1428 [21 ] http://www. indiana.edu/~spl/people/shgoodma/code/ expattern.html [22 ] Moore,B.C.J.,and Glasberg,B.R.(1983). “Suggested formulae for calculating auditory-filter bandwidths and exciation patterns,”J.Acoust.Soc.Amer.74,750-753.id NH0925442071 sid 913960 cfn 0 / id NH0925442072 auc 李英志 tic 二極體雷射激發Nd:YVO4之機械式Q-開關雷射研究 adc 蕭憲彥 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 51 kwc 機械式Q-開關雷射 kwc 摻釹釩酸釔 kwc 固態雷射 abc 一般的機械式Q-開關雷射,是使用chopper 或旋轉菱鏡來切換Q值,其Q-值切換速度並不夠快。本論文中設計電磁偏轉鏡來達到Q值的切換,電磁偏轉鏡是利用磁力線圈使彈簧片振動,產生Q-開關效果。利用波長為808 nm的二極體雷射激發Nd:YVO4晶體,產生1064 nm雷射光,其中Nd:YVO4晶體為3%的摻雜濃度、A-cut,面積為3X3 cm2,厚度為1 mm。採平凹式共振腔,為了減少損失,平面鏡以晶體的一個端面代替,晶體端面鍍有高反射膜(HR,1064 nm)與抗反射膜(AR,808 nm),凹透鏡為曲率半徑150 mm,穿透率為5%@1064 nm,共振腔長為67 mm,輸入激發功率在0.522 W,CW輸出功率為23 mW。啟動電磁偏轉鏡切換Q值,頻率為333.3 Hz,量測平均功率為0.210 mW,峰值功率為9.32 W,脈衝寬度為66.8 ns,與CW雷射比較,是CW輸出的405倍。若增加輸入功率到0.762 W,其脈衝寬度可到58.8 ns。 tc 摘要 誌謝 目錄 圖表索引 第一章 簡介.....1 第二章 基本原理.....3 第三章 實驗裝置與步驟.....21 第四章 實驗結果與討論.....26 第五章 結論.....32 參考資料.....33rf 1.Kelin J. Kuhn, “Laser engineering , ” Prentice-Hall, Inc. 2.Bahaa E. A. Saleh and Malvin Carl Teich, “Fundamentals of Photonics,” John Wiley & Sons, Inc. 3.Walter Koechner, “Solid-State Laser Engineering,” 4th extensively revised and updated edition, Springer-Verlag, 1996. 4.沈鐘嵐, “固態雷射及應用,” 行政院國科會光電小組. 5.呂助增, “雷射原理與應用,” 滄海書局, 2001 6.E.Tanguy, S.Formont, JP.Pocholle, “Compact eye-safe rangefinder”id NH0925442072 sid 913993 cfn 0 / id NH0925442073 auc 蘇郁凱 tic 大氣壓橫向放電氮氣雷射的結構最佳化研究 adc 蕭憲彥 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 66 kwc 氮氣雷射 kwc 橫向大氣壓放電 kwc 行波激發 abc 此篇論文描述一個自製的氮氣雷射系統,包含布魯林(Blumlein)泵浦系統以及觸發脈衝電路,藉由改善、調整硬體結構並在一大氣壓下使用橫向激發的方式,產生譜線位於337.1 nm的脈衝輸出。 rf 1.H. G. Heard,”Ultra-violet gas laser at room temperature,”Nature.,vol200,p.667, 1963 2.D. A. Leonard,”Saturation of the molecular nitrogen second positive laser transition, “Appl. Phys. Lett.,vol.7,p.4,1965 3.E. T. Gerry ,”Pulsed-molecular-nitrogen laser theory,”Appl. Phys. Lett.,vol.10,p.6, 1965 4.J. D. Shipman, Jr.,”Traveling wave excitation of high power gas lasers” Appl. Phys. Lett.,vol.10,p.3,1967 5.A. Svedberg, L. Hogberg, R. Nilsson,”Observation of superradiant laser action in spark discharges in air at atmospheric pressure,” Appl. Phys. Lett.,vol.12,p.102, 1968 6.H. Strohwald, H. Salzmann,”Picosecond uv laser pulses from gas discharge in pure nitrogen at pressue up to 6 atm,” Appl. Phys. Lett.,vol.28,p.272,1976 7.V. Hasson, D. Preussler, J. Klimek, H. M. von Bergmann,”Transverse double-discharge high-pressure glow excitation of uv lasing action in molecular nitrogen,” Appl. Phys. Lett.,vol.25,p.654,1974 8.H. M. von Bergmann, V. Hasson, D. Preussler,”Pulsed corona excitation of high-power uv nitrogen lasers at pressures of 0-3 bar,” Appl. Phys. Lett.,vol.27, p.553,1975 9.V. Hasson, H. M. von Bergmann,”High pressure glow discharges for nanosecond excitation of gas lasers and low inductance switching applications,”J. Phys. E,vol.9, p.73,1976 10.V. Hasson, H. M. von Bergmann, D. Preussler,”Effective glow discharge excitation of nitrogen lasers at gas pressures ranging from 0 to 5 bar,” Appl. Phys. Lett.,vol.28,p.17,1976 11.H. M. von Bergmann, V. Hasson, J. Brink,”Traveling-wave corona excitation of high-power uv nitrogen lasers operating at gas pressures ranging from 0 to 3 bar,”J. Appl. Phys., vol.47,p.4532,1976 12.E. E. Bergmann,”UV TEA laser with 760-Torr N2,” Appl. Phys. Lett.,vol.28,p.84, 1976 13.H. M. von Bergmann, A. J. Penderis,”Miniaturized atmospheric pressure nitrogen laser,”J. Phys. E,vol.10,p.602,1977 14.S. Sumida, M. Obara, T. Fujioka,”Intense 3371-A laser emission from a fast Blumlein discharge excited N2/F2 mixture,” Appl. Phys. Lett.,vol.34,p.31,1979 15.G. C. Thomas, G. Chakrapani,”Coherent radiation from a nitrogen laser,”Appl. Phys. Lett.,vol.30,p.663,1977 16.E. E. Bergmann,”Coherent uv from a TEA N2 laser system,”Appl. Phys. Lett.,vol. 31,p.661,1977 17.A. J. Schwab, F. W. Hollinger,”Compact high-power N2 laser:circuit theory and design,”IEEE J. Quantum Electron,vol.12,p.183,1976 18.A. W. Ali,”A study of the nitrogen laser power density and some design consideration,”Appl. Opti.,vol.8,p.993,1969 19.P. Persephonis, B. Giannetas, J. Parthenios, C. Georgiades, A. Ioannou, ”Capacitance allocation and its role in the performance of doubling-circuit pulsed gas lasers:its application to the N2 laser,” IEEE J. Quantum Electron,vol.29,p.2371,1993 20.A. V. Martinez, V. Aboites,”High-efficiency low-pressure Blumlein nitrogen laser, “IEEE J. Quantum Electron,vol.29,p.2364,1993 21.M. G. Meisel, H. Langhoff,”Homogeneous High-pressure gas gischarge using semiconductor electrodes,”Appl. Phys.,vol.64,p.41,1997 22.P. Richter, J. D. Kimel, G. C. Moulton,”Pulsed uv nitrogen laser:dynamical behavior,”Appl. Opti.,vol.15,p.756,1976 23.W. G. Wagner, B. A. Lengel,”Evolution of the giant pulse in a laser,”J. Phys. Phys.,vol.34,p.2040,1963 24.B. E. A.Saleh and Malvin Carl Teich,Fundamentals of Photonics,John Wiley &Son,1991 25.C. S. Willett,Introduction to Gas Laser:Population Inversion Mechanisms 26.Y. P. Raizer,Gas Discharge Physics 27.B. E. Cherrington,Gas Electronics and Gas Lasers,Oxford,1979 28.鄭宇峰,橫向大氣壓放電氮氣雷射特性研究,清華大學碩士論文,民國91年 29.李宗昇,大氣壓橫向激發式氮氣雷射,清華大學碩士論文,民國72年 30.丁勝懋 編著,雷射工程導論,中央圖書出版社,1995id NH0925442073 sid 913998 cfn 0 / id NH0925442074 auc 林維品 tic 在小波轉換域的影像內插及應用 adc 陳永昌 博士 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 45 kwc 影像放大 kwc 影像壓縮 abc 近代因為數位革命,我們將許多自然界現象運用數位的描述加以處理。然而,影像因數值化造成龐大資料量,無論在儲存或是交換上都造成困擾。將影像透過各種方式予以壓縮,成為現今經常被探討的課題。另一方面,將既有的影像放大,使它盡可能的符合真實、自然,卻往往因為硬體限制,許多影像增強的作業轉而採用數位影像處理。然而,看起來似乎是不相關的兩件事情卻是有所關聯的。對於較好的影像放大技術,我們往往可以拿來作為預測編碼用,進而達到更高的影像壓縮率。 tc Abstract i Table of Contents ii List of Figures v List of Tables vii Abbreviations viii Chapter 1: Introduction 1 1.1 Motivation 1 1.2 Resolution Enhancement Problems 2 1.2.1 Definition of Resolution 2 1.2.2 Limitation of Hardware 2 1.2.3 Interpolation 3 1.3 Image Compression Problems 3 1.3.1 Lossless Compression 4 1.3.2 Lossy Compression 4 1.3.3 Wavelet and Compression 5 1.4 Thesis Organization 6 Chapter 2: Review of Some Existing Resolution Enhancement Methods 7 2.1 Overview 7 2.2 Model Description 8 2.3 Pixel Replication Interpolation 9 2.4 Bilinear Interpolation 10 2.5 Spline Functions Interpolation 12 2.6 Wavelet Interpolation 13 Chapter 3: Review of Some Existing Compression Methods using Wavelet Transform 15 3.1 Overview 15 3.2 Set Partitioning in Hierarchical Trees (SPIHT) 16 3.3 Embedded Block Coding with Optimized Truncation (EBCOT) 18 3.4 Embedded Image Coding using Zero Blocks of Sub-band / Wavelet Coefficients and Context Modeling (EZBC) 20 Chapter 4: Proposed Method 23 4.1 Overview 23 4.2 An Example 24 4.3 Interpolation Algorithm 27 4.4 Enlargement 29 4.5 Coding 30 Chapter 5: Simulation Result 33 5.1 Interpolation Environments 33 5.1.1 No Filtering Decimation 33 5.1.2 2-point Filtering Decimation 33 5.1.3 5/3 Filter Decimation 34 5.1.4 Interpolation Simulation Result 34 5.2 Coding Environments 36 5.2.1 1-level Wavelet Decomposition 36 5.2.2 Multi-level Wavelet Decomposition 38 5.2.3 More Experiment on Other Sequences 41 Chapter 6: Summary and Conclusion 43 References 44rf [1 ] Sung Cheol Park, Min Kyu Park, Moon Gi Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Processing Magazine. 2003, vol.20, no.3, pp.21-36, May. 2003. [2 ] S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: A technical overview,” IEEE Signal Processing Magazine, vol. 20, no. 3, pp. 21-36, May 2003. [3 ] George Wolberg and Itzik Alfy, “Monotonic Cubic Spline Interpolation,” Proc. Computer Graphics Intl. '99, Canmore, Canada, June 1999. [4 ] H. F. Ates, M. T. Orchard “Image interpolation using wavelet-based contour estimation,” Proc. ICME, 2003, July, 2003. [5 ] T. K. Truong, L. J. Wang, I. S. Reed, W. S. Hsieh, “Image data compressing using cubic convolution spline interpolation,” IEEE Trans. on Image Processing, vol.9, no.11, pp.1988-1995, Nov. 2000. [6 ] Ng K.P., “Mathematical Analysis of Super-Resolution Methodology,” IEEE Signal Processing Magazine. 2003, vol.20, no.3, pp.62-74, May. 2003. [7 ] N.F. Law and W.C. Siu, “Fast Algorithm for Quadratic and Cubic Spline Wavelets,” International Symposium on Intelligent Multimedia, Video and Speech Processing, pp. 247-250, May 2001. [8 ] Shih-Ta Hsiang and John W. Woods, “Embedded image coding using zeroblocks of subband/wavelet coefficients and context modeling,” Proc. of IEEE Int. Symp. on Circuits and Systems, vol. 3, pp. 662-665, Geneva, May 2000. [9 ] Shih-Ta Hsiang, “Embedded image coding using zeroblocks of subband/wavelet coefficients and context modeling,” IEEE Data Compression Conference, pp. 83-92, Snow Bird, UT, Mar. 2001. [10 ] D. Taubman, “High performance scalable image compression with EBCOT,” IEEE Transactions on Image Processing, Vol.97, pp. 1158-1170, Jul 2000. [11 ] A. Said and W. A. Pearlman, “A new fast and efficient image codec based on set partitioning in hierarchical tree”, IEEE Trans. Circuits and Systems for Video Technology, Vol.6, No.3,jun 1996. [12 ] J.M. Shapiro, “Embedded image coding using zerotrees of wavelet Coefficients,” IEEE Trans, Signal Processing, Vol. 41 ,No. 12.Dec 1993. [13 ] Aaron Deever, S. S. Hemami, “What's Your Sign?: Efficient Sign Coding for Embedded Wavelet Image Coding,” Proceedings of Data Compression Conference 2000, Snowbird, Utah, March 2000. [14 ] Sam-Sheng Tsai, “Motion Information Scalability for Interframe Wavelet Video Coding,” Master Degree thesis, 2003, Department of Electrical Engineering, National Chiao Tung University, June 2003. [15 ] Khalid Sayood, “Introduction to Data Compression,” Morgan Kaufmann, 2000. [16 ] Gilbert Strang, Truong Nguyen, “Wavelets and Filter Banks,” Wellesley-Cambridge Press, 1996. [17 ] David S. Taubman, Michael W,Marcellin, “JPEG2000 Image Compression Fundamentals Standards and Practice,” KAP, 2002. [18 ] C.E. Shannon, “Prediction and Entropy of Printed English,” Bell System Technical Journal, 27:379-423, 623-656, 1948.id NH0925442074 sid 915991 cfn 0 / id NH0925442075 auc 陳邦安 tic 雷射激發之影像與螢光光譜測量系統研究 adc 蕭憲彥 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 60 kwc 螢光光譜 kwc 影像 kwc 光譜儀 abc 分子螢光的產生是因為分子吸收高能光子的能量後,其電子會從基態能階躍遷到激發態能階,再從激發態能階回到基態能階時,它會將受激時所吸收的能量以光的形式釋放出來,此即分子螢光。近年來分子螢光光譜分析在生物醫學上被大量應用,但除了螢光光譜外,生物細胞與組織的影像在生醫分析上亦佔有重要角色。然而一般螢光光譜儀只能量測螢光光譜而無法提供影像,為了使螢光的研究可以更加方便,本實驗嘗試以另一種方式來量測螢光光譜,而且同一系統還可以提供影像。我們選用二維的CCD來當感測器。以532nm的固態雷射當激發光源,產生的螢光經光學系統收集後,再經由每毫米600條的光柵分光,用電腦控制將不同波長的螢光依序入射到CCD感測器,記錄下每個位置所代表的波長與當時CCD所測量到的訊號,經程式處理後,即可得到螢光光譜。而當我們要觀察影像時,只需要轉動光柵,使零階繞射光成像在CCD的表面,此時即可從螢幕中觀察到待測物的即時影像。在本實驗中,我們一直尋求一個平衡點,因為影像和螢光光譜的量測,其最佳化條件並不相同,所以我們不斷嘗試使它們兩個並存,而且都可以得到最佳的效果。實驗結果我們量測到R6G染料之螢光中心波長在601nm和清晰的影像。 tc 摘 要 I 致 謝 II 目錄 III 圖目錄 V 第1章 原 理 1 1.1物質的光譜 1 1.1.1放射光譜 1 1.1.2吸收光譜 2 1.1.3螢光光譜 3 1.2繞射光柵 6 1.2.1穿透式光柵 8 1.2.2反射式光柵 9 第2章 實驗裝置與步驟 11 2.1實驗目的 11 2.2實驗裝置 11 2.2.1影像感測元件 11 2.2.2步進裝置 13 2.3影像與螢光光譜測量系統 14 2.3.1影像與螢光光譜測量系統設計原理 15 2.3.2影像與螢光光譜測量系統驅動程式 18 2.4實驗步驟 22 2.4.1影像與螢光光譜測量系統校正 22 2.4.2螢光光譜掃描與影像顯示 23 2.4.3資料儲存處理與分析 24 第3章 實驗結果與討論 26 3.1實驗結果 26 3.2結論 27 參考文獻 29 附錄 45rf [1 ]Ralph S. Becker, ”Theory and Interpretation of Fluorescence and Phosphorescence”, John Wiley & Sons(1969) [2 ] Daily, John W., "Laser Induced Fluorescence Spectroscopy in Flames," American Chemical Society Symposium Series 134, 61-83 (1980). [3 ]Eugene Hecht, ”Optics”, Addison Wesley,4th edition(2002) [4 ]B.E.A Saleh, M.C. Teich, “Fundamentals of Photonics”, John Wiley & Sons (1991) [5 ]Apogee Instruments Inc., http://www.ccd.com. [6 ]Sedra/smith, ”Microelectronic Circuits”, OxFord,4th(1998) [7 ]I. Scott MacKenzie,”8051 Microcontroller”, Prentic-Hall Inc.,2nd (1995) [8 ]D.J. Rawlins, “Light Microscopy”, Bios Scientific Publishers (1992) [9 ]蘇青森, “儀器學”, 五南文化事業(2002) [10 ]游家瑋,”微步進馬達驅動之里梭光柵光譜儀研究”,清大碩士論文,2001 [11 ]鄭宇峰,”橫向大氣壓放電氮氣雷射之研究”,清大碩士論文,2001 [12 ]陳光如, ”氮氣雷射激發之螢光光譜量測系統研究”,清大碩士論文,2001 [13 ]郭耀輝, “新型微致動閃耀式光柵之研究”, 交大碩士論文,(2002) [14 ]林佳芬,”CCD影像儀光學系統測試之效能分析”,成功大學碩士論文,(2002) [15 ]丁勝懋,”雷射工程導論”,中央圖書片版社,第四版(1995) [16 ]張智星, “Matlab程式設計與應用”, 清蔚科技(1999) [17 ]明寰資訊編著,“VISUAL BASIC 6.0中文版學習手冊”, ?眳p資訊(1999) [18 ]吳錦榮,”利用脈衝調變染料雷射研究單分子光譜學”, 中山大學碩士論文,(2001)id NH0925442075 sid 913987 cfn 0 / id NH0925442076 auc 許德倫 tic 短波長富立葉轉換光譜儀之研究 adc 蕭憲彥 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 75 kwc 富立葉轉換 kwc 麥克森干涉儀 kwc 干涉譜 kwc 頻譜 abc 富立葉轉換光譜儀目前普遍應用在紅外線光譜分析上,利用麥克森干涉儀所建構的富立葉轉換光譜儀,其多工的性質減短了傳統分光的時間,在每一次掃描過程中可接收到全部光源的光譜資料。加上不需使用狹縫,因此可以容易地接收微弱的訊息,這就是其相對於傳統的色散式光柵光譜儀的兩項重要優點,Fellegett advantage與Jacquinot advantage兩項優點。 rf [1 ] Bell Robert John,”Introductory fourier transform spectroscopy” [2 ]Griffiths Peter R.,” Chemical infrared fourier transform spectroscopy” [3 ]Smith, Brian C.,” Fundamentals of Fourier transform infrared spectroscopy” [4 ]Jagdish.Vij, Patrick Corcoran,”A Computer- Controlled submillimeter fourier spectrometer, IEEE Transactions On Intrumentation And Measurement, vol.38, No.1,February 1989 [5 ]Delores M. Etter,”Engineering problem solving with Matlab Second Edition” [6 ]James R. Durig/陳守一譯,”紅外線光譜分析法在化學、生物和工業方面之應用”,國立編譯館 [7 ]E.ORAN BRIGHAM/黎文明譯,”快速傅立葉變換”,復漢出版社 [8 ]游家瑋,”微步進馬達驅動之里梭光柵光譜儀研究”,清大碩士論文,2001 [9 ]陳光如,”氮氣雷射激發之螢光光譜量測系統研究”,清大碩士論文,2002id NH0925442076 sid 915907 cfn 0 / id NH0925442077 auc 王志翔 tic 串聯式電壓驟降補償器之湧浪電流抑制方法 adc 鄭博泰 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 115 kwc 電壓驟降 kwc 電力品質 kwc 湧浪電流 abc 對於近來電力電子技術的發展與數位控制的進步,工業應用上所採用之電機設備,對於電力系統所發生之電力品質問題相當敏感。對於接地故障造成之電壓驟降問題,造成敏感性負載因欠壓而導致生產程序中斷。因此工業應用上,可利用串聯式電壓驟降補償器解決敏感性負載相關電力品質問題。對於串聯式電壓驟降補償器所採用之耦合變壓器,本文提出一種新的方法以抑制串聯變壓器之湧浪電流。當補償電壓投入時,串聯變壓器因飽和現象造成暫態湧浪電流發生,湧浪電流為穩態時之變壓器激磁電流十倍以上,不僅對變壓器造成損害,同時造成補償電壓無法傳送至市電側,使補償性能降低。本文將利用湧浪抑制控制法將補償電壓命令之等效磁通量加以抑制,使等效磁通量不會超過變壓器飽和點,以消除湧浪電流。以湧浪抑制控制法雖可消除串聯變壓器之湧浪電流,同時亦會降低補償器起始之暫態輸出電壓,然而若可有效抑制湧浪電流,得以額定容量較小之串聯變壓器,達到串聯式電壓驟降補償器之設計要求,同時可減少補償器之重量,降低成本。 tc 誌謝 ........................................................................................... I 中文摘要 ........................................................................................... II 英文摘要 ........................................................................................... III 目錄 ........................................................................................... IV 圖目錄 ........................................................................................... VII 表目錄 ........................................................................................... XIII 一、 緒論 1.1、 簡介 …...……………………………………………... 1 1.2、 研究方向 ……………………………………………... 2 1.3 論文架構 ...…………………………………………... 3 二、 文獻回顧 2.1、 簡介 …...……………………………………………... 4 2.2、 電壓驟降相關規範 …………....……………………... 5 2.3、 變壓器湧浪電流 ………...…………………………... 7 2.4、 結論 …...……………………………………………... 14 三、 控制原理 3.1、 簡介 …...……………………………………………... 15 3.2、 電壓驟降補償控制 …………..……………………... 16 3.2.1、 補償電壓量運算控制 ………………………. 18 3.2.2、 濾波器設計考量 ……………………………. 20 3.2.3、 驟降判斷控制 ……………………………. 23 3.3、 旁路開關截止動作 …..……………………………... 25 3.4、 湧浪電流抑制控制 …………………………………... 27 3.5、 結論 …….…..………………………………………... 37 四、 模擬結果與分析 4.1、 簡介 ..…….…………………………………………... 38 4.2、 線性負載測試 …...…………………………………… 40 4.2.1 單相接地故障 ……………………………….. 40 4.2.2 三相接地故障 ……………………………….. 43 4.3、 閘流體旁路開關截止 …......………………………… 47 4.4、 湧浪電流抑制 …...…………………………………… 51 4.4.1、 單相變壓器湧浪電流測試 ………………….. 51 4.4.2、 電壓驟降補償器湧浪電流測試 …………….. 54 4.5、 結論 ………………………………………………….. 58 五、 實驗結果與分析 5.1、 簡介 ..…….…………………………………………... 59 5.2、 線性負載測試 …...…………………………………… 62 5.2.1 單相接地故障 ……………………………….. 62 5.2.2 三相接地故障 ……………………………….. 66 5.3、 馬達驅動器負載測試 ..........………………………… 70 5.3.1 單相接地故障 ……………………………….. 70 5.3.2 三相接地故障 ……………………………….. 74 5.4、 電容器組暫態投入效應 ….....……………………… 78 5.5 閘流體旁路開關截止測試 …………………………… 80 5.6、 湧浪電流抑制 …...………….……………………… 84 5.6.1 開回路測試 ….……………………………….. 85 5.6.2 電壓驟降補償器湧浪電流抑制測試 …………. 90 5.7、 結論 ………………………………………………….. 97 六、 結論 …………………………………………………………. 102 參考文獻 ........................................................................................... 104 附錄 ........................................................................................... 107rf [1 ] Po-Tai Cheng, Chian-Chung Huang, Chun-Chiang Pan, and Subhashish Bhattacharya, “Design and Implementation of a Series Voltage Sag Compensator Under Practical Utility Conditions”, IEEE Transactions on Industry Applications, vol.39, No.3, May/June 2003, pp.884-853. [2 ] J. W. Schwartzenberg, “Application of AC switch power electronic building blocks in medium voltage static transfer switches” IEEE Power Engineering Society General Meeting, vol.3 , July 2003, pp.1372 – 1374. [3 ] E. Alegria, A. Khan, J. Rajda, and S. Dewan, “Static Voltage Regulator (SVR) – ride through support for semiconductor facilities”, Proceeding of the 1998 Power Quality Conference, Santa Clara, CA, November 1998. [4 ] W. E. Brumsickle, R. S. Schneider, G. A. Luckjiff, D. M. Divan, M. F. McGranaghan, “ Dynamic sag correctors: cost-effective industrial power line conditioning”, IEEE Transactions on Industry Applications, vol.37 , Jan.-Feb. 2001, pp.212-217. [5 ] D. M. Vilathgamuwa, A. A. D. R. Perera, S. S. Choi, “Voltage sag compensation with energy optimized dynamic voltage restorer”, IEEE Transactions on Power Delivery, vol.18, July 2003, pp.928-936. [6 ] Chi-Jen Huang, Shyh-Jier Huang, Fu-Sheng Pai, “Design of dynamic voltage restorer with disturbance-filtering enhancement”, IEEE Transactions on Power Electronics, vol.18, Sept. 2003, pp.1202-1210 [7 ] P. K. Lim, D.S. Dorr, “Understanding and resolving voltage sag related problems for sensitive industrial customers”, IEEE Power Engineering Society Winter Meeting, vol.4, 2000, pp.2886-2890. [8 ] IEEE Std. 1159-1995, “IEEE recommended practice for monitoring electric power quality”, Nov. 1995. [9 ] IEEE Std. 1346-1998 “IEEE recommended practice for evaluation electric power system compatibility with electronic process equipment”, July 1998. [10 ] M. F. Alves, T. N. Ribeiro, “Voltage sag: an overview of IEC and IEEE standards and application criteria” IEEE 1999 Transmission and Distribution Conference, vol.2 , April 1999, pp.585-589. [11 ] “Semi F47-0200 Specification for semiconductor processing equipment voltage sag immunity”, Semiconductor Equipment and Materials Council, Washington, DC, 2000. [12 ] ITI(CBEMA) Curve Application Note, Information Technology Industry Council, 2000. [13 ] Francisco de León, Brian Gladstone, Menno van der Veen, “Transformer Based Solutions to Power Quality Problems”, Powersystems World 2001. [14 ] P. C. Y. Ling, A. Basak, “Investigation of magnetizing inrush current in a single-phase transformer”, IEEE Transactions on Magnetics, vol.24, Nov, 1988, pp.3217-3222. [15 ] V. Molcrette, J.L. Konty, J.P. Swan, “Reduction of Inrush Current in Single-Phase Transformer Using Virtual Air Gap Technique”, IEEE Transactions on Magnetics, vol. 34, July 1998, pp.1192-1194. [16 ] M. S. J. Asghar, “Elimination of Inrush Current of Transformers and Distribution Lines”, Proceedings of the 1996 International Conference on Power Electronics, Drives and Energy Systems for Industrial Growth, vol.2, 1996, pp.976-980. [17 ] Chris Fitzer, Atputharajah Arulampalam, Mike Barnes, and Rainer Zurowski, “Mitigation of Saturation in Dynamic Voltage Restorer Connection Transformers”, IEEE Transactions on Power Electronics, vol.17, November 2002, pp.1058-1066. [18 ] Joseph Nevelsteen and Humberto Aragon, “Starting of Large Motors – Methods and Economics”, IEEE Transactions on Industry Applications, vol.25 Nov./Dec. 1989, pp.1012-1018. [19 ] Gürkan Zenginobuz, Isik Cadirci, Muammer Ermis and Cüneyt Barlak, “Performance Optimization of Induction Motors During Voltage-Controlled Soft Starting”, IEEE Transactions on Energy Conversion, vol.19, June 2004, pp.278-288. [20 ] Texas Instruments Incorporated, “TMS320C6000 CPU and Instruction Set Reference Guide”, in Texas Instruments Incorporated, October, 2000. [21 ] Texas Instruments Incorporated, “Code Composer Studio Tutorial”, in Texas Instruments Incorporated, March, 2000. [22 ] Texas Instruments Incorporated, “TMS320C6x C Source Debugger”, in Texas Instruments Incorporated, March, 2000. [23 ] Texas Instruments Incorporated, “TMS320C6x Peripheral Support Library Programmer’s Reference”, in Texas Instruments Incorporated, March, 2000.id NH0925442077 sid 913901 cfn 0 / id NH0925442078 auc 蘇昱任 tic 射頻激發橫向氣流二氧化碳雷射之研究 adc 蕭憲彥 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 51 kwc 射頻激發雷射 kwc 橫向氣流雷射 kwc 二氧化碳雷射 abc 本論文實驗的目的是研究觀察射頻激發之橫向氣流二氧化碳雷射的三個特性: tc 摘要 Ⅰ 誌謝 Ⅲ 目錄 Ⅳ 圖表目錄 Ⅶ 第一章 緒論 1 第二章 二氧化碳雷射工作原理 3 第三章 射頻橫向激發 14 第四章 實驗目的與架構 23 第五章 實驗結果與討論 26 第六章 結論 32 參考文獻 33rf 1 雷射工程導論,丁勝懋 主編,(中央圖書出版社出版)第三章. 2 張瑞賢,分段式射頻激發二氧化碳平板波導及其陣列雷射之特性研究 國立清華大學碩士論文,2001. 3 G. Allcock and D. R. Hall, “An efficient, RF excited, waveguide CO2 laser”, Opt. Commun., vol. 37, no. 1, pp. 49-52, 1981. 4 P. Vidaud, D. He and D. R. Hall, “High efficiency RF excited CO2 laser”, Opt. Commun., vol. 56, no. 3, pp. 185-190, 1985. 5 Gas discharge physics, ed. By Y. P. Raizer, (Springer-Verlag) Chap.13. 6 D. He, and D. R. Hall, “Longitudinal voltage distribution in transverse RF discharge waveguide lasers”, J. Appl. Phys., vol. 54, no. 8, pp. 4367-4373, 1983.id NH0925442078 sid 915908 cfn 0 / id NH0925442079 auc 張立穎 tic 針對數位控制脈寬調變轉換器於運算時間延遲之相位領前補償方法 adc 鄭博泰 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 86 kwc 轉換器 kwc 主動濾波 kwc 能量回生 kwc 時間延遲 kwc 數位信號處理器 abc 近年來,由於數位信號處理器對於實現複雜控制法及程式撰寫的便利性,許多電力電子之應用皆偏好使用數位信號處理器來實現控制法。然而數位信號處理器所伴隨的時間延遲卻使得控制法在實現上有未盡理想之處。以並聯式主動濾波器為例,其濾波效果之優劣主要取決於電流控制的能力,若以數位信號處理器來實現其電流控制法,則所造成的時間延遲勢必降低電流的追隨性能,進而影響整體濾波的效果。因此,關於數位信號處理器時間延遲之研究遂成為一重要課題。 tc 目錄 誌謝……..…..…..………………………………………………………..…. III 中文摘要..…..…..………………………………………………………..… III 英文摘要........………..……..……………………………………………… III 目錄..…………..…………………………………………………………… IV 圖目錄……..………….…………….……………………………………… VI 表目錄……..……………………………………………………………......IIX 第一章 .緒論……..………………..……………………….…...….……..0 1 第一章1.1 簡介….…………………………………………………..…..001 第一章1.2 論文大綱……………………………………….……………003 第二章 .文獻回顧…………………….…………………….……………004 第二章2.1 簡介….…………………………………………………..…..004 第二章2.2 數位控制器之時間延遲原因….……………………………024 第二章2.82.2.1 一階低通濾波器近似法……………………………….025 第二章2.62.2.2 零階保持器近似法…………………………………….026 第二章2.62.2.3 空間向量推導法……………………………………….027 第二章2.62.2.4 結論….……………………………………………..…..010 第二章2.3 時間延遲補償………………….……………………………011 第二章2.4 DAXC系統…………….……………………………………012 第二章2.5 總結………………………………………………………….013 第三章 .操作原理………….…………………………………………….014 第二章3.1 簡介………………….………………………………………014 第二章3.2 DAXC系統控制原理………….……………………………016 第二章3.33.2.1 主動濾波控制原理…………………………………….016 第二章2.63.2.2 直流鏈電壓控制原理………………………………….017 第二章2.63.2.3 預測電流調節器….……………………………………017 第二章3.3 時間延遲分析………………….……………………………020 第二章3.4 時間延遲補償………………….……………………………022 第二章3.5 總結………………………………………………………….025 第四章 .模擬結果與分析………….…………………………………….026 第二章4.1 簡介……………………….…………………………………026 第二章4.2 DAXC系統操作於取樣頻率fs=10kHz之模擬結果……….029 第二章4.3 DAXC系統操作於取樣頻率fs=20kHz之模擬結果……….038 第二章4.4 總結………………………………………………………….046 第五章 .實驗結果與分析………………………………………………..050 第二章5.1 簡介………………………………………………………….050 第二章5.2 DAXC系統操作於取樣頻率fs=10kHz之模擬結果……….053 第二章5.3 DAXC系統操作於取樣頻率fs=20kHz之模擬結果……….062 第二章5.4 總結……………………………………………………….....070 第六章 .結論…………………………………………………………......074 參考文獻………..……..…………………………………………………… 76 附錄………..……..………………………………………………………… 79 圖目錄 圖1-1 DAXC系統電路架構圖………………………………………….002 圖2-1 電流控制方塊圖…….……………………...…………………….005 圖2-2 取樣時間Ts、三角波週期Tcarr、PWM延遲TPWM及等效時間延0.4遲Tei與三角波之關係圖。(a)取樣兩次(b)取樣一次……....…….006 圖2-3 使用零階保持器重建之信號及其平滑近似曲線…...…..………006 圖2-4 數位信號處理時序圖………….………………………………....008 圖2-5 電流控制方塊圖……….…………………...…………………….009 圖2-6 同步參考座標與參考電壓向量關係圖………..………………...009 圖2-7 DAXC系統電路架構圖………………………………………….013 圖3-1 DAXC系統電路架構圖………………………………………….014 圖3-2 DAXC系統之控制方塊圖……………………………………….015 圖3-3 數位電流調節器示意圖………………………………………….019 圖3-4 實際信號輸出延遲之示意圖…………………………………….021 圖3-5 經時間延遲補償後之DAXC系統控制方塊圖………………….023 圖4-1 DAXC系統模擬架構圖………………………………………….028 圖4-2 轉換器啟動前之市電電流is波形與頻譜圖……………………030 圖4-3 轉換器輸出電流i*與i波形與頻譜圖(fs=10kHz,相位補償前)....031 圖4-4 轉換器啟動後之市電電流is波形與頻譜圖(fs=10kHz,相位補償前)前)…………………………………………………………………032 圖4-5 轉換器輸出電流i*與i波形與頻譜圖(fs=10kHz,相位補償後)…033 圖4-6 轉換器啟動後之市電電流is波形與頻譜圖(fs=10kHz,相位補償前)後)…………………………………………………………………034 圖4-7 負載回送能量期間,市電電壓E與轉換器輸出電流i之波形、 頻頻譜圖與相位圖(fs=10kHz,相位補償前)……………………….036 圖4-8 負載回送能量期間,市電電壓E與轉換器輸出電流i之波形、 頻頻譜圖與相位圖(fs=10kHz,相位補償後)……………………….037 圖4-9 轉換器輸出電流i*與i波形與頻譜圖(fs=20kHz,相位補償前)....039 圖4-10 轉換器啟動後之市電電流is波形與頻譜圖(fs=20kHz,相位補償前)前)……………………………………………………………….040 圖4-11 轉換器輸出電流i*與i波形與頻譜圖(fs=20kHz,相位補償後)...041 圖4-12 轉換器啟動後之市電電流is波形與頻譜圖(fs=20kHz,相位補償前)後)…………………………………………………………………042 圖4-13 負載回送能量期間,市電電壓E與轉換器輸出電流i之波形、 頻頻譜圖與相位圖(fs=20kHz,相位補償前)……………………….044 圖4-14 負載回送能量期間,市電電壓E與轉換器輸出電流i之波形、 頻頻譜圖與相位圖(fs=20kHz,相位補償後)……………………….045 圖5-1 實驗室之系統架構圖…………………………………………….052 圖5-2 轉換器啟動前之市電電流is波形與頻譜圖……………………054 圖5-3 轉換器輸出電流i*與i波形與頻譜圖(fs=10kHz,相位補償前)…055 圖5-4 轉換器啟動後之市電電流is波形與頻譜圖(fs=10kHz,相位補償前)前)…………………………………………………………………056 圖5-5 轉換器輸出電流i*與i波形與頻譜圖(fs=10kHz,相位補償後)....057 圖5-6 轉換器啟動後之市電電流is波形與頻譜圖(fs=10kHz,相位補償前)後)…………………………………………………………………058 圖5-7 負載回送能量期間,市電電壓E與轉換器輸出電流i之波形、 頻頻譜圖與相位圖(fs=10kHz,相位補償前)……………………….060 圖5-8 負載回送能量期間,市電電壓E與轉換器輸出電流i之波形、 頻頻譜圖與相位圖(fs=10kHz,相位補償後)……………………….061 圖5-9 轉換器輸出電流i*與i波形與頻譜圖(fs=20kHz,相位補償前)....063 圖5-10 轉換器啟動後之市電電流is波形與頻譜圖(fs=20kHz,相位補償前)前)…………………………………………………………………...064 圖5-11 轉換器輸出電流i*與i波形與頻譜圖(fs=20kHz,相位補償後)...065 圖5-12 轉換器啟動後之市電電流is波形與頻譜圖(fs=20kHz,相位補償前)後)…………………………………………………………………066 圖5-13 負載回送能量期間,市電電壓E與轉換器輸出電流i之波形、 頻頻譜圖與相位圖(fs=20kHz,相位補償前)……………………….068 圖5-14 負載回送能量期間,市電電壓E與轉換器輸出電流i之波形、 頻頻譜圖與相位圖(fs=20kHz,相位補償後)……………………….069 圖A-1 市電電壓偵測電路……………………………………………….079 圖A-2 霍爾元件Nana C. T.腳位圖…………………………………..….080 圖A-3 直流鏈電壓偵測電路…………………………………………….081 圖A-4 DSP PWM信號控制電路……………………………………..….082 圖A-5 IGBT閘級驅動電路…………………………………………….083 圖A-6 實驗室測試平台………………………………………………….084 圖A-7 IGBT轉換器…………………………………………..………….084 圖A-8 直流迴路電感Lf1、Lf2與二極體D1、D2……………..…………….084 圖A-9 升壓變壓器、自耦變壓器……………………………………….084 圖A-10 TMS320C6711數位信號處理器……………………………….085 圖A-11 IGBT 閘極驅動電路…………………………………………….085 圖A-12 DSP PWM信號控制電路……………………………………….085 圖A-13 回授信號偵測電路……………………………………………….085 圖A-14 轉換器輸出端LC濾波器……………………………………….086 圖A-15 Ls、Ll、Cdc2及Rl………………………………………………....….086 圖A-16 Lr及Rr……………………………………………………….…….086 圖A-17 電源端Δ-Y變壓器…………………………………………….086 表目錄 表2-1 三種分析法對PWM輸出延遲與增益之比較…………………...010 表4-1 相位補償前後,市電電流is各主要成分之比較(fs=10kHz)….….047 表4-2 相位補償前後,i*與i之誤差比較(fs=10kHz)….………………....047 表4-3 相位補償前後,市電電流is各主要成分之比較(fs=20kHz)….….048 表4-4 相位補償前後,i*與i之誤差比較(fs=20kHz)….………………....048 表4-5 能量回升時,相位補償前後E與i之相位差比較….…………...049 表5-1 相位補償前後,市電電流is各主要成分之比較(fs=10kHz)…..…071 表5-2 相位補償前後,i*與i之誤差比較(fs=10kHz)….………………....071 表5-3 相位補償前後,市電電流is各主要成分之比較(fs=20kHz)…..…072 表5-4 相位補償前後,i*與i之誤差比較(fs=20kHz)….………………....072 表5-5 能量回升時,相位補償前後E與i之相位差比較….…………...073rf [1 ] M. El-Habrouk, M.K. Darwish, and P. Mehta, “Active Power Filters: A Review,” IEE Proceedings-Electric power applications, vo1. 147, pp. 403-413, 2000. [2 ] H. Akagi, “New Trends in Active Filters for Power Conditioning,” IEEE Transactions on Industry Applications, vo1. 32, pp. 1312-1322, 1996. [3 ] .S. Bhattacharya and D. Divan, “Active Filter Solutions for Utility Interface of Industrial Loads,” Proceedings of the 1996 International Conference on Power Electronics, Drives and Energy Systems for Industrial Growth, 1996, vo1. 2, pp. 1078-1084, 1996. [4 ] B. Singh, K. Al-Haddad, and A. Chandra, “A Review of Active Filters for Power Quality Improvement,” IEEE Transactions on Industrial Electronics, vo1. 46, pp. 960-971, 1999. [5 ] J. Zeng, O. Diao, Y. Ni, S. Cheng, and B. Zhang, “A Novel Current Controller for Active Power Filter Based On Optimal Voltage Space Vector,” IEEE Conference on Power Electronics and Motion Control, vo1. 2, pp. 686-691, 2000. [6 ] .D. M. Brod and D. W. Novonty, “Current Control of VSI-PWM Inverters,” IEEE Transactions on Industry Applications, vo1. IA-21, pp. 562-570, 1985. [7 ]T.T. G. Habetler, “A Space Vector-based Rectifier Regulator for AC/DC/AC Converters,” IEEE Transactions on Power Electronics, vo1. 8, pp. 30-36, 1993. [8 ] P. Jintakosonwit, H. Fujita, and H. Akagi, “Control and Performance of a Fully-Digital-Controlled Shunt Active Filter for Installation on a Power Distribution System,” IEEE Transactions on Power Electronics, vo1. 17, pp. 132-140, 2002. [9 ] S. Hamasaki and A. Kawamura, “Improvement of Current Regulation of Line-Current-Detection-Type Active Filter based on Deadbeat Control,” IEEE Transactions on Industry Applications, vo1. 39, pp. 536-541, 2003. [10 ] O. Kukrer, “Discrete-Time Current Control of Voltage-Fed Three-Phase PWM Inverters,” IEEE Transactions on Power Electronics, vo1. 11, pp. 260-269, 1996. [11 ] W. C. Lee, D. S. Hyun, and T. K. Lee, “A Novel Control Method for Three-Phase PWM Rectifiers Using a Single Current Sensor,” IEEE Transactions on Power Electronics, vo1. 15, pp. 861-870, 2000. [12 ] S. G. Jeong and M. H. Woo, “DSP-Based Active Power Filter with Predictive Current Control,” IEEE Transactions on Industrial Electronics, vo1. 44, pp. 329-336, 1997. [13 ] H. T. Moon, H. S. Kim, and M. J. Youn, “A Discrete-Time Predictive Current Control for PMSM,” IEEE Transactions on Power Electronics, vo1. 18, pp. 464-472, 2003. [14 ] H. R. Hur, J. M. Lee, S. Lee, and M. H. Lee, “Compensation of Time Delay Using a Predictive Controller,” Proceedings of the IEEE International Symposium on Industrial Electronics, 1999, vo1. 3, pp. 1087-1092, 1999. [15 ] V. Blasko and V. Kaura, “A Novel Control to Actively Damp Resonance in Input LC Filter of a Three-Phase Voltage Source Converter,” IEEE Transactions on Industry Applications, vo1. 33, pp. 542-550, 1997. [16 ] D. Raviv and E. W. Djaja, “ Technique for Enhancing the Performance of Discretized Controllers,” IEEE Control Systems Magazine, vol. 19, pp. 52-57, 1999. [17 ] P. Katz, Digital Control Using Microprocessors, Technion-Israel Institute of Technology, 1986. [18 ] S. Bibian and H. Jin, “Time Delay Compensation of Digital Control for DC Switchmode Power Supplies Using Prediction Techniques,” IEEE Transactions on Power Electronics, vol. 15, pp. 835-842, 2000. [19 ] B. H. Bae and S. K. Sul, “A Compensation Method for Time Delay of Full-Digital Synchronous Frame Current Regulator of PWM AC Drives,” IEEE Transactions on Industry Applications, vol. 39, pp. 802-810, 2003. [20 ] Jian-Shen Li, Design and Implementation of an Auxiliary IGBT Converter for Conventional Diode Rectifier Front-ends, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2003. [21 ] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, New York: John Wiley & Sons, 1997.id NH0925442079 sid 913911 cfn 0 / id NH0925442080 auc 張凱為 tic 週期性極化鈮酸鋰波導共線兆赫波參數產生器之研究 adc 黃衍介 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 38 kwc 兆赫波 kwc 鈮酸鋰 kwc 光參數產生器 abc 非線性混頻技術已經成為一個有效低能量高同調兆赫波的產生方式,週期性極化晶格反轉鈮酸鋰晶體提供補償波向量使可達成同向性的相位匹配,因此成為大多數非線性混頻技術的核心產生物質。在這篇論文之中,我們主要以共線相位匹配方式的兆赫波參數產生器作為核心探討課題。首先,我們藉由能量為150微焦耳、波長為532奈米的主動Q調制雷射和能量為60微焦耳、波長為1064奈米的被動Q調制雷射,激發近6公分長、780微米厚的週期性極化晶格反轉鈮酸鋰波導,在準相位匹配的條件下,我們成功地建立高轉換效率同相性相位匹配機制的兆赫波參數產生器。在此同向兆赫波參數產生器中,我們所使用的週期性極化晶格反轉晶體的晶格週期分別是71.5毫米跟67毫米,而它們分別對應到使用532奈米和1064奈米雷射激發,而我們量測到對應的兆赫波波長分別為80微米和330微米。因同向性的相位匹配有較長的有效增益長度,以及此780微米厚鈮酸鋰晶體中之兆赫波波導效應,使用能量為100微焦耳、波長為532奈米的雷射激發所產生的80微米兆赫波,可以使用壓電偵測器量得,其能量可以達到次奈米焦耳。更進一步地,由成功建立正向兆赫產生器的經驗,我們嘗試地完成約四十年未完成的實驗—背向光參數震盪器。藉由波長為532奈米和能量為250微焦耳的主動Q調制雷射激發近4公分長、780微米厚、44和32微米晶格週期的週期性極化晶格反轉鈮酸鋰波導。目前由觀測閒置波的能量,我們得到背向參數震盪器的門檻能量約為30微焦耳。在同樣的實驗架構之下,我們同時藉由激發波長為1064奈米的雷射進入厚度為500微米跟1000微米的週期性極化晶格反轉鈮酸鋰晶體中,我們從觀察閒置波的光譜確定了在此些厚度的鈮酸鋰晶體中兆赫波波導的特性。 rf Chapter 1 P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas, “ IEEE J. Quan. Electron. 24, 255 (1988) X. -C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,“ Appl. Phys. Lett. 56, 1011 (1990). M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source”, Appl. Phys. Lett 26, 418 (1975). K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler”, Appl. Phys. Lett. 68, 2483 (1996). J. Shikata, M. Sato, T. Taniuchi, and H. Ito, “Enhancement of terahertz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling,“ Opt. Lett. 24, 202 (1999). S. S. Sussman, “Tuable light scattering from transverse optical modes in lithium niobate,” Microwave Lab. Rep. 1851(Stanford University, Stanford, Calif., 1970) J. A. Armstrong, N. Bloemergen, J. Ducuing, and P. S. Pershan, Phys. Rev., 127, 1918(1962). L. E. Myers, G. D. Miller, E. C. Eckardt, M. M. Fejer, and R. L. Byer, Opt. Lett. 20, 52 (1995) M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantom Electron. 28, 2631 (1992). Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, Appl. Phys. Lett. 81, 3323 (2002). Y. J. Ding and J. B. Khurgin, Opt. Comm. 148, 105 (1998). S. E. Harris, Appl. Phys Lett. 68, 2483(1966) Y. J. Ding, I. B. Zotiva, JNOPM. 11, 75(2002) Y. J. Ding, J.B. Khurgin, Opt. Commun. 148, 105 (1998) E.D. Palik, Handbook of Optical Constants of Solids, (Academic, New York, 1991). Chapter 2 S. E. Harris, “Tunable Optical Parametric Oscillators,” Proc. IEEE 57, pp. 2096-2113 (1969) R. G. Smith, “Optical Parametric Oscillators,” in Laser Handbook, 1, F.T. Arecchi and E. O. Schulz-Dubois, ed.(North-Holland, Amsterdam, 1972), pp.837-895 R. A. Baumgartner and R. L. Byer, “Optical Parametric Amplification,” IEEE J. Quantum Electron, 15, pp432-444 (1979) R. L. Byer, “Optical parametric oscillator,” in Quantum Electronics: A Treatise, H. Tabin and C. L. Tang, ed. (Academic, New York, 1975), pp. 587-702 A. Yariv, Quantum Electronics. New York: Wiley, 1989, p435 J. Shikata, M. Sato, T. Taniuchi, and H. Ito, Opt. Lett. 24, 202 (1999) Shikata J, Kawase K, Karino K, Taniuchi T and Ito H 2000, IEEE Trans. Microwave Theory Tech. 48 653. S.E. Harris, “Proposed backward wave oscillation in the infrared.” Appl. Phys. Lett., 9 ,144 (1966) Y. J. Ding and J. B. Khurgin, IEEE J. Quantum Electron. 32 1574 (1996) Y. J. Ding, J.B. Khurgin, Opt. Commun. 148, 105 (1998) M.J. Soileau, Appl. Optics 20 1981 1030. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic-Integrated Circuits (Wiley, New York, 1995) E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1991) S.S. Sussman, “Tuable light scattering from transverse optical modes in lithium niobate,” Microwave Lab. Rep. 1851(Stanford University, Stanford, Calif., 1970) Chapter 3 E. D. Palik, Handbook of Optical Constants of Solids, (Academic, New York, 1991), p. 695 D. N. Nikogosyan, Properties of Optical and Laser-Related Materials, (John Wiley & Sons Ltd, 1997), p. 328 J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, IEEE Trans. Microwave Theory Tech. 48, 653 (2000). K. Kawase, M. Sato, T. Taniuchi, and H. Ito, "Characteristics of THz-wave radiation using a monolithic grating coupler on a LiNbO3 crystal," International Journal of Infrared and Millimeter Waves, vol. 17, no. 11, pp. 1839-1850 (1996). J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, "Tunable Terahertz-wave Parametric Oscillators Using LiNbO3 and MgO:LiNbO3 crystals," IEEE Transactions on Microwave Theory and Techniques., Vol. 48, No. 4, pp. 653 - 661 (2000). W. Shi and Y. J. Ding, Appl. Phys. Lett 82, 4435 (2003). L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, Appl. Phys. Lett. 73, 1610 (1998). J. Shikata, M. Sato, T. Taniuchi, and H. Ito, Opt. Lett. 24, 202 (1999). M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantom Electron. 28, 2631 (1992). Chapter 4 A. C. Chiang, Y. Y. Lin, T. D. Wang, Y. C. Huang, and J. T. Shy, “Distributed feedback optical parametric oscillation by use of a photorefractive grating in periodically poled lithium niobate”, Opt. Lett. 27, 1815-1817 (2002). Y. C. Haung, Y. Y. Lin, “Coupled-wave theory for distributed-feedback optical parametric amplifiers and oscillators” , J. Opt. Soc. Am. B, 21, 777 (2004)id NH0925442080 sid 925913 cfn 0 / id NH0925442081 auc 謝唯盟 tic 新型單相多階電流型直交流轉換器 adc 潘晴財 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 120 kwc 多階 kwc 電流型 kwc 直交流轉換器 kwc 載波合成 kwc 邊界相角 kwc 功率放大器 abc 多階轉換器架構一般皆用於大功率之場合,其主要目的在於降低每個開關上之電壓、電流應力,以及藉由多階合成輸出波形,以減小輸出波形之諧波失真量。然而近年來國際上不論是在單相或是三相系統有關之多階架構研究,絕大部份均著重於電壓等級高之多階電壓型直交流轉換器上,但針對三相或單相系統於大電流應用之多階電流型直交流轉換器之研究著作則寥寥無幾,緣此動機,本論文主要目的即在針對單相電流型直交流轉換器之多階架構進行研究。 tc 目 錄 中文摘要 I 英文摘要 II 目錄 III 圖目錄 V 表目錄 XI 第一章 緒 論 1 1.1 研究動機 1 1.2 文獻回顧 1 1.3 本論文之貢獻 3 1.4 本論文之內容概述 4 第二章 新型單相五階電流型直交流轉換器 5 2.1 前言 5 2.2 新型單相五階電流型直交流轉換器架構 5 2.3 新型單相五階電流型直交流轉換器工作原理 7 2.3.1 正弦脈波寬度調變方法 7 2.3.2 新型轉換器之工作原理 12 2.3.3 新型五階電流型轉換器之開關切換控制 25 2.4 新型五階系統開關信號改善方式 36 2.5 模擬結果 40 第三章 新型單相七階電流型直流轉換器 48 3.1 前言 48 3.2 新型單相七階電流型直交流轉換器架構 48 3.2.1 新型單相七階電流型直交流轉換器架構 48 3.2.2 新型單相七階電流型直交流轉換器工作原理 50 3.2.3 七階電流型轉換器之開關切換控制 63 3.3 2n+1階電流型直交流轉換器架構 74 3.4 模擬結果 79 第四章 實體電路製作與量測結果 84 4.1 前言 84 4.2 實體電路製作 84 4.2.1 電力電路 85 4.2.2 控制電路 85 4.3 實測結果 94 第五章 結 論 113 參考文獻 115rf [1 ] F. M. Antunes, H. A. C. Braga and I. Barbi, “ Application of a generalized current multilevel cell to current-source inverters, ” IEEE Trans. Power Electron., vol. 46, no. 1, pp. 31 – 38, Feb. 1999. [2 ] S. Daher, R. Silva and F. Antunes, “ Multilevel current source inverter-the switching control strategy for high power application, ” Proc. IEEE International Conf. on Ind. Electron., Control, and Instrumentation, vol. 3, Aug. 1996, pp. 1752 – 1757. [3 ] F. M. Antunes, H. A. C. Braga and I. Barbi, “ Application of a generalized current multilevel cell to a current source inverter, ” Proc. IEEE International Conf. on Ind. Electron., Control, and Instrumentation, Vol. 1, Nov. 1995, pp. 278 – 283. [4 ] X. Yu, D. J. Chen, S. Q. Deng and Z. C. Zhang, “ A new single-phase multilevel current-source inverter, ” Proc. IEEE APEC '04., vol. 3, Feb. 2004, pp. 1682 – 1685. [5 ] X. J. Gao, Z. M. Zhao and H. N. Wang, “ Evaluation on performances of a new three-phase five-level current source inverter, ” Proc. IEEE ICEMS '01., vol. 1, No. 1, Aug. 2001, pp. 500 – 503. [6 ] A. F. Andrade, E. C. Teixeira and H. A. C. Braga, “ A family of high factor rectifiers based on dc-to-dc current multilevel converters, ” Proc. IEEE ISIE '03., vol. 1, June 2003, pp. 645 – 650. [7 ] V .G. Agelidis, D. M. Baker, W. B.Lawrance and C. V. Nayar, “ A multilevel PWM inverter topology for photovoltaic applications, ” Proc. IEEE ISIE '97., vol. 2, July 1997, pp. 589 – 594. [8 ] A. M. Trzynadlowski, N. Patriciu, F. Blaabjerg and J. K. Pedersen, “ A hybrid, current-source/voltage-source power inverter circuit, ” IEEE Trans. Power Electron., vol. 16, no. 6, pp. 866 – 871, Nov. 2001. [9 ] J. D. Ma, B. Wu and S. Rizzo, “ Active damping control of PWM CSI high power induction motor drives, ” Proc. IEEE PESC '00, vol. 1, June 2000, pp. 61 – 66. [10 ]M. Kazerani, “ A direct AC/AC converter based on current-source converter modules, ” IEEE Trans. Power Electron., vol. 18, no. 5, pp. 1168 – 1175, Sept. 2003. [11 ]A. I. Maswood, “ A current source inverter with sinusoidal PWM switching analysis, modeling and performance, ” Proc. IEEE EMPD '98., vol. 2, no. 2, March 1998, pp. 527 – 531. [12 ]D. N. Zmood and D. G. Holmes, “ Improved voltage regulation for current source inverters, ” IEEE Trnas. Ind. Applicat., vol. 4. pp. 2353 – 2360, Oct. 2000. [13 ]K. Hirachi and Y. Tomokuni, “ A novel control strategy on single-phase PWM current source inverter incorporating pulse area modulation, ” Proc. IEEE Power Conversion Conf. - Nagaoka, vol. 1, Aug. 1997, pp. 289 – 294. [14 ]J. Espinoza, G. Joos and P. Ziogas, “ Voltage controlled current source inverters, ” Proc. IEEE International Conf. on Ind. Electron., Control, Instrumentation, and Automation, vol. 1, Nov. 1992, pp. 512 – 517. [15 ]G. Joos, G. Moschopoulos and P. D. Ziogas, “ A high performance current source inverter, ” IEEE Trans. Power Electron., vol. 8, no. 4, pp. 571 – 579, Oct. 1993. [16 ]M. Kazerani, Z. C. Zhang and B. T. Ooi, “ Linearly controllable boost voltages from Tri-Level PWM current- source inverter, ” Proc. IECON '95., vol. 42, no. 1, Feb. 1995, pp. 72 – 77. [17 ]G. Ledwich, “ Current source inverter modulation, ” IEEE Trans. Power Electron., vol. 6. no. 4, pp. 618 – 823, Oct. 1991. [18 ]P. R. Palmer and M. S. Abu Khaizaran, “ The series connection of IGBTs in a current source inverter, ” Proc. IEEE PESC '01., vol. 1. June 2001, pp. 170 – 175. [19 ]P. Cancelliere, V. Delli Colli, R. Di Stefano and F. Marignetti, “ Voltage controlled modulation of a current source inverter, ” Proc. IEEE International Conf. on Power Electron., Machines and Drives, no. 487, June 2002, pp. 427 – 432. [20 ]A. Bendre, I. Wallace, J. Nord and G. Venkataramanan, “ A current source PWM inverter with actively commutated SCRs, ” IEEE Trans. Power Electron., vol. 17, no. 4, pp. 461 – 468, July 2002. [21 ]M. S. Abu Khaizaran, H. S. Rajamani and P. R. Palmer, “ The high power IGBT current source inverter, ” Proc. IEEE IAS '01., vol. 2, Oct. 2001, pp. 879 – 885. [22 ]N. Zargari, S. Rizzo, Y. Xiao, H. Iwamoto, K. Sato and J. Donlon, “ A new current source converter using a symmetric gate commutated thyristor (SGCT), ” Proc. IEEE IAS '00., vol. 3, Oct. 2000, pp. 1957 – 193. [23 ]J. Rodriguez, L. Moran, J. Pontt, R. Osorio and S. Kouro, “ Modeling and analysis of common-mode voltages generated in medium voltage PWM-CSI drives, ” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 873 – 879, May 2003. [24 ]D. N. Zmood and D. G. Holmes, “ Improved voltage regulation for current source inverters, ” Proc. IEEE IAS '00., vol. 4, Oct. 2000, pp. 2353 – 2360. [25 ]A. J. Baronian and S. B. Dewan, “ An adaptive digital control of current source inverter suitable for parallel processing inverter systems, ” Proc. IEEE IAS '95., vol. 3, Oct. 1995, pp. 2670 – 2677. [26 ]S. J. Watkins and L. Zhang, “ Influence of multilevel sinusoidal PWM schemes on the performance of a flying- capacitor inverter, ” Proc. IEEE Power Electron., Machines and Drives, June 2002, pp. 92 – 97. [27 ]J. Rodriguez, J. S. Lai and F. Z. Peng, “ Multilevel inverters: a survey of topologies, controls, and applications, ” Proc. IECON '02., vol. 49, no. 4, Aug. 2002, pp. 724 – 738. [28 ]M. R. Baiju, K. Gopakumar, K. K. Mohapatra, V. T. Somasekhar and L. Umanand, “ Five-level inverter voltage-space phasor generation for an open-end winding induction motor drive, ” Proc. IEE Electric Power Applicat., vol. 150, no. 5, pp. 531 – 538, Sept. 2003. [29 ]A. I. Maswood, “ A PWM voltage source inverter with PI controller for instantaneous motor current control, ” Proc. IEEE International Conf. on Power Electron. and Drive Systems, 1995. vol. 2, Feb. 1995, pp. 834 – 837. [30 ]L. M. Tolbert and F. Z. Peng and T. G. Habetler, “ Multilevel PWM methods at low modulation indices, ” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 719 – 725, July 2000. [31 ]L. M. Tolbert and T. G. Habetler, “ Novel multilevel inverter carrier-based PWM method, ” IEEE Trans. Ind. Applicat., vol. 35, pp. 1098 – 1107, Oct. 1999. [32 ]J. Rodriguez, J. Pontt, E. Silva, J. Espinoza and M. Perez, “ Topologies for regenerative cascaded multilevel inverters, ” Proc. IEEE PESC '03., vol. 2 , June 2003, pp. 15-19. [33 ]H. W. van der Broeck, “ Analytical calculation of the harmonic effects of single phase multilevel PWM inverters, ” Proc. IEEE IECON '03., vol. 1, Nov. 2003, pp. 243 – 248. [34 ]J. S. Kim, T. J. Kim, D. W. Kang and D. S. Hyun, “ A novel method of the harmonic analysis by the multi- carrier PWM techniques in the multi-level inverter, ” Proc. IEEE IECON '02., Vol. 4, Nov. 2002, pp. 3140 – 3145. [35 ]B. Mwinyiwiwa, Z. Wolanski, Y. Q. Chen and B. T. Ooi, “ Multimodular multilevel converters with input/output linearity, ” IEEE Trans. Ind. Applicat., vol. 33, no. 5, pp. 1214 – 1219, Sept./Oct. 1997. [36 ]A. M. Massoud, S. J. Finney, B. W. Williams, “ Control techniques for multilevel voltage source inverters, ” Proc. IEEE PESC '03., vol. 1, June 2003, pp. 171 – 176. [37 ]M. Calais, L. J. Borle and V. G. Agelidis, “ Analysis of multicarrier PWM methods for a single-phase five level inverter, ” Proc. IEEE PESC '01., vol. 3, June 2001, pp. 1351 – 1356. [38 ]C. M. Wu, W. H. Lau and H. Chung, “ Generic analytical solution for calculating the harmonic characteristics of multilevel sinusoidal PWM inverter, ” Proc. IEEE ISCAS '99., Vol. 5, June 1999, pp. 184 – 187. [39 ]K. Iwaya and I. Takahashi, “ Novel multilevel PWM wave control method using series connected full bridge inverters, ” Proc. IEEE IEMDC '03., vol. 3, June 2003, pp. 1543 – 1548. [40 ]B. P. McGrath and D. G. Holmes, “ Sinusoidal PWM of multilevel inverters in the overmodulation region, ” Proc. IEEE PESC '02., vol. 2, June 2002, pp. 485 – 490. [41 ]K. Oguchi, H. Hama and T. Kubota, “ Multilevel current- source and voltage-source converter systems coupled with harmonic canceling reactors, ” Proc. IEEE IAS '97., Annual Meeting, vol. 2, Oct. 1997, pp. 1300 – 1308. [42 ]G. Carrara, S. Gardella, M. Marchesoni, R. Salutari and G. Sciutto, “ A new multilevel PWM method: a theoretical analysis, ” IEEE Trans. Power Electron., vol. 7, no. 3, pp. 497 – 505, July 1992. [43 ]I. Takahashi and K. Iwaya, “ 100 kHz, 10 kW switching type power amplifier using multilevel inverter, ” Proc. IEEE International Conf. on Power Electron. and Drive Systems, vol. 1, Oct. 2001, pp. 286 – 291. [44 ]M. T. Zhang, Y. M. Jiang, F. C. Lee and M. M. Jovanovic, “ Single- phase three-level boost power factor correction converter, ” Proc. IEEE APEC '95., vol. 1, 1995, pp. 434 – 439. [45 ]M. D. Manjrekar and T. A. Lipo, “ A hybrid multilevel inverter topology for drive applications,” Proc. IEEE APEC '98., vol. 2, Feb. 1998, pp. 523 – 529. [46 ]B. R. Lin, “ Analysis and implementation of a three- level PWM rectifier/inverter, ” IEEE Trans. Aerospace and Electron. Systems, vol. 36, no. 3, pp. 948 – 956, July 2000. [47 ]B. R. Lin and Y. L. Hou, “ Single-phase integrated power quality compensator based on capacitor-clamped configuration, ” Proc. IEEE IECON '02., vol. 49, no. 1, Feb. 2002, pp. 173 – 185. [48 ]H. Y. Wu and X. G. He, “ Research on PWM control of a cascade multilevel converter, ” Proc. IEEE PIEMC '00., vol. 3, Aug. 2000, pp. 1099 – 1103.id NH0925442081 sid 913906 cfn 0 / id NH0925442082 auc 廖常興 tic 市電並聯型之光伏風力混成型發電系統之研製 adc 潘晴財 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 102 kwc 市電並聯 kwc 太陽電池 kwc 風力發電 kwc 永磁發電機 abc 再生能源,如太陽能、風能等,以其取之不竭、用之不盡,又無環保問題等特性,因此風能及太陽能可說是目前最具有發展潛力的兩種再生能源。在台灣由於風能與太陽光能恰具有互補特性,故本論文之研究重點即在於研究與市電並聯之光伏及風力混成發電系統,以提高再生能源之利用率及發電效率。 rf [1 ] 胡忠興,“太陽能發電系統之裝置與併聯技術,” 電機月刊第十二卷第二期,pp. 130-145,民國91年2月。 [2 ] 蘇華宗,“澎湖中屯風力發電介紹,” 電機技師第93期,pp. 39-48,民國91年6月。 [3 ] Z. Satameh, F. Dagher and W. A. Lynch, “Step-Down Maximum Power Point Tracker for Photovoltaic System,” Solar Energy, vol.46,no.1, 1991, pp.278-282. [4 ] K. Harada and G. Zhao, “Controlled Power Interface Between Solar Cells and AC Source,” IEEE Transactions on Power Electronics, vol.8, no.4, pp.654-662, Oct.1993. [5 ] M. El-Shibini and A. Rakha, “ Maximum Power Point Tracking Technique,” Proceedings of MELECON '89, 1989, pp.21-24. [6 ] J.H.R. Enslin, “Maximum Power Point Tracking: A Cost Saving Necessity in Solar Energy Systems,” Conference of IEEE IECON, vol.2, 1990, pp.1073-1077. [7 ] C. R. Sullivan, M. J. Powers, “A High-Efficiency Maximum Power Point Tracker for Photovoltaic Arrays in a Solar-Power Race Vehicle, ”IEEE PESC'93, 1993, pp.574-580. [8 ] M. Matsui, T. Kitano, De-hong Xu and Zhong-qing Yang,“A New Maximum Photovoltaic Power Tracking Control Scheme Based on Power Equilibrium at DC Link,” Proceedings of Industry Applications Conference, vol.2, 1999, pp.804-809. [9 ] J. Gow, and C. D. Manning, “Controller Arrangement for Boost Converter Systems Sourced from Solar Photovoltaic Arrays or Other Maximum Power Sources,” IEE Proceedings-Electric Power Applications, vol.147, Jan. 2000, pp.15-20. [10 ]C. Y. Won, D. H. Kim, S. C. Kim, W. S. Kim and H. S. Kim, “A New Maximum Power Point Tracker of Photovoltaic Arrays Using Fuzzy Controller,” Proceedings of the IEEE Power Electrics Specialists Conf., vol.1 June 1994, pp.396-403. [11 ]吳財福、張健軒、陳裕愷,“太陽能供電與照明系統綜論 ”,全華出版社,民國86年。 [12 ]C. T. Pan, J. Y. Chen, C. P. Chu and Y. S. Huang, “A Fast Maximum Power Point Tracker for Photovoltaic Power Systems,” Proceedings of IECON '99. vol.1, 1999, pp.390-393. [13 ]M. S. Miranda, R.O Lyra and S. R. Silva, “An Alternative Isolated Wind Electric Pumping System Using Induction Machines,” IEEE Transactions on Energy Conversion, vol.14, no.4, pp.1611-1616,Dec. 1999. [14 ]R. Cardenas, R. Pena, G. Asher and J. Clare, “Control Strategies for Enhanced Power Smoothing in Wind Energy Systems Using a Flywheel Drive by a Vector-Controlled Induction Machine, ”IEEE Transactions on Industrial Electronics, vol.48, no.3, pp.625-635, Jun. 2001. [15 ]D. Seyoum, C. Grantham and M. F. Rahman, “Analysis of an Isolated Self-excited Induction Generator Driven by Variable Speed Prime Mover,” Proc. AUPEC'01, 2001, PP.49-54. [16 ]D. Seyoum, M. F. Rahman and C. Grantham, “Terminal Voltage Control of a Wind Turbine Driven Isolated Induction Generator Using Stator Oriented Field Control,” Proc. Applied Power Electronics Conference and Exposition, 2003. APEC ’03. Eighteenth Annual IEEE, vol.2, Feb. 2003, pp.846-852 [17 ]R. Datta, V. T. Ranganathan, “A Method of Tracking the Peak Power Points for a Variable Speed Wind Energy Conversion System,” IEEE Transactions on Energy Conversion, pp.163-168, Mar 2003. [18 ]S. Nonaka and T. Kawaguchi, “Characteistics of Variable Speed Brushless-Type Double-Frequency Synchronous Generators, ”IEE Japan, vol.110, no.1, 1990, pp.119-128. [19 ]S. Nonaka and T. Kawaguchi, “A New Variable-Speed AC Generator System Using a Brushless Self-Excited-Type Synchronous Machine,” IEEE Transactions on Industry Applications, vol.28, no.2, pp.490-496, 1992. [20 ]L. Soderlund, L. Eriksson, J. T. Salonen, J. Vihriala and R. H. Perala, “A Permanent-magnet Generator for Wind Power Applications,” IEEE Transactions on Energy Conversion, vol.32, no.1, pp.2389-2392, 1996. [21 ]N. Yamamura, M. Ishida and T. Hori, “A Simple Wind Power Generating System with Permanent Magnet Type Synchronous Generator,” IEEE1999 International Conference on Power Electronics and Drive Systems, PEDS 99, July 1999, pp.849-854. [22 ]I. Schiemenz and M. Stiebler, “Maximum Power Point Tracking of A Wind Energy System with a Permanent Magnet Synchronous Generator,” ICEM’2000, Espoo, 2000. [23 ]I. Schiemenz and M. Stiebler, “Control of a Permanent Magnet Synchronous Generator Used in a Variable Speed Wind Energy System,” Electric Machines and Drives Conference, 2001. IEMDC 2001. IEEE International, 2001, pp.872-877. [24 ]曾兆利, “以數位信號處理器為基礎之永磁式同步發電機功率控制系統之研製,” 國立台灣科技大學電機工程研究所碩士論文,民國九十年。 [25 ]T. Nakamura, S. Morimoto, M. Sanada and Y. Takeda, “Optimum Control of IPMSG for Wind Generation System,” Proceedings of the IEEE Power conversion conference, vol.3, no.2-5, April 2002, pp.1435-1440. [26 ]呂紹豪, “永磁式同步發電機之風力發電系統之研製,” 國立台灣科技大學電機工程研究所碩士論文,民國九十一年。 [27 ]Y. Higuchi, N. Yamamura, M. Ishida and T. Hori, “An Improvement of Performance for Small-Scaled Wind Power Generating System with Permanent Magnet Type Synchronous Generator,” Industrial Electronics Society, 2000. IECON 2000. 26th Annual Conference of the IEEE, vol.2, 2000, pp.1037-1043. [28 ]S. H. Song, S. L. Kang and N. K. Hahm, “Implementation and Control of Grid Connected AC-DC-AC Power Converter for Variable Speed Wind Energy Conversion System,” Applied Power Electronics Conference and Exposition, 2003. APEC '03. Eighteenth Annual IEEE , vol.1, 9-13, Feb. 2003 , pp.154-158 . [29 ]S. Jiao, G. Hunter, V. Ramsden and D. Patterson, “Control System Design for a 20KW Wind Turbine Generator with a Boost Converter and Battery Bank Load,” Power Electronics Specialists Conference, 2001. PESC. 2001 IEEE 32nd Annual, Vol. 4, 2001, pp.2203-2206 [30 ]M. V. Aware, S. G. Tarnekar and A. G. Kothari, “Utility Power Factor and Efficiency Control of a Voltage Source Inverter-fed Variable-speed Induction Motor Drive,” Electric Power Applications, IEE Proceedings, vol. 147 Issue: 5, Sept. 2000, pp.422-430 [31 ]C. T. Rim, N. S. Choi, G. C. Cho and G. H. Cho, “A Complete DC and AC Analysis of Three-Phase Controlled-Current PWM Rectifier Using Circuit D-Q Transformation,” IEEE Transactions on Power Electronics, vol.9, no.4, pp.390-396, 1994. [32 ]H. L. Huy, K. Slimani and P. Viarouge, “Analysis and Implementation of a Real-Time Predictive Current Controller for Permanent-Magnet Synchronous Servo Drives,” IEEE Transactions on Industrial Electronics, vol.41, no.1, pp. 110-117, 1994. [33 ]J. W. Choi and S. K. Sul, “Fast Current Controller in Three-Phase AC/DC Boost Converter Using d-q Axis Crosscoupling,” IEEE Transactions on Power Electronics, vol. 13, no.1, pp.179-185, Jan. 1998. [34 ]顏誌賢, “永磁式同步發電機功率控制系統之研製,” 國立台灣科技大學電機工程研究所碩士論文,民國八十九年。 [35 ]J. C. Hwang, S. N. Yeh, C. L. Tseng, M. H. Chen and J. S. Lin, “Development of DSP-Based Power Controller for Wind-Driven Permanent-Magnet Synchronous Generators,” Proceedings of 2002 World Wind Energy Conference, Berlin, Germany (2002) [36 ]M. H. Nehrir, B. J. LaMeres, G. Venkataramanan, V. Gerez and L. A. Alvarado, “An Approach to Evaluate The General Performance of Stand-Alone Wind/Photovoltaic Generating Systems,” IEEE Transactions on Energy Conversion, vol.15, pp. 433-439, 2000. [37 ]L. Solero, F. Caricchi, F. Crescimbini, O. Honorai and F. Mezzetti, “Performance of a 10KW Power Electronic Interface for Combined Wind/Pv Isolated Generating System,” Proc. IEEE PESC’96, 1996, pp.1027-1032. [38 ]F. Caricchi, F. Crescimbini, A.D. Napoli, O. Honorati and E. Santini, “Testing of a new DC-DC Converter Topology for integrated Wind-photovoltaic generating systems,” Proc. European Conf. Power Electronics and Applications, 1993, pp. 83-88. [39 ]H. Matsuo, T. Shigemizu, F. Kurokawa and N. Watanabe, “Characteristics of the multiple-input DC-DC converter,” Proc. IEEE PESC’93, 1993, pp.115-120. [40 ]H. Matsuo, K. Kobayashi, Y. Sekine, M. Asano and L. Wenzhong, “Novel Solar Cell Power Supply System Using the Multiple-input DC-DC Converter,” Proc. INTELEC’98,1998, pp.797-802. [41 ]Y. M. Chen, Y. C. Liu and F.Y. Wu, “Multi-input DC/DC Converter Based on the Multiwinding Transformer for Renewable Energy Applications, ”IEEE Transactions on Industry Applications, vol.38, No.4, July 2002. [42 ]陳守誠, “太陽能與風力發電複合系統之研製,” 國立台灣科技大學電機工程研究所碩士論文,民國九十二年。 [43 ]A. B. Raju, K. Chatterjee and B. G. Fermandes, “A Simple Maximum Power Point Tracker for Grid Connected Variable Speed Wind Energy Conversion System with Reduced Switch Count Power Converters,” IEEE 34th Annual Conference on Power Electronics Specialist, PESC'03, vol.2, June 2003, pp.748-753. [44 ]林宗仁, “永磁/同步發電機與太陽能發電系統之整合研究,” 國立成功大學電機工程研究所碩士論文,民國九十年。 [45 ]B. K. Bose, P. M. Szxzdsny and R. L. Steigerwald, “Microcomputer Control of Aresidential Photovoltaic Power Conditioning System,” IEEE Trasactions on Industry Applications, vol. 1A-21, No. 5, 1985, pp. 1182-1191. [46 ] J. F. Walker and N. Jenkins, Wind Energy Technology. John Wiley & Sons, 1997. [47 ]萬興和, “新型高級靜態乏補償器,” 國立清華大學電機工程研究所碩士論文,民國八十六年。 [48 ]方文良, “新型主動式電力濾波器及其在電力系統諧波消除之應用效果評估,” 國立清華大學電機工程研究所碩士論文,民國八十三年。 [49 ]許文俊, “三相昇壓型主動式整流器之適應性定結構滑模控制,” 國立清華大學電機工程研究所碩士論文,民國九十一年。 [50 ]TMS320F240 DSP Controllers Evaluation Module Technical Reference, Texas Instruments, July 1999. [51 ]TMS320C24x User's Guides, Texas Instrument, 1999. [52 ]TMS320C24x DSP Controllers, Texas Instrument, vol.1, 1999. [53 ]TMS320c24x DSP Controllers, Texas Instrument, vol.2, 1999.id NH0925442082 sid 913910 cfn 0 / id NH0925442083 auc 陳淯星 tic 以脈衝換相閘流體為基礎之固態轉供開關 adc 鄭博泰 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 120 kwc 固態轉供開關 kwc 閘流體 kwc 電壓驟降 abc 近年來電壓驟降已成為非常重要的電力品質議題。電壓驟降事故經常導致敏感性負載因欠電壓而停機,連帶使製程無預警中斷造成財務上嚴重損失。在台灣,許多科學園區相繼成立。每逢電力中斷或電壓驟降均使得這些製造廠蒙受巨大的損失,其損失金額可高達數十至數百萬美元。為了提供較佳的電力品質與供電可靠度,愈來越多的電力公司針對科學園區內之製造廠均有提供雙饋線供電。以半導體技術所製作之閘流體元件(thyristor)為基礎,所建構的固態轉供開關(static transfer switch,STS),能應用於雙饋線供電系統保護敏感性負載,避免負載因電壓驟降而跳機造成製程上的損失。傳統固態轉供開關之饋線轉移程序礙於閘流體元件之電氣特性與故障環境,其轉移程序所需之執行時間需耗費四分之一個市電週期以上。本論文提出一諧振換相電路用以改良傳統固態轉供開關其饋線轉移時間過長之問題。此一改良式固態轉供開關經證明能大幅縮短饋線轉移時間,並且提供更完善的保護策略能將電壓驟降對敏感性負載的影響降至最低。本論文所提出之改良式固態轉供開關已經由電磁暫態模擬程式(electro-magnetic transient program,EMTP),與實驗室之實測數據驗證其可行性。 tc 目錄 誌謝 ..…..…..…………………………………………………….…. III 中文摘要 ..…..…..…………………………………………………….… III 英文摘要 ………..……..……………………………………………… III 目錄 ..…………..………………………………………………… IV 圖目錄 ……..………….………………………………………VII 表目錄 ……..……………………………………………………......IXIV 第一章 緒論 ……..……………………………….…….……..0 1 第一章1-1 簡介 .……………………………………………..…..001 第一章1-2 電壓驟降 ……………………………….……………001 第一章1-3 電容器組投入暫態 …………………….……………003 第一章1-4 暫態電壓突波 ………………………………………004 第一章1-5 電力諧波 .………………………………………..…..005 第一章1-6 研究方向 ……………………………….……………005 第一章1-7 論文架構 ……………………………….……………006 第二章 文獻回顧 ……………………………….……………007 第二章2-1 簡介 .……………………………………………..…..007 第二章2-2 電壓驟降渡過技術回顧 .………………………027 第二章2-3 電力品質相關規範 …………………………….029 第二章2-4 固態轉供開關 ………………………………….011 第二章 2-4-1 電壓驟降偵測術 …………………………………….012 第二章 2-4-2 饋線轉移機制 .…………………………………..…..015 第二章2-5 相位偏移 ………….……………………………019 第二章2-6 輔助諧振開關 ………….……………………………020 第二章2-7 總結 ………………………………………………….022 第三章 操作原理 …………………………………………….024 第二章3-1 簡介 …………………………………………………024 第二章3-2 控制器設計 …………………………………………025 第二章3-3 擾動濾波器設計 ………………………………….027 第二章3-4 諧振電路操作模式 ……………………………….033 第二章3-5 諧振電路設計 ………………………………………034 第二章3-6 總結 ………………………………………………….042 第四章 模擬結果與分析 …………………………………….043 第二章4-1 簡介 …………………………………………………043 第二章4-2 傳統固態轉供開關 ………………………………….043 第二章 4-2-1 三相接地故障 ……………………………………….044 第二章 4-2-2 單相接地故障 ……………………………………….046 第二章 4-2-3 線間短路故障 ……………………………………….047 第二章4-3 改良式固態轉供開關 ……………………………….049 第二章 4-3-1 諧振電容器充電 …………………………………….050 第二章 4-3-2 三相接地故障 ……………………………………….052 第二章 4-3-3 單相接地故障 ……………………………………….057 第二章 4-3-4 線間短路故障 ……………………………………….062 第二章4-4 總結 ………………………………………………….067 第五章 實驗結果與分析 …………………………………….069 第二章5-1 簡介 ………………………………………………….069 第二章5-2 線性負載之單相接地故障測試 …………………….070 第二章 5-2-1 傳統固態轉供開關之單相接地故障測試 ………….073 第二章 5-2-2 改良式固態轉供開關之單相接地故障測試 ……….075 第二章5-3 線性負載之三相接地故障測試 …………………….080 第二章 5-3-1 傳統固態轉供開關之三相接地故障測試 ………….082 第二章 5-3-2 改良式固態轉供開關之三相接地故障測試 ……….084 第二章5-4 變頻器負載之單相接地故障測試 ………………….087 第二章 5-4-1 傳統固態轉供開關之單相接地故障測試 ………….088 第二章 5-4-2 改良式固態轉供開關之單相接地故障測試 ……….090 第二章5-5 變頻器之三相接地故障測試 …………………….093 第二章 5-5-1 傳統固態轉供開關之三相接地故障測試 ………….093 第二章 5-5-2 改良式固態轉供開關之三相接地故障測試 ……….096 第二章5-6 電容器組投入試驗 ………………………………….098 第二章5-7 相位偏移 …………………………………………….099 第二章5-8 總結 ………………………………………………….100 第六章 結論 ………………………………………………….102 參考文獻 ………..……..…………………………………………………103 附錄 ………..……..…………………………………………………106 圖目錄 圖1-1 電壓驟降之示意圖 …………………………………………….002 圖1-2 分散式系統之電力故障示意圖 ……………………………….003 圖1-3 電容器組投入所造成的暫態振盪電壓 ……………………….004 圖1-4 暫態電壓突波 ………………………………………………….004 圖2-1 半導體製程設備之電壓驟降容忍標準 (SEMIF47) …………009 圖2-2 資訊處理設備之電壓驟降容忍標準 (ITIC) ……………….010 圖2-3 固態轉供開關電路架構圖 …………………………………….011 圖2-4 固態轉供開關之控制方塊圖 ………………………………….012 圖2-5 三項電壓平方法 ……………………………………………….013 圖2-6 單相電壓相移法 ……………………………………………….013 圖2-7 半週取樣累計法 ……………………………………………….014 圖2-8 取樣累計法之示意圖 ………………………………………….014 圖2-9 以同步參考框為基礎之電壓驟降偵測法控制方塊圖 ……….015 圖2-10 觸發信號之結構圖 …………………………………………….016 圖2-11 饋線轉移程序之示意圖 ……………………………………….017 圖2-12 BBM操作模式之饋線電流波形 ……………………..……….018 圖2-13 MBB操作模式之饋線電流波形 …………………...……….018 圖2-14 最大饋線轉移時間與負載功率因數之關係曲線 …………….019 圖2-15 電壓驟降引起之相位偏移 …………………………………….020 圖2-16 ARCP轉換器之結構圖 ………………………….…………….021 圖2-17 ARCP轉換器於換相期間之諧振狀態 …………….………….022 圖2-18 輔助諧振電路之基本架構圖 ………………………………….022 圖2-19 傳統固態轉供開關饋線轉移程序所需時間之示意圖 ……….023 圖2-20 改良式固態轉供開關饋線轉移程序所需時間之示意圖 …….023 圖3-1 改良式固態轉供開關之系統架構 …………………………….024 圖3-2 改良式固態轉供開關之控制方塊圖 ………………………….025 圖3-3 擾動濾波器之濾波特性 ……………………………………….026 圖3-4 主饋線電壓之正序成分與預設之故障準位 ………………….027 圖3-5 擾動濾波器架構圖 …………………………………………….028 圖3-6 忽略低通濾波器之電壓正序成分時域響應波形 …………….031 圖3-7 擾動濾波器之時域響應波形 ………………………………….032 圖3-8 低通濾波器之截止頻率與最大暫態誤差量之關係 ………….032 圖3-9 低通濾波器之截止頻率對驟降偵測時間之關係 …………….033 圖3-10 傳統固態轉供開關之饋線轉移時間示意圖 ………………….033 圖3-11 諧振饋線轉移程序 …………………………………………….034 圖3-12 未考慮閘流體逆向回復區間之諧振狀態示意圖 …………….035 圖3-13 饋線轉移程序 (Mode 0) ………………………...…………….036 圖3-14 饋線轉移程序 (Mode 1) ………………………...…………….037 圖3-15 饋線轉移程序 (Mode 2) ………………………...…………….038 圖3-16 饋線轉移程序 (Mode 3) ………………………...…………….039 圖3-17 閘流體於關閉狀態下之電流波形 …………………………….040 圖3-18 初始電壓不足之諧振狀態 …………………………………….041 圖3-19 考慮閘流體逆向回復區間之諧振狀態 ……………………….041 圖3-20 初始電壓所引起之電壓突波 ………………………………….042 圖4-1 傳統固態轉供開關之系統架構 ……………………………….044 圖4-2 三相接地故障之負載端電壓 ………………………………….045 圖4-3 三相接地故障之負載電流 …………………………………….045 圖4-4 單相接地故障之負載端電壓 ………………………………….046 圖4-5 單相接地故障之負載電流 …………………………………….047 圖4-6 線間短路故障之負載端電壓 ………………………………….048 圖4-7 線間短路故障之負載電流 …………………………………….048 圖4-8 改良式固態轉供開關之系統架構 …………………………….050 圖4-9 諧振電容充電程序之示意圖 ………………………………….051 圖4-10 充電電流與主饋線閘流體之電流波形 ……………………….051 圖4-11 諧振電容器之充電狀態 ……………………………………….052 圖4-12 主饋線前端發生三相電壓驟降 ……………………………….053 圖4-13 電壓之交軸分量與經濾波器之直流成分 …………………….053 圖4-14 電壓之直軸分量與經濾波器之直流成分 …………………….054 圖4-15 電壓之正序成分與饋線轉移信號 …………………………….054 圖4-16 主饋線之a相電流,諧振電流,副饋線之a相電流 ………….055 圖4-17 主饋線之b相電流,諧振電流,副饋線之b相電流 ………….055 圖4-18 主饋線之c相電流,諧振電流,副饋線之c相電流 ………….056 圖4-19 改良式固態轉供開關於三相接地故障之負載電流 ………….056 圖4-20 改良式固態轉供開關於三相接地故障之負載端電壓 ……….057 圖4-21 主饋線前端發生單相電壓驟降 ……………………………….058 圖4-22 電壓之交軸分量與經濾波器之直流成分 …………………….058 圖4-23 電壓之直軸分量與經濾波器之直流成分 …………………….059 圖4-24 電壓之正序成分與饋線轉移信號 …………………………….059 圖4-25 主饋線之a相電流,諧振電流,副饋線之a相電流 ………….060 圖4-26 主饋線之b相電流,諧振電流,副饋線之b相電流 ………….060 圖4-27 主饋線之c相電流,諧振電流,副饋線之c相電流 ………….061 圖4-28 改良式固態轉供開關於單相接地故障之負載電流 ………….061 圖4-29 改良式固態轉供開關於單相接地故障之負載端電壓 ……….062 圖4-30 主饋線前端發生線間短路故障 ……………………………….063 圖4-31 電壓之交軸分量與經濾波器之直流成分 …………………….063 圖4-32 電壓之直軸分量與經濾波器之直流成分 …………………….064 圖4-33 電壓之正序成分與饋線轉移信號 …………………………….064 圖4-34 主饋線之a相電流,諧振電流,副饋線之a相電流 ………….065 圖4-35 主饋線之b相電流,諧振電流,副饋線之b相電流 ………….065 圖4-36 主饋線之c相電流,諧振電流,副饋線之c相電流 ………….066 圖4-37 改良式固態轉供開關於線間短路故障之負載電流 ………….066 圖4-38 改良式固態轉供開關於線間短路故障之負載端電壓 ……….067 圖5-1 固態轉供開關之系統架構圖 ………………………………….069 圖5-2 線性負載測試系統之單線圖 ………………………………….071 圖5-3 主饋線前端之線間電壓 ……………………………………….071 圖5-4 同步框下之交軸與直軸分量 ………………………………….072 圖5-5 經擾動濾波器後交軸與直軸分量 …………………………….072 圖5-6 電壓驟降前後之電壓正序成分 ……………………………….073 圖5-7 傳統固態轉供開關於電壓驟降發生前、後之主饋線電流與輔饋線電流 …………………………………………………………….074 圖5-8 傳統固態轉供開關之負載電壓 ……………………………….074 圖5-9 傳統固態轉供開關之負載電流 ……………………………….075 圖5-10 饋線轉移前、後之主饋線電流 ……………………………….076 圖5-11 諧振電流 ……………………………………………………….077 圖5-12 電壓驟降時主饋線與副饋線之電流 ………………………….077 圖5-13 諧振狀態下之電流波形 ……………………………………….078 圖5-14 閘流體之逆向回復特性 ……………………………………….078 圖5-15 改良式固態轉供開關之負載電壓 …………………………….079 圖5-16 改良式固態轉供開關之負載電流 …………………………….079 圖5-17 主饋線前端之線間電壓 ……………………………………….080 圖5-18 同步框下之交軸與直軸分量 ………………………………….081 圖5-19 經擾動濾波器後交軸與直軸分量 …………………………….081 圖5-20 電壓驟降前後之電壓正序成分 ……………………………….082 圖5-21 傳統固態轉供開關於電壓驟降發生前、後之主饋線電流與輔饋線電流 …………………………………………………………….083 圖5-22 傳統固態轉供開關之負載電壓 ……………………………….083 圖5-23 傳統固態轉供開關之負載電壓流 …………………………….084 圖5-24 電壓驟降時主饋線與副饋線之電流 ………………………….085 圖5-25 改良式固態轉供開關之負載電壓 …………………………….085 圖5-26 改良式固態轉供開關之負載電流 …………………………….086 圖5-27 變頻器負載測試系統之單線圖 ……………………………….087 圖5-28 主饋線電壓於驟降前、後之電壓正序成分 ………………….088 圖5-29 傳統固態轉供開關於電壓驟降發生前、後之主饋線電流與輔饋線電流 …………………………………………………………….089 圖5-30 傳統固態轉供開關之負載電壓 ……………………………….089 圖5-31 傳統固態轉供開關之負載電壓流 …………………………….090 圖5-32 改良式固態轉供開關於電壓驟降發生前、後之主饋線電流與輔饋線電流 ………………………………………………………….091 圖5-33 改良式固態轉供開關之負載端電壓 ………………………….091 圖5-34 改良式固態轉供開關之負載電流 …………………………….092 圖5-35 電壓驟降前後之電壓正序成分 ……………………………….093 圖5-36 傳統固態轉供開關於電壓驟降發生前、後之主饋線電流與輔饋線電流 …………………………………………………………….094 圖5-37 傳統固態轉供開關之負載電壓 ……………………………….094 圖5-38 傳統固態轉供開關之負載電壓流 …………………………….095 圖5-39 改良式固態轉供開關於電壓驟降發生前、後之主饋線電流與輔饋線電流 ………………………………………………………….096 圖5-40 改良式固態轉供開關之負載端電壓 ………………………….097 圖5-41 改良式固態轉供開關之負載電流 …………………………….097 圖5-42 電容器投入造成之暫態電壓突波 …………………………….098 圖5-43 電容器投入時之電壓正序成分 ……………………………….099 圖5-44 主饋線於故障前、後之相位偏移 …………………………….100 圖A-1 改良式固態轉供開關系統架構圖 …………………………….106 圖A-2 電容器之初始電壓與電容值之關係曲線 …………………….108 圖A-3 改良式固態轉供開關於單相接地故障之負載電流 ………….109 圖A-4 改良式固態轉供開關於單相接地故障之負載電壓 ………….110 圖A-5 改良式固態轉供開關於三相接地故障之負載電流 ………….110 圖A-6 改良式固態轉供開關於三相接地故障之負載電壓 ………….111 圖A-7 改良式固態轉供開關於線間短路故障之負載電流 ………….111 圖A-8 改良式固態轉供開關於線間短路故障之負載電壓 ………….112 圖B-1 數位信號處理器 ……………………………………………….113 圖B-2 交流電壓訊號擷取電路 ……………………………………….114 圖B-3 交流電流訊號擷取電路 ……………………………………….115 圖B-4 閘流體驅動電路 ……………………………………………….116 圖B-5 IGBT驅動電路 ………………..……………………………….117 圖B-6 接地故障測試迴路 …………………………………………….118 圖C-1 改良式固態轉供開關之硬體配置 …………………………….119 圖C-2 改良式固態轉供開關之控制板 ……………………………….119 圖C-3 交流電壓與電流擷取電路 …………………………………….119 圖C-4 閘流體驅動電路 ……………………………………………….119 圖C-5 IGBT驅動電路 ………………………………..……………….119 圖C-6 輔助諧振電路與主饋線閘流體 ……………………………….119 圖C-7 副饋線閘流體 ………………………………………………….120 圖C-8 負載變壓器 ………………………………………………….120 圖C-9 感應馬達與直流無刷電動機 ………………………………….120 圖C-10 IGBT模組 ………………………………………………….120 圖C-11 故障迴路電阻(R1) ………………………………….………….120 圖C-12 故障迴路電阻(R2) ………………………………….………….120 表目錄 表4-1 三相接地故障模擬結果之比較 ……………………………….068 表4-2 單相接地故障模擬結果之比較 ……………………………….068 表4-3 線間短路故障模擬結果之比較 ……………………………….068 表5-1 線性負載之單相接地故障 …………………………………….101 表5-2 線性負載之三相接地故障 …………………………………….101 表5-3 變頻器負載之單相接地故障 ………………………………….101 表5-4 變頻器負載之三相接地故障 ………………………………….101rf [1 ] Terry Surles, Marwan Masri, Robert L. Therkelsen; “Voltage-Sag Soluation For Industrial Customers” Jan. 2003. [2 ] ..G¨ulali Yal¸cinkaya, Math H. J. Bollen, Peter A. Crossley; “Characterization of Voltage Sag in Industrial Distribution Systems” IEEE Transactions on Industry Applications, Vol.34, July-Aug. 1998. [3 ] Eduardo Alegria, Afroz Khan, Janos Rajda, Shashi Dewan; “Static Voltage Regulator (SVR) - Ride Through Support For Semiconductor Facilities” Power System Word ‘98 Power Quality Conference, Nov. 1998. [4 ] Po-Tai Cheng, Chian-Chung Huang, Chun-Chiang Pan, Subhashish Bhattacharya; “Design and implementation of a series Voltage sag compensator under practical utility conditions” IEEE Transactions on Industry Applications ,Vol.39, May-June 2003. [5 ].. J. W. Schwartzenberg,R. W. De Doncker; “15kV Medium Voltage Static Transfer Switch” Proceedings of the 30th IEEE Industry Applications Annual Meeting, Vol.3, pp.2515-2520, 1995. [6 ] ..Melhorn, C.J.; Braz, A.; Hofmann, P.; Mauro, R.J.; “An evaluation of energy storage techniques for improving ride-through capability for sensitive customers on under ground networks” IEEE Transactions on Industry Applications , Vol.33 , July-Aug. 1997 [7 ] S&C ELECTRIC COMPANY, Descriptive Bulletin 651-30, February 17, 2003 [8 ] SEMI F47 (Implemented in 1999), Specification for Semiconductor Processing Equipment Voltage Sag Immunity. [9 ] ITI (CBEMA) Curve Application Note, Published by Technical Committee 3 (TC3) of the Information Technology Industry Council. Revised 2000. [10 ] A. Sannino; “Power quality improvement in an industrial plant with motor load by installing a Static Transfer Switch” Industry Applications Conference, 2001. Thirty-Sixth IAS Annual Meeting. Conference Record of the 2001 IEEE , Vol.2 pp.782-788, Oct. 2001. [11 ] Hossein Mokhtari, Sashi B. Dewan, M. Reza Iravani; “Performance Evaluation of Thyristor Based Static Transfer Switch” IEEE Transactions on Power Delivery, Vol.15, July 2000. [12 ] Toshifumi lse, Masakazu Takami, kiichiro Tsuji; “Hybrid Transfer Switch with Fault Current Limiting Function” Harmonics and Quality of Power 2000. Proceedings. Ninth International Conference on, Vol.1, Oct. 2000. [13 ] “Benchmark systems for digital computer simulation of a static transfer switch” Power Delivery, IEEE Transactions on, Vol.16, pp.724 – 731, Oct. 2001. [14 ] A. Sannino; “Static Transfer Switch : Analysis of switching Conditions and Actual Transfer Time” Power Engineering Society Winter Meeting, 2001. Vol.1 pp.120-125 Jan. 2001. [15 ] Mokhtari, H.; Reza Iravani, M.; Dewan, S.B.; ” Transient behavior of load transformer during subcycle bus transfer” IEEE Transactions on Power Delivery, Vol.18, pp.1342 – 1349, Oct. 2003. [16 ] A. MansoorE. ; R. Collins, Jr. ; R. L. Morgan; ”Effects of Unsymmetrical Voltage Sags on Adjustable Speed Drives” [17 ] Divan, D.M.; ” The resonant DC link converter-a new concept in static power conversion” IEEE Transactions on Industry Applications, Vol.25, pp.317 – 325, March-April 1989. [18 ] Divan, D.M.; Skibinski, G.; ” Zero-switching-loss inverters for high-power applications” IEEE Transactions on Industry Applications, pp.634 – 643, July-Aug. 1989 [19 ] McMurray, W.; ” Resonant snubbers with auxiliary switches ” IEEE Transactions on Industry Applications, Vol.29, pp.355 - 362, March-April 1993 [20 ] De Doncker, R.W.; Lyons, J.P.; ” The auxiliary resonant commutated pole converter ” Industry Applications Society Annual Meeting, 1990., Conference Record of the 1990 IEEE, Vol.2, pp.1228 – 1235, Oct. 1990 [21 ] M.G. Ennis and, R.P. O’Leary ;“Solid state transfer switches: The quarter-cycle myth” in Proc. Power Systems World, Chicago, IL, 1999.id NH0925442083 sid 913908 cfn 0 / id NH0925442084 auc 黃錫淳 tic 應用於直接降頻接收機之混頻器 adc 黃柏鈞 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 74 kwc 電流再利用混頻器 kwc 直接降頻接收器 kwc 本地震盪源倍頻之降頻技術 abc 隨著固態元件以及積體電路製程技術革命性的進步,已經帶領著無線通訊的世界進入一個嶄新的世代。然而,低成本、省電、高效能的傳收機是決定無線通訊產品成功與否的重要因素。對於高度整合來說,直接降頻架構即為一個可行性非常高的架構。不同於傳統的超外差接收機,需要一個至多個中頻處理。所以直接降頻架構操作於高速的電路可以減到最少,因此才能達到高度整合的目標。 rf [1 ] B. Razavi, "RF Microelectronics," Prentice Hall PTR, 1998. [2 ] Zhaofeng Zhang, Zhiheng Chen and Jack Lau, "A 900 MHz CMOS Balanced Harmonic Mixer for Direct Conversion Receivers," IEEE RAWCON 2000, pp. 219-222, Denver, September 2000. [3 ] Hooman Darabi and Asad A. Abidi, "Noise in RF-CMOS Mixers: A Simple Physical Model," IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 15-25, Jan 2000. [4 ] Behzad Razavi, "Design Considerations for Direct- Conversion Receivers," IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 44, no. 6, pp. 428-435, June 1997. [5 ] Jacques C. Rudell and Jia-Jiunn Ou et al., "A 1.9-GHz Wide-Band IF Double Conversion CMOS ," IEEE J. Solid- State Circuits, vol. 35, no. 1, pp. 15-25, Jan 2000. [6 ] Hooman Darabi and Asad A. Abidi, "A 4.5-mW 900-MHz CMOS Receiver for Wireless Paging," IEEE J. Solid-State Circuits, vol. 35, no. 8, pp. 1085-1096, Aug. 2000. [7 ] Shahram Mahdavi and Asad A. Abidi, "Fully Integrated 2.2-mW CMOS Front End for a 900-MHz Wireless Receiver," IEEE J. Solid-State Circuits, vol. 37, no. 5, pp. 662- 669, May 2002. [8 ] Alireza Zolfaghari and Behzad Razavi, "A Low Power 2.4- GHz Transmitter/Receiver CMOS IC," IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 176-183, Feb. 2003. [9 ] J. Chang, A. A. Abidi, and C.R. Viswanathan, "Flicker Noise in CMOS Transistors from Subthreshold to Strong Inversion at Various Temperatures," IEEE Trans. Electron Devices, vol. 41, pp. 1965-1971, Nov. 1994. [10 ]H. T. Friis, "Noise Figure of Radio Receivers," Proc. IRE, vol. 32, pp. 419-442, July 1994. [11 ]Paul R. Gray, Paul K. Hurst, Stephen H. Lewis, and Robert G. Meyer, "Analysis and Design of Analog Integrated Circuits," John Wiley and Sons, Inc., 2001. [12 ]Ivan Bietti, Rinaldo Castello, Francesco Gatta, and Danilo Manstretta et al., "CMOS RF Front-End for Direct Conversion: a 2 dB NF Fully Differential LNA and a Low 1/f Noise Mixer." [13 ]Danilo Manstretta, Massimo Brandolini, and Francesco Svelto, "Second-Order Intermodulation Mechanisms in CMOS Downconverter," IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 394-406, March 2003. [14 ]Farbod Behbahani and Yoji Kishigami et al., "CMOS Mixers and Polyphase Filters for Large Image Rejection," IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 873-887, June 2001. [15 ]Y. Tsividis, Operation and Modeling of the MOS Transistor. New York: McGraw-Hill, 1988. [16 ]A. Parssinen et al., "A 2-Hz Wide-Band Direct Conversion Receiver for WCDMA Applications," IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1893, Sept. 1998. [17 ]A. Rofougaran et al., "A Single-Chip 900-MHz Spread- Spectrum Wireless Transceiver in 1-μm CMOS-Part II: Receiver Design," IEEE J. Solid-State Circuits, vol.33, no. 4, pp. 535, April 1998. [18 ]Application Note, Noise Figure Measurements, Principles and Applications, Hewlett Packard,1989. [19 ]Christian C. Enz and Gabor C. Temes, "Circuits Techniques for Reducing the Effects of Op-Amp Imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization," Processing of The IEEE, vol. 84, no. 11, pp. 1584, Nov. 1996. [20 ]H. Yoshida, et al., "DC Offset Canceller in a Direct Conversion Receiver for QPSK Signal Reception," 9th IEEE International Symposium on Personal, Indoor and Mobile Radio Communication, vol. 3, pp. 1314, 1998. [21 ]D. K. Shaeffer, The Design and Implementation of Low- Power CMOS Radio Receivers. Stanford University, 1998. [22 ]W. Redman-White and D. M. Leenaerts, "1/f noise in passive CMOS mixers for low and zero IF integrated receivers," in Processings of the 27th European Solid- State Circuits Conferences, pp. 68-71, 2001. [23 ]D. Manstretta, R. Castello, and F. Svelto, "Low 1/f Noise CMOS Active Mixers for Direct Conversion," IEEE Trans. Circuits System II, vol. 48, pp. 846-850, Sept. 2001. [24 ]Kyeongho Lee and Joonbae Park et al., "A Single-Chip 2.4-GHz Direct-Conversion CMOS Receiver for Wireless Local Loop using Multiphase Reduced Frequency Conversion Technique," IEEE J. Solid-State Circuits, vol. 36, no. 5, pp. 800-809, May 2001. [25 ]Kang-Yoon Lee and Seung-Wook Lee et al., "Full-CMOS 2- GHz WCDMA Direct Conversion Transmitter and Receiver," IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 43- 53, Jan. 2003. [26 ]E. Bautista, B. Bastani, J. Heck, "Improved Mixer IIP2 Through Dynamic Matching," Digest of ISSCC 2000, WP23.1, Feb. 2000. [27 ]Z. Zhang, Z. Chen, L. Tsui and J. Lau, "A 930MHz CMOS DC-Offset-Free Direct-Conversion 4-FSK Receiver," IEEE International Solid-State Circuit Conference 2001, pp. 290-291, San Francisco, Feb. 2001. [28 ]Sher Jiun Fang, See Taur Lee et al., "A 2GHz CMOS Even Harmonic Mixer for Direct Conversion Receivers," IEEE 2002. [29 ]Zhiheng Chen, "A Direct-Conversion CMOS Radio Receiver for High Speed Paging," PhD Dissertation, HKUST, 2001. [30 ]Thomas Hornak and Knud L. Knudsen et al., "An Image- Rejecting Mixer and Vector Filter with 55-dB Image Rejection over Process, Temperature, and Transistor Mismatch," IEEE J. Solid-State Circuits, vol. 36, no. 1, pp. 23-33, Jan. 2001. [31 ]Manolis T. Terrovitis and Robert G. Meyer, "Noise in Current-Communication CMOS Mixer," IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 772-783, June 1999. [32 ]Andrew N. Karanicolas, "A 2.7-V 900-MHz CMOS LNA and Mixer," IEEE J. Solid-State Circuits, vol. 31, no. 12, pp. 1939-1944, Dec. 1996. [33 ]Ahmadreza Rofougaran, James Y.-C. Chang, Maryam Rofougaran, and Asad A. Abidi, "A 1 GHz CMOS RF Front- End IC for a Direct-Conversion Wireless Receiver," IEEE J. Solid-State Circuits, vol. 31, no. 7, pp. 880-889, July 1996. [34 ]Behzad Razavi, "A 900-MHz Direct Conversion Receiver," 1997 Symposium on VLSI Circuits Digest of Technical Papers. [35 ]S. Lee, C. Yoo, W. I, H. K. Ryu, and W. Song, "1 GHz CMOS down-conversion mixer," Proc. IEEE Int. Symp. Consumer Electronics, pp. 125-127, 1997.id NH0925442084 sid 903954 cfn 0 / id NH0925442085 auc 曾建勳 tic 在802.11b 無線區域網路上傳輸之強健式 MPEG-4 FGS 編碼之視訊串流 adc 陳永昌 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 46 kwc 無線區域網路 kwc 錯誤容忍回復 kwc 封包遺失 abc 近年來由於無線網路產品的價格不斷下降及無線網路具有移動性及便利性之優勢,使的以802.11相容之無線區域網路越來越普及。雖然之前由於頻寬的限制使的無線傳輸主要應用於資料的傳遞,但隨著無線傳輸的頻寬因為新標準而不斷提升的同時,無線環境下之多媒體應用將會越來越趨增加。由於無線傳輸介質與有線傳輸比起來更容易受到環境之干擾,使的以無線通道傳輸多媒體訊息仍有許多問題待克服。因此我們提出以MPEG-4 FGS之編碼方式來壓縮將利用無線通道傳輸之視訊,使其符合無線環境下頻寬易變動之特性。另一方面,針對無線網路環境之下容易產生封包遺失之問題,我們提出對於FGS的加強層加入非均勻式的錯誤保護並對於有發生封包遺失狀況且已經解碼之視訊資料施以特定之後處理。這樣做的理由是因為以FGS方式壓縮所得到之加強層資料,其所包含的各種訊息之間存在著不相等之重要性。為了避免因為重要訊息於傳輸期間丟失使的正常收到的資料受到影響而變的無法被解碼。我們所提出的分均勻式保護方式將針對FGS加強層中較重要的訊息施以較重的保護,使其即使在被丟失的情況下仍可利用預先插入的保護碼而將它復原。經由模擬的結果我們發現,對於802.11b無線區域網路下視訊資料的傳輸,若在有封包丟失的狀況下使用我們所提出的策略將可有效的提升視訊資料的錯誤容忍回復能力。 tc Chapter 1: Introduction 1 1.1 Overview of IEEE 802.11b 1 1.2 Motivation 2 1.3 Thesis Organization 4 Chapter 2: Architecture of FGS-based Streaming System 5 2.1 System Overview 5 2.2 FGS Encoder/Decoder 6 2.2.1 Modifications on Encoder 6 2.2.2 Modifications on Decoder 8 2.3 Streaming Server/Client 9 2.3.1 Streaming Server 9 2.3.2 Streaming Client 11 2.4 Network Interface 13 2.4.1 RTP 13 2.4.2 RTSP 15 Chapter 3: Proposed Strategies for Transmitting FGS-coded Video over WLAN 16 3.1 Error Resilience Packetization 16 3.1.1 Rules for Packetization 17 3.1.2 Packetization Strategy for Base-Layer Bitstream 19 3.1.3 Packetization Strategy for Enhancement-Layer Bitstream 20 3.2 Data Recovery 24 3.3 Post-Processing 28 Chapter 4: Simulation Result 32 4.1 Simulation Environments 32 4.2 Simulation Result 35 4.3 Summary 42 Chapter 5: Conclusions and Future Works 44 References 46rf [1 ] Matthew S. Gast, “802.11 Wireless Networks: The Definitive Guide,” O’Reilly, 2002. [2 ] W. Li, “Overview of fine granularity scalability in MPEG-4 video standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 3, pp. 301--317, March 2001. [3 ] ISO/IEC JTC1/SC29/WG11, MPEG2002/M9182, “FGS-Based Video Streaming Test Bed for Media Coding and Testing in Streaming Environments,” International Organization for Standardization, National Chiao Tung University (NCTU), Dec. 2002. [4 ] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A transport protocol for realtime applications,” Internet Request for Comments RFC 1889, January 1996. [5 ] Yao Wang, Jörn Ostermann, and Ya-Qin Zhang, “Video Processing and Communications,” Prentice-Hall, 2002. [6 ] Y. Kikuchi, T. Nomura, S. Fukunaga, Y. Matsui, and H. Kimata, “RTP Payload Format for MPEG-4 Audio/Visual Streams,” Internet Request for Comments RFC 3016, Nov. 2000. [7 ] “MPEG-4 Video Verification Model version 18.0,” International Organization for Standardization, ISO/IEC JTC1/SC29/WG11, N3908, Jan. 2001. [8 ] Hua Cai, Guobin Shen, Feng Wu, Shipeng Li, and Bing Zeng, “Error concealment for fine granularity scalable video transmission,” IEEE International Conference on Multimedia and Expo (ICME), 2002, Switzerland, August 2002. [9 ] Hsiao-Yun Huang, “Error Resilence and Error Concealment Techniques for MPEG2 Video Coding,” Master Thesis, Nation Tsing Hua University, Taiwan, June 1999.id NH0925442085 sid 913971 cfn 0 / id NH0925442086 auc 李□賢 tic 利用非同向性相位匹配條件之高效率鈮酸鋰波導兆赫波光參數產生器 adc 黃衍介 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 40 kwc 非同向性相位匹配 kwc 兆赫波 kwc 光參數產生器 kwc 鈮酸鋰 abc 近年來,兆赫波長光源的產生不論在學術界或是產業界都引起了相當大的注意與關切。到目前為止雖然已有成熟產生兆赫波長光源的方式,但其建構與運轉經費限制了其普遍性。利用非線性光學的基礎,我們可以轉換光源的波長進而產生兆赫波長的光源。 rf Chapter 1 Reference 1. 1994 Free Electron Lasers and Other Advanced Sources of Light (Washington, DC: National Academy Press) pp 24–31 2. Kmiyama S, 1982, Phys. Rev. Lett. 48 271 3. Brundermann E, 1996, Appl. Phys. Lett. 68 1359 4. C. H. Henry and C. G. B. Garrett, 1968, Phy. Rev. Vol. 171, No. 3, pp.1058-1064, July 1968. 5. C. G. B. Garrett, “Nonlinear Optics, Anharmonic Oscillators and Pyroelectricity,” IEEE J. Quantum Electron., Vol.QE-4 NO. 3, pp. 70-84, Mar. 1968. 6. G. D. Boyd, T. J. Bridges, M. S. Pollack, and E. H. Turner, “Microwave Bonlinear Su sceptibilities Due to Electronic and Ionic Anharmonicities in Acentric Crystals,” Phy. Rev. Lett., Vol. 26, No. 7, pp. 387-389, Feb.1971. 7. C. V. Ramna and R. S. Krishnan, Nature 121, 501 (1928). 8. E. J. Woodbury and W.K. Ng, Proc. IRE (Corres.) 50, 2367 (1962) 9. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Phys. Rev. Lett. 7 4 10. C. Kittle, Quantum theory of solids, John Wiley and Sons, Inc.,New York, 1963. 11. K. Huang, Proc. Roy, Soc. (London) A208, 352 (1951) 12. M. Born and K. Huang, Dynamical Theory of Crystal Lattices , Clarendon Press, Oxford ,1954 Chapter 2 Reference 1. L. Brillouin, Wave Propagation in Periodic Structures, McGraw-Hill Book Co., Inc, 1946 2. S.S. Sussman, Tunable Light Scatering from Transverse Optical Modes in Lithium Niobate, Microwave Laboratory Report No. 1851, Stanford University, pp.34, Apr.1970. 3. A. S. Barker, Jr., Phys. Rev. 136, A1290, 1964. 4. A.S. Barker, Jr.,and R. Loudon, Phys. Rev. 158, 433, 1967. 5. H. E. Puthoff, R. H. Pantel, B.G. Huth, and M.A. Chacon, J. Appl. Phys. 39, 2144, 1968. 6. C. H. Henrry and J. J. Hopfeld, Phys. Rev. Letters 15,964, 1965. Chapter 3 Reference 1. R. Loudon, Proc. Phys. Soc. 82, 393, 1963. 2. Y. R. Shen, Phys. Rev. 138, A1741, 1965. 3. C. H. Henrry and C. G. B. Garret, Phys. Rev. 171, 1058, 1968. 4. D. A. Kleinam, Phys. Rev. 126, 1977, 1962. 5. M. L. Faust and C. H. Henry, Phys. Rev. Letters 17, 1265, 1966. 6. Jun-ichi Shikata, Manabu Sato,* Tetsuo Taniuchi, Hiromasa Ito, and Kodo Kawase, Optics Letters, Vol. 24, No. 4, February 15, 1999 7. S.S. Sussman, Tunable Light Scatering from Transverse Optical Modes in Lithium Niobate, Microwave Laboratory Report No. 1851, Stanford University, pp.34, Apr.1970. 8. J. M. Yarborough, S. S. Sussman, H. E. Purhoff, R. H. Pantell, and B. C. Johnson, Appl. Phys. Lett., Vol. 15, No. 3, August 1, 1969. 9. C. H. Henry and C. G. B. Garrett, Phys. Rev. 171, 1058, 1968. Chapter 4 Reference 1. A. S. Barker, R. Loudon, Phys. Rev. Vol. 158, No.2, June, 1967. 2. J. D. Axe, D. F. O’Kane, Appl. Phys. Lett. Vol. 9, No. 1, July, 1966. 3. K. Sakai, Appl. Opt. Vol. 11, No.12, Dec. 1972. 4. A.S. Barker, Jr.,and R. Loudon, Phys. Rev. 158, 433, 1967. 5. T. D. Wang, Nonlinear Optical Materials for Wavelength Conversion on Quasi-phase-matched Infrared Techniques and Application, Master Dissertation, 2001 6. A. C. Chiang, T. D. Wang, Y. Y. Lin, C. W. Lau, Y. H. Chen, B. C. Wong, Y. C. Huang, J. T. Shy, Y. P. Lan, Y. F. Chen, and P. H. Tsao, Pusled Optical Parametric Generation, Amplification, and Oscillation in Monolithic Periodically Poled Lithium Niobate Crystals, IEEE Journal of Quantum Electronics, Vol. 40, No. 6, June 2004. 7. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, Opt. Lett. 27, 1454, 2002 8. M. J. Missey, V. Dominic, L. E. Myers, and R. C. Eckardt, “Diffusion-bonded stacks of periodically poled lithium niobate”, Opt. Lett., vol. 23, no. 9, pp. 664-667, May 1998. 9. M. J. Missey, V. Dominic, L. E. Myers, and R. C. Eckardt, Opt. Lett., 23, 664, (1998) Chapter 5 Reference 1. H.Ghafouri-Shiraz and B.S.K. Lo, university of Birmingham UK, distributed feedback laser diode principle and physical modeling, JOHN WILEY & SONS 1996id NH0925442086 sid 913979 cfn 0 / id NH0925442087 auc 鄒善智 tic 應用於多重標準接收機之金氧半可變增益放大器 adc 黃柏鈞 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 62 kwc 金氧半 kwc 可變增益放大器 kwc 多重標準接收器 abc 隨著資料傳輸速率的急速演進,在無線網路基頻段整合具有寬頻寬的類比積體電路方塊將會是一個不可抵抗的未來潮流。另一方面,一個可以應用於多重標準接收機(Multi-Standard Receiver)的單一電路方塊對於加強行動電話的使用度來說是一個相當經濟的實現方式。這篇論文中所提出之應用於多重標準接收機的金氧半(CMOS)可變增益放大器(VGA)就是希望能滿足上述的這兩項趨勢。 rf [1 ] R. Harjani, ”A low-power CMOS VGA for 50 Mb/s disk drive read channels,” IEEE Trans. Circuits and Systems, Part II, vol. 42, pp. 370-376, Jun. 1995. [2 ] W. A. Serdijn, A. C. van derWoerd, J. Davidse, and A. H. M. Van Roermund, ”A low-voltage low-power fully integratable automatic gain control for hearing instruments,” IEEE Journal of Solid-State Circuits, vol. 29, pp.943-946, Aug. 1994. [3 ] G. S. Sahota and C. J. Persico, ”High dynamic range variable-gain amplifier for CDMA wireless applications,” in ISSCC’97, San Francisco, CA, 1997, pp. 374-375. Session 22, paper 22.6. [4 ] P.C. Huang, ”An automatic gain control architecture for SONET OC-3 VLSI” IEEE Trans. on Circuits and Systems, Part II, vol. 44, pp. 779-783, Sep. 1997. [5 ] M. Shiue, C. C.Wangc, and W.Way, ”A VLSI design of dual-loop automatic gain control for dual-mode QAM/VSB CATV modem,” Proc. IEEE Int. Symposium Circuits and Systems, Monterey, CA, 1998. [6 ] Toshio Fujisawa et al, ”A Single-Chip 802.11a MAC/PHY With a 32-b RISC Processor”IEEE Journal of Solid-State Circuits, vol. 38, pp.2001-2009, Nov. 2003 [7 ] Wolfram Kluge et al, ”A 2.4GHz CMOS Transceiver for 802.11b Wireless LANs” in ISSCC’03, pp. 360-361. Session 20, paper 20.6. [8 ] Hiroki Ishikuro et al, ”A Single-Chip CMOS Bluetooth Transceiver with 1.5MHz IF and Direct Modulation Transmitter” in ISSCC’03, pp. 94-95. Session 5, paper 5.5. [9 ] Willy Hioe et al, ”0.18um CMOS Bluetooth Analog Receiver With 88-dBm Sensitivity”, IEEE Journal of Solid-State Circuits, vol. 39, pp.374-377, Feb. 2004 [10 ] Y.S. Youn et al, ”1GHz-band Low Distortion Up-converter with a Linear in dB Control VGA for Digital TV Tuner,” IEEE Radio Frequency Integrated Circuits Symposium, 2001. [11 ] F. Behbahani, A. Abidi et al, ”Adaptive Analog IF Signal Processor for a Wide-Band CMOS Wireless Receiver,’ IEEE Journal of Solid-State Circuits, vol. 36, no. 8, pp. 1205-1216, August 2001. [12 ] B. Celvo, S. Celma, M.T. Sanz, ”High-Frequency digitally programmable gain amplifier,”Electronic Letters, vol.39, no. 15, July, 2003. [13 ] Y.S. Youn et al, ”A CMOS IF Transceiver with 90dB Linear Control VGA for IMT-2000 Application,” Symposium on VLSI Circuits Digest of Technical Papers, 2003. [14 ] T. Maruyama et al, ”Single-Chip IF Transceiver IC withWide Dynamic Range Variable Gain Amplifiers forWideband CDMA Applications,” Symposium on VLSI Circuits Digest of Technical Papers, March 2001. [15 ] U. Dasgupta et al, ”Transmit/Receive IF Chip Set for WCDMA Mobiles in 0.35-um CM/OS,”IEEE Trans. on Microwave Theory and Techniques, vol. 50, no. 11, Nov. 2002. [16 ] O.Watanabe et al, ”A 380-MHz CMOS Linear-in-dB Signal-summing Variable Gain Amplifier with Gain Compensation Techniques for CDMA Systems,” Symposium on VLSI Circuits Digest of Technical Papers, 2002. [17 ] O. Watanabe, S. Otaka, M. Ashida, and T. Itakura, ” A 380-MHz CMOS linear-in-dB signalsumming variable gain amplifier with gain compensation techniques for CDMA systems,”Symposium on VLSI Circuits Digest of Technical Papers, 2002, pp. 136-139. [18 ] Paolo Orsatti, Francesco Piazza, and Quiating Huang, ”A 71-MHz CMOS IF-Baseband Strip for GSM,” IEEE Journal of Solid State Circuits, vol. 31, pp.104-108, Jan. 2000. [19 ] C.C. Hsu, J.T. Wu, ”A Highly Linear 125-MHz CMOS Switched Resistor Programmable Gain Amplifier,” IEEE Journal of Solid State Circuits, vol. 38, no. 10, pp. 1663-1670, Oct. 2003. [20 ] Hassan O. Elwan, Ahmed M. Soliman, and M. Ismail, ”Digitally Programmable Decibel-Linear CMOS VGA for Low-Power Mixed-Signal Applications,” IEEE Trans. Circuits and Systems, Part II, vol. 47, no. 5, pp. 245-254, May 2000. [21 ] Hassan Elwan, Ahmed M. Soliman, and M. Ismail,”A CMOS Norton Amplifier-Based Digitally Controlled VGA for Low-Power Wireless Applications,” IEEE Trans. Circuits and Systems, Part II, vol. 48, no. 3, pp. 388-398, March 2001. [22 ] J. Guido et al, ”Analog front end IC for category I and II ADSL,” Symposium on VLSI Circuits Digest of Technical Papers, 2000, pp. 178-181. [23 ] J. M. Khoury, ”On the design of constant settling time AGC circuits,” IEEE Trans. Circuits and Systems, Part II, vol. 45, pp. 283-294, March 1998.id NH0925442087 sid 913923 cfn 0 / id NH0925442088 auc 李建沅 tic 以微滴定法製作之微透鏡陣列 adc 王立康 adc 蘇忠傑 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 83 kwc 微透鏡陣列 kwc 微滴定法 abc 隨著多媒體資訊(Multimedia)與網路(Internet)時代的來臨,影像與資訊的交流益形迅速,各種新型顯示影像文字的顯示技術應運而生。而伴隨著這些顯示技術的發展,各種各樣新型光學元件與技術也不斷被提出,來解決各種顯示元件所面臨的問題。其中微光學元件(Microoptical Components)由於具有輕、薄以及平面化等優點,發展十分迅速,亦逐漸被應用在新型的顯示元件上。 tc 封面 目錄 致謝 論文摘要 第1章 序論 1-1 研究動機 1-2 微透鏡陣列的應用 第2章 文獻回顧 2-1 光阻回溫式 2-1 PMMA體積膨脹式 2-3 雷射直寫式 2-4 模具式 2-5 灰階光罩式 2-6 雙層結構回流式 2-7 準分子雷射拖拉式 2-8 離子交換式 2-9 液滴射出式 2-10 液滴射出式相關論文整理 第3章 實驗設備與實驗架構 3-1 微透鏡表面成型原理 3-2 實驗架構 第4章 實驗步驟與微透鏡特性檢測 4-1 實驗步驟 4-2 微透鏡檢測 4-3 光學特性檢測 第5章 實驗結果之分析與討論 5-1 實驗結果分析 5-2 實驗結果討論 第6章 結論 參考文獻rf [1 ] 秦志賢,“灰階光罩於非球面折射式微透鏡之製作研究” ,國立中興大學/精密工程研究所,碩士論文,2001 [2 ] 程偉倫,“以準分子雷射拖拉法製作3D微結構之研究” ,國立中興大學機械工程所,2001 [3 ] 梁逸平,“熔融法折射式微透鏡陣列之設計製造與檢測”,國立中央大學光電科學研究所,碩士論文,2001 [4 ]N. F. Borrelli,“Optoelectronic Interconnects Using Microlens Arrays Formed in Glass,”IEEE, pp. 983-987, 1993 [5 ]Jun-ichi Shimada, Osamu Ohguchi, and Renshi Sawada,“Microlens Fabricated by The Planar Process,”Journal of Lightwave Technology, vol 9, no.5, pp. 571-576, May 1991 [6 ] 鄭吉成,“雙層光阻材料回溫形成微透鏡之製程”,國立清華大學動力機械工程所,碩士論文,2001 [7 ]Barrie P. Keyworth, and James N. McMullin,“Method and Apparatus for Making Optical Components by Direct Dispensing of Curable Liquid”US Patent 5534101, 1996 [8 ] Stefan Sinzinger, Jurgen Jahns,“Microoptics”, Wiley-VCH, 1999 [9 ] Nicholas F. Borrelli,“Microoptics Technology”, Marcel Dekker, 1999 [10 ] 林志鴻,“微射出快速模溫控制系統與玻璃模仁表面微結構複製成型性探討”,國立臺灣大學機械工程學研究所,碩士論文,2001 [11 ]D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes,“Microjet Fabrication of Microlens Arrays,”IEEE Photonics Technology Letters, vol 6, no. 9, September 1994 [12 ]R. Danzebrink, and M. A. Aegerter,“Desposition of Micropatterned Coating Using an Ink-jet Technique,”Thin Solid Films 351, pp. 115-118, 1999 [13 ] R. Danzebrink, and M. A. Aegerter,“Desposition of Optical Microlens Arrays by Ink-jet Processes,”Thin Solid Films 392, pp. 223-225, 2001 [14 ]Ki-Hun Jeong, and Lukc P. Lee,“A New Method of Increasing Numerical Aperture of Microlens for Biophotonic MEMS,”IEEE, pp. 380-383, May 2002 [15 ]Richard R. A. Syms,“Refractive Collimating Microlens Arrays by Surface Tension Self-assembly,”IEEE Photonics Technology Letters, vol 12, no. 11, pp. 1507-1509, November 2000 [16 ]Eugene Ma, Adam Payne, Nikolay Nemchuk, and Lawrence Domash, “Microlens Arrays with Integrated Thin Film Power Monitors,”IEEE Electronic Components and Technology Conference, 2001 [17 ]Chi-Ping Lin, Hsiharng Yang, and Ching-Kong Chao,“A New Microlens Array Fabrication Method Using UV Proximity Printing,”Department of Mechanical Engineering, March 2003 [18 ] Hee Yong Shima, Sang Hoon Leea, Dong June Ahna, Kwang-Duk Ahnb, and Jong-Man Kimc,“Micropatterning of Diacetylenic Liposomes on Glass Surfaces,”Materials Science and Engineering C 24, pp. 157–161, 2004 [19 ] Si-Hyun Park, Heonsu Jeon, Youn-Joon Sung, and Geun-Young Yeom,“Refractive Sapphire Microlenses Fabricated by Chlorine-based Inductively Coupled Plasma Etching”Optical Society of America, Applied Optics, vol. 40, no. 22, pp. 3698-3702, August 2001 [20 ] B. P. Keyworth, D. J. Corazza, J. N. McMullin, and L. Mabbott, “Single-step Fabrication of Refractive Microlens Arrays”Optical Society of America, Applied Optics, vol. 36, no. 10, pp. 2198-2202, April 1997 [21 ] Takashi Okamoto, Miwa Mori, Tamae Karasawa, Seiichiro Hayakawa, Iwao Seo, and Heihachi Sato,“Ultraviolet-cured polymer microlens arrays”Optical Society of America, Applied Optics, vol. 38, no. 14, pp. 2991-2996, May 1999 [22 ]John Lennon, and Taraneh Norouzi,“Method for Microdispensing of Fluids From a Pipette,”US Patent 0213905, 2003 [23 ]Nobuki Itoh,“Method of Manufacturing Microlens Array and Microlens Array”US Patent 0196563, 2002id NH0925442088 sid 913983 cfn 0 / id NH0925442089 auc 簡志遠 tic 三段串接式準相位匹配結構(光參數振盪、二階諧頻與和頻)於週期性反轉鈮酸鋰晶體環型共振腔中產生鈉黃光雷射 adc 黃衍介 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 38 kwc 週期性反轉鈮酸鋰 kwc 環型共振腔 abc 為了產生鈉黃光的波長,我們提出三段串接週期性反轉鈮酸鋰晶體(periodically poled lithium niobate, PPLN)來完成。我們採用一種光參數振盪的方法來達成,同時搭配上環形共振腔的架構來產生589 nm的波長。為了產生1767 nm三階諧頻的訊號,除了原先的光參數振盪器之外,我們又加上了倍頻產生器(second harmonic generation, SHG)與和頻產生器(sum frequency generation, SFG)。而這三段相位匹配的晶體週期分別為30.67 ?慆、23.93 ?慆與9.73 ?慆。晶體的相位匹配溫度在OPO及串接的SHG與SFG分別被被設計在170.55 oC與176.57 oC。在此種的設計之下,我們計算出來在晶體內的雷射腰身約為80 ?慆。當我們假設單一的共振波長1767 nm與1 %的腔體損耗時,計算出來的閥值約為0.4 W。當我們操作在三倍大的閥值時,其三段串接晶體的轉換效率約為10 %。 rf Joseph D. Vance, Chiao-Yao She, and Hans Moosmuller, “ Continuous-wave, all-solid-state, single-frequency 400-mW source at 589 nm based on doubly resonant sum-frequency mixing in a monolithic lithium niobate resonator, ” APPLIED OPTICS, Vol. 37, No. 21, pp. 4891- 4896 (1998). M. P. Jelonek, R. Q. Fugate, W J. Lange, A. C. Slavin, R. E. Ruane, R. A. Cleis, “Characterization of artificial guide stars generated in the mesospheric sodium layer with a sum-frequency laser, ” J. Opt. Soc. Am. A, Vol. 11, No. 2, pp. 806- 812 (1994). Yen-Chieh Huang, An-Chung Chiang, Yen-Yin Lin, and Yen-Wen Fang, “Optical Parametric Generation Covering the Sodium D1, D2 Lines From a 532-nm Pumped Periodically Poled Lithium Niobate (PPLN) Crystal With Ionic-Nonlinearity Enhanced Parametric Gain, ” IEEE JOURNAL OF QUANTUM ELECTRONICS, Vol. 38, No. 12, pp. 1614- 1619 (2002). Joshua C. Bienfang, Craig A. Denman, Brent W. Grime, Paul D. Hillman, Gerald T. Moore, and John M. Telle, “20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers, ” OPTICS LETTERS, Vol. 28, No. 22, pp. 2219- 2221 (2003). P. W. Milonni and L. E. Thode, “Theory of mesospheric sodium fluorescence excited by pulse trains, ” APPLIED OPTICS, Vol. 31, No. 6, pp. 785- 800 (1992). Peter W. Milonni, Robert Q. Fugate and John M. Telle, “Analysis of measured photon returns from sodium beacons, ” J. Opt. Soc. Am. A, Vol. 15, No. 1, pp. 217- 233 (1998). J. A. Armstrong, et al., Phys. Rev. 127, 1918 (1962) Dieter H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate, ” OPTICS LETTERS, Vol. 22, No. 20, pp. 1553- 1555 (1997). E. Cheung, J.G. Ho, H. Injeyan, M.M. Valley, J.G. Berg, R.L. Byer, Y.C. Huang, “A solid Stage Raman Laser for Sodium D2 Line Resonant Excitation,” Proceedings of the 1996 Diode laser Technology Review, Albuquerque, New Mexico, Apr. 1996. Craig Denman, presented at the 2003 Advanced Solid-state Photonics. Private communication with R. L. Byer, Stanford University. G. C. Papen, Proceedings Adaptive Optics Topical Meeting, Technical University of Munich, Garching, Germany, Oct. 2-6, 1995. Y.F. Chen, S.W. Tasi, S.C. Wang, Y.C. Huang, T.C. Lin, and B.C.Wong, Optics Letters, 27 (2002) 1809. H. Z. Cheng, P. L. Huang, and S. L Huang, “Reentrant two-mirror ring resonator for generation of a single-frequency green laser, ” Optics Letters, 25 (8), pp. 542- 544, (2000) S. L. Huang, Y. H. Chen, P. L. Huang, J. Y. Yi, and H. Z. Cheng, “Multi-Reentrant Nonplanar Ring Laser Cavity, ” IEEE Journal of Quantum Electronics, 38 (10), pp. 1030- 1308, (2002) W. R. Bosenberg, J. I. Alexander, L. E. Myers, and R. W. Wallace, “2.5-W, continuous-wave, 629-nm solid-state laser source, ” Opt. Lett. 23 (3), pp. 207-209 (1998) M. van Herpen, S. te Lintel Hekkert, S. E. Bisson and F. J. M. Harren, “Wide single-mode tuning of a 3.0–3.8-?慆, 700-mW, continuous-wave Nd:YAG-pumped optical parametric oscillator based on periodically poled lithium niobate,” OPTICS LETTERS, Vol. 27, No. 8, pp. 640- 642 (2002). A. C. Chiang, Y. Y. Lin, T. D. Wang, Y. C. Huang and J. T. Shy, “Distributed-feedback optical parametric oscillation by use of a photorefractive grating in periodically poled lithium niobate, ” OPTICS LETTERS, Vol. 27, No. 20, pp. 1815- 1817 (2002). S.E. Harris “Tunable Optical parametric Oscillators,” Proc. IEEE 57, 2096-2113 (1969). W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “Continuous-wave, singly resonant optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 21, pp. 713-715 (1996) W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “93% pump depletion, 3.5 W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21, pp. 1336-1338 (1996) R. L. Byer, “Parametric Oscillators and Nonlinear Materials”, Nonlinear Optics, Philip G. Harper & Brian S. Wherrett, eds., pp. 49-158, Academic Press, 1975. Thomas G. Giallorenzi, and M. H. Teilly, “ Theory of Internal Upconversion and Frequency Doubling in Optical Parametric Oscillators, ” IEEE Journal of Quantum Electronics, QE-8 (3), pp. 302- 310 (1972). Bahaa E. A. Saleh, and Malvin Carl Teich, “ Fundamental of Photonics, ” Chapter-19. W R. Bosenberg and Dean R. Guyer, “Broadly tunable, single-frequency optical parametric frequency-conversion system, ” J. Opt. Soc. Am. B, Vol. 10, No. 9, pp. 1716- 1722 (1993). Lefort L., Puech K., Ross G. W., Svirko Y. P., and Hanna D. C. “Optical parametric oscillation out to 6.3 µm in periodically poled lithium niobate under strong idler absorption, ” Appl. Phys. Lett., 73(12):1610, September 1998. Yung-Fu Chen, “Pump-to-mode size ratio dependence of thermal loading in diode-end-pumped solid-state lasers, ” J. Opt. Soc. Am. B, Vol. 17, No. 11, pp. 1835- 1840 (2000). Feng Song, Chaobo Zhang, Xin Ding, Jingjun Xu, Guangyin Zhang, Matthew Leigh, and Nasser Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers, ” APPLIED PHYSICS LETTERS, Vol. 81, No. 12, pp. 2145- 2147 (2002). M. M. J. W. van Herpen, S. E. Bisson and F. J. M. Harren, “Continuous-wave operation of a single-frequency optical parametric oscillator at 4–5 mm based on periodically poled LiNbO3, ” OPTICS LETTERS, Vol. 28, No. 24, pp. 2497- 2499 (2003). A. C. Chiang, Y. C. Huang, Y. W. Fang, and Y. H. Chen, “Compact, 220-ps visible laser employing single-pass, cascaded frequency conversion in monolithic periodically poled lithium niobate, ” OPTICS LETTERS, Vol. 26, No. 2, pp. 66- 68 (2001). An-Chung Chiang, Tsong-Dong Wang, Yen-Yin Lin, Chee-Wai Lau, Yen-Hung Chen, Bi-Cheng Wong, Yen-Chieh Huang, Jow-Tsong Shy, Yu-Pin Lan, Yung-Fu Chen, and Pei-Hsi Tsao, “Pulsed Optical Parametric Generation, Amplification, and Oscillation in Monolithic Periodically Poled Lithium Niobate Crystals, ” IEEE JOURNAL OF QUANTUM ELECTRONICS, Vol. 40, No. 6, pp. 791- 799 (2004). Stephen J. Brosnan and Robert L. Byer, “Optical Parametric Oscillator Threshold and Linewidth Studies, ” IEEE JOURNAL OF QUANTUM ELECTRONICS, Vol. QE-15, No. 6, pp. 415- 431 (1979). Martin M. Fejer, G. A. Magel, Dieter H. Jundt, and Robert L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances, ” IEEE JOURNAL OF QUANTUM ELECTRONICS, Vol. 28, No. 11, pp. 2631- 2654 (1992).id NH0925442089 sid 915905 cfn 0 / id NH0925442090 auc 黃國尊 tic 單模週期性極化鈮酸鋰波導中之兆赫波參數產生器 adc 黃衍介 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 39 kwc 兆赫波參數產生器 kwc 週期性極化鈮酸鋰 kwc 波導 abc 週期性晶格反轉鈮酸鋰實現了有效率的準相位匹配非線性混頻轉換過程,各種波長在可見光至近紅外光的光參數過程拜此技術所賜,已有廣泛的應用。就技術層面而言,週期性晶格反轉鈮酸鋰晶體亦可應用在兆赫波的產生,也就是。因為週期性晶格反轉鈮酸鋰晶體的厚度受製程限制,通常是五百微米到一千微米之間,這種厚度對於所產生的兆赫波而言是一簡易的平板波導,因此產生的兆赫波應具有多模態的特性。本篇論文的重點即在觀察在平板波導中準相位匹配兆赫波參數產生的模態結構,並設法減少高階模態的出現,以提升此兆赫波參數產生的效率。 tc Chapter 1 Introduction…………………………...................................1 1.1 Motivation………...…………………………………………..1 1.2 Terahertz wave generation………............................................2 1.3 Overview of the Dissertation……………………………...….4 Chapter 2 Theory and Analysis…………….…..……………5 2.1 Forward Terahertz Wave Parametric Generation…………….5 2.2 TPG PPLN Waveguide……………………………………….8 Chapter 3 Experiments……………………………………….13 3.1 Fabrication and Inspection of THz PPLN Waveguide……...13 3.2 THz parametric PPLN waveguide for different thickness….15 3.3 Sandwiched TPG PPLN Waveguide………………………..22 Chapter 4 Conclusion and future works………………..32 4.1 Conclusion…………………………………………………..32 4.2 Future works………………………………………………...33 4.2-1 DFB TPO to Attain Single Frequency THz Spectrum……...….33 4.2-2 Cascade DFG Terahertz Generation…………………….……..35 Appendix A………………………………………………………..37 Reference……………………………………………..……………38rf [1 ] P. R. Smith, D. H. Auston, and M. C. Nuss, IEEE J Quantum. 24, 255 (1988). [2 ] M. Tani, R. Fukasawa, H. Abe, S. Matsuura, K. Sakai, and S. Nakashima, J. Appl. Phys. 83, 2473 (1998) [3 ] M. Hangyo, S. Tomozawa, Y. Murakami, M. Tonochi, M. Tani, Z. Wang, K. Sakai, and S. Nakashima, Appl. Phys. Lett. 69, 2122 (1996) [4 ] S. S. Sussman, “Tuable light scattering from transverse optical modes in lithium niobate,” Microwave Lab. Rep. 1851(Stanford University, Stanford, Calif., 1970) [5 ] M. A. Piestrup, R. N. Fleming, and R. H. Pantell, Appl. Phys. Lett 26, 418 (1975). [6 ] K. Kawase, M. Sato, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 68, 2483 (1996). [7 ] J. Shikata, M. Sato, T. Taniuchi, and H. Ito, Opt. Lett. 24, 202 (1999). [8 ] Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, Appl. Phys. Lett. 81, 3323 (2002). [9 ] Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, Appl. Phys. Lett. 81, 3323 (2002). [10 ] Y. J. Ding and J. B. Khurgin, Opt. Comm. 148, 105 (1998) [11 ] E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1991) [12 ] A. Yariv, Quantum Electronics. New York: Wiley, 1989, p435 [13 ] J. Shikata, M. Sato, T. Taniuchi, and H. Ito, Opt. Lett. 24, 202 (1999) [14 ] S. S. Sussman, “Tuable light scattering from transverse optical modes in lithium niobate,” Microwave Lab. Rep. 1851(Stanford University, Stanford, Calif., 1970) [15 ] Shikata J, Kawase K, Karino K, Taniuchi T and Ito H 2000, IEEE Trans. Microwave Theory Tech. 48 653. [16 ] L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic-Integrated Circuits (Wiley, New York, 1995) [17 ] G. P. Agrawal and N. K. Dutta, “Long-wavelength Semiconductor Laser”, AT&T Bell Laboratories, Murray Hill, New Jersey [18 ] J. A. Armstrong, N. Bloemergen, J. Ducuing, and P. S. Pershan, Phys. Rev., 127, 1918(1962). [19 ] S. Kurimura, I. Shoji, T. Taira, J. H. Ro, and M. Cha, Coercive field dependence on Mg concentration in MgO: LiNbO3, CLEO2001, Baltimore, CTuI3 (2001). [20 ] W. Shi and Y. J. Ding, Appl. Phys. Lett 82, 4435 (2003). [21 ] D.E. Zelmon, D.L. Small, D. Jundt, J. Opt. Soc. Am. B, 14, p.3319 (1997) [22 ] E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1991) [23 ] S M. Tseng et al” IEEE Photonics Technology Letters”, 9, p.1241 (1997) [24 ] C. H. Henry and C. G. B. Garrett, Phy. Rev., 171, 1058 (1968). [25 ] Y. C. Haung, and Y. Y. Lin, J. Opt. Soc. Am. B, 21, 777 (2004) [26 ] A. C. Chiang, Y. Y. Lin, T. D. Wang, Y. C. Huang, and J. T. Shy, Opt. Lett. 27, 1815-1817 (2002). [27 ] A. C. Chiang, Ph.D. Dissertation,” Advanced quasi-phase-matching lithium niobate laser devices” department of electrical engineering, National Tsing-Hua University, ROC (2002)id NH0925442090 sid 915906 cfn 0 / id NH0925442091 auc 陳智豪 tic 高效率質子交換式波導於週期性反轉鈮酸鋰的製程研究 adc 黃衍介老師 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 42 kwc 鈮酸鋰 kwc 波導 kwc 週期轉換 abc 在非線性積體光學元件中,週期性反轉式鈮酸鋰之光波導在頻率轉換的應用中,是相當多樣的。因此,利用鈮酸鋰優良的非線性特性,在許多雷射及光通訊的元件中,被廣泛應用在可見光、近紅外光、以及遠紅外光之雷射製作上。在本論文中,主要探討光波導在週期性反轉鈮酸鋰的製程研究,在如何製作出高轉換效率且損耗小的波導的製程中,也研究了一些鍍膜的原理以及材料特性的研究。 tc Table of Contents Abstract I 中文摘要 II 致謝 III Table of Contents IV List of Figures VI List of Tables VII Chapter 1: Introduction 1 1.1 Motivation 1 1.2 Guide-wave Nonlinear Optics 2 1.3 Dissertation Overview 4 Chapter 2: Theory of Guided-Wave Nonlinear Optics on APE PPLN Waveguide 6 2.1 Introduction 6 2.2 Second Harmonic Generation Theory in Optical Waveguide 6 2.2.1 Second Order Nonlinear Optics for Guiding Wave 6 2.2.2 Quasi-phase-matching 8 2.2.3 Tuning and Tolerance 9 2.3 Summary 10 Chapter 3: Design and Fabrication of Annealed Proton Exchange PPLN Channel Waveguide 12 3.1 Introduction 12 3.2 Overview of APE PPLN Channel Waveguide 12 3.3 Fabrication and Design of APE-PPLN Waveguide Fabrication 15 3.3.1 Design and Fabrication of Periodic Poled Lithium Niobate 15 3.3.2 Channel Pattern Fabrication 17 3.3.2.1 Sputtering system 17 3.3.2.2 Ion Plating 17 3.3.2.3 SiO2 thin film deposition 18 3.3.3 APE-PPLN Channel Waveguide 22 3.4 Summary 25 Chapter 4: Optical Analysis of Second Harmonic Generation Channel Waveguide 28 4.1Optical Measurement Setup 28 4.2 Non-Optimized Channel Quality and Optical Measurement 30 4.2.1 The Primitive APE Channel Waveguide 30 4.2.2 The APE Channel Waveguide with Channel Amelioration 33 4.3 Optimized Channel Waveguide Measurement 33 4.4 Channel Width Analysis 35 4.5 Summary 36 Chapter 5: Conclusion and Future Work 38 4.1 Conclusion 38 4.2 Future works 39 Appendix A. Sum Frequency Generation 40 Appendix B. Double-Lift-off Process 41rf Reference for Chapter 1: [1 ] Richard Syms and John Cozens, Optical guiding waves and devices, McGraw-Hill, 1992. [2 ] G. P. Agrawal, Fiber-Optic Communication System, John Wiley & Sons, 1997. [3 ] Kawanishi S, et al, “All-optical modulation and time-division-multiplexing of 100Gbit/s signal using quasi-phase matched mixing in LiNbO3 waveguides,” Electron. Lett. 36, 1568-1569, 2000. [4 ] K. R. Parameswaran, M. Fujimura, M. H. Chou, et al, “Low-power all-optical gate based on sum frequency mixing in APE waveguides,” IEEE Photonic Tech. Lett. 12, 654-656, 2000. [5 ] D. Hofmann, G. Schreiber, C. Haase, H. Herrmann, W. Grundkotter, et al, “Quasi-phase-matched difference-frequency generation in periodically poled Ti:LiNbO3 channel waveguide,” Opt. Lett. 24(13), 896-898, 1999. [6 ] L. E. Myers, R. C. Eckardt, et al., ”Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12(11), 2102-2116, 1995. [7 ] Dieter H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congrunent lithium niobate,” Opt. Lett.22(20),1553-1555, 1997. [8 ] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generations of optical harmonics,” Phys. Rev. Lett. 7, 118-119, 1961. =========================================================== Reference for Chapter 2: [1 ] Martin M. Fejer, G. A. Magel, Dieter H. Jundt, and Robert L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quan. Electron. 28 (11), 1992. [2 ] Krishnan R. Parameswaran, Roger K. Route, Jonathan R. Kurz, Rostislav V. Roussev, and Martin M. Fejer, ”Highly efficiency second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27 (3), 2002. [3 ] L. E. Myers, ”Quasi-phase-matched optical parametric oscillators in bulk periodically poled lithium niobate,” Ph.D. Dissertation, Department of Electrical engineering, Stanford University, Stanford, CA, 1995. [4 ] Dieter H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553-1555, 1997. =========================================================== Reference for Chapter 3: [1 ] Vittorio M. N.Passaro,”LiNbO3 Optical Waveguides Formed in a New Proton Source,”J. Light. Tech., 20(1), 71-77, 2002. [2 ] L. Chanvillard, P. Aschieri, and P. Baldi,”Soft proton exchange on periodically poled LiNbO3 : A simple waveguide fabrication process for highly efficient nonlinear interactions, ” Appl. Phy. 76(9), 1089-1091, 2000. [3 ] Yuri N. Korkishko, “LiNbO3 Optical Waveguide Fabrication by High-Temperature Proton Exchange,” J. Light. Tech. 18(4), 562-568, 2000. [4 ] D.H. Tsou, M.H. Chou, P. Santhanaraghavan, Y.H. Chen, and Y.C. Haung,”Structure of optical characterization of vapor-phase proton exchanged lithium niobate waveguides,” Mater. Chem. and Phys. 78,474-479,2002 [5 ] L. Rams and J. M. Cabrera,” Preparation of proton-exchange LiNbO3 waveguides in benzoic acid vapor,” J. Opt. Soc. Am. B 16(3),401-406,1999. [6 ] Yu. N. Korkishko, V. A. Fedorov, and T. M. Morozova, ”Reverse proton exchange for buried waveguides in LiNbO3,”J.Opt.Am.B 15(7),1838-1842,1998. [7 ] Ming-Hsien Chou,”Optical frequency mixers using three-wave mixing for optical fiber communication,” Ph.D. Dissertation, Department of Applied Physics, Stanford University, Stanford, CA(1999). [8 ] Sandeep T., Vahra and Alan R. Mickelson,”Diffusion characteristics and `waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides,” J. Appl. Phy. 66(11), 5161-5174, 1989 [9 ] Yu. N. Korkishko and V. A. Fedorov, “Structure Phase Diagram of HxLi1-xNbO3 Waveguides: The Correlation Between Optical and Structure Properties,” IEEE J. Sele. Top. Quantum Electronics 2,187-196, 1996. [10 ] Yu. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, “Relationships between structural and optical properties of proton- exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35(36),7056-7060,1996. [11 ] A. Galvanauskas, K. K. Wong, K. El Hadi, M. Hofer, M. E. Fermann, D. Hater, M. H. Chou, M. M. Fejer, “Amplification in 1.2-1.7 mm communication window using OPA in PPLN waveguides,” Electron. Lett. 35, 731-733, 1999. [12 ] A. Alcazar de V., J. Rams, J.M. Cabrera, and F. Agullo-Lopez, “Light-induced damage mechanism in ??-phase proton-exchanged LiNbO3 waveguides,” Appl. Phys. B 68, 989-993, 1999. [13 ] Kin Seng Chiang, “Construction of Refractive-Index Profiles of Planar Dielectric Waveguides from the Distribution of Effective Indexes,” J. Light. Tech. 3(2), 1985. [14 ] N. A. G. Ahmed, “Ion Plating Technology- Developments and Applications,” John Wiley & Sons, 1987. [15 ] James D. Plummer, Michanel D. Deal, and Peter B. Griffin, “Silicon VLSI Technology,” Prentice Hall, Inc., 2000. [16 ] Wei-Yung Hsu, Craig S. Willand, Venkatraman Gopalan, and Mool C. Gupta, “Effect of proton exchange on the nonlinear optical properties of LiNbO3 and LiTaO3,” Appl. Phys. Lett. 61 (19), 2263-2265, 1992. [17 ] Chi-Yen Shen, Shuming Tong Wang and Ren-Change Chu, ”The effect of Hydrogen on Refractive Index Profiles of Annealed Proton-Exchange Z-cut LiNbO3,” Jpn. J. Appl. Phys. 36, 6781-6784, 1997. [18 ] M. L. Bortz, “Annealed proton-exchanged LiNbO3 waveguide,” Opt. Lett. 16, 1844-1846, 1991. [19 ] Michael L. Bortz, “Quasi-Phasematched Optical Frequency Conversion in Lithium Niobate Waveguides,” Ph.D. Dissertation, Department of Applied Physics, Stanford University, Stanford, CA(1994). =========================================================== Reference for Chapter 4: [1 ] Ming-Hsien Chou,”Optical frequency mixers using three-wave mixing for optical fiber communication,” Ph.D. Dissertation, Department of Applied Physics, Stanford University, Stanford, CA(1999). [2 ] Michael L. Bortz, “Quasi-Phasematched Optical Frequency Conversion in Lithium Niobate Waveguides,” Ph.D. Dissertation, Department of Applied Physics, Stanford University, Stanford, CA(1994). [3 ] Sten Helmfrid, Gunnar Arvidsson, and Jonas Webjorn, “Influence of various imperfections on the conversion efficiency of second-harmonic generation in quasi-phase-matching lithium niobate waveguides,” J. Opt. Soc. Am. B 10(2), 222-229, 1992. [4 ] R. Regener and W. Sohler, “Loss in Low-Finesse Ti : LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36, 143-147, 1985. [5 ] Takumi Fujiwara, Xiaofan Cao, Ramakant Srivastava, and Ramu V. Ramaswamy, “Photorefractive effect in annealed proton-exchange LiNbO3 waveguides,” Appl. Phys. Lett. 61 (7), 743-745, 1992. [6 ] Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li ]/[Nb ] and MgO concentrations,” Appl. Phys. Lett. 77 (16), 2494-2497 , 2000. [7 ] A. Alcazar de V., J. Rams, J.M. Cabrera, and F. Agullo-Lopez, “Light-induced damage mechanism in ??-phase proton-exchanged LiNbO3 waveguides,” Appl. Phys. B 68, 989-993, 1999. =========================================================== Reference for chapter 5: [1 ] L.E. Myers, ”Quasi-phasematched optical parametric oscillators in bulk periodically poled lithium niobate,” Ph. D. dissertation, Department of Electrical Engineering, Stanford University, Stanford, CA(1995). [2 ] 李正中, “薄膜光學與鍍膜技術,” 藝軒出版社, 1998.id NH0925442091 sid 913984 cfn 0 / id NH0925442092 auc 黃姝香 tic 奈米力學共振器的波松吸附-脫附 adc 黃瑞星 ty 博士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 27 kwc 奈米共振器 abc 到目前為止,並不存在有一個數學方法來定量的計算各種隨機擾動的雜訊.而這些情形在次奈米尺度或更小的結構或者人造的輕量級材料是有可能發生的.對於計算各種隨機擾動的雜訊.數值格式似乎是必需的.然而在Djuric等人的論文中處理隨機吸附-脫附是利用第一階的泰勒展開式,但這只當載入質量比非常小才可以使用.為了能夠計算各種隨機擾動的雜訊.建立一套理論和演算法是迫切需要的.在這樣的考量下,我們介紹另一種處理方法,稱它為尤拉格式. rf [1 ] Z. Djuric: Microelectron. Reliability 40(2000) 919. [2 ] A.N. Cleland and M.L. Roukes: J. appl. Phys. 92(2002) 2758. [3 ] Y. Yong and J. Vig: IEEE Trans. Ultrason.Ferroelectr. Freq. Control 36(1989) 452. [4 ] J. Vig and Y. Kim: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(1999) 1558. [5 ] Z. Djuric, O. Jaksic and D. Randjelovic: Sensors and Actuators A96(2002) 244. [6 ] S.-S. Huang: to be published in Applied mathematics and Computation(2004).id NH0925442092 sid 847914 cfn 0 / id NH0925442093 auc 吳家豪 tic 4 ch數位即時監視系統之系統架構: 視訊多工器與反多工器之設計與實作 adc 鐘太郎 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 55 kwc 監視系統 kwc 多工器 kwc 反多工器 abc Standalone的監視系統相較於一般的PC-based的監視系統,其優點在於成本低、堅固、維修方便、體積小。而多Channel的監視系統更可以有效利用硬體,且合乎各種安全性監視的應用,故本論文的目的在於設計一個即時的4-Channel standalone DVR監視系統架構,其影像品質高達30 field/sec/channel。除此之外,系統還能提供額外智慧型監視功能的擴充性,如智慧搜尋、樣型識別等。為了達成此目標,我們最初的構想是在4-channel DVR系統架構裡使用一顆DSP晶片(TI TMS320C6711)作為核心,以提供系統功能擴充的彈性。兩顆以小波轉換為基礎的影像壓縮解壓縮晶片(ADV612),提供高品質的影像壓縮效能。另外,以三顆FPGA (ALTERA EP1C3T144C8)來做控制邏輯的介面及影像訊號的多工器/解多工器。接著,我們設計數位影像多工器(MUX)的電路,將4-channel數位影像輸入做multiplex合併,再送給ADV612做壓縮。影像播放時,所設計的解多工器(DEMUX)會將經過ADV612解壓送出的合併資料做de-multiplexer拆解,產生出四組影像資料。由於4-channel影像訊號輸入並非同步,因此MUX/DEMUX的設計必須要有額外的video field buffer。考慮到容量、價格及速度,選擇SDRAM來當作buffer最合適。因此,在FPGA裡還設計了SDRAM controller電路。在此,完成一個4-channel DVR system測試電路板的設計與實作,並成功的驗證MUX/DEMUX的效果及功能。由於選用FPGA做電路設計,未來此系統可輕易地增加額外的附加功能,如直接讀取出raw image來做智慧型處理,像是樣型識別、on-screen display (OSD)。也可以在NTSC blanking訊號存入語音資料和一些重要的資訊。另外還可以做畫面暫停、縮放、四分割或子母畫面輸出等功能。 rf [1 ] Smolenski, M.; Fink, T.; Konstantinides, K.; Frankenberger, D.; Peplinski, C.; “ Design of a personal digital video recorder/player” Signal Processing Systems, 2000. SiPS 2000. 2000 IEEE Workshop on , 11-13 Oct. 2000 Pages:3 – 12 [2 ] Solari, S.J.; “Architecture for a digital video recorder” Consumer Electronics, 2000. ICCE. 2000 Digest of Technical Papers. International Conference on , 13-15 June 2000 Pages:32 – 33 [3 ] Watkinson, J.; “The future of digital video recorders” Storage and Recording Systems, 1994., International Conference on , 5-7 Apr 1994 Pages:15 – 19 [4 ] C. Peplinski and T. Fink. “A digital television receiver constructed using a me- dia processor”. In 106th AES Convention, Munich, Pub. No. 4879 (C3). Audio Engineering Society, May 1999. [5 ] Texas Instruments, “TMS320C6000 Peripherals Reference Guide”. [6 ] Texas Instruments, “TMS320C6711, TMS320C6711B Floating-Point Digital Signal Processors”. [7 ] Integrated Circuit Solution Inc.(2003), “Synchronous Dynamic RAM IS42S16400L Data Sheet”, from the World Wide Web:http://www.icsi.com.tw [8 ] International Telecommunication Union.(1986-1992-1994-1998) “Interfaces for digital component video signals in 525-line and 625-line television systems operating at the 4:2:2 level of Recommendation ITU-R BT.601 (Part A) ”. ITU-R BT.656-4. [9 ] Intersil application note.(1998). “BT.656 Video Interface for ICs”. Keith Jack. From the World Wide Web: http://www.intersil.com [10 ] Philips Semiconductor.(2000) “THE I2C-BUS SPECIFICATION”. [11 ] Philips Semiconductor Product Specification(1999). “SAA7113 9-bit video input processor”. From the World Wide Web: http://www.semiconductor.philips.com [12 ] Analog Device Data Sheet (2000). “High Quality, 10-bit, Digital CCIR-601 to PAL/NTSC Video Encoder ADV7176A”. From the World Wide Web: http://www.analog.com [13 ] A.LOGICS (2002). “AQ-424 2-Output Color Quad Image Processor with Video Buffering function”. From the World Wide Web: http://www.alogics.co.kr [14 ] ALTERA Cyclone FPGA Device Handbook. “Cyclone FPGA Family Data Sheet”. From the World Wide Web: http://www.altera.com [15 ] ALTERA Cyclone FPGA Device Handbook. “Operating Requirements for Altera Devices”. From the World Wide Web: http://www.altera.com [16 ] ALTERA Cyclone FPGA Device Handbook. “Using Selectable I/OStandards in Cyclone Devices”. From the World Wide Web: http://www.altera.com [17 ] ALTERA Cyclone FPGA Device Handbook. “Configuring Cyclone FPGAs”. From the World Wide Web: http://www.altera.com [18 ] ALTERA Cyclone FPGA Device Handbook. “Serial Configuration Devices (EPCS1 & EPCS4) Data Sheet”. From the World Wide Web: http://www.altera.com [19 ] ALTERA Cyclone FPGA Device Handbook. “Using PLLs in Cyclone Device”. From the World Wide Web: http://www.altera.com [20 ] LeCroy Applications Brief. “Phase Locked Loop Basics: An Introduction To Phase Locked Loops”. [21 ] ALTERA White Paper. “SDR SDRAM Controller”. From the World Wide Web: http://www.altera.com [22 ] Jeung Joon Lee (2001). “SYNCHRONOUS-DRAM CONTROLLER”. From the World Wide Web: www.cmosexod.com [23 ] Analog Device. “Closed Circuit TV Digital Video Codec” [24 ] SYNTEK Data Sheet. “STK6011 8051 Embedded Microcontroller”.id NH0925442093 sid 913977 cfn 0 / id NH0925442094 auc 沈保成 tic 在兩正交視野下以模型為基礎的即時人體運動參數分析系統 adc 黃仲陵 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 67 kwc 正交視野 kwc 以模型為基礎 kwc 人體運動分析系統 kwc 即時系統 kwc 人體運動追蹤系統 kwc 投影分析 kwc 濾波器 kwc 虛擬人物 abc 在本篇論文中,我們發展了一個在兩正交視野下以模型為基礎的即時人體運動參數分析系統。我們使用兩台攝影機去抓取正面和側面的人體運動資訊,為了追蹤人體的動作,我們對雙手和雙腿使用了兩種不同的方法去估算人體運動時的關節角度,首先,我們使用Kalman Filter去預測並修正雙手的姿勢,然後再透過比較影像中前景物體與二維人體模型的相似程度,調整出最佳的人體腿部關節角度,然後再整合雙手和雙腿的關節角度來得到一個完整的動作。我們的人體運動分析系統分成巨觀運動分析和微觀運動分析,巨觀運動分析經由分析二元影像的垂直投影和側投影得到雙手和雙腿動作的基本資訊,然後再使用Kalman Filter做微觀運動分析去追蹤雙手動作的關節角度,以及用模型比對的方式去找到雙腿動作的關節角度。 tc CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 RELATED WORK 1 1.3 SYSTEM ARCHITECTURE 4 CHAPTER 2 PREPROCESSING AND SYSTEM INITIALIZATION 8 2.1 CAMERA CALIBRATION 8 2.2 FOREGROUND OBJECT EXTRACTION 9 2.3 HUMAN MODEL 11 2.3.1 Parameters of Human Model 11 2.3.2 Homogeneous Coordinate System 13 2.4 INITIALIZATION AND BDP DETERMINATION 15 2.4.1 BDPs Estimation of Front Viewer 16 2.4.2 BDPs Estimation of Side Viewer 19 2.4.3 BDPs Integration 19 CHAPTER 3 MACRO MOTION ANALYSIS 21 3.1 FACADE/FLANK DETERMINATION 24 3.2 HUMAN POSITION ESTIMATION 25 3.3 BENDING DETERMINATION 25 3.4 ARM MOVEMENT ANALYSIS 27 3.5 ARM-OVERHEAD-RAISING ANALYSIS 35 3.6 LEG MOVEMENT ANALYSIS 36 3.6.1 Projection Profile Analysis 36 3.6.2 Model-Based Matching 38 3.7 BAP INTEGRATION 40 CHAPTER 4 MICRO MOTION ANALYSIS USING KLMAN FILTERS 42 4.1 INTRODUCTION 42 4.2 APPLICATION 46 4.3 THE TRAINING PHASE 48 CHAPTER 5 EXPERIMENTAL RESULTS 50 5.1 EXPERIMENTAL RESULTS 50 5.2 DRAWBACKS AND LIMITATIONS IN 3-D HUMAN MODEL 61 CHAPTER 6 CONCLUSIONS AND FUTURE WORKS 63 REFERENCES 64 APPENDIX 66rf [1 ] G. Johansson, “Visual motion perception,” Sci. Am. 232(6), 1975, 76-88. [2 ] C. Y. Chuang and C. L. Huang, “A real time model-based human motion analysis system in multiple-view,” Master thesis, Department of Electrical Engineering in NTHU, Taiwan, 2001. [3 ] T. H. Tzeng and C. L. Huang, “A model-based human motion analysis system in multiple-view,” Master thesis, Department of Electrical Engineering in NTHU, Taiwan, 2003. [4 ] Osama Masoud, Nikos Papanikolopoulos, “A method for human action recognition,” Image and Vision Computing 21 (2003), 729-743 [5 ] S. L. Dockstader and A. M. Tekalp, “On the tracking of articulated and occluded video object motion,” Real-Time Imaging 7, 415-432 (2001). [6 ] S. L. Dockstader and A. M. Tekalp, “Multiple camera tracking of interacting and occluded human motion,” Proc. IEEE, vol. 89, no. 10, pp.1441-1455, Oct. 2001. [7 ] S. L. Dockstader, M. J. Berg and A. M. Tekalp, “Stochastic kinematic modeling and feature extraction for gait analysis,” IEEE TRANSACTIONS ON IMAGE PROCESSING, vol. 12, no. 8, August 2003. [8 ] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Transaction of the ASME—Journal of Basic Engineering, pp.35-45, March. 1960. [9 ] T. J. Broida, S. Chandrashekhar, and R. Chellappa, “Recursive 3-D motion estimation from a monocular image sequence,” IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, vol. 26, no. 4, July. 1990. [10 ] Ali Azarbayejani, Bradley Horowitz, and Alex Pentland, Perceptual Computing Section, MIT Media Laboratory, 1993. [11 ] Simon Haykin, “Kalman filtering and neural networks,” John Wiley&Sons, INC., New York, 2001 [12 ] Berthold K. P. Horn, “Closed-form solution of absolute orientation using unit quaternions,” Reprinted from Journal of the Optical Society of America A, vol. 4, page 629, April 1987 [13 ] N. Krahnstover, M. Yeasin, and R. Sharma, “Toward a unified framework for tracking and analysis of human motion,” IEEE Workshop on Detection and Recognition Events in Video, 2001 [14 ] Thanart Horprasert, David Harwood, and Larry S. Davis, “A robust background subtraction and shadow detection,” Proceedings of the Fourth Asian Conference on Computer Vision, page 983-988, 2000 [15 ] I. C. Chang and C. L. Huang, “The model-based human body motion analysis system,” Image and Vision Computing, vol.18, pp.1067-1083, 2000. [16 ] Greg Welch and Gary Bishop, “An introduction to the Kalman filter,” Department of Computer Science University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3175, Friday, May 23, 2003 [17 ] Mobinder S.Grewal and Angus P.Andrews, “Kalman Filtering Theory and Practice Using MATLAB,” John Wiley&Sons, INC.id NH0925442094 sid 913949 cfn 0 / id NH0925442095 auc 崔祥辰 tic 光通訊頻段的絕對頻率標準 adc 施宙聰 adc 蕭憲彥 ty 博士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 101 kwc 飛秒光頻梳 kwc 絕對頻率標準 kwc 雙原子光譜 kwc 碘分子光譜 abc 光頻率標準對於基礎研究或是工業應用,都是十分重要的,例如,物理常數的定義、精細光譜量測、測量學、光鐘與光通訊系統。隨著光通訊市場的迅速成長,研發了許多重要的技術,特別一提的是,多波長多工系統。這種在同一光纖同時傳遞多道雷射光的技術,使得光通訊頻寬倍數成長。頻率量測就變的非常重要。 tc CHAPTER 1 INTRODUCTION 1 Research Background 1 Frequency Standards on Atomic and Molecular Absorptions 2 Absolute frequency measurement with Femtosecond Comb System 4 Overview of this Thesis 5 References for chapter 1 8 CHAPTER 2 FREQENCY STANDARDS at OPTICAL COMMUNI- CATION BAND 10 2.1 Frequency Standards based on Atomic and Molecular Absorptions 10 2.2 Frequency-Stabilized 1520 nm Diode Laser on Rubidium 5S1/2→7S1/2 Two-Photon Transitions 12 2.3 Frequency Stabilization of a Frequency-Doubled 197.2 THz Distributed Feedback Diode Laser on Rubidium 5S1/2→7S1/2 Two-Photon Transitions 22 2.4 Iodine-Stabilization of a Diode Laser in the Optical Communication Band 29 2.5 Summary 35 References for Chapter 2 37 CHAPTER 3 FEMTOSECOND COMD SYSTEM: SETUP and TEST 39 3.1 Femtosecond Optical Frequency Comb 30 3.2 Background Knowledge of Self-Referencing Femtosecond Laser 40 3.2-1 Femtosecond Mode-Locked Laser 41 3.2-2 Supercontinuum generation and offset frequency 45 3.3 The Setup of the Femtosecond Comb System 48 3.3-1 The stabilization of the repetition frequency 49 3.3-2 The stabilization of the offset frequency 56 3.4 Summary 66 References for Chapter 3 69 CHAPTER 4 ABSOLUTE FREQUENCY MEASUREMENT with FEMTOSECOND COMD SYSTEM 71 4.1 The Absolute Frequency Measurement based on Femtosecond Comb System 71 4.2 Absolute Frequency Measurement of Iodine Molecular Absorption at 532 nm 72 4.2-1 Iodine-stabilized Nd:YAG laser at 532 nm 73 4.2-2 Absolute frequency measurement of the a10 component of iodine molecular R(56) 32-0 transitions 76 4.3 Absolute Frequency Measurement of Rubidium 5S1/2→7S1/2 Two-Photon Transitions 79 4.4 Summary 92 References for Chapter 4 94 CHAPTER 5 Conclusion and Outlooks 96 5.1 Conclusion 96 5.2 Outlook and Future Works 98 References for chapter 5 101rf Reference for Chapter 1: [1 ] M. Ohtsu, ed., “Frequency Control of Semiconductor Lasers”, John Wiley & Sons, Inc. (1996) [2 ] A. Danielli, P. Rusian, A. Arie, M.H Chou, and M. M. Fejer, “Frequency stabilization of a frequency-doubled 1556-nm source to the 5S1/2→5D5/2 two-photon transitions of rubidium”, Optics Letters 25, 905 (2000) [3 ] H. C. Chui, Y. W. Liu, R. V. Rossuev, M. M. Fejer, S. Y. Shaw, and J. T. Shy, “Frequency-stabilized 1520 nm diode laser on rubidium 5S1/2 → 7S1/2 two-photon absorption”, accepted by Applied Optics. [4 ] H. C. Chui, M. S. Ko, Y. W. Liu, T. Lin, J. T. Shy, S. Y. Shaw, R. V. Roussev, and M. M. Fejer, “Iodine-stabilization of a 1520-nm diode laser”, CMH6, Conference on Laser and Electro-Optics 2004, San Francisco [5 ] S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs”, Review of Modern Physics, 75, 325 (2003). [6 ] V. Mahal, A. Arie, M. A. Arbore, and M. M. Fejer, “Quasi phase-matched frequency doubling of a 1560-nm diode laser and locking to the rubidium D2 absorption lines”, Optics Letters, 21, 1217 (1996). [7 ] Krishnan R. Parameswaran, Roger K. Route, Jonathan R. Kurz, Rostislav V. Roussev, Martin M. Fejer, Masatoshi Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Optics Letters, 27, 179 (2002) [8 ] S. Gerstenkorn, J. Verges, and J. Chevillard, “Atlas du Spectre d’Absorption de la Molecule d’Iode 11.000–14.000 cm-1,” Laboratoire Aime Cotton, CNRS, Orsay, France (1982); S. Gerstenkorn, and P. Luc, “Atlas du Spectre d’Absorption de la Molecule d’Iode 14.000–15.600 cm-1,” Laboratoire Aime Cotton, CNRS, Orsay, France (1978); S. Gerstenkorn, and P. Luc, “Atlas du Spectre d’Absorption de la Molecule d’Iode 14.800–20.000 cm-1,” Laboratoire Aime Cotton, CNRS, Orsay, France (1978). [9 ] R. Klein and A. Arie, “Observation of iodine transitions using the second and third harmonics of a 1.5-?慆 laser,” Applied Physics B 75, 79 (2002) [10 ] A. Bartels, T. Dekorsy, and H. Kurz, “Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy”, Optics Letter, 24, 996 (1999) [11 ] D. J. Jones, Scott A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis Science”, 288,635 (2000) [12 ] T. Udem, R. Holzwarth and T. W. Hänsch, “Optical frequency metrology”, Nature, 416, 233 (2002) [13 ] R. Kaarls, “Evolving Needs for Metrology in Trade, Industry and Society and the Role of the BIPM”, Bureau International des Poids et Mesures (BIPM), Paris, France (2003). [14 ] Yan-Rung Lin, “Tunable Mid-IR Difference Frequency Generation Source and Precise Spectroscopy of Helium Hydride Molecular Ion HeH+”, PhD Dissertation, Department of Physics, National Tsing Hua University, Hsinchu, Taiwan. (2001) Reference for Chapter 2: [1 ] M. Ohtsu, ed., “Frequency Control of Semiconductor Lasers”, John Wiley & Sons, Inc. (1996) [2 ] F. Ducos, J. Honthaas, and O. Acef, “Development of an optical frequency comb around 1556 nm referenced to an Rb frequency standard at 778 nm,” European Physics Journal-Applied Physics 20, 227 (2002). [3 ] M. de Labachelerie, K. Nakagawa, Y. Awaji, and M. Ohtsu, “High frequency-stability laser at 1.5 ?慆 using Doppler-free molecular lines”, Optics Letters 20, 572 (1995). [4 ] G. Galzerano, C. Svelto, F. Ferrario, A. Onae, M. Marano, and E. Bava, “Frequency stabilization of a 1.54 ?慆 Er–Yb laser against Doppler-free 13C2H2 lines,” Optics Communications, 209, 411 (2002). [5 ] Y. Awaji, M. de Labachelerie, M. Ohtsu, H. Sasada, “Optical frequency measurement of the H12C14 N Lamb-dip-stabilized 1.5 ?慆 diode laser”, Optics Letters, 20, 2024(1995). [6 ] V. Mahal, A. Arie, M. A. Arbore, and M. M. Fejer, “Quasi phase-matched frequency doubling of a 1560-nm diode laser and locking to the rubidium D2 absorption lines”, Optics Letters, 21, 1217 (1996). [7 ] A. Bruner, A. Arie, M.A. Arbore, and M.M. Fejer, “Frequency stabilization of a diode laser at 1540 nm by locking to sub-Doppler lines of potassium at 770 nm,” Applied Optics 37, 1049 (1998) [8 ] C. Svelto, F. Ferrario, A. Arie, M.A. Arbore, and M.M. Fejer, “Frequency Stabilization of a Novel 1.5-?慆 Er–Yb Bulk Laser to a 39K Sub-Doppler Line at 770.1 nm,” IEEE Journal of Quantum Electronics 37, 505 (2001) [9 ] M. Poulin, C. Latrasse, N. Cyr, and M. Tetu, “An absolute frequency reference at 192.6 THz (1556 nm) based on a two-photon absorption line of rubidium at 778 nm for WDM communication systems”, IEEE Photonics Technology Letters, 9, 1631 (1997). [10 ] A. Danielli, P. Rusian, A. Arie, M.H Chou, and M. M. Fejer, “Frequency stabilization of a frequency-doubled 1556-nm source to the 5S1/2→5D5/2 two-photon transitions of rubidium”, Optics Letters 25, 905 (2000). [11 ] M. S. Ko, and Y. W. Liu, “The first observation of rubidium 5S1/2→7S1/2 two-photon transitions with a diode laser,” accepted by Optics Letters [12 ] H. C. Chui, Y. W. Liu, J. T. Shy, S. Y. Shaw, R. Roussev, and M. M. Fejer “Frequency-stabilized 1520 nm diode laser on rubidium 5S1/2 → 7S1/2 two-photon absorption,” Accepted by Applied Optics. [13 ] R. Kaarls, “Evolving Needs for Metrology in Trade, Industry and Society and the Role of the BIPM”, Bureau International des Poids et Mesures (BIPM), Paris, France (2003) [14 ] Krishnan R. Parameswaran, Roger K. Route, Jonathan R. Kurz, Rostislav V. Roussev, Martin M. Fejer, Masatoshi Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Optics Letters, 27, 179 (2002) [15 ] ITU-T Recommendation G. 694.1, “Spectral grids for WDM applications: DWDM frequency grid”, International Telecommnuication Union, Jun. 2002 [16 ] F. S. pavone, P. Cancio, M. inguscio, R. U. Martinelli, R. J. Menna, “Linewidth and tuning characteristics of a mirror-extended cavity distributed-feedback 1.65-?慆 diode laser,” Applied Physics Letters, 60, s249, 1995. [17 ] S. Gerstenkorn, J. Verges, and J. Chevillard, “Atlas du Spectre d’Absorption de la Molecule d’Iode 11.000–14.000 cm-1,” Laboratoire Aime Cotton, CNRS, Orsay, France (1982); S. Gerstenkorn, and P. Luc, “Atlas du Spectre d’Absorption de la Molecule d’Iode 14.000–15.600 cm-1,” Laboratoire Aime Cotton, CNRS, Orsay, France (1978); S. Gerstenkorn, and P. Luc, “Atlas du Spectre d’Absorption de la Molecule d’Iode 14.800–20.000 cm-1,” Laboratoire Aime Cotton, CNRS, Orsay, France (1978). [18 ] W. Y. Cheng, H. Y. Chang, Y. R. Lin, J. T. Shy, T. Lin, Y. K. Chen, M. H. Chou, and M. M. Fejer, “Iodine-stabilized 1534 nm diode laser for optical fiber communication,” in Conference on Precision Electromagnetic Measurements 2000 (CPEM 2000), digest 2000, Sydney, Australia, p.205 [19 ] R. Klein and A. Arie, “Observation of iodine transitions using the second and third harmonics of a 1.5-?慆 laser,” Applied Physics B 75, 79 (2002) [20 ] Yan-Rung Lin, “Tunable Mid-IR Difference Frequency Generation Source and Precise Spectroscopy of Helium Hydride Molecular Ion HeH+”, PhD Dissertation, Department of Physics, National Tsing Hua University, Hsinchu, Taiwan. (2001) [21 ] A. Bartels, T. Dekorsy, and H. Kurz, “Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy”, Optics Letter, 24, 996 (1999) [22 ] S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs”, Review of Modern Physics, 75, 325 (2003). [23 ] H. C. Chui, M. S. Ko, J. L. Peng, R. H. Ann, Y. W. Liu, and J. T. Shy, “Absolute frequency measurement of rubidium 5S1/2→7S1/2 two-photon transition with self-reference femtosecond laser”, Submitted to Optics letters. Reference for Chapter 3: [1 ] J. L. Hall, “Optical Frequency Measurement: 40 Years of Technology Revolutions”, IEEE Journal of Selected Topics in Quantum Electronics, 6, 1136 (2000). [2 ] J. L. Hall, J. Ye, S. A. Diddams, L. S. Ma, S. T. Cundiff, and D. J. Jones, “Ultrasensitive Spectroscopy, the Ultrastable Lasers, the Ultrafast Lasers, and the Seriously Nonlinear Fiber: A New Alliance for Physics and Metrology”, IEEE Journal of Quantum Electronics, 37, 1482 (2001) [3 ] S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs”, Review of Modern Physics, 75, 325 (2003). [4 ] D. J. Jones, Scott A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis Science”, 288,635 (2000) [5 ] A. Bartels, T. Dekorsy, and H. Kurz, “Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy”, Optics Letter, 24, 996 (1999) [6 ] R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses”, Physics Review Letters, 24, 592 (1970) [7 ] See the websites of Crystal Fibre A/S (http://www.crystal-fibre.com/) and Blazephotonics, inc (http://www.blazephotonics.com/) [8 ] J. C. Knight, “photonic crystal fibers”, Nature 424, 847 (2003) [9 ] G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers”, Optics Express 10, 1083 (2002) [10 ] S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, “A compact femtosecond-laser-based optical clockwork”, in Laser Frequency Stabilization , Standards, Measurements, and Applications, Proceeding of SPIE 4269, 77 (2001) [11 ] J.-C. Diels, and W. Rudolph, “Ultrashort laser pulse phenomena”, Academic Press, inc (1996) [12 ] K. M. Hilligsøe, H. N. Paulsen, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Initial steps of supercontinuum generation in photonic crystal fibers”, Journal of Optical Society of America B 20, 1887 (2003) [13 ] http://www.gigaoptics.de/ [14 ] T. M. Fortier, D. J. Jones, J. Ye, and S. T. Cundiff, “Highly Phase Stable Mode-Locked Lasers”. IEEE Journal OF Selected Topics in Quantum Electronics, 9, 1002 (2003) [15 ] S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L Hollberg, “Design and Control of Femtosecond Lasers for Optical Clocks and the Synthesis of Low-Noise Optical and Microwave Signals”, IEEE Journal OF Selected Topics in Quantum Electronics, 9, 1072 (2003) [16 ] A. Bartels, C.W. Oates, L. Hollberg and S.A. Diddams, “Sub-hertz stabilization of femtosecond laser frequency combs”, CMW7, Conference on Laser and Electro-Optics 2004, San Francisco [17 ] Yan-Rung Lin, “Tunable Mid-IR Difference Frequency Generation Source and Precise Spectroscopy of Helium Hydride Molecular Ion HeH+”, PhD Dissertation, Department of Physics, National Tsing Hua University, Hsinchu, Taiwan. (2001) [18 ] H. C. Chui, Y. W. Liu, J. T. Shy, S. Y. Shaw, R. Roussev, and M. M. Fejer “Frequency-stabilized 1520 nm diode laser on rubidium 5S1/2 → 7S1/2 two-photon absorption,” Accepted by Applied Optics. Reference for Chapter 4: [1 ] Yan-Rung Lin, “Tunable Mid-IR Difference Frequency Generation Source and Precise Spectroscopy of Helium Hydride Molecular Ion HeH+”, PhD Dissertation, Department of Physics, National Tsing Hua University, Hsinchu, Taiwan. (2001) [2 ] M. S. Ko and Y. W. Liu, “Observation of rubidium 5S1/2→7S1/2 two-photon transitions with a diode laser”, Accepted by Optics Letters. [3 ] H. C. Chui, Y. W. Liu, J. T. Shy, S. Y. Shaw, R. Roussev, and M. M. Fejer “Frequency-stabilized 1520 nm diode laser on rubidium 5S1/2 → 7S1/2 two-photon absorption,” Accepted by Applied Optics. [4 ] S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs”, Review of Modern Physics, 75, 325 (2003). [5 ] S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, “A compact femtosecond-laser-based optical clockwork”, in Laser Frequency Stabilization , Standards, Measurements, and Applications, Proceeding of SPIE 4269, 77 (2001) [6 ] S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L Hollberg, “Design and Control of Femtosecond Lasers for Optical Clocks and the Synthesis of Low-Noise Optical and Microwave Signals”, IEEE Journal OF Selected Topics in Quantum Electronics, 9, 1072 (2003) [7 ] A. Arie, and R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm”, Journal of Optical society of America B 10, 1990 (1993). [8 ] T. J. Quinn, ‘‘Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),’’ Metrologia 40, 103–133 (2003) [9 ] See the manufacturer’s website http://www.lwecorp.com/ [10 ] T. J. Kane, and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser”, Optics Letters, 10, 65 (1985) [11 ] See the manufacturer’s website http://www.hcphotonics.com/ [12 ] Wang-Yau Cheng, “Frequency Measurements on 543 nm He-Ne Lasers and the Hyperfine Spectrum of Iodine Molecule on 543 nm Wavelength”, PhD dissertation, Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (1999) [13 ] H. C. Chui, M. S. Ko, J. L. Peng, R. H. Ann, Y. W. Liu, and J. T. Shy, “Absolute frequency measurement of rubidium 5S1/2→7S1/2 two-photon transition with self-reference femtosecond laser”, Submitted to Optics letters [14 ] G. Grynberg and B. Cagnac, “Doppler-free multiphotonic spectroscopy”, Report of Progress Physics, 40, 791(1977). [15 ] M. J. Snadden, A. S. Bell, E. Riis, A. I. Ferguson, “Two-photon spectroscopy of laser-cooled Rb”, Optical communications 125, 70. (1996) [16 ] E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms”, Review of Modern Physics 49, 31 (1977). Reference for Chapter 5: [1 ] B. Bodermann, M. Klug, U. Winkelho_, H. Kn¨ockela, and E. Tiemann, “Precise frequency measurements of I2 lines in the near infrared by Rb reference lines”, European Physics Journal D 11, 213 (2000) [2 ] Yan-Rung Lin, “Tunable Mid-IR Difference Frequency Generation Source and Precise Spectroscopy of Helium Hydride Molecular Ion HeH+”, PhD Dissertation, Department of Physics, National Tsing Hua University, Hsinchu, Taiwan. (2001) [3 ] Hsin-Chih Wang, “Single-frequency Continuous-wave Periodically Poled Lithium Niobate Optical Parametric Oscillator”, Master Thesis, Department of Physics, National Tsing Hua University, Hsinchu, Taiwan. (2003).id NH0925442095 sid 897916 cfn 0 / id NH0925442096 auc 李沐臻 tic 使用雙光纖光柵電流感測器之研究 adc 王立康 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 54 kwc 電流感測器 kwc 光纖光柵 kwc 磁致伸縮 kwc 磁滯曲線 abc 在本篇論文中,我們提出了一種對溫度無感的光纖電流感測器來量測電流。我們使用了一對反射頻譜在同樣波長的布拉格光纖光柵,由其中一根布拉格光纖光柵黏在一根會受到外在磁場大小而產生變化的磁致伸縮棒上,藉由外加電流使磁致伸縮棒的長度發生變化,導致反射波長的移動。在與另一根反射波長在相同位置的布拉格光纖光柵做光頻譜的重疊,使用optical power meter去做光功率量測。 rf 1. G.L. Tangonan, D.I. Persechini, “Current sensing with metal-coated multimode optic fibers” ,Electron. Lett.,16,958-959(1980) 2. A.B. Tvdten, A. Dandridge,C.M.Davis and T.G. Giallorenzi, “Fiber optic accelerometer,” Electron. Lett.,16,854-855(1980) 3. Nicholas Lagakos, T. Litovitz, P. Macedo, R. Mohr, R. Meister, “Multimode optical fiber displacement sensor” Applied Optics,20,167-168(1981) 4. A Ddandride.A. B. Tveten, and T.G.Giallorenzi, “Interferometer current sensorsusing optic fiber” ,Electron.Lett.,17,523-535(1981) 5. L. M. Lyamshev, and Y. Y. Smirnov, “Polarization fiber-optic sound pressure gradient sensor,” Soc.Phys.Acoust.,36,317-318,(1990) 6. N. N. Rezvani, R. O. Claus, and A. K. Sarrafzadeh, “Low-frequency fiber optic magnetic field sensor,” Opt Eng,31,23-27,(1992) 7. Ferrari, Pablo Garca, “Optical-fiber vibration sensor using step interferometry,” Applied Optics-OT,35,5667-5669 (1996) 8. R. W. Fallon, L. Zhang, A. Gloag, I. Bennion, “Multiplexed identical broadband chirped grating interrogation system for large strain sensing application,” IEEE Photon. Technol. Lett., 9, 1616-1618 (1997). 9. S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, B. Lee, “Temperature-independent strain sensor system using a titled fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett., 10, 1461-1463 (1998). 10.W. C. Du, X. M. Tao, H. Y. Tam, “Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature,” IEEE Photon. Technol. Lett., 11, 105-107 (1999). 11.A. Arie, B. Lissak, M. Tur, “Static fiber-Bragg grating strain sensing using frequency-locked lasers,” J. Lightwave Technol., 17, 1849-1855 (1999). 12.S. Kim, J. Kwon, B. Lee, “Temperature-independent strain sensor using chirped grating partially embedded in a glass tube,” IEEE Photon. Technol. Lett. 12, 678-680 (2000). 13.Y. J. Chiang, Likarn Wang, and et al," Temperature insensitive linear strain measurement using two fiber Bragg gratings in a power detection scheme," Optics Communications, 197(4-6), 327-330(2001). 14.Y.J. Chiang, Likarn Wang, and et al," Multipoint temperature-independent fiber Bragg grating strain sensing system employing power detection scheme," Applied Optics(2002) 15.G. Meltz, W. W. Morey, and W. H. Glenn,〝Formation of Bragg grating in optical fibers by a transverse holographic method,〞Opt. Lett., 14(15), 189 (1989). 16.K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson and J. Albert,〝Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,〞Appl. Phys. Lett., 62(10), 1035 (1993). 17.Meltz G. and W.W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity” Proceedings of SPIE(1991) 18.Ying Z. ,Dejun F., Zhiguo L., and et al, “High-Sensitivity Pressure Sensor using a Shielded Polymer-Coated Fiber Bragg Grating” IEEE Photonics Tech. Lett.(2001) 19.蔣彥儒,“溫度無感之布拉格式光纖光柵應變感測系統之研究”,博士論文(2003),國立清華大學 指導教授 王立康教授 20.黃柏翔, “溫度無感之多工布拉格式光纖光柵應力感測器” ,碩士論文(2003),國立清華大學 指導教授 王立康教授 21.許柏榕, “溫度無感之布拉格光纖光柵磁場感測器” ,碩士論文(2002),國立清華大學 指導教授 王立康教授 22.古腰欣司著, 游金湖譯, “磁性感測器及其使用技術”,建興出版社(1998) 23.鄭振東編譯, “實用磁性材料” 全華出版社(1999) 24.Jaehoon Jung,Hui Nam,and Byoungho Lee “Fiber Bragg Grating Temperature Sensor with Controllable High Sensitivity” IEEE 405-406(1998) 25. Alan D. Kersey, Michael A. Davis, Heather J. Patrick, Michel LeBlanc, K. P. Koo , “Fiber Grating Sensors” JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 15, NO. 8,(1997) 26.B.E.A. Saleh and M.C. Teich, “ Fundamentals of photonics” textbook(1991) 27.Turan Erdogan,"Fiber Grating Spectra, “Journal of Lightwave Technology” 1277-1294 (1997) 28.Richard Syms, “Optical Guided Waves and Devices” textbook(1992) 29.David K. Cheng, “Field and Wave Electromagnetics”textbook(1996)id NH0925442096 sid 913989 cfn 0 / id NH0925442097 auc 王順民 tic 光纖光柵多工應變感測系統之製作與研究 adc 王立康博士 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 82 kwc 多工 kwc 光纖光柵感測系統 kwc 光纖光柵 abc 在這個論文中,我們提供了溫度無感布拉格式光纖光柵應力量測系統,使用了偵測光功率而求知應力的準位.使用了二條為一組的布拉格式光纖光柵在其反射頻譜均相同下,再加上光切換器達成多工量測. tc 目錄 第一章 簡介……………………………………………………………04 1-1 布拉格式光纖光柵的應用回顧 …………………………………04 1-2 論文架構…………………………………………………………05 第二章 布拉格光纖光柵原理與實驗介紹……………………………06 2-1 布拉格光纖光柵介紹 ……………………………………………06 2-2 研究動機 …………………………………………………………07 2-3實驗改進之處………………………………………………………08 2-4 實驗介紹 …………………………………………………………08 2-5實驗方法 …………………………………………………………10 2-6光纖之損失 ………………………………………………………10 2-7光開關 ……………………………………………………………12 2-8 Bragg condition 的理論分析 …………………………………13 2-9 布拉式光纖光柵的應力及溫度特性 ……………………………15 第三章 實驗架構與量測………………………………………………32 3-1研究方法與原理-溫度無感之多工應力感測器原理 ……………32 3-2應力感測試驗 ……………………………………………………33 3-3 串音試驗 …………………………………………………………34 3-4除法電路試驗………………………………………………………35 3-5溫度無感試驗………………………………………………………37 3-6實驗中的問題與討論………………………………………………38 第四章 電路架構與程式………………………………………………65 4-1 OPM電路示意圖……………………………………………………65 4-2 OSW電路示意圖……………………………………………………65 4-3 OSW介紹與使用……………………………………………………66 4-4基本8051程式語法介紹………………………………………66 第五章 結論 …………………………………………………………79 參考文獻 ………………………………………………………………80rf 參考文獻    1.N. Takahashi, A. Hirose, S. Takahashi,〝Underwater acoustic sensor with fiber Bragg grating,〞Opt. Rev., 4, 691-694 (1997). 2.O. BenDavid, E. Shafir, I. Gilath, et al.,〝Simple absorption optical fiber pH sensor based on doped sol-gel cladding material,〞Chem. Mater., 9, 2255-2257 (1997). 3.S. Spear, S. Pattern, M. Arnold,〝Flow-through fiber-optic ammonia sensor for analysis of hippocampus slice perfusates,〞Anal. Chim. Acta., 357, 79-84 (1997). 4.Friebele EJ., Putnam MA., Patrick HJ., et al.,〝Ultrahigh-sensitivity fiber-optic strain and temperature sensors,〞Opt. Lett., 23, 222-224 (1998). 5.Tatterson KG.,〝Pollutants can’t hide from fiber sensors,〞Photon Spectra, 32, 116-118 (1998). 6.K. Bohnert, P. Pequignot,〝Inherent temperature compensation of a dual-mode fiber voltage sensor with coherence-tuned interrogation,〞J. Lightwave Technol., 16, 598-604 (1998). 7.Clowes JR., J. McInnes, M. Zervas, et al.,〝Effects of high temperature and pressure on silica optical fiber sensors,〞IEEEP Photon. Technol. Lett., 12, 403-405 (1998). 8.M. Kawamura,T,Takeuchi,H.Fuad,and S. Sato,〝Humidity and Temperature sensing using an optical fiber and a corner cube prism〞Jpm. J. Appl. Phys. ,Part-1,vol.38,pp.849-850,(1999). 9.Francisco J. Arregui,Ignacio R. Matias,Kristie L.Cooper,and Richard O. Claus〝Simultaneous Measurement of Humidity and Temperature by Combining a Reflective Intensity-Based Optical Fiber Sensor and a Fiber Bragg Grating〞IEEE Sensor J.Vol.2,NO.5,(2002). 10.Yinian Zhu,Ping ShumChao Lu,Beatrys M.Lacquet,Pieter L.Swart,and Stephanus J.Spammer〝Fiber Bragg Grating Accelerometer with Temperature Insensitivity〞Microwave and optical Technol. Lett. ,vol.37,No.2 (2003). 11.S. Kim, J. Kwon, S. Kim, and B. Lee, “Temperature independent strain sensor using chirped grating partially embedded in a glass tube,” IEEE Photon. Technol. Lett. 12, 678–680 (2000). 12.Y. J. Chiang, Likarn Wang, and et al," Temperature insensitive linear strain measurement using two fiber Bragg gratings in a power detection scheme," Optics Communications, 197(4-6), 327-330(2001). 13.Y.J. Chiang, Likarn Wang, and et al," Multipoint temperature-independent fiber Bragg grating strain sensing system employing power detection scheme," Applied Optics(2002). 14.黃柏翔"溫度無感之多工布拉格式光纖光柵應力感測器"國立清華大學,2003 15.G. A. Johnson, M. D. Todd, B. L. Althouse, and C. C. Chang,〝Fiber Bragg grating interrogation and multiplexing with a 3x3 coupler and a scanning filter,〞J. Lightwave Technol., 18, 1101-1105 (2000). 16.A. D. Kersey, T. A. Berkoff and W. W. Morey,〝High-resolution fiber-grating based strain sensor with interferometric wavelength-shift detection,〞Electron. Lett., 28, 236-238 (1992). 17.A. Ezbiri, A. Munoz, S. E. Kanellopoulous, and V. A. Handerek,〝High resolution fibre Bragg grating sensor demodulation using a diffraction grating spectrometer and CCD detection,〞IEE Colloquium on Optical Techniques for Smart Structures and Structural Monitoring, Digest no. 1997/033 (1997). 18.A. Ferreira, E. V. Diatzikis, J. L. Santos, and F. Farahi,〝Frequency-locked laser diode for fiber Bragg grating sensors,〞J. Lightwave Technol., 16, 1620-1630 (1998). 19.蔣彥儒 "溫度無感之布拉格式光纖光柵應變應測系統之研究"國立清華大學,2003 20.山下真司著、白中和譯”圖解光纖通信原理與最近應用技術”建興文化事業,pp212-221。 21.Turan Erdogan,"Fiber Grating Spectra, "Journal of Lightwave Technology1277-1294 (1997) 22.B.E.A. Saleh and M.C. Teich," Fundamentals of hotonics,"textbook (1991) 23.Jaehoon Jung,Hui Nam,and Byoungho Lee"Fiber Bragg Grating Temperature Sensor with Controllable High Sensitivity," IEEE 405-406 (1998) 24.Alan D. Kersey, Michael A. Davis, Heather J. Patrick, Michel LeBlanc, K. P. Koo , "Fiber Grating Sensors," JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 15, NO. 8,(1997) 25.Meltz G. and W.W. Morey, "Bragg grating formation and germanosilicate fiber photosensitivity," Proceedings of SPIE(1991) 26.C.L. Cang, L.K. Wang ,C.C. Yang,M. C. Shih,and T.J. Chuang, "Thermal Performance of Metal-Clad Fiber Bragg Grating Sensors, "IEEE(1998)id NH0925442097 sid 913988 cfn 0 / id NH0925442098 auc 陳志仁 tic 百億位元乙太網路媒體存取控制之設計與實現 adc 許雅三 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 71 kwc 乙太網路 kwc 媒體存取控制 kwc IC設計 kwc 檢查和 abc 隨著網路頻寬的需求增加,我們需要有更高速的區域網路來滿足此需求,在這篇論文中,我們設計的百億位元乙太網路正是滿足這個需求並可行的解決方案之一,由於乙太網路是目前最受歡迎的區域網路架構,所以將來我們只要將此設計直接向下相容於目前的網路架構中即可解決頻寬不足的問題,此設計是用積體電路設計的方式來實現百億位元乙太網路的媒體存取控制層,其中包含了一般媒體存取控制層的基本功能,例如:成框(framing)、定址 (addressing)、錯誤偵測等。成框是將框架(frame)之間依框架(frame)格式做分隔;定址是將媒體存取控制(MAC)位址加入框架中;錯誤偵測的功能則是利用循環冗贅核對(CRC, Cyclic Redundancy Check)來偵測框架是否發生錯誤;另外,此一設計還包含了流量控制、虛擬區域網路(Virtual LAN)以及部份框架檢查和的計算等功能。流量控制乃透過傳送一個暫停框架的方式來避免接收端的儲存空間發生滿溢;虛擬區域網路可用來減少由廣播框架所造成在頻寬上的浪費,因為交換機只將虛擬區域網路廣播框架傳遞給同一虛擬區域網路內的終端,此可減少廣播框架造成的頻寬浪費;而部份框架檢查和的計算則是對框架的資料這部份做檢查和的動作並將結果送給上層利用,這樣有助於減少傳輸層在計算檢查和時所花的處理器時間。在論文的最後,我們也對邏輯合成後的設計做分析,並驗證此設計可以達到每秒百億位元的傳輸效能。 rf [1 ] 10 gigabit ethernet alliance. http://www.10gea.org/. [2 ] 802.1q. http://standards.ieee.org/getieee802/. [3 ] 802.3ae. http://standards.ieee.org/getieee802/. [4 ] CIC home page. http://www.cic.edu.tw. [5 ] IEEE p802.3ae 10gb/s ethernet task force. http://grouper.ieee.org/groups/802/3/ae/. [6 ] PCI express homepage. http://www.pcisig.com/home. [7 ] G. Patane G.Campobello and M. Russo. Parallel CRC realization. IEEE TRANSACTIONS ON COMPUTERS, 52, 2003. [8 ] T. Henriksson and D. Liu. Implementation of fast CRC calculation. Design Automation Conference, 2003, Proceedings of the ASP-DAC 2003. Asia and South Paci…c, pages 563–564, 2003. [9 ] J. H. Huang and C. W. Chen. On performance measurements of TCP/IP and its device driver. Local Computer Networks, 1992. Proceedings., 17th Conference on, 13-16:568 –575, 1992. [10 ] J.Touch and B. Parham. Implementing the internet checksum in hardware. Network working Group, 1996. [11 ] J. Kay and J. Pasquale. Pro…ling and reducing processing overheads in TCP/IP. Networking, IEEE/ACM Transactions on, 4:817 –828, 1996.id NH0925442098 sid 913936 cfn 0 / id NH0925442099 auc 蕭鴻晟 tic 改良式Gm-C濾波器應用於WCDMA adc 黃柏鈞 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 52 kwc 濾波器 abc 􁘠􀝢􁏔􀞑􁓎􀱗􁟜􁔈􀎨􀔖􀑃􀐰􁇥􀜴􀇴􁘠􀝢􁏔􀞑􀳕􀨱􀢂􀬞􁃹 􀁘􀁄􀁅􀁎􀁂 􀜌􀳛􀥀 rf [1 ] C. Mensink, B. Nauta, and H. Wallinga, ”A CMOS soft-switchtransconductor and its application in gain control and filters,” IEEE J.Solid-State Circuits, vol. 32, pp. 989»998, July 1997. [2 ] T. Hollman, S. Lindfors, M. Lansirinne, J. Jussila, and K. Halonen, ”A2.7V CMOS dualmode baseband filter for PDC and WCDMA,” inProc. Eur. Solid-State Circuits Conf., Stockholm, Sweden, Sept. 2000,pp. 176 » 179. [3 ] A. Parssinen, J. Jussila, J. Ryynanen, L. Sumanen, and K. A. I. Halonen,”A 2-GHz wide-band direct conversion receiver for WCDMA applications,” IEEE J. Solid-State Circuits, vol. 34, pp. 1893 » 1903,Dec. 1999. [4 ] B. Razavi, ”RF Microelectronics”. Engelwood Cliffs, NJ: Prentice-Hall,1999. [5 ] O. K. Jensen, T. E. Kolding, C. Iversens, S. Laursen, R. V. Reynisson, J. H. Mikkelsen, E. Pedersen, M. B. Jenner, and T. Larsen, ”RF receiver requirements for 3G W-CDMA mobile equipment,” Microwave Journal,vol. 43, pp. 22»46, Feb. 2000. [6 ] H. Pretl, L. Maurer, W. Schelmbauer, R. Weigel, B. Adler, and J. Fenk,”Linearity considerations of W-CDMA front-ends for UMTS,” in Proc. IEEE MTT-S Microwave Symp. Dig., Boston, MA, July 2000, pp.433»436. [7 ] M. Goldfarb, W. Palmer, T. Murphy, R. Clarke, B. Gilbert, K. Itoh, T.Katsura, R. Hayashi, and H. Nagano, ”Analog baseband IC for use indirect conversion W-CDMA receivers,” in Proc. IEEE RFIC Symp. Dig.,Boston, MA, June 2000, pp. 79»82 T. B. Cho, G. Chien, F. Brianti, and P. R. Gray, ”A power-optimized CMOS baseband channel filter and ADC for cordless application,” inSymp. VLSI Circuits Dig. Tech., Honolulu, HI, June 13»15, 1996, pp.64»65. [9 ] L. Maurer, W. Schelmbauer, H. Pretl, B. Adler, A. Springer, and R.Weigel, ”On the design of a continuous-time channel select filter for a zero-IF UMTS receiver,” in Proc. IEEE 51st Veh. Technol. Conf., Tokyo,Japan, May 2000, pp. 650»654. [10 ] Y.-T. Wang and A. A. Abidi, ”CMOS active filter design at very high frequencies,” IEEE J. Solid-State Circuits, vol. 25, pp. 1562»1574, Dec.1990. [11 ] S. Szczepanski, J. Jakusz, and R. Schaumann, ”A linear fully balanced CMOS OTA for VHF filtering applications,” IEEE Trans. Circuits Syst.II, vol. 44, pp. 174»187, Mar. 1997. [12 ] B. Nauta, ”A CMOS transconductance-C filter technique for very high frequencies,” IEEE J. Solid-State Circuits, vol. 27, pp. 142 » 153, Feb.1992. [13 ] C. H. J. Mensink, B. Nauta, and H.Wallinga, ”A CMOS ”soft-switched”transconductor and its application in gain control and filters,” IEEE J.Solid-State Circuits, vol. 32, pp. 989 » 998, July 1997. [14 ] H. A. Alzaher, H. O. Elwan, and M. Ismail, ”A CMOS highly linear channel-select filter for 3G multistandard integrated wireless receivers,” IEEE J. Solid-State Circuits,vol. 37, pp. 27 » 37, Jan. 2002. [15 ] F. Behbahani, W. Tan, A. K. Sanjaani, A. Roithmeier, and A. A. Abidi, ”A Broad-Band Tunable CMOS Channel-Select Filter for a Low-IF Wireless Receiver,” IEEE J. Solid-State Circuits, vol. 35 , pp. 476-489, Apr. 2000. [17 ] R. Schaumann and M. E. V. Valkenburg, ”Design of Analog Filters”. Oxford University Press, 2001. [18 ] H. Khorramabadi, M. J. Tarsia, and N. S. Woo, ”Baseband filters for IS-95 CDMA receiver applications featuring digital automatic frequency tuning,” in Proc. IEEE Int. Solid-State Cir. Conf. (ISSCC), Feb. 1996, pp.172 » 173.id NH0925442099 sid 913937 cfn 0 / id NH0925442100 auc 張錦標 tic 結合十六個Fabry-Perot etalons與PIN 光偵測器之矽微光譜儀 adc 黃瑞星 ty 博士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 79 kwc 微光譜儀 kwc 法羅里-佩洛 kwc 光偵測器 abc 在本論文中描述矽微光譜儀的設計、製作及量測,光譜儀不論在科學、工業及消費性產品上都被廣泛地應用,而本論文的目的即是利用微機電系統的技術來開發積體化的微光譜儀,如此便可利用已成熟的半導體製程的優點:批次量產、微小化、低成本。 tc 目次 第一章 簡介-----------------------------------------------------------------------1 1.1 微機電系統(MEMS,Micro-Electro-Mechanical-Systems)-----------1 1.2 微機電式Fabry-Perot filter-------------------------------------------------1 1.3 新型矽微光譜儀-------------------------------------------------------------5 第二章 機械與光學理論--------------------------------------------------------7 2.1簡介-----------------------------------------------------------------------------7 2.2薄膜應力-----------------------------------------------------------------------7 2.3光學理論---------------------------------------------------------------------10 2.3.1簡介-------------------------------------------------------------------------10 2.3.2利用矩陣法計算多層膜之反射與透射光譜-------------------------11 2.3.3 操作於可見光波段的Fabry-Perot etalons及其各項參數--------15 2.3.4 反射鏡---------------------------------------------------------------------17 2.4 矽微光譜儀之數值模擬--------------------------------------------------18 第三章 微機電製造技術------------------------------------------------------23 3.1 矽微加工技術--------------------------------------------------------------23 3.2 BOE阻擋層-----------------------------------------------------------------24 3.3 PECVD TEOS oxide特性之研究----------------------------------------26 3.3.1 應力與沈積速率---------------------------------------------------------28 (a) TEOS流量的影響(樣品編號 19-23)------------------------------------29 (b) TMP流量的影響(樣品編號 28-32)-------------------------------------29 (c) 摻雜CF4的影響(樣品編號 33-38)--------------------------------------30 (d) 電漿功率的影響(樣品編號 24-27)-------------------------------------31 (e) 退火的影響(樣品編號19-27)--------------------------------------------32 (f) TEOS oxide薄膜在BOE與N2H4溶液中的蝕刻速率---------------34 第四章 矽微光譜儀之製作---------------------------------------------------38 4.1 簡介--------------------------------------------------------------------------38 4.2 光偵測器之製作-----------------------------------------------------------38 4.3 微橋式結構變形之測試--------------------------------------------------40 4.4 十六個不同出平面位移的氮化矽薄膜之製作-----------------------42 4.5 晶片黏合製程--------------------------------------------------------------48 4.6 打線與封裝-----------------------------------------------------------------51 第五章 矽微光譜儀之量測與討論------------------------------------------53 5.1 簡介--------------------------------------------------------------------------53 5.2 微橋式結構變形之測試--------------------------------------------------53 5.3光偵測器之量測------------------------------------------------------------55 5.4 十六個二氧化矽微橋式結構與低應力氮化矽薄膜之量測--------56 5.5 矽微光譜儀之量測--------------------------------------------------------59 5.5.1 量測儀器設置------------------------------------------------------------59 5.5.2 單光儀光譜之量測------------------------------------------------------62 5.5.3 微光譜儀元件量測------------------------------------------------------63 5.6 討論--------------------------------------------------------------------------73 第六章 結論與未來研究之建議---------------------------------------------79rf [1 ] http://www.dlp.com [2 ] http://www.analog.com [3 ] http://www.nortelneworks.com [4 ] J. M. Vaughan and M. A. DPhil, ”The Fabry-Perot Interferometer: History, Theory, Practice and Application”, The Adam Hilger Series on Optics and Optoelectronics, 1989 [5 ] G. Hernandez, “Fabry-Perot Interferometers”, Cambridge University Press, 1986 [6 ] 1999, S.O. Kasap, Optoelectronics (Prentice Hall) [7 ] J. H. Jerman, D. J. Clift and S. R. Mallinson, “A miniature Fabry-Perot Interfeometer with a Corrugated Silicon Diaphragm Support”, Solid-State Sensor and Actuator Workshop, 1990. 4th Technical Digest., IEEE, 4-7 June 1990, p140-144 [8 ] N. F. Raley, D. R. Ciario, J. C. Koo, B. Beiriger, J. Trujillo, C. Yu, G. Loomis and R. Chow , “A Fabry-Perot Microinterferometer for Visible Wavelength”, Solid-State Sensor and Actuator Workshop, 1992. 5th Technical Digest., IEEE, 22-25 June 1992, p170-173 [9 ] J.H. Correia, M. Bartek and R.F. Wolffenbuttel, “Bulk-micromachined tunable Fabry–Perot microinterferometer for the visible spectral range”, Sensors and Actuators 76 1999 p191–196 [10 ] J. H. Correia, G. de Graaf, S.H. Kong, M. Bartek and R.F. Wolffenbuttel,” Single-chip CMOS optical microspectrometer”, Sensors and Actuators 82 2000 191–197 [11 ] S.M.Sze, ”Semiconductor Sensors”, John Wiley & Sons, 1994 [12 ] G. G. Stoney: Proc. R. Soc. London Ser. A 82 (1909) 172. [13 ] W. Fang and J. A. Wicket, “Determining mean and gradient residual stress in thin films using micromachined cantilever”, Journal of Micromechanics and Microengineering, Vol. 6 (1996) p301-309 [14 ] W. Fang, C. H. Lee and H. H. Hu, “On the Buckling Behavior of Micromachined Beams”, J. Micromech. Microeng. 9 (1999) p236-244 [15 ] L. Elbrecht, U. Storm, R. Catanescu and J. Binder, “Comparison of stress measurement techniques in surface micromachining”, J. Micromech. Microeng. 7 (1997) p151-154 [16 ] U. Lindberg, J. Soderkvist, T. Lammerink and M. Elwenspoek, “Quasi-Buckling of Micromachined Beams”, J. Micromech. Microng. 3 (1993) p183-186 [17 ] W. Fang and J. A. Wicket, “Post-Buckling of Micromachined Beams”, Micro Electro Mechanical Systems, 1994, MEMS '94, Proceedings, IEEE Workshop on , 25-28 Jan. 1994 Pages:182 – 187 [18 ] 李正中,”薄膜光學與鍍膜技術”,藝軒圖書出版社 1999 [19 ] J. Higino G. Correia,” Optical Microsystems in Silicon Based on a Fabry-Perot Resonance Cavity”, thesis, 1999 [20 ] G.T.A. Kovacs, N.I. Maluf and K. E. Peterson, “Bulk micromachining of silicon” Proceeding of IEEE, 86 (1998), 8, p1536-1551 [21 ] G.T.A. Kovacs, “Micromachined Transducers Source Book”, McGraw-Hill [22 ] D. J. Monk, D. S. Soane and R. T. Howe, “A Review of the Chemical Reaction Mechanism and Kinetics for Hydrofluoric Acid Etching of Silicon Dioxide for Surface Micromachining Applications”, Thin Solid Films, 232 (1993), p1-12 [23 ] D. J. Monk, D. E. Soane, and R. T. Howe, “Hydrofluoric Acid Etching of Silicon Dioxide Sacrifical Layer I. Experimental Observations”, J. Electrochem. Soc., Vol. 141, No. 1, 1994, p264-269 [24 ] D. J. Monk, D. E. Soane, and R. T. Howe, “Hydrofluoric Acid Etching of Silicon Dioxide Sacrifical Layer II. Modeling”, J. Electrochem. Soc., Vol. 141, No. 1, 1994, p270-274 [25 ] D. C. S. Bien, P. V. Rainey, S. J. N. Mitchell and H. S. Gamble, “Characterization of masking materials for deep glass micromachining”, J. Micromech. Microeng. 13 (2003) S34-S40 [26 ] C. H. Lin, G. B. Lee, Y. H. Lin and G. L. Chang, “A fast prototyping process for fabrication of microfluidic systems on soda-lime glass”, J. Micromech. Microeng, 11 (2001) 726-732 [27 ] A. Grosse, M. Grewe and H. Fouckhardt, “Deep wet etching of fused silica glass for hollow capillary optical leaky waveguides in microfluidic devices”, J. Micromech. Microeng. 11 (2001) 257-262 [28 ] M. Stjernstrom and J. Roeraade, “Method for fabrication of microfluidic systems in glass”, J. Micromech. Microeng, 8 (1998) 33-38 [29 ] T. Corman, P. Enoksson and G. Stemme, “Deep wet etching of borosilicate glass using an anodically bonded silicon substrate as mask”, J. Micromech. Microeng. 8 (1998) 84-87 [30 ] V. N. Hung, T. Abe, P. N. Minh and M. Esashi, “High-frequency one-chip multichannel quartz crystal microbalance fabricated by deep RIE”, Sens. Actuators A 108 (2003) 91-96 [31 ] Z. H. Fan and D. J. Harrison, “Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections”, Anal. Chem. 66 (1994) 177-184 [32 ] Z. Yang, H. Goto, M. Matsumoto and R. Maeda, “Active micromixer for microfluidic systems using lead-zirconate-titanate (PZT)-geneerated ultrasonic vibration”, Electrophoresis 21 (2000) 116-119 [33 ] A. Berthold, P. M. Sarro and M. J. Vellekoop, “Two-step glass wet-etching for micro-fluidic devices”, Proceedings of the SeSens workshop 2000, p613-616 [34 ] T. I. Kamins, “Design Properties of Polycrystalline Silicon”, Sensors and Actuators, A21-A23 (1990) p817-824 [35 ] P. J. French, B. P. van Drieenhuizen, D. Poenar, F. L. Goosen, R. Mallee, P. M. Sarro and R. F. Wolffenbuttel, “The Development of a Low-Stress Polysilicon Process Compatible with Standard Device Processing”, Journal of Microelectromechanical Systems, Vol. 5, No. 3, 1996, p187-196 [36 ] L. Elbrecht, R. Catanescu, J. Zacheja, and J. Binder, “Highly phosphorus-doped polysilicon films with low tensile stress for surface micromachining using POCl3 diffusion doping”, Sensors and Actuators A 61 (1997) p374-378 [37 ] A. Tarraf, J. Daleiden, S. Irmer, D. Prasai and H. Hillmer: J. Micromech. Microeng. 14 (2004) 317. [38 ] K. Danaie, A. Boosseboeuf, C. Clerc, C. Gousset and G. Julie: Sens. and Actuat. A 99 (2002) 78. [39 ] X. Zhang, K.-S. Chen, R. Ghodssi, A. A. Ayon and S. M. Spearing: Sens. and Actuat. A 91 (2000) 379. [40 ] M. N. P. Carreno, M.I. Alayo, I. Pereyra and A. T. Lopes: Sens. and Actuat. A 100 (2002) 295. [41 ] T. Storgaard-Larsen, S. Bouwstra and O. Leistiko: Sens. and Actuat. A 52 (1996) 25. [42 ] S. Rojas, L. Zanotti, A. Borghesi, A. Sassella and G. U. Pignatel: J. Vac. Sci. & Technol. B 11 (1993) 2081. [43 ] C. L. Pillote, F. A. Shemansky, T. S. Cale and G. B. Raupp: Thin Solid Films 236 (1993) 287. [44 ] W. S. Yoo, R. Swope, B. Sparks and D. Mordo: Journal of Materials Research 12 (1997) 70 [45 ] M. Yoshimaru, S. Koizumi, K. Shimokawa, Y. Mori., H. Fukuda and N. Matsuki: J. Vac. Sci. & Technol. A 17 (1999) 425 [46 ] S. Donati,”Photodetectors”, Prentice Hall, 1999 [47 ] H. Seidel, “The Mechanism of Anisotropic Silicon Etching and Its Relevance for Micromaching”, Transducers 87, pp 120-125 [48 ] E. Bassous, “Fabrication of Novel Three-Dimensional Microstructures by the Anisotropic Etching of (100) and (110) Silicon”, IEEE Transactions on Electron Devices, Vol. 25, No. 10, 1978 [49 ] A. Reisman, M. Berkenblit, S. A. Chan, F. B. Kaufamn, and D. C. Green, “The Controlled Etching of Silicon in Catalyzed Ethylenediamine-Pyrocatechol-Water Solutions”, J. Electrochem. Soc. Vol. 126, No. 8, p1406-1418 [50 ] X. P. Wu, Q. H. Wu and W. H. Ko, “A Study of Deep Etching of Silicon Using Ethylenediamine-Pyrocatechol-Water”, Sensors and Actuators, 9 (1986), p333-343 [51 ] R. M. Finne and D. L. Klein, “A Water-Amine-Complexing Agent System for Etching Silicon”, J. Electrochem. Soc., Vol. 114, No. 9, 1967, p965-970 [52 ] N. F. Raley, Y. Sugiyama and T. Van Duzer, “(100) Silicon Etch-Rate Dependence on Boron Concentration in Ethylenediamine-Pyrocatechol-Water Solutions”, J. Electrochem. Soc., Vol. 131, No. 1, 1984, p161-171 [53 ] R. L Gealer, H. K. Karsten and S. M. Ward, “The Effect of an Interfacial P-N Junction on the Electrochemical Passivation of Silicon in Aqueous Ethylenediamine-Pyrocatechol”, J. Electrochem. Soc., Vol. 135, No. 5, 1988, p1180-1183 [54 ] H. Y. Lin and W. Fang, “Rib-reinforced micromachined beam and its applications”, J. Micromech. Microeng. 10 (2000) 93–99. [55 ] Z. Irena, B. Irena, K. Kamilla, and K. Malgorzata, ”Silicon anisotropic etching in alkaline solutions IV: The effect of organic and inorganic agents on silicon anisotropic etching process”, Sensors and Actuators A, Vol. 87, Iss. 3 (2001), p.163-171 [55 ] S. Kazuo, S. Mitsuhiro, Y. Takashi., A. Kazuo, I. Yasuroh, and Y. Masaharu, “Anisotropic etching rates of single-crystal silicon for TMAH water solution as a function of crystallographic orientation”, Sensors and Actuators A, Vol. 73, Iss. 1-2 (1999), p131-137 [56 ] P. H. Chen, H. Y. Peng, C. M. Hsieh, and M. K. Chyu.,” The characteristic behavior of TMAH water solution for anisotropic etching on both Silicon substrate and SiO2 layer”, Sensors and Actuators A, Vol. 93, Iss. 2 (2001), p132-137 [57 ] G. Yan, C. H. Chan, I. M. Hsing, R. K. Sharma, K. O. Sin, and Y. Y. Wang, “An improved TMAH Si-etching solution without attacking exposed aluminum”, Sensors and Actuators A, Vol. 89, Iss. 1-2 (2001), p. 135-141 [58 ] S. Kaoru and A. Sadao, “Study of Si(1 0 0) surfaces etched in TMAH solution”, Sensors and Actuators A, Vol. 88, Iss. 1 (2001), p.71-78 [59 ] Z. Irena and K. Malgorzata, “The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions”, Sensors and Actuators A, Vol. 93, Iss. 2 (2001), p.138-147 [60 ] E. van Veenendaal, K. Sato, M. Shikida, and J. van Suchtelen, “Micromorphology of single crystalline silicon surfaces during anisotropic wet chemical etching in KOH and TMAH”, Sensors and Actuators A, Vol. 93, Iss. 3 (2001), p.219-231 [61 ] P. M. Sarro, D. Brida, W. V. D. Vlist, and S. Brida, “Effect of surfactant on surface quality of silicon microstructures etched in saturated TMAHW solutions”, Sensors and Actuators A, Vol. 85, Iss. 1-3 (2000), p.340-345 [62 ] P. W. Barth, “Silicon fusion bonding for fabrication of sensors, actuators and microstructures”, Sensors and Actuators, A21-A23 (1990) p919-926 [63 ] S. Shoji, H. Kikuchi, H. Torigoe, “Low-temperature anodic bonding using lithium aluminosilicate – quartz glass ceramic, Sens. Actuators, A 64 (1998) p1575-1585 [64 ] M. Nese and A. Hanneborg, “Anodic bonding of Silicon to Silicon Wafers Coated With Aluminium, Silicon Oxide, Polysilicon, or Silicon Nitride”, Sensors and Actuators A, 37-38 (1993), p61-67 [65 ] M. Esashi, A. Nakano, S. Shoji, and H. Hebiguchi, “Low-temperature Silicon-to-silicon Anodic Bonding with Intermediate Low Melting Poing Glass”, Sensors and Actuators A, 21-23 (1990), p931-934 [66 ] J. W. Berenschot, J. G. E. Gardeniers, T. S. J. Lammerink, and M. Elwenspoek, “New Applications of R.F.-sputtered Glass Films as Protection and Bonding Layers In Silicon Micromachining”, Sensors and Actuators A, 41-42 (1994), p338-343 [67 ] R.F. Wolffenbuttel, “Low-temperature intermediate Au-Si wafer bonding; eutectic or silicide bond”, Sens. Actuators, A 62 (1997) p680-686 [68 ] A. L. Tiensuu, J. A. Schweitz and S. Johansson, “In stiu Investigation of Precise High Strength Micro Assembly Using Au-Si Eutectic Bonding”, Transducers 95, Jun 25-29, pp236-239 [69 ] A. L. Tiensuu, M. Bexell, J. A. Schweitz, L. Smith and S. Johansson, “Assembling three-dimensional microstructures using gold-silicon eutectic bonding”, Sensors and Actuators A 45 (1994) p227-236 [70 ] Y. C. Chen, W. W. So and C. C. Lee, “A Fluxless Bonding Technology Using Indium-Silver Multilayer Composites”, IEEE Tran. On Components, Packaging, and Manufacturing Technology-Part A, Vol. 20, No. 1, Mar 1997, p46-51 [71 ] F. Niklaus, P. Enoksson, E. Kalvesten and G. Stemme, “Low-temperature full wafer adhesive bonding”, J. Micromech. Microeng., 11 (2001) p100-107 [72 ] C. T. Pan, H. Yang, S. C. Shen, M. C. Chou and H. P. Chou, “A Low-temperature Wafer Bonding Technique Using Patternable Materials”, J. Micromech. Microeng. 12 (2002), p.611-615.id NH0925442100 sid 837927 cfn 0 / id NH0925442101 auc 陳佳蘋 tic 赫米碼的編解碼器架構 adc 呂忠津 ty 博士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 135 kwc 赫米碼 kwc 編碼 kwc 特徵值 kwc 錯誤位置多項式 kwc 錯誤位置 kwc 錯誤值 abc 在本論文中,我們提出了一個在實作上可達到低硬體複雜度的赫米碼的編解碼器硬體架構。藉由利用模數(module)的Gröbner 基底的理論,我們發展了一個和傳統的循環碼編碼器類似的序列輸入及序列輸出的有系統的(systematic)赫米碼編碼器。藉著推導出記憶體和常數乘法器數目的上限,我們可證明我們的編碼器架構的複雜度,遠比直接用矩陣乘法的方法所建立的編碼器的複雜度低很多。 tc 摘要 一 致謝 二 目錄 三 第一章 概論 四 第二章 赫米碼 五 第三章 有系統的編碼架構 六 第四章 特徵值產生器及搜尋錯誤位置的架構 七 第五章 得到錯誤位置多項式的架構 八 第六章 決定錯誤值的架構 九 第七章 結論 十 附錄A 證明輔助定理十一 十一 附錄B 英文論文本 十二rf 1 ] V. D. Goppa, \Codes associated with divisors," Probl. Peredachi Inform., vol. 13, no. 1, pp. 33{39, 1977. [2 ] V. D. Goppa, \Algebraic-geometric codes," Izv. Akad. Nauk SSSR, vol. 21, pp. 75{91, 1983. [3 ] J. L. C. Heegard and K. Saints, \Systematic encoding via grobner bases for a class of algebraic-geometric Goppa codes," IEEE Trans. Inform. Theory, vol. 41, pp. 1752{1761, Nov. 1995. [4 ] J. Little, K. Saints, and C. Heegard, \On the structure of Hermitian codes," Pure and Applied Algebra, pp. 293{314. [5 ] B.-Z. Shen, \On encoding and decoding of the codes from Hermitian curves," Cryptography and Coding III, IMA Conf. Proc. Ser., pp. 337{356, 1993. [6 ] H. Stichtenoth, \A note on Hermitian codes over gf(q2)," IEEE Trans. Inform. Theory, vol. 34, pp. 1345{1348, Sep. 1988. [7 ] M. E. O'Sullivan, \VLSI architecture for a decoder for Hermitian codes," Proceedings of ISIT'97, p. 376. [8 ] H. J. Tiersma, \Remarks on codes from Hermitian curves," IEEE Trans. Inform. Theory, vol. 33, pp. 605{607, Jul. 1987. [9 ] J. H. van Lint and T. A. Springer, \Generalized Reed-Solomon codes from algebraic geometry," IEEE Trans. Inform. Theory, vol. 33, pp. 305{309, 1987. [10 ] T. Yaghoobian and I. F. Blake, \Hermitian codes as generalized Reed-Solomon codes," Designs, Codes and Cryptography, vol. 2, pp. 5{17, 1992. [11 ] C.-W. Liu, A Simple and Ecient Decoding Algorithm for Algebraic-Geometric Codes. PhD thesis, National Tsing Hua University, Taiwan, Jul. 1999. [12 ] G.-L. Feng and T. R. N. Rao, \Decoding algebraic-geometric codes up to the designed minimum distance," IEEE Trans. Inform. Theory, vol. 39, pp. 37{45, Jan. 1993. [13 ] G.-L. Feng, V.-K. Wei, T. R. N. Rao, and K.-K. Tzeng, \Simpli ed understanding and e ect decoding of a class of algebraic-geometric codes," IEEE Trans. Inform. Theory, vol. 40, pp. 981{1002, Jul. 1994. [14 ] M. Kurihara and S. Sakata, \A fast parallel decoding algorithm for general one-point AG codes with a systolic array architecture," Proceedings of IEEEE ISIT'95, p. 99. [15 ] R. Kotter, \A fast parallel implementation of a Berlekamp-Massey algorithm for algebraic-geometric codes," IEEE Trans. Inform. Theory, vol. 44, pp. 1353{1368, Jul. 1998. [16 ] C.-W. Liu, K.-T. Huang, and C.-C. Lu, \A systolic array implementation of the Fang-Rao algorithm," IEEE Trans. Computers, vol. 48, pp. 690{706, Jul. 1999. [17 ] S. Sakata and M. Kurihara, \A systolic array architecture for implementation a fast parallel decoding algoritm of one-point AG codes," Proceedings of ISIT'97, p. 378. [18 ] C.-W. Liu and C.-C. Lu, \An excursion from gaussian elimination to early stoped Berlekamp-Massey algorithm." submitted for publication. [19 ] R.-T. Chien, \Cyclic decoding procedure for the Bose-Chaudhuri-Hocquenghem codes," IEEE Trans. Inform. Theory, vol. 10, pp. 357{363, Oct. 1964. [20 ] S. Lin and J. D. J. Costello, Error Control Coding: Fundamentals and Applications. New Jersey: Prentice Hall, 1983. [21 ] J. Justensen, K. J. Larsen, H. E. Jensen, and T. Hholdt, \Fast decoding of codes from algebraic plane curves," IEEE Trans. Inform. Theory, vol. 38, pp. 111{119, Jan. 1992. [22 ] D. A. Leonard, \A generalized Forney formula for algebraic-geometric codes," IEEE Trans. Inform. Theory, vol. 42, pp. 1263{1268, Jul. 1996. [23 ] D. A. Leonard, \Ecient Forney fuctions for decoding AG codes," IEEE Trans. Inform. Theory, vol. 45, pp. 260{265, Jan. 1999. [24 ] H. E. J. J. P. Hansen and R. Kotter, \Determination of error values for algebraic-geometry codes and the forney formula," IEEE Trans. Inform. Theory, vol. 44, pp. 1881{1886, Sep. 1998. [25 ] W. Fulton, Algebraic Curves. New York: W. A. Benjamin Inc., 1969. [26 ] H. Stichtenoth, Algebraic Function Fields and Codes. New York: Springer-Verlag, 1993. [27 ] W. W. Adams and P. Loustaunau, An Introduction to Grobner Bases. Providence, RI: Amer. Math. Soc., 1994. [28 ] R. Lidl and H. Niederreiter, Finite Fields. Cambridge, UK: Cambridge University Press, 1997. [29 ] H.-S. Wang, \VLSI implementation of syndrome calculator and error locator nder in the decoding of Hermitian codes," Master's thesis, Department of Electrical Engineering, National Tsing-Hwa University, R.O.C., Taiwan, 1998. [30 ] G.-L. Feng and K.-K. Tzeng, \A generalization of the Berlekamp-Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes," IEEE Trans. Inform. Theory, vol. 37, pp. 1274{1287, Sep. 1991.[31 ] P. Q. B. Hochet and Y. Robert, \Systolic Gaussian elimination over gf(p) with partial pivoting," IEEE Trans. Computers, vol. 38, pp. 1321{1324, Sep. 1989. [32 ] S.-Y. Kung, VLSI Array Processors. N.J.: Prentice Hall, 1988. [33 ] P.-S. Tseng, A Systolic Array Parallelizing Compiler. Boston: Kluwer Academic, 1990.id NH0925442101 sid 853914 cfn 0 / id NH0925442102 auc 黃伯欽 tic 電漿輔助化學氣相沈積二氧化矽之1x4分光器製作與設計 adc 王立康 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 中文 pg 49 kwc 光波導 kwc 多模干涉 abc 近年來網路的普及,各種線上服務也不斷地增加,如網路電話、視訊...等雙向互動式通訊,頻寬需求將大於以往的靜態網路服務,此時傳統的同軸電纜線將被光纖取代,光通訊將邁入新的里程碑。而與半導體製程類似的積體光學元件(integrated-optic components)在這裡佔了舉足輕重的地位,它的元件尺寸大小通常為光波長的數倍,它具備有尺寸小、強固、價位低的潛力。積體光學元件的架構通常為光波導的型態,它的結構可以分為: 緩衝層(buffer layer)、導光層(core layer)、披覆層(cladding layer),導光層折射率大於其他兩層。根據司乃耳定律(Snell’s Law),光將被侷限在導光層中而不會被洩漏掉。 tc 緒論...................................................1 第二章 自成像為基礎的光多模干涉元件.................3 2-1 自成像的原理......................................3 2-2 多模波導..........................................3 2-3 傳播常數..........................................4 2-4 導波模態傳播常數分析..............................6 2-5 一般干涉..........................................8 2-6 限制干涉..........................................9 2-6-1 成對干涉...................................9 2-6-2 對稱干涉..................................10 2-7 1x4MMI分光器模擬.................................12 第三章 光波導製程....................................14 3-1 清洗晶片.....................................14 3-2 薄膜沈積.....................................14 3-3 光阻塗蓋.....................................17 3-4 曝光與顯影...................................19 3-5 蝕刻金屬遮罩與去光阻.........................21 3-6 蝕刻導光層...................................22 3-7 沈積披覆層...................................27 第四章 量測結果與討論.............................28 4-1 量測結果.....................................28 4-2 討論.........................................34 4-2-1 3D 單模波導..................................34 4-2-2 光纖耦合損耗.................................37 4-2-3 吸收損耗.....................................38 4-2-4 散射損失.....................................39 4-2-5 位置偏差與角度偏準造成的損耗.................41 4-2-6 模態轉換損耗.................................42 4-2-7 1x4 分光器能量損耗...........................42 第五章 結論.......................................45rf [1 ] M. Kawachi, M. Yasu, and T. Edahiro, “Fabrication of SiO2-TiO2 glass planar optical waveguides by flame hydrolysis deposition,” Electronics Letters, Vol. 19, No. 15, pp 583-584, 21st July 1983 [2 ] M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Optical and Quantum Electronics, Vol. 22, pp 391-416, 1990 [3 ] R. Bellerby, B. Bhumbra, G.J. Cannell, S. Day, M. Grant and M. Nelson, “Low cost silica-on-silicon single mode 1:16 optical power splitter for 1550 nm,” Proc EFOC’90, Munich, June 1990, pp 100-103 [4 ] G. Grand, S. Valette, G.J. Cannell, J. Aarnio, M. del Giudice et al, “Fibre pigtailed silicon based passive optical components,” Proc. ECOC’90, Amsterdam, September 1990, pp 525-528 [5 ] G. Grand, J.P. Jadot, H. Denis, S. Valette, A. Fournier and A.M. Grouillet, “Low-loss PECVD silica channel waveguides for optical communications,” Electronics Letters, Vol. 26, No. 25, pp 2135-2137, 6 December 1990 [6 ] B.H. Verbeek, C.H. Henry, N.A. Olsson, K.J. Orlowski, R.F. Kazarinov and B.H. Johnson, “Integrated four-channel Mach-Zehnder multi/demultiplexer fabricated with phosphorous doped SiO2 waveguides on silicon,” Journal of Lightwave Technology, Vol.6, No.6, June 1988 [7 ] C.H. Henry, G.E. Blonder and R.F. Kazarinov, “Glass waveguides on silicon for hybrid optical packaging,” Journal of Lightwave Technology, Vol. 7, No. 10, October 1989 [8 ] N.I. Morimoto and J.W. Swart, Material Research Society. Symposim Proceedings, pp. 263, 1996 [9 ] Lucas B. Soldano and Erick C. M. Pennings, Member, IEEE, “Optical multi-mode interference devices based on self-imaging: principles and applications,” Journal of Lightwave Technology, Vol. 13, No. 4, April 1995 [10 ] Richard Syms John Cozens, Optical guide wave and devices, New York, McGraw-Hill, 1992 [11 ] 莊達人 , VLSI 製造技術, 高立出版社, 2001 [12 ] D. A. P. Bulla, B. V. Borges, M. A. Romero, N. I. Morimoto, L. G. Neto and A. L. Cortes, “Design and Fabrication of SiO2/Si3N4 CVD Optical Waveguides,” SBMO/IEEE MTT-S IMOC’99 Proceedings [13 ] K. J. An, D. H. Lee, J. B. Yoo, J.Lee, and G.. Y. Yeon, J. Vac. Sci. Technol. A17(4), Jul, Aug 1999, Etch characteristics of optical waveguides using inductively coupled plasma with multidipole magnets [14 ] H. F. Talbot, “Facts relating to optical science No. IV, ”London, Edinburgh Philosophical Mag.. J. Sci., Vol. 9, pp. 401-407, Dec. 1836 [15 ] D. Marcuse, Light Transmission Optics. New York: Van Nostrand Reinhold, 1972 [16 ] O. Bryngdahl, “Image formation using self-imaging techniques,” J. Opt Soc. Amer., Vol. 63, No. 4, pp. 416-419, 1973 [17 ] R. Ulrich. “Image formation by phase coincidences in optical waveguides, “Optics Commun, Vol. 13, No. 3, pp. 259-264, 1975 [18 ] ― , “Light-propagation and imaging in planar optical waveguides,” Nouv. Rev. Optique, Vol. 6, No.5, pp. 253-262 [19 ] R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides, “Appl. Phys. Lett., Vol. 27, No. 6, pp. 337-339, 1975 [20 ] D. C. Chang and E. F. Kuester, “A hybrid method for paraxial beam propagation in multimode optical waveguides,” Trans. Microwave Theory Tech., Vol. MTT-29, No. 9, pp. 923-933, 1981 [21 ] N. S. Kapany and J. J. Burke, Optical Waveguides. New York: Academic, 1972 [22 ] 吳彥鋒, 以參雜磷之SiO2製作光波導及其模擬分析, 碩士論文(2002), 國立清華大學 [23 ] 林浦如, 電漿輔助化學氣象沈積氮氧化矽陣列波導光柵設計與製作, 碩士論文(2003), 國立清華大學 [24 ] Hirosh Nishihara, Masamtisu Haruna, Toshiaki Suhara, Optical Integrated Circuits, P28 [25 ] 董德國與陳萬清譯, 光纖通訊, 東華出版社, 2000 [26 ] 楊國裕, 全彩雷射顯示器之三色混光元件製作,碩士論文(2002), 國立清華大學id NH0925442102 sid 903977 cfn 0 / id NH0925442103 auc 李 auc � auc 睍 auc � tic 利用非同向性相位匹配條件之高效率鈮酸鋰波導兆赫波光參數產生器 adc 黃衍介 ty 碩士 sc 國立清華大學 dp 電機工程學系 yr 92 lg 英文 pg 40 kwc 非同向性相位匹配 kwc 兆赫波 kwc 光參數產生器 kwc 鈮酸鋰 abc 近年來,兆赫波長光源的產生不論在學術界或是產業界都引起了相當大的注意與關切。到目前為止雖然已有成熟產生兆赫波長光源的方式,但其建構與運轉經費限制了其普遍性。利用非線性光學的基礎,我們可以轉換光源的波長進而產生兆赫波長的光源。 rf Chapter 1 Reference 1. 1994 Free Electron Lasers and Other Advanced Sources of Light (Washington, DC: National Academy Press) pp 24–31 2. Kmiyama S, 1982, Phys. Rev. Lett. 48 271 3. Brundermann E, 1996, Appl. Phys. Lett. 68 1359 4. C. H. Henry and C. G. B. Garrett, 1968, Phy. Rev. Vol. 171, No. 3, pp.1058-1064, July 1968. 5. C. G. B. Garrett, “Nonlinear Optics, Anharmonic Oscillators and Pyroelectricity,” IEEE J. Quantum Electron., Vol.QE-4 NO. 3, pp. 70-84, Mar. 1968. 6. G. D. Boyd, T. J. Bridges, M. S. Pollack, and E. H. Turner, “Microwave Bonlinear Su sceptibilities Due to Electronic and Ionic Anharmonicities in Acentric Crystals,” Phy. Rev. Lett., Vol. 26, No. 7, pp. 387-389, Feb.1971. 7. C. V. Ramna and R. S. Krishnan, Nature 121, 501 (1928). 8. E. J. Woodbury and W.K. Ng, Proc. IRE (Corres.) 50, 2367 (1962) 9. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Phys. Rev. Lett. 7 4 10. C. Kittle, Quantum theory of solids, John Wiley and Sons, Inc.,New York, 1963. 11. K. Huang, Proc. Roy, Soc. (London) A208, 352 (1951) 12. M. Born and K. Huang, Dynamical Theory of Crystal Lattices , Clarendon Press, Oxford ,1954 Chapter 2 Reference 1. L. Brillouin, Wave Propagation in Periodic Structures, McGraw-Hill Book Co., Inc, 1946 2. S.S. Sussman, Tunable Light Scatering from Transverse Optical Modes in Lithium Niobate, Microwave Laboratory Report No. 1851, Stanford University, pp.34, Apr.1970. 3. A. S. Barker, Jr., Phys. Rev. 136, A1290, 1964. 4. A.S. Barker, Jr.,and R. Loudon, Phys. Rev. 158, 433, 1967. 5. H. E. Puthoff, R. H. Pantel, B.G. Huth, and M.A. Chacon, J. Appl. Phys. 39, 2144, 1968. 6. C. H. Henrry and J. J. Hopfeld, Phys. Rev. Letters 15,964, 1965. Chapter 3 Reference 1. R. Loudon, Proc. Phys. Soc. 82, 393, 1963. 2. Y. R. Shen, Phys. Rev. 138, A1741, 1965. 3. C. H. Henrry and C. G. B. Garret, Phys. Rev. 171, 1058, 1968. 4. D. A. Kleinam, Phys. Rev. 126, 1977, 1962. 5. M. L. Faust and C. H. Henry, Phys. Rev. Letters 17, 1265, 1966. 6. Jun-ichi Shikata, Manabu Sato,* Tetsuo Taniuchi, Hiromasa Ito, and Kodo Kawase, Optics Letters, Vol. 24, No. 4, February 15, 1999 7. S.S. Sussman, Tunable Light Scatering from Transverse Optical Modes in Lithium Niobate, Microwave Laboratory Report No. 1851, Stanford University, pp.34, Apr.1970. 8. J. M. Yarborough, S. S. Sussman, H. E. Purhoff, R. H. Pantell, and B. C. Johnson, Appl. Phys. Lett., Vol. 15, No. 3, August 1, 1969. 9. C. H. Henry and C. G. B. Garrett, Phys. Rev. 171, 1058, 1968. Chapter 4 Reference 1. A. S. Barker, R. Loudon, Phys. Rev. Vol. 158, No.2, June, 1967. 2. J. D. Axe, D. F. O’Kane, Appl. Phys. Lett. Vol. 9, No. 1, July, 1966. 3. K. Sakai, Appl. Opt. Vol. 11, No.12, Dec. 1972. 4. A.S. Barker, Jr.,and R. Loudon, Phys. Rev. 158, 433, 1967. 5. T. D. Wang, Nonlinear Optical Materials for Wavelength Conversion on Quasi-phase-matched Infrared Techniques and Application, Master Dissertation, 2001 6. A. C. Chiang, T. D. Wang, Y. Y. Lin, C. W. Lau, Y. H. Chen, B. C. Wong, Y. C. Huang, J. T. Shy, Y. P. Lan, Y. F. Chen, and P. H. Tsao, Pusled Optical Parametric Generation, Amplification, and Oscillation in Monolithic Periodically Poled Lithium Niobate Crystals, IEEE Journal of Quantum Electronics, Vol. 40, No. 6, June 2004. 7. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, Opt. Lett. 27, 1454, 2002 8. M. J. Missey, V. Dominic, L. E. Myers, and R. C. Eckardt, “Diffusion-bonded stacks of periodically poled lithium niobate”, Opt. Lett., vol. 23, no. 9, pp. 664-667, May 1998. 9. M. J. Missey, V. Dominic, L. E. Myers, and R. C. Eckardt, Opt. Lett., 23, 664, (1998) Chapter 5 Reference 1. H.Ghafouri-Shiraz and B.S.K. Lo, university of Birmingham UK, distributed feedback laser diode principle and physical modeling, JOHN WILEY & SONS 1996id NH0925442103 sid 913979 cfn 0 / id NH0925462001 auc 王國華 tic 啟聰學校學生華語句型理解之調查研究 adc 曹逢甫 ty 碩士 sc 國立清華大學 dp 語言學研究所 yr 92 lg 中文 pg 173 kwc 句型理解 kwc 啟聰學校 abc 本研究旨在調查啟聰學校中學部學生的華語句型理解程度,依受試者背景變項:性別、學齡階段、與家屬溝通時最常使用的語言,從出生到入學前最常接觸的語言、從出生到入學前是否有接受過口語訓練,分別探討受試者是否會因這些變項而在華語句型理解的表現上造成差異。 tc 目  次 第一章 緒論 1 第一節 研究背景 1 第二節 研究動機與目的 3 第三節 研究變項 4 第四節 章節組織 6 第二章 文獻探討 7 第一節 聽障兒童的句型理解能力 7 第二節 台灣聽障兒童的語言 15 第三節 華語句型理解的分類基礎 20 第三章 研究方法 36 第一節 調查研究架構 36 第二節 調查研究對象 38 第三節 調查研究工具 38 第四節 調查實施程序 40 第五節 調查資料處理 41 第四章 資料分析 42 第一節 量化資料的結果 42 第二節 各句型的資料分析 52 第三節 質化資料的歸納 152 第五章 結論與啟示 154 第一節 結論 154 第二節 研究限制 158 第三節 後續研究 159 第四節 在啟聰教育上的啟示 160 參 考 書 目     中文部分 162     西文部分 164 附錄一:啟聰學校學生華語句型理解程度問卷 168 表 目 次 表 2-1 : 本研究之句型分類表 25 表 3-1 : 本研究之架構表 36 表 3-2 : 三所啟聰學校受試者之基本資料表 40 表 4-1 : 性別變項在句型的完全理解情形總表 43 表 4-2 : 學齡階段變項在句型的完全理解情形總表 45 表 4-3 : 與家屬溝通時最常使用的語言變項在句型的完全理解情形總表 47 表 4-4 : 從出生到入學前最常接觸的語言變項在句型的完全理解情形總表 49 表 4-5 : 從出生到入學前是否有接受過口語訓練變項在句型的完全理解情形總表 51 表 4-6 : 「爸爸把弟弟放在肩頭上。」之理解程度次數分配表及卡方檢定 53 表 4-7 : 「衣服被雨打溼了。」之理解程度次數分配表及卡方檢定 55 表 4-8 : 「我的力氣比你大。」之理解程度次數分配表及卡方檢定 57 表 4-9 : 「門口有兩個石獅子。」之理解程度次數分配表及卡方檢定 59 表 4-10 : 「謝謝你的誇獎。」之理解程度次數分配表及卡方檢定 61 表 4-11 : 「我不但覺得眼睛不舒服,好像連耳朵裡頭也有點兒疼。」之理解程度次數分配表及卡方檢定 63 表 4-12 : 「要愛惜時間。」之理解程度次數分配表及卡方檢定 65 表 4-13 : 「我的爸爸是老師。」之理解程度次數分配表及卡方檢定 66 表 4-14 : 「這個道理是我自己想出來的。」之理解程度次數分配表及卡方檢定 67 表4-15: 「弟弟很害怕。」之理解程度次數分配表及卡方檢定 69 表4-16: 「一張一塊錢。」之理解程度次數分配表及卡方檢定 71 表4-17: 「我什麼都愛吃。」之理解程度次數分配表及卡方檢定 73 表4-18: 「大家對這件事都很熱心。」之理解程度次數分配表及卡方檢定 75 表4-19: 「他的兒子在後面跟著哭。」之理解程度次數分配表及卡方檢定 77 表4-20: 「他們兩兄弟也跟父母住在台北。」之理解程度次數分配表及卡方檢定 79 表4-21: 「我會給爸爸倒茶。」之理解程度次數分配表及卡方檢定 81 表4-22: 「大家都笑了。」之理解程度次數分配表及卡方檢定 83 表4-23: 「大家看得很開心。」之理解程度次數分配表及卡方檢定 85 表4-24: 「爸爸看報紙。」之理解程度次數分配表及卡方檢定 87 表4-25: 「我去找弟弟來幫忙。」之理解程度次數分配表及卡方檢定 89 表4-26: 「我給你一千塊錢。」之理解程度次數分配表及卡方檢定 91 表4-27: 「出去的時候,交通也很方便。」之理解程度次數分配表及卡方檢定 93 表4-28: 「好幾次,有朋友向我要錢。」之理解程度次數分配表及卡方檢定 95 表4-29: 「有一天,一群小朋友在樹下拍球。」之理解程度次數分配表及卡方檢定 97 表4-30: 「這個禮物,我們一定要自己做。」之理解程度次數分配表及卡方檢定 99 表4-31: 「那天晚上,我們就住在李伯伯的家裡。」之理解程度次數分配表及卡方檢定 101 表4-32: 「這學期,我們換了一間新教室。」之理解程度次數分配表及卡方檢定 103 表4-33: 「有一天,老師叫他起來念一段課文。」之理解程度次數分配表及卡方檢定 105 表4-34: 「有一天,一個朋友送他一束花。」之理解程度次數分配表及卡方檢定 107 表4-35: 「一分一秒都愛惜。」之理解程度次數分配表及卡方檢定 109 表4-36: 「客廳佈置得很漂亮。」之理解程度次數分配表及卡方檢定 111 表4-37: 「今天一定要寫信告訴您。」之理解程度次數分配表及卡方檢定 113 表4-38: 「他們飛得好高好遠,穿過白雲,看見藍藍的天空。」之理解程度次數分配表及卡方檢定 115 表4-39: 「我做了一會兒運動,又看了一些書。」之理解程度次數分配表及卡方檢定 117 表4-40: 「這朵花不但顏色鮮豔,而且有芬芳的香氣。」之理解程度次數分配表及卡方檢定 121 表4-41: 「爸爸抓起桌上的十顆糖,交給哥哥。」之理解程度次數分配表及卡方檢定 123 表4-42: 「人家相信我,我就不應該欺騙人家。」之理解程度次數分配表及卡方檢定 125 表4-43: 「要是你覺得那個菜太鹹,那可能是放了兩次鹽。」之理解程度次數分配表及卡方檢定 127 表4-44: 「山是那樣的青,水是那樣的綠。」之理解程度次數分配表及卡方檢定 129 表4-45: 「你不誠實,我就不喜歡跟你交朋友。」之理解程度次數分配表及卡方檢定 131 表4-46: 「這次考試的題目不難,所以我都會。」之理解程度次數分配表及卡方檢定 133 表4-47: 「什麼東西這麼香?」之理解程度次數分配表及卡方檢定 135 表4-48: 「你賣報紙還是開計程車?」之理解程度次數分配表及卡方檢定 137 表4-49: 「我們去吃水果,好不好?」之理解程度次數分配表及卡方檢定 139 表4-50: 「他又喝酒又抽煙嗎?」之理解程度次數分配表及卡方檢定 141 表4-51: 「天氣變了,學校後面有一大片楓葉林,楓葉很漂亮,我也撿了幾片。」之理解程度次數分配表及卡方檢定 143 表4-52: 「花很漂亮,我們不要摘下來,除非花已經掉在地上,我們才可以撿起來,請大家要記得!」之理解程度次數分配表及卡方檢定 145 表4-53: 「我買了一個禮物,是你最喜歡的,讓你猜一猜吧!萬一沒猜到,我就留下自己用了。」之理解程度次數分配表及卡方檢定 147 表4-54: 「愛迪生小時候,有人認為他將來沒有什麼希望,可是,由於他的努力,他成為一個偉大的發明家。他是一個好榜樣。」之理解程度次數分配表及卡方檢定 149 表4-55: 「好大的樹啊!我哥哥常常在這棵樹下看書,他看得很高興,連我都想來。」之理解程度次數分配表及卡方檢定 151 圖 目 次 圖 4-1: 「爸爸把弟弟放在肩頭上。」之理解程度與背景變項長條圖 53 圖 4-2: 「衣服被雨打溼了。」之理解程度與背景變項長條圖 55 圖 4-3: 「我的力氣比你大。」之理解程度與背景變項長條圖 57 圖 4-4: 「門口有兩個石獅子。」之理解程度與背景變項長條圖 59 圖 4-5: 「謝謝你的誇獎。」之理解程度與背景變項長條圖 61 圖 4-6: 「我不但覺得眼睛不舒服,好像連耳朵裡頭也有點兒疼。」之理解程度與背景變項長條圖 63 圖 4-7: 「要愛惜時間。」之理解程度與背景變項長條圖 65 圖 4-8: 「我的爸爸是老師。」之理解程度與背景變項長條圖 67 圖 4-9: 「這個道理是我自己想出來的。」之理解程度與背景變項長條圖 69 圖4-10: 「弟弟很害怕。」之理解程度與背景變項長條圖 71 圖4-11: 「一張一塊錢。」之理解程度與背景變項長條圖 73 圖4-12: 「我什麼都愛吃。」之理解程度與背景變項長條圖 75 圖4-13: 「大家對這件事都很熱心。」之理解程度與背景變項長條圖 77 圖4-14: 「他的兒子在後面跟著哭。」之理解程度與背景變項長條圖 79 圖4-15: 「他們兩兄弟也跟父母住在台北。」之理解程度與背景變項長條圖 81 圖4-16: 「我會給爸爸倒茶。」之理解程度與背景變項長條圖 83 圖4-17: 「大家都笑了。」之理解程度與背景變項長條圖 85 圖4-18: 「大家看得很開心。」之理解程度與背景變項長條圖 87 圖4-19: 「爸爸看報紙。」之理解程度與背景變項長條圖 89 圖4-20: 「我去找弟弟來幫忙。」之理解程度與背景變項長條圖 91 圖4-21: 「我給你一千塊錢。」之理解程度與背景變項長條圖 93 圖4-22: 「出去的時候,交通也很方便。」之理解程度與背景變項長條圖 95 圖4-23: 「好幾次,有朋友向我要錢。」之理解程度與背景變項長條 97 圖4-24: 「有一天,一群小朋友在樹下拍球。」之理解程度與背景變項長條圖 99 圖4-25: 「這個禮物,我們一定要自己做。」之理解程度與背景變項長條圖 101 圖4-26: 「那天晚上,我們就住在李伯伯的家裡。」之理解程度與背景變項長條圖 103 圖4-27: 「這學期,我們換了一間新教室。」之理解程度與背景變項長條圖 105 圖4-28: 「有一天,老師叫他起來念一段課文。」之理解程度與背景變項長條圖 107 圖4-29: 「有一天,一個朋友送他一束花。」之理解程度與背景變項長條圖 109 圖4-30: 「一分一秒都愛惜。」之理解程度與背景變項長條圖 111 圖4-31: 「客廳佈置得很漂亮。」之理解程度與背景變項長條圖 113 圖4-32: 「今天一定要寫信告訴您。」之理解程度與背景變項長條圖 115 圖4-33: 「他們飛得好高好遠,穿過白雲,看見藍藍的天空。」之理解程度與背景變項長條圖 117 圖4-34: 「我做了一會兒運動,又看了一些書。」之理解程度與背景變項長條圖 119 圖4-35: 「這朵花不但顏色鮮豔,而且有芬芳的香氣。」之理解程度與背景變項長條圖 121 圖4-36: 「爸爸抓起桌上的十顆糖,交給哥哥。」之理解程度與背景變項長條圖 123 圖4-37: 「人家相信我,我就不應該欺騙人家。」之理解程度與背景變項長條圖 125 圖4-38: 「要是你覺得那個菜太鹹,那可能是放了兩次鹽。」之理解程度與背景變項長條圖 127 圖4-39: 「山是那樣的青,水是那樣的綠。」之理解程度與背景變項長條圖 129 圖4-40: 「你不誠實,我就不喜歡跟你交朋友。」之理解程度與背景變項長條圖 131 圖4-41: 「這次考試的題目不難,所以我都會。」之理解程度與背景變項長條圖 133 圖4-42: 「什麼東西這麼香?」之理解程度與背景變項長條圖 135 圖4-43: 「你賣報紙還是開計程車?」之理解程度與背景變項長條圖 137 圖4-44: 「我們去吃水果,好不好?」之理解程度與背景變項長條圖 139 圖4-45: 「他又喝酒又抽煙嗎?」之理解程度與背景變項長條圖 141 圖4-46: 「天氣變了,學校後面有一大片楓葉林,楓葉很漂亮,我也撿了幾片。」之理解程度與背景變項長條圖 143 圖4-47: 「花很漂亮,我們不要摘下來,除非花已經掉在地上,我們才可以撿起來,請大家要記得!」之理解程度與背景變項長條圖 145 圖4-48: 「我買了一個禮物,是你最喜歡的,讓你猜一猜吧!萬一沒猜到,我就留下自己用了。」之理解程度與背景變項長條圖 147 圖4-49: 「愛迪生小時候,有人認為他將來沒有什麼希望,可是,由於他的努力,他成為一個偉大的發明家。他是一個好榜樣。」之理解程度與背景變項長條圖 149 圖4-50: 「好大的樹啊!我哥哥常常在這棵樹下看書,他看得很高興,連我都想來。」之理解程度與背景變項長條圖 151rf 參考書目 一、 中文部分 丁邦新譯,趙元任著。1987。《中國話的文法》。香港。中文大學出版社。 余珍有。1995。《兒童雙語現象與雙語教育》。.南京師大學報(社會科學版),1期, 頁101-105。 吳信鳳、沈紅玫譯,.Patton O. Tabos著。2002。《一個孩子, 兩種語言, 幼兒教學手冊》。台北。心理出版社。 岑清美。2001。〈思考手語與啟聰教育〉,《2001手語教學與應用研討會論文集》。頁253-260。台北:國立台灣師範大學特殊教育系。 邢敏華、廖君毓譯,Luetke-Stahlman, Barbara著。2000。《一個母親的故事—教養聾童:由教育家成為家長》。台北:心理出版社。 邢敏華。2001。《啟聰學校教師口手語並用教學溝通行為研究》。台南:供學出版社。 林玉霞、曾世杰。2002。〈聾人的語言、讀寫能力及思維教育〉,《特殊教育教材教法與教學文集》。頁65-103。嘉義:國立嘉義大學特殊教育中心。 林立。2000。《第二語言習得研究》。北京:首都師範大學出版社。 林秀春、鍾榮富。1993。〈外籍學生中文口試及筆試的句法結構之研究〉,《第四屆世界華語文教學研討會論文集教學與應用組》。台北:世界華文教育協進會。 林寶貴。2001。〈手語意見調查研究〉,《2001手語教學與應用研討會論文集》。頁45-67。台北:國立台灣師範大學特殊教育系。 姜文閔譯,Dewey, John著。1995。《經驗與教育》。台北。五南出版有限公司。 邱皓政。2002。《量化研究與統計分析/SPSS中文視窗版資料分析範例解析》。台北:五南圖書出版有限公司。 洪敏雄。1996。《中文句型—國小學生國語課本中所使用的句型分析》。國立高雄師範大學英語系碩士班碩士論文。 張紹勳。2003。《研究方法》。台中:滄海書局。 張蓓莉、曹秀美。1992。《句型理解測驗(甲式)》。台北:國立台灣師範大學特殊教育中心。 張蓓莉、蘇方柳。1997。〈從口語聽障學生的表現談未來啟聰教育語言溝通方式的發展方向〉。《1997年海峽兩岸特殊教育學術研討會論文彙編》。頁145-159。台北:國立台灣師範大學。 張蓓莉。1991。〈國小聽覺障礙學生句型理解能力研究〉,《特殊教育研究學刊》。7期,頁87-108。 張蓓莉。1994。〈台灣地區聽覺障礙學生句型理解能力〉,《特殊教育研究學刊》。10期,頁209-227。 曹秀美。1989。〈聽障兒童之雙語教育〉,《特殊教育季刊》。32卷,頁40-42。 許世瑛。1988。《中國文法講話》。台北:台灣開明書店。 郭令育、林永松、許森彥。2002。〈聽障適應障礙症〉,《聽障者心理衛生與教育溝通學術研討會論文集》。頁1-8。台南:國立台南師範學院特殊教育中心。 陳怡君。2003。《台灣地區聾人手語選用情形與現行手語政策之探討》。國立政治大學語言學研究所碩士論文。 曾志朗。1997。〈聽覺障礙學生閱讀能力之提升〉。《聲暉雙月刊》。14期。頁4-12。 湯廷池。1979。《國語語法研究論集》。台北。學生書局。 黃宣範譯,Li and Thompson著。2000。《漢語語法》。台北。文鶴出版有限公司。 楊宗仁。1998。〈美國聾校學生手語說故事能力與英語故事寫作能力之相關研究〉,《東台灣特殊教育學報》。1期,頁217-255。 楊炯煌。2001。〈比較美國手語與台灣手語〉,《2001手語教學與應用研討會論文集》。頁253-260。台北:國立台灣師範大學特殊教育系。 葛樹人。1987。《心理測驗學》。台北:桂冠圖書公司。 靳洪剛。1997。《語言獲得理論研究》。北京:中國社會科學出版社。 趙玉平。2001。〈探索台灣手語〉,《2001手語教學與應用研討會論文集》。頁157-162。台北:國立台灣師範大學特殊教育系。 劉秀丹。2004。《啟聰學校學生文法手語、自然手語及書面語故事理解能力之研究》。國立彰化師範大學特殊教育學系博士論文。 鍾榮富、洪敏雄、林秀春。1997。〈華語文能力測驗編製—語法結構的考慮〉。《華文世界》。85期。頁23-32。 二、 英文部分 Allen, B. M. (2002). ASL-English Bilingual Classroom: The Families' Perspectives. Bilingual Research Journal, 26(1), 149-168. Ann, J. (2001). Bilingualism and Language Contact. In C. Lucas (Eds.), The sociolinguistics of Sign Languages. Cambridge: Cambridge University Press. Burch, S. (2000). In a Different Voice: Sign Language Preservation and America's Deaf Community. Bilingual Research Journal, 24(4), 443-464. Evans, L. (1982). Total communication: Structure and strategy. Washington, DC: Gallaudet College Press. Fischer, S.D. (1998). Critical period for language acquisition: Consequence for deaf education, In A. Weisel (Eds.). Issues unresolved – New perspectives on language and deaf education, (pp. 9-26). Washington, DC: Gallaudet University Press. Foster-Cohen, H. S. (1999). An introduction to child language development. New York: Addison Wesley Longman Inc. Gannon, J. (1981). Deaf heritage: A narrative history of deaf America. Silver Spring, MD: National Association of the Deaf. Goldin-Meadow, S. (1999). The role of gesture in communication and thinking. Trends in Cognitive Science. 3, 11. Grosjean, F. (2001). The Right of the deaf child to grow up bilingual. Sign Language Studies, 1(2), 110-114. Hasenstab, M., & McKenzie, C. (1981).A survey of reading programs used with hearing-impaired students. Volta Review, 83, 383-388. Hatcher, C., & Robbins, N. (1978). The development of reading skills in hearing-impaired children. Cedar Falls:University of Northern Iowa. Hung, L. D., & Tzeng, J. L. O. (1981). A Chronometric Study of Sentence Processing in Deaf Children. Cogntive Psychology. 13, 583-610. Lenneberg, E. (1966). The natural history of language, In F. Smith & G. Miller (Eds.), The Genesis of Language: A psycholinguistics approach (pp. 219-252). Cambridge, MA: MIT Press. Li, N. C., & Thompson, A. S. (1981). Mandarin Chinese: A Functional Reference Grammar. Berkeley: University of California Press. Lin, T. H. J. (2001). Light Verb Syntax and the Theory of Phrase Structure, Unpublished doctoral dissertation, University of California, Irvine, CA. Luetke-Stahlman, B. (1998). Language issues in deaf education. Hillsboro, Or.: Butte Publications Inc. McGill-Franzen, A. & Gormley, K. (1980). The influence of context on readers’ understanding of passive sentences. American Annals of the Deaf, 125, 937-942. Marschark, M. (1993). Psychological development of deaf children. NY:Oxford University Press. Marschark, M. (1997). Raising and educating a deaf child: A comprehensive guide to the choices, controversies, and decisions faced by parents and educators. NY:Oxfprd University Press. Meadow, K. (1968). Early manual communication in relation to the deaf child’s intellectual, social, and communicative functioning. American Annals of th Deaf, 113, 29-41. Moores, D. (1987). Educating the Deaf: Psychology, Principles, and Practies. Boston: Houghton Mifflin. Peperkamp, S., & Mehler, J. (1999). Signed and Spoken Language: A Unique Underlying System? Language and speech, 42(2-3), 33-46. Quigley, S., & Frisina, R. (1961). Institutionalization and psychoeducational development of deaf children. In: Council for Except. Children Res. Monogr. Ser. A3, Washington, DC: CEC. Quigley, S., Power, D., & Steinkamp, M. (1977). The language structure of deaf children. Volta Review, 79, 73-84. Quigley, S., Smith, N., & Wilbur, R. (1974). Comprehension of relativized sentences by deaf students. Journal of speech and Hearing Research, 17, 325-341. Quigley, S., Wilbur, R., & Montanelli, D. (1974). Question formation in the language of deaf students. Journal of speech and Hearing Research, 17, 699-713 Robbins, N., & Hatcher, C. (1981). The effects of syntax on the reading comprehension of hearing-impaired children. Volta Review, 83, 105-115. Ross, M., Brackett, D., & Maxon, A. (1982). Hard of hearing children in regular schools. Englewood Cliffs, NJ: Prentice-Hall. Schin, J. D., & Stewart, D. A. (1995). Language in motion –Exploring the nature of sign. Washington DC: Gallaudet University Press. Stevenson, E. (1964). A study of the educational achievement of deaf children of deaf parents. California News, 80, 143. Stuckless, R., & Birch, J. (1966). The influence of early manual communication on the linguistics development of deaf children. American Annals of the Deaf, 106. 436-480. Trybus, R., & Karchmer, M. (1977). School achievement scores of hearing impaired children: National data on achievement status and growth patterns. American Annals of the Deaf Directory of Programs and Services, 122, 62-69. Tsao, F. F. (1990). Sentence and clause structure in Chinese:A functional perspective. Taipei: The Student Book Store. Webster, L. (1986). Deafness, development and literacy. London: Methuen. Xu, L. J. & Langedon, T. (1985). Topic structures in Chinese. Language 61(1), 1-27.id NH0925462001 sid 874701 cfn 0 / id NH0925462002 auc 吳中杰 tic 畬 族 語 言 研 究 adc 張光宇博士 ty 博士 sc 國立清華大學 dp 語言學研究所 yr 92 lg 中文 pg 169 kwc 畬話 kwc 畬語 kwc 客家話 kwc 語言關係 kwc 底層 abc 畬族是中國東南丘陵區的一支少數民族,主要分布於福建、浙江、江西、廣東、安徽五省。本論文所探討的畬族語言,包含廣東羅浮及蓮花山區接近苗瑤語的「畬語」,以及散佈廣東鳳凰山區,和閩、浙、贛、皖四省丘陵接近漢語方言(尤其是客家話)的「畬話」。 tc 第一章 緒論1-13 區域研究 第二章 福建畬話14-39 第三章 安徽畬話40-64 第四章 江西畬話65-89 第五章 廣東及浙江畬話之比較研究90-99 語言關係 第六章 畬話和客家話100-108 第七章 畬語和畬話109-116 共時語法 第八章 畬話的音韻現象117-126 第九章 畬語及畬話的疑問詞組127-136 第十章 畬語的正正重疊疑問句137-147 第十一章 綜合討論148-161 第十二章 結論162-163rf 中文 中國社會科學院語言研究所編,《方言調查字表》。1988. 北京: 商務印書館。 中西裕樹,《畬語海豐方言基本詞彙集》。2003. 日本京都: 京都大學人文科學研究所。 王本殷,《湘南土話之比較研究》。1997.新竹:清華大學語言所博士論文。 王輔世,<廣西龍勝伶話記略>。1982. 《方言》。137-140, 231-240. 毛宗武、蒙朝吉,<博羅畬語概述>。1982. 《民族語文》第1期。 毛宗武、蒙朝吉,<試論畬語的系屬問題>。1985.《中國語言學報》第2期。 毛宗武、蒙朝吉,《畬語簡志》。1986. 北京:民族出版社。 毛宗武、李雲兵,《炯奈語研究》。2002. 北京:中央民族大學出版社。 史圖博(H. Stübel)、李化民,<浙江景寧敕木山畬民調查記>。1932. 《中央研究院社會科學研究所專刊》第6號。 矢放昭文,《浙南畬族所說的客家方言的幾個特點》。1993. 26th ICSTLL. 日本大阪。 石林,《侗台語比較研究》。1997. 天津古籍出版社。 朱洪、李筱文,《廣東畬族古籍資料彙編》。 2001. 廣州: 中山大學出版社。 朱德熙, <‘V-neg-VO’與‘VO-neg-V’兩種反覆問句在漢語方言裡的分布>。1991.《中國語文》第5期。 江敏華,《客贛方言關係研究》。2003. 台北:台灣大學中文所博士論文。 吳中杰,<粵台饒平客語異同比較及差異成因試析>。1999a. 發表於第6屆國際暨第17屆全國聲韻學研討會。台北: 台灣大學中文系。《客家研究輯刊》即將刊登。 吳中杰,《台灣福佬客分布及其語言研究》。1999b. 台北: 台灣師範大學華語文教學研究所碩士論文。 呂嵩雁,《台灣饒平客家方言》。1992. 台北:東吳大學中文所碩士論文。 呂嵩雁,《台灣詔安方言稿》。1995. 未刊。 呂嵩雁,<移民與福建客語形成初探>。2003. 《全球客家地域學術研討會論文集》。124-137. 台北: 台灣師範大學。 呂錫生,<畬族遷移考略>。1981. 《浙江師範學院學報》第二期。杭州:浙江師範學院。 李如龍,《東南亞華人語言研究》。2000. 北京語言文化大學出版社。 李如龍、張雙慶,《客贛方言調查報告》。1992. 廈門:廈門大學出版社。 李錦平,《苗族語言與文化》。2002. 貴陽:貴州民族出版社。 李唐,《豐順縣志》。1941. 台北: 成文出版社重印。 沈作乾,<括蒼畬民調查記>。1925. 《北京大學研究所國學門周刊》第1卷4,5期。 沈汝淮,《中國歌謠集成福建卷˙詔安分卷》。1992. 詔安縣民間文學集成編委會。 邢公畹,《邢公畹語言學論文集》。2000. 北京: 商務印書館。 周碩勛(重修),《潮州府志》。1967. 台北: 成文出版社重印。 周振鶴、游汝杰,《方言與中國文化》。1986. 台北: 南天書局。 孟慶惠等,《安徽省志方言志》。1998. 方志出版社。 金永漢,《浙江省少數民族志》。1999. 方志出版社。 施聯朱等,<景寧縣東衖村畬民情況調查>。1953. 於金永漢,《浙江省少數民族志》。683-699. 施聯朱等,《畬族簡史》。1980. 福州: 福建人民出版社。 洪惟仁,<閩南語央元音的崩潰與介音的消長>。2001. 《第7屆國際暨第19屆全國聲韻學學術研討會論文集》。台北: 政治大學。 范朝康,<喇叭話的語音系統>。2002. 《貴州大學學報》第4期。貴陽:貴州大學出版。 倪寶元,《漢語修辭新篇章》。1992. 北京:商務印書館。 倪大白,<藏緬,苗瑤,侗傣諸語言及漢語疑問句結構的異同>。1982.《語言研究》第1期。 徐杰,<重疊語法手段與疑問語法範疇的交叉對應關係>。2001.《漢語學報》第2期。 徐瑞蓉、伍巍,<長泰縣漈頭畬話的語音特點>。2000. 《第三屆客家方言研討會論文集》。韶關大學。 張光宇,<福建的畬字地名與畬話>。1988. 《歷史語言研究論文集》1. 237-261. 張光宇,<吳閩方言關係試論>。1993.《中國語文》161-170. 張光宇,《閩客方言史稿》。1996. 國立編譯館主編,台北:南天書局發行。 張光宇,<論條件音變>。2000. 《清華學報》新30卷4期。427-475. 新竹:清華大學出版。 張光宇,<客家與山哈>。2001. 《中國語文研究》總第12期68-81. 張光宇,<論客家原義>。2001. 《客家文化研究通訊》第4期6-16. 中壢:中央大學出版。 張光宇,<大槐與石壁~客家話與歷史、傳說>。2002. 《客家文化學術研討會論文集》315-334。台北: 行政院客家委員會。 張屏生,<從閩客方言的接觸談語音的變化—以台北縣石門鄉的武平客家話為例>。2001. 《第7屆國際暨第19屆全國聲韻學學術研討會論文集》327-341. 台北: 政治大學。 曹志耘,《嚴州方言研究》。1996. 東京: 好文出版。 莊初升、李冬香,<仁化縣長江方言同音字匯>。《第三屆客家方言研討會論文集》。2000. 韶關大學。 葛劍雄,《中國移民史》。1997. 福州: 福建人民出版社。 蒙朝吉,<論畬語屬苗語支>。1993. 《民族語言》第2期。 陳其光,<畬語在苗瑤語族中的地位>。1984. 《語言研究》第1期。 陳其光,<畬語和客家話>。1985. 《語言論文集》。北京:商務印書館。 陳其光,<畬語>。1987. 《中國少數民族》。成都:四川民族出版社。 陳延河,<惠東長坑畬語疑問句基本的結構>。1985. 《廣東民族學院學報》第1-2期。 陳延河,<惠東畬族的語言轉用簡析>。1999. 廣州:廣東省民族研究學會第七次年會暨學術研討會論文。 陳延河,<惠東畬語中漢語借詞的音韻特點示例>。2000.《第三屆客家方言研討會論文集》。韶關大學。 陳書田,<畬族說的客家話中的古語成分>。1985.《民族語文》第3期。 傅根清,<從景寧畬話古全濁聲母的今讀看畬話的性質>。2001.《中國語文》第三期。北京。 游文良,<試論畬語>。1985. 漢語方言學會年會論文。山西忻州。 游文良,<論畬語>。1995. 於《畬族歷史與文化》113-122。北京:中央民族大學出版社。 游文良,<福建畬語>。1998. 於黃典誠等《福建省志˙方言志》。方志出版社。 游文良,<浙江畬語>。1999. 於金永漢,《浙江省少數民族志》353-399。方志出版社。 游文良,<福安畬話>。2000. 於《福安畬族志》。福州:福建人民出版社。 游文良,《畬族語言》。2002. 福州:福建人民出版社。 湯廷池,<國語疑問句研究>。《師大學報》第26期。台北: 台灣師範大學。 黃家教、李新魁,<潮安畬話概述>。1963.《畬族研究論文集》。北京:民族出版社。 黃典誠等,《福建省志方言志》。1998. 方志出版社。 黃正德,<漢語正反問句的模組語法>。1988.《中國語文》第4期。 黃雪貞,<客家方言聲調的特點>。1988. 《方言》第4期。241-246. 黃雪貞,<客家方言聲調的特點續論>。1989. 《方言》第2期。121-124. 溫端政,《蒼南方言志》。1991. 語文出版社。 董忠司,<台灣的廈˙客語>。1991. 於詹伯慧《現代漢語方言》附錄。台北:新學識出版。 董忠司,<閩南語和畬語的歷史淵源>。2001. 《台灣閩南語概論》40-53. 台北: 行政院文建會。 董忠司,<關於畬語、畬話的定位>。2004. IACL-12. 天津:南開大學。 詹伯慧,<漢語方言詞彙語法調查表>。1991. 於《漢語方言及方言調查》,第9章。武漢: 湖北教育出版社。 詹伯慧,《饒平縣志˙方言篇》。1994. 廣東人民出版社。 雷鏡泉(收藏者),《盤藍雷氏族譜》。廣東增城市正果鎮畬族村。 雷宗華(收藏者),《七里村雷氏族譜》。福建連江縣小滄畬族鄉。 雷先根,<畬語芻議>。1995. 於《畬族歷史與文化》123-127。北京:中央民族大學出版社。 雷先根,《畬族為什麼大分散小聚居》。2001. 待刊。 雷陣鳴,《景寧畬族自治縣畬族志語言篇》。1996. 景寧畬族自治縣民族宗教事務局。 雷法全,<我所說的畬族話>。1983.《浙江省少數民族師範學報》。 趙則玲、鄭張尚芳,<浙江景寧畬話的語音特點>。2002.《民族語文》第六期14-19。 劉丹青,<蘇州方言重疊式研究>。1986.《語言研究》第1期。 劉丹青,<漢藏語系重疊形式的分析模式>。1988.《語言研究》第1期。 劉丹青,《語序類型學與介詞理論》。2003. 北京: 商務印書館。 劉崇文(祠堂),《玉崗公宗祠重修序》。1965. 嘉義縣民雄鄉興中村義橋。 劉綸鑫,《客贛方言比較研究》。1999. 北京: 中國社會科學出版社。 潘家懿、謝鴻猷、段英,<陸河客家話語音概況>。2000.《第三屆客家方言研討會論文集》。韶關大學。 鄭曉峰,《福建光澤方言》。2001. 新竹: 清華大學語言學研究所博士論文。 橋本萬太郎,<語言類型地理學>。1981.《國外語言學》第4期。 橋本萬太郎,《語言地理類型學》。1985. 余志鴻譯,北京大學出版社。 鮑厚星,《東安土話研究》。1998. 湖南教育出版社。 錢乃榮,《當代吳語研究》。1992. 上海教育出版社。 謝留文,<客家方言的一種反覆問句>。1995.《方言》第3期。208-210. 謝重光,《畬族與客家福佬關係史略》。2002. 福州: 福建人民出版社。 鍾榮富,<論客家話介音的歸屬>。1990. 《台灣風物》第40卷4期,189-198. 鍾榮富,<客家話的構詞和音韻的關係>。1996.《教育部獎勵漢語方言研究論文集》。 藍瑞湯(收藏者),《汝南堂長房族譜》。1908. 廣東豐順縣潭山鎮鳳坪村。 顏森,《黎川方言研究》。1993. 北京: 中國社會科學出版社。 羅美珍,<畬族所說的客家話>。1980.《中央民族學院學報》第1期。 羅美珍,<客、土互動中的語言接觸>。2002.《第四屆客方言研討會論文集》。廣州:暨南大學出版社。 羅福騰,<山東方言裡的反覆問句>。1996.《方言》第3期。 羅肇錦,<客話祖源的另類思考>。2002.《客家文化學術研討會論文集》407-424。台北: 行政院客家委員會。 嚴振州,《貴溪縣志方言卷》。1996. 北京: 中國科學技術出版社。 西文 Aoun, J. and Y.-H. Li (1993) ‘Wh-elements in Situ: Syntax or LF?,’ Linguistic Inquiry 24, 199-238. Aronoff, H. (1976) Word Formation in Generative Grammar. MIT Press. Barss, A. et al. (1991) ‘Logical Form Barriers in Navajo.’ In C.-T. Huang and R. May(ed.), Logical Structure and Linguistic Structure, Dordrecht: Kluwer. 25-47. Chang, Tsai-fang. (2001) Pre-nucleus Glides in Hai-lu Hakka. 第19屆聲韻學研討會。 Chomsky, N. (1991) ‘Some Notes on Economy of Derivation and Representation,’ in R. Freidin (ed.), Principles and Parameters in Comparative Grammar, MIT Press, Cambridge, 417-454. Chomsky, N. (1995) The Minimalist Program, MIT Press, Cambridge. Chung,R-f, (1989) Aspects of Kejia Phonology. Ph.D.Dis. Univ. of Illinois at U-C. Chung,R-f, (1991) On Hakka Syllabification. 3rd NACCL, Cornell Univ. Chung,R-f, (1993) Labial Constraints in Southern Min. 第10屆聲韻學研討會。 Chung,R-f, (1996) The Segmental Phonology of Southern Min in Taiwan. Taipei:Crane. Cole, P. and Hermon, G. (1994) ‘Is There LF Wh-Movement?,’ Linguistic Inquiry 25, 239-262. Crowley, Terry. (1997) An Introduction to Historical Linguistics. Auckland: Oxford UP. Duanmu,San.(1999). The Syllable in Chinese. In The Syllable: Views and Facts.477-99. Duanmu, San. (2000). The Phonology of Standard Chinese. NY: Oxford UP. Fox, Antoine. (1995). Linguistic Reconstruction. Oxford UP. Hashimoto, Mantaro. (1973). The Hakka Dialect: A Linguistic Study of Its Phonology, Syntax, and Lexicon. Cambridge: Cambridge UP. Hsu,Hui-chuan, (2001). On the Nature of ui and iu in Sixian Hakka. 第19屆聲韻學研討會。 Hsu,Hui-chuan, (2004). ‘ui and iu in Chinese’. 2nd TEAL. 新竹:清華大學。 Huang, C.-T. (1982) Logical Relations in Chinese and the Theory of Grammar, PhD dissertation, MIT, Cambridge, Mass. Huang, C.-T. (1984) ‘On the Distribution and Reference of Empty Pronouns,’ Linguistic Inquiry 15, 531-574. Li, Y.-H. (1992) Indefinite WH in Mandarin Chinese. Journal of East Asian Linguistics 1: 125-156. Norman, Jerry. (1988). The She Dialect of Luoyuan County. In “Bulletin of the Institute of History and Philology”, Academia Sinica. Vol. 59 Part 2. Norman, Jerry. (1988b). Chinese. Cambridge UP. Norman, Jerry. (1996). Review of Laurent Sagart ‘Les dialects Gan’. Diachronica 13.2:385-388. Norman, Jerry. (2003). ‘The Chinese Dialects: Phonology’. In G. Thurgood and R.J. LaPolla (ed.), “The Sino-Tibetan Languages”, London: Routledge. 72-83. Simmons, Richard Van Ness. (2002). ‘Common Southern Jiang-Hwai Mandarin’. 35th ICSTLL. Arizona State University, U.S.A. Tsai, W.-T. (1999) ‘On Lexical Courtesy’, Journal of East Asian Linguistics 8: 39-73. Wei, Ting-chi, (2001). Taiwanese Diphthong and Coda and Their Implications on the Status of Glide. 第19屆聲韻學研討會。 Xu, Jie. (2001) The Interaction of the Grammatical Features ‘Question’ and ‘Focus’ in Sentences, Journal of Chinese and Oriental. Languages Information Processing Society, Vol.10, Singapore. 附錄:本文作者迄今已撰寫之畬族語言研究前置論述 2001年9月 Syllable Structure on San-hak Dialects Spoken in Zhe-jiang Province. Term paper of Topics on Chinese Phonology. 2001年10月 國科會廣東潮安畬話調查研究期末報告。 2001年12月 閩浙皖贛畬話及廣東博羅畬語調查研究計劃介紹。《客家文化研究通訊》第4期23-30. 中壢:中央大學出版。 2002年4月 <畬話的介音問題探究>。發表於本年全國聲韻學研討會,台南:成功大學。《聲韻論叢》第13輯 即將刊登。 2002年5月 國科會閩浙皖贛畬話及廣東博羅畬語調查研究期中報告。 2002年7月 <畬語和畬話的疑問詞組>。發表於第五屆客方言研討會,江西:南昌大學。《第五屆客方言研討會論文集》即將刊登。 2002年10月 <畬話和客家話>。發表於客家語言、民俗與文化研討會,中壢:中央大學。刊登於《客家文化學術研討會論文集》367-388。台北: 行政院客家委員會。 2002年12月 <粵浙畬話的比較研究>。2001年12月發表於漢語方言調查工作研討會,台北:中研院語言所。已於《清華學報》刊登。 2002年12月 <畬語的正正重疊疑問句>。發表於第一屆國際漢語方言語法研討會,哈爾濱:黑龍江大學。 2003年9月 <評游文良之畬族語言>。待刊。 2003年12月 <閩東畬話的客家化與當地化>。發表於客家文化與全球化研討會,梅州: 嘉應大學。《客家研究輯刊》2004年第1期刊登。 2004年5月 國科會閩浙皖贛畬話及廣東博羅畬語調查研究期末報告。id NH0925462002 sid 888702 cfn 0 / id NH0925462003 auc 林蕙珊 tic 連讀變調中的方向性及對應性 adc 黃慧娟 ty 博士 sc 國立清華大學 dp 語言學研究所 yr 92 lg 英文 pg 300 kwc 連讀變調 kwc 變調方向性 kwc 優選理論 kwc 天津變調 kwc 博山變調 kwc 四縣客家變調 kwc 成都變調 kwc Hakha-Lai 變調 kwc 北京變調 abc 本篇論文的主旨在於討論聲調語言當中的連讀變調現象。深究的重點是連讀變調現象中難以預測的變調方向性及變調方向性背後之意義。本篇論文所採用的理論模式是優選理論(Optimality Theory)。 tc CHINESE ABSTRACT i ENGLISH ABSTRACT iii DEDICATION v ACKNOWLEDGEMENTS vi TABLE OF CONTENTS viii CHAPTER 1 INTRODUCTION 1 1.1 Overview. 1 1.2 Organization 12 CHAPTER 2 DIRECTIONALITY IN TONE SANDHI AND IDENTITY EFFECT 17 2.1 The Literature on Directionality 18 2.1.1 Howard’s Directional Theory 18 2.1.2 Chen’s Derivational Proposal 18 2.2 The Effect of Directionality in Tone Sandhi 20 2.3 Identity Effect in Tone Sandhi 27 2.3.1 Definition of the Prosodic Domain 33 2.3.2 Definition of Base 34 2.4 Normal Application, Overapplication, and Underapplication 36 2.4.1 Back Copying 49 2.4.2 Emergence of the Unmarked (TETU) 50 2.5 Conflicting Directionality, Normal Application and Misapplication 53 2.6 Local Conclusion 55 2.7 Theories and Assumptions Adopted in the Present Analysis of Tone Sandhi 55 2.7.1 The Internal Structure of Tone 56 2.7.2 Allotone Generation and Allotone Selection 58 2.7.3 Separation of Tonal Constraints and Prosodic Constraints 59 2.7.4 Overview of the Constraints for Prosodic Domains 61 CHAPTER 3 MORPHOSYNTACTICALY INSENSITIVE TONE SANDHI: RIGHT PROMINENT LANGUAGES 65 3.1 Introduction 65 3.2 Tianjin 66 3.2.1 Data and Generalization 66 3.2.2 Tri-tonal Examples, Conflicting Directionalities and Normal vs. Overapplication 75 3.2.2.1 Overapplication 78 3.2.2.2 Normal Application 83 3.2.3 Local Conclusion 89 3.3 Boshan 89 3.3.1 Data and Generalization 89 3.3.2 Tri-tonal Strings, Conflicting Directionality, and Normal, Over- vs. Underapplication 96 3.3.2.1 Overapplication 98 3.3.2.2 Underapplication 101 3.3.2.3 Normal Application 108 3.4 Sixian-Hakka 115 3.4.1 Data and Generalization 115 3.4.2 Tri-tonal Strings and Overapplication 119 3.5 Prosodic Constraints for Right Prominent Morphosyntactically Insensitive Tone Sandhi 123 3.5.1 The ((σσ)σ) Domain 123 3.5.2 The Prosodic Constraints Set 124 3.6 Conclusion 126 CHAPTER 4 MORPHOSYNTACTICALY INSENSITIVE TONE SANDHI: LEFT PROMINENT LANGUAGES 129 4.1 Introduction 129 4.2 Chengdu 130 4.2.1 Data and Generalization 130 4.2.2 Tri-tonal Strings, Normal Application and Underapplication 143 4.2.2.1 Underapplication 145 4.2.2.2 Normal Application 150 4.3 Hakha-Lai .154 4.3.1 Data and Generalization 154 4.3.2 Normal and Underapplication in Multi-tonal Strings 160 4.3.2.1 Underapplication 163 4.3.2.2 Normal Application 167 4.4 Prosodic Constraints for Tonal Domain of Left Prominent Morphosyntactically Insensitive Tone Sandhi 169 4.4.1 The (σ(σσ)) Domain 169 4.4.2 The Prosodic Constraints Set 170 4.5 Conclusion 171 CHAPTER 5 MORPHOSYNTACTICALY SENSITIVE TONE SANDHI 174 5.1 Introduction 174 5.2 Data and Generalization 176 5.3 Tri-tonal Strings, and Normal application vs. Overapplication 177 5.3.1 Overapplication 179 5.3.2 Normal application 181 5.4 Prosodic Constraints for Beijing Mandarin Tone Sandhi Domain 183 5.4.1 Shih’s (1986) Analysis 184 5.4.2 The Non-PP Utterances 185 5.4.3 The PP Utterances 195 5.5 Supporting Evidence From Tone Sandhi In Transliterations, and Nonsense Words 199 5.5.1 Tone Sandhi Patterns in Nonsense Words, and Transliterations 199 CHAPTER 6 ALTERNATIVE ANALYSES 207 6.1 Rule Based Analysis 207 6.2 Constraint-based Analysis Without Output-to-Output Correspondence211 6.3 Constraints on Derivation 215 6.4 Direct Mapping 223 6.5 Harmonic Serialism 227 6.5.1 Chen’s Attempt to Tianjin Tone Sandhi 228 6.5.2 Boshan Tone Sandhi 230 6.6 Summary 232 CHAPTER 7 CONCLUDING REMARKS 234 7.1 Directionality and Identity Effect 234 7.2 Summary of the Faithfulness and the Markedness Constraints 235 7.3 Tone Sandhi in Longer Strings 239 7.3.1 Sixian-Hakka 241 7.3.2 Tianjin Tone Sandhi 248 7.4 Extensions of the Prosodic Correspondence 252 APPENDIX A: SYMBOLS AND ABBREVIATIONS 255 APPENDIX B: TONAL CONSTRAINTS AND PROSODIC CONSTRAINTS 257 A.1 Tonal Constraints 257 A.2 Prosodic Constraints 260 APPENDIX C: AN ATTEMPT TO ALLOTONE PAIRINGS 261 REFERENCES 273rf Alderete, John. 1997. Dissimilation as Local Conjunction. [ROA-175-02971, http://ruccs.rutgers.edu/roa.html ]. Alderete, John. 1999. Morphologically Governed Accent in Optimality Theory. PhD Dissertation, University of Massachusetts. Archangeli, Diana and Dkeiichiro Suzuki. 1997. The Yokuts Challenge. In Roca, ed., Derivations and Constraints in Phonology: 197-226. Oxford University Press, Oxford. John. 1999. Morphologically Governed Accent in Optimality Theory. PhD Dissertation, University of Massachusetts. Bakovic, Eric. 1996. Foot Harmony and Quantitative Adjustments. Ms., Rutgers University. [ROA-168-1296, http://ruccs.rutgers.edu/roa.html ] Ballard, William L. 1984. Wu, Min and a Little Hakka Lexical Tone Sandhi: Right and Left. Cah. De Ling. Asie Orientale 8: 3-34. Bao, Zhiming. 1999a. On The Nature of Tone. New York & Oxford: Oxford University Press. Bao, Zhiming. 1999b. Tonal Contour and Register Harmony in Chaozhou. Linguistic Inquiry 30: 485-492. Bao, Zhiming. 2003. Tone, Accent, and Stress in Chinese. Journal of Linguistics 39: 147-166. Beckman, Jill N. 1998. Positional Faithfulness. PhD Dissertation, University of Massachusetts Amherst. Benua Laura. 1995. Identity Effects in Morphological Truncation. In J. Beckman, L. Walsh-Dickey and S. Urbanczyk (eds.), University of Massachusetts Occasional Papers in Linguistics: Papers in Optimality Theory; 77-136. Amherst: GLSA. Benua, Laura. 1997. Transderivational Identity: Phonological Relations Between Words. PhD Dissertation, University of Massachusetts, Amherst. Berendsen, E. 1986. The Phonology of Cliticization. PhD Dissertation, Utrecht: University of Utrecht Burzio, Luigi. 1996. Multiple Correspondence. Lingua 103: 79-109. Chafe, Wallace. 1968. The Ordering of Phonological Rules. International Journal of American Linguistics 24: 115-136. Chan, Marjorie K. M. 1991. Contour-Tone Spreading and Tone Sandhi in Danyang Chinese. Phonology 8: 237-259. Chang, Nien-Chuang T. 1958. Tones and Intonation in the Chengtu Dialect. Phonetica 2: 59-85. Chen, Matthew Y. 1987a. The Syntax of Xiamen Tone Sandhi. Phonology Yearbook 4: 109-115. Chen, Matthew Y. 1987b. A Symposium on Tianjin Tone Sandhi: Introductory Remarks. Journal of Chinese Linguistics 15: 203-227. Chen, Matthew Y. 1999. Directionality Constraints on Derivation? In Ben Hermans and Marc van Oostendorp (eds.), The Derivational Residue in Phonological Optimality Theory. John Benjamins Publishing Company. Chen, Matthew Y. 2000. Tone Sandhi: Patterns Across Chinese Dialects. Oxford University Press. Chen, Matthew Y. 2002. Changting Hakka Tone Sandhi: Analytical Challenges. Paper for the 8th International Symposium on Chinese Languages and Linguistics. Institute of Linguistics, Academia Sinica. Cheng, Chin Chuan. 1968. English Stresses and Chinese Tone in Chinese Sentences. Phonetica 18: 77-88. Cheng, Chin-chuan. 1973a. A Synchronic Phonology of Mandarin Chinese. Paris: Mouton & Co. Cheng, Chin-chuan. 1973b. A Quantitive Study of Chinese Tones. Journal of Chinese Linguistics 1: 93-110. Cheng, Robert. L. 1987. Analysis and Study of Taiwanese Readings for Mandarin Speakers. Taipei: Student Book Co. Chung, Raung-fu. 1989. Aspects of Kejia Phonology. PhD Dissertation, University of Illinois. Cinque, Guglielmo. 1993. A Null Theory of Phrase and Compound Stress. Linguistic Inquiry 24: 239-298. Clements, G. N. 1978. Tone and Syntax in Ewe. In D. J. Napol (ed.), Elements of Tone, Stress, and Intonation: 21-99. Washington, D. C.: Georgetown University Press. Cohn, Aigail. 1989. Stress in Indonesian and Bracketing Paradoxes. Natural Language and Linguistic Theory 7: 167-216. Cole, Jennifer S. and Charles W. Kissberth. 1994. An Optimal Domain Theory of Harmony. Studies in Linguistic Sciences 24: 101-114. Cole, Jennifer S. and Charles W. Kissberth. 1995. Restricting Multi-level Constraint Evaluation: Opaque Rule Interactions in Yawelmani Vowel Harmony. Ms. Univeristy of Illinois, Urbana-Champaign. [ROA-98, http://ruccs.rutgers.edu/roa.html ]. Crystal David. 1985. A Dictionary of Linguistics and Phonetics. Second Edition. Basil Blackwell. Cutler Anne, Delphine Dahan, and Wilma van Donselaar. 1997. Prosody in the Comprehension of Spoken Language: A Literature Review. Language and Speech 40 (2): 141-201. De Lacy, Paul. 1999. Tone and Prominence. University of Massachusetts, Amherst. [ROA-333, http://ruccs.rutgers.edu/roa.html ]. De Lacy, Paul. 2000. Markedness in Prominent Positions. In Ora Matushansky, Albert Costa, Javier Martin-Gonzalez, Lance Nathan, and Adam Szcezegielniak (eds.), Proceedings of the First Harvard/MIT Student Conference on Language Research (2000). De Lacy, Paul. 2002. The Interaction of Tone and Stress in Optimality Theory. Phonology 19: 1-32. Duanmu, San. 1992a. Stress and Syntax-Phonology Mismatches: Tonal Domains in Danyang and Shanghaii. In Dawn Bates (ed.), Proceedings of the 10th West Coast Conference on Formal Linguistics: 127-137. Standford Linguistics Association. Duanmu, San. 1992b. End-based Theory, Cyclic Stress and Tonal Domains. Chicago Linguistics Society 28(2): 65-76. Duanmu, San. 1993. Rime Length, Stress and Association Domains. Journal of East Asian Linguistics 2(1): 1-44. Duanmu, San. 1995. Alignment and the Cycle are Different. In Ben Hermans and Marc van Oostendorp (eds.), The Derivational Residue in Phonological Optimality Theory. John Benjamins Publishing Company. Duanmu, San. 1997. Recursive Constraint Evaluation in Optimality Theory: Evidence From Cyclic Compounds in Shanghai. Natural Language and Linguistics Theory 15: 465-507. Duanmu, San. 2000. The Phonology of Standard Chinese. Oxford: Oxford University Press. Eugene Buckley. 1995. Constraint Domains in Kashaya. The Proceedings of the 14th West Coast Conference on Formal Linguistics. CSLI, Stanford University. Gerken, LouAnn. 1996a. Prosody’s Role in Language Acquision and Adult Parsing. Journal of Psycholinguistic Research 25(2): 345-356. Gerken, LouAnn. 1996b. Prosodic structure in Young Children’s Language Production. Language 72(4): 683-711. Goldsmith, John A. 1976. Autosegmental Phonology. PhD Dissertation, Massachusetts Institute of Technology. Distributed by the Indiana University Linguistics Club. Gimson, A. 1970. An Introduction to the Pronunciation of English. 2nd Ed. London: Edward Arnold. Grimshaw, Jane. 1997. The Best Clitic: Constraint Conflict in Morphosyntax. In Liliane Haegeman (ed.), Elements of Grammar. Kluwer Academic Publishers. GrosJean, Francois and James Paul Gee. 1987. Prosodic Structure and Spoken Word Recognition. Cognition 25: 135-155. Haas, Mary. 1940. Tunica. Handbook of American Indian Languages, IV. Washington, D.C.: Smithsonian Institute, Bureau of American Ethnography. Hale, M., M. Kissock, & C. Reiss. 1997. Output-Output Correspondence in Optimality Theory. Proceedings of the 16th West Coast Conference on Formal Linguistics. Heli Harrikari. 1999. The Gradient OCP – Tonal Evidence from Swedish. [ROA-355, http://ruccs.rutgers.edu/roa.html ]. Hooper, J. B. 1976. An Introduction to Natural Generative Phonology. Academic Press, New York. Howard, Irwin. 1972. A Directional Theory of Rule Application in Phonology. PhD Dissertation, Massachusetts Institute of Technology. Hsiao, E. Yuchau. 1991. Syntax, Rhythm and Tone: A Triangular Relationship. Taipei: Crane Publishing Co. Hsiao, E. Yuchau. 1995. Southern Min Tone Sandhi and Theories of Prosodic Phonology. Taipei: Student Book Co., Ltd. Hsiao, E Yuchau. 1996. Optimality and the Syntax-Phonology Interface. NSC Report No. 85-2418-H-004-002. Hsiao, E.Yuchau 1999. Interlanguage Tone Sandhi. NSC Report No. 89-2411-H-004-006. Hsiao, E.Yuchau. 2000a. Taiwan Minnanyu zhi Youxuan Biandiao [Optimal Tone Sandhi in Taiwan Southern Min ]. Hanyu Yanjiu [Chinese Research ] 18. Hsiao, E.Yuchau. 2000b. Trisyllabic and Quadrasyllabic Hakka Tone Sandhi: An Optimality Theory Perspective. Proceedings of the NCCU Teachers' Conference on Linguistics Research. National Chengchi University. Hsiao, E. Yuchau. 2000c. Focus Alignment in Taiwan Southern Min. Paper for the International Symposium on Topic and Focus in Chinese. Hong Kong Polytech University. Hsieh, H.I. 1970. The Psychological Reality of Tone Sandhi Rules in Taiwanese. Proceedings of CLS 6: 489-503. Hsu, Hui-chuan. 1994. Constraint-based Phonology and Morphology: A Survey of Languages in China. PhD Dissertation, UCSD. Hsu, Hui-chuan. 1995. Trisyllabic Tone Sandhi in the Changting Hakka. Journal of Chinese Linguistics 23(1): 42-86. Hsu, Kuei-ping. 1996. Hakka Tone Sandhi: The Interface Between Syntax and Phonology. MA Thesis, National Tsing Hua University. Hung, Tony T. N. 1987. Syntactic and Semantic Aspects of Chinese Tone Sandhi. PhD Dissertation, UCSD. Hung, Tony T. N. 1987. Tianjin Tone Sandhi: Towards a Unified Approach. Journal of Chinese Linguistics 15: 274-305. Hung, Tony T. N. 1992. Syntactico-Semantic Conditions on Fushou Phrasal Tone Sandhi. Journal of Chinese linguistics 20(1): 50-82. Hyman, Larry M. and Kenneth VanBik. 2002. Output Problems in Hakha Lai – or: What’s (not) Chinese about Directional Tone Sandhi? Paper for the 8th International Symposium on Chinese Languages and Linguistics. Institute of Linguistics, Academia Sinica. Inkelas, Sharon. 1989. Prosodic Constituency in the Lexicon. PhD Dissertation, Stanford University. Ito, Junko and Armin Mester. 1998. Markedness and Word Structure: OCP Effects in Japanese. [ROA-255-0498, http://ruccs.rutgers.edu/roa.html ]. Ito, Junko, Yoshihisa Kitagawa, and Armin Mester. 1996. Prosodic faithfulness and Correspondence: Evidence from a Japanese Argot. Journal of East Asian Linguistics 5: 217-294. Jungers, Melissa K., Caroline Palmer, and Shari R. Speer. 2002. Time after Time: The Coordinating Influence of Tempo in Music and Speech. Cognitive Processing 1(2): 21-35. Kager, Rene. 1999a. Surface Opacity of Metrical Structure in Optimality Theory. In Ben Hermans and Marc van Oostendorp (eds.), The Derivational Residue in Phonological Optimality Theory. John Benjamins Publishing Company. Kager, Rene. 1999b. Optimality Theory. Cambridge University Press: Australia. Kaisse, Ellen. 1985. Connected Speech: The Interaction of Syntax and Phonology. London: Academic Press. Kang, Ongmi. 1999. A Correspondence Approach to Glide Formation. Korean Journal of Linguistics 24.4. Katamba, Francis. 1989. An Introduction to Phonology. Longman, New York. Kenstowicz, Michael and Charles Kisseberth. 1979. Generative Phonology: Description and Theory. New York: Academic Press. Kenstowicz, Michael. 1994a. Sonority-Driven Stress. The RuCCS Technical Research Paper: 1-29. Massachusetts Institute of Technology. Kenstowicz, Michael. 1994b. Phonology in Generative Grammar. Cambridge, MA: Blackwell. Kenstowicz, Michael. 1995. Cyclic vs. Non-Cyclic Constraint Evaluation. Phonology 12: 397-436. Kenstowicz, Michael. 1997. Base Identity and Uniform Exponence: Alternatives to Cyclicity. In J. Durand & B. Laks (eds.), Current Trends in Phonology: Models and Methods. Salford: University of Salford, 363-394. Kiparsky, Paul. 1968. Linguistic Universals and Language Change. In E. Bach and R. Harms (eds.), Universals in Linguistic Theory: 191-212. New York: Holt, Rinehart and Winston. Kirchner, Robert. 1996. Synchronic Chain Shifts in Optimality Theory. Linguistic Inquiry 27(2): 341-9. Koskenniemi, Kimmo. 1983. Two-level Morphology: A General Computational Model for Word-form Recognition and Production. Publication no. 11, Department of General Linguistics. University of Helsinki. Koutsoudas, A., Sanders, G. and Noll, C. 1974. On the Application of Phonological Rules. Language 50: 1-28. Law, Howard. 1958. Morphological Structure of Isthmus Nahuat. International Journal of American Languages 24: 108-29. Leben, W. 1973 Suprasegemental Phonology. PhD Dissertation, Massachusetts Institute of Technology. Li, X. J. and S. X. Liu. 1985. Tianjin Fangyan de Liandu Biandiao. [Tone Sandhi in the Tianjin Dialect ]. Zhongguo Yuwen [Chinese Language ] 1: 76-80. Lin, Hui-shan and Yuchau E. Hsiao. 1999. An Optimality-Theoretic Approach to Taiwanese Tone Sandhi. Paper for the 32nd International Conference on Sino-Tibetan Languages and Linguistics. University of Illinois at Urbana Champaign. Lin, Hui-shan. 2000a. Cong Youxuan Lilun Lai Tan Guoyu de Sansheng Biandiao [An Optimality Theoretic Approach to Mandarin Tone Sandhi ]. Proceedings of the 18th Annual Conference of the Association of Chinese Phonology. FuJen Catholic University. (2000). Lin, Hui-shan. 2000b. An Optimality Theoretic Approach to Tone Sandhi in Mandarin, in Taiwanese, and in Mandarin-Taiwanese Code-Mixing. MA Thesis, National Chengchi University. Lin, Hui-shan. 2000c. Layered OCP, Unparsed Preposition, and Local Constraint Conjunction in Mandarin Tone Sandhi. Proceeding of the 33rd International Conference on Sino-Tibetan Languages and Linguistics. Ramkhamhaeng University (2000). Lin, Hui-shan. 2002. Tianjin Tone Sandhi. Paper for the 8th International Symposium on Chinese Languages and Linguistics. Institute of Linguistics, Academia Sinica. Lin, Hui-shan. 2003. Identity and Tianjin Tone Sandhi. Paper for the 36th ICSTL. Conference. La Trobe University. Australia. Lin, Jo-wang. 1994. Lexical Government and Tone Group Formation in Xiamen Chinese. Phonology 11: 237-275. Lindfield, Kimberly C., Arthur Wingfield, and Harold Goodglass. 1999. The Contribution of Prosody to Spoken Word Recognition. Applied Psycholinguistics 20: 395-405. McCarthy, John. 1995a. Extensions of Faithfulness: Rotuman Revisited. [ROA-110-0000, http://ruccs.rutgers.edu/roa.html ] McCarthy, John. 1995b. Prosodic Morphology. In Goldsmith (ed.), The Handbook of Phonological Theory: 318-66. Oxford: Blackwell. McCarthy, John. 1997. Process Specific Constraints in Optimality Theory. Linguistic Inquiry 28: 231-251. McCarthy, John. 1999. Sympathy and Phonological Opacity. Phonology 16: 331-99. McCarthy, John. 2000. Harmonic Serialism and Parallelism. Proceedings of the 30th North East Linguistic Society. McCarthy, John. 2002a. Optimal Paradigms. [ROA-485, http://ruccs.rutgers.edu/roa.html ]. McCarthy, John. 2002b. Comparative Markedness. [ROA-489-0102, http://ruccs.rutgers.edu/roa.html ]. McCarthy, John and Alan Prince. 1993a. Generalized Alignment. In G. Booij and J. Van Marle (eds.), Year Book of Morphology: 79-153. Dordrecht: Kluwer. McCarthy, John and Alan Prince. 1993b. Prosodic Morphology I: Constraint Interaction and Satisfaction. Report no. RuCCS-TR-3. New Brunswick, NJ: Rutgers University Center for Cognitive Science. McCarthy, John, and Alan Prince. 1994. The Emergence of the Unmarked: Optimality in Prosodic Morphology. Proceedings of the 24th North East Linguistic Society: 333-379. Amherst: GLSA. McCarthy, John and Alan Prince. 1995. Faithfulness and Reduplicative Identity. In Jill Beckman, Laura Walsh Dickey and Suzanne Urbanczyk (eds.), University of Massachusetts Occasional Papers in Linguistics 18: Papers in Optimality Theory: 249-384. McCarthy, John and Alan Prince. 1999. Faithfulness and identity in prosodic morphology. In Kager, Hulst, and Zonneveld (eds), The Prosody-morphology Interface: 218-309. Cambridge University press. Mester, Armin and Junko Ito. 1989. Feature Predictability and Underspecification: Palatal Prosodic in Japanese Mimetics. Language 65: 258-93. Moreton, Elliott. 1999. Non-computable Functions in Optimality Theory. [ROA-364 , http://ruccs.rutgers.edu/roa.html ] Moreton, Elliott and Paul Smolensky. 2002. Typological Consequences of Local Constraint Conjunction. In L. Mikkelsen and C. Potts (eds.), Proceedings of the twenty-first West Coast Conference on Formal Linguistics. Cambridge, MA: Cascadilla Press. Morris, Richard E. 2000. Coda Obstruents and Local Constraint Conjunction in North-Central Peninsular Spanish. [ROA-383-031001, http://ruccs.rutgers.edu/roa.html ]. Myers, Scott. 1991. Persistent Rules. Linguistic Inquiry 22: 315-344. Myers, Scott. 1997. OCP Effects in Optimality Theory. Natural Language and Linguistics Theory 15: 847-892. Nespor, M. and I. Vogel. 1986. Prosodic Phonology. Dordrecht: Foris Publications. Odden, D. 1987. Kimatuumbi Phrase Phonology. . Phonology Yearbook 4: 13-36. Onn, Farid M. 1976. Aspects of Malay Phonology and Morphology: A Generative Approach. PhD Dissertation, University of Illinois, Urbana-Champaign. Oresnik, Janez. 1972. On the Epenthesis Rule in Modern Icelandic. Arkiv for Nordisk Filologi 87: 1-32. Orgun, Orhan. 1996. Correspondence and Identity Constraints in Two-Level Optimality Theory. In Proceedings of the 14th West Coast Conference on Formal Linguistics. Peng, Shu-hui. 1997. Production and Perception of Taiwanese Tones in Different Tonal and Prosodic Contexts. Journal of Phonetics 25: 371-400. Prince, Alan and Paul Smolensky. 1993. Optimality Theory: Constraint Interaction in Generative Grammar. Ms., Rutgers University and University of Colorado, Boulder. Qian, Nairong. 1992. Dangdai Wuyu Yanjiu [Studies in the Contemporary Wu Dialects ]. Shanghai: Jiaoyu Chubanshe. Qian, Z.Y. 1993. Boshan Fangyan Yanjiu. [Studies in the Boshan Dialects ]. Beijing: Shehuikexue Wenxian Chubanshe. Radford, Andrew. 1988. Transformational Grammar: A first Course. Cambridge Ringen, C. O. 1972. On Arguments for Rule Ordering. Foundations of Language 8: 266-73. Rose, Phil. 1990. Acoustics and Phonology and Complex Tone Sandhi: An Analysis of disyllabic Lexical tone sandhi in the Zhenhai Variety of Wu Chinese. Phonetica 47: 1-35. Sanderman, Angelien A. and Rene Collier. 1997. Prosodic Phrasing and Comprehension. Langauge and Speech 40(4): 391-409. Selkirk, Elizabeth. 1972. The Phrasal Phonology of English and French. PhD Dissertation, Massachusetts Institute of Technology. Selkirk, Elizabeth. 1984a. Phonology and Syntax: The Relation Between Sound and Structure. The MIT Press. Selkirk, Elizabeth. 1984b. (Dis)juncture in Sentence Phonology as a Temporal Phenomenon. Paper for the 5th Phonologie-tagung, Eisentadt. Selkirk, Elizabeth. 1986. On Derived Domains in Sentence Phonology. Phonology Year Book 3: 371-405. Selkirk, Elizabeth. 1993. The Prosodic Structure of Function Words. Manuscript. Selkirk, Elizabeth. 1995. The Prosodic Structure of Function Words. University of Massachusetts Occasional Paper 18: Papers in Optimality Theory: 439-469. University of Massachusetts, Amherst. Selkirk, Elizabeth and Tong Shen. 1990. Prosodic Domains in Shanghai Chinese. In Sharon Inkelas and Draga Zec (eds.), The Phonology-Syntax Connection: 313-338. Chicago: University of Chicago Press. Shattuck-Hufnagel, Stefanie and Alice E. Turk. 1996. A Prosody Tutorial for Investigators of Auditory Sentence Processing. Journal of Psycholinguistic Research 25: 193-247. Shi, Feng. 1990a. Shi Lun Tianjin Hua Shengdiao Ji Qi Bianhua [On Tianjin Tones and Their Sandhi Behavior ]. Studies in Tone and Stops: 84-100. Beijing University Press. Shi, Feng. 1990b. Zai Lun Tianjin Hua Shengdiao Ji Qi Bianhua [Tianjin Tones and Their Sandhi Behavior – Revisited ]. Studies in Tone and Stops: 101-117. Beijing University Press. Shih, Chi-lin. 1986. The Prosodic Domain of Tone Sandhi in Chinese. PhD Dissertation, UCSD. Shih, Chi-lin. 1997. Mandarin Third Tone Sandhi and Prosodic Structure. In Wang Jialing and Norval Smith (eds.), Studies in Chinese Phonology. New York: Mouton de Gruyter. Smolensky, Paul. 1995. On the Internal Structure of Constraint Component Con of UG. [ROA- 86-00001, http://ruccs.rutgers.edu/roa.html ] Speer, Shari R., Chi-lin Shih, and Maria L. Slowiaczek. 1989. Prosodic Structure in Language Understanding: Evidence From Tone Sandhi in Mandarin. Language and Speech 32(4): 337-354. Speer, Shari R., Robert G. Crowder, and Lisa M. Thomas. 1993. Prosodic Structure and Sentence Recognition. Journal of Memory and Language 32: 336-358. Speer, Shari R., Margaret M Kjelgaard, and Kathryn M. Dobroth. 1996. Journal of Psycholinguistic Research 25.2: 249-271. Sweet, Henry. 1891. A Handbook of Phonetics. Oxford: Henry Frowde. Sweet, Henry. 1908. The Sounds of English – An Introduction to Phonetics. Oxford: Clarendon Press. Tan, Fu. 1987. Tone Sandhi in the Tianjin Dialect. Journal of Chinese Linguistics 15: 228-246. Truckenbrodt, Hubert. 1994. The OCP, Underspecification, and Articulatory Faithfulness. MIT Working Papers in Linguistics 21: 355-371. Truckenbrodt, Hubert. 1999. On the Relation Between Syntactic Phrases and Phonological Phrases. Linguistic Inquiry 30(2): 219-255. Tsai, Wei-tien Dylan. 1994. On Matching Syntax-Phonology Mismatches. MIT Working Papers in Linguistics 21: 355-371. Tsay, Jane. 1991. Tone Sandhi in Taiwanese. In Jean Ann and Kyoko Yoshimura (eds.), Arizona Phonology Conference. University of Arizona, Linguistic Department. Tsay, Jane, and James Myers. 1996. Taiwanese Tone Sandhi as Allomorph Selection. Berkeley Linguistics Society 22: 394-405. Wang, Hsu Samuel. 1993. On the Psychological Status of the Tone Sandhi Phenomena in Taiwanese. Tsing Hua Journal of Chinese Studies 23(2): 175-192. Wang, William S-Y. 1967. Phonological Features of Tone. International Journal of American Linguistics 33: 93-105. Wang, Xiao-mei. 2003. Tianjin Fangyan Sanzizu de Liandu Biandiao. [Tone Sandhi of the Tri-tonal Strings in the Tianjin Dialect ]. Fang Yan 2: 165-171. Wilbur, Ronnie. 1973. The Phonology of Reduplication. PhD Dissertation, University of Illinois at Urbana-Champaign. Yip, Moira. 1980. The Tonal Phonology of Chinese. PhD Dissertation, Massachusetts Institute of Technology. Yip, Moira. 1989. Contour Tones. Phonology 6: 149-174. Yip, Moira. 1995. Tone in East Asian Languages. In Goldsmith, John (ed.), The Handbook of Phonological Theory: 476-494. Cambridge, Mass and Oxford, UK: Blackwell Publishers. Yip, Moira. 1996. Feet, Tonal Reduction and Speech Rate at the Word and Phrase Level in Chinese. Paper Presented at Utrecht Conference on Phrasal Phonology. [ROA-159-1196, http://ruccs.rutgers.edu/roa.html ] Yip, Moira. 2002a. Tone. Cambridge University Press. Yip, Moira. 2002b. Phonological Markedness and Allomorph Selection in Zahao. Paper for the 8th International Symposium on Chinese Languages and Linguistics. Institute of Linguistics, Academia Sinica. Zhang Ning. 1997. The Avoidance of the Third Tone Sandhi in Mandarin Chinese. Journal of East Asian Linguistics 6: 293-338. Zhang Zheng Sheng. 1988. Tone and Tone Sandhi in Chinese. PhD Dissertation. The Ohio State University. Zhang, Zheng Sheng. 1987. The Paradox of Tianjin: Another Look. Journal of Chinese Linguistics 15: 247-273. Zhu, Dexi. 1956. Xiandai Hanyu Xingrongci de Yanjiu [A Study On Adjectives In Modern Chinese ]. Yuyan Yanjiu 1: 83-112. Zoll, Cheryl. 1998. Positional Markedness, Positional Faithfulness, and Licensing. Ms, Massachusetts Institute of Technology. Zwicky, Arnold. 1970. Auxiliary Reduction in English. Linguistic Inquiry 1: 323-336.id NH0925462003 sid 898701 cfn 0 / id NH0925462004 auc 廖偉聞 tic 漢語的動貌與時量詞組 adc 林宗宏 ty 碩士 sc 國立清華大學 dp 語言學研究所 yr 92 lg 英文 pg 138 kwc 動貌 kwc 時量副詞 kwc 附加語 kwc 完成貌 abc 本文對漢語裡的時量詞組和動貌的結構有諸多探討。林(2003)指出,漢語的時量詞組可以有兩種詮釋,一種是測量過程(P-related),一種是測量結果(RS-related)。但是這種觀點留下了一些問題。語意上來說,有兩個問題,第一個是關於終結點(telicity)的問題,例如例句(1)和(2),漢語和英語在時量詞句作用在有終結點的句子中的表現不同 (Verkuyl 1993、Krifka 1998、Kratzer 2003)。漢語裡的時量詞組看起來違反了終結點的限制,允許時量詞組出現,除非是有完成性的標記(例如‘完’)出現: tc Chinese Abstract iii English Abstract iii Acknowledgement iii Chapter 1: Introduction 1 Chapter 2: Prospect of Aspect 8 2.1 Introduction 8 2.2 Theory of Aspect 10 2.2.1 Aspect as Part of Tense 10 2.2.2 Two Parameters of Aspect 15 2.2.3 Time-related Analysis of Aspect 24 2.3 Three-layered Aspectual System (TAS) 33 2.4 Theoretical Implication of TAS 36 2.5 Conclusion 38 Chapter 3: Telicity Resultativity, and Durativity 40 3.1 Introduction 40 3.2 The Interpretation Problems 45 3.2.1 The Issue of Telicity: Part or Whole? 45 3.2.2 The Issue of Resultativity 50 3.3 Clarifying the Chinese Durative Phrases 56 3.4 On Chinese le’s 59 3.4.1 On Verb-le 60 3.4.2 On Sentence-le 66 3.4.3 Summary and Discussion 72 3.5 Further Issues 74 3.5.1 The Homogeneous Condition 74 3.5.2 The Origin of the PART Operator 76 3.5.3 The Dubious Durative 85 3.6 Conclusion 87 Chapter 4: Derivations of Durative Phrases 88 4.1 Introduction 88 4.2 Earlier Proposals on Durative Phrases 89 4.2.1 Complement Hypothesis and Sentential Subject Hypothesis 90 4.2.2 Adjunct Hypothesis 94 4.3 On the Syntax of le’s 100 4.3.1 Toward a Light Verb Analysis of the Verb-le 101 4.3.2 The Sentence-le and Comp-to-Spec Raising 107 4.4 Enter the Durative Phrases 111 4.5 Some Structural Tests 117 4.5.1 The Coexistence Restriction 117 4.5.2 The Scope Test 121 4.5.3 Durative Preposing 123 4.6 Other Issues 124 4.6.1 Deriving the D-O ordering 124 4.6.2 On the Matter of Directionality 127 4.7 Conclusion 128 Chapter 5: Concluding Remarks 130 Reference 135rf Bach, Emmon. 1986. Natural Language Metaphysics. Logic, Methodology, and Philosophy of Science VII, ed. by R. Barcan-Marcus, G. J. W. Dorn, and P. Weingartner, 573-95. Amsterdam: North Holland Press. Baker, Mark, and Lisa Travis. 1997. Mood as Verbal Definiteness in a “Tenseless” Language. Natural Language Semantics 5.213-69. Binnick, Robert I. 1991. Time and Verb: a guide to tense and aspect. Oxford: Oxford University Press. Bowers, John. 1993. The Syntax of Predication. Linguistic Inquiry 24.591-656. Bowers, John. 2002. Transitivity. Linguistic Inquiry 33.183-224. Chomsky, Noam. 1995. The Minimalist Program. Cambridge, MA: MIT Press. Chomsky, Noam. 2001. Derivation by Phase. Ken Hale: a Life in Language, ed. by Michael Kenstowicz, 1-52. Cambridge, MA: MIT Press. Chung, Sandra, and Alan Timberlake. 1985. Tense, Aspect, and Mood. Language Typology and Syntactic Description Vol.III: Grammatical Categories and the Lexicon, ed. by S. timothy, 202-258. Cambridge: Cambridge University Press. Cinque, Guglielmo. 1999. Adverbs and Funtional Heads. Oxford: Oxford University Press. Collins, Christ. 1997. Local Economy. Cambridge, MA: MIT Press. Ernst, Thomas. 1987. Duration Adverbials and Chinese Phrase Structure. Journal of Chinese Language Teachers Association 22.1-11. Filip, Hana. 2000. The Quantization Puzzle. Events as Grammatical Objects, ed. by C. Tenny and J. Pustejovsky, 39-96. Standford, California: CSLI Publications. Hale, Kenneth, and Samuel J. Keyser. 1993. On Argument Structure and the Lexical Expression of Syntactic Relation. The View from Building 20: Essays in Linguistics in Honor of Sylvain Bromberger, ed. by Kenneth Hale and Samuel J. Keyser, 51-109. Cambridge, MA: MIT Press. Hale, Kenneth, and Samuel J. Keyser. 1997. On the Complex Nature of Simple Predicators. Complex Predicates, ed. by Alex Alsina, Joan Bresnan, and Peter Sells 29-66. Stanford, California: CSLI Publications. Hale, Kenneth, and Samuel J. Keyser. 2002. Prolegonmenon to a Theory of Argument Structure. Cambridge, MA: MIT Press. Hay, Jennifer, Christopher Kennedy, and Beth Levin. (1999). Scalar Structure Underlied Telicity in “Degree Achievements.” Proceedings of SALT IX, ed. by T. Mathews and D. Strolovitch, 127-144. Ithaca: CLC Publications. Higginbotham, James. 1994. Sense and Syntax. Inaugural lecture, University of Oxford. Oxford: Clarendon Press. Hornstein, Norbert. 1990. As Time Goes by. Cambridge, MA: MIT Press. Huang, C.-T. James. 1982. Logical Relations in Chinese and the Theory of Grammar. Cambridge, MA: MIT dissertation. Huang, C.-T. James. 1994. More on Chinese Word order and Parametric Theory. Syntactic Theory and First Language Acquisition: Cross-Linguistic Perspectives, Volume 1, Heads, Projections, and Learnability, ed. by Babara Lust, Margarita Suner, and John Whitman, 15-35. Hillsdale, NJ: Lawrence Erlbaum Associates Publishers. Jackendoff, Ray. 1972. Semantic Interpretation in Generative Grammar. Cambridge, MA: MIT Press. Kang, Jian. 1999. The Composition of the Perfective Aspect in Mandarin Chinese. Boston, MA: Boston Univertiry dissertation. Kayne, Richard. 1994. The Antisymmetry of Syntax. Cambridge, MA: MIT press. Klein, Wolfgang. 1994. Time in Language. New York: Routledge. Klein, Wolfgang. 1995. A Time-relational Analysis of Russian Aspect. Language 71.669-95. Klein,Wolfgang, Li Ping, and Henriette Hendriks. 2000. Aspect and Assertion in Mandarin Chinese. Natural Language and Linguistic Theory 18.723-70. Kratzer, Angelika. 2000. Building Statives. Paper presented in the Berkeley Linguistic Society 26. Kratzer, Angelika. 2002. Telicity and the Meaning of Objective Case. Amherst, University of Massachusetts, ms. Krifka, Manfred. 1988. The Origin of Telicity. Event and Grammar, ed. by S. Rothstein 197-235. Dordrecht, Netherlands: Kluwer. Larson, Richard. 1988. On the Double-object Construction. Linguistic Inquiry 19.335-91. Levin, Beth, and Malka Rappaport Hovav. 1991. Wiping the Slate Clean: a Lexical Semantic Exploration. Cognition 41.123-51. Li, Charles, and Sandra Thompson. 1981. Mandarin Chinese: a Functional Reference Grammar. Berkeley and Los Angeles, CA: University of California Press. Li, Yen-hui Audrey. 1985. Abstract Case in Chinese. Los Angeles, CA: University of Southern California Dissertation. Li, Yen-hui Audrey. 1987. Durational Phrases: distribution and interpretations. Journal of Chinese Language Teachers Association 22.27-66. Lin, Jo-wang. 2000. On the Temporal Meaning of the Verbal –le in Chinese. Language and Linguisitics 1.109-33. Lin, Jo-wang. 2003a. Event Decomposition and the Syntax and Semantics of Durative Phrases in Chinese. Paper presented in the 2nd conference on formal syntax and semantics. Taipei: Academia Sinica. Lin, Jo-wang. 2003b. Temporal Reference in Mandarin Chinese. Journal of East Asian Linguistics 12.259-311. Lin, Tzong-hong Jonah. 2001. Light Verb Syntax and the Theory of Phrase Structure. Irvine, CA: University of California dissertation. Lin, Tzong-hong Jonah and Wei-wen Liao. 2003. Eliminating Right Adjunction: Evidence from the Clauses of Result in Chinese. Paper presented in the 2nd conference on formal syntax and semantics. Taipei: Academia Sinica. Liu, Xun-ning. 1988. Xiandai Hanyu Ciwei ‘le’ de Yufa Yiyi. [The grammar of suffix ‘-le’ in Modern Chinese. ] Zhongguo Yuwen 5.321-30. Grimshaw, Jane and Armin Mester. 1988. Light Verbs and (theta)-Marking. Linguistic Inquiry 19.205-32. Moltmann, Friederike. 1991. Measure Adverbials. Linguistics and Philosophy 14: 629-60. Parsons, Terence. 1990. Events in the Semantics of English: a Study in Subatomic Semantics. Cambridge, MA: MIT Press. Piñón, Christopher. 1999. Duration Adverbials for Result States. WCCFL 18 Proceedings, ed. by S. Bird, A. Carnie, J. Haugen, P. Norquest, 420-433. Somerville: Cascadilla Press. Ramchand, Gillian. 2003. First Phase Syntax. Oxford: University of Oxford, ms. Reichanbach, Hans. 1947. Elements of Symbolic Logic. Berkeley: University of California Press. Shen, Li. 2004. Aspect Agreement and Light Verbs in Chinese: a Comparison with Japenese. Journal of East Asian Linguistics 13.141-179. Smith, S. Carlota. 1991. The Parameter of Aspect. Dordrecht, Netherlands: Kluwer. Sybesma, Rint. 1997. Why Chinese –le1 is a resultative predicate. Journal of East Asian Linaguistics 6.215-261 Sybesma, Rint. 1999. The Mandarin VP. Dordrecht, Netherland: Kluwer. Tai, H. Y. James. 1984. Verbs and Time in Chinese: Vendler’s Four Categories. Papers from the Parasession on Lexical Semantics, 289-296. Chicago Linguistics Society. Talmy, L. 1985. Lexicalization Patterns: Semantic Structure in Lexical Froms. Language Typology and Syntactic Description 3. Grammatical Categories and the Lexicon, ed. by T. Shopen 57-149. Cambridge: Cambridge University Press. Tang, Chih-chen Jane. 1990. Chinese Phrase Structure and the Extended X-bar Theory. Ithca, NY: Cornell University dissertation. Tenny, Carol. 2000. Core Events and Adverbial Modification. Events as Grammatical Objects, ed. by Carol Tenny and James Pustejovsky 285-334. Standford, CA: CSLI Publications. Tsai, W.-T. Dylan. 1994. On Economizing the Theory of A-bar Dependency. Cambridge, MA: MIT dissertation. Vendler, Zeno. 1967. Linguistics in Philosophy. Ithca, NY: Cornell University Press. Verkuyl, J. Henk. 1972. On the Compositional Nature of the Aspects. FLSS, Vol. 15. Dordrecht: D. Reidel Publishing Company. Verkuyl, J. Henk. 1993. A Theory of Aspectuality: the interaction between temporal and atemporal structure. Cambridge: Cambridge University Press. Verkuyl, J. Henk. 1999. Aspectual Issues. Stanford, CA: CSLI Publications. Williams, Edwin. 2003. Representation Theory. Cambridge, MA: MIT Press. Zhang, Nina. 2000. The Reference Time of Tense and the Chinese Sentence Final LE. www.usc.edu/dept/LAS/ealc/chinling/articles/tense.htm, ms.id NH0925462004 sid 904702 cfn 0 / id NH0925462005 auc 謝易達 tic 漢語的泛稱句與副詞量化 adc 林宗宏博士 ty 碩士 sc 國立清華大學 dp 語言學研究所 yr 92 lg 英文 pg 85 kwc 副詞量化 kwc 泛稱性 kwc 泛稱 kwc 漢語 abc 漢語的泛稱句與副詞量化 tc Table of Contents Chinese Abstract………………………………………………………………………i English Abstract……………………………………………………………………...ii Acknowledgment…………………………………………………………………….iii Table of Contents……………………………………………………………………iv Chapter 1. Introduction…………………………………………………………… 1 1.1 Basic Data…………………………………………………………...2 Chapter 2. The Aspectual Generic…………………………………………………7 2.1 The Characteristics of the Aspectual Generic……………………….7 2.2 Analysis……………………………………………………………..12 2.2.1 Classical Carlsonian Approach and Derive Kind Predicate (DKP)……………………………………………...12 2.2.2 Analysis……………………………………………………….15 2.3 Adverbial Quantification in the Aspectual Generic…………………17 2.3.1 Reasons Against Quantifying over Events……………………18 2.3.2 Quantifying over Probabilities………………………………..21 2.4 Summary……………………………………………………………26 Chapter 3. The Modalistic Generic………………………………………………...29 3.1 The Semantic Characteristics of the Modalistic Generic…………...30 3.2 The Generic Hui…………………………………………………….33 3.2.1 The Syntactic Status of the Generic Hui……………………...34 3.2.2 The Semantic Function of the Generic Hui…………………...38 3.3 The Semantics of the Modalistic Generic Sentence………………...42 3.3.1 Theoretical Backgrounds……………………………………...43 3.3.2 Analysis……………………………………………………….44 3.4 Summary……………………………………………………………49 Chapter 4. Two Levels of Genericity and Some Theoretical Consequences…….51 4.1 Two Levels of Genericity and Syntax-Semantics Mapping………...51 4.2 Some Theoretical Consequences……………………………………58 Chapter 5. Comparative Perspective………………………………………………63 5.1 English………………………………………………………………63 5.2 The Southern Min…………………………………………………...67 Chapter 6. Conclusion………………………………………………………………79 References…………………………………………………………………………...81rf Carlson, Gregory N. 1977a. A unified analysis of the English bare plural. Linguistics and Philosophy,1:3, 413-458. Carlson, Gregory N. 1977b. Reference to Kinds in English. PhD. Dissertation, University of Massachusetts, Amherst. Carlson, Gregory N. 1982. Generic Terms and Generic Sentences. Journal of Philosophical Logic, 11:2, 145-181 Carlson, Gregory N. 1989. The Semantic Composition of English Generic Sentences. In Propeties, Types, and Meaning, vol. 2: Semantic Issues, ed. by Gennaro Chierchia, Baarbara Partee, and Raymond Turner. 167-191. Dordrecht: Kluwer Carlson, Gregory N. 1995. Truth-conditions of generic sentences: Two Contrasting Views. In The Generic Book, ed. by Gregory N. Carlson and Francis Jeffry Pelletier, 224-237. Chicago: University of Chicago Press. Carlson, Gregory N. 1999. No lack of Determination. Glot, 4:3, 3-8. Carnegie Mellon University dissertation. Published 1999, Stanford: Chierchia, Gennaro. 1995a. Individual-level predicates are inherent generics. In The Generic Book, ed. by Gregory N. Carlson and Francis Jeffry Pelletier, 176-223. Chicago: University of Chicago Press. Chierchia, Gennaro. 1995b. Dynamics of Meaning: Anaphora, Presupposition and the Theory of Grammar. Chicago: University of Chicago Press. Chierchia, Gennaro. 1998a. References to Kinds across Languages. Natural Language Semantics 6: 339-405. Chierchia, Gennaro. 1998b. Plurality of Mass Nouns and the Notion of “Semantic Parameter’. In Events and Grammar, ed., by Susan Rothestein. 53-103. Kluwer Chomsky, Norm. 1995. The minimalist Program. Cambridge, Mass: MIT Press Chung, Sandra, and Willaim A. Ladusaw. 2004. Restriction and Saturation. Cambridge, Mass: MIT Press. Chung, Sandra. 2000. On Reference to Kinds in Indonesian. Natural Language Semantics 8: 157-171 Cinque, Guglielmo. 1999. Adverbs and Functional Heads: A Cross-linguistic Perspective. Oxford University Press Cohen, Ariel. 1996. Think Generic: The Meaning and Use of Generic Sentences. Cohen, Ariel. 1999. Generics, Frequency adverbs, and Probability. Linguistics and Philosophy 22: 221-253. Comrie, Bernard. 1976. Aspect: an introduction to the study of verbal aspect and related problems. Cambridge University Press, New York Comrie, Bernard. 1985. Tense. Cambridge University Press, New York. CSLI. de Swart, Henriëtte. 1991. Adverbs of Quantification: A Generalized quantifiers Approach. PhD. Dissertation, Rijksuniversiteit Gröningen Diesing, Molly. 1992. Indefinites. Cambridge, Mass: MIT Press. Dobrovie-Sorin, Carmen. 2001. Adverbs of Quantification and Genericity. Ms. Université Paris 7 Filip, Hana and Gergory N. Carlson 1997. Sui generis genericity. Proceedings of the 21st Penn Linguistics Colloquium, 4.2 Heim, Irene. 1982. The semantics of Definite and Indefinite Noun phrases. PhD. Dissertation, University of Massachusetts, Amherst. Higginbotham, James. 2000. On Events in Linguistic Semantics. Speaking of Events, ed. by James Higginbotham, Fabio Pianesi, Achille C. Varzi. Oxford University Press, New York. Kamp, Hans. 1981. A Theory of Truth and Semantic Representation. In Formal Methods in the Study of Language, ed. by Jeroen Groenendijk, Theo M. V. Janssen , and Martin Stokhof, eds., , 227-232. Mathematical Centre Tracts 135, Mathematisch Centrum, Amsterdam. Kratzer, Angelika. 1995. Stage-level and Individual-level Predicates. In The Generic Book, ed. by Gregory N. Carlson and Francis Jeffry Pelletier, 125-175. Chicago: University of Chicago Press. Krifka, Manferd, Francis Jeffry Pelletier, Gregory N. Carlson, Alice Ter Meulen, Gennaro Chierchia & Godehard Link .1995. Genericity :An Introduction. The Generic Book, ed. by Gregory N. Carlson and Francis Jeffry Pelletier, 1-124 Kuroda, S.-Y. 1972. The categorical and the thetic judgment. Foundations of Language 9:153-185. Ladusaw, William A. 1994. Thetic and categorical, stage and individual, weak and strong. Proceedings of SALT 4. Ithaca, NY: Cornell University, Dept. of Modern Languages and Linguistics. 220-229. Lewis, David. 1975. Adverbs of Quantification. In Edward Keenan, ed., Formal Semantics of Natural Languages, 3-15. Cambridge: Cambridge University Press Li, Y.-H Audrey. 1998. Argument Determiner Phrases and Number Phrases. Linguistic Inquiry: 693-702. Lin, Jo-wang and Chi -Chen Jane Tang. 1995. Modals as verbs in Chinese: a GB perspective. Bulletin of Institute of History and Philology 66: 53-105. Taipei: Academia Sinica. Lin, Tzong-Hong Jonah and I-Ta Chris. Hsieh. 2003. Distributed and Fixed Lexicon. abstract. National Tsing Hua University, Taiwan. Lin, Tzong-Hong Jonah. 2001. Light verb syntax and the theory of phrase structure. PhD. dissertation, University of California, Irvine. Longobardi, Giuseppe. 2001. How Comparative is Semantics? A Unified Parameter Theory of Bare Nouns and Proper Names. Natural Language Semantics 9: 335-369 May, Robert. 1985. Logical Form: Its structure and Derivation. Cambridge, Mass: MIT Press Parsons, Terence. 1990. Events in the semantics of Englis: a study in subatomic semantics. Cambridge, Mass: MIT Press Rooth, Mats. 1985. Association with Focus. PhD. Dissertation, University of Massachusetts, Amherst. Tsai, Wei-Tien Dylan. 1994. On Economizing the Theory of A-bar Dependencies. PhD. Dissertation, MIT. Yang, Rong. 2001. Common Nouns, Classifiers and Quantification in Chinese. PhD. Dissertation. Rutgers the State University of New Jersy, NJ.id NH0925462005 sid 904710 cfn 0 / id NH0925462006 auc 李柏毅 tic 漢語語尾助詞「啊」的語用研究 adc 曹逢甫 ty 碩士 sc 國立清華大學 dp 語言學研究所 yr 92 lg 英文 pg 80 kwc 預設 kwc 語尾助詞 kwc 語用 abc 中 文 摘 要 tc TABLE OF CONTENT Chinese Abstract……………………………………………………………………i English Abstract……………………………………………………………………ii Acknowledgment………………………………………………………………… iii Table of Contents……………………………………………………………………iv CH 1 INTRODUCTION……………………………………………………………01 1.1 Motivation and the Problems………………………………………………01 1.2 Data Collection and Scope of the Study…………………………………04 1.3 Organization of the Thesis…………………………………………………04 CH 2 PRELIMIARIES………………………………………………………………05 2.1 Implicature……………………………………………………………………05 2.2 Presupposition……………………………………………………………… 08 2.2.1 Semantic Presupposition………………………………………………08 2.2.2 Pragmatic Presupposition…………………………………………… 11 2.2.3 Presupposition Triggers………………………………………………12 2.3 Felicity Condition……………………………………………………………15 CH 3 LITERATURE REVIEW…………………………………………………… 17 3.1 Introduction………………………………………………………………… 17 3.2 Relevant Studies on UFP a……………………………………………… 17 3.2.1 Chao (1968) & Lu (1980)………………………………………… 17 3.2.2 Li & Thompson (1981)…………………………………………………22 3.2.3 Shie (1991)………………………………………………………………25 3.2.4 Shie’s Analysis on A1…………………………………………………25 3.2.5 Shie’s Analysis on A2…………………………………………………29 3.2.6 Chu (2002) ………………………………………………………………33 3.3 Conclusion ……………………………………………………………………35 CH 4 ANALYSIS OF UFP A1……………………………………………………37 4.1 Introduction………………………………………………………………… 37 4.2 The Assertive Mood of UFP A1…………………………………………38 4.3 Lexical Level…………………………………………………………………39 4.3.1 Definite Description……………………………………………………39 4.3.2 Factive Verb………………………………………………………………43 4.3.3 Implicative Adverb………………………………………………………45 4.3.4 Change of State Verbs…………………………………………………47 4.3.5 Iteratives and Continuities………………………………………………49 4.3.6 Verbs of Judging……………………………………………………………51 4.4 Sentential Level………………………………………………………………53 4.4.1 Interrogatives………………………………………………………………53 4.4.2 Yes-No Question…………………………………………………………53 4.4.3 The Asymmetry of Distribution…………………………………………55 4.4.4 Wh-Question………………………………………………………………57 4.4.5 Imperatives…………………………………………………………………58 4.5 Felicity Conditions……………………………………………………………59 4.6 Implicature Inference…………………………………………………………61 4.7 Summary…………………………………………………………………………62 CH 5 ANALYSIS OF UFP A2 ……………………………………………………64 5.1 Interrogatives……………………………………………………………………65 5.2 Exclamation………………………………………………………………………71 5.3 Conclusion ………………………………………………………………………73 CH 6 CONCLUSION…………………………………………………………………74 CHINESE REFERENCE………………………………………………………………77 REFERENCE……………………………………………………………………………78rf 中文參考書目 呂叔湘1981 《現代漢語八百詞》北京:商務印書館. 胡明揚. 1981.〈北京話的語氣助詞和嘆詞〉《中國語文》5:4-7。 曹逢甫. 2000. 〈華語虛詞的研究與教學-以『呢』字為例〉《第六屆世界華語文研討會論文集》,世界華語文教育學會編 第一冊:語文分析組:1-25 台北:世界華文出版社。 徐晶凝. 1998.〈語氣助詞的語氣義及其教學探討〉《世界漢語教學》44:27-34。 趙元任. 1968.《漢語口語語法》353-368,北京:商務印書館。 屈承熹. 1985.〈語用學與華語教學-語尾虛字”呢”跟”嚜”的研究〉《第一屆世界華文教學研討會論文集》224-240。 Reference Austin, J. L. 1962. How To Do Things With Words. Oxford: Clarendon Press. Chu, Chauncey C. 1998. A Discourse Grammar of Mandarin Chinese. New York and Berlin: Peter Lang. Chu. Chauncey C. 2002. Relevance Theory, Discourse Markers and the Mandarin Utterence-Final Particle A/Ya, Journal of the Chinese Language Teachers Association, 37-1: 1-41. Cooper, D. E. 1974. Presupposition. The Hague: Mouton & Co., N.V. Publishers. Deemter, Kees van and Rodger Kibble, eds. 2002. Information Sharing: reference and presupposition in language generation and interpretation. Stanford: CSLI. Frege, G. 1952. On sense and reference. In P. T. Geach and M. Black eds. Translations from the Philosophical Writings of Gottlob Frege. Oxford: Blackwell: 56-78. Gazdar, G. 1979. Pragmatics: Implicature, Presupposition, and Logical Form. New York: Academic Press. Grice, H. P. 1967. Logic and Conversation. Unpublished MS. Of the William James Lectures, Harvard University. Grice, H. P. 1975. Logic and conversation. In P. Cole and J. Morgan, eds., Speech Acts (Syntax and Semantics, Vol. 3), 41-58. New York: Academic Press. Hutchinson, L. G. 1971. Presupposition and Belief Inference. In Papers from the 7th Regional Meeting, Chicago Linguistic Society. 134- 41. Chicago: Chicago Linguistic Society. Joshi, Aracind, Bonnie L. Webber, and Ivan Sag, eds. 1981. Elements of discourse understanding. Cambridge: Cambridge University Press. Karttunen, L. 1973. Presupposition of Compound Sentences. Linguistic Inquiry. 4: 169-93. Karttunen, L. 1974. Presupposition and Linguistic Context. Theoretical Linguistics. 1: 181-94. Kempson, Ruth M. 1975. Presupposition and the Delimitation of Semantics. Cambridge: Cambridge University Press. Levinson, Stephen C. 1983. Pragmatics. Cambridge: Cambridge University Press. Langendoen, D. T. & Savin, H. B. 1971. The projection problem for presuppositions. In Fillmore & Langendoen. 1971: 55-62. Li, Ing Cherry. 1999. Utterance-Final Particles in Taiwanese: A Discourse-Pragmatic Analysis. Taipei: Crane. Lien, Chin-fa. 1988. Taiwanese sentence-final particles. In Cheng, R. L. and Huang, S., eds., 209-240. Taipei: The Crane Publishing Co. Russell, B. 1905. On denoting. Mind, 14, 479-93. Schmitt, Frederick F. 1992. Knowledge and Belief. New York: Routledge. Shie, Chi-Chiang. 1991. A Discourse-Functional Analysis of Mandarin Sentence-Final Particles. MA thesis, National ChengChi University. Smith, N. V., eds. 1982. Mutual Knowledge. London: Academic Press. Strawson, P. 1950. On referring, Mind, 59, 320-44. Stalnaker, R. C. 1974. Pragmatic presuppositions. In Munitz & Unger. 1964: 197-214. Tang, Ting-chi, Robert L. Cheng, and Ying-che Li, eds. Studies in Chinese Syntax and Semantics. 1983. Taipei: Student Book Co. Van der Sandt, Rob A. 1988. Context and Presupposition. New York: Croom Helm. Villoro, Luis. 1998. Belief, Personal, and Propositional Knowledge. Wilson, Deirdre. 1975. Presuppositions and Non-Truth-Conditional Semantics. London: Academic Press.id NH0925462006 sid 894708 cfn 0 / id NH0925462007 auc 謝佳穎 tic 中文小孩在『比』字句的習得研究 adc 張顯達 adc 連金發 ty 碩士 sc 國立清華大學 dp 語言學研究所 yr 92 lg 英文 pg 60 kwc 兒童語言習得 kwc 比字句 kwc 程度副詞 abc 本研究目的為探討學齡前的中文小孩在『比』字句上的習得過程。藉由進行兩組實驗來收集『比』字句和檢測受試小孩對形容詞前所修飾的程度副詞『很』和『最』的理解。全數『比』字句裡,百分之三十九的比例呈現出受試小孩在使用『比』字句時會有不同於成人語法的現象,例如:『我的餅乾比你的餅乾很/最/非常/太大』。受試者表現出不同於成人語法中『比』字句的制約,使用程度副詞『很』、『最』、『太』與『非常』成為修飾語,修飾形容詞且出現在含有『比』字的比較句中。 rf REFERENCE Bowerman, M. 1978. Structural relationships in children’s utterances: syntactic or semantic? In T. E. Moore (ed.), Cognitive Development and the Acquisition of Language. 197-213. New York: Academic Press. Bresnan, J. 1973. Syntax of the comparative clause construction in English. Linguistic Inquiry 4: 275-343. Chomsky, N & Lasnik, H. 1993. The theory of principles and parameters. In Jacobs, J., von Stechew, A., Sternefeld, W. & Vennemann, T. (eds.) (1993), Syntax: An International Handbook of Contemporary Research (vol. I). 506-569. Berlin: Walter de Gruyter. Fu, Y. C. 1978. Comparative Structure in English and Mandarin Chinese. Ph.D. dissertation, University of Michigan. Heine, B. 1997. Cognitive Foundations of Grammar. Oxford: Oxford University Press. Hsieh, C. Y. 2000. Bi-sentences with Modifiers in Chinese Preschool Children. National Conference on Linguistics. Graduate Institute of Linguistics, National Taiwan University. Hsing, P. J. C. 2003. On Comparative Sentences with Bi-marker in Mandarin Chinese. Master thesis. National Tsing Hua University. Hsu, J. H. 1996. A Study of the Stages of Development and Acquisition of Mandarin Chinese by Children in Taiwan, Taipei. The Crane Publishing, Company. Huang, J. C.T. 1982. Logical Relations in Chinese and the Theory of Grammar. Ph. D. dissertation, MIT. Hung, W. M. 1991. Comparative Structure in Mandarin Chinese. Master thesis. National Tsing Hua University. Izvorski, R. 1995. A solution to the subcomparative paradox. Proceedings of WCCFL XIV. Stanford: CSLI Publications. Jackendoff, R. 1983. Semantics and Cognition. Cambridge, MA: MIT Press. Jespersen, J. O. 1924. The Philosophy of Grammar. With a new Introduction and Index by James D. McCawley. Chicago and London. The University of Chicago Press. Li, C. N. & Thompson, S. A. 1974. Co-verbs in Mandarin Chinese: verbs or prepositions? Journal of Chinese Linguistics 2.3: 257-278. Li, C. N. & Thompson, S. A. 1981. Mandarin Chinese: A Functional Reference Grammar. Berkely and Los Angeles: University of California Press. Li, C. C. 1994. Comparative Constructions In Southern Min—A Diachronic and Typological Perspective. Master thesis. National Tsing Hua University. Li, K. N. 1997. Mandarin Degree Adverbs. Master thesis. National Tsing Hua University. Liu, L. C. S. 1996. A note on Chinese comparatives. Studies in the Linguistic Science. 26. 1: 217-235. Pine, J. M.; Lieven, E. V. M. & Rowland, C. F. 1998. Comparing different models of the development of the English verb category. Linguistics 36: 807-830. Pinker, S. 1984. Language Learnability and Language Development. Cambridge, MA: Harvard University Press. Pinker, S. 1989. Learnability and Cognition: the Acquisition of Argument Structure. MIT Press. Quine, W. 1960. Word and Object. Cambridge, MA: MIT Press. Radford, A. 1990. Syntactic Theory and the Acquisition of English Syntax. Oxford: Blackwell. Sapir, E. 1949. Selected Writings in Language, Culture and Personality. D. C. Mandelbaum (ed) Berkeley, California: University of California Press. Stassen, L. 1985. Comparison and Universal Grammar. Oxford, OX, UK: Basil Blackwell, NY. Tomasello, M. 1992. First Verbs. Cambridge MA: Cambridge University Press. Tomasello, M. 1995. Pragmatic Contexts for Early Verb Learning. Beyond Names for things: Young Children’s Acquisition of Verbs. 46-60. In M. Tomasello & W. E. Merriman (eds.) Hillsdale, N. J.: Lawrence. Erlbaum. Associates, Publishers. Tomasello, M. 1999. The Cultural Origins of Human Cognition. Cambridge, MA: Harvard University Press. Tomasello, M. & Bates, E. 2001. Language Development: Essential Readings/ Blackwell Publishers. Tsao, F. F. 1989. Comparison in Chinese: A topic-comment approach. Tsing Hua Journal of Studies of Chinese Studies. New Series 19.1: 151-189. Wexler, K. & Culicover, P. W. 1980. Formal Principles of Language Acquisition. Cambridge, MA: MIT Press. Zhou, G. G. 1994. Chengdu fuci he chengdu chenshuju de neibu qubie. (Internal difference between degree adverbs and scalar declarative sentences.) In Jingbin Shao (eds.) Yufa Yanjiu yu Yufa Yingyong. 14-24. Beijing: Beijing Yuyan Yueyuan Chubanshe. Zhou, X. B. 1995. Lun Xiandai Hanyu de Chendu fuci. (Degree adverbs in modern Chinese.) Zhongguo Yuwen 2. 100-104.id NH0925462007 sid 894705 cfn 0 / id NH0925462008 auc 游凱凌 tic 對在中文口語中的功能及用法 adc 曹逢甫教授 ty 碩士 sc 國立清華大學 dp 語言學研究所 yr 92 lg 中文 pg 110 kwc 言談標記 kwc 對 kwc 語用標記 kwc 言談分析 abc 本論文旨在以言談-語用的觀點探討在自然而然產生出的漢語口語中,助詞「對」的功能及用法。 我們認為「對」除了是一個同意標記外,也可被用來使用於其他的語用意圖。藉由「對」在話中出現的位置,我們發現「對」可以是一個加強句子命題施為用意的基本標記。而當「對」是一個言談標記時,「對」不僅可以用來表示言談中互動程序的轉換,也反應出在溝通中說話者的心理概念運作情況。藉由布朗和列文森(Brown & Levinson 1987)及利奇(Leech 1983)所提出的理論方法,本文也對「對」在言談中如此普遍出現的情況提出解釋。本研究的結果顯現出,一、由於「對」本身所具有的肯定語意影響,「對」的命題意義和程序意義在話中各個位置互相的交錯影響;二、「對」的使用是心理驅動的,例如規劃標記;三、「對」的功能唯有在會話結構及語境因素都加以考量時,才能夠完整的呈現出。 tc TABLE OF CONTENTS CHAPTER ONE INTRODUCTION--------------------------------------------------1 1.1 GENERAL REMARKS----------------------------------------------------------------------------------------1 1.2 STRUCTURE OF THIS STUDY------------------------------------------------------------------------------- 5 CHAPTER TWO LITERATURE REVIEW--------------------------------------------- 6 2.1 DISCOURSE PARTICLES----------------------------------------------------------------------------------6 2.1.1 Reactive Tokens------------------------------------------------------------------------------------------7 2.1.2 Discourse Markers---------------------------------------------------------------------------------10 2.1.3 Pragmatic Markers---------------------------------------------------------------------------------15 2.2 PREVIOUS STUDY ON DUI IN MANDARIN CHINESE-----------------------------------------------------19 2.2.1 Kuo (1998): The Discourse functions of dui a in Spoken Mandarin-------------------------19 2.2.2 Wang (1998): The Linguistic Structures of Agreement and Disagreement in Mandarin Conversation------------------------------------------------------------------------------------------21 2.2.3 Chui (2002): Ritualization in Evolving Pragmatic Functions: A Case Study of Dui------------------------------------------------------------------------------------------------------21 2.2.4 Tsai (2001): The Discourse Function of the Dui Receipt in Mandarin Conversation ------23 CHAPTER THREE METHODOLOGY AND DATA------------------------------------26 3.1 THE MODEL---------------------------------------------------------------------------------------------------26 3.2 THE DATA-----------------------------------------------------------------------------------------------------28 CHAPTER FOUR DUI IN CONVERSATION-----------------------------------------30 4.1 DISTRIBUTION OF DUI---------------------------------------------------------------------------------------30 4.2 FUNCTIONS AND USAGES OF DUI--------------------------------------------------------------------------31 4.2.1 Turn –initial Dui-------------------------------------------------------------------------------------------32 4.2.1.1 Agreement Marker ---------------------------------------------------------------------------32 4.2.1.2 Reactive Tokens-------------------------------------------------------------------------------39 4.2.1.2.1 Back Channels and Reactive Expressions-------------------------------------------------39 4.2.1.2.2 Resumptive Opener and Acknowledgement Token---------------------------------------44 4.2.1.3 Planning Markers------------------------------------------------------------------------------50 4.2.2 Turn -interal Dui--------------------------------------------------------------------------------------------58 4.2.2.1 Agreement/ Confirmation Markers---------------------------------------------------------58 4.2.2.2 Framer-----------------------------------------------------------------------------------------67 4.2.2.3 Hesitation Markers--------------------------------------------------------------------------74 4.2.3 Turn-final Dui---------------------------------------------------------------------------------------79 4.2.3.1 Agreement/ Confirmation Markers--------------------------------------------------------79 4.2.3.2 Framer-----------------------------------------------------------------------------------------83 4.3 BASIC MARKERS AND DISCOURSE MARKERS-----------------------------------------------------------87 4.3.1 Basic Markers---------------------------------------------------------------------------------88 4.3.2 Discourse Markers---------------------------------------------------------------------------91 4.4 SUMMARY----------------------------------------------------------------------------------------------------93 CHAPTER FIVE CONCLUSION-------------------------------------------------------97 5.1 SUMMARY AND CONTRIBUTION---------------------------------------------------------------------------97 5.2 FURTHER DEVELOPMENT-----------------------------------------------------------------------------------102 APPENDIX--------------------------------------------------------------------------------------------105 REFERENCE-----------------------------------------------------------------------------------------106rf BIBLIOGRAPHY Beach, Wayne. 1993. Transitional regularities for ‘casual’ “okay” usages. Journal of Pragmatics, 19: 325-352. Blakemore, D.. 1987. Semantic constrains on relevance. Oxford: Blackwell. Brown, P., & Levinson, S. C.. 1987. Politeness: Some universals in language use. Cambridge, UK: Cambridge University Press. Chafe, Wallace. 1987. Cognitive constraints on information flow. In Russell Tomlin, ed., Coherence and grounding in discourse. Amsterdam: John Benjamins. pp. 21-51. Clancy, Patricia M., Sandra A. Thompson, Ryoko Suzuki and Hongyin Tao. 1996. The Conversational Use of Reactive Tokens in English, Japanese, and Mandarin. Journal of Pragmatics, 26: 355-387. Chen, Yiya & He, Agnes 1996. Dui bu dui as a pragmatic marker: evidence form Chinese classroom discourse. Journal of Pragmatics 33:1441-1465. Chui, Kawai. 2002. Ritualization in Evolving Pragmatic Functions: A Case Study of DUI. Language and Linguistics 3.4: 645-663. Coates, Jennifer. 1989. Gossip Revisited: Language in All-Femal Groups . IN J. Coastes and D. Cameron (eds.). Women in Their Speech Communities. 94-121. London:Longman. DuBois, John W. 1987. The discourse basis of ergativity. Language 63, 805-855. Drummond and Hopper 1993. Back channels revisited: Acknowledgement tokens and sperakership incipiency. Research on Language and Society Interaction 26: 157-177. Duncan, S. 1974. On the structure of speaker-auditor interaction during speaking turns. Language in Society, 2, 161-180 Fellegy, A. M. 1995. Patterns and functions of minimal response. American Speech 70: 186-199 Fraser, B. 1987. Pragmatic formatives. In J. Verschueren and M. Bertuccelli-Papi (eds.). The Pragmatic perspective. Amsterdam/Philadelphia: John Benjamins Company, 179-192. Fraser, B. 1990. An approach to discourse markers. Journal of Pragmatics 14: 383-395. Fraser, B. 1996. Pragmatic markers. Pragmatics 6:2.167-190. Fraser, B. 1999. What are discourse markers? Journal of Pragmatics 31:931-952. Goffman E.. 1981. Forms of talk, Univ. of Pennisylvania Press, Philadelphie. Goodwin, Charles. 1984. Notes on Story Structures and the Organization of Participation. In J. M. Atkinson and J. Heritage (eds.), Structures of Social Action: Studies in Conversation Analysis. Cambridge: Cambridge University Press. 225-246. Guthrie, A.M. 1997. On the Systematic Deployment of okay and mmhmm in academic advising sessions. Pragmatics 7(3): 397-415 . He, Agnes Weiyun and Lindsey, Brian. 1998. “You Know” as an information status enhancing device: Argument from grammar and interaction. Functions of Language 5(2) :133-155 Heritage, J. 1984. A Change-of-state token and aspects of its sequential placement. In Atkinson & Heritage (eds), Structures of Social Action: Studies in Conversation Analysis. Cambridge: Cambridge University Press, 299-345. Heritage, J. and M-L Sorjonen 1994. Constituting and maintaining activities across sequences: And-prefacing as a feature of question design. Language in Society 23: 1-29 Halliday, M. A. K., & Hasan, R. 1976. Cohesion in English. London: Longman. Jefferson, G. (1984) Notes on the systematic deployment of the acknowledgement tokens yeah and mm hm. Papers in Linguistics 17, 197-216. Kuo, Sai-hua. 1998. The discourse functions of dui a in spoken Mandarin. The Tsing Hua Journal of Chinese Studies. New Series, 28(4):505-529. Lambrecht, Knud. 1987. On the status of SVO sentences in French discourse. Coherence and Grounding in Discourse, ed. by Russell Tomlin, 217-261. Amsterdam: John Benjamins Leech, G. (1983). Principles of Pragmatics. Longman, London. Levinson, Stephen. 1983. Pragmatics. Cambridge: Cambridge University Press. Lin, Xiou-ru. 2000. Two Discourse Marker-Na and Ranhou in Chinese Discourse. Unpublished MA thesis, National Ting-Hua University (Hsinchu). Pomerantz, A. 1984. Agreeing and disagreeing with assessments: some features of preferred/dispreferred turn shapes. Structures of Social Action, Atkinson & Heritage (eds.), Cambridge University Press. Redeker, Gisela. 1990. Ideational and Pragmatic markers of discourse structure. Journal of Pragmatics 14:367-381. Redeker, Gisela. 1991. Linguistic markers of discourse structure. Linguistics 26, 1139-1172. Sacks, H., Schegloff, E.A., and Jefferson, G. 1974. A simplest systematics for the organization of turn-taking in conversation. Language 50:696-735 Schegloff, E.A. 1982 "Discourse as an interactional achievement: some uses of ‘uh huh’ and other things that come between sentences" in Tannen, D. Analyzing Discourse: Text and Talk. Georgetown University Round Table on Language and Linguistics. Georgetown: Georgetown University Press. Schiffrin, D.. 1987. Discourse Markers. Cambridge: Blackwell. Schourup, L.. 1985. Common Discourse Particles in English Conversation. New York: Garland. Searle, J. 1969. Speech Acts. Cambridge, UK: Cambridge University Press. Sinclair, J. and Coulthard, R. M. 1992. Towards an analysis of discourse. In Coulthard, R. M., editor, Advances in Spoken Discourse Analysis, pages 1–34. Routledge, London. Sperber, D. & Wilson, D.. 1986. Relevance. Oxford: Basil Blackwell. Von Wright, G. 1971. Explanation and Understanding. London: Routledge &Kegan Paul. Stenstrom, Anna-Brita. 1994. An Introduction to Spoken Interaction. London: Longman Tao, Hongyin. 1996. Units in Mandarin Conversation: Prosody, Discourse and Grammar. Amsterdam: Benjamins Tannen, Deborah. 1984. Conversational Style: Analyzing Talk among Friends. Norwood, NJ: Ablex Publishing Co. Tsai, Hsiu-chun. 2001. The Discourse Function of the Dui Receipt in Mandarin Conversation. Unpublished MA thesis, National Taiwan Normal University (Taipei). Tseng, Shu-chun. 2001. Highlighting utterances in Chinese spoken discourse. Paper presented at the 15th Pacific Asia Conference on Language, Information and Computation. Hong Kong. Traugott, E.C. 1989. On the rise of epistemic meanings in English: an example of subjectification in semantic change. Language 65:31-35. Wang, Yu-Fang. 1998. The Linguistic Structures of Agreement and Disagreement in Mandarin Conversation. Paper Presented at the Joint Meeting of the 7th International Conference on Chinese Linguistics and the 10th North American Conference on Chinese Linguistics, Standford University, California, U.S.A. Wierzbicka, A. 1991. Cross Cultural Pragmatics. The Semantics of Human Interaction. Berlin: Mouton de Gruyter. Yngve, V. H. (1970). On getting a word in edgewise. In Papers from the Sixth Regional Meeting of the Chicago Linguistic Society, pages 567-578. Chicago: Chicago Linguistic Society. Zimmerman, Don H.. 1993. Acknowledgement tokens and speakership incipiency revisited. Research on Language and Social Interaction 26:179-194.id NH0925462008 sid 904714 cfn 0 / id NH0925462009 auc 蕭伊玲 tic 泰雅語賽考立克方言之狀語研究 adc 蔡維天博士 ty 碩士 sc 國立清華大學 dp 語言學研究所 yr 92 lg 英文 pg 120 kwc 泰雅語 kwc 賽考立克方言 kwc 狀語 kwc 副詞 abc 本篇論文主要是對新竹縣尖石鄉泰雅語賽考立克方言之狀語進行研究,並嘗試依循Cinque (1999)之理論脈絡來建構泰雅語賽考立克方言中不同狀語之相對次序。本文前兩章為泰雅語賽考立克方言簡介以及文獻回顧。第三章則介紹賽考立克方言之狀語,第四章是時間狀語與主語感應現象之相關討論。 tc CHAPTER ONE INTRODUCTION……………………………………………1 1.0 Introduction………………………………………………………1 1.1 General Background………………………………………………2 1.2 The Phonemic Inventory…………………………………………3 1.3 The Word Order and the Voice System………………………4 1.3.1 The Word Order…………………………………………………4 1.4 The Pronominal System…………………………………………12 1.4.1 Personal Pronouns……………………………………………12 1.4.2 Demonstrative Pronouns and Interrogative Pronouns…20 1.5 The Case-marking System………………………………………22 1.6 Tense and Aspect Systems………………………………………24 1.6.1 Tense/Aspect System Expressed by Voice Affixes……25 1.6.2 Temporal/ Aspect System Expressed by Temporal/ Aspectual Markers …………………………………………………26 CHAPTER TWO LITERATURE REVIEW……………………………………31 2.1 Previous Researches in Atayal………………………………31 2.2 Previous researches on adverbs………………………………32 2.2.1 Alexiadou (1997) and Cinque (1999): Adverbials as specifiers………………………………………………………………33 2.2.1.1 Alexiadou’s (1997) approach …………………………33 2.2.1.2 Cinque’s (1999) approach………………………………34 2.2.2 Tang (2001): Adverbials as non-specifiers……………36 2.2.3 Kim’s (2000) analysis………………………………………36 2.3 Previous researches on adverbials in Austronesian languages………………………………………………………………38 2.3.1 Adverbs as Heads………………………………………………39 2.3.2 Adverbs as Predicates ………………………………………42 CHAPTER THREE ADVERBIALS IN ATAYAL………………………………48 3.0 Introduction………………………………………………………48 3.1 Classification of adverbials in Squliq Atayal…………49 3.2 Predicate-like adverbials……………………………………51 3.2.1 Characteristics of Manner Adverbials……………………52 3.2.1.1 Type Ⅰ………………………………………………………53 3.2.1.2 Type Ⅱ………………………………………………………57 3.2.1.3 Discussion …………………………………………………60 3.2.2 Resultative Expressions……………………………………64 3.2.3 Other Predicate-like Adverbials…………………………65 3.3 Adjunct-like adverbials………………………………………69 3.3.1 Layer I: at domain of speaker orientation (above Mod-AspP)……………………………………………………………………72 3.3.2 Layer II: between Mod-AspP and VoiceP…………………73 3.3.3 Layer IV: post-verbal adverbs……………………………75 3.4 Relative Order of Adverbials in Squliq……………………77 3.5 Conclusion...........................................80 CHAPTER FOUR TEMPORAL ADVERBIALS IN SQULIQ ATAYAL.........81 4.0 Introduction..........................................81 4.1 Previous Studies on Temporal Adverbials...............83 4.1.1 Previous Studies on Temporal Adverbials ............83 4.2 The Characteristics of Temporal Adverbials in Squliq Atayal....................................................85 4.3 Comparison with Seediq................................91 4.3.1 Syntactic position of temporal expressions like tomorrow and yesterday....................................92 4.3.2 Temporal interrogatives.............................93 4.4 Issues Related to Subject-Sensitivity.................97 4.4.1 Previous Studies related to Subject-Sensitivity.....97 4.4.2 Behaviors of Temporal Expressions in Some Formosan languages ...............................................100 4.4.2.1 Relativization..................................100 4.4.2.2 Questioning.....................................101 4.4.2.3 Cleft Sentences.................................103 4.4.2.4 Topicalization..................................105 4.4.3 The Problem.......................................108 4.5 On Account for the Free Distribution of Temporals in Squliq: adopt Tsai’s (2004) Analysis...................109 4.6 Conclusion..........................................111 CHAPTER FIVE CONCLUSIONS...............................113 REFERENCES..............................................115rf References Alexiadou, Artemis. 1997. Adverb Placement. Amsterdam: Benjamins, John Publishing Company. Chang, Chung Liang. 1996. A Study of Seediq Interrogatives. Master’s Thesis. Graduate Institute of Linguistics, National Tsing Hua University. Revised version. Chang, Henry Yung-Li. 1997. Voice, Case and Agreement in Seediq and Kavalan. Doctoal Dissertation. Graduate Institute of Linguistics, National Tsing Hua University. Chang, Henry Yung-Li. 1998. “[Tai Wan Nan Tao Yu Te Yen Chiu Hsien Kuang ]/State of Research of Formosan Languages.” Newsletter of Center for Taiwan Studies, 10: 7-23. Chang, Henry Yung-Li. 2004. “The guest playing host: Modifier as matrix verbs in Kavalan.” Paper presented at AFLA 11, Berlin, April. Chang, Melody Ya-Yin. 1997. “Preliminary Study of Wh-questions in Tsou.” Paper in Proceedings of NcEALL 1997, Taipei: National Taiwan Normal University, 101-112. Chang, Melody Ya-Yin. 1998a. “Clefts or Pseudo-clefts: A Case Study of Tsou.” Paper in Proceedings of NcEALL 1998, Taipei: National Taiwan Normal University, 65-78. Chang, Melody Ya-Yin. 1998b. Wh-constructions and the Problem of Wh-movement in Tsou. Hsinchu: National Tsing Hua Univeristy. MA Thesis. Chang, Melody Ya-Yin. 2004. Subjecthood in Tsou Grammar. Doctoal Dissertation. Graduate Institute of Linguistics, National Tsing Hua University. Chang, Melody Ya-Yin and Emma En-Hsing Liu. (to appear). “Process of grammaticalization of Manner expressions in Tsou and Amis.” Chomsky, Noam. 1995. The Minimalist Program. Cambridge, MA: MIT Press. Chomsky, Noam. 1998. “Minimalist Inquiries: The Framework.” MIT Occasional Papers in Linguistics 15. Chomsky, Noam.1999. “Derivation by Phase,” MIT Occasional Papers in Linguistics 18. Chomsky, Noam. 2000. “Minimalist Inquiries: The framework.” In Step by step: Essays on Minimalist Syntax in Honor of Howard Lasnik, ed. by Roger Martin, David Michaels, and Juan Uriagereka, 89-155. Cambridge, MA: MIT Press. Cinque, Guglielmo. 1999. Adverbs and Functional Heads: A Cross-Linguistic Perspective. Oxford University Press. Davidson, Donald.1967. “The Logical Form of Action Sentences”. The Logic of Decision and Action. ed. by N. Rescher. Pittsburgh: University of Pittsburgh Press. Egerod, S ren. 1965. “Verb Inflexion in Atayal.” Lingua, 15: 251-282. Egerod, S ren. 1966. “Word Order and Word Classes in Atayal.” Language, 42:346-369. Egerod, S ren. 1980. Atayal-English Dictionary. (= Scandinavian Institute of Asian Studies, Monograph Series No. 35). London: Curzon Press. Guilfoyle, E., H. Hung, and L. Travis. 1992. “Spec of IP and Spec of VP: Two Subjects in Austronesian Languages.” Natural Language and Linguistic Theory, 10: 375-424. Holmer, Arthur. 1993. “Atayal clitics and sentence structure”. Working Papers, 40: 71 - 94. Lund University: Dept of Linguistics. Holmer, Arthur. 2004. “Interposition and Formosan adverbial heads.” Paper presented at AFLA 11, Berlin, April. Huang, Lillian M. 1989. “The Pronominal System in Atayal.” Studies in English Literature & Linguistics, May: 115-133. Huang, Lillian M. 1991. “The Semantics of s- in Atayal.” Studies in English Literature & Linguistics, 17: 37-50. Huang, Lillian M. 1993. A Study of Atayal Syntax. Taipei: Crane. Huang, Lillian M. 1995. A Study of Mayrinax Syntax. Taipei: Crane. Huang, Lillian M. 2000. Reference Grammar of Atayal. Taipei: Yuan-Liou. (in Chinese) Jackendoff, Ray. 1972. Semantic Interpretation in Generative Grammar, Massachusettes, MIT Press. Kayne, Richard. 1994. The antisymmetry of syntax. Linguistic Inquiry Monograph 25. Cambridge, MA: MIT Press Keenan, Edward L. 1976. “Remarkable Subjects in Malagasy.” in Charles N. Li (ed.) Subject and Topic, New York: Academic Press. Keenan, Edward and Bernard Comrie. 1977. “Noun phrase accessibility and universal grammar.” Linguistic Inquiry 8, 63-99. Ko, Fa-quan Vincent and Wei-tien Dylan Tsai. 2001. "Subject-Sensitivity vs. Agent-Sensitivity." paper presented in The Joint Meeting of the Tenth Annual Meeting of International Association of Chinese Linguistics and the Thirteenth North American Conference on Chinese Linguistics, UC Irvine, USA. Kim, RhangHyeyun. 2000. “A Minimalist Account of the Distribution of Adverbs.” Studies in Generative Grammar, 10.2: 453-504. Li, Paul Jen-Kuei. 1980. “The Phonological Rules of Atayal Dialects.” Bulletin of the Institute of History and Philology, 51.2: 349-405. Taipei: Academia Sinica. Li, Paul Jen-Kuei. 1985. “Linguistic Criteria for Classifying the Atayalic Dialect Groups.” Bulletin of the Institute of History and Philology, 56.4: 699-718. Taipei: Academia Sinica. Li, Paul Jen-Kuei. 1995. “The Case-marking System in Mayrinax, Atayal.” Bulletin of the Institute of History and Philology, 66.1: 23-52. Taipei: Academia Sinica. Li, Paul Jen-Kuei. 1998a. “[Tao Lun ]/ Introduction (to Taiwan Aboriginal Culture).” [Tai San Yuan Chu Min Wen Hua Chi Ben Chiao Tsai ]/ Textbook for Taiwan Aboriginal Culture, ed. by National Institute for Compilation and Translation, 1: 1-42. National Institute for Compilation and Translation. (in Chinese) Li, Paul Jen-Kuei. 1998b. “The Dialectal Differences in Atayal in I-Lan.” Selected Papers from the Second International Synmposium on Languages in Taiwan. Li, Paul Jen-Kuei. 2000. “Formosan Languages: The State of the Art.” Austronesian Taiwan: Studies of the Indigenous People Known Historically as the Formosan Aborigines, ed. by David Blundell, 45-66. Berkeley: The Phoebe Museum of Anthropology. Liu, Emma En-hsing. 2003. Conjunction and Modification in Amis. Master’s Thesis. National Tsing Hua University. Mei, Kuang. 1994. “Word Order, Case, and Theta-agreement in Mayrinax Atayal.” Papers Presented at the First Symposium on Austronesian Languages of Taiwan. (in Chinese). Taipei: Academic Sinica. Mei, Kuang. 2002. “The Expression of Time in Tibeto-Burman.” Paper presented in GLOW in Asia, January 4-6, Tsing Hua University, Taiwan. Parsons, Terence. 1990. Events in the Semantics of English: a Study in Subatomic Semantics. Cambridge: MIT Press. Pesetsky, David, and Esther Torrego. 2001. T-to-C Movement: Causes and Consequences. In Ken Hale: A Life in Language, ed. by Michael Kenstowicz, 355-426. Cambridge, MA: MIT Press. Rackowski, Andrea. 1998. “Malagasy Adverbs” in The Structure of Malagasy, Volume II, ed. Ileana Paul, Los Angeles: UCLA Occasional Papers in Linguistics, 11-33. Rackowski, Andrea and Lisa Travis. 2000. “V-initial languages: X or XP movement and adverbial placement.” In Andrew Carnie & Eithne Guilfoyle (eds). The syntax of verb-initial languages. Oxford: OUP. 117 – 141. Rau, Der-Hwa. V. 1992. A Grammar of Atayal. Taipei: Crane. Richards, Norvin. 1997. What Moves Where in Which Language? MIT: PhD dissertation. Rizzi, Luigi. 1997. “The Fine Structure of the Left Periphery,” in Liliane Haegeman ed., Elements of Grammar: 281-338, Kluwer Academic Publishers, Dordrecht. Rizzi Luigi. 2002. “Locality and Left Periphery,” in Belletti, A., ed. (2002) Structures and Beyond. The Cartography of Syntactic Structures, vol. 3, OUP Tang, Jane Chih-Chen. 1990. Chinese Phease Structure and the Extended X’-Theory. Ph.D. dissertation, Cornell University. Tang, Jane Chih-Chen. 2001. “Functional Projections and Adverbial Expressions in Chinese.” Language and Linguistics, 2.2: 203-241. Taipei: Academic Sinica. Tsai, Dylan Wei-Tien. 1997. “Taiwan Nadaoyu Yiwencide Wudinyongfa” [Indefinite Wh-construals in Formosan languages: A Typological Study of Kavalan, Tsou, and Seediq ]. Tsing Hua Journal of Chinese Studies, New Series 27: 381-422. Tsai, Dylan Wei-Tien. 2003. “Lexical Courtesy Revisited: Evidence from Tsou and Seediq Wh-Constructions.” Gengo Kenkyu 123: 331-361. Tsai, Dylan Wei-Tien. 2004. “T-feature Checking and Temporal Adjuncts in Formosan Languages.” Paper presented at AFLA 11, Berlin, April. Tsai, Dylan Wei-Tien and Ya-Yin Melody Chang. 2003. “Two Types of WH-Adverbials: A Typological Study of How and Why in Tsou.” Linguistic Variations Yearbook. Amsterdam: John Benjamin’s publishing company. Travis, Lisa. 1988. “The syntax of adverbs.” McGill Working Papers in Linguistics, McGill University. Zeitoun, Elizabeth. 1996. “The Tsou Temporal, Aspectual and Modal System Revisited.” The Bulletin of the Institute of History and Philology Academic Sinica, 67.3: 503-532. Taipei: Academic Sinica. Zeitoun, Elizabeth, Lillian M. Huang, Marie M. Yeh, Anna H. Chang, and Joy J. Wu. 1996. “The Temporal, Aspectual, and Modal Systems of Some Formosan Languages: A Typological Perspective.” Oceanic Linguistics, 35.1: 22-56.id NH0925462009 sid 904709 cfn 0 / id NH0925462010 auc 賴蔚鍾 tic 漢語心理動詞的格式與語意 adc 連金發 ty 碩士 sc 國立清華大學 dp 語言學研究所 yr 92 lg 英文 pg 169 kwc 格式 kwc 語意 kwc 心理動詞 kwc 認知表現 abc 本研究中的「心理動詞」指描述感受或情感的動詞,如「愛」、「生氣」、「怕」等。先前已有不少研究針對漢語心理動詞的語法現象作過探討。其中不少是透過管束理論來看心理動詞的獨特性。此篇論文的重點則在於探討漢語感受動詞的語意及句法的互動關係。藉由不同感受類動詞所能進入的句式及格式,觀察彼此之間的語意差異,進而找出漢語感受動詞與其他類動詞的不同。 tc Table of Contents Page Chinese Abstract………………………………………………………i English Abstract………………………………………………………ii Acknowledgement………………………………………………………iii Table of Contents……………………………………………………iv Chapter 1 Introduction …………………………………………… 1 1.1 GB Approaches.……………………………………………2 1.2 Approaches to Aspectual Semantics.…………………4 1.3 Diathesis Approaches.…………………………………5 1.4 Corpus-based Approaches………………………………6 1.5 Remarks on the Four Approaches………………………7 1.6 Aims of This Thesis.…………………………….………8 Chapter 2 Basic Theoretic Notions .………………….10 2.1 Events……………………………………………………….10 2.2 Argument Structure………………………………………………15 2.3 Conceptual Structure……………………………………………18 2.4 Frame Semantics…………………………………………………21 2.5 Construction Grammar...………………………………………23 2.6 Diathesis Alternations…………………………………………25 2.7 Summary……………………………………………………………26 Chapter 3 Literature Review………………………………………27 3.1 Wu’s (1993) Lexical Decomposition Approach……………27 3.2 Pesetsky’s (1995) Zero Syntax………………………………30 3.3 Yang’s (2000) Null Operator Movement Hypothesis………33 3.4 Chang et al. (2000) and Their Morpho-Lexical Strategies………………………36 3.5 Liu’s (2002) Internal Cause and External Cause………39 3.6 Short Comments………………………………………………….40 Chapter 4 Data Analysis (1): Constructions and Issues……44 4.1 Selection of Verbs………………………………………………44 4.2 The Effect of Syllabic Number on Psychological Predicates……………………48 4.3 Conflation of Psychological Predicates……………………56 4.4 Basic Patterns and Collocations of Lexical Items………60 4.4.1 Ai4 愛 (Love)…………………………………………………63 4.4.2 Xi3-huan1 喜歡 (Like)….……………………………………69 4.4.3 Qi4 氣 (Anger or Get Angry)...……………………………71 4.4.4 Sheng1-qi4 生氣 (Get Angry)…….…………………………76 4.4.5 Pa4 怕 (Fear or Be Afraid)……….………………………79 4.4.6 Hai-pa4 害怕 (Be Afraid).………………………………82 4.5 Concluding Remarks…………………………………………87 Chapter 5 Data Analysis (2): Contrasts and Discussions…88 5.1 Transitivity—An Overview……………………………88 5.2 Complement Variants—A Closer Look…………………90 5.2.1 Ai4 and Xi3-huan1.….……………………………………91 5.2.2 Pa1 and Hai4-pa4………………………………………………93 5.2.3 Qi4 and Sheng1-qi4………………………………………….96 5.3 Agentivity……………………………………………………….101 5.3.1 Agentivity of Qi4………………………………………….102 5.3.2 Agentivity of Ai4-type Verbs……………………………103 5.3.3 Additional Remarks on Gu4-yi4 and Chuan2-xin1Chuan2-yi4…………104 5.4 Transitive Resultative………………………………106 5.4.1 Duplication of Psych Verbs………………………………107 5.4.2 Causative and Resultative Matter………………………108 5.4.3 Uniqueness of the Verb Pa4………………………………116 5.4.4 Event Types: A Rough Cut from the Complements………117 5.5 Degree……………………………………………………118 5.6 Location…………………………………………………122 5.6.1 Constructions Preserved for Psych Predicates………123 5.6.2 The Construction Preserved for Qi4……………………125 5.6.3 Status of Degree……………………………………………126 5.7 Passivization …………………………………………127 5.8 Intransitive Resultative……………………………130 5.8.1 Distinctive Constructions for Psych Verbs …………130 5.8.2 The Manner Matter…………………………………………132 5.8.3 Other Resultative Variants………………………………133 5.9 Causation……………………………………………………..136 5.10 Cognitive Representation…………………………139 5.11 Special Cases…………………………………………143 5.12 Concluding Remarks……………………………………145 Chapter 6 Conclusion……………………………………………147 References..……………………………………………….……...152 Appendix I: Table of Basic Patterns and Collocations……157 Appendix II: Verbs and Arguments on FrameNet………………164rf References Anderson, Stephen R. 1971. On the Role of Deep Structure in Semantic Interpretation. Foundations of Language 6: 197-219. Baker, M. 1988. Incorporation: A Theory of Grammatical Function Changing. Chicago: University of Chicago Press. Belletti, A. and L. Rizzi. 1988. Psych-Verbs and θ-Theory. Natural Language and Linguistic Theory 6: 291-352. Carlson, Greg. 1977. A Unified Analysis of the English Bare Plural. Linguistics and Philosophy 1: 413-457. Chang, Li-Li, Keh-Jann Chen and Chu-Ren Huang. 2000. Alternation Across Semantics Field: A Study of Mandarin Verbs of Emotion. International Journal of Computational Linguistics and Chinese Language Processing 5(1): 61-80. Chang, Li-li. et al. 2000. A Lexical-Semantic Analysis of Mandarin Chinese Verbs: Representation and Methodology. International Journal of Computational Linguistics and Chinese Language Processing 5(1): 1-18. Chao, Yuen Ren. 1968. A Grammar of Spoken Chinese. Berkeley: University of California Press. Chen, Dong-dong. 1994. UTAH: Chinese Psych Verbs and Beyond. In Jose Camacho and Lina Choueiri (eds.), Proceedings of the 6th North American Conference on Chinese Linguistics Vol. 1. Los Angles: GSIL, USC. Chomsky, Noam. 1981. Lectures on Government and Binding. Dordrecht: Foris. Davidson, Donald. 1967. The Logical Form of Action Sentences. In N. Rescher (ed.), The Logic of Decision and Action, 81-95. Pittsburgh: University of Pittsburgh Press. Reprinted in Davidson 1980. Davidson, Donald. 1980. Essays on Actions and Events. Oxford: Clarendon Press. Dowty, David R. 1979. Word Meaning and Montague Grammar: The Semantics of Verbs and Times in Generative Semantics and in Montague’s PTQ. Dordrecht: Reidel. Dowty, David. 1991. Thematic Proto-Roles and Argument Selection. Language 67: 547-619. Fillmore, Charles J. and Beryl T. Atkins. 1992. Toward a Frame-Based Lexicon: The Semantics of RISK and its neighbors. In A. Lahrer and E. Kittay (eds.), Frames, Fields, and Contrast, 75-102. Hillsdale, NJ: Erlbaum. Goldberg, Adele E. 1995. Constructions: A Construction Grammar Approach to Argument Structure. Chicago: The University of Chicago Press. Grimshaw, Jane. 1990. Argument Structure. Cambridge, Mass.: MIT Press. Hale, Kenneth, and Samuel J. Keyser. 1993. On Argument Structure and the Lexical Expression of Syntactic Relations. In K. Hale and S. J. Keyser (eds.), The View from Building 20, 53-109. Cambridge, Mass.: MIT Press. Hu, Yu-shu and Xiao Fan (eds.) 1995. Dongci Yanjiu [Studies on Verbs ]. Kaifeng: Henan University Press. Huang, Chu-ren, et al. 2000. The Module-Attribute Representation of Verbal Semantics: From Semantics to Argument Structure. International Journal of Computational Linguistics and Chinese Language Processing 5(1): 19-47. Huang, Han-Chun. 1998. Lexical Polysemy and Sense Extension in Verbs of Movement in Taiwanese Southern Min. M.A. Thesis. Hsinchu: National Tsing Hua University. Huang, Shuan-fan. 1974. Mandarin Causative. Journal of Chinese Linguistics 2(3): 354-369. Jackendoff, Ray. 1990. Semantic Structures. Cambridge, Mass.: MIT Press. Kratzer, Angelika. 1996. Severing the External Argument from its Verbs. In Johan Rooryck and Laurie Zaring (eds.) Phrase Structure and the Lexicon, 109-137. Dordrecht: Kluwer. Lakoff, George. 1970. Irregularity in Syntax. New York: Holt, Rinehart and Winston. Lakoff, George and Mark Johnson. 1980. Metaphors We Live by. Chicago: The University of Chicago Press. Langacker, Ronald W. 1991. Concept, Image and Symbol: the Cognitive Basis of Grammar. Berlin: Mouton de Gruyter. Levin, Beth, and Tova Rapoport. 1988. Lexical Subordination. Proceedings of the Chicago Linguistics Society 24, Part 1, 275-289. Chicago: Chicago Linguistics Society. Levin, Beth. 1993. English Verb Classes and Alternations--A Preliminary Investigation. Chicago: The University of Chicago Press. Lien, Chinfa. 1999. A Typological Study of Causatives in Taiwanese Southern Min. Tsing Hua Journal of Chinese Studies, New Series 29: 395-422. Liu, Mei-Chun. 2002. Mandarin Verbal Semantics: A Corpus-based Approach, 2nd Edition. Taipei: Crane Publishing Co. McCawley, James. 1968. Lexical Insertion in Transformational Grammar without Deep Structure. Proceeding of the Chicago Linguistic Society 4, 71-80. Chicago: Chicago Linguistics Society. Mei, Jia-ju, et al. 1993. Tongyici Cilin [Thesaurus ]. Taipei: Tung Hua Book Co. Perlmutter, D.M. and P. M. Postal. 1984. The 1-Advancement Exclusiveness Law. In D.M. Perlmutter and C. Rosen (eds.) 1984. Studies in Relational Grammar 2. Chicago: University of Chicago Press. Pesetsky, David. 1995. Zero Syntax: Experiences and Cascades. Cambridge, Mass.: MIT Press. Postal, Paul. 1971. Cross-over Phenomena. New York: Holt. Rinehart and Winston. Ryle, Gilbert. 1949. The Concept of Mind. Chicago: The University of Chicago Press. Saeed, John I. 1997. Semantics. Cambridge, Mass.: Blackwell Publisher. Shen, Jia-xuan. 2000. Jushi yu Peija [Syntax and Valency ]. Zhongguo Yuwen 277: 291-297 Tai, James H.-Y. 1985. Temporal Sequence and Word Order In Chinese. In John Haiman (ed.), Iconicity in Syntax, 49-72. Amsterdam: John Benjamins Publishing Company. Tai, James H.-Y. 2002. Conceptual Structures and Non-autonomous Syntax: Some Conceptualization Principles in Chinese Grammar. Contemporary Linguistics 4(1): 1-12 Tang, C. –C. Jane. 1989. Chinese Reflexives. Natural Language and Linguistics Theory 7: 93-121. Tang, Ting-chi. 1991. Hanyu Yufa de Bingru Xianxiang [Incorporation in Mandarin Grammar ]. Tsing Hua Journal of Chinese Studies, New Series 21: 1-63, 337-376. Teng, Shou-Hsin. 1996. Chinese Synonyms Usage Dictionary. Beijing: Beijing Language & Culture University Press. Tenny, Carol & James Pustejovsky (eds.) 2000. Events as Grammatical Objects: The Converging Perspective of Lexical Semantics and Syntax. Stanford: CSLI (Center for the Study of Language and Information) Publications. Tsai, Mei-Chih, Chu-Ren Huang and Keh-Jiann Chen. 1996. You Jinyici Bianyi Biaozhun Kan Yuyi Jufa Zhi Hudong [From Near-synonyms to the Interactions between Syntax and Semantics ]. In Y. Yin, et al. (eds.), Chinese Language and Linguistics V: Interactions in Language, 439-459. Taipei: Institute of Linguistics, Academia Sinica. Tsai, Mei-chih, Chu-Ren Huang, Keh-Jiann Chen, and Kathleen Ahrens. 1998. Towards a Representation of Verbal Semantics: An Approach Based on Near-Synonyms. Computational Linguistics and Chinese Language Processing 3(1): 62-74. Tsao, Feng-fu, L. Tsai and S. Liu. 2001. Shenti yu Piyu: Yuyian yu Renzhi de Shouyao Jiemian [Body and Metaphor: The Primary Interface between Language and Cognition ]. Taipei: Crane Publishing Co. Van Voost, Jan. 1992. The Aspectual Semantics of Psychological Verbs. Linguistics and Philosophy 15: 65-92. Vendler, Zeno. 1967. Linguistics in Philosophy. Ithaca: Cornell University Press. Wang, Hong-bin. 1998. Juedui Chengdu Fuci yu Xinli Dongci Zuhe ho suo Chuxian de Chengdu Yikong Fanchou [The Empty Categories Induced from the Combination of Absolute Degree Adverbs and Psych Verbs ]. Yantai Normal University Journal (Philosophy and Social Sciences Edition) 1998(1): 63-70. Wu, Xiu-zhi. Zoe. 1993. Psychological Predicates in Chinese. M.A. Thesis. Taipei: National Taiwan Normal University. Yang, Hua. 1994. Shilun Xinli Zhuangtai Dongci ji qi Binyu de Leixing [An Investigation on Psych Stative Verbs and their Object Types ]. Han-Yu Xue-xi 1994(3): 33-36. Yang, Su-fen. 2000. On Chinese Psych Verbs. M.A. Thesis. Hsinchu: National Tsing Hua University. Zhou, You-bin and Jing-min Shao. 1993. Hanyu Xin-li Dongci ji qi Juxing [Mandarin Psych Verbs and their Constructions ]. Yuwen YanJiu 48: 32-36, 48. Zipf, George Kingsley. 2000. The Psycho-biology of Language: An Introduction to Dynamic Philology. New York: Routledge. Online Resources: Academia Sinica Balanced Corpus of Modern Chinese: http://www.sinica.edu.tw/ftms-bin/kiwi1/mkiwi.sh FrameNet: http://www.icsi.berkeley.edu/~framenet/id NH0925462010 sid 904707 cfn 0 / id NH0925462011 auc 高詩婷 tic 台灣閩南語中詞幹與詞綴之間雙同子音的真實性 adc 王 旭 博士 ty 碩士 sc 國立清華大學 dp 語言學研究所 yr 92 lg 英文 pg 60 kwc 閩南語 kwc 詞綴 kwc 雙同子音 abc 台灣閩南語中,加上小稱詞綴“仔”(-a)會引起母音之間的子音有聲化及雙子音化的現象,長久以來一直受到觀察。例如 “竹子” tik a 的語音形式是[tik ga tc 中文摘要 i ENGLISH ABSTRACT ii ACKNOWLEDGEMENTS iii TABLE OF CONTENTS iv LIST OF TABLES vi TABLE OF CONTENTS CHAPTER ONE:INTRODUCTION 1 1.1 Introduction to Diminutive Suffix a53 in Taiwan Southern Min 1 1.2 The Phenomenon of Geminated Consonants between Stem and Suffix a 2 1.3 The Purpose of the Study 3 1.4 Organization of the Thesis 3 CHAPTER TWO: REVIEW OF THE LITERATURE 5 2.1 Researches on the Intervocalic Consonant between Stem and Suffix a 5 2.2 The Researches on the English Syllabification 7 2.3 The Researches on Word Games 8 2.4 The Assumption and Application in the Study 8 CHAPTER THREE: THE SYLLABLE-FLIP-FLOP TEST 9 3.1 Subjects 9 3.2 Stimuli 9 3.3 Design 11 3.4 Instrument 12 3.5 Procedure 13 3.6 Results 13 3.7 Discussion 22 CHAPTER FOUR: THE CONCEPT FORMATION EXPERIMENT 23 4.1 Subjects 23 4.2 Design 23 4.2.1 Introduction to Concept Formation Paradigm 23 4.2.2 The Application of Concept Formation Paradigm 24 4.3 Stimuli 25 4.4 Instrument 26 4.5 Procedure 27 4.6 Results and Discussion 28 4.7 Summary of the Results 36 CHAPTER FIVE: CONCLUSION 38 5.1 Conclusion of this Study 38 5.2 Suggestions for Further Research 41 REFERENCES 43 APPENDIXES 46 Appendix I: The Stimuli for Experiment 1 46 Appendix II: The Stimuli for Experiment 2 48 Appendix III: Language Background Questionnaire 60rf Bruce L. Derwing, Sook W. Cho, Y.B. Youn, and H. Samuel Wang, 1992. Syllable structure experiments in Korean, Taiwanese and Arabic. Proceedings of The Third International Symposium on Language and Linguistics: Pan-Asiatic Linguistics, Vol. 2, pp. 720-734. Bangkok, Thailand: Chulalongkorn University. Chung, R-F. 1996. The Segmental Phonology of Southern Min in Taiwan. Taipei: Crane. Hombert, Jean Marie. 1986. Word Games: Some Implication s for Analysis of Tone and Other Phonological Constructs. Experimental Phonology, ed. by J. Ohala and J. J. Jaeger, 175-186. London: Academic. Jaeger, Jeri. J. 1986. Concept Formation as a Tool for Linguistic Research. Experimental Phonology, ed. by J. Ohala and J. J. Jaeger, 211-237. Orlando: Academic. Katamba, Francis. 1989. An Introduction to Phonology. New York: Longman. Kenstowicz, Michael. 1992. Phonology in Generative Grammar. Oxford: Blackwell Publishers. Lin, Y-H. 1989. Autosegmental Treatment of Segemental Processes in Chinese Phonology. Ph.D. dissertation, UTA. Schane, S. A. 1973. Generative Phonology. New Jersey: Prentice-Hall, Inc. Treiman, R., and C. Danis. 1988. Syllabification of Intervocalic Consonants. Journal of Memory and Language 27. 87-104. Treiman, R., and A. Zekowski. 1990. Toward an Understanding of English Syllabification. Journal of Memory and Language 29. 66-85. Treiman, R. 1992. Experimental Studies of English Syllabification. Phonologica 1988.Cambridge Univ. Press. Wang, S-P. 1992. The Intergration of Phonetics and Phonology: A Case Study of Taiwanese “Gemination” and Syllable Structure. Proceedings of the 1992 International Conference on Spoken Language Processing, pp. 1327-1330. Edmonton, Canada.: University of Alberta. Wang, H. S. 1995. "Are Taiwanese Syllables Segmented into Phoneme-Sized Units?" Presented at the Joint Meeting of the Fourth International Conference on Chinese Linguistics (ICCL-4) and the Seventh North American Conference on Chinese Linguistics (NACCL-7). Proceedings edited by Tsai-Fa Cheng. Yafei Li and Hongming Zhang, published by GSIL, University of Southern California, Vol.2.pp. 362-378. Wang, H. S. 1995b. An Experimental Study on the Segmentation of Taiwanese Syllables. Proceedings of the XIIIth International Congress of Phonetic Sciences, Stockholm, Sweden. Vol. 3, pp. 394-397. Wang, H. S. 1998b. A Concept Formation experiment on the nasality of vowels in Taiwan Min. Presented at the Sixth International Symposium on Chinese Language and Linguistics, Academia Sinica, July 14-16, 1998. (NSC 87-2411-H-007-007) Wang, H. S. 2001. The Perception of Nasality in Taiwan Min syllables. Proceedings of the National Science Council. Taipei, Taiwan: National Science Council, R.O.C. 王旭,1996。〈利用語言遊戲測試台閩語的次音節單位〉《國科會語言學門專題計畫研究成果發表會論文集》 pp. 1.1-1.6. 南港:中研院史語所。 王旭,2000。〈音韻學的實驗研究〉。 漢學研究 18:7-23 台北:漢學研究中心。 洪惟仁,1996。台灣話音韻入門。台北:國立台北劇藝實驗學校。 張振興,1989。台灣閩南方言記略。台北:文史哲出版社。 連金發,2000。〈構詞學問題探索〉。漢學研究 18:61-78 台北:漢學研究中心。 楊秀芳,1991。台灣閩南語語法稿。台北:大安出版社。 鄭良偉,1977。台灣福建話的語音結構及標音法。台北:台灣學生書局。 鄭良偉,1997。台語的語音和語法。台北:遠流出版社。id NH0925462011 sid 894714 cfn 0 / id NH0925462012 auc 黃鴻盛 tic 台灣華語形狀量詞的真實性 adc 王旭 ty 碩士 sc 國立清華大學 dp 語言學研究所 yr 92 lg 英文 pg 80 kwc 分類 kwc 華語形狀量詞 kwc 評分測驗 kwc 反應時間測驗 abc 分類的概念在人類的認知行為或語言使用上扮演著重要的角色。華語是一個量詞性的語言,而量詞的選擇則是根據名詞的語意特質所決定的。本論文針對華語形狀量詞(一維量詞︰根、支/枝、條;二維量詞:張、面、片;三維量詞:顆、粒)做為研究基礎,並以兩個實驗(評分實驗及反應時間實驗)的結果與過去文獻做比較,找出現代華語形狀量詞使用的真實性。我們發現,現在的量詞使用與過去相較之下,存在其量詞間的語意界線越來越不明顯。 tc TABLE OF CONTENTS ENGLISH ABSTRACT……...…………………………………………………..i CHINESE ABSTRACT..………………………………………………………..ii ACKNOWLEDGEMENTS..…………………………………………………..iii TABLE OF CONTENTS……………………………………………………….iv LIST OF TABLES……………………………………………………………….vii LIST OF FIGURES………………………………...............................................ix CAPTER 1. INTRODUCTION..…………………….………………………..1 1.1 Introduction……………………………………………….………………….1 1.2 Purposes of the Study…………………………………….…………………..4 1.3 Organization of the Thesis……………………………….………….………..5 CHAPTER 2. REVIEW OF LITERATURE……………………………….6 2.1 The Development of Categorization Thesis…………………………….……6 2.2 Some Concepts of Mandarin Noun Classifiers………………………………9 2.2.1 Classifiers versus Measure Words…………………………………...10 2.2.2 Categories of Mandarin Classifiers………………….………………13 2.2.3 Semantic Features of Mandarin Shape Classifiers…………….…….14 2.2.3.1 One Dimensional Classifiers (Longness)…………….……15 2.2.3.2 Two Dimensional Classifiers (Flatness)……………….…..16 2.2.3.3 Three Dimensional Classifiers (Roundness)………………18 CHPTER 3. THE EXPERIMENT……………………………………..…...19 3.1 Experiment I (Rating Test)………………………………………………….19 3.1.1 Subjects…………………………………………..……………….....19 3.1.2 Stimuli…………………………………………………………….....19 3.1.3 Procedures…………………………………………….......................20 3.1.4 Results…………………………………………………………….....21 3.1.4.1 One Dimensional Classifiers……………………………..…23 3.1.4.2 Two Dimensional Classifiers……………………..................26 3.1.4.3 Three Dimensional Classifiers……………………………...29 3.2 Experiment II (Reaction Time Test)………………………………………...31 3.2.1 Subjects………………………………………………………..….....31 3.2.2 Stimuli…………………………………………………………….....31 3.2.3 Procedures……………………………………………..………..…...32 3.2.4 Results…………………………………………………..………..….33 CHAPTER 4. DISCUSSION.………………………..………….……………37 4.1 One Dimensional Classifiers………………………………………………..38 4.2 Two Dimensional Classifiers………………………………………..............42 4.3 Three Dimensional Classifiers………………………………………….......45 4.4 Prototype and Family Resemblance in Each Classifier……………………..48 4.4.1 One Dimensional Classifiers………………….……………………..49 4.4.2 Two Dimensional Classifiers……………………………...................52 4.4.3 Three Dimensional Classifiers……………………………..………..54 CHAPTER 5. CONCLUSION AND IMPLICATIONS...……………...55 5.1 Conclusion…………………………………………………………….…….55 5.2 Implications and Further Research…………………………….……………56 5.2.2 Implications………………………………………………………….56 5.2.3 Further Research…………………………………………………….56 REFERENCES…………………………………………………………………..58 APPENDIX……………………………………………………….……………….61 Appendix I: Answer Sheet of the Rating Test……………………………………...61 Appendix II: Reaction Time Test……………………………………………...…...66 Appendix III: The Average Rating Scores of Each Item and Its Acceptability..…..67 Appendix IV: The Frequency and Average Scores of Rating Test……………........71 Appendix V: The Frequency (F), Average (AVE) and Standard Deviation (SD) on YES Reaction Time………………………………………….75 Appendix VI: The Frequency (F), Average (AVE) and Standard Deviation (SD) on NO Reaction Time…………………………………………….78 LIST OF TABLES Table 1 Background Information of the Rating Test Subjects………………….……19 Table 2 The Highest and Lowest Scores in Each Level………………………….…..22 Table 3 The Ratio of One Dimensional Noun Counts in Each Physical Attribute.…..23 Table 4 Semantic Features of One Dimensional Classifiers………………………....24 Table 5 The Shared Semantic Properties of Each Two Classifiers………………..….24 Table 6 The Object with the Highest Score in the Good Use Level and the Lowest Score in the Ok Use Level to Each Physical Attribute…………….…….….25 Table7 The Ratio of Two Dimensional Noun Counts in Each Physical Attribute…...26 Table 8 Semantic Features of Two Dimensional Classifiers………………………....27 Table 9 The Shared Semantic Properties of Each two Classifiers…………………....28 Table 10 The Object with the Highest Score in the Good Use Level and the Lowest Score in the Ok Use Level to Each Physical Attribute…………….………28 Table11 The Ratio of Three Dimensional Noun Counts in Each Physical Attribute...29 Table 12 Semantic Features of Three Dimensional Classifiers……………………....29 Table 13 The Shared Semantic Properties of Both Ke and Li………………………..30 Table 14 The Object with the Highest Score in the Good Use Level and the Lowest Score in the Ok Use Level to Each Physical Attribute…………….………30 Table 15 Background Information of the Reaction Time Test Subjects………...…...31 Table 16 Idealized Norm vs. Realities in Singapore………………………………....37 Table 17 The Idealized Norm and Reality of One Dimensional Classifiers in Taiwan…………………………………………………………………..38 Table 18 The Idealized Norm and Reality of Two Dimensional Classifiers in Taiwan…………………………………………………………………..42 Table 19 The Idealized Norm and Reality of Three Dimensional Classifiers in Taiwan…………………………………………………………………..46 Table 20 The Precious Objects and Their Correlated Classifiers’ Rating Values..…...47 Table 21 The Precious Objects and Their Correlated Classifiers’ Reaction Time Values……………………………………………………...47 Table 22 The Idealized Norm and Real Usage of Ke Family in Taiwan………….….48 Table 23 Family Resemblance of Each Classifier…………………………………....48 LIST OF FIGURES Fig 1 The correlation of rating test and reaction time test…………………….…….33 Fig 2 The correlation of rating test (score 1~5) and NO-button reaction time test….34 Fig 3 The correlation of rating test (score 5.1~10) and YES-button reaction time test…35 Fig 4 Two models for one-dimensional classifiers………………………………..…39 Fig 5 Lien and Wang’s model (1999) for one-dimensional classifiers…………..…..40 Fig 6 Our model for one-dimensional classifiers…………………………………….40 Fig 7 Our model for two-dimensional classifiers…………………………………….44rf REFERENCES Alan, Keith. 1977. ‘Classifiers.’ Language 53:2, 285-311. Ahrens, Kathleen. 1994. ‘Classifiers Production in Normals and Aphasics.’ Journal of Chinese Linguistics 22:2, 202-246 Aikhenvald, Alexandra Y. 2000. Classifiers: A Typology of Noun Categorization Devices. Oxford: University of Oxford Press. Berlin, Brent and Paul Kay. 1969. Basic Color Terms: Their University and Evolution. Berkeley: University of California Press. Brown, C. H. 1979. ‘A theory of lexical change (with examples from folk biology, anatomical partonomy, and other domains)’, Anthropological Linguistics 21: 257-6. Chang-Smith, Meiyun. 2000. ‘Empirical Evidence for Prototypes in Linguistic Categorization Revealed in Mandarin Numeral Classifiers.’ Journal of the Chinese Language Teachers Association 35:2, 19-52. Chao, Yuen Ren. 1968. A Grammar of Spoken Chinese. Berkeley: University of California Press. Chen, Baocun, Chen Guicheng, Chen Hao, Zhang Zaizhan. 1988. Hanyu Liangci Cidian (A Dictionary of Chinese Classifiers). Fuzhou: Fujian Renmin Chubanshe (People’s Publications) Chen, Rong-an. 1999. The Semantics of Chinese Classifiers─ A Historical Perspective. Taipei: The Crane Publishing. Denny, J. Peter. 1976. ‘What are Noun Classifiers Good For?’ In Papers from the Twelfth Regional Meeting, Chicago Linguistics Society, pp122-32. Chicago: Chicago Linguistic Society. Frumkina, Rebecca M. and Alexei V. Mikhejev. (1996). Meaning and Categorization. New York: Nova Science Publishers. Guo, Xianchen. 1987. Xiandai Hanyu Liangci Shouce (A handbook of classifiers in Modern Chinese). Beiing: Zhonggguo Heping Chubanshe (China Peace Publications). Hu, Fu. 1957. Shuci He Liangci (Numerals and classifiers). Hanyu Zhishi Jianghua Series. Shanghai: Jiaoyu Chubanshe (Education Publications). Reprinted in 1984 and 1985. Huang, Juren, Chen Kejian, Lai qinxong .1997. GuoyuRibao Liangcidian (Mandarin Classifiers Dictionary). Taipei: Guoyu Ribao Publications. Lakeoff George. 1987. Women, Fire and Dangerous Things: What Categories Reveal about the Mind. Chicago: University of Chicago Press. Li, Charles and Sandra Thompson. 1981. Mandarin Chinese: A Functional Reference Grammar. Berkeley: University of California Press. Lien, Chinfa and Penying Wang. 1999. ‘Shape Classifier in Mandarin and Taiwanese-A Psycholinguistic Perspective.’ In Ovid Tzeng, ed. The Biological Bases of Language. Journal of Chinese Linguistics Monograph Series No 13. University of California at Berkeley 189-221. Loke, Kit-Ken. 1996. ‘Norms and Realities of Mandarin Shape Classifiers.’ Journal of the Chinese Language Teachers Association 31.2:1-22. Lu, Shuxiang. 1980. Xiangdai Hanyu Babai Ci (800 Expressions in Modern Chinese grammar). Beijing: Shangwu Yingshuguan (Commercial Publications). Myers, James. 2000. ‘Rules vs. Analogy in Mandarin Classifier Selection.’ Language and Linguistics 1:187-209. Myers, James and Jane Tsay. 2002 ‘Grammar and Cognition in Sinitic Noun Classifier Systems’ Proceedings of the First Cognitive Linguistics Conference 199-217. Rosch, Eleanor. 1975. ‘Cognitive Reference Points.’ Cognitive Psychology 7:532-547. Senft, Gunter. 2000. Systems of Nominal Classification. Cambridge: Cambridge University Press. Shi, Yu-Zhi. 1996. ‘Proportion of Extensional Dimensions: the Primary Cognitive Basis for Shape-based Classifiers in Chinese.’ Journal of the Chinese Language Teachers Association 31.2:37-59. Tai, James H-Y and Lianqing Wang. 1990. ‘A semantic Study of the Classifier Tiao.’ Journal of the Chinese Language Teachers Association 25.1:35-56. Tai, James H-Y and Fang-Yi Chao. 1994. ‘A semantic Study of the Classifier Zhang.’ Journal of the Chinese Language Teachers Association 29.3:67-78. Tai, James H-Y and Lianqing Wang. 1994. ‘Chinese Classifier Systems and Human Categorization.’ In Matthew Chen and Ovid Tzeng, eds. Essays in Honor of Professor Williams S-Y Wang, 479-494. Taipei: Pyramid Publishing Company. Tai, James H-Y. 1996. ‘Categorization Patterns of Classifiers in Taiwanese Southern Min and Their Cognitive Principles.’ [in Chinese ] National Science Council project report, Taiwan, NSC 86-2411-H-194-005. Tsobatzidis, Savas L. 1990. Meanings and Prototypes: Studies in Linguistic Categorization. Landon: Routledge and New York: Champan and Hall. Wang, Li. 1959. Zhongguo Xiandai Yufa (Modern Chinese grammar), 2 Volumes. Hong Kong: Zonghua Shuju (Zhonghua Book Store). Reprinted in 1971. First published in Beijing in 1943. Wang, Li. 1987. Zhongguo Yufa Lilun (Theory of Chinese Grammar). Vol. 2. Taichung: Landeng. Wittgenstein, Ludwig. 1953. Philosophical Investigations. New York: Macmillan.id NH0925462012 sid 874711 cfn 0 / id NH0925462013 auc 林宛縈 tic 泰雅語方言母音加插與重疊詞之分析 adc 黃慧娟 ty 碩士 sc 國立清華大學 dp 語言學研究所 yr 92 lg 英文 pg 80 kwc 重疊詞 kwc 優選理論 abc 本文主要是探討泰雅方言母音加插與重疊詞這兩個議題,並且利用優選理論比較母音加插與重疊詞之間的關聯性。本研究的方言區域範圍包括新竹縣尖石鄉新樂村之賽考列克方言、新竹縣尖石鄉梅花村之泰雅方言、以及苗栗縣泰安鄉大興村之澤敖利方言。除了實地田野調查收集不同方言語料之呈現,研究方法以優選理論為主,進而分析上述方言異同之處。 rf Anttila, Arto. 2002. Morphologically Conditioned Phonological Alternations. Natural Languages & Linguistic Theory 20: 1-42. Chang, Ya-Ying. 2001. Reduplication in Tsou. Proceedings of 2001 National Conference on Linguistics, Taiwan. Chang, Yung-Li. 2000. Quantification and Distributivity in Tsou. Proceedings of the Symposium on Selected NSC Projects in General Linguistics from 1998-2000. Normal Taiwan University. Crowhurst, Megan. 2004. Mora Alignment. Natural Language & Linguistic Theory 22: 127-177, 2004. Kluwer Academic Publishers. Downing, Laura. 2000. Morphological and Prosodic Constraints on Kinande Verbal Reduplication. Phonology 17: 1-38. Egerod, S?穋en. 1965a. Verb Inflexion in Atayal. Lingua 15: 251-282. Egerod, S?穋en. 1966a. A Statement on Atayal Phonology. Artibus Asiae Supplementum XXIII (Felicitation Volume for the 75th Birthday of Prof. G.H. Luce) 1: 120-130. Egerod, S?穋en. 1966b. Word Order and Word Classes in Atayal. Language 42. (2): 346-369. Egerod, S?穋en. 1980. Atayal-English Dictionary. Scandinavian Institute of Asian Studies Monograph no.35. London: Curzon Press. Gafos, Adamantios. 1998. A-templatic Reduplication. Linguistic Inquiry 29 (3): 515-527. Hendricks, Sean. 1999. Reduplication without Template Constraints: A Study in Bare-Consonant Reduplication. PhD Dissertation. University of Arizona. Hendricks, Sean. 2001. Bare-consonant Reduplication without Prosodic Templates: Expressive Reduplication in Semai. Journal of East Asian Linguistics 10: 287-306. Huang, J. Hui-Chuan. 2004. The Avoidance of High-Sonority Onsets in Squliq Atayal. Paper Presented at the 11th Austronesian Formal Linguistics Association Annual Meeting. Berlin, Germany. Huang, Lillian M. 1995a. A Study of Mayrinax Syntax. Taipei: Crane. Huang, Lillian M. 1995b. The Syntactic Structure of Wulai and Mayrinax Atayal: a Comparison. Bulletin of National Taiwan Normal University Vol 40: 261-294. Itô, Junko. 1989. A Prosodic Theory of Epenthesis. NLLT 7: 217-259. Lakoff, George and Mark Johnson. 1980. Metaphors We Live By. Chicago: University of Chicago Press. Kager, Renĕ. 1999. Optimality Theory. UK: Cambridge Textbooks in Linguistics. Kiyomi, Setsuko. 1995. A New Approach to Reduplication: A Semantic Study of Noun and Verb Reduplication in the Malayo-Polynesian Languages. Linguistics 33 (6): 1145-1167. Kuijpers, C.T.L., Van Donselaar, W.A. & Cutler, A.. 1996. Phonological Variation: Epenthesis and Deletion of Schwa in Dutch. In H.T. Bunnell, & W. Idsardi (Eds.), Proceedings of the 4th International conference on spoken language processing (ICSLP) 1996 (pp. 94-97). New Castle DE: Citation Delaware. Lambert, Mae. 1999. Epenthesis, Metathesis, and Vowel-Glide Alternation: Prosodic Reflexes in Mabalay Atayal. MA Thesis. National Tsing Hua University. Li, Paul Jen-Kuei. 1977. Morphophonemic Alternations in Formosan Languages. Bulletin of the Institute of History and Philosophy, Academia Sinica 48: 273-300. Li, Paul Jen-Kuei. 1980. The Phonological Rules of Atayal. Bulletin of the Institute of History and Philology, Academia Sinica 51, (2): 349-405. Li, Paul Jen-Kuei. 1985a. Linguistic Criteria for Classifying the Atayalic Dialect Groups. Bulletin of the Institute of History and Philology, Academia Sinica 56, (4): 699-717. Taipei: Academia Sinica. Lin, Hui-Shan. 2002. Amis Reduplication and Template Morphology. Proceedings of 2002 National Conference on Linguistics. Lu, Shun-Chieh. 2002. Prosodised Triplication. Proceedings of 2002 National Conference on Linguistics. Lu, Shun-Chieh. 2003. An Optimality Theory Approach to Reduplication in Formosan Languages. MA Thesis. National Cheng Chi University. Marantz, Alec. 1982. Re Reduplication. Linguistic Inquiry 13 (3): 435-482. McCarthy, John and Alan Prince. 1986. Prosodic Morphology. Ms., University of Massachusetts, Amherst and Brandeis University. McCarthy, John and Alan Prince. 1990. Foot and Word in Prosodic Morphology: The Arabic Broken Plural. Natural Language and Linguistic Theory 8: 209-283. McCarthy, John and Alan Prince. 1993. Generalized Alignment. Yearbook of Morphology: 79-153. Dordrecht: Kluwer. McCarthy, John and Alan Prince.1994a. The Emergence of the Unmarked: Optimality in Prosodic Morphology. In M. Gonzalez (ed.). Proceeding of the North East Linguistic Society 24: 333-379. McCarthy, John and Alan Prince. 1994b. "Two Lectures on Prosodic Morphology". Part I, Template from in Prosodic Morphology. Part II, Faithfulness and Reduplicative Identity. Handouts of Two Lectures at OTS/HIL Workshop on Prosodic Morphology, Utrecht University. McCarthy, John and Alan Prince.1995a. Faithfulness and Reduplicative Identity. University of Massachusetts Occasional Paper in Linguistics18: Papers in Optimality Theory: 249-384. McCarthy, John and Alan Prince.1995b. Prosodic Morphology. In John Goldsmith (ed.), The Handbook of Phonological Theory, pp. 318-366. Cambridge, Mass: Blackwell. McCarthy, John and Alan Prince.1999. Faithfulness and Identity in Prosodic Morphology. In Rene Kager, Harry Van Der Hulst, and Wim Zonneveld (eds.) The Prosody-Morphology Interface, pp, 218-309. Cambridge University Press. Nikolaeva, Irina. 2001. The Status of Schwa in the Phonological Description of Northern Ostyak. In Finnisch-ugrische Mitteilungen 23: 121-148. Orgun, Cemil Orhan. 2000. Review. Phonology 17: 137-142. Rau, Der-Hwa Victoria. 1992. A Grammar of Atayal. Taipei: The Crane Publishing Co. Shih, Yu-Mien. 1996. Yami Morphology. MA Thesis. Taichung: Providence University. Steriade, Donca. 1988. Reduplication and Syllable Transfer in Sanskrit and Elsewhere. Phonology 5: 73-155. Tseng, Meylysa. 2002. Paiwan Reduplication: Meaning and Structure. Proceedings of 2002 National Conference on Linguistics: 203-22. Tseng, Meylysa. 2003. Reduplication as Affixation in Paiwan. MA Thesis. National Chung Cheng University. Tsuchida, Shigeru. 1983. Austronesian Languages in Taiwan (Formosa). In S. A. Wurm and Hiro Hattori, eds. Language Atlas of the Pacific Area. Canberra: The Australian National University. Vaux, Bert. 1998. The Phonology of Armenian. Oxford: Clarendon Press. Yamada, Yukihiro and Ying-Chu Liao. 1974. A Phonology of Tayal, Research Reports of the Kochi University 23 (6): 109-117. Yeh, Shih-Chi. 2003. Syllabification and Reduplication in Amis. MA Thesis. National Tsing Hua University. Yeh, Shih-Chi. 2004. Reduplication and Right-edge Faithfulness in Amis. The 30th Annual Meeting of the Berkeley Linguistics Society. Yip, Moria. 1982. Reduplication and C-V Skeletal in Chinese Secret Languages. Linguistic Inquiry Volume13 (4): 637-661.id NH0925462013 sid 904705 cfn 0 / id NH0925462014 auc 劉昆龍 tic 論賽考利克泰雅語關係子句 adc 蔡維天 ty 碩士 sc 國立清華大學 dp 語言學研究所 yr 92 lg 英文 pg 199 kwc 賽考利克泰雅語 kwc 關係子句 kwc 外在型關係子句 kwc 內在型關係子句 kwc 詞組結構 kwc 移位 abc 本論文從田調語言學和衍生句法學的角度,研究尖石地區賽考利克泰雅語的關係子句。帶有連繫詞ka?祖疑鰜Y子句和不帶有連繫詞ka?祖疑鰜Y子句,證明為兩種不同的關係子句。前者結構上為「外在型關係子句」,語意上為「限制性關係子句」;而後者結構上為「內在型關係子句」,語意上為「非限制性關係子句」。這項區別可以由詞序、接應代詞、時間狀語和專有名詞等證據支持。連繫詞ka?砟 tc English Abstract i Chinese Abstract iii Acknowledgements iv Table of Contents vi Abbreviations & Symbols xi Chapter One: Preamble 1 1. Introduction 1 2. The Linguistic Status of Squliq Atayal 1 2.1 The Austronesian Family & Formosan Languages 1 2.2 Squliq Atayal in Formosan Languages 3 3. Organization of this Thesis 5 4. Summary 6 Chapter Two: A Sketch of Squliq Atayal Grammar 7 1. Overview 7 2. Phonology and Orthography 7 2.1 Phonemic Inventory 7 2.2 Prosodic Structure & Stress 9 2.3 Orthography 11 3. Syntax 12 3.1 Predicate-initial Language 13 3.2 Case-marking System 15 3.3 Personal Pronominal System 17 3.3.1 Person & Number 17 3.3.2 Bound Pronouns as Clitics 18 3.3.3 Independent Pronouns 22 3.4 Voice/Focus System 23 3.4.1 What’s the Voice/Focus System? 24 3.4.2 Four Voices in Squliq Atayal 26 3.5 Modal, Temporal and Aspectual System 29 3.5.1 Classification 29 3.5.2 Morphological Realizations 31 3.5.3 Auxiliaries 33 4. Summary 34 Chapter Three: Relative Clauses & Complementizer Ka?? 36 1. Overview 36 2. Literature Review 36 2.1 RCs in Wulai Atayal 37 2.2 RCs in Mayrinax Atayal 38 2.3 Comparison 40 3. One or Two? 41 3.1 Subject-sensitivity 41 3.2 Ka??-RCs vs. Bare RCs 46 3.2.1 Word Order 46 3.2.2 Resumptive Pronoun 49 3.2.3 Temporal Adverbial 55 3.2.4 Proper Name 60 3.3 Two Kinds of RCs 62 4. The Syntactic Status of Ka?? 63 4.1 Three Possibilities 63 4.2 Ka?? as a Complementizer 65 4.2.1 Morphology 66 4.2.2 Free Relatives 67 4.2.3 Attributive Modification 69 4.2.4 Case System 71 4.3 Additional Evidence from other Formosan Languages 71 5. Summary 74 Chapter Four: Externally Headed Relative Clauses 75 1. Overview 75 2. Theoretical Background 75 2.1 The Standard Approach 75 2.2 The Kaynian Approach 78 2.3 Brief Comparison 83 3. Phrase Structure 85 3.1 Adjunction vs. Complementation 85 3.2 Linear Order 87 3.3 Demonstratives & Possessives 90 3.3.1 Postnominal DPs 90 3.3.2 The Standard Account 93 3.3.3 The Kaynian Account 97 3.3.4 Possessives & RCs 102 3.4 Stacked EHRCs 105 3.4.1 Stacking of RRCs 105 3.4.2 Two Postnominal Modifiers 109 3.4.3 Complement Clause & RC 113 3.5 The Optimal Phrase Structure 116 3.5.1 The Standard View 116 3.5.2 The Kaynian View 117 3.5.3 Optimal Choice 119 4. Internal Structure of EHRCs 120 4.1 Island Effects 120 4.2 Subject-sensitivity 127 4.3 Resumption 131 4.4 Adjunct Relativization 134 4.5 The Optimal Approach 137 4.5.1 The Head-Raising Approach 137 4.5.2 The Pro Approach 141 5. Summary 146 Chapter Five: Internally Headed Relative Clauses 148 1. Overview 148 2. Theoretical Background 148 3. Properties and Phrase Structure 150 3.1 Not Adverbial Clauses 150 3.2 Temporal Adverbial 154 3.3 No Definiteness Restriction 156 3.4 Island Effects 158 3.4.1 Prenominal Bare RCs 159 3.4.2 Postnominal Bare RCs 167 3.5 Existential Implication 171 3.6 Nominalized Clauses 172 3.6.1 Analysis of Prenominal Bare RCs 174 3.6.2 Analysis of Postnominal Bare RCs 177 3.6.3 On Definiteness Restriction & Existential Implication 179 4. Non-restrictive? 180 4.1 Negative Scope 180 4.2 Stacking 181 4.3 Aboutness Topic 182 4.4 Identification 184 5. Summary 186 Chapter Six: Concluding Remarks 187 References 188rf Abney, Steven Paul (1987) The English Noun Phrase in Its Sentential Aspect, PhD dissertation in Massachusetts Institute of Technology. Adelaar, K. Alexander (1997) “Grammar Notes on Siraya, An Extinct Formosan Language”, Oceanic Linguistics 36.2, 362-397. Aldridge, Edith (2004) “Internally Headed Relative Clauses”, Language and Linguistics 5.1, 99-129. Alexiadou, Artemis, et al. (2000) “Introduction”, in Artemis Alexiadou et al. (eds.) The Syntax of Relative Clauses, 1-51. Amsterdam: John Benjamins Publishing Company. Baker, C. L. (1995) English Syntax. Cambridge, Massachusetts: The MIT Press. Basilico, David (1996) “Head Position and Internally Headed Relative Clauses”, Language 72.3, 498-532. Bianchi, Valentina (2000) “The Raising Analysis of Relative Clauses: A Reply to Borsley”, Linguistic Inquiry 31.1, 123-140. Biber, Douglas et al. (2000) Longman Grammar of Spoken and Written English. Beijing: Foreign Language Teaching and Research Press. Borer, Hagit (1984) “Restrictive Relatives in Modern Hebrew”, Natural Language and Linguistic Theory 2, 219-260. Borsley, Robert D. (1997) “Relative Clauses and the Theory of Phrase Structure”, Linguistic Inquiry 28.4, 629-647. Chang, Melody Ya-yin (1998) Wh-Constuctions And the Problem of Wh-Movement in Tsou, MA Thesis in National Tsing Hua University, Taiwan. Chang, Melody Ya-yin (2004) Subjecthood in Tsou Grammar, PhD dissertation in National Tsing Hua University, Taiwan. Chang, Yung-li (1997) Voice, Case and Agreement in Seediq and Kavalan, PhD dissertation in National Tsing Hua University, Taiwan. Chang, Yung-li (2003a) “Meaning and Grammar: Perspectives from Formosan Languages”, handout presented in the course “Grammar, Semantics and Pragmatics” held by the Linguistic Society of Taiwan, 1-14. Chang, Yung-li (2003b) “AF verbs: transitive, intransitive, or both?”, paper presented in the 2nd Workshop on Formosan Languages: One the Notion of “Verb” in Formosan Languages. Taipei, Academia Sinica. Cheng, Lisa Lai-Shen (1989) “Aspectual Licensing of pro in Mandarin Chinese”, manuscript in MIT. Chomsky, Noam (1977) “On Wh-Movement”, in Peter Culicover, Thomas Wasow and Adrian Akmajian (eds.) Formal Syntax, 71-132. New York: Academic Press. Chomsky, Noam (1982) Some Concepts and Consequences of the Thoery of Government and Binding. Cambridge, Massachusetts: The MIT Press. Chomsky, Noam (1986a) Barriers. Cambridge, Massachusetts: The MIT Press. Chomsky, Noam (1986b) Knowledge of Language. New York: Praeger. Chomsky, Noam (1995) The Minimalist Program. Cambridge, Massachusetts: The MIT Press. Cole, Peter (1987) “The Structure of Internally Headed Relative Clauses”, Natural Language and Linguistic Theory 5, 277-302. Cole, Peter, Wayne Harbert, and Gabriella Hermon (1982) “Headless Relative Clauses in Quechua”, International Journal of American Linguistics 48.2, 113-124. Comrie, Bernard (1976) Aspect. Cambridge: Cambridge University Press. Comrie, Bernard (1981) Language Universals and Linguistic Typology—Syntax and Morphology. USA: University of Chicago Press. Culy, Christopher Douglas (1990) The Syntax and Semantics of Internally Headed Relative Clauses, PhD dissertation in Stanford University. Egerod, Søren (1965) “Verb Inflexion in Atayal”, Lingua 15, 251-282. Egerod, Søren (1966) “Word Order and Word Classes in Atayal”, Language 42.2, 346-369. Egerod, Søren (1980) Atayal-English Dictionary (1st edition). London: Curzon Press Ltd. Egerod, Søren (1999) Atayal-English Dictionary (2nd edition). Copenhagen: The Royal Danish Academy of Sciences and Letters. Finegan, Edward (1999) Language: Its Structure and Use (3rd edition). Fort Worth: Harcourt Brace College Publishers. Georgopoulos, Carol (1991) Syntactic Variables. Dordrecht: Kluwer Academic Publishers. Givón, Talmy (1990) Syntax: A Functional-typological Introduction Volume II. Amsterdam: John Benjamins. Haegeman, Liliane (1994) Introduction to Government & Binding Theory (2nd edition). Oxford, UK: Blackwell Publishers Ltd. Hatakeyama, Yuji (1998) “Topic- and focus-topicalizations”, The Linguistic Review 15, 341-359. Hayashi, Yuli and Taisuke Nishigauchi (2003) “Head-internal Relative Clauses and the Mapping Hypothesis”, Theoretical and Applied Linguistics at Kobe Shoin 6, 65-85. Higginbotham, James (1985) “On Semantics”, Linguistic Inquiry 16.4, 547-593. Hoshi, Koji (1996) “The Head-Internal Relative Clause in Japanese: An Empty Head Noun Approach”, in Noriko Akatsuka, Shoichi Iwasaki and Susan Strauss (eds.) Japanese/Korean Linguistics vol. 5, 253-268. Hsin, Aili (1996) “Noun Phrase Structure and Focus Marking in Kavalan”, The Tsing Hua Journal of Chinese Studies, New Series 26.3, 323-364. Huang, C. –T. James (1982a) Logical Relations in Chinese and the Theory of Grammar, PhD dissertation in Massachusetts Institute of Technology, USA.. Huang, C. –T. James (1982b) “On the Representation of Scope”, Journal of Chinese Linguistics 11.1, 36-91. Huang, C. –T. James (1984) “On the Distribution and Reference of Empty Pronouns”, Linguistic Inquiry 15.4, 531-574. Huang, C. –T. James (1989) “Pro-drop in Chinese: A Generalized Control Theory”, in Osvalda Jaeggli and Kenneth J. Safir (eds.) The Null Subject Parameter, 185-214. Dordrecht: Kluwer Academic Publishers. Huang, C. –T. James (1994) “More on Chinese Word Order and Parametric Theory”, in Barbara Lust et al. (eds.) Syntactic Theory and First Language Acquisition: Cross-Linguistic Perspectives Volume One: Heads, Projections, and Learnability, 15-35. Hillsdate, NJ: Lawrence Erlbaum Associates Publishers. Huang, Lillian M. -C. (1989) “The Pronominal System in Atayal”, Studies in English Literature and Linguistics 15, 115-133. Huang, Lillian M. -C. (1991) “The Semantics of s- in Atayal”, Studies in English Literature and Linguistics 17, 37-50. Huang, Lillian M.-C. (1993) A Study of Atayal Syntax. Taipei: Crane Publishing Co. Huang, Lillian M.-C. (1994) “Ergativity in Atayal”, Oceanic Linguistics 33.1, 129-143. Huang, Lillian M.-C. (1995a) A Study of Mayrinax Syntax. Taipei: Crane Publishing Co. Huang, Lillian M.-C. (1995b) “The Voice System in Atayal”, in Feng-fu Tsao and Mei-hue Tsai (eds.) Papers from the First International Symposium on Languages in Taiwan, 73-98. Taipei: Crane Publishing Co. Huang, Lillian M.-C. (1996a) “Taiwan nantao yuyan wenfa guanxi xingtai zhi tanjiu (I) (A Typological Study of Grammatical Relations in Some Formosan Languages (I))”, in Chiu-yu Tseng and Dah-an Ho (eds.) Yuyan xuemen zhuanti jihua chengguo fabiaofhei lunwenji (The Proceedings of the Conference of Linguistic Research Projects), 25.1-25.15. Taipei: Academia Sinica & the National Science Council. [In Chinese ] Huang, Lillian M.-C. (1996b) “A Syntactic and Semantic Study of –ay, -aw and –anay in Mayrinax Atayal”, Studies in English Literature and Linguistics 22, 15-36. Huang, Lillian M.-C. (2000a) Atayal cankao yufa (An Atayal Reference Grammar). Series on Formosan Languages, 1. Taipei: Yuanliou Publishing Co. [In Chinese ] Huang, Lillian M.-C. (2000b) “Verb Classification in Mayrinax Atayal”, Oceanic Linguistics 39.2, 364-390. Huang, Lillian M.-C. (2001) “Grammaticalization in Atayal: A Case Study”, paper presented at the International Symposium on Austronesian Cultures: Issues Relating to Taiwan, Taipei. Huang, Lillian M.-C. (2003) “Verb Classification in Atayal”, handout presented in the 2nd Workshop on Formosan Languages: One the Notion of “Verb” in Formosan Languages. Taipei, Academia Sinica. Huang, Lillian M.-C. et al (1998) “A Typological Overview of Nominal Case Marking Systems of Some Formosan Languages”, in Shuanfan Huang (ed.) Selected Papers from the Second International Symposium on Languages in Taiwan. Taipei: Crane Publishing Co. Huang, Lillian M. -C. et al. (1999) “A Typological Overview of Pronominal System of Some Formosan Languages”, Selected Papers from the Fifth International Conference on Chinese Linguistics. Taipei: The Crane Publishing Co. Jackendoff, Ray (1977) X-bar Syntax: A Study of Phrase Structure. Cambridge, USA: The MIT Press. Kayne, Richard S. (1981) “ECP Extensions”, Linguistic Inquiry 12.1, 93-133. Kayne, Richard S. (1994) The Antisymmetry of Syntax. Cambridge, Massachusetts: The MIT Press. Keenan, Edward L. (1985) “Relative Clauses”, in Timothy Shopen (ed.) Language Typology and Syntactic Description (Volume II): Complex Construction. Cambridge: Cambridge University Press. Keenan, Edward L. and Bernard Comrie (1977) “Noun Phrase Accessibility and Universal Grammar” Linguistic Inquiry 8.1, 63-99. Kibrik, Andrej A. (1992) “Relativization in Polysynthetic Languages”, International Journal of American Linguistics 58.2, 135-157. Kroch, Anthony S. (1981) “On the Role of Resumptive Pronouns in Amnestying Island Constraint Violations”, Papers from the Seventeenth Regional Meeting of the Chicago Linguistics Society, 125-135. Kuroda, S. –Y. (1992) “Pivot-independent Relativization”, in S. –Y. Kuroda (ed.) Japanese Syntax and Semantics: Collected Papers. Dordrecht: Kluwer Academic Publishers. Lambert, Wendy Mae (1999) Epenthesis, Metathesis, and Vowel-Glide Alternation: Prosodic Reflexes in Mabalay Atayal, MA Thesis in National Tsing Hua University, Taiwan. Lasnik, Howard and Mamoru Saito (1992) Move α. Cambridge, Massachusetts: The MIT Press. Li, Paul Jen-kuei (1980) “The Phonology Rules of Atayal Dialects”, Bulletin of the Institute of History and Philology 51.2, 349-405. Li, Paul Jen-kuei (1990) “Classification of Formosan Languages: Lexical Evidence”, BIHP 61.4, 809-835. Li, Paul Jen-kuei (1991) Taiwan nandaoyu de yuyin fuhao xitong (Orthographic system for Formosan Languages). Taipei: the Education Ministration, R.O.C. [In Chinese ] Li, Paul Jen-kuei (1995) “Taiwan nandao yuyian de fenbu he ninzu de qianyi (The Distribution of Formosan Languages and the Migration of Their Peoples)”, in Feng-fu Tsao and Mei-hue Tsai (eds.) Papers from the First International Symposium on Languages in Taiwan, 1-16. Taipei: Crane Publishing Co. [In Chinese ] Li, Paul Jen-kuei (1997) Taiwan nandao ninzu de zuqun yu qianyi (Austronesian Peoples and Their Migration in Taiwan). Taipei: Formosa Folkways Print in Taiwan. [In Chinese ] Li, Paul Jen-kuei (1998) Taiwan pinpuzu de li shi yu hudong (The History and Interactions of the Plain Indigenous Peoples in Taiwan). Taipei: Formosa Folkways Print in Taiwan. [In Chinese ] Li, Paul Jen-kuei (1999) The History of Formosan Aborigines: Linguistic. Nantou, Taiwan: The Historical Research Commission of Taiwan Province. [In Chinese ] Lin, Jo-Wang (2002) “On Restrictive and Nonrestrictive Relative Clauses in Mandarin Chinese”, manuscript in National Chiao Tung University, Taiwan. Liu, Adlay Kun-long (2000) “Lga’/Haru’ as Less-tied Connectors in Wulai Atayal: A Preliminary Study”, manuscript in National Taiwan Normal University, Taiwan. Liu, Adlay Kun-long (2003) “An OT Study on Suffixation in Squliq Atayal”, manuscript in National Tsing Hua University, Taiwan. Löbel, Elisabeth (1994) “KP/DP-Syntax: Interaction of Case-marking with Referential and Nominal Features”, Theoretical Linguistics 20.1, 37-70. Massam, Diane (2000) “VSO and VOS: Aspects of Nituean Word Order”, in Andrew Carnie and Eithne Guilfoyle (eds.) The Syntax of Verb Initial Language, 117-141. Oxford: Oxford University Press. Mathews, Peter H. (2000) Morphology (second edition). Beijing: Foreign Language Teaching and Research Press. McCawley, James D. (1988) The Syntactic Phenomena of English Volume 2. Chicago: The University of Chicago Press. Mei, Kuan (1994) “Taiyayu (wenshui fangyan) de yuxu, gewei han jiaosi duixie (Word order, case and theta-agrement in Mayrinax Atayal)”, in the Proceeding of the first Symposium on Austronesian Languages of Taiwan, 268-381. Taipei: Academia Sinica. [In Chinese ] Murasugi, Kumiko G. (1997) “Relative Restrictions on Relative Clauses”, NELS 27, 273-286. Nishigauchi, Taisuke (2004) “Head-internal Relative Clauses in Japanese and the Interpreation of Indefinite NPs”, Theoretical and Applied Linguistics at Kobe Shoin 7, 113-130. Partee, Barbara H. (1976) “Some Transfromational Extension of Montague Grammar”, in Barbara H. Partee (ed.) Montague Grammar, 77-117. New York: Academic Press. Pesetsky, David and Ester Torrego (2001) “T-to-C Movement: Causes and Consequences”, in Michael Kenstowicz (ed.) Ken Hale: A Life in Language, 355-426. Cambridge, Massachusetts: The MIT Press. Qian, Yu-Zhan (2001a) “Qiantan Atayal zhi yinyun guilü—yi Squliq fangyan wei li (A Preliminary Study on Atayal Phonological Rules—Taking Squliq Atayal for Instance)”, Hsinchu Teachers’ College Journal of Language 7, 165-180. [In Chinese ] Qian, Yu-Zhan (2001b) Cong yingyunxue qiaodu kan Atayal de biaoying xitong—yi taoshan fangyan wei li (On the Transcription System of Atayal from the Phonological Perspective: the Case Study of Taoshan Dialect), MA Thesis in Hsin-Chu Teachers College, Taiwan. [In Chinese ] Rackowaski, Andrea and Lisa Travis (2000) “V-Initial Language: X or XP Movement and Adverbial Placement”, in Andrew Carnie and Eithne Guilfoyle (eds.) The Syntax of Verb Initial Language, 117-141. Oxford: Oxford University Press. Rau, Der-Hwa Victoria (1992) A Grammar of Atayal. Taipei: Crane Publishing Co. Reid, Lawrence A. and Hsiu-chuan Liao (2001) “Syntactic Typology of Philippine Languages”, paper presented at the International Symposium on Austronesian Cultures: Issues Relating to Taiwan, Taipei. Rizzi, Luigi (1990) Relativized Minimality. Cambridge, Massachusetts: The MIT Press. Ross, Malcolm (2002) “An Introduction to the History of Austronesian Languages”, handout presented in the courses of the First Summer Camp of Linguistics in Taiwan held at the National Taiwan Normal University. Safir, Ken (1986) “Relative Clauses in a Theory of Binding and Levels”, Linguistic Inquiry 17.4, 663-689. Schachter, Paul (1973) “Focus and Relativization”, Language 49.1, 19-46. Shimoyama, Junko (1999) “Internally Headed Relative Clauses in Japanese and E-type Anaphora”, Journal of East Asian Linguistics 8, 147-182. Simpson, Andrew (2001) “Definiteness Agreement and the Chinese DP”, Language and Linguistics 2.1, 125-156. Simpson, Andrew (2002) “On the Status of ‘Modifying DE and the Structure of the Chinese DP”, in Sze-Wing Tang and Chen-Sheng Luther Liu (eds.) On the Formal Way to Chinese Languages, 74-101. USA: CSLI Publishers. Sohn, Ho-Min (1973) “Relative Clause Formation in Micronesian Languages”, Oceanic Linguistics 12.1-2, 353-392. Spencer, Andrew (1996) Phonology. Oxford: Blackwell Publishers Ltd. Starosta, Stanley (1988) “A Grammatical Typology of Formosan Languages”, Bulletin of the Institute of History and Philology 59, 541-576. Taipei: Academia Sinica. Starosta, Stanley (1997) “Formosan Clause Structure: Transitivity, Ergativity, and Case Marking”, Chinese Languages and Linguistics 4, 125-154. Subbarao, K. V. and Mimi Kevichüsa (1999) “Internal Relative Clauses in Tenyidie (Angami): A Case of Hierarchical Precedence VS. Linear Precedence?”, Linguistics of the Tibeto-Burman Area 22.1, 149-181. Tang, Chih-chen Jane (1999) “On Clausal Complements in Paiwan”, in Elizabeth Zeitoun and Paul Jen-kuei Li (eds.) Selected Papers from the Eighth International Conference on Austronesian Linguistics, 529-578. Taipei: Academic Sinica. Tang, Chih-chen Jane, Yung-li Chang, and Dah-an Ho (1998) “On Noun Phrase Structures in Paiwan”, The Tsing Hua Journal of Chinese Studies, New Series 28.3, 335-384. Tang, Ting-Chi (1981) “Mandarin fenlieju, fenleibianju, zhunfenleiju de jiegou yu xianzhi zhi yanjiu (A Research on the Structures and Restrictions of Mandarin cleft, alternation of cleft, and pseudocleft)”, in Ting-Chi Tang (ed.) Linguistics and Language Teaching, 109-206. Taipei: Student Book Co., Ltd. [In Chinese ] Tang, Ting-Chi (1988) “English de mingqian yu minhou xiushiyu (Premodifiers and Postmodifiers in English: Form, Meaning and Function)”, in Ting-Chi Tang (ed.) A Cognitive Grammar of English: Form, Meaning and Function (I), 453-514. Taipei: Student Book Co., Ltd. [In Chinese ] Tang, Ting-Chi (2004a) “zhuyaoyu zainei de guanxiziju (Head-internal Relative Clause: Japanese, Mandarin and English)”, manuscript in Soochou University, Taiwan. [In Chinese ] Tang, Ting-Chi (2004b) “guanyu Japanese neizaixing guanxiziju de jige jiben gainian (Some Basic Concepts of Japanese Head-internal Relative Clauses)”, manuscript in Soochou University, Taiwan. [In Chinese ] Teng, Stacy Fang-ching (1997) Complex Sentences in Puyuma, MA Thesis in National Taiwan Normal University, Taiwan. Tsai, Wei-tien Dylan (1995) “Visibility, Complement Selection and the Case Requirement of CP”, Journal of East Asian Linguistics, 281-312. Tsai, Wei-Tien Dylan (1999a) On Economizing the Theory of A-bar Dependencies. New York: Garland Publishing, Inc. Tsai, Wei-Tien Dylan (1999b) “On Lexical Courtesy”, Journal of East Asian Linguistics 8, 39-73. Tsai, Wei-Tien Dylan (2003) “Lexical Courtesy Revisited: Evidence from Tsou and Seediq Wh-Constructions”, Journal of the Linguistics of Japan. Tsai, Wei-Tien Dylan (2004) “T-feature Checking and Temporal Adjuncts in Formosan Languages”, abstract in Austronesian Formal Linguistics Association. Tsuchida, Shigeru (1995) “Rethinking Austronesian”, in Feng-fu Tsao and Mei-hue Tsai (eds.) Papers from the First International Symposium on Languages in Taiwan, 17-27. Taipei: Crane Publishing Co. Watanabe, Akira (2004) “Parametrization of Quantificational Determiners and Head-Internal Relatives”, Language and Linguistics 5.1, 59-97. Weingartner, Fredric Francis (2002) Diacritics in Early Tayal Manual. Taipei: Ricci Institute for Chinese Studies. Williamson, Janis S. (1987) “An Indefiniteness Restriction for Relative Clauses in Lakhota”, in Eric J. Reuland and Alice G. B. Meulen (eds.) The Representation of (In)definiteness, Massachusetts: The MIT Press. Wu, Joy Jing-lan (1995) Complex Sentences in Amis, MA Thesis in National Taiwan Normal University, Taiwan. Wu, Joy Jing-lan (1996) “Relative Clauses in Amis”, Studies in English Literature and Linguistics 22, 115-146. Wu, Joy Jing-lan (1997) “Relative Clauses in Some Formosan Languages”, paper presented at the Eighth International Conference on Austronesian Linguistics. Yeh, Marie Meili (1991) Saisiyat Structure, MA Thesis in National Tsing Hua University, Taiwan. Yeh, Marie Meili (1997) “Taiwan nandaoyu de jiaodian yu zhuyu yuyi jiaosi zhi deiying guanxi (The Correspondences between Foci and the Semantic Roles of Subject in Formosan Languages)”, paper presented at the Conference of the Development of Languages in Taiwan, Xinzhu. [In Chinese ] Yeh, Marie Meili (2003) “Adjectives as Verbs in Saisiyat”, paper presented at the 2nd Workshop on Formosan Languages, Taiwan: Academia Sinica. Zeitoun, Elizabeth (2001) “The Morpho-Syntactic Typology of the Formosan Languages: A Reassessment”, paper presented at the International Symposium on Austronesian Cultures: Issues Relating to Taiwan, Taipei. Zeitoun, Elizabeth and Lillian M.-C. Huang (1997) “Toward a Typology of Tense, Aspect and Modality in Formosan Languages: A Preliminary Study”, Chinese Languages and Linguistics 4, 595-618 Zwicky, Arnold and Geoffrey Pullum (1983) “Cliticization vs. Inflection: English n’t”, Language 59, 502-513.id NH0925462014 sid 904701 cfn 0 / id NH0925462015 auc 劉瓊怡 tic 動態化的生成詞彙 adc 林宗宏博士 ty 碩士 sc 國立清華大學 dp 語言學研究所 yr 92 lg 中文 pg 67 kwc 多義性 kwc 生成詞彙理論 abc 在本文中,我們主要檢視Pustejovsky(1995)所提出的詞彙語義理論「生成詞彙理論(The Generative Lexicon)」及其中最重要的語義轉換機制「語義誘迫(Tye Coercion)」。我們由中英文例證的研究中發現,語義誘迫作用在英文裡存在於詞彙之中,但在中文裡卻必須藉由事件結構在句法中呈現。也就是說,輕動詞(Light Verb)在英文中存在於詞彙內部,而在中文裡面則是在句法中進行。這一點我們也進一步在中文動詞「翻」的事件結構、句法及語義的多樣性中得到驗證。最後,我們提出Dynamic Generative Lexicon的概念,認為Pustejovsky的生成詞彙理論內容太過僵化,對於句法的問題以及語義的選擇限制(selectional restriction)描述過於簡略。 tc 第一章 導論…………………………………………………………………………1 第二章 生成詞彙理論………………………………………………………………3 2.1生成詞彙理論的基本架構………………………………………………………3 2.2 語義誘迫…………………………………………………………………………7 2.3 語義誘迫的四種類型…………………………………………………………..11 2.3.1 次類型語義誘迫…………………………………………………………12 2.3.2 真補語語義誘迫…………………………………………………………13 2.3.3 使動動詞…………………………………………………………………14 2.3.4 形容詞……………………………………………………………………15 第三章 中英現象對比 3.1 語義誘迫的四種類型-以中文為例……………………………………17 3.1.1 次類型語義誘迫………………………………………………….18 3.1.2 真補語語義誘迫…………………………………………………..19 3.1.3 使動動詞……………………………………………………………20 3.1.4 形容詞…………………………………………………………….21 3.2 輕動詞結構……………………………………………………………………24 第四章 「翻」的例證………………………………………………………………..31 4.1 句法變異………………………………………………………………………31 4.1.1 使動動詞用法…………………………………………………………..31 4.1.2 非賓格動詞用法………………………………………………………32 4.1.3 存在動詞用法…………………………………………………………34 4.2 構詞現象………………………………………………………………………..37 4.3 論元的語義內涵………………………………………………………………40 4.4 「翻」的語義分析………………………………………………………………42 第五章 Dynamic Generative Lexicon……………………………………………….51 5.1 句法角色的不明朗………………………………………………………51 5.2 詞彙認知結構的處理過於僵化……………………………………………….52 5.3 經驗知識結構的內容太侷限…………………………………………….57 5.3.1 「趕+NP」的語義分析……………………………………………….57 5.3.2 「趕」的三種類型分析……………………………………………….59 第六章 結論…………………………………………………………………………64 參考書目……………………………………………………………………………..6rf Chomsky, Noam. 1981. Lectures on Government and Binding. Dordrecht: Foris Publications Davis, Henry and H. Demirdache. 2000. On lexical Verb Meanings: Evidence from Salish. Events as Grammatical objects. ed. By Carol Tenny and James Pustejovsky, 97-142 USA: CSLI Publication. Dowty, D. R. 1991. Thematic Proto-Roles and Argument Selection. Language 67: 547-619 Hale, Kenneth, and Samuel J. Keyser. 1993. On argument structure and the lexical expression of syntactic relations. The view from building 20: Essays in linguistics in honor of Sylvain Bromberger, eds. Kenneth Hale and Samuel J. Keyser, Cambridge: MIT Press Huang, C.-T. James 1994. On lexical structure and syntactic projection. Proceedings of the third International Symposium of Chinese Languages and Linguistics. Taipei: Academia Sinica Jackendoff, R. 1990. Semantic Structures, Cambridge: MIT Press Levin, Beth. 1993. English Verb Classes and Alternation: A Preliminary Investigation. Chicago and London: The University of Chicago Press. Li, Charles N. and Sandra A. Thompson. 1981. Mandarin Chinese. Berkeley and Los Angeles: University of California Press. Lin, Tzong-Hong. 2001. Light Verb Syntax and the Theory of Phrase Structure. Irvine: University of California dissertation. Liu, Mei-Chun, Chu-Ren Huang, Ching-Yi Lee. 1995. Lexical Infromation and Beyond: constructional Inferences in Semantic Representation. Working Papers on Chinese Semantics. Vol. 1. Perlmutter, David M. 1978. Impersonal passives and the unaccusative hypothesis. Berkeley Linguistics Society 4:157-189. Pustejovsky, James 1991. the Generative Lexicon. Computational Linguistics 17:409-441 Pustejovsky, James and B. Boguraev. 1993. Lexical knowledge representation and natural language processing. Artificial Intelligence 63: 193-223 Pustejovsky, James. 1995 The Generative Lexicon. London: MIT Press. Radford, Andrew. 1997. Syntactic theory and the structure of English-A minimalist approach. UK: Cambridge. Saee, John I. 2003. Semantics-2nd edition. UK:Blackwell Tenny Carol and James Pustejovsky. 20000. A History of Events in Linguistic Theory. Events as Grammatical Objects. ed. by Carol Tenny and James Pustejovsky, 3-37 USA: CSLI Publication. 黃茗冠.1990.《現代漢語徒手動作動詞〈打〉字的語義、語法初探》,碩士論文.台北:師範大學華語文研究所id NH0925462015 sid 904706 cfn 0 / id NH0925479001 auc 郭岳承 tic 週期及二次矩陣束的特徵值反問題 adc 林文偉 ty 博士 sc 國立清華大學 dp 數學系 yr 92 lg 英文 pg 80 kwc 正則化 kwc 反問題 abc 第一部分,我們想利用狀態和微分回饋控制把一個時變週期離散的系統正則化,在這部分我們找到一個可以正則化的充分條件,並利用構造方法證明在這充分條件之下可以構造出狀態和微分回饋控制矩陣,使的這週期閉迴路系統可以被正則化。另外也對於有限特徵值配置的反問題有一些結果。 tc Contents Chapter 1 Regularization of Discrete-Time Periodic Descriptor Systems 1 1 Introduction 1 2 Preliminaries 5 3 Canonical Forms of {(E_j,A_j,B_j)} 15 4 Regularization of {(Ej,Aj,Bj)} 25 5 Pole Assignment of Periodic Descriptor Systems 36 6 Conclusion 37 Chapter 2 Inverse Quadratic eigenvalue problems 38 1 Introduction 38 2 Solving ISQEP 43 2.1 Recipe of Construction 44 2.2 Eigenstructure of Q(λ) 47 2.3 Numerical Experiment 54 3 Solving IMQEP 60 3.1 Real Linearly Dependent Eigenvector 61 3.2 Complex Linearly Dependent Eigenvector 64 3.3 Numerical Examples 69 4 Conclusion 74 References 75rf References [1 ] http://me.lsu.edu/~ram/papers/publications.html. [2 ] M. C. Berg, N. Amit, and J. D. Powell. Multirate digital control system design. IEEE Trans. Aut. Contr., 33, 1988. [3 ] S. Bittanti. Deterministic and stochastic linear periodic systems. Springer-Verlag, New York, 1986. [4 ] S. Bittanti and P. Bolzern. Discrete-time linear periodic systems: Graimian and modal criteria for reachability and controllability. Int. J. Contr., 41:909–928, 1985. [5 ] S. Bittanti, P. Colaneri, and G. de Nicolao. The difference periodic riccati equation for the periodic prediction problem. IEEE Trans. Aut. Contr., 33:706–712, 1988. [6 ] A. Bojanczyk, G. Golub, and P. Van Dooren. The periodic schure decomposition. algorithms and applications. Proceedings of the SPIE Conference, San Diego, 1770:31– 42, 1992. [7 ] A. Bunse-Gerstner, R. Byers, V. Mehrmann, and N.K. Nichols. Feedback design for regularizing descriptor systems. Linear Algebra Appl., 299:119–151, 1999. [8 ] A. Bunse-Gerstner, V. Mehrmann, and N.K. Nichols. Regularization of descriptor systems by derivative and proportional state feedback. SIAM J. Matrix Anal. Appl., 13:46–67, 1992. [9 ] A. Bunse-Gerstner, V. Mehrmann, and N.K. Nichols. Regularization of descriptor systems by output feedback. IEEE Trans. Aut. Contr., AC-39:1742–1747, 1994. [10 ] R. Byers, T. Greerts, and V. Mehrmann. Descriptor systems without controllability at infinity. SIAM J. Control Optim., 35:462–479, 1997. [11 ] R. Byers, P. Kunkel, and V. Mehrmann. Regularization of linear descriptor systems with variable coefficients. SIAM J. Control Optim., 35:117–133, 1997. [12 ] J. Carvalho, B. N. Datta, W. W. Lin, and C. S. Wang. Eigenvalue embedding in a quadratical pencil using symmetric low rank updates. NCTS preprint in Math., 2001. [13 ] D.L. Chu, H. C. Chan, and D.W.C. Ho. Regularization of singular systems by derivative and proportional output feedback. SIAM J. Matrix Anal., 19:21–38, 1998. [14 ] D.L. Chu and V. Mehrmann. Disturbance decoupling for descriptor systems by state feedback. SIAM J. Control Optim., 38:1830–1858, 2000. [15 ] D.L. Chu, V. Mehrmann, and N.K. Nichols. Minimum norm regularization of descriptor systems by mixed output feedback. Linear Algebra Appl., 296:39–77, 1999. [16 ] E. K-W Chu and B. N. Datta. Numerically robust pole assignment for second-order systems. International Journal of Control., 64:1113–1127, 1996. [17 ] Moody T. Chu. Inverse eigenvalue problems. SIAM Rev., 40:1–39, 1998. [18 ] Moody T. Chu and Gene H. Golub. Structured inverse eigenvalue problems. Acta Numerica, 11:1–71, 2002. [19 ] B. N. Datta. Finite element model updating, eigenstructure assignment and eigenvalue embedding techniques for vibrating systems, the special issue on vibration control. Mechanical Systems and Signal Processing, 16:83–96, 2002. [20 ] B. N. Datta, S. Elhay, Y. M. Ram, and D. R. Sarkissian. Partial eigenstructure assignment for the quadratic pencil. Journal of Sound and Vibration, 230:101–110, 2000. [21 ] B. N. Datta and D. R. Sarkissian. Theory and computations of some inverse eigenvalue problems for the quadratic pencil, in contemporary mathematics, volume onstructured matrices in operator theory, control, and signal and image processing. American Mathematical Society, pages 221–240, 2001. [22 ] P. Van Dooren and J. Sreedhar. When is a periodic discrete-time system equivalent to a time-invariant one? Linear Algbra Appl., 212/213:131–151, 1994. [23 ] W. R. Ferng, W. W. Lin, D. Pierce, and C. S. Wang. Nonequivalence transformation of λ-matrix eigenproblems and model embedding approach to model tunning. Num. Lin. alg. appl., 8:53–70, 2001. [24 ] D.S. Flamm and A.J. Laub. A new shift-invariant representation of periodic linear systems. Systems and Control Lett., 17:9–14, 1991. [25 ] B. Francis and T. Georgiou. Stability theory for linear time-invariant plants with periodic digital controllers. IEEE Trans. Aut. Contr., 33:820–832, 1988. [26 ] F.R. Gantmacher. The Theory of Matrices. Chelsea, New York, 1959. [27 ] T. Geerts. Solvability conditions, consistency, and weak consistency for linear differential-algebraic equations and time-invariant linear systems: The general case. Linear Algebra. Appl., 181:111–130, 1993. [28 ] I. Gohberg, P. Lancaster, and L. Rodman. Matrix Polynomials. Academic Press, New York, 1982. [29 ] J. J. Hench and A. J. Laub. Numerical solution of the discrete-time periodic riccati equation. IEEE Trans. Aut. Contr., 39:1197–1210, 1994. [30 ] J. Kautsky, N.K. Nichols, and E.K.-W. Chu. Robust pole assignment in singular control systems. Linear Algebra Appl., 121:9–37, 1989. [31 ] M. Kono. Eigenvalue assignment in linear discrete-time system. Int. J. Control., 32:149–158, 1980. [32 ] P. Kunkel, V. Mehrmann, and W. Rath. Analysis and numerical solution of control problems in desciptor form. Math. Control Signals Systems, 14:29–61, 2001. [33 ] P. Lancaster and M. Tismenetsky. The Theory of Matrices. Academic Press, Orlando, Florida, 1985. [34 ] W.W. Lin, P. Van Dooren, and Q.F. Xu. Equivalent characterizations of periodic invariant subspaces. NCTS-TR-0215, National Tsing Hua Unv., Taiwain, 2002. [35 ] W.W. Lin and J.G. Sun. Perturbation analysis for the eigenproblem of periodic matrix pairs. Linear Algebra Appl., 337:157–187, 2001. [36 ] M.L. Liou and Y. L. Kuo. Exact analysis of switched capacitor circuits with arbitrary inputs. IEEE Trans. Circuits and Systems, 26:213–223, 1979. [37 ] N. K. Nichols and J. Kautsky. Robust eigenstructure assignment in quadratic matrix polynomials: nonsingular case. SIAM J. Matrix Anal. Appl., 23:77–102, 2001. [38 ] Y. M. Ram and S. Elhay. An inverse eigenvalue problem for the symmetric tridiagonal quadratic pencil with application of damped oscillatory systems. SIAM J. Applied Math., 56:232–244, 1996. [39 ] J.A. Richards. Analysis of Periodically Time-Varying Systems. Springer-Verlag, Berlin, 1983. [40 ] D. D. Sivan and Y. M. Ram. Physical modifications to vibratory systems with assigned eigendata. ASME J. Applied Mechanics, 66:427–432, 1999. [41 ] J. Sreedhar and P. Van Dooren. Forward/backward decomposition of periodic desciptor systems. Proc. 1997 ECC Brussels,Belgium,, pages FR–A–L7, 1997. [42 ] J. Sreedhar and P. Van Dooren. Periodic descriptor system: solvability and conditionability. IEEE Trans. Aut. Contr., AC-44:310–313, 1999. [43 ] L. Starek and D. J. Inman. Symmetric inverse eigenvalue vibration problem and its applications. Mechanical Systems and Signal Processing, 15:11–29, 2001. [44 ] Fran¸coise Tisseur and Karl Meerbergen. The quadratic eigenvalue problem. SIAM Review, 43:235–286, 2001. [45 ] A. Varga. Balancing related methods for minimal realization of periodic systems. Systems and Control Lett., 36:339–349, 1999. [46 ] A. Varga. Robust and minimum norm pole assignment with periodic state feedback. IEEE Trans. Aut. Contr., 45:1017–1022, 2000. [47 ] J. Vlach, K. Singhal, and M. Vlach. Computer oriented formulation of equations and analysis of switched-capacitor networks. IEEE Trans. Circuits and Systems, 31:735–765, 1984. [48 ] D. C. Zimmerman and M. Widengren. Correcting finite element models using a symmetric eigenstructure assignment technique. AIAA J., 28, No. 9:1670–1676, 1990.id NH0925479001 sid 883207 cfn 0 / id NH0925479002 auc 范洪源 tic 代數黎卡迪方程式之數值研究與週期奇異系統之平衡實現化理論 adc 林文偉 ty 博士 sc 國立清華大學 dp 數學系 yr 92 lg 英文 pg 145 kwc Structure-preserving algorithms kwc Riccati equations kwc Periodic descriptor systems kwc Balanced realization kwc Gramian kwc Reachability/Observability abc 本篇論文主要包括兩部分。第一部分闡述如何運用保結構演算法來求解各種類型的黎卡迪方程式,第二部分主要著眼於週期奇異系統的平衡實現化理論。 tc Part I Structure-Preserving Doubling Algorithms for Solving Algebraic Riccati Equations Chapter 1 Structure-Preserving Algorithms for P-DAREs 1 1 Introduction ......................................... 1 2 Structure-Preserving Doubling Algorithm for DAREs .... 6 3 Swap and Collapse ................................... 20 4 Numerical Experiments for DAREs ..................... 26 5 Numerical Experiments for P-DAREs ................... 38 6 Conclusions ......................................... 42 Chapter 2 Structure-Preserving Doubling Algorithm for CAREs 47 1 Introduction ........................................ 47 2 SDA and Matrix Sign Function Method ................. 50 3 Practical Implementation of SDA ..................... 56 4 SDA_m ............................................... 63 5 Numerical Examples .................................. 65 6 Conclusions ......................................... 74 Chapter 3 Structure-Preserving Doubling Algorithm for G-DAREs 75 1 Introduction ........................................ 75 2 G-SDA and QR-SWAP Algorithms for G-DAREs ............ 77 3 Conditioning of Inversions in G-SDA ................. 82 4 Numerical Experiments for G-DAREs ................... 91 5 Conclusions ......................................... 98 Part II Reachability/Observability Gramians and Balanced Realization Chapter 4 Balanced Realization of Periodic Descriptor Systems 99 1 Introduction ........................................ 99 2 Preliminaries ...................................... 102 3 Complete Reachability and Observability ............ 104 4 Periodic Reachability and Observability Gramians ... 112 5 Numerical Solutions of Projected GDPLEs ............ 118 6 Hankel Singular Values ............................. 126 7 Balanced Realization ............................... 129 8 Concluding Remarks ................................. 132 References 133rf [1 ] J. Abels and P. Benner, DAREX -- a collection of benchmark examples for discrete-time algebraic Riccati equations (version 2.0), Tech. Rep. SLICOT Working Note 1999-16, The Working Group on Software, 1999. [2 ] G. Ammar and V. Mehrmann, On {H}amiltonian and symplectic {H}essenberg forms, Lin. Alg. Appl., 149 (1991), pp.~55--72. [3 ] B. D. O. Anderson, Second-order convergent algorithms for the steady-state Riccati equation, Int. J. Control, 28 (1978), pp.~295--306. [4 ] M. Athans, W. Levine, and A. Levis, A system for the optimal and suboptimal position and velocity control for a string of high-speed vehicles}, in Proc. 5th Int. Analogue Computation Meetings, Lausanne, Switzerland, 1967. [5 ] Z. Bai and J. Demmel, On swapping diagonal blocks in real {S}chur form, Lin. Alg. Appl., 186 (1993), pp.~73--95. [6 ] Z. Bai and J. Demmel, Using the matrix sign function to compute invariant subspaces, SIAM J. Matrix Analy. Appl., 19 (1998), pp.~205--225. [7 ] Z. Bai, J. Demmel, and M. Gu, An inverse free parallel spectral divide and conquer algorithm for nonsymmetric eigenproblems, Numer. Math., 76 (1997), pp.~279--308. [8 ] Z. Bai and Q. Qian, Inverse free parallel method for the numerical solution of algebraic Riccati equations, in Proc. Fifth SIAM Conf. Appl. Lin. Alg., Snowbird, UT, J. G. Lewis, ed., SIAM, Philadelphia, PA, 1994, pp.~167--171. [9 ] L. Balzer, Accelerated convergence of the matrix sign function, Int. J. Control, 21 (1980), pp.~1057--1078. [10 ] A. Y. Barraud, Investigation autour de la fonction signe d'une matrice, application \'{a} l'\'{e}quation de Riccati}, R.A.I.R.O. Automatique, 13 (1979), pp.~335--368. [11 ] A. Y. Barraud, Produit \'{e}toile et fonction signe de matrice. application \'{a} l'\'{e}quation de {R}iccati dans le cas discret, R.A.I.R.O. Automatique}, 14 (1980), pp.~55--85. [12 ] M. S. Bazaraa, H. D. Sheraii, and C. M. Shetty, Nonlinear Programming, John Wiley & Sons, 1993. [13 ] A. N. Beavers and E. D. Denman, Asymptotic solutions to the matrix Riccati equation, Mathematical Biosciences, 20 (1974), pp.~339--344. [14 ] A. N. Beavers and E. D. Denman, A computational method for eigenvalues and eigenvectors of a matrix with real eigenvalues, Numer. Math., 21 (1974), pp.~389--396. [15 ] A. N. Beavers and E. D. Denman, A new similarity transformation method for eigenvalues and eigenvectors, Mathematical Biosciences, 21 (1974), pp.~143--169. [16 ] A. N. Beavers and E. D. Denman, A new solution method for matrix quadratic equations, Mathematical Biosciences, 20 (1974), pp.~135--143. [17 ] D. J. Bender, Lyapunov-like equations and reachability/observability gramians for descriptor systems, IEEE Trans. Auto. Control, 32 (1987), pp.~343--348. [18 ] P. Benner, Contributions to the numerical solutions of algebraic Riccati equations and related eigenvalue problems, PhD Dissertation, Fakult{\"{a}}t f{\"{u}}r Mathematik, TU Chemnitz-Zwickau, Chemnitz, Germany, 1997. [19 ] P. Benner and R. Byers, Evaluating products of matrix pencils and collapsing matrix products, Num. Lin. Alg. Appl., 8 (2001), pp.~357--380. [20 ] P. Benner, R. Byers, R. Mayo, E. S. Quintana-Orti, and V. Hernandez, Parallel algorithms for LQ optimal control of discrete-time periodic linear systems}, J. Para. Distr. Comp., 62 (2002), pp.~306--325. [21 ] P. Benner, A. J. Laub, and V. Mehrmann, A collection of benchmark examples for the numerical solution of algebraic Riccati equations II: Discrete-time case, Tech. Rep. SPC 95_23, Fakult\"at f\"ur Mathematik, TU Chem\-nitz--Zwickau, 09107 Chem\-nitz, FRG, 1995. Available from http://www.tu-chemnitz.de/sfb393/spc95pr.html. [22 ] P. Benner, A. J. Laub, and V. Mehrmann, A collection of benchmark examples for the numerical solution of algebraic Riccati equations I: Continuous-time case, Tech. Rep. SPC 95_22, Fakult\"at f\"ur Mathematik, TU Chem\-nitz--Zwickau, 09107 Chem\-nitz, FRG, 1995. Available from http://www.tu-chemnitz.de/sfb393/spc95pr.html. [23 ] P. Benner, R. Mayo, E. S. Quintana-Orti, and V. Hernandez, A coarse grain parallel solver for periodic Riccati equations, Tech. Rep. 2000-01, Depto. de Informatica, 12080-Castellon, Spain, 2000. [24 ] P. Benner, R. Mayo, E. S. Quintana-Orti, and V. Hernandez, Solving diacrete-time periodic Riccati equations on a cluster, in Euro-Par 2000 Parallel Processing, A. Bode, T. Ludwig, W. Karl, and R.~Wismuller, eds., no. 1900 in Lecture Notes in Computer Science, Springer-Verlag, 2000, pp.~824--828. [25 ] P. Benner, V. Mehrmann, V. Sima, S. V. Huffel, and A. Varga, SLICOT -- a subroutine library in systems and control theory, Applied and Computational Control, Signals, and Circuits, 1 (1999), pp.~499--539. [26 ] M. C. Berg, N. Amit, and J. D. Powell, Multirate digital control system design}, IEEE Trans. Auto. Control, 33 (1988), pp.~1139--1150. [27 ] W. Bialkowski, Application of steady-state {K}alman filters --- theory with field results, in Proc. Joint Automat. Cont. Conf., Philadelphia, PA, 1978. [28 ] S. Bittanti, Deterministic and stochastic linear periodic systems, in Time Series and Linear Systems, S. Bittanti, ed., Springer Verlag, New York, 1986, pp.~141--182. [29 ] S. Bittanti and P. Colaneri, Analysis of discrete-time linear periodic systems, in Control and Dynamic Systems, C.~T. Leondes, ed., vol. 78, Academic Press, New York, 1996. [30 ] S. Bittanti and P. Colaneri, Periodic control, in Wiley Encyclopedia of Electrical and Electronic Engineering, J. G. Webster, ed., vol. 16, Wiley, New York, 1999, pp.~59--74. [31 ] S. Bittanti, P. Colaneri, and G. D. Nicolao, The difference periodic Riccati equation for the periodic prediction problem, IEEE Trans. Auto. Control, 33 (1988), pp.~706--712. [32 ] S. Bittanti, P. Colaneri, and G. D. Nicolao, The periodic Riccati equation, in The Riccati Equation, S. Bittanti, A. Laub, and J. Willems, eds., Springer-Verlag, 1991, pp.~127--162. [33 ] A. Bojanczyk, G. H. Golub, and P. Van~Dooren, The periodic Schur decomposition. Algorithms and applications, in Proc. SPIE Conference, vol. 1770, San Diego, 1992, pp.~31--42. [34 ] J. H. Brandts, Matlab code for sorting real Schur forms, Num. Lin. Alg. Appl., 9 (2002), pp.~249--261. [35 ] R. Bru, C. Coll, and N. Thome, Compensating periodic descriptor systems, Sys. Contr. Lett., 43 (2001), pp.~133--139. [36 ] A. Bunse-Gerstner, R. Byers, and V. Mehrmann, A chart of numerical methods for structured eigenvalue problems, SIAM J. Matrix Analy. Appl., 13 (1992), pp.~419--453. [37 ] A. Bunse-Gerstner, V. Mehrmann, and N. K. Nichols, Regularization of descriptor systems by derivative and proportional state feedback, SIAM J. Matrix Analy. Appl., 13 (1992), pp.~46--67. [38 ] A. Bunse-Gerstner, V. Mehrmann, and Watkins, An SR algorithm for Hamiltonian matrices, based on Gaussian elimination, Methods of Operations Research, 58 (1989), pp.~15--26. [39 ] R. Byers, A Hamiltonian QR-algorithm, SIAM J. Sci. Statist. Comput., 7 (1986), pp.~212--229. [40 ] R. Byers, Numerical stability and instability in matrix sign function based algorithms, in Computational and Combinatorial Methods in System Theory}, C. Byrnes and A. Lindquist, eds., North-Holland, 1986, pp.~185--200. [41 ] R. Byers, Solving the algebraic {R}iccati equation with the matrix sign function, Lin. Alg. Appl., 85 (1987), pp.~267--279. [42 ] R. Byers, C. He, and V. Mehrmann, the matrix sign function method and the computation of invariant subspaces, SIAM J. Matrix Analy. Appl., 18 (1997), pp.~615--632. [43 ] R. Byers and N. Rhee, Cyclic Schur and Hessenberg Schur numerical methods for solving periodic Lyapunov and Sylvester equations, Technical Report, Dept. of Mathematics, Univ. of Missouri at Kansas City, 1995. [44 ] E. K.-W. Chu, H.-Y. Fan, and W.-W. Lin, A generalized structure-preserving doubling algorithm for generalized discrete-time algebraic Riccati equations, preprint 2002-29, NCTS, National Tsing Hua University, Hsinchu 300, Taiwan, 2003. [45 ] E. K.-W. Chu, H.-Y. Fan, and W.-W. Lin, A structure-preserving doubling algorithm for continuous-time algebraic {R}iccati equations}, preprint 2002-28, NCTS, National Tsing Hua University, Hsinchu 300, Taiwan, 2003. [46 ] E. K.-W. Chu, H.-Y. Fan, W.-W. Lin, and C.-S. Wang, A structure-preserving doubling algorithm for periodic descrete-time algebraic Riccati equations, preprint 2002-18, NCTS, National Tsing Hua University, Hsinchu 300, Taiwan, 2003. [47 ] R. E. Crochiere and L. R. Rabiner, Mutirate Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ, 1993. [48 ] L. Dai, Singualr Control Systems, Springer-Verlag Berlin, Heidelberg, 1989. [49 ] E. J. Davison and W. Gesing, The systematic design of control systems for the multivariable servomechenism problem, in Alternatives for Linear Multivariable Control, M. K. Sain and J. L. Peczkowsky, eds., Nat. Eng. Consortium Inc., Chicago, IL, 1978. [50 ] E. Denman and R. Beavers, The matrix sign function and computations in systems, Appl. Math. Comp., 2 (1976), pp.~63--94. [51 ] L. Dieci, Some numerical considerations and Newton's method revisited for solving algebraic Riccati equations, IEEE Trans. Auto. Control, 36 (1991), pp.~608--616. [52 ] A. Feuer and G. C. Goodwin, Sampling in Digital Signal Processing and Control, Birkhauser, New York, 1996. [53 ] D. S. Flamm and A. J. Laub, A new shift-invariant representation of perioidc linear systems, Sys. Contr. Lett., 17 (1991), pp.~9--14. [54 ] C. Foulard, S. Gentil, and J. P. Sandraz, Commande et regulation par calculateur numerique: De la theorie aux applications, Eyrolles, Paris, 1977. [55 ] B. Francis and T. T. Georgiou, Stability theory for linear time-invariant plants with periodic digital controllers, IEEE Trans. Auto. Control, 33 (1988), pp.~820--832. [56 ] J. Gardiner and A. J. Laub, A generalization of the matrix-sign-function solution to the algebraic {R}iccati equations, Int. J. Control, 44 (1986), pp.~823--832. [57 ] W. A. Gardner, Cyclostationarity in Communnications and Signal Processing, IEEE Press, New York, 1994. [58 ] K. Glover, All optimal {H}ankel-norm approximations of linear multivariable systems and their ${L}^{\infty}$-errors bounds, Int. J. Control, 39 (1984), pp.~1115--1193. [59 ] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins University Press, 1996. [60 ] T. Gudmundsson, C. Kenney, and A. J. Laub, Scaling of the discrete-time algebraic {R}iccati equation to enhance stability of the Schur solution method, IEEE Trans. Auto. Control, 37 (1992), pp.~513--518. [61 ] S. Hammarling, Newton's method for solving the algebraic Riccati equation}, NPL Rep. DITC 12/82, Nat. Phys. Lab., Teddington, Middlesex TW11 0LW, U.K., 1982. [62 ] J. J. Hench and A. J. Laub, Numerical solution of the discrete-time periodic Riccati equation, IEEE Trans. Auto. Control, 39 (1994), pp.~1197--1210. [63 ] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, 1996. [64 ] J. L. Howland, The sign matrix and the separation of matrix eigenvalues, Lin. Alg. Appl., 49 (1983), pp.~221--332. [65 ] P. Hr. Petkov, N. D. Christov, and M. M. Konstantinov, On the numerical properties of the {S}chur approach for solving the matrix Riccati equation, Sys. Contr. Lett., 9 (1987), pp.~197--201. [66 ] G. D. Ianculescu, J. Ly, A. J. Laub, and P. M. Papadopoulos, Space station freedom solar array ${H}_{\infty}$ control. Talk at 31st IEEE Conf. on Decision and Control, Tucson, AZ, Dec. 1992. [67 ] R. W. Isniewski and M. Blanke, Fully magnetic attitude control for spacecraft subject to gravity gradient, Automatica, 35 (1999), pp.~1201--1214. [68 ] W. Johnson, Helicopter Theory, Princeton University Press, Princeton, NJ, 1996. [69 ] M. Kimura, Convergence of the doubling algorithm for the discrete-time algebraic Riccati equation, Int. J. Syst. Sci., 19 (1988), pp.~701--711. [70 ] M. Kimura, Doubling algorithm for continuous-time algebraic Riccati equation, Int. J. Syst. Sci., 20 (1989), pp.~191--202. [71 ] D. Kleinman, On an iterative technique for Riccati equation computations, IEEE Trans. Auto. Control, AC-13 (1968), pp.~114--115. [72 ] M. Kono, Eigenvalue assignment in linear discrete-time system, Int. J. Control, 32 (1980), pp.~149--158. [73 ] Y.-C. Kuo, W.-W. Lin, and S.-F. Xu, Regularrization of linear discrete-time perioidc descriptor systems by derivative and proportional state feedback. To appear in SIAM J. Matrix Analy. Appl., 2004. [74 ] D. Lainiotis, N. Assimakis, and S. Katsikas, New doubling algorithm for the discrete periodic Riccati equation, Appl. Maths. Comp., 60 (1994), pp.~265--283. [75 ] A. J. Laub, A Schur method for solving algebraic Riccati equations, IEEE Trans. Auto. Control, 24 (1979), pp.~913--921. [76 ] A. J. Laub, Algebraic aspects of generalized eigenvalue problems for solving Riccati equations, in Computational and Combinatorial Methods in Systems Theory}, C. I. Byrnes and A. Lindquist, eds., Elsevier (North-Holland), 1986, pp.~213--227. [77 ] A. J. Laub, Invariant subspace methods for the numerical solution of Riccati equations, in The Riccati Equation, S. Bittanti, A. J. Laub, and J. C. Willems, eds., Springer-Verlag, Berlin, 1991, pp.~163--196. [78 ] A. J. Laub, M. T. Heath, C. C. Paige, and R. C. Ward, Computation of system balancing transformations and other applications of simutaneous diagonalization algorithms, IEEE Trans. Auto. Control, 32 (1987), pp.~115--122. [79 ] F. L. Lewis, Fundamental, reachability, and observability matrices for discrete descriptor systems, IEEE Trans. Auto. Control, 30 (1985), pp.~502--505. [80 ] W.-W. Lin and J.-G. Sun, Perturbation analysis for eigenproblem of periodic matrix pairs, Lin. Alg. Appl., 337 (2001), pp.~157--187. [81 ] W.-W. Lin and J.-G. Sun, Perturbation analysis of the periodic discrete-time algebraic Riccati equation, SIAM J. Matrix Analy. Appl., 24 (2002), pp.~411--438. [82 ] W.-W. Lin, C.-S. Wang, and Q.-F. Xu, Numerical computation of the minimum $H_{\infty}\/$ norm of the discrete-time output feedback control problem, SIAM J. Numer. Anal., 38 (2000), pp.~515--547. [83 ] M.-L. Liou and Y.-L. Kuo, Exact analysis of switched capacitor circuits with arbitrary inputs, IEEE Trans. Circuits and Systems, 26 (1979), pp.~213--223. [84 ] L.-Z. Lu and W.-W. Lin, An iterative algorithm for the solution of the discrete time algebraic Riccati equations, Lin. Alg. Appl., 189 (1993), pp.~465--488. [85 ] L.-Z. Lu, W.-W. Lin, and C. E. M. Pearce, An efficient algorithm for the discrete-time algebraic Riccati equation, IEEE Trans. Auto. Control, 44 (1999), pp.~1216--1220. [86 ] A. N. Malyshev, Parallel algorithm for solving some spectral problems of linear algebra, Lin. Alg. Appl., 188/189 (1993), pp.~489--520. [87 ] A. Marzollo, Periodic Optimization, Springer Verlag, Berlin, 1972. [88 ] MathWorks, MATLAB user's guide (for UNIX Workstations), The Math Works, Inc., 1992. [89 ] R. McKillip, Periodic model following controller for the control-configured helicopter, Journal of the American Helicopter Society, 36 (1991), pp.~4--12. [90 ] V. Mehrmann, A symplectic orthogonal method for single input or single output discrete time optimal linear quadratic control problems, SIAM J. Matrix Analy. Appl., (1988), pp.~221--248. [91 ] V. Mehrmann, The Autonomous Linear Quadratic Control Problem, Springer-Verlag, 1991. [92 ] V. Mehrmann, A step toward a unified treatment of continuous and discrete time control problems, Lin. Alg. Appl., 241-243 (1996), pp.~749--779. [93 ] V. Mehrmann and E. Tan, Defect correction methods for the solution of algebraic Riccati equations, IEEE Trans. Auto. Control, 33 (1988), pp.~695--698. [94 ] B. C. Moore, Principal component analysis in linear systems: controllability, observability, and model reduction, IEEE Trans. Auto. Control, 26 (1981), pp.~17--32. [95 ] C. C. Paige and C. F. Van Loan , A Schur decomposition for Hamiltonian matrices, Lin. Alg. Appl., 41 (1981), pp.~11--32. [96 ] T. Pappas, A. J. Laub, and N. R. Sandell, On the numerical solution of the discrete-time algebraic Riccati equation, IEEE Trans. Auto. Control, 25 (1980), pp.~631--641. [97 ] L. Patnaik, N. Viswanadham, and I. Sarma, Computer control algorithms for a tubular ammonia reactor, IEEE Trans. Auto. Control, 25 (1980), pp.~642--651. [98 ] T. Penzl, Numerical solution of generalized Lyapunov equations, Adv. Comput. Math., 8 (1998), pp.~33--48. [99 ] P. Petkov, N. Christov, and M. Konstantinov, A posteriori error analysis of the generalized Schur approach for solving the discrete matrix Riccati equation, preprint, Department of Automatics, Higher Institute of Mechenical and Electrical Engineering, 1756 Sofia, Bulgaria, 1989. [100 ] M. E. Pittelkau, Optimal periodic control for spacecraft pointing and attitude dtermination, J. of Guidance, Control, and Dynamics, 16 (1993), pp.~1078--1084. [101 ] J. A. Richards, Analysis of Periodically Time-Varying Systems, Springer-Verlag, Berlin, 1983. [102 ] J. Roberts, Linear model reduction and solution of the algebraic Riccati equation by the use of the sign function, Int. J. Control, 32 (1980), pp.~667--687. [103 ] N. Sandell, On Newton's method for Riccati equation solution, IEEE Trans. Auto. Control, 19 (1974), pp.~254--255. [104 ] V. Sima, Algorithms for Linear-Quadratic Optimization, volume 200 of Pure and Applied Mathematics}, Marcel Dekker, Inc., New York, NY, 1996. [105 ] J. Sreedhar and P. Van Dooren, Periodic Schur form and some matrix equations, Systems and Networks: Mathematical Theory and Applications, 77 (1994), pp.~339--362. [106 ] J. Sreedhar and P. Van Dooren, Forward/backward decomposition of periodic descriptor systems and two point boundary value problems, in European Control Conf., 1997. [107 ] J. Sreedhar and P. Van Dooren, Periodic descriptor systems: solvability and conditionability, IEEE Trans. Auto. Control, 44 (1999), pp.~310--313. [108 ] G. W. Stewart, HQR3 and EXCHNG: F}ortran subroutines for calculating and ordering the eigenvalues of a real upper Hessenberg matrix, ACM Trans. Math. Software, 2 (1976), pp.~275--280. [109 ] G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, New York, 1990. [110 ] T. Stykel, Model reduction of descriptor systems, Technical Report 720-2001, Institut fur Mathematik, TU Berlin, D-10263 Berlin, Germany, 2001. [111 ] T. Stykel, Analysis and numerical solution of generalized Lyapunov equations, PhD Dissertation, Institut fur Mathematik, Tecnische Universitat Berlin, Berlin, 2002. [112 ] T. Stykel, Stability and inertia theorems for generalized Lyapunov equations, Lin. Alg. Appl., 355 (2002), pp.~297--314. [113 ] T. Stykel, Balanced truncation model reduction for semidiscretized Stokes equation, Technical Report 04-2003, Institut fur Mathematik, TU Berlin, D-10263 Berlin, Germany, 2003. [114 ] T. Stykel, Input-output invariants for descriptor systems, preprint PIMS-03-1, Pacific Institute for the Mathematical Sciences, Canada, 2003. [115 ] J.-G. Sun, Sensitivity analysis of the discrete-time algebraic Riccati equation, Lin. Alg. Appl., 275/276 (1998), pp.~595--615. [116 ] L. Tong, G. Xu, and T. Kailath, Blind identification and equalization based on second-order statistics: A time domain approach, IEEE Trans. Information Theory, 40 (1994), pp.~340--349. [117 ] P. P. Vaidyanathan, Multirate digital filters, filter banks, polyphase networks, and applications: A tutorial, in Proc. IEEE, vol.~78, 1990, pp.~56--93. [118 ] P. P. Vaidyanathan, Mutirate Systems and Filter-Banks, Prentice-Hall, Englewood Cliffs, NJ, 1993. [119 ] P. Van Dooren, A generalized eigenvalue approach for solving Riccati equations, SIAM J. Sci. Statist. Comput., 2 (1981), pp.~121--135. [120 ] P. Van Dooren, Two point boundary value and periodic eigenvalue problems, in Proc. 1999 IEEE Intel. Symp. CACSD, Kohala Coast-Island, Hawaii, USA, K. Kirchgassner et al., ed., August 1999, pp.~22--27. [121 ] P. Van Dooren and J. Sreedhar, When is a periodic discrete-time system equivalent to a time invariant one?, Lin. Alg. Appl., 212/213 (1994), pp.~131--151. [122 ] A. Varga, Periodic {L}yapunov equations: some applications and new algorithms, Int. J. Control, 67 (1997), pp.~69--87. [123 ] A. Varga, Balancing related methods for minimal realization of perioidc systems, Sys. Contr. Lett., 36 (1999), pp.~339--349. [124 ] A. Varga, Balanced truncation model reduction of periodic systems, in Proc. of IEEE Conference on Decision and Control, Sydney, Australia, 2000. [125 ] A. Varga, Robust and minimum norm pole assignment with periodic state feedback, IEEE Trans. Auto. Control, 45 (2000), pp.~1017--1022. [126 ] A. Varga and S. Pieters, Gradient-based approach to solve optimal periodic output feedback control problems, Automatica, 34 (1998), pp.~477--481. [127 ] A. Varga and P. Van Dooren, Computing the zeros of periodic descriptor systems, Sys. Contr. Lett., 50 (2003), pp.~371--381. [128 ] J. Vlach, K. Singhai, and M. Vlach, Computer oriented formulation of equations and analysis of switched-capacitor networks, IEEE Trans. Circuits and Systems, 31 (1984), pp.~735--765. [129 ] J. Xin, H. Kagiwada, A. Sano, H. Tsuj, and S. Yoshimoto, Regularization approach for detection of cyclostationary signals in antenna array processing}, in IFAC Symposium on System Identification, vol. 2, 1997, pp.~529--534. [130 ] V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Perioidc Coefficients, Wiley, New York, 1975. [131 ] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control, Prentice-Hall, Upper Saddle River, NJ, 1996.id NH0925479002 sid 887206 cfn 0 / id NH0925479003 auc 陳信嘉 tic 非拋物型有效質量近似一維離散薛丁格方程特徵值問題 adc 林文偉 ty 碩士 sc 國立清華大學 dp 數學系 yr 92 lg 英文 pg 21 kwc 非拋物型有效質量近似 kwc 量子井 kwc 薛丁格方程 kwc 能階 kwc 波函數 abc 在這篇論文當中,我們先介紹量子理論的基本物理概念以及量子論的歷史,並且會簡單的介紹薛丁格方程以及量子井。我們藉著離散化一維薛丁格方程式的去做更深入的探討,特別是在薛丁格方程式中的電子質量是用非拋物型有效質量近似的方式去模擬單一電子的質量。在此我們是用central-differencing method 將薛丁格方程離散化,並找到特徵方程式。我們是利用參考文獻(4)的方法,去分析這些方程式的性質,並找到特徵值,在此的特徵值與特徵向量分別代表的是能階與波函數。最後這篇論文的目的,是要找出在量子井內離散能階的個數。 tc 1.Introduction 2 2.Modal Problem 6 3.Discretiztion 8 4.The Main Result 13 5.Conclusion 19 6.Reference 21rf References [1 ] David S. Betts and Paul C.W. Davies, Quantum Mechanics, second edition, Chapman and Hall, 1994. [2 ] Golub, G.H, Some modified matrix eigenvalue problems. SIAM Rev.15, 318-334(1973) [3 ] Tsung-Min Hwang, Wen-Wei Lin, Jinn-Liang Liu, and Weichung Wang, Numerical computation of cubic eigenvalue problems for a semicnductor quantum dot model with non-parabolic effective mass approximation, 2002, preprint. [4 ] Wen-Wei Lin, eigenvalue problems for one-dimensional discrete Schr¨odinger opertors with symmetric boundary conditions. SIAM Matrix Anal. Appl., Vol. 23, No. 2 (2001), pp. 524-533. (with J. Juang and S. F. Shieh) [5 ] Y. Li, J.-L. Liu, O. Voskoboynikov, C. P. Lee, and S. M. Sze. Electron energy level calculations for cylindrical narrow gap semiconductor quantum dot. Comput. Phys.Commun., 140:399V 404, 2001. [6 ] Serway, Principles of Physics, international edition, Saunders College Publishing, 1994. [7 ] S. Maimon, E. Finkman, G. Bahir, S. E. Schacham, J. M. Garcia, and P. M. PetroR. Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors.Appl. Phys. Lett., 73:2003V2005, 1998.id NH0925479003 sid 893214 cfn 0 / id NH0925479004 auc 林盟傑 tic 非拋物型有效質量近似二維連續薛丁格方程特徵值問題 adc 林文偉 ty 博士 sc 國立清華大學 dp 數學系 yr 92 lg 英文 pg 34 kwc 量子線 kwc 薛丁格方程 kwc 能階 kwc 波函數 kwc Bessel氏方程式 kwc 修正型Bessel氏方程式 abc 這篇文章致力於研究非拋物型有效質量近似二維連續薛丁格方程特徵值問題。我們主要結果是著重在關注被鎖在量子井中能量態的個數。至於,文章的編排方式,我一開始先來介紹關於這個欲處理問題的來源和出產。接著,引進Bessel氏方程式和修正型Bessel氏方程式,同時也羅列出和上述兩方程式相關且對研究有幫助的性質。接下來的工作,我建構出一個特徵方程式,此特徵方程式的根正好是我所處理的問題的特徵值,故特稱為特徵方程式。這個特徵方程式是整篇文章的一個重要關鍵式子。因為我們能藉由它完成一些主要的結果。最後,我分別利用兩節的篇幅來討論特徵方程式的重要性質並大略的勾勒出其圖形,並於文章末節給出了我所完成的一些重要結果。 tc 1.Introduction.....................1 2.Model problem ....................7 3.The derivation of model problem ..........8 4.Bessel functions ..................10 5.A characteristic equation .............16 6.The properties of..................20 7.The properties of .................24 8.The main results ..................30 9.Conclusion......................32 10.Figures.......................33 11.References .....................34rf [1 ] Fred Brauer and John A. Nohel, Ordinary Differential Equations , W. A.Benjamin , Inc, 1967, 167–177. [2 ] Paul C. W. Davies and David S. Betts, Quantum Mechanics, 2nd, Chapman and Hall, 1994. [3 ] Paul Harrison, Quantum Wells, Wires and Dots : Theoretical and Computational Physics, John Wiley, 2000. [4 ] R. Kent Nagle, Edward B. Saff, Fundamentals of Differential Equations and Boundary Value Problems, 2nd, Addison-Wesley Press, 1996, 497–499, 679–680. [5 ] N. S. Koshlyakov, M. M Smirnov and E. B Gliner, Differential Equations of Mathematical Physics, North-Holland Publishing Company, 1964, 161–179. [6 ] Richard Turton, The Quantum Dot, Oxford University Press, 1996. [7 ] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd, 1958. [8 ] Wen-Wei Lin, Eigenvalue Problem for One- dimensional Discrete Schrodiger Operators with Symmetric Boundary Conditions, SIAM Matrix Anal.Appl.,Vol. 23, No. 2 (2001), pp. 524-533. (with J. Juang and S. F. Shieh)id NH0925479004 sid 893264 cfn 0 / id NH0925479005 auc 蔡亞倫 tic 半線性橢圓方程解的正則性 adc 王懷權 ty 碩士 sc 國立清華大學 dp 數學系 yr 92 lg 中文 pg 32 kwc 非線性 kwc 正則性 kwc 橢圓方程 abc 此論文中,我們分析在一些情況之下一非線性橢圓方程的基態解為古典解。 tc 1.Introduction 2 2.Palais-Smale Values and Indexes of Domains 4 3.Achieved Domain 22 4.Regularity of Solutions 23 References 31rf Adams, R. A., Sobolev space, Academic Press, New York 1975. A. Ambrosetti and P. H. Rabinowitz, Dual variational method in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. H. Brézis and L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math., 44(1991), 939-963. K. -J. Chen and H. -C. Wang, A necessary and sufficient condition for Palais-Smale conditions, SIAM J. Math. Anal., 31 (1999), 154-165. M. J. Esteban and P. -L. Lions, Existence and non-existence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh, Sect. A, 93 (1982), 1-12. B. Gidas, W. -M. Ni, and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in R^{N}, Adv. in Math. Suppl. Stud., 7A (1981), 369-402. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second Edition, Springer Verlag, New York, 1983. M. -K. Kwong, Uniqueness of positive solutions of Δu-u+u^{p}=0 in Rⁿ, Arch. Ration. Mech. Anal., 105 (1989), 243-266. W. -C. Lien, S. -Y. Tzeng, and H. -C. Wang, Existence of solutions of semilinear elliptic problems in unbounded domains, Differential Integral Equations, 6 (1993), 1281-1298. P. -L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145; 223-283. P. -L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, II, Rev. Mat. Iberoamericana, 1, No. 1 (l 985), 145-20 1; No. 2 (1985), 45-121. Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc., 95 (1960), 101-123. P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Regional Conference Series in Mathematics, American Mathematical Society, 1986. C. A. Stuart, Bifurcation in L^{p}(R^{N}) for a semilinear elliptic equation, Proc. London Math. Soc., 45 (1982), 169-192. H. -C. Wang, A Palais-Smale approach to problems in Esteban-Lions domains with holes, Trans. Amer. Math. Soc., 352 (2000), 4237-4256. H. -C. Wang, Palais-Smale approachs to semilinear elliptic equations in unbounded domains, Preprint. M. Willem, Minimax theorems, Birkhauser Verlag, Basel, 1996.id NH0925479005 sid 903201 cfn 0 / id NH0925479006 auc 黃俊豪 tic 三次特徵多項式的子空間逼近法 adc 黃榮秋 ty 碩士 sc 國立清華大學 dp 數學系 yr 92 lg 英文 pg 33 kwc Eigenvalue abc 三次特徵多項式在Krylov子空間上的逼近法. rf [1 ] L.V.Ahlfors, Complex Analysis, McGraw-Hill Book Company, third ed.,1979. [2 ] T.Kato, Perturbation Theory for Linear Operators, Spinger-Verlag,1980. [3 ] Weichung Wang,Tsung-Min Hwang,Wen-Wei Lin,Jinn-Liang Lin, Numerical methods for semiconductor heterostructures with band nonparabolicity, Journal of Computational Physics 190(2003) 141-158. [4 ] U.B.Holz,Subspace Approximation Methods for Perturbed Quadratic Eigenvalue Problems, PhD thesis, Mathematics Department, Stanford University, 2002 [5 ] F.S.Acton, numerical methods That Work (Harper and Rrow , New York , 1970) , pp477-498 [6 ] D.A.Faster,The Physics of Semiconductor Devices , ed . (Oxford , London , 1979 ) [7 ] Ben Noble , James W. Daniel , Applied Linear Algebra , ed . (Prentice-Hall,NewJersy,1988) [8 ] Biswa Nath Datta , Numerical Linar Algebra and Apllications(Brooks/Coke,1975). [9 ] G.L.Snider, I.-H. Tan, and E.L.Hu,”Electron states in mesaetched one-dimensinal quantum well wires,” J.Appl,Phys.68(6),pp.2849-2853,September 1990 [10 ] Richard L. Burden , J. Douglas Faires , Numerical Analysis. [11 ] Mathematical Analysis , A Modern Approach to Advanced Calculus . (Tom M. Apostol , 1957)id NH0925479006 sid 903207 cfn 0 / id NH0925479007 auc 黃建銘 tic 使用Cabri Geometry來探索圓規作圖 adc 全任重 ty 碩士 sc 國立清華大學 dp 數學系 yr 92 lg 英文 pg 23 kwc 圓規作圖 abc 尺規作圖源自於古希臘,是一門歷史相當久遠的研究領域,但傳統的尺規作圖是利用圓規和直尺來作圖,此篇論文的研究目的則在探討只用圓規而不用直尺的情況下,可以畫出哪些圖形,內容包含一些基本的作圖工具,曲線作圖,費瑪點,正五邊形,正方形和生鏽圓規的作圖.而這些作圖都是在動態幾何軟體Cabri Geometry的實驗操作下所得到的. tc Contents 1. Introduction 1.1 Tools………………………………………………...1 2. Curve Construction 2.1 Epi- and Hypocycloid……………………………..11 2.2 Lemniscate, Conics, Parabola and Ellipse……14 3. Applications 3.1 Fermat Point………………………………………..16 3.2 Regular Pentagon…………………………………..17 3.3 Square......................................18 3.4 Rusty Compass……………………………………...20 4. Bibliography……………………………………………..23rf 4 Bibliography References [1 ] A. N. Kostovskii. Geometrical Constructions Using Compasses Only, Blaisdell Publications, Co, New York, 1961. [2 ] Lockwood, E. H. A Book of Curves, Cambridge, England, Cambridge University Press, reprinted, 1963. [3 ] Zwikker, C. The Advanced Geometry of Plane Curves and Their Applications, Dover Publications, Inc. New York, 1963. [4 ] Yates, Robert C. Geometrical Tools :/A Mathematical Sketch and Model Book./, Saint Louis: Educational Publishers, Inc, reprinted, 1963. [5 ] Eves, Howard. A Survey of Geometry, Boston, Allyn and Bacon, 1963. [6 ] G. R. Livingston, L. S. Shively, American Mathematical Monthly, Vol. 43, No. 6. (Jun. - Jul., 1936). [7 ] Martin Gardner, Mathematical Circus, Knopf, 1979. [8 ] 張景中, 數學家的眼光, 九章出版社, 1995.id NH0925479007 sid 903210 cfn 0 / id NH0925479008 auc 黃瑛鳳 tic 域指數與域變換 adc 王懷權 ty 碩士 sc 國立清華大學 dp 數學系 yr 92 lg 英文 pg 29 kwc 半線性橢圓方程 kwc 域指數 abc 在這論文裡,我們將習得巴萊斯麥爾的一些定理,且我們將定義何謂域指數。接下來,我們就是要來看看一些區域經過變換後,他的域指數會有什麼變化?最後,我們將利用所得之結果去證明一些半線性橢圓方程的解的存在性。 rf Adams, R. A., Sobolev space, Academic Press, New York 1975. AR : A. Ambrosetti and P. H. Rabinowitz, Dual variational method in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. BN : H. Brézis and L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math., 44(1991), 939-963. CW : K. -J. Chen and H. -C. Wang, A necessary and sufficient condition for Palais-Smale conditions, SIAM J. Math. Anal., 31 (1999), 154-165. EL : M. J. Esteban and P. -L. Lions, Existence and non-existence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh, Sect. A, 93 (1982), 1-12. GNN2 : B. Gidas, W. -M. Ni, and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in R^{N}, Adv. in Math. Suppl. Stud., 7A (1981), 369-402. GT : D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second Edition, Springer Verlag, New York, 1983. K : M. -K. Kwong, Uniqueness of positive solutions of Δu-u+u^{p}=0 in Rⁿ, Arch. Ration. Mech. Anal., 105 (1989), 243-266. LTW : W. -C. Lien, S. -Y. Tzeng, and H. -C. Wang, Existence of solutions of semilinear elliptic problems in unbounded domains, Differential Integral Equations, 6 (1993), 1281-1298. L1 : P. -L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145; 223-283. L2 : P. -L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, II, Rev. Mat. Iberoamericana, 1, No. 1 (l 985), 145-20 1; No. 2 (1985), 45-121. N : Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc., 95 (1960), 101-123. R2 : P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Regional Conference Series in Mathematics, American Mathematical Society, 1986. Stu : C. A. Stuart, Bifurcation in L^{p}(R^{N}) for a semilinear elliptic equation, Proc. London Math. Soc., 45 (1982), 169-192. W : H. -C. Wang, A Palais-Smale approach to problems in Esteban-Lions domains with holes, Trans. Amer. Math. Soc., 352 (2000), 4237-4256. W1 : H. -C. Wang, Palais-Smale approachs to semilinear elliptic equations in unbounded domains, Preprint. Wi : M. Willem, Minimax theorems, Birkhauser Verlag, Basel, 1996.id NH0925479008 sid 903252 cfn 0 / id NH0925479009 auc 劉懿嫻 tic 不規則形狀之三維軸對稱量子點的能階分布研究 adc 林文偉 adc 王偉成 ty 碩士 sc 國立清華大學 dp 數學系 yr 92 lg 英文 pg 30 kwc 座標轉換系統 kwc 解特徵值 kwc 特徵向量 kwc 量子 kwc 能階 abc 此篇論文提供了一個有效率的方法去算量子的能階分布.我們用了一種和接觸面相似的網格作為其中之一的座標系統,再用此網格轉換成另一種座標系統,兩種座標系統在用weight function融合後去作離散. 而離散之後所形成的矩陣會為對稱正定矩陣.最後再使用Jacobi-Davidson 的方法算其特徵值以及特徵向量.且所算出的特徵值會有二階精度. tc 目 錄 1. Introduction ...................................................1 2. The mathematical model ..............................2 3. The discretization method ............................3 4. The eigensolvers ..........................................13 5. Numerical results ........................................15 6. Conclusion ...................................................17 References ...........................................................18 Graphs .................................................................20rf L. Jack, P. Hawrylak, A W\'{o}js, Quantum Dots, Springer, Berlin, 1998. R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop\'{e}v, Z. I. Alferov, Energy relaxtion by multiphonon processes in InAs/GaAs quantum dots, Phys. Rev. B56 (1997) 10435-10445. G. Medeiros-Ribeiro, J. M. Garcia, P. M. Petroff, Charging dynamics of InAs self-assembled quantum dots, Phys. Rev. B 56 (1997) 3609-3612. S. Mainmon, E. Finkman, G. Bahir, S. E. Schacham, J. M. Petroff, Intersublevel transitions in InAs/GaAs quantum dots in frared photodetectors, Appl. Phys. Lett. 73 (1998) 2003-2005. L. Harris D. J. Mowbray, M. S. Skolnick, M. Hopkinson, G. Hill, Emission spectra and mode structure of InAs/GaAs self-origanized quantum dot lasers, Appl. Phys. Lett. 73 (1998) 969-971. G. Iannaccone, A. Trellakis, U. Ravaioli, Simulation of a quantum-dot flash memory, J. Appl. Physi. 84 (9) (1998) 5032-5036. G. Burkard, D. Loss, D. P. DiVincenzo, Couple quantum gates, Rhvs. Rev. B 59 (1999) 2070-2078. J. W. Gray, D. Childs, S. Malik, P. Siverns, C. Roberts, P. N. Stavrinou, M. Whitehead, R. Murray, G. Parry, Quantum dot resonant cavitylight emitting diode operating near 1300nm. Electron. Lett. 35 (1999) 242. B.~H.~Nie, K.~A.~Anshelm, J.~C.~Campbell, and B.~G.~Streetman. Multi-stacked quantum dot resonant-cavity photodetector operating at 1.6 /spl mu/m. {\it Electron. Lett.}, 34:694-695, 1998. D. J.~BenDaniel and C. B.~Duke. Space-charge effects on electron tunnelling. {\it Phys. Rev.}, 152(683), 1996. Y.~Hirayama, J.~H.~Smet, L.-H.~Peng, C.~G. Fonstad, and E.~P.~Ippen. Feasibility of 1.55 $\mu$m in tersubband photonic devices using InGaAs/AlAs pseudomorphic quantum well structures. Japanese J. Applied Phys. Part 1, 33:890-895, 1994. O.~Voskoboynikov, S.~S.~Liu, and C.~P.~Lee. Spin-dependent electronic tunnelling at zero magnetic field. Physical Review B, 58(23):15397-15400, December 1998. J. Bramble, J. King, A finite element method for interface problems in domains with smooth boundaries and interfaces. Advances in Comput. Math.,6 (1996) 109-138. Z. Chen, J. Zou Finite element methods and their convergence for elliptic anda parabolic interface problems. Numer. Math., 79, (1998), 175-202. Wei-Cheng Wang. A Jump Condition Capturing Scheme for Ellipitic Interface Problems. SIAM J. Sci. Comp. (2003) Z.~Bai, G.~Sleijpen, and H.~van der Vorst. Nonlinear eigenvalue problems. In Z.~Bai, J.~Demmel, J.~Dongarra, A.~Ruhe and H.~van der Vorst, editors, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, chapter 9. SIAM, Philadelphia, 2000. Tsong-Ming Huang, Wen-Wei Lin, Wei-Cheng Wang and Wei-Chung Wang. Numerical Simulation of Three Dimensional Pyramid Quantum Dot. J. Comp. Phys., Vol 196, 208-232 (2004).id NH0925479009 sid 903259 cfn 0 / id NH0925479010 auc 夏文茵 tic 一維推廣Ambrosetti-Brezis-Cerami問題解集合的結構 adc 王信華博士 ty 碩士 sc 國立清華大學 dp 數學系 yr 92 lg 英文 pg 20 kwc 解集合 kwc 多重 kwc 正解 kwc 分支 kwc 凹凸非線性 kwc 時間圖 abc 我們探討非線性兩點邊界值問題的解集合的結構,當滿足一些條件的時候.在(A1)-(A4)的條件之下,我們可以證明存在某一個正數使得這個問題當介在0跟正數之間會有兩個正解,當等於正數之時只有一個正解,當大於正數之時會沒有正解. tc 1. Introduction……………………….. 2 2. Main Results………………………. 4 3. Lemmas……………………………11 4. Proofs of Main Results…………….12 References……………………………19rf [1 ]I. Addou, A. Benmezai, S. M. Bouguima and M. Derhab, Exactness results for generalized Ambrosetti-Brezis-Cerami problem and related one-dimensional elliptic equations, Electron. J. Diff. Eqns.(2000), 1-34. [2 ]A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal.{122} (1994), 519-543. [3 ]M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal.{52} (1973), 161--180. [4 ]B. Gidas, W. N. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys.{68} (1979), 209-243. [5 ]P. Korman, On uniqueness of positive solutions for a class of semilinear equations,Discrete Contin. Dyn. Syst.8 (2002), 865--871. [6 ]P. Korman and J. Shi, Instability and exact multiplicity of solutions of semilinear equations, Electron. J. Diff. Eqns. Conf., 5 (2000), 311--322. [7 ]T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J.{20} (1970), 1-13. [8 ]J. Sanchez and P. Ubilla, One-dimensional elliptic equation with concave and convex nonlinearities, Electron. J. Diff. Eqns.{2000} (2000), 1-9. [9 ]J. Shi, private communications. [10 ]M. Tang, Exact multiplicity for semilinear Dirichlet problem involving concave and convex nonlinearities, Proc. Royal Soc. Edinburgh, Sect. A., {133} (2003), 705--717. [11 ]S.-H. Wang and T.-S. Yeh, On the exact structure of positive solutions of an Ambrosetti-Brezis-Cerami problem and its generalization in one space variable, {Differential Integral Equations, }in press. [12 ]S.-H. Wang and T.-S. Yeh, Exact multiplicity and ordering properties of positive solutions of a p-Laplacian dirichlet problem and their applications, J. Math. Anal. Appl.,in press. [13 ]S.-H. Wang and T.-S. Yeh, A complete classification of bifurcation diagrams of a Dirichlet problem with concave-convex nonlinearities, to appear in J. Math. Anal. Appl. (under minor revisions).id NH0925479010 sid 903261 cfn 0 / id NH0925479011 auc 王廷朝 tic 特徵值不等於2或3之有限體上橢圓曲線的模結構 adc 于靖 ty 碩士 sc 國立清華大學 dp 數學系 yr 92 lg 英文 pg 37 kwc 橢圓曲線 kwc 模 kwc 複乘 kwc 約化 kwc 有限體 abc 令 $K$ 是有理數上的二次體擴張,而 $E$ 是ㄧ定義在 $K$ 上的橢圓曲線,並在 $K$ 上的整數環有複乘。對於 $K$ 上使 $E$ 有良好約化的質理想 $\idealP$, 令 $k_{\idealP}$ 是 $R_K/\idealP$ 且 $\tilde{E}$ 是 $E$ 對 $\idealP$ 作約化之後定義在 $k_{\idealP}$ 上的橢圓曲線。 tc 1.基本理論。 2.$\tilde{E}_D(k_{\idealP})$ 上的 $\ZZ[\imath ]-$ 模結構。 3.$\tilde{E}^D(k_{\idealP})$ 上的 $\ZZ[\o ]-$ 模結構。 4.有關格羅森特徵標(Gr\"{o}ssencharacter)的注解。rf [1 ]Koblitz, Neal. Introduction to elliptic curves and modular forms.GTM 97. Springer-Verlag, New York, second edition, 1993. [2 ]Rosen, M. A Classical Introduction to Modern Number Theory. GTM 84. Springer-Verlag, New York, 1984. [3 ]Silverman, Joseph H. Advanced topics in the arithmetic of elliptic curves. GTM 151. Springer-Verlag, New York, 1994. [4 ]Washington, Lawrence C. Elliptic curves :number theory and cryptography. Chapman & Hall/CRC, 2003.id NH0925479011 sid 913201 cfn 0 / id NH0925479012 auc 劉珈銘 tic 具階梯函數之弦振動的反問題 adc 沈昭亮 ty 碩士 sc 國立清華大學 dp 數學系 yr 92 lg 英文 pg 15 kwc 密度函數 kwc 階梯函數 kwc 光譜 kwc 反問題 abc 本篇論文主要是研究階梯密度函數的弦振動的反問題。 rf 1. R. Carlson, An inverse spectral problem for Sturm-Liouville operators with discontinuous coefficients, Proceeding A.M.S 120 (1994), no.2, pp475-484. 2.Chao-Liang Shen, On some inverse problems of the string equation,preprint. 3.N. I. Akhiezer, The Classical Moment Problem, Hafner, 1965. 4. F.Gesztesy and E.Tsekanovskii, On matrix-valued Herglotz function, Math. Nachr, 218(2000), 61-138 5. V. Barcilon, Explicit solution of the inverse problem for a vibrating string, J.M.A.A 93(1993), 222-234.id NH0925479012 sid 913202 cfn 0 / id NH0925479013 auc 田明弘 tic 函數體上的加強的六指數定理 adc 于靖 ty 碩士 sc 國立清華大學 dp 數學系 yr 92 lg 英文 pg 27 kwc 德林費模 kwc 函數體 kwc 指數函數 kwc 六指數定理 abc 我們將研究函數體上的德林費指數函數。給定六個點,六指數定理證明了在適當的條件下,自然指數函數在這些點的取值至少有一個是超越元素。在數體的情況,加強的六指數定理改進了六指數定理。作為此定理的應用,五指數定理證明了給定五個適當的點,自然指數函數在這些點的取值必有超越元素。在這篇文章中,我們在函數體上導出了一個加強的六指數定理的類比。 tc Abstract………………………………………1 1. Introduction…………………………2 2. Main theorem and main result.….4 3. Transcendence argument………….11 4. Auxiliary lemma…………………..21 5. Proof of main result…………….23 Reference…………………………………..27rf 1 ] Humphreys, E.: Linear Algebraic Groups. GTM 21, Springer-Verlag. 2 ] Rosen, M.: Number Theory in Function Fields. GTM 210, Springer-Verlag. [3 ] Waldschmidt, M.: Diophantine Approximation on Linear Algebraic Groups. [4 ] Waldschmidt, M.: On the transcendence methods of Gelfond and Schneider in several variables. New advances in transdence theory (Durham, 1986), 375-398,Cambridge Univ.Press,Cambridge-New York,1988. [5 ] Yu, J.: Transcendence theory over function fields, Duke Math. J. 52 (1985), 517-527. [6 ] Yu, J.: A Six Exponentials Theorem in finite characteristic. Math. Ann. 272 (1985), 91-98. [7 ] Yu, J.: Transcedence and Drinfeld modules, Invent Math. 83(1986), 507-517. [8 ] Yu, J.: Transcedence and Drinfeld modules: several variables, Duke Math. J. 58 (1989), 559-575. [9 ] Yu, J.: Analytic homomorphisms into Drinfeld modules, Annals of Mathematics. 145 (1997), 215-233.id NH0925479013 sid 913203 cfn 0 / id NH0925479014 auc 郭坤宗 tic 秩為一的 Drinfeld 模上的一個密度問題 adc 于靖 ty 碩士 sc 國立清華大學 dp 數學系 yr 92 lg 英文 pg 32 kwc 阿廷猜想 abc 在此篇論文中,我們將研究在Carlitz模上的Artin猜想以及秩為二的 Drinfeld 模上的一個密度問題。 tc 1. Introduction ..................................................1 2. Explicit formula of the density in the case q>2 ..................................................2 3. Effective version of the Chebotarev density therem for function filds ..................................................8 4. A generalization of Artin's problem for function fields ..................................................14 5. Artin's conjecture for Carlitz modules in the case q=2 ..................................................23 6. On a cyclicity density problem for rank two Drinfeld modules ..................................................29 7. References ..................................................31rf [1 ] M. Rosen : Number Theory in Function Fields . GTM 210 . Springer Verlag . [2 ] H. Stichtenoth : Algebraic Function Fields and Codes . Springer , Berlin 1994 . [3 ] C. Hooley : On Artin's conjecture . J. Reine Angew. Math. 225 (1967) , 209-220 . [4 ] C.-N. Hsu : On Artin's conjecture for Carlitz modules . Compositio Math. 106 (1997) 247-266 . [5 ] V. K. Murty and J. Scherk : Effective versions of the Chebatarov density theorem for function fields . Compte Rendu 319 (1994) . [6 ] M. Fried and M. Jarden : Field Arithmetic . New York , Springer Verlag , 1986 . [7 ] M. R. Murty , V. K. Murty and B. saradga : Modular forms and the chebotarev density theorem . Amer. J. Math. 110 , 1988. [8 ] M. R. Murty : On Artin's conjecture . Journal of Number Theory 16 (1983) , 147-168 . [9 ] J. S. Milne : Etale Cohomology , Princeton Math. Series 33 , Princeton University Press , 1980 . [10 ] E. Artin : The collected papers of Emil Artin (S. Lang and J. Tate , Eds.) , Addison-Wesley (1965) . [11 ] H. Bilharz : Primdivisoren mit vorgegebener Primitivwurzel . Math. Ann. 114 (1937) , 476-492 . [12 ] W.-C. Chi and Anly Li : Kummer theory of divison points over Drinfeld modules of rank one . Joural of Pure and Applied Algebra 156 (2001) 171-185 . [13 ] C.-N. Hsu : On Drinfeld Modules of Carlitz type . Preprint (1994) . [14 ] J. P. Serre : Linear Representations of Finite Groups , Springer Verlag . [15 ] J.-Z. Li : On a cyclicity problem for Drinfeld moule. 2003 . N.T.H.U. paper of master . [16 ] D. A. Clark and M. Kuwata : Generalized Artin's conjecture for primitive roots and cycicity mod $p$ of Elliptic curves over function fields , Canad. Math. Bull. 38 (2) (1995) 167-173 . [17 ] C.-N. Hsu and J. Yu : On Artin's Conjecture for Rank One Drinfeld Modules . Journal of Number Theory 88 , 157-174 (2001).id NH0925479014 sid 913204 cfn 0 / id NH0925479015 auc 張其棟 tic 二重數列加權平均在統計角度下的Tauber型定理 adc 陳璋泡 ty 碩士 sc 國立清華大學 dp 數學系 yr 92 lg 英文 pg 18 kwc 統計收斂 kwc Tauber型定理 kwc 加權平均 kwc Landau型條件 abc 令p與q為SVA中的複數數列.若s為複數(實數,或一Banach空間,或一偏序線性空間)中二維度的序列,且滿足s於(N,p,q;a,b)義意下統計收斂至一數t,在此(a,b)可以為(1,1),(1,0)或是(0,1).我們給予原序列s統計收斂至t的充份與(或)必要條件.本篇的結果是由考慮統計收斂的角度下,給予與[CH rf [CH ] C.-P. Chen and J.-M. Hsu, Tauberian theorems for weighted means of double sequences, Anal. Math., 26(2000), 243-262. [Fa ] H. Fast, Sur la convergence statistique, Colloq. Math., 2(1951), 241-244. [Fr ] J. A. Fridy, On statistical convergence, Analysis, 5(1985), 301-313. [M1 ] F. Moricz, Tauberian theorems for double sequences that are statistically summable (C,1,1), J. Math. Anal. Appl., 286(2003), 340-350. [M2 ] F. Moricz, Statistical convergence of multiple sequences, Arch. Math., 81(2003), 82-89. [M3 ] F. Moricz, Tauberian conditions, under which statistical convergence follows from statistical summability (C,1), J. Math. Anal. Appl., 275(2002), 277-287.id NH0925479015 sid 913210 cfn 0 / id NH0925479016 auc 藍錦文 tic 積分型Hardy-Littlewood極大定理的推廣 adc 陳璋泡 ty 碩士 sc 國立清華大學 dp 數學系 yr 92 lg 英文 pg 22 kwc 極 kwc 大 kwc 定 kwc 理 abc 本篇論文推廣Hady不等式到對第二個變數遞增的正則核.本篇論文也推廣了Hardy-Littlewood極大定理到對第二變數遞增或遞減的某種形式的核.以前面的結論,我們給了Knopp積分不等式的極大型態.我們的結果給了Bennett[B2 rf [B1 ] G. Bennett, `Factorizing the Classical Inequalities', Memoirs Amer. Math. Soc. 576(1996), 1-130. [B2 ] G. Bennett, `Inequalities Complimentary to Hardy', Quart. J. Math. Oxford} (2), 49(1998), 395-432. [HL ] G. H. Hardy, and J. E. Littlewood, `A maximal theorem with function-theoretic applications', Acta Math.54 (1930), 81-116. [HLP ] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, 2nd edition, Cambridge University Press, Cambridge 1967. [HS ] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, Berlin-Heidelberg-New York, 1965. [K ] K. Knopp, 'Uber Reihen mit positiven Gliedern', J. London Math. Soc 3(1928),205-211. [L ] Chin-Lung Li, Extensions of Hardy-Littlewood Maximal Theorem, Master thesis, National Tsing Hua University, 2003. [R ] W. Rudin, {\it Functional Analysis}, 2nd edition, McGraw-Hill, New York, 1991.id NH0925479016 sid 913215 cfn 0 / id NH0925479017 auc 楊其儒 tic 有界對稱域的多解及其穩定性 adc 王懷權 ty 碩士 sc 國立清華大學 dp 數學系 yr 92 lg 英文 pg 28 kwc 半線性橢圓方程 kwc 穩定性 kwc 有界對稱域 abc 在這篇論文裡,我們證明出半線性橢圓方程在有界對稱域上 rf 1.A. Bahri and L. P. Lions, On the existence of positive solutions of semilinear elliptic equations in unbounded domains, Ann. I. H. P. Analyse non lineaire 14(1997), 365-413. 2.Brézis, H., Analyse Fonctionnelle, Theorie et Applications, Masson, Paris, 1983. CCW : K. C. Chen, K. J. Chen, and H. C. Wang, Symmetry of positive solutions of semilinear elliptic equations on infinite strip domains, J. Differential Equations, 148(1998), 1-8. 3.K. J. Chen, C. S. Lee and H. C. Wang, Semilinear elliptic problems in interior and exterior flask domains, Commun. Appl. Nonlinear Anal., 5(1998), 81-105. 4.E. N. Dancer, The effect of domain shape on the number of positive solution of certain nonlinear equations, J. of Diff. Equation 74(1988), 120-156. Gidas, B., Wei-Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1978), 209-243. 5.D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second order, Springer-Verlag, New York, 1983. 6.W. C. Lien, S. Y. Tzeng, and H. C. Wang, Existence of solutions of semilinear elliptic problems in unbounded domains, Differential Integral Equations 6 (1993), 1281-1298. 7.R. Palais, The Principle of symmetric criticality, Comm. Math. Phys. 69 (1979), 19-30. 8.P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Regional Conference Series in Mathematics, American Mathematical Society, 1986. 9.H. L. Royden, Real Analysis, Macmillan Publishing Company, New York, 1988. 10.H. C. Wang, Nonlinear Analysis, National Tsing Hua University Press, Taiwan, 2003. 11.E. Zeidler, Nonlinear Functional Analysis and its Applications II/A, Springer-Verlag, New York, 1989.id NH0925479017 sid 913251 cfn 0 / id NH0925479018 auc 李國弘 tic BSO(3)的模2下同調 adc 顏東勇 ty 碩士 sc 國立清華大學 dp 數學系 yr 92 lg 英文 pg 17 kwc 下同調 kwc 穩定分解 abc 利用在特定係數中BO(2)可以被分解成為BSO(3)和Y2兩部分的特性.在經由一些函數的運送,我們在本篇文章中觀察Y2下同調的生成元. tc Contents 1.Introduction………………………………………1 2.Statement of the Main Result And Proof of Main Theorem……………………3 (1) Theorem 1………………………………………3 (2) Lemma 2…………………………………………3 (3) Lemma 3…………………………………………5 (4) Corollary 4……………………………………6 (5) Proposition5 …………………………………7 3.Reference…………………………………………17rf [1 ]Yan, Dung Yung:Stable splittings of BO(2n) and BU(2n). Proc. Amer. Math. Soc. 1 124,No.6(1996),1913-1915. [2 ]Yan, Dung Yung:Stable splittings of the quotient spaces BO(2n)/BO(2n+1) and BU(np)/BU(np-p).Forum Math. 11(1999),211-227 [3 ]N.E.Steenord:Cohomology operations.. Princeton University Press(1962), 5-6id NH0925479018 sid 913253 cfn 0 / id NH0925479019 auc 胡忠澤 tic 啞鈴形域的三解及其穩定性 adc 王懷權 ty 碩士 sc 國立清華大學 dp 數學系 yr 92 lg 英文 pg 23 kwc 半線性橢圓方程 kwc 穩定性 kwc 啞鈴形域 abc 在這篇論文裡,我們證明出半線性橢圓方程在啞鈴形域上,某些條件下有三個正解的存在。其中一個是對稱的,另兩個是非對稱的,而它們都是不穩定的。 rf 1.H. Brezis, Analyse Fonctionnelle, Masson, Paris, 1983. 2. J. Byeon, Existence of large positive solutions of some nonlinear elliptic equations on singularly perturbed domains, Comm. Partial Differential Equations, 22(1997), 1731-1769. 3. G. Chen, W. M. Ni, and J. Zhou, Algorithms and visualization for solution of nonlinear elliptic problems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10(2000), 1565-1612. 4. K. C. Chen, K. J. Chen, and H. C. Wang, Symmetry of positive solutions of semilinear elliptic equations on infinite strip domains, J. Differential Equations, 148(1998), 1-8. 5. M. C. Chen, H. L. Lin , and H. C. Wang, Vitali convergence theorem and Palais Smale conditions, Differential Integral Equations, 15(2002), 641-656. 6. E. N. Dancer, The effect of domain shape on the number of positive solution of certain nonlinear equations, J. Differential. Equations 74(1988), 120-156. 7. B. Gidas, W. M. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1978), 209-243. 8. B. Gidas, W. M. Ni, L. Nirenberg , Symmetry of positive solutions of nonlinear elliptic equations in R^{N}, Advances in Mathematics, Supplementary Studies, Academic Press 7A, 1981. 9. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second order, Springer-Verlag, New York, 1983. 10. W. C. Lien, S. Y. Tzeng, and H. C. Wang, Existence of solutions of semilinear elliptic problems in unbounded domains, Differential Integral Equations 6 (1993), 1281-1298. 11. R. Palais, The Principle of symmetric criticality, Comm. Math. Phys. 69 (1979), 19-30. 12. P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Regional Conference Series in Mathematics, American Mathematical Society, 1986. 13. H. C. Wang, Nonlinear Analysis, National Tsing Hua University Press, Taiwan, 2003. 14. H. C. Wang and T. F. Wu, Symmetry Breaking in a Bounded Symmetry Domain, To appear in Nonlinear Differential Equations Appl 15. M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996id NH0925479019 sid 913255 cfn 0 / id NH0925479020 auc 曾建衡 tic 週期線性系統之控制觀測與平衡 adc 林文偉 ty 碩士 sc 國立清華大學 dp 數學系 yr 92 lg 英文 pg 25 kwc Reachability kwc Observability kwc Balance abc In this paper, we define the reachability and observability of periodic descriptor system, and deduce some equivalent properties from the definitions of reachability and observability. This is a generation of the period one descriptor system which can also be used in further study of periodic Lyapunov equations. Furthermore we define the Hankel singular values of the system, and try to find the balanced realization. rf [1 ] D. J. Bender, Lyapunov-like equations and reachability/observability gramians for descriptor systems, IEEE Trans. Auto. Control, 32 (1987). [2 ] M. C. Berg, N. Amit, and J. D. Powell, Multirate digital control system design, IEEE Trans. Auto. Control, 33 (1988). [3 ] S. Bittanti, Deterministic and stochastic linear periodic systemsin Time series and linear systems, Springer Verlag, New York, [4 ] S. Bittanti, P. Colaneri, and G. D. Nicolao, The di®erence periodic Riccati equation for the periodic prediction problem, IEEE Trans. Auto. Control, 33 (1988). [5 ] A. Bojanczyk, G. H. Golub, and P. Van Dooren, San Diego, Proc. SPIE Conference, vol. 1770, 1992. [6 ] E. K.-W. Chu, H.-Y. Fan, and W.-W. Lin, Reachability/observability gramians and balanced realization of periodic descriptor systems, submitted, 2004, NCTS, National Tsing Hua University, Hsinchu 300, Taiwan, 2004. [7 ] L. Dai, Singualr Control Systems, 1989. [8 ] D. S. Flamm and A. J. Laub, A new shift-invariant representation of perioidc linear systems, Systems and Control Lett., 17 (1991). [9 ] B. Francis and T. T. Georgiou, Stability theory for linear time-invariant plants with periodic digital controllers, IEEE Trans. Auto. Control, 33 (1988). [10 ] K. Glover, All optimal hankel-norm approximations of linear multivariable systems and their L1-errors bounds, Int. J. Control, 39 (1984). [11 ] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., 1996. [12 ] J. J. Hench and A. J. Laub, Numerical solution of the discrete-time periodic Riccati equation, IEEE Trans. Auto. Control, 39 (1994). [13 ] M. Kono, Eigenvalue assignment in linear discrete-time system, Int. J. Control, 32 (1980). [14 ] Y.-C. Kuo, W.-W. Lin, and S.-F. Xu, Regularrization of linear discrete-time perioidc descriptor systems by derivative and proportional state feedback, to appear in SIAM J. Matrix Analy. Appl., (2004). [15 ] F. L. Lewis, Fundamental, reachability, and observability matrices for discrete descriptor systems, IEEE Trans. Auto. Control, 30 (1985). [16 ] W.-W. Lin and J.-G. Sun, Perturbation analysis for eigenproblem of periodic matrix pairs, Lin. Alg. Appl., 337 (2001). [17 ] W.-W. Lin and J.-G. Sun, Perturbation analysis of the periodic discrete-time algebraic Riccati equation, SIAM J. Matrix Analy. Appl., 24 (2002). [18 ] W.-W. Lin, P. Van Dooren, and Q.-F. Xu, booktitle inWorkshop on Periodic Systems and Control, Como, Italy, 2001. [19 ] M.-L. Liou and Y.-L. Kuo, Exact analysis of switched capacitor circuits with arbitrary inputs, IEEE Trans. Circuits and Systems, 26 (1979). [20 ] B. C. Moore, Principal component analysis in linear systems: controllability, observability, and model reduction, IEEE Trans. Auto. Control, 26 (1981). [21 ] J. A. Richards, Analysis of periodically time-varying systems, 1983. [22 ] J. Sreedhar and P. Van Dooren, booktitleEuropean Control Conf., 1997. [23 ] J. Sreedhar and P. Van Dooren, Periodic descriptor systems: Solvability and conditionability, IEEE Trans. Auto. Control, 44 (1999). [24 ] T. Stykel, Analysis and numerical solution of generalized Lyapunov equations, PhD Dissertation, Institut fÄur Mathematik, Tecnische UniversitÄat Berlin, Berlin, 2002. [25 ] T. Stykel, Stability and inertia theorems for generalized Lyapunov equations, Lin. Alg. Appl., 355 (2002). [26 ] T. Stykel, Input-output invariants for descriptor systems, preprint PIMS-03-1, Paci‾c Institute for the Mathematical Sciences, Canada, 2003. [27 ] P. Van Dooren and J. Sreedhar, When is a periodic discrete-time system equivalent to a time invariant one?, Lin. Alg. Appl., 212/213 (1994). [28 ] A. Varga, Periodic Lyapunov equations: some applications and new algorithms, Internat. J. Control, 67 (1997). [29 ] A. Varga, Balancing related methods for minimal realization of perioidc systems, System and Control Lett., 36 (1999). [30 ] A. Varga, Proc. of IEEE Conference on Decision and Control, Sydney, Australia, 2000. [31 ] A. Varga, Robust and minimum norm pole assignment with periodic state feedback, IEEE Trans. Auto. Control, 45 (2000). [32 ] A. Varga and P. Van Dooren, inWorkshop on Periodic Systems and Control, Como, Italy, 2001. [33 ] J. Vlach, K. Singhai, and M. Vlach, Computer oriented formulation of equations and analysis of switched-capacitor networks, IEEE Trans. Circuits and Systems, 31 (1984). [34 ] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control, 1995.id NH0925479020 sid 913257 cfn 0 / id NH0925479021 auc 李培 auc & auc #28783; tic 研究動態幾何下的聯動桿裝置 adc 全任重 ty 碩士 sc 國立清華大學 dp 數學系 yr 92 lg 英文 pg 34 kwc 聯動桿 abc 在後十九世紀,幾何上最顯著的問題為找尋聯動桿來畫直線.最後終於 tc Ⅰ. Abstract. . . . . . . . . . . . . . . 1 Ⅱ. Preface . . . . . . . . . . . . . . . 2 Ⅲ. Section 1: Primary nowledge . . . . . . . . 4 Ⅳ. Section 2: General Theorem of inkages . . . . . 6 Ⅴ. Section 3: Some Basic Linkage. . . . . . . . 8 Ⅵ. Section 4: Properties . . . . . . . . . . 11 Ⅶ. Section 5: Curves under Linkage Cassinian Ovals. . . . . . . . . . 14 Cissoid . . . . . . . . . . . . 15 Cardioid/Limacon . . . . . . . . . 16 Lemniscate . . . . . . . . . . . 18 Cashew. . . . . . . . . . . . . 22 Conics. . . . . . . . . . . . . 24 Inverse of Conic . . . . . . . . . 28 Deltoid . . . . . . . . . . . . 31 Nephroid . . . . . . . . . . . . 31 Ⅷ. Reference . . . . . . . . . . . . . . 34rf Robert C. Yates: A Handbook on Curves and Their Properties Robert C. Yates: Geometrical Tools 1949 Robert C. Yates: An Ellipsograph National Mathematics Magazine, Volumn12, Issue5 (Feb., 1938), 213-215. Robert C. Yates: A Note on the 3-BarsCurve National Mathematics Magazine, Volumn1, Volumn12, Issue5 (Feb., 1938), 213-215. Robert C. Yates: Line Motion and Trisection National Mathematics Magazine, Volumn13, Issue2 (Feb., 1938), 63-66. Robert C. Yates: A trisector National Mathematics Magazine, Volumn12, Issue7 (Apr., 1938), 323-324. Robert C. Yates: The Trisection Problem National Mathematics Magazine, Volumn15 (Mar., 1941), 278-293. Dickson H. Leavens: Linkages American Mathematical Monthly, Volumn22, Issue10 (Dec., 1915) 330-334. A. B. Kempe: On a General Method of Producing Exact Rectillinear Motion by Linkwork Proceedings of the Royal Society of London, Volume 23(1874-1875). Wm. Woolsey Johnson: The Peaucellier Machine and Other Linkages The Analyst, Volumn2, Issue2 (Mar, 1875), 41-45. W. W. Johnson Recent: Results in the Study of Linkages The Analyst, Volumn13, Issue3 (May, 1876), 70-74. W. W. Johnson Recent: Results in the Study of Linkages [Continued ] The Analyst, Volumn13, Issue3 (May, 1876), 70-74. John J. Quinn: A Linkage for describing the Conic Sections by Continuous Motion American Mathematical Monthly, Volume11, Issue1 (Jan., 1904), 12-13. John J. Quinn: A new linkage for describing a straight line by continuous motion American Mathematical Monthly, Volume16, Issue1 (Jan., 1909), 1. John J. Quinn: A linkage for the Kinematic Description of a Cissoid American Mathematical Monthly, Volume13, Issue3 (Mar., 1906), 57. John J. Quinn: On Kinematics Geometry. --A New Inversor American Mathematical Monthly, Volumn12, Issue5 (May, 1905), 105-106. F. C. Morley The Three-Bar Curve American Mathematical Monthly, Volumn31, Issue2 (Feb., 1924), 71-77. Brian Bolt (李瑾譯): 數學遊樂園之四兩撥千金 牛頓出版社 2002.8.30. Courant 數學導論(吳定遠譯): 水牛出版社1992.3.10. Howard Eves: A SURVEY OF GEOMETRY, Volumn1, 1963.id NH0925479021 sid 913259 cfn 0 / id NH0925479022 auc 葉秋萍 tic P-拉普拉斯問題正解分枝曲線之研究 adc 王信華 ty 碩士 sc 國立清華大學 dp 數學系 yr 92 lg 英文 pg - kwc P-拉普拉斯 kwc 分枝曲線 abc P-拉普拉斯問題正解分枝曲線之研究. 這份論文分成兩部分, 第一部分是對於 dead core solution 的討論, 第二部分是對於 bifurcation curve 的研究. tc Part I: Explicit Necessary and Sufficient Conditions for the Existence of Dead Core Solutions of a P-Laplacian Steady-State Reaction-Diffusion Problem 1. Introduction……………………… 2 2. Main Results……………………... 3 3. Lemmas………………………….. 4 4. Proofs of Main Results…………... 7 5. One-Dimensional Case…………... 9 6. Appendix………………………… 14 References………………………….. 13 Part II: On the Bifurcation Curve of Positive Solutions for a P-Laplacian Two Point Boundary Value Problem 1. Introduction……………………… 2 2. Main Results……………………... 4 3. Lemmas………………………….. 9 4. Proofs of Main Results…………... 11 5. Appendix…………….…………... 25 References………………………….. 23rf Part I: 1. C. Bandle, T. Nanbu and I. Stakgold, Porous medium equation with absorption. SIAM J. Math. Anal. 29 (1998), 1268--1278. 2. C. Bandle, R. P. Sperb and I. Stakgold, Diffusion and reaction with monotone kinetics. Nonlinear Analysis, TMA 8 (1984), 321--333. 3. C. Bandle and I. Stakgold, The formation of the dead core in parabolic reaction-diffusion problems, Trans. Amer. Math. Soc. 286 (1984), 275--293. 4. C. Bandle and S. Vernier-Piro, Estimates for solutions of quasilinear problems with dead cores, Z. Angew. Math. Phys. 54 (2003), 815--821. 5. J. I. Díaz, Nonlinear partial differential equations and free boundaries. Vol. I. Elliptic Equations. Research Notes in Mathematics, 106, Pitman, Boston, MA, 1985. 6. J. I. Díaz, and J. E. Saa, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 521--524. 7. A. Friedman and D. Phillips, The free boundary of a semilinear elliptic equation. Trans. Amer. Math. Soc. 282 (1984), 153--182. 8. I. S. Gradshtein, I. M. Ryzhik, and A. Jeffrey, Table of integrals, series, and products, Academic Press, Boston, 1994. 9. S. P. Hastings and J. B. McLeod, The number of solutions to an equation from catalysis, Proc. Roy. Soc. Edinburgh 101A (1985), 15--30. 10. T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J. 20 (1970), 1--13. 11. P. Pucci and J. Serrin, The strong maximum principle revisited, J. Differential Equations 196 (2004), 1--66. Rainville : E. D. Rainville, Special functions, Macmillan, New York, 1960. 12. I. Stakgold, Reaction-diffusion problems in chemical engineering. Nonlinear Diffusion Problems, Lecture Notes in Math., 1224, 119--152, Springer, Berlin, 1986. 13. S.-H. Wang and F.-P. Lee, Bifurcation of an equation from catalysis theory, Nonlinear Analysis, TMA 23 (1994), 1167--1187. 14. R. L. Wheeden and A. Zygmund, Measure and integral: An introduction to real analysis, M. Dekker, New York, 1977. 15. S. Zhang and J. Jin, Computation of special functions, Wiley, New York, 1996. Part II: 1. C. Bandle, R. P. Sperb, and I. Stakgold, Diffusion and reaction with monotone kinetics. Nonlinear Analysis, TMA 8 (1984), 321--333. 2. E. N. Dancer, On the structure of the solutions of an equation in catalysis theory when a parameter is large, J. Differential Equations 37 (1980), 404--437. 3. J. I. Díaz, Nonlinear partial differential equations and free boundaries. Vol. I. Elliptic Equations. Research Notes in Mathematics, 106, Pitman, Boston, MA, 1985. 4. S. P. Hastings and J. B. McLeod, The number of solutions to an equation from catalysis, Proc. Roy. Soc. Edinburgh 101A (1985), 15--30. 5. T. Laetsch, The number of solutions of a nonlinear two point boundary value problem. Indiana Univ. Math. J. 20 (1970), 1--13. 6. S.-Y. Lee, S.-H. Wang and C.-P. Ye, Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-Laplacian steady-state reaction-diffusion problem, preprint. 7. P. L. Lions, On the existence of positive solutions of semilinear elliptic equations. SIAM Review 24 (1982), 441--467. 8. H. O. Peitgen, D. Saupe, and K. Schmitt, Nonlinear elliptic boundary value problems versus their finite difference approximations: numerically irrelevant solutions. J. Reine Angew. Math. 322 (1981), 74--117. 9. P. Pucci and J. Serrin, The strong maximum principle revisited, J. Differential Equations 196 (2004), 1--66. 10. J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions, J. Differential Equations 39 (1981), 269--290. 11. I. Stakgold, Reaction-diffusion problems in chemical engineering. Nonlinear Diffusion Problems, Lecture Notes in Math., 1224, 119--152, Springer, Berlin, 1986. 12. S.-H. Wang and F.-P. Lee, Bifurcation of an equation from catalysis theory, Nonlinear Analysis, TMA 23 (1994), 1167--1187. 13. S.-H. Wang and T.-S. Yeh, Exact multiplicity and ordering properties of positive solutions of a p-Laplacian Dirichlet problem and their applications, J. Math. Anal. Appl. 287 (2003), 380--39. 14. R. L. Wheeden and A. Zygmund, Measure and integral: An introduction to real analysi. M. Dekker, New York, 1977. 15. S. Zhang and J. Jin, Computation of special functions, Wiley, New York, 1996.id NH0925479022 sid 913263 cfn 0 / id NH0925479023 auc 陳立業 tic 考慮政黨支持者之政治模型:正面及負面競選 adc 張企 ty 碩士 sc 國立清華大學 dp 數學系 yr 92 lg 英文 pg 41 kwc 傳訊賽局 kwc 正面競選 kwc 負面競選 kwc 競爭 kwc 死忠支持者 kwc 序貫均衡 abc In this article, we present an electoral model containing positive campaign, negative campaign and partisans. Under the framework of signaling game, we analyze our model with the concept sequential equilibrium. Due to the competition of two senders, we can find some equilibria which are informative. But if there exists some positive proportion of partisans for one of the candidates, the informative equiilibria will not exist. Besides, the numbers of partisans will determine whether one candidate will adopt untruthful attack. tc Contents 1.Introduction 2.Banks' Model 3.Harrington and Hess' model 4.A Signaling Model on Positive and Negative Campaigns with Partisans 5.Conclusion 6.Comparison with Banks' and Harrington and Hess' work Referencesrf Alesina, A. (1988), Credibility and Policy Convergence in a Two-Party System with Rational Voters, American Economic Review.78, 796-805. Banks, J. (1986), "Signaling Games: Theory and Applications." Ph.D. Thesis, California Institute of Technology. Banks, J. S. (1990), A model of electoral competition with incomplete information. Journal of Economic Theory, 50, 309-325. Cho, I. K. and Sobel, J. (1990), Strategic stability and uniqueness in signaling games, Journal of Economic Theory, 50, 381-413. Cho, I. K. and Kreps, D. M. (1987), Signaling games and stable equilibria, Quarterly Journal of Economics, 102 , 179-221. Davis, M. L. and Ferrrantino, M. (1996), Towards a positive theory of political rhetoric:Why do politicians lie? Public choice, 88: 1-13. Garramone, G. M. (1984), Voter responses to negative political ads, Journalism quarterly, 61, 250-259. Harrington, J. E. and Hess, G. D. (1996), A spatial theory of positive and negative campaigning, Games and Economic behavior, 17, 209-229. Kahn, K. F. and Kenney, P. J. (1999), Do negative campaigns mobilize or suppress turnout? Clarifying the relationship between negativity and participation, The American Political Science Review, Menasha, 93, 877-890. Kreps, D. M. and Wilson, R. (1982), Sequential equilibria, Econometrica, 50 , 863-894. Mcpherson, J. (1987), The battle cry of freedom, New York: Oxford University Press. Runkel, D. R. (1989), Campaign for President: The managers Look at '88, Dover, MA: Auburn House. Stamland, T. (1999), Partially Informative Signaling, Journal of Economic Theory, 89, 148-161 Surlin, S. H. and Gordon, T. F. (1977), How values affect attitudes toward direct reference political advertising, Journalism Quarterly, 54, 89-98. Samuelson, L. (1984), Electoral Equilibria with restricted Strategies, Public Choice 43, 307-327. Tullock, G. (1967), Toward a mathematics of politics. Ann Arbor: University of Michigan Press. West, D. M. (1997), Air Wars: Television Advertising in Election Campaigns, 1952-1966. Washington, DC: Congressional Quarterly Press. Weiss, W. (1985), Effects of the Mass Media of Communication, in Graduer Lindzey and Elliot Aronson (eds), Handbook of Social Psychology, 2nd, Ed., Rending , MA: Addison Wesley, 169, 77-195.id NH0925479023 sid 913206 cfn 0 / id NH0925493001 auc 劉寶玲 tic 以蟲為象--漢唐時期醫籍中的蟲 adc 陳華 adc 張嘉鳳 ty 碩士 sc 清華大學 dp 歷史研究所 yr 92 lg 中文 pg 183 kwc 蟲 kwc 醫學 kwc 醫籍 kwc 漢 kwc 唐 kwc 疾病 abc 本論文以漢唐醫籍中能引起疾病的「蟲」為討論主題,這些「蟲」皆能致病,包括:射工、沙虱、蠼螋等南方毒蟲,各種人身內的「蟲」,如「九蟲」、「三尸」、外邪和病久產生的「蟲」。本文不採取以西方生物學的知識,定名「蟲」的種類、病名的方式,而是在漢唐的歷史脈絡下,以醫籍中記載能致病的「蟲」為主軸,並對照醫籍以外的文獻,深入探討醫籍文本類型的改變、讀者群、蟲病理論,如何因應氣溫、水土、疾病橫行等各項歷史背景的變化,環環相扣的產生,及醫者如何讓非醫的讀者,透過蟲病理論,了解部份疾病的來源,並能依據醫籍中的記載,自行辨證、治療疾病。 tc 第一章:前言 1 第二章:醫者對蟲做為病源的認識 25 第一節:醫者對南方毒蟲做為病源的認識 25 一、土地卑濕饒蟲蛇 25 二、皿蟲為蠱 36 第二節:醫者對人身內的蟲做為病源的認識 44 一、醫者對九蟲做為病源的認識 44 (一)人身內多有九蟲 44 (二)飲食不慎使腹內生蟲 50 二、三尸與人俱生 60 三、外邪所化 66 第三節:小結 70 第三章:辨證蟲引起疾病的方法 73 第一節:辨證南方毒蟲的方法 73 第二節:辨證人身內蟲的方法 83 第三節:小結 97 第四章:治療與預防方法 101 第一節:治療南方毒蟲螯咬的方法 101 一、湯熨針石治療 101 二、以咒禁之術治療 115 第二節:預防南方毒蟲螯咬方法 124 一、旅行注意事項 124 二、必備藥物 127 三、以咒禁之術預防 134 第三節:治療與預防人體內諸蟲之法 137 一、以湯熨針石治療 137 二、以咒禁導引治療 154 三、預防人體內諸蟲之法 160 第四節:小結 164 第五章:結論 169 引用書目 175rf 一、古代文獻(依姓氏筆劃為順序) 1. 大藏經刊行會編,《大正新脩大藏經》,臺北:新文豐出版公司,修訂版,1985。 2. 干寶(晉)撰,汪紹楹注,《搜神記》,北京:中華書局,1986,一版三刷。 3. 丹波康賴(日)撰,高文鑄等校注研究,《醫心方》,北京:華夏出版社,1996。 4. 元稹撰(唐),《元稹集》,臺北:漢京文化事業有限公司,1983。 5. 王充(漢),黃暉校,《論衡校釋》,臺北:臺灣商務印書館,1983。 6. 王冰(唐)注,林億、高保衡(宋)校,《素問王冰注》,臺北:臺灣中華書局據明顧氏影宋本校刊印行,1936。 7. 王叔和(晉),《脈經》,臺北:臺灣商務印書館,1971。 8. 王明編,《太平經合校》,北京:中華書局,1997,一版五刷。 9. 王聘珍(清),《大戴禮記解詁》,北京:中華書局,1992,一版三刷。 10. 王燾(唐),《外臺祕要》,北京:人民衛生出版社,1955。 11. 令狐德棻等(唐)撰,《周書》,北京:中華書局,1965。 12. 司馬光(宋)著,《資治通鑑》,臺北:臺灣中華書局據鄱陽胡氏仿元本校刊,1976。 13. 左丘明(周)撰,杜預(晉)注,孔穎達(唐)疏,楊伯峻編著,《春秋左傳注》,臺北:洪葉文化事業有限公司,1993。 14. 永瑢等(清)撰,《四庫全書總目》,北京:中華書局,1992,一版五刷。 15. 玄應(唐),《玄應一切經音義》,臺北:中央研究院歷史語言研究所,1962。 16. 白居易撰(唐),《白居易集》,臺北:漢京文化事業有限公司,1984。 17. 吳學勉(明)校,《靈樞經》,臺北:臺灣商務印書館,1968。 18. 呂不韋(秦)撰,陳奇猷校釋,《呂氏春秋校釋》,上海:學林出版社,1984。 19. 李白(唐)撰,安旗主編,《李白全集編年注釋》,成都:巴蜀書社,1990。 20. 李延壽(唐),《北史》,北京:中華書局,1965。 21. 李昉等(宋),《太平廣記》,北京:中華書局,1961。 22. 李學勤主編,《周禮注疏整理本》,臺北:臺灣古籍出版有限公司,2002,二刷。 23. 沈約(梁),《宋書》,北京:中華書局,1965。 24. 孟詵(唐)撰,張鼎改訂,《食療本草》,北京:中國商業出版社,1995。 25. 長孫無忌等(唐)撰,《唐律疏義》,臺北:臺灣商務印書館,1983。 26. 姚廣孝、解縉等人(明)編纂,蕭源等輯,《永樂大典醫藥集》,北京:人民衛生出版社,1986。 27. 段成式(唐),《酉陽雜俎》,臺北:漢京文化事業有限公司,1983。 28. 洪興祖(宋)撰,《楚辭補注》,臺北:天工書局,1989。 29. 范曄(南朝宋),李賢等(唐)注,《後漢書》,北京:中華書局,1965。 30. 唐慎微(宋)撰,尚元鈞、鄭金生、尚元藕、劉大培校點,《重修政和經史證類備用本草》,北京:華夏出版社,1993。 31. 孫光憲(宋),《北夢瑣言》,臺北:源流出版社,1983。 32. 孫思邈(唐),李景榮、蘇禮、焦振廉校訂,《孫真人千金方》,北京:人民衛生出版社,1996。 33. 孫思邈(唐)撰,朱邦國、陳文國等校注,《千金翼方校注》,上海:上海古籍出版社,1999。 34. 孫思邈(唐)撰,李景榮等校釋,《備急千金要方校釋》,北京:人民衛生出版社,2002,一版二刷。 35. 班固(東漢)撰,顏師古注(唐),《漢書》,北京:中華書局,1965。 36. 巢元方(隋)撰,丁光迪主編,《諸病源候論校注》,北京:人民衛生出版社,1992,四版。 37. 張仲景(西漢)撰,劉建平等編著,《傷寒雜病論》,石家莊:河北科學技術出版社,1994。 38. 張杲(宋),《醫說》,上海:上海科學技術出版社,1984。 39. 張華(晉)撰,范寧校證,《博物志校證》,臺北:明文書局,1981。 40. 張籍(唐)著,中華書局上海編輯所編輯,《張籍詩集》,北京:中華書局,1965,一版三刷。 41. 張讀(唐),《宣室志》,收入《百部叢書集成》,臺北:藝文印書館,據明商濬校刊稗海本影印,1966。 42. 張鷟(唐)撰,守儼點校,《朝野僉載》北京:中華書局,1997,一版二刷。 43. 許慎(漢),《說文解字注》,臺北:漢京文化事業有限公司,1985。 44. 陳延之(南北朝)撰,祝新年輯校,《小品方新輯》,上海:上海中醫學院出版社,1993。 45. 陳壽(晉)撰,裴松之(宋)注,陳乃乾校點,《三國志》,北京:中華書局,1959。 46. 陳夢雷(清)等編,《古今圖書集成醫部全錄》,北京:人民衛生出版社,1983,一版三刷。 47. 陶弘景(梁),《真誥》,臺北:廣文書局,1989。 48. 陶弘景(梁)編,尚志鈞、尚元勝輯校,《本草經集注(輯校本)》,北京:人民衛生出版社,1994。 49. 新文豐出版社編輯部,《正統道藏》,臺北:新文豐出版公司,1977。 50. 楊衒之(北魏)撰,周祖謨校釋,《洛陽伽藍記校釋》,臺北:彌勒出版社,1982。 51. 葛洪(晉)撰,王明校釋,《抱朴子內篇校釋》,北京:中華書局,2002,二版五刷。 52. 葛洪(晉)撰,陶宏景(梁)增補,《葛洪肘後備急方》,北京:人民衛生出版社,1963。 53. 賈思勰(後魏)撰,繆啟愉校釋,《齊民要術校釋》,臺北:明文書局,1986。 54. 劉向(漢)撰,《列仙傳》,臺北:廣文書局,1989。 55. 劉安(漢)撰,高誘(漢)注,《淮南子》,臺北:台灣中華書局,1981。 56. 劉恂(唐),《嶺表錄異》,收入《百部叢書集成•武英殿聚珍版叢書》,板橋:藝文印文館據清乾隆敇刊聚珍版叢書本影印,1966。 57. 劉昫(後晉),《舊唐書》,北京:中華書局,1965。 58. 歐陽修、宋祁(宋),《新唐書》,北京:中華書局,1965。 59. 顏之推(北齊)撰,王利器集解,《顏氏家訓》,上海:上海古籍出版社,1980。 60. 魏收(北齊),《魏書》,北京:中華書局,1965。 61. 魏收(北齊),《魏書》,北京:中華書局,1965。 62. 魏徵(唐),《隋書》,北京:中華書局,1965。 63. 瀧川龜太郎,《史記會注考證》,臺北:大安出版社,1998。 二、近人著作(依姓名筆劃順序) (一)中文著作 1. 王利華,《中古華北飲食文化的變遷》,北京:中華科學社會出版社,2001,一版二刷。 2. 王雅軒、王鴻賓、蘇德祥主編,《中國古代歷史地圖集》,瀋陽:遼寧教育出版社,1990。 3. 史念海,《中國歷史人口和歷史經濟地理》,臺北:臺灣學生書局,1991。 4. 石田秀實著,楊宇譯,《氣•流動的身體》,臺北:武陵出版社,1992。 5. 任繼愈,《道藏提要》,北京:中國社會科學出版社,1995。 6. 朱自清、郭沬若、葉聖陶等編輯,《聞一多全集》,臺北:里仁書局,1996。 7. 江紹原,《中國古代旅行之研究》,上海:上海文藝出版社,1989。 8. 余慎初著,楊沛煊審校,《中國藥學史綱》,昆明:雲南科學技術出版社,1987。 9. 呂一飛,《胡族習俗與隋唐風音勻──魏晉北朝北方少數民族社會風俗及其對隋唐的影響》,北京:書目文獻出版社,1994。 10. 李建民,《方術•醫學•歷史》,臺北:南天書局,2000。 11. 李經緯,《中國古代科學技術史》,北京:科學出版社,1998。 12. 李經緯、李志東,《中國古代醫學史略》,石家莊:河北科學技術出版社,1990。 13. 李經緯、林昭庚主編,《中國醫學通史──古代卷》,北京:人民衛生出版社,2000。 14. 岡西為人,《宋以前醫籍考》,北京:人民衛生出版社,1958。 15. 竺可楨,《竺可楨文集》,北京:科學技術出版社,1979。 16. 胡厚宣,《甲骨文商史論叢(初集)》,臺北:大通書局,1989。 17. 范行準,《中國醫學史略》,北京:中醫古籍出版社,1986。 18. 范行準撰,伊廣謙等整理,《中國病史新義》,北京:中醫古籍出版社,1989。 19. 范家偉,《中國醫學史略》,北京:中醫古籍出版社,1986。 20. 范家偉,《六朝隋唐醫學之傳承與整合》,香港:中文大學出版社,2004。 21. 凌耀星主編,《難經校注》,北京:人民衛生出版社,1991。 22. 唐蘭著,故宮博物院編,《唐蘭先生金文論集》,北京:紫禁城出版社,1995。 23. 馬王堆漢墓帛書整理小組編,《五十二病方》,北京:文物出版社,1979。 24. 馬伯英,《中國醫學文化史》,上海:上海人民出版社,1997。 25. 馬繼興,《馬王堆古醫書考釋》,長沙:湖南科學技術出版社,1992。 26. 張志斌,《古代中醫婦產科疾病史》,北京:中醫古籍出版社,2000。 27. 張綱,《中醫百病名源考》,北京:人民衛生出版社,1997。 28. 陳邦賢,《中國醫學史》,臺北:臺灣商務印書館,1993,臺七版。 29. 陳寅恪,《寒柳堂集》,上海:上海古籍出版社,1980。 30. 陳勝崑,《赤壁之戰與傳染病──論中國歷史上的疾病》,臺北:明文書局,1983。 31. 楊儒賓編,《中國古代思想中的氣論及身體觀》,臺北:巨流出版公司,1993。 32. 溫少鋒、袁庭棟,《殷墟卜辭研究──科學技術篇》,成都:四川省社會科學院,1983。 33. 鄒逸麟主編,《黃淮海平原歷史地理》,合肥:安徽教育出版社,1993。 34. 廖育群,《中國科學技術史──醫學卷》,北京:河北科學出版社,1998。 35. 廖育群,《歧黃醫道》,遼寧:遼寧教育出版社,1992,一版二刷。 36. 廖育群主編,《中國古代科學技術史綱──醫學卷》,遼寧:遼寧教育出版社,1996。 37. 蓋建民,《道教醫學》,北京:宗教文化出版社,2001。 38. 劉昭民,《中國歷史上氣候之變遷》,臺北:臺灣商務印書館,1994,修訂版二刷。 39. 黎虎主編,《漢唐飲食文化史》,北京:北京師範大學出版社,1998。 40. 嚴一萍,《嚴一萍先生全集甲編》,板橋:藝文印書館,1991。 41. 嚴世芸主編,《中醫學術史》,上海:上海中醫學院出版社,1989。 (二)中文期刊、論文 1. 田樹仁,〈也談曹操兵敗赤壁與血吸蟲病之關係〉,《中華醫史雜誌》,12.3(1982):126-128。 2. 申廣智、賈淑玲,〈“癆蟲”說的實質〉,《中醫雜誌》,35.10(1994):40。 3. 宋大仁,〈中國古代人體寄生蟲病史〉,《醫史雜誌》,2(1948):44-58。 4. 李友松,〈曹操兵敗赤壁與血吸蟲病關係之探討〉,《中華醫史雜誌》,11.2(1981):87-88。 5. 李卉,〈說蠱毒與巫術〉,《中央研究院民族學研究所集刊》,9(1960):271-284。 6. 李貞德,〈漢唐期間醫方中的忌見婦人與女體為藥〉,《新史學》,13.4(2002):1-35。 7. 李貞德,〈漢魏六朝的乳母〉,《中央研究院歷史語言研究所集刊》,70.2(1999):439-469。 8. 李勤璞,〈八萬尸蟲與八萬戶蟲〉,《中華醫史雜誌》,26.2(1996):108。 9. 李經緯、張志斌,〈中國醫學史研究六十年〉,《中華醫史雜誌》,26.3(1996):129-136。 10. 李豐楙,〈《道藏》所收早期道書的瘟疫觀──以《女青鬼律》及《洞淵神咒經》系為主〉,《中國文哲所集刊》,3(1993):417-454。 11. 杜正勝,〈作為社會史的醫療史──並介紹「疾病、醫療與文化」研討小組的成果〉,《新史學》,6.1(1995):114-153。 12. 杜正勝,〈形體,精氣與魂魄──中國傳統對「人」認識的形成〉,《新史學》,2.3(1991):1-65。 13. 杜正勝,〈醫療、社會與文化──另類醫療史的思考〉,《新史學》,8.4(1997):143-171。 14. 季始榮,〈「曹操兵敗赤壁與血吸蟲病關係之探討」一文的商榷〉,《中華醫史雜誌》,12.3(1982):124-125。 15. 林富士,〈中國早期道士的醫療活動及其醫術考釋:以漢魏晉南北朝時期的「傳記」資料為主〉,《中央研究院歷史語言研究所集刊》,73.1(2002):43-117。 16. 林富士,〈東漢晚期的疾疫與宗教〉,《中央研究院歷史語言研究所集刊》,66.3(1995):695-745。 17. 初德維,〈曹操赤兵敗與血吸蟲病無關〉,《中華醫史雜誌》,12.3(1982):116。 18. 范家偉,〈六朝時期人口遷移與嶺南地區瘴氣病〉,《漢學研究》,16.1(1998):27-57。 19. 范家偉,〈東晉南北朝醫術世家東海徐氏之研究〉,《大陸雜誌》,91.4(1995):36-48。 20. 范家偉,〈南朝醫家入仕北朝之探討──唐代醫學淵源考論之一〉,《漢學研究》,18.2(2000):143-166。 21. 范家偉,〈從腳氣病論魏晉南北朝時期印度醫學之傳入〉,《中華醫史雜誌》,25.4(1995):229-232。 22. 范家偉,〈從醫書看唐代行旅與疾病〉,《唐研究》,7(2001):205-288。 23. 范家偉,〈漢唐間的蠱毒〉,收入黎漢基編,《讀史存稿》(香港:學峰文化事業公司,1998),頁1-23。 24. 馬伯英,〈中國古代主要傳染病辨異〉,《自然科學史研究》,10:3(1991):280-287。 25. 張志斌,〈古代疾病流行的諸種因素初探〉,《中華醫史雜誌》,20.1(1990):28-35。 26. 張嘉鳳,〈「疾疫」與「相染」──以《諸病源候論》為中心試論魏晉至隋唐之間醫籍的疾病觀〉,《臺大歷史學報》,27(2001):37-82。 27. 梁其姿,〈中國麻瘋病概念演變的歷史〉,《中央研究院歷史語言研究所集刊》,70.2(1999):339-433。 28. 陳元朋,〈唐宋食療概念與行為之傳衍──以《千金•食治》為核心的觀察〉,《中央研究院歷史語言研究所集刊》,69.4(1998):765-863。 29. 黃鎮國,《宗教醫療術儀初探──以《千金翼方.禁經》之禁術為例》,臺北:輔仁大學宗教學研究所碩士論文,2001,未刊本。 30. 傳芳,〈中國古代醫學史研究六十年〉,《中華醫史雜誌》,26.3(1996):162-169。 31. 廖育群,〈中國古代咒禁療法研究〉,《自然科學史研究》,12.4(1993):373-383。 32. 劉寶玲,〈魏晉到隋唐佛教經典中的疾病觀──以觀音經典為討論中心〉,《2002年佛學論文獎學金得獎論文集》(臺中:財團法人臺灣省臺中市正覺堂,2002),頁85-110。 33. 蕭璠,〈中國古代的生食肉類餚饌──膾生〉,《中央研究院歷史語言研究所集刊》,71:2(2000):247-365。 34. 蕭璠,〈漢宋之間文獻所見古代中國南方的地理環境與地方病及其影響〉,《中央研究院歷史語言研究所集刊》,63.1(1993):67-171。 (三)外文著作、期刊論文 英文 1. Bokenkamp, Stephen R, 1997, Early Daoist scriptures, Berkeley: University of California Press. 2. Eskildsen, Stephen, 1998, Asceticism in Early Taoist Religion, Albany: State University of New York Press. 3. Kohn, Livia ed. , 1989, Taoist Meditation and Longevity Techniques , Ann Arbor: Center for Chinese Studies, The University of Michigan Monographs Press. 4. Miyakawa Hisayuki(宮川尚志), 1995, “Medical Aspects of the Daoist Doctrine of the Three Cadavers (Sanshi)”in Hashimoto Keizo, Catherine Jami, and Lowell Skar (eds), East Asian Science: Tradition and Beyond: Papers from The Seventh International Conference on the History of Science on East Asia Kyoto, 2-7 August, 1993, ( Osaka: Kansai University Press), pp.345-349. 日文 1. 石田秀實,《こころとからだ──中國古代におけゐ身体の思想》,福岡:中国書店,1995。 2. 福永勝美,《仏教醫學詳說》,東京:雄山閣出版社,昭和四十七年(1972)。 3. 窪德忠,《庚申信仰》,東京:山川出版社,1968,九版。 4. 澤田瑞穗,《中國の咒法》,東京:株氏會社平河出版社,1990,五版。id NH0925493001 sid 884402 cfn 0 / id NH0925493002 auc 張欣儀 tic 天主教會與地方社群關係之研究--以桃園地區為例 adc 戴寶村 adc 陳華 ty 碩士 sc 國立清華大學 dp 歷史研究所 yr 92 lg 中文 pg 165 kwc 梵二公會 kwc 本地化 kwc 方濟各會 kwc 泰雅族 kwc 外省 kwc 福佬 kwc 客家 kwc 聖洗錄 kwc 教友名冊 abc 本文旨在探究天主教會在桃園地區的發展與社群關係,分從桃園縣的復興鄉、蘆竹鄉、平鎮市、楊梅鎮四大堂區為例,企圖解釋天主教會與原住民族群、福佬族群、外省族群及客家族群等四大族群間之文化衝突與融合。 tc 目 錄 第一章 緒論……………………………………………………………1 第一節、研究動機…………………………………………………1 第二節、研究回顧與檢討…………………………………………6 第三節、研究方法…………………………………………………13 第四節、章節架構…………………………………………………14 第二章 天主教在台灣…………………………………………………18 第一節、天主教在台灣發展簡史…………………………………18 第二節、桃園地區天主教開教簡史………………………………22 第三章 原住民族群與天主教會之關係 -以復興鄉三民天主堂為例…………………………27 第一節、復興鄉泰雅族群之分佈與發展…………………………27 第二節、天主教教會在桃園復興鄉發展史………………………30 第三節、天主教在復興鄉宗教活動演變…………………………32 第四節、原住民族群與天主教之互動……………………………40 第四章 福佬族群與天主教會之關係 -以蘆竹鄉南崁「耶穌聖母聖心堂」為例………………54 第一節、蘆竹地區福佬族群社會源流……………………………54 第二節、蘆竹鄉南崁「耶穌聖母聖心堂」之開堂與教務推展…58 第三節、當傳統社會遇上洋教……………………………………69 第四節、福佬教會活動與傳教策略之歷史演變…………………81 第五章 外省籍族群與天主教會之關係 -以平鎮市貿易七村「聖母無玷之心堂」為例…………………90 第一節、眷村信仰的建立…………………………………………90 第二節、眷村教會的發展…………………………………………94 第三節、本堂歷史及平鎮市人口分析…………………………102 第四節、宗教活動之區域特色及歷史演變……………………106 第六章 客家族群與天主教會之關係 -以楊梅法蒂瑪聖母堂為例……………………115 第一節、桃園地區的客家社群…………………………………115 第二節、客家教會之發展-以楊梅法蒂瑪聖母堂為例………123 第三節、客家教會福傳過程中的優勢與困境…………………132 第七章、結論…………………………………………………………141 附錄、口訪日誌………………………………………………………147 參考書目………………………………………………………………151rf 一、史料: 《平鎮市貿易七村天主堂亡者錄》,1956~2004。 《平鎮市貿易七村天主堂堅振錄》,1956~2004。 《平鎮市貿易七村天主堂婚配錄》,1956~2004。 《平鎮市貿易七村天主堂教友名冊》,1956~2004。 《平鎮市貿易七村天主堂教友家庭卡片》,1956~2004。 《平鎮市貿易七村天主堂聖洗錄》,1956~2004。 《復興鄉三民天主堂亡者錄》,1956~2004。 《復興鄉三民天主堂堅振錄》,1956~2004。 《復興鄉三民天主堂婚配簿》,1956~2004。 《復興鄉三民天主堂教友名冊》,1956~2004。 《復興鄉三民天主堂教友家庭卡片》,1956~2004。 《復興鄉三民天主堂教務統計表》,1956~2004。 《復興鄉三民天主堂聖洗錄》,1956~2004。 《蘆竹鄉南崁聖母聖心堂亡者錄》,1955~2004。 《蘆竹鄉南崁聖母聖心堂堅振錄》,1955~2004。 《蘆竹鄉南崁聖母聖心堂婚配錄》,1955~2004。 《蘆竹鄉南崁聖母聖心堂教友家庭卡片》,1955~2004。 《蘆竹鄉南崁聖母聖心堂聖洗錄》,1955~2004。 《楊梅鎮法蒂瑪聖母堂聖洗錄》,1952~2004。 《楊梅鎮法蒂瑪聖母堂堅振錄》,1952~2004。 《楊梅鎮法蒂瑪聖母堂婚配錄》,1952~2004。 《楊梅鎮法蒂瑪聖母堂亡者錄》,1952~2004。 《楊梅鎮法蒂瑪聖母堂教友名冊》,1952~2004。 于斌著,《于斌樞機最近言論集》。台北:私立輔仁大學出版社,1972。 中央研究院近代史研究所編,《教務教案檔》第一、二、三輯。台北:中央研究院近代史研究所,1974。 中國主教團秘書處研究設計小組編著,《建設終中國地方教會草案》。台北:天主教教務協進會出版社,1976。 中國主教團秘書處編譯,《梵蒂岡第二大公會議文獻》。台北:天主教教務協進會,1975。 中國第一歷史檔案館、福建師範大學歷史系合編,《清末教案》一、二、三冊。北京:中華書局,1998。 天主教中國主教團秘書處編著,《第四次全國教務座談會決議案》。台北:天主教教務協進會出版社,1976。 天主教中國主教團禮儀委員會編印,《追思禮儀》(修訂版),1990。 天主教中國主教團禮儀委員會編印,《殯葬禮儀》(修訂版),1989。 天主教中國主教團禮儀委員會編印,《禮儀》(修訂版)。 王瑛曾著,《重修鳳山縣志》。台北:台灣銀行,1961。 台灣省新竹州街庄志彙編,《蘆竹庄志》。台北:成文出版社,1985。 台灣總督官房調查課編,《台灣在籍漢民族鄉貫別調查》。台北:台總督府,1928。 台灣總督府臨時舊慣調查會原著,中央研究院民族學研究所編譯,《番族舊慣調查報告書.第一卷.泰雅族》。台北:中央研究院民族學研究所,1996。 宋濂撰,《元史》。北京:中華書局,1965。 思高聖經學會編輯,《聖經》。台北:思高聖經學會出版社,1968。 馬偕撰,周學普譯,《台灣六記》。台北:臺灣銀行,1960。 馬偕撰,周學普譯,《台灣六記》。台北:臺灣銀行,1960。 張廷玉撰,《明史》。台北:台灣中華書局,1997。 張維篤譯,《教會傳教工作(外向活動)法令》。台北:鐸聲月刊社,1996。 陳培桂修,《淡水廳志》。台中:台灣省文獻委員會,1971。 陳雄為譯,《教會對非基督宗教態度宣言》。台北:鐸聲月刊社,1966。 黃叔璥著,《台海使槎錄.卷二.赤崁筆談》,台灣文獻叢刊四。台北:台灣銀行經濟研究室印行,1957。 (二)專書: Cohen ,Paul A. “China and Christianity:the Missionary Movement and the Growth of Chinese Antiforeignism,1860-1870” Cambridge:Harvard University Press,1963. Emile Durkhiem著,周秋良等譯,《迪爾凱姆論宗教》。北京:華夏出版社,1999。 Emile Durkhiem著,芮傳明、趙學元譯,《宗教生活的基本形式》。台北:桂冠圖書公司,1992。 Fr. Pablo Fernadez O. P. “One Hundred Years of Dominican Apostolate in Formosa” Reprinted by SMC Publishing Inc,1994。 Fr. Pablo Fernadez O. P.著,黃德寬譯,《天主教在台開教記-道明會士的百年耕耘》。台北:光啟出版社,1991。 Jessie G. Lutz編,王成勉譯,《所傳為何?基督教在華宣教的探討》。台北縣新店市:國史館,2000。 Raymond Aron著,齊力、蔡錦昌、黃瑞祺譯,《近代西方社會思想家:涂爾幹、巴烈圖、韋伯》。台北:聯經出版事業公司,1986。 大國督著,《台灣ソ天主教小史》。台北:杉林書店,1941。 中國天主教文協編輯委員會編輯,《中國天主教文協創立四十年》。台北:中國天主教文化協進會總會,1980。 中國主教團傳教委員會編印,《天主教在台灣現況之研究》。台北:光啟出版社,1987。 中華文化復興運動推行委員會主編,《中國近代現代史論集》第四編〈教案與反西教〉。台北:台灣商務印書館,1985。 中華方濟會編輯,《藍澤民總主教事略-傳教士的偉大模範》。台北:中華方濟會,出版年月不詳。 仇得哉著,《台灣之寺廟與神明》。南投:台灣省文獻委員會,1983。 內政部編,《宗教輔導論述專輯(一)-社會服務篇》。台北:內政部,1994。 內政部編,《宗教簡介》。台北:內政部,2000。 天主教中國主教團禮儀委員會編印,《春節祭祖彌撒經文》,1989。 天主教中國主教團禮儀委員會編印,《病人傅油禮典》,1974。 天主教中國主教團禮儀委員會編印,《追思禮儀》(修訂版),1990。 天主教中國主教團禮儀委員會編印,《婚姻禮典》(修訂版),1988。 天主教中國主教團禮儀委員會編印,《殯葬禮儀》(修訂版),1989。 天主教聖保祿修女會醫院編印,《聖保祿修女會醫院院刊》。桃園:天主教聖保祿修女會醫院,2001。 巴義慈編著,《天主教會新竹教區三民本堂開教37週年暨聖十字架堂25週年銀慶紀年特刊》。桃園:天主教復興聖十字架三民天主堂,1991。 方類思編著,《八十春秋》。桃園:方類思,2000。 方類思編著,《晉鐸十週年紀念》。桃園:方類思,1995。 王俞榮譯,《梵蒂岡第二次大公會議文獻摘要》。台北:華明書局,1966。 世界宗教研究所基督教研究室編,《中國天主教基礎知識》。北京:宗教文化出版社,1999。 台中縣文化中心編輯,《台中縣和平鄉泰雅族專輯》。台中:台中縣文化中心,1987。 台灣主教團社會發展委員會暨台灣明愛會編,《天主教社會福利機構手冊》。台北:台灣明愛會,2000年。 台灣地區主教團秘書處編輯,《民國八十八年台灣天主教手冊1999》。台北:天主教教務協進會出版社,1999。 台灣地區主教團秘書處編輯,《民國九十年台灣天主教手冊2001》。台北:天主教教務協進會出版社,2001。 台灣省文獻委員會編,《台灣省通志稿.政事志.外事篇》。台北: 台灣省文獻委員會,1965。 台灣省文獻委員會編纂,《台灣史》。台北:眾文圖書公司,1990。 台灣省政府戶口普查處編印,《中華民國四十五年戶口普查報告書》,第二卷第二冊。台中:台灣省政府,1959。 台灣省政府新聞處主編,《改善山胞生活》。台中:台灣省政府新聞處,1971。 四川省近代教案史研究會、四川省哲學社會學學會聯合會合編,《近代中國教案研究》。四川:四川省社會科學院出版社,1987。 平鎮市志編纂小組編輯,《平鎮市志》。桃園平鎮市:平鎮市公所,1994。 永泉教義研究中心編著,《天主教新竹教區慶祝成立廿五週年紀念冊》。新竹:新竹主教公署出版,1986。 全國人大常委會辦公廳研究室編寫,《中國近代不平等條約匯要》。北京:中國民主法制出版社,1996。 江傳德著,《天主教在台灣》。高雄:善導週刊出版社,1992。 行政院美援運用委員會編印,《中美合作經援發展概況》。台北市:行政院美援運用委員會,1957。 行政院國際經濟合作發展委員會編印,《協助安置國軍退除役官兵運用美援成果檢討》。台北市:行政院國際經濟合作發展委員會,1965。 吳義典著,《天主教基本教義要理六端》。台北:光啟出版社,2000。 呂實強著,《中國官紳反教的原因(1860-1874)》。台北:中央研究院近代史研究所,1985。 李亦園等著,《南澳的泰雅人-民族學田野調查與研究》。台北:中央研究院民族學研究所,1963。 李亦園著,《台灣土著民族的社會與文化》。台北:聯經出版事業公司,1982。 李亦園著,《宗教與神話》。台北縣新店市:立緒文化事業有限公司,1998。 李亦園著,《信仰與文化》。台北:巨流圖書公司,1973。 李汝和主修,張炳楠監修,《台灣省通志.卷二.人民志.宗教篇》(第一冊)。台北:台灣省文獻委員會,1971。 李來旺著,《泰雅族原有生活形態研究》。台北市:太魯閣國家公園管理處,1991。 李莉總編輯,《天主教楊梅法第瑪聖母堂開教四十五週年紀念冊》。桃園:天主教楊梅法第瑪聖母堂,1997。 李善修著,《天主教中國化之探討》。台中:光啟出版社,1976。 李順仁、黃提銘、林秀美合編,《族群的對話》,常民文化年刊1996號。台北:常民文化,1996。 周長耀著,《敬天探源》。台北:三民書局,1980。 周琇環編,《臺灣光復後美援史料 : 軍協計畫》。台北縣新店市:國史館,1996。 林文慧著,《清季福建教案之研究》。台北:台灣商務印書館,1989。 林再復著,《閩南人》,台北:三民書局,1985。 林照鑑著,上人譯,《儒釋與天主教》。台中:光啟出版社,1960。 林樹等著,《新竹市眷村田野報告書》,新竹市:竹市文化,1997。 林衡道、台灣省文獻委員會主編,《台灣史》。台北:眾文圖書有限公司,1990。 雨青編著,《客家人尋「根」》。台北:武陵出版社,1985。 柯志明著,《番頭家:清代台灣族群政治與熟番地權》。台北:中央研究院社會學研究所,2001。 柯塞著,黃瑞祺、張維安譯,《古典社會學理論-馬克思、涂爾幹與韋伯》。台北:桂冠圖書股份有限公司,1986。 洪敏麟著,《台灣舊地名癌革》。台中:台灣省文獻委員會,1983。 洪惠冠總編輯、林榮洲等執行編輯,《竹籬笆內的春天》。新竹市:竹市文化,1997。 徐正光主編,《徘徊於族群和現實之間:客家社會與文化》。台北:正中書局,1992。 桃園縣文化局委託,國立中央大學客家研究中心規劃,《桃園縣客家族群文化發展規劃》。桃園:桃園縣文化局,2002。 桃園縣志編纂小組,《桃園縣志》。桃園:桃園縣政府,1962。 桃園縣政府主計處主編,《桃園縣統計要覽》第十期至第五十四期。桃園:桃園縣政府,1956~2000。 桃園總鐸區編輯,《桃園地區開教五十週年慶特刊》。桃園:桃園總鐸區,2002。 馬千里譯,《方濟嘉會母傳》。台北:光啟出版社,1984。 高諸觀著,《台灣人的根-八閩全鑑》。台北:台灣新聞文化出版社,1981。 涂爾幹著,芮傳明、趙學元譯,《宗教生活的基本形式》。台北:桂冠圖書股份有限公司,1992。 張力、劉鑒唐著,《中國教案史》。四川:四川省社會科學院出版社,1987。 張炎憲主編,《台灣漢人移民史研究書目》。台北:中央研究院台灣史田野研究室,1989。 張春申等著,《教會本地化之探討》。台北:光啟出版社,1981。 張德南執行編輯,《走過從前-眷村的影像歲月》。新竹市:竹市文化,1997。 張澤著,《清代禁教期的天主教》。台北:光啟出版社,1992。 教會更新發展研究中心編著,《基督徒與敬祖-敬祖研討會彙編》。台北:中福出版有限公司,1985。 曹永和著,《台灣早期歷史研究》。台北:聯經出版事業公司,1979。 曹永和著,《台灣早期歷史研究續集》。台北:聯經出版事業公司,2000。 許介鱗主編,《原住民族權利國際研討會-台灣原住民族的權利在哪裡》。台北:國立台灣大學法學院,1999。 許民陽著,《桃園縣復興鄉地形地質景觀資源賞析》。桃園市:桃園縣立文化中心,1996。 郭薰風主修,石璋如纂,《桃園縣志》。台北:成文出版社有限公司,1983。 陳文裕著,《梵蒂岡第二屆大公會議簡史》。台北:上智出版社,1989。 陳方中著,《于斌樞機傳》。台北:台灣商務印書館,2001。 陳永興著,《台灣醫療發展史》。台北市:月旦出版社股份有限公司,1997。 陳百希著,《大公會議簡史》。台中:光啟出版社,1964。 陳芳蕙著,《桃園台地生活空間的辨認》。桃園:桃園縣文化局,1978。。 陳垣著,《康熙與羅馬使節關係文書》。台北:文海出版社,1974。 陳紹馨、傅瑞德著,《台灣人口之姓氏分布:社會變遷的基本指標》。台北:國立台灣大學法學院社會學系出版,1968。 陳紹馨著,《台灣的人口變遷與社會變遷》。台北:聯經出版事業公司,1979。 陳運棟著,《客家人》。台北:聯亞出版社,1978。 傅樂安主編,《當代天主教》。北京:東方出版社,1996。 復興鄉志編輯委員會編輯,《復興鄉志》。桃園:桃園縣復興鄉公所,2000。 曾文敬主修、張正昌編纂,《蘆竹鄉志》。桃園:桃園縣蘆竹鄉公所,1995。 曾仰如著,《宗教哲學》。台北:台灣商務印書館,1986。 曾喜城著,《台灣客家文化研究》。台北:中央圖書館台灣分館,1999。 費蓋著,吳宗文譯,《梵蒂岡第二屆大公會議日記》。台北:華明出版社,1979。 項退結著,《黎明前的中國天主教》。台南:徵祥出版社,1963。 黃旺成主修,郭輝等纂,《新竹縣志》。台北:成文出版社,1982。 黃宣範著,《語言、社會與族群意識》。台北:文鶴出版社,1994。 黃富三、古偉瀛、蔡采秀主編,《台灣史研究一百年:回顧與研究》。台北:中央研究院台灣史籌備處,1997。 黃榮裕著,《渡台悲歌-台灣的開拓與抗爭史話》。台北:臺原出版社,1989。 黃應貴主編,《台灣土著社會文化研究論文集》。台北:聯經出版事業公司,1986。 楊放採訪整理,《落地生根-眷村人物與經驗》。台北:允晨文化,1996。 楊國鑫著,《台灣客家》。台北:唐山出版社,1993。 楊梅鎮志編纂小組編輯,《楊梅鎮志》。桃園:楊梅鎮公所,1990。 鄔昆如著,《天主教的政治觀》。台北:輔仁大學出版社,1988。 輔仁神學著作編譯會編輯,《神學辭典》。台北:光啟出版社,1996。 輔神研究小組編著,《天主教的祖先崇敬》。台北:光啟出版社,1995。 劉還月著,《台灣的客家人》。台北:常民文化出版社,2000。 劉還月著,《台灣的客家族群與信仰》。台北:常民文化出版社,1999。 劉還月著,《台灣客家風土誌》。台北:常民文化出版社,1999。 潘英著,《台灣拓殖史及其族人分布研究》。台北:自立晚報社文化出版社,1992。 潘國正編著,《竹籬笆的長影-眷村爸爸媽媽口述歷史》。新竹市:竹市文化,1997。 蔡蔚群著,《教案:清季台灣的傳教與外交》。台北:博揚文化事業有限公司,2000。 賴永祥著,《教會史話》第一、二輯。台南:人光出版社,1992。 戴炎輝著,《清代台灣之鄉治》。台北:聯經出版事業公司,1979。 謝問岑主修、陳子波纂,《高雄縣志稿》。台北:成文出版社有限公司,1983。 鍾桂蘭、古福祥纂修,《屏東縣志》。台北:成文出版社有限公司,1983。 鍾華操著,《台灣地區神明的由來》。南投:台灣省文獻委員會,1983。 鍾肇政、徐正光等著,《客家文化論叢》。台北:中華文化復興運動總會,1994。 韓承良、賴利華著,《中華方濟會省簡史》。台北:思高聖經出版社,1992。 瞿海源著,《台灣宗教變遷的社會政治分析》。台北:桂冠圖書有限公司,1997。 瞿海源著,《重修台灣省通志.卷三.住民志.宗教篇》(第一冊)。台北:台灣省文獻委員會,1992。 魏啟蒙著,侯景文譯,《中國天主教史》。台中:光啟出版社,1971。 羅光主編,《天主教在華傳教史集》。台中:光啟出版社,1967。 羅光著,《教廷與中國使節史》。台北:傳記文學出版社,1983。 羅光著,《羅光全書》。台北:學生書局,1996。 羅香林著,《客家研究導論》。台北:南天書局,1992。 顧忠華著,《韋伯學說新探》。台北市:唐山出版社,1992。 顧保鵠編著,《中國天主教史大事年表》。台北:光啟出版社,1970。 顧衛民著,《中國與羅馬教廷關係史略》。北京:東方出版社,2000。 (三)期刊論文: 丁立偉著,〈台灣原住民族的社會問題-天主教觀點研究〉(下),《神學論集》,第112期,1997年7月,頁265-276。 丁立偉著,〈台灣原住民族的社會問題-天主教觀點研究〉(上),《神學論集》,第111期,1997年4月,頁87-100。 方豪著,〈台灣的天主教〉,收在《台灣文化論集》。台北:中華文化出版事業委員會,1954,頁463-472。 王甫昌著,〈省籍融合的本質-一個理論與經驗的探討〉,收錄余張茂桂編《族群關係與國家認同》。台北:業強,1993,頁53-100。 王明珂著,〈集體歷史記憶與族群認同〉。《當代》,第91期,1993年11月,頁6-18。 王明珂著,〈過去、集體記憶與族群認同:台灣的族群經驗〉,收錄於中央研究院近代史研究所編《認同與國家:近代中西歷史的比較》。台北:中央研究院近代史研究所,1994,頁249-274。 王春泉、黃森泉著,〈論泰雅族祖靈Rutux之經濟倫理涵義〉。《中山人文社會科學期刊》第5卷1期,1997年2月,頁61-88。 王培勳著,〈台北市古亭區南機場眷村家庭主婦訪問報告〉,《國立台灣大學社會學刊》,第3期,1967,頁161-167。 王順民著,〈戰後台灣宗教福利服務模式的探討-西方宗教與本土宗教的對比〉。《思與言》,第36卷第2期,1998年6月,頁19-54。 古偉瀛著,〈台灣天主教史-史料與研究簡介〉,收在張珣、江燦騰合編,《當代台灣-本土宗教研究導論》。台北:南天書局有限公司,1989,頁133-151。 古偉瀛著,〈十九世紀台灣天主教(1859-1895)-策略及發展〉。《台大歷史學報》,第22期,1998年12月,頁91-123。 江春錦著,〈復興鄉泰雅族社會研究〉。《社會研究》,第23期,1984年1月,頁15-51。 吳聰敏著,〈美援與台灣經濟〉。《台灣社會季刊》,第1卷第一期,1988年2月,頁181-201。 呂宗麟著,〈涂爾幹宗教社會理論之分析〉。《宗教哲學》第1卷第2期,1995年4月,頁125-131。 呂實強著,〈明清之際國人與天主教的論爭〉。《歷史月刊》,第138期,1997年7月,頁58-64。 呂實強著,〈晚清中國知識份子反教言論的分析之一-反教方法的倡議(1860-1898)〉。《中央研究院近代史研究所集刊》第4期,1973年5月,頁351-384。 呂實強著,〈晚清中國知識份子對基督教在華傳教目的的疑懼(1860-1898)〉,《國立台灣師範大學歷史學報》,第3期,1975年2月,頁147-158。 宋光宇著,〈四十年來台灣的宗教發展情形〉,收在宋光宇著,《宗教與社會》。台北:東大出版社,1995,頁165-219。 李明芬整理,〈台灣宗教活動的社會教育功能〉。《社教雙月刊》,第79期,1997年6月,頁8-20。 李廣均著,〈從過客到定居者-戰後台灣「外省族群」形成與轉變的境況分析〉。《中大社會學報》,第3期,1996年5月,頁367-390。 狄明德著,〈社會關懷與宗教對話〉。《台灣宗教學會通訊》,第2期,1999年7月,頁39-44。 林瑞琪著,〈海峽兩岸三地教會互動的神學反省〉。《神學論集》,第113期,1997年10月,頁398-411。 邱麗娟著,〈清末台灣南北基督教長老會傳教事業的比較研究(1865~1895)〉,《台南師院學報》,第29期,1996年,頁99-120。 胡台麗著,〈芋仔與蕃薯-台灣榮民的族群關係與認同〉,收錄於張茂桂編《族群關係與國家認同》。台北:業強,1993年,頁279-323。 張春申著,〈天主教在台灣傳福音的現況與未來方向〉。《神學論集》,第74期,1988年1月,頁549-574。 張春申著,〈梵地岡第二屆大公會議與教會本地化〉。《中華學術院天主教學術研究所學報》,第2期,1970年10月,頁63-72。 張春申著,〈教會在中國現代化過程中應扮演的角色〉。《神學論集》,第106期,1996年1月,頁525-532。 張英陣著,〈天主教在台灣的社會服務〉。《社區發展季刊》,第89期,2000年3月,頁68-77。 張振東著,〈宗教與社會-天主教與中國社會〉。《哲學與文化》,第16卷第9期,1990年9月,頁40-45。 張珣著,〈百年來台灣漢人宗教研究的人類學回顧〉,收在黃富三、古偉瀛、蔡采秀主編,《台灣史研究一百年:回顧與研究》。台北:中央研究院台灣史籌備處,1997,頁215-255。 悠蘭.多又編,〈泰雅族研究書目〉(下)。《宜蘭文獻雜誌》,第29期,1997年9月,頁149-191。 悠蘭.多又編,〈泰雅族研究書目〉(上)。《宜蘭文獻雜誌》,第28期,1997年7月,頁132-157。 梁錦文著,〈台港澳三地教會初探(一)社會政治學的分析〉。《神學論集》,第113期,1997年10月,頁315-337。 梁錦文著,〈台港澳三地教會初探(二)神學反省及對台灣教會的期待〉。《神學論集》,第114期,1998年1月,頁463-478。 陳介英著,〈對韋伯《宗教社會學》中有關「宗教理念」之探討的剖析〉。《思與言》,第32卷3期,1994年9月,頁77-111。 陳志榮著,〈台灣基督教研究:問題與方法〉。《台灣宗教學會通訊》,第2期,1999年7月,頁57-70。 陳滿鴻著,〈內地、港、台三地教會的社會角色〉。《神學論集》,第114期,1997年冬,頁479-491。 曾瑞琳著,〈台灣的原住民〉。《國際特赦雜誌》,第19期,1994年10月,頁3-8。 曾嬿卿著,〈外省人勢大財大?-三大族群社經地位透視〉。《財訊》,1996年3月,頁188-193。 黃一農著,〈被忽略的聲音-介紹中國天主教徒對「禮儀問題」態度的文獻〉。《清華學報》,第25卷2期,1995年6月,頁137-160。 黃月著,〈慶祝天主教沙爾德聖保祿女修會來台服務40年特刊〉。《保祿醫訊》,第28期,2000年,頁6-7。 黃宣範著,〈眷村的「台灣人」經驗〉。《台灣風物》,第43卷第2期,1993年6月,頁97-111。 黃宣衛著,〈傳統社會與西洋宗教-三個台灣高山族的例子〉。《思與言》,第18卷1期,1980年5月,頁101-115。 黃國超著,〈為什麼不是「祖靈」信仰?-關於泰雅族傳統信仰的再議〉(未刊稿) 黑帶巴彥著,〈泰雅族的gaga〉。《新竹文獻》,第3期,2000年10月,頁65-68。 楊南郡著,〈山.雲.泰雅人〉。《宜蘭文獻雜誌》,第28期,1997年7月,頁26-47。 董芳苑著,〈『祖先崇拜問題』商榷〉。《宗教與文化》,台北:人光出版社,1989年6月,頁173-200。 廖文生著,〈社會變遷下的台灣宗教發展〉。《中國論壇》,第74卷第5期,1987年,頁17-21。 劉錦昌著,〈台灣天主教「本地化」概況-以《神學論集》來觀察〉。《神學論集》,第111期,1997年春,頁15-29。 蔡蔚群著,〈1868年台灣南部涉外糾紛的經過與交涉〉。《高市文獻》,第10卷第3期,1998年3月。 鄭淑蓮著,〈台灣教案之試析(1859~1868)〉。《弘光學報》,第31期,1998年1月,頁507-519。 賴建誠譯,〈中國與基督教-行動與回應〉。《思與言》,第23卷5期,1986年1月,頁540-544。 賴慧真著,〈清季晚期台灣教案(咸豐九年-光緒十一年1859~1885)〉。《史學會刊》(師大),第41期,1997年6月,頁60-67。 戴國煇著,〈日帝統治下台灣客家〉。《客家風雲》,第5期,1988年,頁6-7。 戴寶村著,〈馬偕與南崁教會〉(未刊稿) 瞿海源、姚麗香著,〈台灣社會與文化變遷〉,收於瞿海源、章英華主編,《台灣社會與文化變遷》(下)。台北:中央研究院民族所,1986,頁655-685。 瞿海源著,〈宗教信仰與家庭觀念〉,《中央研究院民族學研究所集刊》,第59期,1986年6月,頁111-121。 簡炯仁著,〈南台灣屏東平原的開發與族群關係〉。《高苑學報》,第6卷第2期,1997年,頁463-486。 簡炯仁著,〈屏東縣萬巒鄉赤山、萬金庄的平埔族與天主教道明會〉。《台灣文獻》,第50卷第1期,1999年3月,頁103-127。 羅光著,〈第二屆梵蒂岡大公會議的意義〉。《鐸聲》,第40期,頁1-6。 顧衛民著,〈中國天主教本地化的歷程〉。《淡江史學》,第9卷,1998年9月,頁181-201。 (四)會議論文 王甫昌著,〈台灣族群接觸機會與族群關係〉,收錄於「台灣族群關係的社會基礎(二):差異、認同與階層化」研討會論文集。台北:中央研究院社會研究所主辦,2001。 王家儉著,〈從天主教的衝擊看明末清初時其中西文化論戰的背景與意義〉,收在中央研究院近代史研究所主編,《近代中國初期歷史研討會論文集》(上)。台北:中央研究院,1989,頁5-26。 徐正光著,〈台灣的族群關係-以客家人為主體的探討〉,收在徐正光等主編,《客家文化研討會論文集》。台北:行政院文化建設委員會,1994,頁381-399。 蔡錦堂主講,〈日治時期台灣之宗教政策〉,收在張炎憲主編,《歷史文化與台灣(四)-台灣研究研討會(76~100回)》。台北:台灣風物雜誌社,1996,頁131-152。 羅漁著,〈天主教傳入台灣的歷程〉,《台灣史國際學術研討會:社會、經濟與墾拓論文集》,1995年5月,頁67-108。 (五)報紙上之專文 〈馬玉芳修女事蹟〉。《中國時報》,2000年6月30日,版19。 李金生著,〈洋菩薩忍痛行醫,大愛留金門〉。《中國時報》,2000年1月10日,版23。 于斌著,〈我為什麼提倡敬天祭祖〉。《聯合報》,1972年1月14日,版10。 王蜀桂著,〈全是歲月經緯-巴義慈神父會讀泰雅族的布〉。《中國時報》,1994年3月3日,版17。 王蜀桂著,〈原來泰雅文字藏在織布中-巴義慈神父為泰雅族文化尋根〉。《台灣新聞報》,1994年3月3日,版18。 朱立倫著,〈桃園眷村「金馬文化節」開幕致詞〉。《聯合報》,2002年12月29日,版17;《中國時報》,2002年12月29日,版19。 江冠明著,〈大嵙崁之役〉。《台灣時報》,1994年3月27日,版22。 邱傑著,〈泰雅族有精密文字〉。《聯合報》,1992年11月5日,版14。 邱傑著,〈泰雅語傳教.巴義慈神父溜口〉。《聯合報》,1992年10月15日,版14。 凌珮君、江中明、卓亞雄採訪撰稿,〈族譜寫在臉上.布織透露玄機-方濟會巴義慈神父:泰雅族肯定有文字〉。《聯合報》,1994年6月23日,版17。 (六)學位論文 張瑞珊著,〈台灣軍眷村的社區研究-以合群復興兩村為例〉,國立台灣大學社會學研究所碩士論文,1980年6月。 姚麗香著,〈台灣地區光復後宗教變遷之探討〉,國立台灣大學社會學研究所碩士論文,1984年6月。 郭文般著,〈台灣光復後基督宗教在山地社會的發展〉,國立台灣大學社會學研究所碩士論文,1985年6月。 許作明著,〈教廷與中華民國的關係〉,淡江大學歐洲研究所碩士論文,1988年6月。 王梅霞著,〈規範、信仰與實驗:一個泰雅族聚落的研究〉,國立清華大學社會人類學研究所碩士論文,1990年6月。 阮偉明著,〈一九四五年以後台灣西部平原地區天主教教堂建築之研究〉,東海大學建築研究所碩士論文,1990年6月。 趙麗蓉著,〈軍眷村外部空間之研究〉,私立中原大學建築研究所碩士論文,1990年12月。 林素珍著,〈台灣基督長老教會對台灣原住民宣教之研究〉,東海大學歷史研究所碩士論文,1991年6月。 羅於陵著,〈眷村:空間意義的賦予和再界定〉,國立台灣大學建築與城鄉研究所碩士論文,1991年6月。 謝國雄著,〈族群特質與職業生涯-外省籍族群從事軍公教行業原因之探討〉,國立清華大學社會人類學研究所碩士論文,1992年6月。 蔡沛真著,〈祖先觀念的兩面向-以台灣漢人與基督徒家庭為例〉,國立中正大學歷史研究所碩士論文,1993年6月。 尚道明,〈眷村居民的生命歷程與國家認同-樂群新村的個案研究〉,國立清華大學社會人類學研究所碩士論文,1995年7月。 張瑞德著,〈戰後台灣「外省人」的塑造與變遷(1945-1987)〉,東海大學歷史研究所碩士論文,1996年6月。 盧聖真著,〈泰雅族宗教變遷的地理意涵-以桃園復興鄉三光村為個案研究〉,國立台灣師範大學地理研究所碩士論文,1997年6月。 李光瑾著,〈耶穌與教會在一個南台灣村落的個案研究〉,國立清華大學社會人類學研究所碩士論文,1998年6月。 姜蘭虹著,〈集體移住與宗教變遷對部落環境行動之影響〉,國立台灣大學地理研究所碩士論文,1998年6月。 楊嘉欽著,〈高雄前金天主教聚落研究〉,國立成功大學歷史研究所碩士論文,1998年6月。 鍾善文著,〈鄉村宗教傳佈之策略分析-以嘉義縣東石基督教會為例〉,淡江大學大眾傳播學系研究所碩士論文,1998年6月。 葉永文著,〈台灣政教關係之研究(1949-1999)〉,國立台灣大學三民主義研究所碩士論文,1999年6月。 羅永清著,〈天神與基督之間的抉擇:阿里山來吉村鄒人皈依基督宗教因素之探討〉,國立台灣大學人類學研究所碩士論文,1999年6月。 吳學明著,〈台灣基督長老教會的傳教與三自運動-以南部教會為中心〉,國立台灣師範大學歷史研究所博士論文,2000年6月。 孫立梅著,〈外省人的「家」:多義的記憶與移動的認同〉,國立清華大學人類學研究所碩士論文,2000年6月。 張藝鴻著,〈utux、gaya與真耶穌教會:可樂部落太魯閣人的「宗教生活」〉,國立台灣大學人類學研究所碩士論文,2000年6月。 陳雅鴻著,〈羅馬教廷與台海兩岸關係(1949-2000年)〉,淡江大學歐洲研究所碩士論文,2000年6月。 孫鴻業著,〈污名、自我、與歷史:台灣外省人第二代的身分與認同〉,國立清華大學社會學研究所碩士論文,2001年6月。 黃國超著,〈“神聖”的瓦解與重建:鎮西堡泰雅人的宗教變遷〉,國立清華大學社會人類學研究所碩士論文,2001年6月。 薛亞聖著,〈台灣之天主教組織特性與教會醫院〉,國立台灣大學醫療機構管理研究所碩士論文,2001年6月。 楊惠娥著,〈天主教在台灣中部之傳教-以羅厝教會為例〉,國立台灣大學歷史學研究所博士論文,2002年6月。 林鼎盛著,〈儀式與意義:以台灣天主教羅厝堂區為例〉,國立台灣大學人類學研究所碩士論文,2002年6月。 陳鑑江著,〈台灣之天主教組織特性與教會醫院經營策略取向關係之研究〉,國立台灣大學公共衛生學院醫療機構管理研究所碩士論文,2002年6月。id NH0925493002 sid 894409 cfn 0 / id NH0925493003 auc 張淑卿 tic 防癆體系與監控技術: 台灣結核病史研究(1945-1970s) adc 傅大為 ty 博士 sc 國立清華大學 dp 歷史研究所 yr 92 lg 中文 pg 334 kwc 結核病 kwc 癆 kwc 監控技術 kwc 疾病史 kwc 病患史 kwc 台灣醫學史 abc 本論文的主題是1945-70年代的台灣結核病史。1950-70年代是穩定的黨國體制的成熟期。在這段時期,結核病不僅是衛生建設中的重要課題,同時也是台灣得以與國際組織接觸的橋樑。第二因素是口服抗結核藥物自1952年開始在台灣使用。因此,此時期不但是結核防治史的黃金時代,同時也是疾病史與病患歷史的重要時代。 tc 章節目錄--------------------------------------------------Ⅰ 表次------------------------------------------------------Ⅳ 圖次------------------------------------------------------Ⅴ 第一章 緒論-----------------------------------------------1 第一節 研究動機與問題意識--------------------------1 第二節 研究時間斷限與歷史背景----------------------3 一、研究時間斷限--------------------------------3 二、歷史背景------------------------------------5 第三節 研究取向、章節架構與資料來源---------------10 一、研究取向-----------------------------------10 二、章節架構與資料來源-------------------------14 第四節 文獻回顧-----------------------------------17 一、Dispensary與監控身體的技術-----------------17 二、國際衛生合作-------------------------------20 三、結核病史的研究-----------------------------25 四、台灣醫學史---------------------------------31 第二章 日治時期台灣地區結核病史---------------------------43 第一節 日治時期的結核病印象----------------------44 第二節 結核病的統計分析與官方回應----------------49 一、日治時期結核病的流行概況-------------------49 二、統計與診斷技術-----------------------------53 三、日本國內的結核防治概----------------------56 四、結核防治機構的建立與相關法令的頒布----------58 第三節 結核病研究與防治意見-------------------------------66 一、遺傳說與素質說---------------------------------66 二、熱帶氣候風土說--------------------------------67三、預防與治療的相關建議---------------------------71 第三節 結語-----------------------------------------------79 第三章 戰後防癆醫療體系之建立------------------------------------------------------91 第一節 日治至戰後防癆體系與技術之變遷--------------------94 一、防癆機構的轉變----------------------------------94 二、防癆政策的變遷----------------------------------95 三、防癆技術的轉變---------------------------------96 第二節 國家體制下的結核防治機關----------------------------------------99 一、官方防癆機構的成立與其職掌-------------------------------100 二、防癆新前線—防癆保健員-------------------------104 三、數字化、示範性與計劃性的防癆政策-----------------------109 第三節 中華民國防癆協會的參與------------------------------------------120 一、成立經過及其組織----------------------------------------------120 二、教育人員的結核病防治----------------------------------------121 三、防癆郵票的發行-------------------------------------------------123 第四節 國際協助與台灣防癆------------------------------------------------127 一、美援會與農復會-------------------------------------------------127 二、聯合國兒童基金會與聯合國世界衛生組織(UNICEF、WHO) ----------------------------------------------132 三、美援衛生與衛生國際標準化----------------------------------135 第五節 結語---------------------------------------------------------------------140 第四章 監控結核病身體的新場域-社區------------------------------153 第一節 被標記的身體-結核菌素測驗與卡介苗預防接種計劃----155 一、結核菌素測驗與卡介苗預防接種計劃之推展歷程----155 二、結核菌素測驗與卡介苗接種的問題----------------161 三、另一種聲音的出現-------------------------------167 第二節 被透視的身體-胸部X光檢查及查痰------------------173 一、發展歷程--------------------------------------174 二、X光檢查與驗痰的試驗、推行計劃-----------------180 第三節 被監控的身體-病人的治療及管理--------------------182 一、藥物的發展與引進------------------------------183 二、「新型態」的治療:居家治療與「標準化」的用藥----186 三、病人管理系統的建立-----------------------------189 四、失敗的身體-------------------------------------192 第四節 結語----------------------------------------------197 第五章 結核病患的病痛經驗------------------------------------------------------------206 第一節 五個病患的故事-------------------------------------------------------207 第二節 病患、病家與一般民眾觀感下的結核病-------------------------218 一、對結核病病因的理解---------------------------------------------218 二、對病症的理解與印象--------------------------------------------221 三、被污名化、隔離與貧困交加的疾病---------------------------223 第三節 結核病患對治療措施的因應----------------------------------------227 一、生或死---外科治療-------------------------------229 二、神奇的藥丸?-----------------------------------------------------233 三、安靜療法------------------------------------------------------------236 四、民俗療法------------------------------------------------------------237 第四節 結語-----------------------------------------------240 第六章 結核病的再現----------------------------------------------248 第一節 報紙報導結核病的敘事分析-------------------------250 一、「積極」的政府:官方的防癆工作---------------------------251 二、外人眼中的防癆模範區域----------------------------------255 三、國母呵護下的台灣防癆-------------------------------------257 四、報導防癆知識---------------------------------262 五、新的規訓場所與方法---------------------------265 六、病患的「現身」------------------------------268 第二節 醫藥廣告中的結核病-------------------------------272 一、塑造結核病的形象------------------------------274 二、說明作用、機轉、治癒率、對象---------------------276 三、避免偽藥─購買地點、認清商標、禁止仿冒----------278 四、促銷—集盒蓋送贈品、抽獎、愛國獎券------------280 第三節 「結核病」之象徵分析-------------------------------281 一、語言的使用------------------------------------281 二、隱喻的使用-----------------------------------283 第四節 結語---------------------------------------------286 第七章 結論-----------------------------------------------------301 參考書目---------------------------------------------------------------------------------------306 附錄 一、台灣地區結核病防治大事紀------------------------------------322 二、受訪者之基本資料-非結核病患部份----------------------------326 三、結核病人治療及管理卡----------------------------------------328 四、阿章提供之氣功練習單張--------------------------------------330 附圖 中華民國慈善紀念郵票-------------------------------------------333 表 次 表1-1 戰後台灣地區歷年結核病死亡率與死亡順位(1947--1980)--------41 表2-1日治時期台灣、日本結核死亡人數統計(1906-1942)-----------------------82 表 2-2 日治時期台灣醫師統計人數(1897-1942年)--------------------85 表 2-3 結核病床數目比較-------------------------------------------87 表 2-4 官設結核病床增加計劃書-------------------------------------88 表2-5日治時期結核病統計調查、相關研究論文與著作表-------89 表3-1 台灣地區歷次肺結核盛行率調查結果--------------------------144 表3-2 60個推行區病案尋找結果,1963年---------------------------144 表3-3 防癆工作人員功效比較表------------------------------------145 表3-4 各種機構用於台灣省防癆工作經費表(1950-1963)--------------146 表3-5 UNICEF對台衛生援助之經費(1950-1968年)------------------150 表3-6 WHO與UNICEF歷年訪台之防癆工作者(1966-1971)-------------151 表3-7 歷年利用外援出國研習之防癆工作者(1965-69)----------------152 表4-1 台灣省歷年定期春秋兩季種痘同時接種卡介苗工作(1965-1975)--------201 表4-2 第二至五次盛行調查有無卡介苗疤痕之結核盛行率(按年齡別)--------202 表4-3 歷年X光檢查統計表(1950-1980)---------------------------203 表4-4 台灣地區歷年驗痰人數(1956-1980)-------------------------204 表4-5 花蓮縣驗痰結果與後來X光檢查結果之對照---------------------205 表4-6 澎湖縣民眾X光檢查診斷與驗痰結果---------------------------205 表5-1受訪結核病患基本資料-------------------------------------------------------------244 表5-2 結核病患的類型、病患經驗年代與主要處理方式---------------------------246 圖 次 圖1-1 戰後台灣地區歷年結核病死亡率(1947--1980)------------------42 圖2-1 日本與台灣結核病死亡率--------------------------------------51 圖2-2 松山療養所(一)----------------------------------------------64 圖2-3 松山療養所(二)----------------------------------------------65 圖2-4 松山療養所(三)----------------------------------------------65 圖3-1 1952-66年台灣防癆組織系統圖-------------------------------142 圖3-2 1970年代台灣防癆組織系統圖--------------------------------143 圖3-3 台灣地區歷次肺結核盛行率調查統計圖------------------------113 圖3-4 歷次教育人員肺結核患病率與全台肺結核盛行率比較圖----------123 圖4-1 歷年X光檢查發現疑似病患比率圖----------------------------175 圖6-1 蔣宋美齡參觀防癆展----------------------------------------262 圖6-2 防癆宣導漫畫----------------------------------------------265 圖6-3 中醫師沈柏齡宣傳單----------------------------------------288 圖6-4 生生鈣---------------------------------------------------------288 圖6-5 安咳百能--------------------------------------------------288 圖6-6 汽巴PAS--------------------------------------------------289 圖6-7 漁人牌魚肝油---------------------------------------------289 圖6-8 特安鏈黴素-----------------------------------------------289 圖6-9 位元堂養蔭丸---------------------------------------------290 圖6-10 雙帆牌魚肝油精丸-----------------------------------------291 圖6-11 愛滅癆素-------------------------------------------------291 圖6-12 新鐵肺---------------------------------------------------292 圖6-13 新愛掃癆-------------------------------------------------293 圖6-14 潤胃涼肺散-----------------------------------------------294 圖6-15 檸檬露---------------------------------------------------295 圖6-16 肺癆山---------------------------------------------------296 圖6-17唐拾義防癆久咳丸------------------------------------------293 圖6-18 新拔癆疾片-----------------------------------------------298 圖6-19 必壓助利那-----------------------------------------------299 圖6-20 力排癆疾-------------------------------------------------300rf 壹、中文資料 一、史料與工作報告 《中國農村復興聯合委員會工作報告》 《台灣省行政長官公署公報》 《台灣省政府公報》 Annual Report on Tuberculosis Control Program, 1952、1955、1957、1963、1965. Department of Health , Taiwan Provincial Government, Ten Year Health Plan 1966-1975,(Taichung : Department of Health , Taiwan Provincial Government,1964). Nation Tuberculosis Association of The Republic of China, (Taipei: The Association Press, 1961). 中華民國防癆協會:《中華民國防癆協會報告》,民國51、65年度。 台灣省防癆局編;《台灣省的防癆工作(民國55年—64年)(台北:台灣省防癆局,民國65年7月)。 台灣省防癆局編;《台灣省的防癆工作(民國65年—70年) (台北:台灣省防癆局,民國71年7月)。 台灣省慢性病防治局:《台灣地區第一次至第七次肺結核病盛行調查報告合訂本》(台北:台灣省慢性病防治局,民國87年12月)。 台灣省慢性病防治局:<台灣地區第五次肺結核病盛行調查(民國66年至67年)報告摘要>。 台灣省衛生處防癆委員會:《台灣省防癆工作年報》,民國48、51年度。 二、專書 Benedict Anderson著,吳叡人譯:《想像的共同體:民族主義的起源與散佈》(台北:時報文化,民國88年)。 Bettyann H. Kevles著,楊玉齡譯:《露骨-X射線檔案》(台北:天下文化,2000)。 Erwin H. Ackernecht著:《醫學史概論》(台北:中國醫藥研究所,1966年)。 Eugene Staley著,江德成譯:《落後國家經濟發展的政治影響》(台北:國際經濟合作發展委員會,民國54年10月再版)。 Hillier Krieghbaum著,謝瀛春譯:《科學與大眾媒介》(台北:遠流出版社,民國83年)。 小田俊郎:《台灣醫學五十年》(台北:前衛出版社,1995)。 今村荒南著、張矯然譯:《肺結核之常識》(台北:台灣商務印書館,民國62年台一版),頁86-90。 文馨瑩:《經濟奇蹟的背後—台灣美援經驗的政經分析(1951-1965)》(台北:自立晚報社,民國79年1月)。 王天濱:《台灣新聞傳播史》(台北:亞太圖書出版社,2002年8月)。 王洛:《公共衛生提要》(台北:衛生雜誌社,1959年)。 王溢嘉:《古典今看-從孔明到潘金蓮》(台北:野鵝出版社,1990年3月)。 王晴佳:《台灣史學五十年(1950-2000)》(臺北:麥田出版社,2002年)。 方孝謙:《殖民地台灣的認同摸索:從善書到小說的敘事分析,1895-1945》(台北:巨流,2001)。 台灣省行政長官公署編:《台灣省五十一年來統計提要》(台北:台灣省行政長官公署統計室,民國35年12月)。 台灣省防癆局:《防癆工作手冊》(台北:台灣省防癆局,民國62年7月)。 台灣省防癆局:《防癆工作手冊》(台北:台灣省防痨局,民國74年1月)。 台灣大學醫學院附設醫院編:《台大醫院一百年》(台北:台灣大學醫學院附設醫院,1995年)。 台灣省衛生處防癆委員會:《抗癆十五年》(台北:台灣省衛生處,民國53年4月7日)。 台灣省政府糧食局《台灣省歷年農村物價統計》(南投:台灣省政府糧食局,民國67年)。 台灣醫界聯盟基金會醫學史工作室、醫望雜誌編:《台灣根除小兒麻痺症紀實》(台北:衛生署疾病管制局,2001)。 百週年紀念特刊組:《彰基百週年紀念特刊》(彰化:彰化基督教醫院,1996)。 米歇爾.傅科著,劉絮愷譯:《臨床醫學的誕生》(台北:時報文化,1994年10月)。 行政院美援運用委員會編印:《中美合作經援概要》(台北:行政院美援運用委員會,民國45年)。行政行政院美援運用委員會編印:《中美合作經援發展概況》。 行政院衛生署:《台灣地區公共衛生發展史》共五冊(台北:行政院衛生署,1995)。 行政院衛生署編:《台灣撲瘧紀實》(台北:行政院衛生署,1993)。 何鳳嬌編:《政府接收台灣史料彙編》(新店市:國史館,民國79年)。 吳錫鐺:《新觀念下防癆人員訓練之商榷》(台中:台灣省政府衛生處防癆委員會,民國55年12月)。 李筱峰:《解讀二二八》(台北:玉山社,1998)。 李筱峰主編:《台灣史料研究》21(台北:吳三連台灣史料基金會,2003年9月)。 李騰嶽編纂:《台灣省通志稿政事志衛生篇》(台北:台灣省文獻委員會,民國42年11月)。 杜門博士著,欒筱文譯:《肺結核病化學藥物治療》(台北:衛生教育社,民國69年9月)。 杜義夫:《肺結核防治講座》(台北:協和文化,2002年)。 周寶珠編譯:《聯合國之組織與業務》(台北:聯合國中國同志會,民國44年10月)。 林天佑:《象牙之塔春秋記》(台北:台灣商務印書館,民國47年)。 林吉崇《台大醫院百年史》(台北:台灣大學醫學院,1997)。 林道平主編:《五十年紀事》(台北:中華民國防癆協會,2002年1月)。 林瑤棋:《我走過了四個時代(上卷)》(台中:恆毅社,2003年6月)。 林衡道口述,卓遵宏,林秋敏訪談:《林衡道先生訪談錄》(台北:國史館,民國85年)。 吳淑芬:《花的奇妙世界》(台北:綠生活,1995)。 政協北京市委員會文史資料研究委員會編:《話說老協和》(北京:中國文史出版社,1987年)。 倪炎元:《再現的政治—台灣報紙媒體對「他者」建構的論述分析》(台北:韋伯文化,2003)。 勃郎勞來生著、俞鳳賓譯:《肺癆康復法》(台北:台灣商務印書館,民國60年台一版),頁10-20。 星兆鐸:《你要知道關於結核病的問題嗎》(台北:中華民國防癆協會,1958年)。 段成璞:《台灣戰後經濟》(台北:人間出版社,1992年6月)。 洪美玟編:《樹人樹木四十年:台灣省公共衛生研究所成立四十年紀念特刊》(台北:公共衛生研究所,1998)。 若林正丈:《台灣—分裂國家與民主化》(台北:月旦出版社,1994)。 范佐勳編:《台灣藥學史》(台北財團法人鄭氏藥學文教基金會,2001年)。 原榮著,王頌遠譯:《肺癆》(台北:台灣商務印書館,民國59年台一版)。 孫金生:《國際經濟技術合作》(台北:聯經出版事業公司,民國72年)。 國防醫學院編:《國防醫學院院史》(台北:國防醫學院,1995)。 秦風,宛萱:《宋美齡》(台北:大地出版社,2003年)。 國家政策研究中心台灣史料編纂小組:《台灣歷史年表終戰篇Ⅰ(1945-1965)》(台北:財團法人張榮發基金會國家政策研究資料中心,1990年11月)。 許雪姬:《日治時期在「滿州」的台灣人》(台北:中研院近史所,民國91年3月)。 張力:《國際合作在中國》(台北:中央研究院近代史研究所,1999年)。 張子文,郭啟傳撰:《台灣歷史人物小傳:日據時期》(台北:國家圖書館,民國91年)。 張玉法:《中華民國史稿》(台北:聯經出版事業有限公司,1998年)。 張良澤編:《鍾理和全集》(台北:遠行出版社,民國65年)。 張恆豪編:《王詩琅集》(台北:前衛出版社,1991年2月)。 張恆豪編:《朱點人集》(台北:前衛出版社,1992年7月)。 張恆豪編:《吳濁流集》(台北:前衛出版社,1992年9月) 張恆豪編:《楊守愚集》(台北:前衛出版社,1991年2月)。 張苙雲:《醫療與社會:醫療社會學的探索》(台北:巨流圖書公司,1998)。 張珣:《疾病與文化》(台北:稻鄉出版社,民國83年9月)。 張憲秋:《農復會回憶》(台北:行政院農業委員會,民國79年2月)。 莊永明:《台灣醫療史》(台北:遠流出版事業有限公司,1998年)。 莊炳楠監修,李汝和主修:《台灣省通志政事志衛生篇》(台中:台灣省文獻會,民國61年6月)。 莊淑旂口述,許雪姬執筆:《莊淑旂回憶錄》(台北:遠流出版事業有限公司,2001年)。 郭松棻:《奔跑的母親》(台北:麥田出版,2002年)。 陳君愷:《日治時期台灣醫生社會地位之研究》專刊(22)(台北:台灣師範大學歷史研究所,1992)。 梁妃儀,陳怡霈,陳欣蓉、蔡篤堅:《戰後嘉義醫療發展簡史》(台北:記憶工程,2003年12月)。 湖島克弘著,黃蔡玉珠等譯:《杜聰明與鴉片試食官》(台北:玉山社,2001年)。 彭瑞金:《鍾理和傳》(台中:台灣省文獻會,民國83年)。 彭懷恩:《台灣政治變遷四十年》(台北:自立晚報,民國76年10月)。 彭懷恩:《台灣發展的政治經濟分析》(台北:風雲論壇出版社,民國79年4月)。 游健治:《24個天才,11個意外》(台北:新新聞文化,2001年)。 黃越宏:《觀念—許文龍和他的奇美王國》(台北:商業周刊,民國85年)。 廖炳惠編著:《關鍵詞200》(台北:麥田出版社,2003)。 嘉眾草師主編:《小偏方治大病(五)》(南投:長青社,1998年11月)。 榮民總醫院胸腔部編:《榮民總醫院胸腔部工作與研究報告》(台北:榮民總醫院,民國53年8月)。 趙既昌:《美援的運用》(台北:聯經出版事業有限公司,1985)。 趙傳緯:《台灣結核病現況及其防治計劃》(台北:台灣省防癆局,民國58年)。 劉進慶:《台灣戰後經濟分析》(台北:人間出版社,1993年2月)。 蔣夢麟:《農復會工作演進原則之檢討》(台北:行政院農業委員會,民國79年2月)。 鄭志明:《台灣新興宗教現象─傳統信仰篇》(嘉義:南華管理學院,1999年1月)。 錢鴻鈞編:《吳濁流致鍾肇政書簡》(台北:九歌出版社,2000年5月)。 蔡篤堅:《台灣外科醫療展史》(台北:唐山出版社,2002年)。 戴東元等編:《台大醫院百年懷舊》(台北:台灣大學醫學院,1995)。 戴國煇著,魏廷朝譯:《台灣總體相》(台北:遠流出版事業公司,1989)。 鍾自若:《聯合國組織》(台北:正中書局,民國39年10月)。 鍾理和著,張良澤編:《鍾理和全集》(台北:遠行出版社,民國65年)。 鍾理和:《鍾理和書簡》(台北:遠行出版社,民國69年6月)。 醫望雜誌編:《福爾摩沙的聽診器》(台北:新新聞文化,2001年)。 蘇珊.桑塔格著,刁筱華譯:《疾病的隱喻》(台北:大田出版社,2000)。 欒筱文:《結核病》(台北:中華民國防癆協會,民國47年)。 三、期刊與論文集論文 《台灣衛生》資料室:<聯合國兒童基金會對我國衛生工作之貢獻>《台灣衛生》第58期(台北:台灣衛生雜誌社,民國59年4月),頁10。 不著撰者:《衛生雜誌》,8卷8期(台北:衛生雜誌社,民國44年5月20日)。 王俊淵:<台灣地區肺結核防治工作之流行病學觀>《公共衛生》7卷1期(台北:台灣省公共衛生研究所),頁87。 甘明:<X光機後的無名英雄—訪嘉義慢性病防治院技術員張肖亮先生>,《慢性病防治通訊》9期(台北:台灣省慢性病防治局,民國81年2月10日),頁16。 余巖:<中華舊醫結核病觀念變遷史>,《醫學革命論選》(台北:藝文印書館,民國65年5月初版)。 吳就君:<台灣地區居民社會醫療行為之研究>《公共衛生》8卷1期(台北:公共衛生研究所,1981),頁1-25。 吳嘉苓,黃于玲:<順從、偷渡、發聲與出走:「病患」的行動分析>《台灣社會學》3(台北:台灣社會學編輯委員會,2002年6月),頁73-117。 李尚仁:<從病人的故事到個案病歷:西洋醫學在十八世紀中到十九世紀末的轉折>《古今論衡》5期(台北:中央研究院歷史語言研究所,2000年12月),頁139-146。 李尚仁:<醫學、帝國主義與現代性>《台灣社會研究季刊》54期(台北:台灣社會研究雜誌社,2004年6月)。 狄縱橫:<駐臺美軍三十年>《亞洲人》創刊號(轉載自香港明報月刊,1980),頁82-83。 林東明,李式鳳,陳群英:<肺結核病之家庭管理法之評價>《台灣醫學會雜誌》67卷11期,(台北:台灣醫學會,民國57年11月28日),頁435-449。 林新澤:<二十世紀前半期世界結核死亡率的趨勢>《台灣醫學會雜誌》54卷1期,(台北:台灣醫學會,民國44年1月28日),頁28-47。 林秋敏:<宋美齡女士與婦女聯合會-從慰勞工作談起>收於秦孝儀主編《蔣夫人宋美齡女士與近代中國學術討論集》(台北:財團法人中正文教基金會,民國89年3月),頁421-440。 林崇熙,傅大為:<歷史中的台灣科學—關於「台灣科學史」研究的回顧與探討>《新史學》6卷4期(台北:新史學雜誌社,1995年12月)。 林崇熙:<免洗餐具的誕生:醫學知識在台灣的社會性格分析>《台灣社會研究季刊》32期(台北:台灣社會研究社,1998年12月),頁1-37。 姜藍章:<放射線與肺結核>《肺結核病的診斷與治療》(台北:衛生教育社,民國66年),頁23-24。 姜藍章:<神秘的X光>《衛生雜誌》5卷12期(台北:衛生雜誌社,民國42年6月10日),頁45-46。 姚人多:<認識台灣:知識、權力與日本在台之殖民治理性>《台灣社會研究》(台北:台灣社會研究雜誌社,2001年6月),頁119-182。 姚毓麟:<X光—診斷與治療疾病的儀器>,《衛生雜誌》12卷5期(台北:衛生雜誌社,民國46年10月5日),頁28。 星兆鐸,韓福吉:<抗藥性肺結核之臨床觀察>《中華醫學雜誌》11卷3期(台北:中華醫學會,民國53年9月),頁226-232。 星兆鐸,韓福吉:<中國人患肺結核者對結核菌素之反應>《中華醫學雜誌》11卷1期,(台北:中華醫學會,民國53年3月),頁5-7。 星兆鐸:<卡介苗無效,台灣地區小學生不應再接種>《衛生行政》4卷6期,頁14。 星兆鐸:<如何於五年內使肺結核病不再是國內公共衛生問題之應行措施>,《中華醫學會雜誌》31卷5期,(台北:中華醫學會,民國72年5月),頁337。 星兆鐸:<關於結核病的治療問題>《台灣醫學會雜誌》51卷8期(台北:台灣醫學會,民國41年8月),頁21。 胡幼慧:<另類療者的生活空間:一項田野研究的初步分析>《思與言》36卷2期(台北:思與言雜誌社,民國87年6月),頁184-184。 徐美苓,胡紹嘉:<醫療保健新聞報導的科學Vs.非科學建構>《國立政治大學學報》77期(台北:國立政治大學,民國87年11月)。 索任:<原住民肺結核問題的探討>《原住民傳統醫療VS現代醫療》(台北:台灣原住民文教基金會,民國90年12月),頁139-140。 祝平一:<展望台灣的科技與醫療史研究>《台灣史研究》4卷2期(台北:中央研究院台灣史研究所籌備處,1999),頁157-174。 張家琪:<欒筱文醫師訪問記>《慢性病防治通訊》第四期(台北:台灣省慢性病防治局,民國80年四月),頁18。 張珣:<民俗醫療與文化症候群>《歷史月刊》8卷1期(台北:歷史月刊社,1996年1月),頁50-52。 張憲秋:<政府撥遷台灣前中國農業改進之重要階段>,《中華農學會成立七十週年紀念專集》(台北:中華農學會,1986年)。 莊凱全:<不打可以嗎?-台灣疫苗接種政策的現在與未來>《醫望雜誌》6期(台北:醫望雜誌社,1995年1月25日),頁70。 梁妃儀,蔡篤堅:<烏腳病與小兒痲病症的隱喻在台灣>《中外文學》31:12(台北:中外文學月刊社,民國92年5月),頁94-116。 許木柱:<民俗醫療與醫護因應>《榮總護理》9卷2期(台北:台北榮民總醫院,1992年6月),頁117-120。 許世鉅:<農復會及其在台灣之鄉村衛生>《台灣醫藥衛生總覽》(台北:醫藥新聞社,民國61年),頁54。 許書刀:<BCG Vaccination的現狀>《台灣醫學會雜誌》51卷8期,(台北:台灣醫學會,民國41年8月28日),頁341-347。 郭文華:<台灣醫療史研究的回顧-以學術脈絡為中心的探討>《台灣史料研究》8期,(台北:吳三連史料基金會,1996年11月),頁60-77。 郭文華:<美援下的衛生政策:一九六○年代台灣家庭計畫的探討>《台灣社會研究》32期(台北:台灣社會研究雜誌社,1998年12月),頁58-59。 郭文華:<台灣洋物科技初探(1887-1895)--從台灣鐵路、台北機器局與基隆煤礦出發的初步討論>《新史學》7卷2期(台北:新史學雜誌社,1996年12月),頁99-136。 郭文華:<歸檔台灣醫療:初探醫師書寫的歷史與社會學>《台灣社會研究季刊》54期(台北:台灣社會研究社,2004年6月),頁105-148。 陳安琪:<經濟建設委員會檔案>《國史館現藏國家檔案概述》(台北:國史館,民國85年),頁135-136。 曾喜亮:<如何實施晨間檢查的合理辦法>《教學生活》6卷5期(新竹:台灣省立新竹師專地方教育輔導委員會,1956年5月)。 陶榮錦:<台灣省國民學校兒童結核病防治之初步報告>《台灣醫學會雜誌》50卷1-2號(台北:台灣醫學會,台北),頁1-4。 傅祖呈:<抗結核藥物之選擇與方法>收於《肺結核病的診斷與治療》(台北:衛生教育社,民國66年),頁31-32。 雷祥麟:<衛生為何不是保衛生命?民國時期另類的衛生、自我與疾病>《台灣社會研究季刊》54期(台北:台灣社會研究雜誌社,2004年6月),頁17-59。 彭明輝:<政經環境與報業經營:以聯合報系為中心的討論>《國立政治大學歷史學報》14(台北:國立政治大學歷史學系,1997年5月),頁325-330。 彭明輝:<王惕吾的新聞理念及其實踐>《國立政治大學歷史學報》13(台北:國立政治大學歷史學系,1996年4月),頁161-164。 游鑑明:<蔣宋美玲創辦振興復健醫學中心:小兒痲痹患者的福音使者>收於秦孝儀主編《蔣夫人宋美齡女士與近代中國學術討論集》(台北:財團法人中正文教基金會,民國89年3月),頁464-492。 楊思標,陸坤泰,欒筱文,張正二:<縮短肺結核病治療期間的研究:對肺結核病併用INH、RIF、EMB及SM做短期加強化學療法之治療效果>《楊思標教授榮退紀念特集暨論文集》(台北:台大醫學院,)頁41-44。 楊思標:<肺結核病藥物療法的最近趨勢>《當代醫學》,5期,(台北:當代醫學雜誌社,民國63年3月)。 楊錫欽,楊思標:<肺結核病之治療趨勢—觀念的改變>《當代醫學》5卷11期(台北:當代醫學雜誌社,民國),頁19。 廖麗娟:<台灣省慢性開放性肺結核病人之追蹤研究>《傳染病防治》第二輯(台北:台灣省公共衛生研究所,民國81年3月),頁56-72。 劉士永:<「清潔」、「衛生」與「保健」-日治時期台灣公共衛生觀念的轉變>《台灣史研究》8卷第1期(台北:中研院台史所籌備處,2001年10月),頁45-87。 劉士永:<一九三○年代以前日治時期台灣醫學的特質>《台灣史研究》4卷1期(台北:中研院台史所籌備處,民國88年4月)。 劉士永:<日治時期台灣地區的疾病結構轉變>《新史學》13卷4期(台北:新史學雜誌社,2002年4月)。 劉士永:<從醫學的觀點紀錄台灣的殖民經驗:試析台灣之殖民醫學研究>,第一屆亞洲醫學史會議論文,(台北:中研院,2003年11月4日)。 蔡篤堅:<轉向規訓社會中的媒體角色:以解嚴前後醫療報導為主軸的分析詮釋>《新聞學研究》63期(台北:國立政治大學新聞學系,民89年4月),頁62-63。 蔡篤堅:<台灣醫學史的另類觀點>《台灣史料研究》8期,(台北:吳三連史料基金會,1996年11月),頁76-87。 鄭梓:<戰後台灣省制之變革:從行政長官公署到台灣省政府(1945-1947)>《思與言》26卷1期(台北:思與言雜誌社,1988年)。 蕭叔軒:<結核病中國醫學上之史的發展>《醫史雜誌》復刊號;《醫史雜誌》3卷2期;《醫史雜誌》3卷3期。 欒筱文:<台灣省開放性肺結核病人之登記及免費治療>《臨床醫學》4卷2期,(台北:臨床醫學月刊,民國68年8月),頁114。 欒筱文:<肺結核病化學藥物治療的「社會觀」>《肺結核病的診斷與治療》(台北:衛生教育社,民國66年),頁66。 四、學位論文 呂哲奇:<日治時期台灣衛生工程顧問巴爾登對於台灣城市近代化影響之研究>(中壢:中原大學建築系碩士論文,1999年)。 李政益:<疾病、文化與社會變遷:由結核病流行觀點探究二次世界大戰前後的台灣社會>(台北:台北醫學大學醫學研究所碩士論文,2001)。 林宜平:<煤礦工塵肺症的地方知識、科學研究與健康照護:公共衛生的視角>(台北:台灣大學衛生政策與管理研究所博士論文,2004年1月)。 林佳潔:<西醫與漢藥:台灣第一位醫學博士杜聰明(1893-1986)>(台北:台灣大學歷史系碩士論文,2003)。 范燕秋:<日本帝國發展下殖民地台灣的人種衛生(1895-1945)>(台北:政治大學歷史學系博士論文,2001)。 范燕秋:<日據前期台灣之公共衛生-以防疫為中心的研究(1895-1920)>(台北:台灣師範大學歷史研究所碩士論文,1994年)。 秦先玉:<台灣五○年代邊緣史片段:以「性政治」、「異己」、「身體衛生」三問題意識為例>(新竹:國立清華大學歷史研究所碩士論文,1993)。 張淑卿:<戰後台灣地區傳染病防治之研究(1945-1971)>(台中:國立中興大學歷史研究所碩士論文,1997年)。 許宏彬:<台灣的阿片想像:從舊慣的阿片君子到更生院的矯正樣本>(新竹:國立清華大學歷史研究所碩士論文,2002)。 郭文華:<一九五○至七○年代台灣家庭計劃:醫療政策與女性史的探討>(新竹:國立清華大學歷史研究所碩士論文,1997)。 陳威彬:<近代台灣的癩病與療養—以樂生療養院為主軸>(新竹:國立清華大學歷史研究所碩士論文,2001)。 陳淑芬:<「戰後之疫」:台灣公共衛生問題與建制(1945-1954)>(台北:台灣師範大學歷史研究所碩士論文,1997年)。 黃文弘:<政經框架、典範碰撞與知識位移—台灣醫學典範轉折的系譜溯源>(台北:陽明大學衛生福利研究所碩士論文,2001年)。 黃培玉:<世界衛生組織之研究—國際政治糾葛下我國與世界衛生組織關係之演變>(台北:陽明大學衛生福利研究所,民國85年6月)。 黃斌峰:<日治時期台南地區近代醫療衛生事業之研究>(台中:東海大學歷史系碩士論文,2002年)。 趙育農:<一個女性經驗的家庭計劃:台灣家庭計劃的早期發展(1954-1964)>(台北:政治大學歷史研究所碩士論文,2004年) 董宜秋:<台灣「便所」之研究(1895-1945年)--以「便所」興建及污物處理為主題>(嘉義:中正大學歷史研究所碩士論文,1999年)。 劉淑慎:<日治時期彰化基督教醫院之研究—以醫院經營與醫療人才培育為中心>(嘉義:中正大學歷史研究所碩士論文,2002年)。 賴郁雯:<日治時期台灣的衛生研究:以台灣總督府中央研究所衛生部為例>(中壢:中央大學歷史研究所碩士論文,1999)。 鄭淑芹:<日治時代嘉義地區西式醫療之發展—以嘉義醫院為主(1895-1920)>(嘉義:中正大學歷史研究所碩士論文,2003年)。 賴志忠:<台灣醫療傳道史之研究—英國與加拿大長老教會之比較>(台北:輔仁大學歷史研究所碩士論文,2000年)。 蘇芳玉:<清末洋人在台醫療史:以長老教會、海關為中心>(中壢:中央大學歷史研究所碩士論文,2002)。 五、報紙 《中央日報》 《中國時報》 《自由時報》 《聯合報》 《徵信新聞報》 《防癆雜誌》(台北:中華民國防癆協會,民國81年8月15日),第一、四版 六、單張 陳千鑑:<我戰勝了病魔—肺結核>,中華民國防癆協會宣傳單章。 阿章提供的氣功練習單張。 貳、外文資料 一、專書 上野齊:《普通衛生講話》(台中:池ヶ谷榮吉商店,大正12年12月)。 丸山芳登編:《日本領時代に遺した台灣の醫事衛生業績》(橫濱:昭和32年9月)。 小田俊郎:《台灣醫學五十年》(台北:前衛出版社,1995)。 小高健:《傳染病研究所》(東京:株式會社學會出版中心,1992年11月)。 加藤卯吉《台灣豫防衛生概觀》(台北:昭和10年8月)。 台灣地方病及傳染病調查委員會編:《本島醫生ノ慣用スル疾病ノ稱呼ト普通病名Ьノ對照調查》(台北:台灣地方病及傳染病調查委員會,1906)。 台灣總督府警務局:《台灣の衛生》(昭和12年版),頁21-22。 台灣總督府警務局衛生課,《衛生調查書—體格篇(本島人)》(昭和5年)。 台灣總督府警務局衛生課:《台灣の結核》(昭和十四年刊行)。 台灣總督府警務局:《台灣總督府警察沿革誌-第一篇警察機關の構成》(台北: 1933)。 台灣總督府《台灣總督府職名錄》,(台北:明治37年)。 台灣醫學會:《日台病名對照錄》(台北:台灣醫學會,明治39年10月)。 羽鳥重郎,荒井惠:《通俗台灣衛生》(台北:台灣日日新報社,大正6年5月)。 長野純藏:《日台病名對照表》(台北:台灣醫學會,1909)。 青木正和:《結核の歷史》(東京:講談社,2003年2月)。 厚生省20年史編輯委員會:《厚生省20年史》(東京:厚生問題研究會,昭和35年7月)。 財團法人結核豫防會台灣地方本部:《台灣結核統計》(昭和18年8月)。 高雄州衛生課,安倍貞次:《衛生組合指導要項》(高雄:高雄州衛生課,昭和14年10月)。 高雄州醫師會:《台灣醫業關係法令集》(高雄:高雄州醫師會,昭和12年8月)。 野間文一郎:《台灣通俗醫學》(台北:台灣評論社,昭和4年10月)。 福田真人:《結核の文化史》(名古屋:名古屋大學出版社,1995)。 Armstrong, David Political Anatomy of the Body,(Cambridge: Cambridge University Press, 1983). Armstrong, David The New History of Identity: A Sociology of Medical Knowledge ,(NY: PALGRAVE, 2002). Arnold , David Science, Technology, and Medicine in Colonial India, (Cambridge: Cambridge University Press, 2000) Bates, Barbara Bargaining for Life: A social History of Tuberculosis, 1876-1938, (Philadelphia: University of Pennsylvania Press, 1992). Brock, Thomas D. Robert Koch: A Life in Medicine and Bacteriology, (Wisconsin: University of Wisconsin- Madison, 1988). Bryder, Linda, Below the Magic Mountain: A Society History of Tuberculosis in Twentieth-century Britain, (New York: Oxford University Press, 1988). Burke , Peter New Perspectives on Historical Writing, (Cambridge: Polity Press, 1991). Cunningham ,Andrew and Andrews ,Bridie ed. Western Medicine as Contested Knowledge, (Manchester: Manchester University Press, 1997). Daniel , Thomas M. Captain of Death: The Story of Tuberculosis,(NY: University of Rochester Press, 1997). Dormandy , Thomas The White Death: A History of Tuberculosis, (NY: New York University Press, 1999). Dubos, Rene and Jeanhe White Plague: Tuberculosis, Man, and Society, (New Brunswick and London: Rutgers University Press, 1987). Feldberg, Georgina D. Disease and Class: Tuberculosis and the Shaping of Modern North American Society, (New Brunswick : Rutgers University Press, 1995). Foucault, Michel The Birth of the Clinic,(NY: Vintage Books Edition, 1994). Geertz, Clifford The Interpretation of Culture, (New York, 1973). Jacoby, Neil H. U.S Aid to Taiwan: A study of Foreign Aid, Self-Help, and Development (N.Y.: Frederick A. Praeger Inc., 1966). Johnston, William The Modern Epidemic: A History of Tuberculosis in Japan, (Massachusetts: Harvard University, 1995). Kiple ,Kenneth F. The Cambridge World History of Human Disease, (New York: Cambridge University Press, 1993). Kleinman, Arthur The Illness Narrative(NY: Basic Books,1988). MacDonald, Betty The Plague and I, (London: Hammond, 1948). Montgomery, Scott L. The Scientific Voice,(NY: Guilford Press, 1996). Ott, Katherine, Fevered Lives: Tuberculosis in American Culture science 1870, (Massachusetts: Harvard University, 1996). Rosenberg , Charles E. and Golden, Janet Framing Disease: Studies in Cultural History, (New Jersey: Rutgers University Press,1997) Rothman, Sheila M. Living in the Shadow of Death: Tuberculosis and the Social Experience of Illness in American History, (Baltimore: The Johns Hopkins University Press, 1994). Ryan, Frank The Forgotten Plague: How the Battle Against Tuberculosis Was Won and Lost, (New York: Little, Brown & Company, 1992). Sontag, Susan Illness as metaphor, (New York: Vintage Books, 1979). Tomes, Nancy The Gospel of Germs: Men, Women, and the microbe in American Life, (Massachusetts: Harvard University Press,1998). Wear, Andrew Medicine in Society: Historical Essays ,(London: Cambridge, 1992). Welshman, John Municipal Medicine: Public Health in Twentieth-Century Britain (New York: Peter Lang AG. 2000). Worboys, Michael Spreading Germs:Disease Theories and Medical Practice in Britain, 1865-1900(Cambridge:Cambridge University Press,2000). 二、論文 二見直三:<銃後の護りに結核豫防>《台灣の結核問題》第四輯(台北:台灣結核豫防協會,昭和14年6月),頁1。 下條久馬一:<結核豫防に對する常識>《台灣社會事業の友》第43號(台北:台灣社會事業協會,昭和7年6月),頁8-9。 小田俊郎,大黑武三郎,李樹林:<台灣ニ於ヶル結核性內科疾患ニ關スル研究—第一報ツベルクりン反應ヨリ觀タル結核感染狀態>《台灣醫學會雜誌》,35卷1期(台北:台灣醫學會,昭和11年1月28日),頁65-66。 小田俊郎,大黑武三郎,花室憲章:<台灣ニ於ヶル結核性內科疾患ニ關スル研究—第四報所謂健康青少年間ニ蔓延セル肺結核ニ就テ>《台灣醫學會雜誌》,35卷4期(台北:台灣醫學會,昭和11年4月28日),頁898-905。 小田俊郎,大黑武三郎:<台灣ニ於ヶル結核性內科疾患ニ關スル研究—第三報死亡統計ヨリ觀タю肺結核>《台灣醫學會雜誌》,35卷4期(台北:台灣醫學會,昭和11年4月28日),頁761-765。 小田俊郎,松延正己,與儀喜慶,德重泰義,鵜殿直木:<台灣ニ於ヶル結核性內科疾患ニ關スル研究—第五報台灣各地ニ於ケル小公學校兒童及ビ台北市ノ學生、生徒、工廠勞働者ノ「ツベルクりン」反應ニ就テ>《台灣醫學會雜誌》,36卷4期(台北:台灣醫學會,昭和12年2月28日),頁459。 小田俊郎,松延正己:<台灣ニ於ヶル結核性內科疾患ニ關スル研究—第二報臨床統計ヨリ視タル罹患狀態>《台灣醫學會雜誌》,35卷2期(台北:台灣醫學會,昭和11年2月28日),頁500-511。 小田俊郎:<肺結核の養生に就いて二三の注意>《台灣の結核問題》第二輯(台北:台灣結核豫防協會,昭和12年4月),頁26-27。 山崎蓊:<結核病に就て>《台灣の結核問題》第四輯(台北:台灣結核豫防協會,昭和14年6月),頁29。 永井潛:<結核と結婚>《台灣社會事業の友》第113號(台北:台灣社會事業協會,昭和13年4月),頁12-16。 伊良子暉造:<台中監獄に於ける結核の統計>《台灣醫學會雜誌》,160號,(大正5年2月28日發行),頁82-84。 有馬賴吉:<我邦結核豫防事業今後の方針如何>《台灣社會事業の友》第43號(台北:台灣社會事業協會,昭和7年6月),頁40-44。 佐野研三:<療養所の擴張を促む>《台灣社會事業の友》第31號(台北:台灣社會事業協會,昭和6年6月),頁56-57。 吳起材:<肺結核ニ關スル二三ノ統計ニ就テ>《台灣醫學會雜誌》第114,115號,(明治45年5月),頁672-673。 東洋協會台灣支部:<特輯:熱帶家屋研究>270號《台灣時報》(昭和17年6月),頁48-70。 杉江四郎:<結核豫防日の意義を徹底せしめよ>《台灣の結核問題》第二輯(台北:台灣結核豫防協會,昭和12年4月),頁37-38。 杜聰明:<台灣ニ於ケル阿片癮者ノ統計的調查第三報告:阿片吸食特許者ノ死亡率及死亡原因ニ就ケ>《台灣醫學會雜誌》37號(台北:台灣醫學會,1938),頁1094-97。 邱賢添:<本島人間の結核に關する迷信及其民間療法>《台灣社會事業の友》第113號(台北:台灣社會事業協會,昭和13年4月),頁26-27。 後藤薰:<本島ズ於んペ結核對策ズ就サ>《台灣社會事業の友》第110號(台北:台灣社會事業協會,昭和12年4月),頁110-116。 施江南:<台灣の結核豫防に關する卑見>《台灣社會事業の友》第43號(台北:台灣社會事業協會,昭和7年6月),頁29。 倉岡彥助:<結核問題の解決は一に豫防法の實行にあり>《台灣社會事業の友》第43號(台北:台灣社會事業協會,昭和7年6月),頁2。 桂三友:<肺結核療法トシテノ人工的氣胸ニ就テ>《台灣醫學會雜誌》155號(台北:台灣醫學會,大正4年9月28日),頁1011-1026。 桂重鴻:<肺結核の起り方と之ズ對むゐ心懸けに就て>《台灣の結核問題》第四輯(台北:台灣結核豫防協會,昭和14年6月),頁27。 酒井菊雄:<社會衛生學的結核豫防對策に就て>《台灣の結核問題》第四輯(台北:台灣結核豫防協會,昭和14年6月),頁10-14。 高木友枝:〈社會問題ごしての結核〉《古弗氏紀念結核講演集》(台北:日本赤十字社台灣支部醫院,大正4年9月),頁59-60。 高橋秀人:<台灣に於ける結核蔓延狀態と其の豫防施設>《台灣の結核問題》(台北:台灣結核豫防協會,昭和11年4月)。 堀內次雄:<結核の傳染及其豫防法>《古弗氏紀念結核講演集》(台北:日本赤十字社台灣支部醫院,大正4年9月),頁5-6。 堀內次雄:<熱帶地ノ結核問題に風土心理學的關係>《台灣醫學會雜誌》,195、196號(台北:台灣醫學會,大正8年2月),頁413-423。 曾田長宗:<台灣の結核預防對策私案>《台灣の結核問題》第二輯(台北:台灣結核豫防協會,昭和12年4月),頁8-9。 新免勝:<台灣に於ける結核問題>《台灣社會事業の友》第31號(台北:台灣社會事業協會,昭和6年6月),頁18-21。 新免勝:<肺結核に就ての常識>《台灣社會事業の友》第77號(台北:台灣社會事業協會,昭和10年4月),頁48-50。 蓑和藤治郎:<台灣の結核豫防日に當リて>《台灣社會事業の友》43號(台北:台灣社會事業協會,昭和7年6月),頁39。 稻垣長次郎:〈結核の症狀及其治療法〉《古弗氏紀念結核講演集》(台北:日本赤十字社台灣支部醫院,大正4年9月),頁39。 警務局衛生課:<結核豫防法の概說>《台灣社會事業の友》第112號(台北:台灣社會事業協會,昭和13年3月),頁25-30。 櫻井憲三:<結核豫防法の概說>《台灣の結核問題》第二輯(台北:台灣結核豫防協會,昭和12年4月),頁18-25。 鈴木晃仁:<十八至十九世紀初期英國的男性美與肺結核>《「健與美的歷史」研討會》,中研院史語所,1999.6.11-12。 福田真人,The Romantic Images of Tuberculosis:Culture History of a Disease,《「疾病的歷史」研討會》,中研院史語所,2000.6.16-18。 Armstrong, David ‘Public health spaces and the fabrication of identity’, Sociology 27(1993), pp.393-410. Armstrong, David ‘The rise of surveillance medicine’, Sociology of Health & Illness, 17:3(1995), pp.393-404. Bryder, Linda ’We shall not find salvation in inoculation’:BCG Vaccination in Scandinavia , Britain and the USA, 1921-1960’,Social Science & Medicine , 49(1999),pp1157-1167. Comroe Jr, Julius H ‘Retrospectoscope. Pay Dirt: the Story of streptomycin’ American Review of Respiratory disease, vol.117:4, 1978, pp774-777. Comroe Jr, Julius H ‘Retrospectoscope. Pay Dirt: the Story of streptomycin’ American Review of Respiratory disease, vol.117:5, 1978, p962. Gates, Hill ‘Ethnicity and Class’,In Emily M. Ahern and Hill Gates eds., The Anthropology of Taiwanese Society,(台北:南天書局,民國86年1月),頁260-262。 Dunphy, Lynne M. ‘the Steel Cocoon: Tales of the Nurse and Patients of the Iron Lung, 1929-1955’, Nursing History Review 9 (2001), pp9-13. H F生譯:<人工的氣胸ニヨル肺結核ノ治療法ニ就テ>《台灣醫學會雜誌》78號(台北:台灣醫學會,明治42年4月28日),頁227-233。 Hudson , Robert P. ‘Reviewed David Armstrong, Political Anatomy of the Body’(Cambridge: Cambridge University Press, 1983).In Bulletin of the History of Medicine 58:4 (1984),pp.610-611. Jewson , N. D. ‘the Disappearance of the Sick Man from Medical Cosmology,1770-1870’,Sociology,,Ⅹ(1976)pp.225-244. Lawrence, Christopher, ‘Reviewed David Armstrong, Political Anatomy of the Body’(Cambridge: Cambridge University Press, 1983).In The British Journal for the History of Science , vol. 18 (1985),pp.90-91. Lee ,Ti-Yuan and Hsu ,Tzu-Chiu ‘A study on the effect on simultaneous smallpox vaccination on the result of PPD test’, J.F.M.A vol.61, no.9,September. 28.1962,pp805-809. Lee , Sung ‘ WHO and the developing world: the contest for ideology’, In Andrew Cunningham and Bridie Andrews ed. Western Medicine as Contested Knowledge, (Manchester: Manchester University Press, 1997), pp24-45. Luan H W.,’INH alone in the treatment of pulmonary tuberculosis’, Chinese Med J R.O.C., June 1973, pp76-84. McDermott, Walsh ‘The story of INH’, The Journal of Infectious Disease, Vol. 119:6, 1969, pp678-682. Tao, Jung-Chin and Chang, Cheng-Chi ’Pulmonary Tuberculosis among the Aboriginal population in Taiwan’, J.F.M.A vol.58, no.6,June 28.1959,pp312-313. Tao, Jung-Chin , LIN ,Hsin-Tseh ’Isoniazid in the treatment of tuberculosis’, J.F.M.A vol.52:1, January,1953, pp1-13。 三、學位論文 Lin, Chung-his, The Politics of Scientific Practices in Taiwan : the Hepatitis B Control Program, (Virginia: Virginia State university, Ph. D Dissertation, 1994). Liu, Shi-yung, Medical Reform in Colonial Taiwan, (Pittsburgh: university of Pittsburgh, Ph. D Dissertation, 2000 ). Lo, Ming-Cheng Miriam , From Nation Physician to Medical Modernists: Taiwanese Doctors under Japanese Rule,(Ph.D. Dissertation , University of Michigan, 1996.) 四、日文報紙 《台灣日日新報》大正12年5月2日;5月5日;5月27日;6月17日;6月24日;7月4日。 叁、網路資源 行政院衛生署,網址:http://www.doh.gov.tw/lane/history/photo2/chapter2/Welcome.html 行政院衛生署疾病管制局,網址:http://203.65.72.83/ch/dt/upload/qc/epi/epi_face.htm 國家文化資料庫,網址:http://nrch.cca.gov.tw/ 台中縣衛生局,網址:http://www.hbtc.gov.tw/book/menu/07.htm 林富士:<疾病史研究芻議>,網址:http://www.ihp.sinica.edu.tw/~medicine/discuss/essay/disease-report.htm 傅大為:<從馬偕談清末台灣的半殖民醫療>,http://sts.nthu.edu.tw/scholarist_files/5_馬偕醫療與身體(簡明版).htm 士林官邸,網址:http://www.wlgsh.tp.edu.tw/DATA/1/89home/s1/years.htmid NH0925493003 sid 868404 cfn 0 / id NH0925493004 auc 游博清 tic 小斯當東(George Thomas Staunton-1781-1859)-19世紀的英國茶商 、使者與中國通 adc 黃一農 ty 碩士 sc 國立清華大學 dp 歷史研究所 yr 92 lg 中文 pg 100 kwc 小斯當東 kwc 中國意象 kwc 東印度公司 kwc 大清律例 kwc 異域錄 abc 在19世紀初期的來華英人中,小斯當東 (George Thomas Staunton, 1781-1859) 是以往學界研究此一時期中英關係史較為忽略的人物,然其豐富的中國經歷,個人集使者、茶商、中國通等角色於一身,是史家考察此段歷史不可多得的個案。 tc 目次 中英文摘要 誌謝辭 圖片………………………………………………………………………i 第一章 緒論………………………………………………………… 1   第一節 19世紀前中英關係簡述…………………………………1   第二節 研究動機..………………………………………………6   第三節 研究回顧…………………………………………………8   第四節 研究方法與章節結構………………………………… 10 第二章 具語言天賦的馬戛爾尼使團侍童………………………… 12   第一節 貴族式的幼年教育…………………………………… 12   第二節 甫識東方文化的中國之旅…………………………… 16   第三節 與權貴子弟競爭熱門的中國書記職缺……………… 20 第三章 任職東印度公司的茶商生涯……………………………… 22 第一節 初期苦悶的書記生活…………………………………… 23 第二節 任商館貨監時的傑出表現…………………………… 29   第三節 進入決策委員會後的活躍果決……………………… 40   第四節 熟稔中國事務的阿美士德使團副使………………… 45 第四章 英國早期「中國通」裡的佼佼者………………………… 52 第一節 對中國貿易的立場與主張…………………………… 54 第二節 著作等身的「中國通」……………………………… 63 第三節 推動漢學研究的各種努力…………………………… 70 第四節 斯當東的中國意象…………………………………… 72 第五節 另一個開始—鴉片戰爭時斯當東在國會的主戰演說…82 第五章 結論—鴉片戰爭前舊中國的見證者……………………… 86 參考文獻……………………………………………………………… 92rf 一、 原典 1. China Through Western Eyes, Manuscript Records of Traders, Travellers, Missionaries & Diplomats, 1792- 1942, part 1 & 2 (Marlborough, Wiltshire: Adam Matthew Publications, 1998), Reel 27-30. 2. Edinburgh Review. 3. Hansard’s Parliamentary Debate. 4. Proceedings of the Royal Society of London. 5. Quarterly Review. 6. The Chinese Repository. 7. The Times, 1813. 8. Transactions of the Royal Asiatic Society of Great Britain and Ireland (London: Parbury, Allen & Co., 1827- 1835). 9. A Delicate Inquiry into the Embassies to China, and a Legitimate Conclusion from the Premises (London: Thomas and George Underwood & J. M. Richardson, 1818). 10.Auber, Peter, China: An Outline of its Government, Laws and Policy (Cambridge: Chadwyck-Healey, 1834). 11.Barrow, John, Sir John Barrow’s Auto-Biography (London: John Murray, 1847). 12.Barrow, John, Travels in China: Containing Descriptions, Observations, and Comparisons, Made and Collected in the Course of a Short Residence at the Imperial Palace of Yuen-min-yuen, and on a Subsequent Journey through the Country from Pekin to Canton (London: T. Cadell and W. Davies, 1806). 13.Crawfurd, John, Chinese Monopoly Examined (London: James Ridgway, Piccadilly, 1830). 14.Ellis, Henry, Journal of the Proceedings of the Late Embassy to China: Comprising a Correct Narrative of the Public Transactions of the Embassy, of the Voyage to and from China, and of the Journey from the Mouth of the Pei- Ho to the Return to Canton (London: John Murray, 1817). 15.Ellis, Henry, Journal of the Proceedings of the Late Embassy to China: Comprising a Correct Narrative of the Public Transactions of the Embassy, of the Voyage to and from China, and of the Journey from the Mouth of the Pei- Ho to the Return to Canton (London: John Murray, 1818). 16.Jeffrey, Francis, “Ta Tsing Leu Lee; Being the Fundamental Laws, and a Selection from the Supplementary Statutes, of the Penal Code of China,” Edinburgh Review, (1810), pp. 476-499. 17.Mendoza, Juan Gonzalez de, The History of the Great and Mighty Kingdom of China and the Situation Thereof, ed. G. T. Staunton (London: Printed for the Hakluyt Society, 1853-1854). 18.Morrison, Robert, A Memoir of the Principal Occurrences During an Embassy from the British Government to the Court of China in the Year 1816 (London: The Pamphleteer, 1819). 19.Pearson, Alexander, The Extraordinary History of a New Method of Inoculating Discovered in the Kingdom of England, Royal Society, Ms. 94. 20.Scenes in China, Exhibiting the Manners, Customs, Diversions, and Singular Peculiarities of the Chinese: Together with the Mode of Travelling, Navigation, etc., in that Vast Empire (New York: S. Wood and sons, 1819). 21.Staunton, G. L., An Authentic Account of an Embassy from the King of Great Britain to the Emperor of China: including Cursory Observations Made, and Information obtained, in Travelling through that Ancient Empire, and a Small Part of Chinese Tartary; together with a Relation of the Voyage Undertaken on the Occasion of His Majesty's Ship the Lion, and the ship Hindostan, in the East India Company's Service, to the Yellow Sea and Gulf and Pekin; as Well as of their Return to Europe; taken Chiefly from the Papers of His Excellency the Earl of Macartney, Sir Erasmus Gower, and of other Gentlemen in the Several Departments of the Embassy (1797; rpt. London: Adamant Media, n.d.). 22.Staunton, G. L., An Historical Account of the Embassy to the Emperor of China, Undertaken by Order of the King of Great Britain: including the Manners and Customs of the Inhabitants; and Preceded by an Account of the Causes of the Embassy and Voyage to China, Abridged Principally from the Papers of Earl Macartney, as Compiled by Sir George Staunton, Bart. (London: J. Stockdale, 1797). 23.Staunton, G. T., An Inquiry into the Proper Mode of Rendering the Word "God" (Cambridge: Chadwyck-Healey, 1849). 24.Staunton, G. T., Corrected Report of the Speech by Sir George Staunton, on Sir James Grham's Motion on the China Trade, April 7th, 1840 (Cambridge: Chadwyck- Healey, 1840). 25.Staunton, G. T., Corrected Report of the Speeches on the China Trade, 4th and 13th of June, 1833 (Cambridge: Chadwyck-Healey, 1833). 26.Staunton, G. T., Journal of a Voyage to China, Duke University. 27.Staunton, G. T., Journal of a Voyage to China, Second Part, Duke University. 28.Staunton, G. T., Memoirs of the Chief Incidents of the Public Life of Sir George Thomas Staunton, Bart. (London: L. Booth, 1856). 29.Staunton, G. T., Miscellaneous Notices Relating to China, and our Commercial Intercourse with the Country, Including a Few Translations from the Chinese Language (London: John Murray, 1822). 30.Staunton, G. T., Miscellaneous Notices Relating to China, and our Commercial Intercourse with the Country, Including a Few Translations from the Chinese Language, Part the Second (Havant: private circulation only, 1828). 31.Staunton, G. T., Narrative of the Chinese Embassy to the Khan of the Tourgouth Tartars: in the Years 1712, 13, 14, & 15 (London: J. Murray, 1821). 32.Staunton, G. T., Notes of Proceedings and Occurrences During the British Embassy to Pekin in 1816 (private circulation only). 33.Staunton, G. T., Ta Tsing Leu Lee: Being the Fundamental Laws, and a Selection from the Supplementary Statutes, of the Penal Code of China (1810; rpt, Taipei: Ch’eng- Wen, 1966). 34.Watsen, James, Journal of a Voyage in 1811 and 1812, to Madras and China (London: J. Nichols, 1814). 35.《嘉慶朝起居注冊(定本)》(台北中央研究院傅斯年圖書館館 藏)。 36.中國第一歷史檔案館、澳門基金會、暨南大學古籍研究所合編, 《明清時期澳門問題檔案文獻匯編》(北京:人民出版社, 1999)。 37.中國第一歷史檔案館編,《英使馬戛爾尼訪華檔案史料匯編》 (北京:國際文化出版公司,1966)。 38.中國第一歷史檔案館編,《嘉慶道光兩朝上諭檔》(桂林:廣西 師範大學出版社,2000)。 39.故宮博物院編,《掌故叢編》(北京:中華書局,1990)。 40.故宮博物院輯,《清代外交史料(道光朝)》(台北,成文出版 社,民57)。 41.故宮博物院輯,《清代外交史料(嘉慶朝)》(台北,成文出版 社,民57)。 42.祝淮修,黃培芳纂,《新修香山縣志》(台北:台灣學生書局, 道光七年(1827)刊本)。 43.張建基等輯,《大清律例彙輯便覽》(台北中央研究院郭廷以圖 書館館藏同治11年刊本)。 44.梁廷柟等編,《粵海關志》(台北:文海出版社,景印道光間刊 本)。 45.許地山編,《達衷集》(台北:文海出版社,民63)。 46.圖理琛,《異域錄》(上海:博古齋,景印嘉慶十三年刊本)。 47.劉芳輯、章文欽校,《葡萄牙東波塔檔案館藏清代澳門中文檔案 彙編》(澳門:澳門基金會,1999)。 48.廣東省檔案館編,《廣東澳門檔案史料選編》(北京:中國檔案 出版社,1999)。 49.覺羅勒德洪等修,《大清仁宗睿皇帝實錄》(台北:華聯出 版社,民53)。id NH0925493004 sid 904412 cfn 0 / id NH0925493005 auc 葛皇濱 tic 叛碼或國碼?—台灣自由軟體運動的發展與挑戰(1991-2004) adc 雷祥麟 ty 碩士 sc 國立清華大學 dp 歷史研究所 yr 92 lg 中文 pg 111 kwc 自由軟體 kwc 開放原始碼 kwc 開放原碼 kwc 科技與社會 kwc 電腦史 kwc 資訊與社會 kwc 資訊社會學 kwc 社會運動 kwc 國家 kwc 國家政策 kwc 科技變遷 abc 本研究主要是希望檢視自由軟體運動1991年到2004年在台灣的發展過程。在這十年的過程中,自由軟體如何培力(empower)/醞釀台灣的自由軟體社群與自由軟體計畫,並且隨著Dot Com熱潮與Open Source商業模式的席捲全球,使得在台灣,自由軟體有了比較清楚的樣貌。隨著台灣政府因為來自美國的壓力,必須加強對於智慧財產權的保護與查緝盜版,反而惹起台灣社會一片反反盜版的聲浪,反倒使得政府必須表態支持自由軟體,也使得自由軟體原來的叛碼形象似乎逐漸滑向「國碼」的形影之中。 tc 序曲:軟體、科技與社會 1 一、故事緣起與背景說明 4 「五一大執法」 4 自由軟體可以提供什麼? 6 一連串的問號? 7 二、問題意識、研究回顧與研究方法 8 問題意識 8 研究回顧:中文的部分 11 研究回顧:英文的部分 13 研究方法 22 資料收集 22 口述訪查 22 第一章:自由軟體運動的起源與發展 24 不用錢的「新發明」! 24 冷戰下的資訊科學「軍/學體制」 25 黑客倫理(Hacker Ethics) 28 自由軟體的發明 31 網際網路與Linux的興起,以及路線之爭 34 行動體(Actant)與意義的轉變 38 第二章:自由軟體來台後的頭十年(1991-2001) 42 蟄伏期:1991-1997 43 1998-2001:Dot Com狂潮與台灣自由軟體運動的興起 46 Dot Com狂潮 47 台灣自由軟體社群的興起 50 台灣自由軟體商開始興起 54 台灣自由軟體社群要組織協會 58 Dot Com狂潮的曲終人散 62 小結 64 第三章:當自由軟體遇上國家(2001~) 67 注意!國家來了! 68 台灣廠商的遊說行動 71 社群內部的爭議 74 被打開的黑盒子:國家 77 國/商碼的出現與網絡關係(產業) 82 國/叛碼的轉進(教育) 90 給我一個支點,我將舉起國家! (國/商碼vs.國/叛碼) 97 終章:軟體、科技與社會的經驗整理與展望 102 自由軟體的網絡關係演變與經驗反省 102 軟體、文化與語言的可能性 105 相關參考資料資料 108 英文的部分 108 中文的部分 110 圖表 圖表 1:Eric Raymond所提及的自由軟體發展模式與關係網絡 19 圖表 2:葉平先生所提倡的台灣自由軟體發展與關係網絡 20 圖表 3:2001年以後的台灣自由軟體關係網絡圖 21 圖表4:「軟體分類圖」 38 圖表 5:Eric Raymond所提及的自由軟體發展模式與關係網絡 57 圖表 6:1998年以後的自由軟體關係網絡圖 65 圖表 7:葉平先生所提出的台灣自由軟體關係網絡圖 77 圖表 8:自由軟體指導小組組織架構圖 79 圖表 9:2001年以後的台灣自由軟體關係網絡圖 81 圖表 10:我國科技發展之推動與執行機構分工示意圖 87 圖表 11:台灣資訊產業:國/商碼關係圖 88 圖表 12:自由軟體環境與商業軟體環境對照表 91 圖表 13:國/叛碼(教育)關係圖 96 圖表 14:「國/商碼vs.國/叛碼」並列圖 98 圖表 15:1998年以後的台灣自由軟體關係網絡圖 102 圖表 16:「國/商碼vs.國/叛碼」並列圖 103 表格 表格 1:商業專有軟體(proprietary software)與自由軟體/開放原始碼軟體比較表 39 表格 2 中華民國軟體自由協會第一次理監事名單 58 表格 3:自由軟體指導小組及自由軟體推動工作小組名單 79 表格 4:政府科專研發經費統計表 84 表格 5:工研院、資策會承接的政府科專所佔經費比例表 84 表格 6:工研院、資策會承接的政府科專所佔計畫數比例表 85rf 英文的部分 1.Andrew Pickering ed., Science as Practice and Culture (Chicago: Chicago Univ. Press, 1992). 2.Arthur L. Norberg, Judy E. O'Neill, Transforming Computer Technology (Baltimore: The John Hopkins Univ. Press, 1996). 3.Bruno Latour, Science in Action: How to Follow Scientist and Engineers through Society, Cambridge (MA: Harvard Univ. Press, 1987). 4.Bruno Latour, Catherine Porter translated, We Have Never Been Modern (NY: Harvester Wheatsheaf, 1993). 5.Bruno Latour, Catherine Porter translated, ARAMIS or the Love of Technology (Cambridge, MA: Harvard Univ. Press, 1996). 6.Bruno Latour, Pandora's Hope: Essays on the Reality of Science Studies (Cambridge, MA: Harvard Univ. Press, 1999). 7.Bruno Latour, “Give Me a Laboratory and I Will Raise the World”, in The Science Study Reader, ed. Mario Biagioli (NY: Routledge, 2001), pp.258-275. 8.Chris Dibona, Sam Ockman & Mark Stone ed. Open Source: Voice From the Open Source Revolution (Beijing, Tokyo, Taipei: O'reilly, 1999). 9.Christos J. P. Moschovitis etc, History of the Internet: A Chronology, 1843 to the Present (Santa Barbara: ABC-CLIO, 1999). 10.Eric Raymond ed., The New Hacker’s Dictionary (Cambridge, MA: The MIT Press, 1992 Fourth Print). 11.Eric Raymond, The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary (Beijing, Tokyo, Taipei: O'reilly, 2001). 12.Frederick P. Brooks Jr., The Mythical Man-Month: Essay on Software Engineering (Boston: Addison-Wesley, 1995 reprint) 13.Glyn Moody, Rebel Code: Inside Linux and the Open Source revolution (Cambridge, MA: Perseus Publishing, 2001). 14.Jack K. T. Huang & Timothy D. Huang, An Introduction to Chinese, Japanese and Korean Computing (Singapore: World Scientific, 1989 publish, 1991 reprint). 15.Janet Abbate, Inventing the Internet (Cambridge, MA: MIT Press, 1999). 16.Linus Torvalds & David Diamond, Just For Fun: The Story of an Accidental Revolutionary (NY: Harper Business, 2001). 17.Martin Campbell-Kelly & William Aspray, Computer: A History of the Information Machine (NY: Harper Business, 1996). 18.Michael A. Hiltzik, Dealers of Lightning: Xerox PARC and the Dawn of the Computer Age (NY: Harper Business, 2000). 19.Michael Hauben & Ronda Hauben, Netizens: On the History and Impact of Usenet and the Internet (Los Alamitos, California: IEEE Computer Society Press, 1997). 20.Mike Gancarz, The UNIX Philosophy (Boston: Digital Press, 1995). 21.Pekka Himanen, The Hacker Ethic- and the Spirit of the Information Age (NY: Random House, 2001). 22.Peter Salus, A Quarter Century of Unix (Reading, MA: Addison-Wesley, 1995 reprint). 23.Peter Wayner, Free For All: How Linux and the Free Software Movement Undercut High-Tech Titans (NY: Harper Business, 2000). 24.Sam Williams, Free as in Freedom—Richard Stallman's Crusade for Free Software (Beijing, Tokyo, Taipei: O'reilly, 2002). 25.Steven Levy, Hackers: Heroes of the Computer Revolution (NY: Penguin, 2001 republish). 26.Thierry Bardini, Bootstrapping: Douglas Engelbart, Coevolution, and the Origins of Personal Computing (Stanford, California: Stanford Univ. Press, 2000). 27.Tony Graham, Unicode: A Primer (Foster City, CA: M&T Books, 2000). 28.Warwick Anderson, “Postcolonial Technoscience” in Social Studies of Science 32/5–6 (October–December 2002) pp.643–658. 29.Steven Weber, “The Success of Open Source”(USA: Harvard Univ. Press, 2004). 中文的部分 1.朱邦復,《中文電腦漫談》,全華出版社,1982年。 2.黃大一,《中文字碼:萬碼奔騰,一碼當先》,永麒科技,1992年。 3.康綠島,《李國鼎口述歷史—話說台灣經驗》,台北縣:卓越文化事業,1993年。 4.賴曉黎,《資訊的共享與交換──黑客文化的歷史、場景與社會意涵》,台大社會系博士論文,2000年,http://www.social.ntu.edu.tw/~sllai/html/dissertation_index.htm。 5.謝清俊、黃克東,《國字整理小組十年》,資訊應用國字整理小組,1989年。 6.雷祥麟,〈劇變中科技、民主與社會:STS(科技與社會)的挑戰〉,《台灣社會研究季刊》,第45期,。 7.〈兩岸決合編中文碼自由軟體〉,《中國時報》,2002年11月20日。 8.〈立法院第五屆第一會期科技及資訊委員會第二十二次全體委員會議記錄〉,《立法院公報》第九十一卷,第五十三期,頁219-260。 9.胡崇偉,〈台灣 Linux 中文化發展史〉,《資訊與電腦雜誌》,1999年8月號。 10.張振接,〈打造堅不可摧的國產Linux OS-為Power by Taiwan的『資訊安全產業』催生〉,《軟體產業通訊》,43期。 11.葉平,〈當紅心、$$和梅花同在一起:閒談 Open Source 社群、業界和政府〉,《軟體自由協會會訊》,2001年11月,http://www.slat.org/communique/200111。 12.潘素卿,〈軟體自由協會即將誕生〉,《零客情報Linuxer》,13期,2000年12月,p.150-151。 13.何鍾顯,〈2米計畫專訪〉,《零客情報Linuxer》,13期,2000年12月,p.152-154。 14.Susie,〈來玩Open Source的遊戲吧!—翁千婷、高嘉良〉,《零客情報Linuxer》,17期,2001年4月。 15.劉政,〈台灣的開放源碼運動〉,《零客情報Linuxer》,22期,2001年9月。 16.蔡裕明,〈資訊民族主義—Linux對中國大陸的意義〉,《中國大陸研究》,44卷12期,2001年12月號,p. 21-36。 17.謝東翰、鄭原忠,〈親手打造GNU/Linux中文環境(一) - 用RPM檔案幫RedHat-6.2加上基本中文支援〉,《PC 2000》,2000年5月。 18.李欣茹,〈尋找台灣自由軟體力量〉,CNET,http://taiwan.cnet.com/enterprise/features/0,2000062876,20087861,00.htm 19.李欣茹,〈自由軟體十年回顧與展望〉,CNET,http://taiwan.cnet.com/enterprise/features/0,2000062876,20087861-5,00.htm 20.李欣茹,〈阿里山計畫實現Linux未來?〉,CNet,2003/11/1,http://taiwan.cnet.com/enterprise/technology/0,2000062852,20085434,00.htm。 21.何佩儒,〈政院將編1.72億 發展自由軟體〉,《經濟日報》,2002年11月20日。 22.〈墨西哥學校擁抱Windows〉,《Lycos新聞》,2001/08/07。 23.童啟晟,〈公平的開放原始碼政策與思維〉,《電腦周報》,2003/07/10。 24.〈信息產業部、中國科學院共舉紅旗Linux〉,《科技日報》,2001/03/15。 25.「Linux促進會成立」,CNET,2000/09/10,http://taiwan.cnet.com/news/hardware/0,2000064553,11012881,00.htm。 26.台北市電腦公會,「Linux 產業論壇」,2001/1/10。 27.萬淑彰,〈行政院下年度投入五千二百萬元推廣自由軟體〉,中央社,2002/09/20。 28.洪朝貴,〈維護接駁資訊的權利,消費者自求多福〉,《資訊與電腦雜誌》,2001年3月。 29.瞿宛文,〈台灣產業政策成效之初步評估〉,《台灣社會研究季刊》,第42期,p. 85。id NH0925493005 sid 884414 cfn 0 / id NH0925493006 auc 林巧玲 tic 從舌像捕捉舌象---以長庚中醫舌診儀為主的討論 adc 雷祥麟副教授 adc 張 adc � adc 睌E教授 ty 碩士 sc 國立清華大學 dp 歷史研究所 yr 92 lg 中文 pg 138 kwc 舌診儀 kwc 中醫科學化 kwc STS abc 「現在,我們中醫師要走出自己的診間,走到會議室來開會了。」這是一個新的局面,中醫不再宣稱自己是「整體觀」的,與西醫「不可共量」,連討論的機會都沒有,也不是完全放棄了自己的主體性「西醫化」。中醫師展開與西醫的對話,這個對話不是陷入文字思辨的邏輯推演,而是落實在一件非常具體、可觸摸、有實體體積的儀器——舌診儀。 tc 目 錄 第1章 序論----------------------------------------------------------------------------------1 1.1 研究動機------------------------------------------------------------------------------1 1.2 踏入田野------------------------------------------------------------------------------2 1.3 田野反省------------------------------------------------------------------------------3 1.4 田野寫作------------------------------------------------------------------------------3 1.5 問題意識------------------------------------------------------------------------------5 1.6 中醫醫書中的舌診------------------------------------------------------------------6 1.7 誕生於醫院---------------------------------------------------------------------------9 第2章 自動判讀的舌診儀:他抓得住我?------------------------------------------11 2.1 中醫師如何看舌診?--------------------------------------------------------------12 2.2 舌診如何與其他診斷方式配合?-----------------------------------------------13 2.3 多紅才叫紅?-----------------------------------------------------------------------16 2.4 基於大家都不同的標準,而有舌診儀的構想--------------------------------16 2.5 花花的舌頭,不是表面的,而是過程的--------------------------------------22 2.6 健康檢查 --- 有沒有正常舌?--------------------------------------------------24 第3章 捕捉舌象:相機照不住---------------------------------------------------------27 3.1 反光------------------------------------------------------------------------------------27 3.1.1 noise-------------------------------------------------------------------------------27 3.1.2 noise不annoy-------------------------------------------------------------------30 3.2 反光:小結---------------------------------------------------------------------------31 3.3 放大卻不「實真」------------------------------------------------------------------34 3.4 你可以再靠近一點?---------------------------------------------------------------36 3.5 一系列的位移,追求感知方式的保留------------------------------------------41 3.5.1 病人伸舌訓練-------------------------------------------------------------------42 3.5.2 空間也位移了-------------------------------------------------------------------43 3.6 儀器網絡之內的感知傳遞---------------------------------------------------------45 3.6.1 被限制住的舌神----------------------------------------------------------------46 3.7 專家判斷的知識v.s.儀器的自動判讀-------------------------------------------48 第4章 從「感」到「覺」----------------------------------------------------------------52 4.1 問題的轉變:從工程問題變成科學問題---------------------------------------53 4.2 身體問題的突顯---------------------------------------------------------------------55 4.3 色彩訓練------------------------------------------------------------------------------58 4.4 判讀表---如何summary?-----------------------------------------------------------62 4.4.1 表格設計-------------------------------------------------------------------------63 4.4.2 觀看時間、觀看順序----------------------------------------------------------64 4.4.3 知識的整理和分類---朱、瘀點和苔裂-------------------------------------66 4.4.4 表格勾選時間影響判讀表定位----------------------------------------------67 4.5 概念定義------------------------------------------------------------------------------68 4.6 意涵--------------------------------------------------------------------------------------71 4.7 身體感問題的突顯--------------------------------------------------------------------74 4.8 氣緣關係--------------------------------------------------------------------------------82 4.9 提升專業性和專業形象--------------------------------------------------------------83 4.10 「把中醫師頭腦裡的東西拿出來」----------------------------------------------85 第5章 重新命名一組顏色-------------------------------------------------------------------92 5.1 儀器顏色的調教-----------------------------------------------------------------------92 5.2 舌色判讀是個過程--------------------------------------------------------------------97 5.3 改變傳統醫書的詞彙---紅色尺規--------------------------------------------------98 5.4 色階圖 / 紅色尺規codify顏色與經驗公式------------------------------------103 5.4.1 舌診分區------------------------------------------------------------------------- 107 5.5 「以中醫觀點建立舌色---中醫舌診教學圖譜」-------------------------------108 5.6 新的語言、新的知識 ——兩種紅色---------------------------------------------110 5.7 中醫現代化是個尺規翻譯過程----------------------------------------------------113 5.7.1 不斷用適當的方法去描述-----------------------------------------------------114 5.8 與文化相關的重新詮釋-------------------------------------------------------------117 5.9 古書的價值----------------------------------------------------------------------------119 第6章 結論-----------------------------------------------------------------------------------122 6.1 從身體感形塑氣緣關係、開放性的權威-----------------------------------------122 6.2 傳統知識現代化不只是對應,更是轉化的過程--------------------------------125 6.3 虛真與實真的中醫-------------------------------------------------------------------127 6.4 問題性的轉變-------------------------------------------------------------------------129 6.5 策略性納入更多的連結-------------------------------------------------------------129 6.6 持續尋找可能的研究課題----------------------------------------------------------132 6.7 超越不可共量、找到自己主體性-------------------------------------------------132rf 參考書目 英文部份 Anderson, Katharine. 2003. “Looking at the Sky:the Visual Context of Victorian Meteorology”, British Journal for the History of Science 36(3), pp.301-332. Biagioli, Mario. 1995. “Tacit Knowledge, Courtliness, and the Scientist Body” in Choreographing History, edited by Susan Leigh Foster, Bloomington and Indianapolis:Indiana University Press. Daston, Lorraine. 1999. “Objectivity and the Escape from Perspective.” in The Science Studies Reader , edited by Mario Biagioli, New York:Routledge, pp.110-123. Daston, Lorraine. and Galison, Peter. 1992. “The Image of Objectivity”, Representations 40. Foucault, Michel. 1977. Discipline and Punishment:the Birth of the Prison. New York:Vintage Books. Fujimura, Joan H.. 1996. Crafting science:a sociohistory of the quest for the genetics of cancer,. Cambridge, Mass.:Harvard University Press. Galison, Peter. 1997. Image and Logic:A Material Cultures of Microphysics. Chicago:University of Chicago Press. Galison, Peter. 1998. “Judgment Against Objectivity”, in Picturing Science, Producing Art. Harvard University Press. Gieryn, Thomas F. 1999. Cultural Boudaries of Science. Chicago:University of Chicago Press. Golinski, Jan. 1998. Making Natural Knowledge: Constructivism and the History of Science. Cambridge University Press Gooday, Graeme 2003. “Spot-Watching, Bodily Postures and the “Practised Eye”:the Material Practice of Instrument Reading, in Late Victorian Electrical Life”, in Bodies / Machines, by Iwan Rhys Morus(eds), Bergs Publishers. Grary, Jonathon.(1992)Techniques of Observer, MIT Press. Hacking, Ian. 1992. “The Self-Vindication of the Laboratory Science”, in Science as Practice and Culture. Chicago:University of Chicago Press Hsu, Elisabeth.1999. The Transmission of Chinese Medicine. Cambridge, UK:Cambridge University Press. Jullien, François. 1995. The Propensity of Things:Toward a History of Efficacy in China. MIT Press. Kuhn,Thomas. 1962. The Structure of Scientific Revelotion. University of Chicago Press. 王道還等譯,《科學革命的結構》,台北:遠流,1998。 Kuriyama, Shigehisa.. 1997. “The historical origins of Katakori”, Japan Review 9, pp.127-149. Kuriyama, S. 1999. The Expressiveness of the Body and the Divergence of Greek and Chinese Medicine. New York:Zone Books. Latour, Bruno. 1987. Science In Action. Cambridge:Harvard University Press. Latour, Bruno. 1991. “Technology is society made durable”, In A sociology of monsters. Essays on power, technology and domination, hrsg. von Law, John. London: Routledge. Latour, Bruno.1993,. The Pasteurization of France. Harvard University Press, December. Latour, Bruno. 1999. “Give Me a Laboratory and I will Raise The World.”, in The Science Studies Reader, edited by Mario Biagioli, New York:Routledge. Latour, Bruno.雷祥麟譯, "Progress or Entanglement? Two Models for the Long Term Evolution of Human Civilisations" 〈直線進步或交引纏繞:人類文明長程演化的兩個模型〉(台北:新世紀世界文明之挑戰國際研討會,2000年4月)。收入《二十一世紀的文明挑戰:新世紀世界文化體系的變遷與挑戰國際研討會論文集》(台北:業強出版社,2001年4月)。 Latour, Bruno. 2004. “A dialog on Actor- Network Theory with a (somewhat ) Socratic Professor”, in http://www.ensmp.fr/~latour/articles/article/090.html. Lei., Sean Hsiang-lin .2002. “How did Chinese medicine become experiential?the political epistemology of Jingy”’, Positions 10:2. Lock, Margaret .1993. Encounters with Aging: Mythologies of Menopause in Japan and North America, Berkeley: University of California Press. Pickering, Andrew. 1992. Science as practice and culture, Chicago:University of Chicago Press. Shapin, Stephen. and Schaffer, Simon. 1989. Leviathan and the Air-Pump:Hobbes, Boyle, and the Experimental Life, Princeton University Press Schaffer, Simon.1988. “Astronomers Mark Time:Discipline and the Personal Equation”. Science In Context 2:1, pp. 155-145. Schaffer, Simon. 1989. “Glass works:Newton’s prisms and the uses of experiment”, in The Uses of Experiment , edited by David Gooding, Trevor Pinch, Simon Schaffer, UK:Cambridge University . Schaffer, Simon. 1992. “Self-Evidence”, Critical Inquiry 18. Scheid, Volker. 2002. “Shaping Chinese Medicine:Two Case Studies from Contemporary China” in Innovation in Chinese Medicine, edited by Elisabeth Hsu, Cambridge:Cambridge University Press. Scheid, Volker. 2002. Chinese Medicine in Contemporary China:Plurality and Synthesis, Duke University Press. 中文部份 井口圭子,2001,《舌診影像擷取環境控制之研究》,中國醫藥學院中國醫學研究所碩士論文。 李科宏,2004,「中醫舌診教學圖譜」電子檔案,2004年5月23日。 余舜德,2000,〈從人類學身體與經驗研究的觀點來談醫療史之研究〉,發表於「氣的文化研究:文化、氣與傳統醫學學術研討會」,中央研究院民族學研究所主辦,2000年10月13∼15日。 阿城,1986,《棋王 樹王 孩子王》,台北:新地出版社。 洪逸昀、黃俊宏、許維欽、許國基,2004,「ICC based色彩管理在數位典藏之應用」電子檔案。 徐明景、許維欽,2003,「中醫舌診色彩判讀穩定性之研究——以苔色舌色為例」,電子檔案,中醫舌診研討會2003年12月6日。 梁嶸,2000,<舌診法的形成及其所體現的疾病觀與醫學>,「疾病的歷史研討會」。 陳建仲,1999,《舌診影像現代化之研究——以慢性阻塞性肺部疾病為例研究肺功能狀態與舌診之關係》,中國醫藥學院中國醫學研究所博士論文。 陳文秀,1997,〈使用高解析度彩色攝影系統對中醫舌診作定性及定量分析之研究〉,行政院衛生署中醫藥委員會專題計畫研究成果報告. (計畫編號:CCMP-RD-86-052)。 劉力紅,2003,《思考中醫》,廣西:廣西師範大學出版社。 診斷室報告書 林口長庚醫院中醫診斷室舌象操作手冊。 中醫舌診標準化研究(3-2)— 特定疾病舌色標準化之研究。id NH0925493006 sid 904417 cfn 0 / id NH0925493007 auc 林俊廷 tic 理學與南宋初期的鄉賢祠 adc 黃敏枝教授 ty 碩士 sc 國立清華大學 dp 歷史研究所 yr 92 lg 中文 pg 79 kwc 朱熹 kwc 鄉賢祠 kwc 理學 kwc 張栻 kwc 三代 abc 摘要 tc 理學與南宋初期的鄉賢祠 目      錄 第一章 前  言……………………………………………………………1 一 研 究 動 機……………………………………………………………1 二 研 究 取 向……………………………………………………………2 三 研究回顧與成果……………………………………………………………3 第二章 朱熹理學影響下的官學鄉賢祠…………………………………7 第一節 周  敦  頤…………………………………………………………7 第二節 鄉賢祠中的二程…………………………………………………………16 第三節 周敦頤、二程三先生祠…………………………………………………19 第三章 二程以下的理學系統鄉賢祠………………………………………23 第一節 二程弟子─程門四先生…………………………………………………23 第二節 家族祠堂式的鄉賢祠……………………………………………………29 第四章 理學之外的鄉賢祠人物……………………………………………36 第一節 李   綱…………………………………………………………………36 第二節 蘇   頌…………………………………………………………………40 第三節 地 方 名 賢………………………………………………………………44 第五章 朱熹以後鄉賢祠的推展……………………………………………56 第一節 黄    榦………………………………………………………………56 第二節 陳    淳………………………………………………………………59 第三節 真 德  秀………………………………………………………………61 第四節 官學鄉賢祠的經費來源與營運方式……………………………………64 第五節  鄉賢祠人物的評價問題…………………………………………………67 第六章 結   論……………………………………………………………69 引用與參考書目…………………………………………………………………71 附 錄……………………………………………………………………76rf 引用與參考書目 一、原始史料部分: 1、(宋)王稱撰:《東都事略》(影本精裝全四冊)(台北:台灣商務出版社,1965(民54)年版。收入〈四部叢看初編集部〉) 2、(清)王梓材、馮雲豪輯:《稿本宋元學案補遺》(北京:北京圖書館,2002年版。) 3、(宋)王柏撰:《魯齋集》(收入王雲五主編:《叢書集成初編》,上海:商務印書館,1936) 4、(宋)朱熹撰;郭齊、尹波點校:《朱熹集》(精裝全十冊)(成都:四川教育出版社,1997年版。) 5、(宋)朱熹、張栻、林用中等合撰:《南嶽倡酬集》(台北:台灣商務, 1983-(民72-)年版。收入《景印文淵閣四庫全書》第1348冊。) 6、(宋)呂祖謙撰:《東萊集》(台北:台灣商務,1983—(民72—)年版。)(收入《景印文淵閣四庫全書》—集部—別集類,第1150冊。) 7、(宋)李心傳撰;徐規點校:建炎以來朝野雜記》(上、下全二冊)(北京:中華書局,2000年版。) 8、(清)李紱撰;段景蓮點校:《朱子晚年全論》(北京:中華書局,2000年版。)(收入《理學叢書》。) 9、(明)何喬遠編撰:《閩書》(精裝全五冊)(福州:福建人民出版社,1994年版。) 10、(宋)吳自牧撰:《夢粱錄》(影本精裝一、二全二冊)(台北:文海出版社,) 11、(宋)周敦頤、張載撰;(明)徐必達編:《周張全書》(精裝全一冊)(京都:中文出版社,1981年版。) 12、(宋)洪邁撰:《容齋隨筆》(精裝全一冊)(上海:上海古籍,1998年版。) 13、(宋)范祖禹撰:《范太史集》(台北:台灣商務, 1983-(民72-)年版。收入《景印文淵閣四庫全書》第1100冊。) 14、(清)徐松輯:《宋會要輯稿》(精裝全八冊)(台北:新文豐,1976(民65)年版。(據民國廾四年上海大東書局影印國立北平圖書館徐氏原稿影印)) 15、(清)徐松輯;陳志超整理:《宋會要輯稿補編》(精裝全一冊)(北京:全國圖書館文獻縮微複製中心,1988(民77)年版。) 16、(宋)真德秀撰:《西山先生真文忠公文集》(《四庫叢刊》縮影本精裝全一冊)(台北:,) 17、書目文獻編輯:《萬曆福州府志》(北京:書目文獻,1990年版。)(收入《日本藏中國罕見地方志叢刊,第2冊。》 18、(宋)陳淳撰:《北溪大全集》(台北:臺灣商務,1983—(民72—),收入《景印文淵閣四庫全書—集部—別集類,第1168冊》) 19、(宋)陳元靚撰:《事林廣記》(北京:中華書局,1999年版。) 20、(明)陳讓編,邢址訂正:《卲武府志》(台北:新文豐1985(民74)年版。)(收入《天一閣藏明代方志選刊》,第10冊,據寧波天一閣藏明•嘉靖刻本影印。) 21、清)陳壽祺等撰:《道光福建通志》(精裝全十冊)(台北:華文書局,1968(民57)年版。(據清•同治十年重刊本影印,收入《中國省志彙編》之九。) 22、(宋)張栻撰;楊世文、王蓉貴校點:《張栻全集》(上、中、下全三冊。)   (長春:長春出版社,1999年版。) 23、(宋)陸九淵撰;傅子雲輯:《象山先生全集六卷》(香港:莊嚴文化,1997     年版,收入莊嚴文化編:《四庫全書存目叢書:集部19》(據北京圖書館藏     明萬曆四十三年金陵周希旦刻本)) 24、(宋)《紹興題名錄》(收入(清)伍崇曜輯:《粵雅堂叢書三編》第二四冊,影清咸豐三年(1853)刻本)(:中文出版社,) 25、(宋)黃庭堅撰:《豫章黃先生文集》(影本全二冊)(台北:文海出版社,1979(民68)年版。) 26、(宋)黃幹撰:《黃勉齋先生文集》(台北:臺灣商務,1983—(民72—)年版。)(收入《景印文淵閣四庫全書—集部—別集類,第1168冊》) 27、(明)黃仲昭著:《八閩通志》(精裝上、下全二冊)(福州:福建人民出版社,1990年版。)(收入福建省地方志編纂委員會編輯:《福建省地方志叢書》1—2) 28、(清)黃宗羲撰,全祖望補訂:《宋元學案》(全六冊)(台北:台灣中華書局,1965(民54)年台一版(收入《四庫備要•子(宋)梁克家修纂:《淳熙三山志》(台北:大化書局,1990(民79)年版。)(收入中國地方志研究會編:《宋元地方志叢書》第二冊。) 29、(宋)曾肇撰:《曲阜集》(台北:台灣商務, 1983-(民72-)年版。收入《景印文淵閣四庫全書》第1101冊。) 30、(元)葉留撰;徐明、文清校點:《為政善報事類》(瀋陽:遼寧教育出版社,1998年版。) 31、(宋)鄒浩撰:《道鄉集》(影本精裝全二冊)(台北:漢華出版社,1970(民59)年版。收入〈宋名家集彙刊〉) 32、(宋)楊時撰:《龜山集》(台北:台灣商務,1983—(民72—)年版。)(收入《景印文淵閣四庫全書》—集部—別集類,第1125;1126冊) 33、(宋)黎靖德編:《朱子語類》(台北:正中書局,1973(民62)年版,精裝全 8冊影印本。) 34、(明)嘉靖刻本影印《建陽縣志》(台北:新文豐,1985(民74)年版,收入《天一閣藏明代方志選刊》,第10冊,據寧波天一閣藏明•嘉靖刻本影印。) 35、、福建通志局纂 :《福建金石志》(台北:新文豐,1979(民68)年版。)(收入新文豐編:《 石刻史料新編》第15冊,影印本) 36、(宋)《寶祐登科錄》(收入(清)伍崇曜輯:《粵雅堂叢書三編》第二四冊,影清咸豐三年(1853)刻本)(京都:中文出版社,) 二、近人相關研究論著部分(按作者姓氏筆畫): 1、(日)小島 毅撰:《宋學の形成と展開》(東京:創文社,1999年版。) 2、(日)小島 毅撰:〈正祠と淫祠—福建の地方志における記述と論理—〉(收入《東洋文化研究所紀要》,第114冊,1991年,頁八七—二一三。) 3、小島 毅(日)撰:〈福建南部の名族と朱子學の普及〉(收入宋史研究會研究報告第四集:《宋代の知識人》,頁227—55,東京:汲古書院,1993年版。) 4、小林 義廣(日)撰:〈宋代の「諭俗文」〉(收入宋史研究會研究報告第三集:《宋代の政治と社會》,頁35—63,東京:汲古書院) 5、(日)三浦 國雄撰:《朱子》(東京:講談社,1979年版,收入《人類の知的遺產》,第19冊)) 6、王德毅等編:《宋人傳記資料索引》 7、王德毅撰:〈宋代福建的史學〉(收入台大:〈文史哲學報〉,第五十二期,頁141—74;台北:台大,2000(民89)年六月。) 8、王德毅撰:〈宋敏求的家世與史學〉(收入台大:〈歷史學報〉,第三十一期,頁123—40;台北:台大,2003(民92)年六月。) 9、方彥壽著:《朱熹書院與門人考》(上海:華東師範大學出版社,2000年版。) 10、田浩(Hoyt Cleveland Tillman) 撰:《朱熹的思維世界》(台北:允晨文化,1996(民85)年版。(收入《允晨叢刊》第62冊。) 11、田浩撰:〈朱熹的鬼神觀與道統觀〉(收入鍾彩鈞主編:《朱子學的開展—學術篇》,頁247—61;台北:漢學研究中心,2002(民91)年版(收入《漢學研究中心叢刊—論著類第8種》)) 12、水越 知(日)撰:〈宋代社會と祠廟信仰の展開—地域核としての祠廟の出現—〉(收入《東洋史研究》六十卷第四號,2002年,頁1—38。) 13、市來津由彥撰:〈朱熹祭祀感格說における理〉(收入〈集刊東洋學〉,第75期,頁63—82,1996年版。) 14、市來津由彥撰:〈朱熹晚年の朱門における正統意識の萌芽— 〉(收入東京:〈東洋史研究〉,第六十卷第三號,頁64—95,2001年版。) 15、(日)市來津由彥撰:《朱熹門人集團形成の研究》(東京:創文社,2002   年版。) 16、(美)包弼德(Peter K. Bol)著,劉寧譯:《斯文:唐宋思想的轉型》;南京:江蘇人民,2001年版。(收入《《外中國研究叢書》》 17、(日)寺地 遵撰;劉靜貞、李今芸譯:《南宋初期政治史研究》(台北:稻禾出版社,1995(民84)年版。) 18、朱漢民等撰:〈胡宏、張栻及其湘湖學派〉(收入李學勤主編;朱漢民,章啟輝等著:《中國學術史•宋元卷》(精裝上、下全二冊)頁348—83;南昌:江西教育出版社,2000年版,) 19、朱漢民等撰:〈呂祖謙的中原文獻之學〉(出處同上,頁384—413。) 20、朱漢民等撰:〈理學的集大成—朱熹及其閩學〉(出處同上,頁414—54。) 21、朱漢民等撰:〈陸九淵及其象山學派〉(出處同上,頁455—84。) 22、朱漢民等撰:〈浙東事功學派及其與朱熹的學術論戰〉(出處同上,頁485—520。) 23、朱漢民等撰:〈宋代經學的演變〉(出處同上,頁521—54。) 24、朱漢民等撰:〈宋代的《春秋》學〉(出處同上,頁555—86。) 25、朱漢民等撰:〈宋代書院與理學〉(出處同上,頁587—616。) 26、宋晞撰:〈宋代洛學之流派〉(收入台大歷史系編:《轉變與定型:宋代社會文化史學術研討會論文集》,頁43—8;台北:台大歷史系,2000(民89)年版。) 27、束景南撰:《朱熹年譜長編》(精裝上、下全二冊)(上海:華東師範,2001年版。) 28、李邦國撰:《朱熹與白鹿洞書院》(湖北:湖北教育出版社,1989年版。) 29、李學勤主編;朱漢民,章啟輝等著:《中國學術史•宋元卷》(精裝上、下全二冊)(南昌:江西教育出版社,2000年版。) 30、李之亮撰撰:《宋福建路郡守年表》(成都:巴蜀書社,2001年版。)(收入《宋代郡守通考》。) 31、余英時撰:《朱熹的歷史世界—宋代士大夫政治文化的研究》(上、下全二冊)(台北:允晨文化,2003(民92)年版。) 32、19、金井 德幸(日)撰:〈南宋における社稷壇と社廟について—鬼の信仰を中心として—〉(收入酒井 忠夫編:《台灣の宗教と中國文化》,頁187—209;東京:風響社,1992年版。) 33、金井 德幸(日)撰:〈宋代浙西の村社と土神—宋代鄉村社會の宗教構造〉 (收入宋史研究會研究報告第二集:《宋代の社會と宗教》,頁81—118,東京:汲古書院,1985年版。) 34、金井 德幸(日)撰:〈南宋の祠廟と賜額—釋文□と劉克莊觀點〉(收入宋史研究會研究報告第四集:《宋代の知識人—思想、制度、地域社會》,頁257—86,東京:汲古書院,1993年版。) 35、吳居萬撰:《宋代書院與宋代學術之關係》(台北:文史哲出版社,1991(民80)年版。) 36、周愚文撰:《宋代的州縣學》(台北:國立編譯館,1996(民85)年版。) 37、高令印,陳其芳著:《福建朱子學》(福州:福建人民,1986年版。) 38、張立文著《朱熹思想研究》(北京:中國社會科學,2001年版。) 39、張立文著:《朱熹思想研究》(上下全二冊)(台北:谷風出版社,1986(民75)年版。) 40、陳高華撰:〈金元二代的衍聖公〉(收入氏著:《元史研究論稿》,頁328—45;北京:中華書局,1991年版。) 41、陳榮捷撰:《朱子門人》(精裝全一冊)(台北:臺灣學生書局,1982(民71)年版。) 42、陳榮捷撰:《朱子新探索》(精裝全一冊)(臺北:臺灣學生書局,1988(民77)年版。) 43、程民生撰:〈論宋代神祠宗教〉(收入〈世界宗教研究〉,1992—2(總第48卷),頁59—71,1992年6月出版。) 44、楊渭生撰:〈試論宋代新儒學的形成與發展〉(收入台大歷史系編:《轉變與定型:宋代社會文化史學術研討會論文集》,頁7—42,台北:台大歷史系,2000(民89)年版。) 45、遠藤 隆俊(日)撰:〈宋代蘇州の范文正公祠について〉(收入:《柳田節子先生古稀記念—中國的傳統社會と家族》頁329—46;東京:汲古書院,1993年版,)) 46、劉志鴻撰:〈宋代的祠廟與祠祀—一個社會史的考察〉(碩士論文)(新竹:清華大學,1993(民82)年版。) 47、錢穆撰:《朱子新學案》(精裝全五冊)(台北:聯經,19--?收入《錢賓四先生全集;11-15》 48、錢穆撰:《宋明理學概述》;台北:蘭臺出版社,2001(民90)年版。(收入素書樓文教基金會編:《中國思想史小叢書甲編》) 49、(美)韓森(Valerie Hansen)撰;包偉民譯:《變遷之神—南宋時期的民間信仰》(Changing gods in medieval China,1127-1276)(杭州:浙江人民,1999年版。)(收入《外國學者筆下的傳統中國》叢書) 50、鍾彩鈞主編:《朱子學的開展—學術篇》(台北:漢學研究中心,2002(民91)年版。(收入《漢學研究中心叢刊—論著類第8種》) 51、關長龍撰:《兩宋道學命運的歷史考察》(上海:學林,2001年版。) 52、(美)劉子健撰;趙冬梅譯:《中國轉向內在─兩宋之際的文化內向》(China      Turning Inward:Intellectual─Political Changes in the Early   Twelfth Century)(南京:江蘇人民,2001年版。)(收入劉東主編:《海     外中國研究》。)id NH0925493007 sid 894408 cfn 0 / id NH0925493008 auc 鍾淑姬 tic 從妊產婦名簿到助產所—台灣(新竹)助產士的歷史研究1920 tic ~ tic 1970 adc 傅大為 ty 碩士 sc 國立清華大學 dp 歷史研究所 yr 92 lg 中文 pg 69 kwc 助產士 kwc 產婆 kwc 先生媽 kwc 穩婆 kwc 助產所 kwc 歌仔冊 abc 1970年台灣婦產科醫師接生率首度超過助產士,之後台灣助產士的接生率急遽下降,至今不到1%。以男性為主的婦產科醫師取代長期以來,全為女性的接生者,筆者認為日治時期引進的產婆是關鍵,本文首先以產婆彭錫妹1933-1945年妊產婦名簿為依據,探討日治末期台灣產婆的養成、接生技術、及國家機器介入管理人民私領域的痕跡。藉爬梳1118例的接生記錄,新式產婆的接生技術對婦女的影響。 rf 小田俊郎著,洪有錫譯,1995,<台灣醫學五十年>,前衛出版社。 王灝撰文,梁坤名版畫,1992,<台灣人的生命之禮>,臺原出版P.50 林綺雲,1993,<台灣助產士的專業變遷—社會學的解析與省思>,國立台北護專學報,第10期 林王美園,1985,<助產士功能的展望與回顧>,助產雜誌,地22期。1-15 何弘能,1995,<剖腹產的元罪>,(葉林採訪整理),醫望,第8期。 吳嘉苓,1998,<產科學遇上『迷信』婦女>,第三屆『性教育、性學、性別研究暨同性戀研究』國際學術研討會。 吳嘉苓,1998,<復興助產士、鼓勵自然產:健保幾婦制度>,全民健保V.S. 婦女健康研討會。 吳嘉苓,2000,<醫療專業、性別與國家:台灣助產士興衰的社會分析>,台灣社會學研究第4期。 吳嘉苓,2001,< 空間、規訓與生產政治>,台大社會學刊第二十九期。頁1-58 洪有錫、陳麗新,2002,<先生媽、產婆、與婦產科醫師>,前衛出版社。 洪惟仁,台灣禮俗語點,1986,自立晚報社出版 李貞德,1996,<漢唐間醫書中的生產之道>,中央研究院歷史語言研究所集刊,67.3 呂素麗,1995,<接生萬名嬰兒的洪孔達醫師>,臺大醫院婦產科百年史料輯錄,臺大醫院婦產科同門會。 邱素琴,1987,<新興的護理趨勢—居家護理與開業護理>,駐產雜誌,第26期,1-7 范燕秋,2001,<日本帝國發展下殖民地台灣的人種衛生1895-1945>,政大歷史系博士論文。 高敬遠,1995,<台灣婦產科的黎明>,臺大醫院婦產科百年史料輯錄,臺大醫院婦產科同門會。 郭素珍,2003,<助產專業執業現況、角色功能與未來展望>;助產專業今昔與未來:理論與實正研習會,國立台北護理學院護理助產所 涂醒哲、蘇喜,<肚皮無罪>,醫望,第8期 翁玲玲,1999,<漢人社會女性血餘論述初探:從不潔與禁忌談起>,近代中國婦女史第一期,中央研究院近代史研究所。 莊永明,1998,<台灣醫療史>,遠流出版。 莊淑旂口述,許雪姬執筆,2001,<莊淑旂回憶錄>,遠流出版。 郭文華,1997,<1950至1970年代台灣家庭計畫—醫療政策與女性使之研究>,清華大學歷史所碩士論文。 張淑卿,1999,<專業、權力與教育:從駐產教育停辦談起>,第五屆科學史研討會論文輯。 傅大為,2001,台灣近代〈男性〉婦產科的興起即其性/別政治,<,國科會台灣史專題研究計劃成果發表研討會會議論文> 曾雅玲、余玉梅,1994,<正常分娩的出產附於待產及生產時主觀經驗探討>,護理研究2卷第4期。 黃梅,1998,<台灣地區護產業務現況及發展>,助產雜誌,29期,1-4。 陳皙堯,1995,<回顧台大婦產科45年>,臺大醫院婦產科百年史料輯錄,臺大醫院婦產科同門會。 陳心耕,1991,<社會變遷與護理專業之發展>,護理雜誌,38卷第4期。 游鑑明,1993,〈日據時期台灣的產婆〉,近代中國婦女史第一期,中央研究院近代史研究所。 續修四庫全書子部醫家類達生編上卷 陳自明,《大全良方》卷17〈產難門 產難論第一〉。 劉靜貞,1998,〈不舉子—送人的生育問題〉, 鍾聿琳,1998,<一個以助產士為主的產科健康模式之探討>,全民健保V.S. 婦女健康研討會。 喬治?福斯特等著,陳華、黃新美譯,1992,<醫療人類學>,桂冠圖書公司。 中華民國八十年台敏地區工商服務業務普查報告 行政院衛生署,<衛生統計>,民國39年至80年的歷年統計資料。 台灣生通志衛生篇 新竹縣志,1958年 新竹縣統計提要 1951-1994 新竹市志 王順隆整理,台灣歌仔冊, 新竹竹林書局,大舜出世歌、 新竹竹林書局,花胎病仔歌、 新竹竹林書局,李三娘汲水歌、 新竹竹林書局,338冊/蔡端造洛陽橋歌 嘉義玉珍書局,802冊/青冥擺腳對答歌 西遊記 金瓶梅詞話 紅樓夢 聊齋誌異 禮記 Charlotte Furth, A Flourish Yin, Calfornia, 1999 Ornella Moscucci:The Science of Women: Gynaecology and Gender in England, 1800-1929(New York: Cambridge University Press, 1990) Wu,Chia-Ling : Women, Medicine, and Power: The Social Transformation of Childbirth in Taiwan, (Illinois: University of Illinois, 1997)id NH0925493008 sid 884412 cfn 0 / id NH0925493009 auc 吳佩蓉 tic 湯液的年代:《傷寒論》的湯劑與身體觀 adc 李建民 adc 張永堂 ty 碩士 sc 國立清華大學 dp 歷史研究所 yr 92 lg 中文 pg 203 kwc 傷寒論 kwc 湯液 kwc 身體觀 abc 本文的主題是關於湯液此一中藥劑型發展的概況,特別是其盛行的年代。現代一般人對湯液一詞似乎略嫌陌生,它是中醫內服藥物劑型的一種,更被許多醫家譽為最符合臨床辨證論治所需的劑型。關於湯液的起源,已有數篇專文論及。然而,隨著醫藥文獻不斷的發掘出土,此一劑型的發展基線已朝源頭向外歧出、延伸,湯液的原型呈現多元化的面貌。但是,關於該劑型如何躍升為醫家臨床使用的首選,至今仍然渾沌不明。這一研究缺口,正是本文的立論基點。本文大致可分為三部分,一是考究湯液早期的各種製作、服用形式,從社會史的角度切入,觀察湯液在邊疆醫療體系下實際的施用情況。爾後,與其他的診治經驗逐漸結合下,湯液遂成為醫家授受知識體系的一環。隨著《湯液經法》著錄於漢代官方的目錄書,及東漢末年《傷寒論》的成書,一舉將湯液推向其劑型發展史的高峰。 rf 參考書目 (一)傳統醫籍 大塚敬節著,吳家鏡譯,《傷寒論解說》,台南:正言出版社,1995。 丹波元堅,《素問紹識》,收入《皇漢醫學叢書》第一冊,上海:上海中醫藥出版社,1993。 丹波元堅撰,《藥治通義輯要》(四川成都存古書局校刊本) 丹波康賴編撰,沈澍農主編,《醫心方校釋》,北京:學苑出版社,2001。 尤在涇,《金匱心典》,收入孫中堂主編,《尤在涇醫學全書》,北京:中國中醫藥出版社,1999。 方有執,《傷寒論條辨》(四庫全書版) 牛兵占等,《中醫經典通釋•黃帝內經》,石家莊:河北科學技術出版社,1994。 王好古,《湯液本草•自序》,收入葉顯純校注,《本草經典補遺》,上海:上海中醫藥大學出版社,1997。 冉先德、張家禮編,《金匱要略》,北京:春秋出版社,1988。 宋徽宗撰,吳禔注,《宋徽宗聖濟經》(藝文印書館) 李克紹主編,《傷寒論語釋》,山東:山東科學技術出版社,1982。 李杲撰,高文鑄、王軍點校,《內外傷辨惑論》,收入《金元四大家醫學全書》,天津:天津科學技術出版社,1999。 李杲撰,鄭金生輯校,《用藥心法》,收入《金元四大家醫學全書》,天津:天津科學技術出版社,1999。 李時珍,《本草綱目》,收入於柳長華主編,《李時珍醫學全書》,北京:中國中醫藥出版社,1999。 李梴,《醫學入門》,北京:中國中醫藥出版社,1995。 金禮蒙輯,浙江省中醫研究所、胡州中醫院校,《醫方類聚》,北京人民衛生出版社,1981。 孫思邈著,李景榮等校釋,《備急千金要方校釋》,北京:人民衛生出版社,2002。 孫思邈撰,朱邦賢、陳文國等校注,《千金翼方校注》,上海:上海古籍出版社,1999。 徐大樁,《傷寒類方》,收入劉洋主編,《徐靈胎醫學全書》,北京:中國中醫藥出版社,1999。 徐大樁,《醫學源流論》,收入劉洋主編,《徐靈胎醫學全書》,北京:中國中醫藥出版社,1999。 秦越人著,張登本撰,《難經通解》,西安:三秦出版社,2001。 高文鑄、肖永芝校注,《華氏中藏經》,收入於高文鑄主編,《華陀遺書》,北京:華夏出版社,1994。 浠水縣衛生局、湖北中醫學院,《傷寒總病論》,湖北:湖北科學技術出版社,1987。 張從正撰,劉鴻達點校,《儒門事親》,收入天津科學技術出版社總纂,《金元四大家醫學全書》,天津:天津科學技術出版社,1999。 張景岳,《類經》,收入李志庸主編,《張景岳醫學全書》,北京:中國中醫藥出版社,1999。 張琦著,王洪圖點校,《素問釋義》,北京:科學文獻出版社,1998。 張登本、武長春主編,《內經詞典》,北京:人民衛生出版社,2000。 張機著,王叔和撰次,林億等校正,《金匱玉函經》,收入李順保編著,《傷寒論版本大全》,北京:學苑出版社,2000。 張燦玾、徐國仟主編,《鍼灸甲乙經校注》,北京:人民衛生出版社,1996。 莫枚士撰,王新華校注,《研經言》,江蘇:江蘇科學技術出版社,1984。 莫枚士撰,張印生、韓學杰校注,《經方例釋》,北京:中國中醫藥出版社,1999。 郭秀梅,岡田研吉編集,《日本醫家金匱要略注解輯要》,北京市:學苑出版社,1999。 陳延之撰,高文鑄輯校,《經方小品》,北京:中國中醫藥出版社,1995。 陶弘景編,尚志鈞、尚元勝輯校,《本草經集注》,北京:人民衛生出版社,1994。 森立之著,郭秀梅、岡田研吉校點,《素問考注》,北京:學苑出版社,2002。 葛洪撰,陶弘景增補,尚志鈞輯校,《補輯肘後方》,合肥:安徽科學技術出版社。 福州市人民醫院校釋,《脈經校釋》,北京:人民衛生出版社,1984。 劉完素撰,王雲凱等點校,《素問玄機原病式》,收入《金元四大家醫學全書》,天津:天津科學技術出版社,1999。 澀江抽齋著,郭秀梅等點校,《靈樞》,北京:學苑出版社,2003。 聶惠民、王慶國、高飛編集,《傷寒論集解》,北京:學苑出版社,2001。 蘇軾、沈括著,《蘇沈良方》,收入於伊廣謙主編,《中醫方劑名著集成》,北京:華夏出版社,1998。 (二)傳統典籍 十三經注疏整理委員會,《周禮注疏》,北京:北京大學出版社,1999。 仁井田陞原著,粟勁等編譯,《唐令拾遺》,長春:長春出版社,1989。 王文錦譯解,《禮記譯解》,北京:中華書局,2001,頁232。 王明著,《抱朴子內篇校釋》,北京:中華書局,1996,頁208∼209。 王應麟撰,《漢書藝文志考證》,收入李茂如、胡天福、李若鈞編著,《歷代史志書目著錄醫籍匯考•史志篇》,北京:人民衛生出版社,1994。 司馬遷撰,《史記》,北京:中華書局,1987。 吳云、唐紹忠注,《王粲集注》,鄭州:中洲書畫社,1984。 李昉奉敕編,《太平御覽》,石家庄:河北教育出版社,1994。 李學勤主編,《孟子注疏》,北京:北京大學出版社,1999。 俞紹初輯校,《王粲集》,北京:中華書局,1989。 姚明煇,《漢書藝文志注解》,收入陳國慶編,《漢書藝文志註釋彙編》,北京:中華書局,1983。 姚振宗撰,《後漢藝文志》,收入於李茂如、胡天福、李若鈞編著,《歷代史志書目著錄醫籍匯考•史志篇》,北京:人民衛生出版社,1994。 范曄撰,李賢等注,《後漢書》,北京:中華書局,1987。 班固撰,顏師古注,《漢書》,北京:中華書局,1983。 荀悅,《申鑒》,北京:中華書局,1985。 高承撰,李果訂,金圓,許沛藻點校,《事物紀原》,北京市:中華書局,1989。 張驥,《漢書藝文志方技補注》(成都義生堂本) 陳奇猷校注,《韓非子集釋》,北京:中華書局,1959。 陳直,《史記新證》,天津:天津人民出版社,1979。 陳直,《漢書新證》,天津:天津人民出版社,1959。 陳壽,《三國志》,北京:中華書局,1985。 黃輝,《論衡校釋》,北京:中華書局,1990。 楊伯峻編著,《春秋左傳注》,北京:中華書局,1983。 劉珍等撰,吳樹平校注,《東觀漢記》,鄭州:中州古籍出版社,1987。 鄭玄著,賈公彥疏,趙伯雄整理,《周禮注疏》,北京:北京大學出版社,2000。 (三)今人論著 1.中文 丁鑒塘 1984 〈中國古代藥物研磨粉碎工具的應用和發展〉,《中華醫史雜誌》1984.3。 山田慶兒著,廖育群、李建民編譯 2003 《中國古代醫學的形成》,台北:東大圖書股份有限公司。 中國社會科學院考古研究所、河北省文物管理處編 1980 《滿城漢墓發掘報告》,北京:文物出版社。 中醫研究院醫史文獻研究室 1973 〈武威漢代醫藥簡牘在醫學史上的重要意義〉,《文物》1973.12。 毛永森 1994 〈古代醫籍中中藥的特殊量詞〉,《陝西中醫》1994.10。 王子今 1998 〈試論居延「酒」「麴」簡:漢代河西社會生活的一個側面〉,收入中國社會科學院簡帛研究中心編輯,《簡帛研究》第三輯,南寧:廣西教育出版社。 王玉芝 2001 〈中藥湯劑改革的思考〉,《中國中藥雜誌》2001.2。 王伊明 1986 〈為古方權量正本清源〉,《北京中醫學院學報》1986.2。 王家編著 1997 《中醫常用術語集注》,台南:王家出版社。 王淑民 2000 〈五臟補瀉法例的研究〉,《中醫文獻雜誌》2000.增刊號。 王淑民 1990 〈敦煌卷子《輔行訣臟腑用藥法要》考〉,《甘肅中醫學院學報》1990.4。 1991 〈敦煌卷子《輔行訣臟腑用藥法要》考〉,《上海中醫藥雜誌》1991.3。 1998 〈輔行訣臟腑用藥法要與湯液經法、傷寒雜病論三書方劑關係的探討〉,《中醫雜誌》1998.11 1999 《敦煌石窟秘藏醫方:曾經散失海外的中醫古方》,北京:北京醫科大學•中國協合醫科大學聯合出版社。 史葦湘 1980 〈敦煌莫高窟中的《福田經變》壁畫〉,《文物》1980.9 甘肅文物考古研究所 2000 〈敦煌懸泉漢簡釋文選〉,《文物》2000.5 甘肅省文物考古研究所、甘肅省博物館等編 1990 《居延新簡》,北京:文物出版社。 甘肅省博物館、武威縣文化館合編 1985 《武威漢代醫簡》,北京:文物出版社。 甘肅省博物館、敦煌縣文化館 1984 〈敦煌馬圈灣漢代烽隧遺址發掘簡報〉,收入甘肅省文物工作隊、甘肅省博物館編,《漢簡研究文集》,蘭州:甘肅人民出版社。 白菁著,王宇、房學惠譯 1996 〈六世紀晚期敦煌壁畫之繪畫構圖與佛經文本聯繫〉,《敦煌研究》1996.2。 朱定華、袁寶權 1989 〈敦煌醫學卷子醫方類的研究〉,《上海中醫藥雜誌》1989.4。 朱晟 1957 〈湯藥劑型的歷史〉,《醫學史與保健組織》1957.3。 朱華德 1994 〈方劑的起源——從「神農嘗百草」到「伊尹制湯液」〉,《山東中醫學院學報》1994.3。 江陵張家山漢簡整理小組 1989 〈江陵張家山《脈書》釋文〉,《文物》1989.7。 江潤祥、關培生合著 1990 《杏林史話》,香港:中大出版社。 何雙全 1986 〈《武威漢代醫簡》釋文補正〉,《文物》1986.4。 余嘉錫 1985 《古書通例》,上海:上海古籍出版社。 吳礽驤 1999 〈敦煌懸泉遺址簡牘整理簡介〉,《敦煌研究》1999.4。 宋向元 1954 〈中藥劑型的回顧和前瞻〉,《北京中醫》1954.1。 李仁德、宋鎮星 2002 〈湯劑優勢及改革思路之我見〉,《中國醫藥學報》2002.7。 李文生 1981 〈我國現存最早的石刻藥方——龍門藥方洞藥方年代考〉,《中華醫史雜誌》1981.4。 李玉清 2003 〈試論藥物歸經學說對方劑學發展的影響〉,《中國中醫基礎醫學雜誌》2003.10。 李戎 2001 〈居延漢簡醫、藥、傷、病簡文整理研究報告〉,《醫古文知識》2001.4。 李具雙 2001 〈《武威漢代醫簡》的用字特點〉,《中醫文獻雜誌》2001.2。 李其忠主編 2002 《中醫基礎理論研究》,上海:上海中醫藥大學出版社。 李宗鐸 1984 〈以藥代動力學觀點小議湯劑〉,《河南中醫》1984.3。 李建民 1997 〈中國古代「禁方」考論〉,《中央研究院歷史語言研究所集刊》68.1(1997)。 2001 〈身體感的歷史〉,收入栗山茂久,《身體的語言——從中西文化看身體之謎》,台北:究竟出版社。 2002 〈艾火與天火——灸療法誕生之謎〉,《自然科學史研究》2002.4。 2002 《死生之域——周秦漢脈學之源流》,台北:中央研究院歷史語言研究所。 李茂如、胡天福、李若鈞編著 1994 《歷代史志書目著錄醫籍匯考•史志篇》,北京:人民衛生出版社。 李軍祥、吳凱 1996 〈古代中醫藥治療痞滿的歷史概述〉,《中國中醫基礎醫學雜誌》1996.2。 李振宏 1999 〈屯戍吏卒的醫療衛生狀況〉,《中原文物》1999.4。 2003 《居延漢簡與漢代社會》,北京市:中華書局,2003。 李開民、張煒、唐雲華 1999 〈略論人身之津液〉,《河南中醫藥學刊》1999.6。 李經緯、胡乃長 1989 〈《經方小品》研究〉,《自然科學史研究》1989.2。 李零 2000 《中國方術考》,北京:東方出版社。 李鼎 2003 〈國學大師與中醫學——從章次公先生一篇手札談起〉,《醫古文知識》2003.4。 杜勇 1998 〈《武威漢代醫簡》考釋〉,《甘肅中醫》1998.1。 杜葆仁 1984 〈我國糧倉的起源和發展〉,《農業考古》1984.2。 辛軍 2002 〈《內經》時期藥物治療的三個發展層次〉,《陝西中醫》2002.4。 劭鴻 1998 〈西漢倉制考〉,《中國史研究》1998.3。 和中浚 1997 〈《中國文物精華大辭典》衛生陶瓷評述〉,《四川文物》1997.2。 和中浚 1998 〈略論古代熬藥溫藥器〉,《四川文物》1998.3。 和中浚 1998 〈藥用杵臼〉,《四川文物》1998.6。 周一謀 1990 〈阜陽漢簡與古醫書《萬物》〉,《醫古文知識》1990.1。 周儉 1988 〈《傷寒論》飲食藥物的統計分析〉,《北京中醫學院學報》1988.5。 周德生 1997 〈試論津液循環與津液代謝〉,《遼寧中醫雜誌》1997.4。 林寶成 1990 〈武威漢代醫藥簡牘簡介〉,《甘肅中醫》1990.2。 邵殿文 1993 〈藥方洞石刻藥方考〉,《中原文物》1993.4。 金仕起 2003 《論病以及國——周秦漢方技與國政關係的一個分析》,台北:國立台灣大學歷史學研究所博士論文,2003。 阜陽漢簡整理組 1988 〈阜陽漢簡《萬物》〉,《文物》1988.4。 姜春華 1985 〈《傷寒論》與《湯液經》〉,《中醫雜誌》1985.10。 柯雪帆 1983 〈《傷寒論》和《金匱要略》中的藥物劑量問題〉,《上海中醫藥雜誌》1983.12。 柳長華 1999 〈《漢書•藝文志》對醫經與經方的著錄〉,《中國典籍與文化》1999.3。 胡平生、張德芳編撰 2001 《敦煌懸泉漢簡釋粹》,上海:上海古籍出版社。 胡平生、韓自強 1988 〈《萬物》略說〉,《文物》1988.4。 胡曉峰 1988 〈試論《傷寒雜病論》的藥學成就〉,《藥學通報》1988.3。 唐廷猷 2003 《中國藥業史》,北京:中國醫藥科技出版社。 孫守祥 1997 〈中藥湯劑的歷史發展與未來改進探討〉,《時珍國藥研究》1997.2。 孫其斌、許福明 1993 〈《居延漢簡》中的醫務制度〉,《中華醫史雜誌》1993.2。 孫機 1991 《漢代物質文化資料圖說》,北京:文物出版社,1991。 徐元邦 1989 〈居延漢簡中所記吏卒病傷述略〉,《中國歷史博物館館刊》12(1989)。 徐春霖 1984 〈論伊尹湯液〉,《中華醫史雜誌》1984.3。 徐海波 1999 〈中藥煮散源流考〉,《河北中醫藥學報》1999.4。 徐堅等輯 2000 《初學記》,北京:京華出版社,2000。 栗山茂久著,陳信宏譯 2001 《身體的語言——從中西文化看身體之謎》,台北:究竟出版社。 柴可夫 2000 〈《金匱要略》湯液溶媒的選擇、運用及意義〉,《國醫論壇》2000.5。 袁立友、趙輝 1998 〈煎服湯劑應以中醫藥理論為指導〉,《天津藥學》1998.4。 陝西省考古研究所華倉考古隊 1982 〈漢華倉遺址一號倉建築復原探討〉,《考古與文物》1982.6。 陝西省考古研究所華倉考古隊 1982 〈漢華倉遺址發掘簡報〉,《考古與文物》1982.6。 馬伯英 1997 《中國醫學文化史》,上海:上海人民出版社,1997。 馬繼興 2002 〈全國各地出土的秦漢以前醫藥文化資源〉,《中醫文獻雜誌》2002.3。 馬繼興 1980 〈我國最古的藥酒釀製方〉,《藥學通報》1980.7。 1981 〈馬王堆古醫書中有關採藥、製藥和藏藥的記述〉,《中醫雜誌》1981.7。 1986 〈馬王堆漢墓醫書的藥物學成就〉(續),《中醫雜誌》1986.6。 1986 〈馬王堆漢墓醫書的藥物學成就〉(續),《中醫雜誌》1986.7。 1986 〈馬王堆漢墓醫書的藥物學成就〉(續),《中醫雜誌》1986.8。 1986 〈馬王堆漢墓醫書的藥物學成就〉,《中醫雜誌》1986.5。 1988 《敦煌古醫籍考釋》,江西:江西科學技術出版社。 1990 《中醫文獻學》,上海:上海科學技術出版社。 1992 《馬王堆古醫書考釋》,長沙:湖南科學技術出版社。 1998 《敦煌醫藥文獻輯校》,南京:江蘇古籍出版社。 高大倫 1992 《張家山《脈書》校釋》,成都:成都出版社。 1993 〈居延漢簡中所見疾病和疾病文書考述〉,《簡牘學報》15(1993)。 1995 《張家山《引書》研究》,成都:巴蜀書社。 高春媛、陶廣正 1993 《文物考古與中醫學》,福州:福建科學技術出版社。 張永文、郭郡浩、蔡輝 2003 〈敦煌遺書《輔行訣臟腑用藥法要》探究〉,《安徽中醫學院學報》2003.3。 張存悌、趙健偉 2000 〈宮廷醫方特色探析〉,《遼寧中醫雜誌》2000.2。 張定華 1996 〈從《武威漢簡》看仲景學說〉,《甘肅中醫》1996.2。 張延昌 2002 〈30年來武威漢代醫簡研究進展〉,《中華醫史雜誌》2002.3。 2003 〈武威漢代醫簡出土文物對藥學貢獻考證〉,《中醫藥學刊》2003.7。 張延昌、朱建平 1996 《武威漢代醫簡研究》,北京:原子能出版社。 張延昌、張宏武 1995 〈武威漢代醫簡出土後的研究現況〉,《甘肅科學學報》1995.2。 張家山漢墓竹簡整理小組 1985 〈江陵張家山漢簡概述〉,《文物》1985.1。 張家山漢簡整理小組 1990 〈張家山漢簡《引書》釋文〉,《文物》1990.10。 張國剛 2003 〈《佛說諸德福田經》與中古佛教的慈善事業〉,《史學集刊》2003.2。 張壽仁 1978 〈居延漢簡、敦煌醫簡中所見之病例與藥方藥值〉,《簡牘學報》6(1978)。 1984 〈居延漢代醫簡之證、方、藥值再探〉,《簡牘學報》11(1984)。 1985 〈武威漢代醫簡隨筆〉,《簡牘學報》11(1985)。 1986 〈武威漢代醫簡探微〉,《簡牘學報》12(1986)。 1986 〈武威漢代醫簡探微——治劑之法〉,《史學集刊》18(1986)。 1990 〈武威漢代醫簡再探〉,《簡牘學報》13(1990)。 張儂、劉強 2002 〈敦煌本《輔行訣臟腑用藥法要》古醫方的源流〉,《敦煌研究》 2002.6。 張燦玾、張增敏 2002 〈張仲景醫方與《湯液經法》考〉,《上海中醫藥雜誌》2002.7。 曹東義 2004 《中醫外感熱病學史》,北京:中醫古籍出版社。 許光岐 1958 〈關於張仲景為王仲宣診病故事的考察〉,《上海中醫藥雜誌》1958.3。 連劭名 1989 〈江陵張家山漢簡《脈書》初探〉,《文物》1989.7。 陳元朋 1998 〈唐宋食療概念與行為之傳衍——以《千金•食治》為核心的觀察〉,《中央研究院歷史語言研究所集刊》69.4(1998)。 陳直 1986 《居延漢簡研究》,天津市:天津古籍出版社。 1998 〈璽印木簡中發現的古代醫學史料〉,收入於氏著《文史考古論叢》,天津市:天津古籍出版社。 陳直著,周曉陸、陳曉捷編 2000 《讀金日札》,西安:西北大學出版社。 陳國清 1990 〈《武威漢代醫簡》釋文再補正〉,《考古與文物》1990.4。 陳國慶編 1983 《漢書藝文志註釋彙編》,北京:中華書局,1983。 陳湘萍 1992 〈《輔行訣臟腑用藥法要》中的急救醫學〉,《上海中醫藥雜誌》 1992.1。 陳曉鳴 1996 〈漢代邊兵的日常生活和待遇問題述略〉,《江西師範大學學報》29.3(1996)。 陳樹森, 1998 〈張仲景煎藥所用溶媒析〉,《浙江中醫雜誌》1998.7。 章學誠 1987 《校讎通義通解》,上海:上海古籍出版社,1987。 傅維康、李經緯、林昭庚主編 20000 《中國醫學通史:文物圖譜卷》,北京:人民衛生出版社。 彭浩 1990 〈張家山漢簡《引書》初探〉,《文物》1990.10。 彭衛 1988 〈秦漢時期醫制述論〉,《中華醫史雜誌》1988.2。 渠敬文 1999 〈《傷寒論》方藥劑量古今折算考〉,《南京中醫藥大學學報》1999.2。 湖南省文物考古研究所、中國文物研究所 2003 〈湖南省張家界古人堤遺址與出土簡牘概述〉,《中國歷史文物》2003.2。 2003 〈湖南省張家界古人堤簡牘釋文與簡注〉,《中國歷史文物》2003.2。 程磐基 2000 〈漢唐藥物劑量的考證與研究〉,《上海中醫藥雜誌》2000.3。 馮漢鏞輯 1993 《古方書輯佚》,北京:人民衛生出版社。 黃宣能 1985 〈仲景方藥的劑量與煎服法〉,《遼寧中醫雜誌》1985.4。 黃煌編 1998 《張仲景五十味藥證》,北京:人民衛生出版社。 楊百茀、李培生 1996 《實用經方集成》,北京:人民衛生出版社。 楊沛群 2003 〈《內經》酒論淺析〉,《安徽中醫學院學報》2003.3。 楊儒賓主編 1993 《中國古代思想中的氣論及身體觀》,台北:巨流圖書公司。 葉森 1997 《仲景方藥現代研究》,北京市:中國中醫藥出版社。 賈文成 1985 〈《傷寒論》和《金匱要略》用藥劑量初考〉,《遼寧中醫雜誌》1985.4。 賈得道 2002 《中國醫學史略》,太原:山西科學技術出版社。 廖育群 1984 〈伊尹湯液考〉,《中華醫史雜誌》1984.3。 1990 〈漢代內服藥的劑型轉變與「湯液」研究〉,《自然科學史研究》9.2(1990)。 1995 《岐黃醫道》,瀋陽市:遼寧教育出版社,1995。 暢達 1985 〈《傷寒論》藥物中非衡器計量的初探〉,《中成藥研究》1985.8。 熊曼琪主編 2003 《傷寒論》北京:人民衛生出版社,2003。 熊畢文 1995 〈論中藥湯劑及煎藥方法〉,《安徽中醫臨床雜誌》1995.2。 蓋建民 1999 〈從敦煌遺書看佛教醫學思想及其影響——兼評李約瑟的佛教科學觀〉,《佛學研究》1999。 趙世發 2001 〈方劑命名規律探討〉,《中國中醫基礎醫學雜誌》,2000.1。 趙光樹 2000 〈《武威漢代醫簡》與《五十二病方》的藥物學比較研究〉,《中國中藥雜誌》2000.11。 趙存義 1994 《中醫古方方名考》,北京:中國中醫藥出版社。 趙宇明、劉海波、劉掌印 1994 〈《居延漢簡甲乙編》中醫藥史料〉,《中華醫史雜誌》1994.3。 趙洪鈞 1987 《中西醫比較熱病學史》,河北:中醫學院醫學史教研室,1987。 趙璞珊 1997 《中國古代醫學》,北京:中華書局。 劉雲 1984 〈論經方漢今劑量折算〉,《河南中醫》1984.3。 劉世儒 1965 《魏晉南北朝量詞研究》,北京:中華書局,1965。 劉綱 1987 〈《武威漢代醫簡》藥物炮製〉,《中華醫史雜誌》1987.1。 談宇文 1985 〈《五十二病方》制劑瑣談〉,《中華醫史雜誌》1985.4。 鄭金生 1981 〈古代的中藥粉碎工具及其演變〉,《中華醫史雜誌》1981.1。 禚振西、杜葆仁 1982 〈論秦漢時期的倉〉,《考古與文物》1982.6。 錢超塵 1999 《傷寒論文獻通考》,北京:學苑出版社,1999。 2003 〈仲景論廣《伊尹湯液》考〉,收錄於王慶國主編,《仲景學術研究》,北京:學苑出版社。 戴應新 1983 〈解放後考古發現的醫藥資料考述〉,《考古》,1983.2。 薛英群 1991 《居延漢簡通論》,蘭州:甘肅教育出版社。 謝桂華、李均明等校, 1987 《居延漢簡釋文合校》,北京:文物出版社。 謝觀著,余永燕點校 2003 《中國醫學源流論》,福州:福建科學技術出版社。 鍾依研 1972 〈滿城漢墓發掘報告〉,《考古》1972.3。 叢春雨 1994 《敦煌中醫藥全書》,北京市:中醫古籍出版社。 2000 〈敦煌遺書《輔行訣臟腑用藥法要》五首救急方析義〉,《中醫文獻雜誌》2000.4。 2000 《敦煌中醫藥精萃發微》,北京市:中醫古籍出版社。 2002 〈敦煌遺書《輔行訣臟腑用藥法要》五臟病症治療方藥解析〉,《敦煌研究》2002.3。 2003 〈敦煌遺書《輔行訣臟腑用藥法要》五首救諸勞損病方的現實意義〉,《中醫文獻雜誌》2003.4。 聶耀、李永清、高美先 1997 〈從《五十二病方》看先秦時期中藥學發展概況〉,《內蒙古中醫藥》1997.3。 藍壽梅 1997 〈《武威漢代醫簡》的辨證論治〉,《中華醫史雜誌》1997.4。 羅志平 1999 〈秦漢時期古方劑量考證〉,《國醫論壇》1999.2。 羅振玉、王國維編著 1999 《流沙墜簡》,北京:中華書局,1999。 羅福頤 1956 〈祖國最古的醫方〉,《中醫雜誌》1956.1/2。 1973 〈對武威漢代醫藥簡的一點認識〉,《文物》1973.12。 2.日文 岡西為人 1963 〈中國醫學における丹方〉,收入藪內清編《中國中世科學技術史の研究》,東京:角川書店,1963。 村上嘉實 1981 〈漢墓新發現の醫書と抱朴子〉,《東方學報》53(1981)。id NH0925493009 sid 884491 cfn 0 / id NH0925493010 auc 鍾淑姬 tic 從妊產婦名簿到助產所—台灣(新竹)助產士的歷史研究1920∼1970 adc 傅大為 ty 碩士 sc 國立清華大學 dp 歷史研究所 yr 92 lg 中文 pg 69 kwc 助產士 kwc 產婆 kwc 先生媽 kwc 穩婆 kwc 助產所 kwc 歌仔冊 abc 1970年台灣婦產科醫師接生率首度超過助產士,之後台灣助產士的接生率急遽下降,至今不到1%。以男性為主的婦產科醫師取代長期以來,全為女性的接生者,筆者認為日治時期引進的產婆是關鍵,本文首先以產婆彭錫妹1933-1945年妊產婦名簿為依據,探討日治末期台灣產婆的養成、接生技術、及國家機器介入管理人民私領域的痕跡。藉爬梳1118例的接生記錄,新式產婆的接生技術對婦女的影響。 tc 第一章、 緒論-------------------------1 第一節 歷史脈絡----------------------2 第二節 文獻回顧----------------------8 第三節 問題意識與研究方法-----------10 第二章、 從我祖母的七冊妊產婦名簿談起—日治末期產婆資料分析------17 第一節 彭錫妹的七冊妊產婦名簿-------19 第二節 產婆的技術-------------------29 第三節 討論-------------------------39 第三章、 助產所的誕生及其過渡的歷史意義---46 第一節 戰後台灣助產士的養成教育---助產、護理合訓制度---47 第二節 助產所的誕生----------------- 56 第三節 助產所的技術------------------74 第四章、 台灣助產士在接生者歷史中的地位-----81 第一節 從中國穩婆到台灣先生媽--------------84 第二節 產婦眼中的助產士、醫師娘------------99 第三節 國家、法規與出生證明---------------103 第五章、 結論------------------------------110rf 小田俊郎著,洪有錫譯,1995,<台灣醫學五十年>,前衛出版社。 王灝撰文,梁坤名版畫,1992,<台灣人的生命之禮>,臺原出版P.50 林綺雲,1993,<台灣助產士的專業變遷—社會學的解析與省思>,國立台北護專學報,第10期 林王美園,1985,<助產士功能的展望與回顧>,助產雜誌,地22期。1-15 何弘能,1995,<剖腹產的元罪>,(葉林採訪整理),醫望,第8期。 吳嘉苓,1998,<產科學遇上『迷信』婦女>,第三屆『性教育、性學、性別研究暨同性戀研究』國際學術研討會。 吳嘉苓,1998,<復興助產士、鼓勵自然產:健保幾婦制度>,全民健保V.S. 婦女健康研討會。 吳嘉苓,2000,<醫療專業、性別與國家:台灣助產士興衰的社會分析>,台灣社會學研究第4期。 吳嘉苓,2001,< 空間、規訓與生產政治>,台大社會學刊第二十九期。頁1-58 洪有錫、陳麗新,2002,<先生媽、產婆、與婦產科醫師>,前衛出版社。 洪惟仁,台灣禮俗語點,1986,自立晚報社出版 李貞德,1996,<漢唐間醫書中的生產之道>,中央研究院歷史語言研究所集刊,67.3 呂素麗,1995,<接生萬名嬰兒的洪孔達醫師>,臺大醫院婦產科百年史料輯錄,臺大醫院婦產科同門會。 邱素琴,1987,<新興的護理趨勢—居家護理與開業護理>,駐產雜誌,第26期,1-7 范燕秋,2001,<日本帝國發展下殖民地台灣的人種衛生1895-1945>,政大歷史系博士論文。 高敬遠,1995,<台灣婦產科的黎明>,臺大醫院婦產科百年史料輯錄,臺大醫院婦產科同門會。 郭素珍,2003,<助產專業執業現況、角色功能與未來展望>;助產專業今昔與未來:理論與實正研習會,國立台北護理學院護理助產所 涂醒哲、蘇喜,<肚皮無罪>,醫望,第8期 翁玲玲,1999,<漢人社會女性血餘論述初探:從不潔與禁忌談起>,近代中國婦女史第一期,中央研究院近代史研究所。 莊永明,1998,<台灣醫療史>,遠流出版。 莊淑旂口述,許雪姬執筆,2001,<莊淑旂回憶錄>,遠流出版。 郭文華,1997,<1950至1970年代台灣家庭計畫—醫療政策與女性使之研究>,清華大學歷史所碩士論文。 張淑卿,1999,<專業、權力與教育:從駐產教育停辦談起>,第五屆科學史研討會論文輯。 傅大為,2001,台灣近代〈男性〉婦產科的興起即其性/別政治,<,國科會台灣史專題研究計劃成果發表研討會會議論文> 曾雅玲、余玉梅,1994,<正常分娩的出產附於待產及生產時主觀經驗探討>,護理研究2卷第4期。 黃梅,1998,<台灣地區護產業務現況及發展>,助產雜誌,29期,1-4。 陳皙堯,1995,<回顧台大婦產科45年>,臺大醫院婦產科百年史料輯錄,臺大醫院婦產科同門會。 陳心耕,1991,<社會變遷與護理專業之發展>,護理雜誌,38卷第4期。 游鑑明,1993,〈日據時期台灣的產婆〉,近代中國婦女史第一期,中央研究院近代史研究所。 續修四庫全書子部醫家類達生編上卷 陳自明,《大全良方》卷17〈產難門 產難論第一〉。 劉靜貞,1998,〈不舉子—送人的生育問題〉, 鍾聿琳,1998,<一個以助產士為主的產科健康模式之探討>,全民健保V.S. 婦女健康研討會。 喬治•福斯特等著,陳華、黃新美譯,1992,<醫療人類學>,桂冠圖書公司。 中華民國八十年台敏地區工商服務業務普查報告 行政院衛生署,<衛生統計>,民國39年至80年的歷年統計資料。 台灣生通志衛生篇 新竹縣志,1958年 新竹縣統計提要 1951-1994 新竹市志 王順隆整理,台灣歌仔冊, 新竹竹林書局,大舜出世歌、 新竹竹林書局,花胎病仔歌、 新竹竹林書局,李三娘汲水歌、 新竹竹林書局,338冊/蔡端造洛陽橋歌 嘉義玉珍書局,802冊/青冥擺腳對答歌 西遊記 金瓶梅詞話 紅樓夢 聊齋誌異 禮記 Charlotte Furth, A Flourish Yin, Calfornia, 1999 Ornella Moscucci:The Science of Women: Gynaecology and Gender in England, 1800-1929(New York: Cambridge University Press, 1990) Wu,Chia-Ling : Women, Medicine, and Power: The Social Transformation of Childbirth in Taiwan, (Illinois: University of Illinois, 1997)id NH0925493010 sid 884412 cfn 0 / id NH0925538001 auc 魏新原 tic MHC class II HLA-DR4 最適藥物篩選模式之建立與新藥設計 adc 林志侯 ty 碩士 sc 國立清華大學 dp 分子醫學研究所 yr 92 lg 中文 pg 45 kwc HLA-DR4 kwc 電腦輔助葯物設計 kwc Major histocompatibility complex (MHC) molecules abc 藥物設計剛開始最重要的就是先找到先導化合物。電腦輔助藥物設計方法能縮短先導化合物的發現。如果R&D時間能縮短2∼3年,那麼不但能簡短R&D的經費,而且增加上市的獲利時間,這將帶來很大的經濟效益及利潤。因而CADD方法已成為國外藥廠研發新藥的趨勢,並且有不少成功的例子,相信在電腦時代該技術將成為未來的主要潮流。本論文以直接藥物設計建立一組最適HLA-DR4的screening model並以間接藥物設計進行交互驗證。 tc 一 研究動機----------------------------------1 (一)電腦輔助葯物設計------------------------------------1 (二)Major histocompatibility complex (MHC) molecules----4 二 研究目的----------------------------------7 三 研究方法----------------------------------8 (一)研究流程------------------------------------------8 (二)研究方法-----------------------------------------10 四 研究結果---------------------------------18 (一)GOLD docking 結果----------------------------------18 (二)比較GOLD與GLIDE RMSD之結果-----------------------21 (三)比較GOLD,GLIDE及XSCORE的Scoring function---------23 (四)建立最適HLA-DR4的Screening model------------------24 (五)以LUDI設計一系列potent inhibitors之結果-----------24 (六)Catalyst 訓練組與測試組結果-------------------------27 (七)比較並分析所建立Screening model與Catalyst預測的結果,並與實驗上最佳inhibitor比較,獲得比目前實驗上最佳inhibitor更好的抑制劑------------------------------31 五 研究討論與結論---------------------------38 六 參考文獻---------------------------------44rf 1. Keseru GM. J Comput Aided Mol Des. 2001 Jul;15(7):649-57. 2. Logean A, Sette A, Rognan D. Bioorg Med Chem Lett. 2001 Mar 12;11(5):675-9. 3. Paul N, Rognan D. Proteins. 2002 Jun 1;47(4):521-33. 4.David R. Bolin, Amy L. J Med. Chem. 2000 January 43,2135-2148 5.ELLEN CHRISTINA ANDERSSON , BJARKE ENDEL HANSEN.Immunology.1998 June Vol. 95, pp. 7547-7579 6. Wang, R.; Lai, L.; Wang, S. Further Development and Validation of Empirical Scoring Functions for Structure-Based Binding Affinity Prediction. J. Comput.-Aided Mol. Des. 2002, 16, 11-26. 7. Asim Kumar Debnath ; Pharmacophore Mapping of a Series of 2,4-Diamino-5-deazapteridine Inhibitors of Mycobacterium avium Complex Dihydrofolate Reductase. J. Med. Chem 2002, 45,41-53 8. Eva M. Krovat and Thierry Langer ; Non-Peptide Angiotensin II Receptor Antagonists: Chemical Feature Based Pharmacophore Identification. J. Med. Chem. 2003, 46, 716-726 9. Asim Kumar Debnath ; Generation of Predictive Pharmacophore Models for CCR5 Antagonists: Study with Piperidine- and Piperazine-Based Compounds as a New Class of HIV-1 Entry Inhibitors. J. Med. Chem. 10. Minoo Battiwalla, Jos Melenhorst ; HLA-DR4 predicts haematological response to cyclosporine in T-large granular lymphocyte lymphoproliferative disorders. British Journal of Hematology. 2003, 123, 449-453 11. Jonathan A Hill , Dequn Wang , Anthony M Jevnikar ; The relationship between predicted peptide-MHC class II affinity and T-cell activation in a HLA-DRβ1*0401 transgenic mouse model. Arthritis Research and Therapy Vol 5 No1 12. Jun Zeng , Herbert R. Treutlein & George B. Rudy ; Predicting sequences and structures of MHC-binding peptides: a computational combinatorial approach. Journal of Computer-Aided Molecular Design, 15: 573-586, 2001.id NH0925538001 sid 914267 cfn 0 / id NH0925538002 auc 盧建勝 tic 對C型肝炎病毒NS3蛋白 tic & tic #37238;抑制劑產生化學作用力為主的藥效基團之研究 adc 林志侯教授 ty 碩士 sc 國立清華大學 dp 分子醫學研究所 yr 92 lg 中文 pg 42 kwc C型肝炎病毒 kwc 藥效基團 kwc CATALYST軟體 abc 以一系列pyrimidinone與pyrazinone為主結構的C型肝炎病毒NS3蛋白酶抑制劑來產生化學作用力為主的藥效基團,這個藥效基團是利用一組20個抑制劑的訓練組所產生。它的活性值是IC50,從20到30000 nM。最具預測能力的藥效基團(hypothesis 1)由三種作用力所組成,有兩個疏水性作用力,一個氫鍵提供者,一個疏水性芳香作用力,它的相關係數為0.943,均方根平方值為0.886,null cost與fixed cost的差值為52.33 bits,null cost與total cost的差值為42.81 bits。這個藥效基團經由catScramble亂數重排交叉確認,得到的結果確定由訓練組所產生的藥效基團不是因為機會而得到的。最好的藥效基團(hypothesis1)再用30個抑制劑的測試組來驗證。在分辨活性與不活性的分子時還算蠻正確的,有76.67%的成功率。接下來用兩家藥廠的兩個結構多樣之HCV NS3蛋白酶抑制劑與藥效基團作疊合,一個預測成高活性另一個預測成無活性,也許是這兩個化合物作用的機制不同。這些多重確認的方法提供了在使用這個藥效基團在虛擬篩選中當作三度空間搜尋工具,增加找到可能之C型肝炎病毒新抑制劑的信心。 tc 中文摘要.........................Ⅰ 英文摘要.........................Ⅱ 誌謝辭..........................Ⅲ 圖目錄..........................Ⅳ 表目錄..........................Ⅴ 第一章 緒論 1.1 C型肝炎病毒簡介 ...................1 1.2 Catalyst軟體簡介...................6 1.3 研究動機與目的....................11 第二章 材料與方法 2.1 使用材料.......................13 2.2 操作方法 2.2.1 Catalyst操作方法 ................17 2.2.2 GOLD操作方法 ..................19 第三章 結果與討論 3.1 訓練組的確認.....................21 3.2 測試組的確認.....................24 3.3 預測主結構不同的分子之活性..............26 3.4利用GOLD得到之構形來產生藥效基團..........27 第四章 結論與未來展望.................34 第五章 參考文獻與附錄.................35rf 1. Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M.. Isolation of a cDNA clone derived from a blood-borne non-A non-B viral hepatitis genome. Science 1989 244, 359–362 2. Hoofnagle, J. H. Hepatitis C — the clinical spectrum of disease. Hepatology 1997 26, S15–S20 . 3. Willems, M., Metselaar, H. J., Tilanus, H. W., Schalm, S. W. & de Man, R. A. Liver transplantation and hepatitis C. Transplant Int. 2002 15, 61–72 4. Di Bisceglie AM, Hoofnagle JH. Optimal therapy of hepatitis C. Hepatology. 2002 Nov;36(5 Suppl 1):S121-7 5. Reed KE, Rice CM. Overview of hepatitis C virus genome structure, polyprotein processing, and protein properties. Curr Top Microbiol Immunol.; 2000 242:55-84 6. Friebe, P., Lohmann, V., Krieger, N. & Bartenschlager, R. Sequences in the 5′?nnontranslated region of hepatitis C virus required for RNA replication. J. Virol. 2001 75, 12047–12057 7. Reed, K. E. & Rice, C. M. Overview of hepatitis C virus genome structure, polyprotein processing, and protein properties. Hep. C Viruses 2000 242, 55–84 8. Tan SL, Pause A, Shi Y, Sonenberg N. Hepatitis C therapeutics: current status and emerging strategies. Nat Rev Drug Discov. 2002 Nov;1(11):867-81 9. Shirota, Y. et al. Hepatitis C virus (HCV) NS5A binds RNA-dependent RNA polymerase (RdRP) NS5B and modulates RNA-dependent RNA polymerase activity. J. Biol. Chem. 2002 277, 11149–11155 10. Bartenschlager, R. & Lohmann, V. Replication of hepatitis C virus. J. Gen. Virol. 2000 81, 1631–1648 11. Pileri, P. et al. Binding of hepatitis C virus to CD81. Science 1998 282, 938–941 12. Monazahian, M. et al. Low density lipoprotein receptor as a candidate receptor for hepatitis C virus. J. Med. Virol. 1999 57,223–229 13. Agnello, V., Abel, G., Elfahal, M., Knight, G. B. & Zhang, Q. X. Hepatitis C virus and other Flaviviridae viruses enter cells via low density lipoprotein receptor. Proc. Natl Acad. Sci. USA 1999 96, 12766–12771 14. Bukh, J., Miller, R. H. & Purcell, R. H. Genetic heterogeneity of hepatitis C virus — quasispecies and genotypes. Semin.Liv. Dis. 1995 15, 41–63 15. Zein, N. N. Clinical significance of hepatitis C virus genotypes. Clin. Microbiol. Rev. 2000 13, 223–235 16. Farci, P. & Purcell, R. H. Clinical significance of hepatitis C virus genotypes and quasispecies. Semin. Liv. Dis. 2000 20, 103–126 17. Kolykhalov AA, Mihalik K, Feinstone SM, Rice CM. Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3' nontranslated region are essential for virus replication in vivo. J Virol. 2000 Feb;74(4):2046-51 18. De Francesco, R. et al. Biochemical and immunologic properties of the nonstructural proteins of the hepatitis C virus: implications for development of antiviral agents and vaccines. Sem. Liv. Dis. 2000 20, 69–83 19. Yao, N. H., Reichert, P., Taremi, S. S., Prosise, W. W. & Weber, P. C. Molecular views of viral polyprotein processing revealed by the crystal structure of the hepatitis C virus bifunctional protease-helicase. Structure 1999 7, 1353–1363 20. Dymock, B. W., Jones, P. S. & Wilson, F. X. Novel approaches to the treatment of hepatitis C virus infection. Antivir. Chem. Chemother. 2000 11, 79–96 . 21. Ingallinella, P. et al. Prime site binding inhibitors of a serine protease: NS3/4A of hepatitis C virus. Biochemistry 2002 41, 5483–5492 22. Zhang, R. M., Durkin, J. P. & Windsor, W. T. Azapeptides as inhibitors of the hepatitis C virus NS3 serine protease. Bioorg. Med. Chem. Lett. 2002 12, 1005–1008 23. Bennett JM, Campbell AD, Campbell AJ, Carr MG, Dunsdon RM, Greening JR, Hurst DN, Jennings NS, Jones PS, Jordan S, Kay PB, O'Brien MA, King-Underwood J, Raynham TM, Wilkinson CS, Wilkinson TC, Wilson FX.. The identification of alpha-ketoamides as potent inhibitors of hepatitis C virus NS3-4A proteinase.. Bioorg Med Chem Lett. 2001 Feb 12;11(3):355-7 24. Priestley ES, De Lucca I, Ghavimi B, Erickson-Viitanen S, Decicco CP. P1 Phenethyl peptide boronic acid inhibitors of HCV NS3 protease. Bioorg Med Chem Lett. 2002 Nov 4 ; 12(21) : 3199-202 25. Slater MJ, Andrews DM, Baker G, Bethell SS, Carey S, Chaignot H, Clarke B, Coomber B, Ellis M, Good A, Gray N, Hardy G, Jones P, Mills G, Robinson E. Design and synthesis of ethyl pyrrolidine-5,5-trans-lactams as inhibitors of hepatitis C virus NS3/4A protease. Bioorg Med Chem Lett. 2002 Dec 2;12(23):3359-62 26. Vertex Pharmaceuticals Inc., 130 Waverly Street, Cambridge, MA 02139, USA 27. Boehringer Ingelheim (Canada) Ltd, Laval, Que´bec, H7S 2G5, Canada 28. Kolykhalov, A. A. et al. Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science 1997 277, 570–574 29. Ewing TJ, Makino S, Skillman AG, Kuntz ID. DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des. 2001 May; 15(5):411-28 30. Schrödinger LLC.Portland, 2003. 31. The Cambridge Crystallographic Data Centre 12 Union Road, Cambridge, CB2 1EZ, UK, 32. Sybyl Tripos Associates: St. Louis, MO, 33. Catalyst, version 4.9 (software package); Accelrys, Inc. (previously known as Molecular Simulations, Inc.): San Diego, 2004. 34. Debnath, A. K Generation of Predictive Pharmacophore Models for CCR5 Antagonists: Study with Piperidine- and Piperazine-Based Compounds as a New Class of HIV-1 Entry Inhibitors. J. Med. Chem.; 2004 47(3); 768-768 35. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comput. Chem., 1983 4, 187-217 36. Smellie, A. Poling: Promoting Conformational Variation. J. Comput. Chem., 1995 16, 171-187. 37. Smellie, A.; Kahn, S. D.; Teig, S. L. Analysis of Conformational Coverage. 1. Validation and Estimation of Coverage. J. Chem. Inf. Comput. Sci. 1995 35, 285-294 38. Smellie, A.; Kahn, S. D.; Teig, S. L. Analysis of Conformational Space. 2. Application of Conformational Models J. Chem. Inf. Comput. Sci. 1995 16, 295-304 39. Catalyst tutorials release 4.7; Accelrys, Inc. San Diego, 2002 40. http://www.hopkins-gi.org/pages/latin/templates/index.cfm 41. DiMasi, J. A.; Hansen, R. W.; Grabowski, H. G. The price of innovation: new estimates of drug development costs. J. Health Econ. 2003, 22, 151-185. 42. Saladino, R.; Crestini, C.; Palamara, A. T.; Danti, M. C.; Manetti, F.; Corelli, F.; Garaci, E.; Botta, M. Synthesis, Biological Evaluation, and Pharmacophore Generation of Uracil, 4(3H)-Pyrimidone, and Uridine Derivates as Potent and Selective Inhibitors of Parainfluenza 1 (Sendai) Virus. J. Med. Chem. 2001, 44, 4554-4562. 43. Tafi, A.; Costi, R.; Botta, M.; Di Santo, R.; Corelli, F.; Massa, S.; Ciacci, A.; Manetti, F.; Artico, M. Antifungal Agents. 10. New Derivates of 1-[(Arly)[4-aryl-1H-pyrrol-3-yl ]methyl ]-1H-imidazole,Synthesis, Anti-Candida Activity, and Quantitative Structure-Analysis Relationship Studies. J. Med. Chem. 2002, 45, 2720-2732. 44. Singh, J.; van Vlijmen, H.; Liao, Y.; Lee, W.; Cornebise, M.; Harris, M.; Shu, I.; Gill, A.; Cuervo, J. H.; Abraham, W. M.; Adams, S. P. Identification of Potent and Novel R4‚1 Antagonists Using in Silico Screening. J. Med. Chem. 2002, 45, 2988-2993. 45. Palomer, A.; Cabre, F.; Pascual, J.; Campos, J.; Trujillo, M. A.; Entrena, A.; Gallo, M. A.; Garcia, L.; Mauleon, D.; Espinosa, A. Identification of Novel Cyclooxygenase-2 Selective Inhibitors Using Pharmacophore Models. J. Med. Chem. 2002, 45, 1402-1411. 46. Ekins, S.; Kim, R. B.; Leake, B. F.; Dantzig, A. H.; Schuetz, E.G.; Lan, L.; Yasuda, K.; Shepard, R. L.; Winter, M. A.; Schuetz, J. D.; Wikel, J. H.; Wrighton, S. A. Application of Three-Dimensional Quantitative Structure-Activity Relationships of P-Glycoprotein Inhibitors and Substrates. Mol. Pharmacol. 2002,61, 974-981. 47. Dziadulewicz, E. K.; Ritchie, T. J.; Hallett, A.; Snell, C. R.; Davies, J. W.; Wrigglesworth, R.; Dunstan, A. R.; Bloomfield, G. C.; Drake, G. S.; McIntyre, P.; Brown, M. C.; Burgess, G. M.;Lee, W.; Davis, L.; Yaqoob, M.; Phagoo, S. B.; Phillips, E.; Perkins, M. N.; Campbell, E. A.; Davis, A. J.; Rang, H. P. Nonpeptide Bradykinin B2 Receptor Antagonists: Conversion of Rodent-Selective Bradyzide Analogues into Potent, Orally Active Human Bradykinin B2 Receptor Antagonists. J. Med. Chem. 2001, 45, 2160-2172. 48. Flohr, S.; Kurz, M.; Kostenis, E.; Brkovich, A.; Fourier, A.; Klabunde, T. Identification of Nonpeptidic Urotensin II Receptor Antagonists by Virtual Screening Based on a Pharmacophore Model Derived from Structure-Activity Relationships and Nuclear Resonance Studies on Urotensin II. J. Med. Chem. 2002, 45, 1799-1805. 49. Kurogi, Y.; Miyata, K.; Okamura, T.; Hashimoto, K.; Tsutsumi, K.; Nasu, M.; Moriyasu, M. Discovery of Novel Mesangial Cell Proliferation Inhibitors Using a Three-Dimensional Database Searching Method. J. Med. Chem. 2001, 44, 2304-2307. 50. Chen, G. S.; Chang, C.; Kan, W. M.; Chang, C.; Wang, K. C.; Chern, J. Novel Lead Generation through Hypothetical Pharmacophore Three-Dimensional Database Searching: Discovery of Isoflavonoids as Nonsteroidal inhibitors of Rat 5R-Reductase. J. Med. Chem. 2001, 44, 3759-6763. 51. Palomer, A.; Pascual, J.; Cabre´, F.; Luisa, M.; Mauleo´n, D. Derivation of Pharmacophore and CoMFA Models for Leukotriene D4 Receptor Antagonists of the Quinolinyl(bridged)aryl Series. J. Med. Chem. 2000, 43, 392-400. 52. Kaminski, J. J.; Rane, D. F.; Snow, M. E.; Weber, L.; Rothofsky, M. L.; Anderson, S. D.; Lin, S. L. Identification of Novel Farnesyl Protein Transferase Inhibitors Using Three-Dimensional Database Searching Methods. J. Med. Chem. 1997, 40, 4103-4112. 53. Barbaro, R.; Betti, L.; Botta, M.; Corelli, F.; Giannacchini, G.; Maccari, L.; Manetti, F.; Strappaghetti, G.; Corsano, S. Synthesis, Biological Evaluation, and Pharmacophore Generation of New Pyridazinone Derivates with Affinity toward R1- and R2- Adrenoceptores. J. Med. Chem. 2001, 44, 2118-2132. 54. Ekins, S.; Durst, G. L.; Stratford, R. E.; Thorner, D. A.; Lewis, R.; Lonarich, R. J.; Wikel, J. H. Three-Dimensional Quantitative Structure-Permeability Relationship Analysis for a Series of Inhibitors of Rhinovirus Replication. J. Chem. Inf. Comput. Sci. 2001, 41, 1578-1586. 55. Bureau, R.; Daveu, C.; Lemaýˆtre, S.; Dauphin, F.; Landelle, H.; Lancelot, J.; Rault, S. Molecular Design Based on 3D-Pharmacophore. Application to 5-HT4 Receptor. J. Chem. Inf. Comput. Sci. 2002, 42, 962-967. 56. Glunz PW, Douty BD, Decicco CP. Design and synthesis of bicyclic pyrimidinone-based HCV NS3 protease inhibitors. Bioorg Med Chem Lett. 2003 Mar 10;13(5):785-8. 57. Zhang X, Schmitt AC, Jiang W, Wasserman Z, Decicco CP. Design and synthesis of potent, non-peptide inhibitors of HCV NS3 protease. Bioorg Med Chem Lett. 2003 Mar 24;13(6):1157-60. 58. Lin C, Lin K, Luong YP, Rao BG, Wei YY, Brennan DL, Fulghum JR, Hsiao HM, Ma S, Maxwell JP, Cottrell KM, Perni RB, Gates CA, Kwong AD. In vitro resistance studies of hepatitis C virus serine protease inhibitors, VX-950 and BILN 2061: structural analysis indicates different resistance mechanisms. J Biol Chem. 2004 Apr 23;279(17):17508-14. Epub 2004 Feb 06. 59. Tsantrizos YS, Bolger G, Bonneau P, Cameron DR, Goudreau N, Kukolj G, LaPlante SR, Llinas-Brunet M, Nar H, Lamarre D. Macrocyclic inhibitors of the NS3 protease as potential therapeutic agents of hepatitis C virus infection Angew Chem Int Ed Engl. 2003 Mar 28;42(12):1356-60.id NH0925538002 sid 914282 cfn 0 / id NH0925538003 auc 楊國銘 tic Nd:YAG 雷射對於真皮穿透深度之探討 adc 李寬容 ty 碩士 sc 國立清華大學 dp 分子醫學研究所 yr 92 lg 英文 pg 58 kwc Nd:YAK 雷射 kwc 雷射 kwc 皮膚 kwc 真皮 kwc 趨膚深度 abc 雷射已經被廣泛應用在皮膚科及整形外科上,多用於治療皮膚上的缺陷如刺青、黑痣以及皺紋等。然而,目前對於雷射與皮膚破壞深度的知識並不是相當的清楚。我們認為雷射所造成的破壞深度 (apparent penetration) 與電磁波理論上的趨膚深度(skin depth)有關聯。 rf 1. N. Taylor. “Laser: the inventor, the nobel laureate, and the thirty-year patent war.” Simon and Schuster, Inc. Publisher (2000). 2. A. L. Schawlow and C. H. Townes. Infrared and Optical Masers. Physical Review 1958; 112: 1940-1949. 3. T. H. Maiman. Stimulated optical emission in fluorescent Solids. I. theoretical considerations. Physical Review 1961; 123: 1145-1150. 4. T. H. Maiman. Stimulated optical emission in fluorescent Solids. Ⅱ. Spectroscopy and stimulated emission in ruby. Physical Review 1961; 123: 1151-1157. 5. D. C. O’shea, W. Russell Callen, and W. T. Rhades. “An Introduction to Laser and Their Application.” Ch. 6, P. 126-179, Addison-Wesley, Inc. Publisher (1977). 6. H. P. Berlien and G. J. Muller. “Applied laser medicine.” Ch. 1-2.4, P. 23-71, Springer-Verlag, Inc. Publisher (2003). 7. A. Katzir. “Lasers and optical fibers in medicine.” Ch. 2, p. 15-58, Academic Press, Inc. Publisher (1993). 8. GD. Litwin and AG. Kirpitchev. Laser in surgical hepatology. Journal of Clinical Laser Medicine & Surgery 1991; 9(3) : 201-204. 9. M. Csanady, L. Rovo, and J. Jori. Combined use of endoscopic CO2 laser excision of a marginal laryngeal turmor, radical neck dissection, and perioperative laterofixation of the opposite vocal cord. European Archives of Oto-Rhino-Laryngology 2000; 257: 276-278. 10. PM. V. Renedo, F. M. Gil, LM. J. Gutierrez, JC D. V. Rodriguez, and AJ. M. Sanchez. Treatment of oral and oropharyngeal epidermoid carcinomas by means of CO2 laser. Medical Oral 2004; 9: 168-175. 11. RR. Anderson and JA. Parrish. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 1983; 220: 524-7. 12. E. F. Bernstein. Treatment of resistant port-wine stain with the 1.5-msec pulse duration, tunable, pulsed dye laser. Dermatologic Surgery 2000; 26: 1007-1009. 13. W. J. Loo and S. W. Lanigan. Recent advances in laser therapy for the treatment of cutaneous vascular disorders Lasers in Medical science 2002; 17: 9-12. 14. K. Batta, H Goodyear, C Moss, HC. Williams, and R. Waters. Randomized controlled study of early pulse dye laser (PDL) treatment of uncomplicated childhood heamangiomas. British Journal of Dermatology 2001; 145 (suppl. 59): 29-30. 15. A. C. Kubler, T. Haase, C. Staff, B. Kahle, M. Rheinwald, and J. Muhling. Photodynamic therapy of primary nonmelanomatous skin tumours of the head and neck. Lasers in Surgery and Medicine 1999; 25: 60-68. 16. F. C. Antony and C. C. Harland. Red ink tattoo reactions: successful treatment with the Q-switched 532 nm Nd:YAG laser. British Journal of Dermatology 2003; 149: 94-98. 17. A. Jones, P. roddey, I. orgengo, and T. rosen. The Q-switched Nd:YAG laser effectively treats tattoos in darkly pigmented skin. Dermatologic Surgery 1996; 22: 999-1001. 18. M. K. Beade, V. J. Levine, and R. Ashinoff. Laser removal of tattoos. American Journal of Clinic Dermatology 2001; 2: 21-25. 19. W. Westerhof and M. Gamei. Treatment of acquired junctional melanocytic naevi by Q-switched and normal mode ruby laser. British Journal of Dermatology 2003; 148: 80-85. 20. S. E. Chang, K. J. Kim, J. H. Choi, K. J. Sung, k. C. Moon, and J. K. Koh. Areolar cosmetic tattoo link darkening: a complication of Q-switched alexandrite laser treatment. Dermatologic Surgery 2002; 28: 95-96. 21. G. Shah and T. S. Alster. Treatment of an amalgam tattoo with a Q-switched alexandrite (755 nm) laser. Dermatologic Surgery 2002; 28: 1180-1181. 22. A. V. F. A. J. Mueller, M. Grueterich, and M. W. Ulbig. Transpupillary thermotherapy (TTT) in circumscribed choroidal hemangioma. Graefe's Archive for Clinical and Experimental Ophthalmology: Albrecht von Graefes Archiv fur Klinische und Experimentelle Opthalmologie 2002; 240: 7-11 23. R. J. Bensadoun, J. C. Franquin, G.Ciais, V. Darcourt, M. M. Schubert, M. Viot, J. Dejou, C. Tardieu, K. Benezery, T.D. Nguyen, Y. Laudoyer, O. Dassonville, G. Poissonnet, J Vallicioni, A. Thyss, M. Hamid, P. Chauvel, and F. Demard. Low-engeryHe/Ne laser in the prevention of radiation-induced mucositis. Support Care Cancer 1999; 7: 244-252. 24. B. Ebert, M. Kohi, U. Sukowski, H. Rinneberg, H. Winter, K. P. Bellmann, and H. Audring. Fluoresence imaging of cutaneous malignant melanomas and naevi. Laser in Medical Science 1998; 13: 204-208. 25. G. Litscher and D. Schikora. Cerebral vascular effects of non-invasive laserneedles measured by transorbitial and transtemporal Doppler sonography. Laser in Medical Science 2002; 17: 289-295. 26. R. Eisberg and R. Resnick. “Quantum Physics of Atoms, Moleculess, Solids, Nuclei, and Particles.” 2nd ed., Ch. 11, p392-397, John Wiley & Sona, Inc. Publisher (1985). 27. E. Hecht. “Optics.” 3rd ed., Ch. 13, p583-585, Addison Wesley Inc. Publisher (1988). 28. P. N. Prasad. “Introduction to Biophotonics.” 1st ed., Ch. 4-6, p92-175, Addison Wesley, Inc. Publisher (2003). 29. M. H. Niemz. “Laser-Tissue Interactions, Fundamentals and Applications.” 1st ed., Ch. 2, p9-25, Springer, Inc. Publisher (1996). 30. E. N. Marieb and J. Mallatt. “Human anatomy.” 3rd ed., Ch. 5, p112-116, Benjamin Cummings, an imprint of Addison Wesley Longman, Inc. Publisher (2001). 31. T. S. Leeson, C. R. Leeson, and A. A. Paparo. “Text/Atlas of histology.” Ch. 10, p363-378, W.B. saunders company, Harcourt Brace Jovanovich, Inc. Publisher (1988). 32. F. H. Netter. “Atlas of human anatomy.” 2nd ed., p511, Novartis, Inc. Publisher (1997). 33. R. K. WAngsness. “Electromagnetic Fields.” 2nd ed., Ch. 24, p375-388, Wiley, Inc. Publisher (1986). 34. J. M. Osepchuk and R. C. Petersen. Safety standards for exposure to RF electromagnetic fields. Microwave magazine, IEEE 2001; 4(4): 57-69. 35. J. P. Grant, R. N. Clarke, G. T. Symm, and N. M. Spyrou. In vivo dielectric properties of human skin from 50 MHz to 2.0 GHz. Physical Medicine of Biology 1988; 33: 607-612. 36. C. Gabriel, S. Gabriel, and E. Corthout. The dielectric properties of biological tissues: I. literature survey. Physical Medicine of Biology 1996; 41: 2231-2249. 37. V. Raicu, N. Kitagawa, and A. Irimajiri. A quantitative approach to the dielectric properties of the skin. Physical Medicine of Biology 2000; 45: L1-L4. 38. H. Kplarova, D. Ditrichova, and J. Wagner. Penetration of laser light linto the skin in vitro. Lasers in Surgery and Medicine 1999; 24: 231-235. 39. K. Susumu Spectroscopic measurement of blood volume and its oxygenation in a small volume of tissue using red laser lights and differential calculation between two point detections. Optics & Laser Technology 2003; 35: 485-489. 40. K. Meier, V. Hombach, R. kastle, R. Y. S. Tay, and N. Kuster. The dependence of electromagnetic energy absorption upon human-head modeling at 1800 MHz. IEEE Transactions on Microwave Theory and Techniques 1997; 45: 2058-2062. 41. R. M. Lavker, G. Dong, P. S. Zheng, and G. F. Murphy. Hairless micropig skin. American Journal of Pathology 1991; 138: 687-697. 42. Q. Fang and X. H. Hu. Modeling of skin tissue ablation by nanosecond pulses from ultraviolet to near-infrared and comparison with experimental results. IEEE Journal of Quantum Electronics 2004; 40(1): 69-77. 43. L. G. Humason. “Animal Tissue Techniques.” 3rd ed., ch 1-5, p3-68, Mei Ya Publications Inc. publisher (1977). 44. E. F. Bernstein, S. Kornbluth, D. B. Brown, and J. Black. Treatment of spider veins using a 10 millisecond pulse-duration frequency-doubled neodymium YAG laser. Dermatologic surgery 1999; 25: 316-320. 45. G. M. Menaker, D. A. Wrone, R. M. Williams, and R. L. Moy. Treatment of facial rhytids with a nonablative laser: a clinical and histologic study. Dermatologic surgery 1999; 25: 440-444. 46. D. J. Goldberg, and Silapunt. Histologic evaluation of Q-switched Nd:YAG laser in the nonablative treatment of wrinkles. Dermatologic surgery 2001; 27: 744-746. 47. R. R. Anderson and J. A. Parrish. The optics of human skin. The Journal of Investigative Dermatology 1981; 77(1): 13-19. 48. S. H. Liew, A. O. Grobbelaar, C. T. Gault, R. Sanders, C. J. Green, and C. Linge. The effect of ruby laser light on ex vivo hair follicles: Clinical implications. Annals of Plastic Surgery 1999; 42(3): 249-254. 49. S. Stolik, J. A. Delgado, A. Perez, L. Anasagasti. Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissue. Journal of Photochemisty and Photobiology B: Biology 2000; 57: 90-93. 50. A. Toppong, D. Gault, A. Grobbelaar, R. Sander, C. Green, and C. Linge. Does low penetration of human skin by the normal mode ruby laser account for poor permanent depilatory success rates? Lasers in Medical science 2001; 16: 224-229. 51. D. H. Sliney. Laser-tissue interactions. Clinics in Chest Medicine 1985; 6(2): 203-208. 52. B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics” 2nd ed., Ch. 19, p769-770, Wiley & Sons, Inc. Publisher (1991).id NH0925538003 sid 914293 cfn 0 / id NH0925538004 auc 李旻晉 tic 以pleconaril之抑制機制為基礎透過虛擬高速藥物篩選尋找抑制腸病毒71 型之先導藥物 adc 林志侯 ty 碩士 sc 國立清華大學 dp 分子醫學研究所 yr 92 lg 中文 pg 72 kwc 虛擬高速藥物篩選 kwc 腸病毒 kwc 分子對接 kwc 電腦輔助藥物設計 kwc 同源模擬法 kwc 先導藥物 abc 腸病毒曾爆發過四次大流行,分別在保加利亞、匈牙利、馬來 tc 中文摘要 英文摘要 第一章序論.............................................. 1 第二章文獻探討.......................................... 3 2.1 腸病毒之特性........................................ 3 2.2 pleconaril ......................................... 5 2.3 同源模擬法簡介...................................... 6 2.4 使用程式簡介........................................ 12 2.4.1 DOCK程式簡介...................................... 12 2.4.2 X-Score 軟體簡介.................................. 16 第三章材料與方法........................................ 18 3.1 同源模擬............................................ 18 3.2 高速篩選模型........................................ 19 3.3 精確篩選模型—相關性篩選............................ 20 3.4 篩選模型—結合位置篩選.............................. 21 第四章實驗結果.......................................... 22 4.1 同源模擬............................................ 22 4.2 訓練篩選模型........................................ 23 4.3 篩選................................................ 25 第五章實驗討論.......................................... 26 5.1 同源模擬結構........................................ 26 5.2 篩選模型............................................ 26 5.3 篩選結果............................................ 28 參考文獻................................................ 60 附錄.................................................... 66 1.訓練組化合物.......................................... 66 2.精確篩選DOCK參數...................................... 68 3.高速篩選DOCK參數...................................... 70 圖次 圖一實驗流程............................................ 30 圖二小RNA病毒外觀....................................... 31 圖三由五個原體組成的外殼蛋白粒.......................... 32 圖四疏水性凹槽.......................................... 33 圖五小RNA病毒的複製過程................................. 34 圖六DOCK套件的主要程式.................................. 35 圖七以同源模擬法得到的腸病毒71 型結構................... 36 圖八腸病毒71 型VP1蛋白的序列比對........................ 37 圖九以insightII 對模板做結構式序列排列.................. 38 圖十將模版與模擬結構疊合以得到結合位置.................. 39 圖十一在兩個篩選模型中所使用的球........................ 40 圖十二DOCK 的一般工作流程............................... 41 圖十三1D4M的兩個結合位置................................ 42 圖十四Ramachandran plot ................................ 43 圖十五模板和模擬結構的結合位置比較...................... 44 圖十六理想結合位置和實際結合位置比較.................... 46 圖十七(a) 三十個訓練組化合物dock 之後的結果............. 47 圖十七(b) 訓練組化合物中活性較高的化合物................ 48 圖十八作用胺基酸篩選結果之一............................ 49 圖十九排名篩選結果之一.................................. 50 圖二十氫鍵篩選結果之一.................................. 51 表次 表一三個模板的RMSD ..................................... 52 表二X-Score 參數........................................ 53 表三PROCHECK的結果...................................... 54 表四相關性篩選訓練結果.................................. 55 表五模板和模擬結構驗證結果的比較........................ 56 表六篩選結果的氫鍵和疏水作用統計........................ 57 表七高速篩選訓練結果.................................... 58rf [1 ]Chan KP, Goh KT, Chong CY, Teo ES, Lau G, Ling AE. Epicemic hand, foot and mouth disease caused by human enterovirus 71, Singapore. Emerg Infect Dis . Available from: URL: ht tp: / /www.cdc.gov / ncidod /EID/vol9no1 / 02 - 0112.htm. [2 ] Chen YC, Yu CK, Wang YF, Liu CC, Su IJ, Lei HY. A murine oral enterovirus 71 infection model with cent ral nervous system involvement. J Gen Virol. 2004 Jan;85(Pt 1):69 - 77 [3 ]衛生署疾病管制局 [4 ]N S W Public Health Bull. 2003 Apr -May;14(4 - 5):95 [5 ]Lin T-Y, Twu S- J, Ho M-S, Chang L-Y, Lee C-Y. Enterovirus 71 outbreaks, Taiwan: occur rence and recognition. Emerg Infect Dis 2003 Mar. Available from: URL: ht tp: / /www.cdc.gov / ncidod /EID/vol9no3 / 02 - 0285.htm [6 ]International Commit tee on Taxonomy of viruses [7 ]Hadfield AT, Lee W, Zhao R, Oliveira MA, Minor I, Ruecker t RR, Rossmann MG. The refined s t ructure of human rhinovirus 16 at 2.15 A resolution: implications for the viral life cycle. Structure. 1997 Mar 15;5(3):427 - 41. [8 ]Daniel Pevear, Tina Tull, Martin Seipel, and James Groarke. Activity of Plecona ril agains t Enteroviruses. Antimicrobial Agent s and Chemotherapy. Sept. 1999, Vol 43. No. 9, p. 2109 - 2115. [9 ]Verdaguer, N., Blaas, D., Fita, I.: Structure of Human Rhinovirus Serotype 2 (Hrv2) J.Mol.Biol. 300 p p. 1179 (2000) [10 ]John McConnell. "Enteroviruses succumb to new drug." The Lancet. Oct 1999, Vol. 345, p. 1185 [11 ]DOCK 4.0 manual. ht tp: / / d ock.compbio.ucsf.edu / d ock4 / dock4.html [12 ]DOCK 5.0 manual ht tp: / /www2.umdnj.edu / ~ ker rigje / p df_files /DOCK_int ro.pdf [13 ] Kak - Shan Shia, Wen -Tai Li, Chung -Min Chang et al. Design, Synthesis and s t ructure - activity relationship of pyridyl imida zolidinones : a novel class of potent and selective human enterovirus 71 inhibitor s. J Med Chem 2002 ; 45 : 1644 - 1655 [14 ] Todd J. A. Ewing, Shingo Makino, A. Geoffrey Skillman, Irwin D. Kunt z : DOCK 4.0: Search s t rategies for automa ted molecular docking of flexible molecule da tabases. J. Comput. -Aided Mol. Des 15 (5): 411 - 428, May 2001 [15 ] Wang, R.; Lai, L.; Wang, S. Fur ther Development and Validation of Empirical Scoring Functions for Structure- Based Binding Affinity Prediction. J. Comput. -Aided Mol. Des. 2002, 16, 11 - 26. [16 ]Hendry, E., Hatanaka, H., Fry, E., Smyth, M., Tate, J., Stanway, G., Sant ti, J., Maaronen, M., Hyypia, T., Stuar t, D.: The Crystal Structure of Coxsackievirus A9: New Insight s Into the Uncoating Mechanisms of Enteroviruses. Structure 7 pp. 1527 (1999) [17 ]Hiremath, C. N., Grant, R. A., Filman, D. J., Hogle, J. M.: Binding of the Antiviral Drug Win51711 to the Sabin Strain of Type 3 Poliovirus: Structural Comparison with Drug Binding in Rhinovirus 14. Acta Crystallogr D Biol Crystallogr 51 p p. 473 (1995) [18 ]Lent z, K. N., Smith, A. D., Geisler, S. C., Cox, S., Buontempo, P., Skelton, A., DeMartino, J., Rozhon, E., Schwar t z, J., Girijavallabhan, V., O'Connell, J., Arnold, E.: Structure of poliovirus type 2 Lansing complexed with antiviral agent SCH48973: comparison of the s t ructural and biological proper ties of three poliovirus serotypes. Structure 5 p p. 961 (1997) [19 ]Gar ret t M. Morris, David S. Goodsell, Rober t S. Halliday, Ruth Huey, William E. Har t, Richard K. Belew, Arthur J. Olson Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Computational Chem., Vol. 19, No. 14, 1639 1662 (1998) [20 ]peter j. buontempo, s tuar t cox, jacquelyn wright - minogue, Jason . Demar tino, Angela M. Skelton, Eric Ferrari, Randi Albin, Edward J. Rozhon, V. Girijavallabhan, John F. Modlin, John F. O'Connell SCH 48973: a Potent, Broad - Spect rum, Antienterovirus Compound. Antimicrob. Agents Chemother. Vol. 41, No. 6 p.1220 - 1225 (1997) [21 ]Renxiao Wang, Yipin Lu, and Shaomeng Wang Compara tive Evaluation of 11 Scoring Functions for Molecular Docking. J. Med. Chem. 2003, 46, 2287 - 2303 [22 ]Oleksandr V. Buzko, Anthony C. Bishop & Kevan M. Shokat Modified AutoDock for accurate docking of protein kinase inhibitor s. J. Comput. -Aided Mol. Des., 16: 113 - 127, 2002 [23 ]李遠哲、蕭新煌《傑出學者給年輕學子的67封信》天下文化出版 社發行 [24 ] Martí -Renom M A, Stuar t A C, Fiser A, Sánche z R, Melo F and Šali, A.Compara tive protein s t ructure mo deling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 291 - 325. [25 ] Laskowski R A, MacArthur M W, Moss D S and Thornton J M. PROCHECK: a program to check the s tereochemical quality of protein s t ructures. J. Appl. Cryst., 1993, 26, 283 - 291. [26 ]Al -Lazikani B, Jung J, Xiang Z and Honig B. Protein s t ructure prediction. Curr. Opin. in Chem. Biol., 2001, 5, 51 -56. [27 ]Abdel -Rahman S, Kearns GL Single oral dose escalation p ha rmacokinetics of pleconaril capsules in adult s. J Clin Pharmacol 1999; 39: 613 - 618 [28 ] Huang E S., Koehl P, Levitt M, Pappu R V and Ponder J W. Accuracy of side - chain prediction upon nea r - native protein backbones generated by ab initio folding methods . Proteins, 1998, 33, 204 - 217. [29 ]Luthy R, Bowie J U and Eisenberg D. Asses sment of protein mo dels with three - dimensional profiles. Nature, 1992, 356, 83 - 85. [30 ]Guex N, Diemand A and Peitsch M C. Protein modelling for all. Trends Biochem. Sci., 1999, 24,364 - 367. [31 ]蛋白質三級結構預測之同源模擬編輯:孫慶姝 [32 ]Muckelbauer, J. K., Kremer, M., Minor, I., Tong, L., Zlotnick, A., Johnson, J. E., Rossmann, M. G.: .The s t ructure determination of Coxsackievirus B3 to 3.5Å resolution. Acta Crystallogr D Biol Crystallogr 51 pp. 871 (1995) [33 ]Filman, D. J., Wien, M. W., Cunningham, J. A., Bergelson, J. M., Hogle, J. M.: Structure determination of echovirus 1. Acta Crystallogr D Biol Crystallogr. 54 p p. 1261 (1998) [34 ]Colovos C, Yeates TO.Verification of protein s t ructures: pat terns of nonbonded atomic interactions. Protein Sci. 1993 Sep;2(9):1511 - 9. [35 ]ht tp: / / 163.23.209.240 /micro /id NH0925538004 sid 914294 cfn 0 / id NH0925538005 auc 古美雲 tic 利用二維電泳法分析鼠腦之後突觸質密區(PSD)與其主要蛋白α-CaMKⅡ adc 張兗君 ty 碩士 sc 國立清華大學 dp 分子醫學研究所 yr 92 lg 中文 pg 81 kwc 二維電泳 kwc 後突觸質密區 kwc 磷酸化酵素 kwc 麩胺酸受器 kwc 西方點漬法 kwc 銀染色法 abc Postsynaptic density (PSD) 是一個細緻的圓盤狀結構,它位於後突觸膜的下方,與調控後突觸的訊息傳遞有關,並且經由調控突觸區域的活性,PSD被相信與學習和記憶有所關聯。之前有許多研究,利用不同的方法來研究PSD的組成,發現其中含有多種蛋白,包括glutamate receptors、 scaffold proteins 和 signaling proteins等等,近年來利用高效率及高解析度的質譜儀系統,現已分析出近500種PSD的組成蛋白。我們實驗室利用不同pH值範圍與不同濃度的二維電泳膠片,分做四個區域來研究PSD組成蛋白在二維膠片上的分布,發現到有超過600個具再現性protein spots的表現,相信可能仍有許多未知的PSD組成蛋白尚未被發現。而我們在二維電泳方面的研究,亦大為改善PSD組成蛋白在鹼性pI值與低分子量區域的分析效果。另外,借助MALDI-TOF的分析,我們做了八個major protein spots的鑑定,發現它們表現在2-D gel的pI/MW值與MW的實際值和pI的理論計算值都很接近。α-CaMKⅡ是PSD中的主要蛋白之一,過去的研究沒有明確的找出它在2-D gel上的位置,我們原本想利用二維電泳配合Western Blot做α-CaMKⅡ的定位,卻發現α-CaMKⅡ在不同pH值的溶液中,表現在膠片上的量不同。於是我們做了溶解度測試的實驗,發現pH6-11 IPG buffer是促成α-CaMKⅡ有效溶解的主因。未來我們可以利用pH6-11 IPG buffer配合改良的二維電泳條件,以期正確定位出α-CaMKⅡ在2-D gel的位置,這將有助於了解α-CaMKⅡ不同的磷酸化狀態,並且推測α-CaMKⅡ是如何調控與PSD之間的關係。 tc 摘要 壹、 前言……………………………………………………………….1 貳、 材料與方法……………………………………………….……..10 (一) 藥品與材料 ……………………………..…………….…….10 (二) PSD的純化…………………………………….………….…10 (三) 蛋白質濃度測定……………………………………….……..14 (四) 二維電泳法(two-dimensional gel electrophoresis)…………..14 (五) 銀染色法(Silver stain)……………………………….…….…18 (六) Coomassie Blue染色法…………………………..…………..19 (七) ProtoGold染色法……………………………………………..20 (八) 膠體內蛋白質分解(In-gel digestion for silver stain)……...…20 (九) 去染色(destain) 和西方點漬法(Western Blot)……………...21 參、 結果………………………………………………………………23 (一) 在pH4-7,8.5% 2-D gel的部分…………………………...23 (二) 在pH4-7,12% 2-D gel的部分……………………………23 (三) 在pH6-11,8.5% 2-D gel的部分……………………….…24 (四) 在pH6-11,12% 2-D gel的部分…………………………..25 (五) 四個區域2-D gel上protein spots的統計………………..….26 (六) protein spots的鑑定…………………………………………..26 (七) 利用western blot找出α-CaMKⅡ在2-D gel上的位置…….27 (八) 在pH4-7 rehydration solution和pH6-11 lysis solution中α-CaMKⅡ的溶解度不同……………………………….……28 (九) pH 6-11 IPG buffer是提高α-CaMKⅡ溶解度的主因………29 肆、 討論…………………………………………………………..…..31 (一) PSD組成蛋白的研究…………………………………….…...31 (二) α-CaMKⅡ的溶解度對於二維電泳分析的限制………..……33 伍、參考文獻………………………………………………………..…35 圖表集……………………………………………………………..……45 Appendix Ⅰ…………………………………………………………….77 Appendix Ⅱ…………………………………………………………….78 Appendix Ⅲ………………………………………………………….…79 Appendix Ⅳ…………………………………………………………….80 Appendix Ⅴ……………………………………………...……………..81rf Apperson ML, Moon IS, Kennedy MB. (1996) Characterization of densin-180, a new brain-specific synaptic protein of the O-sialoglycoprotein family. J Neurosci. 16, 6839-6852. Barria A, Muller D, Derkach V, Griffith LC, Soderling TR. (1997) Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science. 276, 2042-2045. Beesley PW, Mummery R, Tibaldi J. (1995) N-cadherin is a major glycoprotein component of isolated rat forebrain postsynaptic densities. J Neurochem. 64, 2288-2294. Biederer T, Sudhof TC. (2000) Mints as adaptors. Direct binding to neurexins and recruitment of munc18. J Biol Chem. 275, 39803-39806. Blitz AL, Fine RE. (1974) Muscle-like contractile proteins and tubulin in synaptosomes. Proc Natl Acad Sci U S A. 71, 4472-4476. Blomberg F, Cohen RS, Siekevitz P. (1977) The structure of postsynaptic densities isolated from dog cerebral cortex. II. Characterization and arrangement of some of the major proteins within the structure. J Cell Biol. 74, 204-225. Boeckers, T. M., Bockmann, J., Kreutz, M. R., and Gundelfinger, E. D. (2002) ProSAP/Shank proteins ­a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease. J Neurochem. 81, 903-910 Bradford MM. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72, 248-254. Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, Wu Z, Huang F, Xia H, Peters MF, Froehner SC, Bredt DS. (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell. 84, 757-767. Brenman JE, Christopherson KS, Craven SE, McGee AW, Bredt DS. (1996) Cloning and characterization of postsynaptic density 93, a nitric oxide synthase interacting protein. J Neurosci. 16, 7407-7415. Caceres, A., Binder, L.I., Payne, M.R., Bender, P., Rebhun, L. and Steward, O. (1984) Differential subcellular localization of tubulin and the microtubule- associated protein MAP2 in brain tissues as revealed by immunocytochemistry with monoclonal hybridoma antibodies. J. Neurosci. 4, 394-410. Caceres, A., Payne, M.R., Binder, L.I. and Steward, O. (1983) Immuno- cytochemical localization of actin and microtubule-associated protein MAP2 in dendritic spines. Proc. Natl. Acad. Sci. USA. 80, 1738-1742. Carlin RK, Bartelt DC, Siekevitz P. (1983) Identification of fodrin as a major calmodulin-binding protein in postsynaptic density preparations. J Cell Biol. 96, 443-448. Carlin, R.K., Grab, D.J., Cohen, R.S. and Siekevitz, P. (1980) Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities. J. Cell Biol. 86, 831-843. Carlin, R.K., Grab D.J. and Siekevitz, P. (1982) Postmortem accumulation of tubulin in postsynaptic density preparations. J. Neurochem. 38, 94-100. Carlin RK, Siekevitz P. (1984) Characterization of Na+-independent GABA and flunitrazepam binding sites in preparations of synaptic membranes and postsynaptic densities isolated from canine cerebral cortex and cerebellum. J Neurochem. 43, 1011-1007. Carr DW, Stofko-Hahn RE, Fraser ID, Cone RD, Scott JD. (1992) Localization of the cAMP-dependent protein kinase to the postsynaptic densities by A-kinase anchoring proteins. Characterization of AKAP 79. J Biol Chem. 267, 16816-19823. Chen, H. J., RojasSoto, M., Oguni, A., and Kennedy, M. B. (1998) A synaptic RasGTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron. 20, 895-904. Cho, K. O., Hunt, C. A., and Kennedy, M. B. (1992) The rat brain postsynaptic density fraction contains a homolog of the Drosophila discslarge tumor suppressor protein. Neuron. 9, 929-942. Cohen RS, Blomberg F, Berzins K, Siekevitz P. (1977) The structure of postsynaptic densities isolated from dog cerebral cortex. I. Overall morphology and protein composition. J Cell Biol. 74, 181-203. Cohen RS, Siekevitz P. (1978) Form of the postsynaptic density. A serial section study. J Cell Biol. 78, 36-46. Colonnier M. (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res. 9, 268-287. Condorelli DF, Nicoletti VG, Barresi V, Conticello SG, Caruso A, Tendi EA, Giuffrida Stella AM. (1999) Structural features of the rat GFAP gene and identification of a novel alternative transcript. J Neurosci Res. 56, 219-228. Cotman CW, Banker G, Churchill L, Taylor D. (1974) Isolation of postsynaptic densities from rat brain. J Cell Biol. 63, 441-455. Dong H, O'Brien RJ, Fung ET, Lanahan AA, Worley PF, Huganir RL. (1997) GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature. 386, 279-284. Dosemeci A, Reese TS. (1995) Effect of calpain on the composition and structure of postsynaptic densities. Synapse. 20, 91-97. Dosemeci A, Reese TS, Petersen J, Tao-Cheng JH. (2000) A novel particulate form of Ca2+/calmodulin-dependent [correction of Ca2+/CaMKII-dependent ] protein kinase II in neurons. J Neurosci. 20, 3076-3084. Elgersma Y, Fedorov NB, Ikonen S, Choi ES, Elgersma M, Carvalho OM, Giese KP, Silva AJ. (2002) Inhibitory autophosphorylation of CaMKII controls PSD association, plasticity, and learning. Neuron. 36, 493-505. Faddis BT, Hasbani MJ, Goldberg MP. (1997) Calpain activation contributes to dendritic remodeling after brief excitotoxic injury in vitro. J Neurosci. 17, 951-959. Fagg, G.E. and Matus, A. (1984) Selective association of N-methyl aspartate and quisqualate types of L-glutamate receptor with brain postsynaptic densities. Proc. Natl. Acad. Sci. USA. 81, 6876-6880. Fukunaga, K., Goto, S. and Miyamoto, E. (1988) Immunohistochemical localization of Ca2+/calmodulin-dependent protein kinase Ⅱ in rat brain and various tissues. J. Neurochem. 51, 1070-1078. Furukawa K, Fu W, Li Y, Witke W, Kwiatkowski DJ, Mattson MP. (1997) The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. J Neurosci. 17, 8178-8186. Geinisman Y, deToledo-Morrell L, Morrell F. (1991) Induction of long-term potentiation is associated with an increase in the number of axospinous synapses with segmented postsynaptic densities. Brain Res. 566, 77-88. Geinisman, Y., Morrell, F. and de Toledo-Morrell, L. (1987) Synapses on dendritic shafts exhibit a perforated postsynaptic density. Brain Res. 422, 352-356. Goelet P, Castellucci VF, Schacher S, Kandel ER. (1986) The long and the short of long-term memory--a molecular framework. Nature. 6, 419-422. GRAY EG. (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat. 93, 420-433. Halpain S, Hipolito A, Saffer L. (1998) Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin. J Neurosci. 18, 9835-9844. Hata Y, Butz S, Sudhof TC. (1996) CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J Neurosci. 16, 2488-2494. Hayashi Y, Ishida A, Katagiri H, Mishina M, Fujisawa H, Manabe T, Takahashi T. (1997) Calcium- and calmodulin-dependent phosphorylation of AMPA type glutamate receptor subunits by endogenous protein kinases in the post-synaptic density. Brain Res Mol Brain Res. 46, 338-342. Heukeshoven J and Dernick R. (1985)Simplified method for silverstaining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis. 6, 103-112. Hunt CA, Schenker LJ, Kennedy MB. (1996) PSD-95 is associated with the postsynaptic density and not with the presynaptic membrane at forebrain synapses. J Neurosci. 16, 1380-1388. Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P., and Grant, S. G. (2000) Proteomic analysis of NMDA receptor adhesion protein signaling complexes. Nat Neurosci. 3, 661-669. Hsueh YP, Kim E, Sheng M. (1997) Disulfide-linked head-to-head multimerization in the mechanism of ion channel clustering by PSD-95. Neuron. 18, 803-814. Ichtchenko K, Hata Y, Nguyen T, Ullrich B, Missler M, Moomaw C, Sudhof TC. (1995) Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell. 81, 435-443. Irie M, Hata Y, Takeuchi M, Ichtchenko K, Toyoda A, Hirao K, Takai Y, Rosahl TW, Sudhof TC. (1997) Binding of neuroligins to PSD-95. Science. 277, 1511-1515. Jaffrey SR, Snowman AM, Eliasson MJ, Cohen NA, Snyder SH. (1998) CAPON: a protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95. Neuron. 20, 115-124. Jordan BA, Fernholz BD, Boussac M, Xu C, Grigorean G, Ziff EB, Neubert TA. (2004) Identification and verification of novel rodent postsynaptic density proteins. Mol Cell Proteomics. M400045-MCP200. Kaech, S., Fischer, M., Doll, T., and Matus, A. (1997) Isoform specificity in the relationship of actin to dendritic spines. J Neurosci. 17, 9565-9572. Kelly PT, Cotman CW. (1978) Synaptic proteins. Characterization of tubulin and actin and identification of a distinct postsynaptic density polypeptide. J Cell Biol. 79, 173-183. Kelly, P.T., McGuinness, T.L. and Greengard, P. (1984) Evidence that the major postsynaptic density protein is a component of a Ca2+/calmodulin-dependent protein kinase. Proc. Natl. Acad. Sci. USA. 81, 945-949. Kennedy M. B. (1993) The postsynaptic density. Curr. Opin. Neurobiol. 3, 732–737. Kennedy, M.B. (1997) The postsynaptic density at glutamatergic synapses. TINS. 20, 264-268. Kennedy, M.B. (1998) Signal transduction molecules at the glutamatergic postsynaptic membrane. Brain Res Brain Res Rev. 26, 243-57. Review. Kennedy, M. B. (2000) Signal-processing machines at the postsynaptic density. Science. 290, 750–754 Kennedy, M.B., Bennett, M.K. and Erondu, N.E. (1983) Biochemical and immunochemical evidence that the “major postsynaptic density protein” is a calmodulin-dependent protein kinase. Proc. Natl. Acad. Sci. USA. 80, 7357-7361. Kim E, Cho KO, Rothschild A, Sheng M. (1996) Heteromultimerization and NMDA receptor-clustering activity of Chapsyn-110, a member of the PSD-95 family of proteins. Neuron. 17, 103-113. Kim E, Niethammer M, Rothschild A, Jan YN, Sheng M. (1995) Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases. Nature. 378, 85-88. Kim, J. H., Liao, D., Lau, L. F., and Huganir, R. L. (1998) SynGAP: a synaptic RasGAP that associates with the PSD95/SAP90 protein family. Neuron. 20, 683-691. Kim TW, Wu K, Xu JL, Black IB. (1992) Detection of dystrophin in the postsynaptic density of rat brain and deficiency in a mouse model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A. 89, 11642-33644. Kornau HC, Schenker LT, Kennedy MB, Seeburg PH. (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science. 269, 1737-1740. Laemmli UK. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680-685. Landis DM, Reese TS. (1974) Differences in membrane structure between excitatory and inhibitory synapses in the cerebellar cortex. J Comp Neurol. 1, 93-125. Landis, D.M.D., Weinstein, L.A. and Reese, T.S. (1987) Substructure in the postsynaptic density of purkinje cell dendritic spines revealed by rapid freezing and etching. Synapse. 1, 552-558. Lei S, Czerwinska E, Czerwinski W, Walsh MP, MacDonald JF. (2001) Regulation of NMDA receptor activity by F-actin and myosin light chain kinase. J Neurosci. 21, 8464-8472. Lidov HG, Byers TJ, Watkins SC, Kunkel LM. (1990) Localization of dystrophin to postsynaptic regions of central nervous system cortical neurons. Nature. 348, 725-728. Li KW, Hornshaw MP, Van Der Schors RC, Watson R, Tate S, Casetta B, Jimenez CR, Gouwenberg Y, Gundelfinger ED, Smalla KH, Smit AB. (2004) Proteomics analysis of rat brain postsynaptic density. Implications of the diverse protein functional groups for the integration of synaptic physiology. J Biol Chem. 279, 987-1002. Lujan, R., Nusser, Z., Roberts, J. D., Shigemoto, R., and Somogyi, P. (1996) Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur J Neurosci. 8, 1488-1500. Luscher C, Nicoll RA, Malenka RC, Muller D. (2000) Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat Neurosci. 3, 545-550. Matus A, Ackermann M, Pehling G. (1981) Regularity and differentiation within the structure of brain postsynaptic densities. J Neurocytol. 10, 889-896. Matus A, Pehling G, Ackermann M, Maeder J. (1980) Brain postsynaptic densities: the relationship to glial and neuronal filaments. J Cell Biol. 87, 346-359. Matus AI, Taff-Jones DH. (1978) Morphology and molecular composition of isolated postsynaptic junctional structures. Proc R Soc Lond B Biol Sci. 203, 135-151. Matus AI, Walters BB. (1975) Ultrastructure of the synaptic junctional lattice isolated from mammalian brain. J Neurocytol. 4, 369-375. Monahan JB, Michel J. (1987) Identification and characterization of an N-methyl-D-aspartate-specific L-[3H ]glutamate recognition site in synaptic plasma membranes. J Neurochem. 48, 1699-1708. Moon, I.S., Apperson, M.L. & Kennedy, M.B. (1994) The major tyrosine-phosphorylated protein in the postsynaptic density fraction is N-methyl-D-aspartate receptor subunit 2B. Proc. Natl. Acad. Sci. USA. 91, 3954–3958. Muller BM, Kistner U, Kindler S, Chung WJ, Kuhlendahl S, Fenster SD, Lau LF, Veh RW, Huganir RL, Gundelfinger ED, Garner CC. (1996) SAP102, a novel postsynaptic protein that interacts with NMDA receptor complexes in vivo. Neuron. 17, 255-265. Mummery R, Sessay A, Lai FA, Beesley PW. (1996) Beta-dystroglycan: subcellular localisation in rat brain and detection of a novel immunologically related, postsynaptic density-enriched protein. J Neurochem. 66, 2455-2459. Nguyen T, Sudhof TC. (1997) Binding properties of neuroligin 1 and neurexin 1beta reveal function as heterophilic cell adhesion molecules. J Biol Chem. 272, 26032-26039. Niethammer, M., Kim, E., and Sheng, M. (1996) Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD95 family of membraneassociated guanylate kinases. J Neurosci. 16, 2157-2163. Ouimet, C.C., McGuinness, T.L. and Greengard P. (1984) Immunocytochemical localization of calcium/calmodulin-dependent protein kinase Ⅱ in rat brain. Proc. Natl. Acad. Sci. USA. 81, 5604-5608. Peng J, Kim MJ, Cheng D, Duong DM, Gygi SP, Sheng M. (2004) Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J Biol Chem. 279, 21003-21011. Sabatini, B. L., and Svoboda, K. (2000) Analysis of calcium channels in single spines using optical fluctuation analysis. Nature 408, 589-593. Satoh, K., Takeuchi, M., Oda, Y., DeguchiTawarada, M., Sakamoto, Y., Matsubara, K., Nagasu, T., and Takai, Y. (2002) Identification of activityregulated proteins in the postsynaptic density fraction. Genes Cells. 7, 187-197. Sheng M. (2001) Molecular organization of the postsynaptic specialization. Proc. Natl. Acad. Sci. U.S.A. 98, 7058–7061. Sheng M. and Sala C. (2001) PDZ domains and the organization of supramolecular complexes. Annu. Rev. Neurosci. 24, 1–29. Shevchenko A, Wilm M, Vorm O, Mann M. (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 68, 850-858. Srivastava S, Osten P, Vilim FS, Khatri L, Inman G, States B, Daly C, DeSouza S, Abagyan R, Valtschanoff JG, Weinberg RJ, Ziff EB. (1998) Novel anchorage of GluR2/3 to the postsynaptic density by the AMPA receptor-binding protein ABP. Neuron. 21, 581-591. Strader CD, Pickel VM, Joh TH, Strohsacker MW, Shorr RG, Lefkowitz RJ, Caron MG. (1983) Antibodies to the beta-adrenergic receptor: attenuation of catecholamine-sensitive adenylate cyclase and demonstration of postsynaptic receptor localization in brain. Proc Natl Acad Sci U S A. 80, 1840-1844. Strack S, Colbran RJ. (1998) Autophosphorylation-dependent targeting of calcium/ calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl- D-aspartate receptor. J Biol Chem. 273, 20689-20692. Suzuki, T., Okumura-Noji, K., Tanaka, R., Ogura, A., Kyoko, N., Kudo, Y. and Tada, T. (1993) Characterization of protein kinase C activities in postsynaptic density fractions prepared from cerebral cortex, hippocampus, and cerebellum. Brain Res. 619, 69-75. Togashi, H., Abe, K., Mizoguchi, A., Takaoka, K., Chisaka, O., and Takeichi, M. (2002) Cadherin regulates dendritic spine morphogenesis. Neuron. 35, 77-89. Toni N, Buchs PA, Nikonenko I, Povilaitite P, Parisi L, Muller D. (2001) Remodeling of synaptic membranes after induction of long-term potentiation. J Neurosci. 21, 6245-6251. Vinade L, Petersen JD, Do K, Dosemeci A, Reese TS. (2001) Activation of calpain may alter the postsynaptic density structure and modulate anchoring of NMDA receptors. Synapse. 40, 302-309. Walikonis, R. S., Jensen, O. N., Mann, M., Provance, D. W., Jr., Mercer, J. A., and Kennedy, M. B. (2000) Identification of proteins in the postsynaptic density fraction by mass spectrometry. J Neurosci. 20, 4069-4080. Walsh, M. J., and Kuruc, N. (1992) The postsynaptic density: constituent and associated proteins characterized by electrophoresis, immunoblotting, and peptide sequencing. J Neurochem. 59, 667-678. Walters BB, Matus AI. (1975) Tubulin in postynaptic junctional lattice. Nature. 257, 496-498. Westenbroek RE, Ahlijanian MK, Catterall WA. (1990) Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature. 347, 281-284. Wolf M, Burgess S, Misra UK, Sahyoun N. (1986) Postsynaptic densities contain a subtype of protein kinase C. Biochem Biophys Res Commun. 140, 691-698. Wu K, Carlin R, Sachs L, Siekevitz P. (1985) Existence of a Ca2+-dependent K+ channel in synaptic membrane and postsynaptic density fractions isolated from canine cerebral cortex and cerebellum, as determined by apamin binding. Brain Res. 360, 183-194. Wyszynski M, Lin J, Rao A, Nigh E, Beggs AH, Craig AM, Sheng M. (1997) Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature. 385, 439-442. Xia J, Zhang X, Staudinger J, Huganir RL. (1999) Clustering of AMPA receptors by the synaptic PDZ domain-containing protein PICK1. Neuron. 22, 179-187. Yamauchi T. (2002) Molecular constituents and phosphorylation dependent regulation of the post-synaptic density. Mass Spectrometry Rev. 21, 266–286. Yoshimura Y, Sogawa Y, Yamauchi T. (1999) Protein phosphatase 1 is involved in the dissociation of Ca2+/calmodulin-dependent protein kinase II from postsynaptic densities. FEBS Lett. 446, 239-242. Yoshimura Y, Yamauchi Y, Shinkawa T, Taoka M, Donai H, Takahashi N, Isobe T, Yamauchi T. (2004) Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromatography-tandem mass spectrometry. J Neurochem. 88, 759-768. Zagon IS, Higbee R, Riederer BM, Goodman SR. (1986) Spectrin subtypes in mammalian brain: an immunoelectron microscopic study. J Neurosci. 6, 2977-2986. Ziff, E.B. (1997) Enlightening the postsynaptic density. Neuron. 19, 1163-1174. 賴森林 (1998) 後突觸質密區結構之研究-蛋白質間雙硫鍵的形成與影響 國立清華大學生命科學所碩士論文id NH0925538005 sid 914204 cfn 0 / id NH0925538006 auc 鄭琇穗 tic 探討人類小熱休克蛋白質HspB3與Actin交互作用的區域 adc 張晃猷博士 ty 碩士 sc 國立清華大學 dp 分子醫學研究所 yr 92 lg 中文 pg 73 kwc 熱休克蛋白 kwc 小熱休克蛋白 kwc 酵母菌雙雜交系統 abc 本實驗室先前選殖出屬於小熱休克蛋白家族中的一員HspB3,並利用融合瘤技術製得H469E2G單株抗體。藉由免疫轉漬法測得HspB3主要表現在大白鼠的骨骼肌與心臟,其中以心臟的表現量較高。隨後利用酵母菌雙雜交系統的方法,對人類心臟cDNA基因庫進行篩選,確定HspB3能夠與actin相結合作用。本實驗的目的即在於尋找HspB3與actin交互作用的區域,經由胺基酸點突變與一系列胺基酸序列刪除分析,發現在HspB3主要是利用第25到36個胺基酸的部位與actin作用,在actin主要是利用第322到337個胺基酸的部位與HspB3作用。我們隨後利用共軛焦顯微鏡偵測細胞內HspB3與actin結合情形,在RD細胞中分別轉染野生型HspB3與突變型HspB3 (HspB3/△25~36aa) 36~48小時後,發現野生型HspB3能與actin細胞骨架完整的結合在一起,而突變型HspB3與actin細胞骨架結合的程度受到影響。另外在細胞型態上的觀察,當大量表現野生型與突變型的HspB3在RD細胞中,突變型HspB3的表現確實影響到RD細胞膜的完整性。所以,藉由本論文所得到之資訊,我們除了能夠提供HspB3與actin結合的訊息外,利用共軛焦顯微鏡偵測肌肉細胞中兩個蛋白質作用,推斷其具有獨特的生理功能。 tc 目 錄 頁次 中文摘要-------------------------------------------Ⅰ 英文摘要-------------------------------------------Ⅱ 縮寫表---------------------------------------------Ⅲ 目錄-----------------------------------------------Ⅴ 一、前言-------------------------------------------1 二、材料與方法-------------------------------------10 三、實驗結果---------------------------------------29 四、討論-------------------------------------------39 五、參考文獻---------------------------------------46 圖表-----------------------------------------------53 附錄-----------------------------------------------71rf 五、參考文獻 Alonso, S., A. Minty, Y. Bourlet, and M. Buckingham. 1986. Comparison of three actin-coding sequences in the mouse; evolutionary relationships between the actin genes of warm-blooded vertebrates. J Mol Evol. 23:11-22. An, S.S., B. Fabry, M. Mellema, P. Bursac, W.T. Gerthoffer, U.S. Kayyali, M. Gaestel, S.A. Shore, and J.J. Fredberg. 2004. Role of heat shock protein 27 in cytoskeletal remodeling of the airway smooth muscle cell. J Appl Physiol. 96:1701-13. Andley, U.P., S. Mathur, T.A. Griest, and J.M. Petrash. 1996. Cloning, expression, and chaperone-like activity of human alphaA-crystallin. J Biol Chem. 271:31973-80. Arrigo, A.P. 1990. Tumor necrosis factor induces the rapid phosphorylation of the mammalian heat shock protein hsp28. Mol Cell Biol. 10:1276-80. Arrigo, A.P. 1998. Small stress proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. Biol Chem. 379:19-26. Beall, A.C., K. Kato, J.R. Goldenring, H. Rasmussen, and C.M. Brophy. 1997. Cyclic nucleotide-dependent vasorelaxation is associated with the phosphorylation of a small heat shock-related protein. J Biol Chem. 272:11283-7. Bennardini, F., A. Wrzosek, and M. Chiesi. 1992. Alpha B-crystallin in cardiac tissue. Association with actin and desmin filaments. Circ Res. 71:288-94. Benndorf, R., X. Sun, R.R. Gilmont, K.J. Biederman, M.P. Molloy, C.W. Goodmurphy, H. Cheng, P.C. Andrews, and M.J. Welsh. 2001. HSP22, a new member of the small heat shock protein superfamily, interacts with mimic of phosphorylated HSP27 ((3D)HSP27). J Biol Chem. 276:26753-61. Boelens, W.C., and W.W. de Jong. 1995. alpha-Crystallins, versatile stress-proteins. Mol Biol Rep. 21:75-80. Boelens, W.C., M.A. Van Boekel, and W.W. De Jong. 1998. HspB3, the most deviating of the six known human small heat shock proteins. Biochim Biophys Acta. 1388:513-6. Cao, L.G., G.G. Babcock, P.A. Rubenstein, and Y.L. Wang. 1992. Effects of profilin and profilactin on actin structure and function in living cells. J Cell Biol. 117:1023-9. Caspers, G.J., J.A. Leunissen, and W.W. de Jong. 1995. The expanding small heat-shock protein family, and structure predictions of the conserved "alpha-crystallin domain". In J Mol Evol. Vol. 40. 238-48. Ciechanover, A. 2001. Ubiquitin-mediated degradation of cellular proteins: why destruction is essential for construction, and how it got from the test tube to the patient's bed. In Isr Med Assoc J. Vol. 3. 319-27. Ehrnsperger, M., C. Hergersberg, U. Wienhues, A. Nichtl, and J. Buchner. 1998. Stabilization of proteins and peptides in diagnostic immunological assays by the molecular chaperone Hsp25. In Anal Biochem. Vol. 259. 218-25. Fontaine, J.M., J.S. Rest, M.J. Welsh, and R. Benndorf. 2003. The sperm outer dense fiber protein is the 10th member of the superfamily of mammalian small stress proteins. Cell Stress Chaperones. 8:62-9. Gaubin, Y., F. Vaissade, F. Croute, B. Beau, J. Soleilhavoup, and J. Murat. 2000. Implication of free radicals and glutathione in the mechanism of cadmium-induced expression of stress proteins in the A549 human lung cell-line. Biochim Biophys Acta. 1495:4-13. Glover, J.R., and S. Lindquist. 1998. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell. 94:73-82. Horwitz, J. 1992. Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A. 89:10449-53. Iwaki, A., T. Nagano, M. Nakagawa, T. Iwaki, and Y. Fukumaki. 1997. Identification and characterization of the gene encoding a new member of the alpha-crystallin/small hsp family, closely linked to the alphaB-crystallin gene in a head-to-head manner. Genomics. 45:386-94. Jagoe, R.T., and A.L. Goldberg. 2001. What do we really know about the ubiquitin-proteasome pathway in muscle atrophy? Curr Opin Clin Nutr Metab Care. 4:183-90. Jakob, U., M. Gaestel, K. Engel, and J. Buchner. 1993. Small heat shock proteins are molecular chaperones. J Biol Chem. 268:1517-20. Jia, Y., R.F. Ransom, M. Shibanuma, C. Liu, M.J. Welsh, and W.E. Smoyer. 2001. Identification and characterization of hic-5/ARA55 as an hsp27 binding protein. J Biol Chem. 276:39911-8. Jolly, C., and R.I. Morimoto. 2000. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst. 92:1564-72. Kabsch, W., and J. Vandekerckhove. 1992. Structure and function of actin. Annu Rev Biophys Biomol Struct. 21:49-76. Kappe, G., E. Franck, P. Verschuure, W.C. Boelens, J.A. Leunissen, and W.W. de Jong. 2003. The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones. 8:53-61. Kappe, G., P. Verschuure, R.L. Philipsen, A.A. Staalduinen, P. Van de Boogaart, W.C. Boelens, and W.W. De Jong. 2001. Characterization of two novel human small heat shock proteins: protein kinase-related HspB8 and testis-specific HspB9. In Biochim Biophys Acta. Vol. 1520. 1-6. Kato, H., Y. Liu, K. Kogure, and K. Kato. 1994a. Induction of 27-kDa heat shock protein following cerebral ischemia in a rat model of ischemic tolerance. In Brain Res. Vol. 634. 235-44. Kato, K., K. Hasegawa, S. Goto, and Y. Inaguma. 1994b. Dissociation as a result of phosphorylation of an aggregated form of the small stress protein, hsp27. J Biol Chem. 269:11274-8. Klemenz, R., A.C. Andres, E. Frohli, R. Schafer, and A. Aoyama. 1993. Expression of the murine small heat shock proteins hsp 25 and alpha B crystallin in the absence of stress. J Cell Biol. 120:639-45. Kozawa, O., H. Matsuno, M. Niwa, D. Hatakeyama, Y. Oiso, K. Kato, and T. Uematsu. 2002. HSP20, low-molecular-weight heat shock-related protein, acts extracellularly as a regulator of platelet functions: a novel defense mechanism. Life Sci. 72:113-24. Krief, S., J.F. Faivre, P. Robert, B. Le Douarin, N. Brument-Larignon, I. Lefrere, M.M. Bouzyk, K.M. Anderson, L.D. Greller, F.L. Tobin, M. Souchet, and A. Bril. 1999. Identification and characterization of cvHsp. A novel human small stress protein selectively expressed in cardiovascular and insulin-sensitive tissues. J Biol Chem. 274:36592-600. Lam, W.Y., S.K. Wing Tsui, P.T. Law, S.C. Luk, K.P. Fung, C.Y. Lee, and M.M. Waye. 1996. Isolation and characterization of a human heart cDNA encoding a new member of the small heat shock protein family--HSPL27. Biochim Biophys Acta. 1314:120-4. Lindquist, S., and E.A. Craig. 1988. The heat-shock proteins. Annu Rev Genet. 22:631-77. Mathur, S.K., L. Sistonen, I.R. Brown, S.P. Murphy, K.D. Sarge, and R.I. Morimoto. 1994. Deficient induction of human hsp70 heat shock gene transcription in Y79 retinoblastoma cells despite activation of heat shock factor 1. Proc Natl Acad Sci U S A. 91:8695-9. Mehlen, P., and A.P. Arrigo. 1994. The serum-induced phosphorylation of mammalian hsp27 correlates with changes in its intracellular localization and levels of oligomerization. Eur J Biochem. 221:327-34. Mehlen, P., K. Schulze-Osthoff, and A.P. Arrigo. 1996. Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. In J Biol Chem. Vol. 271. 16510-4. Merck, K.B., P.J. Groenen, C.E. Voorter, W.A. de Haard-Hoekman, J. Horwitz, H. Bloemendal, and W.W. de Jong. 1993. Structural and functional similarities of bovine alpha-crystallin and mouse small heat-shock protein. A family of chaperones. J Biol Chem. 268:1046-52. Morimoto, R.I. 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12:3788-96. Neufer, P.D., and I.J. Benjamin. 1996. Differential expression of B-crystallin and Hsp27 in skeletal muscle during continuous contractile activity. Relationship to myogenic regulatory factors. J Biol Chem. 271:24089-95. Oguro, A., T. Sakurai, M. Otawa, M. Okuno, and Y. Atomi. 2003. The content of heat shock protein 47 (HSP47), a collagen-specific stress protein, changes with gravitational conditions in skeletal muscle. Biol Sci Space. 17:206-7. Panasenko, O.O., M.V. Kim, S.B. Marston, and N.B. Gusev. 2003. Interaction of the small heat shock protein with molecular mass 25 kDa (hsp25) with actin. Eur J Biochem. 270:892-901. Ritossa, F.M. 1964. Experimental Activation of Specific Loci in Polytene Chromosomes of Drosophila. Exp Cell Res. 35:601-7. Rocnik, E., L.H. Chow, and J.G. Pickering. 2000. Heat shock protein 47 is expressed in fibrous regions of human atheroma and Is regulated by growth factors and oxidized low-density lipoprotein. In Circulation. Vol. 101. 1229-33. Rondeaux, P., S. Horman, P. Galand, and N. Mairesse. 1997. Effects of antisense hsp27 gene expression in osteosarcoma cells. In Vitro Cell Dev Biol Anim. 33:655-8. Sistonen, L., K.D. Sarge, B. Phillips, K. Abravaya, and R.I. Morimoto. 1992. Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol Cell Biol. 12:4104-11. Spector, A., R. Chiesa, J. Sredy, and W. Garner. 1985. cAMP-dependent phosphorylation of bovine lens alpha-crystallin. Proc Natl Acad Sci U S A. 82:4712-6. Stossel, T.P., C. Chaponnier, R.M. Ezzell, J.H. Hartwig, P.A. Janmey, D.J. Kwiatkowski, S.E. Lind, D.B. Smith, F.S. Southwick, H.L. Yin, and et al. 1985. Nonmuscle actin-binding proteins. Annu Rev Cell Biol. 1:353-402. Sugiyama, Y., A. Suzuki, M. Kishikawa, R. Akutsu, T. Hirose, M.M. Waye, S.K. Tsui, S. Yoshida, and S. Ohno. 2000b. Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during myogenic differentiation. J Biol Chem. 275:1095-104. Sun, X., J.M. Fontaine, J.S. Rest, E.A. Shelden, M.J. Welsh, and R. Benndorf. 2004. Interaction of human HSP22 (HSPB8) with other small heat shock proteins. J Biol Chem. 279:2394-402. Suzuki, A., Y. Sugiyama, Y. Hayashi, N. Nyu-i, M. Yoshida, I. Nonaka, S. Ishiura, K. Arahata, and S. Ohno. 1998. MKBP, a novel member of the small heat shock protein family, binds and activates the myotonic dystrophy protein kinase. J Cell Biol. 140:1113-24. Taylor, A., H.P. Erba, G.E. Muscat, and L. Kedes. 1988. Nucleotide sequence and expression of the human skeletal alpha-actin gene: evolution of functional regulatory domains. Genomics. 3:323-36. Tessier, D.J., P. Komalavilas, A. Panitch, L. Joshi, and C.M. Brophy. 2003. The small heat shock protein (HSP) 20 is dynamically associated with the actin cross-linking protein actinin. J Surg Res. 111:152-7. Turoverov, K.K., A.G. Biktashev, S.Y. Khaitlina, and I.M. Kuznetsova. 1999. The structure and dynamics of partially folded actin. Biochemistry. 38:6261-9. van Montfort, R.L., E. Basha, K.L. Friedrich, C. Slingsby, and E. Vierling. 2001. Crystal structure and assembly of a eukaryotic small heat shock protein. In Nat Struct Biol. Vol. 8. 1025-30. Verschuure, P., Y. Croes, I.P.R. van den, R.A. Quinlan, W.W. de Jong, and W.C. Boelens. 2002. Translocation of small heat shock proteins to the actin cytoskeleton upon proteasomal inhibition. J Mol Cell Cardiol. 34:117-28. Wang, Y., A. Xu, and G.J. Cooper. 1999. Phosphorylation of P20 is associated with the actions of insulin in rat skeletal and smooth muscle. Biochem J. 344 Pt 3:971-6. Wu, C. 1995. Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol. 11:441-69. Yahara, I. 1996. Stress-inducible cellular responses. Introduction. Exs. 77:XI-XII. Zagorianakou, N., E. Ioachim, A. Mitselou, E. Kitsou, P. Zagorianakou, G. Makrydimas, M. Salmas, and N.J. Agnantis. 2003. Immunohistochemical expression of heat shock protein 27, in normal hyperplastic and neoplastic endometrium: correlation with estrogen and progesterone receptor status, p53, pRb and proliferation associated indices (PCNA, MIB1). In Eur J Gynaecol Oncol. Vol. 24. 299-304. 羅明德,私立長庚大學碩士論文,類小熱休克蛋白質cDNA的定序及其在細胞中的表現,中華民國八十七年。 吳欣蓉,國立清華大學碩士論文,SHSPL及RLP-1單株抗體之製備與應用,中華民國八十八年。 蔡靜宜,國立清華大學碩士論文,人類小熱休克蛋白質HSPB3之特性與功能分析,中華民國八十九年。 張家瑗,國立清華大學碩士論文,人類小熱休克蛋白質HSPB3與Actin交互作用的探討,中華民國八十九年。id NH0925538006 sid 914229 cfn 0 / id NH0925538007 auc 周文怡 tic 創傷弧菌高溶血突變株之鑑定與反應調節基因表現分析 adc 張晃猷 博士 ty 碩士 sc 國立清華大學 dp 分子醫學研究所 yr 92 lg 中文 pg 50 kwc 創傷弧菌 kwc 轉位子標定突變法 kwc 反應調節基因 abc 中文摘要 tc Contents Abstract (Chinese) i Abstract (English) ii Contents iv Table contents vii Figure contents viii Appendix content x Abbreviation xi Chapter 1. Introduction 1 1. Vibrio vulnificus 1 2. Biotypes 1 3. Host susceptibility 2 4. Clinical symptoms and treatment 3 5. virulence of V. vulnificus 4 6 Two component system 7 7 This study 9 Chapter 2. Materials and Methods 12 Bacterial strains and plasmids 12 Media, cultivation and storage of bacteria 12 Construction of Tn10 V. vulnificus YJ016 mutant libiary 12 Microbial sensitivity assays 12 Genomic DNA preparation and PCR 13 Southern hybridization 13 Bioinformatics analysis 14 Construction of expression plasmids of the response regulator 14 Expression of recombinant protein in E. coli 15 RNA preparation 15 RNA blotting 16 Preparation of 32P labeled probes 17 Hybridization of arrays and image analysis 17 Chapter 3. Results 19 Part 1 Isolation of Tn10 mutants of V. vulnificus 19 WY005 mutant has high hemolysis ability 19 WY005 mutant has a faster growth rate than the wild type 20 WY005 has a higher hemolytic activity under low-salt growth condition 20 Susceptiblity of V. vulnificus YJ016 and WY005 to antimicrobial agents 21 Southern blotting analysis and identification of the Tn10 insertion site in WY005 21 LF005 mutant doesn’t shown a high hemolytic activity 22 Part 2 Overexpression of 38 response regulators in E. coli 22 Part 3 Relative expression levels of the response regulators at different stress treatments 23 Chapter 4. Discussion 25 References 30 Tables and Figures 34 Appendix 50 Table contents Table1. Bacterial strains and plasmids used in this study…...34 Table2. Primers used in this study………………….35 Table3. The response regulator genes investigated in this study…………………………………………………………...36 Table4. Sensitivity of YJ016 and WY005 to antimicrobial agents………………………………………………………….37 Figure contents FIG.1. Hemolytic activity of WY005 and YJ016 on blood agar plate……………………………………….…………………..38 FIG.2. Growth curves of V. vulnificus YJ016 and WY005….39 FIG.3. Lysis of RBC’s by bacteria grown under different conditions……………………………….…………………….40 FIG.4. Sensitivity of V. vulnificus YJ016 and WY005 to antimicrobial agents…………………………………………..41 FIG.5. Southern blot analysis of the WY005 with differentrestrictionenzymes…………………………………...42 FIG.6. Schematic map of Tn10 and the flanking region…….43 FIG.7. Neucleotide sequence alignment of WY007 and pilT of Vibrio vulnificus YJ016……………………………………….44 FIG.8. Hemolytic activity of LF005 and YJ016 on blood agar plate……………………………………………………………45 FIG.9. 38 response regulator gene products amplification by PCR………………………………………………….….46 FIG.10. Expression of V. vulnificus response regulator genes in E. coli………………………………………………………....47 FIG.11. RNA dot blot ………………………………………48 FIG.12. Quantification of phoB and gilT gene expression….49 Appendix content Appendix 1. The pET101/D-TOPO expression vector……50rf REFRENCES 1. Amaro, C., and E. G. Biosca. 1996. Vibrio vulnificus biotype 2, pathogenic for eels, is also an opportunistic pathogen for humans. Appl Environ Microbiol 62:1454-7. 2. Amaro, C., E. G. Biosca, B. Fouz, A. E. Toranzo, and E. Garay. 1994. Role of iron, capsule, and toxins in the pathogenicity of Vibrio vulnificus biotype 2 for mice. Infect Immun 62:759-63. 3. Belitsky, B. R., and A. L. Sonenshein. 1997. Altered transcription activation specificity of a mutant form of Bacillus subtilis GltR, a LysR family member. J Bacteriol 179:1035-43. 4. Chen, C. J., D. M. Tobiason, C. E. Thomas, W. M. Shafer, H. S. Seifert, and P. F. Sparling. 2004. A mutant form of the Neisseria gonorrhoeae pilus secretin protein PilQ allows increased entry of heme and antimicrobial compounds. J Bacteriol 186:730-9. 5. Cornelissen, C. N., and P. F. Sparling. 1994. Iron piracy: acquisition of transferrin-bound iron by bacterial pathogens. Mol Microbiol 14:843-50. 6. Gray, L. D., and A. S. Kreger. 1985. Purification and characterization of an extracellular cytolysin produced by Vibrio vulnificus. Infect Immun 48:62-72. 7. Helms, S. D., J. D. Oliver, and J. C. Travis. 1984. Role of heme compounds and haptoglobin in Vibrio vulnificus pathogenicity. Infect Immun 45:345-9. 8. Henikoff, S., G. W. Haughn, J. M. Calvo, and J. C. Wallace. 1988. A large family of bacterial activator proteins. Proc Natl Acad Sci U S A 85:6602-6. 9. Klontz, K. C., S. Lieb, M. Schreiber, H. T. Janowski, L. M. Baldy, and R. A. Gunn. 1988. Syndromes of Vibrio vulnificus infections. Clinical and epidemiologic features in Florida cases, 1981-1987. Ann Intern Med 109:318-23. 10. Koenig, K. L., J. Mueller, and T. Rose. 1991. Vibrio vulnificus. Hazard on the half shell. West J Med 155:400-3. 11. Kothary, M. H., and A. S. Kreger. 1987. Purification and characterization of an elastolytic protease of Vibrio vulnificus. J Gen Microbiol 133 ( Pt 7):1783-91. 12. Kumar, A., B. Grimes, N. Fujita, K. Makino, R. A. Malloch, R. S. Hayward, and A. Ishihama. 1994. Role of the sigma 70 subunit of Escherichia coli RNA polymerase in transcription activation. J Mol Biol 235:405-13. 13. Maier, B., L. Potter, M. So, C. D. Long, H. S. Seifert, and M. P. Sheetz. 2002. Single pilus motor forces exceed 100 pN. Proc Natl Acad Sci U S A 99:16012-7. 14. Makino, K., H. Shinagawa, M. Amemura, T. Kawamoto, M. Yamada, and A. Nakata. 1989. Signal transduction in the phosphate regulon of Escherichia coli involves phosphotransfer between PhoR and PhoB proteins. J Mol Biol 210:551-9. 15. Makino, K., H. Shinagawa, M. Amemura, and A. Nakata. 1986. Nucleotide sequence of the phoR gene, a regulatory gene for the phosphate regulon of Escherichia coli. J Mol Biol 192:549-56. 16. Makino, K., H. Shinagawa, and A. Nakata. 1985. Regulation of the phosphate regulon of Escherichia coli K-12: regulation and role of the regulatory gene phoR. J Mol Biol 184:231-40. 17. Merz, A. J., M. So, and M. P. Sheetz. 2000. Pilus retraction powers bacterial twitching motility. Nature 407:98-102. 18. Miyoshi, N., C. Shimizu, S. Miyoshi, and S. Shinoda. 1987. Purification and characterization of Vibrio vulnificus protease. Microbiol Immunol 31:13-25. 19. Moreno, M. L., and M. Landgraf. 1998. Virulence factors and pathogenicity of Vibrio vulnificus strains isolated from seafood. J Appl Microbiol 84:747-51. 20. Parkinson, J. S., and E. C. Kofoid. 1992. Communication modules in bacterial signaling proteins. Annu Rev Genet 26:71-112. 21. Perego, M., C. Hanstein, K. M. Welsh, T. Djavakhishvili, P. Glaser, and J. A. Hoch. 1994. Multiple protein-aspartate phosphatases provide a mechanism for the integration of diverse signals in the control of development in B. subtilis. Cell 79:1047-55. 22. Perego, M., and J. A. Hoch. 1996. Cell-cell communication regulates the effects of protein aspartate phosphatases on the phosphorelay controlling development in Bacillus subtilis. Proc Natl Acad Sci U S A 93:1549-53. 23. Perego, M., and J. A. Hoch. 1996. Protein aspartate phosphatases control the output of two-component signal transduction systems. Trends Genet 12:97-101. 24. Powell, J. L., A. C. Wright, S. S. Wasserman, D. M. Hone, and J. G. Morris, Jr. 1997. Release of tumor necrosis factor alpha in response to Vibrio vulnificus capsular polysaccharide in in vivo and in vitro models. Infect Immun 65:3713-8. 25. Rodrigues, D. P., R. V. Ribeiro, and E. Hofer. 1992. Analysis of some virulence factors of Vibrio vulnificus isolated from Rio de Janeiro, Brazil. Epidemiol Infect 108:463-7. 26. Russel, M. 1998. Macromolecular assembly and secretion across the bacterial cell envelope: type II protein secretion systems. J Mol Biol 279:485-99. 27. Sanders, D. A., B. L. Gillece-Castro, A. L. Burlingame, and D. E. Koshland, Jr. 1992. Phosphorylation site of NtrC, a protein phosphatase whose covalent intermediate activates transcription. J Bacteriol 174:5117-22. 28. Schell, M. A. 1993. Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47:597-626. 29. Schreier, H. J. 1993. Biosynthesis of glutamine and glutamate and assimilation of ammonia. In J. A. H. In A. L. Sonenshein, and R. Losick (ed.) (ed.), Bacillus subtilis and other gram-positive bacteria: biochemistry, physiology, and molecular genetics. American Society for Microbiology, Washington, D.C. 30. Schryvers, A. B., and I. Stojiljkovic. 1999. Iron acquisition systems in the pathogenic Neisseria. Mol Microbiol 32:1117-23. 31. Shapiro, R. L., S. Altekruse, L. Hutwagner, R. Bishop, R. Hammond, S. Wilson, B. Ray, S. Thompson, R. V. Tauxe, and P. M. Griffin. 1998. The role of Gulf Coast oysters harvested in warmer months in Vibrio vulnificus infections in the United States, 1988-1996. Vibrio Working Group. J Infect Dis 178:752-9. 32. Shimizu, T., W. Ba-Thein, M. Tamaki, and H. Hayashi. 1994. The virR gene, a member of a class of two-component response regulators, regulates the production of perfringolysin O, collagenase, and hemagglutinin in Clostridium perfringens. J Bacteriol 176:1616-23. 33. Shinagawa, H., K. Makino, M. Amemura, and A. Nakata. 1987. Structure and function of the regulatory genes for the phosphate regulon in Escherichia coli. In F. G. R. In A. Torriani-Gorini, S. Silver, A. Wright, and and E. Yagil, Phosphate metabolism and cellular regulation in microorganisms. American Society for Microbiology, Washington, D.C. 34. Simpson, L. M., V. K. White, S. F. Zane, and J. D. Oliver. 1987. Correlation between virulence and colony morphology in Vibrio vulnificus. Infect Immun 55:269-72. 35. Smith, G. C., and J. R. Merkel. 1982. Collagenolytic activity of Vibrio vulnificus: potential contribution to its invasiveness. Infect Immun 35:1155-6. 36. Stelma, G. N., Jr., A. L. Reyes, J. T. Peeler, C. H. Johnson, and P. L. Spaulding. 1992. Virulence characteristics of clinical and environmental isolates of Vibrio vulnificus. Appl Environ Microbiol 58:2776-82. 37. Tison, D. L., M. Nishibuchi, J. D. Greenwood, and R. J. Seidler. 1982. Vibrio vulnificus biogroup 2: new biogroup pathogenic for eels. Appl Environ Microbiol 44:640-6. 38. Veenstra, J., P. J. Rietra, J. Goudswaard, J. A. Kaan, P. H. van Keulen, and C. P. Stoutenbeek. 1993. [Extra-intestinal infections caused by Vibrio spp. in The Netherlands ]. Ned Tijdschr Geneeskd 137:654-7. 39. Wanner, B. L. 1996. Phosphorous assimilation and control of the phosphate regulon. In R. C. I. In F. C. Neidhardt, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger, Escherichia coli and Salmonella: cellular and molecular biology. American Society for Microbiology, Washington, D.C. 40. Weinberg, E. D. 1978. Iron and infection. Microbiol Rev 42:45-66. 41. Wright, A. C., L. M. Simpson, and J. D. Oliver. 1981. Role of iron in the pathogenesis of Vibrio vulnificus infections. Infect Immun 34:503-7. 42. Wright, A. C., L. M. Simpson, J. D. Oliver, and J. G. Morris, Jr. 1990. Phenotypic evaluation of acapsular transposon mutants of Vibrio vulnificus. Infect Immun 58:1769-73. 43. Yoshida, S., M. Ogawa, and Y. Mizuguchi. 1985. Relation of capsular materials and colony opacity to virulence of Vibrio vulnificus. Infect Immun 47:446-51.id NH0925538007 sid 914233 cfn 0 / id NH0925538008 auc 林佳永 tic 胎鼠大腦神經元突觸之麩胺酸受器對鈣離子通透性研究 adc 張兗君 ty 碩士 sc 國立清華大學 dp 分子醫學研究所 yr 92 lg 中文 pg 39 kwc 麩胺酸受器 kwc 鈣離子 kwc 電生理 abc 摘要 tc 目 錄 壹、 緒論………………………………………1 貳、 實驗方法…………………………………8 參、 結果………………………………………16 肆、 討論………………………………………21 伍、 參考文獻…………………………………26 陸、 圖表集……………………………………31rf 伍、參考文獻 Ascher, P. and Nowak, L. (1986) Calcium permeability of the channels activated by N-methyl-D-aspartate (NMDA) in isolated mouse central neurones. J. Physiol. 377: 35p. Brewer G. J., Torricelli J. R., Evege E. K., Price P. J. (1993). Optimized survival of hippocampal neurons in B27-supplementd Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35: 567-576. Brewer G. J. (1995). Serum-free B27/ Neurobasal medium supports differentiated growth of neurons from the striatum nigra, septum, cerebral cortex, cerebellum, and denate gyrus. J. Neurosci. Res. 42: 674-683. Brewer G. J. (1997). Isolation and culture of adult rat hippocampal neurons. J. Neurosci. Methods 71: 143-155. Burnashev N, Khodorova A, Jonas P, Helm PJ, Wisden W, Monyer H, Seeburg PH, Sakmann B. (1992b). Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. Science. 256: 1566-70. Burnashev N, Schoepfer R, Monyer H, Ruppersberg JP, Gunther W, Seeburg PH, Sakmann B. (1992 ). Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor. Science. 257: 1415-9. Colquhoun D, Jonas P, Sakmann B. (1992). Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices. J Physiol. 458: 261-87. Cotman, C.W. and Iversen, L.L. (1987) Excitatory amino acid in the brain: focus on NMDA receptors. Trends Neurosci. 10: 263-265. Drian MJ, Bardoul M, Konig N. (2001). Blockade of AMPA/kainate receptors can either decrease or increase the survival of cultured neocortical cells depending on the stage of maturation. Neurochem Int. 38: 509-17. Gardette R, Faivre-Bauman A, Loudes C, Kordon C, Epelbaum J. (1995). Modulation by somatostatin of glutamate sensitivity during development of mouse hypothalamic neurons in vitro. Brain Res Dev Brain Res. 86: 123-33. Geiger JR, Melcher T, Koh DS, Sakmann B, Seeburg PH, Jonas P, Monyer H. (1995). Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron. 15: 193-204. Gilbertson TA, Scobey R, Wilson M. (1991). Permeation of calcium ions through non-NMDA glutamate channels in retinal bipolar cells. Science. 251: 1613-5. Hestrin S, Nicoll RA, Perkel DJ, Sah P (1990) Analysis of excitatory synaptic action in pyramidal cells using whole-cell recording from rat hippocampal slices. J Physiol (Lond) 422:203–225. Hestrin S. (1993). Different glutamate receptor channels mediate fast excitatory synaptic currents in inhibitory and excitatory cortical neurons. Neuron. 11: 1083-91. Hollmann M, Heinemann S. (1994). Cloned glutamate receptors. Annu Rev Neurosci. 17: 31-108. Hu GY. (1991). Effects of depolarization and QX-314 injection on slow prepotentials in rat hippocampal pyramidal neurons in vitro. Acta Physiol Scand 141: 235–240. Hu GY, Hvalby O, Lacaille JC, Piercey B, Ostberg T, Andersen P. (1991). Synaptically triggered action potentials begin as a depolarizing ramp in rat hippocampal neurons in vitro. J Physiol (Lond) 453: 663–87. Hu GY, Hvalby O, Lacaille JC, Piercey B, Ostberg T, Andersen P. (1992). Synaptically triggered action potentials begin as a depolarizing ramp in rat hippocampal neurons in vitro. J Physiol (Lond) 453: 663–687. Iino M, Ozawa S, Tsuzuki K. (1990). Permeation of calcium through excitatory amino acid receptor channels in cultured rat hippocampal neurones. J Physiol. 424: 151-65. Itazawa SI, Isa T, Ozawa S. (1997). Inwardly rectifying and Ca2+-permeable AMPA-type glutamate receptor channels in rat neocortical neurons. J Neurophysiol. 78: 2592-601. Johnson M, Perry RH, Piggott MA, Court JA, Spurden D, Lloyd S, Ince PG, Perry EK. (1996). Glutamate receptor binding in the human hippocampus and adjacent cortex during development and aging. Neurobiol Aging. 17: 639-51. Jonas P, Sakmann B. (1992) Glutamate receptor channels in isolated patches from CA1 and CA3 pyramidal cells of rat hippocampal slices. J Physiol. 455: 143-71. Jonas P, Racca C, Sakmann B, Seeburg PH, Monyer H (1994) Differences in calcium permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 12: 1281–89. Kumar SS, Bacci A, Kharazia V, Huguenard JR. (2002). A developmental switch of AMPA receptor subunits in neocortical pyramidal neurons. J Neurosci. 22: 3005-15. Kutsuwada, T., Kashiwabuchi, N., Mori, H., Sakimura, K., Kushiya, E., Araki, K., Meguro, H., Masaki, H., Kumanishi, T., Arakawa, M. and Mishina, M. (1992) Molecular diversity of the NMDA receptor channel. Nature 358: 36-41. MacPherson PA, Jones S, Pawson PA, Marshall KC, McBurney MW. (1997). P19 cells differentiate into glutamatergic and glutamate-responsive neurons in vitro. Neuroscience. 80: 487-99. Malenka, R.C. and Nicoll, R.A. (1993) NMDA-receptor-dependent synaptic plasticity:multiple forms and mechanisms. Trends Neurosci. 16: 521-527. Masu M, Nakajima Y, Moriyoshi K, Ishii T, Akazawa C, Nakanashi S. (1993). Molecular characterization of NMDA and metabotropic glutamate receptors. Ann N Y Acad Sci. 707 : 153-64. Mattson MP, Kater SB. (1987). Calcium regulation of neurite elongation and growth cone motility. J Neurosci. 7: 4034-43. Mattson MP, Dou P, Kater SB. (1988). Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons. J Neurosci. 8: 2087-100. Mayer, M.L., Wesbrook, G.L. and Guthrie, P.B. (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309 : 261-263. Mayer ML, Westbrook GL. (1987). Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol. 394: 501-27. Mori H, Masaki H, Yamakura T, Mishina M. (1992). Identification by mutagenesis of a Mg(2+)-block site of the NMDA receptor channel. Nature. 358: 673-5. Mori, H. and Mishina, M. (1995) Structure and function of the NMDA receptor channel. Neuropharmacol. 34: 1219-1293. Neher, E. (1992) Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol. 207: 123-31. Nettleton JS, Spain WJ. (2000). Linear to supralinear summation of AMPAmediated EPSPs in neocortical pyramidal neurons. J Neurophysiol 83: 3310–22. Otis TS, Raman IM, Trussell LO. (1995). AMPA receptors with high Ca2+ permeability mediate synaptic transmission in the avian auditory pathway. J Physiol. 482: 309-15. Ozawa S, Iino M, Tsuzuki K. (1991). Two types of kainate response in cultured rat hippocampal neurons. J Neurophysiol. 66: 2-11. Ozawa S, Iino M. (1993). Two distinct types of AMPA responses in cultured rat hippocampal neurons. Neurosci Lett. 155: 187-90. Pare D, Lang EJ. (1998). Calcium electrogenesis in neocortical pyramidal neurons in vivo. Eur J Neurosci. 10: 3164-70. Patneau D.K., Mayer M.L. (1990). Structure-activity relationships for amino acid transmitter candidates action at N-methyl-D-aspartate and quisqualate receptors. J. Neurosci. 10: 2385-2399. Pickard L, Noel J, Henley JM, Collingridge GL, Molnar E. (2000). Developmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons. J Neurosci. 20: 7922–31. Reh TA, Kljavin IJ. (1989). Age of differentiation determines rat retinal germinal cell phenotype: induction of differentiation by dissociation. J Neurosci. 9: 4179-89. Rohrbough J, Spitzer NC. (1999). Ca(2+)-permeable AMPA receptors and spontaneous presynaptic transmitter release at developing excitatory spinal synapses. J Neurosci. 19 : 8528-41. Sheng, M., Cummings, J., Roldan, L.A., Jan, Y.N. and Jan, L.Y. (1994) Changing subunit composition of heteromeric NMDA receptors during development of the rat cortex. Nature 368 : 144-147. Stuart GJ, Sakmann B. (1994). Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367: 69–72. Wyllie DJ, Cull-Candy SG. (1994). A comparison of non-NMDA receptor channels in type-2 astrocytes and granule cells from rat cerebellum. J Physiol. 475: 95-114. 林彥昌(2001)鼠大腦神經元發育早期興奮性突觸麩胺酸受器. 國立清華大學碩士論文. 鄭宜珊(2001)胎鼠大腦神經元發育早期之麩胺酸受器次級單位轉變. 國立清華大學碩士論文. 方怡之(2002)胎鼠大腦神經元麩胺酸受器對鈣離子通透性之研究. 國立清華大學碩士論文.id NH0925538008 sid 894246 cfn 0 / id NH0925538009 auc 林家漢 tic 豬關節軟骨中的蛋白質以及醣胺素之生化分析 adc 張兗君 ty 碩士 sc 國立清華大學 dp 分子醫學研究所 yr 92 lg 中文 pg 70 kwc 醣胺素 kwc 軟骨 kwc 蛋白體學 kwc 二維電泳 abc 我們使用豬的關節軟骨做為實驗模型,以不同溫度及時間對軟骨組織中的蛋白質以及醣胺素進行萃取,進而對萃取物中之蛋白質以及醣胺素成分進行定量及定性分析。 tc 中文摘要------------------------------------------i 英文摘要-----------------------------------------ii 謝誌--------------------------------------------iii 圖目錄--------------------------------------------v 表目錄------------------------------------------vii 附錄目錄---------------------------------------viii 壹、 引言-------------------------------------1 貳、 研究背景及目的---------------------------5 參、 材料與方法------------------------------10 肆、 結果與討論------------------------------26 伍、 未來展望--------------------------------41 陸、 參考文獻--------------------------------42 圖表集-------------------------------------------46 附錄---------------------------------------------64rf Adams ME, Hype about glucosamine. The Lancet 354, 353-354 (1999). Aigner T, McKenna L. Molecular pathology and pathobiology of osteoarthritis cartilage. Cell. Mol.Life.Sci. 59, 5-18 (2002). Aigner T, Loos S, Muller S, Sandell LJ, Unni KK, Kirchner T. Cell differentiation and matrix gene expression in mesenchymal chondrosarcomas. Am. J. Patho. 156, 1327-1335 (2000). Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P, Molecular Biology of the Cell, Fourth Edition, 1065 (Garland Science, 2002) Berkelman T, Stenstedt T, 2-D Electrophoresis using immobilized pH gradients- Principles and Methods, (Amersham Bioscience, 1998) Carney SL, in Proteoglycans, (ed. Chaplin MF and Kennedy JF.), Carbohydrate analysis : a practical approach, 97-141 (IRL press, 1987) Chevanne M, Caldini R, Manao G, Ruggiero M. Heparin binding peptides co-purify with glycosaminoglycans from human plasma. FEBS Letters 463, 121-124 (1999). Fife RS, Beckerman BK, Houser DS, Proctor C, Liepnieks J, Masudall I, McCarty DJ, Ryanll LM. Evidence that a 550,000-Dalton cartilage matrix glycoprotein is a chondrocyte membrane-associated protein closely related to ceruloplasmin. J. Biol. Chem. 268, 4407-4411 (1993). Fisher LW, Robey PG, Young MF, Termine JD. in Bone glycoproteins, (ed. Cunningham, L. W.), Methods in enzymology ;V.145,269-272 (Academic Press, 1987). Geng Y, Blanco FJ, Cornlisson M, Loyz M. Regulation of cyclooxygenase-2 expression in normal human articular chondrocyte. J Immunol. 155, 796-801 (1995). Hascall VC, Calabro A, Midura RJ, Yanagishita M. in Isolation and characterization of proteoglycans, (ed. Lennarz, W. J. & Hart, G. W.), Methods in enzymology V.230, 403-404 (Academic Press, 1994) Heinegard D, Sommarin Y, Hedbom E, Wieslander J, Larsson B. Assay of proteoglycan population using ararose-polyacryamide gel electrophoresis. Anal Biochem. 151, 41-48 (1985). Heinegard D, Larsson T, Sommarin Y, Franzen A, Paulsson M, Hedbom E. Two novel matrix proteins isolated from articular cartilage show wide distributions among connective tissues. J Biol Chem. 261, 13866-13872 (1986). Van den Hoogen BM, van Weeren PR, Lopes-Cardozo M, van Golde LMG, Barneveld A, van de lest CHA. A microtiter plate assay for the determination of uronic acids. Anal Biochem. 257, 107-111 (1998). Hou WS, Li Z, Gordon RE, Chan K, Klein MJ, Levy R, Keysser M, Keyszer G, Bromme D. Cathepsin K is a critical protease in synovial fibroblast-mediated collagen degradation. Am J Pathology 159, 2167-2177 (2001). Houpt J, McMillan R, Wein C, Paget-Dellio SD. Effect of glucosamine hydrochloride in the treatment of pain on osteoarthritis of the knee. J Rheumatol. 26, 2423-2430 (1999). Hyttinen MM, Arokoski JPA, Parkkinen JJ, Lammi MJ, Lapvetelainen T, Mauranen K, Kiraly K, Tammi MI, Helminen HJ. Age matters: collagen birefringence of superficial articular cartilage is increased in young guinea-pigs but decreased in older animals after identical physiological type of joint loading. Osteoarthritis and Cartilage 9, 694-701 (2001). Kendrew J. The encyclopedia of molecular biology, p366 (Blackwell science, 1994). van de Lest CHA, Versteeg EMM, Veerkamp JH, van Kuppevelt TH. Quantification and characterization of glycosaminoglycans at the nanogram level by a combined azure A-silver staining in agarose gels. Anal Biochem. 221, 356-361(1994). Lovekamp J, Vyavahare N. Periodate-mediated glycosaminoglycan stabilization in bioprosthetic heart valves. J Biomed Mater Res., 478-486 (2001). Moller HJ, Heinegard D, Poulsen JH. Combined alcian blue and silver staining of subnanogram quantities of proteoglycans and glycosaminoglycan in sodium dodecyl sulfate-polyacryamide gels. Anal. Biochem. 209, 169-175, (1993). Muir, H. The chondrocyte,architect of cartilage. Bio eaasys 17 no.12, 1039-1048 (1995). Neame PJ, Treep JT, Young CN. An 18 kDa Glycoprotein from Bovine Nasal Cartilage, J. Biol. Chem. 265, 9628-9633 (1990). Reginster JY, Deroisy R, Rovati LC, Lee RL, Lejeune E, Bruyere O, Giacovelli G, Henrotin Y, Dacre JE, Gossett C. Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomized placebo-controlled clinical trial. The Lancet 357, 251-256 (2001). Ruoslahti E, Engvall E. Extracellular matrix components, Methods in enzymology v.245, (Academic Press ,1994). Rohm K. Color Atlas of Biochemistry, 314-315 (Thieme ,1996). Sugumaran G, Vertel BM. in Biosynthesis of chondrotin sulfate and dermatan sulfate proteoglycans, (ed. Ernst B and Hart GW.) Carbohydrates in chemistry and biology, Vol 4, p377 (Wiley-Vch., 2000). Tran NT, Carbanes-Macheteau M, Taverna M. in Analysis of Glycoproteins and their glycopeptide and glyco fragments by electrophoresis and capillary electrophoresis. (ed.Rassi ZE.) Carbohydrate analysis by modern chromatography and electrophoresis, 693-703, (Elsevier, 2002) Vannucchi S, Fibbi G, Pasquali F, Rosso MD, Cappelletti R, Chiarugi V. Adhesion-dependent heparin production by platelets. Nature 296, 352-353, (1982). Venkatesan N, Ebihara T, Roughley PJ, Ludwig MS. Alterations in large and small proteoglycans in bleomycin-induced pulmonary fibrosis in rats. Am J Respir Crit Care Med. 161, 2066-2073 (2000). www.ukcte.org/ images/cartilage.jpg Yu WH, Woessner JF Jr. Heparan sulfate proteoglycans as extracellular docking molecules for Matrilysin. J. Biol. Chem. 275, 4183-4191 (2000). 湯湘芸, 學界科專計畫第一年成果報告, (2003) 王純怡, 膠原蛋白基質結構及多醣類組成對於細胞移入之研究, 國立台灣大學化學工程研究所碩士論文, (1997) 李兆偉, 退化性膝關節炎病人服用葡萄胺酸治療後之生物力學分析,國立成功大學醫學工程研究所碩士論文, ( 2002) 李昭怡, CC 趨化激素 Eotaxin-1 與骨關節炎病程相關性之研討,國立台北醫學大學生物醫學技術研究所碩士論文, (2002) 張雲鵬, 利用電腦模擬及顯微鏡技術研究蛇毒與具胺基葡萄糖之間的作用模式,國立清華大學生命科學研究所碩士論文, (1998) 章世豪, 膠原蛋白改質聚α氫氧酸支架應用於軟骨修復的研究,國立中興大學化學工程研究所碩士論文, (2001) 曾建榮, 經濟部技術處技術尖兵雜誌, 經濟部技術處發行, (2002)id NH0925538009 sid 914236 cfn 0 / id NH0925538010 auc 孫義坤 tic (I)分析Dynein Heavy Chain被裂解對細胞的影響(II)以化學交聯法探討細胞核膜蛋白質之成份 adc 張兗君 ty 碩士 sc 國立清華大學 dp 分子醫學研究所 yr 92 lg 中文 pg 64 kwc 運動蛋白 kwc 細胞核外膜 abc 本篇論文分為兩部分,第一部分是為研究在細胞中 Dynein Heavy Chain (DHC) 的生理作用。 Cytoplasmic dynein 是一種運動蛋白,靠 DHC 水解 ATP 產生能量,使 dynein 能在微管 (microtubule) 上移動運輸物質,並且和細胞分裂時胞器的位置有關。當我們在細胞中外加 100 μM vanadate (Vi) 並照射 UV 光使 DHC 裂解,觀察 DHC 被裂解後對細胞生理作用的影響。結果發現照 UV 光會使細胞大量死亡,導致無法繼續研究。 tc 壹、前言…………………..……….……………………………………1 貳、材料與方法………………….…..…………………………………5 (一)、藥品與材料………………………………….…………………..5 (二)、老鼠的育種…………………………….…...………………….6 (三)、細胞培養………………………………………………….……..6 (四)、細胞加入Vanadate後照UV光………….……………….……….9 (五)、計算細胞存活率……………………….….……………………10 (六)、凝膠電泳分析……………..…………..……………………..11 (七)、西方點漬法……………………………..………………………13 (八)、老鼠肝臟細胞核的標定……...………..…………………….14 (九)、蛋白質濃度的測定…………...………..…………………….15 (十)、奈米標定細胞核膜表面蛋白質………..……………………..15 (十一)、蛋白質沉澱………………………….….……………………16 (十二)、二維凝膠電泳分析………………….….……………………17 (十三)、膠片染色法………………………….….……………………19 (十四)、膠體內蛋白質分解……………..…….…………………...21 參、結果…………..……………………….……………...…………23 (一)、DHC光裂解………………..……………....……….…………23 (二)、DHC光裂解後細胞的存活率………....………………...…..23 (三)、純化細胞核與beads鍵結的細胞核…….…..…………....…24 (四)、不同交聯劑 (cross-linker) 奈米標定細胞核表面蛋白質…24 (五)、一維電泳分析………………………………………....….….25 (六)、二維電泳分析………………………………………..…...….25 (七)、以MALDI-TOF MS 鑑定pulled out 及total nuclear proteins..................................................26 肆、討論…….…...…………………………………………..……..28 (一)、DHC光裂解………..……………………………………….…..28 (二)、細胞核純化……………………..………………………………29 (三)、利用不同cross-linker 標定 Pulled out proteins…..….30 (四)、Pulled out proteins 與 Total nuclear proteins 比較…30 (五)、未來展望…………………………………………..……...….33 伍、 參考文獻………………………………………………….………35 陸、 圖表集………………………………………………….…………40rf Asai D. J. and Koonce M. P. (2001) The dynein heavy chain: structure, mechanics and evolution. TRENDS in Cell Biology 11, 196~202 Asai D. J. and Wilkes D. E. (2004) The Dynein Heavy Chain Family. J. Eukaryot. Microbiol. 51, 23~29 Corthesy-Theulaz Irene, Pauloin Alain, and Pfeffer S. R. (1992) Cytoplasmic Dynein Participates in the Centrosomal Localization of the Golgi Complex. J. Cell Biol.118, 1333~1345 Criswell P. S. and Asai D. J. (1998) Evidence for Four Cytoplasmic Dynein Heavy Chain Isoform in Rat Testis. Mol. Biol. Cell. 9, 237~247 Dillman III J. F. , Dabney L. P. , and Pfister K. K. (1996) Cytoplasmic dynein is associated with slow axonal transport. Proc. Natl. Acad. Sci. USA. 93, 141~144 Doye Valérie and Hurt Ed (1997) From nucleoporins to nuclear pore complexes. Curr. Opin. Cell Biol. 9, 401~410 Dworetzky, S. I. , Lanford, R. E. , and Feldherr, C .M. (1988) The effects of variations in the number and sequence of targeting signals on nuclear uptake. J. Cell Biol. 107, 1279~1287. Eiford L. A., Ow R. A. and Gibbons I. R. (1986) Specific Cleavage of Dynein Heavy Chain by Ultraviolet Irradiation in the Presence of ATP and Vanadate. J. Biol. Chem. 261, 2337~2342 Foisner Roland (2001) Inner nuclear membrane proteins and the nuclear lamina. J. Cell Sci. 114, 3791~3792 Gee M. A., Heuser J. E. and Vallee R. B. (1997) An extended microtubule-binding structure within the dynein motor domain. Nature 390, 636~639 Gibbons I. R. , Eiford A. L. , Mocz Gabor, Phillipson A. C. , Tang Wen-Jing Y., and Gibbons B. H. (1987) Photosensitized Cleavage of Dynein Heavy Chains. J. Biol. Chem. 262, 2780~2786 Graham J. M. (2001) Current Protocols in Cell Biology In: Isolation of Nuclei and Nuclear Membranes From Animal Tissues unit 3.10 Graham J., Ford T. and Rickword D. (1994) The Preparation of Subcellular Organelles from Mouse Liver in Self-Generated Gradient of Iodixanol. Anal. Biochem. 220, 367~373 Gee M. A., Heuser J. E. and. Vallee R. B (1997) An extended microtubule-binding structurewithin the dynein motor domain. Nature 390, 636~640 Holzbaur E. L. F. and Vallee R. B. (1994) Dyneins : Molecular Structure and Cellular Function. Annu. Rev. Cell Biol. 10, 339~372 King S. M. (2000) The dynein microtubule motor. Biochim. Biophys. Acta. 1496, 60~75 King S. M. (2000) AAA domains and organization of the dynein motor unit. J. Cell Sci. 113, 2521~2526 Koonce M. P. , Köhler Jana, Neujahr Ralph, Schwartz Jean-Marc, Tikhonenko Irina and Gerisch Günther (1999) Dynein motor regulation stabilizes interphase microtubule arrays and determines centrosome position. E.M.B.O. Journal. 18, 6786~6792 Korosec Thomas, Gerner Christopher and Sauermann Georg (1997) Common nuclear matrix proteins in rat tissues. Electrophoresis 18, 2109~2115 Krecic A. M. and Swanson M. S. (1999) hnRNP complexes composition, structure, and function. Curr. Opin. Cell Biol. 11, 363~371 LaMonte B. H., Wallace K. E., Holloway B. A., Shelly S. S., Ascaño Jennifer, Tokito Mariko, Winkle T. V., Howland D. S., and Holzbaur E. L. F. (2002) Disruption of Dynein/Dynactin Inhibits Axonal Transport in Motor Neurons Causing Late-Onset Progressive Degeneration. Neuron 34, 715~727 Lyman S.K., Gerace L. (2001) Nuclear pore complexes: dynamics in unexpected places. J Cell Biol. 154, 17~20 Muresan Virgil, Godek C. P., Reese T. S., and Schnapp B. J. (1996) Plus-end Motors Override Minus-end Motors during Transport of Squid Axon Vesicles on Microtubules. J Cell Biol. 135, 383~397 Nakielny Sara and Dreyfuss Gideon (1999) Transport of Proteins and RNAs in and out of the Nucleus. Cell 99, 667~690 Porter M. E.(1996) Axonemal dyneins: assembly, organization, and regulation. Curr. Opin. Cell Biol. 8, 10~17 Robinson J. T., Wojcik E. J., Sanders M. A., McGrail Maura, and Hays T. S. (1999) Cytoplasmic Dynein Is Required for the Nuclear Attachment and Migration of Centrosomes during Mitosis in Drosophila. J. Cell Biol. 146, 597~608 Sanchez Jean-Charles, Chiappe Diego, Converset Véronique, Hoogland Christine, Binz Pierre-Alain, Paesano Salvo, Appel R. D., Wang Steven, Sennitt Matthew, Nolan Anna, Cawthorne M. A., Hochstrasser D. F. (2001) The mouse SWISS-2D PAGE database: a tool for proteomics study of diabetes and obesity. Proteomics 1, 136-163 Satir Peter. (1965) Studies on cilia: II. Examination of the distal region of the ciliary shaft and the role of the filaments in motility. J. Cell Biol. 26, 805~834 Saunders W. S., Koshland Douglas, Eshel Dan, Gibbons I. R., and Hoyt M. A. (1995) Saccharomyces cerevisiae Kinesin- and Dynein-related Proteins Required for Anaphase Chromosome Segregation. J. Cell Biol. 128, 617~624 Schnapp B. J. and Reese T. S. (1989) Dynein is the motor for retrograde axonal transport of organelles. Proc. Natl. Acad. Sci. USA. 86, 1548~52 Silvanovich Andre, Li M.G. , Serr Madeline, Mische Sarah, and Hays T. S. (2003) The Third P-loop Doman in Cytoplasmic Dynein Heavy Chain Is Essential for Dynein Motor Function and ATP-sensitive Microtubule Binding. Mol. Biol. Cell. 14, 1355~1365 Soman Gopalan, Chang Y. C. and Graves D. J. (1983) Effect of Oxyanions of the Early Translation Metals on Rabbit Skeletal Muscle Phosphorylase. Biochemistry 22, 4994~5000 Summers, K. E., and Gibbons, I. R. (1971) Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc. Natl. Acad. Sci. USA. 68, 3092~096 Wallace D. M. (1987) Spermine precipitation of DNA. Meth. Enzymol. 152, 46 Wilson K. L., Zastrow M. S., and Lee K. K. (2001) Lamins and Disease: Insights into Nuclear Infrastructure. Cell 104, 647~650 Vallee R. B. and Sheetz M. P. (1996) Targeting of motor proteins. Science 271, 1539~1544 Vallee R. B., Williams J. C., Varma Dileep and Barnhart L. E. (2004) Dynein: An Ancient Motor Protein Involved in Multiple Modes of Transport. J Neurobiol. 58, 189~200 Xiang Xin, Beckwith S. M. and Morris N. R. (1994) Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA. 91, 2100~2104 Yamamoto Ayumu and Hiraoka Yasushi (2003) Cytoplasmic dynein in fungi: insights from nuclear Migration. J. Cell Sci. 116, 4501~4512id NH0925538010 sid 914285 cfn 0 / id NH0925538011 auc 謝銘峰 tic 以Lactobacillus rhamnosus TCELL-1建構乳酸菌食品級載體 adc 林志侯 ty 碩士 sc 國立清華大學 dp 分子醫學研究所 yr 92 lg 中文 pg 96 kwc 乳酸桿菌 kwc 乳酸鏈球菌素 kwc 食品級載體 kwc 穿梭載體 abc 本實驗室從國內健康成人腸道分離出一全新的乳酸菌種,Lactobacillus rhamnosus TCELL-1,未發現有內源性質體存在。本實驗是爲了構築一個能在此菌中表現的食品級選殖載體。 tc 致謝辭 中文摘要---------------------------------------------------1 英文摘要---------------------------------------------------2 序論-------------------------------------------------------3 研究動機--------------------------------------------------13 材料與方法------------------------------------------------14 一.材料 二.培養條件 三.方法 1.質體DNA的抽取 1-1. E.coli質體DNA的抽取(微量) 1-2. E. coli質體DNA的抽取(中量) 1-3. Lactobacillus質體DNA的抽取 2.瓊脂膠電泳分析 3.DNA片段回收 4.DNA純度鑑定及定量分析 5.聚合酶連鎖反應 6.連接反應 7.質體的轉形作用 7-1.勝任細胞的製備 (1)E. coli.勝任細胞的製備 (2)Lactobacillus勝任細胞之製備 7-2.轉型作用 (1)化學方式 (2)電穿孔法 8.Lactic acid bacteria全DNA的抽取 9.南方雜配 (1)放射性標定探針的製備 (2)南方轉漬及雜配反應 10.蛋白質電泳分析 10-1.膜蛋白之收集 (1).E.coli膜蛋白之收集 (2).Lactobacillus膜蛋白之收集 10-2.SDS-PAGE 11.生長曲線測定 12.Agar diffusion assay 13.質體穩定度分析 表一:本實驗中所用到的質體及其來源 表二:本實驗中所用到的菌株及其來源 結果------------------------------------------------------33 一.抗乳酸鏈球菌素基因之選殖 二.pGN載體之構築 三.可在Lb. rhamnosus TCELL-1複製之複製源的尋找 四.乳酸菌表現載體pNuc10上NucT報導基因的表現測試 五.建構食品級載體pNI 六.測試穿梭載體pNI是否可在Lb. rhamnosus TCELL-1中複製 七.蛋白質電泳分析 (一).nisI gene 在E.coli之表現 (二).nisI gene 在Lb. rhamnosus TCELL-1之表現 八.食品及載體pNI抗乳酸鏈球菌測試 (一). Lb. rhamnosus TCELL-1抗乳酸鏈球菌的生長曲線 (二)含有pNI質體的Lb. rhamnosus TCELL-1抗乳酸鏈球菌的生長曲線 (三)Agar Diffusion Assay 九.質體pNI在Lb. rhamnosus TCELL-1中的穩定性測試 討論------------------------------------------------------44 圖一:ColE1之複製起始機制 圖二:pSC101的複製起始機制 圖三:RCR質體之複製機制 圖四:Organization of the nisin gene cluster 圖五:nisin各基因之調控 圖六:利用overlapping extension方式連接pLac及nisI之策略 圖七:overlapping extension之產物確認 圖八:plasmid pGN 之map 圖九:質體pGN之限制酵素分析 圖十:pLac-nisI之序列 圖十一:NucT reporter gene 測試 圖十二:建構食品級載體pNI之策略 圖十三:plasmid pNI之map 圖十四:以nucT reporter gene篩選TG1(pNI) colony 圖十五:質體pNI之限制酵素分析 圖十六:以nucT reporter gene篩選Lb. rhamnosus TCELL-1(pNI) colony 圖十七:以southern hybridization證明plasmid pNI存在於Lb. rhamnosus TCELL-1(pNI)內 圖十八:nisI基因在E. coli之表現 圖十九:Lb.rhamnosus TCELL-1抗乳酸鏈球菌素的生長情況 圖二十:含質體pNI的Lb.rhamnosus TCELL-1抗乳酸鏈球菌素的生長 情況 圖二十一:Agar diffusion assay 圖二十二:食品級載體pNI之穩定度分析 參考文獻--------------------------------------------------71 附錄------------------------------------------------------77rf Bates,E.E., and Gilbert,H.J. 1989. Characterization of a cryptic plasmid from Lactobacillus plantarum. Gene 85(1): 253-258. Benz, R., Jung, G., and Sahl, H.-G. 1991. Nisin and Novel Lantibiotics, ESCOM Scientific Publishers, Leiden, Germany Bouia,A., Bringel,F., Frey,L., Kammerer,B., Belarbi,A., Guyonvarch,A., and Hubert,J.,C.. 1989. Structural organization of pLP1, a cryptic plasmid from Lactobacillus plantarum CCM 1904. Plasmid 22(3): 185-192. Chagnaud,P., Chan Kwo Chion,C.K., Duran,R., Naouri,P., Arnaud,A., and Galzy,P. 1992. Construction of a new shuttle vector for Lactobacillus. Can. J. Microbiol. 38(1): 69-74. Eguchi,T., Doi,K., Nishiyama,K., Ohmomo,S., and Ogata,S. 2000. Characterization of a phage resistance plasmid, pLKS, of silage-making Lactobacillus plantarum NGRI0101. Biosci. Biotechnol. Biochem. 64(4): 751-756. Engelke, G., Z. Gutowski-Eckel, P. Kiesau, K. Siegers, M. Hammelmann, and K.-D. Entian. 1994. Regulation of nisin biosynthesis and immunity in Lactococcus lactis 6F3. Appl. Environ. Microbiol. 60:814–825. Entian, K.-D. & de Vos, W. M. 1996. Genetics of subtilin and nisin biosynthesis. Antonie Leeuwenhoek 69, 109±177. Fu X., and Xu J. G. 2000. Development of a chromosome-plasmid balanced lethal system for Lactobacillus acidophilus with thyA gene as selective marker. Microbiol. Immunol. 44(7): 551-556. Gruss, A. and Ehrlich, S. D. 1989. The family of highly interrelated single-stranded deoxyribonucleic acid plasmids. Microbiol. Rev. 53: 231-241. Gruss,A.D., Ross,H.F., and Novick,R.P. 1987. Functional analysis of a palindromic sequence required for normal replication of several staphylococcal plasmids. Proc. Natl. Acad. Sci. USA 84(8): 2165-2169. Hardy,K.G. 1993. Plasmids: A Practical Approach. 2nd ed. Oxford University Press Inc., N.Y. Hefford, M. A., Teather, R. M. and Forster, R. J. 1993. The complete nucleotide sequence of a small cryptic plasmid from a rumen bacterium of the genus Butyrivibrio. Plasmid 29: 63-69. Hurst, A. 1981. Nisin. Adv. Appl. Microbiol. 27, 263–265 Immonen, T., S. Ye, R. Ra, L. Paulin, and P. E. J. Saris. 1995. The codon usage of the nisZ operon in Lactococcus lactis N8 suggests a non-lactococcal origin of the conjugative nisin-sucrose transposon. DNA Sequence 5:203–218 Isabel Perez-Arellano,Mannuel Zuniga, and Gaspar Perez-Martinez. 2001. Construction of compatible Wide-Host-Range Shuttle vectors for Lactic Acid Bacteria and Escherichia coli. Plasmid 46 106-116 Kanatani,K., and Oshimura,M. 1994. Plasmid-associated bacteriocin production by a Lactobacillus plantarum strain. Biosci. Biotechnol. Biochem. 58(11): 2084-2086. Khan, S. A. 1997. Rolling-circle replication of bacterial plasmids. Microbiol. Mol. Biol. Rev. 61: 442-455. Kiewiet, R., Bron, S., de Jonge, K., Venema, G. and Seegers, J. F. 1993. Theta replication of the lactococcal plasmid pWVO2. Mol. Microbiol. 10: 319-327. Klaenhammer,T.R. 1988.Bacteriocins of lactic acid bacteria. Biochimie.70:337-349 Kues, U. and Stahl, U. 1989. Replication of plasmids in gram-negative bacteria. Microbiol. Rev. 53: 491-516. Kuipers OP, Beerthuyzen MM, Siezen RJ, Vos WM de. 1993 Characterization of the nisin cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. Eur J Biochem 216:281–291 Leer,R. J., van Luijk,N., Posno,M., and Pouwels,P.H. 1992. Structural and functional analysis of two cryptic plasmids from Lactobacillus pentosus MD353 and Lactobacillus plantarum ATCC 8014. Mol. Gen. Genet. 234(2): 265-274. McKay,L.L., and Baldwin,K.A. 1990. Applications for biotechnology: present and future improvements in lactic acid bacteria. FEMS Microbiol. Rev. 7(1-2): 3-14. Meijer, W. J., de Boer, A. J., van Tongeren, S., Venema, G. and Bron, S. 1995a. Characterization of the replication region of the Bacillus subtilisplasmid pLS20: a novel type of replicon. Nucleic Acids Res. 23: 3214-3223. Mital,B.K., and Garg,S.K. 1995. Anticarcinogenic, hypocholesterolemic, and antagonistic activities of Lactobacillus acidophilus. Crit. Rev. Microbiol. 21(3): 175-214. Olli Koponen, Timo M. Takala, Ulla Saarela, Mingqiang Qiao, Per E.J. Saris. 2004. Distribution of the nisI immunity protein and enhancement of nisin activity by the lipid-free nisI FEMSM icrobiology Letters 231:85-90 Oscar P. Kuipers, Marke M. Beerthuyzen, Pascalle G. G. A. de Ruyter, Evert J. Luesink, and Willem M. de Vos. 1995. Autoregulation of Nisin Biosynthesis in Lactococcus lactis by Signal Transduction. THE JOURNAL OF BIOLOGICAL CHEMISTRY 270:27299-27304 O'Sullivan ,D.J., and Klaenhammer ,T.R.. 1993a. High- and low-copy-number Lactococcus shuttle cloning vectors with features for clone screening. Gene 137(2): 227-231. Qiao M, Immonen T, Koponen O, Saris PEJ. 1995. The cellular location and effect on nisin immunity of the nisI protein from Lactococcus lactis N8 expressed in Escherichia coli and L. lactis. FEMS Microbiol Lett 131:75–80 Runar Ra,1 Marke M. Beerthuyzen,2 Willem M. de Vos,2 Per E. J. Saris1 and Oscar P. Kuipers2ã . 1999. Effects of gene disruptions in the nisin gene cluster of Lactococcus lactis on nisin production and producer immunity Microbiology, 145, 1227–1233 R. V. F. LACHICA, C. GENIGEORGIS, and P. D. HOEPRICH. 1971. Metachromatic Agar-Diffusion Methods for Detecting Staphylococcal Nuclease Activity. Appl. Environ. Microbiol. 21:585-587. Sahl, H.-G. 1985. J. Bacteriol. 162, 833–836 Sanders,M.E. 1993. Summary of conclusions from a consensus panel of experts on health attributes of lactic cultures: significance to fluid milk products containing cultures. J. Dairy. Sci. 76(7): 1819-1828. Saris, P. E. J., Immonen, T., Reis, M. & Sahl, H.-G. 1996. Immunity to lantibiotics. Antonie Leeuwenhoek 69, 151±159. Schu¨ ller, F., Benz, R., and Sahl, H. G. 1989. Eur. J. Biochem. 182, 181–186 Siddons,R.C., and Coates,M.E. 1972. The influence of the intestinal microflora on disaccharidase activities in the chick. Br. J. Nutr. 27(1):101-112. Skaugen,M. 1989. The complete nucleotide sequence of a small cryptic plasmid from Lactobacillus plantarum. Plasmid 22(2): 175-179. Stenzel, T. T., Patel, P. and Bastia, D. 1987. The integration host factor of Escherichia coli binds to bent DNA at the origin of replication of the plasmid pSC101. Cell 49: 709-717. te Riele,H., Michel,B., and Ehrlich,S.D. 1986. Are single-stranded circles intermediates in plasmid DNA replication? EMBO J. 5(3):631-637. te Riele,H., Michel,B., and Ehrlich,S.D. 1986. Single-stranded plasmid DNA in Bacillus subtilis and Staphylococcus aureus. Proc.Natl. Acad.Sci. USA 83(8): 2541-2545. Thompson,J.K., McConville,K.J., McReynolds,C., and Collins,M.A. 1997. Electrotransformation of Lactobacillus plantarum using linearized plasmid DNA. Lett. Appl. Microbiol. 25(6): 419-425. Tomizawa, J. and Masukata, H. 1987. Factor-independent termination of transcription in a stretch of deoxyadenosine residues in the template DNA. Cell. 51: 623-630. van der Meer, J. R., J. Polman, M. M. Beerthuyzen, R. J. Siezen, O. P. Kuipers, and W. M. de Vos. 1993. Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. J. Bacteriol. 175:2578–2588. Vujcic,M., and Topisirovic,L. 1993. Molecular analysis of the rolling-circle replicating plasmid pA1 of Lactobacillus plantarum A112. Appl. Environ. Microbiol. 59(1): 274-280. Williams, D. R. and Thomas, C. M. 1992. Active partitioning of bacterial plasmids. J. Gen. Microbiol. 138: 1-16. Y.LE LOIR, A.GRUSS, S. D. EHRLICH, and P. LANGELLA. 1998. A Nine-Residue Synthetic Propeptide Enhances Secretion Efficiency of Heterologous Proteins in Lactococcus lactis. Journal of Bacteriology 180:1895-1903 廖啟成et al 2000. 乳酸菌專輯. 第二版,財團法人食品工業發展研究所出版。 林春福 (1999)洛德乳酸桿菌內源性質體之抗藥性基因與複製區的分子特性分析及其選質載體之構築。國立中興大學獸醫研究所博士論文。 林昭芬 (2002)Lactobacillus plantarum ATCC14917的質體pLF1之序列特性分析。國立清華大學生命科學研究所碩士論文。 張超銘 (2002)乳酸球菌(Lactococcus lactis)無質體菌株分離,並以其選質載體銜接Epstein-Barr病毒蛋白gp25基因。國立清華大學生物技術研究所碩士論文。 潘宜芳 (2003)乳酸桿菌Lactobacillus rhamnosus TCELL-1載體之建構與分析。國立清華大學生物技術研究所碩士論文。id NH0925538011 sid 914224 cfn 0 / id NH0925538012 auc 莊雁婷 tic 幽門螺旋桿菌空泡細胞毒素中p37片段短暫地表現在中國蒼鼠卵巢細胞內引起細胞凋亡 adc 劉銀樟 博士 ty 碩士 sc 國立清華大學 dp 分子醫學研究所 yr 92 lg 英文 pg 56 kwc 幽門螺旋桿菌 kwc 空泡毒素 kwc 細胞凋亡 kwc 中國蒼鼠卵巢細胞 kwc 綠色螢光蛋白質 kwc 免疫沈澱 abc Vacuolating cytotoxin(簡稱VacA)是幽門螺旋桿菌(Helicobacter pylori, H. pylor)主要毒素之一,可能會引起慢性胃炎、消化性潰瘍及胃癌。本研究將VacA的主要毒性部分『p37』表現在中國倉鼠卵巢細胞(Chinese hamster ovary cell, CHO-K1)內,藉以尋找此毒素在哺乳動物細胞內的作用目標。首先,把從H. pylori 26695中得到的p37基因和哺乳動物表現質體(mammalian expression vector, pEGFP-N3)進行基因接合反應(ligation),讓細胞內製造出的p37與綠色螢光蛋白質(green fluorescent protein, GFP)形成融合蛋白質(p37-GFP fusion protein)。結果顯示,細胞內表現的p37-GFP主要聚集在細胞質,透過錐藍排除法(trypan blue exclusion assay)發現細胞存活率(cell viability)明顯地減少。分析細胞增生率(cell proliferation)和使用其他專門用來檢測細胞凋亡(apoptosis)的方法更加支持這項結果。另外,切除p37其N端32個氨基酸可有效地破壞p37的細胞毒性(cytotoxicity)。這項發現和先前研究認為VacA需要N端輔助才具有細胞毒性的結果一致。而且,在免疫沈澱(immunoprecipitation)實驗中發現一個大約70 kDa蛋白質會和p37產生交互作用(interaction),但GFP或 失去N端的p37-GFP(truncated p37-GFP, ?愎37-GFP)並沒有和任何蛋白質有交互作用。根據以上實驗,我認為VacA的p37片段會和細胞內的蛋白質產生交互作用並引起細胞凋亡。 tc Page Abstract (in Chinese) I Abstract (in English) II Acknowledgment III Abbreviations IV Table of contents V I INTRODUCTION 1 1.1 Helicobacter pylori 1 1.2 Vacuolating cytotoxin A 2 1.3 VacA-induced cell apoptosis 3 1.4 The aims of this study 4 II MATERIALS and METHODS 6 2.1 Cell culture 6 2.2 Cloning of p37-GFP and truncated p37-GFP 6 2.3 Transfection into CHO-K1 cells 7 2.4 Fluorescence microscopy 8 2.5 Flow cytometric analysis of fluorescence expression 8 2.6 Western blotting for detection of GFP fusion protein 9 2.7 Trypan blue exclusion assay 10 2.8 MTT assay for cell proliferation 10 2.9 Observation of nuclei morphology by staining with DAPI 11 2.10 Agarose-gel analysis for DNA fragmentation assay 11 2.11 Detection of apoptosis and cell cycle analysis 12 2.12 Immunoprecipitation 12 III RESULTS 14 3.1 Construction of p37-GFP and ?愎37-GFP 14 3.2 Cytosolic expression of p37-GFP and ?愎37-GFP fusion proteins 15 3.3 Cytosolic expression of p37 induced cell death through apoptosis 16 3.4 p37-GFP expressed in the cells localized to cytoplasm 19 3.5 Identification of p37-GFP interacting proteins by immunoprecipitation 20 IV DISCUSSION 21 V REFERENCES 26 VI FIGURES and LEGENDS 33 VII APPENDIX 47rf Atherton, J.C., Cao, P., Peek, R.M., Jr., Tummuru, M.K., Blaser, M.J. and Cover, T.L. (1995) Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J Biol Chem, 270, 17771-17777. Aviles-Jimenez, F., Letley, D.P., Gonzalez-Valencia, G., Salama, N., Torres, J. and Atherton, J.C. (2004) Evolution of the Helicobacter pylori vacuolating cytotoxin in a human stomach. J Bacteriol, 186, 5182-5185. Boquet, P., Ricci, V., Galmiche, A. and Gauthier, N.C. (2003) Gastric cell apoptosis and H. pylori: has the main function of VacA finally been identified? Trends Microbiol, 11, 410-413. Caputo, R., Tuccillo, C., Manzo, B.A., Zarrilli, R., Tortora, G., Blanco Cdel, V., Ricci, V., Ciardiello, F. and Romano, M. (2003) Helicobacter pylori VacA toxin up-regulates vascular endothelial growth factor expression in MKN 28 gastric cells through an epidermal growth factor receptor-, cyclooxygenase-2-dependent mechanism. Clin Cancer Res, 9, 2015-2021. Cho, S.J., Kang, N.S., Park, S.Y., Kim, B.O., Rhee, D.K. and Pyo, S. (2003) Induction of apoptosis and expression of apoptosis related genes in human epithelial carcinoma cells by Helicobacter pylori VacA toxin. Toxicon, 42, 601-611. Cover, T.L. (1996) The vacuolating cytotoxin of Helicobacter pylori. Mol Microbiol, 20, 241-246. Cover, T.L. and Blaser, M.J. (1992) Purification and characterization of the vacuolating toxin from Helicobacter pylori. J Biol Chem, 267, 10570-10575. Cover, T.L., Hanson, P.I. and Heuser, J.E. (1997) Acid-induced dissociation of VacA, the Helicobacter pylori vacuolating cytotoxin, reveals its pattern of assembly. J Cell Biol, 138, 759-769. Cover, T.L., Krishna, U.S., Israel, D.A. and Peek, R.M., Jr. (2003) Induction of gastric epithelial cell apoptosis by Helicobacter pylori vacuolating cytotoxin. Cancer Res, 63, 951-957. Cover, T.L., Puryear, W., Perez-Perez, G.I. and Blaser, M.J. (1991) Effect of urease on HeLa cell vacuolation induced by Helicobacter pylori cytotoxin. Infect Immun, 59, 1264-1270. Cover, T.L., Tummuru, M.K., Cao, P., Thompson, S.A. and Blaser, M.J. (1994) Divergence of genetic sequences for the vacuolating cytotoxin among Helicobacter pylori strains. J Biol Chem, 269, 10566-10573. de Bernard, M., Arico, B., Papini, E., Rizzuto, R., Grandi, G., Rappuoli, R. and Montecucco, C. (1997) Helicobacter pylori toxin VacA induces vacuole formation by acting in the cell cytosol. Mol Microbiol, 26, 665-674. de Bernard, M., Burroni, D., Papini, E., Rappuoli, R., Telford, J. and Montecucco, C. (1998a) Identification of the Helicobacter pylori VacA toxin domain active in the cell cytosol. Infect Immun, 66, 6014-6016. de Bernard, M., Moschioni, M., Papini, E., Telford, J., Rappuoli, R. and Montecucco, C. (1998b) Cell vacuolization induced by Helicobacter pylori VacA toxin: cell line sensitivity and quantitative estimation. Toxicol Lett, 99, 109-115. de Bernard, M., Papini, E., de Filippis, V., Gottardi, E., Telford, J., Manetti, R., Fontana, A., Rappuoli, R. and Montecucco, C. (1995) Low pH activates the vacuolating toxin of Helicobacter pylori, which becomes acid and pepsin resistant. J Biol Chem, 270, 23937-23940. Dunn, B.E., Campbell, G.P., Perez-Perez, G.I. and Blaser, M.J. (1990) Purification and characterization of urease from Helicobacter pylori. J Biol Chem, 265, 9464-9469. Endemann, G., Schechtman, D. and Mochly-Rosen, D. (2003) Cytotoxicity of pEGFP vector is due to residues encoded by multiple cloning site. Anal Biochem, 313, 345-347. Evans, D.G., Queiroz, D.M., Mendes, E.N. and Evans, D.J., Jr. (1998) Helicobacter pylori cagA status and s and m alleles of vacA in isolates from individuals with a variety of H. pylori-associated gastric diseases. J Clin Microbiol, 36, 3435-3437. Galmiche, A., Rassow, J., Doye, A., Cagnol, S., Chambard, J.C., Contamin, S., de Thillot, V., Just, I., Ricci, V., Solcia, E., Van Obberghen, E. and Boquet, P. (2000) The N-terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. Embo J, 19, 6361-6370. Gebert, B., Fischer, W. and Haas, R. (2004) The Helicobacter pylori vacuolating cytotoxin: from cellular vacuolation to immunosuppressive activities. Rev Physiol Biochem Pharmacol. Hanazono, Y., Yu, J.M., Dunbar, C.E. and Emmons, R.V. (1997) Green fluorescent protein retroviral vectors: low titer and high recombination frequency suggest a selective disadvantage. Hum Gene Ther, 8, 1313-1319. Harper, C.G., Feng, Y., Xu, S., Taylor, N.S., Kinsel, M., Dewhirst, F.E., Paster, B.J., Greenwell, M., Levine, G., Rogers, A. and Fox, J.G. (2002) Helicobacter cetorum sp. nov., a urease-positive Helicobacter species isolated from dolphins and whales. J Clin Microbiol, 40, 4536-4543. Harris, P.R., Cover, T.L., Crowe, D.R., Orenstein, J.M., Graham, M.F., Blaser, M.J. and Smith, P.D. (1996) Helicobacter pylori cytotoxin induces vacuolation of primary human mucosal epithelial cells. Infect Immun, 64, 4867-4871. Hirayama, T. (2002) Protein tyrosine phosphatase beta, a receptor for Helicobacter pylori vacA toxin. Keio J Med, 51 Suppl 2, 20-23. Hotchin, N.A., Cover, T.L. and Akhtar, N. (2000) Cell vacuolation induced by the VacA cytotoxin of Helicobacter pylori is regulated by the Rac1 GTPase. J Biol Chem, 275, 14009-14012. Ilver, D., Arnqvist, A., Ogren, J., Frick, I.M., Kersulyte, D., Incecik, E.T., Berg, D.E., Covacci, A., Engstrand, L. and Boren, T. (1998) Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science, 279, 373-377. Ito, Y., Azuma, T., Ito, S., Suto, H., Miyaji, H., Yamazaki, Y., Kato, T., Kohli, Y., Keida, Y. and Kuriyama, M. (2000) Sequence analysis and clinical significance of the iceA gene from Helicobacter pylori strains in Japan. J Clin Microbiol, 38, 483-488. Iwamoto, H., Czajkowsky, D.M., Cover, T.L., Szabo, G. and Shao, Z. (1999) VacA from Helicobacter pylori: a hexameric chloride channel. FEBS Lett, 450, 101-104. Jenks, P.J., Megraud, F. and Labigne, A. (1998) Clinical outcome after infection with Helicobacter pylori does not appear to be reliably predicted by the presence of any of the genes of the cag pathogenicity island. Gut, 43, 752-758. Kimura, M., Goto, S., Wada, A., Yahiro, K., Niidome, T., Hatakeyama, T., Aoyagi, H., Hirayama, T. and Kondo, T. (1999) Vacuolating cytotoxin purified from Helicobacter pylori causes mitochondrial damage in human gastric cells. Microb Pathog, 26, 45-52. Koshida, Y., Koizumi, W., Sasabe, M., Katoh, Y. and Okayasu, I. (2000) Association of Helicobacter pylori-dependent gastritis with gastric carcinomas in young Japanese patients: histopathological comparison of diffuse and intestinal type cancer cases. Histopathology, 37, 124-130. Kostrzynska, M., Betts, J.D., Austin, J.W. and Trust, T.J. (1991) Identification, characterization, and spatial localization of two flagellin species in Helicobacter pylori flagella. J Bacteriol, 173, 937-946. Kuck, D., Kolmerer, B., Iking-Konert, C., Krammer, P.H., Stremmel, W. and Rudi, J. (2001) Vacuolating cytotoxin of Helicobacter pylori induces apoptosis in the human gastric epithelial cell line AGS. Infect Immun, 69, 5080-5087. Kurosawa, A., Miwa, H., Hirose, M., Tsune, I., Nagahara, A. and Sato, N. (2002) Inhibition of cell proliferation and induction of apoptosis by Helicobacter pylori through increased phosphorylated p53, p21 and Bax expression in endothelial cells. J Med Microbiol, 51, 385-391. Lanzavecchia, S., Bellon, P.L., Lupetti, P., Dallai, R., Rappuoli, R. and Telford, J.L. (1998) Three-dimensional reconstruction of metal replicas of the Helicobacter pylori vacuolating cytotoxin. J Struct Biol, 121, 9-18. Leunk, R.D., Johnson, P.T., David, B.C., Kraft, W.G. and Morgan, D.R. (1988) Cytotoxic activity in broth-culture filtrates of Campylobacter pylori. J Med Microbiol, 26, 93-99. Liu, H.S., Jan, M.S., Chou, C.K., Chen, P.H. and Ke, N.J. (1999) Is green fluorescent protein toxic to the living cells? Biochem Biophys Res Commun, 260, 712-717. Liu, X.L., Li, S.Q., Liu, C.J., Tao, H.X. and Zhang, Z.S. (2004) Antigen epitope of Helicobacter pylori vacuolating cytotoxin A. World J Gastroenterol, 10, 2340-2343. Lupetti, P., Heuser, J.E., Manetti, R., Massari, P., Lanzavecchia, S., Bellon, P.L., Dallai, R., Rappuoli, R. and Telford, J.L. (1996) Oligomeric and subunit structure of the Helicobacter pylori vacuolating cytotoxin. J Cell Biol, 133, 801-807. McClain, M.S., Cao, P. and Cover, T.L. (2001) Amino-terminal hydrophobic region of Helicobacter pylori vacuolating cytotoxin (VacA) mediates transmembrane protein dimerization. Infect Immun, 69, 1181-1184. McClain, M.S., Schraw, W., Ricci, V., Boquet, P. and Cover, T.L. (2000) Acid activation of Helicobacter pylori vacuolating cytotoxin (VacA) results in toxin internalization by eukaryotic cells. Mol Microbiol, 37, 433-442. Morbiato, L., Tombola, F., Campello, S., Del Giudice, G., Rappuoli, R., Zoratti, M. and Papini, E. (2001) Vacuolation induced by VacA toxin of Helicobacter pylori requires the intracellular accumulation of membrane permeant bases, Cl(-) and water. FEBS Lett, 508, 479-483. Moura, S.B., Mendes, E.N., Queiroz, D.M., Camargos, E.R., Evangelina, M., Fonseca, F., Rocha, G.A. and Nicoli, J.R. (1998) Ultrastructure of Helicobacter trogontum in culture and in the gastrointestinal tract of gnotobiotic mice. J Med Microbiol, 47, 513-520. Nguyen, V.Q., Caprioli, R.M. and Cover, T.L. (2001) Carboxy-terminal proteolytic processing of Helicobacter pylori vacuolating toxin. Infect Immun, 69, 543-546. Padilla, P.I., Wada, A., Yahiro, K., Kimura, M., Niidome, T., Aoyagi, H., Kumatori, A., Anami, M., Hayashi, T., Fujisawa, J., Saito, H., Moss, J. and Hirayama, T. (2000) Morphologic differentiation of HL-60 cells is associated with appearance of RPTPbeta and induction of Helicobacter pylori VacA sensitivity. J Biol Chem, 275, 15200-15206. Papini, E., de Bernard, M., Milia, E., Bugnoli, M., Zerial, M., Rappuoli, R. and Montecucco, C. (1994) Cellular vacuoles induced by Helicobacter pylori originate from late endosomal compartments. Proc Natl Acad Sci U S A, 91, 9720-9724. Papini, E., Zoratti, M. and Cover, T.L. (2001) In search of the Helicobacter pylori VacA mechanism of action. Toxicon, 39, 1757-1767. Peek, R.M., Jr., Blaser, M.J., Mays, D.J., Forsyth, M.H., Cover, T.L., Song, S.Y., Krishna, U. and Pietenpol, J.A. (1999) Helicobacter pylori strain-specific genotypes and modulation of the gastric epithelial cell cycle. Cancer Res, 59, 6124-6131. Phadnis, S.H., Ilver, D., Janzon, L., Normark, S. and Westblom, T.U. (1994) Pathological significance and molecular characterization of the vacuolating toxin gene of Helicobacter pylori. Infect Immun, 62, 1557-1565. Plenchette, S., Filomenko, R., Logette, E., Solier, S., Buron, N., Cathelin, S. and Solary, E. (2004) Analyzing markers of apoptosis in vitro. Methods Mol Biol, 281, 313-332. Podolsky, D.K. (1999) Mucosal immunity and inflammation. V. Innate mechanisms of mucosal defense and repair: the best offense is a good defense. Am J Physiol, 277, G495-499. Rudi, J., Kuck, D., Strand, S., von Herbay, A., Mariani, S.M., Krammer, P.H., Galle, P.R. and Stremmel, W. (1998) Involvement of the CD95 (APO-1/Fas) receptor and ligand system in Helicobacter pylori-induced gastric epithelial apoptosis. J Clin Invest, 102, 1506-1514. Satin, B., Del Giudice, G., Della Bianca, V., Dusi, S., Laudanna, C., Tonello, F., Kelleher, D., Rappuoli, R., Montecucco, C. and Rossi, F. (2000) The neutrophil-activating protein (HP-NAP) of Helicobacter pylori is a protective antigen and a major virulence factor. J Exp Med, 191, 1467-1476. Seto, K., Hayashi-Kuwabara, Y., Yoneta, T., Suda, H. and Tamaki, H. (1998) Vacuolation induced by cytotoxin from Helicobacter pylori is mediated by the EGF receptor in HeLa cells. FEBS Lett, 431, 347-350. Schmitt, W. and Haas, R. (1994) Genetic analysis of the Helicobacter pylori vacuolating cytotoxin: structural similarities with the IgA protease type of exported protein. Mol Microbiol, 12, 307-319. Schraw, W., Li, Y., McClain, M.S., van der Goot, F.G. and Cover, T.L. (2002) Association of Helicobacter pylori vacuolating toxin (VacA) with lipid rafts. J Biol Chem, 277, 34642-34650. Sommi, P., Savio, M., Stivala, L.A., Scotti, C., Mignosi, P., Prosperi, E., Vannini, V. and Solcia, E. (2002) Helicobacter pylori releases a factor(s) inhibiting cell cycle progression of human gastric cell lines by affecting cyclin E/cdk2 kinase activity and Rb protein phosphorylation through enhanced p27(KIP1) protein expression. Exp Cell Res, 281, 128-139. Telford, J.L., Ghiara, P., Dell'Orco, M., Comanducci, M., Burroni, D., Bugnoli, M., Tecce, M.F., Censini, S., Covacci, A., Xiang, Z. and et al. (1994) Gene structure of the Helicobacter pylori cytotoxin and evidence of its key role in gastric disease. J Exp Med, 179, 1653-1658. Tomb, J.F., White, O., Kerlavage, A.R., Clayton, R.A., Sutton, G.G., Fleischmann, R.D., Ketchum, K.A., Klenk, H.P., Gill, S., Dougherty, B.A., Nelson, K., Quackenbush, J., Zhou, L., Kirkness, E.F., Peterson, S., Loftus, B., Richardson, D., Dodson, R., Khalak, H.G., Glodek, A., McKenney, K., Fitzegerald, L.M., Lee, N., Adams, M.D., Venter, J.C. and et al. (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature, 388, 539-547. Torres, V.J., McClain, M.S. and Cover, T.L. (2004) Interactions between p-33 and p-55 domains of the Helicobacter pylori vacuolating cytotoxin (VacA). J Biol Chem, 279, 2324-2331. Vinion-Dubiel, A.D., McClain, M.S., Czajkowsky, D.M., Iwamoto, H., Ye, D., Cao, P., Schraw, W., Szabo, G., Blanke, S.R., Shao, Z. and Cover, T.L. (1999) A dominant negative mutant of Helicobacter pylori vacuolating toxin (VacA) inhibits VacA-induced cell vacuolation. J Biol Chem, 274, 37736-37742. Wahlfors, J., Loimas, S., Pasanen, T. and Hakkarainen, T. (2001) Green fluorescent protein (GFP) fusion constructs in gene therapy research. Histochem Cell Biol, 115, 59-65. Wakatsuki, Y. (1999) [Immune response to an H. pylori infection in the stomach ]. Nippon Rinsho, 57, 23-31. Willhite, D.C. and Blanke, S.R. (2004) Helicobacter pylori vacuolating cytotoxin enters cells, localizes to the mitochondria, and induces mitochondrial membrane permeability changes correlated to toxin channel activity. Cell Microbiol, 6, 143-154. Yahiro, K., Niidome, T., Hatakeyama, T., Aoyagi, H., Kurazono, H., Padilla, P.I., Wada, A. and Hirayama, T. (1997) Helicobacter pylori vacuolating cytotoxin binds to the 140-kDa protein in human gastric cancer cell lines, AZ-521 and AGS. Biochem Biophys Res Commun, 238, 629-632. Yahiro, K., Niidome, T., Kimura, M., Hatakeyama, T., Aoyagi, H., Kurazono, H., Imagawa, K., Wada, A., Moss, J. and Hirayama, T. (1999) Activation of Helicobacter pylori VacA toxin by alkaline or acid conditions increases its binding to a 250-kDa receptor protein-tyrosine phosphatase beta. J Biol Chem, 274, 36693-36699. Yahiro, K., Wada, A., Nakayama, M., Kimura, T., Ogushi, K., Niidome, T., Aoyagi, H., Yoshino, K., Yonezawa, K., Moss, J. and Hirayama, T. (2003) Protein-tyrosine phosphatase alpha, RPTP alpha, is a Helicobacter pylori VacA receptor. J Biol Chem, 278, 19183-19189. Ye, D. and Blanke, S.R. (2000) Mutational analysis of the Helicobacter pylori vacuolating toxin amino terminus: identification of amino acids essential for cellular vacuolation. Infect Immun, 68, 4354-4357. Yoshimura, T., Shimoyama, T., Tanaka, M., Sasaki, Y., Fukuda, S. and Munakata, A. (2000) Gastric mucosal inflammation and epithelial cell turnover are associated with gastric cancer in patients with Helicobacter pylori infection. J Clin Pathol, 53, 532-536. Zhang, Q.B., Etolhi, G., Dawodu, J.B., Gemmell, C.G. and Russell, R.I. (1999) Relationship between mucosal levels of Helicobacter pylori-specific IgA, interleukin-8 and gastric inflammation. Clin Sci (Lond), 96, 409-414.id NH0925538012 sid 914207 cfn 0 / id NH0925538013 auc 馬振漢 tic 人類巨細胞病毒調控增生細胞核抗原表現之機制 adc 劉銀樟 adc 阮麗蓉 ty 碩士 sc 國立清華大學 dp 分子醫學研究所 yr 92 lg 英文 pg 67 kwc 人類巨細胞病毒 kwc 增生細胞核抗原 kwc 聚合 kwc & kwc #37238;輔助因子 kwc 立即早期蛋白質1 kwc 立即早期蛋白質2 abc 人類巨細胞病毒是造成免疫不全者感染的主要原因,當被人類巨細胞病毒感染時,細胞內許多參與去氧核醣核苷酸複製的蛋白質會大量的表現。增生細胞核抗原在去氧核醣核苷酸複製過程中扮演著關鍵性的角色,因此為探討細胞在遭受到人類巨細胞病毒感染後,增生細胞核抗原是否也會大量表現?我們觀察被人類巨細胞病毒感染的細胞中增生細胞核抗原的蛋白質、核醣核苷酸及啟動子的活性是否上升。實驗結果發現,在被人類巨細胞病毒感染後,增生細胞核抗原的蛋白質、核醣核苷酸量增加,啟動子的活性也上升,由此可以顯示人類巨細胞病毒可以經由調控基因的轉錄來增加增生細胞核抗原的表現;我們也經由發現病毒的立即早期蛋白質1能夠活化增生細胞核抗原的啟動子而驗證了此項假設。此外我們也發現,在受到人類巨細胞病毒感染後,增生細胞核抗原在細胞核內會呈現顆粒狀,且和病毒聚合酶輔助因子及立即早期蛋白質2位於細胞核內同樣的位置。因此細胞在受到人類巨細胞病毒感染後,增生細胞核抗原的表現會被病毒的立即早期蛋白質1活化,而增生細胞核抗原蛋白質會被帶到病毒的去氧核醣核苷酸複製的位置。由此現象我們提出一個假設,病毒可能是需要增生細胞核抗原參與病毒的去氧核醣核苷酸複製。 tc TABLE OF CONTENTS Abstract ----------------------------------------------------------------------------------------------- i 中文摘要 -------------------------------------------------------------------------------------------- ii Acknowledgements -------------------------------------------------------------------------------- iii Table of contents ----------------------------------------------------------------------------------- iv Chapter 1 Introduction ------------------------------------------------------------------------------ 1 1.1 Human cytomegalovirus (HCMV) is clinically important ------------------------- 1 1.2 HCMV growth is regulated by HCMV viral proteins ------------------------------- 2 1.3 Cell cycle is dysregulated by HCMV ------------------------------------------------- 8 1.4 Proliferating cell nuclear antigen (PCNA): a sliding clamp with ring shape ---- 9 1.5 PCNA: a multi-function protein ------------------------------------------------------ 11 1.6 Does HCMV induce PCNA expression? -------------------------------------------- 15 Chapter 2 Materials and Methods --------------------------------------------------------------- 17 Chapter 3 Results ---------------------------------------------------------------------------------- 27 3.1 Up-regulation of PCNA by HCMV infection --------------------------------------- 27 3.2 HCMV IE1 up-regulates PCNA promoter ------------------------------------------ 29 3.3 PCNA is colocalized with HCMV DNA replication center ----------------------- 30 Chapter 4 Discussion ------------------------------------------------------------------------------ 33 References ------------------------------------------------------------------------------------------ 37 Figures ---------------------------------------------------------------------------------------------- 49 Tables ------------------------------------------------------------------------------------------------ 67rf Aboussekhra, A., Biggerstaff, M., Shivji, M. K. & other authors (1995). Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80, 859-868. Aboussekhra, A. & Wood, R. D. (1995). Detection of nucleotide excision repair incisions in human fibroblasts by immunostaining for PCNA. Exp Cell Res 221, 326-332. Ahn, J. H., Jang, W. J. & Hayward, G. S. (1999). The human cytomegalovirus IE2 and UL112-113 proteins accumulate in viral DNA replication compartments that initiate from the periphery of promyelocytic leukemia protein-associated nuclear bodies (PODs or ND10). J Virol 73, 10458-10471. Alder, H., Yoshinouchi, M., Prystowsky, M. B., Appasamy, P. & Baserga, R. (1992). A conserved region in intron 1 negatively regulates the expression of the PCNA gene. Nucleic Acids Res 20, 1769-1775. Anders, D. G. & McCue, L. A. (1996). The human cytomegalovirus genes and proteins required for DNA synthesis. Intervirology 39, 378-388. Bambara, R. A., Murante, R. S. & Henricksen, L. A. (1997). Enzymes and reactions at the eukaryotic DNA replication fork. J Biol Chem 272, 4647-4650. Bravo, R. & Macdonald-Bravo, H. (1984). Induction of the nuclear protein 'cyclin' in quiescent mouse 3T3 cells stimulated by serum and growth factors. Correlation with DNA synthesis. Embo J 3, 3177-3181. Bravo, R. & Macdonald-Bravo, H. (1985). Changes in the nuclear distribution of cyclin (PCNA) but not its synthesis depend on DNA replication. Embo J 4, 655-661. Bravo, R. & Macdonald-Bravo, H. (1987). Existence of two populations of cyclin/proliferating cell nuclear antigen during the cell cycle: association with DNA replication sites. J Cell Biol 105, 1549-1554. Bresnahan, W. A., Boldogh, I., Thompson, E. A. & Albrecht, T. (1996). Human cytomegalovirus inhibits cellular DNA synthesis and arrests productively infected cells in late G1. Virology 224, 150-160. Brown, S. M., Harland, J., MacLean, A. R., Podlech, J. & Clements, J. B. (1994). Cell type and cell state determine differential in vitro growth of non-neurovirulent ICP34.5-negative herpes simplex virus types 1 and 2. J Gen Virol 75 ( Pt 9), 2367-2377. Brown, S. M., MacLean, A. R., McKie, E. A. & Harland, J. (1997). The herpes simplex virus virulence factor ICP34.5 and the cellular protein MyD116 complex with proliferating cell nuclear antigen through the 63-amino-acid domain conserved in ICP34.5, MyD116, and GADD34. J Virol 71, 9442-9449. Celis, J. E. & Celis, A. (1985). Cell cycle-dependent variations in the distribution of the nuclear protein cyclin proliferating cell nuclear antigen in cultured cells: subdivision of S phase. Proc Natl Acad Sci U S A 82, 3262-3266. Challacombe, J. F., Rechtsteiner, A., Gottardo, R., Rocha, L. M., Browne, E. P., Shenk, T., Altherr, M. R. & Brettin, T. S. (2004). Evaluation of the host transcriptional response to human cytomegalovirus infection. Physiol Genomics 18, 51-62. Chee, M. S., Bankier, A. T., Beck, S. & other authors (1990). Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154, 125-169. Cherrington, J. M., Khoury, E. L. & Mocarski, E. S. (1991). Human cytomegalovirus ie2 negatively regulates alpha gene expression via a short target sequence near the transcription start site. J Virol 65, 887-896. Conboy, T. J., Pass, R. F., Stagno, S. & other authors (1987). Early clinical manifestations and intellectual outcome in children with symptomatic congenital cytomegalovirus infection. J Pediatr 111, 343-348. Dianova, II, Bohr, V. A. & Dianov, G. L. (2001). Interaction of human AP endonuclease 1 with flap endonuclease 1 and proliferating cell nuclear antigen involved in long-patch base excision repair. Biochemistry 40, 12639-12644. Dittmer, D. & Mocarski, E. S. (1997). Human cytomegalovirus infection inhibits G1/S transition. J Virol 71, 1629-1634. Ellison, V. & Stillman, B. (2001). Opening of the clamp: an intimate view of an ATP-driven biological machine. Cell 106, 655-660. Engel, F. B., Hauck, L., Boehm, M., Nabel, E. G., Dietz, R. & von Harsdorf, R. (2003). p21(CIP1) Controls proliferating cell nuclear antigen level in adult cardiomyocytes. Mol Cell Biol 23, 555-565. Ertl, P. F. & Powell, K. L. (1992). Physical and functional interaction of human cytomegalovirus DNA polymerase and its accessory protein (ICP36) expressed in insect cells. J Virol 66, 4126-4133. Estes, J. E. & Huang, E. S. (1977). Stimulation of cellular thymidine kinases by human cytomegalovirus. J Virol 24, 13-21. Fortunato, E. A. & Spector, D. H. (1999). Regulation of human cytomegalovirus gene expression. Adv Virus Res 54, 61-128. Fortunato, E. A., McElroy, A. K., Sanchez, I. & Spector, D. H. (2000). Exploitation of cellular signaling and regulatory pathways by human cytomegalovirus. Trends Microbiol 8, 111-119. Gary, R., Kim, K., Cornelius, H. L., Park, M. S. & Matsumoto, Y. (1999). Proliferating cell nuclear antigen facilitates excision in long-patch base excision repair. J Biol Chem 274, 4354-4363. Greaves, R. F. & Mocarski, E. S. (1998). Defective growth correlates with reduced accumulation of a viral DNA replication protein after low-multiplicity infection by a human cytomegalovirus ie1 mutant. J Virol 72, 366-379. Gribaudo, G., Riera, L., Rudge, T. L., Caposio, P., Johnson, L. F. & Landolfo, S. (2002). Human cytomegalovirus infection induces cellular thymidylate synthase gene expression in quiescent fibroblasts. J Gen Virol 83, 2983-2993. Harland, J., Dunn, P., Cameron, E., Conner, J. & Brown, S. M. (2003). The herpes simplex virus (HSV) protein ICP34.5 is a virion component that forms a DNA-binding complex with proliferating cell nuclear antigen and HSV replication proteins. J Neurovirol 9, 477-488. Hayhurst, G. P., Bryant, L. A., Caswell, R. C., Walker, S. M. & Sinclair, J. H. (1995). CCAAT box-dependent activation of the TATA-less human DNA polymerase alpha promoter by the human cytomegalovirus 72-kilodalton major immediate-early protein. J Virol 69, 182-188. Hsu, C. H., Chang, M. D., Tai, K. Y. & other authors (2004). HCMV IE2-mediated inhibition of HAT activity downregulates p53 function. Embo J 23, 2269-2280. Huang, D. Y. & Prystowsky, M. B. (1996). Identification of an essential cis-element near the transcription start site for transcriptional activation of the proliferating cell nuclear antigen gene. J Biol Chem 271, 1218-1225. Iskenderian, A. C., Huang, L., Reilly, A., Stenberg, R. M. & Anders, D. G. (1996). Four of eleven loci required for transient complementation of human cytomegalovirus DNA replication cooperate to activate expression of replication genes. J Virol 70, 383-392. Ivarsson, S. A., Lernmark, B. & Svanberg, L. (1997). Ten-year clinical, developmental, and intellectual follow-up of children with congenital cytomegalovirus infection without neurologic symptoms at one year of age. Pediatrics 99, 800-803. Iwayama, S., Yamamoto, T., Furuya, T., Kobayashi, R., Ikuta, K. & Hirai, K. (1994). Intracellular localization and DNA-binding activity of a class of viral early phosphoproteins in human fibroblasts infected with human cytomegalovirus (Towne strain). J Gen Virol 75 ( Pt 12), 3309-3318. Jabs, D. A., Enger, C. & Bartlett, J. G. (1989). Cytomegalovirus retinitis and acquired immunodeficiency syndrome. Arch Ophthalmol 107, 75-80. Jaskulski, D., deRiel, J. K., Mercer, W. E., Calabretta, B. & Baserga, R. (1988). Inhibition of cellular proliferation by antisense oligodeoxynucleotides to PCNA cyclin. Science 240, 1544-1546. Jault, F. M., Jault, J. M., Ruchti, F., Fortunato, E. A., Clark, C., Corbeil, J., Richman, D. D. & Spector, D. H. (1995). Cytomegalovirus infection induces high levels of cyclins, phosphorylated Rb, and p53, leading to cell cycle arrest. J Virol 69, 6697-6704. Kalejta, R. F. & Shenk, T. (2002). Manipulation of the cell cycle by human cytomegalovirus. Front Biosci 7, d295-306. Kelman, Z. & O'Donnell, M. (1995). Structural and functional similarities of prokaryotic and eukaryotic DNA polymerase sliding clamps. Nucleic Acids Res 23, 3613-3620. Kim, J. M., Hong, Y., Jeang, K. T. & Kim, S. (2000). Transactivation activity of the human cytomegalovirus IE2 protein occurs at steps subsequent to TATA box-binding protein recruitment. J Gen Virol 81, 37-46. Krishna, T. S., Kong, X. P., Gary, S., Burgers, P. M. & Kuriyan, J. (1994). Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79, 1233-1243. Landolfo, S., Gariglio, M., Gribaudo, G. & Lembo, D. (2003). The human cytomegalovirus. Pharmacol Ther 98, 269-297. Lashmit, P. E., Stinski, M. F., Murphy, E. A. & Bullock, G. C. (1998). A cis repression sequence adjacent to the transcription start site of the human cytomegalovirus US3 gene is required to down regulate gene expression at early and late times after infection. J Virol 72, 9575-9584. Lau, P. J. & Kolodner, R. D. (2003). Transfer of the MSH2.MSH6 complex from proliferating cell nuclear antigen to mispaired bases in DNA. J Biol Chem 278, 14-17. Lee, B. H. & Mathews, M. B. (1997). Transcriptional coactivator cAMP response element binding protein mediates induction of the human proliferating cell nuclear antigen promoter by the adenovirus E1A oncoprotein. Proc Natl Acad Sci U S A 94, 4481-4486. Lembo, D., Gribaudo, G., Cavallo, R., Riera, L., Angeretti, A., Hertel, L. & Landolfo, S. (1999). Human cytomegalovirus stimulates cellular dihydrofolate reductase activity in quiescent cells. Intervirology 42, 30-36. Li, Y. Y., Wang, L. & Lu, C. D. (2003). An E2F site in the 5'-promoter region contributes to serum-dependent up-regulation of the human proliferating cell nuclear antigen gene. FEBS Lett 544, 112-118. Lieber, M. R. (1997). The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays 19, 233-240. Liu, B., Hermiston, T. W. & Stinski, M. F. (1991). A cis-acting element in the major immediate-early (IE) promoter of human cytomegalovirus is required for negative regulation by IE2. J Virol 65, 897-903. Lu, M. & Shenk, T. (1996). Human cytomegalovirus infection inhibits cell cycle progression at multiple points, including the transition from G1 to S. J Virol 70, 8850-8857. Lukac, D. M., Harel, N. Y., Tanese, N. & Alwine, J. C. (1997). TAF-like functions of human cytomegalovirus immediate-early proteins. J Virol 71, 7227-7239. Luo, Y., Hurwitz, J. & Massague, J. (1995). Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature 375, 159-161. Marchini, A., Liu, H. & Zhu, H. (2001). Human cytomegalovirus with IE-2 (UL122) deleted fails to express early lytic genes. J Virol 75, 1870-1878. Margolis, M. J., Pajovic, S., Wong, E. L., Wade, M., Jupp, R., Nelson, J. A. & Azizkhan, J. C. (1995). Interaction of the 72-kilodalton human cytomegalovirus IE1 gene product with E2F1 coincides with E2F-dependent activation of dihydrofolate reductase transcription. J Virol 69, 7759-7767. Marschall, M., Freitag, M., Suchy, P., Romaker, D., Kupfer, R., Hanke, M. & Stamminger, T. (2003). The protein kinase pUL97 of human cytomegalovirus interacts with and phosphorylates the DNA polymerase processivity factor pUL44. Virology 311, 60-71. Mate, J. L., Ariza, A., Munoz, A., Molinero, J. L., Lopez, D. & Navas-Palacios, J. J. (1998). Induction of proliferating cell nuclear antigen and Ki-67 expression by cytomegalovirus infection. J Pathol 184, 279-282. Matsuoka, S., Yamaguchi, M. & Matsukage, A. (1994). D-type cyclin-binding regions of proliferating cell nuclear antigen. J Biol Chem 269, 11030-11036. Meier, J. L. & Stinski, M. F. (1996). Regulation of human cytomegalovirus immediate-early gene expression. Intervirology 39, 331-342. Miyachi, K., Fritzler, M. J. & Tan, E. M. (1978). Autoantibody to a nuclear antigen in proliferating cells. J Immunol 121, 2228-2234. Mocarski, E. S., Kemble, G. W., Lyle, J. M. & Greaves, R. F. (1996). A deletion mutant in the human cytomegalovirus gene encoding IE1(491aa) is replication defective due to a failure in autoregulation. Proc Natl Acad Sci U S A 93, 11321-11326. Mocarski, E. S. & Courcelle, C. T. (2001). Cytomegaloviruses and Their Replication. Fields Virology 2, 2629-2673. Moggs, J. G., Grandi, P., Quivy, J. P., Jonsson, Z. O., Hubscher, U., Becker, P. B. & Almouzni, G. (2000). A CAF-1-PCNA-mediated chromatin assembly pathway triggered by sensing DNA damage. Mol Cell Biol 20, 1206-1218. Morris, G. F. & Mathews, M. B. (1989). Regulation of proliferating cell nuclear antigen during the cell cycle. J Biol Chem 264, 13856-13864. Morris, G. F. & Mathews, M. B. (1991). The adenovirus E1A transforming protein activates the proliferating cell nuclear antigen promoter via an activating transcription factor site. J Virol 65, 6397-6406. Muganda, P., Mendoza, O., Hernandez, J. & Qian, Q. (1994). Human cytomegalovirus elevates levels of the cellular protein p53 in infected fibroblasts. J Virol 68, 8028-8034. Muller-Weeks, S. J. & Caradonna, S. (1996). Specific association of cyclin-like uracil-DNA glycosylase with the proliferating cell nuclear antigen. Exp Cell Res 226, 346-355. Nelson, J. A., Gnann, J. W., Jr. & Ghazal, P. (1990). Regulation and tissue-specific expression of human cytomegalovirus. Curr Top Microbiol Immunol 154, 75-100. Ottavio, L., Chang, C. D., Rizzo, M. G., Travali, S., Casadevall, C. & Baserga, R. (1990). Importance of introns in the growth regulation of mRNA levels of the proliferating cell nuclear antigen gene. Mol Cell Biol 10, 303-309. Pagano, M., Theodoras, A. M., Tam, S. W. & Draetta, G. F. (1994). Cyclin D1-mediated inhibition of repair and replicative DNA synthesis in human fibroblasts. Genes Dev 8, 1627-1639. Pajovic, S., Wong, E. L., Black, A. R. & Azizkhan, J. C. (1997). Identification of a viral kinase that phosphorylates specific E2Fs and pocket proteins. Mol Cell Biol 17, 6459-6464. Pari, G. S. & Anders, D. G. (1993). Eleven loci encoding trans-acting factors are required for transient complementation of human cytomegalovirus oriLyt-dependent DNA replication. J Virol 67, 6979-6988. Pass, R. F., Stagno, S., Myers, G. J. & Alford, C. A. (1980). Outcome of symptomatic congenital cytomegalovirus infection: results of long-term longitudinal follow-up. Pediatrics 66, 758-762. Pass, R. F. (2001). Cytomegalovirus. Fields Virology 2, 2675-2706. Paunesku, T., Mittal, S., Protic, M., Oryhon, J., Korolev, S. V., Joachimiak, A. & Woloschak, G. E. (2001). Proliferating cell nuclear antigen (PCNA): ringmaster of the genome. Int J Radiat Biol 77, 1007-1021. Penfold, M. E. & Mocarski, E. S. (1997). Formation of cytomegalovirus DNA replication compartments defined by localization of viral proteins and DNA synthesis. Virology 239, 46-61. Pizzorno, M. C. & Hayward, G. S. (1990). The IE2 gene products of human cytomegalovirus specifically down-regulate expression from the major immediate-early promoter through a target sequence located near the cap site. J Virol 64, 6154-6165. Prichard, M. N., Duke, G. M. & Mocarski, E. S. (1996). Human cytomegalovirus uracil DNA glycosylase is required for the normal temporal regulation of both DNA synthesis and viral replication. J Virol 70, 3018-3025. Riedl, T., Hanaoka, F. & Egly, J. M. (2003). The comings and goings of nucleotide excision repair factors on damaged DNA. Embo J 22, 5293-5303. Ripalti, A., Boccuni, M. C., Campanini, F. & Landini, M. P. (1995). Cytomegalovirus-mediated induction of antisense mRNA expression to UL44 inhibits virus replication in an astrocytoma cell line: identification of an essential gene. J Virol 69, 2047-2057. Romanowski, M. J. & Shenk, T. (1997). Characterization of the human cytomegalovirus irs1 and trs1 genes: a second immediate-early transcription unit within irs1 whose product antagonizes transcriptional activation. J Virol 71, 1485-1496. Salvant, B. S., Fortunato, E. A. & Spector, D. H. (1998). Cell cycle dysregulation by human cytomegalovirus: influence of the cell cycle phase at the time of infection and effects on cyclin transcription. J Virol 72, 3729-3741. Samaniego, L. A., Tevethia, M. J. & Spector, D. J. (1994). The human cytomegalovirus 86-kilodalton immediate-early 2 protein: synthesis as a precursor polypeptide and interaction with a 75-kilodalton protein of probable viral origin. J Virol 68, 720-729. Sarisky, R. T. & Hayward, G. S. (1996). Evidence that the UL84 gene product of human cytomegalovirus is essential for promoting oriLyt-dependent DNA replication and formation of replication compartments in cotransfection assays. J Virol 70, 7398-7413. Savio, M., Stivala, L. A., Bianchi, L., Vannini, V. & Prosperi, E. (1998). Involvement of the proliferating cell nuclear antigen (PCNA) in DNA repair induced by alkylating agents and oxidative damage in human fibroblasts. Carcinogenesis 19, 591-596. Shibahara, K. & Stillman, B. (1999). Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96, 575-585. Shiomi, Y., Usukura, J., Masamura, Y., Takeyasu, K., Nakayama, Y., Obuse, C., Yoshikawa, H. & Tsurimoto, T. (2000). ATP-dependent structural change of the eukaryotic clamp-loader protein, replication factor C. Proc Natl Acad Sci U S A 97, 14127-14132. Shivakumar, C. V., Brown, D. R., Deb, S. & Deb, S. P. (1995). Wild-type human p53 transactivates the human proliferating cell nuclear antigen promoter. Mol Cell Biol 15, 6785-6793. Shivji, K. K., Kenny, M. K. & Wood, R. D. (1992). Proliferating cell nuclear antigen is required for DNA excision repair. Cell 69, 367-374. Sinzger, C., Grefte, A., Plachter, B., Gouw, A. S., The, T. H. & Jahn, G. (1995). Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J Gen Virol 76 ( Pt 4), 741-750. Sinzger, C. & Jahn, G. (1996). Human cytomegalovirus cell tropism and pathogenesis. Intervirology 39, 302-319. Smith, S. & Stillman, B. (1989). Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58, 15-25. Song, Y. J. & Stinski, M. F. (2002). Effect of the human cytomegalovirus IE86 protein on expression of E2F-responsive genes: a DNA microarray analysis. Proc Natl Acad Sci U S A 99, 2836-2841. Spector, D. H. (1996). Activation and regulation of human cytomegalovirus early genes. Intervirology 39, 361-377. Spector, D. J. & Tevethia, M. J. (1994). Protein-protein interactions between human cytomegalovirus IE2-580aa and pUL84 in lytically infected cells. J Virol 68, 7549-7553. Stamminger, T., Puchtler, E. & Fleckenstein, B. (1991). Discordant expression of the immediate-early 1 and 2 gene regions of human cytomegalovirus at early times after infection involves posttranscriptional processing events. J Virol 65, 2273-2282. Stasiak, P. C. & Mocarski, E. S. (1992). Transactivation of the cytomegalovirus ICP36 gene promoter requires the alpha gene product TRS1 in addition to IE1 and IE2. J Virol 66, 1050-1058. Stenberg, R. M., Depto, A. S., Fortney, J. & Nelson, J. A. (1989). Regulated expression of early and late RNAs and proteins from the human cytomegalovirus immediate-early gene region. J Virol 63, 2699-2708. Stenberg, R. M. (1996). The human cytomegalovirus major immediate-early gene. Intervirology 39, 343-349. Stinski, M. F. (1978). Sequence of protein synthesis in cells infected by human cytomegalovirus: early and late virus-induced polypeptides. J Virol 26, 686-701. Takasaki, Y., Deng, J. S. & Tan, E. M. (1981). A nuclear antigen associated with cell proliferation and blast transformation. J Exp Med 154, 1899-1909. Travali, S., Ku, D. H., Rizzo, M. G., Ottavio, L., Baserga, R. & Calabretta, B. (1989). Structure of the human gene for the proliferating cell nuclear antigen. J Biol Chem 264, 7466-7472. Waga, S., Hannon, G. J., Beach, D. & Stillman, B. (1994). The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369, 574-578. Waga, S. & Stillman, B. (1998). The DNA replication fork in eukaryotic cells. Annu Rev Biochem 67, 721-751. Wang, L., Li, M., Yan, P. J. & Lu, C. D. (2000). Active cis-elements of PCNA Promoter in HeLa, HepG2, L-02 and MCF-7 Cell Lines. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 32, 451-458. Weiland, K. L., Oien, N. L., Homa, F. & Wathen, M. W. (1994). Functional analysis of human cytomegalovirus polymerase accessory protein. Virus Res 34, 191-206. Wiebusch, L., Asmar, J., Uecker, R. & Hagemeier, C. (2003a). Human cytomegalovirus immediate-early protein 2 (IE2)-mediated activation of cyclin E is cell-cycle-independent and forces S-phase entry in IE2-arrested cells. J Gen Virol 84, 51-60. Wiebusch, L., Uecker, R. & Hagemeier, C. (2003b). Human cytomegalovirus prevents replication licensing by inhibiting MCM loading onto chromatin. EMBO Rep 4, 42-46. Xu, Y., Colletti, K. S. & Pari, G. S. (2002). Human cytomegalovirus UL84 localizes to the cell nucleus via a nuclear localization signal and is a component of viral replication compartments. J Virol 76, 8931-8938. Yamamoto, T., Suzuki, S., Radsak, K. & Hirai, K. (1998). The UL112/113 gene products of human cytomegalovirus which colocalize with viral DNA in infected cell nuclei are related to efficient viral DNA replication. Virus Res 56, 107-114. Yao, N., Turner, J., Kelman, Z., Stukenberg, P. T., Dean, F., Shechter, D., Pan, Z. Q., Hurwitz, J. & O'Donnell, M. (1996). Clamp loading, unloading and intrinsic stability of the PCNA, beta and gp45 sliding clamps of human, E. coli and T4 replicases. Genes Cells 1, 101-113. Zhang, G., Gibbs, E., Kelman, Z., O'Donnell, M. & Hurwitz, J. (1999). Studies on the interactions between human replication factor C and human proliferating cell nuclear antigen. Proc Natl Acad Sci U S A 96, 1869-1874. Zhang, H., Xiong, Y. & Beach, D. (1993). Proliferating cell nuclear antigen and p21 are components of multiple cell cycle kinase complexes. Mol Biol Cell 4, 897-906.id NH0925538013 sid 914252 cfn 0 / id NH0925538014 auc 冉毅驊 tic 在小鼠建立攝護腺癌樹突狀細胞腫瘤疫苗 adc 葉世榮 adc 江啟勳 ty 碩士 sc 國立清華大學 dp 分子醫學研究所 yr 92 lg 英文 pg 40 kwc 骨髓樹突狀細胞 kwc 樹突狀細胞腫瘤疫苗 kwc 攝護腺癌 kwc 放射線 abc 利用樹突狀細胞(Dendritic cells)呈現腫瘤相關的抗原能夠有效地誘發對抗腫瘤的免疫力。當無法得知特定腫瘤抗原的情況下,利用整個腫瘤細胞作為抗原來刺激樹突狀細胞是一個值得研究的策略。本篇論文的研究目的是在小鼠的動物模式上建立攝護腺癌的樹突狀細胞腫瘤疫苗,並且評估以下三種刺激樹突狀細胞的策略:1. 以腫瘤細胞裂解物(Tumor lysates)刺激樹突狀細胞。2. 以放射線照射的腫瘤細胞刺激樹突狀細胞。3. 以放射線照射的腫瘤細胞加上細胞激素-3(Interleukin-3, IL-3)共同刺激樹突狀細胞。樹突狀細胞可經由骨髓細胞在GM-CSF和IL-4五至六天的培養下分化增生而得,LPS的加入則會刺激樹突狀細胞更進一步分化為成熟樹突狀細胞。這些在體外培養產生的骨髓樹突狀細胞具有典型的樹突狀型態、細胞表面特殊分子、吞噬能力以及刺激不同源T細胞增生的能力。在本篇研究中,以放射線照射的TRAMP C1細胞株為抗原刺激樹突狀細胞做為攝護腺癌腫瘤疫苗,在預防腫瘤產生以及減緩腫瘤生長上最為有效,而IL-3的存在並沒有進一步增強這樣的免疫力。以TRAMP C1 lysates刺激樹突狀細胞相較之下無法有效地誘發抗腫瘤的免疫力。從本篇的實驗結果認為,使用放射線照射的腫瘤細胞做為抗原,是發展攝護腺癌樹突狀細胞腫瘤疫苗很有效的方式。 tc 中文摘要 I ABSTRACT II 誌謝 III CONTENTS IV INTRODUCTION 1 DCs subtypes 1 DC maturation 2 Antigen uptake, processing and presentation 3 Manipulation of DCs for cancer immunotherapy 4 MATERIALS AND METHODS 5 Animals 5 Cell lines and culture condition 5 Antibodies and reagents 6 Epitope prediction and peptide synthesis 6 Murine bone marrow-derived dendritic cells 7 DC phenotyping by FACS 7 Phagocytosis assay 8 XTT cell proliferation assay 8 Allogenic mixed lymphocyte reaction 9 Apoptosis detection after radiation 9 Phagocytosis of irradiated TRAMP C1 10 DC vaccine preparation 10 Immunization of mice and tumor challenge in vivo 10 CTL assay 11 RESULTS 12 Generation of bone marrow-derived dendritic cells 12 Surface markers phenotyping 13 Phagocytosis assay and allogenic mixed lymphocyte reaction 13 Irradiated TRAMP C1 cells are phagocytosed by DCs 14 DCs pulsed with irradiated TRAMP C1 cells up-regulate CD80, CD86 and MHC II expression 15 Induction of protective immunity by DCs pulsed with irradiated TRAMP C1 cells 16 Tumor specific CTL responses induced by DCs pulsed with irradiated TRAMP C1 cells 17 DISCUSSION 19 FIGURE LEGENDS 24 FIGURES 28 REFERENCES 37rf 1. Steinman, RM The dendritic cell system and its role in immunogenicity. Annu Rev Immunol, 1991; 9(271-296. 2. Shortman, K and Liu, YJ Mouse and human dendritic cell subtypes. Nat Rev Immunol, 2002; 2(3): 151-161. 3. Shortman, K and Wu, L Parentage and heritage of dendritic cells. Blood, 2001; 97(11): 3325. 4. den Haan, JM, Lehar, SM, and Bevan, MJ CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med, 2000; 192(12): 1685-1696. 5. Pooley, JL, Heath, WR, and Shortman, K Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8- dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J Immunol, 2001; 166(9): 5327-5330. 6. Reis e Sousa, C and Germain, RN Analysis of adjuvant function by direct visualization of antigen presentation in vivo: endotoxin promotes accumulation of antigen-bearing dendritic cells in the T cell areas of lymphoid tissue. J Immunol, 1999; 162(11): 6552-6561. 7. Pulendran, B, Smith, JL, Caspary, G, et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci U S A, 1999; 96(3): 1036-1041. 8. Smith, AL and Fazekas de St Groth, B Antigen-pulsed CD8alpha+ dendritic cells generate an immune response after subcutaneous injection without homing to the draining lymph node. J Exp Med, 1999; 189(3): 593-598. 9. Aderem, A and Ulevitch, RJ Toll-like receptors in the induction of the innate immune response. Nature, 2000; 406(6797): 782-787. 10. Kalinski, P, Hilkens, CM, Wierenga, EA, and Kapsenberg, ML T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today, 1999; 20(12): 561-567. 11. Regnault, A, Lankar, D, Lacabanne, V, et al. Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J Exp Med, 1999; 189(2): 371-380. 12. Rescigno, M, Piguet, V, Valzasina, B, et al. Fas engagement induces the maturation of dendritic cells (DCs), the release of interleukin (IL)-1beta, and the production of interferon gamma in the absence of IL-12 during DC-T cell cognate interaction: a new role for Fas ligand in inflammatory responses. J Exp Med, 2000; 192(11): 1661-1668. 13. Ackerman, AL, Kyritsis, C, Tampe, R, and Cresswell, P Early phagosomes in dendritic cells form a cellular compartment sufficient for cross presentation of exogenous antigens. Proc Natl Acad Sci U S A, 2003; 100(22): 12889-12894. 14. Fonteneau, JF, Larsson, M, and Bhardwaj, N Interactions between dead cells and dendritic cells in the induction of antiviral CTL responses. Curr Opin Immunol, 2002; 14(4): 471-477. 15. Guermonprez, P, Saveanu, L, Kleijmeer, M, Davoust, J, Van Endert, P, and Amigorena, S ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature, 2003; 425(6956): 397-402. 16. Steinman, RM and Dhodapkar, M Active immunization against cancer with dendritic cells: the near future. Int J Cancer, 2001; 94(4): 459-473. 17. Ashley, DM, Faiola, B, Nair, S, Hale, LP, Bigner, DD, and Gilboa, E Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp Med, 1997; 186(7): 1177-1182. 18. Fields, RC, Shimizu, K, and Mule, JJ Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc Natl Acad Sci U S A, 1998; 95(16): 9482-9487. 19. Galea-Lauri, J, Darling, D, Mufti, G, Harrison, P, and Farzaneh, F Eliciting cytotoxic T lymphocytes against acute myeloid leukemia-derived antigens: evaluation of dendritic cell-leukemia cell hybrids and other antigen-loading strategies for dendritic cell-based vaccination. Cancer Immunol Immunother, 2002; 51(6): 299-310. 20. Nestle, FO, Alijagic, S, Gilliet, M, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med, 1998; 4(3): 328-332. 21. Wolfers, J, Lozier, A, Raposo, G, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med, 2001; 7(3): 297-303. 22. Foster, BA, Gingrich, JR, Kwon, ED, Madias, C, and Greenberg, NM Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res, 1997; 57(16): 3325-3330. 23. Lu, J and Celis, E Use of two predictive algorithms of the world wide web for the identification of tumor-reactive T-cell epitopes. Cancer Res, 2000; 60(18): 5223-5227. 24. Inaba, K, Inaba, M, Romani, N, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med, 1992; 176(6): 1693-1702. 25. Pulaski, BA, Yeh, KY, Shastri, N, et al. Interleukin 3 enhances cytotoxic T lymphocyte development and class I major histocompatibility complex "re-presentation" of exogenous antigen by tumor-infiltrating antigen-presenting cells. Proc Natl Acad Sci U S A, 1996; 93(8): 3669-3674. 26. Yeh, KY, McAdam, AJ, Pulaski, BA, Shastri, N, Frelinger, JG, and Lord, EM IL-3 enhances both presentation of exogenous particulate antigen in association with class I major histocompatibility antigen and generation of primary tumor-specific cytolytic T lymphocytes. J Immunol, 1998; 160(12): 5773-5780. 27. Liu, L, Chahroudi, A, Silvestri, G, et al. Visualization and quantification of T cell-mediated cytotoxicity using cell-permeable fluorogenic caspase substrates. Nat Med, 2002; 8(2): 185-189. 28. Lutz, MB, Kukutsch, N, Ogilvie, AL, et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods, 1999; 223(1): 77-92. 29. Jiang, W, Swiggard, WJ, Heufler, C, et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature, 1995; 375(6527): 151-155. 30. Goldszmid, RS, Idoyaga, J, Bravo, AI, Steinman, R, Mordoh, J, and Wainstok, R Dendritic cells charged with apoptotic tumor cells induce long-lived protective CD4+ and CD8+ T cell immunity against B16 melanoma. J Immunol, 2003; 171(11): 5940-5947. 31. Sauter, B, Albert, ML, Francisco, L, Larsson, M, Somersan, S, and Bhardwaj, N Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med, 2000; 191(3): 423-434. 32. Paczesny, S, Beranger, S, Salzmann, JL, Klatzmann, D, and Colombo, BM Protection of mice against leukemia after vaccination with bone marrow-derived dendritic cells loaded with apoptotic leukemia cells. Cancer Res, 2001; 61(6): 2386-2389. 33. Ronchetti, A, Rovere, P, Iezzi, G, et al. Immunogenicity of apoptotic cells in vivo: role of antigen load, antigen-presenting cells, and cytokines. J Immunol, 1999; 163(1): 130-136. 34. Matzinger, P Tolerance, danger, and the extended family. Annu Rev Immunol, 1994; 12(991-1045. 35. Gallucci, S and Matzinger, P Danger signals: SOS to the immune system. Curr Opin Immunol, 2001; 13(1): 114-119. 36. Basu, S, Binder, RJ, Suto, R, Anderson, KM, and Srivastava, PK Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol, 2000; 12(11): 1539-1546. 37. Bogdan, C The function of type I interferons in antimicrobial immunity. Curr Opin Immunol, 2000; 12(4): 419-424. 38. Caux, C, Massacrier, C, Vanbervliet, B, et al. Activation of human dendritic cells through CD40 cross-linking. J Exp Med, 1994; 180(4): 1263-1272. 39. Sallusto, F, Cella, M, Danieli, C, and Lanzavecchia, A Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med, 1995; 182(2): 389-400. 40. Zepter, K, Haffner, A, Soohoo, LF, et al. Induction of biologically active IL-1 beta-converting enzyme and mature IL-1 beta in human keratinocytes by inflammatory and immunologic stimuli. J Immunol, 1997; 159(12): 6203-6208. 41. Shi, Y, Evans, JE, and Rock, KL Molecular identification of a danger signal that alerts the immune system to dying cells. Nature, 2003; 425(6957): 516-521.id NH0925538014 sid 914241 cfn 0 / id NH0925538015 auc 謝毓玲 tic 利用基因晶片研究數種冬蟲夏草水萃液處理KG-1細胞之基因表現圖譜與標記基因 adc 葉世榮 adc 許志 adc & adc #26983; ty 碩士 sc 國立清華大學 dp 分子醫學研究所 yr 92 lg 中文 pg 77 kwc 基因晶片 kwc 中草藥 kwc 冬蟲夏草 abc 冬蟲夏草是一種菌蟲複合體的珍貴藥材,根據研究報告指出冬蟲夏草具有多種生物學上及藥理學上的作用,包括對肝、腎、心血管、內分泌系統等皆有活性,另有抗氧化、抗癌及免疫調節功能。【本草綱目拾遺】及【本草備要】兩書記載「夏草冬蟲乃感陰陽二氣而生,夏至一陰生,故靜而為草,冬至一陽生,故動而為蟲,以其得陰陽之氣全也,故能治諸虛百損。」『冬蟲夏草,甘平,保肺益腎,止血化痰,己勞嗽。四川嘉定府所產者最佳,雲南、貴州所產者次之。』古籍認為冬蟲夏草的子實體(草)與菌核(蟲)兩部位可能不同且具不同療效;另外產地似乎也是影響冬蟲夏草藥效的因素。 tc 中文摘要……………………………………………………………………....…I 英文摘要……………………………………………………………………...…II 誌謝......................................................................................................................III 目錄......................................................................................................................IV 圖表目錄.............................................................................................................IX 第一章 序論 1.1 研究動機........................................................................................................1 1.2 研究目的........................................................................................................2 1.3 研究流程........................................................................................................2 第二章 原理 2.1 基因晶片………………………………………………………….......….....3 2.1.1 基因晶片種類…………………………………………………................ 3 2.1.2 基因晶片原理………………………………………………..…...............4 2.1.3 基本實驗流程………………………………………………….................5 2.2 基因晶片應用於中草藥之研究…………………………………...........…11 2.3 冬蟲夏草……………………………………………………........………...12 2.3.1 生活史………………………………………………………................…12 2.3.2 藥效機制……………………………...……………………...............…..14 2.3.3 菌種鑑定………………………………………………............................14 2.4 KG-1 細胞株…………………………………….…………..…........…...15 第三章 實驗步驟與設計 3.1 實驗設計………………………………………......……………………....17 3.2 冬蟲夏草樣品品質管制............................................................................. 18 3.2.1菌種基源分析-18S rRNA序列比對.........................................................18 3.2.2無機化合物化學圖譜鑑定-感應偶合電漿質譜儀...................................18 3.2.3 有機化合物化學圖譜鑑定-HPLC..........................................................20 3.3 生物活性指標篩選......................................................................................20 3.3.1 冬蟲夏草水萃液之備製...........................................................................20 3.3.2 細胞增殖曲線...........................................................................................21 3.3.3 Mock實驗...............................................................................................21 3.3.4 時間點決定實驗.......................................................................................22 3.4 主要晶片實驗與迴圈設計..........................................................................22 3.5 資料處理與統計分析..................................................................................24 3.5.1 以廻圈設計估計基因表現差異...............................................................24 3.5.2 F-檢定......................................................................................................28 第四章 結果 Part I. 冬蟲夏草的品質管制............................................................................31 4.1 冬蟲夏草菌種分析-18S rRNA序列比對結果...........................................31 4.2無機化合物化學圖譜鑑定-感應偶合電漿質譜儀結果..............................31 4.3有機化合物化學圖譜鑑定-HPLC圖譜比較結果.......................................33 4.3.1 青海冬蟲夏草不同部位水萃液之HPLC圖譜.......................................33 4.3.2 西藏冬蟲夏草不同部位水萃液之HPLC圖譜......................................34 Part II. 冬蟲夏草的生物活性指標...................................................................36 4.4 冬蟲夏草水萃液處理之細胞增殖曲線......................................................36 4.4.1 青海菌核(QW)水萃液對KG-1細胞之增殖抑制率..........................36 4.4.2 青海子座(QFB)水萃液對KG-1細胞之增殖抑制率..........................37 4.4.3 青海全蟲(QCS)水萃液對KG-1細胞之增殖抑制率.........................37 4.4.4 西藏菌核(TW)水萃液對KG-1細胞之增殖抑制率............................38 4.4.5 西藏子座(TFB)水萃液對KG-1細胞之增殖抑制率...........................39 4.4.6 西藏全蟲(TCS)水萃液對KG-1細胞之增殖抑制率...........................39 4.4.7 不同產地及部位蟲草水萃液之細胞增殖抑制率...................................40 4.5 決定時間點實驗..........................................................................................41 4.5.1 Mock實驗...............................................................................................41 4.5.2 表現差異基因之挑選.............................................................................42 4.5.3 叢集分析.................................................................................................43 Part III. 篩選冬蟲夏草的標記基因.................................................................44 4.6 主要基因微陣列實驗..................................................................................44 4.6.1 細胞增殖抑制率.......................................................................................44 4.6.2 樣本RNA 品質鑑定結果........................................................................45 4.6.3 各片晶片實驗之原始圖檔.......................................................................46 4.6.4 以外加指示控制基因評估各片晶片實驗...............................................46 4.6.5 選點標準與歸一化處理...........................................................................48 4.6.6 矩陣運算後之結果...................................................................................52 4.7 可靠基因群與冬蟲夏草標記基因群之選取..............................................53 4.7.1 選取可靠基因群.......................................................................................53 4.7.2 選取冬蟲夏草標記基因群.......................................................................53 4.8 叢集分析結果..............................................................................................58 第五章 討論 5.1 品質管制……………………………………………...…………………...59 5.2 生物活性指標..............................................................................................60 5.3 篩選冬蟲夏草標記基因..............................................................................63 5.3.1 實驗設計與實驗品質控管.......................................................................63 5.3.2 冬蟲夏草樣本間之差異程度...................................................................65 5.4 冬蟲夏草數種功能相關基因群..................................................................67 5.4.1 免疫/發炎反應相關基因群......................................................................68 5.4.1.1 CD69基因表現上調............................................................................68 5.4.1.2 IL1-β基因表現下調............................................................................68 5.4.1.3 STAT1基因表現上調,STAT5A基因表現下調...............................69 5.4.2 與抗氧化作用相關基因群.....................................................................69 5.4.3 與細胞內醣類代謝相關基因群.............................................................70 5.4.4 與細胞遷移/附著相關基因群................................................................70 5.5 展望..............................................................................................................71 參考文獻…….………………………………………………………………....72 圖表目錄 圖2.1 cDNA微陣列系統,利用空心針將cDNA點印至表面處理過之玻璃載具上..............3 圖2.2 Affymetrix公司以光蝕刻法製造之寡核苷酸基因晶片...............................................3 圖2.3 中心法則(Central Dogma),敘述 DNA → RNA → 蛋白質的流程,幾乎是所有生物體內生命現象運作的基本機制...............................................................................5 圖2.4 基因微陣列系統基本實驗流程圖,主要包含(a)玻片備製及探針基因點印(Printing)、(b)雜合反應(Hybridization)、(c)玻片影像掃描(Scanning)、(d)影像數據分析(Analys等四部分....................................................................................6 圖2.5 點印用之狹縫針..............................................................................................................7 圖2.6 微陣列點印系統之針座,一次可以同時使用48根針進行點印工作..........................7 圖2.7 基因微陣列點印系統之自動化機械手臂,每一批可以點印出含有超過三萬點之玻共137片...........................................................................................................................7 圖2.8 UV -Crosslinking增強DNA探針與玻片的黏合..............................................................7 圖2.9 非直接標記法原理,以寡腺苷鏈進行第一次雜合反應,再以3 DNA擷取序列的互補序列進行第二次雜合反應...........................................................................................9 圖2.10 Axon 4000B 掃描系統..................................................................................................9 圖2.11 Cy-3、Cy-5螢光染劑之激發光譜...............................................................................10 圖2.12 以GenePix 5.0進行圈點的動作................................................................................10 圖2.13 冬蟲夏草外觀..............................................................................................................13 圖2.14 冬蟲夏草生活史,幼蟲在土壤中避冬感染蟲草真菌大量繁殖稱「冬蟲」,夏初,蟲草菌繼續成長在蟲體頭部長出棍棒狀子實體,人稱「夏草」.........................13 圖2.15 KG-1細胞於顯微鏡下(1000X).............................................................................16 圖2.16 樹突狀細胞分化圖.....................................................................................................16 圖3.1 實驗流程圖...................................................................................................................18 圖3.2 冬蟲夏草之A.子座(子實體)B.菌核(蟲)...........................................................21 圖3.3 時間點決定實驗設計圖,control為不處理冬蟲夏草,QW為處理青海菌核水萃液之樣本,數字為處理之天數.......................................................................................22 圖3.4 樣本之設計,由產地分為青海與西藏再依部位分為子實體、菌核、全蟲三部分,加上內部控制組與控制組共八個樣本.......................................................................23 圖3.5 主要實驗迴圈設計設計圖,紅色字為樣本代號而藍色數字為片子編號...............23 圖4.1 18S rRNA序列比對結果...............................................................................................31 圖4.2 冬蟲夏草與其菌絲體產品叢集分析後之樣品關連性................................................33 圖4.3 青海冬蟲夏草不同部位水萃液之HPLC圖譜...........................................................34 圖4.4 西藏冬蟲夏草不同部位水萃液之HPLC圖譜...........................................................35 圖 4.5 以不同濃度之青海菌核冬蟲夏草水萃液處理KG-1細胞之細胞增殖抑制率.......36 圖 4.6以不同濃度之青海子座冬蟲夏草水萃液處理KG-1細胞之增殖抑制率................37 圖 4.7以不同濃度之青海全蟲冬蟲夏草水萃液處理KG-1細胞之增殖抑制率.................38 圖 4.8 以不同濃度之西藏菌核冬蟲夏草水萃液處理KG-1細胞之增殖抑制率..............38 圖 4.9 以不同濃度之西藏子座冬蟲夏草水萃液處理KG-1細胞之細胞殘存率..............39 圖 4.10 以不同濃度之西藏全蟲冬蟲夏草水萃液處理KG-1細胞之增殖抑制率............40 圖4.11 不同產地與部位冬蟲夏草處理KG-1細胞之增殖抑制率折線圖.........................40 圖4.12 Mock實驗之MA圖,A值小於2,表示系統誤差甚小而系統靈敏度高...........42 圖4.13 時間點實驗叢集分析結果,第二天與四、八天基因表現圖譜有明顯的不同... 44 圖4.14 細胞殘存率比較圖....................................................................................................45 圖4.15處理蟲草水萃液四天細胞抽出之RNA之電泳圖與5S、18S及28S rRNA含量圖................................................................................................................................46 圖4.16為原始影像檔.............................................................................................................46 圖4.17 良好之指示控制基因在M-A圖分佈情形.................................................................48 圖4.18 不良之指示控制基因在M-A圖分佈情形..............................................................48 圖4.19數據分析之流程.........................................................................................................48 圖4.20為16片玻片之M-A圖,由圖可知皆為良好之實驗結果.....................................49 圖4.21 增加批次因子之σ分佈圖,A為一個γ所算出之σ分佈圖,B為五個γ所算出之σ分佈圖.................................................................................................................51 圖4.22 各樣品之基因表現差異,控制組內誤差λ3-λ4之分佈遠小於其他樣本對控制組之分佈.........................................................................................................................53 圖4.2 叢集分析結果...............................................................................................................58 圖5.1 為以青海冬蟲夏草水萃液20μl/ml處理細胞之結果.................................................62 圖5.2冬蟲夏草標記基因進行叢集分析之後這七個樣本的基因表現相關性.....................67 表4.1 冬蟲夏草與其菌絲體產品之微量無機物比例表.......................................................32 表4.21 各時間點顯著差異基因數..........................................................................................43 表4.3 冬蟲夏草標記基因群....................................................................................................54rf 1. Chen, Y. Q., B. Hu, et al. (2004). "Genetic variation of Cordyceps sinensis, a fruit-body-producing entomopathogenic species from different geographical regions in China." FEMS Microbiol Lett 230(1): 153-8. 2. 趙學敏清朝【本草綱目拾遺】 3. 汪昂清朝【本草備要】 4. Van 't Veer, L. J., H. Dai, et al. (2002). "Gene expression profiling predicts clinical outcome of breast cancer." Nature 415(6871): 530-6. 5. 許瑞祥,陳志昇,凌啟鴻(2002)."冬蟲夏草無性世代菌種之確認".生物產業13(3):474-480. 6. Hulette, B. C., G. Rowden, et al. (2001). "Cytokine induction of a human acute myelogenous leukemia cell line (KG-1) to a CD1a+ dendritic cell phenotype." Arch Dermatol Res 293(3): 147-58. 7. Dobbin, K. and R. Simon (2002). "Comparison of microarray designs for class comparison and class discovery." Bioinformatics 18(11): 1438-45. 8. Schena, M., D. Shalon, et al. (1995). "Quantitative monitoring of gene expression patterns with a complementary DNA microarray." Science 270(5235): 467-70. 9. Schena, M., D. Shalon, et al. (1996). "Parallel human genome analysis: icroarray-based expression monitoring of 1000 genes." Proc Natl Acad Sci U S A 93(20): 10614-9. 10. Jain, K. K. (2000). "Applications of biochip and microarray systems in pharmacogenomics." Pharmacogenomics 1(3): 289-307. 11. Bonham, M., H. Arnold, et al. (2002). "Molecular effects of the herbal compound PC-SPES: identification of activity pathways in prostate carcinoma." Cancer Res 62(14): 3920-4. 12. Bigler, D., K. M. Gulding, et al. (2003). "Gene profiling and promoter reporter assays: novel tools for comparing the biological effects of botanical extracts on human prostate cancer cells and understanding their mechanisms of action." Oncogene 22(8): 1261-72. 13. Kim, S. C., S. H. Byun, et al. (2004). "Cytoprotective effects of Glycyrrhizae radix extract and its active component liquiritigenin against cadmium-induced toxicity (effects on bad translocation and cytochrome c-mediated PARP cleavage)." Toxicology 197(3): 239-51. 14. White, J. R., Jr., J. Kramer, et al. (1994). "Oral use of a topical preparation containing an extract of Stevia rebaudiana and the chrysanthemum flower in the management of hyperglycemia." Diabetes Care 17(8): 940. 15. Goldmann, W. H., A. L. Sharma, et al. (2001). "Saw palmetto berry extract inhibits cell growth and Cox-2 expression in prostatic cancer cells." Cell Biol Int 25(11): 1117-24. 16. Chen, K. and C. Li (1993). "Recent advances in studies on traditional Chinese anti-aging materia medica." J Tradit Chin Med 13(3): 223-6, contd. 17. Chen, Y., Y. P. Zhang, et al. (1999). "Genetic diversity and taxonomic implication of Cordyceps sinensis as revealed by RAPD markers." Biochem Genet 37(5-6): 201-13. 18. Lloyd,C.G., et al. (1918). " Cordyceps sinensis, form N.Gist Gee, China. Mycologyical Notes 54:766-768. 19. Kiho, T., J. Hui, et al. (1993). "Polysaccharides in fungi. XXXII. Hypoglycemic activity and chemical properties of a polysaccharide from the cultural mycelium of Cordyceps sinensis." Biol Pharm Bull 16(12): 1291-3. 20. Zhang, S. L. (1985). "[Activation of murine peritoneal macrophages by natural Cordyceps sinensis and its cultured mycelia ]." Zhong Xi Yi Jie He Za Zhi 5(1): 45-7, 5. 21. Zhu, J. S., G. M. Halpern, et al. (1998). "The scientific rediscovery of a precious ancient Chinese herbal regimen: Cordyceps sinensis: part II." J Altern Complement Med 4(4): 429-57. 22. Wang, Z. X., X. M. Wang, et al. (1995). "[Current status of pharmacological study on Cordyceps sinensis and Cordyceps hyphae ]." Zhongguo Zhong Xi Yi Jie He Za Zhi 15(4): 255-6. 23. Li, S. P., P. Li, et al. (2001). "Anti-oxidation activity of different types of natural Cordyceps sinensis and cultured Cordyceps mycelia." Phytomedicine 8(3): 207-12. 24. Sheng, Y. W., et al. (2000). "Pharmacological function of Chinese medicinal fungus Cordyceps sinensis and related species . " J Food and Drug analysis 8(4): 248-57. 25. Xu, R. H., X. E. Peng, et al. (1992). "Effects of cordyceps sinensis on natural killer activity and colony formation of B16 melanoma." Chin Med J (Engl) 105(2): 97-101. 26. Huang, B. M., K. Y. Hsiao, et al. (2004). "Upregulation of steroidogenic enzymes and ovarian 17beta-estradiol in human granulosa-lutein cells by Cordyceps sinensis mycelium." Biol Reprod 70(5): 1358-64. 27. Shin, K. H., S. S. Lim, et al. (2003). "Anti-tumour and immuno-stimulating activities of the fruiting bodies of Paecilomyces japonica, a new type of Cordyceps spp." Phytother Res 17(7): 830-3. 28. Chen, Y. J., M. S. Shiao, et al. (1997). "Effect of Cordyceps sinensis on the proliferation and differentiation of human leukemic U937 cells." Life Sci 60(25): 2349-59. 29. Kuo, Y. C., W. J. Tsai, et al. (1996). "Cordyceps sinensis as an immunomodulatory agent." Am J Chin Med 24(2): 111-25. 30. Chung, N. P., Y. Chen, et al. (2004). "Dendritic cells: sentinels against pathogens." Histol Histopathol 19(1): 317-24. 31. Ackerman, A. L. and P. Cresswell (2003). "Regulation of MHC class I transport in human dendritic cells and the dendritic-like cell line KG-1." J Immunol 170(8): 4178-88. 32. http://rana.lbl.gov/EisenSoftware.htm 33. Chen, Y. J., R. Kodell, et al. (2003). "Normalization methods for analysis of microarray gene-expression data." J Biopharm Stat 13(1): 57-74. 34. Yang, Y. H., S. Dudoit, et al. (2002). "Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation." Nucleic Acids Res 30(4): e15. 35. Shan, L., M. He, et al. (2002). "cDNA microarray profiling of rat mammary gland carcinomas induced by 2-amino-1-methyl-6-phenylimidazo[4,5-b ] pyridine and 7,12-dimethylbenz[a ]anthracene." Carcinogenesis 23(10): 1561-8. 36. Smyth, G. K. and T. Speed (2003). "Normalization of cDNA microarray data." Methods 31(4): 265-73. 37. 葉顓銘,陳少燕,黃定鼎,黃浩仁(2004). " 清理重金屬污染的植物"科學發展380期(8):44-49 38. Bezouska, K., A. Nepovim, et al. (1995). "CD 69 antigen of human lymphocytes is a calcium-dependent carbohydrate-binding protein." Biochem Biophys Res Commun 208(1): 68-74. 39. Ziegler, S. F., F. Ramsdell, et al. (1994). "The activation antigen CD69." Stem Cells 12(5): 456-65. 40. Richard , A.G , et al. " Kuby, immunology. ",FREEMAN fourth edition. 41. Sancho, D., M. Gomez, et al. (2003). "CD69 downregulates autoimmune reactivity through active transforming growth factor-beta production in collagen-induced arthritis." J Clin Invest 112(6): 872-82. 42. Yang, L. Y., A. Chen, et al. (1999). "Efficacy of a pure compound H1-A extracted from Cordyceps sinensis on autoimmune disease of MRL lpr/lpr mice." J Lab Clin Med 134(5): 492-500. 43. Yang, L. Y., W. J. Huang, et al. (2003). "H1-A extracted from Cordyceps sinensis suppresses the proliferation of human mesangial cells and promotes apoptosis, probably by inhibiting the tyrosine phosphorylation of Bcl-2 and Bcl-XL." J Lab Clin Med 141(1): 74-83. 44. Kuo, Y. C., W. J. Tsai, et al. (2001). "Regulation of bronchoalveolar lavage fluids cell function by the immunomodulatory agents from Cordyceps sinensis." Life Sci 68(9): 1067-82. 45. Chin, Y. E., M. Kitagawa, et al. (1996). "Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21 WAF1/CIP1 mediated by STAT1." Science 272(5262): 719-22. 46. Welte, T., D. Leitenberg, et al. (1999). "STAT5 interaction with the T cell receptor complex and stimulation of T cell proliferation." Science 283(5399): 222-5. 47. Neumann, C. A., D. S. Krause, et al. (2003). "Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression." Nature 424(6948): 561-5. 48. Li, S. P., P. Li, et al. (2001). "Anti-oxidation activity of different types of natural Cordyceps sinensis and cultured Cordyceps mycelia." Phytomedicine 8(3): 207-12. 49. Saidi-Mehtar, N. and M. C. Hors-Cayla (1981). "Sheep gene mapping by somatic cell hybridization. III. Synteny between pyruvate kinase M2 (PKM2) and nucleoside phosphorylase (NP) in domestic sheep." Ann Genet 24(3): 148-51. 50. Liu, J. and S. R. Farmer (2004). "Regulating the balance between PPARg and b-catenin signaling during adipogenesis: A GSK3b phosphorylation -defective mutant of b-catenin inhibits expression of a subset of adipogenic genes." J Biol Chem. 51. Lo, H. C., S. T. Tu, et al. (2004). "The anti-hyperglycemic activity of the fruiting body of Cordyceps in diabetic rats induced by nicotinamide and streptozotocin." Life Sci 74(23): 2897-908. 52. Smith, P., W. M. Leung-Chiu, et al. (2002). "The GLH proteins, Caenorhabditis elegans P granule components, associate with CSN-5 and KGB-1, proteins necessary for fertility, and with ZYX-1, a predicted cytoskeletal protein." Dev Biol 251(2): 333-47. 53. Salazar, M. A., A. V. Kwiatkowski, et al. (2003). "Tuba, a novel protein containing bin/amphiphysin/Rvs and Dbl homology domains, links dynamin to regulation of the actin cytoskeleton." J Biol Chem 278(49): 49031-43. 54. Yoder, J. A. and G. W. Litman (2000). "The zebrafish fth1, slc3a2, men1, pc, fgf3 and cycd1 genes define two regions of conserved synteny between linkage group 7 and human chromosome 11q13." Gene 261(2): 235-42. 55. Blaess, S., D. Graus-Porta, et al. (2004). "Beta1-integrins are critical for cerebellar granule cell precursor proliferation." J Neurosci 24(13): 3402-12. 56. Goldbaum, O. and C. Richter-Landsberg (2004). "Proteolytic stress causes heat shock protein induction, tau ubiquitination, and the recruitment of ubiquitin to tau-positive aggregates in oligodendrocytes in culture." J Neurosci 24(25): 5748-57. 57. Ohse, K., S. Yashiki, et al. (1999). "Expression of heat shock protein 70 mRNA in polymorphonuclear cells responding to surgical stress." J Anesth 13(3): 144-9.id NH0925538015 sid 914250 cfn 0 / id NH0925593001 auc 許任玓 tic 加馬射線天空散射特性參數研究 adc 江祥輝 ty 博士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 72 kwc 天空散射 kwc 首次碰撞核仁 abc 由於目前國內針對放射性設施之年劑量管制限值較一般監測儀器的偵測低限來得低,為使得設施屏蔽建物設計時能夠確實保證不會超過管制限值,唯有倚賴準確可靠的設計分析工具。然而經由天空散射途徑貢獻的這一部份劑量值的估計,一般屏蔽分析最常用的射線分析(ray analysis)與增建因數(buildup factor)方法並不適用,必須使用特殊的分析技巧。由於這些分析技巧都包含了若干程度的假設,如何引用合理的近似條件,便成為正確進行天空散射的劑量評估的一重要研究課題。 tc 摘要 i Abstract ii 誌謝 iv 目錄 v 圖目錄 viii 表目錄 xi 第一章 緒論 1 1.1 文獻回顧 1 1.2 研究方向 3 1.2.1 加馬射線天空散射之特性參數 3 1.2.2首次碰撞核仁積分法在加馬射線天空散射劑量分析之應用 5 第二章 程式介紹 8 2.1 SKYSHINE-III 8 2.1.1 計算模式 9 2.1.2 統計誤差 11 2.2 SKYDOSE 12 2.2.1理論與方法 12 2.2.2 幾何模型 14 2.3 McSKY 16 2.3.1 理論與方法 16 2.3.2 McSKY所用的混合計算法 17 2.3.3 屏蔽材料的選擇 18 2.4 MCNP 18 2.4.1 蒙地卡羅法簡介 18 2.4.2 程式特點 19 2.5 EGS4 21 2.5.1 程式功能 21 2.5.2 計算模式 22 2.5.3 統計誤差 24 2.5.4 亂數產生器 24 第三章 加馬射線天空散射的特性參數研究 26 3.1影響劑量評估之因素 26 3.1.1等效點射源 26 3.1.2 空氣特性 38 3.1.3 地面散射效應 39 3.1.4 距離 42 3.1.5劑量轉換因數 44 3.2 影響劑量監測之因素 44 3.2.1偵測點散射光子能量分佈 44 3.2.2偵測點散射光子角度分佈 46 3.2.3 偵測點位置 47 第四章 首次碰撞核仁積分法在加馬射線天空散射劑量分析之應用 50 4.1 介紹 50 4.2 材料與方法 50 4.2.1 首次碰撞核仁(The First Collision Kernel) 50 4.2.2 密度修正 52 4.2.3首次碰撞核仁積分法 53 4.3 結果 58 4.3.1 線束響應函數的比較 58 4.3.2 ANS-6.6.1計算範例I.1比較(4p發射角) 60 4.3.3 ANS-6.6.1計算範例I.2比較(盒狀幾何屏蔽結構) 60 4.3.4 非均向點射源(圓窖幾何屏蔽結構) 60 4.3.5 密度效應(圓窖幾何屏蔽結構) 61 4.3.6 雙層屏蔽牆幾何結構 61 第五章 結論與建議 67 5.1 結論 67 5.2 建議 68 參考文獻 69 論文發表 1.Effect of source angular distribution on the evaluation of gamma-ray skyshine 2.The integral first collision kernel method for gamma-ray skyshine analysis 3.Integrated Technique for Assessing Environmental Dose of Radioactive Waste Storage Installation 4.Gas bremsstrahlung and induced photoneutrons in the NSRRC's electron storage ring: a comparison of measurements and simulations 附錄 6.2、1.25、0.662 MeV三種能量光子在參考空氣密度為0.00122 g/cm3下之首次碰撞核仁rf 1. 江祥輝, “用過核燃料中期貯存設施監測技術之建立 1/3”, 放射性物料管理局八十五年度專題研究計畫期末報告, FCMA-8506, 1996 2. M.Ladu, M.Pelliccioni, P.Picchi, G.Verri, “A Contribution to the Skyshine Study”, Nucl. Instrum. Methods, 62, 51-56 (1968) 3. R.E.Lynch, J.W.Benoit, W.P.Johnson, C.D.Zerby, “A Monte Carlo calculation of air-scattered gamma rays”, ORNL –2292, Oak Ridge National Laboratory (1958) 4. M.Kitazume, “A Simple Calculation for Air-Scattered Gamma-Rays”, J. Nucl. Sci. Technol., 5, 464-467 (1968) 5. J.K.Shultis, R.E.Faw, M.S.Bassett, “The Integral Line-Beam Method for Gamma Skyshine”, Analysis. Nucl. Sci. Engg. 107, 228-245 (1991) 6. J.K.Shultis, R.E.Faw, A.A.Gui, R.C.Brockhoff, “Approximate Beam Response Functions for Gamma-ray and Neutron Skyshine Analysis”, Report 271, Kansas State University (1995)a 7. J.K.Shultis, R.E.Faw, M.H.Stedry, “McSKY: A Hybrid Monte-Carlo Line-Beam Code for Shielded Gamma Skyshine Calculations”, Report 9501, Kansas State University (1997) 8. J.K.Shultis, R.E.Faw, R.C.Brockhoff, “SKYDOSE: A Code for Gamma Skyshine Calculation Using the Integral Line-Beam Method”, Report 9503, Kansas State University (1998) 9. Y.Harima, H.Hirayama, Y.Sakamoto, N.Kurosawa, M.Nemoto, “Comparison of Line Beam Response Function for Gamma-ray Skyshine Analysis Based on Single Scattering Method with the Monte Carlo Calculations”, J. Nucl. Sci. Technol. 34 (8), 856-859 (1997) 10. American Nuclear Society, “American National Standard for Calculation and Measurement of Direct and Scattered Gamma Radiation from LWR Nuclear Power Plants”, ANSI/ANS-6.6.1-1987 Revision of ANSI/ANS-6.6.1-1979 (1987) 11. E. T. Clarke, “Gamma-Ray Scattering Near on Air-Ground Interface”, Nucl. Sci. & Engg., 27, 394-402, 1967 12. NCRP, “Radiation Protection Design Guidelines for 0.1-100 MeV Particle Accelerator Facilities”, National Council on Radiation Protection and Measurement, NCRP-51, 1977 13. C.M.Lampley, M.C.Andrews, M.B.Wells, “The SKYSHINE-III Procedure: Calculation of the Effect of Structure Design on Neutron, Primary Gamma-ray and Secondary Gamma-ray Dose Rates in Air”, Radiation Research Associates, Inc. Fort Worth, TX 76107 (1988) 14. 許任玓, “中距離天空散射加馬射線特性參數之研究”, 國立清華大學核子工程與工程物理研究所碩士論文, 1997 15. W.R.Nelson, H.Hirayama, D.W.O.Rogers, “The EGS4 Code System”, SLAC-265, Stanford Linear Accelerator Center, Stanford (1985) 16. M. B. Wells and R. B. Livesay, “ Calculational Procedure for Evaluating Time - and Spatial-Dependent Energy Deposition in Air for Anisotropic Nuclear Sources ” , Radiation Research Associates , Inc. Technical Report RRA-T78114 (1979) 17. J. D. Marshall , M. B. Wells , F. O. Leopard , and K. W. Tompkins, "Monte Carlo Procedures for Transport of X-Rays and Fluorescent Light Through a Spherical , Altitude Dependent Atmosphere" , Radiation Research Associates , Inc. Technical Report RRA-T94-1 ( 30 June 1969 ) 18. J. D. Marshall , " Utilization Instructions for ZAPN , A Monte Carlo Neutron Transport Procedure" , Radiation Research Associates , Inc. Technical Report RRA-N7517 ( September 1975 ) 19. J. D. Marshall , " Utilization Instructions for ZAPGAM , A Monte Carlo Gamma-Ray Transport Procedure" , Radiation Research Associates , Inc. Technical Report RRA-N7601 ( September 1976 ) 20. W. W. Engle, Jr. , " ANISN : A One-Dimensional Discrete Ordinates Transport Code with Anisotropic Scattering, " Oak Ridge National Laboratory, K-1693 (Jun. 1973) 21. G. L. Simmons, " The SAI/EPRI Albedo Information Library, " Science Applications, Inc. EPRI NP-1017 (March 1979) 22. “SKYDOSE程式修正版使用手冊”, 台電委託”向天輻射劑量分析程式標準尺度之研究”研究計畫, 國立清華大學工程與系統科學系, 1999 23. F.A. Khan, Air Ground Interface Effects for Gamma Skyshine, MS Thesis, Kansas State University, Manhattan, KS, 1995 24. A.A. Gui, Response Functions for Neutron Skyshine Analyses, PhD Dissertation, Kansas State University, Manhattan, KS 66506, 1994 25. "McSKY程式修正版使用手冊", 台電委託"向天輻射劑量分析程式標準尺度之研究"研究計畫, 國立清華大學工程與系統科學系, 1999 26. M.H. Stedry, Monte-Carlo Line-Beam Calculation of Gamma-Ray Skyshine for Shielded Sources, MS Thesis, Kansas State University, Manhattan, KS 66506, 1994 27. J.F.Briesmeister (Ed.), “MCNP-A General Monte Carlo N-Particle Transport Code Version 4C”, Los Alamos National Laboratory, Los Alamos, New Mexico, LA=13709-M Manual (2000) 28. E. Storm , H. I. Israel , " Nucl. Data Tables, " A7565 (1970) 29. Marsaglia G, Zaman A and Tsang W (1988) "Letters in Statistics and Probability" ; see also Florida State University, Supercomputer Research Institute, Reports FSU-SCRI-87-50 and FSU-SCRI-89-36 30. RSICC code, "DOORS3.2: One, Two- and Three Dimensional Discrete Ordinates Neutron/Photon Transport Code System", RSICC CCC-650, Radiation Safety Information and Computational Center, Oak Ridge National Laboratory, 1998 31. 江祥輝, "向天輻射劑量分析程式標準尺度之研究", 國立清華大學工程與系統科學系, 88-89台電委託計畫期末報告, 1999 32. R.D. Sheu, B.J. Chang, I.J. Chen, and S.H. Jiang. “Effect of source angular distribution on the evaluation of gamma-ray skyshine”, J Nucl. Sci. Technol., Proceedings of Ninth International Conference on Radiation Shielding, ICRS-9, Supplement 1, pp. 645-649 (2000) 33. R.D. Sheu, C.S. Chui, and S.H. Jiang. "The integral first collision kernel method for gamma-ray skyshine analysis", Radiation Physics and Chemistry 68, pp. 727-744 (2003) 34. International Commission on Radiological Protection. “Data for use in protection against external radiation”. ICRP Publication 51. (Ann. ICRP 17(2-30)) (1988) 35. Reuter-Stokes, RSS-120/121 Gamma Radiation Sensors Operation Manual, Ver. 1.4, 1991 36. S.H. Jiang, C.G. Liu, U.T. Lin, M.C. Horng. “The characteristics of the skyshine gamma-ray field,” Radiation Protection and Shielding Topical Meeting, No. Falmouth, Massachusetts, April 21-25, pp. 803-808 (1996) 37. S.H. Jiang, R.D. Sheu, U.T. Lin, M.C. Horng. “A detailed study on skyshine gamma rays,” 1997 International Conference on Radiation Dosimetry and Safety, Taipei, Taiwan, March 31-April 22, pp.482-488 (1997) 38. J.H. Hubbell, “Photon mass attenuation and energy absorption coefficients from 1 to 20 MeV”, Int. J. Appl. Radiat. Isot. 33, 1269-1290 (1982)id NH0925593001 sid 867107 cfn 0 / id NH0925593002 auc 林淑華 tic 應用在數位影像的高速類比數位轉換器之設計 adc 柳克強教授 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 104 kwc 管線化 kwc 類比數位轉換器 kwc 運算放大器 kwc 訊號加強控制 kwc 兩級放大 kwc 取樣保值 abc 本論文主要是設計一個可用於專業影音訊號處理的高速管線化(Pipeline)類比數位轉換器。本類比數位轉換器的目標訂在輸入範圍1 Vp-p,解析度為十位元,最小單位電壓為1 mV,取樣速率為100 MHz。為了實現高速,低功率消耗的轉換效能,採用了管線化架構。在管線化的類比數位轉換器中,由於取樣保值電路為整個管線化類比數位轉換器第一級的電路,它的效能會決定整個管線化類比數位轉換器的表現,所以如何實現一個高速、高準度的取樣保值電路為最主要的設計瓶頸。為了實現這樣一個取樣保值電路,必須設計一個高速、高增益的差動運算放大器。 tc 誌謝 I 摘要 II Abstract V 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 緒論 1 第二章 文獻回顧 4 2.1 類比數位轉換器在混頻系統的應用 4 2.2 類比數位轉換器在混頻系統的角色分析 5 2.3 奈奎斯特類比數位轉換器 9 2.3.1 Successive Approximation類比數位轉換器[6 ] 9 2.3.2 快閃式類比數位轉換器[6 ] 12 2.3.3 Subrange類比數位轉換器[6 ] 14 2.4 類比數位轉換器的最佳訊號雜訊比 16 2.4.1 理想的類比數位轉換器[6 ] 16 2.4.2 量化雜訊 17 2.4.3 類比數位轉換器的規格[2 ] 19 2.5 管線化類比數位轉換器 23 2.5.1 管線化1.5 bit類比數位轉換器 24 2.5.2 解碼電路1.5 bit電路運作與實現 26 2.5.3 數位錯誤更正 29 2.5.4 開關式電容差動取樣保值電路 31 2.5.5 互補式CMOS開關[9 ] 38 2.5.6 高速開關式電容比較器電路[6 ] 42 2.5.7 管線化類比數位轉換器的設計要項 45 第三章 管線化類比數位轉換器的設計與分析 47 3.1 十位元類比數位轉換器系統時脈設計 48 3.2取樣保值電路(S&H)的設計 51 3.3 餘數增益電路的設計(RG) 53 3.4 SubADC和SubDAC的設計(ADC1~9) 55 3.5 差動運算放大器的設計 59 3.5.1 增益設計[5 ] 59 3.5.2 頻寬設計[5 ] 61 3.5.3 直流特性Slew Rate的考量 62 3.5.4 高速,高增益3.3 V運算放大器的設計 64 3.5.5 共模回授電路[12 ] 72 3.6 電容的線性度和匹配[4 ] 74 3.7 熱雜訊 77 3.8 增益輸出的錯誤容忍度[4 ] 77 3.9 實現電容匹配的方法 83 第四章 模擬結果之分析與討論 85 4.1 運算放大器的模擬結果 85 4.2 比較器的模擬結果 87 4.3 取樣保值電路的模擬結果 89 4.4 餘數增益的模擬結果 90 4.5 時脈產生器的模擬結果 91 4.6 十位元管線化類比數位轉換器的模擬結果 92 第五章 結論與建議 101 參考文獻 103rf 1. 經濟部技術處IT IS計畫范哲豪, 微元件在消費性電子的應用195期第二版 2. 國家晶片系統設計中心謝晉昇研究員,CMOS類比積體電路設計講義2003版 3. http://www.analog.com/, ADI home page 4. Andrew Masami Abo, Design for Reliability of low-voltage, Switch-capacitor Circuits. PhD Thesis, University of California, Berkeley, May 1999 5. R. Jacob Baker “ CMOS Mixed-Mode Circuit Design “, published by A John Wiley & sons, INC., 2002,pp.1-5 6. David A. Johns and Ken Martin “ Analog Integrated Circuit Design “ 7. Thomas Byunghak Cho and Paul R. Gray, ”A 10 Bits, 20Msamples/s, 35 mW Pipeline A/D converter,” IEEE J. Solid-State Circuits, vol. 30, pp.166-172, Mar 1995 8. Y-M. Lin, Performance Limitations on High-Resolution Video-rate Analog-to-Digital Interfaces. PhD Thesis, University of California, Berkeley, UCB/ERL M90/55, April 1991. 9. B. Razavi “Design of Analog CMOS Integrated Circuits”, published by McGraw-Hill, pp.414-417, 2001 10. H. J. M. Veendrick, “The Behavior of Flip-Flops Used as Synchronizers and Prediction of Their Failure Rate,” IEEE J. Solid-State Circuits, vol. SC-15,no. 2,April 1980 11. B. Razavi, Principles of Data Conversion System Design, IEEE Press, 1995 12. Rinaldo Castello and P. R. Gray, FELLOW, IEEE,”A High-Performance Micropower Switch-Capacitor Filter,” IEEE Journal of Solid-State, Vol. Sc-20, no. 6, December 1985 13. B. Razavi “Design of Analog CMOS Integrated Circuits”, published by McGraw-Hill, pp.361-369, 2001 14. B. Razavi “Design of Analog CMOS Integrated Circuits”, published by McGraw-Hill, pp.302-306, 2001 15. B. Razavi “Design of Analog CMOS Integrated Circuits”, published by McGraw-Hill, pp.345-355, 2001 16. K. Bult and G. J. G. M. Geelen, “ A fast-settling CMOS opamp with 90-dB gain and 116 MHz unity-gain frequency,” in ISSCC Dig. Tech. Pap., Feb. 1990, pp. 108-109. 17. T. Cho, Low-power Low-voltage Analog-to-digital Conversion Techniques Using Pipelined Architectures, PhD Thesis, University of California, Berkeley, 1995.Available as UCB/ERL M95/23 18. P. C-W. Yu, “Low-power Design Techniques for Pipelined Analog-to-Digital Converters,”Ph.D. Thesis, Massachusetts Institue of Technology, 1996.id NH0925593002 sid 873118 cfn 0 / id NH0925593003 auc 顏精一 tic 高解析能量過濾電鏡分析奈米材料系統電子組態及結構之變化 adc 開執中 adc 陳福榮 ty 博士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 137 kwc 穿透式電子顯微鏡 kwc 電子能量損失能譜 kwc 氧化鋅奈米線 kwc 連續能譜影像法 abc 摘要 tc 目 錄 頁次 目錄…………………………………………………………………….Ⅰ 圖目錄………………………………………………………………….Ⅲ 表目錄……………………………………………………….…………Ⅵ 第一章 研究動機……………………………………………….……….1 第二章 文獻回顧…….…………………….……………………………5 2-1電子顯微鏡之發展…………………………………...……5 2-1-1傳統穿透電子顯微鏡………………………………….5 2-1-2掃瞄穿透式電子顯微鏡……………………….……….8 2-2 電子損失能譜儀之發展…………………………………13 2-2-1 電子損失能譜儀………………….……….…………15 2-2-2 能量過濾電鏡………………….…………….………17 2-3 連續電子能譜影像法…….………..…..………………...18 2-4掃瞄穿透式電鏡與連續能譜影像法之比較……………..22 第三章 實驗儀器與分析方法原理……………………………………29 3-1實驗儀器與advanced連續能譜影像法…………...........29 3-1-1實驗儀器……………..……………………………..29 3-1-2 advanced連續能譜影像法…………..………..……30 3-1-3快速傅立業內插法…………..…………………......32 3-1-4最大熵解卷法…………..………………………..…34 3-2 高分辨影像模擬程式-多層法………..…….……….…37 3-3 雜訊種類與消除方法……………….……….…………38 3-3-1 穿透式電鏡影像雜訊種類與特性…………..….…39 3-3-2 雜訊在影像上的作用方式………………….…..…41 3-3-3 高分辨影像上常用之濾波器………………..….…42 3-3-4 小波轉換與小波濾波…………………....………...43 第四章 advanced連續能譜影像法…………………………………….58 4-1碳元素K損失峰連續能譜影像法……………….……..58 4-2導入數值方法改善連續能譜影像法……………..……..60 4-3類鑽石膜內碳元素能損譜π鍵和σ鍵之半定量………65 4-4碳化矽複合材料之系統破裂機制分析…………………68 第五章 掃瞄穿透式電鏡暗場影像品質回復…………………………86 5-1 HAADF影像內雜訊的行為……..................................…86 5-2利用數值方法回復HAADF影像品質及投影位能….…87 5-3 Z-contrast特性回復…………………………………..….92 第六章 氧化鋅奈米線結構及特性分析………………………..........100 6-1氧化鋅奈米線微結構及發光特性分析.…………..…...100 6-2氧化鋅奈米線吸收能譜特性與缺陷分析……………..103 6-3氧化鋅奈米線量子侷限效應分析……………..………108 第七章 結論…………………………………………………………..126 第八章 未來研究方向…………………………………………….….128 參考文獻………………………………….…………………………....129 圖目錄 圖2.1:掃瞄式穿透電鏡成像示意圖………………………………...…26 圖2.2:ADF-STEM成像示意圖……………………………...………...27 圖2.3:OMEGA filter與Gatan GIF之示意圖…………………....…….28 圖3.1:場發射穿透式電子顯微鏡基本構造圖.……………..…………50 圖3.2:能量過濾成像系統示意圖…………...………..……….……….51 圖3.3:連續能譜影像法之示意圖……………………...…..…….…….52 圖3.4:雜訊頻譜圖………………………………………………………52 圖3.5:二維空間小波轉換示意圖 (a)原始矩陣(b)一階小波轉換後矩陣 (c)三階小波轉換及訊號重組示意圖…………………………………53 圖3.6: (a)Daubechies凌波函數之圖形 (b)多層解析空間分解之示意圖……………….……………..54 圖3.7小波縮減示意圖….……………………………………………...55 圖3.8: (a)未處理的測試訊號 (b)使用快速傅立業轉換重建的訊號 (c)使用小波轉換重建的訊號圖………………………………56 圖4.1:碳元素電子鍵結能階示意圖……………….……....………….74 圖4.2:advanced連續能譜影像法實驗流程圖………………………..74 圖4.3:(a)碳元素K損失峰連續能譜影響法所萃取之能損譜 (b)利用一般快速傅立業內差法將能量記錄增進至0.125eV (c)使用鏡射法消除快速傅立業內差法所產生的超射現象 ….……………………………………………………………..75 圖4.4:(a)使用Wiener filter反卷積法所還原之能損譜 (b)利用最大熵解卷法所重建之能損譜 (c)使用最大熵解卷法所增進的能量解析度…………..……....76 圖4.5:(a)小波轉換去除不同頻率雜訊程度之能損 (b)對應於其程度所去除的雜訊訊號……………………….....77 圖4.6:(a)與(b)分別為非晶質區域連續能譜影像法之能量損失譜與EELS電子損失能譜之比較結果………………………..…....78 圖4.7:利用小波轉換處理奈米級電子束所取得能損譜中的雜訊,(a) 小波轉換去除不同頻率雜訊程度之能量損失譜 (b)對應於其程度所去除的雜訊訊號………………..……………………..79 圖4.8: EELS能量損失譜定量π鍵和σ鍵的流程圖………………..79 圖4.9:(a)非晶質鑽石膜之TEM影像 (b)碳與鉻元素成份分佈圖………………….…………………80 圖4.10:利用連續能譜影像法所求得的非晶質鑽石膜之π鍵含量分佈圖………………………….…………………………………..81 圖4.11:碳化矽複合材料破裂模式示意圖…………………………….82 圖4.12:碳化矽複合材料推出測試(pull-out test)後之SEM影像…….82 圖4.13: 碳化矽複合材料之TEM微結構照片……………………….83 圖4.14:碳化矽複合材料:(a) fiber/PyC界面(b) matrix/PyC界面 之高分辨電鏡影像(c)fiber/PyC/Matrix 界面EELS能損譜………………84 圖4.15 (a) ESI區域之zero-loss image (b) sp2 鍵結含量map (c)破裂機制示意圖 ……………………………………………………85 圖5.1(a)一般高分辨電鏡影像內的雜訊行為(b) HAADF影像內雜訊行為…………………………………………………………….93 圖5.2: HAADF-STEM矽原子高分辨影像…………..……………......94 圖5.3 : 模擬矽原子HAADF影像欠焦量分別為:(a) 590, (b) 611, (c) 630, (d) 650 Å ……………………………………………94 圖5.4:不同雜訊過濾方法的lens transfer function set……………..….95 圖5.5: (a) parametric Wiener filtered (b) BSF filtered (c) wavelet-based denoising 影像………………………………………………..96 圖5.6: (a)原始影像 (b) Wiener filter (c) BSF (d)小波轉換去雜訊後高倍率原子影像及power spectrum……………………….97 圖5.7: (a)考慮雜訊貢獻(b)無雜訊處理 之MEM解卷影像以及STEM multislice 模擬Si[110 ] HAADF影像傾轉(c) 3o (d) 10o之影像…..….98 圖5.8: SrTiO3 Z-contrast ability回復影像……………..………..……..99 圖6.1:氧化鋅奈米線(a) 40, (b) 20, (c) 10 (d) 5奈米之SEM影像...114 圖6.2: 不同尺度之ZnO奈米線 diameter統計圖…………………..115 圖6.3: 金催化劑及半球模型與成長奈米線之關係圖…………...…115 圖6.4 : ZnO nanowire 之(a) TEM (b)高分辨 影像……….…………116 圖6.5: 不同尺寸之ZnO奈米線室溫PL光譜………..…………….117 圖 6.6: ZnO奈米線表層區域與中心區域 之能隙量測 ………...…117 圖6.7: ZnO奈米線氧元素K edge (a)中心區域(b)表面區域 電子能損譜……………………………………………………118 圖6.8: ZnO奈米線Zn L2,3 不同尺寸表面區域能損譜………...……119 圖6.9:利用FEFF模擬氧化鋅VO以及ZnI兩種缺陷模型(0.636%)之 Zn L2,3吸收光譜…………..………………………….………119 圖6.10:經由缺陷模型計算ZnI以及VO之p及d軌域LDOS………..120 圖6.11:不同尺寸氧化鋅奈米線電漿損失能譜圖…………………...121 圖6.12:氧化鋅奈米線60K低溫之PL光譜圖....................................122 圖6.13:(a) 與氧化鋅奈米線的關係 (b)利用公式6.19與奈米線電漿偏移量的曲線…………….123 圖6.14:利用公式6.21由實驗數據求得斜率(n)……………………...124 圖6.15:實驗數據( )、簡易理論計算(n=2)以及實驗計算結果(n=1.47)的比較圖………………………………………………….…..124 表目錄: 表3-1:200keV下常見元素之能量過濾電鏡 最佳空間解析度……57 表6-1:不同尺寸氧化鋅奈米線與塊材室溫PL光譜量測數據……125 表6-2:不同尺寸氧化鋅奈米線之體表比……………………………125rf 參考文獻 1. O. Scherzer, J. Appl. Phys., 20:20 (1949) 2. M. Haider, Optik, 99:167 (1995) 3. M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius and K. Urban, Nature, 392:768 (1998) 4. F. Hosokawa, T. Tomita, M. Naruse, T. Honda, P. Hartel and M. Haider, J. Elec. Microsc., 52:3 (2003) 5. L. Y. Chang, F. R. Chen, A. I. Kirkland and J. J. kai, J. Elec. Microsc., 52:359 (2003) 6. W. O. Saxton, Computer Techniques for Image Processing in Electron Microscopy, Academic Press, New York, (1978) 7. W. K. Hsieh, F. R. Chen, J. J. Kai and A. I. Kirkland, Ultramicrosc., 98:99 (2004) 8. D. Van Dyck, M. Op de Beeck, in: proceeding of the 12th International Congress for Electron Microscopy, Scattle, 1990, P2 9. M. von Ardenne, Das elektronenmikroskop. Z. fur. Physik., 78:318 (1938) 10. A. V. Crewe, J. Wall and L. M. Welter, J. Appl. Phys, 39:5861 (1968). 11. A. V. Crewe and J. Wall, J. Mol. Biol. 48:375, (1970) 12. J. M. Cowley, Appl. Phys. Letters, 15:58-59, 1969. 13. A. V. Crewe and J. Wall, Optik, 30:461 (1970) 14. A. Howie, J. Microsc., 117:11 (1979) 15. S. J. Pennycook and D. E. Jesson, Ultramicrosc., 37:14 (1991) 16. D. E. Jesson and S. J. Pennycook, Proceeding: Mathematical and Physical Sciences, 449:273 (1995) 17. P. Rez, Ultramicrosc., 96:117 (2003) 18. P. D. Nellist and S. J. Pennycook, Ultramicrosc., 78:111 (1999) 19. E. J. Kirkland, R. F. Loane and J. Silcox, Ultramicrosc., 23:77 (1987) 20. R. F. Loane, E. J. Kirkland and J. Silcox, Acta. Cryst. A., 44:912 (1988) 21. R. J. Keyse, A. J. Garrat-Reed, P. J. Goodhew and G. W. Lorimer, “Introduction to Scanning Transmission Electron Microscopy”, BIOS Scientific Publisher Limited, (1998) 22. C. Mory, C. Colliex and J. M. Cowley, Ultramicrosc., 21:171 (1987) 23. E. J. Kirkland “Advanced Computing in Electron Microscopy”, Plenum Press, New York and London. (1998) 24. H. S. V. Harrach, Ultramicrosc., 58:1 (1995) 25. D. A. Muller and J. Silcox, Ultramicrosc., 59:195 (1995) 26. P. E. Batson, Ultramicrosc., 78:33 (1999) 27. E. M. James and N. D. Browning, Ultramicrosc, 78:125 (1999). 28. P. D. Nellist and S. J. Pennycook, J. Microsc., 190:159 (1998) 29. K. Ishizuka, J. Elec. Microsc., 50:291 (2001) 30. K. Watanabe, Y. Kotaka, N. Nakanishi, T. Yanazaki, I. Hashimoto and M. Shiojiri, Ultramicrosc., 92:191 (2002) 31. N. Nakanishi, T. Yamazaki, A. Rečnik, M. Čeh, M. Kawasaki, K. Watanabe and M. Shiojiri, J. Electron. Microsc., 51:383 (2002) 32. A. J. McGibbon, S. J. Pennycook and D. E. Jesson, J. Microsc., 195:44 (1999) 33. L. Reimer, “Energy-Filtering Transmission Electron Microscopy”, Springer-Verlag Heidelberg, New York (1995) 34. G. Ruthemann, Diskrete Engerieverluste schneller Elektronen in Festkorpern. Natureiss. 29:648 (1941) 35. J. Hiller and R. F. Baker, J. Appl. Phys. 15:663 (1944) 36. R. F. Egerton, “Electron-energy loss spectroscopy in the electron microscopy “, Plenum Press, New York, (1996) 37. A. W. Blackstick, R. D. Birkhoff and M. Slater, Rev. Sci. Instrum. 26:274 (1955) 38. G. H. Curtis and J. Silcox, Rev. Sci. Intrum. 42:630 (1971) 39. R. H. Jakobs and J. Geiger, Phys. Stat. sol. (b) 95:549 (1979) 40. H. Boersch, Optik. 5:436 (1949) 41. G. Möllenstedt and O. Rang, Z. angew. Phys. 3:187 (1951) 42. L. Henry and R. Castaing, C.R. Acad. Sci. Paris B255:76 (1962) 43. R. M. Henkelman and F. P. Ottensmeyer, J. Microsc. 47:109 (1974a) 44. C. Jeanguillaume, Trebbia P, and C. Colliex, Ultramicroscopy 3: 237 (1978) 45. O. L. Krivanek, A. J. Gubbens, M. K. Kundmann, and G. C. Carpenter, 51st Ann. Proc. Electron Microsc. Soc. Am. (San Francisco Press, San Francisco) 586 (1993) 46. H. Shuman, C. F. Chang and A. P. Somlyo, Ultramicorsc., 19:121 (1986) 47. P. A. Crozier, Ultramicorsc., 58:157 (1995) 48. J. Bentkey, E. L. Hall and E. A. Kenik, Proc. Microscopy and Microanalysis. 268 (1995) 49. F. Hofer, W. Grogger, G. Kothleitnrt and P. Warbichler, Ultramicrosc., 67:83 (1997) 50. J. Mayer, U. Eigenthaler, J. M. Plitzko, and F. Dettenwanger, Micron 5: 361 (1997) 51. F. Hofer and P. Warbichler, Ultramucrosc., 63:21 (1996) 52. N. Bonnet, C. Coliex, C. Mory and M. Tence, Scanning Microscopy 2(Suppl.) 351 (1988) 53. A. Berger, J. Mayer and H. Kohl, Ultramicrosc., 55:101 (1994) 54. P. A. Crozier and R. F. Egerton, Ultramicrosc., 27:9 (1988) 55. D. B. Williams and C. B. Carter, “Transmission Electron Microscopy”, Plenum Press. New York & London, (1996) 56. T. Malis, S. Cheng and R. F. Egerton, J. Electron. Microsc. Tech. 8:8471 (1988) 57. F. Hofer, W. Grogger, and P. Warbichler, Ultramircosc., 59:15 (1995) 58. W. Jager and J. Mayer, Ultramicrosc., 38:47 (1995) 59. M. Schenner, M. Nelhiebel and P. Schattschneider, Ultramicrosc., 65:95 (1996) 60. R. F. Egerton and M. J. Whelab, J. Electron. Spectrosc. 3:232 (1974a) 61. R. F. Egerton and M. J. Whelab,. Philos. Mag. 30:739 (1974b) 62. S. D. Beger, D. R. Mckenzie and P. J. Martin, Philos. Mag. Lett. 57:285 (1988) 63. J. Mayer and J. M. Plitzko, J. Microsc. 183:2 (1996) 64. J. M. Martin, B. Vacher, L. Ponsonnet and V. Dupuis, Ultramicrosc., 65:229 (1996) 65. K. Varlot, J. M. Martin, C. Quet and Y. Kihn, Ultramicrosc., 68:123 (1997) 66. A. Rzzi, J. anal. Chem. 358:15 (1997) 67. L. Ponsonnet, B. Vacher and J. M. Martin, Thin. Solid. Film., 324:170 (1998) 68. P. J. Thomas and P. A. Midgley Microsc. Microanal 5 (Suppl. 2: Proceedings) 618 (1999) 69. P. J. Thomas, P. A. Midgley, and P. Spellward, Inst. Phys Conf. Ser. 161: (EMAG 99) (1999) 70. F. Hofer, W. Grogger, P. Warbichler and I. Papst, Mikrochim. Acta. 132:273 (2000) 71. W. Grogger, F. Hofer, P. Warbichler, and G. Kothleitner, Microsc. Microanal. Microstruct. 6: 161 (2000) 72. P. J. Thomas and P. A. Midgley, Ultramicrosc., 88:179 (2001) 73. V. J. Keast, A. J. Scott, R. Brydson, D. B. Williams and J. Brulley. J. Microsc. 203:135 (2001) 74. Shen-Chuan Lo, Ji-Jung Kai, Fu-Rong Chen, Li-Chien Chen, Li Chang, Cheng-Cheng Chiang, Peijun Ding, Barry Chin, Hong Zhang, and Fusen Chen, Journal of electron Microscopy, 50:497 (2002) 75. P. J. Thomas and P. A. Midgley, Ultramicrosc., 88:187 (2001) 76. A. Howie, 39th Ann. Proc. Electron Microsc. Soc. Am. Ed. G. W. Bailey, Claitor’s Publishing, Baton Rouge, Louisiana, pp:186 (1981) 77. D. A. Muller and J. Silcox, Ultramicrosc., 59:195 (1995) 78. A. J. Bourdillon, N. W. Self and W. M. Stobbs, Phil. Mag. A. 44:1335 (1981b) 79. K. Singhal and J. Wlach, Proc. IEEE. 1558. (1972) 80. D. Fraser, IEEE. Trans. Acoust., Speech, Signal Processing. 37(5):665 (1989) 81. C. R. Gonzalez and E. R. Woods, “Digital Image Processing”, Addison Wesley, (1993) 82. S. F. Gull and G. J. Daniell, Nature. 272:686 (1978) 83. N. Agmon, Y. Alhassid and R. D. Levine, J. Comp. Phys., 30:250 (1979) 84. R. Wilczek and S. Drapatz, Astron. Astrophys., 142:9 (1985) 85. M. H. F. Overwijk and D. Reefman, Micron. 31:325 (2000) 86. F. R. Chen, J. J. Kai, L. Chang, J. Y. Wang and W. J. Chen, J. Elec. Microsc. 48(6):827 (1999) 87. F. R. Chen, H. Ichnose, J. J. Kai and L. Chang, J. Elec. Microsc. 50:529 (2001) 88. J. M. Cowley and A. F. Moodie, Acta Crystallogr., 10:609 (1957) 89. 陳厚模, 科儀新知 第九卷 第一期 民國七十六年七月 71頁 90. J. S. Lim, “Two-dimensional Signal and Image Processing”, Englewood Cliffs, Prentice Hall(1990) 91. L. D. Marks, Ultramicrosc., 62:43 (1996) 92. M. L. Sattler and M. A. O’Keefe, Proc. EMSA, 45:104 (1987) 93. R. Kilaas, J. Microsc., 190:45 (1998). 94. I. Daubehies, Comm. Pure Appl. Math. 41:909 (1988) 95. S. Mallat, IEEE. Trans. Pattern. Anal. & Machine Intell., 11:674 (1989) 96. P. Goupillaud, A. Grossmann and J. Morlet, Geoexploration. 23:85 (1984) 97. K. Jetter, U. Depczynski, K. Molt and A. Niemoller, Analytica. Chimica. Acta. 420:169 (2000) 98. I. Daubechies, “Ten Lectures on Wavelets” SIAM, Regional conference series in applied mathematics. (1992) 99. Y.Y. Tang, L.H. Yang, J. Liu, and H. Ma, “Wavelet Theory and Its Application to Pattern Recognition” Volume 61, World Scientific. (2000) 100. D. E. Newland, “An introduction to Random vibrations, spectral and wavelet analysis”, Prentice-Hall (1993) 101. 單維彰 (2000) 凌波初步First concept of wavelets (全華科技) 102. S. Muto, J. Elec. Microsc. 49(4):525 (2000) 103. D. Donoho and I. Johnstone, Ideal Spatial Adaptation via wavelet Shrinkage. Technical report, Department of Statistics, Stanford Univ. USA, 1992. 104. S. G. Nikolov, H. Hutter and M. Grasserbauer, Chem. Int. Lab. Sys. 34:263 (1996) 105. U. Depczynski, K. Jetter, K. Molt and A. Niemoller, Chem. Int. Lab. Sys. 49:151 (1999) 106. J. Robertson and E. P. O’Reilly, Phys. Rev. B., 35, p:2946 (1987) 107. J. Robertson, Surf & Coat Tech. 185-203. (1992) 108. R. D. Leapman, P. L. Fejes and J. Silcox, Phys. Rev. B 28:2361 (1983) 109. N. K. Menon and J. Yuan, Ultramicrosc., 74:83 (1998) 110. A. J. Papworth, C. J. Kiely, A. P. Burden, S. R. P. Silva and G. A. J. Amaratunga, Phys. Rev. B., 62:12628 (2000) 111. A. C. Ferrari, B. K. Tanner, V. Stolojan, L. M. Brown, S. E. Rodil, B. Kleinsorge and J. Robertson, Phys. Rev. B., 62:11089 (2000) 112. C. A. Davis, G. A. J. Amaratunga and K. M. Knowles, Phys. Rev. Lett., 80:3280 (1998) 113. I. Alexandrou, H-J. Scheibe, C. J. Kiely and A. J. Papworth, Phys. Rev. B., 60:10903 (1999) 114. S. Prochazka, “Special Ceramics 6” Brit. Ceram. Res. Associ. Stoke-on Trent UK, p171 (1975) 115. 陳建文, 碩士論文“碳化矽/碳化矽 複合材料應用於核融合反應之輻射效應研究”, 清華大學 工程與系統科學系 (2002) 116. 方柏傑, 碩士論文“應用於核融合之Tyranno-SA纖維/碳化矽複合材料輻射效應研究”, 清華大學 工程與系統科學系 (2002) 117. A. Hasegawa, A. Kohyama, R. H. Jones, L. L. Sheas, B. Riccardi and P. Fenici, J. nuclear, Mater., 283-287:128 (2000) 118. S. P. Lee, J. S. Park, Y. Katoh, A. Kohyama, D. H. Kim, J. K. Lee and H. K. Yoon, J. Nuclear, Mater., 307-311:1191 (2002) 119. W. Yang, A. Kohyama, T. Noda, Y. Katoh, T. Hinoki, H. Araki and J, Yu, J. Nuclear, Mater., 307-311:1088 (2002) 120. S. M. Dong, G. Chollon, C. L-M. Lahaye, A. Gutte, J. L. Bruneel, M. Couzi, R. Naslain and D. L. Jianf, J. Mater. Sci., 36:2371 (2001) 121. F. Rebillat, J. Lamon and R. Naslain, J. Am. Ceram. Soc., 81(9):2315 (1998) 122. S. Dong, Y. Katoh and A. Kohyama, J. Am. Ceram. Soc., 86(1):26 (2003) 123. Z. W. Pan, Z. R. Dai and Z. L. Wang., Science, 291:1947 (2001) 124. Y. Wu and P. Yang, J. Am. Chem. Soc., 123:3165 (2002) 125. 王明山, 碩士論文“氧化鋅奈米線成長控制及發光性質之研究”, 清華大學 工程與系統科學系 (2003) 126. 郭憲政, 碩士論文“氧化鋅奈米結構之光致激發螢光光譜之研究”, 清華大學 物理學系 (2003) 127. E. G. Bylander, J. Appl. Phys., 49(3):1188 (1978). 128. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant and J. A. Voigt, Appl. Phys. Lett., 68(3):403 (1996). 129. L. Guo and S. Yang, Chem. Mater. 12:2268 (2000) 130. B. Lin, Z. Fu and Y. Jia, J. Electrochem. Soc., 148(3):G110 (2001) 131. P. E. Baston, K. L. Kavanagh, J. M. Woodall and J .Mayer, Phys. Rev. Lett. 57:2729 (1986) 132. R. J. Elliott, Rhys. Rev. 108:1384 (1957) 133. N. Peyghambarian, S. W. Kocj and A. Mysyrowicz, “Introduction to semiconduction optics”, Prentice-Hall, Inc (1993) 134. R. D. Leapman, P. Rez, and D. F. Mayers, J. Chem. Phys., 72:1232 (1980) 135. R. D. Leapman, L. A. Grunes and P. L. Fejes, Phys. Rev. B., 28:2361 (1982) 136. http://leonardo.phys.washington.edu/feff/ 137. J. J. Rehr and R. C. Albers, Rev. Mod. Phys., 72(3), 621 (2000) 138. B. Ravel, J. Synchrotron Rad., 8:314 (2001) 139. S. T. Pantelides, Phys. Rev. B, 11(6):2391 (1975) 140. A. I. Nesvizhskii and J. J. Rehr, J. Synchroton Rad., 6:315 (1999) 141. J. Luitz, M. Maier, C. Hébert, P. Schattschmeider, P. Blaha, K. Schwarz and B. Jouffrey, Eur. Phys. J. B., 21:363 (2001) 142. T. Mizoguchi, M. Yoshiya, J. Li, F. Oba, I. Tanaka and H. Adachi, Ultramicrosc., 86:363 (2001) 143. F. Kohan, G. Ceder and D. Morgan, Phys. Rev. B., 61(22):15019 (2000). 144. F. Oba, S. R. Nishitani, S. Isotani, H. Adachi and I. Tanaka, J. Appl. Phys., 90(2):824 (2001). 145. http://www.nims.go.jp/eng/ 146. A. D. Yoffe, Adv. In Phys., 50(1):1 (2001) 147. Y. Kayanuma, Phys. Rev. B, 38:9797 (1985) 148. D. Pines, “Elementary Excitations in Solids”, Benjamin, New York (1963) 149. M. Mitome, Y. Yamazaki, H. Takagi and T. Nakagirl, J. Appl. Phys., 72(2):812 (1992) 150. P. E. Baston and J. R. Heath, Phys. Rev. Lett., 71(6):911 (1993) 151. R. Tsu, D. Babic, L. Ioriati Jr., J. Appl. Phys., 82(3):1327 (1997) 152. P. N. H. Nakashima, T. Tsuzuki and A. W. S. Johnson, J. Appl. Phys., 85(3):1556 (1999) 153. Y. K. Chang, H. H. Hsieh, W. F. Pong, M. H. Tsai, F. Z. Chien, P. K. Tseng, L. C. Chen, T. Y. Wang, K. H. Chen, D. M. Bhusari, J. R. Yang and S. T. Lin, Phys. Rev. Lett., 82:5377 (1999) 154. N-M. Park, C-J. Choi, T-Y, Seong and S-J. Park, Phys. Rev. Lett., 86:1355 (2001) 155. J. Hasen, L. N. Pfeiffer, A. Pinczuk, S. He, K. W. West and B. S. Dennis, Nature, 390(6):54 (1997) 156. M. S. Sander, R. Gronsky, Y. M. Lin and M. S. Dresselhaus, J. Appl. Phys., 89(5):2733 (2001) 157. W. S. Baer, Phys. Rev., 154(3):785 (1966) 158. J. Lagois, Phys. Rev. B, 23:5511 (1981) 159. L. E. Brus, J. Chem. Phys., 80(9):4403 (1984) 160. H. Yu, J. Li, R. A. Loomis, L. W. Wang and W. Buhro, Nature materials, 2:517 (2003)id NH0925593003 sid 887101 cfn 0 / id NH0925593004 auc 莊鎮宇 tic 奈米碳管在熱裂解化學氣相沉積法中的成長機制研究 adc 蔡春鴻 ty 博士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 181 kwc 奈米碳管 kwc 成長機制 kwc 化學氣相沉積 kwc 氨氣 abc 在本論文中,奈米碳管(carbon nanotube, CNT)的成長機制有了一個概略的圖像。綜合文獻回顧中其他學者的觀點與本文所做的實驗與推導,關於未來單壁奈米碳管(single-walled carbon nanotube, SWCNT)與多壁奈米碳管(multi-walled carbon nanotube, MWCNT)在製程上應該依循的方向已經逐漸明朗。我們在成長機制的論述中,提出了催化劑表面的碳原子供給限制(carbon supply on catalyst surface limited, CSL)與碳原子擴散速率限制(carbon diffusion rate limited, CDL)的模型,簡稱CSL/CDL模型,並且指出在CSL與CDL達到平衡時為CNT的最佳成長條件。所有的製程參數皆需在CSL與CDL的限制範圍內CNT才得以成長。我們發現,當CNT成長受限於CDL時CxHy/NH3的氣體比例(Rm)存在一個臨界值,而CDL則可能透過製程溫度或催化劑顆粒尺寸來估算。 tc 第一章 緒論 1 1-1 奈米碳管的結構 1 1-2 材料特性 3 1-3 奈米碳管的應用價值 7 參考文獻 10 第二章 文獻回顧 11 2-1奈米碳管簡史 12 2-2 製程方法 18 2-3 奈米碳管的成長機制 23 2-4 成核理論 27 2-5 底成長與頂成長機制 38 參考文獻 40 第三章 設備與製程 47 3-1 PE-CVD與thermal-CVD 47 3-2 Thermal-CVD系統 50 3-3 基板的製備 52 3-4 碳源氣體的選擇 55 3-5 奈米碳管的成長 56 3-6 結論 57 第四章 Thermal-CVD系統中NH3對大面積微影圖形垂直成長之CNT的影響 58 4-1 導論 58 4-2 實驗方法 59 4-3 結果與討論 61 4-4 結論 72 參考文獻 74 第五章 Thermal-CVD中成長奈米碳管的動力學實驗觀點 76 5-1 導論 76 5-2 實驗方法 77 5-3 結果與討論 79 5-4 結論 88 參考文獻 90 第六章 奈米碳管成長機制總論 93 6-1 導論 93 6-2 前處理(pretreatment) 95 6-2-1 催化金屬薄膜的奈米顆粒化 96 6-2-2 林德曼準則(Lindemann’s criterion) 100 6-2-3 估計前處理後的金屬顆粒尺寸 103 6-3 奈米碳管的成核與成長 107 6-3-1 成核過程 108 6-3-2 催化金屬相變過程 109 6-3-3 催化金屬顆粒與竹節結構(bamboo-structure) 114 6-3-4 SWCNT與MWCNT的生成 118 6-3-5 碳原子的擴散路徑 128 6-4 結論 135 參考文獻 139 第七章 總結與展望 142 7-1 總結 142 7-2 未來展望 143 7-2-1 大面積垂直的低密度SWCNT製程 143 7-2-2 Chirality控制的可能性 145 7-2-3 CNT的定點成長 145 7-2-4 懸掛於電極間的單根CNT 147 參考文獻 150 圖表目錄 圖1 - 1 各種形式的fullerene。 2 圖1 - 2 石墨蜂巢狀結構示意圖(取自H. Dai的發表)。 3 圖1 - 3 各種CNT的TEM影像。 5 圖1 - 4 SWCNT的結構與如何估計其電性的示意圖(取自H. Dai的發表)。 6 圖1 - 5 本實驗室所合成的大面積垂直生長的CNT。 9 圖2 - 1 奈米碳管史最重要的四名科學家。 13 圖2 - 2 Wiles和Abrahamson當年所使用的「標準碳弧光放電」設備。 14 圖2 - 3 Wiles和Abrahamson當年所拍攝的「奈米碳管」照片。 14 表2 - 1 Wiles和Abrahamson早期研究至1979年的文獻列表。 17 圖2 - 4 弧光放電方法示意圖。 18 圖2 - 5 雷射剝鍍製程示意圖。 19 圖2 - 6 Thermal-CVD成長奈米碳管的示意圖。 20 圖2 - 7 以電感偶合式電漿輔助化學氣相沉積法(inductive-coupled plasma- enhanced chemical vapor deposition, ICP- CVD成長具方向性的排列的CNT(照片為本實驗室董建宏提供)。 21 圖2 - 8 利用多孔矽基板以thermal-CVD成長具方向性的排列CNT(圖片取自H. Dai的發表)。 22 圖2 - 9 雷射剝鍍示意圖。 25 圖2 - 10 金屬或金屬碳化物顆粒被封入石墨殼層中而呈放射狀成長的單層碳管[72 ]。 26 圖2 - 11 碳成核示意圖[72 ]。 29 圖2 - 12 石墨層的剝離與堆疊,進而形成各種形式的碳結構。 29 圖2 - 13 碳核與金屬表面接觸示意圖[72 ]。 33 圖2 - 14 碳核的臨界半徑對溫度的作圖。 35 表2 - 2 文獻中催化劑種類、成長溫度、碳管種類與平均碳管直徑間的關係。 36 圖3 - 1 ICP-CVD設備全景。 48 圖3 - 2 小到可以放在桌上的黃金反射爐。 49 圖3 - 3 Thermal-CVD系統全圖。 50 圖3 - 4 質譜儀與殘餘氣體分析儀。 51 圖3 - 5 光阻剝落法示意圖。 53 圖3 - 6 蝕刻製程會因殘餘的催化金屬而讓CNT在圖形外的地方長出來。 53 圖3 - 7 圖形邊緣的膜厚略比中心部位薄,以至於圖形內的CNT成長不均勻。 54 圖3 - 8 在成長CNT的過程中催化金屬因與基板間的附著力不足而剝落。 54 圖3 - 9 Thermal-CVD的試片放置圖。 57 圖4 - 1 垂直成長的趨勢與Rm的關係。 61 圖4 - 2 Rm被固定在1/3並且改變CH4的濃度。 62 圖4 - 3 沒有使用Ar作為稀釋氣體時,將Rm由1/5變化到3的結果。 63 圖4 - 4 延後通入NH3的時機所得的SEM與TEM影像。 66 圖4 - 5 改變Rm成長10分鐘的實驗結果。 67 圖4 - 6 900 ℃所成長之竹節狀CNT的TEM影像。 69 圖4 - 7 竹節狀CNT成長機制示意圖。 70 圖4 - 8 一根單獨垂直生長的CNT。 72 圖5 - 1 固定C2H4流量與固定NH3流量的變溫時驗結果。 79 圖5 - 2 所有條件下所成長的CNT皆有竹節結構。 80 圖5 - 3 不同Rm所成長的CNT隔膜間距隨溫度變化圖。 82 圖5 - 4 不同Rm所成長的CNT其Rb隨溫度由800 ℃上升到900 ℃而增加。 82 圖5 - 5 大致上來說,CNT的長度隨製程溫度增加,在不同的Rm下皆如此。 83 圖5 - 6 來自圖5-1(b)的CNT同一個試片的HR-TEM影像。 85 圖5 - 7 文獻[26 ]中的TEM影片的細部分解影像。 87 圖6 - 1 表面能╱界面能與濕潤角的關係。 97 圖6 - 2 分別在Si(100)與Si3N4上對Ni薄膜進行前處理的結果。 99 圖6 - 3 Ni熔點-尺寸相依性,Tm(r)對r的作圖。 102 圖6 - 4 Ni薄膜顆粒化的SEM照片。 105 圖6 - 5 在純Ar中以650 ℃進行前處理的實驗結果。Ni厚度為10 nm。 107 圖6 - 6 CNT與CNF在結構上的差別。 109 圖6 - 7 對Ni相變前尺寸(r1)與相變後尺寸(r2)作圖。 112 圖6 - 8 Ni顆粒的變形量隨CH4的增加而增加,最後CNT才得以生長。 113 圖6 - 9 CNT的竹節結構。 114 圖6 - 10 另一種竹節結構的生成機制。 114 圖6 - 11 對Ni相變前尺寸(r1)與相變後尺寸(r2)的三度空間作圖。 116 圖6 - 12 Ni顆粒初始尺寸很小時(r1 ≤ 3 nm), 對Ni相變前尺寸(r1)與相變後尺寸(r2)作圖。 117 圖6 - 13 在同樣的製程條件下,r1較大的顆粒(a和b)通常會有較大的r2(比較紡錘形Ni的底部直徑)。 118 圖6 - 14 體積相仿的Ni顆粒會因為不同的r2值而使成長的CNT差異甚大。 118 圖中所有的CNT皆為同一個試片中的樣本,製程溫度為900 ℃,使用100 %的CH4,Ni厚度為10 nm。 118 圖6 - 15 所有條件下成長的CNT皆有竹節結構。 119 圖6 - 16 製程溫度為850 ℃且固定NH3濃度為7.5 %時,壁厚跟Rm(C2H4/NH3濃度比值)值有著明顯的關係。 120 圖6 - 17 MWCNT尾部的HRTEM影像。 120 圖6 - 18 在圖6-16中a – f六個位置的放大。 121 圖6 - 19 MWCNT的石墨層數在Ni顆粒附近會隨遠離Ni的距離呈正比。 122 圖6 - 20 石墨層數隨時間的增加率。 123 圖6 - 21 碳原子由Ni顆粒表面脫附示意圖。 124 圖6 - 22 出現在CNT管壁的差排。 125 圖6 - 23 出現在CNT管壁的差排與a-C。 125 圖6 - 24 CNTs有如割稻草般的倒在基板上。 127 圖6 - 25 NH3也可以將CNT表面缺陷較多的結構移除而使CNT看起來比較細。 128 圖6 - 26 Si與Si3N4基板成長CNT的比較結果。 129 圖6 - 27 在Si基板所成長的CNT之高倍率SEM影像。 130 圖6 - 28 碳源在基板表面擴散到催化金屬顆粒示意圖。 131 圖6 - 29 典型的CNx結構示意圖。 132 圖6 - 30 推測碳源可能的擴散路經示意圖。 133 圖6 - 31 碳原子在CNT表面吸附與遷移的理論模擬結果[33 ]。 134 圖6 - 32 完整的CNT成長示意圖。 138 圖7 - 1 電漿對CNF後處理的結果。 143 圖7 - 2 利用離子研磨技術(ion-milling)直接將催化金屬顆粒處理為錐形,然後再以thermal-CVD在尖端成長CNT。 144 圖7 - 3 利用材料維度控制熔點示意圖。 146 圖7 - 4 由H. Dai等人所發表的報告指出,在特定的製程中,CNT可以成長在微影技術製作的「塔頂」上而成懸掛的CNT。 147 圖7 - 5 若能夠將圖7-1的圖形做成相對的兩個,則兩個電極間對長懸掛的CNT就有可能被形成。 148rf Ch.1 1.H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, Nature 318, (1985) 162. 2.S. Iijima, Nature 354, (1991) 56. 3.S. Iijima and T. Ichihashi, Nature 363, (1993) 603. 4.B. I. Yakobson and R. E. Smalley, Am. Sci. 85, (1997) 324,. 5.M. S. Dresselhaus, G. Dresselhaus and P. C. Eklund, “Science of Fullerenes and Carbon Nanotubes”, Academic Press, San Diego, 1996. 6.N. Hamada, S. Sawada and A. Oshiyama, Phys. Rev. Lett. 68, (1992) 1579. 7.M. S. Dresselhaus, G. Dresselhaus and P. Avouris, “Carbon Nanotubes”, Springer, Berlin, 2001. Ch.2 1.P. G. Wiles and J. Abrahamson, Carbon 16, (1978) 341. 2.L.V. Radushkevich and V.M. Lukyanovich, Zh. Fiz. Khim. 26, (1952) 88. 3.L. J. E. Hofer, E. Sterling and J. T. McCartney, J. Phys. Chem. 59, (1955) 6210. 4.M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, and H. A. Goldberg, “Graphite Fibers and Filaments” Springer-Verlag, Berlin, (1988). 5.S. Iijima, Nature 354, (1991) 56. 6.C. Journet and P. Bernier, Appl. Phys. A: Mater. Sci. Process. 67, (1998) 1. 7.Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science 273, (1996) 483. 8.T. W. Ebbesen, “Carbon Nanotubes: Preparation and Properties”, CRC Press, Boca Raton, FL, 1997. 9.R. T. K. Baker, M.A. Barber, P. S. Harris, F. S. Feates and R. J. Waite, J. Catal. 26, (1972) 51. 10.Oberlin, M. Endo and T. Koyama, Carbon 14, (1976) 133. 11.P. Krivoruchko, V. I. Zaikovsky and K. I. Zamaraev, Dokl. Acad. Nauk 329, (1993) 744. 12.H. Kiang and W. A. Goddard III, Phys. Rev. Lett. 76, (1996) 2515. 13.G. G. Tibbetts, J. Cryst. Growth 66, (1984) 632. 14.Y. Saito, M. Okuda, N. Fujimoto, T. Yoshikawa, M. Tomita and T. Hayashi, Jpn. J. Appl. Phys. 33, L526 (1994). 15.H. Kataura, A. Kimura, Y. Ohtsuka, S. Suzuki, Y. Maniwa, T. Hanyu and Y. Achiba, Jpn. J. Appl. Phys. 37, (1998) L616. 16.S. Subramoney, R. S. Ruoff, D. C. Lorents and R. Malhotra, Nature 366, (1993) 637. 17.Y. Saito, M. Okuda, M. Tomita and T. Hayashi, Chem. Phys. Lett. 236, (1995) 419. 18.E. D. Obraztsova, J. M. Bonard, V. L. Kuznetsov, V. I. Zaikovslii, S. M. Pimenov, A. S. Pozarov, S. V. Terekhov, V. I. Konov, A. N. Obraztsov and A. P. Volkov, Nanostruct. Mater. 12, (1999) 567. 19.F. G. Shi, J. Mater. Res. 9, (1994) 1307. 20.Q. Jiang, N. Aya and F. G. Shi, Appl. Phys. A 64, (1997) 627. 21.S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and H. Dai, Science 283, (1999) 512. 22.Ya. Tontegode and E. V. Rutkov, Solid State Phys. 29, (1987) 1306. 23.Ya. Tontegode, Surface 8, (1988) 13. 24.F. Dulot, J. Eugene, B. Kierren, D. Malterre and K. N. Eltsov, Phys. Low-Dimens. Semicond. Struct. 1/2, (1999) 217. 25.N. M. Rodriguez, A. Chambers and R. T. K. Baker, Langmuir 11, (1995) 3862. 26.B. I. Deryagin and D. V. Fedoseev, Usp. Khim. 39/7, (1970) 1663. 27.D. Tomanek, W. Zhong and E. Krastev, Phys. Rev. B 48, (1993) 15461. 28.D. H. Robertson, D. W. Brenner and J. W. Mintmire, Phys. Rev. B 45, (1992) 12592. 29.S. V. Shulepov, “Physics of Carbon Materials Metallurgy”, Chelyabinsk, 1990. 30.P. L. Pauson, “Organometallic Chemistry” Mir, Moscow, 1970. 31.J. A. Martinho Simoes and J. L. Beauchamp, Chem. Rev. 90, (1990) 629. 32.E. Miyazaki, J. Catal. 65, (1980) 84. 33.M. J. Filatov, I. L. Zilberberg and G. M. Zhidomirov, Int. J. Quantum Chem. 44, (1992) 565. 34.J. Abrahamson, Carbon 11, (1973) 337. 35.G. A. Somorjai, “Introduction to Surface Chemistry and Catalysis” Wiley, New York, 1994, p. 602. 36.V. N. Parmon, Catal. Lett. 42, (1996) 195. 37.V. B. Fedorov, M. Kh. Shoshorov, O. V. Gusev, I. Kh. Musyaev, N. N. Shipkov, D. K. Khakimova and N. G. Procenko, “Fibrous and Dispersion-Strengthened Composition Materials”, Nauka, Moscow, 1976, p. 29. 38.Yu. V. Naidich, “Surface Properties of Melts and Solids and their Applications in Science of Materials”, Naukova Dumka, Kiev, 1991, p. 64. 39.K. A. Williams, M. Tachibana, J. L. Allen, L. Grigorian, S. C. Cheng, S. L. Fang, G. U. Sumanasekera, A. L. Loper, J. H. Williams and P. C. Eklund, Chem. Phys. Lett. 310, (1999) 31. 40.D. Zhou, S. Seraphin and S. Wang, Appl. Phys. Lett. 65, (1994) 1593. 41.H. M. Cheng, F. Li, X. Sun, S. D. M. Brown, M. A. Pimenta, A. Marucci, G. Dresselhaus and M. S. Dresselhaus, Chem. Phys. Lett. 289, (1998) 602. 42.H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert and R. E. Smalley, Chem. Phys. Lett. 260, (1996) 471. 43.Peigney, Ch. Laurent, F. Dobigeon and A. Rousset, J. Mater. Res. 12, (1997) 613. 44.H. Kanzow, A. Schmalz, and A. Ding, Chem. Phys. Lett. 295, (1998) 525. 45.Fonseca, K. Hernadi, P. Piedogrosso, J. F. Colomer, K. Mikhopadhyay, R. Doome, S. Lazarescu, L. P. Biro, Ph. Lambin, P. A. Thiry, D. Bernaerts and J. B. Nagy, Appl. Phys. A: Mater. Sci. Process. 67, (1998) 11. 46.K. Hernadi, A. Fonseca, J. B. Nagy, D. Bernaerts and A. A. Lucas, Carbon 34, (1996) 1249. 47.V. Ivanov, J. B. Nagy, Ph. Lambin, A. Lucas, X. B. Zhang, X. F. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, and J. Van Landuyt, Chem. Phys. Lett. 223, (1994) 329. 48.W. B. Downs and R. T. K. Baker, J. Mater. Res. 10, (1995) 625. 49.Y. Saito, T. Koyama and K. Kawabata, Z. Phys. D: At., Mol. Clusters 40, (1997) 421. 50.H. Takahashi, M. Sugano, A. Kasuya, Y. Saito, T. Kayama and Y. Nishina, J. Mater. Sci. Eng. A 217, (1996) 48. 51.L. C. Qin and S. Iijima, Chem. Phys. Lett. 269, (1997) 65. 52.S. Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Richter and P.C. Eklund, Phys. Rev. Lett. 80, (1998) 3779. 53.M. Yudasaka, R. Yamada, N. Sensui, T. Wilkins, T. Ichihashi and S. Iijima, J. Phys. Chem. B 103, (1999) 6224. 54.K. Bladh, L. K. L. Folk and F. Rohmund, Appl. Phys. A: Mater. Sci. Process. 70, (2000) 317. 55.H. Kleinert, “GAUGE FIELDS IN CONDENSED MATTER Vol.II: STRESS AND DFFECTS”, World Scientific, 1989, p.875. 56.T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett. 243, (1995) 49. 57.Y. Chen, Z. L. Wang, J. S. Yin, D. J. Johnson and R. H. Prince, Chem. Phys. Lett. 272, (1997) 178. 58.L. C. Qin, D. Zhou, A. R. Krauss and D. M. Gruen, Appl. Phys. Lett. 72, (1998) 3437. 59.M. Küttl, O. Groening, C. Emmenegger and L. Schlapbach, Appl. Phys. Lett. 73, (1998) 2113. 60.W. K. Hsu, M. Terrones, J. P. Hare, H. Terrones, H. W. Kroto and D. R. M. Walton, Chem. Phys. Lett. 262, (1996) 161. 61.G. Z. Chen, X. Fan, A. Luget, M. S. P. Shaffer, D. J. Fray and A. H. Windle, J. Electroanal. Chem. 446, (1998) 1. 62.Y. Chen, J. Fitz Gerald, J. S. Williams and S. Bulcock, Chem. Phys. Lett. 74, (1999) 2960. 63.Y. Chen, L. T. Chadderton, J. Fitz Gerald and J. S. Williams, Appl. Phys. Lett. 299, (1999) 2961. 64.W. K. Hsu, Y. Q. Zhu, S. Trasobares, H. Terrones, M. Terrones, N. Grobert, H. Takikawa, J. P. Hare, H. W. Kroto and D. R. M. Walton, Appl. Phys. A 68, (1999) 493. 65.S. H. Tsai, C. W. Chao, C. L. Lee, H. C. Shin, Appl. Phys. Lett. 74, (1999) 3462. 66.Z. P. Huang, J. W. Xu, Z. F. Ren, J. H. Wang, M. P. Siegal and P. N. Provencio, Appl. Phys. Lett. 72, (1998) 3845. 67.Z. F. Ren, Z. P. Huang, D. Z. Wang, J. G. Wen, J. W. Xu, J. H. Wang, L. E. Calvet, J. Chen, J. F. Klemic and M. A. Reed, Appl. Phys. Lett. 75, (1999) 1086. 68.Y. H. Lee, S. G. Kim and D. Tománek, Phys. Rev. Lett. 78, (1997) 2393. 69.Y. K. Kwon, Y. H. Lee, S. G. Kim, P. Jund, D. Tománek and R. E. Smalley, Phys. Rev. Lett. 79, (1997) 2065. 70.D. H. Oh and Y. H. Lee, Phys. Rev. B 58, (1998) 7407. 71.H. K. and A. Ding, Phys. Rev. B 60, (1999) 11180. 72.V. L. Kuznetsov, A. N. Usoltseva, A. L. Chuvilin, E. D. Obraztsova and J. M. Bonard, Phys. Rev. B 64, (2001) 235401-1. 73.O. A. Louchev, J. Cryst. Growth 237-239, (2002) 65. 74.O. A. Louchev, Phys. Stat. Sol. (a) 193, (2002) 585. 75.O. A. Louchev, T. Laude, Y. Sato and H. Kanda, J. Chem. Phys. 118, (2003) 7622. 76.R. Bacon, J. Appl. Phys. 31, (1960) 283. 77.P. Wiles and J. Abrahamson, Carbon 16, (1978) 341. 78.P. Ball, Nature 414, (2001) 142. 79.J. Abrahamson, P. Wiles and B. L. Rhoades, Abstract in proceedings of the 14th Biennial Conf. On Carbon, Pennsylvania State Univ., June 1979. Reprinted in Carbon 37, (1999) 1873. Ch.4 1.S. Iijima, Nature 354, (1991) 56. 2.S. Iijima and T. Ichihashi, Nature 363, (1993) 609. 3.Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. F. and R. E. Smalley, Science 273, (1996) 483. 4.Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegel and P. N. Provencio, Science 282, (1998) 1105. 5.J. Lee, D. W. Kim, T. J. Lee, Y. C. Choi, Y. S. Park, Y. H. Lee, W. B. Choi, N. S. Lee, G. S. Park and J. M. Kim, Chem. Phys. Lett. 312, (1999) 461. 6.W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao and G. Wang, Science 274, (1996) 1701. 7.S. Fan, M. Chapline, N. Franklin, T. Tombler, A. Cassell and H. Dai, Science 283, (1999) 512. 8.W. Zhu, C. Bower, O. Zhou, G. Kochanski and S. Jin, Appl. Phys. Lett. 75, (1999) 873. 9.M. Jung, K. Y. Eun, J. K. Lee, Y. T. Baik, K. R. Lee and J. W. Park, Diam. Relat. Mater. 10, (2001) 1235. 10.K. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park and D. J. Kim, J. Eur. Ceram. Soc. 21 (2001) 2095. 11.M. Jung, K. Y. Eun, Y. J. Baik, K.R. Lee, J. K. Shin and S. T. Kim, Thin Solid Films 398-399, (2001) 150. 12.G. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park, K. H. Son and D. J. Kima, J. Appl, Phys. 91, (2002) 3847. 13.J. Lee, D. W. Kim, T. J. Lee, Y. C. Choi, Y. S. Park, Y. H. Lee, W. B. Choi, N. S. Lee, G. S. Park and J. M. Kim, Chem. Phys. Lett. 312, (1999) 461. 14.J. Lee and J. Park, Appl. Phys. Lett. 77, (2000) 3397. 15.H. Cui, O. Zhou and B. R. Stoner, J. Appl. Phys. 88, (2000) 6072. 16.C. Bower, O. Zhou, W. Zhu, D. J. Werder and S. Jin, Appl. Phys. Lett. 77, (2000) 2767. 17.C. J. Lee, J. H. Park, and J. Park, Chem. Phys. Lett. 323, (2000) 560. 18.Porter and K. E. Easterling, “Phase Transformation in Metal and Alloys”, Stanleey Thornes Ltd., United Kingdom, 1992. Ch.5 1.S. Iijima, Nature 354, (1991) 56. 2.S. Iijima and T. Ichihashi, Nature 363, (1993) 603. 3.D. S. Bethune, C. H. Kiang, M. S. deVries, G. Gorman, R. Saroy, J. Vazguez and R. Beyers, Nature 363, (1993) 605. 4.M. S. Dresselhaus, G. Dreselhaus, and R. Saito, Carbon 33 (1995) 883. 5.M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus and M. S. Dresselhaus, Science 275, (1997) 187. 6.W. A. de Heer, J. M. Bonard, K. Fauth, A. Chatelian, L. Forro and D. Ugarte, Adv. Mater. 9, (1997) 87. 7.G. Nagy, M. Levy, R. Scarmozzino, R. M. Osgood, Jr., H. Dai, R. E. Smalley and G. F. McLane, Appl. Phys. Lett. 73, (1998) 529. 8.R. Martel, T. Schmidt, H. R. Shea, T. Hertel and Ph. Avouris, Appl. Phys. Lett. 73, (1998) 2447. 9.H. M. Cheng, F. Li, H. Y. Pan, M.S. Dresselhaus, Appl. Phys. Lett. 72, (1998) 3282. 10.Z. W. Pan, S. S. Xie, W. Y. Zhou and G. Wang, Chem. Phys. Lett. 299, (1999) 97. 11.Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegel and P. N. Provencio, Science 282, (1998) 1105. 12.C. J. Lee, D. W. Kim, T. J. Lee, Y. C. Choi, Y. S. Park, Y. H. Lee, W. B. Choi, N. S. Lee, G. S. Park and J. M. Kim, Chem. Phys. Lett. 312, (1999) 461. 13.W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao and G. Wang, Science 274, (1996) 1701. 14.S. Fan, M. Chapline, N. Franklin, T. Tombler, A. Cassell and H. Dai, Science 283, (1999) 512. 15.W. Zhu, C. Bower, O. Zhou, G. Kochanski and S. Jin, Appl. Phys. Lett. 75, (1999) 873. 16.M. Jung, K. Y. Eun, J. K. Lee, Y. T. Baik, K. R. Lee and J. W. Park, Diam. Relat. Mater. 10, (2001) 1235. 17.K. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park and D. J. Kim, J. Eur. Ceram. Soc. 21, (2001) 2095. 18.M. Jung, K. Y. Eun, Y. J. Baik, K. R. Lee, J. K. Shin and S. T. Kim, Thin Solid Films 398-399, (2001) 150. 19.G. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park, K. H. Son and D. J. Kima, J. Appl, Phys. 91, (2002) 3847. 20.Z. Y. Juang, I. P. Chien, J. F. Lai, T. S. Lai and C. H. Tsai, Diam. Relat. Mater. 13 , (2004) 1203. 21.C. J. Lee, J. H. Park and J. Park, Chem. Phys. Lett. 323, (2000) 560. 22.C. J. Lee and J. Park, Appl. Phys. Lett. 77, (2000) 3397. 23.H. Cui, O. Zhou and B.R. Stoner, J. Appl. Phys. 88, (2000) 6072. 24.Y. Saito, Carbon 33, (1995) 979. 25.X. X. Zhang, Z. Q. Li, G. H. Wen, K. K. Fung, J. Chen and Y. Li, Chem. Phys. Lett. 333, (2001) 509. 26.S. Helveg, C. López-Cartes1, J. Sehested, P. L. Hansen1, B. S. Clausen1, J. R. Rostrup-Nielsen, F. Abild-Pedersen and Jens K. Nørskov, Nature 427, (2004) 426. Ch.6 1.R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates and R. J. Waite, J. Catal. 26, (1972) 51. 2.Oberlin, M. Endo and T. Koyama, Carbon 14, (1976) 133. 3.P. Krivoruchko, V. I. Zaikovsky and K. I. Zamaraev, Dokl. Acad. Nauk 329, (1993) 744. 4.T. W. Ebbesen, “Carbon Nanotubes: Preparation and Properties”, CRC Press, Boca Raton, FL, 1997. 5.H. Kiang and W.A. Goddard III, Phys. Rev. Lett. 76, (1996) 2515. 6.G. G. Tibbetts, J. Cryst. Growth 66, (1984) 632. 7.S. Helveg, C. López-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen and J. K. Nørskov, Nature 427, (2004) 426. 8.V. L. Kuznetsov, A. N. Usoltseva, A. L. Chuvilin, E. D. Obraztsova, Jean-Marc Bonard, Phys. Rev. B 64, (2001) 235401-1 9.F. A Lindemann, Z. Phys. 11, (1910) 609. 10.H. Kleinert, “GAUGE FIELDS IN CONDENSED MATTER, Vol. II: STRESSES AND DEFECTS”, World Scientific, Singapore, 1989, p. 875 – 937. 11.F. G. Shi, J. Mater. Res 9, (1994) 1307. 12.Q. Jiang, N. Aya and F. G. Shi, Appl. Phys. A 64, (1997) 627. 13.J. R. Sambles, Proc. R. Soc. A 324, (1971) 339. 14.T. Ben-David, Y. Lereah, G. Deutscher, R. Kofman and P. Cheyssac, Phil. Mag. A 71, (1995) 1135. 15.J. Emsley, “THE ELEMENTS”, 3rd EDTION, Oxford University Press, 1998. 16.M. Yudasaka, R. Kikuchi, Y. Ohki and S. Yoshimura, Carbon 35, (1997) 195. 17.M. Yudasaka, R. Kikuchi, T. Matsui, Y. Ohki, S. Yoshimura and E. Ota, Appl. Phys. Lett. 67, (1995) 2477. 18.M. Yudasaka, R. Kikuchi, Y. Ohki, E. Ota and S. Yoshimura, Appl. Phys. Lett. 70, (1997) 1817. 19.L. Vitos, A. V. Ruban, H. L. Skriver and J. Kollar, Surf. Sci. 411, (1998) 186. 20.Q. Jiang, Y. W. Wang and J. C. Li, Appl. Surf. Sci. 152, (1999) 156. 21.Q. W. Li, H. Yan, Y. Cheng, J. Zhang and Z. F. Liu, J. Mater. Chem. 12, (2002) 1179. 22.D. A. Porter and K. E. Easterling, “Phase Transformation in Metal and Alloys”, p112 – p116, Stanleey Thornes Ltd., United Kingdom, 1992. 23.B. Pignataro, G. Grasso, L. Renna and G. Marletta, Surf. Interface Anal. 33, (2002) 54. 24.O. Noel, M. Brogly, G. Castelein and J. Schultz, Langmuir 20, (2004) 2707. 25.張朝欽、賴再興,「在矽基板上以熱烈解法成長奈米碳管的研究」,碩士學位論文,私立中原大學物理學系,2003。 26.M. Yudasaka, R. Kikuchi, Y. Ohki and S. Yoshimura, Carbon 35 (1997) 195. 27.R. Sen, B. C. Satishkumar, A. Govindaraj, K. R. Harikumar, G. Raina, J. P. Zhang, A. K. Cheetham and C. N. R. Rao, Chem. Phys. Lett. 287, (1998) 671. 28.M. Terrones, P. Redlich, N. Grobert, S. Trasobares, W. K. Hsu, H. Terrones, Y. Q. Zhu, J. P. Hare, C. L. Reeves, A. K. Cheetham, M. Rühle, H. W. Kroto and D. R. M. Walton, Adv. Mater. 11, (1999) 655. 29.M. Terrones, P. M. Ajayan, F. Banhart, X. Blase, D. L. Carroll, R. Czerw, B. Foley, N. Brobert, R. Kamalakaran, P. Kohler-Redlich, M. Rühle, T. Seeger and H. Terrones, Appl. Phys. A 74, (2002) 355. 30.S. L. Sung, S. H. Tsai, C. H. Tseng, F. K. Chiang, X. W. Liu and H. C. Shih, Appl. Phys. Lett. 74, (1999) 197. 31.X. Ma and E. G. Wang, Appl. Phys. Lett. 78, (2001) 978. 32.J. W. Jang, C. E. Lee, S. C. Lyu, T. J. Lee and C. J. Lee, Appl. Phys. Lett. 84, (2004) 2877. 33.A. V. Krasheninnikov, K. Nordlund, A. S. Foster, A. Ayuela and R. M. Nieminen, Phys. Rev. B 69, (2004) 073402. Ch.7 1.M. Cassell, N. R. Franklin, T. W. Tombler, E. M. Chan, J. Han and H. Dai, J. Am. Chem. Soc 121, (1999) 7975. 2.N. R. Franklin and H. Dai, Adv. Mater. 12, (2000) 890.id NH0925593004 sid 887107 cfn 0 / id NH0925593005 auc 苗新元 tic 奈米碳管成長機制及其作為微放電拋光電極應用之研究 adc 歐陽敏盛 博士 adc 呂助增 博士 ty 博士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 195 kwc 奈米碳管 kwc 電子場發射特性 kwc 化學氣相沈積法 kwc 微放電加工 abc 奈米碳管成長機制及其作為微放電拋光電極之應用研究 tc 目錄 中文摘要………………..……………………………………………………….Ⅰ 英文摘要………………………..………………………………………...……..Ⅲ 致謝………………...……………………………………………………….……Ⅵ 目錄…………………………...…………………………………………...……..Ⅸ 圖目錄……………..………………………………………………………….....Ⅹ 表目錄……………………..………………………………………………….ⅩⅥ 第一章 緒論…………………...……………….…………………...………1 1.1 研究背景……………………………..……………………………………1 1.2 研究動機與目的……..……………………………………………………4 1.3 論文架構………..…………………………………………………………6 第二章 文獻回顧………………………...………………………………...10 2.1 碳元素特性………..……………………………………………………..10 2.1-1 電子混成軌道特性與材料結構………………………….…..…..11 2.1-2 碳相關應用材料……………………………..…………………...14 2.2 奈米碳管………………………………………..………………………..19 2.2-1奈米碳管的成長法及條件………………………..…………...….20 2.2-2 奈米碳管的成長模型(growth mechanism)……………………….23 2.2-3 奈米碳管的物理性質……………………………………..…...…37 2.2-4 奈米碳管的其他用途……..……………………………………...42 第三章 實驗設備簡介………………………………..………………….71 3.1 生產製造設備………………………………..………………………..…72 3.2 檢測設備……………..……………………………………………..……74 第四章 以銅合金基板成長奈米碳管………………….………..…...86 4.1 合金基板組成材料之選擇……………………………..………………..87 4.2 奈米碳管成長參數條件之選擇……………………………..………..…91 4.3 初期成長結果及參數修正…………………………..…………………..92 4.3-1 碳源過量之影響…………………..……………………………...93 4.3-2 反應溫度過高之影響………………………..…………………...93 4.3-3 RF self bias之影響……..………………………………………....95 4.3-4催化劑厚度之影響…………………………..……………………99 4.4 控制成長奈米碳管…………………………..………………………....101 4.4-1 以催化劑之濃度控制成長密度……………..……………….…101 4.4-2 以RF self bias之大小控制筆直度………………..…………….102 4.4-3 以氫蝕刻之時間控制成長直徑及其成長機制…………..….…103 4.4-4 以改變反應物之物種控制成長結構及其成長機制……..…….106 第五章 MWCNTs在微放電表面拋光加工上之應用……..…....154 5.1 簡介…………..…………………………………………………………154 5.2 實驗步驟………..………………………………………………………155 5.3 實驗結果與討論………..……………………………………………....156 結論……………………………..……………..…………………………….…173 未來研究方向與建議…………………………..…..………………….……174 參考文獻………………………….………………………………………..….175 附錄……………………………..…………………………………………..….182 A.小尺寸效應………..……………………………………………………...182 B.表面效應…………………..……………………………………………...183 C. Laplace Pressure Effect……..…………………………………………….184 D. Field Emission Theory………..…………………………………………..187 簡歷與自傳………………………………………………..………………………………rf 參考文獻 Chapter 1 1. D. Y. Sheu, T. Masuzawa, Inter. J. Electrical Machining, 8, 15, 2003 2. K. Egashira, T. Masuzawa, Annals CIRP, 48, 131, 1999 3. Z. Y. Yu, T. Masuzawa, Annals CIRP, 47, 169, 1998 4. Patent Analysis-Nanotechnology Series, “Vol. 1 Carbon Nanotube”, science and Technology Information Center, 2002 5. A. G. Rinzler, J. H. Hafner, P. Nordlander, D. T. Colbert, and R. E. Smalley, Science 269, 1550, 1995 6. S. Ijima, Nature 354, 1991, 56; S. Ijima, T. Ichihashi, Nature 363, 1993, 603 7. http://www.nec.com/index.html 8. http://www.ntrc.itri.org.tw/index.jsp / Chapter 2 9. 大谷衫郎、大谷朝男共著,賴耿陽 譯著,應用新科技碳纖維材料入門,復漢出版社有限公司,2000年,台南市 10. J. A. Howe, J. Chem. Phys., 1934, 2, 551; X. X. Bi, M. Jagtyoen, M. Endo, D. Chowdhury, K. Ochoa, R. Derbyshire, F. J. Dresselhaus, J, Mater. Res., 1975, 10, 2875 11. H. W. Kroto, J. R. Heathh, S. C. Obrien, R. F. Curl, R. E. Smalley, Nature, 1985, 318, 162 12. 許明發編楮,碳、碳纖維、碳/碳複合材料之加工技術及應用,滄海書局,1997年,台中市 13. http://freebsd.ac.nctu.edu.tw/education/edu_analysis.php 14. Physcal Properties of Carbon Nanotubes, edited by R. Saito, G. Dresselhaus, M. S. Dresselhaus (Imperial College Press, 1998), Chapter 3 15. H. Baker, et al., ASM Handbook, Volume 3, Alloy Phase Diagrams, December 1992 16. R. T. Baker, J. R. Alonzo, et al., Journal of Catalysis 77, 74, 1982 17. Y. Saito, Carnon 33, 7, 979-988, 1995 18. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smally, Chem. Phys. Lett. 243, 49, 1995 19. Chemistry and Physics of Carbon, edited by R. T. K. Baker and P. S. Harris (Marcel Dekker, 1978) 20. R. Sen, A. Govindaraj and C. N. R. Rao, Chem. Phys. Lett. 267, 276, 1997 21. S. Fan, M. G. Chaplin, N. R. Franklin, T. W. Tombler, A. M. Cassell ans H. Dai, Science 283, 512, 1999 22. C. J. Lee and J. Park, Appl. Phys. Lett. 77, 3397, 2000 23. Z. F. Ren, Z. P. Huang, J. H. Wang, P. Bush, M. P. Siegal and P. N. Provencio, Science 282, 1105, 1998 24. C. Bower, W. Zhu, S. Jin, O. Zhou, Appl. Phys. Lett. 77, 830, 2000 25. A. T. Matveev, D. Golberg, V. P. Novikov, L. L. Klimkovich and Y. Bando, Carbon 39, 155, 2001 26. USP. 5753088 27. J. Goma and A. Oberlin, Thin Solid Film 65, 221, 1980 28. R. E. Smally and B. I. Yakobson, Solid State Communication 107, 597, 1998 29. Gavillet, et al., Carbon 40, 1649-1663, 2002 30. J. M. Haile, Molecular Dynamics Simulation Elementary Methods, Wiley Professional Paperback Edition Published, 1997 31. A. Thess, R. E. Smalley, et al., Science 273, 483 32. http://www.improb.com/ig/ig-top.html 33. Rahul Sen, Y. Ohtsuka, Chemical Physics Letters 332, 467-473, 2000 34. D. B. Geohegan, H. Schittenhelm, et al., Applied Physics Letters 78, 21, 3307-3309, 2001 35. A. Gorbunov, O. Jost, et al., Applied Surface Science 197-198, 563-567, 2002 36. A. Gorbunov, et al., Applied Surface Science 197-198, 563-567, 2002 37. A. Gorbunov, O. Jost, et al., Carbon 40, 113-118, 2002 38. Henning Kanzow and Adalbert Ding, Physical Review B 60, 15, 11180-11186, 1999 39. Ph. Buffat and J. P. Borel, Physical Review A 13, 6, 2287-2298, 1976 40. James S. Reed, Principles of Ceramics Processing, Second Edition, John Wiley & Sons, Inc., 1997 41. L. V. Radushkevich and V. M. Lukyanovich, Zh. Fiz. Khim. 26, 88, 1952 42. L. J. E. Hofer, E. Sterling, et al., Journal of Physical Chemistry 59, 1153, 1955 43. R. T. K. Baker, M. A. Barber, et al., Journal of Catalysis 26, 51-62, 1972 44. G. G. Tibbetts, Journal of Crystal Growth 66, 632-638, 1984 45. A. Sacco, JR., Journal of Catalysis 85, 224-236, 1984 46. I. Stewart, M. J. Tricker, et al., Journal of Catalysis 94, 360-369, 1985 47. Z. K. Tang, Lingyun Zhang, Science 292, 2462-2465, 2001 48. Xianbao Wang, Wenping Hu, et al., Carbon 39, 1533-1536, 2001 49. Hongwei Zhu, Lijie Ci, et al., Diamond and Related Materials 11, 1349-1352, 2002 50. Y. Tu, Z. P. Huang, Applied Physics Letters 80, 4018-4020, 2002 51. Vincent Jourdain, Henning Kanzow, et al.,Chemical Physics Letters 364, 27-33, 2002 52. S. Frank, P. Poncharal, Z. L. Wang and W. A. Deheer, Science 280, 1744, 1998 53. S. Sanvito, Y. K. Kwon, D. Tomànek and C. J. Lambert, Phys. Rev. Lett. 84, 1974, 2000 54. Ishan Barin, Thermochemical Data of Pure Substances 3rd 55. N. A. Vasileva, R. A. Buyanov, Kinetics and Catalysis 34, 748, 1993 56. J. Hone, M. Whitney and A. Zettle, Synthetic Metals, 103, 2498, 1999 57. http://www.foresight.rg/Conferences/MNT7/Papers/Che/index.html 58. S. Berber, Y. K. Kwon and D. Tomanek, Phys. Rev. Lett. 84, 4613, 2000 59. R. Saito, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204, 1992 60. R. Saito, G. Dresselhaus and M. S. Dresselhaus, J. Appl. Phys. 73, 494, 1993 61. J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley and C. Dekker, Nature 391, 59, 1998 62. T. W. Odom, J. L. Huang, P. Kim and C. M. Lieber, Nature 391, 62, 1998 63. C. Dekker, Carbon Nanotubes as Molecular Quantum Wires, Physics Today, May, 22, 1999 64. http://www.pa.msu.edu/~tomanek/tomanek.html 65. http://www.aip.org/enows/physnews/1996/split/pnu279-2.htm 66. http://www.wag.caltech.edu/foresight/foresight_2.html 67. E. Dujardin, T. W. Ebbesen, A. Krishnan, P. N. Yianilos and M. M. J. Treacy, Phys. Rev. B58 (20), 14013, 1998 68. E. Wong, P. Sheehan and C. Lieber, Science 277, 1971, 1997 69. http://www.fam.cie.uva.es/~arubio/psi_k/node5.html 70. 呂助增 著,固態電子學,明文書局,1996,台北市 71. R. Gomer, Field Emissio and Field Ionization, Library of Congress Cataloging-in-Publication Data, 1993, New York 72. 陳聖元,碳基材料長及其場發射特性之研究,國清華大學電子工程研究所博士論文,2003 73. R.H. Fowler and L.W. Nordheim, Proc. Roy. Soc. (London), A119, (1928)173 74. E.L. Murphy and R.H. Good, Phys. Rev., 102, (1956)1464 75. R. Gomer, “Field emission and Field Ionization”, American Institute of Physics, New York, 1993 76. A. Modinos, “Field, Thermionic, and Secondary Electron Emission Spectroscopy”, Plenum, New York, 1984 77. J.T. Lue, Solid-State Electron, 23, (1980)263. 78. R. Stratton, Phys. Rev. 125, (1962)67. 79. R. Stratton, Proc. Phys. Soc. London, B 68, (1955)746. 80. D.K. Ferry, “Semiconductor”, Macmillan Publishing Company, 1991 81. C.L. Chen, C.S. Chen, J.T. Lue, Solid-State Electron, 44, (2000)1733. 82. C. Bandis and B.B. Pate, Phys. Rev. B, 52, (1995)12056 83. A. G. Rinzer, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert and R. E. Smalley, Science 269, 1550, 1995 84. W. A. de heer, A. Chatelain and D. Ugarte, Science 270, 1179, 1995 85. P. G. Collins and A. Zettl, Appl. Phys. Lett. 69 (13), 1969, 1996 86. M. Ge and K. Sattler, Appl. Phys. Lett. 65 (18), 2284, 1994 87. A. A. Setlur, J. M. Lauerhaas, J. Y. Dai R. P. H. Chang, Appl. Phys. Lett. 69 (3), 345, 1996 88. F. Okuyama, T. Hayashi and Y. Fujimoto, J. Appl. Phys., 84 (3), 1626, 1998 89. R. Martel, T. Schmidt, H. R. Shea, T. Hertel Ph. Avouris, Appl. Phys. Lett., 73 (17), 2447, 1998 90. S. J. Tams, A. R. M. Verschueren and C. Dekker, Nature 393, 49, 1998 91. S. J. V. Frankland, D. W. Brenner, Chem. Phys. Lett. 334, (2001) 18. 92. B. Gao, A. Kleinhammes, X. P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou, Chem. Phys. Lett., 307, 153, 1999 93. C. Niu, E. K. Sichel, R. Hoch, D. Moy and H. Tennent, Appl. Phys. Lett. 70 (11), 1480, 1997 94. G. Nagy, M. Levy, R. Scarmozzino, R. M. Osgood, Jr. H. Dai, R. E. Smalley and G. F. McLane, Appl. Phys. Lett., 73 (4), 529, 1998 95. L. Jin, C. Bower and O. Zhou, Appl. Phys. Lett., 73 (9), 1197, 1998 96. R. S. Ruoff, D. C. Lorents, R. Laduca, S. Subramoney and B. Chen, Nature 364, 514, 1993 97. P. Calvert, Nature 357, 365, 1992 98. J. M. Planeix, et al., J. Am. Chem. Soc., 116, 7935, 1994 99. X. Blasé, J. C. Charlier, A. De Vita and R. Car, Appl. Phys. Lett., 70 (2), 197, 1997 100. L. Chico, et al., Phys. Rev. Lett., 76 (6), 971, 1996 Chapter 3 101. R. Saito, T. Takeya , T. Kimura, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. B 57, 7, 1998 102. E. Richter, K. R. Subbaswamy, Phys. Rev. Lett., 79, 105, 1997 103. M. Ge, et al., Phys. Rev. Lett., 65, 2811, 1994 Chapter 4 104. E. B. Palen, T. Pichler, G. G. Fuentes, A. Graff, R. J. Kalenczuk, Chem. Phys. Lett., 378, 516, 2003 105. Y. Murakami, Y. Miyauchi, S. Chiashi, S. Maruyama, Chem. Phys. Lett., 377, 49, 2003 106. Y. Murakami, S. Yamakita, T. Okubo, S. Maruyama, Chem. Phys. Lett., 375, 393, 2003 107. A. Yamamoto, T. Tsutsumoto, Diamond and Related Materials 11, 748, 2002 108. G. W. Lee, J. Jurng, J. Hwang, Letters to the Editor / Carbon 42, 667, 2004 109. Ch. Emmenegger, P. Mauron, A. Zuttel, Ch. Nutzenadel, A. Schneuwly, r. Gallay, L. Schlapbach, Applied Surface Science 162-163, 452, 2000 110. D. Y. Ding, J. N. Wang, Z. L. Cao, J. H. Dai, F. Yu, Chem. Phys. Lett. 371, 333, 2003 111. Y. Shimizu, et al., Chem. Phys. Lett. 370, 774, 2003 112. F. G. Celii, J. E. Butler, Appl. Phys. Lett., 54 (11), 1031, 1989 113. M. Frenklach and K. E. Spear, J. Mater. Res., 3 (1), 133, 1988 114. S. Y. Chen, J. T. Lue, Phys. Lett. A 309, 114, 2003 115. 陳照勗,以微波電漿化學氣相沈積法成長P型鑽石薄膜及其結構分 析,國立清華學物理研究所碩士論文,1997 116. O. M. Kuttel, O. Groening, C. Emmenegger and L. Schlapbach, Appl. Phys. Lett., 73 (15), 2113, 1998 117. L. C. Qin, D. Zhou, A. R. Krauss and D. M. Gruen, Appl. Phys. Lett., 72 (26), 3437, 1998 118. Z. K. Tang, H. D. Sun, J. Wang, J. Chen and G. Li, Appl. Phys. Lett., 73 (16), 2287, 1998 119. S. Iijima, T. Ichihashi and Y. Endo, Nature 356, 776, 1992 120. C. Journet et al., Nature 388, 756 (1997) 121. G. S. Choi et al., J. Appl. Phys. 91, 3847 (2002) 122. W. D. Zhang, Y. Wen, W. C. Tjiu, G. Q. Xu, L. M. Gan, Appl. Phys. A 74, 419 (2002) 123. Y. C. Choi et al., J. Appl. Phys. 88, 4898 (2000) 124. Y. C. Choi et al., J. Vac. Sci. Technol. A 18, 1864 (2000) 125. L. Delzeit et al., J. Appl. Phys. 91, 6027 (2002) 126. L. H. Chan, K. H. Hong, S. H. Lai, X. W. Liu, H. C. Shih, Thin Solid Films 423, 27 (2003) 127. A. M. Rao et al., Science 275, 187 (1997) 128. Y. C. Choi, et al., J. Appl. Phys. 88, 4898, 2000 129. A. C. Dillon, M. J. Heben, Appl. Phys. A 72, 133, 2001 130. Ph. Buffat and J. P. Borel, Phys. Rev. A 13, 2287, 1976 131. M. S. Dresselhaus, G. Dresselhaus, R. Saito, Phys. Rev. B 45, (1992) 6234. 132. S. J. V. Frankland, D. W. Brenner, Chem. Phys. Lett. 334, (2001) 18 133. A. Thess, et. al., Science 273 (1996), 483 Chapter 5 134. R. S. Ruoff and D. C. Lorents, Carbon 33, 1995, 925 135. J. Hone, et al., Appl. Phys. A 74, 2002, 339 136. F. Wakaya, K. Katayama, K. Gamo, Microelectron. Eng. 67-68, 3003, 853 137. C. Goze, et al., Synth. Met. 103, 1999, 2500 138. G. Pirio, et al., Nanotechnology 13, 2002, 1 139. S. Y. Chen, H. Y. Miao, J. T. Lue, M. S. Ouyang, J. Phys. D: Appl. Phys. 37, 2004, 273 140. H. Y. Miao, J. T. Lue, S. K. Chen, M. S. Ouyang, European J. Phys. : Appl. Phys. (2004), accepted. 141. V. I. Merkulov, et al., Appl. Phys. Lett. 80, 2002, 4816 142. S. H. Tsai, C. W. Chao, C. L. Lee, H. C. Shih, Appl. Phys. Lett. 74, 1999, 3462 143. W. Z. Li, J. G. Wen, Z. F. Ren, Appl. Phys. A 74, 2002, 397 144. http://www.pa.msu.edu/cmp/csc/ntproperties/quickfacts.html 145. J. T. Lue, S. Y. Chen, C. L. Chen, M. C. Lin, J Non-Crystalline Solids 2000;265:230-7. 146. S. Y. Chen, J. T. Lue, New J Physics 2002;4:79.1-79.7 147. S. Y. Chen, J. T. Lue, Phys Lett A 2003;309:114-20.id NH0925593005 sid 897106 cfn 0 / id NH0925593006 auc 楊宗翰 tic 以分子動力學模擬液態水之薄膜蒸發與奈米液滴在恆溫白金表面上的物理過程 adc 潘欽 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 135 kwc 分子動力學模擬 kwc 平行化程式設計 kwc 薄膜蒸發 kwc 恆溫白金表面 abc 本研究以分子動力學理論為基礎並結合高效能和MPI平行化的程式設計,模擬水分子在介觀級奈米尺度下相關的物質特性和現象並進一步提出物理解釋與探討。 tc 摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 IX 表目錄 XV 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究方法與目的 3 1-3 論文的架構 5 第二章 文獻回顧 7 2-1 分子動力學之相關文獻 7 2-2 均質水分子模擬之相關文獻 8 2-3 微液膜蒸發之相關文獻 11 2-4 微流體在金屬表面上模擬之相關文獻 13 第三章 分子動力學理論 15 3-1 核心理論 15 3-2 分子位能勢函數 15 3-2.1 氬原子間的位能勢函數 16 3-2.2 水分子間的位能勢函數 17 3-2.3 水分子與白金原子間的位能勢函數 19 3-3 週期性邊界條件 20 3-4 最小映射法則 21 3-5 分子間作用力計算的簡化 21 3-5.1 牛頓第三運動定律 22 3-5.2 截斷半徑 23 3-5.3 Verlet相鄰列表 24 3-6 計算精確度的提升 26 3-6.1 常用數值積分方法 26 3-6.2 計算參數無因次化 27 3-7 計算程式平行化 27 3-7.1 MPI平行程式設計 28 3-7.2 應用於分子動力學計算 29 3-7.3 平行電腦簡介 33 3-8 初始條件的設定 34 3-9 系統的溫度控制與程式的主體架構 35 第四章 均質系統的水分子模擬 45 4-1 水分子的基本結構 45 4-2 模擬系統參數的設定 46 4-3 徑向結構分佈函數 48 4-4 自我擴散係數 50 4-5 水分子的氫鍵配位數 52 第五章 微液膜的蒸發模擬 67 5-1 前言 67 5-2 模擬系統的相關設定 68 5-3 微液膜的密度分佈 69 5-4 氣液介面厚度相關分析 70 5-5 微液膜的溫度分佈 71 5-6 微液膜蒸發係數計算 72 5-7 微液膜的分子蒸發機制 74 第六章 奈米液滴在恆溫白金面的物理現象模擬 100 6-1 前言 100 6-2 白金基版的溫控模式 101 6-3 模擬系統的相關設定 102 6-4 各個階段的物理現象 103 6-5 各個階段的能量變化 108 第七章 結論與建議 127 參考文獻 131rf Alder B. J. and Wainwright T. E. (1957).“Phase transition for a hard sphere system,” J. Chem. Phys., vol. 27, p1208-1209. Alejandre J., Tildesley D. J. and Chapela G.. A. (1995). “Molecular dynamics simulation of the orthobaric densities and surface tension of water,”J. Chem. Phys., vol 102, p4574-4583. Allen M. P. and Tildesley D. J., “Computer Simulation of Liquids,”Clarendon Press, Oxford, 1987. Andersen H. C. (1980). “Molecular dynamics at constant pressure and/or temperature,” J. Chem. Phys., vol. 72, p2384-2393. Argyropoulos P., Scott* K. and Taama W. M. (1999). “Carbon dioxide evolution patterns in direct methanol fuel cells,”Electrochimica Acta, vol. 44, p3575-3584. Berendsen H. J. C., Grigeira J. R. and Straatsma T. P. (1987). “The missing term in effective pair potentials,” J. Phys. Chem., vol. 91, p6269-6271. Berendsen H. J. C., Postma J. P. M., Van Gunsteren W. F. and Hermans J. (1981). “Interaction models for water in relation to protein hydration,” In: Pullman B (ed) Intermolecular Forces. Riedel, Dordrecht, p331-342. Berendsen J. K. C., Postma J. P. M., van Gunsteren W. F., DiNola A. and Haak J. R. (1984). “Molecular dynamics with coupling to an external bath,” J. Chem. Phys., vol. 81, p3684-3690. Carravetta V. and Clementi E. (1984). “Water-water interaction potential: An approximation of electron correlation contribution by a functional of the SCF density matrix,” J. Chem. Phys., vol. 81, p2646-2651. Cengel Y. A. and Boles M. A., “Thermodynamics an engineering approach,” Third Edition, p904-908, The McGraw-Hill Companies, 1998. Chen W. L., Twu M. C. and Pan Chin (2002). “Gas-liquid two-phase flow in miscro channels, ”Int. J. Multiphase Flow, vol. 28, p1235-1247. Dou Y., Zhigilei L. V., Winograd N. and Garrison B. J. (2001). “Explosive boiling of water films adjacent to heated surface: A Microscopic Description,” J. Phys. Chem. A, vol. 105, No. 12, p2748-2755. Haile J. M., “Molecular Dynamics Simulation. Elementary Methods,” John Wiley & Sons, New York, 1992. Hoover W. G.. (1985). “Canonical dynamics: equilibrium phase-space distribution,” Phys. Rev. A., vol. 31, p1695-1697. Jedlovszky P., Brodholt J. P., Bruni F., Ricci M. A., Soper A.K. and Vallauri R. (1998). “Analysis of the hydrogen-bonded structure of water from ambient to supercritical conditions,” J. Chem. Phys. vol. 108, p8528-8540. Jorgensen W. L. and Jenson C. (1998). “Temperature dependence of TIP3P, SPC, and TIP4P water from NPT Monte Carlo simulation: Seeking temperatures of Maximum density,” J. Comput. Chem., Vol. 19, p1179-1186. Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W. and Klein M. L. (1983). “Comparison of simple potential functions for simulating liquid water,” J. Chem. Phys., vol. 79, p926-935. Kalinichev A. G.. and Bass J. D. (1997). “Hydrogen bonding in supercritical water 2. computer simulations,” J. Phys. Chem. A , vol. 101, p9720-9727. Kandlikar S. G., Maruyama S., Steinke M. E. and Kimura T. (2001). “Measurement and molecular dynamics simulation of contact angle of water droplet on a platinum surface,” HTD (Am. Soc. Mech. Eng.) (Proc. ASME Heat Transfer Division 2001), vol. 369, no. 1, p343-348. Kimura T. and Maruyama S., (2002). “Molecular dynamics simulation of water droplet in contact with platinum surface,” Proc. 12th Int. Heat Transfer Conf., p537-542. Krynicki K., Green C. D. and Sawyer D. W. (1978). “Pressure and temperature dependence of self-diffusion in water,” Faraday. Discuss. Chem. Soc., vol. 66, p199-207. Liew C. C., Inomata H. and Arai K. (1998). “Flexible molecular models for molecular dynamics study for near and supercritical water,” Fluid Phase Equilibria, vol. 144, p287-298. Mahoney M. W. and Jorgensen W. L. (2000). “A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions,” J. Chem. Phys., vol. 112, p8910-8922. Marek R. and Straub J., (2001). “Analysis of the evaporation coefficient and the condensation coefficient of water, ” Int. J. Heat Mass Transfer, vol. 44, p39-53. Maruyama S. (2000). “Molecular dynamics method for microscale heat transfer,” vol. 2, Chap. 6, p189-226, Advances in Numerical Heat Transfer, W. J. Minkowycz and E. M. Sparrow (Eds), Taylor & Francis, New York, 2000. Matsumoto M. (1998). “Molecular dynamics of fluid phase change,” Fluid Phase Equilibria, vol. 144, p307-314. Matsumoto M., Salto S. and Ohmine L. (2002). “Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing,” Nature, vol. 416, p409-413. Matsuoka O., Clementi E. and Yoshimine M. (1976). “CI study of the water dimer potential surface,” J. Chem. Phys., vol. 64, p1351-1361. Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H. and Teller E. (1953).“Equation of state calculations by fast computing machines,”J. Chem. Phys., vol. 21, p1087-1092. Nagayama G. and Tsuruta T. (2003). “A general expression for the condensation coefficient based on transition state theory and molecular dynamics simulation,” J. Chem. Phys., vol. 118, p1392-1399. Nose’ S. (1984). “A unified formulation of the constant temperature molecular dynamics methods,” J. Chem. Phys., vol. 81, p511-519. Parrinello M. and Rahman A. (1982). “Strain fluctuations and elastic constants,” J. Chem. Phys., vol. 76, p2662-2666. Rahman A. (1964). “Correlations in the motion of atoms in liquid argon,” Phys. Rev., vol. 136, p405-411. Rapaport D. C., “The Art of Molecular Dynamics Simulation,” Cambridge University Press, Cambridge, 1995. Rivera J. L., Predota M. P., Chialvo A. A. and Cummings P. T. (2002). “Vapor-liquid equilibrium simulations of the SCPDP model of water,” Chem. Phys. Lett., vol. 357, p189-194. Sadus R. J., “Molecular Simulation of Fluids Theory, Algorithm and Object-Orientation,” Elsevier Science, 1999. Spohr E. (1989). “Computer simulation of the water/platinum interface,” J. Phys. Chem., vol. 93, p6171-6180. Stillinger F. H. and Rahman A. (1974) “Molecular dynamics study of liquid water under high compression,” J. Chem. Phys., vol. 61, p4973-4980. Tsuruta T., Tanaka H. and Masuoka T. (1999). “Condensation/evaporation coefficient and velocity distributions at liquid-vapor interface,” International Journal of Heat and Mass Transfer, vol. 42, p4107-4116. Verlet L. (1967). “Computer 〝experiments〞on classical fluids. I. thermodynamical properties of Lennard-Jones molecules, ” Phys. Rev., vol. 159, p98-103. Yasuoka K. and Matsumoto M. (1998). “Molecular dynamics simulation of homogeneous in supersaturated water vapor,”Fluid Phase Equilibria, vol. 144, p369-376. Yasuoka K., Matsumoto M. and Kataoka Y. (1995). “Dynamics near a liquid surface mechanisms of evaporation and condensation,” Journal Molecular Liquids, vol. 65-66, P329-332. Yi P., Poulikakos D., Walther J. and Yadigaroglu G. (2002). “Molecular dynamics simulation of vaporization of an ultra-thin liquid argon layer on a surface,” International Journal of Heat and Mass Transfer, vol. 45, p2087-2100. Zakharov V. V., Brodskaya E. N. and Laaksonen A. (1998). “Surface properties of water clusters: a molecular dynamics study,” Mol. Phys., vol. 95, No. 2, p203-209. Zhou J., Lu X. H., Wang Y. R. and Shi J. (1999). “Molecular Dynamics Simulation of Supercritical Water,” Acta Physico-Chimica Sinica, Vol. 15, No. 11, p1017-1022. 吳逸文, “以分子動力學模擬L-J(12-6)液體之均質成核沸騰和薄膜蒸發,” 國立清華大學工程與系統科學所碩士論文, 2002. 張西亞等人, “PC Cluster整體性課程研習營,”行政院國科會國家高速網路與計算中心, 2003. 潘欽, “沸騰熱傳與雙相流,”國立編譯館, 台灣, 2001. 鄭守成, “MPI平行計算程式設計,”行政院國科會國家高速網路與計算中心, 2003.id NH0925593006 sid 903134 cfn 0 / id NH0925593007 auc 吳孟宗 tic 不同碳載體製備直接甲醇燃料電池陽極觸媒之特性分析 adc 蔡春鴻 博士 adc 葉宗洸 博士 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 69 kwc 直接甲醇燃料電池 kwc 陽極觸媒 kwc 電化學分析 kwc 奈米結構碳載體 abc 成但是Pt%降低。CV結果得到VH11有最佳催化活性和抗毒化能力,VOH21、MH21都較VH21有較佳的催化活性和抗毒化能力,MOH21有更佳的催化效率,但是甲醇氧化電流較低,由Vulcan承戴的觸媒經空氣處理後的觸媒都有氧化電流變大,但是毒化情形變嚴重的現象,CMK-1承戴的觸媒空氣處理後則有較低的氧化峰電位但是氧化電流也變很小,EIS結果顯示CMK-1承載的觸媒空氣處理後,反應阻抗有變大的趨勢,Vulcan承載的觸媒空氣處理後電子交換阻抗變小。 rf 1. Jarvi TD, Stuve EM. In: Lipkowski J, Ross PN, editors. Electrocatalysis. New York: Wiley/VCH; 1988. p. 75. 2. Zakhidov AA, Baughman R, Iqbal Z, Cui C, Khayrullin I, Dantas SO et al. Science 1998;282:897-901 3. R. Ryoo, S.H. Joo, and S. Jun, J. Phys. Chem. B 1999;103:7743-6 4. T. Kyotani, L. Tsai, A. Tomita, Chem. Mater 1996;8(8):2109-13 5. R. Ryoo, S. Jun, j. M. Kim and M. J. Kim, Chem. Commun. (1997) 2225-6 6. A. Koshio, M. Yudasaka, S. Iijima. Chem. Phys. Letters 356(2002) 595-600 7. M. WATANABE, M. UCHIDA and S. MOTOO, J. Electroanal Chem. 229 (1987) 395 8. W.R. Grove, Phil.Mag.14, 127-130(1839). 9. W. Vielstich, Fuel Cells, Wiely/Interscience , London 1965 , 501 pp. 10. 鄭耀宗、徐耀昇,“燃料電池技術進的現況分析”,八十八年節約能源論文發表會論 專輯,(1999) PP.409-422 11. Kai Sundmacher , Keith Scott, Chemical Engineering Science 54 (1999 ) 2927-2936. 12. Jerry C.Huang (ALynn),Micro-Fuel Cell Workshop, 2001。 13. R. Parsons, T. Vandernoot, J. Electroanal. Chem. 257 (1988) 9. 14. A. Hamnett, Catalysis Today 38 (1997) 445-457. 15. S. Wasmus, A. Kuver, Journal of Electroanalytical Chemistry 461 (1999) 14-31 16. T. Iwasita, F.C. Nart, J. Electroanal. chem. 317 (1991) 291 17. S. Wilhelm, T. Iwsita, W. Vielstich, J. Electroanal. Chem. 238 (1987) 383. 18. A. Papoutsis, J.M. Léger, C. Lamy, J. Electroanal. Chem. 359 (1993) 141. 19. B. Beden, C. Lamy, A. Bewick, K.Kunimatsu, J. Electroanal. Chem. 1981, 121, 343 20. M. Watanabe, S. Motoo, J. Electroanal. Chem. 1975, 60,275 21. P. M. Urban,A. Funke, J. T. Müller, M. Himmen, A. Doctor, Appl. Catal. A: General 221 (2001) 459-470. 22. T. Iwasita, F.C. Nart, W. Ber. Bunsen-Ges. Vielstichd, Phys. Chem. 1990, 94,1030 23. H. A. Gasteiger, N. Markovic, P. N. Ross, E. J. Cairns, J. Phys. Chem. 1994, 98, 617 24. Peter M. Unett Funke, Jens T. Muller, Michael Himmen, Andreas Doctor, Applied Catalysis A: General 221 (2001) 459-470. 25. H. P. Dhar, L. G. Christner, A. K. Kush, J. Electrochem. Soc. 134 (1987) 3021. 26. K. L. Ley et al., J. Electrochem. Soc. 144, 1543(1997) 27. M. Götz and H.Wendt, Electrochim. Acta, 43, 3637 (1998) 28. K. W. Park, J. H. Choi, B. K. Kwon, S. A. Lee, Y. E. Sung, J. Phys. Chem. B 2002, 106, 1869-77 29. C. Roth, M. Göetz, H. Fuess, J. Appl. Electochem. 31(2001) 793-8 30. B. Gurau, R. Viswanathan, R. Liu, T. J. Lafrenz, K. L. Ley, E. S. Smotkin, E. Reddington, A. Sapienza, B. C. Chan, T. E. Mallouk, and S. Sarangapani, J. Phys. Chem. B. 102. 9997(1998) 31. T. Frelink, W. Visscher, van Veen, J. A. R. Surf. Sci. 1995, 335,353 32. T. Frelink, W. Visscher, van Veen, J.A. R. Electrochim. Acta 1994, 94, 1030 33. S. Mukerjee, S. Srinivasan, M. P. Soriaga and J. Mcbreen, J. Mater. Sci. 38(2003)2995-3005 34. M. Uchida, Y. Aoyama, M. Tanabe, N. Yanagihara, N. Eda and A. Ohta, J. Electrochem. Soc. 142(1995)2572 35. S. H. J.., S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasakl and R. Ryoo, Letters to nature, 412(2001)168-70 36. S. Iijima, Nature 354, 56 (1991) 37. S. Iijima, et al., Chem. Phys. Lett. 309 (1999) 165. 38. (a) Hyeon, T.; Han, S.; Sung, Y.-E.; Park, K.-W.; Kim, Y.-W Angew. Chem. Int. Ed. 2003, 42, 4352. (b) Han, S.; Yun, Y.; Park, K.-W.;. Sung, Y.-E.; Hyeon, T. AdV. Mater. 2003, 15, 1922. 39. T. Yoshitake, Y. Shimakawa, S. Kuroshima, H. Kimura, T. Ichihashi, Y. Kubo, D. Kasuya, K. Takahashi, F. Kokai, M. Yudasaka, S. Iijima, Physica B 323 (2003) 124-126. 40. S. Han, Y. Yun, and T. Hyeon, J. Phys. Chem. B 2004, 108, 939-944 41. E. Antolini, F. Cardellini, Journal of alloys and Compounds 315 (2001) 118-122. 42. A. Hamnett, B.J. Kennedy, and F. E. WAGNER, J. cata. 124,30-40 (1990) 43. B. D. McNicol et al. J. Electroanal. Chem. 81(1977) 249-260 44. B. E. Warren, “X-ray Diffraction.” Addison-Wesley, Reading, MA, 1969. 45. V. Radmilovi, H. A. Gasteiger, P. N. Ross, J. Cata. 154, 98-106(1995) 46. J. M. Thomas, W. J. Thomas (1997) Principles and practice of heterogeneous catalysis. P.325 VCH, Weinheim 47. Lange’s Handbook of Chemistry, 13th ed.; Dean, J. A. Ed., McGraw-Hill; New York, 1985; pp 3-124-3-125 48. H. A. Gasteiger, P. N. Ross, Jr., E.J. Cairns, Surf. Sci. 293 (1993) 67 49. Y. Takasu, T. Kawaguchi, W. Sugimoto, Y. Murakami, J. Electrochim. Acta 48 (2003) 3861-3868 50. G. C. Torres, E. I. Iablonski, G. T. Baronetti, A. A. Castro, S. R. de Miguel, O. A. Scelza, M. D. Blanco, M. A. Pena fghfg and J. L. G. Rierro, J. Mater. Sci. 161 (1997) 213 51. I. Iwasita, W. Vielstich, J. Electronanal. Chem. 250 (1988) 452id NH0925593007 sid 903147 cfn 0 / id NH0925593008 auc 林明緯 tic 利用斜緩維持波形與輔助電壓方波提升交流電將顯示器發光效率之研究 adc 柳克強 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 英文 pg 78 kwc 電漿顯示器 kwc 發光效率 abc 本論文提出在電漿顯示器每一個子圖場的維持時段中,利用斜緩維持波形以及在寫入電極上加入輔助電壓方波的方法,提升電漿顯示器發光效率的新驅動波形。斜緩維持波形的特徵為其電壓上升時間較傳統波形增加了三倍左右,其有助於降低氣體放電時的空間電壓差和累積足量的壁電荷以維持腔體中氣體放電作用得以連續產生的效果。在高維持頻率的情況下,當斜緩維持波形電壓值仍低時,在寫入電極上加入輔助電壓方波產生一次“先期放電”。此“先期放電”不但清除了部份的壁電荷還增加空間中帶電荷粒子數量並使得其後產生的維持放電可於較低電壓時開始。當氣體放電於較低電壓的情況下,電子溫度較低並可以提高發光要率。在高維持頻率下,利用此新的驅動波形可以較傳統波形提升百分之二十八的發光效率。 tc Contents Abstract (Chinese & English)……………………………I & II Acknowledge (Chinese)………………………………………III 1.Introduction....................................1 2. Gas discharge physics and principles to improve the luminous efficiency in PDP …………………………..2 2.1 Introduction to plasma display panel ………………2 2.2 Characteristics of gas discharging process……..6 2.3 Chemical reaction in Xe-Ne mixture in PDP ………14 2.4 Discharge evolution from model simulation and experimental results in PDP ………………19 2.5 Definition and principle to improve the luminous efficiency in PDP………………………………………………22 2.6 Review of researches to develop new driving waveform ………26 3. Experimental setups ……………………………………..…32 3.1 PDP test Panel for experimental…………………....32 3.2 Electrical driving system …………………………...33 3.3 Electrical and optical measurement system………...35 4. Experimental results and discussion ………………....39 4.1 Changes of luminous efficiency with conventional waveform in different driving condition………………….…39 4.2 Proposed waveform - Improving the luminous efficiency in PDP by adding an auxiliary pulse on address electrode with ramp-type sustain pulse in sustain period………………...50 4.2.1 Dependence of luminous efficiency on the rise-time of sustain pulse………………………….………….....51 4.2.2 Improvement of luminous efficiency by adding auxiliary pulse on address electrode accompany with the ramp-type sustain pulse………………………………….….65 5. Conclusion ……………………………………………......75 Reference …………………………………………………………77rf Reference 1. J P Boeuf, “Plasma display panels: physics, recent developments and key issues” J. Appl. D : Appl. Phys. 36, R53(2003) 2. Yoshikawa, et al., “A full color AC PDP with 256 gray scale” Japan Display 92’, pp. 605~608. 3. Yuri P. Raizer, “Gas Discharge Physics” Springer-Verlag (1991). 4. Francis F. Chen, “Introduction to Plasma Physics and Controlled Fusion” Plenum Press (1983). 5. H. S. Uhm, et al., “Electric Breakdoen Voltage in a Mixed Gas” Jpn. J. Appl. Phys. 40, L 295 (2001). 6. J. Meunier, et al., “Numerical model of an ac plasma display panel cell in neon-xenon mixtures” J. Appl. Phys. 78, 731(1995). 7. Y. Ikeda, et al., “Global modeling of a dielectric barrier discharge in Ne–Xe mixtures for an alternating current plasma display panel” J. Appl. Phys. 86, 2341(1999). 8. C.K.Yoon, et al., “Spatio-Temporal Variation of VUV and IR Emission from Surface Discharge Type AC PDP Cell with He-Xe and Ne-Xe” SID’99 Digest, 272, 1999. 9. C. Punset, et al., “Addressing and sustaining in alternating current coplanar plasma display panel” J. Appl. Phys. 86, 124(1999). 10. K. Hagiwara, et al., “Side-View Observations of IR Emission from Surface-discharge AC-PDP” International Display Workshop IDW ’99, 1999, pp.615 - 618. 11. L. F. Weber, “Status and Trends of Plasma Display Research.” 1999 International Display Research Conference (EuroDisplay’99), Berlin, Germany, September 1999 (unpublished) (see http://www.plasmaco.com/LarryPaper/paper.html) 12. J. H. Seo, et al., “Two-Dimensional Modeling of a Surface Type Alternating Current Plasma Display Panel Cell: Discharge Dynamics and Address Voltage Effect” IEEE Trans. Plasma Sci.49, 762(2001). 13. K. Suzuki, et al., “Theoretical formulation of the vacuum ultraviolet production efficiency in a plasma display panel” J. Appl. Phys. 88, 5605(2000). 14. G. J. M. Hagelaar, et al., “Energy Loss Mechanism in the micro-discharge in plasma display panels” J. Appl. Phys. 89, 2033(2001). 15. K. Tachibana, et al., “Spatiotemporal behaviors of excited Xe atoms in unit discharge cell of ac-type plasma display panel studied by laser spectroscopic microscopy” J. Appl. Phys. 88, 4967(2000). 16. G. Veronis, et al., “Fundamental Properties of Inert Gas Mixtures for Plasma Display Panels” IEEE Trans. Plasma Sci., 28, 1271(2002). 17. S.T. Lo, et al., “A New Mixed-Mode Sustain Method to Improve the Luminous Efficiency of Alternating Current Plasma Display Panels” IEEE Trans. Electron Devices, 49 762(2002). 18. K. Yamamoto, et al., “An Address-Voltage-Modulation Drive for High-Luminous Efficiency” SID’02 Digest, 856, 2002. 19. J. C. Ahn et al., “Effects of pulsed potential on address electrode in a surface-discharge alternating-current plasma display panel” Appl. Phys. Lett., 82, 3844 (2003). 20. C. DeCusatis. “Handbook of Applied Photometry” Springer (1998).id NH0925593008 sid 913102 cfn 0 / id NH0925593009 auc 黃証堅 tic 乙醇-二氧化碳於非均勻截面積微流道之雙相流及其在微型DMFC應用的探討 adc 潘欽 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 126 kwc 雙相流 kwc 非均勻截面積微流道 abc 微流道氣-液雙相流的現象探討是極有趣且深奧的課題,不僅可建立微小尺度下雙相流物理機制資料之外,也可以提供微電子散熱系統、微熱交換器設計等重要參考依據。且最近引人注目微型燃料電池,其陰極、陽極流道中雙相流現象亦是研究要项之一。 rf 參考文獻 1. 郭品璽,“新世代能源技術-燃料電池”,化工技術,第十卷第六期,pp.121~131,(2002) 2. 林有銘,“氫氣燃料電池技術”,化工技術,第七卷,第十期,pp.164~171,(1999) 3. .A. Kawahara , M. Sadatomi ,K. Okayama ,M. Kawaji,2003“Effect of Liquid properties on pressure drop of Two-Phase Gas-Liquid flow Through a Microchannel ”, First International Conference on Microchannels and Minichannels, pp.479~486 4. M. Kawaji, P.M.-Y.Chang, 2003“Unique characteristics of adabatic Gas-Liquid Flow in Microchannel Diameter and Shape effects on Flow patterns”, First International Conference on Microchannels and Minichannels, pp.115~227 5. A. Kawahara , P.M-Y. Chung , M. Kawaji , 2002,“Investigation of two phase flow pattern void fraction and pressure drop in a Microchannel”,International Journal of Multiphase Flow, Vol. 28 , pp.1411-1435 6. Akimi Serizawa ,Ziping Feng ,Zensaku Kawara, 2002,“Two-phase flow in microchannel”,Experimental Thermal and Fluid Science ,Vol. 26, pp.703-714 7. T.S Zhao , Q.C. Bi , 2001,“Pressure drop characteristics of gas-liquid two- phase flow in vertical miniature triangular channels ”,International Journal of Heat and Mass Transfer ,Vol.44 pp.2523-2534 8. T.S Zhao , Q.C. Bi , 2001, “Co-current air-water Two-phase flow patterns in vertical triangular Microchannels”, International Journal of Multiphase Flow ,Vol.27, pp.765-782 9. K.A. Triplett , S.M. Ghiaasiaan , S.I. Abdel-Khalik , D.L. Sadowski,1999,“Gas-liquid two-phase flow in microchannels ,PartⅠ:two-phase flow patterns”,International Journal of Multiphase Flow, Vol. 25,377-394 10. K.A. Triplett , S.M. Ghiaasiaan , S.I. Abdel-Khalik , D.L. Sadowski,1999,“Gas-liquid two-phase flow in microchannels ,PartⅡ:void fraction and pressure drop”,International Journal of Multiphase Flow, Vol. 25 , 395-410 11. K.Mishima, T. Hibiki , 1996, “Some charactistics of air-water two–phase flow in small diameter vertical tubes ”, International Journal of Multiphase Flow, Vol. 22, No.4,pp.703~712 12. Han Ju Lee , Sang Yong Lee,2001,“Pressure drop correlations for two-phase flow within horizontal rectangular channels with small heights”, International Journal of Multiphase Flow, Vol. 27 ,pp.783~796 13. Guoqiang Lu and C. Y. Wang ,2003 “Two-Phase Microfluidic Visualization in a Direct Methanol Fuel Cell ”, The Electrochemical Society, Inc 14. K. Soctt, W.M. Taama, P. Argyropulos , 1998“Material aspects of liquid feed direct methanol fuel cells”, Journal of Applied Electrochemistry ,Vol.28 , pp.1389~1397 15. P. Argyropulos ,K. Soctt ,W.M. Taama, 1999,“Carbon dioxide evolution patterns in direct methanol fuel cells”,Electrochimica Acta ,Vol.44 , pp.3575~3584 16. P. Argyropulos ,K. Soctt ,W.M. Taama, 1999,“Gas evolution and power performance in direct methanol fuel cells”, Journal of Applied Electrochemistry ,Vol.29 , pp.661~669 17. K. Soctt, P. Argyropulos ,P.Yiannopoukos, W.M. Taama, 2001 “Electrochemical and gas evolution characteristics of direct methanol fuel cells with stainless steel mesh flow beds ”,Journal of Applied Electrochemistry ,Vol.31 , pp.823~832 18. K. Soctt, W.M. Taama , 1998“Performance of a direct methanol fuel cell”, Journal of Applied Electrochemistry ,Vol.28 , pp.289~297 19. K. Soctt, P. Argyropulos ,P.Yiannopoukos,1999,“A model for the liquid feed direct methanol fuel cell ”, Journal of Applied Electroanalytical Chemistry ,477 , pp.97~110 20. W.L Chen , M.C. Twu, C. Pan ,2002,“Gas-liquid two-phase flow in micro-channels”,International Journal of Multiphase Flow ,28, pp.1235~1247 21. Man Lee, Yiu Yan Wong ,Man Wong and Yitshak Zohar,2003“ Size and shape effects on two-phase flow patterns in microchannel forced convection boiling”,Journal of Micromechanic and Microengineering , 13, pp.155~164 22. Shikida, Mituhiro ,Sato ,Kazuo ,Tokoro, Kenji and Uchikawa , Daisuke, 2000“Differences in anisotropic etching properties of KOH and TMAH solution”,Sensors and Actuators, Vol.80 ,pp.179~188 23. C-H Lin ,G-B Lee ,B-W Chang ,G-L Chang ,2002,“A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist ”, Journal of Micromechanic and Microengineering , 12, pp.590~597 24. Sheng Li, Carl B Freidhoff , Robert M Young and Reza Ghodssi1, 2003, “Fabrication of micronozzles using low-temperature wafer-level bonding with SU-8” , Journal of Micromechanic and Microengineering , 13, pp.732~738 25. Marc J. Madou , Fundamentals of MICROFABRICATION : the science of miniaturization , Second Edition , (2002) 26. WWW Website:http://www.microchem.com 27. G. Q.Lua ,C.Y. Wang, T.J. Yen, X. Zhang ,2004“Development and characterization of a silicon-based micro direct methanol fuel cell”, Electrochimica Acta , 49, pp821~828 28. 潘欽,“沸騰熱傳與雙相流” ,國立編譯管館,台灣,2001id NH0925593009 sid 913106 cfn 0 / id NH0925593010 auc 張宜翔 tic 直接甲醇燃料電池理論模式的建立與特性模擬研究 adc 蔡春鴻 博士 adc 葉宗洸 博士 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 79 kwc 直接甲醇燃料電池 kwc 模擬 kwc 電化學 abc 本研究利用電腦程式,根據電池陽極與陰極觸煤層所發生的電池電化學反應、反應物在電池內各部分的質量輸送機制以及電池阻抗等理論基礎,建立了液體式直接甲醇燃料電池(liquid-feed DMFC)的一維理論模型。 除了燃料電池陽極部分的甲醇質量輸送與電化學反應分析之外,本研究進一步討論了在DMFC陽極未完全反應的甲醇經質子交換膜穿透至陰極過程中所發生的質量輸送與電化學反應現象。本研究使用標準四階倫吉-庫塔法(classical Runge-Kutta method of order 4)等數值分析方法來求解DMFC的模型方程式。 tc 主目錄 圖目錄 表目錄 第一章 緒論.............................................1 第二章 文獻回顧.........................................6 2.1 直接甲醇燃料電池的工作原理............................6 2.2 直接甲醇燃料電池模型的發展............................8 2.3 中英文名詞╱數學代號對照.............................11 第三章 理論分析與模型建立..............................14 3.1 緒論.................................................14 3.2 電池各分區的理論分析.................................16 3.2.1 甲醇在陽極燃料流道的輸送.........................16 3.2.2 陽極擴散層.......................................16 3.2.3 陽極觸媒層.......................................18 3.2.4 質子交換膜.......................................21 3.2.5 陰極觸媒層.......................................22 3.2.6 陰極擴散層.......................................23 3.3 電池電位特性分析.....................................25 3.4 求解過程與數值方法...................................27 3.4.1 DMFC陽極部分.....................................27 3.4.2 DMFC陰極部分.....................................28 3.4.3 數值方法.........................................29 第四章 結果與討論......................................36 4.1 DMFC程式模擬結果.....................................36 4.2 DMFC I-V曲線量測實驗與模擬結果對照...................44 4.2.1 DMFC I-V曲線量測實驗.............................44 4.2.2 I-V曲線實驗與模擬數據的對照......................46 4.3 各參數對甲醇在DMFC內濃度分佈的影響...................48 4.3.1本節討論所改變之參數..............................48 4.3.2 各參數對DMFC內部甲醇濃度分佈影響的討論與比較.....52 4.4 各參數對甲醇穿透情形的影響...........................54 4.4.1本節討論所改變之參數..............................54 4.4.2 各參數對甲醇穿透情形影響的討論與比較.............59 4.5 各參數對DMFC I-V曲線的影響...........................63 4.5.1本節討論所改變之參數..............................63 4.5.2 各參數對I-V曲線與功率之影響的討論與比較..........68 第五章 結論............................................74 第六章 未來研究工作與展望..............................76 參考文獻.................................................77rf [1 ] 電池資訊網, http://vr.theatre.ntu.edu.tw/battery/ [2 ] James Larminie, Andrew Dicks, Fuel Cell Systems Explained 2nd (2003), Wiley. [3 ] M.K. Ravikumar, A.K. Shukla, J. Electrochem. Soc. 143 (1996) 2601. [4 ] K. Scott, W.M. Taama, P. Argyropoulos, J. Appl. Electrochem. 28 (1998) 1389. [5 ] G.L. Troughton, A. Hamnett, Bull. Electrochem. 7 (1991) 488. [6 ] J.S. Wainwright, J.T. Weng, R.F. Savinell, M. Litt, J. Electrochem. Soc. 142 (1995) L121. [7 ] K. Sundmacher, K. Scott, Chemical Engineering Science 54 (1999) 2927. [8 ] M.W. Verbrugge, J. Electrochem. Soc. 136 (1989) 417. [9 ] J. Cruickshank, K. Scott, J. Power Sources 70 (1998) 40. [10 ] X. Ren, W. Handerson, S. Gottesfeld, J. Electrochem. Soc. 144 (9) (1997) L267. [11 ] S.F. Baxter, V.S. Battaglia, R.E. White, J. Electrochem. Soc. 146 (2) (1999) 437. [12 ] K. Scott, P. Argyropoulos, K. Sundmacher, J. Electroanal. Chem. 447 (1999) 97. [13 ] K.T. Jeng, C.W. Chen, J. Power Sources 112 (2002) 367. [14 ] M.G. Fouad, G.H. Sedahmed, Electrochim. Acta 17 (1972) 665. [15 ] J.J. Baschuk, X. Li, J. Power Sources 86 (2000) 181. [16 ] Jiri Koryta, Jiri Dvorak, Ladislav Kavan, "Principles of electrochemistry 2nd ed.", Wiley, England, 1987. [17 ] Philip H. Rieger, "Electrochemistry 2nd ed.", Chapman & Hall, New York, 1993. [18 ] 胡啟章, "電化學原理與方法", 五南圖書出版, 台北, 2002. [19 ] J.D. Faires, R. Burden, Numerical Methods, Brooks/Cole, Pacific Grove, California, 1998. [20 ] 陳祥明, "數值分析", 中央圖書出版社, 台北, 2000. [21 ] K. Scott, W. Taama, J. Cruickshank, J. Power Sources 65 (1997) 159. [22 ] A. Parthasarathy, S. Srinivasan, A.J. Appleby, J. Electrochem. Soc., 139 (1992), 2530. [23 ] S. Hikita, K. Yamane, Y. Nakajima, JSAE Review 22 (2001) 151. [24 ] T. A. Zawodzinski, M. Neeman, L. D. Sillerud, S. Gottesfeld, J. Phys. Chem. 95 (1991) 6040. [25 ] Fuel cell store,http://www.fuelcellstore.com [26 ] H. Dohle, J. Divisek, R. Jung, J. Power Sources 86 (2000) 469.id NH0925593010 sid 913110 cfn 0 / id NH0925593011 auc 歐陽汎怡 tic 非平衡磁控濺鍍製程中鍍膜厚度和鈦介層厚度對奈米晶氮化鈦薄膜之結構與性質之影響研究 adc 黃嘉宏 adc 喻冀平 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 英文 pg 101 kwc 氮化鈦 kwc 鍍膜厚度 kwc 鈦介層 kwc 非平衡磁控濺鍍 kwc 奈米晶 abc 本論文目的在研究非平衡磁控濺鍍系統中,鍍膜厚度和鈦介層厚度對於奈米晶氮化鈦薄膜成分、結構、機械性質與腐蝕抗性的影響。奈米晶氮化鈦薄膜分別鍍著於單晶矽晶片與AISI D2鋼上。結果顯示,不論基材為矽晶片或是D2鋼,氮化鈦薄膜都呈現 (111) 的優選方向,跟鍍膜厚度並無明顯關係。鍍膜厚度對於氮化鈦薄膜的氮鈦比例、表面粗糙度與晶粒大小也只有輕微的關係。薄膜堆積因子則是隨著鍍膜厚度變化而幾乎維持固定,其中最薄的試片的堆積因子已高達0.8。奈米硬度儀的實驗結果顯示氮化鈦薄膜硬度分布從22GPa至29GPa並指出薄膜硬度跟薄膜織構與鍍膜厚度並無相關性。氮化鈦薄膜呈現壓縮的殘留應力,並且在基材為D2鋼時,殘留應力隨著鍍膜厚度增加而下降。從殘留應力而來的介面剪應力隨著鍍膜厚度增加而增加,然而殘留應力未必隨著鍍膜厚度增加而上升。在氮化鈦/鈦之雙層鍍膜中,有一個臨界鈦介層厚度可有效的降低氮化鈦薄膜熱應力和殘留應力。在硫酸與鹽水的動態極化掃描結果指出堆積因子對於防蝕效果比鍍膜厚度有效。此外,如果薄膜堆積因子夠高,增加鍍膜厚度或是加入一個鈦介層皆可以保護基材,避免腐蝕。 rf Reference 1. W.-J. Chou, “Processing and Properties of Metal Nitride Thin Films Deposited by PVD Methods”, PH.D. Thesis, National Tsing Hua University, Hsinchu, Taiwan (2003) 2. K.-W. Lau, “Effect of Nitrogen Flow Rate on the Structure and Properties of Nanocrystalline TiN film Deposite by Unbalanced Magnetron sputtering”, Master Thesis, National Tsing Hua University, Hsinchu, Taiwan (2002). 3. Rossnagel SM., “Sputter Deposition.”, “Opportunities for Innovation: Advanced Surface Engineering,” Sproul WD, Legg LO Switzerland, Technoic Publishing Co. (1995). 4. M. Ohring, “The Material Science of Thin Films”, Academic Press, San Diego (1992), p.111. 5. P.S. McLeod, L.D. Hartsough, J. Vac. Sci. Technol. A, 14(1) (1997) 263 6. R.K. Waits, J. Vac. Sci. Technol., 15(2) (1978) 179 7. B. Window, N. Savvides, J. Vac. Sci. Technol. A, 4(2) (1986) 196 8. B. Window, N. Savvides, J. Vac. Sci. Technol. A, 4(2) (1986) 453 9. N. Savvides, B. Window, J. Vac. Sci. Technol A, 4(2) (1986) 504 10. P.J. Kelly, R.D. Arnell, Vacuum, 56 (2000) 159. 11. R.P. Howson, H.A. Ha’afer, A.G. Spencer, Thin Solid Films, 193-194 (1990) 127. 12. W.D. Sproul, Vacuum, 51(4) (1998) 641. 13. H. Ljungcrantz, M. Oden, L. Hultman, J.E. Greene, J.E. Sundgren, J. Appl. Phys., 80 (1996) 6725 14. J. Stimmel, J. Vac. Sci. Technol. B, 4(6) (1986) 1377 15. Li-Jian Meng, M.P. dos Santos, Surf. Coat. Technol., 90 (1997) 64. 16. S. Logothetidis, I. Alexandrou, S. Kokkou, Surf. Coat. Technol., 80 (1996) 66. 17. Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol., 149 (2002) 7. 18. Wuu-Ling Pan, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol., 110 (1998) 111. 19. S. Groudeva-Zotova, R. Kaltofen, T. Sebald, Surf. Coat. Technol., 127 (2000) 144. 20. J. Ljungcrantz, M. Oden, L. Hultman, J.E. Greene, J.-E. Sundgren, J. Appl. Phys., 80 (1996) 6725. 21. U. C. Oh, J. H. Je, and J.Y. Lee, J. Mater. Res., 13 (1998) 1225. 22. D. S. Rickerby, A. M. Jones, and B. A. Bellamy, Surf. Coat. Technol., 37 (1989) 4375. 23. U. C. Oh, J. H. Je, J. Appl. Phys., 74 (1993) 1692. 24. N. Schell, W. Matz, J. Bottiger, J. Chevallier, and P. Kringhoj, J. Appl. Phys., 91 (2002) 2037. 25. U. C. Oh, J. H. Je, and J.Y. Lee, J. Mater. Res., 10 (1995) 634. 26. U. C. Oh, J. H. Je, and J.Y. Lee, J. Mater. Res., 10 (1998) 634. 27. Joshua Pelleg, L.Z. Zevin, S. Lungo, Thin Solid Films, 197 (1991) 117. 28. J. H. Je, D.Y. Noh, H.K. Kim, K.S. Liang, J. Appl. Phys., 81(9) (1997) 6126. 29. J. E. Greene, J.-E. Sundgren, L. Hultman, I. Petrov, and D.B. Bergstrom, Appl. Phys. Lett., 67 (1995) 2928. 30. L. Hultman, J.-E. Sundgren, J. E. Greene, D.B. Bergstrom, and I. Petrov, J. Appl. Phys., 78 (1998) 5395. 31. M. J. Williamson, D.N. Dunn, R. Hull, S. Kodambaka, I. Petrov and J. E. Greene, Appl. Phys. Lett., 78 (2001) 2223. 32. T. Q. Li, S.Noda, H. Komiyama, T. Yamamoto, and Y. Ikuhara, J. Vac. Sci. Technol. A, 21 (2003) 1717. 33. T. Q. Li, S.Noda, Y. Tsuji, T. Ohsawa, and H. Komiyama, J. Vac. Sci. Technol. A 20, (2002) 583. 34. J. M. E. Harper, J.J. Cuomo, R. J. Gambino, H. E. Kaufman, “Ion Bombardment Modification of Surfaces: Fundamentals and Applications”, Elsevier Science, Amsterdam (1984), Ch.4. 35. M. Zeitler, J.W. Gerlach, T. Kraus, B. Rauschenbach, Appl. Phys. Lett., 70 (10) (1997) 1254. 36. K. Min, S. Hofmann, R. Schimizu, Thin Solid Films, 295 (1997) 1. 37. Y. M. Chen, G.P. Yu, J.H. Huang, Surf. Coat. Technol., 141 (2001) 156. 38. Y. Kajikawa, S. Noda, H. Komiyama, J. Vac. Sci. Technol. A, 21(6) (2003) 1943. 39. H. Oettel, R. Wiedemann, S. PreiBler, Surf. Coat. Technol., 74-75 (1995) 273. 40. E. Törok, A.J. Perry, L. Chollet, W.D. Sproul, Thin Solid Films, 153 (1987) 37. 41. V. Valvoda, R. Kuzel. Jr., R. Cerny, D. Rafaja, J. Musil. C. Kadlec, A. J. Perry, Thin Solid Films, 193-194 (1990) 401. 42. Society for Automotive Engineering, “Residual Stress Measurement by X-ray Diffraction”, SAE J748a, 2nd Ed. (1971). 43. I. C. Noyan, J. B. Cohen, “Residual Stress, Measurement by Diffraction and Interpretation”, Springer-Verlag, New York (1987). 44. R. Feder, B.S. Berry, J. Appl. Crystallogr., 3 (1970) 372. 45. E.I. Hasse, Thin Solid Films, 124 (1985) 283. 46. H. Uchida, T. Kiguchi, A. Saiki, N. Wakiya, N. Ishizawa, K. Shinozaki, N. Mizutani, J. Ceram. Soc. Jpn., 107 (7) (1999) 606. 47. C.H. Ma, J.H. Huang, Haydn Chen, Thin Solid Films, 418 (2002) 73. 48. F.S. Shieu, L.H. Cheng, M.H. Shiao, S.H. Lin, Thin Solid Films, 311 (1997) 138. 49. M. Leoni, P. Scardi, S. Rossi, L. Fedrizzi, Y. Massiani, Thin Solid Films, 345 (1999) 263. 50. J.-H. Huang, Y.-P. Tsai, G.-P. Yu, Thin Solid Films, 355-356 (1999) 440. 51. V. Valvoda, R. Kuzel. Jr., R. Cerny, J. Musil, Thin Solid Films, 156 (1988) 53. 52. J.Y. Chen, G.P. Yu, J.H. Huang, Mater. Chem. Phys., 65 (2000) 310. 53. B.F. Chen, W.L. Pan, G.P. Yu, J. Hwang, J.H. Huang, Surf. Coat. Technol., 111 (1999) 16. 54. L. Hultman, S.A. Barnett, J.E. Sundgren, J.E. Greene, J. Cryst. Growth, 92 (1988) 639. 55. F.S. Shieu, Y.C. Sung, L.H. Cheng, J.h. Huang, G.P. Yu, Corros. Sci., 39 (1997) 893. 56. L. van Leaven, M.N. Alias, R. Brown, Surf. Coat. Technol., 53 (1992) 25. 57. K. Takizawa, M. Fukushima, K. KuroKawa, H. Okada and H. Imai, Hyomen Gijutsu, 42 (1991) 1152. 58. M. J. Pryor, L.L. Shreir, “Corrsion 1”, Nwenes-Butterworths, 2nd Ed. (1976), p. 1192 59. L. L. Shrier, L.L. Shreir, “Corrsion 1”, Nwenes-Butterworths, 2nd Ed. (1976), p. 1150 60. Hitoshi Uchida, Shozo Inoue, Keiji Koterazawa, Mater. Sci. Eng. A, 234-236 (1997) 649. 61. T. Okamoto, M. Fushima, K. Takizawa, Corros. Eng., 45 (1996) 425. 62. T. Kado, R. Makabe, S.Mochizuki, S. Nakajima and M. Araki, Boshoku Gijutsu (Corrosion Engineering), 36 (1987) 551. 63. T.A. Mantyla, P.J. Helevirta, T.T. Lepisto, P.T. Bonora, Thin Solid Films, 126 (1985) 275. 64. A. Erdedemir, W.B. Carter, R.F. Hochman, E.I. Meletis, Mater. Sci. Eng., 69 (1985) 89. 65. A. Telama, T. Mantyla, P. Kettunen, J. Vac. Sci. Technol. A, 4(6) (1986) 2911. 66. M. Tavi, J. Aromaa, O. Forsen, S. Ylasaari, “Porceedings of 12th World Congress on Surface Finishing”, AITE, France (1988), p. 955. 67. K. Fukutomi and M. Okada, Kinzoku Htomen Gijutsu, 35 (1984) 45 68. W. J. Chou, G.P. Yu, J.H. Huang, Corros. Sci., 43 (2001) 2023. 69. C. H. Ho, “Effect of Nitrogen Flow Rate on the Structure and Properties of Nanocrystalline ZrN Thin Film deposited by HCD Ion Plating”, Master Thesis, National Tsing Hua University, Hsinchu, Taiwan (2003). 70. M. Lakatos-Varsanyi, Darko Hanzel, Corrs. Sci., 41 (1999) 1585. 71. S. Rossi, L. Fedrizzi, M. Leoni, P. Scardi, Y. Massiani, Thin Solid Flms, 350 (1999) 161. 72. R. Hubler, A. Schroer, W. Ensinger, G.K. Wolf, F. C. Steadile, W. H. Schreiner, I. J. R. Baumvol, J. Vac. Sci. Technol. A, 11 (1993) 451. 73. P. Bhardwaj, O. J. Gregory, L. Bragga, M. H. Richman, Appl. Surf. Sci., 48-49 (1991) 555. 74. Y. Massiani, P. Gravier, L. Fedrizzi, S. Rossi, in: L. Fedrizzi, P.L. Bonora (Eds.), “Organic and Inorganic Coatings for Corrosion Prevention: Research and Experience”, The Institute of Materials, London (1997), p.291. 75. M. Herranen, U, Wiklund, J.-O. Carlsson, S. Hogmark, Surf. Coat. Technol., 99 (1998) 191. 76. R. Hubler, A. Schroer, W. Ensinger, G.K. Wolf, W. H. Schreiner, I. J. R. Baumvol, Surf. Coat. Technol., 60 (1993) 561. 77. M. Flores, O. Blanco, S. Muhl, C. Pina, J. Heiras, Surf. Coat. Technol., 108-109 (1998) 449. 78. J.F. Macro, A.C. Agudelo, J. R. Gancedo, D. Hanzel, Surf. Interface Anal., 27 (1999) 71. 79. M. J. Park, A. Leyland, A. Matthews, Surf. Coat. Technol., 43-44 (1990) 481. 80. P. Scherrer, Gött. Nachr, 2 (1918) 98. 81. Leonid V. Azaroff and Martin J. Buerger, “The Powder Method in X-Ray Crystallography”, McGraw-Hill, New York (1958), p.233 82. K. Tanaka, H. Yanashima, T. Yako, K. Kamio, K. Sugai, S. Kishida, Appl. Surf. Sci., 171 (2001) 71. 83. “Metals Handbook 9th Ed.”, Vol. 13, ASM INTERNATIONAL, Metals Park, OH, (1988), p.212. 84. “ASTM standards”, Section 3, B117 (1996), p.4. 85. Y.-W. Lin ”Effect of Substrate Bias on the Structure and Properties of Nanocrystalline ZrN Thin Film Deposited by Unbalanced Magnetron (UBM) Sputtering” Master Thesis, National Tsing Hua University, Hsinchu, Taiwan (2003) 86. McLeod PS, Hartsough LD, J. Vac. Sci. Technol., 14(1) (1977) 263. 87. J.O. Kim, J.D. Shinn, P.B. Mirkarimi, S.A. Barnett, J. Cryst. Growth 135, (1994) 309. 88. I. Bertoti, M. Mohai, J.L. Sullivan, S.O. Saied, Appl. Surf. Sci., 84 (1995) 357. 89. R.D. Arnell, J.S. Colligon, K.F. Minnebaev and V.E. Yurasova, Vacuum, 47(5) (1996) 425. 90. J.-H. Huang, C.-Y. Hsu, S.-S. Chen, G.-P. Yu, Mater. Chem. Phys., 77 (2002) 14. 91. J.-H. Huang, C,-H. Lin, C.-H. Ma, Haydn Chen, Scripta. Mater., 42 (2000) 573. 92. M.Ohring, “The Material Science of Thin Films”, Academic Press, San Diego (1992), p.225. 93. J. D. Eshelby, F.C. Frank, F.R.N. Nabarro, Philos. Mag., 42 (1951) 351. 94. I.A. Ovid’ko, Science, 295 (2002) 2386. 95. J. Schiotz, Karsten W. Jacobsen, Science,301 (2003) 1357 96. P Jin, S Maruno, Jpn. J. Appl. Phys., 30 (1991) 1463. 97. L.B. Freund and S. Suresh, “Thin Film Materials: Stress, Defect Formation and Surface Evolution”, Cambridge UK (2003), p.258. 98. L.B. Freund and S. Suresh, “Thin Film Materials: Stress, Defect Formation and Surface Evolution”, Cambridge UK (2003), p.254. 99. T. Nakano, s. Baba, A. Lobayashi, A. Kinbara, T. Kajiwara, K. Watanabe, J. Vac. Sci. Technol. A, 9 (1991) 2431. 100. N.J.M. Carvalho, E. Zoestbergen, B.J. Kooi, J.Th.M. De Hosson, Thin Solid Films, 429 (2003) 179. 101. http://www.webelements.com/webelements/elements/text/Si/phys.html 102. H.-C. Yang, “Effect of Film thickness on the Structure and Properties of Nanocrystalline ZrN Thin Film Deposited by Ion Plating” Master Thesis, National Tsing Hua University, Hsinchu, Taiwan (2003)id NH0925593011 sid 913111 cfn 0 / id NH0925593012 auc 陳亞萍 tic 高頻微機械共振器之設計與模擬 adc 柳克強 博士 adc 曾繁根 博士 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 116 kwc 微機械共振器 kwc 高頻 abc 本論文所設計之高頻微機械式共振器主要應用於通訊上,設計目標希望超過1GHz的頻率屏障、縮小尺寸、高的quality factor Q、很小的DC損耗以及和CMOS IC製程整合。這種高頻的微機械式共振器未來希望能用來取代傳統收發器上的濾波器和震盪器。 rf [1 ] Nathanson, H. C., et al., “The Resonant Gate Transistor,” IEEE Trans. on Electron Dev., Vol. 14, 1967, pp117-133. [2 ] Putty, M. W., et al., “One-Port Active Polysilicon Resonant Microstructures,” IEEE Micro Electro Mechanical Systems Workshop,” Salt Lake City, 1989, pp. 60-65. [3 ] Wan-Thai Hsu, et al., “A Sub-Mcron Capacitive Gap Process For Multiple-Metal-Electrode Lateral Micromechanical Resonators,” IEEE, 2001. [4 ] Kun Wang, et al., “VHF Free-Free Beam High-Q Micromechanical Resonators,” IEEE Journal Of MicroElectroMechanical Systems., Vol. 9, No. 3, September 2000. [5 ] C.T.-C., et al., “CMOS Micromechanical Resonator Oscillator,” Technical Digest, IEEE International Electron Device Meeting, Washington, D.C., December 5-8, 1993, pp. 199-202. [6 ] Tang, W. C., et al., “Laterally Driven Polysilicon Resonant Microstructures,” IEEE Micro Electro Mechanical Systems Workshop, Salt Lake City, 1989, pp. 53-59. [7 ] F.D. Bannon III and C.T.-C. Nguyen, "High Frequency Microelectromechanical IF Filters," Technical Digest, 1996 IEEE Electron Devices Meeting, San Francisco, CA, pp.773-776, Dec. 8-11, 1996. [8 ] J.R. Clark, W.-T. Hsu, and C.T.-C. Nguyen, "High-Q VHF Micromechanical Contour-mode Disk Resonator," Technical Digest, IEEE Int. Electron Devices Meeting, San Francisco, California, Dec.11-13, pp.493-496, 2000. [9 ] Ki Bang Lee, et al., “Design And Fabrication Of An Annular High Frequency Resonator,” 2002 ASME International Mechanical Engineering Congress & Exposition, New Orleans, Louisiana, November 17-22, 2002. [10 ] C. T.-C. Nguyen, “Vibrating RF MEMS for Low Power Communications,” MRS Meeting, Boston, MA, Dec. 2-6, 2002. [11 ] C. T.-C. Nguyen, Dig. of Papers, Topical Mtg on Silicon Monolithic IC’s in RF Systems, Sept. 12-14, 2001, pp. 23-32. [12 ] Héctor J. De Los Santos, “Introduction To Microelectromechanical(MEM) Microwave Systems.” 1999, pp. 83-84. [13 ] Nguyen, C. T.-C., and R. Howe, “Design And Performance Of CMOS Micromechanical Resonator Oscillators.” IEEE Int. Freq. Control Symp., 1994, pp. 127-134. [14 ] Nguyen, C. T.-C., “Micromechanical Signal Processors,” Ph.D. diss., UC Berkeley, 1994. [15 ] Sniegowsji, J. J., et al., “Microfabricated Actuators And Their Application To Optics,” Proc. SPIE – Int. Soc. Opt. Eng. (USA) San Jose, CA, February 7-9, 1995, Vol. 2383, pp. 46-64. [16 ] Tang, W, C., T.-C. Nguyen, and R. T. Howe, “Laterally Driven Polysilicon Resonant Microstructures,” IEEE Micro Electro Mechanical Systems Workshop, Salt Lake Coty, 1989, pp. 53-59. [17 ] 賴育良, “ANSYS 電腦輔助工程分析,” 1997. [18 ] 康淵, “ANSYS 入門,” 1992. [19 ] “Nanodevice Motion At Microwave frequencies,” Nanoelectromechanical Systems, Nature Journal, January 30, 2003. [20 ] John R. Clark, et al., “High-Q VHF Micromechanical Contour-Mode Disk Resonators,” IEEE Int. Electron Devices Meeting, San Francisco, California, Dec. 11-13, 2000, pp. 493-496. [21 ] Robert D. Blevins, “Formulas For Natural Frequency And Mode Shape,” 1995. [22 ] http://www.memsnet.org/ [23 ] Kun Wang, et al., “VHF Free-Free Beam High-Q Micromechanical Resonators,” IEEE Journal Of Microelectromechanical Systems, Vol 9, No. 3, September 2000. [24 ] Jing Wang, et al., “Self-Aligned 1.14-GHz Vibrating Radial-Mode Disk Resonators,” IEEE Transducers, Boston, June 8-12, 2003. [25 ] Mohamed A. Abdelmoneum, et al., “Stemless Wine-Glass-Mode Disk Micromechanical Resonators,” IEEE Micro Electro Mechanical Systems, 2003. [26 ] M. Roukes, Hilton Head’2000, pp. 367-376. [27 ] K. Wang, et al., MEMS ’99, pp. 453-458. [28 ] C. T.-C. Nguyen, “Microelectromechanical devices for wireless communications (invited),” Proceedings, 1998 IEEE International Micro Electro Mechanical Systems Workshop, Heidelberg, Germany, Jan. 25-29, 1998, pp. 1-7. [29 ] C. T.-C. Nguyen and R. T. Howe, “CMOS micromechanical resonator oscillator,” Technical Digest, IEEE International Electron Devices Meeting, Washington, D. C., December 5-8, 1993, pp. 199-202. [30 ] Rob N. Candler, “Investigation of energy loss mechanisms in micromechanical resonators”, IEEE Transducers’03, Boston, June 8-12, 2003, pp. 332-335. [31 ] Reza Abdolvand, “Thermoelastic damping in trench-refilled polysilicon resonators”, IEEE Transducers’03, Boston, June 8-12, 2003, pp. 324-327. [32 ] Clarence Zener, “Internal friction in solids II. General theory of thermoelastic internal friction”, Physical Review, January 1, 1938, pp. 90-99. [33 ] Terry V. Roszhart, “The effect of thermoelastic internal friction on the Q of micromachined silicon resonators”, IEEE Hilton Head, 1990, pp. 13-16. [34 ] Clarence Zener, “Internal friction in solids I. Theory of internal friction in reeds”, Physical Review, August 1, 1937, pp. 230-235. [35 ] P. Mohanty, “Intrinsic dissipation in high-frequency micromechanical resonators”, Physical Review B 66, 085416, 2002. [36 ] Kenji Numata, “Measurement of the intrinsic losses in various kinds of fused silica”, The 2nd TAMA Symposium, February 6, 2002. [37 ] Zhan-chun Tu, “Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number”, Physical Review B, Volume 65, 233407, 2002. [38 ] Daniel Sanchez-Portal, “Ab initio structural, elastic, and vibrational properties of carbon nanotubes”, Physical Review B, Volume 59, Number 19, 15 May, 1999, pp. 678-687. [39 ] Gregory Van Lier, “Ab initio study of the elastic properties of single-walled carbon nanotubes and grephene”, Elsevier, Chemical physics letters 326 (2000) pp.181-185. [40 ] Clark T.-C. Nguyen, “An integrated CMOS micromechanical resonator high-Q oscillator”, IEEE Journal of Solid-State Circuits, Vol. 34, No. 40, April, 1999. [41 ] Seong Yoel No, “Single-crystal silicon HARPSS capacitive resonators with submicron gap-spacing”, Solid-State Sensor, Actuator and Microsystems Workshop Hilton Head Island, South Carolina, June 2-6, 2002. [42 ] C. T.-C. Nguyen, “Micromechanical resonators for oscillators and filters,” Proceedings of the 1995 IEEE International Ultrasonics Symposium, Seattle, WA, pp. 489-499, Nov. 7-10, 1995. [43 ] R.E. Mihailovich, “Dissipation measurements of vacuum-operated single-crystal silicon microresonators”, Sensors and Actuators A 50 (1995) 199-207. [44 ] Kevin Y. Yasumura, “Quality factor in micron- and submicron-thick cantilevers”, JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 9, NO. 1, MARCH 2000. [45 ] Ron Lifshitz and M. L. Roukes, “Thermoelastic damping in micro- and nanomechanical systems”, Physical Review B, Volume 61, Number 8, 15 February, 2000. [46 ] A. B. Hutchinson, “Dissipation in nanocrystalline-diamond nanomechanical resonators”, APPLIED PHYSICS LETTERS, VOLUME 84, NUMBER 6, 9 FEBRUARY, 2004. [47 ] G. Oveney, “Structual rigidity and low frequency vibrational modes of long carbon nanotubes”, Z. Phys. D 27, 93-96, 1993. [48 ] Dong Qian, “Mechanics of carbon nanotubes”, Appl Mech Rev Vol 55, no 6, November 2002. [49 ] Eric W. Wong, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes”, Science, Vol 277, 26 September, 1997. [50 ] M. S. Dresselhaus, “Carbon Nanotubes Synthesis, Structure, Properties, and Applications”. [51 ] M. M. J. Treacy, Ebbesen, T. W., J. M. Gibson, Nature 381, pp. 678, 1996. [52 ] E. W. Wong, P. E. Sheehan, C. M. Lieber, Science 277, pp. 1971, 1977. [53 ] P. Poncharral, Z. L. Wang, D. Ugarte, W. A. de Heer, Science 283, pp. 1513, 1999. [54 ] J. P. Savetat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, Phys. Rev. Lett. 82, pp. 944, 1999. [55 ] R. Al-Jishi, “Lattice dynamics of graphite intercalation compound”, PhD thesis, Massachusetts Institute of technology. [56 ] J. B. NELSON AND D. P. RILEY, “THE THERMAL EXPANSION OF GRAPHITE FROM 15"~. TO 800"c.: PART I. EXPERIMENTAL”, 23 March 1945. [57 ] Zhili Hao, ” An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations”, Sensors and Actuators A 109 (2003) 156–164. [58 ] J. Yang, T. Ono, M. Esashi, “Energy dissipation in submicrometer thick single-crystal silicon cantilevers”, J. Microelectromech. Syst. 11 (6) (2002) 775–783. [59 ] Jinling Yang, ” Energy Dissipation in Submicrometer Thick Single-Crystal Silicon Cantilevers”, JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 11, NO. 6, DECEMBER 2002 [60 ] 董建宏, “奈米碳管場發射二極元件之研製”, 2004. [61 ] B. Reulet et al., “Acoustoelectric Effects in Carbon Nanotubes,” Physical Review Letters 85: 2829-2832 (2000). [62 ] John F.Davis et al, “High-Q Mechanical Resonator Arrays Based on Carbon Nanotubes”, NASA, 2003id NH0925593012 sid 913112 cfn 0 / id NH0925593013 auc 何彥政 tic 交流電漿顯示器條紋現象中的非局部性 adc 柳克強 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 英文 pg 87 kwc 電漿顯示器 kwc 條紋現象 kwc 非局部性 abc 用一個放大尺度的電漿顯示器放電槽來研究市售電漿顯示器中的條紋現象(striation)。此放電槽根據乘倍定理(scaling law)以放大係數50倍放大。蜂巢型的放電槽則由兩個T型電極和一個不對稱的設置(位設置於陰極和楊極的中線上)於背板之定址電極所構成。利用超快速照相機擷取其放電的動態影像,顯示由於不對稱之電極配置造成的不對稱分布電場使得陽極上條紋現象更為不對稱的發展。改變驅動波型的脈衝寬度和維持電壓的大小來研究壁電荷累積效應對條紋現象發展的影響。在一些特定的參數值下,可以觀察到一些如條紋的擬干涉現象,條紋的分支現象等的有趣實驗結果。根據這些觀測到的數據,討論條紋現象的非局部特性。並利用留體模型模擬電漿顯示器的放電,以了解在陽極區域的放電狀態是否屬於非局部描述的範圍。我們也將討論電漿顯示器中條紋現象之生成機制源於電子運動之非局部特性的可能。而由該機制導出的許多重要特徵指出前一個脈衝放電的壁電荷累積分布對此一次放電中的條紋現象發展十分重要。以此觀之,我們可推論:施與電場一點非對稱的效應下,可簡單的以改變驅動波型的脈衝寬度和維持電壓大小而引發不同的放電”模式”。 tc 中文摘要 I Abstract II 致謝 IV Chapter 1. Introduction 1 Chapter 2. Introduction and recent development of striation theory in low temperature DC discharge. 3 Chapter 3. Discharge characteristic in AC-PDP. 7 3.1 Dielectric barrier discharge in glow discharge regime. 7 3.2 Wall charge in coplanar AC-PDP. 8 3.3 Reactions in the discharge of AC-PDP. 11 3.4 Discharge characteristic in a sustain pulse. 14 Chapter 4. Past investigation on striation in AC-PDP. 19 Chapter 5. Discharge condition analysis in AC-PDP. 31 5.1 The electron relaxation length. 32 5.2 Simulation study on the discharge condition. 35 5.3 The mechanism of striation formation in DC positive column. 40 5.4 Proposed striation formation mechanism in AC-PDP. 44 Chapter 6. Investigation method. 47 6.1 Introduction to setup and principle of experiment system and simulation tool.47 6.1.1 The macro-cell. 47 6.1.1.1 The similarity law. 47 6.1.1.2 Review of macro-cell experiment. 52 6.1.1.3 Consideration on dielectric and its width. 54 6.1.2 Intensified CCD camera image recording system. 55 6.1.3 Simulation: fluid model with energy equation. 57 6.2 experimental setup. 57 Chapter 7. Experimental results and discussion. 61 7.1 On the non-locality of electron kinetics of striation phenomenon. 61 7.1.1The normal development of striation phenomenon (2nd pulse). 61 7.1.2 The interference-like phenomenon(9th pulse). 63 7.1.2.1 Description of the phenomenon. 63 7.1.2.2 Fail to explain the phenomenon via “local” approach. 65 7.1.2.3 The non-locality of electron kinetics in striation. 67 7.1.3 “Branching” of striation development. 72 7.2 Other factors to affect the development of striation. 73 7.2.1 The effect of ion surface charge accumulated on anode in the previous pulse. 73 7.2.2 The electrode source from cathode region. 79 Chapter 8. Conclusion. 83 Reference. 85rf 1. J. P. Boeuf J. Phys. D: Appl. Phys. 36 (2003) R53–R79 2. G. Cho, E.-H. Choi, Y.-G. Kim, D.-I. Kim, H. S. Uhm, Y.-D. Joo, J.-G.Han, M.-C. Kim, and J.-D. Kim, J. Appl. Phys. 87, 4113 (2000). 3.Shon C H and Lee J K Phys. Plasmas 8 1070 (2001) 4. Yoshioka T, Tessier L, Okigawa A and Toki K J. SID 8 ,203 (2000) 5.Schroeder, H “History of electric light.” Smithsonian Institution, Harrison 6. Th. Callegari, R. Ganter, and J. P. Boeuf, J. Appl. Phys. 88, 3905 (2000) 7. Callegari T and Boeuf J P J. Appl. Phys. 91 992 (2002) 8. Callegari T and Boeuf J P J. Appl. Phys. 91 1000 (2002) 9. C. Punset, J.-P. Boeuf, and L. C. Pitchford, J. Appl. Phys. 83, 1884 (1998). 10. J. P. Boeuf, C. Punset, A. Hirech, and H. Doyeux, J. Phys. IV 7, CIV-3 (1997). 11. C. Punset, S. Cany, and J. P. Boeuf, J. Appl. Phys. 86, 124 (1999) 12. Yu. Raizer, Gas Discharge Physics Springer ~Verlag Berlin, (1991) 13. L. Pekarek, Sov. Phys. Usp. 11, 188 (1968) 14. L.J Denes, J.J. Lowke Appl. Phys. Lett. 23, 130 (1973) 15. G. Francis “The low glow discharge at low pressure”, in Encyclopedia of Physics, ed by s. Flugge, Handbunch der physic Bs XXII (Springer Berlin 1956), pp.52-208 16.A. Garscadden: “Ionization waves” in Gaseous Electronics I. Electrical discharges. Ed. By M.N. Hirsh, H.J. Oskam (1978) 17. P. S. Landa, N. A. Miskinova, and Yu. V. Ponomarev, Sov. Phys. Usp. 23, 813 (1980). 18. A. Garscadden Phys. Fluids. 12, 1833, (1969) 19.H. Derfler, in proceeding of the Fifth International Conference on Phenomena inIonized Gas 20. S.W. Rayment J. phys. D.: Appl. Phys. 7, 871, (1974) 21. Yu.B. Golubovskii, R.V. Kozakov, V.A. Maiorov, J. Behnke, and J.F. Behnke, Phys. Rev. E 62, 2707 (2000) 22. T. Ruzicka and K. Rohlena, Czech. J. Phys., Sect. B 22, 906 (1972) 23. T. Ruzicka and K. Rohlena, Czech. J. Phys., Sect. B 25, 660 (1975). 24.T. Ruzicka, K. Rohlena, and L. Pekarek, Phys. Lett. 40A, 3, 239 (1972). 25. H. Beuder and K. Muller, Z. Phys. 263, 299 (1973). 26. H. Lergon and K. Muller, Z. Phys. 268, 157 (1974) 27. L.D Tsedin Sov. J. Plasma Phys. 8, 228 (1982). 28. F. Sigeneger and R. Winkler, Contrib. Plasma Phys. 36, 551 (1996). 29.D Loffhagen and R Winkler J. Phys. D: Appl. Phys. 34 (2001) 1355–1366 30. Y. Ikeda, J. P. Verboncoeur, P. J. Christenson, and C. K. Birdsall J. Appl. Phys. 86, 2431 (1999) 31. J. Meunier, P. Belenguer, and J. P. Boeuf, "Numerical model of an ac plasma display panel cell in neon-xenon mixtures", J Appl Phys. Vol 78, p.731 (1995). 32. K. Hagiwara et al,. “Side-View Observations of IR Emission from Surface-discharge AC-PDP.” IDW ’99, pp.615~618. 33. L. F. Weber, “Status and Trends of Plasma Display Research.” EuroDisplay ’99, Berlin, Germany, September 1999(unpublished) (see http://www.plasmaco.com/LarryPaper/paper.html) 34 T. Yoshioka, A. Okigawa, L. Tessier, and K. Toki, Proceedings of the Sixth International Display Workshop ’99, Sendai, Japan, 1999 ~Society for Information Display, (1998), p. 603. 35. Yoshioka T, Tessier L, Okigawa A and Toki K J. SID 8 ,203 (2000) 36. Shon C H and Lee J K 2001 Phys. Plasmas 8 1070 (2001) 37 G. Cho, E.-H. Choi, Y.-G. Kim, D.-I. Kim, H. S. Uhm, Y.-D. Joo, J.-G.Han, M.-C. Kim, and J.-D. Kim, J. Appl. Phys. 87, 4113 (2000). 38. A.A.Kudryavtesv et al, “A Physic Model of the Short Glow Discharge in Plasma Display Panels”, Technical Physics Letters, vol.27, No.4, pp.284 (2001) 39.陳龍志 國立清華大學工程與系統科學研究所九十二年碩士論文,(2003) 40. Vladimir I. Kolobov, Valery A. Godyak IEEE Trans. Plasma Sci. 23 503, (1995) 41. D Loffhagen, R Winkler and Z. Donko Eur. Phys. J. AP 18 189 (2002) 42.張俊霖國立清華大學工程與系統科學研究所九十一年碩士論文,(2002) 43.F.Sigeneger and R. Winkler Plasma Chem. Plasma Process. 17 1, (1996) 44. F.Sigeneger and R. Winkler Plasma Chem. Plasma Process. 17 281, (1996) 45. http://www.siglo-kinema.com/bolsig.htmid NH0925593013 sid 913123 cfn 0 / id NH0925593014 auc 葛禹志 tic 嚴重事故處理指引(SAMG)對核三廠二階安全度評估結果的影響 adc 李敏 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 185 kwc 嚴重事故處理指引 kwc 二階安全度評估 abc 摘 要 tc 目 錄 中文摘要 I ABSTRACT Ⅱ 致謝辭 III 目錄 IV 表目錄 VIII 圖目錄 IX 第一章 前言 1.1 核電廠安全度評估 1 1.2 核電廠安全度評估工作內容1 1.3 嚴重事故處理指引 2 1.4 研究目的 2 1.5 論文架構 2 第二章 安全度評估方法 2.1 安全度評估發展簡史 4 2.2 可靠度理論 4 2.3 故障樹分析 5 2.4 事件樹分析 7 2.5 人為可靠度分析 8 2.5.1 簡介 8 2.5.2 人為操作誤失 9 2.5.3 人為誤失之量化模式 10 2.5.3.1 HCR模式 11 2.5.3.2 THERP模式 15 2.6 重要度分析 16 2.7 總結16 第三章 核三廠嚴重事故處理指引(SAMG) 3.1 前言 18 3.2 控制室嚴重事故處理指引 18 3.3 TSC嚴重事故處理指引 22 3.3.1 診斷流程圖(DFC) 22 3.3.2 嚴重事故處理指引(SAGs) 26 3.3.3 嚴重威脅狀態樹(SCST) 29 3.3.4 嚴重威脅處理指引(SCGs 29 3.3.5 嚴重事故終止指引(SAEGs) 32 3.4 計算輔助圖(CA) 32 3.5 SAMG之進入與結束 32 第四章 二階安全度評估與核三廠SAMG的比較 4.1 二階安全度評估架構 33 4.1.1 簡介 33 4.1.2 二階安全度評估工作內容 33 4.1.3 爐心受損事故序列分類 34 4.1.4 CSET標題內容37 4.1.5 電廠損壞狀態(PDS) 37 4.1.6 圍阻體現象事件樹(CPET) 38 4.2 SAMG對於Level 2 PSA之影響 38 4.3 Level 2 PSA與SAMG之比較 39 4.3.1 嚴重事故處理指引與圍阻體系統事件樹 39 4.3.2 SCST、SCGs與圍阻體現象事件樹 42 4.4 結果討論 42 第五章 核三廠SAMG對於CSET的影響 5.1 前言 44 5.2 MAAP程式簡介 44 5.3 WinNUPRA程式簡介 45 5.4 嚴重事故處理指引(SAGs)對CSET系統的影響 46 5.4.1 SAG-1蒸氣產生器注水對CSET系統的影響 46 5.4.1.1 SAG-1系統功能樹說明 47 5.4.1.2 SAG-1系統功能樹之成功準則 47 5.4.2 SAG-2 RCS降壓對CSET系統的影響 49 5.4.2.1 SAG-2救援策略驗證 49 5.4.2.2 SAG-2系統功能樹說明52 5.4.2.3 SAG-3系統功能樹之成功準則 62 5.4.3 SAG-3 RCS注水與SAG-4圍阻體注水對CSET系統的影響62 5.4.3.1 SAG-3的影響 62 5.4.3.2 SAG-4的影響 63 5.4.3.3 RWST重力補水63 5.4.3.4 SAG-3與SAG-4系統功能樹說明67 5.4.3.5 SAG-3與SAG-4系統功能樹之成功準則67 5.4.4 SAG-5降低分裂產物外釋對CSET系統的影響70 5.4.5 SAG-6圍阻體溫度壓力控制對CSET系統的影響71 5.4.5.1 SAG-5與SAG-6系統功能樹說明72 5.4.5.2 SAG-5與SAG-6系統功能樹之成功準則72 5.4.6 SAG-7降低圍阻體氫氣濃度對CSET系統的影響72 5.4.7 SAG-8圍阻體淹水對CSET系統的影響76 5.4.7.1 評估圍阻體注水以阻止RPV失效之適用性 76 5.4.7.2 SAG-8爐外熔渣冷卻的影響83 5.4.7.3 SAG-8系統功能樹說明83 5.4.7.4 SAG-8系統功能樹之成功準則 84 5.5 納入SAGs後的CSET功能標題說明84 5.6 SAMG對於CSET人為失誤量化影響之探討88 5.6.1 原本Level 2 PSA人為失誤機率之修正88 5.6.2 SAMG對於CSET人為失誤量化的影響96 5.6.3 相依性的考慮 106 5.7 結果討論106 第六章 核三廠SAMG對於CPET的影響 6.1 前言 114 6.2 圍阻體現象事件樹(CPET)架構114 6.2.1 電廠損壞狀態(PDS)分類114 6.2.2 圍阻體現象事件樹架構描述 120 6.2.3 圍阻體物理現象 120 6.2.4 CPET標題事件說明 122 6.2.5 分解事件樹(DET) 123 6.2.6 輻射源項分類邏輯127 6.3 NUCAP+程式簡介 131 6.4 核三廠SAMG對於CPET的影響分析133 6.4.1 SCG-1對CPET的影響 133 6.4.2 SCG-2對CPET的影響134 6.4.3 SAG-7與SCG-3對CPET的影響 137 6.4.3.1 Level 2 PSA對氫氣燃燒的分析137 6.4.3.2 氫氣燃燒模擬案例142 6.4.3.3 氫氣燃燒的機率修訂157 6.4.4 SCG-4對CPET的影響 159 6.5 量化案例分析 165 6.5.1 CSET C1a(一般暫態)之量化設定 165 6.5.2 CSET C1a(一般暫態)之量化結果170 6.6 結果討論 170 第七章 結論與建議 7.1 SAMG對於核三廠二階安全度評估的影響 173 7.2 結論174 7.3 心得與建議 175 7.4 未來工作 176 參考資料 178 附錄 附錄-1 參加國立清華大學工科系奈米科技與能源國際研討會之投稿論文 181 附錄-2 參加國立清華大學工科系奈米科技與能源國際研討會之論文海報 185rf 參考資料 1. “Reactor Safety Study”, WASH-1400, NUREG-75/014, U.S. Nuclear Regular Commission, Washington, 1975. 2.李敏編輯,“核電廠安全度評估方法之理論與應用”,台灣電力公司核能安全處/國立清華大學工程與系統科學系,民國85年7月 3.吳景輝等著,”核三廠二階安全度評估”,台灣電力公司/核能研究所核子工程組,民國83年2月 4.吳景輝著,”核三廠廠內事件CSET分析報告”,台灣電力公司/核能研究所核子工程組,民國87年6月 5.鄭志清著,“模糊理論於安全度評估之應用”,國立清華大學工程與系統科學系,民國88年6月 6.核能研究所,“核能三廠功率運轉活態安全度評估第一階段結果報告”,台灣電力公司/核能研究所核子工程組,民國84年12月 7.王士珍等著,“核三廠嚴重事故處理指引”,核能研究所,民國91年11月 8.李敏著,”核三廠圍阻體完整性分析”,台灣電力公司核能安全處/國立清華大學工程與系統科學系,民國88年8月 9.歐陽敏盛、楊昭義著,”核能發電工程學”,水牛圖書公司/國立編譯館,民國86年1月 10.台灣電力公司第三核能發電廠,"壓水式反應器核能電廠訓練教材",台灣電力公司,民國72年3月。 11. WOG program MUHP-2310, “Severe Accident Management Guidance”, Westinghouse Electric Corporation, June 1994. 12.吳景輝,"核三廠功率運轉活態PRA廠內事件圍阻體系統分析",台電/核研所核能發電技術發展專案計畫報告,民國87年6月。 13. P.J. Fulford et al., "NUCAP+ User's Manual,"NUS Corporation, April 1991. 14. USNRC, "Reactor Risk Reference Document," NUREG-1150, Appendices J-O, February 1987. 15. USNRC, "Severe Accident Risks:An Assessment for Five U.S. Nuclear Power Plants," NUREG-1150, Vol. 1, December 1990. 16. B. John Garrick et al., "Seabrook Station Probabilistic Safety Assessment, Technical Appendices," PLG-0300, December 1983. 17. NUS, "Ringhals 2 Phase II Probabilistic Safety Study," NUS-4409, 1984. 18. Steam Explosion Review Group, "A Review of the Current Understanding of the Potential for Containment Failure from In-Vessel Steam Explosion," USNRC Report NUREG-1116, June 1985. 19. Squarer and Leverett, "Steam Explosion in Perspective," presented at the international Meeting on Light Water Reactor severe Accident Evaluation, August 28~September 1, 1983, Cambridge, Massachusetts, U.S.A. 20. USNRC, "Reactor Risk Reference Document," NUREG-1150, Vol. 1, Draft for Commert, February 1987. 21. USNRC, "Severe Accident Risks: An Assessment for Five U.S. Nuclear Power Plants," NUREG-1150, Vol. 2, December 1990. 22. USNRC, "Estimates of Early Containment Loads from Core Melt Accidents," NUREG-1079, Draft for Comment, December 1985. 23. M. Allen et al., "Results of the First Integral Effects Test (IET-1) with Zion-Like Subcompartment Structures in the SURTSEY Test Facility," presented at the Severe Accident Research Partners Meeting, October 1991, Bethesda, Maryland, U.S.A. 24. V. L. Behr et al. "Containment Event Analysis for Postulated Severe Accidents: Sequoyah Power Station, Unit 1," NUREG/CR-4700, Vol. 2, Draft for Comment, February 1987. 25. USNRC, "Evaluation of Severe Accident Risks and the Potential for Risk Reduction:Surry Power Station, Unit 1," NUREG/CR-4551, Vol. 1,1987. 25. A. S. Benjamin et al., "Containment Event Analysis for Postulated Severe Accidents:Surry Power Station, Unit 1," NUREG/CR-4700, Vol. 1, Draft for Comment, February 1987.id NH0925593014 sid 913129 cfn 0 / id NH0925593015 auc 戴士偉 tic 計算流體力學技術應用於改進熱流工程教學之研究 adc 白寶實 adc 洪祖全 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 66 kwc CFD kwc 電腦輔助教學 kwc 資料庫 kwc 網際網路 abc 本研究整合計算流體力學(CFD)技術、資料庫與熱流現象圖形化教學之構想,設計具有互動性及友善介面之教學系統。利用CFD功能的方便,取代公式推導,與網際網路之優點以達到遠端教學及線上討論之功能,目的在使得流體力學與熱傳學之教學、訓練與研發方式更有效率。學習者可透過教學網頁挑選現有的教學範例學習,並在資料庫中搜尋現有的數值結果,或者連結CFD程式進行計算,並將數值結果存入資料庫中加以管理。此教學系統更提供繪圖的功能,使其能將數值結果在網頁中進行繪圖與現象說明,利用網際網路之優點而達到遠端教學之功能。透過此教學系統,讓所學不再只是課堂上的統御方程式推導,更可對流體力學與熱傳學之現象方面之探討更加紮實。此教學系統已完成構想規劃及單機版本的CFD互動教學能力,期望不久的未來可將網路教學系統完整架設成功。 tc 摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vi 第一章 導論 1 第二章 文獻回顧 5 第三章 背景知識 8 3.1. HTML(HyperText Markup Language) 9 3.2. ASP(Active Server Pages) 9 3.3. 資料庫(Database) 10 3.4. SQL(Structured Query Language) 10 3.5. VB (Microsoft Visual Basic) 11 3.6. ActiveX 11 3.7. OpenGL(Open Graphic Library) 11 第四章 教學系統規劃 13 4.1. 教學系統需求 13 4.2. 教學網站之設計與建立 15 4.3. 前處理教學問題製作 15 4.4. 程式連結CFD與資料庫處理 15 4.5. 後處理顯示CFD計算結果 15 4.6. 教學系統問卷設計 16 第五章 分析與討論 17 5.1. 教學網站之設計與建立 18 5.2. 前處理教學問題製作 21 5.3. 程式連結CFD及資料庫處理 28 5.4. 後處理顯示圖形結果 31 5.4.1 顏色對應方式 31 5.4.2 單一網格繪圖方式 32 5.4.3 TEC 數值結果檔案讀取方式 34 5.4.4 數值場繪圖演算法 34 5.4.5 等數值線繪圖演算法 36 5.4.6 向量場繪圖演算法 39 5.4.7 動畫處理繪圖演算法 39 5.4.8 3D幾何模型繪圖技術 40 5.5. 教學系統問卷調查表 40 第六章 案例討論 41 第七章 結論與未來工作 51 參考文獻 53 附錄A -教學系統問卷調查表 56 附錄B - 單機版教學系統操作畫面 60rf 1. Lynnette Taylor, "An integrated learning system and its effect on examination performance in mathematics," Computers & Education, Vol. 32, 1999, pp. 95-107. 2. John Dutton, Marilyn Dutton, and Jo Perry, "Do Online Students Perform as Well Lecture Students?" Journal of Engineering Education, January 2001, Vol. 90, No.1, pp. 131~136. 3. Jimmy Nguyen, Cynthia B. Paschal, "Development of Online Ultrasound Instructional Module and Comparison to Traditional Teaching Methods," Journal of Engineering Education, July 2002, pp. 275-283. 4. Ganesh Thiagarajan and Carolyn Jacobs, "Teaching Undergraduate Mechanics via Distance Learning: A New Experience," Journal of Engineering Education, January 2001, Vol. 90, No.1, pp. 151-166. 5. L. Harasim, "A Framework for Online Learning: The Virtual-U," IEEE, J. Computer, Vol. 32, Sep 1999, pp. 44-49. 6. 鄭文益、賴炳仁、洪祖全﹐“工業用軟體應用於熱力學及能源系統之教學研究”第22屆全國力學研討會, 台南﹐Vol. I﹐December﹐1998﹐pp. 17-24. 7. D. Gillet, H. A. Latchman, C. H. Salzmann and O. D. Crisalle, "Hand-on Laboratory Experiments in Flexible and Distance Learning," J. of Engineering Education, April 2001, pp. 187-191. 8. D. B. Skillicorn, "Using Distributed Hypermedia for Collaborative Learning in Universities," The Computer Journal‚ Vol. 39‚ No. 6‚ 1996‚ pp. 471-482. 9. Costea, "Engineering Education with New Enabling Technologies," IEEE International Conference on System, Man and Cybernetice, Vol. 3, Oct 1997, pp. 2063-2068. 10. S. Y. Lim, V. Y. S. Goh, "An Infrastructure for Basic Teaching and Networked Aided Learning (BTNAL)," IEEE International Conference on System, Man and Cybernetice, Vol. 1, Oct 1997, pp. 599-603. 11. Young-Suk Shin, "Virtual reality simulations in Web-based science education," Computer Applications in Engineering Education, Vol 10, Issue 1, 2002, pp. 18-25. 12. H. C. Chan, K. K. Wei and K. L. Siau﹐"A System for Query Comprehension," Information and Software Technology﹐Vol. 39‚ No. 3﹐March 1997, pp. 141-148. 13. World Wide Web Consortium (W3C), http://www.w3.org/. 14. Adaptive Research, CFD2000 3.1 User's Maunal, 2000. 15. W. R. Briley, B. K. Hodge, "CFD project combining solution algorithms, software development/validation, and viscous flow calculations," Inc. Comput Appl Eng Educ 5, 1997, pp. 161-168. 16. C. C. Ngo, F. C. Lai, "Web-based Thermodynamics Tables Wizard," Computer Applications in Engineering Education, Volume 10, Issue 3, 2002, pp. 137-143. 17. Yusong Li, Eugene J. LeBoeuf, P. K. Basu, Louis Hampton Turner IV, "Development of a web-based mass transfer processes laboratory: System development and implementation," Computer Applications in Engineering Education, Vol. 11, Issue1, 2003, pp. 25-39. 18. R. I. Issa, A. D. Gosman, and A. P. Watkins, "The Computation of Compressible and Incompressible Recirculating Flows by a Non-Iterative Implicit Scheme," J. Computational Physics, Vol. 62, 1986, pp. 66-82. 19. T. C. Hung and C. S. Fu, "Conjugate Heat Transfer Analysis for the Passive Enhancement of Electronic Cooling through Geometric Modification in a Mixed Convection Domain," J. Numerical Heat Transfer, Part A, 1999, pp. 519-535. 20. T. C. Hung, S. K. Wang and F. P. Tsai, "Investigations of a Passive Heat Transfer Enhancement in Electronic Cooling Systems," IEDMS’96, F2-3-P, 1996, pp. 409-412. 21. 戴士偉、沈桂鳳、洪祖全、蔡豐智, “計算流體力學軟體應用於改進工程教學之研究,” 第25屆全國力學研討會, 台中逢甲, 2001. 22. 戴士偉、洪祖全, “計算流體力學技術應用於改進熱流工程教學之研究,” 第27屆全國力學研討會, 台南成大, 2003. 23. Rechard S.Wright, Jr. Michael Sweet, OpenGL SuperBible Second Edition, Waite Group PRESS, 2000. 24. NeHe Prodductions, http://nehe.gamedev.net/. 25. OpenGL Programming Guide, http://fly.srk.fer.hr/%7eunreal/theredbook/. 26. Programming OpenGL with Visual Basic, http://is6.pacific.net.hk/~edx/. 27. ActiveX, http://www.activex.org/. 28. Extensible Markup Language (XML), http://www.w3.org/XML/.id NH0925593015 sid 913131 cfn 0 / id NH0925593016 auc 陳文豪 tic 直接甲醇燃料電池陽極觸媒在不同製備條件的特性分析 adc 蔡春鴻 adc 葉宗洸 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 56 kwc 直接甲醇燃料電池 kwc 電化學分析 kwc 陽極觸媒 abc 當今直接甲醇燃料電池發展的瓶頸,可分為數方面:提升陽極觸媒催化效能、減緩甲醇於高分子電解質薄膜中的穿透率、燃料輸送系統的改善等…。本實驗目標為提升陽極觸媒催化效能,同時期望能改善甲醇氧化過程中,一氧化碳對於觸媒造成的毒化現象。 tc 封面 摘要 誌謝 目錄 第一章 緒論……01 第二章 文獻回顧…………………02 2.1前言...............02 2.2直接甲醇燃料電池介紹...................03 2.3甲醇於Pt電極上之氧化機制...............08 2.4陽極觸媒材料種類.......................09 2.5陽極觸媒製備...........................14 2.5.1觸媒製備方式.........................14 2.5.2金屬先驅物的種類.....................15 2.5.3觸媒還原方式.........................15 2.6影響陽極觸媒催化效果的環境變因.........16 第三章 實驗方法與原理.........20 3.1實驗藥品與設備......................20 3.1.1觸媒先驅物.....................20 3.1.2其他藥品.......................20 3.1.3實驗設備與分析儀器.............21 3.2觸媒製備方法...............21 3.2.1經不同氣氛熱處理的二元觸媒.....21 3.2.2三元觸媒製備...................22 3.3其他實驗方法之介紹......23 3.3.1 半電池電極片製備..............24 3.3.2 半電池電化學性質分析之參數設定...25 3.3.3 全電池MEA製備.................26 3.4分析方法之原理......................28 3.4.1 X光繞射分析...................28 3.4.2 穿透式電子顯微鏡..............29 3.4.3 循環伏安法....................30 3.4.4 電化學阻抗圖譜................32 第四章 結果與討論 .....................35 4.1 X光繞射分析結果................35 4.1.1不同氣氛熱處理之二元觸媒................35 4.1.2自製製程之二元與三元觸媒................39 4.2穿透式電子顯微鏡................41 4.2.1不同氣氛熱處理之二元觸媒................41 4.2.2自製製程之二元與三元觸媒................44 4.3循環伏安法................45 4.3.1不同氣氛熱處理之二元觸媒................45 4.3.2自製製程之二元與三元觸媒...................46 4.3.3不同製備條件之Pt/Ru原子數比為2/1觸媒.........48 4.4電化學阻抗圖譜.................49 4.4.1不同氣氛熱處理之二元觸媒...................49 4.4.2自製製程之二元與三元觸媒...................50 4.4.3不同製備條件之Pt/Ru原子數比為2/1觸媒..........51 4.5全電池電流-電壓量測................52 第五章 結論................54 第六章 參考文獻................55rf [1 ] James Larminie et al., Fuel Cell Systems Explained 2nd (2003), Wiley [2 ] Kai Sundmacher et al., Chemical Engineering Science 54 (1999) 2927 [3 ] Kyung-Won Park et al., Journal of Physical Chemistry B 118(3) (2002) 939 [4 ] Kinoshita K et al., Modern Aspect of Electrochemistry (1996) p.12; Plenum Press [5 ] T. Yoshitake et al., Physica B 323 (2002) 124 [6 ] Wenzhen Li et al., Journal of Physical Chemistry B 107 (2003) 6292 [7 ] Yi-Cheng Liu et al., Journal of Power Sources 111 (2002) 160 [8 ] B.R. Rauhe et al., Journal of the Electrochemistry Society 142 (1995) 1073 [9 ] J. O’M Bockris et al., Journal of Electroanalytical Chem. 7 (1964) 178 [10 ] T. Iwasita., Electrochimica Acta 47 (2002) 3663-3674 [11 ] Kevin L. Ley et al., Journal of the Electrochemical Society 144 (1997) 1543 [12 ] A.S. Arico et al., Journal of Applied Electrochemistry 26 (1996) 959 [13 ] Jong-Ho Choi et al, Journal of the Electrochemical Society 150(7) (2003) A973 [14 ] Masahiro Watanabe et al., Journal of Electroanalytic Chemistry 229 (1987) 395 [15 ] A.S. Arico et al., Electrochimica Acta 47 (2002) 3723 [16 ] Erik Reddington et al., Science [17 ] K. TSURUMI et al., U.S. Patent No.4956331 (1990) [18 ] E. Antolini et al., Journal of Material Science 37 (2002) 133 [19 ] M. Watanabe et al., Journal of Electroanalytic Chemistry 229 (1987) 395 [20 ] B.D. McNicol et al., Journal of Electroanalytic Chemistry 81 (1977) 249 [21 ] A.V. Tripkovicet al., Electrochimica Acta 47 (2002) 3707 [22 ] S.Lj. Gojkovicet al., Electrochimica Acta 48 (2003) 3607 [23 ] A.S. Arico et al., Journal of Power Sources 55 (1995) 159 [24 ] T.J. Schmidt et al., Langmuir 13 (1997) 2591 [25 ] Y. Takasu et al., Journal of the Electrochemical Society 147(12) (2000) 4421 [26 ] Y. Takasu et al., Catalysis Surveys from Asia 7(1) (2003) 21 [27 ] A. STOYANOVA et al., Journal of Applied Electrochemistry 29 (1999) 1197-1203 [28 ] V. Radmilovic et al, Journal of Catalysis 154 (1995) 98-106 [29 ] M. Shibata et al, Journal of Electroanalytical Chemistry 194 (1985) 261 [30 ] Lin WF, Journal of Electroanalytical Chemistry 364 (1994) 1 [31 ] A. Hamnett, Catalysis Today 38 (1997) 445 [32 ] M. P. Hogarth et al, Platinum Metals Rev. 46(4) (2002) 146 [33 ] N.M. Markovic et al, Surface Science Reports 45 (2002) 117id NH0925593016 sid 913140 cfn 0 / id NH0925593017 auc 馮士豪 tic 多平行矽質微通道沸騰熱傳之探討 adc 潘欽 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 128 kwc 微通道 kwc 沸騰熱傳 kwc 微機電 kwc 雙相流 abc 微通道沸騰熱傳是個有趣的工業應用與基礎研究課題且其現象與傳統尺度的通道有很大的差異。本研究採用除氣後的去離子水為工作流體,探討其在平行梯型矽質微通道內的流動沸騰。測試段利用微機電技術製作,於單晶片上蝕刻三或六條為通道,水力直徑分別為41.3和33.5μm。本研究的目的為探索多平行矽質微通道的沸騰熱傳與雙相流現象,包括氣泡成長機制、沸騰熱傳、雙相流動形態與雙相流不穩定現象。 rf 參考文獻 1. Ghiaasiaan, S. M., Chedester, R. C., 2002, “Boiling incipience in microchannels,” Int. J. of Heat and Mass Transfer 45, pp. 4599-4606. 2. Hetsroni, G., Mosyak, A., Segal, Z., 2001, “Nonuniform Temperature Distribution in Electronic Devices Cooled by Flow in Parallel Micochannels,” IEEE Transactions on Components and Packing Technologies, Vol. 24, No. 1, pp. 16-23. 3. Hetsroni, G., Klein, D. Mosyak, Z., Pogrebnyak, E., 2003, “Convective boiling in parallel micro-channels,” Fist International Conference on Microchannels and Minichannels, pp. 59-67. 4. Inasaka, F., Nariai, T. Shimura, 1989, “Pressure drop in subcooled boiling in narrow tubes,” Heat Transfer-Jpn. Res. 18, pp. 70-82. 5. Jiang, L., Wong, M., Zohar, Y., 1999, “A micro-channel heat sink with integrated temperature sensors for phase transition study,”, IEEE, pp. 159-164. 6. Jiang, L., Wong, M., Zohar, Y., 2001, “Force Convection Boiling in Microchannel Heat Sink,” J. of Microelectromechanical Syste,, Vol, 10, No. 1, pp. 80-87. 7. Kandlikar, S. G., 2003, “Heat Transfer mechanisms during flow boiling in microchannels,” Fist Intternational Conference on Microchannels and Minichannels, pp. 33-46. 8. Kennedy, J. E., Roach Jr, G. M., Dowling, M. F., Abdel-Khalik, S. I., Ghiaasiaan, S. M., Jeter, S. M., Quereshi, Z. H., 2000, “The onset of flow insatability in uniformly heated horizontal microchannels,” ASME J. Heat Transfer 122, pp. 118-125. 9. Lee, M., Wong, Y. Y., Zohar, Y., 2002, “Size and shape effects on two-phase flow instabilities in microchannels,” IEEE, pp. 28-31. 10. Madou, M. J., 2002, “Fundamentals of MicroFabrication”. 11. Mert, R., Welin, Groll, 1996, “Experimental investigation of boiling heat transfer in narrow channels,” Calore Technologia 14(2) 47-57. 12. Peng, X. F., Wang, B. X., 1995, “Experimental investigation of heat transfer in flat plates with rectangular microchannels,” Int. J. Heat Mass Transfer, Vol. 38, No. 1, pp. 127-137. 13. Peng, X. F., Hu, H. Y., Wang, B. X., 1998, “Boiling nucleation during liquid flow in microchannels,” Int. J. Heat Transfer, Vol. 41, No. 1, pp. 101-106. 14. Qu, W., Mala, G. M. Li., D., 2000, “Pressure-driven water flows in trapezoidal silicon microchannels,” Int. J. of Heat and Mass transfer 43, 353-364. 15. Qu, W., Mudawar, I., 2002, “Thermal design methodology for high-heat flux single-phase and two-phase micro-channel heast sinks,” IEEE, pp. 347-359. 16. Steinke, M. E., Kandlikar, S. G., 2003, “Flow boiling and pressure drop in parallel flow microchannels,” Fist Intternational Conference on Microchannels and Minichannels, pp. 567-579. 17. Steinke, M. E., Kandlikar S.G., 2004, “Control and effect of dissolved air in water during flow boiling in microchannels,” Int. J. of Heat and Mass Transfer 47, 1925-1935. 18. Tuckerman, D. B., Pease, R. F. W., 1981, “High-Performance heat sinking for VLSI,” IEEE Electronic Device letters, Vol EDL-2 (5), No. 4, pp. 126-129. 19. Wu, H. Y., Cheng, P., 2003, “Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios,” Int. J. of Heat and Mass Transfer 46, 2519-2525. 20. Wu, H. Y., Cheng, P., 2003, “Visualization and measurements of periodic boiling in silicon microchannels,” Int. J. of Heat and Mass Transfer 46, 2519-2525. 21. Wu, H. Y., Cheng, P., 2003, “Two large-amplitude/long period oscillating boiling modes in silicon microchannels,” Fist Intternational Conference on Microchannels and Minichannels, pp. 2519-2525. 22. 李柏蒼,「單管矽質微通道沸騰熱傳之探討」,碩士論文,清華大學工程與系統科學研究所,指導教授潘欽博士,民國九十二年。 23. 李懷揚,「雙管矽質微通道沸騰熱傳之探討」,碩士論文,清華大學工程與系統科學研究所,指導教授潘欽博士,民國九十二年。 24. 電腦世界雜誌 2003年第24期。id NH0925593017 sid 913143 cfn 0 / id NH0925593018 auc 籃重凱 tic 軸流風扇翼型與角度對性能曲線的影響 adc 林唯耕 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 111 kwc 軸流風扇 kwc 翼型 kwc 角度 kwc 性能曲線 kwc 可視化流場 abc 資訊電子產品加速小型化,加上晶片運算時脈持續提升,使得耗電量及發熱量增加,於是衍生出對散熱的需求。本研究利用清大工科系電子構裝散熱實驗室ECS.Lab所發展出來之軸流風扇設計軟體Fanx,製造單一變數的風扇實體,目的在於探討翼型與角度對於性能曲線的影響,以期找出翼型與角度的最佳值並提升軸流風扇之效能。 tc 摘要 Ⅰ 致謝 Ⅱ 目錄 Ⅲ 圖目錄 Ⅴ 表目錄 ⅩⅡ符號說明 ⅩⅢ 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-3 研究目的 5 第二章 風扇之理論模式與設計 8 2-1 角度建構 8 2-2 翼型建構 15 2-3 設計參數 18 2-4 風扇元件介紹 21 第三章 實驗設備及實驗步驟 24 3-1 風扇角度與翼型之設計與製造 24 3-1-1 水平傾斜角之設計 26 3-1-2 翼型之設計 29 3-1-3 弓角之設計 43 3-2 風洞之性能曲線量測 48 3-3 PIV之流場觀測 51 第四章 結果與討論 55 4-1 性能曲線的量測結果 55 4-1-1 水平傾斜角與性能曲線的關係 55 4-1-2 弓角與性能曲線的關係 58 4-1-3 翼型與性能曲線的關係 62 4-2 PIV流場觀測 67 4-3 FLUENT軟體風扇模擬性能曲線 85 4-4 線性迴歸預測風扇性能曲線 91 第五章 結論與建議 96 5-1 結論 96 5-2 建議 97 附錄A PIV操作說明 99 附錄B 新翼型建構方法 107 參考文獻 108rf [1 ] 吳俊億,『軸流風扇設計軟體之研發』,國立清華大學工程與系統科學所士 論文,2001. [2 ] 吳凱文,「利用可視化流場實驗修正複合式軸流風扇之翼型」,國立清華大學與系統科學所碩士論文,2002. [3 ] Fundamentals of Aerodynamics of John D.Anderson, JR,1991 [4 ] handbook of airfoil sections for light aircraft by M.S Rice,1997 [5 ] www.airfoils.com, Airfoils, Incorporated,2000 [6 ] J. Estevadeordal a,*, S.Gogineni a, W. Copenhaver b, G. Bloch b, M. Brendel“Flow Feld in a low-speed axial fan: a DPIV investigation” Experimental Thermal and Fluid Science 23,2000 [7 ] Kota Shimda, toshimitu kuriwada, Taiji Sakai,Koichi Ohyama “A Study of Engine Cooling Fan”JSAE,1997 [8 ] Teruhito Otsuka a,*, Piotr Wolanski b “Particle image velocimetry (PIV) analysis of flame structure”Journal of Loss Prevention in the Process Industries 14,2001 [9 ] Willert, Christian; Raffel, Markus; Kompenhans, Jürgen;Stasicki,Boleslaw; Kähler, Christian“Recent applications of particle image velocimetry in aerodynamic research”Flow and Meausurement and instrumentation ,1996 [10 ] Baldassarre, A.; De Lucia, M.; Nesi, P.; Rossi, F. “A Vision-Based Particle Tracking Velocimetry”Real-Time Imaging,2001 [11 ] Dr.-Ing. Bruno Eck,“Fans : design and operation of c entrifugal, axial-flow, and cross-flow fans”,Oxford ; New York : Pergamon Press,1973。 [12 ] Kuan Chen , Scott B.Gwillim ,”An Analysis of the Heat transfer rate and Efficiency of TE(Thermoelectric) Cooling Systems , “International Journal of Energy Research , Vol 20,399-417,1996 [13 ] Eugene, A. Avallone and Theodore Baumeiter III , editors , ”Mark’s Standard Handbook for Mechanical Engineers”, 9th ed. ,McGraw-Hill,1987.id NH0925593018 sid 913144 cfn 0 / id NH0925593019 auc 陳秋南 tic 側吹式散熱鰭片阻抗曲線之理論與實驗分析 adc 林唯耕 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 136 kwc 電子構裝散熱 kwc 散熱鰭片 kwc 阻抗 abc 電子元件在運作的過程中,無法避免的會有熱量的產生,當電子元件產生的熱量很小的時候,並不會影響到組件的性能。隨著各種功能的增多,電子元件運作的速度會愈來愈快,相對的產生的熱量亦較多,運轉過程中所產大量的熱量,將會影響到系統的可靠度與穩定性。因此,電子元件熱量的移除將必須要去面對的問題。 tc 摘要 …………………………………………………………………Ⅰ 誌謝 …………………………………………………………………Ⅱ 目錄 …………………………………………………………………Ⅲ 表目錄 ………………………………………………………………Ⅴ 圖目錄 ………………………………………………………………Ⅹ 第一章 緒論…………………………………………………………1 1-1前言 ……………………………………………………………1 1-2文獻回顧 ………………………………………………………3 第二章 理論基礎……………………………………………………5 2-1基本熱傳原理 …………………………………………………5 2-2散熱鰭片阻抗的定義 …………………………………………7 2-3散熱鰭片在強制對流下之理論分析 …………………………8 第三章 實驗設備與方法……………………………………………12 3-1風洞測試理論 …………………………………………………12 3-2實驗設備 ………………………………………………………15 3-3實驗步驟 ………………………………………………………18 3-4注意事項 ………………………………………………………21 第四章 實驗結果與討論 …………………………………………22 4-1鰭片高度(H)變化實驗結果與討論……………………………22 4-2鰭片長度(L)變化實驗結果與討論……………………………44 4-3鰭片寬度(W)變化實驗結果與討論……………………………66 4-4鰭片間距(S)變化實驗結果與討論……………………………88 4-5鰭片厚度(tf)變化(或鰭片數目)實驗結果與討論 …………110 第五章 結論…………………………………………………………132 參考文獻………………………………………………………………135rf [1 ] K. Azar, R. S. McLeod, and R. E. Caron, “Narrow channel heat sink for cooling of high powered electronic components,” in Proc. 8th Annu. IEEE Semi- Therm Symp., pp. 12–19,1992, [2 ] R. W. Knight, J. S. Goodling, and D. J. Hall, “Optimal design of forced convection heat sinks—Analytical,” ASME J. Electron. Packag., vol.113, pp. 313–321, 1991. [3 ] S. Sasaki and T. Kishimoto ,“Optimal structure for microgroove cooling fin for high power LSI devices,” Electron. Lett., vol. 22, pp. 1332–1334, 1986. [4 ] Simons, R.E., "Estimating Parallel Plate-Fin Heat Sink Pressure Drop," Electronics Cooling, Vol. 9, No.2, pp. 8–10, May 2003. [5 ] Y. S. Muzychka and M. M. Yovanovich,“Modeling friction factors in non-circular ducts for developing laminar flow,” in Proc. 2nd AIAA Theoretical Fluid Mech. Meeting, lbuquerque, NM, June pp.15–18, 1998. [6 ] Culham, J.R., and Muzychka, Y.S. “Optimization of Plate Fin Heat Sinks Using Entropy Generation Minimization,” IEEE Trans. Components and Packaging Technologies, Vol. 24, No. 2,pp. 159-165, 2001. [7 ] P.Razelos and X.Kakatsios ,“Optimum dimensions of convecting-radiating fin:Part I-longitudinal fins,” Applied Thermal Engineering 20(2000),pp.1161-1192. [8 ] Gustavo ledezma and Adrian Bejan , “Heat sinks with sloped plate fins in natural and forced convection,” Int.J.Heat Mass Transfer vol.39,No.9. pp.1773-1783,1996. [9 ] Susheela Narasimhan and Joseph Majdalani, “Characterization of compact heat sink models in natural convection,”IEEE Transactions on Components and Packaging Technologines, vol.25 , No.1, pp. 78- 86,2002. [10 ] S.W.Churchill and H.H.S.Chu, ”Correlating equations for laminar and turbulent free convection from a vertical plate ”,Int.J.Heat MassTransf., vol.18,pp. 1323-1329,1975. [11 ] 吳東駿,鰭片阻抗理論與鰭片測試分析,國立清華大學工程系 統與科學研究所碩士論文,2001。 [12 ] 鄭憶湘,散熱片在強制對流下之最佳化設計與實驗,國立清華 大學工程系統與科學研究所碩士論文,2001。id NH0925593019 sid 913149 cfn 0 / id NH0925593020 auc 張信務 tic 二氧化鈦奈米管之合成與結構鑑定 adc 李志浩 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 63 kwc 二氧化鈦 kwc 捲片法 kwc Anatase kwc 奈米管 abc 利用水熱合成法來製備高純度二氧化鈦奈米管,其實驗方法簡單並可得大量產物。而我們所製備出的高純度二氧化鈦奈米管,因其且具有高表面積比的特性,故能有效的提升二氧化鈦的光催化反應效率,本實驗之主要目的乃著重於對二氧化鈦奈米管進行結構及生成機制上的分析與討論。 tc 摘要………………………………………………………………………………… Ⅰ Abstract…………………………………………………………………………… Ⅱ 目次………………………………………………………………………………… Ⅲ 表目錄……………………………………………………………………………… Ⅴ 圖目錄……………………………………………………………………………… Ⅵ 第一章 緒論………………………………………………………………………… 1 第二章 文獻回顧…………………………………………………………………… 5 2.1 二氧化鈦奈米管之製備方法…………………………………………………5 2.1.1 溶膠凝膠法……………………………………………………………5 2.1.2 模版製造法……………………………………………………………6 2.1.3 自組裝法………………………………………………………………7 2.1.4 水熱合成法……………………………………………………………8 2.2 溶膠凝膠法之基本化學………………………………………………………9 2.2.1 溶膠……………………………………………………………………9 2.2.2 凝膠……………………………………………………………………9 2.3 二氧化鈦的材料性質……………………………………………………… 11 2.3.1 二氧化鈦晶格結構………………………………………………… 11 2.3.2 異相催化反應……………………………………………………… 13 第三章 樣品製備與分析方法………………………………………………………15 3.1 二氧化鈦奈米管的製備…………………………………………………… 15 3.2 實驗量測之方法與原理…………………………………………………… 16 3.2.1 X光繞射儀……………………………………………………………16 3.2.2 穿透式電子顯微鏡………………………………………………… 18 3.2.3 拉曼光譜儀………………………………………………………… 19 3.2.4 X光吸收光譜…………………………………………………………22 第四章 實驗結果與討論……………………………………………………………25 4.1 二氧化鈦奈米管生成機制與結構之建立………………………………… 25 4.1.1 二氧化鈦奈米管生成機制………………………………………… 25 4.1.2 二氧化鈦奈米管結構……………………………………………… 27 4.2 掃描式電子顯微鏡………………………………………………………… 29 4.3 X光粉末繞射…………………………………………………………………32 4.3.1 以不同的酸洗或水洗方式………………………………………… 32 4.3.2 與氫氧化鈉水溶液反應時間的長短……………………………… 33 4.4 穿透式電子顯微鏡………………………………………………………… 37 4.4.1 電子繞射圖………………………………………………………… 37 4.4.2 高解析度穿透式電子顯微鏡……………………………………… 38 4.5 拉曼光譜…………………………………………………………………… 42 4.5.1 與氫氧化鈉水溶液反應12到72小時…………………………… 42 4.5.2 與氫氧化鈉水溶液反應2到7天………………………………… 44 4.6 X光吸收光譜…………………………………………………………………48 4.6.1 X光近吸收邊緣結構…………………………………………………48 4.6.2 延伸X光吸收精細結構…………………………………………… 52 4.7 結構與生成機制…………………………………………………………… 59 第五章 結論…………………………………………………………………………61 第六章 參考文獻……………………………………………………………………62rf [1 ] S. Iijima, Nature 354 (1991) 56. [2 ] B. C. Satishkumar, A. Govindaraj, E. M. Vogl, L. Basumallick, C. N. R. Rao, J. Mater. Res. 12 (1997) 604. [3 ] H. Nakamura and Y. Matsui, J. Am. Chem. Soc. 117 (1995) 2651. [4 ] B. B. Lakshmi, C. J. Patrissi and C. R. Martin, Chem. Mater. 9 (1997) 2544. [5 ] S. Kobayashi, K. Hanabusa, N. Hamasaki, M. Kimura and H. Shirai, Chem. Mater. 12 (2000) 1523. [6 ] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Langmuir 14 (1998) 3160. [7 ] K. Vinodgopal, S. Hotchandani and P. V. Kamat, J. Phys. Chem. 97 (1993) 9040. [8 ] G. Dagan and M. Tomkiewicz, J. Phys. Chem. 97 (1993) 12651. [9 ] M. Gratzel, Nature 409 (2001) 575. [10 ] A. L. Linsebigler, G. Lu and J. T. Yates, Chem. Rev. 95 (1995) 735. [11 ] A. Fujishima and K. Honda, Nature 238 (1972) 37. [12 ] R. Neuendort, M. Quentin and U. Keiling, J. Chem. Phys. 104 (1996) 6348. [13 ] P. W. Atkins, Heterogeneous Catalysis, J. Phys. Chem., Oxford University, (1995) pp.735-758 [14 ] R. L. Kurtz, R. Stockbauer, T. E. Maday, E. Roman and J. L. de Segovia, Surf. Sci. 218 (1989) 178. [15 ] D. S. Seo, J. K. Lee and H. Kim, J. Cryst. Growth 229 (2001) 428. [16 ] C. N. R. Rao, B. C. Satishkumar, A. Govindaraj, E. M. Vogl and L. Basumallick, J. Mater. Res. 12 (1997) 604. [17 ] H. C. Zeng, S. M. Liu, L. M. Gan, L. H. Liu and W. D. Zhang, Chem. Mater. 14 (2002) 1391. [18 ] Y. Bando, M. Zhang and K. Wada, J. Mater. Sci. Lett. 20 (2001) 167. [19 ] H. Imai, Y. Takei, K. Shimizu, M. Matsuda and H. Hirashima, J. Mater. Chem. 9 (1999) 2971. [20 ] H. Imai, M. Matsuta, K. Shimizu, H. Hirashima, and N. Negishi, J. Mater. Chem. 10 (2000) 2005. [21 ] P. Hoyer, Langmuir 12 (1996) 1411. [22 ] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Adv. Mater. 11 (1999) 15. [23 ] L. S. Dubrovinsky, N. A. Dubrovinskaia, V. Swamy, J. Muscat, N. M. Harrison, R. Ahuja, B. Holm and B. Johansson, Nature 410 (2001) 653. [24 ] A. Zangwill, Physics at Surfaces, 1988. [25 ] K. Tanaka, V. Capule and T. Hisanaga, Chem. Phys. Lett. 18 (1991) 73. [26 ] B. Ohtani, Y. Ogawa and S. Nishimoto, J. Phys. Chem. 101 (1997) 3746. [27 ] G. Q. Lu, Z. Ding and P. F. Greenfield, J. Phys. Chem. 104 (2000) 4815. [28 ] C. H. Lin, S. H. Chien, J. H. Chao, C. Y. Sheu, Y. C. Cheng, Y. J. Huang and C. H. Tsai, Catalyst Lett. 80 (2002) 153. [29 ] 鄭祐誠,國立彰化師範大學化學研究所碩士論文,2003。 [30 ] 許樹恩、吳泰伯,X光繞射原理與材料結構分析,中國材料科學學會,1992。 [31 ] 陳力俊,材料電子顯微鏡學,行政院國家科學委員會,精密儀器發展中心,1984。 [32 ] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Adv. Mater. 11 (1999) 1307. [33 ] B. A. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. Y. Yang and N. Wang, Appl. Phys. Lett. 82 (2003) 281. [34 ] C. A. Melendres, A. Narayanasamy, V. A. Maroni and R. W. Siegel, J. Mater. Res. 4 (1989) 1246. [35 ] M. Lazzeri, A. Vittadini and A. Selloni, Phys. Rev. B 63 (2001) 155409. [36 ] M. Lazzeri, A. Vittadini and A. Selloni, Phys. Rev. B 65 (2002) 119901. [37 ] Y. H. Zhang, C. K. Chan, J. F. Porter and W. Guo, J. Mater. Res. 13 (1998) 2602. [38 ] D. Bersani, P. P. Lottici and X. Z. Ding, Appl. Phys. Lett. 72 (1998) 73. [39 ] W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin and Q. Chen, J. Phys. D 33 (2000) 912. [40 ] J. C. Parker and R. W. Siegei, Appl. Phys. Lett. 57 (1990) 543. [41 ] R. Ma, Y. Bando and T. Sasaki, J. Phys. Chem. 108 (2004) 2115. [42 ] T. Ohsaka, S. Yamaoka and O. Shimomura, Solid State Commun. 30 (1979) 345. [43 ] C. A. Melendres, A. Narayanasamy, V. A. Maroni and R. W. Siegei, J. Mater. Res. 4 (1989) 1246. [44 ] J. C. Parker and R. W. Siegei, J. Mater. Res. 5 (1990) 1246. [45 ] P. P. Lottici, D. Bersani and A. Montenero, J. Mater. Sci. 28 (1993) 177. [46 ] E. Haro-Poniatowski, R. Rodriguez-Talavera, M. de la Cruz-Heredia, O. Cano-Corona and R. Arroyo-Murillo, J. Mater. Res. 9 (1994) 2102. [47 ] A. Chaves, K. S. Katiyan and S. P. S. Proto, Phys. Rev B 10 (1974) 3522. [48 ] G. A. Tompsett, G. A. Bowmaker, B. P. Cooney, J. B. Metson, K. A. Rodgers and J. M. Seakins, J. Raman Spectrosc. 26 (1995) 57. [49 ] F. Frages, G. E. Brown, Jr. and J. J. Rehr, Phys. Rev. B 56 (1997) 1809. [50 ] L. X. Chen, T. Rajh, W. Jager, J. Nedelikovic and M. C. Thurnauer, J. Synchrotron Rad. 6 (1999) 445. [51 ] T. Ohsaka, F. Izumi and Y. Fujiki, J. Raman Spectrosc. 7 (1978) 321.id NH0925593020 sid 913150 cfn 0 / id NH0925593021 auc 黃彥衡 tic X光吸收光譜研究奈米磁異向性FePt及CrPt3材料之結構 adc 李志浩 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 英文 pg 125 kwc X光吸收光譜 kwc 垂直磁異向性 kwc 鐵鉑合金奈米顆粒 kwc 鉻鉑合金磊晶薄膜 kwc 自組裝 abc 摘 要 tc TABLE OF CONTENTS ABSTRACT…………………………………………………………………………...4 ACKNOWLEDGMENT………………………………………………………………5 TABLE OF CONTENTS……………………………………………………………...6 LIST OF FIGURES……………………………………………………………………8 LIST OF TABLES……………………………………………………………………14 Chapter 1 Introduction……………………………………………………………….15 1.1 Longitudinal and Perpendicular Recording Media…………………………16 1.2 Self-Assembled Magnetic Nanoparticle Arrays…………………………….17 1.3 Magnetic anisotropy in ordered binary alloys………………………………18 Chapter 2 X-ray Absorption Fine Structure (XAFS)…………………………………19 2.1 X-ray Absorption Near Edge Structure(XANES)…………………………..20 2.2 Extended X-ray Absorption Fine Structure(EXAFS)……………………….22 2.3 Polarized-dependence XAFS……………………………………………….23 2.4 Branching ratio in XAFS……………………………………………………24 Chapter 3 Data analysis:X-ray Absorption Fine Structure…………………………26 3.1 XANES spectra simulation…………………………………………………26 3.2 EXAFS data analysis………………………………………………………..29 Chapter 4 Sample preparation………………………………………………………..31 4.1 CrPt3 epitaxial thin-films……………………………………………………31 4.2 Self-assembled FePt nanoparticles………………………………………….34 Chapter 5 CrPt3 epitaxial thin-films………………………………………………….36 5.1 Introduction of CrPt3 system………………………………………………..36 5.2 Experiment……………………………………………………………….…37 5.3 Results and Discussion……………………………………………………...38 5.4 Summary……………………………………………………………………41 Chapter 6 Self-assembled FePt nanoparticles………………………………………..53 6.1 Introduction of Self-assembled FePt nanoparticles system…………………53 6.2 Experiment………………………………………………………………….54 6.3 Results and Discussion……………………………………………………...54 6.4 Summary……………………………………………………………………58 Chapter 7 Conclusion……………………………………………………………...…69 REFERENCE………………………………………………………………………...71 APPENDIX A.1:The paper accepted by J. Magn. Magn. Mater…………………….75 APPENDIX A.2:The paper submitted to Appl. Phys. Lett………………………….76 APPENDIX A.3:The abstract submitted to the Conference on MMM’04……….….91 APPENDIX A.4:The abstract submitted to the Conference of APDSC’04…………92 APPENDIX A.5:The paper to be submitted…………………………………………93 APPENDIX A.6:物理雙月刊投稿文章…………………………………………...107 APPENDIX B.1:XRD analysis program by Visual C++ language source code……108 APPENDIX B.2:in-situ XAFS experiment setup………………………………….111 APPENDIX B.3:FEFF8.20 parameter for CrPt3(Cr K-edge) calculation………….113 APPENDIX B.4:The Raman and Fe LⅡ,Ⅲ-edge data for FePt nanoparticles……….116 APPENDIX C:Curriculum Vitae…………………………………………………...122rf REFERENCE [1 ] M.L. Plumer, J. van Ek, and D. Weller, “The Physics of Ultra-High-Density Magnetic Recording”, pp.1-10 (2001). [2 ] http://www.ibm.com [3 ] http://www.hitachigst.com/portal/site/hgst/ [4 ] http://www.komag.com/technology/perpendicular.html [5 ] Hari Singh Nalwa, Magnetic nanostructures, pp.108-113(2002). [6 ] I. Galanakis, M. Alouani, and H. Dreysse, Phys. Rev. B 62, 6475(2000). [7 ] D.C. Koningsberger and R. Prins, X-ray Absorption principles, applications, techniques of EXAFS, SEXAFS and XANES, pp.574-575(1988). [8 ] J. J. Rehr and R. C. Albers, Rev. Mod. Phys. 72, 621(2000). [9 ] A.L. Ankudinov, B. Ravel, J.J. Rehr, and S.D. Conradson, Phys. Rev. B 58, 7565(1998). [10 ] Jens Als-Nielsen and Des McMorrow, “Elements of Modern X-ray Physics”, pp. 203-221 (2001). [11 ] L.A. Grunes, Phys. Rev. B 27,7111(1983). [12 ] J.E. Muller and J.W. Wilkins, Phys. Rev. B 29, 4331(1984). [13 ] L.A. Grunes, Phys. Rev. B 27,2111(1983). [14 ] Christian Brouder, J. Phys.:Condens. Matter 2, 701(1990). [15 ] D.C. Koningsberger and R. Prins, X-ray Absorption principles, applications, techniques of EXAFS, SEXAFS and XANES, pp.25-26 (1988). [16 ] V. Gehanno, C9. Revenant-Brizard, A. Marty, and B. Gilles, J. Appl. Phys. 84, 2316(1998). [17 ] R.A. Rosenberg, P.J. Love, and Victor Rehn, Phys. Rev. B 33, 4034(1986). [18 ] B.T. Thole and G. van der Laan, Phys. Rev. B 38, 3158(1988). [19 ] R.D. Leapman and L.A. Grunes, Phy. Rev. Lett. 45, 397(1980). [20 ] B. Ravel, and J.J. Rehr , FEFF8.20 , University of Washington, pp.40-49(2000). [21 ] A.L. Ankudinov, B. Ravel et.al., Phys. Rev. B 58, 7565(1998). [22 ] A.L. Ankudinov, J.J. Rehr, John J. Low and Simon R. Bare, J. Chem. Phys.116,1911(2002). [23 ] Boon K. Teo, EXAFS:Basic Principles and Data analysis, pp.53-78 (1986). [24 ] Matthew Newville, AUTOBK , University of Washington(1995). [25 ] Philip R. Bevington and D. Keith Robinson, “Data reduction and error analysis for the physical sciences”, pp. 228-231(1994). [26 ] http://millenia.cars.aps.anl.gov/cgi-bin/atoms/atoms.cgi [27 ] B. Ravel, and J.J. Rehr, FEFF8.20 , University of Washington(2000). [28 ] Matthew Newville, FEFFIT, University of Chicago, (1998). [29 ] http://leonardo.phys.washington.edu/~ravel/. [30 ] S. Sun, C.B. Murray, D. Weller, L. Folks and A. Moser, Science 287 (2000). [31 ] M.L. Plumer, J. van Ek, and D. Weller, “The Physics of Ultra-High-Density Magnetic Recording”, pp.249-271 (2001). [32 ]http://www.research.ibm.com/resources/news/20000316_nanoparticle_images.shtml. [33 ] R.F.C. Farrow, D. Weller, R.F. Marks, M.F. Toney, A.Cellollada, and G.R. Harp, J. Appl. Phys. 79, 5967 (1996). [34 ] A. Cebollada, D. Weller, J. Sticht, G. R. Harp, R. F. C. Farrow, R. F. Marks, S. Savoy, and J.C. Scott, Phys. Rev. B 50, 3419 (1994). [35 ] D. Weller, H. Brandle, G. L. Gorman, C. J. Lin, and H. Notrays, Appl. Phys. Lett. 61, 2726 (1992). [36 ] W. Grange, I. Galanakis, M. Alouani, M. Maret, J. P. Kappler, and A. Rogalev, Phys. Rev.B 62, 1157 (2000). [37 ] M. Vergohl and Schoenes, J. Magn. Soc. Jpn. 20, 141 (1996). [38 ] T. Kato, H. Kikuzawa, S. Iwata, S. Tsunashima, and S. Uchiyama, J. Magn. Magn. Mater. 140, 713 (1995). [39 ] P. W. Rooney, A. L. Shapiro, M. Q. Tran and F. Hellman, Phys. Rev. Lett. 75, 1843(1995). [40 ] M. Shirai, Physica B 237, 351 (1997). [41 ] S. J. Pickart and R. Nathans, J. Appl. Phys. 34, 1203 (1963). [42 ] S. K. Burke, B. D. Rainford, D. E. G. Williams, P. J. Brown, and D. A. Hukin, J. Magn. Magn. Mater. 15, 505 (1980). [43 ] R. F. C. Farrow, D. Weller, R. F. Marks, M. F. Toney, D. J. Smith, and M. R. McCartney, J. Appl. Phys. 84, 934 (1998). [44 ] D. Weller, H. Brandle, and C. Chappert, J. Magn. Magn. Mater. 121, 461 (1993). [45 ] B.M. Larson and B.M. Clemens, Appl. Phys. Lett. 63, 1438 (1993). [46 ] D. Weller, H. Brandle, G. L. Gorman, C. J. Lin, and H. Notrays, Appl. Phys. Lett. 61,2726 (1992). [47 ] J. Cho, M. Park, H. S. Kim, T. Kato, S. Iwata, and S. Tsunashima, J. Appl. Phys. 86,3149 (1999). [48 ] M. Maret, M. Albrecht, J. KoK hler, R. Poinsot, C. Ulhaq-Bouillet, J. M. Tonnerre, J. F. Berar, and E. Bucher, J. Magn, Magn. Mater. 218, 151 (2000). [49 ] T. Kato, K. Sugihara, A. Kobayashi, S. Iwata, and S. Tsunashima, IEEE Trans. Magn. 37,2414 (2001). [50 ] D.C. Koningsberger and R. Prins, X-ray Absorption principles, applications, techniques of EXAFS, SEXAFS and XANES, pp.614-618(1988). [51 ] J. J. Rehr and R. C. Albers, Rev. Mod. Phys. 72, 621(2000). [52 ] A. Borgschulte, D. Zur, D. Menzel, and J.Schoenes, Phys. Rev. B 66, 144421(2002). [53 ] I. F. Lee, M. Y. Shen, Y. Y. Lay, J. C. Jan, J. W. Chiou, H. M. Tsai, W. F. Pong, M.-H. Tsai, H. H. Hsieh, H.-J. Lin, J. F. Lee, C. A. Ku and J. C. A. Huang, Appl. Phys. Lett. 82, 3062(2003). [54 ] Y. H. Liou, W. F. Pong, M.-H. Tsai, K. H. Chang, H. H. Hseih, Y. K. Chang, F. Z. Chien, P. K. Tseng, J. F. Lee,Y. Liou, and J. C. A. Huang, Phys. Rev. B 62, 9616(2000). [55 ] D.C. Koningsberger and R. Prins, X-ray Absorption principles, applications, techniques of EXAFS, SEXAFS and XANES, pp.614-618(1988). [56 ] J. J. Rehr and R. C. Albers, Rev. Mod. Phys. 72, 621(2000). [57 ] P.M. Oppeneer, I. Galanakis, A. Grechnev, O. Eriksson, J. Magn, Magn. Mater. 240, 371(2002). [58 ] A. Borgschulte, D. Zur, D. Menzel, and J.Schoenes, Phys. Rev. B 66, 144421(2002). [59 ] Youngsoo Kwon, T.H. Rho, Sangsoo Lee, and Soon C. Hong, J. Appl. Phys. 93, 7151(2003). [60 ] S. Sun, C.B. Murray, D. Weller, L. Folks and A. Moser, Science 287 (2000). [61 ] H.Zeng, S.Sun, T.S.Vedantam, J.P.Liu, Z.-R.Dai and Z.-L.Wang, Appl. Phys. Lett. 80, 2583(2002). [62 ] B. Stahl, J. Ellrich, R. Theissmann, M. Ghafari, S. Bhattacharya, H. Hahn, N. S. Gajbhiye, D. Kramer, R. N. Viswanath, J. Weissmuller and H. Gleiter, Phys. Rev. B 67, 014422(2003). [63 ] K. Chang, H. H. Hsieh, W. F. Pong, M. H. Tsai, F. Z. Chien, P. K. Tseng, L. C. Chen, T. Y. Wang, K. H. Chen, D. M. Bhusari, J. R. Yang and S. T. Lin, Phys. Rev. Lett. 82, 5377(1999). [64 ] C. Mahaux, P. F. Bortignon, R. A. Broglia and C. H. Dasso, Phys. Rep. 120 , 1(1985). [65 ] M. Bernath, M. S. Hansen, P. F. Bortignon and R. A. Broglia, Phys. Rev. A 49, 1115(1994). [66 ] A.L. Ankudinov, J.J. Rehr, John J. Low and Simon R. Bare , J. Chem. Phys. 116,1913(2002). [67 ] Matthew Newville, AUTOBK , University of Washington(1995). [68 ] Philip R. Bevington and D. Keith Robinson, “Data reduction and error analysis for the physical sciences”, pp. 228-231(1994). [69 ] http://millenia.cars.aps.anl.gov/cgi-bin/atoms/atoms.cgi [70 ] B. Ravel, and J.J. Rehr , FEFF8.20 , University of Washington(2000). [71 ] Matthew Newville, FEFFIT , University of Chicago, (1998). [72 ] E. Sobczak and N.N. Dorozhkin, Journal of alloys and compounds 286, 108(1999). [73 ] P.E. Batson, Phys. Rev. B 48, 2608(1993). [74 ] D.A. Fischer, R.M. Wentzcovitch, R.G. Carr, A. Continenza, and A.J. Freeman, Phys. Rev. B 44, 1427(1991). [75 ] Xudong Weng, Peter Rez, and Hong Ma, Phys. Rev. B 40, 4175(1989). [76 ] D.A. Fischer, R.M. Wentzcovitch, R.G. Carr, A. Continenza, and A.J. Freeman, Phys. Rev. B 44, 1427(1991). [77 ] R.A. Bosenberg, P.J. Love, and Victor Rehn, Phys. Rev. B 33, 4034(1986).id NH0925593021 sid 913152 cfn 0 / id NH0925593022 auc 江弘棋 tic 應用二維數值模擬以改善電漿顯示器之發光效率 adc 陳金順 adc 柳克強 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 115 kwc 電漿顯示器 kwc 模擬 kwc 氣體放電 kwc 壁電荷 kwc 流體模型 abc 本研究為使用二維交流型電漿顯示器之數值模擬來改善電漿顯示器的發光效率,影響發光效率的因子有驅動電壓波形、混合氣體成份、電極結構、cell結構等參數,而本論文的探討以電極結構與氣體成份為主,而模擬所使用的物理模型為流體模型(fluid model),並考慮電子能量方程式,以精確計算空間中的電子平均能量,在本文中比較了傳統式電極以及一些特殊電極對電漿顯示器發光效率的影響,藉由增加電漿的放電路徑來產生較多的氙激發態,並且在兩維持電極間的輔助電極上加維持電壓方波以感應出正陽光柱放電(positive column discharge),因此利用在陽極區域的高放電效率來有效提升電漿顯示器的發光效率,並考慮紫外光的放射情形計算發光效率,根據我們設計的電極可以使放電效率達26%,而改變維持電壓頻率,當頻率增加時會有較低的電子溫度,因此枮激發效率可提升,但是若頻率過高而產升的提早放電將使電子密度下降,所以電子加熱效率會降低,在混合氣體方面,已建立六種不同的氣體比例,為Ne/Xe4%、Ne/Xe5%、Ne/Xe8%、Ne/Xe10%、Ne/Xe12%、Ne/Xe15%,研究發現在低氙氣成分時紫外光主要是147nm為主,而在高氙氣下紫外光主要是由Xe2*(3Σu+)所產生(173nm),最後並模擬友達的面板參數,得到與實驗上相近的結果。 tc 目錄 摘要…………………………………………………………………….Ⅰ 誌謝辭………………………………………………………………….Ⅱ 目錄........................................................................................................ Ⅲ 圖目錄.................................................................................................... Ⅵ 表目錄………………………………………………………………ⅩⅢ 第一章 導論.............................................................................................1 1.1簡介……………………………………………………… 1 1.2文獻回顧.............................................................................4 第二章 基本原理.... .............................................................................14 2.1電漿顯示器操作原理介紹 ………………………………14 2.1.1基本結構 …………………………………………14 2.1.2操作原理 …………………………………………16 2.1.3 電極設計 ………………………………………18 2.2物理模型 ……………………………………………19 2.2.1流體模型 ………………………………………19 2.2.2幾何結構與邊界條件 ……………………………23 2.2.3考慮的反應式及建立混合氣體比例的資料庫 …26 2.3 數值模型…………………………………………32 2.3.2 有限空間差分法 ……………………………… 32 2.3.3傳遞方程式的空間離散化 ………………………33 2.3.4 帕松方程式之數值模型 ………………………37 第三章 模擬程式描述…………………………………43 3.1 Visual C++ 撰寫電漿顯示器流體模型程式 ……43 3.2 MATLAB即時繪圖介紹………………………………43 3.3 模擬程式之流程……………………………………45 第四章PDP放電能量損耗的機制 ……………………………46 4.1 PDP放電的模擬…………………………………………46 4.1.1起始狀況……………………………………………46 4.1.2 標準面向型放電cell………………………………46 4.2紫外光的計算及能量損耗分析……………………………54 4.3 維持電壓與發光效率的關係………………………….… 59 4.3.1電子加熱效率與氙激發效率的分析 …………...…59 4.3.2維持電壓頻率與效率的關係 ……………………66 第五章 模擬結果與討論………………………………………………70 5.1 各種電極結構操作原理及優缺點比較 …………………70 5.2 特殊電極型的PDP cell……………………………………70 5.3 氙氣比例與氣壓對發光效率的影響 ……………………77 5.4 模擬實際的面板………………………………………… 83 5.4.1 ADS驅動波形……………………………………83 5.4.2 緩斜線維持電壓波形……………………………92 第六章 總結及建議的未來工作………………………………………95 6.1總結 ………………………………………………………..………95 6.2未來工作 …………………………………………………..………95 參考文獻 ………………………………………………………………97 附錄 A. 在Xe/Ne混合氣體下離子的移動率 …………………… 101 附錄 B 局部電場近似(LFA)的適用性 …………………………… 103附錄 C. 2D 解矩陣程式–穩定性雙共軛梯度疊代法(Bi-CGSTAB) …104 附錄 D. 計算反應係數及電子移動率之程式 BOLSIG …………… 105 附錄 E. time step對模擬結果的影響………………………………107 附錄F. MATLAB 2D 繪圖程式 ………………………………………108 附錄G. Visual C++ 與MATLAB link之系統參數設定……………112 圖目錄 圖1.1 Samsung 46 inch,LCD …………………………………………2 圖1.2 Sanyo OLED……………………………………………………2 圖1.3 Plasma 電漿電視 …………………………………………..…3 圖1.4 Motorola, 5.6 inch FED…………………………………………3 圖1.5 (a)在定址與維持期間下的電位線及氙激發態功率損耗分佈圖(b)在各電極上的驅動波形 (c) 壁電荷隨時間的變化圖……………...7 圖1.6 (a)使用LFA model所求的電子溫度分佈情形 (b) 使用EEE model所求的電子溫度分佈情形…………………………………….…8 圖1.7 在不同電極寬度下,氙激發態Xe*密度輪廓圖………………9 圖1.8 (a) T型電極結構下Xer* 密度分佈圖(b)比較T型電極與傳統電極的放電效率 ………………………………………………………..10 圖1.9比較(a)標準型電極與(b)特殊電極氙激發態的功率損耗情形………………………………………………………………………11 圖1.10 使用輔助電極下氙激發態Xe*(3P1)密度分佈 ……………12 圖1.11 比較傳統電極與輔助電極模式局部效率 …………………12 圖1.12 比較傳統電極及埋入bus電極(a)氙激發態的數目隨時間的變化情形 (b)發光效能及放電效率隨維持電壓的變化 …………….. 12 圖2.1 交流偶合電漿顯示器結構……………………………………15 圖2.2 電漿顯示器電極結構方式 …………………………………16 圖2.3 PDP操作原理示意圖 ………………………………………17 圖2.4 空間電荷隨維持頻率的變 ………………………………17 圖2.5 發光效能隨維持頻率的變化 ……………………………… 17 圖2.6 新電極結構 …………………………………………………19 圖2.7 增加輔助電極下PDP cell結構 ……………………………19 圖2.8 電漿顯示器二維數值模擬幾何結構圖 ……………………24 圖2.9 槽內幾何結構圖 ……………………………………………24 圖2.10在Ne-Xe(96-4%)下隨電子平均能量變化之反應速率圖 (a) 彈性碰撞與游離反應 (b) 氖氣與氙氣的激發反應 ………………… 29 圖2.11 在Ne-Xe(96-4%)下電子之移動率 …………………………30 圖2.12 氖離子移動率及在不同氣體成份下氙離子的移動率……..31 圖2.13 有限空間微分法空間格點位置圖 …………………………33 圖4.1 (a)外加於各電極的驅動波形 (b)各電極上的放電電流隨時間的變化情形 (c)累積在各電極上壁電荷隨時間的變化情形 …………..47 圖4.2 電子、氖離子、氙離子、氙激發態的密度隨時間的分佈圖…48 圖4.3 700ns 時定址放電的電子、氙激發態的密度、電子平均能量及電位分佈………………………………………………………………. 49 圖4.4 700ns 時定址放電的氙離子、氖離子及壁電荷分佈圖 …… 50 圖4.5 26050ns第五個維持放電的電子、氙激發態的密度、電子平均能量及電位分佈 ………………………………………………………50 圖4.6 26050ns第五個維持放電的氙離子、氖離子及介電層上的壁電荷分佈圖 ……………………………………………………………51 圖4.7 26150ns第五個維持放電的電子、氙激發態的密度、電子平均能量及電位分佈圖……………………………………………………52 圖4.8 26150ns第五個維持放電的氙離子、氖離子及介電層上壁電荷分佈圖…………………………………………………………………52 圖4.9 26400ns第五個維持放電的電子、氙激發態的密度、電子平均能量及電位分佈圖……………………………………………………53 圖4.10 26400ns第五個維持放電的氙離子、氖離子及介電層上壁電荷分佈圖……………………………………………………………… 48 圖4.11 電漿顯示器在氙氖混合氣體下重要的碰撞及光放射的能階圖………………………………………………………………………54 圖4.12 (a)第五個維持放電下的總功率消耗、電子功率消耗及花費在激發氙氣與游離氙氣的功率大小(b)為對應此時間的放電電流..56 圖4.13第五與第六個維持放電下紫外光的放射功率………………57 圖4.14 (a)第六個維持放電下電子與離子的所獲得的能量、(b)消耗在游離與激發反應的能量及紫外光的放射能量 ……………………58 圖4.15 放電時電子平均能量與維持電壓的關係 ………………..60 圖4.16 在不同電壓下電子平均能量隨時間的變化情形………….60 圖4.17 (a) 維持電壓200V的電子平均能量分佈 (b) 維持電壓170V的電子平均能量分佈………………………………………………….61 圖4.18 電子加熱效率與隨維持電壓的變化 (Ne-Xe4%) …………..62 圖4.19 維持電壓170V與200V下的氙離子與氖離子的密度……… 63 圖4.20 暫態電子加熱效率及氙激發效率隨時間的變化情形 ……..65 圖4.21 放電時X,Y,A電極上壁電荷的累積情形(1)18039ns, (2)18075ns,(3) 18113ns,(4) 18161ns, (5)18211ns,(6)18351ns ………...65 圖4.22 在上升時間為100ns時電子平均能量與維持電壓頻率的關係 ………………………………………………………………………66 圖4.23 在相同的維持電壓下,50kHz與200kHz唯持頻率對電子密度的影響 …………………………………………………………………67 圖4.24 在時間為22058ns時,維持電壓頻率f=200kHz下PDP cell的過早放電放電現象 ……………………………………………………68 圖4.25在時間為22058ns時,維持電壓頻率f=50kHz下PDP cell還未電放電情形 …………………………………………………………68 圖4.26 電子加熱效率隨維持電壓頻率的變化………………………69 圖5.1 (a)各電極上的放電電流隨時間的變化情形(b)外加於各電極的驅動波形(c)累積在各電極上壁電荷隨時間的變化情形……………71 圖5.2 電子、氖離子、氙離子、氙激發態的密度隨時間的分佈圖…72 圖5.3電子、氙激發態的密度、電子平均能量及電位分佈圖 ………73 圖5.4 25080ns第五個維持放電的氙離子、氖離子及介電層上的壁電荷分佈 …………………………………………………………………74 圖5.5電子、氙激發態的密度、電子平均能量及電位分佈圖 ………74 圖5.6 25080ns第五個維持放電的氙離子、氖離子及介電層上的壁電荷分佈 …………………………………………………………………74 圖5.7 (a)第五個維持放電下的總功率消耗、電子功率消耗及花費在激發氙氣與游離氙氣的功率大小,(b)為對應此時間的放電電流……..75 圖5.8 使用特殊電極在第五與第六個維持放電下紫外光的放射功率 ………………………………………………………………………76 圖5.9 特殊電極結構(a)第六個維持放電下電子與離子的所獲得的能量、(b)消耗在游離與激發反應的能量及紫外光的放射能量 ………77 圖5.10為外加X,Y,A,Z電極上的驅動電壓………………………….. 78 圖5.11 Ne-Xe90-10%下PDP cell中的放電行為……………………..79 圖5.12 輔助電極的電壓所產生的X-Z放電 (Ne-Xe10%) ………….80 圖5.13暫態電子加熱效率及氙激發效率隨時間的變化情形 ……....81 圖5.14 在Ne-Xe10%下電子加熱效率隨維持電壓的變化 …………82 圖5.15 紫外光相對強度隨氙氣比例的變化…………………………83 圖5.16模擬所用的外加於X,Y,A電極上的驅動電壓波形…………83 圖5.17 定址放電在(a)1211ns(b)1303ns時電位、電子、氖離子及氙離子密度分佈圖 ………………………………………………………84 圖5.18 定址放電在(a)1211ns(b)1303ns時氙激發態的密度(Xe*(3P1),Xe**,Xe2*(3Σu+)) 及電子平均能量的分佈圖 ……………….85 圖5.19 定址放電在(a)1211ns(b)1303ns時約化電場、電子、氙離子及氖離子通量的分佈圖 ………………………………………………...85 圖5.20 定址放電在(a)1211ns(b)1303ns時 Xe2*(3Σu+)密度、紫外光放射功率及介電層上壁電荷累積的分佈圖 ……………………………85 圖5.21在維持放電 (a)28075ns(b)28227ns時電位、電子、氖離子及氙離子密度分佈圖 ……………………………………………………86 圖5.22 定址放電在(a)28075ns(b)28227ns時約化電場、電子、氙離子及氖離子通量的分佈圖 ……………………………………………...87 圖5.23 在維持放電 (a)28075ns(b)28227ns時電子平均能量及氙激發態的密度(Xe*(3P1),Xe**,Xe2*(3Σu+))的分佈圖 ………………………..87 圖5.24 維持放電在(a)28075ns(b)28227ns時 Xe2*(3Σu+)密度、紫外光放射功率及介電層上壁電荷累積的分佈圖 ………………………....88 圖5.25 PDP cell在X, Y, A各電極上壁電荷隨時間的變化圖 ……88 圖5.26 PDP cell在X, Y, A電極上電流隨時間的變化圖 ………….89 圖5.27 暫態電子加熱效率隨時間的變化情形 ……………………90 圖5.28 放電時X,Y,A電極上壁電荷的累積情形(1)27307ns,(2)27506ns, (3) 27776ns,(4) 28102ns, (5)28445ns,(6) 28765ns …………………..90 圖5.29第五與第六個維持放電下紫外光的放射功率 …………….91 圖5.30 放電效率隨位置的變化情形 rise time 250ns 92 圖5.31 在Ne-Xe5%,氣壓500torr下(a)維持放電下電子與離子的所獲得的能量、(b)消耗在游離與激發反應的能量及紫外光的放射能量.92 圖5.32 不同上升時間的維持電壓及各電極上的放電電流 ……… 93 圖5.33 不同的上升時間下產生紫外光的激發態粒子密度…………94 圖5.34 不同上升時間對效率及功率損耗的影響 ………………… 94 圖A-1 簡化移動率隨簡化電場的變化情形 …………………………90 圖A-2 氙氣離子的移動率隨簡化電場的變化情形(a)Ne/Xe 5% (b)Ne/Xe 20% …………………………………………………………91 圖C-1 各種ILU,MILU,BILU,MBILU分解搭配Bi-CGSTAB的收斂行為 …………………………………………………………………… 93 圖D-1 輸入混合氣體比例以及約化電場 ………………………… 94 圖D-2 疊代計算並將電子的移動率及各反應係數輸出檔案 ………95 表目錄 表一 物理模型中所考慮之反應式 …………………………………26 表二 各種電極結構操作原理及優缺點比較 ………………………70rf 參考文獻 [1 ] F. Gray, J. W. Horton, R. C. Mathes, “The Porduction and Utilization of Television Signal,” Bell Sys. Tech. J., 6, 560(1927). [2 ] Lawrence E. Tannas, Jr., “Flat Panel Displays And CRTs,” New York:Van Nostrand Reinhold, p. 338.(1985). [3 ] D. L. Bitzer, and H. G. Slottow,“The Plasma Display Panel-A Digitally Addressable Display with Inherent Memory,” AFIPS Conf. Proc., 29, 541(1966). [4 ] T. Shinoda, M. Wakitani, T. Nanto, T. Kurai, N. Awaji, M. Suzuki, ”Improvement of Luminance and Luminous Efficiency of Surface-Discharge Color ac PDP,” SID ’91 digest, p. 724(1991). [5 ] J. Meunier, P. Belenguer, and J. P. Boeuf, "Numerical model of an ac plasma display panel cell in neon-xenon mixtures", J Appl Phys. 78, 731 (1995) [6 ] C. Punset, J.P. Boeuf and L.C. Pitchford, "Two-dimensional simulation of an alternating current matrix plasma display cell: Cross-talk and other geometric effects", J Appl Phys. 83,1884 (1998). [7 ] J.P. Boeuf, Th. Callegari ,C. Punset, and R. Ganter, “Modeling as a Tool for plasma display cell optimization,” Asia Display’98, p.209 (1998) [8 ] Jeong Hyun Seo, Woo Joon Chung, Cha Keun Yoon, “Two-dimension Modeling of a surface type Alternating current plasma display panel cell: discharge dynamics and address voltage effects ,”IEEE Trans. Plasma Sci. 29, 824 (2001) [9 ] H. C.Kim, M. S. Hur, S. S. Yang, S. W. Shin, and J. K Lee, “Three-dimensional fluid simulation of a plasma display panel cell,” J Appl. Phys. 91, 9513 (2002) [10 ] J. H. Choi, Y. Jung, C.G. Ryu, S. B. Kim and E.H. Choi,”Space charge effect for sustaining discharge in coplanar AC PDP,” IDW ’02, p.873 (2002) [11 ] Sean J. Yoon, Insook Lee, and K. Y. Choi,”Three-dimensional simulation of He/Ne/Xe filled coplanar AC-PDPs,” IDW ’02, p.833 (2002) [12 ] S. J. Lee, J.K. Lee, and H. J. Hwang, “Improvement of luminance and luminous efficiency by the optimized gas in AC PDP,” IDW ’02, p.805 (2002) [13 ] C. Punset, S. Cany and J.-P. Boeuf, “Addressing and sustaining in AC coplanar plasma display panels,” J. Appl. Phys. 86, 124 (1999) [14 ] H. C. Kim, S. S. Yang, and J. K. Lee, “Three-dimensional fluid simulation of an AC-PDP cell,” IEEE Trans. Plasma Sci. 30, p.188 (2002) [15 ] S. Rauf and M. J. Kushner,“ Dynamics of a coplanar-electrode plasma display panel cell, Ⅰ.Basic operation ” J. Appl. Phys. 85, 3460 (1999) [16 ] S. Rauf and M. J. Kushner,“ Dynamics of a coplanar-electrode plasma display panel cell,Ⅱ. Cell optimization,” J. Appl. Phys. 85, 3460 (1999) [17 ] Heui Seob Jeong, Yukio Murakami, Masahiko Seki, and Hiroshi Murakami,”Discharge characteristics with respect to width of address electrode using three-dimensional analysis ,”IEEE Trans.Plasma Sci. 29, 559 Jun. (2001). [18 ] Heui Seob Jeong, Buhm-Jae Shin, and Ki-Woong Whang,”Two-dimensional multifluid modeling of the He-Xe discharge in an AC plasma display panel,”IEEE Trans. Plasma Sci., 27,p.171, (1999). [19 ] Hagelaar, Gerardus Johannes Maria,”Modeling of microdischarges for display technology”, Ph.D. thesis, (2000) [20 ] G. Veronis and U. S. Inan, “Simulation studies of the coplanar electrode and other plasma display panel cell designs,” J. Appl, Phys., 91, 9502 (2002) [21 ] G. Veronis and U. S. Inana, “Cell geometry designs for efficient plasma display panels,” J. Appl. Phys., 92, 9 (2002). [22 ] Woo Joon Chung, Jeong Hyun Seo, and Ki-Woong Whang, “Analysis of the address and sustain discharge in an AC PDP cell using three-dimensional simulation,”IEEE Trans. Plasma Sci , 30, April (2002) [23 ] J. P. Boeuf, “Plasma display panel: Physics, recent developments and key issues,” J. Appl. Phys. 36 R53 (2003) [24 ] Sung Soo Yang, Hyun Chul Kim, Sang Woo Ko, and Jae Koo Lee, “Application of Two-Dimensional Numerical Simulation for luminous efficiency improvement in plasma display panel cell ,”IEEE Trans. Plasma Sci. ,vol. 31 (2003) [25 ] J.P. Boeuf, C, Punset,A. Hirech and H.Doyeux, “Physics and modeling of plasma display panels”, J. Appl. Phys. 4,1997 [25 ] BOLSIG, "Boltzmann solver for the SIGLO-SERIES 1.0", CPA Toulouse & Kinema Software (1996) [26 ] Siegfried Selberherr, "Analysis and Simulation of Semiconductor Devices",P156∼P175,Springer-Verlag Wien New York. [27 ] Faires.Burden, "Numerical Methods",second edition. [28 ] G. S. Chen and D. Y. Yang, "Comparison of preconditioned generalized conjugate gradient methods to two-dimensional neutron and photon transport equation", Ann. Nucl. Energy, 25, 97-115 (1998) [29 ] 12.Y. Ikeda, J. P. Verboncoeur, P. J. Christenson, and C. K. Birdsall, "Global modeling of a dielectric barrier discharge in Ne-Xe mixtures for an alternating current plasma display panel", J. Appl. Phys., 86, 2431 (1999) [30 ] MATLAB程式設計與應用,張智星 [31 ] 國立清華大學工程與系統科學所碩士論文,鄭凱儒 [32 ] 國立清華大學工程與系統科學所碩士論文,陳龍志 [33 ] Gerjan Hagelaar, Daiyu Hayashi “Discharge efficiency in high Xe content plasma display panels”, J. Appl. Phys., 95,1656 (2004) [34 ] D. Piscitelli, L.C. Pitchford, “Ion mobilities in Xe/Ne and other rare gas mixtures”, Phys. Rev. E 68, (2003) [35 ] D. J. Eckstrom, H. H. Nakano, “Characteristics of electron beam excited Xe2* at low pressures as a vacuum ultraviolet source”, J. Appl. Phys. 64,1679 (1988) [36 ] Woo Joon Chung, Jae Jun Kim, Hyun Sook Bae, Jeong Hyun Seo, and Ki-Woong Whang, “Mechanism of high luminous efficient discharges with high Xe-content in AC PDP”, IEEE Trans. Plasma Sci., 31, 1038, (2003) [37 ] Hae June Lee, Hyun Chul Kim, Sung Soo Yang, and Jae Koo Lee, “Two-dimensional self-consistent radiation transport model for plasma display panels.” ,Physics Plasmas, 9, No. 6, (2002) [38 ] Woo Joon Chung, Jeong Hyun Seo, Dong-Cheol Jeong, and Ki-Woong Whang, “Three-Dimensional Modeling of a surface type alternating current plasma display panel cell: the effect of cell geometry on the discharge characteristics”, IEEE Trans. Plasma sci., 31, NO. 5, (2003) [39 ] Volker van Elsbergen, Peter K. Bachmann, and Thomas Juestel, “ Ion-Induced Secondary Electron Emission: A Comparative Study”, SID’00, 2000, pp. 220 [40 ] C.H. Shon, J. K. Lee, H. C. Kim and S. W. Shin, “Striation Phenomenon of Plasma Display Panel Cell and Its Application to Efficiency Improvement”, SID’01, 2001 [41 ] J. O. Hischfelder, C. F. Curtiss, and R. B. Bird, “Molecular theory of gases and liquids,” John Wiley & Sons, Inc. (1954).id NH0925593022 sid 913159 cfn 0 / id NH0925593023 auc 李仁傑 tic 碟形超音波致動器結構變異之動態量測與分析 adc 歐陽敏盛 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 98 kwc 超音波致動器 kwc 動態特性鑑別 kwc 系統鑑別理論 kwc 假性隨機二進位序列 kwc 阻抗分析儀 abc 本文的研究是針對碟型超音波致動器的動態特性做鑑別與分析,鑑別與分析的對象為本實驗室所發展的四種不同型式的碟型超音波致動器,並建立一套量測系統,以利做碟型超音波致動器的動態特性分析。 tc 摘要 Ⅰ 致謝 III 目錄 Ⅳ 圖目錄 Ⅶ 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1壓電材料的發展史 2 1.2.2壓電材料的特性 8 1.2.3壓電材料的種類與應用 11 1.3 研究動機與目的 14 1.4 本文內容 15 第二章 超音波致動器及系統鑑別理論 16 2.1 超音波致動器理論 16 2.1.1 壓電效應 16 2.1.2 壓電陶瓷的共振特性 18 2.1.3 超音波致動器工作原理 20 2.2 系統鑑別理論 22 2.2.1 鑑別模型 22 2.2.2 散佈係數理論 27 2.2.3 擾動信號源理論 29 第三章 實驗平台的量測架設及實驗方法與實驗對象介紹 33 3.1 傳統動態量測分析方法回顧 33 3.2 實驗平台的量測架設與實驗方法及實驗對象介紹 36 3.2.1 實驗儀器與設備 36 3.2.2 實驗對象超音波致動器介紹 37 3.2.3 假性隨機二進位序列掃頻量測架設與實驗方法 39 3.2.4 驅動電路量測架設與實驗方法 47 第四章 壓電性質之量測實驗結果分析 48 4.1 壓電性質之機電耦合係數介紹 48 4.2 電感值的匹配計算 51 4.3 機電耦合係數計算 53 4.4 實驗結果分析 64 第五章 等效電路建構與分析 80 5.1 等效電路推導過程 80 5.2 等效電路分析 81 5.3 討論 90 第六章 結論 93 6.1 結論 93 6.2 建議事項 94 參考文獻 96rf [1 ] 許溢适,壓電/電歪致動器,文笙書局,台北,1995。 [2 ] 池田拓郎 著、陳世春 譯著,“基本壓電材料學”,第1~2頁,復漢社出(1997/12)。 [3 ] 周卓明,壓電力學,全華科技圖書,台北,2003。 [4 ] “陶瓷技術手冊”,經濟部技術處發行,中華民國產業科技發展協進會扙與中華民國粉末治金協會出版(1994/07) [5 ] Eiichi Fukada.”History and Recent Progress in Piezoelectric Polymers”,The Institute of Electrical and Electronics Engineers.Inc.(2000). [6 ] http://www.uspto.gov(美國專利局資料庫)。 [7 ] http://www.apipa.org.tw(亞太智慧產權發展基金會資料庫)。 [8 ] 尹耀邦 編著,“奈米時代”,初版六刷,五南圖書出版公司(2002/06)。 [9 ] 周卓明,“層狀壓電薄殼之研究:設計、製程與實驗”,台灣大學應用力學研究所博士論文,台北(1997/06)。 [10 ] 郭榮芳,側推式超音波馬達設計與測試,國立清華大學工程與系統研究所碩士論文,2000。 [11 ] 吳朗,電子陶瓷-壓電,全欣科技,台北,1994。 [12 ] 許溢适,壓電陶瓷新技術,文笙書局,台北,1996。 [13 ] 鄭振東,超音波工程,全華科技,台北,1999。 [14 ] 鄭世裕,「壓電陶瓷」,陶瓷技術手冊,汪建民主編,粉末冶金協會,台北,1994。 [15 ] J. Zelenka, Piezoelectric resonators and their applications, Elsevier, Amsterdam, 1986. [16 ] 陳昭亨,盤型超音波致動器動態電性分析,國立清華大學工程與系統科學系碩士論文,新竹,2002。 [17 ] Acoustic component div., OBO pro.2 Inc., Taipei, 2002. [18 ] L. Ljung., System Identification Toolbox User’s Guide, The Math Works Inc., July 1991. [19 ] 趙清風,控制之系統識別,全華科技圖書,2001。 [20 ] M. Quyang, C. M. Liaw, and C. T. Pan, “Model Reduction by Power Decomposition and Frequency Response Maching,” IEE Trans. On Automatic Control, AC-32, pp. 59-62. 1987. [21 ] 賴明宏,含油軸承試驗機的動態量測與分析,國立清華大學工程與系統科學學系碩士論文,2001。 [22 ] 歐陽敏盛與賴明宏著,系統鑑別理論與應用,(校稿中)。 [23 ] R.N. Mutagi., “Pseudo noise sequences for engineers,” Electronics & Communication Engineering Journal, April, pp. 79-87, 1996. [24 ] Keith Godfrey., Perturbation Signals for System Identification, Prentice-Hall Inc, 1993. [25 ] T. Sashida, and T. Kenjo, “An Introduction to Ultrasonic Motors,” Biddles Ltd, 1993. [26 ] T. Sashida, T. Kenjo, An Introduction to Ultrasonic Motors, Clarendon Press, Oxford, 1993. [27 ] S. Ueha, Y. Tomikawa, Ultrasonic Motors - Theory and Applications, Clarendon Press, Oxford, 1993. [28 ] 王柏村,振動學,全華科技,台北,2001。 [29 ] 葉俊余,新型超音波馬達之設計分析與量測,國立清華大學工科系碩士論文,新竹,2000。 [30 ] 陳英豪,超音波滑動平台之設計與研製,國立清華大學工程與系統科學系碩士論文,新竹,2002。 [31 ] 李政漢,側推式超音波馬達性能量測與應用設計,國立清華大學工科系碩士論文,新竹,2001。 [32 ] 黃昱先,利用ANSYS輔助碟型超音波致動器之動態特型量測,國立清華大學工科系碩士論文,新竹,2003。 [33 ] K. Uchino, Piezoelectric Actuators and Ultrasonic Motors, Kluwer Academic Publishers, Boston/Dordrecht/London, 1997. [34 ] IRE Standards on Piezoelectric Crystals Measurement of Piezoelectric Ceramics, 1961. [35 ] Hiromu Ouchi, J. Am. Cer. Soc. Vol 51 [3 ] 169-175, 1968. [36 ] L. Petit, N. Rizet, R. Briot, P. Gonnard, “Frequency behaviour and control of piezomotors,” Sensors and Actuators A, 80(2000) 45-52 [37 ] 許溢适,超音波電動機基礎,文笙書局,台北,1995。id NH0925593023 sid 913164 cfn 0 / id NH0925593024 auc 陳明男 tic 缺口式薄盤超音波馬達之設計與分析 adc 歐陽敏盛 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 76 kwc 缺口式薄盤超音波馬達 kwc 三缺口110°-120°-130° 雙片挾持振動片 kwc 驅動模態 kwc 有限元素分析 kwc 碳粉顯影 abc 本研究主要是針對出平面作動方向的新型缺口式薄盤超音波馬達設計其定子部振動片的結構,振動片是採用市售蜂鳴片(直徑31 mm,厚度0.2 mm)在其金屬背板施以幾何不對稱的缺口設計,使位於背板中心處的驅動螺釘可被激發產生出平面的橢圓位移運動,直接驅動軸心為2 mm的轉子高速轉動。同時利用結構導向的設計使驅動模態的頻率落在壓電材料的主機電共振區內,提升其工作性能。 rf [1 ] 楊明昌, 指導教授 歐陽敏盛 博士, “超音波馬達設計與分析-軸推式”, 國 立清華大學工程與系統研究所碩士論文, 民國88年7月. [2 ] T. Sashida, T. Kenjo, An Introduction to Ultrasonic Motors, Clarendon Press, Oxford, 1993. [3 ] S. Ueha, Y. Tomikawa, Ultrasonic Motors - Theory and Applications, Clarendon Press, Oxford, 1993. [4 ] C.Y. Yen, F.L. Wen, and M. Ouyang, “Thin-disk Piezoceramic Ultrasonic Motor. Part II System Construction and Control,” Ultrasonics, 2003 Aug. 41(6): 451-463. [5 ] 陳啟陞,碟型壓電馬達之結構動態分析,國立交通大學機械工程系碩士論文,新竹,2000。 [6 ] H.V. Barth, “Ultrasonic driven motor,” IBM Technical Disclosure Bulletin, 16, 2263, 1973. [7 ] 許溢适,壓電/電歪致動器,文笙書局,台北,1995。 [8 ] T. Yamazaki, J. Hu, K. Nakamura and S. Ueha, “Trial construction of a nonconact ultrasonic motor with an ultrasonically levitated rotor ,”JPn. J. Appl., vol. 35(1996)pp. 3286-3288. [9 ] N. Guo and Cawley, “The Finite Element Analysis of the vibration Characteristics of Piezoelectric Discs,” Journal of Sound and Vibration, Vol. 159, pp. 115-138, 1992. [10 ] J.W. Krome and J.Wallaschek, “Influence of piezoelectric actuator on the vibrations of stator of a traveling wave motor,” Proceedings of IEEE Ultrasonic Symposium, Vol. 1, pp. 413-416, 1995. [11 ] L. Nicola, P. Massimo, “A piezoelectric motor using flexural vibration of a thin piezoelectric membrane,” IEEE Transactions on Ultrasonic, Ferroelectrics, and frequency control, 45(1) Jan 1998 23-29. [12 ] R . Carotenuto, N. Lamberti, M. Pappalardo, “A new low voltage piezoelectric micromotor based on stator precessional motion,” IEEE Transactions on Ultrasonic, Ferroelectrics, and frequency control, 45(5) Sept 1998 1427-1435. [13 ] R. Carotenuto, N. Lamberti, M. Pappalardo, “A new linear piezoelectric actuator for low voltage and large displacement applications,” Sensor and Actuators, 72(1999) 262-268 [14 ] A. Iula, R. Carotenuto, M. Pappalardo, “A matrix model of the axle vibration of a piezoelectric motor,” Ultrasonic, 38(1-8) March 2000 41-45. [15 ] 郭榮芳, 指導教授 歐陽敏盛 博士, “側推式超音波馬達設計與測試”, 國立 清華大學工程與系統研究所碩士論文, 民國89年6月. [16 ] 葉俊余, 指導教授 歐陽敏盛 博士, “新型超音波馬達之設計分析與量測”,國立清華大學工程與系統研究所碩士論文,民國89年6月. [17 ] 黃昱先, 指導教授 歐陽敏盛 博士, “碟形超音波馬達之動態特性量測”, 國 立清華大學工科系碩士論文, 民國92年6月. [18 ] 蔡明祺,顛覆傳統的無聲馬達-超音波馬達,科學發展367期,2003。 [19 ] Acoustic Component Div., OBO pro.2 Inc., Taipei, 2002. [20 ] F.L. Wen, C.Y. Yen, and M. Ouyang, “Thin-disk Piezoceramic Ultrasonic Motor. Part I Design and Performance Evaluation,” Ultrasonics, 2003 Aug. 41(6): 437-450. [21 ] C.Y. Yen, F.L. Wen, and M. Ouyang, “Thin-disk Piezoceramic Ultrasonic Motor. Part II System Construction and Control,” Ultrasonics, 2003 Aug. 41(6): 451-463. [22 ] H. Frayssignes, R. Briot, “Traveling wave ultrasonic motor: coupling effects in free stator,” Ultrasonics, 41 (2003) 89-95. [23 ] Uchino.Kenji , Kluwer.Academic ” Piezoelectric Actuators and Ultrasonic Motors ”,1997. [24 ] 杜本權, “電彈複合圓板之理論分析與最佳化”, 國立台灣大學機械工程研究所碩士論文,1998. [25 ] 賴耿陽,超音波工學理論實務,復漢出版社,台南,2000。 [26 ] 王柏村,振動學,全華科技,台北,2001。 [27 ] 許溢适,超音波電動機基礎,文笙書局,台北,1992。 [28 ] 吳朗,電子陶瓷-壓電, 全欣科技,台北, 1994. [29 ] 陳精一,ANSYS 6.0 電腦輔助工程分析,全華科技,台北,2002。 [30 ] ANSYS Dynamics V5.7 Training Manual,虎門科技,台北,2001。. [31 ] 陳添鎮,SolidWorks 2003進階實務應用,全華科技,臺北,2003。 [32 ] 電機工程手冊編輯委員會編,金屬材料,五南出版社,臺北,2002。 [33 ] 陳瑞和,感測器,全華科技,台北,1998。id NH0925593024 sid 913167 cfn 0 / id NH0925593025 auc 朱慶國 tic 雙軸超音波定位平台之研製 adc 歐陽敏盛 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 80 kwc 雙軸定位平台 kwc 薄盤側推式超音波致動器 kwc 單一輸入模糊控制器 abc 本研究論文是設計與製作雙軸定位平台系統,以薄盤側推式超音波致動器為驅動器。鑒於現今傳動系統大部分採用伺服機構搭配滾珠螺桿做為定位機制,而此種定位機制存在著背隙的問題,同時製作精度的要求使價格居高不下;為了使定位精度提升、避免電磁干擾、機構易於薄形化設計及降低製作成本,採用本研究室所研發之薄盤側推式超音波致動器來直接驅動平台,搭配控制器的設計,使其具有長程移動且定位精度可達微米等級。 tc 第一章 緒論 1.1 前言 1.2 文獻回顧 1.3 研究動機 1.4 控制理論 1.5 本文內容 第二章 壓電原理與致動器理論 2.1壓電材料簡介 2.1.1壓電效應 2.2 超音波馬達種類 2.2.1 行進波式 2.2.2駐波式 2.3 壓電超音波致動器 第三章雙軸定位平台設計 3.1平台設計 3.1.1 雙軸平台機構設計 3.2致動器設計 3.3 雙軸平台寸動量測 第四章實驗架構與控制器設計 4.1驅動電路 4.2量測系統 4.3介面卡 4.4實驗方法 4.5 FLC控制器 4.5.1 FLC與受控對象的關係 4.5.2 Fuzzy 邏輯控制器的組成 4.5.3 FLC控制器設計 4.6控制器設計 第五章 實驗結果 5.1.1 雙軸平台速度量測 5.1.2 雙軸定位平台速度控制 5.2 雙軸平台定位精度量測 5.2.1單點定位 5.2.2重複點定位 第六章 結論與建議事項 6.1結論 6.2建議事項 參考文獻rf [1 ] R. Carotenuto, N. Lamberti, A. Iula, and M. Pappalardo “A New Low Voltage Piezoelectric Micromotor Based on Stator Precessional Motion, ”IEEE Trans. Ultrason.,Ferroelect., Freq., Contr., vol. 45, no. 5, pp. 1427–1434, Sept. 1998. [2 ] S. He, W. Chen, X. Tao, and Z. Chen “Standing Wave Bi-direction LinearlyMoving Ultrasonic Motor, ” IEEE Trans. Ultrason., Ferroelect., Freq.,Contr., vol. 45, no. 5, pp. 1133–1138, Sept. 1998. [3 ] A. Kanai, H. Sano, J. Yoshioka, and M. Miyashita, “Positioning of a 200 kgCarriage on Plain Bearing Guideways to Nanometer Accuracy with a Force-operated Linear Actuator, ” Nanotechnology, Vol. 2, pp. 43-51, 1991. [4 ] Takehiko Nomura and Ryouichi Suzuki, “Six-axis Controlled Nanometer-order Positioning Stage for Microfabrication, ” Nanotechnology, Vol. 3, pp. 21-28,1992. [5 ] L. A. Zadeh, “Fuzzy sets, ” Information and Control, Vol. 8, pp. 338-353, 1965. [6 ]T. Sashida, and T. Kenjo, “An Introduction to Ultrasonic Motors, ” Clarendon Press-Oxford, 1993. [7 ] M. Goldfarb, and N. Celanovic, “Modeling Piezoelectric Stack Actuators for Control of Micromanipulation,” IEEE Transactions on Control Systems, June 1997. [8 ]Byung-Jae Choi, Seong-Woo Kwak, and Byung Kook Kim, “Design and Stability Analysis of Single-Input Fuzzy Logic Controller, ”IEEE Transations On System, Man, And Cybernetics-Part B:Cybernetics,vol.30,No.2,2000. [9 ]M. Kinouchi, I. Hayashi, N. Iwatsuki, K. Morikawa, J.Shibata, and K. Suzuki, “Application of Fuzzy PI Control to Improve the Positioning Accuracy of a Rotary-linear Motor Driven by Two-dimensional Ultrasonic Actuators, ” ELSEVIER Microprocessors and Microsystems , vol. 24, pp.105-112, 2000. [10 ] H.V. Barth, “Ultrasonic driven motor, ” IBM Technical Disclosure Bulletin, 16, 2263,1973. [11 ] S. Ueha, and M. Kurosawa, “Ultrasonic motors, ” Proceedings of IEEE Ultrasonics Symposium, Vol. 1, pp. 519-522, 1988. [12 ]M. J. Patyra, J. L. Grantner, and K. Koster, “Digital fuzzy logic controller: Design and implementation, ” IEEE Trans. on Fuzzy Systems, vol. 4, no. 4, pp. 439-459, 1996. [13 ] B. D. Liu, and C. Y. Huang, “Design and implementation of the tree-based fuzzy logic controller, ”. IEEE Trans. on Systems, Man, and Cybernetics, vol. 27, no. 3, pp. 475-587, 1997. [15 ]桂豫晟,超音波致動器之設計分析與量測,國立清華大學,動力機械研究所,碩士論文,1998年。 [16 ]郭榮芳,側推式超音波馬達設計與測試,國立清華大學,工程與系統科學研究所,碩士論文,2000年。 [17 ]陳明泰,以單晶片為控制基礎的新型壓電致動平台研製,國立清華大學,工 程與系統科學研究所,碩士論文,2000年。 [18 ]葉俊余,薄片型超音波致動器之設計與模擬,國立清華大學,工程與系統科 學研究所,碩士論文,2000年。 [19 ]李政漢,側推式超音波馬達特性量測與應用,國立清華大學,工程與系統科學研究所,碩士論文,2001年。 [20 ]林志和,超音波平台之控制系統設計與測試,國立清華大學,工程與系統科學所,碩士論文,2002年。 [21 ] 張所鋐和簡宏彰,三自由度超精密微定位平台之研究,國立台灣大學,機械工程學研究所,碩士論文,1996年。 [22 ] 吳朗,電子陶瓷-壓電,全欣科技圖書,1994。 [23 ] 孫宗瀛、楊英魁,Fuzzy控制:理論、實作與應用,全華科技圖書,1997。[24 ] 許溢适 壓電陶瓷新技術,文笙書局,台北市,1996年。 [25 ] 許溢适,壓電/電歪致動器,文笙書局,台北市,1996年。 [26 ]楊英魁,Fuzzy理論與應用實務,全華科技圖書,1992年。 [27 ]A. E. Glazounov, S. Wang, Q. M. Zhang, Senior Member, IEEE, and C. Kim, “Piezoelectric Stepper Motor with Direct Coupling Mechanism to Achieve High Effciency and Precise Control of Motion, ” IEEE Transations on Ultrasonics, Freeoelectrics, And Frequency Control, Vol. 47, No. 4, July 2000. [28 ]C. Y. Won, D. H. Kim, S. C. Kim, and D. W. Yoo, “Position Control of Induction Motor with a New Fuzzy-sliding Mode Controller, ” PCC-Yokohama, 1993.id NH0925593025 sid 913169 cfn 0 / id NH0925593026 auc 謝禮忠 tic 碟型超音波致動器在光碟機尋軌系統之應用 adc 歐陽敏盛 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 76 kwc 超音波致動器 kwc 光碟機尋軌馬達 kwc 壓電蜂鳴片 kwc 2-3-3-4模態致動器 kwc 3-4-5模態致動器 kwc 阻抗分析儀 kwc ANSYS abc 本研究的主要目的是利用碟型超音波致動器,來取代光碟機長程尋軌系統中的尋軌馬達。經實驗證實,改裝超音波致動器的光碟機在不更動任何控制系統下,可正常且穩定的讀取資料、播放音樂與影片,成功地取代了尋軌馬達及其相關的齒輪組。 tc 摘 要…………………………………………………I 誌 謝…………………………………………………III 目 錄…………………………………………………IV 圖目錄…………………………………………………VII 表目錄…………………………………………………X 第一章 緒論…………………………………………1 1.1 前言……………………………………………1 1.2 研究動機………………………………………2 1.3 文獻回顧………………………………………3 1.3.1 壓電致動器………………………………3 1.3.2 光碟機……………………………………13 1.4 本文內容………………………………………13 第二章 壓電致動器及光碟機系統原理與介紹……14 2.1 壓電原理與特性………………………………14 2.1.1 壓電現象…………………………………14 2.1.2 壓電方程式………………………………16 2.1.3 壓電陶磁的共振特性……………………20 2.2 光碟機系統與尋軌原理………………………21 2.2.1 光碟機系統架構…………………………21 2.2.2 光碟機伺服控制系統……………………23 2.2.3 尋軌伺服控制系統………………………23 第三章 超音波致動器原理與特性…………………25 3.1 致動器結構與致動原理………………………25 3.1.1 壓電蜂鳴片………………………………25 3.1.2 致動器結構與致動原理…………………26 3.2 致動器驅動電路………………………………28 3.3 致動器沿革與性能分析………………………30 第四章 2-3-3-4模態致動器之模擬分析與性能量測…33 4.1 有限元素分析模擬……………………………33 4.1.1 有限元素分析理論與ANSYS模擬方法…33 4.1.2 2-3-3-4模態致動器模擬結果…………36 4.2 2-3-3-4模態致動器性能量測………………40 4.2.1 實驗架構與平台…………………………40 4.2.2 實驗結果…………………………………42 第五章 光碟機尋軌實驗……………………………49 5.1 實驗構想………………………………………49 5.2 實驗流程與使用儀器…………………………50 5.2.1 實驗項目與流程…………………………50 5.2.2 使用儀器與設備…………………………51 5.3 實驗結果與討論………………………………52 5.3.1 尋軌馬達特性量測………………………52 5.3.2 光碟機尋軌機構修改……………………57 5.3.3 平台系統整合測試………………………60 第六章 結論與建議…………………………………66 6.1 結論……………………………………………66 6.2 建議……………………………………………67 參考文獻………………………………………………68 附錄A HP 4194A阻抗分析儀規格……………………71 附錄B 驅動電路功能與接線圖………………………72 附錄C 以導螺桿傳動之尋軌機構……………………76rf [1 ] 楊正甫、林光輝,光碟系統概論,全華科技圖書,台北,1991。 [2 ] T. Sashida, T. Kenjo, An Introduction to Ultrasonic Motors, Clarendon Press, Oxford, 1993. [3 ] S. Ueha, Y. Tomikawa, Ultrasonic Motors - Theory and Applications, Clarendon Press, Oxford, 1993. [4 ] H. V. Barth, “Ultrasonic driven motor,” IBM Technical Disclosure Bulletin, 16, 2263, 1973. [5 ] 許溢适,壓電/電歪致動器,文笙書局,台北,1995。 [6 ] R. F. Fung, C. R. Tseng, C. M. Yao, “Dynamic simulation of a bimodal ultrasonic motor by new hybrid laplace transform/finite element method,” Journal of Sound and Vibration, 226(4) (1999) 625-644. [7 ] B. Zhai, S. P. Lim, K. H. Lee, S. Dong, P. Lu, “A modified ultrasonic linear motor,” Sensors and Actuators A, 86 (2000) 154-158. [8 ] M. S. Tsai, C. H. Lee, S. H. Hwang, “Dynamic modeling and analysis of a bimodal ultrasonic motor,” IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, 50(3) (2003) 245-256. [9 ] F. J. Lin, L. C. Kuo, “Driving circuit for ultrasonic motor servo drive with variable-structure adaptive model-following control,” Proceedings IEE on Electric Power Applications, 144(3) (1997) 199-206. [10 ] F. J. Lin, R. Y. Duan, R. J. Wai, C. M. Hong, “LLCC resonant inverter for piezoelectric ultrasonic motor drive,” Proceedings IEE on Electric Power Applications, 146(5) (1999) 479-487. [11 ] H. Kim, S. Dong, P. Laoratanakul, “Novel method for driving the ultrasonic motor,” IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, 49(10) (2002) 1356-1361. [12 ] Y. Izuno, T. Izumi, H. Yasutsune, E. Hiraki, M. Nakaoka, “Speed tracking servo control system incorporating traveling-wave-type ultrasonic motor and feasible evaluations,” IEEE Transactions on Industry Applications, 34(1) (1998) 126-132. [13 ] T. Senjyu, H. Miyazato, S. Yokoda, K. Uezato, “Speed control of ultrasonic motors using neural network,” IEEE Transactions on Power Electronics, 13(3) (1998) 381-387. [14 ] S. W. Chung, K. T. Chau, C. C. Chan, “Neural-fuzzy dual-mode control of traveling-wave ultrasonic motors,” International Conference on Electric Machines and Drives, (1999) 598-600. [15 ] F. J. Lin, R. J. Wai, C. M. Hong, “Identification and control of rotary traveling-wave type ultrasonic motor using neural networks,” IEEE Transactions on Control Systems Technology, 9(4) (2001) 672-680. [16 ] G.. Bal, E. Bekiroglu, “Servo speed control of traveling-wave ultrasonic motor using digital signal processor,” Sensors and Actuators A, 109 (2004) 212-219. [17 ] M. Bexell, S. Johansson, “Fabrication and evaluation of a piezoelectric miniature motor,” Sensors and Actuators A, 75 (1999) 8-16. [18 ] S. Ueha, Y. Hashimoto, Y. Koike, “Non-contact transportation using near-field acoustic levitation,” Ultrasonics, 38 (2000) 26-32. [19 ] Y. Roh, S. Lee, W. Han, “Design and fabrication of a new traveling wave-type ultrasonic linear motor,” Sensors and Actuators A, 94 (2001) 205-210. [20 ] 楊明昌,“超音波馬達之設計與分析 - 軸推式”,國立清華大學工程與系統科學系碩士論文,1999。 [21 ] 郭榮芳,“側推式超音波馬達設計與測試”,國立清華大學工程與系統科學系碩士論文,2000。 [22 ] 葉俊余,“薄片型超音波致動器之設計與模擬”,國立清華大學工程與系統科學系碩士論文,2000。 [23 ] 黃昱先,“利用ANSYS輔助碟型超音波致動器之動態特性量測”,國立清華大學工程與系統科學系碩士論文,2003。 [24 ] 陳昭亨,“盤型超音波致動器動態電性分析”,國立清華大學工程與系統科學系碩士論文,2002。 [25 ] 陳明泰,“以單晶片為控制基礎的薄盤式壓電致動平台研製”,國立清華大學工程與系統科學系碩士論文,2000。 [26 ] 林志和,“超音波平台之控制系統設計與測試”,國立清華大學工程與系統科學系碩士論文,2002。 [27 ] 陳英豪,“超音波滑動平台之設計與研製”,國立清華大學工程與系統科學系碩士論文,2002。 [28 ] 李政漢,“側推式超音波馬達性能量測與應用設計”,國立清華大學工程與系統科學系碩士論文,2001。 [29 ] 蔡汶釧,“以放電波形鑑別為控制基礎之微放電加工系統的設計與研製”,國立清華大學工程與系統科學系碩士論文,2002。 [30 ] F. L. Wen, C. Y. Yen, M. Ouyang, “Thin-disk piezoceramic ultrasonic motor. Part I:design and performance evalution,” Ultrasonics, 41 (2003) 437-450. [31 ] C. Y. Yen, F. L. Wen, M. Ouyang, “Thin-disk piezoceramic ultrasonic motor. Part II:system construction and control,” Ultrasonics, 41 (2003) 451-463. [32 ] 吳朗,電子陶瓷-壓電,全欣科技,台北,1994。 [33 ] 鄭振東,超音波工程,全華科技圖書,台北,1999。 [34 ] 鄭世裕,「壓電陶瓷」,陶瓷技術手冊,汪建民主編,粉末冶金協會,台北,1994。 [35 ] 許溢适,壓電陶瓷新技術,文笙書局,台北,1996。 [36 ] J. Zelenka, Piezoelectric resonators and their applications, Elsevier, Amsterdam, 1986. [37 ] 劉世賢,“嵌入式DSP系統於光碟機尋軌/主軸伺服系統之應用”,國立清華大學動力機械工程學系碩士論文,2003。 [38 ] 黃金壽,“光碟機之尋軌伺服控制參數之最佳化研究”,國立清華大學動力機械工程學系碩士論文,2000。 [39 ] 劉昶輝,“光碟機尋軌伺服之時間最佳化路徑設計與實作”,國立清華大學動力機械工程學系碩士論文,2001。 [40 ] 葉春敏,“CD-ROM/DVD型光碟機專題研究報告”,工業技術研究院光電工業研究所,新竹,1997。 [41 ] 黃得瑞 編,“電腦週邊系統導論”課程講義,國立清華大學動力機械工程學系,2002。 [42 ] Acoustic Component Div., OBO pro.2 Inc., Taipei, 2002. [43 ] 王勗成、邵敏,有限元素法基本原理與數值方法,亞東書局,台北,1992。 [44 ] 王新榮、陳時錦、劉亞忠,有限元素法及其運用,中央圖書,台北,2002。 [45 ] 康淵、陳信吉,ANSYS入門,全華科技圖書,台北,2002。 [46 ] 陳精一,ANSYS 6.0 電腦輔助工程分析,全華科技圖書,台北,2002。 [47 ] 歐陽敏盛、賴明宏、黃晉興、牟善琦、黃昱先、謝禮忠,“新型超音波致動光碟機尋軌機構的設計與控制(I) ”,中華民國自動控制研討會,彰化,2004。id NH0925593026 sid 913173 cfn 0 / id NH0925593027 auc 陳宏銘 tic 同位素微電池之研究 adc 王天戈 adc 張廖貴術 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 122 kwc 同位素微電池 abc 摘 要 tc 目 錄 摘要……………………………………………………I 誌謝…………………………………………………II 目錄…………………………………………………Ⅲ 表目錄………………………………………………Ⅵ 圖目錄………………………………………………Ⅷ 第一章 序論 1.1前言………………………………………………………………1 1.2 研究目的………………………………………………………4 1.3 同位素簡介……………………………………………………5 1.3.1同位素介紹………………………………………………5 1.3.2同位素衰變方式…………………………………………6 1.3.3 同位素於熱、電源之應用………………………………7 1.3.4同位素選擇…………………………………………8 1.4論文回顧……………………………………………………….10 1.5各章摘要……………………………………………………….12 第二章 同位素微電池操作機制 2.1 同位素微電池物理機制-Beta-Voltage Effect………21 2.2 β-粒子與可見光在Si材料內射程比………………………22 2.2.1 可見光射程……………………………………………22 2.2.2 β-粒子射程……………………………………………23 2.3 同位素微電池性能參數………………………………………24 2.4 同位素微電池電性參數………………………………………27 2.4.1 N-P 接面(N-P junction)電性參數…………………27 2.4.2 淺接合面(Shallow junction)影響…………………28 2.5表面保護層(Passivate Layer)影響…………………………29 2.6 背面表面場(Back Surface Field , BSF)影響…………………30 第三章 不同淺接面之佈值條件對同位素微電池性能影響 3.1 研究目的………………………………………………………39 3.2 元件的製程……………………………………………………40 3.3 結果與討論……………………………………………………45 3.3.1電池基本性能探討……………………………………45 3.3.2不同離子佈值條件下電池性能探討…………………47 3.4結論……………………………………………………………50 第四章 表面結構及同位素活度對同位素微電池性能影響 4.1 研究目的………………………………………………………68 4.2元件的製程…………………………………………………69 4.3 結果與討論…………………………………………………72 4.3.1電池基本性能探討……………………………………72 4.3.2表面鈍化層對電池性能影響比較……………………73 4.3.3 表面金屬層對電池性能影響比較……………………75 4.3.4元件面積對電池性能影響比較………………………77 4.3.5 同位素活度變化對元件性能探討……………………80 4.4結論…………………………………………………………83 第五章 結論與建議 5.1結論……………………………………………………………117 5.2建議………………………………………………………118 參考文獻rf 參考文獻 (1) Sergej Fatikow, Ulrich Rembold ”Microsystem Technology and Microrobotics ” 2000高立圖書有限公司, p34. (2) A.Lal, R.M.Bilbao et al.”A Nuclear Microbattery for MEMS devices “ NEER ,2002 ,p1-12. (3) E.Betowska-Lehman , Z. Swiatek ,M. Lipinski ”The influence of surface midification on optoelectronic properties of monocrystalline silicon solar cell” IEEE 2000 P331-334. (4) E.W.Billington and W.Ehrenberg ”the electron voltaic effects in silicon and selenium element ” PROC. PHYS .SOC 1961 P845-853. (5) W. Ehrenberg. , Chi-Shi Lang, R. West. ”The Electron Voltaic Effect ” Phys. Rev64,1951, p424. (6) Paul E. Sims and Louis C. DiNetta ” Betavoltaic Power Supplies” AstroPower, Inc.,2000,p1-26. (7) 林安秋 ”放射性同位素利用技術 ” 東興文化出版社, 1989, p3. (8) J.J.Loferski and P. Rappaport”Elevtron Voltaic Study of Electron Bombardmemt Damage and its Threshold in Ge and Si ” Phys. Rev75, p1861-1863. (9) Steffen Deus, “Tritium-Power BetaVoltaic Cells base on Amorphous Silicon”, Photovoltaic Specialists Conference(PVSC), Conference Record of the Twenty-Eighth IEEE2000., P1246-1249. (10) Hang Guo, Amit Lal “Nanopower Betavoltaic Microbatteries” ,The12th international Conference on Solid State Sensor, 2003 p36-39. (11) George Rybicki, “Silicon Carbide Alphavoltaic Battery” ,25th Photovoltaic Specialists Conference(PVSC), Conference Record of the Twenty Fifth IEEE 1996, P13-17. (12) Mitsuo Fukuda “ Optical Semiconductor Devices “ a wiley interscience publication, 1999, P42-43. (13) Macfarlane et al. [1959 ])., (Woltson and Subashiev [1967 ]). “ Silicon optical properties “ (14) James E. Turner “Atoms, Radiation, and Radiation Protection“民全書局有限公司,1997, P204-206. (15) 李威儀 “Development of High Efficiency Solar Cell“ 行政院國家科學委員會專題計劃成果報告, 1995, p13 (16) Wang Tieshan and Li Qiang “ The Radioisotopic Battery based on Radio-Voltaic Effect “ Institute of Modern Physics, 1995 ,P141-145. (17) 施敏 “ SEMICONDUCTOR DEVICES Physics and Technology “ 國立交通大學出版社, 2001 , P150-155 (18) Richard R King, Peter E. “ Passivated Emitters in Silicon Solar Cell “IEEE 1990 , P227-232. (19) Louis C. Kilmer and Allen M. Barnett “ An Improved InP Solar Cell Design with an Increased Open Circuit Voltage “IEEE 1991, P347-352. (20) J.M. Woodall and H.J. Hovel , “ High Efficiency Ga1-xAlxAs-GaAs Solar Cell“ Appl. Phys. Lett , 1972 , vol. 21 P379. (21) 莊家琛 “太陽能工程-太陽電池篇“ 全華科技圖書股份有限公司, 2000 ,P4-7. (22) F.G. Tseng “Advance Micro System Fabrication“ 國立清華大學, 2001 P324.id NH0925593027 sid 913174 cfn 0 / id NH0925593028 auc 王炳琨 tic 不同HfOxNy/SiO2堆疊穿隧介電層對快閃記憶體操作特性之影響 adc 王天戈 adc 張廖貴術 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 117 kwc 快閃記憶體 kwc 堆疊穿隧介電層 abc 快閃記憶體元件在經過多次的寫入/擦拭操作之後,主要的元件傷害都集中在熱電子穿隧閘極氧化層的過程中發生。當元件使用愈久,其閘極氧化層的傷害便愈嚴重;如此一來,將使得電子無法穿隧閘極氧化層到達懸浮閘極進行資料的儲存,也將使得快閃記憶體的電荷保持能力大幅衰減,導致元件無法使用。因此,本篇論文探討以單層/堆疊閘極結構做為快閃記憶體中的穿隧閘極介電層,再配合不同的快速熱退火溫度條件,對於快閃記憶體元件電特性之影響,做一系統性的探討。 tc 目 錄 摘要……………………………………………………………I 目錄……………………………………………………………II 表目錄…………………………………………………………V 圖目錄…………………………………………………………VI 第一章 序論……………………………………………………………1 1-1前言…………………………………………………………………1 1-2研究目的……………………………………………………………4 1-3高介電常數材料的選擇及介紹…………………………………5 1-3-1 HfO2材料介紹………………………………………………6 1-3-2 HfOxNy材料介紹……………………………………………7 1-3-3 HfOxNy與HfO2特性比較…………………………………7 1-4論文回顧………………………………………………………………8 1-4-1 High-k應用在快閃記憶體中的穿隧閘極介電層……………9 1-4-2 High-k應用在快閃記憶體中的內多晶矽介電層……………10 1-5各章摘要……………………………………………………12 第二章 快閃記憶體元件操作方法…………………………………20 2-1 快閃記憶體元件結構………………………………………………20 2-2 寫入與擦拭方法………………………………………………22 2-2-1 通道熱電子注入寫入 ………………………………………22 2-2-2 F-N穿隧寫入……………………………………………23 2-2-3 F-N穿隧擦拭……………………………………………23 2-3 耐力…………………………………………………………24 2-4 過度擦拭……………………………………………………25 2-5 干擾…………………………………………………………27 2-6 電荷保持……………………………………………………28 第三章 快閃記憶體元件製程…………………………………43 3-1 元件製程……………………………………………………43 3-1-1 晶片刻號及零層(Alignment Mark)曝光……………………43 3-1-2定義主動區(Active Region Definition)……………………44 3-1-3 LOCOS Formation and KOOI Effect………………………45 3-1-4 閘極介電層的沈積及退火(Annealing)處理…………………46 3-1-5 Floating Gate, IPD and Control Gate Deposition………47 3-1-6 Poly Gate Definition and Source,Drain,Body Implant…48 3-1-7 Contact Holes and Metal Layer……………………………49 3-2 材料分析……………………………………………………50 第四章 不同HfOxNy/SiO2組成比做為快閃記憶體之穿隧介電 層電特性之影響…………………………………………60 4-1 F-N穿隧理論基礎…………………………………………………60 4-2 結果與討論…………………………………………………………62 4-2-1快閃記憶體之寫入與擦拭偏壓決定……………………………62 4-2-2 各元件寫入/擦拭速度比較……………………………………64 4-2-3快閃記憶體之可靠度分析………………………………………65 4-3結論…………………………………………………………………69 第五章 不同退火溫度對穿隧介電層電特性之影響……95 5-1 研究緣由與目的…………………………………………………95 5-2 結果與討論…………………………………………………………96 5-2-1 各元件寫入/擦拭速度比較……………………………………96 5-2-2快閃記憶體之可靠度分析………………………………………98 5-3結論…………………………………………………………………100 第六章 結論與建議………………………………………112 6-1結論…………………………………………………………………112 6-2建議…………………………………………………………………113 參考文獻……………………………………………………114rf 參考文獻 [1 ] William D.Brown ,Joe E.Brewer,”Nonvolatile Semiconductor Memory Technology”,The institute of Electrical and Electronics Engineers Inc,1997. [2 ] Stefan Lai, ”Tunnel Oxide and ETOX Flash scaling Limitation”, Intel Non Volatile Memory Technology conference, 1998. [3 ] Jong Jin Lee,Xuguang Wang,Weiping Bai,Nan Lu,and Dim-Lee, ”Theoretical and Experimental Investigation of Si Nanocrystal Memory Device With HfO2 High-k Tunneling Dielectric”, IEEE Transactions on Electron Devices ,Vol. 50,NO 10, p.2067-2072, 2003. [4 ] Akira Toriumi,Advanced Semiconductor Research Center, “Reliability Perspective of High-k Gate Dielectrics –What is Different from SiO2?-”, 2002 7th International Symposium on Plasma-and-Process-Induced Damage,p4-9,2002. [5 ] 王國在,”高介電常數閘極金氧半電容之電特性與熱穩定性研究”,國立清華大學工程與系統科學研究所,p2-p4,2003. [6 ] C.H. Choi, T.S. Jeon, R. Clark, and D.L. Kwong, “Electrical Properties Thermal Stability of CVD HfOxNy Gate Dielectric With Poly-Si Gate Electrode”, IEEE Electron Devices Letter, VOL. 24,NO.4, APRIL,2003. [7 ] B. Govoreanu, P. Blomme, M. Rosmeulen, J. Van Houdt and K. De Meyer, “VARIOT: A Novel Multilayer Tunnel Barrier Concept for Low-Voltage Nonvolatile Memory Devices”, IEEE Electron Devices Letter, VOL. 24,NO.2, FEBRUARY,p99-101,2003. [8 ] B. Govoreanu, P. Blomme, J. Van Houdt and K. De Meyer, “Simulation of Nanofloating Gate Memory with High-k Stacked Dielectrics”, IEEE Electron Devices Letter, p299-302,2003. [9 ] W.-H.Lee,J.T.Clemens,”A Novel High-k Inter-Poly Dielectric(IPD),Al2O3 for Low Voltage/High Speed Flash Memories:Erasing in msecs at 3.3V”,Symposium on VLSI Technology Digest of Technical Papers,p117-118,1997. [10 ] Paolo cappelletti,Carla Golla,Piero Olivo,Enrico Zanoni,“FLASH MEMORIES”, KAP,p42-47,1999. [11 ] T.P.Ma,X.W. Wang, X Guo, “Demonstration of a Flash Memory Cell with 55Å EOT Silicon Nitride Tunnel Dielectric” ,IEEE Electron Device Letter, Vol. 01, p.138, 2001. [12 ] Mori, N. Arai, Y. Kaneko and K. Yoshikawa, “Polyoxide Thinning Limitation and Superior ONO Interpoly Dielectric for Nonvolatile Memory Device” ,IEEE Transactions on Electron Device , Vol. 38,NO.2,FEB, 1991. [13 ] Mori, E. Sakagami, H. Araki, Y. Kaneko, K. Narita, Y.Ohshima, N. Arai and K. Yoshikawa, ”ONO Inter-poly Dielectric Scaling for Nonvolatile Memory Applications”, IEEE Transactions on Electron Device ,Vol.38,NO.2,FEB, 1991. [14 ] Mori, YY. Araki, M.Sato, H. Tsunoda, E. Kamiya, K. Yoshikawa,N. Arai and E. Sakagami, ”Thickness Scaling Limitation Factors of ONO Interpoly Dielectric for Nonvolatile Memory Devices”, IEEE Transactions on Electron Device ,Vol.1,p47, 1996. [15 ] Sze,”Physics of Semiconductor Devices”, John Wiley & Sons, 1981. [16 ] K.T. San, C. Kaya, T.P Ma,”Effect of Erase Source Bias on Flash EPROM Device Reliability”, IEEE Transactions on Electron Device,Vol.42,Issue:1,p150,Jan. 1995. [17 ] Ong, A. Fazio, N. Mielke, S. Pan, N. Righos, G. Atwood and S. Lai,” Erratic Erase in ETOX Flash Memory Array”, VLSI Symp. On Tech. P.83, 1993. [18 ]Cappeletti, R. Bez, D. Cantarelli and L. Fratin,” Failure Mechanisms of Flash Cell in Program/Erase Cycling”, International Electron Devices Meeting, P.291, 1994. [19 ]Verma and N. Mielke,” Reliability Performance of ETOX Based Flash Memory”, International Reliability Physics Symp, P.158, 1998. [20 ]Haddad, C. Chang, B. Swaminathan and J. Lien,” Degradation Due to Hole Trapping in Flash Memory Cells”, IEEE Electron Dev. Lett., Vol.10, No3, P.117, Mar. 1989. [21 ] Adam Brand , Ken Wu, San Pan and David Chin,” Novel Read Distub Failure Mechanism Induced by Flash Cycling”, International Reliability Physics Symp, , P.127, 1993. [22 ] Pan, K. Wu, P. Freiberger, A.Chatterjee, G. Sery,” A Scaling Methodology for Oxide-Nitride-Oxide Interpoly Dielectric for EPROM Application”, IEEE Trans. on Electron Dev. Vol.37, No.6, P.1439, Jun. 1990. [23 ] Pan, K. Wu , D. Chin, G. Sery, J. Kiely,” High-Temperature Charge Loss Mechanism in Floating-Gate EPROM with an Oxide-Nitride-Oxide(ONO) Interpoly Stacked Dielectric”,IEEE Electron Dev.Lett., Vol.12,No.9,P.506,Sep.1991. [24 ] Neal R.Mielke,” New EPROM Data-Loss Mechanisms”, IEEE International Reliability Physics Symp, P.106, 1983. [25 ] 張俊彥,鄭晃忠,”積體電路製程及設備技術手冊”,中華民國電子材料與元件協會,p188,1997. [26 ] 汪建民,”材料分析”,中國材料科學協會,p77,2001. [27 ] 莊達人主編, “VLSI製造技術”, 高立圖書有限公司, 2002五版修訂id NH0925593028 sid 913176 cfn 0 / id NH0925593029 auc 林修正 tic 藍杰文振動子結合共振腔之動態行為探討 adc 歐陽敏盛 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 75 kwc 振動子 kwc 共振腔 kwc 阻抗 kwc 等效電路 kwc 移動電流 abc 藍杰文振動子在外加高電壓工作時,振動子所產生的溫升現象、外加的預力均會使振動子的共振頻率產生漂移,使輸出的機械功率下降。另一方面,因為振動子本身所放大的振幅並不大,所以加入共振腔設計藉以放大機械振幅。 tc 誌 謝……………………………………………………………………I 摘 要……………………………………………………………………II 目 錄…………………………………………………………………IV 圖目錄…………………………………………………………………VII 表目錄……………………………………………………………XI 第一章 緒論…………….……………………………………………1 1.1 前言………………………………………………………………1 1.2 研究動機與目的…………………………………………………2 1.3文獻回顧…………………………………………………………3 1.4壓電原理………………………………………………5 1.5論文的組織與架構………………………………………………6 第二章 藍杰文振動子原理與電路分析…………………………7 2.1藍杰文振動子原理………………………………………………7 2.2機電耦合的等效電路……………………………………………8 2.2.1等效電容……………………………………………………9 2.2.2 等效電感…………………………………………………10 2.3共振腔的特性探討………………………………………………12 2.4電路理論堆導……………………………………………………15 2.5移動電流的分析…………………………………………………17 2.5.1移動電流穩態分析…………………………………………17 2.5.2輸入端短路之暫態響應分析………………………………19 2.5.3移動電流模擬分析…………………………………………21 第三章 實驗及模擬的方法………………………………………23 3.1阻抗分析儀(HP 4194A)的量測…………………………………24 3.2移動電流(motion current)的量測………………………………26 3.2.1移動電流量測方法…………………………………………26 3.2.2藍杰文振動子的特性量測…………………………………27 3.3光纖位移計量測藍杰文振動子的表面振幅………………28 3.3.1非接觸式光纖量測的原理…………………………………29 3.3.2光纖量測的方法……………………………………………30 3.3.3加入共振腔後對振動子的影響……………………………32 3.4 P-Spice模擬……………………………………………………34 第四章 結果與討論………………………………………………37 4.1阻抗分析儀的量測結果…………………………………………37 4.2移動電流動態量測結果…………………………………………42 4.2.1施加電壓效應………………………………………………46 4.3藍杰文振動子表面振幅量測……………………………………49 4.4 Pspice模擬結果…………………………………………………55 第五章 結論.………………………………………………………71 5.1結論………………………………………………………………71 5.2 建議事項………………………………………………………72 參考文獻………….………………………………………………73rf [1 ] 顏安慶, “方形氣體軸承與口形氣浮導軌之特性分析,”國立 雲林科技大學機械工程學系碩士論文 (雲林, 2000). [2 ] C. Choi and K.Park, “ Self-sensing magnetic levitation using a LCresonant circuit,” Sensors and Actuators A72 (1999) p. 169. [3 ] L. A. Crum and A. I. Eller, J. Acoust. Am. Soc. (1970) p. 48. [4 ] Wang, M. M. Saffren, and D. D. Elleman, Proc. AIAA Aerosp. Sci. Meeting, 12th, January 30-February 1 (Washionton, D.C. 1974) p. 74. [5 ] R. R. Whymark, Ultrasonics (1975) p. 13. [6 ] T. G. Wang, H. Kanber, and I. Rudnick, Phys. Rev. Lett. (1977) p. 74. [7 ] T. G. Wang, H. Kanber, and E. E. Olli, J. Acoust. Am. Soc. (1978)p. 63. [8 ] G. Lagomarsini and T. Wang, Proc. AIAA Aerosp. Sci. 17th Meeting,January 15-17 (New Orleans, Louisana, 1979) p. 79. [9 ] N. Jacobi, R. P. Tagg, J. M. Kendall, D. D. Elleman, and T. G. Wang,Proc. Aerosp. Sci. 17th Meeting, January 15-17 (New Orleans, Louisana,1979) p. 79. [10 ] B.Chu, R.E. Apfel, “Acoustic radiation pressure produced by a beam of sound,” J. Acoust. Soc. Am. Vol. 72 (1982) p. 1673. [11 ] T.Otsuka, K. Higuchi and K.Seya, “Consideration of sample dimension for ultrasonic levitation,” Ultrasonics (1990) p. 1271. [12 ] S. Ueha, Y. Hashimoto and Y. Koike, “Ultrasonic actuators using near field acoustic levitation,” Ultrasonics (1998) p. 661.65 [13 ] S. Ueha, Y. Hashimoto, and Y. Koike, “Non-contact transportation using near-field acoustic levitation,” Ultrasonics Vol. 38 (2000) p. 26. [14 ] Hu, K. Nakamura, and S. Ueha, “An analysis of a non-contact ultrasonic motor with an ultrasonically levitated rotor,” Ultrasonics Vol. 35 (1997) p. 459. [15 ] Paul I. Ro、Byoung–Gook Loh, and Javier Santiago, “Holding characteristics of planar objects suspended by near-field acoustic levitation,” Ultrasonics Vol. 38 (2000) p. 60. [16 ] 歐陽敏盛, 張國財, “超音波器浮之特性分析與氣隙量測,” 中華民國自動控制研討會論文集 (桃園, 2001) p. 715。 [17 ] 歐陽敏盛, 張國財, “超音波振動子之等效電路與移動電流分析”中華民國自動控制研討會論文集 (桃園, 2001) p.709。 [18 ] K.T. Chang and M. Ouyang, “Open-Circuit Test of A PZT Vibrator and Its Applications,” Journal of Ultrasonics, Vol. 41, 2003, pp. 15-23. [19 ] K.T. Chang and M. Ouyang, “Effects of A Parallel Resistor on The Transient Response of Piezoelectric Vibrator under Open-Circuit Operation,’ Japanese Journal of Applied Physics, accepted on November 18, 2002. [20 ] 吳朗, 電子陶瓷-壓電, 全欣科技出版社 (台北, 1994)。 [21 ] 許溢适,超音波電動機基礎,文笙書局,台北,1992。 [22 ] 賴耿陽,超音波工程理論實務,復漢出版社,台北,2000。。 [23 ] L. Petit, N. Rizet, R. Briot, P. Gonnard, “Frequency behaviour and speed control of piezomotors,” Sens. Actuators 80 (2000) 45–52. [24 ] T. Sashida, T. Kenjo, An Introduction to Ultrasonic Motors, Clarendon Press, Oxford, 1993. [25 ] M. Umeda, K. Nakamura, and S. Ueha, ”The Measurement of High-power Characteristics for a Piezoelectric Transducer Based on the Electrical Transient Response”, Jpn. J. Appl. Phys. Vol.37(1998) pp. 5322-5325 [26 ] Y. Koike, T. Tamura and S. Ueha, ”Electrical Equivalent Circuit of Loaded Thick Langevin Flexural Transducer,” Jan. J. Appl. Phys. Vol. 36 (1997) pp. 3121-3125. [27 ] S. Hirose, “New Method for Measuring Mechanical Vibration Loss and Dielectric Loss of Piezoelectric Transducer under High-power Excitation,” Jpn. J. Appl. Phys. Vol. 33 (1994) pp. 2945-2948. [28 ] Takura Ikeda,” Fundamentals of piezoelectricity,” OXFORD UNIVERSITY PERSS 1990. [29 ] N. Mohan, T. Undeland and W. Robbins, “Power Electronics – Converters, Application, and Desgn”, second edition, 1995, Wiley. [30 ] 鄭大森,Pspice 視窗版 Design Center 在電力電子上的應用,全華科技,台北,1999。 [31 ] 盧佑銘,PSpice A/D V9.0電子電路分析,台科大圖書,台北,2001。 [32 ] 鄭振東,超音波工程,全華科技,台北,1999。 [33 ] 洪維恩,Mathematica 3.0版入門指引,松崗,台北,2000。 [34 ] 荀飛,Mathematica 4.x 實例學習,博碩,台北,2001。id NH0925593029 sid 913177 cfn 0 / id NH0925593030 auc 羅文駒 tic 利用液相法成長奈米粒子及奈米線之研究 adc 林滄浪 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 113 kwc 奈米線 kwc 奈米粒子 kwc 奈米環 kwc 奈米空箱 kwc 銀 kwc 金 kwc 奈米稜柱體 abc 本論文主要是在討論利用液相法來製作銀奈米粒子及奈米線的研究,我們所使用的方法是晶種還原法(seed-mediate growth method),首先我們使用3~5 nm的銀奈米粒子當作晶種丟入生長液中,這些晶種可作為奈米棒的聚集點(nucleation site),而生長液中包含了金屬鹽(AgNO3)、弱還原劑(Ascorbic acid )、包覆劑(CTAB),奈米線的成長跟晶種的形狀和晶面有很大的關係,一般而言五角形的晶種較容易成長為奈米線,在我們的研究中,我們成功的製造出直徑為20 nm、長度從數微米~數十微米不等,這些奈米線的截面為五角形且具有雙晶結構。 tc 目錄 摘要…………………………………………………………………….Ⅰ 誌謝…………………………………………………………………….Ⅱ 目錄…………………………………………………………………….Ⅲ 圖目錄………………………………………………………………….Ⅴ 表目錄…………………………………………………………………. III 第一章 序論……………………………………………………………1 1.1 研究動機………………………………………………….1 1.2 研究目的………………………………………………….3 第二章 文獻回顧………………………………………………………4 2.1 奈米粒子生長法………………………………………….4 2.1.1 晶種還原法製作金奈米粒子…………………………..4 2.1.2 Polyol Process製作銀奈米立方體及金奈米空箱……6 2.1.3 利用螢光照射球型銀奈米粒子使其轉換成銀奈米 稜柱體…………………………………………………7 2.2 奈米線生長法…………………………………………..11 2.2.1 晶種還原法製作銀奈米線…………………………….11 2.2.2 Polyol Process製作銀奈米線………………………..12 2.3 生長機制討論…………………………………………..13 2.3.1 微胞及反微胞生長機制討論………………………….13 2.3.2 Polyol Process銀奈米線生長機制……………………..15 2.3.3 HRTEM分析金奈米棒、金奈米線生長機制…………16 2.3.4 無電鍍電解反應機制………………..………………..18 第三章 實驗儀器理論 ………………………………………………..24 3.1.1 散射法概論……………..………………………………24 3.1.2 小角度X光散射基本原理……………………………..25 3.1.3 形狀因子模型分析……………………………………...29 3.2 電子顯微鏡………………………………………………..31 3.2.1 穿透式電子顯微鏡(TEM)………………………………32 3.2.1 掃描式電子顯微鏡(SEM)………………………………33 3.3 古典靜電場理論之預測(吸收光譜理論)………………...34 3.3.1 金屬奈米球……………………………………………..34 3.3.2金屬奈米圓柱…………………………………………...35 第四章 儀器設定及操作步驟…………………………………………37 4.1 X光小角度散射儀 ………………………………………37 4.2 掃描式電子顯微鏡 ……………………………………...39 4.3 穿透式電子顯微鏡 ……………………………………...41 4.4 紫外線吸收光譜儀 ………………………………………44 第五章 實驗結果與討論……………………………………………….46 5.1 銀奈米線/奈米粒子的基本成長………...……………….46 5.1.1 銀奈米線/奈米粒子樣品配置………………………….46 5.1.2 銀奈米線的基本成長實驗結果討論……………….......48 5.1.3 銀奈米粒子基本成長實驗結果討論…………………...50 5.2 PH值對於銀奈米線生長的影響 ………………………50 5.2.1 銀奈米棒樣品配置……………………………………...50 5.2.2 銀奈米棒實驗結果討論…………………………………51 5.3 溫度對於銀奈米粒子形狀的影響………………………...56 5.3.1 銀奈米粒子樣品配置…………………………………....56 5.3.2溫度對於銀奈米粒子形狀影響的實驗結果討論……….57 5.4 混和銀奈米稜柱體及金離子溶液所產生的變化……….58 5.4.1 混和銀奈米稜柱體及金離子溶液的樣品配置…………58 5.4.2混和銀奈米稜柱體及金離子溶液實驗結果與討論…….59 第六章 結論………..……………………………………………………63 參考文獻………………………………………………………………….112 圖目錄 圖2.1-1:晶種溶液[250 μM ] (a) ~ (h)=1、0.5、0.25、0.125、0.09、 0.06、0.03、0.015 ml 添 加至10 ml的生長液中……………….……………5 圖2.1-2:金奈米棒的UV-VIS吸收光譜,晶種溶液[250 μM ] (a) ~ (h)=1、0.5、0.25、0.125、0.09、0.06、0.03、0.015 ml 添加至10 ml的生長液…………5 圖2.1-3:(A)低倍率下的SEM 圖(B) 傾轉20°後高倍率下的SEM 圖(C)銀奈米立方體的TEM圖插圖為其電子繞射圖(D) 銀奈米立方體的XRD Patteren,證實為FCC結構的銀,而非氧化物….…………….…………………….……6 圖2.1-4:(A)與0.3 ml HAuCl4(1 mM)反應後的銀奈米立方體之SEM圖(B)與1.5 ml HAuCl4(1 mM)反應後的銀奈米立方體之SEM圖(C)(D)金奈米空箱的電子繞射圖..................................….............................................7 圖2.1-5:(A)照射螢光前的銀奈米粒子的TEM圖 (B) 照射螢光40 hr的銀奈米粒子的TEM圖(C) 照射螢光55 hr的銀奈米粒子的TEM圖(D) 照射螢光70 hr的銀奈米粒子的TEM圖………………………………….……….…..7 圖 2.1-6 銀奈米粒子的形狀隨著照射時間的增加而變化的TEM圖,(A)照射時間=5 min,(B)照射時間=10 min,(C)照射時間=15 min,(D)照射時間=20 min,(E)照射時間=50 min,(F)照射時間=90 min…………………………....8 圖 2.1-7 銀奈米粒子的形狀隨著照射時間的增加而變化的UV-吸收光譜圖……………………………………….………………………………………....9 圖 2.1-8 上排的圖為照射螢光後的UV-吸收光譜圖,藍色的線代表第一階段的成長,而紅色的線代表第二階段的成長,每隔照射時間30分鐘後便取一次數據,而下排的圖則為上排的圖所相對應的TEM圖………………….…..10 圖2.2-1:晶種生長法機制示意…………………………………………………12 圖2.2-2 :加熱時間對於銀奈米線之長度變化,(A) 10 min (B) 20 min (C) 40 min (D) 60 min……………………………………………………………………12 圖 2.3-1 :(a) 介面活性劑分子的親水基的極性頭很大且親油基的碳氫鏈為直鏈狀 (b) 微胞結構 (micelle) (c) 介面活性劑分子的親水基頭小且親油基的碳氫鏈為樹枝狀 (d) 反微胞結構 ( reverse micelle ) (e) 圓柱型微胞 (f) 層狀微胞 (g) 微泡結構 (vesicle)……………………………………………………....14 圖 2.3-2 :(A) 多重雙晶結構銀奈米粒子(MTP)在受到雙晶平面及PVP的限制下成長成銀奈米棒的過程 (B) 由於銀奈米棒的側面受到PVP的限制,所以銀離子只能在端點堆積…………………………………………………………15 圖 2.3-3 左邊為金奈米棒的TEM圖及電子繞射圖,右邊為其生長模型……17 圖 2.3-4 金奈米粒子的TEM圖及其主要晶面,內插圖為其電子繞射圖……17 圖 2.3-5 (a)金奈米線的TEM圖;(b)金奈米線的電子繞射圖;(c)金奈米線的生長模型,其生長方向為[ ]……………………………………………………….18 圖 2.3-6 無電鍍電解反應機制:(A) 加入HAucl4與銀奈米粒子混和 (B) 金離子與銀奈米粒子的取代反應開始進行 (C)銀奈米粒子消失而金奈米殼層產生…………………………………………………………………………………19 圖3.1 粒子對入射光(波向量k)的散射。P, O 二散射點因距離r而造成散射光(波向量k')之間的相差 Q•r。圖中Q, ?? 分別為X光之動量變化與散射角..26 圖4.2位於清華大學工程與系統科學系之小角度X光散射儀: (1)、X光光源,(2) 石墨單晶,(3)(6)(8)、針孔,(4)、 碘化鈉閃爍偵測器,(5)、Myler 薄膜,(7)、X光束, (9)、樣品,(10)、溫控室,(11)、真空腔,(12)、光束 擋片,(13)、面積式偵測器,(14)、訊號及數據處理 系統…………………………………………........................................................37 圖4.3 SEM之構造簡圖……………….…………………………………………40 圖4.4 TEM之構造簡圖……………….…………………………………………42 圖 5.1-1 銀奈米線(生長液A);晶種液添加量= 0.25 ml…...............................65 圖 5.1-2 銀奈米線(生長液A);晶種液添加量= 0.25 ml…...............................65 圖 5.1-3 銀奈米線(生長液A);晶種液添加量= 0.25 ml…...............................66 圖 5.1-4 銀奈米線(生長液A);晶種液添加量= 0.125 ml…..............................66 圖 5.1-5 銀奈米線(生長液A);晶種液添加量= 0.125 ml……………………...67 圖 5.1-6 銀奈米線(生長液A);晶種液添加量= 0.125 ml……………………..67 圖 5.1-7 銀奈米線(生長液A);晶種液添加量= 0.125 ml……………………..68 圖 5.1-8 銀奈米線(生長液A);晶種液添加量= 0.125 ml…………………….68 圖 5.1-9 銀奈米線(生長液A);晶種液添加量= 0.125 ml…………………….69 圖 5.1-10 銀奈米線(生長液B);晶種液添加量= 0.25 ml……………………..69 圖 5.1-11 銀奈米線(生長液B);晶種液添加量= 0.25 ml……………………..70 圖 5.1-12 銀奈米線(生長液B);晶種液添加量= 0.25 ml……………………..70圖 5.1-13 垂直銀奈米線的側面做的電子繞射圖樣,其晶軸方向為[1-1 0 ]….71 圖 5.1-14 傾轉銀奈米線的側面 24.1°所做的電子繞射圖樣,其晶軸方向為[-1 0 -1 ]……………………………………………………………………………….71 圖 5.1-15 三角形奈米粒子的TEM 圖…………………………………………72 圖 5.1-16 三角形奈米粒子的TEM 圖…………………………………………72 圖 5.1-17 三角形奈米粒子的TEM 圖…………………………………………73 圖 5.1-18 三角形奈米粒子的TEM 圖…………………………………………73 圖 5.1-19 三角形奈米粒子的SEM 圖…………………………………………74 圖 5.1-20 三角形奈米粒子的SEM 圖…………………………………………74 圖 5.1-21 三角形奈米粒子的SEM 圖…………………………………………75 圖 5.1-22 三角形奈米粒子的SEM 圖…………………………………………75 圖 5.1-23 三角形奈米粒子的EDX 分析………………………………………76 圖5.2-1 銀奈米棒溶液隨著NaOH添加量的變化圖:(a) sample A (b) sample B (c) sample C (d) sample D (e) sample E (f) sample F…………………………….76 圖5.2-2所有樣品疊加的UV-吸收光譜圖………………………………………76 圖5.2-3 NaOH添加量=0.05 ml的銀奈米棒溶液的UV-Visible 吸收光譜圖…77 圖5.2-4 NaOH添加量=0.06 ml的銀奈米棒溶液的UV-Visible 吸收光譜圖….77 圖5.2-5 NaOH添加量=0.07 ml的銀奈米棒溶液的UV-Visible 吸收光譜圖…78 圖5.2-6 NaOH添加量=0.08 ml的銀奈米棒溶液的UV-Visible 吸收光譜圖….78 圖5.2-7 NaOH添加量=0.09 ml的銀奈米棒溶液的UV-Visible 吸收光譜圖…79 圖5.2-8 NaOH添加量=0.10 ml的銀奈米棒溶液的UV-Visible 吸收光譜圖….79 圖5.2-9 NaOH添加量對吸收峰位置作圖…………………………………..…..80 圖5.2-10 NaOH添加量對吸收峰高度作圖……………………..………………80 圖5.2-11 NaOH添加量對吸收峰面積作圖……………………………………81 圖5.2-12 NaOH添加量對吸收峰的相對位置作圖…………………………….81 圖5.2-13 SAXS分析銀奈米棒溶液隨著NaOH添加量之I(Q)對Q圖………82 圖5.2-14 SAXS分析銀奈米棒溶液隨著NaOH添加量之ln[I(Q) ]對Q圖…..82 圖5.2-15 SAXS分析銀奈米棒溶液隨著NaOH添加量之ln[Q*I(Q) ]對Q2圖..83 圖 5.2-16 NaOH添加量=0.05 ml 的銀奈米棒之TEM 圖 …………………...83 圖 5.2-17 NaOH添加量=0.05 ml 的銀奈米棒之TEM 圖…………………….84 圖 5.2-18 NaOH添加量=0.06 ml 的銀奈米棒之TEM 圖…………………….84 圖 5.2-19 NaOH添加量=0.06 ml 的銀奈米棒之TEM 圖…………………….85 圖 5.2-20 NaOH添加量=0.08 ml 的銀奈米棒之TEM 圖,圖中選取的部分顯示出明暗相間的條紋…………………………………………………….………85 圖 5.2-21 NaOH添加量=0.1 ml 的銀奈米棒之TEM 圖,試片垂直電子束光軸………………………………………………………………………………….86 圖 5.2-22 NaOH添加量=0.1 ml 的銀奈米棒之TEM 圖,試片向左傾轉 10度………………………………………………………………………………….86 圖5.2-23 NaOH添加量=0.1 ml 的銀奈米棒之TEM 圖,試片向左傾轉 20度.............................................................................................................................87 圖 5.3-1在20°C下反應所生成的銀奈米粒子的TEM圖………………………87 圖 5.3-2 在20°C下反應所生成的銀奈米粒子的TEM圖…………………….88 圖 5.3-3 在20°C下反應所生成的銀奈米粒子的TEM圖……………………..88 圖 5.3-4 在30°C下反應所生成的銀奈米粒子的TEM圖…………………….89 圖 5.3-5 在30°C下反應所生成的銀奈米粒子的TEM圖…………………….89 圖 5.3-6 在30°C下反應所生成的銀奈米粒子的TEM圖…………………….90 圖 5.3-7 在30°C下反應所生成的銀奈米粒子的TEM圖……………………..90 圖 5.3-8 在40°C下反應所生成的銀奈米粒子的TEM圖……………………..91 圖 5.3-9 在40°C下反應所生成的銀奈米粒子的TEM圖……………………..91 圖 5.3-10 在40°C下反應所生成的銀奈米粒子的TEM圖……………………92 圖 5.3-11 在40°C下反應所生成的銀奈米粒子的TEM圖……………………92 圖 5.4-1 反應溫度控溫在30°C下所生成的銀奈米粒子的UV-吸收光譜圖…93 圖 5.4-2 混和0.45 ml的金離子溶液與0.9 ml的銀奈米粒子溶液的UV-吸收光譜圖……………………………………………………………………………….93 圖 5.4-3 混和0.18 ml的金離子溶液與0.9 ml的銀奈米粒子溶液的UV-吸收光譜圖……………………………………………………………………………….94 圖 5.4-4 混和0.09 ml的金離子溶液與0.9 ml的銀奈米粒子溶液的UV-吸收光譜圖……………………………………………………………………………….94 圖 5.4-5 混和0.045 ml的金離子溶液與0.9 ml的銀奈米粒子溶液的UV-吸收光譜圖…………………………………………………………………………….95 圖 5.4-6 所有樣品疊加的UV-吸收光譜圖…………………………………….95 圖 5.4-7 吸收峰的位置隨著金離子溶液添加量的變化圖…………………….96 圖 5.4-8 混和0.45 ml的金離子溶液與0.9 ml的銀奈米粒子溶液的TEM圖..96 圖 5.4-9 混和0.45 ml的金離子溶液與0.9 ml的銀奈米粒子溶液的TEM圖.97 圖 5.4-10 混和0.45 ml的金離子溶液與0.9 ml的銀奈米粒子溶液的電子繞射圖…………………………………………………………………………………97 圖 5.4-11 混和0.45 ml的金離子溶液與0.9 ml的銀奈米粒子溶液所生成的三角形金奈米空箱的TEM圖………………………………………………………98 圖 5.4-12 圖 5.4-11所對應的電子繞射圖…………………………………..98 圖 5.4-13 混和0.45 ml的金離子溶液與0.9 ml的銀奈米粒子溶液所生成的六角形金奈米空箱的TEM圖………………………………………………………99 圖 5.4-14 圖 5.4-13 所對應的電子繞射圖…………………………………99 圖 5.4-15 混和0.45 ml的金離子溶液與0.9 ml的銀奈米粒子溶液所生成的柱狀金奈米空箱的TEM圖……………………………………………………….100 圖 5.4-16 混和0.45 ml的金離子溶液與0.9 ml的銀奈米粒子溶液所生成的梯形金奈米空箱的TEM圖………………………………………………………..100 圖 5.4-17 混和0.45 ml的金離子溶液與0.9 ml的銀奈米粒子溶液所生成的六角形金奈米空箱彼此互相堆疊的TEM圖……………………………………..101 圖 5.4-18 混和0.18 ml的金離子溶液與0.9 ml的銀奈米粒子溶液所生成的三角形金奈米空箱的TEM圖……………………………………………………..101 圖 5.4-19 混和0.18 ml的金離子溶液與0.9 ml的銀奈米粒子溶液所生成的三角形金奈米空箱的TEM圖…………………………………………………….102 圖 5.4-20 混和0.18 ml的金離子溶液與0.9 ml的銀奈米粒子溶液所生成的三角形金奈米空箱的TEM圖…………………………………………………...102 圖 5.4-21 混和0.18 ml的金離子溶液與0.9 ml的銀奈米粒子溶液所生成的不對稱六角形金奈米空箱的TEM圖……………………………………………103 圖 5.4-22 圖 5.4-21 所對應的電子繞射圖………………………………103 圖 5.4-23 混和0.18 ml的金離子溶液與0.9 ml的銀奈米粒子溶液所生成的兩個不對稱六角形上下重疊的金奈米空箱的TEM圖…………………………104 圖 5.4-24 圖 5.4-23 所對應的電子繞射圖………………………………..104 圖 5.4-25 混和0.09 ml的金離子溶液與0.9 ml的銀奈米粒子溶液所生成的金奈米環的TEM圖………………………………………………………………..105 圖 5.4-26 混和0.09 ml的金離子溶液與0.9 ml的銀奈米粒子溶液所生成的金奈米環的TEM圖………………………………………………………………105 圖 5.4-27 混和0.09 ml的金離子溶液與0.9 ml的銀奈米粒子溶液所生成的金奈米環的TEM圖………………………………………………………………..106 圖 5.4-28 混和0.09 ml的金離子溶液與0.9 ml的銀奈米粒子溶液所生成的金奈米環的TEM圖………………………………………………………………106 圖 5.4-29 混和0.09 ml的金離子溶液與0.9 ml的銀奈米粒子溶液所生成的金奈米環的TEM圖………………………………………………………………..107 圖 5.4-30 圖 5.4-29 所對應的電子繞射圖…………………………………107 圖 5.4-31 混和0.09 ml的金離子溶液與0.9 ml的銀奈米粒子溶液所生成的金奈米環的TEM圖………………………………………………………………..108 圖 5.4-32 混和0.09 ml的金離子溶液與0.9 ml的銀奈米粒子溶液所生成的兩個相連的金奈米環的TEM圖…………………………………………………108 圖 5.4-33 混和0.09 ml的金離子溶液與0.9 ml的銀奈米粒子溶液所形成的三角形粒子從側面被侵蝕的TEM圖……………………………………………..109 圖 5.4-34 混和0.09 ml的金離子溶液與0.9 ml的銀奈米粒子溶液所形成的六角形粒子從側面被侵蝕的TEM圖……………………………………………109 圖 5.4-35 混和0.045 ml的金離子溶液與0.9 ml的銀奈米粒子溶液所形成的金奈米環的TEM圖……………………………………………………………….110 圖 5.4-36 混和0.045 ml的金離子溶液與0.9 ml的銀奈米粒子溶液所形成的金奈米環的TEM圖………………………………………………………………..110 圖 5.4-37 混和0.045 ml的金離子溶液與0.9 ml的銀奈米粒子溶液所形成的有缺口的金奈米環的TEM圖……………………………………………………111 圖 5.4-38 混和0.045 ml的金離子溶液與0.9 ml的銀奈米粒子溶液所形成的有缺口的金奈米環的TEM圖……………………………………………………111 表目錄 表2.1-1奈米粒子生長法之比較…………………………………….…..11 表 2.2-1 奈米線生長法之比較……………………………………..…13 表 2.3-1 金奈米晶體的主要晶面及形狀和缺陷.…………….……........16 表 2.3-2 晶種生長法製作奈米粒子……………………………………..19 表 2.3-3 Polyol synthesis製作奈米粒子…………………………………20 表 2.3-4 光還原法製作銀奈米粒子……………………………………..20 表 2.3-5 晶種還原法製作奈米線………………………………………...21 表 2.3-6 紫外光還原法製作銀奈米線……………………………………21 表 2.3-7 Polyol synthesis製作銀奈米線…………………………………..22 表 2.3-8 成長機制研究……………………………………………………22 表 2.3-9 奈米線之應用……………………………………………………23 表4.1清華大學小角度X光散射儀之特性與量測功能………..38 表 5.1.1 線生長液(A) 和 線生長液(B) 之比較…………………………46 表 5.1.2 銀奈米粒子生長液……………………………………………….47 表 5.2.1 銀奈米棒樣品配置表…………………………………………….51 表 5.2.2 Kratky-Porod approximation 銀奈米棒半徑……………………..54 表 5.3.1 銀奈米粒子生長液的配置表…………………………………….56 表 5.4.1 混和三角形銀奈米粒子與金離子溶液………………………….58rf 1. D.M.-K. Lam ,B.W. Rossiter , Sci. Am. ,1991,265 ,80 . 2. L.N. Lewis, Chem. Rev. ,1993,93,2693 3. S.R. Nicewarner-pena et al., Science , 2001,294,137 4. S.A. Maier et al. , Adv. Mater. 2001,13, 1501. 5. P.V. kamat, J. phys. Chem. B, 2002,106,7729. 6. M.-P. Pileni,Adv. Funct. Mater. , 2001,11, 323. 7. R. Elghanian, J.J. Storhoff , R.C. Mucic, R.L. Letsinger,C.A. Mirkin, Science ,1997,277, 1078. 8. V.I. Klimov, A.A. Mikhailovsky , S. Xu, A. Malko, J.A. Hollingsworth, C.A. Leatherdale, H.J. Eisler, M.G. Bawendi, Science 2000, 290,314. 9. (a) Prokes, S.M.,Wang K.L. MRS Bull. 1999,24(8),13. (b) Cui, Y. , Wei. Q. , Park. H. , Lieber, C.M. , Science , 2001, 293 , 1289. 10. Andrea Tao, Franklin Kim, Christian Hess, Joshua Goldberger, Rongrui He, Yugang Sun, Younan Xia, and Peidong Yang., Nano Letters, 2000, Vol.3 , No.9 , 1229. 11. N. R. Jana , L. Gearheart and Catherine J. Murphy, Chem. Commun., 2001,617. 12. (a) Yugang Sun , Byruon Gates, Brian Mayers, and Younan Xia, Nano Letters , 2002 , Vol.2 , No.2 , 165. 13. Rongchao Jin, YunWei Cao, Chad A. Mirkin, K.L.Kelly, George C. Schatz, J. G. Zheng. Science , 2001 ,Vol. 294 , 1901. 14. Mathieu Maillard, Pinray Huang, and Louis Brus , Nano Letters, 2003 , Vol. 3 , No. 11 ,1611. 15. J. Zhou, S. Liu, O. Palchik, Y. Koltypin and A.Gedanken, Langmuir , 2000 , 16 , 6396. 16. E. Braun, Y. Eichen , U. Silvan and G. Ben-Yoseph, Nature, 1998 , 391 , 775. 17. M.H. Huang, A. Choudrey and P. Yang, Chem. Commun., 2000, 1063. 18. Y. Zhou, S.H. Yu, X.P. Cui, C. Y. Wang and Z. Y. Chen, Chem.Mater., 1999 , 11 , 545. 19. J. Solan, D. M. Wright, H.G. Woo, S. Bailey, G. Brown, A. P. E. York, K.S. Coleman, J.L. Hutchison and M.L. H. Green, Chem. Commun.,1999 , 699. 20. S. Bhattacharrya, S.K. Saha and D. Chakravorty, Appl. Phys. Letters, 2000 , 76 , 3896. 21. V.M. Cepak and C.R. Martin, J. Phys. Chem. B, 1998 , 102 , 9985. 22. Nikhil R. Jana, Latha Gearheart, and Catherine J. Murphy. Adv. Matter. , 2001 , 13 , No.18 , 1389. 23. Yugane Sun and Younan Xia , 2002 , Science , Vol.298 , 2176. 24. A. Callegari , D. Torti , and M. Chergui , 2003 , Nano Letters , Vol.3 , No.11 , 1565. 25. Marie-Paule Pilene , Nature , 2003 , Vol.2 , 145. 26. Yugang Sun , Brian Mayers, Thurston Herricks, and Younan Xia, Nano Letters , 2003 , Vol.3 , No.7 , 955. 27. Z. L. Wang , M.B. Mohamed , S. Link , M.A. El-Sayed , 1999 , Surface Science , 440, L809-L814. 28. Yugang Sun and Younan Xia , 2002, Anal. Chem. , 74 , 5297. 29. Marshall W.C. , Lovesey S. W. , “Theory of Thermal Neutron Scattering”Clarendon, Oxford, 1971. 30. Feigin L.A. ,Svergun D.I., “Structure Analysis by Small-Angle X-ray and Neutron Scattering”,Plenum Press, N.Y. and London, 1987. 31. 李言榮、渾正中、張勁燕,“材料物理學概論”,2003,P.162~P.164. 32. 張士欣、王崇仁,“金屬奈米粒子的吸收光譜”,1999, Vol.56 ,No.3 ,P.209~222.id NH0925593030 sid 913184 cfn 0 / id NH0925593031 auc 吳一凡 tic 磊晶PtMn薄膜平面序化結構對PtMn/Ni80Fe20系統交換偏移場之影響 adc 李志浩 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 74 kwc 交換偏移場 kwc 序化參數 kwc 反鐵磁 abc 促使交換異向性之材料,已被廣泛的研究應用在高儲存密度之電磁阻感應式讀取頭上。典型的例子:高序化結構的PtMn(反鐵磁層)材料,其會提高自旋閥系統之交換偏移場強度。因此,對於要製造一個良好的自旋閥系統,一個重要的課題就是了解PtMn材料其結構上序化的程度。 tc 目錄: 第一章 緒論.....................................1 1-1 前言………………………………………………………1 1-1.1 不同成分比例下PtMn具豐富磁性結構…………………7 1-1.2 退火處理的影響…………………………………………8 1-2 目前的研究……………………………………………………9 1-3 研究動機 ………………………………………………………10 第二章 基本理論 ……………………………………11 2-1交換異向性……………………………………………………11 (1)Ideal Interface Model…………………………………12 (2)Random Field Model………………………………15 (3) AF Domain Wall Model………………………………18 2-2 序化參數…………………………………………………20 2-3 X光反射率理論…………………………………………24 2-4 X光螢光光譜學…………………………………………25 2-5 二次離子質譜儀…………………………………………28 第三章 實驗樣品與實驗儀器……………………………31 3-1實驗樣品…………………………………………………31 3-2 實驗儀器……………………………………………………33 3-2.1量測儀器簡述……………………………………33 3-2.2 X-ray 繞射儀………………………………………33 3-2.3磁圓偏振光譜術……………………………………35 3-2.4 磁光科爾效應………………………………………37 第四章 結果與討論…………………………………………41 4-0.1改變不同成份比例的PtMn…………………………42 4-0.2 退火處理的影響……………………………………47 4-1磁性的分析……………………………………………………49 4-1.1 MOKE (Magneto-Optic Kerr Effect)分析…………49 4-1.2 MCD (X-Ray Magnetic Circular Dichroism)……53 4-2結構的分析……………………………………………………58 4-2.1膜面序化之影響………………………………………58 4-2.2 coherent length 之影響……………………………62 4-2.3 Crystal Orientation 之影響………………………63 4-2.4 界面粗糙度之影響…………………………………66 4-2.5 Interdiffusion 的影響…………………………68 第五章 結論 ………………………………………………70 參考文獻……………………………………………………73rf [1 ] M. N. Baibich, J. M. Broto, A. Fert, F. et al., Phys. Rev. Lett. 61, 2472 (1988). [2 ] Dieny, et al., Appl. Phys. 69, 4774 (1991). [3 ] Gary A Prize, SCIENCE., 282, 1660 (1998). [4 ] E. Kr?聲 et al., Phys. Rev. 171, 574(1968). [5 ] T. Lin, D. Mauri, N. Staud, C. Hwang, J. K. Howard, and G. L. Gorman, Appl. Phys. Lett. 65, 1183(1994). [6 ] H. Kishi, Y. Kiade, Y. Miyake, A. Tanaka, and K. Kobayashi, IEEE Trans. Magn. 32, 3380(1996). [7 ] K. Krishnan, C. Nelson, C. Echer, R. F. C. Farrow,R. F. Marks, and A. J. Kellock, J. Appl. Phys. 83, 6810(1998). [8 ] R. F. C. Farrow et al., J. Appl. Phys. 81, 8(1997). [9 ] E. Linville, A. Morrone, S. Mao, J. Slivertsen, and J. Judy, Digests of Intermag’2000 Conference, Toronto, Canada, April 9-13,2000, paper DB-02. [10 ] E .H. Meiklejohn and C.P.Bean,Phys.Rev.102, 1413 (1956) ; Phy . Rev.105 , 904(1957). [11 ]A .P. Malozemoff ,J .Appl.Phys.63,3874(1988). [12 ]A .P. Malozemoff , Phys. Rev. B35,3679 (1987) ; Phys. Rev. B37, 7673 (1988). [13 ] 吳泰伯,“X光繞射原理與材料結構分析”,中國材料科學學會。 [14 ] A. Benninghoven, F.G. Rudenauer, and H.W. Werner, Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends, Wiley, New York, 1987. [15 ] V. Cherepin, Secondary Ion Mass Spectrometry of Soild Surfaces, VNU Science Press BV, Utrecht, 1987. [16 ] http://www.srrc.gov.tw/ [17 ] J.P.Qian and G.C.Wang, J.Vac.Sci.Technol. A 8, 117(1990). [18 ] Voigt.W, ”Magneto and Electro Optic”, Teubner, Leiptig (1908). [19 ] Hulme, H.R.”Farady effect in ferromagnetics”, Pro.Roy.Soc., A135,237(1932). [20 ] W. Y. Lee, M. F. Toney, A. Kellock, M. Carey, J. Hedstrom, and D. Mauri, IEEE Tans. Magn., Vol.38, 3536(2002). [21 ] R. F. C. Farrow, R. F. Marks, S. Gider, A. C. Marley, S. S. P. Parkin, and D Mauri, J Appl. Phys. 81, 4986. [22 ] M. Saito, T. Watanabe, and T. Kuriyama, U.S. Patent 5 768 067(1998) [23 ] S. Prakash, K. Pentek, and Y. Zhang, IEEE Tans. Magn. 37, 1123(2001). [24 ] Takashi Sato, Masakiyo Tsunoda, Migaku Takahashi , J. Magn. Magn. Mater. 240, 277(2002). [25 ] Michael F. Toneya and Mahesh G. Samant, J. Appl. Phys. 93, 4729 (2003). [26 ]賴柜宏,國立成功大學物理所碩士論文。(2003) [27 ] W.J. Antel Jr.a, T. Hughesa, H. Laidlera, P.J. Dohertyb, A. Johnstonb, J. Magn. Magn. Mater. 242, 961 (2002). [28 ] Masafumi Takiguchia, Satoru Ishii, Eiji Makino, and Akihiko Okabe, J. Appl. Phys. 87, 2469 (2000). [29 ] Erie H. Morales, Y. Wang, and D. Ledermana, A. J. Kellock and M. J. Carey, J. Appl. Phys. 93, 4729 (2003). [30 ] Chih-Huang Lai, Thomas C. Anthony, Eiji Iwamura, and Robert L. White, IEEE Trans. Magn. 32, 3419 (1996). [31 ] Kannan M. Kishnan, C. Nelson and C. J. Echer, J. Appl. Phys. 83, 6810 (1998). [32 ] Geng Wang, Tom Yeh, John. M. Siverisen and Jack. H. Judy, IEEE.Trans.On Magn., Vol.32, 5(1996). [33 ] Chih-Huang Lai, C.P. Wang, Chester Qian, J. Appl. Phys. 85, 6115 (1999). [34 ] S. Honda, M. Nawate and T. Norikane, J. Magn. Magn. Mater. 220, 85 (2000).id NH0925593031 sid 913187 cfn 0 / id NH0925593032 auc 江欣達 tic 電感耦合式電漿蝕刻氮化鎵/氮化銦鎵發光二極體之研究 adc 蔡春鴻 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 77 kwc 電感耦合式電漿蝕刻機台 kwc 氮化鎵 kwc 發光二極體 kwc 電漿蝕刻 kwc 實驗設計方法 abc 本論文研究使用田口式直交表矩陣實驗設計(Design of Experiments)來探討氮化鎵/氮化銦鎵(GaN/InGaN)量子井藍光二極體以電感式藕合式高密度電漿(Inductive Coupled Plasma)蝕刻機,製程氣體為Cl2/BCl3,的電漿蝕刻中機台參數(instrumental parameters):電漿功率(ICP Power)、偏壓功率(RF Bias Power)、製程腔壓力(Chamber Pressure)和BCl3佔混合氣體的百分比,對蝕刻結果的影響,利用表面輪廓分析儀量測(surface profiler)量測蝕刻速率(etch rate)、原子力顯微鏡(AFM)量測蝕刻面粗糙度(surface roughness)、掃描式電子顯微鏡(SEM)觀察蝕刻側壁的形貌(side wall morphology)及對二氧化矽(SiO2 mask)的蝕刻選擇比(selectivity)。並比較以不同磊晶方式(MOCVD & MBE)所成長的GaN薄膜,在使用電漿蝕刻之後,蝕刻表面的粗糙度隨機台參數變化情形。 rf 【1】S. J. Pearton and R. J. Shul, in Gallium Nitride I, edited by J. I. Pankove and T. D.Moustakas Academic ,San Diego,1998 【2】P. Gillis, D. A. Choutov, P. A. Steiner, J. D. Piper, J. H. Crouch, P. M. Dove, and K. P. Martin, Appl. Phys. Lett. 66, 2475,1995 【3】R. J. Shul, in Processing of Wide Bandgap Semiconductors, edited by S. J. Pearton ,Noyes, Park Ridge, NJ, 1999 【4】I. Adesida, A. Mahajan, E. Andideh, M. Asif Khan, D. T. Olsen, and J. N. Kuznia, Appl. Phys. Lett. 63, 2777,1993 【5】I. Adesida, A. T. Ping, C. Youtsey, T. Sow, M. Asif Khan, D. T. Olson, and J. N. Kuznia, Appl. Phys. Lett. 65, 889,1994 【6】O. Aktas, Z. Fan, S. N. Mohammad, A. Botcharev, and H. Morkoc, Appl. Phys. Lett. 69, 25,1996 【7】M. A. Khan, Q. Chen, M. S. Shur, B. T. McDermott, J. A. Higgins, J. Burm, W. Schaff, and L. F. Eastman, Electron. Lett. 32, 357,1996 【8】Y. F. Wu, S. Keller, P. Kozodoy, B. P. Keller, P. Parikh, D. Kapolnek, S. P. DenBaars, and V. K. Mishra, IEEE Electron Device Lett. 18, 290,1997 【9】M. A. Khan, J. N. Kuznia, M. S. Shur, C. Eppens, J. Burm, and W. Schaff, Appl. Phys. Lett. 66, 1083 ,1995,Bridges, S. J. Pearton, J. W. Lee, and L. F. Lester, Mater. Res. Soc. Symp. Proc. 512, 487,1998 【10】W. A. Harrison, Electronic Structure and Properties of Solids ,Freeman, San Francisco, 1980 【11】S. J. Pearton, C. R. Abernathy, F. Ren, and J. R. Lothian, J. Appl. Phys. 76, 1210,1994 【12】M. E. Lin, Z. F. Zan, Z. Ma, L. H. Allen, and H. Morkoc, Appl. Phys. Lett. 64, 887,1994 【13】A. T. Ping, I. Adesida, M. Asif Khan, and J. N. Kuznia, Electron. Lett. 30, 1895,1994 【14】H. Lee, D. B. Oberman, and J. S. Harris, Jr., Appl. Phys. Lett. 67, 1754,1995 【15】S. J. Pearton, C. R. Abernathy, F. Ren, J. R. Lothian, P. W. Wisk, A. Katz, and C. Constantine, Semicond. Sci. Technol. 8, 310,1993 【16】S. J. Pearton, C. R. Abernathy, and F. Ren, Appl. Phys. Lett. 64, 2294,1994 【17】S. J. Pearton, C. R. Abernathy, and F. Ren, Appl. Phys. Lett. 64, 3643,1994 【18】R. J. Shul, S. P. Kilcoyne, M. Hagerott Crawford, J. E. Parmeter, C. B. Vartuli, C. R. Abernathy, and S. J. Pearton, Appl. Phys. Lett. 66, 1761,1995 【19】 C. B. Vartuli, J. D. MacKenzie, J. W. Lee, C. R. Abernathy, S. J. Pearton, and R. J. Shul, J. Appl. Phys. 80, 3705,1996 【20】L. Zhang, J. Ramer, K. Zheng, L. F. Lester, and S. D. Hersee, Mater. Res. Soc. Symp. Proc. 395, 763 1996 【21】L. Zhang, J. Ramer, J. Brown, K. Zheng, L. F. Lester, and S. D. Hersee, Appl. Phys. Lett. 68, 367,1996 【22】B. Humphreys and M. Govett, MRS Internet J. Nitride Semicond. Res. 1, 6,1996 【23】J. W. Lee, J. Hong, J. D. MacKenzie, C. R. Abernathy, S. J. Pearton, F. Ren, and P. F. Sciortino, J. Electron. Mater. 26, 290,1997 【24】C. B. Vartuli, S. J. Pearton, J. W. Lee, J. Hong, J. D. MacKenzie, C. R. Abernathy, and R. J. Shul, Appl. Phys. Lett. 69, 1426,1996 【25】R. J. Shul, A. J. Howard, S. J. Pearton, C. R. Abernathy, C. B. Vartuli, P. A. Barnes, and M. J. Bozack, J. Vac. Sci. Technol. B 13, 2016,1995 【26】C. B. Vartuli, S. J. Pearton, C. R. Abernathy, R. J. Shul, A. J. Howard, S. P. Kilcoyne, J. E. Parmeter, and M. Hagerott Crawford, J. Vac. Sci.Technol. A 14, 1011,1996 【27】R. J. Shul, C. I. H. Ashby, D. J. Rieger, A. J. Howard, S. J. Pearton, C. R. Abernathy, C. B. Vartuli, and P. A. Barnes, Mater. Res. Soc. Symp. Proc. 395, 751,1996 【28】R. J. Shul, in GaN and Related Materials, edited by S. J. Pearton ~Gordon and Breach, The Netherlands, 1997 【29】R. J. Shul, G. B. McClellan, S. J. Pearton, C. R. Abernathy, C. Constantine, and C. Barratt, Electron. Lett. 32, 1408,1996 【30】R. J. Shul, G. B. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, Jr., C. Tran, and M. Schurman, Appl. Phys. Lett. 69, 1119,1996 【31】Y. H. Lee, H. S. Kim, G. Y. Yeom, J. W. Lee, M. C. Yoo, and T. I. Kim, J. Vac. Sci. Technol. A 16, 1478,1998 【32】H. S. Kim, Y. H. Lee, G. Y. Yeom, J. W. Lee, and T. I. Kim, Mater. Sci. Eng., B 50, 82,1997 【33】Y. B. Hahn, D. C. Hays, S. M. Donovan, C. R. Abernathy, J. Han, R. J. Shul, H. Cho, K. B. Jung, and S. J. Pearton, J. Vac. Sci. Technol. A submitted 【34】H. Cho, C. B. Vartuli, S. M. Donovan, J. D. MacKenzie, C. R. Abernathy, S. J. Pearton, R. J. Shul, and C. Constantine, J. Electron. Mater. 27, 166,1998 【35】H. Cho, C. B. Vartuli, S. M. Donovan, C. R. Abernathy, S. J. Pearton, R. J. Shul, and C. Constantine, J. Vac. Sci. Technol. A 6, 1631,1998 【36】J. W. Lee, H.隨著積體電路製程技術進步,積體電路元件密集度大幅增加,電子元件尺寸越作越小,這使得電流密度逐漸增大,和產生局部的電流壅塞現象,此皆會對元件的可靠度造成不利的影響。本實驗擬藉由氫電漿的表面處理來調整銅/鉭間的接觸電阻,並利用電腦的模擬來分析銅/鉭的接觸電阻對電流壅塞的影響, 本實驗利用黃光微影製程製備試片,來探討銅/鉭接觸電阻受表面處理、電流和溫度的影響。首先利用Kelvin測試結構量測接觸電阻,接點尺寸由20×20μm2到4×4μm2。研究發現表面處理對銅/鉭間的接觸電阻有很直接的影響,表面處理可明顯的降低接觸電阻。此外接觸電阻亦會受到電流和溫度的影響,當電流越大或溫度越高時接觸電阻會有下降的趨勢。 在模擬方面,使用模擬軟體FlexPDE來分析在Blech結構中接觸電阻對電流分佈的影響。模擬結果顯示,接觸電阻的存在的確會改變電流的分佈,當接觸電阻越大,則銅膜所能達到的最大電流密度會越小,且銅導線內的電流壅塞效應越不明顯。id NH0925593032 sid 913190 cfn 0 / id NH0925593033 auc 蔡嘉豪 tic 風扇性能曲線預測方法之研究 adc 施純寬 adc 林唯耕 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 130 kwc 風扇 kwc 性能曲線 kwc 迴歸分析 abc 摘要 tc 目錄 摘要 I 致謝 II 目錄 III 表目錄 VI 圖目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究目的 3 1-4 研究方法 4 1-5 本文架構 4 第二章 風扇基本介紹與參數分析 5 2-1 風扇移熱原理 5 2-2 風扇性能曲線之獲得 6 2-2-1 實驗方式 6 2-2-2 模擬方式 7 2-3 風扇介紹 8 2-3-1 風扇構造介紹 8 2-3-2 風扇本體簡介 8 2-4 實驗設備與方法 10 2-5 參數簡化 11 2-5-1 參數簡化問題 11 2-5-2 簡化方法 12 2-6 參數統計 15 第三章 統計分析 38 3-1 迴歸分析 38 3-2 多重線性迴歸 40 3-3 應用分析 42 3-4 分析結果 43 3-5 改善方法 46 3-5-1 座標轉換 46 3-5-2 結果與討論 47 第四章 類神經網路分析 63 4-1 類神經網路介紹 63 4-2 類神經學習網路 65 4-2-1 訓練方式 65 4-2-2 倒傳遞網路 66 4-2-3 倒傳遞學習模式推導 68 4-3 類神經網路設計 72 4-4 類神經網路預測結果 75 第五章 水平角與弓角之分析 93 5-1 水平角分析 93 5-2 弓角分析 94 第六章 數值模擬分析 114 6-1 前處理 114 6-2 數值模擬計算 115 6-2-1 邊界設定 115 6-2-2 數值模擬 116 6-2-3 模擬結果 116 6-3 模擬與預測之比較 117 6-4 結論 118 第七章 結論與建議 128 7-1 結論 128 7-2 建議 129 參考文獻 130 表目錄 表2- 1 風扇初始轉速 17 表2- 2 NACAM6 量測結果 18 表2- 3 NACAM2 量測結果 18 表2- 4 NACAM18 量測結果 19 表2- 5 NACAM2 實驗數據(a) 20 表2- 6 NACAM2 實驗數據(b) 20 表2- 7 NACAM2 實驗數據(c) 21 表2- 8 NACAM2 實驗數據(d) 21 表2- 9 NACAM6 實驗數據(a) 22 表2- 10 NACAM6 實驗數據(b) 22 表2- 11 NACAM6 實驗數據(c) 23 表2- 12 NACAM6 實驗數據(d) 23 表2- 13 NACAM18 實驗數據(a) 24 表2- 14 NACAM18 實驗數據(b) 24 表2- 15 NACAM18 實驗數據(c) 25 表2- 16 NACAM18 實驗數據(d) 25 表2- 17 NACAM2 真實翼型與簡述翼型資料 26 表2- 18 NACA23018 真實翼型與簡述翼型資料 26 表3- 1 翼型參數 49 表3- 2 P-Q資料 51 表3- 3 迴歸方程式係數 53 表3- 4 相關係數 54 表3- 5 NACAM3,NACAM18,NACA2512 翼型參數 54 表3- 6 預測與真實資料 55 表3- 7 極座標下數值 56 表3- 8 迴歸方程式係數 58 表3- 9 相關係數 59 表3- 10 預測數值以及誤差 59 表4- 1 轉換函數表 76 表4- 2 元件組織表 77 表4- 3 訓練數據 78 表4- 4 相關係數 80 表4- 5 預測誤差 80 表4- 6 翼型參數 81 表5- 1 水平角轉換關係 96 表6- 1 結構尺寸 119 表6- 2 格點尺寸 119 表6- 3 NACAM2模擬與實驗 120 表6- 4 NACAM18 模擬與實驗 120 表6- 5 NACAM12弓角48度實驗與模擬 121 表6- 6 NACA65實驗與模擬 121 表6- 7 模擬實驗與預測數據 122 圖目錄 圖2- 1 風扇移熱原理 27 圖2- 2 風扇性能曲線與元件阻抗曲線 27 圖2- 3 風洞 28 圖2- 4 PIV 可視化流場 28 圖2- 5 風扇網格建立 29 圖2- 6 流道網格建立 29 圖2- 7 風扇本體圖 30 圖2- 8 翼型 30 圖2- 9 弓角 31 圖2- 10 攻錯角 31 圖2- 11 水平角 31 圖2- 12 風扇設計軟體—FANX 32 圖2- 13 小型CNC雕刻機 33 圖2- 14 風扇製作成品 33 圖2- 15 實驗室風洞 34 圖2- 16 風洞測試示意圖 34 圖2- 17 NACAM2 轉換後的風扇性能曲線 35 圖2- 18 NACAM6 轉換後的風扇性能曲線 35 圖2- 19 NACAM18 轉換後的風扇性能曲線 36 圖2- 20 翼型剖面圖 37 圖2- 21 NACAM2 真實翼型與簡述翼型 37 圖2- 22 NACA23018 真實翼型與簡述翼型 37 圖3- 1 NACAM3 風扇性能曲線 60 圖3- 2 NACAM18 風扇性能曲線 60 圖3- 3 NACA2512 風扇性能曲線 60 圖3- 4 座標轉換 61 圖3- 5 NACAM3 風扇性能曲線 62 圖3- 6 NACAM18 風扇性能曲線 62 圖3- 7 NACA2512 風扇性能曲線 62 圖4- 1 神經細胞架構 82 圖4- 2 神經細胞元數學模式 82 圖4- 3 類神經網路 83 圖4- 4 網路學習概念 83 圖4- 5 單層類神經網路 84 圖4- 6 多層類神經網路 84 圖4- 7 類神經網路架構 85 圖4- 8 類神經網路設計流程圖 86 圖4- 9 類神經網路訓練過度 87 圖4- 10 類神經網路訓練不足 87 圖4- 11 收斂誤差的影響(a) 88 圖4- 12 收斂誤差的影響(b) 88 圖4- 13 兩層類神經網路 89 圖4- 14 四層類神經網路 89 圖4- 15 NACAM3風扇性能曲線 90 圖4- 16 NACAM18 風扇性能曲線 90 圖4- 17 NACA2512風扇性能曲線 91 圖4- 18 state 風扇性能曲線 91 圖4- 19 NACA65 風扇性能曲線 92 圖5- 1 水平角 -45度 97 圖5- 2 水平角 -30度 97 圖5- 3 水平角-15度 97 圖5- 4 水平角0度 97 圖5- 5 水平角 15度 97 圖5- 6 水平角30度 97 圖5- 7 state 不同水平角之風扇性能曲線 98 圖5- 8 plane 不同水平角之風扇性能曲線 98 圖5- 9 CHY 不同水平角之風扇性能曲線 99 圖5- 10 NACA65 不同水平角之風扇性能曲線 99 圖5- 11 state 水平角 30度 100 圖5- 12 state 水平角 15度 100 圖5- 13 plane 水平角30度 100 圖5- 14 plane 水平角15度 101 圖5- 15 NACA65 水平角 -15度 101 圖5- 16 NACA65 水平角 -30度 101 圖5- 17 NACA65 水平角 30度 102 圖5- 18 NACA65 水平角 15度 102 圖5- 19 弓角 48度 103 圖5- 20 弓角 42度 103 圖5- 21 弓角 36度 103 圖5- 22 弓角 27度 103 圖5- 23 弓角 15度 103 圖5- 24 NACAM12 不同弓角之風扇性能曲線 104 圖5- 25 NACA2212 不同弓角之風扇性能曲線 104 圖5- 26 NACA0012_64 不同弓角之風扇性能曲線 105 圖5- 27 弓角48度與弓角15度R之比 106 圖5- 28 弓角42度與弓角15度R之比 106 圖5- 29 弓角36度與弓角15度R之比 106 圖5- 30 弓角27度與弓角15度R之比 107 圖5- 31 各弓角與弓角15度R之比 107 圖5- 32 NACAM12 弓角48度 風扇性能曲線 108 圖5- 33 NACAM12 弓角42度 風扇性能曲線 108 圖5- 34 NACAM12 弓角36度 風扇性能曲線 109 圖5- 35 NACAM12 弓角27度 風扇性能曲線 109 圖5- 36 NACA0012_64 弓角48度 風扇性能曲線 110 圖5- 37 NACA0012_64 弓角42度 風扇性能曲線 110 圖5- 38 NACA0012_64 弓角36度 風扇性能曲線 111 圖5- 39 NACA0012_64 弓角27度 風扇性能曲線 111 圖5- 40 NACA2212 弓角48度 風扇性能曲線 112 圖5- 41 NACA2212 弓角42度 風扇性能曲線 112 圖5- 42 NACA2212 弓角36度 風扇性能曲線 113 圖5- 43 NACA2212 弓角27度 風扇性能曲線 113 圖6- 1 前處理流程 123 圖6- 2 風扇本體 124 圖6- 3 前後流道 124 圖6- 4 NACAM2 風扇性能曲線 125 圖6- 5 NACA65 風扇性能曲線 125 圖6- 6 NACAM18 風扇性能曲線 126 圖6- 7 NACAM12 弓角48度 風扇性能曲線 126 圖6- 8 實驗模擬與預測 127 圖6- 9 操作介面 127rf 參考文獻 1. 李生丕、林博正、洪振益、湯恩溶,1999,"應用類神經網路於軸流式風扇葉片設計",中國機械工程學會第十六屆全國學術研討會論文集, pp. 391-398. 2. 吳俊億,『軸流風扇設計軟體之研發』,國立清華大學工程與系統科學所碩士論文,2001. 3. 籃重凱,『軸流風扇翼型與角度對性能曲線之影響』,國立清華大學工程與系統科學所碩士論文,2004. 4. 柯夢宏,『Pentium 4 桌上型電腦冷卻風之數值模擬』,國立台灣科技大學機械工程學所碩士論文,2002. 5. Shepherd ,D.G ,“Principles of Turbomachinery”,Macmillan Publishing Co,Inc,New York,1956. 6. 簡煥然、施銘銓,『軸流風扇性能測試技術與葉片技術』,機械工業雜誌,1992年8月, pp.26-288. 7. 吳凱文,『利用可視化流場實驗修正複合式軸流風扇之翼型』,國立清華大學工程與系統科學所碩士論文,2002. 8. M.S.RICE,‘’HandBOOK of AIRFOIL SECTIONS for LIGHT AIRCRAFT’’. AVIATION PUBLICATIONS. 9. 楊建裕,『流體機械』,高立圖書有限公司,1990. 10. 王希伯,『流體機械』,文京圖書有限公司,1987. 11. 洪英輝、楊安石編譯,(原著Gorden N.Ellison,”Thermal Computations For Electric Equipment”)『電子裝備系統熱傳分析』全華科技圖書故份有限公司. 12. Simon Haykin ,”Neural Networks A Comprehensive Foundation, 2nd ed.”, Prentice Hall, 1999. 13. 羅華強,『類神經網路—MATLAB的應用』,清蔚科技股份有限公司,2001. 14. 葉怡成,『應用類神經網路』,儒林圖書有限公司,1997. 15. 盧炳勳、曹登發編譯(--原著(Wasserman,” Neural Computing Theory and Practice “)),『類神經網路理論與應用』全華科技圖書股份有限公司,1992. 16. 張智星,『MATLAB 程式設計與應用』,清蔚科技股份有限公司,2000. 17. 吳宗正譯(原著-- Neter, John 、Wasserman, William ,Applied Linear Statistical Models.),『迴歸分析—理論與應用』,三名書局,1982. 18. 『FLUENT 基礎訓練課程講義』,虎門科技股份有限公司. 19. 『Gambit 基礎課程講義』,虎門科技股份有限公司.id NH0925593033 sid 913196 cfn 0 / id NH0925593034 auc 羅士謹 tic 微型直接甲醇燃料電池廢液氣自發性回收裝置之研製 adc 曾繁根 adc 錢景常 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 英文 pg 76 kwc 微型燃料電池 kwc 微流體 kwc 表面親疏水梯度 abc 最近的研究進展顯示直接甲醇燃料電池(DMFC)很有潛能成為交通運輸、固定的電力供應、以及可攜式的電子產品的電力來源。但是,DMFC仍然有一些主要的問題需要克服,才能應用在所謂3C的產品。擬以自然的物理力量作為甲醇溶液進料及二氧化碳產物排出之推動力,而不需要在微燃料電池裡設計需要動力來源之主動式推動元件。本研究考慮的自然的物理力量包括表面張力、蒸發、凝結及熱壓作用。採用這些自然力,將使微燃料電池不再需要主動式的微幫浦及相關的閥門而可簡化微燃料電池設計,減少其體積至8 cm3以下,並提昇其產生能量的效能及可靠度。本人研究目的在於設計一裝置能以不需外加能源的被動方式將微型燃料電池中的副產物-水與溶於其中的甲醇燃料回收於一固定容器。 tc Chapter 1 Introduction …………………………………… 1 1.1 Introduction to fuel cell ………………………… 1 1.2 Basic Working Principle of Fuel Cell …………………4 1.3 Fuel Cell Types …………………………………………5 1.4 Introduction to Direct Methanol Fuel cell …………8 1.5 Challenges in Micro Direct Methanol Fuel Cell(μDMFC)10 1.6 Motive and Goal of Research …………………………12 Chapter 2 Literatures Review ………………………………13 2.1 Pressure Difference in Contracting Microchannel……13 2.2 Temperature Effect on Surface Tension ……………16 2.3 Wettability Gradient Effect…………………………… 18 2.4 Introduction to SAMs …………………………… 21 Chapter 3 Design and Fabrication …………………………24 3.1 Design of the 1st generation Chip ………………… 24 3.2 Fabrication of the 1st generation chip………………27 3.3 Design of the 2nd generation chip ………………… 31 3.4 Fabrication of the 2nd generation chip………………36 Chapter 4 Experiments and Results…………………………40 4.1 Problems in fabrication ………………………… 40 4.2 Testing and results of the 1st generation design 45 4.3 Testing of the 2nd generation chip – droplet movtion and contact angle gradient distribution…………………… 47 4.4 Capillary rise of water …………………………… 50 4.5 Result of the water rise test…………………… 51 4.6 Droplets test ……………………………… 56 4.7 Gas-exhaust holes test……………………………… 61 4.8 Vapor testing on the 2nd generation chip …………… 64 4.9 Chip improving …………………………… 68 Chapter 5 Conclusions………………………………… 74 Reference…………………………………………………………75rf 1. Internatioal Fuel Cells http://www.internationalfuelcells.com/index_f11.shtml 2. 元智大學燃料電池研究中心 http://www.fuelcells.org.tw/ 3. K.Kordesch and G. Simader, VCH Publishers, New York, USA, “Fuel Cells and Their Applications” , 1996. 4. J. Larminie and A. Dicks, John Wiley & Sons , England, “Fuel Cell System Explained”, 2001. 5. M. Waidhas, W. Drenkhahn, W. Preidel, and H. Landes, “Direct fuelled fuel cells”, J. Power Sources, 61(1996), p91~97. 6. Jeremy P. Meyers1, Helen L. Maynard, “Design considerations for miniaturized PEM fuel cells”, J. Power Sources, 109(2002), p76-88 7. Research Project Website at CMU http://www.ices.cmu.edu/amon/Projects/Summaries/micro_power.html 8. R.Aoyama, M. Seku, J.W. Hong, T. Fujii and I. Endo, “Novel liquid injection method with wedge-shaped microchannel on a PDMS microchip system for diagnostic analyses”, IEEE Transducer 01, p1232-1235, Munich, Germany, June 10-14,2001. 9. Jane Gin Fai Tsai, Zugen Chen, Stanley Nelson, and “CJ” Kim, “A silicon-micromachined pin for contact droplet printing”, IEEE MEMS 2003, p295-298, Kyoto, Japan, 2003. 10. Jen-Huo Cheng, M. S. thesis, NTHU, Taiwan, 2002. 11. Wen-Pin Chung,”The design and research of partially hydrophilic surface applied to micro fuel cell”, M. S. thesis, NTHU, Taiwan, 2003. 12. Eric D. Hobbs, and Albert P. Pisano, “Micro capillary-force driven fluidic accumulator/pressure source”, IEEE Transducer 03 , p155-158, Boston, USA, 2003. 13. T.S. Sammarco and M. A .Burns, “Thermocapillary pumping of discrete drops in microfabricated analysis devices”, J. AIChE, vol.45, p109-112, 1999. 14. M.J. DeBar and D. Liepmann, “Fabrication and performance testing of a steady thermocapillary pump with no moving parts”,IEEE MEMS 2002, p109-112, Las Vegas, USA, January , 2002. 15. Yuan-Tai Tseng, “ Design and research of a temperature gradient driven micro droplet actuator”, M. S. thesis, NTHU, Taiwan, 2003. 16. A. W. Adamson, “Physical Chemistry of Surfaces”,Wiley,New York,1976. 17.S. Daniel, M.K. Chaudhury, J.C. Chen, “Fast Drop Movements Resulting from the Phase Change on a Gradient Surface”, Science,Vol.291, p633-636, 2001. 18.K.Manoj and G.M. Whitesides, “How to make water run uphill”, Science, Vol.256, p1539-1541,1992. 19.D.T. Wasan, A.D. Nikolov, and H. Brenner, “Droplet speeding on surface”, Science, Vol.291, p605-606, 2001. 20.G. Timp, “Nanotechnology”, AIP Press, Spriger, New York, USA,1999. 21.A. Kumar, H. A. Biebuyck, G. M. Whitesides, Langmuir, Vol.10, 1994, p1498.id NH0925593034 sid 913113 cfn 0 / id NH0925593035 auc 楊允儒 tic 膠體尺寸對於放射性核種在多孔性頁岩傳輸之影響 adc 李四海 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 72 kwc 膠體 kwc 放射性核種 kwc 重力 kwc 傳輸半徑 kwc 裂縫 kwc 延散力 abc 本論文主旨在討論放射性核種在多孔性岩層傳輸中,膠體的尺寸效應對傳輸的影響。根據最近一篇文獻指出(Cumbie and Mackay, 1999),膠體粒子在多孔性頁岩傳輸中,膠體存在一最佳的傳輸半徑。具有最佳傳輸半徑的膠體將能傳輸到最遠的距離。換句話說,當此膠體吸附放射性核種時,它將會把帶有放射性污染的核種帶往最遠的距離。基於此一觀點,我們將在本論文探討膠體尺寸與膠體傳輸機制之關係。 rf 1. Baik, M. H. and P. S. Hahn, “Radionuclide transport facilitated by polydispersed pseudo-colloids in the fracture rock media,” J. Nucl. Sci. Technol.,34(1), 1997. 2. Baek, I and W. W. Pitt, Jr,, “Colloid-facilitated radionuclide transport in fracture porous rock,” Waste Manag., 16(4), 313, 1996. 3. Barten W. and P. Robinson,“Contaminant transport in fracture networks with heterogeneous rock matrices: The PINIC code,”Nagra Technical Report NTB ,01-03, 2001. 4. Bedient, B. P., Rifai, H. S. and C. J. Newell, ”Groundwater Contamination Transport and Remediation,” PTR Prentice-Hall New Jersey, 1st ed.,164, 1994. 5. Bell, G. M. and S. Lavine, ”Approximate methods of determining the double-layer free energy of interaction between two charged colloidal spheres, ”J. Colloid Interface Sci., 33, 335 , 1970. 6. Berner, U., "Project opalinus clay: radionuclide concentration limits in the cementitious near-field of an ILW repository," PSI Bericht Nr. , 02-26, 2002. 7. Chen, F. L. and S. H. Li, ”Derivation of an equation for radionuclide transport in porous media,”Nucl. Technol., 90, 215, 1990. 8. Cumbie, D. H. and L. D. Mckay, “Influence of diameter on particle transport in a fractured shale saprolite,”Journal of Contaminant Hydrology, 139-157, 1999. 9. DiFelice, R., ”A relationship for the wall effect on the settling velocity of a sphere at any flow regime,”Int. J. Multiphase Flow,22(3),527, 1996. 10. DiMarzio, E. A. and C. M. Guttman, ”Separation by flow,” Macromolecules, 3(2), 131, 1970. 11. Grindrod, P., ”The dispersal of colloids in fractured rock,” Symp.Validation of Geosphere Flow and Transport Methods (GEOVAL), Paris, 210, 1991. 12. Harton, A. D. and G. V. Wilson, “Influence of flow rate on transport of phage in a highly weathered and fractured shale,”J. Environ. Qual. 31:1095-1105, 2002. 13. Hwang, C. C., ”Colloid transport in groundwater”, Journal of the Chinese Institute of Environmental Engineering, 7(1), 13-24, 1997. 14. Ibaraki, M. and E. A. Sudicky, “Colloid-facilitated contaminant transport in discretely fractured porous media – 1. Numerical formulation and sensitivity analysis,” Water Resour. Res., 31(12), 2945, 1995. 15. John, G. O. and M. Ibaraki, ”Migration of colloids in discretely fractured porous media: effect of colloidal matrix diffusion,”Journal of Contaminant Hygrology ,52, 213-244, 2001. 16. Kosakowski, G., Berkowitz, B. and H. Sche, "Analysis of field observations of tracer transport in a fractured till,"Journal of Contaminant Hydrology, 47, 29-51, 2001. 17. Li, S. H. and C. P. Jen, ”Migration of radionuclides in porous rock in the presence of colloid: effect of kinetic interactions,” Waste Manag., 2000a. 18. Li, S. H. and C. P. Jen, ”Modeling of hydrodynamic chromatography for colloidal migration in the fractured rock,”Nucl. Technol., 2000b. 19. Mcdonald, A. T. and R. W. Fox,“Introduction to Fluid Mechanics,”Wiley., New York, 1998. 20. McDowell, L. M., Hunt, J. R., and N. Sitar, ” Particle transport through porous media,” Water Resources Research 22, 1986. 21. McKay, L. D., Cherry, J. A. , and R. W. Gillham ,” Field experiments in a fractured clay till: 1. Hydraulic . conductivity and fracture aperture,” Water Resources Research 294 , 1993. 22. Oswald, J. G. and M. Ibaraki, “Migration of colloids in discretely fractured porous media: effect of colloidal matrix diffusion,”J. Contam. Hydrol.,52, 2001. 23. Prieve, D. C. and P. M. Hoysan, ”Role of colloidal forces in hydrodynamic chromatography,” J. Colloid Interface Sci.,201, 1978. 24. Puls, R. W. and R. M. Powell, ”Surface-charge repulsive effects on the mobility of ignorganic colloids in subsurface systems,”Transport and Remediation of Subsurface Contamininates, 1992. 25. Scott, C. J. and V. C. Constantions, ”Effective velocity and effective dispersion coefficient for fnite-sized particles flowing in an uniform fracture,”Journal of Colloid and Interference Science,88-295, 2003. 26. Silebi, C. A. and A. J. McHugh, ”An analysis of flow separation in hydrodynamic chromatography of polymer latexes,”A1CheJ., 24(2), 204, 1978. 27. Tang, D. H.,Friend, E. O. and E. A. Sudicky, ”Contaminant transport in fractured porous media: analytical solution for single fracture,” Water Resour. Res.,17(3):555, 1981. 28. Van der Lee, J., Ledoux E., and G. Demarsily, “Medoling of colloidal uranium transport in a fractured medium,” J. Hydrol., 139, 135, 1992. 29. Van de Weerd, H. and W. H. VanRiemsdijk, “Transport of reactive colloids and contaminants in groundwater: effect of nonlinear kinetic interactions,”J. Contam. Hydro.,32,313, 1998. 30. Van Genuchten and W. J. Alves, “Analytical solutions of the one-dimensional convective-dispersive solute transport equation,”4500 Glenwood Drive, Riverside, CA 92501, 1982. 31. Vilks, P., F. and M. K. Haas, “Potential for the formation and migration of colloidal material from a near-surface waste disposal site, ”Appl. Geochem., 12(1), 31-42, 1998. 32. Wieland, E. , Bradbury, M. H. and L. R. Vanloon, “Development of a sorption data base for the cementitious near-field of a repository for radioactive waste,“Czech. J. Phys. 53, A629-A638, 2002.id NH0925593035 sid 913151 cfn 0 / id NH0925593036 auc 林育樟 tic 銥錳/鎳鐵磊晶合金薄膜之序化結構與交換偏移場之研究 adc 李志浩 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 107 kwc 交換偏移場 kwc 序化 kwc 合金薄膜 kwc 銥錳 kwc 鎳鐵 kwc 磊晶 abc 在需要高序化溫度的交換偏移場系統中,序化的Ir(x)Mn(100-x)薄膜不曾被發現過。然而,我們卻發現了Ir(x)Mn(100-x)合金薄膜的序化結構 (X=19, 24, 26, 33)可以在較低的退火溫度(300度C)產生。除此之外,Ir(x)Mn(100-x)的序化程度與交換偏移場之間有密切的關連,所以徹底瞭解Ir(x)Mn(100-x)的序化程度是非常重要的。 tc 摘要 在需要高序化溫度的交換偏移場系統中,序化的IrxMn100-x薄膜不曾被發現過。然而,我們卻發現了IrxMn100-x合金薄膜的序化結構 (X=19, 24, 26, 33)可以在較低的退火溫度(300oC)產生。除此之外,IrxMn100-x的序化程度與交換偏移場之間有密切的關連,所以徹底瞭解IrxMn100-x的序化程度是非常重要的。 在本實驗當中,我們使用X-ray diffraction,X-ray Reflectivity,X-ray fluorescence,Magneto-Optical Kerr Effect,以及X-ray absorption spectroscopy來分析樣品,從樣品的成分比例、序化參數、界面粗糙度、反鐵磁層厚度、配位數、以及原子價數的探測,進一步瞭解序化程度與交換偏移場之間的關連。所有實驗都在National Synchrotron Radiation Research Center (NSRRC)完成。 經由序化參數量測,確定IrMn序化合金為L12序化結構。推測 IrMn合金形成序化結構是源自於MBE的成長方式。另外也由於IrMn的合金薄膜相對塊材薄,因此造成序化溫度下降,而易使IrMn合金薄膜產生序化相。我們發現序化程度越高,交換偏移場也越大。在本系統中,”反鐵磁層厚度”及”鐵磁反鐵磁間界面間粗糙度”並非影響交換偏移場的重要因素,而晶體結構才是關鍵。 目錄 第一章 前言及文獻回顧 1-1研究動機 ……………………………………………………1 1-2 文獻回顧 ……………………………………………………2 1-3 簡介 …………………………………………………………7 第二章 理論簡介 2-1 晶格序化原理簡介 …………………………………………9 2-2 磁性的起源 ………………………………………………20 2-3 GMR效應 …………………………………………………22 2-4 磁異向性簡介 ……………………………………………27 2-5 X光吸收光譜簡介…………………………………………28 2-6 反鐵磁/反鐵磁交換異向性理論 …………………………31 2-7 交換耦合( Exchange coupling) ………………………………36 2-8 能帶理論(Band Theory) ………………………………………37 2-9 X光反射率理論…………………………………………………38 第三章 實驗儀器與實驗方法介紹 3-1 序化參數(Order parameter , S)計算方法……………40 3-2 柯爾磁光效應………………………………………………44 3-3 柯爾磁光效應儀器裝置…………………………………………48 3-4 螢光定量分析量測………………………………………………52 第四章 實驗結果與討論 4-1前言 …………………………………………………………58 4-2螢光定量分析 ………………………………………………59 4-3 MOKE量測……………………………………………………65 4-4 XRD序化參數量測 …………………………………………72 4-5 晶格品質對繞射峰形之影響 ……………………………………88 4-6 反射率實驗(Reflectivity) ……………………………………92 4-7 吸收光譜實驗(XANES)…………………………………………97 第五章 結論 ……………………………………………102 未來工作 …………………………………………………103 參考文獻 ………………………………………………104 附錄一…………………………………………………106rf 參考文獻 1.H.N. Fuke, K. Saito, Y. Kamiguchi, H. Iwasaki, M. Sahashi, J. Appl. Phys. 81, 4004 (1997). 2.Devasahayam, A.J.; Kryder, M.H., IEEE Trans. Magn. 35, 649 (1999). 3.Nozieres JP, Jaren S, Zhang YB, et al. J. Appl. Phys. 87, 3920 (2000). 4.K.Sasao et al., J. Alloys. comp., 352(1-2), 21 (2003) 5.H. Li,and P. P. Freitas, J. Appl .Phys., 89, P6904 (2001) 6.J.vanDriel ,F.R.deBore,M.H.Lenssen,and R.Coehoorn,106J.Appl.Phys. 88, 975(2000) 7.R.Nakatani, H.Hoshiya, K.Hoshino and Y.Sugita, IEEE Trans.Magn, VOL 33. NO 5(1997) 8.M.Pakala, Y.Huai, G.Anderson, and L.Miloslavsky, J.Appl.Phys.87. 6653(2000) 9.J. C. Ro, Y .S. Choi, S. J. Suh, and H. J. Lee, IEEE Trans Magn,35,3925(1999) 10.A. J. Devasahayam, P. J. Sides, and M. H. Kryder, J.Appl.Phys. 83, 7216(1998) 11.T. Yamaoka, J.Phys.Soc.Jpn. 36, 445 (1974) 12.T. Yamaoka, M. Mekata, and H. Takaki, J.Phys.Soc.Jpn. 31, 301 (1971) 13.K. Sasao , R.Yamauchi and K. Gukamichi , IEEE Trans.Magn.35 ,3910 (1999) 14.K. Fukamichi, K. Sasao, and R. Y. Umetsu, Phys. Rev. B 67, 024420 (2003) 15.A. sakuma, K. Fukamichi, K. Sasao, andR. Y.Umetsu, Phys. Rev. Lett., 67, 024420 (2003) 16.I. Tomeno, H. N. Fuke, H. Iwasaki, M. Sahashi and Y. Tsunoda, J.Appl.Phys. 86, 3853 (1999) 17.Kojiro Yagami, Masakiyo Tsunoda, J.Appl.Phys. 89 (11), 6609 (2001) 18.林麗娟, “晶格序化”,科儀新知, 第十三卷第六期, 13 (1992) 19.E.C.Bain, Trans.AIME, 68, 625 (1923) 20.B.E.Warren, X-ray Diffraction; Ch. 12. Addison-Wesley, reading,May (1969) 21.N.Setter and L.E.Cross, “The Contribution of Structural Disorder to Diffuse Phase Transition in Ferroelectrics,”J.Mat.Sci.,15, 2478(1980) 22.M.N. Baibich, J.M Broto, A.Fert et al., Phys.Rev.Lett. 61, 2472 (1988) 23.Eric E. Fullerton et al., Phys. Rev. B. 48, 15755 (1993) 24.See e.g. “Ultrathin Madnetic Structure Ⅱ, Measurement Techniquesand Novel Magnetic Properties” ed. By B.Heinrich, J. A. C. Bland.(1994) 25.A. Fert ,P. Grunberg, A. Bartthelemy, F. Pertroff, W. Zinn.J.Magn. Magn.Mater, 140(1995) 26.J.C.S. Kools. IEEE Tran. Magn. 32, 3165 (996) 27.Soshin Chikazumi 著,張煦、李學養 譯 磁性物理學,52,經連出版社(1981) 28.Cullity,”Introduction to magnetic materials”.S?瀛hin Chikazumi and Stanley H.Charap,”Physics of Magnetism”. 29.黃彥衡, X光吸收光譜術研究磁異向性奈米材料(FePt, CrPt3)之結構, 國立清華大學工程與系統科學系碩士論文(2004). 30.D. C. Koningsberger and R. Prins., X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES, pp.53-83 (1988). 31.B. K. Teo, EXAFS: Basic Principles and Data Analysis, pp. 21-101 (1986). 32.王其武、劉文漢, X射線吸收精細結構及其應用,科學出版社(1994). 33.中華民國磁性技協會會訊29期, P2 34.W. H. Meiklejohnand C.P., bean, Phys. Rev., 105, 904 (1957) 35.A. P. Malozemoff, Phys. Rev. B., 35, 3679 (1987) 36.中華民國磁性技協會會訊29期, P2 37.B. D. Cullity, “Introduction to Magnetic Materials,Addison-Wesley” , 133 (1972) 38.B. D. Cullity, “Introduction to Magnetic Materials,Addison-Wesley” , 138 (1972) 39.M. Maret and M. Albrecht, JMMM, 218 151 (2000) 40.J.P. Qian and G.C. Wang , J. Van Sci. Technol. A8, 4117(1990) 41.Voigt. W,“Magneto and Electro Optic”, Teubner, Leiptig (1908) 42.Hulme, H.R. “Farady effect in ferromagnetics”, Pro. Roy. Soc, A135,237(1932). 43.葉幸真,國立清華大學工程與系統科學所碩士論文 (2003) 44.Tolgyessy, Juraj./Havranek, E./Dejmkova, E. Radionuclide x-ray fluorescence analysis with environmental applications 45.李明鴻,國立清華大學工程與系統科學所碩士論文 (2003) 46.R. Yamauchia), J. Appl. Phys, Vol.85, No.8, 4741, (1999) 47.Elements of x-ray diffraction, Cullity, Bernard Dennis, (1978) 48.Kebin Li, J. Appl. Phys., Vol. 94, No. 9, 1 November (2003)id NH0925593036 sid 913181 cfn 0 / id NH0925593037 auc 黃品勳 tic 氯氣電漿蝕刻製程之電漿放射光譜量測分析 adc 林滄浪 adc 柳克強 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 131 kwc 氯氣電漿蝕刻 kwc 放射光斷層掃瞄 kwc 放射光量測定 kwc 蝕刻終點 abc 本研究主旨是應用與改進電漿放射光譜時間與空間解析量測系統於氯氣電漿蝕刻製程。我們使用放射光斷層掃瞄 (optical emission tomography, OET) 技術與放射光量測定 ( optical emission actinometry, OEA) 原理來分析高密度電感式耦合氯氣電漿源中氯離子、氯原子與氯分子濃度隨時間與空間變化。應用放射光譜學診斷技術於複雜化學游離電漿最大優點在於非侵入式量測。 tc 摘 要Ⅰ 致 謝Ⅲ 目 錄Ⅳ 圖表目錄Ⅵ 第一章 簡介1 1.1 研究背景1 1.2 研究目的4 第二章 文獻回顧6 2.1 以Optical Emission Actinometry(OEA)原理量測電漿中代測物種濃度文獻回顧6 2.2 以Trace Rare Gases Optical Emission Spectroscopy(TRG-OES)量測電漿中電子溫度溫度文獻回顧18 2.3 以Optical Emission Tomography(OET)技術重建電漿濃度的空間分佈文獻回顧23 2.4研究高介電材料(High-k material)在電漿蝕刻製程中放射光譜量測文獻回顧29 第三章 基本原理32 3.1 電漿基本原理32 3.2 電漿蝕刻機制33 3.3 放射光(Optical Emission)原理37 3.4 放射光量測定(Optical Emission Actinometry)原理39 第四章 放射光斷層掃瞄影像重建技術44 4.1 Abel inversion一維影像重建技術44 4.2 Radon inversion二維影像重建技術47 第五章 實驗設備與量測系統50 5.1 電感耦合式電漿源蝕刻機台50 5.2 光譜儀系統34 5.3 電漿放射光斷層掃瞄系統39 第六章 實驗步驟與方法61 6.1 光譜儀校正61 6.2 氯氣電漿光65 6.3 曲線擬合(Curve fitting)68 6.4 氯氣電漿放射光譜時間解析70 6.5氯氣電漿放射光譜空間解析71 第七章 實驗結果與分析討論72 7.1 電漿光譜水平空間掃瞄量測系統改進72 7.2 電漿光譜量測運用於蝕刻製程量測79 7.3 電漿光譜之時間解析88 7.4 空間掃瞄點OEA原理之a 係數量測109 7.5 電漿光譜之時間與空間解析116 第八章 結論126 參考文獻129rf [1 ] J. W. Coburn and M. Chen, J. Apply. Phys. 51, 3134, 1980. [2 ] R. A. Gottscho and V. M. Donnelly, J. Apply Phys. 56, 245, 1984. [3 ] M. A. Liberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994). [4 ] V. M. Donnelly, J. Vac. Sci. Technol. A 14(3), 1076, 1996. [5 ] M. V. Malyshev, V. M. Donnelly, A. Kornbit, and N. A. Ciampa, J. Apply Phys. 84, 137, 1998. [6 ] M. V. Malyshev and V. M. Donnelly, J. Apply Phys. 88, 6207, 2000. [7 ] N. C. M. Fuller and Irving P. Herman, J. Apply Phys. 90, 3182, 2001. [8 ] V. M. Donnelly, M. V. Malyshev, M. Schabel, A. Kornblit, W. Tai, I. P. Herman, and N. C. M. Fuller, Plasma Sources Sci. Technol. 11, A26, 2002. [9 ] Pete Klimecky, Jessy Grzzle, and Fred L. Terry, Jr. Prepared for presentation at the AEC/APC XIV Symposium 2002. [10 ] Saurabh J. Ullal and R. Godfrey, J. Vac. Sci. Technol. A 20(1), 43, 2002. [11 ] M. V. Malyshev and V. M. Donnelly, J. Vac. Sci. Technol. A 15(3), 550, 1997. [12 ] M. V. Malyshev and V. M. Donnelly, Phys. Rev. E 60, 6016, 1999. [13 ] N. C. M. Fuller, V. M. Donnelly, Irving P. Herman, J. Vac. Sci. Technol. A 20(1), 170, 2002. [14 ] M. J. Schabel, V. M. Donnelly, A. Kornbit, and W. W. Tai, J. Vac. Sci. Technol. A 20(2), 555, 2002. [15 ] V. M. Donnelly and M. J. Schabel, J. Apply Phys. 91, 6288, 2002. S. Miyake, N. Shimura, T. Makabe and A. ltoh: J. Vac. Sic. Technol. A 10, 1135 1992. [16 ] L. M. Smith and D. R. Keefer, J. Quant. Spectrosc. Radiat. Transfer, vol. 39(5), 367, 1988. [17 ] A. Okigawa, T. Makabe, T. Shibagaki, N. Nakano, Z. L. Petrovic, T. Kogawa, and A. Itoh, Jpn. J. Appl. Phys., vol. 35, pp.1890-1893, 1996. [18 ] A. Okigawa, M. Tadokoro, A. Itoh, N. Nakano, Z. Lj. Petrovic, and T. Kogawa, Jpn. J. Appl. Phys., Part 1 36, 4605 ,1997. [19 ] Eric C. Benck and Kasra Etemadi ,National Institute of Standards and Technology, Gaithersburg, MD 20899. [20 ] Luc Stafford J. Vac. Sci. Technol. A 21, 1247 (2003). [21 ] S. Norasetthekul, et al., Appl. Surf. Sci. 187(1-2), 75 (2002). [22 ] Jinghao Chen, et al., J. Vac. Sci. Technol. A 21, 1210 (2003). [23 ] Lin Sha, et al., J. Vac. Sci. Technol. A 20, 1525 (2002). [24 ] J. A Mucha and D.W. Hess, “Plasma Etching,” in L. F. Thomposon and C. G. Willson, Eds., Microcircuit Processing: Lithography and Dry Etching, American Chemical Society, Washington, D. C., 1984. [25 ] 丁宏哲,“氯氣電漿放射光譜解析”,國立清華大學工程與系統科學所碩士論文,2002。 [26 ] 雷舜誠,“300mm電感耦合式電漿源蝕刻機台之製程研究”,國立清華大學工程與系統科學所碩士論文,2001。 [27 ] L. M. Smith and D. R. Keefer, J. Quant. Spectrosc. Radiat. Transfer Vol. 39, No. 5, 367 (1988). [28 ] S. M. Candel, Computer Physics Communications, 23, 343 (1981). [29 ] Avinash C. Kak, Malcolm Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988). [30 ] 徐重仁,“電感式電漿源之光譜量測與分析”,國立清華大學工程與系統科學所碩士論文,1999。 [31 ] http://www.oceanoptics.com/ [32 ] http://www.multimodefo.com/technical/default.htm [33 ] S. Wolf, Silicon Processing for the VLSI ERA vol. 4,(Lattice Press, 2002). [34 ] Gerhard Franz, Agnes Kelp, and Peter Messerer, J. Vac. Sci. Technol. A 18 (5), 2053, 2000. [35 ] S. Kleditzsch and U. Riedel, J. Vac. Sci. Technol. A 18(5), 2130, 2000. [36 ] R. J. Hoekstra, M. J. Grapperhaus and M. J. Kushner, J. Vac. Sci. Technol. A 15(4), 1913, 1997. [37 ] C. Kittel, Introduction to Solid State Physics, (Willy and Sons, 7th ed.) [38 ] 龔茂林,“利用蘭牟爾探針量測混合氯氣及氬氣之電感式電漿”,國立清華大學工程與系統科學所碩士論文,2003。 [39 ] 謝東彥,“氯氣電漿光譜量測與分析”,國立清華大學工程與系統科學所碩士論文,2001。id NH0925593037 sid 913183 cfn 0 / id NH0925593038 auc 羅健昇 tic 低放射性廢棄物島嶼處置場-放射性核種遷移模式 adc 李四海 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 81 kwc 低放射性廢棄物 kwc 核種遷移 kwc 島嶼處置場 abc 本論文建立的目的,(1)完善島嶼處置的理論科學基礎,(2)建立一個整合近場源項及遠場分析的一般化解析模式,(3)在於確定邊界條件對於源項的影響及邊界條件使用的條件及情形,(4)確定源項模式(source term model)對於遠場分析的影響。 tc 目 錄 頁次 摘要 .......................... I 誌謝辭......................... III 目錄 ..........................IV 圖目錄......................... VI 表目錄....................... VIII 第一章 緒論....................... 1 第二章 文獻回顧..................... 5 第三章 低放射性廢棄物島嶼處置場概念模式........ 11 3-1 物理系統...................... 11 3-2 傳輸機制...................... 17 第四章 核種於工程障壁的傳輸模式 ............ 19 4-1核種傳輸統御方程式及起始條件............19 4-2一般解.......................20 4-3邊界條件......................20 4-3-1 Dirichlet邊界條件-任意射源情況 .........21 4-3-2 Dirichlet邊界條件-濃度指數衰減型式 .......23 4-3-3 Neumann邊界條件-任意射源情況......... 24 4-3-4 Neumann邊界條件-通量指數衰減型式....... 27 4-4 驗證及解析模式限制條件 ........... 28 4-5 數值說明 .................. 33 第五章 核種於外圍母岩中的傳輸分析.......... . 42 5-1核種於外圍母岩的統御方程式 ............ 42 5-2核種傳輸的一般解 ................. 42 5-3 Dirichlet邊界條件及其解析解........... 43 5-4 源項........................ 44 5-5 驗證....................... 47 5-6 數值說明..................... 49 第六章 結論及建議................... 57 參考文獻 ........................60 附錄一:第四章-近似解數值分析程式........... 63 附錄二:第四章-核種相對外釋率數值分析程式........65 附錄三:第五章-數值驗證程式...............67 附錄四:第五章-核種濃度分佈數值分析程式.........74rf 1.Abramowitz, M. and Z. A. Stegun, Handbook of mathematical functions with formulas,graphs,and mathematical tables, Dower,New York, 1972.. 2.Ahn, J., P. L. Chambre, B. Light, D. Roberts, J. Verbeke “Radionuclide transport in disturbed zone between engineered and natural barriers of deep geologic disposal of high-level radioactive wastes,” Report UCB-NE 4217, 1996 3.Ahn, J.,“Integrated radionuclide transport model for a high-level repository in water-saturated geological formations”, Nucl. Technol.,121, 1998 4.Arfken, G. , Mathematical methods for physicists, Academic Press, Third edition , 1985 5.Bear, J. and A. Verruijt, Modeling Groundwater Flow and Pollution, D. Reidel, Taiwan, 1987.. 6.Carslaw, H. S. and J. C. Jaeger ,Conduction of heat in solids ,Oxford University Press, Second edition, 1959 7.Carslaw, H. S. and J. C. Jaeger ,Operational methods in applied mathematics, 1947 8.Chapman, N. A., I. G. Mckinley and M. D. Hill, The Geological Disposal of Nuclear Waste, John Wiley & Sons, New York , 1987. 9.Chen, F. L., S. H. Li and G. P. Yu, “Preliminary assessments for disposal of high-level waste within small islets,” Nucl. Technol., 95, 54-63 , 1991 10.Chiou, S. L. and S. H. Li, “Migration of radionuclides in fractured porous rock : Analytical solution for a flux-type boundary condition,” Nucl. Technol.,”101(1), 92-100 , 1993. 11.Crank, J. ,The mathematics of diffusion , Oxford University Press , 1973 12.Farlow, S. J., Partial differential equations for scientists & engineers, John Wiley & Son, Inc. , 1982 13.Hedin, A. ,“Integrated analytic radionuclide transport model for a spent nuclear fuel repository in saturated fractured rock,” Nucl. Technol.,138, 2001 14.Javandel, I., C. Doughty and C. F. Tsang, Groundwater transport handbook of mathematical models, American geophysical union, 1984 15.Kreft, A. and A. Zuber, “On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions,” Chem..Eng.Sci. 33 ,1471-1480, 1978 16.McLachlan, N. W. ,Bessel functions for engineers, Oxford University Press, 1955 17.Nair, R. N. and T. M. Krishnamoorthy, “Migration of radionuclides form a deep geological repository:analytical model with radial diffusion in host matrix,” Nucl. Geophys.,9(3),219-228, 1995 18.Nair, R. N. and T. M. Krishnamoorthy, “A simple model for preliminary safty analysis of a high level radioactive waste wepository, ”Ann. Nucl. Energy, 24(12), 995-1003 , 1997 19.Pigford, T. H. and P. L. Chambre, “Mass transfer and transport in geological repositories:analytic studies and applications,” Rad. Waste Manag. And Nucl. fuel cycle, 13(1-4),241-262, 1989 20.Sun, N. Z. ,Mathematical modeling of groundwater pollution, Spring-Verlag New York Inc., 1996 21.Van Genuchten, M. T., D. H. Tang and R.Guennelon, “Some exact solutions for solute transport through soil containing large cylindrical macropores,”Water Resour. Res., 20(3), 335-346 ,1984. 22.Watson, G. N., Theory of Bessel functions , the Syndics of Cambridge University Press, Second edition ,1958 23.Zheng, C. and G. D. Bennett, Applied contaminant transport modeling-theory and practice, Van Nostrand Reinhold ,1995 24.陳福龍,「放射核種於地質處置系統中傳輸之數學模式與分析」,博士論文,清華大學,(1991) 25.陳俊鋒,「島嶼核種遷移模式之研究」,碩士論文,清華大學 (1995)id NH0925593038 sid 903165 cfn 0 / id NH0925593039 auc 吳奇隆 tic 先進微影材料之光學特性研究 adc 張廖貴術 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 102 kwc 微影 kwc 真空紫外光 kwc SU-8 kwc 灰階光罩 kwc CNT abc 論文摘要 tc 目錄 摘要-------------------------------------------------------------------------------I 誌謝------------------------------------------------------------------------------II 目錄------------------------------------------------------------------------------III 表目錄--------------------------------------------------------------------------XIV 圖目錄--------------------------------------------------------------------------XV 第一章 序論---------------------------------------------------------------------1 1.1 前言---------------------------------------------------------------1 1.2 研究動機與目的------------------------------------------------3 1.3 研究內容---------------------------------------------------------5 第二章 理論基礎--------------------------------------------------------------7 2.1 光學微影曝光系統---------------------------------------------7 2.1.1 系統架構--------------------------------------------------7 2.1.2 光源的同調性--------------------------------------------8 2.1.3 偏軸照射技術原理--------------------------------------9 2.1.4 成像理論-------------------------------------------------11 2.1.5 高數值孔徑透鏡----------------------------------------12 2.1.6 光阻輪廓分析-------------------------------------------13 2.2 微影製程技術--------------------------------------------------16 2.2.1 塗底--------------------------------------------------------17 2.2.2 光阻塗佈--------------------------------------------------17 2.2.3 軟烤--------------------------------------------------------17 2.2.4 曝光--------------------------------------------------------17 2.2.5 曝後烤-----------------------------------------------------18 2.2.6 顯影--------------------------------------------------------18 2.2.7 硬烤--------------------------------------------------------18 2.3 反射光對光阻的影響------------------------------------------19 2.3.1 駐波效應--------------------------------------------------19 2.3.1.1 反射率駐波圖-----------------------------------22 2.3.1.2 清晰曝光劑量駐波圖--------------------------22 2.3.2 凹缺效應--------------------------------------------------24 2.4 抗反射層理論---------------------------------------------------25 2.4.1 多層光學薄膜理論---------------------------------------26 2.4.2 多層底部抗反射層---------------------------------------28 2.4.3 抗反射層材料---------------------------------------------29 第三章 真空紫外光光學常數求解方法-----------------------------------31 3.1 分析方法---------------------------------------------------------32 3.2 容忍度分析與討論---------------------------------------------34 3.2.1 反射率容忍度分析-------------------------------------34 3.2.2 厚度容忍度分析----------------------------------------37 3.2.3 入射角容忍度分析-------------------------------------40 3.3 表面粗糙度對反射率之影響--------------------------------43 3.4 不同材料的求解結果-----------------------------------------45 3.5 結論--------------------------------------------------------------48 第四章 材料光學特性的探討---------------------------------------------48 4.1 實驗儀器介紹--------------------------------------------------48 4.2 以求解方法分析材料光學特性-----------------------------49 4.2.1 以二氧化矽驗証121或126 nm波長的求解方法---------------------------------------------------------------------50 4.2.2 分析Porous MSQ與HSQ 在126 nm之光學特性---------------------------------------------------------------------52 4.2.3 分析氮氧化矽在126 nm之光學特性---------------58 4.3 在光學微影製程中之應用-----------------------------------62 4.3.1 HSQ以及porous MSQ在光阻及介電材料上的應用---------------------------------------------------------------------62 4.3.2 氮氧化矽在抗反射層上的應用----------------------62 4.3.3 氮氧化矽在相位移光罩上的應用-------------------67 4.4 結論--------------------------------------------------------------68 第五章 以SU-8的光學特性應用在灰階光罩的製作------------------69 5.1 背景介紹-------------------------------------------------------75 5.2 研究動機-------------------------------------------------------75 5.3 以SU-8結合半導體製程來製作灰階光罩--------------78 5.4 以混合CNT來增加SU-8的吸收程度-------------------82 5.4.1 SU-8混合CNT後的光學特性----------------------82 5.4.2 SU-8混合CNT後之鍵結分析----------------------85 5.4.3 CNT濃度對光學特性之影響------------------------90 5.4.4 曝光劑量對SU-8+CNT光學特性之影響---------92 5.5 結論--------------------------------------------------------------94 第六章 結論--------------------------------------------------------------------95rf 參考文獻 [1 ] Semiconductor Industry Association, “International Technology Roadmap for Semiconductor 2003 Updated, (SIA Publication, 2003)” [2 ] K. Suzuki, S. Matsui et al., “Sub-Half-Micron Lithography for ULSIs” (Cambridge University, New York Publication 2000) [3 ] C. H. Lin, L. A. Wang and H. L. Chen, “Optimized Bilayer Hexamethyl-Disiloxane Film as Bottom Antireflective Coating Both KrF and ArFLithographies” J. Vac. Sci. Technol. B, Vol.18, No.6, pp.3323-3327, 2000 [4 ] C. H. Lin and L. A. Wang, “Feasibility of Utilizing Hexamethyl-Disiloxane Film as a Bottom Antireflective Coating for 157 nm Lithography” J. Vac. Sci. Technol. B, Vol.19, No.6, pp.2357-2361, 2001 [5 ] T. M. Bloomstein, M. Rothschild, R. R. Kunz, D. E. Hardy, R. B. Googman and S. T. Palmacci, “Critical Issues in 157 nm Lithography” J. Vac. Sci. Technol. B, Vol.16, No.6, pp.3154-3157, 1998 [6 ] 邱燦賓,”抗反射層應用於微影製程之簡介”,奈米通訊,第四卷,第三期,頁25-31,1997 [7 ] T. Gocho, T. Ogawa, M. Muroyama and T. I. Sato, “Chemical Vapor Deposition of Anti-reflective Layer Film for Excimer Laser Lithography” J. J. Appl. Phys., Vol.33, pp.486-490, 1994 [8 ] Y. Tani, H. Mito, Y. Okuda, Y. Todokoro, T. Tatsuta, M. Sawai, O. Tsuji, “Optimization of Amorphous Carbon-Deposited Antireflective Layer for Advanced Lithography” J. J. Appl. Phys., Vol.32, pp.5909-5913, 1993 [9 ] L. A. Wang and H. L. Chen, “A Novel Bottom Antireflective Coating Working for Both KrF and ArF Excimer Laser Lithography” Microelectron Eng. 53, pp.141-144, 2000 [10 ] M. Xu and T. M. Ko, “Double-Layer Inorganic Antireflective System for KrF Lithography” J. Vac. Sci. Technol. B, Vol.18, No.1, pp.127-135, 2000 [11 ] T. C. Paulick,” Inversion of normal-incidence (R, T) Measurements to obtain N + IK For Thin Films” Appl. Optics, 25(4) 562, 1986 [12 ] N.V. Edwards, Annual APS March meeting 2002. [13 ] R. H. French, Optical Microlithography XIII, SPIE 4000 1491, 2000 [14 ] V. Liberman, M. Rothschild, P. G. Murphy, and S. T. Palmacci, “Prospects for Photolithography at 121 nm”, J. Vac. Sci. Technol., B20 (6), 2567, 2002 [15 ] Jianxun Yan, Anatoly Bourov, Bruce W. Smith, “Optical Lithography at a 126nm Wavelength”, J. Vac. Sci. Technol., B20(6), 2574, 2002 [16 ] Hoyoung Kang, Ashraf EI-Dakrouri, Mounir Laroussi, and Mool C. Gupta, “121.6 nm Radiation Source for Advanced Lithography”, Proc. SPIE, Vol.4343, 2001 [17 ] 張仲興,?撩謢X應用各種光學方法來改善積體電路光學微影製程之模擬與研究」,國立交通大學,光電工程研究所,碩士論文,1997 [18 ] Bruce W. Smith, ”Optics for Photolithography” Rochester Institute of Technology, Rochester, New York, 2000 [19 ] Larry F. Thompson, C. Grant Willson et al., “Introduction to Microlithography” American Chemical Society, Washington publication, 1994 [20 ] C. A. Mack, “Optimum Stepper Performance Through Image Manipulation” KTI Micro-electronics Seminar, Proc., pp.209, 1989 [21 ] C. A. Mack, “Algorithm for Optimizing Stepper Performance Through Image Manipulation” Optical/Laser Microlithography III, Proc., SPIE Vol.1264, pp.71, 1990 [22 ] C. A. Mack, ”Inside Prolith” Finle Technologies, Texas publication, 1997 [23 ] Heinrich Kirchauer, Institute for Microelectronics, TU Vienna, published at http://www.iue.tuwien.ac.at/publications/PhD%20Theses/kirchauer/node41.html [24 ] D. F. Ilten and K. V. Patel, “Standing Wave Effects in Photoresist Exposure” Image Technology, pp.9, 1971 [25 ] G. S. Hwang, K. P. Giapis, “On the origin of the notching effect during etching in uniform high density plasmas” J. Vac. Sci. Technol., Vol.15, No. 1, pp. 70, 1997 [26 ] T. A. Brunner et al., ”High NA swing curve effects” SPIE, Vol.4346, pp.1050, 2001 [27 ] C. A. Mack and C-B. Juang, “Comparison of Scalar and Vector Modeling of Image Formation in Photoresist” Optical/Laser Microlithography VIII, Proc., SPIE Vol. 2440, 1995 [28 ] C. A. Mack, “Analytical expression for the standing wave intensity in photoresist” Applied Optics, 25, pp. 1958, 1986 [29 ] Han Ku Cho,” Current Lithography Technology and Future Prospect” Process Development Team Semiconductor R & D, Samsung Inc., published at http://seraphim.snu.ac.kr /upload /samsung/2001/ lithography.pdf [30 ] H. A. Macleod, ”Thin-film optical filters” McGraw-Hill, New York publication, 2001 [31 ] 李正中,?撙■丰?學與鍍膜技術」,藝軒圖書出版社,1999 [32 ] Se-Jin Choi et al., ”Improved Lithographic Performance of 193nm-Photoresists Based on Cycloolefin / Maleic Anhydride Copolymer by Employing Mixed PAGs” SPIE, Vol.4346, pp.94, 2001 [33 ] E. J. Walker, ”Reduction of Photoresist Standing-Wave Effects by Post Exposure Bake” IEEE Trans. Electron Devices., Vol,ED-22,No.7, pp464, 1975 [34 ] R. A. Cirelli, G. R. Weber, A. Kornblit, R. M. Baker, F. P. Kkemens, and J. Demarco, “A Multi-layer Inorganic Antireflective System for Use in 248 nm Deep Ultraviolet Lithographey” J. Vac. Sci. Technology. B14 (6), 4229, 1996 [35 ] Tanaka, N. Asai, and S. I. Uchino, “A Novel Antireflection Method With Gradient Photoabsorption for Optical Lithography”, Proc. SPIE 2726, pp. 573-582, 1996 [36 ] L. A. Wang, H. L. Chen “Multi-Layer Hexamethyldisiloxane Film as Bottom Antireflective Coating for ArF Lithography” J. Vac. Sci. Technol. B 17(6), pp. 2772, 1999 [37 ] Q. Y. Lin, A. Cheng, J. Sudijono, C. Lin, “Dual Layer Inorganic SiON Bottom ARC for 0.25μm DUV Hard Mask Applications” Proc. of SPIE, Vol. 3678, pp.186, 1999 [38 ] S. Ding, W. Kang, H. Tanaka, S. Dixit et al. “Optimization of Bottom Antireflective Coating Materials for Dual Damascene Process” Proc. of SPIE, Vol. 3999, pp.910, 2000 [39 ] Cher-Huan Tan, et al.,” Organic BARC Process Evaluation for Via First Dual Damascene Patterning” SPIE, Vol.4346, pp.804, 2001 [40 ] S. Nakaoka, H. Watanabe, and Y. Okuda, “Comparison of CD Variation Between Organic and Inorganic Bottom Anti-reflective Coating on Topographic Substrates” Proc. of SPIE, Vol. 3679, pp.932, 1999 [41 ] 莊達人,?墟LSI製造技術」,高立圖書公司,1994 [42 ] P. T. Liu, T. C. Chang, K. C. Hsu, T. Y. Tseng, L. M. Chen, C. J. Wang, and S. M. Sze,” Characterization of Porous Silicate for Ultra-low K Dielectric Application” Thin Solid Film, 414, pp.1-6, 2002 [43 ] 張鼎張,劉柏村,”NDL在無機類低介電係數材質的研發簡介”,奈米通訊,第五卷,第四期 [44 ] 范萬達,?憧?學微影中漸變式底部抗反射層之研究」,國立台北科技大學,光電技術研究所,碩士論文,2002 [45 ] W. Henschel, Y. M. Georgiev, and H. Kurz, “Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist” J. Vac. Sci. chnol., B21(5), 2018, 2003 [46 ] F. D. Lai, C. M. Chang, L. A. Wang, and T. S. Yih,” Ultrathin TiO2 amorphous films for high transmittance APSM blanks at 157 and 193 nm wavelength simultaneously” J. Vac. Sci. Technol., B21, 3062, 2003 [47 ] Oppliger, Y. et al., “One-step 3D Shaping Using a Gray-Tone Mask for Optical & Microelectric Applications” Microelectronic Engineering, Vol.23, p.449-454, 1994 [48 ] Daschner, Walter et al., “Fabrication of Diffractive Optical Elements using a Single Optical Exposure with a Gray Level Mask” J. Vac. Sci. Technol. B, Vol.13(6), Nov/Dec, p.2729-2731, 1995 [49 ] Ridge, Nancy, “HEBS-Glass Photomask Blanks” User’s Manual(Canyon Materials Inc.), CMI Product Information no.96-01, p.1-15 [50 ] Christopher M. Waits, Reza Ghodssi, Matthew H. Ervin and Madan Dubey, “MEMS-based Gray-Scale Lithography” International Semiconductor Device Research Symposium (ISDRS), December 5-7, 2001, Washington D. C. [51 ] W. H Wong and E. Y. B. Pun, “SU8C Resist for Electron Beam Lithography” Proceedings of SPIE, Vol.4345, pp.873-880, 2001 [52 ] 陳宣克,?撕q子束微影製作三維非平面微結構及結構表面改質」,國立中央大學,化學工程與材料工程研究所,碩士論文,2003 [53 ] Published at http://www.cnm.es/projects/microdets/su8.htmid NH0925593039 sid 913182 cfn 0 / id NH0925593040 auc 蔡文旗 tic 鈷-60輻射照射場劑量分佈測量計算 adc 江祥輝 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 84 kwc 鈷60 kwc 劑量測量 abc 清華大學原科中心鈷-60照射場之射源結構特殊,且以往沒有一套較完整、詳盡之劑量率分佈資訊提供給使用者,而我們也希望利用此照射場設施從事儀器校正測試及輻射照射應用等研究,因此對照設場及射源組件做了仔細的模擬計算,並經過實驗驗證,來得到較完善、準確的空間劑量率分佈資訊。 tc 摘要.......................................................i 目錄.....................................................iii 圖索引.....................................................v 表索引....................................................ix 第一章 緒論................................................1 第二章 實驗設備............................................3 2.1 照射場及射源........................................3 2.1.1 照射場.........................................3 2.1.2 射源...........................................4 2.2 劑量計.............................................10 2.2.1 輻染膠片劑量計測系統..........................10 2.2.1.1 RDF劑量計之作用原理......................12 2.2.1.2 RDF劑量計之校正..........................13 2.2.2 Farmer 2571游離腔.............................27 2.2.3 丙胺酸劑量計測系統............................28 2.2.4 SPOKAS游離腔..................................31 第三章 射源表面及25公分劑量率分佈........................33 第四章 QAD-CGGP計算機程式簡介.............................49 4.1 程式功能...........................................49 4.2 計算模式...........................................53 4.3 組合幾何模型.......................................56 第五章 QAD-CGGP計算結果...................................60 第六章 QAD-CGGP計算結果與實驗結果比對.....................65 第七章 結論與建議.........................................68 7.1 結論...............................................68 7.2 建議...............................................71 附錄......................................................73 附錄ㄧ RDF劑量計之射源導管表面劑量分佈測量結果數據.....73 附錄二 核研所RDF劑量計及丙胺酸劑量計之射源導管表面 劑量標定結果數據................................77 附錄三 距射源導管中心軸25公分各角度游離腔劑量率垂直 掃描結果數據....................................78 附錄四 距射源導管中心軸25公分270度方向游離腔劑量率垂直 掃描結果數據....................................81 參考文獻..................................................83rf 1. J.L. Shepherd & Associates, 1010 Arroyo Ave., San Fernando, California 91340-1822, info@jlshepherd.com. 2. Far West Technology, Inc., 330 South Kellogg Ave. Suite D, Goleta, CA 93117 USA, info@fwt.com. 3. Standard Imaging, Inc., 7601 Murphy Drive, Middleton, WI 53562, http://www.standardimaging .com. 4. Sehested, K., "The Fricke dosimeter", in Manual on Radiation Dosimetry(Holm, N. W., Berry, R. J., Eds.), Marcel Dekker, New York, 313, 1970. 5. 陳家杰, 連清宏, "工業用輻射劑量計簡介"核研季刊12期, P. 69~75, 1996. 6. 許彬杰, 劉朝錦, 劉邦政, 陳義燦, 李四海, "高強度鈷六十水池式照射場劑量分佈測定" 科儀新知12期, P. 46~55, 1990. 7. ASTM, 1993, Standard practice for use of a radiochromic film dosimetry system, ASTM Standard E1275-93 (Philadelphia: American Society for Testing and Materials). 8. McLaughlin, W.L., J.M. Puhl; and A. Miller, “Temperature and relative humidity dependence of radiochromic film dosimeter response to gamma and electron radiation, Radiat. Phys. Chem. 46, P. 1227~1233, 1995. 9. R.G. Jaeger (ed.), Engineering Compendium on Radiation Shielding, Vol.Ⅰ: Shielding Fundamentals and Methods, Springer-Verlag, New York, P. 301~322, 1968. 10. V.R. Cain, QAD-CG : The Combinational Geometry Version of QAD-P5A Point Kernel Shielding Code, CCC-307, Oak Ridge National Laboratory, 1977. 11. Y. Harima, An Approximation of Gamma-Ray Buildup Factors by Modified Geometric Progression, Nucl. Sci. Eng. 83, P. 299~309, 1983. 12. Y. Harima, Y. Sakamoto, S. Tanaka, and M. Kawai, Validity of the Geometrical Progression Formula in Approximation Gamma-Ray Buildup Factors, Nucl. Sci. Eng. 94, P. 24~35, 1986. 13. QAD Point Kernel General Purpose Shielding Codes QAD-5K, QAD-BR, and QAD-P5A, CCC-48, Oak Ridge National Laboratory. 14. H. Goldstein J. E. Wilkins Jr., Calculation of the Penetrations of Gamma Rays, Final Report, USAEC Report NYO-3075 (NDA-15C-41), Nuclear Development Associates Inc., June 1954. 15. M.A. Copo, Polynomial Approximation of Gamma-Ray Buildup Factors for a Point Isotropic Source, APEX-510, Nov. 1958. 16. Min Fong Su, Shielding Evaluation for NAC High Capacity Storage/Transport Cask, INER Internal Report. 17. Y. Harima et al., Applicability of Geometrical Progression Approximation (G-P Method) of Gamma-Ray Buildup Factors, Japan Atomic Energy Research Institute, JAERI-M 86-071, 1986. 18. Humpherys,K.C and Kantz A.D., Radiochromic, A Radiation Monitoring System, 1993, Far West Technology Inc., Goleta, California. 19. Miller, A. W Batsbuerg and W. Karman, A new radiochromic thin-film dosimeter system. Radiat. Phys. Chem. 31, P. 491~496, 1988. 20. 劉鴻鳴, 許彬杰, 劉朝錦, "以蒙第卡羅法進行空中照射式鈷60輻射照射場之劑量分布評估"核子科學第37卷第5期, P. 380~387, 2000.id NH0925593040 sid 893148 cfn 0 / id NH0925593041 auc 葉芊吟 tic 控制氣氛下熱處理對氮化鋯薄膜性質之影響 adc 喻冀平 adc 黃嘉宏 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 英文 pg 94 kwc 熱處理 kwc 氮化鋯 abc 熱處理廣泛的應用於加強氮化鋯薄膜的性質。此篇研究中,氮化 tc Chap 1 Introduction ..................................................................................1 Chap 2 Literature Review .........................................................................5 2.1 Hollow Cathode Discharge Ion-Plating (HCD-IP).........................5 2.2 Characteristics of ZrN.....................................................................6 2.3 Effect of Heat Treatment to the Characteristics of ZrN..................7 2.3.1 Preferred Orientation ...............................................................7 2.3.2 Hardness...................................................................................8 2.3.3 Residual stress of ZrN Film...................................................10 2.3.4 Corrosion property.................................................................11 2.4 Evaluation of Adhesion by Scratch Testing..................................12 2.4.1 Models for the Critical Load..................................................12 Chap 3 Experimental Details ..................................................................14 3.1 Coating Equipment and Specimen Preparation............................14 3.2 Heat Treatment under Controlled Atmosphere.............................15 3.3 Thermodynamics and Kinetic Analysis of Heat Treatment under Controlled Atmosphere ......................................................20 3.4 Structure Characterization ............................................................26 3.5 Compositions ................................................................................26 3.5.1 Rutherford backscattering spectrometry (RBS) ....................26 3.5.2 Auger electron spectrometer (AES).......................................27 3.6 Microstructure...............................................................................27 3.7 Properties......................................................................................27 3.7.1 Hardness.................................................................................27 3.7.2 Roughness..............................................................................28 3.7.3 Residual Stress.......................................................................28 3.7.4 Scratch Test............................................................................29 3.7.5 Resistivity ..............................................................................29 3.8 Corrosion Resistance ....................................................................30 3.8.1 Salt Spray Test .......................................................................30 3.8.2 Potentiodynamic Polarization................................................30 Chap 4 Results ........................................................................................33 4.1 Microstructure...............................................................................33 4.2 Composition..................................................................................33 4.3 Surface Image ...............................................................................38 4.4 XRD..............................................................................................38 4.5 Lattice parameter ..........................................................................44 4.6 N/Zr Ratio and Packing Factor .....................................................44 4.7 Hardness........................................................................................47 4.8 Residual Stress ..............................................................................48 4.9 Resistivity .....................................................................................48 4.10 Corrosion Resistance ..................................................................56 4.10.1 Salt Spray Test .....................................................................56 4.10.2 Potentiodynamic Polarization Scan .....................................59 4.11 Scratch Test .................................................................................66 Chap 5 Discussion ..................................................................................72 5.1 The Depth Profiles of the ZrN Thin Films ...................................72 5.2 Hardness........................................................................................72 5.3 Residual Stress ..............................................................................74 5.4 Corrosion Property........................................................................78 Chap 6 Conclusion..................................................................................89 Reference ................................................................................................90rf 1. P. Panjan, B. Navinsek, A. Zabkar, Dj. Mandrino, J. Fiser, Thin Solid Films, 228 (1993), 233. 2. P.C. Johnson, H. Randhawa, Surf. Coat. Tech., 33 (1987), 53. 3. E. Kelesoglu, C. Mitterer, M.K. Kazmanli, M. Urgen, Surf. Coat. Tech., 133(1999), 116-119. 4. E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schussler, Surf. Coat. Tech., 112 (1999) 108. 5. S. Horita, M. Kobayashi, H. Akahori, T. Hata, Surf. Coat. Tech., 66 (1994), 318. 6. L.E. Toth, “Transition Metal Carbides and Nitrides”, Academic press, New York, (1971), 188. 7. U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, Surf. Coat. Tech., 41 (1990), 191. 8. L.Van Leaven, M.N. Alias, R. Brown, Surf. Coat. Tech., 53 (1992), 25. 9. C.Y. Ting, J. Vac. Sci. Technol. 21 (1982) 14. 10. V.A. Mernagh, T.C. Kelly, M. Ahern, A.D. Kennedy, A.P.M. Adriaansen, P.P.J. Ramaekers, L. McDonnell, R. Koekoek, Surf. Coat. Tech., 49 (1991) 462. 11. J. Vetter, R. Rochotzki, Thin Solid Films 192 (1990), 253. 12. U. Beck, G. reiners, I. Urban, H.A. Jehn, U. Kopacz, H. Schack, Surf. Coat. Tech., 61 (1993), 15. 13. M. Thieme, Corros. Sci. 34 (1993), 1557. 14. M.Yoshitake, T. Yotsuya, S. Ogawa, Jpn. J. Appl. Phys., 31 (1992), 4002. 15. J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputteredcoatings”J. Vac. Sci. Technol. 11(4), (1974), 666. 16. J.E. Sundgren, B.O. Johansson, A. Rockett, S.A. Barnett, J.E. Greene, in: W.D. Sproul, J.E. Greene, J.A. Thornton (Eds.), Physics and Chemistry of Protective Coatings, American Institute of Physics, MA (1986), 91. 17. Fu-Hsing Lu, Hong-Ying Chen, Thin Solid Films, 388-389 (2001), 368-373. 18. Zhao. Cheng, Hong-rui Peng, Guang-wen Xie, Yu-long Shi, Surf. Coat. Tech., 138 (2001), 237-241. 19. Magnus Oden, Jonathan Almer, Greger Hakansson, Surf. Coat. Tech. 120-121 (1999).272 20. J. Almer, M. Oden, L. Hultman, G. Hakansson, “Microstructural evolution during tempering of arc-evaporated Cr-N coatings” J. Vac. Sci. Technol. A, 18(1) (2000), 121-130. 21. M.S. Phadke, Quality Engineering Using Robust Deign, Prentice Hall, Englewood Cliffs, NJ, (1989). 22. A. Bennett, Mater. Sci. Technol. 2 (1986) 257. 23. M. Wittmer, Appl. Phys. Lett. 39 (1980) 540. 24. R.A. Dugdale, J.Mater. Sci., 1(1966), 160. 25. N.A.G. Ahmed, Ion Plating Technology, Developments and Applications, Wiley, New York, 1987. 26. W.J. Chou, G. P. Yu, J.H. Huang, Surf. Coat. Tech., 149 (2002), 7. 27. E. Törok, A.J. Perry, L. Chollet, W.D. Sproul, Thin Solid Films, 153(1987) 37. 28. J. Musil and J. Wolfe, Mater.Sci. Eng., A163 (1993), 211. 29. P. Jin, S. Maruno, Jpn. J. Appl. Phys., 30 (7) (1991), 1463. 30. K.W. Lau, “Effect of nitrogen flow rate on the structure and properties of nanocrystalline TiN thin film deposited by unbalancedmagnetron sputtering”, 2002. thesis of National Tsing Hua University, R.O.C. 31. J.A. Thorton, D.W. Hoffman, Thin Solid Films, 171(1989), 81. 32. C. H. Ho, “Effect of Nitrogen Flow Rate on the Structure and Properties of Nanocrystalline ZrN Thin Film deposited by HCD Ion Plating”, 2003. thesis of National Tsing Hua University, R. O. C. 33. Y. M. Chen, G.P. Yu, J.H. Huang, Surf. Coat. Tech., 141 (2001), 156. 34. L. van Leaven, M.N. Alias, R. Brown, Surf. Coat. Tech., 53(1992), 25. 35. H. Oettel, R. Wiedemann, S. PreiBler, Surf. Coat. Tech., 273(1995), 74-75. 36. C.H. Ma, J.H. Huang, Haydn Chen, Thin Solid Films, 418 (2002) 73-78. 37 B. Jonsson, S. Hogmark, Thin Solid Films, 114(1984)257. 38 W. C. Oliver, G. M. Pharr, J. Mater. Res., 7 (1992), 1564. 39 J. H. Je, D.Y. Noh, H.K. Kim, K.S. Liang, J. Appl. Phys., 81 (9) (1997) 6126. 40 J.Y. Chen, G.P. Yu, J.H. Huang, Mater. Chem. Phys., 65(2000) 310-315. 41 Hitoshi Uchida, Shozo Inoue, Keiji Koterazawa, Mater. Sci. Eng., 649(1997), 234-236. 42 J. M. E. Harper, J.J. Cuomo, R. J. Gambino, H. E. Kaufman, in Ion Bombardment Modification of Surfaces: Fundamentals and Applications, Elsevier Science, Amsterdam, Ch.4 (1984). 43 T. Okamoto, M. Fushima, K. Takizawa, Corros. Eng., 45(1996), 425. 44 T. Kado, R. Makabe, S.Mochizuki, S. Nakajima and M. Araki,Boshoku Gijutsu (Corrosion Engineering), 36 (1987), 551. 45 K. Fukutomi and M. Okada, Kinzoku Htomen Gijutsu, 35(1984), 45. 46 J. P. Zhao, X. Wang, Z. Y. Chen, S. Q. Yang, T. S. Shi, and X. H. Liu, J. Phys. D:Appl. Phys. 30(1997), 5-12. 47 B. F. Chen, W. L. Pan, G. P. Yu, J. H. Huang, Surf. Coat. Tech. 111 (1999) 16-21. 48 I. C. Noyan, J. B. Cohen, Residual Stress, Measurement by Diffraction and Interpretation, Springer-Verlag, New York, (1987). 49 U. H. Oh, J. H. Je, J. Appl. Phys., 74 (3) (1993), 1692. 50 I.A. Ovid’ko, Science 295, (2002) 2386. 51 D. T. Quinto, G. J. Wolfe, and P. C. Jindal, “High temperature micro-hardness of hard coatings produced by physical and chemical vapor deposition” Thin Solid Films, 153(1987), 19-36. 52 M. Tamura and H. Kubo, “Deposition of and annealing effect on Ti(C,N) coatings” Surf. Coat. Tech., 49(1991), 194-198. 53 K. J. Yu, “Effect of heat treatment under controlled atmosphere on the properties of TiN film deposited by unbalanced magnetron sputtering”, 2003. thesis of National Tsing Hua University, R.O.C. 54 W.J. Chou, J.H. Huang, G.P. Yu, Surf. Coat. Tech., 168 (2003), 43-50 55 F. D. Lai, J. K. Wu “High temperature and corrosion properties of cathodic-arc-plasma-deposited CrN coatings”, Surf. Coat. Tech., 64 (1994)53-71 56 Z. Cheng, H.R. Peng, G.W. Xie, Y.L. Shi, Surf. Coat. Tech., 138 (2001), 237-241 57 Xu Kewei, Chen Jin, Gao Rensheng, and He Jiawen, Surf. Coat. Tech., 58 (1993), 37-43.58 Mustafa Urgen, Ali Fuat Cakir, Surf. Coat. Tech., 96 (1997) 236-244 59 W.L. Pan, J.H. Huang, G.P. Yu, Surf. Coat. Tech., 110 (1998), 111-119 60 Ma, K, Xu, J. He, Surf. Coat. Tech., 142-144 (2001), 1023 61 Rickard Gahlin, Michael Bromark, Per Hedenqvist, Sture Higmark, Surf. Coat. Tech., 76-77 (1995), 174 62 Fouad Attar, Thomas Joannesson, Surf. Coat. Tech. 78 (1996) 87 63 Kozo Tanaka, Hiroyuki Yanashima, Tadaaki Yako, Kunimasa Kamio, Kazumi Sugai, Shunji Kishida, Appl. Surf. Sci. 171(2001), 71 64 M. Murayama, J.M. Howe, H. Hidaka, S. Takaki, Science, 295 (2002), 2433. 65 http://www.cea.com/cai/auginst/modern.htm 66 Reed-Hill, Physical Metallurgy Principles, Academic Press, (1973), 64. 67 W. Mader, H. Fischmeister, E. Bergmann, Thin Solid Films 182 (1989) 141. 68. Binary Alloy Phase Diagrams Volume 1-IIIid NH0925593041 sid 913141 cfn 0 / id NH0925593042 auc 汪孟涵 tic 氮氣流量對非平衡磁控濺鍍奈米晶氮化鋯薄膜之結構和性質的影響 adc & adc #21929;冀平 adc 黃嘉宏 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 英文 pg 103 kwc 氮氣流量 kwc 濺鍍 kwc 氮化鋯 abc 本研究成功的利用非平衡式磁控濺鍍法鍍著奈米晶氮化鋯薄膜於(100)矽晶片和304不?袗?上。在研究中,主要探討改變氮氣流量對氮化鋯薄膜之組成、結構、性質以及腐蝕抗性的研究。氮氣流量改變的範圍從0.25至1.75 sccm。以X光繞射法來決定薄膜的晶粒大小,其結果小於15 nm。從AFM和SEM的結果也顯示氮化鋯薄膜晶粒為奈米級。薄膜氮鋯的比率(N/Zr ratio)隨氮氣流量從0.2改變至1。氮化鋯薄膜以(111)為主要的優選方向。改變氮氣分壓對其硬度並沒有太大的改變,除了在Zr 和ZrN的混合相,因為Zr是金屬其硬度相對較軟。ZrN膜的表面粗糙度會隨著氮氣流量的增加而減少。氮化鈦薄膜的電阻率隨著堆積因子的上升而下降和ZrN飽和鍵的增加而下降,而晶粒大小並不是影響電阻率變化的主要因素。在腐蝕抗性實驗方面,5%實驗水以及0.5M H2SO4 + 0.05M KSCN 溶液中的極化掃描實驗和鹽水噴霧實驗結果發現,若奈米晶氮化鋯薄膜厚大於220nm,則氮化鋯薄膜可以有效的防止腐蝕物質穿透而侵蝕到基板。對於極化掃描實驗而言,影響抗腐蝕優劣的重要因子包跨堆積程度、結晶程度和飽和鍵的多寡。對於鹽水噴霧實驗而言,膜表面的粗糙度就是一個關鍵性的指標 tc Contents…………………………………………………………….… I List of Figures………………………………………………………… IV List of Tables .………………………………………………………… XI Abstract………………………………………………………………... XIII 摘要……………………………………………………………………. XIV Chapter 1 Introduction……………………………………………. 1 Chapter 2 Literature Review……………………………………... 4 2.1 Unbalanced Magnetron Sputtering……………………….. 4 2.2 Characteristics of ZrN..…….…..………………………….. 7 2.3 Properties of ZrN Films….…..……………………………. 8 2.3.1 Hardness……………………………………………... 8 2.3.2 Resistivity of ZrN Film……………………………… 9 2.3.3 Residual Stress ……………………………………… 11 2.4 Effect of Nitrogen Flow Rate on the Deposition Rate ……. 14 Chapter 3 Experimental Details………………………………….. 15 3.1 Specimen Preparation and Coating process……………… 15 3.2 Methods of Characterization………………………………. 17 3.2.1 X-Ray Diffraction (XRD) ……………………………. 17 3.2.1.1 θ/2θ Scan ……………………………………….. 17 3.2.1.2 Glancing incidence X-ray diffraction (GIXRD)... 18 3.2.2 Field Emission Scanning Electron Microscopy (FEG-SEM)………………………………………….. 18 3.3 Composition Characterization ………...………………….. 18 3.3.1 Rutherford Backscattering Spectrometer (RBS)……… 18 3.3.2 Electron Spectroscopy For Chemical Analysis (ESCA) 19 3.3.3 Auger Electron Spectrometer (AES)……………....…. 20 3.4 Properties Characterization ……………………………….. 20 3.4.1 Electrical Resistivity……………………………….…. 20 3.4.2 Hardness……………………..………………………... 20 3.4.3 Residual Stress …………………..…...…………….… 21 3.4.4 Atomic Force Microscopy (AFM)………………….… 21 3.6 Corrosion Resistivity ………………….………………….. 21 3.6.1 Potentiodynamic Polarization Test …………………... 21 3.6.2 Salt Spray Test……………………………….…….…. 22 Chapter 4 Results and Discuss ………………..…………………… 23 4.1 Substrate Ion Current Density………………………..……. 26 4.2 Energy and Momentum …….………………………..……. 28 4.3 Structure……….…………….…………………………….. 34 4.3.1 Scanning Electron Microscopy (SEM)……………….. 34 4.3.2 Auger Electron Spectrometer (AES) ………………… 36 4.3.3 N/Zr Ratios and Packing Factor (RBS) ………..….…. 38 4.3.4 X-Ray Diffraction (XRD)……………………………. 44 4.3.5 Glancing Incident X-Ray Diffraction (GIXRD)……… 49 4.3.6 Roughness (AFM)……………………………….……. 52 4.3.6 Composition (ESCA) .………………………….……. 53 4.4 Properties………………………………………………... 56 4.4.1 Electrical Resistivity……………….………………… 56 4.4.2 Residual Stress………………………………………. 57 4.4.3 Hardness……………………………………………… 59 4.5 Corrosion Resistivity ……………………………………... 61 4.5.1 Potentiodynamic Polarization Scan ...………….. …… 61 4.5.1.1 1N H2SO4 + 0.05M KSCN ……………………. 61 4.5.1.2 5%NaCl ………………………………………… 64 4.5.2 Salt Spray Test ………………..…. ...………….. …… 66 Chapter 5 Discussion………………………………………………. 67 5.1 Deposition Rate……………………………………..……. 69 5.2 Nanocomposite…………………………………………… 74 5.3 Grain Size……………………………………….……..… 74 5.4 Hardness.............................................................................. 76 5.5 Resistivity………………………………………………… 81 5.6 Roughness…………………………………………………. 84 5.7 Residual Stress…………………………………………….. 87 5.8 Corrosion Resistance…………………………………..….. 90 5.8.1 Potentiodynamic polarization scan test………………. 90 5.8.2 Salt spray teat………………………………………… 95 Chapter 6 Conclusions…………………………………………….. 96 Chapter 7 Reference……………………………………..….……... 98rf Reference [1 ] M.Ohring, The Material Science of Thin Films, p.111, Academic Press, San Diego (1992). [2 ] J. Musil and J. Vlcek, Thin Solid Films, 343-344 (1999) 47. [3 ] McLeod PS, Hartsough LD, J. Vac. Sci. Technol. 14(1), (1977) 263. [4 ] Waits RK, J. Vac. Sci. Technol. 15(2), (1978) 263 [5 ] B. Window, Surf. Coat. Technol. 71, (1995) 93. [6 ] P.J. Kelly, R.D. Arnell, Vacuum 56, (2000) 159. [7 ] Teer DG, US Patent No. 5 556 519. [8 ] N. Savvides, and B. Window, J. Vac. Sci. Technol. A., 4(2) (1986)504. [9 ] R.P. Howson, H.A. Ja’afer, A.G. Spencer, Thin Solid Films, 193-194(1990)127. [10 ] W.D. Sproul, Vacuum, 51(4)(1998)641. [11 ] P.J. Kelly, R.D. Arnell, Vacuum, 56(2000)159. [12 ] P.J. Kelly, R.D. Arnell, Surf. Coat. Technol., 97(1997)595. [13 ] Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol. 149, (2002) 7. [14 ] E. Törok, A.J. Perry, L. Chollet, W.D. Sproul, Thin Solid Films, 153(1987) 37. [15 ] J. Musil and J. Wolfe, Mater.Sci. Eng., A163(1993)211. [16 ] P. Jin, S. Maruno, Jpn. J. Appl. Phys., 30 (7)(1991)1463. [17 ] L.E. Toth, “Transition Metal Carbides and Nitrides”, Academic press, New York, 1971, p. 188. [18 ] J.-H. Huang, C.-Y. Hsu, S.-S. Chen, G.-P. Yu, Mater. Chem. Phys. 77(2002)14-21 [19 ] Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Thin Solid Films 405(2002)162. [20 ] J.A. Thorton, D.W. Hoffman, Thin Solid Films, 171(1989)81. [21 ] T. Miri, S. Fukuda, Y. Takemura, S.C.F., 140(2001)122. [22 ] B. Jonsson, S. Hogmark, ibid, 114(1984)257. [23 ] P. Panjan, B. Navinsek, A. Zabkar, Dj. Mandrino, J. Fiser, Thin Solid Films, 228 (1993) 233. [24 ] H. Oettel, R. Wiedemann, S. PreiBler, Surf. Coat. Tec. 74-75 (1995)273 [25 ] Z. Wokulski, Phys. Stat. Solidi (a) 120(1990)175 [26 ] J.E. Sundgren, Thin Solid Films 128, (1985) 21. [27 ] Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol. 140, (2001) 206. [28 ] W.C. Oliver. G.M. Pharr, J. Master. Res. 7(1992)1564. [29 ] J.E. Subdgren, B.O. Johansson, A. Rockeet, S.A. Barnett, J.E. Grennen, in: W.D. Sproul, J.E. Greene, J.A. Thornton (Eds.), “ Physics and Chemistry of Protective Coatings”, MA, 1986, p.95. [30 ] S. Horita, M. Kobayashi, H. Akahori, T. Hata, Surf. Coat. Technol.,66 (1994) 318. [31 ] S. Horita, J. Vac. Sci. Tech., A14(1)(1996)203. [32 ] M.Yoshitake, T. Yotsuya, S. Ogawa, Jpn. J. Appl. Phys., 31 (1992) 4002. [33 ] Shozo Inoue, Takaaki Ohba, Hironori Takata, Keiji Loterazawa, Thin Solid Films, 343-344 (1999) 230. [34 ] B.O. Johansson, H.T.G. Hentzell, J.M.E. Harper, J.J. Cuomo, J. Mater. Res. 1 (1986) 422 [35 ] Milton Ohring, The Materials Science of Thin Films, Academic Press, New York, 1992. [36 ] P. Schwarzcopf, R. Kieffer, Refractory Hard Metals, Macmillan, New York, 1953, p. 37. [37 ] K. Schwarz, A.R. Williams, J.J. Cuomo, J.H.E. Harper, H.T.G. Hentzell, Phys. Rev. B 32 (12) (1985) 8312. [38 ] A. Dunaud, H.D. Flack, K. Yvon, Phys. Rec. B 31 (1985) 2316. [39 ] P. Blaha, J. Redinger, K. Schwarz, Phys. Rev. B 31 (1985) 2316. [40 ] A. Neckel, Intern. J. Quantim Chem. 23 (1983) 1317. [41 ] H.M. Benia, M. Guemmaz, G. Schmerber, A. Mosser, J.-C. Parlebas, Applied Surface Science 200 (2002) 231-238 [42 ] E. Törok, A.J. Perry, L. Chollet, W.D. Sproul, Thin Solid Films, 153(1987) 37. [43 ] V. Valvoda, R. Kuzel. Jr., R. Cerny, d. Rafaja, J. Musil. C. Kadlec, A. J. Perry, Thin Solid Films, 193-194 (1990) 401. [44 ] Society for Automotive Engineering, Residual Stress Measurement by X-ray Diffraction, SAE J748a, 2nd Ed. (1971). [45 ] I. C. Noyan, J. B. Cohen, Residual Stress, Measurement by Diffraction and Interpretation, Springer-Verlag, New York, (1987) [46 ] V. Valvoda, R. Kuzel. Jr., R. Cerny, d. Rafaja, J. Musil. C. Kadlec, A. J. Perry, Thin Solid Films, 193-194 (1990) 401 [47 ] R. Feder, B. S. Berry, J. Appl. Crystallogr., 3 (1970) 372. [48 ] E. l. Haase, Thin Solid Films, 124 (1985) 283. [49 ] H. Uchida, T. Kiguchi, A. Saiki, N. Wakiya, N. Ishizawa, K. Shinozaki and N. Mizutani, J. Cermic Society of Japan, 107(7) (1999) 606. [50 ] C.H. Ma, J.H. Huang, Haydn Chen, Thin Solid Films, 418 (2002) 73-78. [51 ] Chuan-Pu Liu, Heng-Ghieh Yang, Thin Solid Films, 444 (2003) 111–119 [52 ] J.E. Sundgren, B.O. Johansson and S.E. Karlsson, Thin Solid Films 105, (1983) 353. [53 ] L. Combaidere, J. Machet, Surf. Coat. Technol. 82, (1996) 145. [54 ] J. Stimmel, J. Vac. Sci. Technol. B 4(6), (1986) 1377. [55 ] Li-Jian Meng, M.P. dos Santos, Surf. Coat. Technol. 90, (1997) 64. [56 ] S. Logothetidis, I. Alexandrou, S. Kokkou, Surf. Coat. Technol. 80, (1996) 66. [57 ] T. Yotsuya, M.Y oshitake, T.Kodama, Cryogenics 37 (1997) 817. [58 ] I.A. Ovid’ko, SCIENCE VOL 295 29 MARCH 2002 [59 ] Jakob Schiøtz* and Karsten W. Jacobsen, SCIENCE VOL 301 5 SEPTEMBER 2003 [60 ] M. Del Re, R Gouttebaron, J.-P. Dauchot, P. Leclere, G. Terwagne, M. Hecq, Surf. Coat. Technol. 174-175 (2003) 240-245 [61 ] I. Milosev, H.-H. Strehblow, and B. Navinsek, Thin Solid Films 303 (1997) 246-254 [62 ] I. Milosev, H.-H. Strehblow, M. Gaberscek and B. Navinsek, Surface and Interface Analysis, VOL 24, 448-458 (1996) [63 ] Handbook of X-ray Photoelectron Spectroscopy [64 ] W.L. Pan, G.P. Yu, J.H. Huang, Surf. Coat. Technol., 127(1998)111. [65 ] C.T. Chen, Y.C. Song, G.-P. Yu and J.-H. Huang, J. Mater. Eng. Perform. 7(3), (1998) 324. [66 ] F.S. Shieu, L.H. Cheng, Y.C. Sung, J.H. Huang and G.P. Yu, J. Vac. Sci. Technol. A 15(4), (1997) 2318. [67 ] J.E. Sundgren, B.O. Johansson, A. Rockett, S.A. Barnett, J.E. Greene, in: W.D. Sproul, J.E. Greene, J.A. Thornton (Eds.), Physics and Chemistry of Protective Coatings, p.95, American Institute of Physics, MA (1986). [68 ] A. Callenas and L. I. Johansson, Physical Review B, VOL 30, No 2 (635-639) [69 ] P. Blaha, J. Redinger, and K Schwarz, Physical Review B, VOL 31, No 4 (2316-2325) [70 ] K Schwarz, A.R. Williams, J. J. Cuomo, J. H. E. Harper, Physical Review B, VOL 32, No 12 (8312-8316) [71 ] Joanne L.Murray, Phase Diagram of Binary Titanium Alloys, p.176, ASM International, Ohio (1987). [72 ] J.-H. Huang, C,-H. Lin, C.-H. Ma, Haydn Chen, Scripta. Mater. 42, (2000) 573 [73 ] Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol. 167, (2003) 59-67 [74 ] Editor-in-chief , Thaddeus B.Massalski, Editors :Joanne L.Murray Lawrence H.Bennett Hugh Baker, Binary Alloy Phase Diagrams Volume 1-III, American society for metal [75 ] K.W. Whang and Y.W. Seo, J. Vac. Sci. Technol. A 11, (1993) 1496. [76 ] S. Groudeva-Zotova, R. Kaltofen, T. Sebald, Surf. Coat. Technol. 127, (2000) 144. [77 ] F. Elstner, A. Ehrlich, H. Giegengack, H. Kupfer and F. Richter, J. Vac. Sci. Technol. A 12(2), (1994) 476 [78 ] M. Kawamura, Y. Abe, H. Yanagisawa, K. Sasaki, Thin Solid Films 287, (1996) 115. [79 ] K.W. Lee, Y.W. Chung, C.Y. Chan, Surf. Coat. Technology 168, (2003)57.id NH0925593042 sid 913137 cfn 0 / id NH0925593043 auc 桑怡捷 tic 鍺化硼分子離子佈植技術應用於製作淺接面半導體元件之研究 adc 梁正宏 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 78 kwc 分子離子佈植 kwc 淺接面 kwc 瞬間增強擴散效應 kwc 鍺化硼 abc 本論文研究係利用鍺化硼分子離子(BGe‾)佈植於 n 型的<100>矽晶圓,並經後續退火處理,以製作半導體元件的淺接面。所探討的離子佈植參數包括:佈植能量(20 與 77 keV)以及佈植劑量(5×1013、5×1014 與 1×1015 ions/cm2),而退火參數則包括:爐管退火與快速熱退火方式以及一階段與兩階段退火處理。本論文研究並分別使用四點探針電阻分析儀、二次離子質譜儀、溝道拉塞福背向散射儀以及穿透式電子顯微鏡等技術,分析不同佈植與退火參數對於所形成淺接面的物性與電性之影響。研究的結果顯示:低溫爐管退火除了可以有效地抑制輻射增強擴散效應之外,並可獲致較佳的晶格修復效果與較淺之接面深度;而快速熱退火除了可以提高硼原子的活化程度,但卻因輻射增強擴散效應使得接面深度變深,不利於淺接面之形成。故本論文研究在使用一階段的後續退火處理上,以 550℃、1 hr 的爐管退火為較佳的退火參數;而在兩階段的後續退火處理上,須進行 3 hr 以上的爐管退火時間,才能抑制之後因快速熱退火所帶來的擴散效應,以及進行 30 sec 的快速熱退火時間則來降低熱擴散以及輻射增強擴散兩種效應以及有效地活化摻雜原子,故以先進行 550℃、3 hr 的爐管退火,再搭配以 1050℃、30 sec 的快速熱退火為較佳的退火參數。 tc 摘要 致謝 圖目錄 ……………………………………………………………… Ⅲ 表目錄 ……………………………………………………………… Ⅸ 第一章 前言 ……………………………………………………… 1 第二章 文獻回顧 ………………………………………………… 3 第三章 實驗方法 ………………………………………………… 8 3.1 離子佈植 …………………………………………………… 8 3.1.1 陰極離子源 ……………………………………………… 9 3.1.2 陰極靶的製備 …………………………………………… 9 3.1.3 加速器本體 ……………………………………………… 10 3.1.4 真空系統 ………………………………………………… 10 3.1.5 射束分析 ………………………………………………… 10 3.2 電流轉移增益 ……………………………………………… 11 3.3 熱退火處理 ………………………………………………… 13 3.4 理論模擬 …………………………………………………… 13 3.5 特性量測分析 ……………………………………………… 14 3.5.1 四點探針電阻分析儀 …………………………………… 14 3.5.2 二次離子質譜儀 ………………………………………… 15 3.5.3 溝道拉塞福背向散射儀 ………………………………… 16 3.5.3.1 拉塞福背向散射分析技術 …………………………… 17 3.5.3.2 溝道效應分析技術 …………………………………… 20 3.5.3.3 溝道拉塞福背向散射儀實驗介紹 …………………… 21 3.5.4 穿透式電子顯微鏡 ……………………………………… 23 3.5.5 曲線擬合 ………………………………………………… 26 第四章 結果討論 ………………………………………………… 38 4.1 射束分析 …………………………………………………… 38 4.2 高能量鍺化硼分子佈植分析 ……………………………… 38 4.2.1 摻雜原子分佈的理論模擬 ……………………………… 38 4.2.2 低劑量鍺化硼分子佈植分析 …………………………… 39 4.2.3 高劑量鍺化硼分子佈植分析 …………………………… 41 4.3 低能量鍺化硼分子佈植分析 ……………………………… 43 4.3.1 摻雜原子分佈的理論模擬 ……………………………… 43 4.3.2 一階段爐管退火分析 …………………………………… 43 4.3.3 一階段快速熱退火分析 ………………………………… 46 4.3.4 兩階段退火分析 ………………………………………… 46 4.3.4.1 改變快速熱退火溫度 ………………………………… 47 4.3.4.2 改變爐管退火時間 …………………………………… 48 第五章 結論與建議 ……………………………………………… 71 參考資料 …………………………………………………………… 75rf [1 ] http://public.itrs.net/ [2 ] X.M. Wang, X.M. Lu, L. Shao, J.R. Liu, and W.K. Chu, The 6th International Conference on Application of Accelerators in Research and Industry, Denton, Texas, November 1-4 2000, p.1007. [3 ] W.K. Chu, J.R. Liu, J. Jin, X.M. Lu, L. Shao, Q.M. Li, and P.C. Ling, The 6th International Conference on Application of Accelerators in Research and Industry, Denton, Texas, November 1-4 2000, p.891. [4 ] X.M. Lu, L. Shao, J.Y. Jin, Q.M. Li, I. Rusakova, Q.Y. Chen, J.R. Liu, and W.K. Chu, Mat. Res. Soc. Symp. 610 (2000) B4.5.1. [5 ] S. Ihara, S. Itoh, and J.C. Greer, Mat. Sci. in Semi. Proc. 3(2000)91. [6 ] S. Thompson, Tech. Dig. IEDM (2002) p.61. [7 ] M. Sze, Semiconductor devices physics and technology, John Wiley & Sons, 1997. [8 ] G. Ghibaudo, Semiconductors and Semimetals, Vol. 45 (1997) Ⅷ. [9 ] A. Bousetta, J.A. van den Berg, D.G. Armour, and P.C. Zalm, Appl. phys. Lett. 58 (1992) 1626. [10 ] S.N. Hong, G.A. Paulos, J.J. Wortman, and M.C. Ozturk, Appl. Phys. Lett. 53 (1988) 1741. [11 ] J.H. Liang, S.L. Chiang, C.T. Chen, H. Niu, and M.S. Tseng, Nucl. Instr. and Meth. B190 (2002) 767. [12 ] T.E. Seidel, IEEE Electron Device Letters, EDL-4 (1983) 353. [13 ] M.C. Ozturk, J.J. Wortman, C.M. Osburn, A. Ajmera, G.A. Rozgonyi, E. Frey, W.K. Chu, and C. Lee, IEEE Tran. Electron Devices, 35 (1988) 659. [14 ] P.C. Ling, M.D. Strathman, C.H. Ling, B. Doyle, D. Walsh, L. Larson, and J. Bennett, The 1998 International Conference on Ion Implantation Technology Proceeding, p.1175. [15 ] N. Shimada, T. Aoki, J. Matsuo, I. Yamada, K. Goto, and T. Sugui, Mater. Chem. and Phys. 54 (1998) 80. [16 ] D. Takeuchi, N. Shimada, J. Matsuo, and I. Yamada, Nucl. Instr. and Meth. B121 (1997) 345. [17 ] T.O. Sedgwick, Tech. Proceedings Semicon/East, (1986) p.2. [18 ] S.N. Hong, G.A. Ruggles, J.J. Wortman, and M.C. Ozturk, IEEE Tran. Electron Devices, 38 (1991) 477. [19 ] J.H. Oh, C.J. Kim, and H. Ishiwara, Jap. J. Appl. Phys. Vol. 35. (1996) 1605. [20 ] J.S. Rieh, Tech.Dig. IEDM (2002) p.771. [21 ] Y.F. Chong, K.L. Pey, A.T.S. Wee, A. See, L. Chan, Y.F. Lu, W.D. Song, and L.H. Chua, Appl. Phys. Lett. 76 (2000) 3197. [22 ] W.O. Adekoya, M. H. Ali, J.C. Muller, and P. Siffert, Appl. Phys. Lett. 53(6), August 1988, 511. [23 ] W. Wang, J. Roth, W. Eckstein, R. Schwoerer, H. Plank, and M. Du, Nucl. Instr. and Meth. B129 (1997) 210. [24 ] J. Wiley, Glow Discharge Processes, chapter 4 , New York, United States of America, 1980. [25 ] J.F. Ziegler, J.P. Biersack, and U. Littmask, Stopping and Range of ions in Solids, Vol. 1, Pergamon Press, New York, (1985). [26 ] J.F. Ziegler, and J.P. Biersack, SRIM : the Stopping and Range of ions in Matter, Version 96.07. IBM-Research, Yorktown, (1996). [27 ] L.B. Valdes, Resistivity Measurements on Grrmanium for Transistors, Proc. IRE 42, Feb. 1954, 420. [28 ] A. Benninghoven, F.G. Rudenauer, and H.W. Werner, Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends, Wiley, New York, 1987. [29 ] V. Cherepin, Secondary Ion Mass Spectrometry of Soild Surfaces, VNU Science Press BV, Utrecht, 1987. [30 ] W.K. Chu, J.W. Mayer, and M.A. Nicolet, Backscattering Spectrometry, Academic Press, New York, 1978. [31 ] J.F. Ziegler, The Stopping Power and Ranges of Ions in Matter, Pergamon Press, New York, 1977. [32 ] J.B. Marion and S.T. Thorton, Classical Dynamics, 4th ed. Saunders College Pub., San Diego, 1995. [33 ] J. Lindhard and K. Dan, Vidensk Selsk Mat-Fys Medd. No.14, (1965) 34. [34 ] 吳秀錦,科儀新知,十七卷,3期 (1995) 61。 [35 ] 陳立俊等,材料電子顯微鏡學,科儀叢書3,1994。 [36 ] J.H. Liang and S.L. Chiang, Nucl. Instr. and Meth. B206 (2003) 932. [37 ] L. Shao, X.M. Lu, X.M. Wang, I. Rusakova, J.R. Liu, and W.K. Chu, Appl. Phys. Lett. 78 (2001) 2321. [38 ] J.Y. Jin, J. Liu, U. Jeong, and S. Mehta, J. Vac. Sci. Technol. B 20 (2002) 422. [39 ] G.Z. Pan, K.N. Tur, and S. Prussin, J. Appl. Phys. Lett., 81 (1997) 78. [40 ] C.W. Nieh and L.J. Chen, J. Appl. Phys., Vol. 60, No. 10, 15 Novermber 1986, 3546. [41 ] M. Foad, G.D. Cock, A. Murrell, E. Collart, and D. Jennings, Semiconductor Fabtech 9th, March 1999, p255. [42 ] X.M. Lu, L. Shao, J.Y. Jin, X.M. Wang, Q.Y. Chen, J.R. Liu, P.C. Ling, and W.K. Chu, The 6th International Conference on Application of Accelerators in Research and Industry, Denton, Texas, November 1-4 2000, p.983. [43 ] K.S. Jones, K. Moller, J. Chen, M. Puga-Lamber, B. Freer, J. Berstein, and L. Rubin, J. Appl. Phys. 81 (1997) 6051. [44 ] L. Shao, X.M. Wang, I. Rusakova, H. Chen, J.U. liu, J. Bennett, L. Larson, J.Y. Jin, P.A.W. van der Heide, and W.K. Chu, J. Appl. Phys. 92 (2002) 5788.id NH0925593043 sid 913153 cfn 0 / id NH0925593044 auc 謝政宇 tic 應用於感測半導體製程監控之APM感測器之研製 adc 柳克強 adc 曾繁根 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 119 kwc 感測器 kwc APM abc 本論文研究之主要目的為聲波平板模式(APM-Acoustic Plate Mode)感測器之研製。本論文所研製之APM感測器在應用上分為兩類:一為將APM感測器應用於即時偵測細胞増生反應之研究;二為利用APM感測器做半導體蝕刻製程監控之研究。原擬進行之半導體蝕刻製程監控研究由於蝕刻機台故障而無法進行,因此,本論文係集中於APM感測器在即時偵測細胞増生反應之研究。(本論文較適宜之題目應為應用於即時偵測細胞増生反應之APM感測器之研製) tc 目錄 第一章 序論…………………………………………………..…….17 1.1 研究動機………………………………………..……..17 1.2 歷史背景………………………………………..……..17 1.3 APM感測器……………………………………..…….19 1.4 聲波感測器比較…………………………………..…..20 1.5 研究目的………………………………………………22 第二章 文獻回顧………………………………………………..….23 2.1 平板波模態頻譜………………………………………23 2.2 APM感測器應用……………………………………..25 2.3 APM與液體間的影響………………………………..26 2.3.1 APM對物質的靈敏度………………....26 2.3.2 APM受黏性物體的影響……………....28 2.3.3 APM的聲電效應……………………....30 第三章 基本原理…………………………………………………...33 3.1 壓電效應……………………………………………...33 3.1.1 正壓電效應……………………………..33 3.1.2 逆壓電效應……………………………..34 3.2 壓電晶體的切割方向………………………………...34 3.3 壓電方程式…………………………………………...36 3.4 Christoffel’s wave equation……………………..…….37 3.5 傳播於壓電材料中的純剪力波………………..….....39 第四章 APM感測器設計……………………………………..……43 4.1 相位匹配條件……………………………………......43 4.2 平板波模態解析度…………………………………..43 4.3 電極對數目…………………………………………..44 4.4 使用Maple解聲波方程式…………………………..49 4.5 APM感測器設計規格………………………………..52 4.6 APM震盪電路設計…………………………………..53 第五章 APM感測器製程與封裝…………………………………..56 5.1 製程規劃……………………………………………...56 5.1.1 黃光製程流程圖………………………..56 5.2 震盪電路佈局設計…………………………………...59 5.3應用於ICP和即時細胞增生之APM封裝………….62 第六章 實驗結果分析與討論………...…….……………………...64 6.1 量測方法…………………….………………………..64 6.2 APM感測器頻率響應…….…………………………..66 6.2.1 質量靈敏度試驗………………………..74 6.2.2 APM感測器重現性試驗………………..77 6.2.3 APM震盪器頻率響應…………………..81 6.3 細胞計數步驟………………………………………...82 6.4 實驗設計……………………………………………...85 6.4.1溫度試驗………………………………...85 6.4.2黏度試驗………………………………...91 6.4.3細胞增生試驗…………………………...95 6.5量測結果與討論……………………..………………105 第七章 結論……………………………………………………….107 7.1 研究成果…………………………………………….107 7.2後續研究建議………………………………………..107 附錄………………………………………………………………...109 附錄一 製程與封裝流程……………………………….109 附錄二 細胞繼代培養………………………………….113 參考資料 ……………………………………………..……………117 圖表索引 圖目錄: 圖1-1:BAW感測器……………………………………………………19 圖1-2:SAW氣體感測器………………………………………………19 圖1-3:APM感測器[14 ]……………………………………………….20 圖1-4:聲波感測器靈敏度和頻率關係圖[6 ]…………………………22 圖2-1:平板波型態…………………………………………………….23 圖2-2:ST-cut quartz頻譜[3 ]…………………………………………..24 圖2-3:基材的厚度和波長比值和介入損耗關係圖[4 ]………………25 圖2-4:不同沉積物密度與速度變化比值關係圖[14 ]………………..28 圖2-5:正負離子受到電場的影響[14 ]………………………………..30 圖2-6:介面聲電效應的等效電路模型[14 ]…………………………..31 圖2-7:四種不同的導電率溶劑對傳遞速度的變動關係圖[14 ]……..31 圖3-1:正壓電效應…………………………………………………….33 圖3-2:逆壓電效應…………………………………………………….34 圖3-3:未旋轉晶格方向定位[9 ]………………………………………35 圖3-4:ST-cut 晶格方向(YXl)-42.75………………………………….36 圖3-5:晶格座標軸(X、Y、Z)和波傳座標(x、y、z)定義…………..40 圖3-6:分析座標圖…………………………………………………….40 圖4-1:相位匹配示意圖[13 ]………………………………………….43 圖4-2:基頻傅立葉轉換關係圖[15 ]………………………………….45 圖4-3:通帶傅立葉轉換關係圖[15 ]………………………………….46 圖4-4:分析座標[15 ]………………………………………………….46 圖4-5:電極對符號示意[15 ]………………………………………….47 圖4-6:分析座標圖…………………………………………………....50 圖4-7:在ST-cut quartz之純剪力波之波慢圖…………………….....51 圖4-8:APM傳波常數與操作頻率關係………………………………52 圖4-9:震盪電路示意圖[17 ]…………………………………………....54 圖5-1:黃光製成後的電極……………………………………………57 圖5-2:切割完成後的元件……………………………………………57 圖5-3:Al和電極打線………………………………………………...58 圖5-4:封裝元件……………………………………………………….58 圖5-5:震盪電路佈局………………………………………………….60 圖5-6:APM震盪電路圖………………………………………………61 圖5-7:APM震盪電路元件….………………………………………..61 圖5-8:應用於ICP腔體之APM封裝………………………………..62 圖5-9:應用於細胞增生實驗之APM封裝…………………………..63 圖6-1:S參數定義圖………………………………………………….65 圖6-2:網路分析儀量測圖示………………………………………….65 圖6-3:實際元件量測…………………………………………………..66 圖6-4:20對感測器之頻率響應……………………………………….66 圖6-5:40對感測器之頻率響應……………………………………….67 圖6-6:50對感測器之頻率響應……………………………………...67 圖6-7:20對感測器第一到第三波模之頻率響應……………………68 圖6-8:40對感測器第一到第三波模之頻率響應……………………68 圖6-9:50對感測器第一到第三波模之頻率響應……………………69 圖6-10:20對感測器之相位變化………………………………………69 圖6-11:40對感測器之相位變化……………………………………..70 圖6-12:50對感測器之相位變化……………………………………..70 圖6-13:40對感測器第七波模之頻率響應…………………………..71 圖6-14:40對感測器第七波模之相位變化…………………………..71 圖6-15:50對感測器第九波模之頻率響應…………………………..72 圖6-16:50對感測器第九波模之相位變化…………………………..72 圖6-17:量測打線之傳輸響應元件…………………………………..73 圖6-18:量測鋁線之頻率響應…………………………………………73 圖6-19:量測鋁線之相位變化…………………………………………74 圖6-20:第10波模之頻率響應和鍍膜厚度關係..................................75 圖6-21:第10波模之相位變化和鍍膜厚度關係……………………..75 圖6-22:第1波模鍍膜相位變化平均差值……………………………76 圖6-23:第10波模鍍膜相位變化平均差值…………………………..77 圖6-24:第一波模傳輸響應之重複性…………………………………78 圖6-25:第一波模相位變化之重複性…………………………………78 圖6-26:第一波模相位變化之重現性…………………………………79 圖6-27:第十波模傳輸響應之重複性…………………………………79 圖6-28:第十波模相位變化之重現性…………………………………80 圖6-29:第十波模相位變化之重現性…………………………………80 圖6-30:震盪頻譜量測…………………………………………………81 圖6-31:相位雜訊量測………………………………………………....82 圖6-32:血球計數器……………………………………………………82 圖6-33:10倍物鏡下之血球計數器腔體………………………………83 圖6-34:細胞計數示意圖………………………………………………84 圖6-35:第一到第三波模的傳輸響應和溫度變化……………………86 圖6-36:第一波模的相位變化和溫度關係……………………………86 圖6-37:第一波模在不同溫度下相位差的平均值變化………………87 圖6-38:第一波模的相位變化和溫度關係…………………………....88 圖6-39:第十波模的傳輸響應和溫度變化……………………………88 圖6-40:第十波模的相位變化和溫度關係……………………………89 圖6-41:第十波模在不同溫度下相位差的平均值變化………………90 圖6-42:第十波模的相位變化和溫度關係…………….……………...90 圖6-43:第一到第三波模的傳輸響應和甘油黏度變化關係…………92 圖6-44:第一波模相位變化和甘油黏度關係…………………………92 圖6-45:第一波模通帶峰值隨著甘油黏度增加時相位變化關係……93 圖6-46:第十波模的傳輸響應和甘油黏度變化關係…………………94 圖6-47:第十波模相位變化和甘油黏度關係…………………………94 圖6-48:第十波模通帶峰值隨著甘油黏度增加時相位變化關係……95 圖6-49:CCL-60細胞貼盤情形………………………………………..96 圖6-50:CCL-60細胞脫盤情形………………………………………..96 圖6-51:倒立顯微鏡和定位平台………………………………………98 圖6-52:10倍物鏡面積區域……………………………………………98 圖6-53:細胞計數判別…………………………………………………99 圖6-54:鋁電極氧化現象……………………………………………100 圖6-55:CCL-60細胞生長於感測器上23小時………………………101 圖6-56:CCL-60細胞生長於感測器上24小時………………………102 圖6-57:CCL-60細胞生長於感測器上26小時………………………102 圖6-58:CCL-60細胞生長於感測器上28小時………………………103 圖6-59:CCL-60細胞生長於感測器上30小時………………………103 圖6-60:CCL-60細胞生長於感測器上32小時………………………104 圖6-61:第一波模通帶共振峰值和細胞生長時間關係……………104 圖6-62:第一波模通帶共振峰值和細胞生長時間關係……………105 表目錄: 表1-1:聲波感測器特性比較…………………………………………21 表2-1:表面聲波基材特性比較………………………………………24 表4-1:感測器設計參數………………………………………………53 表4-2:電路元件參數…………………………………………………55rf 附錄 附錄一:製程與封裝流程 1-1 APM元件製程[16 ]: 步驟一 準備單面拋光的石英基材其規格如下: Q-value: >=1.8x10 Centriclty seed: within central 5 mm Qriention: ST-cut 42.75+/-6 Diameter: 100+/-0.13 mm Reference Flat: 32+/-3 mm Perpend icular to X-axis: within+/-5 Thickness: 0.5+/-0.013 mm Parallelism: <=4 um Bow: <40 um Surface: Front side-Mirror polished; Rrms,<=0 Back side-Ra.>=0.2 um 之後經過標準的RCA清洗程序(H2SO4 DI water NH4OH DI water HCL DI water)。 步驟二 使用E-gun蒸鍍上2000Å的Al作為電極層。 步驟三 利用微影與濕式蝕刻製程將第一道光罩上的電極層的圖案轉移到晶片上,其製程參數如下: a. Coating HMDS 時間約5 min。 b. 上光阻AZ5214E,旋佈機3000 rpm ,時間為30 sec。 c. 軟烤100℃ ,時間為1 min。 d. 曝光4.9 mJ/ 時間為21 sec。 e. 顯影AZ:DI water=1:2 時間約4 min。 f. 硬烤120℃時間為2 min。 g. 使用Al的蝕刻液[磷酸( )、醋酸( )硝酸( )與(DI water) ]將電極層的圖案蝕刻出來。蝕刻溫度為約為35℃,時間約4 min。 h. 用丙酮將剩餘的AZ5214E清除 1-2 PDMS 製程[16 ]: (一) 進無塵室拿一塑膠杯並用無塵紙擦拭內部,再以空氣槍輕吹。 (二) 在化學藥品櫃上面取出Sylgard 184和Dow corning二樣物品至電子天秤旁。取二根滴管及一大張無塵紙放置在電子天秤旁。 (三) 開啟電子天秤,並進行歸零的動作。 (四) 配置PDMS。取一根滴管進行攪拌,使其均勻混合。 (五) 進行真空機器的清潔。將PDMS放置在化學室中真空機器裡進行抽真空,並請於下方置放鋁箔紙,以防PDMS外滲時對腔體造成的污染。 (六) 開啟烤箱並設定溫度,將載具放到烤箱燒結。 真空機台操作順序: (一)進行真空機台清潔。 (二)將欲抽真空物品置放裡頭並緊密蓋緊蓋子。 (三)將三向閥調至《開口、真空腔、機器》。 (四)打開真空機器電源進行抽真空。 (五)抽氣完畢將機器關閉。 (六)將三向閥調至《機器、開口、無》並拉開開口閥門,進行機器油氣的回流動作。 (七)再慢慢調整三向閥至《開口、無、真空腔》。 ※注意此步驟不得漏氣過快,以免造成真空腔體污染和吹氣過強 (八)破真空結束後取出抽完真空物品,並以鋁箔紙覆蓋。 1-3 印刷電路板製程: (一) 印刷電路的投影片必須清潔乾淨 (二) 將玻璃基材的電路板,以日光燈曝光,大約10到12分鐘。 (三) 放入電路板顯影液中,顯影液照1:20的比例加自來水稀釋。 (四) 顯影時間和曝光長短有關約為1~2分;如果電路中有太細小的線路(0.2 mm以下)則顯影過程不要搖晃。 (五) 顯影過程決定印刷電路的好壞,必須完全顯乾淨。 (六) 將電路板用清水沖洗,洗去殘留的顯影液。 (七) 使用FeCl3將表面的銅箔蝕刻去除,在蝕刻過程可以使用加熱板加熱至50度(液溫)以上。 (八) 清水洗去蝕刻液,吹乾電路板後再切割,得到成品。 附錄二:細胞繼代培養 2-1 細胞培養環境用品: 1. 細胞培養環境 a. 37℃恆溫培養箱 b. 培養箱氣體控制為5% 2. 細胞培養用品 a. PBS溶液 1X 一倍PBS是用來清洗細胞用的,為活細胞之等張溶液,在更換培養皿內之培養液時,需用PBS來清洗,已被使用過後的培養液,以維持培養皿內的清潔。 b. TE buffer 內容物為Trypsin-EDTA,是收集吸附型細胞常用之方法。Trypsin為胰蛋白酵素,其作用為分解細胞與瓶壁之附著蛋白, EDTA為chelating agent,其作用為去除Ca2+、Mg2+等離子,trypsin與EDTA二者共同作用,可使附著之細胞自瓶壁脫落。 除了trypsin-EDTA,亦可使用cell scraper(細胞刮勺)刮落細胞。 c. 化學成分培養液(chemically defined media) 使用這些培養液時,需添加少量取自胎牛、小牛、馬或人的血清(約10%),以提供動物細胞生長所需的生長因子。血清使用前須經熱處理(37°C, 30 min),以去除免疫補體反應(complement)及減少黴漿菌量,再與化學成分培養基混合。這類培養動物細胞所用的血清,大多從牛或馬的血液中分離而取得,所以其品質會受到不同批次(batch)、品種與產地而有所影響。在培養動物細胞時,培養基必須控制在生理中性酸鹼值約略在pH 7. 4以利細胞生長。目前最常使用的方法是於培養基添加碳酸氫鈉(NaHCO3),利用溶液中解離後的HCO3-與培養箱的5%~10%CO2氣體濃度形成氣液相平衡,達到維持培養基酸鹼值於pH 6.9-7.4的功效。我們所使用的的培養液是動物細胞培養基會再加入phenol red顯示劑,以便利於觀察酸鹼值之變化。當培養基酸鹼值在pH 7.4時,培養基顏色為紅色。當培養基酸鹼值過高時,培養基顏色變成粉紅色(pH 7.6)及紫色(pH 7.8)。當培養基酸鹼值過低時,培養基顏色變成橘色(pH 7.0)及黃色(pH 6.5)。 3. 無菌操作台(laminar flow) 等級至少在classII之等級,實驗進行前,無菌室及無菌操作台以紫外燈照射30-60分鐘滅菌,以70%酒精擦拭無菌操作抬面,並開啟無菌操作台風扇運轉10分鐘後,才開始實驗操作。 4. 二氧化碳培養箱(incubator) 使用二氧化碳培養箱﹙常用之比例為5% CO2,95% air﹚,或是 灌入適量二氧化碳至培養容器內,放入一般培養箱中培養即可。為使二氧化碳能夠流通,培養瓶(例如T-flask)放入二氧化碳培養箱時應鬆開瓶蓋,或使用透氣瓶蓋。取出觀察時,則關緊瓶蓋,以避免污染。 2-2 細胞繼代步驟: 1. 先將laminar flow紫外燈開啟照射30分鐘以維持無菌狀態。 2. 同時將PBS、TE buffer、培養液自冰箱去出放入恆溫槽加熱至37℃。加熱後,將三罐溶液用70%之酒精噴灑表面滅菌,再拿進laminar flow。 3. 用玻璃吸管吸取培養皿內之舊培養液,玻璃吸管在使用前應該用酒精燈烤過一次,以維持器具的無菌,培養皿內之培養液因為被細胞利用過了,已失去他的活性,在換新的培養液時,務必將培養皿內被使用過的培養液移除乾淨,因為使用過的培養液中有細胞殘骸,會影響新細胞生長,而且培養液成分會中和TE buffer之蛋白酵素,必需使用PBS來沖洗培養皿三次(每次用玻璃吸管吸取約5 ml PBS)。 4. 洗淨後,培養皿內盡量不要殘留液體,其後用TE buffer 1000μl加進培養皿內,使培養皿中細胞能順利脫盤。加進TE buffer後,將培養皿放入二氧化碳培養箱中靜置約5分鐘,讓TE buffer活化使細胞脫盤。但是Trypsin-EDTA作用時間勿太久,否則可能對細胞造成傷害或死亡。 5. 約7分鐘後,吸取一定比例培養液加進培養皿中,先中和TE buffer作用。其後,再依照移植細胞的比例將TE buffer和培養液之混合液體加入新培養皿中。最後依照培養皿大小加入新的培養液,即完成細胞繼代程序。 參考資料 [1 ] Lord Rayleigh.,”On waves propagating along the plane of an elastic solid”,Proc. London Math. Soc.Vol.17,pp.4-11,1885. [2 ] R. M. White and F.W. Voltmer,”Direct piezoelectric coupling to surface elastic waves. ”Appl. Phys. Lett.,Vol.17,pp.314-316,1965. [3 ]R.S. Wagers.,”Plate mode coupling in acoustic surface wave devices”,IEEE Trans. Sonics Ultrason. Vol. SU-23,pp.113-127,1976. [4 ] J. Hou.,H. van de Vaart.,”Mass sensitivity of plate modes in surface acoustic devices and their potential as chemical sensors”,Proc. IEEE Ultrason. Symp. pp.573-578,1987. [5 ] S.J. Martin.,A.J. Ricco.,G.C. Frye.,”Sensing in liquids with SH plate mode devices”,Proc. IEEE Ultrason. Symp. pp.253-268,1988. [6 ] R. Dahint,M. Grunze,F. Josse,J. Renken,”Acoustic plate mode sensor for immunochemical reactions”,Anal. Chem.,Vol66,pp2888-2892,1994. [7 ] R. Dahint,R. Ros Seigel,P. Harder,M. Grunze,F. Josse,”Detection of non-specific protein adsorption at artificial surfaces by the use of acoustic plate mode sensors”,Sensors and Actuators B,pp497-505,1996 [8 ] R. Dahint,F. Bender,F. Morhard,”Operation of acoustic plate mode immunosensors in complex biological media”,Anal. Chem.,Vol71,pp3150-3156,1999 [9 ] Proceedings of the I.R.E.1949,”Standards on piezoelectric crystals”pp1378-1395 . [10 ] B. Auld,Acoustic fields and waves in solids,vol.1,vol.2 ,John Wiley and Sons, New York, 1973. [11 ] Z.A. Shana,Ph. D dissertation,Marquette University,1991 [12 ]M.A. Goodberlet.,D.L . Lee.,”The excitation and detection of surface-generated bulk waves”,IEEE Trans. Sonics Ultrason. Vol. SU-31,pp.67-76,1984 [13 ]C. N. Helmick,Jr.,D. J. White.,and K. M. Lakin,”Deep-bulk-acoustic-wave(DBAW) devices utilizing interdigital transducers”Proc. IEEE Ultrason. Symp. pp.280-285,1981. [14 ]D. S. Ballantine,Jr.,R. M. White.,S.J. Martin.,A.J. Ricco.,G.C. Frye.,E. T. Zellers,H. Wohltjen,”Acoustic wave sensors”,Academic Press,1996. [15 ]G. S. Kino,”Acoustic waves:Devices,Imaging and analog signal processing” Prentice-Hall , INC.,1988. [16 ]賴郁元,微聲波平板式感測之特性量測及其應用於細胞增生之 研究,碩士論文,國立清華大學工程與系統科學研究所,台灣,2002. [17 ]R.F. Schmitt,J.W. Allen,R.Wright,”Rapid design of SAW oscillator electronics for sensor applications”,Sensors and Actuators B,pp80-85,2001.id NH0925593044 sid 913115 cfn 0 / id NH0925593045 auc 林宗逸 tic 清華大學水池式反應器BNCT治療計畫程式THORplan之開發與驗證 adc 薛燕婉 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 101 kwc 清華大學水池式反應器 kwc BNCT kwc THOR kwc THORplan kwc SERA kwc 治療計畫 abc 本研究為清華大學水池式反應器(THOR)「硼捉中子治癌」治療計畫程式系統THORplan之開發。本研究包括三大部分:(1)建立THOR新超熱中子束(1MW)出口面射源,作為治療計畫程式之射源輸入;(2)引進與測試國外治療計畫程式系統SERA,作為THORplan發展比對之依據;(3) 使用THORplan與SERA程式進行THOR新超熱中子束(1MW)用於BNCT治療效益之評估;(4)利用IDL語法與子程式建立THORplan之圖形化介面,以方便使用者進行治療計畫之模擬計算。 rf 1.J. Hall, D.Phil., D.Sc., F.A.C.R., F.R.C.R, “Radiobiology for the Radiologist”, p112-p.123. 2.“Proceeding of Ninth International Symposium on Neutron Capture Therapy for Cancer”, Osaka, Japan, Oct2-6, 2000. 3.“Research and Development in Neutron Capture Therapy”, “Proceeding of The 10th International Congress on Neutron Capture Therapy”, Essen (Germany), September 8-13, 2002. 4.R.F. Barth and A.H. Soloway, “Dedication to Sweet and Hatanaka,” Int. J. Radiation Oncology Biol. Phys., 1055(1994). 5.R.F. Barth, A.H. Soloway, Weilian Yang, Joseph H Goodman and Ralth G Fairchild, “硼中子俘獲治療腦腫瘤的現況與前景”, 中華放射腫瘤學雜誌 1998年12月第七卷第四期. 6.D. W. Nigg, F. J. Wheeler, D.E. Wessol, J. Capala, and M. Chadha, “Computational Dosimetry and Treatment Planning for Boron Neutron Capture Therapy”, Journal of NeuroOncol, 33:81, 1997. 7.R. Zamenhof, E. Redmond II, G. Solares, D. Katz, K. Riley, S. Kiger, and O. Harling, “Monte Carlo-based treatment planning for boron neutron capture therapy using custom designed models automatically generated from CT data,” International Journal Radiation Oncology Biology Physics, 35, 383-397(1996). 8.W.S. Kiger III, R.G. Zamenhof, G.R. Solares, E.L. Redmond II. And C.-S. Ya, “MacNCTPlan: An Improved Macintosh Based BNCT Treatment Planning Program,” Trans. Am. Nuc. Soc., 75, 38-9(1996). 9.R.G. Zamenhof, G.R. Solares, W.S. Kiger III, E.L. Redmond II, P.M. Busse, and C.S. Yam, “MacNctPlan: An improved Macintosh-based treament planning program for boron neutron capture therapy,” in Advances in Neutron Capture Therapy, edited by B. Larsson, J. Crawford, and R. Weinreich, Elsevier, Amsterdam(1997), pp. 100-105. 10.D.E. Wessol, C.A. Wemple, F.J. Wheeler, M.T. Cohen, M.B. Rossmeier, and J. Cogliati, “SERA: Simulation Environment for Radiotherapy Applications User’s Manual Version 1C0,” http://www.cs.montana.edu/~bnct/, Department of Computer Science, Montana State University (2001). 11.H. Kumada, et a1., “The Development of a Computational Dosimetry System for BNCT at JRR-4”, Frontiers in Neutron Capture Therapy, Vols.1 and 2, Hawthorne et a1 ed., Kluwer Academic/Plenum Publishers, p611-614, (2001). 12.G. Q. Maguire, Jr. and M. E. Noz, “QSH Reference Manual”, Columbia University, Department of Computer Science; New York University, Department of Radiology, 1990. 13.“MCNP-Monte Carlo N-Particle Transport Code System, Version 4C”, Oak Ridge National Laboratory, RSIC CCC-700 , 2000. 14.林宗毅, “「硼捉中子治癌」治療計畫程式之開發”,國立清華大學工程與系統科學研究所碩士論文,2003. 15.TORT “Three dimensional discrete ordinates neutron/photon transport code, version 3”, Oak Ridge National Laboratory, RSIC CCC-650,1998. 16.黃泰庭, “清華水池式反應器改建為硼中子捕獲專用核反應爐之超熱中子束最終細部設計分析”, 國立清華大學工程與系統科學研究所碩士論文,2003. 17.李在尹, “清華水池式反應器新舊超熱中子束射束品質研究”, 國立清華大學工程與系統科學研究所碩士論,2003. 18.“BUGLE-96, RSICC Data Library Collection”, Oak Ridge National Laboratory, Radiation Safety Information Computational Center, 1996. 19.薛燕婉、陳昂佑, ”三維粒子遷移DOORS程式系統之研究”, 2002. 20.ICRU REPORT 46, “Photon, Electron, Proton and Neutron Interaction Data for Body Tissues”, International Commission on Radiation Units and Measurements, p11-13, 1992. 21.Tiina Seppälä, “FIR1 Epithermal Neutron Beam Model and Dose Calculation for Treatment Planning in Neutron Capture Therapy”, Department of Physical Sciences, Faculty of Science, University of Helsinki, Finland, 2002. 22.ENDF/B-IV, Brookhaven National Laboratory, BNL-NCS-50496(ENDF 102), Oct., 1975. 23.R. G. Zamenhof et al., “Monte Carlo Based Dosimetry and Treatment Planning for Neutron Capture Therapy of Brain Tumors,” Performance for Neutron Capture Therapy, 283, Edited by O.K. Harling et al., Plenum Press, New York, 1990. 24.R. S. Caswell, J. J. Coyne, and M. L. Randolph, “KERMA Factors of Elements and Compounds for Neutron Energies Below 30MeV,” Int. J. Appl. Radiat. Isot., 33:1227,1982. 25.ENDF/B-VI, International Atomic Energy Agency, NUCLEAR DATA SERVICES, Documentation series of the IAEA nuclear data section, IAEA-NDS-76, Rev. 4 Jan., 1992. 26.IDL, Interactive Data Language, Version 6.0, Research System ,Inc., 2003.id NH0925593045 sid 913108 cfn 0 / id NH0925593046 auc 黃清鴻 tic HfOxNy閘介電層內氮含量分佈與矽基板退火對金氧半電容元件電特性之影響 adc 張廖貴術 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 126 kwc 高介電常數 kwc 退火 kwc 電容等效厚度 kwc 遲滯 kwc 可靠度 abc 為了解決在元件閘極氧化層厚度快速所小的趨勢下,隨之產生的閘極漏電流過高之問,尋找新型閘極介電層材料以替代原先二氧化矽介電層,是當今非常重要的一個課題。本論文選擇HfOxNy作為高介電常數閘極介電層,使用TaN電極,之後再疊上Al完成金氧半電容元件。本論文實驗研究可分為三大部分: tc 目錄 摘要-----------------------------------------------------------------------Ⅰ 誌謝-----------------------------------------------------------------------Ⅲ 目錄-----------------------------------------------------------------------Ⅳ 圖目錄-------------------------------------------------------------------Ⅷ 表目錄--------------------------------------------------------------------XI 第一章 序論---------------------------------------------------1 1.1研究動機-------------------------------------------------------------------1 1.2高介電常數材料的選擇-------------------------------------------------2 1.3 HfOxNy--------------------------------------------------------------------3 1.4論文概要-------------------------------------------------------------------4 第二章 元件製程與量測------------------------------------6 2.1 HfOxNy MOS Capacitor (Ⅰ)元件製程--------------------------------6 2.2 HfOxNy MOS Capacitor (Ⅱ)元件製程------------------------------10 2.3 HfOxNy MOS Capacitor (Ⅲ)元件製程------------------------------13 2.4金氧半電容特性量測---------------------------------------------------16 2.4.1電容-電壓量測 -----------------------------------------------------17 2.4.2電流-電壓量測--- ---------------------------------------------------17 2.5物性與材料分析---------------------------------------------------------17 2.5.1 X光繞射儀----------------------------------------------------------17 2.5.2二次離子質譜儀----------------------------------------------------18 2.5.3傅立葉轉換紅外線光譜儀----------------------------------------20 第三章 HfOxNy閘介電層及閘電極沉積後以不同 溫度退火對金氧半電容電特性影響之研究---------------------------------------------------------29 3.1研究動機------------------------------------------------------------------29 3.2製程與量測---------------------------------------------------------------30 3.2.1製程條件------------------------------------------------------------30 3.2.2量測參數------------------------------------------------------------31 3.3實驗結果與討論---------------------------------------------------------33 3.3.1 物性分析-----------------------------------------------------------33 3.3.2閘介電層沉積後不同退火溫度(PDA)之比較----------------33 3.3.3金屬閘電極沉積後不同退火溫度(PMA)之比較-------------36 3.4 結論-----------------------------------------------------------------------38 第四章 氮含量分佈對HfOxNy閘介電層金氧半電容電特性影響之研究------------------------------------53 4.1研究動機------------------------------------------------------------------53 4.2製程與量測---------------------------------------------------------------54 4.2.1製程條件------------------------------------------------------------54 4.2.2量測參數------------------------------------------------------------55 4.3實驗結果與討論---------------------------------------------------------55 4.3.1閘介電層與矽界面不同氮濃度之比較------------------------55 4.3.2閘介電層內不同氮分佈之比較---------------------------------58 4.4結論------------------------------------------------------------------------61 第五章 基板在閘介電層沉積前經不同製程處理後對金氧半電容之特性研究---------------------------76 5.1研究動機------------------------------------------------------------------76 5.2製程與量測---------------------------------------------------------------77 5.2.1製程條件-----------------------------------------------------------77 5.2.2量測參數-----------------------------------------------------------79 5.3實驗結果與討論---------------------------------------------------------79 5.3.1氮氣快速熱退火之影響------------------------------------------79 5.3.2氮氣高溫爐管退火加上氮氣快速熱退火之影響------------82 5.3.3Hi-wafer應用在金氧半電容上之影響-------------------------84 5.3.3.1 SiOxNy閘介電層金氧半電容-----------------------------85 5.3.3.2 HfOxNy閘介電層金氧半電容----------------------------87 5.3.4 閘介電層沉積前基板以不同濃度氫氟酸清洗之影響----89 5.4結論------------------------------------------------------------------------91 第六章 結論------------------------------------------------124 6.1 結論----------------------------------------------------------------------124 參考文獻----------------------------------------------------126rf 參考文獻 [1 ] International Technology Roadmap for Semiconductors,2001edition [2 ]C.Ho,IEDM’96.,pp.319-322 [3 ]C. C. Chen et al, Appl. Phys. Lett., vol. 74, pp. 3708-3710, 1999. [4 ] The National Technology Roadmap for Semiconductors Technology Needs, 1997 edition, Semiconductor Industry Association. [5 ] Jack C.Lee et al, IEEE EDS Vanguard Series of Independent Short Course, P.202(2001) [6 ]Tung Ming Pan et al, Appl. Phys. Lett. vol. 78 p. 1439. [7 ]C.S.Kang,et al.,Symp.On VLSI Tech,p.146(2002) [8 ]汪建民主編,”材料分析”,中國材料科學學會 [9 ]T. P. Ma, IEEE Trans. Electron Devices, vol. 45, p. 680, March 1998. [10 ]C.-L. Liu et al, Appl. Phys. Lett. 81, 1441 (2002) [11 ]B.H Lee et al, IEDM Tech. Dig, p.39(2000) [12 ]R.Nieh et al , IWGI(2001) [13 ]G.D.Wilk et al ,J. Appl. Phys. 87,484 (2000) [14 ]C.S.Kang et al , J. Vac. Sci. Technol. p.2026 (2003) [15 ]S.Gopalan et al. Appl. Phys. Lett. vol. 80. 4416(2002) [16 ] C.S.Kang,et al.,IEDM Tech,p.865(2002) [17 ] P. Pan and C. Padquette, Appl. Phys. Lett.,Vol 47, pp.473-475 1985 [18 ]H. Yamashita et al, IWGI (2001) [19 ]C.S.Kang et al,IEEE Transactions on Electron Devices, Vol.51,pp.220-227,2004 [20 ]K.S. Chang-Liao and Han-Chao Lai, Appl. Phys. Lett., Vol 72,p2280 1998 [21 ]G. Kissinger et al, Mater. Sci. Engineering B 73, 106(2000) [22 ]G.D. Wilk et al, Symp.On VLSI Tech, p.88(2002) [23 ]J.M. Hergenrother et al, IEDM Tech Dig. 2001, 51(2001) [24 ]J.H. Lee et al, IEDM Tech Dig. 2002, 221(2002) [25 ]Toshiba Ceramics Taiwan Corp. [26 ]Y.B. Kim et al, J. Vac. Sci. Technol. P.2029 (2003) [27 ]A. Borghesi et al, Appl. Phys. Lett.58,2099 (1991)id NH0925593046 sid 913171 cfn 0 / id NH0925593047 auc 徐怡琳 tic 利用矽烷類混合式自組裝單分子膜提高蛋白質晶片上抗體與檢體的接合效率 adc 曾繁根 adc 錢景常 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 101 kwc 酵素連結免疫吸附分析法 kwc 矽烷類混合式自組裝單分子膜 kwc 抗原對抗體接合效率 kwc 表面電漿共振 abc 目前蛋白質晶片在傳統酵素連結免疫吸附分析法(Enzyme Linked-Immuno-Sorbent Assay,ELISA)檢測上所遇到的問題,除了蛋白質抗體固定於晶片上的效率外,因為抗體在同一種自組裝單分子層(Self-assembled monolayers,SAMs)的表面上固定(immobilize),因為緊密堆積而有立體空間障礙問題和方向性問題,導致和檢體抗原做反應時無法達到最有效的結合造成檢體的浪費。因此我們提出了利用不同功能、不同高度的矽烷類混合式自組裝單分子膜,分別是(3-Aminopropyl)trimethoxysilane(APTS)及Ethyltrimethoxysilane(C2)兩種官能基相似的化學分子,將抗體Goat anti-rabbit IgG豎立於晶片表面上的方法,藉由控制兩種SAMs分子的分佈比例與鍵結效率就可以提高抗體的自由度,而達到立體空間障礙的解決,使末端的抗原接合端(antigen binding site)得以大部分裸露出來,讓後續的抗原Rabbit anti-mouse IgG在和抗體接合時效率提高,以減少數量上的浪費。 tc 目 錄 第一章 前言 1 1.1 生物晶片 1 1.2 蛋白質晶片在檢測上的效率問題 8 1.3 有機單分子層的簡介 11 第二章 文獻回顧 16 2.1 自組裝單分子膜(SAMs)的成核過程與薄膜特性的探討 16 2.1.1 自組裝單分子膜(SAMs)之成膜種類 16 2.1.2 自組裝單分子膜(SAMs)之結構 16 2.1.3 矽烷類自組裝單分子膜之鍵結形式 18 2.1.4 矽烷分子與基材表面鍵結之反應機構 19 2.1.5 矽烷類自組裝單分子膜之成膜理論 22 2.1.6 影響矽烷類自組裝單分子膜反應之因素 23 2.2 表面電漿子共振(Surface Plasmon Resonance;SPR) 26 2.2.1 SPR共振原理 26 2.2.2 SPR感測分子間親和作用及動力參數估算 30 第三章 實驗設計 35 3.1 原理 35 3.2 實驗材料與藥品 39 3.2.1 SPR sensor chip: SIA Kit Au 39 3.2.2 ITO chip 39 3.2.3化學藥品 40 3.3 實驗方法與步驟 43 3.4 實驗分析儀器 47 3.4.1 AFM (Atomic Force Microscopy) 47 3.4.2 STM (Scanning Tunneling Microscopy) 52 3.4.3表面電漿子共振生物感測器 54 3.4.4 GenePix 4000B Microarray Scanner 59 第四章 結果與討論 61 4.1 Self-assembled monolayers成核過程 61 4.1.1 STM結果 61 4.1.2 In-situ AFM結果 71 4.2 Mixed Self-assembled monolayers 78 4.2.1 SPR實驗結果 78 第五章 結論 99 第六章 參考文獻 100 圖目錄 圖1.1 實驗室晶片之微氣相層析儀的示意圖………………………….2 圖1.2 聚合酵素鏈鎖反應晶片………………………………………….3 圖1.3 毛細管電泳晶片結構與操作示意圖…………………………….4圖1.4 基因晶片檢測原理……………………………………………….5圖1.5 蛋白質晶片檢測原理…………………………………………….6 圖1.6 傳統酵素連結免疫反應法(ELISA)示意圖…………………….10 圖1.7 利用矽烷類混合式自組裝單分子層作酵素連結免疫反應法(ELISA)示意圖…………………………………………………10 圖1.8 Langmuir-Blodgett薄膜製作程序………………………………12 圖1.9 分子吸附在基材表面的SAMs薄膜結構圖…………………...13 圖1.10 自動組裝薄膜製作流程……………………………………….14 圖2.1 自組裝界面活性劑之結構圖…………………………………...17 圖2.2 SAMs分子的鍵結方式………………………………………….18 圖2.3 OTS分子在玻璃表面之成膜機制………………………………20 圖2.4 OTS分子在含二氧化矽基材之成膜機構……………………....21 圖2.5 Kretschmann稜鏡組……………………………………………..27 圖2.6 反射係數與入射角之關係圖…………………………………...29 圖2.7 SPR 感測流程圖………………………………………………...31 圖2.8分析物通入前後的共振角改變量示意圖………………………32 圖2.9 親和作用之動力分析…………………………………………...32 圖3.1 長鏈ATPS分子和短鏈Ethyltrimethoxysilane(C2)分子混合與玻璃的鍵結示意圖……………………………………………….35 圖3.2 酵素連結免疫吸附分析法(ELISA)過程的示意圖……………36 圖3.3 IgG分子結構圖…………………………………………………38 圖3.4 SAMs泡製方法…………………………………………………46 圖3.5 凡得瓦爾力與距離關係圖……………………………………...49 圖3.6 JPK公司原子力顯微鏡實體圖…………………………………50 圖3.7 在寬度為w,能量為V0的位能井上波函數示意圖…………..52 圖3.8 Biacore X實體圖………………………………………………...55 圖3.9 Biacore X系統工作原理………………………………………..56 圖3.10 雙連續流道設計示意圖……………………………………….57 圖3.11 Biacore公司之不同表面功能SPR晶片………………………58 圖3.12 SPR反應結果曲線……………………………………………..58 圖3.13 GenePix 4000B型螢光掃描器實體圖…………………………59 圖4.1 Hexyltrichlorosilane在(a)10秒(b)20秒(c)50秒(d)5分鐘,經平坦化之後的圖………………………………………………….62 圖4.1 Hexyltrichlorosilane在(e)10分鐘(f)30分鐘(g)1小時(h)2小時,經平坦化之後的圖(續)…………………………………………63 圖4.2 Hexyltrichlorosilane分子在(a)10秒(b)20秒(c)50秒(d)5分鐘(e)10分鐘(f)30分鐘(g)1小時(h)2小時,3D立體圖………………66 圖4.3 Hexyltrichlorosilane分子在(a)10秒(b)20秒(c)50秒(d)5分鐘(e)10分鐘的剖面圖(cross section)…………………………………...70 圖4.4 Octadecyltrichlorosilane(OTS)在In-situ AFM下成核(nucleation)過程的上視平面圖……………………………………………..75 圖4.5 Octadecyltrichlorosilane(OTS)在In-situ AFM下成核(nucleation)過程的3D立體圖………………………………………………77 圖4.6 APTS和C2混合式矽烷類分子高度差示意圖…………………78 圖4.7 ELISA過程的SPR標準反應圖…………………………………79 圖4.8 在APTS(0.2%)的表面上ELISA過程的即時反應圖………….80 圖4.9 在APTS/C2(1:3)的表面上ELISA過程的即時反應圖………..80 圖4.10 在APTS/C2(1:10)的表面上ELISA過程的即時反應圖…….81 圖4.11 在APTS/C2(1:30)的表面上ELISA過程的即時反應圖……..81 圖4.12 在APTS/C2(1:100)的表面上ELISA過程的即時反應圖…...82 圖4.13 在C2(0.2%)的表面上ELISA過程的即時反應圖…………....82 圖4.14 Goat anti-rabbit IgG抗體在不同體積濃度比的SAMs表面的鍵結或吸附量……………………………………………………84 圖4.15 IgG分子示意圖………………………………………………..85 圖4.16 微笑曲線說明示意圖………………………………………….85 圖4.17 Goat anti-rabbit IgG抗體在SAMs表面Kinetic分析曲線……86 圖4.18 Goat anti-rabbit IgG抗體在SAMs表面Kinetic分析曲線……86 圖4.19 Goat anti-rabbit IgG抗體在不同體積濃度的SAMs表面之親和力的數值……………………………………………………….88 圖4.20 Goat anti-rabbit IgG-Cy3在不同體積濃度SAMs的玻璃基材上的螢光反應圖…………………………………………………90 圖4.21 Goat anti-rabbit IgG-Cy3在不同體積濃度SAMs的玻璃基材上的螢光反應結果分析………………………………………….91 圖4.22 抗原對抗體的接合效率分析結果圖………………………….92 圖4.23 從APTS(1%)到ELISA過程的SPR即時反應圖…………….93 圖4.24 從APTS/C2(1:10)到ELISA過程的SPR即時反應圖……….94 圖4.25 從APTS/C2(1:30)到ELISA過程的SPR即時反應圖………..94 圖4.26 從APTS/C2(1:100)到ELISA過程的SPR即時反應圖………95 圖4.27 從C2(1%)到ELISA過程的SPR即時反應圖………………..95 圖4.28 Goat anti-rabbit IgG抗體在不同體積濃度比SAMs表面的鍵結或吸附量………………………………………………………97 圖4.29 抗原對抗體的接合效率分析結果圖…………………………97 表目錄 表3.1 銦錫氧化物薄膜特性…………………………………………...40 表3.2 NanoWizard ™ Atomic Force Microscope規格表………………51 表3.3 GenePix 4000B螢光掃描器性能規格表…………………….….60 表4.1 STM的參數設定………………………………………………...61 表4.2 AFM的參數設定………………………………………………...71 表4.3 不同體積濃度比SAMs表面在SPR實驗中的反應結果……..83 表4.4 Gene Pix 4000B Microarray Scanner的參數設定………………89 表4.5 從不同濃度體積的SAMs coating到ELISA過程的SPR即時反應結果…………………………………………………………..96rf [1 ]柯賢文,’’晶片實驗室’’,科儀新知,2000,第二十一卷第四期 [2 ]Martin U. Kopp, Andrew J. de Mello, Andreas Manz. “Chemical Amplification: Continuous-Flow PCR on a Chip”. Science 1998;280;1046-1048 [3 ]李國賓,鄒國鳳,黃冠瑞,陳淑慧,林佾鴻,林中源,回寶珩,巫婉瑜,吳智豪,廖寶琦.“應用於生物醫學分析之微流體晶片’’ . 化學會刊; 2001;第48卷第三期 [4 ]Emma Patten-Hitt. “Gene Chip Aid Cancer Diagnoses’’. Lancet Oncology 2001;2;398 [5 ]L.G..Mendoza, P.McQuary, A.Mongan, R.Gangardharan, S.Bridnac and M.Eggers. “High-Based Enzyme-Linked Immunosorbent Assay(ELISA)”.BioTechniques 1999;27:778-788 [6 ]Shengfu Chen, Lingyun Liu, Jian Zhou, and Shaoyi Jiang.”Controlling Antibody Orientation on Charged Self-Assembled Monolayers”, Langmuir ,2002 [7 ]孫嘉星,陳美滿,’’自動組裝烷基二硫代羧酸薄膜結構與性質研究”, 東吳大學化學研究所碩士論文,台灣,2002 [8 ]Ulman, A., “An Introduction to Ultrathin Organic Film”, Academic Press, San Diego, 1991 [9 ]David L. Allara. “ Critical issues in applications of self-assembled monolayers ”.Biosensors & Bioelectronics 1995, 10, 771-783. [10 ]Ulman, A., Formation and Structure of Self-assembled Monolayers”. Chem. Rev., 1996,96,1533-1554 [11 ]Sagiv, J.,”Organized monolayers by adsorption.1.formation and struture of oleophobic mixed monolayers on solid surfaces”.J. Am. Chem. Soc. 1980,102,92-98 [12 ]Silberzan, P.;Leger, L; Ausserre, D.; Bemattar, J. J., “Silanation of silica surfaces.A new method of constructing pure or mixed monolayers”, Langmuir, 1991,7,1647-1651 [13 ]WASSERMAN, S. R.;Tao, Y. T.;Whiteside, J. M. “Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon subtrates”, Langmuir, 1989, 5, 1074-1087 [14 ]Rye, R. R.;Nelson, G. C.;Dugger M. T.,”Mechanistic aspects of alkylchlorosilane coupling reaction”, Langmuir, 1999, 13, 2965-2972 [15 ]Vallant, T.;Brunner, H.;Mayer, U.;Hoffmann,H.; Leitner, T.;Resh. R.; Friedbacher, G., “Formation of self-assembled octadecylsiloxane monolayer on mica and silicon surfaces studied by atomic force microscopy and infrared spectroscopy”, J.Phys. Chem. B, 1998, 102, 7190-7197 [16 ]Bierbaum, K.;Grunze, M.; Baski, A. A.; Chi, L. F.; Schrepp, W.; Fuchs, H.,”Growth of self-assembled n-alkyltrichlorosilane films on Si(100) investigated by atomic force microspcopy”, Langmuir, 1995, 11, 2143-2150 [17 ]Resch, S. R.; Grasserbauer, M.; Friedbacher, G.; Vallant, TH.; Brunner, H.; Mayer, U.; Hoffmann, H.; “In situ and ex situ AFM investigation of the formation of octadecylsiloxane monolayer”, Appl. Surface Sci.,1999,168-175 [18 ]蔡怡杏,’’自聚性分子膜成膜動力學之臨界溫度研究’’ , 國立台灣大學化學工程研究所碩士論文, 台北, 台灣, 1999 [19 ]Hoffmann, H.; Mayer, U.; Kischanitz, A., “Structure of alkysiloxane monolayers on silicon surfaces investigated by external reflection infrared spectroscopy”, Langmuir,1995,11,1304-1312 [20 ]Grange, J.; D.; Markham, J. L.; Kurkjian, C. R.,”Effects of surface hydration on the deposition of silane monolayers on silica”, Langmuir,1993,9,1749-1753 [21 ]Brzoska, J. B.; Shahidzadeh, N.; Rondelez, F., “Evidence of a transition temperature for the optimum deposition of drafted monolayer coatings”, Nature,1992,360,719-713 [22 ]Woodward, J. T.; Ulman, A.; Schwartz, D. K., “Self-assembled monolayer growth of octadecyltrichlorosilane”, Langmuir, 1994,10,,3607-3614 [23 ]McGoven, M. E.; Kallury, K. M. R.; Thompson, M., “Role of solvent on the silanization of glass with octadecyltrichlorosilane”, Langmuir, 1994,10,3607-3614 [24 ]Gauglitz, G., Homola, J., Yee, S.S., ”Surface plasmon resonance sensor :review”, Sensors and Actuators B,54,3~15,(1999) [25 ]Ramsay, G., “Commercial biosensors applications to chinical bioprocess and environmental sample”, Wiley ineerscience, (1998) [26 ]HASEGAWA, Y., SHINOHARA, Y., KIM, F., SHIMIZU, M., GOTO, M., TOSU, M., ”Kinetics measurement of the interaction between an Oligosaccharide and lectins by a biosensor based on surface plasmon resonance”, J. Biochem. , 223,189~194, (1994)id NH0925593047 sid 913132 cfn 0 / id NH0925593048 auc 于冠禮 tic 藉極化中子反射量測法與X光散射法研究鎳鐵/鉻/鎳鐵多層膜之結構與磁耦合之關係 adc 李志浩 ty 博士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 英文 pg 78 kwc 磁性薄膜 kwc X光 kwc 極化中子 kwc 同布輻射 kwc 鎳鐵鉻 abc 本研究在探討鎳鐵合金與鉻多層磁性薄膜與鐵鉻多層膜結構近似,但不具巨磁阻之原因。本樣品系統由磁光柯爾效應儀與極化中子反射率量測,來瞭解樣品之磁性特質。在鉻隔離層厚度約2.4奈米時,鐵磁層間存在有類似反鐵磁性耦合,但磁阻特性卻類似異向性磁阻。在低溫下此磁性耦合會轉變成鐵磁耦合或喪失耦合關係,其原因可能與鉻之尼爾溫度有關。 tc Chapter 1. Introduction 01 Chapter 2. Theory & experimental methods 2.1 Magnetic coupling and magnetoresistance 04 2.2 Spin density wave (SDW) phenomena using Cr spacer layer 11 2.3. X-ray and polarized neutron reflectivity 18 Chapter 3. Sample preparation 27 Chapter 4. Magnetic properties 4.1 Longitude magneto-optical Kerr effect (MOKE) measurement 31 4.2 Magnetoresistance calculation 37 4.3 SQUID Measurement 41 Chapter 5. X-ray diffraction measurements on growth mode 45 Chapter 6. X-ray analyze on diffusion at interface 6.1 X-ray absorption near edge fine structure 51 6.2 X-ray Anomalous scattering 59 Chapter 7 .Polarized neutron reflectivity and X-ray reflectivity studies on magnetic Interface 7.1 X-ray reflectivity and PNR measurement 64 7.2 PNR measurement at low temperature 70 Chapter 8. Conclusion 72 References 73 Appendix A A.1 The procedure of sample preparation A.2 The sample list and the LMOKE measurements of Ni80Fe20/Cr/Ni80Fe20 system A.3 The results of the magnetoresistance measurement A.4 The simulation spectra of polarized neutron reflectivity Appendix B B.1 Curriculum Vitae B.2 Major publications copies in first authorrf References ?? Chapter 1 [R1.1 ] R. Schad, C.D. Potter, P. Belin, G. Verbanck, V.V. Moschchalkov and Y. Bruyseraede, Appl. Phys. Lett. 64, 3500 (1994). [R1.2 ] E.E. Fullerton, D.M. Kelly, J. Guimpell and I.K. Schuller, Phys. Rev. Lett. 68, 859 (1992). [R1.3 ] K. Takanashi, Y. Obi, Y. Mitani and H. Fujimori, J. Phys. Soc. Jpn. 61, 1169 (1992). [R1.4 ] D.T. Pierce, J. Unguris, R.J. Celotta, M.D. Stiles, J. Magn. Magn. Mater. 200, 290 (1999). [R1.5 ] Y. Saito, K. Inomata, J. Phys. Soc. Japan 67, 1138 (1998). [R1.6 ] C.H. Marrows, B.J. Hickey, Phys. Rev. B 59, 1999 (1999). [R1.7 ] S.Colis, A.D. Dinia, C. Mény, P. Panissod, C. Ulhaq-Bouillet, G. Schmerber, Phys. Rev. B 62, 11709 (2000). [R1.8 ] S. Colis, A.D. Dinia, P. Panissod, G. Schmerber, C. Mény, J. Magn. Magn. Mater. 226, 1725 (2001). [R1.9 ] J. Kohlhepp, F.J.A. den Broeder, M. Valkier, A. van der Graaf, J. Magn. Magn. Mater. 165, 431 (1997). [R1.10 ] B. K. Kuanr, M. Buchmeier, D.E. Bürgler, P. Grünberg, J. Appl. Phys. 91, 7209 (2002). [R1.11 ] D. Stoeffler, C. Cornea, Europhys. Lett. 56, 282 (2001). [R1.12 ] M. L. Watson, W. D. Doyle, H. Fujiwara, J. Appl. Phys. 73, 6518 (1993). [R1.13 ] D.S. Schmool, J.S.S. Whiting, A. Chambers and E.A. Wilinska, IEEE Trans. Magn. 30, 800 (1994). [R1.14 ] F. Y. Yang and C. L. Chien, J. Appl. Phys. 93, 6829 (2003). ?? Chapter 2 [R2.1.1 ] A. Fert and P. Bruno:"Interlayer Coupling and Magnetoresistance in Multilayers", in Ultrathin Magnetic Structures II, ed. By B. Heinrich and J.A.C. Bland (Springer, Berlin, Heidelberg, 1994) p. 82. [R2.1.2 ] J. Grünberg, R. Schreiber, Y. Pang, M.B. Brodsky, H. Sowers, Phys. Rev. Lett. 57, 2442 (1986). [R2.1.3 ] S.S.P. Parkin, N. More, K.P. Roche, Phys. Rev. Lett. 64, 2304 (1990). [R2.1.4 ] S. Demokritov, J.A. Wolf, P. Grünberg, W. Zinn, Mat. Res. Soc. Symp. Proc. 231, 133 (1992). [R2.1.5 ] F. Herman, J. Sticht, M. Van Schilfgaarde, Mat. Res. Soc. Symp. Proc. 231, 195 (1992). [R2.1.6 ] Z.Q. Qiu, J.E. Mattson, C.H. Sowers, U. Welp, S.D. Bader, H. Tang, J.C. Walker, Phys. Rev. B 45, 2252 (1992). [R2.1.7 ] S.T. Purcell, W. Folkerts, M.T. Johnson, N.W.E. McGee, K. Jager, J. Aan de Stegge, W.P. Zeper, P. Grünberg, Phys. Rev. Lett. 67, 903 (1991). [R2.1.8 ] S.T. Purcell, M.T. Johnson, N.W.E. McGee, R. Coehoorn, W.Hoving, Phys. Rev. B 45, 13064 (1992). [R2.1.9 ] D.T. Pierce, J. Unguris, and R.J. Celotta:"Biquadratic Coupling", in Ultrathin Magnetic Structures II, ed. By B. Heinrich and J.A.C. Bland (Springer, Berlin, Heidelberg, 1994) p. 144. [R2.1.10 ] J.C. Mallinson,"The Anisotropic Magneto-Resistive Effect", in Magneto-Resistive Heads (Academic, San Diego, 1996) p. 25. [R2.1.11 ] J.C. Mallinson,"The Giant Magneto-Resistive Effect", in Magneto-Resistive Heads (Academic, San Diego, 1996) p. 94. [R2.2.1 ] R.S. Fishman, J. Phys.:Condens. Matter 13 R235 (2001). [R2.2.2 ] P.M. Marcus, S.L. Qiu and V.L. Moruzzi, J. Phys.: Condens. Matter 29, 6541 (1998). [R2.2.3 ] R.P. Erickson, K.B. Hathaway and J.R. Cullen, Phys. Rev. B 47, 2626 (1993). [R2.2.4 ] M. Rührig, R. Schäfer, A. Hubert, R. Mosler, J.A. Wolf, S. Demokritov and P. Grünberg, Phys. Status Solid A 125, 635 (1991). [R2.2.5 ] J.C Slonczewski, J. Magn. Magn. Mater. 150, 13 (1995). [R2.2.6 ] J.C Slonczewski, Phys. Rev. Lett. 67, 3172 (1991). [R2.2.7 ] M. Freyss, D. Stoeffler and H. Dreysse, Phys. Rev. B 54, R12677 (1996). [R2.2.8 ] M. Freyss, D. Stoeffler and H. Dreysse, J. Appl. Phys. 81, 4363 (1997). [R2.2.9 ] C. Cornea and D. Stoeffler, Europhys. Lett. 49, 217 (2000). [R2.2.10 ] D. Stoeffler and F. Gautier “Magnetism and Structure in Systems of Reduced Dimension, ed. R.F.C. Farrow (New York: Plenum, 1993) p. 411. [R2.3.1 ] K.L.Yu, C.H.Lee, J.C.A.Huang, H.C.Su and G.P.Felcher, Chinese J. Phys. 40, 616 (2002). [R2.3.2 ] L. Nevot, and P. Croce, Revue Phys. Appl. 15, 761 (1980). [R2.3.3 ] L.G. Parratt, Phys. Rev. 95, 359 (1954). [R2.3.4 ] J. Penfold and R.K. Thomas, J. Phys. Condens. Matter 2, 1369 (1990). [R2.3.5 ] J.A.C. Bland, H.P. Hughes, S.J. Blundell and N.F. Johnson, J. Magn. Magn. Mater. 125, 69 (1993). [R2.3.6 ] S.J. Blundell and J.A.C. Bland, Phys. Rev. B 46 (1992) 46. ?? Chapter 3 [R3.1 ] C.A Ku: "Studies of magnetic coupling vibration with Cr thickness of Ni80Fe20/Cr/Ni80Fe20 sandwich", Department of physics, National Chung Kung University, master thesis (2002). [R3.2 ] Nishiyama, Z., Sci. Rep. Tohoku Univ. 23, 637 (1934). Wasserman, G., Arch. EisenhuttWes. 16, 647 (1933). ?? Chapter 4 [R4.1 ] S.S.P. Parkin: "Giant Magnetoresistance and Oscillatory Interlayer Coupling in Polycrystalline Transition Metal Multilayers", in Ultrathin Magnetic Structures II, ed. by B. Heinrich, J.A.C. Bland (Springer-Verlag Press, Berlin Heidelberg,1994) p. 162. [R4.2 ] E.E. Fullerton, M. J. Conover, J.E. Mattson, C.H. Sowers, and S.D. Bader, Phys. Rev. B 48, 15755 (1993). [R4.3 ] W.C. Cheng: "Studies of magnetic coupling vibration with Ru thickness of Ni80Fe20/Ru/Ni80Fe20 sandwich", Department of physics, National Chung Kung University, master thesis (2002). P.T. Wu: "Studies of the epitaxial growth and magnetic coupling of Ni80Fe20/Ir/Ni80Fe20 trilayers", Department of physics, National Chung Kung University, master thesis (2003). [R4.2.1 ] S.S.P. Parkin: "Giant Magnetoresistance and Oscillatory Interlayer Coupling in Polycrystalline Transition Metal Multilayers", in Ultrathin Magnetic Structures II, ed. by B. Heinrich, J.A.C. Bland (Springer-Verlag Press, Berlin Heidelberg,1994) p. 155. [R.4.3.1 ] E.E. Fullerton, K. T. Riggs, C.H. Sowers, and S. D. Bader, Phys. Rev. Lett. 75, 330 (1995). [R4.3.2 ] K. Chen, A.M. Ferrenberg, and D.P. Landau, Phys. Rev. B 48, 3249 (1993). [R4.3.3 ] A.M. Ferrenberg and D.P. Landau, Phys. Rev. B 44, 5081 (1991). ?? Chapter 5 [R5.1 ] C.A Ku: "Studies of magnetic coupling vibration with Cr thickness of Ni80Fe20/Cr/Ni80Fe20 sandwich", Department of physics, National Chung Kung University, master thesis (2002). ?? Chapter 6 [R6.1.1 ] Y. H. Liou, W. F. Pong, M.-H. Tsai, K. H. Chang, H. H. Hseih, Y. K. Chang, F. Z. Chien, P. K. Tseng , J. F. Lee, Y. Liou, and J. C. A. Huang, Phys. Rev. B 62, 9619 (2000). [R.6.1.2 ] I. F. Lee, M. Y. Shen, Y. Y. Lay, J. C. Jan, J. W. Chiou, H. M. Tsai, W. F. Pong, M. -H Tsai, H. H. Hsieh, H. -J. Lin, J. F. Lee, C. A. Ku and J. C. A. Huang, Appl. Phys. Lett. 82, 3062 (2003). [R 6.1.3 ] Provided by Mr. Yen-Heng Huang, department of Engneering and System Science, National Tsing-Hua University. [R.6.1.4 ] M. Segall, P.L.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys.: Cond. Matt. 14(11), 2717 (2002). [R.6.1.5 ] P. J. Schilling and R. C. Tittsworth, J. Synchrotron Rad. 6 (1999) p.497. [R6.2.1 ] M.K. Sanyal, S.K. Sinha, A. Gibaud, K.G. Huang, B.L. Carvalho, M. Rafailovich, J. Sokolov, X. Zhao, W. Zhao. Europhys. Lett. 21, 691 (1993). [R6.2.2 ] Ethan A Merritt, in website as http://www.bmsc.washington.edu/scatter/AS_index.html. ?? Chapter 7 [R7.1 ] G.P. Felcher, R.O. Hilleke, R.K. Crawford, J. Haumann, R. Kleb, G. Ostrowski, Rev. Sci. Instrum. 58, 609 (1987). [R7.2 ] G.P. Felcher, S.G.E. te Velthuis, A. Ruhm, W. Donner, Physica B 297, 87 (2001). [R7.3 ] J.A.C. Bland, H.T. Leung, S.J. Blundell, V.S. Speriosu, S. Metin, B.A. Gurney, J. Penfold, J. Appl. Phys. 79, 6295 (1996). [R7.4 ] B. K. Kuanr, M. Buchmeier, D.E. Bürgler, P. Grünberg, J. Appl. Phys. 91, 7209 (2002). [R7.5 ] Y. Li, C. Polaczyk, F. Klose, Ch. Rehm, H. Maletta, D. Riegel, G.P. Felcher, S. Adenwalla, Physica B 221, 382 (1996). [R7.6 ] H. Katada, T. Shimatsu, I. Watanabe, H. Muraoka, and Y. Nakamura, IEEE Trans. Magn., vol. 38, 2225(2002). [R7.7 ] M. Hecker, D. Tietjen, C.M. Schneider, N. Cramer, L. Malkinski, R.E. Camley, Z. Celinski, J. Appl. Phys. 91, 7203 (2002). [R7.8 ] S.M. Rezendo, C. Chesman, M.A. Lucena, M.C. de Moura, A. Azevedo, F.M. de Aguiar, S.S.P. Parkin, J. Appl. Phys. 85, 5892 (1999). [R7.9 ] Y. Saito, K. Inomata, J. Phys. Soc. Japan 67, 1138 (1998). [R7.10 ] C.H. Marrows, B.J. Hickey, Phys. Rev. B 59, 1999 (1999). [R7.11 ] S.Colis, A.D. Dinia, C. Mény, P. Panissod, C. Ulhaq-Bouillet, G. Schmerber, Phys. Rev. B 62, 11709 (2000). [R7.12 ] S. Colis, A.D. Dinia, P. Panissod, G. Schmerber, C. Mény, J. Magn. Magn. Mater. 226, 1725 (2001). [R7.13 ] J.C.A. Huang, C.H. Lee, W.F. Pong, M.Z. Lin and K.L. Yu, “Study of magnetic coupling in the epitaxial Py/Ru/Py and Py/Cr/Py trilayers”, submitted to J. Appl. Phys. (2003). [R7.14 ] M. L. Watson, W. D. Doyle, H. Fujiwara, J. Appl. Phys. 73, 6518 (1993).id NH0925593048 sid 867110 cfn 0 / id NH0925593049 auc 蘇群傑 tic 應用於癌症篩檢之蛋白質晶片系統整合與改良 adc 錢景常 教授 adc 曾繁根 教授 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 104 kwc 蛋白質晶片 kwc 癌症篩檢 kwc 微陣列 kwc 酵素免疫螢光分析法 abc 近年來由於基因微陣列技術的進步,人類的基因密碼逐漸被專家所解密,然而真正影響細胞活動的是蛋白質,癌細胞所產生的蛋白質是癌症篩檢中重要的判讀依據,因此可供檢測蛋白質微陣列之製作益形重要。本論文利用生醫微機電製程技術,製作批次且廉價之蛋白質晶片,使用的檢體量少且可拋棄式的優點可避免檢體交互汙染,人性化操作介面可使蛋白質失去活性前能即時快速地轉印到檢測晶片表面。晶片以厚膜光阻SU-8作微流道,底部則以高分子軟性矽膠材料作為微印章,蛋白質檢體以滴管由儲存槽注入,經過微流道到達底部微印章陣列,以印章蓋印方式製作蛋白質微陣列,整個過程中利用毛細力驅動不需額外施力。本研究製作各式蛋白質微陣列,探討並歸類造成微陣列缺陷成因。目前已成功製作出三種不同形式蛋白質微陣列而不造成交互汙染,包括單種蛋白質陣列、多種蛋白質陣列及癌症檢體陣列。主要使用之蛋白質檢體為標定Cy3螢光的兔子免疫球蛋白抗體、標定Cy5螢光的老鼠免疫球蛋白抗體、子宮頸癌抗原E6及肝癌抗原HuRP。微陣列其尺寸標準差於3%以內,螢光強度在20%以內。利用晶片所製作出之癌症抗原微陣列,經由傳統酵素免疫螢光分析法,得到癌症檢測最小解析度約為1ng/μl。 tc 第一章 緒論 1 1-1 生物晶片概述 1 1-2 生物晶片的種類 5 第二章 文獻回顧 12 2-1 凝膠法 (So-Gel Method) 13 2-2 蘸水筆法 (Dip Pen Lithography) 15 2-3 雷射加工法 (Laser Direct Writing) 17 2-4 點針法 (Quill Pin Printing) 19 2-5 微壓印法 (Micro Contact Printing) 21 第三章 研究目的與實驗原理 24 3-1 新式蛋白質微陣列晶片系統 24 3-2 研究目的 28 3-3 實驗原理介紹 30 3-3-1 表面張力 30 3-3-2 酵素連結免疫吸附分析 (Enzyme Linked- Immuno -Sorbent Assay , ELISA) 34 3-3-3 螢光掃描器影像分析系統 38 第四章 蛋白質微陣列晶片製作與介面機構設計 40 4-1 蛋白質微陣列壓印晶片操作原理 40 4-2 蛋白質微陣列壓印晶片之製作 42 4-3 蛋白質微陣列檢測晶片之製作 47 4-4 新式蛋白質微陣列壓印台設計 49 4-5 新式輔助型壓克力設計 52 4-6 蛋白質微陣列晶片加厚設計 55 4-7 蛋白質微陣列晶片阻隔交互汙染設計 57 第五章 蛋白質檢測實驗結果與討論 59 5-1 高速攝影微壓印過程觀測 59 5-2 不同親水性之檢測晶片之高速攝影結果 62 5-3 不同檢測晶片之親水性對壓印大小之影響 68 5-5 蛋白質微陣列壓印實驗 70 5-5-1 單一種蛋白質壓印試驗 71 5-5-2 二種蛋白質壓印試驗 74 5-5-3 二種蛋白質及各二種不同濃度壓印試驗 76 5-5-4 應用癌症之蛋白質作ELISA檢測分析 77 第六章 螢光檢測結果與缺陷探討 81 6-1 微陣列壓印晶片檢測分析 81 6-2 影響微陣列印品質探討 89 6-2-1晶片製作中易造成缺陷之因素探討 90 6-2-2 生物處理方面中易造成缺陷之因素探討 99 6-2-3 機構設計方面易造成缺陷之因素探討 100 第七章 結論 101 參考文獻 102 圖目錄 圖1-1細胞微過濾用分離晶片 6 圖1-2 利用介電性質分離細胞之介電泳晶片 7 圖1-3 利用矽膠製作之PCR晶片 8 圖1-4 毛細管電泳晶片結構圖 9 圖1-5 DNA微陣列晶片示意圖 10 圖1-6 實驗室晶片之設計概念圖 11 圖2-1 運用凝膠法所製之蛋白質微陣列流程圖 14 圖2-2 不同酸鹼程度及基材對於凝膠圖形產生的影響 14 圖2-3 蘸水筆法之原理示意圖 15 圖2-4 蘸水筆法之操作原理示意圖 16 圖2-5 使用蘸水筆法製作之80nm寬ODT 16 圖2-5 使用蘸水筆法製作之數字圖案 16 圖2-6 雷射加工法原理示意圖 18 圖2-7 使用雷射加工法所製作之蛋白質陣列圖 18 圖2-8 點針設備示意圖 20 圖2-9 利用微機電技術製作之微型針頭 20 圖2-10 以微機電技術製作點針之點印結果 20 圖2-11 微印章法之製作過程圖 22 圖3-1 微縮型蛋白質陣列晶片系統 26 圖3-3 液珠表面張力之自由體圖 31 圖3-4 不同液體之表面張力所造成之毛細現象 32 圖3-5 固體液體及氣體三相表面張力示意圖 33 圖3-6 不同親水特性示意圖 33 圖3-7 一般ELISA示意圖 35 圖3-8 螢光掃描軟體背景值分析示意圖 39 圖4-1蛋白質陣列晶片壓印系統示意圖 41 圖4-2下層微印章頭製作流程圖 44 圖4-3 中層微流道及上層儲存槽製作流程圖 45 圖4-4 微流道電子顯微鏡照片 46 圖4-5 儲存槽及微流道電子顯微鏡照片 46 圖4-6 APTS{3-Aminopropyltrimethoxysilane}之化學式 48 圖4-7 BS3{Bis(sulfosuccinimidyl)suberate}之化學式 48 圖4-8 DSC(N,N’-Disuccinimidyl Carbonate) 之化學式 48 圖4-9 新式微壓印機台外觀立體圖 50 圖4-10 新設計之壓印機台立體圖 (a) 新式壓印晶片承接槽 (b) 新式固定機構 50 圖4-11 (a) 晶片與承接槽分解圖 51 圖4-11 (b) 晶片與承接槽組合圖 51 圖4-13(a) (b) 蛋白質微陣晶片與第三代壓克力分解示意圖 53 圖4-12 新式壓克力設計三維立體圖 54 圖4-14 蛋白質微陣列壓印晶片加厚示意圖 56 圖4-15 (a) 晶片加厚對準完成 (b) 晶片加厚對準失敗 之顯微鏡照片 56 圖4-16 膠帶與蛋白質微陣列晶片分解圖 58 圖5-1 壓印晶片流體觀測系統示意圖 59 圖5-2 觀測用機台之立體圖及放大圖 60 圖5-3 蛋白質微陣列壓印晶片壓印流程圖 61 圖5-4 晶片壓印於乾淨玻片上之分解圖 63 圖5-5晶片壓印於APTS-BS3玻片上之分解圖 64 圖5-6晶片壓印於APTS-DSC玻片上之分解圖 66 圖5-7晶片壓印於SU-8玻片上之分解圖 67 圖5-8 不同檢測晶片之親水角與壓印尺寸關係圖 69 圖5-10使用Anti-rabbit-IgG蓋印之結果 72 圖5-11使用Anti-mouse-IgG蓋印之結果 72 圖5-12 改良後Cy3及Cy5之蓋印結果 73 圖5-13 (a)為新式壓克力壓印結果(b)為膠帶阻絕後之壓印結果 75 圖5-14 連續壓印之結果與其放大圖 75 圖5-15 二種不同蛋白質及濃度壓印結果 76 圖5-16 E6與HuRP螢光掃描圖 79 圖5-17 不同濃度HuRP螢光掃描圖 79 圖6-1 七次連續蓋印及局部分大圖 92圖6-2 連續七次蓋印之微陣列平均尺寸分佈圖 83 圖6-3 連續七次蓋印之微陣列平均螢光強度分佈圖 83 圖6-4 連續七次蓋印之微陣列圖 84 圖6-5 Cy3濃度與螢光強度關係圖 86 圖6-6 Cy5濃度與螢光強度關係圖 86 圖6-7 Cy3濃度對數與螢光強度關係圖 87 圖6-8 Cy5濃度對數與螢光強度關係圖 87 圖6-9 不同亮度下四種不同濃度Cy5蓋印結果 88 圖6-10 影響微陣列晶片品質分析圖 89 圖6-11使用膠片光罩所定義之厚膜光阻SU-8微印章母模 91 圖6-12使用鉻光罩所定義之厚膜光阻SU-8微印章母模 91 圖6-13 PDMS未蝕刻完造成晶片阻塞示意圖 92 圖6-14 (a)為RIE未蝕刻完之照片 (b)為RIE已蝕刻完之照片 93 圖6-15 RIE高功率蝕刻過久造成鋁金屬產生皺褶圖 93 圖6-16 流道未顯影完全之顯微鏡照片 95 圖6-17 顯影完成時於不同景深之顯微鏡照片 95 圖6-18 (a) 晶片脫模前照片 (b) 晶片脫模後照片 97 圖6-19 微陣列晶片與一元硬幣比較圖 97 表目錄 表2-1 五種製作蛋白質晶片方式之比較表 23 表5-1 不同親水角檢測晶片與壓印尺寸表 69 表5-2 Cy3及Cy5之入射、激發光波長及顯色表 71 表6-1五乘五蛋白質微陣列之平均尺寸及螢光強度表 82rf [1 ] D. Huh, H. H. Wei, J. B. Grotberg, S. Takayama, “Gravity-Driven Microhydrodynamics-Based Cell Sorter (microHYCS) for Rapid, Inexpensive, and Efficient Cell Separation and Size-Profilling”, IEEE 2nd Annual Int. Conf. on Microtechnologies in Medicine & Biology, Madison, Wisconsin USA, pp. 466-469, May 2002. [2 ] R Pethig, M. S. Talary, and R. S. Lee, “Enhancing Traveling-Wave Dielectrophoresis with Signal Superposition”, IEEE Eng. in Medicine and biology magazine, pp. 43-50, 2003. [3 ] X. Yu, D. Zhang, T. Li, L. Hao, X. Li, “3-D microarrays biochip for DNA amplification in polydimethylsiloxane (PDMS) elastomer”, ELSEVIER, Sensors and Actuators A, pp. 103-107 ,2003. [4 ] H. C. Chang, C. C. Wu, R. G. Wu, J. G. Hung, Y. D. Lin, “on Colume Amperometeric Detection for Capillary Electrophoresis Microchips with Electric Field Decoupler”, IEEE 2nd Annual Int. Conf. on Microtechnologies in Medicine & Biology, Madison, Wisconsin USA, pp. 466-469, May 2002. [5 ] A. M. Gue, T. Phou, D. Jugieu, “an Ejection Microarray for in-situ Oligonucleotide Synthesis on DNA Chip”, IEEE 12th Annual Int. Conf. on Solid State Sensors, Actuators and Microsystems, Boston, USA, pp. 218-221, Jane 2003. [6 ] C. H. Ahn, J. W. Choi, G. Beaucage, J. H. Nevin, J. B. LEE, A. Puntambekar, and J. Y. LEE, “Disposable Smart Lab on a Chip for Point-of-Care Clinical Diagnostics”, Proceedings of the IEEE, Vol. 92, N0. 1,pp. 154-173, January 2004. [7 ] Y.D. Kim, C. B. Park, D. S. Clark, “Stable Sol-Gel Microstructured and Microfluidic Networks for Protein Patterning”, Biotechnology and Bioengineering, Vol. 73, No. 5, pp. 331-337, June, 2001. [8 ] J. W. Hyun, S. Y. Kim, S. Lee, H. Park, J. Pyee, and S. Kim, “A Novel Sol-Gel Method to Produce the Poly-L-lysine Coated Plate as a Platform for Protein Chips”, Bull. Korean Chem. Soc., Vol. 24, No. 4, pp. 1-2, 2003. [9 ] D. Bullen, X. Wang, J. Zou, S. Hong, S.W. Chung, K. Ryu, Z. Fan, C. Mirkin, C. Liu, “Micromachined Arrayed Dip Pen Nanolithography Probes for Sub-100nm Direct Chemistry Patterning”, IEEE, pp. 4-7, 2003. [10 ] R.D. Piner, J. Zhu, F. Xu, S. Hong, and C.A. Mirkin, “Dip-Pen Nanolithography,” Science, Vol. 283, pp. 661-663, 1999. [11 ] B. R. Ringeisen, P. K. Wu, H. Kim, A. Pique´ , R. Y. C. Auyeung, H. D. Young, and D. B. Chrisey, “Picoliter-Scale Protein Microarrays by Laser Direct Write”, Biotechnol. Prog., , Vol. 18, No. 5,pp. 1126-1129, 2002. [12 ] B.R. Ringeisen , D.B. Krizman , H.D. Young , P.K. Wu , B. Spargo, “Cell-by-Cell Construction of Living Tissue by Ambient Laser Transfer” IEEE, pp. 120-125, 2002. [13 ] 圖片來源:http://www.cartesiantech.com [14 ] J. G. F. Tsai, Z. Chen, S. Nelson, and C. J. Kim, “A Silicon-Micromachined Pin for Contact Droplet Printing” IEEE, MEMS03, pp. 295-298, 2003. [15 ] A. Kumar, H. A. Biebuyck, and G. M. Whitesides , “Patterning Self -Assembled Monolayers: Applications in Materials Science” Langmuir , pp. 1498-1511, 1994. [16 ] S.C. Lin, F.G. Tseng, H. M. Huang, C.Y. Huang and C.C. Chieng, “Microsized 2-D Protein Arrays Immobilized by Micro-stamps and Micro-well For Disease Diagonosis and Drug Screening ”,FJAC 2001. [17 ] 林世章, “微印陣列晶片之研發”, 清華大學工程與系統科學所博士論文, 2002。 [18 ] 蔡逸勤, “蛋白質微陣列晶片之壓印機構設計與其影像檢測”,清華大學工程與系統科學所碩士論文, 2002。 [19 ] 古燕華, “蛋白質微陣列反應晶片材質與自我組裝單層分子之表面處理研究”, 清華大學工程與系統科學所碩士論文, 2002。id NH0925593049 sid 913101 cfn 0 / id NH0925593050 auc 吳忠益 tic 一維稀磁半導體Zn1-xCoxO奈米線之製備與研究 adc 開執中 adc 陳福榮 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 80 kwc 一維稀磁半導體奈米線 kwc 氧化鋅奈米線 abc 本論文運用離子佈植的方法將Co離子佈植進成長於玻璃基版上之ZnO奈米線中,合成稀磁半導體Zn1-xCoxO奈米線,選用固定佈植Co離子能量但不同劑量,佈植之後並進行熱退火處理,以修復佈植時所造成之缺陷;論文主題在瞭解不同佈植劑量與熱退火處理對於一維稀磁半導體Zn1-xCoxO奈米線之結構型態與其磁性質的改變。實驗所用的分析儀器包括利用掃瞄式電子顯微鏡分析佈植前後Zn1-xCoxO奈米線表面型態,穿透式電子顯微鏡分析Zn1-xCoxO奈米線晶體結構及晶格影像、X光能量分散光譜及電子損失能譜儀作材料元素成分分析,並利用超導量子干涉磁量儀來量測佈植Co後與退火後Zn1-xCoxO奈米線的磁性質。 tc 目 錄 一、 前言………………………………………………………..1 二、研究動機…………………………………………………...4 2.1稀磁半導體之構想與重要性…………………………………...4 2.2目前稀磁半導體研究狀況……………………………………...5 2.2.1 稀磁半導體材料…………….……………………………5 2.2.2 稀磁半導體之應用……………………………………….7 2.3 稀磁半導體相關研究遭遇之難題…………………………......10 2.4 ZnO稀磁半導體材料簡介…………………………………..11 2.4.1 平均場理論(Mean field theory)……………………...11 2.4.2 磁性來源的物理機制…………………………………...12 2.4.3 ZnO基本性質與應用……………………………….....14 2.4.4 過渡金屬在ZnO中的溶解度…………………………..16 2.4.5 文獻上實驗結果………………………………………...17 2.5 一維稀磁半導體奈米材料之簡介…………………………......19 2.5.1 奈米線成長機制………………………………………...19 2.5.2 一維稀磁半導體奈米線的製備………………………...20 2.6 論文實驗條件選定………………………………….................23 三、實驗步驟與分析方法……………………………………..25 3.1實驗流程………………………………………………………...25 3.2 ZnO奈米線的合成……………………………………………...28 3.2.1實驗設備………………………………………………....28 3.2.2製備方法…………………………………………………28 3.3 離子佈植…………………………………………………….....30 3.3.1加速器………………………………………………..31 3.3.2估計佈植能量方法方法(SRIM)……………………32 3.3.3熱退火處理………………………………………...….34 3.4分析設備……………………………………………………….35 3.4.1掃瞄式電子顯微鏡……………………………………35 3.4.2穿透式電子顯微鏡……………………………………36 3.4.3 X光能量分散光譜……………………………………37 3.4.5 電子損失能譜儀……………………………………..38 3.4.5 TEM試片製備………………………………...……...41 3.4.6超導量子干涉磁量儀…………………………………41 四、實驗結果與討論………………………………………….43 4.1 SEM分析……………………………………………………..44 4.2 TEM、EDS與STEM分析…………………………………….47 4.3 Co成分百分比之EDS統計分析………………………………64 4.4 EELS 分析………………………………………………….......66 4.5 SQUID分析……………………………………………………..69 五、結論…………………………………………………………74 六、未來研究方向………………………………………………76 參考文獻……………………………………………………......78 圖 目 錄 圖2-1稀磁半導體示意圖………………………….……………….…........5 圖2-2 (In,Mn)As稀磁半導體之場效電晶體元件……………………....…7 圖2-3 磁訊號隨閘極電壓的增大而有逐漸減弱的趨勢…………….........7 圖2-4 電洞濃度的多寡會影響電子自旋的排列方式………………..….8圖2-5 Spin- LED結構與運作示意圖……………………………………...9 圖2-6 Dietl等人以平均場理論預測高居禮溫度材料…………........12 圖2-7 提高其Tc,可藉由增加載子濃度以及磁性原子的含量..............12 圖2-8侷限載子式鐵磁性(Ferromagnetism from Disorder)示意圖.......13 圖2-9交互巡迴式鐵磁性(Itinerant Ferromagnetism )示意圖……......14 圖2-10 過渡金屬在ZnO中的溶解度……………………………….....…16 圖2-11 Au-Ge合金相與VLS機制之關係……………………….....……20 圖2-12 Peidong Yang等人利用即時穿透式電子顯微鏡觀察Ge奈米線之VLS成長機制……………………………………………………..........….20 圖 3-1實驗流程圖…………………………………………………….......26 圖3-2高溫爐配置圖……………………………………………………....28 圖3-3.爐管中ZnO粉末源和基板之相對位置及溫度分佈………….......29 圖3-4爐管實際溫度分佈圖…………………………………………....…29 圖3-5.高溫爐升溫及持溫曲線………………………………………........30 圖3-6 9SDH-2 串級加速器的構造圖…………………….......…….….....32 圖3-7 SRIM 模擬……………………………………………………....…34 圖3-8 掃描式電子顯微鏡的結構示意圖………………………….....…..36 圖3-9 TEM結構示意圖………………………………………….....…...38 圖3-10 EELS偵測器外觀圖……………………………………......……..39 圖3-11 超導量子干涉磁量儀細部結構圖……………………….....…....42 圖4.1為未佈植前的ZnO奈米線之高倍SEM影像…………....…….....45 圖4.2為佈植劑量2×1016cm-2的ZnO奈米線之SEM影像…………......45 圖4.3為佈植劑量4×1016cm-2的ZnO奈米線之SEM影像………….....46 圖4.4為佈植劑量6×1016cm-2的ZnO奈米線之SEM影像………….....46 圖4.5為未佈植之ZnO奈米線TEM影像…………………………….....51 圖4.6為未佈植之ZnO奈米線之EDS分析…………………………......51 圖4-5(1)為圖4-5紅框之高分辨TEM影像圖……………………….......52 圖4.7為佈植劑量2×1016cm-2之ZnO奈米線TEM影像……………......53 圖4.8佈植劑量2×1016cm-2之ZnO奈米線HRTEM影像……………...53 圖4.9為圖4.7標記位置之EDS定量Co含量之分佈圖…………….....54 圖4.10為佈植劑量2×1016cm-2之ZnO奈米線的EDS分析…………....54 圖 4.11為退火後佈植劑量2×1016cm-2之ZnO奈米線HRTEM影像.....55 圖4.12 為退火後佈植劑量2×1016cm-2之ZnO奈米線放大之HRTEM影像………………………………………………………………….......…....55 圖4.13為圖4.11標記位置之EDS定量Co含量之分佈圖………….....56 圖4.14為退火後佈植劑量2×1016cm-2之ZnO奈米線的EDS分析….......56 圖4.15為佈植劑量4×1016cm-2 之ZnO奈米線TEM影像………….......57 圖4.16為佈植劑量4×1016cm-2之ZnO奈米線的EDS分析………….....57 圖4.17為退火後佈植劑量4×1016cm-2 之ZnO奈米線TEM影像….......58 圖4.18為退火後佈植劑量4×1016cm-2之ZnO奈米線的EDS分析….....58 圖4.19為佈植劑量6×1016cm-2 之ZnO奈米線TEM影像………….......59 圖4.20為佈植劑量6×1016cm-2 之ZnO奈米線放大TEM影像……........59 圖4.21(a)為佈植劑量6×1016cm-2 ZnO奈米線影像,(b)~(d)分別為O、Zn、Co的EDS-Mapping成分分佈圖………………………….........60 圖 4.22為佈植劑量6×1016cm-2ZnO奈米線的EDS分析…………….....60 圖4.23 退火後為佈植劑量6×1016cm-2ZnO奈米線的TEM影像,退火條件為600℃-12hr……………………………………………………............61 圖 4.24退火後佈植劑量6×1016cm-2奈米線的HRTE放大影像……......61 圖4.25 (a)為退火後佈植劑量6×1016cm-2 ZnO奈米線影像,(b)~(d)分別為O、Zn、Co的EDS-Mapping成分分佈圖………………............62 圖 4.26為退火後佈植劑量6×1016cm-2ZnO奈米線的EDS分析…….....62 圖4.27為圖4.25(a)沿著直徑Co原子百分比分佈圖…………….......63 圖4.28為選取20根奈米線佈植劑量分別為(2、4、6)×1016cm-2退火前後的EDS平均圖……………………………………………………..........64 圖4-29 Co的能量損失譜圖…………………………………………….....67 圖4-30 以double arctangent 函數去背景後再以兩個Lorentzian函數fit後所得之能量損失能譜……………………………………………...........67 圖 4-31 在不同位置EELS之L3/L2之比值...............................................68 圖4.32為佈植不同劑量之M-T曲線圖……………………….....…….....70 圖4.33為佈植不同劑量之1/χ-T曲線圖……………………….................70 圖4-34為佈植劑量為6×1016cm-2 時在佈植完與經退火600℃-12小時後的磁滯曲線(M-H curve)……………………………...........…………….71 圖4-35所示為分別於溫度2K下量測退火後3組不同劑量(2×1016cm-2、4×1016cm-2、6×1016cm-2)之磁滯曲線…………........................………….72 表 目 錄 表2-1 為目前ZnO稀磁半導體實驗結果…………………………….......18 表2-2目前ZnO稀磁半導體一維結構實驗結果……………………........23 表3-1為實驗單位與實驗儀器設備…………………………………….....27 表 4-1 為選取20根奈米線佈植劑量分別為(2、4、6)×1016cm-2 退火前後的Co 成分定量平均值與標準差…………………………........65 表4-2為Co+2、Co+4、1/3Co+2+2/3 Co+3、文獻中實驗所得之結果….....68rf [1 ] H.Ohno, Science 281, 951(1998). [2 ] T. Dietl , Science 287,1019 (2000). [3 ] D. P. Norton, S. J. Pearton, Appl. Phys. Lett. 82, 239 (2003). [4 ] Hiromasa Seki, Hitoshi Tabata, Tomoji Kawai, Solid State Communication 120, 439 (2001). [5 ] S-J. Han, J. W. Song, C.-H. Yang, S. H. Park, J.-H. Park, and Y. H. Jeong, Appl. Phys. Lett. 81, 4212 (2002). [6 ] Kenji Ueda, Hitoshi Tabata,Tomoji Kawai, Appl. Phys. Lett. 79, 988 (2001). [7 ] T. Wakano, N. Fujimura , Y. Morinaga, N. Abe, A. Ashida, T. Ito , Physica E 10 ,260 (2001). [8 ] Shi-shen Yan, C. Ren, X. Wang, Y. Xin, and Z. X. Zhou, Appl. Phys. Lett. 84, 2376 (2004). [9 ] S. Ramachandran, Ashutosh Tiwari, and j. Narayan, Appl. Phys. Lett. 84, 5255 (2004). [10 ] Kubo R. J. Phys. Soc. 17, 975 (1962). [11 ] 張立德,奈米材料與奈米結構,2002,滄海書局. [12 ] H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno& K. Ohtani, Nature 408, 944-946 (2000). [13 ] J.K.Furdyna and J.Kossut (Eds), Semiconductor and Semimetals vol.25 (Academic press, New York, 1988). [14 ] H. Munekata, T.Dietl , Phys. Rev. Lett. 63, 1849 (1989). [15 ] H. Ohno, T.Dietl, Phys. Rev. Lett. 68, 2664 (1992). [16 ] H. Ohno, T.Dietl, J. Vac. Sci. Techmol. B 18, 2039 (2000). [17 ] H. Ohno, T.Dietl, Jap. Soc. Appl. Phys. Int. 5, 4 (2002). [18 ] H. Ohno, T.Dietl, Appl. Phys. Lett. 69, 363 (1996). [19 ] F. Matsukura, T.Dietl, Phys. Rev. B 57, 2037 (1998). [20 ] Yuji Matsumoto, Makoto Murakami, Tomoji Shono,Tetsuya Hasegawa, Tomoteru Fukumura, Masashi Kawasaki,Parhat Ahmet, Toyohiro Chikyow, Shin-ya Koshihara,Hideomi Koinuma1,Science 291,854 (2001). [21 ] H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno& K. Ohtani, Nature 408, 944 (2000). [22 ] Y. Ohno, T.Dietl, Nature 402, 790 (1999). [23 ] Zheng-wu jin,T.Fukumura, Appl. Phys. Lett. 78, 3824 (2001). [24 ] V. I. Litvinov , Phys. Rev. Lett. 86, 5593 (2001). [25 ] M. Berciu , Phys. Rev. Lett. 87, 7203 (2001). [26 ] H. Akai , Phys. Rev. Lett. 81, 3002 (1998). [27 ] J. Konig , Phys. Rev. Lett. 84, 5628 (2000). [28 ] J. Konig,Phys. Rev. Lett. 86, 5637 (2001). [29 ]半導體元件物理與應用,張俊彥譯,施敏著. [30 ]H.J.Ko, Y.F.Chen, S.K.Hong, H.Wenisch, T. Yao, Appl. Phys. Lett .77, 3761 (2000). [31 ]Z.K.Tang,G.K.L.Wong,P.Yu,M.Kawasaki,A.Ohtomo,H.Koinuma ,Y.Segawa, Appl. Phys. Lett .72, 3270 (1998). [32 ] D.C.Reynolds, D.C.Lock ,SolidState Commun.99, 873 (1996). [33 ] D.M.Bagnall,Y.F.Chen, Z.Zhu,T.Yao,S.Koyama,M.Y.Shen,T.Goto, Appl. Phys. Lett .70, 2230 (1997). [34 ] Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan,Yiying Wu,Hannes Kind, Eicke Weber, Richard Russo,Peidong Yang,Science 298, 1897 (2001). [35 ] Numerical Data and Functional Relationships in Science and Technology./v/22 Subvolume a. Intrinsic Properties of Group IV Elements and III-V,II-IV and I-VII Compound,Berlin: /Springer- Verlag,/1987 [36 ] M.Joseph, H.Tabata, T.Kawai, Jpn. J. Appl. Phys. 238, 2505 (1999). [37 ] R. L. Hoffman, Appl. Phys. Lett. 82, 733 (2003). [38 ] W.S.Hu,Z.G.Liu,R.X.Wu,Y-F Chen,W.Ji,T.Yu,d.Feng, Appl. Phys. Lett.71, 548 (1997). [39 ] S.Ezhilvalavan,T,R,N,Kutty, Appl. phys. Lett. 69, 3540 (1996). [40 ] Yiying Wu and Peidong Yang, J. Am. Chem. Soc.2002 [41 ] Nammee Kim, S.J.Lee, T.W.Kang, Physics Letters A 302, 341(2002). [42 ] Felix J. Brieler, Michael Fr.ba, Limei Chen, Peter J. Klar, Wolfram Heimbrodt, Hans-Albrecht Krug von Nidda, ] and Alois Loidl, Chem. Eur. J.6, 185 (2002). [43 ] Y.Q.Chang, D.B.Wang , X. H. Luo ,X. H.Chen, L. Li, C. P. Chen,R.M. Wang, J. Xu, and D.P.Yu , Appl. Phys. Lett. 83,19 (2003). [44 ] C. Ronning, P.X. Gao, Y. Ding, and Z. L.Wang, Appl. Phys. Lett.84 , 783 (2004). [45 ] V. A. L. Roy,A. B. Djurisic , H. Liu ,X. X. Zhang ,Y.H. Leung, M.H.Xie , and J.Gao , Appl. Phys. Lett. 84, 756 (2004). [46 ] 碩士論文, 清華大學, 王明山, 2003. [47 ] 碩士論文, 清華大學, 郭佳佳, 2003. [48 ] 碩士論文, 清華大學, 吳典原, 2003. [49 ] T.I. Morrision, M.B. Brodsky, and N.J. Zaluzec, Phys. Rev. B 32, 3107 (1985). [50 ] Z.L.Wang, J.S.Yin, Y.D.Jiang , Micron 31,571-580,(2000).id NH0925593050 sid 913178 cfn 0 / id NH0925593051 auc 許定國 tic 核能電廠暫態事故分析程式PCTRAN之資料庫建立與網路應用 adc 林強 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 107 kwc 核能電廠 kwc 暫態事故分析 abc 摘要 rf 參考文獻 1.網址:http://java.sun.com/j2se/1.4.2/download.html 2.網址:http://java.sun.com/products/plugin/index.html 3.網址:http://web.mysql.com/benchmark.html 4.網址:http://www.mysql.com 5. Mary Campione, Kathy Walrath, Alison Huml, The Java Tutorial Third Edition , A Short Course on the Basics, 2001. 6.網址:http://www.jfree.org/jfreechart/index.html 7.黃嘉輝,Visual Basic網際網路程式設計,文魁資訊,2002 8.陳峰棋,Visual Basic網路程式設計,全華科技,2003 9.鄭吉峰,Java Server Page觀念與應用實務,學貫行銷,2002 10.普悠瑪數位科技著,JSP動態網頁新技術,博碩文化,2003 11.黃國欽,Java資料庫程式設計入門與實作,松崗,2002 12.羅友志譯,JSP & MySQL完全架站攻略,上奇,2003 13.林上傑、林上人,Java Server Pages Tech Reference技術手冊,?眳p 14.黃嘉輝,Java網路遊戲程式設計,文魁資訊,2003 15.羅友志譯,大師談Java,上奇,2003 16.柯志杰譯,Java 2 500個應用技巧大全集,博碩文化,2002 17.尹國正,PHP4+MySQL程式設計,新文京開發2003 18.網址:http://java.sun.com/j2se/1.4.2/docs/api/index.html 19.網址:http://www.jfree.org/jfreechart/javadoc/index.htmlid NH0925593051 sid 903116 cfn 0 / id NH0925593052 auc 杜德洪 tic 含銅鐵鉑奈米顆粒之合成及結構之研究 adc 李志浩 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 72 kwc 鐵鉑 kwc 磁性 kwc 奈米顆粒 kwc 自組裝 kwc 同步輻射 abc  本實驗主要研究自組裝FePt奈米顆粒摻雜Cu後對其序化溫度的影響,由於FePt奈米顆粒其磁性在500 以上退火處理後才會顯現,因此期望添加Cu之後,能夠降低其序化溫度。 tc 第一章 序論 1.1 引言 …………………………………………………………… 1 1.2 研究動機與目的 ……………………………………………… 2 1.3 研究內容 ……………………………………………………… 3 第二章 基礎理論與文獻回顧 2.1磁性奈米顆粒陣列製備法簡介 ……………………………… 4 2.1.1液相成核與成長………………………………………… 5 2.1.2穩定化 …………………………………………………… 6 2.1.3 磁性奈米顆粒之合成 …………………………………… 8 2.1.4自組裝(self-assembly)………………………………… 11 2.2磁紀錄過程與磁晶異向性簡………………………………… 13 2.2.1磁紀錄過程簡介 ………………………………………… 13 2.2.2磁晶異向性簡介 ………………………………………… 14 2.3 FePt合金晶體結構…………………………………………… 16 2.3.1序化與非序化 …………………………………………… 16 2.3.2 非序化結構- 序化結構…………………………… 17 2.3.3 序化結構與磁異向性之關係………………………… 18 2.4添加第三元素對FePt CoPt薄膜序化溫度的影響 ………… 19 2.5添加第三元素對FePt奈米顆粒性質的影響………………… 21 第三章 分析方法 3.1延伸X光吸收精細結構光譜(EXAFS)………………………… 23 3.2 振動試樣磁力計(VSM)………………………………………… 31 第四章 實驗步驟與量測結果討論 4.1樣品製備 ……………………………………………………… 34 4.1.1 試藥與反應裝置 ………………………………………… 35 4.1.2 樣品製備流程 …………………………………………… 37 4.2 成份分析 ……………………………………………………… 39 4.3 超晶格結構量測 ……………………………………………… 40 4.4 穿透式電子顯微鏡影像 ……………………………………… 42 4.5 X光粉末繞射結果 …………………………………………… 45 4.5.1 添加Cu與未添加Cu樣品粉末繞射圖譜之比較 ……… 45 4.5.2 不同Cu含量之比較……………………………………… 47 4.6 矯頑場變化情形 ……………………………………………… 55 4.7 吸收光譜實驗 …………………………………………………58 4.7.1 X光延伸精細結構光譜(EXAFS) ……………………… 58 4.7.2 XANES結果 ……………………………………………… 62 第五章 結論 …………………………………………………… 67 參考文獻 ………………………………………………………… 69 附錄一:相關投稿作品…………………………………… 73rf [1 ] S. Sun, C.B. Murry, D. Weller, L. Folks, A. Moser, Science 287 (2000) 1989. [2 ] B.R. Acharya, E.N. Abarra, A. Inomata, I. Okamoto, Joint European Magnetism Symposium(Grenoble, France, 2001) B046. [3 ] K. Inomata, T. Sawa, S. Hashimoto, J. Appl. Phys. 64 (1988) 2537. [4 ] C.B. Murry, S. Sun, W.Gaschler, H.Doyle, T.A. Betley, C.R Kagan, IBM J. Res. Develop. 45 (2001) 47. [5 ] S. Anders, S. Sun, C.B. Murry, C.T. Rettner, M.E Best, T. Thomason, M. Albrecht, J.-U. Thiele, E.E. Fullerton, B.D. Terris, Microelec. Eng. 61-62 (2002) 569. [6 ] M. L. Plumer, J. V. Ek and D. Weller, The Physics of Ultra-High-Density Magnetic Recording(Springer, New York 2001) 249-276. [7 ] http://www.research.ibm.com/ [8 ] 游信和,陳文照,曾春風,材料科學導論,高立出版社. [9 ] 廖彥發,清華大學碩士論文,2003. [10 ] 吳泰伯,許樹恩,X光繞射與材料結構分析,中國材料科學學會. [11 ] T.J. Klemmer, N. Shukla, C. Lin, X.W. Wu, E.B. Svedberg, O. Mryasov, R.W. Chantrell, and D. Weller, Appl. Phys. Lett. 81, 12 (2002) 2220. [12 ] T. Maeda, T. Kai, A. Kikitsu, T. Nagase, J. Akiyama, Appl. Phys. Lett. 80 (2002) 2147. [13 ] C.L. Platt, K.W. Wierman, E.B. Svedberg, R. van de Veerdonk, J.K. Howard, J. Appl. Phys. 92 (2002) 6104. [14 ] Y.K. Takahashi, M. Ohnuma, K. Hono, J. Magn. Magn. Mater. 246 (2002) 259-265. [15 ] O. Kitakami, Y. Shimada, K. Daimon, K. Fukamichi, Appl. Phys. Lett. 78 (2001) 1104. [16 ] C.Chen, O. Kitakami, S. Okamoto, Y. Shimada, ,Appl. Phys. Lett. 76 (2000) 3218. [17 ] C.M. Kuo, P.C. Kuo, W.C. Hsu, C.T. Li, A.C. Sun, J. Magn. Magn. Mater. 209 (2000) 100. [18 ] S.R Lee, S. Yang, Y.K. Kim, J.G. Na, Appl. Phys. Lett. 78 (2001) 4001. [19 ] M. Chen, D.E. Nikles, Nano. Lett. 2 (2002) 211. [20 ] S. Kang, J.W. Harrell, D.E. Nikles, Nano. Lett. 2 (2002) 1033. [21 ] S. Kang, Z. Jia, D.E. Nikles, J.W. Harrell, IEEE Trans. Magn. 39 (2003) 2753. [22 ] D. C. Koningsberger, R. Prins, X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES, (1988) 53-83. [23 ] B. K. Teo, EXAFS: Basic Principles and Data Analysis, (1986) 21-101. [24 ] 王其武、劉文漢,X射線吸收精細結構及其應用,科學出版社(1994)。 [25 ] 黃彥衡,國立清華大學碩士論文,2004. [26 ] 金重勳等,磁性技術手冊,台灣磁性技術學會。 [27 ] http://www.research.ibm.com/resources/news.shtml [28 ] S. Sun, S. Anders, T. Thomson, J. E. E. Baglin, M. F. Toney, H. F. Hamann, C. B. Murray and B. D. Terris, J. Phys. Chem. 107 (2003) 5419. [29 ] T. Z. Huang, Y. H. Huang, T. H. Tu and C. H. Lee, J. Magn. Magn. Mater. (accepted, 2004).(附錄一) [30 ] K. Chang, H. H. Hsieh, W. F. Pong, M.–H Tsai, F. Z. Chien, P. K. Tseng, L. C. Chen, T. Y. Wang, K. H. Chen, D. M. Bhusari, J. R. Young, S. T. Lin, Phys. Rev. Lett. 82 (1999) 5377.id NH0925593052 sid 913136 cfn 0 / id NH0925593053 auc 謝政宏 tic 研製應用於監測電漿製程系統中電漿密度之傳輸線式微波感測器 adc 林強 adc 柳克強 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 103 kwc 電漿製程 kwc 電漿密度 kwc 微波感測器 kwc 傳輸線 abc 本論文研究的目的在於研製傳輸線式微波感測器(往後簡稱微波感測器或感測器)量測系統,用以量測電漿系統的電漿密度以及其變化情形。在現階段的電漿蝕刻製程中,由於製程參數無法即時得知,所以能夠直接反應製程參數的電漿參數,如: 電漿密度、電子溫度、離子能量等,就成為目前用以即時監控製程的必要資訊。 rf [1 ] David M. Pozar, “ Microwave Engineering 2nd edition ,”John Wiley &sons, Inc. [2 ] Pramod P. Khargonekar, “ Intelligent Electronics Manufacturing : Modeling and Control of Plasma Processing,” AFOSR GRANT NO. F49620-95-1-0524 , Aug 1998 [3 ] Craig Garvin, Dennis S. Grimard, and J.W. Grizzle, Advances in Broadband Radio-Frequency Sensing for Real-time Control of Plasma Semiconductor Processing,” J. Vac. Sci. Technol. A 17(4), Jul/Aug 1999 [4 ] Craig Garvin, and J.W. Grizzle, “Demonstration of Broadband Radio Frequency sensing: Empirical Polysilicon Etch Rate Estimation in a Lam 9400 Etch Tool,” J. Vac. Sci. Technol. A 18(4), Jul/Aug 2000 [5 ] H.-M. Park, D. S. Grimard, and J.W. Grizzle, “Sensor Fault Detection in Etch Based on Broadband RF Signal Observation,” J. Vac. Sci. Technol. A 21(3), May/Jun 2003 [6 ] Pete Klimecky, Jessy Grizzle, and Fred L. Terry, Jr., ”Elimination of The RIE 1st Wafer Effect : Real-time Control of Plasma Density,” AEC/APC XIV Symposium 2002 [7 ] Michael A. Lieberman, and Allan J. Lichtenberg, “ Principles of Plasma Discharges and Materials Processing ,” John Wiley &sons, Inc. [8 ] J-H Kim, D-J Seong, J-Y Lim, and K-H Chung, “Plasma Frequency Measurements for Absolute Plasma Density by means of Wave Cutoff Method ,” Appl. Phys. Lett., Vol. 83(23), Dec 2003 [9 ] R. B. Piejak, V. A. Godyak, R. Garner, and B. M. Alexandrovich, “The Hairpin Resonator: A Plasma Density Measuring Technique Revisited,” J. Appl. Phys. 95(7), Apr 2004 [10 ] R. L. Stenzel, “Microwave Resonator Probe for Localized Density Measurements in Weakly Magnetized Plasmas,” Rev. Sci. Instrum., Vol. 47(5), May 1976 [11 ] 曾志偉,國立清華大學工程與系統科學系碩士論文(2001) [12 ] Dan H. Wolaver, “Phase-Locked Loop Circuit Design,” Prentice Hall, Inc.,1991 [13 ] http://www.nfra.nl/~bentum/docu/reports/rej_mixer/rej_mixer.html [14 ] Constantine A. Balanis, “ Advanced Engineering Electromagnetics ,” John Wiley &sons, Inc.id NH0925593053 sid 913121 cfn 0 / id NH0925593054 auc 蔡炅文 tic 多環諧振式微型陀螺儀之設計與模擬 adc 曾繁根 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 77 kwc 微型陀螺儀 abc 陀螺儀在各方面的應用越來越重要,傳統的陀螺儀體積大且軸承易磨耗,而微加工的振動式陀螺儀以振動式的方式感應角速度的變化,因結構簡單沒有磨耗問題操作壽命長且體積小。 tc 中文摘要 i 英文摘要 ii 第一章 序論 1 1.1前言 1 1.2 大型陀螺儀種類 2 1.3 微型陀螺儀文獻回顧 3 1.3.1 Decoupled gyroscope 5 1.3.2 Coupled gyroscope 11 1.4 微型陀螺儀之商機 14 第二章 相對運動與科氏力 16 2.1 相對運動 16 2.1.1 二維轉動座標相對運動 17 2.2 科氏力 19 第三章 元件簡介 22 3.1 微型陀螺儀研製概況 22 3.2 第一代微型陀螺儀簡介 23 3.3 第二代微型陀螺儀簡介 25 3.4 第三代微型陀螺儀簡介 26 3.5 三代微型陀螺儀特徵總整理 30 第四章 有限元素法模擬 31 4.1 有限元素法簡介 31 4.2第一代微型陀螺儀有限元素法模擬 32 4.3 第二代微型陀螺儀有限元素法分析 37 4.3.1 調變圓環寬度之影響 39 4.3.2 調變圓心距離之影響 43 4.3.3 增加質量塊對操作頻率的影響 44 4.3.4 第二代微型陀螺儀模擬數據整理 45 4.4 第三代微型陀螺儀有限元素法分析 48 4.4.1 陀螺儀幾何尺寸 48 4.4.2 模擬結果 49 第五章 製程規劃與製程結果 51 5.1 製程流程簡介 51 5.2 製程結果 53 5.2.1 黃光製程 53 5.2.1.1 軟烤溫度與時間 54 5.2.1.2 曝光劑量 55 5.2.1.3 顯影 56 5.2.1.4 正光阻側壁垂直度 57 5.2.2 HF 濕蝕刻 58 5.2.3 離子耦合電漿深蝕刻 60 第六章 驅動測試 64 6.1 初步測試 64 6.2 靜電力驅動測試 64 第七章 結論 67 第八章 未來工作發展 68 8.1 微型陀螺儀改良方向 68 8.2 微型陀螺儀驅動電子訊號測試 70 附錄 微型陀螺儀解析度公式推導 73 參考文獻 75rf 1.Yoichi Mochida, Masaya Tamura, Kuniki Ohwada, “A micromachined vibrating rate gyroscope with independent beams for the drive and detection modes”, Sensors and Actuators A Vol.80, p.170, 2000. 2.NAVID YAZDI, FARROKH AYAZI, KHALIL NAJAFI, “Micromachined Inertial Sensors”, PROCEEDINGS OF THE IEEE, VOL. 86,p. 1651, AUGUST 1998 3.Anthony Lawrence, “Modern inertial technology – Navigation, guidance, and control”, Springer-Verlag, pp.148-156, 1993 4.J. S. Burdess and T. Wren, IEEE Transactions on Aerospace and Electronic Systems,1986 5.J. Bernstein, S. Cho, et., al. “A micromachined comb-drive turning fork rate gyroscope”, in Proc. IEEE Micro Electro Mechanical SystemsWorkshop (MEMS’93), Fort Lauderdale, FL, Feb. 1993, pp. 143–148. 6.Michael Kranz, ,“Design, Simulation, and Implementation of Two Novel Micromechanical Vibratory-Rate Gyroscopes” partial fulfillment of the requirements for a Masters degree in the Department of Electrical and Computer Engineering at Carnegie Mellon University, p.p. 9, May, 1998 7.A. Shkel, R.T. Howe, R. Horowitz, “Modeling and Simulation of Micromachined Gyroscopes in The Presence of Imperfections”, UC-Berkeley 8.Y. Ansel, et. al,. “Mode coupling aspects in a vibrating gyroscope”, Sensors and Actuators A, Vol. 62, p. 579, 1997 9.W. Geiger, et. al., “New designs of micromachined vibrating rate gyroscopes with decoupled oscillation modes”, Sensors and Actuators A, Vol. 66, p. 118-124, 1998 10.W. Geiger, W.U. Butt, et. al., “Decoupled microgyros and the design principle DAVED”, Sensors and Actuators A, Vol. 95, pp. 239-249, 2002 11.Michael W. Putty, Khalil Najafi, “A micromachined vibrating ring gyroscope”, Solid State Sensor and Actuator Workshop Hilton Head, pp. 213-220, June 13-16,1994 12.Farrokh Ayazi, Khalil Najafi, “Design and fabrication of a high-performance polysilicon vibrating ring gyroscope”, International Workshop on Micro Electro Mechanical Systems 1998, pp.25-29 13.Miwako Waga, “Microsystems in Japan”, American Institute of Physics, p. 26, APRIL/MAY 2001 14.Eric Mounier, “A look at Europe's MEMS industry’, Semiconductor International, p. 68 Dec 2001 15.World Market for MST-Products (1996&2002), NEXUS 1998/10 16.陳維方、鍾明吉、蔡若鵬、龔傑、陳世宏、周德明 編譯, “應用力學-動力學.第四版”, 全華科技, pp. 473-477 2000.5, 17.陳嶸權, ”微小環形諧振式陀螺儀之研製”, 清華大學工程與系統科學研究所碩士論文, 2002 18.Sitaraman Iyer, Yong Zhou, Tamal Mukherjee, “Analytical Modeling of Cross-axis Coupling in Micromechanical Springs”, 19.唐淵、陳信吉,”Ansys 入門”, 全華科技圖書, pp.1-7~1-17, 2002 20.洪政達, ”旋轉半球殼之激發分析與量測”, 台灣大學應用力學研究所碩士論文,2000id NH0925593054 sid 913124 cfn 0 / id NH0925593055 auc 陳喜明 tic 類比數位轉換器微分非線性度補償之設計與分析 adc 周懷樸 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 95 kwc 轉換器 kwc 迴圈式 abc 本論文描述一個10位元二階迴圈式類比數位轉換器。並就類比數位轉換器中最重要的取樣與保值電路,以及殘值處理產生器做非線性誤差的分析,分析結果可以得到電路的開關大小對於非線性誤差有很大的影響,開關過大準確性降低,過小則速度不夠,所以必須取到最佳值,另外相位邊限必須大於60度才能避免震盪現象。類比數位轉換器模擬結果顯示其訊號雜訊比為59.099dB,微分非線性度為0.5LSB,積分非線性度為0.7LSB。由於運算放大器與開關及電容的匹配度是限制精確度的最主要因素,加入一個具有6位元slider的Sliding Scale補償電路,可以有效降低DNL,由於Sliding Scale是利用工作點分散平均法來降低微分非線性度,所以通道取樣數的多寡也會直接影響到補償效果的好壞,另外slider的數量也是另一個決定補償效果的因素,但就另一觀點來說,slider的數量越多會使得可使用的通道數目減少,可視系統需求來決定。在補償電路的模擬方面分別使用3位元及6位元的slider,所得到的微分非線性度分別為0.125LSB及0.053LSB,總括來說Sliding Scale的確可以有效降低微分非線性度,只要補償電路的誤差可以降到最低。 tc 第1章 緒論 1 1.1 前言 1 1.2 動機 2 第2章 文獻回顧 5 2.1 管道式類比數位轉換器 5 2.2 迴圈式類比數位轉換器 6 2.3 分析迴圈式類比數位轉換器之誤差 7 2.4 迴圈式類比數位轉換器之數位誤差校正 9 2.5 Sliding-Scale基本概念 12 2.6 通道機率分佈函數之觀念 14 第3章 具補償電路的類比數位轉器設計及誤差分析 17 3.1架構簡介 17 3.2 交換電容式放大器電路的誤差與設計考量 18 3.2.1 精確度考量 19 3.2.2 速度考量 20 3. 2. 3 電容匹配 20 3.3 MOSFETs開關之誤差分析 21 3.3.1 通道電荷注入 21 3.3.2 時脈饋入 23 3.3.3 kT/C雜訊 23 3.3.4 電荷注入抵消 24 3.4 前端取樣及保值電路 25 3.5 單級處理1.5位元之電路架構 27 3.6 類比數位轉換器之基本建構區塊設計 32 3.6.1 運算放大器 32 3.6.2 共模回授電路 37 3.6.3 偏壓電路 39 3.6.4 比較器 40 3.6.5 鎖向器【19】 41 3.6.6數位誤差修正電路及加法器 43 3.6.7控制電路與3bit計數器 47 3.6.8 時脈產生器 49 3.7 Sliding Scale的基本架構 50 3.7.1 slider之誤差分析 50 3.7.2 slider之6bit 補償DAC 53 3.7.3 slider之6bit計數器 54 3.7.4補償加法器電路 54 3.7.5 回復信號之減法器 55 第4章 模擬結果之分析與討論 59 4.1 摺疊疊接運算放大器模擬結果 59 4.2 比較器模擬結果 61 4.3 取樣保值電路模擬結果 62 4.4 殘值產生電路模擬結果 64 4.5 數位電路模擬結果 67 4.5.1 時脈產生器模擬結果 67 4.5.3 時序控制電路模擬結果 67 4.6 二階管線化迴圈式類比數位轉換器模擬結果 68 4.7 補償DAC模擬結果 74 4.10 Sliding Scale 補償後模擬結果 75 第5章 電路佈局與量測環境之規劃 80 5.1 運算放大器之佈局 82 5.2 subADC佈局 83 5.3 取樣保值電路與殘值產生電路佈局 84 5.4 數位電路佈局 86 5.5 補償電路之佈局 87 5.6 具Sliding Scale補償的迴圈式ADC之佈局 89 5.7 量測方法及使用儀器 90 第6章 結論與建議 91 參考文獻 93rf 1. P. Vorenkamp and J. P. M. Verdaasdonk, “A 10 b 50 MS/s pipelined ADC”, Digest of Technical Papers, 39th IEEE International Solid-State Circuits Conference (ISSCC), pp. 32-33, 1992 2. T. B. Cho and P. R. Gray, “ A 10-bit, 20-MS/s, 35Mw pipeline A/D converter”, Proceedings of the IEEE Custom Integrated Circuit Conference, pp. 499-502 3. J. S. Xie “Nyquist-Rate A/D Converter Design” Chip Implementation Center 2003 4. J. T. Wu, “Analog Integrated Circuit,” NCTU Xin-zhu Taiwan R.O.C. 2002 5. A. Kitagawa, M. Kokubo, T. Tsukada, T. Tsukada, and T. Imaizumi, “A 10b 3Msample/s CMOS Cyclic ADC.” Int. Solid State Circuit Conf. (ISSCC), pp. 280-281 (Feb. 1995) 6. Y. M. Lin, B. Kim and P. R. Gray “A 13-b 2.5MHz Self-Calibrated Pipelined A/D Converter in 3-um CMOS”, IEEE, JSSC, Vol. 26 pp. 628-636 (April 1991) 7. S. H. Lewis, “Optimizing the stage resolution in pipelined, analog-to-digital converters for video-rate applications”, IEEE Transactions on Analog and digital Signal Processing Circuit and Systems II, Vol. 39, No. 8, pp. 516-523, August 1992 8. I. Mehr and L. Singer, “A 55-mW, 10-bit, 40-Msample/s Nyquist-rate CMOS ADC”, IEEE Journal of Solid-State Circuits, Vol. 35, No. 3, pp. 318-325, March 2000 9. C. Cottini, E. Gatti and V. Svelto, “A new Method for analog to digital conversion,” Nucl. Instr. And Meth, 24 241-242. (1963) 10. A. C. Dent and C. F. N. Cowan, “Linearization of analog-to-digital converters,” IEEE Transactions on Circuits and Systems, Vol. CAS-37, pp.729-737. (Jun. 1990) 11. 鄭尚元 “核儀類比數位轉換器微分非線性度補償技術之研究” NTHU 1992碩士論文 12. B. Razavi “Design of Analog CMOS Integrated Circuits” McGraw-Hill Companies Inc. 2001 13. M. J. McNutt , S. LeMarquis, and J. L. Dunkley,” Systematic Capacitance Matching Errors and Corrective Layout Procedures”, IEEE Journal o Solid-State Circuits, Vol. 29, No. 5, (May 1994) 14. D. Sayed and M. Dessouky , “Automatic Generation of Common- Centroid Capacitor Arrayswith Arbitrary Capacitor Ratio”, IEEE Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition. 15. 黃善君“10位元10MHz導管式類比數位轉換器數位校正方法之研製” NTU 2001 碩士論文 16. D. A. Johns and K. Martin “Analog Integrated Circuit Design,” John Wiley & Sons, Inc., 1997 17. R. Gregorian ”Introduction to CMOS OP-amps and Comparators” John Wiley & Sons.,1999 18. L. Sumanen, M. Walyari, and K.A.I.Halonen, ”A mismatch insensitive CMOS dynamic comparator for pipeline A/D converters,”in Proc.ICECS, vol.1, pp.32-35 (Dec.2000) 19. Daniel D. Gajski, “Principles of Digital Design,” Prentice-Hall, Inc 1996 20. R. Ockey and M. Syrzycki, “Optimization of a latched comparator for high-speed analog-to-digital converter”, IEEE Canadian Conference on Electrical and Computer Engineering, Vol. 1, pp. 403-408, 1999 21. E.G. Soenen and R.L. Geiger, “Analog and Digital Signal Processing,” IEEE Transactions on Circuits and Systems II, Vol. 42 Issue: 3 , pp. 143 –153 (March 1995) 22. D. W. Cline and P. R. Gray, “A power optimized 13-b 5 Ms/s pipelined ADC“ IEEE Journal of Solid-State Circuits, Vol. 31 Issue: 3, pp. 294 –303 (March 1996) 23. A. M. Abo and P. R. Gray, “A 1.5-V 10-bit 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE Journal of Solid-State Circuits, vol. 34, NO.5, (May 1999) 24. Y. M. Lin, “Performance limitations on high-resolution video rate analog digital interfaces,” Memo. No. UCB/ERL M90/55, 19 (June 1990) 25. 20﹒C. Y. Wu; S. Y. Chin and S. S. Chang “A new capacitor- ratio - independent algorithmic analog-to-digital converter”, IEEE International Symposium on Circuits and Systems, vol.3 pp. 2228 -2231 (1990) 26. H. T. Yung and K. S. Chao, “A ratio-independent cyclic A/D conversion technique”, IEEE International Symposium on Circuits and Systems, pp. 2581 -2584 vol.3 (1988) 27. M. Gustavsson, J. J. Wikner and N. Nick Tan” CMOS Data Convertor For Communications” Kluwer Academic Publishers, 2000 28. M. M. Mano “Digital Design” Prentice-Hall, Inc.,1991 29. C. C. Enz, G. C. Temes, ”Circuit techniques for reducing the effects of op-amp imperfections: auto zeroing, correlated double sampling, and chopper stabilization” Proceedings of the IEEE, Vol. 84 Issue 11, pp. 1584 –1614 (Nov. 1996)id NH0925593055 sid 903172 cfn 0 / id NH0925593056 auc 李昆政 tic 低雜訊輻射偵檢器之前端訊號處理電路 adc 周懷樸 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 77 kwc 低雜訊 kwc 偵檢器 abc 當偵檢器電路操作在低電壓時,需小心動態範圍及雜訊干擾問題。在類比積體電路內,訊號受到二種不同雜訊干擾:元件雜訊及環境雜訊。在此本研究將集中討論元件雜訊,從雜訊之考量著手,分析元件電子雜訊對電路造成的影響,尤其以熱雜訊和閃爍雜訊對CMOS製程之電路影響更明顯。藉由電路分析找出雜訊、元件大小和功率的最佳化操作點,設計出最佳化之偵檢器前端訊號處理電路。本電路主要包含前置放大器及波形整形放大器兩部分。前置放大器主要作為雜訊匹配,由於低雜訊要求,故在前置放大器之輸入MOS元件需有非常大的通道寬長比。前置放大器以電荷靈敏放大器為主要架構,將一輸入脈衝電流轉換成一步階式電壓訊號。波形整形放大器主要功能為脈波整形,是利用微分器和積分器組成,可避免訊號產生堆疊現象,增加訊號雜訊比,其可將前置放大器的輸出訊號整形為一高斯波形,以利後續訊號處理。本電路是以TSMC 0.35um 2P4M polycide製程所提供之相關參數作為設計及模擬,最後設計出一適合偵測低能量環境輻射之偵檢器前端訊號處理電路,其等效雜訊電荷小於400e-,功率消耗約1mW,最快操作頻率為100KHz。 tc 目錄 摘要......................................................I 誌謝.....................................................II 目錄....................................................III 圖目錄....................................................V 表目錄...................................................IX 第1章 緒論.............................................1 第2章 文獻回顧.........................................4 2.1 偵檢器前端訊號處理電路架構...........................4 2.1.1 偵檢器.............................................5 2.1.2 前置放大器.........................................6 2.1.3 波形整形放大器.....................................9 2.2 雜訊................................................11 2.2.1 元件雜訊..........................................11 2.2.2 等效雜訊電荷......................................15 第3章 偵檢器前端訊號處理電路 設計原理及推導...........16 3.1 等效雜訊電荷分析及推導..............................16 3.2 前置放大器電路分析及推導............................21 3.3 波形整形放大器電路分析及推導........................25 第4章 偵檢器前端訊號處理電路 設計、模擬及分析.........29 4.1 等效雜訊電荷的模擬與最佳化......................29 4.2 前置放大器電路設計..............................36 4.2.1 轉導放大器電路設計.................................37 4.2.2 電荷靈敏放大器設計.................................40 4.2.3 前置放大器靈敏度分析...............................44 4.3 波形整形放大器之設計............................48 4.3.1 波形整形放大器電路.................................48 4.3.2 波形整形放大器靈敏度分析...........................52 4.4 偵檢器前端訊號處理電路..........................55 4.4.1 全級電路設計.......................................55 4.4.2 全級電路靈敏度分析.................................57 4.5 全級電路規格與比較..............................63 第5章 電路佈局與晶片系統測試考量......................66 5.1 電路佈局考量及佈局圖................................66 5.2 佈局後模擬結果......................................69 5.3 晶片測試考量........................................71 第6章 結論與建議......................................73 參考文獻.................................................75 圖目錄 圖2-1:檢測器前端訊號處理電路之方塊圖.....................4 圖2-2:以JFET為輸入元件之交流偶合電路....................7 圖2-3:電壓靈敏放大器架構圖...............................8 圖2-4:電荷靈敏放大器架構圖...............................9 圖2-5:Semi-Gaussian 整形放大器架構圖....................10 圖2-6:以電壓源來表示電阻熱雜訊..........................12 圖2-7:以電流源來表示電阻熱雜訊..........................12 圖2-8:MOSFET熱雜訊等效模型..............................13 圖2-9:shot noise造成二極體電流微小變化之示意圖..........15 圖3-1:偵檢器前端訊號處理電路的等效雜訊電路圖............16 圖3-2:電荷靈敏放大器架構圖..............................22 圖3-3:折疊串接式放大器架構圖............................23 圖3-4:疊接組態放大器架構圖..............................24 圖3-5:一階波形整形放大器架構圖..........................26 圖3-6:CR微分電路........................................26 圖3-7:具有極-零抵消之波形整形放大器.....................28 圖4-1: 與輸入MOS通道寬度之關係....................30 圖4-2: 與輸入MOS通道寬度之關係....................31 圖4-3:ENC與輸入MOS通道寬度之關係....................32 圖4-4:ENC與偵檢器電容值之關係.........................33 圖4-5:MOS通道寬度固定時,ENC與偵檢器電容值成正比....34 圖4-6:輸入電流為300uA時,ENC與輸入MOS通道寬度之關係..35 圖4-7:製程變異對ENC之影響.............................36 圖4-8:電荷靈敏放大器架構圖..............................37 圖4-9:轉導放大器電路圖..................................38 圖4-10:運算轉導放大器之頻率響應.........................40 圖4-11:電荷靈敏放大器電路圖.............................41 圖4-12:電荷靈敏放大器輸出波形...........................42 圖4-13:電荷靈敏放大器不同輸入能量所產生之輸出波形.......43 圖4-14:電荷靈敏放大器之輸入能量與輸出振幅關係...........44 圖4-15:製程變化與前置放大器輸出訊號關係.................45 圖4-16:前置放大器輸出訊號與操作溫度關係.................46 圖4-17:前置放大器輸出訊號與操作電壓關係.................47 圖4-18:波形整形放大器電路圖.............................48 圖4-19:波形整形放大器之頻率響應.........................51 圖4-20:波形整形放大器之輸入與輸出波形...................51 圖4-21:波形整形放大器輸出訊號與操作電壓關係.............52 圖4-22:回授電路架構圖...................................53 圖4-23:波形整形放大器輸出訊號振幅與操作溫度之關係.......54 圖4-24:有低越現象之輸出訊號.............................55 圖4-25:偵檢器前端訊號處理電路電路圖.....................56 圖4-26:具有極-零抵消後的全級電路輸出波形................57 圖4-27:偵檢器前端訊號處理電路輸出訊號...................58 圖4-28:全級電路輸入能量與輸出訊號振幅之關係.............58 圖4-29:全級電路輸出訊號對操作溫度之關係.................59 圖4-30:全級電路輸出訊號振幅對操作溫度之關係.............59 圖4-31:全級電路輸出訊號振幅對操作電壓及製程模式之關係...60 圖4-32:以100KHz連續輸入兩個脈衝訊號,其全級電路輸出波形.61 圖4-33:不同頻率的輸入訊號,其全級電路輸出波形...........62 圖4-34:不同peaking time,其全級電路輸出波形.............62 圖5-1:前置放大器電路佈局圖..............................67 圖5-2:波形整形放大器電路佈局圖..........................67 圖5-3:偵檢器前端訊號處理電路佈局圖......................68 圖5-4:前置放大器輸出訊號佈局後模擬結果..................69 圖5-5:波形整形放大器輸出訊號佈局後模擬結................70 圖5-6:偵檢器前端訊號處理電路輸出訊號佈局後模擬結果......70 圖5-7:系統量測方塊圖....................................71 表目錄 表3-1:Beta函數表........................................20 表4-1:最小ENC與偵檢器電容值之關係.....................33 表4-2:轉導放大器的元件大小..............................39 表4-3:電荷靈敏放大器之輸入能量與輸出振幅................43 表4-4:製程變化與前置放大器輸出訊號關係..................45 表4-5:前置放大器輸出訊號與操作溫度關係..................46 表4-6:前置放大器輸出訊號與操作電壓關係..................47 表4-7:波形整形放大器元件大小值..........................50 表4-8:波形整形放大器輸出訊號振幅與操作電壓關係..........52 表4-9:波形整形放大器輸出訊號振幅在不同開迴路增益下, 對操作電壓變化之關係.............................53 表4-10:波形整形放大器輸出訊號與操作溫度之關係...........54 表4-11:輸出訊號振幅對操作電壓及製程模式之變化...........60 表4-12:設計結果比較(一).................................64 表4-12:設計結果比較(二).................................65rf 參考文獻 [1 ] 鄭昆伯,核子輻射與偵測,亞東書局,1989. [2 ] 彭思源,周懷樸,”CMOS差動對用於輻射信號放大器之研究”,國立清華大學工程與系統科學系,碩士論文,2000. [3 ] 陳榮昇,周懷樸,”Low-Noise X-Ray Detector Readout Front-End Design”,國立清華大學工程與系統科學系,碩士論文,2002. [4 ] W. M. C. Sansen and Z. Y. Chang, “Limits of Low Noise Performance of Detector Readout Front Ends in CMOS Technology”, Circuit and systems, IEEE Transactions on, vol. 37, pp. 1375-1382, Nov.1990. [5 ] S. Tedja, J. Van der Speigel and H. H. Williams, “A CMOS Low-Noise and Low-Power Charge Sampling Integrated Circuit for Capacitive Detector/Sensor Interfaces”, Solid-State Circuits, IEEE Journal of, Volume: 30, Issue: 2, pp. 110-119, Feb. 1995 [6 ] C. Kapnistic, K. Misiakos and N. Haralabidis, “A Low Noise Small Area Self Switched CMOS Charge Sensitive Readout Chain”, Nuclear Science, IEEE Transactions on, Volume: 46, Issue: 3, pp. 133-138, June 1999. [7 ] P. R. Gray, P. J. Hurst, S. H. Lewis and R. G. Meyer, “Analysis and Design of Analog Integrated Circuit,” Fourth Edition, John Willy & Sons, Inc. [8 ] B. Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hill Companies Inc. 2001. [9 ] G. Gramegna, P. O’Connor, P. Rehak and S. Hart, “Low-Noise CMOS Preamplifier-Shaper for Silicon Drift Detectors”, Nuclear Science Symposium, Conference Record, 1996 IEEE, Volume:1, 2-9, Pages:346 - 350 vol.1 [10 ] S. Robert, J.-F. Pratte, G. De Geronimo, P. O’Connor, S. Stoll, C. Pepin, R. Fontaine and R. Lecomte, “Design and Performance of 0.18um CMOS Charge Preamplifier for APD-based PET scanners”, in 2003 IEEE Nuclear Science Symposium Conference Record CD, 2003. [11 ] F. N. Hooge, “1/f noise source,” IEEE Trans. On Electron Devices, Vol. 41, NO. 11, Nov. 1994. [12 ] G. F. Knoll, “Radiation detection and measurement”, Second Edition, John Wiley & Sons, 1989 [13 ] Z. Y. Chang and W. M. C. Sacsen, “Low-noise wide-band amplifiers in bipolar and CMOS technologies”, Kluwer Academic Publishers, 1991. [14 ] Y. Hu, “High Performance Low Noise Charge Preamplifier with DC Coupling to Particle Silicon Detectors in CMOS Technology”, IEEE Electronics Letters 25th, vol. 34, pp. 1274-1275, June. 1998. [15 ] J. Vandenbussche, F. Leyn, G. Van der Plas, G. Gielen and W. Sansen, “A Fully Integrated Low-Power CMOS Particle Detector Front-End for Space Applications”, IEEE Transactions on Nuclear Science, vol. 45, no. 4, Aug. 1998. [16 ] P. O’Connor, G. Gramegna, P. Rehak, F. Corsi and C. Marzocca, “CMOS Preamplifier with High Linearity and Ultra Low Noise for X-Ray Spectroscopy”, IEEE Trans. Nucl. Sci., vol. 44, pp. 318-323, 1997. [17 ] C. Kapnistis, K. Misiakos, N. Haralabidis and A. G. Karydas, “A 0.8um CMOS Pixel IC for Low Energy X-ray Spectroscopy with On-chip Detector”, IEEE Transactions on Nuclear Science, vol. 47, no. 3, June 2000. [18 ] M. Weng, E. Mandelli, W. W. Moses and S. E. Derenzo, “A High-Speed, Low-Noise CMOS 16-Channel Charge-Sensitive Preamplifier ASIC for APD-Based PET Detectors”, Nuclear Science, IEEE Transactions on, volume: 50, Issue: 4, pp. 898-902, Aug. 2003.id NH0925593056 sid 913163 cfn 0 / id NH0925593057 auc 李谷桓 tic 兩級游標尺延遲線之時間數位轉換器 adc 周懷樸 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 103 kwc 時間數位轉換器 kwc 游標尺延遲線 abc   本研究為設計一個兩級游標尺延遲線之時間數位轉換器,解決單級游標尺延遲線會發生信號轉換時間過長的問題,同時減少元件數目。介於兩個脈衝信號之間的待測時間,經由控制電路分解為參考時脈週期的整數倍及非整數倍兩部份,整數倍交由計數器計算,非整數倍則送到兩級游標尺延遲線。由第一級游標尺延遲線得到較粗略的解析度(Tclk / 14),再將處理過的信號經由本研究所設計之新架構的介面電路傳送到第二級游標尺延遲線得到更精確的解析(Tclk / 196),最後由讀出電路將溫度計碼型式的輸出轉為二進位型式的輸出並做減法的運算,得到最後的結果。游標尺延遲線所使用的延遲元件由延線鎖相迴路來控制其偏壓,使得延遲元件能夠穩定提供電路所需的兩種延遲時間:Tclk / 14及Tclk.15 / 196。 tc 誌  謝 I 摘  要 II Abstract III 目錄 IV 圖目錄 VIII 表目錄 XII 第1章 緒論 1 1-1 時間數位轉換器之簡介 1 1-2 研究動機及目的 3 第2章 文獻回顧 4 2-1 類比式時間數位轉換器 4 2-1.1 時間轉換電壓之時間數位轉換器 6 2-1.2 雙斜率時間數位轉換器 7 2-2 數位式時間數位轉換器 9 2-2.1 游標尺延遲線之時間數位轉換器 11 2-2.2 延遲鎖相迴路陣列 15 2-2.3 脈衝縮減延遲元件 18 第3章 電路設計 21 3-1 整體架構 22 3-1.1 時序圖 22 3-1.2 系統架構圖 24 3-1.3 規格設定 27 3-2 控制電路 28 3-2.1 運作方式及設計 28 3-2.2 正單相時脈電路 32 3-2.3 TSPC D型閂鎖及D型正反器之設計 33 3-2.4 四位元計數器之設計 36 3-3 游標尺延遲線及延遲鎖相迴路之設計 38 3-3.1 延遲元件之設計 39 3-3.2 延遲鎖相迴路之設計 41 3-3.3 延遲尺延遲元件之設計 46 3-3.4 介面電路的設計 47 3-4 讀出電路之設計 52 3-4.1 讀出電路之基本架構 52 3-4.2 溫度計碼解碼電路 53 3-4.3 減法器 56 第4章 電路佈局 59 4-1 控制電路 59 4-2 游標尺延遲線 63 4-3 延遲鎖相迴路 69 4-4 讀出電路 71 4-5 整體電路 73 第5章 電路模擬及分析 75 5-1 控制電路 75 5-1.1 D型閂鎖 76 5-1.2 D型正反器 77 5-1.3 四位元計數器 78 5-2 游標尺延遲元件 79 5-2.1 延遲元件之模擬 79 5-2.2 D型正反器之模擬結果 83 5-3 延遲鎖相迴路之模擬 84 5-4 讀出電路之模擬 86 5-4.1 溫度計碼解碼器之模擬 86 5-4.2 減法器之模擬 87 5-5 整體電路之模擬 88 第6章 結論與建議 93 參考文獻 97 附錄一:參考頻率及階數之選擇 99 附錄二:誤差分析 102rf [ 1 ] J. Christiansen, “An Integrated CMOS 0.15 ns Digital Timing Generator for TDC’s and Clock Distribution Systems,” IEEE Transactions on Nuclear Science, vol. 42, Aug. 1995. [ 2 ] E. Raisanen-Ruotsalainen, T. Rahkonen, J. Kostamovaara, “A Low-Power CMOS Time-to-Digital Converter,” IEEE Journal of Solid-State Circuits, vol. 30, pp. 984-990, Sept. 1995. [ 3 ] K. Maatta, J. Kostamovaara, “A High-Precision Time-to-Digital Converter for Pulsed Time-of-Flight Laser Radar Applications,” IEEE Transactions on Instrumentation and Measurement, vol. 47, No. 2 , April 1998. [ 4 ] E. Raisanen-Ruotsalainen, T. Rahkonen, J. Kostamovaara, “An Integrated Time-to-Digital Cnverter with 30-ps Single-Shot Precision,” IEEE Journal of Solid-State Circuits, vol. 35, No. 10, Oct. 2000. [ 5 ] E. Raisanen-Ruotsalainen, T. Rahkonen, J. Kostamovaara, “A Time Digitizer with Interpolation Based on Time-to-Voltage Conversion,” Proceedings of the 40th Midwest Symposium on Circuits and Systems, Vol. 1, pp. 197-200, Aug. 1997. [ 6 ] Y. Arai, T. Ohsugi, “TMC-a CMOS Time to Digital Converter VLSI,” IEEE Transactions on Nuclear Science, vol. 36, No. 1, Feb. 1989. [ 7 ] M.S. Gorbics, J. Kelly, K.M. Roberts, R.L. Sumner, “A High Resolution Multihit Time to Digital Converter Integrated Circuit,” IEEE Conference Record. Nuclear Science Symposium, vol. 1 , pp. 421-425, Nov. 1996. [ 8 ] P. Dudek, S. Szczepanski, J.V. Hatfield, “A High-Resolution CMOS Time-to-Digital Converter Utilizing a Vernier Delay Line,” IEEE Journal of Solid-State Circuits, vol. 35, No. 2, Feb. 2000. [ 9 ] Chorng-Sii Hwang, Poki Chen, Hen-Wai Tsao, “A High-Precision Time-to-Digital Converter Using a Two-Level Conversion Scheme,” [10 ] Chorng-Sii Hwang, Poki Chen, Hen-Wai Tsao, “A High-Resolution and Fast-Conversion Time-to-Digital Converter,” Proceedings of the 2003 International Symposium on Circuits and Systems, vol. 1, pp. 25-28, May 2003. [11 ] Poki Chen, Shepz-Iuan Liu, Jingshown Wu, “A Low Power High Accuracy CMOS Time-to-Digital Converter,” IEEE International Symposium on Circuits and Systems, vol. 1, pp. 281-284, June 1997. [12 ] Poki Chen, Shen-Iuan Liu, “A Cyclic CMOS Time-to-Digital Converter With Deep Sub-nanosecond Resolution,” Proceedings of the IEEE 1999 Custom Integrated Circuits, pp. 605-608, May 1999. [13 ] C. T. Gray, W. Liu, W.A. M. Van Niije, T. A. Hughes Jr., and R. K. Cavin III, “A sampling technique and its CMOS implementation with 1Gb/s bandwidth and 25 ps resolution,” IEEE Journal of Solid-State Circuits, vol. 29, pp. 340-349, Mar. 1994. [14 ] Uming Ko, P.T. Balsara, “High Performance, Energy Efficient Master-Slave Flip-Flop Circuits,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 8, No. 1, pp. 94-98, Feb. 2000. [15 ] Sngn-Mo Kang, Yusuf Leblebigi, “CMOS Digital Integrated Circuits Analysis and Design,” McGraw-Hill, 2nd edition, 1999. [16 ] Daniel D. Gajski, “Principles of Digital Design,” Prentice-Hall, 2nd edition, 1997. [17 ] Behard Razavi, “Phase-Locking in High-Performance Systems From Devices to Architectures,” IEEE PRESS, pp. 17-18, 2003. [18 ] N.R. Mahapatra, S.V. Garimella, A. Tareen, “ An Empirical and Analytical Comparison of Delay elements and A New Delay Element Design,” Proceedings of IEEE Computer Society Workshop on VLSI, pp. 81-86, April 2000. [19 ] A. Mantyniemi, T. Rahkonen, J. Kostamovaara, “A High Resolution Digital CMOS Time-to-Digital Converter Based on Nested Delay Locked Loops,” Proceedings of IEEE International Symposium on Circuits and Systems, vol. 2, June 1999. [20 ] M. Maymandi-Nejad, M. Sachdev, “A Digitally Programmable Delay Element : Design and Analysis,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11, No. 5, October 2003. [21 ] D.M. Santos, S.F. Dow, J.M. Flasck, M.E. Levi, “A CMOS Delay Locked Loop And Sub-Nanosecond Time-to-Digital Converter Chip,” IEEE Transactions on Nuclear Science, vol. 43, No. 3, June 1996. [22 ] CIC, “Nyquist-Rate A/D Converter Design Training Manual,” CIC, July 2003.id NH0925593057 sid 913117 cfn 0 / id NH0925593058 auc 蕭凱木 tic 多變數回授控制電漿半導體蝕刻製程 adc 林強 adc 柳克強 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 45 kwc 多變數 kwc 回授控制 kwc 電漿半導體蝕刻製程 kwc 蝕刻製程 abc 蝕刻過程中電漿參數的變化,對多晶矽在氯氣電漿中蝕刻率穩定性有相當重要的影響。電漿參數中,又以正離子通量與射頻偏壓為影響蝕刻率的關鍵參數,如可控制此關鍵參數,即可有效穩定蝕刻率。在本研究中,利用連接在靜電式晶圓座上之射頻阻抗計所量測的離子電流與射頻偏壓,作為受控參數,比較開迴路控制與閉迴路控制系統下的蝕刻結果。致動器的部份為兩部13.56 MHz的射頻功率產生器,一部為電漿功率,可調整離子電流值,另一部為射頻偏壓功率,可調整射頻偏壓值。 tc 目錄 頁次 摘要 ………………………………………………………………… i 致謝 ………………………………………………………………… ii 目錄 ………………………………………………………………… iii 圖目錄 ……………………………………………………………… v 表目錄 …………………………………………………………… xii 第一章 簡介 ………………………………………………………… 1 第二章 文獻回顧 …………………………………………………… 3 第三章 基本原理 …………………………………………………… 9 3.1 氯氣電漿蝕刻特性與機制 ………………………………… 9 3.1.1 電漿蝕刻機制 ……………………………………… 9 3.1.2 氯氣電漿與多晶矽蝕刻反應機制 ………………… 11 3.2 離子能量 …………………………………………………… 12 3.3 離子電流 …………………………………………………… 13 第四章 實驗設備與量測控制系統 ……………………………… 17 4.1 電感耦合式電漿源蝕刻系統 ……………………………… 17 4.2 射頻阻抗計 ………………………………………………… 20 4.3 離子電流、射頻偏壓控制器設計 ………………………… 23 第五章 實驗結果與討論 …………………………………………… 26 5.1 實驗規劃 …………………………………………………… 26 5.2 完整熱機 ……………………………………………………27 5.3 未完整熱機 ………………………………………………… 30 5.4 二因子設計 ………………………………………………… 32 5.5 微擾實驗 …………………………………………………… 35 5.6 蝕刻率設定值實驗 ………………………………………… 40第六章 結論 ………………………………………………………… 43 參考文獻 …………………………………………………………… 45rf [1 ] B. A. Rashap, M. E. Elta, H. Etemad, J. P. Fournier, J. S. Freudenberg, M. D. Giles, J. W. Grizzle, P. T. Kabamba, P. P. Khargonekar, S. Lafortune, J. R. Moyne, D. Teneketzis, and F. L. Terry, Jr, IEEE Trans. Semiconduct. Manufact. 8, 286 (1995). [2 ] T. E. Benson, L. I. Kamlet, S. M. Ruegsegger, C. K. Hanish, P. D. Hanish, B. A. Rashap, P. Klimecky, J. S. Freudenberg, J. W. Grizzle, P. P. Khargonekar, F. L. Terry, Jr, and Bryan Barney, J. Vac. Sci. Technol. B 14, 483 (1996). [3 ] H.M. Park, D. S. Grimard, J.W. Grizzle, J. Eletrochem. 145, 4247(1998). [4 ] Roger Patrick , Scott Baldwin , and Norman Williams , J.Vac. Sci. Technol. A 18(2), Mar/Apr 2000. [5 ] Pete Klimecky , Jessy Grzzle , and Fred L. Terry , Jr. , J. Vac. Sci. tecnol. A 21(3),706(2003). [6 ] C.H. Chang et al., J. Vac. Sci. Technol. A 21, 1183(2003). [7 ] Manos, D. M., & Flamm, D.L., “Plasma Etching-An introduction ”Academic press,1989. [8 ]張正宏, 國立清華大學工程與系統科學系博士論文(2003) [9 ] J.Y. Choe, I.P. Herman, and V.M. Donnelly, J. Vac. Sci. Technol. A 15, 3024(1997). [10 ]M.A. Sobolewski J. Appl. Phys. 90,2660(2001). [11 ]M.A. Sobolewski, Physical Review E, Vol. 59, Num. 1, January 1999. [12 ]M. V. Malyshev and V. M. Donnelly, J. Appl. Phys. 90, 1130 (2001) [13 ]雷舜誠,國立清華大學工程與系統科學系碩士論文(2001) [14 ]丁宏哲,國立清華大學工程與系統科學系碩士論文(2001) [15 ]吳佳哲,國立清華大學工程與系統科學系碩士論文(2003)id NH0925593058 sid 913162 cfn 0 / id NH0925593059 auc 程榮勝 tic 應用於微型冷卻系統以及微型燃料電池之反應區流體處理 adc 林唯耕 adc 曾繁根 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 77 kwc 微型冷卻系統、微型燃料電池、微機電、微系統、MEMS、散熱、微流體 abc 本研究主要是針對微型直接甲醇燃料電池(Micro Direct Methanol Fuel Cell)以及微液滴衝擊式冷卻系統(Micro Droplet Impinging Cooling System)之反應區二相流體處理作設計。 rf [1 ] 莊文賓,”微型燃料電池內之部分親水處理與其流體動態特性 研究”,國立清華大學碩士論文,p9,2003. [2 ] 莊昀儒,”微型高分子材料單石熱汽泡式微液滴產生系統之研 發”,國立清華大學博士論文,p103,2003. [3 ] Jeffrey Kirshberg, Kirk Yerkes, Dorian Liepmann and David Trebotich” Cooling effect of a MEMS based micro capillary pumped loop for chip-lever temperature control ”,ASME,2000. [4 ] Dickey, J.T. , and Peterson G.P. , 1994,”Experimental and Analytical Investigation of a Capillary Pumped Loop,”Journal of Thermophysics and Heat Transfer, Vol 8, No. 3, pp. 602-607. [5 ] F.J. Stenger, NASA TM X-1310, 1966. [6 ] Chi-fu Wu and S.C. Yao,”Droplet impingement cooling for electronics using silicon nozzles”,ASME,2002. [7 ] Jr-Hung Tsai and Liwei Lin,”A Thermal-Bubble-Actuated Micronozzle-Diffuser Pump”, J. MICROELECTROMECHANICAL SYSTEMS, VOL. 11, NO. 6, DECEMBER 2002. [8 ] D.Maas, B.Bustgens, J.Fahrenberg, W.Keller, P.Ruther, W.K.Schomburg, D.Seidel,”Fabrication of microcomponents using adhesive bonding techniques ”,IEEE, 1996. [9 ] Che-Hsin Lin, Gwo-Bin Lee, Bao-Wen Chang and Guan-Liang Chang,”A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist”,J. Micromech. Microeng.12 (2002) 590–597. [10 ] Rebecca J Jackman, Tamara M Floyd, Reza Ghodssi,Martin A Schmidt and Klavs F Jensen,” Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy”, J. Micromech. Microeng. 11 (2001) 263–269. [11 ] C-T Pan, H Yang, S-C Shen, M-C Chou and H-P Chou,”A low-temperature wafer bonding technique using patternable materials”, J. Micromech. Microeng. 12 (2002) 611–615. [12 ] 鄭仁豪,”微液滴衝擊式冷卻回收系統之微流道液體回收裝置”,國立清華大學碩士論文,p60-61,2002.id NH0925593059 sid 913147 cfn 0 / id NH0925593060 auc 黃培城 tic 個人數位助理於可攜式輻射偵檢系統的應用 adc 周懷樸 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 78 kwc 個人數位助理 kwc 核輻信號 abc 近年來個人數位助理(Personal Digital Assistant,PDA)的發展普及性,可做為個人電腦功能的延伸,及行動式資料處理工具。其體積小、重量輕、功能強大等特色;成為我們用來作為開發可攜式系統的不二人選。因此本研究之目的在於提出一種可攜式輻射偵檢系統架構,利用PDA螢幕的視窗操作介面;從前端核輻信號量測、信號轉換處理、到最後的核輻能譜分析,透過PDA而完成行動式輻射量測分析系統,工程師無論身在何處,都可以掌握量測源的狀況,提供即時且完整的資訊。 rf 參考文獻: [1 ] Glenn F. Noll, “Radiation Detection and Measurement”, 3rd Edition, Published by John Wiley & Sons (2000). [2 ] Ortec’s portable multichannel analyzer datasheet, http://www.ortec-online.com [3 ] Canberra’s portable multichannel analyzer datasheet, http://www.canberra.com [4 ] Jo?姛 M. Cardoso1, Vitor Amorim1, Rui Bastos, Rui Madeira,J. Bas?殯io Sim?殂s1 and Carlos M. B. A. Correia1,“A Very Low-Cost Portable Multichannel Analyzer”, IEEE Trans. Nucl. Science.,vol.41,p.1031(2001) [5 ] Microchip’s 8-bit microcontroller (PIC16F8XX) datasheet, http://www.microchip.com [6 ] M. N. Ericson and M. L. Simpson, “A Low-Power, CMOS Peak Detect and Hold Circuit for Nuclear”, IEEE Trans. Nucl. Science, Vol.42,(4)724-728(1995). [7 ] Multichannel Analyzer Components,http://www.amptek.com [8 ] Paulo C. P. S. Simos, Joes C. Martins, “A New Digital Signal Processing Technique for Application in Nuclear Spectroscopy” , IEEE Trans. Nucl. Science, Vol.43,no.3,pp.1804-1809 Jun(1996) [9 ] Mobile and Embedded Development, http://msdn.microsoft.com [10 ] Palmtop and PalmUser magazines, http://www.palmtop.co.uk/ [11 ] Pocket PC developer, http://msdn.microsoft.com [12 ] “Model 8701 Analog-to-Digital Converter Operator’s Manual”, Published by Canberra. [13 ] “Integrated Signal Processor Model 1510 Operator’s Manual”, Published by Canberra. [14 ] ATMEL’s 8-bit microcontroller (AT89C51) datasheet, http://www.atmel.com [15 ] ALTERA’s FLEX 10K Device Family datasheet, http://www.altera.com [16 ] IPAQ 3970 specification, http://www.compaq.com/pda [17 ] “The Measurement and Automation Catalog 2003”, Published by National Instruments (2003). [18 ] 韓丹譯,”Windows CE 開發寶典”,儒林圖書出版,民國89 年. [19 ] Microsoft Corporation,”Microsoft?? Windows?? CE Developer's Kit”(1999). [20 ] Microsoft Corporation,” Programming Microsoft?? Windows?? CE”(1998). [21 ] 袁立基編著,”輻射量測實驗手冊”,民國90年3月.id NH0925593060 sid 903173 cfn 0 / id NH0925593061 auc 張喬富 tic 金氧半影像感測器可消除固定圖像雜訊之讀出電路設計 adc 周懷樸 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 65 kwc 固定圖像雜訊 kwc 影像感測器 kwc 讀出電路 abc 本篇論文是探討如何消除CMOS影像感測器中的固定圖像雜訊(fixed pattern noise,FPN)。而FPN可分為兩種,一種是同一行內像素與像素之間的固定圖像雜訊,稱為P-P FPN,另一種是行與行間的固定圖像雜訊,稱為C-C FPN。然而一般電路已用行處理電路中的相關二次取樣方式將P-P FPN降低,故在此將採用一種行處理電路可有最小的C-C FPN,再於其後設計出讀出電路。並且設計類比電路所需時序使得像素陣列在感光後能依序經由讀出電路獲得輸出。本研究是以主動式像素感測器作為感光元件,接在APS之後的行處理與讀出電路可實行取樣與相減功能來降低FPN,其中讀出電路是用切換電容全差動放大器來實現。 tc 目錄 誌謝……………………………………………………………………Ⅰ 摘要……………………………………………………………………Ⅱ 目錄……………………………………………………………………Ⅲ 圖片目錄………………………………………………………………Ⅴ 表格目錄………………………………………………………………Ⅷ 第一章 緒論…………………………………………………………1 1.1 研究動機與目的……………………………………………1 1.2 論文架構……………………………………………………3 第二章 文獻回顧……………………………………………………4 2.0 前言………………………………………………………… 4 2.1 CMOS影像感測器感光基本原理……………………………4 2.2 CMOS影像感測器基本特性規格……………………………6 2.3 CMOS影像感測器……………………………………………8 2.3.1 被動式感測器(CMOS Passive Pixel Sensor) …9 2.3.2 主動式感測器(CMOS Active Pixel Sensor) …10 2.3.3 相關兩次取樣與讀出電路………………………16 2.4 CDS與讀出電路優缺點整理………………………………24 第三章 可消除固定圖像的讀出電路與時序設計…………………26 3.1 設計架構……………………………………………………26 3.2 像素電路……………………………………………………27 3.3 行處理電路…………………………………………………30 3.4 讀出電路……………………………………………………32 3.5 時序控制設計………………………………………………38 第四章 電路模擬結果與佈局………………………………………41 4.1 電路特性分析模擬結果……………………………………41 4.1.1光電流輸入與輸出關係……………………………41 4.1.2運算放大器規格……………………………………42 4.2 固定圖像雜訊(FPN)模擬結果…………………………… 43 4.3 時序與混合模擬結果………………………………………48 4.3.1 時序模擬結果……………………………………48 4.3.2 混合模擬結果……………………………………49 4.4 電路佈局與佈局後模擬……………………………………53 4.5 數位合成分析………………………………………………59 第五章 結論與建議……………………………………………………61參考文獻……………………………………………………………… 63 圖目錄 圖2.1 激發電子-電洞對示意圖……………………………………5 圖2.2 光二極體內部電子電洞對移動示意圖 ……………………6 圖2.3 存在FPN 的影像圖 ……………………………………….8 圖2.4 被動式影像感測器電路圖 …………………………………9 圖2.5 基本3T主動式感測器像素電路與控制時序圖 …………10 圖2.6 光閘極APS電路……………………………………………13 圖2.7 光二極體APS的 在不同光強度的曲線圖………………13 圖2.8 對數模式APS電路…………………………………………14 圖2.9 對數模式APS的輸出特性…………………………………15 圖2.10 CDS電路圖……………………………………………….17 圖2.11 使用單級差動放大器………………………………………18 圖2.12 使用folded-cascode opamp………………………………18 圖2.13 增益變化曲線圖……………………………………………18 圖2.14 參考文獻[12 ]的行處理電路………………………………19 圖2.15 參考文獻[13 ]的CDS與讀出電路…………………………20 圖2.16 DDS操作電路圖………………………………………….21 圖2.17 CMOS影像感測器電路圖 …………………………………22 圖2.18 參考文獻[16 ]整體電路……………………………………24 圖3.1 CMOS影像感測器電路架構…………………………………27 圖3.2 3T APS與時序控制圖………………………………………28 圖3.3 3T APS等效電路……………………………………………29 圖3.4 光積分模式與變化示意圖 …………………………………29 圖 3.5 有DDS操作的行處理電路 ………………………………31 圖 3.6 行處理電路的時序控制圖…………………………………31 圖 3.7 讀出電路……………………………………………………33 圖 3.8 讀出電路的相關時序控制圖………………………………34 圖 3.9 讀出電路在preset mode …………………………………34 圖 3.10 讀出電路在read mode ……………………………………34 圖 3.11 二級全差動放大器…………………………………………37 圖 3.12 共模回授電路………………………………………………38 圖 3.13 簡略的時序設計圖…………………………………………39 圖 4.1 像素輸出擺幅與光電流關係圖……………………………41 圖 4.2 讀出電路輸出與光電流關係圖……………………………42 圖 4.3 P-P FPN模擬結果…………………………………………45 圖 4.4 C-C FPN模擬結果…………………………………………46 圖 4.5 時序波形模擬圖 …………………………………………48 圖4.6 傳送任一列像素作最後輸出所需時序圖……………………49 圖4.7 陣列輸出模擬結果 ………………………………… 50 圖4.8 第二個畫面的輸出模擬結果…………………………………51 圖4.9 像素佈局圖 …………………………………………………54 圖4.10 陣列像素佈局圖 ………………………………………….54 圖4.11 行處理電路的佈局圖 ………………………………………55 圖4.12 讀出電路的佈局圖 …………………………………………56 圖4.13 CMOS影像感測器類比電路佈局圖…………………………57 圖4.14 佈局後模擬的輸出電壓圖 …………………………………58 圖4.15 合成後的數位時序控制區塊圖 ……………………………59 圖4.16 合成後的內部電路圖 ………………………………………59 表目錄 表2.1 不同感測器像素電路部份優缺點比較表……………………16 表2.2 參考文獻CDS與讀出電路優缺點比較表……………………24 表4.1 全差動雙級運算放大器的規格整理表 ……………………43 表4.2 三個增益下的P-P FPN ……………………………………45 表4.3 各個不匹配參數下的FPN……………………………………47 表4.4 三種不同電路C-C FPN 的模擬比較表……………………47 表4.5 模擬的CMOS影像感測器規格 ……………………………52 表4.6 數位時序控制區塊合成資料 ………………………………59rf [1 ] W. S. Boyle and G. E. Smith,”Charge-Coupled Semiconductors Devices”, J. Bell Syst. Tech.,vol.49,pp.587-593,1970 [2 ] Fossum, E.R.,” CMOS image sensors: electronic camera-on-a-chip”, Electron Devices, IEEE Transactions on , Volume: 44 , Issue: 10 , Oct. 1997 ,Pages:1689 – 1698 [3 ] Mendis, S.K.; Kemeny, S.E.; Fossum, E.R.,” A 128×128 CMOS active pixel image sensor for highly integrated imaging systems”,Electron Devices Meeting, 1993. Technical Digest., International , 5-8 Dec. 1993 ,Pages:583 - 586 [4 ] Mendis, S.K.; Kemeny, S.E.; Gee, R.C.; Pain, B.; Staller, C.O.; Quiesup Kim; Fossum, E.R,” CMOS active pixel image sensors for highly integrated imaging systems”,Solid-State Circuits, IEEE Journal of , Volume: 32 , Issue: 2 , Feb. 1997 ,Pages:187 - 197 [5 ] E.R.Fossum,”Active pixelsensor:are CCDs dinosaurs?”,SPIE,Vol.1990. pp 31-39,1993 [6 ] R.H. Dyck and G.P. Weckler,“Integrated Arrays of Silicon Photodetectors for Image Sensing,” IEEE Trans. Electron Devices, Vol. ED-15, p.196, Apr. 1968. [7 ] P. Noble, “Self-scanned Silicon Image Detector Arrays,” IEEE Trans. Electron Devices, Vol. ED-15, p.202, Apr. 1968. [8 ] O. Yadid-Pecht, B. Mansoorian, E.R. Fossum, and B. Pain, “Optimization of Noise in CMOS Active Pixel Sensors for Detection of Ultra Low Light Levels,”Proc. SPIE, Vol.3019, p.125, 1997. [9 ] T. Lulé, S. Benthien, H. Keller, F. Mütze, P. Rieve, K. Seibel, Micheal Sommer,and M. Böhm, “Sensitivity of CMOS Based Imagers and Scaling Perspectives,”IEEE Trans. Electron Devices, Vol.47, No.11, pp.2110-2122, Nov. 2000. [10 ] Liang-Wei Lai; Cheng-Hsiao Lai; Ya-Chin King,” A novel logarithmic response CMOS image sensor with high output voltage swing and in-pixel fixed-pattern noise reduction” ,Sensors Journal, IEEE , Volume: 4 , Issue: 1 , Feb. 2004 ,Pages:122 - 126 [11 ] M.F. Snoeij, A.J.P. Theuwissen and J.H. Huijsing,”Read-Out Circuits for Fixed- Pattern Noise Reduction in a CMOS Active Pixel Sensor”,Electronic Instrumentation Laboratory Delft University of Technology Mekelweg 4, 2628 CD Delft, The Netherlands,1994 [12 ] Bart DIERICKX, Guy MEYNANTS, Danny SCHEFFER,” Offset-free offset correction for active pixel sensors”, IMEC, Kapeldreef 75, B-3001 Leuven, Belgium [13 ] Degerli, Y.; Lavernhe, F.; Magnan, P.; Farre, P.J,” Column readout circuit with global charge amplifier for CMOS APS imagers”, Electronics Letters , Volume: 36 , Issue: 17 , 17 Aug. 2000 ,Pages:1457 – 1459 [14 ] Mendis, S.K.; Kemeny, S.E.; Gee, R.C.; Pain, B.; Staller, C.O.; Quiesup Kim; Fossum, E.R.,”CMOS active pixel image sensors for highly integrated imaging systems”, Solid-State Circuits, IEEE Journal of , Volume: 32 , Issue: 2 , Feb. 1997 ,Pages:187 – 197 [15 ] Blanksby, A.J.; Loinaz, M.J.; Inglis, D.A.; Ackland, B.D.,” Noise performance of a color CMOS photogate image sensor”,Electron Devices Meeting, 1997. Technical Digest., International , 7-10 Dec. 1997 ,Pages:205 - 208 [16 ] Nixon, R.H.; Kemeny, S.E.; Pain, B.; Staller, C.O.; Fossum, E.R.,” 256×256 CMOS active pixel sensor camera-on-a-chip”, Solid-State Circuits, IEEE Journal of , Volume: 31 , Issue: 12 , Dec. 1996 ,Pages:2046 – 2050 [17 ] Salama, K.; El Gamal, A.,” Analysis of active pixel sensor readout circuit”, Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on [see also Circuits and Systems I: Regular Papers, IEEE Transactions on ] , Volume: 50 , Issue: 7 , July 2003 ,Pages:941 - 945 [18 ] B. Razavi, ”Design of Analog CMOS Integrated Circuits”, McGraw-Hill Companies Inc. 2001 [19 ] Mendis, S.; Kemeny, S.E.; Fossum, E.R.,” CMOS active pixel image sensor”,Electron Devices, IEEE Transactions on , Volume: 41 , Issue: 3 , March 1994 Pages:452 - 453 [20 ] 湯小慧 “金氧半影像感測陣列固定圖像雜訊消除電路之設計” NTHU 2003 碩士論文 [21 ] Fossum, E.R.,” CMOS image sensors: electronic camera on a chip”, Electron Devices Meeting, 1995., International , 10-13 Dec. 1995, Pages:17 – 25 [22 ] Fossum, E.R.,” CMOS image sensors: electronic camera on a chip”, Electron Devices, IEEE Transactions on , Volume: 44 , Issue: 10 , Oct. 1997 ,Pages:1689 - 1698 [23 ] Kwang-Bo Cho; Krymski, A.I.; Fossum, E.R.,” A 1.5-V 550-/spl mu/W 176/spl times/144 autonomous CMOS active pixel image sensor”,Electron Devices, IEEE Transactions on , Volume: 50 , Issue: 1 , Jan. 2003 ,Pages:96 – 105 [24 ] Sung-Hyun Yang; Kyoung-Rok Cho,” High dynamic range CMOS image sensor with conditional reset”,Custom Integrated Circuits Conference, 2002. Proceedings of the IEEE 2002 , 12-15 May 2002 ,Pages:265 – 268 [25 ] Decker, S.; McGrath, D.; Brehmer, K.; Sodini, C.G.” A 256×256 CMOS imaging array with wide dynamic range pixels and column-parallel digital output”,Solid-State Circuits, IEEE Journal of , Volume: 33 , Issue: 12 , Dec. 1998,Pages:2081 – 2091 [26 ] Hsiu-Yu Cheng; Ya-Chin King,”A CMOS image sensor with dark-current cancellation and dynamic sensitivity operations”,Electron Devices, IEEE Transactions on , Volume: 50 , Issue: 1 , Jan. 2003 ,Pages:91-95id NH0925593061 sid 913175 cfn 0 / id NH0925593062 auc 陳佳壕 tic SONOS快閃記憶體元件中氮化矽製程之研究 adc 張廖貴術 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 94 kwc 快閃記憶體 kwc 氮化層 abc 在本論文中針對新架構的SONOS快閃記憶體元件採用不同階段的快速熱處理條件,來探討記憶體元件的初始特性及可靠度分析;首先,藉由不同的上層氧化(top oxide)層厚度來探討結構的差異對SONOS元件電特性的影響;當上層氧化層厚度較厚的元件與上層氧化層厚度較薄的元件比較時,我們可發現以下幾個特點:1.在寫入特性方面,若要讓啟始電壓飄移量較大時,需要有較薄的上層氧化(top oxide)層厚度,而在抹除方面,較薄的上層氧化(top oxide)層厚度也會在比較短的時間內抹除氮化層陷阱(trap)所陷住的電子;而在電荷保持力方面,兩者僅有些微的差距,還有在抗汲極電壓干擾方面也是以較薄的上層氧化(top oxide)層擁有較佳的特性。 tc 總目錄 摘要 ………………………………………………………………………………………… Ⅰ 誌謝 ………………………………………………………………………………………… Ⅲ 總目錄 ……………………………………………………………………………………… Ⅳ 圖表目錄 …………………………………………………………………………………… Ⅵ 第一章 緒 論 1.1前言 ………………………………………………………………………………… 1 1.2非揮發記憶體的特性及種類 ……………………………………………………… 1 1.3快閃記憶體的用途 ………………………………………………………………… 2 1.4快閃記憶體的一般架構-Floating gate結構 ………………………………… 3 1.5快閃記憶體的新架構-SONOS結構 ……………………………………………… 4 1.6研究動機 …………………………………………………………………………… 5 1.7研究方向 …………………………………………………………………………… 6 第二章 快閃記憶體的可靠度問題 2.1寫入/擦拭的機制(Program/Erase Mechanisms) ……………………………… 10 2.1.1 寫入機制的比較 …………………………………………………………… 10 2.1.2 擦拭機制的比較 …………………………………………………………… 12 2.2 快閃記憶體可靠度回顧 ………………………………………………………… 13 2.2.1 過度擦拭及汲極驅動的問題 ……………………………………………… 13 2.2.2 電荷保持力 ………………………………………………………………… 14 2.2.3 耐久度 ……………………………………………………………………… 16 2.2.4 干擾(Disturb)…………………………………………………………… 18 2.3 結論 ……………………………………………………………………………… 18 第三章 實驗規劃與元件製程 3.1 實驗規劃 ………………………………………………………………………… 25 3.1.1 N2O及NH3氣體的介面處理 ………………………………………………… 25 3.1.2 氮化層的成長溫度及流量 ………………………………………………… 26 3.1.3 高溫爐管和快速熱處理系統 ……………………………………………… 27 3.2 元件製作與量測 ………………………………………………………………… 27 3.2.1 測試元件製程 ……………………………………………………………… 27 3.2.2 材料分析 …………………………………………………………………… 31 第四章 不同的上層氧化(top oxide)層對SONOS快閃記憶體元件電特 性之影響 4.1 研究目的 ………………………………………………………………………… 36 4.2 製程與量測方式 ………………………………………………………………… 37 4.3實驗結果與討論 ………………………………………………………………… 38 4.3.1 ON兩層沈積後不做任何氣體回火處理製程的影響 …………………… 38 4.3.2 氧化層沈積後作一階段N2O回火處理製程的影響 ……………………… 41 4.3.3 氧化層沈積後作兩階段N2O回火處理製程的影響 ……………………… 43 4.4 結論 ……………………………………………………………………………… 45 第五章 不同製程對SONOS電晶體元件電特性之影響 5.1 研究目的 ………………………………………………………………………… 62 5.2 測試元件製程 …………………………………………………………………… 63 5.3 實驗結果與討論 ………………………………………………………………… 63 5.3.1 氧化矽層沈積後不做N2O氮化處理與一階段N2O氮化處理製程的影 響 ………………………………………………………………………… 63 5.3.2 氧化矽層沈積後一階段與兩階段N2O氮化處理製程的影響 …………… 65 5.3.3 氮化矽層沈積後不做熱處理製程與一階段NH3氣體熱處理製程的影響… 67 5.3.4 氮化矽層沈積後一階段NH3氣體熱處理製程與兩階段N2O氣體熱處理製 程的影響 ………………………………………………………………… 69 5.4 結論 ……………………………………………………………………………… 70 第六章 結論與未來工作建議 6.1 結論 ……………………………………………………………………………… 89 6.2 未來工作建議 …………………………………………………………………… 90 參考文獻 ……………………………………………………………………… 92rf 1. White, M.H.; Adams, D.A.; Bu, J. ”On the go with SONOS”, IEEE Circuits and Devices Magazine, Volume: 16 Issue: 4, Jul 2000 Page(s): 22 -31. 2. Okayama, Y.; Kasai, K.; Yamaguchi, T.; Ooishi, A.; Takayanagi-Takagi, M.; Matsuoka, F.; Kinugawa, M. ”Nitrogen concentration optimization for down-scaled CMOSFET with N 2O-based oxynitride process”, VLSI Technology, 1998. Digest of Technical Papers. 1998 Symposium on , 9-11 Jun 1998 Page(s): 220 -221. 3. Doyle, B.S.; Philipossian, A. ”Role of nitridation/reoxidation of NH3-nitrided gate dielectrics on the hot-carrier resistance of CMOS transistors”, IEEE Electron Device Letters, Volume: 18 Issue: 6 , Jun 1997 Page(s): 267 -269. 4. Rama I. Hegde, Bikas Maiti, Philip J. Tobin, ”Growth and Film Characteristics of N2O and NO Oxynitride Gate and Tunnel Dielectrics”, J. Electrochem. Soc, Vol.144, No.3, p.1081 (1997). 5. Lin, W.H.; Pey, K.L.; Dong, Z.; Choi, S.Y.-M.; Zhou, M.S.; Ang, T.C.; Ang, C.H.; Lau, W.S.; Ye, J.H. ”Effects of post-deposition anneal on the electrical properties of Si3N4 gate dielectric”, IEEE Electron Device Letters , Volume: 23 Issue: 3 , Mar 2002 ,Page(s): 124 -126. 6. Tam, P.K. Ko and C. Hu, ”Lucky-Electron Model of Channel Hot-Electron Injection in MOSFETs”, IEEE Trans. Electron Dev. ED-31, P.116, 1984. 7. Hankang Bu; While, M.H.; ”Retention reliability enhanced SONOS NVSM with scaled programming voltage ”,Aerospace Conference Proceedings, 2002. IEEE , Volume: 5 , 2002 Page(s): 2383 -2390. 8. Myung Kwan Cho; Kim, D.M. ”High performance SONOS memory cells free of drain turn-on and over-erase: compatibility issue with current flash technology”, IEEE Electron Device Letters , Volume: 21 Issue: 8 , Aug 2000 Page(s): 399 -401. 9. Yamada, Y. Hiwa, T. Tamane, K. Amemiya, Y. Ohshima and K. Yoshikawa, ”Degradation Mechanism of Flash EEPROM Program After Program/Erase Cycles”, International Electron Device Meeting, P.23, 1993. 10. White, M.H.; Yang Yang; Ansha Purwar; French, M.L. ”A low voltage SONOS nonvolatile semiconductor memory technology”, Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on [see also Components, Hybrids, and Manufacturing Technology, IEEE Transactions on ] , Volume: 20 Issue: 2 , Jun 1997 Page(s): 190 -195. 11. H. Nishino, N. Hayasaka, K. Horioka, J. Shiozawa, S. Nadahara, N. Shooda,Y. Akama, A. Sakai, and H. Okano. ”Smoothing of the Si surface using CF4/02 down-flow etching”, J. Appl. Phys., Vol. 74, No. 2, 15 July 1993. 12. H.-C. Tseng C. Y. Chang F. M. Pan and L. P. Chen ”Effects of dry etching damage removal on low-temperature silicon selective epitaxial growth”, J. Appl. Phys. 78 (7), 1 October 1995. 13. Tsai, W.J.; Zous, N.K.; Liu, C.J.; Liu, C.C.; Chen, C.H.; Tahui Wang; Pan, S.; Chih-Yuan Lu; Gu, S.H., ”Data retention behavior of a SONOS type two-bit storage flash memory cell”, Electron Devices Meeting, 2001. IEDM Technical Digest. International, 2001 Page(s): 32.6.1 -32.6.4. 14. F. R. Libsch and M.H. White, ”Charge transport and storage of low programming voltage SONOS/MONOS memory devices, ” Sol. St. Elect., vol.33, p.105, 1990. 15. Jiankang Bu; White, M.H. ”Effects of two-step high temperature deuterium anneals on SONOS nonvolatile memory devices”, IEEE Electron Device Letters, Volume: 22 Issue: 1 , Jan 2001 Page(s): 17 -19. 16. Tanaka, M.; Saida, S.; Mitani, Y.; Mizushima, I.; Tsunashima, Y. ”Highly reliable MONOS devices with optimized silicon nitride film having deuterium terminated charge traps”, Electron Devices Meeting, 2002. IEDM '02. Digest. International, 2002 Page(s): 237 -240. 17. ”Nonvolatile Semiconductor Memory Technology”, Edited by William D. Brown; Joe E. Brewer; IEEE Press. 18. Yamada, Y. Hiwa, T. Tamane, K. Amemiya, Y. Ohshima and K. Yoshikawa, ”Degradation Mechanism of Flash EEPROM Programming After Program/Erase Cycles”, International Electron Devices Meeting, P.23, 1993. 19. S.C. Vltkavage and E.A. Irene, ”Electrical and ellipsometric characterization of the removal of silicon surface damage and contamination resulting from ion beam and plasma processing”, J. Appl. Phys. 64(4), 15 August 1988. 20. Song, S.C.; Luan, H.F.; Lee, C.H.; Mao, A.Y.; Lee, S.J.; Gelpey, J.; Marcus, S.; Kwong, D.L. ”Ultra thin high quality stack nitride/oxide gate dielectrics prepared by in-situ rapid thermal N2O oxidation of NH3 -nitrided Si”, VLSI Technology, 1999. Digest of Technical Papers. 1999 Symposium on, 1999 Page(s): 137 -138. 21. Tsai, W.J.; Gu, S.H.; Zous, N.K.; Yeh, C.C.; Liu, C.C.; Chen, C.H.; Tahui Wang; Pan, S.; Chih-Yuan Lu; ”Cause of data retention loss in a nitride-based localized trapping storage flash memory cell ”,Reliability Physics Symposium Proceedings, 2002. 40th Annual , 2002 Page(s): 34 -38. 22. Eitan, B.; Pavan, P.; Bloom, I.; Aloni, E.; Frommer, A.; Finzi, D.; ”NROM: A novel localized trapping, 2-bit nonvolatile memory cell ”,IEEE Electron Device Letters , Volume: 21 Issue: 11 , Nov 2000 Page(s): 543 -545. 23. Sugizaki, T.; Kobayashi, M; Ishidao, M. ;Minakaca, H.; Yamaguchi, M.; Tamura, Y.; Sugiyama, Y.; Nakanishi, T.; Tanaka, H.; ”Novel multi-bit SONOS type flash memory using a high-K charge trapping layer” ,2003 IEEE Symposium on VLSI Technology Digest of Technical Papers Page(s): 24 -28 24. Min She, Hideki Takeuchi, Member, IEEE, and Tsu-Jae King, Senior Member, IEEE; ”Silicon-Nitride as a tunnel dielectric for improved SONOS-type flash memory”, IEEE Electron Device Letters , Volume: 24 NO.5 , MAY 2003 Page(s): 309 -311. 25. B. Dipert and M. Levy, “Designing with Flash memory”, Published by Annabooks, 1993. 26. S. Tam, P. K. Ko, and C. Hu, “Lucky-Electron Model of Channel Hot-Electron Injection in MOSFET’s” , IEEE Transaction on Electron Devices, Vol.31, September 1984, p.1116. 27. T. Wang, W. J. Tsai., S.H. Gu , C.T. Chan, C.C. Yeh , N.K. Zous, T.C. Lu , Sam Pan, and C.Y. Lu, “Reliability Models of Data Retention and Read-Disturb in 2-bit Nitride Storage Flash Memory Cells(Invited Paper) ”, IEEE 2003. 28. C.C. Yeh, W.J. Tsai, T.C. Lu, H.Y. Chen, H.C. Lai, N.K. Zous, Y.Y. Liao, G.D. You, S.K. Cho, C.C. Liu, F.S. Hsu, L.T. Huang, W.S. Chiang, C.J. Liu, C.F. Cheng, M.H. Chou, Tahui Wang, Wenchi Ting, Sam Pan, Joseph Ku,and Chih-Yuan Lu, “Novel Operation Schems to Improve Device Reliability in a Localized Trapping Storage SONOS-type Flash Memory ”, IEEE 2003.id NH0925593062 sid 913161 cfn 0 / id NH0925593063 auc 莫文皓 tic 釕系雙鈣鈦礦單晶Sr2-xPbxYRuO6之晶體結構與磁性性質研究 adc 林滄浪教授 adc 吳茂昆教授 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 54 kwc 雙鈣鈦礦結構 abc 本論文主要探討使用助溶劑的方法來成長Sr2-xPbxYRuO6單晶。單晶相關的物理性質也藉由X-ray粉末繞射、樣品成份分析、以及磁性性質量測來做系統化的探討。 tc TABLE OF CONTENTS ABSTRACT............................ i ACKNOWLEDGEMENTS......................iii TABLE OF CONTENTS.......................iv LIST OF FIGURES......................... vi LIST OF TABLE..........................viii Chapter 1 Introduction   1 1.1 Background and Overview of Double Perovskites......... .1 1.2 Motivation..........................7 Chapter 2 Experimental Details    10 2.1 Sample Preparation and Characterization............. 10 2.2 Powder X-ray Diffraction Analysis............... 14 2.3 Magnetic Properties Measurement............... 16 2.4 Scanning Electron Microscope (SEM).............. 18 Chapter 3 Results and Discussion 20 3.1 Crystal Structure and Characterization.............. 20 3.2 Magnetization and susceptibility................ 36 Chapter 4 Conclusion 53 Referencesrf References 1 E.G. Steward, H.P. Rooksby, Acta Crystallgr. 4, 503-507(1951) 2 R. Roy, J.Amer. Ceram. Soc. 37, 581-588(1954) 3 F. Galasso et al., J. Am. Chem. Soc. 81, 820-823 (1959) 4 E.J. Fresia et al., J.Am. Chem. Lett 81, 4783-4785(1959) 5 M. P. Attefield et al., J. Solid State Chem. 100, 37-48 (1992) 6 P. D. Battle and C. W. Jones, J. Solid State Chem. 78, 108-116 (1989) 7 P.D. Battle, W.J. Macklin, J. Solid State Chem., 52, 138-145(1984) 8 P.D. Battle, W.J. Macklin, J. Solid State Chem., 52, 245-250(1984) 9 P. D. Battle et al., J. Solid State Chem. 46, 234-244 (1983) 10 W. A.Groem et al., Acta Crystallogr. Sect. C 42, 1472-1475 (1986) 11 J. Longo and R. Ward, J. Am. Chem. Soc. 83, 2816-2818 (1961) 12 J. C. Van Duivenboden et al., Acta Crystallogr., Sect. C 42, 523-525 (1986) 13 M. T. Anderson, et al., Prog. Solid State Chem. 22, 197-233 (1993) 14 V. M. Goldschemidt, Str. Nor. Vidensk-akad. Oslo 1, 1 (1926) 15 Chen, D. H., Ph.D. Dissertation, National Tsing Hua University, 1995 16 M.T. Anderson, K.R. Poeppelmeier, Chem. Mater. 3, 476-482(1991) 17 P. D. Battle, J. Mater. Chem. 5(7). 1003-1006 (1995) 18 R. Greatrex et al., J. Solid State Chem. 30, 137-148 (1979) 19 S. M. Rao et al, J. Crystal Growth 235, 271-276 (2002) 20 http://surf.eng.iastate.edu/~karie/Documentation 21 G. Cao, Y. Xin, C. S. Alexander, J. E. Crow, Phys. Rev. B 63, 184432 22 G.Cao et al, Phys. Rev. B 54, 15144 23 P. A. Joy, S. K. Date, Phys. Rev. B 56, 2324 24 Hiroyuki Takagiwa et al., J. Phys. Soc. J, 70(2), 333 (2001) 25 Shyang-Roeng Sheen et al., Jpn. J. Appl. Phys. 34, 4749-4753 (1995) 26J. L. Martinez et al., J. Magnetism Mag. Mater. 140-144, 179-180(1995) 27 S. Ikeda et al, Phys Rev. B 57(2), 978 (1998) 28 C. Zener, Phys Rev. 81, 440 (1951) 29 C. Zener, Phys Rev. 82, 403 (1951) 30 P. W. Anderson, Phys. Rev. 100, 675 (1955) 31 R. von Hemlolt et al., Phys. Rev. Lett. 71, 2331 (1993) 32 P. G. de Gennes, Phys. Rev. 118, 141-154 (196id NH0925593063 sid 913128 cfn 0 / id NH0925593064 auc 郭俊儀 tic 發展相位調變式橢圓儀即時監控半導體蝕刻製程 adc 林滄浪 adc 柳克強 adc 趙于飛 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 244 kwc 線上即時監控 kwc 蝕刻終點 kwc 橢圓儀 kwc 相位調變 kwc 光彈調變器 kwc 蝕刻率變化 abc 本研究利用LabVIEW 虛擬儀控軟體,結合電腦已改進了目前的單波長、固定入射角之相位調變式橢圓偏光儀,使之具有線上即時監控的功能;希望應用於實際半導體製程中有圖案之晶圓的電漿蝕刻終點偵測,以及製程中的變化情況。 tc 目錄 論文摘要..................................................I 致謝.....................................................II 目錄.....................................................III 表目錄.................................................VIII 圖目錄...................................................X 第一章 研究動機.........................................1 第二章 研究目的.........................................3 第三章 文獻回顧.........................................4 3.0 橢圓儀的背景介紹....................................4 3.1 單波長架構的橢圓儀測量.............................10 3.2 多波長架構的橢圓儀測量.............................12 3.3 表面無結構的橢圓參數計算方法理論...................16 3.4 表面無結構的橢圓參數測量...........................18 3.5 表面有結構的橢圓參數計算方法理論...................20 3.6 表面有結構的橢圓儀測量...............................24 第四章 實驗原理........................................28 4.0 基礎偏振光學原理..................................28 4.0.1光偏振型態與數學表示........................28 4.0.2以Stokes vector描述電磁波的偏極態.................32 4.0.3 基礎矩陣光學..................................37 4.1光彈調變式橢圓儀的量測方法............................43 4.2 光彈調變器(PEM)基本原理..............................46 4.3 光彈調變式橢圓儀即時量測實驗架構.....................47 4.4表面無結構的橢圓參數理論計算........................50 4.4.1 多層結構的橢圓參數計算理論....................50 4.4.2 理論計算SiO2厚度造成的影響....................57 4.4.3 不同入射角造成的影響..........................57 4.5 表面有結構的橢圓參數隨厚度變化理論計算(patterned) ......61 4.5.1 入射面平行溝槽時的情況..........................62 4.5.2 入射面垂直溝槽時的情況..........................65 第五章 實驗儀器操作步驟與系統校正.......................70 5.1 儀器操作步驟及注意事項..............................70 5.1.1 鎖相放大器......................................70 5.1.2光彈調變器(pem).................................71 5.1.3 溫控器&雷射diode..............................73 5.1.4 步進馬達(10萬) .................................73 5.1.5 訊號放大器(SCU)...............................74 5.1.5.0訊號放大器基本功能說明..................74 5.1.5.1 訊號處理器的放大倍率校正...............76 5.1.5.2 頻率響應的影響.........................77 5.1.5.3 放大能力的線性度問題...................79 5.1.5.4 直流訊號存在雜訊的問題..................82 5.1.5.5 直流訊號放大倍率修正的問題..............84 5.1.5.6 訊號放大器校正步驟......................86 5.2 PSA校正步驟 .......................................89 5.3 系統校正.............................................93 5.3.1 偏極片和析光片方位角的零點校正.................93 5.3.2 光彈調變器方位角的零點校正.....................96 5.4 橢圓儀系統所使用的儀器規格表........................99 第六章 實驗結果與討論..................................102 6.1 PEM殘餘雙折射對對調變相位的影響誤差 ............102 6.2 實驗測量到SiO2厚度造成影響的結果 ...................106 6.3 蝕刻過程蝕刻率的測量................................108 6.3.1 平均蝕刻率的計算方式說明.......................108 6.3.2 蝕刻過程迴授控制下蝕刻率的變化情況.............114 6.4 即時監測並控制蝕刻終點厚度...... ...................141 6.5 經過Bias power ON/OFF過程前後對ICP power (Self-Bias) 蝕刻 速率的影響.........................................171 第七章 結論............................................175 參考文獻...............................................178 附錄A 原始數據比較整理.................................182 A.1原始數據檔案名稱對照表..........................182 A.2 迴授控制下蝕刻率與影響蝕刻因素的變化情況.......186 附錄B理論計算推導過程.................................193 附錄C LabVIEW即時監控程式...........................206 C.1 即時監控主程式 (In-Situ Ellipsometer Controller.vi) ....206 C.2 子程式一(Fresnel eq2set Sio2 thick.vi) ................209 C.3 子程式二(Getting Started Digital IO.vi) ...............211 附錄D Matlab數據分析程式...............................212 D.1 原始訊號計算厚度程式 (Thickness.m) ...............212 D.2 由測量的橢圓參數Δ擬合求出第二層介質厚度程式 (DeltaFitOxideThick.m)..........................219 D.3 由測量的橢圓參數Δ擬合求出光彈調變器的殘餘雙折射 (DeltaFitDeltaI.m) ................................222 D.4 由測量的橢圓參數Ψ擬合求出直流訊號經過放大的正確倍率 (DeltaFitDcGain.m) ...........................225 附錄E Matlab理論計算程式...............................228 E.1 理論計算三層結構下,隨第一層厚度遞減過程的橢圓參數 (EllipsometryModel.m) ...........................228 E.2 理論計算表面有溝槽的結構下,入射光與溝槽方向平行情況下,隨第二層介質(被蝕刻)厚度遞減過程的橢圓參數變化情況 (ParallPatterned.m) .............................230 E.3 理論計算表面有溝槽的結構下,入射光與溝槽方向垂直情況下,隨第二層介質(被蝕刻)厚度遞減過程的橢圓參數變化情況 (PerpenPatterned.m) ............................235 附錄F Si、SiO2、Poly-Si在不同波長下的折射與吸收係數對應 表..............................................235 附錄G 儀器代理商資料..................................243 表目錄 表3.1橢圓儀的種類及比較…………………………………………....4 表3.2 文獻回顧整理I…………………………………………………10 表3.3 文獻回顧整理II………………………………………………...12 表3.4 文獻回顧整理III…………………………………………….…16 表3.5 文獻回顧整理IV…………………………………………….…18 表3.6 文獻回顧整理V…………………………………………….…20 表3.7 文獻回顧整理VI…………………………………………….…24 表4.1理想電磁波偏極狀態……………………….………..…………36 表4.2理想光學元件的偏極特性…………………………..…………42 表5-1 雷射規格………………………………………………………..99 表5-2 光彈調變器規格………………………………………………..99 表5-3 偏極片規格………………………………………………….100 表5-4 光偵測器規格…………………………………………………100 表5-5 鎖相放大器7265規格……………………..…………………100 表5-6 鎖相放大器7220規格…………………..……………………100 表5-7 訊號處理器器規格……………………………………………101 表6.1 比較蝕刻過程有無迴授控制的晶圓…………………………115 表6.2 比較蝕刻過程不同蝕刻多晶矽終點厚度……………………142 表7.1 商用即時量測橢圓儀產品規格比較…………………………177 圖目錄 圖3.1 歸零式橢圓儀架構圖……………………………………………4 圖3.2旋轉偏極片式橢圓儀 …………………………………………...6 圖3.3 旋轉析光片式橢圓儀…………………………………….…….7 圖3.4 調變式橢圓儀….……………………………………………….8 圖3.5 有圖案之晶圓截面示意圖………………………..………… …11 圖3.6 光譜儀偵測光強度隨電漿蝕刻過程的變化情況(左)橢圓參數 隨電漿蝕刻過程的變化情況(右)…………..……..11 圖3.7 蝕刻前(左)與蝕刻後(右)截面示意圖………………..…… 13 圖3.8 蝕刻過程光譜強度變化對照橢圓參數的變化…………...…....13 圖3.9氮化鈦及多晶矽厚度變化(上)以及多晶矽蝕刻率的變化(下) ……………………………………………………………………..…14 圖3.10 在固定的波長下測量相同條件製程的晶圓比較的結果.........15 圖3.11 使用不同波長所測量到橢圓參數的變化情況比較………….15 圖3.12 改良技術的反射式橢圓儀……………………………………16 圖3.13雙層薄膜模型示意圖………….………………………………17 圖 3.14 橢圓參數Ψ與Δ隨蝕刻過程變化(右);隨厚度變化Ψ-Δ圖(左) ………………………………………………………………………….18 圖3.15 使用UV波段測量多晶矽/二氧化矽/矽晶圓蝕刻過程橢圓參數隨厚度變化的過程……………………….……………….......28 圖3.16薄膜上有光罩覆蓋…………………………….………….……21 圖3.17光入射方向平行及垂直於光罩…………………….……….....21 圖3.18 計算上多層架構的情況……………………………….………21 圖3.19 橢圓儀分析有圖案表面的模型………………………………22 圖3.20 α、β隨線寬(a)、縱深(b)遞增時的變化趨勢 (左:6°入射、右:75°入射)………………………………. 26 圖3.21 純量面積比例理論加入了側向干涉分析橢圓儀量測有圖案表面的情況…………………………………………….………...27 圖4.1橢圓參數Ψ與反射電場分量關係示意圖……………..………33 圖4.2 非偏極光進入到金屬導線柵偏極片示意圖…………..………38 圖4.3非偏極光進入到晶體偏極…………………………………....38 圖4.4 (a) 光彈調變器的構造與工作原理; (b)電磁波與PEM交互作用示意圖(利用右邊的壓電材料使左邊晶體震動,造成氟化鈣晶體折射 ………………………………….............................46 圖4.5 PEM橢圓儀架構示意圖………………….............................47 圖4.6 鎖相放大器運作方塊圖…………………................................48 圖4.7 橢圓儀線上架構圖………………………................................49 圖4.8 一層薄膜模型………………………………………………50 圖4.9 鄰近兩波長間的光程差……………………………………..51 圖4.10 雙層架構示意圖……………………………………………55 圖4.11 在不同SiO2厚度橢圓參數Ψ隨Poly-Si厚度變化的情況 …………………………………………………………………………58 圖4.12 在不同SiO2厚度橢圓參數Ψ隨Poly-Si厚度變化的情況 …………………………………………………………………………58 圖4.13 不同SiO 2厚度,相同的Poly-Si厚度起始厚度下,橢圓參數Ψ-Δ圖隨Poly-Si厚度變化的情況……………………………59 圖4.14 Ψ在不同入射角下隨蝕刻深度的變化情況………………..60 (理論值由760 nm poly-Si開始蝕刻 , 底層為 25 nm oxide) 圖4.15 Δ在不同入射角下隨蝕刻深度的變化情況………………..60 (理論值由760 nm poly-Si開始蝕刻 , 底層為 250 nm oxide) 圖4.16 溝槽平行入射面示意圖……………………………………61 圖4.17 溝槽垂直入射面示意圖……………………………………61 圖4.18 平行入射面蝕刻結構示意圖:150 nm Hard Mask / 900 nm Poly-Si / 100 nm oxide on Si………………………………..62 圖4.19 入射面平行溝槽架構下,不同Hard Mask面積比例隨蝕刻深度的橢圓參數Ψ變化情況…………………………………63 圖4.20 入射面平行溝槽架構下,不同Hard Mask面積比例隨蝕刻深度的橢圓參數Δ變化情況…………………………………63 圖4.21入射面平行溝槽架構下,不同Hard Mask面積比例隨波長的 橢圓參數Ψ變化情況…………………………………………64 圖4.22 入射面平行溝槽架構下,不同Hard Mask面積比例隨波長的 橢圓參數Δ變化情況…………………………………….…65 圖4.23 垂直入射面蝕刻結構示意圖:150 nm Hard Mask / 900 nm Poly-Si / 100 nm oxide on Si…………………………….…66 圖4.24 入射面垂直溝槽架構下,不同Hard Mask面積比例隨蝕刻深度的橢圓參數Ψ變化情況…………………….………….…67 圖4.25 入射面垂直溝槽架構下,不同Hard Mask面積比例隨蝕刻深度的橢圓參數Δ變化情況……………………………….…67 圖4.26 入射面垂直溝槽架構下,不同Hard Mask面積比例隨波長的橢圓參數Ψ變化情況……………………………………...…68 圖4.27 入射面垂直溝槽架構下,不同Hard Mask面積比例隨波長的橢圓參數Δ變化情況……………………………………...…69 圖5.1 訊號處理器(SCU)校正接線示意圖……………………...…76 圖5.2 當交流訊號設定放大 20 倍時,在頻率大於 50 kHz 以的範圍,放大能力明顯受頻率響應影響…………………………78 圖5.3 當交流訊號設定放大 10 倍時,在頻率於 50 kHz ~ 300 kHz 的範圍,放大能力明顯不受頻率響應影響…………………79 圖5.4 放大能力明顯受輸入的交流訊號大小影響其放大倍率……80 圖5.5 放大能力明顯受輸入的直流訊號大小影響其放大倍率……81 圖5.6 蝕刻過程有加濾波片,直流訊號放大100倍後,經過程式濾波,再除回原本的大小,與交流訊號比較(Wafer No. F20 腔體壓力10 mTorr;Cl2 95 sccm;Ar 5 sccm; ICP 1000 W;Bias 200 W)……………………..……………82 圖5.7 蝕刻過程不需加濾波片,直流訊號放大100倍後,不需經過程式濾波,除回原本的大小,與交流訊號比較(Wafer No.G15;腔體壓力10 mTorr;Cl2 95 sccm;Ar 5 sccm;ICP 1000 W;Bias 200 W)……………………..……………………………83 圖5.8 蝕刻過程直流訊號修正不同倍率後的情況,其中直流訊號隨厚度變化情況,約由630 nm開始蝕刻,到280 nm蝕刻結束…84 圖5.9 蝕刻過程橢圓參數Ψ在修正不同倍率後的情況,其中橢圓參數Ψ在直流訊號放大93倍時,與理論值最接近(厚度變化情況,約由630 nm開始蝕刻,到280 nm蝕刻結束)…………85 圖 5.10 SCU校正接線示意圖……………..……………..…………86 圖5.11 PSA 系統示意圖……………..……………..……….………93 圖5.12 連續校正四次所修正的角度…..……………..……….………95 圖5.13 反射式光彈調變量測系統基本架構圖……..……….………96 圖6.1 (a)蝕刻過程的橢圓參數Δ未經過平移修正與理論值曲線比較 (b)蝕刻過程的橢圓參數Δ在經過平移修正與理論值曲線比較(Wafer No.G15,630 nm Poly-Si開始蝕刻,底層為 25 nm oxide)…………..……………..……….…………………….…103 圖6.2 (交大光電偏光實驗室提供)對PEM開機後做6 小時的即 時量測, 由0.383經過開機一個半小時之後才趨於穩定的 狀態…………..……………..……….…………………….…105 圖6.3 (交大光電偏光實驗室提供)對PEM開機後做4 小時的 即時量測,可以明顯看出 受到冷氣壓縮改變溫度對造成的影響…………..……………..……….…………………….…105 圖6.4 理論計算及實驗測量到不同SiO2厚度下的橢圓參數Ψ和Δ隨 厚度變化的情況……………..……….…………………….…107 圖6.5 不同SiO2厚度下的橢圓參數Ψ和Δ的比較,以及理論計算及 實驗測量到不同SiO2厚度下的Ψ-Δ圖………………….…107 圖6.6 利用橢圓參數Δ曲線的“上端極值點到下端極值點”和“下端極值點到上端極值點”計算平均蝕刻率………..…….…109 圖6.7 利用橢圓參數Δ曲線的週期特性,上端極值點與下端極值點的一個週期計算一次平均蝕刻率。(每個週期為90 nm)…110 圖6.8 利用橢圓參數Ψ曲線的週期特性,下端極值點的一個週期計算一次平均蝕刻率。(每個週期為90 nm)………..…….…111 圖6.9 利用橢圓參數解厚度得出原始根的週期特性,其厚度根的一個週期計算一次平均蝕刻率。(每個週期為90 nm)….…112 圖6.10 比較四種平均蝕刻率計算的結果與解厚度原始根的情況...113 圖6.11 蝕刻過程量測直流與交流訊號隨時間變化的情況….……..116 圖6.12 蝕刻過程橢圓參數Ψ隨時間變化的情況………..……...…116 圖6.13 蝕刻過程橢圓參數Δ隨時間變化的情況………..……...…117 圖6.14 蝕刻過程多晶矽厚度及平均蝕刻率隨時間變化的情況.…117 圖6.15 蝕刻過程Bias power ON後量測ICP power訊號的變化情況 ……………..……….…………………………………….…118 圖6.16 蝕刻過程Bias power ON後量測Bias power訊號的變化情況 ……………..……….…………………………………….…118 圖6.17 蝕刻過程Bias power ON後量測離子電流的變化情況.…119 圖6.18 蝕刻過程Bias power ON後量測射頻偏壓的變化情況.…119 圖6.19 蝕刻過程量測直流與交流訊號隨時間變化的情況….……..120 圖6.20 蝕刻過程橢圓參數Ψ隨時間變化的情況………..……...…120 圖6.21 蝕刻過程橢圓參數Δ隨時間變化的情況………..……...…121 圖6.22 蝕刻過程多晶矽厚度及平均蝕刻率隨時間變化的情況.…121 圖6.23 蝕刻過程Bias power ON後量測ICP power訊號的變化情況 ……………..……….…………………………………….…122 圖6.24 蝕刻過程Bias power ON後量測Bias power訊號的變化情況 ……………..……….…………………………………….…122 圖6.25 蝕刻過程Bias power ON後量測離子電流的變化情況.…123 圖6.26 蝕刻過程Bias power ON後量測射頻偏壓的變化情況.…123 圖6.27 蝕刻過程量測直流與交流訊號隨時間變化的情況….……..124 圖6.28 蝕刻過程橢圓參數Ψ隨時間變化的情況………..……...…124 圖6.29 蝕刻過程橢圓參數Δ隨時間變化的情況………..……...…125 圖6.30 蝕刻過程多晶矽厚度及平均蝕刻率隨時間變化的情況.…125 圖6.31 蝕刻過程Bias power ON後量測ICP power訊號的變化情況 ……………..……….…………………………………….…126 圖6.32 蝕刻過程Bias power ON後量測Bias power訊號的變化情況 ……………..……….…………………………………….…126 圖6.33 蝕刻過程Bias power ON後量測離子電流的變化情況.…127 圖6.34 蝕刻過程Bias power ON後量測射頻偏壓的變化情況.…127 圖6.35 蝕刻過程量測直流與交流訊號隨時間變化的情況….……..128 圖6.36 蝕刻過程橢圓參數Ψ隨時間變化的情況………..……...…128 圖6.37 蝕刻過程橢圓參數Δ隨時間變化的情況………..……...…129 圖6.38 蝕刻過程多晶矽厚度及平均蝕刻率隨時間變化的情況.…129 圖6.39 蝕刻過程Bias power ON後量測ICP power訊號的變化情況 ……………..……….…………………………………….…130 圖6.40 蝕刻過程Bias power ON後量測Bias power訊號的變化情況 ……………..……….…………………………………….…130 圖6.41 蝕刻過程Bias power ON後量測離子電流的變化情況.…131 圖6.42 蝕刻過程Bias power ON後量測射頻偏壓的變化情況.…131 圖6.43 蝕刻過程量測直流與交流訊號隨時間變化的情況….……..132 圖6.44 蝕刻過程橢圓參數Ψ隨時間變化的情況………..……...…132 圖6.45 蝕刻過程橢圓參數Δ隨時間變化的情況………..……...…133 圖6.46 蝕刻過程多晶矽厚度及平均蝕刻率隨時間變化的情況.…133 圖6.47 蝕刻過程Bias power ON後量測ICP power訊號的變化情況 ……………..……….…………………………………….…134 圖6.48 蝕刻過程Bias power ON後量測Bias power訊號的變化情況 ……………..……….…………………………………….…134 圖6.49 蝕刻過程Bias power ON後量測離子電流的變化情況.…135 圖6.50 蝕刻過程Bias power ON後量測射頻偏壓的變化情況.…135 圖6.51 蝕刻過程量測直流與交流訊號隨時間變化的情況….……..136 圖6.52 蝕刻過程橢圓參數Ψ隨時間變化的情況………..……...…136 圖6.53 蝕刻過程橢圓參數Δ隨時間變化的情況………..……...…137 圖6.54 蝕刻過程多晶矽厚度及平均蝕刻率隨時間變化的情況.…137 圖6.55 蝕刻過程Bias power ON後量測ICP power訊號的變化情況 ……………..……….…………………………………….…138 圖6.56 蝕刻過程Bias power ON後量測Bias power訊號的變化情況 ……………..……….…………………………………….…138 圖6.57 蝕刻過程Bias power ON後量測離子電流的變化情況.…139 圖6.58 蝕刻過程Bias power ON後量測射頻偏壓的變化情況.…139 圖6.59 蝕刻終點控制程式執行的流程示意圖………...…...…...…141 圖6.60 蝕刻過程量測直流與交流訊號隨時間變化的情況….……..143 圖6.61 蝕刻過程橢圓參數Ψ隨時間變化的情況………..……...…143 圖6.62 蝕刻過程橢圓參數Δ隨時間變化的情況………..……...…144 圖6.63 蝕刻過程多晶矽厚度隨時間變化的情況. …………..……144 圖6.64 蝕刻過程量測直流與交流訊號隨時間變化的情況….……..145 圖6.65 蝕刻過程橢圓參數Ψ隨時間變化的情況………..……...…145 圖6.66 蝕刻過程橢圓參數Δ隨時間變化的情況………..……...…146 圖6.67 蝕刻過程多晶矽厚度隨時間變化的情況...…………..……146 圖6.68 蝕刻終點厚度附近多晶矽厚度隨時間變化的放大情況…147 圖6.69 蝕刻過程量測直流與交流訊號隨時間變化的情況….……..148 圖6.70 蝕刻過程橢圓參數Ψ隨時間變化的情況………..……...…148 圖6.71 蝕刻過程橢圓參數Δ隨時間變化的情況………..……...…149 圖6.72 蝕刻過程多晶矽厚度隨時間變化的情況...…………..……149 圖6.73 蝕刻終點厚度附近多晶矽厚度隨時間變化的放大情況…150 圖6.74 蝕刻過程量測直流與交流訊號隨時間變化的情況….……..151 圖6.75 蝕刻過程橢圓參數Ψ隨時間變化的情況………..……...…151 圖6.76 蝕刻過程橢圓參數Δ隨時間變化的情況………..……...…152 圖6.77 蝕刻過程多晶矽厚度隨時間變化的情況...…………..……152 圖6.78 蝕刻終點厚度附近多晶矽厚度隨時間變化的放大情況I…153 圖6.79 蝕刻終點厚度附近多晶矽厚度隨時間變化的放大情況II..153 圖6.80 蝕刻過程量測直流與交流訊號隨時間變化的情況….……..154 圖6.81 蝕刻過程橢圓參數Ψ隨時間變化的情況………..……...…154 圖6.82 蝕刻過程橢圓參數Δ隨時間變化的情況………..……...…155 圖6.83 蝕刻過程多晶矽厚度隨時間變化的情況...…………..……155 圖6.84 蝕刻終點厚度附近多晶矽厚度隨時間變化的放大情況I…156 圖6.85 蝕刻終點厚度附近多晶矽厚度隨時間變化的放大情況II..156 圖6.86 蝕刻過程量測直流與交流訊號隨時間變化的情況….……..157 圖6.87 蝕刻過程橢圓參數Ψ隨時間變化的情況………..……...…157 圖6.88 蝕刻過程橢圓參數Δ隨時間變化的情況………..……...…158 圖6.89 蝕刻過程多晶矽厚度隨時間變化的情況...…………..……158 圖6.90 蝕刻終點厚度附近多晶矽厚度隨時間變化的放大情況I…159 圖6.91 蝕刻終點厚度附近多晶矽厚度隨時間變化的放大情況II..159 圖6.92 蝕刻過程量測直流與交流訊號隨時間變化的情況….……..160 圖6.93 蝕刻過程橢圓參數Ψ隨時間變化的情況………..……...…160 圖6.94 蝕刻過程橢圓參數Δ隨時間變化的情況………..……...…161 圖6.95 蝕刻過程多晶矽厚度隨時間變化的情況...…………..……161 圖6.96 蝕刻終點厚度附近多晶矽厚度隨時間變化的放大情況I…162 圖6.97 蝕刻終點厚度附近多晶矽厚度隨時間變化的放大情況II..162 圖6.98 蝕刻過程量測直流與交流訊號隨時間變化的情況….……..163 圖6.99 蝕刻過程橢圓參數Ψ隨時間變化的情況………..……...…163 圖6.100 蝕刻過程橢圓參數Δ隨時間變化的情況……..……...…164 圖6.101 蝕刻過程多晶矽厚度隨時間變化的情況..………..……164 圖6.102 蝕刻終點厚度附近多晶矽厚度隨時間變化的放大情況I..165 圖6.103 蝕刻終點厚度附近多晶矽厚度隨時間變化的放大情況II.165 圖6.104 蝕刻過程量測直流與交流訊號隨時間變化的情況.……..166 圖6.105 蝕刻過程橢圓參數Ψ隨時間變化的情況……..……...…166 圖6.106 蝕刻過程橢圓參數Δ隨時間變化的情況……..……...…167 圖6.107 蝕刻過程多晶矽厚度隨時間變化的情況..………..……167 圖6.108 蝕刻終點厚度附近多晶矽厚度隨時間變化的放大情況I..168 圖6.109 蝕刻終點厚度附近多晶矽厚度隨時間變化的放大情況II.168 圖6.110 橢圓儀(Ellipsometer)與商用雷射干涉儀(Nanospec)量測起始 厚度對照情況…………………………………..……...…170 圖6.111 橢圓儀(Ellipsometer)與商用雷射干涉儀(Nanospec)量測終點 厚度對照情況…………………………………..……...…170 圖6.112 殘餘蝕刻實驗設計示意圖………………………..……...…171 圖6.113 蝕刻過程量測直流與交流訊號隨時間變化的情況……..171 圖6.114 蝕刻過程橢圓參數Ψ隨時間變化的情況……..……...…171 圖6.115 蝕刻過程橢圓參數Δ隨時間變化的情況……..……...…172 圖6.116 蝕刻過程多晶矽厚度隨時間變化的情況..………..……172 圖6.117 蝕刻終點厚度附近多晶矽厚度隨時間變化的放大情況I..173 圖6.118 蝕刻終點厚度附近多晶矽厚度隨時間變化的放大情況II..173rf 1.陳旭賢 “利用相位調變式橢圓儀進行電漿蝕刻製程之即時監控與量測” 國立清華大學工程與系統科學研究所碩士論文 2000 2.張俊霖 “蝕刻製程中相位調變式橢圓儀即時監控自動控制化” 國立清華大學工程與系統科學系專題研究 2000 3.劉育維 “相位調變式橢圓儀應用於電漿蝕刻製程監控” 國立清華大學工程與系統科學研究所碩士論文 2002 4.王夢偉 “多波長光彈調變式橢圓偏光術” 國立交通大學光電工程研究所博士論文 2004 5.蔡斐欣 “光彈調變器線上校正以及橢圓偏光參數的量測” 國立交通大學光電工程研究所博士論文 2002 6. M. W. Wang , and Y. F. Chao, “Azimuth Alignment in Photoelastic Modulation Ellipsometry at a Fixed Incident Angle” , Jpn. J. Appl. Phys. 41(2002) pp3981-3986 7. Y. F. Chao ,and C. K. Wang , “Direct Determination of Azimuth Angle in Photoelastic Modulator System” , Jpn. J. Appl. Phys. 37(1998)3558 8. C. K. Wang , and Y. F. Chao , “Measurement of Optical Activity using a Photoelastic Modulator System” , Jpn. J. Appl. Phys. 38 (1999)941 9. R.M.A.Azzam , and N. M. Bashara , “Ellipsometry and Polarized Light” , North-Holland Amesterdam Inc. 1977 10. Edward Collett , “Polarized Light Fundamentals and Applications” , Marcel Dekkel Inc. 1993 11. J. A. Woollam , “A Short Course in Ellipsometry” , J. A. Woollam Co.,Inc. 12. Samuel S.SO , “Ellipsomeric Analyses For An Absorbing Surface Film On An Absorbing Substrate With Or Without An intermediate Surface layer” , Surface Science 56(1976)97-108 13. D.J. Thomas , P. Southworth , M.C. Flowers , and R.Greef , “An investigation of the reactive ion etching of polysilicon in pure Cl2 plasma by in situ ellipsometry and quadrupole mass spectrometry” J.Vac.Sci.Technol. B 8(5),Sep/Oct 1990 14. M. Haverlag , and G.S. Oehrlein , ”In Situ ellipsometry and reflectometry during etching of patterned surfaces : Experiments and simulations” , J.Vac.Sci.Technol. B 10(6),Nov/Dec 1992 15. J.T.C. Lee , N. Blayo , I. Tepermeister , F.P. Klemens , W.M. Mansfield , and D.E.Ibbotson , “Plasma etching process development using in situ optical emission and ellipsometry” J.Vac.Sci.Technol. B 14(5), Sep/Oct 1996 16. S. A. Henck ,W. M. Duncan ,L. M.Lowenstein , and S.W. Butler , “ In situ spectral ellipsometry for real-time thickness measurement: Etching multilayer stacks” , J. Vac. Sci. Tecknol. A 11(4),Jul/Aug 1993 17. H.L. Maynard, N. Layadi , and J. T.Lee , “Multiwavelength ellipsometry for real-time process control of the plasma etching of patterned samples” , J.Vac.Sci.Technol. B 15(1) Jan/Feb 1997 18. H.L.Maynard, N.Layadi , and J.T.C.Lee , “Plasma etching of submicron devices : in situ monitoring and control by multi-wavelength ellipsometry ” Thin Solid Films 1998 .313-314 (1998) 398-405 19. S.Vallon , O. Joubert , L. Vallier , F. Ferrieu , B. Drevillon , and N. Blayo , “Real-time ultraviolet ellipsometry monitoring of gate patterning in a high-density plasma” , J.Vac.Sci.Technol. A 15(3) May/Jun 1997 20. H.T. Huang, W. Kong , and F. L. Terry, Jr. , “Normal-incidence spectroscopic ellipsometry for critical dimension monitoring” , Appl. Phys. Lett., Vol. 78, No. 25, 18 June 2001 21. H.M. Park , D.S.Grimard , J.W.Grizzle , and F.L.Terry Jr. , “Etch Profile Control of High-Aspect Ratio Deep Submicrometer α-Si Gate Etch ” , IEEE Transactions On Semiconductor Manufacturing ,Vol.14 ,No.3,Aug 2001 22. S.J. Cho, P. G. Snyder, C. M. Herzinger , and B. Johs “Etch depth control in bulk GaAs using patterning and real time spectroscopic ellipsometry” , J. Vac. Sci. Technol. B 20, 197 (2002) 23. Edward D. Palik , “Handbook of Optical Constants of Solids” , Academic Press , INCid NH0925593064 sid 913104 cfn 0 / id NH0925593065 auc 吳泰鋒 tic 氣泡式噴墨頭噴墨過程之 tic & tic #63849;值模擬 adc 潘欽 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 英文 pg 74 kwc 微型氣泡 kwc CFD-ACE(U) kwc 入口邊界速 kwc & kwc #64001; kwc 噴墨過程 kwc & kwc #63817; kwc & kwc #63965;方程式 kwc 氣泡內壓 kwc & kwc #63882;關係式 kwc 液珠 kwc & kwc #64008;為 abc 本研究探討高熱通率下微型氣泡之成長過程與氣泡式噴墨頭噴墨過程之模擬。 tc ABSTRACT Ⅱ ACKNOWLEDGEMENT Ⅲ CONTENTS Ⅳ LIST OF TABLES Ⅵ LIST OF FIGURES Ⅶ CHAPTER 1 INTRODUCTION 1.1 Motivation 1 1.2 Literature Review 1 1.2.1 Microheater Experiments 1 1.2.2 Bubble Nucleation Simulation 4 1.3 Objectives and Methods 7 1.4 Scope of the Thesis 8 CHAPTER 2 THEORETICAL ANALYSIS OF BUBBLE NUCLEATION 2.1 Nucleation Theory 9 2.2 Semi-Infinite Heat Conduction Model 12 2.3 Bubble Formation Approach 14 2.3.1 Bubbble Dynamics 14 2.3.2 Asai's Bubble Pressure Approach 16 CHAPTER 3 NUMERICAL AND CFD SIMULATION 3.1 CFD-ACE(U) Introduction 19 3.1.1 Staggered Grids System 19 3.1.2 SIMPLEC Method 22 3.1.3 VOF Method 22 3.2 Heating Process Simulation 24 3.3 Solving the extended Rayleigh equation with Asai's pressure Model 27 3.3.1 Rung-Kutta Method 27 3.3.2 Extended Rayleigh Equation with Asai's pressure model 28 3.4 Simulated Bubble Formation 29 3.4.1 Bubble Formation with an Inlet Boundary Condition 30 3.4.2 Cubic Spline Method 33 3.5 Jetting Simulation 35 CHAPTER 4 RESULTS AND DISCUSSION 4.1 Temperature Distribution around the Heater before Boiling 40 4.2 Bubble Radius Fitting 44 4.3 Simulated Bubble Formation 46 4.4 Jetting Process Simulation of an Inkjet Head 56 4.4.1 Geometry Effect 56 4.4.2 Heating Power and Temperature Effect 68 CHAPTER 5 CONCLUTION AND RECOMMENDATION 71 CHAPTER 6 REFERENCES 73rf Asai, A., Hara, T., Endo, I., 1987, “One-Dimensional Model of Bubble Growth and Liquid Flow in Bubble Jet Printers,” Japanese J. of Applied Physics, Vol.26, No. 10, pp1794-1801 Asai, A., 1989, “Application of the Nucleation Theory to the Design of Bubble Jet Printers,” Japanese J. of Applied Physics, Vol.28, No. 5, pp909-915 Asai, A., 1991, “Bubble Dynamics in Boiling Under High Heat Flux Pulse Heating,” J. Heat Trans., Vol.113, pp973-979 Asai, A., 1992, “Three-Dimensional Calculation of Bubble Growth and Drop Ejection in a Bubble Jet Printer,” Transactions of the ASME, Vol.114, pp638-641 Avedisian, C. T., Osborne, W. S., Mcleod, F. D., Curley, C. M., 1999, “Measuring bubble nucleation temperature on the surface of a rapidly heated thermal ink-jet heater immersed in a pool of water,” Proc. R. Soc. Lond. A, Vol.455, pp3875-3899 Bankoff, S. G., 1957, “Ebullition from Solid Surfaces in the Absence of a Pre-existing Gaseous Phase,” Transaction of ASME, Vol.79, pp735 Carey, V. P., 1992, Liquid-Vapor phase Change Phenomena, Ch.3&5, Taylor & Francis, Bristol, Pa, USA Collier, J. G., Thome, J. R., 1994, Convective Boiling and Condensation, 3rd Ed., Ch.4, Clarendon Press, Oxford, UK Faires, J. D., 1998, Numerical methods, 2nd Ed., Ch.3, Brooks/Cole, USA Frank, P. I., David, P. D., 1996, Fundamentals of heat and mass transfer, 4th Ed., Ch.5, John Wiley & Sons, Inc., USA Hsu, Y. Y., Graham, R. W., 1986, Transport Processes in Boiling and Two-phase Systems, Ch.1, ANS, La Grange Park, I11., USA Iida, Y., Okutama, K., 1993, “Peculiar bubble generation on a film heater submerged in ethyl alcohol and imposed a high heating rate over 107 K s-1,” Int. J. Heat Mass Transfer, Vol.36, No. 10, pp2699-2701 Iida, Y., Okutama, K., 1994, “Boiling nucleation on a very small film heater subjected to extremely rapid heating,” Int. J. Heat Mass Transfer, Vol.37, No. 17, pp2771-2780 Tsai, J.-H., Liwei, L., 2002, “Transient Thermal Bubble Formation on Polysilicon Micro-Resisters,” Journal of Heat Transfer, Vol.124, pp375-382 Liwei. L., Pisano, A. P., Carey, V. P., 1993, “Thermal Bubble Formation on Polysilicon Micro Resistors,” Journal of Heat Transfer, Vol.120, pp735-742 Olson, H. F., 1957, Acoustical Engineering, D.Van Nostrand Company, Inc., London, United Kingdom Owen, C. T., Richard, E. C., Michael, J. T., 2003, “Effect of Surface Wettability on Fast Transient Microboiling Behavior,” Langmuir, Vol.19, pp6168-6177 Patankar, S. V., Spalding, D. B., 1972, “A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-dimensional Parabolic Flows,” Int. J. Heat Mass Transfer, Vol.15, pp1787 Pantankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, D. C., 1980 Chen, P.-H., Chen, W.-C., Chang, S.-H., 1997, “Bubble Growth and Ink Ejection Process of A Thermal Ink Printhead,” Int. J. Mech. Sci., Vol.39, No.6, pp683-695 Ross, R. A., John, D. M., William, R. K., 1985, “Thermodynamics and Hydrodynamics of Thermal Ink Jets,” Hewlett-Packard Journal, pp21-27 Lee, S.-H., 2003, the handout of “Numerical Methods for Incompressible Viscous Flow and Heat Transfer,” NTHU fall course. Van Stralen, S., Cole, R., 1979, Boiling Phenomena, Ch.3, McGraw-Hill Book Co., New York Van Doormaal, J. P., Raithby, G. D., 1984, “Enhancements of the simple method for predicting incompressible fluid flows,” Numerical Heat Transfer, Vol.7, pp147- 163 Wang, S.-P., Wang, K.-K., 1994, “A net inflow method for incompressible viscous flow with moving free surface,” Int. J. Numer. Meth. Fluids, Vol.18, pp669-694 Yang, Y.-D., 2004, the experimental results, MEMs lab, NTHU, Taiwan Zhao, Z., Glod, S., Poulikakos, D., 2000, “Pressure and power generation during explosive vaporization on a tihin-film microheater,” Int. J. Heat Mass Transfer, Vol.43, pp281-296id NH0925593065 sid 913120 cfn 0 / id NH0925593066 auc 陳宗儒 tic 單一細胞定位生長及流體抽換流道系統之研究 adc 曾繁根 adc 錢景常 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 126 kwc 單一細胞 kwc 細胞定位 kwc 電泳晶片 kwc 微流道 kwc 細胞檢測 abc 細胞與組織工程近年來已是快速發展且被認為是影響未來人類生活極大的新興科技領域。細胞與細胞(尤其是腦神經細胞)之間是如何交互影響與溝通,一直是深深吸引科學界的研究議題。礙於傳統實驗技術的限制,該研究領域始終難以取得決定性的發展。 tc ★摘要(Page.1) ★目錄(Page.3) ★緒論(Page.4) ★整體系統運作架構(Page.10) ★藥物抽換流道(Page.16) ☆目標 (Page.17) ☆原理 (Page.20) ☆第一代 ˙設計概念(Page.25) ˙實驗方法(Page.31) ˙實驗結果(Page.33) ˙分析討論(Page.35) ☆第二代 ˙設計概念(Page.37) ˙實驗方法(Page.42) ˙實驗結果(Page.43) ˙分析討論(Page.47) ☆第三代 ˙設計概念(Page.49) ˙實驗方法(Page.53) ˙實驗結果(Page.55) ˙分析討論(Page.58) ☆第三代改良型 ˙設計概念(Page.59) ˙實驗方法(Page.60) ˙實驗結果(Page.61) ˙分析討論(Page.63) ☆綜合分析比較(Page.64) ☆後續規劃發向(Page.66) ★細胞定位流道與生長空間 ☆引言(Page.68) ☆文獻回顧(Page.69) ˙人工吸引法 ˙光鉗定位法 ˙微流道定位法 ˙分析比較 ☆細胞生長機底材料影響研究 ˙實驗目的(Page.72) ˙實驗方法(Page.74) ˙實驗結果(Page.78) ˙分析討論(Page.85) ☆第一代 ˙設計概念(Page.87) ˙實驗方法(Page.89) ˙結果討論(Page.92) ☆第二代 ˙設計與實驗方法(Page.94) ˙結果與分析(Page.96) ☆第三代 ˙設計概念(Page.98) ˙分析討論(Page.99) ☆未來規劃(Page.101) ★微電泳分離流道(Page.103) ☆陽極接合(Page.105) ☆玻璃與PDMS接合(Page.110) ☆玻璃燒結(Page.116) ☆化學接合(Page.121) ☆綜合分析討論(Page.124) ★參考文獻(Page.125)rf [1 ] Kovacs et al, IEEE Transactions on Biomedical Engineering, 1994,vol,41,no.6,pp.567-577 [2 ] Matthieu Denoual et al, µTAS, 2003, pp531-534 [3 ] T. A. Nieminen, H. Rubinsztein-Dunlop and N. R. Heckenberg ``Calculation and optical measurement of laser trapping forces on non-spherical particles'' Journal of Quantitative Spectroscopy and Radiative Transfer 70, 627-637 (2001) [4 ] H. Nakanishi, T. Nishimoto, N. Nakamura, S. Nagamachi, A. Arai, Y. Iwata, and Y. Mito, “Fabrication of electrophoresis devices on a quartz and glass substrates using a bonding with HF solution,” in IEEE Micro Electro Mechanical Systems Conf., Nagoya, Japan, Jan. 26-30, 1997 [5 ] H. Suzuki et al, Biosensors and Bioelectronics, 2001, vol.16, pp.725-73 [6 ] Shih-Chang Lin, Fan-Gang Tseng, Yi-Chin. Tsai, Haimei Huang, and Ching-Chang Chieng "A Novel Protein Micro Stamper With Back-Filling Reservoir For Simultaneous Immobilization Of Large Protein Arrays", accepted by IEEE International Conference MEMS 2003,Kyoto, Japan, Jan. 19-23, 2003 [7 ] Catching and attaching cells using an array ofmicroholes A. Tixier , L. Griscom , K. Cozic , H. Nagai , B. Le Pioufle , Y. Murakami ,E. Tamiya , H. Fujita, IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, 2000 [8 ] Joel Voldman, Micro Total Analysis Syst. '00. 431-434 (2000) [9 ] Biomedical Applications of Polypyrrole Microactuators: From Single-Cell Clinic to Microrobots, Edwin W.H. Jager1,*, Charlotte Immerstrand2, Karl-Erik Magnusson2, Olle Ingan?鱷1, Ingemar Lundstr?卌1 , IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, 2000 [10 ] Room temperature bonding of micromachined glass devices for capillary Electrophoresis,Nghia Chiem, Loranelle Lockyear-Shultz, Per Andersson, Cameron Skinner, D. Jed Harrison, Sensors and Actuators B 63 2000 pp.147–152id NH0925593066 sid 913116 cfn 0 / id NH0925593067 auc 龔達翔 tic 鋯鈦酸鉛平面光波導元件之設計與製作 adc 蔡春鴻 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 103 kwc 鋯鈦酸鉛 kwc 光波導 kwc 溶膠-凝膠法 kwc 鈦酸鍶緩衝層 kwc 電光效應 kwc 光開關 abc 鋯鈦酸鉛鐵電陶瓷材料(ferroelectric ceramic PZT materials)本身具有良好的壓電、焦電、鐵電及電光特性,可用於非揮發性記憶體、壓力感測器、光閘與高頻聲波元件等。在光學上,由於鋯鈦酸鉛在近紫外線(ultraviolet)到紅外線(infrared)區段有良好的光穿透性,加上材料本身擁有高折射率、低傳導損失與強電光效應(electro-optic effect)的性質,在積體光學元件的應用上相當受到重視。 tc 目錄 摘要 ………………………………………………………………I 致謝 ………………………………………………………………II 目錄 ..……………………………………………………………III 圖目錄 ……………………………………………………………V 表目錄 ……………………………………………………………X 第一章、緒論 ……………………………………………………1 第二章、理論與文獻回顧 ……………………………………4 2.1 光波導理論………………………………………………4 2.1.1 二維波導理論 ………………………………4 2.1.2 三維波導分析法 ……………………………11 2.2 稜鏡耦合技術與應用 ………………………………13 2.2.1 稜鏡耦合技術 ………………………………13 2.2.2 折射率與厚度量測 …………………………14 2.2.3 傳導損失量測 …………………………………15 2.3 電光效應與量測方法 …………………………………17 2.3.1 電光效應 ……………………………………17 2.3.2 電光效應量測-稜鏡耦合 ……………………20 2.4 鋯鈦酸鉛(PZT)鐵電材料 …………………………21 2.4.1 鈣鈦礦結構 ………………………………21 2.4.2 鋯鈦酸鉛(PZT)之相圖與變形相界 ……………22 2.4.3 鋯鈦酸鉛(PZT)薄膜的製作……………………22 2.4.4 鋯鈦酸鉛(PZT)薄膜的光學特 …………………25 2.5 鐵電薄膜在光學元件上的應用 ………………………25 第三章、薄膜沉積與光學性質量測 …………………………39 3.1 溶膠-凝膠法鋯鈦酸鉛薄膜測試 …………………………39 3.2 鈦酸鍶緩衝層 …………………………………………40 3.2.1 鈦酸鍶前趨物配製……………………………40 3.2.2 鈦酸鍶薄膜……………………………………42 3.3 鋯鈦酸鉛薄膜 …………………………………………44 3.4 電光效應量測 …………………………………………46 第四章、元件設計與製作 ……………………………………67 4.1 元件設計與模擬………………………………………67 4.1.1 山脊型單模波導設計與模擬 …………………67 4.1.2 Mach-Zehnder干涉儀設計與模擬…………67 4.1.3 Top-layer波導結構設計與模擬………………69 4.2 光波導元件製作 ……………………………………70 4.2.1 山脊形波導元件製作 ………………………70 4.2.2 Top layer波導元件製作 ……………………72 4.3 光波導元件測試 ……………………………………73 第五章、結論 …………………………………………………96 參考文獻 ………………………………………………………99 圖目錄 圖2-1.1 兩介質交界處之入射、反射與穿透射線 ………………………………27 圖2-1.2 平面(planar)光波導結構及示意圖 ……………………………………27 圖2-1.3 TE模態之分散關係曲線(dispersion relation curves)圖 ………………28 圖2-1.4 波導穿遂深度示意圖 ……………………………………………………28 圖2-1.5 馬卡第里法(Marcatili’s method)分析模型剖面圖 ………………………29 圖2-1.6 等效折射率法(EIM)近似分析模型 ……………………………………29 圖2-2.1 稜鏡耦合及光場分布之示意圖 …………………………………………30 圖2-2.2 稜鏡耦合量測之曲線圖 …………………………………………………30 圖2-2.3 光傳導損失量測之裁減(cut-back)法 ……………………………………31 圖2-2.4 光傳導損失量測之稜鏡滑移(prism-sliding)法 …………………………31 圖2-2.5 光傳導損失量測之散射偵測(scattering detection)法 …………………31 圖2-3.1 負單軸晶體折射率橢圓球示意圖 ………………………………………32 圖2-3.2 Z-cut、Y方向傳導的鋯鈦酸鉛示意圖 …………………………………32 圖2-3.3 (a)未加電場及(b)外加電場時,以稜鏡耦合法量測氮鋁薄膜耦合角度之位移 …………………………………………………………………………………33 圖2-3.4 (a)TE及(b)TM模態的光作稜鏡耦合量測,耦合角度因外加電場所造成之位移 ………………………………………………………………………………34 圖2-4.1 鈣鈦礦(perovskite)結構 …………………………………………………35 圖2-4.2 PbZrO3-PbTiO3雙相互溶體系統相圖 …………………………………35 圖2-4.3 MPB成分材料性質表現 ………………………………………………36 圖2-4.4 以射頻濺鍍法在玻璃基板上沉積鋯鈦酸鉛薄膜之穿透光譜量測結果 ……………………………………………………………………………………36 圖2-5.1 BaTiO3 Mach-Zehnder干涉式調變器 .…………………………………37 圖2-5.2 相位控制之對稱式Mach-Zehnder干涉儀電光元件示意圖 ……………………………………………………………………………………37 圖2-5.3 Mach-Zehnder干涉儀經由外加電場後,輸出光強度隨電壓之變化曲線 ……………………………………………………………………………………38 圖3-1.1 溶膠-凝膠法PZT薄膜製作流程 …………………………………………47 圖3-1.2 不同退火溫度之溶膠-凝膠PZT薄膜之XRD圖 ………………………47 圖3-1.3 不同退火溫度之溶膠-凝膠PZT薄膜稜鏡耦合量測圖 …………………48 圖3-1.4 不同退火溫度與PZT薄膜折射率關係圖 ………………………………48 圖3-2.1 編號A鈦酸鍶前趨物(A STO precursor)配製方法 ……………………49 圖3-2.2 編號B鈦酸鍶前趨物(B STO precursor)配製方法 ………………………49 圖3-2.3 溶膠-凝膠法STO薄膜製作流程 ………………………………………50 圖3-2.4 不同退火溫度編號A與編號B前趨物之溶膠-凝膠法STO薄膜之XRD圖 ……………………………………………………………………………………50 圖3-2.5 不同退火溫度編號A前趨物之溶膠-凝膠法STO薄膜稜鏡耦合量測圖。(a)650,(b)700,(c)750℃,(d)波長與折射率關係 ……………………………………51 圖3-2.6編號A1~A3鈦酸鍶前趨物配製方法 ……………………………………51 圖3-2.7 750℃退火下,編號A1~A3前趨物之溶膠-凝膠法STO薄膜之XRD圖 ……………………………………………………………………52 圖3-2.8 750℃退火下,編號A1與A2前趨物之溶膠-凝膠法STO薄膜稜鏡耦合量測圖 …………………………………………………………52 圖3-2.9 修正後溶膠-凝膠法(MSG) STO薄膜製作流程 ………………………53 圖3-2.10 750℃不同退火環境下,溶膠-凝膠法(SG)與修正後溶膠-凝膠法(MSG)之STO薄膜之XRD圖 ……………………………………………………………53 圖3-2.11 750℃不同退火環境下,SG與MSG STO薄膜稜鏡耦合量測圖。(a)SG-STO (air),(b) SG-STO (O2),(c) MSG-STO (air),(d) MSG-STO (O2),(e) 4種薄膜比較,(f)波長與折射率關係圖 ……………………………………………54 圖3-2.12 750℃不同退火環境下,溶膠-凝膠法(SG)與修正後溶膠-凝膠法(MSG) STO薄膜之傳導損失量測圖 ………………………………………………………55 圖3-2.13 750℃不同退火環境下 (a)SG-STO (air),(b) SG-STO (O2),(c) MSG-STO (air),(d) MSG-STO (O2)薄膜之SEM圖 …………………………………………56 圖3-2.14 750℃不同退火環境下所得STO薄膜表面粗糙度分析(AFM)。(a)SG-STO (air),(b) SG-STO (O2),(c) MSG-STO (air),(d) MSG-STO (O2) ………………57 圖3-3.1不同退火溫度,在鍍有鈦酸鍶緩衝層的二氧化矽基板上以溶膠-凝膠法沉積PZT薄膜之XRD圖 ……………………………………………………………58 圖3-3.2 不同退火溫度下,在鍍有鈦酸鍶緩衝層的二氧化矽基板上沉積之PZT薄膜稜鏡耦合量測圖 ………………………………………………………………58 圖3-3.3 在鍍有鈦酸鍶緩衝層的二氧化矽基板上沉積之PZT薄膜退火溫度與折射率關係圖 …………………………………………………………………………59 圖3-3.4 修正後溶膠-凝膠法(MSG) PZT薄膜製作流程 …………………………59 圖3-3.5 650℃不同退火環境下與不同製程方式,在鍍有鈦酸鍶緩衝層的二氧化矽基板上沉積PZT薄膜之XRD圖 ………………………………………………60 圖3-3.6 650℃不同退火環境下與不同製程方式,在鍍有鈦酸鍶緩衝層的二氧化矽基板上沉積PZT薄膜之稜鏡耦合量測圖 ………………………………………60 圖3-3.7 650℃不同退火環境下與不同製程方式,PZT薄膜之波長與折射率的關係曲線 ……………………………………………………61 圖3-3.8 650℃不同退火環境下與不同製程方式,PZT薄膜之傳導損失量測 …………………………………………………………………61 圖3-3.9 650℃不同退火環境下 (a)SG-PZT (air),(b) SG-PZT (O2),(c) MSG-PZT (O2)薄膜之SEM圖 ………………………………62 圖3-3.10 650℃不同退火環境下所得PZT薄膜表面粗糙度分析(AFM)。(a)SG-PZT (air),(b) SG-PZT (O2),(c) MSG-PZT (O2) …………………………………………63 圖3-4.1 稜鏡耦合量測PZT電光係數之IZO/PZT/Pt的三明治結構的示意圖 ……………………………………………………………………64 圖3-4.2 薄膜外加電場後,稜鏡耦合曲線等效折射率產生偏移 ………………64 圖4-1.1 SiO2/PZT/STO 之TE模態波導分散(dispersion)曲線圖 ………………74 圖4-1.2 折射率階梯式山脊型(ridge-type)波導結構式意圖 ……………………74 圖4-1.3 BeamPROP模擬軟體之參數輸入與Layout ……………………………75 圖4-1.5 Slab high=0.52 ?慆之山脊型波導模擬結果 ……………………………75 圖4-1.6 BeamPROP軟體中,山脊型Mach-Zehnder干涉儀之結構 ……………76 圖4-1.7 BeamPROP軟體中,山脊型Mach-Zehnder干涉儀分光角度與輸出光強度的關係 ………………………………………………………76 圖4-1.8 BeamPROP軟體中,分光角度(a) ??=1°,(b) ??=1.5°, (c) ??=2°, (d) ??=2.5°, (e) ??=3°, (f) ??=3.5°, (g) ??=4°, (h) ??=4.5° 之Mach-Zehnder干涉儀光傳導圖 ……………………………………………………………………………………77 圖4-1.9 BeamPROP軟體中,山脊型Mach-Zehnder干涉儀之結構和右臂折射率調變量與光輸出強度關係圖 ………………………………………………………78 圖4-1.10 BeamPROP軟體中,山脊型Mach-Zehnder干涉儀之結構和右臂折射率調變量,(a) ?慨=0,(b)?慨=0.00025 之光傳導圖 …………………………………78 圖4-1.11 BeamPROP軟體中,x方向電光係數為24.74 pm/V之山脊型Mach-Zehnder光開關之結構圖 ……………………………………………………79 圖4-1.12 BeamPROP軟體中,x方向電光係數為24.74 pm/V之山脊型Mach-Zehnder光開關外加電壓與輸出端光強度的變化圖 ………………………79 圖4-1.13 BeamPROP軟體中,x方向電光係數為24.74 pm/V之山脊型Mach-Zehnder光開關在外加電壓為(a) V=0 V,(b)V=2.75 V 之光傳導圖 ……………………………………………………………………80 圖4-1.14 Top-layer式波導結構式意圖,及Top-layer 折射率與傳導光強度變化圖 …………………………………………………………81 圖4-1.15 BeamPROP軟體中,Top-layer式波導結構(a) n=2.3 (x-z plane), (b) n=2.3 (x-y plane), (c) n=2.1 (x-z plane), (d) n=2.1 (x-y plane)之光傳導圖 ………………81 圖4-1.16 BeamPROP軟體中,Top-layer (n=2.1)式波導結構(a) LP01,(b) LP11, (c) LP12, (d) LP21 模態的光傳導圖 ……………………………………………………82 圖4-1.17 BeamPROP軟體中,水平電光係數為24.74 pm/V之Top-layer型Mach-Zehnder光開關示意圖 ………………………………………………………83 圖4-1.18 BeamPROP軟體中,水平電光係數為24.74 pm/V之Top-layer型Mach-Zehnder光開關外加電壓與輸出端光強度的變化圖 ………………………83 圖4-1.19 BeamPROP軟體中,水平電光係數為24.74 pm/V之Top-layer型Mach-Zehnder光開關在外加電壓為0 V時之光傳導圖。(a) x-z平面圖,(b) 3-D圖,(c) 橫切面圖(x-y),(d) 傳導光強度與傳導距離變化圖 ……………………84 圖4-1.20 BeamPROP軟體中,水平電光係數為24.74 pm/V之Top-layer型Mach-Zehnder光開關在外加電壓為2.75 V時之光傳導圖。(a) x-z平面圖,(b) 3-D圖,(c) 橫切面圖(x-y),(d) 傳導光強度與傳導距離變化圖 ……………………85 圖4-2.1 鋯鈦酸鉛山脊型波導主動元件之製程流程圖 .…………………………86 圖4-2.2 (a) STO表面,(b) STO橫切面,(c) PZT表面(d) , PZT橫切面之SEM圖 ……………………………………………………………86 圖4-2.3 黃光製程之光阻圖形 ……………………………………………………87 圖4-2.4 離子束蝕刻系統 …………………………………………………………87 圖4-2.5 Ar壓力與蝕刻率關係圖 …………………………………………………88圖4-2.6在不同時間的離子束蝕刻條件下,鋯鈦酸鉛與光阻之蝕刻速率和蝕刻時間的關係圖 ………………………………………………………………………88 圖4-2.7 離子束蝕刻後之結構圖 ……………………………………89 圖4-2.8 鋯鈦酸鉛Top-layer型波導主動元件之製程流程圖 ……………………89 圖4-2.9 黃光微影反轉製程之光阻SEM圖 ……………………………90 圖4-2.10 Lift-off後Top-layer之結構圖 …………………………………………90 圖4-3.1 光波導量測系統圖 …………………………………………91 表目錄 表3-1 不同製程鈦酸鍶薄膜(STO)光學性質與表面粗糙度 ……………………65 表3-2 不同製程鋯鈦酸鉛薄膜(PZT)光學性質與表面粗糙度 …………………66 表4-1.1 STO與PZT各參數表 …………………………………………92 表4-2.1 正光阻黃光微影製程參數表 ………………………………93 表4-2.2 離子束蝕刻之製程參數表 …………………………………94 表4-2.3 黃光微影反轉製程參數表 …………………………………95rf 參考文獻 1. R. Syms and J. Cozens, “Optical guides waves and devices”, McGraw-Hill Book Company, (1992). 2. H. Nishihara , M. Haruna, and T. Suhara, “Optical integrated circuits”, McGraw-Hill Book Company, (1989). 3. R. G. Hunsperger, “Integrated optics: Theory and technology”, Springer, (1995). 4. Dao Ngoc Chien , Kazuo Tanaka , Masahiro Tanaka , “Guided wave equations of Snell’s and Brewster’s Law”, Optics Communications , Vol. 225 , p319-p329 , (2003). 5. David K. Cheng , “Field and Wave Electromagnetics, 2nd Edition”, Addison-Wesley Publishing Co. , (1989). 6. Ch. Papachristos , P. Frangos , “Synthesis of single- and multi-mode planar optical waveguides by a direct numerical solution of the Gel’fand-Levitan-Marchenko integral equation”, Optics Communications , Vol. 203 , p27-p37 , (2002). 7. E. A. J. Marcatili , “Dielectric rectangular waveguide and directional coupler for integrated optics”, Bell Syst. Tech. J., Vol.48 , No 9, p2071-p2102 , (1969). 8. G. B. Hocker ,W. K. Burns , “Mode dispersion in diffused channel waveguide by the effective index method”, Appl. Opt., Vol. 16 , p113-p118 , (1977). 9. T. K. Lim , H. Melchior , “Effective index method for generalized waveguide dispersion characteristics analysis of optical channel waveguides”, Electrionic Letters , Vol. 27 , p917-p918 , (1991). 10. E. Dogheche , D. Remiens , B. Thierry , “Optimum Parameters in the Design of Electrooptic Waveguide Modulaiors using Ferroelecteric Thin Films”, 1996 IEEE International Symposium on the Applications of Ferroelectrics(ISAF) , Vol. 1 , p61-p64 , (1996). 11. W. S. Chang , M. W. Muller , F. J. Rosenbaum , “Integrated Optics” , In Laser Applications , Monte Ross , ed. , p269-p289 , (1974). 12. Joseph C. Palais , “Fiber Optic Communications, 4th Edition”, January , (1998). 13. P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films”, Appl. Phys. Lett., Vol 14 , No. 9 , p291-p294 , (1969). 14. R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler”, Appl. Opt., Vol 12 , Issue 12 , p2901-p2908 , (1973). 15. I. P. Kaminow and L. W. Stulz, “Loss in deaved Ti-diffused LiNbO3 waveguides”, Appl. Phys. Lett., Vol 33 , No. 1 , p62 , (1978). 16. H. P. Weber, F. A. Dunn and W. N. Leibolt, “Loss measurement in thin film optical waveguides”, Appl. Opt., Vol 12, Issue 4, p755, (1973). 17. J. E. Goell and R. D. Standly, “Sputtered glass waveguide for integrated optical circuits”, Bell Syst. Tech. J., Vol 48, Issue 10, p3445, (1969). 18. Fernando Aqulló-Lópes, Fernando Aqulló-Rueda and José Manuel Cabrera, “Electrooptics”, ACADEMIC PRESS, (1994). 19. P. Gräupner, J. C. Pommier, A. Cachard, and J. L. Coutaz, “Electro-optical effect in aluminum nitride waveguides”, J. Appl. Phys., Vol. 71, No. 9, p4136~p4139, (1992). 20. B. G. Potter, M. B. Sinclair, and D. Dimos, “Electro-optical characterization of Pb(Zr,Ti)O3 thin films by waveguide refractometry”, Appl. Phys. Lett., Vol. 63, No. 16, p2180~p2182, (1993). 21. A. J. Moulson , J. M. Herbert , “Electroceramics Materials Properties Applications”, Chapman&Hall , New York , (1990). 22. Berdard Jaffe , William R. Cook , Hans Jaffe , “Piezoelectric Ceramics”, Academic Press Inc. , London , (1970). 23. C. A. Randall et. al. , “Classification And Consequences of Complex Lead Perovskite Ferroelectrics with Regard to B-site Cation Order”, J. Mater. Res. , Vol. 5 , p829-p834 , (1990). 24. C. Feldman , Rev. Sci , Instr. , Vol. 26 , p463 , (1955). 25. E. Dogheche, D. Remiens, and G. Velu, “Electrical and optical characterizations by prism-coupling method of PZT deposited in-situ by sputtering”, Vacuum, Vol. 66, p1~p8, (2002). 26. L. H. Hamedi, M. Guilloux-Viry, A. Perrin, and M. H. Cherkani, “On the epitaxial growth of PZT films by pulsed laser deposition”, Ann. Chim. Sci. Mat., Vol. 23, p377, (1998). 27. C. M. Foster, G.-R. Bai, R. Csencsits, J. Vetrone, R. Jammy, L. A. Wills, E. Carr, and Jun Amano, “Single-crystal Pb(ZrxTi1-x)O3 thin films prepared by metal-organic chemical vapor deposition: Systemtic compositional variation of electronic and optical properties”, J. Appl. Phys., Vol. 81, No. 5, p2349~p2357, (1997). 28. K. Nashimoto, D. K. fork, and G. B. Anderson, “Solid phase epitaxial grown of sol-gel derived Pb(Zr,Ti)O3 thin films on SrTiO3 and MgO”, Appl. Phys. Lett., Vol. 66, No. 7, p822~p824, (1995). 29. K. Nashimoto, and S. Nakamura, “Preparation and characterization of sol-gel derived epitaxial and oriented Pb(Zr0.52Ti0.48)O3 thin films”, Jpn. J. Appl. Phys., Vol. 33, p5147~p5150, (1994). 30. J. C. Park, S. H. Kim, H. D. Park, J. H and S. G. Kang, “Characterization of sol-gel multicoated thick Pb(Zr0.52Ti0.48)O3 films on platinized silicon substrates for microdevices applications”, Jpn. J. Appl. Phys., Vol. 42, p7497~p7501, (2003). 31. Robert W. Vest, “Metallo-Organic Decomposition(MOD) Processing of Ferroelectric and Elcetrooptic Films: Review”, Ferroelectrics, Vol. 102, p53~p68, (1990). 32. Zeto et al, “High-resolution dry etch patterning of PZT for piezoelectric MEMS devices”, Proceedings of the 11th IEEE ISAF’98, p89~p92, (1998). 33. B. T. Liu, K. Maki, S. Aggarwal, B. Nagaraj, V. Nagarajan, L. Salamanca-Riba, R. Ramesh, A. M. Dhote, and O. Auciello, “Low-temperature integration of lead-based ferroelectric capacitors on Si with diffusion barrier layer”, Appl. Phys. Lett., Vol. 80, No. 19, p3599~p3601, (2002). 34. E. Cattan, G. Velu, B. Jaber, D. Remiens, and B. Thierry, “Structure control of Pb(Zr,Ti)O3 films using PbTiO3 buffer layers produced by magnetron sputtering”, Appl. Phys. Lett., Vol. 70, No. 13, p1718~p1720, (1997). 35. A. A. Talin, S. M. Smith, S. Voight, J. Finder, K. Eisenbeiser, D. Penunuri, Z. Yu, P. Fejes, T. Eschrich, J. Curless, D. Convey, and A. Hooper, “Epitaxial PbZr.52Ti.48O3 films on SrTiO3/(001)Si substrates deposited by sol-gel method”, Appl. Phys. Lett., Vol. 81, No. 6, p1062~p1064, (2002). 36. Y. Wang, C. Ganpule, B. T. Liu, H. Li, K. Mori, B. Hill, M. Wuttig, and R. Ramesh, “Epitaxial ferroelectric Pb(Zr,Ti)O3 thin films on Si using SrTiO3 template layers”, Appl. Phys. Lett., Vol. 80, No. 1, P97~p99, (2002). 37. D. Czekaj, M. J. M. Gomes, M. Vasilevskiy, M. Pereira, and M. P. Dos Santos, “Deposition of PZT thin film and determination of their optical properties”, J. European Ceramic Soc., Vol. 19, p1489, (1999). 38. K. Nashimoto, S. Nakamura, H. Moriyama, and E. Osakabe, “Electro-optic beam deflector using epitaxial Pb(Zr0.52Ti0.48)O3 waveguides on Nb-doped SrTiO3”, Appl. Phys. Lett., Vol. 73, No. 3, p303~p305, (1998). 39. K. Nashimoto, S. Nakamura, T. Morikawa, H. Moriyama, and M. Watanabe, “Fabrication of electro-optic Pb(Zr0.52Ti0.48)O3 heterostructure waveguides on Nb-doped SrTiO3 solid-phase epitaxy”, Appl. Phys. Lett., Vol. 74, No. 19, p2761~p2763, (1999). 40. A. Petraru, J. Schubert, M. Schmid, and Ch. Buchal, “Ferroelectric BaTiO3 thin-film optical modulators”, Appl. Phys. Lett., Vol. 81, No. 8, p1375~p1377, (2002). 41. M. Haruna and J. Koyama, “Thermooptic deflection and switching in glass”, Appl. Opt., Vol. 21, No. 19, p3461-p3465 , (1982).id NH0925593067 sid 913133 cfn 0 / id NH0925593069 auc 翁政輝 tic 電感耦合式電漿輔助化學氣相沉積系統中奈米碳管的成長與臨場後處理及拉曼光譜分析 adc 蔡春鴻 adc 柳克強 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 167 kwc 奈米碳管 kwc 後處理 kwc 電漿輔助化學氣相沈積 kwc 場發射 kwc 微拉曼光譜儀 abc 自從奈米碳管 (Carbon Nanotubes, CNTs) 於1991年被發現以來,由於其特殊的幾何結構,不論在物性或化性上來說,均有異於以往一般材料優異的特性。其中,其優越的場發射特性不論在啟始電場、場發射電流密度、長時間的穩定性等均較以往常用來作為場發射電子源的材料,如鉬針尖、矽針尖、或鑽石薄膜等為佳;作為場發射電子源或場發射顯示器 (Field Emission Display, FED) 的應用,是目前相當有潛力與元件製程整合的產品。畢竟,一個新的材料的重要性除了在純學術上的基礎研究外,能否與現今元件的半導體製程整合更是認定其是否“實至名歸”的一個重要因素。 tc 摘要.......................................................i 第一章 緒論 ..........................................14 1-1 奈米碳管 (Carbon Nanotubes, CNTs)...............14 1-2 奈米碳管的合成..................................17 1-2-1 電弧放電法 (Arc Discharge Method) 與雷射剝蝕法 (Laser Ablation Method)..................................17 1-2-2 催化劑式化學氣相沈積法 (Catalytic Chemical Vapor Deposition, CCVD)........................................18 1-2-3 CCVD製程中奈米碳管可能的成長機制................20 1-3 奈米碳管的性質與應用............................22 1-3-1 奈米碳管的性質..................................22 1-3-2 奈米碳管“可能的”應用..........................23 參考文獻.................................................26 第二章 研究方法.......................................27 2-1 研究方法概述....................................27 2-1-1 CCVD-CNTs不利於場發射應用的因素.................28 2-1-2 後處理方法的選擇................................33 2-2 文獻回顧 – 後處理製程..........................37 2-2-1 電漿後處理......................................37 2-2-2 熱後處理........................................46 2-2-3 後處理製程文獻總結..............................49 2-3 合成與後處理之系統..............................52 2-3-1 電感耦合式電漿的基本原理........................52 2-3-2 高密度電漿源之ICP-CVD系統設備...................55 2-3-3 表面溫度的量測與校正............................58 參考文獻.................................................59 第三章 檢測工具之設備與理論分析 – 拉曼光譜與場發射測........................................................61 3-1 微拉曼光譜學 (Micro-Raman Spectroscopy).........62 3-1-1 拉曼效應 (Raman Effect).........................63 3-1-2 拉曼散射的古典與量子模型........................64 3-1-3 碳材料的拉曼光譜與分析..........................73 3-1-4 量測設備與拉曼分析..............................80 3-2 場發射量測......................................87 3-2-1 場發射的理論背景................................88 3-2-2 奈米碳管的場發射................................93 3-2-3 量測設備與場發射分析............................96 參考文獻................................................100 第四章 結果與討論....................................102 4-1 後處理之標準成長製程 – Baselines for treatment...............................................102 4-2 後處理“非”臨場製程...........................108 4-2-1 實驗簡介.......................................108 4-2-2 後處理時間的效應...............................109 4-2-3 後處理偏壓大小的效應...........................119 4-3 後處理與場發射增強機制.........................127 4-3-1 後處理結構轉變的機制 – A co-sputtering-deposition process......................................127 4-3-2 可能的場發射增強機制 – The influence of coatings/coverage on field emission.....................137 4-4 後處理臨場製程.................................144 4-4-1 簡介...........................................144 4-4-2 成長製程的討論.................................145 4-4-3 臨場後處理製程的可行性.........................147 參考文獻................................................154 第五章 總結與未來展望................................155 5-1 總結...........................................155 5-2 未來展望.......................................157 5-2-1 臨場製程 – 密度與場發射特性的控制.............157 5-2-2 反應性電漿後處理製程...........................158 5-2-3 光譜技術於SWNTs材料檢測上的應用................161 參考文獻................................................163 參考文獻列表.............................................164rf 第一章 [1 ] W. R. David, R. J. Slawson, and G. R. Rigby, Nature 171, 756. (1952) [2 ] S. Iijima, Nature 354, 56 (1991). [3 ] S. Iijima and T. Ichihashi, Nature 363, 603. (1993) [4 ] D. S. Bethune et al., Nature 363, 605. (1993) [5 ] M.S. Dresselhaus, G. Dresselhaus, P. Avouris (Eds.), “Carbon Nanotubes: Synthesis, Structure, Properties, and Applications”, Springer, Berlin, 2002. [6 ] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, “Physical Properties of Carbon Nanotubes”, Imperial College Press, London, 1998; R. Saito et al, Phys. Rev. B 46, 1804. (1992) [7 ] M. Meyyappan et al, Plasma Sources Sci. Technol. 12, 205 (2003). [8 ] S. Hofmann et al, , Appl. Phys. Lett. 83, 4661 (2003). [9 ] 莊鎮宇,國立清華大學 工程與系統科學系博士論文初稿。(中華民國九十三年五月) [10 ] S. Helveg et al, Nature 427, 426. (2004) [11 ] Z. Y. Juang et al, Diamond Relat. Mater. 13, 1203. (2004) [12 ] M. Yumura et al, Diamond Relat. Mater. 8, 785. (1999) [13 ] Y. Saito and S. Uemura, Carbon 38, 169. (2000) [14 ] S. J. Tans, A. R. M. Verschueren, and C. Deeker, Nature 393, 49. (1998) [15 ] http://www.nasa.gov 第二章 [1 ] Q. H. Wang et al, Appl. Phys. Lett. 70, 3308. (1997) [2 ] M. Yumura et al, Diamond Relat. Mater. 8, 785. (1999) [3 ] Y. Saito and S. Uemura, Carbon 38, 169. (2000) [4 ] M. Shiraishi and M. Ata, Carbon 39, 1913. (2001) [5 ] 胡 瑗,國科會產學計畫第二年度研究報告,編號:NSC-91-2622-E007-004。(中華民國九十二年) [6 ] C. C. Chaung et al, Diamond Relat. Mater. 13, 1012. (2004) [7 ] S. H. Jo et al, Appl. Phys. Lett. 84, 413. (2004) [8 ] Y. Zhang et al, Appl. Phys. Lett. 79, 3155. (2001) [9 ] V. I. Merkulov et al, Appl. Phys. Lett. 80, 4816. (2002) [10 ] M. Meyyappan et al, Plasma Sources Sci. Technol. 12, 205. (2003) [11 ] 魏銘德,國立清華大學 工程與系統科學系碩士論文。(中華民國九十三年) [12 ] J.-M. Bonard and C. Klinke, Phys. Rev. B 67, 115406. (2003) [13 ] L. Nilsson et al, Appl. Phys. Lett. 76, 2071. (2000) [14 ] J.-M. Bonard et al, Adv. Mater. 13, 184. (2001) [15 ] M. Sveningsson et al, Appl. Phys. A 73, 409. (2001) [16 ] 莊鎮宇、來俊帆,未發表資料。(中華民國九十二年) [17 ] I. N. Lin, Y. H. Chen, and H. F. Cheng, Diamond Relat. Mater. 9, 1574. (2000) [18 ] A. Hart et al, Appl. Phys. Lett. 74, 1594. (1999) [19 ] K. S. Ahn et al, Carbon 41, 2481. (2003) [20 ] C. Y. Zhi, X. D. Bai, and E. G. Wang, Appl. Phys. Lett. 81, 1690. (2002) [21 ] J. Zhang et al, Solid State Commu. 127, 289. (2003) [22 ] H. R. Chu, J. H. Jung, and G. S. Park, SID’01 DIGEST P-40, 707. (2001) [23 ] S. J. Chung, S. H. Lim, and J. Jang, Thin Solid Films 383, 73. (2001) [24 ] S. Huang and L. Dai, J. Phys. Chem. B 106, 3543. (2002) [25 ] K. Yu et al, Chem. Phy. Lett. 373, 109. (2003) [26 ] H. S. Kang et al, Chem. Phys. Lett. 349, 196. (2001) [27 ] X. D. Bai et al, Appl. Phys. Lett. 76, 2624. (2000) [28 ] J. Zhang et al, Diamond Relat. Mater. 13, 54. (2004) [29 ] S. C. Kung, K. C. Hwang, and I. N. Lin, Appl. Phys. Lett. 80, 4819. (2002) [30 ] M. Yudasaka et al, Carbon 41, 1273. (2003) [31 ] 莊鎮宇,未發表資料。(中華民國九十二年) [32 ] J. S. Kim et al, Appl. Phys. Lett. 82, 1607. (2003) [33 ] M. Yudasaka, M. Zhang, and S. Iijima, Chem. Phys. Lett. 374, 132. (2003) 第三章 [1 ] L. Rayleigh, Phil. Mag. 41, 274, 447. (1871) [2 ] C. V. Raman and K. S. Krishnan, Nature 121, 501. (1928) [3 ] http://www.nobel.se/physics/laureates/1930/ [4 ] D. A. Long, “The Raman Effect”, John Wiley & Sons, 2002. [5 ] R. W. Wood, Nature 122, 349. (1928) [6 ] C. V. Raman and K. S. Krishnan, Proc. Roy. Soc. Lond. 122, 23. (1929) [7 ] W. Demtröder, “Laser Spectroscopy”, 3rd Edition, Springer, Germany, 2002. [8 ] F. Tuinstra and J. L. Koenig, J. Chem. Phys. 53, 1126. (1970) [9 ] R. J. Nemianuch and S. A. Solin, Phys. Rev. B 20, 392. (1979) [10 ] B. S. Elman et al, Phys. Rev. B 24, 1027. (1981) [11 ] B. S. Elman et al, Phys. Rev. B 25, 4142. (1982) [12 ] P. Lespade et al, Carbon 20, 427. (1982) [13 ] R. Al-Jishi and G. Dresselhaus, Phys. Rev. B 26, 4541. (1982) [14 ] D. Beeman et al, Phys. Rev. B 30, 870. (1984) [15 ] R. O. Dillon, J. A. Woollam, and V. Katkanant, Phys. Rev. B 29, 3482. (1984) [16 ] H. Wilheim et al, J. Appl. Phys. 84, 6552. (1998) [17 ] P. C. Eklund, J. M. Holden, and R. A. Jishi, Carbon 33, 959. (1995) [18 ] N. R. Raravikar et al, Phys. Rev. B 66, 235424. (2002) [19 ] M. S. Dresselhaus and P. C. Eklund, Advanced in Physics 49, 705-814. (2000) [20 ] H. Kataura et al, Synthetic Met. 103, 2555. (1999) [21 ] M. S. Dresselhaus et al, Carbon 40, 2043. (2002) [22 ] Jobin Yvon, http://www.jyinc.com/ [23 ] W. Taylor et al, “Improved Printable Field Emission Display with Hop-plate for HDTV”, Internal Display Workshop 2003 (IDW ’03), Fukuoka, Japan, 2003; http://www.pfe-ltd.com [24 ] R. H. Fowler and L. Nordheim, Pro. R. Soc. London, Ser. A 119, 173. (1928) [25 ] R. Gomer, “Field Emission and Field Ionization”, American Institute of Physics, New York, 1993. [26 ] 劉閔利,國立清華大學 工程與系統科學系碩士論文。(中華民國九十一年) [27 ] P. Vincent et al, Phys. Rev. B 66, 075406. (2002) [28 ] 彭志維,國立清華大學 物理系碩士論文。(中華民國九十二年) [29 ] M. Sveningsson et al, Appl. Phys. A 73, 409. (2001) [30 ] J. Zhang et al, Diamond Relat. Mater. 13, 54. (2004) [31 ] C. Y. Zhi, X. D. Bai, and E. G. Wang, Appl. Phys. Lett. 81, 1690. (2002) [32 ] J. M. Bonard et al, Adv. Mater. 13, 184. (2001) [33 ] L. Nilsson et al, Appl. Phys. Lett. 76, 2071. (2000) [34 ] Y. Tu et al, Appl. Phys. Lett. 80, 4018. (2002) [35 ] S. H. Jo et al, Appl. Phys. Lett. 82, 3520. (2003) [36 ] J. H. Choi et al, J. Appl. Phys. 94, 487. (2003) [37 ] 林春佐,國立清華大學 工程與系統科學系碩士論文。(中華民國九十二年) [38 ] M. Shiraishi and M. Ata, Carbon 39, 1913. (2001) [39 ] J. M. Bonard et al, Phys. Rev. Lett. 89, 197602. (2002) [40 ] J. M. Bonard et al, Phys. Rev. B 67, 115406. (2003) [41 ] V. V. Zhirmov et al, J. Vac. Sci. Technol. B 19(1), 87. (2001) 第四章 [1 ] 魏鴻文,國立清華大學 工程與系統科學系博士班研究計畫書。(中華民國九十二年) [2 ] 魏銘德,國立清華大學 工程與系統科學系碩士論文。(中華民國九十三年) [3 ] 林囿延,國立清華大學 工程與系統科學系碩士論文初稿。(中華民國九十三年三月) [4 ] V. V. Zhirnov et al, Appl. Surf. Sci. 94/95, 123. (1996) [5 ] W. Yi et al, Adv. Mater. 14, 1464. (2002) [6 ] D. Kang et al, J. Vac. Sci. Techno. B 19(1), 50. (2001) [7 ] R. Schlesser et al, J. Appl. Phys. 82, 5763. (1997) [8 ] R. Schlesser et al, Appl. Phys. Lett. 70, 1596. (1997) [9 ] 董建宏,國立清華大學 工程與系統科學系碩士論文初稿。(中華民國九十三年三月) [10 ] K. B. K. Teo et al, Nano Lett. 4, 921. (2004) 第五章 [1 ] 林春佐,國立清華大學 工程與系統科學系碩士論文。(中華民國九十二年) [2 ] http://www.iuvsta.org/IUVSTA_Educational_Material.html [3 ] 董建宏,國立清華大學 工程與系統科學系碩士論文初稿。(中華民國九十三年三月) [4 ] M. S. Dresselhaus et al, Carbon 40, 2043. (2002) [5 ] S. M. Bachilo et al, Science 298, 2361. (2002) [6 ] A. Hartschuh et al, Science 301, 1354. (2003) [7 ] Y. Ohno et al, Appl. Phys. Lett. 84, 1368. (2004)id NH0925593069 sid 913119 cfn 0 / id NH0925593070 auc 高健薰 tic PLZT系列鐵電薄膜應用於光波導元件之製程及其特性之研究 adc 蔡春鴻 ty 博士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 207 kwc 鋯鈦酸鉛鑭 kwc 金屬有機裂解製程 kwc 脈衝雷射剝鍍 kwc 線性電光效應 kwc 二次電光效應 kwc 脊型光波導元件 abc 鋯鈦酸鉛鑭(PLZT)系列鐵電薄膜包括未摻雜鑭之鋯鈦酸鉛(PZT)與未摻雜鋯之鈦酸鉛鑭(PLT)均具有良好之光穿透性與強電光效應,依其組成成分的差異,分別在光記憶體、光開關、光調制器與光波導等電光元件與積體光學元件應用上極具潛力,在光通訊產業蓬勃發展的今日,已成為廣受矚目的研究課題。然而因為PLZT系列等材料為多元複合固溶體,缺乏一種對各組成成分均有相近蝕刻速率之蝕刻材料,導致在製作光波導型積體光學元件之結構構形時非常困難,必須尋求一種簡單,具量產潛力的構形技術加以取代。 tc 目 錄 章節 主題 頁次 摘要………………………………………………..………….Ⅰ 誌謝…………………………………………………..……….Ⅲ 目錄…………………………………………………..……….Ⅳ 表目錄……………………………………………….….…….Ⅸ 圖目錄………………………………………………...………Ⅹ 第一章 前言……………………………… ………………..………....1 1-1 研究背景……………………………………………………...….1 1-2 研究動機與目的………………………………………...……….3 第二章 文獻回顧 2-1鐵電陶瓷之晶體結構………………….…………………..….….5 2-1-1晶體結構與其特性……………………………….……...….5 2-1-2相變化與其特性…………………………………..……..….5 2-2 鋯鈦酸鉛(PZT)材料….………………………………….………7 2-2-1鉛系鈣鈦礦之結晶結構…………………………..….…..…7 2-2-2 PZT之相圖與特性…………………………….…….……...7 2-3 鋯鈦酸鉛鑭(PLZT)材料………………………………………...9 2-3-1 鑭摻雜對光穿透性之影響…………………………...……9 2-3-2 PLZT之成份組成與相圖…..………………………………9 2-3-4 PLZT之結晶結構……………………………………...….10 2-4 PZT、PLZT薄膜之製備方法…………………………….……12 2-4-1 單晶陶瓷與靶材之製備……………………………….…12 2-4-2 液相溶液成膜法……...………………………………..…12 2-4-3化學氣相沈積法……………………………………..…….14 2-4-4磁控濺鍍法(magnetron sputtering)……...………..……….14 2-4-5脈衝雷射剝鍍法(PLD)…..………………………………..15 2-5 PZT、PLZT薄膜之特性與應用…………………………….….17 2-5-1光學性質……………………………………………….…..17 2-5-2 電光特性………………………………………………….19 2-6積體光學元件之應用…………………………………………..23 2-6-1 光波導(Optical waveguide)元件…………………………23 2-6-2 光閘(Optical switch)元件………………………………...24 2-6-3記憶體元件之應用………………………………………..24 2-6-4致動元件之應用…………………………………………..25 2-6-5感測元件之應用………………………………………..…26 2-6-6紅外線感測元件…………………………………………..26 2-6-7壓電感測元件……………………………………………..26 第二章 參考文獻………………………………………………………27 第三章、理論基礎 3-1光波導理論……………………………………………………...57 3-1-1二維波導理論……………………………………………..57 3-1-2 三維波導理論…………………………………………….64 3-2稜鏡耦合技術…………….……………………………………..70 3-2-1稜鏡耦合原理…………………………………………..…70 3-2-2端面耦合原理……………………………………………...71 3-2-3薄膜折射率係數之量測………………………………...…71 3-3電光效應………..……………………………………………….74 3-3-1 折射係數橢圓球……………………………………….…74 3-3-2 電光效應與折射係數變化……………………………….75 3-3-3電光效應量測方法……………………………………..…79 3-4光波導之傳輸損耗…………...…………………………………83 3-4-1 光損耗之來源………………………………………….....83 3-4-2 光損耗之量測………………………………………….…84 第三章參考文獻……………..…………………………………………87 第四章 實驗方法 4-1 金屬有機裂解鍍膜(MOD)製程………………………………103 4-1-1 起始材料之調製………………………………………...103 4-1-2 奈米微粉之調製………………………………………...104 4-1-3 PZT薄膜之製鍍程序……………………………………105 4-1-4 極化電性量測樣本製作………………………………...106 4-2 準分子脈衝雷射剝鍍(PLD)製程…………………………….107 4-2-1 靶材製作與基板整備…………………………………...107 4-2-2 脈衝雷射剝鍍………………………………………...…108 4-3 Nd:YAG脈衝雷射剝鍍(PLD)製程……………………….…110 4-3-1 製程腔體的設計與組配………………………………...110 4-3-2 靶材製作與基板整備…………………………...………111 4-3-3 Nd:YAG脈衝雷射剝鍍程序……………………………112 4-4 光波導元件結構設計與黃光剝離製程………………………113 4-4-1 脊型光波導結構之理論計算與模擬………………...…113 4-4-2 黃光剝離製程…………………………………………...114 4-5 薄膜特性之量測………………………………………………117 4-5-1薄膜厚度之量測………………………………………….117 4-5-2 薄膜結晶結構之量測………………………………...…118 4-5-3 表面形貌之量測………………………………………...119 4-5-4 薄膜光學特性之量測…………………………………...119 4-5-4 薄膜電光特性之量測…………………………………...120 4-5-5 光傳輸特性之量測……………………………………...121 第四章 參考文獻……………………………………………………..122 第五章 結果與討論 5-1 以摻雜奈米微粉之金屬有機裂解製程製鍍PZT薄膜之探討……………………………………………………………...134 5-1-1 晶態特性探討…………………………………………...134 5-1-2 摻雜微粉製程對薄膜厚度之影響…………………...…136 5-1-3 鐵電特性之探討………………………………………...137 5-1-4 薄膜表面特性之探討…………………………………...137 5-1-5 光學特性之探討………………………………………...138 5-2 以準分子脈衝雷射剝鍍製程製備PLZT系列薄膜之探討….140 5-2-1 兩段式加溫成相PLD製程晶態特性探討……………..140 5-2-2 退火溫度與壓力對PLZT薄膜晶態之影響……………142 5-2-3 磊晶PLZT薄膜之製備與其光學特性之探討…………144 5-3 以Nd:YAG脈衝雷射剝鍍製程製備PLZT系列薄膜之探討150 5-3-1 薄膜表面微粒之抑制…………………………………...150 5-3-2 薄膜晶態之控制………………………………………...150 5-3-3 光穿透特性……………………………………………...151 5-3-4 光傳輸損耗……………………………………………...151 5-3-5 線性電光效應………………………………………..….152 5-3-6 二次電光效應…………………………………………...153 5-4 光波導元件結構設計與模擬…………………………………155 5-4-1 單波導元件之設計與模擬…………………………..….155 5-4-2 Y型光波導分光器元件之設計與模擬………………….156 5-4-3 Mach-Zehnder 干涉儀式光開關之設計與模擬………..156 5-5 光波導元件黃光剝離製程探討………………………………158 5-5-1 正光罩黃光製程之探討………………………………...158 5-5-2 正光罩黃光剝離製程之探討……………………….…..160 5-5-3 負光罩黃光剝離製程之探討…………………………...161 第五章 參考文獻……………………………………………………..162 第六章 結論…………………….…………………………..205rf [2.1 ] F. Jona and G. Shirane, Ferroelectric Crystals, Pergamon Press, 1962 [2.2 ] Y. Xu, Ferroelectric Materials and Their Applications, Elsevier Science Publishers, 1991 [2.3 ] K. Uchino, “Ferroelectric devices”, Marcel Dekker, (2000). [2.4 ] 詹國禎, 朱建國 “電子與光電子材料” 新文系開發出版公司, 80-155, (2002) [2.5 ] G.H. Haertling and C.E. Land, “Hot-pressed (Pb, La)(Zr,Ti)O3 Ferroelectric Ceramics for Electrooptic Applications” J. Amer. Ceram. Soc.,54[1 ]1-11(1971) [2.6 ] C.E. Land and P.D. Thacher, “Ferroelectric Ceramic Electrooptic Materials and Devices” Proc. IEEE, 57[5 ](1969) [2.7 ] C.E. Land and G.H. Haertling, “Optical Properties of Ferroelectric Ceramics.,” J. Phys. Soc. Ja., Suppl., 28, 96-99 (1970) [2.8 ] G.H. Haertling, “Hot-pressed Ferroelectric Lead Zirconate Titanate Ceramics for Hectro-optical Applications,” Amer. Ceram. Soc. Bull., 49[6 ]564-567(1970) [2.9 ] G.H. HaerHing, “PLZT Electrooptic Materials and Applications-a Review”, Ferroelectrics, 75,25-55(1987) [2.10 ] C. Land, P. Thacher and G. Haertling “Electrooptic Ceramics,” Applied solid state Science, Advances in Materials and Device Research, 4, 137-233, Academic Press, 1974 [2.11 ] K. Hardtl, Ferroelectrics, 12,9(1976) [2.12 ] J. Biggers and W. Schulze, Bull. Am.Ceram. Soc., 53, 809(1974) [2.13 ] G. Haertling and C. Land, Ferroelectrics, 3, 269(1972) [2.14 ] J. Thomson, Jr., Bull. Am. Ceram. Soc., 53,421(1974) [2.15 ] M. Murata, K. Wakino, K. Tanaka and Hamakawa, Mat. Res. Bull., 11,323(1976) [2.16 ] Z.W. Yin, Ferroelectrics, 35,[6 ](1981) [2.17 ] G. Haertling, “Processing of Tramsparent Electrooptic Ceramics,” Microstructure and properties of Ceramic Materials, 88-98, Science Press, China, 1984 [2.18 ] J. Pottharst and H. Schichl, Ferroelectrics, 10, 191(1976) [2.19 ] H. Adachi and K. Wasa, “Sputtering Preparation of Ferroelectric PLZT Thin Films and Their Optical Application,” IEEE Trans. Ultrasonics, Ferroelectrics and Frequency control, 38,[6 ]645-655(1991) [2.20 ] B.A. Tuttle and R.W. Schwartz, “Solution Deposition of Ferroelectric Thin Films,” MRS Bulletin, 20[6 ], 49(1996) [2.21 ] 陳三元, “強介電薄膜之液相化學法製作” 工業材料,108, 100(1995) [2.22 ] V.E. Wood, J.R. Busch, S.D. Ramamurthi and S.L. Swartz, “Guided-wave Optical Properties of Sol-gel Ferroelectric Films,” J. Appl. Phys. 71[9 ]4566(1992) [2.23 ] G. Teowee, S. Motakel, T. Bukowski, J. Boulton and D. Uj;,amm, “Optical Losses in Sol-gel Derived Lead Lanthanum Titanate Waveguides” Microelectric Engineering 29, 323-326(1995) [2.24 ] M. Shimizu, H. Fujisawa and T. Shiosaki, “MOCVD of Ferroelectric PLZT Thin Films and Their Properties,” Microelectric Engineering, 29, 173-176(1995) [2.25 ] M. Okuyama, T. Usuki and Y. Hamakawa, “Epitaxial Growth of Ferroelectric PLZT Thin Film and Their Optical Properties,” Appl. Phys.,21, 339-343(1980) [2.26 ] B. Jaber, D. Remiens, E. Cattan. and B. Thierry, “Optimisation of the Deposition and Annealing Parameters of Paraelectric PLZT(28/0/100) Thin Films Grown by RF Magnetron Sputtering,” Sensors & Actuators, A,51, 1-4(1995) [2.27 ] H. Adachi, T. Mitsuyu, O.Yamazaki and K. Wasa, “Ferroelectric(Pb,La)(Zr,Ti)O3Epitaxial Thin Films on Sapphire Grawn by RF-planar Magnetron Sputtering,” J. Appl. Phys. 60,(2), 736-741(1986) [2.28 ] S. Krishnakumar, V. Ozguz, C. Fan, C. Cozzolino, S. Esener and S. H. Lee, “Deposition and Characterization of Thin Ferroelectric Lead Lanthanum Zirconate Titanate (PLZT) Films on Sapphire for Spatial Light Modulators Applications” IEEE Trans. on Ultra., Ferroel., and Freq. Contr., 38,(6), 585-590(1991) [2.29 ] H. Adachi, T. Mitsuyu, O. Yamazaki and K.Wasa, “Preparation and Properties of (Pb,La) TiO3 Epitaxial Thin Films by Malti-Target Sputtering,” Japan. J. Appl. Phys., 24, Suppl. 24-3, 13-16(1985) [2.30 ] D. B Chrisey and G.K. Hubler, Pulsed Laser Deposition of Thin Films, John Wiley & Sons, 1994. [2.31 ] M. Gomes, E. Gomes, P.L. Mantas and J.L. Baptista, “Growth and Characterization of PLZT Films” Appl. Surface Science, 96-98, 779-783(1996) [2.32 ] M.J.M. Gomes “On the Preparation of PLZT Thin Films Grown by Pulsed Laser Deposition” Vacuum, 52, 61-66(1999) [2.33 ] H.F. Cheng, J.P. Wang, Y.C. Ling, T.F. Tseng, K.S. Liu and I.N. Lin “Influence of SrTiO3 or Pt Buffer Layer on the Formation of Perovskite Phase PLZT Films Prepared by Pulsed Laser Deposition “IEEE Trans. Ultrason., Ferroel., Freq. Contr., 431-434(1996) [2.34 ] H.F. Cheng, “Structure and Electrical Properties of Excimer Laser Deposited PLZT Thin Films” Appl. Surf. Sci., 92, 378-381(1996) [2.35 ] S.B. Xiong, Z.G. Liu and X.Y. Chen, “Highly (100) Textured Growth of Transparent PLT Ferroelectric Thin Films by Pulsed Laser Deposition,” Materials Latter, 25, 213-216(1995) [2.36 ] G. A. Petersen and J.R. McNeil, “Effect of Oxygen Partial Pressure on Lead Content of PLZT Thin Films Produced by Excimer Laser Deposition,” Thin Solid Films, 220, 87-91(1992) [2.37 ] X.D. Wu, T. Venkatesan, A.Inam and X.X. Xi, “Pulsed Laser Deposition of High Tc Superconducting Thin Films Present and Future, “Mat. Res. Soc. Symp. Proc., 191, 129-133(1990) [2.38 ] K.B. Erington and N.J. Ianno, “Thin Films of Uniform Thickness by Pulsed Laser Deposition,” Mat. Res. Soc. Symp. Proc., 191, 115-118(1990) [2.39 ] R.E. Muenchausen, K.M. Hubbard, S. Foltyn, R.C. Setler, N.S. Nogar and C. Jenkius, “Effects of Beam Parameters on Excimer Laser Deposition of YBa2 Cu3 O7-x,” Appl. Phys, Lett., 56,(6), 578-581(1990) [2.40 ] M. Ohring, The Materials Science of Thin Films Academic Press, 1992 [2.41 ] W.D. Song, C.W.An, D.S. Lu, Y.C. Fan and Z.G. Li, “Deposition of Large Area YBa2Cu3 O7 Superconducting Films by Laser Scanning Ablation,” Appl. Phys. Lett., 63,(24), 3370-3373,(1993) [2.42 ] A.M.Rao and J.S. Moodera, “Pesign and Implementation of an Inexpensive Target Scanner for the Growth of Thin Films by the Laser Ablation Process,” Rev. Sci. Instrum. 62,(4), 1107-1111(1991) [2.43 ] D. B. Chrisey, J. S. Horwitz and K. S. Grabowski, “In-situ Growith of PZT Thin Films by Pulsed Laser Deposition”, Mat. Res. Soc. Symp. Proc., 191, 25-28(1990) [2.44 ] J.A.Greer, M.D. Tabat, C. Lu, “Future Trends for Large area Pulsed Laser Deposition,” Nuclear Instrum. And Meth. in Phys. Res., B, 121, 357-362(1997) [2.45 ] V. E. Wood, J. R. Busch, S. D. Ramamurthi, and S. L. Swartz, “Guided-wave optical properties of sol-gel ferroelectric films”, J. Appl. Phys., Vol. 71, No. 9, 4557, (1992). [2.46 ] C. M. Foster, G.-R. Bai, R. Csencsits, J. Vetrone, R. Jammy, L. A. Wills, E. Carr, and Jun Amano, “Single-crystal Pb(ZrxTi1-x)O3 thin films prepared by metal-organic chemical vapor deposition: Systemtic compositional variation of electronic and optical properties”, J. Appl. Phys., Vol. 81 No. 5, 2349, (1997). [2.47 ] L. H. Hamedi, M. Guilloux-Viry, A. Perrin, and M. H. Cherkani, “On the epitaxial growth of PZT films by pulsed laser deposition”, Ann. Chim. Sci. Mat., Vol. 23, 377, (1998). [2.48 ] D. Czekaj, M. J. M. Gomes, M. Vasilevskiy, M. Pereira, and M. P. Dos Santos, “Deposition of PZT thin film and determination of their optical properties”, J. European Ceramic Soc., Vol. 19, 1489, (1999). [2.49 ] M. P. Moret, M. A. C. Devillers, K. Worhoff, and P. K. Larsen, “Optical properties of PbTiO3, PbZrxTi1-xO3, and Pb ZrO3 films deposited by metal-organic chemical vapor deposition on SrTiO3”, J. Appl. Phys., Vol. 92, No. 1, 468, (2002). [2.50 ] T. Nakagawa, J. Yamaguchi, T. Usuki, Y. Matsui, M.Okuyama and Y. Hamakawa, Japan. J. Appl. Phys., 18, 896-900(1979) [2.51 ] 丁勝懋, “雷射工導論”中央圖書出版社, 43-48 (1986) [2.52 ] P. Graupner, J. C. Pommier, A. Cachard, and J. L. Coutaz, “Electro-optical effect in aluminum nitride waveguides”, J. Appl. Phys., Vol. 71, No. 9, 4136, (1992). [2.53 ] B. G. Potter, M. B. Sinclair, and D. Dimos, “Electro-optical characterization of Pb(Zr,Ti)O3 thin films by waveguide refractometry”, Appl. Phys. Lett., Vol. 63, No. 16, 2180, (1993). [2.54 ] B. G. Potter, M. B. Sinclair, D. Dimos, B. A. Tuttle, and R. W. Schwartz, “Electro-optical and optical evaluation of Pb(Zr,Ti)O3 thin films using waveguide refractometry”, J. of Non-Crystalline Solids, Vol. 178, 69, (1994). [2.55 ] S.B. Mansoor, A.A. Said, T.H. Wei, D.J. Hagan, and E.W. Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam”, IEEE J.Quantum Electronics, 2b, 4, 760-769 (1990) [2.56 ] Q.C. Zhao, Y. Liu, W.S. Shi, W. Ren, L.Y. Zhang, and X. Yao, “Nonlinear Optical Proerties of Lanthanum Doped Lead Titanate Thin Film Using Z-scan Technique”, Appl. Phys. Lett., 69(4), 22, 458-459 (1996) [2.57 ] W.F. Zhang, Y.B. Huang, and M.S. Zhang, “Optical Properties of Ferroelectric (Pb,La)(Zr,Ti)O3 Thin Films Grown by Pulsed Laser Deposition”, Appl. Surf. Sci., 158, 185-189 (2000) [2.58 ] T. Kawaguchi, H. Adachi, K. Setsune, O. Yamazaki and K. Wasa, “PLZT Thin Film Waveguides, “Appl. Opt., 23,[13 ], 2187-2191(1984) [2.59 ] K. Nashimto, S. Nakamura, T. Morikawa, H. Moriyama,and M. Watanabe, “Fabrication of Electrooptic PZT Heterostructure Waveguides on Nb-doped SrTiO3 by Solid-phase Epitaxy,” Appl. Phys. Lett., 74,[19 ], 2761-2763(1999) [2.60 ] K. Nashimoto, S. Nakamura, T. Morikawa, H. Moriyama and M. Watanabe, “Electrooptical Properties of Heterostructnre PLZT Wavegides on Nb-SrTiO3”, Jpn. J. Appl. Phys., 38, 5641-5645(1999) [2.61 ] K. Wasa, O. Yamazaki, H. Adachi, T. Kawaguchi and K. Setsune, “Optical TIR Switchs Using PLZT Thin Film Waveguidles on Sapphire,” IEEE J. Lightwave Tech., LT-2, 710-714(1984) [2.62 ]H. Higashino, T. Kawaguchi, H. Adachi, T. Makino and O. Yamazak, “High Speed Optical TIR Switchs using PLZT Thin Film Waveguides on Sapphire,” Jpn. J. Appl. Phys., Suppl., 24-2, 284-286(1985) [2.63 ]F. Wang and G. H. Haertling, “Large Electrooptic Modulation Using Ferroelectric Thin Films in a Fabry-Perot Cavity,” IEEE Trans. Ultrasonics, Ferro., Freq. Cont., 683-686(1995) [2.64 ]S.H. Lee, “Two-dimensional silicon/PLZT Spatial Light Modulator: Design Considerations and Technology”, Optical Engineering, 25, 250-260(1986) [2.65 ]D.Dimos, C. Land and R. Sohwartz, “Electrooptic Effects and Photosensitivities of PZT Thin Films,” Ceramic Transactions, 25, Ferroelectric Film, 323-39(1992) [2.66 ]S. Krishnakumar, V.H. Ozguz, C. Fan, C. Cozzolino, S. Esener and S.H. Lee “Deposition and Characterization of Thin Ferroelectric Lead Lanthanum Zirconate Titanate (PLZT)Films on Sapphire for Spatial Light Modulator Applications” IEEE Trans. Ultrasonics, Ferro., Freq. Contr., 38[6 ] , 585-590(1991) [2.67 ] 吳泰伯, “強介電薄膜在半導體記憶體上之應用與發展 ¾ 機會與挑戰,” 中國材料科學學會1996年度年會論文集,2, 155-159, (1997) [2.68 ] R. Moazzami, “Ferroelectric Thin Film Technology for Semiconductor Memory,” Semicord. Sci Technol., 10, 375-380(1995) [2.69 ] 陳銘森 “鎳酸鑭電極對鋯鈦酸鉛溶凝膠薄膜與特性影響之研究,” 清華大學,博士論文(1996) [2.70 ] R.E. Jones, Jr., P.D. Maniar, R. Moazzami, P. Zurcher, J.Z. Witowski, T.Y. Lii and S.J. Gillespie, “Ferroelectric Non-volatile Memories for Low-voltage, Low-power Applications,” Thin Solid Films, 270, 884-589(1995) [2.71 ] Y.M. Kang, J.K. Ku, and S. Baik, ”Crystallographic Characterization of Tetragonal (pb, La)TiO3 Eppitaxial Thin Films Grown by Pulsed Laser Deposition”, J. Appl. Phys. 78(4), 2601-2606 (1995) [3.1 ] H. Nishihara, M. Haruna, and T. Suhara, “Optical integrated circuits”, McGraw-Hill Book Company, (1989). [3.2 ] R. Syms and J. Cozens, “Optical guides waves and devices”, McGraw-Hill Book Company, (1992). [3.3 ] R. G. Hunsperger, “Integrated optics: Theory and technology”, Springer, (1995). [3.4 ] A. Kumar, D. F. Clark, and B. Culshaw, “Explanation of erros inherent in the effective-index method for analyzing rectangular-core waveguides”, Opt. Lett., Vol. 13, No. 12, 1129, (1988). [3.5 ] S. P. Pogossian, H. L. Gall, J. Gieraltowski, and J. Loaec, “Determination of the parameters of retangular dielectric waveguides by effective index methods”, J. of Modern Optics, Vol. 42, No. 2, 403, (1995). [3.6 ] G. R. Hadley and R. E. Smith, “Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions”, J. Lightwave Technol., Vol. 13, No. 3, 465, (1995). [3.7 ] G. H. Jin, J. Harari, L. Joannes, J. P. Vilot, and D. Decoster, “Numerical analysis of the radiation losses due to surface roughness in integrated optics devices”, IEEE Photonics Technol. Lett., Vol 8, No. 9, 1202, (1996). [3.8 ] T. Goh, S. Suzuki, and A. Sugita, “Estimation of waveguide phase error in silica-based waveguides”, J. Lightwave Technol., Vol. 15, No. 11, 2107, (1997). [3.9 ] H. Deng, G. H. Jin, J. Harari, J. P. Vilcot, and D. Decoster, “Investigation of 3-D semicectorial finite-difference beam propagation method for bent waveguides”, J. Lightwave Technol., Vol. 16, No. 5, 915, (1998). [3.10 ] A. Driessen, H. J. W. M. Hoekstra, F. Horst, G. J. M. Krijnen, B. J. Offrein, J. B. P. V. Schoot, P. V. Lambeck, and Th. J. A. Popma, “All-optical integrated optics devices: A hybrid approach”, IEE Proc.-Optoelectron., Vol. 145, No. 4, 227, (1998). [3.11 ] P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films”, Appl. Phys. Lett., Vol 14, No. 9, 291, (1969). [3.12 ] P. K. Tien, “Light waves in thin films and integrated optics”, Appl. Opt., Vol 10, No. 11, 2395, (1971). [3.13 ] R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler”, Appl. Opt., Vol 12, No. 12, 2901, (1973). [3.14 ] D. J. Walter, “The syncang method for simultaneous measurement of film refractive index and thickness”, Thin Solid films, Vol 23, 153, (1974). [3.15 ] R. Th. Kersten, “A new method for measuring refractive index and thickness of liquid and deposited solid thin films”, Opt. Commun., Vol 13, No. 3, 327, (1975). [3.16 ] J. S. Wei and W. D. Westwood, “A new method for determining thin-film refractive index and thickness using guided optical waves”, Appl. Phys. Lett., Vol 32, No. 12, 819, (1978). [3.17 ] N. A. Paraire, N. Moresmau, S. Chen, P. Dansas, and F. Bertrand, “Direct measurement of substrate refractive indices and determination of layer indices in slab-guiding structures”, Appl. Opt., Vol 36, No. 12, 2545, (1997). [3.18 ] H. J. Lee, C. H. Henry, K. J. Orlowsky, R. F. Kazarinov, and T. Y. Kometani, "Refractive Index Dispersion of Phosphosilicate Glass, Thermal Oxide, and Silicon Nitride Films on Silicon", Appl. Opt., 27, 4104 (1988). [3.19 ] F. Agullo-Lopez, J. M. Cabrera, and F. Agullo-Rueda, “Electrooptics: Phenomena, materials and applications”, Academic Press, (1994). [3.20 ] C. G. Someda and G. Stegeman, “Anisotropic and nonlinear optical waveguides”, Elsevier, (1992). [3.21 ] F. Meseguer, J.C. Merle and M. Cardona, Ferroelectrics, 56, 95(1984) [3.22 ] G.F. Lipscomb, R.S. Narang and A.F. Carito, J. Chem. Phys.,75, 1509(1981) [3.23 ] H. NaKatami, W. Bosenberg, L.K.Cheng and C.L. Tang, Appl. Phys. Lett.,52, 1288(1988) [3.24 ] M.Aillerie, M.D. Fontana, F. Abdi, C. Carabatos, N. Theofanous and G. Alexakis, J. Appl. Phys. 65, 6(1989) [3.25 ] R.M.A. Azzam and N.M. Bashara, Ellipsometry and Polarized Light, North-Holland, Amsterdam(1977) [3.26 ] M.lshida, H. Matsunami and T. Tanaka, “Electrooptic Effects of PLZT Thin Films,” Appl. Phys. Lett.,31, 433-434(1977) [3.27 ] K.D. Singer, M.G. Kuzyk, W. Holland, J. Sohn, S. Lalama and M.L. Schilling, Appl. Phys. Lett.,53, 1800(1989) [3.28 ] M.G. Kuzyk and C.W.Dirk, Appl.Phys. Lett. 54, 1628(1989) [3.29 ] H.Uchiki and T. Kobayashi, J. Appl. Phys., 64, 2625(1988) [3.30 ] T. Kobayashi, H. Uchiki and K.Minoshima, Nonlinear Optics of organics and Semiconductors, Springer Proceedings in Physics, 36, Springer-Verlag(1989) [3.31 ] J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film”, J. Phys. E: Sci. Instrum., Vol. 90, 1002, (1976). [3.32 ] R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon”, J. Phys. E: Sci. Instrum., Vol. 16, 1214, (1983). [3.33 ] H. P. Weber, F. A. Dunn, and W. N. Leibolt, “Loss measurements in thin-film optical waveguides”, Appl. Opt., Vol. 12, No. 4, 755, (1973). [3.34 ] Y. Okamura, S. Yoshinaka, and S. Yamamoto, “Measuring mode propagation losses of integrated optical waveguide: a simple method”, Appl. Opt., Vol. 22, No. 23, 3892, (1983). [3.35 ] A. F. Evans and D. G. Hall, “Propagation loss measurements in silicon-on insulator optical waveguides formed by bond-and –etchback process”, Appl. Phys. Lett., Vol 59, No. 14, 1667, (1991). [3.36 ] R. Adar, M. R. Serbin, and V. Mizrahi, “Less than 1dB per meter propagation loss of silica waveguides measured using a ring resonator”, J. Lightwave Technol., Vol 12, No. 8, 1369, (1994). [3.37 ] T. Feuchter and C. Thirstrup, “High precision planar waveguide propagation loss measurement technique using a Fabry-Perot cavity”, IEEE Photonics Technol. Lett., Vol 6, No. 10, 1244, (1994). [3.38 ] J. W. Lee, C. S. Wang, S. Caracci, and D. M. Husband, “Optical loss in rod-like polymer thin films”, Polymer, Vol. 39, No. 13, 2765, (1998). [3.39 ] C.-T. Lee, “Nondestructive measurement of aeparated propagation loss for multimode waveguide”, Appl. Phys. Lett., Vol 73, No. 2, 133, (1998). [3.40 ] G. H. V. Rhodes, B. B. Goldberg, and M. S. Unlu, “Measurement of internal spatial modes and local propagation properties in optical waveguides”, Appl. Phys. Lett., Vol. 75, No. 16, 2368, (1999). [3.41 ] B. Saleh, and M.C. Teich, “Fundamentals of Dhotonics” John Wiley & Sons, Ins., 696-798, (1991). [3.42 ] A. Yariv, and D.C. Yeh, “Optical Waves in Crystals” John Wiley & Sons, Ins., 220-266, (1984). [3.43 ] 錢士雄, 王恭明, “非線性光學¾原理與進展” 復旦大學出版社, 106-126 (2001). [3.44 ] 彭江得 ”光電子技術基礎” 儒林圖書公司, 177-195 (1993). [3.45 ] 鍾維烈 “鐵電體物理學” 科學出版社, 547-563 (2000). [3.46 ] 丁勝懋 “雷射工程導論” 中央圖書供應社, 324-340, (1986). [4.1 ] T. C. Huang, “Surface Ultra-thin Film Characterization by Grazing-incidence Asymmetric Bragg Diffraction”, Advances in X-ray Analysis, 33, 91(1990) [4.2 ] T. C. Huang, M. F. Toney, S. Brennan and Z. Rek, “Analysis of Cobalt-doped Iron Oxide Thin Films by Synchrotron Radiation”, Thin Solid Films, 154, 439(1987) [5.1 ] S. Krishnakumar, V. Ozguz, C. Fan, C. Cozzolino, S. Esener and S. H. Lee, “Deposition and Characterization of Thin Ferroelectric Lead Lanthanum Zirconate Titanate (PLZT) Films on Sapphire for Spatial Light Modulators Applications” IEEE Trans. on Ultra., Ferroel., and Freq. Contr., 38,(6), 585-590(1991) [5.2 ] H.Adachi, T.Mitsuyu, O.Yamazaki and K.Wasa, “Ferroelectric PLZT Epitaxial Thin Films on Sapphire Grown by RF-planar Magnetron Sputtering” J. Appl. Phys., 60(2), 736-741(1986) [5.3 ] M.Okuyama, J.Usuki and Y.Mamakawa, “Epitaxial Growth of Ferroeleatric PLZT Thin Film and Their Optical Properties”, Appl. Phys., 21, 339-343(1980) [5.4 ] B. Jaber, D. Remiens, E. Cattan. and B. Thierry, “Optimisation of the Deposition and Annealing Parameters of Paraelectric PLZT(28/0/100) Thin Films Grown by RF Magnetron Sputtering,” Sensors & Actuators, A,51, 1-4(1995) [5.5 ] Y.M. Kang, and S. Baik, J. Mater. Res., 13, 995-999 (1998)id NH0925593070 sid 867104 cfn 0 / id NH0925593071 auc 黨一為 tic 熱管結合散熱鰭片之效能模擬與分析 adc 林唯耕 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 114 kwc 散熱 abc 本篇論文將對於一般應用最普遍的熱管結合散熱鰭片的方式,以理論模式推算其散熱效率,將之與實際的實驗結果做比對,並修正理論模式中之參考因子,使理論與實驗結果相配合。然後以Visual Basic程式語言撰寫模擬軟體,設定熱管熱傳導率,熱管相關尺寸,風扇性能曲線,鰭片相關尺寸,如長度,寬度,厚度,間距,片數,材質等輸入參數。建立一有效而快速之模擬系統,可為設計者在產品設計初期提供正確的參考與思維方向,並節省樣品製作成本及縮短產品開發流程,相對的提高個人與企業的競爭力。 tc 目 錄 摘要-------------------------------------- Ⅰ 誌謝-------------------------------------- Ⅱ 目錄-------------------------------------- Ⅲ 表目錄------------------------------------ Ⅴ 圖目錄------------------------------------ ⅩⅠ 符號表------------------------------------ ⅩⅩⅠ 第一章 緒論----------------------------------------------- 1 1-1 前言------------------------------------- 1 1-2 文獻回顧--------------------------------- 3 第二章 理論基礎----------------------------------------- 5 2-1 熱阻之定義-------------------------------- 5 2-2 鷅瑑畢X散熱鰭片在強制對流下之理論分析----- 6 2-3 鰭片與風扇之操作點理論分析---------------- 19 第三章 實驗設備與實驗方式-------------------------- 22 3-1 硬體之實驗設備與實驗方式----------------------------------- 22 3-2 軟體之實驗設備與實驗方式----------------------------------- 31 第四章 軟體設計使用與說明-------------------------- 36 第五章 結果與討論-------------------------------------- 42 5-1 硬體之實驗結果與討論--------------------------------------- 42 5-2 軟體之實驗結果與討論------------------------------------ 46 5-3 「PipeFin_Simulation」模擬結果與實驗數據之比較--------------------------------------------------------- 66 第六章 結論 111 參考文獻----------------------------------------------------- 113 表目錄 (表3-1)鋁底銅鰭片之實測值與Icepak模擬測試之比較------------ 31 (表5-1-1)樣品之相關尺寸------------------------------------------------ 42 (表5-1-2)樣品實測之結果------------------------------------------------ 43 (表5-1-3)樣品實測之風扇結果數據------------------------------------ 44 (表5-2-1)H=70,t=0.4,S=2,N=30,改變L之結果------------ 47 (表5-2-2)H=67,t=0.4,S=2,N=30,改變L之結果------------ 47 (表5-2-3)H=64,t=0.4,S=2,N=30,改變L之結果------------ 47 (表5-2-4)H=61,t=0.4,S=2,N=30,改變L之結果------------ 47 (表5-2-5)H=58,t=0.4,S=2,N=30,改變L之結果------------ 48 (表5-2-6)H=55,t=0.4,S=2,N=30,改變L之結果------------ 48 (表5-2-7)H=70,t=0.35,S=2,N=30,改變L之結果------------ 48 (表5-2-8)H=67,t=0.35,S=2,N=30,改變L之結果------------ 48 (表5-2-9)H=64,t=0.35,S=2,N=30,改變L之結果------------ 49 (表5-2-10)H=61,t=0.35,S=2,N=30,改變L之結果------------ 49 (表5-2-11)H=58,t=0.35,S=2,N=30,改變L之結果------------ 49 (表5-2-12)H=55,t=0.35,S=2,N=30,改變L之結果------------ 49 (表5-2-13)H=70,t=0.3,S=2,N=30,改變L之結果------------ 50 (表5-2-14)H=67,t=0.3,S=2,N=30,改變L之結果------------ 50 (表5-2-15)H=64,t=0.3,S=2,N=30,改變L之結果------------ 50 (表5-2-16)H=61,t=0.3,S=2,N=30,改變L之結果------------ 50 (表5-2-17)H=58,t=0.3,S=2,N=30,改變L之結果------------ 51 (表5-2-18)H=55,t=0.3,S=2,N=30,改變L之結果------------ 51 (表5-2-19)L=20,t=0.3,S=2,N=30,改變H之結果------------ 51 (表5-2-20)H=70,t=0.25,S=2,N=30,改變L之結果------------ 51 (表5-2-21)H=67,t=0.25,S=2,N=30,改變L之結果------ 52 (表5-2-22)H=64,t=0.25,S=2,N=30,改變L之結果------ 52 (表5-2-23)H=61,t=0.25,S=2,N=30,改變L之結果------ 52 (表5-2-24)H=58,t=0.25,S=2,N=30,改變L之結果------ 52 (表5-2-25)H=55,t=0.25,S=2,N=30,改變L之結果------ 53 (表5-2-26)H=70,t=0.2,S=2,N=30,改變L之結果------------ 53 (表5-2-27)H=67,t=0.2,S=2,N=30,改變L之結果------------ 53 (表5-2-28)H=64,t=0.2,S=2,N=30,改變L之結果------------ 53 (表5-2-29)H=61,t=0.2,S=2,N=30,改變L之結果------------ 54 (表5-2-30)H=58,t=0.2,S=2,N=30,改變L之結果------------ 54 (表5-2-31)H=55,t=0.2,S=2,N=30,改變L之結果------------ 54 (表5-2-32)H=70,l=20,t=0.3,N=30,改變S之結果------------ 54 (表5-2-33)H=70,L=20,N=30,改變t與S之結果------------ 55 (表5-2-34)H=70,L=20,t=0.3,S=2,改變N之結果------------ 55 (表5-3-1)H=70,t=0.4,改變L,與「PipeFin_Simulation」模擬結果之比較---------------------------------------------------------------- 67 (表5-3-2)H=67,t=0.4,改變L,與「PipeFin_Simulation」模擬結果之比較----------------------------------------------------------------- 67 (表5-3-3)H=64,t=0.4,改變L,與「PipeFin_Simulation」模擬結果之比較----------------------------------------------------------------- 67 (表5-3-4)H=61,t=0.4,改變L,與「PipeFin_Simulation」模擬結果之比較----------------------------------------------------------------- 68 (表5-3-5)H=58,t=0.4,改變L,與「PipeFin_Simulation」模擬結果之比較----------------------------------------------------------------- 68 (表5-3-6)H=55,t=0.4,改變L,與「PipeFin_Simulation」模擬結果之比較---------------------------------------------------------------- 68 (表5-3-7)H=70,t=0.35,改變L與「PipeFin_Simulation」模擬結果之比較---------------------------------------------------------------- 69 (表5-3-8)H=67,t=0.35,改變L與「PipeFin_Simulation」模擬結果之比較---------------------------------------------------------------- 69 (表5-3-9)H=64,t=0.35,改變L與「PipeFin_Simulation」模擬結果之比較---------------------------------------------------------------- 69 (表5-3-10)H=61,t=0.35,改變L與「PipeFin_Simulation」模擬結果之比較-------------------------------------------------------------- 70 (表5-3-11)H=58,t=0.35,改變L與「PipeFin_Simulation」模擬結果之比較-------------------------------------------------------------- 70 (表5-3-12)H=55,t=0.35,改變L與「PipeFin_Simulation」模擬結果之比較--------------------------------------------------------------- 70 (表5-3-13)H=70,t=0.3,改變L與「PipeFin_Simulation」模擬結果之比較--------------------------------------------------------------- 71 (表5-3-14)H=67,t=0.3,改變L與「PipeFin_Simulation」模擬結果之比較--------------------------------------------------------------- 71 (表5-3-15)H=64,t=0.3,改變L與「PipeFin_Simulation」模擬結果之比較--------------------------------------------------------------- 71 (表5-3-16)H=61,t=0.3,改變L與「PipeFin_Simulation」模擬結果之比較--------------------------------------------------------------- 72 (表5-3-17)H=58,t=0.3,改變L與「PipeFin_Simulation」模擬結果之比較--------------------------------------------------------------- 72 (表5-3-18)H=55,t=0.3,改變L與「PipeFin_Simulation」模擬結果之比較--------------------------------------------------------------- 72 (表5-3-19)L=20,t=0.3,改變H與「PipeFin_Simulation」模擬結果之比較--------------------------------------------------------------- 73 (表5-3-20)H=70,t=0.25,改變L與「PipeFin_Simulation」模擬結果之比較--------------------------------------------------------------- 73 (表5-3-21)H=67,t=0.25,改變L與「PipeFin_Simulation」模擬結果之比較--------------------------------------------------------------- 73 (表5-3-22)H=64,t=0.25,改變L與「PipeFin_Simulation」模擬結果之比較--------------------------------------------------------------- 74 (表5-3-23)H=61,t=0.25,改變L與「PipeFin_Simulation」模擬結果之比較--------------------------------------------------------------- 74 (表5-3-24)H=58,t=0.25,改變L與「PipeFin_Simulation」模擬結果之比較--------------------------------------------------------------- 74 (表5-3-25)H=55,t=0.25,改變L與「PipeFin_Simulation」模擬結果之比較--------------------------------------------------------------- 75 (表5-3-26)H=70,t=0.2,改變L與「PipeFin_Simulation」模擬結果之比較--------------------------------------------------------------- 75 (表5-3-27)H=67,t=0.2,改變L與「PipeFin_Simulation」模擬結果之比較--------------------------------------------------------------- 75 (表5-3-28)H=64,t=0.2,改變L與「PipeFin_Simulation」模擬結果之比較--------------------------------------------------------------- 76 (表5-3-29)H=61,t=0.2,改變L與「PipeFin_Simulation」模擬結果之比較--------------------------------------------------------------- 76 (表5-3-30)H=58,t=0.2,改變L與「PipeFin_Simulation」模擬結果之比較--------------------------------------------------------------- 76 (表5-3-31)H=55,t=0.2,改變L與「PipeFin_Simulation」模擬結果之比較--------------------------------------------------------------- 77 (表5-3-32)H=70,L=20,t=0.3,N=30,改變S 與「PipeFin_Simulation」模擬結果之比較-------------------------------- 77 (表5-3-33)H=70,L=20,t=0.35,N=30,改變S與 「PipeFin_Simulation」模擬結果之比較-------------------------------- 77 (表5-3-34)H=70,L=20,t=0.3,S=2,改變N與 「PipeFin_Simulation」模擬結果之比較-------------------------------- 78 圖目錄 (圖2-1)鰭片與風扇之裝置圖及其流場------------------------------- 7 (圖2-2)鰭片之幾何形狀及其參數------------------------------------- 8 (圖2-3)單一鰭片示意圖----------------------------------------------------- 10 (圖2-4)空氣流經鰭片間通道之溫度變化示意圖-------------------- 13 (圖2-5)計算 之示意圖------------------------------------------------ 15 (圖2-6)空氣流經鰭片間通道之流場示意圖--------------------------- 16 (圖2-7)鰭片、風扇性能曲線與操作點-------------------------------- 19 (圖3-1)Dummy Heater儀器整體構造圖------------------------------------ 23 (圖3-2)Dummy Heater儀器細部構造圖------------------------------------ 23 (圖3-3)環境溫度控制器與訊號表頭------------------------------------ 24 (圖3-4 多功能風洞測試系統---------------------------------------------- 27 (圖3-5)操作方式示意圖-------------------------------------------------- 28 (圖3-6)風扇性能曲線測試示意圖-------------------------------------- 29 (圖3-7)風扇性能曲線示意圖-------------------------------------------- 29 (圖3-8)鰭片系統阻抗曲線示意圖-------------------------------------- 30 (圖3-9)操作點靜壓與風量示意圖-------------------------------------- 30 (圖3-10)鋁底銅鰭片之樣品示意圖及CPU之溫度分佈---------------------- 32 (圖3-11)鋁底銅鰭片之流場流速示意圖------------------------------------ 32 (圖3-12)模擬測試樣品之外觀示意圖------------------------------------ 33 (圖3-13)模擬測試之風扇性能曲線及數據------------------------------------ 35 (圖4-1)「PipeFin_Simulation」風扇性能曲線輸入區示意圖----- 36 (圖4-2)「PipeFin_Simulation」風扇性能曲線輸入區之輸入方式 示意圖--------------------------------------------------------------- 37 (圖4-3)「PipeFin_Simulation」風扇性能曲線輸入區操作方式示 意圖------------------------------------------------------------------ 38 (圖4-4)「PipeFin_Simulation」鰭片參數輸入區示意圖-------------- 39 (圖4-5)「PipeFin_Simulation」鰭片參數輸入區操作示意圖-------- 40 (圖4-6)「PipeFin_Simulation」模擬結果區示意圖------------------ 40 (圖5-1-1)硬體實測之樣品圖------------------------------------------------ 42 (圖5-1-2)樣品實測結果熱阻值之比較------------------------------------- 43 (圖5-1-3)樣品實測之風扇性能曲線------------------------------------- 44 (圖5-1-4)樣品實測不同N值操作點之比較----------------------------- 45 (圖5-2-1)t=0.4,S=2,N=30,不同L與H之比較--------------- 56 (圖5-2-2)t=0.35,S=2,N=30,不同L與H之比較--------------- 56 (圖5-2-3)t=0.3,S=2,N=30,不同L與H之比較--------------- 57 (圖5-2-4)t=0.25,S=2,N=30,不同L與H之比較--------------- 57 (圖5-2-5)t=0.2,S=2,N=30,不同L與H之比較--------------- 58 (圖5-2-6)H=70,S=2,N=30,不同t與L之比較--------------- 58 (圖5-2-7)H=67,S=2,N=30,不同t與L之比較--------------- 59 (圖5-2-8)H=64,S=2,N=30,不同t與L之比較--------------- 59 (圖5-2-9)H=61,S=2,N=30,不同t與L之比較--------------- 60 (圖5-2-10)H=58,S=2,N=30,不同t與L之比較--------------- 60 (圖5-2-11)H=55,S=2,N=30,不同t與L之比較--------------- 61 (圖5-2-12)t=0.4,S=2,N=30,不同L與H之比較--------------- 61 (圖5-2-13)t=0.35,S=2,N=30,不同L與H之比較--------------- 62 (圖5-2-14)t=0.3,S=2,N=30,不同L與H之比較--------------- 62 (圖5-2-15)t=0.25,S=2,N=30,不同L與H之比較--------------- 63 (圖5-2-16)t=0.2,S=2,N=30,不同L與H之比較--------------- 63 (圖5-2-17)H=10,L=20,N=30,不同t與S之比較--------------- 64 (圖5-3-1)「PipeFin_Simulation」之風扇性能曲線資料 66 (圖5-3-2)H=70,t=0.4,改變L,與「PipeFin_Simulation」模擬結果之比較----------------------------------------------- 79 (圖5-3-3)H=67,t=0.4,改變L,與「PipeFin_Simulation」模擬結果之比較----------------------------------------------- 79 (圖5-3-4)H=64,t=0.4,改變L,與「PipeFin_Simulation」模擬結果之比較----------------------------------------------- 80 (圖5-3-5)H=61,t=0.4,改變L,與「PipeFin_Simulation」模擬結果之比較----------------------------------------------- 80 (圖5-3-6)H=58,t=0.4,改變L,與「PipeFin_Simulation」模擬結果之比較----------------------------------------------- 81 (圖5-3-7)H=55,t=0.4,改變L,與「PipeFin_Simulation」模擬結果之比較----------------------------------------------- 81 (圖5-3-8)H=70,t=0.35,改變L與「PipeFin_Simulation」模擬結果之比較----------------------------------------------- 82 (圖5-3-9)H=67,t=0.35,改變L與「PipeFin_Simulation」模擬結果之比較----------------------------------------------- 82 (圖5-3-10)H=64,t=0.35,改變L與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 83 (圖5-3-11)H=61,t=0.35,改變L與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 83 (圖5-3-12)H=58,t=0.35,改變L與「PipeFin_Simulation」 模擬結果之比較------------------------------------------- 84 (圖5-3-13)H=55,t=0.35,改變L與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 84 (圖5-3-14)H=70,t=0.3,改變L與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 85 (圖5-3-15)H=67,t=0.3,改變L與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 85 (圖5-3-16)H=64,t=0.3,改變L與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 86 (圖5-3-17)H=61,t=0.3,改變L與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 86 (圖5-3-18)H=58,t=0.3,改變L與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 87 (圖5-3-19)H=55,t=0.3,改變L與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 87 (圖5-3-20)H=70,t=0.25,改變L與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 88 (圖5-3-21)H=67,t=0.25,改變L與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 88 (圖5-3-22)H=64,t=0.25,改變L與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 89 (圖5-3-23)H=61,t=0.25,改變L與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 89 (圖5-3-24)H=58,t=0.25,改變L與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 90 (圖5-3-25)H=55,t=0.25,改變L與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 90 (圖5-3-26)H=70,t=0.2,改變L與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 91 (圖5-3-27)H=67,t=0.2,改變L與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 91 (圖5-3-28)H=64,t=0.2,改變L與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 92 (圖5-3-29)H=61,t=0.2,改變L與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 92 (圖5-3-30)H=58,t=0.2,改變L與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 93 (圖5-3-31)H=55,t=0.2,改變L與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 93 (圖5-3-32)L=20,t=0.4,改變H與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 94 (圖5-3-33)L=18,t=0.4,改變H與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 94 (圖5-3-34)L=16,t=0.4,改變H與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 95 (圖5-3-35)L=14,t=0.4,改變H與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 95 (圖5-3-36)L=12,t=0.4,改變H與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 96 (圖5-3-37)L=10,t=0.4,改變H與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 96 (圖5-3-38)L=20,t=0.35,改變H與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 97 (圖5-3-39)L=18,t=0.35,改變H與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 97 (圖5-3-40)L=16,t=0.35,改變H與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 98 (圖5-3-41)L=14,t=0.35,改變H與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 98 (圖5-3-42)L=12,t=0.35,改變H與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 99 (圖5-3-43)L=10,t=0.35,改變H與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 99 (圖5-3-44)L=20,t=0.3,改變H與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 100 (圖5-3-45)L=18,t=0.3,改變H與「PipeFin_Simulation」模擬結果之比較----------------------------------------------- 100 (圖5-3-46)L=16,t=0.3,改變H與「PipeFin_Simulation」模擬結果之比較----------------------------------------------- 101 (圖5-3-47)L=14,t=0.3,改變H與「PipeFin_Simulation」模擬結果之比較----------------------------------------------- 101 (圖5-3-48)L=12,t=0.3,改變H與「PipeFin_Simulation」模擬結果之比較----------------------------------------------- 102 (圖5-3-49)L=10,t=0.3,改變H與「PipeFin_Simulation」模擬結果之比較----------------------------------------------- 102 (圖5-3-50)L=20,t=0.25,改變H與「PipeFin_Simulation」模擬結果之比較-------------------------------------------- 103 (圖5-3-51)L=18,t=0.25,改變H與「PipeFin_Simulation」模擬結果之比較------------------------------------------- 103 (圖5-3-52)L=16,t=0.25,改變H與「PipeFin_Simulation」模擬結果之比較-------------------------------------------- 104 (圖5-3-53)L=14,t=0.25,改變H與「PipeFin_Simulation」模擬結果之比較-------------------------------------------- 104 (圖5-3-54)L=12,t=0.25,改變H與「PipeFin_Simulation」模擬結果之比較-------------------------------------------- 105 (圖5-3-55)L=10,t=0.25,改變H與「PipeFin_Simulation」模擬結果之比較-------------------------------------------- 105 (圖5-3-56)L=20,t=0.2,改變H與「PipeFin_Simulation」模擬結果之比較----------------------------------------------- 106 (圖5-3-57)L=18,t=0.2,改變H與「PipeFin_Simulation」模擬結果之比較----------------------------------------------- 106 (圖5-3-58)L=16,t=0.2,改變H與「PipeFin_Simulation」模擬結果之比較----------------------------------------------- 107 (圖5-3-59)L=14,t=0.2,改變H與「PipeFin_Simulation」模擬結果之比較----------------------------------------------- 107 (圖5-3-60)L=12,t=0.2,改變H與「PipeFin_Simulation」模擬結果之比較----------------------------------------------- 108 (圖5-3-61)L=10,t=0.2,改變H與「PipeFin_Simulation」模擬結果之比較----------------------------------------------- 108 (圖5-3-62)H=70,L=20,t=0.3,S=2,改變N與「PipeFin_Simulation」模擬結果之比較--------------- 109 (圖5-3-63)H=70,L=20,t=0.3,N=30,改變S與「PipeFin_Simulation」模擬結果之比較---------------- 109rf 參考文獻 [1 ] Ronald Pound, ”Thermal Management Balance Cooling and size Demand “ , Electronic Packaging &Production, Vol. 25(9). pp.112-116, September, 1985. [2 ] Charles E. Johnson, “Evaluation of Correlations for Natural Convection Cooling of Electronic Equipment”, Heat Transfer Engineering, Vol. 7(1-2),pp.36-45, 1986. [3 ] Carill Sharpe, “Cooling Systems for Electronic Equipment” , Design Engineering, pp. 99-100, January , 1986. [4 ] K.L. smith, “Heat Transfer in Electronic Equipment” ,Electronics&wireless World, Vol. 92(1606), pp. 33-37 , August, 1986. [5 ] Seri Lee, ”Optimum Design and Selection of Heat Sinks,”IEEE Transactions on Component,Packaging,and Manufacturing Technology-Part A,vol.18,no.5,pp.832-842,1992. [6 ] Xie H., Aghazadeh M., Lui W., Haley K.,“ Thermal Solutions to Pentium Processors in TCP in notebooks and sub-notebooks”,IEEE Transactions on Components, Packaging, and Manufacturing Technology Part A, Vol. 19, pp. 54-65, 1996. [7 ] David Copeland,”Optimization of Parallel Heatsinks for Forced Convection,”Sixteenth IEEE Semi-Therm Symposium,2000 [8 ] Simons,R.E.,”Estimating Parallel Plate-Fin Heat Sink Thermal Resistance,”ElectronicsCooling,Vol.9,No.1,pp.8-9,2003. [9 ] Allan D.Kraus and Avram Bar-Cohen,“Design and Analysis of heat sinks” [10 ] 吳東俊,林唯耕,[鰭片阻抗理論與鰭片測試分析 ],2001,清華大學工科所論文. [11 ] 鄭憶湘,林唯耕, [散熱片在強制對流下之最佳化設計與實驗 ] ,2002,清華大學工科所論文. [12 ] 林唯耕,[電子散熱冷卻技術 ],2003,經濟部工業局工業技術人才培訓講義 [13 ] 陳秋南,林唯耕,[側吹式散熱鰭片阻抗曲線之理論與實驗分析 ],2004,清華大學工科所論文id NH0925593071 sid 913145 cfn 0 / id NH0925593072 auc 徐振峰 tic 氮化鎳鎵稀磁半導體之製備 adc 開執中 adc 陳福榮 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 84 kwc 稀磁半導體 kwc 氮化鎳鎵 kwc 離子佈植 abc 本論文研究主要是利用離子佈植將鎳(Ni)摻雜於氮化鎵中(GaN),以期合成氮化鎳鎵(Ga,Ni)N稀磁半導體。實驗中,為有效效降低輻射損傷對表面所造成的缺陷,特地在佈植前於氮化鎵表面以濺鍍(sputter)的方式,鍍上一層厚度約10nm之鎳膜作為缺陷阻擋層,且佈植後,利用濕蝕刻20分鐘以完整去除此鎳膜,再接以進行不同條件之熱退火處理,包括500℃、700℃、800℃退火以及一組未退火試片。分析顯微結構的部分,利用穿透式電子顯微鏡(TEM)及X光能量分散譜儀(EDX),瞭解有無第二相之析出形成,以及鎳原子在氮化鎵中分佈情形,進一步觀察不同退火條件下,晶格的回復程度。再藉由X光繞射分析(XRD)對試片進行整體性分析,觀察試片隨著退火溫度的不同是否有其他第二相析出物的形成。最後,以超導量子干涉儀(SQUID)來量測經不同熱退火條件處理後,氮化鎳鎵(Ga,Ni)N稀磁半導體之磁性質變化。 tc 目 錄 一、前言……………………………………………………….1 二、研究動機………………………………………………….3 2-1稀磁半導體對於未來產業發展之重要性…………………….3 2-2稀磁半導體目前之研究現況………………………………….4 2-2-1低溫分子束磊晶…………….………………………….5 2-2-2平均場理論……………………………………………..7 2-2-3侷限載子式鐵磁性……………………………………..9 2-2-4交互巡迴式鐵磁性…………………………………….10 2-2-5稀磁半導體之場效電晶體元件……………………….11 2-2-6電子自旋發光二極體元件…………………………….13 2-2-7氮化錳鎵(Ga,Mn)N之稀磁半導體……………………15 2-2-8氮化鐵鎵(Ga,Fe)N之稀磁半導體…………………….21 2-2-9氮化鎳鎵(Ga,Ni)N之稀磁半導體…………………….23 2-3稀磁半導體相關研究所遭遇之難題………………………… 25 2-4本論文實驗條件之選定……………………………………… 26 三、實驗步驟與分析方法……………………………………..27 3-1離子佈植……………………………………………………… 28 3-1-1離子佈植簡介…………….…………………………....28 3-1-2加速器…………………….…………………………....28 3-1-2理論模擬………………….…………………………....29 3-2熱退火處理……………………………………………………30 3-3穿透式電子顯微鏡……………………………………………31 3-3-1TEM試片製備方法…………………………………32 3-3-2電子束與樣品作用…………………………………35 3-3-3穿透式電子顯微鏡系統……………………………36 3-3-4電子槍………………………………………………39 3-4 X光能量分散光譜儀…………………………………………41 3-4-1 X光能量分散光譜儀之工作原理…………………42 3-4-2 X光能量分散光譜定量分析………………………43 3-4-3空間解析度…………………………………………44 3-5超導量子干涉磁量儀…………………………………………45 四、實驗結果與討論…………………………………………47 4-1鎳離子直接摻雜於氮化鎵以製備氮化鎳鎵(Ga,Ni)N……… 47 4-1-1實驗條件介紹…………….……………………………47 4-1-2 SRIM模擬……………….…………………………….50 4-1-3穿透式電子顯微鏡分析………….……………………50 4-2以鎳膜為缺陷阻擋層製備氮化鎳鎵(Ga,Ni)N……………… 55 4-2-1實驗條件介紹…………….……………………………55 4-2-2 SRIM模擬……………….…………………………….55 4-2-3蝕刻條件介紹………….………….…………………...50 4-2-4穿透式電子顯微鏡分析………….……………………56 4-2-5 X光繞射分析…………….……………………………63 4-2-6 X光能量分散光譜儀分析.……………………………66 4-2-7高分辨影像分析…….………….………………….......70 4-2-8疊差定量分析………….………………………………72 4-2-9 霍爾量測分析………….……………………………..75 4-2-10超導量子干涉磁量儀分析…………………………..72 五、結論………………………………………………………79 六、未來研究之方向與建議………………………………….81 七、參考文獻………………………………………………….82 圖目錄 圖2-1磁性半導體、稀磁半導體、半導體示意圖…………………….4 圖2-2金屬態砷化錳鎵之相圖…………………………………………..6 圖2-3 T. Dietl等人以平均場理論預測高居禮溫度材料…………..8 圖2-4居禮溫度Tc與載子濃度以及磁性原子含量之關係圖…………8 圖2-5侷限載子式鐵磁性示意圖………………………………………..9 圖2-6交互巡迴式鐵磁性示意圖………………………………………10 圖2-7在ne/nI <<1的範圍電子自旋之交互耦合作用…………………10 圖2-8 DMS-FET結構圖………………………………………………..11 圖2-9稀磁半導體之場效電晶體元件…………………………………12 圖2-10閘極電壓與磁訊號之關係圖………………………………….12 圖2-11電洞濃度的多寡會影響電子自旋的排列方式……………….16 圖2-12 Spin- LED結構與運作示意圖………………………………...14 圖2-13 AMMONO方法成長GaxMn1-xN 之XRD分析結果…………15 圖2-14 離子佈植製備氮化錳鎵之TEM影像與M-T曲線圖………17 圖2-15電子濃度與導電率和錳含量之關係圖……………………….18 圖2-16 以MBE成長氮化錳鎵之M-T曲線…………………………..18 圖2-17 以MBE成長氮化錳鎵之M-H曲線…………………………..18 圖2-18 離子佈植製備氮化錳鎵Tc依退火溫度不同而改變…………19 圖2-19不同退火溫度下之XRD分析結果……………………………19 圖2-20鎳佈植於氮化鎵之磁性質表現……………………………….24 圖2-21錳、鐵、鎳佈植於氮化鎵之磁性質表現比較……………….24 圖3-1實驗流程圖………………………………………………………27 圖3-2 9SDH-2串級加速器的構造圖………………………………….29 圖3-3退火爐管系統裝置圖……………………………………………31 圖3-4試片製備之黏合方法……………………………………………33 圖3-5銅環與試片之黏貼………………………………………………34 圖3-6高能電子束與薄樣品交互作用示意圖………………….……..35 圖3-7穿透式電子顯微鏡基本構造圖…………………………………37 圖3-8電子槍結構示意圖………………………………………………40 圖3-9電子克服功函數φ脫離金屬表面示意圖……………………...41 圖3-10 EDS訊號處理流程圖………………………………………….45 圖3-11超導量子干涉磁量儀細部結構圖………………………….....46 圖4-1實驗示意圖………………………………………………....……48 圖4-2 SRIM模擬結果………………………………………………….50 圖4-3未佈植前氮化鎵薄膜之TEM影像…………………………….51 圖4-4佈植後未退火之氮化鎵薄膜TEM影像……………………….52 圖4-5島狀物之TEM影像與擇區繞射花樣………………………….52 圖4-6鎳-鎵二元相圖………………………………………………….53 圖4-7佈植後經700℃一小時退火之TEM影像………………………54 圖4-8實驗流程示意圖…………………………………………………55 圖4-9 SRIM模擬結果………………………………………………….56 圖4-10未退火試片之TEM影像與擇區繞射花樣……………………57 圖4-11經500℃一小時退火試片之TEM影像與擇區繞射花樣……58 圖4-12經700℃一小時退火試片之TEM影像與擇區繞射花樣……59 圖4-13經800℃五分鐘退火試片之TEM影像與擇區繞射花樣……60 圖4-14黑色圓點之HRTEM影像及nanobeam EDX分析…………..62 圖4-15未退火試片之XRD分析結果…………………………………64 圖4-16經500℃一小時退火試片之XRD分析結果…………………64 圖4-17經700℃一小時退火試片之XRD分析結果…………………65 圖4-18經800℃五分鐘退火試片之XRD分析結果…………………65 圖4-19不同退火條件下佈植區的平均鎳含量………………………..67 圖4-20未退火試片之鎳含量分佈曲線……………………………….68 圖4-21經700℃一小時退火試片之鎳含量分佈曲線………………..68 圖4-22經800℃五分鐘退火試片之鎳含量分佈曲線………………..69 圖4-23不同退火條件下佈植區鎳含量縱深曲線分佈圖…………….69 圖4-24佈植完未退火試片之高分辨影像…………………………….70 圖4-25經500℃一小時退火試片之高分辨影像……………………..71 圖4-26經700℃一小時退火試片之高分辨影像……………………..71 圖4-27經800℃五分鐘退火試片之高分辨影像……………………..72 圖4-28疊差密度計算流程示意圖…………………………………….73 圖4-29不同退火條件下試片之疊差密度……………………………..74 圖4-30不同退火條件下試片之載子濃度……………………………..75 圖4-31佈植前後試片之M-H曲線……………………………………77 圖4-32經700℃與800℃退火後試片之M-H曲線圖…………………77 圖4-33經800℃退火後試片之ZFC-FC曲線…………………………78 圖4-34經800℃退火後試片之ZFC-FC曲線放大圖…………………78 表目錄 表2-1氮化錳鎵稀磁半導體之相關研究及發展………………………20 表2-2氮化鐵鎵稀磁半導體之相關研究及發展………………………22 表2-3氮化鎳鎵稀磁半導體之相關研究及發展………………………23 表4-1各磁性金屬離子束電流值大小與所需佈植時間之比較………48 表4-2氮化鎵和氧化鋁基板的晶格常數與其不匹配度………………51rf [1 ] H. Ohno et al.,Appl. Phys. Lett. 69,363(1996) [2 ] T. Dietl et al.,Science 287,1019(2000) [3 ] H. Munekata et al.,Phys. Rev. Lett. 63,1849(1989) [4 ] H. Ohno et al.,Phys. Rev. Lett. 68,2664(1992) [5 ] H. Ohno et al.,J. Vac. Sci. Techmol. B 18,2039(2000) [6 ] H. Ohno et al.,Jap. Soc. Appl. Phys. Int. 5,4(2002) [7 ] F. Matsukura et al.,Phys. Rev. B 57,R2037(1998) [8 ] S. A. Wolf et al.,Science 294,1488(2001) [9 ] H. Ohno,Science 281,951(1998) [10 ] J. K. Furdyna and J. Kossut (Eds),Semiconductor and Semimetals Vol. 25 ( Academic Press, New York, 1988 ) [11 ] C. Zener,Phys. Rev. 81,440(1950) [12 ] V. I. Litvinov et al.,Phys. Rev. Lett. 86,5593(2001) [13 ] M. Berciu et al.,Phys. Rev. Lett. 87,107203(2001) [14 ] H. Akai,Phys. Rev. Lett. 81,3002(1998) [15 ] J. Konig et al.,Phys. Rev. Lett. 84,5628(2000) [16 ] J. Konig et al.,Phys. Rev. Lett. 86,5637(2001) [17 ] H. Ohno et al.,Nature 408,944 (2000) [18 ] F. Matsukura et al.,Phys. E 12,351 (2002) [19 ] A. Shen et al.,Appl. Surf. Sci. 113/114,183(1997) [20 ] Y. Ohno et al.,Nature 402,790(1999) [21 ] R. Fiederling et al.,Nature 402,787(1999) [22 ] B. T. Jonker et al.,2001 NRL Review,35(2001) [23 ] B. T. Jonker et al.,Appl. Phys. Lett. 79,3098(2001) [24 ] V.P. LaBella et al.,Science 292,1518(2001) [25 ] V. F. Motsnyi et al.,Appl. Phys. Lett. 81,265(2002) [26 ] R. Fiederling et al.,Appl. Phys. Lett. 82,2160(2003) [27 ] Y. Chye et al.,Phys. Rev. B. 66,201301(2002) [28 ] M. Zajac et al.,Appl. Phys. Lett. 78(9),1276(2001) [29 ] R. Dwilinski et al.,Diamond Relat. Mater. 7,1348(1998) [30 ] M. L. Reed et al.,Appl. Phys. Lett. 79(21),3473(2001) [31 ] M. L. Reed et al.,Mater. Lett. 51,500(2001) [32 ] N. Theodoropoulou et al.,Appl. Phys. Lett. 78(22),3475(2001) [33 ] N. Theodoropoulou et al.,Phys. Stat. Sol. (b) 228(1),337(2001) [34 ] T. Kondo et al.,J. Crys. Grow. 237-239,1353(2002) [35 ] S. C. Jain et al.,J. Appl. Phys. 87,965(2000) [36 ] S. Sonoda et al.,J. Crys. Grow. 237-239,1358(2002) [37 ] T. Sasaki et al.,J. Appl. Phys. 91(10),7911(2002) [38 ] S. J. Pearton et al.,Phys. Stat. Sol. (a) 195(1),222 (2003) [39 ] J. M. Baik et al.,Appl. Phys. Lett. 82(4),583(2003) [40 ] J. M. Baik et al.,J. Appl. Phys. 93(11),9024(2003) [41 ] H. Akinaga et al.,Appl. Phys. Lett. 77(26),4377(2000) [42 ] N. Theodoropoulou et al.,Appl. Phys. Lett. 79(21),3452(2001) [43 ] C. Liu et al.,J. Appl. Phys. 90(1),81(2001) [44 ] E. Alves et al.,Nucl. Instr. and Meth. B 175-177,241(2001) [45 ] U. Wahl et al.,Appl. Phys. Lett. 78(21),3217(2001) [46 ] S. J. Pearton et al.,Mater. Sci. Eng. B94,159(2002) [47 ] S. J. Pearton et al.,J. Vac. Sci. Technol. A20(3),721(2002) [48 ] N. Bohr,Phil. Mag. 25,20(1913) [49 ] J. F. Ziegler and J. P. Biersack,SRIM:the Stopping and Range of ions in Matter,Version 96.07. IBM-Research, Yorktown,(1996) [50 ] 陳力俊,材料電子顯微鏡學,科儀叢書3,第二章(1994) [51 ] 陳福榮、鮑忠興,材料分析,中國材料科學學會,第九章(1998) [52 ] G. Cliff et al.,J. Microsc. 103,203(1975) [53 ] 科儀新知,台灣大學物理所,楊鴻昌,第十二卷第六期,72(1991)id NH0925593072 sid 913122 cfn 0 / id NH0925593073 auc 葉爾翰 tic 自然耦合圓柱流之大尺度渦流模擬 adc 白寶實 adc 洪祖全 ty 碩士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 157 kwc 計算流體力學 kwc 大尺度渦漩模擬 kwc SGS模型 abc 在日常生活中,經常可以發現到許多渦漩誘發振動(Vortex Induced Vibration, VIV)的現象。當結構體沈浸在流動的流場中,在結構體後端會產生漩渦脫落(Vortex shedding)的現象,這會使系統紊亂度提高,繼而於結構體的上部和下部後方交替連續的在結構體後方形成渦漩流動,而此類流場多屬於紊流。 tc 摘要 I 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 符號說明 X 第一章 緒論 1 1.1研究動機與目的 1 1.2文獻回顧 3 第二章 物理模式及數值模擬方法 6 2.1 紊流簡介 6 2.2渦漩結構的形成 7 2.3關於LARGE EDDY SIMULATION 11 2.4 LES的數值方法 18 2.4.1 CFD的構成要素 18 2.4.2 LES的相關數值考慮 25 2.4.3 數值方法的採用方案 31 第三章 流場設定 36 3.1 系統幾何座標的選擇與模型的建立 36 3.2 網格分佈設定 37 3.3 流體性質 39 3.4 流場邊界條件 39 3.5 移動網格(MOVING GRID) 40 3.6 關於CFD 2000:副程式的建立 41 第四章 數值結果與分析 44 4.1流場參數 44 4.2 NUMERICAL SIMULATIONS 47 4.2.1圓柱流場的特徵流場參數 48 4.2.2 暫態流場的流譜情形 49 4.2.3 時間平均流場與紊流統計性質 57 第五章 結論與建議 68 參考文獻 70 附錄A:GERMANO IDENTITY 74 附錄B:副程式與STORM.EXE的關係圖 78 附錄C:程式碼 79 PART A: USER DEFINE VISCOSITY SUBROUTINES 79 Smagorinsky model’s part 79 Damping Smagorinsky model’s part 81 Dynamic SGS model’s part 84 PART B: USER DEFINE CALCULATION SUBROUTINES 86 Damping Smagorinsky model (type A)’s part 86 Damping Smagorinsky model (type B)’s part 99 Dynamic SGS model (with clipping)’s part 115 PART C: USER DEFINE MOVING GRID SUBROUTINES 131 PART D: TIME-AVERAGED POST-PROCESS CODE 148rf 1. Huerre, P., and Monkewitz, P. A.,”Local and Global Instabilities in Spatially Developing Flow”, Annual Review of Fluid Mechanics, Vol.21. 2. Farquharson, F.B. et al., 1949, ”Aerodynamic Stability of Suspension Bridges with Special Reference to the Tacoma Narrows Bridge”, The University of Washington Press, Seattle. 3. Blevins, R.D., 1990, ”Flow-Induced Vibration”, Van Nostrand Reinhold Int’1 Company Limited, New York 4. Demirdzic, I. And Peric, M., 1988, “Space Conservation Law in Finite Volume Calculations of Fluid Flow”, Int’1 J. for Numerical Methods in Fluids, Vol.8, 1037-1050. 5. Demirdzic, I. and Peric, M., 1990, “Finite Volume Method for Prediction of Fluid Flow in Arbitrarily Shaped Domains with Moving Boundaries”, Int’1 J. for Numerical Methods in Fluids, Vol. 10, 771-790. 6. Bishop, R.E.D., and Hassan, A.Y., 1964, “The lift and Drag Forces on a Circular Cylinder in a Flowing Field“, Proc. Roy. Soc.(London), Ser.A, 277, 51-75. 7. X. Sun and C. Dalton. 1996,“Application of the LES Method to the Oscillation Flow Past a Circular Cylinder”, Journal of Fluid and Structures, Vol. 10,851-87C. 8. Dalton, Y. Xu., 2000,“The Suppression of Lift on a Circular Cylinder Due to Vortex Shedding at Moderate Reynolds Numbers”, Journal of Fluid and Structures,Vol. 15,617-628. 9. J. Smagorinsky, 1963, “General Circulation Experiments with the Primitive Equations”, The basic experiment, Monthly Weather Rev. Vol.91 pp. 99-164. 10. M. Germano, U. Piomelli, P. Moin, W.H. Cabot, 1991, “A Dynamic Subgrid-Scale Eddy Viscosity Model”, J. Physics Fluids, A3, 1760-1765. 11. D.K. Lilly, 1992, “A Proposed Modification of the Germano Subgrid-Scale Closure Method”, J. Physics Fluids, A4, 633-635. 12. W. Zhang, Q. Chen, 2000, “Large Eddy Simulation of Indoor Airflow with a Filtered Dynamic Subgrid Scale Model”, Int. J. Heat Mass Transfer 43 (17), 3219-3231. 13. Kaplun S., 1957 ,“Low Reynolds Number Flow past a Circular Cylinder”, J. Fluid Mech., Vol.6, 595-603. 14. Wu. Jiunn-Chi; Hu, Yung-Chun, 1995,”Numerical Study of Wake Interference behind Two Side-by-Side and Tandem Circular Cylinders”, Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, Series C/Chung-Kuo Chi Hsueh Kung Ch’eng Hsuebo Pao, Vol. 16,109-122. 15. Ng, C.W.; Ko, N.W.M., 1995,”Flow Interaction behind Two Circular Cylinders of Equal Diameter – a Numerical Study”, Journal of Wind Engineering and Industrial Aerodynamics, v 54-55,277-287. 16. Proudman I. Pearson JR., 1957, “Expansions at Small Reynolds Numbers for the Flow past a Sphere and a Circular Cylinder”, J Fluid Mech,Vol.2, 237-62. 17. Issa, R. I., 1985,”Solution of the Implicit Discretized Fluid Flow Equations by Operator-Splitting”, J. Computational Physics, Vol.62, 40-65. 18. Issa, R. I., Ahmadi-Befrui, B., Beshay, K.R., Gosman, A.D., 1991, ”Solution of the Implicit Discretized Reacting Flow Equations by Operator-Splitting”, J. Computational Physics, Vol.93, 388-410. 19. Adaptive Research Division, 1995, “CFD2000 Computational Fluid Dynamics System Version 2.2c User’s Manual”, Pacific-Sierra Research Corporation, California, USA. 20. Desrdorff, J.W., 1973, “A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers”, J. Fluid Mech., Vol.41, 453-465. 21. David C. Wilcox, 1998, “Turbulence Modeling for CFD, Second Edition”, ISBN 0-9636051-5-1, 9-13, 30-45, 377-394. 22. Moin, P., Kim, J., 1982, “Numerical Investigation of Turbulent Channel Flow”, J. Fluid Mech., Vol.118, 341-377. 23. S. Murakami et al., 1999, “CFD Analysis of Turbulent Flow past Square Cylinder using Dynamic LES”, J. of Fluids and Structures., Vol.13, 1097-1112 24. Najjar, F.M., Tafti, D.K., 1996, “Study of Discrete Test Filters and Finite Difference Approximations for the Dynamic Subgrid-Scale Stress Model”, Phys. of Fluids., Vol.8(4), 1076-1088. 25. Vasilyev, O., Lund, T.S., Moin, P., 1998, “A General Class of Commutative Filters for LES in Complex Geometries”, J. of Compu. Phys., Vol.146, 82-104. 26. T. Kogaki et al., 1997, “Large Eddy Simulation of flow around a rectangular cylinder”, Fluid Dynamics Research, Vol.20,11-24 27. Koopman, G.H., 1967,“The Vortex Wakes of Vibrating Cylinders at Low Reynolds Numbers”, J. Fluid Mech., Vol. 27, pp. 501-512. 28. Griffin. O.M., 1971, “The Unsteady Wake of an Oscillating Cylinder at Low Reynolds Number”, J. Applied Mech., Vol. 38, pp. 729-738. 29. Parkinson, G., 1989, “Phenomena and Modeling of Flow-Induced Vibrations of Bluff Bodies”, Progress in Aerospace Sciences, Vol. 26, pp. 169-224. 30. Sakamoto, H., and Haniu, H., 1994, “Optimum Suppression of Fluid Forces Acting on a Circular Cylinder”, ASME Journal of Fluids Engineering, Vol. 116, No. 2, pp.221-222. 31. Lienhard, J.H., 1966, “Synopsis of Lift, Drag and Vortex Frequency Data for Rigid Circular Cylinders”, Washington State University College of Engineering, Research Division Bulletin, 300. 32. Feng, C. C., 1968, “The Measurement of Vortex-Induced Effects in Flow Past Stationary and Oscillating Circulator and D-Section Cylinder”, M. Sc. Thesis, University of British Colimbia. 33. van der Wijngaart, R.J.F, 1990, “Composite Grid Techniques and Adaptive Mesh Refinement in computational Fluid Dynamics”, Report CLaSSic-90-07, Dept. Computer Science, Stanford Univ. 34. Schewe, G., 1983, “On the Force Fluctuations Acting on a Circular Circular Cylinder in Crossflow from Subcritical up to Transcritical Reynolds Numbers”, J. Fluid Mech., Vol. 133, pp. 265-285. 35. Arthur G. Kravchenko and Parviz Moin, 1999, “Numerical studies of flow over a circular cylinder at ReD = 3900”, Phys. of Fluids, Vol. 12, pp.403-417. 36. W. H. Press, S. A. Teukolsky, W.T. Vetterling, and B. P. Flannery, Numerical Recipes(Cambridge University Press, Canbridge, 1992) 37. Lyn, D.A., S. Einav, W. Rodi and J.H. Park, 1994, “A laser-Doppler velocimatry study of ensemble–averaged characteristics of the turbulent near wake of asquare cylinder”, Report No. SFB 210/E/100. 38. Bardina, J., Ferziger, J.H., Reynolds, W.C., 1980, “Improved subgrid models for large eddy simulation”, AIAA paper 80-1357. 39. Ferziger J.H., Perić M., 2002, “Computational Methods for Fluid Dynamics, 3rd Edition”, ISBN 3-540-42074-6. 40. Versteeg H. K., Malalasekera W., 1995, “A Introduction to Computational Fluid Dynamics, the Finite Volume Method”, ISBN 0-582-21884-5.id NH0925593073 sid 903160 cfn 0 / id NH0925593074 auc 洪捷粲 tic 電腦模擬研究電感耦合式乙炔電漿源 adc 胡瑗 adc 林滄浪 ty 博士 sc 國立清華大學 dp 工程與系統科學系 yr 92 lg 中文 pg 188 kwc 電漿 kwc 乙炔 kwc 電感耦合式電漿源 kwc 奈米碳管 abc 摘要 tc List of Figures List of Tables 3 簡介 4 文獻回顧 1 碳氫氣電漿源實驗量測 2 碳氫氣電漿源數值模擬 - 甲烷 3 碳氫氣電漿源數值模擬 - 乙炔 5 電感式電漿源基本原理 1 電感式電漿源簡介 2 電感式電漿源加熱理論 1 碰撞加熱 2 非碰撞加熱 6 二維時變流體模型及數值模擬方法 1 電漿模擬流體模型 1 電子流體模型 2 離子流體模型 3 中性粒子流體模型 2 感應電場的計算 3 空間電位計算 4 化學反應 7 二維流體碳氫氣電漿源模擬結果與討論 1 電漿參數隨時間變化結果 2 空間分佈結果 1 電漿參數 2 電子空間分佈 3 H 空間分佈 4 H 空間分佈 5 CH 與 CH 空間分佈 6 CH 、 CH、 CH 與 CH 空間分佈 7 CH 空間分佈 8 CH CH 與CH 空間分佈 9 CH CH 與CH 空間分佈 10 H 與 H 空間分佈 11 C、 CH、 C 與 CH 空間分佈 12 CH 空間分佈 13 CH 空間分佈 14 CH 與 CH 空間分佈 8 結論 A. 數值方法 B. 二維流體碳氫氣電漿源模擬結果與討論-簡化化學式反應式模擬 1 電漿參數隨時間變化結果 2 空間分佈結果 1 電漿參數 2 電子空間分佈 3 H 空間分佈 4 H 空間分佈 5 CH 、 CH、與 CH 空間分佈 6 CH 空間分佈 7 CH CH 與CH 空間分佈 8 CH CH 與CH 空間分佈 9 H 與 H 空間分佈 10 CH、CH、CH 與 CH 空間分佈 3 結果與討論 C. 數值方法 1 電漿電位計算有限差分展開 D. PC Cluster 架設 1 硬體簡介 2 軟體需求 3 系統設定 Bibliographyrf [1 ]Sung-Pill Hong, Hiromichi Yoshikawa, Koichiro Wazumi, and Yoshiniri Koga. Synthesis and tribological characteristics of nanocrystalline diamond film using CH/H microwave plasmas. Diamond and Related Materials, 11:877, 2002. [2 ]A. Heiman, E. Lakin, E. Zolotoyabko, and A. Hoffman. Microstructure and stress in nano-crystalline diamond films deposited by DC glow discharge CVD. Diamond and Related Materials, 11:601, 2002. [3 ]R. G. Lacerda, V. Stolojan, D. C. Cox, S. R. P. Silva, and F. C. Marques. Structural characterization of hard a-c:h film as a function of the methane pressure. Diamond and Related Materials, 11:980, 2002. [4 ]M. A. Guillorn, A. V. Melechko, V. I. Merkulov, C. L. Britton, M. L. Simpson, and D. H. Lowndes. Self-aligned gates field emission device using single carbon nanofiber cathodes. Appl. Phys. Lett., 81(19):3660, September 2002. [5 ]J. Benedikt. Plasma chemistry during deposition of a-C:H. Diamond and Delated Materials, 11:989, 2002. [6 ]S. Iijima. Helical microtubules of graphitic carbon. Nature, 354:56, 1991. [7 ]S. Iijima and T. Ichihashi. Single-shell carbon nanotubes of 1-nm diameter. Nature, 363:603-605, 1993. [8 ]Sumio Iijima R&D Group. Carbon nanotubes and their recent develeoments. IEEE, page 250, 1998. [9 ]Yahachi Saito. Preparation and Properties of Carbon Nanotubes. In 1999 International Symposium on Micromechatronics and Human Science, page 43, 1999. [10 ]L. Delzeit, I. MaAninch, B. A. Cruden, D. Hash, B. Chen, J. Han, and M. Meyyappan. Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor. J. Appl. Phys., 91(9):6027, May 2002. [11 ]S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, and C. Dekker. Individual single-wall nanotubes as quantum wires. Nature, 386:474-477, 1997. [12 ]S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, and H. Dai. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 283:512-514, 1998. [13 ]M. A. Guillorn, A. V. Melechko, V. I. Merkulov, E. D. Ellis, C. L. Britton, M. L. Simpson, and D. H. Lowndes. Operation of a gated field emitter using an individual carbon nanofiber cathod. Appl. Phys. Lett., 79(21):3506, September 2001. [14 ]R. Martel, T Schmidt, H.R. Shea, T. Hertel, and P Avouris. Single and multi-wall carbon nanotube field-effect transistors. Applied Physics Letters, 73:2447-2449, 1998. [15 ]Meyyappan, Lance Delzeit, Alan Cassell1, and David Hash. Carbon nanotube growth by PECVD: a review. Plasma Sources Sci. Technol., 12:205, 2003. [16 ]Luiun Pan, Mei Zhang, Yoshikazu, and Nakayama. Growth mechanism of carbon nanocoils. J. Appl. Phys., 91:10058, 2002. [17 ]Chao Hsun Lin, Hui Lin Chang, Ming Her Tsai, and Cheng Tzu Kuo. Growth mechane and properties of the large area well-aligned carbon nano-structures deposited by microwave plasma electron cyclotron resonance chemical vapor deposition. Diamond and Related Materials, 11:922, 2002. [18 ]Minjae Jung, Kwang Yong Eun, Young-Joon Baik, Kwang-Ryeol Lee, Jin-Koog Shin, and Sung-Tae Kim. Effect of NH environmental gas on the growth of aligned carbon nanotubes in catalystically pyrolizing CH. Thin Solid Film, 398-399:150, 2001. [19 ]L. Valentini, J. M. Kenny, and S. Santucci L. Lozzi. Formation of carbon nanotubes by plasma enhanced chemical vapor deposition: Role of nitrogen and catalyst layer thickness. J. Appl. Phys., 92:6188, 2002. [20 ]S. Stoykov, C. Eggs, and U. Kortshagen. Plasma chemistry and growth of nanosized particles in CH rf discharge. J. Phys. D, 34:2160, 2001. [21 ]David Hash, Deepak Bose, T. R. Govindan, and M. Meyyappan. Simulation of the dc plasma in carbon nanotube growth. J. Appl. Phys., 93(10):6284, 2003. [22 ]C. L. Tsai, C. F. Chen, and L. K. Wu. Bias effect on the growth of carbon nanotips using microwave plasma chemical vapor deposition. Applied Physics Letters, 81(4):721, July 2002. [23 ]Toshihiro Fujii. Neutral product analysis of the microwave plasma: , , , , and larger species. J. Appl. Phys., 82(5):2056, September 1997. [24 ]Ch. Deschenaux, A. Affolter, D. Magni, Ch. Hollenstein, and P. Fayet. Investigations of , and dusty RF plasmas by means of FTIR absorption spectroscopy and mass spectrometry. J. Phys. D: Appl. Phys., 32:1876, 1999. [25 ]James R. Doyle. Chemicalkinetic in low pressure acetylene radio frequency glow discharge. J. Appl. Phys., 82(10):4763, 1997. [26 ]R. Engeln, K. G. Y. Letourneur, M. G. H. Boogaarts, M. C. M. Van de Sanden, and D. C. Schram. Detection of CH in an expanding argon/acetylene plasma using cavity ring down absorption spectrosopy. Chem. Phys. Lett., 310:405, 99. [27 ]Kallol Bera, Jeong W. Yi, Bakhtier Farouk, and Young H. Lee. Two-dimensional radio-frequency methane plasma simulation: Comparison with experiments. IEEE Trans. Plasma Sci., 27(5):1476, October 1999. [28 ]K Bera, B Farouk, and P Vitello. Inductively coupled radio frequency methane plasma simulation. J. Phys. D: Appl. Phys., 34:1479, 2001. [29 ]M. Frenklach, D. W. Clary, T. Yuan, JR. W. C. Gardiner, and S. E. Stein. Mechanism of soot formation in acetylene-oxygen mixture. Combust. Sci. and Tech., 50:79, 1986. [30 ]D. Herrebout, A. Bogaerts, M. Yan, and R. Gijbels. One-dimensional fluid model for an rf methane plasma of interest in deposition of diamond-like carbon layers. J. Appl. Phys., 90(2):570, 2001. [31 ]D. Herrebout, A. Bogaerts, R. Gijbels, W. J. Goedheer, and A. Vanhulsel. One-dimensional fluid model for an acetylene rf discharge: A study ofid NH0925593074 sid 903186 cfn 0 / id NH0925627001 auc 馮瑞珍 tic 企業文化、經營策略與企業經營績效之關係探討【以某封裝測試廠為例】 adc 陳鴻基 ty 碩士 sc 國立清華大學 dp 高階主管經營管理碩士在職專班 yr 92 lg 中文 pg 84 kwc 企業文化 kwc 經營策略 kwc 經營績效 kwc 封裝測試廠個案研究 abc 企業文化是組織成員行為的指導原則、信仰與期望,它創造出有價值的行動,經營策略的執行須仰賴公司員工的配合與支持,這便有賴企業文化的影響與薰陶。故企業文化與經營策略具有相當的關聯性,企業經營的最終目的便是獲得預期的經營績效,達企業永續經營之目的。 rf 中文參考書目/文獻: 1.大前研一,1984,策略家的智慧,台北:長河出版社。 2.王見福,2003,光電產業、組織文化、行銷策略與顧客關係管理 對組織績效影響之實證研究,國立成功大學 管理學院 高階管理碩士在職專班( EMBA) 碩士論文。 3.方建雄,1998,中日合資與本土公司之經營策略、企業文化、經營績效之個案比較,國立成功大學企業管理研究所碩士論文。 4.江正信,2000,高階經營團隊與企業策略決策模式、組織學習傾向、創新能力及經營績效之關係研究,國立成功大學企業管理研究所碩士論文。 5.司徒達賢,1995,策略管理,台北:遠流出版公司。 6.司徒達賢,1997,「台灣企業之經營分析」,企銀季刊,第三卷,第一期,p.32,1997。 7.司徒達賢,2002,策略管理新論:觀念架構與分析方法,台北:智勝文化事業有限公司。 8.汪維之,1993,企業競爭策略、企業文化與經營績效之關係研究,私立文化大學國際企業管理研究所。 9.朱俊樺,1995,有線電視頻道業者策略型態、行銷作為與績效關係之研究,國立政治大學企業管理所碩士論文。 10.成令方、林鶴玲、吳嘉苓譯,2003, 見樹又見林The forest and the trees Allen G. Johnson著, 台北:群學出版. p.63,64,68,76 11.呂碧茹,1999,高科技產、企業文化、經營策略與人力資源發展及組織績效之關聯性研究,國立成功大學企業管理研究所碩士論文。 12.呂安妮,1995,台灣工業塑膠產業分析與競爭策略之研究,國立台灣大學商學研究所碩士論文。 13.呂碧茹,1999,高科技產業、企業文化、經營策略與人力資源發展及組織績效之關聯性研究,國立成功大學企業管理研究所碩士論文。 14.李若俊,2000,家具業建立品牌之經營策略研究, 國立台灣大學森林學研究所碩士論文。 15.河野豐弘,1990,改造企業文化 ,彭懷中譯,台北:遠流出版社。 Robert S. Kaplan & David P. Norton ,2001,The Strategy-Focused Organization - How Balanced Scorecard companies Thrive in the new Business Environment 策略核心組織-以平衡計分卡有效執行企業策略,台北:ARC遠擎管理顧問公司策略績效事業部譯。 16.吳知賢,「組織文化剖析」,研考雙月刊,第18卷,第2期,pp.45 17.吳思華,1998,策略九說,台北:臉譜文化出版社。 18.吳萬益、黃文宏,1996,「企業組織文化決策模式與經營策略之研究中鋼與台塑模式之實証研究」亞太管理評論,第2卷,第1期。 19.吳鄭重譯,1994, 奇異傳奇,諾爾.提區、史崔佛.薛曼著Noel M.Tichy、Stratford Sheman台北:智庫文化(股)公司 p47,48,108。  20.林展榮,1996,企業文化與經營策略之配適與經營績效關係之研究,私立淡江大學管理研究所碩士論文。 21.林敬隆,1996,台灣塑膠製品產業分析與發展策略之研究, 私立大葉工學院事業經營研究所碩士論文。 22.林讚騰,1993,高階管理者的任用來源與組織績效之影響,國立中山大學企業管理研究所碩士論文。 23.洪春吉,1996,台灣地區中、美、日資企業之企業文化比較,國立台灣大學商學研究所博士論文。 24.施振榮,2000,願景與企業文化,台北:大塊文化。 25.唐富藏,1988,企業政策與策略,台北:大行出版社。 26.徐永昌,2000,企業願景、企業文化、員工生涯發展與組織承諾之關係研究一以台灣製造業為例,國立成功大學企業管理研究所碩士論文。 27.馮久玲著,2002,文化是好生意 Culture is Good Business台北:臉譜出版; 邦成文化發行 p21。 28.張世佳、賀力行,1999,「臺灣銀行季刊」第四十九卷第四期。 29.張旭利,1989,企業策略、企業文化及企業績效關係之研究,私立淡江大學管理科學研究所碩士論文。 30.張重昭,1985,產業環境、技術特性、經營策略、管理制度與績效關係之研究,國立政治大學企業管理研究所博士論文。 31.郭明秀,2001,高階經營團隊與組織運作、競爭優勢、競爭策略及經營績效之關係研究-傳統產業與高科技業之比較,國立成功大學企業管理研究所碩士論文。 32.陳貴源,1991,策略型態、行銷組合與績效之關係-以台灣個人電腦業為例,國立台灣大學商學研究所碩士論文。 33.陸青美,2004,圖書出版業者之經營策略與經營績效之相關性研究,南華大學出版事業管理研究所碩士論文。 34.陳俊雄,l994,企業文化、經營策略與績效關係之探討- 以電子資訊業為研對象,私立淡江大學管理科學研究所碩士論文。 35.黃泰元,1995,廣告代理業企業經營策略之研究,國立雲林技術學院企業管理研究所碩士論文。 36.楊慧華,2002,企業文化、企業遠景、經營策略與經營績效之關係研究 - 以台灣國際觀光旅館業為實證,國立成功大學企業管理研究所碩士論文。 37.鄭心家,2000,製造彈性與事業策略觀係研究與現況分析,中華大學工業工程與管理研究所碩士班。 38.鄭永忠,1996,大型醫院組織文化、組織運作、經營管理及經營績效之關係研究,國立成功大學企業管理研究所碩士論文。 39.鄭清祥,l991,企業文化類型、企業策略與財務績效之關係研究,台灣製造業之實證研究,中山大學企業管理研究所碩士論文。 40.鄭峻文,1995,企業文化、管理風格、經營策略與績效之關係研究- 以台灣及大陸兩地之中美日企業為例,國立成功大學企業管理研究所碩士論文。 41.蔡雪紅,1999,企業文化、領導型態、與經營績效關係之研究 - 以台灣地區國際觀光旅館業為實證,私立逢甲大學企業管理研究所碩士論文。 42.劉 寧,2003,企業文化、組織承諾、及組織變革態度之關係研究 - 以日月光集團半導體後段製程三家公司整合為例,國立成功大學管理學院高階管理碩士在職專班碩士論文. 43.鍾振輝,1988,企業文化、組織績效、製造策略與經營績效之關係研究,國立成功大學企業管理研究所碩士論文。 44.蘇國禎、陳榮德,2003,「人力資源學報」 2003冬季號第三卷第四期. Journal of Human Resource Management Vol.3 No.4 Winter。 英文參考書目/文獻: 1.Aaker, D. A., “Strategic Market Management”, 1986. 2.Ansoff, H. I., Strategic Management, London: Macmillan, p271-283, 1979. 3.Ansoff, H. I.,“Corporate Strategy”, New York: McGraw-Hill, 1965. 4. Bamey, Jay B. organizational Culture: Can it Be a Source of Sustained Competitive Advantage? Academy of Management Review, Vol.11, No.3, pp. 656-665, 1986. 5.Calori, Roland and Philippe Sarnin, Corporate Culture and Economic Performance: A French Study, Organization Studies, Vol.12 No1, pp.49-74, 1991. 6.Candler, A.D., “Strategy and Structure,” Cambridge, Harvard University Press 1962. 7.Canoll, S. J., & Schneier, C. E. Performance appraisal and development of performance in organizations. Glenview Illionis: Scott, Foresman , 1982. 8.Christensen, C.R.H.R, Andrrews J. L. Brower, Business Policy: Text and Case, Homewood, III, 1978. 9.Cooke, R.A., & Lafferty,J.C. Organizational culture. Plymouth, MI: Human Synergistic. 1989. 10.Delaney, J. T., and Huselid, M. A., The Impact of Human Resource Management Practices on Perceptions of Organizational Performance , Academy of Management Journal Vol. 39, No.4, pp.949-969, 1996. 11.Denison, Daniel R., Bringing Corporate Culture to the Bottom Line. Organizational Dynamics Vol.13, No.2. pp.5-22, l984. 12.Dess, G. C. and R. B. Robinson, Jr., “Measuring Organizational Performance in the Absence of Objective Measures, Strategic Management Journal, Vol.5, No.3, pp.265-273, 1984. 13.Dess, G.G. and Davis , Porter’s(1980) “generic strategies as determniants of strategic group membership and organization performance” Academy of Management Journal, Vol.27, pp.330-372, 1984. 14.Evans Hugh . Ashworth G. Chellew M. ` Davidson A. & Towers D., “Exploiting Activity-Based Information: Easy as ABC”, Management Accounting, London. 1996. 15.Gordon, George G., The Relationship of Corporate Culture to Industry Sector and Corporate Performance “, In Kilmann, Ralph H. et al. ( Eds.) , Gaining Control of the Corporate Culture .p121, San Francisco: Jossey-Bass, 1985. 16.Hatton, K.J. ,Schendel D.E.,and Cooper,A.C.’’ A Strategic Model of U.S. Brewimg Industry.”, Academy of Management Journal, pp.592-610, 1978 . 17.Hofer, C. & Schendel, D. Strategy Formulation: Analytical concepts. Minnsota., West ,1978. 18.Jauch L. & Glueck, W.F. Strategy Management and business policy, 3rd., N.Y. :McGraw-Hill, 1989. 19.Kast, F.E., Organization and Management, New York: McGraw- Hill Book Co., 4th ed., 1985. 20.Kaplan R.S. S. & Norton D.P., The Balanced Scorecard Strategy into Action Harvard Business School Press. 1996. 21.Kaplan R.S. & Norton D.P., “Using the Balanced Scorecard as a Strategic Management System’, Harvard Business Review, January February, 1996. 22.Kharbanda, O.P. & Stallwordly E.A. Every Company Will Have A Culture. Industrial Management & Data Systems, VoI.19, No.2, pp.9-14, 1991. 23.Kono, T. Corporate Culture and Long-range Planning. Long Range Planning, Vol. 23, No.4, pp.9-19, 1990. 24.Mcmanis, Gerald L. and Michael S. Leibman, ’Corporate Culture: What It Can and Cannot Do, Personnel Administrator, Vol.33, No.12, pp.24-29, 1988. 25.Michael E.Porter, Competitive Advantage: Creating and Sustaining Superior Performance , N.Y.: The Free Press , p.37, 1985. 26.Miles, R.E. & Snow, C.C.. Organizational Strategy, Structure and Process. New York: McGraw-Hill 1984. 27.Miles, R. E., & Snow, C. C., Organizational Strategy, Structure and Process. New York : McGraw-Hill. 1978.   28.Mintzberg, H., The Structure of Organizations, Englewood Cliffs, NJ: Prentice Hall, 1979. 29.OECD, “The OECD small and medium enterprise outlook 2000 edition”, Organization for Economic Co-operation and Development, Paris, 2000 30.Porter, M. Competitive Advantage: Creating and Use Training Superior Performance New York Free, 1985. 31.Robbins S.P. Organization Theory: Structure, Design, and Application. San Diego: Prentice-Hall. 1990. 32.Szilagyi, A. O., Management and Performance, California: Goodyear Publishing Company Inc., 1981. 33.Utterback, J.W. and Abernathy, W.F.”A Test of a Conceptual Model Linking States in Firms” Process Innovation. Working paper, Harvard Business School, 1974. 34.Venkatraman N. & Ramnnujam V.“ Measurement of Business Performance in Strategy research: A Comparison of Approaches” Academy of Management Review, Vol.11, No.4 p801-814, 1986. 35.Wallach, E.J., Individuals and Organizations: The Cultural Match. Training and Development Journal, 1983. 36.White, R.E. ”Generic Business Strategies Organizational Context and Performance” An Empirical Investigation Strategic Management Journal, Vol.7 pp.217-231, 1986. 三、文獻相關網站 1. 國內文化創意產業相關網站。http://www.ncaf.org.tw/news/index_news.asp?ser_no=137文化創意網站 2. EMBA世界經理文摘- 介紹國際最新管理知識、管理書籍。 http://www.emba.com.twid NH0925627001 sid 906114 cfn 0 / id NH0925627002 auc 陳萬成 tic IC 測試由大量生產到專業測試服務的轉型 adc 林博文 ty 碩士 sc 國立清華大學 dp 高階主管經營管理碩士在職專班 yr 92 lg 中文 pg 46 kwc 專業服務 kwc 合作模式 kwc IC測試 abc 過去數十年來的 IC 測試產業提供 IC上游 -設計、晶圓廠等大量生產的測試服務,形成台灣早期 IC 產業的市場拉力。短交期達交、低成本的測試營運和提供封裝與測試整體服務為主要的競爭優勢。但隨著IC製程的進步,IC在應用設計上愈來愈複雜。過去台灣引以為傲的上下游垂直分工的模式,逐漸有其調整的需求。IC設計人員不能只管IC設計的事,測試人員也無法只是追求大量測試生產。同時在IC產業發展的趨勢下,面臨新產品及早面市、測試成本的壓力和產品品質的要求,IC設計人員和IC測試人員合作的關係愈來愈密切。本論文的結論指出IC 測試必將由過去以量產為主的黑箱服務模式移轉到知識密集的專業服務模式。 tc 目 錄 中文摘要…………………………………………………I 英文摘要……………………………………..…………II 誌謝詞……………………………………………………III 目 錄……………………………………………….….IV 圖目錄……………………………………………………VI 表目錄……………………………………………………VII 第一章 緒論 ………………………………………… .1 第一節 研究背景……………………………..……...1 第二節 研究目的……………………….....…………2 第三節 研究流程…………………………………… .3 第二章 文獻探討……………………………………… 4 第一節 IC測試產業特性………………....………… 4 第二節 上游/下游團隊的合作模式…………..……….8 第三節 專業服務的趨勢……………………….……..17 第三章 研究方法…………………………..……….…25 第一節 研究架構……………………………….…...25 第二節 研究對象…………………………….……...26 第三節 問卷設計…………………………….……...26 第四章 研究結果分析…………………………...……28 第一節 問卷發出與回收情形………………….…… 28 第二節 問卷整理………………………….,.……… 29 第三節 實證分析…………………………..…….… 30 第五章 結論與建議……………………………...……36 第一節 研究結論…………………………….…….. 36 第二節 管理實務意涵……………………….……...37 第三節 研究限制…………………………….…..… 39 第四節 研究建議…………………………….….…. 41 參考文獻……………………………………...….……..42 《註釋》…………………………………………….…… 44 《附錄》…………………………………………………. 45 圖目錄 圖1-1 本研究的研究流程……………………………………3 圖2-1 半導體元件趨勢………………………………..……7 圖2-2 上游-下游相互合作的四模式………………..…….9 圖2-3 Design-to-Test開發流程……………………………12 圖2-4 POC2SIM Flow……………………… .….………….14 圖2-5 IC產業分工………………………..………...…… 21 圖2-6 晶圓和測試成本趨勢圖……………………….…….24 圖3-1 研究架構………………………………………..…..25 表目錄 表1-1全球前十大專業測試服務廠商 …………… ……………1 表 3-1 測試工程師績效衡量指標 …………………………….27 表 3-2 調查構面及因子 …………………………………….27 表 3-3 研究問卷回收統計 …………………………………….28 表 3-4 相關因子統計表 …………………………………….29 表 3-5 敘述統計表 ………………………………………… 31 表3-6 測試工程師在該新產品測試工作之表現-轉軸後的因子矩陣32 表3-7「功能與資訊」-轉軸後的因子矩陣 ………………………. 32 表3-8 產品開發週期的相關共同因子 …………………………….33 表3-9 「功能與資訊」的相關共同因子 ………………..………..34 表3-10 辦公室地理位置相關重要因子統計 …………….…………35rf 參考文獻 一、中文部分 1.楊丁元、陳慧玲,1996,「業競天擇」,台北:工商時報社。 2.楊雅嵐,2003,「台灣封測業發展前景分析」,經濟部科技專案成果,新竹:工業技術研究院產業經濟與資訊服務中心。 3.洪德芳、黃文輝、楊雅嵐,2003,「專業測試及驗證研究一以彩色濾光片憶光板為例」,經濟部科技專案成果,新竹:工業技術研究院產業經濟與資訊服務中心。 二、英文部分 1.Dawson, R., (2000),Developing knowledge-based client relationships: the future of professional services,New York:Wisdom & Knowledge Publishing Co. 2.Geus, Arie P. de (1988).,“Planning as Learning”,Harvard Business Review, 66 (2), pp70-74. 3.Maister, D.H., (1997),Managing the Professional Service Firm, New York:Free Press. 4.Peters, T., (1992),Liberation Management: Necessary Disorganization for the Nanosecond Nineties,New York:Fawcett Columbine. 5.Porter, M.E., (1985),Competitive Advantage: Creating and Sustaining Performance, New York:Free Press. 6.Brown, J.S., & Duguid, P., (2000),“Mysteries of the Region, The Silicon Valley Edge:A Habitat for Innovation and Entrepreneurship”, eds., William F. Millar, Chong-Moon Lee, Marguerite Gong Hancock, and Henry S. Rowen,Stanford University Press, pp16-39. 7.Bushnell, M., and Agrawal, V., (2000),Essentials of Electronic Testing for Digital, Memory, and Mixed-Signal VLSI Circuits, Norwell, MA:Kluwer. 8.Burns, M., and Roberts, G.W., (2001),“An Introduction to Mixed-Signal IC Test and Measurement”,New York:Oxford University Press. 9.Nonaka, I., and Takeuchi, H., (1995),“The Knowledge-Creating Company”, New York:Oxford University Press. 10.Ochoa, J.A. & Porter, J.R., (2003),“Semiconductor Test Strategies”,IEEE Instrumentation & Measurement Magazine, March 2003 11.Wheelwright, S.C. and Clark, K.B.(1992),“Accelerating the Design-Build-Test Cycle for Effective New Product Development”,In Burgelman, R. A., Maidique, M. A., & Wheelwright, S.C. (Eds.), Strategic Management of Technology and Innovation,pp. 900-910,.New York:McGraw-Hill. 註釋 1.清華大學科管院 林博文 博士對類似以知識交流而產生更進一步的知識,稱之為「知識的融合 (Knowledge Fusion) 」。 2.野中郁次郎和竹內弘高(1995)將高度個人化,不容易表達或難以公式化的知識稱為「隱性」知識;而可以系統化,容易傳播、分享的知識稱為「顯性」知識。 3.新產品開發計劃中計劃成員有﹕計劃主持人、企劃工程師、設計工程師、應用工程師、產品工程師、測試工程師……計劃主持人掌握所有計劃的進度和協調各計劃成員間的支援。計劃主持人的立場屬中立而且計劃完成後,會對各計劃成員的績效加以考核。 4.Winbond對產品計劃的績效有下列3個指標 • 改版的次數≦ 2次 (Delivery) • 晶圓和測試的成本在目標值內(Cost) • CPR 準時 (Time-to-Market) 5.Winbond 產品導入時程區分為:CPR (Conditional Pre-Release), Release, Project Pending, 和 Project Close. CPR (Conditional Pre-Release)指產品完成工程驗證(Alpha Test)面臨市場需求及競爭,必須開始小量生產時,可申請CPR,將生產事宜納入生產管制的體系內。 6.平均每位計劃主持人之計劃數3.5件 (147/42)。id NH0925627002 sid 906119 cfn 0 / id NH0925627003 auc 洪慶昌 tic 矩陣式組織架構下影響新產品研發績效之因素 adc 林博文 ty 碩士 sc 國立清華大學 dp 高階主管經營管理碩士在職專班 yr 92 lg 中文 pg 140 kwc 矩陣式組織 kwc 研發績效 abc 台灣已從過去的傳統製造業的接單組立生產變成以產品開發為主軸的高科技產業,產品越來越複雜,研發時程卻越來越短,企業的生存不只寄望於研發單位的創新能力,更寄望於研發管理能力,因此,組成高效率的研發專案團隊已是目前企業一致的目標。 rf 【參考文獻】 中文部分 1. 鐘元鋒著,「電子成品業研發管理過程對量產績效影響之研究」,台灣科技大學管理技術研究所碩士論文,1999。 2. 許士軍著,「管理學」,東華書局,1988。 3. 許是祥著,「企業管理」,中華企業發展中心,1982。 4. 陳定國著,「企業管理」,三民書局,1997。 5. 柯良旺著,「組織發展技術之實施現況與個案探討」,國立清華大學碩士論文,1995。 6. 陳玟良著,「以Chandler理論觀點探討企業創新活動之研定」,中原大學企業管理所碩士論文,1999。 7. 楊超然著,「企業概論」,中華電視公司教學部,1994年。 8. 林金賢、許國清著,「不同專案組織下專案經理人特性對專案績效之影響」,中華民國科技管理論文集,頁627-638,1999。 9. 陳威名著,「專案式組織經營管理之探討-個案工程公司實橙證研梵」,國立中山大學企業管理所碩士論文,1993。 10. 簡瑞蓮著,「漸進式和急遽式專案主持人管理角色與新產品開發績效關係之研究」,國立中央大學企業管理研究所碩士論文,1999。 11. 何雍慶著,「高科技企業的組織結構」,卓越高科技企業傳承與躍昇研討會論文集,中國生產力中心,1992。 12. 林小玲著,「增強專案成員承諾之領導模式探討」,國立中興大學企業管理所碩士論文,1992。 13. 司徒達賢著,「策略管理」,遠流出版公司,1995。 14. 張寶康著,「影像掃瞄器新產品發展成功因素之研究」,中興大學企業管理研究所碩士論文,1997。 15. 呂鴻德著,「技術策略、功能互動與產品創新績效關係之研究–資訊電子業成長階段之模式」,台灣大學商管研究所碩士論文,1992。 16. 林明杰著,「研究發展與制製造介面研究」,國立政治大學企業管理所碩士論文,1989。 17. 賴士葆著,「科技策略與新產品發展績效相關之研究」,科技管理論文集,1990。 18. 陳明皇著,「科技策略製造,研究發展部門整合差距與產品創新績效關係之研究」,輔仁大學管理科學研究所碩士論文,1994。 19. 陳智賢著,「研究成果績效指標之研究,以經濟部科技專案為例」,國立交通大學管理科學研究所碩士論文,1995。 20. 陳元倫著,「專案團隊控制制度與新產品開發績效關係之研究」,國立中央大學企業管理研究所碩士論文,2000。 21. 王思佳著,「研究能力與研發績效關係之研究,以高科技產業為例」,大同大學事業經營研究所碩士論文,2000。 22. 李明源著,「環境不確定性、組織性整合與新產品開發績效關係之研究」,國立中央大學企業管理所碩士論文,2001。 23. 黃鴻圖著,「市場資訊處理能力與組織設計對新產品績效影響之研究」,國立中央大學企業管理所碩士論文,2001。 24. 黃士杰著,「由專案管理的關鍵成功因素來探討新產品」,國立交通大學經營管理研究所碩士論文,2001。 25. 黃昆明著,「功能式矩陣組織研發管理」,國立中山大學企業管理所碩士論文,2001。 26. 黃俊英著,「企業研究方法」,東華書局,1994。 27. 陳萬淇著,「個案研究方法」,華泰書局,1995。 28. 陳道陞著,「台灣傳統企業引入電子商務之可行性研究--以國產汽車為例」,國立政治大學資訊管理學系碩士論文,2000。 29. 王文科著,「教育研究方法」,五南圖書出版公司,1994。 30. 王秉鈞著,「個案研究方法在企業管理上之應用與評議」,第一屆管理學術定性研究法研討會,1995。 英文部分 1. Babbie, E. R. (1998), The Practice of Social Research. 8th ed, Belmont: Wadsworth Publishing Company. 2. Benbasat, I., Goldstein, D. and Mea, M. (1987), “The Case Research Strategy in Studies of Information System,” MIS Quarterly. Vol.11, No 3. Sept 3. Bentley, D. and Rafferty, G. (1992), "Project Management: Keys to Success," Civil Engineering, April, pp. 58-59. 4. Booz, Allen and Hamilton, (1982), “New Products Management for the 1980’s” New York: Booz, Allen and Hamilton Inc., pp.17. 5. Bubshait, K. A. and Willem, J. S. (1992), "Project Characteristics That Influence the Implementation of Project Management Techniques: A Survey," Project Management Journal, 23, pp.43-47. 6. Cooper, R. G. (1984), “The Strategy-Performance Link in Product Innovation,“ R&D Management, 84, pp.247-259. 7. Cooper, R. G.. and Kleinschmidt, E. J. (1987), “New product: What Separates Winners from Loserss,” Journal of Product Innovation Management, 4, pp.169-184. 8. Cooper, R. G.. and Kleinschmidt, E. J. (1996), “Winning Business in Product Develop: The Critical Success Factor,“ Research Technology Management, 39, pp.19-29. 9. Davis, S. M. and Lawrence, P. R. (1977), Matrix, Reading. Massachusettes: Addison-Wesley Publishing Company. 10. Galbraith, J. R. (1971), "Matrix Organization Design: How to Combine Functional And Project Forms," Business Horizons, February, pp.29-40. 11. Gido J. and Clements, J. P. (1999), Successful Project Management. Taipei: Tsang-Hai Bookstore. 12. Griffin and Page, A. L. (1993), “An Interim Report on Measuring Product Development Success and Failure,” Journal of Product Innovation Management, 10, p.295. 13. Jiang, J. J., Klein, G., and Margulis, S. (1998), "Important Behavioral Skills For IS Professional,” Project Management Journal, 29, pp.39-43. 14. Kast, F. E. and Rosenzweig, J. E. (1985), Organization and Management: A Systems And Contingency Approach. 4th ed, New York: McGraw-Hill. 15. Khandwalla (1981), The Design of Organization. San Francisco: Brace Publishers. 16. Knight, K. (1977), "Problems of Matrix Management," Matrix Management: A Cross-Functional Approach to Organization. England: Gower Press. 17. Larson, E. W. and Gobeli, D. H. (1988), “Organization for Product Development Project,” Journal of Product Innovation Management, May, pp.180-190. 18. Larson, E. W. and Gobeli, D. H. (1986), “Project Management Reseach Program: A Status Report,” Project Management Journal, March, pp.24-25. 19. Larson, E. W. and Gobeli D. H. (1987), “Relative Effectiveness of Different Project Structure,” Project Management Journal, 18, pp.81-85. 20. McCollum, J. K. and Sherman, J. D. (1993), “The Matrix Structure: Bane Or Benefit to High Tech Organization?” Project Management Journal, 24, pp.23-26. 21. Middleton, C. J. (1967), “How to Set Up a Project Organization,” Howard Business Review, March-April, pp.73-82. 22. Might, R. (1984), “An Evaluation of the Effectiveness of Project Control System,” IEEE Transactions on Engineeering Management, 31, pp.127-137. 23. Moravec, M. (1984), “Ensuring High Performance in a Matrix Management Systems Handbook” 24. Mower, J. and Wilemon, D. (1989), Team Building in a Technical Environment. New York: John Wiley. 25. Padgham, H. F. (1989), "Choosing the Right Program Management Organization," Project Management Journal, 20, pp.35-40. 26. Patton, Q. M. (1990), Qualitative Evaluation and Research Methods. 2nd ed,: Sage Publication Inc. 27. Pettersen, N. (1991), "Selecting Project Manager: an Integrated List of Predictors," Project Management Journal, 22, pp.21-26. 28. Pinto, J. K. and Covin J. G.. (1989), "Critical Factors in Project Implementation: a Comparison of Construction and R&D Projects," Technovation, 9, pp.49-62. 29. Pinto, J. K. and Slevin, D. P. (1987), "Critical Factors in Successful Project Implementation," IEEE Transactions on Engineering Management, 34, pp.22-27. 30. Pinto, J. K. and Kharbanda, O. (1995), “Lessons for an Accidental Profession,” Business Horizons, March-April. 31. Porter, L. W. and Smith, F. J. (1970), "The Etiology of Organizational Commitment," Unpublished Paper University of California, Irvine. 32. Porter, L. W., and Smith, F. J. (1976), "Organizational Commitment and Managerial Turnover,” Organizational Behavior and Human Performance, pp.87-98. 33. Randolph, W. A. and Posner, B. Z. (1988), "Reinforce the Commitment And Exitement of the Project Team," Effective Project Planning and Management. Singapore: Prentice. 34. Robey, D. and Sales, C. A. (1994), Designing Organizations. 4th ed. Homewood, IL: Irwin. 35. Rodrigues, C. A. (1993), "Developing Three-Dimensions Leaders," Journal of Management Development, 11, pp4-l1. 36. Sampson, P. (1970), “Can Consumers Create New Product?” Journal of the Marketing Research Society, Vol.12,No.1, pp.40~52. 37. Sbragia, R. (1984), “Clarity of Manager Roles and Performance of R&D Multidisciplinary Projects in Matrix Structure,” R&D management, pp.113~126. 38. Starr, (1980), Management: A Modern Approach. New York: McGraw-Hill. 39. Sounder, W. E. and Song, X. M. (1997), “Contingent Product Design And Marketing Strategies Influencing New Product Success And Failure in U.S. and Japanese Electronic Firms,” Journal of Product Innovation Management,15, pp.208~223. 40. Yin, R. K. (1989), Case Study Research Design and Methods. SAGE Publications. 41. Youker, R. (1977), "Organization Alternatives for Project Managers," Management Review, Nov. pp.46-53. 42. Zimmerer, T. W. and Yasin, M. M. (1998), "A Leadership Profile of American Project Managers," Project Management Journal, 29, pp.31-38.id NH0925627003 sid 916108 cfn 0 / id NH0925627004 auc 劉羽芬 tic 台商在中國大陸再投資之因素探討 adc 陳鴻基 ty 碩士 sc 國立清華大學 dp 高階主管經營管理碩士在職專班 yr 92 lg 中文 pg 81 kwc 台商西進 kwc 再投資 kwc 對外直接投資 kwc 擴張性投資 kwc 防禦性投資 abc 十餘年來,台商西進已經遍及到所有的產業,投資的區域也已擴展到全中國。但是,現有投資中國之文獻,大多是探索台商從台灣到大陸第一次投資的成因,至今幾乎沒有任何文獻探討台商在中國再投資之決定因素。本研究在缺乏相關的文獻及正式的調查資料下,透過中國大陸部分地區的台灣投資協會等管道,進行直接的問卷調查,共計回收樣本93份,其中有效樣本78份。除了對這些問卷資料進行基本統計分析外,為了更精確剖析調查結果,本文接著以Logistic迴歸模型來驗證本研究所提出的六個假說。 rf 一、英文 1. Aliber, R. Z. (1970), “The theory of direct foreign investment”, in Charler P. Kindleberger (ed.), The International Corporation, Cambridge and London: MIT Press. 2. Anderson, E. and Gatignon (1986), “Mode of Foreign Entry:A Transaction Cost Analysis and Proportions”, Journal of International Business Studies, vol. 17(fall), pp. 1-26. 3. Belderbos, R. and L. Sleuwaegen (1996), “Japanese firms and the decision to invest abroad: business groups and regional core networks”, Review of Economics and Statistics, 78, 214-220. 4. Buckley, P., and Casson, M. (1976), The Future of Multinational Enterprise, London: Macmillan and Co., pp 18-25. 5. Barrell, R. and N. Pain (1996), “An economerric analysis of U.S. foreign direct investment”, Review of Economics and Statistics, 78, 200-207. 6. Caves, R. E. (1974), “Causes of direct invetment: foreign firms’ share in Canadian and United Kingdom manufacturing industries”, Review of Economics and Statistics, 56,279-293. 7. Chen, H. and Chen T. J., (1998) “Network linkages and location choice in foreign direct investment”, Journal of International Business Studies, 29, 445-467. 8. Chen, T. J. (1992), “Determinants of Taiwan’s direct foreign inbestment: the case of a newly industrializing country”, Journal of Development Economics, 39,397-407. 9. Chen, T. J. and Y. P. Chen (1995), “Foreign direct investment and deindustrialisation: the case of Taiwan”, Journal of Industry Studies, 2, 57-68. 10. Chung, Chin (1994), “Taiwan’s DFI in Mainland China: Impact on the Domestic and Host Economies”, In Lyons, T.P. and Nee, V. eds. “The Economic Transformation of South China: Reform and Development in the post-Mao era”, Comell East Asia Series. Ithaca: Cornell University, 215-42. 11. Coase, R. H. (1937), “The Nature of the Firm”, Economics, 4, 386-405. 12. Dunning, John H. (1988) “The Eclectic Paradigm of International Production: A Restatement and Some Possible Solutions”, Journal of International Studies, pp. 40-78. 13. Gross, R. and Trevino, L. J, (1996), “Foreign Direct Investment in the United States: Analysis by Country of Origin”, Journal of Banking and Finance, vol.27, pp.139-156. 14. Horst, T. (1972), “Firm and industry determinants of the decision to invest abroad: and empirical study”, Review of Economics and Statistics, 54, 258-266. 15. Hymer, S. (1960), “Firm and Industry Determinants of the Decision to Invest Abroad and Empirical Study”, Review of Economics and Statistics, vol.45, pp.258-266. 16. Kimura, Y. (1989), “Firm-specific strategic advantages and foreign direct investment behabior of firms: the case of Japanese semiconductor firms”, Journal of International Business Studies, 20, 296-314. 17. Kogut, B. and S.J. Chang (1991), “Technological capabilities and Japanese foreign direct investment”, Review of Economics and Statistics, 73, 400-413. 18. Kojima, K. (1978), “Direct Foreign Investment: A Japaneses Model of Multinational Business Operations”, Crom Helm, London, UK, pp. 84-121. 19. Kotler, P.(1994), “Marketing Management:Analysis, Planning and Control”, 8th ed., Prentice Hall:pp464-485. 20. Lall, S. (1980), “Monopolistic advantages and foreign involvement by U.S. manufacturing industry”, Oxford Economic Papers, 32,102-122. 21. Mundell, R. A. (1957), “International Trade and Factor Mobility”, American Economics Review, 13, pp. 93-101. 22. Pugel, T. A., E. S. Kragas and Y. Kimura (1996), “Further evidence on Japanese direct investment in U.S. Manufacturing”, Review of Economics and Statistics, 78, 208-213. 23. Vernon, Raymond (1966), “International Investment and International Trade in the Product Cycle”, Quarterly Journal of Economics, vol.31(May),pp.190-207. 24. Wolf, B. (1977), “Industrial diversification and internationalization:some empirical evidence”, Journal of Industrial Economics, 26, 177-191. 一、中文 1. 大前研一(2002),中國、出租中,台北:天下雜誌。 2. 大前研一(2003),中華聯邦,台北:商周出版。 3. 天下編輯(2002),競爭中國,台北:天下雜誌。 4. 王濟川與郭志剛(2003),Logistic迴歸模型-方法及應用,台北:五南文化。 5. 中國商情快訊(2000),「入世後中國引進外資政策的轉變」,香港貿易發展局。 6. 田習如(2003),看全球與台灣、再看中國與台灣─中國經濟威脅與機會,台北:財訊。 7. 左峻德等(2001),中國大陸投資環境之分析,台北:經濟部、台灣經濟研究院。 8. 台灣區電機電子工業同業工會(2002),2002年中國大陸地區投資環境與風險調查,台北:商周編輯顧問。 9. 台灣區電機電子工業同業工會(2003),2003年中國大陸地區投資環境與風險調查,台北:商周編輯顧問。 10. 任克敏(2002),中國大陸經改理論與兩岸關係,台北:高立 11. 江小娟(2002),中國的外資經濟,北京:中國人民大學出版社。 12. 江雅玲(2000),台灣製造業中小企業對外直接投資傾向影響因素之研究,淡江大學產業經濟研究所碩士論文。 13. 朱炎(2002),「中國大陸建立自由貿易區的進展和對兩岸經貿關係的影響」。WTO架構下的兩岸經貿關係學術研討會論文集,台北。 14. 朱玉杰、周楠(2004),「不同因素對吸收FDI的影響研究」,國際經濟合作,第11期,中國商務部研究院。 15. 吳泓緒(2002),企業進入海外市場時機影響績效之研究-以台商對大陸直接投資為例,政治大學國際貿易研究所碩士論文。 16. 吳麗生(2002),影響台商投資大陸西部之發展策略及區位因素分析,中山大學大陸研究所碩士論文。 17. 李秀桓(2000),21世紀中國市場,香港:三聯書店 18. 李昭琦(2002),台灣高科技產業經營績效與大陸投資規模之研究,成功大學政治經濟研究所碩士論文。 19. 李文振(1995),台商機電業赴中國大陸投資經營策略之研究,淡江大學中國大陸研究所碩士論文。 20. 李明軒(2001),廠商對外投資行為與研發行為間關係之研究-台灣電機電子業廠商之實證分析,國立台灣大學經濟研究所碩士論文。 21. 李憲宗(1998),台灣績優中小企業海外投資決策與績效關係之研究-以製造對大陸及東協五國投資為例,成功大學企業管理研究所碩士論文。 22. 汪庭安(2003),創新升級迎接挑戰,台北:台灣智庫。 23. 何庸慶(1993),「台商大陸投資動機與行為之研討」,跨越大陸投資障礙研討會論文集,台北。 24. 表文燦(1998),對大陸直接投資決定因素研究-以台灣、韓國企業為主,台大國企所碩士論文。 25. 林智傑(2003),製造業海外直接投資區位選擇決定因素之探討-以中國、美國及東協五國為例,東吳大學經濟學研究所論文。 26. 林傑斌等(2002),SPSS與統計模式建構,台北:文魁資訊。 27. 林惠玲(1997),「台商赴大陸投資決定因素之探討-紡織工業與電子電器業之實證研究」,台北:台大經濟系產業經濟研討會論文。 28. 林惠玲(2001),「對外投資對國內投資的影響-台灣製造業的實證研究」,第六屆梁國樹教授紀念研討會論文,台北:台大經濟系。 29. 林毅夫、蔡昉、李周(2000)。中國經濟改革與發展,台北:聯經 30. 洪晨翔(2002),對外直接投資的區位選擇與投資傾向之決定因素台灣製造業中小企業之實證研究,淡江大學產業經濟學系碩士論文。 31. 胡名雯(2000),台灣中小企業對外直接投資傾向之研究,台北:國科會。 32. 高長、吳世英(1995),「台商赴大陸投資對台灣經濟的影響」,經濟前瞻,第40期,122-130頁。 33. 高長、陳威如(1998),「台商赴大陸投資所有權進入模式決定因素的分析」,管理學報,第15卷第3期,393-418頁。 34. 高長(2002),大陸經改與兩岸經貿關係,台北:五南出版社。 35. 高長、季聲國、吳世英(1995),台商與外商在大陸投資經驗之調查研究-以製造業為例(二)。 36. 高希均、林祖嘉(1993),台商大陸投資對國內產業升級與兩岸垂直分工影響之研究,經濟部委託計劃。 37. 陳順宇(2000),迴歸分析,台北:華泰書局。 38. 陳忠榮、楊志海(1999),「台灣對外直接投資的決定因素-擴張型與防禦行之比較」,經濟論文叢刊,第27卷第2期, 215-240頁。 39. 陳偉傑(1997),「國際因素對台商赴大陸投資行為的影響」,台灣經濟金融月刊,5月,86-92頁。 40. 產經網中國貿易報(2004),「區域經濟推動國民經濟大發展」,中華人民共和國商務部。 41. 凌志軍(2002),變化1990-2002年中國實錄,北京:中國社會科學出版社。 42. 郭中人(1994),海外投資判定因素之研究-以台灣製造業為例,淡江大學國企所碩士論文。 43. 姜岩(2003),「跨國公司對華直接投資的區位選擇」,中國外資,第六期,中國外經貿研究院。 44. 黃怡菁(2001),台商赴大陸投資關鍵成功因素與績效之研究-以資訊電子為例,中國文化大學國際企業管理研究所碩士論文。 45. 黃清雄(2001),台商赴大陸投資與經營成敗之研究,政治大學企業管理研究所碩士論文。 46. 黃景輝(1990),從管理層面探討台商對大陸投資的緣起演變、下場、前景及對策,台北:經濟部投資業務處。 47. 黃欽勇(2003),西進與長征,台北:商周出版。 48. 張傳國(2003),「台資西進的六個制約因素」,中國外資,第八期,中國商務部研究院。 49. 馬洪、王夢奎(2002),中國發展研究,北京:中國發展出版社。 50. 黑田篤郎(2002),中國製造,台北:經濟新潮社。 51. 葉珣靇(2003),下一個科技盟主,台北:經典傳訊文化。 52. 溫世仁(2003),中國經濟的未來,台北:天下文化。 53. 歐興祥、葉榮造、黃曼芬(1991),「近年來對外投資快速增加之原因及對我國經濟之影響」,中央銀行季刊,第13卷第2期,26-28頁。 54. 經濟部統計處編(2002),製造業對外投資實況調查報告,台北:經濟部統計處。 55. 劉國光、王洛林、李京文(2003),2003年中國經濟形勢分析與預測,北京:社會科學文獻出版社。 56. 劉雪琴(2002),「台資對兩岸經貿發展的積極影響」,中國外經貿研究院。 57. 賴昌澤(2001),台灣製造業海外投資決定因素之探討,銘傳大學經濟學研究所碩士論文。 58. 蘇瑞興(1992),台商電子業赴大陸投資經營策略之研究,國立中興大學企業管理研究所碩士論文。 59. 蕭新煌、龔宜君(1998),東南亞台商與華人之商業網絡關係,台北:台灣與東南亞華人經濟發展與互動學術研討會。 60. 嚴宗大、李惠琴(1990),台商大陸投資及其對台灣產業的影響,台北:中華經濟研究院。 三、參考網站 1. 大陸台商經貿網,http://www.chinabiz.org.tw 2. 中華人民共和國商務部,http://www.mofcom.gov.cn/ 3. 中華人民共和國國家統計局,http://www.stats.gov.cn 4. 中國經濟信息網,http://www.cei.gov.cn 5. 行政院大陸委員會,http://www.mac.gov.tw 6. 行政院主計處第三局,http://www.dgbas.gov.tw/dgbas03/statn.htm 7. 經濟部統計處,http://www.moea.gov.tw/~meco/stat/index.html 8. 經濟部投資審議委員會,http://www.moeaic.gov.tw/ 9. 經濟部國貿局,http://www.trade.gov.tw/index.aspid NH0925627004 sid 916110 cfn 0 / id NH0925627005 auc 黃淑英 tic 以平衡計分卡觀點探討資訊系統導入方法與績效-以企業資訊規劃(ERP)為例 adc 陳鴻基 ty 碩士 sc 國立清華大學 dp 高階主管經營管理碩士在職專班 yr 92 lg 中文 pg 121 kwc 企業資源規劃系統 kwc 專案管理 kwc 關鍵成功因素 kwc 平衡計分卡 abc 本研究針對國內企業導入ERP的過程,做深入的探討及分析。ERP在企業e化的過程中,扮演舉足輕重的角色,如何經由適當的導入方法,提高ERP系統的導入成功機率,強化企業的競爭力,是本研究所要探討的問題之一。 rf 中文 1. 王立志(1999),系統化運籌與供應鏈管理,滄海書局。 2. 王立善(1999),「在全球運籌環境下,台灣資訊電子廠商購買ERP電腦軟體系統之決策研究」,台灣大學國際企業研究所碩士論文。 3. 王秉鈞博士(1994),管理學,第四版,華泰書局出版。 4. 朱道凱譯(2003),平衡計分卡,第1版27刷,臺北:臉譜,譯自Robert S. Kaplan & David P. Norton(1999)。 5. 李芳齡譯(2002),管理的使命/彼得•杜拉克著(Peter F. Drucker )。台北市,台灣:天下雜誌(股)公司。 6. 林嘉祥(1999),資訊與電腦,製造業如何導入ERP, 228期,頁53-55。 7. 林智盟(2002),「顧問功能在ERP系統導入流程之個案研究」,世新大學資訊管理學系碩士論文。 8. 吳振聲,黃國銓(1999), ERP資訊系統導入工程規範,機械工業,201期,頁116- 130。 9. 吳琮璠(1997),資訊管理個案研究方法,資訊管理學報,第四卷,第一期,pp.7-17。 10. 洪英瑞(2000),「網際網路之顧客服務策略-以運用網路下單之證券商為例」,台灣大學工業工程學系碩士論文。 11. 黃思明著(1992),應用軟體的行銷通- 交易成本與代理理論觀點,華泰書局出版。 12. 許文科(2000),「企業導入ERP的關鍵成功因素探討」,國立台灣科技大學管理技術研究所碩士論文。 13. 陳祥仁(2000),「電子化企業整合與經營管理之研究-以跨國製造企業ERP 系統運用為例」,國立清華大學工業工程與工程管理研究所碩士論文。 14. 陳李綢(1991)。個案研究,台北:心理出版社有限公司。 15. 陳曉蘋(2000),「企業導入ERP成效之探討與其影響因素分析」,國立台灣大學會計學研究所碩士論文。 16. 陳鴻基,劉軒佑,嚴紀中(2000),「導入企業資源規劃系統與作業制成本會計制度對於企業營運績效的影響之個案研究」,第11屆全國資訊管理學術研討會。 17. 彭德全(2000),「企業資源規劃系統之績效評估-個案公司研究」,國立台灣大學會計學研究所碩士論文。 18. 彭育彰(2001),「資訊科技策略與資訊科技基礎建設對企業資源規劃之影響」,國立中山大學資訊管理研究所碩士論文。 19. 蔡育瑩(1999),「台灣電子業導入ERP系統之關鍵因素」,中興大學企業管理研究所,碩士論文。 20. 劉鳳如(1999),「企業導入企業資源規劃(ERP)套裝軟體的策略性目標與重要關鍵因素關係之研究」,台灣大學商學研究所。 21. 楊志偉(2002),「以組織變革觀點探討企業資源規劃系統導入的關鍵成功因素」,清華大學科技管理研究所碩士論文。 22. 黃宏義譯(1989),大前研一,策略家的智慧,第八版,長河出版社。 23. 周文祥、慕心譯(1998),管理大師彼得•杜拉克(Peter F. Drucker),巨變時代的管理。中天出版社。 24. 資策會MIC ITIS,2000/02。 25. A公司(2003),A公司公開說明書及相關網站資料。. 26. B公司(2004),B公司公開說明書及相關網站資料。 27. C公司(2003),C公司公開說明書及相關網站資料。 28. D公司(2004),D公司公開說明書及相關網站資料。 英文 1. Applegate, L. M. (1999), “Coporate Information System Mangement”. 2. Arik R. (2002), “Information Technology and Management”. 3. Bancroft, N. H. (1998), “Implementing SAP R/3, ”Greenwich:Manning. 4. Boynton, A. (1993), “New Competitive Strategies: Challenges to Organizations and Information Technology, ” IBM Systems Journal, pp.40-64. 5. Daniel, R. D.(1961), “Management Information Crisis, ” Harvard Business Review. Sep-Oct. 6. Davenport , T. H. (1998), “Putting the Enterprise into the Enterprise System, ” Harvard Business Review, July-August, pp.121-131. 7. James A. O. (2002), “Management Information Systems-Managing Information Technology in the E-Business Enterprise, ”, McGraw-Hill/Irwin, fifth edition. 8. Jay, H. & Barry, R. (2001), “Operations Management,Prentice Hall, “ Sixth Edition, pp292-294. 9. John, R. (1989) “Commons: Pioneer in Labor Economics, by Jack Barbash, “ The Monthly Labor Review, May. , pp100-125. 10. Nutt, O. W. (1987), “Information Technology, ” , MIS Quarterly, pp.134-143. 11. Robert, S. K. & David, P. N. (1996), “Knowing the Score, ”, Financial Executive, November— December, pp.30~33. 12. Scott M. (1988), “Electronic Data Interchange: How Much Competitive Advantage?”Long Range Planning, pp.29-40. 13. Yin, R. K. (1989), “Case study Research : Design and Methods, ”, Newburry Park Calif., Sag Publications.id NH0925627005 sid 916111 cfn 0 / id NH0925627006 auc 張以燦 tic 環保產業國際行銷之策略研究--以亞洲新興國家為例 adc 林博文 ty 碩士 sc 國立清華大學 dp 高階主管經營管理碩士在職專班 yr 92 lg 中文 pg 97 kwc 環保產業 kwc 國際行銷 kwc 市場區隔 kwc 市場定位 abc 環保產業雖不是第一線的生產事業,然其他生產事業卻有賴健全之環保產業作堅強的後盾,才能在不危害環境之條件下持續地發展;同時21世紀是資源有效利用的世代,環保產業將會是相當蓬勃並具有發展潛力的的新興產業。 tc 摘要 i 壹、研究緒論 1 1. 1前言 1 1.2.研究動機 2 1.2.1配合政策需求 2 1.2.2國內環保技術具有國際行銷的競爭力 3 1.2.3具備配合台商外移之行銷機會 3 1.2.4環保產業國際行銷之相關研究較少 4 1.3研究目的與範圍 4 1.3.1研究目的 4 1.3.2研究範圍 4 貳、研究流程、架構與方法 5 2.1研究流程 5 2.2研究架構與方法 6 參、環保產業環境分析 8 3.1環保市場與環保技術之特性 8 3.2環保市場探討 10 3.2.1.全球與亞洲新興國家環保世界規模 10 3.2.2.亞洲新興國家環保市場重要性分析 11 3.2.3亞洲新興國家環保市場需求探討 17 3.3環保技術發展現況 19 3.3.1國際環保技術評估 19 3.3.2國內環保技術評估 22 3.3.3.工研院研發之廢水處理技術介紹 25 3.4 環保產業現況分析 27 3.5 政府之產業輔導 30 3.5.1推動策略: 30 3.5.2推動措施: 30 3.6 工研院之行銷策略探討 31 3.6.1工研院環保技術在台灣研發與推廣模式 32 3.6.2工研院環保技術海外推廣模式 35 3.7國內專家對環保產業外銷之困境與發展策略探討 37 3.7.1共通性問題 37 3.7.2環境工程公司 38 3.7.3環保設備公司 39 肆、廠商訪談 40 4.1 訪談記錄 40 4.1.1.個案訪談—A公司 董事長(環境工程公司) 40 4.1.2個案訪談—B公司董事長(環境工程及環保設備公司) 45 4.1.3個案訪談---C公司負責人(污泥脫水機設備商) 51 4.1.4個案訪談---D公司總經理(環境工程公司) 53 4.2.訪談結果彙整 54 4.2.1國際行銷至亞洲新興國家時所面臨之重大困境彙整: 55 4.2.2廠商對解決上述困境之建議對策彙整 56 伍、行銷策略研究 59 5.1短期策略-----以擴展業務為首要目標 60 5.1.1環境工程業短期行銷策略-----以擴展業務為首要目標 60 5.1.2環保設備業短期行銷策略-----以擴展業務為首要目標 69 5.2長期行銷策略-----厚植競爭優勢為目標 75 5.3 其他策略考量 77 5.4以鑽石模型分析建議之行銷策略對競爭力的影響 79 5.4.1公司實力與策略 80 5.4.2相關及支援產業 80 5.4.3政府 82 5.4.4機會 82 陸、結論與建議 84 6.1結論 84 6.2研究限制 86 6.3後續研究建議 86 柒、參考文獻 88rf 中文部份: 1.李堅明,2002,“WTO環保產業最新定義與我國環保產業發展定位之研析”,台灣環保產業雙月刊,第12期。 2.李堅明,2001,“因應貿易自由化促進我國環保產業發展策略研究”,國政研究報告,財團法人國家政策研究基金會。 3.許振明,2004,“台灣的兩岸經貿政策及兩岸經濟合作之分析”,國家政策論壇,春季號。 4.于寧,2003,「我國環保產業簡介」,台灣環保產業雙月刊,第20期。 5.Philip Kotler,2000,方世榮譯,「行銷管理學」,東華書局。 6.Philip Kotler,2000,高登第譯,「科特勒談行銷」,遠流出版社。 7.于樹偉,2003,“環保技術發展與推廣”,2003環保產業發展研討會。 8.江誠榮,2003,“環保技術發展與推廣”,2003環保產業發展研討會。 9.汪雅康,2003,“我國環保產業發展策略”,2003環保產業發展研討會。 10.曾聰智,2003,“我國環保產業之發展願景與策略”,2003環保產業發展研討會。 11.陳之貴,2003,“國外環保產業市場分析”,台灣環保產業雙月刊,第18期。 12.經濟部技術處,2003,「產業技術白皮書」,經濟部技術處,頁376。 13.蔣本基,2002,「環保產業拓展國際市場之行銷策略」。 14.台灣綜合研究院,2000,「我國環保產業及其市場之分析研究」,行政院環保署專案研究計畫,計畫編號EPA-89-U1U1-03-1001,頁3-1。 15.工研院環安中心,2001,「環保設備市場趨勢調查報告」,經濟部技術處ITIS。 16.綠色生產力基金會,2003,「環保產業發展輔導計畫」,經濟部工業局專案計畫。 17.Michael E.Porter,2000,李明軒、邱如美譯,「國家競爭優勢」,天下文化,頁60。 英文部份: 1.Environmental Business International, Inc.(EBI)(1998),“The U.S. Environmental Industry & Global Market”,EBI Report 2000,Vol. 1 & 2,San Diego:CA. 2.U.S. Department of Commerce Technology Administration Office of Technology Policy(1998). 日文部份: 1.日本機械輸出組合,「環境調和·循環型社会下におけるプラント産業戦略調査」中間報告書,平成12年9月,頁5id NH0925627006 sid 916122 cfn 0 / id NH0925627007 auc 張文隆 tic 策略更新:一個比較個案研究 adc 洪世章 ty 碩士 sc 國立清華大學 dp 高階主管經營管理碩士在職專班 yr 92 lg 中文 pg 134 kwc 策略意圖 kwc 策略更新 kwc 競爭優勢 kwc 企業轉型 kwc 比較個案研究 abc 本研究以台灣傳統製鞋產業的兩個個案企業—寶成與豐泰為研究標的,探討其在面臨產業成熟期、成長遇到瓶頸時,如何在不同的成長階段,有效運用其競爭優勢,採取不同的策略及作為,以突破成長的極限,加速企業本身的轉型。據此研究目的,本研究以經營策略意圖、策略選擇、核心競爭力、經營規模及多角化等研究構面為基礎,建立一個觀念性架構,以說明個案在成長過程中之各種作為,瞭解策略更新在實務與理論範疇中的差異。因此,本研究採取比較個案研究方法,從其發展過程中找出各階段的策略選擇及整個歷程中策略更新的動機與手法,如何建構競爭優勢,探討其成功關鍵因素,並且解讀其發展過程的差異性與共通性。本研究最後提出結論並從理論與實際個案分析的觀感,對個案企業在未來的經營方向與策略選擇提出實質的經營建議,供經營者參考。 rf 吳英琦,2002,企業成長與能耐發展歷程之個案研究,國立台灣大學國際企業研究所2002年度碩士論文。 林溫正,2000,台灣傳統集團企業轉型策略之研究,國立台灣大學國際企業研究所2000年度碩士論文。 洪文鎮,1995,台灣轉型與升級之技術策略及相關問題探討,台灣大學商學研究所1995年度碩士論文。 林宛真,1998,台灣本土企業成長策略之成功關鍵因素探討,國立東華大學國際企業研究所1998年度碩士論文。 周佳欣,1996,台灣中小企業策略性轉型之研究,東吳大學企管研究所1996年度碩士論文。 袁素萍,2002,企業轉型成功關鍵因素之研究,成功大學高階經營管理研究所2002年度碩士論文。 曾耀民,2001,傳統產業之企業能耐更新與轉型成長策略,台灣大學國際企研所2001年度碩士論文。 陳悅琴,1999,跨國製造合作廠商間競合關係與策略發展研究-NIKE、豐泰、寶成間的三角關係,東海大學國際企業管理研究所1999年度碩士論文。 高瑞霞,2001,國際供應關係與專業代工製造商垂直範圍決策之研究:以運動鞋產業為例,台灣大學國際企業學研究所2001年度碩士論文。 陳梧桐,2001,經營策略之創新管理,國立交通大學科技管理研究所2001年度碩士論文。 蔡碧鳳,2003,策略創業軌跡之探討,國立清華大學科技管理研究所2003年度碩士論文。 湯明哲,2003,策略精論 基礎篇,台北市:天下遠見出版。 張俊彥、游伯龍,2001,活力 台灣如何創造半導體與個人電腦產業奇蹟,台北市:時報文化出版。 張維安編,2001,台灣的企業組織結構與競爭力,台北市:聯經出版社。 陳光隆、謝劍平,1996,規劃贏的策略與財務管理,台北市:億龍財務管理顧問公司出版。 鄭榮郎,2001,傳統產業向上提升的轉型策略,能力雜誌,第540期,PP.77-80。 伍忠賢,2000,企業轉型方案之抉擇,台北市:管理雜誌,第314期,PP. 98。 陳明璋,1996,企業轉型的策略與成功關鍵,台北市:貿易週刊,第1690期, PP.18-21。 李美惠,2001,寶成集團中國總司令-蔡其能,台北市:商業週刊,689期。 張殿文,2001,一億雙鞋子的傳奇,台北市:商業週刊,689期。 張殿文,2001,精成是寶成的跨世紀豪賭,台北市:商業週刊,689期。 臧家宜,2003,鞋王蔡其瑞發達之路,台北市:壹週刊。 萬蓓琳,2002,蔡其瑞統帥二十四萬大軍祕訣,台北市:今週刊。 劉德宜,2002,寶成蔡其瑞-兩岸三地第一人,台北市:今週刊。 劉德宜,2002,讓寶成變製鞋巨人的四大關鍵,台北市:今週刊。 陳柏因,2002,製鞋經驗移植到電子業?,台北市:今週刊。 李有德,2002,裕元終叩關進入香港恆生成分股,台北市:今週刊。 NIKE發展史,http://www.geocities.com/nike.project/history.html NIKE發展史,http://www.geocities.com/nike.project/product.html NIKE發展史,http://www.geocities.com/nike.project/create.html NIKE發展史,http://www.geocities.com/nike.project/future.html NIKE發展史,http://www.geocities.com/nike.project/badnews.html NIKE發展史,http://www.geocities.com/nike.project/conclusion.html 徐聯恩,1996,企業變革系列研究,台北市:華泰書局出版。 黃營杉,1996,企業政策,台北市:空中大學出版。 Sull, D.N. 2003,李田樹、李芳齡譯,成功不墜 最適者再生,台北市:天下雜誌出版。 Stalk, G. Jr. 2000,高登第譯,成長策略,台北市:天下文化出版。 Kotter, J.P. 2000,周旭華譯,變革(Harvard Business Review on Change),臺北市:天下遠見出版。 林寄雯譯、吳文傑審稿,1992,中小企業轉型策略,台北市:中國生產力中心出版,經濟部國際貿易局發行。 簡錦川譯,1991,中小企業活力化策略,台北市:中國生產力中心出版,經濟部國際貿易局發行。 Adizes, I. 1996,徐聯恩譯,企業生命週期,台北市:長河出版社。 Adizes, I. 1998,徐聯恩譯,掌握變革,台北市:長河出版社。 Amsden, A.H. 2003,瞿宛文、朱道凱譯,超越後進發展 台灣的產業升級策略,台北市:聯經出版社。 Bossidy, L. and Charan, R. 2003,李明譯,執行力,台北市:天下遠見出版。 Collins, J. 2002,齊若蘭譯,從A到A+,台北市:遠流出版社。 Adams, J.D. 1984, Transforming Works, Miles Review Press. Amit and Schoemaker 1992, How to Link Strategic Vision to Core Capacity, Sloan Management Review, fall, Barton S.A. 1990, The Aymara: strategies in human adaptation to a rigorous environment, Boston: Kluwer Academic. Bibeauit, D.B. 1982, How Managers Turn Losers into Winners, McGraw-Hill. Chandler, A.D. 1990, Strategy and Structure: Chapters in the History of the Industrial Enterprise, Cambridge, Mass.: M.I.T. Press. Collins, D.J. and Montgomery, C.A. 1997, Corporate Strategy: Resources and the Scope of the firm, Chicago: Irwin. Davidson, W.H. 1993, Beyond Re-engineering: The three phases of Business Transformation, IBM Systems Journal, Vol.32, No.1, pp.65-79. Dierich, I. and Cool, K. 1989, Asset Stock Accumulation and Sustainability of Competitive Advantage, Management Science, Vol. 35 No.12, pp. 1504-1513. Drucker, P.F. 1985, Innovation and entrepreneurship: practice and principles, New York: Harper & Row. Drucker, P.F. 1993, Managing for the future: the 1990s and beyond, New York: Truman Talley Books/Plume. Grant, R.M. 1991, the Resource-Base Theory of Competitive Advantage: Implication for Strategy Formulation, California Management Review, Vol.33 No.3, pp.114-134. Hamel, G. and Prahalad, C.K. 1994, Competing for the future, Boston, Mass: Harvard Business School Press. Hill, W.L. and Jones, G.R. 1995, Strategic Management Theory: An Integrated Approach, Boston: Houghton Mifflin. Jonathan, D.D. 2000, Corporate Transformation without a Crisis, New York: The McKinsey Quarterly. Kimberly, J.R. 1984, Managing Organizational Transition, Homewood, Illinois: Jersey Base Inc. Kotter, J.P. 1995, Leading Change: Why transformation efforts fail, Boston Mass.: Harvard Business School Press. Kotter, J.P. 1996, Leading Change, Boston, Mass.: Harvard Business School Press. Meyer 1999, Globalization and Identity: Dialectics of Flow and Closure, Oxford; Malden, Blackwell Publishers. Moore, G.A. 1995, Inside the Tornado: Marketing Strategies From Silicon Valley's Cutting Edge, New York: Harper Collins. Moore, G.A. 1999, crossing the Chasm: Marketing and Selling Technology Products to Mainstream Customers, Eng.: Oxford press. Porter, M.E.1985, Competitive Advantage: Creating and Sustaining Superior Performance, New York: Free Press. Porter, M.E. 1980, Competitive Strategy: Techniques for Analyzing Industries and Competitors, New York: Free Press. Robbins, D.M. 1990, Trainees Know about Training Trainers, Training and Development Journal, Vol.44, No.10, pp12-14. Senge, P.M. 1994, the Fifth Discipline: The Art and Practice of The Learning Organization, New York: Doubleday. Shaheen, G.T. 1994, Approach to Transformation, Chief Executive. Teece, D.J. 1990, Antitrust, Innovation, and Competitiveness, New York: Oxford University Pressid NH0925627007 sid 916112 cfn 0 / id NH0925627008 auc 魏賜聰 tic 專案管理流程能力指標之建構 adc 黎正中 ty 碩士 sc 國立清華大學 dp 高階主管經營管理碩士在職專班 yr 92 lg 中文 pg 89 kwc 專案管理 kwc 流程能力指標評價 kwc 製程能力 abc 論文摘要 rf 參 考 資 料 英文文獻 1. Ammons, D. N. (1996), “Municipal Benchmarks: Assessing Local Performance and Establishing Community Standards”, Sage Publications, Thousand Oaks. 2. Archibald, R. B. (1981), “The Implementation of Project Management: The Professional’s Handbook”, Massachusette: Addison-Wesley Publishing, pp.178. 3. Brown, M. G. and Svenson, R. A. (1988), “Measuring R&D Productivity”, Research Technology Management, 39(4), pp.11-15. 4. Chang, A. S. (1998), “Development of Consultant Performance Measures for Design Projects.”, Project Management Journal, 29(2), pp.39-54. 5. Charles, W. L. H. and Gareth, R. J. (1998), “Strategic Management Theory: An Integrated Approach”, Boston: Houghton Mifflin Co., pp.170-171. 6. Cleland, D. I. and King, W. R. (1983), “System Analysis and Project Management”, New York: McGraw-Hill, Inc. 7. Daft, R. L. (2001), “Organization Theory and Design. 7th Edition”, South-Western College Publishing, USA. 8. Davenport, T. H. and Short, J. E. (1990), “The New Industrial Engineering: Information Technology and Business Process Redesign? ” Sloan Management Review, 31(4), pp.11-27. 9. Drucker, P. F. (September 1993) “Managing in Tmrbulent Times, Harper & Row”, New York, Reprint edition. 10. Fitzsimmons, J. and Mona F.(1998), “Service Management : Operations, Strategy, and Information Technology”, 2nd Edition. Boston: Irwin/McGraw Hill, chapt.8: Managing Service Projects. 11. Floyd, D. A. and Laurent, C. J. (1995), “Gauging: an Underestimated Consideration in the Application of Statistical Process Control”, Quality Engineering, 8(1), pp.13-29. 12. Fortuin, L. (1988), “Performance Indicators-Why, Where, and How?” European Journal of Operational Research, 34, pp.1-9. 13. Grover, V., Teng, J. T. C. and Fiedler, K. D. (1999), “The Role of Organizational and Information Technology Antecedents in Reengineering Initiation Behavior”, Decision Sciences, 30(3). 14. Hahn, G. J. and William, J. H. (1999), “The impact of six sigma improvement-A glimpse into the future of statistics”, American Statistician, Aug, 53(3), pp208-216. 15. Hammer, M. and Champy, J. (1993), “Reengineering the Corporation: A Manifesto for Business Revolution”, New York: Harper Business. 16. Harold, K. (2001), “Project Manager”, John Wiley & Sons Inc, pp.83. 17. Ho, T. and Henriksson, C. (1993), “Improving production quality in a pulp mill using statistical process control,” Proceeding of Canadian Conference on Electrical and Computer Engineering, pp.953-957. 18. Hoerl, R. W. (1998), “Six Sigma and the Future of Quality Profession,” Quality Progress, June, pp.35-42. 19. Juran, J. M. (1974), “Quality Control Handbook”, 3rd edition, McGraw-Hill, New York. 20. Kamimsky, F. C., Dovich, R. A. and Burke, R. J. (1998), “Process Capability Indices: Now and in the Future,”Quality Engineering, 10(3), pp.445-453. 21. Kane, V. E. (1986), “Process Capability indices”, Journal of Quality Technology, 18, pp.41-52. 22. Kast, F. E. (1979) , “Organization and Management”, McGraw-Hill Book Co., New York. 23. Katzell, M. E. (1975), “Productivity : The Measure and the Myth”, Amaeom, New York. 24. Keegan, D. P., Eiler, R. G. and Jones, C. R. (1989), “Are Your Performance Measures Obsolete?”, Management Accounting, pp.45-50. 25. Keller, R. T. (1994), “Technology-Information and the Locus of Influence in the R&D Martrix”, Academy of Management Journal, 28(1), pp.167-179. 26. Kerzner, H. (1984), “Project Management: A System Approach to Planning, Scheduling and Controlling”, 2nd ed. New York: Van Nostrand ReinholdCo. Inc. 27. Kerzner, H. (2001), “Project Management: A Systems Approach to Planning, Scheduling and Controlling”, 6th Ed., John Wiley & Sons, Inc. 28. Lin, J. K. and Wang, E. J. (2000), “Integrating BPR Bifurcation Phenomena: a Strategic Process Model?” International Journal of Information Management and Engineering, 3(1), pp.1-22. 29. Manganelli, R. L. and M. M. K. (1994), “Framework for Reengineering?” Management Review, 83(6), pp.10-16. 30. Mantel, S. J., Meredith, J. R, Shafer, S. M. and Sutton, M. M. (2001), “Project Management in Practice”, John Wiley & Sons, New York. 31. Miller, D. (1982), “ The Correlated of Entrepreneurship in Three Types of Firm”, Management Science, 29, Jan, pp.770-791. 32. Pinto, J. K., and Slevin, D. P. (1987), “Critical Factors in successful Project Management ”, IEEE Transactions on Engineering Management, February. 33. Project Management Institute Standards Committee (2000), “A Guide to the Project Management Body of Knowledge”, Project Management Institute, PMBOK® Guide 2000 Edition, pp.3-11, pp.65-90. 34. Rakos, J. J. (1990), “Software Project Management for Small to Medium Sized Projects”, Prentice Hall, Englewood Cliffs, NJ. 35. Robert, S. K. and David, P. N. (1992), ”The Balanced Scorecard – Measures that Drive Performance” Harvard Business Review, January-February, pp.71-79. 36. Schumann, P. A. J., Ransley, D. L. and Prestwood, D.C.L. (1995), “Measuring R&D Performance, Research Technology for National Development”, Technological Forecasting and Socail Change, 29, pp.119-172. 37. Schwalbe, K. (2000), “Information Technology Project Management, ” Cambridge, MA: Course Technology. 38. Simons, R. (2000), “Performance Measurement & Control Systems for Implementing Strategy Text & Cases”, Prentice Hall, New Jersey. 39. Souder, W. E. and Song, X. M. (1997), “Contingent Product Design and Marketing Strategies Influencing New Product Success and Failure in U.S. and Japanese Electronic Firms”, Journal of Product Innovation Management, 14, pp.12-21. 40. Tesoro, F. and Tootson, J. (2000), “Implementing Global Performance Measurement Systems – A Cookbook Approach.”, Jossey-Bass/Pfeiffer, SanFrancisco. 41. Tusi, K. L. (1997), “Interpretation of Process Capability Indices and Some Alternatives”, Quality Engineering, 9(4), pp587-596. 42. Willard, G. and Woo, C. Y. (1983), “Performance Representation in Business Police Research: Discussion and Recommendation”, Paper Presented at The 43rd Annual National Meetings of The Academy of Management, Dallas. 中文文獻 1. 丁惠民譯 (2003),六個標準差管理,麥格羅,希爾國際出版公司. 2. 王貳瑞 (2001),流程管理,華泰文化事業股份有限公司. 3. 林坤財 (1999),e-Process 電子化流程設計與管理攻略本,華彩軟體. 4. 林伊文 (2002),中小企業如何推動六個標準差之先期研究,國立成功大學工業管 理研究所,碩士論文. 5. 林育德 (2003),品質達成率應用在專案品質的評估與控制,中華大學科技管理研 究所,碩士論文. 6. 周文賢、科國慶 (1994),工程專案管理,華泰文化事業有限公司. 7. 胡瑋珊譯 (2003),我懂了!六個標準差2,經濟新潮社. 8. 陳嘉文 (1997),半導體新製程開發流程管理架構,國立清華大學工業工程與工程管理研究所,碩士論文. 9. 郭倉義 譯 (1998),生產與服務作業管理,新路書局出版,台北. 10. 許光華、何文榮 (1998),專案管理—理論與實務,華泰書局. 11. 葉瓊章 (2002),新產品研發管理模式探討—產品經理觀點的個案研究,國立清華大學工業工程與工程管理研究所,碩士論文. 12. 蔣中一 (1995),企業如何成功再造流程,LAN網路資訊.id NH0925627008 sid 916114 cfn 0 / id NH0925627009 auc 蘇兆鳴 tic 我國平面顯示器設備產業發展策略研究 adc 黎正中 ty 碩士 sc 國立清華大學 dp 高階主管經營管理碩士在職專班 yr 92 lg 中文 pg 129 kwc 平面顯示器設備產業 kwc TFT-LCD產業 kwc 發展策略 kwc 設備 kwc 產業競爭 abc 論文摘要 rf 參考文獻 一、中文文獻 1.張昌財、黃廷合等人,“科技管理導論”,全華科技圖書有限公司,2004 年。 2.袁建中、張建清、邱泰平,“科技管理:觀念與案例”,聯經出版社,2004年。 3.許慶瑞,“研究、發展與技術創新管理”,高等教育出版社,2000年。 4.林博文,“清華大學科技管理研究所技術移轉與鑑價講義”, 清華大學,2004年。 5.洪世章,“清華大學科技管理研究所研發管理課程講義”,清華大學,2004年。 6.黃仲龍,“TFT-LCD設備產業發展現況與商機挑戰”, 工研經資中心,2002年。 7.王敏政,“國際技術移轉關鍵問題之研究-以台灣TFT-LCD產業為例,碩士論文,元智大學,2002年。 8.陳振昌,“薄膜電晶體液晶顯示器產業競爭優勢分析”,碩士論文,中山大學,2003年。 9.工研院經資中心ITIS 計劃,“2002 年平面顯示器年鑑”, 2002年。 10.工研經資中心ITIS 計劃,“2003 年平面顯示器年鑑”,2003年。 11.工研經資中心ITIS 計劃,“TFT-LCD 產業之競合與經營型態分析”,2002年。 12.張紹勳,“研究方法”,台中,滄海書局,2001年。 13.陳怡夫,“產業技術創新與國家創新體系-以監視器產業為例”,清華大學,碩士論文,1999年。 14.光電協會PIDA,“2000 年LCD 產業與技術動態調查”,2001年。 15.鍾欽炎,“我國大型平面顯示器總體環境、產業結構與競爭策略之探討”,交通大學,碩士論文,2001年。 16.莊朝榮,“大尺寸TFT LCD產業景氣循環之探討”,台灣經濟研究月刊,2000年 17.劉慶全,“液晶顯示器產業發展現況與台灣LCD 上游商機探討”,工業技術研究院光電研究所,2000年。 18.劉慶全,“大型平面顯示器發展趨勢與競合分析”,工業技術研究院光電工業研究所 ,2000年。 19.蔣漢旗,“台、韓 TFT-LCD 製造發展策略比較分析之研究”,碩士論文,交通大學,2003年。 20.王敏政,“國際技術移轉關鍵問題之研究-以TFT-LCD產業為例”,碩士論文,元智大學,2003年。 21.賴佳宏,“薄膜電晶體液晶顯示器(TFT-LCD)產業之技術發展趨勢研究—以專利分析與生命週期觀點”,碩士論文,中原大學,2003年。 22.趙志遠,“台灣TFT-LCD產業之競爭策略分析”,碩士論文,清華大學,2001年。 23.袁建中,“交通大學科技管理研究所課程講義”,交通大學,2003年。 24.徐爵民,“平面顯示器科技與產業發展趨勢”, 工業技術研究院,2003年。 25.黃仲龍,“2003年全球LCD設備產業現況與趨勢”, 工業技術研究院經資中心,2003年。 二、網站資料  工研院ITIS產業技術網 http://www.itis.org.tw  工研院經資中心 http://iek.itri.org.tw  中華映管網站 http://www.cptt.com.tw  友逹光電網站 http//www.au.com  半導體設備及材料協會 http//www.semi.org  市調單位 http://www.displaysearch.com  市調單位 http://www.idc.com  市調單位 http://www3.gartner.com  奇美電子網站 http//www.cmo.com.tw  拓墣產業研究所 http://www.topology.com.tw  資策會市場情報中心 http//mic.iii.org.tw  電子時報 http://www.digitimes.com.tw 三、英文文獻 1. Cornelis A.de Kluyver, “Strategic Thinking: An Executive Perspective”, PRENTICE HALL INTL, 2001. 2. Schumpeter, J.A.,“The theory of Economic Development. Harvard University Press”, Cambridge M.A, 1934. 3. Management of technology: “The Hidden Competitive Advantage (Washington, D.C: Nationa; Academy Press), pp5-9, 1987. 4. Betz, F. “Managing Technological Innovation.” Wiley, New York.1998. 5. Khalil, T. “Management of Technology”. McGraw-Hill, New York, 2000. 6. L.Biggiero,“Complexity and Organization”,in M.Zelenyed, The IEBM Handbook of Information Technology in Business, pp291-300, 2000. 7. Aaker, David A,“Strategic Marketing Management”, 3rd ed, John Wiley &Sons, N.Y., 1992. 8. Barney, J.B,“Type of Cometition and the Theory of Strategy: Toward an Integrative Framework,”Academy of Management Review, Vol.11, No4 ,pp.791-800,1986. 9. Barney, J.B.“, Firm Resources and Sustained Competitive Advantage,”Journal of Management,Vol.17,No.1, pp.99-120,1991. 10. Bolwijn, P.T. & T.Kumpe“, Manufacturing in the 1990s: productivity, flexibility and innovation.”Long Range Planning, Vol.23, No.4, pp.44-57, 1990. 11. Buffa, Elwood S., Meeting the Competitive Challenge Manufacturing Strategy for U.S.Companies, Richard D.Irwin, Homewood, Illinois, 1984. 12. Rumelt, R.P., Towards a Strategic Theory of the Firm, in R.B.Lamb, Competitive Strategic Management, pp.556-570, 1984. 13. Rumelt, R.P.,“How Much oes Industry Matter”, Strategic Management Journal12, pp.167-185, 1991. 14. Brian Shaffer and AMY J. Hillman,“The Development of Business-Government Strategies by Diversified Firms”,Strategic Management Journal,2000.id NH0925627009 sid 916120 cfn 0 / id NH0925627010 auc 唐迎華 tic 台灣SoC產業IC設計策略發展研究 adc 陳鴻基 ty 碩士 sc 國立清華大學 dp 高階主管經營管理碩士在職專班 yr 92 lg 中文 pg 97 kwc 系統單晶片 kwc 策略矩陣 kwc 策略要素 kwc 關鍵成功因素 kwc 關鍵矽智財 kwc 價值鍊 kwc 矽智財 abc 由於台灣有非常完整的半導體產業供應鏈,晶圓代工方面台灣已是全球領導者;而IC設計業者也已是全球第二,僅次於美國; IC設計服務業亦是近幾年領先全世界推出各項 IC設計服務。為了延續台灣半導體的競爭力,SoC的發展是國內產、學、研一致共識,在政府相關政策積極推動下,期能有效推動台灣半導體邁向更高境界。 rf 中文部份: 1. 2002年半導體工業年鑑,工研院ITIS計劃,新竹,民國91年。 2. 2003年半導體工業年鑑,工研院ITIS計劃,新竹,民國92年。 3. 晶片系統國家型科技計畫-第一階段計劃,國家矽導計畫,民國91年。 4. 司徒達賢 ,策略管理,初版,台北:遠流,民國84年。 5. 司徒達賢,策略管理新論:觀念架構與分析方法,初版四刷,台北:智勝文化,民國92年。 6. 司徒達賢譯,William F. Glueck (1986) ,企業政策與策略規劃,六版,台北﹔東華書局,民國75年。 7. 司徒達賢,「企業政策與策略規畫」,第八版,東華,台北,民國七十九年。 8. 吳思華,「產業特質與企業經營策略關係之研究」,國立政治大學,博士論文,民國七十三年。 9. 大前研一著,林傑斌譯,「企業戰略思考」,業強,台北,民國八十年。 10. 徐作聖,「國家創新系統與競爭力」,聯經出版社,臺北,民國88年。 11. 徐作聖,「全球化科技政策與企業經營」,華泰文化,臺北,民國84年。 12. 徐作聖,「創新政策概論」,華泰文化,臺北,民國88年。 13. 徐作聖,「全球化科技政策與企業經營」,華泰文化,臺北,民國84年。 14. 李輝鈞,「台灣積體電路競爭優勢及創新政策分析之研究」,交通大學,碩士論文,民國88年。 15. 林建山,「產業政策與產業管理」,環球經濟社,臺北,民國84年。 16. 鈴村興大郎著,產業政策與產業結構,台灣經濟研究院編譯,台灣經濟研究院發行,民國86年 17. 史欽泰,21世紀產業技術革新之挑戰,「產業技術白皮書」,經濟部技術處,台北,民國83年。 18. 謝明錦、策略矩陣之危機偵測分析--以晶圓代工廠為例、民國90年 19. 林哲男、我國ERP廠商之經營策略研究–策略矩陣分析法應用、民國92年 20. 李信勇、以資源基礎理論探討電子商務經營之成功要素—策略矩陣分析法」、民國92年 21. 李宏燦,台灣系統單晶片產業策略規劃之研究,交通大學,碩士論文,民國92年。 22. 張玉標 ,「台灣IC設計產業競爭關鍵成功因素分析」,交通大學,碩士論文,民國91年。 23. 陳梧桐,「經營策略之創新管理─以IC企業為例」,交通大學,碩士論文,民國90年。 24. 鍾文凱,「我國IC設計公司之關鍵成功因素探討」,台灣大學,碩士論文,民國91年。 25. 陳純鍵,「台灣 SoC 設計公司經營策略之研究 -以個案公司探討經營策略」,台灣科技大學,碩士論文,民國91年。 26. 李元亨,「台灣IC/SOC產業發展政策與產業組合研究」,交通大學,碩士論文,民國90年。 27. 金井賢一,從技術革新回顧最近的產業政策,輯於小宮隆太郎等著,「日本的產業政策」,台灣經濟研究院編輯,台北,pp.64-226,民國75年。 林佳燕,「國家創新體系運行對我國生物技術產業發展之影響」,國立交通大學,碩士論文,pp.21,民國90年。 28. 陳良基,「SOC產業與技術的趨勢與挑戰」,系統單晶片設計發展新趨勢研討會,臺北,民國91年6月5日。 29. 林逢慶,「半導體與關鍵零組件透析」,台北,財團法人資訊工業策進會,民國89年。 30. 張如心,矽智產發展對台灣的衝擊,工研院電子所,新竹,民國89年。 31. 元件科技特刊,「IC設計產業全覽」,陸克文化出版公司,台北,民國90年3月。 32. 陳佳儀,由晶圓代工與IC設計服務業之合作看未來兩者之關係,台北,財團法人資訊工業策進會,民國92年。 33. 謝孟玹,特殊應用SIP驅動SoC設計平台,新竹,工研院經資中心ITIS評析,民國92年。 34. 吳欣怡,SoC製程發展現況,新竹,工研院經資中心ITIS評析,民國92年。 35. 簡志勝,SoC開發平台趨勢,新竹,工研院經資中心ITIS評析,民國92年。 36. 劉政欣,SIP興起下的未來半導體產業結構,工研院電子所 電子資訊研究組,民國88年。 37. 吳欣怡,99-06年全球SoC應用市場預測,新竹,工研院經資中心ITIS評析, 民國91年。 38. 陳佳儀,由晶圓代工與IC設計服務業之合作看未來兩者之關係,資策會MIC半導體與關鍵零組件研究組,民國92年。 39. 莊偉傑、范哲豪,「知識經濟在半導體產業的實現-SIP」,工研院經資中心ITIS報告,民國九十一年八月。 40. 徐美雯,「矽智財權(SIP)之商業模式與產業現況分析」,半導體與關鍵零組件透析,資策會MIC報告,民國九十年七月。 41. 我國IC產業SoC發展動態,新竹,工研院經資中心ITIS評析,民國91年。 42. 我國SoC的產業發展與各國之比較,新竹,工研院經資中心ITIS評析,民國91年。 43. 個案公司93年年報,新竹,個案公司,民國93年。 英文部份: 1. Porter, M. E., “Competitive Advantage: Creating and Sustaining Superior Performance”, Free Press, New York, 1985. 2. Porter, M. E., “The Competitive Advantage of Nations”, Free Press, New York, 1990. 3. Hope, J. and Hope, T., “Competing in the Third Wave: The Ten Key Management Issues of the Information Age”, Harvard Business School Press, pp.48, 1997. 4. Kolter, P., “The Marketing of Nations”, Free Press, New York., 1997. 5. Rosenberg, N., “Inside the Black Box: Technology and Economics”, Cambridge University Press, Cambridge ,1982. 6. Rothwell, R., and Zegveld, W., “Industrial Innovation and Public Policy, Preparing for the 1980s and the 1990s”, Frances Pinter, London, 1981. 7. Dogson, M. and Rothwell, R., “The Handbook of Industrial Innovation”, Edward Elgar Publishing, London, 1994. 8. Henry C., Larry C., Merrill H., Grant, M., McNelly A. and Lee T., “Surviving the SOC Revolution”, Kluwer Academic Publishers, Boston, 1999. 9. Mowery, D.C. and Nelson R., “Source of Industrial Leadership”, Cambridge University Press, London, 1999. 10. Wiersema, F., “Customer Intimacy-Pick Your Partners, Shape Your Culture, Win Together”, Knowledge Exchange Press, New York, 1996. 11. Treacy, M. and Wiersema, F., “The Discipline of Market Leaders-Choose Your Customers, Narrow Your Focus, Dominate Your Market”, Addison-Wesley Publishing Company, 4th printing, 1995. 12. Commons, J. R., “The economics of collective action, Macmillan”, New York, 1974. 13. Barnard, C. S., “Farm planning and control”, 2th ed., Camridge New York, 1976. 14. Tillett, B. B., “Authority control in the online environment”, Haworth Press, New York, 1989. 15. Boyton, C. A., and Zmud, W. R., “An Assessment of Critical Success Factor”, Sloan Management Review, Vol. 2, No. 8, pp. 17-27, Summer, 1984. 16. Ferguson, R. C., and Dickinson, R., “Critical Success Factor for Director in the Eighties”, Bussiness Horizions, Vol. 3, No. 5, pp. 14-18, May/June, 1982. 17. Rockart, F. J., “Chief Executives Define Their Own Data Needs”, Havard Business Review, Vol. 4, No. 8, pp. 82-83, March/April, 1979. 18. Leidecker, K. J., and Bruno, V. A., “Identifying and Using Critical Success Factors”, Long Range Planning, Vol. 3, No. 17, pp. 26-29, 1984. 19. Hofer, J., and Schendal, T., “Developing Industry”, Oxford University, New York, 1991. 20. Jenster, P. V., “Using Critical Success Factors in Planning”, Long Range Planning, Vol. 5, No. 20, pp. 103-106, 1987. 21. Aaker, A. D., “Strategic Market Management”, 許是詳譯,第六版,中華企管發展中心,民國八十年八月。id NH0925627010 sid 916117 cfn 0 / id NH0925627011 auc 王政豐 tic 台灣EMS產業發展過程與競爭策略 -泰詠電子之個案分析 adc 洪 世 章 ty 碩士 sc 國立清華大學 dp 高階主管經營管理碩士在職專班 yr 92 lg 中文 pg 121 kwc 經營策略 kwc 競爭策略 kwc 企業創新 kwc 競爭優勢 kwc 全球化 abc 本研究主要是以電子產品代工產業的發展為主體,進而研究以各種不同經營策略下所發展的結果。在文獻探討方面,本論文首先提出,將各種不同的經營策略、競爭策略與競爭優勢等,結合該產業發展在不同時期所因應的策略。接著提出以企業創新發展過程中需面對的維持性創新與破壞性創新,在選擇上與操作上的兩難,並列出此決擇將對企業謀求轉型時所引發的問題與困擾。最後提出全球化策略發展對電子產品代工產業的必要性,並提出企業在實施全球化發展時所應面對的問題與執行策略。 rf Adizes, I. 1996,徐聯思譯,企業生命週期 長保企業壯年期的要訣,台北市:長河出版社。 Albrecht, K. and Albrecht, S. 1997,江美滿譯,加值談判,台北市:長河出版社。 Adler, M.J. and Doren, C.V. 2003,郝明義、朱衣譯,如何閱讀一本書,台北市:台灣商務印書館。 Burgelman, R.A., Maidique, M.A. and Wheelwright, S.C. 2001, Strategic Management of Technology and Innovation, Mc Graw-Hill International Edition. Bossidy, L., Charan, R. 2003, 李明譯,執行力—沒有執行力,哪有競爭力,台北市:天下遠見。 Christensen, C.M. 2004,吳凱琳譯,創新的兩難,台北市:商周出版。 Christensen, C.M., Raynor, M.E. 2004,李芳齡、李田樹譯,創新者的解答,台北市:天下遠見。 Cooper, D.R., Emory C.W. 1996,古永嘉譯,企業研究方法,台北市:華泰文化事業。 Collins, J. 2002,俞利軍譯,從優秀到卓越,北京市:中信出版社。 Deming, W.E. 1994,周靜、董建寧譯,戴明管理4日談,北京市:中國商業出版社。 Grove, P. 2002,全球新代工趨勢給台灣企業的機會與策略性思考,專題報導。 Hock, D. 2000,李明譯,亂序,台北市:大塊文化。 Kragman, P. 2003,齊思賢譯,克魯曼談未來經濟,台北市:時報出版社。 Kotler, P. 2000,高登第譯,科特勒談行銷 如何創造,贏取並主宰市場,台北市:遠流出版社。 Mintzberg, H., Ahlstrand, B. and Lampel, J. 2003,林金榜譯,策略巡禮, 管理大師明茲柏格的策略管理全書,台北市:商周出版。 Margretta, J. and Stone, N. 2003,李田樹譯,管理是什麼,台北市:天下遠見。 Moore, G..A. 1999,陳正平譯,龍捲風暴 矽谷的高科技行銷策略,台北市:城邦文化。 Porter, M. E. 1998,周旭葦譯,競爭策略—產業環境及競爭者分析,台北市:天下遠見。 Panitchpakdi, S. and Clifford, M.L. 2002 ,江美滿譯,中國入世—你不知道的風險與危機,台北市:天下遠見。 Reich, R.B. and Collins, J. 2003,江美滿譯,默默領導,台北市:天下遠見。 Seifter, H. and Economy, P. 2003,鄭小勇、陳勛祥譯, 沒有指揮的樂隊,北京市:中信出版社。 Yin, R.K. 1994,尚榮安譯,個案研究,台北市:弘智文化。 王志強 2000,CEM業者策略合作會談將登場,台北IPO報導。 舟木洋一 2002,日立發揮技術優勢涉足EMS業務,日本產經報導。 李踐 2003,贏家策略,北京市:中信出版社。 林志雄 2002,競爭策略、技術環境、技術創新與創新績效之關係研究, 國立成功大學企業管理學系2002年度碩士論文。 苗豐強 2002,棋局雙贏 苗豐強的全球化策略,台北市:天下遠見。 胡聖生 2002,我國半導體零件通路產業之競爭策略分析,中山大學研究論文。 吳明章 2004,物料供應模式演進之研究,國立清華大學高階主管經營管理碩士班2004年度論文。 洪世章 2000,硬碟的故事、全球化與在地化,國立清華大學科技管理研究所討論個案。 洪世章 2002,台灣薄膜電晶體液晶顯示器工業的興起,國立清華大學科技管理研究所討論稿。 洪世章 2003,如何作好研究工作?一個碩士生的挑戰,國立清華大學科技管理研究所上課講義。 郭俊男 2002,運籌能力、競爭策略與經濟績效關係之研究,中山大學研究論文。 陳雅慧 2002,波特,他的名字叫「競爭」,台北市:天下雜誌192期。 張世毅 2002,台灣電腦晶片組廠商競爭優勢研究,國立清華大學科技管理研究所2002年度論文。 莊凱婷 2002,全球EMS產業發展概況,台北市:台灣工業銀行研究報導。 蔡碧鳳 2003,策略創業軌跡之探討,國立清華大學科技管理研究所2003年度碩士論文。 夏文龍 2003,從CMM看鴻海的營利模式,台北市:貝斯營利模式研究社。 新浪科技 2003,電子產品代工業適者生存,台北市:遠東經濟評論。 黃達人 2000,EMS全球運籌管理佈局早,台北市:電子時報。 黃達人2000,EMS與台灣業者合作 強化彼此競爭優勢,台北市:電子時報。 黃銘章 2000,EMS高成長成為PCB廠商大客戶,台北市:電子時報。 翁永全 2004,不打自有品牌 提供專業代工生產,桃園市:電子時報。 曠文琪 2004,轉型CDM服務偉創力天蠶變,衝擊EMS大廠,香港報導。 顧建兵 2003, Flextronics與台灣代工廠的世紀之爭,台北市:21世紀經濟報導。 劉常勇 2002,後PC時代台灣科技製造業何去何從,中山大學企管系專題報導。id NH0925627011 sid 916101 cfn 0 / id NH0925627012 auc 高光德 tic 台灣地區有線電視媒體未來整合策略趨勢研究 adc 黎正中 ty 碩士 sc 國立清華大學 dp 高階主管經營管理碩士在職專班 yr 92 lg 中文 pg 96 kwc 有線電視產業 kwc 有線電視媒體整合 kwc 策略聯盟 kwc 企業併購 abc 論文摘要 tc 目 錄 書名頁.......................................................................................................................I 博碩士論文授權書…………………………………………………………………II 指導教授推薦書……………………………………………………………………III 學位考試委員會審定書............................................................................................IV 中文摘要....................................................................................................................V 英文摘要....................................................................................................................VI 誌謝辭........................................................................................................................VII 目錄...........................................................................................................................VIII 第一章 緒論.............................................................................................................1 1.1 研究背景.............................................................................................................1 1.2 研究動機.............................................................................................................3 1.3 研究目的.............................................................................................................5 1.4 研究流程.............................................................................................................6 1.5 研究架構…………………………………………………………………….....7 第二章 文獻探討......................................................................................................8 2.1 台灣地區有線電視媒體發展沿革…………………………………………..…8 2.1.1 有線電視的定義…………………………………………………………....8 2.1.2 有線電視市場產業價值鏈………………………………………………....9 2.1.3 有線電視產業特性.................................................................................. ...11 2.1.4 有線電視播送系統發展沿革………………………………………… ..13 2.2 台灣有線電視產業現況分析………………………………...………………..14 2.3 台灣有線電視媒體整合…………………………………………….................17 2.3.1 企業整合…………………………………………………………………..17 2.3.2 策略聯盟…………………………………………………………………..20 2.3.3 企業併購…………………………………………………………………..22 2.3.4 有線電視媒體整合……………………………………………….............25 第三章 研究方法.....................................................................................................28 第四章 個案分析與討論........................................................................................31 4.1 東森媒體集團簡介…………………………………………………………....31 4.2 東森媒體集團併購超視案件分析....................................................................33 第五章 專家深度訪談分析...................................................................................37 5.1 台灣有線電視產業情況、特色與SWOT分析...............................................37 5.2 有線電視產業之經營策略………......…...………………………………........48 5.3 有線電視整合之動機與條件.............................................................................50 5.4 有線電視的整合方式.........................................................................................51 5.5 電信業者與有線電視整合.................................................................................53 5.6 政府對有線電視整合所扮演的角色.................................................................56 5.7 外資對有線電視整合的影響.............................................................................60 5.8 有線電視整合之未來趨勢.................................................................................63 第六章 未來整合策略趨勢分析與發展.................................................................65 6.1 總體環境面分析 6.1.1 政策面.........................................................................................................65 6.1.2 經濟面.........................................................................................................72 6.1.3 社會面.........................................................................................................75 6.1.4 科技面.........................................................................................................77 6.2 產業環境面分析................................................................................................81 6.2.1 產業鑽石理論分析.....................................................................................81 6.2.2 產業SWOT分析........................................................................................83 6.2.3 產業五力分析.............................................................................................84 6.3 台灣媒體產業未來發展策略趨勢....................................................................86 第七章 研究結論.....................................................................................................90 7.1 結論....................................................................................................................90 7.2 研究貢獻............................................................................................................91 7.3 研究限制............................................................................................................91 7.4 研究建議............................................................................................................91 參考文獻.....................................................................................................................93 附錄 表目錄 表1 有線電視產業特性..............................................................................................11 表2 有線電視播送系統發展沿革.............................................................................13 表3 台灣地區媒體普及率比較表.............................................................................14 表4 集團有線電視系統家數及占有率統計.............................................................15 表5 整合型態表........................................................................................................ 18 表6 倂購類型表.........................................................................................................23 表7 本研究受訪名單.................................................................................................28 表8 未來主要有線數位電視系統業者比較表.........................................................78 表9 產業鑽石理論分析表.........................................................................................82 表10 產業SWOT分析表......................................................................................... 83 表11 產業五力分析表...............................................................................................84 圖目錄 圖1研究流程圖............................................................................................................6 圖2研究架構圖............................................................................................................7 圖3有線電視產業價值鏈..........................................................................................10 圖4國內有線電視與無線電視收視率比較..............................................................14 圖5產業鑽石理論分析圖..........................................................................................81 圖6產業五力分析圖..................................................................................................84rf 參考文獻 中文文獻 1.中國時報 (1999年1月18日),有線電視將朝向財團化、壟斷化傾斜,中國時報,第3版。 2.王俊淵 (1999),集團以交叉持股方式買賣股票對集團整體股價影響之實證研 究,國立政治大學財務管理學系碩士論文。 3.伍忠賢 (2002),策略管理,台北:三民。 4.行政院新聞局廣播電視事業處 (1997),廣播電視白皮書,台北:行政院新聞局。 5.任惠光 (2000),企業集團進入有線電視產業之競爭與併購策略規劃,國立台灣大學國際企業學研究所碩士論文。 6.何吉森 (1999),有線廣播電視法評析-從線纜傳播結構角度觀察,月旦法學雜誌,第46期,頁47-59。 7.吳萬益、陳淑惠 (1999),集團企業組織文化、決策模式與經營策略之研究:中美日德主要集團企業運作模式之實證分析,交大管理學報,第19期第二卷,頁131-179。 8.林敬章 (2000),購併企業之組織變革員工態度差異之研究-以有線電視業為 例,國立中興大學企業管理學系碩士論文。 9.林玲妃、何伯陽 (2002年3月15日),東森媒體今年底前在香港上市,工商時報,第13版。 10.周岳曇 (2002),台灣有線電視頻道外國節目之經營策略與現況分析,淡江大學大眾傳播學系研究所碩士論文。 11.徐言 (2002),我國無線電視之發展,台灣電視四十年回顧與前瞻研討會,台 北市立圖書館國際會議廳。 12.陳炳宏 (2001),傳播產業研究,台北:五南。 13.陳漢波 (2003),探討台灣電子產業水平購併對財務經營績效之影響-以三家特定電子公司為例,中原大學企業管理學系碩士論文。 14.許是祥 (1980),企業經營策略,台北:林秀雄。(原書Anosff, H. I. Corporate strategy.) 15.尚孝芬 (2002年3月27日),東森和美AT&T 結盟,民生報,第Cs7版。 16.張欣玲 (1998),臺灣有線電視產業垂直整合發展影響面之研究─從價值鏈觀點分析,元智大學資訊科學研究所碩士論文。 17.張乃文 (2001),金融集團策略聯盟與跨國併購之探討-以「富邦集團」與「花 旗集團」間之合作個案為例,中原大學會計研究所碩士論文。 18.張慧君 (2001),當DTV 遇上EC--電視商務誕生,網路通訊雜誌,第116期, 頁32-38。 19.湯明哲 (2002),從併購中,成為未來百年主導企業,合併與收購,台北:天下遠見。 20.經濟部中小企業處 (2001年5月11日),企業大型化、集團化發展趨勢對中小企業之衝擊與因應。 21.經濟部 (2002),加強數位內容產業發展推動方案(草案),台北市:經濟部。 22.詹宜軒 (2003),站穩腳步再度出發,景氣不見復甦,媒體表現亮眼,廣告雜誌,第142期,頁46-61。 23.新聞局 (2003),2003廣播電視白皮書,台北市:行政院新聞局。 24.楊意菁、陳芸芸 (2001),媒體原理與塑造,台北:韋伯文化。 25.黃淑慧 (1998),全球傳播集團併購的新趨勢及其對台灣電視媒體之意義,廣播與電視,第3期第3卷,頁1-19。 26.黃西玲 (1997),從台灣看美國媒體併購經驗:近五年併購個案及相關法令之分析與探討,台北:文化總會電研會。 27.黃敦群 (1999),台灣大型企業購併與型態之研究,國立臺灣科技大學管理研究所碩士論文。 28.廖義男 (2001),從行政法院裁判看公平交易法實務之發展,月旦法學雜誌,第70期,頁28-40。 29.廣告雜誌 (2003),2003五大媒體有效廣告量,廣告雜誌,第142期,頁31。 30.劉幼琍 (1994),有線電視經營管理與頻道規劃策略,台北市:正中書局。 31.衛星與有線電視 (1999),傳播站:AT&T 與TCI 完成合併,1999年4月號,第127 期,頁19-20。 32.謝奇任、唐維敏、甘尚平譯 (1997),大匯流-整合媒體、資訊與傳播,台北市: 亞太圖書。 33.聯合報 (2000),英國皮爾森集團與德比CLT-UFA 電視台合併、二合一、歐洲最大電視公司誕生,聯合報,4月9日,第11版。 34.魏玓 (2000),傳播媒體的市場化、數位化與全球化,當代,第151期,頁4-13。 35.蔡安怡 (1999),台灣有線電視多系統經營者策略比較研究-以東森媒體事業 群、和信傳播集團為例,銘傳大學傳播管理研究所碩士論文。 36.蔡念中 (2002),國內無線電視與有線電視台數位化競爭策略分析探討,台北市:台灣有線視訊寬頻網路發展協進會。 37.蔡淑瑜 (2001),有線電視產業因應分級付費制度策略之研究,政治大學廣播電視研究所碩士論文。 38.嚴祥鸞 (1996),參與觀察法,胡幼慧(編),質性研究:理論、方法及本土女性研究實例,頁195-222,台北:巨流。 39.蘇聰儒 (2000年9月),公司併購之法律規範,律師雜誌,第252期,頁118-131。 40.邱永漢(2003-1月份財訊雜誌) 英文文獻 1.Albarran, A. B. and Dimmick, J. (1996), “Concentration and Economies of Multiformity in The Communication Industries,” The Journal of Media Economics, 9(4), pp.41-50. 2.Baldwin, T. F. and Stevens D. M. (1988), “Cable Communication.” N. J., Prentice Hall. 3.Berry, C. H. (1974), “Corporate growth and diversification,” Princeton, N. J., Princeton, University Press. 4.Dyson, K. and Humphreys, P.1(990), “The Political Economy of Communications : International and European Dimensions” London: Routledge. 5.Gershon, R. A. (1997), “The transnational media corporation: Global messages andfree market competition,” Mahwah, N. J., Lawrence Erlbaum Associates Publishers. 6.Glaister, K.M. and Buckley, P.J. (1996), “Strategic motives for international alliance formation”, Journal of Management Studies, 33(3), pp.301-302. 7.Jones, G. R. (1998), ”Organizational theory- Text and cases (2nd ed.),” Addison: Wesley. 8.Killing, J. P. (1988), “Understanding Alliances: The Role of Task and Organizational Complexity,” Cooperative Strategies in International Business, in F. J. Contractor and P.Lorange (eds), Mass./Toronto: D.C. Health & Co./Lexington. 9.Krubasik, E.and Lautenschlager, H. (1993), “Forming successful strategi alliance in high-tech business, Chapter 4 of Joel Blecke and David Ernst (eds.), Collaborating to Compete-using Strategic Alliance and Acquisitions in the Global Marketplace,” New York: Wiley, pp.53-65. 10.Mohr, J. and Spekman, R. (1994), “Characteristics of Partnership Success: Partnership Attributes, Communication Behavior, and Conflict Resolution Techniques,” Strategic Management Journal, 15, pp.135-152. 11.Souder and Nassar (1990), “Choosing and R&D Consortium,” Research Technology Management, pp.36-41. 12.Wilkinson, J. S. (1994), “Communication technology update: Cable Television,” Boston: Butterworth-Heinemann. 13.Wartella, L. E. and Whitney, D. C. (1998), “MediaMaking: Mass Media in a Popular Culture,” Sage. 14.Yoshino, M. Y. and Srinivasa, U. R. (1995), “Strategic Alliances-An Entrepreneurial Approach to Globalization,” Boston.: Harvard Business School Press, MAid NH0925627012 sid 916107 cfn 0 / id NH0925627013 auc 陳建源 tic 本國工業銀行發展策略之研究--以台灣工業銀行為個案 adc 黎正中 ty 碩士 sc 國立清華大學 dp 高階主管經營管理碩士在職專班 yr 92 lg 中文 pg 149 kwc 工業銀行 kwc 金融控股公司 kwc 投資銀行 abc 摘 要 rf 第六章 參考資料 中文部份: 1. 鄭瑞真,「成立金融控股公司之投資效率與風險評估--以我國銀行為例」,國立中央大學財務研究所未出版碩士論文,民國90年07月。 2. 黃瑞堂,「由美日金融控股公司法評析我國金融控股公司之立法--防火牆制度之研究」,銘傳大學經濟學研究所未出版碩士論文,民國90年06月。 3. 劉明傑,「金融控股公司之策略研究」,東海大學管理碩士學程在職專班未出版碩士論文,民國91年。 4. 魏亦珍,「台灣地區商業銀行走向綜合銀行之研究」,中山大學三民主義研究所未出版碩士論文,國81年06月。 5. 湯堯東,「控股公司之規範與效率探討」,輔仁大學金融研究所未出版碩士論文,民國86年07月。 6. 台灣綜合研究院,「台灣金融體系再造的契機--金融控股公司的國際發展經驗」研討會論文集,民國90年02月。 7. 王文宇,「金融控股公司法之評析」,月旦法學,第77期,民國90年10月。 8. 王文宇,「金融控股公司法制之研究」,國立台灣大學法學論叢,第30期,民國90年05月。 9. 臺北金融研究發展基金會,「第七屆兩岸金融學術研討會」論文集暨活動概況,民國90年11月。 10.傅沁怡,『央行應提高企業生產力』,經濟日報第7版,民國90年11月7日。 11.邱柏松,國際策略聯盟--在國內的現況與績效,經濟情勢暨評論,第2卷第3期,1996年11月。 12.劉紹樑等,企業併購與金融改組,台灣金融研訓院,民國91年10月。 13.林杇柴,工業銀行在台灣經營模式之研究,國立台灣大學商學研究所未出版碩士論文,民國93年07月。 14.聶建中、姚蕙芸與鄭伊岑,國際化產業競爭趨勢─併購行為探討,產業金融季刊,第109期,民國89年12月。 15.王文宇,世界主要國家併購相關法律規定之比較,數位週刊。民國87年08月01日。 16.張宏源,併購策略之運用及其對組織之影響—東森、和信兩大集團之營運實證研究,世新大學廣播電視電影學系,二十一世紀廣播電視發展趨勢研討會論文集發表論文。民國88年。 17.康彰榮,與中資銀行策略聯盟,工商時報,民國92年04月05日 18.周文讀,我國銀行業轉型金融控股公司競爭策略之研究,國立彰化師範大學商業教育學系未出版碩士論文,民國92年06月。 19.余尚武、江玉柏,影響企業併購成敗之因素與策略探討,經濟情勢暨評論季刊,民國87年08月。 20.應國卿,我國企業國際併購之失敗因素研究,國立台灣科技大學工業技術研究所未出版碩士論文,民國81年。 21.余芝嫻,台灣投資銀行業務之績效分析,銘傳大學國際企業學系未出版碩士論文,民國92年。 22.張妍婷,台灣金融控股公司策略群組與績效關係之研究,國立政治大學企業管理系未出版碩士論文,民國92年06月。 23.曾華一,金融控股公司總體策略之個案研究,國立政治大學企業管理系未出版碩士論文,民國92年06月。 24.葉一青,我國金融控股公司購併選擇策略之研究,國立政治大學企業管理系未出版碩士論文,民國92年06月。 25.謝劍平,現代投資學,智勝文化事業有限公司,民國87年10月。 26.張知泰,國際投資銀行之演進與我國金融相關產業未來發展之研究,東華大學企業研究所未出版碩士論文,民國89年06月。 27.謝劍平、周昆,投資銀行學,華泰書局,民國85年04 月 28.謝劍平,金融市場,三民書局,民國86年 29.張世坤,台灣金融控股公司發展歷程--兼論重要事件宣告效果之研究,世新大學經濟學系未出版碩士論文,民國92年。 30.賴坤鴻,我國證券商發展為投資銀行之策略研究,國立臺北大學會計學系未出版碩士論文,民國92年。 31.彭禎伶,中興銀46家分行下個搶手貨,工商時報,民國93年07月06日。 32.謝劍平,現代投資銀行,智勝文化事業有限公司,民國90年。 33.孫智麗,國際策略聯盟與赴大陸投資策略之研究,行政院大陸委員會專案研究報告,民國84年06月。 34.汪建南、吳青松等,國際產業合作策略與政策之探討,經濟部工業局專案計畫執行成果報告,民國83年06月。 35.伍忠賢,企業購併理論與實務,新陸書局,民國89年03月。 36.石人仁、劉文彬等,美國金融控股公司法制與實務,台灣金融研訓院,民國90年08月。 37.葉秋南,新經濟時代之金融業,財團法人金融聯合徵信中心出版,民國92年05月。 38.薛明玲,企業併購完全實務手冊,財團法人資誠教育基金會出版,民國92年09月。 39.陳松興,一兆元黑洞—為台灣金融重建工程把脈,天下雜誌出版,民國92年02月。 40.王仁孚,當前困境中台灣銀行業的發展與革新,劉快治文教基金會出版,民國90年10月。 41.吳青松,國際企業管理理論與實務,智勝文化出版,民國86年。 42.台灣工業銀行九十二年年報,民國93年04月30日出版。 43.沈中華等,我國金融機構併購問題及個案探討,台灣金融研訓院,民國91年07月。 44.簡永光,兩岸銀行業之互動環境與展望,台灣金融研訓院,民國92年03月。 45.周君銓譯,新銀行戰略革新,台灣金融研訓院,民國88年04月。 46.金融業務統計輯要,財政部金融局,民國93年04月。 47.金融統計月報,中央銀行經研處,民國93年05月。 英文部份: 1.Chandler, A.D.(1975), Business Policy & Strategy-Concept & Reading, p.374. 2.Hazel J. Johnson(1996), The banker’s guide to investment banking, Irwin Professional Publishing. 3.Buono, Anthony F. & J. L. Bowditch(1989), The human side of mergers and acquisition, Jossey-bass. 4.Grossman, S. J. & O. D. Hart(1980), Takeover Bids, the Free-Rider Problem, and the Theoy of the Corporation, Bell Journal of Economics, Spring, pp. 42-62. 5.Glueck, William F.(1979), Business Policy: Strategy formation and management action.(Englewood Cliffs, NJ: Prentice Hall). 6.J.F. & S. Reddy(1997), The choice between mergers/acquisitions and Joint ventures: the case of Japanese inventors in the United States, Strategic Management Journal, 18, pp.1-12. 7.Halpern, P. (1983), Corporate Acquisitions: A Theory of Special Cases? A Review of Event Studies Applied to Acquisitions, Journal of Finance, pp. 297-317. 8.Hennart, J.F. & Y.R. Park(1993), “Greenfield vs. Acquisition The Strategy of Japanese Investors in the United States, Management Science, 39, pp. 1054-1070. 9.Lewellen, W. G. (1971), A Pure Financial Rationale for the Conglomerate Merger, Journal of Finance, 26, pp. 521-537. 10.Hymer, S. (1960), On Multinational Corporations and Foreign Direct Investment, In J. Dunning, U.N. Library on Transantional Corporation, Vol.1, pp23-43. 11.Kitching, J. (1967), Why Do Mergers Miscarry?, Harvard Business Review, Nov-Dec, pp.84-85. 12.Aldag & Stearns(1981), Management, 2nd ed, South-Western Publishing Co., Ohio, pp.717-719. 13.Andersson, U., J. Johanson, & J. E. Vahlne(1997), Organic Acquisitions in the Internationalization Process of the Business Firm, Management International Review, Special Issue (2), pp. 67-84. 14.Amihud, Y. & B. Lev(1981), Risk Reduction as a Managerial Motive for Conglomerate Mergers, Bell Journal of Economics, Autumn, pp. 605-617. 15.Miller, S. R. & A. Parkhe (1998), Patterns in the Expansion of U.S. Banks’ Foreign Operations, Journal of International Business Studies, 29(2), pp. 359-390. 16.Andersson,U. & M. Forsgren(1996), Subsidiary Embeddedness and Control in the Multinational Corporation, International Business Review, 5, pp. 487-508. 17.Yannopoulos, George.(1883),The growth of transnational banking., In Mark Casson, editor, The growth of international business. London, England: George Allen and Irwin. 18.Barkema, H.G. (1998), International Expansion Through Start-up or Acquisition: A Learning Perspective, Academy of Management Journal, 41(1), pp. 7-26. 19.Barkema, H.G., J.H. Bell, & J.M. Pennings(1996), Foreign Entry, Cultural Barriers, and Learning, Strategic Management Journal, 17, pp. 151-166. 20.Marcus, A. J.(1982), Risk Sharing and the Theory of the Firm, Bell Journal of Economics, Fall, pp.369-378. 21.Scherer, F. M. (1980), Indistrial Market Structure and Economic Performance,p.28 22.Malnight, T.W. (1996),The Transition From Decentralized to Network-Based MNC Structures: an Evolutionary Perspective, Journal of International Business Studies, 27(1), pp.43-65. 23.Mueller, D. C. (1969), A Theory of Conglomerate Mergers, Quaterly Journal of Economics, 83, pp. 643-659. 24.Penrose, E. (1959), The Theory of the Growth of the Firm, Oxford: Basil Blackwell. 網站: 1. 第一商業銀行 http://www.firstbank.com.tw/fcb_internet/ 2. 寶來證券投資信託股份有限公司http://sitc.polaris.com.tw/ 3. 中華開發工業銀行股份有限公司 http://www.cdibank.com/ 4. 財政部金融局 http://www.boma.gov.tw/ 5. 中央銀行 http://www.cbc.gov.tw/ 6. 經濟部網站http://www.moea.gov.tw/ 7. 台灣農業策略聯盟發展協會網站 http://www.tasc.org.tw/tasc6.htm 8. 致遠會計師事務所 http://www.ey.com/global/content.nsf/Taiwan/Home_C 9. 資誠之友http://friends.pwcglobal.com.tw/ 10. 台灣工業銀行股份有限公司 http://www.ibt.com.twid NH0925627013 sid 916119 cfn 0 / id NH0925627014 auc 羅濟平 tic 半導體測試業的競爭優勢與經營策略-以京元電子為例 adc 吳鑄陶博士 ty 碩士 sc 國立清華大學 dp 高階主管經營管理碩士在職專班 yr 92 lg 中文 pg 105 abc 在全球半導體產業,台灣已是最大的晶圓代工基地,吸引海外設 rf 參考文獻 1. Porter Michael E.著,「競爭優勢」,李明軒/邱如美譯,天下,1999 年 2. George Luffman . Edward Lea . Stuart Sanderson & Brian Kenny 著,「策略管 理」,李茂興譯,弘智文化,2001 年 3. 吳思華,「策略九說:策略思考的本質」,臉譜文化,1998 年 4. Gary Hamel & C.K. Prahalad 著,「競爭大未來」,顧淑馨譯,智庫文化,1995 年 5. Simon Wootton & Terry Horne 著,「如何策略思考」,王詠心譯,臉譜文化, 2001 年 6. 「哈佛商業評論:企業策略」,李芳齡譯,天下文化,2001 年 7. Sharon M. Oster 著,「現代競爭分析,洪明洲譯」,華泰書局,1999 年 8. Liam Fahey & Robert M. Randall 著,「企業策略」,陳? 里譯,商周,2000 年 9. 世界經理文摘124 期,世界經理文摘雜誌社,1996 年 10. 世界經理文摘125 期,世界經理文摘雜誌社,1997 年 11. 世界經理文摘126 期,世界經理文摘雜誌社,1997 年 12. 世界經理文摘160 期,世界經理文摘雜誌社,1999 年 13. 世界經理文摘175 期,世界經理文摘雜誌社,2001 年 14. 楊雅嵐,「測試業前景分析」,ITIS,2003 年 15. 「半導體趨勢圖示」,大橡,2000 年 16. 「矽導新勢力」,大橡,2002 年 17. Mark H. McCormack 著,「哈佛學不到的經營策略」,任中原譯,天下文化, 1984 年 18. John P. Kotter 著,「權力與影響力」,陳菡英譯,遠流,1994 年 19. 「半導體IC 產品製造與應用」,刁建成譯,全華科技,2001 年 20. 詹焜智,「半導體測試業之競爭合作策略– 以南茂科技為例」,國立交通 大學高階主管管理學程碩士班碩士論文,2000 年 21. 唐紀忠,「台灣DRAM 模組產業之競爭優勢及公司策略– 以勝創公司為例」, 國立清華大學科技管理學院高階經營管理碩士專班碩士論文,2003 年 22. 京元電子,「京元電子公司年報」,1990/1991/1992 年 23. 經濟部技術處,「2003 年半導體工業年鑑」,工研院產經資訊服務中心,2003 年 24. Porter Michael E.,「1999 來台演講稿– 跨世紀競爭優勢」,台北國際會 議中心,1999 年 25. 劉尚志,「我國新興高科技製造業的競爭力與策略佈局:以TFTLCD 產業發 展為例」,國立交通大學科技管理研究所, 26. 彭茂榮,「2003 年我國IC 產業回顧與展望」,工研院經資中心ITIS,2003 年 27. 李翊菱,「記憶體測試景氣觸底回升之契機」,工研院經資中心ITIS, 2003 年 28. 陳梧桐,「IC 封裝測試業回顧與展望」,工研院經資中心ITIS,2002/03/19 29. 王興毅、郭秋鈴、陳梧桐、游李興、彭茂榮、易維綺,「台灣半導體廠商經 營研究」,工研院IEK 中心電子資訊研究組,2000/10/24 30. 盧超群新,「IC 紀元時代面臨不同挑戰」,電子時報,2004/02 31. 「封測產業引領半導體市場持續復甦」,電子時報,2003/09/03 32. 張振堶,「IC 測試機技術發展趨勢」,工研院IEK 33. 日本Globis 株式會社,「MBA 研修讀本」,周君銓譯,遠流,1997 34. 「跨世紀我國半導體產業經營探索」,IT IS 35. 謝東和,「我國IC 產業全球地位」,ITIS,2003/05/05 36. 許瑞益,「全球半導體資本支出趨勢探索」,ITIS 37. 彭茂榮,「蓄勢待發的我國IC 產業」,ITIS,2003/03/19 38. Larry Bossidy & Ram Charan,「Execution – 執行力」,李明譯,天下文化, 2003 39. Dave Ulrich、Michael R. Losey & Gerry Lake,「人力資源管理的未來」,賴文 珍譯,商周出版 40. David Simchi-Levi、Philip Kaminsky & Edith Simchi-Levi,「Designing and Managing the supply chain –「供應鏈之設計與管理」,蘇雄義譯,美商麥格 羅.希爾 41. Porter Michael E.,「The Competitive Advantage of Nations,The Free Press」, New York,1990 42. Porter Michael E.,「The Competitive Advantage of Nations,The Free Press」, New York,1980id NH0925627014 sid 886104 cfn 0 / id NH0925650001 auc 馬清祥 tic 頻率選擇性無線頻道的空間—時間碼之結構性分析與設計 adc 陳俊才 ty 博士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 英文 pg 140 kwc 空間-時間碼 kwc 多重輸入多重輸出頻道 kwc 頻率選擇性頻道 abc 在使用天線陣列之多路徑多重輸入多重輸出頻道的無線系統中,多路徑之延遲擴展會造成接收信號間彼此干擾以及導致頻道產生具有頻率選擇的特性。相對於頻道之頻率選擇性,多路徑傳送方向角度的空間增益使得頻道亦具有角度選擇性。根據由路徑延遲以及路徑到達或離開之方向角度所構成的頻道選擇性結構,在本論文中,首先我們將尋求新的觀點,從角度以及頻率方面去探討空間-時間碼與多路徑多重輸出入頻道之間結構的關係。接著,藉由利用多路徑多重輸出入無線頻道的結構,我們提出了一個新的空間-時間碼設計準則。使用電腦搜尋的方式,我們鑑定了新的根據通道結構所設計的空間-時間碼,來證明所提出來新設計準則的可行性。從實驗模擬,也證明了所鑑定出來新的空間-時間碼,在相對應的頻率選擇性頻道裡,它的效能比那些沒有根據頻道結構所設計的空間-時間碼的效能好很多。另外,根據所提出來新的空間-時間碼設計準則,我們提出了兩個隨通道結構調變的空間-時間碼設計系統,所提出來的設計系統不僅低複雜度,而且在信號傳輸錯誤率、信號傳輸資料量以及計算複雜度方面都非常具有彈性。實驗模擬證實了在多重輸出入頻率選擇性的頻道裡,所提出來的隨通道結構調變的空間-時間碼設計系統,它的效能比已經存在的空間-時間碼—比如雅姆提所提出來的正交空間-時間碼—的效能好很多。 rf Bibliography [1 ] G. J. Foschini, Jr. and M. J. Gans, "On limits of wireless communication in a fading environment when using multiple antennas," Wireless Personal Commun., vol. 6, pp. 311-335, Mar. 1998. [2 ] E. Telatar, "Capacity of multiantenna Gaussian channels," AT&T Tech. Memo., June 1995. [3 ] A. Narula, M. D. Trott, and G. W. Wornell, "Performance limits of coded diversity methods for transmitter antenna arrays," IEEE Trans. Inform. Theory, vol. 45, pp. 2418-2433, Nov. 1999. [4 ] I. E. Telatar, "Capacity ofmulti-antenna Gaussian channels," European Tansactions on Communications, vol. 10, pp. 585-595, Nov./Dec. 1999. [5 ] J. S. Lehnert and M. B. Pursley, "Multipath diversity reception of spread-spectrum multiple-access commmunications," IEEE Trans. Commun., vol. 35, pp. 1189-1198, Nov. 1987. [6 ] H. Ochsner, "Direct-sequence spread-spectrum receiver for communication on frequency-selective fading channels," IEEE J. Select. Areas Commun. vol. 5, pp. 188- 193, Feb. 1987. [7 ] I-K. Chang, G. L. Stuber, and A. M. Bush, "Performance of diversity combining tech- niques for DS/DPSK signaling over a pulse jammed multipath fading channel," IEEE Trans. Commun., vol. 38, pp. 1823-1834, Oct. 1990. [8 ] E. Lindskog, A. Ahlen, and M. Sternad, "Spatio-temporal equalization for multipath environments in mobile radio applications," in Proc. IEEE VTC, 1995, pp. 399-403. [9 ] T. Bores, G. G. Raleigh, and M. A. Pollack, "Adaptive space-time equalization for rapidly fading communication channels," in Proc. IEEE Globecom, Nov. 1996, pp. 984- 989. [10 ] W. C. Jakes, Microwave Mobile Communications. John Wiley, New York, 1974. [11 ] W. Kuo and M. Fitz, "Design and analysis of transmitter diversity using intentional frequency offset for wirless communications," IEEE Trans. Veh. Tech., vol. 46, pp. 871- 881, Nov. 1997. [12 ] H. Oldfsson, M. Almgren, and M. Hook, "Transmitter diversity with antenna hopping for wireless communication systems," in Proc. IEEE VTC, May 1997, pp. 1743-1747. [13 ] A. Wittneben, "Basestation modulation diversity for digital SIMULCAST," in Proc. IEEE VTC, May 1991, pp. 848-853. [14 ] E. Biglieri, D. Divsalar, P. J. McLane, and M. K. Simon, Introduction to Trellis Coded Modulation With Applications. New York: Macmillan, 1991. [15 ] D. Divsalar and M. K. Simon, "The design of trellis coded MPSK for fading channel: Performance criteria," IEEE Trans. Commun., vol. 36, pp. 1004-1012, Sep. 1988. [16 ] S. G. Wilson and Y. S. Leung, "Trellis coded phase modulation on Rayleigh channels," in Proc. IEEE ICC, June 1987. [17 ] N. Seshadri and C.-E. W. Sundberg, "Multi-level trellis coded modulation for the Rayleigh fading channel," IEEE Trans. Commun., vol. 41, pp. 1300-1310, Sep. 1993. [18 ] L.-F. Wei, "Coded M-DPSK with built-in time diversity for fading channels," IEEE Trans. Inform. Theory, vol. 39, pp. 1820-1839, Nov. 1993. [19 ] G. J. Foschini, "Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas," AT&T Bell Labs Tech. J., vol. 1, pp. 41-59, Sep. 1996. [20 ] V. Tarokh, N. Seshadri, and A. R. Calderbank, "Space-time codes for high data rate wireless communication: Performance analysis and code construction," IEEE Trans. Inform. Theory, vol. 44, pp. 744-765, Mar. 1998. [21 ] J.-C. Guey, M. P. Fitz, M. R. Bell, and W.-Y. Kuo, "Signal design for transmitter diversity wireless communication systems over Rayleigh fading channels," IEEE Trans. Commun., vol. 47, pp. 527-537, Apr. 1999. [22 ] S. M. Alamouti, "A simple transmitter diversity scheme for wireless communications," IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998. [23 ] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, "Space-time block codes from orthog- onal designs," IEEE Trans. Inform. Theory, vol. 45, pp. 1456-1467, Jul. 1999. [24 ] A. J. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Communi- cations. Cambridge University Press, 2003. [25 ] A. J. Paulraj and C. B. Papadias, "Space-time processing for wireless communications," IEEE Signal Processing Magazine, vol. 14, pp. 49-83, Nov. 1997. [26 ] A. R. Hammons Jr and H. El Gamal, "On the theory of space-time codes for PSK modulation," IEEE Trans. Inform. Theory, vol. 46, pp. 524-542, Mar. 2000. [27 ] S. Baro, G. Bauch, and A. Hansmann, "Improved codes for space-time trellis coded modulation," IEEE Commun. Lett., vol. 4, pp. 20-22, Jan. 2000. [28 ] X. Lin and R. S. Blum, "Systematic design of space-time codes employing multiple trellis coded modulation," IEEE Trans. Commun., vol. 50, pp. 608-615, Apr. 2002. [29 ] M. Tao and R. S. Cheng, "Improved design criteria and new trellis codes for space- time coded modulation in slow at fading channels," IEEE Commun. Lett., vol. 5, pp. 313-315, Jul. 2001. [30 ] Q. Yan and R. S. Blum, "Optimum space-time convolutional codes," in Proc. IEEE WCNC, pp. 1351-1355, Sep. 2000. [31 ] D. M. Ionescu, K. K. Mukkavilli, Z. Yan, and J. Lilleberg, "Improved 8- and 16-state space-time codes for 4PSK with two transmit antennas," IEEE Commun. Lett., vol. 5, pp. 301-303, Jul. 2001. [32 ] Z. Chen, B. S. Vucetic, J. Yuan, and K. Leong Lo, "Space-time trellis codes for 4- PSK with three and four transmit antennas in quasi-static at fading channels," IEEE Commun. Lett., vol. 6, pp. 67-69, Feb. 2002. [33 ] J. Ventura-Traveset, G. Caire, E. Biglieri, and G. Taricco, "Impact of diversity reception on fading channels with coded modulation-Part I: Coherent detection," IEEE Trans. Commun., vol. 45, pp. 563-572, May. 1997. [34 ] E. Biglieri and A. Tulino, "Designing space-time codes for large number of receiving antennas," IEE Electron. Lett., vol. 37, pp. 1073-1074, Aug. 2001. [35 ] E. Biglieri, G. Taricco, and A. Tulino, "Performance of space-time codes for a large number of antennas," IEEE Trans. Inform. Theory, vol. 48, pp. 1794-1803, July 2002. [36 ] Z. Chen, J. Yuan, and B. Vucetic, "Improved space-time trellis coded modulation scheme on slow Rayleigh fading channels," IEE Electron. Lett., vol. 37, pp. 440-441, Mar. 2001. [37 ] S. Siwamogsatham, M. P. Fitz, and J. H. Grimm, "A new view of performance analysis of transmit diversity schemes in correlated Rayleigh fading," IEEE Trans. Inform. Theory, vol. 48, pp. 950-956, Apr. 2002. [38 ] S. Siwamogsatham and M. P. Fitz, "Robust space-time codes for correlated rayleigh fading channels," IEEE Trans. Signal Processing, vol. 50, pp. 2408-2416, Oct. 2002. [39 ] D. Gore, R.W. Heath Jr., and A. J. Paulraj, "Performance analysis of spatial multi- plexing in correlated channels." submitted to IEEE Trans. Comm. March 2002. [40 ] D.-S. Shiu, G. Foschini, M. Gans, and J. Kahn, "Fading correlation and its effect on the capacity of multi-element antenna systems," IEEE Trans. Commun., vol. 48, pp. 502-513, Mar. 2000. [41 ] R. Nabar, H. Bolcskei, and A. J. Paulraj, "Transmit optimization for spatial multiplex- ing in the presence of spatial fading correlation," in Proc. IEEE GLOBECOM, vol. 1, pp. 131V135, 2001. [42 ] Z. Hong, K. Liu, R. W. Heath, Jr., and A. Sayeed, "Spatial multiplexing in correlated fading via the virtual channel representation," accepted for publication in IEEE J. Select. Areas Commun. [43 ] G. G. Raleigh and J. M. Cioffi, "Spatio-temporal coding for wireless communication," IEEE Trans. Commun., vol. 46, pp. 357-366, Mar. 1998. [44 ] A. Narula, M. J. Lopez, M. D. Trott, and G. W. Wornell, "EÆcient use of side infor- mation in multiple-antenna data transmission over fading channels," IEEE J. Select. Areas Commun., vol. 16, pp. 1423-1436, Oct. 1998. [45 ] G. Jongren, M. Skoglund, and B. Ottersten, "Combining beamforming and orthogonal space-time block coding," IEEE Trans. Inform. Theory, vol. 48, pp. 611-627, Mar. 2002. [46 ] R. Negi, A. M. Tehrani, and J. CioÆ, "Adaptive antennas for space-time coding over block-time invariant multi-path fading channels," in Proc. IEEE VTC, pp. 70-74, May 1999. [47 ] G. G. Raleigh and V. K. Jones, "Multivariate modulation and coding for wireless com- munication," IEEE J. Select. Areas Commun., vol. 17, pp. 851-866, May 1999. [48 ] S. N. Diggavi, "On achievable performance of spatial deversity fading channels," IEEE Trans. Inform. Theory, vol. 47, pp. 308-325, Jan. 2001. [49 ] H. Bolcskei, D. Gesbert, and A. J. Paulraj, "On the capacity of OFDM-based spatial multiplexing systems," IEEE Trans. Commun., vol. 50, pp. 225-234, Feb. 2002. [50 ] Z. Wang and G. B. Giannakis, "Wireless multicarrier communications: Where Fourier meets Shannon," IEEE Signal Processing Mag., pp. 29-48, May 2000. [51 ] E. G. Larsson and P. Stoica, Space-Time Block Coding for Wireless Communications. Cambridge University Press, 2003. [52 ] X. Ma and G. B. Giannakis, "Full-diversity full-rate complex-field space-time coding," IEEE Trans. Signal Processing, vol. 51, pp. 2917-2930, Nov. 2003. [53 ] H. El Gamal, A. R. Hammons, Jr., Y. Liu, M. P. Fitz, and O. Y. Takeshita, "On the design of space-time and space-frequency codes for MIMO frequency-selective fading channels," IEEE Trans. Inform. Theory, vol. 49, pp. 2277-2292, Sep. 2003. [54 ] Y. Liu, M. P. Fitz, and O. Y. Takeshita, "Space-time codes performance criteria and design for frequency selective fading channels," in Proc. IEEE ICC, June 2001, pp. 2800-2804. [55 ] S. Zhou and G. B. Giannakis, "Space-time coding with maximum diversity gains over frequency-selective fading channels," IEEE Signal Processing Letters, vol. 8, pp. 269- 272, Oct. 2001. [56 ] IEEE Std 802.11-1998, Part 11: Wireless Lan Medium Access Control (MAC) and Physical Layer (PHY) specifications. [57 ] P. Smulders, "Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions," IEEE Communications Magazine, vol. 40, pp. 140- 147, Jan. 2002. [58 ] A. G. Siamarou, "Broadband wireless local-area networks at millimeter waves around 60 GHz," IEEE Antennas and Propagation Magazine, vol. 45, pp. 177-181, Feb. 2003. [59 ] T. Zwick, C. Fischer, and W. Wiesbeck, "A stochastic multipath channel model including path directions for indoor environments," IEEE J. Select. Areas Commun., vol. 20, pp. 1178-1192, Aug. 2002. [60 ] H. Xu, V. Kukshya, and T. S. Rappaport, "Spatial and temporal characteristics of 60- GHz indoor channels," IEEE J. Select. Areas Commun., vol. 20, pp. 620-630, Apr. 2002. [61 ] Q. H. Spencer, B. D. Jeffs, M. A. Jensen, and A. Lee Swindlehurst, "Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel," IEEE J. Select. Areas Commun., vol. 18, pp. 347-360, Mar. 2000. [62 ] Y. Lostanlen, Y. Corre, Y. Louet, Y. Le Helloco, S. Collonge, and G. El-Zein, "Compar- ison of measurements and simulations in indoor environments for wireless local networks at 60 GHz," in Proc. IEEE VTC, 2002, pp. 389-393. [63 ] M. T. Ivrlac, W. Utschick. and J. A. Nossek, "Fading correlations in wireless MIMO communication systems," IEEE J. Select. Areas Commun., vol. 21, pp. 819-828, Jun. 2003. [64 ] S. H. Simon and A. L. Moustakas, "Optimizing MIMO antenna systems with channel covariance feedback," IEEE J. Select. Areas Commun., vol. 21, pp. 406-417, Apr. 2003. [65 ] P. Hoeher, J. Lodge, "Turbo DPSK: Iterative differential PSK demodulation and chan- nel decoding," IEEE Trans. Commun., vol.47, pp. 837-843, June 1999. [66 ] Z. Liu, X. Ma, and G. B. Giannakis, "Space-time coding and Kalman filtering for time- selective fading channels," IEEE Trans. Commun., vol.50, pp. 183-186, Feb. 2002. [67 ] M. C. Valenti and B. D. Woerner, "Iterative channel estimation and decoding of pilot symbol assisted turbo codes over at-fading channels," IEEE J. Select. Areas Commun., vol. 19, pp. 1697-1705, Sep. 2001. [68 ] Haidong Zhu, B. Farhang-Boroujeny, and C. Schlegel, "Pilot embedding for joint channel estimation and data detection in MIMO communication systems," IEEE Commun. Lett., vol. 7, pp. 30-32, Jan. 2003. [69 ] R. Raheli, A. Polydoros, and C.-K. Tzou, "Per-Survivor Processing: a general approach to MLSE in uncertain environments," IEEE Trans. Commun., vol. 43, pp. 354-64, Feb./Mar./Apr. 1995. [70 ] S. M. Kay, Fundamentals of Statistical Signal Processing-Estimation Theory. Englewood Cliffs, NJ: Prentice-Hall, 1993. [71 ] M. Nakagami, "The m distribution: a general formula of intensity distribution of rapid fading," Statistical Methods in Radio Wave Propagaion, W.G. Hoffman, ed., pp. 3-36, 1960. [72 ] R. A. Monzingo and T. W. Miller, Introduction to adaptive arrays. New York: Wiley, 1980. [73 ] S. U. Pillai, Array signal processing. New York: Springer-Verlag, 1989. [74 ] Y.-Y. Wang, J.-T. Chen, and W.-H. Fang, "TST-MUSIC for joint DOA-Delay Estima- tion," IEEE Trans. Signal Processing, vol. 49, pp. 721-729, Apr. 2001. [75 ] M. C. Vanderveen, C. B. Papadias, and A. Paulraj, "Joint angle and delay estimation (JADE) for multipath signals arriving at an antenna array," IEEE Commun. Lett., vol. 1, pp. 12-14, Jan. 1997. [76 ] M. C. Vanderveen, A. J. van der Veen, and A. Paulraj, "Estimation of multipath param- eters in wireless communications," IEEE Trans. Signal Processing, vol. 46, pp. 682-690, Mar. 1998. [77 ] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-time signal processing. Upper Saddle River, NJ: Prentice-Hall, 1999. [78 ] D. E. Dudgeon and R. M. Mersereau, Multidimensional digital signal processing. Engle- wood Cliffs, NJ: Prentice-Hall, 1984. [79 ] D. M. Ionescu, "On space-time code design," IEEE Trans. Wireless Commun., vol. 2, pp. 20-28, Jan. 2003. [80 ] O. Tirkkonen and A. Hottinen, "Square-matrix embeddable space-time block codes for complex signal constellations," IEEE Trans. Inform. Theory, vol. 48, pp. 384-395, Feb. 2002. [81 ] J.-T. Chen and Y.-C. Wang, "Performance analysis of the parametric channel estimators for MLSE equalization in multi-path channels with AWGN," IEEE Trans. Comm., pp. 393-396, Mar. 2001. [82 ] J.-T. Chen, J. Kim, and J.-W. Liang, "Multi-channel MLSE equalizer with parametric FIR channel identification," IEEE Trans. on Veh. Technol., vol. 48, pp. 1923-1935, Nov. 1999. [83 ] J.-T. Chen, C. Papadias, and G. J. Foschini, "Space-time dynamic signature assignment for the reverse link of DS-CDMA systems," IEEE Trans. on Comm., vol. 52, pp. 120- 129, Jan. 2004. [84 ] R. A. Horn and C. R. Johnson, Topics in matrix analysis. Cambridge University Press, 1991. [85 ] T. Cover and J. Thomas, Elements of information theory. Wiley, NewYork, 1991. [86 ] F. Kschischang, B. Frey, and H.-A. Loeliger, "Factor graphs and the sum-product algo- rithm," IEEE Trans. Inform. Theory, vol. 47, pp. 498-519, Feb. 2001. [87 ] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal decoding of linear codes for minimizing symbol error rate," IEEE Trans. Inform. Theory, vol. 20, pp. 284-287, Mar. 1974. [88 ] J. Hagenauer, "The turbo principle: Tutorial introduction and state of the art," in Proc. Int. Symp. Turbo Codes & Related Topics, Brest, France, Sept. 1997, pp. 1-11. [89 ] H. Wang and P. Chang, "On verifying the first-order Markovian assumption for a Rayleigh fading channel model," IEEE Trans. Veh. Technol., vol. 45, pp. 353-357, May 1996. [90 ] H. Bolcskei and A. J. Paulraj, "Space-frequency coded broadband OFDM systems," in Proc. IEEE WCNC, pp. 1-6, 2000. [91 ] Yi Gong and K. Ben Letaief, "Concatenated space-time block coding with trellis coded modulation in fading channels," IEEE Trans. Wireless Commun., vol. 1, pp. 580-590, Oct. 2002. [92 ] T. H. Liew, J. Pliquett, B. L. Yeap, L.-L. Yang, and L. Hanzo, "Concatenated space- time block codes and TCM, turbo TCM, convolutional as well as turbo codes," in Proc. IEEE Globecom, Nov.-Dec. 2000, pp. 1829-1833. [93 ] Xiaotong Lin and R. S. Blum, "Improved space-time codes using serial concatenation," IEEE Communications Letters, vol. 4, pp. 221-223, July 2000. [94 ] H. Schulze, "Performance analysis of concatenated space-time coding with two transmit antennas," IEEE Trans. Wireless Commun., vol. 2, pp. 669-679, July 2003.id NH0925650001 sid 899603 cfn 0 / id NH0925650002 auc 張禕傑 tic 藉由峰度最大化於傳送分集多載波-分碼多工接取系統之盲蔽空時解碼演算法 adc 祁忠勇 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 中文 pg 47 kwc 多載波分碼多工接取 kwc 空時方塊編碼 kwc 盲蔽空時解碼 kwc 快速峰度最大化演算法 kwc 盲蔽最大比值合併 kwc 超指數 abc 在第三代行動通訊系統係採用分碼多工接取(Code Division Multiple Access, CDMA)技術,可提供比分頻多工接取(Frequency Division Multiple Access, FDMA)與分時多工接取(Time Division multiple Access)系統更高的系統容量。不過對於高速傳輸的環境,通道的多路徑衰減與用戶間的非完全正交展頻碼,就會造成嚴重的符碼間干擾(Intersymbol Interference, ISI)以及多工接取干擾(Multiple Access Interference, MAI)。在另一方面,近來多載波調變技術被廣泛的使用於通訊系統,例如無線區域網路IEEE 802.11a、IEEE 802.11g等,原因在於多載波調變技術較能對抗多路徑衰減的影響,所以結合CDMA與多載波調變技術,可同時具備CDMA技術的多用戶接取能力與多載波調變技術的抗通道多路徑衰減能力等等,目前已有許多這種接取技術,其中多載波分碼多工(Multi-Carrier Code Division Multiple Access, MC-CDMA)[1 tc 摘要 i 英文摘要 iii 誌謝 iv 目錄 v 第一章 簡介 1 第二章 建立離散時間多輸入多輸出模型 4 第三章 盲蔽空時解碼演算法 8 3-1 快速峰度最大化演算法 8 3-2 使用者鑑別演算法與多級連續消除程序 10 3-3 快速峰度最大化演算法之初始條件 11 3-4 盲蔽最大化合併演算法 12 3-5 盲蔽空時解碼演算法流程 13 3-6 盲蔽空時解碼演算法應用於多根接收天線 14 第四章 模擬結果 15 第五章 結論 30 附錄 附錄A : 高階統計量的定義 31 附錄B : 證明FKMA抽出的訊號必為2K個訊號源其中之一 32 附錄C : FKMA初始條件之分析 33 附錄D : MRC、MMSE與Subspace演算法 (2Tx, 1Rx) 35 附錄E : BSTD、MRC與MMSE演算法 (1Tx, 1Rx) 40 附錄F : BSTD演算法的Output SINR之推導 (2Tx, 1Rx) 41 附錄G : MRC、MMSE與Subspace演算法的Output SINR之推 導 (2Tx,1Rx) 43 附錄H : BSTD、MRC與MMSE演算法的Output SINR之推導 (1Tx, 1Rx) 44 參考文獻 45rf [1 ] S. Hara and R. Prasad, “ Overview of multi-carrier CDMA,” IEEE Commun. Mag., vol. 35, no. 12, pp. 126-133, Dec. 1997. [2 ] S. M. Alamouti, “A simple Transmit diversity Technique for Wireless Commu-nication,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451-1458, Oct. 1998. [3 ] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block coding for wireless communications: performance results,” IEEE Journal on Selected Ar-eas in Communications, vol. 17, no. 3, pp. 451-460, Mar. 1999. [4 ] X. Cai and A. N. Akansu, “Multicarrier CDMA systems with transmit diversity,” Proc. IEEE International Conference on Vehicular Technology Conference, 2000, vol. 6, pp. 2817-2821. [5 ] S. Iraji and J. Lilleberg, “Interference cancellation for space-time block-coded MC-CDMA systems over multipath fading channels,” Proc. IEEE International Conference on Vehicular Technology Conference, 2003, vol. 2, pp. 1104-1108. [6 ] W. Sun and H. Li, “Subspace-based channel identification and multiuser detec-tion for space-time coded DS-CDMA systems,” Proc. IEEE International Con-ference on Signals, Systems and Computers Conference, 2001, vol. 2, pp. 984-988. [7 ] H. Xiaoyu and C. Y. Huat, “Performance of space-time block coded system over frequency selective fading channel using semi-blind channel estimation tech-nique,” Proc. IEEE International Conference on Wireless Communications and Networking, 2003, vol. 1, pp. 414-419. [8 ] C. Y. Chi, C. H. Peng, and H. I. Su, “Blind Multiuser Detection for Quasi-synchronous Modified MC-CDMA Systems by Kurtosis Maximization,” Proc. IEEE International Conference on Sensor Array and Multichannel Signal Processing, Barcelona, Spain, July 18-21, 2004. [9 ] C. Y. Chi and C. Y. Chen, “Blind beamforming and maximum ratio combining by kurtosis maximization for source separation in multipath,” Proc. Third IEEE Workshop on Signal Processing Advances in Wireless Communications, Taoyuan, Taiwan, Mar. 20-23, 2001, pp. 243-246. [10 ] Z. Ding and T. Nguyen, “Stationary points of a kurtosis maximization algo-rithm for blind signal separation and antenna beamforming,” IEEE Trans. Sig-nal Processing, vol. 48, no. 6, pp. 1587-1596, June 2000. [11 ] C.-Y. Chi and C.-H. Chen, “Cumulant based inverse filter criteria for MIMO blind deconvolution: Properties, algorithms, and application to DS/CDMA systems in multipath,” IEEE Trans. Signal Processing, vol. 49, no. 7, pp. 1282-1299, July 2001. [12 ] K. L. Yeung and S. F. Yau, “A super-exponential algorithm for blind decon-volution of MIMO system,” IEEE Trans. Signal Process, vol. 4, pp. 2517-2520, 1997. [13 ] Y. Inouye and K. Tanebe, “Super-exponential algorithms for multichannel blind deconvolution,” IEEE Trans. Signal Processing, vol. 48, no. 3, pp. 881-888, Mar. 2000. [14 ] C. Y. Chi and C. H. Chen, “Blind MAI and ISI suppression for DS/CDMA systems using HOS based inverse filter criteria,” IEEE Trans. Signal Process-ing, vol. 50, no. 6, pp. 1368-1381, June 2002. [15 ] P. A. Delaney and D. O. Walsh, “A bibliography of higher-order spectra and cumulants,” IEEE Signal Processing Magazine, vol. 11, no. 3, pp. 61-70, July 1994. [16 ] J. M. Mendel, “Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications,” Proceedings of the IEEE, vol. 79, no. 3, pp. 278-305, Mar. 1991. [17 ] C. L. Nikias and J. M. Mendel, “Signal processing with higher-order spectra,” IEEE Signal Processing Magazine, vol. 10, no. 3, pp. 10-37, July 1993. [18 ] C. L. Nikias and A. P. Petropulu, Higher-Order Spectra Analysis: A Nonlinear Signal Processing Framework. Englewood Cliffs, New Jersey: Prentice-Hall, 1993.id NH0925650002 sid 915614 cfn 0 / id NH0925650003 auc 李旺達 tic 使用峰度最大化於盲蔽訊號分離之多級通道限制演算法 adc 祁忠勇 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 中文 pg 63 kwc 盲蔽訊號分離 kwc 峰度最大化 kwc 多級通道限制演算法 kwc 高階統計量 abc 給定一組多訊號源經過瞬時多通道混合的量測資料,一些現存的盲蔽訊號源分離(blind source separation, BSS)演算法只能抽取出一個訊號源和估算出其相對應的通道,例如:祁忠勇博士等人提出的快速峰度最大值演算法(fast kurtosis maximization algorithm, FKMA)及渦輪式訊號源分離演算法(turbo source separation algorithm, TSSA)。然而我們的目標是要分離出所有的訊號源,所以我們必須要利用多級連續消除(multistage successive cancellation, MSC)程序來達成目的。但是多級連續消除程序會造成盲蔽訊號源分離演算法一級接續一級誤差累積的影響,而使得訊號源分離效能降低。我們將之命名為多級連續消除快速峰度最大值演算法(MSC-FKMA)及多級連續消除渦輪式訊號源分離演算法(MSC-TSSA)。在這篇論文之中,我們提出了二種新穎的多級通道限制(multistage channel-constrained, MCC)盲蔽訊號源分離演算法,分別稱為多級通道限制快速峰度最大值演算法(MCC♁FKMA)及多級通道限制渦輪式訊號源分離演算法(MCC♁TSSA)。此二種演算法是強制訊號源抽取濾波器之參數向量與前級所估測的通道參數向量互相垂直,所以能夠抽取訊號源同時又可免於誤差累積的影響。此外,本篇論文中,我們也分析了FKMA及TSSA的效能,還有證明了MCC♁FKMA及MCC♁TSSA在每一級均會抽取出不一樣的訊號源。最後,我們以一些摸擬結果來驗證此二種演算法的優異性能,和實驗真實語音及生醫訊號盲蔽訊號源分離的效能。 tc 中文摘要 英文摘要 誌謝 目錄 第一章 簡介 第二章 現存的盲蔽訊號源分離演算法 2-1 訊號模型與假設 2-2 基於SOS之盲蔽訊號源分離演算法 2-2a. 多個未知訊號抽取演算法 (AMUSE) 2-2b. 二階盲蔽鑑別演算法 (SOBI Algorithm) 2-3 基於HOS之盲蔽訊號源分離演算法 2-3a. 多級連續消除快速峰度最大化演算法 (MSC-FKMA) 2-3b. 多級連續消除渦輪式訊號源分離演算法 (MSC-TSSA) 第三章 新的盲蔽訊號源分離演算法 3-1 多級通道限制快速峰度最大值演算法 (MCC♁FKMA) 3-2 多級通道限制渦輪式訊號源分離演算法 (MCC♁TSSA) 第四章 模擬結果 4-1 範例1:輸入訊號雜訊比vs.輸出訊號干擾雜訊比 4-2 範例2:訊號源頻譜位移vs.輸出訊號干擾雜訊比 4-3 範例3:真實語音訊號之模擬 4-4 範例4:真實生物醫學訊號之模擬 第五章 結論 附錄 A. 誤差累積影響之分析 B. MCC-FKMA 演算法之分析 C. OUTPUT SINR之推導 參考文獻rf [1 ] L. Tong, V. C. Soon, Y. F. Huang, and R. Lin, “AMUSE: A new blind identification algorithm,” Proc. IEEE International Symposium on Circuits and Systems, New Orleans, LA., May 1-3, 1990, vol. 3, pp. 1784-1787. [2 ] A. Belouchrani, K. Abed-Meraim, J. F. Cardoso, and E. Moulines, “A blind source separation technique using second-order statistics,” IEEE Trans. Signal Processing, vol. 45, no. 2, pp. 434-444, Feb.1997. [3 ] C.-Y. Chi and C.-H. Chen, “Cumulant based inverse filter criteria for MIMO blind deconvolution: properties, algorithms, and application to DS/CDMA systems,” IEEE Trans. Siganl Processing, vol. 49, no. 47, pp. 1282-1299, July 2001. [4 ] C.-Y. Chi, C.-Y. Chen, C.-H. Chen and C.-C. Feng, “Batch processing algorithm for blind equalization using higher-order statistics,” IEEE Trans. Signal Processing Magazine, vol. 20, no. 1, pp. 25-29, Jan. 2003. [5 ] C.-Y. Chi, C.-H Chen and C.-Y. Chen, “Blind MAI and ISI suppression for DS/CDMA systems using HOS-based inverse filter criteria,” IEEE Trans. Signal Processing, vol. 50, no. 6, pp. 1368-1381, June 2002. [6 ] C.-Y. Chi, C.-J. Chen, F.-Y. Wang and C.-H. Peng, “Turbo source separation algorithm using HOS based inverse filter criteria,” Proc. 3rd ISSPIT-03, Darmstadt, Germany, Dec. 14-17, 2003. [7 ] C. Chang, Z. Ding, S.-F. Yau, and F. H. Y. Chan, “A matrix-pencil approach to blind separation of non-white sources in white noise,” Proc. ICASSP-98, Seattle, May 12-15, 1998, vol. 4, pp. 2485-2488. [8 ] P. A. Delaney and D. O. Walsh, “A bibliography of higher-order spectra and cumulants,” IEEE Signal Processing Magazine, vol. 11, no. 3, pp. 61-70, July 1994. [9 ] J. M. Mendel, “Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications,” Proc. IEEE, vol. 79, pp. 278-305, Mar. 1991. [10 ] C. L. Nikias and J. M. Mendel, “Signal processing with higher-order spectra,” IEEE Signal Processing Magazine, vol. 10, no. 3, pp. 10-37, July 1993. [11 ] C. L. Nikias and A. P. Petropulu, Higher-Order Spectra Analysis: A Nonlinear Signal Processing Framework. Englewood Cliffs, New Jersey: Prentice-Hall, 1993. [12 ] A. Cichocki, S. Amari, K. Siwek et al., “ICALAB for Signal Processing – benchmarks,” http://www.bsp.brain.riken.go.jp/ICALAB. [13 ] Y. Inouye and K. Tanebe, “Super-exponential algorithms for multi-channel blind deconvolution,” IEEE Trans. Signal Processing, vol. 48, no. 3, pp. 881-888, Mar. 2000.id NH0925650003 sid 915616 cfn 0 / id NH0925650004 auc 趙姿斐 tic 多輸入多輸出系統之適應性傳輸模式選取技術 adc 陳俊才 博士 adc 李大嵩 博士 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 英文 pg 77 kwc 多輸入多輸出系統 kwc 空間分集 kwc 空間多工 kwc 波束形成 kwc 空時碼 abc 隨著通訊技術的進步,提供高速可靠傳輸服務之無線通訊系統已成為近年來的研究主題之一。其中,多輸入多輸出(Multiple-Input Multiple-Output, MIMO)為使用多天線於傳送和接收端的可靠通訊技術,它為上述需求提供了可能的解答。傳統智慧型天線(Smart Antenna)系統可視為MIMO的特殊形式,主要的技術為波束形成技術,它能運用具自我適應、調整功能之演算法驅動陣列天線,使之產生特定的波束形狀,將主波束對準目標訊號用以強化接收品質,同時調整零陷點,使之對準干擾訊號用以抑制(或消除)干擾,從而達到增加系統容量、擴大涵蓋面和提高傳輸率的多重目的。近年來,MIMO技術的發展趨勢可分為兩類:一為空間分集,另一為空間多工。MIMO雙邊陣列技術可提供發射及接收空間分集,有效對抗通道衰落現象,亦可提供空間多工,在傳送端陣列天線同時傳送多組不同之資料,並在接收端分別予以解出,以提高系統的整體傳輸速率。在無線傳輸環境中,不同的環境障礙物會造成不同的多路徑衰落效應。基於此一觀點,吾人將探討結合智慧型天線與MIMO之通訊系統架構,針對不同的環境效應,選取最適合之傳輸技術。吾人將進一步針對MIMO提出一種適應性傳收架構,使其能夠隨時間動態地在通道上調整傳輸參數,如:選取空時訊號處理技術以及調變階數,以便充分利用無線通道的特性以維持系統的目標錯誤率以及資料傳輸率。最後,吾人將以電腦模擬驗證上述架構在不同無線通訊環境中所呈現之優異效能。 tc Chinese Abstract I English Abstract II Acknowledgement III Contents IV List of Figures VI List of Tables IX Acronym Glossary X Notations XII 1 Introduction 1 2 Overview of MIMO Techniques 4 2.1 MIMO Channel Model 4 2.2 MIMO Channel Capacity 5 2.3 MIMO Diversity 11 2.3.1 Receive Diversity 11 2.3.2 Transmit Diversity 12 2.3.2.1 Space-Time Block Code (STBC) 12 2.4 Spatial Multiplexing 16 2.4.1 Diagonal Bell Labs Layered Space-Time (D-BLAST) 17 2.4.2 Vertical Bell Labs Layered Space-Time (V-BLAST) 19 2.5 MIMO Beamforming 21 2.5.1 Generic Beamforming 21 2.5.1 Eigenbeamforming Technique 22 3 MIMO Channel Condition and Transmission Strategies 28 3.1 Determination of Channel Condition 30 3.2 Transmission Mode Selection Strategies 31 3.2.1 Link-Optimal Space-Time Processing Based on Ergodic Capacity 31 3.2.2 Link-Optimal Space-Time Processing Based on Link Quality 37 3.2.3 Optimal Transmission Mode Selection 38 3.3 Summary 39 4 Trade-off Between Different Modes of MIMO 48 4.1 Switch Between Multiplexing and Diversity Based on Error Probability over UHR Channel 49 4.1.1 Performance Analysis of STBC 49 4.1.2 Performance Analysis of V-BLAST 52 4.1.3 Trade-off of Multiplexing and Diversity 54 4.2 Switch Between Beamforming and Diversity Based on Error Probability over CLR Channel 55 4.3 Computer Simulations 58 4.4 Summary 60 5 Conclusion 71 Bibliography 74rf [1 ]A. J. Paulraj and C. B. Papadias, “Space-time processing for wireless communications,” IEEE Signal Processing Magazine, vol. 14, pp. 49-83, Nov. 1997. [2 ]G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multiple antennas,” Bell Labs Syst. Tech. J., vol. 1, pp. 41-59, Autumn 1996. [3 ]G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Personal Commun., vol. 6, no. 3, pp. 311-335, 1998. [4 ]P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V-BLAST: an 1rchitecture for realizing very high data rates over the rich-scattering wireless channel,” URSI International Symposium, pp. 295-300, 29 Sep. -2 Oct. 1998. [5 ]X. Li, H. Huang, G. J. Foschini, and R. A. Valenzuela, “Effects of iterative detection and decoding on the performance of BLAST,” IEEE GLOBECOM, vol. 2, pp. 1061-1066, 2000. [6 ]Ezio Biglieri, Giorgio Taricco and Antonia Tulino, “Decoding space-time codes with BLAST architectures,” IEEE Trans. Signal Processing, vol. 50, no. 10, pp. 2547-2552, Oct. 2002. [7 ]Siavash M. Alamouti, “A simple transmitter diversity technique for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, no. 8, pp. 1451-1458, Oct. 1998. [8 ]V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: performance analysis and code construction,” IEEE Trans. Inform. Theory, vol. 44, no. 2, pp. 744-765, Mar. 1998. [9 ]V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal designs,” IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1456-1467, July 1999. [10 ]V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block coding for wireless communications: performance results,” IEEE J. Select. Areas Commun., vol. 17, no. 3, pp. 451-460, Mar. 1999. [11 ]W. C. Y. Lee, “Mobile Communication Engineering,” New York: Mc-Graw Hill, 1982. [12 ]C. Shannon, “A Mathematical Theory of Communication,” Bell Labs Tech. J., 27, 379-423, 623-656, July and October 1948. [13 ]I. Telatar, “Capacity of multi-antenna gaussian channels,” European Trans., November/December 1999. [14 ]T. Cover and J. Thomas. “Elements of Information Theory,” Wiley, New York, 1991. [15 ]C. Chuah, J. Kahn, and D. Tse. “Capacity of multi-antenna array systems in indoor wireless environment,” Proc. IEEE GLOBECOM. 4, 1894-1899, Sydney, Australia, November 1998. [16 ]C. Chuah, D. Tse, J. Kahn, and R. Valenzuela. “Capacity scaling in MIMO wireless systems under correlated fading,” IEEE Trans. Inf. Theory, 48(3), 637-650, March 2002. [17 ]D. Gesbert, H. Bölcskei, D. Gore, and A. Paulraj, “MIMO wireless channels: capacity and performance prediction,” GLOBECOM’00., vol. 2, pp. 1038-1088, Nov.2000. [18 ]T. S. Rappaport, “Wireless communications: principles and practice,” Prentice Hall, 1999. [19 ]G. J. Foschini, G. D. Golden, R.A. Valenzuela, and P. W. Wolniansky, “Simplified processing for high spectral efficiency wireless communication employing multi-element arrays,” IEEE J. Select. Areas Commum. Vol. 39, no. 1, pp. 100-108, Jan. 2001. [20 ]G. Giannakis, Y. Hua, P. Stoica, and L. Tong, “Signal processing advances in communications,” Prentice Hall, New Jersey, USA, 2001, Chapter 3, Space-Time Diversity. [21 ]J. Choi, S. R. Kim, and I. K. Choi, “Eigenbeamforming for OFDM downlink,” Oct. 2003. [22 ]Spatial Channel Model AHG, “Spatial channel model text description,” Tech. Rep. (File No: SCM-095-SCM Text v2.1b), 3GPP & 3GPP2, Jan. 2003. [23 ]D. Gesbert, H. Bölcskei, D. A. Gore, and A. Paulraj, “Outdoor MIMO Wireless Channels: Models and Performance Prediction,” IEEE Trans. on Comm., vol. 50, no. 12, Dece. 2002. [24 ]F. R. Farrokhi, G. J. Foschini, A. Lozano, and R. A. Valenzuela, “Link-optimal space-time processing with multiple transmit and receive antennas,” IEEE Commun. Letters, vol. 5, no. 3, March 2001. [25 ]F. R. Farrokhi, G. J. Foschini, A. Lozano, and R. A. Valenzuela, “Link-optimal BLAST processing with multiple-access interference,” in VTC’2000, Boston, MA, 2000. [26 ]S. Rice, “Mathematical analysis of random noise,” Bell Syst. Tech. J., vol. 23, 1944. [27 ]R. W. Heath Jr. and A. Paulraj, “Switching between spatial multiplexing and transmit diversity based on constellation distance,” in Proc. of Alleton Conf. on Comm. Cont. and Comp., Oct. 2000. [28 ]H. Zhang, “The capacity and error probability analysis for high data rate IEEE 802.11 handbook: A designer’s companion,” New York: IEEE Press, 1999. [29 ]S. Sandhu and A. Paulraj, “Space-time block codes: A capacity perspective,” IEEE Commun. Letters. Vol. 4, no. 12, pp.384-386, Dec, 2000. [30 ]H. Shin and J. H. Lee, “Exact symbol error probability of orthogonal space-time block codes,” in Proc. IEEE GLOBECOM’02, Taipei, Taiwan, R.O.C., 2002. [31 ]J. G. Proakis, “Digital Communications,” 4th Ed., McGraw-Hill, 2001. [32 ]R. W. Heath and A. J. Paulraj, “Switch between multiplexing and diversity in MIMO communication links,” IEEE Trans. Commun., 2001. Submitted. [33 ]V. Erceg, P. Soma, D. S. Baum, and A. J. Paulraj, “Capacity obtained from multiple-input multiple-output channel measurements in fixed wireless environments at 2.5 GHz,” Communications, ICC 2002. IEEE International Conference on, vol. 1, pp. 396-400, May 2002. [34 ]A. J. Paulraj, R. Nabar, and D. Gore “Introduction to Space-Time Wireless Communications,” Cambridge University Press 2003. [35 ]R. A. Horn and C. R. Johnson “Matrix Analysis,” Cambridge University Press 1985.id NH0925650004 sid 915619 cfn 0 / id NH0925650005 auc 莊振坤 tic 第三代通訊系統之多媒體高速傳輸 adc 黃建華 adc 黃經堯 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 英文 pg 61 kwc 多媒體 kwc 通訊控制協定 kwc 多媒體控制層 kwc 重傳機制 abc 在第三代行動電話系統,提供多媒體語音服務,,像是網路瀏覽或是影像傳輸是非常重要的。在無線網路環境下,高錯誤率一直被視為傳輸上的障礙。傳輸控制協定(TCP)被用於多數的網路傳輸應用上,可是它卻是被設計用來傳輸於有線的環境。因此,一些機制被提出用來解決在無線環境下傳輸的問題。廣播連接協定(RLP)首先在IS-95的系統下提出來的,它被用來在傳輸控制協定(TCP)發現錯誤前先解決這些錯誤。然而在第三代行動電話系統,廣播連接協定(RLP)似乎不足以解決傳輸控制協定(TCP)在無線環境下傳輸的問題。因此,多媒體存取控制層(MAC)裡的重傳機制被提出用來幫助傳輸控制協定的效能,尤其當傳輸速度到每秒百萬位元時(Mbps)。在這篇論文裡,我們研究了多媒體存取控制層(MAC)裡的重傳機制與傳輸速率的關係。我們發現多媒體存取控制層(MAC)裡的重傳機制在高速的效能會比低速(0.5Mbps)好,尤其在相當高速的時候(2Mbps)。此外我們還發現了較短的封包長度較適合於多媒體存取控制層(MAC)裡的重傳機制。此外我們也發現了,傳輸控制協定(TCP)過去被認為不適用於影像傳輸,可是在我們的模擬裡,有著多媒體存取控制層(MAC)裡的重傳機制,傳輸控制協定(TCP)被用來傳輸影像是有可能的。因為傳輸控制協定(TCP),具有重傳與網路壅塞控制可提供較好的影像品質。所以,第三代甚至第三代之後的通訊系統,多媒體存取控制層(MAC)裡的重傳機制勢必要存在於系統內。 rf [1 ] Cianca, E.; Ruggieri, M.; Prasad, R, “Improving TCP/IP performance over CDMA wireless links: a physical layer approach”; Personal, Indoor and Mobile Radio Communications, 2001 12th IEEE International Symposium on , Volume: 1 , 30 Sept.-3 Oct. 2001 Pages:A-83 - A-87 vol.1. [2 ] Apurva, K.; Atul, A.S.; Umesh, M.N.; Mukhopadhyay, T.; Natesh, K.; Sanjoy, S.; Arun, A, “Performance improvement of a CDMA physical layer over Rayleigh fading channels”; Personal Wireless Communication, 1999 IEEE International Conference on , 17-19 Feb. 1999 Pages:179 – 182. [3 ] Li, Q.; Ramesh, N.S, “Channel coding performance in cdma2000 systems”; Emerging Technologies Symposium: Broadband, Wireless Internet Access, 2000 IEEE , 10-11 April 2000 Pages:5 pp. [4 ] Kandukuri, S.; Chaponniere, E.; Jiangxin Chen; Hamdy, W.; Veerepalli, S, “Optimizing TCP performance over CDMA2000”; Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003. 14th IEEE Proceedings on , Volume: 2 , Sept. 7-10, 2003, Pages:1476 – 1480. [5 ] Khan, F.; Kumar, S.; Medepalli, K.; Nanda, S, “TCP performance over cdma2000 RLP”, Vehicular Technology Conference Proceedings, 2000. VTC 2000-Spring Tokyo. 2000 IEEE 51st , Volume: 1 , 15-18 May 2000 Pages:41 - 45 vol.1. [6 ] Sungwon Lee, “The performance improvement principles of TCP protocol stack on packet switching high speed wireless DS-CDMA links”; Vehicular Technology Conference, 2001. VTC 2001 Fall. IEEE VTS 54th , Volume: 3 , 7-11 Oct. 2001 Pages:1875 - 1878 vol.3. [7 ] R Luo; PingZhi Fan, “A new approach for performance evaluation of TCP over CDMA-based channel”; Parallel and Distributed Computing, Applications and Technologies, 2003. PDCAT'2003. Proceedings of the Fourth International Conference on , 27-29 Aug. 2003, Pages:361 – 363. [8 ] Yong Bai; Pengfei Zhu; Rudrapatna, A.; Ogielski, A.T, “Performance of TCP/IP over IS-2000 based CDMA radio links”; Vehicular Technology Conference, 2000. IEEE VTS-Fall VTC 2000. 52nd , Volume: 3 , 24-28 Sept. 2000 Pages:1036 - 1040 vol.3. [9 ] Haitao Lin; Das, S.K, “Performance study of tcp/rlp/mac in next generation cdma systems”; Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003. 14th IEEE Proceedings on , Volume: 1 , Sept. 7-10, 2003, Pages:648 – 652. [10 ] Seong-Soo Park; Dong-Ho Cho; Sung Kim, “Performance improvements of TCP protocol for mobile data service”; Global Telecommunications Conference, 1997. GLOBECOM '97., IEEE , Volume: 3 , 3-8 Nov. 1997, Pages:1871 - 1875 vol.3. [11 ] Chockalingam, A.; Gang Bao, “Performance of TCP/RLP protocol stack on correlated fading DS-CDMA wireless links”; Vehicular Technology, IEEE Transactions on , Volume: 49 , Issue: 1 , Jan. 2000, Pages:28 – 33. [12 ] Qiang Gao, “Performance Analysis of RLP Over Fading Channels in CDMA Systems”; Global Telecommunications Conference, 2003. GLOBECOM '03. IEEE , Volume: 2 , 1-5 Dec.2003, Pages:966 – 971. [13 ] Kostic, Z, “The performance of the WWW traffic due to interactions between TCP and RLP protocols in a cellular system”; Vehicular Technology Conference, 2001. VTC 2001 Fall. IEEE VTS 54th , Volume: 2 , 7-11 Oct. 2001, Pages:1158 - 1162 vol.2. [14 ] Jin Young Kim, “Performance of a packet combining ARQ scheme for a CDMA based wireless ATM network”; Vehicular Technology Conference Proceedings, 2000. VTC 2000-Spring Tokyo. 2000 IEEE 51st , Volume: 2 , 15-18 May 2000 Pages:811 - 814 vol.2. [15 ] Yong Bai; Ogielski, A.T.; Gang Wu, “Interactions of TCP and radio link ARQ protocol”; Vehicular Technology Conference, 1999. VTC 1999 - Fall. IEEE VTS 50th , Volume: 3 , 19-22 Sept. 1999, Pages:1710 - 1714 vol.3. [16 ] Kandukuri, S.; Chaponniere, E.; Hamdy, W, “Impact of TCP and RLP parameters on cdma2000 performance”; Vehicular Technology Conference, 2003. VTC 2003-Spring. The 57th IEEE Semiannual , Volume: 1 , 22-25 April 2003, Pages:626 - 631 vol.1. [17 ] J. M. Harris, M Airy, “Analytical model for radio link protocol for IS-95 CDMA systems”, Vehicular Technology Conference Proceedings, 2000. Volume: 3 pp. 2434-2438. [18 ] Kostic, Z.; Xiaoxin Qiu; Li Fung Chang, “Interactions between TCP and RLP protocols in a cellular system”; Vehicular Technology Conference, 2001. VTC 2001 Spring. IEEE VTS 53rd , Volume: 3 , 6-9 May 2001, Pages:2244 - 2248 vol.3. [19 ] Shinbo, H.; Idoue, A.; Hasegawa, T.; Ohashi, M. “Evaluation of TCP performance on cdma2000 1x system using computer simulation”, Telecommunications, 2003. ICT 2003. 10th International Conference on , Volume: 1 , Feb. 23 - Mar. 1, 2003, Page(s): 723 -728. [20 ] 3GPP2, “Medium Access Control (MAC) Standard for cdma2000® Spread Spectrum Systems, Release C”, May 2002. [21 ] S. Jacobs and A. Eleftheriadis, “Streaming video using dynamic rate shaping and TCP congestion control”, Journal of Visual Communication and Image Representation, 9(3):211–222, 1998. [22 ] Frank H.P Fitzek; Robill Supatrio; Adam Wolisz; Manjunath Krishnam; and Martin Reisslein, “CAPACITY AND QOS FOR STREAMING VIDEO APPLICATIONS OVER TCP IN CDMA BASED NETWORKS” [23 ] Despins, C.L.; Djelassem, G.; Roy, V, “Comparative evaluation of CDMA and FD-TDMA cellular system capacities with respect to radio link capacity”; Personal, Indoor and Mobile Radio Communications, 1996. PIMRC'96., Seventh IEEE International Symposium on , Volume: 2 , 15-18 Oct. 1996, Pages:387 - 391 vol.2. [24 ] Andrisano, O.; Dardari, D.; Verdone, R, “Analytical methodology for F-TDMA and CDMA cellular systems performance evaluation”; Universal Personal Communications, 1994. Record., 1994 Third Annual International Conference on , 27 Sept.-1 Oct. 1994, Pages:31 – 36. [25 ] V. Paxson, RFC2581, TCP Congestion Control. [26 ] Shu Lin; Costello, D.; Miller, M, “Automatic-repeat-request error-control schemes”, Communications Magazine, IEEE , Volume: 22 , Issue: 12 , Dec 1984 Pages:5 – 17. [27 ] Data Service options for Spread Spectrum Systems: cdma2000 High Speed Packet Data Service Option 34 TIA/EIA/IS-707-a-1.11 (PN-4541.11). [28 ] J. M. Harris, M Airy, “Analytical model for radio link protocol for IS-95 CDMA systems”, Vehicular Technology Conference Proceedings, 2000. Volume: 3 pp. 2434-2438. [29 ] 3GPP2, “Physical Layer Standard for cdma2000R Spread Spectrum Systems Release C”, May 2002. [30 ] Souissi, S.; Wicker, S.B. “A diversity combining DS/CDMA system with convolutional encoding and Viterbi Decoding”, Vehicular Technology, IEEE Transactions on , Volume: 44 Issue: 2 , May 1995 Page(s): 304 -312. [31 ] E. N. Gilbert, “Capacity of a burst-noise channel,” Bell Syst. Tech. J,. vol. 39, pp. 1253-1266, Sept. 1960 [32 ] Yee, J.R.; Weldon, E.J., Jr, “Evaluation of the performance of error-correcting codes on a Gilbert channel”; Communications, IEEE Transactions on, Volume: 43 , Issue: 8 , Aug. 1995, Pages:2316 – 2323. [33 ] Hong Shen Wang; Pao-Chi Chang; “On verifying the first-order Markovian assumption for a Rayleigh fading channel model”, Vehicular Technology, IEEE Transactions on , Volume: 45 , Issue: 2 , May 1996, Pages:353 – 357. [34 ] Zorzi, M.; Rao, R.R, “On the statistics of block errors in bursty channels” Communications, IEEE Transactions on , Volume: 45 , Issue: 6 , June 1997 Pages:660 – 667. [35 ] Technical Specification Group Services and System Aspects, "QoS Concept version 1.1.0", 3GPP, 1999. [36 ] Haitao Lin; Das, S.K., “TCP performance analysis of CDMA systems with RLP and MAC layer retransmissions”, Modeling, Analysis and Simulation of Computer and Telecommunications Systems, 2002. MASCOTS 2002. Proceedings. 10th IEEE International Symposium on , 11-16 Oct. 2002 Pages:313 – 320. [37 ] Hojung Cha, Jongmin Lee, Jongho Nang, SungYong, Park Jin, “ A video streaming system for mobile phones: practice and experience”.id NH0925650005 sid 915621 cfn 0 / id NH0925650006 auc 李進府 tic 用直流電壓偵測來校正鏡像抑制接收機 adc 陳俊才 adc 黃柏鈞 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 中文 pg 43 kwc 鏡像抑制接收機 kwc 校正 kwc 無線 abc 摘要 rf 參考文獻 [1 ] L.Der. and B. Razavi, ” A 2-GHz CMOS image-reject receiver with LMS calibration, ”IEEE J. Solid-State Circuits, vol. 35, No. 1, Jan.2003. [2 ] R. Montemayor and B. Razavi, “A self-calibrating 900-MHz CMOS image-reject receiver,” in Proc. Eur. Solid-State Circuits Conf. ( ESSCIRC) 2000 [3 ] Elmala, M.A.I. and Embabi, S.H.K.; “Calibration of phase and gain mismatches in Weaver image-reject receiver” IEEE J. Solid-State Circuits, Volume: 39 , Issue: 2 , Feb. 2004 [4 ] Jacques C. Rudell, et al., “A 1.9-GHz Wide-Band IF Double Conversion CMOS Receiver for Cordless Telephone Applications” IEEE J. Solid-State Circuits, VOL. 32, NO. 12, DECEMBER 1997 [5 ] Behzad Razavi, “RF Microelectronics”, Prentice-Hall, 1998.id NH0925650006 sid 915627 cfn 0 / id NH0925650007 auc 宋光玉 tic 正交頻域多工系統中I/Q失衡之估測及補償 adc 趙啟超 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 英文 pg 111 kwc I/Q失衡 kwc I/Q失衡補償 kwc 正交頻域多工 kwc 通道估測 kwc 多路徑通道 kwc 可加性白色高斯雜訊 kwc 最大可能性估測法 kwc 最小平方估測法 abc 正交頻域多工 (orthogonal frequency division multiplexing,簡稱OFDM) 近年來是一個非常熱門的研究主題且有很廣泛的應用。在正交分頻多工系統中,接收器的射頻模組採用直接轉換架構,則是近年來流行採用的方式。直接轉換架構的好處在於成本較低且功率消耗較少,但是其最主要的缺點是會造成I/Q失衡。在本篇論文中,我們針對OFDM系統中採用直接轉換接收器所產生的I/Q失衡現象加以估測並補償。在先前提出的I/Q失衡補償方法中大部分都未考慮未知的多路徑通道 (multipath channel),在這篇論文中,我們考慮有可加性白色高斯雜訊 (additive white Gaussian noise,簡稱AWGN) 的多路徑衰減通道,而這個通道在一個封包(packet)之內是不變的。我們提出了三種I/Q失衡的補償方法:最大可能性估測法、最小平方估測法、直覺式估測法。我們透過電腦模擬來比較這三種方法的表現,並考慮時序偏移 (timing offset) 及頻率偏移 (frequency offset) 的影響。模擬結果顯示盲蔽最大可能性估測法有很好的表現,並且對時序偏移及頻率偏移有很好的抵抗能力。最小平方估測法及直覺式估測法在訊號對雜訊的比值 (signal-to-noise ratio,簡稱SNR) 較高時有較好的表現,對時序偏移也有很好的抵抗能力,但是在頻率偏移存在的條件下表示會較差。且在不同的振幅不平衡 (gain imbalance) 及相位不平衡 (phase imbalance) 的情況下,我們提出的盲蔽最大可能性估測法、最小平方估測法及直覺式估測法都有很好的表現。 tc Abstract i Contents ii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Overview of the I/Q Imbalance Problem in OFDM Systems 3 3 Review of Previous I/Q Imbalance Compensation Methods 5 3.1 I/Q Imbalance Compensation Methods without Training Signals . . . . . . . 5 3.2 I/Q Imbalance Compensation Methods with Training Signals . . . . . . . . . 10 4 I/Q Imbalance Models in OFDM Systems 15 4.1 OFDM Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 OFDM Transceiver Architecture with I/Q Imbalance . . . . . . . . . . . . . 16 4.3 I/Q Imbalance Models Discussion . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3.1 I/Q Imbalance Model I . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3.2 I/Q Imbalance Model II . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.4 I/Q Imbalance Models in the Frequency Domain . . . . . . . . . . . . . . . . 25 4.5 Channel Model and Channel Discussion . . . . . . . . . . . . . . . . . . . . . 26 5 Proposed Methods for Estimation and Compensation of I/Q Imbalance 31 5.1 I/Q Imbalance Compensation Using Maximum- Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.1.1 Channel Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.1.2 I/Q Imbalance Estimation and Compensation . . . . . . . . . . . . . 50 5.2 I/Q Imbalance Compensation Using Least-Square Estimation . . . . . . . . . 61 5.2.1 Channel Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2.2 I/Q Imbalance Estimation and Compensation . . . . . . . . . . . . . 73 5.3 Heuristic I/Q Imbalance Compensation . . . . . . . . . . . . . . . . . . . . . 77 5.3.1 Channel Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.2 I/Q Imbalance Estimation and Compensation . . . . . . . . . . . . . 84 6 Simulation Results 86 6.1 Generation of AWGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.2 Generation of Multipath Channel Model . . . . . . . . . . . . . . . . . . . . 88 6.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7 Conclusion 108 Bibliography 110rf [1 ] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Boston: Artech House, 2000. [2 ] B. Razavi, RF Microelectronics. Upper Saddle River, NJ: Prentice Hall, 1998. [3 ] B. Razavi, Design considerations for direct-conversion receivers," IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, vol. 44, pp. 428-435, June 1997. [4 ] M. Valkama and M. Renfors, Advanced DSP for I/Q Imbalance Compensation in a Low-IF Receiver," in Proc. IEEE Int. Conf. Commun., New Orleans, LA, USA, June 2000, pp. 768-772. [5 ] M. Valkama, M. Renfors, and V. Koivunen, On the performance of interference canceller based I/Q imbalance compensation," in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Istanbul, Turkey, June 2000, pp. 2885-2888. [6 ] S. Fouladifard and H. Shafiee, On adaptive cancellation of IQ mismatch in OFDM receivers," in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Hong Kong, China, Apr. 2003, pp. IV-564-567. [7 ] H. Q. Mu and Y. N. Peng, An approach to the correction of I and Q imbalance in time domain," in Proc. IEEE/CIE Int. Conf. Signal Processing, Beijing, China, Oct. 2001, pp. 1006-1010. [8 ] J. P. F. Glas, Digital I/Q Imbalance Compensation in a Low-IF Receiver," in Proc. IEEE Globecom, Sydney, Australia, Nov. 1998, pp. 1461-1466. [9 ] IEEE 802.11, Supplement to IEEE standard for information technology — Telecommunications and information exchange between systems — Local and metropolitan area networks — Specific requirements — Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: High-speed physical layer in the 5 GHz band," Sept. 1999. [10 ] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing 2nd ed., Englewood Cliffs, NJ: Prentice Hall, 1999. [11 ] P. M. Clarkson, Optimal and Adaptive Signal Processing. London: CRC Press, 1993. [12 ] H. Stark and J. W. Woods, Probability and Random Processes with Applications to Signal Processing. Upper Saddle River, NJ: Prentice Hall, 2002. [13 ] H. P. William, A. T. Saul, T. V. William, and P. F. Brian, Numerical Recipes in C: The Art of Scientific Computing. New York: Cambridge University Press, 1992. [14 ] B. O'Hara and A. Petrick, The IEEE 802.11 Handbook: A Designer's Companion. New York: IEEE Press, 1999.id NH0925650007 sid 915606 cfn 0 / id NH0925650008 auc 王裕平 tic WIRE1x之設計與實作 adc 陳志成 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 英文 pg 48 kwc 認証 kwc 無線區域網路 kwc 漫遊 kwc 安全性 abc 近幾年來,由於IEEE 802.11標準的制定,以及許多的廠商投入無線網路產品的研發與大量生產製造,使得無線區域網路建置的區域越來越廣泛,使用率也越來越普及,然而在實際應用時,卻產生了一些急待解決的問題。首先,無線區域網路安全性與否的問題,己深受大家的關注與廣泛的討論,其中,如何選擇一套正確且彈性的認証機制,以利未來大規模的建置與漫遊整合,更是最重要的一環,以上這些問題的解決,必能加快無線區域網路的蓬勃發展。 tc 1. Introduction.....1 1.1. Motivation and Contribution 1.2. Organization of the Thesis 2. Background and Related Work.....4 2.1. Background 2.1.1. Overview of IEEE 802.1x 2.1.2. Overview of PPP Extensible Authentication Protocol (EAP) 2.1.3. Overview of some AAA Servers 2.2. Wireless LAN Security 2.3. Wireless LAN Authentication 2.4. Other Implementations of IEEE 802.1x client 3. Design and Implementation of WIRE1x.....24 3.1. Introduction 3.2. Supplicant PAE State Machine 3.3. Open Source Libraries 3.3.1. WinPcap 3.3.2. Libnet 3.3.3. OpenSSL 3.4. EAP Authentication Methods 3.4.1. EAP-MD5 3.4.2. EAP-TLS 3.4.3. EAP-TTLS 3.4.4. EAP-PEAP 3.5. WIRE1x User’s Guide 3.5.1. How To Install 3.5.2. How To Use 4. Real World Application.....40 4.1. Intra-Realm Handoff 4.2. Authenticationatvisitednetwork 5. Summary.....44 Bibliorgaphy.....45rf [1 ] IEEE Std 802.11i/D4.1, “Wireless medium access control (MAC) and physical layer (PHY) specifications: medium access control (MAC) security enhancements,” July 2003. [2 ] IEEE Std 802.1X-2001, “IEEE standard for local and metropolitan area networks, port based network access control,” Oct. 2001. [3 ] “Open1x.” http://www.open1x.org/. [4 ] “freeRADIUS.” http://www.freeradius.org/. [5 ] “WinPcap.” http://winpcap.polito.it/. [6 ] “Libnet.” http://libnet.sourceforge.net/. [7 ] “OpenSSL.” http://www.openssl.org/. [8 ] L. Blunk and J. Vollbrecht, “PPP extensible authentication protocol (EAP).” IETF RFC 2284, Mar. 1998. [9 ] C. Rigney, S.Willens, A. Rubens, andW. Simpson, “Remote authentication dial in user service (RADIUS).” IETF RFC 2865, June 2000. [10 ] R. Rivest, “The MD5 message-digest algorithm.” IETF RFC 1321, Apr. 1992. [11 ] B. Aboba and D. Simon, “PPP EAP TLS authentication protocol.” IETF RFC 2716, Oct. 1999. [12 ] P. Funk and S. Blake-Wilson, “EAP tunneled TLS authentication protocol (EAPTTLS).” draft-ietf-pppext-eap-tls-02.txt, Feb. 2002. [13 ] H. Andersson, S. Josefsson, G. Zorn, D. Simon, and A. Palekar, “Protected EAP protocol (PEAP).” draft-josefsson-pppext-eap-tls-eap-02.txt, Feb. 2002. [14 ] “Lightweight extensible authentication protocol - LEAP.” http://www.cisco.com/. [15 ] P. R. Calhoun, J. Arkko, E. Guttman, G. Zorn, and J. Loughney, “Diameter base protocol.” draft-ietf-aaa-diameter-12.txt, Aug. 2002. [16 ] B. Aboba and J. Wood, “Authentication, Authorization and Accounting (AAA) Transport Profile.” draft-ietf-aaa-transport-12.txt, Jan. 2003. [17 ] B. Aboba, G. Zorn, and D. Mitton, “RADIUS and IPv6.” IETF RFC 3162, Aug. 2001. [18 ] S. Kent and R. Atkinson, “Security Architecture for the Internet Protocol.” IETF RFC 2401, Nov. 1998. [19 ] B. Aboba, J. Arkko, and D. Harrington, “Introduction to Accounting Management.” IETF RFC 2975, Oct. 2000. [20 ] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, and V. Paxson, “Stream Control Transmission Protocol.” IETF RFC 2960, Oct. 2000. [21 ] M. S. Chiba, G. Dommety, M. Eklund, D. Mitton, and B. Aboba, “Dynamic Authorization Extensions to Remote Authentication Dial In User Service (RADIUS).” draftchiba- radius-dynamic-authorization-20.txt, May 2003. [22 ] P. R. Calhoun, S. Farrell, and W. Bulley, “Diameter CMS Security Application.” draftietf- aaa-diameter-cms-sec-04.txt, Mar. 2002. [23 ] D. Mitton, M. St.Johns, S. Barkley, D. Nelson, B. Patil, M. Stevens, and B.Wolff, “Authentication, Authorization, and Accounting: Protocol evaluation.” IETF RFC 3127, June 2001. [24 ] T. Hiller and G. Zorn, “Diameter extensible authentication protocol (eap) application.” draft-ietf-aaa-eap-00.txt, Dec. 2002. [25 ] B. Aboba, P. Calhoun, S. Glass, T. Hiller, P. McCann, H. Shiino, P. Walsh, G. Zorn, G. Dommety, C. Perkins, B. Patil, D. Mitton, S. Manning, M. Beadles, S. Sivalingham, A. Hameed,M.Munson, S. Jacobs, B. Lim, B. Hirschman, R. Hsu, H. Koo, M. Lipford, E. Campbell, Y. Xu, S. Baba, and E. Jaques, “Criteria for evaluating aaa protocols for network access.” IETF RFC 2989, Nov. 2000. [26 ] P. R. Calhoun, W. Bulley, A. C. Rubens, J. Haag, G. Zorn, and D. Spence, “Diameter NASREQ application.” IETF Internet Draft, [27 ] P. R. Calhoun, T. Johansson, and C. E. Perkins, “Diameter Mobile IP application.” IETF Internet Draft, [28 ] T. Dierks and C. Allen, “The TLS Protocol.” IETF RFC 2246, Jan. 1999. [29 ] S. Kent and R. Atkinson, “IP Authentication Header.” IETF RFC 2402, Nov. 1998. [30 ] S. Kent and R. Atkinson, “IP Encapsulating Security Payload (ESP).” IETF RFC 2406, Nov. 1998. [31 ] D. Harkins and D. Carrel, “The Internet Key Exchange (IKE).” IETF RFC 2409, Nov. 1998. [32 ] J.-C. Chen, M.-C. Jiang, and Y.-W. Liu, “Wireless LAN security and IEEE 802.11i,” IEEE Wireless Communications, 2004. To appear. [33 ] S. Kent, B. Corp, and R. Atkinson, “Security Architecture for the Internet Protocol.” IETF RFC 2401, Nov. 1998. [34 ] “The InteropNet Labs (iLabs).” http://www.ilabs.interop.net/WLANSec/About Uslv03. pdf. [35 ] “The InteropNet Labs (iLabs).” http://www.ilabs.interop.net/WLAN Sec 2002 Spring/ni 2002 las about us.pdf.id NH0925650008 sid 915638 cfn 0 / id NH0925650009 auc 涂志穎 tic 使用雙層級架構設計簡單且高效能的交換機 adc 張正尚 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 英文 pg - kwc 雙層級式交換機 kwc 重組次序 kwc 輸入緩衝型交換機 kwc 非各態歷經模式 kwc 滑動轉盤演算法 abc 近來的交換機研究中,最熱門的當屬雙層級交換機,因為它不像一般的輸入緩衝型交換機,必須花費額外的溝通與計算來找尋輸入與輸出端的配對,所以它的硬體複雜度低,因而更能容易的擴充與實現,但是雙層級交換機的主要缺點就是封包會次序倒錯。雖然有一些文獻中已提出一些解決封包次序倒錯的方法,但是往往不是程序過於複雜就是需大量額外的硬體,這就破壞了設計簡化的原則。本篇論文的主要目的就是利用雙層級架構來設計一個簡單且高效能的的交換機來解決封包次序倒錯的問題,因此我們主要會討論交換機緩衝器的設計問題,來達到我們設計預期的目標,這幾個緩衝器的設計問題分別是重新排序緩衝器、中央緩衝器,以及輸入端緩衝器。文中我們會提出重新排序緩衝器如何有效率地設計以及其與中央緩衝器的關係,利用電腦模擬的結果來設計中央緩衝器的容量大小,使得交換機系統有合理夠高的交換率和可以容忍的平均時間延遲。並且使用虛擬輸出佇列來當輸入緩衝器,以解決爆發性大流量的情形。我們並發現使用虛擬輸出佇列時必須小心設計選擇輸出的決策,以免系統會陷入非各態歷經模式的麻煩,因此我們在不額外做資料的蒐集與計算之下,嘗試用引入亂數的方法解決此問題,並闡述引入亂數對系統的影響。 rf [1 ] T. Anderson, S. Owicki, J. Saxes and C. Thacker, \High speed switch scheduling for local area networks," ACM Trans. on Computer Systems, Vol. 11, pp. 319-352, 1993. [2 ] C.S. Chang, Performance Guarantees in Communication Networks. Lon- don: Springer-Verlag, 2000. [3 ] C.S Chang, D.S. Lee and Y.S. Jou, \Load balanced Birkho®-von Neu- mann switches, part I: one-stage bu®ering," Computer Communications, Vol. 25, pp. 611-622, 2002. [4 ] C.S. Chang, D.S. Lee and C.M. Lien, \Load balanced Birkho®-von Neu- mann switch, part II: Multi-stage bu®ering," Computer Communica- tions, Vol. 25, pp. 623-634, 2002. [5 ] C.S. Chang, D.S. Lee, and Y.J. Shih, \Mailbox Switch: A scalable two- stage switch Architecture for conclict resolution of ordered packets," Proceedings of IEEE INFOCOM, 2004. [6 ] C.S. Chang, D.S. Lee, and C.Y. Yue, \Providing guaranteed rate services in the load balanced Birkho®-von Neumann switches," Proceedings of IEEE INFOCOM, 2003. [7 ] H. J. Chao, J. Song, N. S. Artan, G. Hu, and S. Jiang, \Byte-fcal: a practical load-balanced switch," preprint. [8 ] P.R. Jelenkovi¶c and A.A. Lazar, \Subexponential asymptotics of a Markov-modulated random walk with queueing applications," J. Appl. Prob., June, 1998. [9 ] I. Keslassy, S.-T. Chuang and N. McKeown, \A load-balanced switch with an arbitrary number of linecards," Proc. of IEEE INFOCOM, 2004. [10 ] I. Keslassy and N. McKeown, \Maintaining packet order in two-stage switches," Proceedings of IEEE INFOCOM, New York, 2002. [11 ] I. Keslassy, S.-T. Chung, K. Yu, D. Miller, M. Horowitz, O. Slogaard, N. McKeown, \Scaling Internet routers using optics," ACM SIGCOMM 2003, Karlsruhe, Germany, Sep. 2003. [12 ] Y. Li, S. Panwar and H.J. Chao, \On the performance of a dual round- robin switch," Proceedings of IEEE INFOCOM, pp. 1688-1697, 2001. [13 ] N. McKeown, \Scheduling algorithms for input-queued cell switches," PhD Thesis. University of California at Berkeley, 1995. [14 ] R. Nelson, \Stochastic catastrophe theory in computer performance modeling," Journal of the Association for Computing Machinery, Vol. 34, pp. 661-685, 1987. [15 ] A.G. Pakes, \On the tail of waiting-time distribution," J. Appl. Prob., Vol. 12, pp. 555-564, 1975. [16 ] Y. Tamir and H.C. Chi, \Symmetric crossbar arbiters for VLSI com- munication switches," IEEE Transactions on Parallel and Distributed Systems, Vol. 4, pp. 13-27, 1993.id NH0925650009 sid 915604 cfn 0 / id NH0925650010 auc 林子勛 tic 應用叢集觀念的無線網路排程與電源控制 adc 李端興 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 英文 pg 23 kwc 無線網路 kwc 叢集 kwc 排程 kwc 電源控制 abc 無線網路具有使用者會移動和通道並不可靠的的特性。通路不可靠的原因包含陰影遮蔽和多路徑消退。所以經由連接允入控制機制而獲得傳輸許可的使用者可能無法保有其對連接品質的要求。我們探討在分時多重接進環境中,單一時槽內尋找足夠量的連接數,並且能在較少的電源控制遞迴次數內完成。在這篇研究論文中,我們提出一個基於地理位置建立叢集資訊的構想。直觀上來說,地理上群聚在一起的使用者們,相互之間會產生較多干擾。使用者們被依叢集資訊和訊號對雜訊比來分群。從每個群中挑選出應當優先被向後排程的使用者。我們提出三種決定這些使用者的方法。第一種方法是在每群中挑選出訊號對雜訊比最差的使用者。第二種和第三種方法我們引入一個稱為干擾清冊的概念。每一個群中,干擾清冊最長,亦即與最多其他使用者相互干擾的使用者會被挑選出來。除此之外,我們也假設一些迷你時槽的存在,以供各群被挑選出的使用者間相互溝通,這樣可以避免一次將太多使用者挑出來向後排程。最後,我們也探討一些簡單的機制以避免有使用者持續被向後排程,而形成饑餓的問題。我們以均勻分佈及不均勻分佈的網路拓樸進行模擬。結果顯示我們的方法能在較少的電源控制遞迴次數內,找到可行的傳輸方案。此外,我們的方法在不均勻分佈的拓樸中,表現接近最佳結果。 tc 1 Introduction 1 2 Assumptions and Definitions 3 3 System Model and Problem Description 4 4 Proposed Scheme 7 4.1 Clustering . . . . . . . . . . . . . . . . . . 7 4.2 Intra Cluster Actions . . . . . . . . . . . . . . . . . . . . . . . 8 4.2.1 SIR Based Version . . . . . . . . . . . . . . . . . . . . 9 4.2.2 Transmitter Based Interfere List - TBIL . . . . . 9 4.2.3 Receiver Based Interfere List - RBIL . . . . . . 10 4.3 Deferring Actions . . . . . . . . . . . . . . . . 10 4.3.1 Cluster-by-cluster . . . . . . . . . . . . . . . 10 4.3.2 Clusters Coordinating Action . . . . . . . . . . 13 4.3.3 Starvation Avoidance . . . . . . . . . . . . . . 13 5 Simulation Results and Analysis 14 6 Conclusion 21 Reference. . . . . . . . . . . . . .. . . . . . . . . .22rf [1 ] M. Xiao, N.B. Shro®, and E.K.P. Chong. Distributed admission control for power-controlled cellular wireless systems. IEEE Trans. on Networking, 9(6):790~800, December 2001. [2 ] T. ElBatt and A. Ephremides. Joint scheduling and power control for wireless ad hoc networks. IEEE Transactions on Wireless Communications, 3(1):74~85, Jan. 2004. [3 ] J. Zander. Distributed cochannel interference control in cellular radio systems. IEEE Transactions on Vehicular Technology, 41(3):305~311, Aug. 1992. [4 ] G. Foschini and Z. Miljanic. A simple distributed autonomous power control algorithm and its convergence. IEEE Transactions on Vehicular Technology, 42(4):641~646, Nov. 1993. [5 ] S. Ulukus and R. Yates. Stochastic power control for cellular radio systems. IEEE Transactions on communications, 46:784~798, June 1998. [6 ] R. Yates. A framework for uplink power control for cellular radio systems. IEEE Journal on Selected Areas in Communications, 13:1341~1348, Sept. 1995. [7 ] L. Kleinrock and J. Silvester. Optimum transmission radii packet radio networks or why six is a magic number. Proc. IEEE Nat. Telecommun. Conf., pages 4.3.1~4.3.6, Dec. 1978. [8 ] R. Ramanathan and R. Rosales-Hain. Topology control of multihop wireless networks using transmit power adjustment. IEEE INFOCOM, 2000. [9 ] I. Chlamtac and S. Kutten. A spatial reuse tdma/fdma for mobile multihop radio network. IEEE INFOCOM, 1985. [10 ] A. Ephremides, J. Wieselthier, and D. Baker. A design concetp for reliable mobile radio networks with frequency hopping signaling. Proc. IEEE, 75:56~73, Jan. 1987. [11 ] I. Cidon and M. Sidi. Distributed assignment algorithms for multihop packet radio networks. IEEE Transactions on Communications, 38:1353~1361, Oct. 1989. [12 ] S. Grandhi, J. Zander, and R. Yates. Constrained power control. International Journal of Wireless Personal Communications, 1(4), April 1995.id NH0925650010 sid 915634 cfn 0 / id NH0925650011 auc 黃建文 tic 交換機之MAC與PHY電路實做經驗技術 adc 李端興 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 中文 pg 20 kwc 交換機 abc 在現今網路的普及化,所謂網路無國界,吾人透過網路可以很容易,很方便和全世界溝通,資料的傳送大大的增加下,對於高速網路的交換機需求,自然是越來越顯迫切。近年來交換機也大大的改變架構,以因應網路的需求,從輸入佇列縱橫式交換機到布可夫-范紐曼交換機,再經由改良後的百分之百輸出率”負載平衡之布可夫-范紐曼交換機”,最新的信件式順序交換機架構,不但有高輸出率也解決封包順序問題。如何實做實際封包交換機,並以模組化設計,以具有可擴充性的價值,是一個值得討論的議題。本篇論文討論如何實現MAC與PHY的電路部份,並討論應用到交換機上的一些相關技術與問題。近年來網路的普及速度與發展都相當快速,隨著需求與使用者的增加,高速網路交換機越來越顯需求。近年來的輸入佇列縱橫式交換機(Input-Buffered Corssbar Switch)逐漸受到多方的注目,此類型的交換機會在每個輸入端前放置暫存器(buffer),且時間軸會被分成同步的許多時槽(Time slot),在同一個時槽,依照排列矩陣(Permutation Matrix),來決定輸出與輸入的連接設定,儲存在不同的輸入端的封包可以同一時槽被讀出到設定的輸出端。但此架構有前端阻礙問題(HOL,Head-of-Line Blocking),因此輸出率低且封包延遲控制困難。布可夫-范紐曼交換機(Birhoff-von Neumann Switch),亦為輸入佇列式交換機,其內部使用虛擬輸出佇列(VOQ,Virtual Output Queue)來解決前端阻礙問題,並使用頻寬分配來控制封包延遲,此交換機若要達到100%的輸出率(Throughput),則必須要先知道每一個輸入-輸出端對的速率,方可由演算法算出其排列矩陣的設定,可是推導出的矩陣數目為O(N^2),N為交換機的埠數,這使得交換機的擴充受到限制。負載平衡之布可夫-范紐曼交換機(Load Balanced Birkhoff-von Neumann Switch)是改良布可夫-范紐曼交換機的缺點。此交換機架構中包含了兩個接層(two-stage),第一個階層負責負載平衡,第二個階層負責封包交換,第二個階層是原本的布可夫-范紐曼交換機,只不過將其排列矩陣的設定方式改為週期性的輸入-輸出連接,週期為輸入-輸出埠數N,因此每一個時槽所分配到的時間為N分之一,只要輸入第二階的流量是均勻分佈(Uniform Distribution),則就能有百分之百的輸出率,而供應均勻流量的電路將由第一階層負載平衡所提供。 tc 目錄 摘要------------------------------------------------------------------------------- 一、 簡介--------------------------------------------------------------------1 二、 系統架構與運作流程----------------------------------------------5 三、 實做流程--------------------------------------------------------------9 四、 未來延續工作與問題----------------------------------------------14 五、 結論---------------------------------------------------------------------18 參考文獻-------------------------------------------------------------------------19rf 參考文獻 [1 ]Cheng-Shang Chang,Wen-Jyh Chen and Hsiang-Yi Huang,”Birkhoff-von Neumann input buffered crossbar switches,”IEEE INFOCOM 2000. [2 ] Cheng-Shang Chang, Duan-Shin Lee and Yi-Shean Jou, "Load balanced Birkhoff-von Neumann switches, part I: one-stage buffering," Computer Communications, Vol. 25, pp.611-622, 2002. [3 ]REALTEK SINGLE CHIP FAST ETHERNET CONTROLLER WITH POWER MANAGEMENT AND MULTI-FUNCTION RTL8139D(L) DATA SHEET. [4 ]REALTEK 8139 PCB LAYOUT GUIDE. [5 ]10/100 BASE PULSE TRANSFORMERS(DIP) DATA SHEET. [6 ]AS1117 Low Dropout Regulator data sheet. [7 ]2SB1197K Low Frequency Transistor datasheet. [8 ]PCI Local Bus Specification Draft Revision 2.2 . [9 ]PCI System Architecture,fourth edition,Tom Shanley&Don Anderson,GOTOP.id NH0925650011 sid 915641 cfn 0 / id NH0925650012 auc 張怡萍 tic 應用於正交頻域多工傳輸之訊號雜訊比估測 adc 趙啟超 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 中文 pg 68 kwc 訊號雜訊比估測 kwc 白色高斯雜訊 kwc 多路徑通道 kwc 最大可能性估測 kwc 二階和四階動差估測 kwc 訊號變異比估測 abc 接收端的訊號雜訊比估測在很多現代無線通訊系統的運用上是很重要的一個議題,之前討論有關這個議題的文獻大多是只有考慮在經過有可加性白色高斯雜訊 (additive white Gaussian noise,簡稱AWGN)通道做傳輸,有的也有考慮在時間選擇性衰減 (time-selective fading) 通道做傳輸;然而這些討論都是針對單個傳輸載波來討論。近年來,正交頻域多工 (orthogonal frequency division multiplexing,簡稱OFDM)是一個非常熱門的研究主題。在這篇論文中,我們將考慮在正交頻域多工的傳輸當中去做訊號雜訊比估測。考慮經過有可加性白色高斯雜訊以及頻率選擇性衰減 (frequency-selective fading) 通道做傳輸。我們使用了三種方法來做估測,最大可能性估測 (maximum likelihood estimation) ,二階和四階動差估測 (second- and fourth-order moments estimation) 以及訊號變異比估測 (signal-to-variation ratio estimation),並將模擬結果和推導出來的克拉默洛下限(Cramer-Rao Lower Bound)做比較。最後並考慮在頻率偏移(frequency offset)或是時間偏移(timing offset)的狀況之下,估測結果是否會受到影響。模擬的結果告訴我們,當用來做估測的訊號夠多的時候,最大可能性估測的表現結果十分良好,甚至可以逼近推導出來的克拉默洛下限。二階和四階動差估測在SNR值大的時候也有十分良好的表現,並且他不需要知道所傳送的訊號為何,這是它優於最大可能性估測的地方之一。當有頻率偏移的時候,最大可能性估測幾乎無法使用,但是二階和四階動差估測以及訊號變異比估測仍然表現十分良好,跟沒有偏移的時候效果一樣。若有時間偏移發生,並且量不大的時候,三種估測方法都不會受到太大的影響。若考慮兩種偏移同時發生的時候,最大可能性估測依然沒有辦法運作,不過二階和四階動差估測以及訊號變異比估測依然可以有良好表現。 tc 一 摘要 二 致謝 三 目錄 四 英文論文本 Chapter 1 Introduction 1 Chapter 2 Overview of OFDM 3 Chapter 3 Reveiw of Some SNR Estimation Techniques 8 Chapter 4 SNR Estimators for OFDM Transmission 16 Chapter 5 Effect of the Frequency Offset on Estimators 36 Chapter 6 Effect of the Timing Offset on Estimators 44 Chapter 7 Simulations 65 Chapter 8 Conclusion 66rf [1 ] G. L. Stuber, Principles of Mobile Communication. Boston: Kluwer Academic Publishers, 2001. [2 ] K. Balanchandran, S. R. Kadaba, and S. Nanda, “Channel quality estimation and rate adaption for cellular mobile radio,” IEEE J. Select. Area Commun., vol. 17, pp. 1244– 1256, July 1999. [3 ] T. A. Summers and S. G. Wilson, “SNR mismatch and online estimation in turbo decoding,” IEEE Trans. Commun., vol. 46, pp. 421–423, Apr. 1998. [4 ] D. R. Pauluzzi and N. C. Beaulieu, “A comparison of SNR estimation techniques for the AWGN channel,” IEEE Trans. Commun., vol. 48, pp. 1681–1691, Oct. 2000. [5 ] N. C. Beaulieu, A. S. Toms, and D. R. Pauluzzi, “Comparison of four SNR estimations for QPSK modulations,” IEEE Commun. Lett., vol. 4, pp. 43–45, Feb. 2000. [6 ] D. K. Hong, D, Hong, and C. E. Kang, “SNR estimation using circular convolution in frequency domain,” preprint. [7 ] T. A. Summers and S. G. Wilson, “SNR mismatch and online estimaiton in turbo decoding,” IEEE Trans. Commun., vol. 46, pp. 421–423, Apr. 1998. [8 ] B. Shah and S. Hinedi, “The split symbol moments SNR estimator in narrow-band channels,” IEEE Trans. Aerosp. Electron. Syst., vol. 26, pp. 737–747, Sept. 1990. [9 ] A. Wiesel, J. Goldberg, and H. Messer, “Data-aided signal-to-noise-ratio estimation in time selective fading channels,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Orlando, FL, USA, May 2002, pp. 2197–2200. [10 ] S. He, and M. Torkelson, “Effective SNR estimation in OFDM system simulation,” in Proc. IEEE Global Telecommun. Conf., Sydney, Australia, Nov. 1998, pp. 945–950. [11 ] S. M. Kay, Fundamentals of Statistical Signal Processing, vol. I: Estimation Theory. Englewood Cliffs, NJ: Prentice Hall, 1993. [12 ] N. S. Alagha, “Cramer-Rao bounds for SNR estimates for BPSK and QPSK modulated signals,” IEEE Commun. Lett., vol. 5, pp. 10–12, Jan. 2001. [13 ] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Boston: Artech House, 2000. [14 ] M. K. Simon and A. Mileant, “SNR estimation for the baseband assembly,” The Telecommunications and Data Acquisitions Progress Report, Jet Propulsion Lab., Pasadena, CA, pp. 118–126, May 15, 1986. [15 ] B. Shah and S. Hinedi, “The split symbol moments SNR estimator in narrow-band channels,” IEEE Trans. Aerosp. Electron. Syst., vol. 26, pp. 737–747, Sept. 1990. [16 ] R. M. Gagliardi and C. M. Thomas, “PCM data reliability monitoring through estimation of signal-to-noise ratio,” IEEE Trans. Commun., vol. 16, pp. 479–486, June 1968. [17 ] C. E. Gilchriest, “Signal-to-noise monitoring,” JPL Space Programs Summary, vol. IV, no. 37-27, pp. 169–184, June 1966. [18 ] T. R. Benedict and T. T. Soong, “The joint estimation of signal and noise from the sum envelope,” IEEE Trans. Inform. Theory, vol. 13, pp. 447–454, July 1967. [19 ] A. L. Brandao, L. B. Lopes, and D. C. McLernon, “In-service monitoring of multipath delay and cochannel interference for indoor mobile communication systems,” in Proc. IEEE Int. Conf. Commun., New Orleans, LA, USA, May 1994, pp. 1458–1462. [20 ] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing 2nd ed., Englewood Cliffs, NJ: Prentice Hall, 1999. [21 ] R. M. Gagliardi and C. M. Thomas, “PCM data reliability monitoring through estimation of signal-to-noise ratio,” IEEE Trans. Commun., vol. 16, pp. 479–486, June 1968. [22 ] B. O’Hara and A. Petrick, The IEEE 802.11 Handbook: A Designer’s Companion. New York: IEEE Press, 1999.id NH0925650012 sid 915609 cfn 0 / id NH0925650013 auc 詹 auc & auc #26880;婷 tic 應用於超寬頻正交頻域多工系統之時空碼 adc 趙啟超 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 中文 pg 39 kwc 超寬頻 kwc 時空碼 kwc 正交頻域多工 kwc 多輸入多輸出 kwc 頻率選擇性衰變通道 kwc 時空籬柵碼 abc 近年來,超寬頻 (ultra-wideband,簡稱UWB) 通訊越來越受到各界的注意。超寬頻通訊主要是作為室內短距離的傳輸,並且具有高速率、低功率、超大頻寬的傳輸特性。 tc Abstract Contents 1 Introduction 2 Overview of UWB Systems 2.1 Pulsed UWB 2.2 Multi-band OFDM 3 Space-Time Coded UWB-OFDM 3.1 Transmitter 3.2 ChannelModel 3.3 Receiver 4 Performance Analysis 4.1 Space-Time Coded MIMO Systems for Fast Fading 4.1.1 System Model 4.1.2 Performance Analysis 4.2 Space-Time Coded OFDM-UWB Systems 4.2.1 Performance Analysis 4.2.2 Space-Time Code Design Criteria 5 Optimum Space-Time Codes 6 Computer Simulation 6.1 Generation of AWGN 6.2 Models of Frequency Selective Channels 6.2.1 UWB Channel Model 6.2.2 IEEE 802.11 Channel Model 6.3 Simulation Results 7 Concluding Remarks Bibliographyrf [1 ] Federal Communication Commission, “Revision of part 15 of the Commission's rules regarding ultra-wideband transmission systems,” FCC First Report and Order, ETDocket 98–153, Feb. 2002. [2 ] M. Z. Win and R. A. Scholtz, “Impulse radio: How it works,” IEEE Commun. Lett. vol. 2, pp. 36–38, Feb. 1998. [3 ] A. Batra, J. Balakrishnan, A. Dabak, et al. “TI Physical layer proposal for IEEE 802.15 task group 3a,” IEEE P802.15-03/142r2-TG3a, Mar. 2003. [4 ] K. Siwiak, “Ultra-wide band radio: Introducing a new technology,” in Proc. IEEE VTC Spring 2001, Rhodes, Greece, May 2001, pp. 1088–1093. [5 ] K. Siwiak, P. Withington, and S. Phelan, “ Ultra-wide band radio: The emergence of an important new technology,” in Proc. IEEE VTC Spring 2001, Rhodes, Greece, May 2001, pp. 1169–1172. [6 ] B. Mielczarek, M. Wessman, and A. Svensson,“ Performance of coherent UWB rake receivers with channel estimators,” in Proc. IEEE VTC Fall 2003, Orlando, FL, USA, Oct. 2003, , pp. 1880–1884. [7 ] S. Gaur and A. Annamalai, “Improving the range of ultrawideband transmission using RAKE receivers,” in Proc. IEEE VTC Fall 2003, Orlando, FL, USA, Oct. 2003, pp. 597–601. [8 ] D. Cassioli, M. Z. Win, F. Vatalaro, and A. F. Molisch, “Performance of low-complexity RAKE reception in a realistic UWB channel,” in Proc. IEEE Int. Conf. Commun. New York, NY, USA, Apr. 2002, pp. 763–767. [9 ] E. Saberinia and A. H. Tewfik, “Single and multi carrier UWB communication,” in Proc. IEEE ISSPA 2003, July 2003, pp. 343–346. [10 ] J. Balakrishnan, A. Batra, and A. Dabak, “A multi-band OFDM system for UWB communication,”in Proc. IEEE Conference on Ultra Wideband Systems and Technologies, Nov. 2003, pp. 354–358. [11 ] M.C. Chiu, “Frequency-diversity coded OFDM for ultra-wideband systems,” preprint. [12 ] G. J. Foschni and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Personal Communications, vol. 6, pp. 311–335, 1998. [13 ] E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Trans. on Telecomm. vol. 10, pp. 585–595, Nov./Dec. 1999. [14 ] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criterion and code construction,” IEEE Trans. Inform. Theory, vol. 44, pp. 744–765, Mar. 1998. [15 ] J. Yuan, Z. Chen, B. Vucetic, and W. Firmanto, “Performance and design of space-time coding in fading channels,” IEEE Trans. Commun., vol. 51, pp. 1991–1996, Dec. 2003. [16 ] B. Vucetic and J. Yuan, Space-Time Coding. West Sussex, England: John Wiley & Sons, 2003. [17 ] B. O’Hara and A. Petrick, The IEEE 802.11 Handbook: A Designer’s Companion. New York: IEEE Press, 1999. [18 ] J. Foerster, “Channel modeling sub-committe report final,” IEEE P802.15-02/490r1-SG3a, Feb. 2003. [19 ] A. Saleh and R. Valenzuela, “A statistical model for indoor multipath propagation,”IEEE J. Select. Areas Commun. vol. 5, pp. 128–137, Feb. 1987. [20 ] Y. Gong and K. B. Letaief, “An efficient space-frequency coded ofdm system for broadband wireless communications,” IEEE Trans. Commun., vol. 51, pp. 2019- 2029, Dec. 2003.id NH0925650013 sid 915608 cfn 0 / id NH0925650014 auc 林立晟 tic 第三代行動通訊系統中基於通訊品質之 OVSF 碼分配與重分配策略研究 adc 蔡育仁 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 中文 pg 51 kwc 第三代行動通訊系統 kwc 寬頻分碼多重存取 kwc 正交變數展頻因子碼 kwc 碼配置 kwc 碼重新配置 abc 在第三代行動通訊系統中,使用了正交變數展頻因子碼(Orthogonal Variable Spreading Factor code; OVSF)來區分不同用戶的資料通道,OVSF碼可以保證不同用戶通道的正交性,讓每一個使用者可以使用相同的頻率傳輸資料而不會互相干擾。OVSF碼可以提供可變傳輸速率的服務滿足多媒體應用時之不同傳輸速度的需求,但由於OVSF碼的正交特性,所以在碼的配置上會有些限制。在OVSF Codes中有兩個研究方向:碼的配置與碼的重配置。其目的是增加系統的使用率,也減少搬移碼時對於系統所造成的負擔。 rf [1 ] 3GPP TS 25.213, V6.0.0, Spreading and modulation (FDD), December 2003 [2 ] T. Minn and K.-Y. Siu, “Dynamic Assignment of Orthogonal Variable-Spreading-Factor Codes in W-CDMA,” IEEE J. Selected Areas in Comm., vol. 18, no. 8, pp. 1429-1440, Aug. 2000. [3 ] R. Assarut, K. Kawanishi, U. Yamamoto, Y. Onozato, and M. Masahiko, “Region Division Assignment of Orthogonal Variable-Spreading-Factor Codes in W-CDMA”, in Proc. IEEE Vehicular Technology Conf. Fall, pp. 1884-1888, 2001. [4 ] Y.-C. Tseng and C.-M. Chao, “Code Placement and Replacement Strategies for Wideband CDMA OVSF Code Tree Management”, IEEE Trans. on Mobile Computing, Vol. 1, No. 4, Oct.-Dec. 2002, pp. 293-302. [5 ] A. N. Rouskas and D. N. Skoutas, “OVSF Code Assignment and Reassignment as the Forward Link of W-CDMA 3G systems,” Proceeding of IEEE PIMRC 2002, vol. 5, pp. 2404-2408, 2002 [6 ] R. G. Cheng and P. Lin, “OVSF Code Channel Assignment for IMT-2000,” Proceedings of IEEE VTC 2000, vol. 3, pp. 2188-2192, 2000 [7 ] F. Shueh and W. S. E. Chen, “Code Assignment for IMT-2000 on Forward Radio Link,” Proceedings of IEEE VTC 2001, vol. 2, pp. 906-910, 2001 [8 ] R. L. Peterson , R. E. Ziemer , David E. Borth, Introduction to Spread Spectrum Communications, New Jersey ,Prentice Hall PTR, 1995 [9 ] E. H. Dinan and B. Jabbari, “Spreading codes for direct sequence CDMA and Wideband CDMA cellular networks,” IEEE Communication magazine, vol. 9, pp. 48–54, Sep. 1998. [10 ] F. Adachi, M. Sawahashi, and K. Okawa, “Tree-structured generation of orthogonal spreading codes with different lengths for forward link of DS-CDMA mobile radio,” Electron. Lett., vol. 33, pp. 27–28, Jan. 1997. [11 ] G. L. Stuber, Principles of Mobile Communication, 2nd Edition, Boston, Kluwer Academic Publishers, 2001. [12 ] T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd Edition, New Jersey, Prentice Hall PTR, 2001id NH0925650014 sid 915633 cfn 0 / id NH0925650015 auc 陳信甫 tic 案例探討:Spybot.Worm行為模式 adc 張正尚 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 中文 pg 34 kwc 病蟲 kwc 偵測新病蟲 kwc 路由器 kwc 比對 kwc 病蟲實驗 abc 電腦病毒包含了病毒、病蟲、特洛伊木馬和惡意執行檔,共4大類。論文的一開始說明病毒感染模式與病蟲的攻擊方式,前者是被動的而後者是主動的。病毒感染方式有磁片、郵件散播、下載並執行不明檔案等;病蟲則是攻擊電腦作業系統漏洞,或透過分享檔案、網路聊天室的途徑進行攻擊。兩者傳播方式不同,防治的方法也會有所差異。 tc 第1章: 電腦病毒簡介.........7 第2章: 如何偵測新病蟲......11 第3章: 實驗病蟲............13 第4章: 實驗架構與過程......19 第5章: 未來研究方向與建議..31 第6章: 結論................33rf Ref【1】:趨勢科技PE_ZAFI.B http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=PE_ZAFI.B/ Ref【2】:賽門鐵克名詞解釋 http://www.norton.com.tw/ Ref【3】:賽門鐵克W32.Beagle.Z http://www.norton.com.tw/ Ref【4】:賽門鐵克W32.Netsky.C, .D, .Q, .P http://www.norton.com.tw/ Ref【5】:賽門鐵克W32.Spybot.Worm http://www.norton.com.tw/ Ref【6】:賽門鐵克W32.Sasser.Worm http://www.norton.com.tw/ Ref【7】:Vincent Berk, George Bakos and Robert Morris, “Designing a Framework for Active Worm Detection on Global Networks”, First IEEE International Workshop on Information Assurance (IWIA'03), March 24 - 24, 2003 http://people.ists.dartmouth.edu/~vberk/papers/iwia03.pdf Ref【8】:David Caraballo(DC-itsme)and Joseph Lo(Jolo), “The IRC Prelude”, version1.1.5, updated 6/1/2000 http://www.irchelp.org/irchelp/new2irc.html/ Ref【9】:Robert Eckstein, David Collier-Brown, Peter Kelly, “Using Samba”, An introduction to SMB/CIFS, 1st Edition November 1999, 1-56592-449-5, O’reilly Online Catalog http://cad.csie.ncku.edu.tw/~wnlee/using_samba/ch03_03.html Ref【10】:KaZaA Media Desktop http://www.kazaa.com/us/index.htm/ Ref【11】:Microsoft 安全性公告 MS04-011 http://www.microsoft.com/taiwan/security/bulletins/ms04-011.asp Ref【12】:Larry L. Peterson and Bruce S. Davie, “Computer Networks”, 2nd edition, 2000, Morgan Kaufmann Publishers Ref【13】:Just what is SMB? V1.2 Richard Sharpe 8-Oct-2002 http://samba.anu.edu.au/cifs/docs/what-is-smb.html Ref【14】:Robert J. Shimonski, Wally Eaton, Umer Khan, Yuri Gordienko, “Sniffer Pro Network Optimization and Troubleshooting Handbook”, Chapter 4:Configuring Sniffer Pro to Monitor Network Application http://www.harcourt-international.com/e-books/pdf/379.pdf Ref【15】:Supernodes http://www.kazaa.com/us/help/faq/supernodes.htm Ref【16】:Welcome to the mIRC Homepage http://www.mirc.com/ Ref【17】:What is IRC? http://www.mirc.com/irc.html/id NH0925650015 sid 915612 cfn 0 / id NH0925650016 auc 溫朝凱 tic 設計及分析高容量多重傳輸多重接收之無線通訊系統 adc 陳俊才 ty 博士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 英文 pg 174 kwc 通道容量 kwc 多重輸入多重輸出 kwc 複製方法 abc 最近的研究顯示,使用多重天線在傳輸端及接收端的技術,可以明顯的提高通道的使用效率,在這領域的挑戰包括如何設計有效率的編碼技術來增加系統的多元性及提高系統的強韌度,以及如何利用高等的訊號處理技術來增加調變及等化的能力,或者是如何設計有效的資源分配演算法,藉以提高系統的頻寬使用效率,另一方面的挑戰是關於如何正確的模擬真實通道以及計算在真實通道環境下系統所能傳輸的最大速率,本論文將涵蓋對於這兩個熱門的研究議題,我們所提出的理論以及解決方式。 tc ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Chapter 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Space-Time Signal Processing Techniques . . . . . . . . . . . . . . . . . . 2 1.2 Fundamental Capacity Limits of Realistic MIMO Wireless Channels . . . 6 2. An Adaptive Spatio-Temporal Coding Scheme for Indoor-Wireless Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 MIMO Indoor Wireless Channel Model . . . . . . . . . . . . . . . . . . 11 2.2 Discrete Matrix Multitone . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 DMMT-SFCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Blind Adaptive DMMT-SFCS for a TDD MIMO System . . . . . 17 2.3 Channel Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 Experimental Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3. A Low Complexity Space-Time OFDM System for Clustered Wireless Multipath Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1 DMMT-AFCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2 Performance Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.1 Magnitude gain and resolution gain . . . . . . . . . . . . . . . . . 44 3.2.2 Performance in the Multi-Ring Channel . . . . . . . . . . . . . . 47 3.3 Experimental Examples and Discussions . . . . . . . . . . . . . . . . . . 50 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4. A Low Complexity Space-Time OFDM Multi-User System . . . . . . . . . . . 56 4.1 MU-AFCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 Theoretical Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2.1 Capacity of OFDMA . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2.2 Capacity of MU-AFCS . . . . . . . . . . . . . . . . . . . . . . . . 62 4.3 Experimental Examples and Discussions . . . . . . . . . . . . . . . . . . 65 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5. Asymptotic Analysis of MIMO Wireless Systems with Spatially-Correlated Channels : Joint-Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.2 Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.1 Gaussian Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.2.2 BPSK/QPSK Inputs . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.3 A Water-Filling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6. Asymptotic Analysis of MIMO Wireless Systems with Spatially-Correlated Channels : Separate-Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.1 Conditional Mean Estimator . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.2 Mutual Information of MIMO Systems . . . . . . . . . . . . . . . . . . . 90 6.2.1 Separate-Decoding Systems With Linear Spatial Equalizers . . . . 91 6.2.2 Separate-Decoding Systems with Nonlinear Spatial Equalizers . . 98 6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7. Asymptotic Spectral Eciency of MIMO Multiple-Access Wireless Systems Exploring Only Channel Spatial Correlations . . . . . . . . . . . . . . . . . . . . 105 7.1 Channel Model and Problem Formulation . . . . . . . . . . . . . . . . . 108 7.2 Asymptotic Sum-Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.2.1 Free Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.2.2 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . 116 7.2.3 Physical Meanings . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.3 Sum-Rate Maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 8. Summary and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Appendix A. The Parallel Subchannel Gains of the DMMT-SFCS and the DMMT-AFCS . . 136 B. An Asymptotic Result of the Free Energy (5.13) . . . . . . . . . . . . . . . . . 139 C. Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 D. Proof of Property 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 E. The proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 F. Proof of Property 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 G. Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165rf [1 ] G. G. Raleigh and J. M. Cioffi, "Spatio-temporal coding for wireless communication," IEEE Trans. Commun., vol. 46, pp. 357-366, Mar. 1998. [2 ] G. J. Foschini and M. J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Kluwer Academic Publishers-Wireless Personal Communication, pp. 311-335, Jan. 1998. [3 ] V. Tarokh, N. Seshadri, and A. R. Calderbank, "Space-time codes for high data rate wireless communication: performance criterion and code construction," IEEE Trans. Inform. Theory, vol. 44, pp. 744-765, Mar. 1998. [4 ] A. Paulraj and C. Papadias, "Space-time processing for wireless communications," IEEE Signal Process. Mag., vol. 14, pp. 49-83, Nov. 1997. [5 ] J. Chuang and N. Sollenberger, "Beyond 3G: wideband wireless data access based on OFDM and dynamic packet assignment," IEEE Commun. Mag., vol. 38, pp. 78-87, July 2000. [6 ] _I. E. Telatar, "Capacity of multi-antenna Gaussian channel," Bell Labs Technical Memorandum, Oct. 1995. [7 ] D. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, "Fading correlation and its eect on the capacity of multi-element antenna systems," IEEE Trans. Commun., vol. 48, pp. 502-513, Mar. 2000. [8 ] A. L. Moustakas, H. U. Baranger, L. Balents, A. M. Sengupta, and S. H. Simon, "Communication through a diusive medium: Coherence and capacity," Science, vol. 287, pp. 287-290, 2000. [9 ] C. N. Chuah, D. N. C. Tse, J. M. Kahn, and R. A. Valenzuela, "Capacity scaling in MIMO wireless systems under correlated fading," IEEE Trans. Inform. Theory, vol. 48, pp. 637-650, Mar. 2002. [10 ] R. Muller, "A random matrix model of communication via antenna arrays," IEEE Trans. Inform. Theory, vol. 48, pp. 2495-2506, Sep. 2002. [11 ] X. Mestre, J. R. Fonollosa, and A Pages, "Capacity of MIMO channels: asymptotic evaluation under correlated fading," IEEE J. Select. Areas Commun., vol. 21, pp. 829-838, Jun. 2003. [12 ] A. M. Tulino, A. Lozano, and S. Verdu, "Capacity of antenna arrays with space, polarization and pattern diversity," IEEE Inform. Theory Workshop 2003, pp. 324- 327, Apr. 2003. [Journal ] "Impact of correlation on the capacity of multi-antenna channels," Bell Labs Technical Memorandum, Sep. 2003. [13 ] M. Debbah and R. Muller, "MIMO channel modelling and the principle of maximum entropy: an information-theoretic point of view," submitted to IEEE Trans. Inform. Theory, Sep. 2003. [14 ] A. M. Sengupta and P. P. Mitra, "Capacity of multivariate channel with multiplicative noise: I. Random matrix techniques and large-n expansions for full transfer matrices," LANL arXiv:physics/0010081, Oct. 2000. [15 ] A. L. Moustakas, S. Simon, and A. M. Sengupta, "MIMO capacity through correlated channels in the presence of correlated interfers and noise: a (not so) large N analysis," IEEE Trans. Inform. Theory, vol. 49, pp. 2545-2561, Oct. 2003. [16 ] A. J. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, "Fundamental limits on capacity of MIMO channels," IEEE J. Select. Areas Commun., pp. 684-702, Jun. 2003. [17 ] G. J. Foschini, "Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas," Bell Labs Technical Journal, pp. 41-59, Autumn 1996. [18 ] S. Starr, J. M. Cio, and P. Silverman, Understanding digital subscriber line tech- nology. Prentice Hall, 1999. [19 ] D. P. McNamara, M. A. Beach, P. N. Fletcher, and P. Karlsson, "Temporal variation of multiple-input multiple-output (MIMO) channels in indoor environments," 11th International Conference on Antennas and Propagation, vol. 2, pp. 578-582, Apr. 2001. [20 ] J. T. Chen, A. J. Paulraj, and U. Reddy, "Multi-channel MLSE Equalizer for GSM using a Parametric Channel Model," IEEE Trans. Commun., vol. 47, pp. 53-63, Jan. 1999. [21 ] Y. Y. Wang, J. T. Chen, and W. H. Fang, "TST-MUSIC for joint DOA-Delay Estimation," IEEE Trans. Signal Process., vol. 49, pp. 721-29, Apr. 2001. [22 ] E. N. Onggosanusi, A. M. Sayeed, and B. D. VanVeen, "Canonical space-time processing for wireless communications," IEEE Trans. Commun., vol. 48, pp. 1669- 1680, Oct. 2000. [23 ] A. M. Sayeed "Deconstructing multiantenna fading channels," IEEE Trans. Signal Process., vol. 50, pp. 2563-2579, Oct. 2002. [24 ] H. Bolcskei, D. Gesbert, and A. J. Paulraj, "On the capacity of OFDM-based spatial multiplexing systems," IEEE Trans. Commun., vol. 50, pp. 225-234, Feb. 2002. [25 ] J. B. Andersen, "Array gain and capacity for known random channels with multiple element arrays at both ends," IEEE J. Select. Areas Commun., vol. 18, pp. 2171- 2178, Nov. 2000. [26 ] A. Stamoulis, Z. Liu, and G. B. Giannakis, " Space-Time coded generalized multicarrier CDMA with block-spreading for multirate services," IEEE Trans. Signal Process., vol. 50, pp. 119-129, Jan. 2002. [27 ] W. Rhee and J. M. Cio, "On the capacity of multiuser wireless channels with multiple antennas," IEEE Trans. Inform. Theory, vol. 49, pp. 2580-2595, Oct. 2003. [28 ] W. Yu and J. M. Cio, "Trellis Precoding for the Broadcast Channel," Globecom, 2001. [29 ] G. Caire and S. Shamai, "On the achievable throughput of a multi-antenna Gaussian broadcast channel," IEEE Trans. Inform. Theory, vol. 49, pp. 1691-1706, July 2003. [30 ] S. Vishwanath, N. Jindal, and A. Goldsmith, "Duality, achievable rates, and sumrate capacity of Gaussian MIMO broadcast channels," IEEE Trans. Inform. Theory, vol. 49, pp. 2658-2668, Oct. 2003. [31 ] TIA/EIA IS-856, "CDMA 2000: High rate packet data air interface specication," Std., Nov. 2000. [32 ] P. Viswanath, D. Tse, and R. Laroia, "Opportunistic Beamforming using Dumb Antennas," IEEE Trans. Inform. Theory, vol. 48, June 2002. [33 ] S. F. Edwards and P. W. Anderson, "Theory of spin glasses," J. Phys. F: Metal Phys., vol. 5, pp. 965-974, May 1975. [34 ] H. Nishimori, Statistical Physics of Spin Glasses and Information Processing: An Introduction. Number 111 in International Series on Monographs on Physics, Oxford University Press, 2001. [35 ] T. Tanaka, "A ststistical mechanics approach to large-system analysis of CDMA multiuser detectors," IEEE Trans. Inform. Theory, vol. 48, pp. 2888-2910, Nov. 2002. [36 ] D. Guo and S. Verdu, "Multiuse detection and statistical mechanics," in Communi- acation, Information and Network Security, Boston, Kluwer, 2002. [37 ] R.Muller, "Channel capacity and minimum probability of error in large dual antenna array systems with binary modulation," IEEE Trans. Signal Process., vol. 51, pp. 2821-2828, Nov. 2003. [38 ] R. A. Horn and C. R. Johnson, Topics in matrix analysis. Cambridge University Press, 1991. [39 ] T. Dahl, N. Christophersen, and D. Gesbert, "BIMA: Blind iterative MIMO algorithm," in Proc. Int. Conf. Acoustic, Speech, and Signal Processing, vol. 3, pp. 2365-2368, May 2002. [40 ] R. Ertel, P. Cardieri, K. W. Sowerby, T. R. Rapport, and J. H. Reed, "Overview of spatial channel models for antenna array communication systems," IEEE Personal Commun., vol. 5, pp. 10-22, Feb. 1998. [41 ] Q. H. Spencer, B. D. Jes, M. A. Jensen, and A. L. Swindlehurst, "Modeling the statistical time and angle of arrival characteristic of an indoor multipath channel," IEEE J. Select. Areas Commun., vol. 18, pp. 347-360, Mar. 2000. [42 ] B. Yang, "Projection approximation subspace tracking," IEEE Trans. Signal Pro- cess., vol. 36, pp. 95-107, Jan. 1995. [43 ] Y. Miao and Y. Hua, "Fast subspace tracking and neural network learning by a novel information criterion," IEEE Trans. Signal Process., vol. 46, pp. 1967-1979, July 1998. [44 ] B. Champagne and Q. G. Liu, "Plane rotation-based EVD updating schemes for ecient subspace tracking," IEEE Trans. Signal Process., vol. 46, pp. 1886-1900, July 1998. [45 ] J. R. Bunch, C. P. Nielsen, and D. C. Sorensen, "Rank-one modication of the symmetric eigenproblem," Numerical Math, vol. 31, pp. 31-48, 1978. [46 ] G. L. Stuber, Principle of Mobile Communication. Kluwer Academic Publishers, 1996. [47 ] B. Champagne, "On the asymptotic convergence and numerical stability of the proteus EVD tracks," IEEE Trans. Signal Process., vol. 48, pp. 242-246, Jan. 2000. [48 ] M. Medard, "The eect upon channel capacity in wireless communications of perfect and imperfect knowledge of the channel," IEEE Trans. Inform. Theory, vol. 46, pp. 933-946, May 2000. [49 ] T. M. Cover and J. A. Tomas, Elements of Information Theory. New York: Wiley, 1991. [50 ] R. J. Piechocki, J. P. McGeehan, and G. V. Tsoulos, "A new stochastic spatiotemporal propagation model (SSTPM) for mobile communications with antenna arrays," IEEE Trans. Commun., vol. 49, pp. 855-862, May 2001. [51 ] R. Ertel, P. Cardieri, K. W. Sowerby, T. R. Rapport, and J. H. Reed, "Overview of spatial channel models for antenna array communication systems," IEEE Personal Commun., vol. 5, pp. 10-22, Feb. 1998. [52 ] D. H. Johnson and D. E. Dudgeon, "Array signal processing: concept and techniques," Prentice-Hall, 1993. [53 ] H. Novak, "Switched-Beam Adaptive Antenna System" Technische University Wien PH.D Thesis, 1999. [54 ] G. Durgin, T. S. Rappaport, and H. Xu, "Measurements and models for radio path loss and penetration loss in and around home and trees at 5.85 GHz," IEEE Trans. Commun., vol. 46. No. 11, Nov. 1998. [55 ] IEEE Standard 802.11a-1999. [56 ] IEEE Standard 802.16-2001. [57 ] Q. H. Spence and A. L. Swindlehurst, "Some results on channel capacity when using multiple antennas" IEEE VTC, vol. 2, pp. 681-688, Fall 2000. [58 ] P. W.Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, "V-BLAST: A High Capacity Space-Time Architecture for the Rich-Scattering Wireless Channel," Proc. ISSSE-98, Sep. 1998. [59 ] C. K. Wen, Y. C. Wang, and J. T. Chen, "An adaptive spatio-temporal coding scheme for indoor wireless communication," IEEE J. Select. Areas Commun., vol. 21, pp. 161-170, Feb. 2003. [60 ] R. V. Nee, A. V. Zelst, and G. Awater, "Maximum likelihood decoding in a space division multiplexing system," IEEE VTC, May 2000. [61 ] M. Toeltsch, J. Laurila, K. Kalliola, A. F. Molisch, P. Vainikainen, and E. Bonek, "Statistical Characterization of Urban Spatial Radio Channels," IEEE J. Select. Areas Commun., vol. 20, pp. 539-549, Apr. 2002. [62 ] L. M. Correia, "Wireless exible personalised communications: COST 259, European Co-operation in mobile radio research" John Wiley & Sons, 2001. [63 ] C. K. Wen and J. T. Chen, "Spatio-temporal resource allociation for MIMO multiuser system," in preparation. [64 ] S. T. Chung, A. Lozano, and H. C. Huang, "Approaching eigenmode BLAST channel capacity using V-BLAST with rate and power feedback," VTC 2001 Fall, pp. 915- 919, 2001. [65 ] D. Chizhik, J. Ling, P. W. Wolniansky, R. A. Valenzuela, N. Costa, and K. Huber,"Multiple-input - multiple-output measurements and modeling in Manhattan," IEEE J. Select. Areas Commun., vol. 21, pp. 321-331, Apr. 2003. [66 ] _I. E. Telatar, "Capacity of multi-antenna Gaussian channel," European Trans. Tele- com., vol. 10, pp. 585-595, 1999. [67 ] D. Tse and S. Hanly,"Linear multiuser receivers: eective interference, eective bandwidth and user capacity," IEEE Trans. Inform. Theory, vol. 45, pp. 641-657, Mar. 1999. [68 ] S. Verdu and S. Shamai,"Spectral Eciency of CDMA with Random Spreading," IEEE Trans. Inform. Theory, vol 45 pp. 622-640, Mar. 1999. [69 ] J. W. Silverstein and Z. D. Bai, "On the empirical distribution of eigenvalues of a class of large dimensional random matrices," J. Multivariate Anal., vol. 54, pp. 175-192, 1995. [70 ] S. Shamai and S. Verdu, "The impact of frequency- at fading on the spectral e- ciency of CDMA," IEEE Trans. Inform. Theory, vol. 47, pp. 1302-1327, May 2001. [71 ] D. Guo and S. Verdu, "Replica analysis of large-system CDMA," IEEE Information Theory Workshop, Paris, France, Mar. 2003. [Journal ] "Randomly spread CDMA: Asymptotics via statistical physics," submitted to IEEE Trans. Inform. Theory, Jun. 2003. [72 ] R. R. Muller and W. Gerstacker, "On the capacity loss due to seperation of detection and decoding in large CDMA systems," in Proc. IEEE Information Theory Workshop, p. 222, Bangalore, India, Oct. 2002. [73 ] E. Biglieri, G. Taricco, and A. Tulino, "How far away is innity? Using asymptotic analyses in multiple-antenna systems," IEEE 7th Int. Symp. on Spread-Spectrum Tech. & Appl., Prague, Czech Republic, Sep. 2002. [74 ] A. Lozano and A. M. Tulino, "Capacity of multiple-transmit multiple-receive antenna architectures," IEEE Trans. Inform. Theory, vol. 48, pp. 3117-3128, Dec. 2002. [75 ] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, 2003. [76 ] C. K. Wen, Y. N. Lee, J. T. Chen, and C. Papadias, "Asymptotic spectral eciency of MIMO multiple-access wireless systems exploring only channel spatial correlations," submitted for publication, Jan. 2004. [77 ] P. Billingsley, Probability and Measure, 3rd edition, Wiley, 1995. [78 ] M. Sion, "On general minimax theorems," Pacic J. Math., pp. 171-176, 1958. [79 ] E. L. Lehmann and G. Casella, Theory of Point Estimation, 2nd edition, Spinger, 1998. [80 ] S. Verdu, Multiuser Detection, Cambridge University Press, New York, 1998. [81 ] G. J. Foschini, D. Chizhik, M. J. Gans, C. Papadias, and R. A. Valenzuela, "Analysis and performance of some basic space-time architectures," IEEE J. Select. Areas Commun., Vol. 21 pp. 303-320, Apr. 2003. [82 ] A. Lozano, "Capacity-approaching rate function for layered multiantenna architectures," IEEE Trans. Wireless Common., vol. 24, pp. 616-620, July 2003. [83 ] A. W. Marshall and I. Olkin, Inequality: Theory of Majorization and Its Application, Academic Press, 1979. [84 ] S. Loyka and A. Kouki, "New compound upper bound on MIMO channel capacity," IEEE Commun. Lett., vol 6, pp. 96-98, Mar. 2002. [85 ] W. Rhee and J. M. Cioffi, "On the capacity of multiuser wireless channels with multiple antennas," IEEE Trans. Inform. Theory, vol. 49, pp. 2580-2595, Oct. 2003. [86 ] S. Vishwanath, N. Jindal, and A. Goldsmith, "Duailty, achievable rate, and spectral eciency capacity of gaussian MIMO broadcast channel," IEEE Trans. Inform. Theory, vol. 49, pp. 2658-2668, Oct. 2003. [87 ] W. Yu, Competition and Cooperation in Multi-User Communication Environments, Ph.D. thesis, Stanford Univerity, Stanford, 2002. [88 ] W. Yu, W. Rhee, S. Boyd, and J. M. Cio, "Iterative water-lling for Gaussian vector multiple access channels," IEEE Trans. Inform. Theory, vol. 50, pp. 145-152, Jan. 2003. [89 ] D. Tse and S. Hanly, "Multiaccess fading channels: Part I and II," IEEE Trans. Inform. Theory, vol. 44, pp. 2796-2831, Oct. 1998. [90 ] C. Rose, "CDMA codeword optimization: interference avoidance and convergence via class waterfare," IEEE Trans. Inform. Theory, vol. 47, pp. 2368-2382, Sep. 2001. [91 ] S. A. Jafar and A. J. Goldsmith, "Vector MAC capacity region with covariance feedback," ISIT, p. 321, June 2001. [92 ] P. Viswanath, D. N. Tse, and V. Anantharam,"Asymptotically optimal water-lling in vector multiple-access channels," IEEE Trans. Inform. Theory, vol. 47, pp. 241- 267, Jan. 2001. [93 ] S. Hanly and D. Tse, "Resource pooling and eective bandwidths in CDMA networks with multiuser receivers and spatial diversity," IEEE Trans. Inform. Theory, vol. 47, pp. 1328-1351, May. 2001. [94 ] E. Biglier, J. Proakis, and S. Shamai, "Fading channels: information-theoretic and communication aspects," IEEE Trans. Inform. Theory, vol. 44, pp. 2619-2692, Oct. 1998. [95 ] D. Guo, S. Verdu, and L. K. Rasmussen, "Asymptotic normality of linear multiuser receiver outputs," IEEE Inform. Theory, vol. 48, pp. 3080-3095, Dec. 2002. [96 ] C. K. Wen, J. T. Chen, and C. Papadias, "Asymptotic analysis of MIMO wireless systems with spatially-correlated channels," submitted to IEEE. Trans. Commun., Jan. 2004.id NH0925650016 sid 899607 cfn 0 / id NH0925650017 auc 陳蒼仁 tic 巨觀分集技術應用於CDMA行動通訊系統之效能改善研究 adc 蔡育仁 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 英文 pg 48 kwc 展頻系統 kwc 分集技術 kwc 軟式換手 abc 在CDMA行動通訊系統中,頻率重複使用因數為1,因此行動台在軟性交遞(soft handoff)的情況下可以使用巨觀分集技術來減低大尺度衰退效應所引起的效能劣化。 rf [1 ] Physical layer standard for cdma2000 spread spectrum systems, 3GPP2C.P0002-A, 3rd Generation Partnership Project 2, October 1999. [2 ] Technical Specification Group Radio Access Networks, 3G TS 25.XXX (Release 1999), 3rd Generation Partnership Project, June 2000. [3 ] G. L. Stuber, Principles of Mobile Communication, 2nd Edition, Boston, Kluwer Academic Publishers, 2001. [4 ] W. Yung, “Probability of bit error for MPSK modulation with diversity reception in Rayleigh fading and Log-normal shadowing channel,” IEEE Trans. Commun., vol.38, pp.933-937, July 1990. [5 ] X. Pei and J. Hu, “Macroscopic Diversity Reception for CDMA System,” in Proc. IEEE International Conferences on Info-tech and Info-net, ICII 2001, vol.2, pp531-536, Nov. 2001. [6 ] C. P. Li and Z. J. Haas, “Macrodiversity technique for improvement in BER in wireless systems,” Electronics Letters, vol.33, pp.556-557, March 1997 [7 ] C. P. Li and Z. J. Haas, “The multiply-detected macrodiversity scheme for wireless cellular systems,” IEEE Trans. Vehicular Technology, vol.47, pp.506-530, May 1998. [8 ] C. P. Li and Z. J. Haas, “The case for multiply-detected macrodiversity scheme in mobile systems,” IEEE Military Communications Conference 1996, vol.3, pp.928-932, Oct. 1996. [9 ] S. V. Hum, A. H. Madsen, and M, Okoniewski, “A Macrodiversity Combining Technique for Improving the Reverse Link Capacity of CDMA systems,” VTC, vol.3, pp.2502-2506, May 2000 [10 ] S. V. Hum, A. H. Madsen, and M, Okoniewski, “Improving the reverse link capacity of CDMA systems using macrodiversity,” in Proc. Symposium on antennas and propagation society, vol.2, pp.936-939, July 2000 [11 ] L. F. Chang and C. I. Chuang, “Diversity Selection Using Coding In a Portable Radio Communications Channel with Frequency-Selective Fading,” IEEE J. select. Areas Commun., vol.7, pp.89-98, Jan. 1989 [12 ] S. Haykin, Communication Systems, 4th Edition, New York, John Wiley& Sons, 2001. [13 ] J. G.. Proakis, Digital Communications, 4th Edition, McGraw-Hill, 2001. [14 ] A. J. Viterbi, “Convolutional Codes and Their Performance in Communication Systems,” IEEE Trans. Commun, vol.19, pp. 751-772, October 1971 [15 ] M. Cedervall and R. Johannesson, “A Fast Algorithm for Computing Distance Spectrum of Convolutional Codes,” IEEE Trans. Info. Theory, vol.35, pp.1146-1159, Nov. 1989. [16 ] R. J. McEliece, The Theory of Information and Coding, 2nd Edition, Cambridge, U.K., Cambridge University Press, 2002.id NH0925650017 sid 915620 cfn 0 / id NH0925650018 auc 傅奕豪 tic 應用於正交頻域多工無線區域網路之基頻接收器演算法 adc 趙啟超 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 英文 pg 52 kwc 無線區域網路 kwc 正交頻率多工 kwc 同步 kwc 最大可能性估計 abc 摘要 tc 目錄 Absttract ------------------------------------------ i Content -------------------------------------------- ii 1. Introduction ------------------------------------ 1 2. Overview of OFDM and IEEE 802.11a Standard ------ 2 2.1 Introduction to OFDM ------------------------- 2 2.2 Generation of OFDM Symbols ------------------- 3 2.3 Overview of IEEE 802.11a Standard ------------ 4 2.4 PLCP Preamble -------------------------------- 5 2.5 FEC Encoder ---------------------------------- 7 2.6 Interleaving --------------------------------- 8 3. Review of Some Synchronization Techniques, Channel Estimation, and Decoding Algorithm ----------------- 10 3.1 Effect of Frequency Offset in OFDM System ---- 10 3.2 Effect of Timig Offset in OFDM System -------- 12 3.3 Review of Some Synchronization Methods ------- 13 3.3.1 Morelli and Mengali Method --------------- 13 3.3.2 Keller and Hanzo Method ------------------ 14 3.3.3 Chevillat, Maiwald, and Ungerboeck Method 15 3.3.4 Wei -------------------------------------- 15 3.3.5 Kuo -------------------------------------- 17 3.4 Other Criteria ------------------------------- 18 3.5 Channel Estimation --------------------------- 19 3.6 Detection and Decoding Algorithm ------------- 20 4. Frequency, Timing, and Frame Synchronization for IEEE 802.11a -------------------------------------------- 22 4.1 Frequency Synchronization -------------------- 22 4.1.1 Coarse Synchronization ------------------- 22 4.1.2 Fine Synchronization --------------------- 25 4.2 Timing and Frame Synchronization ------------- 30 4.2.1 Timing Synchronization ------------------- 31 4.2.2 Frame Synchronization -------------------- 32 4.3 Combined Frequency, Timing, and Frame Synchronization ------------------------------------------------ 33 5. Simulation -------------------------------------- 35 5.1 Generation of AWGN Noise --------------------- 35 5.2 Generation of Multipath Channel -------------- 37 5.3 Simulation Results --------------------------- 38 5.3.1 Frequency Synchronization ---------------- 38 5.3.2 Timing and Frame Synchronization --------- 40 5.3.3 Baseband Receiver Simulation ------------- 43 6. Concluding Remarks ------------------------------ 49 Bibliography --------------------------------------- 50rf [1 ]IEEE 802.11, ``Supplement to IEEE standard for information technology -- Telecommunications and information exchange between systems -- Local and metropolitan area networks -- Specific requirements -- Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: High-speed physical layer in the 5 GHz band,'' Sept. 1999. [2 ]W.-C. Liu, ``Combined detection and decoding for OFDM-based wireless local area networks,'' Master Thesis, National Tsing Hua University, Hsinchu, Taiwan, R.O.C., June 2001. [3 ]R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Boston: Artech House, 2000. [4 ]M. Morelly and U. Mengali, ``Carrier-frequency estimation for transmissions over selective channels," IEEE Trans. Commun., vol. 48, pp. 1580--1589, Sept. 2000. [5 ]T. Keller and L. Hanzo, ``Orthogonal frequency division multiplex synchronization techniques for wireless local area networks,'' in Proc. IEEE Int. Symp. Personal, Indoor, and Mobile Radio Radio Communications, Taipei, Taiwan, Oct. 1996, pp.\ 963--967. [6 ]P.R. Chevillat, D. Maiwald, and G. Ungerboeck ``Rapid training of a voiceband data-modem receiver employing an equalizer with fractional-T spaced coefficients,'' IEEE Trans. Commun, vol. 35, pp.\ 869--876, 1987. [7 ]Y.-C. Wei, ``Joint frequency and timing synchronization for OFDM-based wireless local area networks,'' Master Thesis, National Tsing Hua University, Hsinchu, Taiwan, R.O.C., June 2003. [8 ]C.-C. Kuo, ``Algorithm and architecture of frame synchronization for OFDM-based wireless local area networks,'' Master Thesis, National Tsing Hua University, Hsinchu, Taiwan, R.O.C., June 2003. [9 ]J. J. van de Beek, M. Sandell, and P. O. Borjesson, ``ML estimation of timing and frequency offset in OFDM systems," IEEE Trans. Signal Processing., vol. 43, pp. 761--766, Aug. 1997. [10 ]T. M. Schmidl and D. C. Cox, ``Robust frequency and timing synchronization for OFDM,'' IEEE Trans. Commun., vol. 45, pp. 1613--1621, Dec. 1997. [11 ]C.-Y. Wu, ``Timing synchronization for OFDM-based wireless local area networks,'' Master Thesis, National Tsing Hua University, Hsinchu, Taiwan, R.O.C., June. 2002. [12 ]H.-C. Wang, ``Synchronization techniques for the IEEE 802.11a wireless local area network,'' Master Thesis, National Tsing Hua University, Hsinchu, Taiwan, R.O.C., June. 2002. [13 ]J. H. Gunther, L. Hui, and A. L. Swindlehurst, ``A new approach for symbol frame synchronization and carrier frequency estimation in OFDM communications,'' IEEE Trans. Signal Processing}, vol. 5, pp. 2725--2728, 1999 [14 ]A. J. de Lind van Wijngaarden and T.J. Willink, ``Frame synchronization using distributed sequences,'' IEEE Trans. Commun., vol. 48, pp. 2127--2138, Dec. 2000. [15 ]D.-K. Kim, S.-H. Do, H.-K. Lee, and H.-J. Choi, ``Performance evaluation of the frequency detectors for orthonal frequency division multiplexing,'' IEEE Trans. Consumer Electronic., vol. 43, pp. 776--782, Aug. 1997. [16 ]B. Y. Prasetyo, F. Said, and A. H. Aghvami, ``On the guard-band based coarse frequency offset estimation technique for burst OFDM systems,'' in Proc. IEEE Vehicular Technology Conf., Tokyo, Japan, May 2000, pp. 220--224. [17 ]M. M. K. Howlader and B. D. Woerner, ``Decoder-assisted frame synchronization for packet transmission,'' IEEE J. Select. Area Commun.}, vol. 19, pp. 2331--2345, Dec. 2001. [18 ]M. Speth, F. Classen, and H. Meyr, ``Frame synchronization of OFDM systems in frequency selective fading channels,'' in Proc. IEEE Vehicular Technology Conf., Phoenix, AZ, USA, May. 1997, pp. 4--7. [19 ]M. Morelli, A. N. D'Andrea, and U. Mengali, ``Frequency ambiguity resolution in OFDM,'' IEEE Commun Lett., vol. 4, pp. 134--136, Apr. 2000. [20 ]B. O'Hara and A. Petrick, The IEEE 802.11 Handbook: A Designer's Companion.} New York: IEEE Press, 1999.id NH0925650018 sid 915605 cfn 0 / id NH0925650019 auc 蘇恆毅 tic 藉由峰度最大化於類同步改良式多載波-分碼多工接取系統之盲蔽多用戶偵測 adc 祁忠勇 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 中文 pg 44 kwc 多用戶 kwc 盲蔽 kwc 最大化 kwc 多載波 kwc 上傳 kwc 類同步 abc 在本篇論文中,我們提出一個盲蔽多用戶偵測演算法用於類同步改良式多載波-分碼多工接取系統之上傳模式。在上傳模式時,每個用戶都可以隨時的傳送訊號,這會造成某些使用者的訊號在接收端做訊號處理時會受到符際干擾的影響,在這樣的情況下很難將使用者的訊號擷取出來。而在我們所採用的類同步環境中,使用者的傳送訊號只會受到多用戶擷取干擾的的影響而不會有符際干擾的影響,因此我們可以利用我們所提出的演算法將用戶的訊號擷取出來。我們所提出的演算法包含了祁等人所提出的快速峰度最大化演算法(Fast Kurtosis Maximization Algorithm, FKMA)與使用者之鑑別演算法。所提出的盲蔽多用戶偵測演算法是一個疊代式演算法,並與快速峰度最大化演算法均具有超指數收斂速率。在本篇論文中,我們先將接收到的訊號建立成一個多輸入多輸出的平坦衰減的離散訊號模型。然後在此訊號模型下提出了一些假設,並將我們的盲蔽多用戶偵測演算法應用於所建立的訊號模型中。除此之外,我們將提出的盲蔽多用戶偵測演算法結合祁等人提出的盲蔽最大比例結合演算法,進而擴充至多接收天線用於類同步改良式多載波-分碼多工接取系統,我們將此演算法稱為盲蔽多用戶偵測-盲蔽最大比例結合演算法。在論文最後,我們以一些模擬結果來證實我們所提出的演算法之效能。 tc 中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 第一章 簡介 1 第二章 改良式多載波-分碼多工接取系統訊號模型 5 第三章 盲蔽多用戶偵測演算法 9 3-1 訊號模型與假設 9 3-2 快速峰度最大化演算法 11 3-3 通道估測及使用者鑑別演算法 12 3-4 多級連續消除程序 13 3-5 初始條件 14 3-6 盲蔽多用戶偵測演算法總結 15 第四章 盲蔽多用戶偵測演算法結合陣列天線 17 4-1 多接收天線離散訊號模型 17 4-2 盲蔽多用戶偵測演算法使用多接收天線 18 4-3 盲蔽最大比例結合演算法 19 4-4 盲蔽多用戶偵測-盲蔽最大比例結合演算法 20 第五章 模擬結果 22 5-1範例一 23 5-2範例二 25 5-3範例三 27 5-4範例四 28 5-5範例五 30 第六章 結論 33 附錄 34 附錄A 使用者鑑別演算法理論說明 34 附錄B 初始條件之說明 36 附錄C 輸出訊號干擾雜訊比之推導 39 附錄D 最小均方誤差演算法及最大比例結合演算法 42 參考文獻 43rf [1 ] S. Hara and R. Prasad, “Overview of multi-carrier CDMA,” IEEE Commun. Mag., vol. 35, no. 12, pp. 126-133, Dec. 1997. [2 ] S. Tsumura and S. Hara, “Design and performance of quasi-synchronous multi-carrier CDMA system,” Proc. IEEE Vehicular Technology Conference, Atlantic City, NJ, Oct. 7-11, 2001, vol. 2, pp. 834-847. [3 ] Li Zexian and M. Latva-aho, ”Analysis of MRC receivers for asynchrouous MC-CDMA with channel estimation errors,” Proc. IEEE Workshop on Spread Spectrum Techniques and Applications, Oulu Univ., Finland, Sept. 2-5, 2002, vol. 2, pp. 343-347. [4 ] N. Yee and J.-P Linnartz, “Wiener filtering of multi-carrier CDMA in Rayleigh Fading channel,” Proc. IEEE Workshop on Personal, Indoor and Mobile Radio Communications, Berkeley, CA, USA, Sept. 18-23, 1994, vol. 4, pp. 1344-1347. [5 ] D. Darsena, G. Gelli, L. Paura and F. Verde, “Blind Multiuser Detection for MC-CDMA systems,” Proc. IEEE Workshop on Signals, Systems and Computers, Italy, Nov. 3-6, 2002, vol. 2, pp. 1419-1423. [6 ] C. Li and S. Roy, “Subspace Based Detection in MC-CDMA over Dispersive Channel,” Proc. IEEE Workshop on Personal Wireless Communications, Seattle, USA, Dec. 17-20, 2000, pp. 98-103. [7 ] P. A. Delaney and D. O. Walsh, “A bibliography of higher-order spectra and cumulants,” IEEE Signal Processing Magazine, vol. 11, no. 6, pp. 61-70, July 1994. [8 ] J. M. Mendel, “Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications,” Proceedings of the IEEE, vol. 79, no. 3, pp. 278-305, Mar. 1991. [9 ] C. L. Nikias and J. M. Mendel, “Signal processing with higher-order spectra,” IEEE Signal Processing Magazine, vol. 10, no. 3, pp. 10-37, July 1993. [10 ] C. L. Nikias and A. P. Petropulu, Higher-Order Spectra Analysis: A Nonlinear Signal Processing Framework. Englewood Cliffs, NJ: Prentice-Hall, 1993. [11 ] Z. Ding and T. Nguyen, “Stationary Points of a Kurtosis Maximization Algorithm for Blind Signal Separation and Antenna Beamforming,” IEEE Trans. Signal Processing, vol. 48, no. 6, pp. 1587-1596, June 2000. [12 ] J. K. Tugnait, “Identification and deconvolution of multichannel linear non- Gaussian processes using higher order statistics and inverse filter criteria,” IEEE Trans. Signal Processing, vol. 45, no. 3, pp. 658-672, Mar. 1997. [13 ] C.-Y. Chi, C.-H. Chen and C.-Y. Chen, “Blind MAI and ISI suppression for DS/CDMA systems using HOS-based inverse filter criteria,” IEEE Trans. Signal Processing, vol. 50, no. 6, pp. 1368-1381, June 2002. [14 ] C.-Y. Chi and C.-H. Chen, “Blind beamforming and maximum ratio combining by kurtosis maximization for source separation in multipath,” Proc. 3rd IEEE Workshop on Signal Processing Advances in Wireless Communication, Taoyuan, Taiwan, Mar. 20-23, 2001, pp. 243-246. [15 ] C.-Y. Chi, C.-Y. Chen, C.-H. Chen and C.-C. Feng, “Batch processing algorithms for Blind equalization using higher-order statistics,” IEEE Signal Processing Magazine, vol. 20, no. 1, pp. 25-49, Jan. 2003.id NH0925650019 sid 915613 cfn 0 / id NH0925650020 auc 林俊偉 tic 使用基於高階統計量之反濾波器準則於非同步多重速率之直接序列/分碼多工系統的空-時盲蔽等化 adc 祁忠勇 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 英文 pg 44 kwc 高階統計量 kwc 反濾波器準則 kwc 多處理增益系統 kwc 多展頻碼系統 kwc 多重速率盲蔽多用戶等化演算法 kwc 盲蔽最大比例結合演算法 kwc 空間分集增益 kwc 重速率盲蔽多用戶等化-盲蔽最大比例結合演算法 abc 隨著用戶對於多媒體服務需求的逐漸增加,未來的無線通訊系統除提供多用戶使用語音服務之外,同時也必須提供如圖片、影像及網際網路等各種不同速率信號之傳輸。多重速率(Multi-rate)之直接序列/分碼多工(Direct Sequence/Code Division Multiplexing Access, DS/CDMA)系統即是一個提供多用戶且多重速率信號傳輸的無線通訊系統。其中,多處理增益(Variable Processing Gain, VPG)系統以及多展頻碼(Multi-code, MC)系統最被廣泛討論及研究,而兩者皆具有單一切片速率(Chip Rate) 之傳輸信號。 tc 中文摘要 i ABSTRACT ii 誌謝 ii CONTENTS iv 1. INTRODUCTION 1 2.SIGNAL MODELS FOR MULTI-RATE DS/CDMA SYSTEMS 3 2.1. Variable Processing Gain (VPG) Systems …………........... 3 2.2. Multi-code (MC) Systems …..……………………..……….… 4 2.3. Discrete-time Multi-input Multi-output (MIMO) Signal Model ……………………………...……………………….…… 5 A. Discrete-time MIMO Signal Model 1 ……………….…… 5 B. Discrete-time MIMO Signal Model 2 ……………………. 5 3. EQUALIZATION ALGORITHMS FOR MULTI-RATE DS/CDMA SYSTEMS 7 3.1. Algorithms Based on Discrete-time MIMO Signal Model 1 7 A. Multi-rate Non-blind Minimum Mean Square Error (MMSE) Receiver ……………………………………..….. 7 B. Multi-rate Blind Multi-user Equalization Algorithm (BMEA) ……………………………………………..……… 8 I. Signal Extraction and Identification of Virtual Users 8 II. Recovery of the Desired User's Symbol Sequence … 11 C. Multi-rate Code Constrained Inverse Filter Criteria (CC-IFC) Algorithm ……..…………….………………….. 12 3.2. Algorithms Based on Discrete-time MIMO Signal Model 2 14 A. Multi-rate Non-blind MMSE Receiver …………............ 15 I. MC systems ………………………………………..……. 15 II. VPG systems ………………………………………..…. 15 B. Multi-rate Minimum Variance (MV) Receiver ……….... 16 I. MC systems …………………………………………..…. 16 II. VPG systems ………………………………………..…. 17 C. Multi-rate BMEA …………………………………………… 18 I. MC systems …………………………………………..…. 19 II. VPG systems ………………………………………..…. 22 4. SPACE-TIME EQUALIZATION ALGORITHMS FOR MULTI-RATE DS/CDMA SYSTEMS 26 4.1. Space-time Multi-rate Non-blind MMSE Receiver ……….. 26 I. MC systems ……………………………………………… 26 II. VPG systems ………………………………………..…. 27 4.2. Multi-rate BMEA-BMRC (Blind Maximum Ratio Combining) Algorithm ……………………………..…………. 28 5. SIMULATION RESULTS 29 6. CONCLUSIONS 36 APPENDIX A Definition of Output SINR Based on Discrete-time MIMO Signal Model 1 …………… 37 APPENDIX B Definition of Output SINR Based on Discrete-time MIMO Signal Model 2 ..………….. 39 References 41rf [1 ] M. Zeng, A. Annamalai, and V. K. Bhargava, “Harmonization of global third-generation mobile systems,” IEEE Commun. Mag., vol. 38, pp. 94-104, Dec. 2000. [2 ] T. Ojanpera and R. Prasad, “An overview of air interface multiple access for IMT-2000/UMTS,” IEEE Commun. Mag., vol. 36, pp. 82-86, Sept. 1998. [3 ] C.-L. I. and R. D. Gitlin, “Multi-code CDMA wireless personal communications networks,” in Proc. IEEE Int. Commun. Conf., vol. 2, Seattle, WA, June 1995, pp. 1060-1064. [4 ] T. Ottosson and A. Svensson, “Multi-rate schemes in DS/CDMA systems,” in Proc. IEEE 45th Veh. Technol. Conf., vol. 2, Chicago, IL, July 1995, pp. 1006-1010. [5 ] M. K. Tsatsanis, Z. Xu, and X. Lu, “Blind multiuser detectors for dual rate DS-CDMA systems over frequency selective channels,” Proc. Eur. Signal Proc. Conf., Tampere, Finland, Sept. 2000, vol. 2, pp. 631-634. [6 ] J. Ma and J. K. Tugnait, “Blind detection of multirate asynchronous CDMA signals in multipath channels,” IEEE Trans. Signal Processing, vol. 50, pp. 2258-2272, Sept. 2002. [7 ] S. Roy, H. Yan, “Blind channel estimation in multi-rate CDMA systems,” IEEE Trans. Communications, vol. 50, pp. 995-1004, June, 2002. [8 ] M. Saquib, R. Yates, and A. Ganti, “An asynchronous multirate decorrelator,” IEEE Trans. Communications, vol. 48, pp. 739-742, May, 2002. [9 ] M. Saquib, R. Yates, and A. Ganti, “A decision feedback decorrelator for a dual rate synchronous DS/CDMA system,” Wireless Networks, vol. 4, pp. 497-506, 1998. [10 ] A. -L. Johansson and A. Svensson, “Successive interference cancellation in multiple data rate DS/CDMA systems,” in Proc. IEEE 45th Veh. Technol. Conf., vol. 2, Chicago, IL, July 1995, pp. 704-708. [11 ] U. Mitra, “Comparison of maximum-likelihood-based detection for two multirate access schemes for CDMA signals,” IEEE Trans. Communications, vol. 47, pp. 64-77, Jan., 1999. [12 ] S. Verdu, Multiuser Detection. Cambridge, U.K.: Cambridge Univ. Press, 1998. [13 ] J. G. Proakis, Digital Communications, 3rd ed. New York: Mc-Graw-Hill,1995. [14 ] U. Madhow and M. Honig, “MMSE interference suppression for direct-sequence spread-spectrum CDMA,” IEEE Trans. Commun., vol. 42, pp. 3178-3188, Dec. 1994. [15 ] M. Honig, U. Madhow and S. Verdu, “Blind adaptive multiuser detection,” IEEE Trans. Inform. Theory, vol. 41, pp. 994-959, July 1995. [16 ] M. K. Varanasi and B. Aazhang, “Multistage detection in asynchronous code-division multiple access communications,” IEEE Trans. Commun., vol. 38, pp. 509-519, Apr. 1990. [17 ] A. D. Hallen, “Decorrelating decision-feedback multiuser detector for synchronous CDMA,” IEEE Trans. Commun., vol. 41, pp. 285-290, Feb. 1993. [18 ] M.-H. Chung, K.-C. Chen and M.Y. You, “MMSE multiuser detection for multi-rate wideband CDMA communications ,” in Proc. IEEE Personal, Indoor and Mobile Radio Communications, vol. 1, London, UK, Sept. 2000, pp. 534-538. [19 ] S. H. Han and J. H. Lee, “Multi-stage partial PIC receivers for multi-rate DS-CDMA system with multiple modulation,” in Proc. IEEE Wireless Communications and Networking, vol. 1, Seoul, South Korea, Mar. 2003, pp. 591-594. [20 ] R. Lupas and S. Verdu, “Near-far resistance of multiuser detectors in asynchronous channels,” IEEE Trans. Commun., vol. 38, pp. 496-508, Apr. 1990. [21 ] S. Moshavi, “Multi-user detection for DS-CDMA communicatioins,” IEEE Commun. Mag., vol. 34, pp. 124-136, Oct. 1996. [22 ] M. K. Tsatsanis and Z. Xu, “Performance analysis of minimum variance CDMA receivers,” IEEE Trans. Signal Processing, vol. 46, pp. 3014-3022, Nov. 1998. [23 ] M. Torlak and G. Xu, “Blind multiuser channel estimation in asynchronous CDMA systems,” IEEE Trans. Signal Processing, vol. 45, pp. 137-147, Jan. 1997. [24 ] S. E. Bensley and B. Aazhang, “Subspace-based channel estimation for code division multiple access communication systems,” IEEE Trans. Commun., vol. 44, pp. 1009-1020, Aug. 1996. [25 ] M. K. Tsatsanis and G. B. Giannakis, “Optimal decorrelating receivers for DS/CDMA systems: A signal processing framework,” IEEE Trans. Signal Processing, vol. 44, pp. 3044-3055, Dec. 1996. [26 ] C.-Y. Chi, C.-Y. Chen, C.-H. Chen and C.-C. Feng, “Batch processing algorithms for blind equalization using higher-order statistics,” IEEE Signal Processing Magazine, vol. 20, pp. 25-49, Jan. 2003. [27 ] M. K. Tsatsanis, “Inverse filtering criteria for CDMA systems,” IEEE Trans. Signal Processing, vol. 45, pp. 102-112, Jan. 1997. [28 ] Y. Inouye and K. Tanebe, “Super-exponential algorithms for multichannel blind deconvolution,” IEEE Trans. Signal Processing, vol. 48, pp. 881-888, Mar. 2000. [29 ] L. Li and H. H. Fan, “Blind CDMA detection and equalization using linearly constrained CMA,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., June 5-9, 2000, pp. 2905-2908. [30 ] C. L. Nikias and A. P. Petropulu, Higher-order Spectra Analysis: A Nonlinear Signal Processing Framework. Englewood Cliffs, NJ: Prentice-Hall, 1993. [31 ] C.-Y. Chi and C.-H. Chen, “Cumulant based inverse filter criteria for MIMO blind deconvolution: properties, algorithms, and application to DS/CDMA systems,” IEEE Trans. Signal Processing, vol. 49, pp. 1282-1299, July 2001. [32 ] C.-Y. Chi, C.-H. Chen and C.-Y. Chen, “Blind MAI and ISI suppression for DS/CDMA systems using HOS-based inverse filter criteria,” IEEE Trans. Signal Processing, vol. 50, pp. 1368-1381, June 2002. [33 ] Z. Xu and P. Liu , “Code constrained CMA-based multirate multiuser detection ,” in Proc. IEEE Signals, Systems and Computers, vol. 2, Pacific Grove, CA USA, 4-7 Nov. 2001, pp. 51455 - 1459. [34 ] A. J. Paulraj and C. B. Papadias, “Space-time processing for wireless communicatin,” IEEE Signal Processing Magazine, vol. 14, pp. 49-83, Nov. 1997. [35 ] C. W. Therrien, Discrete-time Random Signals and Statistical Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1992. [36 ] J. K. Tugnait and T. Li, “Blind detection of asynchronous CDMA signals in multipath channels using code-constrained inverse filter criterion,” IEEE Trans. Signal Processing, vol. 49, pp. 1300-1309, July 2001. [37 ] J. Ma and H. Ge, “Modified multi-rate detection for frequency selective Rayleigh fading CDMA channels,” Proc. of PIMRC’98, Boston, MA, Sept. 8-11, 1998, vol.3, pp. 1304-1308.id NH0925650020 sid 915625 cfn 0 / id NH0925650021 auc 彭倫忠 tic 集群式無線電應用於蜂巢式行動通訊系統之研究 adc 蔡育仁 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 英文 pg 42 kwc 集群式無線電 kwc 蜂巢式通訊系統 kwc 排隊理論 kwc 派遣服務 abc 摘要 rf Bibliography [1 ] G. L. Stuber, Principles of Mobile Communication, 2nd Edition, Boston, Kluwer Academic Publishers, 2001. [2 ] P. Z. Peebles, Probability, Random Variables, and Random Signal Principles, Edition, New York, McGraw-Hill Inc, 1999. [3 ] S. Woods, Probability and Random Processes with Applications to Signal Processing, Edition, New Jersey, Prentice Hall, 2002. [4 ] A. L. Garcia, Probability and Random Process for Electrical Engineering, Edition, New York, Addison-Wesley Inc, 2002. [5 ] D. Gross and C. M. Harris, Fundamentals of Queueing Theory, Edition, New York, Wiley-Interscience publication, 1998. [6 ] G. Bolch, S. Greiner, H. de. Meer and K. S. Trivedi, Queuing Networks and Markov Chain, Edition, New York, Wiley-Interscience publication, Oct. 2001. [7 ] C. J. Powell and V. C. M. Leung, ‘‘Traffic engineering for integrated telephone and dispatch land mobile radio traffic,’’ in Proc. 1992 IEEE International Conference on Selected Topics, pp.168 – 171, Jun. 1992. [8 ] R. Prakash and V. V. Veeravalli, ‘‘Traffic load based reverse link power allocation for cellular packet data system,’’ in Proc. IEEE Vehicular Technology Conference, VTC 2002-Fall, vol. 4, pp.2332 - 2336, Sep. 2002. [9 ] P. Whitehead, “The other communications revolution,” IEE Review, vol. 42, pp.167 – 170, Jul. 1996. [10 ] H.H. Hoang and R. Malhame, “Communication load and delay in multichannel load mobile systems for dispatch traffic,’’ in Proc. IEEE Vehicular Technology Conference, VTC 1992-Spring, vo1. 2, pp.773 – 777, May 1992. [11 ] A. Chrapkowski and G. Grube, “Mobile trunked radio system design and simulation,’’ in Proc. IEEE Vehicular Technology Conference, VTC 1991-Spring, pp.245 - 250, May 1991. [12 ] F. Barcelo, V. Casares and J. Paradell, “M/D/C queue with priority: Application to trunked mobile radio system,” Electronics Letters, vol. 32, pp.1644, Aug. 1996. [13 ] F. Gutierrez and A. Valdovions, “Development of a traffic simulator for mobile communication network based on tetra technology, Personal, Indoor and Mobile Radio Communications,’’ in Proc. The 13th IEEE International Symposium on, pp.787 - 791, Sep. 2002. [14 ] H. M. Tasi, Y. B. Lin, “Modeling wireless local loop with general call holding times and finite number of subscriber,” IEEE Trans. Commun., vol. 51, pp.775 – 786, Jul. 2002.id NH0925650021 sid 915617 cfn 0 / id NH0925650022 auc 王文源 tic 偵測電腦病蟲的感測器之擺置方式 adc 張正尚 教授 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 中文 pg 40 kwc worm kwc dominating set kwc distance-k dominating set kwc structured peer-to-peer system kwc Chord kwc CAN abc 電腦病蟲是一種可以在網際網路上自我複製並自行傳播的惡意程式碼。在網際網路發達的今天,電腦病蟲可謂是無所不在,甚至猖獗,而造成電腦使用者莫大的不便。因此,對抗電腦病蟲的第一步便是及早偵測出它的存在。在本篇論文中,我們擬針對用於偵測電腦病蟲的感測器的擺置方式提出原則與建議。 rf [1 ] Gnutella, http://www.gnutella.com/. [2 ] Honeypot. http://www.honeypots.net/. [3 ] KaZaA, http://www.kazaa.com/. [4 ] A.V. Aho, J.E. Hopcroft, J.D. Ullman. Data Structures and Algorithms. Addison-Wesley Publishing Company, 1983. [5 ] V. Berk, G. Bakos. “Designing a Framework for Active Worm Detection on Global Networks,” in Proceedings of the First International Workshop on Information Assurance (IWIA’03), Darmstadt, Germany, March 2003. [6 ] C.S. Chang. Performance Guarantees in Communication Networks. London: Springer-Verlag, New York, 2000. [7 ] G.J. Chang and G.L. Nemhauser. “The k-domination and k-stability problem on graphs,” Tech Report 540, School of Operations Res. And Industrial Eng., Cornell Univ. (1982). [8 ] Z. Chen, L. Gao, and K. Kwiat. “Modeling the Spread of Active Worms,” IEEE INFOCOM, 2003. [9 ] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms. MIT Press, 2001. [10 ] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs. MARCEL DEKKER, INC. 1998. [11 ] M. Liljenstam, D.M. Nicol, V.H. Berk, R.S. Gray. “Simulating Realistic Network Worm Traffic for Worm Warning System Design and Testing,” in Proceedings of WORM’03, Washington, DC, October 2003. [12 ] D. Moore. “Network Telescopes: Observing Small or Distant Security Events,” in USENIX Security, 2002. [13 ] D. Moore, V. Paxsom, S. Savage, C. Shannon, S. Staniford, and N. Weaver. “Inside the Slammer Worm,” IEEE Security and Privacy, 1(4):33-39, July 2003. [14 ] D. Moore, C. Shannon, G. M. Voelker, and S. Savage. “Internet Quarantine: Requirements for Containing Self-Propagating Code,” IEEE INFOCOM, 2003. [15 ] A. Rowstron, R. Druschel. “Pastry: Scalable, Decentralized object Location and Routing for Large-scale Peer-to-peer systems,” in Proceedings of the 18th IFIP/ACM International Conference on Distributed Systems Platforms, Heidelberg, Germany, November 2001. [16 ] S. Ratnasamy, P. Francis, M. Handley, R. Karp. “A Scalable Content-Addressable Network,” in Proceedings of ACM SIGCOMM 2001, San Diego, CA, August 2001. [17 ] K.W. Ross and D. Rubenstein. “Tutorial on P2P Systems,” presented at INFOCOM, 2004 [18 ] D. Seeley. “A tour of the worm,” in Proceedings of the Winter Usenix Conference, San Diego, CA, 1989. [19 ] I. Stoica, R. Morris, D. Liben-Nwell, D. Karger, M. Kaashoek, F. Dabek, and H. Balakrishnan. “Chord: A Scalable Peer-to-Peer Lookup Protocol for Internet Applications,” IEEE/ACM Transactions on Networking, Vol. 11, No. 1, February 2003. [20 ] S. Staniford, V. Paxson, N. Weaver. “How to 0wn the Internet in Your Spare Time,” in 11th Usenix Security Symposium, San Francisco, August 2002. [21 ] N. Weaver, V. Paxson, S. Staniford, R. Cunningham. “A taxonomy of Computer Worms,” in Proceedings of WORM’03, Washington, DC, October 2003. [22 ] B.Y. Zhao, J. Kubiatowicz, A.D. Joseph. “Tapestry: An Infrastructure for Fault-tolerant Wide-area Location and Routing,” Tech. Rep. UCB//CSD-01- 1141, April 2000. [23 ] C.C. Zou, W. Gong, and D. Towsley. “Code Red Worm Propagation Modeling and Analysis,” in 9th ACM Symposium on Computer and Communication Security, pages 138-147, Washington DC, 2002. [24 ] C.C. Zou, L. Gao, W. Gong, D. Towsley. “Monitoring and Early Warning for Internet Worms,” in Proceedings of ACM CCS’ 2001, San Diego, CA, August 2001.id NH0925650022 sid 915611 cfn 0 / id NH0925650023 auc 高迦南 tic 安全的網路嵌入式作業系統核心設計與實作 adc 黃能富 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 英文 pg 44 kwc 安全 kwc 作業系統 kwc 嵌入式網路系統 abc 網路設備上的嵌入式系統我們簡稱為ENS(Embedded Networking System),如Cisco公司的IOS就是一套相當有名的ENS。ENS最主要的功能除了管理裝置本身的資源與處理封包外,還包含了其他的加值服務,例如網路頻寬管理與網路存取控制等等。我們這個研究的目的是要設計一個安全的ENS 核心,這個核心我們稱之為Canix,它除了具有一般ENS的功能外,我們特別加強它的彈性與安全性,因為隨著網際網路攻擊工具的普及,使得一般不具網路專業知識的使用者,也可以輕易地成為網路入侵者,而網路設備往往也是被攻擊的標的之一,因此新一代的ENS也必須要有自我防衛的功能。 rf [1 ] Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Applied Operating System Concepts First Edition, John Wiley & Sons,2000 [2 ] IOS from Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/IOS [3 ] N.F. Huang and Shi-Ming Zhao, “A Novel IP Routing Lookup Scheme and Hardware Architecture for Multi-Gigabit Switch Routers,” IEEE Journal of Selected Areas on Communications (IEEE JSAC), Vol. 17, No.6, June 1999, pp.1093-1104. [4 ] Cheng-Shang Chang, Performance guarantees in communication networks, SpringerVerlag, 2000. [5 ] Heady, R., Luger, G., Macabe, A., Servilla, M., ”The architecture of a network level intrusion detection system”, Technical Report CS90-20, Department of Computer Science, University of New Mexico, Aug. 1990 [6 ] Eric S. Raymond,” The Jargon File, version 4.4.7” http://www.catb.org/~esr/jargon/ [7 ] Aleph One,” Smashing The Stack For Fun And Profit”, Phrack Magazine Volume Seven, Issue forty-nine. http://www.cs.ucsb.edu/~jzhou/security/overflow.html [8 ] Linux kernel patch from the Openwall Project. http://www.openwall.com/linux/ [9 ] Vendicator, Stack Shield. http://www.angelfire.com/sk/stackshield/ [10 ] Crispin Cowan, Calton Pu, David Maier, Heather Hinton, Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang, ” Automatic Detection and Prevention of Buffer-Overflow Attacks”, in the 7th USENIX Security Symposium, San Antonio, TX, January 1998. [11 ] Malachi Kenney, “Ping of Death”. http://www.insecure.org/sploits/ping-o-death.html [12 ] Port scanning from Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Port_scanning [13 ] Fyodor, ”The Art of Port Scanning”. http://www.insecure.org/nmap/nmap_doc.html [14 ] M. Beck, H. Bhme, M. Dziadzka, U. Kunitz, R. Magnus, and D. Verworner, Linux Kernel Internals Second Edition, 2nd ed: Addison Wesley, 1998. [15 ] Dave Cinege, Linux Router Project. http://www.linuxrouter.org/ [16 ] Kaleem Anwar, Muhammad Amir, Ahmad Saeed, Muhammad Imran, “The Linux Router”, Linux Journal, August 2002, Issue 100. http://www.linuxjournal.com/article.php?sid=5826&mode=thread&order=0&thold=0 [17 ] SELinux http://www.nsa.gov/selinux/index.cfm [18 ] P. Loscocco and S. Smalley, “Integrating flexible support for security policies into the Linux operating system.” Technical report, National Security Agency, Jan. 2, 2001. [19 ] XU Ke WU Jian-ping YU Zhong-chao XU Ming-wei, “HEROS: Highly Efficient Router Operating System”, IEEE International Conference on Telecommunications, June 2001. [20 ] Dawson R. Engler and M. Frans Kaashoek., “Exterminate all operating system abstractions.”, In the Proceedings of the 5th Workshop on Hot Topics in Operating Systems (HotOS-V), Orcas Island, Washington, May 1995, pages 78-83. [21 ] Zhao Jiong, “A Heavy Commented Linux Kernel Source Code Linux Version 0.11”, Oct 2002. http://www.oldlinux.org [22 ] J. Chu. “Zero-copy TCP in Solaris.”, In Proceedings of the 1996 Usenix Technical Conference, San Diego, CA, USA, Jan. 1996, pages 253--64. [23 ] David Seal, ARM Architecture Reference Manual Second Edition, Addison-Wesley, 2001 [24 ] M. Handley, C. Kreibich and V. Paxson,” Network Intrusion Detection: Evasion,Traffic Normalization, and End-to-End Protocol Semantics”, Proc. USENIX Security Symposium 2001. [25 ] Andrew S. Tanenbaum, Albert S. Woodhull, Operating Systems: Design and Implementation, Second Edition, Prentice-Hall [26 ] Debian GNU/Hurd http://www.debian.org/ports/hurd/ [27 ] The L4 μ-Kernel Family http://os.inf.tu-dresden.de/L4/ [28 ] MINIX INFORMATION SHEET http://www.cs.vu.nl/~ast/minix.htmlid NH0925650023 sid 915635 cfn 0 / id NH0925650024 auc 吳俊龍 tic 渦輪編碼DS-CDMA無線通訊系統之結合功率控制與空時域渦輪式部分平行干擾消除技術 adc 王晉良 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 英文 pg 36 kwc 多重存取干擾 kwc 遠近效應 kwc 多用戶偵測 kwc 功率控制 kwc 渦輪編碼 abc 目前,直序展頻分碼多工系統,除了應用在第二代行動通訊系統外,並且已被選為第三代無線網路系統設計上的一項重要技術。在直序展頻分碼多工系統的上鏈傳輸通道中,從傳統的接收器的情形可以明顯觀察出,多重存取干擾、遠近效應還有通道衰減效應的問題往往限制了整個系統的容量。為了有效地解決這些問題,在文獻上已有許多結合功率控制、多用戶偵測和錯誤更正碼的技術被提出來廣泛地討論著。為了達到優異的效能和保持較低的複雜度,在本篇碩士論文中,我們提出了結合功率控制與空時域迭代式多用戶接收機,並應用在建置了渦輪編碼之直序展頻分碼多工系統中的架構。此接收機架構包含了一組單用戶二維犁耙式接收機、一個空時域渦輪式部分平行干擾消除偵測器和一組渦輪解碼器。首先,我們利用空時域信號處理技術來抑制多重存取干擾,然後藉由渦輪式信號處理技術從多用戶偵測器和渦輪解碼器的訊息交流中提取出穩定可靠的軟式訊息。我們根據同步多用戶直序展頻分碼多工系統的信號模型,在納入路徑損失、遮蔽和多重路徑衰減效應的無線單細胞環境下執行電腦程式的模擬。結果顯示,相較於同樣複雜度的結合空時域信號處理之部分平行干擾消除的功率控制技術,本論文所提出的方法明顯可以獲得較佳的系統效能。 tc Contents Abstract i Contents ii List of Figures iv Chapter 1 Introduction 1 Chapter 2 A Power Control Scheme with ST-TPPIC Technique for Turbo-Coded DS-CDMA System 10 2.1 System Model……………………………………………................................. 10 2.1.1 The Transmitted Signal…………............................................................. .10 2.1.2 The Space-Time Channel Model…..……………..................................... .11 2.1.3 The Received Signal…..……………………............................................ .12 2.2 Power Control Scheme with Iterative Multiuser Receiver…..………………... .14 2.2.1 The 2D-RAKE Receiver……………………........................................... ..14 2.2.2 The Space-Time Turbo PPIC Detector…………..................................... ..15 2.2.3 The Turbo Decoder...……………………….............................................. 16 2.2.4 Power Control....……………………….................................................... 18 Chapter 3 Simulation Results 23 3.1 Simulation Settings….……………………….................................................... 23 3.2 Performance Comparison………..………………….……………………….... 25 Chapter 4 Conclusions 33 Bibliography 34rf [1 ] T. S. Rappaport, Wireless Communications Principles and Practice. NJ: Prentice Hill, 2002. [2 ] A. J. Paulraj and C. B. Papadias, “Space-time processing for wireless communications,” IEEE Signal Processing Mag., vol. 14, pp. 49-83, Nov. 1997. [3 ] S. Verdu, “Minimum probability of error for asynchronous Gaussian multiple access channel,” IEEE Trans. Inform. Theory, vol. IT-32, pp. 85-96, Jan. 1986. [4 ] S. Verdu, Multiuser Detection. Cambridge, UK: Cambridge University Press, 1998. [5 ] S. Moshavi and Bellcore, “Multi-user detection for DS-CDMA communications,” IEEE Commun. Mag., vol. 34, pp. 124-135, Oct. 1996. [6 ] M. K. Varanasi and B. Aazhang, “Multistage detection in asynchronous code-division multiple-access communications,” IEEE Trans. Commun., vol. 38, pp. 509-519, Apr. 1990. [7 ] D. Divsalar, M. K. Simon, and D. Raphaeli, “Improved parallel interference cancellation for CDMA,” IEEE Trans. Commun., vol. 46, pp. 258-268, Feb. 1998. [8 ] K.-M. Wu and C.-L. Wang, “An iterative multiuser receiver using partial parallel interference cancellation for turbo-coded DS-CDMA systems,” in Proceeding of the 2001 IEEE Global Telecommunications Conference (GLOBECOM 2001), San Antonio, TX, Nov. 2001, pp. 244-248. [9 ] K.-M. Wu and C.-L. Wang, “Soft-input soft-output partial parallel interference cancellation for DS-CDMA systems,” in Proc. 2001 IEEE Int. Conf. Commun. (ICC 2001), Helsinki, Findland, June 2001, pp. 1172-1176. [10 ] P.-J. Shih, Space-Time Iterative Multiuser Detection for DS-CDMA Wireless Communications, Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan, July 2003. [11 ] P. S. Kumar, R. D. Yates, and J. Holtzman, “Power control based on bit error rate (BER) measurements,” in Proc. 1995 IEEE Military Commun. Conf. (MILCOM ’95), San Diego, CA, Nov. 1995, pp. 617-620. [12 ] S. Ulukus and R. D. Yates, “Stochastic power control for cellular radio systems,” IEEE Trans. Commun., vol. 46, pp. 784-798, June 1998. [13 ] R. D. Yates, “A framework for uplink power control in cellular radio systems,” IEEE J. Select. Areas Commun., vol. 13, pp. 1341-1347, Sept. 1995. [14 ] S. A. Grandhi, R. Vijayan, and D. J. Goodman, “Distributed power control in cellular radio systems,” IEEE Trans. Commun., vol. 42, pp. 226-228, Feb./Mar./Apr. 1994. [15 ] A. Sampath, P. S. Kumar, and J. Holtzman, “Power control and resource management for a multimedia CDMA wireless system,” in Proc. Int. Symp. Personal, Indoor and Mobile Radio Commun. (PIMRC ’95), Toronto, Canada, Sept. 1995, pp. 21-25. [16 ] S. Ulukus and R. D. Yates, “Adaptive power control and MMSE interference suppression,” Wireless Networks, vol. 4, pp. 489-496, Nov. 1998. [17 ] C.-L. Wang, M.-H. Li, K.-M. Wu, and K.-L. Hwang, “Adaptive interference suppression with power control for CDMA systems,” in Proc. 2001 IEEE Int. Symp. Circuits Syst. (ISCAS 2001), Sydney, Australia, May 2001, pp. 286-289. [18 ] K.-M. Wu and C.-L. Wang, “A power control scheme using turbo partial parallel interference cancellation for DS-CDMA wireless communications,” in Proc. 2002 IEEE Global Telecommun. Conf. (GLOBECOM ‘02), Taipei, Taiwan, Nov. 2002, pp. 936-940. [19 ] 3rd Generation Partnership Project (3GPP); Technical Specification Group Radio Access Network, “Multiplexing and Channel Coding (3g ts 25. 212 version 1.10),” Tech. Spec., 1999. [20 ] W. C. Jakes, Microwave Mobile Communications. New York, NY: Wiley, 1974. [21 ] T.-S. Lee and T.-C. Tsai, “A beamspace-time interference cancelling CDMA receiver for sectored communications in a multipath environment,” IEEE J. Select. Areas in Commun., vol. 19, pp. 1374-1384, June 2001. [22 ] William E. Ryan, “Concatenated Codes and Iterative Decoding,” in Wiley Encyclopedia of Telecommunications (J. G. Proakis, ed.) New York: Wiley and Sons, 2003. [23 ] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. IT-20, pp. 284-287, Mar. 1974. [24 ] 3rd Generation Partnership Project (3GPP); Technical Specification Group Radio Access Network, “Spreading and modulation (fdd) (3g ts 25.213 version 3.00),” Tech. Spec., 1999. [25 ] S. Verdu, Multiuser Detection. Cambridge, UK: Cambridge University Press, 1998.id NH0925650024 sid 905618 cfn 0 / id NH0925650025 auc 高柏庭 tic 直序展頻CDMA超寬頻無線通訊系統之適應性部分平行干擾消除技術 adc 王晉良 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 中文 pg 56 kwc 超寬頻無線通訊系統 abc 超寬頻(UWB)無線通訊技術的特點為具有極寬的頻帶以及極低的傳輸功率,故可用來提升傳輸速率並且降低和其他無線通訊系統的干擾,而直序展頻分碼多工(DS-CDMA)技術則可以提供這個高傳輸速率的需求,除了以脈衝(pulse)形式傳輸資料以外,DS-CDMA UWB系統的基本概念與傳統的DS-CDMA是相似的,而DS-CDMA技術的一個主要問題在於系統的容量(capacity)受限於多用戶存取干擾(MAI)的多寡,這個情形同樣也出現在DS-CDMA UWB系統之中,因此我們必須使用多用戶偵測技術來解決這個問題。 tc Abstract i Contents iii List of Figures vi List of Tables viii Chapter 1 Introduction 1 1.1 The FCC Rules of UWB…...…...…………………………………………….... 2 1.2 UWB System Realization….…………………................................................... 2 1.3 Direct-Sequence CDMA System......................................................................... 4 1.4 The Advantages of DS-CDMA System............................................................... 5 1.5 Thesis Outline…………………………............................................................... 5 Chapter 2 System Model of DS-CDMA UWB 7 2.1 Modulation of DS-CDMA UWB System…………………................................ 7 2.1.1 The Pulse Shaping of UWB……................................................................ 7 2.1.2 System Model in AWGN…………………….......................................... 9 2.2 UWB Channel Model ………………………………........................................ 10 2.3 The Conventional Multiuser Detection in AWGN Channel………….....…..... 12 2.3.1 The Conventional Total PIC…………………………....………............. 13 2.3.2 The Conventional PPIC…………………………………..…................... 14 2.3.3 The Simplified PPIC…………..…………………….……...................... 14 2.4 The Modified Multiuser Detection in UWB Channel........................................ 15 2.4.1 Channel Model for Multiuser Detection................................................... 15 2.4.2 The Modified Total PIC……………….................................................... 17 2.4.3 The Modified PPIC…………………………........................................... 18 2.4.4 The Modified SPPIC………………......................................................... 18 Chapter 3 Adaptive Multiuser Detection for DS-CDMA UWB System 24 3.1 Imperfect RAKE Receiver…………………………………….………….….... 24 3.1.1 All-RAKE Receiver………..……............................................................ 24 3.1.2 Selective-RAKE Receiver………..……................................................... 25 3.1.3 Partial-RAKE Receiver………..……....................................................... 25 3.2 Adaptive Weighted Partial PIC…………………………………….……..….... 26 3.2.1 Adaptive Multistage PIC…….………..……............................................ 26 3.3 DS-CDMA UWB with Imperfect RAKE Receiver……………...……………. 28 3.4 A New Bit-Level Adaptive Weighted Partial PIC for UWB Channel............... 29 3.4.1 The AWGN Scheme…………..……....................................................... 30 3.4.2 The Multipath Scheme…….…..……....................................................... 31 3.5 Summary……………………………………………………………................ 33 Chapter 4 Simulation Result 37 4.1 Performance Comparison of Different Multiuser Detection............................. 38 4.2 Performance Comparison of Different RAKE Receivers……......................... 39 4.3 Performance Comparison of Different RAKE Finger Numbers....................... 40 4.4 Performance Comparison of Different Cancellation Stages.............................. 41 4.5 Summary……………...……………………………………………………..... 41 Chapter 5 Conclusions 52 Bibliography 54rf [1 ] D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag., vol. 41, pp. 66 - 74, July 2003. [2 ] G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microwave Mag., vol. 4, pp. 36 - 47, June 2003. [3 ] Federal Communication Commission, “In the matter of revision of the commission’s rule regarding ultra-wideband transmission systems, first report and order,” adopted: Feb. 14, 2002; released: Apr. 22, 2002. [4 ] P. Runkle, J. McCorkle, T. Miller, and M. Welborn, “DS-CDMA: the modulation technology of choice for UWB communications,” IEEE Conf. Ultra Wideband Systems and Technologies, Nov. 2003, pp. 364 - 368. [5 ] M. Z. Win and R. A. Scholtz, “Impulse radio: how it works,” IEEE Commun. Lett., vol. 2, pp. 36 - 38, Feb. 1998. [6 ] M. Z. Win and R. A. Scholtz, “Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications,” IEEE Trans. Commun., vol. 48, pp. 679 - 689, Apr. 2000. [7 ] D. C. Laney, G. M. Maggio, F. Lehmann, and L. Larson, “Multiple access for UWB impulse radio with pseudochaotic time hopping,” IEEE J. Select. Areas Commun., vol. 20, pp. 1692 - 1700, Dec. 2002. [8 ] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Boston/London: Artech House, 1999. [9 ] “Multi-band OFDM physical layer proposal for IEEE 802.15 task group 3a,” IEEE document # P802.15-03/268r3, http://www.multibandofdm.org/papers/ 15-03-0268-03-003a-Multi-band-CFP-Document.pdf. [10 ] T. Pjanpera and R. Prasad, Wideband CDMA for Third Generation Mobile Communications. Boston/London: Artech House, 1998. [11 ] “XtremeSpectrum CFP Document,” IEEE document # P802.15-03/334r3, ftp://ftp.802wirelessworld.com/15/03/15-03-0334-03-003a-xtremespectrum-cfp-presentation.pdf [12 ] Y. P. Nakache and A. F. Molisch, “Spectral shape of UWB signals influence of modulation format, multiple access scheme and pulse shape,” in Proc. IEEE Veh. Technol. Conf. (VTC ’03), vol. 4, Apr. 2003, pp. 2510 - 2514. [13 ] M. K. Varanasi and B. Aazhang, “Multistage detection in asynchronous code-division multiple-access communications,” IEEE Trans. Commun., vol. 38, pp. 509-519, Apr. 1990. [14 ] D. Divsalar, M. K. Simon, and D. Raphaeli, “Improved parallel interference cancellation for CDMA,” IEEE Trans. Commun., vol. 46, pp. 259-268, Feb. 1998. [15 ] N. S. Correal, R. M. Buehrer, and B. D. Woerner, “A DSP-based DS-CDMA multiuser receiver employing partial parallel interference cancellation,” IEEE J. Select. Areas Commun., vol. 17, pp. 613-630, April 1999. [16 ] M. Welborn and J. McCorkle, “The importance of fractional bandwidth in ultra-wideband pulse design,” in Proc. IEEE Int. Conf. Commun. (ICC ’02), vol. 2, Apr. 2002, pp. 753 - 757. [17 ] J. Foerster and Qinghua Li, “UWB channel modeling contribution from Intel,” IEEE document #02279r0p802_15_SG3a, http://grouper.ieee.org/groups/802/15/ pub/2002/Jul02/02279r0P802-15_SG3a-Channel-Model-Cont-Intel.doc. [18 ] A. Saleh and R. Valenzuela, “A Statistical Model for Indoor Multipath Propagation,” IEEE J. Select. Areas Commun., vol 5, pp. 128 - 137, Feb. 1987. [19 ] G. L. Stüber, Principles of Mobile Communications. Norwell, MA: Kluwer, 1996. [20 ] Huaning Niu, J. A. Ritcey, and Hui Liu, “Performance of UWB RAKE receivers with imperfect tap weights,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, (ICASSP '03), vol. 4 , Apr. 2003, pp. IV - 125-128. [21 ] Guoqiang Xue, Jianfeng Weng, L. N. Tho, and S. Tahar, “Adaptive multistage parallel interference cancellation for CDMA,” IEEE J. Select. Areas Commun., vol. 17, pp. 1815 - 1827, Oct. 1999. [22 ] P. M. Clarkson, Optimal and Adaptive Signal Processing. Boca Raton, FL: CRC, 1993. [23 ] S. Haykin, Adaptive Filter Theory. 4th ed., Upper Saddle River, NJ: Prentice-Hall, 2002. [24 ] D. Cassioli, M. Z. Win, F. Vatalaro, and A. F. Molisch, “Performance of low-complexity RAKE reception in a realistic UWB channel,” in Proc. IEEE Int. Conf. Commun. (ICC ’02), vol. 2, Apr. 2002, pp. 763 - 767. [25 ] K.-M. Wu, Interference Suppression Techniques for DS-CDMA Wireless Communications. Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan, July 2002.id NH0925650025 sid 915632 cfn 0 / id NH0925650026 auc 羅文宏 tic 直序展頻CDMA超寬頻無線通訊系統之適應性耙式組合部分平行干擾消除技術 adc 王晉良 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 英文 pg 54 kwc 超 kwc & kwc #23515;頻 kwc 部分平行干擾消除技術 abc 直序展頻分碼多工超寛頻(DS-CDMA UWB)通訊系統是IEEE 802.15.3a標準的解決方案之一。它具備有許多優點,如低成本、低功率頻譜密度和對抗大量且密集的多路徑干擾的能力等。然而,在高資料傳輸速率且多重存取的室內環境中,多路徑干擾和多重存取干擾(MAI)是DS-CDMA UWB通訊系統的兩個主要問題。為了解決多路徑干擾的問題,我們可以利用UWB使用脈衝(pulse)傳送所擁有的高通道解析度特性,使用基本的犁耙式(RAKE)接收機來有效地減輕這個問題的影響。另一方面,對抗多重存取通訊系統中會降低系統性能的MAI,使用多用戶偵測技術是常見的解決方案。為適合系統的高資料傳輸速率,在多用戶偵測技術中,從接收訊號中消除部分重建MAI的部分平行干擾消除(PPIC)技術,可以有效的降低系統處理延遲和提供簡單的接收機架構。 tc Abstract i Contents iii List of Figures v List of Tables viii Chapter 1 Introduction 1.1 What is Ultra-Wideband (UWB) ?....................................................................... 1 1.2 Code-Division Multiple Access (CDMA) Techniques……..………………..… 3 1.3 DS-CDMA UWB System……..…………………………………...................... 4 1.4 Multiuser Detection Techniques……..…………………………………............ 5 1.5 Thesis Outline…………………………………................................................... 6 Chapter 2 Multiuser Detection for DS-CDMA UWB Systems 2.1 Intel Channel Model for UWB System…............................................................ 9 2.2 RAKE Combining Schemes……………………………................................... 11 2.2.1 Maximal Ratio Combining (MRC)....……................................................ 11 2.2.2 Minimum Mean-Squared Error Combining (MMSEC)............................ 12 2.3 Multiuser Detection………………………........................................................ 12 2.3.1 Parallel Interference Cancellation (PIC)……............................................ 13 2.3.2 Partial Parallel Interference Cancellation (PPIC)….................................. 14 2.3.3 Turbo Partial Parallel Interference Cancellation (TPPIC)…………….… 14 2.4 System Model…………………………............................................................. 15 2.4.1 The Transmitter Model over the Multipath Channel in Multiuser Situation………………………………………………………………... 15 2.4.2 The Receiver Structure with Various Sample Rates…………………….. 16 2.4.3 The MRC RAKE Receiver with PPIC Detector………………….......…. 17 2.4.4 The MMSEC RAKE Receiver with PPIC Detector …..………………… 20 2.4.4.1 Implement MMSEC by Adaptive Algorithm…………………….. 20 2.4.4.2 Channel Estimation…………………….………………………… 23 Chapter 3 Simulation Results 32 Chapter 4 Conclusions 49 Bibliography 51rf [1 ] S. Verdu, Multiuser Detection. Cambridge, UK: Cambridge University Press, 1988. [2 ] J. G. Proakis, Digital Communications. 4th ed., New York, NY: McGraw-Hill, 2001. [3 ] G. R. Aiello and G. D. Rogerson, “Ultra-Wideband Wireless Systems,” IEEE Microwave Mag., vol. 4, pp. 36-47, June 2003. [4 ] M. Z. Win and Z. A. Scholtz, “Impulse Radio: How It Works,” IEEE Commun. Lett., vol. 2, pp. 245-247, Jan. 1998. [5 ] M. Z. Win and Z. A. Scholtz, “On the Energy Capture of Ultrawide Bandwidth Signals in Dense Multipath Environments,” IEEE Commun. Lett., vol. 2, pp. 245-247, Feb. 1998. [6 ] D. Cassioli, M. Z. Win, F. Vatalaro, and A. F. Molisch, “Performance of Low-Complexity Rake Reception in a Realistic UWB Channel,” in Proc IEEE Int. Conf. Commun. (ICC ’02), vol. 2, Apr. 2002, pp. 763-767. [7 ] Huaning Niu, J. A. Ritcey, and Hui Liu, “Performance of UWB Rake Receivers with Imperfect Tap Weights,” in Proc. 2003 IEEE. Acoust. Speech Signal Processing 2003. Proceeding (ICASSP ‘03), vol. 4, Apr. 2003, pp. IV_125-IV_128. [8 ] A. Rajeswaran, V. S. Somayazulu, and J. R. Foerster, “Rake Performance for a Pulse Based UWB System in a Realistic UWB Indoor Channel,” IEEE Int. Conf. Commun. (ICC 2003), vol. 4, May 2003, pp. 2879-2883. [9 ] Federal Communication Commission, “In the Matter of Revision of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems, First Report and Order ,” adopted: Feb. 14, 2002; released: Apr. 22, 2002. [10 ] R. A. Scholtz, “Multiple Access with Time-Hopping Impulse Modulation,” in Proc. MILCOM, Oct. 1993, pp. 447-450. [11 ] G. Durisi and S. Benedetto, “Performance Evaluation and Comparison of Different Modulation Schemes for UWB Multiaccess Systems,” 2003 IEEE Int. Conf. Commun. (ICC ‘03), vol. 3, May 2003, pp. 2187-2191. [12 ] A. J. Viterbi, “Very Low Rate Convolution Codes for Maximum Theoretical Performance of Spread-Spectrum Multiple-Access Channels,” IEEE J. Select. Areas in Commun., vol. 8, pp. 641-649, May 1990. [13 ] D. Divsalar and M. K. Simon, “Improved CDMA Performance Using Parallel Interference Cancellation,” IEEE Military Commun. Conf., Oct. vol. 3, 1994, pp. 911-917. [14 ] D. Divsalar, M. K. Simon, and D. Raphaeli, “Improved Parallel Interference Cancellation for CDMA,” IEEE Trans. Commun., vol. 46, pp. 259-268, Feb. 1998. [15 ] K.-M. Wu, Interference Suppression Techniques for DS-CDMA Wireless Communications, Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan, July 2002. [16 ] D. Koulakiotis and A. H. Aghvami, “Data Detection Techniques for DS/CDMA Mobile Systems: A Review,” IEEE Pers. Commun., vol. 7, pp. 24-33, June 2000. [17 ] Qinghua Li and L. A. Rusch, “Multiuser Detection for DS-CDMA UWB in the Home Environment,” IEEE J. Select. Areas in Commun., vol. 20, pp. 1701-1711, Dec. 2002. [18 ] Y. C. Yoon and R. Kohno, “Optimum Multi-user Detection in Ultra-Wideband (UWB) Multiple-Access Communication Systems,” IEEE Int. Conf. Commun. (ICC ‘02), vol. 2, May 2002, pp. 812-816. [19 ] J. Foerster and Qinghua Li, “UWB Channel Modeling Contribution from Intel,” IEEE document #02279r0p802_15_SG3a, http://grouper.ieee.org/groups/802/15/ pub/2002/Jul02/02279r0P802-15_SG3a-Channel-Model-Cont-Intel.doc. [20 ] S. Halford, K. Halford, and M. Webster, “Evaluating the Performance of HRb Proposals in the Presence of Multipath,” IEEE document #0282r2p802_15_SG3a. [21 ] A. A. Saleh and R. A. Valenzuela, “A Statical Model for Indoor Multipath Propagation,” IEEE J. Select. Areas Commun., vol. 5, pp. 128-137, Feb. 1987. [22 ] H. Suzuki, “A Statistical Model for Urban Radio Propagation,” IEEE Trans. on Commun., pp. 673-680, July 1977. [23 ] J. Winters, “Optimum Combining in Digital Mobile Radio with Cochannel Interference,” IEEE J. Select. Areas Commun., vol. 1, pp. 528-539, July 1984. [24 ] S. Verdu, “Minimum Probability of Error for Asynchronous Gaussian Multiple-Access Channels,” IEEE Trans. on Info. Theory, vol. IT-32, pp. 85-96, Jan. 1986. [25 ] P. M. Clarkson, Optimal and Adaptive Signal Processing. Boca Raton, FL: CRC, 1993. [26 ] S. Haykin, Adaptive Filter Theory. 4th ed., Upper Saddle River, NJ: Prentice-Hall, 2002. [27 ] Y. G. Li, A. F. Molisch, and J. Zhang, “Channel Estimation and Signal Detection for UWB,” Int. Symp. on Wireless Pers. Multimedia Commun. (WPMC ‘03), Oct. 2003. [28 ] “XtremeSpectrum CFP Document,” IEEE document #P802.15-03/154r3, http:// grouper.ieee.org/groups/802/15/pub/2003/Mar03/03154r1P802-15_TG3a-XtremeSpectrum-CFP-Documentation.pdf .id NH0925650026 sid 915628 cfn 0 / id NH0925650027 auc 謝旻岳 tic 行動通訊系統中基於訊號到達時間差值的無線定位技術研究 adc 蔡育仁 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 中文 pg 76 kwc 無線定位 kwc 訊號到達時間差值 abc 無線通訊系統之發話者定位功能的應用一直持續的增加,因此,無線定位之演算法也持續地發展與改進。大部分的無線定位演算法是基於以下四個原則來達成無線定位的功能:訊號到達時間,訊號到達時間差值,接收訊號強度以及訊號到達角度。 rf [1 ] J. J. Caffery, Jr. and G. L. Stüber, “Overview of radiolocation in CDMA cellu-lar systems,” IEEE Commun. Magazine, vol. 36, pp.38-45, Apr. 1998. [2 ] E. K.P. Chong and S. H. Zak, An Introduction to Optimization, 2nd edition, Wiley, 2001. [3 ] B. T. Fang, “Simple solutions for hyperbolic and related position fixes,” IEEE Trans. Aerospace and Electronic Systems., vol. 26, pp. 748-753, Sept. 1990. [4 ] C. Drane, M. Macnaughtan and C. Scott “Positioning GSM telephones,” IEEE Commun. Magazine, vol. 36, pp. 46-54, Apr. 1998. [5 ] S. S. Soliman, and C. E. Wheatley, “Geolocation technologies and applications for the third generation wireless,” Wireless Communications and Mobile Com-puting, pp. 229-251, 2002. [6 ] P. C. Chen, “A non-line-of-sight error mitigation algorithm in location estima-tion,” in Proc. IEEE Wireless Communications and Networking Confer-ence, WCNC 1999, vol.1, pp. 316-320, 21-24 Sept.1999. [7 ] D. G. Luenberger, Linear and nonlinear programming, 2nd edition, Addi-son-Wesley, 1984. [8 ] L. J. Greenstein, V. Erveg, Y. S. Yeh and M. V. Clark, “A new path-gain/delay-spread propagation model for digital cellular channels,” IEEE Trans. Vehicular Technology, vol.46, pp. 477-485, May 1997. [9 ] R. Flectcher, Practical methods of optimization, 1st edition, Wiley, 1981. [10 ] P.E. Gill, W. Murray and M.H. Wright, Practical optimization, Academic Press, 1981. [11 ] L. Cong and W. Zhuang, “Hybrid TDOA-AOA mobile user location for wide-band CDMA cellular systems,” IEEE Trans. Wireless Communications, vol.1, p.p. 439-447, Jul. 2002. [12 ] J. Borras, P. Hatrack and N.B. Mandayam,” Decision theoretic framework for NLOS identification,” in Proc. IEEE Vehicular Technology Conference, VTC 1998, vol.2, pp. 1583-1589, May 1998. [13 ] S. Venkatraman and J. Caffery, “Location using LOS range estimation in NLOS environments,” in Proc. IEEE Vehicular Technology Conference, VTC 2002, vol. 2, pp. 856-860, May 2002.id NH0925650027 sid 915629 cfn 0 / id NH0925650028 auc 許峻偉 tic 行動通訊系統同頻干擾及訊雜比之空間關聯特性模型建立 adc 蔡育仁 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 英文 pg 55 kwc 行動通訊 kwc 屏蔽效應 kwc 功率高斯分佈 kwc 高斯-馬可夫模型 kwc 空間關聯特性 kwc 同頻干擾 kwc 訊雜比 kwc 多重存取干擾 abc 無線通訊訊號傳輸過程中無可避免會遭受到屏蔽效應,使得訊號在功率上呈現高斯分佈。1991年Gudmundson 的研究實驗指出,行動通訊系統之訊號變化可用高斯-馬可夫模型表達其空間關聯特性。此模型已被廣泛地使用在有關訊號強度的分析上。 tc Abstract i Contents ii 1 Introduction 1 2 Preliminary 3 2.1 Propagation Environments 4 2.2 Approximation Methods for the Sum of Multiple Lognormal Random Variables 5 2.3 Comparisons and Discussions of these Methods 9 3 A Gaussian-Markov Model for the Spatial Correlation of Total Co-Channel Interference 14 3.1 System Model and Shadow Fading Generator 14 3.1.1 System Model 14 3.1.2 Shadow Fading Generator 15 3.2 Proposed Spatial Correlation Model for Total CCI 17 3.2.1 Analysis 17 3.2.2 Determine the Specific Parameters of the Total CCI 18 3.2.3 The Adaptation of Spatial Correlation Coefficient α 18 3.3 Results and Discussions 22 4 A Gaussian-Markov Model for the Spatial Correlation of the Carrier-to-Interference Ratio 27 4.1 System and Channel Models 28 4.2 Proposed Spatial Correlation Model for the CIR 29 4.3 Result and Discussions 32 5 A Methodology for the Carrier-to-Interference Ratio in CDMA Systems with Multiple Access Interference 36 5.1 The Downlink Orthogonality Factor 37 5.2 Analysis for the Outage Probability of the Carrier-to-Interference Ratio 38 5.3 Results and Discussions 42 6 Conclusion 50 Bibliography 51rf [1 ] G. L. Stuber, Principles of Mobile Communication, 2nd Edition, Boston, Kluwer Academic Publishers, 2001. [2 ] M. Gudmundson, “Correlation Model for shadow fading in mobile radio systems,” Electronics Letters, vol. 27, pp. 2145-2146, Nov. 1991. [3 ] L. F. Fenton, “The sum of log-normal probability distributions in scatter transmission systems,” IRE Trans. Commun. Syst., vol. COM-8, pp. 57–67, Mar. 1960. [4 ] S. C. Schwartz and Y. S. Yeh, “On the distribution function and moments of power sums with lognormal components,” Bell Syst. Tech. J., vol. 61, no. 7, Sept. 1982. [5 ] A. Safak, “Statistical analysis of the power sum of multiple correlated log-normal components,” IEEE Trans. Veh. Technol., vol. 42, no. 1, pp. 58–61, Feb. 1993. [6 ] A. A. Abu-Dayya and N. C. Beaulieu, “Outage probabilities in the presence of correlated lognormal interferers,” IEEE Trans. Veh. Technol., vol. 43, pp. 164–173, Feb. 1994. [7 ] N. C. Beaulieu, A. A. Abu-Dayya, and P. J. MacLane, “Estimating the distribution of a sum of independent lognormal RVs,” IEEE Trans. Commun., vol. 43, pp. 2869–2873, Dec. 1995. [8 ] P. Cardieri and T. S. Rappaport, “Statistics of the sum of lognormal variables in wireless communications,” IEEE VTC, pp.1823-1827, 2000 [9 ] R. Prasad and A. Kegel, “Effects of Rician faded and lognormal shadowed signals on spectrum efficiency in microcellular radio,” IEEE Trans. Veh. Technol, vol. 42, pp. 274–281, Aug. 1993. [10 ] R. Prasad and A. Kegel, “Improved assessment of interference limits in cellular radio performance,” IEEE Trans. Veh. Technol., vol. 40, pp. 412–419, May 1991. [11 ] A. Safak and R. Prasad, “Effects of correlated shadowing signals on channel reuse in mobile radio systems,” IEEE Trans. Veh. Technol, vol. 40, pp. 708–713, Nov. 1991. [12 ] A. Safak and R. Prasad, “Multiple correlated log-normal interferers in mobile cellular radio systems,” Electronics Letters, vol. 28, pp. 1319-1321, July. 1992. [13 ] R. Muammar and S. C. Gupta, “Co-channel interference in high capacity mobile radio systems,” IEEE Trans. Commun., vol. COM-30, pp. 1973–1982, Aug. 1982. [14 ] A. Safak, “Optimal channel reuse in cellular radio systems with multiple correlated log-normal interferers,” IEEE Trans. Veh. Technol., vol. 43, pp. 304–312, May 1994. [15 ] D. C. Cox, “Cochannel interference considerations in frequency reuse small-coverage-area radio systems,” IEEE Trans. Commun., vol. COM-30, pp. 135–142, Jan. 1982. [16 ] M. J. Ho and G. L. Stuber, “Co-channel interference of microcellular systems on shadowed Nakagami fading channel,” IEEE VTC, pp. 568-571, May, 1993. [17 ] X. Yang, S. Ghaheri-Niri, and R. Tafazolli, “Downlink soft handover gain in CDMA cellular network with cross-correlated shadowing,” IEEE VTC, pp 276-280, 2001. [18 ] T. Klingenbrunn and P. Mogensen, “Modelling cross-correlated shadowing in network simulations,” IEEE VTC, pp 1407-1411, 1999. [19 ] Y. S. Yeh and S. C. Schwartz, “Outage probability in mobile telephony due to multiple log-normal interferers,” IEEE Trans. Commun., vol. 32, pp. 380–388, Apr. 1984. [20 ] M. Gudmundson, “Analysis of Handover Algorithms,” IEEE VTC, pp. 537-542, 1991. [21 ] F. Santucci, M. Pratesi, M. Ruggieri, and F. Graziosi, “A general analysis of signal strength handover algorithms with co-channel interference,” IEEE Trans. Commun., vol. 48, pp. 231–241, Feb. 2000. [22 ] M. Pratesi, F. Santucci, F. Graziosi, and M. Ruggieri, “Outage analysis in mobile radio systems with generically correlated log-normal interferers,” IEEE Trans. Commun., vol. 48, pp. 381–385, Mar. 2000. [23 ] F. Graziosi, L. Fuciarelli, and F. Santucci, “Second order statistics of the SIR for cellular mobile networks in the presence of correlated co-channel interferers,” IEEE VTC, May. 2001. [24 ] F.Graziosi, F. Santucci, Analysis of Second Order Statistics of the SIR in Cellular Mobile Networks, IEEE VTC, pp. 1316-1320, Sep. 1999. [25 ] F. Graziosi, M. Pratesi, M. Ruggieri, and F. Santucci, “An improved analysis of outage probability with correlated cochannel interferers,” IEEE GLOBECOM, pp. 3710–3715, Nov. 1998. [26 ] F. Graziosi, and F. Santucci, “ On SIR fade statistics in Rayleigh-lognormal channels,” IEEE ICC, pp.1352-1357, 2002. [27 ] K. Sipilä, Z. C. Honkasalo, J. Laiho-Stefens, and A. Wacker, “Estimation of capacity and required transmission power of WCDMA downlink based on a downlink pole equation,” IEEE VTC, pp. 1002–1005, 2000. [28 ] K. I. Pedersen and P. E. Mogensen,” The downlink orthogonality factors influence on WCDMA system performance,” IEEE VTC, pp. 2061-2065, 2002. [29 ] N. B. Mehta, L. J. Greenstein, T. M. Willis, III, and Z. Kostic, “Analysis and results for the orthogonality factor in WCDMA downlinks,” IEEE Trans. Wireless Commun., pp.1138-1149, 2003. [30 ] O. Awoniyi, N. B. Mehta, and L. J. Greenstein, “Characterizing the Orthogonality Factor in WCDMA Downlinks,” IEEE Trans. Wireless Commun., pp.621-625, 2003. [31 ] H. Stark and J. W. Woods, Probability and Random Processes with Application to Signal Processing, 3rd Prentice Hill, 2002. [32 ] Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Washington, D.C. :/National Bureau of Standards, 1972 [33 ] J. G. Proakis, Digital Communications,4th McGraw-Hill, 2001 [34 ] T. S. Rappaport, Wireless Communications Principle and Practice, 2nd Prentice-Hall, 2002. [35 ] J. D. Parsons, The mobile radio propagation channel, 2nd Wiley, 2000. [36 ] S. R. Saunders, Antennas and propagation for wireless communication systems, Wiley, 1999. [37 ] R. L. Peterson, R. E. Ziemer, and D. E. Borth, Introduction to spread spectrum communications, Prentice-Hall, 1995. [38 ] H. Holma and A. Toskala, WCDMA for UMTS, Wiley, 2001. Part of this research have been accepted by IEEE GLOBECOM 2004id NH0925650028 sid 915622 cfn 0 / id NH0925650029 auc 王邑倩 tic 提供串流服務之多通道無線行動隨意網路媒體存取控制協定 adc 蔡育仁 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 英文 pg 63 kwc 串流服務 kwc 無線通訊 kwc 隨意網路 kwc 行動通訊 abc 近年來無線區域網路科技快速竄起,不論是企業或是家庭用戶,使用無線網路已蔚為風潮。由於它不需拉設實體線路,而是以無線電波為傳輸媒介,適合不便架設有線網路的環境、或臨時性的網路,不僅省去佈線工程,又因其機動性、移動性高,更便於需經常移動位置的使用者。802.11標準允許網路通訊以點對點(peer-to-peer)方式進行連接,不需經由無線網路存取器(AP),個人電腦可透過無線網路卡對無線網路卡直接互通,非常簡單方便。 rf [1 ] Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std. 802.11, 1999. [2 ] D. Lopez-Rodriguez and R. Perez-Jimenez, “Distributed Method for Channel Assignment in CDMA Based “AD-HOC” Wireless Local Area Networks,” 1999 IEEE MTT-S International Topical Symposium on Technologies for Wireless Applications, Vancouver, BC, Canada, 21-24 Feb. 1999. [3 ] S.-L. Wu, C.-Y. Lin, Y.-C. Tseng, and J.-P. Sheu, “A New Multi-Channel MAC Protocol with On-Demand Channel Assignment for Multi-Hop Mobile Ad Hoc Networks,” Proc. I-SPAN 2000, pp. 232–237, 2000. [4 ] Z. Cai and M. Lu, “SNDR: A New Medium Access Control for Multi-channel Ad Hoc Network,” 51th IEEE Vehicular Technology Conference, Tokyo, Japan, 15-18 May 2000. [5 ] S.-H. Hsu, C.-C. Hsu and F.-C. Lin, "A Reliable Multi-Channel MAC Protocol with Efficient Multicast Support for Ad hoc Networks," in Proceeding of 4th International Workshop on Mobile and Wireless Communications Network, Sweden, Sep. 2002. [6 ] C.Y. Chang, C.T. Chang, P.C. Huang, “Dynamic Channel Assignment and Reassignment for Exploiting Channel Reuse Opportunities in Ad Hoc Wireless Networks”, The 8th International Conference on Communication Systems, vol. 2 , pp. 1053-1057, Nov. 2002. [7 ] C. E. Perkins and P. Bhagwat, “Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers,“ Comp. Commun. Rev., Oct. 1994, pp. 234-44. [8 ] C.-C. Chiang, “Routing in Clustered Multihop, Mobile Wireless Networks with Fading Channel, “Proc. IEEE SICON ’97, Apr. 1997, pp. 197-211. [9 ] S. Murthy and J. J. Garcia-Luna-Aceves, “An Efficient Routing Protocol for Wireless Networks,” ACM Mobile Networks and App. J., Special Issue on Routing in Mobile Communication Networks, Oct. 1996, pp. 183-97. [10 ] C. L. Fullmer and J. J. Garcia-Luna-Aceves, “Solutions to Hidden Terminal Problems in Wireless Networks,” in Proc. ACM SIGCOMM ’97, 1997, pp. 39–49.id NH0925650029 sid 915626 cfn 0 / id NH0925650030 auc 黃楓升 tic 使用導引混成編碼OFDM系統之低複雜度峰值對平均功率比降低技術 adc 王晉良教授 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 英文 pg 34 kwc 導引混成 kwc 峰值對平均功率比 kwc 降低 abc 正交分頻多工(orthogonal frequency-division multiplexing,簡稱OFDM)是一種非常有效率的多載波系統,但是OFDM系統的輸出信號會產生峰值對平均功率比(peak-to-average power ratio,簡稱PAPR) 的問題。為了解決這個問題,因而發展出許多的峰值對平均功率比降低技術。其中,選擇性對映(selected mapping,簡稱SLM)和分部傳輸序列(partial transmit sequences,簡稱PTS)是兩種非常重要的峰值對平均功率比降低技術,但是,這兩種方法卻有著需要傳送額外訊息 (side information)的缺點。將導引混成編碼(guided scrambling coding) 應用在這兩種技術上,便解決了需要傳送額外訊息的問題。將導引混成編碼中的增量位元(augmenting bits)插入到原來的資料序列之前,在經過混成編碼之後,不同的增量位元會產生不同的序列,在經過映像(mapping)和快速傅利葉反轉換(inverse fast Fourier transform,簡稱IFFT)模組之後,其中一個峰值對平均功率比最低的序列將被選擇並且被傳輸,在導引混成編碼技術的接收端,我們只要經過反混成編碼,並且移除增量位元,就可以得到原始的傳輸訊號。雖然使用導引混成編碼的選擇性對映和分部傳輸序列技術不需要傳送額外資訊,但仍需要使用許多的快速傅利葉反轉換模組,造成計算複雜度的增加。 tc Contents Abstract i Contents iii List of Figures v List of Tables vii Chapter 1 Introduction 1.1 Basics of OFDM 1 1.2 PAPR Problem and Existing Solutions 2 1.3 Thesis Outline 5 Chapter 2 PAPR Reduction Using Guided Scrambling Coding 2.1 The principle of GS techniques 6 2.2 GS-SLM 8 2.3 GS-PTS 9 2.4 Simulation Result 10 2.5 Summary 11 Chapter 3 A New Technique for the Reduction of the Complexity in GS-SLM and GS-PTS 3.1 The Proposed Low-Complexity GS-SLM Method 13 3.2 The Proposed Low-Complexity GS-PTS Method 17 3.3 Summary 20 Chapter 4 Simulation Result and Comparison of Complexity 4.1 Simulation Results 21 4.2 Comparison of Complexity 27 4.3 Summary 29 Chapter 5 Conclusions 30 Bibliography 31rf [1 ] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Boston: Artech House, 2000. [2 ] J. Terry and J. Heiskala, OFDM Wireless LANs: A Theoretical and Practical Guide. Sams, 2002. [3 ] ETSI, “Radio broadcasting systems: Digital Audio Broadcasting (DAB) to mobile, portable and fixed receivers,” WTS 300 401 v1.3.2, Sept. 2000. [4 ] ETSI, “Digital Video Broadcasting (DVB): Framing structure, channel coding and modulation for digital terrestrial television,” ETS 300 744 v1.3.2, Sept. 2000. [5 ] IEEE, “part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” IEEE Std. 802.11, Aug. 1999. [6 ] ETSI, “Broadcasting Radio Access Networks (BRAN): Requirements and architectures for broadband fixed radio access networks,” TR 1001 177 v1.1.1, May 1998. [7 ] ETSI, “High Performance Radio Local Area Networks (HIPERLAN): Requirements and architectures for wireless ATM access and interconnection,” TR 101 031 v1.1.1, July 1997. [8 ] P. S. Chow, J. C. Tu, and J. M. Cioffi, “Performance evaluation of a multichannel transceiver system for ADSL and VHDSL services,” IEEE J. Selected Areas Commun., vol. 9, pp. 909-919, Aug. 1991. [9 ] P. S. Chow, J. C. Tu, and J. M. Cioffi, “A discrete multitone transceiver system for HDSL applications,” IEEE J. Select Areas Commun., vol. 9, pp. 909-919, Aug. 1991. [10 ] R. van Nee, “OFDM for high speed wireless network,” IEEE P 802.11-97/123, Nov. 1997. [11 ] R. Gross and D. Veeneman, “Clipping distortion in DMT ADSL systems,” Electron Lett., vol.29, pp. 2080-2081, Nov. 1993. [12 ] D. J. G. Mestdagh, P. Spruyt, and B. Biran, “Analysis of clipping effect in DMT-based ADSL system,” in Proc. 1994 IEEE Int. Conf. Commun. (ICC ‘94), New Orleans, LA, May 1997, pp. 293-300. [13 ] R. O’Neill and L. B. Lopes, “Envelop variations and spectral splatter in clipped multicarrier signals,” in Proc. 1995 IEEE Int. Symp. Personal, Indoor and Mobile Radio Commun. (PIMRC ‘95), Toronto, Canada, Sept. 1995, pp. 71-76. [14 ] X. Li and L. J. Cimini, “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol. 2, pp. 131-133, May 1998. [15 ] S. H. Müller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Electron Lett., vol. 33, pp. 368-369, Feb. 1997. [16 ] S. D. S Jayalath and C. Tellambura, “Peak-to-average power ratio reduction of an OFDM signal using data permutation with embedded side information,” in Proc. 2001 IEEE International Symposium on Circuits and Systems (ISCAS ‘01), Sydney, Australia, vol. 4, May 2001, pp. 562-565. [17 ] S. G. Kang, J. G. Kim, and E. K. Joo, “A novel subblock partition scheme for partial transmit sequence OFDM,” IEEE Trans. Broadbasting, vol. 45, pp. 333-338, Sept. 1999. [18 ] R. van Nee, “OFDM codes for peak-to-average power reduction and error correction,” in Proc. 1996 IEEE Global Telecommun. Conf. (GLOBECOM ‘96), London, vol. 1, 1996, pp. 740-744. [19 ] S. H. Müller and J. B. Huber, “A novel peak power reduction scheme for OFDM,” in Proc. 1997 IEEE Int. Symp. Personal Indoor and Mobile Radio Commun. (PIMRC ‘97), Heisinki, Findland, Sep. 1997, pp. 1090-1094. [20 ] A. D. S. Jayalath and C. Tellambura, “The use of interleaving to reduce the peak-to-average power ratio of an OFDM signal,” in Proc. 2000 IEEE Global Telecommun. Conf. (GLOBECOM ‘00), San Francisco, CA, Nov.-Dec. 2000, pp. 82-86. [21 ] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes,” IEEE Trans. Inform. Theory, vol. 45, pp. 2397-2417, Nov. 1999. [22 ] T. A. Wilkinson and A. E. Jones, “Minimisation of the peak to mean envelope power ratio of multicarrier transmission schemes by block coding,” in Proc. 1995 IEEE Veh. Technol. Conf. (VTC ‘95), Chicago, July 1995, pp. 825-829. [23 ] X. Li and J. A. Ritcey, “M-sequences for OFDM PAPR reduction and error correction,” Electron Lett., vol. 33, pp. 545-546, July 1997. [24 ] C. Tellambura, “Use of m-sequences for OFDM peak to average power ratio reduction,” Electron Lett., vol. 33, pp. 1300-1301, July 1997. [25 ] T. A. Wilkinson and A. E. Jones, “Minimization of the peak-to-mean envelope power ratio of multicarrier transmission schemes by block coding,” in Proc. 1995 IEEE Vehicular Technology Conference (VTC ‘95), Chicago, July 1995, pp. 825-829. [26 ] K. A. S. Immink, Codes for Mass Data Storage Systems. Amsterdam. The Netherlands: Shannon Foundation Publishers, 1999. [27 ] I. J. Fair, W. D. Grover, W. A. Krzymien and R. I. Macdonald, “Guided Scrambling: a new line coding technique for high bit rate fiber optic transmission systems,” IEEE Trans. Commun. vol. 39, pp. 289-297, Feb. 1991. [28 ] Yan Xin and I. J. Fair, “Peak-to-average ratio reduction of an OFDM signal using guided scrambling coding,” in Proc. 2003 IEEE Global Telecommun. Conf. (GLOBECOM 2003), San Francisco, CA, vol. 4, 2003, pp. 2390-2394. [29 ] S. Haykin, Communication Systems. New York: John Wiley &Sons, Inc.id NH0925650030 sid 915630 cfn 0 / id NH0925650031 auc 林佑青 tic 運用在行動隨意網路上的一個以鼓勵為基礎的信譽系統 adc 陳文村 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 英文 pg 44 kwc 鼓勵 kwc 信譽 kwc 合作 abc 在無線隨意網路中,節點經由中介節點的轉送來與其他的節點做通訊,而這些中介節點彼此間必須共同合作才能使得網路的傳輸更加可靠。然而網路中可能存在著一些自私或惡意的節點,這些自私的節點可能為了節省電池能源而不願意提供服務或轉送訊息;而惡意的節點可能蓄意破壞網路或不願遵守協定所制定的規則。有一些信譽系統及提供鼓勵的機制被提出來解決這些問題,並促使在無線隨意網路中的各個節點都能彼此間共同合作。 tc CHAPTER 1 INTRODUCTION................................... 1 1.1 Motivation......................................... 1 1.2 Organization....................................... 3 CHAPTER 2 RELARED WORKS.................................. 4 2.1 Reputation and Incentive Concept................... 4 2.2 Reputation Mechanisms.............................. 5 2.3 Incentive Mechanisms............................... 7 CHAPTER 3 THE PROPOSED SCHEME........................... 12 3.1 Definition........................................ 12 3.2 The Incentive Scheme.............................. 13 3.3 False Transmission................................ 18 3.4 Message Forwarding Game........................... 23 3.5 The Reputation Scheme............................. 25 CHAPTER 4 PERFORMANCR EVALUATION........................ 30 4.1 Analysis.......................................... 30 4.2 Simulation Results................................ 32 CHAPTER 5 CONCLUSION AND FUTURE WORKS................... 37 REFERENCES.............................................. 39 APPENDIX................................................ 41rf [1 ] S. Marti, T. Giuli, K. Lai, and M. Baker, “Mitigating Routing Misbehavior in Mobile Ad Hoc Networks,” in Proceedings of The Sixth International Conference on Mobile Computing and Networking 2000, Boston, MA, Aug. 2000. [2 ] S. Buchegger and J.-Y Le Boudec, “Performance Analysis of the CONFIDANT Protocol: Cooperation of Nodes - Fairness in Dynamic Ad-Hoc Networks,” in Proceedings of IEEE/ACM Workshop on Mobile Ad Hoc Networking and Computing (MobiHOC). IEEE, June 2002. [3 ] S. Buchegger and J.-Y Le Boudec. “The Effect of Rumor Spreading in Reputation Systems in Mobile Ad-hoc Networks,“ in Proceedings of Modeling and Optimization in Mobile, Ad Hoc and Wireless networks (WiOpt’03), INRAI Sofia-Antipolis, France, Mar. 2003. [4 ] P. Michiardi and R. Molva, “CORE: A Cooperative Reputation Mechanism to enforce node cooperation in Mobile Ad hoc Network,” in Communications and Multimedia Security Conference (CMS) 2002. [5 ] P. Michiardi, and R. Molva, “Simulation-based analysis of security exposures in mobile ad hoc networks,” in European, Wireless 2002 Conference, Florence, Italy, Feb. 2002. [6 ] P. W. Yau, C. J. Mitchell, “Reputation Methods for Routing Security for Mobile Ad Hoc Networks,” Joint IST Workshop on Mobile Future and Symposium on Trends in Communications (SympoTIC’03), Pages:130 – 137, Bratislava, Slovakia, Oct. 2003. [7 ] Qi He, Oliver D. Wu and Pradeep Khosla, “SORI: A Secure and Objective Reputation-based Incentive Scheme for Ad-hoc Networks,” in Proceedings of IEEE Wireless Communications and Networking Conference (WCNC) 2004, Pages:825 – 830, Atlanta, Georgia, March 2004. [8 ] A. Spyropoulos and C. Raghavendra, “Energy Efficient Communications in Ad Hoc Networks Using Directional Antennas,” in Proceedings of IEEE INFOCOM ’02, New York, NY, June 2002. [9 ] J. E. Wieselthier, G. Nguyen, and A. Ephremides, “Energy-limited Wireless Networking with Directional Antennas: The case of Session-based Multicasting,” in Proceedings of IEEE INFOCOM ’02, New York, NY, June 2002. [10 ] L. Buttyan and J. P. Hubaux, “Nuglets: A Virtual Currency to Stimulate Cooperation in Self-Organized Mobile Ad-Hoc Networks”. Technical Report DSC/2001/001, Swiss Federal Institute of Technology, Lausanne, Switzerland, Jan. 2001. [11 ] L. Buttyan and J. P. Hubaux, “Enforcing Service Availability in Mobile Ad-Hoc WANs,” in IEEE/ACM Workshop on Mobile Ad Hoc Networking and Computing (MobiHOC), Boston, MA, Aug. 2000. [12 ] L. Buttyan and J. P. Hubaux, “Stimulating Cooperation in Self-Organizing Mobile Ad Hoc Networks,” ACM Journal for Mobile Networks (MONET), special issue on Mobile Ad Hoc Networks, Oct. 2003. [13 ] S. Zhong, J. Chen and Y.R. Yang, “Sprite: A Simple, Cheat-Proof, Credit-based System for Mobile Ad-Hoc Networks,” in Proceedings of IEEE INFOCOM ’03, San Francisco, CA, Apr. 2003. [14 ] V. Srinivasan, P. Nuggehalli, Carla F. Chiasserini and Ramesh R. Rao, “Cooperation in Wireless Ad Hoc Networks”, in Proceedings of IEEE INFOCOM ’03, San Francisco, CA, Apr. 2003. [15 ] M. Felegyhazi, L. Buttyan, and J.P. Hubaux, “Equilibrium Analysis of Packet Forwarding Strategies in Wireless Ad Hoc Networks – the Static Case,” in Proceedings of International Conference on personal Wireless Communications (PCW’03), Venice, Italy, Sept. 2003. [16 ] A. Urpi, M. Bonuccelli, and S. Giordano, “Modeling Cooperation in Mobile Ad Hoc Networks: a Formal Description of Selfishness,” in Proceedings of Modeling and Optimization in Mobile, Ad Hoc and Wireless networks (WiOpt’03), Sophia-Antipolis, France, Mar. 2003. [17 ] P. Michiardi and R. Molva, “A Game Theoretical Approach to Evaluate Cooperation Enforcement Mechanisms in Mobile Ad Hoc Networks,” in Proceedings of Modeling and Optimization in Mobile, Ad Hoc and Wireless networks (WiOpt’03), Sophia-Antipolis, France, Mar. 2003. [18 ] J. Crowcroft, R. Gibbens, F. Kelly, and S. Ostring, “Modelling Incentives for Collaboration in Mobile Ad Hoc Networks,” in Proceedings of Modeling and Optimization in Mobile, Ad Hoc and Wireless networks (WiOpt’03), Sophia-Antipolis, France, Mar. 2003. [19 ] O. Ileri, S.-C. Mau, N. Mandayam, “Pricing for Enabling Forwarding in Self-Configuring Ad Hoc Networks,” in Proceedings of IEEE Wireless Communications and Networking Conference (WCNC) 2004, Atlanta, Georgia, March 2004.id NH0925650031 sid 915610 cfn 0 / id NH0925650032 auc 蔡宗穎 tic 在 tic & tic #23515;頻分碼多工網路中增進服務品質軟式換手演算法 adc 林華君 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 中文 pg 30 kwc 分碼多工 kwc 軟式換手 kwc 服務品質保證 kwc 系統容量 kwc 下戴鏈路 kwc & kwc #23515;顪分碼多工 abc 無線網路提供了使用者可隨時隨地存取網路服務的優點。然而,在傳統無線網路的低速傳輸環境下,無線系統只能提供使用者語音服務和低速的資料傳輸服務,並無法支援高頻寬需求的多媒體服務,為了提值高速的無線傳輸服務,3GPP(Third-Generation Partnership Project)組織提供了以分碼多工(CDMA, Code Division Multiple Access)技術為基礎的W-CDMA(Wideband CDMA)第三代無線通訊系統。 rf [1 ] [Online ]. Available: http://www.3gpp.org. [2 ] Y. B. Lin and A. C. Pang, “Comparing soft and hard handoffs,” IEEE Trans. Veh. Technol., Vol. 49, no. 3, May 2000. [3 ] D. Zhang, G. Wei and J. Zhu, “Performance of hard and soft handover for CDMA system,” in Proc. Of VTC’02, Fall, Sept. 2002, pp. 1143–1147. [4 ] M. R. Karim and M. Sarraf, W-CDMA and cdma2000 for 3G Mobile Networks. New York: McGraw-Hill, 2002. [5 ] A. V. et al, “Soft handoff extends CDMA cell coverage and increases reverse link capacity,” IEEE J. Select. Areas Commun., Vol. 12, no. 8, pp.1281-87, Oct. 1994. [6 ] D. S. et al, “Analytical characterization of the soft handover gain in UMTS,” in Proc. Of VTC’01, Fall, Oct. 2001. [7 ] D. S. K. Heck and K. Leibnitz, “Diversity effects on the soft handover gain in umts networks,” in Proc. Of VTC’02 Fall, Sept. 2002. [8 ] Kahn, L. R., “Radio Squarer,” Proceedings of the IRE 42, Nov. 1954, p.1704. [9 ] M. Soleimanipour and G. H. Freeman, “A realistic approach to the capacity of cellular CDMA systems,” in Proc. Of VTC’96, Apr. 1996, pp. 1125–1129. [10 ] U. Rios et al, “Forward link capacity losses for soft and softer handoff in cellular systems,” IEEE PIMRC, Vol. 1, Sept. 2001, pp. 48-53. [11 ] S. W. Wang and I. Wang, “Simulation results on CDMA forward link system capacity,” Wireless and Mobile Communications editado por J. M. Holtzman y D. J. Goodman, Kluwer Academic Publishers, 1994. [12 ] 3GPP, “Physical layer procedure (FDD),” Tech. Rep. TS 25.214, 2002. [13 ] Networking Res. Labs., NEC Corp., Kawasaki, ”SSDT-site selection diversity transmission power control for CDMA forward link,” IEEE J. Select. Areas Commun., Vol. 18, pp. 1546-1554, Aug. 2000. [14 ] Dev. Labs., NEC Networks, Yokohama, “Enhancement of site selection diversity transmit power control in CDMA cellular systems,” in Proc. VTC ’01, Fall 2001, pp. 635-639. [15 ] D. Staehle, K. Leibnitz and K. Heck, “Effects of soft handover on the UMTS downlink performance,” in Proc. Of VTC’02 Fall, Sept. 2002. [16 ] 3GPP, “Quality of Service (QoS) concept and architecture,” Tech. Rep. TS 23.107 V3.9.0 (2002-09). [17 ] C. Wan and J. Y. kim “Forward-link capacity of a DS/CDMA system with mixed multirate sources,” IEEE Trans. Veh. Technol., Vol. 50, no. 3, May 2001.id NH0925650032 sid 915643 cfn 0 / id NH0925650033 auc 李慧蘭 tic 智慧型泛濫攻擊防禦網路架構之設計 adc 黃能富 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 英文 pg 49 kwc 泛濫攻擊 kwc 阻斷服務攻擊 kwc 分散式阻斷服務攻擊 kwc 入侵偵測系統 abc 泛濫攻擊(Flooding Attack)在最近幾年是備受注目的課題,有心的駭客除了製作惡意的封包以外,使用大量正常的封包造成頻寬攻擊(bandwidth attack),佔用網路頻寬、耗盡系統資源,使系統無法提供服務。這是著名的DoS阻斷服務攻擊或DDoS阻斷服務攻擊。目前市面上「安全資訊管理系統(SIM)」主要對網路架構中異質的網路安全設備提供事件資料蒐集及分析能力,仍不具備主動式的防禦。並且協定異常入侵偵測系統、統計異常入侵偵測系統、防火牆和安全資訊管理系統已廣泛為企業所用,但「安全資訊管理系統」的產品目前尚未成熟,在未來幾年該產品有非常大的成長空間。有鑑於此,我們制定一智慧型主動式的防禦策略以改善「安全資訊管理系統」只能被動回報安全日誌,仍無法有效的控制網路設備的缺點。我們稱此種「安全資訊管理系統」為「智慧型的安全資訊管理系統(I-SIM)」。在此篇論文中,除了提出一個完整防禦泛濫攻擊的網路架構(Flooding Unthreat Network)之外。主要根據異常入侵偵測系統、統計異常入侵偵測系統的回報,制定一動態過濾機制在防火牆的第一道防線即可將可疑的攻擊者攔截出來。此外泛濫的攻擊往往是以大量正常的封包傳送,使得特徵比對偵測系統失效,這時以動態流量調整的方式,便可以有效的遏止惡意頻寬的攻擊。最後我們將透過模擬實驗證明遭遇泛濫攻擊時,正常使用者可以獲得較低的阻斷率。 rf [1 ]CERT/CC,”Security Statistics during 1988-2002”, Computer Emergency Response Team, Carnegie Mellon University, Oct. 20. 2002, http://www.cert.org/stats/cert_atates.html. [2 ]Y. Bai, and H. Kobayashi,”Intrusion Detection Systems: Technology and Development”, International Conference on Advanced Information Networking and Applications (AINA’03), Fukuoka, Japan, March 2003, pp.710 – 715. [3 ]Netscreen 100 Firewall Appliance, http://www.netscreen.com/. [4 ]J. Lemon, “Resisting SYN Flooding DOS Attacks with a SYN Cache”, Proceedings of USENIX BSDC, San Francisco, California, USA February 2002, pp.89-98. [5 ]D. J. Bermtan and E. Schenk, “Linux Kernel SYN Cookie Firewall Project”, http://www.bronzesoft.org/projects/scfw. [6 ]C.L. Schuba, I.V. Krsul, M.G. Kuhn, E.H. Spafford, A. Sundaram, and D. Zamboni , “Analysis of a Denial of Service Attack on TCP”, IEEE Symposium on Security and Privacy, Oakland, CA, May 1997, pp.208 – 223. [7 ]E. Lemonnier, “Protocol Anomaly Detection in Network-based IDSs”, June 2001. http://erwan.lemonnier.free.fr/exjobb/report/protocol_anomaly_detection.pdf [8 ]Stephen W.Neville, “On the Sufficiency of Time-Based Correlation for Signature-Based IDS Alerts”, 2003 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM’03), Victoria, Canada, 28-30 Aug 2003, pp.836-839. [9 ]Cisco whitepaper,” The Science of Intrusion Detection System Attack Identification”, http://www.cisco.com/en/US/products/sw/secursw/ps2113/products_white_paper09186a0080092334.shtml [10 ]S. Zanero and Sergio M. Savaresi,” Unsupervised learning techniques for an intrusion detection system”, ACM Symposium on Applied Computing SAC'04, Nicosia, Cyprus, 4-17March 2004, pp.412-419. [11 ]Denise Dubie, “Users shoring up net security with SIM”, Network World, http://www.nwfusion.com/news/2002/0930apps.html, 30 September 2002. [12 ]NetForensics, http://www.netforensics.com/ [13 ]Network Security Manager (NSM), http://www.intellitactics.com/index.cfm [14 ]NeuSECURE, http://www.guarded.net/ [15 ]Security Threat Manager (STM), http://www.open.com/ [16 ]E-Security, http://www.esecurityinc.com/ [17 ]ArcSight, http://www.arcsight.com/product.htm [18 ]Network Intelligence Engine, http://www.network-intelligence.com/ [19 ]D. Curry and H. Debar, “Intrusion detection message exchange format “, draft-ietf-idwg-idmef-xml-12, 8 July, 2004. [20 ]F. Baker and P. Savola, “Ingress Filtering for Multihomed Networks”, IETF RFC2827, March 2004. [21 ]Internet Assigned Numbers Authority (IANA), "Special-Use IPv4 Addresses", IETF RFC 3330, September 2002. [22 ]D. Moore, G. Voelker, and S. Savage, "Inferring Internet Denial of Service Activity", Proceedings of the 2001 USENIX Security Symposium, Washington D.C., USA, August 2001, pp. 13-17. [23 ]M. Butto, E. Caverolla, and A. Tonietti, “Effectiveness of the `leaky bucket' policing mechanism in ATM networks”, IEEE Journal Selected Areas in Communications, Volume: 9, Issue: 3, April 1991, pp.335 – 342. [24 ]H.K. Choi, John O. Limb, “A Behavioral Model of Web Traffic,” International Conference on Network Protocols (ICNP '99), Toronto, Canada, Oct. 1999, pp.327 – 334. [25 ]S. Shakkottai, R. Srikant, N. Brownlee, A. Broido, and KC Claffy, “The RTT Distribution of TCP Flows in the internet and its Impact on TCP-based Flow Control”, Technical Report TR-2004-02, Cooperative Association for Internet Data Analysis (CAIDA), 2004, http://www.caida.org/outreach/papers/2004/tr-2004-02/. [26 ]N. Brownlee and KC Claffy, “Understanding Internet Traffic Streams: Dragonflies and Tortoises”, IEEE Communication Magazine, October 2002, pp. 110-117. [27 ]C. Fraleigh, S. Moon, B. Lyles,C. Cotton, M. Khan, D. Moll,R. Rockell, T. Seely, and S.C. Diot, “Packet-level traffic measurements from the Sprint IP backbone”, IEEE Networks, Nov.-Dec. 2003. pp.6-16. [28 ]Microsoft knowledge base id: 262635, “Error Message: HTTP 403.9 - Access Forbidden: Too many users are connected”, http://support.microsoft.com/default.aspx?scid=kb;en-us;262635. [29 ]Cisco system Inc, http://www.cisco.com/id NH0925650033 sid 915639 cfn 0 / id NH0925650034 auc 林裕偉 tic 多輸入多輸出正交分頻多工系統之同步技術 adc 王晉良 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 英文 pg 31 kwc 多輸入多輸出 kwc 正交分頻多工系統 kwc 同步 abc 摘 要 tc Contents Abstract Contents List of Figures List of Tables Chapter 1 Introduction Chapter 2 MIMO-OFDM Basics 2.1 MIMO Channel Capacity 2.2 MIMO-OFDM System Model 2.3 Synchronization Errors for MIMO-OFDM Systems Chapter 3 Synchronization Techniques for MIMO-OFDM Systems 3.1 Training Sequences 3.2 The Coarse Time Acquisition 3.3 The Carrier Frequency Offset Estimation 3.3.1 The Fractional Carrier Frequency Offset Estimation 3.3.2 The Integral Carrier Frequency Offset Estimation 3.4 The Fine Time Acquisition 3.5 The Proposed Synchronization Scheme Chapter 4 Simulation Results 4.1 Summary Chapter 5 Conclusions 5.1 Future Work Bibliographyrf [1 ] H. Sampath, S. Talwar, J. Tellado, V. Erceg, and A. Paulraj. , “A fourth-generation MIMO-OFDM broadband wireless system: design, performance, and field trial results,” Communications Magazine, IEEE , Volume: 40 , Issue: 9 , Sep. 2002 Pages:143 - 149. [2 ] G. L. Stüber, Principles of Mobile Communications, Norwell, MA: Kluwer, 2001. [3 ] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications, Boston/London: Artech House, 1999. [4 ] “Orthogonal Frequency Division Multiplexing,” U.S. Patent No. 3, 488,4555, filed Nov. 14, 1966, issued Jan. 6, 1970. [5 ] John Terry and Juha Heiskala, OFDM Wireless LANs: A Treoretical and Practical Guide. Indianapolis, Indiana: Sams, 2002. [6 ] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency division multiplexing using the discrete Fourier transform,” IEEE Trans. Commun., Vol. 19, pp. 628-634, Oct. 1971. [7 ] Y. S. Lim and J. H. Lee, “An efficient carrier frequency offset estimation scheme for an OFDM system,” in Proc. 50rd IEEE Veh. Technol. Conf. (VTC’00), Tokyo, Japan, Sep. 2000, pp. 2453-2457. [8 ] J. J. van de Beek, M. Sandell and P. O. Börjesson, “ML estimation of time and frequency offset in OFDM systems,” IEEE Trans. Signal Processing, Vol. 45, July. 1997, pp. 1800-1805,. [9 ] T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” Communications Magazine, IEEE Trans. Comm , Vol. 45 , Issue: 12 , Dec. 1997, pp. 1613 - 1621. [10 ] F. Tufvesson, O. Edfors, and M. Faulkner, “Time and frequency synchronization for OFDM using PN-sequence preambles,” IEEE Veh. Technol. Conf. (VTC ’99), Amsterdam, Netherlands, Sep 1999, pp. 2203-2207. [11 ] Gregory D. Durgin, Space-Time wireless channels, Upper Saddle River, PTR, 2003. [12 ] Siavash M. Alamouti, “Space Block Coding: A simple transmitter diversity technique for wireless communications,” IEEE Journal on Selected Areas of Communications. Vol. 16, Oct. 1998, pp. 1451-1458. [13 ] M. Speth and H. Meyr, “Synchronization Requirements for COFDM Systems with Transmit Diversity,” IEEE Global Telecommunications Conf. (Globalcom ’03), Dec. 2003, pp. 1252 - 1256. [14 ] N. Suehiro and H. Torii, “Expansion of modulation for modulatable orthogonal sequences,” IEEE Tran. on Info. Theory, Vol. 34, Jan. 1998, pp. 93 - 100. [15 ] G. L. Stüber, and A. N. Mody, “Synchronization for MIMO OFDM systems,” IEEE Global Telecommunications Conf. (Globalcom ’01), Vo1.1, Nov. 2001, pp. 509 - 513. [16 ] J. Ng, K. Ben Letaief and R. Murch, “Complex optimal sequences with constant magnitude for fast channel estimation initialization,” IEEE Tran. on Comm., Vol. 46, March 1998, No.3. [17 ] G. L. Stüber and A. N. Mody, “Receiver implementation for a MIMO OFDM system,” IEEE Global Telecommunications Conf. (Globalcom ’02), Vo1.1, Nov. 2002, pp. 716 - 720. [18 ] G. L. Stüber, J. R. Barry, S. W. Mclaughlin, Y. G. Li, M. A. Ingram, and T. G. Pratt, “Broadband MIMO-OFDM Wireless Communications,” Proc. IEEE, Vol. 92, Feb. 2004, pp. 271 -294. [19 ] A. van Zelst and T.C.W. Schenk, “Implementation of a MIMO OFDM-based wireless LAN system,” IEEE Tran. on Signal Proc., Vol. 52, Feb 2004, pp. 483-494. [20 ] Y. Luan and J. Li, “New timing acquisition method for MC-CDMA system with frequency offset,” IEEE Veh. Technol. Conf. (VTC ’02), Birmingham, Al, Vol. 3, May 2002, pp. 6-9.id NH0925650034 sid 915624 cfn 0 / id NH0925650035 auc 吳文婷 tic WIRE Diameter之設計與實作 adc 陳志成 ty 碩士 sc 國立清華大學 dp 通訊工程研究所 yr 92 lg 英文 pg 67 kwc 認証 kwc 授權 kwc 伺服器 abc 由於目前網路的架構與服務使用的方式日益複雜,有關於網路安全性的考量便更加重要。而AAA (Authentication, Authorization and Accounting) 協定即是提供完整的使用者存取控制,於是IETF便組成一個負責討論與訂定相關AAA協定的工作小組。雖然RADIUS協定仍是現行AAA伺服器的主要協定。但是已有一些研究報告指出,RADIUS有許多的缺失須待改進,其中有些是本質上造成的問題。為了發展一套更安全的機制,於是IETF便提出了Diameter協定,來擴充RADIUS協定及強化其安全性。而且在許多實際上的應用也都同意由Diameter取代RADIUS來負責其AAA Server的功能,如3GPP。所以Diameter不論在任何一種網路下,均可稱為新一代可預期且相當看好的AAA協定。目前僅OpenDiameter提供部份相關的程式庫,尚未有人提出完整的實作Diameter EAP認證協定之架構。 tc Acknowledgments Abstract ch1.Introduction...........................1 ch2.WIRE Diameter Software Architecture...21 ch3.WIRE Diameter EAP State Machines......36 ch4.Testbed...............................57 ch5.Summary...............................62 Bibliography..............................64rf [1 ] OpenDiameter. http://www.opendiameter.org. [2 ] Industrial Technology Research Institute (ITRI), Taiwan. http://www.itri.org.tw. [3 ] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, and J. Arkko, Diameter Base Protocol,Sept. 2003. [4 ] P. Eronen, T. Hiller, and G. Zorn, ioDiameter Extensible Authentication Protocol (EAP) Application. IETF Internet Draft,draft-ietf-aaa-diameter-eap-08.txt, work in progress, June 2004. [5 ] WIRE Diameter.http://wire.cs.nthu.edu.tw/wirediameter. [6 ] C. Rigney, S. Willens, A. Rubens, and W. Simpson, Remote authentication dial in user service (RADIUS).IETF RFC 2865, June 2000. [7 ] IETF AAA WG. http://www.ietf.org/html.charters/aaa-charter.html. [8 ] 3GPP TS 29.229 Cx and Dx interfaces based on the Diameter protocol,Version 6.0.0, May 2004. [9 ] J. Loughney, ioDiameter Command Codes for Third Generation Partnership Project (3GPP) Release 5.le IETF RFC 3589, Sept. 2003. [10 ] 802.1X-2001, i0IEEE Standard for Local and metropolitan area networks- Port-Based Network Access Control,Oct. 2001. [11 ] P. R. Calhoun, T. Johansson, C. E. Perkins, T. Hiller, and P. J. MaCann, Diameter Mobile IPv4 Application.lF IETF Internet Draft, draft-ietf-aaa-diameter-mobileip- 18.txt , work in progress, May 2004. [12 ] B. Aboba, P. Calhoun, S. Glass, T. Hiller, P. McCann, H. Shiino, P. Walsh, G. Zorn, G. Dommety, C. Perkins, B. Patil, D. Mitton, S. Manning, M. Beadles, S. Sivalingham, A. Hameed, M. Munson, S. Jacobs, B. Lim, B. Hirschman, R. Hsu, H. Koo, M. Lipford, E. Campbell, Y. Xu, S. Baba, and E. Jaques, Criteria for Evaluating AAA Protocols for Network Access.ln IETF RFC 2989, Nov. 2000. [13 ] FreeRadius. http://www.freeradius.org. [14 ] Co-Existence of RADIUS and Diameter, May 2003. [15 ] B. Aboba and J. Wood, ioAuthentication, Authorization and Accounting (AAA) Trans-port Prole.ln IETF RFC 3539, June 2003. [16 ] B. Aboba and P. Calhoun, RADIUS Support For Extensible Authentication Protocol(EAP). IETF RFC 3579, Sept. 2003. [17 ] S. Kent and P. Atkinson, Security Architecture for the Internet Protocol.IETF RFC 2401, Nov. 1998. [18 ] S. Kent and R. Atkinson, IP Encapsulating Security Payload (ESP). IETF RFC 2406,Nov. 1998. [19 ] L. Ong and J. Yoakum, An Introduction to the Stream Control Transmission Protocol (SCTP).IETF RFC 3286, May 2002. [20 ] B. Aboba, J. Arkko, and D. Harrington, Introduction to Accounting Management.IETF RFC 2975, Oct. 2000. [21 ] C. Rigney, RADIUS Accounting.IETF RFC 2866, Oct. 2000. [22 ] M. Chiba, M. Eklund, D. Mitton, and B. Aboba,Dynamic Authorization Extensions to Remote Authentication Dial In User Service (RADIUS).lt IETF RFC 3576, July 2003. [23 ] P. R. Calhoun, S. Farrell, and W. Bulley, Diameter CMS Security Application. IETF Internet Draft, draft-ietf-aaa-diameter-cms-sec-04.txt, Mar. 2002. [24 ] T. Dierks and C. Allen, The TLS Protocol, IETF RFC 2246, Jan. 1999. [25 ] S. Kent and R. Atkinson, IP Authentication Header.IETF RFC 2402, Nov. 1998. [26 ] D. Harkins and D. Carrel,The Internet Key Exchange (IKE).IETF RFC 2409, Nov.1998. [27 ] L. Blunk and J. Vollbrecht, PPP Extensible Authentication Protocol (EAP). IETF RFC 2284, Mar. 1998. [28 ] R. Rivest, The MD5 Message-Digest Algorithm. IETF RFC 1321, Apr. 1992. [29 ] P. Funk and S. Blake-Wilson, EAP Tunneled TLS Authentication Protocol.IETF Internet Draft, draft-ietf-pppext-eap-ttls-04.txt , work in progress, Apr. 2004. [30 ] H. Andersson, S. Josefsson, G. Zorn, D. Simon, and A. Palekar, Protecting EAP Protocol (PEAP).lt IETF Internet Draft, draft-josefsson-pppext-eap-tls-eap-05.txt , Sept. 2002. [31 ] J. Vollbrecht, P. Eronen, N. Petroni, and Y. Ohba, ihState Machines for Extensible Authentication Protocol (EAP) Peer and Authenticator- IETF Internet Draft, draft-ietf-eap-statemachine-01.txt , work in progress, June 2003. [32 ] B. Lloyd and W. Simpson, PPP Authentication Protocols IETF RFC 1334, Oct. 1992. [33 ] W. Simpson, PPP Challenge Handshake Authentication Protocol(CHAP).IETF RFC 1334, Aug. 1996. [34 ] G. Zorn and S. Cobb, Microsoft PPP CHAP Extensions.lP IETF RFC 2433, Oct. 1998. [35 ] G. Zorn, Microsoft PPP CHAP Extensions, Version 2.IETF RFC 2759, Jan. 2000. [36 ] H. Andersson and S. Josefsson, Protecting EAP with TLS (EAP-TLS-EAP). IETF Internet Draft, draft-josefsson-pppext-eap-tls-eap-00.txt , Aug. 2001. [37 ] A. Palekar, D. Simon, G. Zorn, J. Salowey, H. Zhou, and S. Josefsson, Protecting EAP Protocol (PEAP), Version 2.ls IETF Internet Draft, draft-josefsson-pppext-eap- tls-eap-07.txt , Oct. 2003. [38 ] Adaptive Communication Environment(ACE). http://www.cs.wustl.edu/ schmidt/ACE.html. [39 ] Xerces C++ Parser. http://xml.apache.org/xerces-c/index.html. [40 ] OpenSSL. http://www.openssl.org. [41 ] Pcap Library. http://www.tcpdump.org. [42 ] WinPcap Library. http://winpcap.polito.it. [43 ] Libnet Library. http://libnet.sourceforge.net. [44 ] IEEE-802-1X-REV, Draft Standard for Local and Metropolitan Ares Networks : Port-Based Network Access Control(Revision),l. Jan. 2004.id NH0925650035 sid 915640 cfn 0 / id NH0925657001 auc 鍾啟晨 tic 應用於慣性感測器之微電容感測電路設計 adc 曾繁根 教授 adc 柳克強 教授 ty 碩士 sc 國立清華大學 dp 微機電工程研究所 yr 92 lg 中文 pg 78 kwc 微電容感測電路 abc 本論文主要研究慣性感測器之微電容感測電路,用於汽車中安全氣囊或導航系統中訊號的感測,由於所感測的電容訊號極微小(10-15F),故需要一能抵抗雜訊、高準確度的電路系統來作感測。論文中說明四種常見的感測電路,並且說明電路上的不理想特性及來源,以及如何改善,經由分析後,我們選擇以差動輸出的方式作為微電容感測電路的架構,原因是此架構可以消除共模的雜訊及電路中的雜散電容且架構簡單。而設計一之電路系統由兩匹配的微電容感測電路及抗雜訊的差動放大器所組成,輸入訊號由兩組相位相反的時脈訊號來控制。設計二之電路是由兩匹配的感測電路及二級高增益放大器所構成,並提出電容匹配及抵抗雜訊之保護環佈局技術來降低誤差源。 tc 目錄 目錄………………………………………………………………………I 圖目錄…………………………………………………………………...IV 表目錄………………………………………………………………….VIII 第一章 緒論……………………………………………………………..1 1.1 研究背景…………………………………………………………….2 1.2 研究動機與目的…………………………………………………….6 第二章 微型陀螺儀系統之感測原理…………………………………..8 2.1振動式陀螺儀感測原理……………………………………………..8 2.1.1 運動理論分析………………………………………………..9 2.2微型陀螺儀系統架構……………………………………………….15 2.2.1 Sigma-Delta架構簡介………………………………………16 2.2.2微陀螺儀使用Sigma-Delta之架構………………………...16 第三章電容感測電路…………………………………………………..20 3.1前言…………………………………………………………………20 3.2文獻回顧……………………………………………………………20 3.2.1同步感測電路………………………………………………..20 3.2.2切換式電容感測電…………………………………………..22 3.2.3 差動式輸出之電容感測………………………………….…24 3.3高電壓驅動與感測電路的介……………………….………..........…26 3.3.1耦合電容及靜電放電保護……………………………………..26 3.4電路的非理想特性…………………………………………………...27 3.5電容式電路的誤差…………………………………………………...28 3.5.1放大器的抵補電壓…………………………………………..…28 3.5.2放大器1/f雜訊…………………………………………………28 3.5.3開關誤差………………………………………………………..29 3.5.4開關KT/C雜訊………………………………………...………31 3.6 Correlated Double Sampling………………………….............………32 3.7放大器熱雜訊最佳化………………………………………...........…34 第四章差動式微電容感測電路之設計…………………………………38 4.1前言…………………………………………………………………38 4.2微電容感測電路之設計……………………………………………38 4.2.1系統電路架構之設計………………………………………..40 4.2.2HSPICE電路模擬結果……………………………………....42 4.2.3電路佈局……………………………………………………..46 4.2.4全差動式電容感測電路設計(一)電路測試結果…………...48 4.3全差動式電容感測電路之設計二…………………………………52 4.3.1CMOS運算放大器之設計…………………………………..53 4.3.2放大器之增益……………………………………………….54 4.3.3頻率響應…………………………………………………….55 4.3.4 Slew Rate………………………………………………….....57 4.3.5 輸入偏移電壓………………………………………………58 4.3.6輸入級……………………………………………………….59 4.3.7運算放大器之補償………………………………………….60 4.3.8偏壓級設計………………………………………………….64 4.3.9電容感測電路設計二之電路模擬………………………….66 4.3.10電容感測電路設計二之電路佈局………………………...69 第五章 結論……………………………………………………………72 第六章 未來工作………………………………………………………73 參考文獻………………………………………………………………..77 圖目錄 圖1-1.三軸六個自由度感測示意圖…………………………………….2 圖1-2.微機電慣性感測器價格與性能圖……………………………….2 圖1-3.Analog Device陀螺儀ADXRS150………………………………6 圖2-1 地球自轉產生科氏力說明圖……………………………………9 圖2-2 空間中的旋轉座標圖…………………………………………...10 圖2-3懸臂樑簡圖………………………………………………………12 圖2-4懸臂樑集中質量模型…………………………………………....12 圖2-5 閉迴路系統架構………………………………………………...15 圖2-6 微型陀螺儀輸出輸入示意圖…………………………………...17 圖2-7 Sigma-Delta微陀螺儀系統……………………………………...17 圖 2-8 Deadzone說明圖………………………………………………..19 圖 3-1 同步感測電路…………………………………………………..21 圖3-2 解調後的訊號及雜訊頻率……………………………………...22 圖3-3切換式電容電路架構…………………………………………....23 圖3-4 Pseudo-differential感測電路架…………………………………25 圖3-5 Pseudo-differential之IPCMFB迴授感測電路架構…………...26 圖3-6耦合電容及靜電放電保護電路…………………………………27 圖3-7(a) charge injection………………………………………………..30 圖3-7(b) clock feedthrough…………………………………………….30 圖3-8 bottom-plate和center switch的差動電路……………………..30 圖3-9Correlated Double Sampling運作過程………………………….34 圖3-10感測相位時的積分電路與輸入雜訊………………………….35 圖4-1微電容感測電路之設計………………………………………...39 圖4-2 微電容感測電路之簡化模型…………………………………..40 圖4-3 系統電路方塊圖………………………………………………..40 圖4-4微電容感測電路系統圖………………………………………...41 圖4-5(a) 輸入的時脈訊號clk1、clk3………………………………...42 圖4-5(b) 輸入的時脈訊號clk2、clk4………………………………...42 圖4-6(a)ΔC=1pF時之電壓輸出……………………………………….43 圖4-6(b)ΔC=0.1pF時之電壓輸出……………………………………..43 圖4-6(c)ΔC=10fF時之電壓輸出………………………………………43 圖4-6(d)ΔC=1fF時之電壓輸出………………………………………..44 圖4-7輸出增益圖………………………………………………………45 圖4-8 電路雜訊模擬圖………………………………………………...45 圖4-9 電路佈局圖…………………………………………………….. 47 圖4-10 製作封裝好的IC……………………………………………....48 圖4-11 製作好未封裝的裸晶………………………………………….48 圖4-12 測試方塊示意圖………………………………………………49 圖4-13 量測儀器接線圖………………………………………………49 圖4-14 ∆Csense=1pF…………………………………………………...51 圖4-15 ∆Csense=500fF…………………………………………………51 圖4-16 ∆Csense=50fF………………………………………………......52 圖4-17 C-V曲線………………………………………………………..52 圖4-18全差動式電容感測電路之設計二架構圖……………………..53 圖4-19二級運算放大器架構…………………………………………..54 圖4-20 CMOS二級運算放大器………………………………………..54 圖4-21簡化的頻率響應模型…………………………………………..56 圖4-22運算放大器之輸入與增益級…………………………………..59 圖4-23 運算放大器及其補償電路…………………………………….61 圖4-24 運算放大器補償電路之小訊號模型………………………….61 圖4-25偏壓級、第二級和補償電路…………………………………..63 圖4-26 放大器之電流源電路………………………………………….66 圖4-27 二級放大器之波得圖………………………………………….67 圖4-28 設計二之電容感測電路電路圖……………………………….67 圖4-29 輸入時脈訊號………………………………………………….68 圖4-30 C-V轉移曲線…………………………………………………..68 圖4-31 雜訊分析圖…………………………………………………….69 圖4-32同心圓之電容佈局圖…………………………………………..70 圖4-33保護環之佈局…………………………………………………..70 圖4-34 電路設計二之佈局圖………………………………………….71 圖6-1 CHS電路架構圖………………………………………………...74 圖6-2 差動折疊疊接之電路圖………………………………………...74 圖6-3 差動折疊疊接偏壓電路圖……………………………………...75 圖6-4 差動折疊疊接電路之波得圖…………………………………...75 圖6-5 Gibbert cell乘法器電路圖……………………………………....76 + 表目錄 表3-1切換式電容感測電路的誤差及解決方式………………………32 表4-1 電路模擬規格表………………………………………………...46rf 參考文獻 [1 ] M.A. LEMKIN et al, “A 3-axis force balanced accelerometer using a single proof-mass,” Solid State Sensors and Actuators, Vol. 2, pp. 1185-1188, 1997. [2 ]Analog Device ADXL210 accelerometer datasheet. http://www.analog.com/pdf/ADXL202_10_b.pdf. [3 ]Navid Yazdi,Farrokh ayazi, and Khalil Najafi, “ Micromachined Inertial sensor’’, Proc.of the IEEE.Aug.1998,pp1640-1659 [4 ] B. E. Boser and R. T. Howe, “Surface Micromachined Accelerometer, ”IEEE Journal of Solid-State Circuits, Vol. 31, pp. 366-375, 1996. [5 ] N. Yazid, F. Ayazi and K. Najafi, “Micromachined Inertial Sensors”, invited paper, proceedings of the IEEE, vol 86,1998. [6 ]徐玉紋, 周元昉, ”微型振動陀螺儀簡介”, 微系統科技協會季刊, 2000, pp.35-43. [7 ] M. Kraft, C. Lewis, T. Hesketh and S. Szymkowiak, “A novel micromachined accelerometer capacitive interface,” Sensors and Actuators A68 ,pp. 466-473, 1998. [8 ] F.N. Alavi, M. Kraft and D.O. King, “ Sensitivity analysis of a high performance accelerometer,” Proc. Conf. on Micromechanics Europe, pp. 305-308, 2001. [9 ] M.A. LEMKIN et al, “A 3-axis force balanced accelerometer using a single proof-mass,” Solid State Sensors and Actuators, Vol. 2, pp. 1185-1188, 1997. [10 ] D. Johns and K. Martin, “Analog Integrated Circuit Design,” John Wiley & Sons, New York, 1997. [11 ] B. E. Boser and R. T. Howe, “Surface Micromachined Accelerometer,” IEEE Journal of Solid-State Circuits, Vol. 31, No. 3, 1996. [12 ] C.Lu, M. Lemkin and B. E. Boser, “A monolithic surface micromachined accelerometer with digital output,” IEEE Journal of Solid-State Circuits, Vol. 30, 1995. [13 ] N. Wongkomet, “Position Sensing for Electrostatic Micropositioners,” Ph. D. Dissertation, University of California at Berkeley, 1998. [14 ] Tavakoli, M.; Sarpeshkar, R.” An offset-canceling low-noise lock-in architecture for capacitive sensing” IEEE Journal of Solid-State Circuits, Vol. 38, 2003. [15 ] Evans I.,Somerville A. and York T.,`A sensing Circuit For Micro-Capacitance Tomography`,1st World Congress on Industrial Process Tomography,Buxton,Greater Manchester,April 14-17.1999 [16 ]陳俊成,” 電容式微加速度計系統及感測電路之設計、分析與模擬”, 國立交通大學電機與控制工程所,碩士論文,2001. [17 ] Star-HSPICE Manual,Apr.2001. [18 ]”Layout Implementation(Virtuoso) Training Manual”CIC lecture,January 2003 [19 ] Bernhard E. Boser, ”Capacitive Position Sense Circuit”, Berkeley Sensor & Actuator Center, Dept. of Electrical Engineering and Computer Sciences University of California, 1996. [20 ] Bernhard E. Boser, ”Electronics for Micromachined Inertial Sensor”, Berkeley Sensor & Actuator Center, Dept. of Electrical Engineering and Computer Sciences University of California, 1997. [21 ] Naiyavudhi Wongkomet, ”Position sensing for Electrostatic Micropositioners, Dept. of Electrical Engineering and Computer Sciences University of California,1998.id NH0925657001 sid 916201 cfn 0 / id NH0925657002 auc 張寶文 tic 微型探針與微機電元件之整合與應用 adc 方維倫 adc 焦傳金 ty 碩士 sc 國立清華大學 dp 微機電工程研究所 yr 92 lg 中文 pg 84 kwc 微探針 kwc 微電極陣列 kwc 微力感測器 abc 本研究主要探討微探針整合其他微機電元件之製作與其應用。文中發展兩種微探針之製作,包含整合導線且具有適當絕緣之微電極陣列,以及整合平板與彈簧之微力感測器元件結構,以闡述微機電製程製作微探針的多樣性。在整合導線方面,該元件可供感測生物電訊號之用,並有整合前級放大器,降低訊號傳遞路徑,以減少雜訊耦合,因此可提高感生物電訊號之解析度。另一方面,利用簡單的製程將探針整合於運動平板之上,免去需透過組裝整合之不便,且其扭轉剛體結構設計,除了可做微力感測器之載具外,亦可直接驅動之供微調控探針平台之用。上述兩個微探針整合型元件在製造上,都分別導入局部氧化的機制,除提供微電極陣列的電性上之絕緣外,亦保護了微力感測器之微探針的尖銳度。 tc 目錄 I 圖目錄 III 第一章 緒 論 1 1-1前言 1 1-2文獻回顧 2 1-2.1 整合電極與傳導線結構—微電極陣列 2 1-2.2 整合平板與彈簧結構—微力感測器 4 1-3研究動機與目標 6 第二章 整合電極與導線結構實例—微電極陣列 14 2-1 元件設計考量 14 2-2 製程與實驗 15 2-2.1 製程規劃 15 2-2.2 製程步驟 16 2-2.3 製程結果 18 2-3 測試與討論 19 2-3.1 絕緣性證明 20 2-3.2 電性討論 20 2-3.3人工刺激訊號實驗 21 2-3.4 整合前級放大器微電極陣列實驗 22 2-3.5 光反應測試 22 第三章 整合平板與彈簧結構實例—微力感測器 40 3-1設計與分析 41 3-1.1系統介紹 41 3-1.2彈簧剛性分析 41 3-1.3壓痕作用力推算 42 3-1.4 靜電驅動分析與模擬 43 3-2製程與實驗 44 3-2.1製程步驟 44 3-2.2製程結果 46 3-2.3製程問題與討論 47 3-4 量測與實驗架設 49 3-4.1 靜態觀測 50 3-4.2 動態量測與實驗架設 50 第四章 結論與未來工作 75 第五章 文獻回顧 77rf [1 ] Y. Gianchandani and K. Najafi, “A bulk silicon dissolved wafer process for microelectromechanical devices,” Journal of Microelectromechnicalg System, 1, pp.77-85, 1992. [2 ] C. G. Keller and R. T. Howe, “HexSil tweezers for teleoperated micro-assembly,” MEMS’97, Nagoya, Japan, Jan. 1997, pp.72-77. [3 ] F. Ayazi and K. Najafi, “High aspect-ratio combined poly and single-crystal silicon (HARPSS) MEMS Technology,” Journal of Microelectromechnical System, 9, pp. 288-294, 2000. [4 ] R. Toda, K. Minami, and M. Esashi, “Thin beam Bulk Micromachining based on RIE and Xenon difluoride silicon etching”, Sensors and Actuators A, 66 , pp.268-217, 1998 [5 ] K.A. Shaw, Z.L. Chang, and N.C. MacDonald, “SCREAM I: A single mask, single-crystal silicon, reactive ion etching process for microelectromechanical Structures”, Sensors and Actuators A, 40, pp.210-213, 1994. [6 ] MCNC Mumps Process,http://www.memsrus.com/CIMSmain2ie.html [7 ] SUMMiT Process,http://www.sandia.gov/mstc/index.html [8 ] Bosch Process,http://www.europractice.bosch.com/en/start/index.htm [9 ] T. Ichiki, T. Hara, T. Ujiie, Y. Horiike, and K. Yasuda , “ Development of bio-MEMS devices for single cell expression analysis,” Conference of Microprocesses and Nanotechnology, Shimane , Japan, Oct., 2001, pp 190 -191. [10 ] O. Bruckman, G. Jullien, M. Ahmadi, and W. Miller, “ A MEMS DNA replicator and sample manipulator,” Proceedings of Circuits and Systems, Lansing, MI, Aug., 2000, pp 232–235. [11 ] T. Kikuchi, T. Ujiie, T. Ichiki, and Y. Horiike, “Fabrication of quartz micro-capillary electrophoresis chips for health care devices,” Conferences of Microprocesses and Nanotechnology, Yokohama , Japan, July, 2001, pp 178-179. [12 ]A. Branner and R. A. Normann, “A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats,” Brain Research Belletin, 51-4, pp293-306, 2000. [13 ]S. Henry, D.V. McAllister, M. G. Allen, and M.R. Prausnitz, “Micromachined needles for the transdermal delivery of drugs,” IEEE The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, Heidelberg, Germany, Jan. 1998, pp494 - 498 [14 ] K. D. Jandt, “Atomic force microscopy of biomaterials surfaces and interface,” Surface Science, 491,pp303-332, 2000. [15 ] P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Dig, B. Gotsmann, W. Herle, M. A. Lantz, H. E. Rothuizen, R. Stutz and G. Binnig, “The "Millipede"-nanotechnology entering data storage,” IEEE Transactions on Nanotechnology, 1-1, pp 39-55, 2002. [16 ] M. Shikida, M. Odagaki, N. Todoroki, M. Ando, Y. lshihara, T. Ando, and K. Sato, “ Non-photolithographic pattern transfer for fabricating arrayed 3-D microstructures by chemical anisotropic etching,” IEEE The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, Kyoto, Japan, Jan., 2003,.pp 562 –565. [17 ] T. Kawano, Y. Kato, R. Tani, H. Ishino, H. Takao, K. Sawada and M. Ishida, “Neuron size Si probe array fabricated on integrated circuits for multichannel Electrode,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems(Transducer’03), Boston, Jun., 2003, pp1679-1682. [18 ] K. Oka, S. Aoyagi, Y. Isono, G. Hashiguchi ,and H. Fujita, “ Fabrication of a micro needle for a trace blood test,” The 11th International Conference on Solid-State Sensors and Actuators(Transducer’01), Munich ,Germany, June, 2001, pp412-415 [19 ] M. D. Gingerich, J. F. Hetke, D. J. Anderson, and K. D. Wise, “A 256-site 3D CMOS microelectrode array for multipoint stimulation and recording in central nervous system,” The 11th International Conference on Solid-State Sensors and Actuators(Transducer’01), Munich ,Germany, June, 2001, pp416-419 [20 ] A. Hung, D. Zhou, R. Greenberg, and J. W. Judy, “Micromachined Electrodes for Retinal Prostheses,” IEEE-EMBS Special Topic Conference On Microtechnologies In The Medicine & Biology, Madison, Wisconsin, May, 2002, pp 76-79. [21 ] P. Griss, and G. Stemme,“ Novel, side opened out-of-plane microneedles for microfluidic transdermal interfacing,” The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, Jan., 2002,.pp 467 –470. [22 ]E. V. Mukerjee, R. R. Issseroff, S. D. Collins and R. L. Smith, “Microneedle array with integrated microchannels for transdermal Sample Extraction and in situ Analysis,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems (Transducer’03), Boston, Jun., 2003, pp1439-1441 [23 ] J. K. Chen, K. D. Wise, J. F. Hetke, and S. C. Bledsoe, “A multichannel neural probe for selective chemical delivery at cellular level,” IEEE Transactions on Biomedical Engineering, 44, pp760-769,1997. [24 ] K. C. Cheung, K. Djupsund, Y. Dan, and L. P. Lee, “Implantable multichannel electrode array based on SOI technology,” Journal of Microelectromechanical Systems, 12-2, pp179-184, Apr., 2003. [25 ] M. Meister, L. Lagnado, and D. A. Baylor, “Concerted signaling by retinal ganglion cells,” Science, 270, pp 1207-1210, 1995. [26 ] I. H. Brivanlou, D. K. Warland, and M. Meister, “Mechanisms of concerted firing among retinal ganglion cells,” Neuron, 20, pp 527-539, 1998. [27 ] S. H. DeVries,“Correlated firing in rabbit retinal ganglion cells,” Journal of Neurophysiol, 81, pp 908-920, 1999. [28 ] C. Xu, W. Lemon, and C. Liu,” Design and fabrication of a high-density metal microelectrode array for neural recording,” Sensors and Actuators A, 96, pp 78–85, 2002. [29 ] P. K. Campbell, K. E. Jones, R. J. Huber, K. W. Horch, and R. A. Normann, “A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array,” IEEE Transactions On Biomedical Engineering, 38, pp 758-768, 1991. [30 ] K. E. Jones, P. K. Compbell, and R. A. Normann, “Interelectrode isolation in a penetrating intracortical electrode array,” IEEE Engineering in Medicine and Biology Society, Nov, 1990, pp 496-497. [31 ] R. A. Normann, E. M. Maynard, P. J. Rousche, and D. J. Warren, “A neural interface for a cortical vision eprosthesis ,” Vision Research, 39, pp 2577-2587, 1999. [32 ] R. A. Normann, P. K. Campbell, and K. E. Jones, “A silicon based electrode array for intracortical stimulation: structural and electrical properties,” IEEE Engineering in medicine & biology society, Nov, 1989, pp 939-940. [33 ] M. O, Heuschkel, M. Fejtl, M. Raggenbass, D. Bertrand, and P. Renaud , “A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices,” Journal of Neuroscience Methods, 114, pp 135 - 148 .2002. [34 ] Ayanda Biosystems, http://www.ayanda-biosys.com/lts.html [35 ] P. Thiebaud, C. Beuret, N.F. de Rooij, and M. Koudelka-Hep, “Microfabrication of Pt-tip microelectrodes,” Sensors and Actuators B, 70, pp 51-56, 2000. [36 ] P. Thiebaud, C. Beuret, M. Koudelka-Hep, M. Bove, S. Martinoia, M. Grattarola, H. Jahnsen, R. Rebaudo, M. Balestrino, J. Zimmer, and Y. Dupont, “An array of Pt-tip microelectrodes for extracellular monitoring of activity of brain slices,” Biosensors & Bioelectronics, 14, pp 61-65, 1999. [37 ] P. Griss, P. Enoksson, H. K. Tolvanen-Laakso, P. Merilainen, S. Ollmar, and G Stemme, “Micromachined electrodes for biopotential measurements,” Journal Of Microelectromechanical System, 10, pp 10-16, 2001. [38 ] Q. Bai, K.D. Wise, and D. J. Anderson, “A high-yield microassembly Structure For three-dimensional microelectrode arrays,” IEEE Transactions On Biomedical Engineering, 47, pp 281-289, 2000. [39 ] Q. Bai, and K. D. Wise, “Single-unit neural recording with active microelectrode arrays,” IEEE Transactions On Biomedical Engineering, 48, pp 911-920, 2001. [40 ] A. C. Hoogerwerf, and K. D. Wise, “A three-dimensional microelectrode array for chronic neural recording,” IEEE Transactions on Biomedical Engineering, 41, pp 1136-1146, 1994. [41 ] S. Takeuchi, T. Suzuki, K. Mabuchi, and H. Fujita, “ 3D flexible multichannel probe array,” IEEE The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, Kyoto, Japan, Jan., 2003,.pp 376 –370. [42 ] T. Suzuki, K. Mabuchi, and S. Takeuchi, “A 3D flexible parylene probe array for multichannel neural recording,” First International IEEE EMBS Conference on Neural Engineering, Capri Island, Italy, March, 2003, pp 154-156 [43 ] G. Binning, C. F. Quate, and Ch. Gerber, “Atom force microscope,” Physical Review Letters, 56, pp930-933, 1986 [44 ] C. Serre, A. P. Rodriguez, J.R. Morante, P. Gorostiza and J. Esteve, “Determination of micromechanical properties of thin films by beambending measurements with an atomic force microscope,” Sensors and Actuators A, 74, pp.134-138, 1999. [45 ]K.E. Petersen and C.R. Guarnieri, “Young’s modulus measurements of thin films using micromechanics,” Journal of Applied Physic, 50, pp. 6761-6766, 1979. [46 ]L.M. Zhang, D. Uttamchandani and B. Culshaw, “Measurement of mechanical properties of silicon microresonators,” Sensors and Actuators A, 29, pp. 79-84, 1991. [47 ]L. Kiesewetter, J. M. Zhang, D. Houdeau and A. Steckenborn, “Determining of Young’s moduli of micromechanical thin films using the resonance method,” Sensors and Actuators A, 35, pp. 153-159, 1992. [48 ]W. N. Sharpe, Jr., B. Yuan, and R. L. Edwards, “A new technique for measuring the mechanical properties of thin films,” Journal of Microelectromechanical Systems, 6, no. 3, pp. 193-199, 1997. [49 ]K. Najafi and K. Suzuki, “A novel technique and structure for the measurement of intrinsic stress and Young’s modulus of thin films,” Proceeding of the IEEE MEMS, Salk Lake City, UT, Feb., 1989,.pp96-97. [50 ] S. Sundarajan, and B. Bhushan,“Development of AFM-based techniques to measure mechanical properties of nanoscale structures,” Sensor and Actuators A, 101, pp338-351, 2002 [51 ] E. Rädlen, and G. H. Frischat, “Atomic force microscopy as a tool to correlate nanostructure to properties of glasses,” Journal of Non-crystalline Solids, 222, pp69-82, 1997 [52 ] M. F. Tabet, and F. K. Urban, “Comparison of atomic force microscope and Rutherford backscattering spectrometry data of nanometre size zinc islands,” Thin Solid Films, 290-291, pp312-316, 1996 [53 ] G. L. Miller, E. R. Wagner, and T. Sleater, “A rocking beam electrostatic balance for the measurement of small forces,” Review of Scientific Instrument, 62, pp.705-709, 1991 [54 ] J. E. Griffith, and G. L. Miller, “ Force-sensing system, including a magnetically mounted rocking element,” US Patent 5307693,1994 [55 ] S. A. Joyce, and J. E. Houston, “A new force incorporating force-feedback control for interfacial force microscopy”, Review of Scientific Instrument, 62, pp.710-715, 1991 [56 ]N. Kato, I. Suzuki, H. Kituta, and K. Iwata, “Force-blancing force sensor with an optical lever”, Review of Scientific Instrument, 66, pp.5532-5536, 1995 [57 ] K.Chang, N. C. Shie, H.M. Tai, and T. Chen, “Application of optic-fiber interferometers on micro force-balancing force sensor”, 7th Nano Engineering and Micro System Technology Workshop, Taipei, Taiwan, Nov., 2003 [58 ]郭子熒, “三維微電極陣列於神經電信號之應用,” 國立清華大學動力機械系碩士論文, 2003. [59 ] R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” Journal of Micromechanics and Microengineering, 6, pp.320-329, 1996. [60 ] P. Jaecklin, C. Linder, and N. F. de Rooij, “Line-addressable torsional micromirrors for light modulator arrays,” Sensors and Actuators A, 41-42, pp 324-329, 1994. [61 ] O.Tsuboi, Y. Mizuno, N. Koma, H. Soneda, H. Okuda, S. Ueda, I. Sawaki and F. Yamagishi “A rotational comb-driven micromirrors with a large deflection angle and low drive voltage,” IEEE The Fifteenth Annual International Conference on Micro Electro Mechanical Systems, Las Vegas, Nevada, USA, Jan. 20-24, 2002, pp532-535 [62 ] J. A. Thornton and D. W. Hoffman, “ Stress-related Effects in Thin Film,” Thin Solid Films, 171, pp 5-31, 1989 [63 ] http://www.mvis.com/id NH0925657002 sid 916204 cfn 0 / id NH0925657003 auc 劉勇志 tic 3w方法量測熱傳導係數之溫度效應 adc 饒達仁 ty 碩士 sc 國立清華大學 dp 微機電工程研究所 yr 92 lg 中文 pg 101 kwc 3w方法 kwc 熱傳導係數 kwc 薄膜 abc 當物體的尺度縮小至微奈米等級的時候,一些物理特性會略有改變,本論文探討的熱傳導係數即是其中一例。首先依照3?蝷隤k建立一套完整薄膜熱傳導係數量測的設備,主要搭配鎖相放大器、訊號消去盒、電腦監控程式(LabVIEW)、以及週邊的設備。此量測設備可以快速(大約15分鐘)並精準的將薄膜的熱傳導係數求得。利用建立的量測設備,實際對氧化矽(SiO2)以及氮化矽(Si3N4)薄膜進行量測,藉此驗證量測設備的可行性。實驗得到的熱傳導係數值分別為0.83±0.31%(W/m-K)以及0.78±0.94%(W/m-K),結果顯示實驗值與文獻值相去不遠,故證明此量測設備之可靠性。另外本論文討論熱傳導係數的溫度效應,我們利用加熱平板對量測樣本加熱,藉由外加的電源供應器來控制平板表面的溫度,在整個量測過程中,加熱平板的溫度差可以控制在小於1℃的範圍內。我們也實際量測氮化矽(Si3N4)與氧化矽(SiO2)薄膜熱傳導係數與溫度的關係。實驗結果顯示,氮化矽(Si3N4)與氧化矽(SiO2)薄膜的熱傳導係數會因為溫度升高而增加,上升的趨勢與文獻相近。因此,利用自行建立的量測系統可以快速地將薄膜的熱傳導係數求得,搭配加熱設備後可以了解溫度對於熱傳導係數的影響。 tc 中文摘要……………………………………………………………………. .........i 英文摘要………………………………………………………………………….ii 誌謝……………………………………………………………………................ iii 總目錄…………………………………………………………………………… iv 圖目錄…………………………………………………………………………...vii 表目錄…………………………………………………………………………… xi 第一章 緒論 1.1簡介………………………………………………………………………….. 1 1.2文獻回顧……………………………………………………………………... 3 1.3本文架構……………………………………………………………………. 10 第二章 3?蝪禰輔z論推導 2.1加熱線(heater)上的溫度變化?幅heater………………………………………. 12 2.2待測膜與基板間的溫度變化?幅interface……………………………………... 16 2.2.1 厚膜與基板間的溫度變化?幅interface…………………………………. 16 2.2.2 薄膜與基板間的溫度變化?幅interface…………………………………. 23 2.3二維非等向性模型(2D anisotropic model)……………….……………….. 26 2.3.1 基板厚度為有限時的修正……………………………………………. 26 2.3.2非等向性薄膜與基板的修正………………………………………….. 27 2.4薄膜熱傳導係數的推算…………………………………………………… 30 第三章 3?蝬q測系統建立 3.1消去盒(cancellation box)之建立................................................................... 31 3.2量測系統週邊設備之建立………………………………………………… 36 3.3待測樣本之製作……………………………………………...……………. 38 3.4量測設備精準度之改進....................................... ..........................................47 3.4.1 LabVIEW程式設計.............................................. ..................................48 3.4.2 將消去盒中麵包板以PCB置換................................ ...........................51 3.5實驗量測步驟以及注意事項...................................... ..................................52 3.6導電薄膜量測原理以及注意事項.................................................................53 3.7溫度效應量測設備之建立....................................................... .....................57 3.8電源供應器輸入功率與加熱板表面溫度之推導………….….. ………….59 第四章 量測結果以及數據分析 4.1四點量測法量測加熱線的電阻值以及TCR值.............. ............................62 4.2實驗數據的分析技巧............................................................ ........................69 4.3量測設備之正確性驗證........................................ ........................................73 4.4導電薄膜(VOx )熱傳導係數之量測………………………………………. 76 4.5不同寬度之加熱線對於熱傳導係數之影.................................................... .80 4.6加熱板實驗設備正確性的驗證..................................….......... ....................84 4.7 GeSbTe薄膜熱傳導係數與溫度的關係............. ..........................................86 第五章 結論以及未來展望 5.1結論....................................................................................... .........................91 5.2未來展望........................................................................... .............................93 參考文獻...................................................................................... .........................95 附錄 PCB板layout.............................................................................................98 圖目錄 圖1-1 元件受到熱之後導致無法正常作動之示意圖………………………... 1 圖1-2 擴散法之示意圖………………………………………………………... 3 圖1-3 在入射光頻率?蝛T定的情況下,透過實驗數據的斜率(slope)將熱 擴散常數D求得,進而推得熱傳導係數k………………………….. 5 圖1-4 使用擴散法量測樣本內的溫度分佈…………………………………... 6 圖1-5 熱傳遞法基本概念之示意圖,圖中斜線部分為待測薄膜…………... 7 圖1-6 Jansen 量測薄膜熱傳導係數所使用的結構圖……………………….. 8 圖1-7 3?蝷隤k量測熱傳導係數所需要的結構……………………………….. 9 圖2-1 待測樣本的截面圖,其中加熱線的線寬為2b、加熱線的長度 為l、薄膜的厚度為t…………………………………………………. 13 圖2-2 待測樣本的上視圖……………………………………………………. 13 圖2-3 厚膜量測結構之側視圖,樣本的厚度為T、加熱線的線寬 為2b…………………………………………………………………… 17 圖2-4 S.-M. Lee利用3?蝷隤k得到薄膜溫度差與頻率無關……………….. 24 圖2-5 利用參考組以及對照組的方式求得待測薄膜熱傳導係數………… 25 圖2-6 (a)基板的厚度為無限大 (b)基板的厚度為有限 (c)三層(three-layers)的模型…………………………………………... 27 圖2-7 量測非等向性熱傳導係數修正之圖示……………………………….. 29 圖2-8 Si/Ge超晶格之水平與垂直方向熱傳導係數……………………….. 29 圖3-1 3?蝬q測系統概略圖,圖中虛線所包含的就是消去盒的電路部分.... 32 圖3-2 消去盒內部之電路圖以及相關連接線……………….……………… 34 圖3-3 實際完成的麵包板,圖中虛線部分即為CB-50介面……………… 36 圖3-4 電腦監控系統(LabVIEW)……………………………………………. 37 圖3-5 使用PECVD在晶圓表面沉積待測薄膜……………………………. 40 圖3-6 設計不同線寬加熱線測試圖案的光罩圖…………………………… 41 圖3-7 光阻塗佈完畢之後的圖……………………………………………… 42 圖3-8 顯影完成之後的圖…………………………………………………… 43 圖3-9 e-gun蒸鍍完畢之後的圖…………………………………………….. 44 圖3-10 掀離完畢之後的圖…………………………………………………… 44 圖3-11 實際做出來的樣本圖案……………………………………………… 45 圖3-12 將製作完成的樣本黏上銦球(Indium shot)的過程………………….. 45 圖3-13 樣本上金屬線受到破壞的情形…………………………………….... 46 圖3-14 完成之後的量測系統實際圖………………………………………… 47 圖3-15 調控輸入比例的示意圖……………………………………………… 48 圖3-16 透過軟體來減少量測時間之LabVIEW程式畫面………………….. 50 圖3-17 使用PCB後實際量測系統圖………………………………………... 51 圖3-18 PCB與麵包板擷取V3?蝪T號的比較圖,圖中?幀3?蝒滬?小於 0.03mV ………………………………………………………………. 52 圖3-19?n?n熱阻概念的示意圖?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?| 54 圖3-20?n?n導電薄膜完成後的圖示?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?| 55 圖3-21?n?n量測導電薄膜所使用的參考晶圓之示意圖?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?|?| 56 圖3-22 TC-08介面之照片,圖中T型電偶極與樣本接觸,將擷取得到 的溫度,透過RS-232介面與電腦連接,達到即時顯示樣本溫度 的功用………………………………………………………………… 58 圖3-23 加熱平板側視圖……………………………………………………… 59 圖4-1 利用四點量測來得知加熱線電阻值………………………………… 63 圖4-2 初始量測加熱線TCR值之示意圖………………………………….. 65 圖4-3 改進之後加熱線TCR值量測之示意圖…………………………….. 66 圖4-4 改進之後TCR量測的實際圖……………………………………….. 66 圖4-5 不同線寬加熱線的電阻-溫度變化圖………………………………... 67 圖4-6 將鎖相放大器擷取的訊號對頻率取自然對數後所作的圖………… 69 圖4-7 使用加熱線的溫度來估算基板的熱傳導係數……………………… 70 圖4-8 在一維模型下,薄膜的溫度差?幅f與頻率無關……………………. 71 圖4-9 透過數據分析所求得的薄膜熱傳導係數…………………………… 72 圖4-10 利用量測設備對氮化矽薄膜進行量測所得之數據………………… 74 圖4-11 利用量測設備對氧化矽薄膜進行量測所得之數據…………………. 74 圖4-12 紅外線微感測器結構之示意圖……………………………………… 76 圖4-13 量測導電薄膜VOx之結構圖………………………………………… 78 圖4-14 量測導電薄膜VOx之數據圖………………………………………… 79 圖4-15 利用10?慆線寬加熱線量測氧化矽薄膜之熱傳導係數……………. 81 圖4-16 Borca-Tasciuc分析加熱線線寬與薄膜厚度比例之關係圖…………. 83 圖4-17氧化矽薄膜熱傳導係數隨溫度變化圖,圖中EXP表示實驗量測 所得到的數……………………………………………………………. 84 圖4-18氮化矽薄膜熱傳導係數隨溫度變化圖,圖中EXP表示實驗量測 所得到的數……………………………………………………………. 85 圖4-19 樣本一在室溫下的熱傳導係數值,圖中小方塊所顯示的就是量 測薄膜的相關參數以及量測所得到的平均熱傳導係數……………. 86 圖4-20 樣本二在室溫下的熱傳導係數值,圖中小方塊所顯示的就是量 測薄膜的相關參數以及量測所得到的平均熱傳導係數……………. 87 圖4-21量測GeSbTe薄膜熱傳導係數與溫度的關係圖…………………….. 88 圖4-22 非晶GST薄膜熱傳導係數與溫度之關係圖……………………….. 89 表目錄 表3-1 CB50AD7541與AD7541連接的相對關係…………………………. 35 表3-2 利用PECVD進行Si3N4/SiO2沉積的製程條件……………………… 39 表3-3 外部電源供應器輸入功率與加熱板表面溫度之關係……………….. 61 表4-1 氧化矽(SiO2)薄膜熱傳導係數參考文獻………………………………. 75 表4-2 氮化矽(Si3N4)薄膜熱傳導係數參考文獻……………………………... 76 表4-3不同線寬加熱線量測LPCVD oxide熱傳導係數之數據……………...83rf 參考文獻 [1 ] Minhang Bao and Weiyuan Wang, “ Future of microelectro- mechanical systems (MEMS),” Sensors and Actuators A, vol. 56, pp. 135-141, 1996. [2 ] S. -M. Lee and David G. Cahill, “Heat transport in thin dielectric films,” Journal of Applied Physics, vol. 81, pp. 2590–2595, 1996. [3 ] Kenneth E. Goodson, and MI Flik, “Solid layer thermal conductivity measurement techniques,” Applied Mechanics Review, vol. 47, pp. 101–112, 1994. [4 ] J. E. Graebner, S. Jin, G. W. Kammlott, B. Bacon, L. Seibles, and W. Banholzer, “Anisotropic thermal conductivity in chemical vapor deposition diamond,” Journal of Applied Physics, vol. 71, pp. 5353–5356, 1992. [5 ] M. Banaszkiewicz, K Seiferlin, T. Spohn, G. Kargl and N. Komle, “A new method for the determination of thermal conductivity and thermal diffusivity from linear heat source measurements,” Review of Scientific Instruments, vol. 68, pp. 4184–4190, 1997. [6 ] Dachen Chu, Maxat Touzelbaev, Kenneth E. Goodson, Sergey Babin, and R. Fabian Pease, “Thermal conductivity measurement of thin-film resist,” Journal of Vacuum Scientific Technology B, vol. 19, pp. 2874-2877, 2001. [7 ] Katsuo Kurabayashi, Mehdi Asheghi, Maxat Touzelbaev and Kenneth E. Goodson, “Measurement of the thermal conductivity anisotropy in polyimide films” Journal of Microelecttromechanical Systems, vol. 8, pp. 180-191, 1999. [8 ] David G. Cahill, “Heat transport in dielectric thin films and at solid-solid interfaces,” Microscale Thermophysical Engineering, vol. 1, pp. 85-109, 1997. [9 ] Takafumi Yao, “Thermal properties of AlAs/GaAs superlattices,” Applied Physical Letters, vol. 51, pp. 1798–1800, 1987. [10 ] G. Chen, C. -L. Tien, X. Wu and J. S. Smith,“Thermal diffusivity measurement of GaAs/AlGaAs thin-film structures ,” ASME Journal of Heat Transfer, vol. 116, pp. 325–331, 1994. [11 ] E. Jansen, E. Obermeier, Thermal Conductivity Measurements on Thin Films Based on Micromechanical Devices, J. Micromech. Microeng. 6, pp.118~121, 1996 [12 ] David G. Cahill, “Thermal conductivity measurement from 30 to 750 K: the 3?? method,” Review of Scientific Instruments, vol. 61, pp. 802–808, 1990. [13 ] Norman O. Birge, and Sidney R. Nagel, “Wide-frequency specific heat spectrometer,” Review of Scientific Instruments, vol. 58, pp. 1464–1470, 1987. [14 ] Tsuneyuki Yamane, Naoto Nagai, Shin-ichiro Katayama and Minoru Todoki, “Measurement of thermal conductivity of silicon dioxide thin films using a 3?? method,” Journal of Applied Physics, vol. 91, pp. 9772-9776, 2002. [15 ] H. S. Carslaw and J. C. Jaeger, “Conduction of Heat in Solids,” Oxford University Press, pp. 193, 1959. [16 ] A. Erdelyi, “Tables of Integral Transform,” , vol. 1,McGRAW-Hill, pp. 49, 1987. [17 ] David G. Cahill, M. Katiyar, and J. R. Abelson,“ Thermal conductivity of a-Si:H thin films,” Physical Review B, vol. 50, pp. 6077–6081, 1994. [18 ] A. Jacquot, B. Lenoir, A. Dauscher, M. Stolzer and J. Meusel, “Numerical simulation of the 3?? method for measuring the thermal conductivity, Journal of Applied Physics, vol. 91, pp. 4733-4738, 2002. [19 ] T. Borca-Tasciuc. A. R. Kumar, and G. Chen, “Data reduction in 3???n method for thin-film thermal conductivity determination,” Review of Scientific Instruments, vol. 72, pp. 2139-2147, 2001. [20 ] Jung Hun Kim, Albert Feldman, and Donald Novotny,“Application of the three omega thermal conductivity measurement method to a film on a substrate of finite thickness,” Journal of Applied Physics, vol. 86, pp. 3959-3963, 1999. [21 ] Theodorian Borca-Tasciuc, Weili Liu, Jianlin Liu, Kang L. Wang and Gang Chen, “Anisotropic thermal conductivity of a Si/Ge quantum dot superlattices”, Proc. of the ASME Heat Transfer division, vol. 366-2, pp.381-384, 2000 [22 ] http://www.analog.com [23 ] David G. Cahill and R. O. Pohl, “Thermal conductivity of amorphous solids above the plateau,” Physical Review B, vol. 35, pp. 4067–4073, 1987. [24 ] 莊達人, “VLSI製造技術,” pp. 163, 2002 [25 ] Marc J. Madou, “Fundamentals of Microfabrication,” CRC Press, 2002. [26 ] Hong Xiao, “Introduction to semiconductor manufacturing technology,” Prentice Hall, 2001. [27 ] Yunus A. Cengel, “Heat transfer : A pratical approach,” McGRAW-Hill, pp. 139, 2003. [28 ] Romaon Pallas-Areny and John G. Webster, “Sensors and signal conditioning,” John Wiley & Sons, pp. 91, 2001. [29 ] Chunbo Zhang and Khalil Najaf, “Fabrication of thick silicon dioxide layers for thermal isolation,” Journal of Micromechanics and Microengineering, vol. 14, pp. 769–774, 2004. [30 ] Michael B. Kleiner, Stefan A. Kuhn and Werner Weber, “Thermal conductivity measurement of thin silicon dioxide films in integrated circuits,” IEEE Transactions on Electron Devices, vol. 43, pp.1602-1609, 1996 [31 ] S. Govorkov, W. Ruderman, M. W. Horn, R. B. Goodman and M. Rothschild, “A new method for measuring thermal conductivity of thin films,” Review of Scientific Instruments, vol. 68, pp. 3828-3834, 1997. [32 ] Chen-Chi Yang, “A Study on Thermal Conductivity of Ultra Low Dielectric Constant Materals,” Department of Electronic Engineering, 2002. [33 ] Chuan Hu, Michael Morgen, Paul S. Ho, Anurag Jain, Willian N. Gill, Joel L. Plawaky and Peter C. Wayner, Jr, “Thermal conductivity study of porous low-k dielectric materials,” Applied Physical Letters, vol. 77, pp. 145-147, 2000. [34 ] Martin von Arx, “Process-dependent thin-film thermal conductivities for thermal CMOS MEMS,” Journal of Micro-electromechanical systems, vol. 9, pp. 136-144, 2000. [35 ] Thermophysical Properties of Matter, the TPRC Data Series, Thermal Conductivity of Nonmetallic Solids, Vol. 2, edited by Y. S. Touloukian and C. Y. Ho (IFI/Plenum, New York,1970),p. 662. [36 ] G. Chen, S.Q. Zhou, D.-J Yao, C.J. Kim, X.Y. Zheng, Z.L Liu, and K.L. Wang, “Heat Conduction in Alloy-Based Superlattices” International conference on Thermoelectrics, pp. 202-205, 1998. [37 ] J. L. Tissot, “Advanced IR detector technology development at CEA/LETI”, Infrared Physics & Technology, vol. 43, pp 223-228, 2002 [38 ] B. Cole, R. Horning, B. Johnson, K. Nguyen, P. W. Kruse and M. C. Footr, “High Performance Infrared Detector Arrays using Thin Film Microstructures”, Applications of Ferroelectrics, 1994.ISAF '94., Proceedings of the Ninth IEEE International Symposium on, pp 653-656, 1994 [39 ] E.-K. Kim, S.-I. Kwun, S.-M. Lee, H. Seo and J.-G. Yoon, “Thermal boundary resistance at Ge2Sb2Te5/ZnS:SiO2 interface ”, Applied Physics Letters, vol. 76, pp 3864-3866, 2000id NH0925657003 sid 916213 cfn 0 / id NH0925657004 auc 朱光翰 tic 電動力學操控生物分子元件之設計與研究 adc 劉承賢 ty 碩士 sc 國立清華大學 dp 微機電工程研究所 yr 92 lg 英文 pg 67 kwc 操控 kwc 介電泳 kwc 介電泳井 kwc 梯度 kwc 微機電技術 kwc 微針尖 abc 近年來,操控生物類分子,如去氧核醣核酸(DNA)、蛋白質、以及細胞,在最於相當多生物醫學領域的研究上,如核酸分析、蛋白質結構、分子動力、以及酵素的反應速率與能量消耗等研究方面,有著極為顯著的幫助。但是,面前一般在操控生物分子所面臨最大且基本的問題點在於:過去及現行操控的工具在尺寸上,與其欲操控之分子,有相當大的差距。因此,在過去的幾年間,有相當多的可用於操控生物分子的現象與方法被提出與實現。但不可避免的,大部分的方式依然有相當的侷限性以及顯著的缺點。故在本研究中,我們目標便是研究並發展一種具有尺寸相合、非接觸式的操控生物分子技術。 tc Table of Contents 1.INTRODUCTION…………………………………………………… 1 1.1 Background and Motivation……………………………… 1 1.2 theory……………………………………………………… 3 1.2.1 AC Electrokinetics…………………………………… 3 1.2.2 Dielectrophoresis……………………………………… 3 1.2.3 DEP trap………………………………………………… 7 1.3 Survey of DEP trap device……………………………… 8 1.3.1 Planar-Electrode Mode………………………………… 8 1.3.2 3D Electrodes…………………………………………… 10 2. MANIPULATION DEVICE DEVELOPMENT………………………… 15 2.1 Design Concept of Manipulation Device……………… 15 2.1.1 Main Parameters of Design for the Device……… 15 2.1.2 Strong Electric Field on Micro-Tip……………… 16 2.2 Illustration of Manipulation Device………………… 19 2.3 Analyses and Simulations……………………………… 20 2.3.1 Size of Manipulation Device………………………… 20 2.3.2 Simulation by ANSYS…………………………………… 21 2.3.3 Simulation by CFDRC…………………………………… 24 2.3.4 Comparison with Other Kinds of DEP Trap………… 39 3. FABRICATION………………………………………………… 44 3.1 Fabrication Processes…………………………………… 44 3. 2 Fabrication Results………………………………… 48 3.2.1 Tip Etching Problem………………………………… 49 3.2.2 Hillock Phenomenon and Restrain………………… 51 3.2.3 Photoresist Coating and Metal Deposition Problem ……………………………………………………………52 4. EXPERIMENT…………………………………………………… 54 4.1 Experimental Apparatus Setup………………………… 54 4.1.1 Packing………………………………………………… 54 4.1.2 Fluidics, Optics and Electrical Excitation… 55 4.2 Experiment………………………………………………… 57 4.2.1 Trapping Characteristics Test…………………… 57 4.2.2 DEP Levitation Phonomenon………………………… 58 4.2.3 Release Flow Rate Concept………………………… 60 4.2.4 Trap Performance Experiment……………………… 60 5. Conclusions………………………………………………… 65 5.1 Summary……………………………………………………… 65 5.2 Outlook and Future Work………………………………… 66 List of Figures Figure 1.1: Techniques for manipulating bio-objects. (a) Optical tweezers, (b) Magnetic tweezers, (c) Glass microfibers [1 ].………………………………………… 2 Figure 1.2: A schematic diagram of a polarizable particle suspended within a point–plane electrode system [8 ].……………………………………………………………… 6 Figure 1.3: A plot of the Clausius-Mossotti factor versus frequency for TMV and HSV [9 ].……………………… 7 Figure 1.4: A schematic diagram of typical quadrupole electrode microstructures used in dielectrophoresis experiments [8 ].……………………………………………… 9 Figure 1.5: A simulation of the electric field in the plane 5 μm above the electrode array shown in figure 1.3 [8 ]……………………………………………………………… 9 Figure 1.6: Schematic diagram of two designs of planar electrodes [6 ].………………………………………… 9 Figure 1.7: The particles can clearly be seen collecting in the low field regions[6 ].……………………………… 10 Figure 1.8: The dielectric particles experience a levitation force in an electrostatic field [13 ].…… 11 Figure 1.9: Schematic view of DFC [14 ].………… 11 Figure 1.10: DFC trap a 15 μm latex bead [14 ].…… 12 Figure 1.11: Schematic view ofμDAC [15 ].………… 13 Figure 1.12: Four 10.0-μm beads held in four traps [15 ].……………………………………………………………… 13 Figure 1.13: Selective release of bioparticles under fluid flow [15 ]……………………………………………………… 13 Figure 1.14: Simulated comparison between planar (---) and extruded (¾) quadropole electrode structures. [16 ]………………………………………………………………… 14 Figure 2.1: Anisotropic etching process for Micro-Tip [19 ].………………………………………………………………… 17 Figure 2.2: SEM picture of Micro-Tip [20 ].…………………………………………………………… 17 Figure 2.3: Electric field distribution on Micro-Tip.………………………………………………………………… 18 Figure 2.4: SEM picture of Micro-Tip array [21 ].………………………………………………………………… 18 Figure 2.5: Schematic illustration of design concept.………………………………………………………………… 19 Figure 2.6: Schematic illustration of a quadrupole DEP trap [22 ].……………………………………………………………… 19 Figure 2.7: SOLID 122 [26 ].……………………………………………………………………… 22 Figure 2.8: Simulation model, the rims of tip align 45°of x and y-axis……………………………………………… 22 Figure 2.9: Top view of result of simulation.……… 23 Figure 2.10: Side view of result of simulation.……… 24 Figure 2.11: Comparison of x-directed barriers for two trap geometries [27 ].……………………………………… 25 Figure 2.12: Model of CFDRC.……………………… 26 Figure 2.13: Entrance and exit tips in Model of CFDRC.……………………………………………………………… 26 Figure 2.14: X, Y and Z-axis in simulation.……… 29 Figure 2.15: The Simulation Results of Quadrupole Tip Electrode.……………………………………………… 29 Figure 2.16: Gradient of square of electric field versus number of models.……………………………………… 33 Figure 2.17: Re[K(ω) ] versus Frequency………… 37 Figure 2.18: The accumulation of particles in simulation in CFDRC.…………………………………………………… 38 Figure 2.19: The Cylindrical Electrode in Model of CFDRC.…………………………………………………………… 40 Figure 2.20: The Quadrupole Planer Electrode in Model of CFDRC.…………………………………………………… 40 Figure 2.21: The Simulation Results of Quadrupole Planer Electrode. 41 Figure 2.22: The Simulation Results of Cylindrical Electrode. 41 Figure 2.23: Variation of square of electric field (E2) in Z-axis direction. 44 Figure 3.1: Fabrication process flow. (cont’d) 46 Figure 3.2: Micro-Tip array made by KOH anisotropic etching 50 Figure 3.3: Comparison of the planes etching rate at 90℃ [28 ] 50 Figure 3.4: Etching rate of (h k l) planes in KOH+IPA solution at different T 51 Figure 3.5: Micro-Tip array and microchannel made by KOH+IPA anisotropic etching 51 Figure 3.6: The wet etching, using reaction cylindrical flask, condenser and heater. 53 Figure 3.7: Micro-tip array with metal deposition and wire 53 Figure 4.1: Picture and Schematic of packing assembly 55 Figure 4.2: Fluidic system 56 Figure 4.3: Schematic of my experimental apparatus setup 56 Figure 4.4: Real setup 57 Figure 4.5: Movie frames of trapping. (A) No beads are trapped. (B)The voltage is applied and beads are trapped. (C) The voltage is off and beads have been released 58 Figure 4.6: Movie frames of levitation. (A) Beads are not levitated. (B) The voltage is increased and beads are levitated. (C) and (D) The higher voltage is applied higher beads are levitated. 59 Figure 4.7: Movie frames of trapping in Micro-Tip array 61 Figure 4.8: Movie frames of trapping in quadrupole planer-electrode 63 Figure 4.9: The comparison of the efficiency of Micro-Tip array and quadrupole planer-electrode, using release flow rate measurements. 64 List of Tables Table 2.1: Particles that can be trapped in DEP trap [25 ]. 21 Table 2.2: Simulation parameters in CFDRC. 28 Table 2.3 Corresponding parameters of models in CFDRC simulations. 28 Table 2.4: Variation of square of electric field (E2) n in X, Y and Z-axis direction. 30 Table 2.5: Simulation-2 parameters in CFDRC. 37 Table 2.6: Variation of square of electric field (E2) in X-axis direction. 42 Table 2.7: Variation of square of electric field (E2) along Y-axis direction. 43 Table 3.1: KOH etching rate in different direction of silicon wafer. 45 Table 3.2: PECVD recipe of silicon oxide. 45rf References [1 ] T. Strick, J. -F. Allemand, V. Croquette, D. Bensimon, “The Manipulation of Single Biomolecules,” Physics Today, vol. 54, no. 10, pp. 46-60, October 2001. [2 ] C. -J. Kim, A. P. Pisano, R. S. Muller, M. G.. Lim, “Polysilicon Microgripper,” Tech. Dig., IEEE Solid-State Sensor and Actuator Workshop, pp. 48-51, June 1990. [3 ] C. -J. Kim, A. P. Pisano, R. S. Muller, “Silicon-Processed Overhanging Microgripper,” J. MEMS, vol. 1, no. 3, pp. 31-36, March 1992. [4 ] A. P. Lee, D. R. Ciarlo, P. A. Krulevitch, S. Lehew, J. Trevino, M. A. Northrup, “A Practical Microgripper by Fine Alignment, Eutectic Bonding and SMA Actuation,” Tech. Dig., Transducers ’95, pp. 368-371, June 1995. [5 ] F. Arai, D. Andou, T. Fukuda, “Adhesion Forces Reduction for Micro Manipulation Based on Micro Physics,” Proceedings of IEEE [6 ] N. G. Green, A. Ramos and H. Morgan, “Ac electrokinetics: a survey of sub-micrometre particle dynamics,” J. Phys. D: Appl. Phys. 33 (2000) 632–641. [7 ] W.B. Russel, D. A. Saville and W.R. Schowalter 1995 Colloidal Dispersions (Cambridge: Cambridge University Press). [8 ] M. P. Hughes, “AC electrokinetics: applications for nanotechnology,” Nanotechnology 11 (2000) 124–132. [9 ] H. Morgan, M. P. Hughes, and N. G. Green, “Separation of Submicron Bioparticles by Dielectrophoresis,” Biophysical Journal Volume 77 July 1999 516–525. [10 ] Th. Schnelle, T. Muller, G. Fuhr, “Trapping AC octode field cages,” J. Elecrostatics 50 (2000) 17-29. [11 ] M. P. Hughes “Computer-aided analysis of conditions for optimizing practical electrorotation,” Phys. Med. Biol. 43(1998) 3639–48 [12 ] L.F. Hartley, K.V.I.S. Kaler, R. Paul, “Quadrupole levitation of microscopic dielectric particles,” Journal of Electrostatics 46 (1999) 233–246 [13 ] J. Voldman, R. A. Braff, M. Toner, M. L. Gray, and M. A. Schmidt, “Holding Forces of Single-Particle Dielectrophoretic Traps,” Biophysical Journal Volume 80 January 2001 531–541. [14 ] Th. Schnelle, T. Muller, G. Fuhr, “Trapping in AC octode field cages.” Journal of Electrostatics 50 (2000) 17-29 [15 ] J. Voldman, M. Toner, M.L Gray, M.A. Schmidt, “A Dielectrophoresis-Based Array Cytometer. Transducers '01, 322-325 (2001). [16 ] J. Voldman, M. Toner, M.L Gray, M.A. Schmidt, “Quantitative design and analysis of single-particle dielectrophoretic traps”. Micro Total Analysis Syst. '00. (eds. A. van den Berg, W. Olthius & P. Bergveld) 431-434 (2000). [17 ] H.A. Pohl, “Dielectrophoresis,” Cambridge University Press, Cambridge, 1978. [18 ] T.B. Jones, “Electromechanics of Particles,” Cambridge University Press, Cambridge, 1995. [19 ] T. Schnelle , T. Muller, R. Hagedorn, A. Voigt, G. Fuhr, “Single micro electrode dielectrophoretic tweezers for manipulation of suspended cells and particles,” Biochimica et Biophysica Acta 1428 (1999) 99-105 [20 ] O. Wolter, Th. Bayer, J. Greschner, “Micromachined Silicon Sensors for Scanning Force Microscopy” J. Vac. Sci. Technol. B9(2), Mar/Apr 1991 1353-1357 [21 ] M. O. Heuschkel, M. Fejtl, M. Raggenbass, D. Bertrand, P. Renaud, “A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices,” Journal of Neuroscience Methods 114 (2002) 135–148 [22 ] J. Voldman, M. L. Gray, M. Toner, M. A. Schmidt ,“A Microfabrication-Based Dynamic Array Cytometer,” Anal. Chem.2002, 74,3984-3990 [23 ] G. Fuhr, H. Glasser, Th. Schnelle, Biochim. Biophys. Acta 1201(1994) 353. [24 ] G. Fuhr, T. Muller, Th. Schnelle, R. Hagedorn, A. Voigt, S Fiedler, W.-M. Arnold, U. Zimmermann, B Wagner, A Heuberger, Naturwiseenschaften 81 (1994)528 [25 ] G. Fuhr, U. Zimmermann, S.G. Shirley, “Cell motion in time-varying fields: principles and potential.” Electromanipulation of Celss, U. Zimmermann and G.A. Neil(eds), CRC Press Inc., pp. 259-328, 1996. [26 ] ANASYS tutorial. [27 ] J. Voldmana, M. Tonerb, M.L. Graya, M.A. Schmidt, “A design and analysis of extruded quadrupolar dielectrophoretic traps,” Journal of Electrostatics 57 (2003) 69–90. [28 ] I. Zubel, “Silicon anisotropic etching in alkaline solution II: On the influence of anisotropy on smoothness of etched surfaces,” Sensor and Actuators A 70 (1998) 260-268. [29 ] I. Zubel, Malgorzata Kramkowska, “The effect of isotropic alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions,” Sensor and Actuators A 93 (2001) 138-147. [30 ] I. Zubel, “Silicon anisotropic etching in alkaline solution III: On the possibility of spatial structure form in the course of Si (100) anisotropic etching in KOH and KOH+IPA solutions,” Sensor and Actuators A 84 (2000) 116-125. [31 ] H. Schroder, E. Obermeier, and A. Steckenborn, “Micropyramidal hillocks on KOHetched <100> silicon surfaces: formation, prevention and removal,” J. Micromech. Microeng. 9 (1999) 139–145. [32 ] S.-S. Tan, M. L. Reed, and R. Boudreau, “Mechanisms of Etching Hillock Formation,” J. Microelectromechanical Systems, Vol. 5 No. 1, March 1996.id NH0925657004 sid 916202 cfn 0 / id NH0925657005 auc 簡淑君 tic 奈微米結構引發微液珠致動 adc 錢景常 adc 曾繁根 ty 碩士 sc 國立清華大學 dp 微機電工程研究所 yr 92 lg 中文 pg 84 kwc 親疏水梯度 kwc 微液珠致動 kwc 硫醇 abc 摘要 rf 參考文獻: [1 ]. B. He and J. Lee, “Dynamic wettability switching by surface roughness effect”, IEEE 16th Int. Conf. MEMS (MEMS 03’), Kyoto, Japan, 2003, 120-123. [2 ]. K. Manoj and G. M. Whitesides, “How to make water run uphill”, Science, 256, 1992, 1539-1541. [3 ]. V. Ludviksson and E. N. Lightfoot, “The dynamics of thin liquid films in the presence of surface-tension gradients”, Am. Inst. Chem. Eng. J., 17, 1971, 1166-1173. [4 ]. S. Daniel, et al., “Fast drop movements resulting from the phase change on a gradient surface”, Science, 291, 2001, 633-636. [5 ]. J. P. Folkers, P. E. Laibinis, and G. M. Whitesides, “Self-assembled monolayers of alkanethiols on gold: comparisons of monolayers containing mixtures of short- and long-chain constituents with methyl and hydroxymethyl terminal groups”, Langmuir, 8, 1992, 1330-1341. [6 ]. J. L. Wilbur, A. Kumar, H. A. Biebuyck, E. Kim, and G. M. Whitesides, “Microcontact printing of self-assembled monolayers: applications in microfabrication”, Nanotechnology, 7, 1996, 452-457. [7 ]. G.G. Roberts, et al., “Langmuir blodgett film”, Plenum Press, New York, 1990, 17. [8 ]. A. Ulman, “Introduction to organic thin films from langmuir-blodgett to self-assembly”, Academic Press, New York, 1991, 237. [9 ]. C. S. Dulcey, et al., “Photochemistry and pattering of self-assembled monolayer films containing aromatic hydrocarbon functional groups”, Langmuir, 12, 1996, 1638-1650. [10 ]. G. Moller, M. Harke, and H. Motdschmann, et al., “Controlling microdrooplet formation by light”, Langmuir, 14, 1998, 4955-4957. [11 ]. K. Ichimura, et al., “Light-driven motion of liquids on a photoresponsive surface”, Science, 288, 2000,1624-1626. [12 ]. A. W. Adamson, “Physical chemistry of surface”, John Wiley & Sons, Inc., New York, pp. 1990,385-386. [13 ]. Lee, J., Moon, H., Fowler, J., Scholllhammer, T. and Kim, CJ, “Electrowetting and Electrowetting -on-Dielectric for Microscale Liquid Handling”, Sensors and Actuators A, 95, 2002, 259-268. [14 ]. K. Ichimura, S-K Oh, and M. Nakagawa, “Light-Driven Motion of Liquids on a Photorespon -sive Surface”, 288, 2000, 1624-1626. [15 ] Ulman, Abraham, “An introduction to ultrathin organic films” Langmuir-Blodgett to self-assemblyBoston ,1991. [16 ]Uthara Srinivasan, Michael R. Houston, Roger T. Howe, Fellow, IEEE, and Roya Maboudian, “Alkyltrichlorosilane-based Self-Assembled Monolayer Film for Stiction Reduction in silicon Micromachines.”Jol. of Microelectromechanical system, 7,1998,252-259. [17 ]. Daniel, D S., Chaudhury, M.K., and Chen, J.C., “Fast Drop Movements Resulting from the Phase Change on a Gradient Surface” Science, Vol. 291, pp 633-636, 2001. [18 ] Bo Liedberg and Pentti Tengvall, “Molecular Gradients of ω-Substituted Alkanethiols on Gold: Preparation and Characterization”, Langmuir, 1995,11,3821-3827. [19 ] Joerg Lahann, Samir Mitragotri, Thanh-Nga Tran, Hiroki Kaido, Jagannathan Sundaram, Insung S. Choi, Saskia Hoffer, Gabor A. Somorjai, and Robert Langer, “A Reversibly Switching Surface” , Science , 2003, 17, 371-374. [20 ] Joonwon kim and Chang-Jin, “CJ” kim, “Nanostructureed Surfaces for Dramatic Reduction of Flow Resistance in Droplet-Based Microfluids” , IEEE , 479-482, 2002.id NH0925657005 sid 916214 cfn 0 / id NH0925657006 auc 謝孟諺 tic 微液滴傳送機制之理論辨正 adc 饒達仁 ty 碩士 sc 國立清華大學 dp 微機電工程研究所 yr 92 lg 中文 pg 72 kwc 介電質材料上的電濕潤效應 kwc 介電質電泳效應 kwc 介電質 kwc 疏水性 kwc 接觸角 kwc 頻率 abc 微液滴傳送技術是不需要微流道便可控制流體的新技術,具有製程簡便、微量控制、混合容易、成本低廉等優點。由於其裝置架構同時滿足兩種會對液體產生作用力的物理現象:介電質材料上的電濕潤效應(Electrowetting on dielectrics, EWOD)、及介電質電泳效應 (Dielectrophoretic effect, DEP),本文主要是設計實驗去確認是何種效應造成液體移動的現象。以Pellat的雙電極板實驗為架構,我們發現在供應直流電(DC)時,造成液面上升的高度與介電質材料上的電濕潤效應所預期的相符。T. B. Jones的團隊在使用交流電(AC)的實驗中,發現頻率將影響液面上升高度的大小。經由電路分析,了解頻率如何影響電壓的分佈,進而影響驅動液體的理論機制與作用力大小。最後並探討ㄧ些重要參數對實驗的影響,如何設計ㄧ個微液滴傳送裝置能夠達到較好的效果。 tc 第一章 緒論___________________________________________________1 1.1 研究動機________________________________________________1 1.2 主要貢獻________________________________________________2 1.3 本文架構________________________________________________2 第二章 文獻回顧_______________________________________________4 2.1 利用介電質材料上的電濕潤效應驅動微液滴__________________4 2.2 表面粗糙度驅動微液滴____________________________________6 2.3 利用光控制電濕潤效應開關________________________________8 2.4 利用介電質電泳效應驅動液體_____________________________10 第三章 理論推導______________________________________________12 3.1 介電質材料上的電濕潤效應(EWOD)________________________12 3.1.1李普曼( Lippmann )方程式_____________________________13 3.1.2 接觸角變化與液滴移動_______________________________18 3.2 介電質電泳效應(DEP)____________________________________21 第四章 實驗方法與架構________________________________________27 4.1 實驗方法_______________________________________________27 4.1.1 介電質材料上的電濕潤效應(EWOD)的情況______________28 4.1.2 接觸角飽和現象_____________________________________29 4.1.3 介電質電泳效應(DEP)的情況__________________________31 4.1.4 辨別方式___________________________________________32 4.2 實驗裝置之整體架構_____________________________________33 4.2.1 電極板試片之製作___________________________________35 4.2.2 接觸角飽和現象的實驗_______________________________37 4.2.3 實驗器材的架設_____________________________________38 第五章 實驗結果與分析________________________________________42 5.1 接觸角飽和實驗結果_____________________________________42 5.2 雙電極板液面上升實驗結果_______________________________44 5.3 Thomas B. Jones團隊在AC實驗之發現_____________________46 5.4 理論辨正與實驗結果分析_________________________________50 5.5 各項重要參數的影響_____________________________________53 5.5.1 液體電導對電壓分佈的影響___________________________55 5.5.2 液體電容對電壓分佈的影響___________________________57 5.5.3 介電層電容對電壓分佈的影響_________________________59 5.6 各項變因對液面上升影響之實驗___________________________62 5.6.1 液體電導率對液面上升影響之實驗_____________________62 5.6.2 電極板之間距對液面上升影響之實驗___________________64 5.6.3 介電層之厚度對液面上升影響之實驗___________________65 第六章 結論與展望____________________________________________68 6.1 結論___________________________________________________68 6.2 未完成工作_____________________________________________69 6.3 未來展望_______________________________________________69 參考文獻______________________________________________________70rf [1 ] J. Lee, and C.-J. Kim, “Surface Tension Driven Microactuation Based on Continuous Electrowetting (CEW)” ,Journal of Microelectromechanical Systems, Vol. 9, No. 2, Jun. 2000, pp. 171-180. [2 ] S. K. Cho, H. Moon, J. Fowler, S.-K. Fan, and C.-J. Kim, “Splitting a Liquid Droplet for Electrowetting-Based Microfluidics”, Int. Mechanical Engineering Congress and Exposition, New York, NY, Nov. 2001, IMECE2001/MEMS-23831 [3 ] H. Moon, S. K. Cho, R. L. Garrell, and C.-J. Kim, “Low Voltage electrowetting-on-dielectric”, Journal of Applied Physics, Vol. 92, No. 7, pp. 4080-4087, 2002. [4 ] S. K. Cho, S.-K. Fan, H. Moon, and C.-J Kim, “Toward Digital Microfluidic Circuits: Creating, Transporting, Cutting and Merging Liquid Droplets by Electrowetting-Based Actuation”, IEEE Conf. MEMS, Las Vegas, NV, Jan. 2002, pp. 32-52. [5 ] Sung Kwon Cho, Hyejin Moon, and Chang-Jin Kim, "Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits" Journal of Microelectromechanical Systems, VOL. 12, NO. 1, Feb. 2003, pp. 70-80. [6 ] Bo He, Junghoon Lee, “Dynamic wettability switching by surface roughness effect”, Micro Electro Mechanical Systems, 2003, pp.120-123 [7 ] P. Y. Chiou, M. Wu, H. Moon, C.-J. Kim, and H. Toshiyoshi, ”Optical Actuation of Microfluidics Based on Opto-Electrowetting” Hilton Head 2002, pp. 134-137 [8 ] Pei Yu Chiou; Zehao Chang; Wu, M.C., “Light Actuated Microfluidic Devices “Micro Electro Mechanical Systems, 2003, 355-358 [9 ] Pei Yu Chiou, Hyejin Moon, Hiroshi Toshiyoshi, Chang-Jin Kim, Ming C. Wu, “Light actuation of liquid by optoelectrowetting" Sensors and Actuators A, 2003, Vol. 104, pp. 222-228 [10 ] T. B. Jones, M. Gunji, M. Washizu, M. J. Feldman "Dielectrophoretic liquid actuation and nanodroplet formation," Journal of Applied Physics, vol. 89, pp. 1441-1448, 15 January, 2001 [11 ] Crow著 黃進益譯, 電化學的原理與應用, 高立圖書有限公司. [12 ] 姚允斌, 裘祖楠著, 膠體與表面化學導論, 天津巿/南開大學/1988 [13 ] Jaycock, M. J., Chemistry of interfaces, Chichester, Eng./E. Horwood/1981 [14 ] J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C.-J. Kim, “Electrowetting and electrowetting-on-dielectric for microscale liquid handling”, Sensors and Actuators, Vol. A95, pp. 259-268, 2002. [15 ] http://www.dielectrophoresis.org/PagesMain/DEP.htm [16 ] David J. Griffiths, Introduction to electrodynamics, third edition, Prentice Hall, 1999 [17 ] T. B. Jones, "On the relationship of dielectrophoresis and electrowetting," Langmuir, vol. 18, pp. 4437- 4443, 2002. [18 ] Benjamin Shapiro, Hyejin Moon, Robin Garrell, and Chang-Jin "CJ" Kim, "Modeling of Electrowetted Surface Tension for Addressable Microfluidic Systems: Dominant Physical Effects, Material Dependences, and Limiting Phenomena" IEEE Conf. MEMS, Kyoto, Japan, Jan. 2003, pp. 201-205. [19 ] K. H. Kang, “How Electrostatic Fields Change Contact Angle in Electrowetting”, Langmuir; (Article); 2002; 18(26); 10318-10322. [20 ] V. Peykov, A. Quinn, J. Ralston, “Electrowetting: a model for contact-angle saturation”, Colloid and polymer science, 278: 789-793, 2000 [21 ] Verheijen, H. J. J. ; Prins, M. W. J., “Reversible Electrowetting and Trapping of Charge: Model and Experiments”, Langmuir; (Communication); 1999; 15(20); 6616-6620. [22 ] T. B. Jones, J. D. Fowler, Y. S. Chang, and C.-J. Kim, “Frequency-Based Relationship of Electrowetting and Dielectrophoretic Liquid Microactuation” Langmuir, Vol. 19, No. 18, 2003, pp. 7646-7651. [23 ] T. B. Jones, K.-L. Wang, D.-J. Yao, "Frequency-dependent electromechanics of aqueous liquids: electrowetting and dielectrophoresis," Langmuir, vol. 20, pp. 2813-2818, 2004id NH0925657006 sid 916205 cfn 0 / id NH0925705001 auc 錢逸霖 tic 前瞻科技聯合授權所涉法律爭議之研究--以光儲存技術為例 adc 范建得 ty 碩士 sc 國立清華大學 dp 科技法律研究所 yr 92 lg 中文 pg 96 kwc 專 kwc & kwc #63965; kwc & kwc #63778;用 kwc 反 kwc & kwc #63810;斷 kwc 專 kwc & kwc #63965; kwc & kwc #63895;合授權 kwc 經濟分析 kwc 強制授權 kwc 獨占 kwc & kwc #63882; kwc & kwc #63778;用 kwc 搭售 abc 在知識經濟時代的產業結構下,先進國家之高科技產業正全面提昇以智慧財產之相關銷售為基礎的技術交易模式比重,我國製造廠商在逐漸壯大的同時,不斷受到高額權利金的壓抑,甚至長期遭到不合理之待遇。實際上在科技快速變遷的近代,各文明國家十分關切專利權過度擴張或濫用以及所牽涉之反壟斷問題,本文有鑒於我國在CD-R 產業在與專利權利人對抗過程中,累積許多值得探討的經驗,乃試圖以美國法制為基礎,就其中專利權與反壟斷間的問題加以探討。 tc 第一章 前言…………………………………………………………… 1 第一節 研究動機與目的……………………………………………………... 1 第二節 問題之提出…………………………………………………………... 3 第三節 研究方法與範圍……………………………………………………... 4 第二章 專利權、產業標準與聯合授權概說………………………… 7 第一節 專利權概論……………………………………………………………7 第一項 專利制度之沿革………………………………………………... 7 第二項 授予專利的範圍………………………………………………... 8 第三項 授予專利的條件………………………………………………... 9 第四項 專利的審查……………………………………………………... 9 第五項 專利的實施……………………………………………………..10 第六項 小結--專利制度的目的、效益與現狀…………………………11 第二節 產業標準概論………………………………………………………..14 第一項 標準發生的原因………………………………………………..14 第二項 事實標準與法定標準…………………………………………..16 第三項 產業標準與專利權之關係……………………………………..17 第四項 小結……………………………………………………………..19 第三節 專利授權聯盟(patent pools)概論…………………………………20 第一項 成立專利授權聯盟之目的……………………………………..20 第二項 專利授權聯盟所可能產生之問題……………………………..21 第三項 小結……………………………………………………………..23 第三章 聯合授權所涉反壟斷法議題………………………………..24 第一節 與專利授權相關之反壟斷法………………………………………..24 第一項 美國反壟斷法之形成…………………………………………..24 第二項 美國反壟斷法之主要實體規定………………………………..26 第三項 反壟斷法對於專利權之制衡…………………………………..29 第二節 專利濫用原則………………………………………………………..32 第一項 概論……………………………………………………………..32 第二項 司法實務的發展………………………………………………..35 第三項 專利濫用原則之成文化………………………………………..37 第四項 專利濫用之態樣………………………………………………..40 第五項 專利濫用原則與反壟斷法間的關係…………………………..52 第六項 小結……………………………………………………………..54 第三節 美國司法部在實務上判斷智慧財產授權反壟斷之原則…………..56 第一項 智慧財產授權反壟斷指導原則………………………………..56 第二項 美國司法部對DVD 集體授權協議之審查……………………61 第三項 影響美國司法部審查函之重要前提…………………………..62 第四項 小結……………………………………………………………..64 第四章 聯合授權相關經濟分析………………………………………65 第一節 市場長期均衡的目標:經濟效率…………………………………..65 第一項 市場機能與經濟效率…………………………………………..65 第二項 完全競爭理論的應用…………………………………………..66 第二節 專利法制與市場失靈………………………………………………..67 第三節 專利權濫用與獨占力濫用…………………………………………..67 第四節 理想中的技術市場與實際的CD-R 技術市場……………………...68 第一項 理想中的技術市場……………………………………………..68 第二項 實際之CD-R 技術市場 ………………………………………..69 第五節 專利權政策與競爭政策之統合……………………………………..71 第一項 智慧財產權應有合理界限……………………………………..71 第二項 智慧財產之商業價值何時產生?……………………………..73 第三項 合理界線應偏向哪一方?……………………………………..74 第四項 權利之救濟與保護─財產法則與補償法則…………………..75 第五項 政府管制之疑慮--政府失靈 …………………………………..76 第六節 小結…………………………………………………………………77 第五章 飛利浦對我國CD-R 製造商在技術市場授權之個案分析….79 第一節 聯合授權與反壟斷法之關係………………………………………79 第二節 獨占力濫用--搭售………………………………………………….81 第三節 瓶頸設施理論(essential facility doctrine)之適用………………83 第四節 專利濫用、反壟斷法與強制授權………………………………….84 第六章 結論……………………………………………………………88 參考文獻………………………………………………………………..90rf 參考文獻 一、中文部份 (一)專書(包含收錄於專書之論文) 1. 孔祥俊,反壟斷法原理,中國法制出版社,2001 年6 月。 2. 范建得,莊春發,公平交易法(1)--獨占、結合、聯合,漢興書局,1999 年。 3. 約翰•洛克(John Lock)著,葉啟芳、瞿芳農譯,政府論次講,唐山文化出版 社,1986 年。 4. 理察.艾普斯坦(Richard A. Epstein)著,簡資修譯,自由社會之原則,商周 出版社,2003 年。 5. 張清溪、許嘉棟、劉鶯釧、吳聰敏合著,經濟學理論與實際上冊,第三版, 1995 年。 6. 劉孔中,電信管制革新與數位網路產業規範,太穎出版社,2001 年。 7. 劉連煜,高科技市場獨占力濫用之管制--以台灣公平交易委員會對高科技產 業之執行經驗為例--,收錄於;私法學之傳統與現代(下):林誠二教授六秩華 誕祝壽論文集,學林出版社,2004 年。 8. 賴源河編審,公平交易法新論,元照出版社,2000 年9 月。 9. 謝銘洋,從飛利浦CD-R 案探討專利集中授權(Patent Pools)與競爭秩序的關 係,收錄於;私法學之傳統與現代(下):林誠二教授六秩華誕祝壽論文集。 (二)學位論文 1. 宋皇志,技術授權之法制規範—以瓶頸設施理論在專利強制授權的應用為中 心,清華大學科技法律所碩士論文,2003 年6 月。 2. 張瓊華,專利制度的再思考—以政策銜接及其可能運作模式,清華大學科技 法律所碩士論文,2003 年6 月。 3. 蕭彩綾,美國法上專利強制授權之研究,國立中正大學法律學研究所碩士論 文,2000 年6 月。 (三)期刊論文 1. 陳家駿、羅怡德合著,反托拉斯法適用智慧財產權案件基本原則探討,公平 交易季刊,第2 卷4 期,1994 年10 月。 2. 黃宗樂,知識經濟與競爭政策,公平交易季刊,第11 卷第1 期, 2003 年1 月。 3. 謝銘洋,專利進口權與平行輸入,月旦法學,第2 期,1995 年6 月。 4. 張聖怡,由飛利浦光碟授權案探討專利聯合授權的法律爭議,智慧財產權管 理,第29 期,2001 年6 月。 5. 黃銘傑,專利集管(Patent Pool)與公平交易法—評行政院公平交易委員會對飛 利浦等三家事業技術授權行為之二次處分案,月旦法學,第87 期,2002 年8月。 6. 鄭中人,專利權之行使與定暫時狀態之處分,台灣本土法學雜誌,第58 期, 頁106,2004 年5 月。 7. 簡資修,一個自主但開放的法學觀點,月旦法學,第93 期,2003 年1 月。 (四)判決書 1. 公平交易委員會九十年一月二十日公處字第○二一號處分 2. 行政院訴願審議委員會九十年十一月十六日台九十訴字第○六七二六六號決 定 3. 公平交易委員會九十一年四月二十五日公處字第○九一○六九號處分。 (五)其他 1. 張建仁,飛利浦CD-R 專利 國碩未侵權,2003 年10 月28 日經濟日報。 2. 鄭呈皇,打贏飛利浦的兩隻小蝦米,商業週刊第833 期,2003 年11 月10 日。 3. 張建仁,控告國碩侵權 飛利浦是否再提上訴尚未決定,2004 年5 月26 日經 濟日報。 4. 中國大百科全書智慧藏線上檢索資料庫, http://www.wordpedia.com/edu/Default.aspx。 二、英文部分 (一)專書 1. ABA ANTITRUST SECTION, ANTITRUST LAW DEVELOPMENTS (5th ed. 2002). 2. CARL SHAPIRO & HAL R. VARIAN, INFORMATION RULES: A STRATEGIC GUIDE TO THE NETWORK ECONOMY (1999). 3. Carl Shapiro, Navigating the Patent Thicket: Crossing License, Patent Pools, and Standard-Setting, in 1 INNOVATION POLICY AND THE ECONOMY 119 (Adam B. Jaffe, Josh Lerner & Scott Stern ed., 2001), http://caliban.ingentaselect.com/vl=3685787/cl=62/nw=1/fm=docpdf/rpsv/cw/mit press/15313468/v1n1/s5/p119 (last visited May, 20,2004). 4. DONALD S. CHISUM, CHISUM ON PATENTS, Vol. 5 (1996) 5. DONALD S. CHISUM, CHISUM ON PATENTS, Vol. 6 (2000). 6. ERIC SCHIFF, INDUSTRIALIZATION WITHOUT NATIONAL PATENTS: THE NETHERLANDS, 1869-1912; SWITZERLAND, 1850-1907 (Princeton Univ. Press 1971). 7. F. SCHERER, INDUSTRIAL MARKET STRUCTURE AND ECONOMIC PERFORMANCE (1980). 8. HERBERT HOVENKAMP ET AL., IP AND ANTITRUST, Vol. 1 (Aspen L. & Bus. Supp. 2003). 9. P. AREEDA & L. KAPLOW, ANTITRUST ANALYSIS 183 (1987). 10. ROBERT NOZICK, ANARCHY, STATE, AND UTOPIA (New York: Basic Books, 1974). 前瞻科技聯合授權所涉法律爭議之研究—以光儲存技術為例 (二)期刊論文 1. Note: Is The Patent Misuse Doctrine Obsolete?, 110 HARVARD LAW REVIEW 1922 (1997). 2. David A. Balto & Andrew M. Wolman, Intellectual Property and Antitrust: General Principles, 43 IDEA: THE JOURNAL OF LAW AND TECHNOLOGY 395 (2003). 3. E. Thomas Sullivan, The Confluence of Antitrust and Intellectual Property at the New Century, 1 MINNESOTA INTELLECTUAL PROPERTY REVIEW 101 (2000). 4. Edwin C. Hettinger, Justifying Intellectual Property, PHILOSOPHY AND PUBLIC AFFAIRS, Vol. 18, No. 1 (Winter 1989). 5. Frank I. Michelman, Property, Utility, and Fairness: Comments on the Ethical Foundations of "Just Compensation" Law, 80 HARVARD LAW REVIEW 1165 (1967). 6. Garrett Hardin, The Tragedy of the Commons, 162 SCIENCE 1243 (1968). 7. Geri C. Word, NAFTA Standards Regulation: The U.S. Perspective, 9 UNITED STATES-MEXICO LAW JOURNAL 1 (2001). 8. Griliches Zvi, Patent Statistics as Economic Indicators: A Survey, JOURNAL OF ECONOMIC LITERATURE, Vol. 28, NO.4 (1990). 9. Guido Calabresi & A. Douglas Melamed, Property Rules, Liability Rules and Inalienability Rules: One View of the Catherdral, 85 HARVARD LAW REVIEW 1089 (1972). 10. Howard A. Shelanski & J. Gregory Sidak, Antitrust Divestiture in Network Industries, 68 UNIVERSITY OF CHICAGO LAW REVIEW 1 (2001). 11. Janice M. Mueller, Patent Misuse Through the Capture of Industry Standards, 17 BERKELEY TECHNOLOGY LAW JOURNAL 623 (2002). 12. Jeffrey Rohlfs, A Theory of Interdependent Demand for a Communications Service, THE BELL JOURNAL OF ECONOMICS AND MANAGEMENT SCIENCE Vol. 5, No.1 (Spring, 1974). 13. John E. Lopatka, Antitrust on Internet Time: Microsoft And The Law and Economics of Exclusion, 7 SUPREME COURT ECONOMIC REVIEW 157 (1999). 14. Mark A. Lemley & David McGowan, Legal Implications of Network Economic Effects, 86 CALIFORNIA LAW REVIEW 479 (1998). 15. Marissa A. Piropato, Open Access and the Essential Facilities Doctrine: Promoting Competition and Innovation, 2000 UNIVERSITY OF CHICAGO LEGAL FORUM 369 (2000). 16. Mark A. Lemley, Intellectual Property Rights and Standard-Setting Organizations, 90 CALIFORNIA LAW REVIEW 1889 (2002). 17. Michael A. Heller, The Tragedy of the Anticommons: Property in the Transition from Marx to Markets, 111 HARVARD LAW REVIEW 621 (1998). 18. Michael L. Katz & Carl Shapiro, Network Externalities, Competition and Compatibility, THE AMERICAN ECONOMIC REVIEW, Vol. 75, No.3 (Jun., 1985). 19. Michael L. Katz & Carl Shapiro, Systems Competition and Network Effects, THE JOURNAL OF ECONOMIC PERSPECTIVES, Vol. 8, No.2 (Spring, 1994). 20. Nicholas Economides, The economics of network s, INTERNATIONAL JOURNAL OF INDUSTRIAL ORGANIZATION, Vol. 14, No. 2 (March 1996) 21. Patricia A. Martone & Richard M. Feustel, Jr., The Patent Misuse Defense - Does It Still Have Vitality?, 752 PRACTISING LAW INSTITUTE 103 (2003). 22. Paul A. Samuelson, A Pure Theory of Public Expenditure, REVIEW OF ECONOMICS AND STATISTICS, Vol. 36 (1954). 23. Richard Calkins, Patent Law: The Impact of the 1988 Patent Misuse Reform Act and Noerr-Pennington Doctrine on Misuse Defenses and Antitrust Counterclaims, 38 DRAKE LAW REVIEW 175 (1989). 24. Roger B. Andewelt, Analysis of Patent Pools Under the Antitrust Laws, 53 ANTITRUST LAW JOURNAL 611 (1984). 25. Yee Wah Chin, Intellectual Property Licensing: Nuts & Bolts and Refusals to License, 1408 PRACTISING LAW INSTITUTE 273 (2004). (三)案例 1. Pierson v. Post, 3 Caines 175 (N.Y. Sup. Ct. 1805). 2. Ghen v. Rich, 8 Fed. 159 (D. Mass. 1881). 3. Strait v. Nat’l Harrow Co., 51 F. 819 (N.D.N.Y. 1892). 4. E. Bement & Sons v. Nat’l Harrow Co., 186 U.S. 70 (1902). 5. Dr. Miles Med. Co. v. John D. Park & Sons Co., 220 U.S. 373 (1911). 6. Stand. Sanitary Mfg. v. United States, 226 U.S. 20 (1912). 7. Motion Picture Patents Co. v. Universal Film Mfg. Co., 243 U.S. 502 (1917). 8. United States v. Gen. Elec. Co., 272 U.S. 476 (1926). 9. Carbice Corp. v. Am. Patents Dev. Corp., 283 U.S. 27 (1931). 10. Stand. Oil Co. v. U.S., 283 U.S. 163 (1931). 11. Radio Corp. v. Hygrade Sylvania Corp., 10 F.Supp. 879 (D.N.J. 1934). 12. Gen. Talking Pictures Co. v. Elec. Co., 304 U.S. 175 (1938). 13. United States v. Socony-Vacuum Oil Co., 310 U.S. 150 (1940). 14. Morton Salt Co. v. Suppiger Co., 314 U.S. 488 (1942). 15. B.B. Chem. Co. v. Ellis, 314 U.S. 495 (1942). 16. United States v. Masonite Corp., 316 U.S. 265 (1942). 17. Sylvania Indus. Corp. v. Visking Corp., 132 F.2d 947, 956 (4th Cir. 1943). 18. Nat'l. Lockwasher Co. v. George K. Garrett Co., 137 F.2d 255 (3d Cir. 1943). 19. Mercoid Corp. v. Mid-Continent Inv. Co., 320 U.S. 661 (1944). 20. United States v. United States Gypsum Co., 333 U.S. 364 (1948). 21. Hartford-Empire Co. v. United States, 323 U.S. 386 (1945). 22. Precision Instrument Mfg. Co. v. Auto. Maint. Mach. Co., 324 U.S. 806 (1945). 23. Transwrap Corp. v. Stokes Co., 329 U.S. 637 (1947). 24. United States v. Gen. Elec. Co., 80 F. Supp. 989 (S.D.N.Y. 1948). 25. United States. v. Line Material Co., 333 U.S. 287 (1948). 26. United States v. Gen. Elec. Co., 82 F. Supp. 753 (D.N.J. 1949). 27. Automatic Radio Mfg. Co. v. Hazeltine Research, Inc., 339 U.S. 827 (1950). 28. United States v. Consol. Car-Heating Co. 87 USPQ 20 (S.D.N.Y. 1950). 29. United States v. New Wrinkle, Inc., 342 U.S. 371 (1952). 30. Brownell v. Ketcham Wire & Mfg. Co., 211 F.2d 121 (9th Cir. 1954). 31. United States. v. Krasnov, 143 F. Supp. 184, 201 (E.D. Pa. 1956). 32. United States v. E. I. du Pont de Nemours & Co., 351 U.S. 377 (1956). 33. United States Gypsum Co. v. Nat'l Gypsum Co., 352 U.S. 457 (1957). 34. Stearns v. Tinker & Rasor, 252 F.2d 589 (9th Cir. 1957). 35. Baldwin-Lima-Hamilton Corp. v. Tatnall Meas. Sys. Co., 169 F. Supp. 1 (E.D. Pa. 1958), aff'd per curiam, 268 F. 2d 395 (3d Cir. 1959). 36. Prestole Corp. v. Tinnerman Prods., Inc., 271 F.2d 146 (6th Cir. 1959). 37. Binks Mfg. Co. v. Ransburg Electro-Coating Corp., 281 F.2d 252 (7th Cir. 1960). 38. Zajicek v. Koolvent Metal Awning Corp., 283 F.2d 127 (9th Cir. 1960). 39. Tampa Elec. Co. v. Nashville Coal Co., 365 U.S. 320 (1961). 40. Berlenbach v. Anderson & Thompson Ski Co., 329 F.2d 782 (9th Cir. 1964). 41. Int’l Mfg Co. v. Landon Inc, 336 F.2d 723 (9th Cir. 1964). 42. Brulotte v. Thys Co., 379 U.S. 29 (1964). 43. McCullough Tool Co. v. Well Surveys, Inc., 343 F.2d 381 (10th Cir. 1965). 44. Walker Process Equip., Inc. v. Food Mach. & Chem. Corp., 382 U.S. 172 (1965). 45. Rocform Corp. v. Acitelli-Standard Concrete Wall, Inc., 367 F.2d 678 (6th Cir. 1966). 46. Am. Photography Equip. Co. v. Rovico, Inc., 359 F.2d 745 (7th Cir. 1966). 47. Hazeltine Research, Inc. v. Zenith Radio Corp., 388 F.2d 25 (7th Cir. 1967). 48. Zenith Corp. v. Hazeltine, 395 U.S. 100 (1969). 49. Beckman Instruments, Inc. v. Technical Dev. Corp., 433 F.2d 55 (7th Cir. 1970). 50. Shields-Jetco, Inc. v. Torti, 436 F.2d 1061(1st Cir. 1971). 51. Bela Seating Co. v. Poloron Prods., Inc., 438 F.2d 733 (7th Cir. 1971). 52. Kolene Corp. v. Motor City Metal Treating, Inc., 440 F.2d 77 (6th Cir. 1971). 53. Cataphote Corp. v. DeSoto Chem. Coatings, Inc., 450 F.2d 769 (9th Cir. 1971). 54. Panther Pumps & Equip. Co. v. Hydrocraft, Inc., 468 F.2d 225 (7th Cir. 1972). 55. Adams v. Burke, 84 U.S. 453 (1873). 56. Illinois Tool Works Inc. v. Solo Cup Co., 179 USPQ 322 (N.D. Ill. 1973). 57. United States v. Glaxo Group, Ltd., 410 U.S. 52 (1973). 58. W.L. Gore & Assocs., Inc. v. Carlisle Corp., 381 F. Supp. 680 (D. Del. 1974). 59. Duplan Corp. v. Deering Milliken, Inc., 444 F. Supp. 648 (1977). 60. Duplan Corp v. Deering Milliken, Inc., 594 F.2d 979 (4th Cir. 1979). 61. Western Elec. Co. v. Stewart-Warner Corp., 631 F.2d 333 (4th Cir. 1980). 62. Dawson Chem. Co. v. Rohm & Haas Co., 448 U.S. 176 (1980). 63. In re Beltone Elec. Corp., 100 F.T.C. 68 (July 6, 1982). 64. USM Corp. v. SPS Tech., Inc., 694 F.2d 505 (7th Cir. 1982). 65. Carpet Seaming Tape Licensing Corp. v. Best Seam, Inc., 694 F.2d 570 (9th Cir. 1982). 66. MCI Communications Corp. v. AT&T, Inc., 708 F. 2d 1081 (7th Cir. 1983). 67. Deere & Co. v. Int'l Harvester Co., 710 F.2d 1551 (Fed. Cir. 1983). 68. Rohm & Haas Co. v. Crystal Chem. Co., 722 F.2d 1556 (Fed. Cir. 1983). 69. Am. Hoist & Derrick Co. v. Sowa & Sons, 725 F.2d 1350 (Fed. Cir. 1984). 70. Albert v. Kevex Corp., 729 F.2d 757 (Fed. Cir. 1984). 71. Bio-Rad Lab. v. Nicolet Instrument Corp., 739 F.2d 604 (Fed. Cir. 1984). 72. Litton Indus. Prods., Inc. v. Solid State Sys., 755 F.2d 158 (Fed. Cir. 1985). 73. Loctite Corp. v. Ultraseal Ltd., 781 F.2d 861 (Fed. Cir. 1985). 74. Senza-Gel Corp. v. Seiffhart, 803 F.2d 661 (Fed. Cir. 1986). 75. Windsurfing Int'l, Inc. v. AMF, Inc., 782 F.2d 995 (Fed. Cir. 1986). 76. Akzo N.V. v. United States Int'l Trade Comm'n, 808 F.2d 1471 (Fed. Cir. 1986). 77. Cargill, Inc. v. Monfort, 479 U.S. 104 (1986). 78. Argus Chem. Corp. v. Fibre Glass-Evercoat Co., 812 F.2d 1381 (Fed. Cir. 1987). 79. Allen Archery, Inc. v. Browning Mfg. Co., 819 F.2d 1087 (Fed. Cir. 1987). 80. Hodosh v. Block Drug Co., 833 F.2d 1575 (Fed. Cir. 1987). 81. BellSouth Adver. & Publ’g Corp. v Donnelley Info. Publ’g, Inc., 719 F Supp 1551 (S D Fla 1988). 82. Atari Games Corp. v. Nintendo, 897 F.2d 1572 (Fed. Cir. 1990). 83. Anaheim v. Southern California Edison Co., 955 F.2d 1373 (9th Cir. 1992). 84. Mallinckrodt, Inc. v. Medipart, Inc., 976 F.2d 700 (Fed. Cir. 1992). 85. Eastman Kodak Co. v. Image Technical Services, Inc., 504 U.S. 451 (1992). 86. Spectrum Sports, Inc. v. McQuillan, 113 S. Ct. 884, 890-91 (1993). 87. In re Dell Computer Corp., 121 F.T.C. 616, 1996 FTC LEXIS 291 (1996). 88. B. Braun Med., Inc. v. Abbott Labs, 124 F.3d 1419 (Fed. Cir. 1997). 89. Virginia Panel Corp. v. MAC Panel Co., 133 F.3d 860 (Fed. Cir. 1997). 90. In re Summit Tech. and VISX, Inc., FTC No. 9286 (March 24, 1998), http://www.ftc.gov/os/1998/03/summit.cmp.htm (last visited Dec. 11, 2003). 91. Hunter Douglas, Inc. v. Harmonic Design, Inc., 153 F.3d 1318 (Fed. Cir. 1998), overruled on other grounds by Midwest Indus., Inc. v. Karavan Trailers, Inc., 175 F.3d 1356 (Fed. Cir. 1999). 92. C.R. Bard, Inc. v. M3 Sys., Inc., 157 F.3d. 1340 (Fed. Cir. 1998). 93. Mikohn Gaming Corp. v. Acres Gaming, Inc., 165 F.3d 891 (Fed. Cir. 1998). 94. PSC Inc. v. Symbol Techs., 48 USPQ2d 1838 (W.D.N.Y. 1998). 95. Zenith Elec. Corp. v. Exzec, Inc., 182 F.3d 1340 (Fed. Cir. 1999). 96. Intergraph Corp v Intel Corp., 195 F. 3d 1346 (Fed. Cir. 1999). 97. Fed. Circuit in Ricoh Co. v. Nashua Corp., 1999 U.S. App. LEXIS 2672 (Unpublished Disposition). 98. Antoine L. Garabet, M.D., Inc. v. Autonomous Tech. Corp., 116 F. Supp.2d 1159 (2000). 99. CSU v. Xerox, 203 F.3d 1322 (Fed. Cir. 2000). 100. Glitsch, Inc. v. Koch Eng'g Co., 216 F.3d 1382 (Fed. Cir. 2000). 101. Adm’r of the Tulane Educ. Fund v. Debio Holding S.A., 177 F. Supp. 2d 545 (E.D. La. 2001). (四)其他 1. 134 CONG. REC. S17146, S17148-49 (October 21, 1988). 2. AMERICAN NATIONAL STANDARDS INSTITUTE, GUIDELINES FOR IMPLEMENTATION OF THE ANSI PATENT POLICY, http://public.ansi.org/ansionline/Documents/Standards%20Activities/American%2 0National%20Standards/Procedures,%20Guides,%20and%20Forms/ (May 25, 2004 visited). 3. Gerrard R. Beeney, Pro-Competitive Aspects of Intellectual Property Pools: A Proposal for Safe Harbor Provisions, testimony presented at U.S. Department of Justice & Federal Trade Commission Hearings on Competition and Intellectual Property Law and Policy in the Knowledge-Based Economy (April. 17, 2002), http://www.ftc.gov/opp/intellect/020417garrardrbeeney.pdf (last visited Dec. 13, 2003). 4. H.R. 401, 105th Cong. (1st Sess. 1997), http://thomas.loc.gov/cgi-bin/query/z?c105:H.R.401:( last visited June 8, 2004). 5. In re Certain Recordable Compact Discs and Rewritable Compact Discs, [Investigation No. 337-TA-474 ] Notice of Commission Determination of No Violation of Section 337 (March 11, 2004), http://www.usitc.gov/sec/337_474_notice03112004sgle.pdf (last visited June 8, 2004). 6. In re Certain Recordable Compact Discs and Rewritable Compact Discs, [Investigation No. 337-TA-474 ] Notice of Investigation (July 22, 2002), http://www.usitc.gov/sec/I0722Z1.PDF (last visited June 8, 2004). 7. In re Certain Recordable Compact Discs and Rewritable Compact Discs, [Investigation No. 337-TA-474 ] Notice of Commission Determination Not to Review An Initial Determination Granting A Motion to Intervene (Aug. 30, 2002), http://www.usitc.gov/sec/I0830Z1.PDF (last visited June 8, 2004). 8. Jeanne Clark et al, Patent Pools: A Solution to the Problem of Access in Biotechnology Patents? (December 5, 2000), http://www.uspto.gov/web/offices/pac/dapp/opla/patentpool.pdf (last visited May, 20, 2004). 9. Joel Klein, Cross-Licensing and Antitrust Law, Adress Before the American Intellectual Property Law Association (May 2, 1997), http://www.usdoj.gov/atr/public/speeches/1123.htm (last visited June 8, 2004). 10. Letter from Joel I. Klein to Carey R. Ramos, Esq., DOJ Business Review Letter DVD 6C (June 10, 1999) , http:// www.usdoj.gov/atr/public/busreview/2485.htm (last visited June 8, 2004); Letter from Joel I. Klein to Garrard R. Beeney, Esq., DOJ Business Review Letter DVD 3C (December 16, 1998) , http://www.usdoj.gov/atr/public/busreview/2121.htm> (last visited Mar. 15, 2004); Letter from Joel I. Klein to Gerrard (sic) R. Beeney, Esq., DOJ Business Review Letter MPEG-2 (June 26, 1997), http:// www.usdoj.gov/atr/public/busreview/1170.htm> (last visited Mar. 15, 2004). 11. Malcolm W. Browne, Refining the Art of Measurement, N.Y. TIMES, Mar. 20, 2001, at D1-D6. 12. OECD, The Knowledge-Based Economy, General Distribution document [OCDE/GD(96)102 ] (1996), http://www.oecd.org/dataoecd/51/8/1913021.pdf (last visited June 8, 2004). 13. Robert Pitofsky, Antitrust Analysis in High-Tech Industries: A 19th Century Discipline Addresses 21st Century Problems (February 25-26, 1999), http://www.ftc.gov/speeches/pitofsky/hitch.htm (last visited June 3, 2004). 14. Robert Pitofsky, Antitrust and Intellectual Property: Unresolved Issues at the Heart of the New Economy (Mar.2, 2001), http://www.ftc.gov/speeches/pitofsky/ipf301.htm (last visited June 8, 2004). 15. Robert P. Merges, Institutions for Intellectual Property Transactions: The Case for Patent Pools (August 1999), http://www.law.berkeley.edu/institutes/bclt/pubs/merges (last visited Mar. 15, 2004). 16. U.S. DEPARTMENT OF JUSTICE & FEDERAL TRADE COMMISSION, ANTITRUST GUIDELINES FOR THE LICENSING OF INTELLECTUAL PROPERTY (April 6, 1995), reprinted in 4 Trade Reg. Rep. (CCH) ¶ 13,132, http://www.usdoj.gov/atr/public/guidelines/ipguide.pdf (last visited May 2, 2004). 17. Uspto Information Products Division / Taf Branch, All Patents, All Types, January 1977 -- December 2001, at page A1- 1 (April 2002), http://www.uspto.gov/web/offices/ac/ido/oeip/taf/apat.pdf(last visited June 8, 2004)。 18. 美國律師協會(American Bar Association)網頁, http://www.abanet.org/intelprop/97-98rep/104.html (last visited Apr. 13, 2003).id NH0925705001 sid 906508 cfn 0 / id NH0925705002 auc 溫珮君 tic 以資料庫收編內容為中心之資料庫保護規範 adc 黃居正 ty 碩士 sc 國立清華大學 dp 科技法律研究所 yr 92 lg 中文 pg 92 kwc 財產權理論 kwc 新興財產權 kwc 資料庫 kwc 著作權 kwc 智慧財產權 kwc 科技保護措施 kwc 數位識別系統 kwc 經濟分析 kwc 交易成本 kwc 財產法則 kwc 補償法則 abc 受制於著作權法對於著作保護要件之規定,未滿足最小創意程度之資料庫元件或資料庫編排方式,不能受到著作權法之保護;然而,在資訊科技的衝擊下,資訊的掌握往往成為決勝致富的重要關鍵,一個內容豐富完整、建置良好的資料庫對於促進知識與資訊的累積和社會、經濟、文化之發展與進步,確實有著難以言喻之影響力。 tc 目錄 第一章 緒論 1 第一節 前言 1 第二節 文獻回顧 3 第三節 研究範圍及方法 7 第四節 論文架構 9 第二章 財產權發展之歷史脈絡 12 第一節 財產權形成之經濟理由 12 第二節 私有財產權制度之發展 16 第三節 智慧財產權之源流及概述 22 第四節 財產權私有化之合理界限 24 第三章 財產權制度之經濟分析 30 第一節 Coase定理和交易成本概念 31 第二節 從邊際效益和邊際成本模型看財產權制度之演變 36 第三節 權利之保護和救濟原則─財產法則和補償法則 38 第四章 多元管制模式 41 第一節 四種管制模式 41 第二節 法律的間接管制效果 44 第三節 管制模式之選擇 46 第五章 本質面的分析─資料庫之科技保護 48 第一節 資料庫的本質與排他性 48 第二節 數位資料庫的科技管制 49 第六章 法制面的分析─現行法律制度下之資料庫保護 55 第一節 資料庫之再定義及分類。 55 第二節 資料庫的法律管制 60 第七章 經濟面的分析─資料庫保護方法之研究 66 第一節 資料庫的交易成本 66 第二節 資料庫的經濟管制 67 第八章 配套措施建議 73 第一節 創設資料庫財產權之理由 73 第二節 資料庫保護之合理化基礎 75 第三節 資料庫本質和結構之物理限制 78 第四節 法律管制和經濟分析 79 第五節 適度保護機制 80 第六節 配套管制措施 83 第七節 研究限制與結論 83 附錄、參考資料 85rf 附錄、參考資料 第一部分、中文資料 一、 專書 理察•艾普斯坦著,簡資修譯,自由社會之原則:個人自由與共通善的調和,商周,2003年2月初版 林萬億,福利國家的形成與社會公平,國立台灣大學,2003年1月初版 江山,互助與自足:法與經濟的歷史邏輯通論,中國政法大學出版社,2002年9月初版 鄭中人,智慧財產權法導讀,五南,2002年8月,增訂二版 羅明通,著作權法論(I)、(II),台英,2002年8月第4版 大衛•傅立曼著,徐源豐譯,經濟學與法律的對話,先覺,2002年4月初版 Seth Shulman著,吳書榆譯,知識的戰爭,聯經,2001年2月初版 王澤鑑,民法物權(1)—通則、所有權,作者自版,2000年10 月 羅貝多•溫格著,王佳煌譯,現代社會的法律,商周,2000年1月初版 博登海默著,鄧正來譯,法理學:法哲學與法學方法,漢興,1999年11月初版 謝銘洋,智慧財產權之基礎理論,翰蘆,1995年初版 賀德芬,文化創新與商業契機/著作權法論文集,月旦,1994年初版 道格拉斯•諾斯著,劉瑞華譯,制度、制度變遷與經濟成就,時報文化,1994年初版 黃春興、干學平,經濟學原理—牽成繁榮與追求進步(上冊)、(下冊),新陸,1994年7月,第一版。 海耶克著,夏道平譯,個人主義與經濟秩序,遠流,1993年1月初版 二、期刊論文 熊秉元,〈司法案件、法律經濟學和公共選擇〉,經社法制論叢,第30期,頁121-140(2002. 7) 陳起行,〈資訊著作的著作性與合理使用—事理、學理及法制面研究〉,政大法學評論,第68期,頁183-262(2001. 12) 賴文智、顏雅倫,〈數位著作權—電子書與電子資料庫的著作權爭議〉,網路資訊,第118期,頁105-109(2001. 9) 葉乃瑋、賴文智,〈數位圖書館與著作權〉,書苑,第49期,頁10-22,(2001. 7) 吳尚昆,〈著作權法的合理使用與個人使用〉,書苑,第49期,頁38-52,(2001. 7) 鄭中人,〈財產法則與責任法則:音樂強制授權之經濟分析〉,台北大學法學論叢,第48期,頁199-220(2001.6) 章忠信,〈著作權法制中「科技保護措施」與「權利管理資訊」之探討(下)〉,萬國法律,第114期,頁83-94(2000.12) 章忠信,〈著作權法制中「科技保護措施」與「權利管理資訊」之探討(上)〉,萬國法律,第113期,頁33-52(2000. 10) 戴豪君,〈從網路人力銀行案看資料庫保護之困境〉,智慧財產權季刊,第25期,頁20-22(2000) 羅明通,〈著作權法「原創性」概念之解析〉,智慧財產權,第11期,頁35-45 (1999.11) 陳歆,〈著作權潔淨室〉,智慧財產權,第8期,頁1-9(1999. 8) 張懿云,〈資料庫保護之國際發展趨勢與我國因應之道〉,智慧財產,第31期,頁54-63(1999) 章忠信,〈網路世界的資料庫保護相關問題〉,萬國法律,第104期,頁50-56(1999. 4) 黃幼蘭,〈美國資料庫保護之最新發展趨勢〉,智慧財產,第26期,頁40-49(1998) 張懿云,〈歐體及德國資料庫保護之立法研究〉,輔仁法學,第17期,頁159-204(1998) 陳文鈺,〈國際資料庫保護之立法趨勢〉,通訊雜誌,第52期,頁60-63(1998) 林淑芳,〈電子資料庫著作權問題探討〉,國立中央圖書館台灣分館館刊,第4期4卷,頁16-24(1998. 6) 陳淑美,〈資料庫保護之研究〉,資訊法務透析,頁33-47(1998. 3) 謝銘洋,〈論資料庫保護之法律保護〉,台大法學論叢,第27期2卷,頁263-345(1998) 陳起行,〈由美國不正競爭法之排除適用探討智慧財產權法理念〉,政大法學評論,第57期,頁451-466(1997. 6) 張懿云,〈歐體資料庫保護指令之立法研究〉,資訊法務透析,頁47-57(1997. 2) 王文宇,〈財產法的經濟分析與寇斯定理—從一則古老的土地相鄰判決談起〉,月旦法學雜誌,第15期,頁6-14(1996. 8) 鄭中人,〈著作權法的經濟分析〉,月旦法學雜誌,第15期,頁24-31(1996. 8) 蔡明誠,〈論著作之原創性與創作性要件〉,台大法學論叢,第26期1卷,頁177-194(1996) 陳家駿,〈談資訊高速公路與資料庫著作權 (下)〉,電工資訊雜誌,第52期,頁50-55(1995. 4) 陳家駿,〈談資訊高速公路與資料庫著作權 (上)〉,電工資訊雜誌,第51期,頁84-87(1995. 3) 古清華,〈資料庫業者的法律難題—著作權授權〉,Online-Today:電子資料庫簡訊,第5期,頁26-28(1994. 9) 古清華,〈未受著作權保護的資料庫何去何從?〉,網路通訊雜誌,第20期,頁110-122(1993. 3) 古清華,〈資料庫都可受到著作權法的保護嗎?〉,網路通訊雜誌,第15期,頁92-94(1992. 10) 古清華,〈從著作權法論資料庫的法律問題〉,資訊法務透析,頁31-42(1992. 7) 三、碩士論文 廖偉迪,資訊時代著作權合理使用原則演變之探討─以美國著作權法為中心,國立中正大學電訊傳播研究所碩士論文(2003年1月) 胡心蘭,論科技發展對合理使用與著作財產權限制之影響,私立中原大學財經法律系碩士學位論文(2001年6月) 陳佑寰,著作技術保護措施之法規範─從分散式重製著作之多元管制談起,國立台灣大學法律學研究所碩士論文(2001年6月) 鄭聖娉,數位時代著作權法經濟報酬之檢討,私立東吳大學法律學研究所碩士論文(2001) 黃幼蘭,美國資料庫保護立法發展之研究,國立中興大學法律系碩士論文(1998) 四、 博士論文 李英明,馬克思異化論之研究,國立政治大學東亞研究所博士論文(1985年6月) 第二部分、英文資料 一、專書 Barzel, Yoram 1989, Economic Analysis of Property Rights, Cambridge: Cambridge University Press. Coase, Ronald H. 1988, The Firm, the Market, and the Law, Chicago: University of Chicago Press. Cole, Daniel H. 2002, Pollution and Property: Comparing Ownership Institutions for Environment Protection, Cambridge: Cambridge University Press. Cooter, Robert & Ulen, Thomas 1999, Law and Economics, 3rd Ed, Addison-Wesley Publishing. Kramer, Matthew H. 1997, John Locke and the Origins of Private Property, Cambridge: Cambridge University Press. Merges, Robert P., Menell, Peter S. & Lemley, Mark A. 2003, Intellectual Property in the New Technological Age, New York: Aspen Publishers. Polinsky, A. Mitchell 1989, An Introduction to Law and Economics, 2nd Ed, Boston: Little, Brown. Posner, Richard A. 1998, Economic Analysis of Law, 5th Ed, Boston: Little, Brown. Radin, Margaret Jane 1993, Reinterpreting Property, Chicago: University of Chicago Press. Siegan, Bernard H. 2001, Property Rights: From Magna Carta to the Fourteenth Amendment, New Brunswick: Transaction Publishers. Waldron, Jeremy 1988, The Right to Private Property, New York: Oxford University Press. 二、期刊論文 Anderson, Terry L., and Hill, Peter J. 1975, “The Evolution of Property Rights: A Study of American West,” Journal of Law and Economics 18: 163-79. Barzel, Yoram 1982, “Measurement Cost and the Organization of Markets,” Journal of Law and Economics 25: 27-48. Benkler, Yochai 2000, “Constitutional Bounds of Database Protection: The Role of Judicial Review in the Creation and Definition of Private Rights in Information,” Berkeley Technology Law Journal 15: 535-603. Blanke, Jordan M. 2002, “Vincent Van Gogh, "Sweat of the Brow," and Database Protection,” American Business Law Journal 39: 645-82. Brill, Charles 1998, “Legal Protection of Collections of Facts,” Computer Law Review & Technology Journal 1998: 1-59. Demsetz, Harold 1967, “Toward a Theory of Property Rights,” American Economic Review 57: 347-59. Freno, Michael 2001, “Database Protection: Resolving the U.S. Database Dilemma with an Eye Toward International Protection,” Cornell International Law Journal 34: 165-225. Grosheide, F.W. 2002, “Symposium on Intellectual Property, Digital Technology & Electronic Commerce: Digital Copyright and Database Protection: Database Protection—The European Way,” Washington University Journal of Law & Policy 8: 39-74. Hardin, Garrett 1968, “The Tragedy of the Commons,” Science 162: 1243-8. Heller, Michael A. 1999, “The Boundaries of Private Property,” Yale Law Review 108: 1163-223. Heller, Michael A. 1998, “The Tragedy of the Anticommons: Property in the Transition from Marx to Markets,” Harvard Law Review 111: 621-88. Hill, Jennett M. 1998, “The State of Copyright Protection for Electronic Databases beyond ProCD v. Zeidenberg: Are Shrinkwrap Licenses a Viable Alternative for Database Protection?,” Indiana Law Review 31: 143-81. Lessig, Lawrence 1998, “Social Norms, Social Meaning, and the Economic Analysis of Law-A Conference Sponsored by University of Chicago Law School and the John M. Olin Program in Law and Economics: The New Chicago School”, Journal of Legal Studies 27: 661-691. Lipton, Jacqueline 2003, “Balancing Private Rights and Public Policies: Reconceptualizing Property in Databases”, Berkeley Law Review 18: 773-852. Lueck, Dean 1989, “The Economic Nature of Wildlife Law,” Journal of Legal Studies 18: 291-324. Lunnery, Glynn S., Jr. 2001, “The Death of Copyright: Digital Technology, Private Copying, and the Digital Millennium Copyright Act,” Virginia Law Review 87: 813-902. Merrill, Thomas W. and Smith, Henry E. 2000, “Optimal Standardization in the Law of Property: The Numerus Clausus Principle,” Yale Law Review 110: 1-70. Penner, J.E. 1996, “The "Bundle of Rights" Picture of Property,” UCLA Law Review 43: 711-820. Quilter, Laura 2002, “Cyberlaw: The Continuing Expansion of Cyberspace Trespass to Chattels,” Berkeley Technology Law Journal 17: 421-43. Reichman, J. H. and Uhlir, Paul F. 1999, “Database Protection at the Crossroads: Recent Developments and Their Impact on Science and Technology,” Berkeley Technology Law Journal 14: 793-838. Smith, Henry E. 2000, “Semicommon Property Rights and Scattering in the Open Fields,” Journal of Legal Studies 29: 131-69. Wu, Xuqiong (Joanna) 2002, “Foreign and International Law: E.C. Database Directive,” Berkeley Technology Law Journal 17: 571-94.id NH0925705002 sid 896505 cfn 0 / id NH0925705003 auc 王俞文 tic 我國專利侵權鑑定制度合法化之探討--以哈伯瑪斯之法理論為基礎 adc 黃居正 ty 碩士 sc 國立清華大學 dp 科技法律研究所 yr 92 lg 中文 pg 68 kwc 哈伯瑪斯 kwc 財產法 kwc 專利法 abc 關於專利侵權鑑定制度,國內文獻多從行政法「授權明確性」及「法律保留原則」等實體法觀點切入;本論文則選擇使用哈伯瑪斯之程序法觀點,及財產法之理論對本問題進行分析,期望能對專利侵害鑑定提出新的詮釋。 rf 參考文獻 一、中文書籍 阿蘭•賴恩(ALAN RYON),《財產(PROPERTY)》,(顧蓓華譯,顧曉鳴校閱,台北:桂冠圖書公司,1991); 大衛.傅利曼(DAVID D. FRIEDMAN ),《經濟學與法律的對話(LAW’S ORDER)》, (徐源豐譯,葉家興審定,台北:先覺出版股份有限公司,2002); 道格拉斯•諾斯(DOUGLASS C.NORTH),《制度、制度變遷與經濟成就》,(劉瑞華譯,台北:時報出版社,1994) 哈伯瑪斯(JURGEN HABERMAS),《合法化危機(LEGITIMATIONPROBLEME IM SPATKAPITALISMUS)》,(劉北城譯,嚴敏蕙校正,台北:桂冠圖書股份有限公司,1992); 哈伯瑪斯(JURGEN HABERMAS),《認識與旨趣》, (郭官義、李黎譯,台北:風雲論壇出版社有限公司,2001); 哈伯瑪斯(JURGEN HABERMAS),《公共領域的結構轉型(STRUKTURWANDEL DER OFFENTLICHKEIT) 》,(曹衛東、王曉玨、劉北城、宋偉杰譯,台北:聯經出版事業公司,2002); 哈伯瑪斯(Jurgen Habermas),《後民族格局:哈伯瑪斯政治論文(DIE POSTNATIONALE KONSTELLATION: POLITISCHE ESSAYS)》,(曹衛東譯,台北:聯經出版事業公司,2002) 哈伯瑪斯(Jurgen Habermas),《事實與格式(FAKTIZITAT UND GELTUNG)》,(童世駿譯,台北:台灣商務印書館,2003); 理查.艾普斯坦(RICHARD A. EPSTEIN),《自由社會之原則—個人自由與共通善的調和(PRICIPLES FOR A FREE SOCIETY:RECONCILING INDIVIDUAL LIBERTY WITH THE COMMON GOODS)》(簡資修譯,台北:商周出版,2003); RICHARD A. POSNER,《法理學問題(THE PROBLEMS OF JURISPRUDENCE)》(朱蘇力譯,台北:元照出版有限公司,2002); RICHARD A. POSNER,《正義/司法的經濟學(THE ECONOMICS OF JUSTICE)》(朱蘇力譯,台北:元照出版有限公司,2002); 王澤鑑,《侵權行為法(1)》(自版,2001.7); 洪鎌德,《法律社會學》,(台北:揚智文化事業股份有限公司,2001) ; 許宗力,〈行政命令授權明確性問題之研究〉,《法與國家權力》,(台北:元照出版公司,1996) ;徐宏昇,《高科技專利法》 (台北:翰蘆圖書出版有限公司,2003); 張清溪合著,《經濟學理論與實際(下)》,(台北:雙葉書廊,1990) ; 黃文儀,《專利法逐條解說》,(台北:三民書局,1999) ; 湯德宗,《權力分立新論》,(台北:元照出版公司,2000) ; 謝銘洋,《智慧財產權之理論基礎》(台北:自版發行,1997); 二、中文期刊/報告/碩博士論文 李文賢,〈論專利侵害鑑定基準〉,《月旦法學教室》,第83期 蔡維音,〈專業行政領域之授權立法〉,《月旦法學》第74期; 鄭中人,〈論專利權之性質(上)(下)〉,司法週刊第887、888期,第三版。 謝銘洋,〈智慧財產權之沿革與相關理論〉,《月旦法學教室》創刊號 葉俊榮、張文貞,〈轉型法院與法治主義:論最高行政法院對違法行政命令審查的積極趨勢〉,《人文及社會科學集刊》第十四卷第四期; 楊智傑,〈授權明確性原則之法理分析與經濟分析〉,《憲政時代》第二八卷第二期 雷文玫,〈社會安全制度與憲法解釋─從立法授權行政立法之民主正當性看釋字五二四號解釋〉(發表於第一屆憲法實務與理論學術研討會,台大公法研究中心、台灣法學會主辦,2002年10月19日); 劉紹樑,〈財經改革、產權保障與憲法制約〉(發表於第四屆憲法解釋之理論與實務,中研院社科所主辦,2003年9月26日) 汪渡村,〈專利授權限制競爭條款之規範-以公平交易法草案為中心〉,政治大學法律研究所博士論(1990) 何建志,<法律的意義與詮釋>,國立台灣大學法律學研究所碩士論文(1997) 熊賢安,<專利侵權之判斷>,東海大學法律研究所碩士論文(2003) 三、英文書籍 H.L.A.HART, THE CONCEPT OF LAW,OXFORD:CLARENDON PRESS(1961); JURGEN HABERMAS, THE STRUCTURAL TRANSFORMATION OF THE PUBLIC SPHERE ANDREWS, (Thomas Burger trans ,Massachusetts:The MIT Press 1993 ); Jurgen Habermas, BETWEEN FACTS AND NORMS: CONTRIBUTIONS TO A DISCOURSE THEORY OF LAW AND DEMOCRACY 212-213(WILLIAM REHG TRANS., 1995) LOCKE, JOHN, TWO TREATIES OF GOVERNMENT (Peter Laslett ed., Cambridge University Press 1988)(1960) RADIN, MARGARET JANE, REINTERPRETING PROPERTY (The University of Chicago Press 1993); PETER DRAHOS, A PHILOSOPHY OF INTELLECTUAL PROPERTY, (Dartmouth Publishing Company 1996) 四、英文期刊論文 Alfred E. Kahn, Deficiencies of American Patent Law, 30 AM. ECON. EV.. 475, 481 (1940) A. Michael Froomkin, Habermas@Discourse.Net: Toward a Critical Theory of Cyberspace, 116 HARV. L. REV. 749(2003); Carol M. Rose, Critical Approaches to Property Institution: Left Brain, Right Brain and History in the New Law and Economics of Property, 79 OR. L. REV. 479 (2000); Clarisa Long , Information Costs in Patent and Copyright, 90 VA. L. REV. 465 (2004); David Lametti, The Concept of Property: Relations through Objects of Social Wealth, 53 UNIV. OF TORONTO L.J. 325 (2003); Edmund W. Kitch, The Nature and Function of the Patent System, 20 J.L. & ECON(1977) ; Frank Michelman, Law's Republic, 97 YALE L.J. 1493 (1988); G. Hardin,The Tragedy of Commons, SCIENCE162 (1968) ; Hanoch Dagan, The Craft of Property , 91 CALIF. L. REV. 1517 (2003); Hanoch Dagan & and Michael A. Heller, The Liberal Commons, 85 110 Yale L.J. 549 (2001); Henry E. Smith, Semicommon Property Rights and Scattering in the Open Fields, 29 J. LEGAL STUD. 131 (2000) ; Jacqueline Lipton, Information Property: Rights and Responsibilities, 56 Fla. L. Rev. 135 (2004); Malla Pollack, The Multiple Unconstitutional Of Business Patents: Common Sense,Congressional Consideration, And Constitutional Histroy,28 RUTGERS COMPUTER & TECH.L.J. 61(2002) ; Michael A. Heller, The Tragedy of the Anticommons: Property in the Transition From Marx to Markets, HARVARD LAW REV. 111,(1998) ; Michael A. Heller, Rebecca S. Eisenberg,Can Patents Deter Innovation? The Anticommons in Biomedical Research, Science 280(1998) ; Neil Netanel, Copyright and Democratic Civil Society, 106 YALE L.J. 283 (1996); Neil Netanel, Taking Stock: The Law and Economics of Intellectual Property Rights, 53 VAND. L. REV. 1879 (2000);Nuno Pires de Carvalho, The Primary Function of Patents, 2001 U. ILL. J.L. TECH. & POL'Y 25(2001) ; Robert A. Heverly, The Information Semicommons, 18 Berkeley Tech. L.J. 1127 (2003); Robert Post, Lecture: Defending the Lifeworld: Substantive Due Process in the Taft Court, 78 B.U. L. REV. 1489 (1998); Sharp, The Classical American Doctrine of “The Separarion of Powers”,2 U.CHI. L. REV. 385 (1935); Saul Levmore, The Evolution of Property Rights: A Conference Sponsored by the Searle Fund and Northwestern University School of Law: Two Stories About the Evolution of Property Rights, 31 J. LEGAL STUD. S421 (2002); Sax, Takings and the Police Power,74 YALE L.J. 36(1964) ; Thomas W. Merrill & Henry E. Smith, Optimal Standardization in the Law of Property: The Numerus Clausus Principle, 110 YALE L.J. 1(2000) ; Wesley Shih, Reconstruction Blues: A Critique of Habermasian Adjudicatory Theory,36 SUFFOLK U. L. REV. 331 (2003); ; 五、案例資料 Penn. Coal Co.v.Mahon ,260 U.S.393(1922) Miller v. Shoene,276 U.S.272(1928) Department for Natural resources & Envo. Protection v. No.8 Ltd. of Virginia,528.S.W. 2d.684(1975) Markman v. Westview Instruments, Inc., 517 U.S.370(1996) Fromson v. Anitec Printing Plates, Inc. 132 F.3d 1437, 45 U.S.P.Q.2d 1269 (Fed. Cir. 1997) 六、其他中英文網頁資料 WIPO官方網站http://www.wipo.org/about-ip/en/index.html?wipo_content_frame=/about-ip/en/patents.html 智慧財產局 http://www.moeaipo.gov.tw/homepage/sub3/sub3-1-4.htid NH0925705003 sid 906504 cfn 0 / id NH0925705004 auc 洪聖濠 tic 智慧財產權的規範意識 – 由TRIPS到我國之智慧財產權法制 adc 黃居正 ty 碩士 sc 國立清華大學 dp 科技法律研究所 yr 92 lg 中文 pg 89 kwc 與貿易相關 kwc 與貿易相關智慧財產權協定 kwc 智慧財產權 abc 本文以伯恩公約、巴黎公約到TRIPS形成當時的國際政治、經濟關係為背景,討論在不同貿易功能下,智慧財產權規範原則與架構的轉變,並主張TRIPS架構,關於「與貿易相關」智慧財產權規範所及範圍,必須限於可經由比較利益原則所增長之部分,其目的在以私人交易支撐智慧財產資源產出。上述觀點,可從WTO各爭端案中,爭端解決機構在平衡自由貿易原則與各國主權規範上的各種判定標準,例如在Canada – Pharmaceutical案中將專利權區分為具有規範性與地域性內涵,加以印證。我國智慧財產權法制的發展,從立法史的觀點,可發現我國智慧財產權法制所要提倡的社會活動,提昇技術輸入的目的大於鼓勵創造發明。在受到外國壓力下,我國法制迅速朝向保障權利人、以鼓勵創造發明的方向建構,但因為過於強調單一價值:鼓勵創造發明的法制架構,使法制架構與仍處於知識輸入國地位的我國社會、經濟活動仍有摩擦。不過這種衝突,在TRIPS架構下,可因WTO各爭端案中強調智慧財產權規範需考量各國社會價值而緩解,這也是建構我國智慧財產權法制時,可加以利用的政策空間。 tc 第一章 序論 1 第二章 國際條約中智慧財產權規範的發展 3 第一節 國際關係、貿易目的與智慧財產權規範的互動 3 第一項 國際關係與國際貿易間的互動 3 第二項 巴黎公約與伯恩公約的規範架構 6 第二節WTO架構下之各方主張、衝突與共識 11 第一項 烏拉圭回合的談判過程 12 第二項 各國立場分析與TRIPS的規範方向 15 第三節 以WTO架構,建構智慧財產權規範之前提 20 第一項 TRIPS架構與比較利益原則間的關聯性 20 第二項 與「貿易相關」之內涵 23 第三章 由爭端解決探析TRIPS中的智慧財產權規範意識—以Canada - Patent Protection of Pharmaceutical Product案為例 26 第一節 導論 26 第二節 波拉例外、產業政策與公共健康 28 第三節Canada - Patent Protection of Pharmaceutical Product案之裁決結構 31 第一項 本案事實與裁決 31 第二項 爭端解決小組的論理結構 34 第三項 本案論理結構所持之基本原則 41 第四節 對Canada - Patent Protection of Pharmaceutical Product案之評析 48 第一項 由GATT/WTO觀點 49 第二項 公共健康宣言對於例外條款的影響 53 第三項 對於本案裁決架構的重新詮釋 55 第五節 TRIPS中之權利例外規定的內涵與解釋方向 56 第四章 我國智慧財產權法制的發展—以國際智慧財產權規範架構的觀察與檢討 60 第一節 我國智慧財產權法制的發展與特徵 61 第二節 我國政策形成空間-對於專利法第五十二條的探討 70 第五章 結論 74 附錄一 字彙表 76 附錄二 縮略語 81 參考文獻 83rf 中文文獻 中文書籍 美國國會預算局,《GATT談判與美國貿易政策》,(行政院經濟建設委員會健全經社法規工作小組譯,台北:行政院經濟建設委員會健全經社法規工作小組,1990); 林誠二,《民法總則講義》,(台北:瑞興圖書股份有限公司,1998年11月修訂版); 張清溪、許嘉棟、劉鶯釧、吳聰敏,《經濟學理論與實際》,(台北:作者自刊,1994年二版修訂); 王健全,《中小企業在高科技產業的地位》,經濟部中小企業處委託研究,(台北:經濟部中小企業處1998); 王澤鑑,《民法總則》,(台北:作者自刊,2000)。 中文論文 林彩瑜,< WTO TRIPS協定下醫藥專利與公共健康之問題及其解決方向 >,政大法學評論,78期,台北(2004); 陸義淋,< GATT烏拉圭回合談判著作權部分近況研究-1991年12月最終協議草案與我國著作權法修正草案之比較分析 >,「第四次GATT烏拉圭回合談判研討會」,經濟部國際貿易局 (1992年5月); 陳光榮,<提升人力素質因應知識經濟時代之策略>,經濟情勢既評論季刊,六卷四期,台北(2001); 陳文吟,〈GATT烏拉圭回合最終協議草案報告 專利、商標等智慧財產權議題〉,「第三次GATT烏拉圭回合談判研討會」,經濟部國際貿易局 (1991年9月); 蔡宏明,<我國高科技產業發展面對的挑戰與因應對策>,經濟情勢既評論季刊,五卷一期,台北(1999); 楊淑玲,<與貿易有關智慧財產權協定及其世界貿易組織爭端解決機制之適用-以專利權保護及第30條專利權之限制為中心>,東吳大學法研所碩士論文(2003); 游啟聰,<我國半導體產業國際競爭力分析>,經濟情勢既評論季刊,四卷三期,台北(1998)。 中文文件: 經濟部行政院經濟建設委員會健全經社法規工作小組,<我入會工作小組報告相關承諾答客問(DRAFT)>,http://cwto.trade.gov.tw/default.asp (最後參訪日2004年5月15日)。 中文報刊: 美國本年將我國再度列入特別三○一「優先觀察名單」,經濟部國際貿易局表示遺憾,經濟部新聞稿,2004年5月4日。 英文文獻 BOOKS: CARLOS M. COREA, IMPLICATIONS OF THE DOHA DECLARATION ON THE TRIPS AND PUBLIC HEALTH (Geneva: WHO, EDM/PAR/2000.3, 2002); CONG. BUDGET OFF., HOW INCREASED COMPETITION FROM GENERIC DRUGS HAS AFFECTED PRICES AND RETURNS IN THE PHARMACEUTICAL INDUSTRY (Washington: CONG. BUDGET OFF 1998); DANIEL GERVAIS, THE TRIPS AGREEMENT: DRAFTING HISTORY AND ANALYSIS (London: Sweet & Maxwell 1998); JOHN H. JACKSON, THE WORLD TRADING SYSTEM: LAW AND POLICY OF INTERNATIONAL ECONOMIC RELATIONS (Cambridge, MA : MIT Press 1997); J. S. GOLDSTEIN, INTERNATIONAL RELATIONS (New York: Longman 3d ed. 1999); MALCOLM ANDERSON & KAREN PARENT, TIMELY ACCESS TO GENERIC DRUGS: ISSUES FOR HEALTH POLICY IN CANADA (CANADA: the Canadian Generic Pharmaceutical Association 2001); PETER DRAHOS, A PHILOSOPHY OF INTELLECTUAL PROPERTY (Brookfield: Dartmouth Publishing Group 1996); ROBERT P. MERGES ET AL., INTELLECTUAL PROPERTY IN THE NEW TECHNOLOGICAL AGE (New York: Aspen Publishers 3d ed. 2003); SAM RICKETSON, THE BERNE CONVENTION FOR THE PROTECTION OF LITERARY AND ARTISTIC WORKS: 1886-1986 (London: Kluwer Law International 1987); VERN SIMPSON, ET AL., REVIEW OF GLOBAL COMPETITIVENESS IN THE PHARMACEUTICAL INDUSTRY (U.S. INTERNATIONAL TRADE COMMISSION No. 3102, 1999); WIPO, WIPO INTELLECTUAL PROPERTY HANDBOOK: POLICY, LAW AND USE (Geneva: WIPO 2001); WTO, 10 BENEFITS OF THE WTO TRADING SYSTEM (Geneva: WTO 2003); WTO, 10 COMMON MISUNDERSTANDINGS ABOUT THE WTO (Geneva: WTO 2003); WTO, UNDERSTANDING THE WTO (Geneva: WTO 3d ed. 2003). ESSAYS: Amy S. Dwyer, Trade-Related Aspects of Intellectual Property Rights in 4 THE GATT URUGUAY ROUND: A NEGOTIATION HISTORY (1986-1994) 465 (Terence P. Stewart ed., Hague: Kluwer Law international 1999); Ari Afilalo & Sheila Foster, The World Trade Organization's Anti-Discrimination Jurisprudence: Free Trade, National Sovereignty, and Environmental Health in the Balance 15 GEO. INT’L ENVTL. L. REV. 633 (2003); Brian F. Fitzgerald, Trade-Based Constitutionalism: The framework for universalizing Substantive International Law? 5 Y.B. INT’L L. 111 (1996/1997); Christopher Scott Harrison, Protection of Pharmaceuticals as Foreign Policy: The Canada-U.S. Trade Agreement and Bill C-22 Versus the North American Free Trade Agreement and Bill C-91, 26 N.C.J. INT’L & COM. REG. 457 (2001); Edith Tilton Penrose, The Economics of the International Patent System, in THE INTERNATIONAL INTELLECTUAL PROPERTY SYSTEM: COMMENTARY AND MATERIALS 635 (Frederick Abbott et al. eds., Hague: Kluwer Law International 1999); Edward Hore, A Comparison of United State and Canada laws as They Affect Generic Pharmaceutical Market Entry 55(3) FOOD & DRUG L.J. 373 (2000); Frank J. Garcia, Global Trade Issues in the New Millennium: Building a Just Trade Order for the New Millenium, 33 GEO. WASH. INT’L L. REV. 1015 (2001); Frederick Abbott et al., The Various Rights, in THE INTERNATIONAL INTELLECTUAL PROPERTY SYSTEM: COMMENTARY AND MATERIALS 2 (Frederick Abbott et al. eds., Hague: Kluwer Law International 1999); Frederick Abbott et al., Territoriality, in THE INTERNATIONAL INTELLECTUAL PROPERTY SYSTEM: COMMENTARY AND MATERIALS 21 (Frederick Abbott et al. eds., Hague: Kluwer Law International 1999); Frederick M. Abbott, The Doha Declaration on the TRIPS and Public Health: Lightening A dark Corner at the WTO, 5(2) J. INT’L. ECON. L. 469 (2002); Fritz Machlup & Edith Penrose, The Patent Controversy in the Nineteenth Century, 5 J. ECON HISTOR. 1 (1950); James Thuo Gathii, Legal Status of the Doha Declaration on TRIPS and Public health under the Vienna convention on the Law of Treaties, 15 HARV. J. L. & TEC. 291(2002); Jose E. Alvarez, The WTO as Linkage Machine, 96 AM. J.INT’L.L. 146, 152 (2002); M. Gregg Bloche, WTO Deference to National Health Policy: Toward an Interpretive Principle 5(4) J. INT'’L ECON. L. 825 (2002); Marcia A. Hamilton, The TRIPS: Imperialistic, Outdated, and Overprotective, 29 VAND. J. INT’L L. 613 (1996); Meinhard Hilf, Power, Rules and Principles – Which Orientation for WTO/GATT Law? 4(1) J. INT'’L. ECON. L. 111 (2001); Melvin Krauss, The Inherent Contradictions of the Welfare State, in FREE TRADE VERSUS PROTECTIONISM: A SOURCE BOOK OF ESSAYS AND READINGS 524 (Johannes Overbeek ed., Cheltenham, UK; Northampton, MA: Edward Elgar 1999); Ned Milenkovich, Deleting the Bolar Amendment to the Hatch-Waxman Act, Harmonizing Pharmaceutical Patent Protection in a Global Village, 32 J. MARSHALL L. REV. 751 (1999); Paul Champ & Amir Attaran, Patent Rights and Local Working Under the WTO TRIPS, 27 YALE J. INT’L L. 365 (2002); Peter Barton Hutt, The Importance of Patent Term Restoration to Pharmaceutical Innovation, 1(2) HEALTH AFFAIRS 6 (1982); Peter Burger, The Berne Convention: Its History and Its Key Role in the Future, 3 J.L. & TECH. 1 (1967); Peter Lichtenbaum, Reflections of the WTO Doha Ministerial: ‘Special Treatment’ vs ‘Equal Participation’: Striking a Balance in the Doha Negotiations, 17 AM. U. INT'L L. REV. 1003 (2003); Peter M. Gerhart, Reflection on the WTO Doha Ministerial: Slow Transformations: the WTO as a Distributive Organization, 17 AM. U. INT’'L L. REV. 1045 (2002); R. Carl Moy, The History of the Patent Harmonization Treaty: Economic Self-Interest as An Influence, 26 J. MARSHALL L. REV. 457 (1993); Robert Weissman, A Long, Strange TRIPS: The Pharmaceutical Industry Drive to Harmonize Global Intellectual Property Rules, and the Remaining WTO Legal Alternatives Available to Third World Countries, 17 U. PA. J. INT’L ECON. L. 1069 (1996); Ronald Findley & Kevin H. O’rourke, Commodity Market Integration, 1500-2000, in GLOBALIZATION IN HISTORICAL PERSPECTIVE 13 (Michael O. Bordo et al. eds., Chicago: University of Chicago Press 2003); Steve Charnovitz, The Legal Status of Doha Declarations, 5(1) J. INT’L. ECON. L. 207 (2002); Susan K. Sell, Post-TRIPS Developments: the Tension Between Commercial and Social Agendas in the Context of Intellectual Property, 14 FLA. J. INT’L L. 193 (2002). DOCUMENTS: Agreement on Trade Related Aspects of Intellectual Property Rights, Including Trade in Counterfeit Goods, Annex III, in Draft Final Act Embodying the Results of the Uruguay Round of Multilateral Trade Negotiations, GATT Doc. MTN.TNC/W/FA (Dec. 50, 1991); Canada Gazette, Part I, Vol. 134, No.32; Communications From Argentina, Brazil, Chile, China, Colombia, Cuba, Egypt, India. Nigeria, Peru, Tanzania, Uruguay, GATT Doc. MTN.GNG/NG11/W/71 (May 14, 1990); Communication from India, GATT Doc.MTN.GNG/NG11/W/40 (Sep. 5, 1989); Communication from the United States, GATT Doc. MTN.GNG/NG11/W/70 (May 11, 1990); Declaration on the TRIPS and Public Health, WT/MIN(01)/DEC/W/2 (Nov. 14, 2001); Drafting agreement to Discourage the Importation of Counterfeit Goods, GATT Doc. L/5382 (Oct. 18, 1982); Explanatory Note, Commission of the European Communities, WTO Ministerial Declaration on the TRIPS and Public Health - the issues at stake (Dec. 11, 2001); Guidelines and Objectives Proposed by the European Community for the Negotiations on Trade-Related Aspects of Substantive Standards of Intellectual Property Rights, GATT Doc. MTN.GNG/NG11/W/26 (July 7, 1988); Meeting of Negotiating Group of 27 and 28 June 1991, GATT Doc. MTN.GNG/TRIPS/1 (July 25, 1991); Ministerial Declaration on the Uruguay Round, GATT Doc. MIN.DEC (Sept. 20, 1986); Office of the United State Trade Representative, 2004 Special 301 Report, (2004); Progress of Work in Negotiating Group: Stock-Taking, MTN.TNC/w/89/Add.1 (Nov. 7, 1991); Status of Work in the Negotiation Group, Chairman’s Report to the GNG, GATT Doc. MTN.GNG/NG11/W/76 (July 18, 1990); Submission from Brazil, GATT Doc. MTN.GNG/NG11/W/30 (June 29, 1988); Submission from Canada, GATT Doc. MTN.GNG/NG11/W/47 (Oct. 25, 1989); Suggestion by Japan for Achieving the Negotiation Objective, GATT Doc. MTN.GNG/NG11/W/17 (Nov. 23, 1987); Suggestion by the United State for Achieving the Negotiating Objective, GATT Doc. MTN.GNG/NG11/W/14 (Oct. 20, 1987); Trade Negotiations Committee Meeting at Level of High Officials, GATT Doc. MTN.TNC/9 (Apr. 22, 1989); WHO Statement, WHO, WTO Council for TRIPS Statement by the representative of the World Health Organization, (Sep. 17, 2002). CASES: Appellate Body Report, EC - Measures Concerning Meat and Meat Products, WT/DS26/AB/R, WT/DS48/AB/R, adopted 13 Feb. 13, 1998; Appellate Body Report, European Communities – Measures Affecting Asbestos and Asbestos - Containing Products, WT /DS135 /AB/R, adopted Apr. 5, 2001; Appellate Body Report, United States – Import Prohibition of Certain Shrimp and Shrimp Products, WT/DS58/AB/R, adopted Nov. 6, 1998; Appellate Body Report, United States - Standards for Reformulated and Conventional Gasoline, WT/DS2/AB/R, adopted May 20, 1996; Panel Report, Canada – Patent Protection of Pharmaceutical Products, WT/DS114/R, adopted Apr. 7, 2000; Roche Products, Inc. v. Bolar Pharmaceutical Co., 733 F.2d 858 (Fed. Cir.), cert. denied, 469 U.S. 856 (1984). NEWSLETTERS & OTHER MATERIALS: An Unwarranted Patent Stretch, N. Y. TIMES, Aug. 7, 1982, at A26; Caroline E. Mayer, Drug Industry War Heats Up Over Generics; Name Brands Claim Generics Stifle Research, WASH. POST, Dec. 20, 1981, at K1; John Burgess, Fighting Trespassing on 'Intellectual Property'; U.S. Tries to Prevent Overseas Copying of Everything From Music to Microchips, WASH. POST, Dec. 6, 1987, at H1; John Burgess, Global Product Piracy May Be Costing Firms Billions, WASH. POST, Feb. 27, 1988, at H1; John Burgess, U.S. Group Threatens Thailand With Piracy Complaint, WASH. POST, Oct. 26, 1990, at H1; Marian Uhlman, Pushing Drug Patents, PHILIA. IQUIRER, Nov. 7, 1993, at D1; Pfizer's CEO defends his company's opposition to drug importation (Public Broadcasting Service, May 5, 2004); Press Release, Commission of the European Communities, European Union launches WTO panel against Canada for insufficient patent protection (Nov. 12, 1989); Press Release, Office of the United State Trade Representative, Zoellick Says World Has Chosen Path of Hope, Openness, Development and Growth (Nov. 2001); Stuart Auerbach, U.S. to Seek Trade Talk Priorities; Yeutter Will Walk Unless 5 Key Items Are Included, WASH. POST, Sept. 9, 1986, at D1; The half-Life patents, N. Y. TIMES, May 23, 1981, at A22; Two Past Foes of Drug Imports Say Legalization May Be Inevitable (Public Broadcasting Service, May 5, 2004).id NH0925705004 sid 906509 cfn 0 / id NH0925705005 auc 廖桂薰 tic 原住民遺傳物質之權利歸屬—以財產理論檢視人類基因多樣性研究 adc 黃居正 ty 碩士 sc 國立清華大學 dp 科技法律研究所 yr 92 lg 中文 pg 67 kwc 原住民族 kwc 原住民 kwc 基因多樣性 kwc 遺傳多樣性 kwc 財產 kwc 財產權 abc 鑑於原住民族遺傳上可能寓含之特殊性,一系列相關之基因多樣性研究於是興起。然而,在未能正視原住民族權利分配結構與市民法財產體制間差異的情況下,外界對原住民遺傳物質之取得與研究行為,將造成對原住民既有制度與價值系統的破壞。本文欲藉由描述兩系統在相關遺傳研究中所產生之衝突,強調承認原住民族獨特價值體系並賦予平行之解釋權力的必要性。 tc 目錄 摘要 I 謝辭 II 目錄 III 壹.緒論 1 一、問題意識 1 二、研究範圍與定義 2 (一)原住民族與原住民 2 (二)財產 3 (三)基因多樣性研究 4 (四)遺傳物質之範圍 6 三、論文架構與結論 7 貳、市民價值體系下遺傳物質的定位—可交易性之探討 9 一、從人體部分(BODY PARTS)之定位 10 (一)人體、財產、可交易性與神聖性 10 (二)從身體到身體的部分 12 二、遺傳物質的可交易性 20 (一)遺傳物質上的權利劃分 20 (二)研究用遺傳物質之移轉與告知後同意 22 (三)遺傳物質專利 25 三、植基於社會價值的可交易性概念 29 參.原住民財產權系統之獨特性的合法基礎 31 一、原住民族與市民財產文化的歧異性 32 (一)文化歧異現象 32 (二)原住民族財產制度與市民財產制度的歧異 34 二、賦予原住民族自成主權地位的正當性 36 (一)時間與空間上的主張 37 (二)資源分配的平等 37 (三)透過集體權利的踐行而維護原住民自成主權的地位 38 三、個人、社群與集體權利 40 (一)集體權利的基本概念 40 (二)集體權利與個人權利的衝突 43 四、獨特財產系統的實踐 45 (一)原住民族權利在國際法上的主張 45 (二)原住民族權利在國內法上的實踐 47 肆、原住民族遺傳物質之研究與權利衝突—現狀之呈現與思考方向48 一、原住民族社會中的遺傳物質 49 (一)原住民族細胞株專利 50 (二)價值觀的歧異 51 二、原住民社會中遺傳物質交易模式之修正 53 (一)遺傳物質的取得—同意權的行使 54 (二)研究利益的分享 57 (三)治本之道—原住民族價值系統之承認 59 伍.檢討與建議 61 參考文獻 64rf 參考文獻 中文書籍 伯登海默(BODENHEIMER, EDGAR),《法理學¬—法哲學與法學方法(JURISPRUDENCE-THE PHILOSOPHY AND METHOD OF THE LAW)》, (鄧正來譯,范建得校閱,台北:漢興圖書有限公司,1999); 德沃金(DWORKIN, RONALD),《生命的自主權(LIFE’S DOMINION) 》,(郭貞伶、陳雅汝譯,台北:商周出版,2002); JACQUIN, PHILIPPE,《印地安人:紅皮膚的大地(LA TERRE DES PEAUX—ROUGES) 》,(余中先譯,台北:時報文化1996); 杜利(TULLY, JAMES),《陌生的多樣性:歧異時代的憲政主義(STRANGE MULTIPLICITY: CONSTITUTIONALISM IN AN AGE OF DIVERSITY)》,(黃俊龍譯,台北:聯經出版2001) 威爾森(WILSON, EDWARD OSBORNE),《論人性(ON HUMAN NATURE)》,第25-39頁(鄭清榮譯,台北:時報出版,2002); 王澤鑑,《侵權行為法(1)》(自版,2001.7); 丘宏達,《現代國際法》 (台北:三民書局,2000); 黃應貴,《東埔社布農人的社會生活》(中央研究院民族學研究所1992); 臺灣總督府臨時臺灣舊慣調查會,《番族慣習調查報告書「第四卷」鄒族》,中央研究院民族學研究所編譯(中央研究院民族學研究所2000) 中文期刊/報告/碩博士論文 王泰升,〈台灣原住民的法律地位〉,行政院國家科學委員會專題研究計畫成果報告(行政院國家科學委員會1997)。 李明峻,許介鱗,〈國際法語原住民族的權利〉,《政治科學論叢》,第12期; 林子儀,〈基因資訊與基因隱私權—從保障隱私權的觀點論基因資訊的利用與法的規制〉,《當代公法新論(中) —翁岳生教授七秩誕辰祝壽論文集》(元照出版社2002); 陳文吟,〈探討美國MOORE V. REGENTS OF UNIVERSITY OF CALIFORNIA〉,《智慧財產權與國際私法—曾陳明汝教授六秩誕辰祝壽論文集》(蔡明誠發行1997); 陳叔倬,〈原住民人體基因研究之倫理爭議與立法保護〉,《生物科技與法律研究通訊》,第六期; 陳秀容,〈族裔社群權利理論:VERNON VAN DYKE的理論建構〉,《政治科學論叢》,第十期; 陳秀容,〈社群的互動與人權:關於社群權利的一種思考〉,《政治社群》(中央研究院中山人文社會科學研究所1995); 陳舜伶,〈原住民運動中「權利法制化」進路的困局〉,台灣大學法律研究所碩士論文; 陳銘洋,趙威寧,〈台灣原住民族自治與立法〉,《月旦法學雜誌》,第74期; 黃居正,〈時間、勞動與生態—原住民財產權論述中的凝視〉,未發表; 黃居正,〈時間、勞動與生態—原住民財產權論述的基本組構〉,「台灣原住民族傳統醫療與生物倫理研習會」,福華文教會館203會議室(2004年5月14日); 楊允言,黃玉翎,〈國家公園與原住民〉,HTTP://203.64.42.21/IUG/UNGIAN/CHOKPHIN/HOAGU/KOKKAKONGHNG/KOKKAKONGHNG.HTM ; 蔡明誠,〈基因研究人體檢體採樣與原住民受試相關法律問題探討〉,《基因技術挑戰與法律回應:基因科技與法律研討會論文集》(林子儀,蔡明誠主編2003); 顏厥安,〈財產、人格,還是資訊?論人類基因的法律地位〉,「基因科技之法律管制體系與社會衝擊研究研討會」,國立台灣大學法律學院國際會議廳(2000年3月12日); 藤井志津枝,〈探討台灣原住民的土地問題〉,《原住民族權利國際研討會論文集》 (許介鱗編,1999); 嚴新富、鴻義章,〈臺灣原住民的藥用植物〉,「台灣原住民族傳統醫療與生物倫理研習會」,福華文教會館203會議室(2004年5月14日); 英文書籍 ANDREWS, LORI, & DOROTHY NELKIN, BODY BAZAAR, 67 ( CROWN PUBLISHER 2001); APPELBAUM, PAUL S. ET AL., INFORMED CONSENT: LEGAL THORY AND CLINICAL PRACTICE, 211-219(NEW YORK :OXFORD UNIVERSITY PRESS 1987); GOLD, E. RICHARD, BODY PARTS: PROPERTY RIGHTS AND THE OWNERSHIP OF HUMAN BIOLOGICAL MATERIALS (1998); HEGEL, G. W. F., ELEMENTS OF THE PHILOSOPHY OF RIGHT (ALLEN W. WOOD ED., H. B. NISBET TRANS 1991); KYMLICKA, WILL, LIBERALISM COMMUNITY AND CULTURE (2ND ED.1992); KYMLICKA, WILL, MULTICULTURAL CITIZENSHIP (DAVID MILLER & ALAN RYAN EDS., OXFORD POLITICAL THEORY)(1995); L.L. CAVALLI-SFORZA, P. MENOZZI, AND A. PIAZZA, THE HISTORY AND GEOGRAPHY OF HUMAN GENES (PRINCETON UNIVERSITY PRESS 1994); LOCKE, JOHN, TWO TREATIES OF GOVERNMENT (PETER LASLETT ED., CAMBRIDGE UNIVERSITY PRESS 1988)(1960); MUNZER, STEPHEN R., A THEORY OF PROPERTY (JULES COLEMAN ED., CAMBRIDGE STUDIES IN PHILOSOPHY AND LAW 1990) ; RADIN, MARGARET JANE, REINTERPRETING PROPERTY (THE UNIVERSITY OF CHICAGO PRESS 1993); RADIN, MARGARET JANE, CONTESTED COMMODITIES (HARVARD UNIVERSITY PRESS 1996); RIDLEY, MATT, GENOME: THE AUTOBIOGRAPHY OF A SPECIES IN 23 CHAPTERS (HARPERCOLLINS PUBLISHERS 2000); UNDERKUFFLER, L. S. THE IDEA OF PROPERTY: ITS MEANING AND POWER (OXFORD UNIV. PRESS, 2002). 英文論文 ANAYA, S. JAMES, THE CAPABILITY OF INTERNATIONAL LAW TO ADVANCE ETHNIC OR NATIONALITY RIGHTS CLAIM,IN THE RIGHTS OF MINORITY CULTURES 321 (WILL KYMLICKA EDS.,1995); BARSH, RUSSEL LAWRENCE ET AL., PHARMACOGENOMICS AND INDIGENOUS PEOPLE: REAL ISSUES AND ACTORS, 11 CARDOZO J. INT’L & COMP. L. 365 (2003); BHAT,AMAR THE NATIONAL INSTITUTES OF HEALTH: AND THE PAPUA NEW GUINEA CELL LINE, 20.2 CULTURAL SURVIVAL (1996); BOBROFF, KENNETH H., RETELLING ALLOMENT: INDIAN PROPERTY RIGHTS AND THE MYTH OF COMMON OWNERSHIP, 54 VAND. L. REV. 1559 (2001); CALABRESI, GUIDO & A. DOUGLAS MELAMED, PROPERTY RULES, LIABILITY RULES AND INALIENABILITY: ONE VIEW OF THE CATHEDRAL, 85 HARV. L. REV. 1089 (1972); CHRISTIE, JEAN, WHOSE PROPERTY, WHOSE RIGHTS?, 20.2CULTURAL SURVIVAL (1996); CLAY, MEGAN & WALTER BLOCK, A FREE MARKET FOR HUMAN ORGANS, 27 J. SOCIAL, POLITICAL AND ECONOMICS STUDIES 227 (2002); CRAWFORD, M. H., ANTHROPOLOGICAL GENETICS IN THE 21ST CENTURY: INTRODUCTION, 72 HUMAN BIOLOGY 3 (2000); DODSON, MICHAEL & ROBERT WILLIAMSON, INDIGENOUS PEOPLES AND THE MORALITY OF THE HUMAN GENOME DIVERSITY PROJECT, 25 J. MEDICAL ETHICS 204 (1999); EISENBERG, REBBECCA S., HOW CAN YOU PATENT GENE?, IN WHO OWNS LIFE 117 (DAVID MAGNUS ET AL. EDS. 2002); JOHNSTON, DARLENE M, THE QUEST OF THE SIX NATIONS CONFEDERACY FOR SELF-DETERMINATION, IN INTERNATIONAL LAW AND INDIGENOUS PEOPLES 85 (S. JAMES ANAYA ED., 2003); MEAD, AROHA TE PAREAKE, GENEALOGY, SACREDNESS, AND THE COMMODITIES MARKET, 20.2 CULTURE SURVIVAL(1996); MEIER, BENJAMIN MASON, INTERNATIONAL PROTECTION OF PERSONS UNDERGOING MEDICAL EXPERIMENTATION: PROTECTING THE RIGHT OF INFORMED CONSENT, 20 BERKELEY J. INT'L L. 513(2002); MUNZER, STEPHEN R., KANT AND PROPERTY RIGHTS IN BODY PARTS, 6 CAN. J. L. & JURISPRUDENCE 319 (1993); MUNZER, STEPHEN R., HUMAN DIGNITY AND PROPERTY RIGHTS IN HUMAN BODY PARTS, IN PROPERTY PROBLEMS: FROM GENES TO PENSION FUNDS 25 (J. W. HARRIS ED.,1997); MUNZER, STEPHEN R., PROPERTY, PATENTS, AND GENETIC MATERIAL, IN A COMPANION TO GENETICS 438 (JUSTINE BURLEY & JOHN HARRIS EDS., BLACKWELL COMPANIONS TO PHILOSOPHY, 2002)(1998); RADIN, MARGARET JANE, MARKET-INALIENABILITY, 100 HARV. L. REV. 1849 (1987); RAO, RADHIKA, PROPERTY, PRIVACY AND THE HUMAN BODY, 80 B.U.L. REV. 359 (2000); STEVENSON, GELVINA RODRIGUEZ, TRADE SECRETS: THE SECRET TO PROTECTING INDIGENOUS ETHNOBIOLOCAL (MEDICAL) KNOWLEDGE, 32 N.Y.U. J. INT'L L. & POL. 1119 (2000); TERWILLIGER, JOSEPH D., & HARALD H.H. GOERING, GENE MAPPING IN THE 20TH AND 21ST CENTURIES: STATISTICAL METHOD, DATA ANALYSIS, AND EXPERIMENTAL DESIGN, 72 HUMAN BIOLOGY 63 (2000); THOMPSON, RICHARD H., ETHNIC MINORITIES AND THE CASE FOR COLLECTIVE RIGHTS, 99AMERICAN ANTHROPOLOGIST 786 (1997); TOOLEY, MICHAEL, PERSONHOOD, IN A COMPANION TO BIOETHICS 117 ( HELGA KUHSE & PETER SINGER EDS., BLACKWELL COMPANIONS TO PHILOSOPHY, 2001) (1998); TULLY, JAMES, THE STRUGGLES FOR AND OF FREEDOM, IN POLITICAL THEORY AND THE RIGHTS OF INDIGENOUS PEOPLES 36 (DUNCAN IVISON ET AL. EDS.2000); VAN DYKE, VERNON, THE INDIVIDUAL, THE STATE, AND ETHNIC COMMUNITIES IN POLITICAL THEORY, IN THE RIGHTS OF MINORITY CULTURES, 31 (WILL KYMLICKA EDS.,1995); WARREN, MARY ANNE, THE MORAL STATUS OF THE GENE, IN A COMPANION TO GENETHICS, 147 (JUSTINE BURLEY & JOHN HARRIS EDS., BLACKWELL COMPANIONS TO PHILOSOPHY 2002) (1998); WIESSNER, SIEGFRIED, RIGHTS AND STATUS OF INDIGENOUS PEOPLES: A GLOBAL COMPARATIVE AND INTERNATIONAL LEGAL ANALYSIS, IN INTERNATIONAL LAW AND INDIGENOUS PEOPLES 258 (S. JAMES ANAYA ED., 2003). 英文報導、報告或演說 HGDP ALGHERO SUMMARY REPORT, HGDP, HTTP://WWW.STANFORD.EDU/GROUP/MORRINST/HGDP/SUMMARY93.HTML NEW QUESTIONS ABOUT MANAGEMENT AND EXCHANGE OF HUMAN TISSUE AT NIH / INDIGENOUS PERSON'S CELLS PATENTED, ETC COMMUNIQU??, MARCH 30,1996 PHASE II FOR HUMAN GENOME RESEARCH- HUMAN GENETIC DIVERSITY ENTERS THE COMMERCIAL MAINSTREAM, RAFI PRESS, JANUARY 21, 2000; THE PATENTING OF HUMAN GENETIC MATERIAL, RAFI PRESS, JANUARY 30, 1994; US GOVERNMENT DUMPS THE HAGAHAI PATENT, ETC NEWS ITEM, DECEMBER 3,1996 PETEAN, SAULO BROKEN PROMISES, BRAZZIL, HTTP://WWW.BRAZZIL.COM/P16DEC96.HTM ROBINSON, MARY (UNITED NATIONS HIGH COMMISSIONER FOR HUMAN RIGHTS),BRIDGING THE GAP BETWEEN HUMAN RIGHTS AND DEVELOPMENT: FROM NORMATIVE PRINCIPLES TO OPERATIONAL RELEVANCE,(DECEMBER 3, 2001) THAMBISETTY, SIVARAMJANI, HUMAN GENOME PATENTS AND DEVELOPING COUNTRIES, COMMISSION ON INTELLECTUAL PROPERTY RIGHTS STUDY PAPER 10, 28(2002) 案例資料 MOORE V. REGENTS OF UNIVERSITY OF CALIFORNIA, 51 CAL. 3D 120, 137(1990) GREENBERG V. MIAMI CHILDREN’S HOSP. RESEARCH INST., INC., 264 F. SUPP. 2D 1064, 1074-1076 (S.D. FLA. 2003) DIAMOND V. CHAKRABARTY , 447 U.S. 303 (1980) AMGEN INC. V. CHUGAI PHARMACEUTICAL CO., 927 F.2D 1200 (FED CIR 1991) OPINION OF THE JUSTICE, 365 MASS. 681,313 N.E. 2D 561(1974) TAPSCOTT V. LESSEE OF COBBS, 52 VA. (11 GRATT.) 172 (1854) 其他中英文網頁資料 BIOCLUB, http://www.bioclub.org BioScience, http://www.bioscience.org/guides/declhels.htm Commission on Intellectual Property Rights, http://www.iprcommission.org Cultural Survival, http://www.culturalsurvival.org ETC Group, http://www.etcgroup.org/ European Patent Office, http://legal.european-patent-office.org HGDP, http://www.stanford.edu/group/morrinst/hgdp/faq.html Indigenous People Council on Biocolonialism, http://www.ipcb.org/resolutions/htmls/summary_indig_opp.html International Labour Organization, http://www.ilo.org/public/english/region/ampro/mdtsanjose/indigenous/derecho.htm Retention of Students in the Biological Sciences, http://opbs.okstate.edu The Free Dictionary.com, http://www.thefreedictionary.com United Nations, http://www.undp.org/csopp/CSO/NewFiles/ipaboutdef.html 聯合生命科技網http://ult.adsldns.org/ult/modules/news/id NH0925705005 sid 906505 cfn 0 / id NH0925705006 auc 吳俊幟 tic 論科技保護措施與反規避條款--以美國DMCA為核心 adc 彭心儀 ty 碩士 sc 國立清華大學 dp 科技法律研究所 yr 92 lg 中文 pg 141 kwc 科技保護措施 kwc 數位千禧年著作權法 kwc 反規避條款 abc 近年來,著作權人嘗試利用科技保護措施,防止其著作於數位網路環境中被大量重製與散布,然而各類科技保護措施,卻難逃使用者的破解與規避,而無法達到保護著作之目的。因此,各國陸續開始制訂反規避條款,間接保障著作權人的相關權益。美國首先於西元1998 年,通過數位千禧年著作權法案(DigitalMillennium Copyright Act,簡稱DMCA),將反規避條款納入著作權法之中。由於美國DMCA 反規避條款之規範內容嚴格禁止規避行為與協助規避行為,因而引發相當大的爭議,許多人認為該規定過度地保障著作權人之權益,對公眾正當接觸、使用各類著作的機會與能力產生負面之影響,終將有損著作權法促進社會科學與文化發展之初衷。由於我國近來亦有意在著作權法中,納入類似DMCA之反規避條款規定,因而有必要徹底瞭解DMCA 反規避條款對公眾利益所造成之衝擊。本文除詳細介紹美國DMCA 反規避條款之規範內容與近來發生之各項重大案例外,亦加入部分個人之創見,歸納出DMCA 反規避條款對於公眾利益之種種不利影響,期望未來我國在制訂相關規定時,能夠盡量避免給予著作權人 tc 第壹章、緒論 1 第貳章、目前常見的科技保護措施 6 一、程式光碟常見之科技保護措施 6 (一)註冊碼 6 (二)硬體鎖 7 二、遊戲光碟常見之科技保護措施 7 (一)SecuRom 8 (二)SafeDisc 8 (三)DiscGuard 11 (四)LaserLock 12 (五)小結 12 三、音樂光碟常見的科技保護措施 12 (一)Key2Audio 12 (二)CDS(Cactus Data Shield,仙人掌資料保護) 13 (三)MusicGuard 14 四、DVD常見之科技保護措施 14 (一)區碼(regional code) 14 (二)CSS(Contents Scramble System,內容混波系統) 16 (三)ACP(Analog Copy Protection,類比重製保護) 17 第參章、反規避條款之立法背景與內容 18 一、立法背景 18 二、DMCA中的反規避條款 21 (一)反規避條款禁止之行為 21 1.規避行為 21 2.協助規避行為 21 3.協助侵權行為 22 4.名詞定義 23 (1)規避與協助規避行為 23 (2)協助侵權行為 23 (二)免責條款 25 1.非營利性圖書館、檔案保存機構以及教育機關之免責 25 2.法律執行、情報以及其他政府活動之免責 26 3.還原工程之免責 26 4.加密研究之免責 26 5.未成年人之免責 28 6.個人識別資訊保護之免責 28 7.安全測試之免責 29 8.特定種類著作的免責 29 第肆章、美國近來重大案例概述 31 一、RealNetworks, Inc. v. Streambox, Inc.(以下簡稱Streambox案) 31 (一)事實 31 (二)雙方主張 33 (三)法院判決 34 1. Secret Handshake與Copy Switch均屬科技保護措施 34 2. Streambox VCR軟體違反DMCA反規避條款之規定 34 3.合理使用不得作為DMCA訴訟之抗辯 35 4. Streambox Ripper並未侵權 36 二、DeCSS案 36 (一)事實 36 (二)訴訟歷程與雙方主張 38 (三)判決及理由 40 1.被告之行為已違反DMCA Sec. 1201(a)(2)之規定 40 2.被告之行為並不合乎DMCA各項免責條款之規定 41 (1) Sec. 1201(f)還原工程之免責 42 (2) Sec. 1201(g)(4)加密研究之免責 42 (3) Sec. 1201(j)安全測試之免責 42 3.合理使用不得作為本案之抗辯 42 4.關於憲法第一修正案之爭議 44 (1)電腦程式受到憲法第一修正案之保護 44 (2) DMCA規範的對象為內容中性之言論 44 (3) DMCA並未不當地壓制言論自由 45 (4)暫時禁制令並未對言論構成不當的預先限制 46 (5)禁止被告提供DeCSS下載連結並未違憲 46 三、United States v. Elcom Ltd. 47 (一)事實 47 (二)雙方主張 48 (三)判決及理由 49 1. Sec. 1201(b)(1)並未違憲 49 2. DMCA限制AEBPR之銷售並未違反憲法第一修正案 50 3. DMCA並未限制第三人的言論自由權 52 第伍章、以反規避條款之規範態樣探討其引發之各式爭議 54 一、規避行為 54 (一)Sec. 1201(a)(1)(A) 54 1.接觸權之創設與定位 54 2.接觸權對合理使用之衝擊 55 (1)合理使用之意涵以及其與接觸權的關係 55 (2)接觸權的創設仍有損於合理使用 57 (3) Sec. 1201(a)(1)(C)無助於接觸權所造成之衝擊 59 3.接觸權將過度擴張著作權的保護範圍 61 4.破壞第一次銷售原則(First Sale Doctrine)的精神 63 (1)第一次銷售原則之意涵 63 (2)第一次銷售原則之落實將間接受到Sec. 1201(a)(1)(A)的阻礙 64 (二)DMCA並未禁止規避控制權利之科技保護措施 66 1.此一立法設計反映了美國國會保障合理使用之意圖 66 2.科技保護措施的定位不當將有損美國國會保障合理使用之意圖 68 (1)單一性科技保護措施之定位—應然與實然 68 (2)綜合性科技保護措施之定位—應然與實然 71 (3)判斷科技保護措施的定位應綜合考量著作人之意圖及市場整體生態 76 3.不禁止使用者規避控制接觸之科技保護措施的立法設計對於維護合理使用之效果有限 80 (三)澳洲、日本之規範較不易導致接觸權引發之爭議 80 1.澳洲並未禁止規避行為 80 2.日本僅處罰商業性規避行為 82 二、協助行為—Sec. 1201(a)(2)與(b)(1) 84 (一)Sec. 1201(b)(1)將阻礙大眾合理使用之機會 84 1.實務否定合理使用得作為DMCA訴訟之抗辯 85 2.上述見解將直接影響大眾的合理使用可能性 88 3.合理使用應同樣適用於違反DMCA之抗辯 91 4.澳洲之立法較能維護教育性及公益性合理使用 94 (二)第一次銷售原則的適用性再次受到Sec. 1201(b)(1)所限制 96 (三)Sec. 1201(a)(2)與(b)(1)將不當地阻礙科技發展並妨礙市場競爭秩序 97 1.引發科技發展的寒蟬效應 97 2.DMCA將成為妨礙市場競爭的幕後黑手 101 3.日本之規定較不會對科技發展及市場競爭產生負面效果 103 三、小結 104 (一)DMCA將嚴重縮減既有合理使用之空間 105 (二)DMCA將危及數位時代中第一次銷售原則的生存 108 (三)DMCA給予著作權人不應得到之權利 109 第陸章、從我國與美國近來之立法發展談我國未來對反規避條款可能的因應之道—代結論 111 一、我國原著作權法修正草案關於反規避條款之規定 111 二、從美國過去有關DMCA反規避條款之修正提案觀察美國近來之修法思考 114 (一)Benefit Authors without Limiting Advancement or Net Consumer Expectations (BALANCE) Act of 2003(簡稱平衡法案) 115 (二)Digital Media Consumers’ Rights Act of 2003(數位媒體消費者權利法案) 117 (三)由該兩法案探討美國近來對DMCA反規避條款之修正思考 118 三、我國未來可能的因應之道 119 (一)應兼顧大眾接觸著作與合理使用之權益 120 (二)應顧及台灣相關產業之發展 121 (三)應避免給予著作權人或其他人超越既有著作權範圍的權利 122 參考文獻 124 附錄—美國DMCA反規避條款(英文) 128 圖表目錄 【圖表1】各地區碼對照表 15 【圖表2】DMCA反規避條款之主要規範態樣 24 【圖表3】不當地將科技保護措施定位為控制接觸之科技保護措施將有害合理使用 75 【圖表4】適當定位科技保護措施較能保障合理使用 79 【圖表5】美國國會欲保障合理使用的意圖難以實現 106 【圖表6】美國國會欲保障的合理使用空間受到壓縮 107 【圖表7】第一次銷售原則在DMCA中面臨的困境 109rf 案例: 1. RealNetworks, Inc. v. Streambox, Inc., No. C99-2070P, 2000 U.S. Dist. LEXIS 1889 (W.D. Jan. 18, 2000). 2. Universal City Studios, Inc. v. Reimerdes, 82 F. Supp.2d 211 (Feb. 2, 2000). 3. Universal City Studios, Inc. v. Reimerdes, 111 F. Supp. 2d. 294 (Sep. 6, 2000). 4. Universal City Studios, Inc. v. Corley, 273 F.3d 429 (2nd Cir. 2001). 5. United States v. Elcom Ltd., 203 F. Supp. 2d 1111 (2002). 6. Roulette v. City of Seattle, 97 F.3d 300 (9th Cir. 1996). 7. Recording Industry Association of America v. Diamond Multimedia Systems, Inc., 29 F. Supp.2d 624 (Cal. Dist. Ct. 1998) 8. Recording Industry Association of America v. Diamond Multimedia Systems, Inc., 180 F.3d 1072 (9th Cir. App. 1999). 9. Atari Games Corp. v. Nintendo of America, 975 F.2d 832 (9th Cir. 1992) 10. Sega Enterprise Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992) 11. Sony Computer Entertainment Inc., v. Connectix Corp., 203 F.3d 596 (9th Cir. 2000). 12. Sony Computer Entertainment America Inc. v. Gamemaster, 87 F. Supp. 2d 976 (Nov. 4, 1999). 外文期刊論文(按照姓名字母順序排列): 1. Bolinger, Brain, Comment: Focusing on Infringement: Why Limitations on Decryption Technology Are Not the Solution to Policing Copyright, 52 Case W. Res. 1091 (2002). 2. Burk, Dan L. & Cohen, Julie E., Fair Use Infrastructure for Rights Management System, 15 Harv. J.L. & Tech. 41, 51 (2001). 3. Burk, Dan L., Article: Anticircumvention Misuse, 50 UCLA L. Rev. 1095. (2003). 4. Calaba, Victor F., Article: Quibees “N Bits: Making a Digital First Sale Doctrine Feasible, 9 Mich. Telecomm. Tech. L. Rev. 1, 4 (2002). 5. Colangelo, Alex, Article: Copyright Infringement in the Internet Era: The Challenge of MP3s, 39 Alberta L. Rev. 891 (2002). 6. Esler, Brian W., Article: Protecting the Protection: A Trans-Atlantic Analysis of The Emerging Right to Technological Self-Help, 43 IDEA 553 (2003). 7. Garrow, Philip D., Legal Update: Recent Development in Digital Technology Law, 9 B.U. J. SCI. & TECH. L. 194 (2003). 8. Gasaway, Laura N., The New Access Right and Its Impact on Libraries and Library Users, 10 J. Intell. Pro. L. 269 (2003). 9. Ginsburg, Jane C., From Having Copies to Experiencing Works: The Development of an Access Right in U.S. Copyright Law (Columbia Law School Public Law & Legal Theory Working Paper Group, Paper Number 8, 2000), http://ssrn.com/abstract=222493 (last visited Mar. 3, 2004). 10. Ginsburg, Jane C., Copyright Legislation for the "Digital Millennium", 23 Colum-VLA J.L. & Arts 137 (1999). 11. Ginsburg, Jane C., Copyright and Control Over New Technologies of Dissemination, 101 Columb. L. Rev. 1613 (2001). 12. Ginsburg, Jane C., Copyright Use and Excuse on the Internet, 24 Colum. –VLA J.L. & Arts 1 (2000). 13. Ginsburg, Lev, Article: Anti-circumvention rules and fair use, 2002 UCLA J. L. Tech. 4 (2002). 14. Goldstein, Paul, Copyright and First Amendment, 70 Colum. L. Rev. 983 (1970). 15. Imfeld, Cassandra, Article: Playing Fair with Fair Use? The Digital Millennium Copyright Act’s Impact on Encryption Researchers and Academicians, 8 Comm. L. & Pol’y 111 (2003). 16. Katz, Eddan Elizafon, Intellectual Property: A. Copyright: 3. Digital Millennium Copyright Act: A) Anti-Circumvention Provisions: Realnetworks, Inc. V. Streambox, Inc. & Universal City Studios, Inc. V. Reimerdes, 16 Berkeley Tech. L.J. 53 (2001). 17. Lunney Jr., Glynn S., The Death of Copyright: Digital Technology, Private Copying, and the Digital Millennium Copyright Act, 87 Va. L. Rev. 813 (2001). 18. Nimmer, David, A Riff on Fair Use in the Digital Millennium Copyright Act, 148 U. Pa. L. Rev. 673 (2000) 19. Patterson, L. Ray, Free Speech, Copyright, and Fair Use, 40 Vand. L. Rev. 1 (1987). 20. Quinn Jr., Eugene R., Article: An Unconstitutional Patent in Disguise: Did Congress Overstep its Constitutional Authority in Adopting the Circumvention Prevention Provisions of the Digital Millennium Copyright Act? , 41 Brandeis L.J. 33(2002). 21. Reese, Anthony, Symposium: The Law and Technology of Digital Rights Management: Will Merging Access Controls and Rights Controls Undermine the Structure of Anticircumvention Law?, 18 Berkeley Tech. L.J. 619 (2003). 22. Samuelson, Pamela, Symposium: Intellectual Property and the Digital Economy: Why the Anti-Circumvention Regulations Need to be Revised, 14 Berkeley Tech. L.J. 519 (1999). 23. Samuelson, Pamela & Scotchmer, Suzanne, The Law and Economics of Reverse Engineering, 111 Yale L.J. 1575 (2002). 24. Sharp, Jeff, Article: Coming Soon to Pay-per-View: How the Digital Millennium Copyright Act Enables Digital Content Owners to Circumvent Educational Fair Use, 40 Am. Bus. L.J. 1 (2002). 25. Sheets, Jason, Copyright Misused: The Impact of the DMCA Anti-circumvention Measures on Fair & Innovative Markets, 23 Hastings Comm. & Ent. L.J. 1 (2000). 26. Singer, Pete, Comment: Mounting a Fair Use Defense to The Anti-Circumvention Provisions of The Digital Millennium Copyright Act, 28 Dayton L. Rev. 111 (2002). 外文書籍(按照姓名字母順序排列): 1. GOLDSTEIN, PAUL , COPYRIGHT VOL. II (2d ed. 1996). 2. LITMAN, JESSICA , DIGITAL COPYRIGHT (2001). 3. NIMMER, DAVID, COPYRIGHT: SACRED TEXT, TECHNOLOGY, AND THE DMCA (2004). 4. NIMMER, MELVILLE B. & NIMMER, DAVID, NIMMER ON COPYRIGHT (2002). 5. THE DIGITAL MILLENNIUM COPYRIGHT ACT: TEXT, HISTORY, AND CASELAW (Zachary J. Wheat et al. eds., 2003). 外文新聞: 1. Julius J. Marke, Proposed Legislation on Digital Copyright, NEW YORK LAW JOURNAL, May 19, 1998, at 5 2. WIPO Treaties Implementation Act prohibits circumvention of technological copyright protection systems and bars alteration of copyright management information, 20 ENTERTAINMENT LAW REPORTER 6 (Nov. 1998). 美國政府文件(按照時間排列): 1. U.S. Dep’t of Commerce Info. Infrastructure Task Force, Intellectual Property and the National Information Infrastructure: The Report of the Working Group on Intellectual Property Rights, (1995). 2. H.R. Rep. No. 105-551, pt. 1 (1998). 3. H.R. Rep. No. 105-551, pt. 2 (1998). 4. S. Rep. No. 105-190 (1998). 5. Exemption to Prohibition on Circumvention of Copyright Protection Systems for Access Control Technologies, 65 Fed. Reg. 64,556 (Oct. 27, 2000). 中文書籍: 1. 羅明通,著作權法論,台北:台英商務法律,民國91年。 2. 馮震宇,智慧財產權發展趨勢與重要問題研究,台北:元照,民國92年10月。 3. 王銘勇,妨害電腦使用罪解析,資訊通信法律論文精選,新竹:清華大學,民國93年3月。 中文期刊論文(按姓名筆畫順序排列): 1. 邵瓊慧,科技保護措施之著作權法爭議及挑戰,智慧財產權季刊,第34期,民國91年9月。 2. 章忠信,著作權法制中『科技保護措施』與『權利管理資訊』之探討(上),萬國法律,第113期,民國89年10月。 3. 馮震宇,WIPO著作權相關條約規範內容與其爭議問題之探討(上)、(下),智慧財產權月刊,民國90年11月、12月。 4. 馮震宇,論網路科技發展對合理使用的影響與未來,法令月刊,第51卷第10期,民國89年10月。 5. 馮震宇,數位內容之保護與科技保護措施,月旦法學,第105期,民國93年2月。 6. 陳錦全,日本著作權法關於技術保護措施之修正(上)、(下),智慧財產權月刊,民國89年7月、8月。 7. 謝銘洋,網路發展與未來我國著作權法之修正方向,全國律師,民國91年12月。id NH0925705006 sid 906511 cfn 0 / id NH0925705007 auc 林怡芊 tic 歐盟98/44號生物技術發明保護指令中專利適格標的之研究 adc 謝銘洋 教授 ty 碩士 sc 國立清華大學 dp 科技法律研究所 yr 92 lg 中文 pg 89 kwc 可專利性 kwc 專利適格標的 kwc C377-98 kwc 98/44號指令 kwc 生物技術 abc 現代生物科技產業已經成為許多國家之產業推動的趨勢,並被視為典型之知識經濟型產業,然而對其影響甚鉅之專利制度在技術領域當中,於要件適用及意識形態都有必須加以詮釋探究之處。特別係生物技術相關發明於適用傳統專利法時,因牽涉生命、倫理等主觀價值判斷問題、以及「發明」與「發現」之判定不易等困擾,故專利法體制須有所調整以適應當前社會觀念及產業需求。歐盟除考量上述原因之外,亦斟酌經濟上之需求,歷經十年而於西元一九九八年通過歐盟「98/44號生物技術發明保護指令」,而指令之主要目標即係為將歐盟所有會員國之生技發明專利制度一致化以促進歐盟法規之統一。不過目前完全施行之國家僅有英國、愛爾蘭、芬蘭、西班牙、葡萄牙、丹麥與希臘七國,未轉換施行之國家對於指令中專利適格標的之規範,仍質疑其是否有侵害人類基本權利之嫌,另外,條文中之名詞用語,例如「動物品種」、「公共秩序與道德」等亦未有一致定義。本文主要目標係整理指令可專利性規定中尚具討論或解釋空間的規範狀態,包括「植物品種」、「主要生物學方法」、「動物品種」、「公共秩序或道德」、「人體組成成分」之法律規範,並補充相關案例與學者見解,提出本文對指令中部分規定或法律爭議處之意見。 tc 第一章 緒論.. ….4 第一節 研究目的與動機 4 第二節 研究方法 5 第三節 研究範圍與架構 5 第二章 概說… 8 第一節 生物技術發明專利適格標的於專利法制架構之特殊性 8 第一項 專利制度於產業之重要性 8 第二項 生物技術發明於專利制度中之特殊性 9 第二節 歐盟制訂98/44號生物技術發明保護指令之考量 13 第一項 立法背景 13 第二項 指令目標 17 第三章 歐盟98/44號生物技術發明保護指令架構 20 第一節 歐盟98/44號指令之立法背景與目的 20 第二節 專利法精神與指令基本原則 21 第三節 指令重要內容 23 第一項 可專利性(Patentability) 23 第二項 保護範圍(Scope of Protection) 33 第四節 指令其他內容 38 第一項 強制交互授權(Compulsory Cross-Licensing) 38 第二項 生物物質之寄存、分讓與再寄存(Deposit, access and re-deposit of a biological material) 40 第三項 最終規定(Final Provisions) 42 第五節 小結 43 第四章 歐盟各會員國對「98/44號生物技術發明保護 指令」之實踐與專利適格標的範圍之衝突 45 第一節 各會員國立法實踐現況 45 第二節 荷蘭v. 歐洲議會與歐盟理事會 48 第一項 荷蘭訴請撤銷98/44號生物技術發明保護指令之六大理由 49 第二項 本案(ECJ Case C-377/98)中專利適格標的相關爭議之正反見解 55 第三節 小結 67 第五章 指令中專利適格標的規範問題之探討 69 第一節 「植物品種」保護之爭議 70 第二節 「主要生物學方法」之定義 71 第三節 「動物品種」保護之爭議 73 第四節「公共秩序或道德」之規範爭議 77 第五節 「人體組成成分」保護之疑義 81 第六章 結論 83 參考資料 86 英文資料……… 86 中文資料……… 87rf 英文資料 1. Robin Nott,「"You Did It !": The European Biotechnology Directive At Last」,E.I.P.R.,1998, p. 351。 2. Action brought on October 1998 by Kingdom of the Netherlands against European Parliament and Council of the European Union,O.J.C378/13,1998。 3. Li Westerlund, Biotech Patents-Equivalence and Exclusions under European and U.S. Patent Law, 2001.2.16,p284-285。 4. Commission of The European Communities,Report from the Commission to the European Parliament and Council---An assessment of the implications for basic genetic engineering research of failure to publish, or late publication of, papers on subjects which could be patentable as required under Article 16(b) of Directive 98/44/EC on the legal protection of biotechnological inventions, COM(2002) 2 final。 5. Commission of The European Communities,Report from the Commission to the European Parliament and Council--- Development and implications of patent law in the field of biotechnology and genetic engineering,COM(2002) 545 final。 6. The European Group on Ethics in Science and New Technologies to the European Commission,Opinion on the ethical aspects of genetic testing in the workplace,28th,2003.7。 7. Implementation of DIRECTIVE 98/44/EC on the Legal Protection of Biotechnology Inventions,請參考網址:http://www.ebe-efpia.org/biopatdir.htm,2004.2.6。 8. Legal protection: biotechnological inventions,請參考網址:http://europa.eu.int/scadplus/leg/en/lvb/l26026.htm ,2004.2.23。 9. "Edinburgh" patent limited after European Patent Office opposition hearing,網址:http://www.european-patent-office.org/news/pressrel/2002_07_24_e.htm ,刊登於2002.7.24。 10. Led Astray by the Moral : Incorporating Morality into European Union Biotechnology Patent Law, 19 Berkeley Journal of International Law 1,2001。 11. Opinion of Advocate General Jacobs, Case C-377/98,Kingdom of the Netherlands v. European Parliament and Council of the European Union, 2001.6.14。 中文資料 1. MICHAEL E. PORTER, THE COMPETITIVE ADVANTAGE OF NATIONS, (The Free Press,1st ed, 1990),李明軒、邱如美譯,《國家競爭優勢 上》,天下文化,1996初版,第113~115頁。 2. 陳哲宏、陳逸南、謝銘洋與徐宏昇合著,《專利法解讀》,元照出版公司,1997.7.初版,第14~16頁。 3. 謝銘洋,智慧財產權之理論基礎,翰蘆圖書出版公司,1997.10,第二版,第5~19,57~60頁。 4. 蔡明誠,發明專利法研究,第二版,1998,第53~56頁、第69~90頁。 5. 黃文儀,專利實務(第一冊),三民書局,2000.1,第二版,第293~295頁。 6. 李文琦,基因可專利性之研究:以美國專利制度為中心,東吳大學法律學系 研究所碩士論文,2000.7。 7. 李震山,基本權利之衝突,《月旦法學教室》公法篇,元照出版社,2000.9,第20頁以下。 8. 李素華,歐盟人類胚胎複製研究之法律爭議,科技法律透析,第12卷第12期,2000.12,第7-8頁。 9. 閻啟泰,生物發明之可專利性—基因改造植物、轉殖基因動物與人類胚胎細胞複製,2000全國科技法律研討會論文集。 10. 劉銀良、李樺佩,由美國及國際法之觀點談生物技術發明的可專利性及其道 德限制,東吳法律學報,第12卷第2期,2000.12。 11. 張仁平,台灣生物技術專利保護之回顧與前瞻(上),萬國法律,第115期,2001.2,第81頁。 12. 閻啟泰,生物發明專利概論,台大生物醫學期刊,第6期,2001.3。 13. 李素華,區域性專利制度整合之國際趨勢—歐洲專利公約及共同體專利制度,智慧財產權管理,2001.12。 14.全球生技產業排名,生技產業白皮書(2002),經濟部工業局,2002,第11頁。 15.何建志,基因專利違反道德?,應用倫理研究通訊,第27期,2003.7,可參考網址:http://www.bio.idv.tw/data/data2/2003070101.htm 。 16.曾淑瑜,生命科學與法規範之調和,翰蘆圖書,2003.8初版,第2~3頁。 17.劉棠必,研究除外原則在專利法架構下之問題研究--以我國現階生物科技學術研發之特質為例,國立清華大學科技法律所碩士論文,2003。 18.陳昭華,不予發明專利範圍之探討---以動、植物、微生物及其育成方法為中心,月旦法學教室,第14期,2003.11.15,第109 ~116頁。 19.楊崇森,專利法理論與應用,三民,初版,2003,第3頁;John McMillan, Reinventing the Bazaar,(W.W. Norton & Company,1th ,2002.10),羅耀宗 譯,新競爭時代,時報,初版,2003.1.2,第165頁。 20.生物技術的發展與未來,http://juang.bst.ntu.edu.tw/JRH/biotech2X.htm ,刊登於2004.1.23。 21.John McMillan, Reinventing the Bazaar,(W.W. Norton & Company,1th ,2002.10),羅耀宗 譯,新競爭時代,時報出版社,初版,2003.1.2,第162~167頁。 22.王世仁、王室堯編著,智慧財產權剖析-論生物科技專利策略與實務,全華科技圖書有限公司,初版,2003.6,第3頁。 23.朱世霓,歐盟關於生技產業研發成果保護之法制趨勢,法務透析,刊於90年12月,第5頁。 24.李素華、朱俊銘,歐洲關於植物品種保護之法制與實務案件解析,發表於2002年專利法保護值物品種法制趨勢研討會,2002.12.17。id NH0925705007 sid 906510 cfn 0 / id NH0925705008 auc 張安之 tic 自由社會之法治基礎與原則 adc 范建得 ty 碩士 sc 國立清華大學 dp 科技法律研究所 yr 92 lg 中文 pg 127 kwc 法治化 kwc 自由社會 kwc 法律的原則 kwc 法治的基礎 kwc 法律經濟分析 kwc 政治與法律 abc 將「自由」做為法治理論的核心,理由之一在於自由本身就是一種有價值的事物;之二,自由,相較於管制,係為一種較有效率的方法。這個方法表現在:其一,讓個人更能實踐其所偏好的生活形態和社會環境;其二,讓彼此更易、更有效於資源安排、合作與競爭。而此二「個人實踐」與「合作、競爭」,則是我們自我實現和社會發展的主要手段。為何及如何,在自由的精神之下來建構一個社會制度,這些,自由主義已經有相當多的說明,並提出自由市場和民主政治這兩個模型,而「法治化」則是這兩個模型的實踐手段。因此,研究的目的即是,「如何施為此種法治化」的方法與作業原則,其指的是「如何建構出一種秩序,令社會?堛漲身?能依循自由主義的方法,來為個人實踐、競爭與合作交易,以促成個人與社會的繁榮」。在這樣的動機下,本論文的結構上,係以「賽局理論」為分析方法,「信賴、能力」為分析標準,先建構出一「人性、人際互動」的基礎理論。後以自由主義為手段,提出「合作—對抗」、「自由放任、自由自主」、「共通善介入」這三項原則,來做為自由社會的法治原則;並主張「認同」、「自律—他律」為法治的基礎。最後,以一種「內聖外王」的模式,來做為法治化的方法,以達成個人實現和社會繁榮的目的。 tc 論文摘要 2 壹、研究源起與研究計劃 6 貳、附錄摘要 12 參、本文 15 第一章 總論 15 第二章 基本的法律原則一 20 第一節 合作—對抗原則 20 第二節 自由主義的原則 25 第三章 基本的法律原則二 28 第一節 共通善原則一 28 第二節 共通善原則二 32 第四章 法治的定義、作用和基礎 36 第一節 法治的定義 36 第二節 法治的作用 36 第三節 法治的基礎一 39 第五章 法治的基礎二 42 第一節 惱人不休的問題 42 第二節 法律、號令和命令 44 第三節 法律的多樣性 46 第四節 主權者與臣民 49 第五節 法治的基礎 54 第六章 政治方法與社會秩序 56 第一節 法治化與政治方法 56 第二節 性惡論 57 第三節 法家的主張 61 第四節 法家的缺點 64 第七章 內聖外王 66 第一節 性中性與性驅惡 66 第二節 荀子的主張 69 第三節 性善論與荀子主張的缺點 70 第四節 自力教與他力教 72 第五節 政治方法與社會秩序的模型 75 第六節 法治化的方法:內聖外王之道 76 第八章 總結性的綜合分析 80 第一節 理論的連結 80 第二節 道德的作用,與其理應不變的原則 83 第三節 對於倫理、法律的稽核標準 84 第四節 從交易成本的角度 85 第五節 他力教的目的和作用 86 第九章 結論 87 附錄 人性及賽局理論 92 第一章 生存 92 第二章 掠奪性 95 第三章 賽局理論 101 第四章 群性 107 第五章 群性和掠奪性的並存 118 參考書目 127rf 1、干學平、黃春興,《經濟學原理》 2、海耶克,《個人主義與經濟秩序》,夏道平譯,遠流出版。F. A. Hayek , Individualism and Economic Order。 3、理查•艾普斯坦,《自由社會之原則》,簡資修譯,商周出版。Richard A. Epstein , Principles for a Free Society。 4、沈恩,《經濟發展與自由》,先覺出版。Amartya Sen , Development as Freedom 5、The Concept of Law, H.L.A Hart. 6、諾瑞娜•赫茲,《當企業併購國家》,經濟新潮社。Noreena Hertz, The Silent Takeover : Blobal Capitalism and the Death of Democracy。 7、邁可•孟德邦,《征服世界的理念》,雅言出版。Michael mandelbaum , The Ideas that Conquered the World。 8、道金斯,《自私的基因》,天下文化。Richard Dawkins, The Selfish Gene。 9、麥特•瑞德里,《德性起源》,時報出版。Matt Ridley, The origins of Virtue 10、鄧巴,《哈啦與抓虱的語言》,遠流。Robin Dunbar,《Grooming, Gossip, and the Evolution of Language》 11、陳修武,《荀子,人性的批判》,時報出版 12、張素貞,《韓非子,國家的秩序》,時報出版 13、戴維•赫爾德,《民主的模式》,桂冠圖書。David Held, Models of Democracy 14、米哈理•契克森米哈賴,《創造力》,遠流出版。Mihaly Csiksentmihalyi, Creativity。id NH0925705008 sid 896502 cfn 0 / id NH0925705009 auc 陳詩欣 tic 基因改造植物致基因飄移之民事責任問題研究 adc 謝銘洋 ty 碩士 sc 國立清華大學 dp 科技法律研究所 yr 92 lg 中文 pg 125 kwc 基因改造生物 kwc 基因改造活生物體 kwc 基因飄移 kwc 責任 kwc 技術使用合約 kwc 生物安全議定書 kwc 損害救濟 abc 由於基因改造生物(GMO)尤其是基因改造活生物體(LMO),在田間種植時可能會透過花粉飄移、種子隨自然力傳播等方式,造成鄰近農田及周圍環境發生之基因飄移(Gene Flow)現象,進而引起基因頻變(Genetic Drift),影響鄰近農田之產品價格或收穫率,使鄰近農田之所有人受到經濟上的損害;亦有可能使鄰近農田之所有人需付出額外的成本來防制這樣的情形發生或去除侵害。 rf 壹、 中文部分 一、 書籍資料 ?? Eleanor Lawrence,《英漢雙解生物學辭典》,(張宏達等譯,朗文出版社,1997年第五刷,(1994年)。 ?? 王伯琦,《民法債編總論》,(國立編譯館,1997年)。 ?? 王澤鑑,《民法學說與判例研究 第八冊》,(自行出版,1996年)。 ?? 王澤鑑,《不當得利》,(自行出版,2003年增訂版再刷)。 ?? 王澤鑑,《侵權行為法(一)》,(自行出版,2000年修正六刷)。 ?? 朱玉賢、李毅編著,《現代分子生物學》,(藝軒圖書出版社,1998年)。 ?? 李伯年,《蔬菜育種與採種》,(茂昌出版社,1982年)。 ?? 施啟陽,《民法總則》,(自行出版,1997年9月增訂六版)。 ?? 胡育誠,《生物產業技術概論》,(吳文騰主編,國立清華大學出版社, 2003年)。 ?? 孫森焱,《民法債編總論上冊》,(自行出版,2001年修訂版)。 ?? 孫森焱,《民法債編總論下冊》,(自行出版,2001年修訂版)。 ?? 郭麗珍等,《民法研究》,(學林出版社,1999年9月)。 ?? 曾隆興,《詳解損害賠償法》,(三民書局,民國2003年1月初版一刷)。 ?? 黃立,《民法債編總論》,(元照出版社,2002年二版三刷)。 ?? 葉俊榮,《環境政策與法律》,(元照出版有限公司,2002年)。 ?? 鄭玉波,《民法債編總論》,(三民書局,1998年版)。 ?? 謝銘洋等,《民法債篇各論(上)、(下)》,(元照出版社,2002年版)。 二、 期刊論文 ?? 牛惠之、夏堪台,〈由基因治療之風險性論人體試驗規範與傷害之賠償〉,第270期,《律師雜誌》, (2002年3月)。 ?? 李素華,〈確保消費者之選擇權-德國研擬基因改造管理相關規範〉,第16卷,第5期《科技法律透析》,(2004年5月)。 ?? 姚志明,〈消費爭議與民法及消保法適用之問題---以商品買賣責任為例〉,第110期,《月旦法學雜誌》,(2004年7月)。 ?? 張英磊,〈由經濟分析之觀點談損害填補制度與行政管制之關係〉,第75期,《月旦法學雜誌》,(2000年8月)。 ?? 陳文吟,〈從美國NIH申請人體基因序列專利探討我國專利制度對生物科技發展的因應之道〉,第1卷,《中正大學法學集刊》,(1998年6月)。 ?? 陳自強,〈民法侵權行為體系之再構成(下)---民法第一九一條之三之體系地位---〉,第17期,《台灣本土法學雜誌》,(2000年12月)。 ?? 陳聰富,〈危險責任與過失推定〉,第55 期,《月旦法學》,1999年11月。 ?? 陳聰富,〈論違反保護他人法律之侵權行為〉,第30期,《台灣本土法學雜誌》,(2002年1月)。 ?? 曾品傑,〈論消費者之概念—最高法院相關判決評釋—〉,第49期,《台灣本土法學雜誌》,(2003年8月)。 ?? 黃立,〈消保法的定型化契約條款(一)〉,第15期,《月旦法學教室》, (2004年1月)。 ?? 楊擴舉、江慧賢、謝依婷,〈基因污染或專利侵害?從Monsanto Canda Inc. and Monsanto Company v. Percy Schmeiser Enterprises Ltd. 案談起〉,第46期,《智慧財產權》,(2002年10月)。 ?? 詹森林,〈消費者保護法之定型化契約最新實務發展〉,第91期,《月旦法學雜誌》,(2002年12月) 。 ?? 潘子明,〈2003年全球基因改造作物之發展〉,第15卷,第1期,《生物產業》,(2004年)。 ?? 賴志強、李佳玟,〈德國基因科技管制法(上)〉,《生物科技與法律研究通訊》, (1999年11月)。 ?? 賴志強、李佳玟,〈德國基因科技管制法(中)〉,《生物科技與法律研究通訊》, (1999年12月)。 ?? 賴志強、李佳玟,〈德國基因科技管制法(下)〉,《生物科技與法律研究通訊》, (2000年1月)。 ?? 蘇遠志,〈基因食物面面觀〉,第53期,《科學知識》,摘自http://www.ptl.edu.tw/publish/sci_knog/53/25.htm (last visited Apr. 21, 2004)。 ?? 龔蓁蓁、沈慰芳、周光宇、黃駿麒、錢思穎,〈受粉後外源DNA導入植物技術--------DNA通過花粉管進入胚囊〉,第6期,《中國科學雜誌 B輯》,(1988年)。 三、 研討會論文 ?? 牛惠之、張孫福,〈論基因改良食品之風險與社會議題------一點法律人之觀察與省思〉,二ΟΟ一年交通大學科技法律研討會,(2001年), ?? 李素華,〈各國GM管理法規及比較∼以美國、加拿大、歐盟、德國及我國為中心〉,基因改造議題講座:從紛爭到展望,(2004年8月6日)。 ?? 姚志明,〈消費爭議與民法及消保法適用之問題---以商品買賣責任為例〉,消保十年學術研討會,(2004年4月)。 ?? 徐慈鴻、李國欽,〈GMO/GMF風險評估與風險管理方法〉,基因改造議題講座:從紛爭到展望,(2004年8月6日)。 ?? 高文彥,〈由國內外案例初論我國基因科技管制法規〉,基因倫理問題與科技管制法規學術研討會,(2003年12月5日)。 ?? 郭華仁,〈基因改造作物與農業政策〉,ELSI 「探索基因科技」系列研討會,(2002年12月)。 ?? 謝銘洋、楊擴舉、林佳瑩,〈植物品種專利的侵權事件與案件解析〉,專利法保護植物品種之法制趨勢研討會,(2002年12月17日)。 ?? 趙榮台,〈GMO之環境風險〉,基因改造議題講座:從紛爭到展望,(2004年8月6日)。 四、 學位論文 ?? 王希平,《基因改造食品管理之相關法律問題研究》,(2002年11月),東吳大學法律研究所碩士論文。 ?? 林佳瑩,《植物智慧財產權之保護及其限制》,(2003年7月),國立台灣大學法律研究所碩士論文。 ?? 張孫福,《基因改造食品關於標示要求之國際貿易議題之研究》,(2002年7月),東吳大學法學院法律學系碩士論文。 ?? 蔡雅惠,《論基因改造食品之法律規範》,(2002年),台北大學法律研究所碩士論文。 ?? 羅靜華,《論基因改造食品/作物之管制及其民事責任》,(2003年7月),成功大學法律研究所碩士論文。 五、 網站資料 ?? 中華民國作物種原簡訊http://192.192.196.3/npgrc-web/publish/newsletter/nltr4-1.html ?? 行政院衛生署食品資訊網 http://food.doh.gov.tw/life/biotech.htm ?? GMO面面觀網站 http://gmo.agron.ntu.edu.tw/ ?? 實驗動物飼養管理訓練課程---實驗動物品質管制http://las.nhri.org.tw/curriculum_89nlac5.htm ?? 曹以會,〈基改木瓜偷跑? 立委環團喊停〉,中時電子報 http://news.chinatimes.com/Chinatimes/newslist/newslist-content/0,3546,130503+132003091500630,00.html ?? 行政院環保署科技計畫期中報告 http://www.epa.gov.tw/tech/科技計畫期中報告/dic/捌、生態學.htm ?? 李素華,〈避免基因改造作物污染及消費者選擇權∼德國將採行GMO新規範〉,http://gmo.agron.ntu.edu.tw/ ?? 大洋網 http://dailynews.dayoo.com/content/2002-06/28/content_518431.htm ?? 中國作物種植信息網 http://icgr.caas.net.cn/Ipgri/part3/wild_relatives2.htm ?? 大紀元時報 http://www.epochtimes.com/b5/2/7/5/n200466.htm ?? Monsanto公司中國網站http://www.monsanto.com.cn/bio_forum/expert_viewport/aviewport_009.htm 六、 研究報告 ?? 陳詩欣,〈利用花粉管通道法 轉殖抗蟲基因至十字花科作物的研究〉, 大專學生參與專題研究計畫成果報告 (計劃編號:NSC89-2815-C-002-012-B),(2000年3月)。 貳、 英文部分 一、 書籍資料 ?? B. McClintock , MODIFIED GENE EXPRESSIONS INDUCED by TRANSPOSABLE ELEMENTS,(W. A. Scott et al., eds., Mobilization and Reassembly of Genetic Information (New York:Academic Press, 1980)). ?? Campell, Reece, Mitchell, BIOLOGY, (Pearson Higher Education, 5th ed., 2001). 二、 期刊論文 ?? A. W. Jones, WHAT LIABILITY OF GROWING GENETICALLY ENGINEERED CROPS? 7 Drake J. Agric. L. 621, (Fall, 2002). ?? A. P. Nelson, Legal Liability in the Wake of StarLink TM:Who Pays in the End?, 247, 7 Drake J. Agric .L. 241,(2002). ?? E. Duall, A LIABILITY AND REDRESS REGIME FOR GENETICALLY MODIFIED ORGANISMS UNDER THE CARTAGENA PROTOCOL, 36 Geo. Wash. Int'l L. Rev. 173, (2004). ?? G. Calabresi and A. D. Melamed, Property Rules, Liability Rules, and Inalienability: One View of the Cathedral, 85 Harv. L. Rev. 1089, (1972). ?? H. Preston, Drift of Patented Genetically Engineered Crops:Rethinking Liability Theories, Tex. L. Review. (March 2003). ?? C. James, Preview:Global Status of Commercialized Transgenic Crops: 2003, ISAAA Briefs No. 30.ISAAA: Ithaca, NY (2003). ?? R. A. Repp, Biotech Pollution: Assessing Liability for Genetically Modified Crop Production and Genetic Drift, 36 Idaho L. Rev. 585, (2000) ?? R. M. Bratspies, Myths of Voluntary Compliance: Lessons from the StarLink Corn Fiasco, 27 Wm. & Mary Envtl. L. & Pol'y Rev. 593,(2003). ?? S. M. Scanlon,COMMENT: Should Missouri Farmers of Genetically Modified Crops be Held Liable for Genetic Drift and Cross-Pollination?, 10 Mo. Envtl. L. & Pol'y Rev. 1, (2002)。 ?? T. P. Redick, Biopharming, Biosafety, and Billion Dollar Debacles: Preventing Liability for Biotech Crops,8 Drake J. Agric. L. 115,(2003). 三、 網站資料 ?? C. Wells,Growing Vegetables for Seed - Crossers and Selfers[ Differences in Seed Saving Methods ], available at http://www.certifiedorganic.bc.ca/rcbtoa/training/seedsaving.htm ?? BINAS ONLINE http://binas.unido.org/binas/country.php?id=9 ?? Canada Federal Court http://decisions.fct-cf.gc.ca/fct/2002/2002fca309.html ?? Official Journal of European Union http://europa.eu.int/eur-lex/pri/en/oj/dat/2004/l_143/l_14320040430en00560075.pdf ?? GM Food Safety and Producer Liability Bill (presented to the House of Commons on 24 June 1999 by Mr Alan Simpson, MP) http://nottfoe.gn.apc.org/gmbill.htm ?? Agbios website http://www.agbios.com/ ?? 1st European Conference on the Co-existence of Genetically Modified Crops with Conventional and Organic Crops (GMCC’03) http://www.agesci.dk/gmcc-03/abs_8.htm ?? Canadian Food Inspection Agency http://www.inspection.gc.ca/english/plaveg/bio/pntvcne.shtml ?? International Service for the Acquisition of Agri-biotech Applications http://www.isaaa.org/kc/Global%20Status/biosafety.htm ?? Information Systems for Biotechnology (ISB) http://www.isb.vt.edu/news/2004/may04.pdf ?? 2003 MONSANTO TECHNOLOGY/STEWARDSHIP AGREEMENT http://www.mindfully.org/GE/2003/Monsanto-Technology-Agreement2003.htm ?? Monsanto http://www.monsanto.com/monsanto/us_ag/layout/stewardship/mta/mtadownload.asp ?? News@nature.com http://www.nature.com/nsu/031006/031006-13.html ?? Network of concerned farmer http://www.non-gm-farmers.com/news_details.asp?ID=1408 ?? Schmeiser website http://www.percyschmeiser.com/ ?? SeedQuest news section http://www.seedquest.com/News/releases/2004/march/8147.htm ?? 2002 MONSANTO TECHNOLOGY/STEWARDSHIP AGREEMENT http://www.worc.org/foodfight/agreement.pdf ?? 德國政府消費者保護暨農業部(BVEL)所提出的基因改造修法草案http://www3.verbraucherministerium.de/index-00060E28638810169E936521C0A8D816.html 四、 研究報告 ?? Federal Register/Vol. 68, No. 46/Monday, March 10, 2003/Proposed Rules ?? J. L. Brown, StarLink, The Pennsylvania State University, (2003). ?? C. James, Preview:Global Status of Commercialized Transgenic Crops: 2003, ISAAA Briefs No. 30.ISAAA: Ithaca, NY. (2003). ?? New EU Legislation on Environmental Liability, Mondaq Business Briefing, May 21, 2004, LEXIS, Nexis Library. ?? Pew Initiative on Food and Biotechnology, Issue In the Regulation of Genetically Engineered Plants and Animals, (2004). ?? P.J.W. Lutman, Co-existence of conventional, organic and GM crops - role of temporal and spatial behaviour of seeds, GMCC03, (2003), available at http://www.agrsci.dk/gmcc-03/3. 五、 電子資料庫 ?? LexisNexis Academic Universeid NH0925705009 sid 906507 cfn 0 / id NH0925705010 auc 滕沛倫 tic 論基因改造食品發展上風險所致損害之救濟 adc 牛惠之 ty 碩士 sc 國立清華大學 dp 科技法律研究所 yr 92 lg 中文 pg 117 kwc 基因改造食品 kwc 發展上風險 kwc 損害救濟 abc 本文嘗試探討因基因改造食品之發展上風險造成消費者損害時,我國現行法律體系,對於此種損害所可能提供的救濟。本文先點出基因改造食品之安全性議題,並處理基因改造食品事故於我國現行民事法體系下,是否有適當之請求權基礎;同時進一步探討於訴訟上扮演關鍵角色的因果關係之舉證責任與方法,在基因改造食品事故之地位。有鑑於因果關係之重要性,本文另簡介三種與欠缺科學證據相關之產品責任案例,並分析其特質,做為基因改造食品事故訴訟上之借鏡。此外,本文亦探討以現有之訴訟外救濟制度—藥害救濟機制為藍本,探討補償救濟基因改造食品事故受害者之可能性。 rf 壹、中文部份(按作者姓氏筆畫排列) 一、書籍資料 王澤鑑,《侵權行為法(一)》,台北,三民書局(2000年修正六刷)。 朱柏松,《消費者保護法論》,台北,瀚蘆出版社(1999年增訂版)。 朱懷祖,《食品藥物與消費者保護【學說與案例研究】》台北,五南圖書(1997年)。 朱懷祖,《藥物責任與消費者保護》,台北,五南圖書(1997年)。 林誠二,《民法債編總論下冊》,台北,瑞興圖書(2001年)。 孫森焱,《新版民法債編總論上,下冊》,台北,三民書局(2002年修訂版)。 郭麗珍,《產品瑕疵與製造人行為之研究—可觀典型之產品瑕疵概念與產品安全注意義務》,國立成功大學法律學研究所法學叢書(十),台北,神州圖書(2001年)。 曾淑瑜,《醫療過失與因果關係(下)》,台北,翰蘆出版社(1998年)。 馮震宇、姜志俊、謝穎青、姜炳俊著,《消費者保護法解讀》,台北,元照出版公司(2002年二版)。 黃立,《民法債編總論》,國立政治大學法學叢書(41),台北,元照出版(1999年二版)。 黃立編《民法債編各論上》,台北,元照出版(2002年)。 二、期刊論文 牛惠之,〈論基因治療之科技風險與醫療傷害之救濟-必也新法乎??〉,生物科技與法律研究通訊,第17、18期,頁81,99(2003年1月)。 林美惠,〈交易安全義務與我國侵權行為法體系之調整—以歸責原則變動為中心(上)〉,月旦法學,第78 期(2001年11月)。 林美惠,〈交易安全義務與我國侵權行為法體系之調整—以歸責原則變動為中心(中)〉,月旦法學,第79 期(2001年12月)。 林美惠,〈交易安全義務與我國侵權行為法體系之調整—以歸責原則變動為中心(下)〉,月旦法學,第80 期(2002年1月)。 姚志明,〈消費爭議與民法及消保法適用之問題-以商品買賣責任為例〉,月旦法學,第110期(2004年7月)。 郭麗珍,〈我國產品責任十年來之發展概論〉,月旦法學,第110期,頁27-39,(2004年7月)。 黃謙恩,〈公害損害賠償與強制執行關係—強制執行法爭議問題研究〉,全國律師雜誌,99期,頁24,台北(1997年)。 詹順貴,〈我國公害糾紛民事救濟的困境與立法建議〉,律師雜誌,260期,頁44,台北(2001年)。 楊婉苓,〈預防原則對GMO爭議之反省(下)〉,科技法律透析,2003年1月號,頁57(2003)。 三、研討會論文 牛惠之,〈基因科技之社會意涵與法制建構—由GMO之風險辯證論規範體系之建構與責任歸屬〉,收於《基因技術挑戰與法律回應—基因科技與法律研討會論文集》,國立台灣大學法律學院研究中心叢書科技與法律研究中心(1),頁1-76,學林文化(2003)。 王千維,〈由民法第一百八十四條到民法第一百九十一條之三--以違法性的思考以及客觀證據負擔的倒置為中心〉,收於《民法七十年之回顧與展望紀念論文集(一)—總則.債編》,頁117,台北,元照出版(2000年)。 四、學位論文 羅靜華,《論基因改造食品/作物之管制及其民事責任》,國立成功大學法律學研究所碩士論文(2003年6月)。 五、法院判決 最高法院76年台上字第158號,最高法院民刑事裁判選輯,第八卷第一期,頁30。 最高法院82年台上字第2161號,最高法院民事裁判書,第一三期,頁125。 台北地方法院89年度重訴字第472號判決。 六、網站資料 GMO面面觀,http://gmo.agron.ntu.edu.tw/ 生物科技簡介,http://itri-bmec.learnbank.com.tw/01.htm/ 行政院衛生署食品衛生處官方網站,http://www.doh.gov.tw/ 沈翰祖,植物利用農桿菌進行基因轉移之簡介,http://www.tss.gov.tw/publish/seed-technology/92-01-41/05.htm/ 孫森焱,談新修正債編第一百九十一條之一,http://www.scu.edu.tw/lex/a3-2-2000-11.htm/ 財團法人藥害救濟基金會,http://www.tdrf.org.tw 國外的藥物不良反應事件,http://www.adr-zj.net/fileData/20031029140127.shtml/ 貳、英文部份(按作者姓氏字母排列) 一、書籍資料 KENNETH R. FOSTER, DAVID E. BERNSTEIN AND PETER W. HUBER, PHANTON RISK – SCIENTIFIC INFERENCE AND THE LAW (MIT Press, 1994 3rd printing). RICHARD GOLDBERG, CAUSATION AND RISK IN THE LAW OF TORTS: SCIENTIFIC EVIDENCE AND MEDICINAL PRODUCT LIABILITY (Hart Publishing, 1999). MICHAEL J. MOORE AND W. KIP VISCUSI, PRODUCT LIABILITY ENTERING THE TWENTY-FIRST CENTURY: THE U.S. PERSPECTIVE (AEI-Brookings Joint Center, 2001). ANDREW ROWELL, DON’T WORRY IT’S SAFE TO EAT (EarthScan, 2003). 二、期刊論文 Michael V. Ciresi, Roberta B. Walburn & Tara D. Sutton, Decades of Deceit: Document Discovery in the Minnesota Tobacco Litigation, 25 WM. MITCHELL L. REV., 477 (1999). David L. Davernoe, Substantial Equivalence - A Valid International Sanitary and Phytosanitary Risk Assessment Objective for Genetically Modified Foods, 51 CASE W. RES., 257(2000). Charles A. Deacon and Emilie K. Paterson, Emerging Trends in Biotechnology Litigation, 20 REV. LITIG., 589(2001). Bryan Endres, "GMO:" Genetically Modified Organism or Gigantic Monetary Obligation? The Liability Schemes for GMO Damage in the United States and the European Union, 22 LOY. L.A. INT'L & COMP. L. REV., 453(2002). Ingrid L. Dietsch Field, No Ifs, Ands or Butts: Big Tobacco Is Fighting for Its Life Against A New Breed of Plantiffs Armed with Mounting Evidence, 27 U. BALT. L. REV., 99(1997). George Gaskell, Nick Allum, Martin Bauer, Jonathan Jackson, Susan Howard and Nicola Lindsey, Ambivalent GM nation? Public attitudes to biotechnology in the UK, 1991-2002, LONDON SCHOOL OF ECONOMICS, 13(July 2003). Stanton B. Gelvin, The Introduction and Expression of Transgenes in Plants, 9 CURR. OPIN. BIOTECHNOL., 227(1998). Charles Joseph Harris, State Tobacco Settlement: A Windfall of Problems, 17 J. L. & POLITICS, 167(2001). Louis-Marie Houdebine, The Methods to Generate Transgenic Animals and to Control Transgene Expression, 98 J. OF BIOTECHNOL., 145(2002). Sheila Jasanoff & Dogan Perese, The Practice of Epidemiology and Administrative Agenc Created Science: Welfare State or Welfare Court: Asbestos Litigation in Comparative Perspective, 12 J.L. & POL'Y, 619(2004). H.A. Kuiper et al., Assessment of the Food Safety Issues Related to Genetically Modified Foods, THE PLANT JOURNAL, 503(2001). Erin Myers, The Manipulation of Public Opinion by the Tobacco Industry: Past, Present, and Future, 2 J. HEALTH CARE L. & POL'Y, 79(1998). R.D. Palmiter, R.L. Brinster , R.E. Hammer, M.E. Trumbauer, M.G. Rosenfeld, N.C. Birnberg, R.M. Evans, Dramatic Growth of Mice that Develop from Eggs Microinjected with Metallothionein-Growth hormone Fusion Genes, 300 NATURE, 611(1982). Tucker S. Player, After the Fall: The Cigarette Papers, the Global Settlement, and the Future of Tobacco Litigation, 49 S.C. L. REV., 311 (1998). Robert L. Rabin, A Sociolegal History of the Tobacco Tort Litigation, 44 STAN. L. REV., 853(1992). Robert L. Rabin, The Tobacco Litigation: A Tentative Assessment, 51 DEPAUL L. REV., 331(2001). Gordon, J.W., Scangos, G.A., Plotkin, D.J., Barbosa, J.A., Ruddle, F.H., Genetic Transformation of Mouse Embryos by Microinjection of Purified DNA, 77 PROC. NATL. ACAD. SCI. USA, 7380(1980). Jerry Tutunjan, Canadians Prefer GM Food, But Want IT Identified, CANADIAN GROCER TORONTO, VOL. 118, ISS. 1, 8(Feb 2004). Annelies Verdurme, and Jacques Viaene, Consumer Beliefs and Attitude Towards Genetically Modified Food: Basis for Segmentation and Implications for Communication, AGRIBUSINESS, Vol. 19 (1), 91(2003). Benjamin J. Wolf, Can You Hear Me Now?: Cellular Phones and Mass Tort Litigation after NEWMAN V. MOTOROLA, INC., 14 Alb. L.J. SCI. & TECH., 267(2003). 三、研究報告 GLOBAL REVIEW OF COMMERCIALIZED TRANSGENIC CROPS: 2002 FEATURE: BT MAIZE, INTERNATIONAL SERVICE FOR THE ACQUISITION OF AGRI-BIOTECH APPLICATIONS, CLIVE JAMES(2003). GM SCIENCE REVIEW FIRST REPORT, GM SCIENCE REVIEW PANEL(2003). FIELD WORK: WEIGHING UP THE COSTS AND BENEFITS OF GM CROPS, STRATEGY UNIT(2003). HARVEST ON THE HORIZON: FUTURE USES OF AGRICULTURAL BIOTECHNOLOGY, THE PEW INITIATIVE ON FOOD AND BIOTECHNOLOGY(Sep, 2001). IMPROVING THE REGULATION OF GENETICALLY MODIFIED FOODS AND OTHER NOVEL FOODS IN CANADA, CANADIAN BIOTECHNOLOGY ADVISORY COMMITTEE(2002). NEW GENETICS, FOOD, AND AGRICULTURE: SCIENTIFIC DISCOVERIES- SOCIETAL DILEMMAS, INTERNATIONAL COUNCIL FOR SCIENCE(2003). PREVIEW: GLOBAL STATUS OF COMMERCIALIZED TRANSGENIC CROPS: 2003, EXECUTIVE SUMMARY, CLIVE JAMES(2003). REPORT 10 OF THE COUNCIL ON SCIENCE AFFAIR: GENETICALLY MODIFIED CROPS AND FOODS,AMERICAN MEDICAL ASSOCIATION(2003). SMOKING AND HEALTH: REPORT OF THE ADVISORY COMMITTEE TO THE SURGEON GENERAL OF THE PUBLIC HEALTH SERVICE, PUBLIC HEALTH SERVICE, U.S. DEP'T OF HEALTH, EDUCATION & WELFARE, Pub. No. 1103(1964)。 THE HEALTH CONSEQUENCES OF SMOKING: A REPORT OF THE SURGEON GENERAL., OFFICE ON SMOKING AND HEALTH, U.S. DEP'T OF HEALTH AND HUMAN SERVICES, 88-8406(1988). WHAT’S IN IT FOR YOU? A PRACTICAL GUIDE FOR CONSUMERS AND THE FOOD CHAIN, ABE AGRICULTURAL BIOTECHNOLOGY EUROPE(2004). 四、官方文件 Communication from The Commision on The Precautionary Principle, Commission of The European Communities, Brussels(2002). 五、法院判決 No. 9673(C) (E.D. Mo. filed Mar. 10, 1954). 304 F.2d 70 (5th Cir. 1962). 505 U.S. 504 (1992). 509 U.S. 579 (1993). 887 F. Supp. 2d 1500 (M.D. Fla., 1995) No. 95934CA (Fla. Cir. Ct. Aug. 9, 1996), rev'd per curiam, No. 96-4831, 1998 WL 323484 (Fla. Dist. Ct. App. June 22, 1998). 166 F.3d 490 (2d Cir. 1999). 2001 WL 1242257 (E.D. La. 2001). 2001 WL 1636842 (E.D. La. 2001). 78 Fed. Appx. 292 (4th Cir. 2003). 237 F.Supp.2d 512(S.D.N.Y. 2003). 六、新聞報導 〈Americans' Knowledge of Genetically Modified Foods Remains Low and Opinions On Safety Still Split〉, available at http://pewagbiotech.org/newsroom/ releases/091803.php3/ 〈Consumers in Europe Resist Gene-Altered Foods〉, Lizette Alvarez, New York Times, Feb 11, 2003, p.A3. 〈Greenpeace Inquiry Shows 50% Consumers Dislike GM Foods〉, SinoCast China Business Daily News. Dallas: April 22, 2004, p.1. 〈Lawyers revise obesity lawsuit against McDonald's〉, Jonathan Wald, 2003/02/21, available at http://www.cnn.com/2003/LAW/02/21/obesity.lawsuit/ index.html/ 〈McDonald's Phasing Out Supersize Fries, Drinks〉, Fox News, 2004/03/02, available at http://www.foxnews.com:story:0,2933,113105,00.html/ 〈My Big Fattening Greek Salad - Are French Fries the New Marlboros? 〉, Dahlia Lithwick, Aug. 14, 2003, available at http://slate.msn.com/id/2086970/ 〈National Restaurant Association Supports Prevention of Abusive Lawsuits against Food Industry〉, National Restaurant Association, Jan. 28,2003, available at http://www.restaurant.org/pressroom/pressrelease.cfm?ID=549/. 〈Policy-makers take aim at obesity rates, Susan J. Landers, AMNews, July 19, 2004, available at, http://www.ama-assn.org/amednews/2004/07/19/hlsb071 9.htm/ 〈Political Hot-Dogging in the House〉, New YorkYimes Editorial words, Section A , Page 20 , Column 1, March 12, 2004, available at www.nytimes.com/2004/ 03/12/opinion/12FRI2.html/ 〈Surveys Shows We Are Undecided Over GM Foods and Crops〉, Farmers Guardian. Tonbridge, Aug 1, 2003, p.15. 七、網站資料 A Food Foresight Analysis of Agriculture Biotechnology, Report for the California Department of Food and Agriculture, Food Biotechnology Task Force, available at, http://www.cdfa.ca.gov/exec/sienceadvisor/pdfs/ag_biotech_report_03.pdf/ Agricultural Biotech Products on the Market, available at, http://www.bio.org/er/agri_products.asp/ Biotech Crops Approved in Canada, Mexico and the United States, available at, http://www.whybiotech.com/index.asp?id=2852/ Creating A New Variety of Fish: The Technique to Make Transgenic Animals, available at, http://www.fda.gov/fdac/features/2001/101_fish.html/ Does the Sophisticated Intermediary Defense Apply in Toxic Tort Cases?, available at, http://www.toxictorts.com/art_sophist_interm.html/ Food Standards Australia New Zealand, available at, http://www.foodstandards.gov.au/whatsinfood/gmfoods/gmcurrentapplication1030.cfm/ Global Status of GM Crop- Dominant GM Crops and Their Traits, available at, http://www.isaaa.org/kc/Global_Status/gstat/2002/dominant.htm/ GM Database, http://www.agbios.com/dbase.php/ NY Dismisses First Fat Food Lawsuit - McFat Litigation I – Pelman v. McDonald’s Corp., Tom McLean, available at, http://biotech.law.lsu.edu/cases/food/Pelman_v_McDonalds_SDNY_brief.htm/ Question and Answers on the regulation of GMOs in the EU, European Commission, available at, http://europa.eu.int/rapid/start/cgi/guesten.ksh?p_action.gettxt=gt&doc=MEMO/02/160|0|AGED&lg=EN&display=/ Round III of McFat Litigation: Don’t Hold the Pickles, Cancel the Order - NY Dismissed the Refiled Fat Lawsuit - McFat LitigationIII, Tom McLean, available at, http://biotech.law.lsu.edu/cases/food/Pelman_v_McDonalds_SDNY_brief.htm/ Thalidomide, available at, http://cerhr.niehs.nih.gov/genpub/topics/thalidomide2-ccae.html/ Transformation Method, available at, http://www.agbios.com/cstudies.php?book=FSA&ev=MON810&chapter=Modification/id NH0925705010 sid 906512 cfn 0